

Encyclopedia of Database Systems

Ling Liu, M. Tamer Özsu (Eds.)
Encyclopedia of
Database Systems
With 3,067 Entries

With 871 Authors

With 1,176 Figures and 101 Tables

With 6,900 Cross-references

With 10,696 Bibliographic references

LING LIU

Professor

College of Computing

Georgia Institute of Technology

266 Ferst Drive

Atlanta, GA 30332-0765

USA

M. TAMER ÖZSU

Professor and Director, University Research Chair

Database Research Group

David R. Cheriton School of Computer Science

University of Waterloo

200 University Avenue West

Waterloo, ON

Canada N2L 3G1
Library of Congress Control Number: 2009931217

ISBN: 978-0-387-35544-3

This publication is available also as:
Electronic publication under ISBN: 978-0-387-39940-9 and
Print and electronic bundle under ISBN: 978-0-387-49616-0

� Springer Science+Business Media, LLC 2009 (USA)

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the
publisher (Springer Science+Business Media, LLC., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such,
is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

springer.com

Printed on acid free paper SPIN: 11752127 2109SPi– 5 4 3 2 1 0

To our families

Preface
We are in an information era where generating and storing large amounts of data are commonplace. A growing

number of organizations routinely handle terabytes and exabytes of data, and individual digital data collections

easily reach multiple gigabytes. Along with the increases in volume, the modality of digitized data that requires

efficient management and the access modes to these data have become more varied. It is increasingly common for

business and personal data collections to include images, video, voice, and unstructured text; the retrieval of these

data comprises various forms, including structured queries, keyword search, and visual access. Data have become

a highly valued asset for governments, industries and individuals, and the management of these data collections

remains a critical technical challenge.

Database technology has matured over the past four decades and is now quite ubiquitous in many applications

that deal with more traditional business data. The challenges of expanding data management to include other data

modalities while maintaining the fundamental tenets of database management (data independence, data integrity,

data consistency, etc.) are issues that the community continues to work on. The lines between database

management and other fields such as information retrieval, multimedia retrieval, and data visualization are

increasingly blurred.

This multi-volume Encyclopedia of Database Systems provides easy access to important concepts on all aspects

of database systems, including areas of current interest and research results of historical significance. It is a

comprehensive collection of over 1,250 in-depth entries (3,067 including synonyms) that present coverage of the

important concepts, issues, emerging technology and future trends in the field of database technologies, systems,

and applications. The content of the Encyclopedia was determined through wide consultations. We were assisted

by an Advisory Board in coming up with the overall structure and content. Each of these areas were put under the

control of Area Editors (70 in total) who further developed the content for each area, soliciting experts in the field

as contributors to write the entries, and performed the necessary technical editing. Some of them even wrote

entries themselves. Nearly 1,000 authors were involved in writing entries.

The intended audience for the Encyclopedia is technically broad and diverse. It includes anyone concerned

with database system technology and its applications. Specifically, the Encyclopedia can serve as a valuable and

authoritative reference for students, researchers and practitioners who need a quick and authoritative reference to

the subject of databases, data management, and database systems. We anticipate that many people will benefit

from this reference work, including database specialists, software developers, scientists and engineers who need to

deal with (structured, semi-structured or unstructured) large datasets. In addition, database and data mining

researchers and scholars in the many areas that apply database technologies, such as artificial intelligence, software

engineering, robotics and computer vision, machine learning, finance and marketing are expected to benefit from

the Encyclopedia.

We would like to thank the members of the Advisory Board, the Editorial Board, and the individual

contributors for their help in creating this Encyclopedia. The success of the Encyclopedia could not have been

achieved without the expertise and the effort of the many contributors. Our sincere thanks also go to Springer’s

editors and staff, including Jennifer Carlson, Susan Lagerstrom-Fife, Oona Schmid, and Susan Bednarczyk for

their support throughout the project.

Finally, we would very much like to hear from readers for any suggestions regarding the Encyclopedia’s content.

With a project of this size and scope, it is quite possible that we may have missed some concepts. It is also possible

that some entries may benefit from revisions and clarifications. We are committed to issuing periodic updates and

we look forward to the feedback from the community to improve the Encyclopedia.

Ling Liu

M. Tamer Özsu

Editors-in-Chief
Ling Liu is a Professor in the School of Computer Science, College of Computing, at Georgia Institute of

Technology. Dr. Liu directs the research programs in Distributed Data Intensive Systems Lab (DiSL), examining

various aspects of data intensive systems, ranging from database and Internet data management, data storage,

network computing, and mobile and wireless computing, with the focus on performance, availability, security,

privacy, and energy efficiency in building very large database and data management systems and services. She has

published over 200 international journal and conference articles in the areas of databases, data engineering, and

distributed computing systems. She is a recipient of the best paper award of ICDCS 2003, the best paper award of

WWW 2004, the 2005 Pat Goldberg Memorial Best Paper Award, and the best data engineering paper award of

Int. Conf. on Software Engineering and Data Engineering (2008). Dr. Liu served on the editorial board of IEEE

Transactions on Knowledge and Data Engineering and International Journal of Very Large Databases from 2004 to

2008 and is currently serving on the editorial board of several international journals, including Distributed and

Parallel Databases Journal, IEEE Transactions on Service Computing (TSC), International Journal of Peer-to-Peer

Networking and Applications (Springer), and Wireless Network (Springer). Dr. Liu’s current research is primarily

sponsored by NSF, IBM, and Intel.

x B Editors-in-Chief
M. Tamer Özsu is a Professor of Computer Science and Director of the David R. Cheriton School of Computer

Science at the University of Waterloo. He holds a Ph.D. (1983) and an MS (1981) in Computer and Information

Science from The Ohio State University (1983) and a B.S. (1974) and M.S. (1978) in Industrial Engineering from

the Middle East Technical University, Turkey (1974).

Dr. Özsu’s current research focuses on three areas: (a) Internet-scale data distribution that emphasizes stream data

management, peer-to-peer databases, and Web data management; (b) multimedia data management, concentrat-

ing on similarity-based retrieval of time series and trajectory data; and (c) the integration of database and

information retrieval technologies, focusing on XML query processing and optimization. His previous research

focused on distributed databases, interoperable information systems, object database systems and image data-

bases. He is the co-author of the book Principles of Distributed Database Systems (Prentice Hall), which is now in

its second edition (third edition to publish in 2009).

He currently holds a University Research Chair and has held a Faculty Research Fellowship at the University of

Waterloo (2000-2003), and a McCalla Research Professorship (1993-1994) at the University of Alberta where he

was faculty member between 1984 and 2000. He is a fellow of the Association for Computing Machinery (ACM),

a senior member of Institute of Electrical and Electronics Engineers (IEEE), and a member of Sigma Xi. He was

awarded the ACM SIGMOD Contributions Award in 2006. He is also the 2008 recipient of Ohio State University

College of Engineering Distinguished Alumnus Award.

He has held visiting positions at GTE Laboratories (USA), INRIA Rocquencourt (France), GMD-IPSI (Germany),

University of Jyväskylä (Finland), Technical University of Darmstadt (Germany), University of Udine (Italy),

University of Milano (Italy), ETH Zürich (Switzerland), and National University of Singapore (Singapore).

Dr. Özsu serves on the editorial boards of ACM Computing Surveys, Distributed and Parallel Databases Journal,

World Wide Web Journal, Information Technology and Management, and Springer Book Series on Advanced

Information & Knowledge Processing. Previously he was the Coordinating Editor-in-Chief of The VLDB Journal

(1997-2005) and was on the Editorial Board of Encyclopedia of Database Technology and Applications (Idea

Group). He has served as the Program Chair of VLDB (2004), WISE (2001), IDEAS (2003), and CIKM (1996)

conferences and the General Chair of CAiSE (2002), as well as serving on the Program Committees of many

conferences including SIGMOD, VLDB, and ICDE. He is also a member of Association for Computing Machin-

ery’s (ACM) Publications Board and is its Vice-Chair for New Publications.

Dr. Özsu was the Chair of ACM Special Interest Group on Management of Data (SIGMOD; 2001-2005) and a past

trustee of the VLDB Endowment (1996-2002). He was a member and chair of the Computer and Information

Science Grant Selection Committee of the Natural Sciences and Engineering Research Council of Canada during

1991-94, and served on the Management Committee of the Canadian Genome Analysis and Technology Program

during 1992-93. He was Acting Chair of the Department of Computing Science at the University of Alberta

during 1994-95, and again, for a brief period, in 2000.

Advisory Board
Serge Abiteboul

INRIA-Futurs INRIA, Saclay

Orsay, Cedex

France

Gustavo Alonso

ETH Zürich

Zürich

Switzerland

Peter M. G. Apers

University of Twente

Enschede

The Netherlands

Ricardo Baeza-Yates

Yahoo! Research

Barcelona

Spain

Catriel Beeri

Hebrew University of Jerusalem

Jerusalem

Israel

Elisa Bertino

Purdue University

West Lafayette, IN

USA

Stefano Ceri

Politecnico di Milano

Milan

Italy

Asuman Dogac

Middle East Technical University

Ankara

Turkey

Alon Halevy

Google, Inc.

Mountain View, CA

USA
Jiawei Han

University of Illinios at Urbana-Champaign

Urbana, IL

USA

Theo Härder

University of Kaiserslautern

Kaiserslautern

Germany

Joseph M. Hellerstein

University of California-Berkeley

Berkeley, CA

USA

Ramesh Jain

University of California-Irvine

Irvine, CA

USA

Matthias Jarke

RWTH-Aachen

Aachen

Germany

Jai Menon

IBM Systems and Technology Group

San Jose, CA

USA

John Mylopoulos

University of Toronto

Toronto, ON

Canada

Beng Chin Ooi

National University of Singapore

Singapore

Singapore

Erhard Rahm

University of Leipzig

Leipzig

Germany

xii B Advisory Board
Krithi Ramamritham

IIT Bombay

Mumbai

India

Schek Hans-Joerg

ETH Zürich

Zürich

Switzerland

Sellis Timos

National Technical University of Athens

Athens

Greece

Frank Wm. Tompa

University of Waterloo

Waterloo, ON

Canada
Patrick Valduriez

INRIA and LINA

Nantes

France

Gerhard Weikum

Max Planck Institute for Informatics

Saarbrücken

Germany

Jennifer Widom

Stanford University

Stanford, CA

USA

Lizhu Zhou

Tsinghua University

Beijing

China

Area Editors
Peer-to-Peer Data Management

KARL ABERER

EPFL-IC-IIF-LSIR

Lausanne

Switzerland

Database Management System
Architectures

ANASTASIA AILAMAKI

EPF Lausanne

Lausanne

Switzerland

Information Retrieval Models

GIAMBATTISTA AMATI

Fondazione Ugo Bordoni

Rome

Italy
XML Data Management

SIHEM AMER-YAHIA

Yahoo! Research

New York, NY

USA

Database Middleware

CHRISTIANA AMZA

University of Toronto

Toronto, ON

Canada

Database Tools
Database Tuning

PHILIPPE BONNET

University of Copenhagen

Copenhagen

Denmark

Visual Interfaces

xiv Area Editors
TIZIANA CATARCI

University of Rome

Rome

Italy
Stream Data Management

UGUR CETINTEMEL

Brown University

Providence, RI

USA
Querying Over Data Integration
Systems

KEVIN CHANG

University of Illinois at Urbana-Champaign

Urbana, IL

USA
Self Management

SURAJIT CHAUDHURI

Microsoft Research

Redmond, WA

USA
Text Mining

ZHENG CHEN

Microsoft Research Asia

Beijing

China
Extended Transaction Models
(Advanced Concurrency Control Theory)

PANOS K. CHRYSANTHIS

University of Pittsburgh

Pittsburgh, PA

USA

Area EditorsB xv
Privacy-Preserving Data Mining

CHRIS CLIFTON

Purdue University

West Lafayette, IN

USA
Active Databases

KLAUS DITTRICH

University of Zürich

Zürich

Switzerland
Digital Libraries

AMR EL ABBADI

University of California-Santa Barbara

Santa Barbara, CA

USA
Data Models (Including Semantic
Data Models)

DAVID EMBLEY

Brigham Young University

Provo, UT

USA
Complex Event Processing

OPHER ETZION

IBM Research Lab in Haifa

Haifa

Israel
Database Security and Privacy

ELENA FERRARI

University of Insubria

Varese

Italy

xvi Area Editors
Semantic Web and Ontologies

AVIGDOR GAL

Technion - Israel Institute of Technology

Haifa

Israel
Data Cleaning

VENKATESH GANTI

Microsoft Research

Redmond, WA

USA
Web Data Extraction

GEORG GOTTLOB

Oxford University

Oxford

UK
Sensor Networks

LE GRUENWALD

The University of Oklahoma

Norman, OK

USA
Data Clustering

DIMITRIOS GUNOPULOS

University of Athens

Athens

Greece

University of California – Riverside

Riverside, CA

USA
Scientific Databases

AMARNATH GUPTA

University of California-San Diego

La Jolla, CA

USA

Area EditorsB xvii
Geographic Information Systems

RALF HARTMUT GÜTING

University of Hagen

Hagen

Germany
Data Visualization

HANS HINTERBERGER

ETH Zürich

Zürich

Switzerland
Web Services and Service Oriented
Architectures

HANS-ARNO JACOBSEN

University of Toronto

Toronto, ON

Canada
Temporal Databases

CHRISTIAN JENSEN

Aalborg University

Aalborg

Denmark
Metadata Management

MANFRED JEUSFELD

Tilburg University

Tilburg

The Netherlands
Health Informatics Databases

VIPUL KASHYAP

Partners Health Care System

Wellesley, MA

USA

xviii Area Editors
Visual Data Mining

DANIEL KEIM

University of Konstanz

Konstanz

Germany
Data Replication

BETTINA KEMME

McGill University

Montreal, QC

Canada
Advanced Storage Systems
Storage Structures and Systems

MASARU KITSUREGAWA

The University of Tokyo

Tokyo

Japan
Views and View Management

YANNIS KOTIDIS

Athens University of Economics and Business

Athens

Greece
Semi-Structured Text Retrieval

MOUNIA LALMAS

University of Glasgow

Glasgow

UK
Information Quality

YANG LEE

Northeastern University

Boston, MA

USA

Area EditorsB xix
Relational Theory

LEONID LIBKIN

University of Edinburgh

Edinburgh

UK
Information Retrieval Evaluation
Measures

WEIYI MENG

State University of New York at Binghamton

Binghamton, NY

USA

Data Integration
No Photo

available
RENÉE MILLER

University of Toronto

Toronto, ON

Canada
Database Design

JOHN MYLOPOULOS

University of Toronto

Toronto, ON

Canada
Text Indexing Techniques

MARIO NASCIMENTO

University of Alberta

Edmonton, AB

Canada
Data Quality

FELIX NAUMANN

Hasso Plattner Institute

Potsdam

Germany

xx Area Editors
Web Search and Crawl

CHRISTOPHER OLSTON

Yahoo! Research

Santa Clara, CA

USA
Multimedia Databases

VINCENT ORIA

New Jersey Institute of Technology

Newark, NJ

USA
Spatial, Spatiotemporal, and
Multidimensional Databases

DIMITRIS PAPADIAS

Hong Kong University of Science and Technology

Hong Kong

China
Data Warehouse

TORBEN BACH PEDERSEN

Aalborg University

Aalborg

Denmark
Association Rule Mining

JIAN PEI

Simon Fraser University

Burnaby, BC

Canada
Workflow Management

BARBARA PERNICI

Politecnico di Milano

Milan

Italy

Area EditorsB xxi
Query Processing and Optimization

EVAGGELIA PITOURA

University of Ioannina

Ioannina

Greece
Data Management for the
Life Sciences

LOUIQA RASCHID

University of Marlyand

College Park, MD

USA
Information Retrieval Operations

EDIE RASMUSSEN

The University of British Columbia

Vancouver, BC

Canada
Query Languages

TORE RISCH

Uppsala University

Uppsala

Sweden
Data Warehouse

STEFANO RIZZI

University of Bologna

Bologna

Italy
Multimedia Databases

SHIN’ICHI SATOH

National Institute of Informatics

Tokyo

Japan

xxii Area Editors
Spatial, Spatiotemporal, and
Multidimensional Databases

TIMOS SELLIS

National Technical University of Athens

Athens

Greece

Database Tools
Database Tuning

DENNIS SHASHA

New York University

New York, NY

USA

Classification and Decision Trees

KYUSEOK SHIM

Seoul National University

Seoul

Republic of Korea
Temporal Databases

RICK SNODGRASS

University of Arizona

Tuscon, AZ

USA
Stream Mining

DIVESH SRIVASTAVA

AT&T Labs – Research

Florham Park, NJ

USA
Distributed Database Systems

KIAN-LEE TAN

National University of Singapore

Singapore

Singapore

Area EditorsB xxiii
Logics and Databases

VALTANNEN

University of Pennsylvania

Philadelphia, PA

USA
Structured and Semi-Structured
Document Databases

FRANK WM. TOMPA

University of Waterloo

Waterloo, ON

Canada
Indexing

VASSILIS TSOTRAS

University of California – Riverside

Riverside, CA

USA
Parallel Database Systems

PATRICK VALDURIEZ

INRIA and LINA

Nantes

France
Advanced Storage Systems
Storage structures and systems

KALADHAR VORUGANTI

Network Appliance

Sunnyvale, CA

USA
Transaction Management

GOTTFRIED VOSSEN

University of Münster

Münster

Germany

xxiv Area Editors
Self Management

GERHARD WEIKUM

Max Planck Institute for Informatics

Saarbrücken

Germany
Mobile and Ubiquitous Data
Management

OURI WOLFSON

University of Illinois at Chicago

Chicago, IL

USA
Multimedia Information Retrieval

JEFFREY XU YU

Chinese University of Hong Kong

Hong Kong

China
Approximation and Data Reduction
Techniques

XIAOFANG ZHOU

The University of Queensland

Brisbane, QLD

Australia

List of Contributors
W. M. P. van der Aalst

Eindhoven University of Technology

Eindhoven

The Netherlands

Daniel Abadi

Yale University

New Haven, CT

USA

Alberto Abelló

Polytechnic University of Catalonia

Barcelona

Spain

Serge Abiteboul

INRIA, Saclay

Orsay, Cedex

France

Ioannis Aekaterinidis

University of Patras

Rio Patras

Greece

Nitin Agarwal

Arizona State University

Tempe, AZ

USA

Charu C. Aggarwal

IBM T. J. Watson Research Center

Yorktown Heights, NY

USA

Lalitha Agnihotri

Philips Research

Eindhoven

The Netherlands

Yanif Ahmad

Brown University

Providence, RI

USA
Gail-Joon Ahn

Arizona State University

Tempe, AZ

USA

Anastasia Ailamaki

EPFL

Lausanne

Switzerland

Yousef J. Al-Houmaily

Institute of Public Administration

Riyadh

Saudi Arabia

Robert B. Allen

Drexel University

Philadelphia, PA

USA

Gustavo Alonso

ETH Zurich

Zurich

Switzerland

Omar Alonso

University of California at Davis

Davis, CA

USA

Bernd Amann

Pierre & Marie Curie University (UPMC)

Paris

France

Giambattista Amati

Fondazione Ugo Bordoni

Rome

Italy

Rainer von Ammon

Center for Information Technology Transfer GmbH

(CITT)

Regensburg

Germany

xxviB List of Contributors
Robert A. Amsler

CSC

Falls Church, VA

USA

Cristiana Amza

University of Toronto

Toronto, ON

Canada

George Anadiotis

VU University Amsterdam

Amsterdam

The Netherlands

Mihael Ankerst

Allianz

Munich

Germany

Sameer Antani

National Institutes of Health

Bethesda, MD

USA

Grigoris Antoniou

Foundation for Research and Technology-Hellas

(FORTH)

Heraklion

Greece

Arvind Arasu

Microsoft Research

Redmond, WA

USA

Danilo Ardagna

Politecnico di Milano

Milan

Italy

Walid G. Aref

Purdue University

West Lafayette, IN

USA

Marcelo Arenas

Pontifical Catholic University of Chile

Santiago

Chile
Samuel Aronson

Harvard Medical School

Boston, MA

USA

Paavo Arvola

University of Tampere

Tampere

Finland

Noboru Babaguchi

Osaka University

Osaka

Japan

Shivnath Babu

Duke University

Durham, NC

USA

Kenneth Paul Baclawski

Northeastern University

Boston, MA

USA

Ricardo Baeza-Yates

Yahoo! Research

Barcelona

Spain

James Bailey

University of Melbourne

Melbourne, VIC

Australia

Peter Bak

University of Konstanz

Konstanz

Germany

Magdalena Balazinska

University of Washington

Seattle, WA

USA

Farnoush Banaei-Kashani

University of Southern California

Los Angeles, CA

USA

List of ContributorsB xxvii
Stefano Baraldi

University of Florence

Florence

Italy

Mauro Barbieri

Philips Research

Eindhoven

The Netherlands

Denilson Barbosa

University of Alberta

Edmonton, AL

Canada

Pablo Barceló

University of Chile

Santiago

Chile

Luciano Baresi

Politecnico di Milano

Milan

Italy

Ilaria Bartolini

University of Bologna

Bologna

Italy

Sugato Basu

Google Inc.

Mountain View, CA

USA

Carlo Batini

University of Milan Bicocca

Milan

Italy

Michal Batko

Masaryk University

Brno

Czech Republic

Peter Baumann

Jacobs University

Bremen

Germany
Robert Baumgartner

Vienna University of Technology

Vienna, Austria

Lixto Software GmbH

Vienna

Austria
Sean Bechhofer

University of Manchester

Manchester

UK
Steven M. Beitzel

Telcordia Technologies

Piscataway, NJ

USA
Ladjel Bellatreche

LISI/ENSMA–Poitiers University

Futuroscope Cedex

France
Omar Benjelloun

Google Inc.

Mountain View, CA

USA
Véronique Benzaken

University Paris 11

Orsay Cedex

France
Mikael Berndtsson

University of Skövde

Skövde

Sweden
Philip A. Bernstein

Microsoft Corporation

Redmond, WA

USA

Damon Andrew Berry

University of Massachusetts

Lowell, MA

USA

xxviii B
t of Contributors
Leopoldo Bertossi

Carleton University

Ottawa, ON

Canada

Claudio Bettini

University of Milan

Milan

Italy

Nigel Bevan

Professional Usability Services

London

UK

Bharat Bhargava

Purdue University

West Lafayette, IN

USA

Arnab Bhattacharya

Indian Institute of Technology

Kanpur

India

Ernst Biersack

Eurecom

Sophia Antipolis

France

Alberto Del Bimbo

University of Florence

Florence

Italy

Alan F. Blackwell

University of Cambridge

Cambridge

UK

Carlos Blanco

University of Castilla-La Mancha

Ciudad Real

Spain

Marina Blanton

University of Notre Dame

Notre Dame, IN

USA
Philip Bohannon

Yahoo! Research

Santa Clara, CA

USA

Michael H. Böhlen

Free University of Bozen-Bolzano

Bozen-Bolzano

Italy

Christian Böhm

University of Munich

Munich

Germany

Peter Boncz

CWI

Amsterdam

The Netherlands

Philippe Bonnet

University of Copenhagen

Copenhagen

Denmark

Alexander Borgida

Rutgers University

New Brunswick, NJ

USA

Chavdar Botev

Yahoo Research! and Cornell University

Ithaca, NY

USA

Sara Bouchenak

University of Grenoble I — INRIA

Grenoble

France

Luc Bouganim

INRIA Paris-Rocquencourt

Le Chesnay Cedex

France

Nozha Boujemaa

INRIA Paris-Rocquencourt

Le Chesnay Cedex

France

List of ContributorsB xxix
Shawn Bowers

University of California-Davis

Davis, CA

USA
Stéphane Bressan

National University of Singapore

Singapore

Singapore
Martin Breunig

University of Osnabrueck

Osnabrueck

Germany
Scott A. Bridwell

University of Utah

Salt Lake City, UT

USA
Thomas Brinkhoff

Institute for Applied Photogrammetry and

Geoinformatics (IAPG)

Oldenburg

Germany
Andrei Broder

Yahoo! Research

Santa Clara, CA

USA
Nicolas Bruno

Microsoft Corporation

Redmond, WA

USA
François Bry

University of Munich

Munich

Germany
Yingyi Bu

Chinese University of Hong Kong

Hong Kong

China
Alejandro Buchmann

Darmstadt University of Technology

Darmstadt

Germany
Chiranjeeb Buragohain

Amazon.com

Seattle, WA

USA
Thorsten Büring

Ludwig-Maximilians-University Munich

Munich

Germany
Benjamin Bustos

Department of Computer Science

University of Chile

Santiago

Chile
David Buttler

Lawrence Livermore National Laboratory

Livermore, CA

USA
Yanli Cai

Shanghai Jiao Tong University

Shanghai

China
Guadalupe Canahuate

The Ohio State University

Columbus, OH

USA
K. Selcuk Candan

Arizona State University

Tempe, AZ

USA
Turkmen Canli

University of Illinois at Chicago

Chicago, IL

USA

xxxB List of Contributors
Alan Cannon

Napier University

Edinburgh

UK

Cornelia Caragea

Iowa State University

Ames, IA

USA

Barbara Carminati

University of Insubria

Varese

Italy

Michael W. Carroll

Villanova University School of Law

Villanova, PA

USA

Ben Carterette

University of Massachusetts Amherst

Amherst, MA

USA

Marco A. Casanova

Pontifical Catholic University of Rio de Janeiro

Rio de Janeiro

Brazil

Giuseppe Castagna

C.N.R.S. and University Paris 7

Paris

France

Tiziana Catarci

University of Rome

Rome

Italy

James Caverlee

Texas A&M University

College Station, TX

USA

Emmanuel Cecchet

EPFL

Lausanne

Switzerland
Wojciech Cellary

Poznan University of Economics

Poznan

Poland

Michal Ceresna

Lixto Software GmbH

Vienna

Austria

Uğur Çetintemel

Brown University

Providence, RI

USA

Soumen Chakrabarti

Indian Institute of Technology of Bombay

Mumbai

India

Don Chamberlin

IBM Almaden Research Center

San Jose, CA

USA

Allen Chan

IBM Toronto Software Lab

Markham, ON

Canada

Chee Yong Chan

National University of Singapore

Singapore

Singapore

K. Mani Chandy

California Institute of Technology

Pasadena, CA

USA

Edward Y. Chang

Google Research

Mountain View, CA

USA

Kevin C. Chang

University of Illinois at Urbana-Champaign

Urbana, IL

USA

List of ContributorsB xxxi
Surajit Chaudhuri

Microsoft Research

Redmond, WA

USA

Elizabeth S. Chen

Partners HealthCareSystem

Boston, MA

USA

James L. Chen

University of Illinois at Chicago

Chicago, IL

USA

Jinjun Chen

Swinburne University of Technology

Melbourne, VIC

Australia

Lei Chen

Hong Kong University of Science and Technology

Hong Kong

China

Peter P. Chen

Louisiana State University

Baton Rouge, LA

USA

Hong Cheng

University of Illinois at Urbana-Champaign

Urbana, IL

USA

Chinese University of Hong Kong

Hong Kong

China

Reynold Cheng

The University of Hong Kong

Hong Kong

China

Vivying S. Y. Cheng

Hong Kong University of Science and Technology

(HKUST)

Hong Kong

China
InduShobha N. Chengalur-Smith

University at Albany – SUNY

Albany, NY

USA

Mitch Cherniack

Brandeis University

Wattham, MA

USA

Yun Chi

NEC Laboratories America

Cupertino, CA

USA

Rada Chirkova

North Carolina State University

Raleigh, NC

USA

Jan Chomicki

State University of New York at Buffalo

Buffalo, NY

USA

Stephanie Chow

University of Ontario Institute of Technology (UOIT)

Oshawa, ON

Canada

Vassilis Christophides

University of Crete

Heraklion

Greece

Panos K. Chrysanthis

University of Pittsburgh

Pittsburgh, PA

USA

Paolo Ciaccia

University of Bologna

Bologna

Italy

John Cieslewicz

Columbia University

New York, NY

USA

xxxiiB List of Contributors
Gianluigi Ciocca

University of Milano-Bicocca

Milan

Italy

Eugene Clark

Harvard Medical School

Boston, MA

USA

Charles L. A. Clarke

University of Waterloo

Waterloo, ON

Canada

Eliseo Clementini

University of L’Aguila

L’Aguila

Italy

Chris Clifton

Purdue University

West Lafayette, IN

USA

Edith Cohen

AT&T Labs-Research

Florham Park, NJ

USA

Sara Cohen

The Hebrew University of Jerusalem

Jerusalem

Israel

Sarah Cohen-Boulakia

University of Pennsylvania

Philadelphia, PA

USA

Carlo Combi

University of Verona

Verona

Italy

Mariano P. Consens

University of Toronto

Toronto, ON

Canada
Dianne Cook

Iowa State University

Ames, IA

USA
Graham Cormode

AT&T Labs–Research

Florham Park, NJ

USA

Antonio Corral

University of Almeria

Almeria

Spain

Maria Francesca Costabile

University of Bari

Bari

Italy

Nick Craswell

Microsoft Research Cambridge

Cambridge

UK

Fabio Crestani

University of Lugano

Lugano

Switzerland

Marco Antonio Cristo

FUCAPI

Manaus

Brazil

Maxime Crochemore

King’s College London

London

UK

University of Paris-East

Paris

France

Matthew G. Crowson

University of Illinois at Chicago

Chicago, IL

USA

List of ContributorsBxxxiii
Michel Crucianu

National Conservatory of Arts and Crafts

Paris

France

Philippe Cudré-Mauroux

Massachussetts Institute of Technology

Cambridge, MA

USA

Francisco Curbera

IBM T.J. Watson Research Center

Hawthorne, NY

USA

Peter Dadam

University of Ulm

Ulm

Germany

Mehmet M. Dalkiliç

Indiana University

Bloomington, IN

USA

Nilesh Dalvi

Yahoo! Research

Santa Clara, CA

USA

Manoranjan Dash

Nanyang Technological University

Singapore

Singapore

Anwitaman Datta

Nanyang Technological University

Singapore

Singapore

Ian Davidson

University of California-Davis

Davis, CA

USA

Antonios Deligiannakis

University of Athens

Athens

Greece
Alex Delis

University of Athens

Athens

Greece

Alan Demers

Cornell University

Ithaca, NY

USA

Ke Deng

University of Queensland

Brisbane, OLD

Australia

Amol Deshpande

University of Maryland

College Park, MD

USA

Zoran Despotovic

NTT DoCoMo Communications Laboratories Europe

Munich

Germany

Alin Deutsch

University of California-San Diego

La Jolla, CA

USA

Yanlei Diao

University of Massachusetts

Amherst, MA

USA

Suzanne W. Dietrich

Arizona State University

Phoenix, AZ

USA

Nevenka Dimitrova

Philips Research

Eindhoven

The Netherlands

Bolin Ding

University of Illinois at Urbana-Champaign

Champaign, IL

USA

xxxiv B
t of Contributors
Chris Ding

University of Texas at Arlington

Arlington, TX

USA

Alan Dix

Lancaster University

Lancaster

UK

Hong-Hai Do

SAP AG

Dresden

Germany

Gillian Dobbie

University of Auckland

Auckland

New Zealand

Alin Dobra

University of Florida

Gainesville, FL

USA

Vlastislav Dohnal

Masaryk University

Brno

Czech Republic

Mario Döller

University of Passau

Passau

Germany

Carlotta Domeniconi

George Mason University

Fairfax, VA

USA

Josep Domingo-Ferrer

Universitat Rovira i Virgili

Tarragona

Spain

Guozhu Dong

Wright State University

Dayton, OH

USA
Xin Luna Dong

AT&T Labs–Research

Florham Park, NJ

USA

Chitra Dorai

IBM T. J. Watson Research Center

Hawthorne, NY

USA

Zhicheng Dou

Nankai University

Tianjin

China

Yang Du

Northeastern University

Boston, MA

USA

Marlon Dumas

University of Tartu

Tartu

Estonia

Susan Dumais

Microsoft Research

Redmond, WA

USA

Schahram Dustdar

Technical University of Vienna

Vienna

Austria

Curtis Dyreson

Utah State University

Logan, UT

USA

Todd Eavis

Concordia University

Montreal, QC

Canada

Johann Eder

University of Vienna

Vienna

Austria

List of ContributorsB xxxv
Ibrahim Abu El-Khair

Minia University

Minia

Egypt

Ahmed K. Elmagarmid

Purdue University

West Lafayette, IN

USA

Sameh Elnikety

Microsoft Research

Cambridge

UK

David W. Embley

Brigham Young University

Provo, UT

USA

Vincent Englebert

University of Namur

Namur

Belgium

AnnMarie Ericsson

University of Skövde

Skövde

Sweden

Martin Ester

Simon Fraser University

Burnaby, BC

Canada

Opher Etzion

IBM Research Labs-Haifa

Haifa

Israel

Patrick Eugster

Purdue University

West Lafayette, IN

USA

Ronald Fagin

IBM Almaden Research Center

San Jose, CA

USA
Hui Fang

University of Delaware

Newark, DE

USA

Wei Fan

IBM T.J. Watson Research

Hawthorne, NY

USA

Wenfei Fan

University of Edinburgh

Edinburgh

UK

Alan Fekete

University of Sydney

Sydney, NSW

Australia

Jean-Daniel Fekete

INRIA, LRI University Paris Sud

Orsay Cedex

France

Pascal Felber

University of Neuchatel

Neuchatel

Switzerland

Paolino Di Felice

University of L’Aguila

L’Aguila

Italy

Hakan Ferhatosmanoglu

The Ohio State University

Columbus, OH

USA

Eduardo B. Fernandez

Florida Atlantic University

Boca Raton, FL

USA

Eduardo Fernández-Medina

University of Castilla-La Mancha

Ciudad Real

Spain

xxxvi B
t of Contributors
Paolo Ferragina

University of Pisa

Pisa

Italy

Elena Ferrari

University of Insubria

Varese

Italy

Dennis Fetterly

Microsoft Research

Mountain View, CA

USA

Stephen E. Fienberg

Carnegie Mellon University

Pittsburgh, PA

USA

Peter M. Fischer

ETH Zurich

Zurich

Switzerland

Simone Fischer-Hübner

Karlstad University

Karlstad

Sweden

Leila De Floriani

University of Genova

Genova

Italy

Christian Fluhr

CEA LIST, Fontenay-aux

Roses

France

Greg Flurry

IBM SOA Advanced Technology

Armonk, NY

USA

Edward A. Fox

Virginia Tech

Blacksburg, VA

USA
Chiara Francalanci

Politecnico di Milano University

Milan

Italy

Andrew U. Frank

Vienna University of Technology

Vienna

Austria

Michael J. Franklin

University of California-Berkeley

Berkeley, CA

USA

Keir Fraser

University of Cambridge

Cambridge

UK

Juliana Freire

University of Utah

Salt Lake City, UT

USA

Elias Frentzos

University of Piraeus

Piraeus

Greece

Johann-Christoph Freytag

Humboldt University of Berlin

Berlin

Germany

Ophir Frieder

Georgetown University

Washington, DC

USA

Oliver Frölich

Lixto Software GmbH

Vienna

Austria

Tim Furche

University of Munich

Munich

Germany

List of ContributorsBxxxvii
Ariel Fuxman

Microsoft Research

Mountain View, CA

USA

Ada Wai-Chee Fu

Hong Kong University of Science and Technology

Hong Kong

China

Silvia Gabrielli

Bruno Kessler Foundation

Trento

Italy

Isabella Gagliardi

National Research Council (CNR)

Milan

Italy

Avigdor Gal

Technion – Israel Institute of Technology

Haifa

Israel

Wojciech Galuba

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Lausanne

Switzerland

Johann Gamper

Free University of Bozen-Bolzano

Bolzano

Italy

Vijay Gandhi

University of Minnesota

Minneapolis, MN

USA

Venkatesh Ganti

Microsoft Research

Redmond, WA

USA

Dengfeng Gao

IBM Silicon Valley Lab

San Jose, CA

USA
Like Gao

Teradata Corporation

San Diego, CA

USA

Wei Gao

The Chinese University of Hong Kong

Hong Kong

China

Minos Garofalakis

Technical University of Crete

Chania

Greece

Wolfgang Gatterbauer

University of Washington

Seattle, WA

USA

Bugra Gedik

IBM T.J. Watson Research Center

Hawthorne, NY

USA

Floris Geerts

University of Edinburgh

Edinburgh

UK

Johannes Gehrke

Cornell University

Ithaca, NY

USA

Betsy George

University of Minnesota

Minneapolis, MN

USA

Lawrence Gerstley

PSMI Consulting

San Francisco, CA

USA

Michael Gertz

University of California - Davis

Davis, CA

USA

xxxviii B
t of Contributors
Giorgio Ghelli

University of Pisa

Pisa

Italy

Gabriel Ghinita

National University of Singapore

Singapore

Singapore

Phillip B. Gibbons

Intel Research

Pittsburgh, PA

USA

Sarunas Girdzijauskas

EPFL

Lausanne

Switzerland

Fausto Giunchiglia

University of Trento

Trento

Italy

Kazuo Goda

The University of Tokyo

Tokyo

Japan

Max Goebel

Vienna University of Technology

Vienna

Austria

Bart Goethals

University of Antwerp

Antwerp

Belgium

Martin Gogolla

University of Bremen

Bremen

Germany

Aniruddha Gokhale

Vanderbilt University

Nashville, TN

USA
Lukasz Golab

AT&T Labs-Research

Florham Park, NJ

USA

Matteo Golfarelli

University of Bologna

Bologna

Italy

Michael F. Goodchild

University of California-Santa Barbara

Santa Barbara, CA

USA

Georg Gottlob

Oxford University

Oxford

UK

Valerie Gouet-Brunet

CNAM Paris

Paris

France

Ramesh Govindan

University of Southern California

Los Angeles, CA

USA

Goetz Graefe

Hewlett-Packard Laboratories

Palo Alto, CA

USA

Gösta Grahne

Concordia University

Montreal, QC

Canada

Fabio Grandi

University of Bologna

Bologna

Italy

Tyrone Grandison

IBM Almaden Research Center

San Jose, CA

USA

List of ContributorsBxxxix
Peter M. D. Gray

University of Aberdeen

Aberdeen

UK

Todd J. Green

University of Pennsylvania

Philadelphia, PA

USA

Georges Grinstein

University of Massachusetts

Lowell, MA

USA

Tom Gruber

RealTravel

Emerald Hills, CA

USA

Le Gruenwald

The University of Oklahoma

Norman, OK

USA

Torsten Grust

University of Tübingen

Tübingen

Germany

Ralf Hartmut Güting

University of Hagen

Hagen

Germany

Dirk Van Gucht

Indiana University

Bloomington, IN

USA

Carlos Guestrin

Carnegie Mellon University

Pittsburgh, PA

USA

Dimitrios Gunopulos

University of California-Riverside

Riverside, CA

USA

University of Athens

Athens

Greece
Amarnath Gupta

University of California-San Diego

La Jolla, CA

USA

Himanshu Gupta

Stony Brook University

Stony Brook, NY

USA

Cathal Gurrin

Dublin City University

Dublin

Ireland

Marc Gyssens

University of Hasselt & Transnational University of

Limburg

Diepenbeek

Belgium

Karl Hahn

BMW AG

Munich

Germany

Jean-Luc Hainaut

University of Namur

Namur

Belgium

Alon Halevy

Google Inc.

Mountain View, CA

USA

Maria Halkidi

University of Piraeus

Piraeus

Greece

Terry Halpin

Neumont University

South Jordan, UT

USA

Jiawei Han

University of Illinois at Urbana-Champaign

Urbana, IL

USA

xl B List of Contributors
Alan Hanjalic

Delft University of Technology

Delft

The Netherlands

David Hansen

The Australian e-Health Research Centre

Brisbane, QLD

Australia

Jörgen Hansson

Carnegie Mellon University

Pittsburgh, PA

USA

Nikos Hardavellas

Carnegie Mellon University

Pittsburgh, PA

USA

Theo Härder

University of Kaiserslautern

Kaiserslautern

Germany

David Harel

The Weizmann Institute of Science

Rehovot

Israel

Jayant R. Haritsa

Indian Institute of Science

Bangalore

India

Stavros Harizopoulos

HP Labs

Palo Alto, CA

USA

Per F. V. Hasle

Aalborg University

Aalborg

Denmark

Jordan T. Hastings

University of California-Santa Barbara

Santa Barbara, CA

USA
Alexander Hauptmann

Carnegie Mellon University

Pittsburgh, PA

USA

Helwig Hauser

University of Bergen

Bergen

Norway

Ben He

University of Glasgow

Glasgow

UK

Pat Helland

Microsoft Corporation

Redmond, WA

USA

Joseph M. Hellerstein

University of California-Berkeley

Berkeley, CA

USA

Jean Henrard

University of Namur

Namur

Belgium

John Herring

Oracle Corporation

Nashua, NH

USA

Nicolas Hervé

INRIA Paris-Rocquencourt

Le Chesnay Cedex

France

Marcus Herzog

Vienna University of Technology

Vienna

Austria

Lixto Software GmbH

Vienna

Austria

List of ContributorsB xli
Jean-Marc Hick

University of Namur

Namur

Belgium

Jan Hidders

University of Antwerp

Antwerpen

Belgium

Djoerd Hiemstra

University of Twente

Enschede

The Netherlands

Linda L. Hill

University of California-Santa Barbara

Santa Barbara, CA

USA

Alexander Hinneburg

Martin-Luther-University Halle-Wittenberg

Halle/Saale

Germany

Hans Hinterberger

ETH Zurich

Zurich

Switzerland

Erik Hoel

Environmental Systems Research Institute

Redlands, CA

USA

Vasant Honavar

Iowa State University

Ames, IA

USA

Mingsheng Hong

Cornell University

Ithaca, NY

USA

Haruo Hosoya

The University of Tokyo

Tokyo

Japan
Wynne Hsu

National University of Singapore

Singapore

Singapore

Jian Hu

Microsoft Research Asia

Haidian

China

Kien A. Hua

University of Central Florida

Orlando, FL

USA

Xian-Sheng Hua

Microsoft Research Asia

Beijing

China

Jun Huan

University of Kansas

Lawrence, KS

USA

Haoda Huang

Microsoft Research Asia

Beijing

China

Michael Huggett

University of British Columbia

Vancouver, BC

Canada

Patrick C. K. Hung

University of Ontario Institute of Technology (UOIT)

Oshawa, ON

Canada

Jeong-Hyon Hwang

Brown University

Providence, RI

USA

Ichiro Ide

Nagoya University

Nagoya

Japan

xliiB List of Contributors
Alfred Inselberg

Tel Aviv University

Tel Aviv

Israel

Yannis Ioannidis

University of Athens

Athens

Greece

Panagiotis G. Ipeirotis

New York University

New York, NY

USA

Zachary Ives

University of Pennsylvania

Philadelphia, PA

USA

Hans-Arno Jacobsen

University of Toronto

Toronto, ON

Canada

H. V. Jagadish

University of Michigan

Ann Arbor, MI

USA

Alejandro Jaimes

Telefonica R&D

Madrid

Spain

Ramesh Jain

University of California-Irvine

Irvine, CA

USA

Sushil Jajodia

George Mason University

Fairfax, VA

USA

Greg Janée

University of California-Santa Barbara

Santa Barbara, CA

USA
Kalervo Järvelin

University of Tampere

Tampere

Finland

Christian S. Jensen

Aalborg University

Aalborg

Denmark

Eric C. Jensen

Twitter, Inc.

San Fransisco, CA

USA

Manfred A. Jeusfeld

Tilburg University

Tilburg

The Netherlands

Heng Ji

New York University

New York, NY

USA

Ricardo Jimenez-Peris

Universidad Politecnica de Madrid

Madrid

Spain

Jiashun Jin

Carnegie Mellon University

Pittsburgh, PA

USA

Ryan Johnson

Carnegie Mellon University

Pittsburg, PA

USA

Theodore Johnson

AT&T Labs Research

Florham Park, NJ

USA

Christopher B. Jones

Cardiff University

Cardiff

UK

List of ContributorsB xliii
Rosie Jones

Yahoo! Research

Burbank, CA

USA

James B. D. Joshi

University of Pittsburgh

Pittsburgh, PA

USA

Vanja Josifovski

Uppsala University

Uppsala

Sweden

Marko Junkkari

University of Tampere

Tampere

Finland

Jan Jurjens

The Open University

Buckinghamshire

UK

Mouna Kacimi

Max-Planck Institute for Informatics

Saarbrücken

Germany

Tamer Kahveci

University of Florida

Gainesville, FL

USA

Panos Kalnis

National University of Singapore

Singapore

Singapore

Jaap Kamps

University of Amsterdam

Amsterdam

The Netherlands

James Kang

University of Minnesota

Minneapolis, MN

USA
Carl-Christian Kanne

University of Mannheim

Mannheim

Germany

Aman Kansal

Microsoft Research

Redmond, WA

USA

Murat Kantarcioglu

University of Texas at Dallas

Dallas, TX

USA

George Karabatis

University of Maryland Baltimore County (UMBC)

Baltimore, MD

USA

Grigoris Karvounarakis

University of Pennsylvania

Philadelphia, PA

USA

George Karypis

University of Minnesota

Minneapolis, MN

USA

Vipul Kashyap

Partners Healthcare System

Wellesley, MA

USA

Yannis Katsis

University of California-San Diego

La Jolla, CA

USA

Raghav Kaushik

Microsoft Research

Redmond, WA

USA

Gabriella Kazai

Microsoft Research Cambridge

Cambridge

UK

xlivB List of Contributors
Daniel A. Keim

University of Konstanz

Konstanz

Germany

Jaana Kekäläinen

University of Tampere

Tampere

Finland

Anastasios Kementsietsidis

IBM T.J. Watson Research Center

Hawthorne, NY

USA

Bettina Kemme

McGill University

Montreal, QC

Canada

Jessie Kennedy

Napier University

Edinburgh

UK

Vijay Khatri

Indiana University

Bloomington, IN

USA

Ashfaq Khokhar

University of Illinois at Chicago

Chicago, IL

USA

Daniel Kifer

Yahoo! Research

Santa Clara, CA

USA

Stephen Kimani

CSIRO Tasmanian ICT Centre

Hobart, TAS

Australia

Craig A. Knoblock

University of Southern California

Marina del Rey, CA

USA
Christoph Koch

Cornell University

Ithaca, NY

USA

Solmaz Kolahi

University of British Columbia

Vancouver, BC

Canada

George Kollios

Boston University

Boston, MA

USA

Poon Wei Koot

Nanyang Technological University

Singapore

Singapore

Flip R. Korn

AT&T Labs–Research

Florham Park, NJ

USA

Harald Kosch

University of Passau

Passau

Germany

Cartik R. Kothari

University of British Columbia

Vancouver, BC

Canada

Yannis Kotidis

Athens University of Economics and Business

Athens

Greece

Spyros Kotoulas

VU University Amsterdam

Amsterdam

The Netherlands

Manolis Koubarakis

University of Athens

Athens

Greece

List of ContributorsB xlv
Konstantinos Koutroumbas

Institute for Space Applications and Remote Sensing

Athens

Greece

Bernd J. Krämer

University of Hagen

Hagen

Germany

Peer Krögerand

Ludwig-Maximilians University of Munich

Munich

Germany

Werner Kriechbaum

IBM Development Lab

Böblingen

Germany

Hans-Peter Kriegel

Ludwig-Maximilians-University

Munich

Germany

Rajasekar Krishnamurthy

IBM Almaden Research Center

San Jose, CA

USA

Ravi Kumar

Yahoo Research

Santa Clara, CA

USA

Nicholas Kushmerick

Decho Corporation

Seattle, WA

USA

Mary Laarsgard

University of California-Santa Barbara

Santa Barbara, CA

USA

Alexandros Labrinidis

University of Pittsburgh

Pittsburgh, PA

USA
Zoé Lacroix

Arizona State University

Tempe, AZ

USA

Alberto H. F. Laender

Federal University of Minas Gerais

Belo Horizonte

Brazil

Bibudh Lahiri

Iowa State University

Ames, IA

USA

Laks V. S. Lakshmanan

University of British Columbia

Vancouver, BC

Canada

Mounia Lalmas

University of Glasgow

Glasgow

UK

Lea Landucci

University of Florence

Florence

Italy

Birger Larsen

Royal School of Library and Information Science

Copenhagen

Denmark

Per-Åke Larson

Microsoft Corporation

Redmond, WA

USA

Robert Laurini

LIRIS, INSA-Lyon

Lyon

France

Georg Lausen

University of Freiburg

Freiburg

Germany

xlviB List of Contributors
Jens Lechtenbörger

University of Münster

Münster

Germany

Thierry Lecroq

University of Rouen

Rouen

France

Dongwon Lee

The Pennsylvania State University

University Park, PA

USA

Yang W. Lee

Northeastern University

Boston, MA

USA

Pieter De Leenheer

Vrije Universiteit Brussel, Collibra nv

Brussels

Belgium

Wolfgang Lehner

Dresden University of Technology

Dresden

Germany

Ronny Lempel

Yahoo! Research

Haifa

Israel

Kristina Lerman

University of Southern California

Marina del Rey, CA

USA

Ulf Leser

Humboldt University of Berlin

Berlin

Germany

Carson Kai-Sang Leung

University of Manitoba

Winnipeg, MB

Canada
Stefano Levialdi

Sapienza University of Rome

Rome

Italy

Brian Levine

University of Massachusetts

Amherst, MA

USA

Changqing Li

Duke University

Durham, NC

USA

Chen Li

University of California-Irvine

Irvine, CA

USA

Chengkai Li

University of Texas at Arlington

Arlington, TX

USA

Hua Li

Microsoft Research Asia

Beijing

China

Jinyan Li

Nanyang Technological University

Singapore

Singapore

Ninghui Li

Purdue University

West Lafayette, IN

USA

Ping Li

Cornell University

Ithaca, NY

USA

Qing Li

City University of Hong Kong

Hong Kong

China

List of ContributorsB xlvii
Xue Li

The University of Queensland

Brisbane, QLD

Australia

Ying Li

IBM T.J. Watson Research Center

Hawthorne, NY

USA

Yunyao Li

IBM Almaden Research Center

San Jose, CA

USA

Leonid Libkin

University of Edinburgh

Edinburgh

UK

Sam S Lightstone

IBM, Canada Ltd.

Markham, ON

Canada

Jimmy Lin

University of Maryland

College Park, MD

USA

Tsau Young (T.Y.) Lin

San Jose State University

San Jose, CA

USA

Xuemin Lin

University of New South Wales

Sydney, NSW

Australia

Tok Wang Ling

National University of Singapore

Singapore

Singapore

Bing Liu

University of Illinois at Chicago

Chicago, IL

USA
Danzhou Liu

University of Central Florida

Orlando, FL

USA

Guimei Liu

National University of Singapore

Singapore

Singapore

Huan Liu

Arizona State University

Tempe, AZ

USA

Jinze Liu

University of Kentucky

Lexington, KY

USA

Ning Liu

Microsoft Research Asia

Beijing

China

Qing Liu

CSIRO Tasmanian ICT Centre

Hobart, TAS

Australia

Vebjorn Ljosa

Broad Institute of MIT and Harvard

Cambridge, MA

USA

David Lomet

Microsoft Research

Redmond, WA

USA

Phillip Lord

Newcastle University

Newcastle-Upon-Tyne

UK

Nikos A. Lorentzos

Agricultural University of Athens

Athens

Greece

xlviiiB List of Contributors
Lie Lu

Microsoft Research Asia

Beijing

China

Bertram Ludäscher

University of California-Davis

Davis, CA

USA

Yan Luo

University of Illinois at Chicago

Chicago, IL

USA

Yves A. Lussier

University of Chicago

Chicago, IL

USA

Craig MacDonald

University of Glasgow

Glasgow

UK

Ashwin Machanavajjhala

Cornell University

Ithaca, NY

USA

Sam Madden

Massachussetts Institute of Technology

Cambridge, MA

USA

Paola Magillo

University of Genova

Genova

Italy

David Maier

Portland State University

Portland, OR

USA

Paul Maier

Technical University of Munich

Munich

Germany
Nikos Mamoulis

University of Hong Kong

Hong Kong

China

Stefan Manegold

CWI

Amsterdam

The Netherlands

Murali Mani

Worcester Polytechnic Institute

Worcester, MA

USA

Serge Mankovski

CA Labs, CA Inc.

Thornhill, ON

Canada

Ioana Manolescu

INRIA, Saclay–Île-de-France

Orsay

France

Yannis Manolopoulos

Aristotle University of Thessaloniki

Thessaloniki

Greece

Svetlana Mansmann

University of Konstanz

Konstanz

Germany

Florian Mansmann

University of Konstanz

Konstanz

Germany

Shahar Maoz

The Weizmann Institute of Science

Rehovot

Israel

Amélie Marian

Rutgers University

Piscataway, NJ

USA

List of ContributorsB xlix
Volker Markl

IBM Almaden Research Center

San Jose, CA

USA

Maria De Marsico

Sapienza University of Rome

Rome

Italy

David Martin

SRI International

Menlo Park, CA

USA

Maria Vanina Martinez

University of Maryland

College Park, MD

USA

Maristella Matera

Polytechnico di Milano

Milan

Italy

Marta Mattoso

Federal University of Rio de Janeiro

Rio de Janeiro

Brazil

Andrea Maurino

University of Milan Bicocca

Milan

Italy

Jan Małuszyński

Linköping University

Linköping

Sweden

Jose-Norberto Mazón

University of Alicante

Alicante

Spain

Kevin S. McCurley

Google Research

Mountain View, CA

USA
Andrew McGregor

Microsoft Research

Mountain View, CA

USA

Timothy McPhillips

University of California-Davis

Davis, CA

USA

Brahim Medjahed

The University of Michigan–Dearborn

Dearborn, MI

USA

Carlo Meghini

The Italian National Research Council

Pisa

Italy

Tao Mei

Microsoft Research Asia

Beijing

China

Jonas Mellin

University of Skövde

Skövde

Sweden

Massimo Melucci

University of Padua

Padua

Italy

Weiyi Meng

State University of New York at Binghamton

Binghamton, NY

USA

Ahmed Metwally

Google Inc.

Mountain View, CA

USA

Gerome Miklau

University of Massachusetts

Amherst, MA

USA

l B List of Contributors
Harvey J. Miller

University of Utah

Salt Lake City, UT

USA

Renée J. Miller

University of Toronto

Toronto, ON

Canada

Tova Milo

Tel Aviv University

Tel Aviv

Israel

Prasenjit Mitra

The Pennsylvania State University

University Park, PA

USA

Michael Mitzenmacher

Harvard University

Boston, MA

USA

Mukesh Mohania

IBM India Research Lab

New Delhi

India

Mohamed F. Mokbel

University of Minnesota

Minneapolis, MN

USA

Angelo Montanari

University of Udine

Udine

Italy

Reagan W. Moore

University of California - San Diego

La Jolla, CA

USA

Konstantinos Morfonios

University of Athens

Athens

Greece
Peter Mork

The MITRE Corporation

McLean, VA

USA

Mirella M. Moro

Federal University of Rio Grande do Sol

Porto Alegre

Brazil

Edleno Silva de Moura

Federal University of Amazonas

Manaus

Brazil

Kyriakos Mouratidis

Singapore Management University

Singapore

Singapore

Kamesh Munagala

Duke University

Durham, NC

USA

Ethan V. Munson

University of Wisconsin-Milwaukee

Milwaukee, WI

USA

Shawn Murphy

Massachusetts General Hospital

Boston, MA

USA

John Mylopoulos

University of Toronto

Toronto, ON

Canada

Frank Nack

University of Amsterdam

Amsterdam

The Netherlands

Marc Najork

Microsoft Research

Mountain View, CA

USA

List of ContributorsB li
Ullas Nambiar

IBM India Research Lab

New Delhi

India

Alexandros Nanopoulos

Aristotle University

Thessaloniki

Greece

Vivek Narasayya

Microsoft Corporation

Redmond, WA

USA

Mario A. Nascimento

University of Alberta

Edmonton, AB

Canada

Alan Nash

Aleph One LLC

La Jolla, CA

USA

Harald Naumann

Vienna University of Technology

Vienna

Austria

Gonzalo Navarro

University of Chile

Santiago

Chile

Wolfgang Nejdl

University of Hannover

Hannover

Germany

Thomas Neumann

Max-Planck Institute for Informatics

Saarbrücken

Germany

Frank Neven

Hasselt University and Transnational University of

Limburg

Diepenbeek

Belgium
Chong-Wah Ngo

City University of Hong Kong

Hong Kong

China

Peter Niblett

IBM United Kingdom Limited

Winchester

UK

Naoko Nitta

Osaka University

Osaka

Japan

Igor Nitto

University of Pisa

Pisa

Italy

Cheng Niu

Microsoft Research Asia

Beijing

China

Vilém Novák

University of Ostrava

Ostrava

Czech Republic

Chimezie Ogbuji

Cleveland Clinic Foundation

Cleveland, OH

USA

Peter Øhrstrøm

Aalborg University

Aalborg

Denmark

Christine M. O’Keefe

CSIRO Preventative Health National Research

Flagship

Acton, ACT

Australia

Patrick O’Neil

University of Massachusetts

Boston, MA

USA

lii B List of Contributors
Iadh Ounis

University of Glasgow

Glasgow

UK

Mourad Ouzzani

Purdue University

West Lafayette, IN

USA

Fatma Özcan

IBM Almaden Research Center

San Jose, CA

USA

M. Tamer Özsu

University of Waterloo

Waterloo, ON

Canada

Esther Pacitti

University of Nantes

Nantes

France

Chris D. Paice

Lancaster University

Lancaster

UK

Noël De Palma

INPG – INRIA

Grenoble

France

Nathaniel Palmer

Workflow Management Coalition

Hingham, MA

USA

Biswanath Panda

Cornell University

Ithaca, NY

USA

Ippokratis Pandis

Carnegie Mellon University

Pittsburgh, PA

USA
Dimitris Papadias

Hong Kong University of Science and Technology

Hong Kong

China

Spiros Papadimitriou

IBM T.J. Watson Research Center

Hawthorne, NY

USA

Apostolos N. Papadopoulos

Aristotle University

Thessaloniki

Greece

Yannis Papakonstantinou

University of California-San Diego

La Jolla, CA

USA

Jan Paredaens

University of Antwerp

Antwerpen

Belgium

Christine Parent

University of Lausanne

Lausanne

Switzerland

Gabriella Pasi

University of Milano-Bicocca

Milan

Italy

Chintan Patel

Columbia University

New York, NY

USA

Jignesh M. Patel

University of Wisconsin-Madison

Madison, WI

USA

Marta Patiño-Martinez

Universidad Polytecnica de Madrid

Madrid

Spain

List of ContributorsB liii
Norman W. Paton

University of Manchester

Manchester

UK

Cesare Pautasso

University of Lugano

Lugano

Switzerland

Torben Bach Pedersen

Aalborg University

Aalborg

Denmark

Fernando Pedone

University of Lugano

Lugano

Switzerland

Jovan Pehcevski

INRIA Paris-Rocquencourt

Le Chesnay Cedex

France

Jian Pei

Simon Fraser University

Burnaby, BC

Canada

Ronald Peikert

ETH Zurich

Zurich

Switzerland

Mor Peleg

University of Haifa

Haifa

Israel

Fuchun Peng

Yahoo! Inc.

Sunnyvale, CA

USA

Liam Peyton

University of Ottawa

Ottawa, ON

Canada
Mario Piattini

University of Castilla-La Mancha

Ciudad Real

Spain

Benjamin C. Pierce

University of Pennsylvania

Philadelphia, PA

USA

Karen Pinel-Sauvagnat

IRIT-SIG

Toulouse Cedex

France

Leo L. Pipino

University of Massachusetts

Lowell, MA

USA

Peter Pirolli

Palo Alto Research Center

Palo Alto, CA

USA

Evaggelia Pitoura

University of Ioannina

Ioannina

Greece

Benjamin Piwowarski

University of Glasgow

Glasgow

UK

Vassilis Plachouras

Yahoo! Research

Barcelona

Spain

Catherine Plaisant

University of Maryland

College Park, MD

USA

Claudia Plant

University of Munich

Munich

Germany

liv B List of Contributors
Christian Platzer

Technical University of Vienna

Vienna

Austria

Dimitris Plexousakis

Foundation for Research and Technology-Hellas

(FORTH)

Heraklion

Greece

Neoklis Polyzotis

University of California Santa Cruz

Santa Cruz, CA

USA

Raymond K. Pon

University of California - Los Angeles

Los Angeles, CA

USA

Lucian Popa

IBM Almaden Research Center

San Jose, CA

USA

Alexandra Poulovassilis

University of London

London

UK

Sunil Prabhakar

Purdue University

West Lafayette, IN

USA

Cecilia M. Procopiuc

AT&T Labs

Florham Park, NJ

USA

Enrico Puppo

University of Genova

Genova

Italy

Ross S. Purves

University of Zurich

Zurich

Switzerland
Vivien Quéma

CNRS, INRIA

Saint-Ismier Cedex

France

Christoph Quix

RWTH Aachen University

Aachen

Germany

Sriram Raghavan

IBM Almaden Research Center

San Jose, CA

USA

Erhard Rahm

University of Leipzig

Leipzig

Germany

Krithi Ramamritham

IIT Bombay

Mumbai

India

Maya Ramanath

Max-Planck Institute for Informatics

Saarbrücken

Germany

Georgina Ramı́rez

Yahoo! Research Barcelona

Barcelona

Spain

Edie Rasmussen

University of British Columbia

Vancouver, BC

Canada

Indrakshi Ray

Colorado State University

Fort Collins, CO

USA

Diego Reforgiato Recupero

University of Maryland

College Park, MD

USA

List of ContributorsB lv
Colin R. Reeves

Coventry University

Coventry

UK

Payam Refaeilzadeh

Arizona State University

Tempe, AZ

USA

Bernd Reiner

Technical University of Munich

Munich

Germany

Frederick Reiss

IBM Almaden Research Center

San Jose, CA

USA

Harald Reiterer

University of Konstanz

Konstanz

Germany

Matthias Renz

Ludwig Maximillian University of Munich

Munich

Germany

Andreas Reuter

EML Research gGmbH Villa Bosch

Heidelberg

Germany

Technical University Kaiserslautern

Kaiserslautern

Germany

Peter Revesz

University of Nebraska-Lincoln

Lincoln, NE

USA

Mirek Riedewald

Cornell University

Ithaca, NY

USA
Rami Rifaieh

University of California-San Diego

San Diego, CA

USA

Stefanie Rinderle

University of Ulm

Ulm

Germany

Tore Risch

Uppsala University

Uppsala

Sweden

Thomas Rist

University of Applied Sciences

Augsburg

Germany

Stefano Rizzi

University of Bologna

Bologna

Italy

Stephen Robertson

Microsoft Research Cambridge

Cambridge

UK

Roberto A. Rocha

Partners Healthcare System, Inc.

Boston, MA

USA

John F. Roddick

Flinders University

Adelaide, SA

Australia

Thomas Roelleke

Queen Mary University of London

London

UK

Didier Roland

University of Namur

Namur

Belgium

lvi B List of Contributors
Oscar Romero

Polytechnic University of Catalonia

Barcelona

Spain

Rafael Romero

University of Alicante

Alicante

Spain

Timothy Roscoe

ETH Zurich

Zurich

Switzerland

Kenneth A. Ross

Columbia University

New York, NY

USA

Prasan Roy

Aster Data Systems, Inc.

Redwood City, CA

USA

Yong Rui

Microsoft China R&D Group

Redmond, WA

USA

Dan Russler

Oracle Health Sciences

Redwood Shores, CA

USA

Michael Rys

Microsoft Corporation

Sammamish, WA

USA

Giovanni Maria Sacco

University of Torino

Torino

Italy

Simonas Šaltenis

Aalborg University

Aalborg

Denmark
Kenneth Salem

University of Waterloo

Waterloo, ON

Canada

George Samaras

University of Cyprus

Nicosia

Cyprus

Giuseppe Santucci

University of Rome

Roma

Italy

Maria Luisa Sapino

University of Turin

Turin

Italy

Sunita Sarawagi

IIT Bombay

Mumbai

India

Anatol Sargin

University of Augsburg

Augsburg

Germany

Kai-Uwe Sattler

Technical University of Ilmenau

llmenau

Germany

Monica Scannapieco

University of Rome

Rome

Italy

Matthias Schäfer

University of Konstanz

Konstanz

Germany

Sebastian Schaffert

Salzburg Research

Salzburg

Austria

List of ContributorsB lvii
Ralf Schenkel

Max-Planck Institute for Informatics

Saarbrücken

Germany

Raimondo Schettini

University of Milano-Bicocca

Milan

Italy

Peter Scheuermann

Northwestern University

Evanston, IL

USA

Ulrich Schiel

Federal University of Campina Grande

Campina Grande

Brazil

Markus Schneider

University of Florida

Gainesville, FL

USA

Marc H. Scholl

University of Konstanz

Konstanz

Germany

Michel Scholl

Cedric-CNAM

Paris

France

Tobias Schreck

Darmstadt University of Technology

Darmstadt

Germany

Michael Schrefl

University of Linz

Linz

Austria

Matthias Schubert

Ludwig-Maximilians-University

Munich

Germany
Heiko Schuldt

University of Basel

Basel

Switzerland
Heidrun Schumann

University of Rostock

Rostock

Germany
Felix Schwagereit

University of Koblenz-Landau

Koblenz

Germany

Nicole Schweikardt

Johann Wolfgang Goethe-University

Frankfurt

Germany

Fabrizio Sebastiani

The Italian National Research Council

Pisa

Italy

Nicu Sebe

University of Amsterdam

Amsterdam

The Netherlands

University of Trento

Trento

Italy

Monica Sebillo

University of Salerno

Salerno

Italy

Thomas Seidl

RWTH Aachen University

Aachen

Germany

Manuel Serrano

University of Castilla – La Mancha

Ciudad Real

Spain

lviiiB List of Contributors
Amnon Shabo (Shvo)

IBM Research Lab-Haifa

Haifa

Israel

Mehul A. Shah

HP Labs

Palo Alto, CA

USA

Nigam Shah

Stanford University

Stanford, CA

USA

Cyrus Shahabi

University of Southern California

Los Angeles, CA

USA

Jayavel Shanmugasundaram

Yahoo Research!

Santa Clara, CA

USA

Marc Shapiro

INRIA Paris-Rocquencourt and LIP6

Paris

France

Mohamed A. Sharaf

University of Toronto

Toronto, ON

Canada

Mehdi Sharifzadeh

Google

Santa Monica, CA

USA

Jayant Sharma

Oracle Corporation

Nashua, NH

USA

Guy Sharon

IBM Research Labs-Haifa

Haifa

Israel
Dennis Shasha

New York University

New York, NY

USA

Carpendale Sheelagh

University of Calgary

Calgary, AB

Canada

Shashi Shekhar

University of Minnesota

Minneapolis, MN

USA

Dou Shen

Microsoft Corporation

Redmond, WA

USA

Heng Tao Shen

The University of Queensland

Brisbane, QLD

Australia

Jialie Shen

Singapore Management University

Singapore

Singapore

Rao Shen

Yahoo!

Sunnyvale, CA

USA

Xuehua Shen

Google, Inc.

Mountain View, CA

USA

Frank Y. Shih

New Jersey Institute of Technology

Newark, NJ

USA

Arie Shoshani

Lawrence Berkeley National Laboratory

Berkeley, CA

USA

List of ContributorsB lix
Pavel Shvaiko

University of Trento

Trento

Italy

Wolf Siberski

University of Hannover

Hannover

Germany

Ronny Siebes

VU University Amsterdam

Amsterdam

The Netherlands

Adam Silberstein

Yahoo! Research Silicon Valley

Santa Clara, CA

USA

Sonia Fernandes Silva

Etruria Telematica Srl

Siena

Italy

Fabrizio Silvestri

ISTI-CNR

Pisa

Italy

Alkis Simitsis

IBM Almaden Research Center

San Jose, CA

USA

Simeon J. Simoff

University of Western Sydney

Sydney, NSW

Australia

Radu Sion

Stony Brook University

Stony Brook, NY

USA

Mike Sips

Stanford University

Stanford, CA

USA
Cristina Sirangelo

University of Edinburgh

Edinburgh

UK

Yannis Sismanis

IBM Almaden Research Center

Almaden, CA

USA

Spiros Skiadopoulos

University of Peloponnese

Tripoli

Greece

Richard T. Snodgrass

University of Arizona

Tucson, AZ

USA

Cees Snoek

University of Amsterdam

Amsterdam

The Netherlands

Il-Yeol Song

Drexel University

Philadelphia, PA

USA

Ruihua Song

Microsoft Research Asia

Beijing

China

Stefano Spaccapietra

EPFL

Lausanne

Switzerland

Greg Speegle

Baylor University

Waco, TX

USA

Padmini Srinivasan

The University of Iowa

Iowa City, IA

USA

lx B List of Contributors
Venkat Srinivasan

Virginia Tech

Blacksburg, VA

USA

Divesh Srivastava

AT&T Labs–Research

Florham Park, NJ

USA

Steffen Staab

University of Koblenz-Landau

Koblenz

Germany

Maarten van Steen

VU University

Amsterdam

The Netherlands

Constantine Stephanidis

Foundation for Research and Technology – Hellas

(FORTH)

Heraklion

Greece

Robert Stevens

University of Manchester

Manchester

UK

Andreas Stoffel

University of Konstanz

Konstanz

Germany

Michael Stonebraker

Massachusetts Institute of Technology

Cambridge, MA

USA

Umberto Straccia

The Italian National Research Council

Pisa

Italy

Martin J. Strauss

University of Michigan

Ann Arbor, MI

USA
Diane M. Strong

Worcester Polytechnic Institute

Worcester, MA

USA

Jianwen Su

University of California-Santa Barbara

Santa Barbara, CA

USA

Kazimierz Subieta

Polish-Japanese Institute of Information Technology

Warsaw

Poland

V. S. Subrahmanian

University of Maryland

College Park, MD

USA

Dan Suciu

University of Washington

Seattle, WA

USA

S. Sudarshan

Indian Institute of Technology

Bombay

India

Torsten Suel

Yahoo! Research

Sunnyvale, CA

USA

Jian-Tao Sun

Microsoft Research Asia

Beijing

China

Subhash Suri

University of California-Santa Barbara

Santa Barbara, CA

USA

Stefan Tai

University of Karlsruhe

Karlsruhe

Germany

List of ContributorsB lxi
Kian-Lee Tan

National University of Singapore

Singapore

Singapore

Pang-Ning Tan

Michigan State University

East Lansing, MI

USA

Wang-Chiew Tan

University of California-Santa Cruz

Santa Cruz

CA, USA

Letizia Tanca

Politecnico di Milano University

Milan

Italy

Lei Tang

Arizona State University

Tempe, AZ

USA

Wei Tang

Teradata Corporation

El Segundo, CA

USA

Egemen Tanin

University of Melbourne

Melbourne, VIC

Australia

Val Tannen

University of Pennsylvania

Philadelphia, PA

USA

Abdullah Uz Tansel

Baruch College – CUNY

New York, NY

USA

Yufei Tao

Chinese University of Hong Kong

Hong Kong

China
Sandeep Tata

IBM Almaden Research Center

San Jose, CA

USA

Nesime Tatbul

ETH Zurich

Zurich

Switzerland

Christophe Taton

INPG – INRIA

Grenoble

France

Paolo Terenziani

University of Turin

Turin

Italy

Evimaria Terzi

IBM Almaden Research Center

San Jose, CA

USA

Bernhard Thalheim

Christian-Albrechts University Kiel

Kiel

Germany

Martin Theobald

Stanford University

Stanford, CA

USA

Sergios Theodoridis

University of Athens

Athens

Greece

Yannis Theodoridis

University of Piraeus

Piraeus

Greece

Alexander Thomasian

Thomasian and Associates

Pleasantville, NY

USA

lxiiB List of Contributors
Bhavani Thuraisingham

The University of Texas at Dallas

Richardson, TX

USA

Srikanta Tirthapura

Iowa State University

Ames, IA

USA

Wee Hyong Tok

National University of Singapore

Singapore

Singapore

David Toman

University of Waterloo

Waterloo, ON

Canada

Frank Wm. Tompa

University of Waterloo

Waterloo, ON

Canada

Rodney Topor

Griffith University

Nathan, QLD

Australia

Riccardo Torlone

University of Rome

Rome

Italy

Kristian Torp

Aalborg University

Aalborg

Denmark

Nicola Torpei

University of Florence

Florence

Italy

Nerius Tradišauskas

Aalborg University

Aalborg

Denmark
Goce Trajcevski

Northwestern University

Evanston, IL

USA

Peter Triantafillou

University of Patras

Rio Patras

Greece

Silke Tribl

Humboldt University of Berlin

Berlin

Germany

Andrew Trotman

University of Otago

Dunedin

New Zealand

Juan Trujillo

University of Alicante

Alicante

Spain

Theodora Tsikrika

Center for Mathematics and Computer Science

Amsterdam

The Netherlands

Vassilis J. Tsotras

University of California-Riverside

Riverside, CA

USA

Peter A. Tucker

Whitworth University

Spokane, WA

USA

Anthony K. H. Tung

National University of Singapore

Singapore

Singapore

Theodoros Tzouramanis

University of the Aegean

Salmos

Greece

List of ContributorsB lxiii
Antti Ukkonen

Helsinki University of Technology

Helsinki

Finland

Mollie Ullman-Cullere

Harvard Medical School

Boston, MA

USA

Antony Unwin

Augsburg University

Augsburg

Germany

Ali Ünlü

University of Augsburg

Augsburg

Germany

Susan D. Urban

Texas Tech University

Lubbock, TX

USA

Jaideep Vaidya

Rutgers University

Newark, NJ

USA

Shivakumar Vaithyanathan

IBM Almaden Research Center

San Jose, CA

USA

Athena Vakali

Aristotle University

Thessaloniki

Greece

Patrick Valduriez

INRIA and LINA

Nantes

France

Christelle Vangenot

EPFL

Lausanne

Switzerland
Stijn Vansummeren

Hasselt University and Transnational University

of Limburg

Diepenbeek

Belgium

Vasilis Vassalos

Athens University of Economics and Business

Athens

Greece

Michael Vassilakopoulos

University of Central Greece

Lamia

Greece

Panos Vassiliadis

University of Ioannina

Ioannina

Greece

Michalis Vazirgiannis

Athens University of Economics & Business

Athens

Greece

Olga Vechtomova

University of Waterloo

Waterloo, ON

Canada

Erik Vee

Yahoo! Research

Silicon Valley, CA

USA

Jari Veijalainen

University of Jyvaskyla

Jyvaskyla

Finland

Yannis Velegrakis

University of Trento

Trento

Italy

Suresh Venkatasubramanian

University of Utah

Salt Lake City, UT

USA

lxivB List of Contributors
Rossano Venturini

University of Pisa

Pisa

Italy

Victor Vianu

University of California-San Diego

La Jolla, CA

USA

K. Vidyasankar

Memorial University of Newfoundland

St. John’s, NL

Canada

Millist Vincent

University of South Australia

Adelaide, SA

Australia

Giuliana Vitiello

University of Salerno

Salerno

Italy

Michail Vlachos

IBM T.J. Watson Research Center

Hawthorne, NY

USA

Agnès Voisard

Fraunhofer Institute for Software and Systems

Engineering (ISST)

Berlin

Germany

Kaladhar Voruganti

Network Appliance

Sunnyvale, CA

USA

Gottfried Vossen

University of Münster

Münster

Germany

Kenichi Wada

Hitachi Limited

Tokyo

Japan
Feng Wang

City University of Hong Kong

Hong Kong

China

Jianyong Wang

Tsinghua University

Beijing

China

Jun Wang

Queen Mary University of London

London

UK

Meng Wang

Microsoft Research Asia

Beijing

China

X. Sean Wang

University of Vermont

Burlington, VT

USA

Xin-Jing Wang

Microsoft Research Asia

Beijing

China

Matthew O. Ward

Worcester Polytechnic Institute

Worcester, MA

USA

Segev Wasserkrug

IBM Research

Haifa

Israel

Hans Weda

Philips Research

Eindhoven

The Netherlands

Gerhard Weikum

Max-Planck Institute for Informatics

Saarbrücken

Germany

List of ContributorsB lxv
Michael Weiner

Indiana University School of Medicine

Indianapolis, IN

USA

Michael Weiss

Carleton University

Ottawa, ON

Canada

Ji-Rong Wen

Microsoft Research Asia

Beijing

China

Chunhua Weng

Columbia University

New York, NY

USA

Mathias Weske

University of Potsdam

Potsdam

Germany

Thijs Westerveld

Teezir Search Solutions

Ede

The Netherlands

Karl Wiggisser

University of Klagenfurt

Klagenfurt

Austria

Jef Wijsen

University of Mons-Hainaut

Mons

Belgium

Mark D. Wilkinson

University of British Columbia

Vancouver, BC

Canada

Graham Wills

SPSS Inc.

Chicago, IL

USA
Ian H. Witten

University of Waikato

Hamilton

New Zealand

Kent Wittenburg

Mitsubishi Electric Research Laboratories, Inc.

Cambridge, MA

USA

Eric Wohlstadter

University of British Columbia

Vancouver, BC

Canada

Dietmar Wolfram

University of Wisconsin-Milwaukee

Milwaukee, WI

USA

Ouri Wolfson

University of Illinois at Chicago

Chicago, IL

USA

Janette Wong

IBM Canada Ltd.

Markham, ON

Canada

Raymond Chi-Wing Wong

Hong Kong University of Science and Technology

Hong Kong

China

Peter T. Wood

Birkbeck, University of London

London

UK

David Woodruff

IBM Almaden Research Center

San Jose, CA

USA

Marcel Worring

University of Amsterdam

Amsterdam

The Netherlands

lxviB List of Contributors
Adam Wright

Partners HealthCare

Boston, MA

USA

Yuqing Wu

Indiana University

Bloomington, IN

USA

Alex Wun

University of Toronto

Toronto, ON

Canada

Ming Xiong

Bell Labs

Murray Hill, NJ

USA

Guandong Xu

Victoria University

Melbourne, VIC

Australia

Hua Xu

Columbia University

New York, NY

USA

Jun Yan

Microsoft Research Asia

Haidian

China

Xifeng Yan

IBM T. J. Watson Research Center

Hawthorne, NY

USA

Jun Yang

Duke University

Durham, NC

USA

Li Yang

Western Michigan University

Kalamazoo, MI

USA
Ming-Hsuan Yang

University of California at Merced

Merced, CA

USA
Seungwon Yang

Virginia Tech

Blacksburg, VA

USA
Yu Yang

City University of Hong Kong

Hong Kong

China
Yun Yang

Swinburne University of Technology

Melbourne, VIC

Australia
Yong Yao

Cornell University

Ithaca, NY

USA
Mikalai Yatskevich

University of Trento

Trento

Italy
Hiroshi Yoshida

Fujitsu Limited

Yokohama

Japan
Masatoshi Yoshikawa

University of Kyoto

Kyoto

Japan
Matthew Young-Lai

Sybase iAnywhere

Waterloo, ON

Canada

List of ContributorsB lxvii
Cong Yu

Yahoo! Research

New York, NY

USA

Hwanjo Yu

University of Iowa

Iowa City, IA

USA
Jeffrey Xu Yu

Chinese University of Hong Kong

Hong Kong

China
Philip S. Yu

IBM T.J. Watson Research Center

Yorktown Heights, NY

USA
Ting Yu

North Carolina State University

Raleigh, NC

USA
Vladimir Zadorozhny

University of Pittsburgh

Pittsburgh, PA

USA
Ilya Zaihrayeu

University of Trento

Trento

Italy
Mohammed J. Zaki

Rensselaer Polytechnic Institute

Troy, NY

USA
Carlo Zaniolo

University of California-Los Angeles

Los Angeles, CA

USA
Hugo Zaragoza

Yahoo! Research

Barcelona

Spain

Stan Zdonik

Brown University

Providence, RI

USA

Demetrios Zeinalipour-Yazti

University of Cyprus

Nicosia

Cyprus

Hans Zeller

Hewlett-Packard Laboratories

Palo Alto, CA

USA

Pavel Zezula

Masaryk University

Brno

Czech Republic

ChengXiang Zhai

University of lllinois at Urbana-Champaign

Urbana, IL

USA

Aidong Zhang

State University of New York at Buffalo

Buffalo, NY

USA

Benyu Zhang

Microsoft Research Asia

Beijing

China

Donghui Zhang

Northeastern University

Boston, MA

USA

Ethan Zhang

University of California-Santa Cruz and Yahoo! Inc.

Santa Cruz, CA

USA

lxviiiB List of Contributors
Jin Zhang

University of Wisconsin-Milwaukee

Milwaukee, WI

USA

Kun Zhang

Xavier University of Louisiana

New Orleans, LA

USA

Lei Zhang

Microsoft Research Asia

Beijing

China

Li Zhang

Peking University

Beijing

China

Qing Zhang

The Australian e-health Research Center

Brisbane, QLD

Australia

Rui Zhang

University of Melbourne

Melbourne, VIC

Australia

Yanchun Zhang

Victoria University

Melbourne, VIC

Australia

Yi Zhang

University of California-Santa Cruz

Santa Cruz, CA

USA

Yue Zhang

University of Pittsburgh

Pittsburgh, PA

USA

Zhen Zhang

University of Illinois at Urbana-Champaign

Urbana, IL

USA
Feng Zhao

Microsoft Research

Redmond, WA

USA
Ying Zhao

Tsinghua University

Beijing

China
Baihua Zheng

Singapore Management University

Singapore

Singapore
Yi Zheng

University of Ontario Institute of

Technology (UOIT)

Oshawa, ON

Canada
Jingren Zhou

Microsoft Research

Redmond, WA

USA
Li Zhou

Partners HealthCare System Inc. and Harvard

Medical School

Boston, MA

USA
Zhi-Hua Zhou

Nanjing University

Nanjing

China
Huaiyu Zhu

IBM Almaden Research Center

San Jose, CA

USA
Xingquan Zhu

Florida Atlantic University

Boca Ration, FL

USA

List of ContributorsB lxix
Cai-Nicolas Ziegler

Siemens AG

Munich

Germany

Hartmut Ziegler

University of Konstanz

Konstanz

Germany
Arthur Zimek

Ludwig-Maximilians University of Munich

Munich

Germany

Esteban Zimányi

Free University of Brussels

Brussels

Belgium

A

Absolute Time

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Definition
A temporal database contains time-referenced, or time-

stamped, facts. A time reference in such a database is

absolute if its value is independent of the context,

including the current time, now.
Key Points
An example is ‘‘Mary’s salary was raised on March 30,

2007.’’ The fact here is that Mary’s salary was raised.

The absolute time reference is March 30, 2007, which

is a time instant at the granularity of day.

Another example is ‘‘Mary’s monthly salary was

$ 15,000 from January 1, 2006 to November 30, 2007.’’

In this example, the absolute time reference is the

time period [January 1, 2006 � November 30, 2007].

Absolute time can be contrasted with relative time.
Cross-references
▶Now in Temporal Databases

▶Relative Time

▶Time Instant

▶Time Period

▶Temporal Database

▶Temporal Granularity
Recommended Reading
1. Bettini C., Dyreson C.E., Evans W.S., Snodgrass R.T., and

Wang X.S. A glossary of time granularity concepts.

In Temporal Databases: Research and Practice. O. Etzion,

S. Jajodia, S. Sripada (eds.). LNCS, vol. 1399. Springer, 1998,

pp. 406–413.

2. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary

of temporal database concepts – February 1998 version. In

Temporal Databases: Research and Practice, O. Etzion, S. Jajodia,

S. Sripada (eds.). LNCS, vol. 1399. Springer, 1998, pp. 367–405.
2009 Springer ScienceþBusiness Media, LLC
Abstract Versus Concrete Temporal
Query Languages

JAN CHOMICKI
1, DAVID TOMAN

2

1State University of New York at Buffalo, Buffalo,

NY, USA
2University of Waterloo, Waterloo, ON, Canada

Synonyms
Historical query languages

Definition
Temporal query languages are a family of query lan-

guages designed to query (and access in general) time-

dependent information stored in temporal databases.

The languages are commonly defined as extensions of

standard query languages for non-temporal databases

with temporal features. The additional features reflect

the way dependencies of data on time are captured by

and represented in the underlying temporal data model.

Historical Background
Most databases store time-varying information. On

the other hand, SQL is often the language of choice

for developing applications that utilize the information

in these databases. Plain SQL, however, does not seem

to provide adequate support for temporal applications.

Example. To represent the employment histories of per-

sons, a common relational design would use a schema

EmploymentðFromDate;ToDate; EID; CompanyÞ;

with the intended meaning that a person identified

by EID worked for Company continuously from

FromDate to ToDate. Note that while the above sche-

ma is a standard relational schema, the additional

assumption that the values of the attributes FromDate

and ToDate represent continuous periods of time is

itself not a part of the relational model.

Formulating even simple queries over such a schema

is non-trivial. For example, the query GAPS: “List all

persons with gaps in their employment history, together

2 A Abstract Versus Concrete Temporal Query Languages
with the gaps’’ leads to a rather complex formulation in,

e.g., SQL over the above schema (this is left as a challenge

to readers who consider themselves SQL experts; for a

list of appealing, but incorrect solutions, including the

reasons why, see [9]). The difficulty arises because a

single tuple in the relation is conceptually a compact

representation of a set of tuples, each tuple stating that

an employment fact was true on a particular day.

The tension between the conceptual abstract tempo-

ral data model (in the example, the property that em-

ployment facts are associated with individual time

instants) and the need for an efficient and compact

representation of temporal data (in the example, the

representation of continuous periods by their start and

end instants) has been reflected in the development of

numerous temporal data models and temporal query

languages [3].

Foundations
Temporal query languages are commonly defined

using temporal extensions of existing non-temporal

query languages, such as relational calculus, relational

algebra, or SQL. The temporal extensions can be cate-

gorized in two, mostly orthogonal, ways:

� The choice of the actual temporal values manipulated

by the language. This choice is primarily deter-

mined by the underlying temporal data model.

The model also determines the associated opera-

tions on these values. The meaning of temporal

queries is then defined in terms of temporal values

and operations on them, and their interactions

with data (non-temporal) values in a temporal

database.

� The choice of syntactic constructs to manipulate tem-

poral values in the language. This distinction deter-

mines whether the temporal values in the language

are accessed and manipulated explicitly, in a way

similar to other values stored in the database, or

whether the access is implicit, based primarily on

temporally extending the meaning of constructs that

already exist in the underlying non-temporal lan-

guage (while still using the operations defined by

the temporal data model).

Additional design considerations relate to compatibility

with existing query languages, e.g., the notion of tem-

poral upward compatibility.

However, as illustrated above, an additional hurdle

stems from the fact that many (early) temporal query
languages allowed the users to manipulate a finite

underlying representation of temporal databases rather

than the actual temporal values/objects in the asso-

ciated temporal data model. A typical example of this

situation would be an approach in which the temporal

data model is based on time instants, while the query

language introduces interval-valued attributes. Such a

discrepancy often leads to a complex and unintuitive

semantics of queries.

In order to clarify this issue, Chomicki has intro-

duced the notions of abstract and concrete temporal

databases and query languages [2]. Intuitively, abstract

temporal query languages are defined at the concept-

ual level of the temporal data model, while their

concrete counterparts operate directly on an actual

compact encoding of temporal databases. The relation-

ship between abstract and concrete temporal query

languages is also implicitly present in the notion of

snapshot equivalence [7]. Moreover, Bettini et al. [1]

proposed to distinguish between explicit and implicit

information in a temporal database. The explicit infor-

mation is stored in the database and used to derive the

implicit information through semantic assumptions.

Semantic assumptions related to fact persistence play

a role similar to mappings between concrete and ab-

stract databases, while other assumptions are used to

address time-granularity issues.

Abstract Temporal Query Languages

Most temporal query languages derived by temporally

extending the relational calculus can be classified as

abstract temporal query languages. Their semantics are

defined in terms of abstract temporal databases which,

in turn, are typically defined within the point-stamped

temporal data model, in particular without any addi-

tional hidden assumptions about the meaning of

tuples in instances of temporal relations.

Example. The employment histories in an abstract tem-

poral data model would most likely be captured by a

simpler schema ‘‘Employment(Date, EID, Company)’’,

with the intended meaning that a person identified by

EID was working for Company on a particular Date.

While instances of such a schema can potentially be very

large (especially when a fine granularity of time is used),

formulating queries is now much more natural.

Choosing abstract temporal query languages over

concrete ones resolves the first design issue: the temporal

values used by the former languages are time instants

equipped with an appropriate temporal ordering (which

Abstract Versus Concrete Temporal Query Languages A 3

A
is typically a linear order over the instants), and possibly

other predicates such as temporal distance. The second

design issue – access to temporal values – may be re-

solved in two different ways, as exemplified by two

different query languages. They are as follows:

� Temporal Relational Calculus (TRC): a two-sorted

first-order logic with variables and quantifiers

explicitly ranging over the time and data domains.

� First-order Temporal Logic (FOTL): a language

with an implicit access to timestamps using tempo-

ral connectives.

Example. The GAPS query is formulated as follows:
TRC: ∃
t1,t3.t1 < t2 < t3 ∧∃c.Employment(t1, x, c) ∧
(¬∃c.Employment(t2, x, c)) ∧
∃c.Employment(t3, x, c);
FOTL: ◆
∃c.Employment(x,c) ∧
(¬∃c.Employment(x, c)) ∧

◇∃c.Employment(x, c)
Here, the explicit access to temporal values (in

TRC) using the variables t1, t2, and t3 can be contrasted

with the implicit access (in FOTL) using the temporal

operators◆ (read ‘‘sometime in the past’’) and◇ (read

‘‘sometime in the future’’). The conjunction in the

FOTL query represents an implicit temporal join. The

formulation in TRC leads immediately to an equiva-

lent way of expressing the query in SQL/TP [9], an

extension of SQL based on TRC.

Example. The above query can be formulated in

SQL/TP as follows:

SELECT t.Date, e1.EID

FROM Employmente1,Timet,Employmente2

WHERE e1.EID = e2.EID

AND e1.Date < e2.Date

AND NOT EXISTS (SELECT *

FROM Employment e3

WHERE e1.EID = e3.EID

AND t.Date = e3.Date

AND e1.Date < e3.Date

AND e3.Date < e2.Date)

The unary constant relation Time contains all time

instants in the time domain (in our case, all Dates)

and is only needed to fulfill syntactic SQL-style

requirements on attribute ranges. However, despite

the fact that the instance of this relation is not finite,

the query can be efficiently evaluated [9].
Note also that in all of the above cases, the formu-

lation is exactly the same as if the underlying temporal

database used the plain relational model (allowing for

attributes ranging over time instants).

The two languages, FOTL and TRC, are the coun-

terparts of the snapshot and timestamp models (cf. the

entry Point-stamped Data Models) and are the roots of

many other temporal query languages, ranging from

the more TRC-like temporal extensions of SQL to

more FOTL-like temporal relational algebras (e.g., the

conjunction in temporal logic directly corresponds to a

temporal join in a temporal relational algebra, as both

of them induce an implicit equality on the associated

time attributes).

Temporal integrity constraints over point-stamped

temporal databases can also be conveniently expressed

in TRC or FOTL.
Multiple Temporal Dimensions and Complex Values.

While the abstract temporal query languages are typi-

cally defined in terms of the point-based temporal data

model, they can similarly be defined with respect to

complex temporal values, e.g., pairs (or tuples) of time

instants or even sets of time instants. In these cases,

particularly in the case of set-valued attributes, it is

important to remember that the set values are treated

as indivisible objects, and hence truth (i.e., query se-

mantics) is associated with the entire objects, but not

necessarily with their components/subparts.
Concrete Temporal Query Languages

Although abstract temporal query languages provide a

convenient and clean way of specifying queries, they are

not immediately amenable to implementation. The main

problem is that, in practice, the facts in temporal data-

bases persist over periods of time. Storing all true facts

individually for every time instant during a period would

be prohibitively expensive or, in the case of infinite time

domains such as dense time, even impossible.

Concrete temporal query languages avoid these pro-

blems by operating directly on the compact encodings of

temporal databases. The most commonly used encoding

is the one that uses intervals. However, in this setting, a

tuple that associates a fact with such an interval is a

compact representation of the association between the

same fact and all the time instants that belong to this

interval. This observation leads to the design choices

that are commonly present in such languages:

4 A Abstract Versus Concrete Temporal Query Languages
� Coalescing is used, explicitly or implicitly, to con-

solidate representations of (sets of) time instants

associated with the same fact. In the case of inter-

val-based encodings, this leads to coalescing ad-

joining or overlapping intervals into a single

interval. Note that coalescing only changes the con-

crete representation of a temporal relation, not its

meaning (i.e., the abstract temporal relation);

hence it has no counterpart in abstract temporal

query languages.

� Implicit set operations on time values are used

in relational operations. For example, conjunction

(join) typically uses set intersection to generate a

compact representation of the time instants attached

to the facts in the result of such an operation.

Example. For the running example, a concrete schema

for the employment histories would typically be de-

fined as ‘‘Employment(VT, EID, Company)’’ where

VT is a valid time attribute ranging over periods (inter-

vals). The GAPS query can be formulated in a calculus-

style language corresponding to TSQL2 (see the entry

on TSQL2) along the following lines:

9I1; I2: 9c:EmploymentðI1;x; cÞ½ �^
9c:EmploymentðI2;x; cÞ½ � ^ I1 precedes I2

^ I ¼ ½endðI1Þþ 1;beginðI2Þ� 1�:

In particular, the variables I1 and I2 range over periods

and the precedes relationship is one of Allen’s inter-

val relationships. The final conjunct,

I ¼ ½endðI1Þþ 1;beginðI2Þ� 1�;

creates a new period corresponding to the time instants

related to a person’s gap in employment ; this interval

value is explicitly constructed from the end and start

points of I1 and I2, respectively. For the query to be

correct, however, the results of evaluating the bracket-

ed subexpressions, e.g., ‘‘[∃c.Employment(I1, x, c)],’’
have to be coalesced. Without the insertion of the

explicit coalescing operators, the query is incorrect.

To see that, consider a situation in which a person p0
is first employed by a company c1, then by c2, and

finally by c3, without any gaps in employment. Then

without coalescing of the bracketed subexpressions of

the above query, p0 will be returned as a part of the

result of the query, which is incorrect. Note also that it

is not enough for the underlying (concrete) database to

be coalesced.
The need for an explicit use of coalescing often makes

the formulation of queries in some concrete SQL-based

temporal query languages cumbersome and error-prone.

An orthogonal issue is the difference between explicit

and implicit access to temporal values. This distinction

also carries over to the concrete temporal languages.

Typically, the various temporal extensions of SQL are

based on the assumption of an explicit access to temporal

values (often employing a built-in valid time attribute

ranging over intervals or temporal elements), while

many temporal relational algebras have chosen to use

the implicit access based on temporally extending stan-

dard relational operators such as temporal join or

temporal projection.

Compilation and Query Evaluation. An alternative to

allowing users direct access to the encodings of temporal

databases is to develop techniques that allow the evalua-

tion of abstract temporal queries over these encodings.

The main approaches are based on query compilation

techniques that map abstract queries to concrete queries,

while preserving query answers. More formally:

QðkEkÞ ¼ kevalðQÞðEÞk;

where Q an abstract query, eval(Q) the corresponding

concrete query, E is a concrete temporal database, and

||.|| a mapping that associates encodings (concrete

temporal databases) with their abstract counterparts

(cf. Fig.1). Note that a single abstract temporal data-

base, D, can be encoded using several different

instances of the corresponding concrete database, e.g.,

E1 and E2 in Fig.1.

Most of the practical temporal data models adopt a

common approach to physical representation of tem-

poral databases: with every fact (usually represented as

a tuple), a concise encoding of the set of time points at

which the fact holds is associated. The encoding is

commonly realized by intervals [6,7] or temporal ele-

ments (finite unions of intervals). For such an encod-

ing it has been shown that both First-Order Temporal

Logic [4] and Temporal Relational Calculus [8] queries

can be compiled to first-order queries over a natural

relational representation of the interval encoding of the

database. Evaluating the resulting queries yields the in-

terval encodings of the answers to the original queries, as

if the queries were directly evaluated on the point-

stamped temporal database. Similar results can be

obtained for more complex encodings, e.g., periodic

Abstract Versus Concrete Temporal Query Languages. Figure 1. Query evaluation over interval encodings of point-

stamped temporal databases.

Abstract Versus Concrete Temporal Query Languages A 5

A

sets, and for abstract temporal query languages that

adopt the duplicate semantics matching the SQL stan-

dard, such as SQL/TP [9].

Key Applications
Temporal query languages are primarily used for que-

rying temporal databases. However, because of their

generality they can be applied in other contexts as well,

e.g., as an underlying conceptual foundation for que-

rying sequences and data streams [5].

Cross-references
▶Allen’s Relations

▶Bitemporal Relation

▶Constraint Databases

▶Key

▶Nested Transaction Models

▶Non First Normal Form

▶ Point-Stamped Temporal Models

▶Relational Model

▶ Snapshot Equivalence

▶ SQL

▶Telic Distinction in Temporal Databases
▶Temporal Coalescing

▶Temporal Data Models

▶Temporal Element

▶Temporal Granularity

▶Temporal Integrity Constraints

▶Temporal Joins

▶Temporal Logic in Database Query Languages

▶Temporal Relational Calculus

▶Time Domain

▶Time Instant

▶Transaction Time

▶TSQL2

▶Valid Time
Recommended Reading
1. Bettini C., Wang X.S., and Jajodia S. Temporal Semantic

Assumptions and Their Use in Databases. Knowl. Data Eng.,

10(2):277–296, 1998.

2. Chomicki J. Temporal query languages: a survey. In Proc. 1st Int.

Conf. on Temporal Logic, 1994, pp. 506–534.

3. Chomicki J. and Toman D. Temporal databases. In Handbook

of Temporal Reasoning in Artificial Intelligence, Fischer M.,

Gabbay D., and Villa L. (eds.). Elsevier Foundations of

Artificial Intelligence, 2005, pp. 429–467.

6 A Abstraction
4. Chomicki J., Toman D., and Böhlen M.H. Querying ATSQL

databases with temporal logic. ACM Trans. Database Syst.,

26(2):145–178, 2001.

5. Law Y.-N., Wang H., and Zaniolo C. Query languages and

data models for database sequences and data streams. In Proc.

30th Int. Conf. on Very Large Data Bases, 2004, pp. 492–503.

6. Navathe S.B. and Ahmed R. In Temporal Extensions to the

Relational Model and SQL. Tansel A., Clifford J., Gadia S.,

Jajodia S., Segev A., and Snodgrass R.T. (eds.). Temporal Data-

bases: Theory, Design, and Implementation. Benjamin/

Cummings, Menlo Park, CA, 1993, pp. 92–109.

7. Snodgrass R.T. The temporal query language TQuel. ACM

Trans. Database Syst., 12(2):247–298, 1987.

8. Toman D. Point vs. interval-based query languages for temporal

databases. In Proc. 15th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 1996, pp. 58–67.

9. Toman D. Point-based temporal extensions of SQL. In Proc. 5th

Int. Conf. on Deductive and Object-Oriented Databases, 1997,

pp. 103–121.
Abstraction

BERNHARD THALHEIM

Christian-Albrechts University Kiel, Kiel, Germany

Synonyms
Component abstraction; Implementation abstraction;

Association; Aggregation; Composition; Grouping;

Specialization; Generalisation; Classification

Definition
Abstraction allows developers to concentrate on the

essential, relevant, or important parts of an applica-

tion. It uses a mapping to a model from things in

reality or from virtual things. The model has the trun-

cation property, i.e., it lacks some of the details in the

original, and a pragmatic property, i.e., the model use

is only justified for particular model users, tools of

investigation, and periods of time. Database engineer-

ing uses construction abstraction, context abstraction,

and refinement abstraction. Construction abstraction

is based on the principles of hierarchical structuring,

constructor composition, and generalization. Context

abstraction assumes that the surroundings of a concept

are commonly understood by a community or within a

culture and focuses on the concept, turning away at-

tention from its surroundings such as the environment

and setting. Refinement abstraction uses the principle

of modularization and information hiding. Developers

typically use conceptual models or languages for
representing and conceptualizing abstractions. The en-

hanced entity-relationship model schema are typically

depicted by an EER diagram.

Key Points
Database engineering distinguishes three kinds of

abstraction: construction abstraction, context abstrac-

tion, and refinement abstraction.

Constructor composition depends on the cons-

tructors as originally introduced by J. M. Smith and

D.C.W. Smith. Composition constructors must be well

founded and their semantics must be derivable by in-

ductive construction. There are threemainmethods for

construction: development of ordered structures on the

basis of hierarchies, construction by combination or

association, and construction by classification into

groups or collections. The set constructors � (subset), �
(product), and P (powerset) for subset, product and

nesting are complete for the construction of sets.

Subset constructors support hierarchies of object

sets in which one set of objects is a subset of some other

set of objects. Subset hierarchies are usually a rooted

tree. Product constructors support associations be-

tween object sets. The schema is decomposed into

object sets related to each other by association or

relationship types. Power set constructors support a

classification of object sets into clusters or groups of

sets – typically according to their properties.

Context abstraction allows developers to commonly

concentrate on those parts of an application that are

essential for some perspectives during development

and deployment of systems. Typical types of context

abstraction are component abstraction, separation of

concern, interaction abstraction, summarization, scop-

ing, and focusing on typical application cases.

Component abstraction factors out repeating,

shared or local patterns of components or functions

from individual concepts. It allows developers to con-

centrate on structural or behavioral aspects of similar

elements of components. Separation of concern allows

developers to concentrate on those concepts under

development and to neglect all other concepts that

are stable or not under consideration. Interaction ab-

straction allows developers to concentrate on parts of

the model that are essential for interaction with other

systems or users. Summarisation maps the conceptua-

lizations within the scope to more abstract concepts.

Scoping is typically used to select those concepts that

are necessary for current development and removes

Access Control A 7

A
those concepts which that do not have an impact on

the necessary concepts.

Database models may cover a large variety of differ-

ent application cases. Some of them reflect exceptional,

abnormal, infrequent and untypical application situa-

tions. Focusing on typical application cases explicitly

separates models intended for the normal or typical

application case from those that are atypical. Atypical

application cases are not neglected but can be folded into

the model whenever atypical situations are considered.

The context abstraction concept is the main con-

cept behind federated databases. Context of databases

can be characterized by schemata, version, time, and

security requirements. Sub-schemata, types of the

schemata or views on the schemata, are associated

with explicit import/export bindings based on a

name space. Parametrization lets developers consider

collections of objects. Objects are identifiable under

certain assumptions and completely identifiable after

instantiation of all parameters.

Interaction abstraction allows developers to

display the same set of objects in different forms. The

view concept supports this visibility concept. Data is

abstracted and displayed in various levels of granularity.

Summarization abstraction allows developers to abstract

from details that are irrelevant at a certain point. Scope

abstraction allows developers to concentrate on a num-

ber of aspects. Names or aliases can be multiply used

with varying structure, functionality and semantics.

Refinement abstraction mainly concerns imple-

mentation and modularisation. It allows developers to

selectively retain information about structures. Refine-

ment abstraction is defined on the basis of the develop-

ment cycle (refinement of implementations). It refines,

summarizes and views conceptualizations, hides or

encapsulates details, or manages collections of versions.

Each refinement step transforms a schema to a schema

of finer granularity. Refinement abstraction may be

modeled by refinement theory and infomorphisms.

Encapsulation removes internal aspects and

concentrates on interface components. Blackbox or

graybox approaches hide all aspects of the objects

being considered. Partial visibility may be supported

by modularization concepts. Hiding supports differen-

tiation of concepts into public, private (with the possi-

bility to be visible as ‘‘friends’’) and protected (with

visibility to subconcepts). It is possible to define a

number of visibility conceptualizations based on

inflection. Inflection is used for the injection of
combinable views into the given view, for tailoring,

ordering and restructuring of views, and for enhance-

ment of views by database functionality. Behavioral

transparency is supported by the glassbox approach.

Security views are based on hiding. Versioning allows

developers to manage a number of concepts which can

be considered to be versions of each other.

Cross-references
▶ Entity Relationship Model

▶ Extended Entity-Relationship Model

▶ Language Models

▶Object Data Models

▶Object-Role Modeling

▶ Specialization and Generalization

Recommended Reading
1. Börger E. The ASM refinement method. Formal Aspect.

Comput., 15:237–257, 2003.

2. Smith J.M. and Smith D.C.W. Data base abstractions: aggre-

gation and generalization. ACM Trans. Database Syst., 2

(2):105–133, 1977.

3. Thalheim B. Entity-Relationship Modeling – Foundations

of Database Technology. Springer, 2000.
Access Control

ELENA FERRARI

University of Insubria, Varese, Italy

Synonyms
Authorization verification

Definition
Access control deals with preventing unauthorized

operations on the managed data. Access control is

usually performed against a set of authorizations stated

by Security Administrators (SAs) or users according to

the access control policies of the organization. Author-

izations are then processed by the access control mech-

anism (or reference monitor) to decide whether each

access request can be authorized or should be denied.

Historical Background
Access control models for DBMSs have been greatly

influenced by the models developed for the protection

of operating system resources. For instance, the model

8 A Access Control
proposed by Lampson [16] is also known as the access

matrix model since authorizations are represented as a

matrix. However, much of the early work on database

protection was on inference control in statistical

databases.

Then, in the 1970s, as research in relational data-

bases began, attention was directed towards access con-

trol issues. As part of the research on System R at IBM

Almaden Research Center, there was much work on

access control for relational database systems [11,15],

which strongly influenced access control models and

mechanisms of current commercial relational DBMSs.

Around the same time, some early work on multilevel

secure database management systems (MLS/DBMSs)

was reported. However, it was only after the Air

Force Summer Study in 1982 [1] that developments

on MLS/DBMSs began. For instance, the early proto-

types based on the integrity lock mechanisms devel-

oped at the MITRE Corporation. Later, in the

mid-1980s, pioneering research was carried out at SRI

International and Honeywell Inc. on systems such as

SeaView and LOCK Data Views [9]. Some of the tech-

nologies developed by these research efforts were trans-

ferred to commercial products by corporations such

as Oracle, Sybase, and Informix. In the 1990s, numer-

ous other developments were made to meet the

access control requirements of new applications and

environments, such as the World Wide Web, data

warehouses, data mining systems, multimedia systems,

sensor systems, workflow management systems, and

collaborative systems. This resulted in several extensions

to the basic access control models previously developed,

by including the support for temporal constraints, deri-

vation rules, positive and negative authorizations, strong

and weak authorizations, and content and context-de-

pendent authorizations [14]. Role-based access control

has been proposed [12] to simplify authorization man-

agement within companies and organizations. Recently,

there have been numerous developments in access

control, mainly driven by developments in web data

management. For example, standards such as XML

(eXtensible Markup Language) and RDF (Resource De-

scription Framework) require proper access control

mechanisms [7]. Also, web services and the semantic

web are becoming extremely popular and therefore

research is currently carried out to address the related

access control issues [13]. Access control is currently

being examined for new application areas, such as

knowledge management [4], data outsourcing, GIS
[10], peer-to-peer computing and stream data manage-

ment [8]. For example, in the case of knowledge man-

agement applications, it is important to protect the

intellectual property of an organization, whereas when

data are outsourced, it is necessary to allow the owner to

enforce its access control policies, even if data are man-

aged by a third party.

Foundations
The basic building block on which access control relies

is a set of authorizations: which state, who can access

which resource, and under which mode. Authorizations

are specified according to a set of access control policies,

which define the high-level rules according to which

access control must occur. In its basic form, an autho-

rization is, in general, specified on the basis of three

components (s,o,p), and specifies that subject s is

authorized to exercise privilege p on object o. The

three main components of an authorization have the

following meaning:

� Authorization subjects: They are the ‘‘active’’ entities

in the system to which authorizations are granted.

Subjects can be further classified into the following,

not mutually exclusive, categories: users, that is,

single individuals connecting to the system; groups,

that is, sets of users; roles, that is, named collection

of privileges needed to perform specific activities

within the system; and processes, executing pro-

grams on behalf of users.

� Authorization objects: They are the ‘‘passive’’ com-

ponents (i.e., resources) of the system to which

protection from unauthorized accesses should be

given. The set of objects to be protected clearly

depends on the considered environment. For in-

stance, files and directories are examples of objects

of an operating system environment, whereas in a

relational DBMS, examples of resources to be pro-

tected are relations, views and attributes. Author-

izations can be specified at different granularity

levels, that is, on a whole object or only on some

of its components. This is a useful feature when an

object (e.g., a relation) contains information (e.g.,

tuples) of different sensitivity levels and therefore

requires a differentiated protection.

� Authorization privileges: They state the types of

operations (or access modes) that a subject can

exercise on the objects in the system. As for objects,

the set of privileges also depends on the resources

Access Control A 9

A
to be protected. For instance, read, write, and exe-

cute privileges are typical of an operating system

environment, whereas in a relational DBMS privi-

leges refer to SQL commands (e.g., select, insert,

update, delete). Moreover, new environments such

as digital libraries are characterized by new access

modes, for instance, usage or copying access rights.

Depending on the considered domain and the way

in which access control is enforced, objects, subjects

and/or privileges can be hierarchically organized. The

hierarchy can be exploited to propagate authorizations

and therefore to simplify authorizationmanagement by

limiting the set of authorizations that must be explicitly

specified. For instance, when objects are hierarchically

organized, the hierarchy usually represents a ‘‘part-of ’’

relation, that is, the hierarchy reflects the way objects

are organized in terms of other objects. In contrast, the

privilege hierarchy usually represents a subsumption

relation among privileges. Privileges towards the bot-

tom of the hierarchy are subsumed by privileges to-

wards the top (for instance, the write privilege is at a

higher level in the hierarchy with respect to the read

privilege, since write subsumes read operations). Also

roles and groups can be hierarchically organized. The

group hierarchy usually reflects the membership of a

group to another group. In contrast, the role hierarchy

usually reflects the relative position of roles within an

organization. The higher the level of a role in the

hierarchy, the higher its position in the organization.
Access Control. Figure 1. Access control: main components
Authorizations are stored into the system and are

then used to verify whether an access request can be

authorized or not. How to represent and store author-

izations depends on the protected resources. For in-

stance, in a relational DBMS, authorizations are

modeled as tuples stored into system catalogs. In

contrast, when resources to be protected are XML

documents, authorizations are usually encoded using

XML itself. Finally, the last key component of the

access control infrastructure is the access control

mechanism (or reference monitor), which is a trusted

software module in charge of enforcing access control.

It intercepts each access request submitted to the sys-

tem (for instance, SQL statements in case of relational

DBMSs) and, on the basis of the specified authoriza-

tions, it determines whether the access can be partially

or totally authorized or should be denied. The refer-

ence monitor should be non-bypassable. Additionally,

the hardware and software architecture should ensure

that the reference monitor is tamper proof, that is, it

cannot be maliciously modified (or at least that any

improper modification can be detected). The main

components of access control are illustrated in Fig. 1.

A basic distinction when dealing with access con-

trol is between discretionary and mandatory access

control. Discretionary access control (DAC) governs

the access of subjects to objects on the basis of subjects’

identity and a set of explicitly specified authorizations

that specify, for each subject, the set of objects that
.

10 A Access Control
he/she can access in the system and the allowed access

modes. When an access request is submitted to the

system, the access control mechanism verifies whether

or not the access can be authorized according to the

specified authorizations. The system is discretionary in

the sense that a subject, by proper configuring the set

of authorizations, is both able to enforce various access

control requirements and to dynamically change them

when needed (simply by updating the authorization

state). In contrast, mandatory access control (MAC)

specifies the accesses that subjects can exercise on the

objects in the system, on the basis of subjects and

objects security classification [14]. Security classes usu-

ally form a partially ordered set. This type of security

has also been referred to as multilevel security, and

database systems that enforce multilevel access control

are called Multilevel Secure Database Management Sys-

tems (MLS/DBMSs). When mandatory access control

is enforced, authorizations are implicitly specified, by

assigning subjects and objects proper security classes.

The decision on whether or not to grant an access

depends on the access mode and the relation existing

between the classification of the subject requesting

the access and that of the requested object. In addition

to DAC and MAC, role-based access control (RBAC)

has been more recently proposed [12]. RBAC is an

alternative to discretionary and mandatory access con-

trol, mainly conceived for regulating accesses within

companies and organizations. In RBAC, permissions

are associated with roles, instead of with users, and

users acquire permissions through their membership

to roles. The set of authorizations can be inferred by

the sets of user-role and role-permission assignments.

Key Applications
Access control techniques are applied in almost all envir-

onments that need to grant a controlled access to their

resources, including, but not limited, to the following:

DBMSs, Data Stream Management Systems, Operat

ing Systems, Workflow Management Systems, Digital

Libraries, GIS, Multimedia DBMSs, E-commerce ser-

vices, Publish-subscribe systems, Data warehouses.

Future Directions
Altough access control is a mature area with consoli-

dated results, the evolution of DBMSs and the require-

ments of new applications and environments pose new

challenges to the research community. An interesting
discussion on open research issues in the field can be

found in [6]. Some research issues which complement

those presented in [6] are discussed below.

Social networks. Web-based social networks (WBSNs)

are online communities where participants can estab-

lish relationships and share resources across the web

with other users. In recent years, several WBSNs have

been adopting semantic web technologies, such as

FOAF, for representing users’ data and relationships,

making it possible to enforce information interchange

acrossmultipleWBSNs. Despite its advantages in terms

of information diffusion, this raised the need for giving

content owners more control on the distribution of

their resources, which may be accessed by a community

far wider than they expected. So far, this issue has been

mainly addressed in a very simple way, by some of the

availableWBSNs, by only allowing users to state wheth-

er a specific information (e.g., personal data and

resources) should be public or accessible only by the

users with whom the owner of such information has a

direct relationship. Such simple access control strate-

gies have the advantage of being straightforward, but

they are not flexible enough in denoting authorized

users. In fact, they do not take into account the type

of the relationships existing between users and, conse-

quently, it is not possible to state that only, say, my

‘‘friends’’ can access a given information. Moreover,

they do not allow to grant access to users who have an

indirect relationship with the resource owner (e.g., the

‘‘friends of my friends’’). Therefore, more flexible

mechanisms are needed, making a user able to decide

which network participants are authorized to access

his/her resources and personal information. Addition-

ally, since the number of social network users is consid-

erably higher than those in conventional DBMSs, the

traditional server-side way of enforcing access control,

that is, the one relying on a centralized trusted reference

monitor, should be revised and more efficient and

distributed strategies should be devised for WBSNs.

Until now, apart from [3], most of the security research

on WBSNs has focused on privacy-preserving mining

of social network data. The definition of a comprehen-

sive framework for efficiently enforcing access control

in social networks is therefore still an issue to be

investigated.

� Data streams. In many applications, such as tele-

communication, battle field monitoring, network

Access Control A 11

A
monitoring, financial monitoring, sensor networks,

data arrive in the form of high speed data streams.

These data typically contain sensitive information

(e.g., health information, credit card numbers) and

thus unauthorized accesses should be avoided.

Although many data stream processing systems

have been developed so far (e.g., Aurora, Borealis,

STREAM, TelegraphCQ, and StreamBase), the

focus of these systems has been mainly on perfor-

mance issues rather than on access control. On the

other hand, though the data security community

has a very rich history in developing access control

models [9], these models are largely tailored to

traditional DBMSs and therefore they cannot be

readily applied to data streammanagement systems

[8]. This is mainly because: (i) traditional data are

static and bounded, while data streams are un-

bounded and infinite; (ii) queries in traditional

DBMSs are one time and ad-hoc, whereas queries

over data streams are typically continuous and long

running; (iii) in traditional DBMSs, access control

is enforced when users access the data; (iv) in data

stream applications access control enforcement is

data-driven (i.e., whenever data arrive), as such

access control is more computational intensive

in data stream applications and specific techniques

to handle it efficiently should be devised; (v) tem-

poral constraints (e.g., sliding windows) are more

critical in data stream applications than in tradi-

tional DBMSs.

� Semantic web. The web is now evolving into the

semantic web. The semantic web [5] is a web that is

intelligent with machine-readable web pages. The

major components of the semantic web include

web infrastructures, web databases and services,

ontology management and information integra-

tion. There has been much work on each of these

areas. However, very little work has been devoted to

access control. If the semantic web is to be effective,

it is necessary to ensure that the information on the

web is protected from unauthorized accesses and

malicious modifications. Also, it must be ensured

that individual’s privacy is maintained. To cope

with these issues, it is necessary to secure all the

semantic web related technologies, such as XML,

RDF, Agents, Databases, web services, and Ontolo-

gies and ensure the secure interoperation of all

these technologies [13].
Cross-references
▶Access Control Policy Languages

▶Discretionary Access Control

▶Mandatory Access Control

▶Multilevel Secure Database Management System

▶Role Based Access Control

▶ Storage Security

Recommended Reading
1. Air Force Studies Board, Committee on Multilevel Data

Management Security. Multilevel data management security.

National Research Council, 1983.

2. Berners-Lee T. et al. The semantic web. Scientific American,

2001.

3. Bertino E., and Sandhu R.S. Database security: concepts,

approaches, and challenges. IEEE Trans. Dependable and

Secure Computing, 2(1):2–19, 2005.

4. Bertino E., Khan L.R., Sandhu R.S., and Thuraisingham B.M.

Secure knowledge management: confidentiality, trust, and

privacy. IEEE Trans. Syst. Man Cybern. A, 36(3):429–438, 2006.

5. Carminati B., Ferrari E., and Perego A. Enforcing access control in

web-based social networks. ACM trans. Inf. Syst. Secur., to appear.

6. Carminati B., Ferrari E., and Tan K.L. A framework to enforce

access control over Data Streams. ACM Trans. Inf. Syst. Secur., to

appear.

7. Carminati B., Ferrari E., and Thuraisingham B.M. Access control

for web data: models and policy languages. Ann. Telecomm., 61

(3–4):245–266, 2006.

8. Carminati B., Ferrari E., and Bertino E. Securing XML data

in third party distribution systems. In Proc. of the ACM Four-

teenth Conference on Information and Knowledge Manage-

ment, 2005.

9. Castano S., Fugini M.G., Martella G., and Samarati P. Database

security. Addison Wesley, 1995.

10. Damiani M.L. and Bertino E. Access control systems for

geo-spatial data and applications. In Modelling and management

of geographical data over distributed architectures, A. Belussi, B.

Catania, E. Clementini, E. Ferrari (eds.). Springer, 2007.

11. Fagin R. On an authorization mechanism. ACM Trans. Database

Syst., 3(3):310–319, 1978.

12. Ferraiolo D.F., Sandhu R.S., Gavrila S.I., Kuhn D.R., and

Chandramouli R. Proposed NIST standard for role-based access

control. ACM Trans. Inf. Syst. Secur., 4(3):224–274, 2001.

13. Ferrari E. and Thuraisingham B.M. Security and privacy for web

databases and services. In Advances in Database Technology, Proc.

9th Int. Conf. on Extending Database Technology, 2004, pp. 17–28.

14. Ferrari E. and Thuraisingham B.M. Secure database systems.

In O. Diaz, M. Piattini (eds.). Advanced databases: technology

and design. Artech House, 2000.

15. Griffiths P.P. and Wade B.W. An authorization mechanism for a

relational database system. ACM Trans. Database Syst., 1

(3):242–255, 1976.

16. Lampson B.W. Protection. Fifth Princeton Symposium on

Information Science and Systems, Reprinted in ACM Oper.

Sys. Rev., 8(1):18–24, 1974.

12 A Access Control Administration Policies
Access Control Administration
Policies

ELENA FERRARI

University of Insubria, Varese, Italy

Synonyms
Authorization administration policies; Authorization

administration privileges

Definition
Administration policies regulate who can modify the

authorization state, that is, who has the right to grant

and revoke authorizations.

Historical Background
Authorization management is a an important issue

when dealing with access control and, as such, research

on this topic is strongly related to the developments in

access control. A milestone in the field is represented

by the research carried out in the 1970s at IBM in

the framework of the System R project. In particular,

the work by Griffiths and Wade [9] defines a semantics

for authorization revocation, which had greatly influ-

enced the way in which authorization revocation has

been implemented in commercial Relational DBMSs.

Administrative policies for Object-oriented DBMSs

have been studied in [8]. Later on, some extensions

to the System R access control administration model,

have been defined [3], with the aim of making it more

flexible and adaptable to a variety of access control

requirements. Additionally, as the research on extend-

ing the System R access control model with enhanced

functionalities progresses, authorization administra-

tion has been studied for these extensions, such as

temporal authorizations [2], strong and weak and

positive and negative authorizations [4]. Also, admin-

istrative policies for new environments and data mod-

els such as WFMSs [1] and XML data [12] have been

investigated. Back in the 1990s, when research on role-

based access control began, administration policies for

RBAC were investigated [6,11,10,13]. Some of the

ideas developed as part of this research were adopted

by the current SQL:2003 standard [7].
Foundations
Access control administration deals with granting

and revoking of authorizations. This function is usually
regulated by proper administration policies. Usually, if

mandatory access control is enforced, the adopted ad-

ministration policies are very simple, so that the Security

Administrator (SA) is the only one authorized to change

the classification level of subjects and objects. In con-

trast, discretionary and role-based access control are

characterized by more articulated administration poli-

cies, which can be classified according to the following

categories [3]:

� SA administration. According to this policy, only the

SA can grant and revoke authorizations. Although

the SA administration policy has the advantage

of being very simple and easily implemented, it has

the disadvantage of being highly centralized (even

though different SAs can manage different portions

of the database) and is seldom used in current

DBMSs, apart from very simple systems.

� Object owner administration. This is the policy com-

monly adopted by DBMSs and operating systems.

Under this policy, whoever creates an object become

its owner and he/she is the only one authorized to

grant and revoke authorizations on the object.

� Joint administration. Under this policy, particularly

suited for collaborative environments, several subjects

are jointly responsible for administering specific

authorizations. For instance, under the joint admin-

istration policy it can be a requirement that the au-

thorization to write a certain document is given by

twodifferent users, such as twodifferent job functions

within an organization. Authorizations for a subject

to access a data object requires that all the adminis-

trators of the object issue a grant request.

The object owner administration policy can be further

combined with administration delegation, according to

which the administrator of an object can grant other

subjects the right to grant and revoke authorizations

on the object. Delegation can be specified for selected

privileges, for example only for read operations. Most

current DBMSs support the owner administration pol-

icy with delegation. For instance, the Grant com-

mand provided by the SQL:2003 standard [7]

supports a Grant Option optional clause. If a privi-

lege p is granted with the grant option on an object o,

the subject receiving it is not only authorized to exer-

cise p on object o but he/she is also authorized to grant

other subjects authorizations for p on object o with or

without the grant option. Moreover, SQL:2003 pro-

vides an optional Admin Option clause, which has

Access Control Administration Policies A 13

A
the same meaning as the Grant option clause but it

applies to roles instead of to standard authorizations.

If a subject is granted the authorization to play a role

with the admin option he/she not only receives all the

authorizations associated with the role, but he/she can

also authorize other subjects to play that role.

If administration delegation is supported, different

administrators can grant the same authorization to

the same subject. A subject can therefore receive an

authorization for the same privilege on the same object

by different sources. An important issue is therefore

related to the management of revoke operations, that

is, what happens when a subject revokes some of the

authorizations he/she previously granted. For instance,

consider three users: Ann, Tom, and Alice. Suppose

that Ann grants Tom the privilege to select tuples from

the Employee relation with the grant option and

that, by having this authorization, Tom grants

Alice the same privilege on the Employee relation.

What happens to the authorization of Alice when

Ann revokes Tom the privilege to select tuples from the

Employee relation? The System R authorization

model [9] adopts the most conscious approach with

respect to security by enforcing recursive revocation:

whenever a subject revokes an authorization on a rela-

tion from another subject, all the authorizations that

the revokee had granted because of the revoked autho-

rization are recursively removed from the system. The
Access Control Administration Policies. Figure 1. Recursive
revocation is iteratively applied to all the subjects that

received an authorization from the revokee. In the

example above, Alice will lose the privilege to select

tuples from the Employee relation when Ann

revokes this privilege to Tom.

Implementing recursive revocation requires keeping

track of the grantor of each authorization, that is, the

subject who specifies the authorization, since the same

authorization can be granted by different subjects, as

well as of its timestamp, that is, the time when it was

specified. To understand why the timestamp is impor-

tant in correctly implementing recursive revocation,

consider the graph in Fig. 1a, which represents the

authorization state for a specific privilege p on a spe-

cific object o. Nodes represent subjects, and an edge

from node n1 to node n2 means that n1 has granted

privilege p on object o to n2. The edge is labeled with

the timestamp of the granted privilege and, optionally,

with symbol ‘‘g,’’ if the privilege has been granted with

the grant option. Suppose that Tom revokes the autho-

rization to Alice. As a result, the authorizations also

held by Matt and Ann are recursively revoked because

they could not have been granted if Alice did not

receive authorization from Tom at time 32. In contrast,

the authorization held by Paul is not revoked since it

could have been granted even without the authoriza-

tion granted by Tom to Alice at time 32, because of

the privilege Alice had received by Helen at time
revocation.

14 A Access Control Administration Policies
47. The authorization state resulting from the revoke

operation is illustrated in Fig. 1b. Although recursive

revocation has the advantage of being the most con-

servative solution with regard to security, it has the

drawback of in some cases the unnecessarily revoking

of too many authorizations. For instance, in an orga-

nization, the authorizations a user possesses are usually

related to his/her job functions within the organiza-

tion, rather than to his/her identity. If a user changes

his/her tasks (for instance, because of a promotion), it is

desirable to remove only the authorizations of the user,

without revoking all the authorizations granted by the

user before changing his/her job function. For this rea-

son, research has been carried out to devise alternative

semantics for the revoke operation with regard to

recursive revocation. Bertino et al. [5] have proposed

an alternative type of revoke operation, called noncas-

cading revocation. According to this, no recursive revo-

cation is performed upon the execution of a revoke

operation. Whenever a subject revokes a privilege on

an object from another subject, all authorizations

which the subject may have granted using the privilege

received by the revoker are not removed. Instead, they

are restated as if they had been granted by the revoker.

SQL:2003 [7] adopts the object owner administra-

tion policy with delegation. A revoke request can either

be issued to revoke an authorization from a subject for a

particular privilege on a given object, or to revoke the

authorization to play a given role. SQL:2003 supports

two different options for the revoke operation. If the

revoke operation is requested with the Restrict

clause, then the revocation is not allowed if it causes the

revocation of other privileges and/or the deletion of some

objects from the database schema. In contrast, if the

Cascade option is specified, then the system imple-

ments a revoke operation similar to the recursive revoca-

tion of the System R, but without taking into account

authorization timestamps. Therefore, an authorization is

recursively revoked only if the grantor no longer holds

the grant/admin option for that, because of the requested

revoke operation. Otherwise, the authorization is not

deleted, regardless of the time the grantor had received

the grant/admin option for that authorization. To illus-

trate the differences with regard to recursive revocation,

consider once again Fig. 1a, and suppose that Tom

revokes privilege p on object o to Alice with the

Cascade option. With difference to the System R

access control model, this revoke operation does not

cause any other changes to the authorization state. The
authorization granted byAlice toMatt is not deleted,

because Alice still holds the grant option for that

access (received by Helen).
Key Applications
Access control administration policies are fundamental

in every environment where access control services are

provided.
Cross-references
▶Access Control

▶Discretionary Access Control

▶Role Based Access Control
Recommended Reading
1. Atluri V., Bertino E., Ferrari E., and Mazzoleni P. Supporting

delegation in secure workflow management systems. In Proc.

17th IFIP WG 11.3 Conf. on Data and Application Security,

2003, pp. 190–202.

2. Bertino E., Bettini C., Ferrari E., and Samarati P. Decentralized

administration for a temporal access control model. Inf. Syst.,

22:(4)223–248, 1997.

3. Bertino E. and Ferrari E. Administration policies in a multi-

policy authorization system. In Proc. 11th IFIP WG 11.3

Conference on Database Security, 1997, pp. 341–355.

4. Bertino E., Jajodia S., and Samarati P. A flexible authorization

mechanism for relational data management systems. ACM

Trans. Inf. Syst., 17:(2)101–140, 1999.

5. Bertino E., Samarati P., and Jajodia S. An extended authorization

model. IEEE Trans. Knowl. Data Eng., 9:(1)85–101, 1997.

6. Crampton J. and Loizou G. Administrative scope: a foundation

for role-based administrative models. ACM Trans. Inf. Syst.

Secur., 6:(2)201–231, 2003.

7. Database Languages – SQL,ISO/IEC 9075-*, 2003.

8. Fernandez E.B., Gudes E., and Song H. A model for evaluation

and administration of security in object-oriented databases.

IEEE Trans. Knowl. Data Eng., 6:(2)275–292, 1994.

9. Griffiths P.P. and Wade B.W. An authorization mechanism for

a relational database system. ACM Trans. Database Syst., 1:(3)

242–255, 1976.

10. Oh S., Sandhu R.S., and Zhang X. An effective role admini-

stration model using organization structure. ACM Trans.

Inf. Syst. Secur., 9:(2)113–137, 2006.

11. Sandhu R.S., Bhamidipati V., and Munawer Q. The ARBAC97

model for role-based administration of roles. ACM Trans. Inf.

Syst. Secur., 2:(1)105–135, 1999.

12. Seitz L., Rissanen E., Sandholm T., Sadighi Firozabadi B., and

Mulmo O. Policy Administration control and delegation

using XACML and delegent. In Proc. 6th IEEE/ACM Int. Work-

shop on Grid Computing, 2005, pp. 49–54.

13. Zhang L., Ahn G., and Chu B. A rule-based framework for

role-based delegation and revocation. ACM Trans. Inf. Syst.

Secur., 6:(3)404–441, 2003.

Access Control Policy Languages A 15

A
Access Control Policy Languages

ATHENA VAKALI

Aristotle University, Thessaloniki, Greece

Synonyms
Authorization policy languages

Definition
An access control policy language is a particular set of

grammar, syntax rules (logical and mathematical), and

operators which provides an abstraction-layer for ac-

cess control policy specifications. Such languages com-

bine individual rules into a single policy set, which is

the basis for (user/subject) authorization decisions on

accessing content (object) stored in various informa-

tion resources. The operators of an access control poli-

cy language are used on attributes of the subject,

resource (object), and their underlying application

framework to facilitate identifying the policy that

(most appropriately) applies to a given action.

Historical Background
The evolution of access control policy languages is

inline with the evolving large-scale highly distributed

information systems and the Internet, which turned

the tasks of authorizing and controlling of accessing

on a global enterprise (or on Internet) framework

increasingly challenging and difficult. Obtaining a

solid and accurate view of the policy in effect across

its many and diverse systems and devices has guided

the development of access control policy languages

accordingly.

Access control policy languages followed the Digital

Rights Management (DRM) standardization efforts,

which had focused in introducing DRM technology

into commercial and mainstream products. Originally,

access control was practiced in the most popular

RDBMSs by policy languages that were SQL based.

Certainly, the access control policy languages evolution

was highly influenced by the wide adoption of XML

(late 1990s) mainly in the enterprise world and its

suitability for supporting access control acts. XML’s

popularity resulted in an increasing need to support

more flexible provisional access decisions than the

initial simplistic authorization acts which were limited

in an accept/deny decision. In this context, proposals

of various access control policy languages were very
active starting around the year 2000. This trend seemed

to stabilize around 2005.

The historical pathway of such languages should

highlight the following popular and general-scope ac-

cess control policy languages:

� 1998: the Digital Property Rights Language (DPRL,

Digital Property Rights Language, http://xml.cover-

pages.org/dprl.html) mostly addressed to commer-

cial and enterprise communities was specified for

describing rights, conditions, and fees to support

commerce acts

� 2000: XML Access Control Language (XACL, XML

Access Control Language, http://xml.coverpages.org/

xacl.html) was the first XML-based access control

language for the provisional authorization model

� 2001: two languages were publicized:
▶ the eXtensible rights Markup Language (XrML,

The Digital Rights Language for Trusted Content

and Services, http://www.xrml.org/) promoted

as the digital rights language for trusted content

and services

▶ the Open Digital Rights Language (ODRL,

Open Digital Rights Language, http://odrl.net/)

for developing and promoting an open standard

for rights expressions for transparent use of digi-

tal content in all sectors and communities
� 2002: the eXtensible Media Commerce Language

(XMCL, eXtensible Media Commerce Language,

http://www.w3.org/TR/xmcl/) to communicate

usage rules in an implementation-independent man-

ner for interchange between business systems and

DRM implementations

� 2003: the eXtensible Access Control Markup Lan-

guage (XACML, eXtensible Access Control Markup

Language, http://www.oasis-open.org/committees/

xacml/) was accepted as a new OASIS, Organization

for the Advancement of Structured Information

Standards, http://www.oasis-open.org/, Open Stan-

dard language, designed as an XML specification

with emphasis on expressing policies for informa-

tion access over the Internet.

� 2005: Latest version XACML 2.0 appeared and pol-

icy languages which are mostly suited for Web

services appear. These include WS-SecurityPolicy,

http://www-128.ibm.com/developerworks/library/

specification/ws-secpol/, which defines general se-

curity policy assertions to be applied into Web

services security frameworks.

16 A Access Control Policy Languages
Foundations
Since Internet and networks in general are currently the

core media for data and knowledge exchange, a primary

issue is to assure authorized access to (protected)

resources located in such infrastructures. To support

access control policies and mechanisms, the use of an

appropriate and suitable language is the core require-

ment in order to express all of the various components

of access control policies, such as subjects, objects, con-

straints, etc. Initial attempts for expressing access

control policies (consisting of authorizations) involved

primary ‘‘participants’’ in a policy, namely the subject

(client requesting access), the object (protected re-

source), and the action (right or type of access).

To understand the access control policy languages

the context in which they are applied must be explained.

Hence, the following notions which appear under vary-

ing terminology must be noted:

� Content/objects: Any physical or digital content

which may be of different formats, may be divided

into subparts and must be uniquely identified.

Objects may also be encrypted to enable secure

distribution of content.
Access Control Policy Languages. Table 1. Summary of mo

Language/
technology Subject types Object types

DPRL/XML DTDs Registered
users

Digital XML data
sources, stored on
repositories

XACL/XML syntax Group or
organization
members

Particular XML
documents

XrML/XML schema Registered
users and/or
parties

digital XML data
sources

ODRL/open-source
schema-valid XML
syntax

Any user Trusted or untrusted
content

XMCL/XML
namespaces

Registered
users

Trusted multimedia
content

XACML/XML schema Any users
organized in
categories

Domain-specific inp

WS-Security policy/
XML, SOAP

Any Web users/
Web services

Digital data sources
� Permissions/rights/actions: Any task that will en-

force permissions for accessing, using and acting

over a particular content/object. They may contain

constraints (limits), requirements (obligations),

and conditions (such as exceptions, negotiations).

� Subjects/users/parties: Can be humans (end users),

organizations, and defined roles which aim in con-

suming (accessing) content.

Under these three core entities, the policies are formed

under a particular language to express offers and agree-

ments. Therefore, the initial format of such languages

authorization was (subject, object, and action) defining

which subject can conduct what type of action over what

object. However, with the advent of databases, network-

ing, and distributed computing, users have witnessed (as

presented in the section ‘‘Historical background’’) a

phenomenal increase in the automation of organization-

al tasks covering several physical locations, as well as the

computerization of information related services [6,7].

Therefore, new ideas have been added into modern

access control models, like time, tasks, origin, etc. This

was evident in the evolution of languages which initially

supported an original syntax for policies limited in a
st popular access control policy languages

Protection
granularity Accessing core formats Focus

Fine-
grained

Digital licenses assigned
for a time-limited period

Fine-
grained

Set of particular specified
privileges

Fine-
grained

Granted rights under
specified conditions

coarse-
grained

Digital or physical rights

Coarse-
grained

Specified keyword-based
licenses

Particular
business
models

ut Fine-
grained

Rule-based permissions

Fine-
grained

Protection acts at SOAP
Web services messages
level

Web
services
security

Access Control Policy Languages A 17

A
3-tuple (subject, Subject primitive allows user IDs,

groups, and/or role names. object, Object primitive

allows granularity as fine as a single element within an

XML document, and action, Action primitive consists

of four kinds of actions: read, write, create, and delete.)

which then was found quite simplistic and limited and it

was extended to include non-XML documents, to allow

roles and collections as subjects and to support more

actions (such as approve, execute, etc).

Table 1 summarizes the most important characteris-

tics of the popular general scope access control policy

languages. It is evident that these languages differentiate

on the subjects/users types, on the protected object/con-

tent type (which is considered as trusted when it is

addressed to trusted audience/users) and on the capabil-

ities of access control acts, which are presented under

various terms and formats (rights, permissions, privileges,
Access Control Policy Languages. Table 2. Specific-scope a

X-Sec XAC

Objects

Protected resources XML documents and
DTDs

XML docum
DTDs

Identification XPath XPath

Protection
granularity

Content, attribute Element

Subjects

Identification XML-expressed
credentials

Roles, UIDs,

Grouping of
subjects

No Yes

Subjects hierarchy No Yes

Support public
subject

No Yes

Policies

Expressed in Policy base XACL policy

Closed/open Closed Both

Permissions/denials Both Both

Access modes Authoring, browsing Read, write,
delete

Propagation No-prop, first-level,
cascade

No/up/down

Priority Implicit rules ntp, ptp, dtd

Conflict resolution Yes According to
and implicit

Other issues

Subscription-based Yes Yes

Ownership No No
etc). Moreover, this table highlights the level at which the

access control may be in effect for each language, i.e., the

broad categorization into fine- and coarse-grained pro-

tection granularity, respectively, refers to either partitions/

detailed or full document/object protection capability.

Moreover, the extensibility of languages which support

Web-based objects and content is noted.

To expand on the above, specific-scope languages

have also emerged mainly to support research-oriented

applications and tools. The most representative of such

languages include:

� X-Sec [1]: To support the specification of subject

credentials and security policies in Author-X and

Decentral Author-X [2]. X-Sec adopts the idea of

credentials which is similar to roles in that one user

can be characterized by more than one credentials.
ccess control languages characteristics

L RBXAC XAS syntax

ents and XML documents XML documents and
DTDs

XPath XPath

Content, attribute Element

groups Roles User ID, location

No Yes

Role trees Yes

No Yes

file Access control files XAS

Closed Closed

Permissions Both

create, RI, WI, RC, WC Read

According to role
tree

Local, recursive

- Hard, soft

priorities
rules

- Implicitly, explicitly

Yes Yes

Yes No

18 A Access Methods
� XAS Syntax: Designed to support the ACP (Access

Control Processor) tool [3]. It is a simplified XML-

based syntax for expressing authorizations.

� RBXAC: A specification XML-based language sup-

porting the role-based access control model [4].

� XACL: Which was originally based on a provisio-

nal authorization model and it has been designed

to support ProvAuth (Provisional Authorizations)

tool. Its main function is to specify security

policies to be enforced upon accesses to XML

documents.

� Cred-XACL [5]: A recent access control policy

language focusing on credentials support on dis-

tributed systems and the Internet.

The core characteristics of these specific-scope lan-

guages are given in Table 2, which summarizes them

with respect to their approach for objects and subjects

management, their policies practicing and their sub-

scription and ownership mechanisms. Such a summa-

ry is important in order to understand the ‘‘nature’’ of

each such language in terms of objects and subjects

identification, protection (sources) granularity and

(subject) hierarchies, policies expression and accessing

modes under prioritization, and conflict resolution

constraints. Finally, it should be noted that these high-

lighted characteristics are important in implementing

security service tasks which support several security

requirements from both the system and the sources

perspective.
Key Applications
Access control policy languages are involved in the trans-

parent and innovative use of digital resources which are

accessed in applications related to key nowadays areas

such as publishing, distributing and consuming of elec-

tronic publications, digital images, audio and movies,

learning objects, computer software and other creations

in digital form.
Future Directions
From the evolution of access control policy languages,

it appears that, in the future, emphasis will be given on

languages that are mostly suited for Web-accessed

repositories, databases, and information sources. This

trend is now apparent from the increasing interest on

languages that control accessing on Web services and

Web data sources. At the same time, it manages the
challenges posed by acknowledging and identifying

users/subjects on the Web.
URL to Code
Code, examples, and application scenarios may be

found for: ODRL application scenarios at http://www.

w3.org/TR/odrl/#46354 and http://odrl.net/, XrML at

http://www.xrml.org/, XMCL at http://www.w3.org/

TR/xmcl/, XACML at http://www.oasis-open.org/com-

mittees/xacml/, and WS-SecurityPolicy at http://www-

128.ibm.com/developerworks/library/specification/ws-

secpol/.
Cross-references
▶Access Control

▶Database Security

▶Role-Based Access Control

▶ Secure Database Development
Recommended Reading
1. Bertino E., Castano S., and Ferrari E. On specifying security

policies for web documents with an XML-based language. In

Proc. 6th ACM Symp. on Access Control Models and Technol-

ogies, 2001, pp. 57–65.

2. Bertino E., Castano S., and Ferrari E. Securing XML documents

with author-X. IEEE Internet Computing, May–June 2001,

pp. 21–31.

3. Damiani E., De Capitani di Vimercati S., Paraboschi S., and

Samarati P. Desing and implementation of an access control

processor for XML documents. In Proc. 9th Int. World Wide

Web Conference, 2000, pp. 59–75.

4. He H. and Wong R.K. A role-based access control model for

XML repositories. In Proc. 1st Int. Conf. on Web Information

Systems Eng., 2000, pp. 138–145.

5. Stoupa K. Access Control Techniques in distributed systems and

the Internet, Ph.D. Thesis, Aristotle University, Department of

Informatics, 2007.

6. Stoupa K. and Vakali A. Policies for web security services,

Chapter III. In Web and Information Security, E. Ferrari,

B. Thuraisingham (eds.), Idea-Group Publishing, USA, 2006.

7. Vuong N.N., Smith G.S., and Deng Y. Managing security policies

in a distributed environment using eXtensible markup language

(XML). In Proc. 16th ACM Symp. on Applied Computing, 2001,

pp. 405–411.
Access Methods

▶Access Path

ACID Properties A 19

A
Access Path

EVAGGELIA PITOURA

University of Ioannina, Ioannina, Greece

Synonyms
Access path; Access methods

Definition
An access path specifies the path chosen by a data-

base management system to retrieve the requested

tuples from a relation. An access path may be either

(i) a sequential scan of the data file or (ii) an index scan

with a matching selection condition when there are

indexes that match the selection conditions in the

query. In general, an index matches a selection condi-

tion, if the index can be used to retrieve all tuples that

satisfy the condition.

Key Points
Access paths are the alternative ways for retrieving spe-

cific tuples from a relation. Typically, there is more than

one way to retrieve tuples because of the availability of

indexes and the potential presence of conditions speci-

fied in the query for selecting the tuples. Typical access

methods include sequential access of unordered data

files (heaps) as well as various kinds of indexes. All

commercial database systems implement heaps and

B+ tree indexes. Most of them also support hash indexes

for equality conditions.

To choose an access path, the optimizer first deter-

mines which matching access paths are available by ex-

amining the conditions specified by the query. Then,

it estimates the selectivity of each access path using

any available statistics for the index and data file. The

selectivity of an access path is the number of pages (both

index and data pages) accessed when the specific

access path is used to retrieve the requested tuples.

The access path having the smallest selectivity is

called the most selective access path. Clearly, using

the most selective access path minimizes the cost

of data retrieval. Additional information can be

found in [1].

Cross-references
▶ Index Structures for Biological Sequences

▶Query Optimization

▶ Selectivity Estimation
Recommended Reading
1. Selinger P.G., Astrahan M.M., Chamberlin D.D., Lorie R.A.,

Price T.G. Access path selection in a relational database manage-

ment system. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1979, pp. 23–34.
Accountability

▶Auditing and Forensic Analysis
ACID Properties

GOTTFRIED VOSSEN

University of Münster, Münster, Germany

Synonyms
ACID properties; Atomicity; Isolation; Consistency

preservation; Durability; Persistence
Definition
The conceptual ACID properties (short for atomicity,

isolation, consistency preservation, and durability) of

a transaction together provide the key abstraction

which allows application developers to disregard irreg-

ular or even malicious effects from concurrency or

failures of transaction executions, as the transactional

server in charge guarantees the consistency of the un-

derlying data and ultimately the correctness of the

application [1–3]. For example, in a banking context

where debit/credit transactions are executed this means

that no money is ever lost in electronic funds transfers

and customers can rely on electronic receipts and bal-

ance statements. These cornerstones for building highly

dependable information systems can be successfully

applied outside the scope of online transaction proces-

sing and classical database applications as well.
Key Points
The ACID properties are what a database server guaran-

tees for transaction executions, in particular in the pres-

ence of multiple concurrently running transactions

and in the face of failure situations; they comprise the

following four properties (whose initial letters form

the word ‘‘ACID’’):

20 A ACID Properties
Atomicity. From the perspective of a client and

an application program, a transaction is executed

completely or not at all, i.e., in an all-or-nothing

fashion. So the effects of a program under execution

on the underlying data server(s) will only become

visible to the outside world or to other program

executions if and when the transaction reaches its

‘‘commit’’ operation. This case implies that the trans-

action could be processed completely, and no errors

whatsoever were discovered while it was processed. On

the other hand, if the program is abnormally termi-

nated before reaching its commit operation, the data in

the underlying data servers will be left in or automati-

cally brought back to the state in which it was before

the transaction started, i.e., the data appears as if the

transaction had never been invoked at all.

Consistency preservation: Consistency constraints

that are defined on the underlying data servers (e.g.,

keys, foreign keys) are preserved by a transaction; so a

transaction leads from one consistent state to another.

Upon the commit of a transaction, all integrity con-

straints defined for the underlying database(s) must be

satisfied; however, between the beginning and the end

of a transaction, inconsistent intermediate states are

tolerated and may even be unavoidable. This property

generally cannot be ensured in a completely automatic

manner. Rather, it is necessary that the application is

programmed such that the code between the beginning

and the commit of a transaction will eventually reach a

consistent state.

Isolation: A transaction is isolated from other trans-

actions, i.e., each transaction behaves as if it was

operating alone with all resources to itself. In particu-

lar, each transaction will ‘‘see’’ only consistent data in

the underlying data sources. More specifically, it will

see only data modifications that result from committed

transactions, and it will see them only in their entirety,

and never any effects of an incomplete transaction.

This is the decisive property that allows to hide the

fallacies and pitfalls of concurrency from the applica-

tion developers. A sufficient condition for isolation is

that concurrent executions are equivalent to sequential

ones, so that all transactions appear as if they were

executed one after the other rather than in an inter-

leaved manner; this condition is made precise through

serializability.

Durability: When the application program from

which a transaction derives is notified that the trans-

action has been successfully completed (i.e., when
the commit point of the transaction has been

reached), all updates the transaction has made in

the underlying data servers are guaranteed to survive

subsequent software or hardware failures. Thus,

updates of committed transactions are durable

(until another transaction later modifies the same

data items) in that they persist even across failures of

the affected data server(s).

Therefore, a transaction is a set of operations

executed on one or more data servers which are issued

by an application program and are guaranteed to have

the ACID properties by the runtime system of the

involved servers. The ‘‘ACID contract’’ between the

application program and the data servers requires the

program to demarcate the boundaries of the transac-

tion as well as the desired outcome – successful or

abnormal termination – of the transaction, both in a

dynamic manner. There are two ways a transaction

can finish: it can commit, or it can abort. If it com-

mits, all its changes to the database are installed, and

they will remain in the database until some other

application makes further changes. Furthermore, the

changes will seem to other programs to take place

together. If the transaction aborts, none of its changes

will take effect, and the DBMS will rollback by restor-

ing previous values to all the data that was updated by

the application program. A programming interface of

a transactional system consequently needs to offer

three types of calls: (i) ‘‘begin transaction’’ to specify

the beginning of a transaction, (ii) ‘‘commit transac-

tion’’ to specify the successful end of a transaction, and

(iii) ‘‘rollback transaction’’ to specify the unsuccessful

end of a transaction with the request to abort the

transaction.

The core requirement for a transactional server is to

provide the ACID guarantees for sets of operations that

belong to the same transaction issued by an application

program requires that the server. This requires a concur-

rency control component to guarantee the isolation

properties of transactions, for both committed and

aborted transactions, and a recovery component to guar-

antee the atomicity and durability of transactions. The

server may or may not provide explicit support for con-

sistency preservation. In addition to the ACID contract,

a transactional server should meet a number of technical

requirements: A transactional data server (which most

often will be a database system) must provide good per-

formance with a given hardware/software configura-

tion, or more generally, a good cost/performance

Active and Real-Time Data Warehousing A 21

A
ratio when the configuration is not yet fixed. Perfor-

mance typically refers to the two metrics of high

throughput, which is defined as the number of success-

fully processed transactions per time unit, and of short

response times, where the response time of a transaction

is defined as the time span between issuing the trans-

action and its successful completion as perceived by the

client.

While the ACID properties are crucial for many

applications in which the transaction concept arises,

some of them are too restrictive when the transaction

model is extended beyond the read/write context. For

example, business processes can be cast into various

forms of business transactions, i.e., long-running trans-

actions for which atomicity and isolation are generally

too strict. In these situations, additional or alternative

guarantees need to be employed.
Cross-references
▶Atomicity

▶Concurrency Control

▶ Extended Transaction Models

▶Multi-Level Recovery and the ARIES Algorithm

▶ Serializability

▶ Snapshot Isolation

▶ SQL Isolation Levels

▶Transaction Model
Recommended Reading
1. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison-Wesley,

Reading, MA, 1987.

2. Bernstein P.A. and Newcomer E. Principles of Transaction

Processing for the Systems Professional. Morgan Kaufmann,

San Francisco, CA, 1997.

3. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1993.
ACID Transaction

▶Transaction
Acquisitional Query Languages

▶Database Languages for Sensor Networks
Active and Real-Time Data
Warehousing

MUKESH MOHANIA
1, ULLAS NAMBIAR

1, MICHAEL

SCHREFL
2, MILLIST VINCENT

3

1IBM India Research Lab, New Delhi, India
2University of Linz, Linz, Austria
3University of South Australia, Adelaide, SA, Australia

Synonyms
Right-time data warehousing

Definition
Active Data Warehousing is the technical ability to

capture transactions when they change, and integrate

them into the warehouse, along with maintaining

batch or scheduled cycle refreshes. An active data

warehouse offers the possibility of automating routine

tasks and decisions. The active data warehouse exports

decisions automatically to the On-Line Transaction

Processing (OLTP) systems.

Real-time Data Warehousing describes a system that

reflects the state of the warehouse in real time. If a

query is run against the real-time data warehouse to

understand a particular facet about the business or

entity described by the warehouse, the answer reflects

the state of that entity at the time the query was run.

Most data warehouses have data that are highly latent –

or reflects the business at a point in the past. A real-

time data warehouse has low latency data and provides

current (or real-time) data.

Simply put, a real-time data warehouse can be built

using an active data warehouse with a very low latency

constraint added to it. An alternate view is to consider

active data warehousing as being a design methodology

suited to tactical decision-making based on very cur-

rent data while real-time data warehousing is a collec-

tion of technologies that refresh a data warehouse

frequently. A real-time data warehouse is one that

acquires, cleanses, transforms, stores, and disseminates

information in real time. An active data warehouse, on

the other hand, operates in a non-real-time response

mode with one-or-more OLTP systems.
Historical Background
A data warehouse is a decision support database that is

periodically updated by extracting, transforming, and

loading operational data from several OLTP databases.

22 A Active and Real-Time Data Warehousing
In the data warehouse, OLTP data is arranged using the

(multi) dimensional data modeling approach (see [1]

for a basic approach and [2] for details on translating

an OLTP data model into a dimensional model), which

classifies data into measures and dimensions. In recent

years, several multidimensional data models have been

proposed [3–6]. An in-depth comparison is provided

by Pedersen and Jensen in [5]. The basic unit of inter-

est in a data warehouse is a measure or fact (e.g., sales),

which represent countable, semisummable, or summa-

ble information concerning a business process. An

instance of a measure is called measure value. A mea-

sure can be analyzed from different perspectives, which

are called the dimensions (e.g., location, product, time)

of the data warehouse [7]. A dimension consists of a set

of dimension levels (e.g., time: Day, Week, Month,

Quarter, Season, Year, ALLTimes), which are organized

in multiple hierarchies or dimension paths [6] (e.g.,

Time[Day] ! Time[Month] ! Time[Quarter] !
Time[Year] ! Time[ALLTimes]; Time[Day] ! Time

[Week] ! Time[Season] ! Time[ALLTimes]). The

hierarchies of a dimension form a lattice having at

least one top dimension level and one bottom dimen-

sion level. The measures that can be analyzed by the

same set of dimensions are described by a base cube or

fact table. A base cube uses level instances of the lowest

dimension levels of each of its dimensions to identify a

measure value. The relationship between a set of mea-

sure values and the set of identifying level instances is

called cell. Loading data into the data warehouse means

that new cells will be added to base cubes and new level

instances will be added to dimension levels. If a dimen-

sion D is related to a measure m by means of a base

cube, then the hierarchies ofD can be used to aggregate

the measure values of m using operators like SUM,

COUNT, or AVG. Aggregating measure values along

the hierarchies of different dimensions (i.e., rollup) cre-

ates a multidimensional view on data, which is known

as data cube or cube. Deaggregating the measures of a

cube to a lower dimension level (i.e., drilldown) creates

a more detailed cube. Selecting the subset of a cube’s

cells that satisfy a certain selection condition (i.e.,

slicing) also creates a more detailed cube.

The data warehouses are used by analysts to find

solutions for decision tasks by using OLAP (On-Line

Analytical Processing) [7] systems. The decision tasks

can be split into three, viz. non-routine, semi-routine,

and routine. Non-routine tasks occur infrequently

and/or do not have a generally accepted decision
criteria. For example, strategic business decisions

such as introducing a new brand or changing an exist-

ing business policy are non-routine tasks. Routine

tasks, on the other hand, are well structured problems

for which generally accepted procedures exist and they

occur frequently and at predictive intervals. Examples

can be found in the areas of product assortment

(change price, withdraw product, etc.), customer rela-

tionship management (grant loyalty discounts etc.),

and in many administrative areas (accept/reject paper

based on review scores). Semi-routine tasks are tasks

that require a non-routine solution – e.g., paper rated

contradictory must be discussed by program commit-

tee. Since, most tasks are likely to be routine, it is

logical to automate processing of such tasks to reduce

the delay in decision-making.

Active data warehouses [8] were designed to enable

data warehouses to support automatic decision-

making when faced with routine decision tasks and

routinizable elements of semi-routine decision tasks.

The active data warehouse design extends the technol-

ogy behind active database systems. Active database

technology transforms passive database systems into

reactive systems that respond to database and external

events through the use of rule processing features

[9,10]. Limited versions of active rules exist in com-

mercial database products [11,12].

Real-time data warehousing captures business activ-

ity data as it occurs. As soon as the business activity is

complete and there is data about it, the completed

activity data flows into the data warehouse and

becomes available instantly. In other words, real-time

data warehousing is a framework for deriving infor-

mation from data as the data becomes available.

Traditionally, data warehouses were regarded as an

environment for analyzing historic data, either to un-

derstand what has happened or simply to log the

changes as they happened. However, of late, businesses

want to use them to predict the future: e.g., to predict

customers likely to churn; and thereby seek better con-

trol of the business. However, until recently, it was not

practical to have zero-latency data warehouses –

the process of extracting data had too much of an

impact on the source systems concerned, and the vari-

ous steps needed to cleanse and transform the data

required multiple temporary tables and took several

hours to run. However, the increased visibility of (the

value of) warehouse data, and the take-up by a wider

audience within the organization, has lead to a number

Active and Real-Time Data Warehousing A 23

A
of product developments by IBM [13], Oracle [14],

and other vendors that make real-time data warehous-

ing now possible.

Foundations
The two example scenarios below describe typical

situations in which active rules can be used to auto-

mate decision-making:

Scenario 1: Reducing the price of an article. Twenty

days after a soft drink has been launched on a market,

analysts compare the quantities sold during this period

with a standardized indicator. This indicator requires the

total quantities sold during the 20-day period do not

drop below a threshold of 10,000 sold items. If the

analyzed sales figures are below this threshold, the price

of the newly launched soft drink will be reduced by 15.

Scenario 2 : Withdrawing articles from a market. At

the end of every quarter, high-priced soft drinks which

are sold in Upper Austrian stores will be analyzed. If

the sales figures of a high-priced soft drink have con-

tinuously dropped, the article will be withdrawn from

the Upper Austrian market. Analysts inspect sales fig-

ures at different granularities of the time dimension

and at different granularities of the location dimen-

sion. Trend, average, and variance measures are used as

indicators in decision-making.

Rules that mimic the analytical work of a business

analyst are called analysis rules [8]. The components of

analysis rules constitute the knowledge model of an

active data warehouse (and also a real-time data ware-

house). The knowledge model determines what an

analyst must consider when he specifies an active rule

to automate a routine decision task.

An analysis rule consists of (i) the primary dimen-

sion level and (ii) the primary condition, which identify

the objects for which decision-making is necessary,

(iii) the event, which triggers rule processing, (iv) the

analysis graph, which specifies the cubes for analysis,

(v) the decision steps, which represent the conditions

under which a decision can be made, and (vi) the

action, which represents the rule’s decision task.

Below is a brief description of the components of an

analysis rule. Detailed discussion is given in [8].

Event: Events are used to specify the timepoints at

which analysis rules should be carried out. Active data

warehouses provide three kinds of events: (i) OLTP

method events, (ii) relative temporal events, and (iii)

calendar events. OLTP method events describe basic

happenings in the data warehouse’s sources. Relative
temporal events are used to define a temporal distance

between such a basic happening and carrying out an

analysis rule. Calendar events represent fixed points in

time at which an analysis rule may be carried out.

Structurally, every event instance is characterized by

an occurrence time and by an event identifier. In its

event part, an analysis rule refers to a calendar event or

to a relative temporal event.

An OLTP method event describes a happening in

the data warehouse’s source systems that is of interest

to analysis rules in the active data warehouse. Besides

occurrence time and event identifier, the attributes of

an OLTP method event are a reference to the dimen-

sion level for which the OLTP method event occurred

and the parameters of the method invocation. To make

OLTP method events available in data warehouses, a

data warehouse designer has to define the schema of

OLTP method events and extend the data warehouse’s

extract/transform/load mechanism. Since instances of

OLTP method events are loaded some time after their

occurrence, analysis rules cannot be triggered directly

by OLTP method events.

Temporal events determine the timepoints at which

decision-making has to be initiated. Scenario 1 uses the

relative temporal event ‘‘twenty days after launch’’

while Scenario 2 uses the periodic temporal event

‘‘end of quarter.’’ The conditions for decision-making

are based on indicators, which have been established in

manual decision-making. Each condition refers to a

multidimensional cube and therefore ‘‘analyzing’’

means to evaluate the condition on this cube. Scenario

1 uses a quantity-based indicator, whereas scenario

2 uses value-based indicators for decision-making.

The decision whether to carry out the rule’s action

depends on the result of evaluating the conditions.

The action of scenario 1 is to reduce the price of an

article, whereas the action of scenario 2 is to withdraw

an article from a market.

Primary Condition: Several analysis rules may share

the same OLTP method as their action. These rules

may be carried out at different timepoints and may

utilize different multidimensional analyses. Thus, a

certain analysis rule usually analyzes only a subset of

the level instances that belong to the rule’s primary

dimension level. The primary condition is used to

determine for a level instance of the primary dimen-

sion level whether multidimensional analysis should be

carried out by the analysis rule. The primary condition

is specified as a Boolean expression, which refers to the

24 A Active and Real-Time Data Warehousing
describing attributes of the primary dimension level.

If omitted, the primary condition evaluates to TRUE.

Action: The purpose of an analysis rule is to auto-

mate decision-making for objects that are available in

OLTP systems and in the data warehouse. A decision

means to invoke (or not to invoke) a method on a

certain object in an OLTP system. In its action part, an

analysis rule may refer to a single OLTP method of the

primary dimension level, which represents a transac-

tion in an OLTP system. These methods represent the

decision space of an active data warehouse. To make the

transactional behavior of an OLTP object type available

in the active data warehouse, the data warehouse de-

signer must provide (i) the specifications of the OLTP

object type’s methods together with required para-

meters, (ii) the preconditions that must be satisfied

before the OLTP method can be invoked in the OLTP

system, and (iii) a conflict resolution mechanism,

which solves contradictory decisions of different anal-

ysis rules. Since different analysis rules can make a

decision for the same level instance of the rules’ pri-

mary dimension level during the same active data

warehouse cycle, a decision conflict may occur. Such

conflicts are considered as interrule conflicts. To detect

interrule conflicts, a conflict table covering the OLTP

methods of the decision space is used. The tuples of the

conflict table have the form <m1,m2, m3> , wherem1

and m2 identify two conflicting methods and m3 spe-

cifies the conflict resolution method that will be finally

executed in OLTP systems. If a conflict cannot be

solved automatically it has to be reported to analysts

for manual conflict resolution.

Analysis Graph: When an analyst queries the data

warehouse to make a decision, he or she follows an

incremental topdown approach in creating and analyz-

ing cubes. Analysis rules follow the same approach. To

automate decision-making, an analysis rule must

‘‘know’’ the cubes that are needed for multidimension-

al analysis. These cubes constitute the analysis graph,

which is specified once by the analyst. The n dimen-

sions of each cube of the analysis graph are classified

into one primary dimension, which represents the level

instances of the primary dimension level, and n � 1

analysis dimensions, which represent the multidimen-

sional space for analysis. Since a level instance of the

primary dimension level is described by one or more

cells of a cube, multidimensional analysis means to

compare, aggregate, transform, etc., the measure values

of these cells. Two kinds of multidimensional analysis
are carried out at each cube of the analysis graph: (i)

select the level instances of the primary dimension level

whose cells comply with the decision-making condi-

tion (e.g., withdraw an article if the sales total of

the last quarter is below USD 10,000) and (ii) select

the level instances of the primary dimension level

whose cells comply with the condition under which

more detailed analysis (at finer grained cubes) are

necessary (e.g., continue analysis if the sales total of

the last quarter is below USD 500,000). The multidi-

mensional analysis that is carried out on the cubes of

the analysis graph are called decision steps. Each deci-

sion step analyzes the data of exactly one cube of the

analysis graph. Hence, analysis graph and decision

steps represent the knowledge for multidimensional

analysis and decision-making of an analysis rule.

Enabling real-time data warehousing: As mentioned

earlier, real-time data warehouses are active data ware-

houses that are loaded with data having (near) zero

latency. Data warehouse vendors have used multiple

approaches such as hand-coded scripting and data ex-

traction, transformation, and loading (ETL) [15] solu-

tions to serve the data acquisition needs of a data

warehouse. However, as users move toward real-time

data warehousing, there is a limited choice of technolo-

gies that facilitate real-time data delivery. The challenge is

to determine the right technology approach or combina-

tion of solutions that best meets the data delivery needs.

Selection criteria should include considerations for fre-

quency of data, acceptable latency, data volumes, data

integrity, transformation requirements and processing

overhead. To solve the real-time challenge, businesses

are turning to technologies such as enterprise application

integration (EAI) [16] and transactional data manage-

ment (TDM) [17], which offer high-performance, low

impact movement of data, even at large volumes with

sub-second speed. EAI has a greater implementation

complexity and cost of maintenance, and handles smaller

volumes of data. TDM provides the ability to capture

transactions from OLTP systems, apply mapping, filter-

ing, and basic transformations and delivers to the data

warehouse directly. A more detailed study of the chal-

lenges involved in implementing a real-time data ware-

house is given in [18].

Key Applications
Active and Real-time data warehouses enable businesses

across all industry verticals to gain competitive advan-

tage by allowing them to run analytics solutions over the

Active and Real-Time Data Warehousing A 25

A
most recent data of interest that is captured in the

warehouse. This will provide them with the ability to

make intelligent business decisions and better under-

stand and predict customer and business trends based

on accurate, up-to-the-second data. By introducing

real-time flows of information to data warehouses,

companies can increase supply chain visibility, gain a

complete view of business performance, and increase

service levels, ultimately increasing customer retention

and brand value.

The following are some additional business benefits

of active and real-time data warehousing:

� Real-time Analytics: Real-time analytics is the abili-

ty to use all available data to improve performance

and quality of service at the moment they are

required. It consists of dynamic analysis and repor-

ting, right at the moment (or very soon after) the

resource (or information) entered the system. In a

practical sense, real time is defined by the need

of the consumer (business) and can vary from a

few seconds to few minutes. In other words, more

frequent than daily can be considered real-time,

because it crosses the overnight-update barrier.

With increasing availability of active and real-time

data warehouses, the technology for capturing and

analyzing real-time data is increasingly becoming

available. Learning how to apply it effectively

becomes the differentiator. Implementing real-time

analytics requires the integration of a number of

technologies that are not interoperable off-the-

shelf. There are no established best practices. Early

detection of fraudulent activity in financial transac-

tions is a potential environment for applying real-

time analytics. For example, credit card companies

monitor transactions and activate counter measures

when a customer’s credit transactions fall outside the

range of expected patterns. However, being able to

correctly identify fraud while not offending a well-

intentioned valuable customer is a critical necessity

that adds complexity to the potential solution.

� Maximize ERP Investments: With a real-time data

warehouse in place, companies can maximize their

Enterprise Resource Planning (ERP) technology

investment by turning integrated data into business

intelligence. ETL solutions act as an integral bridge

between ERP systems that collect high volumes

of transactions and business analytics to create

data reports.
� Increase Supply Chain Visibility: Real-time data

warehousing helps streamline supply chains through

highly effective business-to-business communica-

tions and identifies any weak links or bottlenecks,

enabling companies to enhance service levels and

gain a competitive edge.

� Live 360� View of Customers: The active database

solutions enable companies to capture, transform,

and flow all types of customer data into a data

warehouse, creating one seamless database that

provides a 360� view of the customer. By tracking

and analyzing all modes of interaction with a cus-

tomer, companies can tailor new product offerings,

enhance service levels, and ensure customer loyalty

and retention.

Future Directions
Data warehousing has greatly matured as a technology

discipline; however enterprises that undertake data

warehousing initiatives continue to face fresh chal-

lenges that evolve with the changing business and

technology environment. Most future needs and chal-

lenges will come in the areas of active and real-time

data warehousing solutions. Listed below are some

future challenges:

� Integrating Heterogeneous Data Sources: The num-

ber of enterprise data sources is growing rapidly, with

new types of sources emerging every year. Enterprises

want to integrate the unstructured data generated

from customer emails, chat and voice call transcripts,

feedbacks, and surveys with other internal data in

order to get a complete picture of their customers

and integrate internal processes. Other sources for

valuable data include ERP programs, operational

data stores, packaged and homegrown analytic

applications, and existing data marts. The process

of integrating these sources into a data warehouse

can be complicated and is made even more difficult

when an enterprise merges with or acquires another

enterprise.

� Integrating with CRM tools: Customer relationship

management (CRM) is one of the most popular

business initiatives in enterprises today. CRM helps

enterprises attract new customers and develop loy-

alty among existing customers with the end result

of increasing sales and improving profitability. In-

creasingly, enterprises want to use the holistic view

of the customer to deliver value-added services to

26 A Active and Real-Time Data Warehousing
the customer based on her overall value to the

enterprise. This would include, automatically iden-

tifying when an important life event is happening

and sending out emails with necessary information

and/or relevant products, gauging the mood of the

customer based on recent interactions, and alerting

the enterprise before it is too late to retain the

customer and most important of all identifying

customers who are likely to accept suggestions

about upgrades of existing products/services or be

interested in newer versions. The data warehouse is

essential in this integration process, as it collects data

from all channels and customer touch points, and

presents a unified view of the customer to sales,

marketing, and customer-care employees. Going

forward, data warehouses will have to provide sup-

port for analytics tools that are embedded into the

warehouse, analyze the various customer interac-

tions continuously, and then use the insights to

trigger actions that enable delivery of the above-

mentioned value-added services. Clearly, this

requires an active data warehouse to be tightly

integrated with the CRM systems. If the enter-

prise has low latency for insight detection and

value-added service delivery then a real-time data

warehouse would be required.

� In-built data mining and analytics tools: Users are

also demanding more sophisticated business intel-

ligence tools. For example, if a telecom customer

calls to cancel his call-waiting feature, real-time

analytic software can detect this and trigger a spe-

cial offer of a lower price in order to retain the

customer. The need is to develop a new generation

of data mining algorithms that work over data

warehouses that integrate heterogeneous data and

have self-learning features. These new algorithms

must automate data mining and make it more

accessible to mainstream data warehouse users by

providing explanations with results, indicating

when results are not reliable and automatically

adapting to changes in underlying predictive

models.

Cross-references
▶Cube Implementations

▶Data Warehouse Interoperability

▶Data Warehousing Systems: Foundations and Archi-

tectures

▶ ETL
▶Multidimensional Modeling

▶On-Line Analytical Processing

▶Query Processing in Data Warehouses

▶Transformation
Recommended Reading
1. Kimball R. and Strethlo K. Why decision support fails and how

to fit it. ACM SIGMOD Rec., 24(3):91–97, 1995.

2. Golfarelli M., Maio D., and Rizzi S. Conceptual design of

data warehouses from E/R schemes. In Proc. 31st Annual

Hawaii Int. Conf. on System Sciences, Vol. VII. 1998,

pp. 334–343.

3. Lehner W. Modeling large scale OLAP scenarios. In Advances in

Database Technology, Proc. 6th Int. Conf. on Extending Data-

base Technology, 1998, pp. 153–167.

4. Li C. and Wang X.S. A data model for supporting on-line

analytical processing. In Proc. Int. Conf. on Information and

Knowledge Management, 1996, pp. 81–88.

5. Pedersen T.B. and Jensen C.S. Multidimensional data modeling

for complex data. In Proc. 15th Int. Conf. on Data Engineering,

1999, pp. 336–345.

6. Vassiliadis P. Modeling multidimensional databases, cubes and

cube operations. In Proc. 10th Int. Conf. on Scientific and

Statistical Database Management, 1998, 53–62.

7. Chaudhuri S. and Dayal U. An overview of data warehousing

and OLAP technology. ACM SIGMOD Rec., 26(1):65–74, 1997.

8. Thalhammer T., Schrefl M., and Mohania M. Active data ware-

houses: complementing OLAP with analysis rules. Data Knowl.

Eng., 39(3):241–269, 2001.

9. ACT-NETConsortium. The active database management system

manifesto: a rulebase of ADBMS featueres. ACM SIGMOD Rec.,

25(3), 1996.

10. Simon E. and Dittrich A. Promises and realities of active data-

base systems. In Proc. 21th Int. Conf. on Very Large Data Bases,

1995, pp. 642–653.

11. Brobst S. Active data warehousing: a new breed of decision

support. In Proc. 13th Int. Workshop on Data and Expert

System Applications, 2002, pp. 769–772.

12. Borbst S. and Rarey J. The five stages of an active data warehouse

evolution. Teradata Mag., 38–44, 2001.

13. IBM DB2 Data Warehouse Edition. http://www-306.ibm.com/

software/data/db2/dwe/.

14. Rittman M. Implementing Real-Time Data Warehousing Using

Oracle 10g. Dbazine.com. http://www.dbazine.com/dataware-

house/dw-articles/rittman5.

15. Kimball R. and Caserta J. The Data Warehouse ETL Toolkit:

Practical Techniques for Extracting, Cleaning, Conforming,

and Delivering Data. Wiley, 2004.

16. Linthicum R.S. Enterprise Application Integration. Addison-

Wesley, 1999.

17. Improving SOAwith Goldengate TDM Technology. GoldenGate

White Paper, October 2007.

18. Langseth J. Real-Time Data Warehousing: Challenges and Solu-

tions. DSSResources.COM, 2004.

19. Paton N.W. and Diaz O. Active Database Systems. ACM Com-

put. Surv., 1(31),1999.

Active Database, Active Database (Management) System A 27

A
Active Database, Active Database
(Management) System

MIKAEL BERNDTSSON, JONAS MELLIN

University of Skövde, Skövde, Sweden

Definition
An active database (aDB) or active database (manage-

ment) system (aDBS/aDBMS) is a database (man-

agement) system that supports reactive behavior

through ECA-rules.

Historical Background
The term active database was first used in the early

1980s [12]. Some related active database work was

also done within the area of expert database systems

in the mid 1980s, but it was not until the mid/late

1980s that the research on supporting ECA rules in

database systems took off, for example [10,12,18].

During the 1990s the area was extensively explored

through more than twenty suggested active database

prototypes and a large body of publications:

� Sevenworkshops were held between 1993 and 1997:

RIDS [12,16,17], RIDE-ADS [20], Dagstuhl Semi-

nar [5] and ARTDB [3,4].

� Two special issues of journals [8,9] and one special

issue of ACM Sigmod Record [1].

� Two text books [13,19] and one ACM Computing

Survey paper [15].

In addition, the groups within the ACT-NET consortium

(A European research network of Excellence on active

databases 1993–1996) reached a consensus on what con-

stitutes an active database management system with the

publication of the Active Database SystemManifesto [2].

Most of the active databases are monolithic and

assume a centralized environment, consequently, the ma-

jority of the prototype implementations do not consider

distributed issues. Initial work on how active databases

are affected by distributed issues are reported in [7].
Foundations
An active database can automatically react to events such

as database transitions, time events, and external signals

in a timely and efficient manner. This is in contrast to

traditional database systems, which are passive in their

behaviors, so that they only execute queries and trans-

actions when they are explicitly requested to do so.
Previous approaches to support reactive behavior can

broadly be classified into:

� Periodically polling the database.

� Embedding or encoding event detection and

related action execution in the application code.

The first approach implies that the queries must be run

exactly when the event occurs. The frequency of poll-

ing can be increased in order to detect such an event,

but if the polling is too frequent, then the database is

overloaded with queries and will most often fail. On

the other hand, if the frequency is too low, the event

will be missed.

The second approach implies that every application

which updates the database needs to be augmented

with condition checks in order to detect events. For

example, an application may be extended with code to

detect whether the quantity of certain items has fallen

below a given level. From a software engineering point

of view, this approach is inappropriate, since a change

in a condition specification implies that every applica-

tion that uses the modified condition needs to be

updated.

Neither of the two previous approaches can satisfac-

torily support reactive behavior in a database context

[10]. An active database system avoids the previous

disadvantages by moving the support for reactive behav-

ior inside the database (management) system. Reactive

behavior in an active database is supported by ECA-rules

that have the following semantics: when an event is

detected, evaluate a condition, and if the condition

is true, execute an action.

Similar to describing an object by its static features

and dynamic features, an active database can be de-

scribed by its knowledge model (static features) and

execution model (dynamic features). Thus, by investi-

gating the knowledge model and execution model of

an active database, one can identify what type of ECA

rules that can be defined and how the active database

behave at run-time.
Key Applications
An aDB or aDBS/aDBMS is useful for any non-mission

critical application that require reactive behavior.
Future Directions
Looking back, the RIDS’97 workshop marks the end of

the active database period, since there are very few

28 A Active Database Management System Architecture
active database publications after 1997. However, the

concept of ECA-rules has resurfaced and has been picked

up by other research communities such as Complex

Event Processing and Semantic Web. In contrast to typi-

cal active database approaches that assume a centralized

environment, the current research on ECA rules within

Complex Event Processing and Semantic Web assume

that the environment is distributed and heterogeneous.

Thus, as suggested within the REWERSE project [3],

one cannot assume that the event, condition, and

action parts of an ECA rule are defined in one single

ECA rule language. For example, the event part of

an ECA-rule can be defined in one language (e.g.,

Snoop), whereas the condition part and action part are

defined in a completely different rule language.

The popularity of using XML for manipulating

data has also led to proposals of ECA rule markup

languages. These ECA rule markup languages are

used for storing information about ECA rules and

facilitates exchange of ECA-rules between different

rule engines and applications.

One research question that remains from the active

database period is how tomodel and develop applications

that use ECA rules. Some research onmodeling ECA rules

has been carried out, but there is no widely agreed ap-

proach formodeling ECA rules explicitly inUML, or how

to derive ECA rules from existing UML diagrams.
Cross-references
▶Active Database Execution Model

▶Active Database Knowledge Model

▶Complex Event Processing

▶ ECA Rules
Recommended Reading
1. ACM SIGMOD Record. Special Issue on Rule Management and

Processing in Expert Databases, 1989.

2. ACT-NET Consortium The active database management system

manifesto: a rulebase of ADBMS features. ACM SIGMOD Rec.,

25(3):40–49, 1996.

3. Alferes J.J., Amador R., and May W. A general language for

evolution and reactivity in the semantic Web. In Proc. 3rd

Workshop on Principles and Practice of Semantic Web

Reasoning, 2005, pp. 101–115.

4. Andler S.F. and Hansson J. (eds.). In Proc. 2nd International

Workshop on Active, Real-Time, and Temporal Database Systems,

LNCS, vol. 1553, Springer, 1998.

5. Berndtsson M. and Hansson J. Workshop report: the first inter-

national workshop on active and real-time database systems.

SIGMOD Rec., 25(1):64–66, 1996.
6. Buchmann A., Chakravarthy S., and Dittrich K. Active Data-

bases. Dagstuhl Seminar No. 9412, Report No. 86, 1994.

7. Bültzingsloewen G., Koschel A., Lockemann P.C., andWalter H.D.

ECA Funtionality in a Distributed Environment. Monographs in

Computer Science, chap. 8, Springer, 1999, pp. 147–175.

8. Chakravarthy S. (ed.), Special Issue on Active Databases, vol. 15,

IEEE Quarterly Bulletin on Data Engineering, 1992.

9. Chakravarthy S. and Widom J. (eds.), Special Issue on the Active

Database Systems, Journal of Intelligent Information Systems 7,

1996.

10. Dayal U., Blaustein B., Buchmann A., et al. S.C. HiPAC:

A Research Project in Active, Time-Constrained Database Man-

agement. Tech. Rep. CCA-88-02, Xerox Advanced Information

Technology, Cambridge, 1988.

11. Dittrich K.R., Kotz A.M., andMulle J.A. An Event/Trigger Mech-

anism to Enforce Complex Consistency Constraints in Design

Databases. ACM SIGMOD Rec., 15(3):22–36, 1986.

12. Geppert A. and Berndtsson M. (eds.). Proc. 3rd International

Workshop on Rules in Database Systems, LNCS, vol. 1312,

Springer, 1997.

13. Morgenstern M. Active Databases as a Paradigm for Enhanced

Computing Environments. In Proc. 9th Int. Conf. on Very Data

Bases, 1983, pp. 34–42.

14. Paton N.W. (ed.) Active Rules in Database Systems. Monographs

in Computer Science, Springer, 1999.

15. Paton N.W. and Diaz O. Active Database Systems. ACM

Comput. Surv, 31(1):63–103, 1999.

16. Paton N.W. and Williams M.W. (eds.). InProc. 1st International

WorkshoponRules inDatabaseSystems, Springer, Berlin, 1994.

17. Sellis T. (ed.). In Proc. 2nd International Workshop on Rules in

Database Systems, vol. 905, Springer, 1995.

18. Stonebraker M., Hearst M., and Potamianos S. Commentary on

the POSTGRES Rules System. SIGMOD Rec., 18(3):5–11, 1989.

19. Widom J. and Ceri S. (eds.) Active Database Systems: Triggers

and Rules For Advanced Database Processing. Morgan

Kaufmann, 1996.

20. Widom J. and Chakravarthy S. (eds.). In Proc. 4th International

Workshop on Research Issues in Data Engineering – Active

Database Systems, 1994.
Active Database Management
System Architecture

JONAS MELLIN, MIKAEL BERNDTSSON

University of Skövde, Skövde, Sweden

Synonyms
ADBMS infrastructure; ADBMS framework; ADBMS

Definition
The active database management system (ADBMS)

architecture is the software organization of a DBMS

Active Database Management System Architecture A 29

A
with active capabilities. That is, the architecture defines

support for active capabilities expressed in terms of

services, significant components providing the services

as well as critical interaction among these services.

Historical Background
Several architectures has been proposed: HiPAC [5,8],

REACH [4], ODE [14], SAMOS [10], SMILE [15], and

DeeDS [1]. Each of these architectures emphasize par-

ticular issues concerning the actual DBMS that they are

based on as well as the type of support for active

capabilities. Paton and Diaz [18] provide an excellent

survey on this topic. Essentially, these architectures

propose that the active capabilities of an ADBMS

require the services specified in Table 1. It is assumed

that queries to the database are encompassed in trans-

actions and hence transactions imply queries as well as

database manipulation operations such as insertion,

updates and deletion of tuples.

The services in Table 1 interact as depicted in Fig. 1.

Briefly, transactions are submitted to the scheduling

service that updates the dispatch table read by the

transaction processing service. When these transac-

tions are processed by the transaction processing ser-

vice events are generated. These events are signaled to

the event monitoring service that analyzes them.

Events that are associated with rules (subscribed

events) are signaled to the rule evaluation service that

evaluates the conditions of triggered rules (i.e., rules

associated with signaled events). The actions of the

rules whose conditions are true are submitted for

scheduling and are executed as dictated by the sched-

uling policy. These actions execute as part of some

transaction according to the coupling mode and can,

in turn, generate events. This is a general description

of the service interaction and it can be optimized

by refining it for a specific purpose, for example, in
Active Database Management System Architecture. Table

Service

Event
monitoring

The event monitoring service is responsible
results of the analysis (in terms of events) t

Rule evaluation The rule evaluation service is responsible fo
submit actions for execution to the schedu

Scheduling
service

The scheduling service is responsible for rea
actions, transactions etc. for execution.
immediate coupling mode no queues between the

services are actually needed.

In more detail, transactions are submitted to the

scheduling service via a queue of schedulable activities;

this queue of schedulable activities is processed and a

dispatch table of schedulable activities is updated. This

scheduling service encompasses scheduling of transac-

tions as well as ECA rule actions in addition to other

necessary schedulable activities. It is desirable for the

scheduling service to encompass all these types of sche-

dulable activities, because they impact each other, since

they compete for the same resources. The next step in

the processing chain is themonitored transaction proces-

sing service, which includes the transactionmanagement,

lock management, and log management [11, Chap. 5],

as well as a database query engine (cf. query processor

[20, Chap. 1]), but not the scheduling service. Another

way to view the transaction processing service is as a

passive database management system without the trans-

action scheduling service. The transaction processing

service is denoted ‘‘monitored,’’ since it generates events

that are handled by the active capabilities. Themonitored

transaction processing service executes transactions and

ECA rule actions according to the dispatch table. When

transactions execute, event occurrences are signaled to

the event monitoring service via a filtered event log.

When event monitoring executes, it updates the filtered

event log and submits subscribed events to the rule

evaluation service. An example of event log filtering is

that if a composite event occurrence is detected, then for

optimization reasons (cf. dynamic programming) this

event occurrence is stored in the filtered event log. An-

other example is that when events are no longer needed,

then they are pruned; for example, when a transaction is

aborted, then all event occurrences can be pruned unless

intertransaction events are allowed (implying that dirty

reads may occur). The rule evaluation service reads the
1. Services in active database management systems

Responsibility

for collecting events, analyzing events and disseminating
o subscribers, in particular, ECA rules.

r invoking condition evaluation of triggered ECA rules and
ler.

dying and ordering schedulable activities such as ECA rule

Active Database Management System Architecture. Figure 1. Service interaction view of architecture (based on

architecture by Paton and Diaz [18]).

30 A Active Database Management System Architecture
queue of subscribed events, finds the triggered rules and

evaluates their conditions. These conditions may be

queries, logical expressions or arbitrary code depending

on the active database system [9]. The rule evaluation

results in a set of actions that is submitted to the schedul-

ing service for execution.

The general view of active capabilities (in Fig. 1) can

be refined and implemented in different ways. As men-

tioned, it is possible to optimize an implementation

by removing the queues between the services if only

immediate coupling mode is considered; this result in

less overhead, but restricts the expressibility of ECA-

rules significantly. A service can be implemented via

one or more servers. These servers can be replicated to

different physical nodes for performance or depend-

ability reasons (e.g., availability, reliability).

In active databases, a set of issues have a major

impact on refinement and implementation of the gen-

eral service-oriented view depicted in Fig. 1. These
issues are: (i) coupling modes; (ii) interaction with

typical database management services such as transac-

tion management, lock management, recovery man-

agement (both pre-crash such as logging and

checkpointing and post-crash such as the actually re-

covery) (cf., for example, transaction processing by

Gray and Reuter [11, Chap. 4]); (iii) when and how

to invoke services; and (iv) active capabilities in

distributed active databases.

The coupling modes control how rule evaluation is

invoked in response to events and how the ECA rule

actions are submitted, scheduled, dispatched and exe-

cuted for rules whose conditions are true (see entry

‘‘Coupling modes’’ for more detailed description).

There are different alternatives to interaction with a

database system. One alternative is to place active

database services on top of existing database manage-

ment systems. However, this is problematic if the data-

base management system is not extended with active

Active Database Management System Architecture A 31

A
capabilities [4]. For example, the deferred coupling

mode require that when a transaction is requested to

commit, then queued actions should be evaluated. This

requires that the transaction management to interact

with the rule evaluation and scheduling services during

commit processing (e.g., by using back hooks in the

database management system). Further, to be useful,

the detached coupling mode has a set of significant

varieties [4] that require the possibility to express

constraints between transactions.

The nested transaction model [16] is a sound basis

for active capabilities. For example, deferred actions

can be executed as subtransactions that can be com-

mitted or aborted independently of the parent transac-

tion. Nested transactions still require that existing

services are modified. Alternatively rule evaluation

can be performed as subtransactions.

To achieve implicit events the database schema

translation process needs to automatically instrument

the monitored systems. An inferior solution is to

extend an existing schema with instrumented entities,

for example, each class in an object-oriented database

can be inherited to an instrumented class. In this

example, there is no way to enforce that the instru-

mented classes are actually used. The problem is to

modify the database schema translation process, since

this is typically an intrinsic part in commercial

DBMSs.

Concerning issue (iii), the services must be allo-

cated to existing resources and scheduled together with

the transactions. Typically, the services are implemen-

ted as a set of server processes and transactions are

performed by transaction programs running as pro-

cesses (cf., [11]). These processes are typically sched-

uled, dispatched and executed as a response to the

requests from outside the database management sys-

tem or as a direct or indirect response to a timeout.

Each service is either invoked when something is

stored in the queue or table or explicitly invoked, for

example, when the system clock is updated to reflect

the new time. The issues concerning scheduling are

paramount in any database management system for

real-time system purposes [2].

Event monitoring can either be (i) implicitly

invoked whenever an event occurs, or it can be

(ii) explicitly invoked. This is similar to coupling

modes, but it is between the event sources (e.g., trans-

action processing service and application) and the
event monitoring service rather than in between the

services of the active capabilities. Case (i) is prevalent

in most active database research, but it has a negative

impact in terms of determinism of the result of event

monitoring. For example, the problem addressed in

the event specification and event detection entry

concerning the unintuitive semantics of the disjunctive

event operator is a result of implicit invocation. In

distributed and real-time systems, explicit invocation

is preferable in case (ii), since it provides the operating

system with the control when something should be

evaluated. Explicit invocation solves the problem of

disjunction operator (see event specification and

event detection entries), since the event expressions

defining composite event types can be explicitly eval-

uated when all events have been delivered to event

monitoring rather than implicitly evaluated whenever

an event is delivered.

In explicit invocation of event monitoring, the

different event contexts can be treated in different

ways. For example, in recent event context, only the

most recent result is of interest in implicit invocation.

However, in terms of explicit invocation, all possible

most recent event occurrences may be of interest, not

only the last one. For example, it may be desirable to

keep the most recent event occurrence per time slot

rather than per terminating event.

Issue (iv) has been addressed in, for example,

DeeDS [1], COBEA [15], Hermes [19], X2TS [5].

Further, it has been addressed in event based systems

for mobile networks by Mühl et al. [17]. Essentially, it

is necessary to perform event detection in a moving

time window, where the end of the time window is the

current time. All events that are older than the begin-

ning of the time window can be removed and ignored.

Further, the heterogeneity must be addressed and

there are XML-based solutions (e.g., Common Base

Events [6]).

Another issue that is significant in distributed ac-

tive databases is the time and order of events. For

example, in Snoop [8] it is suggested to separate global

and local event detection, because of the difference in

the time granularity of the local view of time and the

global (distributed) view of time.

Foundations
For a particular application domain, common significant

requirements and properties as well as pre-requisites of

32 A Active Database Management System Architecture
available resources need to be considered to refine the

general architecture. Depending on the requirements,

properties and pre-requisites, different compromises are

reached. One example is the use of composite event

detection in active real-time databases. In REACH [4],

composite event detection is disallowed for real-time

transactions. The reason for this is that during composite

event detection, contributing events are locked and

this locking affects other transaction in a harmful way

with respect tomeeting deadlines. A different approach is

proposed in DeeDS [1], where events are stored in the

database and cached in a special filtered event log; during

event composition, events are not locked thus enabling

the use of composite event detection for transaction

with critical deadlines. The cost is that isolation of trans-

actions can be violated unless it is handled by the active

capabilities.

Availability is an example of a property that signifi-

cantly affects the software architecture. For example,

availability is often considered significant in distributed

systems; that is, even though physical nodes may fail,

communications links may be down, or the other

physical nodes may be overloaded, one should get, at

least, some defined level of service from the system.

An example of availability requirements is that emergen-

cy calls in phone switches should be prioritized over

non-emergency calls, a fact that entails that existing

phone call connections can be disconnected to let an

emergency call through. Another example to improve

availability is pursued in DeeDS [1], where eventual

consistency is investigated as a mean to improve avail-

ability of data. The cost is that data can temporarily be

inconsistent.

As addressed in the aforementioned examples, dif-

ferent settings affect the architecture. Essentially, there

are two approaches that can be mixed: (i) refine or

invent new method, tools, techniques to solve a prob-

lem, and these method, tools, techniques can stem

from different but relevant research areas; (ii) refine

the requirements or pre-requisites to solve the problem

(e.g., weaken the ACID properties of transactions).

Key Applications
The architecture of ADBMSs is of special interest to

developers of database management systems and their

applications. In particular, software engineering issues

are of major interest. Researchers performing experi-

ments can make use of this architecture to enable valid

experiments, study effects of optimizations etc.
Concerning real examples of applications, only sim-

ple things such as using rules for implementing alerters,

for example, when an integrity constraint is violated.

SQLTriggers implement simple ECA rules in immediate

coupling mode between event monitoring and rule eval-

uation as well as between rule evaluation and action

execution.

Researchers have aimed for various application

domains such as:

� Stock market

� Inventory control

� Bank applications

Essentially, any application domain in which there is

an interest to move functionality from the applications

to the database schema to reduce the interdependence

between applications and databases.
Future Directions
There are no silver bullets in computer science

or software engineering and each refinement of the

architecture (in Fig. 1) is a compromise providing or

enabling certain features and properties. For example,

by allowing only detached coupling mode it is easier to

achieve timeliness, an important property of real-time

systems; however, the trade-off is that it is difficult to

specify integrity rules in terms of ECA-rules, since the

integrity checks are performed in a different transac-

tion. The consequence is that dirty transactions as well

as compensating transactions that perform recovery

from violated integrity rules must be allowed.

It is desirable to study architectures addressing

how to meet specific requirement of the application

area (e.g., accounting information in mobile ad-hoc

networks), the specific environment in which the active

database are used (e.g., distributed systems, real-time

systems, mobile ad-hoc networks, limited resource

equipment). The major criteria for a successful archi-

tecture (e.g., by refining an existing architecture) is if

anyone can gain something from using it. For example,

Borr [3] reported that by refining their architecture by

employing transaction processing they improved pro-

ductivity, reliability as well as average throughput in

their heterogenous distributed reliable applications.

An area that has received little attention in active

database is optimization of processing. For example,

how can queries to the database be optimized with

condition evaluation if conditions are expressed as

Active Database Coupling Modes A 33

A
arbitrary queries? Another question is how to group

actions to optimize performance? So far, the emphasis

has been on expressibility as well as techniques how to

enable active support in different settings. Another

area that has received little attention is recovery pro-

cessing, both pre-crash and post-crash recovery. For

example, how should recovery with respect to detached

but dependent transactions be managed?

Intertransaction events and rules has been pro-

posed by, for example, Buchmann et al. [4]. How

should this be managed with respect to the isolation

levels proposed by Gray and Reuter [11, Chap. 7]?

There are several other areas with which active

database technology can be combined. Historical

examples include real-time databases, temporal data-

bases, main-memory databases, geographical informa-

tion systems. One area that has received little attention

is how enable reuse of database schemas.
Cross-references
▶Active Database Coupling Modes

▶Active Database Execution Model

▶Active Database Knowledge Model

▶ Event Detection

▶ Event Specification
Recommended Reading
1. Andler S., Hansson J., Eriksson J., Mellin J., Berndtsson M., and

Eftring B. DeeDS Towards a Distributed Active and Real-Time

Database System. ACM SIGMOD Rec., 25(1), 1996.

2. Berndtsson M. and Hansson J. Issues in active real-time

databases. In Proc. 1st Int. Workshop on Active and Real-Time

DatabaseSystem,1995, pp. 142–150.

3. Borr A.J. Robustness to crash in a distributed database: A non

shared-memory multi-processor approach. In Proc. 10th Int.

Conf. on Very Large Data Bases, 1984, pp. 445–453.

4. Buchmann A.P., Zimmermann J., Blakeley J.A., and Wells D.L.

Building an Integrated Active OODBMS: Requirements, Archi-

tecture, and Design Decisions. In Proc. 11th Int. Conf. on Data

Engineering, 1995, pp. 117–128.

5. Chakravarthy S., Blaustein B., Buchmann A.P., Carey M., Dayal

U., Goldhirsch D., Hsu M., Jauhuri R., Ladin R., Livny M.,

McCarthy D., McKee R., and Rosenthal A. HiPAC: A Research

Project In Active Time-Constrained Database Management.

Tech. Rep. XAIT-89-02, Xerox Advanced Information Technol-

ogy, 1989.

6. Common Base Events. Http://www.ibm.com/developerworks/li-

brary/specification/ws-cbe/.

7. Chakravarthy S., Krishnaprasad V., Anwar E., and Kim S.K.

Composite Events for Active Database: Semantics, Contexts,

and Detection. In Proc. 20th Int. Conf. on Very Large Data

Bases, 1994, pp. 606–617.
8. Dayal U., Blaustein B., Buchmann A., Chakravarthy S., Hsu M.,

Ladin R., McCarty D., Rosenthal A., Sarin S., Carey M.J.,

Livny M., and Jauharu R. The HiPAC Project: Combining

active databases and timing constraints. ACM Sigmod Rec.,

17(1), 1988.

9. Eriksson J. Real-Time and Active Databases: A Survey. In Proc.

2nd Int. Workshop on Active, Real-Time, and Temporal Data-

base Systems, 1997, pp. 1–23.

10. Gatziu S. Events in an Active Object-Oriented Database System.

Ph.D. thesis, University of Zurich, Switzerland, 1994.

11. Gray J. and Reuter A. Transaction processing: Concepts and

techniques. Morgan Kaufmann, Los Altos, CA, 1994.

12. Jaeger U. Event Detection in Active Databases. Ph.D. thesis,

University of Berlin, 1997.

13. Liebig C.M. and Malva A.B. Integrating Notifications and

Transactions: Concepts and X2TS Prototype. In Second

International Workshop on Engineering Distributed Objects,

2000, pp. 194–214.

14. Lieuwen D.F., Gehani N., and Arlein R. The ODE active data-

base: Trigger semantics and implementation. In Proc. 12th Int.

Conf. on Data Engineering, 1996, pp. 412–420.

15. Ma C. and Bacon J. COBEA: A CORBA-based Event Architec-

ture. In Proc. 4th USENIX Conf. Object-Oriented Technologies

and Syst., 1998, pp. 117–132.

16. Moss J.E.B. Nested transactions: An approach to reliable

distributed computing. MIT, 1985.

17. Mühl G., Fiege L., and Pietzuch P.R. Distributed event-based

systems. Springer, Berlin, 2006.

18. Paton N. and Diaz O. Active database systems. ACM Comput.

Surv., 31(1):63–103, 1999.

19. Pietzuch P. and Bacon J. Hermes: A Distributed Event-

Based Middleware Architecture. In Proc. 22nd Int. Conf. on

Distributed Computing Systems Workshop. Vienna, Austria,

2002, pp. 611–618.

20. Ullman J.D. Principles of Database Systems. Computer Science,

1982.
Active Database Coupling Modes

MIKAEL BERNDTSSON, JONAS MELLIN

University of Skövde, Skövde, Sweden

Definition
Coupling modes specify execution points for ECA rule

conditions and ECA rule actions with respect to the

triggering event and the transaction model.
Historical Background
Coupling modes for ECA rules were first suggested in

the HiPAC project [2,3].

34 A Active Database Coupling Modes
Foundations
Coupling modes are specified for event-condition cou-

plings and for condition-action couplings. In detail,

the event-condition coupling specifies when the con-

dition should be evaluated with respect to the trigger-

ing event, and the condition-action coupling specifies

when the rule action should be executed with respect

to the evaluated rule condition (if condition is evalu-

ated to true).

The three most common coupling modes are: im-

mediate, deferred, and decoupled. The immediate cou-

pling mode preempts the execution of the transaction

and immediately initiates condition evaluation and

action execution. In the deferred coupling mode, con-

dition evaluation and action execution is deferred to

the end of the transaction (before transaction commit).

Finally, in decoupled (also referred to as detached)

coupling mode, condition evaluation and action exe-

cution is performed in separate transactions.

Specifying event-condition couplings and condi-

tion-action couplings in total isolation from each

other is not a good idea. What first might seem to be

one valid coupling mode for event-condition and one

valid coupling mode for condition-action, can be an

invalid coupling mode when used together. Thus, when

combining event-condition couplings and condition-

action couplings, not all combinations of coupling

modes are valid. The HiPAC project [2,3] proposed

seven valid coupling modes, see Table 1.

� Immediate, immediate: the rule condition is evalu-

ated immediately after the event, and the rule action

is executed immediately after the rule condition.

� Immediate, deferred: the rule condition is evaluated

immediately after the event, and the execution of
Active Database Coupling Modes. Table 1. Coupling mode

Cond

Event-
Condition

Immediate Deferred

Immediate condition evaluated and action
executed after event

condition eval
event, action e
end of transac

Deferred not valid condition eval
action execute
transaction

Decoupled in a separate transaction:
condition evaluated and action
executed after event

not valid
the rule action is deferred to the end of the

transaction.

� Immediate, decoupled: the rule condition is evalu-

ated immediately after the event, and the rule ac-

tion is decoupled in a totally separate and parallel

transaction.

� Deferred, deferred: both the evaluation of the rule

condition and the execution of the rule action is

deferred to the end of the transaction.

� Deferred, decoupled: the evaluation of the rule con-

dition is deferred to the end of the transaction, and

the rule action is decoupled in a totally separate and

parallel transaction.

� Decoupled, immediate: the rule condition is decoupled

in a totally separate and parallel transaction, and the

rule action is executed (in the same parallel transac-

tion) immediately after the rule condition.

� Decoupled, decoupled: the rule condition is

decoupled in a totally separate and parallel transac-

tion, and the rule action is decoupled in another

totally separate and parallel transaction.

The two invalid coupling modes are:

� Deferred, immediate: this combination violates the

semantics of ECA rules. That is, rule conditions

must be evaluated before rule actions are executed.

One cannot preempt the execution of the transac-

tion immediately after the event and execute the

rule action and at the same time postpone the

condition evaluation to the end of the transaction.

� Decoupled, deferred: this combination violates

transaction boundaries. That is, one cannot decou-

ple the condition evaluation in a separate and par-

allel transaction and at the same time postpone the
s

ition-Action

Decoupled

uated after
xecuted at
tion

condition evaluated after event, action
executed in a separate transaction

uated and
d at end of

condition evaluated at end of
transaction, action executed in a
separate transaction

condition evaluated in one separate
transaction, action executed in another
separate transaction

Active Database Execution Model A 35

A
execution of the rule action to the end of the

original transaction, since one cannot know when

the condition evaluation will take place. Thus, there

is a risk that the action execution in the original

transaction will run before the condition has been

evaluated in the parallel transaction.

Rule actions executed in decoupled transactions can

either be dependent upon or independent of the trans-

action in which the event took place.

The research project REACH (REal-time ACtive

Heterogeneous System) [1] introduced two additional

coupling modes for supporting side effects of rule

actions that are irreversible. The new coupling modes

are variants of the detached casually dependent coupling

mode: sequential casually dependent, and exclusive ca-

sually dependent. In sequential casually dependent, a

rule is executed in a separate transaction. However, the

rule execution can only begin once the triggering trans-

action has committed. In exclusive casually dependent,

a rule is executed in a detached parallel transaction and

it can commit only if the triggering transaction failed.
Cross-references
▶Active Database Execution Model

▶ ECA-rules
Recommended Reading
1. Branding H., Buchmann A., Kudrass T., and Zimmermann J.

Rules in an Open System: The REACH Rule System. In Proc. 1st

International Workshop on Rules in Database Systems, Work-

shops in Computing, 1994, pp. 111–126.

2. Dayal U., Blaustein B.A., Buchmann S.C., et al. The HiPAC

project: Combining active databases and timing constraints.

ACM SIGMOD Rec., 17(1):51–70, 1988.

3. Dayal U., Blaustein B., Buchmann A., Chakravarthy S., and et al.

HiPAC: A Research Project in Active, Time-Constrained Data-

base Management. Tech. Rep. CCA-88-02, Xerox Advanced

Information Technology, Cambridge, 1988.
Active Database Execution Model

MIKAEL BERNDTSSON, JONAS MELLIN

University of Skövde, Skövde, Sweden

Definition
The execution model of an active database describes

how a set of ECA rules behave at run time.
Key Points
The execution model describes how a set of ECA rules

(i.e., active database rulebase) behave at run time [2,4].

Any execution model of an active database must have

support for: (i) detecting event occurrences, (ii) eval-

uating conditions, and (iii) executing actions.

If an active database supports composite event de-

tection, it needs a policy that describes how a composite

event is computed. A typical approach is to use the event

consumption modes as described in Snoop [1]: recent,

chronicle, continuous, and cumulative. In the recent event

context, only the most recent constituent events will be

used to form composite events. In the chronicle event

context, events are consumed in chronicle order. The ear-

liest unused initiator/terminator pair are used to form the

composite event. In the continuous event context, each

initiator starts the detection of a new composite event and

a terminator may terminate one or more composite event

occurrences. The difference between continuous and

chronicle event contexts is that in the continuous event

context, one terminator can detect more than one occur-

rence of the composite event. In the cumulative event

context, all events contributing to a composite event are

accumulated until the composite event is detected. When

the composite event is detected, all contributing events are

consumed. Another approach to these event consump-

tionmodes is to specify a finer semantics for each event by

using logical events as suggested in [3].

Once an event has been detected, there are several

execution policies related to rule conditions and rule

actions that must be in place in the execution model.

Thus an execution model for an active database should

provide answers to the following questions [2,4,5]:

� When should the condition be evaluated and when

should the action should be executed with respect

to the triggering event and the transaction model?

This is usually specified by coupling modes.

� What happens if an event triggers several rules?
– Are all rules evaluated, a subset, or only one rule?

– Are rules executed in parallell, according to rule

priority, or non-deterministically?
� What happens if one’s rules trigger another set of

rules?
– What happens if the rule action of one rule

negates the rule condition of an already trig-

gered rule?

– Can cycles appear? For example, can a rule

trigger itself?

36 A Active Database Knowledge Model
The answers to the above questions are important to

know, as they dictate how a ECA rule system will

behave at run time. If the answers to the above ques-

tions are not known, then the behavior of the ECA rule

application becomes unpredictable.

Cross-references
▶Active Database Coupling Modes

▶Active Database Rulebase

▶Composite Event

▶Database Trigger

▶ ECA Rules

Recommended Reading
1. Chakravarthy S., Krishnaprasad V., Anwar E., and Kim S.K.

Composite Events for Active Databases: Semantics Contexts

and Detection. In Proc. 20th Int. Conf. on Very Large Data

Bases, 1994, pp. 606–617.

2. Dayal U., Blaustein B., Buchmann A., and Chakravarthy S. et al.

HiPAC: A Research Project in Active, Time-Constrained

Database Management. Technical Report CCA-88-02, Xerox

Advanced Information Technology, Cambridge, 1988.

3. Gehani N., Jagadish H.V., and Smueli O. Event specification

in an active object-oriented database. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1992, pp. 81–90.

4. Paton N.W. and Diaz O. Active Database Systems. ACM Com-

put. Surv, 31(1):63–103, 1999.

5. Widom J. and Finkelstein S. Set-Oriented Production Rules

in Relational Database Systems. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1990, pp. 259–270.
Active Database Knowledge Model

MIKAEL BERNDTSSON, JONAS MELLIN

University of Skövde, Skövde, Sweden

Definition
The knowledge model of an active database describes

what can be said about the ECA rules, that is what type

of events are supported, what type of conditions are

supported, and what type of actions are supported?

Key Points
The knowledge model describes what types of events,

conditions, and actions that are supported in an active

database. Another way to look at the knowledge model

is to imagine what type of features are available in an

ECA rule definition language.

A framework of dimensions for the knowledge

model is presented in [3]. Briefly, each part of an
ECA rule is associated with dimensions that describe

supported features. Thus, an event can be described as

either a primitive event or a composite event, how it

was generated (source), whether the event is generated

for all instances in a given set or only for a subset

(event granularity), what type (if event is a composite

event) of operators and event consumption modes are

used in the detection of the composite event.

Conditions are evaluated against a database state.

There are three different database states that a rule con-

dition can be associated with [3]: (i) the database state

at the start of the transaction, (ii) the database state when

the event was detected, and (iii) the database state

when the condition is evaluated.

There are four different database states that a rule

action can be associated with [3]: (i) the database state

at the start of the transaction, (ii) the database state

when the event was detected, and (iii) the database state

when the condition is evaluated, and (iv) the database

state just before action execution. The type of rule

actions range from internal database updates (e.g., up-

date a table) to external programs (e.g., send email).

Within the context of the knowledge model it is

also useful to consider how ECA rules are represented,

for example inside classes, as data members, or first

class objects. Representing ECA rules as first class

objects [1,2] is a popular choice, since rules can be

treated as any other object in the database and tradi-

tional database operations can be used to manipulate

the ECA rules. Thus, representing ECA rules as first

class objects implies that ECA rules are not dependent

upon the existence of other objects.

The knowledge model of an active database should

also describe whether the active database supports

passing of parameters between the ECA rule parts, for

example passing of parameters from the event part to

the condition part.

Related to the knowledge model is the execution

model that describes how ECA rules behave at run time.

Cross-references
▶Active Database Execution Model

▶ ECA Rules

Recommended Reading
1. Dayal U., Blaustein B., Buchmann A. et al. S.C. HiPAC:

A Research Project in Active, Time-Constrained Database

Management. Tech. Rep. CCA-88-02, Xerox Advanced Infor-

mation Technology, Cambridge, 1988.

Active Storage A 37

A
2. Dayal U., Buchmann A., and McCarthy D. Rules are objects too: a

knowledge model for an active, object-oriented database system.

InProc. 2nd Int.Workshop onObject-OrientedDatabase Systems,

1988, pp. 129–143.

3. Paton N.W. and Diaz O. Active database systems. ACM Comput.

Surv., 31(1):63–103, 1999.
Active Database Rulebase

ANNMARIE ERICSSON
1, MIKAEL BERNDTSSON

2, JONAS

MELLIN
3

University of Skövde, Skövde, Sweden

Definition
An active database rulebase is a set of ECA rules that

can be manipulated by an active database.
Key Points
An active database rulebase is a set of ECA rules that can

be manipulated by an active database. Thus, an ADB

rulebase is not static, but it evolves over time. Typically,

ECA rules can be added, deleted, modified, enabled,

and disabled. Each update of the ADB rulebase can

potentially lead to different behaviors of the ECA

rules at run time, in particular with respect to termina-

tion and confluence.

Termination concerns whether a set of rules is

guaranteed to terminate. A set of rules may have a

non-terminating behavior if rules are triggering each

other in a circular order, for example, if the execution

of rule R1 triggers rule R2 and the execution of rule R2

triggers rule R1. A set of rules is confluent if the

outcome of simultaneously triggered rules is unique

and independent of execution order.

Cross-references
▶ ECA Rules
Active Databases

▶ Event Driven Architecture
Active Disks

▶Active Storage
Active Document

▶Active XML
Active Storage

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Synonyms
Active Disks; Intelligent Disks

Definition
Active Storage is a computer system architecture which

utilizes processing power in disk drives to execute ap-

plication code. Active Storage was introduced in sepa-

rate academic papers [1–3] in 1998. The term Active

Storage is sometimes identified merely with the com-

puter systems proposed in these papers. Two synonyms,

ActiveDisk and Intelligent Disk, are also used to refer to

Active Storage. The basic idea behind Active Storage is

to offload computation and data traffic from host

computers to the disk drives themselves such that the

system can achieve significant performance improve-

ments for data intensive applications such as decision

support systems and multimedia applications.

Key Points
A research group at Carnegie Mellon University pro-

posed, in [3], a storage device called Active Disk, which

has the capability of downloading application-level

code and running it on a processor embedded on

the device. Active Disk has a performance advantage

for I/O bound scans, since processor-per-disk proces-

sing can potentially reduce data traffic on intercon-

nects to host computers and yield great parallelism of

scans. E. Riedel et al. carefully studied the potential

benefits of using Active Disks for four types of data

intensive applications, and introduced analytical per-

formance models for comparing traditional server sys-

tems and Active Disks. They also prototyped ten Active

Disks, each having a DEC Alpha processor and two

Seagate disk drives, and demonstrated almost linear

scalability in the experiments.

A research group at University of California at

Berkeley discussed a vision of Intelligent Disks (IDISKs)

in [2]. The approach of Intelligent Disk is similar to that

38 A Active XML
of Active Disk. K. Keeton et al. carefully studied the

weaknesses of shared-nothing clusters of workstations

and then explored the possibility of replacing the cluster

nodes with Intelligent Disks for large-scale decision

support applications. Intelligent Disks assumed higher

complexity of applications and hardware resources in

comparison with CMU’s Active Disks.

Another Active Disk was presented by a research

group at the University of California at Santa Barbara

and University of Maryland in [1]. A. Acharya et al.

carefully studied programming models to exploit disk-

embedded processors efficiently and safely and pro-

posed algorithms for typical data intensive operations

such as selection and external sorting, which were vali-

dated by simulation experiments.

These three works are often recognized as opening

the gate for new researches of Intelligent Storage Sys-

tems in the post-‘‘database machines’’ era.

Cross-references
▶Database Machine

▶ Intelligent Storage Systems

Recommended Reading
1. Acharya A., Mustafa U., and Saltz J.H. Active disks: program-

ming model, algorithms and evaluation. In Proc. 8th Int. Conf.

Architectural Support for Programming Lang. and Operating

Syst., 1998, pp. 81–91.

2. Keeton K., Patterson D.A., and Hellerstein J.M. A case for intel-

ligent disks (IDISKs). SIGMOD Rec., 27(3):42–52, 1998.

3. Riedel E., Gibson G.A., and Faloutsos C. Active storage for large-

scale data mining and multimedia. In Proc. 24th Int. Conf. on

Very Large Data Bases, 1998, pp. 62–73.
Active XML

SERGE ABITEBOUL
1, OMAR BENJELLOUN

2,

TOVA MILO
3

1INRIA, Saclay Île-de-France, Orsay, Cedex, France
2Google Inc., Mountain view, CA, USA
3Tel Aviv University, Tel Aviv, Israel

Synonyms
Active document; AXML

Definition
Active XML documents (AXML documents, for short)

are XML documents [12] that may include embedded
calls to Web services [13]. Hence, AXML documents

are a combination of regular ‘‘extensional’’ XML data

with data that is defined ‘‘intensionally,’’ i.e., as a de-

scription that enables obtaining data dynamically (by

calling the corresponding service).

AXML documents evolve in time when calls to

their embedded services are triggered. The calls may

bring data once (when invoked) or continually (e.g., if

the called service is a continuous one, such as a sub-

scription to an RSS feed). They may even update exist-

ing parts of the document (e.g., by refreshing

previously fetched data).

Historical Background
The AXML language was originally proposed at INRIA

around 2002. Work around AXML has been going

there in the following years. A survey of the research

on AXML is given in [13]. The software, primarily

under the form of an AXML system, is available as

open source software. Resources on Active XML may

be found on the project’s Web site [11].

The notion of embedding function calls into data is

old. Embedded functions are already present in rela-

tional systems as stored procedures. Of course, method

calls form a key component of object databases. For the

Web, scripting languages such as PHPor JSP havemade

popular the integration of processing inside HTML

or XML documents. Combined with standard database

interfaces such as JDBC and ODBC, functions are used

to integrate results of (SQL) queries. This idea can also

be found in commercial software products, for in-

stance, in Microsoft Office XP, SmartTags inside Office

documents can be linked to Microsoft’s .NET platform

for Web services.

The originality of the AXML approach is that it

proposed to exchange such documents, building on the

fact that Web services may be invoked from anywhere.

In that sense, this is truly a language for distributed

data management. Another particularity is that the

logic (the AXML language) is a subset of the AXML

algebra.

Looking at the services in AXML as queries, the

approach can be viewed as closely related to recent

works based on XQuery [14] where the query language

is used to describe query plans. For instance the

DXQ project [7] developed at ATT and UCSD

emphasizes the distributed evaluation of XQuery

queries. Since one can describe documents in an

XQquery syntax, such approaches encompass in

Active XML A 39

A
some sense AXML documents where the service

calls are XQuery queries.

The connection with deductive databases is used in

[1] to study the diagnosis problems in distributed net-

works. A similar approach is followed in [8] for declar-

ative network routing.

It should be observed that the AXML approach

touches upon most database areas. In particular, the

presence of intensional data leads to views, deductive

databases and data integration. The activation of calls

contained in a document essentially leads to active

databases. AXML services may be activated by external

servers, which relates to subscription queries and

stream databases. Finally, the evolution of AXML docu-

ments and their inherent changing nature lead to an

approach of workflows and service choreography in the

style of business artifacts [10].

The management of AXML document raises a

number of issues. For instance, the evaluation of

queries over active documents is studied in [2]. The

‘‘casting’’ of a document to a desired type is studied in
Active XML. Figure 1. An AXML document.
[9]. The distribution of documents between several

peers and their replication is the topic of [4].

Foundations
An AXML document is a (syntactically valid) XML

document, where service calls are denoted by special

XML elements labeled call. An example AXML docu-

ment is given in Fig. 1. The figure shows first the XML

serialized syntax, then a more abstract view of the same

document as a labeled tree. The document in the

figure describes a (simplified) newspaper homepage

consisting of (i) some extensional information (the

name of the newspaper, the current date, and a news

story), and (ii) some intensional information (service

calls for the weather forecast, and for the current exhi-

bits). When the services are called, the tree evolves. For

example, the tree at the bottom is what results from a call

to the service f at weather.com to obtain the tempera-

ture in Paris.

AXML documents fit nicely in a peer-to-peer archi-

tecture, where each peer is a persistent store of AXML

40 A Active XML
documents, andmay act both as a client, by invoking the

service calls embedded in its AXML documents, and as a

server, by providingWeb services over these documents.

Two fundamental issues arise when dealing with

AXML documents. The first one is related to the

exchange of AXML documents between peers, and the

second one is related to query evaluation over such data.

Documents Exchange: When exchanged between

two applications/peers, AXML documents have a cru-

cial property: since Web services can be called from

anywhere on the Web, data can either be materialized

before sending, or sent in its intensional form and

left to the receiver to materialize if and when needed.

Just like XML Schemas do for standard XML, AXML

schemas let the user specify the desired format of the

exchanged data, including which parts should remain

intensional and which should be materialized. Novel

algorithms allow the sender to determine (statically or

dynamically) which service invocations are required to

‘‘cast’’ the document to the required data exchange

format [9].

Query evaluation: Answering a query on an AXML

document may require triggering some of the service

calls it contains. These services may, in turn, query

other AXML documents and trigger some other ser-

vices, and so on. This recursion, based on the manage-

ment of intensional data, leads to a framework in the

style of deductive databases. Query evaluation on

AXML data can therefore benefit from techniques de-

veloped in deductive databases such as Magic Sets [6].

Indeed, corresponding AXML query optimization

techniques where proposed in [1,2].

Efficient query processing is, in general, a critical

issue for Web data management. AXML, when proper-

ly extended, becomes an algebraic language that

enables query processors installed on different peers

to collaborate by exchanging streams of (A)XML data

[14]. The crux of the approach is (i) the introduction

of generic services (i.e., services that can be provided

by several peers, such as query processing) and

(ii) some explicit control of distribution (e.g., to

allow delegating part of some work to another peer).

Key Applications
AXML and the AXML algebra target all distributed

applications that involve the management of distri-

buted data. AXML is particularly suited for data inte-

gration (from databases and other data resources
exported as Web services) and for managing (active)

views on top of data sources. In particular, AXML can

serve as a formal foundation for mash-up systems.

Also, the language is useful for (business) applications

based on evolving documents in the style of business

artifacts, and on the exchange of such information.

The fact that the exchange is based on flows of XML

messages makes it also well-adapted to the manage-

ment of distributed streams of information.

Cross-references
▶Active Document

▶BPEL

▶Web Services

▶W3C XML Query Language

▶XML

▶XMLTypes

Recommended Reading
1. Abiteboul S., Abrams Z., andMilo T. Diagnosis of Asynchronous

Discrete Event Systems – Datalog to the Rescue! In Proc. 24th

ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Data-

base Systems, 2005, pp. 358–367.

2. Abiteboul S., Benjelloun O., Cautis B., Manolescu I., Milo T.,

and Preda N. Lazy Query Evaluation for Active XML. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2004,

pp. 227–238.

3. Abiteboul S., Benjelloun O., and Milo T. The Active XML

project, an overview, VLDB J, 17(5):1019–1040, 2008.

4. Abiteboul S., Bonifati A., Cobena G., Manolescu I., and Milo T.

Dynamic XML Documents with Distribution and Replication.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2003, pp. 527–538.

5. Abiteboul S., Manolescu I., and Taropa E. A Framework for

Distributed XML Data Management. In Advances in Database

Technology, Proc. 10th Int. Conf. on Extending Database Tech-

nology, 2006.

6. Bancilhon F., Maier D., Sagiv Y., and Ullman J.D. Magic Sets and

Other Strange Ways to Implement Logic Programs. In Proc.

5th ACM SIGACT-SIGMOD Symp. on Principles of Database

Systems, 1986, pp. 1–15.

7. DXQ: Managing Distributed System Resources with Distributed

XQuery. http://db.ucsd.edu/dxq/.

8. Loo B.T., Condie T., Garofalakis M., Gay D.E, Hellerstein J.M.,

Maniatis P., Ramakrishnan R., Roscoe T., and Stoica I. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2006,

pp. 97–108.

9. Milo T., Abiteboul S., Amann B., Benjelloun O., and Ngoc F.D.

Exchanging Intensional XML data. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2003, pp. 289–300.

10. Nigam A. and Caswell N.S. Business artifacts: an approach to

operational specification. IBM Syst. J., 42(3):428–445, 2003.

11. The Active XML homepage. http://www.activexml.net/.

Activity Diagrams A 41

A
12. The Extensible Markup Language (XML) 1.0 (2nd edn). http://

www.w3.org/TR/REC-xml.

13. The W3C Web Services Activity. http://www.w3.org/2002/ws.

14. The XQuery language. http://www.w3.org/TR/xquery.
Activity

NATHANIEL PALMER

WorkflowManagement Coalition, Hingham, MA, USA

Synonyms
Step; Node; Task; Work element

Definition
A description of a piece of work that forms one logical

step within a process. An activity may be a manual

activity, which does not support computer automation,

or a workflow (automated) activity. A workflow activity

requires human and/or machine resources to support

process execution; where human resource is required an

activity is allocated to a workflow participant.

Key Points
A process definition generally consists of many process

activities which are logically related in terms of their

contribution to the overall realization of the business

process.

An activity is typically the smallest unit of

work which is scheduled by a workflow engine during

process enactment (e.g., using transition and pre/post-

conditions), although one activity may result in several

work items being assigned (to a workflow participant).

Wholly manual activities may form part of a busi-

ness process and be included within its associated

process definition, but do not form part of the auto-

mated workflow resulting from the computer sup-

ported execution of the process.

An activity may therefore be categorized as

‘‘manual,’’ or ‘‘automated.’’ Within this document,

which is written principally in the context of workflow

management, the term is normally used to refer to an

automated activity.

Cross-references
▶Activity Diagrams

▶Actors/Agents/Roles

▶Workflow Model
Activity Diagrams

LUCIANO BARESI

Politecnico di Milano University, Milan, Italy

Synonyms
Control flow diagrams; Object flow diagrams; Flow-

charts; Data flow diagrams
Definition
Activity diagrams, also known as control flow and

object flow diagrams, are one of the UML (unified

modeling language [11]) behavioral diagrams. They

provide a graphical notation to define the sequential,

conditional, and parallel composition of lower-level

behaviors. These diagrams are suitable for business

process modeling and can easily be used to capture

the logic of a single use case, the usage of a scenario, or

the detailed logic of a business rule. They model the

workflow behavior of an entity (system) in a way

similar to state diagrams where the different activities

are seen as the states of doing something. Although

they could also model the internal logic of a complex

operation, this is not their primary use since tangled

operations should always be decomposed into simpler

ones [1,2].

An activity [3] represents a behavior that is com-

posed of individual elements called actions. Actions

have incoming and outgoing edges that specify control

and data flow from and to other nodes. Activities may

form invocation hierarchies invoking other activities,

ultimately resolving to individual actions.

The execution of an activity implies that each

contained action be executed zero, one, or more

times depending on the execution conditions and the

structure of the activity. The execution of an action is

initiated by the termination of other actions, the avail-

ability of particular objects and data, or the occurrence

of external events. The execution is based on token

flow (like Petri Nets). A token contains an object,

datum, or locus of control, and is present in the activi-

ty diagram at a particular node. When an action begins

execution, tokens are accepted from some or all of its

input edges and a token is placed on the node. When

an action completes execution, a token is removed

from the node and tokens are moved to some or all

of its output edges.

42 A Activity Diagrams
Historical Background
OMG (Object Management Group, [10]) proposed

and standardized activity diagrams by borrowing con-

cepts from flow-based notations and some formal

methods. As for the first class, these diagrams mimic

flowcharts [6] in their idea of step-by-step representa-

tion of algorithms and processes, but they also resem-

ble data and control flow diagrams [4]. The former

provide a hierarchical and graphical representation of

the ‘‘flow’’ of data through a system inspired by the

idea of data flow graph. They show the flow of data

from external entities into the system, how these data

are moved from one computation to another, and how

they are logically stored. Similarly, object flow diagrams

show the relationships among input objects, methods,

and output objects in object-based models. Control flow

diagrams represent the paths that can be traversed while

executing a program. Each node in the graph represents a

basic block, be it a single line or an entire function, and

edges render how the execution jumps among them.

Moving to the second group, activity diagrams are

similar to state diagrams [8], where the evolution of a

system is rendered by the identification of the states,

which characterize the element’s life cycle, and of the

transitions between them. A state transition can be

constrained by the occurrence of an event and by an

additional condition; its firing can cause the execution

of an associated action. Mealy et al. propose different

variations: Mealy assumes that actions be only asso-

ciated with transitions, Moore only considers actions

associated with states, andHarel’s state charts [7] merge

the two approaches with actions on both states and

transitions, and enhance their flat model with nested

and concurrent states.

The dynamic semantics of activity diagrams is

clearly inspired by Petri Nets [9], which are a simple

graphical formalism to specify the behavior of concur-

rent and parallel systems. The nodes are partitioned

into places and transitions, with arcs that can only

connect nodes of different type. Places may contain

any number of tokens and a distribution of tokens over

the places of a net is called a marking. A transition can

only fire when there is at least a token in all its input

places (i.e., those places connected to the transition

by means of incoming edges), and its firing removes

a token for all these places and produces a new one

in each output place (i.e., a place connected to the

transition through an outgoing edge). P/T nets only

consider tokens as placeholders, while colored nets
augment them with typed data and thus with firing

conditions that become more articulated and can

predicate on the tokens’ values in the input places.

Activity diagrams also borrow from SDL (Specifica-

tion and Description Language, [5]) as event handling.

This is a specification language for the unambiguous

description of the behavior of reactive and distributed

systems. Originally, the notation was conceived for

the specification of telecommunication systems, but

currently its application is wider and includes process

control and real-time applications in general. A system

is specified as a set of interconnected abstract machines,

which are extensions of finite statemachines. SDL offers

both a graphical and a textual representation and its

last version (known as SDL-2000) is completely object-

orientated.

Foundations
Figure 1 addresses the well-known problem of order

management and proposes a first activity diagram

whose aim is twofold: it presents a possible formaliza-

tion of the process, and it also introduces many of the

concepts supplied by these diagrams.

Each atomic step is called action, with an initial

node and activity final nodes to delimit their ordering

as sequences, parallel threads, or conditional flows.

A fork splits a single execution thread into a set of

parallel ones, while a join, along with an optional

join specification to constrain the unification, is used

to re-synchronize the different threads into a single

execution. Similarly, a decision creates alternative

paths, and a merge re-unifies them. To avoid misun-

derstandings, each path must be decorated with the

condition, in brackets, that must be verified to make

the execution take that path.

The diagram of Fig. 1 also exemplifies the use of

connectors to render flows/edges that might tangle the

representation. This is nothing but an example, but the

solution is interesting to avoid drawing flows that cross

other elements ormove all around the diagram. Another

key feature is the use of a rake to indicate that action

Fill Order is actually an activity invocation, and

hides a hierarchical decomposition of actions into

activities.

Besides the control flow, activity diagrams can

also show the data/object flow among the actions.

The use of object nodes allows users to state the

artifacts exchanged between two actions, even if they

are not directly connected by an edge. In many cases

Activity Diagrams. Figure 1. Example activity diagram.

Activity Diagrams A 43

A

control and object flows coincide, but this is not

mandatory.

Activities can also comprise input and output para-

meters to render the idea that the activity’s execution

initiates when the inputs are available, and produces

some outputs. For example, activity Fill Order of

Fig. 2, which can be seen as a refinement of the invo-

cation in Fig. 1, requires that at least one Request be

present, but then it considers the parameter as a

stream, and produces Shipment Information and

Rejected Items. While the first outcome is the

‘‘normal’’ one, the second object is produced only in

case of exceptions (rendered with a small triangle on

both the object and the flow that produces it). In a

stream, the flow is annotated from action Compose

Requests to the join with its weight to mean that

the subsequent processing must consider all the

requests received when the composition starts.

The execution can also consider signals as

enablers or outcomes of special-purpose actions.

For example, Fig. 2 shows the use of an accept signal,

to force that the composition of orders (Compose

Orders) must be initiated by an external event, a

time signal, to make the execution wait for a given

timeframe (be it absolute or relative), and a send signal,

to produce a notification to the customer as soon as

the action starts.

Basic diagrams can also be enriched with swimlanes

to partition the different actions with respect to their
responsibilities. Figure 3 shows a simple example: The

primitive actions are the same as those of Fig. 1, but

now they are associated with the three players in charge

of activate the behaviors in the activity. The standard

also supports hierarchical and multi-dimensional par-

titioning, that is, hierarchies of responsible actors or

matrix-based partitions.

The Warehouse can also receive Cancel Order

notifications to asynchronously interrupt the execu-

tion as soon as the external event arrivers. This is

obtained by declaring an interruptable region, which

contains the accept signal node and generates the in-

terrupt that stops the computation in that region

and moves the execution directly to action Cancel

Order by means of an interrupting edge. More gener-

ally, this is a way to enrich diagrams with specialized

exception handlers similarly to many modern program-

ming and workflow languages. The figure also intro-

duces pins as a compact way to render the objects

exchanged between actions: empty boxes correspond

to discrete elements, while filled ones refer to streams.

The discussion thus far considers the case in which

the outcome of an action triggers a single execution of

another action, but in some cases conditions may exist

in which the ‘‘token’’ is structured and a single result

triggers multiple executions of the same action. For

example, if the example of Fig. 1 were slightly modif-

ied and after receiving an order, the user wants to

check the items in it, a single execution of action

Activity Diagrams. Figure 3. Example swimlanes.

Activity Diagrams. Figure 2. Activity diagrams with signals.

44 A Activity Diagrams
Receive Order would trigger multiple executions

of Validate Item. This situation is depicted in the

left-hand side of Fig. 4, where the star * conceives the

information described so far.

The same problem can be addressed in a more

complete way (right-hand side of figure) with an

expansion region. The two arrays are supposed to
store the input and output elements. In some cases,

the number of input and output tokens is the same,

but it might also be the case that the behavior in the

region filters the incoming elements.

In the left-hand side of Fig. 4, it is assumed that

some items are accepted and fill the output array, while

others are rejected and thus their execution flow ends

Activity Diagrams. Figure 4. Expansion region.

Activity Diagrams A 45

A

there. This situation requires that a flow final be used to

state that only the flow is ended and not the whole

activity. Flow final nodes are a means to interrupt

particular flows in this kind of regions, but also in

loops or other similar cases.

The execution leaves an expansion region as soon

as all the output tokens are available, that is, as soon as

all the executions of the behavior embedded in the

region are over. Notice that these executions can be

carried out both concurrently (by annotating the rect-

angle with stereotype concurrent) or iteratively (with

stereotype iterative). The next action considers the

whole set of tokens as a single entity.

Further details about exceptions and other advanced

elements, like pre- and post-conditions associated with

single actions or whole activities, central buffers, and

data stores are not discussed here, but the reader is

referred to [11] for a thorough presentation.
Key Applications
Activity diagrams are usually employed to describe com-

plex behaviors. This means that they are useful to model

tangled processes, describe the actions that need to take

place and when they should occur in use cases, render

complicated algorithms, and model applications with

parallel and alternative flows. Nowadays, these necessi-

ties belong to ICT specialists, like software engineering,

requirements experts, and information systems archi-

tects, but also to experts in other fields (e.g., business

analysts or production engineers) that need this kind of

graphical notations to describe their solutions.

Activity diagrams can be used in isolation, when

the user needs a pure control (data) flow notation, but

they can also be adopted in conjunction with other

modeling techniques such as interaction diagrams,

state diagrams, or other UML diagrams. However,
activity diagrams should not take the place of other

diagrams. For example, even if the border between

activity and state diagrams is sometimes blurred,

activity diagrams provide a procedural decomposition

of the problem under analysis, while state diagrams

mostly concentrate on how studied elements behave.

Moreover, activity diagrams do not give details about

how objects behave or how they collaborate.

Cross-references
▶Unified Modeling Language

▶Web Services

▶Workflow modeling
Recommended Reading
1. Arlow J. and Neustadt I. UML 2 and the Unified Process:

Practical Object-Oriented Analysis and Design, 3rd edn.

Addison-Wesley, Reading, MA, 2005.

2. Booch G., Rumbaugh J., and Jacobson I. The Unified Modeling

Language User Guide, 2nd edn. Addison-Wesley, Reading, MA,

2005.

3. Fowler M. UML Distilled: A Brief Guide to the Standard Object

Modeling Language, 3rd edn. Addison-Wesley, Reading, MA,

2003.

4. Gane C. and Sarson T. Structured System Analysis. Prentice-

Hall, Englewood Cliffs, NJ, 1979.

5. Gaudin E., Najm E., and Reed R. In Proceedings of SDL 2007:

Design for Dependable Systems, 13th International SDL Forum,

LNCS, vol. 4745, Springer, 2007.

6. Goldstine H. The Computer from Pascal to Von Neumann.

Princeton University Press, Princeton, NJ, 1972, pp. 266–267.

7. Harel D. and Naamad A. The STATEMATE Semantics of State-

charts. ACM Trans. Softw. Eng. Methodol., 5(4):293–333, 1996.

8. Hopcroft J. and Ullman J. Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, Reading, MA,

2002.

9. Murata T. Petri Nets: Properties, Analysis, and Applications.

Proc. IEEE, 77(4):541–580, 1989.

10. Object Management Group, http://www.omg.org/

11. OMG, Unified Modeling Language, http://www.uml.org/

46 A Actors/Agents/Roles
Actors/Agents/Roles

NATHANIEL PALMER

WorkflowManagement Coalition, Hingham, MA, USA

Synonyms
Workflow participant; Player; End user; Work

performer

Definition
A resource that performs the work represented by a

workflow activity instance.

This work is normally manifested as one or more

work items assigned to the workflow participant via

the worklist.

Key Points
These terms are normally applied to a human resource

but it could conceptually include machine-based

resources such as an intelligent agent.

Where an activity requires no human resource and

is handled automatically by a computer application,

the normal terminology for the machine-based re-

source is Invoked Application.

An Actor, Agent or Role may be identified directly

within the business process definition, or (more nor-

mally) is identified by reference within the process

definition to a role, which can then be filled by one

or more of the resources available to the workflow

system to operate in that role during process

enactment.
Cross-references
▶Activity

▶Workflow Model
Ad hoc Retrieval models

▶ Information Retrieval Models
Adaptation

▶Mediation
Adaptive Database Replication

▶Autonomous Replication
Adaptive Interfaces

MARISTELLA MATERA

Politecnico di Milano University, Milan, Italy

Synonyms
Context-aware interfaces; Personalized interfaces

Definition
A specific class of user interfaces that are able to change

in some way in response to different characteristics of

the user, of the usage environment or of the task the

user is supposed to accomplish. The aim is to improve

the user’s experience, by providing both interaction

mechanisms and contents that best suit the specific

situation of use.
Key Points
There are a number of ways in which interface adap-

tivity can be exploited to support user interaction.

The interaction dimensions that are adapted vary

among functionality (e.g., error correction or active

help), presentation (user presentation of input to the

system, system presentation of information to the user),

and user tasks (e.g., task simplification based on the

user’s capabilities). Adaptivity along such dimensions

is achieved by capturing and representing into some

models a number of characteristics: the user’s character-

istics (preferences, experience, etc.); the tasks that the

user accomplishes through the system; the characteris-

tics of the information with which the user must be

provided.

Due to current advances in communication and

network technologies, adaptivity is now gaining

momentum. Different types of mobile devices indeed

offer support to access – at any time, from anywhere,

and with any media – services and contents custo-

mized to the users’ preferences and usage environ-

ments. In this new context, content personalization,

based on user profile, has demonstrated its benefits

for both users and content providers and has been

Adaptive Middleware for Message Queuing Systems A 47

A
commonly recognized as fundamental factor for aug-

menting the overall effectiveness of applications. Going

one step further, the new challenge in adaptive inter-

faces is now context-awareness. It can be interpreted as

a natural evolution of personalization, addressing

not only the user’s identity and preferences, but also

the environment that hosts users, applications, and

their interaction, i.e., the context. Context-awareness,

hence, aims at enhancing the application usefulness

by taking into account a wide range of properties of

the context of use.

Cross-references
▶Visual Interaction
Adaptive Message-Oriented
Middleware

▶Adaptive Middleware for Message Queuing Systems
Adaptive Metric Techniques

▶ Learning Distance Measures
Adaptive Middleware for Message
Queuing Systems

CHRISTOPHE TATON
1, NOEL DE PALMA

1, SARA

BOUCHENAK
2

1INPG - INRIA, Grenoble, France
2University of Grenoble I - INRIA, Grenoble, France

Synonyms
Autonomous message queuing systems; Adaptive

message-oriented middleware; Autonomous message-

oriented middleware

Definition
Distributed database systems are usually built on top

of middleware solutions, such as message queuing

systems. Adaptive message queuing systems are able

to improve the performance of such a middleware

through load balancing and queue provisioning.
Historical Background
The use of message oriented middlewares (MOMs) in

the context of the Internet has evidenced a need

for highly scalable and highly available MOM. A

very promising approach to the above issue is to im-

plement performance management as an autonomic

software. The main advantages of this approach are:

(i) Providing a high-level support for deploying and

configuring applications reduces errors and adminis-

trator’s efforts. (ii) Autonomic management allows the

required reconfigurations to be performed without

human intervention, thus improving the system reac-

tivity and saving administrator’s time. (iii) Autonomic

management is a means to save hardware resources,

as resources can be allocated only when required

(dynamically upon failure or load peak) instead of

pre-allocated.

Several parameters may impact the performance of

MOMs. Self-optimizationmakes use of these parameters

to improve the performance of theMOM. The proposed

self-optimization approach is based on a queue clustering

solution: a clustered queue is a set of queues each run-

ning on different servers and sharing clients. Self-opti-

mization takes place in two parts: (i) the optimization

of the clustered queue load-balancing and (ii) the

dynamic provisioning of a queue in the clustered

queue. The first part allows the overall improvement

of the clustered queue performance while the second

part optimizes the resource usage inside the clustered

queue. Thus the idea is to create an autonomic system

that fairly distributes client connections among the

queues belonging to the clustered queue and dynami-

cally adds and removes queues in the clustered queue

depending on the load. This would allow to use the

adequate number of queues at any time.

Foundations

Clustered Queues

A queue is a staging area that contains messages which

have been sent by message producers and are waiting

to be read by message consumers. A message is

removed from the queue once it has been read. For

scalability purpose, a queue can be replicated forming

a clustered queue. The clustered queue feature pro-

vides a load balancing mechanism. A clustered queue

is a cluster of queues (a given number of queue desti-

nations knowing each other) that are able to exchange

48 A Adaptive Middleware for Message Queuing Systems
messages depending on their load. Each queue of a

cluster periodically reevaluates its load factor and

sends the result to the other queues of the cluster.

When a queue hosts more messages than it is author-

ized to do, and according to the load factors of the

cluster, it distributes the extra messages to the other

queues. When a queue is requested to deliver messages

but is empty, it requests messages from the other

queues of the cluster. This mechanism guarantees

that no queue is hyper-active while some others are

lazy, and tends to distribute the work load among the

servers involved in the cluster.
Clustered Queue Performance

Clustered queues are standard queues that share a

common pool of message producers and consumers,

and that can exchange message to balance the load.

All the queues of a clustered queue are supposed to

be directly connected to each other. This allows

message exchanges between the queues of a cluster in

order to empty flooded queues and to fill draining

queues.

The clustered queue Qc is connected to Nc message

producers and to Mc message consumers. Qc is com-

posed of standard queues Qi(i 2 [1..k]). Each queue Qi

is in charge of a subset of Ni message producers and

of a subset of Mi message consumers:

Nc ¼
P

i N i

Mc ¼
P

i Mi

�

The distribution of the clients between the queues Qi is

described as follows: xi (resp. yi) is the fraction of

message producers (resp. consumers) that are directed

to Qi.

Ni ¼ xi � Nc

Mi ¼ yi �Mc

�
;

P
i xi ¼ 1P
i yi ¼ 1

�

The standard queue Qi to which a consumer or pro-

ducer is directed to cannot be changed after the client

connection to the clustered queue. This way, the only

action that may affect the client distribution among

the queues is the selection of an adequate queue when

the client connection is opened.

The clustered queue Qc is characterized by its

aggregate message production rate pc and its aggregate

message consumption rate cc. The clustered queue Qc

also has a virtual clustered queue length lc that aggre-

gates the length of all contained standard queues:
lc ¼
X
i

li ¼ pc � cc ;
pc ¼

P
i pi

cc ¼
P

i ci

�

The clustered queue length lc obeys to the same law as a

standard queue:

1. Qc is globally stable when Dlc = 0. This configura-

tion ensures that the clustered queue is globally

stable. However Qc may observe local unstabilities

if one of its queues is draining or is flooded.

2. If Dlc > 0, the clustered queue will grow and eventu-

ally saturate; thenmessage producers will have towait.

3. If Dlc < 0, the clustered queue will shrink until it

is empty; then message consumers will also have

to wait.

Now, considering that the clustered queue is global-

ly stable, several scenarios that illustrate the impact

of client distribution on performance are given

below.

Optimal client distribution of the clustered queue

Qc is achieved when clients are fairly distributed

among the k queues Qi. Assuming that all queues and

hosts have equivalent processing capabilities and that

all producers (resp. consumers) have equivalent mes-

sage production (resp. consumption) rates (and that all

produced messages are equivalent: message cost is uni-

formly distributed), this means that:

xi ¼ 1=k
yi ¼ 1=k

�
;

Ni ¼ Nc

k
;

Mi ¼ Mc

k

�

In these conditions, all queues Qi are stable and the

queue cluster is balanced. As a consequence, there are

no internal queue-to-queue message exchanges, and

performance is optimal. Queue clustering then pro-

vides a quasi-linear speedup.

The worst clients distribution appears when one

queue only has message producers or only has message

consumers. In the example depicted in Fig. 1, this is

realized when:

x1 ¼ 1

y1 ¼ 0

�
;

x2 ¼ 0

y2 ¼ 1

�
;

N 1 ¼ Nc

M1 ¼ 0

�
;

N2 ¼ 0

M2 ¼ Mc

�

Indeed, this configuration implies that the whole mes-

sage production is directed to queue Q1. Q1 then

forwards all messages to Q2 that in turn delivers

messages to the message consumers.

Local instability is observed when some queues Qi

of Qc are unbalanced. This is characterized by a

Adaptive Middleware for Message Queuing Systems.

Figure 1. Clustered queue Qc.

Adaptive Middleware for Message Queuing Systems A 49

A

mismatch between the fraction of producers and the

fraction of consumers directed to Qi:

xi 6¼ yi

In the example showed in Fig. 1, Qc is composed of

two standard queues Q1 and Q2. A scenario of local

instability can be envisioned with the following clients

distribution:

x1 ¼ 2=3
y1 ¼ 1=3

�
;

x2 ¼ 1=3
y2 ¼ 2=3

�

This distribution implies that Q1 is flooding and will

have to enqueue messages, while Q2 is draining and

will see its consumer clients wait. However the queue

cluster Qc ensures the global stability of the system

thanks to internal message exchanges from Q1 to Q2.

A stable and unfair distribution can be observed

when the clustered queue is globally and locally stable,

but the load is unfairly balanced within the queues.

This happens when the client distribution is non-

uniform.

In the example presented in Fig. 1, this can be

realized by directing more clients to Q1 than Q2:

x1 ¼ 2=3
y1 ¼ 2=3

�
;

x2 ¼ 1=3
y2 ¼ 1=3

�

In this scenario, queue Q1 processes two third of the

load, while queue Q2 only processes one third. Suc

situation can lead to bad performance since Q1 may

saturates while Q2 is lazy.
It is worthwhile to indicate that these scenarios may

all happen since clients join and leave the system in an

uncontrolled way. Indeed, the global stability of a (clus-

tered) queue is under responsability of the application

developper. For instance, the queue can be flooded for a

period; it is assumed that it will get inverted and drain-

ing after, thus providing global stability over time.

Provisioning

The previous scenario of stable and non-optimal dis-

tribution raises the question of the capacity of a queue.

The capacity Ci of standard queue Qi is expressed as an

optimal number of clients. The queue load Li is then

expressed as the ratio between its current number of

clients and its capacity:

Li ¼
Ni þMi

Ci

1. Li < 1: queue Qi is underloaded and thus lazy; the

message throughput delivered by the queue can be

improved and resources are wasted.

2. Li > 1: queue Qi is overloaded and may saturate;

this induces a decreased message throughput and

eventually leads to thrashing.

3. Li = 1: queue Qi is fairly loaded and delivers its

optimal message throughput.

These parameters and indicators are transposed to

queue clusters. The clustered queue Qc is characterized

by its aggregated capacity Cc and its global load Lc:

Cc ¼
X
i

Ci; Lc ¼
Nc þMc

Cc

¼
P

iLi � CiP
iCi

The load of a clustered queue obeys to the same law as

the load of a standard queue.

However a clustered queue allows to control k, the

number of inside standard queues, and thus to control

its aggregated capacity Cc ¼
Pk

i¼1 Ci. This control is

indeed operated with a re-evaluation of the clustered

queue provisioning.

1. When Lc < 1, the clustered queue is underloaded: if

the clients distribution is optimal, then all the stan-

dard queues inside the cluster will be underloaded.

However, as the client distribution may be non-

optimal, some of the single queues may be over-

loaded, even if the cluster is globally lazy. If the load

is too low, then some queues may be removed from

the cluster.

50 A Adaptive Query Optimization
2. When Lc > 1, the clustered queue is overloaded:

even if the distribution of clients over the queues

is optimal, there will exist at least one standard

queue that will be overloaded. One way to handle

this case is to re-provision the clustered queue by

inserting one or more queues into the cluster.

Control Rules for a Self-Optimizing Clustered Queue

The global clients distribution D of the clustered queue

Qc is captured by the fractions of message producers xi
and consumers yi. The optimal clients distribution

Dopt is realized when all queues are stable (8i xi = yi)

and when the load is fairly balanced over all queues

(8i, jxi = xj, yi = yj). This implies that the optimal

distribution is reached when xi = yi = 1∕k.

D ¼
x1 y1

..

. ..
.

xk yk

2
64

3
75; Dopt ¼

1=k 1=k

..

. ..
.

1=k 1=k

2
64

3
75

Local instabilities are characterized by a mismatch

between the fraction of message producers xi and

consumers yi on a standard queue. The purpose of

this rule is the stability of all standard queues so as to

minimize internal queue-to-queue message transfer.

1. [(R1)] xi > yi: Qi is flooding with more message

production than consumption and should then

seek more consumers and/or fewer producers.

2. [(R2)] xi < yi: Qi is draining with more message

consumption than production and should then

seek more producers and/or fewer consumers.

Load balancing rules control the load applied to a single

standard queue. The goal is then to enforce a fair load

balancing over all queues.

1. [(R3)] Li > 1: Qi is overloaded and should avoid

accepting new clients as it may degrade its

performance.

2. [(R4)] Li < 1: Qi is underloaded and should request

more clients so as to optimize resource usage.

Global provisioning rules control the load applied to the

whole clustered queue. These rules target the optimal

size of the clustered queue while the load applied to the

system evolves.

1. [(R5)] Lc > 1: the queue cluster is overloaded and

requires an increased capacity to handle all its cli-

ents in an optimal way.
2. [(R6)] Lc < 1: the queue cluster is underloaded and

could accept a decrease in capacity.

Key Applications
Adaptive middleware for message queuing systems

helps building autonomous distributed systems to im-

prove their performance while minimizing their re-

source usage, such as distributed Internet services and

distributed information systems.

Cross-references
▶Distributed Database Systems

▶Distributed DBMS

▶Message Queuing Systems

Recommended Reading
1. Aron M., Druschel P., and Zwaenepoel W. Cluster reserves: a

mechanism for resource management in cluster-based network

servers. In Proc. 2000 ACM SIGMETRICS Int. Conf. on Mea-

surement and Modeling of Comp. Syst., 2000, pp. 90–101.

2. Menth M. and Henjes R. Analysis of the message waiting time

for the fioranoMQ JMS server. In Proc. 23rd Int. Conf. on

Distributed Computing Systems, 2006, pp. 1.

3. Shen K., Tang H., Yang T., and Chu L. Integrated resource

management for cluster-based internet services. In Proc. 5th

USENIX Symp. on Operating System Design and Implementa-

tion, 2002.

4. Urgaonkar B. and Shenoy P. Sharc: Managing CPU and network

bandwidth in shared clusters. IEEE Trans. Parall. Distrib. Syst.,

15(1):2–17, 2004.

5. Zhu H., Ti H., and Yang Y. Demand-driven service differentia-

tion in cluster-based network servers. In Proc. 20th Annual Joint

Conf. of the IEEE Computer and Communications Societies,

vol. 2, 2001, pp. 679–688.
Adaptive Query Optimization

▶Adaptive Query Processing
Adaptive Query Processing

EVAGGELIA PITOURA

University of Ioannina, Ioannina, Greece

Synonyms
Adaptive query optimization; Eddies; Autonomic

query processing

Adaptive Query Processing A 51

A
Definition
While in traditional query processing, a query is first

optimized and then executed, adaptive query processing

techniques use runtime feedback to modify query pro-

cessing in a way that provides better response time,

more efficient CPU utilization or more useful incre-

mental results. Adaptive query processing makes query

processing more robust to optimizer mistakes, un-

known statistics, and dynamically changing data, run-

time and workload characteristics. The spectrum of

adaptive query processing techniques is quite broad:

they may span the executions of multiple queries or

adapt within the execution of a single query; they may

affect the query plan being executed or just the sched-

uling of operations within the plan.

Key Points
Conventional query processing follows an optimize-

then-execute strategy: after generating alternative query

plans, the query optimizer selects the most cost-efficient

among them and passes it to the execution engine that

directly executes it, typically with little or no runtime

decision-making. As queries become more complex, this

strategy faces many limitations such as missing statistics,

unexpected correlations, and dynamically changing data,

runtime, and workload characteristics. These problems

are aggregated in the case of long-running queries over

data streams as well as in the case of queries over multi-

ple potentially heterogeneous data sources across wide-

area networks. Adaptive query processing tries to address

these shortcomings by using feedback during query exe-

cution to tune query processing. The goal is to increase

throughput, improve response time or provide more

useful incremental results.

To implement adaptivity, regular query execution is

supplemented with a control system for monitoring

and analyzing at run-time various parameters that

affect query execution. Based on this analysis, certain

decisions are made about how the system behavior

should be changed. Clearly, this may introduce consid-

erable overheads.

The complete space of adaptive query processing

techniques is quite broad and varied. Adaptability

may be applied to query execution of multiple queries

or just a single one. It may also affect the whole query

plan being executed or just the scheduling of operations

within the plan. Adaptability techniques also differ

on how much they interleave plan generation and
execution. Some techniques interleave planning and exe-

cution just a few times, by just having the plan re-opti-

mized at specific points, whereas other techniques

interleave planning and execution to the point where

they are not even clearly distinguishable.

A number of fundamental adaptability techniques

include:

� Horizontal partitioning, where different plans are

used on different portions of the data. Partitioning

may be explicit or implicit in the functioning of the

operator.

� Query execution by tuple routing, where query exe-

cution is treated as the process of routing tuples

through operators and adaptability is achieved by

changing the order in which tuples are routed.

� Plan partitioning, where execution progresses in

stages, by interleaving optimization and execution

steps at a number of well-defined points during

query execution.

� Runtime binding decisions, where certain plan

choices are deferred until runtime, allowing the

execution engine to select among several alternative

plans by potentially re-invoking the optimizer.

� In-operator adaptive logic, where scheduling and

other decisions are made part of the individual

query operators, rather than the optimizer.

Many adaptability techniques rely on a symmetric hash

join operator that offers a non-blocking variant of join

by building hash tables on both the input relations.

When an input tuple is read, it is stored in the appro-

priate hash table and probed against the opposite table,

thus producing incremental output. The symmetric

hash join operator can process data from either input,

depending on availability. It also enables additional

adaptivity, since it has frequent moments of symmetry,

that is, points at which the join order can be changed

without compromising correctness or losing work.

The eddy operator provides an example of fine-

grained run-time control by tuple routing through

operators. An eddy is used as a tuple router; it moni-

tors execution, and makes routing decisions for the

tuples. Eddies achieve adaptability by simply changing

the order in which the tuples are routed through the

operators. The degree of adaptability achieved depends

on the type of the operators. Pipelined operators, such

as the symmetric hash join, offer the most freedom,

whereas, blocking operators, such as the sort-merge

52 A Adaptive Stream Processing
join, are less suitable since they do not produce output

before consuming the input relations in their entirety.

Cross-references
▶Adaptive Stream Processing

▶Cost Estimation

▶Multi-query Optimization

▶Query Optimization

▶Query Processing

Recommended Reading
1. Avnur R. and Hellerstein J.M. Eddies: continuously adaptive

query processing. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 2000, pp. 261–272.

2. Babu S. and Bizarro P. Adaptive query processing in the looking

glass. In Proc. 2nd Biennial Conf. on Innovative Data Systems

Research, 2005, pp. 238–249.

3. Deshpande A., Ives Z.G., and Raman V. Adaptive query proces-

sing. Found. Trends Databases, 1(1):1–140, 2007.
Adaptive Stream Processing

ZACHARY IVES

University of Pennsylvania, Philadelphia, PA, USA

Synonyms
Adaptive query processing

Definition
When querying long-lived data streams, the character-

istics of the data may change over time or data may

arrive in bursts – hence, the traditional model of opti-

mizing a query prior to executing it is insufficient. As a

result, most data stream management systems employ

feedback-driven adaptive stream processing, which con-

tinuously re-optimizes the query execution plan based

on data and stream properties, in order to meet certain

performance or resource consumption goals. Adaptive

stream processing is a special case of the more general

problem of adaptive query processing, with the special

property that intermediate results are bounded in size

(by stream windows), but where query processing may

have quality-of-service constraints.

Historical Background
The field of adaptive stream processing emerged in the

early 2000s, as two separate developments converged.

Adaptive techniques for database query processing had
become an area of increasing interest as Web and

integration applications exceeded the capabilities of

conventional static query processing [10]. Simulta-

neously, a number of data stream management syst-

ems [1,6,8,12] were emerging, and each of these

needed capabilities for query optimization. This led

to a common approach of developing feedback-based

re-optimization strategies for stream query computa-

tion. In contrast to Web-based adaptive query proces-

sing techniques, the focus in adaptive stream

processing has especially been on maintaining quality

of service under overload conditions.

Foundations
Data stream management systems (DSMSs) typically

face two challenges in query processing. First, the data

to be processed comes from remote feeds that may

be subject to significant variations in distribution or

arrival rates over the lifetime of the query, meaning

that no single query evaluation strategy may be appro-

priate over the entirety of execution. Second, DSMSs

may be underprovisioned in terms of their ability to

handle bursty input at its maximum rate, and yet may

still need to meet certain quality-of-service or resource

constraints (e.g., they may need to ensure data is pro-

cessed within some latency bound). These two chal-

lenges have led to two classes of adaptive stream

processing techniques: those that attempt to minimize

the cost of computing query results from the input data

(the problem traditionally faced by query optimiza-

tion), and those that attempt to manage query proces-

sing, possibly at reduced accuracy, in the presence of

limited resources. This article provides an overview of

significant work in each area.

Minimizing Computation Cost

The problem of adaptive query processing to minimize

computation cost has been well-studied in a variety of

settings [10]. What makes the adaptive stream proces-

sing setting unique (and unusually tractable) is the fact

that joins are performed over sliding windows with size

bounds: As the data stream exceeds the window size,

old data values are expired. This means intermediate

state within a query plan operator has constant maxi-

mum size; as opposed to being bounded by the size of

the input data. Thus a windowed join operator can be

modeled as a pair of filter operators, each of which

joins its input with the bounded intermediate state

produced from the other input. Optimization of joins

Adaptive Stream Processing A 53

A
in data stream management systems becomes a minor

variation on the problem of optimizing selection or

filtering operators; hence certain theoretical optimality

guarantees can actually be made.

Eddies Eddies [2,11,14] are composite dataflow

operators that model select-project-join expressions.

An eddy consists of a tuple router, plus a set of primi-

tive query operators that run concurrently and each

have input queues. Eddies come in several variations;

the one proposed for distributed stream management

uses state modules (SteMs) [14,11]. Figure 1 shows an

example of such an eddy for a simplified stream SQL

query, which joins three streams and applies a selection

predicate over them.

Eddy creation. The eddy is created prior to execu-

tion by an optimizer: every selection operation (sP in

the example) is converted to a corresponding operator;

additionally, each base relation to be joined is given a

state module, keyed on the join attribute, to hold the

intermediate state for each base relation [14] (⋈R,⋈S,

⋈T). If a base relation appears with multiple different

join attributes, then it may require multiple SteMs.

In general, the state module can be thought of as

one of the hash tables within a symmetric or pipelined

hash join. The optimizer also determines whether the

semantics of the query force certain operators to exe-

cute before others. Such constraints are expressed in an

internal routing table, illustrated on the right side of

the figure. As a tuple is processed, it is annotated with

a tuple signature specifying what input streams’ data it

contains and what operator may have last modified

it. The routing table is a map from the tuple signature

to a set of valid routing destinations, those operators

that can successfully process a tuple with that particu-

lar signature.
Adaptive Stream Processing. Figure 1. Illustration of eddy
Query execution/tuple routing. Initially, a tuple from

an input data stream (R, S, or T) flows into the eddy

router. The eddy (i) adds the data to the associated SteM

or SteMs, and (ii) consults the routing table to determine

the set of possible destination operators. It then chooses

a destination (using a policy to be described later) and

sends the tuple to the operator. The operator then

either filters the tuple, or produces one or more output

tuples, as a result of applying selection conditions or

joining with the data within a SteM. Output tuples are

marked as having been processed by the operator that

produced them. If they have been processed by all

operators, they will be sent to the query output, and

if not, they will be sent back to the eddy’s router and to

one of the remaining operators.

Routing policies. The problem of choosing among

alternate routing destinations has been addressed with

a variety of strategies.

Tickets and lottery scheduling [2]. In this scheme,

each operator receives a ticket for each tuple it receives

from the router, and it returns the ticket each time it

outputs a tuple to the router. Over time, each operator

is expected to have a number of tickets proportional to

(1 � p) where p is the operator’s selectivity. The router

holds a lottery among valid routing destinations, where

each operator’s chance of winning is proportional to its

number of tickets. Additionally, as a flow control

mechanism, each operator has an input queue, and if

this queue fills, then the operator may not participate

in the lottery.

Deterministic with batching [9]. A later scheme was

developed to reduce the per-tuple overhead of eddies

by choosing destinations for batches of tuples. Here,

each operator’s selectivity is explicitly monitored and

each predicate is assumed to be independent. Periodi-

cally, a rank ordering algorithm is used to choose a
with SteMs.

54 A Adaptive Stream Processing
destination for a batch of tuples: the rank ordering

algorithm sorts predicates in decreasing order of

ci /(1� pi), where ci is the cost of the applying predicate

si and pi is its selectivity.

Content-based routing [7]. (CBR) attempts to learn

correlations between attribute values and selectivities.

Using sampling, the system determines for each oper-

ator the attribute most strongly correlated with its

selectivity – this is termed the classifier attribute. CBR

then builds a table characterizing all operators’ selec-

tivities for different values of each classifier attribute.

Under this policy, when the eddy needs to route a

tuple, it first looks up the tuple’s classifier attribute

values in the table and determines the destination

operators’ selectivities. It routes the tuple probabilisti-

cally, choosing a next operator with probability in-

versely proportional to its selectivity.

Other optimization strategies. An alternative strate-

gy that does not use the eddies framework is the

adaptive greedy [5] (A-greedy) algorithm. A-greedy

continuously monitors the selectivities of query pre-

dicates using a sliding window profile, a table with one

Boolean attribute for each predicate in the query, and

sampling. As a tuple is processed by the query, it

may be chosen for sampling into the sliding window

profile – if so, it is tested against every query predicate.

The vector of Boolean results is added as a row to the

sliding window profile. Then the sliding window pro-

file is then used to create amatrix view V [i, j] contain-

ing, for each predicate si, the number of tuples in the

profile that satisfy s1...si�1 but not sj. From this ma-

trix view, the reoptimizer seeks to maintain the con-

straint that the ith operation over an input tuple

must have the lowest cost/selectivity ratio ci ∕ (1 � p

(SijS1,...,Si�1)). The overall strategy has one of the

few performance guarantees in the adaptive query

processing space: if data properties were to converge,

then performance would be within a factor of 4 of

optimal [5].

Managing Resource Consumption

A common challenge in data stream management sys-

tems is limiting the use of resources – or accommodat-

ing limited resources while maintaining quality of

service, in the case of bursty data. We discuss three

different problems that have been studied: load

shedding to ensure input data is processed by the

CPU as fast as it arrives, minimizing buffering and
memory consumption during data bursts, and

minimizing network communication with remote

streaming sites.

Load Shedding. Allows the system to selectively drop

data items to ensure it can process data as it arrives.

Both the Aurora and STREAM DSMSs focused heavily

on adaptive load shedding.

Aurora. In the Aurora DSMS [15], load shedding

for a variety of query types are supported: the main

requirement is that the user has a utility function de-

scribing the value of output data relative to how much

of it has been dropped. The system seeks to place load

shedding operators in the query plan in a way that

maximizes the user’s utility function while the system

achieves sufficient throughput. Aurora precomputes

conditional load shedding plans, in the form of a load

shedding road map (LRSM) containing a sequence of

plans that shed progressively more load; this enables

the runtime system to rapidly move to strategies that

shed more or less load.

LRSMs are created using the following heuristics:

first, load shedding points are only inserted at data

input points or at points in which data is split to two

or more operators. Second, for each load shedding

point, a loss/gain ratio is computed: this is the reduc-

tion in output utility divided by the gain in cycles,

R(p � L � D), where R is the input rate into the drop

point, p is the ratio of tuples to be dropped, L is the

amount of system load flowing from the drop point,

and D is the cost of the drop operator. Drop operators

are injected at load shedding points in decreasing order

of loss/gain ratio. Two different types of drops are

considered using the same framework: random drop,

in which an operator is placed in the query plan to

randomly drop some fraction p of tuples; and semantic

drop, which drops the p tuples of lowest utility. Aurora

assumes for the latter case that there exists a utility

function describing the relative worth of different at-

tribute values.

Stanford STREAM. The Stanford STREAM system

[4] focuses on aggregate (particularly SUM) queries.

Again the goal is to process data at the rate it arrives,

while minimizing the inaccuracy in query answers:

specifically, the goal is to minimize the maximum

relative error across all queries, where the relative error

of a query is the difference between actual and approx-

imate value, divided by the actual value.

Adaptive Stream Processing A 55

A
A Statistics Manager monitors computation and

provides estimates of each operator’s selectivity and

its running time, as well as the mean value and stan-

dard deviation of each query qi’s aggregate operator.

For each qi, STREAM computes an error threshold

Ci, based on the mean, standard deviation, and num-

ber of values. (The results are highly technical so

the reader is referred to [4] for more details.) A sam-

pling rate Pi is chosen for query qi that satisfies Pi 	
Ci ∕ 2i, where 2i is the allowable relative error for

the query.

As in Aurora’s load shedding scheme, STREAM

only inserts load shedding operators at the inputs or

at the start of shared segments. Moreover, if a node has

a set of children who all need to shed load, then a

portion of the load shedding can be ‘‘pulled up’’ to

the parent node, and all other nodes can be set to shed

some amount of additional load relative to this. Based

on this observation, STREAM creates a query dataflow

graph in which each path from source to sink initially

traverses through a load shedding operator whose

sampling rate is determined by the desired error

rate, followed by additional load shedding operators

whose sampling rate is expressed relative to that first

operator. STREAM iterates over each path, determines

a sampling rate for the initial load shedding operator

to satisfy the load constraint, and then computes the

maximum relative error for any query. From this, it can

set the load shedding rates for individual operators.

Memory Minimization. STREAM also addresses the

problem of minimizing the amount of space required

to buffer data in the presence of burstiness [3]. The

Chain algorithm begins by defining a progress chart for

each operator in the query plan: this chart plots the

relative size of the operator output versus the time it

takes to compute. A point is plotted at time 0 with the

full size of the input, representing the start of the

query; then each operator is given a point according

to its cost and relative output size. Now a lower enve-

lope is plotted on the progress chart: starting with the

initial point at time 0, the steepest line is plotted to any

operator to the right of this point; from the point at the

end of the first line, the next steepest line is plotted to a

successor operator; etc. Each line segment (and the

operators whose points are plotted beside it) represents

a chain, and operators within a chain are scheduled

together. During query processing, at each time ‘‘tick,’’
the scheduler considers all tuples that have been output

by any chain. The tuple that lies on the segment with

steepest slope is the one that is scheduled next; as a tie-

breaker, the earliest such tuple is scheduled. This Chain

algorithm is proven to be near-optimal (differing by at

most one unit of memory per operator path for queries

where selectivity is at most one).

Minimizing Communication. In some cases, the con-

strained resource is the network rather than CPU or

memory. Olston et al. [13] develop a scheme for reducing

network I/O for AVERAGE queries, by using accuracy

bounds. Each remote object O is given a bound width

wO: the remote site will only notify the central query

processor if O’s value V falls outside this bound. Mean-

while, the central site maintains a bound cache with the

last value and the bound width for every object.

If given a precision constraint dj for each query Qj,

then if the query processor is to provide query answers

within dj, the sum of the bound widths for the data

objects of Qj must not exceed dj times the number of

objects. The challenge lies in the selection of widths

for the objects.

Periodically, the system tries to tighten all bounds, in

case values have become more stable; objects whose

values fall outside the new bounds get reported back to

the central site. Now some of those objects’ boundsmust

be loosened in a way that maintains the precision con-

straints over all queries. Each objectO is given a burden

score equal to cO ∕ (pOwO), where cO is the cost of

sending the object, wO is its bound width, and pO is

the frequency of updates since the previous width

adjustment. Using an approximation method based

on an iterative linear equation solver, Olston et al.

compute a burden target for each query, i.e., the lowest

overall burden score required to always meet the query’s

precision constraint. Next, each object is assigned a

deviation, which is the maximum difference between

the object’s burden score and any query’s burden tar-

get. Finally, a queried objects’ bounds are adjusted in

decreasing order of deviation, and each object’s bound

is increased by the largest amount that still conforms

to the precision constraint for every query.

Key Applications
Data streammanagement systems have seen significant

adoption in areas such as sensor monitoring and pro-

cessing of financial information. When there are

56 A Adaptive Workflow/Process Management
associated quality-of-service constraints that might re-

quire load shedding, or when the properties of the data

are subject to significant change, adaptive stream pro-

cessing becomes vitally important.

Future Directions
One of the most promising directions of future study is

how to best use a combination of offline modeling,

selective probing (in parallel with normal query execu-

tion), and feedback from query execution to find opti-

mal strategies quickly. Algorithms with certain

optimality guarantees are being explored in the online

learning and theory communities (e.g., the k-armed

bandit problem), and such work may lead to new

improvements in adaptive stream processing.

Cross-references
▶Distributed Stream

▶Query Processor

▶ Stream Processing

Recommended Reading
1. Abadi D.J., Carney D., Cetintemel U., Cherniack M., Convey C.,

Lee S., Stonebraker M., Tatbul N., and Zdonik S. Aurora: a new

model and architecture for data stream management. VLDB J.,

12(2):120–139, 2003.

2. Avnur R. and Hellerstein J.M. Eddies: continuously adaptive

query processing. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 2000, pp. 261–272.

3. Babcock B., Babu S., Datar M., and Motwani R. Chain: operator

scheduling for memory minimization in data stream systems.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2003, pp. 253–264.

4. Babcock B., Datar M., and Motwani R. Load shedding for

aggregation queries over data streams. In Proc. 20th Int. Conf.

on Data Engineering, 2004, p. 350.

5. Babu S., Motwani R., Munagala K., Nishizawa I., and Widom J.

Adaptive ordering of pipelined stream filters. In Proc. ACM

SIGMOD Int. Conf. onManagement of Data, 2004, pp. 407–418.

6. Balazinska M., BalaKrishnan H., and Stonebraker M. Demon-

stration: load management and high availability in the Medusa

distributed stream processing system. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2004, pp. 929–930.

7. Bizarro P., Babu S., DeWitt D.J., and Widom J. Content-based

routing: different plans for different data. In Proc. 31st Int. Conf.

on Very Large Data Bases, 2005, pp. 757–768.

8. Chandrasekaran S., Cooper O., Deshpande A., Franklin M.J.,

Hellerstein J.M., Hong W., Krishnamurthy S., Madden S.,

Raman V., Reiss F., and Shah M.A. TelegraphCQ: continuous

dataflow processing for an uncertain world. In Proc. 1st Biennial

Conf. on Innovative Data Systems Research, 2003.

9. Deshpande A. An initial study of overheads of eddies. ACM

SIGMOD Rec., 33(1):44–49, 2004.
10. Deshpande A., Ives Z., and Raman V. Adaptive query processing.

Found. Trends Databases, 1(1):1–140, 2007.

11. Madden S., Shah M.A., Hellerstein J.M., and Raman V.

Continuously adaptive continuous queries over streams. In

Proc. ACM SIGMOD Int. Conf. on Management of Data,

2002, pp. 49–60.

12. Motwani R., Widom J., Arasu A., Babcock B., Babu S., Datar M.,

Manku G., Olston C., Rosenstein J., and Varma R. Query pro-

cessing, resource management, and approximation in a data

stream management system. In Proc. 1st Biennial Conf. on

Innovative Data Systems Research, 2003.

13. Olston C.,Jiang J., and Widom J., Adaptive filters for continuous

queries over distributed data streams. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2003, pp. 563–574.

14. Raman V., Deshpande A., and Hellerstein J.M. Using state

modules for adaptive query processing. In Proc. 19th Int.

Conf. on Data Engineering, 2003, pp. 353–366.

15. Tatbul N., Cetintemel U., Zdonik S.B., Cherniack M., and Stone-

braker M. Load shedding in a data streammanager. In Proc. 29th

Int. Conf. on Very Large Data Bases, 2003, pp. 309–320.
Adaptive Workflow/Process
Management

▶Workflow Evolution
ADBMS

▶Active Database Management System Architecture
ADBMS Framework

▶Active Database Management System Architecture
ADBMS Infrastructure

▶Active Database Management System Architecture
Adding Noise

▶Matrix Masking

Administration Model for RBAC A 57

A
Additive Noise

▶Noise Addition
Administration Model for RBAC

YUE ZHANG, JAMES B. D. JOSHI

University of Pittsburgh, Pittsburgh, PA, USA

Synonyms
ARBAC97; SARBAC

Definition
The central ideal of administration model for RBAC is

to use the role itself to manage roles. There are two

well-known families of administration RBAC models.

Administrative RBAC

The Administrative RBAC family of models known as

ARBAC97 [3] introduces administrative roles that are

used to manage the regular roles. These roles can form

a role hierarchy and may have constraints. ARBAC97

consists of three administrative models, the user-role

assignment (URA97) model, the permission-role as-

signment (PRA97) model, and the role-role adminis-

tration (RRA97) model. URA97 defines which

administrative roles can assign which users to which

regular roles by means of the relation: can_assign.

Similarly, PRA97 defines which administrative roles

can assign which permissions to which regular roles

by means of the relation: can_assignp. Each of these

relations also has a counterpart for revoking the as-

signment (e.g., can_revoke). RRA97 defines which ad-

ministrative roles can change the structure (add roles,

delete roles, add edges, etc.) of which range of the

regular roles using the notion of encapsulated range

and the relation: can_modify.

Scoped Administrative RBAC

The SARBAC model uses the notion of administrative

scope to ensure that any operations executed by a role r

will not affect other roles due to the hierarchical rela-

tions among them [1]. There are no special administra-

tive roles in SARBAC, and each regular role has a scope

of other regular roles called administrative scope that

can be managed by it. Each role can only be managed
by its administrators. For example, a senior-most role

should be able to manage all its junior roles.

Key Points
ARBAC model is the first known role-based adminis-

tration model and uses the notion of range and

encapsulated range. Role range is essentially a set of

regular roles. To avoid undesirable side effects,

RRA97 requires that all role ranges in the can_modify

relation be encapsulated, which means the range

should have exactly one senior-most role and one

junior-most role. Sandhu et al. later extended the

ARBAC97 model into ARBAC99 model where the no-

tion of mobile and immobile user/permission was

introduced [4]. Oh et al. later extended ARBAC99 to

ARBAC02 by adding the notion of organizational

structure to redefine the user-role assignment and the

role-permission assignment [2]. Recently, Zhang et al.

have proposed an ARBAC07 model that extends the

family of ARBAC models to deal with an RBAC model

that allows hybrid hierarchies to co-exit [6].

SARBAC

The most important notion in SARBAC is that of the

administrative scope, which is similar to the notion of

encapsulated range in ARBAC97. A role r is said to be

within to be the administrative scope of another role a

if every path upwards from r goes through a, and a is

said to be the administrator of r. SARBAC also consists

of three models: SARBAC-RHA, SARBAC-URA, and

SARBAC-PRA. In SARBAC-RHA, each role can only

administer the roles that are within its own administra-

tive scope. The operations include adding roles, deleting

roles, adding permissions, and deleting permissions.

The semantics for SARBAC-URA and SARBAC-PRA

is similar to URA97 and PRA97. The administrative

scope can change dynamically. Zhang et al. have extend-

ed SARBAC to also deal with hybrid hierarchy [5].

Cross-references
▶Role Based Access Control
Recommended Reading
1. Crampton J. and Loizou G. Administrative scope: a foundation

for role-based administrative models. ACM Trans. Inf. Syst.

Secur., 6(2):201–231, 2003.

2. Oh S. and Sandhu R. A model for role administration using

organization structure. In Proc. 7th ACM Symp. on Access

Control Models and Technologies, 2002, pp. 155–162.

58 A Administration Wizards
3. Sandhu R., Bhamidipati V., and Munawer Q. The ARBAC97

model for role-based administration of roles. ACM Trans. Inf.

Syst. Secur., 2(1):105–135, 1999.

4. Sandhu R. and Munawer Q. The ARBAC99 model for adminis-

tration of roles (1999). In Proc. 15th Computer Security Appli-

cations Conf. Arizona, 1999, pp. 229.

5. Zhang Y., James B., and Joshi D. ‘‘SARBAC07: scoped adminis-

tration model for RBAC with hybrid hierarchy. In Proc. 3rd

Int. Symp. on Information Assurance and Security, 2007,

pp. 149–154.

6. Zhang Y. and Joshi J.B.D. ARBAC07: a role based administration

model for RBAC with hybrid hierarchy. In Proc. IEEE Int. Conf.

Information Reuse and Integration, 2007, pp. 196–202.
Administration Wizards

PHILIPPE BONNET
1, DENNIS SHASHA

2

1University of Copenhagen, Copenhagen, Denmark
2New York University, New York, NY, USA

Definition
Modern database systems provide a collection of utilities

and programs to assist a database administrator with

tasks such as database installation and configuration,

import/export, indexing (index wizards are covered in

the self-management entry), and backup/restore.

Historical Background
Database Administrators have been skeptical of any

form of automation as long as they could control the

performance and security of a relatively straightfor-

ward installation. The advent of enterprise data man-

agement towards the end of the 1990s, where few

administrators became responsible for many, possibly

diverse database servers, has led to the use of graphical

automation tools. In the mid-1990s, third party

vendors introduced such tools. With SQL Server 6.5,

Microsoft was the first constructor to provide an ad-

ministration wizard.

Foundations

Installation and Configuration

Database servers are configured using hundreds of

parameters that control everything buffer size, file lay-

out, concurrency control options and so on. They are

either set statically in a configuration file before

the server is started, or dynamically while the server is

running. Out-of-the-box database servers are equipped

with a limited set of typical configurations.
The installation/configuration wizard is a graphical

user interface that guides the administrator through

the initial server configuration. The interface provides

high-level choices (e.g., OLTP vs. OLAP workload), or

simple questions (e.g., number of concurrent users)

that are mapped onto database configuration values

(log buffer size and thread pool size respectively).

Data Import/Export

Import/export wizards are graphical tools that help

database administrators map a database schema with

an external data format (e.g., XML, CSV, PDF), or

generate scripts that automate the transfer of data

between a database and an external data source (possi-

bly another database server).

Back-up/Restore

Back-up/restore wizards automate the back-up proce-

dure given a few input arguments: complete/incremental

backup, scope of the back-up/restore operations (file,

tablespace, database), target directory.

Key Applications
Automation of the central database administration

tasks.

Cross-references
▶ Self-Management

Recommended Reading
1. Bersinic D. and Gile S. Portable DBA: SQL Server. McGraw Hill,

New York, 2004.

2. Schumacher R. DBA Tools Today. DBMS Magazine, January

1997.
Advanced Transaction Models

▶ Extended Transaction Models and the ACTA

Framework

▶Generalization of ACID Properties

▶Open Nested Transaction Models
Adversarial Information Retrieval

▶Web Spam Detection

Aggregation: Expressiveness and Containment A 59

A
Affix Removal

▶ Stemming
AFI

▶Approximation of Frequent Itemsets
Aggregate Queries in P2P Systems

▶Approximate Queries in Peer-to-Peer Systems
Aggregation

▶Abstraction
Aggregation Algorithms for
Middleware Systems

▶Top-k Selection Queries on Multimedia Datasets
Aggregation and Threshold
Algorithms for XML

▶Ranked XML Processing
Aggregation: Expressiveness and
Containment

SARA COHEN

The Hebrew University of Jerusalem, Jerusalem, Israel

Definition
An aggregate function is a function that receives as

input a multiset of values, and returns a single value.

For example, the aggregate function countreturns the

number of input values. An aggregate query is simply a

query that mentions an aggregate function, usually

as part of its output. Aggregate queries are commonly
used to retrieve concise information from a database,

since they can cover many data items, while returning

few. Aggregation is allowed in SQL, and the addition of

aggregation to other query languages, such as relation-

al algebra and datalog, has been studied.

The problem of determining query expressiveness is

to characterize the types of queries that can be expressed

in a given query language. The study of query exp-

ressiveness for languages with aggregation is often

focused on determining how aggregation increases the

ability to formulate queries. It has been shown that

relational algebra with aggregation (which models

SQL) has a locality property.

Query containment is the problem of determining,

for any two given queries q and q 0, whether q(D)

q 0(D), for all databases D, where q(D) is the result

of applying q to D. Similarly, the query equivalence

problem is to determine whether q(D)¼q 0(D) for all

databases D. For aggregate queries, it seems that char-

acterizing query equivalence may be easier than

characterizing query containment. In particular, almost

all known results on query containment for aggre-

gate queries are derived by a reduction from query

equivalence.
Historical Background
The SQL standard defines five aggregate functions,

namely, count , sum , min , max and avg(average).

Over time, it has become apparent that users would

like to aggregate data in additional ways. Therefore,

major database systems have added new built-in aggre-

gate functions to meet this need. In addition, many

database systems now allow the user to extend the set

of available aggregate functions by defining his own

aggregate functions.

Aggregate queries are typically used to summarize

detailed information. For example, consider a database

with the relations Dept(deptId, deptName) and

Emp(empId, deptId, salary). The following SQL

query returns the number of employees, and the total

department expenditure on salaries, for each depart-

ment which has an average salary above $10,000.

(Q1) SELECT deptID, count(empID),

sum(salary)

FROM Dept, Emp

WHERE Dept.deptID = Emp.deptID

GROUP BY Dept.deptID

HAVING avg(salary) > 10000

60 A Aggregation: Expressiveness and Containment
Typically, aggregate queries have three special

components. First, the GROUP BY clause is used to

state how intermediate tuples should be grouped

before applying aggregation. In this example, tuples

are grouped by their value of deptID, i.e., all tuples

with the same value for this attribute form a

single group. Second, a HAVING clause can be used to

determine which groups are of interest, e.g., those

with average salary above $10,000. Finally, the output-

ted aggregate functions are specified in the SELECT

clause, e.g., the number of employees and the sum of

salaries.

The inclusion of aggregation in SQL has motivated

the study of aggregation in relational algebra, as an

abstract modeling of SQL. One of the earliest studies

of aggregation was by Klug [11], who extended rela-

tional algebra and relational calculus to allow aggregate

functions and showed the equivalence of these two

languages. Aggregation has also been added to Datalog.

This has proved challenging since it is not obvious

what semantics should be adopted in the presence of

recursion [15].
Foundations

Expressiveness

The study of query expressiveness deals with deter-

mining what can be expressed in a given query lan-

guage. The expressiveness of query languages with

aggregation has been studied both for the language of

relational algebra, as well as for datalog, which may

have recursion.

Various papers have studied the expressive power

of nonrecursive languages, extended with aggregation,

e.g., [7,9,13]. The focus here will be on [12], which has

the cleanest, general proofs for the expressive power of

languages modeling SQL.

In [12], the expressiveness of variants of relational

algebra, extended with aggregation, was studied. First,

[12] observes that the addition of aggregation to rela-

tional algebra strictly increases its expressiveness. This

is witnessed by the query Q2:

(Q2) SELECT 1

FROM R1

WHERE(SELECT COUNT(*)FROM R)>

(SELECT COUNT(*)FROM S)
Observe that Q2 returns 1 if R contains more tuples

than S, and otherwise an empty answer. It is known

that first-order logic cannot compare cardinalities, and

hence neither can relational algebra. Therefore, SQL

with aggregation is strictly more expressive than SQL

without aggregation.

The language ALGaggr is presented in [12]. Basically,

ALGaggr is relational algebra, extended by arbitrary

aggregation and arithmetic functions. In ALGaggr,

non-numerical selection predicates are restricted to

using only the equality relation (and not order com-

parisons). A purely relational query is one which is

applied only to non-numerical data. It is shown that

all purely relational queries in ALGaggr are local. Intui-

tively, the answers to local queries are determined by

looking at small portions of the input.

The formal definition of local queries follows. LetD

be a database. The Gaifman graph G(D) of D is the

undirected graph on the values appearing in D, with

(a,b)2G(D) if a and b belong to the same tuple

of some relation in D. Let ~a ¼(a1,...,ak) be a tuple of

values, each of which appears in D. Let r be an integer,

and let SDr ð~aÞ be the set of values b such that dist (ai,

b)�r in G(D), for some i. The r-neighborhood ND
r ð~aÞ

of ~a is a new database in which the relations of D are

restricted to contain only the values in SDr ð~aÞ. Then,~a
and ~b are (D,r)-equivalent if there is an isomorphism

h : ND
r ð~aÞ ! ND

r ð~bÞ such that hð~aÞ ¼~b. Finally, a q

is local if there exists a number r such that for all D,

if ð~aÞ and ð~bÞ are (D,r)-equivalent, then ~a 2 qðDÞ if
and only if~b 2 qðDÞ.

There are natural queries that are not local. For

example, transitive closure (also called reachability) is

not local. Since all queries in ALGaggr are local, this

implies that transitive closure cannot be expressed in

ALGaggr.

In addition to ALGaggr, [12] introduces the lan-

guages ALG�;Naggr and ALG�;Qaggr . ALG
�;N
aggr and ALG�;Qaggr

are the extensions of ALGaggr which allow order com-

parisons in the selection predicates, and allow natural

numbers and rational numbers, respectively, in the

database. It is not known whether transitive closure

can be expressed in ALG�;Naggr . More precisely, [12]

shows that if transitive closure is not expressible in

ALG�;Naggr , then the complexity class Uniform TC0 is

properly contained in the complexity class NLOG-

SPACE. Since the latter problem (i.e., determining

strict containment of TC0 in NLOGSPACE) is believed

Aggregation: Expressiveness and Containment A 61

A
to be very difficult to prove, so is the former. Moreover,

this result holds even if the arithmetic functions are

restricted to {þ ,�,< ,0,1} and the aggregate functions

are restricted to {sum}. On the other hand, ALG�;Qaggr

extended by arbitrary aggregation and arithmetic func-

tions, can express all computable queries.

The languages ALGaggr, ALG
�;N
aggr and ALG�;Qaggr are

based on relational algebra, and therefore, do not

allow recursion. The Datalog language allows queries

to be defined as programs, containing recursion.

The meaning of an aggregate function within a recur-

sive program, is not always well-defined. One solution

is to restrict the program to have only stratified aggre-

gation. Stratification means that if a derived predicate

p is defined by applying an aggregate function on a

derived predicate q, then the definition of q does not

depend, syntactically, upon the definition of p. For

example, consider the following Datalog program, P1.

pðX ; sumðY ÞÞ qðX ;Y Þ
qðX ;Y Þ aðX ;Y Þ
qðX ;ZÞ qðX ;Y Þ; qðY ;ZÞ

The program P1 is stratified. Replacing the final rule in

P1 with

qðX ;ZÞ qðX ;Y Þ; pðY ;ZÞ

would yield a program with nonstratified aggregation.

The expressiveness of stratified aggregation was

studied in [14]. Only the aggregate functions sum ,

avg , min , max and count were allowed. It is shown

that that stratified aggregation cannot express summar-

ized explosion (i.e., the number of instances of a part

needed to construct a bigger part). On the other hand,

if the language is extended to allow the function +, as

well as the constants 0 and 1, then all computable

queries on the integer domain can be expressed. This

is correct even if the only aggregate function allowed

is max . Additional results of this type, i.e., expressibility

of other fragments of stratified Datalog, also appear

in [14].

Query Containment

The equivalence and containment problems for aggre-

gate queries have been studied for nonrecursive Data-

log programs. A survey of the containment and

equivalence problems for aggregate queries, containing

references to most works on this topic, appears in [2].
Deriving general characterizations of containment

(or equivalence) for aggregate queries is difficult, since

each aggregate function tends to have its own idiosyn-

crasies. For example, count is sensitive to the number

of occurrences of each value, but not to the values

themselves, whereas max ignores repeated values, but

is sensitive to the exact values appearing. As another

example, sum ignores the value 0, whereas prod

ignores 1. In addition, prod always returns 0 if it

is applied to a bag containing 0.

Due to aggregate function quirks, it is often the case

that equivalent queries are no longer so, if the aggre-

gate function appearing in their head changes. To dem-

onstrate, consider the two pairs of queries q1, q
0
1 and

q2, q
0
2.

q1ðX ;countÞ aðX ;Y Þ
q01ðX ;countÞ aðX ;Y Þ; aðX ;ZÞ
q2ðX ;maxðY ÞÞ aðX ;Y Þ
q02ðX ;maxðY ÞÞ aðX ;Y Þ; aðX ;ZÞ

The queries q1 and q2 (and similarly q 01 and q 02) have

the same conditions in their body, and differ only

on the output aggregate function. One may show that

q1 is not equivalent to q 01 (nor is there containment in

either direction), as witnessed by the database

D1 ¼ faðc; 0Þ; aðc; 1Þ; aðd; 0Þg

over which q1(D1) ¼{(c,2),(d,1)} and q 01(D1) ¼
{(c, 4),(d,1)}. On the other hand, q2�q 02 does hold.

The different oddities of aggregate functions

make finding a general solution for the equivalence

and containment problems very difficult. Thus, char-

acterizations for equivalence of aggregate queries often

are defined separately for each aggregate function.

Most known characterizations for equivalence are

based on checking for the existence of special types of

mappings between the queries. For example, conjunc-

tive queries (i.e., Datalog programs consisting of a

single rule, and no negation) with the aggregate func-

tion count , are equivalent if and only if they are

isomorphic [1,4].

For other types of aggregate functions, as well as for

countqueries with comparisons or disjunctions, iso-

morphism is not a necessary condition for equivalence.

To demonstrate, each pair of queries qi, q
0
i below is

equivalent, yet not isomorphic:

62 A Aggregation: Expressiveness and Containment
q3ðcountÞ bðXÞ; bðY Þ; bðZÞ;X < Y ;X < Z

q03ðcountÞ bðXÞ; bðY Þ; bðZÞ;X < Z ;Y < Z

q4ðsumðY ÞÞ bðY Þ; bðZÞ;Y > 0;Z > 0

q04ðsumðY ÞÞ bðY Þ; bðZÞ;Y 	 0;Z > 0

q5ðavgðY ÞÞ bðY Þ
q05ðavgðY ÞÞ bðY Þ; bðZÞ

q6ðmaxðY ÞÞ bðY Þ; bðZ1Þ; bðZ2Þ;Z1 < Z2

q06ðmaxðY ÞÞ bðY Þ; bðZÞ;Z < Y

Characterizations for equivalence are known for queries

of the above types. Specifically, characterizations have

been presented for equivalence of conjunctive queries

with the aggregate functions count , sum , max and

count-distinct [4] and these were extended in

[5] to queries with disjunctive bodies. Equivalence of

conjunctive queries with avgand with percent were

characterized in [8].

It is sometimes possible to define classes of aggre-

gate functions and then present general characteriza-

tions for equivalence of queries with any aggregate

function within the class of functions. Such character-

izations are often quite intricate since they must

deal with many different aggregate functions. A char-

acterization of this type was given in [6] to decide

equivalence of aggregate queries with decomposable

aggregate functions, even if the queries contain nega-

tion. Intuitively, an aggregate function is decompos-

able if partially computed values can easily be

combined together to return the result of aggregating

an entire multiset of values, e.g., as is the case for

count , sum and max .

Interestingly, when dealing with aggregate queries

it seems that the containment problem is more elusive

than the equivalence problem. In fact, for aggregate

queries, containment is decided by reducing to the

equivalence problem. A reduction of containment

to equivalence is presented for queries with expandable

aggregate functions in [3]. Intuitively, for expan-

dable aggregate functions, changing the number of

occurrences of values in bags B and B0 does not affect

the correctness of the formula a(B)¼a(B0), as long

as the proportion of each value in each bag remains

the same, e.g., as is the case for count, sum , max ,

count-distinct and avg .
The study of aggregate queries using the count

function is closely related to the study of nonaggregate

queries evaluated under bag-set semantics. Most past

research on query containment and equivalence for non-

aggregate queries assumed that queries are evaluated

under set semantics. In set semantics, the output of a

query does not contain duplicated tuples. (This corre-

sponds to SQL queries with the DISTINCT operator.)

Under bag-set semantics the result of a query is amultiset

of values, i.e., the same value may appear many times. A

related semantics is bag semantics in which both the

database and the query results may contain duplication.

To demonstrate the different semantics, recall the

database D1 defined above. Consider evaluating, over

D1, the following variation of q1:

q001ðXÞ aðX ;Y Þ

Under set-semantics q 001(D1) ¼{ (c),(d)}, and under

bag-set semantics q 001(D1) ¼{{ (c),(c),(d)}}. Note the
correspondence between bag-set semantics and using

the count function, as in q1, where count returns

exactly the number of duplicates of each value. Due

to this correspondence, solutions for the query con-

tainment problem for queries with the count function

immediately give rise to solutions for the query con-

tainment problem for nonaggregate queries evaluated

under bag-set semantics, and vice-versa.

The first paper to directly study containment and

equivalence for nonaggregate queries under bag-set

semantics was [1], which characterized equivalence

for conjunctive queries. This was extended in [4] to

queries with comparisons, in [5] to queries with dis-

junctions and in [6] to queries with negation.

Key Applications

Query Optimization

The ability to decide query containment and equiva-

lence is believed to be a key component in query

optimization. When optimizing a query, the database

can use equivalence characterizations to remove re-

dundant portions of the query, or to find an equiva-

lent, yet cheaper, alternative query.

Query Rewriting

Given a user query q, and previously computed queries

v1,. . .,vn, the query rewriting problem is to find a query

r that (i) is equivalent to q, and (ii) uses the queries

Aggregation-Based Structured Text Retrieval A 63

A
v1,...,vn instead of accessing the base relations. (Other

variants of the query rewriting problem have also been

studied.) Due to Condition (i), equivalence character-

izations are needed to solve the query rewriting prob-

lem. Query rewriting is useful as an optimization

technique, since it can be cheaper to use past results,

instead of evaluating a query from scratch. Integrating

information sources is another problem that can be

reduced to the query rewriting problem.

Future Directions
Previous work on query containment does not consid-

er queries with HAVING clauses. Another open problem

is containment for queries evaluated under bag-set

semantics. In this problem, one wishes to determine

if the bag returned by q is always sub-bag of that

returned by q 0. (Note that this is different from the

corresponding problem of determining containment

of queries with count , which has been solved.) It has

shown [10] that bag-set containment is undecidable

for conjunctive queries containing inequalities. How-

ever, for conjunctive queries without any order com-

parisons, determining bag-set containment is still an

open problem.
Cross-references
▶Answering Queries using Views

▶Bag Semantics

▶Data Aggregation in Sensor Networks

▶ Expressive Power of Query Languages

▶ Locality

▶Query Containment

▶Query Optimization (in Relational Databases)

▶Query Rewriting using Views
Recommended Reading
1. Chaudhuri S. and Vardi M.Y. Optimization of real conjunctive

queries. In Proc. 12th ACM SIGACT-SIGMOD-SIGART Symp.

on Principles of Database Systems, 1993, pp. 59–70.

2. Cohen S. Containment of aggregate queries. ACM SIGMOD

Rec., 34(1):77–85, 2005.

3. Cohen S., Nutt W., and Sagiv Y. Containment of aggre-

gate queries. In Proc. 9th Int. Conf. on Database Theory, 2003,

pp. 111–125.

4. Cohen S., Nutt W., and Sagiv Y. Deciding equivalences among

conjunctive aggregate queries. J. ACM, 54(2), 2007.

5. Cohen S., Nutt W., and Serebrenik A. Rewriting aggregate queries

using views. In Proc. 18th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 1999, pp. 155–166.
6. Cohen S., Sagiv Y., and Nutt W. Equivalences among aggregate

queries with negation. ACM Trans. Comput. Log., 6(2):328–360,

2005.

7. Consens M.P. and Mendelzon A.O. Low complexity aggregation

in graphlog and datalog. Theor. Comput. Sci., 116(1 and 2):

95–116, 1993.

8. Grumbach S., Rafanelli M., and Tininini L. On the equivalence

and rewriting of aggregate queries. Acta Inf., 40(8):529–584, 2004.

9. Hella L., Libkin L., Nurmonen J., and Wong L. Logics with

aggregate operators. J. ACM, 48(4):880–907, 2001.

10. Jayram T.S., Kolaitis P.G., and Vee E. The containment problem

for real conjunctive queries with inequalities. In Proc. 25th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2006, pp. 80–89.

11. Klug A.C. Equivalence of relational algebra and relational

calculus query languages having aggregate functions. J. ACM,

29(3):699–717, 1982.

12. Libkin L. Expressive power of SQL. Theor. Comput. Sci.,

3(296):379–404, 2003.

13. Libkin L. and Wong L. Query languages for bags and aggregate

functions. J. Comput. Syst. Sci., 55(2):241–272, 1997.

14. Mumick I.S. and Shmueli O. How expressive is statified aggre-

gation? Ann. Math. Artif. Intell., 15(3–4):407–434, 1995.

15. Ross K.A. and Sagiv Y. Monotonic aggregation in deductive

database. J. Comput. Syst. Sci., 54(1):79–97, 1997.
Aggregation-Based Structured Text
Retrieval

THEODORA TSIKRIKA

Center for Mathematics and Computer Science,

Amsterdam, The Netherlands

Definition
Text retrieval is concerned with the retrieval of docu-

ments in response to user queries. This is achieved by

(i) representing documents and queries with indexing

features that provide a characterisation of their infor-

mation content, and (ii) defining a function that uses

these representations to perform retrieval. Structured

text retrieval introduces a finer-grained retrieval para-

digm that supports the representation and subsequent

retrieval of the individual document components

defined by the document’s logical structure. Aggrega-

tion-based structured text retrieval defines (i) the rep-

resentation of each document component as the

aggregation of the representation of its own informa-

tion content and the representations of information

content of its structurally related components, and

64 A Aggregation-Based Structured Text Retrieval
(ii) retrieval of document components based on these

(aggregated) representations.

The aim of aggregation-based approaches is to

improve retrieval effectiveness by capturing and

exploiting the interrelations among the components

of structured text documents. The representation of

each component’s own information content is gener-

ated at indexing time. The recursive aggregation of

these representations, which takes place at the level of

their indexing features, leads to the generation, either

at indexing or at query time, of the representations

of those components that are structurally related with

other components.

Aggregation can be defined in numerous ways; it

is typically defined so that it enables retrieval to focus

on those document components more specific to

the query or to each document’s best entry points,

i.e., document components that contain relevant in-

formation and from which users can browse to further

relevant components.

Historical Background
A well-established Information Retrieval (IR) tech-

nique for improving the effectiveness of text retrieval

(i.e., retrieval at the document level) has been the

generation and subsequent combination of multiple

representations for each document [3]. To apply this

useful technique to the text retrieval of structured text

documents, the typical approach has been to exploit

their logical structure and consider that the individual

representations of their components can act as the dif-

ferent representations to be combined [11]. This defini-

tion of the representation of a structured text document

as the combination of the representations of its compo-

nents was also based on the intuitive idea that the infor-

mation content of each document consists of the

information content of its sub-parts [2,6].

As the above description suggests, these combina-

tion-based approaches, despite restricting retrieval only

at the document level, assign representations not only

to documents, but also to individual document compo-

nents. To generate these representations, structured

text documents can simply be viewed as series of

non-overlapping components (Figure 1a), such as

title, author, abstract, body, etc. [13]. The proliferation

of SGML and XML documents, however, has led to the

consideration of hierarchical components (Figure 1b),

and their interrelated representations [1]. For these
(disjoint or nested) document components, the combi-

nation of their representations can take place (i) directly

at the level of their indexing features, which typically

correspond to terms and their statistics (e.g., [13]), or

(ii) at the level of retrieval scores computed indepen-

dently for each component (e.g., [15]). Overall, these

combination-based approaches have proven effective for

the text retrieval of structured text documents

[11,13,15].

Following the recent shift towards the structured

text retrieval paradigm [2], which supports the retriev-

al of document components (including whole docu-

ments), it was only natural to try to adapt these

combination-based approaches to this new require-

ment for retrieval at the sub-document level. Here,

the focus is on each document component: its repre-

sentation corresponds to the combination of its own

representation with the representations of its structur-

ally related components, and its retrieval is based on

this combined representation. Similarly to the case of

combination-based approaches for text retrieval, two

strands of research can be identified: (i) approaches

that operate at the level of the components’ indexing

features (e.g., [12]), referred to as aggregation-based

structured text retrieval (described in this entry), and

(ii) approaches that operate at the level of retrieval

scores computed independently for each component

(e.g., [14]), referred to as propagation-based structured

text retrieval.

Figure 2b illustrates the premise of aggregation-

and propagated-based approaches for the simple struc-

tured text document depicted in Figure 2a. Since

these approaches share some of their underlying

motivations and assumptions, there has been a cross-

fertilisation of ideas between the two. This also implies

that this entry is closely related to the entry on

propagation-based structured text retrieval.

Foundations
Structured text retrieval supports, in principle, the

representation and subsequent retrieval of document

components of any granularity; in practice, however, it

is desirable to take into account only document com-

ponents that users would find informative in response

to their queries [1,2,4,6]. Such document components

are referred to as indexing units and are usually chosen

(manually or automatically) with respect to the

requirements of each application. Once the indexing

Aggregation-Based Structured Text Retrieval. Figure 1. Two views on the logical structure of a structured text

document.

Aggregation-Based Structured Text Retrieval A 65

A

units have been determined, each can be assigned a

representation of its information content, and, hence,

become individually retrievable.

Aggregation-based structured text retrieval appro-

aches distinguish two types of indexing units: atomic

and composite. Atomic components correspond to

indexing units that cannot be further decomposed,

i.e., the leaf components in Figure 1b. The repres-

entation of an atomic component is generated by
considering only its own information content. Compo-

site components, on the other hand, i.e., the non-leaf

nodes in Figure 1b, correspond to indexing units

which are related to other components, e.g., consist

of sub-components. In addition to its own informa-

tion content, a composite component is also depen-

dent on the information content of its structurally

related components. Therefore, its representation can

be derived via the aggregation of the representation of its

Aggregation-Based Structured Text Retrieval. Figure 2. Simple example illustrating the differences between

aggregation- and propagation-based approaches.

66 A Aggregation-Based Structured Text Retrieval
own information content with the representations of the

information content of its structurally related compo-

nents; this aggregation takes place at the level of their

indexing features. Given the representations of atomic

components and of composite components’ own infor-

mation content, aggregation-based approaches recur-

sively generate the aggregated representations of

composite components and, based on them, perform

retrieval of document components of varying

granularity.

In summary, each aggregation-based approach

needs to define the following: (i) the representation

of each component’s own information content, (ii) the

aggregated representations of composite components,

and (iii) the retrieval function that uses these repre-

sentations. Although these three steps are clearly inter-

dependent, the major issues addressed in each step

need to be outlined first, before proceeding with the

description of the key aggregation-based approaches in

the field of structured text retrieval.

1. Representing each component’s own information

content: In the field of text retrieval, the issue of
representing documents with indexing features that

provide a characterisation of their information content

has been extensively studied in the context of several IR

retrieval models (e.g., Boolean, vector space, probabi-

listic, language models, etc.). For text documents, these

indexing features typically correspond to term statis-

tics. Retrieval functions produce a ranking in response

to a user’s query, by taking into account the statistics of

query terms together with each document’s length.

The term statistics most commonly used correspond

to the term frequency tf (t, d) of term t in document d

and to the document frequency df (t, C) of term t in the

document collection C, leading to standard tf � idf

weighting schemes.

Structured text retrieval approaches need to generate

representations for all components corresponding to

indexing units. Since these components are nested, it

is not straightforward to adapt these term statistics

(particularly document frequency) at the component

level [10]. Aggregation-based approaches, on the

other hand, directly generate representations only for

components that have their own information content,

Aggregation-Based Structured Text Retrieval. Figure 3. Representing the components that contain their own

information.

Aggregation-Based Structured Text Retrieval A 67

A

while the representations of the remaining compo-

nents are obtained via the aggregation process. There-

fore, the first step is to generate the representations of

atomic components and of the composite components’

own information content, i.e., the content not contained

in any of their structurally related components. This

simplifies the process, since only disjoint units need

to be represented [6], as illustrated in Figure 3 where

the dashed boxes enclose the components to be repre-

sented (cf. [5]).

Text retrieval approaches usually consider that

the information content of a document corresponds

only to its textual content, and possibly its metadata

(also referred to as attributes). In addition to that,

structured text retrieval approaches also aim at repre-

senting the information encoded in the logical structure

of documents. Representing this structural information,

i.e., the interrelations among the documents and their

components, enables retrieval in response to both con-

tent-only queries and content-and-structure queries.

Aggregation-based approaches that only represent

the textual content typically adapt standard represen-

tation formalisms widely employed in text retrieval
approaches to their requirements for representation

at the component level (e.g., [9,11]). Those that con-

sider richer representations of information content

apply more expressive formalisms (e.g., various logics

[2,4]).

2. Aggregating the representations: The concept

underlying aggregation-based approaches is that of

augmentation [4]: the information content of a docu-

ment component can be augmented with that of its

structurally related components. Given the already

generated representations (i.e., the representations of

atomic components and of composite components’

own information content), the augmentation of com-

posite components is performed by the aggregation

process.

The first step in the aggregation process is the

identification of the structurally related components

of each composite component. Three basic types

of structural relationships (Figure 4) can be distin-

guished: hierarchical (h), sequential (s), and links (l).

Hierarchical connections express the composition

relationship among components, and induce the

tree representing the logical structure of a structured

Aggregation-Based Structured Text Retrieval. Figure 4. Different types of structural relationships between the

components of a structured text document.

68 A Aggregation-Based Structured Text Retrieval
document. Sequential connections capture the order

imposed by the document’s author(s), whereas links to

components of the same or different documents refer-

ence (internal or external) sources that offer similar

information. In principle, all these types of structural

relationships between components can be taken into

account by the aggregation process (and some aggrega-

tion-based approaches are generic enough to accom-

modate them, e.g., [7]). In practice, however, the

hierarchical structural relations are the only ones usually

considered. This leads to the aggregated representations

of composite components being recursively generated

in an ascending manner.

The next step is to define the aggregation operator

(or aggregation function). Since the aggregation of the

textual content of related components is defined at

the level of the indexing features of their representa-

tions, the aggregation function is highly dependent on

the model (formalism) chosen to represent each com-

ponent’s own content. This aggregation results in an

(aggregated) representation modeled in the same for-

malism, and can be seen as being performed at two

stages (although these are usually combined into one

step): the aggregation of index expressions [2] (e.g.,

terms, conjunctions of terms, etc.), and of the uncer-

tainty assigned to them (derived mainly by their

statistics).

An aggregation function could also take into

account: (i) augmentation factors [6], which capture

the fact that the textual content of the structurally

related components of a composite component is not

included in that components own content and has

to be ‘‘propagated’’ in order to become part of it,
(ii) accessibility factors [4], which specify how the rep-

resentation of a component is influenced by its

connected components (a measure of the contribution

of, say, a section to its embedding chapter [2]), and

(iii) the overall importance of a component in a docu-

ment’s structure [7] (e.g., it can be assumed that a title

contains more informative content than a small sub-

section [13]). Finally, the issue of the possible

aggregation of the attributes assigned to related com-

ponents needs to be addressed [2].

The above aggregation process can take place either

at indexing time (global aggregation) or at query time

(local aggregation). Global aggregation is performed

for all composite indexing units and considers all

indexing features involved. Since this strategy does

not scale well and can quickly become highly ineffi-

cient, local aggregation strategies are primarily used.

These restrict the aggregation only to indexing features

present in the query (i.e., query terms), and, starting

from components retrieved in terms of their own in-

formation content, perform the aggregation only for

these components’ ancestors.

3. Retrieval: The retrieval function operates both on

the representations of atomic components and on the

aggregated representations of composite components.

Its definition is highly dependent on the formalism

employed in modeling these representations. In con-

junction with the definition of the aggregation func-

tion, the retrieval function operationalizes the notion

of relevance for a structured text retrieval system. It can,

therefore, determine whether retrieval focuses on

those document components more specific to the

query [2], or whether the aim is to support the users’

Aggregation-Based Structured Text Retrieval A 69

A
browsing activities by identifying each documents best

entry points [7] (i.e., document components that con-

tain relevant information which users can browse to

further relevant components).

Aggregation-based Approaches

One of the most influential aggregation-based

approaches has been developed by Chiaramella et al.

[2] in the context of the FERMI project (http://www.

dcs.gla.ac.uk/fermi/). Aiming at supporting the integra-

tion of IR, hypermedia, and database systems, the

FERMI model introduced some of the founding princi-

ples of structured text retrieval (including the notion of

retrieval focussed to the most specific components). It

follows the logical view on IR, i.e., it models the re-

trieval process as inference, and it employs predicate

logic as its underlying formalism. The model defines a

generic representation of content, attributes, and

structural information associated with the indexing

units. This allows for rich querying capabilities, includ-

ing support for both content-only queries and content-

and-structured queries. The indexing features of

structured text documents can be defined in various

ways, e.g., as sets of terms or as logical expressions of

terms, while the semantics of the aggregation function

depend on this definition. Retrieval can then be per-

formed by a function of the specificity of each compo-

nent with respect to the query.

The major limitation of the FERMI model is that it

does not incorporate the uncertainty inherent to the

representations of content and structure. To address

this issue, Lalmas [8] adapted the FERMI model by

using propositional logic as its basis, and extended

it by modeling the uncertain representation of the tex-

tual content of components (estimated by a tf � idf

weighting scheme) using Dempster-Shafer’s theory of

evidence. The structural information is not explicitly

captured by the formalism; therefore, the model does

not provide support for content-and-structured queries.

The aggregation is performed by Dempster’s combina-

tion rule, while retrieval is based on the belief values

of the query terms.

Fuhr, Gövert, and Rölleke [4] also extended the

FERMI model using a combination of (a restricted

form of) predicate logic with probabilistic inference.

Their model captures the uncertainty in the rep-

resentations of content, structure, and attributes. Aggre-

gation of index expressions is based on a four-valued
logic, allowing for the handling of incomplete informa-

tion and of inconsistencies arising by the aggregation

(e.g., when two components containing contradictory

information are aggregated). Aggregation of termweights

is performed according to the rules of probability theory,

typically by adopting term independence assumptions.

This approach introduced the notion of accessibility

factor being taken into account. Document compo-

nents are retrieved based on the computed probabil-

ities of query terms occurring in their (aggregated)

representations.

Following its initial development in [4], Fuhr and

his colleagues investigated further this logic-based

probabilistic aggregation model in [5,6]. They experi-

mented with modeling aggregation by different Boolean

operators; for instance, they noted that, given terms

propagating in the document tree in a bottom-up fash-

ion, a probabilistic-OR function would always result in

higher weights for components further up the hierarchy.

As this would lead (in contrast to the objectives of

specificity-oriented retrieval) to the more general com-

ponents being always retrieved, they introduced the

notion of augmentation factors. These could be used

to ‘‘downweight’’ the weights of terms (estimated by

a tf � idf scheme) that are aggregated in an ascending

manner. The effectiveness of their approach has been

assessed in the context of the Initiative for the Evalua-

tion of XML retrieval (INEX) [6].

Myaeng et al. [11] also developed an aggregation-

based approach based on probabilistic inference. They

employ Bayesian networks as the underlying formalism

for explicitly modeling the (hierarchical) structural

relations between components. The document compo-

nents are represented as nodes in the network and their

relations as (directed) edges. They also capture the

uncertainty associated with both textual content

(again estimated by tf � idf term statistics) and struc-

ture. Aggregation is performed by probabilistic infer-

ence, and retrieval is based on the computed beliefs.

Although this model allows for document component

scoring, in its original publication [11] it is evaluated

in the context of text retrieval at the document level.

Following the recent widespread application of statis-

tical languagemodels in the field of text retrieval, Ogilvie

and Callan [8] adapted them to the requirements of

structured text retrieval. To this end, each document

component is modeled by a language model; a unigram

languagemodel estimates the probability of a term given

70 A Aggregation-Based Structured Text Retrieval
some text. For atomic components, the language

model is estimated by their own text by employing a

maximum likelihood estimate (MLE). For instance,

the probability of term t given the language model yT
of text T in a component can be estimated by: P(tjyT) =
(1 � o)PMLE(tjyT) + oPMLE(tjycollection), where o is

a parameter controlling the amount of smoothing

of the background collection model. For composite

components compi, the aggregation of language models

is modeled as a linear interpolation:

Pðt jy0compi
Þ ¼ lc

0

compi
Pðt jycompi

Þ þ
X

j2childernðcompiÞ
lcj

Pðt jyjÞ, where lc
0

compi
þ
P

j2childernðcompiÞl
c
j ¼ 1. These

ls model the contribution of each language model

(i.e., document component) in the aggregation, while

their estimation is a non-trivial issue. Ranking is typi-

cally produced by estimating the probability that each

component generated the query string (assuming an

underlying multinomial model). The major advantage

of the language modeling approach is that it provides

guidance in performing the aggregation and in esti-

mating the term weights.

A more recent research study has attempted to apply

BM25 (one of the most successful text retrieval term

weighting schemes) to structured text retrieval. Robertson

et al. [13] initially adapted BM25 to structured text

documents with non-hierarchical components (see Fig-

ure 1a), while investigating the effectiveness of retrieval

at the document level. Next, they [9] adapted BM25 to

deal with nested components (see Figure 1b), and

evaluated it in the context of the INitiative for the

Evaluation of XML retrieval (INEX).

A final note on these aggregation-based approaches

is that most aim at focusing retrieval on those docu-

ment components more specific to the query. How-

ever, there are approaches that aim at modeling the

criteria determining what constitutes a best entry

point. For instance, Kazai et al. [7] model aggregation

as a fuzzy formalisation of linguistic quantifiers. This

means that an indexing feature (term) is considered in

an aggregated representation of a composite compo-

nent, if it represents LQ of its structurally related com-

ponents, where LQ a linguistic quantifier, such as ‘‘at

least one,’’ ‘‘all,’’ ‘‘most,’’ etc. By using these aggregated

representations, the retrieval function determines that

a component is relevant to a query if LQ of its struc-

turally related components are relevant, in essence

implementing different criteria of what can be

regarded as a best entry point.
Key Applications
Aggregation-based approaches can be used in any

application requiring retrieval according to the

structured text retrieval paradigm. In addition, such

approaches are also well suited to the retrieval of

multimedia documents. These documents can be

viewed as consisting of (disjoint or nested) compo-

nents each containing one or more media. Aggregation

can be performed by considering atomic compo-

nents to only contain a single medium, leading to

retrieval of components of varying granularity. This

was recognized early in the field of structured text

retrieval and some of the initial aggregation-based

approaches, e.g., [2,4], were developed for multimedia

environments.
Experimental Results
For most of the presented approaches, particularly for

research conducted in the context of the INitiative

for the Evaluation of XML retrieval (INEX), there is

an accompanying experimental evaluation in the

corresponding reference.

Data Sets
A testbed for the evaluation of structured text retrieval

approaches has been developed as part of the efforts of

the INitiative for the Evaluation of XML retrieval

(INEX) (http://inex.is.informatik.uni-duisburg.de/).
URL to Code
The aggregation-based approach developed in [8] has

been implemented as part of the open source Lemur

toolkit (for language modeling and IR), available at:

http://www.lemurproject.org/.
Cross-references
▶Content-and-Structure Query

▶Content-Only Query

▶ Indexing Units

▶ Information Retrieval Models

▶ INitiative for the Evaluation of XML Retrieval

▶ Logical Structure

▶ Propagation-based Structured Text Retrieval

▶Relevance

▶ Specificity

▶ Structured Document Retrieval

▶Text Indexing and Retrieval

Air Indexes for Spatial Databases A 71
Recommended Reading
1. Chiaramella Y. Information retrieval and structured

documents. In Lectures on Information Retrieval, Third Euro-

pean Summer-School, Revised Lectures, LNCS, Vol. 1980.

M. Agosti, F. Crestani, and G. Pasi (eds.). Springer, 2001,

pp. 286–309.

2. Chiaramella Y., Mulhem P., and Fourel F. A model for multime-

dia information retrieval. Technical Report FERMI, ESPRIT

BRA 8134, University of Glasgow, Scotland, 1996.

3. Croft W.B. Combining approaches to information retrieval. In

Advances in Information Retrieval: Recent Research from the

Center for Intelligent Information Retrieval, Vol. 7. W.B. Croft

(ed.). The Information Retrieval Series, Kluwer Academic,

Dordrecht, 2000, pp. 1–36.

4. Fuhr N., Gövert N., and Rölleke T. DOLORES: A system for

logic-based retrieval of multimedia objects. In Proc. 21st Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 1998, pp. 257–265.

5. Fuhr N. and Großjohann K. XIRQL: A query language for

information retrieval in XML documents. In Proc. 24th Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 2001, pp. 172–180.

6. Gövert N., Abolhassani M., Fuhr N., and Großjohann K.

Content-oriented XML retrieval with HyREX. In Proc. 1st Int.

Workshop of the Initiative for the Evaluation of XML Retrieval,

2003, pp. 26–32.

7. Kazai G., Lalmas M., and Rölleke T. A model for the representa-

tion and focussed retrieval of structured documents based on

fuzzy aggregation. In Proc. 8th Int. Symp. on String Processing

and Information Retrieval, 2001, pp. 123–135.

8. Lalmas M. Dempster-Shafer’s theory of evidence applied to

structured documents: Modelling uncertainty. In Proc. 20th

Annual Int. ACM SIGIR Conf. on Research and Development

in Information Retrieval, 1997, pp. 110–118.

9. Lu W., Robertson S.E., and MacFarlane A. Field-weighted

XML retrieval based on BM25. In Proc. 4th Int. Workshop

of the Initiative for the Evaluation of XML Retrieval,

Revised Selected Papers, LNCS, Vol. 3977, Springer, 2006,

pp. 161–171.

10. Mass Y. and Mandelbrod M. Retrieving the most relevant XML

components. In Proc. 2nd Int. Workshop of the Initiative for the

Evaluation of XML Retrieval, 2004, pp. 53–58.

11. Myaeng S.-H., Jang D.-H., KimM.-S., and Zhoo Z.-C. A flexible

model for retrieval of SGML documents. In Proc. 21st Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 1998, pp. 138–145.

12. Ogilvie P. and Callan J. Hierarchical language models for retriev-

al of XML components. In Advances in XML Information

Retrieval and Evaluation. In Proc. 3rd Int. Workshop of the

Initiative for the Evaluation of XML Retrieval, Revised Selected

Papers, LNCS, Vol. 3493, Springer, 2005, pp. 224–237.

13. Robertson S.E., Zaragoza H., and Taylor M. Simple BM25 ex-

tension to multiple weighted fields. In Proc. Int. Conf. on

Information and Knowledge Management, 2004, pp. 42–49.

14. Sauvagnat K., Boughanem M., and Chrisment C. Searching

XML documents using relevance propagation. In Proc. 11th
Int. Symp. on String Processing and Information Retrieval,

2004, pp. 242–254.

15. Wilkinson R. Effective retrieval of structured documents.

In Proc. 17th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 1994, pp. 311–317.
AGMS Sketch

▶AMS Sketch
Air Indexes for Spatial Databases

BAIHUA ZHENG

Singapore Management University, Singapore,

Singapore

Definition
Air indexes refer to indexes employed in wireless

broadcast environments to address scalability issue

and to facilitate power saving on mobile devices [4].

To retrieve a data object in wireless broadcast systems,

a mobile client has to continuously monitor the broad-

cast channel until the data arrives. This will consume a

lot of energy since the client has to remain active

during its waiting time. The basic idea of air indexes

is that by including index information about the arriv-

al times of data items on the broadcast channel, mobile

clients are able to predict the arrivals of their desired

data. Thus, they can stay in power saving mode during

waiting time and switch to active mode only when the

data of their interests arrives.

Historical Background
In spatial databases, clients are assumed to be interest-

ed in data objects having spatial features (e.g., hotels,

ATM, gas stations). ‘‘Find me the nearest restaurant’’

and ‘‘locate all the ATMs that are within 100 miles of

my current location’’ are two examples. A central server

is allocated to keep all the data, based on which the

queries issued by the clients are answered. There are

basically two approaches to disseminating spatial data

to clients: (i) on-demand access: a mobile client submits

a request, which consists of a query and the query’s

issuing location, to the server. The server returns the

result to the mobile client via a dedicated point-

to-point channel. (ii) periodic broadcast: data are

72 A Air Indexes for Spatial Databases
periodically broadcast on a wireless channel open to

the public. After a mobile client receives a query from

its user, it tunes into the broadcast channel to receive

the data of interest based on the query and its current

location.

On-demand access is particularly suitable for light-

loaded systems when contention for wireless channels

and server processing is not severe. However, as the

number of users increases, the system performance

deteriorates rapidly. Compared with on-demand access,

broadcast is a more scalable approach since it allows

simultaneous access by an arbitrary number of mobile

clients. Meanwhile, clients can access spatial datawithout

reporting to the server their current location and hence

the private location information is not disclosed.

In the literature, two performance metrics, namely

access latency and tuning time, are used to measure

access efficiency and energy conservation, respectively

[4]. The former means the time elapsed between the

moment when a query is issued and the moment when

it is satisfied, and the latter represents the time a

mobile client stays active to receive the requested

data. As energy conservation is very critical due to

the limited battery capacity on mobile clients, a mobile

device typically supports two operation modes: active

mode and doze mode. The device normally operates in

active mode; it can switch to doze mode to save energy

when the system becomes idle.

With data broadcast, clients listen to a broadcast

channel to retrieve data based on their queries and

hence are responsible for query processing. Without

any index information, a client has to download all

data objects to process spatial search, which will con-

sume a lot of energy since the client needs to remain

active during a whole broadcast cycle. A broadcast

cycle means the minimal duration within which all

the data objects are broadcast at least once. A solution

to this problem is air indexes [4]. The basic idea is to

broadcast an index before data objects (see Fig. 1 for an
Air Indexes for Spatial Databases. Figure 1. Air indexes in w
example). Thus, query processing can be performed

over the index instead of actual data objects. As the

index is much smaller than the data objects and is

selectively accessed to perform a query, the client is

expected to download less data (hence incurring less

tuning time and energy consumption) to find the

answers. The disadvantage of air indexing, however, is

that the broadcast cycle is lengthened (to broadcast

additional index information). As a result, the access

latency would be worsen. It is obvious that the larger the

index size, the higher the overhead in access latency.

An important issue in air indexes is how to multiplex

data and index on the sequential-access broadcast chan-

nel. Figure 1 shows the well-known (1, m) scheme [4],

where the index is broadcast in front of every 1/m

fraction of the dataset. To facilitate the access of

index, each data page includes an offset to the begin-

ning of the next index. The general access protocol for

processing spatial search involves following three steps:

(i) initial probe: the client tunes into the broadcast

channel and determines when the next index is broad-

cast; (ii) index search: The client tunes into the broad-

cast channel again when the index is broadcast.

It selectively accesses a number of index pages to find

out the spatial data object and when to download

it; and (iii) data retrieval: when the packet containing

the qualified object arrives, the client downloads it and

retrieves the object.

To disseminate spatial data on wireless channels,

well-known spatial indexes (e.g., R-trees) are candidates

for air indexes. However, unique characteristics of wire-

less data broadcast make the adoption of existing spatial

indexes inefficient (if not impossible). Specifically, tra-

ditional spatial indexes are designed to cluster data

objects with spatial locality. They usually assume a resi-

dent storage (such as disk and memory) and adopt

search strategies that minimize I/O cost. This is achieved

by backtracking index nodes during search. However,

the broadcast order (and thus the access order) of
ireless broadcast environments.

Air Indexes for Spatial Databases. Figure 2. Linear access on wireless broadcast channel.

Air Indexes for Spatial Databases A 73

A

index nodes is extremely important in wireless broad-

cast systems because data and index are only available

to the client when they are broadcast on air. Clients

cannot randomly access a specific data object or index

node but have to wait until the next time it is broad-

cast. As a result, each backtracking operation extends

the access latency by one more cycle and hence

becomes a constraint in wireless broadcast scenarios.

Figure 2 depicts an example of spatial query. As-

sume that an algorithm based on R-tree first visits root

node, then the node R2, and finally R1, while the server

broadcasts nodes in the order of root, R1, and R2. If a

client wants to backtrack to node R1 after it retrieves

R2, it will have to wait until the next cycle because R1

has already been broadcast. This significantly extends

the access latency and it occurs every time a navigation

order is different from the broadcast order. As a result,

new air indexes which consider both the constraints of

the broadcast systems and features of spatial queries

are desired.

Foundations
Several air indexes have been recently proposed to

support broadcast of spatial data. These studies can

be classified into two categories, according to the

nature of the queries supported. The first category

focuses on retrieving data associated with some speci-

fied geographical range, such as ‘‘Starbucks Coffee in

New York City’s Times Square’’ and ‘‘Gas stations

along Highway 515.’’ A representative is the index

structure designed for DAYS project [1]. It proposes a

location hierarchy and associates data with locations.

The index structure is designed to support query on

various types of data with different location granulari-

ty. The authors intelligently exploit an important

property of the locations, i.e., containment relation-

ship among the objects, to determine the relative
location of an object with respect to its parent that

contains the object. The containment relationship lim-

its the search range of available data and thus facilitates

efficient processing of the supported queries. In brief, a

broadcast cycle consists of several sub-cycles, with each

containing data belonging to the same type. A major

index (one type of index buckets) is placed at the begin-

ning of each sub-cycle. It provides information related to

the types of data broadcasted, and enables clients to

quickly jump into the right sub-cycle which contains

her interested data. Inside a sub-cycle, minor indexes

(another type of index buckets) are interleaved with data

buckets. Each minor index contains multiple pointers

pointing to the data buckets with different locations.

Consequently, a search for a data object involves acces-

sing a major index and several minor indexes.

The second category focuses on retrieving data

according to specified distance metric, based on client’s

current location. An example is nearest neighbor (NN)

search based on Euclidian distance. According to the

index structure, indexes of this category can be further

clustered into two groups, i.e., central tree-based struc-

ture and distributed structure. In the following, we rev-

iew some of the representative indexes of both groups.

D-tree is a paged binary search tree to index a given

solution space in support of planar point queries [6]. It

assumes a data type has multiple data instances, and

each instance has a certain valid scope within which this

instance is the only correct answer. For example, res-

taurant is a data type, and each individual restaurant

represents an instance. Take NN search as an example,

Fig. 3a illustrates four restaurants, namely o1, o2, o3,

and o4, and their corresponding valid scopes p1, p2, p3,

and p4. Given any query location q in, say, p3, o3 is the

restaurant to which q is nearest. D-tree assumes the

valid scopes of different data instances are known and

it focuses only on planar point queries which locate the

Air Indexes for Spatial Databases. Figure 3. Index construction using the D-tree.

74 A Air Indexes for Spatial Databases
query point into a valid scope and return the client the

corresponding data instance.

The D-tree is a binary tree built based on the

divisions between data regions (e.g., valid scopes). A

space consisting of a set of data regions is recursively

partitioned into two complementary subspaces con-

taining about the same number of regions until each

subspace has one region only. The partition between

two subspaces is represented by one or more polylines.

The overall orientation of the partition can be either

x-dimensional or y-dimensional, which is obtained,

respectively, by sorting the data regions based on

their lowest/uppermost y-coordinates, or leftmost/

rightmost x-coordinates. Figure 3b shows the parti-

tions for the running example. The polyline pl(v2, v3,

v4, v6) partitions the original space into p5 and p6, and

polylines pl(v1,v3) and pl(v4,v5) further partition p5
into p1 and p2, and p6 into p3 and p4, respectively.

The first polyline is y-dimensional and the remaining

two are x-dimensional. Given a query point q, the

search algorithm works as follows. It starts from the

root and recursively follows either the left subtree or

the right subtree that bounds the query point until a

leaf node is reached. The associated data instance is

then returned as the final answer.

Grid-partition index is specialized for NN problem

[9]. It is motivated by the observation that an object is

the NN only to the query points located inside its

Voronoi Cell. Let O = {o1, o2,...,on} be a set of points.

V ðoiÞ, the Voronoi cell (VC) for oi, is defined as the set

of points q in the space such that dist(q,oi) < dist(q,oj),

8j 6¼ i. That is, V ðoiÞ consists of the set of points for

which oi is the NN. As illustrated in Fig. 3a, p1, p2, p3,

and p4 denote the VCs for four objects, o1, o2, o3, and
o4, respectively. Grid-partition index tries to reduce the

search space for a query at the very beginning by

partitioning the space into disjoint grid cells. For

each grid cell, all the objects that could be NNs of at

least one query point inside the grid cell are indexed,

i.e., those objects whose VCs overlap with the grid

cell are associated with that grid cell.

Figure 4a shows a possible grid partition for the

running example, and the index structure is depicted

in Fig. 4b. The whole space is divided into four grid

cells; i.e., G1, G2, G3, and G4. Grid cell G1 is associated

with objects o1 and o2, since their VCs, p1 and p2,

overlap with G1; likewise, grid cell G2 is associated

with objects o1, o2, o3, and so on. If a given query

point is in grid cell G1, the NN can be found among

the objects associated with G1 (i.e., o1 and o2), instead

of among the whole set of objects. Efficient search

algorithms and partition approaches have been pro-

posed to speed up the performance.

Conventional spatial index R-tree has also been

adapted to support kNN search in broadcast environ-

ments [2]. For R-tree index, the kNN search algorithm

would visit index nodes and objects sequentially as

backtracking is not feasible on the broadcast. This

certainly results in a considerably long tuning time

especially when the result objects are located in later

part of the broadcast. However, if clients know that

there are at least k objects in the later part of the

broadcast that are closer to the query point than the

currently found ones, they can safely skip the down-

loading of the intermediate objects currently located.

This observation motivates the design of the enhanced

kNN search algorithm which caters for the constraints

of wireless broadcast. It requires each index node to

Air Indexes for Spatial Databases. Figure 4. Index construction using the grid-partition.

Air Indexes for Spatial Databases. Figure 5. Hilbert

curve index.

Air Indexes for Spatial Databases A 75

A

carry a count of the underlying objects (object count)

referenced by the current node. Thus, clients do not

blindly download intermediate objects.

Hilbert Curve Index (HCI) is designed to support

general spatial queries, including window queries, kNN

queries, and continuous nearest-neighbor (CNN) queries

in wireless broadcast environments. Motivated by the

linear streaming property of the wireless data broadcast

channel and the optimal spatial locality of the Hilbert

Curve (HC), HCI organizes data according to Hilbert

Curve order [7,8], and adopts B+-tree as the index

structure. Figure 5 depicts a 8 � 8 grid, with solid dots

representing data objects. The numbers next to the data

points, namely index value, represent the visiting orders

of different points at Hilbert Curve. For instance, data

point with (1,1) as the coordinates has the index value

of 2, and it will be visited before data point with (2,2)

as the coordinates because of the smaller index value.

The filtering and refining strategy is adopted to an-

swer all the queries. For window query, the basic idea is

to decide a candidate set of points along the Hilbert

curve which includes all the points within the query

window and later to filter out those outside the window.

Suppose the rectangle shown in Fig. 5 is a query win-

dow. Among all the points within the search range, the

first point is point a and the last is b, sorted according

to their occurring orders on the Hilbert curve, and

both of them are lying on the boundary of the search

range. Therefore, all the points inside this query win-

dow should lie on the Hilbert curve segmented by
points a and b. In other words, data points with index

values between 18 and 29, but not the others, are the

candidates. During the access, the client can derive the

coordinates of data points based on the index values

and then retrieve those within the query window.

For kNN query, the client first retrieves those k

nearest objects to the query point along the Hilbert

curve and then derives a range which for sure bounds at

least k objects. In the filtering phase, a window query

76 A Air Indexes for Spatial Databases
which bounds the search range is issued to filter out

those unqualified. Later in the refinement phase, k

nearest objects are identified according to their dis-

tance to the query point. Suppose an NN query at

point q (i.e., index value 53) is issued. First, the client

finds its nearest neighbor (i.e., point with index

value 51) along the curve and derives a circle centered

at q with r as the radius (i.e., the green circle depicted

in Fig. 5). Since the circle bounds point 51, it is certain

to contain the nearest neighbor to point q. Second, a

window query is issued to retrieve all the data points

inside the circle, i.e., points with index values 11, 32,

and 51. Finally, the point 32 is identified as the nearest

neighbor. The search algorithm for CNN adopts a sim-

ilar approach. It approximates a search range which is

guaranteed to bound all the answer objects, issues a

window query to retrieve all the objects inside the

search range, and finally filters out those unqualified.

All the indexes mentioned above are based on a

central tree-based structure, like R-tree and B-tree.

However, employing a tree-based index on a linear

broadcast channel to support spatial queries results in

several deficiencies. First, clients can only start the

search when they retrieve the root node in the channel.

Replicating the index tree in multiple places in the

broadcast channel provides multiple search starting

points, shortening the initial root-probing time. How-

ever, a prolonged broadcast cycle leads to a long access

latency experienced by the clients. Second, wireless

broadcast media is not error-free. In case of losing

intermediate nodes during the search process, the
Air Indexes for Spatial Databases. Figure 6. Distributed spa
clients are forced to either restart the search upon an

upcoming root node or scan the subsequential broad-

cast for other possible nodes in order to resume the

search, thus extending the tuning time. Distributed

spatial index (DSI), a fully distributed spatial index

structure, is motivated by these observations [5]. A

similar distributed structure was proposed in [3] as

well to support access to spatial data on air.

DSI is very different from tree-based indexes, and is

not a hierarchical structure. Index information of spa-

tial objects is fully distributed in DSI, instead of simply

replicated in the broadcast. With DSI, the clients

do not need to wait for a root node to start the search.

The search process launches immediately after a client

tunes into the broadcast channel and hence the initial

probe time for index information is minimized.

Furthermore, in the event of data loss, clients resume

the search quickly.

LikeHCI,DSI also adoptsHilbert curve to determine

broadcast order of data objects. Data objects, mapped

to point locations in a 2-D space, are broadcast in the

ascending order of their HC index values. Suppose

there are N objects in total, DSI chunks them into nF
frames, with each having no objects (nF = dN ∕noe). The
space covered by Hilbert Curve shown in Fig. 5 is used

as a running example, with solid dots representing the

locations of data objects (i.e., N = 8). Figure 6 demon-

strates a DSI structure with no set to 1, i.e., each frame

contains only one object.

In addition to objects, each frame also has an index

table as its header, which maintains information
tial index.

AJAX A 77

A
regarding to the HC values of data objects to be broad-

cast with specific waiting interval from the current

frame. This waiting interval can be denoted by delivery

time difference or number of data frames apart, with

respect to the current frame. Every index table keeps ni
entries, each of which, tj, is expressed in the form of

hHC 0j,Pji, j 2 [0,ni). Pj is a pointer to the r j-th frame

after the current frame, where r (> 1) is an exponen-

tial base (i.e., a system-wide parameter), and HC 0j is

the HC value of the first object inside the frame point-

ed by Pj. In addition to tj, an index table also keeps the

HC values HCk (k 2 [1,no]) of all the objects objk that

are contained in the current frame. This extra infor-

mation, although occupying litter extra bandwidth,

can provide a more precise image of all the objects

inside current frame. During the retrieval, a client

can compare HCks of the objects against the one she

has interest in, so the retrieval of unnecessary object

whose size is much larger than an HC value can be

avoided.

Refer to the example shown in Fig. 5, with

corresponding DSI depicted in Fig. 6. Suppose r = 2,

no = 1, nF = 8, and ni = 3. The index tables corres-

ponding to frames of data objects O6 and O32 are

shown in the figure. Take the index table for frame

O6 as an example: t0 contains a pointer to the next

upcoming (20-th) frame whose first object’s HC value

is 11, t1 contains a pointer to the second (21-th) frame

with HC value for the first object (the only object) 17,

and the last entry t2 points to the fourth (22-th) frame.

It also keeps the HC value 6 of the object O6 in the

current frame. Search algorithm for window queries

and kNN searches are proposed.

Key Applications

Location-based Service

Wireless broadcast systems, because of the scalability,

provide an alternative to disseminate location-based

information to a large number of users. Efficient air

indexes enable clients to selectively tune into the chan-

nel and hence the power consumption is reduced.

Moving Objects Monitoring

Many moving objects monitoring applications are in-

terested in finding out all the objects that currently

satisfy certain conditions specified by the users. In

many cases, the number of moving objects is much
larger than the number of submitted queries. As a

result, wireless broadcast provides an ideal way to

deliver subscribed queries to the objects, and those

objects that might affect the queries can then report

their current locations.
Cross-references
▶Nearest Neighbor Query

▶ Space-Filling Curves for Query Processing

▶ Spatial Indexing Techniques

▶Voronoi Diagrams
Recommended Reading
1. Acharya D. and Kumar V. Location based indexing scheme for

days. In Proc. 4th ACM Int. Workshop on Data Eng. for Wireless

and Mobile Access, 2005, pp. 17–24.

2. Gedik B., Singh A., and Liu L. Energy efficient exact knn search

in wireless broadcast environments. In Proc. 12th ACM Int.

Symp. on Geographic Inf. Syst., 2004, pp. 137–146.

3. Im S., Song M., and Hwang C. An error-resilient cell-based

distributed index for location-based wireless broadcast services.

In Proc. 5th ACM Int. Workshop on Data Eng. for Wireless and

Mobile Access, 2006, pp. 59–66.

4. Imielinski T., Viswanathan S., and Badrinath B.R. Data on air –

organization and access. IEEE Trans. Knowl. Data Eng., 9(3):1997.

5. Lee W.-C. and Zheng B. Dsi: a fully distributed spatial index for

wireless data broadcast. In Proc. 23rd Int. Conf. on Distributed

Computing Systems, 2005, pp. 349– 358.

6. Xu J., Zheng B., Lee W.-C., and Lee D.L. The d-tree: an index

structure for location-dependent data in wireless services. IEEE

Trans. Knowl. Data Eng., 16(12):1526–1542, 2002.

7. Zheng B., Lee W.-C., and Lee D.L. Spatial queries in wireless

broadcast systems. ACM/Kluwer J. Wireless Networks, 10

(6):723–736, 2004.

8. Zheng B., Lee W.-C., and Lee D.L. On searching continuous k

nearest neighbors in wireless data broadcast systems. IEEE Trans.

Mobile Comput., 6(7):748–761, 2007.

9. Zheng B., Xu J., Lee W.-C., and Lee L. Grid-partition index:

a hybrid method for nearest-neighbor queries in wireless loca-

tion-based services. VLDB J., 15(1):21–39, 2006.
AJAX

ALEX WUN

University of Toronto, Toronto, ON, Canada

Definition
AJAX is an acronym for ‘‘Asynchronous JavaScript and

XML’’ and refers to a collection of web development

78 A Allen’s Relations
technologies used together to create highly dynamic

web applications.
Key Points
AJAX does not refer to a specific technology, but

instead refers to a collection of technologies used in

conjunction to develop dynamic and interactive web

applications. The two main technologies comprising

AJAX are the JavaScript scripting language and the

W3C open standard XMLHttpRequest object API.

While the use of XML and DOM are important for

standardized data representation, using neither XML

nor DOM is required for an application to be consid-

ered AJAX-enabled since the XMLHttpRequest API

actually supports any text format.

Using the XMLHttpRequest API, web applications

can fetch data asynchronously while registering a call-

back function to be invoked once the fetched data

is available. More concretely, the XMLHttpRequest

object issues a standard HTTP POST or GET request

to a web server but returns control to the calling

application immediately after issuing the request. The

calling application is then free to continue execution

while the HTTP request is being handled on the

server. When the HTTP response is received, the

XMLHttpRequest object calls back into the function

that was supplied by the calling application so that the

response can be processed. The asynchronous callback

model used in AJAX applications is analogous to

the Operating System technique of using interrupt

handlers to avoid blocking on I/O. As such, deve-

lopment using AJAX necessarily requires an under-

standing of multi-threaded programming.

There are three main benefits to using AJAX in

web applications:

1. Performance: Since XMLHttpRequest calls are asyn-

chronous, client-side scripts can continue execution

after issuing a request without being blocked by po-

tentially lengthy data transfers. Consequently, web

pages can be easily populated with data fetched in

small increments in the background.

2. Interactivity: By maintaining long-lived data trans-

fer requests, an application can closely approximate

real-time event-driven behavior without resorting

to periodic polling, which can only be as responsive

as the polling frequency.

3. Data Composition: Web applications can easily pull

data from multiple sources for aggregation and
processing on the client-side without any depen-

dence on HTML form elements. Data composition

is also facilitated by having data adhere to standard

XML and DOM formats.

The functionality provided by AJAX allows web appli-

cations to appear and behave much more like tradi-

tional desktop applications. The main difference is that

data consumed by the application resides primarily out

on the Internet – one of the concepts behind applica-

tions that are labeled as being representative ‘‘Web 2.0’’

applications.

Cross-references
▶ JavaScript

▶MashUp

▶Web 2.0/3.0

▶XML

Recommended Reading
1. The Document Object Model: W3CWorking Draft. Available at:

http://www.w3.org/DOM/

2. The XMLHttpRequest Object: W3CWorking Draft. Available at:

http://www.w3.org/TR/XMLHttpRequest/
Allen’s Relations

PETER REVESZ
1, PAOLO TERENZIANI

2

1University of Nebraska-Lincoln, Lincoln, NE, USA
2University of Turin, Turin, Italy

Synonyms
Qualitative relations between time intervals; Qualita-

tive temporal constraints between time intervals

Definition
A (convex) time interval I is the set of all time points

between a starting point (usually denoted by I�) and

an ending point (I+). Allen’s relations model all possi-

ble relative positions between two time intervals [1].

There are 13 different possibilities, depending on the

relative positions of the endpoints of the intervals

(Table 1).

For example, ‘‘There will be a guest speaker during

the Database System class’’ can be represented by

Allen’s relation IGuest During IDatabase (or by I�Guest >

I�Database ∧ I+Guest < I+Database considering the relative

Allen’s Relations. Table 1. Translation of Allen’s interval

relations between two intervals I and J into conjunctions of

point relations between I�, Iþ, J�, Jþ.

I� J� I� J+ I+J� I+ J+

After >

Before <

Meets =

Met_by =

During > <

Contains < >

Equal = =

Finishes > =

Finished_by < =

Starts = <

Started_by = >

Overlaps < > <

Overlapped_by > < >

Allen’s Relations. Figure 1. Visualization of Allen’s

interval relations.

AMOSQL A 79

A

position of the endpoints. Moreover, any subset of the

13 relations, excluding the empty subset, is a relation

in Allen’s Interval Algebra (therefore, there are 213-1

relations in Allen’s Algebra). Such subsets are used in

order to denote ambiguous cases, in which the relative

position of two intervals is only partially known.

For instance, I1 (Before, Meets, Overlaps) I2 represents

the fact that I1 is before or meets or overlaps I2.
Key Points
In many cases, the exact time interval when facts occur

is not known, but (possibly imprecise) information on

the relative temporal location of facts is available.

Allen’s relations allow one to represent such cases of

temporal indeterminacy. For instance, planning in Arti-

ficial Intelligence is the first application of Allen’s rela-

tions. A graphical representation of the basic 13 Allen’s

relations is shown in Fig. 1.

Allen’s relations are specific cases of temporal con-

straints. Namely, they are qualitative temporal con-

straints between time intervals. Given a set of such

constraints, qualitative temporal reasoning can be used

in order to make inferences (e.g., to check whether the

set of constraints is consistent).

Finally, notice that, in many entries of this Ency-

clopedia, the term (time) period has been used with the

same meaning of (time) interval in this entry.
Cross-references
▶Qualitative Temporal Reasoning

▶Temporal Constraints

▶Temporal Indeterminacy
Recommended Reading
1. Allen J.F. Maintaining knowledge about temporal intervals.

Commun. ACM, 26(11):832–843, 1983.
AMOSQL

PETER M. D. GRAY

University of Aberdeen, Aberdeen, UK

Definition
AMOSQL [2] is a functional language having its roots in

the functional query languages OSQL [1] and DAPLEX

[5] with extensions of mediation primitives, multi-direc-

tional foreign functions, late binding, active rules, etc.

Queries are specified using the select–from–where con-

struct as in SQL. Furthermore, AMOSQL has aggrega-

tion operators, nested subqueries, disjunctive queries,

quantifiers, and is relationally complete.

AMOSQL is a functional query language operating

within the environment of Amos II , which is an open,

80 A AMS Sketch
light-weight, and extensible database management sys-

tem (DBMS) with a functional data model. Each Amos

II server contains all the traditional database facilities,

such as a storage manager, a recovery manager, a trans-

action manager, and a query language. The system can

be used as a single-user database or as a multi-user server

to applications and to other Amos II peers. It has mainly

been used for experiments with Mediators [4].

Key Points
AMOSQL is often used within a distributed mediator

system where several mediator peers communicate

over the Internet. Functional views provide transpar-

ent access to data sources from clients and other medi-

ator peers. Amos II mediators are composable since a

mediator peer can regard other mediator peers as data

sources. In AMOSQL [2] the top-level language uses

function application within an SQL-like syntax, for

example to list children of a particular parent who

like sailing:

create function sailch(person p) ->

string as

select name(c) from person c

where parent(c) = p and hobby(c) =

‘sailing’;

This is turned internally into a typed object

comprehension.

sailch(p) == [name(c) | c <- person; par-

ent(c)=p; hobby(c) = ‘sailing’]

Some functions may be defined as views on other

databases accessed through mediators. In the compre-

hension form, such functions may easily be substituted

because of referential transparency, leading to a longer

conjunction with extra clauses [3].

Suppose information about hobby(c) was held in

connection with sports-person, a subclass of per-

son with a surname attribute:

hobby(c) == [recreation(x) | x <- sports-

person; surname(x) = name(c)]

These comprehensions merge into the following

which can be further simplified:

sailch(p) == [name(c) | c <- person; par-

ent(c)=p; x <- sportsperson;

surname(x) = name(c); recreation(x) =

‘sailing’]
Note that the internal form of comprehension does not

explicitly distinguish the use of generators but simply

use equality as in a filter. The conceptual advantage of

this is that generators are not always a fixed role and

some optimizations may reverse the role of filter and

generator (systems with explicit generators use rewrite

rules to do this).
Cross-references
▶Comprehensions

▶ Functional Query Language
Recommended Reading
1. Beech D. A foundation of evolution from relational to

object databases. In Advances in Database Technology, Proc.

1st Int. Conf. on Extending Database Technology, 1988,

pp 251–270.

2. Fahl G., Risch T., and Sköld M. 1AMOS – an architecture for

active mediators. In Proc. Workshop on Next Generation Infor-

mation Technologies and Systems, 1993.

3. Josifovski V. and Risch T. Functional query optimization over

object-oriented views for data integration. J. Intell. Inf. Syst., 12

(2–3):165–190, 1999.

4. Risch T., Josifovski V., and Katchaounov. T. Functional Data

Integration in a Distributed Mediator System. In The Functional

Approach to Data Management, chapter 9, P.M.D. Gray, L.

Kerschberg, P.J.H. King, and A. Poulovassilis (eds.). Springer,

Berlin Heidelberg New York, 2004.

5. Shipman D.W. The functional data model and the data language

DAPLEX. ACM Trans. Database Syst., 6(1):140–173, 1981.
AMS Sketch

ALIN DOBRA

University of Florida, Gainesville FL, USA

Synonyms
AGMS sketch; Sketch; Tug-of-war sketch

Definition
AMS sketches are randomized summaries of the data

that can be used to compute aggregates such as the

second frequency moment (the self-join size) and sizes

of joins. AMS sketches can be viewed as random pro-

jections of the data in the frequency domain on
 1

pseudo-random vectors. The key property of AMS

AMS Sketch A 81

A
sketches is that the product of projections on the same

random vector of frequencies of the join attribute of

two relations is an unbiased estimate of the size of join

of the relations. While a single AMS sketch is inaccu-

rate, multiple such sketches can be computed and

combined using averages and medians to obtain an

estimate of any desired precision.

Historical Background
The AMS sketches were introduced in 1996 by Noga

Alon, Yossi Matias, and Mario Szegedy as part of a suit

of randomized algorithms for approximate computa-

tion of frequencymoments. The same authors, together

with Phillip Gibbons, extended the second frequency

moment application of AMS sketches to the computa-

tion of the size of join of two relations, a more rele-

vant database application. The initial work on AMS

sketches fostered a large amount of subsequent work

on data streaming algorithms including generaliza-

tions and extensions of AMS sketches. Alon, Matias,

and Szegedy received the Gödel Prize in 2005 for their

work on AMS sketches.

Foundations
While the AMS sketches were initially introduced to

compute the second frequency moment, since the reader

might be more familiar with database terminology, the

problem of estimating the size of join of two relations

will be considered here instead.Notice that the size of the

self join size of a relation coincides with the second

frequency moment of the relation thus the treatment

here is slightly more general but not more complicated.

Problem Setup

To set up the problem, assume access is provided to

two relations F and G each with a single attribute a.

Since it is convenient, denote with fi and gi the fre-

quency of value i of attribute a in relation F and G,

respectively. Assume that elements of F and G are

streamed the result of the query: COUNT(F ⋈a G)

needs to be computed or estimated. Consider the fol-

lowing example:

Stream F : a 1 1 2 3 1 3 ;

frequency vector f:
i 1 2 3

fi 3 1 2
Stream G : a 3 1 3 1 1 ;

frequency vector g:
i 1 2 3

gi 3 0 2

Elements of F and G are assumed to arrive one by

one (i.e., are streamed). If the frequency vectors f and g

can be maintained, than the result of the query COUNT

(F ⋈ aG) can be computed clearly in the following

example:

COUNTðF ffla GÞ ¼ fgT

¼ 3 1 2½ � 3 0 2½ �T

¼ 3 � 3þ 1 � 0þ 2 � 2
¼ 13

Observe that the size of join can be written as the

dot product of the frequency vectors of the two rela-

tions. Expressing the size of the join in terms of fre-

quencies of the join attribute is key for AMS sketch

based approximation.
Main Idea

Assume now that the estimate COUNT(F ⋈ aG) needs

to be computed but only less than linear space, in

terms of the size of the frequency vectors, is available.

As it turns out, exact computation is not possible with

less space (in an asymptotic sense), but approximate

computation is possible. The AMS sketches prove that

they allow the approximation of the size of join using

sub-linear space.

The main idea behind AMS sketches is to summa-

rize the entire frequency table by projecting it on a

random vector. The value thus obtained will be re-

ferred to as an elementary sketch. Then, use the two

elementary sketches, one for each relation, to recover

approximately the result of the query. Interestingly, a

random vector x ¼ x1:::xn�½ of
 1 values suffices to

obtain projections with the desired properties. For

simplicity, random vectors for which 8i, E[xi] = 0 are

preferred. With this:

Sketch of F, XF = fxT

� Sketch of G, XG =gxT

� X = XFXG estimates COUNT(F ⋈a G) since

E½X � ¼ E½fxTxgT � ¼ fE½xTx�gT ¼ fIgT ¼ fgT

82 A AMS Sketch
if E[xTx] = I. To ensure this, property distinct elements

of x must be pair-wise independent, i.e.,

8i 6¼ i0; x2i ¼ 1; E½xixi0 � ¼ 0

For the particular random vector

x ¼ x1 x2 x3½ � ¼ �1þ 1� 1½ �, the value of the ele-

mentary sketches and the overall estimate will be:

XF ¼ fxT ¼ �4
XG ¼ gxT ¼ �5
X ¼ XFXG ¼ ð�4Þð�5Þ ¼ 20 � 13

The error of the estimate X is due to its variance

that can be shown to have the property:

VarðXÞ � 2ffTggT ¼ 2 SJðFÞ SJðGÞ

as long as the random vector x is 4-wise independent,

i.e., 8i1 6¼ i2 6¼ i3 6¼ i4; E½xi1xi2 � ¼ 0; E½xi1xi2xi3xi4 � ¼ 0

Since a higher degree of independence would not

make the sketch more precise, 4-wise independence suf-

fices. This is important since 4-wise independent
 1

random vectors can be generated on the fly by combin-

ing a small seed s and the index of the entry using

xi(s) = h(s,i) with h a special hash function that guar-

antees the 4-wise independence of the components of

x. The fact that elements of x can be generated on

the fly is important since space can be saved and,

more importantly, because sketches XF and XG can be

computed using constant storage. This is how this

can be accomplished using the previous example:

XF ¼ fxT ¼
X
i

f ixi

¼
X
t2F

xt :a ¼ x1 þ x1 þ x2 þ x3 þ x1 þ x3

¼ hðs; 1Þ þ hðs; 1Þ þ hðs; 2Þþ
hðs; 3Þ þ hðs; 1Þ þ hðs; 3Þ
AMS Sketch. Figure 1. Combining elementary sketches to e

with probability at least 1 � d.
XG ¼ gxT ¼
X
i

g ixi

¼
X
t2G

xt :a ¼ x3 þ x1 þ x3 þ x1 þ x1

¼ hðs; 3Þ þ hðs; 1Þ þ hðs; 3Þ þ hðs; 1Þ þ hðs; 1Þ

From this example, it can be observed that, to

maintain the elementary sketches over the streams

F and G, the only operation needed is to increment

XF and XG by the value of xt.a using the function h(�)
and the seed s where t.a is the value of attribute a of the

current tuple t arriving on the data stream. The fact

that the elementary sketches can be computed so easily

by considering one element at the time in an arbitrary

order is what makes the AMS sketches appealing as an

approximation technique.
Improving the Basic Schema

Since the streams F and G are summarized by a single

number XF and XG, respectively, it is not expected that

the estimate will be very precise (this is suggested as

well by the above example). In order to improve the

accuracy of X, a standard technique in randomized

algorithms can be used (i.e., generating multiple inde-

pendent copies of random variable X). Copies of X are

averaged in order to decrease the variance (thus the

error). The median of such averaged values of X is used

to estimate COUNT(F ⋈a G) since medians improve

confidence. Multiple copies of X can be obtained using

multiple seeds as depicted in Fig. 1.

It can be shown that:

Average
8VarðXÞ
E2E2½X � independent copies of X to reduce

error to 2

� Median of 2 log 1 ∕d such averages increases the

confidence to 1 � d
stimate COUNT(F ⋈a G) with relative error at most 2

AMS Sketch. Figure 2. Relative error of AMS sketches as a function of Zipf coefficient.

AMS Sketch A 83

A

Key Applications
AMS sketches are particularly well suited for comput-

ing aggregates when data is either streamed (or a single

pass over the data is allowed/desirable) or distributed

at multiple sites. Thus, AMS sketches are relevant for

processing large amount of data, as is the case in data

warehousing, or processing distributed/streaming data,

as is the case for computing networking statistics.

Experimental Results
To get an understanding of how the AMS sketches

perform in the problem of estimating the self join

size of a relation, consider the following setup. The

domain of the attribute on which the self join size is

computed is set to 16,384. The seize of the relation is

fixed at 100,000 tuples. The distribution of the fre-

quencies of join attribute values are generated accord-

ing to a Zipf distribution with a varying Zipf

coefficient. The number of medians is set to 1 (no

median computation) and the number of elementary

sketches averaged is set to 1,024.

The relative error, both theoretical and empirical,

of AMS sketches is depicted in Fig. 2. The following

observations confirm the intuition based on theory

for the behavior of AMS sketches: (i) on the self join

size problem the error is acceptable for sketches of

size in the order of 2,000 words, (ii) the error decrea-

ses somewhat as the skew increases, and (iii) the

theoretical prediction follows entirely the empirical

behavior.
URL to Code
http://www.cs.rutgers.edu/~muthu/mass

dal-code-index.html http://www.cise.

ufl.edu/~adobra/AQP/code.html

Cross-references
▶Approximate Query Processing

▶Data Stream

Recommended Reading
1. Alon N., Gibbons P.B., Matias Y., and Szegedy M. Tracking join

and self-join sizes in limited storage. J. Comput. Syst. Sci., 64

(3):719–747, 2002.

2. Alon N., Matias Y., and Szegedy M. The space complexity of

approximating the frequency moments. In Proc. 28th Annual

ACM Symp. on Theory of Computing, 1996, pp. 20–29.

3. Charikar M., Chen K., and Farach-Colton M. Finding frequent

items in data streams. In Proc. 29th Int. Colloquium on Auto-

mata, Languages and Programming, 2002, pp. 693–703.

4. Cormode G. and Garofalakis M. Sketching streams through

the net: distributed approximate query tracking. In Proc. 31st

Int. Conf. on Very Large Data Bases, 2005, pp. 13–24.

5. Das A., Gehrke J., and Riedewald M. Approximation techniques

for spatial data. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2004, pp. 695–706.

6. Dobra A., Garofalakis M., Gehrke J., and Rastogi R. Processing

complex aggregate queries over data streams. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2002, pp. 61–72.

7. Rusu F. and Dobra A. Pseudo-random number generation for

sketch-based estimations. ACM Trans. Database Syst., 32(2):11,

2007.

8. Rusu F. and Dobra A. Statistical Analysis of Sketch Estimators.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2007, pp. 187–198.

84 A Analogy
Analogy

▶Visual Metaphor
Anchor

▶Anchor Text
Anchor Text

VASSILIS PLACHOURAS

Yahoo! Research, Barcelona, Spain

Synonyms
Anchor; Anchor text surrogate

Definition
Anchor text is the text associated with a hyperlink

pointing from one Web document to another. Anchor

text provides a concise description of a document, not

necessarily written by the author of the document. It is

very effective in Web search retrieval tasks, and in

particular, in tasks where the aim is to find the home

page of a given website.

Key Points
Hyperlink analysis algorithms explicitly employ the

hyperlinks between Web documents to find high qual-

ity or authoritative Web documents. A form of implicit

use of the hyperlinks in combination with content

analysis is the use anchor text associated with the

incoming hyperlinks of documents. Web documents

can be represented by an anchor text surrogate, which

is formed by collecting the anchor text associated with

the hyperlinks pointing to the document.

The anchor text of the incoming hyperlinks provides

a concise description for a Web document. The used

terms in the anchor text may be different from the ones

which occur in the document itself, because the author of

the anchor text is not necessarily the author of the docu-

ment. Eiron and McCurley [2] found similarities in the

distribution of terms between the anchor text of Web

documents and the queries submitted to an intranet

search engine by users. Similarities were also found in

the use of abbreviations and technical terms.
Craswell et al. [1] show that anchor text is effect-

ive for navigational search tasks and more specifically

for finding home pages of Web sites. They report that

searching for home pages of websites using an index of

anchor text performs better than using an index of the

document contents. Upstill et al. [3] also suggest that

the anchor text of the incoming hyperlinks from docu-

ments outside a corpus of documents enhances the

retrieval effectiveness for homepage finding.
Cross-references
▶Document Links and Hyperlinks

▶ Field-Based Information Retrieval Models

Recommended Reading
1. Craswell N., Hawking D., and Robertson S. Effective site finding

using link anchor information. In Proc. 24th Annu. Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2001, pp. 250–257.

2. Eiron N. and McCurley K.S. Analysis of anchor text for web

search. In Proc. 26th Annu. Int. ACM SIGIR Conf. on Research

and Development in Informaion Retrieval, 2003, pp. 459–460.

3. Upstill T., Craswell N., and Hawking D. Query-independent

evidence in home page finding. ACM Trans. Inform. Syst.,

21(3):286–313, 2003.
Anchor Text Surrogate

▶Anchor Text
AND-Join

▶Workflow Join
AND-Split

▶ Split
Animation

▶Dynamic Graphics

Annotation-based Image Retrieval A 85

A
Annotation

AMARNATH GUPTA

University of California, San Diego, La Jolla, CA, USA

Definition
An annotation is any form of additional information

‘‘superposed’’ on any existing data or document.

Example : If a scientist records her experimental

data in a relational database and then marks some

‘‘cells’’ of a table with the comment ‘‘consistent with

previous findings,’’ this additionally ‘‘marked’’ infor-

mation is an annotation.

Key Points
Often annotations are not originally intended to be part

of the collected data, and hence no data or schema

structure was designed to hold it. Annotating data is a

very common practice in science, where scientists would

literally ‘‘mark’’ experimental observation with com-

ments, and often use annotations to share their opinions

in a collaborative study. As larger scale experiments

are conducted and larger collaborations are formed,

management of the annotated data becomes a serious

challenge. In recent times, the emerging importance of

annotation in scientific data management has been

recognized by the InformationManagement community,

leading to a variety of research in annotation

management.

Cross-references
▶Annotation-Based Image Retrieval

▶Biomedical Scientific Textual Data Types and Pro-

cessing

▶ Provenance
Recommended Reading
1. Bhagwat D., Chiticariu L., Tan W.C., and Vijayvargiya G.

An annotation management system for relational databases.

In Proc. 30th Int. Conf. on Very Large Data Bases, 2004,

pp. 900–911.

2. Buneman P., Khanna S., and Tan W.-C. On propagation of

deletions and annotations through views. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2002, pp. 150–158.

3. Geerts F., Kementsiesidis A., andMilano D. MONDRIAN: anno-

tating and querying databases through colors and blocks. In

Proc. 22nd Int. Conf. on Data Engineering, 2006, p. 82.

4. Gertz M. and Sattler K.-U. Integrating scientific data through

external, concept-based annotations. In Proc. Workshop on
Efficiency and Effectiveness of XML Tools and Techniques and

Data Integration over the Web, LNCS, Vol. 2590, Springer, 2002,

pp. 220–240.

5. Murthy S., Maier D., and Delcambre L.M.L. Querying bi-level

information. In Proc. 7th Int. Workshop on the World Wide

Web and Databases, 2004, pp. 7–12.

6. Srivastava D. and Velegrakis Y. Intensional associations between

data and metadata. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2007, pp. 401–412.
Annotation-based Image Retrieval

XIN-JING WANG, LEI ZHANG

Microsoft Research Asia, Beijing, China

Synonyms
Semantic image retrieval; Text-based image retrieval;

Tag-based image search; Tag-based image retrieval

Definition
Given (i) a textual query, and (ii) a set of images and

their annotations (phrases or keywords), annotation-

based image retrieval systems retrieve images according

to the matching score of the query and the corres-

ponding annotations. There are three levels of queries

according to Eakins [7]:

� Level 1: Retrieval by primitive features such as

color, texture, shape or the spatial location of

image elements, typically querying by an example,

i.e., ‘‘find pictures like this.’’

� Level 2: Retrieval by derived features, with some

degree of logical inference. For example, ‘‘find a

picture of a flower.’’

� Level 3: Retrieval by abstract attributes, involving a

significant amount of high-level reasoning about

the purpose of the objects or scenes depicted. This

includes retrieval of named events, of pictures

with emotional or religious significance, etc., e.g.,

‘‘find pictures of a joyful crowd.’’

Together, levels 2 and 3 are referred to as semantic image

retrieval, which can also be regarded as annotation-

based image retrieval.
Historical BackGround
There are two frameworks of image retrieval [6]:

annotation-based (or more popularly, text-based) and

content-based. The annotation-based approach can be

86 A Annotation-based Image Retrieval
tracked back to the 1970s. In such systems, the images

are manually annotated by text descriptors, which are

used by a database management system (DBMS) to

perform image retrieval. There are two disadvantages

with this approach. The first is that a considerable level

of human labor is required for manual annotation. The

second is that because of the subjectivity of human

perception, the manually labeled annotations may not

converge. To overcome the above disadvantages, con-

tent-based image retrieval (CBIR) was introduced in the

early 1980s. In CBIR, images are indexed by their visual

content, such as color, texture, shapes. In the past de-

cade, several commercial products and experimental

prototype systems were developed, such as QBIC,

Photobook, Virage, VisualSEEK, Netra, SIMPLIcity.

Comprehensive surveys in CBIR can be found in [7,8].

However, the discrepancy between the limited

descriptive power of low-level image features and the

richness of user semantics, which is referred to as the

‘‘semantic gap’’ bounds the performance of CBIR. On

the other hand, due to the explosive growth of visual

data (both online and offline) and the phenomenal suc-

cess in Web search, there has been increasing expectation

for image search technologies. Because of these reasons,

the main challenge of image retrieval is understanding

media by bridging the semantic gap between the bit

stream and the visual content interpretation by humans

[3]. Hence, the focus is on automatic image annotation

techniques.

Foundations
The state-of-the-art image auto-annotation techniques

include four main categories [3,6]: (i) using machine

learning tools to map low-level features to concepts,

(ii) exploring the relations among image content and

the textual terms in the associated metadata, (iii) gen-

erating semantic template (ST) to support high-level

image retrieval, (iv) making use of both the visual

content of images and the textual information

obtained from the Web to learn the annotations.

Machine Learning Approaches

A typical approach is using Support Vector Machine

(SVM) as a discriminative classifier over image low-

level features. Though straightforward, it has been

shown effective in detecting a number of visual concepts.

Recently there is a surge of interest in leveraging

and handling relational data, e.g., images and their sur-

rounding texts. Blei et al. [1] extends the Latent Dirichlet
Allocation (LDA) model to the mix of words and images

and proposed a Correlation LDA model. This model

assumes that there is a hidden layer of topics, which are

a set of latent factors and obey the Dirichlet distribution,

and words and regions are conditionally independent

on the topics, i.e., generated by the topics. This work

used 7,000 Corel photos and a vocabulary of 168 words

for annotation.

Relation Exploring Approaches

Another notable direction for annotating image visual

content is exploring the relations among image content

and the textual terms in the associated metadata. Such

metadata are abundant, but are often incomplete and

noisy. By exploring the co-occurrence relations among

the images and the words, the initial labels may be

filtered and propagated from initial labeled images to

additional relevant ones in the same collection [3].

Jeon et al. [5] proposed a cross-media relevance

model to learn the joint probabilistic distributions of

the words and the visual tokens in each image, which

are then used to estimate the likelihood of detecting a

specific semantic concept in a new image.

Semantic Template Approaches

Though it is not yet widely used in the above men-

tioned techniques, Semantic Template (ST) is a

promising approach in annotation-based image re-

trieval (a map between high-level concept and low-

level visual features).

Chang and Chen [2] show a typical example of ST, in

which a visual template is a set of icons or example scenes/

objects denoting a personalized view of concepts such as

meetings, sunset. The generation of a ST is based on user

definition. For a concept, the objects, their spatial and

temporal constraints, and the weights of each feature of

each object are specified. This initial query scenario is

provided to the system, and then through the interaction

with users, the system finally converges to a small set of

exemplar queries that ‘‘best’’ match (maximize the recall)

the concept in the user’s mind.

In contrast, Zhuang et al. [10] generates ST auto-

matically in the process of Relevance Feedback, whose

basic idea is to refine retrieval outputs based on

interactions with the user. A semantic lexicon called

WordNet is used in this system to construct a network

of ST. During the retrieval process, once the user sub-

mits a query concept (keyword), the system can find a

corresponding ST, and thus target similar images.

Annotation-based Image Retrieval. Figure 1. Framework of the search-based annotation system.

Annotation-based Image Retrieval A 87

A

Large-Scale Web Data Supported Approaches

Good scalability to a large set of concepts is required in

ensuring the practicability of image annotation. On the

other hand, images from the Web repositories, e.g.,

Web search engines or photo sharing sites, come with

free but less reliable labels. In [9], a novel search-based

annotation framework was proposed to explore

such Web-based resources. Fundamentally, it is to

automatically expand the text labels of an image of

interest, using its initial keyword and image content.

The process of [9] is shown in Fig. 1. It contains

three stages: the text-based search stage, the content-

based search stage, and the annotation learning stage,

which are differentiated using different colors (black,

brown, blue) and labels (A., B., C.). When a user submits

a query image as well as a query keyword, the system first

uses the keyword to search a large-scale Web image

database (2.4 million images crawled from several Web

photo forums), in which images are associated with

meaningful but noisy descriptions, as tagged by ‘‘A.’’ in

Fig. 1. The intention of this step is to select a semanti-

cally relevant image subset from the original pool.

Visual feature-based search is then applied to further

filter the subset and save only those visually similar

images (the path labeled by ‘‘B.’’ in Fig. 1). By these

means, a group of image search results which are both

semantically and visually similar to the query image

are obtained. To speed-up the visual feature-based

search procedure, a hash encoding algorithm is
adopted to map the visual features into hash codes,

by which inverted indexing technique in text retrieval

area can be applied for fast retrieval. At last, based on

the search results, the system collects their associated

textual descriptions and applies the Search Result Clus-

tering (SRC) algorithm to group the images into clus-

ters. The reason of using SRC algorithm is that (i) it is

proved to be significantly effective in grouping docu-

ments semantically; and (ii) more attractively, it

is capable of learning a name for each cluster that

best represents the common topics of a clusters mem-

ber documents. By ranking these clusters according to

a ranking function, and setting a certain threshold, the

system selects a group of clusters and merges their

names as the final learnt annotations for the query

image, which ends the entire process (C. in Fig. 1).

Key Applications
Due to the explosive growth of visual data (both online

and offline), effective annotation-based image search

becomes a highly-expected technique which facilitate

human’s lives.

Cross-references
▶Cross-Modal Multimedia Information Retrieval

▶Hash-Based Indexing

▶ Image Querying

▶ Image Retrieval

▶ Indexing and Similarity Search

88 A Anomaly Detection on Streams
▶ Information Information Retrieval

▶Object Recognition

▶Multimedia Information Retrieval

▶Web Search and Crawling

Recommended Reading
1. Blei D. and Jordan M.I. Modeling Annotated Data. In Proc. 26th

Annual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 2003, pp. 127–134.

2. Chang S.-F., Chen W., and Sundaram H. Semantic Visual

Templates: Linking Visual Features to Semantics. In Proc. Int.

Conf. on Image Processing, Vol. 3. 1998, pp. 531–534.

3. Chang S.-F., Ma W.-Y., and Smeulders A. Recent Advances

and Challenges of Semantic Image/Video Search. In Proc. IEEE

Int. Conf. on Acoustics, Speech, and Signal Processing, 2007,

pp. 1205–1208.

4. Eakins J. and Graham M. Content-based image retrieval,

Technical Report, University of Northumbria at Newcastle, 1999.

5. Jeon J., Lavrenko V., and Manmatha R. Automatic Image

Annotation and Retrieval Using Cross-Media Relevance Models,

In Proc. 26th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2003, pp. 119–126.

6. Liu Y., Zhang D., Lu G., andMaW.-Y. A survey of content-based

image retrieval with high-level semantics. Pattern Recognit.,

40(1):262 –282, 2007.

7. Long F., Zhang H.J., and Feng D.D. Fundamentals of content-

based image retrieval. In Multimedia Information Retrieval

and Management, D. Feng (eds.). Springer, 2003.

8. Rui Y., Huang T.S., and Chang S.-F. Image retrieval: current

techniques, promising directions, and open issues, J. Visual

Commun. Image Represent. 10(4):39–62, 1999.

9. Wang X.-J., Zhang L., Jing F., and Ma W.-Y. AnnoSearch:

Image Auto-Annotation by Search. In Proc. IEEE Int. Conf. on

Computer Vision and Pattern Recognition, 2006, pp. 1483–1490.

10. Zhuang Y., Liu X., and Pan Y. Apply Semantic Template to

Support Content-based Image Retrieval. In Proc. SPIE, Storage

and Retrieval for Media Databases, vol. 3972, December 1999,

pp. 442–449.
Anomaly Detection on Streams

SPIROS PAPADIMITRIOU

IBM T.J. Watson Research Center, Hawthorne,

NY, USA

Definition
Anomaly detection generally refers to the process of auto-

matically detecting events or behaviors which deviate

from those considered normal. It is an unsupervised pro-

cess, and can thus detect anomalies which have not been

previously encountered. It is based on estimating a model

of typical behavior from past observations and conse-

quently comparing current observations against this
model. It can be performed either on a single stream or

amongmultiple streams. Anomaly detection encompasses

outlier detection as well as change detection and therefore

is closely related to forecasting and clustering methods.

Historical Background
Anomaly detection in streams has close connections

to traditional outlier detection, as well as to change

detection. The former is a common and widely studied

topic in statistics [11]. The latter emerged in the context

of statistical monitoring and control for continuous

processes and the widely used CUSUM algorithm was

proposed as early as 1954 [9]. With the emergence of

data stream management systems, anomaly detection

in this setting has received significant attention, with

applications in network management and intrusion

detection, environmental monitoring, and surveillance,

to mention a few.

Foundations
Anomaly detection is closely related to outlier detec-

tion and change detection. After a review of the main

ideas, the streaming case is presented.

Outlier Detection

The existing approaches to outlier detection can

be broadly classified into the following categories. Typi-

cally, outlier detection relies on a model for the data.

Model parameters are estimated based on appropriately

chosen historical data. As new observations arrive, they

are either compared directly against the model and are

declared outliers if the fit is poor. Alternatively, a second

set of model parameters may be estimated from recent

observations. If there is a statistically significant differ-

ence among the two sets of parameters, the new observa-

tions are declared as outliers.

Clustering-Based and Forecasting-Based Approaches

Many clustering and forecasting algorithms detect out-

liers as by-products. However, not all clustering or

forecasting procedures can be easily turned into outlier

detection procedures.

Distribution-Based Approaches Methods in this categ-

ory are typically found in statistics textbooks. They de-

ploy some standard distribution model (e.g., Gaussian)

and flag as outliers those objects which deviate from the

model. These work well in many occasions, but may be

unsuitable for high-dimensional data sets, or when

Anomaly Detection on Streams A 89

A
reasonable assumptions about the distribution of data

points cannot be made.

Distance-Based and Density-Based Approaches A point

in a data set is a distance-based outlier if at least a

fraction b of all other points are further than r from

it. This outlier definition is based on a single, global

criterion determined by the parameters r and b. This
can lead to problems when the data set has both dense

and sparse regions. Density-based approaches aim to

remedy this problem, by relying on the local density of

each point’s neighborhood.

Change Detection

Sequential hypothesis testing and sequential change

detection arose out of problems in statistical process

control. Assume a collected sequence of observations,

modeled as random variables X1, X2,..., Xt,.... Addition-

ally, assume that Xt are drawn from a distribution with

parameter y and that a test of whether the true param-

eter is y0 or y1 is desired.
The Sequential Likelihood Ratio Test (SLRT) relies

on the logarithm of likelihood ratios zt := log(p(xt; y0)∕p
(xt; y1)) and tests the cumulative sum z1 +...+ zt
to decide upon the true parameter.

This can be extended to other settings, such as

detecting changes in other distribution parameters.

For example, in its simplest form, CUSUM tests for

a shift in the mean by essentially applying SLRT,

assuming points independently drawn from a Gaussian

distribution with known variance. Many other versions

have appeared since the CUSUM test was first proposed

[9], relaxing or modifying some of these assumptions.

In general, change detection is closely related to

outlier detection; in fact, change detection may also

be viewed as outlier detection along the time axis.
Streaming Algorithms

In a streaming setting, there are two key challenges that

need to be addressed:

1. Limited resources. In a streaming setting, a large

number of observations arrives over time and the

total volume of data grows indefinitely. However

processing and storage capacity are limited, in com-

parison to the amount of data. Therefore, data sum-

marization or sketching techniques need to be

applied, in order to extract a few, relevant features

from the raw data.
2. Concept drift. In an indefinitely growing collection of

observations, changes in the underlying features (e.g.,

distribution parameters) may not necessarily corre-

spond to anomalies, but rather be part of normal

changes in the behavior of the system. Thus, mechan-

isms to handle such non-stationarity or concept drift

and adapt to changing behavior are necessary [12].

Next, several of the approaches that have been studied

in the literature are reviewed.

Sketching techniques In the past several years, a num-

ber of techniques for sketch or synopsis construction

have appeared, with applications to many stream

processing problems. Some examples include CM

sketches, AMS sketches, FM sketches, and Bloom filters

[2]. Other summarization techniques specifically for

data clustering on streams have appeared, such as

those in [1,4], which can be easily extended for outlier

detection on streams.

Burst Detection In many applications, the appearance

of sudden bursts in the data often signifies an anomaly.

For example, in a network monitoring application,

a burst in the traffic volume to a particular destination

may signify a denial of service (DoS) attack. Thus,

burst detection on streams has received significant

attention. Examples of such work include [7] and [14].

Correlation Dnalysis Often a collection of multiple

streams is available and measurements from different

streams may be highly correlated with each other. If

the strength of correlations changes over time [13] or

the number of correlated components varies [10],

this often signifies changes in the underlying data-

generating process that may be due to anomalies.

Change Analysis More generally, detecting significant

changes has been studied in the context of stream

processing [3].
Key Applications

Intrusion Detection With the widespread adoption of

the internet, various forms of malware (e.g., viruses,

worms, trojans, and botnets) have become a serious and

costly issue. Most intrusion detection systems (IDS) rely

on known signatures to identify malicious payloads or

behaviors. However, there are several efforts underway

90 A Anonymity
for automatic detection of suspicious activity on the fly,

as well as for automating the signature extraction process.

System Monitoring Maintenance costs for large com-

puter clusters or networks is traditionally labor-intensive

and contributes a large fraction of total cost of owner-

ship. Hence, autonomic computing initiatives aim at

automating this process. An important first step is the

automatic, unsupervised detection of abnormal events

(e.g., node or link failures) based on continuously col-

lected system metrics. Streaming anomaly detection

methods are used to address this problem.

Process Control Applications in quality control and

industrial process control have traditionally provided

much of the impetus for the development of change

detection methods. Machinery used in a production

chain (e.g., food preparation or chip fabrication) typi-

cally monitor a large number of process parameters at

each step. Early detection of sudden changes in those

parameters is important to identify potential flaws in the

process which can severely affect end product quality.

Pervasive Healthcare Small and cheap sensors which

can continuously monitor patient physiological data

(e.g., temperature, blood pressure, heart rate, ECG mea-

surements, glucose levels, etc.) are becoming widely avail-

able. Anomaly detection methods can prove essential

in enabling early diagnosis of potential life-threatening

conditions, as well as preventive healthcare.

Civil Infrastructure Early detection of faults by continu-

ously monitoring civil infrastructure components (e.g.,

bridges, buildings, and roadways) can reduce mainte-

nance costs and increase safety. Similarly, surveillance

systems on urban environments rely on anomaly detec-

tion methods to spot suspicious activities and increase

security.

Future Directions
Certain anomalies can be detected only by taking

into account information collected from a large num-

ber of different sources. Even if data ownership issues

are resolved, collecting all this information at a central

site is often infeasible due to its large volume. A num-

ber of efforts have tackled this problem in the past few

years, but much remains to be done, especially as the

scale of information collected increases. Also related

to this trend is anomaly detection on more complex

data, such as time-evolving graphs.
Cross-references
▶Change Detection

▶Clustering

▶ Forecasting

▶Outlier Detection

Recommended Reading
1. Aggarwal C.C., Han J., Wang J., and Yu P.S. A Framework for

clustering evolving data streams. In Proc. 29th Int. Conf. on Very

Large Data Bases, 2003, pp. 81–92.

2. Aggarwal C.C. and Yu P.S. A survey of synopsis construction in

data streams. In Data Streams: Models and Algorithms. Springer,

2007.

3. Cormode G. and Muthukrishnan S. What’s new: finding signifi-

cant differences in network data streams. IEEE/ACM Trans.

Netw., 13(6):1219–1232, 2005.

4. Guha S., Meyerson A., Mishra N., Motwani R., and O’Callaghan

L. Clustering data streams: theory and practice. IEEE Trans.

Knowl. Data Eng., 15(3):515–528, 2003.

5. Hulten G., Spencer L., and Domingos P. Mining time-changing

data streams. In Proc. 7th ACM SIGKDD Int. Conf. on Knowl-

edge Discovery and Data Mining, 2001, pp. 97–106.

6. Jain A.K., Narasimha Murty M. and Flynn P.J. Data clustering:

a review. ACM Comput. Surv., 31(3):264–323, 1999.

7. Kleinberg J. Bursty and hierarchical structure in streams. In

Proc. 8th ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining, 2002, pp. 91–101.

8. Lee W., Stolfo S.J., and Mok K.W. Adaptive intrusion detection:

a data mining approach. Artif. Intell. Rev. 14(6):533–567, 2000.

9. Page E.S. Continuous inspection schemes. Biometrika,

41(1):100–115, 1954.

10. Papadimitriou S., Sun J., and Faloutsos C. Streaming pattern

discovery in multiple time-series. In Proc. 31st Int. Conf. on

Very Large Data Bases, 2005, pp. 697–708.

11. Peter J.R. and Annick M.L. Robust Regression and Outlier

Detection. Wiley, New York, 1987.

12. Wang H., Fan W., Yu P.S., and Han J. Mining concept-drifting data

streams using ensemble classifiers. In Proc. 9th ACM SIGKDD Int.

Conf. onKnowledgeDiscovery andDataMining, 2003, pp. 226–235.

13. Zhu Y. and Shasha D. StatStream: statistical monitoring of

thousands of data streams in real time. In Proc. 28th Int. Conf.

on Very Large Data Bases, 2002, pp. 358–369.

14. Zhu Y. and Shasha D. Efficient elastic burst detection in data

streams. In Proc. 9th ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining, 2003, pp. 336–345.
Anonymity

SIMONE FISCHER-HÜBNER

Karlstad University, Karlstad, Sweden

Synonyms
Namelessness; Nonidentifiability

ANSI/INCITS RBAC Standard A 91

A
Definition
The term anonymity originates from the Greek word

‘‘anonymia,’’ which means ‘‘without a name.’’

In the context of computing, anonymity has been

defined in [2] as follows: ‘‘Anonymity of a subject

means that the subject is not identifiable within a set

of subjects, the anonymity set.’’ The anonymity set is

the set of all possible subjects, e.g., the set of all possible

senders of a message or the set of all possible recipients

of a message (dependent on the knowledge of an at-

tacker). Sender anonymity means that a message can-

not be linked to the sender, while receiver anonymity

implies that a certain message cannot be linked to the

receiver of that message. Relationship anonymity of a

sender and recipient means that even though a sender

and a recipient can be identified as participating in

some communication, they cannot be identified as

communicating with each other, i.e., sender and recip-

ient are unlinkable. The definition above corresponds

to the definition of anonymity in [1]: ‘‘Anonymity of a

user means that the user may use a resource or service

without disclosing the user’s identity.’’

To reflect the possibility to quantify anonymity, a

slightly modified definition has also provided by [2]:

‘‘Anonymity of a subject from the attacker’s perspective

means that the attacker cannot sufficiently identify

the subject within a set of subjects, the anonymity set.’’

Data protection legislation usually defines data as

anonymous if information concerning personal or ma-

terial circumstances can no longer (or with disap-

propriate amount of time, expense, and labor) be

attributed to an individual.

Key Points
Providing anonymity is the best strategy for achieving

privacy. If individuals can act anonymously and if

their data are kept in an anonymous form, their priva-

cy is not affected (and consequently, data protection

legislation is not applicable).

For providing anonymity, however, it has to be

guaranteed that potential attackers cannot or not suf-

ficiently identify the individuals. Proposals for measur-

ing the degree of anonymity are usually based on

Shannon’s entropy.

Cross-references
▶ Privacy

▶ Privacy-Enhancing Technologies

▶ Privacy Metrics
Recommended Reading
1. Common Criteria Project, Common criteria for information

technology security evaluation, Version 3.1, Part 2: Security

functional requirements, September 2006, www.commoncriter-

iaportal.org

2. Pfitzmann A. and Hansen M. ‘‘Anonymity, unlinkability, unob-

servability, pseudonymity, and identity management – a conso-

lidated proposal for terminology,’’ Version 0.29, http://dud.inf.

tu-dresden.de/Anon_Terminology.shtml, July, 2007.
Anonymity in Location-based
Services

▶ Spatial Anonymity
ANSI/INCITS RBAC Standard

YUE ZHANG, JAMES B. D. JOSHI

University of Pittsburgh, Pittsburgh, PA, USA

Synonyms
RBAC standard

Definition
The ANSI/INCITS RBAC standard includes the core,

hierarchical, and the constraint RBAC models [1]. The

core RBAC includes the following entities:

– USERS, ROLES, OPS, and OBS are the sets of users,

roles, operations and objects, respectively.

– UA
 USERS � ROLES is a many-to-many

mapping from USERS to ROLES.

– assigned_users: (r :ROLES)! 2USERS, is mapping of

role r onto a set of users. Formally: assigned_users

(r) = {uEUSERS j (u, r) E UA}
– PRMS = 2(OBS � OPS) is the set of permissions.

– PA
 PERMS � ROLES is a many-to-many

mapping from PERMISSIONS to ROLES.

– assigned_permissions(r :ROLES)! 2PRMS, is mapp-

ing of role r onto a set of permissions. Formally:

assigned_permissions(r) = {pEPRMS j (p, r) E PA}
– Op(p: PRMS) ! {op
OPS}, is the permission to

operation mapping.

– Ob(p: PRMS) ! {ob
OBS}, is the permission to

object mapping.

– SESSIONS = the set of sessions

– session_users (s:SESSIONS) ! USERS is mapping

of session s onto the corresponding user.

92 A Answering Queries Using Views
– session_roles (s:SESSIONS)! 2ROLES is mapping of

session s onto a set of roles.

– avail_session_perms(s:SESSIONS) ! 2PRMS gives

the permissions available to a user in a session =

[
r2session rolesðsÞ

assigned permissionsðrÞ

2
4

3
5

The hierarchical RBAC model extends the core RBAC

model with the general and restricted role hierarchies.

The general role hierarchy is defined below:

� RH
 ROLES � ROLES is a partial order on

ROLES, written as 	, where r1 	 r2 only if all

permissions of r2 are also permissions of r1, and

all users of r1 are also users of r2.

� authorized_users(r : ROLES)! 2USERS, ismappingof

role r onto a set of users in the presence of a role

hierarchy.Formally:authorized_users(r) = {u2USERS
j r’ 	 r, (u, r’) 2 UA}.

� authorized_permissions(r : ROLES) ! 2PRMS, is

mapping of role r onto a set of permissions in the

presence of a role hierarchy. Formally: authorized_

permissions(r) = {p2PRMS j r’ 	 r, (p, r’) 2 PA}

The restricted hierarchy is similar to the general role

hierarchies with the following limitation:

8 r; r1; r2 2 ROLES; r 	 r1 ^ r 	 r2) r1 ¼ r2

The constraint RBAC model extends the hierarchical

RBAC with Static Separation of Duty (SSoD) and Dy-

namic SoD (DSoD) constraints.

SSoD Constraint: SSD
 (2ROLES � N) is a collec-

tion of pairs (rs, n) in Static Separation of Duty, where

each rs is a role set, and n is a natural number	 2, with

the property that no user is assigned to n or more roles

from the set rs in each (rs, n) SSD.

DSoD Constraint: DSD
 (2ROLES�N) is collection

of pairs (rs, n) in Dynamic Separation of Duty, where

each rs is a role set and n is a natural number 	2, with
the property that no subject may activate n or more

roles from the set rs in each dsd DSD.
Key Points
The ANSI/INCTIS RBAC standard essentially evolved

from the original RBAC96 model [2]. Several advanced

features of RBAC such as cardinality constraints,

hybrid hierarchy, much fine-grained SoD constraints,
features related to the administration of RBAC, etc.,

are not covered in the standard. The link (http://csrc.

nist.gov/groups/SNS/rbac/standards.html) includes the

most updated information on ANSI RBAC.
Cross-references
▶Role Based Access Control

Recommended Reading
1. ANSI. American national standard for information technology –

role based access control. ANSI INCITS, 359–2004, February

2004.

2. Sandhu R.S., Coyne E.J., Feinstein H.L., and Youman C.E. Role-

based access control models. IEEE Comput., 29(2):38–47, 1996.
Answering Queries Using Views

VASILIS VASSALOS

Athens University of Economics and Business, Athens,

Greece

Synonyms
Query rewriting using views

Definition
Answering queries using views refers to a data man-

agement problem and the set of related techniques,

algorithms and other results to address it. The basic

formulation of the problem is the following: Given a

query Q over a database schema S, expressed in a

query language LQ and a set of views V1,V2,...,Vn over

the same schema, expressed in a query language LV, is it

possible to answer the query Q using (only) the views

V1,V2,...,Vn?

The problem has a number of related formulations:

What is the maximal set of tuples in the answer of Q

that can be obtained from the views? If it is possible to

access both the views and the database relations, what

is the cheapest query execution plan for answering Q?

From the above, it is clear that this is more generally

a family of problems. Problems of different complexity,

often admitting different (or no) solutions and solution

techniques, result from making choices about various

‘‘parameters’’ of the original problem. For example, one

can choose the languages LQ and LV, the language LR
used to answer Q from the views, the ability to access

the relations of the schema S, the possible existence of
constraints, e.g., equality-generating or tuple-generating

Answering Queries Using Views A 93

A
dependencies, aswellas the semanticsof theviews (sound,

complete, or both).

The problem is also referred to as query rewriting

using views.
Historical Background
The problem of putting together information from

multiple sources has a relatively long history within

the database community. In the 1970s, distributed

databases offered a controlled solution to the problem:

the data are structured with a single schema and are

put under the control of a single, albeit distributed,

database system. In the early 1980s, the challenges

of integrating full-fledged relational databases was

studied in the context of multidatabases. An important

direction of multidatabase research was static schema

integration, i.e., creating in advance a single new sche-

ma with as much of the information of the original

schemas as possible. Query processing could then

be performed on the integrated schema. ‘‘Reusing’’

the original database tables also received some atten-

tion in the multidatabase context. In the early 1990s,

techniques were developed in order to make use of

existing materialized views to speed up the processing

of queries that did not mention them explicitly.

These techniques were precursors to the more general

techniques developed a few years later for the problem

of answering queries using views. The problem was

cast in its current form in a seminal paper by Levy,

Mendelzon, Sagiv, and Srivastava in 1995.
Foundations

Preliminaries

To fully specify the problem of answering queries

using views one needs to decide on the languages

used for the queries, the views and, in some cases, the

rewritings. This entry presents the basic case of answer-

ing conjunctive queries using conjunctive views, possibly

in the presence of constraints. The relevant definitions

are presented next. Techniques developed for different

languages or data models, such as bag queries (and

views), XML queries, queries with aggregates, etc.,

can be found in the Recommended Reading list. More-

over, detailed presentations of the techniques discussed

in the article, including exceptions, optimizations, and

other technical issues, can be found in the research

articles on the Recommended Reading list.
Conjunctive Queries A conjunctive query can be repre-

sented as:

qð�XÞ s1ð�X1Þ ^ ::: ^ snð�XnÞ

where q and s1,...,sn are predicate names. In general,

s1,...,sn refer to database relations. The atoms s1(�X1),...,

sn(�Xn) that appear in the body of the query are called

subgoals of the query, The atom q(�X) is called the head

of the query and defines the answer relation. The tuples
�X , �X1,...,�Xn contain either variables or constants. The

variables in �X are the distinguished variables of the

query, the rest of the variables are the existential vari-

ables. An important condition for a conjunctive query

is safety: A query is safe if �X
 �X1 [...[�Xn, i.e., every

distinguished variable must also appear in a query

subgoal.

Use Vars(Q) and Subg(Q) to refer to the set of

variables (and constants) in Q and subgoals of Q

respectively. Q(D) refers to the result of evaluating

the query Q over the database D.

Views A view is a query whose head defines a new

database relation. If this relation is not stored, the view

is called a virtual view. If the results of executing the

view are stored, it is called a materialized view and

the relation is the extension of the view. Denote by DV

the database D extended with the extensions of the

views belonging to a view set V .

Containment & Equivalence The concepts of query

containment and equivalence are central to query

rewriting theory [ref Encyclopedia article Query Rewrit-

ing] as they are used to test the correctness of a rewriting

of a query using a set of views.

Definition 1 A query Q1 is contained in a query Q2,

denoted Q1 v Q2, if for all database instances D, the set

of tuples computed for Q1 is a subset of those computed

for Q2, i.e., Q1(D)
Q2(D). The two queries are equiva-

lent if Q1 v Q2 and Q2 v Q1.

Containment mappings provide a necessary and suffi-

cient syntactic condition for testing query containment

of conjunctive queries.

Definition 2 Amapping t from Vars(Q2) to Vars(Q1) is

a containment mapping if

� It is the identity on constants

� It maps every subgoal inSubg(Q2) to a subgoal

inSubg(Q1), and

94 A Answering Queries Using Views
� It maps the head of Q2 to the head of Q1.

A seminal result in semantic query optimization is that

a query Q1 is contained in Q2 if and only if there is a

containment mapping from Q2 to Q1.
Rewritings
Given a query Q and a set of views V1,V2,...,Vn over the

same database schema, the goal is to find an equivalent

rewriting Q 0 of the query, i.e., a query Q 0 that uses one

or more of the views in the body.

Definition 3 A query Q 0 is an equivalent rewriting of

query Q that uses the set of views V ¼ {V1,V2,...,Vn} if

� Q and Q 0are equivalent, and
� Q 0refers to the views in V .

For every database D, Q 0 is evaluated over DV. A

rewriting Q 0 is locally minimal if no literals from Q 0

can be removed while retaining equivalence to Q. A

rewriting is globally minimal if there is no other rewrit-

ing with fewer literals. If the rewriting refers only to the

views in V and to no other relations then the rewriting

is called complete. When looking for rewritings, it is

preferable to find those that are cheaper to evaluate

than the original query. Below is an example of a query

and a rewriting using views.

Example 1: Consider the following query Q and

view V

Q : qðX ;UÞ pðX ;Y Þ ^ p0ðY ;ZÞ ^ p1ðX ;W Þ
^ p2ðW ;UÞ:

V : vðA;BÞ pðA;CÞ ^ p0ðC;BÞ ^ p1ðA;DÞ:

Q can be rewritten using V as follows:

Q 0 : qðX ;UÞ vðX ;ZÞ ^ p1ðX ;W Þ ^ p2ðW ;UÞ:

By substituting the view, the first two literals of the

query can be removed. However, although the third

literal in Q is guaranteed to be satisfied by V , it cannot

be removed from the query, as the variable D is pro-

jected out in the head of V . Hence, if p1 were removed

from the query, the join condition between p1 and p2
could not be enforced.

In several settings, maximally contained rewritings

need to be considered. Unlike equivalent rewritings, max-

imally contained rewritings may differ depending on the

language used to express the rewritings. Therefore, the
following definition depends on a particular query

language:

Definition 3 Let Q be a query and V ¼ {V1,...,Vm} be a

set of views over the same database schema, and L be a

query language. The query Q 0 is a maximally contained

rewriting of Q using V with respect to L if:

� Q 0is a query in L that refers only to the views in V,

� Q 0v Q, and

� for every rewriting Q12L, such that Q1vQ,Q1vQ 0.

Characterizing Rewritings

Answering queries using views is closely related to the

problem of query containment. The following propo-

sition provides a necessary and sufficient condition for

the existence of a rewriting of Q that includes a view V.

Proposition 1 Let Q and V be conjunctive queries with

built-in predicates. There is a rewriting of Q using V if

and only if p;(Q) v p;(V), i.e., the projection of Q onto

the empty set of columns is contained in the projection of

V onto the empty set of columns.

This proposition provides a complete characterization of

the problem of using views for query answering. Two

other important characteristics of the problem are that,

for conjunctive queries and views, a rewriting that does

not introduce new variables and does not include data-

base relations that do not appear in the original query,

can always be found. These characteristics allow signifi-

cant pruning of the search space for a minimal rewriting

of Q, but do not always hold for more expressive

settings of the problem. Finally, a minimal rewriting

of a query Q using a set of views V without built-in

predicates does not need more than the number of

literals in the query. In particular, if the body of Q has

p literals and Q 0is a locally minimal and complete

rewriting of Q using V, then Q 0has at most p literals.

The bound provided above does not hold when the

database relations have functional dependencies. In

such a case the size of a minimal rewriting is at most

p þ d literals, where d is the sum of the arities of the

literals in Q. In the presence of built-in predicates,

the size of the rewritten query is at most exponential

in the size of Q.

The above properties determine the complexity of

the problem. In particular, if Q is a conjunctive query

with built-in predicates and V is a set of conjunctive

views without built-in predicates, then the problem of

Answering Queries Using Views A 95

A
determining whether there exists a rewriting of Q that

uses V is NP-complete. If the views in V have built-in

predicates, the problem is Pp
2-complete. If neither

the query nor the views have built-in predicates, then

finding a rewriting with at most k literals, where k is the

number of literals in the body of Q, is NP-complete.

Finally, if the query and the views have built-in

predicates, then finding a rewriting with at most k

literals is in Sp
3.

Techniques for Answering Queries Using Views

The above characterization suggests a two-step algo-

rithm for finding rewritings of a query Q using a set of

views V. At first, find some containment mapping from

V to Q and add to Q the appropriate atoms of V,

resulting in a new query Q 0. Then, minimize Q 0 by

removing literals from Q that are redundant. An algo-

rithm needs to consider every possible conjunction of k

or fewer view atoms, where k is the number of sub-

goals in the query. Algorithms that attempt to explore

more effectively the search space to produce maximally

contained rewritings include the Bucket Algorithm, the

Inverse-Rules Algorithm and the MiniCon Algorithm.

The Bucket Algorithm The main idea underlying the

algorithm is that the query rewritings that need to be

considered can be significantly reduced if for each

subgoal in the query the relevant views are identified.

To demonstrate the algorithm, the following query

and views are used (The example used is from [10]):

Q1ðxÞ citesðx; yÞ ^ citesðy; xÞ ^ sameTopicðx; yÞ
V 1ðaÞ citesða; bÞ ^ citesðb; aÞ

V 2ðc; dÞ sameTopicðc; dÞ
V 3ðf ; hÞ citesðf ; gÞ ^ citesðg ; hÞ ^ sameTopicðf ; gÞ

Given a query Q, the Bucket Algorithm proceeds in

two steps. In the first step, the algorithm creates a

bucket for each subgoal in Q that is not in C(Q),

where by C(Q) refers to the subgoals of comparison

predicates of Q. Each bucket contains the views that

are relevant to answering the particular subgoal. For

the example, the following buckets are created:
cites(x, y) cites(y, x) sameTopic(x, y)

V1(x) V1(x) V2(x, y)

V3(x, y) V3(x, y) V3(x, y)
The algorithm also requires that every distin-

guished variable in the query should be mapped to a

distinguished variable in the view. Hence, the algo-

rithm does not include the entry V1(y) even though it

is possible to map the subgoal cites(x,y) in the query to

the subgoal cites(b,a) in V1.

In the second step, for each element of the Carte-

sian product of the buckets, the algorithm constructs a

conjunctive rewriting and checks whether it is

contained (or can be made to be contained) in the

query. If so, the rewriting is added to the answer.

Therefore, the result of the Bucket Algorithm is a

union of conjunctive rewritings.

In the example, the algorithm will try to comb-

ine V1 with the other views and fail. Then it will

consider the rewritings involving V3 and V2, and dis-

cover a contained rewriting. Finally, it will consider the

rewritings involving only V3, and find a contained

rewriting by equating the variables in the head of V3.

It is possible to add an additional check that will deter-

mine whether a resulting rewriting will be redundant, as is

the case here with the rewriting combining V3 and V2.

Therefore, the only minimal rewriting in this example

is: Q1
0(x)←V3(x, x). This rewriting is in fact an equiv-

alent one.

The Bucket Algorithm misses important interac-

tions between view subgoals by considering each

subgoal separately. Consequently, the buckets can con-

tain unusable views and, as a result, the second step of

the algorithm can become very expensive.
The Inverse Rules Algorithm The main idea of the In-

verse-Rules Algorithm is to construct a set of rules that

invert the view definitions, i.e., rules that compute tuples

for the database relations from tuples of the views. The

inverse rules together with a conjunctive query Q con-

stitute a maximally contained rewriting for Q that is

represented as a union of conjunctive queries. Consid-

ering the views of the previous example, the algorithm

would construct the following inverse rules:

R1 : citesða; f V 1
ðaÞÞ V 1ðaÞ

R2 : citesð f V 1
ðaÞ; aÞ V 1ðaÞ

R3 : sameTopicðc; dÞÞ V 2ðc; dÞ
R4 : citesð f ; f V 3

ð f ; hÞÞ V 3ð f ; hÞ
R5 : citesð f V 3

ð f ; hÞ; hÞ V 3ð f ; hÞ
R6 : sameTopicð f ; f V 3

ð f ; hÞÞ V 3ð f ; hÞ

V(Y) h ’ G

V2(c, d) c!c, d!d x!c, y!d 3

V3(f, f) f!f, h!f x!f, y!f 1, 2, 3

96 A Answering Queries Using Views
For every view relation Vwith an existential variable Zi,

a function symbol fV,i is introduced. The above rules

provide all the information about the database rela-

tions that can be extracted from the view extension.

Intuitively, a tuple of the form (A) in the extension

of the view V1 is a witness of two tuples in the relat-

ion cites: a tuple of the form (A, Z), for some value of

Z, and a tuple of the form (Z, A), for the same value

of Z. The rules will generate from a tuple V1(A) two

such tuples that will contain the unique functional

term f V 1
ðAÞ: it is a syntactic stand-in for the unknown

(but known to exist) common value in the two tuples.

The rewriting of a query Q using the set of views V

is simply the query consisting of Q and the inverse

rules for V (There is a systematic way to eliminate

the function symbols). Two important advantages of

the algorithm are that the inverse rules can be con-

structed ahead of time, independent of a particular

query, in polynomial time, and that the technique is

also applicable virtually without change to recursive

queries.

The rewritings produced by the Inverse-Rules Algo-

rithm have some shortcomings when used for query

evaluation. First, applying the inverse rules to the exten-

sion of the views may invert some of the computation

done to produce the extent of the view. Second, they

may access views that have no relevance to the query.

The MiniCon Algorithm The MiniCon Algorithm

starts by considering, for each subgoal in the query,

which view specializations contain subgoals that can

‘‘cover’’ it. A view specialization is created from a view

by possibly equating some head variables. Once the

algorithm finds a partial mapping ’ from a subgoal g

in the query to a subgoal g1 in the view specialization V,

it extends it to a minimal additional set of subgoals

G of the query that must also be mapped to V.

In particular, G includes all subgoals of the query that

contain some variable of g mapped by f to an existen-

tial variable of V. This set of subgoals and mapping

information is call a MiniCon Description (MCD), and

can be viewed as a generalized bucket. Having consid-

ered in advance how each of the variables in the query

can interact with the available views, the second phase of

the MiniCon Algorithm needs to consider significantly

fewer combinations of these generalized buckets.

Using the query and views of the previous example,

the MCDs formed during the first phase of the Mini-

Con Algorithm are:
where h is a head homomorphism on Vi, V (�Y) is the

result of applying h to Vi to create a view specialization,

’ is a partial mapping from Vars(Q1) to h(Vars(Vi))

and G is a subset of the subgoals in Q1 that are covered

by some subgoal in h(Vi) under the mapping ’.

In the second phase, the MCDs are combined to

produce the query rewritings. In this phase the algorithm

considers combinations of MCDs, and for each valid

combination it creates a conjunctive rewriting of the

query. There is no need for containment testing,

as opposed to the Bucket algorithm. The combinations

of MCDs considered by the MiniCon Algorithm are

those that cover all the subgoals of the query with pair-

wise disjoint subsets of subgoals. The final maximally

contained rewriting is a union of conjunctive queries.

As of 2008, MiniCon has been shown to be the

most efficient current algorithm for answering con-

junctive queries using conjunctive views.
Chase and Backchase In the presence of a set C of

constraints on the relations and the views, Chase and

Backchase is a powerful technique for finding equiva-

lent rewritings using the views.

The chase [ref Encyclopedia entry Chase] is a well-

known technique that can be used to decide contain-

ment of queries under constraints. If the chase of Q1

with C terminates producing a query Qc then Q1 vC

Q2 if and only if QC v Q2. Q1 vC Q2 means that Q1v
Q2 on every database instance that satisfies the con-

straint set C.

For the equivalent rewriting problem under con-

straints C, Q1 is given and must effectively find Q2

such that Q1 �C Q2. The algorithm proceeds in two

steps. In the chase step, it chases Q1 with C until no

more chase steps are possible. This results in a query U

called the universal plan. The universal plan is a query

over the database relations and the views that concep-

tually incorporate all possible alternative ways to an-

swer Q1 in the presence of the constraints C. In

particular, any minimal conjunctive query equivalent

toQ1 under C is isomorphic to a subquery ofU. Hence,

to find all minimal rewritings of Q1, the backchase step

of the algorithm searches the finite space of subqueries

of U. Specifically, for each subquery Qs it checks for

Answering Queries Using Views A 97

A
equivalence withQ1 by chasing Qs with C. Qs is equiva-

lent toQ1 if and only if there is a containment mapping

from Q1 into an intermediate chase result of Qs.

Chase and Backchase applies if the constraint set C

includes tuple-generating and equality-generating depen-

dencies. It is sound and complete if C is weakly acyclic.

Key Applications
The conceptual framework and techniques developed

for query rewriting using views have had significant

impact in a number of areas of information systems,

especially (but not exclusively) in the areas of informa-

tion integration and data integration [ref Encyclopedia

article Information Integration, ref Encyclopedia arti-

cle Data Integration]. In particular, as of 2007, data

integration theory and systems follow two main archi-

tectural approaches for defining and processing queries

in a virtual (In a virtual integration system, as opposed

to a data warehouse [ref entry Data Warehouse], data

resides only in their original locations/sources. The

integration system accesses them every time it needs

to answer a query) integration system. In global-as-

view the integrated global view (or views) of the dispa-

rate data sources is defined (using a standard query

language or an ad hoc specification system) in terms of

the local data sources, and queries are directly

expressed in terms only of the global view(s). In this

case, processing a query over this global view involves

view expansion. In local-as-view data integration on the

other hand, local data sources are expressed in terms of

an a priori given global schema, i.e., they are expressed

as views over the relations of the global schema.

Queries are also expressed in terms of the global sche-

ma. Since in an integration system the only available

data reside in the local sources, answering a query

requires rewriting it in terms of the available sources,

i.e., rewriting it using the views.

In the above context, sources describe their con-

tents in terms of the local schema. In addition, for

sources with limited processing power, their capabil-

ities need to also be taken into account. Since

integrated queries are answered by retrieving data

from local sources, the data retrieval requests (i.e., the

queries) submitted to the sources need to conform to

their capabilities. Query rewriting using views has

provided the conceptual framework and tools to ad-

dress the capability-based rewriting problem.

Another area of application of the ideas of answer-

ing queries using views is query optimization. When
the set of relations mentioned in queries overlaps

with those mentioned in one or more views, and the

views select one or more attributes selected by the

query, the view may be usable by the query. Moreover,

certain indices can also be modeled as materialized

views. Using the materialized views may lower the

cost of query processing, depending on the available

access methods and the selectivity of the involved

predicates. Answering queries using views is used to

decide view usability and generate the appropriate

query plans.

Finally, answering queries using views, especially in

the presence of constraints, has influenced the theory

of data exchange. Data exchange, or data translation,

involves taking data described in one, source, schema

and translating, without loss of information, into data

structured under a different, target, schema.
Future Directions
Even though significant progress has been made in this

area, the applicability and/or efficiency of the devel-

oped techniques is often limited. Future work is need-

ed on rewriting techniques that can perform correctly

and efficiently for ‘‘real’’ SQL views on real SQL

queries, including queries with aggregates, nesting,

bag semantics, and user-defined functions. Moreover,

the conceptual framework of rewriting using views

applies to problems in graph querying, Web service

composition, and rewriting of XQuery.
Cross-references
▶Data Integration

▶Global as Views

▶ Information Integration

▶ Local as views

▶Query Containment

▶View Definition

▶Views
Recommended Reading
1. Abiteboul S. and Duschka O. Complexity of answering

queries using materialized views. In Proc. 17th ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems,

1998, pp. 254–263.

2. Cohen S., Nutt W., and Sagiv Y. Containment of aggregate

queries. In Proc. 9th Int. Conf. on Database Theory, 2003,

pp. 111–125.

3. Deutsch A., Popa L., and Tannen V. Query reformulation with

constraints. ACM SIGMOD Rec., 35(4), 2006.

98 A Anti-monotone Constraints
4. Duschka O. and Geneserth M. Answering recursive queries using

views. In Proc. 16th ACM SIGACT-SIGMOD-SIGART Symp. on

Principles of Database Systems, 1997, pp. 109–116.

5. Halevy A. Answering queries using views: A survey. VLDB J.,

10(4):270–294, 2001.

6. Lenzerini M. Data Integration: A theoretical perspective. In

Proc. 21st ACM SIGACT-SIGMOD-SIGART Symp. on Princi-

ples of Database Systems, 2002, pp. 233–246.

7. Levy A.Y., Mendelzon A.O., Sagiv Y., and Srivastava D. Answering

queries using views. In Proc. 14th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 1995,

pp. 95–104.

8. Lin V., Vassalos V., and Malakasiotis P. MiniCount: Efficient

rewriting of COUNT-Queries using views. In Proc. 22nd Int.

Conf. on Data Engineering, 2006, pp. 1.

9. Papakonstantinou Y. and Vassalos V. Query Rewriting using

semistructured views. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1999, pp. 455–466.

10. Pottinger R. and Halevy A. Minicon: A scalable algorithm for

answering queries using views. VLDB J., 10(2–3):182–198, 2001.

11. Xu A. and Meral Ozsoyoglu Z. Rewriting XPath queries using

materialized views. In Proc. 31st Int. Conf. on Very Large Data

Bases, 2005, pp. 121–132.
Anti-monotone Constraints

CARSON KAI-SANG LEUNG

University of Manitoba, Winnipeg, MB, Canada

Definition
A constraint C is anti-monotone if and only if for

all itemsets S and S0:

if S � S0 and S satisfiesC; then S0 satisfiesC:

Key Points
Anti-monotone constraints [1,2] possess the following

nice property. If an itemset S satisfies an anti-monotone

constraint C, then all of its subsets also satisfy C (i.e., C

is downward closed). Equivalently, any superset of an

itemset violating an anti-monotone constraint C also

violates C. By exploiting this property, anti-monotone

constraints can be used for pruning in frequent itemset

mining with constraints. As frequent itemset mining

with constraints aims to find itemsets that are frequent

and satisfy the constraints, if an itemset violates an

anti-monotone constraint C, all its supersets (which

would also violate C) can be pruned away and their

frequencies do not need to be counted. Examples of
anti-monotone constraints include min(S.Price)	$20
(which expresses that the minimum price of all items

in an itemset S is at least $20) and the usual frequency

constraint support(S) 	minsup (i.e., frequency(S) 	
minsup). For the former, if the minimum price of all

items in S is less than $20, adding more items to S

would not increase its minimum price (i.e., supersets

of S would not satisfy such an anti-monotone con-

straint). For the latter, it is widely used in frequent

itemset mining, with or without constraints. It

states that (i) all subsets of a frequent itemset are

frequent and (ii) any superset of an infrequent itemset

is also infrequent. This is also known as the Apriori

property.
Cross-references
▶ Frequent Itemset Mining with Constraints
Recommended Reading
1. Lakshmanan L.V.S., Leung C.K.-S., and Ng R.T. Efficient dy-

namic mining of constrained frequent sets. ACM Trans. Data-

base Syst. 28(4):337–389, 2003.

2. Ng R.T., Lakshmanan L.V.S., Han J., and Pang A. Exploratory

mining and pruning optimizations of constrained associations

rules. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1998, pp. 13–24.
AP@n

▶Average Precision at n
Applicability Period

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Definition
The applicability period (or period of applicability) for

a modification (generally an insertion, deletion, or up-

date) is the time period that modification is to be

applied. Generally the modification is a sequenced

modification and the period applies to valid time. This

period should be distinguished from lifespan.

Application Benchmark A 99

A
Key Points
The applicability period is specified within a modifica-

tion statement. In constrast, the lifespan is an aspect of

a stored fact.

This illustration uses the TSQL2 language, which

has an explicit VALID clause to specify the applicability

period within an INSERT, DELETE, or UPDATE

statement.

For insertions, the applicability period is the valid

time of the fact being inserted. The following states

that Ben is in the book department for 1month in 2007.

INSERT INTO EMPLOYEE

VALUES (‘Ben’, ‘Book’)

VALID PERIOD ‘[15 Feb 2007, 15 Mar 2007]’

For a deletion, the applicability period states for

what period of time the deletion is to be applied. The

following modification states that Ben in fact was not

in the book department during March.

DELETE FROM EMPLOYEE

WHERE Name = ‘Ben’

VALID PERIOD ‘[1 Mar 2007, 31 Mar 2007]’

After this modification, the lifespan would be February

15 through February 28.

Similarly, the applicability period for an UPDATE

statement would affect the stored state just for the

applicability period.

A current modification has a default applicability

period that either extends from the time the statement

is executed to forever, or when now-relative time is

supported from the time of execution to the ever-

increasing current time.

Cross-references
▶Current Semantics

▶ Lifespan

▶Now in Temporal Databases

▶ Sequenced Semantics

▶Temporal Database

▶Time Period

▶TSQL2

▶Valid Time

Recommended Reading
1. Snodgrass R.T. (ed) The TSQL2 Temporal Query Language.

Kluwer Academic, 1995.

2. Snodgrass R.T., Developing Time-Oriented Database Applica-

tions in SQL, Morgan Kaufmann, 1999.
Application Benchmark

DENILSON BARBOSA
1, IOANA MANOLESCU

2, JEFFREY

XU YU
3

1University of Alberta, Edmonton, AL, Canada
2INRIA Saclay–Îlle de France, Orsay, France
3The Chinese University of Hong Kong, Hong Kong,

China

Synonyms
Benchmark; Performance benchmark

Definition
An application benchmark is a suite of tasks that are

representative of typical workloads in an application

domain.
Key Points
Unlike a MICROBENCHMARK, an application

benchmark specifies broader tasks that are aimed at

exercising most components of a system or tool. Each

individual task in the benchmark is assigned a relative

weight, usually reflecting its frequency or importance

in the application being modeled. A meaningful inter-

pretation of the benchmark results has to take these

weights into account.

The Transaction Processing Performance Council

(TPC) is a body with a long history of defining and

published benchmarks for database systems. For in-

stance, it has defined benchmarks for Online Transac-

tion Processing applications (TPC-C and TPC-E),

Decision Support applications (TPC-H), and for an

Application Server setting (TPC-App).

Other examples of application benchmarks are:

the OO1 and OO7 benchmarks, developed for object-

oriented databases, and XMark, XBench and TPoX,

developed for XML applications.

Cross-references
▶Micro-Benchmarks

▶XML Benchmarks
Recommended Reading
1. Carey M.J., DeWitt D.J., and Naughton J.F. The OO7 bench-

mark. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1993, pp. 12–21.

2. Gray J. (ed.). The Benchmark Handbook for Database and

Transaction Systems, (2nd edn.). Morgan Kaufmann, 1993.

100A Application Recovery
3. Nicola M., Kogan I., and Schiefer B. An XML transaction pro-

cessing benchmark. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 2007, pp. 937–948.

4. Schmidt A., Waas F., Kersten M.L., Carey M.J., Manolescu I., and

Busse R. XMark: a benchmark for XML data management.

In Proc. 28th Int. Conf. on Very Large Data Bases, 2002,

pp. 974–985.

5. Transaction Processing Performance Council. Available at:

http://www.tpc.org/default.asp

6. Yao B.B., ÖzsuM.T., and Khandelwal N. XBench benchmark and

performance testing of XML DBMSs. In Proc. 20th Int. Conf. on

Data Engineering, 2004, pp. 621–633.
Application Recovery

DAVID LOMET

Microsoft Research, Redmond, WA, USA

Synonyms
Persistent applications; Fault tolerant applications;

Transaction processing; Recovery guarantees; Exactly

once execution

Definition
Systems implement application recovery to enable

applications to survive system crashes and provide

‘‘exactly once execution’’ in which the result of execut-

ing the application is equivalent to a single execution

where no system crashes or failures occur.

Historical Background
Application recovery was first commercially provided by

IBM’s CICS (Customer Information Control System).

Generically, these kinds of systems became known as

transaction processing monitors (TP monitors) [5,9].

With a TP monitor, applications are decomposed into

a series of steps. Each step is executed within a transac-

tion. A step typically consists of reading input state from

a database or transactional queue, executing some busi-

ness logic, perhaps processing user input or reading

and writing to a database, and finally, writing state for

the next step into database or queue [4]. If a step failure

occurs, its transaction is aborted. Since the prior step

results are stably stored, the step can be re-executed

after system recovery.

Application recovery does not always involve tran-

sactions, however, as the early work by Borg et al.

demonstrates [6]. More recently, in the web context,

TP monitors have been renamed as application servers
(app servers). App servers are similar to TP monitors,

where state is explicitly managed, frequently by using

transactions. Ongoing interest in application recovery

is illustrated by the ‘‘recovery oriented computing’’

(ROC) project [3] and the Phoenix project [1].

Foundations

Introduction

Exactly-Once Applications: While application program-

mers are usually familiar with the problem area for

which an application is written, they are frequently also

faced with having to deal with ‘‘system problems’’ of

reliability and availability. The system goal is to permit

applications to achieve ‘‘exactly once execution’’ [2].

For example, an airline reservation system wants to

issue exactly the number of tickets a customer requests,

instead of no tickets or twice the number.

Types of Failures: Applications cannot survive all

forms of failures. If an exactly-once execution pro-

duces a ‘‘deterministic’’ failure, then every execution

of the application will lead to that same failure. Such

deterministic failures are called ‘‘hard failures.’’ The

failures that software can deal with are called ‘‘soft

failures.’’ A subsequent execution of the system will

usually avoid the state leading to the system failure.

Soft failures arise in a number of ways.

1. Software non-determinism: A software system is

non-deterministic if, when re-executed, it results

in a different execution path than a prior execution.

Non-determinism can arise when, for example,

paths are determined by relative processor speed

or the sequence of external events. Such software

bugs have been called ‘‘Heisenbugs’’ (hard failures

being ‘‘Bohrbugs’’).

2. Soft hardware failures: Hardwarecanalsosuffer from

‘‘Heisenbugs.’’ For example, a transient hardware fail-

uremay be triggered by an environmental cause, such

as a cosmic ray changing amemorybit, etc.

3. Operator failures: Systems occasionally require op-

erator intervention. Operators, being human, make

mistakes. An operator is unlikely to make the

same mistake at the same point in a subsequent

execution.

Recovery is effective because failures are usually ‘‘soft’’

[3,9], which is why database recovery is so successful.

Support for Application Persistence: Applications

which guarantee ‘‘exactly once’’ execution are called

Application Recovery A 101

A
‘‘persistent applications’’ because application state per-

sists across or despite system failures. The traditional

method for providing application persistence has been

to use a TP monitor. However, new approaches permit

implicit state management, in which the application

programmer delegates the problem of managing appli-

cation state to the system infrastructure.

Implicit state management does not require appli-

cation steps to execute within transactions. It permits

applications to be coded more ‘‘naturally’’ (though

restrictions exist). Application state is made stable

‘‘under the covers.’’ Phoenix [1] does this via logging

application non-determinism and replaying the cap-

tured non-determinism after a failure to recover appli-

cation state. CORBA’s approach [11], having shorter

down time but more costly normal execution, replicates

application state so that if part of the system fails, a copy

of the state is available elsewhere for continued execu-

tion. Implicit state management is discussed here.

Application persistence (recovery) requires different

techniques than database recovery: (i) Applications are

usually single-threaded and ‘‘piece-wise deterministic,’’

while databases execute highly concurrent code. (ii)

Application state is frequently distributed, so dealing

with distribution is essential. (iii) Databases change

state entirely within a transaction, while application

state may frequently change outside of a transaction.

Persisting Application State

Implicit state management requires the infrastructure

supporting an application to capture application state

and make it stable in some way, relieving the program-

mer of this task. Two approaches have been developed.

The approaches are not as different as they appear.

Both require that applications be piece-wise determin-

istic, with clearly identified non-deterministic events

that can be ‘‘applied’’ at an application instance to be

used in deterministic re-execution that can generate

the same state as the original execution.

Recovery: Recovery technology usually assumes

that a failing application will be re-activated after a

system crash and its activities recovered on the original

system. Thus recovery oriented approaches usually cap-

ture application state stably (e.g., ‘‘on disk’’) so that it

survives a system failure. There are two parts to this:

1. Writing a ‘‘snapshot’’ of the state to stable storage

from time to time. It matters when this snapshot,

also called a checkpoint, occurs.
2. Stably logging non-deterministic events encoun-

tered by the application in arrival order.

Recovery, in which the state is re-created following a

system failure, consists of re-installing the latest cap-

tured state (checkpoint) followed by re-executing the

application by ‘‘feeding’’ events from the log to re-

create application state as of the last logged event.

Logging can be either optimistic or pessimistic [7].

Pessimistic logging eagerly makes log records stable,

usually as events occur in order to ensure that execu-

tion is ‘‘exactly once.’’ Optimistic logging defers for

a time making events stable, frequently sacrificing

exactly once execution. Pessimistic logging can be

greatly optimized. Optimistic logging can be con-

strained so that exactly once execution is assured.

This brings these techniques toward some middle

ground in performance, though important differences

remain.

Replication: Replication technology usually assumes

that an application executing on a failing system Awill

continue execution on a separate system B where a

replica of its state has been maintained. The problem

for replica oriented approaches is to capture and keep

in sync an application’s state on these separate systems.

There are two generic approaches to this:

1. Designate one system as the primary system, the

others as secondaries. Non-deterministic events are

sent to the primary system, which then relays them

to the secondary in the order that it received them.

Replicas thus execute in response to the same se-

quence of events. A secondary becomes the primary

on failure of the primary. If a secondary fails, the

primary needs to know this and re-create another

secondary.

2. Use atomic broadcast to send non-deterministic

events to all systems maintaining replicas ‘‘simulta-

neously’’ [1]. Atomic broadcast guarantees that repli-

cas receive all messages and in the same order. If there

is a failure, then the remaining replicas participating

in the atomic broadcast need to know the members

of the new group so that the atomic broadcast pro-

tocol continues to work correctly, possibly including

the creation of a new replica.

Intermediate Approaches: The line between replication

and recovery approaches is not always crisp: (i) A

recovery system can maintain its log by sending the

log records to another system, hence using a second

102A Application Recovery
system as stable storage instead of a disk. This second

site might then become the site where the application

is subsequently executed should the original site fail.

(ii) A second system for a replica might not execute the

events forwarded to it immediately, but rather simply

‘‘log’’ them. Then, only if a primary replica fails would

it perhaps then ‘‘catch up’’ by executing the stored

events.

Thus a second system might serve as a cold standby

system (retaining a log of events) or as a hot standby,

immediately executing the application in response to

the events. Warm standbys are also possible in which

an application is executed at a secondary site in a lazy

fashion, lagging the state of a primary site, but not by

too much. Whether this is should be viewed as recov-

ery or replication is not really important.

Distributed Applications

Many applications are distributed, e.g., a web applica-

tion might consist of a client component providing

the user interface, one or more middle tier compo-

nents executing business logic, and back end com-

ponents that typically provide transactions and

database functionality. The new problem is to coordi-

nate the states of multiple software components

executing different parts of the application [6,7].

1. The state of the set of application components

needs to be ‘‘causal,’’ i.e., every message receive

reflected in the state of some component must

always be accompanied by a sender in a state

where the message has been sent.

2. Messages (non-deterministic events in a distributed

system) must result in an ‘‘exactly once’’ execution

by the receiving component.

3. The application must be able to interact with users

or other elements outside of the persistence infra-

structure, which may not obey the required

protocols.

4. The application must be able to interact with trans-

actional elements like databases.

5. Different strategies have different costs and impact

the balance between normal run time costs and

recovery costs and time-to-recovery.

Contracts for Persistent Components: Providing persis-

tence for components of a distributed application

requires an agreed upon set of protocols or ‘‘contracts’’

[1,2] involving component state and message stability,

repeated sending of messages, eliminating duplicate
messages, etc. The basic contract between persistent

components, called the ‘‘committed interaction con-

tract’’ or CIC, places burdens on both sender and

receiver of a message at the time it is sent.

The sender of a message ensures causality. The send-

er ensures that it’s state as of the time of message send

and the message will be persistent earlier than the

receiver’s state is persisted. Further, the sender must

continue to send the message until the receiver

acknowledges the message, in order to deal with unre-

liable networks and crashed receivers, etc. The CIC

does not specify how to do this, but the recovery

approach usually writes non-deterministic events to a

log, and flushes the log when a message is sent should

the state include previously received messages since the

last log flush.

The receiver of the message ensures exactly once

execution. The receiver eliminates duplicate messages

the sender may send in its effort to provide reliable

delivery. The receiver executes in response to a message

only if receiver state does not already reflect having

received the message and bypasses execution other-

wise, returning the same result as produced by the

original execution. Finally, the receiver ensures that

the state resulting from the message receipt is stable

at an appropriate moment. The CIC contract does not

specify how to do this, but the receiver might use a

table of messages received, or some high water mark

for messages when the sender is known, to which it

compares each incoming message.

External and Transactional Components: Many web

applications involve users entering information at a

keyboard, and a database that stores the results of

business dealings, e.g., the purchase of a plane ticket.

Hence, persistent components must interact with ele-

ments outside of the boundaries of the application and

its supporting system. This requires new forms of

‘‘contracts’’ in which the main burden is placed on

the persistent components to enable an ensemble of

elements to achieve exactly once execution, e.g., one

purchase of the plane ticket.

External components, including users, may not

obey CIC requirements. Hence, external interactions

must be limited to ensure exactly once execution. For

users, both reads and writes might be exposed as hav-

ing multiple occurrences. A failure in the middle of a

user interaction may require entering data more than

once or repeating an output if the system fails between

the event and its stable logging. Systems typically

Application Recovery A 103

A
minimize the problem window by immediate logging,

with a log flush, in response to external events.

A transactional component only occurs at the edge

of an application system, responding to requests for

and updates to its data. Transactions can abort, with

the transactional component’s state reset to remove all

effects of the aborted transaction. The persistent com-

ponent must be prepared to handle transaction aborts

at any time. Transactions actually reduce the burden

for a persistent component as it need not ensure that

its state is stable at each interaction within a transac-

tion. A system crash will eventually lead to the abort of

any interrupted transaction. However, at the point

where the persistent component requests a transaction

commit, it must obey the usual requirements for a

sender in a CIC.

Optimizations: Optimizations can reduce the nor-

mal runtime cost of providing persistent applications.

These exploit additional information known to the

application programmer when the application is either

written or being deployed.

1. Some components may be read-only, producing no

external side effects. So a read only component

need do no logging itself, while a calling persistent

component can log lazily because the read can be

repeated if needed. A functional call component in

which the result depends only on the arguments of

the call requires no logging as the call can be

replayed idempotently.

2. If called components extend the time they stably

remember prior calls and results for idempotence,

then the calling component need not log to make its

state stable prior to each call. It can depend upon the

called components in a sequence of calls to capture

the call results to enable its deterministic replay.

3. When a component is a ‘‘server’’ for exactly one

client, the client can capture what would be non-

deterministic calls and their order for the

server component, relieving the server from need-

ing to log calls messages. Combining this with item

2 enables persistent components without logging

[8,10]. A logless component’s state is regenerated

by its client replaying the sequence of calls, and

it re-executing its own series of calls to other com-

ponents that have captured the call results. Logless

components are easily deployed anywhere, can

be freely replicated, and hence make persistence

simple, flexible, and low cost.
Checkpoints: Recovery time is shortened via check-

points. Component state consists of its variables and

its execution time stack. By checkpointing component

state when there is no execution within the compo-

nent, the checkpoint can be accomplished solely by

capturing its variable values, e.g., checkpoint might

be taken transparently during the midst of a return

from a call to a component. The cost of the check-

point and the need for fast recovery time dictate

checkpoint frequency.

Discussion

Making declarative the requirements for application

persistence, as represented by interaction contracts,

makes it easier to provide and optimize exactly once

execution by expanding the range of implementation

options, including interesting optimizations.

The level of the contract is also important. A CIC

could have been derived from reliable messaging in-

stead of more explicitly as repeated sending of mes-

sages with duplicate elimination. However, reliable

messaging does not describe what happens to messages

once they are delivered. By describing the requirements

for state stability, etc., it becomes clear that delivery is

not, by itself, sufficient. Further, were ‘‘persistent reli-

able messaging’’ used, this would requiring extra log

forces that, can frequently be avoided with the ‘‘end-

to-end’’ application persistence protocol.

System provided transparent application persis-

tence is an example of delegating a serious problem

to the ‘‘system,’’ similar to how transactions delegate

concurrency control and recovery to database systems.

There is no need for special application programmer

consideration, simplifying the application logic, and

improving programmer productivity.

Key Applications
Application recovery (persistence) is used wherever ex-

actly once semantics is required. Traditionally, this has

been within transaction processing systems, but now

more commonly, this involves web applications for e-

business, whether for end user customers or business to

business dealings. If there are financial or legal require-

ments for applications, they will be built using some form

of application recovery to ensure exactly once execution.
Cross-references
▶Transaction

104A Application Server
Recommended Reading
1. Barga R., Chen S., and Lomet D. Improving Logging and

Recovery Performance in Phoenix/App. In Proc. 20th Int.

Conf. on Data Engineering, 2004.

2. Barga R., Lomet D., Shegalov G., and Weikum G. Recovery

Guarantees for Internet Applications. ACM Trans. internet

Tech., 4(3):289–328, 2004.

3. Berkeley/Stanford Recovery-Oriented Computing (ROC) Project.

http://roc.cs.berkeley.edu. October 10, 2008.

4. Bernstein P., Hsu M., and Mann B. Implementing Recoverable

Requests Using Queues. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1990, pp.112–122.

5. Bernstein P. and Newcomer E. Principles of Transaction Proces-

sing. Morgan Kaufmann, 1997.

6. Borg A., Baumbach J., and Glazer S. A message system sup-

porting fault tolerance. In Proc. 9th ACM Symp. on Operating

System Principles, 1983, pp. 90–99.

7. Elnozahy E.N., Alvisi L., Wang Y., and Johnson D.B. A Survey

of Rollback-Recovery Protocols in Message-Passing Systems.

ACM Comp. Surv., 34(3), 2002, pp. 375–408.

8. Frølund S. and Guerraoui R. A Pragmatic Implementation of

e-Transactions. In Proc. 19th Symp. on Reliable Distributed

Syst., 2000, pp. 186–195.

9. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, 1993.

10. Lomet D. Persistent Middle Tier Components without Logging.

In Proc. Int. Conf. on Database Eng. and Applications, 2005, pp.

37–46.

11. Narasimhan P., Moser L., and Melliar-Smith P.M. Lessons

Learned in Building a Fault-Tolerant CORBA System. DSN,

2002, pp. 39–44.
Application Server

HEIKO SCHULDT

University of Basel, Basel, Switzerland

Synonyms
Web application server; Java application server

Definition
An Application Server is a dedicated software compo-

nent in a three-tier or multi-tier architecture which

provides application logic (business logic) and which

allows for the separation of application logic from user

interface functionality (client layer), delivery of data

(web server), and data management (database server).
Key Points
Modern information systems, especially information

systems on the web, follow an architectural paradigm
that is based on a separation of concerns. In contrast to

monolithic (single tier) architectures or two-tier client/

server architectures where business logic is bundled

with other functionality, three-tier or multi-tier archi-

tectures consider dedicated application servers which

exclusively focus on providing business logic.

In three-tier or multi-tier architectures, application

servers typically make use of several middleware services

which enable the communication within and between

layers. Application servers usually provide the basis for

the execution of distributed applications with transac-

tional guarantees on top of persistent data. In large-scale

deployments, systems might encompass several instan-

ces of application servers (application server clusters).

This allows for the distribution of client requests across

application server instances for the purpose of load

balancing.

Early application servers evolved from distributed

TP Monitors. Over time, a large variety of application

servers has emerged. The most prominent class con-

sists of Java application servers, either as stand-alone

servers or embedded in large software systems.
Cross-references
▶Database Middleware

▶ Enterprise Application Integration

▶ Java EE

▶Middleware Support for Database Replication and

Caching

▶Multi-Tier Architecture

▶Replication in Multi-Tier Architectures

▶Transactional Middleware
Recommended Reading
1. Burke B. and Monson-Haefel R. Enterprise JavaBeans 3.0.

O’Reilly, 5th edn., 2006.

2. Jacobs D. Data management in application servers. Datenbank-

Spektrum, 8:5–11, 2004.

3. Raghavachari M., Reimer D., and Johnson R.D. The Deployer’s

problem: configuring application servers for performance and

reliability. In Proc. 25th Int. Conf. on Software Eng, May 2003,

pp. 484–489.
Application Server Clustering

▶Replication in Multi-Tier Architectures

Application-Level Tuning A 105

A
Application-Centric Interfacing

▶ Enterprise Application Integration
Application-Level Tuning

PHILIPPE BONNET
1, DENNIS SHASHA

2

1University of Copenhagen, Copenhagen, Denmark
2New York University, Newyork, NY, USA

Synonyms
Query tuning; Tuning the application interface

Definition
An under-appreciated tuning principle asserts start-up

costs are high; running costs are low. When applied to

the application level, this principle suggests perfor-

mance of a few bulk operations that manipulate

and transport a lot of data rather than many small

operations that act on small amounts of data. To

make this concrete, this entry discusses several exam-

ples and draws lessons from each.

Historical Background
Application-level tuning is about changing the way a

task is performed. This entails finding a better algo-

rithm or finding a better way to handle the database.

The first is difficult to automate, but the latter goes

back to the very first use of the relational databases.

Whether on disk or in main memory, databases have

generally always performed best when a single state-

ment accesses all and exactly the data needed for a task.

Foundations
Application-level tuning has the nice property that it

often is a pure win. Whereas adding or removing indexes

often entails a trade-off between insert/delete/update

performance and query performance, application-level

tuning for the most part improves the performance of

certain queries without hurting the performance of

others. Rewriting queries to use resources more efficient-

ly also often gives a greater benefit than physical changes.

Assemble Object Collections in Bulk

Object-oriented encapsulation is the principle of

shielding the user of an object from the object’s imple-

mentation. Encapsulation sometimes is interpreted as the

specification is all that counts. That interpretation can,

unfortunately, lead to horrible performance.
The reason is simple. The first design that seems to

occur to object-oriented implementers is to make rela-

tional records (or sometimes fields) into objects. This

has the virtue of generality. Fetching one of these

objects then translates to a fetch of a record or a field.

So far, so good. But then the temptation is to build

bulk fetches from fetches on little objects (the so-called

‘‘encapsulation imperative’’). The net result is a prolif-

eration of small queries instead of one large query.

Consider for example a system that delivers and

stores trade information. Each document type (e.g., a

report on a customer account) is produced according to

a certain schedule that may differ from one trade type to

another. ‘‘Focus’’ information relates trade types to risk

analysts. That is, risk analysts may focus on one trade

type or another. This gives a pair of tables of the form:

Focus(analyst, tradetype)

Tradeinstance(id, tradetype, tradedetail)

When an analyst logs in, the system gives information

about the trade instances in which he or she would be

interested. This can easily be done with the join:

select tradeinstance.id, tradeinstance.

tradedetail

from tradeinstance, focus

where tradeinstance.tradetype=focus.

tradetype

and focus.analyst={input analyst name}

But if each trade type is an object and each trade

instance is another object, then one may be tempted

to write the following code:

Focus focustypes=new Focus();

Focus.init({input analyst name});

for (Enumeration e=focustypes.elements(); e.hasMore-

Elements();)

{

TradeInstance tradeinst=new TradeInstance();

tradeinst.init(e.nextElement());

tradeinst.print();

}

This application program will first issue one query to

find all the trade types for the analyst (within the init

method of Focus class):

select tradeinstance.tradetype

from focus

where focus.analyst={input analyst name}

Application-Level Tuning. Figure 1

106A Application-Level Tuning
and then for each such type t to issue the query

(within the init method of TradeInstance class):

select tradeinstance.id, tradeinstance.

tradedetail

from tradeinstance

where tradeinstance.tradetype=t

This is much slower than the previous SQL

formulation. The join is performed in the application

and not in the database server.

The point is not that object-orientation is bad–

encapsulation contributes to maintainability. The

point is that programmers should keep their minds

open to the possibility that accessing a bulk object

(e.g., a collection of documents) should be done di-

rectly rather than by forming the member objects

individually (incurring a start-up cost each time)

and then grouping them into a bulk object on the

application side.
The Art of Insertion

This entry has discussed retrieving data so far.

Inserting data rapidly requires understanding the

sources of overhead of putting a record into the

database:

� As in the retrieval case, the first source of over-

head is an excessive number of round trips

across the database interface. This occurs if the

batch size of inserts is too small. A more radical

approach is to assemble all the data to be inserted

into a file, load that file into a temporary table,

and then insert from that temporary table into

the target table. This can improve performance

by a factor of 100 or more when tables are large.

� The second issue has to do with the ancillary

overhead that an insert causes: updating all the

indexes on the table. Even a single index can hurt

performance. For this reason, it is often a good idea

to add indexes after loading the data.
Key Applications
Application-level tuning has proved useful in every

setting where performance is an issue. Whereas index

and physical layer tuning can be more easily auto-

mated, the benefits of application-level tuning are

often greater.
Experimental Results

Looping hurts

This experiment illustrates the overhead of crossing

the application interface. Two hundred tuples are

fetched (these are small tuples composed of two inte-

gers) using a range query (no loop), or looping on

the client-side to fetch one tuple at a time.

Figure 1 traces the throughput observed for this

experiment on MySQL 6.0 with a warm buffer. There

is an almost two orders of magnitude penalty when

looping through the tuples. This is due to the overhead

of crossing the application interface 200 times.

Url to Code and Data Sets
Loop experiment: http://www.databasetuning.org/?

sec=loop

Cross-references
▶Application server

▶DBMS Interface

▶ JDBC

▶ODBC

▶ SQL
Recommended Reading
1. Celko J. Joe Celko’s SQL for Smarties: Advanced SQL Program-

ming, 3rd edn. Morgan Kaufmann, San Francisco, CA, 2005.

2. Shasha D. and Bonnet P. Database Tuning: Principles, Experi-

ments and Troubleshooting Techniques. Morgan Kaufmann, San

Francisco, CA, 2002.

3. Tow D. SQLTuning. O’Reilly, 2003.

Applications of Sensor Network Data Management A 107

A
Applications of Emerging Patterns
for Microarray Gene Expression
Data Analysis

GUOZHU DONG
1, JINYAN LI

2

1Wright State University, Dayton, OH, USA
2Nanyang Technological University, Singapore,

Singapore

Definition
This topic is related to applications of emerging

patterns in the bioinformatics field, in particular for

in-silico cancer diagnosis by mining emerging patterns

from large scale microarray gene expression data.
Key Points
The contemporary gene expression profiling technolo-

gies such as cDNA microarray chips and Affymetrics

DNA microarry chips can measure the expression levels

of thousands even tens of thousands of genes simulta-

neously. This provides a great opportunity to identify

specific genes or gene groups that are responsible for a

particular disease, for example, the subtypes of child-

hood leukemia disease. Reference [3] proposed to use

emerging patterns to capture the signature patterns

between the gene expression profiles of colon tumor

cells and normal cells. This was the first bioinformatics

work studying how gene groups and their expression

intervals signify the difference between diseased and

normal cells. That paper also proposed to design treat-

ment plans to cure the diseased cells by adjusting certain

genes’ expression level based on the discovered

emerging patterns. Reference [2] reported simple rules

underlying gene expression profiles of more than six

subtypes of acute lymphoblastic leukemia (ALL)

patients. The rules are converted from the mined

emerging patterns. The rules are also used to construct

a classifier (PCL) that reached a benchmark diagnosis

accuracy of 96% on an independent test data set. As

gene expression data sets contain many attributes, the

discovery of emerging patterns by border-differential

based algorithms is sometimes slow. To tackle this prob-

lem, reference [1] proposed a CART-based approach to

discover a proportion of emerging patterns from the

high-dimensional gene expression profiling data with a

high speed. The ZBDD based approach discussed in the

emerging patterns entry of this volume is also fast and

can handle large number of genes.
Cross-references
▶ Emerging Patterns

▶ Emerging Pattern Based Classification

Recommended Reading
1. Boulesteix A.-L., Tutz G., and Strimmer K. A CART-based

approach to discover emerging patterns in microarray data.

Bioinformatics, 19(18):2465–2472, 2003.

2. Li J., Liu H., Downing J.R., Eng-Juh Yeoh A., and Wong L.

Simple rules underlying gene expression profiles of more than

six subtypes of acute lymphoblastic leukemia (ALL) patients.

Bioinformatics, 19:71–78, 2003.

3. Li J. and Wong L. Identifying good diagnostic genes or genes

groups from gene expression data by using the concept of

emerging patterns. Bioinformatics, 18:725–734, 2002.
Applications of Sensor Network
Data Management

FARNOUSH BANAEI-KASHANI, CYRUS SHAHABI

University of Southern California, Los Angeles,

CA, USA

Synonyms
Applications of Sensor Networks, Applications of Sensor

Databases, Applications of Sensor Network Databases

Definition
Sensor networks allow for micro-monitoring of differ-

ent phenomena of interest in arbitrary physical envir-

onments. With this unique capability, sensor networks

can capture the events in the real world as they happen

in the form of high-resolution spatiotemporal data

of various modalities, and provide the opportunity

for real-time querying and analysis of the data for

immediate response and control. Such functionality

is desirable in many classic applications while enabling

numerous other novel applications. From the data

management perspective, there is a consensus among

database researchers that management and analysis of

the massive, dynamic, distributed and uncertain data

in sensor network applications is going to be one of the

new grand challenges for the database community:

" Sensor information processing will raise many of the

most interesting database issues in a new environment,

with a new set of constraints and opportunities.
– Excerpt from the Lowell Database Research

Self-Assessment (By a group of thirty senior

108A Applications of Sensor Network Data Management
database researchers, ‘‘The Lowell database research

self-assessment’’, Communications of the ACM,

Volume 48, Issue 5, May 2005.)
Historical Background
Shortly after the introduction of the sensor networks

and their potential applications about a decade ago

[6], management of the sensor data was recognized as

one of the main challenges in realizing the sensor

network applications [1].

Foundations

Sensor Databases

One can think of a sensor network as a distributed

database that collects, stores and indexes the sensor

data to answer the queries received from external

users/applications as well as internal system entities.

By considering a sensor network as a database, one

envisions some of the benefits of the traditional data-

bases potentially for sensor databases; e.g., reduced

application development time, convenient multi-user

data access and querying with a well-defined generic

interface, efficient data reuse, and most importantly

data independence. Physical data independence is a

particularly beneficial advantage of the sensor database

approach, because as compared to the physical layer of

the traditional databases the physical infrastructure

of the sensor networks is much more sophisticated.

With physical data independence in sensor databases,

the logical schema of the data exposed to the users

is separated from the physical schema that defines

the complex and probably changing implementation

of the data structures and operations on the physi-

cal network. By separating the logical and physical

schemas, users/applications are isolated from the typical

complications of the distributed data processing in the

volatile sensor networks and can focus on designing the

logical structure of their queries. Hence, the use of

the sensor data is significantly facilitated.
Sensor Database Distinctions

Sensor databases are different from traditional dis-

tributed databases in both physical specifications and

data characteristics. At the physical level, nodes of the

database (i.e., sensor nodes) are severely constrained

in resources, such as memory space, storage space,

CPU power, and most importantly energy. Moreover,
in sensor databases nodes and links of the network

are both highly volatile. On the other hand, with

sensor devices continuously collecting measurements

from the environment, sensor data is naturally very

dynamic. Besides, due to inaccuracy of the sensor

devices, signal interference, noise, etc., uncertainty is

also an inherent characteristic of the sensor data. With

such physical and data characteristics, maintaining

the illusion of a database is arguably a more difficult

objective with sensor databases as compared to that of

the traditional distributed databases, and accordingly,

requires new data management solutions:

� Database operators should be delay-tolerant, and

tolerant to frequent updates of the data

� Query execution should be performed in-network

for energy efficiency; similarly, data storage and

access should be designed for energy efficiency

� Data acquisition plan is required to determine what

data to collect

� Sensor query language should be augmented with

new operators to specify duration and sampling

rate of the data acquisition

� Query execution plan should be dynamically opti-

mized to account for variable access delay and

uncertain data availability

� Data uncertainty should be accounted for

� Volatility of the sensor network should be hidden to

provide the illusion of a stable database

� Continuous queries should be supported, as

sensor networks are primarily used for long-term

monitoring

� Meaningful data digests should be maintained to

allow for answering historical queries, since data is

continuously collected despite the limited space for

storage

� Aggregate spatiotemporal queries and range queries

should be supported, for energy efficiency [13, 12]

� Approximate queries should be supported, as they

are more meaningful with sensor data

� Triggers should be supported for the event-driven

monitoring applications

One approach to implement sensor databases is to

transfer all data to one or a small number of external

base stations, where a traditional database system can

be exploited. Alternatively, the data can be stored

within the network itself with a balanced and optimal

data storage plan. Although with the first approach one

can more conveniently employ and extend the data

Applications of Sensor Network Data Management A 109

A
management solutions applicable with the traditional

databases, the second approach, termed in-network

storage, allows for tighter coupling between query

processing, on the one hand, and networking and ap-

plication semantics, on the other hand. Tight coupling

can potentially enable more energy efficient query pro-

cessing in sensor databases. To evaluate the query

processing performance with a particular sensor data-

base implemented with either of these approaches,

one can use the standard distributed database perfor-

mance metrics such as incurred communication cost,

query time, indexing time, throughput, load balance

among nodes, data update overhead and storage

requirements.

Key Applications
As compared to the traditional wireline sensor net-

works that have been in use for decades, the more

recent wireless sensor networks enable low cost and

rapid deployment of the sensing network while sup-

porting mobility. With these desirable characteristics

due to the wireless technology, recently the standard

applications of the sensing networks are revived and

new applications that were otherwise unthinkable are

identified. The key classes of applications for sensor

databases/networks are discussed below.

Environmental Monitoring

Environmental monitoring applications, specifically

habitat monitoring [3], are among the earliest applica-

tions of the sensor networks. With the habitat moni-

toring applications, sensors are deployed to monitor

animals or plants in their original habitats with most

convenience for the scientists and least disturbance for

the wildlife. With other environmental applications,

sensors can be used to collect earth-science and atmo-

spheric data for environmental explorations, such as

the study of the air pollution, global warming, etc.,

and also early detection and prediction of the natural

and man-made disasters, such as hurricanes, wildfires,

earthquakes and biological hazards.

Military Intelligence

With rapid deployment, and inexpensive and untethered

sensors, wireless sensor networks are well positioned as

the tool to collect battlefield data for real-time battlefield

intelligence [9]. For instance, wireless sensors can be

utilized for geofencing (i.e., deploying a sensor network

as a transparent fence to protect an area against
unauthorized trespassing), enemy tracking, and battle-

field exploration and condition assessment particularly

in hazardous environments. In military intelligence

applications, the small form-factor, reliability,

interoperability and durability of the sensor nodes

under severe environmental conditions are particularly

critical requirements.

Asset Management

Businesses with large and high-turnover inventories

of assets (such as construction companies, utility

companies and trucking companies) can benefit from

automated asset management systems in improving

the utilization of their resources [10]. With automated

asset management, sensor networks are deployed to

collect real-time data about exact location and condi-

tion of an inventory of assets automatically. The col-

lected data provides the opportunity for real-time analysis

of the resource usage, which in turn enables timely and

optimal decision-making on handling, supply, delivery,

storage and other asset management tasks. Various types

of sensing devices, such as GPS devices and passive RFID

(Radio-Frequency Identification) tags, are applicable with

the sensor networks used for asset monitoring.

Building Monitoring

The recent attempt aiming at optimizing the energy

performance of the buildings by deep sensing of the

building conditions, dubbed BIM (Building Information

Modeling) (Federal BIM Program. URL: http://www.gsa.

gov/bim/), heavily relies on the sensor network technolo-

gy. With BIM energy tools enabled by sensing networks,

one can monitor, e.g., the temperature and lighting con-

ditions in the building, and accordingly regulate the

heating and cooling systems, ventilators and lights dyna-

mically for best energy performance [11]. Also as a safety

tool, building sensor networks can detect and report

threats, such as existence of the biological agents in the

environment as well as physical intrusions.

Automotive

With the new standards such as Dedicated Short-Range

Communication (DSRC) designated for vehicle com-

munications, in the near future, cars will be able to

communicate information to each other and to the

roadside infrastructures. With this capability, while in

traffic cars can form a so-called vehicular sensor net-

work, where each car equipped with sensing devices

(e.g., camera, thermometer, etc.) acts as a mobile sensor

110A Applications of Sensor Network Data Management
node. In a vehicular sensor network, cars can share

information and analyze the aggregate information

about the road conditions, congestions, nearby emer-

gencies, etc., for applications such as collision preven-

tion, congestion avoidance and flow optimization [8].

Healthcare

Sensor networks can effectively improve the accuracy

of the patient care and, consequently, the safety of the

patients when they become physically incapacitated

and require immediate medical attention [7]. Sensor

networks allow this by enabling close and automated

monitoring of the patient’s vital signs. When monitor-

ing is coupled with real-time analysis of the signs, the

sensor-enabled healthcare system can alert the right

person at the right time to attend to the patient. Such

healthcare systems are applicable both at homes of the

elderly and at the hospitals.

Industrial Monitoring

Sensors can be used to monitor industrial processes

for safety as well as manufacturing optimization [4].

One can also deploy sensors to monitor the condition

of the industrial equipments for preventative mainte-

nance and also safety of the operators. Wireline sensors

have been in use for a long time in various industry

sectors such as oil companies (both upstream and

downstream) and chemical plants. Wireless technology

and inexpensive sensors has greatly facilitated and ex-

tended the use of the sensing networks for process and

equipmentmonitoring, encouraging oil companies, e.g.,

to develop smart oilfields by equipping the oil wells and

other assets with wireless sensors (see e.g., [2]).

Future Directions
With the current trend, sensor networks are being

applied with increasingly more complex, large-scale

and distributed systems (e.g., the federal intelligent

transportation system (Federal ITS Program. URL:

http://www.its.dot.gov/)). Such applications demand

deployment of large-scale sensor networks and,

accordingly, require fully decentralized solutions for

sensor data management to achieve scalability.
Data Sets
� CENS data sets. URL: http://research.cens.ucla.

edu/portal/page?_pageid = 59,54414&_dad =

portal&_schema = PORTAL
� Intel lab data set. URL: http://db.csail.mit.edu/lab-

data/labdata.html

� Precipitation data set. URL: http://www.jisao.

washington.edu/data_sets/widmann/

� IHOP data set. URL: http://www.eol.ucar.edu/rtf/

projects/ihop_2002/spol/
Cross-references
▶ Sensor Networks

▶Continuous Queries in Sensor Networks

▶Ad-hoc Queries in Sensor Networks

▶ In-Network Query Processing

▶Data Acquisition and Dissemination in Sensor Net-

works

▶Data Aggregation in Sensor Networks

▶Data Storage and Indexing in Sensor Networks

▶Data Uncertainty Management in Sensor Networks

▶Database Languages for Sensor Networks
Recommended Reading
1. Bonnet P., Gehrke J., and Seshadri P. Towards sensor database

systems. In Proc. 2nd Int. Conf. on Mobile Data Management,

2001, pp. 3–14.

2. The Center for Interactive Smart Oilfield Technologies. URL:

http://cisoft.usc.edu/

3. Cerpa A., Elson J., Estrin D., Girod L., Hamilton M., and

Zhao J. Habitat monitoring: Application driver for wireless

communications technology. In Proc. SIGCOMM Workshop

on Data Communications in Latin America and the

Caribbean, 2001.

4. Chong C. and Kumar S.P. Sensor networks: Evolution, oppor-

tunities, and challenges. In Proc. IEEE. 91(8), 2003.

5. Culler D., Estrin D., and Srivastava M. Sensor network applica-

tions (Cover Feature). IEEE Computer, 37(8), 2004.

6. Estrin D., Govindan R., Heidemann J., and Kumar S. Next

century challenges: Scalable coordination in sensor networks.

In Proc. 5th Annual Int. Conf. on Mobile Computing and

Networking (MOBICOM), 1999, pp. 263–270.

7. Ho L., Moh M., Walker Z., Hamada T., and Su C. A prototype

on RFID and sensor networks for elder healthcare. In Proc.

2005 ACM SIGCOMMWorkshop on Experimental Approaches

to Wireless Network Design and Analysis. Pennsylvania, 2005,

pp. 70–75.

8. Lee U., Magistretti E., Zhou B., Gerla M., Bellavista P.,

and Corradi A. MobEyes: Smart mobs for urban monitoring

with a vehicular sensor network. IEEEWireless Commun, 13(5),

2006.

9. Nemeroff J., Garcia L., Hampel D., and DiPierro S. Application

of sensor network communications. In Proc. Military Commu-

nications Conference, 2001, pp. 336–341.

10. RFID Journal. URL: http://www.rfidjournal.com/

11. Schmid T, Dubois-Ferrière H., and Vetterli M. SensorScope:

Experiences with a wireless building monitoring sensor network.

Approximate Queries in Peer-to-Peer Systems A 111

A
In Proc. Workshop on Real-World Wireless Sensor Networks,

June 2005.

12. Sharifzadeh M. and Shahabi C. Utilizing Voronoi cells of

location data streams for accurate computation of aggregate

functions in sensor networks. GeoInformatica, 10(1), 2006.

13. Yoon S. and Shahabi C. The Clustered AGgregation (CAG)

technique leveraging spatial and temporal correlations in wire-

less sensor networks. ACM Trans Sensor Netw, 3(1), 2007.

14. Zhao F. and Guibas L. Wireless Sensor Networks: An informa-

tion processing approach. First Edition, Morgan Kaufmann,

San Francisco, CA., July 2004.

15. Center for Embedded Networked Sensing. URL: http://www.

cens.ucla.edu/.
Application-to-Application
Integration

▶ Enterprise Application Integration
Approximate Queries in
Peer-to-Peer Systems

WOLF SIBERSKI, WOLFGANG NEJDL

L3S Research Center, University of Hannover,

Hannover, Germany

Synonyms
Top-k queries in P2P systems; Aggregate queries in P2P

systems

Definition
Peer-to-peer (P2P) networks enable the interconnec-

tion of a huge amount of information sources without

imposing costs for a central coordination infrastruc-

ture. Due to the dynamic and self-organizing nature of

such networks, it is not feasible to guarantee complete-

ness and correctness as in traditional distributed data-

bases. Therefore, P2P systems are usually applied in

areas where approximate query evaluation, i.e., the

computation of a nearly complete and correct answer

set, is sufficient. As the most frequent application of

querying in P2P is search, many of these algorithms

fall into the class of top-k query algorithms. Another

important case is the approximation of aggregate

query results.
Historical Background
P2P networks use approximate querying from the out-

set. In Gnutella, an unstructured network, the query is

distributed in a limited neighborhood only, thus the

result is usually not complete. The early top-k query

algorithms for P2P are based on such unstructured

networks. PlanetP [6], a P2P network for information

retrieval, employs gossiping to replicate index infor-

mation among all peers and sends queries to the best

peers according to this replicated index. This approach

has been extended to a super-peer network in [11].

While the first Distributed Hash Table (DHT) systems

such as CHORD and Pastry aim at complete and

correct answers, later structured networks approximate

the result set, especially P2P networks for information

retrieval [2,15]. Frequently, approximate P2P networks

build upon algorithms for distributed databases or

distributed IR. For example, for source selection Pla-

netP relies on an extended version of GlOSS [7],

Minerva [15] on CORI [4]. Odissea [13] uses either

Fagins Algorithm (FA) or a Threshold Algorithm (TA)

as top-k algorithm, KLEE [9] extends TA, etc. (!Top-k

Selection Queries on Multimedia Datasets).

Foundations
The main challenge in P2P approximate query proces-

sing is to select the optimal subset of peers to which the

query is forwarded. However, the selection criteria for

this subset are completely different for top-k and

aggregate queries. While in top-k the goal is to identify

the peers holding top objects, approximate aggregate

querying algorithms need to find a representative sam-

ple of peers. In both cases, each selected peer evaluates

the query locally; the respective responses are collected

and merged to compute the final result set.

Approximation for Top-k Queries

Regardless of the chosen network topology, all

distributed top-k algorithms consist of the following

elements [14]:

Indexing. Determines what is indexed and how

index information is collected within the network.

Source selection. Determines the peers a query is

sent to.

Result merging.Determines how local result lists are

merged to form the final result set.

Unstructured Networks In an unstructured P2P

network peers form a random graph. In these

112A Approximate Queries in Peer-to-Peer Systems
networks, the only available routing strategy is filtered

flooding, i.e., forwarding the query to selected neigh-

bors. For effective filtering, the peers maintain content

indexes. For each neighbor peer, the index allows

to look up which kind of content is reachable via this

peer. In the case of information retrieval, the index

holds term frequencies of these subnets. This index

information is built by gossiping: each peer periodically

sends the content summaries it holds to its neighbors,

where they are merged with the index. Thus, over time

each peer gathers more and more accurate information

about the whole network. Frequently, bloom filters or

hash sketches are used to represent the content sum-

maries. The typical representative for this approach is

PlanetP [6]. Evaluations have shown that this algo-

rithm type only scales to several thousands of peers,

due to the limitations of filtered flooding. Even with

complete index information, the query still usually has

to be sent to a high fraction of all peers to reach the

peers holding the top-k objects. Also, gossiping induces

rather high index maintenance costs.

Hierarchical Networks Hierarchical topologies can

overcome some of these limitations. In these topolo-

gies, particularly powerful peers form a super-peer

backbone. Information sources are not connected

with each other, but always assigned to one of the

super-peers. This topology is especially suited for

adaptation of traditional distributed top-k algorithms:

each super-peer acts as coordinating node for its peers.

In some systems the peers form a tree-shaped network;

this has the advantage that the same aggregation algo-

rithm can be used up to the root peer, but at the price

of extremely uneven load distribution. Therefore, the

usual approach is to restrict the hierarchy to two levels.

In this case, filtered flooding is used to distribute

queries within the super-peer backbone. Maintaining

the index independently from the actual queries can

impose a high overhead; this can be avoided by build-

ing a query-driven index [2].

Structured Networks Arguably the most efficient

peer-to-peer networks are DHTs, where peers form

highly structured network topologies. However, they

only provide the usual hash table feature, storage

and retrieval by key. The DHT maintains lists of top

peers for each feature [3,13]. As in the case of hierar-

chical peers, the index can be improved by considering
query statistics [12]. For a query, first these lists are

retrieved, and then an established algorithm such

as CORI or GlOSS is used for source selection. To

retrieve the top-k objects, the TA family of algorithms

are the state of the art. TPUT is especially suitable because

it limits the retrieval process to three phases: first, the

query initiator determines a lower bound for the object

score by requesting scores of the top-k objects at each

peer. Second, the initiator requests all objects having at

least the threshold score. It is guaranteed that all top-k

objects are in the returned sets. Finally, the initiator

determines these objects and requests the actual con-

tent. TPUT has been evolved to an approximate algo-

rithm with probabilistic guarantees in [9].

Approximation for Aggregate Queries

Efficient approximation of aggregate queries in unstruc-

tured P2P networks can be done by sampling. Starting at

the peer issuing the query, the query travels along a

random path to gather the sample. The challenge is to

choose this path such that the query is indeed received by

a uniform sample of the network. Note that the standard

approach (Markov-Chain random walk) of selecting

each outgoing edge with equal probability does not

yield a uniform sample, but favors nodes with high

degrees. This can be approximately compensated by scal-

ing down the local peer value with the probability of this

peer being selected. To reduce errors due to clustering

within the network, the random walk can be modified

such that only each ith peer on the path is considered

for the sample. [1] shows how usual aggregate queries

(COUNT, SUM, AVG) can be computed in this way

with low error rates. While gossiping also has be pro-

posed to compute aggregates in unstructured networks,

this method does not scale to large networks [10].

An efficient method to compute COUNT queries

in DHT networks has been proposed in [10]. This

approach relies on locally computed hash sketches

which are inserted into the DHT. For hash sketches

of length k the actual counting requires O(k) DHT

lookups, resulting in O(k � logn) messages.

Key Applications
Top-k queries are used in distributed information

retrieval scenarios, such as digital library networks.

An important application for aggregate queries in

massively distributed networks is the gathering of net-

work statistics, e.g., to identify security risks or to

Approximate Query Processing A 113

A
monitor performance [8]. Approximate aggregate

queries are also gaining importance in the area of sensor

network [5], where limitations of the sensor hardware

(processor, memory, power supply) are key factors for

query algorithm design.

Cross-references
▶Approximate XML Querying

▶ Peer Data Management System

▶Top-K Selection Queries on Multimedia Datasets

Recommended Reading
1. Arai B., Das G., Gunopulos D., and Kalogeraki V. Efficient

approximate query processing in peer-to-peer networks. IEEE

Trans. Knowl. Data Eng., 19(7):919–933, 2007.

2. Balke W.T., Nejdl W., Siberski W., and Thaden U. Progressive

distributed top-k retrieval in peer-to-peer networks. In Proc.

21st Int. Conf. on Data Engineering, 2005, pp. 174–185.

3. Bender M., Michel S., Triantafillou P., Weikum G., and

Zimmer C. MINERVA: collaborative P2P search. In Proc. 31st

Int. Conf. on Very Large Data Bases, 2005, pp. 1263–1266.

4. Callan J.P., Lu Z., and Croft W.B. Searching distributed collec-

tions with inference networks. In Proc. 18th Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 1995, pp. 21–28.

5. Chu D., Deshpande A., Hellerstein J.M., and Hong W. Approxi-

mate data collection in sensor networks using probabilistic

models. In Proc. 22nd Int. Conf. on Data Engineering, 2006,

p. 48.

6. Cuenca-Acuna F.M., Peery C., Martin R.P., and Nguyen R.D.

Planet P: using gossiping to build content addressable peer-to-

peer information sharing communities. In Proc. 12th IEEE Int.

Symp. on High Performance Distributed Computing, 2003,

pp. 236–246.

7. Gravano L., Garcia-Molina H., and Tomasic A. GlOSS: Text-

source discovery over the internet. ACM Trans. Database Syst.,

24(2):229–264, 1999.

8. Hellerstein J.M., Condie T., Garofalakis M.N., Loo B.T.,

Maniatis P., Roscoe T., and Taft N. Public health for the

internet (PHI). In Proc. 3rd Biennial Conf. on Innovative Data

Systems Research, 2007, pp. 332–340.

9. Michel S., Triantafillou P., and Weikum G. Klee: A framework

for distributed top-k query algorithms. In Proc. 31st Int. Conf.

on Very Large Data Bases, 2005, pp. 637–648.

10. Ntarmos N., Triantafillou P., and Weikum G. Counting at large:

Efficient cardinality estimation in internet-scale data networks.

In Proc. 22nd Int. Conf. on Data Engineering, 2006, p. 40.

11. Seshadri S. and Cooper B.F. Routing queries through a peer-to-

peer infobeacons network using information retrieval techniques.

IEEE Trans. Parallel Distrib. Syst., 18(12):1754–1765, 2007.

12. Skobeltsyn G., Luu T., Podnar Z.I., Rajman M., and Aberer K.

Web text retrieval with a P2P query-driven index. In Proc. 33rd

Annual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 2007, pp. 679–686.
13. Suel T., Mathur C., Wu J., Zhang J., Delis A., Kharrazi M.,

Long X., and Shanmugasundaram K. ODISSEA: A peer-to-peer

architecture for scalable web search and information retrieval. In

Proc. 6th Int. Workshop on the World Wide Web and Databases,

2003, pp. 67–72.

14. Yu C., Philip G., and Meng W. Distributed top-n query proces-

sing with possibly uncooperative local systems. In Proc. 29th Int.

Conf. on Very Large Data Bases, 2003, pp. 117–128.

15. Zimmer C., Tryfonopoulos C., and Weikum G. MinervaDL: An

architecture for information retrieval and filtering in distributed

digital libraries. In Proc. 11th European Conf. on Research and

Advanced Technology for Digital Libraries, 2007, pp. 148–160.
Approximate Query Answering

▶Approximate Query Processing
Approximate Query Processing

QING LIU

CSIRO, Hobart, TAS, Australia

Synonyms
Approximate query answering

Definition
Query processing in a database context is the process

that deduces information that is available in the data-

base. Due to the huge amount of data available, one of

the main issues of query processing is how to process

queries efficiently. In many cases, it is impossible or too

expensive for users to get exact answers in the short

query response time. Approximate query processing

(AQP) is an alternative way that returns approximate

answer using information which is similar to the one

fromwhich the query would be answered. It is designed

primarily for aggregate queries such as count, sum and

avg, etc. Given a SQL aggregate query Q, the accurate

answer is y while the approximate answer is y 0. The

relative error of query Q can be quantified as:

ErrorðQÞ ¼ j y � y 0

y
j: ð1Þ

The goal of approximate query processing is to pro-

vide approximate answers with acceptable accuracy in

114A Approximate Query Processing
orders of magnitude less query response time than that

for the exact query processing.

Historical Background
The earliest work on approximate answers to decision

support queries appears in Morgenstein’s dissertation

from Berkeley [8]. And the approximate query proces-

sing problem has been studied extensively in the last

10 years. The main motivations [3] which drive the

techniques being developed are summarized as follows.

First, with the advanced data collection and man-

agement technologies, nowadays there are a large num-

ber of applications with data sets about gigabytes,

terabytes or even petabytes. Such massive data sets

necessarily reside on disks or tapes, making even a

few accesses of the base data sets comparably slow.

In many cases, precision to ‘‘last decimal’’ is not re-

quired for a query answer. Quick approximation with

some error guarantee (e.g., the resident population in

Australia 21,126,700 + ∕� 200) is adequate to provide

insights about the data.

Second, decision support system (DSS) and data

mining are popular approaches to analyzing large data-

bases for decision making. The main characteristic of

the DSS is that aggregation queries (e.g., count, sum,

avg, etc.) are executed on large portion of the data-

bases, which can be very expensive and resource inten-

sive even for a single analysis query. Due to the

exploratory nature of decision making, iterative pro-

cess involves multiple query attempts. Approximate

answers with fast response time gives users the ability

to focus on their explorations and quickly identify

truly interesting data. It provides a great scalability of

the decision support applications.

Third, approximate query processing is also used to

provide query preview. In most cases, users are only

interested in a subset of the entire database. Given a

trial query, query preview provides an overview about

the data distribution. The users can preview the num-

ber of hits and refine the queries accordingly. This

prevents users from fruitless queries such as zero-hits

or mega-hits. Figure 1 shows an example of query

preview interface of NASA EOSDIS (Earth Observing

System Data and Information System) project, which

is attempting to provide online access to a rapidly

growing archive of scientific earth data about the

earth’s land, water, and air. In the query preview,

users select rough ranges for three attributes: area,

topic (a menu list of parameters such as atmosphere,
land surface, or oceans) and temporal coverage. The

number of data sets for each topic, year, and area is

shown on preview bars. The result preview bar, at the

bottom of the interface, displays the total approximate

number of data sets which satisfy the query.

Finally, sometimes network limitation or disk storage

failure would cause the exact answers unaffordable or

unavailable. An alternative solution is to provide an ap-

proximate answer based on the local cacheddata synopsis.

Foundations
Due to the acceptability of approximate answers cou-

pled with the necessity for quick query response time,

approximate query processing has emerged as a cost

effective approach for dealing with the large amount of

data. This speed-up is achieved by answering queries

based on samples or other synopses (summary) of data

whose size is orders of magnitude smaller than that of

the original data sets.

Ioannidis presented the generic flow of approxi-

mate query process (Fig. 2) in [5]. Here, data analysis

is the overall approach which derives the synopsis from

original data to approximate the underlying data dis-

tribution. Typically, the algorithm partitions the data

based on the distance function into groups of similar

elements, called buckets, clusters, patterns, or several

other names. The data elements that fall in each bucket

are then represented by the synopses for approximation

use which corresponds to the actual purpose of the

whole data approximation process. The quality of ap-

proximation result can be measured by the distance

between the synopses and the original data.

There are two basic approaches to achieve approxi-

mate query processing: pre-computed synopsis and

online query processing.

Pre-Computed Synopsis

Approximate query processing using pre-computed

synopsis includes two steps: construct synopsis prior

to query time, answer query approximately using syn-

opsis at query time.

To provide high accurate query answer, the key issue

to construct synopsis is how to represent the underlying

data distribution precisely and compactly. Generally,

the data distribution can be classified into two groups:

uniform distribution and non-uniform distribution.

The synopsis for uniform data distribution assumes

the objects are distributed uniformly in the data

space. For point objects locating in two-dimensional

Approximate Query Processing. Figure 1. NASA EOSDIS interface of query preview.

Approximate Query Processing. Figure 2. Generic flow of approximation process.

Approximate Query Processing A 115

A

116A Approximate Query Processing
space [U x
min,U

y
min]� [Ux

max,U
y
max], the query result

size is estimated as N � area(Q)∕((Ux
max � Ux

min) �
(Uy

max� Uy
min)), whereN is the data set size and area

(Q) is the area of window query Q.

There are various techniques developed for non-

uniform data distribution. They can also be divided

into two groups: parametric and non-parametric. The

parametric techniques try to use parameters to catch

the original data distributions. Although the models

can summarize data distributions with a few descrip-

tive parameters, if the underlying data do not follow

any known distributions, or their linear combinations,

the model fitting techniques produce inferior results.

The non-parametric techniques use different

approaches to summarize the data distributions. Gen-

erally, it is possible to classify these techniques into

three categories according to the strategies adopted:

1. Sampling techniques

2. Histogram techniques

3. Wavelet techniques

Sampling The basic idea of sampling is that a small

random sample of the data often well-represent all

the data. Therefore, query would be answered based

on the pre-sampled small amount of data and then

scaled up based on the sample rate. Figure 3 shows an

example where 50% of data are sampled during the

pre-computed stage. Given a query ‘‘how many Sony

laptops are sold in R’’, the approximate result is ‘‘select

2 * sum(*) from S where S.product = 0SonyLaptop0’’,

which is 12. In R, the exact answer is 11.

The main issue of sampling method is to decide

what sample criteria should be used to select data. The
Approximate Query Processing. Figure 3. Example of samp
sampling techniques are classified into the following

groups [1]:

1. Uniform sampling. Data is sampled uniformly

2. Biased sampling. A non-uniform random sample is

pre-computed such that parts of the database

deemed ‘‘more important’’ than the rest

3. Icicles. A biased sampling technique that is based on

known workload information

4. Outlier indexing. Indexing outliers and biased sam-

pling the remaining data

5. Congressional sampling. Targeting group by queries

with aggregation and trying to maximize the accu-

racy for all groups (large or small) in each group-by

query

6. Stratified sampling. Generalization of outlier

indexing, Icicles and congressional sampling. It

targets minimizing error in estimation of aggre-

gates for the given workload

Sample-based procedures are robust in the presence of

correlated and nonuniform data. Most importantly,

sampling-based procedures permit both assessment

and control of estimation errors. The main disadvan-

tage of this approach is the overhead it adds to query

optimization. Furthermore, join operation could lead

to significant quality degradations because join opera-

tor applied on two uniform random sample can result

in a non-uniform sample of the join result which

contains very few tuples.

Histograms Histogram techniques are the most

commonly used form of statistics in practice (e.g., they

are used inDB2,Oracle andMicrosoft SQL Server). This

is because they incur almost no run-time overhead and
ling.

Approximate Query Processing A 117

A
produce low-error estimates while occupying reasonably

small space.

The basic idea is to partition attribute value

domain into a set of buckets and query is answered

based on the buckets. The main issues of histogram

construction and query are as follows:

1. How to partition data into bucket

2. How to represent data in each bucket

3. How to estimate answer using the histogram

For one-dimensional space, a histogram on an attri-

bute X is constructed by partitioning the data distribu-

tion of X into B (B	 1) buckets and approximating the

frequencies and values in each bucket. Figure 4a is an

example of original data set and Figure 4b shows its

data distribution. Figure 4c is an example of histogram

constructed accordingly, where B = 3.

If there are several attributes involved in a query, a

multi-dimensional histogram is needed to approxi-

mate the data distribution and answer such a query.

A multi-dimensional histogram on a set of attributes is

constructed by partitioning the joint data distribution

of the attributes. They have the exact same character-

istics as one-dimensional histograms, except that the

partition rule needs to be more intricate and cannot

always be clearly analyzed because there cannot be

ordering in multiple dimensions [9].

To represent data in each bucket, it includes value

approximation and frequency approximation. Value

approximation captures how attribute values are

approximated within a bucket. And frequency approx-

imation captures how frequencies are approximated

within a bucket.

The two main approaches for value approximation

are continuous value assumption and uniform spread
Approximate Query Processing. Figure 4. Example of histo
assumption [10]. Continuous value assumption only

maintains min and max value without indication of

how many values there are or where they might be.

Under the uniform spread assumption, one also main-

tain the number of values within each bucket and

approximates the actual value set by the set that is

formed by (virtually) placing the same number of

values at equal distances between the min and max

value in multi-dimensional space [6].

With respect to frequency approximation, almost

all work deal with uniform distribution assumption.

The benefit of a histogram synopsis is that it can be

easily used to answer many query types, including the

aggregate and non-aggregate queries. However, one of

the issues of histogram approach is it is hard to calcu-

late a theoretical error bound. Thus the evaluations on

the histogram synopsis usually rely heavily on the

experiment results. Further more, histogram-based

approaches become problematic when dealing with

the high-dimensional data sets that are typical for

modern decision support applications. This is because

as the dimensionality of the data increases, both the

storage overhead (i.e., number of buckets) and the

construction cost of histograms that can achieve rea-

sonable error rates increase in an explosive manner.

Wavelet Wavelet is a mathematical tool for hierar-

chical decomposition of functions using recursive pair-

wise averaging and differencing at different resolutions.

It represents a function in terms of a coarse overall shape,

plus details that range from broad to narrow. It is widely

used in the signal and image processing.

Matias et al. [7] first proposed the use of Haar-

wavelet coefficients as synopsis for estimating the

selectivity of window queries. The basic idea is to apply

wavelet decomposition to the input data collection to
gram.

118A Approximate Query Processing
obtain a compact data synopsis that comprises a select

small collection of wavelet coefficients. Figure 5 shows an

example of hierarchical decomposition tree of Haar-

wavelet. The leaf nodes are original data and non-leaf

nodes are wavelet coefficients generated by averaging

and differencing from their two children.

Later, the wavelet concept was extended to answer

more general approximate queries. The results of recent

studies have clearly shown that wavelets can be very

effective in handling aggregates over high-dimensional

online analytical processing (OLAP) cubes, while avoid-

ing the high construction costs and storage overheads of

histogram techniques.

Another important part of the above three technol-

ogies for approximate query processing is synopsis

maintenance. If the data distribution is not changed

significantly, the data synopsis would be updated

accordingly to reflect such change. Otherwise, a new

data synopsis will be constructed and discard the old

one. Refer to the specific techniques for more details.

There are a few other work that do not belong to the

above three categories to approximate the underlying

data distribution. For example, recently Das et al. [2]

present a framework that is based on randomized pro-

jections. This is the first work in the context of spatial

database which provides probability quality guarantees

with respect to query result size approximation.
Approximate Query Processing. Figure 5. Example of Haar-
Online Query Processing

The motivation of online query processing is that the

data analysis is to extract unknown information from

data. It is an iterative process starting by asking broad

questions and continually refining them based on

approximate or partial results. Therefore, instead of

optimizing for query response time, it needs to balance

two conflicting performance goals: minimizing un-

eventful ‘‘dead time’’ between updates for the users,

while simultaneously maximizing the rate at which

partial or approximate answers approach a correct

answer. Refer to [4] for details.

Compared with pre-computed synopses approach,

the advantages of online query processing approach

is it does not require pre-processing and progressive

refinement of approximate results at runtime can

quickly lead to a satisfied results. However, the main

obstacles for this technique to be practical is it signifi-

cantly changes the query processor of current commer-

cial query processing system which is not desirable.

Key Applications

AQP in Relational Data Management

The AQUA system proposed by the Bell lab can sup-

port various kinds of approximate queries over the

relational database.
wavelet hierarchical decomposition.

Approximate Reasoning A 119

A
AQP in Spatial Data Management

Alexandria Digital Library allows user to define spatial

queries and returns the approximate number of hits

quickly as the initial result and then user can refine the

query accordingly.
AQP in Stream Data Management

MIT proposed Aurora as a data stream management

system, which virtually supports answering approxi-

mate queries over the data stream.
AQP in Sensor Network

The techniques of TinyDB system, proposed by

Massachusetts Institute of Technology and UC Berke-

ley, can lead to orders of magnitude improvements in

power consumption and increased accuracy of query

results over non-acquisitional systems that do not

actively control when and where data is collected.
AQP in Semantic Web Search

For semantic web search, the viewpoints of users

performing a web search, ontology designers and

annotation designers do not match. This leads to

missed answers. Research studies have shown AQP is

of prime importance for efficiently searching the Se-

mantic Web.
Cross-references
▶Aggregate Queries in P2P Systems

▶Data Mining

▶Decision Support

▶Histogram

▶On-Line Analytical Processing

▶Query Optimization

▶ Sampling

▶ Selectivity

▶Wavelets on Streams

Recommended Reading
1. Das G. Sampling methods in approximate query answering

systems. In Invited Book Chapter, Encyclopedia of Data Ware-

housing and Mining, John Wang (ed.). Information Science

Publishing, 2005.

2. Das A., Gehrke J., and Riedewald M. Approximation Techniques

for Spatial Data. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2004, pp. 695–700.

3. Garofalakis M. and Gibbons P. Approximate Query Processing:

Taming the TeraBytes: A Tutorial. In Proc. 27th Int. Conf. on

Very Large Data Bases, 2001.
4. Hellerstein J., Haas P., and Wang H. Online Aggregation. In

Proc. ACM SIGMOD Int. Conf. on Management of Data,

1997, pp. 171–182.

5. Ioannidis Y. Approximation in Database Systems. In Proc. 9th

Int. Conf. on Database Theory, 2003, pp. 16–30.

6. Ioannidis Y. The History of Histograms (abridged). In Proc. 29th

Int. Conf. on Very Large Data Bases, 2003, pp. 19–30.

7. Matias Y., Vitter J., and Wang M. Wavelet Based Histograms

for Selectivity Estimation. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1998, pp. 448–459.

8. Morgenstein J. Computer Based Management Information

Systems Embodying Answer Accuracy as a User Parameter.

PhD Thesis, U.C. Berkeley, 1980.

9. Poosala V. and Ioannidis Y. Selectivity Estimation Without the

Attribute Value Independence Assumption. In Proc. 23th Int.

Conf. on Very Large Data Bases, 1997, pp. 466–475.

10. Poosala V., Ioannidis Y., Haas P., and Shekita E. Improved

Histograms for Selectivity Estimation of Range Predicates. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1996,

pp. 294–305.
Approximate Querying

▶Model-Based Querying in Sensor Networks
Approximate Reasoning

VILÉM NOVÁK

University of Ostrava, Ostrava, Czech Republic

Definition
Approximate reasoning is a deduction method which

makes it possible to derive a conclusion on the basis of

imprecisely characterized situation (quite often using

linguistically specified fuzzy IF-THEN rules) and a new

information that can also be imprecise. The basic

scheme of approximate reasoning is the following:

Condition : IF X is A1 THEN Y is B1
. .

IF X is Am THEN Y is Bm
Premise : X is A0

��������������������
Conclusion : Y is B0

ð1Þ

where ‘‘Condition’’ is a linguistic description consist-

ing of a set of fuzzy/linguistic IF-THEN rules and A0 is
a possible modification of antecedent of some of the

120A Approximate XML Querying
former rules. For example, ‘‘X is small’’ can be replaced

by ‘‘X is very small.’’

Key Points
The mathematical model of approximate reasoning

depends on the way how the linguistic description

forming the condition is interpreted (see FUZZY/LIN-

GUISTIC IF-THEN RULES AND LINGUISTIC

DESCRIPTIONS).

Let X is A0 be interpreted by a fuzzy set A0��U.
If ‘‘Condition’’ is interpreted by a fuzzy relation R ��
U � V then the result of approximate reasoning is a

fuzzy set B0 �
�
V which interprets ‘‘Y is B0 ’’ and which

is obtained using the formula

B0 yð Þ ¼
_
xEU

A0 xð Þ � R x; yð Þð Þ ð2Þ

where� is a t-norm (product in residuated lattice).

Alternative approximate reasoning method is

perception-based logical deduction. Its idea consists of

finding perception of the given measured value of the

input X¼x0. The perception is an evaluative expres-

sion occurring among A1;:::;Am that fits x0 in the best

way. Then the corresponding fuzzy IF-THEN rule is

fired and the proper output is derived. More details

can be found in [2,3].

Cross-references
▶ Fuzzy/Linguistic IF-THEN Rules and Linguistic

Descriptions

▶ Fuzzy Relation

▶ Fuzzy Set

▶Triangular Norms

Recommended Reading
1. Klir G.J. and Yuan B. Fuzzy Sets and Fuzzy Logic: Theory and

Applications. Prentice-Hall, New York, 1995.

2. Novák V. and Lehmke S. Logical structure of fuzzy IF-THEN

rules. Fuzzy Sets Syst., 157:2003–2029, 2006.

3. Novák V. and Perfilieva I. On the semantics of perception-based

fuzzy logic deduction. Int. J. Intell. Syst., 19:1007–1031, 2004.

4. Novák V., Perfilieva I., and Močkoř J . Mathematical Principles

of Fuzzy Logic. Kluwer, Boston/Dordrecht, 1999.
Approximate XML Querying

▶Ranked XML Processing
Approximation of Frequent Itemsets

JINZE LIU

University of Kentucky, Lexington, KY, USA

Synonyms
AFI

Definition
Consider an n�m binary matrix D. Each row of D

corresponds to a transaction t and each column of

D corresponds to an item i. The (t, i)-element of D,

denoted D(t, i), is 1 if transaction t contains item

i, and 0 otherwise. Let T0 ¼{t1,t2,...,tn} and I0 ¼
{i1, i2,...,im} be the set of transactions and items

associated with D, respectively.

Let D be as above, and let er,ec 2[0,1]. An itemset

I
 I0 is an approximate frequent itemset AFI(er, ec),
if there exists a set of transactions T
 T0 with jT j 	
minsup jT0 j such that the following two conditions

hold:

1: 8i 2 T ;
1

jI j
X
j2I

Dði; jÞ 	 ð1� ErÞ;

2: 8j 2 I ;
1

jT j
X
i2T

Dði; jÞ 	 ð1� EcÞ;

Historical Background
Relational databases are ubiquitous, cataloging every-

thing from market-basket data [1] to genomic data

collected in biological experiments [2]. A binary

matrix is one common representation of relational

databases. Rows in the matrix often correspond to

the objects, while columns represent attributes of the

objects. The binary value of each matrix entry indicates

the presence (1) or absence (0) of an attribute in the

object. For example, in a market-basket database, rows

represent transactions, columns represent product

items, and a binary entry indicates whether an item is

contained in the transaction [1]. Frequent itemset

mining [1] is a key technique in the analysis of such

data. In the binary representation, a frequent itemset

corresponds to a sub-matrix of 1s, where the itemset

(the set of columns) are supported by a sufficiently

large number of transactions (set of rows).

While frequent itemsets and the algorithms to gen-

erate them have been well studied, the problem is that

Approximation of Frequent Itemsets A 121

A
the data in real application is often imperfect. In

a transaction database, frequent itemsets might be

obscured by the vagaries of the market and human

behaviors. Items expected to be purchased together

by a customer might not appear together in some

transactions when one of them is out of stock in the

market or overstocked by the customer. In addition,

empirical data is subject to measurement noise. For

example, Microarray data is often error-prone due to

variations in the experimental technology and the sto-

chastic nature of biological processes.

The noise recorded in real applications undermines

the ultimate goal of the classical frequent itemset algo-

rithms, i.e., revealing the itemset that is present in a

sufficient fraction of transactions (Fig. 1). In fact,

when noise is present, the classical frequent itemset

algorithms may discover multiple small fragments of

the true itemset while missing the true itemset itself.

The problem worsens for the most interesting large

itemsets since they are more vulnerable to noise.

The approximate frequent itemset AFI(er, ec) deno-
tes a collection of submatrices of D where the row-wise

and column-wise noise levels within each submatrix

are below er and ec respectively. The classical exact

frequent itemset (EFI) is a member of AFI(er , ec)
where er and ec are set to be 0 (Fig. 2). The noise

thresholds er and ec are usually below 30%. In

cases when the noise in either row or column is not
Approximation of Frequent Itemsets. Figure 1. Patterns wi
restricted, AFI(er,∗) or AFI(∗ , ec) will be used to

denote the corresponding families. AFI(er ,∗) corre-

sponds to the same family of itemsets, namely Error

Tolerant Itemset (ETI), defined by Yang et al. [8].
Foundations
The AFI-mining algorithm [3,4] generalizes the frame-

work of level-wise itemset enumeration. First, the

Apriori property of exact frequent itemset mining

doesn’t hold for AFI when noise is allowed. Instead,

conditions under which candidate itemsets can be

pruned are established and employed in the AFI algo-

rithm. Secondly, methods that systematically enumerate

candidate itemsets without multiple scans of the data-

base are also developed.
Noise-Tolerant Support Pruning

The anti-monotone property of exact frequent item-

sets is the key to eliminating the exponential search

space in frequent itemset mining [1]. In particular, the

anti-monotone property ensures that a (kþ1) exact

itemset can be pruned if anyone of its k sub-itemsets

is not sufficiently supported. However, the allowance

of noise may lower the support necessary for the sub-

itemsets of a noise-tolerant itemset. The following

theorem suggests a lower bound of support for prun-

ing the candidate itemsets in generating AFIs.
th and without noise.

Approximation of Frequent Itemsets. Figure 2.

Relationships of various AFI criteria.

122A Approximation of Frequent Itemsets
Theorem 1. Given a minsup threshold, If a length

(kþ1)-itemset I 0 is an AFI(er , ec), for any of its

k-sub-itemset I
I0, the number of transactions contain-

ing no more than er fraction of noise must be at least

n �minsup � ð1� kEc
bkErc þ 1

Þ ð1Þ

The noise-tolerant pruning support is defined as

the following:
1 Definition

Given ec, er and minsup, the noise-tolerant support

for a length-k itemset.

minsupkI ¼minsup � ð1� kEc
bkErc þ 1

Þþ ð2Þ

Here (a)+ = max{a, 0}.

The noise-tolerant support threshold is used as the

basis of a pruning strategy for AFI mining. The strategy

removes supersets of a given I from further consider-

ation when I has support less than minsupI
k. In the

special case that er = ec = 0, minsupI
k = minsup, which

is consistent with the anti-monotone property of exact

frequent itemsets [1].

0/1 Extensions

A transaction t supports a k-itemset I if t contains at

least a fraction 1 � er of the items in I. The transaction

set of I consists of all the transactions supporting I.

Starting with singleton itemsets, the AFI algorithm

generates (k + 1)-itemsets from k-itemsets in a
breadth-first fashion. For each candidate itemset I,

transactions t supporting I are generated. The transac-

tion set of a (k + 1) itemset is constructed from the

transaction sets of its k-item subsets in one of two

different ways, depending on the value of k and er.
0-extension and 1-extension are the two basic steps

to be taken for the efficient collection of the supporting

transactions. They obtain the supports based on the

support of its sub-itemset while avoiding the repeated

database scans plaguing the algorithms proposed by

[6,8].

Lemma 1 (1-Extension) If bk � erc = b(k + 1) � erc
then any transaction that does not support a k-itemset

will not support its (k + 1) superset.

The Lemma is based on the fact that if no addition-

al noise is allowed when generating (k + 1) itemset,

a transaction does not support a (k-itemset won’t

support its (k + 1) superset since the number of

1s it contains is always smaller than or equal or
bk�Ec�1þ1

kþ1 < E. Thus if bk � erc = b(k + 1) � erc then the

transaction set of a (k + 1) itemset I is the intersection

of the transaction sets of its length k subsets. This

is called a 1-extension.

Lemma 2 (0-Extension) If bk � erc + 1 = b(k + 1) � erc
then any transaction supporting a (k-itemset also sup-

ports its (k+1) supersets.

The procedure of 0-extension embodies how noise

can be encompassed into a frequent itemset. If addi-

tional noise is allowed in a (k + 1)-itemset, it is intui-

tive that a transaction that supports a k-itemset will

also support its k + 1-item superset, no matter whether

the k + 1 entry is 1 or 0. To reflect this property,

if bk � erc + 1 = b(k + 1) � erc, the transaction set of a

(k + 1) itemset I is the union of the transaction sets of

its length k subsets. This is called a 0-extension.

Experimental Results
In order to test the quality of the algorithm, data with

an embedded pattern and overlaid random errors are

generated. The discovered patterns are evaluated

against the true patterns which are known in apriori.

The methods, exact frequent itemset (EFI), ETI and

AFI, are compared in terms of their capabilities in

discovering the true patterns in the presence of noise.

Two measures jointly describing the quality are

employed. They are ‘‘recoverability’’ and ‘‘spurious-

ness.’’ Recoverability is the fraction of the embedded

patterns recovered by an algorithm, while spuriousness

is the fraction of the mined results that fail to

Approximation of Frequent Itemsets. Figure 3. Algorithm quality versus noise level.

Approximation of Frequent Itemsets A 123

A

correspond to any planted cluster. A truly useful data

mining algorithm should achieve high recoverability

with little spuriousness to dilute the results. A detailed

description of the two measures is given in [3].

Multiple data sets were created and analyzed to

explore the relationship between increasing noise levels

and the quality of the result. Noise was introduced by

bit-flipping each entry of the full matrix with a proba-

bility equal to p. The probability p was varied over

different runs from 0.01 to 0.2. The number of pattern

blocks embedded also varied, but the results were

consistent across this parameter. The results when

one or three blocks were embedded in the data matrix

are presented in Fig.3a,b, respectively.

In both cases, the exact method performed poorly

as noise increased. Beyond p = 0.05 the original pattern

could not be recovered, and all of the discovered pat-

terns were spurious. In contrast, the error-tolerant

algorithms, ETI and AFI, were much better at

recovering the embedded matrices at the higher error

rates. However, the ETI algorithm reported many more

spurious results than AFI. Although it may discover the

embedded patterns, ETI generates many more patterns

that are not of interest, which may overshadow the real

patterns of interest. The AFI algorithm consistently
demonstrated higher recoverability of the embedded

pattern while maintaining a lower level of spuriousness.
Application

AFI mining algorithm can be generally used to find

dense 1s blocks in a large binary matrix. The following

are example applications.

� E-commerce application: discover approximate fre-

quent itemset in large transactional databases [3,4].

� Biogeographic application: discover regions asso-

ciated withmigration in biogeographic research [3].

� Microarray analysis: find noise tolerant co-expressed

patterns.
Cross-references
▶Association Rule Mining on Streams

▶Data Mining
Recommended Reading
1. Agrawal R., Imielinski T., and Swami A. Mining association rules

between sets of items in large databases. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1993, pp. 207–216.

2. Creighton C. and Hanash S. Mining gene expression databases

for association rules. Bioinformatics, 19(1):79–86, 2003.

124A Apriori Property and Breadth-First Search Algorithms
3. Liu J., Paulsen S., Wang W., Nobel A., and Prins J. Mining

approximate frequent itemset from noisy data. In Proc. 2005

IEEE Int. Conf. on Data Mining, 2005, pp. 721–724.

4. Liu J., Paulsen S., Sun X., Wang W., Nobel A., and Prins J.

Mining Approximate frequent itemset in the presence of noise:

algorithm and analysis. In Proc. SIAM International Conference

on Data Mining, 2006, pp. 405–411.

5. Pei J., Tung A.K., and Han J. Fault-tolerant frequent pattern

mining: problems and challenges. In Proc. Workshop on Re-

search Issues in Data Mining and Knowledge Discovery, 2001.

6. Seppanen J.K. and Mannila H. Dense itemsets. In Proc. 10th

ACM SIGKDD Int. Conf. on Knowledge Discovery, and Data

Mining, 2004, pp. 683–688.

7. UCI machine learning repository. (http://www.ics.uci.edu/

mlearn/MLSummary.html).

8. Yang C., Fayyad U., and Bradley P.S. Efficient discovery of error-

tolerant frequent itemsets in high dimensions. In Proc. 7th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,

2001, pp. 194–203.
Apriori Property and Breadth-First
Search Algorithms

BART GOETHALS

University of Antwerp, Antwerp, Belgium

Synonyms
Monotonicity property; Downward closure property;

Levelwise search

Definition
Given a large database of sets of items, called transac-

tions, the goal of frequent itemset mining is to find all

subsets of items, called itemsets, occurring frequently

in the database, i.e., occurring in a given minimum

number of transactions.

The search space of all itemsets is exponential in the

number of different items occurring in the database.

Hence, the naive approach to generate and count the

frequency of all itemsets over the database can not be

achieved within reasonable time. Also, the given data-

bases could be massive, containing millions of tran-

sactions, making frequency counting a tough problem

in itself.

Therefore, numerous solutions have been proposed

to perform a more directed search through the search

space, almost all relying on the well known Apriori-

property. These solutions can be divided into breadth-

first search and depth-first search, of which the first

is discussed here.
Historical Background
The original motivation for searching frequent itemsets

came from the need to analyze so called supermarket

transaction data, that is, to examine customer behavior

in terms of the purchased products. Frequent sets of

products describe howoften items are purchased together.

In 1993, Agrawal, Imilienski, and Swami introduced this

problem, and proposed a first algorithm to solve it. Short-

ly after that, in 1994, the algorithm was improved and

named Apriori. The main improvement was to exploit

the monotonicity property of the frequency of item-

sets, later referred to as the Apriori property. The same

technique was independently proposed byMannila, Toi-

vonen, and Verkamo, after which both works were com-

bined in one book chapter [1]. Since then, hundreds of

improvements and new algorithms have been developed,

many of them relying on the breadth-first search strategy

as proposed in the Apriori algorithm.

Foundations
A set of items I and a databaseD of subsets of I , called
transactions, is given. An itemset I
 I is some set of

items; its support in D is defined as the number of

transactions inD that contain all items in I. An itemset

is called frequent inD if its support inD is greater than

or equal to a given minimum support threshold s. The
goal is now, given a minimal support threshold s and a

database D, to find all frequent itemsets in D.
Instead of naively generating and counting all pos-

sible itemsets, several collections of candidate itemsets

are generated iteratively, and their supports computed

until all frequent itemsets have been generated. Obvi-

ously, the size of a collection of candidate itemsets

must not exceed the size of available main memory.

Moreover, it is important to generate as few candidate

itemsets as possible, since computing the supports of a

collection of itemsets is a time consuming procedure.

In the best case, only the frequent itemsets are gener-

ated and counted. Unfortunately, this ideal is impossi-

ble generally, which will be shown later in this section.

The main underlying property exploited by most

algorithms is that support is monotone decreasing

with respect to extension of an itemset.

Property 1. (Apriori Property) Given a transaction

database D over I, let X ;Y
 I be two itemsets. Then,

X
 Y) supportðY Þ � supportðXÞ:

Hence, if an itemset is infrequent, all of its supersets

must be infrequent. In the literature, this property

Apriori Property and Breadth-First Search Algorithms A 125

A
is also called the monotonicity property, or also the

downward closure property, since the set of frequent

itemsets is closed with respect to set inclusion. This

property is of crucial importance for all frequent item-

set mining algorithms as it allows for pruning large

parts of the search space. As soon as an itemset is

known to be infrequent, none of its supersets has to

be considered anymore.

The Apriori Algorithm

For simplicity, assume that items in transactions and

itemsets are kept sorted in their lexicographic order

unless stated otherwise.

The itemset mining phase of the Apriori algorithm

is given in Figure 1. The notation X[i] is used to

represent the ith item in X; the k-prefix of a set X is

the k-set {X[1],...,X[k]}, and F k denotes the frequent

k-sets.

The algorithm performs a breadth-first (levelwise)

search through the search space of all sets by iteratively

generating and counting a collection of candidate sets.

More specifically, a set is candidate if all of its subsets

are counted and frequent. In each iteration, the collec-

tion Ck+1 of candidate sets of size k + 1 is generated,

starting with k = 0. Obviously, the initial set C1 consists

of all items in I (line 1). At a certain level k, all

candidate sets of size k + 1 are generated. This is
Apriori Property and Breadth-First Search Algorithms.

Figure 1. Apriori.
done in two steps. First, in the join step, the union

X [Y of sets X ;Y 2 F k is generated if they have the

same k � 1-prefix (lines 13–15). In the prune step, X [
Y is inserted into Ck+1 only if all of its k-subsets

are frequent and thus, occur in F k (lines 16–17).

To count the supports of all candidate k-sets, the

database is scanned one transaction at a time, and the

supports of all candidate sets that are included in that

transaction are incremented (lines 4–7). All sets that

turn out to be frequent are inserted into F k (line 11).

If the number of candidate sets is too large to

remain in main memory, the algorithm can be easily

modified as follows. The candidate generation proce-

dure stops and the supports of all generated candidates

are counted. In the next iteration, instead of generating

candidate sets of size k + 2, the remaining candidate

k + 1-sets are generated and counted repeatedly until

all frequent sets of size k + 1 are generated and

counted.

Although this is a very efficient and robust algo-

rithm, its main drawback lies in its inefficient support

counting mechanism. Fortunately, a lot of counting

optimizations have been proposed for many different

situations.

Optimizations

A lot of other algorithms proposed after the introduc-

tion of Apriori retain the same general structure, add-

ing several techniques to optimize certain steps within

the algorithm. Since the performance of the Apriori

algorithm is almost completely dictated by its support

counting procedure, most research has focused on that

aspect of the Apriori algorithm. Here, only four out of

more than hundreds of improvement proposals are

outlined, but at least, these four represent the most

influential and largest jumps forward.

Item Reordering One of the most important optimi-

zations which can be effectively exploited by almost

any frequent set mining algorithm, is the reordering of

items.

The underlying intuition is to assume statistical

independence of all items. Then, items with high fre-

quency tend to occur in more frequent sets, while low

frequent items are more likely to occur in only very

few sets.

For example, in the case of Apriori, sorting the

items in support ascending order improves the distri-

bution of the candidate sets within the used data

126A Apriori Property and Breadth-First Search Algorithms
structure [4]. Also, the number of candidate sets gen-

erated during the join step can be reduced in this way.

Unfortunately, until now, no results have been pre-

sented on an optimal ordering of all items for any

given algorithm and only vague intuitions and heur-

istics are given, supported by practical experiments.

Partition As the main drawback of Apriori is its slow

and iterative support counting mechanism, Savasere

et al. [12] proposed the Partition algorithm.

The main novelty in the Partition algorithm, com-

pared to Apriori, is that the database is partitioned into

several disjoint parts and the algorithm generates for

every part all sets that are relatively frequent within

that part. The parts of the database are chosen in such a

way that each part fits into main memory, allowing for

much more efficient counting mechanisms. Then, the

algorithm merges all relatively frequent sets of every

part together. This results in a superset of all frequent

sets over the complete database, since a set that

is frequent in the complete database must be relatively

frequent in one of the parts. Finally, the actual sup-

ports of all sets are computed during a second scan

through the complete database.

Sampling Another technique to solve Apriori’s slow

counting is to use sampling as proposed byToivonen [13].

The presented Sampling algorithm picks a random

sample from the database that fits in main memory,

then finds all relatively frequent patterns in that sam-

ple, and finally verifies the results with the rest of the

database. In the cases where the sampling method does

not produce all frequent sets, the missing sets can be

found by generating all remaining potentially frequent

sets and verifying their supports during a second pass

through the database. The probability of such a failure

can be kept small by decreasing the minimal support

threshold. However, for a reasonably small probability

of failure, the threshold must be drastically decreased,

which can cause a combinatorial explosion of the

number of candidate patterns. Nevertheless, in prac-

tice, finding all frequent patterns within a small sample

of the database can be done very fast using fast in-

memory support counting techniques. In the next step,

all true supports of these patterns must be counted

after which the standard levelwise algorithm could

finish finding all other frequent patterns by generating

and counting all candidate patterns iteratively. It has

been shown that this technique usually needs only one
more scan resulting in a significant performance im-

provement [13].

Concise Representations If the number of frequent

sets for a given database is large, it could become

infeasible to generate them all. Moreover, if the data-

base is dense, or the minimal support threshold is set

too low, then there could exist a lot of very large

frequent sets, which would make sending them all to

the output infeasible to begin with. Indeed, a frequent

set of size k includes the existence of at least 2k � 1

frequent sets, i.e., all of its subsets. To overcome this

problem, several proposals have been made to generate

only a concise representation of all frequent sets for a

given database such that, if necessary, the frequency of

a set, or the support of a set not in that representation

can be efficiently determined or estimated [2,5–11].
Key Applications
The Apriori property and the breadth-first search algo-

rithms have broad applications in mining frequent

itemsets and association rules. Please refer to the entries

of frequent itemset mining and association rules. The

Apriori property and the breadth-first search algorithms

can be extended to mine sequential patterns. Refer to

the entry of sequential patterns. Moreover, they can also

be used to tackle other data mining problems such as

density-based subspace clustering.
Experimental Results
So far, several hundreds of scientific papers present

different techniques and optimizations for frequent

set mining and it seems that this trend is keeping its

pace. For a fair comparison of some of these algo-

rithms, a contest was organized to find the best imple-

mentations in order to understand precisely why and

under what conditions one algorithm would outper-

form another [3]. Although there were no clear win-

ners, one of the rather surprising results of that contest

was that the original Apriori algorithm often still per-

forms among the best.
Cross-references
▶Association Rule Mining on Streams

▶Closed Itemset Mining and Non-Redundant

Association Rule Mining

▶ Frequent Itemsets and Association Rules

▶ Frequent Itemset Mining with Constraints

Architecture-Conscious Database System A 127

A
Recommended Reading
1. Agrawal R., Mannila H., Srikant R., Toivonen H., and

Verkamo A. Fast discovery of association rules. In Advances in

Knowledge Discovery and Data Mining. U. Fayyad, G. Piatetsky-

Shapiro, P. Smyth, and R. Uthurusamy (eds.). MIT, Cambridge,

MA, USA, 1996, pp. 307–328.

2. Bayardo J. and Roberto J. Efficiently mining long patterns from

databases. In Proc. ACM SIGMOD Int. Conf. onManagement of

Data, 1998, pp. 85–93.

3. Bodon F. A fast apriori implementation. In Proc. ICDM Work-

shop on Frequent Itemset Mining Implementations, vol. 90 of

CEURWorkshp Proceedings, 2003.

4. Borgelt C. and Kruse R. Induction of association rules:

apriori implementation. In Proc. 15th Conference on Computa-

tional Statistics, 2002, pp. 395–400.

5. Boulicaut J.F., Bykowski A., and Rigotti C. Free-sets: a condensed

representation of boolean data for the approximation of fre-

quency queries. Data Min. Knowl. Discov., 7(1):5–22, 2003.

6. Bykowski A. and Rigitti C. A condensed representation to find

frequent patterns. In Proc. 20th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 2001, pp. 267–273

7. Calders T. and Goethals B. Mining all non-derivable frequent

itemsets. In Principles of Data Mining and Knowledge Discov-

ery, 6th European Conf., 2002, pp. 74–85.

8. Calders T. and Goethals B. Minimal k-free representations of

frequent sets. In Principles of Data Mining and Knowledge

Discovery, 7th European Conf., 2003, pp. 71–82

9. Gunopulos D., Khardon R., Mannila H., Saluja S., Toivonen H.,

and Sharma R. Discovering all most specific sentences. ACM

Trans. Database Syst., 28(2):140–174, 2003.

10. Mannila H. Inductive databases and condensed representations

for data mining. In Proc. 14th Int. Conf. Logic Programming,

1997, pp. 21–30.

11. Pasquier N., Bastide Y., Taouil R., and Lakhal L. Discovering

frequent closed itemsets for association rules. In Proc. 7th Int.

Conf. on Database Theory, 1999, pp. 398–416.

12. Savasere A., Omiecinski E., and Navathe S. An efficient algo-

rithm for mining association rules in large databases. In Proc.

21th Int. Conf. on Very Large Data Bases, 1995, pp. 432–444.

13. Toivonen H. Sampling large databases for association rules.

In Proc. 22th Int. Conf. on Very Large Data Bases, 1996,

pp. 134–145.
ARBAC97

▶Administration Model for RBAC
Architecture-aware Database System

▶Architecture-Conscious Database System
Architecture-Conscious Database
System

JOHN CIESLEWICZ, KENNETH A. ROSS

Columbia University, New York, NY, USA

Synonyms
Architecture-sensitive database system; Architecture-

aware database system; Hardware-conscious database

system

Definition
Database systems designed with awareness of and a sensi-

tivity to the underlying computer hardware are ‘‘architec-

ture-conscious.’’ In an architecture-conscious database

system implementation, the performance characteristics

of computer hardware guide algorithm and systemdesign.
Historical Background
Database system implementation has been, in varying

ways, architecture conscious from the advent of the

relational database. For instance, System R [2], an

early relational database system prototype included

the number of I/Os as a cost metric in its optimizer.

At a very high level, the implementers of System R

included the characteristics of the underlying hardware

in their analysis. This trend has continued with growing

attention paid by the database research community to

the effects of hardware technology on database perfor-

mance. Architecture-conscious design took on greater

importance as processor speeds improved by four

orders of magnitude between 1980 and 2005, while

memory latency improved by less than a single order

of magnitude. Because of this performance gap, mem-

ory accesses, which are central to any database work-

load, became relatively expensive, requiring database

researchers to design database algorithms with this

hardware limitation in mind. New computational fea-

tures have been added to microprocessors, including

SIMD instructions, branch prediction, and memory

prefetching. These techniques help to improve single

threaded performance and instruction level parallelism

(ILP), which is the simultaneous processing of instruc-

tions from the same thread. In order to take maximal

advantage of many of these features, databases must be

designed with them in mind.

The introduction of chip multiprocessors (CMP), in

particular, has created new challenges and opportunities

128A Architecture-Conscious Database System
for improving database performance. Due to problems

with power usage, heat dissipation, and diminishing

single threaded performance returns from increasingly

complex logic to exploit additional ILP, beginning early

in the 2000s chip architects switched their design

emphasis from faster clock rates to increased on chip

parallelism. It is expected that the degree of parallelism

supported by CMPs will continue to increase, making it

imperative to design database operators for effective

on-chip parallelism. In addition to single threaded per-

formance, achieving good performance on chip multi-

processors requires awareness of thread level parallelism

(TLP), the simultaneous processing of instructions from

multiple instruction streams. All of these features pro-

vide additional opportunities for architecture-conscious

database system design.

Foundations
The underlying hardware architecture of which an

architecture-conscious database system must be aware

includes all computer components. For database sys-

tems, the most critical components are persistent stor-

age, the memory hierarchy, and the microprocessor.

Research in this field is conducted using architecture

simulators and with real hardware. Both are valuable

tools, as simulators can test new techniques on hypo-

thetical future hardware designs and using real hardware

yields results that are applicable to systems in production

now. This article focuses on identifying and explaining

the architectural features that have performance impli-

cations for databases, and providing high-level design

guidelines for database systems implementers using

these architectures. A more detailed description of spe-

cific database implementation techniques is given in [6].

Persistent Storage

As mentioned above, the impact of storage subsystems

has been part of database implementation from the

beginning, and many database textbooks describe

the costs of various relational operators in terms of the

number of I/Os required. Accessing secondary storage

incurs significant latency compared with accessing data

in memory. For magnetic disk based storage systems,

sequential access is favored because each read and write

requires a large, fixed cost (rotational and seek latency)

before the relatively fast reading or writing. Because

of this property, databases are often optimized for

sequential reads and writes to storage, e.g., reading entire

buffer pages rather than individual records. Magnetic
disks, however, are not the only type of persistent

storage. Flash memory storage devices also provide

high density persistent storage, but have different

properties than magnetic disks. As of 2007, flash mem-

ory does not have density comparable to magnetic

disks, but the technology is improving. Flash memory,

unlike a magnetic disk, has no mechanical parts, uses

less power, and supports a higher number of random

I/Os per second. These different characteristics require

new thinking about the way a database system uses

persistent storage. For instance, the read, write, and

erase properties of flash memory make is less suitable

for update-in-place database operations than magnetic

disks. Changes to page layout and logging have been

introduced to overcome this difference [11]. Flash

memory’s support for more random I/Os per second,

also leads to changes in cost-performance metrics such

as the five-min rule [7].

Main Memory and Cache Optimizations

Memory density has increased while prices have fallen,

resulting in affordable systems in which a database’s

entire working set can be held in memory. For such

systems, I/O latency no longer dominates. At the same

time, processor speeds have increased at a much faster

rate than memory latency, making a data load from

main memory relatively more expensive. Computer

architects have combated this problem by adding

caches to processors. A cache is a small, but very fast

memory on the same chip as the processor. The cache

provides a processor with fast access to frequently used

data (temporal locality) or data that resides near re-

cently used data (spatial locality). When data is found

in the cache, it is called a cache hit, but when data is not

found in the cache this is a cache miss and main

memory must be accessed. Accessing main memory is

a longer latency operation that can stall the processor’s

pipeline. On database workloads, cache misses for data

and instructions have been shown to account for a

significant portion of execution time [1]. Therefore,

data structures and query execution techniques that

make more efficient use of limited cache resources

are complementary improvements that reduce cache

misses and improve performance.

In addition to improving cache use, the challenge

posed by the memory bottleneck can be overcome by

overlapping memory latency with computation. Pre-

fetching facilitates that overlapping by attempting to

load data into the cache before it is needed. Prefetching

Architecture-Conscious Database System A 129

A
can be controlled both in hardware and software. In

hardware prefetching, the processor attempts to iden-

tify access patters, such as a sequential scan, and load

data ahead of when it is needed. In software prefetch-

ing, the programmer inserts prefetch instructions into

a program to provide the hardware with hints about

what data should be loaded into the cache. Software

prefetching must be used when there is no pattern to

the memory accesses. Chen et al. have improved the

performance of tree-based index searches and hash

joins by using prefetch instructions [3,4].

Microarchitecture Optimizations

Conditional branches are a performance hazard on

many microarchitectures. A conditional branch repre-

sents a control dependency, after which the processor

does not immediately know which instruction to exe-

cute. On architectures with long pipelines, the out-

come of a conditional test is not known for many

cycles. In the interim, the processor must either stop

issuing instructions or guess the outcome of the con-

dition. This control dependency can limit instruction

level parallelism (ILP) because the compiler is limited

in its ability to reorder instructions around a branch

and the processor is unsure which instructions to issue

after a branch instruction. Many modern processors

attempt to guess the outcome of the branch using

hardware branch prediction, so that instructions con-

tinue to be issued in spite of the branch. Branch pre-

diction attempts to identify patterns in the recent

history of branch outcomes in order to guess the present

branch’s outcome correctly. If the branch is predicted

correctly, the branch causes no delay in the pipeline.

When the prediction is incorrect, the pipeline must

be flushed and restarted because invalid instructions

have been issued. This cost is the ‘‘branch misprediction

penalty’’ and is related to the depth of the pipeline.

When there is no pattern to the branching, branch

prediction fails up to half the time, and the mispredic-

tion penalty degrades performance. In database work-

loads, where branches are often data dependent, branch

misprediction has a noticeable impact on performance

[1]. Figure 1a shows the number of mispredictions

of performing a simple range selection on an array of

100 million uniformly distributed four byte integers on

a 2.4 GHz Intel Core 2 Duo processor. The graphs in

Fig. 1 show data for a selection implementation using

a conditional branch and a ‘‘no-branch’’ implementa-

tion in which the conditional branch’s control
dependency has been changed to a data dependency

[12]. The maximum number of mispredictions occur

in the conditional branch implementation when the

selectivity is 0.5 because the branch prediction is wrong

half of the time. This high rate of branch misprediction

impacts performance, as shown in Fig. 1b. In contrast,

the implementation with no conditional branch is less

sensitive to the selectivity, with its modest rise in exe-

cution time (Fig. 1b) attributed to the cost of writing

more output as the selectivity increases. Ross extends

the query optimizer’s cost model to take the cost of

branch misprediction into account and demonstrates

techniques for evaluating selection conditions using

varying numbers of conditional branches [12].

Modern microarchitectures feature special vector

operations, also known as single instruction multiple

data (SIMD) instructions. These instructions operate

on wide registers containing multiple variables, en-

abling data parallelism. For example, a 128 bit SIMD

register can contain 16 char data types or four 32-bit

integers. A wide range of mathematical, logical, and

data movement operations can be applied in parallel

to those variables using a single instruction. SIMD

instructions can be used to improve the data parallel-

ism present in database execution, resulting in higher

performance [14]. For some architectures, such as the

Cell Broadband Engine, which are highly optimized for

SIMD processing, SIMD-izing database operations

is crucial to achieving good performance [9]. SIMD

instructions can be used to transform control depen-

dencies into data dependencies. For instance, when

using scalar instructions, selection is commonly per-

formed with a comparison operation followed by a

conditional branch. In contrast, with SIMD instruc-

tions, a selection is performed by applying a SIMD

comparison operation to multiple elements in parallel.

The result of this operation is a bit-mask that can

be used to select the elements that pass the condition

using other instructions. Transforming a control

dependency into a data dependency can also be accom-

plished with predicated scalar instructions such as a

conditional move instruction. Regardless of how the

control dependency is eliminated, doing so will im-

prove ILP, particularly if the branch is difficult to

predict, as is the case in the example shown in Fig. 1.

On-Chip Parallelism

A chipmultiprocessor (CMP) provides multiple on chip

hardware thread contexts, often in the form of multiple

Architecture-Conscious Database System. Figure 1. Number of branch mispredictions and execution time for a

one-sided range selection with varying selectivity. The red, ‘‘Conditional Branch,’’ line is an implementation using

a conditional branch, while the green, ‘‘No-Branch,’’ line is an implementation where the conditional branch’s control

dependency has been replaced with a data dependency [8].

130A Architecture-Conscious Database System
processor cores on a single die. A processor core’s pipe-

line may be shared by different instruction streams, a

design known as simultaneous multithreading (SMT).

Some CMPs have both multiple cores and multiple

threads per core. As of 2007, the most cores available

on a commodity processor was eight, with each core

supporting four threads for a total of 32 threads

per CMP.

Hardware support for thread level parallelism (TLP)

in a CMP differs from a symmetric multiprocessor

(SMP) in that a CMP is one processor die with multiple
processor cores and an SMP is a system composed of

multiple processors sharing one main memory. This

difference has two important implications. First, when

data is shared among two or more processors in an

SMP system,modifications to that data by any processor

is coordinated by a cache coherency protocol, which uses

the system bus to communicate information about

changes to shared data. The system bus is significantly

slower than the processors and if a large amount of

data is shared among the processors or it is frequently

updated, cache coherency overhead can significantly

Architecture-Conscious Database System A 131

A
impact performance. In contrast, because all of the cores

of a CMP are on the same die, communication between

the cores can occur at chip speeds, greatly reducing the

coherency overhead of shared data. Second, in a SMP

system, although the main memory is shared, each

processors’ cache hierarchy is separate. In contrast,

many CMPs share some cache levels among the proces-

sor cores or threads. Because some cache resources may

be shared, designing threads to share data in the cache

can be beneficial provided that coordinating the shar-

ing does no introduce large amounts of overhead.

These differences have implications for architecture-

conscious database systems such as the challenge of

designing core database operations that take advantage

of the on-chip parallelism afforded by chip multipro-

cessors in a manner that will scale as CMPs provide

more hardware thread contexts.

Chip multiprocessors present opportunities and

challenges for improving database performance [8].

Finding parallelism in database systems is not difficult.

Most database systems have long supported concurrent

queries from different users. Other forms of parallelism

can be found within a single query or within a single

operator. Parallelism alone does not guarantee optimal

performance on a CMP. An architecture-conscious

database system on a CMP must exploit the on-chip

parallelism in a manner that uses the parallel resources

to maximum effect. For instance, Cieslewicz and Ross

find that balancing parallelism, cache sharing, and

thread communication is key to achieving good perfor-

mance when computing aggregates using a CMP [5].

Chip multiprocessors can also help alleviate some of the

problems associated with the memory bottleneck de-

scribed previously. By having multiple concurrently

executing thread contexts on one chip, a stall due to a

cache miss in one thread does not stall the entire proces-

sor, leading to higher overall processor utilization. Simi-

lar to techniques using prefetch instructions described

earlier, an on-chip thread can also be used to explicitly

load data into the cache for other another thread [13].

Techniques that perform well on a uniprocessor may

not be appropriate for a CMP. For instance, Johnson et al.

found that work-sharing schemes for in-memory work-

loads on CMPs actually reduced performance [10]. This

was because work-sharing created a bottleneck at the

shared work, limiting the total parallelism. An important

lesson is that in order to achieve optimal database per-

formance on a CMP, database implementers must care-

fully evaluate design decisions that may limit parallelism.
Key Applications
Databases are crucial to a wide range of data storage

and analysis activities. Optimizing core database opera-

tions to take advantage of all of the features and

resources available on modern hardware will result in

better performance, which in turn has the ability to

directly improve the experience of all users of databases.
Future Directions
Adapting database operators to increased on-chip par-

allelism afforded by CMPs is one open problem. As the

amount of on-chip parallelism increases, new bottle-

necks and scaling challenges will emerge. Another area

for future research includes using non-traditional

architectures, such as the Cell Broadband Engine [9]

and other future heterogeneous processors, for data-

base operations. As long as computer architecture

continues to evolve, architecture-conscious databases

will need to adapt to new technologies.
Cross-references
▶Cache-Conscious Query Processing
Recommended Reading
1. Ailamaki A., DeWitt D.J., Hill M.D., and Wood D.A. DBMSs

on a modern processor: Where does time go? In Proc. 25th Int.

Conf. on Very Large Data Bases, 1999, pp. 266–277.

2. Chamberlin D.D., Astrahan M.M., Blasgen M.W., Gray J.N.,

King W.F., Lindsay B.G., Lorie R., Mehl J.W., Price T.G.,

Putzolu F., Selinger P.G., Schkolnick M., Slutz D.R., Traiger I.L.,

Wade B.W., and Yost R.A. A history and evaluation of System R.

Commun. ACM, 24(10):632–646, 1981.

3. Chen S., Ailamaki A., Gibbons P.B., and Mowry T.C. Improving

hash join performance through prefetching. ACM Trans. Data-

base Syst., 32(3):17, 2007.

4. Chen S., Gibbons P.B., Mowry T.C., and Valentin G. Fractal

prefetching Bþ trees: Optimizing both cache and disk perfor-

mance. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2002, pp. 157–168.

5. Cieslewicz J. and Ross K.A. Adaptive aggregation on chip multi-

processors. In Proc. 33rd Int. Conf. on Very Large Data Bases,

2007, pp. 339–350.

6. Cieslewicz J. and Ross K.A. Database optimizations for modern

hardware. Proc. IEEE, 96(5):863–878, May 2008.

7. Graefe G. The five-minute rule twenty years later, and how flash

memory changes the rules. In Proc. Workshop on Data Manage-

ment on New Hardware, 2007.

8. Hardavellas N., Pandis I., Johnson R., Mancheril N., Ailamaki A.,

and Falsafi B. Database servers on chip multiprocessors: Limita-

tions and opportunities. In Proc. 3rd Biennial Conf. on Innova-

tive Data Systems Research, 2007, pp. 79–87.

132A Architecture-Sensitive Database System
9. Héman S., Nes N., Zukowski M., and Boncz P. Vectorized data

processing on the Cell Broadband Engine. In Proc. Workshop on

Data Management on New Hardware, 2007.

10. Johnson R., Hardavellas N., Pandis I., Mancheril N.,

Harizopoulos S., Sabirli K., Ailamaki A., and Falsafi B.

To share or not to share? In Proc. 33rd Int. Conf. on Very

Large Data Bases, 2007, pp. 351–362.

11. Lee S.-W. and Moon B. Design of flash-based DBMS: an in-page

logging approach. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 2007, pp. 55–66.

12. Ross K.A. Selection conditions in main memory. ACM Trans.

Database Syst., 29:132–161, 2004.

13. Zhou J., Cieslewicz J., Ross K.A., and Shah M. Improving

database performance on simultaneous multithreading proces-

sors. In Proc. 31st Int. Conf. on Very Large Data Bases, 2005,

pp. 49–60.

14. Zhou J. and Ross K.A. Implementing database operations using

SIMD instructions. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 2002, pp. 145–156.
Architecture-Sensitive Database
System

▶Architecture-Conscious Database System
Archiving Experimental Data

REAGAN W. MOORE

University of California, San Diego, La Jolla, CA, USA

Synonyms
Preservation; Reference collections

Definition
The archiving of data is the process by which a project

preserves both data and representation information

that is needed to interpret the data.

Historical Background
An increasing fraction of science research is based on

the analysis of large data collections. Experimental data

are collected from measurements by sensors on repeat-

able experiments conducted in laboratories. Observa-

tional data are collected from sensors that measure

properties of the natural environment. Simulation out-

put files are generated by applications that run on
supercomputers. The size of each of these types of

research data can be massive, measured in Petabytes

(thousands of Terabytes), such that there is physically

not enough room to keep the data on high-speed disk

file systems.

The archiving of experimental data traditionally foc-

used on the migration of data from high-performance

(more costly) storage systems to the lowest cost media

that were available (originally tape-based systems). Files

were manually copied from disk onto the tape archive.

The IEEEMass Storage System Reference Model version

5 defines the properties that a tape archive should pro-

vide [4]. The properties include the ability to automate

retrieval of the file, manage the name space used to

identify the file, and manage migration of files between

tapes. While these capabilities enable the long-term

management of the files, each project was required to

manage independently any representation information

needed to interpret the file and the meaning of the data.

The OAIS model defines representation information

that should be provided for preservation of data [6].

This includes information about the source of the data,

descriptions of the structures present within the data file,

identification of the application that can manipulate

the data structure, descriptions of the meaning of the

data, and identification of a knowledge community that

can interpret the meaning. Archiving of experimental

data is successful when the data can be retrieved, inter-

preted, andmanipulated by the project at an unspecified

future time.
Foundations
The archiving of experimental data is facilitated through

the development of standards for the descriptive terms

used to describe meaning and provenance, standards for

describing the structures present in the file, and standards

for the services that manipulate the data structures.

� Standard semantics. The terms used to describe

physical phenomena are created by each discipline.

The meaning of these terms evolves over time as a

better understanding is developed of the physical

phenomena. A preservation environment will need

to support evolution of the semantic meaning,

through the mapping of prior vocabulary sets to

the new vocabulary. This is typically done through

use of ontologies that define logical mappings be-

tween terms, spatial correlation of terms to maps,

assignment of temporal coordinates to processes,

Archiving Experimental Data A 133

A
and specification of functional relationships be-

tween physical quantities.

� Standard formats. Each file is a linear string of bits,

on which structure is imposed. A file format

describes how to interpret the bit string into struc-

tures that can be named. Since the types of obser-

vational or experimental or simulation data vary

extensively, each community chooses a standard

format for specific physical phenomena. As new

phenomena are measured, new data formats are

created. Thus a preservation environment needs

to manage either characterization of the file for-

mats or migration of the file formats onto new

standards. A promising approach to handle data

format migration is based on Data Format Descrip-

tion Languages, that enable the description of the

structure of the file using an XML syntax.

� Standard access methods. Each scientific commu-

nity defines standard processing steps for manipu-

lating the structures present within the standard

data formats, using the standard semantic terms.

These standard processing mechanisms can be ported

on top of data grid technology to enable their use

within the preservation environment [5]. An alternate

approach is to port the required display application to

each new operating system technology. This assumes

the data can be retrieved from the preservation envi-

ronment, and a copy is placed on the computer where

the emulated application is executed.

The size of science data collections poses a major

scalability challenge, and strongly impacts the imple-

mentation of the data archiving process. The large

number of files and the large size of an individual file

require support mechanisms that may not be provided

by a specific storage system. The science research

projects listed below use data grid technology to over-

come limitations in current storage technology, and

to simplify incorporation of new technology within

the preservation environment. Data grids are software

middleware that insulate the scientific collections from

dependencies on current storage technology through

the implementation of infrastructure independence

[2]. The names used to describe the science data are

managed by the data grid independently of the choice

of storage system. This makes it possible to ensure

consistent naming even when data is distributed across

multiple storage systems or migrated from old tech-

nology to new technology.
Data grids provide standard operations for manip-

ulating science data. The operations are executed at

the remote storage system through interoperability

mechanisms that can be applied on any choice of

storage. Data grids also provide standard interfaces

that enable the use of a preferred access mechanism.

The result is the ability to use a particular research

group’s access interface to manipulate data stored on

multiple types of remote storage systems.

The mechanisms provided by data grids to manage

science data explicitly handle issues of scale:

� Large file size. An individual file can be multiple

gigabytes in size. The time required to move such a

file over a network to a storage system can be

excessive. By using parallel I/O streams, the time

can be decreased by multiple factors of two. Effec-

tively, the data file is separated into multiple seg-

ments, each of which is transmitted over the

network in parallel with the other segments. Large

files are typically sent using four to eight parallel

I/O streams.

� Large file size. The retrieval of a large file, even with

parallel I/O streams may take multiple minutes. For

cases where a small subset of the large file is needed, it

is more efficient to filter the file at the remote storage

system, and send only the desired subset back over

the network. Data grids support remote manipula-

tion of files through the execution of remote proce-

dures at the location where the file resides.

� Large number of files. Each storage system has a

maximum number of files that it is designed to

handle. Large collections can exceed the number

of files that can be written to a single storage sys-

tem. To overcome this limitation, data grids aggre-

gate small files into a single larger file called a

container. The container is written to the storage

system. The data grid maintains information that

allows it to track the location in the container of

each file. For example, the 2-Micron All Sky Sur-

vey [8] astronomy image collection containing

5 million images was archived on tape by aggregat-

ing the images into 147,000 containers. If the

images in each container are from the same area

on the sky, then retrieval of the container can result

in multiple related images becoming accessible,

improving bulk access to the collection.

� Large number of files. For the archived files to be

useful, descriptive information is needed about

134A Archiving Experimental Data
each file to support discovery. The descriptive in-

formation may be extractable from the file. How-

ever, if a discovery request is issued that requires

the parsing of every file in the collection, the time

to satisfy the request may be exceptionally long.

Data grids manage metadata for each file in a

metadata catalog. The metadata catalog is stored

as tables in a relational database, enabling efficient

searches. Data grids can use remote procedures to

parse the descriptive metadata from the file, and

bulk load the metadata into the metadata catalog.

� Large size of collections. The management of integ-

rity across large collections may be viewed as an

intractable problem. File integrity can be verified by

reading each file, calculating a checksum, and then

comparing the checksum with a previous value that

was stored in the metadata catalog. If the file has

become corrupted, the two checksums will not be

equal. If a single tape drive is used to read a Petabyte

collection, a sustained data transfer rate of 33MB/s is

needed to read the entire collection in a year. Thus

integrity checking of large collections can require the

dedication of significant hardware resources. If a

problem is detected, a second copy is required to be

able to repair the corruption. Data grids support the

replication of data onto multiple storage systems

that may be located at geographically remote loca-

tions. The geographic separation is needed to ensure

recovery from natural disasters. Synchronization of

replicas is done to verify integrity of the files.

Key Applications
Science disciplines are generating massive collections

of experimental, observational, and simulation data.

Single projects such as the Southern California Earth-

quake Center [7] plan to generate over 1.5 Petabytes of

simulation data of seismic wave propagation from

earthquakes on the San Andreas Fault. The Large Syn-

optic Survey Telescope (LSST) plans to capture more

than 130 Petabytes of observational data [3]. The LSST

project takes photographs of the sky to track near earth

objects, supernovae, and micro-lensing events that can

provide information on the structure of the Universe.

The BaBar high-energy physics experiment has moved

more than 400 Terabytes of experimental data from the

Stanford Linear Accelerator in Palo Alto, California to

Lyon, France for analysis by collaborating physicists

[1]. In each case, the data are archived for comparison

with future research results.
Future Directions
The ability to validate the trustworthiness of a digital

repository is becoming an essential requirement for the

archiving of experimental data. When scientific collec-

tions are archived, each community defines assessment

criteria that they expect the preservation environ-

ment to maintain. The assessment criteria may be

related to retention and disposition policies, or to

time-dependent access controls, or to specifications

of required descriptive metadata, or to required access

mechanisms for data display and manipulation. An

emerging requirement for scientific collections is the

characterization of the management policies under

which the desired collection properties are enforced.

Rule based data grids provide the mechanisms need-

ed not only to enforce the application of the collection

management policies, but also to automate the execu-

tion of data management policies. As scientific collec-

tions grow to the Petabyte size, the labor required to

administer the collections can become onerous. This is

driven by the use of distributed storage systems to man-

age the collections. Once the collection resides onmulti-

ple types of storage systems, located on multiple

administrative domains at geographically remote sites,

it becomes very hard to control what is happening.

A network router or storage system may be taken down

for maintenance, or an operational procedure may

change, causing an unexpected result. Data grids provide

mechanisms to recover from such problems through

the use of replicas, checksums, and synchronization.

A problem can be detected and repaired through an

administrator-initiated action. When the number of

detected problems becomes too large, the administrator

is no longer able to keep up with the workload.

Rule based data grids minimize the labor required by

the administrator by automating execution of manage-

ment policies. Management policies are defined that

control the preservation processes that are applied to

the collection (e.g., validate checksum, verify presence

of required metadata, implement the retention policy).

Assessment criteria are specified that evaluate whether

the management policies have been correctly applied. In

a rule-based data grid, the preservation processes are

expressed as sets of micro-services that are executed at

the remote storage system. Each micro-service in turn is

composed from standard operations that the data grid

implements for each type of storage system. Manage-

ment policies are expressed as sets of rules that control

the execution of the micro-services. A rule engine is

Association A 135

A
installed at each remote storage system to ensure that

the policies are enforced, no matter which access mech-

anism is used to interact with the data grid. The assess-

ment criteria are mapped to queries on persistent state

information that is generated after the execution of each

micro-service. Such a rule based data grid is capable of

monitoring its own operations and verifying the trust-

worthiness of the digital repository that holds the

archived scientific collection [2].

Cross-references
▶Data Warehouse

▶Disaster Recovery

▶ Information Lifecycle Management

▶Meta data Repository

▶ Provenance

▶Replication

Recommended Reading
1. BaBar B meson high energy physics project. Available at: http://

www.slac.stanford.edu/BFROOT/

2. Integrated Rule-Oriented Data System (iRODS). Available at:

http://irods.sdsc.edu/

3. Large Synoptic Survey Telescope (LSST). Available at: http://

www.lsst.org/

4. Miller S.W. Mass storage reference model special topics. In Proc.

9th IEEE Symp. on Mass Storage Systems, Monterey, CA,

November 1988, pp. 3–7.

5. Moore R. Building preservation environments with data grid

technology. Am. Arch., 69(1):139–158, July 2006.

6. OAIS, reference model for an open archival information system,

ISO standard ISO 14721:2003. Available at: http://nost.gsfc.nasa.

gov/isoas/ref_model.html

7. Southern California Earthquake Center (SCEC). Available at:

http://www.scec.org/

8. 2-micron all sky survey. Available at: http://

www.ipac.caltech.edu/2mass/
Armstrong Axioms

SOLMAZ KOLAHI

University of British Columbia, Vancouver,

BC, Canada

Definition
The term Armstrong axioms refers to the sound and

complete set of inference rules or axioms, introduced

by William W. Armstrong [2], that is used to test

logical implication of functional dependencies.
Given a relation schema R[U] and a set of func-

tional dependencies S over attributes inU, a functional

dependency f is logically implied by S, denoted by

S⊨f, if for every instance I of R satisfying all functional

dependencies in S, I satisfies f. The set of all functional
dependencies implied by S is called the closure of S,
denoted by S+.

Key Points
Armstrong axioms consist of the following three rules:

Reflexivity: If Y
 X, then X! Y .

Augmentation: If X! Y , then XZ! YZ.

Transitivity: If X! Y and Y! Z, then X! Z.

Note that in the above rules XZ refers to the union of

two attribute sets X and Z. Armstrong axioms are

sound and complete: a functional dependency f is de-

rivable from a set of functional dependencies S by

applying the axioms if and only if S⊨f (refer to [1]

for more information).

Cross-references
▶ Functional Dependency

▶ Implication of Constraints

Recommended Reading
1. Abiteboul S., Hull R. and Vianu V. Foundations of Databases.

Addison-Wesley, Reading, MA, 1995.

2. Armstrong W. Dependency structures of data base relationships.

In IFIP Congress. 1974.
Array

▶Redundant Array of Independent Disks (RAID)
Array Databases

▶Raster Data Management and Multi-Dimensional

Arrays
Association

▶Abstraction

▶ Similarity and Ranking Operations

136A Association Rule Mining on Streams
Association Rule Mining on Streams

PHILIP S. YU
1, YUN CHI

2

1IBM T.J. Watson Research Center, Yorktown Heights,

NY, USA
2NEC Laboratories America, Cupertino, CA, USA

Definition
Let I ={ i1,...,im} be a set of items. Let S be a stream of

transactions in a sequential order, where each transac-

tion is a subset of I. For an itemsetX, which is a subset

of I, a transaction T in S is said to contain the itemset X

if X
 T. The support of X is defined as the fraction of

transactions in S that contain X. For a given support

threshold s, X is frequent if the support of X is greater

than or equal to s%, i.e., if at least s% transactions in S

contain X. For a given confidence threshold c, an asso-

ciation ruleX) Y holds if X [Y is frequent and at least

c% of transactions in S that contain X also contain Y .

The problem of association rule mining on streams is

to discover all association rules that hold in a stream of

transactions.
Historical Background
In 1993, Rakesh Agrawal et al. [1] proposed the frame-

work for association rule mining. Since this seminal

work, a lot of researches have been done to improve the

efficiency of association rule mining algorithms, to ex-

tend the definition of associations rule, and to apply

association rule mining to other types of data such as

time sequence data and structured data such as graphs.

On the other hand, research on data streams started

around 2000 when several data stream management

systems were originated (e.g., the Brandeis AURORA

project, the Cornell COUGAR project, and the Stanford

STREAM project) to solve new challenges in applica-

tions such as network traffic monitoring, transaction

data management, Web click streams monitoring, sen-

sor networks, etc. Because association rule mining plays

an important role in these data stream applications

(e.g., the motivation in the first association rule

paper [1] is to mine patterns from retail store transac-

tion data), along with the development of data stream

management systems, developing association rule

mining algorithms for data streams has become an

important research topic.
Foundations

Two Sub-problems

Algorithms for association rulemining usually consist of

two steps. The first step is to discover frequent itemsets.

In this step, all frequent itemsets that meet the support

threshold are discovered. The second step is to derive

association rules. In this step, based on the frequent

itemsets discovered in the first step, the association

rules that meet the confidence criterion are derived.

Because the second step, deriving association rules, can

be solved efficiently in a straightforward manner, most

of researches focus mainly on the first step, i.e., how to

efficiently discover all frequent itemsets in data streams.

Therefore, in the rest of this article, the focus will be on

frequent itemset mining in data streams.
Key Challenges

Frequent itemset mining in general is already a challeng-

ing problem. For example, due to combinatorial explo-

sion, there may be huge number of frequent itemsets, and

a main challenge is how to efficiently enumerate, discov-

er, and store frequent itemsets. Data streams, because of

their unique features, have further posed many new

challenges to frequent itemset mining. Some of these

new challenges are described as the following.

Single access of data In data streams, data are arriving

continuously with high speed and in large volume. As a

consequence, in many cases it is impractical to store all

data in persistent media and in other cases, it is too

expensive to (randomly) access data multiple times.

The challenge is to discover frequent itemsets while

the data can only be assessed once.

Unbounded data Another feature of data streams is that

data are unbounded. In comparison, storage that can

be used to discover or maintain the frequent itemsets is

limited. Another consequence of unbounded data is

that whether an itemset is frequent depends on time.

The challenge is to use limited storage to discover

dynamic frequent itemsets from unbounded data.

Real-time response Because data stream applications

are usually time-critical, there are requirements on

response time. For some restricted scenarios, algo-

rithms that are slower than the data arriving rate are

useless. The challenge is therefore to efficiently mine

frequent itemsets in real time.

Association Rule Mining on Streams A 137

A
Data Models

Compared with finite data in traditional databases,

data streams are unbounded and the number of trans-

actions increase with time. Due to these characteristics,

different data models have been proposed in different

mining algorithms.

The first data model is an accumulative model. In

this model, all data in the range from the beginning to

the current time are considered in an equal fashion.

Therefore, frequent itemsets are defined on the accu-

mulated data where new data are appended continu-

ously as time grows.

The second data model is based on a sliding win-

dow. That is, although the whole data stream is un-

bounded, the frequent itemsets are defined based on

the most recent data that fall within a temporal sliding

window whose ending time is the current time. One

justification for such a sliding-window model is that

due to concept drifts, the data distribution in streams

is usually changing with time, and very often people

are interested in the most recent patterns.

The third data model falls in between the first two

models – while all data are considered in frequent

itemset mining, they are weighted differently according

to a predefined weighting function. A very commonly

used weighting function is the exponentially decaying

function, that is, for a transaction at time t, its weight
is a(t) = exp(t � t), where t is the current time.

Algorithm Types

Based on the mining results, existing frequent itemsets

mining algorithms on data streams can be roughly

divided into two categories: the exact mining algo-

rithms and the approximate mining algorithms.

Exact mining algorithms provide as results all the

frequent itemsets in the data streams together with

their accurate supports. Usually the focus of exact

algorithms is to efficiently update frequent itemsets

when new transactions arrive and (in the sliding-

window data model) when old transactions expire.

Approximate mining algorithms, on the other

hand, focus more on finite memory usage and single

access of data, at the cost of the accuracy of the mining

results. Approximate algorithms target low false posi-

tive rate, zero, or low false negative rate, and tight error

bounds on the estimation for the supports of the

frequent itemsets.
Representative Algorithms

Cheung et al. [6,7] proposed algorithms FUP and

FUP2 for incrementally updating frequent itemsets.

Thomas et al. [13] presented a similar algorithm.

Both Cheung’s and Thomas’s algorithms assume

batch updates and take advantage of the relationship

between the original database (DB) and the incremen-

tally changed transactions (db). FUP is similar to the

well-known Apriori algorithm [1], which is a multiple-

step algorithm. The key observation of FUP is that by

adding db to DB, some previously frequent itemsets

will remain frequent and some previously infrequent

itemsets will become frequent (these itemsets are called

winners); at the same time, some previously frequent

itemsets will become infrequent (these itemsets are

called losers). The key technique of FUP is to use

information in db to filter out some winners and

losers, and therefore reduce the size of candidate set

in the Apriori algorithm. Because the performance of

the Apriori algorithm relies heavily on the size

of candidate set, FUP improves the performance of

Apriori greatly. FUP2 extended FUP by allowing delet-

ing old transactions from a database as well. Therefore

FUP is restricted to the accumulative data model while

FUP2 can be used on the sliding-window data model as

well. The algorithm proposed by Thomas et al. is

similar to FUP2 except that in addition to frequent

itemsets, a negative border is maintained. In the algo-

rithm, the frequent itemsets in db are mined first.

At the same time, the counts of frequent itemsets

(and itemsets on the negative border) in DB are

updated. Then based on the change of the frequent

itemsets in DB, the negative border in DB, and the

frequent itemsets in db, the frequent itemsets in the

updated database are computed with a possible scan of

the updated database. Because the updated database is

scanned at most once, Thomas’s algorithm has very

good performance. Thomas’s algorithm can be used

for both the accumulative and the sliding-window data

models. In addition, FUP, FUP2, and Thomas’s algo-

rithm all fall into the category of exact mining

algorithms.

Veloso et al. [14] proposed an algorithm ZIGZAG

for mining frequent itemsets in evolving databases.

Later, Otey et al. [11] extended ZIGZAG into parallel

and distributed algorithms. ZIGZAG is similar to

Cheung’s and Thomas’s algorithms in that it achieves

Association Rule Mining on Streams. Table 1. The

categorization of the representative algorithms according

to their data models and algorithm types

Data Model

Accumulative
Sliding-
window Weighted

Exact
Mining
Algorithm

FUP [2] FUP2 [3]
Thomas’s [4]
ZIGZAG [5, 6]
Moment [8

Algorithm
Mining
Algorithm

Count Sketch [9]
Sticky Sampline
[10] Lossy
Counting [10]

FTP-DS [11 estDec [12]
Giannella’s
[13]

138A Association Rule Mining on Streams
its speedup by using the relationship between DB and

db. However, ZIGZAG has many distinct features. First,

ZIGZAG mainly used db to speedup the support

counting of frequent itemsets in the updated database

and it does not discover the frequent itemsets in db

itself. As a result, for a given minimum support, ZIG-

ZAG can handle batch update with arbitrary block

size. Second, ZIGZAG adapts the techniques proposed

in the GENMAX algorithm [9] and in each update

only maintains maximal frequent itemsets. Because

the information on maximal frequent itemsets and

their supports is not enough to generate association

rules (because the support information of some non-

maximal frequent itemsets may be missing), a second

step is used in ZIGZAG in which the updated database

is scanned to discover all frequent itemsets and their

supports.

Chi et al. [5] developed an algorithm, Moment, to

mine closed frequent itemsets over data stream sliding

windows. In this work the authors introduced a com-

pact data structure, the closed enumeration tree (CET),

to maintain a dynamically selected set of itemsets over

a sliding window. The selected itemsets contain a

boundary between closed frequent itemsets and the

rest of the itemsets. Concept drifts in a data stream

are reflected by boundary movements in the CET,

and can be efficiently captured. Both ZIGZAG and

Moment are exact mining algorithms that use the

sliding-window data model.

Charikar et al. [3] presented a one-pass algorithm,

Count Sketch, that returns most frequent items whose

frequencies satisfy a threshold with high probabilities.

Manku et al. [10] developed a randomized algorithm,

the Sticky Sampling algorithm, and a deterministic

algorithm, the Lossy Counting algorithm, for maintain-

ing frequent items over a data stream where for a given

time t, the frequent items are defined over the entire

data stream up to t. The algorithms guarantee no false

negative and a bound on the error of estimated fre-

quency (the guarantees are in a probabilistic sense for

the randomized algorithm). The Lossy Counting algo-

rithm is extended to handle frequent itemsets, where a

trie is used to maintain all frequent itemsets and the

trie is updated by batches of transactions in the data

stream. The algorithms of Manku et al. strive for a

tunable compromise between memory usage and

error bounds. Count Sketch, Sticky Sampling, and

Lossy Counting are all approximate mining algorithms

that use the accumulative data model.
Teng et al. [12] presented an algorithm, FTP-DS,

that mines frequent temporal patterns from data

streams of itemsets. FTP-DS is an approximate mining

algorithm that uses the sliding-window data model.

Chang et al. [2] presented an algorithm, estDec, that

mines recent frequent itemsets where the frequency is

defined by an aging function. Giannella et al. [8] pro-

posed an approximate algorithm for mining frequent

itemsets in data streams during arbitrary time inter-

vals. An in-memory data structure, FP-stream, is used

to store and update historic information about fre-

quent itemsets and their frequency over time and an

aging function is used to update the entries so that

more recent entries are weighted more. Both estDec

and Giannella’s algorithm are approximate mining

algorithms on weighted transactions. However, Gian-

nella’s algorithm is a little different in that it can

provide different error levels for data at multiple time

granularities.

The above representative algorithms are summar-

ized in Table 1. For a more detailed survey on algo-

rithms for frequent itemset mining over data streams,

refer to a recent survey by Cheng et al. [4].
Key Applications
For most data stream applications, there are needs for

mining frequent patterns and association rules from

data streams. Some key applications in various areas

are listed in the following.

Performance monitoring Monitor network traffic and

performance, detect abnormality and intrusion

Association Rule Mining on Streams A 139

A
Transaction monitoring Monitor transactions in retail

stores, ATM machines, and financial markets

Log record miningMine patterns from telecommunica-

tion calling records, Web server log, etc.

Sensor network mining Mine patterns in streams com-

ing from sensor networks or surveillance cameras

Experimental Results

In general, for each of the presented algorithms, there are

supporting experimental studies in the corresponding

references. The commonly compared performance

metrics include memory usage, speed of the mining

process, and (for the approximate algorithms) errors

such as false positive rate, false negative rate, and support

errors for the frequent itemsets.

Data Sets

ALinux version of the synthetic data generator originally

developed by Agrawal et al. [1] is available at http://

miles.cnuce.cnr.it/˜palmeri/datam/DCI/datasets.php

Some other synthetic and real-life data sets are

available from the Frequent Itemset Mining Dataset

Repository at http://fimi.cs.helsinki.fi/data/

Furthermore, pointers to some related data sets are

available at the KDnuggets Web site http://www.

kdnuggets.com/datasets/

Cross-references
▶Approximation of Frequent Itemsets

▶Association Rule Mining

▶Change Detection on Streams

▶Closed Itemset Mining and Nonredundant Associa-

tion Rule Mining

▶Continuous Queries in Sensor Networks

▶Data Aggregation in Sensor Networks

▶Data Estimation in Sensor Networks

▶Data Mining

▶Data Sketch/Synopsis

▶Data Streams

▶ Frequent Items on Streams

▶ Frequent Itemsets and Association Rules

▶ Incremental Computation of Queries

▶ Internet and Web Transactions

▶One-Pass Algorithm

▶ Pattern-Growth Methods

▶Randomization Methods

▶Real-Time Transactions

▶ Sensor Network

▶ Stream Mining
▶ Stream Models

▶ Streaming Applications

▶Tries

▶Web Services
Recommended Reading
1. Agrawal R., Imielinski T., and Swami A. Mining association rules

between sets of items in large databases. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1993, pp. 207–216.

2. Chang J.H. and Lee W.S. Finding recent frequent itemsets adap-

tively over online data streams. In Proc. 9th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2003,

pp. 487–492.

3. Charikar M., Chen K., and Farach-Colton M. Finding frequent

items in data streams. In Proc. 29th Int. Colloquium on Auto-

mata, Languages and Programming, 2002, pp. 693–703.

4. Cheng J., Ke Y., and Ng W. A survey on algorithms for mining

frequent itemsets over data streams. Knowledge and Int. Syst.,

16(1):1–27, 2008.

5. Chi Y., Wang H., Yu P.S., and Muntz R.R. Catch the moment:

maintaining closed frequent itemsets in a data stream sliding

window. Knowl. Inf. Syst., 10(3):265–294, 2006.

6. Cheung D.W., Han J., Ng V., and Wong C.Y. Maintenance of

discovered association rules in large databases: an incremental

updating technique. In Proc. 12th Int. Conf. on Data Engineer-

ing, 1996, pp. 106–114.

7. Cheung D.W., Lee S.D., and Kao B. A general incremental

technique for maintaining discovered association rules. In

Proc. 5th Int. Conf. on Database Systems for Advanced Applica-

tions, 1997, pp. 185–194.

8. Giannella C., Han J., Pei J., Yan X., and Yu P.S. Mining frequent

patterns in data streams at multiple time granularities.

In H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha (eds.).

Data Mining: Next Generation Challenges and Future Direc-

tions. AAAI, 2004.

9. Gouda K. and Zaki M.J. Efficiently mining maximal frequent

itemsets. In Proc. 2001 IEEE Int. Conf. on Data Mining, 2001,

pp. 163–170.

10. Manku G. and Motwani R. Approximate frequency counts over

data streams. In Proc. 28th Int. Conf. on Very Large Data Bases,

2002, pp. 346–357.

11. Otey M.E., Parthasarathy S., Wang C., Veloso A., and Meira W.

Parallel and distributed methods for incremental frequent item-

set mining. IEEE Trans. Syst. Man Cybern. B, 34(6):2439–2450,

2004.

12. Teng W.-G., Chen M.-S., and Yu P.S. A regression-based tempo-

ral Pattern Mining Scheme for Data Streams. In Proc. 29th Int.

Conf. on Very Large Data Bases, 2003, pp. 98–104.

13. Thomas S., Bodagala S., Alsabti K., and Ranka S. An efficient

algorithm for the incremental updation of association rules in

large databases. In Proc. 3rd Int. Conf. on Knowledge Discovery

and Data Mining, 1997, pp. 263–266.

14. Veloso A., Meira Jr. W., and de Carvalho M., Pôssas B.,

Parthasarathy S., and Zaki M.J. Mining frequent itemsets in

evolving databases. In Proc. SIAM International Conference on

Data Mining, 2002.

140A Association Rule Visualization
Association Rule Visualization

▶Visual Association Rules
Association Rules

JIAN PEI

Simon Fraser University, Burnaby, BC, Canada

Definition
Let I be a set of items, where each item is a literal. A

transaction T
 I is a subset of I . Association rules

are defined on a set of transactions T .
An association rule R is in the form of X ! Y ,

where X and Y are two sets of items, that is, X ;Y
 I .
R is associated with two measures, the support sup(R)

and the confidence conf (R). The support sup(R) is the

probability that X appears in a transaction in T . The
confidence conf (R) is the conditional probability that

when X appears in a transaction, Y also appears.

Historical Background
The concept of association rules were firstly proposed by

Agrawal et al. [1] for market basket analysis. A well

known illustrative example of association rules is ‘‘Diaper

! Beer’’ which can be explained by the fact that, when

dads buy diapers for their babies, they also buy beer at the

same time for their weekends game watching.

Apriori, an efficient algorithm for mining associa-

tion rules, was developed by Agrawal and Srikant [3],

while the similar idea was explored by Mannila et al.

[13]. There have been many studies trying to improve

the efficiency of Apriori (refer to entry ‘‘Apriori prop-

erty and breadth-first search algorithms’’). A pattern-

growth approach for mining frequent itemsets without

candidate generation was developed by Han et al. [8],

and has been further improved by many studies since

2001 (see entry ‘‘Pattern-growth methods’’).

To remove redundancy in association rules, Pasqu-

ier et al. [15] proposed the notion of frequent closed

itemsets using formal concept analysis. Several efficient

algorithms have been developed (refer to entry ‘‘Closed

itemset mining and non-redundant association rule

mining’’).

Association rules have been extended in several

ways, such as sequential patterns and sequential
association rules (refer to entry ‘‘Sequential patterns’’),

spatial association rules [9], cyclic association rules

[14], negative association rules [19], intertransaction

association rules [12], multilevel generalized associa-

tion rules [7,20], and quantitative association rules

(refer to entry ‘‘Quantitative association rules’’).

In addition to support and confidence, some other

interestingness measures for association rules were

explored, such as [5,18].
Foundations
Let I be a set of items, where each item is a literal.

An itemset X is a subset of items, that is, X
 I . A
transaction T
 I consists of a transaction id and an

itemset. A transaction database T is a multiset of

transactions.

An association rule R is in the form of X ! Y ,

where X and Y are two itemsets, that is, X ;Y
 I . R
is associated with two measures, the support sup(R)

and the confidence conf (R). The support sup(R),

given by sup(R) = Pr(X), is the probability that X

appears in a transaction in T . The confidence conf

(R), given by conf ðRÞ ¼ supðX[Y Þ
supðXÞ ¼ PrðY jXÞ, is the

conditional probability that when X appears in a trans-

action, Y also appears.

Given a transaction database T , a minimum sup-

port threshold minsup, and a minimum confidence

threshold minconf, the problem of association rule

mining is to find the complete set of association rules

whose supports are at least minsup and whose confi-

dences are at least minconf.

Association rules can be mined in two steps. In

the first step, the complete set of frequent itemsets

are identified. An itemset is called frequent if Pr(X) 	
minsup. In the second step, frequent itemsets are used

to generate association rules.

More often than not, to make association rule

mining interesting, a user may specify a minimum sup-

port threshold min_sup and a minimum confidence

threshold min_conf. Then, only the association rules

whose supports and confidence pass those thresholds,

respectively, should be returned. Alternatively, in some

situations, a user may want to find the top-k association

rules with the largest support and/or confidence. Some

other kinds of constraints can also be specified. Such

thresholds and constraints may be used by some asso-

ciation rule mining methods to speed up the mining

procedure.

Association Rules A 141

A
Key Applications
Association rules have been extensively mined and

used in many applications. For example, mining asso-

ciation rules about customers’ market baskets helps to

identify the products that customers like to purchase

together, or some products that may trigger the pur-

chases of some other products. Such information can

help business in one way or another. For example,

knowing that the purchase of diapers may potentially

lead to the purchase of beer, a store can put beer beside

diapers so that the sales of beer can be boosted.

Association rules are also mined on biological data

and clinic data. For example, mining the association

rules among symptoms and disease can help to diag-

nose diseases.

An important application of association rules is to

construct classifiers using association rules. Technically,

association rules among features and the target class

labels can be mined and the rules can be used to make

prediction on cases with unknown class labels. Research

has found that associative classifiers, classifiers using

association rules, are accurate and highly understand-

able in a few applications such as those with many

features [6,10,11].

Cross-references
▶Approximation of Frequent Itemsets

▶Apriori Property andBreadth-First SearchAlgorithms

▶Associative Classifiers

▶Closed Itemset Mining and Non-Redundant Associa-

tion Rule Mining

▶Data Mining

▶Emerging Patterns

▶ Frequent Itemset Mining with Constraints

▶ Frequent Itemsets and Association Rules

▶Pattern-Growth Methods

▶Quantitative Association Rules

▶ Sequential Patterns

▶ Sequential Patterns with Constraints
Recommended Reading
1. Agrawal R., Imielinski T., and Swami A. Mining association rules

between sets of items in large databases. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1993, pp. 207–216.

2. Agrawal R., Mannila H., Srikant R., Toivonen H., and

Verkamo A.I. Fast discovery of association rules. In Advances in

Knowledge Discovery and Data Mining, U. Fayyad, G. Piatetsky-

Shapiro, P. Smyth, and R. Uthurusamy (eds.). AAAI/MIT,

Menlo Park, CA/Cambridge, MA, 1996, pp. 307–328.
3. Agrawal R. and Srikant R. Fast algorithms for mining association

rules. In Proc. 20th Int. Conf. on Very Large Data Bases, 1994,

pp. 487–499.

4. Agrawal R. and Srikant R. Mining sequential patterns. In Proc.

11th Int. Conf. on Data Engineering, 1995, pp. 3–14.

5. Brin S., Motwani R., and Silverstein C. Beyond market basket:

generalizing association rules to correlations. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1997, pp. 265–276.

6. Dong G. and Li J. Efficient mining of emerging patterns: discover-

ing trends and differences. In Proc. 5th ACM SIGKDD Int. Conf.

on Knowledge Discovery and Data Mining, 1999, pp. 43–52.

7. Han J. and Fu Y. Discovery of multiple-level association rules

from large databases. In Proc. 21th Int. Conf. on Very Large Data

Bases, 1995, pp. 420–431.

8. Han J., Pei J., and Yin Y. Mining frequent patterns without

candidate generation. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2000, pp. 1–12.

9. Koperski K. and Han J. Discovery of spatial association rules in

geographic information databases. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1995, pp. 47–66.

10. Li W., Han J., and pei J. CMAR: accurate and efficient classifica-

tion based on multiple class-association rules. In Proc. 2001

IEEE Int. Conf. on Data Mining, 2001, pp. 369–376.

11. Liu B., Hsu W., and Ma Y. Discovering the set of fundamental

rule changes. In Proc. 7th ACM SIGKDD Int. Conf. on Knowl-

edge Discovery and Data Mining, 2001, pp. 335–340.

12. Lu H., Han J., and Feng L. Stock movement and n-dimensional

inter-transaction association rules. In Proc. ACM SIGMOD

Workshop on Research Issues in Data Mining and Knowledge

Discovery, 1998, pp. 1201–1217.

13. Mannila H., Toivonen H., and Verkamo A.I. Efficient algorithms

for discovering association rules. In Proc. AAAI 1994 Workshop

Knowledge Discovery in Databases, 1994, pp. 181–192.

14. Özden B., Ramaswamy S., and Silberschatz A. Cyclic association

rules. In Proc. 14th Int. Conf. on Data Engineering, 1998,

pp. 412–421.

15. Pasquier N., Bastide Y., Taouil R., and Lakhal L. Discovering

frequent closed itemsets for association rules. In Proc. 7th Int.

Conf. on Database Theory, 1999, pp. 398–416.

16. Pei J., Han J., LuH., Nishio S., Tang S., and YangD. H-Mine: hyper-

structure mining of frequent patterns in large databases. In Proc.

2001 IEEE Int. Conf. on Data Mining, 2001, pp. 441–448.

17. Pei J., Han J., and Mao R. CLOSET: an efficient algorithm

for mining frequent closed itemsets. In Proc. ACM SIGMOD

Workshop on Research Issues in Data Mining and Knowledge

Discovery, 2000, pp. 11–20.

18. Piatetsky-Shapiro G. Discovery, analysis, and presentation of

strong rules. In Knowledge Discovery in Databases, G. Piatetsky-

Shapiro and W. Frawley (eds.). AAAI/MIT, Menlo Park, CA/

Cambridge, MA, 1991, pp. 229–238.

19. Savasere A., Omiecinski E., and Navathe S. Mining for strong

negative associations in a large database of customer transac-

tions. In Proc. 14th Int. Conf. on Data Engineering, 1998, pp.

494–502.

20. Srikant R. and Agrawal R. Mining generalized association

rules. In Proc. 21th Int. Conf. on Very Large Data Bases, 1995,

pp. 407–419.

142A Associative Classification
Associative Classification

▶Classification by Association Rule Analysis
Asymmetric Encryption

NINGHUI LI

Purdue University, West Lafayette, IN, USA

Synonyms
Public-key encryption

Definition
Asymmetric encryption, also known as public-key

encryption, is a form of data encryption where the

encryption key (also called the public key) and the

corresponding decryption key (also called the private

key) are different. A message encrypted with the public

key can be decrypted only with the corresponding

private key. The public key and the private key are

related mathematically, but it is computationally infea-

sible to derive the private key from the public key.

Therefore, a recipient could distribute the public

key widely. Anyone can use the public key to encrypt

messages for the recipient and only the recipient

can decrypt them.

Key Points
A public-key encryption algorithm requires a trapdoor

one-way function, i.e., a function that is easy to com-

pute but hard to invert unless one knows some secret

trapdoor (i.e., the private key). Existing public-key

encryption algorithms are based on computational

problems in number theory.

The most well-known public-key encryption algo-

rithms include RSA and El Gamal. RSA uses exponenti-

ation modulo a product of two large primes to encrypt

and decrypt, and its security is connected to the pre-

sumed difficulty of factoring large integers. The El

Gamal cryptosystem relies on the difficulty of the dis-

crete logarithm problem. The introduction of elliptic

curve cryptography in the mid 1980s has yielded a

new family of analogous public-key algorithms. Elliptic

curves appear to provide amore efficient way to leverage

the discrete logarithm problem, particularly with respect

to key size.
Cross-references
▶Data Encryption

▶ Symmetric Encryption
Recommended Reading
1. Diffie W. and Hellman M.E. New directions in cryptography.

IEEE Trans. Inf. Theory, 22:644–654, 1976.

2. El Gamal T. A public key cryptosystem and a signature

scheme based on discrete logarithms. In Advances in Crypto-

logy: Proc. CRYPTO ’84, LNCS, vol. 196, Springer, 1985,

pp. 10–18

3. Rivest R.L., Shamir A., and Adleman L.M. A method for

obtaining digital signatures and public-key cryptosystems.

Commun. ACM, 21:120–126, 1978.
ATA

▶ Storage Protocols
Atelic Data

VIJAY KHATRI
1, RICHARD T. SNODGRASS

2, PAOLO

TERENZIANI
3

1Indiana University, Bloomington, IN, USA
2University of Arizona, Tucson, AZ, USA
3University of Turin, Turin, Italy

Synonyms
Snapshot data; Point-based temporal data
Definition
Atelic data is temporal data describing facts that do

not involve a goal or culmination. In ancient Greek,

telos means ‘‘goal,’’ and a is used as prefix to denote

negation. In the context of temporal databases, atelic

data is that data for which both upward and downward

(temporal) inheritance holds. Specifically,

� Downward inheritance. The downward inheritance

property implies that one can infer from temporal

data d that holds at valid time t (where t is a time

period) that d holds in any sub-period (and sub-

point) of t.

� Upward inheritance. The u pward inheritance prop-

erty implies that one can infer from temporal data

d that holds at two consecutive or overlapping time

Atomicity A 143

A
periods t1 and t2 that d holds in the union time

period t1 [t2.

Atelic data is differentiated from telic data, in which

neither upward nor downward inheritance holds.

Key Points
Starting from Aristotle [1], researchers in areas such as

philosophy, linguistics, cognitive science and computer

science have noticed that different types of facts can be

distinguished according to their temporal behavior.

Specifically, since atelic facts do not have any specific

goal or culmination, they can be seen as ‘‘temporally

homogeneous’’ facts, so that both upward and down-

ward inheritance holds for them. For example, the fact

that an employee (say, John) works for a company (say,

ACME) would be considered atelic because of lack of

goal or accomplishment. As a consequence, if John has

worked for ACME from January 20, 2007 to September

23, 2007, it can be correctly inferred that John was

working for ACME in May 2007 (or at any specific

time point in May; therefore, downward inheritance

does hold); furthermore, from the additional fact that

John has also worked for ACME from September 23,

2007 to February 2, 2008, it can be correctly inferred

that John worked for ACME from January 20, 2007

to February 2, 2008 (therefore, upward inheritance

does hold).

In Aristotle’s categorization, all possible facts are

divided into two categories, telic and atelic; a telic fact,

e.g., ‘‘John built a house’’ has goal or culmination [1].

Since both upward and downward inheritance

properties hold for atelic data, such data supports the

conventional ‘‘snapshot-by-snapshot’’ (i.e., point-

based) viewpoint: the intended semantics of a tempo-

ral database is the set of conventional (atemporal)

databases holding at each time point. As a conse-

quence, most approaches to temporal databases sup-

port (only) atelic facts even if, in several cases, the

representation allows, as a syntactic sugar, the use

of periods to denote convex sets of time points.

An integrated temporal database model that sup-

ports both telic and atelic data semantics has been

developed [2].
Cross-references
▶ Period-Stamped Temporal Models

▶ Point-Stamped Temporal Models

▶Telic Distinction in Temporal Databases
Recommended Reading
1. Aristotle. The Categories. On Interpretation. Prior Analytics.

Harvard University Press, Cambridge, MA, 2002.

2. Terenziani P. and Snodgrass R.T. Reconciling point-based and

interval-based semantics in temporal relational databases: a

proper treatment of the telic/atelic distinction. IEEE Trans.

Knowl. Data Eng., 16(4):540–551, 2004.
Atomic Event

JONAS MELLIN, MIKAEL BERNDTSSON

University of Skövde, Skövde, Sweden

Synonyms
Primitive event
Definition
An atomic event is considered to be indivisible and

instantaneous.
Key Points
If an event is non-instantaneous, then it is possible to

divide into a beginning of this event (an initiator) and

an ending of this event (a terminator). Therefore,

atomic events must be instantaneous. In active data-

base literature, the concept primitive event is typically

used instead of atomic event. The major reason is

probably that system primitives and application pri-

mitives are not distinguished.
Cross-references
▶Composite Event

▶ Event

▶ Event Detection

▶ Event Specification
Atomicity

GERHARD WEIKUM

Max-Planck Institute for Informatics, Saarbruecken,

Germany

Definition
The atomicity of actions on a database is a fundamental

guarantee that database systems provide to application

144A Atomicity
programs. Whatever state modifications an atomic

action may perform are guaranteed to be executed in

an all-or-nothing manner: either all state changes

caused by the action will be installed in the database

or none. This property is important in the potential

presence of failures that could interrupt the atomic

action. The database system prepares itself for this

case by logging state modifications and providing auto-

mated recovery as part of the failure handling or system

restart. These implementation aspects are transparent

to the application program and are thus a major relief

for the programs’ failure handling and boost the appli-

cation development productivity.

Historical Background
Since the early 1970s (or even earlier), transaction pro-

cessing systems for airline reservations and debit/credit

banking had means for recovery and concurrency con-

trol that were similar to atomic actions. However, these

implementation techniques were hardly documented in

publicly available literature and still far from a princi-

pled, universal solution. The major credit for the mod-

ern concept of atomicity (and transactions) belongs to

the 1998 Turing Award winner Jim Gray [6–8]. Closely

related notions of atomic actions have been proposed

by other authors at around the same time, including

[11–13], which in turn were inspired by the informal

work on ‘‘spheres of control’’ by Bjork and Davies [3,4].
Foundations
As an example for the importance of atomic actions,

consider a sequence of steps that read and write two

bank-account records, x and y, in order to transfer

some amount of money from account x to account y:

R xð ÞW xð ÞR yð ÞW yð Þ:

If there is a system failure after writing x but before

writing y, the underlying database becomes inconsis-

tent, with the transferred money seemingly lost in

‘‘mid-flight.’’ Even worse, the application program

may not even know if this problem actually occurred

or not (the system may have succeeded in writing y just

before it crashed but could not send a return code

anymore). If, on the other hand, the database system

executes the entire step sequence as an atomic action,

the failure handling for the application program

becomes much simpler as it can always restart on a

clean, consistent database.
In database systems the atomic actions themselves

can be flexibly defined by the application programs,

by demarcating the begin and end of a transaction

with explicit interface calls. For example, an entire

sequence of SQL command invocations can be made

atomic. By default, usually every individual SQL oper-

ation is guaranteed to be atomic. These guarantees

are part of the transactional ACID properites: atomicity,

consistency-preservation, isolation, durability [8].

In some scientific communities outside of database

systems research, atomicity is meant to include the

isolation guarantee. Atomic actions are then (alterna-

tively) defined to be state-modification sequences

whose effects are ensured (by the underlying run-

time environment) to be equivalent to indivisible

actions with all effect appearing to be instantaneous

upon the completion of the entire sequence. In the

presence of concurrent accesses to the same shared

data, this combined atomicity/isolation property pro-

vides the illusion, despite the fact that in reality

accesses by different programs are interleaved. Defin-

ing this principle in formal terms leads to the concept

of serializability and methods for concurrency control as

part of the database (or other run-time) system

[2,6,14].

As an example for the importance of isolation (as

an additional property of atomic actions), consider an

extended variant of the earlier example. Assume to the

the money-transfer process – now viewed as a transac-

tion T1 – , a second transaction T2 reads both bank-

account records x and y in order to analyze financial

portfolios and perform some kind of risk assessment.

The following concurrent execution, with time pro-

ceeding from left to right, could be possible:

T1: RðxÞ WðxÞ RðyÞ WðyÞ

T2: RðxÞ RðyÞ

With this step interleaving, transaction T2 would

see an inconsistent database, namely, the state of x after

money is withdrawn from x and the state of y before

money is deposited there. This may lead to a distorted

analysis and false conclusions in the decision making

of a financial broker. Running both T1 and T2 as

atomic and isolated transactions would prevent this

particular interleaving and guarantees that only such

executions are allowed that are provably equivalent to

a sequential execution where such an anomaly is

impossible.

Atomicity A 145

A
The atomicity guarantee includes all ‘‘side effects’’

of an action as far as the database state is concerned.

For example, the effects of a database trigger are cov-

ered by the guarantee, but effects outside of the data-

base such as sending a message are outside the scope of

the database system guarantees. Modern application

servers and message brokers, on the other hand, may

provide such guarantees about messages (e.g., atomic

multicasts) and application state (e.g., specific pro-

gram variables) beyond the database. A traditional

implementation technique to this end is to support

failure-resilient queues. Modern database systems

have integrated such message queues and application

state management and extend their atomic actions

to them, providing more comprehensive application

recovery. A new research trend in programming lan-

guages is to provide atomicity guarantees to arbitrary

programs, not just database applications, in order to

simplify exception handling and generally ease pro-

grammers’ work. For example, method invocations in

an object-oriented language could be made atomic by

means of an underlying transactional memory as part

of the language’s run-time system (and possibly even

hardware architecture).

The atomicity concept simplifies failure handling

at the application program level, but it does not

mask failures. Rather a typical approach is that the

program notices the failing of an atomic action by a

corresponding system return code (for the atomic

action invocation itself, for the end-of-action demar-

cation call, or upon the next interaction with the

database system if the previous call simply timed

out without any response), and then has to retry the

action. This paradigm still requires explicit coding for

the retrying, and this may require special care about

non-idempotent effects or additional system guaran-

tees and state testing for ensuring idempotence. Some

advanced methods for application recovery can auto-

mate these re-trials and testing for non-idempotence,

thus strengthening the all-or-nothing guarantee for

atomicity into an exactly-once execution guarantee

with complete failure masking [1].

On the other hand, for some data-intensive appli-

cations outside of database systems, atomicity may be

an overly strong property if applied to entire processes;

this holds particularly for long-lived workflows and

cooperative work. Although these applications still

benefit from atomic actions for smaller-grained opera-

tions, additional forms of relaxed atomicity or
extended atomicity would be desirable. The database

research community has developed a variety of such

models, most notably, the model of open nested trans-

actions and the ACTA framework [5,9].
Future Directions
Atomicity is a ground-breaking, fundamental contri-

bution that first emerged in database systems, but is

increasingly pursued also by other research commu-

nities like programming languages, operating systems,

dependable system design, and also formal reasoning

and program verification [10]. There are several strate-

gic reasons for this growing interest and extended

application of atomic actions:

� Web Services, long-running workflows across or-

ganizations, large scale peer-to-peer platforms, and

ambient-intelligence environments with huge

numbers of mobile and embedded sensor/actor

devices critically need support for handling or

even masking concurrency and component failures,

and may mandate rethinking the traditional atom-

icity concept.

� There is a proliferation of open systems where

applications are constructed from pre-existing

components. The components and their configura-

tions are not known in advance and they can

change on the fly. Thus, it is crucial that atomicity

properties of components are composable and that

one can predict and reason about the behavior of

the composite system.

� Modern applications and languages like Java lead

millions of developers into concurrent program-

ming. This is a drastic change from the classical

situation where only a few hundred ‘‘five-star wiz-

ard’’ system programmers and a few thousand pro-

grammers working in scientific computing on

parallel supercomputers would have to cope with

the inherently complex issues of concurrency and

advanced failure handling.

� On an even broader scale, the drastically increasing

complexity of the new and anticipated applications

will require enormous efforts and care towards

dependable systems or it may lead into a major

‘‘dependability crisis.’’ Atomicity is an elegant

basic asset to build on in the design, implementa-

tion, and composition of complex systems and the

reasoning about system behavior and guaranteed

properties.

146A Attribute or Value Correspondence
Cross-references
▶ACID Properties

▶Concurrency Control

▶Open Nested Transactions

▶ Software Transactional Memory

▶ System Recovery

▶Transaction
Recommended Reading
1. Barga R.S. and Lomet D.B. German Shegalov, Gerhard Weikum:

Recovery guarantees for Internet applications. ACM Trans. In-

ternet Technol., 4(3):289–328, 2004.

2. Bernstein P.A. and Hadzilacos V. Nathan Goodman: Concur-

rency Control and Recovery in Database Systems. Addison-

Wesley, MS, 1987.

3. Bjork L.A. Recovery scenario for a DB/DC system. In Proc. 1st

ACM Annual Conference, 1973, pp. 142–146.

4. Davies C.T. Recovery semantics for a DB/DC system. In Proc.

First ACM Annual Conference, 1973, pp. 136–141.

5. Elmagarmid A.K. (ed.). Database Transaction Models for Ad-

vanced Applications. Morgan Kaufmann, San Fransisco, CA,

1992.

6. Eswaran K.P., Gray J., Lorie R.A., and Traiger I.L. The Notions of

consistency and predicate locks in a database system. Commun.

ACM 19(11):624–633, 1976.

7. Gray J. Notes on Database Operating Systems. In Operating

Systems – An Advanced Course, Springer, London, UK, 1978.

8. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Fransisco, CA, 1993.

9. Jajodia S. and Kerschberg L. (eds.). Advanced Transaction Mod-

els and Architectures Kluwer, Noewell, MA, 1997.

10. Jones C.B., Lomet D.B., Romanovsky A.B., Weikum G., Fekete

A., Gaudel M.-C., Korth H.F., Rogério de Lemos, J., Moss E.B.,

Rajwar R., Ramamritham K., Randell B., and Rodrigues L. The

atomic manifesto: a story in four quarks. ACM SIGMOD Rec.,

34(1):63–69, 2005.

11. Lampson B. Atomic Transactions. In: Distributed Systems –

\Architecture and Implementation, Springer, New York, NJ,

1981.

12. Lomet D.B. Process structuring, synchronization, and recovery

using atomic actions. In Proc. ACM Conf. on Language Design

for Reliable Software, 1977, pp. 128–137.

13. Randell B. System structure for software fault-tolerance. IEEE

Trans. Softw. Eng., 1(2):221–232, 1975.

14. Weikum G. and Vossen G. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, San Fransisco, CA, 2002.
Attribute or Value Correspondence

▶ Schema Matching
Audible Sound

▶Audio
Audio

LIE LU1, ALAN HANJALIC
2

1Microsoft Research Asia, Beijing, China
2Delft University of Technology, Delft,

The Netherlands

Synonyms
Audible sound

Definition
Audio refers to audible sound – the sound perceivable

by the human hearing system, or the sound of a fre-

quency belonging to the audible frequency range

(20-20,000 Hz). Audio can be generated from various

sources and perceived as speech, music, voices, noise,

or any combinations of these. The perception of an

audible sound starts by the sound pressure waves hit-

ting the eardrum of the outer ear. The generated vibra-

tions are transmitted to the cochlea of the inner ear to

produce mechanical displacements along the basilar

membrane. These displacements are further trans-

duced into electrical activity along the auditory nerve

fibers, and finally ‘‘analyzed’’ and ‘‘understood’’ in the

central auditory system [4,7].
Historical Background
The step from the fundamental definition of audio

towards the concept of audio signal can be seen as

a step towards the birth of the modern consumer

electronics. An audio signal is a signal that contains

audio information in the audible frequency range.

The technology for generating, processing, recording,

broadcasting and retrieving audio signals, first analog

and later on digital ones, has rapidly grown for over a

century, from the pioneering radio broadcasting and

telephony systems to advanced mobile communication

infrastructures, music players, speech recognition and

synthesis tools, and audio content analysis, indexing

and retrieval solutions. This growth may have been

initiated by the research in the field of signal

Audio A 147

A
processing, but it has been maintained and has contin-

uously gained in strength through an extensive inter-

disciplinary effort involving signal processing,

information theory, human-computer interaction,

psychoacoustics, psychology, natural language proces-

sing, network and wireless technology, and informa-

tion retrieval.

Foundations

Digital Audio

An audio signal is an analog signal, which can be

represented as a one-dimensional function x(t), where

t is a continuous variable representing time. To facili-

tate storage and processing of such signals in compu-

ters, they can be transformed into digital signals by

sampling and quantization.

Sampling is the process in which one audio

signal value (sample) is taken for each time interval

(sampling period) T. This results in a discrete audio

signal x(n) = x(nT), where n is a numeric sequence.

The sampling period T determines the sampling fre-

quency that can be defined as f = 1/T. Typical sampling

frequencies of digital audio are 8, 16, 32, 48, 11.025,

22.05, and 44.1 kHz (Hz represents the number of

samples per second). Based on the Nyquist-Shannon

sampling theorem, the sampling frequency must be at

least 2 times larger than the band limit of the audio

signal in order to be able to reconstruct the original

analog signal back from its discrete representation. In

the next step, each sample in the discrete audio signal is

quantized with a bit resolution, which makes each

sample be represented by a fixed limited number of

bits. Common bit resolution is 8-bit or 16-bit per

sample. The overall result is a digital representation

of the original audio signal, that is referred to as digital

audio signal or, if it is just considered as a set of bits, for

instance for the purpose of storage and compression,

as digital audio data.

Audio Coding and Compression

The digitization process described above leads to

the basic standard of digital audio representation or

coding named Pulse Code Modulation (PCM), which

was developed in 1930-1940s. PCM is also the standard

digital audio format in computers and Compact Disc

(CD). PCM can be integrated into a widely used WAV

format, which consists of the digital audio data and a
header specifying the sampling frequency, bits per

sample, and the number of audio channels.

As a basic audio coding format, PCM keeps all

samples obtained from the original audio signal and

all bits representing the samples. This format is there-

fore also referred to as raw or uncompressed. While it

preserves all the information contained in the original

analog signal, it is also rather expensive to store. For

example, a one-hour stereo (A Cambridge Dictionary

definition of stereo: a way of recording or playing

sound so that it is separated into two signals and

produces more natural sound) audio signal with

44.1 kHz sampling rate and 16 bits per sample requires

635MB of digital storage space. To save storage in

computers and improve the efficiency of audio trans-

mission, processing and management, compression the-

ory and algorithms can be applied to decrease the size

of a digital audio signal while still keeping the quality

of the signal and communicated information at the

acceptable level.

Starting with the variants of PCM, such as Differ-

ential Pulse Code Modulation (DPCM) and Adaptive

Differential Pulse Code Modulation (ADPCM), a large

number of audio compression approaches have been

developed [5]. Some most commonly used approaches

include MP3/ACC defined in the MPEG-1/2 standard

[2,3], Windows Media Audio (WMA) developed by

Microsoft, and RealAudio (RA) developed by RealNet-

works. These approaches typically lead to a com-

pressed audio signal being about 1/5 to 1/10 of the

size of the PCM format.

Audio Content Analysis

Audio content analysis aims at extracting descriptors

or metadata related to audio content and allowing

content-based search, retrieval, management and

other user actions performed on audio data. The re-

search in the field of audio content analysis has built on

the synergy of many scientific disciplines, such as sig-

nal processing, pattern recognition, machine learning,

information retrieval, and information theory, and

has been conducted in three main directions, namely

audio representation, audio segmentation, and audio

classification.

Audio representation refers to the extraction of

audio signal properties, or features, that are represen-

tative of the audio signal composition (both in tempo-

ral and spectral domain) and audio signal behavior

148A Audio Categorization
over time. The extracted features then serve as input

into audio segmentation and audio classification.

Audio segmentation aims at automatically revealing

semantically meaningful temporal segments in an

audio signal, which can then be grouped together

(using e.g., a clustering algorithm) to facilitate search

and browsing. Finally, an audio classification algo-

rithm classifies a piece of audio signal into a pre-

defined semantic class, and assigns the corresponding

label (e.g., ‘‘applause,’’ ‘‘action,’’ ‘‘highlight,’’ ‘‘music’’)

to it for the purpose of text-based search and retrieval.

Audio Retrieval

Audio retrieval aims at retrieving sound samples from

a large corpus based on their relation to an input

query. Here, the query can be of different types and

the expected results may vary depending on the appli-

cation context. For example, in the content-based

retrieval scenario, a user may use the text term ‘‘ap-

plause’’ to search for the audio clips containing the

audio effect ‘‘applause.’’ Clearly, the results obtained

from audio classification can help annotate the cor-

responding audio samples, audio segments or audio

tracks, and thus facilitate this search and retrieval

strategy. However, audio retrieval can also be done by

using an audio data stream as a query, i.e., by

performing query-by-example [6]. For instance, one

could aim at retrieving a song and all its variants by

simply singing or humming its melody line.

In another retrieval scenario, the user may want to

retrieve the exact match to the query or some infor-

mation related to it. This typically falls into the appli-

cation domain of audio fingerprinting [1]. An audio

fingerprint is a highly compact feature-based repre-

sentation of an audio signal enabling extremely fast

search for a match between the signal and a large-

scale audio database for the purpose of audio signal

identification.

Key Applications
Audio technology is widely used in diverse applications

areas, such as broadcasting, telephony, mobile commu-

nications, entertainment, gaming, hearing aids, and the

management of large-scale audio/music collections.

Cross-references
▶Audio Classification

▶Audio Content Analysis

▶Audio Representation
▶Audio Segmentation

▶Multimedia Data

▶Video

Recommended Reading
1. Haitsma J. and Kalker T. A highly robust audio fingerprinting

system with an efficient search strategy. J. New Music Res., 32

(2):211–221, 2003.

2. ISO/IEC 11172-3:1993. Information technology - Coding of

moving pictures and associated audio for digital storage media

at up to about 1,5 Mbit/s – Part 3: Audio, 1993.

3. ISO/IEC 13818-3:1998. Information technology - Generic cod-

ing of moving pictures and associated audio information – Part

3: Audio, 1998.

4. Pickles J.O. An Introduction to the Physiology of Hearing.

Academic Press, London, UK, 1988.

5. Spanias A., Painter T., and Atti V. Audio Signal Processing and

Coding. Wiley, NJ, 2007.

6. Wold E., Blum T., and Wheaton J. Content-based classification,

search and retrieval of audio. IEEE Multimed., 3(3):27–36, 1996.

7. Yang X., Wang K., and Shamma S.A.Auditory representations of

acoustic signals. IEEE Trans. Inform. Theory, 38:824–839, 1992.
Audio Categorization

▶Audio Classification
Audio Characterization

▶Audio Representation
Audio Classification

LIE LU1, ALAN HANJALIC
2

1Microsoft Research Asia, Beijing, China
2Delft University of Technology, Delft, The

Netherlands

Synonyms
Audio categorization; Audio indexing; Audio

recognition

Definition
Audio classification aims at classifying a piece of audio

signal into one of the pre-defined semantic classes. It is

Audio Classification A 149

A
typically realized as a combination of a learning step to

learn a statistical model of each semantic class, and an

inference step to estimate which semantic class is clos-

est to the given piece of audio signal.

Historical Background
Audio classification associates semantic labels with

audio signals, and can also be referred to as audio

indexing, audio categorization or audio recognition. As

such, audio classification plays an important role in

facilitating search and retrieval in large-scale audio

collections (databases). Semantic labels are used to

represent semantic classes or semantic concepts, which

can be defined at different abstraction and complexity

levels. Typical examples of basic semantic audio classes

are speech, music, environmental sounds, and silence,

which can be detected rather effectively using the

methods like [8,9,10,17]. Examples of mid-level se-

mantic concepts are key audio effects, like applause,

cheer, ball-hit, whistling, car-racing, siren, gun-shot,

and explosion. Finally, the detection of higher-level

semantic concepts, such as sport highlights [1,14–16]

and action scenes in movies [3,11], is usually per-

formed by analyzing the sequence of detected key

audio effects.

Foundations
Figure 1 shows a general classification scheme, which

is typically composed of two main steps: learning

and inference. In the learning step, a model of each

semantic class is built based on a set of training data,

and with a specific learning scheme. Then, in the

inference step, a new, unseen collection of data is

associated with a semantic label, the model of which

best resembles the properties of the data. Various

schemes have been employed so far for realizing both

the learning and inference steps. These schemes
Audio Classification. Figure 1. An illustration of a general c
include sets of heuristic rules, vector Quantization

(VQ), k-nearest neighbor (kNN), decision tree, Gauss-

ian mixture model (GMM), support vector machine

(SVM), boosting, Bayesian decision, hidden Markov

model (HMM), and neural network. More information

about these schemes can be found in [4,5].

While directly applying the previously mentioned

learning and inference algorithms works well for

straightforward classification tasks, there are a number

of issues which should be taken into account when

applying this scheme for audio classification. In the

following sections, some critical issues are addressed

that need to be considered when designing audio clas-

sification algorithms, and it is shown on the example

of an existing approach how these issues can effectively

be resolved. The classification cases discussed in the

sections below concern the mid-level semantic con-

cepts (key audio effects) and hierarchies of higher-

level semantic concepts.

Key Audio Effect Detection

Several issues play a role in key audio effect detection

in a continuous audio signal, and need to be resolved

in order to secure reliable classification. The most

important issues can be described as follows:

1. Key audio effect detection in a long, continuous

audio signal, is typically approached by applying a

sliding window of a given length (e.g., 0.5 s) to the

signal. The audio segment captured by the window

at a given time stamp is then used as the basic unit

to associate with a key audio effect. An important

implicit assumption here is that each segment

corresponds to one and only one semantic class.

However, a sliding window is often too short to

capture one complete effect, which leads to over-

segmentation. The sliding window could also be
lassification scheme.

150A Audio Classification
too long and capture several effects within one

segment.

2. The targeted audio effects are usually sparsely

distributed over the signal, and there are plenty of

non-target sounds that are to be rejected. Many

existing approaches assume having a complete set

of semantic classes available, and classify any audio

segment into one of these semantic classes. Other

methods use thresholds to discard the sounds with

low classification confidence [3]. However, the

threshold setting becomes troublesome for a large

number of key effects.

3. Audio effects are usually related to each other. For

example, some audio effects such as applause and

laughter are likely to happen together, while others

are not. Taking into account the transition relation-

ships between audio effects is therefore likely to

improve the detection of each individual effect.

To investigate the possibilities for effectively resolv-

ing the abovementioned issues when designing algo-

rithms for key audio effect detection, the approach
Audio Classification. Figure 2. The framework for audio effe

audio effect pool, background sound pool, and grammar net
proposed in [2] will be discussed as an example. In

this hierarchical, probabilistic framework, as illustrated

in Fig. 2, an HMM model is first built for each key

audio effect based on the complete set of audio sam-

ples, and the defined models are then used to compose

the Key Audio Effect Pool. Then, comprehensive back-

ground models are also established to cover all non-

target sounds that complement the targeted key effects.

Thus, the non-target sounds would be detected as back-

ground sounds and excluded from the target audio

effect sequence. Moreover, a higher-level probabilistic

model is used to connect these individual models with

a Grammar Network, in which the transition probabil-

ities among various audio effects and background

sounds are taken into account for finding the optimal

audio effect sequence. Then, for a given input audio

stream, the optimal audio effect sequence is found

among the candidate paths using the Viterbi algo-

rithm, and the location and duration of each key

audio effect in the stream are determined simulta-

neously, without the need to pre-segment the audio
ct detection [13], consisting of three main parts: key

work.

Audio Classification A 151

A
stream into audio segments. In the following both the

learning and inference step from [2] are discussed in

more detail.

Classifier Learning In the approach from [2], each key

audio effect and background sound are modeled using

HMMs, since HMM provides a natural and flexible

way for modeling time-varying process [12]. The main

issue that needs to be resolved for an HMM is the

parameter selection, which includes (i) the optimal

model size (the number of states); (ii) the number of

Gaussian mixtures for each state, and (iii) the topology

of the model.

To select the model size for a key audio effect

category, one needs to balance the number of hidden

states in the HMM and the computational complexity

in the learning and inference processes. In general,

a sufficient number of states are required to describe

all the significant behavioral characteristics of a signal

over time. However, when the number of states

increases, the computational complexity grows dra-

matically and more training samples are required. Un-

like speech modeling, in which the basic units such as

tri-phones could be adopted to specify the number of

states, general key audio effects lack such basic units,

and thus make the choice of the state numbers diffi-

cult. As an example of an approach in this direction, a

clustering-based method was proposed in [2,13,17]

to estimate a reasonable number of states (model

size) per audio effect. The clustering step was realized

through an improved, unsupervised k-means algo-

rithm, and the resulting number of clusters is taken

as the model size.

The number of Gaussian mixtures per state is

usually determined experimentally. For instance, the

method from [2] adopts 32 Gaussian mixtures for each

state in the HMM. This number is larger than those

used in other related methods in order to secure a

sufficient discriminative ability of the models to iden-

tify a large diversity of audio effects in general audio

streams.

The most popular HMM topology is the left-to-

right or the fully connected one. The left-to-right

structure only permits transitions between adjacent

states; while the fully connected structure allows tran-

sitions between any two states in the model. Different

topologies can be used to model audio effects with

different properties. For instance, for key audio effects

with obvious time-progressive signal behavior, such
as car-crash and explosion, the left-to-right structure

should be adopted, while for audio effects without

distinct evolution phases, such as applause and cheer,

the fully connected structure is more suitable.

Regarding the background sound modeling, a

straightforward approach is to build a large HMM,

and train it with as many samples as possible. However,

background sounds are very complex and diverse,

and their feature vectors are typically widely scattered

in the feature space, so that both the number of states

and the Gaussian mixtures per state of such a HMM

must be particularly large to secure a representation of

all possible background sounds. As an alternative, the

method from [2] modeled the background sounds as a

set of subsets of basic audio classes. It is namely so that

in most practical applications the background sounds

can be further classified into a few basic categories,

such as speech, music, and other noise. Thus, if back-

ground models could be trained from all these respec-

tive subsets, the training data would be relatively

concentrated, and the training time would be reduced.

Another advantage of building these subset models is

that they could provide additional useful information

in high-level semantic inference. For example, music is

usually used in the background of movies, and speech is

the most dominant component in talk shows. Follow-

ing the discussion from above, three background mod-

els are built in [2] using the fully connected HMMs for

speech, music, and noise. Here, noise is referred to as all

background sounds except speech and music. To pro-

vide comprehensive descriptions of the background,

10 states and 128 Gaussian mixtures in each state are

used in modeling.

The Grammar Network in Figure 2 is an analogy to

a language model in speech processing. It organizes all

the HMM models for continuous recognition. Two

models are connected in the Grammar Network if the

corresponding sounds are likely to occur after each

other, both within and between the key audio effect

pool and the background sound pool. For each con-

nection, the corresponding transition probability is set

and taken into account when finding the optimal effect

sequence from the input stream.

The transition probabilities between two models

can be statistically learned from a set of training data.

If no sufficient training data are available, a heuristic

approach can be deployed. For instance, the approach

presented in [2] is based on the concept of Audio Effect

Groups, and assumes that (i) only audio effects in the

152A Audio Classification
same group can happen subsequently, (ii) there should

be background sounds between any two key audio

effects belonging to different groups, and (iii) the tran-

sition probability is uniformly distributed per group.

An audio effect group can be seen as a set of audio

effects that usually occur together. An example Gram-

mar Network with audio effect groups indicated as G1-

Gk is illustrated in Figure 3.

Probabilistic Inference Using the learned classifica-

tion framework setup described above, the Viterbi

algorithm can be used to choose the optimal state

sequence from the continuous audio stream, as:

Soptimal ¼ argmax
s

Pr sjM ;Oð Þ: ð1Þ

Here, s is the candidate state sequence, M repre-

sents the hierarchical structure, and O is the observa-

tion vector sequence of the input audio stream. In

terms of practical realization of this classification
Audio Classification. Figure 3. An illustration of the Gramm

Effect Group and GB is the Background Sound Pool. For conven

3-state left-to-right HMMs, and all the background models ar

The dummy start and end states are used to link models, and
scheme, the corresponding state and log-probability

are obtained first for each audio frame. Then, a com-

plete audio effect or background sound can be detected

by merging adjacent frames belonging to the same

sound model. Before this merging step, a smoothing

filter can be applied to remove the classification out-

liers in the sequences of consecutive frames. The final

classification confidence can be measured by averaging

the log-probabilities of the classified audio frames. In

addition, the starting time stamp and duration of each

sound occurrence can be obtained simultaneously.

From Key Audio Effects to a Hierarchy of Semantic

Concepts

Based on the obtained key audio effect sequence,

methods can be developed to perform audio classifica-

tion at a higher level, such as the level of audio events

and scenes. While high-level semantic concepts can

generally also be detected using the general scheme

from Figure 1, using key audio effects as an
ar Network with Audio Effect Groups, where Gk is the kth

ience, all the key audio effect models are presented as

e denoted as 3-state fully connected HMMs.

make the structure more clear [2].

Audio Classification A 153

A
intermediate classification level has proved to be a

more effective way to perform indexing at this level.

To infer high-level semantics from audio effects,

most existing methods are rule-based [1,16], or employ

a statistical classification [3,11]. Heuristic inference is

straightforward and can be easily applied in practice.

However, it is usually laborious to find a proper rule

set if the situation is complex. For example, the rules

usually involve many thresholds which are difficult to

set; some rules may be in conflict with others, and

some cases may not be well-covered. People are used

to designing rules from a positive view but ignoring

those negative instances, thus many false alarms are

introduced although high recall can be achieved.

Classification-based methods provide solutions from

the view of statistical learning. However, the inference

performance relies highly on the completeness and

the size of the training samples. Without sufficient

data, a positive instance not included in the training

set will usually be misclassified. Thus these approaches

are usually prone to high precision but low recall.

Furthermore, it is inconvenient to combine prior

knowledge into the classification process in these

algorithms.

To integrate the advantages of heuristic and statis-

tical learning methods, a Bayesian network-based ap-

proach is proposed in [2]. A Bayesian network [6] is a

directed acyclic graphical model that encodes probabi-

listic relationships among nodes which denote random

variables related to semantic concepts. A Bayesian net-

work can handle situations where some data entries are

missing, as well as avoid the overfitting of training data

[6]. Thus, it weakens the influence from unbalanced
Audio Classification. Figure 4. An example of a Bayesian net

are drawn from cause to effect. Following the convention, disc

variables are indicated as circles. Furthermore, observed varia
training samples. Furthermore, a Bayesian network can

also integrate prior knowledge by specifying its graphic

structure.

Figure 4 illustrates the topology of an example

Bayesian network with three layers. Nodes in the bot-

tom layer are the observed audio effects. Nodes in the

second layer denote high-level semantic categories

such as scenes, while those in the top layer denote

much higher semantic concepts. In Figure 4, the

nodes in adjacent layers can be fully connected, or

partially connected based on the prior knowledge of

the application domain. For instance, if it is known a

priori that some key effects have no relationships with a

semantic category, the arcs from that category node to

those key effect nodes could be removed. A Bayesian

network with a manually specified topology utilizes

human knowledge in representing the conditional

dependencies among nodes, thus it can describe some

cases which are not covered in the training samples.

The nodes in the upper layers are usually assumed

to be discrete binaries which represent the presence or

absence of a corresponding semantic category, while

the nodes in the bottom layer produce continuous

values of a Gaussian distribution

P Fijpaið Þ � N mi;Sið Þ 1 � i � Nð Þ ð2Þ

where Fi is a 2-dimensional observation vector of the

ith audio effect and is composed of the normalized

duration of an effect and its detection confidence in

a given semantic segment. The conditional argument

pai denotes a possible assignment of values to the

parent nodes of Fi, while mi and Si are the mean and
work for inference of a hierarchy of semantic concepts. Arcs

rete variables are represented as squares while continuous

bles are shaded, while hidden variables are not.

154A Audio Content Analysis
covariance of the corresponding Gaussian distribution

respectively. In the training phase, all these conditional

probability distributions are uniformly initialized and

then updated by maximum likelihood estimation

using the EM algorithm. In the inference process, the

junction tree algorithm [7] can be used to calculate the

occurrence probability of each semantic category.

Thus, given the information on the audio effects, the

semantics in each layer can be inferred based on

the posterior probabilities. A semantic segment can

be classified into the cth semantic category with the

maximum marginal posterior probability:

c ¼ argmax
j

PrðSj jFÞ 1 � j � M

where F ¼ fF1; F2;� � � ;FNg ð3Þ

With this scheme, human knowledge and machine

learning are effectively combined to perform high-level

semantic inference. In other words, the topology of

the network can be designed according to the prior

knowledge of an application domain, and the opti-

mized model parameters can then be estimated by

statistical learning.

Key Applications
Audio classification is typically applied for content-

based search and retrieval in and management of

large-scale audio collections (databases).

Cross-references
▶Audio Content Analysis

▶Audio Representation

▶Audio Segmentation

Recommended Reading
1. Baillie M., and Jose J.M. Audio-based event detection for sports

video. In Proc. 2nd International Conference on Image and

Video Retrieval, 2003, pp. 300–309.

2. Cai R., Lu L., Hanjalic A., Zhang H.-J., and Cai L.-H. A flexible

framework for key audio effects detection and Auditory context

inference. IEEE Trans. Audio Speech Lang. Process., 14

(3):1026–1039, 2006.

3. Cheng W.-H., Chu W.-T., and Wu J.-L. Semantic context detec-

tion based on hierarchical audio models. In Proc. 5th ACM

SIGMM Int. Workshop on Multimedia Information Retrieval,

2003, pp. 109–115.

4. Duda R.O., Hart P.E., and Stork D.G., Pattern Classification

(2nd edn.), Wiley, New York, 2000.

5. Hastie T., Tibshirani R., and Friedman J. The Elements of Statis-

tical Learning: Data Mining, Inference, and Prediction. Springer,

New York, NY, 2001.
6. Heckerman D. A tutorial on learning with Bayesian networks.

Microsoft Research, Redmond, Washington, Tech. Rep. MSR-

TR-95–06, 1995.

7. Huang C. and Darwiche A. Inference in belief networks:

a procedural guide. Int. J. Approx. Reason., 15(3):225–263, 1996.

8. Liu Z., Wang Y., and Chen T. Audio feature extraction and

analysis for scene segmentation and classification. J. VLSI Signal

Process. Syst. Signal Image Video Technol., 20(1–2):61–79, 1998.

9. Lu L., Zhang H.-J., and Jiang H. Content analysis for

audio classification and segmentation. IEEE Trans. Speech

Audio Process., 10(7):504–516, 2002.

10. Lu L., Zhang H.-J., and Li S. Content-based audio classification

and segmentation by using support vector machines. ACM

Multimed. Syst. J., 8(6):482–492, 2003.

11. Moncrieff S., Dorai C., and Venkatesh S. Detecting indexical

signs in film audio for scene interpretation, In Proc. IEEE Int.

Conf. on Multimedia and Expo, 2001, pp. 1192–1195.

12. Rabiner L.R. A tutorial on hidden Markov models and

selected applications in speech recognition. Proc. IEEE, 77(2):

257–286, 1989.

13. Reyes-Gomez M.J., and Ellis D.P.W. Selection, parameter esti-

mation, and discriminative training of hidden Markov models

for general audio modeling, In Proc. IEEE Int. Conf. on Multi-

media and Expo, 2003, pp. 73–76.

14. Rui Y., Gupta A., and Acero A. Automatically extracting high-

lights for TV baseball programs, Proc. 8th ACM Int. Conf. on

Multimedia, 2000, pp. 105–115.

15. Xiong Z., Radhakrishnan R., Divakaran A., and Huang T.S.

Audio events detection based highlights extraction from base-

ball, golf and soccer games in a unified framework, In Proc. IEEE

Int. Conf. on Multimedia and Expo, 2003, vol. 3, pp. 401–404.

16. Xu M., Maddage N., Xu C.-S., Kankanhalli M., and Tian Q.

Creating audio keywords for event detection in soccer video. In

Proc. IEEE Int. Conf. onMultimedia and Expo, 2003, pp. 281–284.

17. Zhang T. and Jay Kuo C.C. Hierarchical system for

content-based audio classification and retrieval, In Proc. SPIE:

Multimedia Storage and Archiving Systems III, vol. 3527, 1998,

pp. 398–409.
Audio Content Analysis

LIE LU1, ALAN HANJALIC
2

1Microsoft Research Asia, Beijing, China
2Delft University of Technology, Delft,

The Netherlands

Synonyms
Audio information retrieval; Semantic inference in

audio

Definition
An audio signal is a signal that contains information in

the audible frequency range. Audio content analysis

Audio Content Analysis A 155

A
refers to a set of theories, algorithms and systems that

aim at extracting descriptors or metadata related to

audio content and allowing search, retrieval and other

user actions performed on audio signals.

Historical Background
Multimedia content analysis has been one of the most

booming research directions in the past years. With

the objective of providing fast, natural, intuitive and

personalized content-based access to vast multimedia

data collections, and building on the synergy of many

scientific disciplines, such as signal processing, pattern

recognition, machine learning, information retrieval, in-

formation theory, natural language processing and psy-

chology, the research initiative born around the end of

the 1980s has succeeded in inspiring and mobilizing

enormous number of researchers worldwide. This initia-

tive turned into a broad research effort that has continu-

ously gained in strength ever since. As an integrated part

of multimedia (multimodal) documents, audio plays an

important role in multimedia content analysis. In partic-

ular, audio content analysis can be combined with con-

tent analysis of visual information to jointly address

semantic inference from multimedia data streams [5].

However, also taken separately, audio content analysis

has been recognized as the key technology for

providing easy access to rapidly growing audio

archives, and in particular to music collections [3].

Foundations
The underlying problem of audio content analysis is to

infer the information about the semantics of the con-

tent carried by an audio signal. Here, the audio signal

can be a rather simple one consisting of one audio type

only (e.g., pure speech, music), or a more complex
Audio Content Analysis. Figure 1. A general audio content

audio signals, prior knowledge and application context, the t
audio signal (composite audio) resulting from a super-

position of several audio types, like music, speech,

audio effects, and noise. The audio content semantics

includes the information on audio types (e.g., speech,

music, noise, or any combination of these), on audio

semantic classes (e.g., applause, solo instrument, gui-

tar, speaker X or Y), and on audio content structure

(e.g., the breaks between semantically coherent audio

segments, clusters of auditory scenes).

The structure of a general audio content analysis

system is illustrated in Figure 1. Depending on the

levels at which prior knowledge is specified and the

system is trained, this inference system can be realized

by employing various approaches ranging from purely

supervised to fully unsupervised ones. For example, if

the scheme in Figure 1 is seen as a speech recognition

system, the prior knowledge, such as the labeled audio

data, dictionary and grammar, need to be pre-collected

to train both an acoustic model and a language model in

a supervised fashion [6]. Similarly, trained models of

semantic classes such as car-racing, siren, gun-shot, and

explosion can be used to detect the occurrences of these

sounds in movie soundtracks [2,4]. Compared to these

supervised realizations, an unsupervised approach can

be employed to find clusters in audio data corresponding

to auditory scenes [1,7], or to find ‘‘unusual’’ events in

the sound track of a surveillance signal [9].

While the realizations of the Scheme in Figure 1 can

be very different with respect to the types of input

audio signals they handle, the prior knowledge and

trained models they use, the types of inference techni-

ques they employ (e.g., supervised versus unsuper-

vised), and the inference results they are expected to

provide (e.g., semantic categories versus clusters of

data), the research targeting these realizations can be
analysis scheme, specifying various possible types of input

ypes of inference techniques and inference results.

156A Audio Feature Extraction
said to follow three main directions that also roughly

define the scope of the audio content analysis research

field. These directions are audio representation, audio

segmentation, and audio classification.

� Audio representation refers to the extraction of

audio signal properties, or features, that are repre-

sentative of the audio signal, such as short time

energy, zero-crossing rate, pitch, or spectrum.

Obtaining a compact feature-based representation

of an audio signal can improve the efficiency of

audio processing and benefit many applications

based on such processing (e.g., audio retrieval).

� Audio segmentation aims to automatically reveal

coherent and semantically meaningful temporal

segments in an audio signal. Examples of such

segments are those containing pure speech or

music, or those corresponding to auditory scenes

[7]. The segments discovered through segmenta-

tion can also be clustered together into semantically

coherent groups [1] to provide the possibility for

an easy content access (e.g., through browsing).

� While the abovementioned segmentation and clus-

tering processes are typically unsupervised, audio

classification classifies a piece of audio signal into

one of the pre-defined semantic classes using super-

vised methods of machine learning and pattern

classification. The semantic classes can be defined

at the level of basic audio types (e.g., speech, music)

[8], audio effects (e.g., applause, gun-shot, car

chasing) [2,4], or auditory scenes (e.g., action,

highlights, romance).

The term ‘‘audio’’ in the context of audio content

analysis typically stands for general or composite

audio signals [1]. When dealing with specific audio

types, such as speech and music, and related applica-

tions, dedicated research has been deployed and led to

a number of specific research directions like music

information retrieval [3] and speech recognition [6].
Key Applications
Audio content analysis is typically applied for content-

based search and retrieval in the management of large-

scale audio (or multimedia) collections (databases).
Cross-references
▶Audio Classification

▶Audio Content Analysis
▶Audio Representation

▶Audio Segmentation

▶Multimedia Data

▶Video Content Analysis

▶Video Scene and Event Detection
Recommended Reading
1. Cai R., Lu L., and Hanjalic A. Unsupervised Content Discovery

in Composite Audio, Proc. IEEE Int. Conf. on Multimedia and

Expo, 2005, pp. 628–637.

2. Cai R., Lu L., Hanjalic A, Zhang H.-J., and Cai L.-H. A Flexible

Framework for Key Audio Effects Detection and Auditory Con-

text Inference. IEEE Trans. Audio Speech Lang. Process.,

14(3):1026–1039, 2006.

3. Casey M., et al. Content-Based Music Information Retrieval:

Current Directions and Future Challenges. In Proc. IEEE, Special

Issue on Advances in Multimedia Information Retrieval, 96(4):

668–696, 2008.

4. Cheng W.-H., Chu W.-T., and Wu J.-L. Semantic context detec-

tion based on hierarchical audio models. In Proc. 5th ACM

SIGMM Int. Workshop on Multimedia Information Retrieval,

2003, pp. 109–115.

5. Hanjalic A. Content-Based Analysis of Digital Video. Kluwer

Academic, Norwell, MA, 2004.

6. Huang X, Acero A., and Hon H.W. Spoken Language Processing:

A Guide to Theory, Algorithm, and System Development. Pren-

tice, Upper Saddle River, NJ, 2001.

7. Lu L., Cai R., and Hanjalic A. Audio Elements based Auditory

Scene Segmentation. In Proc. IEEE Int. Conf. on Acoustics,

Speech and Signal Processing, Vol. 5, 2006, pp. 17–20.

8. Lu L., Zhang H.-J., and Jiang H. Content analysis for audio

classification and segmentation. IEEE Trans. Speech Audio Pro-

cess., 10(7):504–516, 2002.

9. Radhakrishnan R., Divakaran A., and Xiong Z. A time series

clustering based framework for multimedia mining and summa-

rization using audio features. In Proc. 6th ACM SIGMM Int.

Workshop on Multimedia Information Retrieval, 2004,

pp. 157–164.
Audio Feature Extraction

▶Audio Representation
Audio Indexing

▶Audio Classification
Audio Information Retrieval

▶Audio Content Analysis

Audio Metadata A 157

A
Audio Metadata

WERNER KRIECHBAUM

IBM Development Lab, Böblingen, Germany

Synonyms
Music metadata

Definition
Audio, first used in 1934 refers to ‘‘Sound, esp.

recorded or transmitted sound . . . and signals repre-

senting this’’ [Oxford English Dictionary, Oxford 2005,

Vol. 1, p, 780].

Metadata is data about data of any sort in any

media, describing an individual datum, content item,

or a collection of data including multiple content

items. In that way metadata facilitates the understand-

ing, characterization, use and management of data.

Audio metadata is structured, encoded data that

describes content and representation characteristics of

audio entities to facilitate the automatic or semiauto-

matic identification, discovery, assessment, interpreta-

tion, and management of the described entities, as well

as their generation, manipulation, and distribution.
Historical Background
Audio metadata predate audio data by centuries. Since

antiquity artists and theoreticians alike were interested

to classify the effects that could be produced by the

combination of different tones and to devise rules for

the proper composition of music [12]. The baroque

Affektenlehre (doctrine of the affections) provided the

composers of music with rules and schemes to express

affects like love, fear, or hate, and on the other hand

gave the listeners a reference system to decode the

emotional content of a piece of music. Falling into

oblivion with the end of the baroque area similar

classification schemes resurfaced with the advent of

silent films. Score snippets classified this way enabled

the pianist accompanying the film to select music

appropriate to the mood of the film scene on the fly.

Like many other technological innovations the mod-

ern history of audio metadata started in Bell Labs with

the vocoder, developed by Homer Dudley during the

late 20s and early 30s of the last century [2]. As part of

a speech analysis/synthesis system the vocoder was used

to reduce the amount of storage needed to store human

speech. The analysis part of the system computed a
spectrogram (a variant of a short-term power spectrum)

and extracted the fundamental frequency of the speech

signal – the first low-level audio metadata. This paved

the way for the development of an ever increasing

stream of audio analysis techniques that can be traced

for example in the ‘‘Transactions of the IRE Professional

Group on Audio’’ and its IEEE follow-on and spin-off

journals (Available at: http://ieeexplore.ieee.org/xpl/

RecentIssue.jsp?punumber = 8340).

MPEG-7 Audio standard [7], finalized in 2002,

selected and standardized a set of low- and high-level

descriptors from the plethora of available signal pro-

cessing techniques and tools. MPEG-7 low-level audio

descriptors are derived from the time-frequency anal-

ysis of the audio signal and include:

� Basic descriptors: e.g., the audio waveform

envelope

� Basic spectral descriptors: e.g., the centroid of the

audio spectrum

� Signal parameters: e.g., the fundamental frequency

� Timbral temporal descriptors: e.g., the logarithmic

attack time

� Timbral spectral descriptors: e.g., the harmonic

spectral centroid

� Spectral basis descriptors: which are low-dimensional

projections of the spectrum

� Silence

The MPEG-7 high-level descriptors, which are usually

collections of further low-level descriptors with addi-

tional context, comprise:

� Audio signature

� Musical instrument timbre

� Monophonic melody

� HMM sound model

� Spoken content model

Markup languages and among those most notably

HyTime [6], provided the second major force that

influenced the development of audio metadata. The

linking concepts introduced by HyTime provided

mechanisms to connect (textual) symbolic representa-

tions and (non-textual) realizations of a media entity

without embedding the link in either. The Standard

Music Description Language (SMDL) [5] – developed

as a HyTime application and up to now not promoted

from a draft standard to an international standard –

applied these techniques to standardize architecture for

the representation of music. From an SMDL point of

158A Audio Metadata
view a single musical work is comprised of four

domains:

� Logical domain: ‘‘The logical domain is the basic

musical content – the essence from which all per-

formances and editions of the work are derived,

including virtual time values, nominal pitches, etc.

The logical domain is describable as ‘the composer’s

intentions with respect to pitches, rhythms, harmo-

nies, dynamics, tempi, articulations, accents, etc.,’’’

[5, p. 5]

� Gestural domain: Any number of performances of

the logical domain, e.g., a digital audio recording

capturing a concert

� Visual domain: Any visual rendering of the logical

domain, e.g., a score

� Analytical domain: Any number of music-theoreti-

cal analyses like e.g., Schenkerian analysis [A. Cad-

wallader/D. Gagné, Analysis of Tonal Music: A

Schenkerian Approach, Oxford 1998]

There is only a faint echo of this concept in the

MPEG-7 Audio standard but the ideas are taken up

again in the IEEE P1599 Recommended Practice for

Definition of a Commonly Acceptable Musical Appli-

cation using the XML Language (MX) which is as the

time of this writing still a draft but should undergo

ballot soon. In the terminology of MX, the SMDL

domains are called layers and the aspects of music

addressed are refined to six:

� General: Information that applies to the piece of

music as a whole, e.g., the opus number

� Logic: The symbolic description of the music

(equivalent to the SMDL logical domain)

� Structural: Description of music objects and their

causal relationship

� Notational: The score (similar to the SMDL visual

domain)

� Performance: An audible rendering of the piece of

music like e.g., MIDI, CSound, etc

� Audio: Links to and description of digital audio

The great success of the compact disc and the almost

ubiquitous availability of tools to create own copies or

compilations from digital audio in MP3 format

spawned a further community-based audio metadata

‘‘standardization’’ initiative. Since according to the

original Red Book specification [IEC 60908 Ed. 2.0

b:1999 Audio recording – Compact disc digital audio

system] the compact discs did not include metadata
like disc name, track names or author information the

need arose to add this information from a supplemen-

tal database and to embed at least part of this informa-

tion in an MP3 file generated from the audio disc. The

basic idea to bind the audio disc to its database entry

used by all such systems is to compute a hash based on

the track information available in the CD’s table of

contents. This hash is used as key for the metadata

stored in the database. An entry in the open-source

GPL-licensed audio metadata database freedb [http://

www.freedb.org/] contains the following information:

� DISCID: the hash key

� DTITLE: Artist and disc title separated by ‘‘/’’

� DYEAR: Year the compact disc was released

� DGENRE: The genre in textual form. In addition to

this genre entry the database is split into eleven

different categories (blues, classical, country, data,

folk, jazz, newage, reggae, rock, soundtrack, misc)

to minimize hash collisions. The information in the

genre field can conflict with the category and will

do so when two discs from the same category

produce the same hash key. The recommended

resolution for the key collision is to put the second

disc in another category.

� TTITLEN: The title of track N

� EXTD: Extended data (i.e., any interesting infor-

mation) for the audio disc

� EXTTN: Extended data for track N

Like the original audio disc the MP3 standard [ISO/IEC

11172–3:1993 Information technology – Coding of

moving pictures and associated audio for digital storage

media at up to about 1,5 Mbit/s – Part 3: Audio] did not

provide for the inclusion of textual material as part of

the encoded audio. This did not deter the user commu-

nity from enhancingMP3 files with textual information.

One result of these efforts is the (informal) ID3 standard

[http://www.id3.org/id3v2.4.0-structure and http://

www.id3.org/id3v2.4.0-frames] which specifies how to

prepend metadata to an MP3 file. There is a rich set of

predefined ID3 frames for example:

� Text information frames: Information like album,

author, artist(s), etc.

� URL link frames: Links to e.g., the web page of a

performer.

� Event timing codes: Time stamps for events in the

audio like e.g., verse start, refrain start, theme start,

key change, theme end, profanity, profanity end.

Audio Metadata A 159

A
� Unsynchronized lyrics or text transcription

� Synchronized lyrics or text.

� Equalization: Equalizer settings for the encoded

audio.

� Attached picture

The tag set can be extended since ID3 parsers – like

HTML parsers – have to ignore unknown tags.
Foundations
From a metadata point of view, audio is rather ill-

defined. All but the basic technical metadata describing

the recording setup and the physical metadata charac-

terizing the recorded signal, are specific for the

recorded material and require content specific exper-

tise. What makes sense for the description of the

recording of a starting airplane is quite different from

the data needed to describe birdsong or an opera

recording. And even the description of the audio signal

on the physical level is not without problems when the

metadata are collected for human usage. On their way

from the eardrum to the brain, auditory signals under-

go a non-linear transformation caused by one’s sound

perception system [3,9] and all the concepts our cog-

nition forms about audio events are based on this

transformed signal. The perceived intensity (loudness)

of a signal, for example, is quite different from the

physical intensity of the signal. Low-level descriptors

of audio signals have to take these differences into

account, especially when they are used to derive more

complex cognitive descriptors.

Since the domain of the recorded material has a

marked influence on the metadata useful and necessary

to describe the audio recording, the following discus-

sion is restricted to the recording of music. Almost all

music, except monophonic works, is realized by the

co-operation of musicians that perform in parallel

different subsets of the music. But in many cases,

grouping mechanisms in one’s auditory perception

transform even monophonic music in two or more

perceived separate streams [1]. Therefore even pure

music not accompanying a stage play can be under-

stood and described as multimedia data and the

scientific fundamentals discussed in the entry on mul-

timedia metadata apply to music as well. Furthermore

all music can exist in two different forms: a symbolic

representation (the score), and a realization (the audio

recording). Information like metrum or key that is

hard to derive from the analysis of the recorded
audio is readily available from the score. In addition

a score is accessible for music theoretical analysis that

leads to further metadata [8]. Whenever one of the

two, score or realization, is missing, it can, at least in

principle, be derived from the other. The realizations

generated by performing a score vary to a considerable

degree. First of all most scores do not give an absolute

reference point for the frequency. To map the note

A4 (the A above the middle C) to a frequency of

440 Hertz, now an ISO standard [ISO 16:1975

Acoustics – Standard tuning frequency (Standard mu-

sical pitch)], is a rather new convention established by

an international conference in 1936. Throughout his-

tory a variety of reference frequencies for A4 have been

used, varying from as low as 392 Hertz up to 466 Hertz.

Prior to the acceptance of equal temperament as tun-

ing standard in the second half of the eighteenth

century, a variety of tuning standards were in use and

rendering baroque music on historic instruments with

a historic temperament leads to a quite different perfor-

mance than the one produced by a modern orchestra

with well-tempered tuning. Similar variability exists for

the global tempo (at least prior to the use of the metro-

nome ticks to specify absolute time values) and the

dynamic. And of course each individual performer or

orchestra has its personal style of phrasings and embel-

lishments. Therefore one score gives rise to a variety of

realizations and at least when one is interested in identi-

fying music all metadata derived from the realization

of the score should in the end lead to the same piece of

music. But scores themselves are by no means static;

throughout history they have been transformed to

adapt them to different needs. Examples of such trans-

formations are transpositions (shifts in pitch) to adapt

the score to the ambitus of an instrument, or piano

reductions where an orchestral piece is simplified in

such a way that its ‘‘essence’’ can be rendered on a

piano. Like with the variation in realizations metadata

for the description of music should be able to cope with

this variability. Both types of variation exist not only in

classical western music but in popular music or non-

western music like Indonesian gamelan or Indian ragas

as well.

Music has a complex temporal organisation and a

rich semantic structure that defines a natural segmen-

tation for the audio stream. Like in images, in music

many features are characteristic for segments, vary

from segment to segment, and become meaningless

when averaged over all segments. Musical structure is

160A Audio Parsing
not arbitrary but conforms to a set of possible patterns:

The sonata form [10] for example is one of the most

influential structural patterns during the classical era

of western music. The structure of the sonata form is

built from three to five pieces: an optional introduc-

tion, an exposition, a middle part (Durchführung), a

repeat, and an optional coda. Usually these five ele-

ments are not atomic but further structured and some

segments of this substructure are derived from each

other by transformations like e.g., transposition, inver-

sion, reflection, or tempo changes. Besides being meta-

data in its own right, structural information linked

with the audio material allows a natural navigation of

the recorded performance. As outlined above, the ap-

proach to document structure is prescriptive. As in

nineteenth century music theory it is assumed that

there is an ideal architecture for a sonata form, and

that a piece of music not conforming to these rules is

in error. In the twentieth century this concept has

come under considerable criticism [e.g., 11] and a

descriptive approach has been advocated. As a conse-

quence, each musical work is likely to have more than

one semantic segmentation, depending on the analysis

approaches chosen. To be of any use, both a controlled

vocabulary describing the structures and an ontology

describing the relationships among them are needed.

But this is by no means specific to the structure of

music. For many other audio metadata standardized

controlled vocabularies and ontologies are still lacking.

For example without amendment the Dublin Core

[http://www.dublincore.org/] term creator, ‘‘An entity

primarily responsible for making the resource’’ [http://

purl.org/dc/terms/creator], attached to a piece of music

makes it hard if not impossible to recognize the speci-

fic role of the creator. Felix Weingartner as creator could

refer to his role as conductor (he conducted what

is believed to be the first complete recording of

Beethoven’s symphonies), or his role as composer (sym-

phonies, string quartets, operas) or his role as editor

(he edited the complete works of Berlioz).

Key Applications
Audio metadata are essential for any search for audio

data. In addition music metadata help to reveal simi-

larities in style or structure between different composi-

tions or different realisations of a piece of music. There

are many frameworks for the analysis and manipula-

tion of music, two GPLed packages that allow easy

experimentation with different metadata concepts for
music are CLAM [http://www.clam.iua.upf.edu/] and

RUBATO1 [http://www.rubato.org/].
Cross-references
▶ Image Metadata

▶Multimedia Metadata

▶Video Metadata

Recommended Reading
1. Deutsch D. (ed.) The Psychology of Music, 2nd edn. Academic,

San Diego, CA, 1999.

2. Dudley H.W. The vocoder. Bell Labs Rec., 18:122–126, 1939.

3. Handel S. Listening. MIT, Cambridge, MA, 1989.

4. IEEE P1599/D5.0. Draft recommended practice for definition of

a commonly acceptable musical application using the XML

Language. NY, 2008.

5. ISO/IEC DIS 10743. Standard music description language

(SMDL). July, 1995.

6. ISO/IEC 10744:1997. Information technology – Hypermedia/

Time-based structuring language (HyTime). Geneva, 1997.

7. ISO/IEC 15938–4:2002. Information technology – Multimedia

content description interface – Part 4: Audio. Geneva, 2002.

8. Mazzola G. The Topos of Music. Birkhäuser, Basel, 2002.

9. Moore B. (ed.) Hearing. Academic, San Diego, CA, 1995.

10. Mauser, S. (ed.) Handbuch der musikalischen Gattungen, Laa-

ber 1993 ff.

11. Rosen C. Sonata Forms, 2nd edn. Norton, NY, 1980.

12. Zaminer F. Geschichte der Musiktheorie, Darmstadt 1984 ff.
Audio Parsing

▶Audio Segmentation
Audio Recognition

▶Audio Classification
Audio Representation

LIE LU1, ALAN HANJALIC
2

1Microsoft Research Asia, Beijing, China
2Delft University of Technology, Delft,

The Netherlands

Synonyms
Audio feature extraction; Audio characterization

Audio Representation A 161

A
Definition
An audio signal is a signal that contains information in

the audible frequency range. Audio representation

refers to the extraction of audio signal properties, or

features, that are representative of the audio signal

composition (both in temporal and spectral domain)

and audio signal behavior over time. Feature extraction

is typically combined with feature selection, through

which the best set of features for the intended opera-

tion on the audio signal is defined.

Historical Background
Audio feature extraction typically leads to a strongly

reduced audio signal representation. Obtaining such

representation can improve the efficiency of audio pro-

cessing and benefit many applications based on such

processing. For example, a compact representation of

an audio signal in the form of a fingerprint can enable

extremely fast search for a match between this signal and

a large-scale audio database for the purpose of audio

signal identification. Further, if audio features are care-

fully chosen, they can capture the information from the

original data that is relevant to subsequent audio signal

analysis and processing steps, while leaving out the re-

dundant and irrelevant (noisy) information parts. This

possibility to simultaneously improve the efficiency and

robustness of audio signal analysis and processing indi-

cates the importance of the feature selection step as the

basis step in audio content analysis, and in particular in

audio segmentation and audio classification.

Foundations
Audio features can be divided into temporal and spec-

tral features that capture the temporal and spectral

characteristics of an audio signal, respectively. In

terms of the way the features are extracted, a division

into frame-level and window-level features can be

made. An audio frame is the elementary temporal

segment of the signal, from which features are

extracted. The length of an audio frame typically varies

between 10 and 50 ms. Due to its short duration, a

frame can be said to contain (close-to) stationary sig-

nal behavior. The window-level features are extracted

from a longer audio segment, comprising a number of

consecutive frames, and are typically marked by apply-

ing a sliding window to the signal. While most audio

features are extracted at the frame level, window-level

features are mainly derived from the frame-level fea-

tures by investigating their variation along the frames
within the window, e.g., the mean and standard devia-

tion of frame-level features. This expansion of the

frame-level feature consideration from an individual

frame to a series of consecutive frames proved to

be useful in many applications, which indicates the

importance of window-level features.

Table 1 gives an overview of the typical features pro-

posed in literature to perform various operations on

audio, and in particular, the audio segmentation and

classification. The features in the table are ranked accord-

ing to the frequency of their usage in literature. Multiple

names indicated per rowof the table stand for one and the

same feature and/or its variants. Also, the notation t, s, fl

and wl is used to indicate whether a feature is temporal,

spectral, frame-level or a window-level feature. The table

is followed by detailed descriptions of a subset of the

most prominent frame-level and window-level features.

Finally, information is provided about the processes of

feature normalization and selection to generate optimal

feature sets (vectors) for audio representation.

Zero-Crossing Rate

Zero-crossing rate (ZCR) is defined as the relative num-

ber of times the audio signal crosses the zero-line within a

frame. It can be computed using the following expression:

ZCR ¼ 1

2ðN � 1Þ
XN�1
m¼1
jsgn½xðmþ 1Þ�

� sgn½xðmÞ�j
ð1Þ

Here, sgn[] is a sign function, x(m) is the discrete

audio signal, m = 1...N, and N is the frame length.

The ZCR is a computationally simple measure of the

general frequency content of a signal, and as such it is

particularly useful in characterizing audio signals in

terms of the voiced and unvoiced sound categories. As

speech signals are generally composed of alternating

voiced and unvoiced sounds, which is not the case in

music signals, the variation in the ZCR values is expected

to be larger for speech signals than for music signals.

Due to its discriminative power in separating speech,

music and various audio effects, ZCR is often employed

in audio content analysis algorithms. An illustration of

its practical usage can be found in [7,8,10–12,15].

Short Time Energy

Short Time Energy (STE) is the total spectral power of

a frame. It can be computed from the audio signal

directly, as

Audio Representation. Table 1. An overview of audio features most frequently used in literature for the purpose of

audio segmentation and classification

Features Level Temporal/spectral

Short time energy, root mean square (RMS), spectrum power, volume, loudness fl t, s

Zero crossing rate (ZCR) fl t

Mel-frequency cepstral coefficient (MFCC) fl s

Spectral centroid, brightness, frequency centroid fl s

Bandwidth fl s

Sub-band energy (distribution), sub-band power, band-energy ratio fl s

Short time fundamental frequency, pitch, harmonic frequency fl s

LPC-derived cepstral coefficients (LPCC) fl s

Linear predictive coding (LPC) fl s

Spectral rolloff fl s

Spectral peak fl s

Spectral moments fl s

Spectral flatness fl s

Harmonicity fl s

Harmonicity prominence fl s

Sub-band partial prominence fl s

Wavelet decomposition fl s

MPEG-7 audio features fl s

Spectrum flux wl s

Percentage of low-energy frames, low short-time energy ratio (LSTER), non-silence ratio wl t, s

High ZCR ratio (HZCRR) wl t

Noise frame ratio, noise or non-voice ratio wl t

4 Hz modulation energy wl t, s

Pulse metric wl t

162A Audio Representation
STE ¼ 1

N

XN
m¼1
jxðmÞj2; ð2Þ

or from its Discrete Fourier Transform (DFT) coeffi-

cients, as

STE ¼
XK=2

k¼0
jFðkÞj2: ð3Þ

Here, F(k) denotes the DFT coefficients, |F(k)|2 is the

signal power at the discrete frequency k, and K is

the order of DFT. In [7,14], this energy is computed

using the logarithmic expression, to get a measure in

(or similar to) decibels.

Similar to ZCR, STE is also an effective feature for

discriminating between speech and music signals.

For example, there are more silence (or unvoiced)

frames in speech than in music. As a result, the
variation of STE in speech is in general much higher

than in music. An illustration of the practical usage of

this feature can be found in [7,10,12,14,15].

Sub-Band Energy Distribution

To further exploit the energy information based on the

STE feature defined above, the sub-band energy distri-

bution (SBED) can be computed. This distribution can

be obtained by dividing the frequency spectrum into

sub-bands, and by computing for each sub-band j

the ratio Dj between the energy contained in that

sub-band and the total spectral power of the frame:

Dj ¼
1

STE

XHj

Lj

jFðkÞj2 ð4Þ

Here, Lj and Hj are the lower and upper bound of sub-

band j respectively. The sub-band division can be done

Audio Representation A 163

A
in various ways, such as in octave-scale [7] or in mel-

scale [1].

Since the spectrum characteristics are rather differ-

ent for sounds produced by different sources (e.g.,

human voice, music, environmental noise) the SBED

feature has often been used for general audio classifi-

cation [5,10], and, in particular, for discriminating

between different sound effects [1,14].

Brightness and Bandwidth

Brightness and bandwidth are related to the first- and

second-order statistics of the spectrum, respectively.

The brightness is the centroid of the spectrum of a

frame, and can be defined as:

wc ¼

PK=2

k¼0
kjFðkÞj2

PK=2

k¼0
jFðkÞj2

ð5Þ

Bandwidth is the square root of the power-weighted

average of the squared difference between the spectral

components and the centroid:

B ¼

ffiPK=2

k¼0
ðk � wcÞ2 FðkÞj j2

PK=2

k¼0
FðkÞj j2

vuuuuuut ð6Þ

Brightness and Bandwidth characterize the shape

of the spectrum, and roughly indicate the timbre qual-

ity of a sound. From this perspective, brightness

and bandwidth can provide useful information for

audio classification processes [11,14].

Mel-Frequency Cepstral Coefficient (MFCC)

The set of Mel-Frequency Cepstral Coefficients [10] is a

cepstral representation of the audio signal obtained

based on the mel-scaled spectrum. The log spectral

amplitudes are first mapped onto the perceptual, loga-

rithmic mel-scale, using a triangular band-pass filter

bank. Then, the mel-scaled spectrum is transformed

intoMFCCusing the Discrete Cosine Transform (DCT).

cx ¼
ffiffiffiffi
2

K

r XK
k¼1
ðlog SkÞ cos½nðk � 0:5Þp=K �

n ¼ 1; 2; :::; L

ð7Þ

Here, cn is the n-th MFCC, K is the number of band-

pass filters, Sk is the mel-scaled spectrum after passing
the k-th triangular band-pass filter, and L is the order

of the cepstrum.

MFCC is commonly used in speech recognition and

speaker recognition systems. However, MFCC also

proved to be useful in discriminating between speech

and other sound classes, such as music, which explains

its wide usage in the audio analysis and processing

literature [3,6,12].

Sub-Band Partial Prominence and Harmonicity

Prominence

The Sub-Band Partial Prominence (SBPP) is used

to measure whether there are salient frequency com-

ponents (i.e., partials) in a sub-band. In other words,

the SBPP estimates the existence of prominent partials

in sub-bands [1]. It is computed by accumulating

the variation between adjacent frequency bins in each

sub-band, that is

SpðiÞ ¼
1

Hi � Li

XHi�1

j¼Li
F
^
ðk þ 1Þ � F

^
ðkÞ

����
���� ð8Þ

Here, Li and Hi are the lower and upper boundaries of

the ith sub-band respectively, and the value of Sp(i)

indicates the corresponding prominence of salient par-

tial components. The SBPP value Sp(i) for sub-bands

containing salient components is expected to be large.

In order to reduce the impact induced by the energy

variation over time, the original DFT spectral coeffi-

cient vector F is first converted to the decibel scale and

constrained to the unit L2-norm [2] to yield the new

spectral coefficient vector used on (8):

F
^
¼ 10 log10ðFÞ

10 log10ðFÞ
�� �� ð9Þ

If now the property of an ideally harmonic sound

(with one dominant fundamental frequency f0) is con-

sidered, its spectral energy is highly concentrated and

precisely located at those predicted harmonic positions

which are the multiples of the fundamental frequency f0.

To detect this situation, the following three factors could

be measured: (i) the energy ratio between the detected

harmonics and the whole spectrum; (ii) the deviation

between the detected harmonics and predicted posi-

tions; and (iii) the concentration degree of the harmonic

energy. Based on the above, theHarmonicity Prominence

(HP) was defined in [14] to estimate the harmonic

degree of a sound. The HP measure takes into account

the above three factors and can be defined as

164A Audio Representation
Hp ¼
PN

n¼1 E
ðnÞ 1� jBðnÞr � fnj

.
0:5f0

� �
1� B

ðnÞ
w

.
B

� �
E

ð10Þ

Here, E (n) is the energy of the detected nth harmonic

contour in the range of [fn � f0/2, fn + f0/2] and the

denominator E is the total spectral energy. The ratio

between E (n) and E stands for the first of the three

factors identified above. Further, fn is the nth predicted

harmonic position and is defined as

fn ¼ nf0
ffi
1þ bðn2 � 1Þ

p
ð11Þ

where b is the inharmonicity modification factor, and

B
ðnÞ
y and B

ðnÞ
w are the brightness and bandwidth of the

nth harmonic contour, respectively. The brightness

B
ðnÞ
y is used instead of the detected harmonic peak in

order to estimate a more accurate frequency center.

The bandwidth B
ðnÞ
y describes the concentration degree

of the nth harmonic. It is normalized by a constant B,

which is defined as the bandwidth of an instance where

the energy is uniformly distributed in the search range.

Thus, the components 1� jBðnÞy � fnj=0:5f0
� �

and
Audio Representation. Figure 1. Definition of harmonicity p

and the vertical axis denotes the energy. The harmonic conto

the harmonic peaks. Based on the harmonic contour, three fa

and degree of concentration (bandwidth), are computed to e

second harmonic in this example.
1� B
ðnÞ
w =B

� �
in the numerator of (10) represent the

second and the third factor defined above.

An illustration of the definition of harmonicity prom-

inence is shown in Fig. 1. Detailed explanation of the

computation and usage of this feature can be found in

[1]. The harmonic audio analysis using the SBPP and

HP features enables sophisticated audio classification,

like for instance, the discrimination between cheer and

laughter. This is possible because laughter, as opposed

to cheer, usually contains prominent harmonic partials.

High ZCR Ratio

High ZCR Ratio (HZCRR) [6] is defined as the fraction

of frames in the analysis window, whose ZCR values are

50% higher than the average ZCR computed in the

window, that is

HZCRR ¼ 1

2N

XN�1
n¼0
½sgnðZCRðnÞ � 1:5avZCRÞ þ 1�

ð12Þ

Here, n is the frame index, ZCR(n) is the zero-crossing

rate at the n-th frame, N is the total number of frames,
rominence. The horizontal axis represents the frequency,

ur is the segment between the adjacent valleys separating

ctors, that is, the peak energy, energy centroid (brightness)

stimate the harmonicity prominence, as illustrated at the

Audio Representation A 165

A
avZCR is the average ZCR in the analysis window, and

sgn[] is a sign function. The variation of HZCRR is

expected to be higher in speech signals than in music.

Fig. 2(I) shows the probability distribution curves of

HZCRR computed for a large number of speech and

music signals. Using the cross-point of two displayed

HZCRR curves as the threshold to discriminate speech

and music leads to the classification error of 19.36%, as

shown in [6].

Low Short-Time Energy Ratio

As an analogy for selecting HZCRR to model the var-

iations of the ZCR within the analysis window, the low

short-time energy ratio (LSTER) [6,11] can be defined

to model the variation of the short-time energy (STE) in

this window. LSTER is defined as the fraction of the

frames within the analysis window, whose STE values

are less than a half of the average STE measured in the

window, that is,

LSTER ¼ 1

2N

XN�1
n¼0
½sgnð0:5avSTE � STEðnÞÞ þ 1�

ð13Þ

Here, N is the total number of frames in the analysis

window, STE(n) is the short time energy at the n-th

frame, and avSTE is the average STE in the window.

The LSTER measure of speech is expected to be much

higher than that of music. This can be seen clearly from

the probability distribution curves of LSTER obtained

for a large number of speech and music signals, as

illustrated in the Fig. 2(II). Using the cross-point of

two displayed LSTER curves as the threshold to dis-

criminate speech and music leads to the classification

error of 8.27%, as presented in [6].
Audio Representation. Figure 2. An illustration of probabili

and (II) LSTER (a) speech and (b) music.
Spectrum Flux

Spectrum Flux (SF) is defined as the average variation

of the spectrum between adjacent two frames in the

analysis window, that is

SF ¼ 1

ðN � 1ÞðK � 1Þ
XN�1
n¼1

XK�1
k¼1
½logðAðn; kÞ þ dÞ

� logðAðn� 1; kÞ þ d�2
ð14Þ

Here, A(n, k) is the absolute value of the k-th

DFT coefficient of the n-th frame, K is the order

of DFT, δ is a very small value used to avoid computa-

tion overflow, and N is the number of frames in

the analysis window. The SF of speech is expected to

be larger than that of music. It was also found that the

spectrum flux of environmental sounds is generally

very high, and that it changes more dynamically than

for speech and music [6]. To illustrate this, Fig. 3(I)

shows the SF computed for an audio segment consist-

ing of speech (0–200 s), music (201–350 s) and envi-

ronmental sounds (351–450 s). Usage examples of this

feature are provided in [8,6,11].

Noise Frame Ratio

Noise frame ratio (NFR) is defined as the ratio of

noise frames in a given audio clip. A frame is conside-

red as a noise frame if the maximum local peak of its

normalized correlation function is lower than a pre-set

threshold. The NFR is usually used to discrimin-

ate environmental sound from music and speech,

and to detect noisy sounds. For example, the NFR

value of a noise-like environmental sound is higher

than that of music, because it contains many more

noise frames. As can be observed in Fig. 3(II), consid-

ering higher NFR values can prove quite discriminative
ty distribution curves of (I) HZCRR (a) speech and (b) music,

Audio Representation. Figure 3. (I) The spectrum flux curve of speech (0-200 s), music (201-350 s) and environmental

sounds (351-450 s); (II) The probability distribution curves of NFR: (a) music and (b) environmental sound.

166A Audio Representation
in separating these two types of audio. An illustration

of the usage of this feature can be found in [5,6].

Feature Vector Generation

After they are extracted, features need to be combined

together to form a complete audio representation and

to provide input into audio analysis and processing

steps. Since the values and dynamics of these features

may vary considerably over the feature set, simply

concatenating them all into a long feature vector is

not likely to lead to good results. Therefore, a normali-

zation needs to be performed on the features first to

equalize their scales. The normalization is usually per-

formed using the mean and standard deviation per

feature, namely as x
0

i ¼ ðxi � miÞ=si , where xi is the

i-th feature, and where the corresponding mean mi
and standard deviation si can be obtained from the

analyzed data set. Next to the normalization, feature

selection is usually performed to improve the effective-

ness of the feature vector while minimizing its dimen-

sion. While feature selection can be realized in many

ways [4], a typical approach involves the principle

component analysis (PCA) [13]. Technically, PCA is

an orthogonal linear transformation that transforms

the data to a new coordinate system to reveal the main

characteristics (principal components) of the data that

contribute most to the variance in data, and therefore

best explain the data. The principal components can

be obtained by performing a covariance analysis or

singular value decomposition (SVD) [13]. If X 0 is a set

of N-dimensional normalized feature vectors from M

segments (usually M >> N), then X 0 can be written as

an M�N matrix, where each row corresponds to a

feature vector of one audio segment. By applying the

SVD, the matrix X 0 can be written as
X 0 ¼ USVT ð15Þ

In terms of SVD, V and U are, respectively, an N�N
and M�N matrix containing the right and left

singular vectors, while the diagonal N�N matrix

S = diag{l1,...,lN,} contains singular values, with

l1 	 l2 	 ...	lN. In terms of PCA, singular vectors

(columns) of the matrix V can be seen as principal

components of X 0, each of which has its corresponding

singular value. The larger this singular value is, the

more principal (or more important) the component

is. Assuming that Vm is a matrix keeping the first m

principal components (by keeping the first m columns

from V), the original feature set X 0 can be replaced

by a reduced, PCA-transformed feature set

X 00 ¼ X 0Vm ð16Þ

which only preserves those features that are relevant to

subsequent audio signal analysis and processing steps,

while leaving out the redundant and irrelevant (noisy)

features.
Key Applications
Audio representation provides fundamentals for audio

classification and audio segmentation.
Cross-references
▶Audio Classification

▶Audio Content Analysis

▶Audio Segmentation

Recommended Reading
1. Cai R., Lu L., Hanjalic A., Zhang H.-J., and Cai L.-H. A flexible

framework for key audio effects detection and auditory context

Audio Segmentation A 167

A
inference. IEEE Trans. Audio, Speech Lang. Process., 14

(3):1026–1039, 2006.

2. Casey M.A. MPEG-7 sound-recognition tools. IEEE Trans.

Circuits and Syst. for Video Tech., 11(6):737–747, 1997.

3. Foote J. Content-based retrieval of music and audio. In

Proc. SPIE Multimedia Storage and Archiving Systems II. 1997,

pp. 138–147.

4. Guyon I. and Elisseeff A. An introduction to variable and feature

selection. J. Mach. Learn. Res., 3:1157–1182, 2003.

5. Liu Z., Wang Y., and Chen T. Audio feature extraction and

analysis for scene segmentation and classification. J. VLSI Signal

Process. Sys., 20(1–2):61–79, 1998.

6. Lu L., Zhang H.-J., and Jiang H. Content analysis for audio

classification and segmentation. IEEE Trans. Speech Audio Pro-

cess., 10(7):504–516, 2002.

7. Lu L., Zhang H.-J., and Li S. Content-based audio classification

and segmentation by using support vector machines. ACM

Multimedia Sys. J., 8(6):482–492, March, 2003.

8. Peltonen V., Tuomi J., Klapuri A.P., Huopaniemi J., and Sorsa T.

Computational auditory scene recognition. In Proc. IEEE Int.

Conf. Acoustics, Speech and Signal Processing, Vol. 2, 2002, pp.

1941–1944.

9. Rabiner L. and Juang B.H. Fundamentals of Speech Recognition,

Prentice-Hall, Englewood Cliffs, New Jersey, 1993.

10. Saunders J. Real-time discrimination of broadcast speech/music.

In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Proces-

sing, Vol. 2, 1996, pp. 993–996.

11. Scheirer E. and Slaney M. Construction and evaluation of a

robust multifeature music/speech discriminator. In Proc. IEEE

Int. Conf. on Acoustics, Speech and Signal Processing, Vol. 2,

1997, pp. 1331–1334.

12. Tzanetakis G. and Cook P. Marsyas: A framework for audio

analysis. Organized Sound, 4(3):2000.

13. Wall M.E., Rechtsteiner A., and Rocha L.M. Singular value

decomposition and principal component analysis. In A Practical

Approach toMicroarray Data Analysis, D.P. Berrar, W. Dubitzky,

M. Granzow (eds.). Kluwer, Norwell, MA (2003). pp. 91–109,

LANL LA-UR-02-4001.

14. Wold E., Blum T. and Wheaton J. Content-based classification,

search and retrieval of audio. IEEE Multimedia, 3(3):27–36,

1996.

15. Zhang T. and Kuo C.-C.J. Video content parsing based on

combined audio and visual information. In Proc. SPIE: Multi-

media Storage and Archiving Systems, IV, 1999, pp. 78–89.
Audio Segmentation

LIE LU1, ALAN HANJALIC
2

1Microsoft Research Asia, Beijing, China
2Delft University of Technology, Delft,

The Netherlands

Synonyms
Audio parsing; Auditory scene detection
Definition
Audio segmentation refers to the class of theories and

algorithms designed to automatically reveal semanti-

cally meaningful temporal segments in an audio signal,

also referred to as auditory scenes [7]. These scenes can

be seen as equivalents of paragraphs in text, and can

serve as input into audio categorization processes,

either supervised (audio classification) or unsuper-

vised (audio clustering). Through these processes, se-

mantically similar auditory scenes can be grouped

together and/or labeled using semantic indexes to pro-

vide multi-level, non-linear content-based access to

large audio documents and collections.

Historical Background
Automatic detection of auditory scenes is an important

step in enabling high-level semantic inference from gen-

eral audio signals, and can benefit various content-based

applications involving both audio and multimodal

(multimedia) data sets. Traditional approaches to

audio segmentation usually rely on a direct analysis of

low-level audio features, that is, the targeted audio seg-

ments were often defined to coincide with a consistent

low-level feature behavior [2,10,11]. This idea served as a

basis for numerous approaches for audio segmentation.

For example, in [10], a method for scene segmentation

was presented that uses low-level features, such as ceps-

tral and cochlear decomposition, combined with the

listener model and various time scales. Motivated by

the known limitations of traditional low-level feature

based approaches, an approach was proposed in [7] to

discover auditory scenes based on an analysis of audio

elements, which can be seen as equivalents to the words

in a text document. In this approach that draws an

analogy to text document analysis, an audio track is

described as a sequence of audio elements, and audito-

ry scenes are segmented based on the semantic affinity

among these audio elements and their co-occurrence.

Foundations
Traditional approaches to audio parsing relying direct-

ly on audio features have proved effective for many

applications, and in particular for those where knowl-

edge on the basic audio modalities (speech, music, and

noise) is critical. However, for other applications, like

those where higher-level content categories, e.g., se-

mantic concepts, become interesting, the low-level fea-

ture based approaches have shown deficiencies due to

their incapability of capturing the entire content

168A Audio Segmentation
diversity of a typical semantic concept. The audio seg-

ments obtained by typical feature-based approaches

are short and of no higher semantic meaning, if com-

pared to the true semantic segments, like, for instance,

logical story units targeted by the algorithms of high-

level video parsing [3], or the paragraphs in a text

document.

To come closer to the level of auditory scenes, a

promising alternative is to design and employ suitable

mid-level audio content representations. Figure 1

shows the framework for audio segmentation [6]

where the input audio is first decomposed into various

audio elements such as speech, music, various audio

effects and any combination of these. Then, audio

element weighting is performed to reveal the impor-

tance of an audio element to represent an audio docu-

ment or any of its parts. The audio elements with

highest weights can be adopted as the key audio ele-

ments, being the most characteristic for the semantics

of the analyzed audio data [1,4,5,8,9,12–14]. Finally,

auditory scenes can be characterized and detected

based on the audio elements they contain, just as the

paragraphs of a text document can be characterized

and detected using a vector of words and their weights.

As shown in [7], introducing the mid-level audio con-

tent representation in the form of audio elements

enables splitting the semantics inference process into

two steps, which leads to more robustness compared to

inferring the semantics from low-level features directly.

The usefulness of audio elements for audio content

analysis was already recognized, e.g., in [13], where

the audio elements such as applause, ball-hit, and

whistling, are extracted and used to detect the high-

lights in sports videos. However, this and similar meth-

ods usually adopted supervised data analysis and

classification methods. There, the scene categories

and the corresponding audio elements need to be pre-

defined, which is usually difficult to do for general

audio documents. Further, the effectiveness of super-

vised approaches relies heavily on the quality and

quantity of the training data. This makes such

approaches difficult to generalize. In view of this, a

number of unsupervised approaches were proposed,
Audio Segmentation. Figure 1. The framework for audio se
including the approach to audio element discovery [1],

and an approach to auditory scene segmentation [7].

The latter exploits the co-occurrence phenomena

among audio elements to realize the segmentation

scheme from Fig. 1. This is based on the rationale

that, in general, some audio elements will rarely

occur together in the same semantic context. On the

other hand, the auditory scenes with similar semantics

usually contain similar sets of typical audio elements.

For example, many action scenes may contain gunshots

and explosions, while a typical scene in a situation

comedy may be characterized by a combination of

applause, laughter, speech, and light music.

Audio Elements Detection and Weighting

As proposed in [1], an iterative spectral clustering

method can be used to decompose an audio document

into audio elements. Spectral clustering can be seen as

an optimization problem of grouping similar data

based on eigenvectors of a (possibly normalized) affin-

ity matrix. Ng et al. [9] proposed a method to use k

eigenvectors simultaneously to partition the data into k

clusters, and successfully applied this to a number of

complicated clustering problems. To further improve

the robustness of the clustering process, the self-tuning

strategy [14] can be adopted to set the context-based

scaling factors for different data densities. This

removes the need for the assumption that each cluster

in the input data has a similar distribution density in

the feature space, which is inherent in the standard

spectral clustering algorithm, but usually not satisfied

in complex audio data. Using this clustering method,

short audio segments (e.g., one second in length [1])

can be grouped into natural semantic clusters that can

then be adopted as audio elements.

In the next step, the obtained audio elements are

assigned the importance weights to indicate their

prominence in characterizing the content of audio

data. Here, two cases can be considered. The first case

assumes that only one audio document is available

for weight computation. Then, a number of heuristic

importance indicators, including Element Frequency,

Element Duration, and Average Element Length, are
gmentation based on audio elements [6].

Audio Segmentation A 169

A
proposed in [1] to compute the weight. The second

case assumes that multiple audio documents are avail-

able to learn the weights. In this case, inspired by the

effectiveness of term frequency (TF) and inverse docu-

ment frequency (IDF) used for word weighting in text

document analysis, the equivalents of these measures

can be defined and employed for the case of audio

segmentation. As described in [1,4,5,8,9,12–14], four

factors, including expected term frequency (ETF),

expected inverse document frequency (EIDF), expected

term duration (ETD), and expected inverse document

duration (EIDD), can be defined and combined toge-

ther to give the importance weight of each audio

element. These factors take into account the discrimi-

native power of the occurrence frequency and the

duration of a particular audio element to characterize

the semantics of an audio document.

Auditory Scene Segmentation

In view of the way it is defined, an auditory scene may

consist of multiple, concatenated and semantically

related audio elements. An example of such an audito-

ry scene is a humor scene consisting of several inter-

leaved segments of speech, laughter, cheer, and possibly

also some light music. In [6], a simple segmentation

scheme was presented that employs crisply defined

key audio elements. As shown in Figure 2a, two adja-

cent key audio elements are assumed to be in the same
Audio Segmentation. Figure 2. An illustration of previous ap

line indicates a detected scene boundary: (a) using time interv

between neighboring key audio elements; and (c) investigati

temporal scale.
auditory scene if the time interval between them is

sufficiently short. Then the scene boundaries are aligned

to the key audio elements, while the background audio

elements between two scenes are discarded. Clearly, the

algorithm is quite naive and does not fully exploit the

relationship between audio elements and auditory

scenes. To improve the detection performance, the no-

tion of semantic affinity between two contiguous key

audio elements was introduced in [1]. This affinity

takes into account both the co-occurrence statistics of

these key audio elements and the time interval between

them, and was employed in [1] to locate the auditory

scene boundaries. As shown in Figure 2b, auditory

scene boundaries are found between two key audio

elements if their semantic affinity is low.

The performance of the segmentation methods dis-

cussed above strongly depends on the definition of a

key audio element and the reliability of its detection.

Crisply defining key audio elements and detecting

them in composite audio documents may be rather

difficult due to multiple superimposed audio modal-

ities. Therefore, a more reliable solution would be to

work with all audio elements instead, and rely on their

importance weights. This idea also follows the analogy

to the classical text [4] and video scene segmentation

approaches [3,5]. As illustrated in Figure 2c, an ap-

proach in this direction would decide about the pres-

ence of a scene boundary at the observed time stamp
proaches to auditory scene segmentation, where a vertical

al between key audio elements; (b) using semantic affinity

ng the relationship of (key) audio elements on a large

170A Audio Segmentation
based on an investigation of the semantic affinity be-

tween audio elements taken from a broader range and

surrounding this time stamp.

The possibilities for realizing the audio segmenta-

tion idea from Figure 2c are now illustrated on the

example of the method proposed in [7]. Here, just like

in text document analysis, the measure for semantic

affinity is not based on the feature-based similarity

between two audio segments, but on their joint ability

to represent a semantically coherent piece of audio.

With this in mind, the definition of semantic affinity

in [7] is based on the following intuitive assumptions:

� Affinity between two audio segments is high if

the corresponding audio elements usually occur

together.

� The larger the time interval between two audio

segments, the lower their affinity.

� The higher the importance weights of the corres-

ponding audio elements, the more important is the

role these elements will play in the auditory scene

segmentation process, and therefore the more signifi-

cant the computed semantic affinity value will be.

Figure 3 shows an example audio element sequence,

where each temporal block belongs to an audio ele-

ment and where different classes of audio elements are

represented by different colors/grayscales. The seman-

tic affinity between the segments si and sj can now be

computed as a function consisting of three components,

each of which reflects one of the assumptions stated

above. The following measure is proposed in [1]:

A Si; Sj
� 	

¼ Co ei; ej
� 	

e�T Si ; Sjð Þ=Tmpei pej ð1Þ

Here, the notation ei and ej is used to indicate the audio

element identities of the segments si and sj, that is, to

describe their content (e.g., speech, music, noise, or

any combination of these). Pei and Pej are the impor-

tance weights of audio elements ei and ej, while T(si,sj)
Audio Segmentation. Figure 3. An illustration of an approac

segments, and ei and ej are their corresponding audio elemen
is the time interval between the audio segments si and

sj. Further, Tm is a scaling factor which can be set to

16 s, following the discussions on human memory

limit [3]. The exponential expression in (1) is inspired

by the content coherence computation formula intro-

duced in [12]. Further, Co(ei, ej) stands for the co-

occurrence between two audio elements, ei and ej, in

the entire observed audio document, and measures

their joint ability to characterize a semantically coher-

ent auditory scene.

To estimate the co-occurrence between two audio

elements, one can rely on the average time interval

between two audio elements. The shorter the time

interval, the higher the co-occurrence probability is.

The procedure for estimating the value Co(ei, ej) can

then be summarized in the following three steps [1]:

1. First, compute Dij, the average time interval be-

tween audio elements ei and ej, which is obtained

by investigating the co-occurrences of the observed

audio elements in the audio signal. For each seg-

ment belonging to audio element ei, the nearest

segment corresponding to ej is located, and then

Dij is obtained as the average temporal distance

between ei and ej.

2. Dji is computed as an analogy to Dij. One should

note that Dij is not always equal to Dji.

3. The co-occurrence value can now be found as

Co ei; ej
� 	

¼ e
�

Dij þ Dji

2mD ð2Þ

where mD is the average of all Dij and Dji values. The
choice for an exponential formula in (2) is made to keep

the influence of audio element co-occurrence on the

overall semantic affinity comparable with the influence

of the time interval between the audio segments (1).

Based on the semantic affinity (1), the confidence of

being within an auditory scene at the time stamp t can

now be computed by averaging the affinity values
h to audio segmentation [7], where si and sj are two audio

t identities.

Audio Segmentation. Figure 4. An example of the smoothed confidence curve and the auditory scene segmentation

scheme, where S1
*~S5

* are five obtained auditory scenes and Th and Th2 are two thresholds.

Audio Segmentation A 171

A

obtained for all pairs of segments si and sj surrounding

the t, that is,

C tð Þ ¼ 1

NlNr

XNl

i¼1

XNr

j¼1
A Si;Sj
� 	

¼ 1

NlNr

XNl

i¼1

XNr

j¼1
Co e1; ej

� 	
e�T Si ;Sjð Þ=TmPeiPej ð3Þ

where Nl and Nr are the numbers of audio segments

considered left and right from the potential boundary

(as captured by the intervalsL-Buf and R-Buf in Figure 3).

Using this expression, a confidence curve can be

obtained over the timeslots of potential boundaries,

as illustrated in Figure 4. The boundaries of auditory

scenes can now be detected simply by searching for

local minima of the curve. In the approach from [1],

the curve is first smoothed by using a median filter and

then the auditory scene boundaries are found at places

at which the following criteria are fulfilled:

C tð Þ < C t þ 1ð Þ; C tð Þ < C t � 1ð Þ; C tð Þ < Th ð4Þ

Here, the first two conditions secure a local valley,

while the last condition prevents high valleys from

being detected. The threshold Th is set experimentally

as ma + sa, where ma and sa are the mean and standard

deviation of the curve, respectively.

The obtained confidence curve is likely to contain

long sequences of low confidence values, as shown by

the segment S*3 in Figure 4. These sequences typically

consist of the background audio elements which are

weakly related to each other and also have low impor-

tance weights. Since it is not reasonable to divide such

a sequence into smaller segments, or to merge them

into neighboring auditory scenes, one could choose to

isolate these sequences by including all consecutive
audio segments with low affinity values into a separate

auditory scene. Detecting such scenes is an analogy to

detecting pauses in speech. Inspired by this, the

corresponding threshold (Th2 in Figure 4) can be set

by using an approach similar to background noise level

detection in speech analysis [12].
Key Applications
Audio segmentation is typically applied for content-

based search and retrieval in and management of large-

scale audio collections (databases).
Cross-references
▶Audio Classification

▶Audio Representation

▶Video Content Structure
Recommended Reading
1. Cai R., Lu L., and Hanjalic A. Unsupervised content discovery in

composite audio. In Proc. 13th ACM Int. Conf. on Multimedia,

2005, pp. 628–637.

2. Foote J. Automatic audio segmentation using a measure of audio

novelty. In Proc. IEEE Int. Conf. on Multimedia and Expo, 2000,

pp. 452–455.

3. Hanjalic A., Lagendijk R.L., and Biemond J. Automated high-

level movie segmentation for advanced video-retrieval sys-

tems. IEEE Trans. Circuits Syst. Video Technol., 9(4):580–588,

1999.

4. Kozima H. Text segmentation based on similarity between

words. In Proc. 31st Annual Meeting on Association for Compu-

tational Linguistics, 1993, pp. 286–288.

5. Kender J.R. and Yeo B.-L. Video scene segmentation via contin-

uous video coherence. In Proc. IEEE Int. Conf. on Computer

Vision and Pattern Recognition, 1998, pp. 367–373.

6. Lu L., Cai R., and Hanjalic A. Towards a unified framework for

content-based audio analysis. In Proc. IEEE Int. Conf. on Acous-

tics, Speech and Signal Processing, 2005, pp. 1069–1072.

172A Audit Trail
7. Lu L., Cai R., and Hanjalic A. Audio elements based auditory

scene segmentation. In Proc. IEEE Int. Conf. on Acoustics,

Speech and Signal Processing, 2006, pp. 17–20.

8. Lu L. and Hanjalic A. Towards optimal audio keywords detec-

tion for audio content analysis and discovery. In Proc. 14th ACM

Int. Conf. on Multimedia, 2006, pp. 825–834.

9. Ng A.Y., Jordan M.I., and Weis Y. On spectral clustering: analysis

and an algorithm. In Proc. Advances in Neural Information

Processing Systems, 2001, pp. 849–856.

10. Sundaram H. and Chang S.-F. Audio scene segmentation using

multiple features, models and timescales. In Proc. IEEE Int.

Conf. on Acoustics, Speech and Signal Processing, 2000,

pp. 2441–2444.

11. Tzanetakis G. and Cook P. Multifeature audio segmentation for

browsing and annotation. In Proc. IEEE Workshop on Applica-

tions of Signal Processing to Audio and Acoustics, 1999,

pp. 103–106.

12. Wang D., Lu L., and Zhang H.-J. Speech segmentation without

speech recognition. In Proc. IEEE Int. Conf. on Acoustics,

Speech and Signal Processing, 2003, pp. 468–471.

13. Xu M., Maddage N., Xu C.-S., Kankanhalli M., and Tian Q.

Creating audio keywords for event detection in soccer video.

In Proc. IEEE Int. Conf. on Multimedia and Expo, 2003,

pp. 281–284.

14. Zelnik-Manor L. and Perona P. Self-tuning spectral clustering. In

Proc. Advances in Neural Information Processing Systems, 2004,

pp. 1601–1608.
Audit Trail

▶ Logging/Recovery Subsystem
Auditing and Forensic Analysis

BRIAN LEVINE, GEROME MIKLAU

University of Massachusetts, Amherst, MA, USA

Synonyms
Accountability; Monitoring

Definition
The goal of database auditing is to retain a secure

record of database operations that can be used to verify

compliance with desired security policies, to trace

policy violations, or to detect anomalous patterns of

access. An audit log can contain the authorization ID

and time stamp of read and write operations in the

database, as well as a record of server connections,

login attempts and authorization changes. Govern-

ment and institutional regulations for the management
of sensitive information often require auditing of data

disclosure and data modification.

Database forensics is the analysis of the state of a

database system to validate hypotheses about past

events that are relevant to an alleged crime or violation

of policy. Evidence supporting a forensic analysis may

be found in an audit log (if available) but may also be

recovered from any other component of a database

system including table storage, the transaction log,

temporary caches, or backup media. A challenge of

working with forensically recovered evidence is that it

is typically provides only a partial record of an event,

possibly based on remnants of deleted information or

on inference from incomplete information. On the

other hand, it can be difficult to completely eradicate

digital evidence from databases, which may be critical

for preventing disclosure and complying with policy

mandating limited data retention.

While auditing is focused on the preservation and

analysis of specific data as required by law or internal

corporate policy, digital forensics is broader in scope,

potentially relating to any criminal or civil proceeding.

Auditors and forensic analysts share some common

goals, however the auditor usually relies on informa-

tion retained intentionally by the system. The forensic

analyst is more likely to rely on unintended remnants

and inference about past events.

Historical Background
Auditing has been a common practice in settings where

sensitive data is managed by computer systems, such

as financial and military applications. Auditing has

grown in importance as institutions are increasingly

required to prove compliance with privacy regulations,

or are mandated to discover and publicly respond to

exploited vulnerabilities in their systems. Database foren-

sics is an emerging subfield of digital forensics. Computer

crime and investigations began receiving attention the

late 1970s, but the realization that digital evidence is

relevant to a spectrum of crimes has occurred within

the last decade. Databases are common components of

operating systems, web browers, and email programs and

are an important focus of digital investigations.

Foundations

Database Auditing

The auditing component of a database system must

support the collection, storage, and protection of

Auditing and Forensic Analysis A 173

A
sufficient historical data to enable desired auditing

inquiries. Typical auditing queries might include the

following:

� Display the query expression for all operations

which modified more than ten rows.

� List the authorization IDs of users or client pro-

grams who performed SELECT queries on the

Patients table between 10 P.M. and 5 A.M. last week.

� List any records in the Employee table whose salary

field has been modified more than twice in the

past 12 months.

In misuse detection or intrusion detection, the audit

log may be used to assess more complex behavior

such as: Is today’s workload of update operations similar

to ‘‘normal’’ patterns of database usage?

To support such inquiries, an audit log records the

client programs and users who are executing opera-

tions, the data objects modified or disclosed, and the

context of those operations. For each operation per-

formed, an audit log could contain the SQL query

string along with contextual information such as time

of day, authorization ID, and network connection

information. For update and deletion operations, the

audit log may contain the removed values, and the

previous values of modified data.

Analyzing database disclosure resulting from a

sequence of SELECT queries can be more complex

than analyzing the history of database modifications

(inserts, updates, and deletes). Auditing disclosure has

been the subject of intense research [1,2,4], but faces

subtle challenges because a user may be able to infer

information not directly released through an executed

query. For example, a user’s access to an individual

database record can be hidden in a sequence of aggre-

gate queries.

In establishing auditing policies, the credibility and

completeness of the audit log must be carefully con-

sidered to ensure that all relevant events in the system

are preserved. For example, the effects of an aborted

transaction will be removed from the system for data-

base consistency and atomicity. But a record of aborted

transactions, and the reason for abort, could be impor-

tant to an audit analysis [4].

Naturally, data that will never be relevant to the

audit queries under consideration need not be recorded.

Further, the retention of recorded audit data must be

carefully determined and enforced. The log should be

available for appropriate audit inquiries when they
arise, but it also contains highly sensitive information

and should be destroyed once the period of legitimate

inquiry has passed.

Systems Issues and Performance Considerations To

support auditing, database systems must efficiently

collect required data and permit analysis. Modern

commercial databases contain a range of native audit-

ing features which usually include more than one type

of log. Common features include a system log to record

all connections to the database, and an query log to

record each query expression submitted to the data-

base. An auditing policy can be chosen to specify the

level of detail that should be logged (e.g., all accesses to

relations, or individual tuples; logging of first access in

a session or all accesses, etc.).

Logged data may be written to files outside data-

base storage, or to system tables within the database. In

the former case, protection depends on operating sys-

tem access control, while in the latter case protection of

audit data depends on the access controls of the data-

base. In particular, the DBA often has privileges to read

or alter system tables. When audit data is stored in

tables it can have a substantial performance impact on

normal database operations.

Database users can implement their own auditing

through user-level triggers. A trigger is a user-defined

procedure that executes before or after designated

events in the database. The triggering event can be an

insert, delete, or update command, and most systems

allow for tuple-level execution (in which the rule exe-

cutes once for each tuple affected) or statement level

(in which rule executes once for each statement). User-

level triggers can be inefficient (especially tuple-level

triggers) and the scope of events that can act as trigger

events may be limited.

The database transaction log is designed to support

critical ACID properties for the concurrent execution

of transactions. The transaction log typically includes

the before and after images of all database modifica-

tions to allow for rollback of aborted transactions

and the redo of changes lost due to system failure.

While the transaction log contains a wealth of infor-

mation relevant to auditing, it has a number of limita-

tions when used as an auditing mechanism. First, key

data is missing from the transaction log: namely a

record of read accesses to the database, as well as

some operational context information. In addition,

performing an audit analysis using the transaction

log could require recovering the state of the database

174A Auditing and Forensic Analysis
as of a past moment in time. Although a number of

current systems provide such point-in-time recovery

by reinstating backups and rolling transactions for-

ward, using this mechanism for audit analysis is very

inefficient. Finally, the retention period of transaction

log data and audit log data may be substantially differ-

ent. Transaction logs are often implemented as circular

files in which old log records no longer needed for

recovery are overwritten. Retention periods for audit-

ing data may be much longer.

In a persistent database (also known as an archiv-

ing, or transaction-time database) the historical state

of the database is purposely retained as modifications

are applied. In such systems a deletion never destr-

oys data and an update merely creates a new version

of a tuple. It is possible to pose queries ‘‘as-of ’’ any

past point in time. Persistent databases have received

considerable attention from the research community

[5], motivated by both auditing and other applica-

tions. Combined with query logs and system logs, a

persistent database can offer the most complete audit

collection along with efficient audit analysis since the

historical state of the database can be queried.

Support for persistence has not been widely imple-

mented, and is not usually used to support auditing in

commercial systems. A number of research projects

have built persistent, temporal or transaction-time

databases, many as extensions to existing systems like

MySQL [8], BerkeleyDB [7], and SQL Server.

Protecting the Audit Log It is essential that the audit

log be protected from unauthorized modification so

that it accurately reflects history. The database admin-

istrator, and other privileged parties, should not be

capable of tampering with the audit log. Typically

there is no legitimate reason for records in an audit

log to be modified. The log should be append-only

and may be implemented using write-once media.

Deletion of the audit log should occur only when it is

clear that the log is no longer needed for audit inqui-

ries. Cryptographic techniques have been proposed

for detecting tampering of database audit logs and

for efficiently tracing the location of illegally modified

records once tampering has been discovered.

It is equally critical that the confidentiality of the

audit log be protected. The audit log poses multiple

privacy threats: the audit log contains records from

database that may be sensitive, as well as a history of

how the database was used (the users of the database,

the queries that were executed, and times of day can all
violate the privacy of individuals). Viewing audit logs

is a highly privileged operation in most systems. Re-

cent research has investigated the use of cryptography

to permit searching over encrypted audit logs to mini-

mize the disclosed data during an investigation [10].

Database Forensics

The goal of database forensics is the analysis of

a database system’s contents to validate hypotheses

about past events that are relevant to an alleged crime

or violation of policy. This is a challenge since re-

covered evidence is typically only a partial record of

past events. The goal of the analysis is a formal

presentation of recovered data in a court of law, and

therefore it is critical for the investigator to also under-

stand legal concepts, including evidence handling. Un-

like auditing, there is no limitation on the type of data

that can be of interest. Broadly, there are two types of

evidence.

� Database evidence can be the direct subject of a

crime. For example, records can store contraband,

such as images of child pornography, copyrighted

media, and stolen intellectual property.

� Evidence can be indirectly related to a crime, for

example data from a log that verifies that a rela-

tionship exists between two users or computers. Or

a log of database query terms can corroborate the

notion that a user had knowledge of and intent to

possess particular contraband content found in

their file system.

Typically investigations cover not only databases but

other computer systems (e.g., file systems, email stores,

web history) as well as aspects of a crime scene beyond

the computer. Evidence from the entire scope of a

crime scene must be synthesized and reported as testi-

mony that is persuasive to an adjudicator.

Harvesting Database Evidence Databases are among

the most complicated systems found in modern com-

puters. Investigators can harvest evidence from table

storage, indexes, transaction and audit logs, temporary

caches, database catalogs, or archived copies of records

on backed up media.

Data values have a complex lifetime with a database

system. When input to a database, records begin in

an active state, which means a database and its services

need the record in order to function properly. Database

operations can change or create active records or remove

the purpose of active records. In the latter case, records

Auditing and Forensic Analysis A 175

A
become expired. For example, a record becomes expired

when it is deleted and when there is no combination of

operations left that would ever use the record again.

Forensic investigators are interested in both active and

recoverable expired records.

The lifetime of data is illustrated in Fig. 1 for the

simple case of records in table storage. An insertion

creates an active record, a deletion changes a record

from being active to being expired and eventually

the data may be overwritten by another database oper-

ation. After expiration, a tuple can be either removed,

or it can continue to exist as recoverable slack data.

Methods of removal are discussed below.

In the case of table storage, each pagedfile of storage is

shared by many records. The database API enables users

or investigators to retrieve all active values. When data is

deleted by users, typically a single bit is flipped in the page

file to indicate removal of the data. However, the record

can be retrieved outside the mechanisms of the API.

Other database mechanisms can also leave recover-

able records. Updates to records with variable lengths

can replace one or more attribute values with smaller

attribute values; the tail-end of the old record will

remain partially recoverable until it is overwritten. Or

an administrator may initiate a vacuum command

to improve storage performance. When vacuum exe-

cutes, on many systems, the reorganization is not

performed completely in place. In addition to reorganiz-

ing records within and across pages, the size of the file

used for table storagemay be reduced, returning space to

the file system, creating the possibility that the database

records can be recovered through file system forensics.

Expired data can also be found in stored indexes

if, for example, entries in B+tree nodes are deleted

but not overwritten immediately. Temporary relations,
Auditing and Forensic Analysis. Figure 1. The flow of

data during its lifetime. It begins in the active state. Before

it is deleted and becomes expired it will often be retained

as database slack or filesystem slack [9].
materialized for improved query processing or used

for external sorting, also contain data recoverable as

filesystem slack. Data can be recovered from transac-

tion logs, which are typically implemented sequentially

written circular files where the newest data overwrites

the oldest portion of the log. The amount of recover-

able data is dependent on the file system space allo-

cated to the log and characteristics of the database,

including the rate and size of updates and checkpoints.

Similarly, the amount of data stored in backups varies

with policy, storage capacity, and use.

System Transparency and Privacy Forensic analysis

is not restricted to active tuples because database

designs do not strive to eliminate unintended retention

of data accessible through interfaces that are not con-

trolled by the database. This incongruence between

what the database presents to users and what is actually

stored represents a threat to privacy and confidentiality.

For example, as stated above, businesses can unin-

tentionally violate privacy regulations when deleted

data is left in table or file storage. Adversaries that

investigate databases recovered from lost or stolen

computers can reveal sensitive information that was

thought to be deleted.

From this point of view, it is desirable for a data-

base to operate in a forensically transparent way [9].

Stahlberg et al. have proposed a set of desiderata to

determine the extent to which a database system is

forensically transparent. A database system is forensi-

cally transparent if it satisfies all three desiderata.

Clarity: The impact of each operation on the state of

records, whether active or expired, is clear to the user.

Purposeful retention: Only active records should be

retained by the database.

Complete removal: Expired records must be removed by

the system within a short, fixed time from when they

become expired. In other words, there must be a small

upper bound on the time that slack data exists in the

database.

Databases that satisfy these desiderata provide a reli-

able interface to the user in terms of what data is

actually stored in the system.

Removal of Data Ensuring that removed data is un-

recoverable from a database system is difficult. Records

can be removed by overwriting storage with a standard

pattern (e.g., all zeros) or through the use of encryption.

Deletion through overwriting can be costly in

terms of performance and therefore should be limited

176A Auditory Scene Detection
to small records or files. Asynchronous overwriting

during idle periods can ameliorate performance degra-

dation while opening a window of opportunity for

recovering data. Secure removal of data can also be

accomplished by storing data in encrypted form and

using overwriting to remove the decryption key. This

technique was first proposed for efficient simultaneous

removal of data from files and backup logs. Stahlberg

et al. [9] present an extended discussion of the use of

encryption keys and overwriting in the different inter-

nal database mechanisms.

Key Applications
Auditing and forensic analysis are critical operations in

any setting where sensitive or high-value data is ex-

posed to untrusted users. For example, database appli-

cations that manage financial, national intelligence, or

medical information must maintain audit records of

past data and operations, and may be the subject of

forensic analysis if policy violations occur.

Future Directions
A frequent outcome of auditing and forensic analysis is

the detection of a malicious or mistaken operation in

the past. Correcting the corrupted database, especially

after many valid transactions have been applied, is a

significant challenge receiving recent attention by the

research community [3,6].

Also note that the above discussion has focused on

a single database server. In modern applications, a

comprehensive audit or forensic analysis is likely to

involve many integrated systems where data objects

are derived from diverse sources and follow a complex

workflow. In such settings auditing inquiries share

some similarities with data provenance (or lineage),

which is a record of how a data item has come to exist

in a database or view.

Cross-references
▶Data Quality (Lineage, Provenance, Curation,

Incomplete and Imprecise Data)

▶Database Security and Privacy

▶ Inference Control in Statistical Databases

▶ Intrusion Detection

Recommended Reading
1. Adam N.R. and Wortmann J.C. Security-control methods for

statistical databases: A comparative study. ACM Comput. Surv.,

21(4):515–556, 1989.
2. Agrawal R., Bayardo R.J., Faloutsos C., Kiernan J., Rantzau R., and

Srikant R. Auditing compliance with a hippocratic database. In

Proc. 30th Int. Conf. on Very Large Data Bases, 2004, pp. 516–527.

3. Ammann P., Jajodia S., and Liu P. Recovery from malicious

transactions. IEEE Trans, Knowl. Data Eng., 14(5):1167–1185,

2002.

4. Castano S., Fugini M.G., Martella G., and Samarati P. Database

security. ACM/Addison-Wesley, New York, NY, USA, 1994.

5. Jensen C.S., Mark L., and Roussopoulos N. Incremental imple-

mentation model for relational databases with transaction time.

IEEE Trans. Knowl. Data Eng., 3(4):461–473, 1991.

6. Lomet D., Vagena Z., and Barga R. Recovery from ‘‘bad’’ user

transactions. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2006, pp. 337–346.

7. Snodgrass R.T. and Collberg C.S. The t-BerkeleyDB temporal

subsystem. Available at www.cs.arizona.edu/tau/tbdb/.

8. Snodgrass R.T. and Collberg C.S. The t-MySQL transaction time

support. Available at www.cs.arizona.edu/tau/tmysql.

9. Stahlberg P., Miklau G., and Levine B. Threats to privacy in the

forensic analysis of database systems. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2007, pp. 91–102.

10. Waters B., Balfanz D., Durfee G., and Smetters D. Building an

encrypted and searchable audit log. In Proc. Network and Dist.

Syst. Security Symp., 2004, pp. 91–102.
Auditory Scene Detection

▶Audio Segmentation
Authentication

MARINA BLANTON

University of Notre Dame, Notre Dame, IN, USA

Definition
Authentication is a broad term, which is normally

referred to mechanisms of ensuring that entities are

who they claim to be or that data has not been

manipulated by unauthorized parties. Thus, entity

authentication or identification refers to the means of

verifying user identity, after which the user will be

granted appropriate privileges. Data origin authentica-

tion refers to the means of ensuring that the data comes

from an authentic source and has not been tampered

with during the transmission.

Historical Background
The need for user authentication in early computer

systems arose once it became possible to support

Authentication A 177

A
multi-user environments. Similarly, data base systems

that can be accessed by multiple users with different

privileges have to rely on user authentication to enforce

proper access control. There is a variety of mechanisms

that allow users to authenticate themselves, but pass-

word-based authentication is currently the most widely

used form of identification.

Data origin authentication (or data authentication

for short) is also an old concept which gained impor-

tance with the adoption of inter-computer communi-

cations. With respect to data base systems, data

authentication is crucial in distributed environments

and when data bases are disseminated to other entities.

Foundations

Identification

The purpose of entity authentication or identification is

to allow one party (the verifier) to gather evidence that

the identity of another party (the claimant) is as

claimed. Thus, authentication protocols should permit

honest parties to successfully finish the protocol with

the claimant’s identity being accepted as authentic and

make it difficult for dishonest parties to impersonate

an identity of another user. Impersonation must re-

main difficult even for an adversary who can observe a

large number of successful executions of the authenti-

cation protocol by another entity.

Identification mechanisms can normally be divided

into the following types depending on how the identity

evidence is gathered:

1. The user knows a secret. Such types of identification

include passwords, personal identification numbers

(PINs), or secret keys.

2. The user possesses a token. This is normally based on

a hardware token such as magnetic-striped cards

(or smartcards) or other custom-designed devices

that generate time-variant passwords.

3. The user has a physical characteristic. Identification

can be based on characteristics inherent to the user

being authenticated such as biometrics, handwrit-

ten signatures, keystroke dynamics, facial and hand

geometries, voice, and others.

Note that for added security often different mechanisms

can be combined together. For example, PIN-based

authentication is almost always used in conjunction

with a physical device that stores information about its

owner (i.e., user ID, credit card number, etc.). Likewise,
biometric-based recognition can be used in combina-

tion with a password or a physical token.

Before a user will be able to engage in an authentica-

tion protocol, she needs to register with the system and

store the data (e.g., a password, keys, biometric data)

that will thereafter aid the system in the authentication

process. Password-based authentication is treated next,

followed by stronger forms of entity authentication.
Password-Based Authentication

Identification based on conventional time-invariant

passwords is the most widely used form of identification

even though such approaches do not provide strong

authentication. A password is a string of (normally

8 or more) characters associated with a certain user,

which serves the purpose of a shared secret between

the user and the system. When a user initiates the

identification process, she supplies the system with the

pair (userid, password), where userid identifies the user

and password provides the necessary evidence that the

user possesses the secret.

The most straightforward approach for the system

to store passwords is in the clear text. This, however,

allows the system administrator, or an adversary in

case of system compromise, to recover passwords of

individual users leading to security concerns. Thus,

most systems first apply a one-way hash function to

each password and store the output in the system.

Then when a user supplies the password during the

identification process, the password is first hashed and

then compared to the string stored in the system. This

security measure no longer allows cleartext passwords

to be recovered, but other attacks on passwords are still

possible. In particular, the following attacks can be

carried out:

– Replay of passwords. Since passwords are reusable,

an adversary who obtains password information

(by either seeing the user type the password, using

a keylogger program, or capturing the password

in transit from the user to the system) will be able

to reuse it and successfully impersonate the user.

– Exhaustive search. An adversary might attempt to

guess user passwords by trying all possible strings as

potential passwords (on the verifier itself or by

obtaining a copy of the password file and

performing this attack off-line). Generally it is in-

feasible for an adversary to try all passwords if they

are chosen from a sufficiently large space, but it is

178A Authentication
possible to exhaust short passwords (e.g., of length

6 characters or less).

– Dictionary attack. It is well known that users tend to

choose passwords that they can easily remember

but which are considered weak from the security

point of view. Thus, an adversary might try to guess

a user password using words from a dictionary and

variations thereof. If a user makes a poor password

choice, such an attack can have a high probability

of success. Dictionary attacks become increasingly

complicated, testing for combinations of words,

common substitutions and misspellings, insertion

of additional symbols, words from foreign lan-

guages, etc.

To decrease the vulnerability of the system to these

attacks, additional measures are normally employed,

some of which are:

– Salting passwords. In order to make guessing attacks

less effective, many systems use an additional ran-

dom string, called salt, with each password. Before

a password is stored, it is augmented with a ran-

dom salt, hashed, and then stored in the system

along with the salt. This prevents an attacker who is

in possession of a file with many user passwords to

launch a dictionary attack against all of them at the

same time, and requires each user’s password to be

tested individually.

– Slowing down password verification. To defeat

against attacks that perform trials of a large number

of passwords, the function that computes the hash

of the password can be made more computationally

extensive. This, for example, can be done by iterat-

ing the computation n times. When increasing

the computation for password mapping, a care,

however, must be taken not to impose a burden

on legitimate users.

– Limiting the number of unsuccessful password

guesses. It is common for a user account to be

locked after the number of unsuccessful authenti-

cation attempts exceeds a certain threshold. The

owner of a locked account must then contact an

administrator and have the account activated.

– Password rules. To protect against guessing attacks,

often certain rules are imposed on user choice of

passwords such as the minimal password length

and/or usage of capital letters, numbers, and special

symbols. Such rules normally strengthen the pass-

word choices but they also limit the password
search space. Also, a technique called password

aging is often employed to force users to choose a

new password after a certain period of time. If such

a period is rather short, however, users will be

unable to remember a newly chosen strong pass-

word, thus weakening the security of the system

with bad password choices.

It is always a challenge to find a balance between

memorability of passwords (passwords that are hard

to remember tend to be written down) and their

resistance to dictionary attacks (i.e., passwords with

enough randomness in them). Thus to aid users in

choosing less predictable passwords which they

can remember, techniques exist to create computer-

generated pronounceable passwords which are based

on mnemonics. Also, recently various solutions have

been developed to use images for authentication (a

user is given a number of images and is asked to

identify the set of pre-selected images), graphical inter-

faces (a user draws a pattern on a grid that has to

match a previously chosen pattern), etc. Such systems,

however, are not widely deployed and have not been

thoroughly evaluated to determine the level of security

they provide.

Since a major security concern with fixed pass-

words is the possibility of replaying them, a natural

way to improve their security is to consider one-time

passwords. As the name suggests, in such systems each

password is used only once and there are different ways

to realize them, which is briefly outlined next.

� The user and the system initially agree on a se-

quence of secret passwords. Each time the user

authenticates to the system, a new password is

used. This solution is simple but requires mainte-

nance of the shared list.

� The user updates her password with each instance

of the authentication protocol. For instance, the

user might send the new password encrypted

under a key derived from her current password.

This method crucially relies on the correct commu-

nication of the new password to the system.

� The new password is derived with each instance of

the authentication protocol using a one-way hash

function. As an example, consider the scheme called

S/Key due to Lamport [2]. The user begins with

a secret k and applies a one-way hash function h to

produce a sequence of values k,h(k),h(h(k)),...,

ht(k). The password for ith identification session

Authentication A 179

A
is ki ¼ ht� i(k). When the user authenticates (iþ1)
st time with kiþ1, the server (which has ki for that

user stored) checks whether h(kiþ1) ¼ ki and, if

so, accepts the authentication and replaces ki with

kiþ1. This check convinces the server because the

function h is considered to be infeasible to invert

and only the legitimate user will be able to con-

struct kiþ1 that passes the check.

Challenge-Response Identification

Challenge-response techniques provide a strong form of

entity authentication as they are not vulnerable to replay

attacks. The main idea behind such protocols is that

the claimant possesses a secret. During an identifica-

tion session, the server sends to the claimant a unique

randomly chosen challenge. The claimant computes a

response which is a function of her secret and the server’s

challenge and sends it to the server. It is important to

note that the response does not provide information

about the user secret, and cannot be used to successfully

compute responses to server’s challenges in the future by

someone who monitors the message exchange.

A variety of cryptographic challenge-response tech-

niques exist which could be based on (i) symmet-

ric encryption, (ii) one-way hash functions, or (iii)

public-key encryption. A more detailed explanation

of such techniques is beyond the scope of this article

and can be found in standard textbooks on cryptogra-

phy such as [3,7].

Data Origin Authentication

The purpose of data origin authentication is to ensure

that the data comes from a trusted source and has not

been tampered with during the transmission. Techni-

ques that permit verifying data authenticity can be

divided in two categories: (i) the communicating

parties share a common secret and (ii) the communi-

cating parties do not share a secret.

Consider that in a distributed database environ-

ment two systems communicate often and there is a

need to ensure data integrity. Then such systems can

share a secret S that permits them to use message

authentication codes (MAC) for data authentication.

That is, prior to transmitting the data, the sender

constructs the MAC using S and sends it along with

the data. After obtaining the data, the receiver uses the

shared secret to reconstruct the MAC and compare it

with the MAC received. If the check succeeds, the data

is accepted as authentic, and it is discarded otherwise.
In cases when the sender and the receiver do not

already have a secret which is known to both of them,

digital signatures can be used to verify the authenticity

of the sender and integrity of the data. This mechanism

assumes that the sender has a public-private key pair,

which is used to sign the data. Then the sender uses her

private key to sign the message and the receiver uses

the corresponding public key to verify the fact that the

message arrived intact.

The standard way of producing a digital signature

on data is first to apply a one-way hash function on the

data to compute its digest and then sign the digest.

The purpose of computing the digest first is to com-

press the data to a short string, which then can be

efficiently signed to produce a fixed-size signature.

In cases when integrity of a database needs to be

verified with some regularity while only parts of it

change, more advanced techniques can be used. In

particular, Merkle hash tree is commonly used to pro-

duce a digital signature on a hierarchically structured

set of documents (e.g., an XML tree of documents). In

such a tree, digests of individual nodes are computed

and then combined in a bottom-up fashion to result

in a single short digest of the tree. The owner of

the data produces a signature on the root node only.

Verification of data integrity in such trees can normally

be done faster than recomputing digests of the entire

tree if the user would like to verify the integrity of only

a part of the tree.

Key Applications
The main application of authentication is access control.

Namely, in multi-user systems a user authenticates to the

system and is granted access to specific resources deter-

mined by her access privileges. The mechanisms used to

determine user access rights vary drastically from one

system to another and are based on the type of access

control (e.g., role-based, discretionary, etc.,) and access

control policies.

Also, authentication applications and services such

as Kerberos, X.509 Authentication Service, or Public-

Key Infrastructure (PKI) can be used to aid in the

authentication process.

In case of data authentication, verification of data

integrity and authenticity is essential in determining

trustworthiness of the data. For example, updated

database records that are coming from a trusted source

can be safely used to modify the current contents of the

database. If, on the other hand, data integrity and

180A Authentication Trees
authenticity of the modifications cannot be verified, in

many cases such data will not be trusted.

Cross-references
▶Access Control

▶Digital Signatures

▶Hash Functions

▶Merkle Hash Trees

▶Message Authentication Codes

▶ Security Services

▶ Storage Security

Recommended Reading
1. Bishop M. Computer Security: Art and Science. Addison Wesley

Professional, 2002.

2. Haller N. The S/Key one-time password system. In Proc. Symp.

on Network and Distributed System Security, 1994, pp. 151–157.

3. Menezes A., van Oorschot P., and Vanstone S. Handbook of

Applied Cryptography. CRC, 1996.

4. Pfleeger C. and Pfleeger S. Security in Computing, 3rd edn.

Prentice-Hall, 2003.

5. Schneier B. Applied Cryptography: Protocols, Algorithms, and

Source Code in C, 2nd edn. Wiley, 1996.

6. Stallings W. Cryptography and Network Security: Principles

and Practices, 4th edn. Pearson Prentice Hall, 2006.

7. Stinson D. Cryptography: Theory and Practice, 3rd edn.

Chapman & Hall/CRC, 2006.
Authentication Trees

▶Merkle Trees
Authorization Administration
Policies

▶Access Control Administration Policies
Authorization Administration
Privileges

▶Access Control Administration Policies
Authorization Policy Languages

▶Access Control Policy Languages
Authorization Verification

▶Access Control
Auto-administration and
Auto-Tuning of Database Systems

▶ Self-Management Technology in Databases
Auto-Annotation

▶Automatic Image Annotation
Automata Induction

▶Grammar Inference
Automatic Abstracting

▶ Summarization
Automatic Image Annotation

NICOLAS HERVÉ, NOZHA BOUJEMAA

INRIA Paris-Rocquencourt, Le Chesnay Cedex, France

Synonyms
Multimedia content enrichment; Image classification;

Object detection and recognition;Auto-annotation

Definition
The widespread search engines, in the professional as

well as the personal context, used to work on the basis

of textual information associated or extracted from

indexed documents. Nowadays, most of the exchanged

or stored documents have multimedia content. To

reduce the technological gap so that these engines

still can work on multimedia content, it is very conve-

nient developing methods capable to generate auto-

matically textual annotations and metadata. These

methods will then allow to enrich the upcoming new

Automatic Image Annotation A 181

A
content or to post-annotate the existing content with

additional information extracted automatically if ever

this existing content is partly or not annotated.

A broad diversity in the typology of manual

annotation is usually found in image databases. Part

of them is representing contextual information. The

author, date, place or technical shooting conditions

are quite frequent. Some semantic or subjective anno-

tations, like emotions that flow out from images, can

be found. Some other annotations could be related to

the visual content of images. They provide information

on a given image such as indicating whether it is

a drawing, a map or a photograph. . . For photographs,

the global aspect is often specified (vertical/horizontal,

color/black and white, indoor/outdoor, landscape,

portrait. . .), as well as the presence of remarkable

objects or persons.

The aim of automatic image annotation app-

roaches is to provide efficient methods that extract

automatically the visual content of pictures allowing

semantic labeling of images. This is generally achieved

by learning algorithms that, once being trained on

annotated sub-corpora, are able to suggest keywords

to the archivist through object detection/recognition

and image classification methods.

Historical Background
The exploration of visual content databases and their

querying to retrieve some specific content usually rely

on textual annotations that have been previously

provided manually by human operators. The outcome

of the tremendous improvements in digitization and

acquisition devices is the availability of exponentially

growing content. Usual annotation techniques then

became more and more difficult to apply because

they are time and cost consuming. Moreover, manual

annotations are far from being perfect. They are often

focused on the context, subjective, partial and driven

by the needs of the end-users at the time they are

produced. As these needs are evolving, part of the

existing annotations becomes irrelevant and others

are missing. This is especially true with the arising of

Internet and the availability of all kind of databases

online. An other issue lies in the lack of controlled

vocabularies for most of the databases making difficult

for the end-user to guess what query words he has to

use in order to retrieve the content he has in mind.

Visual content indexing and retrieval community

have achieved significant progress in the recent years
[13] toward efficient approaches for visual features

extraction and visual appearance modeling together

with developing advanced mechanism for interactive

visual information retrieval. One of the major issues

was and remains the semantic gap [4,8].

Two main types of images databases could be

distinguished. Specific databases are focused on a

given restricted field. In the scientific domain, one

can cite satellite images for weather forecast or cultiva-

tion study, medical images or botanical databases for

species recognition. They are also found in the cultural

heritage domain (e.g., paintings databases) or the

military and security domain (e.g., fingerprints and

faces databases). On the other side, generic databases

contain very different images, without any a priori on

their content. This is usually the case for professional

news agencies, illustration photo stock collections

and personal family and holiday photo albums. Only

methods for generic content databases labeling will be

addressed.

By analyzing automatically images and charac-

terizing them with low-level features (mainly colors,

textures and shapes) CBIR systems [3] provided new

query paradigms that enable users to express their

needs. The main one is ‘‘query by example’’ where the

system retrieves images of the database that are the

most similar to a given example. The scientific com-

munity has been facing the well known semantic gap

problem for a while which remain the major concern

of the research community. Since the late 90s, rele-

vance feedback mechanism is one of possible solutions

to this difficult problem.

The early papers on automatic annotation that

have been published tackled image orientation detec-

tion or the classical indoor versus outdoor and city

versus landscape classifications of photographs [14,15].

Recently, relevance feedback allows moreover helping

for interactive mass-annotation of image collections.

This approach is often referred to as semi-automatic

image annotation.

Foundations
Despite some of its drawbacks, the query by keyword is

still very useful and quite natural for the end-user [6].

Automatic annotation generates such keywords to en-

rich the images semantic descriptions and ease further

querying. Because of the computational costs of all

current approaches, the existing systems are always

composed of two parts. An offline part is in charge of

182A Automatic Image Annotation
indexing the visual content and generating the annota-

tions. Eventually, a human operator can help the sys-

tem during the process or after it to validate/invalidate

the produced annotations. In such cases, one talks of

semi-automatic annotation systems. The second part,

online and real-time, is a query by keywords module.

As themain purpose is to describe the visual content,

the term ‘‘visual concept’’ is preferred over keyword

to describe the labels a system has to discover in images.

As previously mentioned, these visual concepts could

be related to either global appearance of the image or

presence of some objects. Objects detection can also be

refined in generic object class detection or specific object

instance detection. For example, one can ask a system

to label only the ‘‘vehicle’’ concept, or more precisely

to distinguish cars, motorbikes, boats and airplanes, and,

at a very specific level, being able to recognize different

makes of cars. This is the same problemwith annotating

persons. Being able to detect the presence of a person

in an image is a different procedure and result than

recognizing him. As face recognition is a well studied

problem which is tackled by a specific research commu-

nity. The ability to generalize from a few examples and

to reach higher abstraction levels is natural for humans

but it is very challenging task to achieve with current

state-of-the-art’s annotation systems [5,7,10,12].

One of the fundamental hypotheses of automatic

annotation is that what looks similar is probably se-

mantically similar. Most of the approaches rely on this

assumption. The main generic steps of automatic an-

notation are described below. First, visual features are

extracted automatically from images in order to obtain

representations in a visual space. The second step is to

build models that will link the visual concepts to the

relevant information in the visual space. When new

content is proposed, models are then able to predict

the corresponding visual concepts.

The performances evaluation of such methods may

rely on the usage of the annotations by the final users. As

in most of information retrieval systems, precision and

recall measures are used. Precision emphasizes the re-

trieval of relevant documents earlier and recall focuses

on the retrieval of the full set of relevant documents.

Precision and recall are complementary to judge the

quality of a system. But for some applications, precision

is the only important measure. This is especially the case

when a huge image database is available (like Internet).

When doing a query, a user is more interested in the first

satisfying results than in the complete relevant result set.
Images Description with Low-Level Features

The visual description of images is of great importance

as it is the raw material on which further models are

built. There is not a universally good low-level features

extractor. In specific databases, a priori on the content of

images can be used to extract specialized features that will

better describe their special nature. For example, numer-

ous features can be found in the literature for faces or

fingerprints description. In generic databases, compro-

mises have to be made between exhaustiveness, fidelity

to the content, ability to generalize and different invari-

ance degrees (illumination changes, rotations, scales,

occlusions. . .). The use of inappropriate features leading

to poor performances of a system has often been de-

scribed as semantic gap. In this case, one rather faces the

numerical gap, meaning that the visual information is

present in images but it has not been extracted correctly.

Due to their ability to generalize to content in

different conditions, statistical features are often used.

They gather color, shape and texture information in

histograms, separately or jointly. Color histograms are

among the first features used to describe images. They

vary depending on the underlying color space that is

used, the quantization parameters, different weighting

schemes or the use of co-occurrences of colors. Shapes

can be described by properties of edges found in

images like their types, orientations or lengths. Tex-

tures are focusing on the analysis of frequencies in

images. They often rely on Fourier transform, Gabor

filter banks or wavelets. Some features also combine

different types of information, mixing for example

color and texture in a single representation. Typically,

these visual features are represented by vectors in high-

dimensional spaces (generally between a few tens and a

few hundreds dimensions) [9,15].

Initially, the features were extracted over the full

image. This approach is well suited to describe the global

aspect of the content but is too coarse to represent

small details and objects. Features need to be extracted

locally. First, a support regionhas to be determined.Once

its location, shape and size are known, features are com-

puted on this small portion of the image. These features

can be of the same types as those extracted at a global level

or they can be specialized according to the nature of the

support regions. Several strategies are used to select

the support regions. Segmentation algorithms try to

find the boundaries between homogeneous regions in

images [2]. Segmentation is a difficult problem in itself

that is not well defined. Unfortunately, the general trend

Automatic Image Annotation A 183

A
has always been to focus on segmentation that detects

objects, which is already a highly semantic task and, thus,

not really achievable through automatic processes. Alter-

native approaches consist on sliding windows and fixed

grid, with varying sizes and spacing, are commonways of

obtaining dense sampling of the visual content [9,14].

Another popular region selection approach is based on

local features detectors via point-of-interest. They were

originally designed for image registration. These detec-

tors are generally attracted to specific areas of images that

have high variation in the visual signal, such as the

vicinity of edges and corners of regions. They allow the

selection of a very small proportion of image locations

having the highest visual variance [11,16]. Typically,

when using dense sampling, point-of-interest or when

mixing them, between a few hundreds and a few

thousands features are extracted per image. The compu-

tational cost is then much higher than with global fea-

tures. Some representations also try to carry other

information, like geometrical relations between features

locations or contextual information [1].

With global features, the image representation

is straightforward. However, even when local features

are to be used, learning algorithms may sometimes

require a global image representation that encom-

passes all the local visual information. The bag-of-

visual-words representation, very much inspired by

the classical bag-of-words representation for text, is

one of the most popular for images. A visual vocabu-

lary composed of visual words (some representative

features) is generated. An image is then represented

by a coordinate vector, each value of which expresses

the degree of importance of a feature with respect to

the image and/or the database as a whole. The creation

of a visual vocabulary is an important step in the full

process. The selected visual words (a few hundreds to a

few thousands) have to be representative of the data-

base content as they will serve as a basis for further

representation. Creating a good vocabulary will avoid

the loss of too much local information. Generally,

clustering algorithms either supervised or not, are

used with a sample of the database. This step can be

seen as a quantization of the local features.

Whatever the selected representation, the similarity

between images is measured by a distance functional in

the visual space. A broad variety has been developed:

classical Euclidean distance (L2), L1, earth mover dis-

tance (EMD), chi-squared (w2), vector angle, histo-

gram intersection,. . .
Learning and Models

Although several formulations have been proposed,

the main purpose of building models for visual con-

cepts is to associate them with the visual space regions

that best represent them. This problem is at the cross-

roads of computer vision, data mining and machine

learning. Usually, the models are built through a super-

vised learning process. For given visual concepts, an

algorithm is fed with a training dataset containing both

positive and negative images regarding the concepts to

learn. This algorithm has to find the discriminant

information from the visual space that best models

the concepts. Generally, the available annotations for

the training set are not localized. The presence of a

visual concept for an image is known, but its exact

location is not provided. This is the case for almost all

professional and personal databases. In the same way,

annotating new images does not require to locate ex-

actly the visual concept, but only to predict its pres-

ence. This is the main distinction that can be made

with object detection tasks.

Two main learning algorithm families are used:

� Generative: the system tries to estimate density dis-

tribution of concepts in the visual space or other

hidden variables [2]. Popular examples include

Gaussian Mixture Models, HiddenMarkovModels,

Bayesian networks, Latent Semantic Analysis and

translation models from the text processing com-

munity. The Expectation-Maximization algorithm

is often used to train these models.

� Discriminative: instead of trying to model the dis-

tributions, discriminative approaches are focusing

on detecting the boundaries between classes. For

each visual concept, the annotation process is then

often formalized as a two-class classification prob-

lem (present/not present). Although appearing

to be a little bit more effective, discriminative

approaches do not have the elegance of generative

ones. They act more as black boxes and relation-

ships between the different variables are not explic-

it, and thus difficult to analyze. The most famous

algorithms are Support Vector Machine (SVM)

[9,16], boosting (e.g., adaboost) [11] and all flavors

of discriminant analysis (linear – LDA, biased –

BDA, multiple – MDA, Fisher – FDA).

Both approaches may use global or local representa-

tions. Methods using bag-of-words representations are

also called ‘‘multiple instance learning.’’ Sometimes,

184A Automatic Image Annotation
pre-processes may also be used to prepare the data in

order to enhance the performances or to reduce the

computational costs: feature selection, dimensionality

reduction, scaling or normalization. Current systems

are often composed of several components, using dif-

ferent low-level features, combining them according to

different schemes and training models with multiple

learning strategies.
Automatic Image Annotation. Figure 1. Pictures annotated
Once the models have been learned, they can be

used to predict the visual concepts. Two types of pre-

dictions are possible. Hard decision simply indicates

the presence or absence of the concept. Soft decision

also provides a degree of confidence in the prediction,

allowing ranking more easily the results when answer-

ing an end-user query and thus improving the retrieval

of pertinent images earlier.
with the ‘‘tennis’’ keyword.

Automatic Image Annotation A 185

A
Current Results

The different methods are actually mature enough to

predict global visual concepts like image types and

scene categories. Regarding local concepts, huge impro-

vements still need to be made in order to provide

useful applications to real users. Both dense sampling

and point-of-interest have shown to perform quite well

on research databases, but results on real databases are
Automatic Image Annotation. Figure 2. Pictures displayed
quite poor [9,12]. A good indication of state-of-the-art

performances can be obtained in the results of official

benchmark campaigns like ImagEval, Pascal VOC,

Imageclef or Trecvid. In all cases, the contextual infor-

mation (visual or from the existing metadata) has

shown to be of great importance in the results.

When the availability of correctly annotated images

for a given visual concept is not guaranteed, the offline
after two iterations.

186A Automatic Image Annotation
learning approach is not possible. One of the solutions

is then to interact with a user through relevance feed-

back, also called interactive learning. In a few iterations,

the user will provide the system positive and negative

examples and guide it to recognize the visual concept.

Part of the mechanism involved are the same as offline

learning, but the training labels are provided online by

a user. As an example, the following screen captures

from Ikona [3] are showing the IAPR-TC12 database,

used for the Imageclef benchmark. The first screen dis-

plays all the images annotated with the ‘‘tennis’’ key-

word. The user is only interested in pictures where a

tennis court is visible. He indicates positive (green

border) and negative (red border) examples. After two

iterations, one can see on the second screen that a lot

of tennis court pictures have been retrieved. None of

them was annotated with the ‘‘tennis’’ keyword. After

a few more iterations, when no more correct pictures

are retrieved from the database, the user is able to

annotate massively all the pictures gathered through

the iterations that were kept in a specific basket (third

screen) (Figs. 1–3.)
Automatic Image Annotation. Figure 3. All positive picture
Key Issues and Future Research

The lack of generalization ability for both visual fea-

tures and learning algorithms has to be compensated

by a huge number of training examples. Depending on

the complexity of the visual concept, a good estimation

is around a hundred positive examples and ten times

more negatives examples for the training set. Paradox-

ically, despite the tremendous amount of images avail-

able nowadays, finding content that has been reliably

annotated for training dataset is hard.

The computational complexity is also still too high

for real-time annotation when dealing with several

thousands of visual concepts. Research is made on

scalability issues in machine learning and is linked to

existing high-dimensional data indexing structures.

Progresses for better description and integration of

all types of available information need to be achieved.

There are also some questions arising: will the prob-

lembe solvedwithmore computational power when one

is able to process images at every scale and location in

real-time?Aremassive collaborative annotationwebsites,

like Flickr, going to change the annotation paradigm
s basket allowing mass-annotation.

Autonomic Database Systems A 187

A
by transforming Internet in a giant common repository?

What is the impact of GPSmetadata, andmore generally

all the new information captured directly when a photo-

graph is taken?

Key Applications

� Professional content owners: post-editing

� Personal family and holiday photo albums

� Web image search

� Searching into poorly human-made annotated

corpora enhancing the quality of search results
Cross-references
▶Annotation-Based Image Retrieval

▶Boosting

▶Content-based Image Retrieval (CBIR)

▶ Image Database

▶ Image Retrieval and Relevance Feedback

▶Object Detection and Recognition

▶Object Recognition

▶ Support Vector Machine

▶Visual Content Analysis

Recommended Reading
1. Amores J., Sebe N., and Radeva P. Context-based object-class

recognition and retrieval by generalized correlograms. IEEE

Trans. Pattern Anal. Mach. Intell., 29(10):1818–1833, 2007.

2. Barnard K., Duygulu P., Forsyth D., de Freitas N., Blei D.M., and

Jordan M.I. Matching words and pictures. J. Mach. Learn. Res.,

3:1107–1135, 2003.

3. Boujemaa N., Fauqueur J., Ferecatu M., Fleuret F., Gouet V.,

Le Saux B., and Sahbi H. Ikona: interactive specific and generic

image retrieval. In Proc. Int. Workshop on Multimedia Content-

Based Indexing and Retrieval, 2001. Available at: http://www-

rocg.inria.fr/imedia/mmcbirzod.html.

4. Boujemaa N., Fauqueur J., and Gouet V. What’s beyond query

by example? Technical report, INRIA, 2003.

5. Datta R., Li J., and Wang J.Z. Content-based image retrieval –

approaches and trends of the new age. In Proc. 7th ACM

SIGMM Int. Workshop on Multimedia Information Retrieval,

2005, pp. 253–262.

6. Enser P.G.B., SandomC.J., and Lewis P.H. Automatic annotation

of images from the practitioner perspective. In Proc. 4th Int.

Conf. Image and Video Retrieval, 2005, pp. 497–506.

7. Hanjalic A., Sebe N., and Chang E. Multimedia content analysis,

management and retrieval: trends and challenges. In Proc. SPIE:

Multimedia Content Analysis, Management, and Retrieval,

2006.

8. Hare J.S., Lewis P.H., Enser P.G.B., and Sandom C.J. Mind

the gap: another look at the problem of the semantic gap in

image retrieval. In Proc. SPIE: Multimedia Content Analysis,

Management, and Retrieval, 2006.
9. Hervé N. and Boujemaa N. Image annotation: which approach

for realistic databases? In Proc. 6th ACM Int. Conf. Image and

Video Retrieval, 2007, pp. 170–177.

10. Lew M.S., Sebe N., Djeraba C., and Jain R. Content-based

multimedia information retrieval: State of the art and

Challenges. ACM Trans. Multimedia Comp., Comm., and

Appl., 2(1):1–19, 2006.

11. Opelt A., Pinz A., Fussenegger M., and Auer P. Generic object

recognition with boosting. Pattern Anal. Mach. Intell., 28

(3):416–431, 2006.

12. Ponce J., Hebert M., Schmid C., and Zisserman A (eds.).

Toward category-level object recognition. Springer-Verlag

Lecture Notes in Computer Science, 2006.

13. Smeulders A.W.M., Worring M., Santini S., Gupta A., and Jain

R. Content-based image retrieval at the end of the early years.

IEEE Trans. Pattern Anal. Mach. Intell., 22(12):1349–1380, 2000.

14. Szummer M. and Picard R.W. Indoor-outdoor image classifica-

tion. In Proc. Workshop on Content-based Access to Image and

Video Databases, Bombay, 1998.

15. Vailaya A., Jain A., and Zhang H-J. On image classification: city

images vs. landscapes. Pattern Recognit. J., 31(12):1921–1935,

1998.

16. Zhang J., Marszalek M., Lazebnik S., and Schmid C. Local fea-

tures and kernels for classification of texture and object categories: a

comprehensive study. Int. J. Comput. Vis., 73(2):213–238, 2007.
Automatic Induction

▶Grammar Inference
Automatic Language Induction

▶Grammar Inference
Automatic Wrapper Induction

▶ Fully Automatic Web Data Extraction
Autonomic Database Replica
Allocation

▶Autonomous Replication
Autonomic Database Systems

▶ Self-Management Technology in Databases

188A Autonomic Query Processing
Autonomic Query Processing

▶Adaptive Query Processing
Autonomous Message Queuing
Systems

▶Adaptive Middleware for Message Queuing Systems
Autonomous Replication

CRISTIANA AMZA

University of Toronto, Toronto, ON, Canada

Synonyms
Database provisioning; Adaptive database replication;

Autonomic database replica allocation

Definition
Autonomous database replication refers to dynamic

allocation of servers to applications in shared server

clusters, in such a way to meet per-application perfor-

mance requirements. Autonomous database replication

enables the service provider to efficiently multiplex data

center resources across applications in order to save

per-server costs related to human management, power

and cooling.

Historical Background
The concept of Autonomic Computing and the

associated research area of automated, adaptive self-

management in data centers was introduced by IBM

as a grand-challenge project in the early 2000s. Other

companies, which have responded or have had similar

proposals of their own include Microsoft, Intel, Sun
Autonomous Replication. Figure 1. Three-tier architecture.
and HP. Related industry efforts in this area have been

on developing open standards for resource monitoring

tools e.g., as available on IBM’s Alphaworks, (http://

www.alphaworks.ibm.com.) and academic or collabo-

rative industry-academia efforts related to applying

machine learning techniques for automated adapta-

tion in cluster systems [6,8,13].

Foundations
Dynamic content servers, such as Amazon.com and

eBay.com, commonly use a three-tier architecture

(see Fig. 1) that consists of a front-end web server

tier, an application server tier that implements the

business logic, and a back-end database tier that stores

the dynamic content of the site.

Large data centers may host multiple applications

concurrently, such as e-commerce, auctions, news and

games. The cooling and power costs of gross hardware

over-provisioning for each application’s estimated

peak load are making efficient resource usage crucial.

Furthermore, the excessive personnel costs involved in

server management motivate an automated approach

to resource allocation for applications in large sites.

Dynamic resource allocation techniques, i.e.,

dynamic provisioning of servers to multiple applica-

tions in each tier of the dynamic content site, have been

recently introduced to address the increasing costs of

ownership for large dynamic content server clusters.

These automatic solutions add servers to an applica-

tion’s allocation based on perceived or predicted per-

formance bottlenecks caused by either load spikes or

component failures; they remove resources from a

application’s allocation when in underload.

If services experience daily patterns with peak loads

for each service type at a different time (e.g., daytime

for e-commerce, evening for auctions, morning for

news sites, night for gaming), there are opportunities

for re-assigning hardware resources from one service

Autonomous Replication A 189

A
to another. Thus, instead of gross hardware over-

provisioning for each application’s estimated peak

load, dynamic resource provisioning techniques enable

the service provider to efficiently multiplex data center

resources across applications.

Common Architecture for Database Replica Provisioning

Figure 2 shows the common architecture of sites

with dynamic provisioning in the database server tier.

A resource manager makes the replica allocation deci-

sions for each application hosted on the site based on

the application requirements and the current system

state. The requirements are expressed in terms of a

service level agreement (SLA) that consists of a latency

requirement on the application’s queries. The current

system state includes the current performance of this

application and the system capacity. The resource man-

ager operates in two modes, underload and overload.

During underload, the number of replicas exceeds over-

all demand and allocation decisions per application are

made independently. During overload, the manager

uses either a utility-based scheme, e.g., profit-based,

or a fairness scheme, e.g., equal share, to allocate repli-

cas to applications.
Autonomous Replication. Figure 2. Cluster architecture.
The allocation decisions are communicated to a set

of schedulers, one per application, interposed between

the application and the database tiers. Each scheduler

fulfills the following functions. (i) It keeps track of the

current database set allocated to its application and

allocates or removes replicas from its managed set

according to the resource manager’s decisions. (ii) It

distributes the corresponding incoming requests onto

the respective database replicas. (iii) It periodically

samples various system and application metrics, e.g.,

the average application latency from its database set

in order to perceive or predict resource bottlenecks.

(iv) It provides consistent replication, e.g., one-copy

serializability [5], at all the replicas allocated to the

application it manages.

Strong consistency is desirable for dynamic pro-

visioning in the database tier of a multi-tier data

center, for transparency reasons; the replicated na-

ture of the database back-end and its configuration

adaptations are thereby hidden from the application

server, which interacts with the replicated back-end

as with a single database. Any eager replication

scheme with strong consistency guarantees, such as,

1-copy-serializability or 1-copy-snapshot-isolation

190A Autonomous Replication
[5] can be used within each application’s replica set.

However, existing dynamic provisioning schemes

typically leverage the presence of the scheduler and

the synchronous, one query at a time, nature of the

communication between the application and data-

base tiers in a data center to implement a middleware

replication solution in the scheduler itself. Upon re-

ceiving a query from the application server, the sched-

uler sends the query using a read-one, write-all

replication scheme to the replica set allocated to the

application. The scheduler assigns a global serializa-

tion order to all transactions pertaining to its appli-

cation, e.g., based on conservatively-perceived table-

level conflicts between transactions, and ensures

that transactions execute in this order at all the

corresponding database replicas. Table-level con-

currency control affords optimizations based on con-

flict awareness in the scheduler [2,3], which offset any

penalties due to the coarse-grain control for read-

intensive e-commerce applications [11].

The scheduler is also in charge of bringing a new

replica up to date by a process called data migration,

during which all missing updates are applied on that

replica. Integrating a stale replica into an application’s

allocation occurs through an on-line reconfiguration

technique [10,11] without stalling on-going transac-

tions on already active replicas for that application.

Finally, each scheduler may itself be replicated for

availability [2,3].

Overview of Dynamic Provisioning Solutions

Several fully-transparent provisioning solutions

[4,9,12] have been recently introduced to address the

increasing cost of management problem. Many of these

approaches [4,9,12] investigate dynamic provisioning

of resources within the (mostly) stateless web server

and application server tiers. This entry focuses on the

dynamic resource allocation solutions within the state-

ful database tier, which commonly becomes the bottle-

neck [1].

Regardless of the tier it applies to, a dynamic pro-

visioning solution can be either proactive or reactive

depending on its capabilities for predicting perfor-

mance bottlenecks in the dynamic content server. Pro-

active solutions use sophisticated system models for

prediction, such as, queuing models [4], utility models

[12], machine learning models [6,8,13] or marketplace

approaches [7]. Proactive provisioning techniques use

the system model predictions for triggering allocations
in advance of expected need. This is especially impor-

tant for tiers with a higher adaptation delay, such as the

database tier. In contrast, reactive approaches do not

use prediction, but rather detect and react to existing

resource bottlenecks. They rely on predefined thresh-

olds for application-level or system metrics, such as

latency or CPU usage for triggering changes in appli-

cation allocation.

Challenges for Database Replica Provisioning

Adapting to a bottleneck caused by either a workload

spike or a failure, by allocating additional replicas to

the application, poses a set of challenges, which is

summarized next.

Adaptation Delay

Adding a database replica to an application’s allocation

is not an immediate process. The database state of the

new replica(s) for that application will be stale and

must be brought up-to-date, or a new instance of that

application may need to be installed before it can be

used. Furthermore, load balancing for the old and new

replicas needs to occur and the buffer pool at the new

replica(s) needs to be warm before the new replica(s)

can be used effectively.

Oscillations in Allocation

Oscillations in database allocations to applications

may occur during system instability induced by adap-

tations. As discussed earlier, the replica addition pro-

cess can be long. During the adaptation phases, i.e.,

data migration, buffer pool warmup and load stabili-

zation, the latency will remain high or may even tem-

porarily continue to increase as shown in Figure 3.

Latency sampling during this potentially long time is

thus not necessarily reflective of a continued increase

in load, but of system instability after an adaptation is

triggered. If the system takes further decisions based

on sampling latency during the stabilization time, it

may continue to add further replicas which are unnec-

essary, hence will need to be removed later. This is an

oscillation in allocation which carries performance

penalties for other applications running on the system

due to potential interference.

Both reactive and proactive policies that measure

application-level metrics periodically, including

during the replica addition process, can suffer from

allocation instability. Allocation oscillations, in their

turn, cause cross-application interference due to the

Autonomous Replication. Figure 3. Latency instability

during replica addition.

Autonomous Replication A 191

A

price paid for warming up the buffer pool as part of the

‘‘context-switch’’ between applications on the machines

involved.

While rapid load fluctuations may induce similar

behavior, simple smoothing or filtering techniques

can offer some protection to very brief load spikes.

All existing dynamic provisioning schemes use some

form of smoothing or filtering, to dampen brief load

fluctuations.

Accurate and Lightweight Modeling

As previously mentioned proactive provisioning is de-

sirable in the database back-end tier due to the higher

adaptation delay inherent in this tier. The challenge for

proactive database tier provisioning lies in accurately

modeling the behavior of a replicated database back-

end tier. Many factors, such as the wide range of query

execution times typical in e-commerce workloads, the

load balancing policy, caching effects, the replica con-

sistency maintenance algorithm, etc. may influence

performance. The derivation of a classic analytical

model taking into account even a subset of these fac-

tors can be time consuming, hence unsuitable for on-

line modeling and adaptation. Therefore, typically,

pro-active provisioning schemes use machine learning

approaches, such as K-Nearest-Neighbors (KNN) [6],

or Support Vector Machine Regression (SVM) [8] to

estimateperformancemodelsusedforon-lineadaptation.

KNN-based approaches, or similar table-driven provi-

sioning approaches [14] use off-line measurements and
simple interpolation of response time values for various

database server configurations and workloads. SVM-

based approaches collect similar measurements[8] on-

line to derive a regression function approximating the

performancemodel dynamically.
Design Choices and Trade-offs for Database

Provisioning

In designing a dynamic provisioning solution for the

database back-end, it is necessary to consider the

design trade-off between allocating replicas to appli-

cations in a disjoint versus overlapping manner. Con-

sider the case where a disjoint set of machines is

allocated to host the replicas of each application and

dynamically adjusted to each application’s cluster par-

tition. When an application requires an additional

replica, it must use an unallocated machine or a ma-

chine allocated to another application. In either case,

the full adaptation delay for replica addition is incurred

to the application.

Replica addition delay can be avoided altogether

with fully-overlapped replicas, where all the database

applications are replicated across all the available clus-

ter machines. In this case, there is no replica addition

delay because replicas do not have to be added or

removed. However, this approach causes interference

due to resource sharing. For example, when multiple

database applications run on the same machine their

performance can degrade due to buffer pool interfer-

ence. This discussion shows that there is a trade-off

between using disjoint and fully-overlapped replica

allocation strategies. Disjoint allocation reduces inter-

ference and thus improves steady-state performance.

Fully-overlapped allocation avoids replica addition

delay and thus can speed up the system’s response to

load spikes and failures.

A compromise solution is to use a partial overlap

strategy [11], where the application allocations are

disjoint, but, for each application, batched updates

are periodically executed on a set of database machines

outside of that application’s allocation, thus keeping

them partially up-to-date.
Key Applications
Autonomic database replication is used for dynamic

resource allocation in the database back-end of dynamic

content web sites hosting e-commerce applications.

Write queries in dynamic content applications are

192A Autonomous Message-oriented Middleware
typically more lightweight and have amuch lower mem-

ory footprint compared to read queries [2]. For instance,

in e-commerce applications, an update query typically

updates only the record pertaining to a particular cus-

tomer or product, while read queries caused by browsing

involve expensive database joins as a result of complex

search criteria. Moreover, read queries are much more

frequent than write queries. Hence, a partial overlap

replication solution, which causes minimal resource

interference, is typically used in order to reduce the

adaptation delay [11].

Cross-references
▶Database Replication

▶Replication for Scalability
Recommended Reading
1. Amza C., Chanda A., Cox A.L., Elnikety S., Gil R., Rajamani K.,

Zwaenepoel W., Cecchet E., and Marguerite J. Specification

and implementation of dynamic web site benchmarks. In

Proc. 5th IEEE Workshop on Workload Characterization, 2002,

pp. 3–13.

2. Amza C., Cox A.L., and Zwaenepoel W. Conflict-aware schedul-

ing for dynamic content applications. In Proc. 4th USENIX

Symp. on Internet Tech. and Syst., 2003, pp. 6–6.

3. Amza C., Cox A.L., and Zwaenepoel W. Distributed versioning:

consistent replication for scaling back-end databases of dynamic

content web sites. In Proc. ACM/IFIP/USENIX Int. Middleware

Conf., 2003, pp. 282–304.

4. Bennani M.N. and Menasce D.A. Resource allocation for

autonomic data centers using analytic performance models.

In Proc. 2nd Int. Conf. on Autonomic Computing, 2005,

pp. 229–240.

5. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison-Wesley,

Reading, Massachusetts, 1987.

6. Chen J., Soundararajan G., and Amza C. Autonomic provision-

ing of backend databases in dynamic content web servers.

In Proc. 3rd Int. Conf. on Autonomic Computing, 2006,

pp. 123–133.

7. Coleman K., Norris J., Candea G., and Fox A. Oncall: defeating

spikes with a free-market server cluster. In Proc. 1st Int. Conf. on

Autonomic Computing, 2004, pp. 198–205.

8. Ghanbari S., Soundararajan G., Chen J., and Amza C. Adaptive

learning of metric correlations for temperature-aware database

provisioning. In Proc. 4th Int. Conf. on Autonomic Computing,

2007, pp. 26.

9. IBM Corporation. Automated provisioning of resources for

data center environments. http://www-306.ibm.com/software/

tivoli/solutions/provisioning/, 2003.

10. Liang W. and Kemme B. Online recovery in cluster databases.

In Advances in Database Technology, Proc. 11th Int. Conf. on

Extending Database Technology, 2008, pp. 121–132.
11. Soundararajan G. and Amza C. Reactive provisioning of back-

end databases in shared dynamic content server clusters. ACM

Trans. Auton. Adapt. Syst, 1(2):151–188, 2006.

12. Tesauro G., Das R., Walsh W.E., and Kephart J.O.

Utility-function-driven resource allocation in autonomic

systems. In Proc. 2nd Int. Conf. on Autonomic Computing,

2005, pp. 342–343.

13. Tesauro G., Jong N.K., Das R., and Bennani M.N. On the use of

hybrid reinforcement learning for autonomic resource alloca-

tion. Cluster Computing, 10(3):287–299, 2007.

14. Walsh W.E., Tesauro G., Kephart J.O., and Das R. Utility func-

tions in autonomic systems. In Proc. 1st Int. Conf. on Autonomic

Computing, 2004, pp. 70–77.
Autonomous Message-oriented
Middleware

▶Adaptive Middleware for Message Queuing Systems
Average Precision

ETHAN ZHANG
1,2, YI ZHANG

1

1University of California, Santa Cruz, CA, USA
2Yahoo! Inc., Santa Clara, CA, USA

Definition
Average precision is a measure that combines recall

and precision for ranked retrieval results. For one

information need, the average precision is the mean

of the precision scores after each relevant document is

retrieved.

Average Precision ¼
P

rP@r

R

where r is the rank of each relevant document, R is

the total number of relevant documents, and P@r is the

precision of the top-r retrieved documents.

Key Points
The average precision is very sensitive to the ranking

of retrieval results. The relevant documents that are

ranked higher contribute more to the average than

the relevant documents that are ranked lower.

Changes to the ranking of relevant documents

have a significant impact on the average precision

score. Average precision is considered a reasonable

Average Precision at n A 193

A
evaluation measure for emphasizing returning more

relevant documents earlier.

Cross-references
▶MAP

▶Mean Average Precision

▶ Precision

▶ Precision at n

▶ P@n

▶Recall

▶ Standard Effectiveness Measures
Average Precision at n

NICK CRASWELL, STEPHEN ROBERTSON

Microsoft Research Cambridge, Cambridge, UK

Synonyms
AP@n

Definition
Average Precision at n is a variant of Average Precision

(AP) where only the top n ranked documents are

considered (please see the entry on Average Precision

for its definition). AP is already a top-heavy measure,

but has a recall component because it is normalized

according to R, the number of relevant documents

for a query. In AP@n there are a number of options

for normalization, for example, normalize by n or

normalize by min(n,R).

Key Points
The well-known measure Average Precision has a

number of lesser-known variants, used in TREC [3]

and elsewhere. Before and during TREC-1, it was usual

to calculate an 11-point interpolated Precision-Recall

curve, and take the average of these 11 precision values,

giving an ‘‘interpolated AP.’’ In TREC-2 and beyond,

the modern non-interpolated AP was introduced. It

calculates precision at each relevant document.

A number of other AP variants arise in a precision-

oriented setting, where it is possible to calculate Average

Precision at n. AP@n takes into account both the num-

ber of relevant documents in the top n and the positions

of those documents. This is in contrast to Precision at n

(P@n), which ignores position. It is defined as:
AP@n ¼
Xn
i¼1

relðiÞ � P@i

NF

where rel(i) = 1 if the i th retrieved document is rele-

vant and rel(i) = 0 otherwise, and NF is the normali-

zation factor. In Average Precision it is usual to

normalize by the number of relevant documents, i.e.,

NF = R. In a precision-oriented setting, this presents

two problems. First, in precision-oriented evaluation

one may not have judged enough documents to know

R, or estimate it accurately. Second, if R is greater than

n, a ceiling of n/R is imposed on the measure. For

example, if one knows R = 100 relevant documents,

then the best possible top-20, containing 20 relevant

documents, will score an AP@20 of 0.2.

Three alternate normalization factors (NF) have

been considered, only one of which has been used

in TREC. Here, r is the number of relevant docu-

ments retrieved and n is the number of documents

retrieved.

� Normalize by r: Baeza-Yates and Ribeiro-Neto [1]

includes this variant, calling it ‘‘Average Precision at

Seen Relevant Documents.’’ This measure has the

property that it may decrease when a relevant doc-

ument is promoted into the top-n, because this

increases the normalization factor. This seems

counter-intuitive.

� Normalize by n: This variant was introduced for use

in Web search evaluation [2]. In cases where R is

less than n, this variant has a ceiling of less than 1.

The scale of the measure is 0 � AP@n � min

(R/n,1). It may be considered undesirable that the

scale of the measure varies from query to query, for

example when measuring the mean.

� Normalize by min(n,R): This is the ‘‘modified aver-

age precision’’ from the TREC-7 Very Large Collec-

tion track [3]. The ceiling is always 1 for this

variant.

The normalization NF = min(n,R) allows AP@n scores

to have the full range of 0.1, while retaining the prop-

erty that promoting a relevant document always

increases the score.

The arithmetic mean of AP@n over a set of queries

can be called Mean Average Precision at n (MAP@n),

in the same way that Average Precision relates to Mean

Average Precision.

194A Average Precision Histogram
Cross-references
▶Average Precision

▶Mean Average Precision

▶ Precision at n

▶ Precision-Oriented Effectiveness Measures

Recommended Reading
1. Baeza-Yates R.A. and Ribeiro-Neto B. Modern Information

Retrieval. Addison-Wesley, Reading, MA, 1999.

2. Hawking D., Craswell N., Bailey P., and Griffiths K. Measuring

search engine quality. Inf. Retr., 4(1):33–59, 2001.

3. Voorhees E.M. and Harman D.K. TREC: Experiment and

Evaluation in Information Retrieval. MIT Press, Cambridge,

MA, 2005.
Average Precision Histogram

STEVEN M. BEITZEL
1, ERIC C. JENSEN

2, OPHIR FRIEDER
3

1Telcordia Technologies, Piscataway, NJ, USA
2Twitter, Inc., San Fransisco, CA, USA
3Georgetown University, Washington, DC, USA

Definition
The average precision histogram plots the performance

of a single run produced by an information retrieval

system on a per-query basis. Each data point on the

abscissa represents a query used in the evaluation process.

The corresponding points on the ordinate measures the
Average Precision Histogram. Figure 1. Example average p
difference in this run’s performance on the given topic

relative to the median average precision of other runs on

that topic.
Key Points
Average precision histograms are often used to illustrate

the performance differences that an information retriev-

al system may exhibit across different queries in an

evaluation set in relation to other systems or runs that

are evaluated on the same set of queries. These histo-

grams can be used to identify the queries in an evaluation

set which pose the most difficulty for information re-

trieval systems. Various tracks in the NIST Text Retrieval

Conference (TREC) have used average precision histo-

grams in the post-competition analysis of submitted

runs [1]. An example average precision histogram for

25 queries is shown in Fig. 1.

Cross-references
▶Average Precision

▶ Effectiveness Involving Multiple Queries

▶Geometric Mean Average Precision

▶Mean Average Precision

Recommended Reading
1. National Institute of Standards and Technology. TREC-2003

Common Evaluation Metrics. Available online at: http://trec.

nist.gov/pubs/trec12/appendices/measures.ps (retrieved on

August 27, 2007), 2003.
recision histogram.

AXML A 195

A
Average R-Precision

STEVEN M. BEITZEL
1, ERIC C. JENSEN

2, OPHIR FRIEDER
3

1Telcordia Technologies, Piscataway, NJ, USA
2Twitter, Inc., San Fransisco, CA, USA
3Georgetown University, Washington, DC, USA

Definition

The Average R-precision is the arithmetic mean of

the R-precision values for an information retrieval

system over a set of n query topics. It can be expressed

as follows:

ARP ¼ 1

n

X
n

RPn

where RP represents the R-Precision value for a given

topic from the evaluation set of n topics. R-Precision

is defined as the precision after R documents have

been retrieved by the system, where R is also the

total number of judged relevant documents for the

given topic. Precision is defined as the portion of

retrieved documents that are truly relevant to the

given query topic.

Key Points
R-precision places lower emphasis on the exact ranking

of the relevant documents returned by an information

retrieval system. This can be useful when a topic has a

large number of judged relevant documents, or when
an evaluator is more interested in measuring aggregate

performance as opposed to the fine-grained quality of

the ranking provided by the system.

As an example, consider two query topics: topic A

has ten relevant documents, and topic B has six rele-

vant documents. Suppose further that an information

retrieval system returns five relevant documents in the

top ten retrieved for topic A, two relevant documents

in the top six retrieved for topic B. For this case,

Average R-precision for this run would be:

ARP ¼
5
10
þ 2

6

2
� 0:4167

Cross-references
▶ Effectiveness Involving Multiple Queries

▶Mean Average Precision

▶R-Precision

Recommended Reading
1. National Institute of Standards and Technology. TREC-2004 Com-

mon Evaluation Measures. Available online at: http://trec.nist.gov/

pubs/trec14/appendices/CE.MEASURES05.pdf (retrieved on Au-

gust 27, 2007), 2005.
AXML

▶Active XML

B

B+-Tree

DONGHUI ZHANG
1, KENNETH PAUL BACLAWSKI

1,

VASSILIS J. TSOTRAS
2

1Northeastern University, Boston, MA, USA
2University of California-Riverside, Riverside,

CA, USA

Synonyms
B-tree

Definition
The B+-tree is a disk-based, paginated, dynamically

updateable, balanced, and tree-like index structure. It

supports the exact match query as well as insertion/

deletion operations in O(logpn) I/Os, where n is the

number of records in the tree and p is the page capacity

in number of records. It also supports the range

searches in O(logpn + t ∕p) I/Os, where t is the number

of records in the query result.

Historical Background
The binary search tree is a well-known data structure.

When the data volume is so large that the tree does not

fit in main memory, a disk-based search tree is neces-

sary. The most commonly used disk-based search trees

are the B-tree and its variations. Originally invented by

Bayer andMcCreight [2], the B-tree may be regarded as

an extension of the balanced binary tree, since a B-tree

is always balanced (i.e., all leaf nodes are on the same

level). Since each disk access retrieves or updates an

entire block of information between memory and disk

rather than a few bytes, a node of the B-tree is expanded

to hold more than two child pointers, up to the block

capacity. To guarantee worst-case performance, the

B-tree requires that every node (except the root) has

to be at least half full. Because of this requirement, an

exact match query, insertion or deletion operation

must access at most O(logpn) nodes, where p is the

page capacity in number of child pointers, and n is

the number of objects. The most popular variation of
2009 Springer ScienceþBusiness Media, LLC
the B-tree is the B+-tree [3,4]. In a B+-tree, objects are

stored only at the leaf level, and the leaf nodes are

organized into a double linked list. As such, the B+-

tree can be seen as an extension of the Indexed Sequen-

tial Access Method (ISAM), a static (and thus possibly

unbalanced if updates take place) disk-based search

tree proposed by IBM in the mid 1960’s.
Foundations

Structure

The B+-tree is a tree structure where every node

corresponds to a disk block and which satisfies the

following properties:

� The tree is balanced, i.e., every leaf node has the

same depth.

� An internal node stores a list of keys and a list

of pointers. The number of pointers is one more

than the number of keys. Every node corresponds to

a key range. The key range of an internal node with k

keys is partitioned into k+1 sub-ranges, one for

each child node. For instance, suppose that the

root node has exactly two keys, 100 and 200. The

key range of the root node is divided into three sub-

ranges (�1, 100), (100, 200) and (200, +1). Note

that a key in an internal node does not need to

occur as the key of any leaf record. Such a key serves

only as a means of defining a sub-range.

� A leaf node stores a list of records, each having a key

and some value.

� Every node except the root node is at least half full.

For example suppose that an internal node can

hold up to p child pointers (and p-1 keys, of course)

and a leaf node can hold up to r records. The half

full requirement says any internal node (except the

root) must contain at least dp ∕ 2e child pointers

and any leaf node (except the root) must contain at

least dr ∕ 2e records.
� If the root node is an internal node, it must have at

least two child pointers.

198B B+-Tree
� All the leaf nodes are organized, in increasing key

order, into a double linked list.

An example B+-tree is given in Fig. 1. It is assumed

that every node has between two and four entries. In a

leaf node, an entry is simply a record. In an internal

node, an entry is a pair of (key, child pointer), where

the key for the first entry is NULL. To differentiate a

leaf entry (which corresponds to an actual record)

from a key in an index entry, each leaf entry is followed

by a ‘‘*’’.

Query Processing

The B+-tree efficiently supports not only exact-match

queries, which find the record with a given key, but also

range queries, which find the records whose keys are

in a given range. To perform an exact-match query, the

B+-tree follows a single path from the root to a leaf. In

the root node, there is a single child pointer whose key

range contains the specified key. If one follows the

child pointer to the corresponding child node, inside

the child node there is also a single child pointer whose

key range contains the desired key. Eventually, one

reaches a leaf node. The desired record, if it exists,

must be located in this node. As an example, Fig. 1
B+-Tree. Figure 1. Illustration of the B+-tree and exact-matc

nodes I1, I2 and B are examined.

B+-Tree. Figure 2. Illustration of the range query algorithm

range [41,60], the first step is to find the leaf node containing

follow the right-sibling pointers between leaf nodes and exam

record with key >60 is found.
shows the search path if one searches for the record

with key = 41. Besides exact-match queries, the B+-tree

also supports range queries. That is, one can efficiently

find all records whose keys belong to a range R. In

order to do so, all the leaf nodes of a B+-tree are linked

together. To search for all records whose keys are in the

range R = [low, high], one performs an exact match

query for key = low. This leads to a leaf node. One

examines all records in this leaf node, and then follows

the sibling link to the next leaf node, and so on. The

algorithm stops when a record with key > high is

encountered. An example is shown in Fig. 2.
Insertion

To insert a new record, the B+-tree first performs an

exact-match query to locate the leaf node where the

record should be stored, then the record is stored in

the leaf node if there is enough space available. If there

is not enough space, the leaf node is split. A new node

is allocated, and half of the records, the ones with the

larger keys in the overflowing node, are moved

to the new node. A new index entry (the smallest key

in the new node and a pointer to the new node) is

inserted into the parent node. This may, in turn, cause
h query processing. To search for a record with key = 41,

in the B+-tree. To search for all records with keys in the

41* (I1, I2 and B are examined). The second step is to

ine nodes C and D. The algorithm stops at D because a

B+-Tree B 199

B

the parent node to overflow, and so on. In the worst

case, all nodes along the insertion path are split. If the

root node is split into two, a new root node is allocated

and therefore the height of the tree increases by one.

As an example, Fig. 3 shows an intermediate result

of inserting record 92* into Fig. 1. In particular, the

example illustrates that splitting a leaf node results in a

‘‘copy up’’ operation. The result is intermediate because

the parent node I3 will also be split.

The complete result after inserting 92* is shown in

Fig. 4. Here the overflowing internal node I3 is split. In

particular, the example illustrates that splitting an in-

ternal node can result in a ‘‘push up’’ operation.

Deletion

To delete a record from the B+-tree, one first uses the

exact-match query algorithm to locate the leaf node

that contains the record, and then the record is
B+-Tree. Figure 3. Intermediate result of inserting record 92

new node G, which is 90, is copied up to the parent node.

B+-Tree. Figure 4. Continued from Fig. 3. Final result of inser

middle key, 72, is pushed up to the parent node.

B+-Tree. Figure 5. Intermediate result of deleting 41* from F

pointer to node B) is discarded from the parent node.
removed from the leaf node. If the node is at least

half full, the algorithm finishes. Otherwise, the algo-

rithm tries to re-distribute records between an imme-

diate sibling node and the underflowing node. If

redistribution is not possible, the underflowing node

is merged with an immediate sibling node. Note that

this merge is always possible.

As an example, Fig. 5 shows the intermediate

result of deleting record 41* from the B+-tree shown

in Fig. 4. Note that when merging two leaf nodes,

a key in the parent node is discarded, which is the

reverse operation of copy up. The result is intermediate

because node I2 is also underflowing.

Figure 6 illustrates the final result of deleting 41*.

The underflow of node I2 is handled by merging I2
with I3. This merge causes key 51 from the parent

node to be dragged down to I2. It is the reverse opera-

tion of push up.
* into Fig. 1. The leaf node F is split. The smallest key in the

ting record 92*. The overflowing internal node I3 is split. The

ig. 4. Node B is merged with node A. Key 40 (as well as the

B+-Tree. Figure 6. Continued from Fig. 5. Final result of deleting 41*. Node I2 is merged with node I3. Key 51 from the

parent node is dragged down.

200B Backup
Comparison with Some Other Index Structures

Compared with the B-tree, the B+-tree stores all

records at the leaf level, and organizes the leaf nodes

into a double linked list. This enables efficient range

queries. Compared with ISAM, the B+-tree is a fully

dynamic structure that balances itself nicely as records

are inserted or deleted, without the need for overflow

pages. Compared with external hashing schemes such

as Linear Hashing and Extendible Hashing, the B+-tree

can guarantee logarithmic query cost in the worst case

(while hashing schemes have linear worst-case cost,

although this is very unlikely), and can efficiently sup-

port range queries (whereas hashing schemes do not

support range queries).
Key Applications
The B+-tree index has been implemented in most, if

not all, relational database management systems such

as Oracle, Microsoft SQL Server, IBM DB2, Informix,

Sybase, and MySQL. Further, it is implemented in

many filesystems including the NTFS filesystem (for

Microsoft Windows), ReiserFS filesystem (for Unix

and Linux), XFS filesystem (for IRIX and Linux), and

the JFS2 filesystem (for AIX, OS/2 and Linux).
Future Directions
The impact of the B+-tree index is very significant.

Many disk-based index structures, such as the R-tree

[4] and k-d-B-tree [5] or their variants, are extensions

of the B+-tree. Concurrency in B+-trees was studied in

[6]. The Universal B-tree, which extends the B+-tree to

index multi-dimensional objects, was studied in [1].
Cross-references
▶ Extendible Hashing

▶ Index Sequential Access Method (ISAM)

▶ k-d-B-Tree
▶ Linear Hashing

▶Rtree

▶Tree-based Indexing

Recommended Reading
1. Bayer R. The universal B-tree for multidimensional indexing:

general concepts. In Proc. Int. Conf. on Worldwide Computing

and Its Applications (WWCA), 1997, pp. 198–209.

2. Bayer R. and McCreight E.M. Organization and maintenance of

large ordered indices. Acta Inf., 1, 1972.

3. Comer D. The ubiquitous B-tree. ACM Comput. Surv., 11(2),

1979.

4. Knuth D. The Art of Computer Programming, Vol. 3: Sorting

and Searching. Addison Wesley, MA, USA, 1973.

5. Robinson J. The K-D-B tree: a search structure for large

multidimensional dynamic indexes. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1981, pp. 10–18.

6. Srinivasan V. and Carey M.J. Performance of B+ tree concur-

rency algorithms. VLDB J., 2(4):361–406, 1993.

7. Theodoridis Y. The R-tree-portal. http://www.rtreeportal.org,

2003.
Backup

▶ Logging and Recovery
Backup and Restore

KENICHI WADA

Hitachi Limited, Tokyo, Japan

Synonyms
Backup copy

Definition
Backup is the action of collecting data stored on non-

volatile storagemedia to aid recovery in case the original

Bag Semantics B 201

B

data are lost or becomes inaccessible due to corruption

or damage caused by, mainly, a failure in storage com-

ponent hardware (such as a hard disk drive or control-

ler), a disastrous event, an operator’s mistake, or

intentional alteration or erasure of the data. In addition,

the data collected by this action are called a backup.

Restore is the action of copying a backup to on-line

storage for use by applications in a recovery. The term

‘‘back up and restore’’ indicates both actions.

Key Points
The purpose of backup includes recovering data from

storage media failure. For this reason, it is common to

make backup to different storage media. Removable

storage media is used because it is relatively less expen-

sive than online storage media like hard disk drive, and

it is easy to bring it offsite in case of site failure. Hard

disk drives are becoming popular as backup storage

media, because of its decreasing bit cost and quick

restore capability.

There are many ways to take backup. A full backup

is the way to make a full copy of data. It requires equal

capacity of original data, unless data compression is

not used. If full backup is taken daily from Monday to

Friday and they are kept for the following week, five

times capacity is required for backup.

The following two kinds of backup are used to

reduce the size of backup data:

Incremental backup: A backup that copies all data

modified since the last full backup. Modified data can

be copied many times until next full backup is taken.

To restore data when incremental backups are in use,

the latest full backup and the latest incremental backup

are required.

Differential backup: A backup that copies all data

modified since the last backup. Modified data are not

copied more than once. To restore data when differen-

tial backups are used, the latest full backup and all

differential backups or all backups are required.

Cross-references
▶Disaster Recovery

▶Replication
Backup Copy

▶Backup and Restore
Backup Mechanisms

▶Replication for High Availability
Backward Recovery

▶Crash Recovery
Bag Semantics

TODD J. GREEN

University of Pennsylvania, Philadelphia, PA, USA

Synonyms
Duplicate Semantics; Multiset Semantics

Definition
In the ordinary relational model, relations are sets of

tuples, which by definition do not contain ‘‘duplicate’’

entries. However, RDBMSs typically implement a vari-

ation of this model where relations are bags (or multi-

sets) of tuples, with duplicates allowed. Formally, a bag

is a mapping of tuples to natural number multiplicities;

a set can be viewed as a special case of a bag where all

tuple multiplicities are 0 or 1. The operations of the

relational algebra are extended to operate on bags by

defining their action on tuple multiplicities. RDBMSs

based on bags rather than sets are said to implement

bag semantics (rather than set semantics). Duplicates

may occur at multiple levels: in source relations, in

materialized views, or in query answers. A variation

of bag semantics called bag-set semantics is obtained by

requiring source relations to be sets, while allowing

views and query answers to contain duplicates. Bag-

set semantics represents a practical compromise be-

tween bag semantics and set semantics.

Historical Background
In the ordinary relational model, relations are sets of

tuples, which by definition do not contain ‘‘duplicate’’

entries. However, RDBMS implementations, beginning

with System R and INGRES, deviated from the ‘‘pure’’

relational model by allowing duplicate tuples in query

answers, thus making bags (multisets), rather than sets,

the primary collection type in query processing. The

202B Bag Semantics
primary motivation for allowing duplicate tuples was

the need to avoid expensive duplicate elimination in

query processing. Instead, duplicate elimination would

only be performed if explicitly requested by the user,

e.g., via the SQL DISTINCT keyword. In their use of

bag relations, RDBMS implementations were ahead of

theory, and the precise semantics of relational algebra

on bags was not studied until the 1980s [6,11,12]. Klug

[12] pointed out the failure of certain algebraic iden-

tities under bag semantics, and also gave a precise

semantics of aggregate functions that did not depend

on bag semantics. Dayal et al. initiated the study of

query optimization under bag semantics in [6]. Bag

containment of unions of conjunctive queries (UCQs)

was shown to be undecidable by Ioannidis and

Ramakrishan [9], while bag equivalence of conjunctive

queries (CQs) was shown to be decidable, in fact the

same as isomorphism, by Chaudhuri and Vardi [3].

TheP2
p-hardness of checking bag containment of CQs

was also established in [3], but the decidability of the

problem remains open (see Future Directions). The

same paper introduced the terminology ‘‘bag-set se-

mantics’’ to describe the semantics obtained by requir-

ing source relations to be sets while allowing views and

query answers to contain duplicates, and established

the decidability of bag-set equivalence of CQs. For

conjunctive queries with inequalities (CQ 6¼), bag con-

tainment and bag-set containment were both shown to

be undecidable by Jayram et al. [10]. Bag equivalence

of UCQs was shown to be decidable (and like CQs, the

same as isomorphism) by Cohen et al. [5]. Cohen [4]

studied query equivalence for a generalization of bag-

semantics called combined semantics, which captures

user-specified elimination of duplicates at intermedi-

ate stages of query processing. A bag semantics for

Datalog was proposed by Mumick et al. [14], and

Mumick and Shmueli [15] studied computational pro-

blems related to infinite multiplicities (which may

occur in query answers because of recursion). Going

beyond the relational model, several papers have stud-

ied bag semantics in the context of query languages for

nested relations; see [2,8] and references therein.
Foundations
Bag relational algebra. For simplicity, the definitions

here assume the unnamed perspective [1] of the

relational model. Fix a countable domain D of data-

base values. A bag relation of arity k is a mapping R:
Dk ! N associating tuples with their multiplicities.

Conceptually, a tuple not present in the bag relation is

mapped to zero. It is typically required that bag rela-

tions have finite support, i.e., R is zero on all but finitely

many tuples. A duplicate tuple is a tuple whose multi-

plicity is greater than 1. From the perspective of bag

semantics, an ordinary set relation of arity k is a

mapping R : Dk ! {0,1} (again of finite support), in

other words, a bag relation with no duplicate tuples.

The relational algebra can be extended to bag relations

by defining the action of the relational operators on

tuple multiplicities:

Selection. If R is a bag relation of arity k and the

selection predicate P maps each k-tuple to either 0 or

1 then sPR is the bag relation of arity k defined by

ðsPRÞðtÞ ¼def RðtÞ � PðtÞ:

Projection. If R is a bag relation of arity k and

V ¼ (v1,...,vn) is a list of indices, 1 � vi � k, then pV
R is a bag relation of arity n, defined by

ðpVRÞðtÞ ¼def
X

t 0s:t:t0¼pVðtÞ
Rðt 0Þ:

Cross product. If R1 is a bag relation of arity k1 and R2 is

a bag relation of arity k2, then R1 � R2 is a bag relation

of arity k1þk2, defined by

ðR1 � R2ÞðtÞ ¼def R1ðt1Þ � R2ðt2Þ;

where t is a (k1þk2)-tuple obtained by concatenating

t1 and t2.

Union. If R1 and R2 are bag relations of arity k, then R1

[R2 is a bag relation of arity k, defined by

ðR1 [R2ÞðtÞ ¼def R1ðtÞ þ R2ðtÞ:

Intersection. If R1 and R2 are bag relations of arity k,

then R1 \ R2 is a bag relation of arity k, defined by

ðR1 \ R2ÞðtÞ ¼def minðR1ðtÞ;R2ðtÞÞ:

Difference. If R1 and R2 are bag relations of arity k, then

R1�R2 is a bag relation of arity k, defined by

ðR1 � R2ÞðtÞ ¼def maxðR1ðtÞ � R2ðtÞ; 0Þ;

in other words, the calculation uses proper subtraction

of natural numbers.

Bag Semantics B 203

B

Example 1.

R ¼
a b 2

c b 3

c d 1

; S ¼
b c 5

b d 1

d d 2

;

R � S ¼

a c 2 � 5 ¼ 10

a d 2 � 1 ¼ 2

c c 1 � 5 ¼ 5

c d 3 � 1þ 1 � 2 ¼ 5

where R ∘ S denotes relational composition, i.e.,

R ∘ S ¼def p1,4 s2¼3(R � S).

Example 2.

R ¼
a b 1

c b 1

c d 1

; S ¼
b c 1

b d 1

d d 1

;

p1;3 ðR � SÞ ¼

a b 1 � 1þ 1 � 1 ¼ 2

a d 1 � 1 ¼ 1

c b 1 � 1þ 1 � 1þ 1 � 1þ 1 � 1 ¼ 4

c d 1 � 1þ 1 � 1 ¼ 2

Note that the use of projection results in duplicate tuples

in the query output, even though the source tables R and

S are duplicate-free. Duplicates may also be introduced

by the union operator.

Bags and SQL. Practical query languages such as

SQL are based on bag semantics rather than set seman-

tics, since eliminating duplicates typically requires an

expensive sort. However, SQL provides a way to emu-

late set semantics by the use of an explicit duplicate

elimination operator, which is specified using the

DISTINCT keyword. This operator converts a bag rela-

tion into the corresponding set relation. For example,

to execute the SQL query

SELECT DISTINCT R.A, S.C

FROM R, S

WHERE R.B = S.B

the RDBMS will compute the bag join of R and S, then

eliminate duplicates to produce a set relation. The

result is the same as the join of R and S under set

semantics.

SQL also provides alternate versions of the union,

intersection, and difference operators which differ in

their handling of duplicates. In particular, UNION ALL,

INTERSECT ALL, and EXCEPT ALL correspond to the
bag operations as defined above, i.e., they retain dupli-

cates and produce bag relations as output. Meanwhile,

UNION, INTERSECT, and EXCEPT perform duplicate

elimination and produce set relations as output. For

UNION, duplicate elimination is performed after the bag

union, while for INTERSECT and EXCEPT, the duplicate

elimination is performed beforehand on the operands.

Query reformulation with bag semantics. The con-

text of bag semantics poses unique challenges in query

reformulation and optimization, as classical optimiza-

tion techniques such as query minimization do not

necessarily transfer to bag semantics. For example,

under set semantics, the query R ⋈ R can be mini-

mized by removing the redundant self-join to produce

the equivalent query R. However, under bag seman-

tics, the resulting query is not equivalent to the original,

as the ‘‘redundant’’ self-join may increase the multiplic-

ity of some output tuples. The rest of this section sum-

marizes some of the theoretical results which are known

regarding containment and equivalence of queries

under bag semantics. In studying query reformulation,

it is convenient to assume queries are expressed in a

Datalog-style syntax. Thus, the algebraic query R ⋈ R

corresponds to the CQ

Qðx; yÞ: �Rðx; yÞ;Rðx; yÞ;

while the query R corresponds to the CQ

Q0ðx; yÞ: �Rðx; yÞ:

As the example illustrates, repetitions of an atom in the

body of a CQ are significant. As with set semantics, the

bag semantics of CQs is defined in terms of valuations

which assign the variables in the CQ values from the

domain D. The multiplicity of an output tuple is

computed by summing over all valuations which pro-

duce that output tuple, and for each valuation, taking

the product of the source multiplicities of the tuples

corresponding to the body. Thus, for a CQ

Qð�xÞ: �A1ð�z1Þ;:::;Anð�znÞ;

the multiplicity of an output tuple t is given by

QðtÞ ¼def
X
n

Yn
i¼1

Aiðnð�ziÞÞ; ð1Þ

where the sum is over valuations n : vars(Q)!D such

that n(�x) ¼ t. Note that this definition agrees with the

204B Bag Semantics
bag relational algebra definition for SPJ queries (using

selection, projection, and cross product).

Example 3. The relational algebra query from Example

1 corresponds to the CQ

Qðx; zÞ : �Rðx; yÞ; Sðy; zÞ:

Applying Q to the bag relations R and S from Example 1

yields Q(c,d) ¼ 3 � 1þ1 � 2¼5, where the 3 � 1 is

produced by the valuation n which sends x 7! c,y 7! b,

and z 7! d, and the 1 � 2 is produced by the valuation n0

which sends x 7! c,y 7! d, and z 7! d.

For a UCQ �Q ¼ (Q1,...,Qn) the multiplicity of an

output tuple is computed by summing over all the CQs

in �Q:

�QðtÞ ¼def
Xn
i

QiðtÞ: ð2Þ

This definition agrees with the bag relational algebra

definition for SPJU queries (using selection, projec-

tion, cross product, and union).

Example 4. Applying the UCQ Q0 defined by the CQs

Q0ðx; zÞ: �Rðx; yÞ; Sðy; zÞ

Q0ðz; yÞ: �Rðx; yÞ; Sðx; zÞ

to the set relations R and S from Example 2, the multi-

plicity of (c,d) in the output is 1 � 1þ 1 � 1¼ 2, with each

of the CQs contributing a term to the sum.

A query P is bag-contained in a query Q, denoted

P v bQ, if for all bag instances I, for every output

tuple t, P(I)(t) � Q(I)(t). When P v b Q and

Q v b P, P and Q are said to be bag-equivalent, denoted

P �b Q. The analogous notions of set-containment

and set-equivalence are denoted P v s Q and P � s Q,

respectively. With set semantics, it is well-known that a

CQ Q can be optimized by deleting atoms in the

body of Q, producing a minimal core of Q which is

set-equivalent to Q. However, under bag semantics,

this optimization no longer works, as deleting an

atom in the body of a CQ always produces an inequi-

valent query, in fact:

Theorem 1 ([3]). For CQs P,Q, P �b Q iff P ffi Q.

Here, P ffi Q denotes that P and Q are isomorphic.

Two CQs P and Q are isomorphic if there is a (bijec-

tive) renaming of variables y : vars(P) ! vars(Q)

which transforms P into Q. Checking isomorphism

of directed graphs (i.e., Boolean CQs over a single
binary predicate), is known to be in NP, but is not

known or believed to be either in P or NP-complete.

This holds also for general relational structures (and

arbitrary CQs). Thus, although there are fewer oppor-

tunities for optimization of CQs under bag semantics,

checking bag-equivalence is presumably computation-

ally easier than checking set-equivalence (which is

known to beNP-complete). It turns out that Theorem 1

can be generalized to UCQs:

Theorem 2 ([5]). For UCQs �P, �Q, �P �b
�Q iff �P ffi �Q.

Bag-equivalence of unions of conjunctive queries

with inequalities (UCQ 6¼s) is also known to be

decidable:

Theorem 3 ([5]). For UCQ 6¼ s P,Q, checking P �b Q is

in PSPACE.

The same result was obtained earlier for CQ 6¼s by

Nutt et al. [16]. The exact complexity in each case

(CQ 6¼s or UCQ 6¼s) seems to be open. (Theorem 1

implies a graph isomorphism-hard lower bound).

In contrast to equivalence, which seems to only

become easier to check for bag semantics than for set

semantics, containment can become much harder. For

CQs, the following lower bound on the complexity of

bag containment is known:

Theorem 4 ([3]). For CQs P,Q, checking P vb Q isP2
p-

hard.

However, this is only a lower bound, and as of 2008,

it is not known whether the problem is even decidable.

For UCQs, the question has been resolved negatively:

Theorem 5 ([9]). For UCQs �P, �Q, checking �P vb
�Q is

undecidable.

The reduction used to prove this result highlights a

close connection between checking bag containment of

UCQs and Hilbert’s Tenth Problem, which concerns

checking for the existence of solutions to Diophantine

equations. Another (non-trivial) reduction from the

same problem was used to establish a similar result for

CQ 6¼s:

Theorem 6 ([10]). For CQ 6¼ s P,Q, checking P vb Q is

undecidable.

Query reformulation with bag-set semantics. Recall

that with bag-set semantics, all source tuples are as-

sumed to have cardinality 1 (or 0, if not present).

For query optimization, the main ramification com-

pared to bag semantics is that redundant (repeated)

atoms in the body of a CQ are immaterial under

bag-set semantics and can be simply deleted from the

body, producing an irredundant CQ. For example,

the CQs

Bag Semantics B 205

B

Q1ðx; zÞ: �Rðx; yÞ; Sðy; zÞ

Q2ðx; zÞ: �Rðx; yÞ;Rðx; yÞ; Sðy; zÞ

are bag-set equivalent, denoted Q1 �bs Q2, and Q1 is

irredundant. The following result states that eliminat-

ing repeated atoms is essentially the only optimization

possible for CQs under bag-set semantics:

Theorem 7 ([3]). For irredundant CQs P,Q, P �bs Q iff

P �b Q (hence P �bs Q iff P ffi Q).

This result was essentially a rediscovery of a well-

known result in graph theory due to Lovász [13], who

showed that for finite relational structures F, G, if

jHom(F,H) j ¼ jHom(G,H)j for all finite relational

structures H, where Hom(A,B) is the set of homo-

morphisms h : A !B, then F ffi G. In database termi-

nology, this says that bag-set equivalence of

irredundant Boolean CQs is the same as isomorphism.

Theorem 7 was extended to UCQs in [5], and the

PSPACE upper bound of Theorem 3 was also shown

to hold for bag-set equivalence of UCQ 6¼s in [5].

In general, results on bag-set semantics correspond

to results on bag semantics via the following transfer

lemma:

Lemma 1 ([7]). There exists a mapping ’ : CQ !
CQ (which extends to UCQs by applying it component-

wise on CQs), a mapping f from bag instances to set

instances, and a mapping g from set instances to bag

instances, such that for any UCQ �Q, bag instance I, and

set instance J:

1. �Q(I) ¼ j(�Q)(f(I))

2. ’(�Q)(J) ¼ �P(g(J))

In particular this lemma shows that bag-containment

of CQs (UCQs) is polynomial time reducible to bag-set

containment, as shown for CQs in [3]. Thus Theorem 5

also implies that bag-set containment of UCQs is unde-

cidable. Also, Lemma 1 generalizes to queries with in-

equality predicates, hence Theorem [10] also implies also

the undecidability of bag-set containment of CQ6¼s, as

shown in [10]. Finally, note that for UCQs �P, �Q the

transformation f can be defined such that �P ffi �Q iff

’(�P) ffi ’(�Q). Theorem 2 thus follows from a similar

result for bag-set equivalence, also shown in [5]:

Theorem 8 ([5]). For unions of irredundant CQs �P, �Q,

we have �P �bs
�Q iff �P ffi �Q.

Bag semantics of datalog queries. As with the rela-

tional algebra, the semantics of Datalog queries can be

extended operate on bag instances. This is done by defin-

ing how derivation trees for an output tuple contribute
to the multiplicity of the tuple. The fringe of a deriva-

tion tree t of an output tuple t, denoted fringe(t), is the
bag of leaves (source tuples) in the derivation tree. The

count of an output tuple is computed by summing over

all derivation trees, and taking the product of the multi-

plicities of the source tuples in the fringe. If a source

tuple appears several times in the fringe, it is counted

that many times in the product. Formally, for a Datalog

program Q and source bag instance I, the multiplicity

of a tuple t in the output is defined by

QðtÞ ¼def
X
t

Y
Aðt 0Þ2fringeðtÞ

Aðt 0Þ ð3Þ

where the sum is over all derivation trees for t. Note

that when Q is a CQ or UCQ, the above definition

agrees with definitions (1.1) and (1.2). However, a

basic difference is that for recursive queries, there

may be infinitely many derivation trees for an output

tuple. In this case, its count is defined to be 1.

Example 5. For the transitive closure query TC and bag

relation R defined by

TCðx; yÞ : � Rðx; yÞ
TCðx; zÞ : � TCðx; yÞ;Rðy; zÞ R ¼

a b 1

a c 2

c b 1

c d 1

d d 3

evaluating the query yields TC(a, b) ¼ 1þ2 � 1 ¼ 3 but

TC(c, d)¼1.

Computational problems related to infinite counts

are therefore of central interest for Datalog programs

with bag semantics. The most basic problem is to check

whether or not a count for a given output tuple is 1.

Clearly, computing the set of all derivation trees, and

then checking whether or not the set is finite, is not

feasible. However, it turns out that the problem is

decidable in polynomial time (data complexity), even

for Datalog extended with safe stratified negation [15].

The related problem of checking statically whether

answer counts are finite for all possible source bag

instances is also decidable, even for Datalog extended

with and negation on unary edb’s [15]. However,

checking this property is undecidable for Datalog ex-

tended with safe stratified negation [15].
Key Applications
The use of bag semantics in practical RDBMS imple-

mentations has led to a reexamination of fundamental

206B Bagging
issues in query optimization, namely, query contain-

ment and query equivalence. The switch from classical

set semantics to bag semantics turns out to have a radical

impact on these issues. Bag semantics also poses chal-

lenges for processing of recursive Datalog programs,

where infinite multiplicities may arise in the output.
Future Directions
The most salient open problem involving bag seman-

tics concerns containment of conjunctive queries. This

was shown to be P2
p-hard in [3], but the decidability

of the problem remains open. In contrast, for set

semantics, the problem is known to be NP-complete.
Cross-references
▶Bag Semantics

▶Data Models

▶Duplicate Elimination

▶Multiset Semantics
Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases.

Addison-Wesley, Reading, MA, 1995.

2. Buneman P., Naqvi S., Tannen V., and Wong L. Principles of

programming with complex objects and collection types. Theor.

Comput. Sci., 149(1):3–48, 1995.

3. Chaudhuri S. and Vardi M.Y. Optimization of real conjunctive

queries. In Proc. 12th ACM SIGACT-SIGMOD-SIGART Symp.

on Principles of Database Systems, 1993.

4. Cohen S. Equivalence of queries combining set and bag-set

semantics. In Proc. 25th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 2006, pp. 70–79.

5. Cohen S., Nutt W., and Serebrenik A. Rewriting aggregate

queries using views. In Proc. 18th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 1999.

6. Dayal U., Goodman N., and Katz R.H. An extended relational

algebra with control over duplicate elimination. In Proc. 1st

ACM SIGACT-SIGMOD Symp. on Principles of Database Sys-

tems, 1982, pp. 117–123.

7. Green T.J. Containment of conjunctive queries on anno-

tated relations. In Proc. 12th Int. Conf. on Database Theory,

2009.

8. Grumbach S., Libkin L., Milo T., and Wong L. Query languages

for bags: Expressive power and complexity. SIGACT News, 1996,

p. 27.

9. Ioannidis Y.E. and Ramakrishnan R. Containment of Conjunc-

tive Queries: Beyond Relations as Sets. ACM TODS, 20

(3):288–324, 1995.

10. Jayram T.S., Kolaitis P.G., and Vee E. The containment problem

for real conjunctive queries with inequalities. In Proc. 25th

ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Data-

base Systems, 2006.
11. Klausner A. and Goodman N. Multirelations – semantics and

languages. In VLDB, 1985.

12. Klug A.C. Equivalence of relational algebra and relational calcu-

lus query languages having aggregate functions. J. ACM,

29(3):699–717, 1982.

13. Lovász L. Operations with structures. Acta Math. Hungarica,

18(3–4):321–328, 1967.

14. Mumick I.S., Pirahesh H., and Ramakrishnan R. The magic of

duplicates and aggregates. In Proc. 16th Int. Conf. on Very Large

Data Bases, 1990, pp. 264–277.

15. Mumick I.S. and Shmueli O. Finiteness properties of database

queries. In Proc. 4th Australian Database Conf. Brisbane, Aus-

tralia, February 1993.

16. Nutt W., Sagiv Y., and Shurin S. Deciding equivalences among

aggregate queries. In Proc. 17th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 1998,

pp. 214–223.
Bagging

WEI FAN1, KUN ZHANG
2

1IBM T.J. Watson Research, Hawthorne, NY, USA
2Xavier University of Louisiana, New Orleans, LA, USA

Synonyms
Bootstrap aggregating

Definition
Bagging (Bootstrap Aggregating) uses ‘‘majority vot-

ing’’ to combine the output of different inductive mod-

els, constructed from bootstrap samples of the same

training set. A bootstrap has the same size as the training

data, and is uniformly sampled from the original train-

ing set with replacement. That is, after an example is

selected from the training set, it is still kept in the

training set for subsequent sampling and the same ex-

ample could be selected multiple times into the same

bootstrap sample. When the training set is sufficiently

large, on average, a bootstrap sample has 63.2% unique

examples from the original training set, and the rest are

duplicates. In order tomake full use of bagging, typically,

one need to generate at least 50 bootstrap samples and

construct 50 classifiers using these samples. During pre-

diction, the class label receiving the most votes or most

predictions from the base level 50 classifiers will be the

final prediction. Normally, Bagging is more accurate

than a single classifier trained from the original training

set. Statistically, this is due to multiple classifiers’ power

to reduce the effect of overfitting on the training data

and statistical variance. Bagging works the best for

Bagging B 207

B

non-stable inductive models, such as decision trees,

and its advantage is limited for stable methods such as

logistic regression, SVM, naive Bayes, etc.

Historical Background
Bagging was originally proposed by Leo Breiman in

1996 [3]. The motivation comes from the fact that

unstable inductive learners such as decision trees tend

to generate very different models with just a slight

change in the training data, for example, the inclusion

or exclusion of one example. This is due to the

‘‘greedy-based’’ search heuristics of these methods to

find the best hypothesis to fit the labeled training data.

Statistically, the effect is that the variance in bias and

variance decomposition of error is large. Bias is the

systematic error of the chosen learning technique, and

variance is due to variations in the training data, i.e.,

different training data produce different models. Bag-

ging was proposed to remedy these problems. In order

to overcome variations of a single training set, multiple

bootstrap samples are used to replace the single origi-

nal training set. Since each bootstrap sample is ran-

domly selected from the original training data, it still

‘‘preserves’’ the main concept to be modeled. However,

each bootstrap sample is different, thus offsetting the

‘‘individuality’’ of any single training set that contri-

butes to variance. In the same time, any possible over-

sample or ‘‘non-sample’’ of particular labeled examples

from the training data (recall that 63.2% are unique

examples and the rest are duplicates) that could reduce
Bagging. Figure 1. Training data for a simple linear function
learning accuracy is resolved by majority voting or

choosing the predicted labels with the most number

of votes from base line models. The simple observation

is that the probability for most models to make the

same mistakes is much less than any single model itself.

Foundations
The key idea of Bagging can be illustrated by a simple

synthetic example. In Fig. 1, the true decision boundary

that separates two classes of examples is a simple linear

function, y = x, where examples above the line belongs

to one class and examples below the line belongs to

another class. The labeled training examples are ran-

domly sampled from the universe of examples and is

obviously not exhaustive. When a decision tree algo-

rithm is applied to the sampled training data, it will

construct a tree model particular to that sample set.

Figure 2 shows the decision boundary of a single tree

constructed by C4.5 algorithm [12]. As observed, the

‘‘stair-step’’ shape of the decision boundary is due to

‘‘bias’’ or systematic error of decision tree algorithm,

where the splits are always perpendicular to the axes.

Once an algorithm is chosen, its bias is hard to avoid.

At the same time, the exact position and size of each

step is due to variations in individually sampled train-

ing data, and it contributes to ‘‘variance’’ term in the

prediction error. Next, this entry studies how ‘‘vari-

ance’’ can be effectively reduced by applying Bagging.

Figure 3 demonstrated the decision boundary of Bag-

ging generated from 50 bagged C4.5 trees. It is clear
.

Bagging. Figure 2. Decision boundary constructed by a single tree.

Bagging. Figure 3. Decision boundary constructed by bagging.

208B Bagging
that the decision boundary is much closer to the per-

fect ‘‘y = x’’ line, and only three steps are left.

Formally, the reduction in variance can be approxi-

mated by the following equation:

E ¼ bþ sffiffiffi
n

p ; ð1Þ

where the error e is decomposed into bias b and vari-

ance s. The reduction in variance is scaled by
ffiffiffi
n

p

where n is the number of bagging models. Additionally,
the idea of Bagging can be applied to both classifi-

cation problem or discrete variable prediction (such

as the synthetic example given above) and regression

problems or continuous variable prediction. In regres-

sion problems, the estimated value of different models

are averaged as the final prediction.

For further reading and understanding of Bagging

and its various applications, refer to the 15 papers in the

‘‘Recommended Reading’’ section. For theories to ex-

plain how and why Bagging works, the best source is the

Bagging B 209

B

original paper by Leo Breiman [3], that explains the

statistical fundamentals that Bagging is built upon. Ad-

ditionally, [5] explains the appropriate understanding of

overfitting and how overfitting plays a role in classifers’

generalization power. In essence, Bagging helps to cor-

rect the overfitting problem of unstable learners, such as

decision trees. For various information on how to build

an accurate decision tree, the base model where Bagging

normally combines, the following list of papers contain

solid information [2,4,9,11,12,13]. For state-of-the-art

and future works of Bagging, one of the most novel

ideas is ‘‘randomization’’ and different treatment on

this subject can be found in various papers [1,6,7,14].

During the time when Bagging was proposed, an alter-

native method called ‘‘Boosting’’ was proposed to re-

solve the instability of inductive learners and some

papers that theoretically describe its motivation and

practice can be found in [8,10]. For a detailed and

systematic comparison of Bagging and many other

state-of-the art algorithms on a difficult application

problem ‘‘skewed and stochastic ozone day forecasting’’,

the works in [15] contain useful information.

Key Applications
Bagging is most suitable for applications where both

the training set is not too big, i.e., the number of

training examples can fit into main memory of the

machine, and the chosen inductive learner is unstable,

such as decision trees. This is mainly because
Bagging. Figure 4. Bagging versus single decision tree.
generating multiple bootstrap sample involves multi-

ple scans of the training data and can be a bottleneck if

most operations rely on disk. At the same time, if the

number of examples does not fit into main memory of

the machine, learning can incur swapping cost and

take a long time to complete. As discussed previously,

bagging’s success is mainly limited to unstable learners

that normally have large variance.

As a good example, ‘‘ozone day prediction’’ [15]

illustrates how well Bagging can perform in practice.

What makes this problem interesting is that there are

72 continuous features in the collected dataset, only

about 3% of 2,500þ collected days are positive. It is

important to understand that for a problem with 72

dimensions, 2,500 training examples are trivial in size.

Even if these 72 features are binary in values, the total

problem size is an astronomical number 272, and obvi-

ously, 2,500 samples from this space is ‘‘really nothing’’.

Applying non-stable inductive learning method,

such as decision tree, on this problem is unlikely to

obtain satisfactory result. The simple reason is that

these methods tend to ‘‘overfit’’ or build unnecessarily

detailed models to fit well on the given 2,500 examples,

but do not generalize well on unseen testing data in the

problem space of 272. As illustrated in a precision-recall

plot in Fig. 4, Bagging consistently obtains higher

‘‘precision’’ than its comparable single tree methods.

Recall is the percentage of ‘‘true ozone days’’ that are

correctly predicted as ozone days, and precision is the

210B Base-line Clock
percentage of ‘‘predicted ozone days’’ that are actually

ozone days. By reading the consistently higher preci-

sion numbers by Bagging on the same recall number, it

clearly demonstrates that Bagging is more accurate

than single decision trees.
Future Directions
Most recently, a completely counter-intuitive method

called ‘‘Random Decision Tree’’ [7,6,14] has been pro-

posed to reduce both bias and variance in inductive

learning. Each tree in a random tree ensemble is used

as a structure to summarize the training data, and

importantly, the structure of the tree is semi-randomly

constructed, and data are ‘‘filled-in’’ the tree structure

to summarize statistics of the training data. During

prediction, the estimated probability from each tree is

averaged as the final conditional probability P(yjx) and
the class label with the highest probability is chosen as

the predicted label. Since it does not incur any over-

head of producing bootstraps or using information

gain to perform feature selection as Bagging does,

random decision tree can be highly efficient. One ap-

plication on difficult skewed and high dimensional

ozone day forecast can be found in [15]. Similar to

Bagging, Random Decision Tree is applicable to both

classification and regression problems.
Cross-references
▶Boosting

▶Decision Tree

Recommended Reading
1. Amit Y. and Geman D. Shape quantization and recognition with

randomized trees. Neural Comput., 9(7):1545–1588, 1997.

2. Bradford J.P., Kunz C., Kohavi R., Brunk C., and Brodley C.E.

Pruning decision trees with misclassification costs. In Proc. Eur.

Conf. Mach. Learn., 131–136, 1998.

3. Breiman L. Bagging predictors. Mach. Learn., 24(2):123–140,

1996.

4. Buntine W. Learning classification trees. In Artificial Intelligence

frontiers in statistics, D.J. Hand (ed.). Chapman &Hall, London,

1993, pp. 182–201.

5. Domingos P. Occam’s two razors: The sharp and the blunt. In Proc.

4th Int. Conf. on Knowledge Discovery and Data Mining, 1998.

6. Fan W., Greengrass E., McCloskey J., Yu P.S., and Drummey K.

Effective estimation of posterior probabilities: Explaining the

accuracy of randomized decision tree approaches. In Proc.

IEEE Int. Conf. on Data Mining, 2005, pp. 154–161.

7. Fan W., Wang H., Yu P.S., and Ma S. Is randommodel better? on

its accuracy and efficiency. In Proc. 19th Int. Conf. on Data

Engineering, 2003.
8. Freund Y. and Schapire R. A decision-theoretic generalization of

on-line learning and an application to boosting. Comput. Syst.

Sci., 55(1):119–139, 1997.

9. Gehrke J., Ganti V., Ramakrishnan R., and Loh W.-Y. BOAT-

optimistic decision tree construction. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1999.

10. Kearns M. and Mansour Y. On the boosting ability of top-down

decision tree learning algorithms. In Proc. Annual ACM Symp.

on the Theory of Computing, 1996, pp. 459–468.

11. Mehta M., Rissanen J., and Agrawal R. MDL-based decision tree

pruning. In Proc. 1st Int. Conf. on Knowledge Discovery and

Data Mining, 1995, pp. 216–221.

12. Quinlan R. C4.5: Programs for Machine Learning. Morgan

Kaufmann, Los Altos, CA, 1993.

13. Shawe-Taylor J. and Cristianini N. Data-dependent structural

risk minimisation for perceptron decision trees. In Advances

in Neural Information Processing Systems 10, M. Jordan,

M. Kearns, and S. Solla (eds.). MIT Press, Cambridge, MA,

1998, pp. 336–342.

14. Zhang K., Xu Z., Peng J., and Buckles B.P. Learning through

changes: An empirical study of dynamic behaviors of probability

estimation trees. In Proc. IEEE Int. Conf. on Data Mining, 2005,

pp. 817–820.

15. Zhang K. and FanW. Forecasting skewed biased stochastic ozone

days: analyses, solutions and beyond. Know. Inf. Syst., 14(3),

2008.
Base-line Clock

▶Time-Line Clock
Bayes Classifier

▶Bayesian Classification
Bayesian Classification

WYNNE HSU

National University of Singapore, Singapore,

Singapore

Synonyms
Bayes classifier

Definition
In classification, the objective is to build a classifier

that takes an unlabeled example and assigns it to a

Bayesian Classification B 211

B

class. Bayesian classification does this by modeling the

probabilistic relationships between the attribute set

and the class variable. Based on the modeled relation-

ships, it estimates the class membership probability of

the unseen example.

Historical Background
The foundation of Bayesian classification goes back to

Reverend Bayes himself [2]. The origin of Bayesian

belief nets can be traced back to [15]. In 1965, Good

[4] combined the independence assumption with the

Bayes formula to define the Naı̈ve Bayes Classifier.

Duda and Hart [14] introduced the basic notion of

Bayesian classification and the naı̈ve Bayes represen-

tation of joint distribution. The modern treatment

and development of Bayesian belief networks is

attributed to Pearl [8]. Heckerman [13] later refor-

mulated the Bayes results and defined the proba-

bilistic similarity networks that demonstrated the

practicality of Bayesian classification in complex diag-

nostic problems.

Foundations
Bayesian classification is based on Bayes Theorem.

It provides the basis for probabilistic learning that

accommodates prior knowledge and takes into account

the observed data.

Let X be a data sample whose class label is un-

known. Suppose H is a hypothesis that X belongs to

class Y. The goal is to estimate the probability that

hypothesis H is true given the observed data sample

X, that is, P(Y|X).

Consider the example of a dataset with the follow-

ing attributes: Home Owner, Marital Status, and
Bayesian Classification. Figure 1. Dataset example.
Annual Income as shown in Fig. 1. Credit Risks are

Low for those who have never defaulted on their

payments and credit risks are High for those who

have previously defaulted on their payments.

Assume that a new data arrives with the following

attribute set: X = (Home Owner = Yes, Marital

Status = Married, Annual Income = High). To deter-

mine the credit risk of this record, it is noted that the

Bayes classifier combines the predictions of all alterna-

tive hypotheses to determine the most probable classi-

fication of a new instance. In the example, this involves

computing P(High|X) and P(Low|X) and to determine

whether P(High|X) > P(Low|X)?

However, estimating these probabilities is difficult,

since it requires a very large training set that covers

every possible combination of the class label and attri-

bute values. Instead, Bayes theorem is applied and it

resulted in the following equations:

P HighjXð Þ ¼ P XjHighð ÞPðHighÞ=PðXÞ and

PðLowjXÞ ¼ PðXjLowÞPðLowÞ=PðXÞ

P(High), P(Low), and P(X) can be estimated from the

given dataset and prior knowledge. To estimate the

class-conditional probabilities P(X|High), P(X|Low),

there are two implementations: the Naı̈ve Bayesian

classifier and the Bayesian Belief Networks.

In the Naı̈ve Bayesian classifier [13], the attributes

are assumed to be conditionally independent given the

class label y. In other words, for an n-attribute set

X = (X1, X2,...,Xn), the class-conditional probability

can be estimated as follows:

PðY jXÞ ¼ aPðY Þ
Y
i

PðXijY Þ

212B Bayesian Classification
In the example,

ðXjLowÞ ¼ PðHome Owner

¼ YesjCredit Risk ¼ LowÞ�
PðMarital Status ¼ MarriedjCredit Risk

¼ LowÞ�
PðAnnual Income ¼ HighjCredit Risk
¼ Low ¼ 3=4� 2=4� 4=4 ¼ 3=8

PðXjHighÞ ¼ PðHome Owner

¼ YesjCredit Risk ¼ HighÞ�
PðMarital Status

¼ HighÞ�
PðAnnual Income ¼ HighjCredit Risk

¼ HighÞ ¼ 0

Putting them together, P(High|X) = P(X|High)P

(High)/P(X) = 0

PðLowjXÞ ¼ PðXjLowÞPðLowÞ=PðXÞ > 0

Since P(Low|X) > P(High|X), X is classified as having

Credit Risk = Low.

In other words,

ClassifiyðXÞ ¼ argmax
y

PðY ¼ yÞ
Y
i

PðXijY ¼ yÞ

In general, Naı̈ve Bayes classifiers are robust to

isolated noise points and irrelevant attributes. How-

ever, the presence of correlated attributes can degrade

the performance of naı̈ve Bayes classifiers as they

violate the conditional independence assumption.

Fortunately, Domingos and Pazzani [3] showed that

even when the independence assumption is violated

in some situations, the naı̈ve Bayesian classifier can

still be optimal. This has led to a wide spread use of

naı̈ve Bayesian classifiers in many applications. Jaeger

[9] also further clarifies and distinguishes the con-

cepts that can be recognized by naı̈ve Bayes classifiers

and the theoretical limits on learning the concepts

from data.

There are many extensions to the naı̈ve Bayes clas-

sifier that impose limited dependencies among the

feature/attribute nodes, such as tree-augmented naı̈ve

Bayes [6], and forest-augmented naı̈ve Bayes [11].

Bayesian belief network [10] overcomes the rigidity

imposed by this assumption by allowing the dependence

relationships among a set of attributes to be modeled as
a directed acyclic graph. Associated with each node in

the directed acyclic graph is a probability table. Note that

a node in the Bayesian network is conditionally indepen-

dent of its non-descendants, if its parents are known.

Refer to the running example. Suppose the proba-

bilistic relationships among Home Owner, Marital Sta-

tus, Annual Income, and Credit Risks are shown in

Fig. 2. Associated with each node is the corresponding

conditional probability table relating the node to its

parent node(s).

In the Bayesian belief network, the probabilities are

estimated as follows:

PðRiskjXÞ ¼ a
X
I

PðRiskjIncomeÞ
X
O

PðOwnerÞ
X
S

PðStatusÞPðIncomejOwner; StatusÞ

In the above example,

PðLowjXÞ ¼PðLowjIncome ¼ HighÞ

PðIncome ¼ HighjOwner

¼ Yes; Status ¼ MarriedÞ ¼ 1
 1 ¼ 1

Alternatively, by recognizing that given Annual In-

come, Credit Risks is conditionally independent of

Home Owner and Marital status, then

P LowjXð Þ ¼ P LowjIncome ¼ Highð Þ ¼ 1

This example illustrates that the classification problem

in Bayesian networks is a special case of belief updating

for any node (target class) Y in the network, given

evidence X.

While Bayesian belief network provides an

approach to capture dependencies among variables

using a graphical model, constructing the network is

time consuming and costly. Substantial research has

been and is still continuing to address the inference

as well as the automated construction of Bayesian

networks by learning from data. Much progress has

been made recently. So applying Bayesian networks

for classification is no longer as time consuming and

costly as before, and the approach is gaining headway

into the mainstream applications.
Key Applications
Bayesian classification techniques have been applied

in many applications. Here, a few more common

applications of Bayesian classifiers are mentioned.

Bayesian Classification B 213

B

Text Document Classification

Text classification refers to the grouping of texts into

several clusters so as to improve the efficiency and

effectiveness of text retrieval. Typically, the text docu-

ments are pre-processed and the key words chosen.

Based on the selected keywords of the documents,

probabilistic classifiers are built. Dumais et al. [5]

show naı̈ve Bayes classifier yields surprisingly good

classifications for text documents.

Image Pattern Recognition

In image pattern recognition, a set of elementary or

low level image features are selected which describe
Bayesian Classification. Figure 2. Bayesian belief network o
some characteristics of the objects. Data extracted

based on this feature set are used to train Bayesian

classifiers for subsequent object recognition. Aggarwal

et al. [1] did a comparative study of three paradigms

for object recognition – Bayesian Statistics, Neural

Networks and Expert Systems.

Medical Diagnostic and Decision Support Systems

Large amounts of medical data are available for analy-

sis. Knowledge derived from analyzing these data can

be used to assist the physician in subsequent diagnosis.

In this area, naı̈ve Bayesian classifiers performed

exceptionally well. Kononenko et al. [12] showed that
f the credit risks dataset.

214B BCNF
the naı̈ve Bayesian classifier outperformed other classi-

fication algorithms on five out of the eight medical

diagnostic problems.

Email Spam Filtering

With the growing problem of junk email, it is desirable

to have an automatic email spam filters to eliminate

unwanted messages from a user’s mail stream. Bayesian

classifiers that take into consideration domain-specific

features for classifying emails are now accurate enough

for real world usage.

Data Sets
http://archive.ics.uci.edu/beta/datasets.html

http://spamassassin.apache.org/publiccorpus/

URL to Code
More recent lists of Bayesian Networks software can be

found at:

Kevin Murphy’s website:

http://www.cs.ubc.ca/~murphyk/Bayes/bnsoft.html

Google directory:

http://directory.google.com/Top/Computers/Arti

ficial_Intelligence/Belief_Networks/Software/

Specialized naı̈ve Bayes classification software:

jBNC – a java toolkit for variants of naı̈ve Bayesian

classifiers, with WEKA interface
Cross-references
▶Belief Networks

▶ Probabilistic Model

▶ Supervised Classification

▶UnSupervised Classification

Recommended Reading
1. Aggarwal J.K., Ghosh J., Nair D., and Taha I. A comparative

study of three paradigms for object recognition – Bayesian

statistics, neural networks, and expert systems. Advances In

Image Understanding: A Festschrift for Azriel Rosenfeld. IEEE

Computer Society Press, Washington, DC, 1996, pp. 241–262.

2. Bayes T. An essay towards solving a problem in the doctrine of

chances. Philos. Trans. R. Soc., 53:370–418, 1763.

3. Domingos P. and Pazzani M. Beyond independence: conditions

for the optimality of the simple Bayesian classifier. In Proc. 13th

Int. Conf. on Machine Learning, 1996, pp. 105–112.

4. Duda R.O. and Hart P.E. Pattern Classification and Scene Anal-

ysis. Wiley, New York, 1973.

5. Dumais S., Platt J., Heckerman D., and Sahami M. Inductive

learning algorithms and representations for text categorization.

In Proc. Int. Conf. on Information and Knowledge Manage-

ment, 1998.
6. Friedman N., Geiger D., and Goldszmidt M. Bayesian network

classifiers. Mach. Learn., 29:131–163, 1997.

7. Good I.J. The Estimation of Probabilities: An Essay on Modern

Bayesian Methods. MIT Press, Cambridge, MA, 1965.

8. Heckerman D. Probabilistic Similarity Networks. ACMDoctoral

Dissertation Award Series. MIT Press, Cambridge, MA, 1991.

9. Jaeger M. Probabilistic classifiers and the concepts they recognize.

In Proc. 20th Int. Conf. onMachine Learning, 2003, pp. 266–273.

10. Jensen F.V. An introduction to Bayesian networks. Springer,

New York, 1996.

11. Keogh E. and Pazzani M. Learning augmented Bayesian

classifiers: A comparison of distribution-based and classification-

based approaches. In Proc. 7th Int. Workshop on Artificial Intelli-

gence and Statistics, 1999.

12. Kononenko I., Bratko I., and Kukar M. Application of Machine

Learning to Medical Diagnosis. Machine Learning, Data Mining

and Knowledge Discovery: Methods and Applications. Wiley,

New York, 1998.

13. Langley P., Iba W., and Thompson K. An analysis of Bayesian

classifiers. In Proc. 10th National Conf. on Artificial Intelligence,

1992, pp. 223–228.

14. Pearl J. Probabilistic Reasoning in Intelligenet Systems: Net-

works of Plausible Inference. Morgan Kaufmann, San Mateo,

CA, 1988.

15. Wright S. Correlation and causation. J. Agric. Res., 20(7):

557–585, 1921.
BCNF

▶Boyce-Codd Normal Form
Belief Time

▶Transaction Time
Benchmark

▶Application Benchmark
Biased Distribution

▶Data Skew

Biological Metadata Management B 215

B

Bibliography

▶Citation
Bi-clustering

▶ Subspace Clustering Techniques
Bioinformatics

▶ Implications of Genomics for Clinical Informatics
Biological Data Retrieval,
Integration, and Transformation

▶Query Languages for the Life Sciences
Biological Metadata Management

ZOÉ LACROIX
1, CARTIK R. KOTHARI

2, PETER MORK
3,

MARK WILKINSON
2, SARAH COHEN-BOULAKIA

4

1Arizona State University, Tempe, AZ, USA
2University of British Columbia, Vancouver,

BC, Canada
3The MITRE Corporation, McLean, VA, USA
4University Paris-Sud, Orsay Cedex, France

Definition
Metadata characterize biological resources by core in-

formation including a name, a description of its input

and its output (parameters or format), its address, and

various additional properties. Resources are organized

with respect to metadata that characterize their con-

tent (for data sources), their semantics (in terms of

ontological classes and relationships), their charac-

teristics (syntactical properties), their performance

(with metrics and benchmarks), their quality (cura-

tion, reliability, trust), etc.
Historical Background
Digital resources for the Life Sciences include a variety

of data sources and applicationswhose number increases
dramatically every year [4]. Although this rich and valu-

able offering provides scientists with multiple options

to implement and execute their scientific protocols (i.e.,

pipelines, dataflows, workflows), selecting the resources

suitable for implementing each scientific step remains a

difficult task. Scientific protocols are typically imple-

mented using the resources a scientist is most familiar

with, instead of the resources that may best meet the

protocol’s needs. The number of resources a scientist

uses regularly, knowing their structure, the quality of

data and annotations they offer, the capabilities made

available by the provider to access, analyze, and display

the data are ridiculously small compared to the

thousands of resources made available on the Web [3].

Metadata are not only critical in selecting suitable

resources for implement scientific protocols, but they

are essential to the proper composition and integration

of resources in a platform such as a workflow system or

wrapped into a database mediation system. They also

play a decisive role in the analysis of data, in particular to

track data provenance. Finally, they contribute to data

curation and the management of Life Sciences resources

in a global and linked digital biological maze.

Foundations
Metadata management relies on the description of

resources including the resource name, identification,

and all additional information that may be relevant to

locating, evaluating, and using the resource. A resource

identifier is a sequence of characters that uniquely iden-

tifies a resource and is globally shared and understood

over a network. A resource is analogous to a node on the

Web. The ubiquitous Uniform Resource Locator (URL)

is an example of a resource identifier, which uses the

location, the local directory path, and the local file name

of the resource to locate it on the Web. Unique Resource

Identifiers (URIs) include URLs that not only identify the

resource but describe its primary access mechanism or

network location, and Uniform Resource Names (URN)

that identify a resource by name in a particular name-

space. The unique identification of resources is an unre-

solved problem in the life sciences community. Different

protein, gene, and molecular interaction databases often

assign separate identifiers to the same resource,

a phenomenon known as coreference. Leveraging the

information from all these databases becomes prob-

lematic, leading to duplicate records and inconsistency.

To alleviate this problem, many Life Sciences databases

cross reference their identifiers.

216B Biological Metadata Management
Metadata are data that describe a resource. Meta-

data include a wide range of information from attri-

bution metadata, such as those attributes defined in

the Dublin Core, to detailed policy metadata indi-

cating who can access the resource under what con-

ditions. Semantic metadata include the description of

a resource with respect to the domain knowledge (e.g.,

a data source provides information about proteins, a

tool computes the translation of a RNA sequence into

an AA sequence). Syntactic metadata provide the de-

scription of the resource interface. Summary metadata

describe the actual contents of the resource. These meta-

data include free text summaries and statistical summa-

ries of the instances (values) contained in the database.

Summary metadata can be classified along several axes:

(i) textual versus quantitative, (ii) structured versus

unstructured, and (iii) manually generated versus auto-

matically generated. By far the most common type of

summary metadata are textual. For example, NAR [4]

maintains a listing of hundreds of biomedical resources.

For each resource, they provide a brief description of the

contents of that resource. Textual metadata allow an

application developer or end-user to search for

resources using keywords or phrases. The success of

existing approaches seems to show that it is a familiar

and intuitive operation, which works well when search-

ing for reasonably well-defined concepts. Textual meta-

data are unstructured (i.e., free text) and manually

curated. Alternatively, summary metadata can take the

form of keywords drawn from a controlled vocabulary,

such as Medical Subject Headings (MeSH) terms. A

controlled vocabulary makes it easier to search for

resources, assuming the vocabulary is sufficiently expres-

sive and used consistently to annotate the resources. In

most cases, textual metadata are generated manually,

although there is some research in automatically extract-

ing keywords from a resource for its annotation.

Quantitative metadata describe resources in terms

of numeric datatypes. In the simplest case, these meta-

data specify the range of values that can be found in the

resource. For example, all of the subjects in a pediatric

database would be younger than 18. More detailed

summaries are also possible. In the case of quantitative

metadata, unstructured metadata make little sense.

The end user needs to know what a given number

represents, including relevant units. Quantitative

metadata can still be generated manually or automati-

cally. The former is required if the resource does not

contain the necessary raw data. For example, if a
pediatric database does not contain the ages of

its subjects, the relevant age range must be specified

manually. However, when the resource does contain

the necessary raw data, quantitative metadata can

be generated automatically. Moreover, the amount of

detail in the metadata can vary depending on the

needs of the resource owners and community mem-

bers searching for resources. A current research chal-

lenge is determining the appropriate granularity for

quantitative metadata and using these metadata to

estimate the extent to which a given resource matches

the end user’s search criteria. Statistical metadata and

benchmarks provide an additional layer exploited

when the scientist wishes to predict the outcome of

an execution. These metadata are particularly useful

when several resources are combined to evaluate alter-

native evaluation strategies and select the most effi-

cient one with respect to the protocols’ aim [5].

The domain and range of resources, as well as resource

overlaps contribute to the statistical description of

resources. Similarly, information related to the quality

of the resource (e.g., curation) may be exploited to

optimize the quality of the execution.

Structural metadata describe the resource interface

and the intention of the resource provider. These meta-

data can take on many forms including database sche-

mata, Unified Modeling Language (UML) diagrams or

Web service descriptions. What structural metadata pro-

vide are a description of how the resource provider

intends to organize and deliver data. Controlled voca-

bularies capture domain knowledge and clarify resource

descriptions (e.g., identical concepts). Controlled voca-

bularies are naturally extended by logical or conceptual

representations such as expressed in a domain ontology.

More generally, a metadata registry containing structural

metadata allows an application developer to search for

resources that are intended to contain particular types of

data. Moreover, once a developer discovers a useful

resource, he has a good idea of how to interact with

that resource, both in terms of formulating queries and

processing results. Structural metadata only indicate

what sorts of queries can be posed, not whether those

queries will return meaningful results. For example,

the structural metadata for a card catalog might indicate

that it includes, for each entry, a list of authors. Thus, one

could reasonably query the card catalog for all books

authored by John Grisham. However, if the card catalog

supports a medical (non-fiction) library, it is unlikely

that this query will return any record.

Biological Metadata Management B 217

B

Bioinformatics resources may be represented

with formats and standards developed by various

communities driven by disparate motivations includ-

ing business, library, Web, etc. The Resource Descrip-

tion Framework (RDF) and the RDF Schema (RDFS)

were the earliest adopted standards for representing

metadata about Web resources. The Dublin Core

Metadata Elements Set (DCMES) is a standard set of

metadata elements that can be used to describe a

generic resource to facilitate its discovery and use.

RDF specifically provides a very simple ‘‘triples’’ syn-

tax or Subject-Predicate-Object syntax to capture re-

source metadata. Universal Description, Discovery

and Integration (UDDI) is the XML-based format to

register businesses on the Web proposed by OASIS.

Dublin Core is a standard (NISO Standard Z39.85-

2007) for cross-domain information resource de-

scription. The Web Ontology Language OWL, based

on earlier languages OIL and DAML+OIL, is a W3C

recommendation that extends XML, RDF, and RDF

Schema (RDF-S) by providing additional vocabulary

along with a formal semantics with descriptions of

classes, along with their related properties and

instances. The Web Service Description Language

(WSDL) and its extension WSDL-S are used respec-

tively as resource description and semantic annota-

tion. Resource description and registration developed

for the life science include BioMoby, PISE/Mobyle,

caBIG, and SOAPlab.

The Life Sciences community has a number of meta-

data annotation standards. The Darwin Core (DwC)

is a metadata standard from the National Biological

Information Infrastructure (NBII) for annotating the

objects contained within natural history specimen col-

lections and species observation databases. These anno-

tations are used to retrieve records of natural history

specimens and observation records from local libra-

ries, integrating them with other collections across the

United States and making them available on the Web.

The Access to Biological Collections Data Schema

(ABCD Schema) is a complementary, hierarchical meta-

data standard for the annotation of biological speci-

mens. Mappings exist from the terms of Darwin Core

to the ABCD Schema that illustrate the overlap between

the two standards and the few differences. Organizations

such as NBII, the Integrated Taxonomic Information

System and the Global Biodiversity Information Facility

leverage metadata standards such as ABCD Schema and

DwC to discover and utilize information pertaining
to species and natural history specimens that is

distributed around the world.

The Minimum Information About a Microarray

Experiment (MIAME) [1] from the Microarray Gene

Expression Data (MGED) Society, is used to describe

sufficient information about a microarray experiment

to reproduce it unambiguously. An increasing number

of data providers are embracing the MIAME standard

and several journals including NAR, Cell, and Nature

require MIAME compliant data as a condition for pub-

lishing microarray based papers. The Minimum Infor-

mation About a Proteomics Experiment (MIAPE) [7] is

a minimum information reporting requirement for

proteomics experiments. It is analogous to the MIAME

standard for transcriptomics data. MIAPE is distributed

across severalmodules, each of which is useful to describe

a different proteomics experiment. Example modules are

the MIAPE Gel Electrophoresis module, the MIAPE

Mass Spectrometry module and the MIAPE Column

Chromatography module. The Minimum Information

required for reporting a Molecular Interaction Experi-

ment (MIMIx) [6] has been developed as a framework

to capture metadata about molecular interaction experi-

ments. MIAME, MIAPE and MIMIx are being devel-

oped under the auspices of the Proteomics Standards

Initiative at the Human Proteomics Organization.

Metadata standards vary in complexity from the

simple format of the Dublin Core to the complex

requirements of MIAME. A number of organizations

are currently involved in the development of metadata

standards in various fields of study. The Federal Geo-

graphic Data Committee (FGDC) is involved in the

creation of several metadata standards such as the Spa-

tial Data Transfer Standard for the exchange of spatial

data, the National Vegetation Classification Standard

to support a national vegetation classification system,

the Biological Data Profile for the documentation of

biological data, and the Utilities Data Content Standard

to standardize geospatial information for utility systems.

In addition the FGDC publishes the Content Standard

for Digital GeospatialMetadata (CSDGM) for the anno-

tation of geospatial data in the form of maps, atlases and

satellite images. The Ocean Biogeographic Information

System as an initiative to make marine biogeographic

data available to a worldwide audience. OBIS has

developed a taxonomic hierarchy of metadata elements,

called the OBIS taxonomy for annotation of marine

species observations. GeoConnections is a Canadian

initiative to make geospatial data in the form of maps

218B Biological Metadata Management
and satellite images easily available to a worldwide audi-

ence. GeoConnections uses the CSDGM published by

the FGDC, to annotate its geospatial data.

Key Applications
Resource discovery systems exploit metadata in order to

map the user requirements to the resource characteris-

tics. For example, caCORE is an n-tier datamanagement

and integration infrastructure that combines several

interconnected software and services. The Cancer Bioin-

formatics Infrastructure Objects (caBIO) model is at

the heart of caCORE. The caBIO model contains defini-

tions of concepts and inter-concept relationships

that are common to biomedical research. These con-

cept definitions in caBIO are the basis upon which

data from distributed repositories are integrated. These

repositories include gene and homolog databases (e.g.,

UniGene and Homologene), pathway databases (e.g.,

BioCarta), vocabulary and terminology repositories

(e.g., the National Cancer Institute (NCI) Thesaurus,

NCIMetathesaurus, and the Gene Ontology). The Path-

Port framework developed at The Virginia Bioinformat-

ics Institute, presents a Web based interface that makes

it possible for end users to invoke local and distributed

biological Web services that are described inWSDL, in a

location and platform independent manner.

Metadata offer metrics that may be used to predict

the outcome of the execution of a scientific protocol

on selected resources [5]. Metadata provide resource

characterization that allows their comparison with

similar resources, thus addressing the need of combin-

ing multiple complementary resources to implement

completely a single task (e.g., data coverage). Path-

based systems such as BioNavigation exploit statistical

metadata to predict the resources that are likely to

return the most entries, the best characterized (most

attributes) entries, etc. [3].

Although some degree of transparency is often

needed in queries, scientists also expect to be aware

of the provenance of the answers. In order to analyze

the results obtained from the execution of their scien-

tific protocols, they often need to understand the pro-

cess that produced the dataset. In particular, they need

to know which resources have been used, and how

entries have been linked to generate the answer to

their question. Data traceability is related to the degree

of information pertaining to the resources used to imple-

ment the process as well as the integration used to
combine them. Because of this, reasoning on data prove-

nance may exploit scientific resource metadata reposi-

tories. For example, BioGuideSRS allows the user to

visualize the correspondence between the graph of enti-

ties and the graph of sources-entities [2]. By selecting an

entity, the user visualizes the sources which pro-

vide information about this entity; similarly, by select-

ing a relationship, the user visualizes the links between

sources which achieve this relationship. Second, the

data obtained as a result yielded by BioGuideSRS

to the user is systematically associated with the path

which has been used to obtain it. In this way, the user

knows the exact sequence of sources and links used. This

approach was demonstrated with the ZOOM*UserViews

system.

Future Directions
Metadata management remains a critical issue for

the Life Sciences. First, the community has not agreed

on common metadata to publish together with a re-

source so that it is properly identified, located, and

used by scientists. Multiple discussions related to the

representation of scientific objects generate the design

of a large number of ontologies as published by the

Open Biomedical Ontology (OBO) group. Although

this effort contributes significantly to the better under-

standing of scientific information, it produces ontolo-

gies that may overlap and that are difficult to integrate.

This semantic gap is aggravated by the diversity of

models and formats used by biological data providers.

Moreover, the community shows reluctance to adopt-

ing recommendations from the W3C Semantic Web

for the specification of resources. The lack of a com-

mon publishing process for resources affects their im-

pact significantly. In particular, it challenges the

development of resource repositories to support re-

source discovery. Consequently, it affects the ability

for scientists to select resources suitable to implement

the scientific tasks involved in their protocols. The

development of adequate technology, still in its infan-

cy, is rather limited by the lack of a franca lingua for

metadata. Future developments include the identifica-

tion of metrics that adequalety capture the character-

istics of resources, the design of benchmarks to

evaluate and compare similar resources, automated

data curation approaches that exploit and update re-

source metadata, automated classification of resources,

data provenance analysis, etc.

Biological Metadata Management B 219

B

Data Sets
NAR http://nar.oxfordjournals.org/

BMC Source Code for Biology and Medicine http://

www.scfbm.org/home

Bioinformatics Links Directory http://bioinformatics.

ca/links_directory/

Open Biomedical Ontologies (OBO) http://obofoun

dry.org/

Next Generation Biology Workbench (Swami) http://

www.ngbw.org
URL to Code
Medical Subjects Headings (MeSH) http://www.nlm.

nih.gov/mesh

UDDI http://www.uddi.org/

OWLWeb Ontology Language http://www.w3.org/TR/

owl-features/

DAML+OIL http://www.w3.org/TR/daml+oil-

reference

BioMOBY http://biomoby.org/

PISE http://www.pasteur.fr/recherche/unites/sis/Pise/

Mobyle http://www.pasteur.fr/recherche/unites/sis/

Pise/mobyle.html

caBIG http://cabig.nci.nih.gov/

SOAPlab http://www.ebi.ac.uk/Tools/webservices/soap

lab/overview

National Biological Information Infrastructure (NBII)

http://www.nbii.gov/

Microarray Gene Expression Data (MGED) Society

http://www.mged.org

Federal Geographic Data Committee (FGDC) http://

www.fgdc.gov

Ocean Biogeographic Information System (OBIS)

http://www.iobis.org

GeoConnections http://www.geoconnections.org

caCORE http://ncicb.nci.nih.gov/infrastructure/

cacoresdk

ZOOM*UserViews system http://db.cis.upenn.edu/

research/provwf.html

BioNavigation http://bioinformatics.eas.asu.edu/

BioGuide http://bioguide-project.net/
Cross-references
▶Benchmark

▶Biological Resource Discovery

▶Dublin Core

▶Graph Management in the Life Sciences
▶HTTP

▶Metadata

▶Ontology

▶RDF

▶UML

▶URI

▶URL

▶URN

▶Web Services

▶Web Services and the Semantic Web for Life Science

Data

▶XML
Recommended Reading
1. Brazama A., Hingamp P., Quackenbush J., Sherlock G.,

Spellman P., Stoeckert C., Aach J., Ansorge W., Ball C.A.,

Causton H.C., Gaasterland T., Holstege F.C.P., Kim I.F.,

Markowitz V., Matese J.C., Parkinson H., Robinson A.,

Sarkans U., Schulze-Kremer S., Stewart J., Taylor R., Vilo J.,

and Vingron M. Minimum information about a microarray

experiment (MIAME) – toward standards for microarray data.

Nat. Genet., 29:365–371, 2001.

2. Cohen-Boulakia S., Biton O., Davidson S., Froidevaux C.

BioGuideSRS: querying multiple sources with a user-centric

perspective. Bioinformatics, 23(10):1301–1303, 2007.

3. Cohen-Boulakia S., Davidson S., Froidevaux C., Lacroix Z,

and Vidal M.E. Path-based systems to guide scientists in the

maze of biological resources. J. Bioinf. Comput. Biol.,

4(5):1069–1095, 2006.

4. Galperin M.Y. The molecular biology database collection:

2007 update. Nucl. Acids Res., 35:D3–D4, 2007.

5. Lacroix Z., Raschid L., and Eckman B. Techniques for optimiza-

tion of queries on integrated biological resources. J. Bioinf.

Comput. Biol., 2(2):375–411, 2004.

6. Orchard S., Salwinski L., Kerrien S., Montecchi-Palazzi L.,

Oesterheld M., Stmpflen V., Ceol A., Chatr-aryamontri A.,

Armstrong J., Woollard P., Salama J.J., Moore S., Wojcik J.,

Bader G.D., Vidal M., Cusick M.E., Gerstein M., Gavin A.C.,

Superti-Furga G., Greenblatt J., Bader J., Uetz P., Tyers M.,

Legrain P., Fields S., Mulder N., Gilson M., Niepmann M.,

Burgoon L., De Las Rivas J., Prieto C., Perreau V.M., Hogue C.,

Mewes H.W., Apweiler R., Xenarios I., Eisenberg D., Cesareni G.,

and Hermjakob H. The minimum information required for

reporting a molecular interaction experiment (MIMIx). Nat.

Biotechnol., 25:894–898, 2007.

7. Taylor C.F., Paton N.W., Lilley K.S., Binz P.A., Julian R.K.,

Jones A.R., Zhu W., Apweiler R., Aebersold R., Deutsch E.W.,

Dunn M.J., Heck A.J.R., Leitner A., Macht M., Mann M.,

Martens L., Neubert T.A., Patterson1 S.D., Ping P., Seymour S.L.,

Souda P., Tsugita A., Vandekerckhove J., Vondriska T.M.,

Whitelegge J.P., Wilkins M.R., Xenarios I., Yates J.R., and

Hermjakob H. The minimum information about a proteomics

experiment (MIAPE). Nat. Biotechnol., 25:887–893, 2007.

220B Biological Networks
Biological Networks

AMARNATH GUPTA

University of California-San Diego, La Jolla, CA, USA

Synonyms
Biological pathways; Molecular interaction graphs;

Signal transduction networks; Transcriptional net-

works; Protein-protein interaction networks
Definition
A biological network is a graph-structured representa-

tion of binarized interactions among biological objects.

Typically, the nodes in such a graph represent biological

molecules, and the edges are labeled to represent differ-

ent forms of interactions between molecules.

Example: A transcriptional network is a directed graph

where a node represents either a protein (a transcrip-

tion factor) or a region of the chromosome such that

the edges can be constructed from the protein node to

the chromosomal region. The edge in the graph repre-

sents that the protein can initiate the transcription

(production of messenger RNA) process.
Key Points
A biological network is typically a node and edge attrib-

uted graph, where the edges can have different semantics

depending on the kind of network. In some networks,

the edges may be weighted, denoting, for instance, the

probability of the interaction taking place. In some net-

works, like the protein-protein interaction graph, the

edges are undirected. In some cases, like signal transduc-

tion networks, the edges represent the flow of time.

Querying, integrating, and simulating are typical opera-

tions performed on biological networks.
Cross-references
▶Graph Data Management in Scientific Applications
Recommended Reading
1. Baitaluk M., Qian X., Godbole S., Raval A., Ray A., and Gupta A.

PathSys: integrating molecular interaction graphs for systems

biology. BMC Bioinformatics, 7:55, 2006.

2. Eckman B.A. and Brown P.G. Graph data management for

molecular and cell biology. IBM J. Res. Dev., 50(6):545–560,

2006.

3. Leser U. A query language for biological networks. Bioinfor-

matics, 21(Suppl 2):ii33–ii39, 2005.
Biological Pathways

▶Biological Networks
Biological Query Languages

▶Query Languages for the Life Sciences
Biological Resource Discovery

ZOÉ LACROIX
1, CARTIK R. KOTHARI

2, PETER MORK
3,

RAMI RIFAIEH
4, MARK WILKINSON

2, JULIANA FREIRE5,

SARAH COHEN-BOULAKIA
6

1Arizona State University, Tempe, AZ, USA
2University of British Columbia, Vancouver,

BC, Canada
3The MITRE Corporation, McLean, VA, USA
4University of California-San Diego, San Diego,

CA, USA
5University of Utah, Salt Lake City, UT, USA
6University Paris-Sud, Orsay, France

Definition
Resources for the Life Sciences include various expedi-

ents including (access to) data stored in flat files or

databases (e.g., a query form or a textual search engine),

links between resources (index or hyperlink), or services

such as applications or tools. Resource discovery is the

process of identifying and locating existing resources

that have a particular property. Machine-based re-

source discovery relies on crawling, clustering, and

classifying resources discovered on the Web automati-

cally. Resource discovery systems allow the expression

of queries to identify and locate resources that imple-

ment scientific tasks and have properties of interest.
Historical Background
Resource selection relies on the identification of the

resources suitable to achieve each task and the ability

to compose the selected resources into a meaningful

and efficient executable protocol. Metadata constitute

the core information requisite to evaluate the suitabil-

ity of Life Sciences resources to achieve a scientific task.

Metadata critical to resource discovery include (i) re-

source publication, identification, and location, and

Biological Resource Discovery B 221

B

(ii) semantic and (iii) syntactic descriptions. First

scientists need to be aware of existing resources. If

academic publications such as Nucleic Acids Research

(NAR) [7] or BMC Source Code for Biology and

Medicine have provided valuable media where bioin-

formaticians may publish their resources, they require

significant manpower to identify and evaluate the po-

tential of each resource and compile and record their

location and description for future use. Core resource

description in a unified format accessible to scientists

and machines alike and resource repositories contrib-

ute greatly to ease the problem of resource identifica-

tion and location.

Foundations
Resource discovery relates to the activity of identifying

a resource suitable to implement a particular task.

Resource discovery relies on various metadata that

specify the characteristics of resources thus allowing

the mapping of the requirements to the resource spe-

cifications. The type of metadata chosen to represent

resources will constrain resource discovery. For example,

textual metadata drawn from a controlled, hierarchical

vocabulary, support resource discovery by automatically

expanding search terms to include more-specific terms.

However, textual metadata are not sufficient when

searching on specific criteria; for example, consider a

researcher interested in finding datasets of ‘‘MRI images

for subjects between the ages of 18 and 24’’. Syntactic

(formats) and semantic (concepts) metadata describe

how a resource is organized and provide some insight

into what type of information might be found in the

resource while summary metadata specify the content

of the resource. Although structural metadata are

normally generated to help application developers un-

derstand how to interact with the resource, they can

also be collected to support resource discovery. For

example, in the caBIG framework, structural metadata

are represented as common data elements. Each com-

mon data element references a common terminology

(the NCI thesaurus in this case) and may also contain

free text documentation describing that data element

both providing a semantic representation of the re-

source. The metadata registry also maps common

data elements to resources that provide instances of

that element. An application developer searches the

metadata registry by providing a collection of key-

words; the registry returns a list of data elements that

contain those keywords.
Resource discovery is the interface between resource

metadata on one side and resource integration to im-

plement complex scientific protocols (or workflows,

queries, pipelines) on the other. Indeed the motivation

for discovering a resource is drawn from the need to

implement a scientific task. Most approaches to support

resource discovery only locate one resource at a time,

regardless of their future composition to implement

complex workflows. In contrast, path-based guiding

systems such as BioNavigation and BioGuide provide

the ability to express resource discovery queries to iden-

tify resources that can be composed to express scientific

protocols expressed as connected scientific tasks [4].

Key Applications
BioMoby is an open source, extensible framework that

enables the representation, discovery, retrieval, and

integration of biological data from distributed data

repositories and analysis services. By registering

their analysis and data access services with BioMoby,

service providers agree to use and provide service spe-

cifications in a shared semantic space. The BioMoby

Central registry now hosts more than a thousand ser-

vices in the United States, Canada, and several other

countries across the world. BioMoby uses a datatype

hierarchy to facilitate the automated discovery of Web

services capable of handling specific input datatypes.

As a minimal Web based interface, the Gbrowse Moby

service browser can be used by biologists to discover

and invoke biological Web services from the Moby

registry and seamlessly chain these services to compose

multi-step analytical workflows. The process is data

centric, relying on input and output datatype specifi-

cations of the services. The Seahawk client interface

can infer the datatype of the input data files directly

and immediately presents the biologist with a list of

Web services that can process the input file. Users of

the Seahawk interface are relieved of the necessity to

familiarize themselves with datatype hierarchies, and

instead are free to concentrate on the analytical aspects

of their work. The BioMoby service encyclopedia pro-

vides a query interface to the repository of services.

MOBY-S Web Service Browser retrieves bioinformatics

resources with respect to a data type. Additional inter-

faces to BioMoby services include registry browsers

that provide access to the complete list of registered

BioMoby services organized in a HTML page.

These interfaces are convenient when searching for

services with respect to a specific data format (input),

222B Biological Resource Discovery
but they are not suitable when searching for services

with respect to their scientific meaning rather than

their format. Another critical limitation of the app-

roaches occurs when no single service achieves the task.

In order to allow the discovery of the services that can

be used to express scientific protocols, combinations of

services must be retrieved. Scientific data integration

systems such as workflow systems [6] enable the com-

position and execution of bioinformatics services.

Combining a workflow approach with a service repre-

sentation that guarantees compatibility of data formats

offers a great value to the scientist who has selected the

services to use and wishes to combine them in an

executable workflow. A resource is selected because it

uses or produces the expected format (e.g., FASTA)

rather than because it implements the expected scien-

tific aim or because it is efficient. This is illustrated by

the BioMoby plugin in Taverna. When a BioMoby

service, e.g., ‘DragonDB_TBlastN’, is included in a

workflow its output format, e.g., NCBI_BLAST_TEXT,

can be searched (brief search) against available formats

to determine if it is an input to any other service

registered in BioMoby [9]. The characterization of a

resource provided by existing formats such as Web

services does not include the level of metadata neces-

sary to evaluate the suitability of resources beyond the

description of its input and output. More advanced

resource formats such as OWL-S, WSDL-S, SAWSDL,

and BioMoby aim at providing a semantic layer to

capture better what the resource does in addition to

its input and output data formats. The semantic part of

the resource registration allows the classification of

resources into a hierarchy of classes thus enhancing

resource discovery. For example, the semantic search

method of the BioMoby plugin in Taverna traverses the

object ontology and recursively extracts the parent

nodes of that particular output object [9]. However

existing approaches do not offer an interface that

allows the discovery of services with respect to their

scientific meaning expressed in an ontology. To over-

come this difficulty, path-based guiding systems such

as SemanticMap and BioGuide can be combined with

integration platforms to allow the discovery of

resources suitable to implement scientific workflows.

For example, BioGuide extends SRS [5] to allow a

unique interface to discover resources and express

queries over integrated data sources [3].

Resource discovery can exploit further resource

metadata to predict the outcome of a workflow
execution and select the resource more likely to produce

the expected output. For example, BioNavigation [4]

exploits various statistical metadata combined with se-

mantic data to rank resources with respect to the users’

criteria. Resources are ranked with respect to their car-

dinality, the characterization of their entries (number of

attributes), etc. A user interested in retrieving as many

genes involved in a particular disease selects a path in a

domain ontology together with the corresponding

ranking criteria. BioNavigation returns a ranking of

all implementations of the conceptual path [10].

BioSpider is a system that integrates biological and

chemical online databases. Given a biological or chem-

ical identifier, BioSpider produces a report containing

physico-chemical, biochemical and genetic informa-

tion about the identifier. Ngu et al. [11] proposed an

approach to classify search interfaces by probing these

interfaces and trying to match the control flow of the

interface against a standard control flow. InfoSpiders is a

multi-agent focused crawler specialized for biomedical

information whose goal is to fetch information about

diseases when given information about genes. TheAdap-

tive Crawler for Hidden-Web Entry Points (ACHE) is a

focused crawler specialized for locating searchable Web

forms that serve as entry points to online databases and

Web services. Context-Aware Form Clustering (CAFC)

is a clustering approach that models Web forms as a set

of hyperlinked objects and considers visible information

in the form context – both within and in the neighbor-

hood of forms – as the basis for similarity comparison. A

repository of scientific resources was automatically com-

piled using the approach [1].

Future Directions
Biological resource discovery remains a critical issue

for the Life Sciences. The development of a system to

support resource discovery is directly constrained by

the information pertaining to scientific resources made

available to the users as well as the formats designed to

represent these rich metadata. For these reasons re-

search on resource discovery for Life Sciences still is

in its infancy. Scientists dramatically need assistance at

each level of the process from the identification of the

resources that best would meet the experimental

requirements to the actual composition of the resources

in an executable workflow. Future developments include

the design of systems that combine various orthogonal

aims for resource selection such as semantics (what the

resource does), statistics (prediction of the result),

Biological Sequences B 223

B

syntax (schema mapping for resource compsition), per-

formance (efficiency), quality, etc.

Data Sets
NAR http://nar.oxfordjournals.org/

BMC Source Code for Biology and Medicine http://

www.scfbm.org/home

Bioinformatics Links Directory http://bioinformatics.

ca/links_directory/

Semantic Map for Structural Bioinformatics http://

bioserv.rpbs.jussieu.fr/SBMap/

Automatically compiled list of biological resources

http://formsearch.cs.utah.edu

Open Biomedical Ontologies (OBO) http://obofoun-

dry.org/

Next Generation Biology Workbench (Swami) http://

www.ngbw.org

URL to Code
caBIG http://cabig.nci.nih.gov/

BioMOBY http://biomoby.org/

SOAPlab http://www.ebi.ac.uk/Tools/webservices/soap

lab/overview

SemanticMap http://bioinformatics.eas.asu.edu/

myGRID http://www.mygrid.org.uk/

Taverna http://taverna.sourceforge.net/

MOBY-S http://mobycentral.icapture.ubc.ca/

BioNavigation http://bioinformatics.eas.asu.edu/

BioGuide http://bioguide-project.net/

Seahawk http://biomoby.open-bio.org/

Remora http://lipm-bioinfo.toulouse.inra.fr/remora/

cgi/remora.cgi

Kepler http://www.kepler-project.org/

BioSpider http://biospider.ca

InfoSpiders http://www.informatics.indiana.edu/fil/IS/

Cross-references
▶Benchmark

▶Biological Metadata Management

▶Dublin Core

▶Graph Management in the Life Sciences

▶HTTP

▶Metadata

▶Ontology

▶RDF

▶UML

▶URI

▶URL

▶URN
▶Web Services

▶Web Services and the Semantic Web for Life

Science Data

▶XML
Recommended Reading
1. Barbosa L., Tandon S., and Freire J. Automatically Constructing

a Directory of Molecular Biology Databases. In Data Integration

in the Life Sciences, LNCS, Vol. 4544, 2007, pp. 6–16.

2. Clark T., Martin S., and Liefeld T. Graphically Distributed Object

Identification for Biological Knowledge Bases. Brief. Bioinfor-

mat., 5(1):59–70, 2004.

3. Cohen-Boulakia S., Biton O., Davidson S., and Froidevaux C.

BioGuideSRS: q uerying multiple sources with a user-centric

perspective. Bioinformatics, 23(10):1301–1303.

4. Cohen-Boulakia S., Davidson S., Froidevaux C., Lacroix Z., and

Vidal M.E. Path-based systems to guide scientists in the maze of

biological resources. J. Bioinformat. Comput. Biol.,

4(5):1069–1095, 2006.

5. Etsold T., Harris H., and Beaulah S. Bioinformatics: Managing

Scientific Data. Chapter 5 – SRS: An Integration Platform for

Databanks and Analysis Tools in Bioinformatics, pp. 109–146.

Z. Lacroix and T. Critchlow (eds.). Morgan Kaufmann, Los

Altos, CA, 2003.

6. Fox G.C. and Gannon D. (eds). Concurrency and Computation:

Practice and Experience, Special Issue: Workflow in Grid Sys-

tems, 2006.

7. Galperin M.Y. The Molecular Biology Database Collection: 2007

update. Nucl. Acids Res., 35:D3–D4, 2007.

8. Good B.M. andWilkinsonM.D. The Life Sciences SemanticWeb

is Full of Creeps! Brief. Bioinformat., 7(3):275–286, 2006.

9. Kawa, E.A., Senger M., andWilkinsonM.D. BioMoby extensions

to the Taverna workflow management and enactment software

BMC Bioinformat., 7:523, 2006.

10. Lacroix Z., Raschid L., and Eckman B. Techniques for optimiza-

tion of queries on integrated biological resources. J. Bioinformat.

Computat. Biol., 2(2):375–411, 2004.

11. Ngu A.H.H., Rocco D., Critchlow T., and Buttler D. Automatic

discovery and inferencing of complex bioinformatics web inter-

faces. World Wide Web, 8(4):463–493, 2005.

12. Wolstencroft K., Alper P., Hull D., Wroe C., Lord P., Stevens R.,

and Goble C. The myGrid Ontology: Bioinformatics Service

Discovery. Int. J. Bioinformat. Res. Appl., 3(3):303–325, 2007.
Biological Sequences

AMARNATH GUPTA

University of California-San Digeo, La Jolla, CA, USA

Synonyms
DNA sequences; Protein sequence

224B Biomedical Data Annotation
Definition
A biological sequence is a sequence with a small fixed

alphabet, and represents a naturally occurring or ex-

perimental generated fragment of genetic or protein

material or any intermediate product (like the messen-

ger RNA).

Example: A DNA fragment has the 4 character alphabet

‘A’, ‘C’, ‘T’, ‘G’. Chromosomes are long strings over this

alphabet.
Key Points
Biological sequences can be long. A full chromosome

may have millions of characters. Therefore development

of proper storing and indexing strategies is very impor-

tant for fast retrieval. Suffix tree based indexes have

been used successfully for long biological sequences.

Further, approximate string matching techniques with

potential deletions and insertions are important for

biological sequences. BLAST is a well known algorithm

used for approximate matching and ranking of bio-

logical sequences.
Cross-references
▶ Index Structures for Biological Sequences

▶Query Languages and Evaluation Techniques for

Biological Sequence Data

▶Query languages for the life sciences
Recommended Reading
1. Brown A.L. Constructing genome scale suffix trees. In Proc. 2nd

Asia-Pacific Bioinformatics Conference, 2004.

2. Hunt E., Atkinson M.P., and Irving R.W. A database index to

large biological sequences. In Proc. 27th Int. Conf. on Very Large

Data Bases, 2001, pp. 139–148.

3. Phoophakdee B. and Zaki M.J. TRELLIS +: an effective approach

for indexing genome-scale sequences using suffix trees. In Pro-

ceedings of the Pacific Symposium on Biocomputing (online

proceedings), 2008, pp. 90–101.

4. Tian Y., Tata S., Hankins R.A., and Patel J.M. Practical

methods for constructing suffix trees. VLDB J., 14(3):

281–299, 2005.
Biomedical Data Annotation

▶Biomedical Data/Content Acquisition, Curation
Biomedical Data/Content
Acquisition, Curation

NIGAM SHAH

Stanford University, Stanford, CA, USA

Synonyms
Biomedical data annotation

Definition
The largest source of biomedical knowledge is the pub-

lished literature, where results of experimental studies

are reported in natural language. Published literature is

hard to query, integrate computationally or to reason

over. The task of reading published papers (or other

forms of experimental results such as pharmacoge-

nomics datasets) and distilling them down into

structured knowledge that can be stored in databases

as well as knowledgebases is called curation. The state-

ments comprising the structured knowledge are called

annotations. The level of structure in annotation state-

ments can vary from loose declarations of ‘‘associations’’

between concepts (such as associating a paper with the

concept ‘‘colon cancer’’) to statements that declare a

precisely defined relationship between concepts with

explicit semantics. There is an inherent tradeoff between

the level of detail of the structured annotations and the

time and effort required to create them. Curation to

create highly structured and computable annotations

requires PhD level individuals to curate the literature.

In the molecular biology research community, this task

is performed primarily by curators employed by ge-

nome databases such as the saccharomyces genome

database [7]. In the biomedical research community

this task is performed by curators employed by commu-

nity portals such as AlzForum for Alzheimer’s research

[9] and PharmGKB for pharmacogenomics [31]. In the

medical community such curation is still an ignored

task, with some groups, such as RCTBank [26], pioneer-

ing the effort to curate clinical trial reports.
Historical Background
In the biomedical domain, curation began with the

formation of cDNA, EST and gene sequence databases

such as GenBank. Initially, curation was restricted to the

task of assigning a functional annotation (usually in free

text) to a sequence being submitted to GenBank. Scien-

tists performing the experiments and submitting the

Biomedical Data/Content Acquisition, Curation B 225

B

data performed the task on their own. With the rise in

the amount of sequence data and subsequently data on

the function, structure and cellular locations of gene

products along with the formation of communities of

researchers around specific model organisms, the task

of curation gradually became centralized in the role of

a curator at model organism databases. Interaction

amongst the curators and leading scientists led to the

creation of projects such as the gene ontology project

[1] in 1998, which led to a systematic basis for creating

annotations about the molecular function, biological

process and cellular locations of gene products. In

subsequent years, user groups formed around other

kinds of data, such as microarray gene expression data,

resulting in the creation of information models for

structuring the metadata pertaining to high throughput

experiments. Individual research groups, such as Eco-

cyc, have already maintained a high level of curation

effort, particularly for Information about biological

pathways; although it was the success of the gene ontol-

ogy project that resulted in the widespread appreciation

for the need of curated content. With the continued rise

in the amount and diversity of biomedical data, the

need for curation continues to increase; both in terms

of the number of man-hours required and in the level

detail desired in the resulting annotations.

Foundations
In the course of their work, biomedical investigators

must integrate a growing amount of diverse informa-

tion. It is not possible for scientists to bring together

this large amount of information without the aid of

computers. Researchers have turned to ontologies –

which allow representation of experimental results in

a structured form – to facilitate interoperability among

databases by indexing them with standard terms as

well as to create knowledge bases that store large

amounts of knowledge in a structured manner. Ontol-

ogies provide researchers with both the structure into

which experimental results, facts and findings have to

be put into as well as the words (or terms) to be used

in populating the structure with instances [8,14]. If the

ontologies are well-designed, then the resulting knowl-

edge bases can be used to retrieve relevant facts,

to organize and interpret disparate knowledge, to

infer non-obvious relationships, and to evaluate

hypotheses posited by scientists.

Assertion annotations – assertions or statements

about the relationships among biological entities and
the processes in which they participate – are a crucial

link between abstractions of experimental results and the

theory (or theories) that explain the underlying results.

The national center for biomedical ontology develops

methods and tools that enable the easy creation of such

assertion annotations [11]. However, even with tool

support, the creation of assertion annotations ismanual,

hard and expensive. In addition to this annotation as

assertion viewpoint, another predominant use of anno-

tations is to provide metadata for datasets stored in

databases. In this case, these metadata-annotations are

not assertions about any biological entity but instead

provide additional information about the experiment

or dataset examining the biological entity. Such meta-

data-annotations provide information about experi-

mental conditions, the disease that the dataset pertains

to, the perturbation applied during the experiment, and

so on. Metadata-annotations do not state a biological

fact like an assertion based on interpretation of experi-

mental results. These two kinds of annotations: (i) asser-

tion annotations and (ii) metadata annotations, are

highlighted in Fig. 1.

Curation is the process by which annotations (either

assertions or metadata) are created. (The word ‘‘annota-

tion’’ is also used by some as a verb to describe this

process of curation to create annotations; this has lead

to wide-spread confusion in the community about the

meaning of annotation.) Until now curation has been

largely a manual process requiring highly qualified indi-

viduals to read and interpret the text in published papers

to create the annotations. It is important to note that

even though curation is carried out by skilled personnel,

different curators have different opinions on what

‘‘knowledge’’ is being reported in the paper. Increasingly,

automated methods are being employed to assist in the

curation task because of the fact that manual curation is

unlikely to scale and keep pace with the growth of

biomedical data and literature [3]. Curation is typically

carried out using a tool that allows the curator to select

relevant ontology terms and associate them with the

entity being annotated. The same tool writes out the

resulting annotations in a custom format.

Technical Issues

The Different Types of Expressivity of Ontologies/Voca-

bularies Used to Create the Annotations As discussed,

annotations can range from simple terms that are

‘‘associated’’ with a particular resource to structured

Biomedical Data/Content Acquisition, Curation. Figure1. Shows the relationship of the assertion-annotations and

metadata-annotations with datasets. The dataset is analyzed by a researcher to make a fine grained statement (a), which

states the particular observation made in the dataset and reported in a publication. Several such statements get

published in scientific papers. A curator, after reading a multitude of these papers creates an assertion-annotation (such as

a GO annotation) as a summary statement (b) based on the fine grained statements. The dataset is also described by the

researcher in terms of the disease studied, the cell lines used, the experimental conditions that existed etc. This

description (c), comprises themetadata-annotation of the dataset, and is usually in natural language; although at times it

is done using a CV. (d) shows the ‘‘tag’’ from a controlled vocabulary or ontology that can be assigned to this dataset

upon processing the text description computationally.

226B Biomedical Data/Content Acquisition, Curation
assertions that use explicit logical relationships.

Depending on the required use – that of creating

assertion-annotations or creating metadata-annota-

tions – the ontologies used in the annotation process

need to have adequate expressivity in terms of the

different relationships the user can use during the

curation process. A detailed discussion on the kinds

of relationships that are available in biomedical ontol-

ogies is can be found in [27]. The most widely used

artifacts for annotation are controlled vocabularies

(CVs). A CV provides a list of terms whose meanings

are specifically defined. Terms from a CV are usually

used for indexing records in a database. The Gene

Ontology (GO) is the most widely used CV in databases

serving biomedical researchers [1]. The GO provides

terms that are ‘‘associated’’ with particular gene products

for describing their molecular function (MF), biological

process (BP) and cellular component (CC). Arguably,

CVs provide the most return-on-effort in terms of

facilitating database search and interoperability.

Storage Schemes and Data Models to Store These Anno-

tations in Underlying Databases Most annotations

when created initially are stored as flat text files. How-

ever in order for the annotations to be useful to

researchers, they need to be stored in database systems

that support efficient storage and querying. Naturally
the database schema and the data model to which the

annotations conform to becomes an important issue.

Until recently the trend was to create a relational sche-

ma corresponding to the annotation model used for a

particular curation workflow and each group created

its own annotation model as well as schema. This

lead to various ‘‘silo’’ databases that need to be mapped

to one another. The need for such mapping lead to

the creation of groups, such as BioPAX, which pro-

posed ‘‘exchange formats’’ to map silo databases to one

another [4]. Recently, semantic web technology is re-

ceiving a lot of attention in the biomedical community

because of the promise of ‘‘automatic’’ interoperability

if different groups use consistent identifier (URIs) as

well as the Resource Description Framework (RDF)

format to describe entities and resources in their

annotations [22].

Techniques for Indexing the Curated Annotation for

Retrieval Assuming the issue of creating annotations

(manually or computationally) is adequately addressed,

special attention needs to be paid to the appropriate

indexing of annotations. For example, once a publica-

tion is annotated by associating it with the termmelano-

ma, in order to ensure appropriate retrieval when

someone searches for skin neoplasms it is essential to

index the same paper with terms such as skin neoplasm

Biomedical Data/Content Acquisition, Curation B 227

B

(becausemelanoma is a kind of skin neoplasm). This can

be accomplished by pre-computing all such inferred

annotations or by real time query expansion using the

hierarchy among the terms melanoma and skin

neoplasm.

Workflow Aspects of the Curation Process As noted

before, different curators can have different opinions

on what ‘‘knowledge’’ is being reported in the paper.

The level of this agreement is quantified by calculating

inter-curator agreement using a variety of methods [6].

Using detailed curation guidelines, many projects

achieve inter-curator agreement in the range of

85–90% and some as high as 94% [6]. Currently, cura-

tion is typically carried out using a tool, such as Phenote,

(www.phenote.org.) that allows the curator to select

relevant ontology terms and associate them with the

entity being annotated. The same tool writes out

the resulting annotations in a custom format. Usually

theworkflow for curation differs by organization and the

kinds of source (such as published papers or medical

records or clinical trials) being curated. Currently, there

are no off-shelf workflow systems that provide a generic

curation workflow. Increasingly curation is becoming

web based and the tools used for curation are tied to

a database which stores the annotations (See the

Alzforum and SWAN projects for an example). There

are also efforts to make curation collaborative, and sev-

eral wiki-based projects such as wikipathways (www.

wikipathways.org) are underway in the field.

Key Applications
The discovery process in biomedical research is cycli-

cal; Scientists examine existing data to formulate mod-

els that explain the data, design experiments to test

the hypotheses and develop new hypotheses that incor-

porate the data generated during experimentation.

Currently, in order to advance this cycle, the experi-

mentalist must perform several tasks: (i) gather infor-

mation of many different types about the biological

entities that participate in a BP, (ii) formulate hypoth-

eses (or models) about the relationships among these

entities, (iii) examine the different data to evaluate

the degree to which his/her hypothesis is supported,

and (iv) refine the hypotheses to achieve the best

possible match with the data. In today’s data-rich

environment, this is a very difficult, time-consuming,

and tedious task.
If existing data, information and knowledge are

curated to create knowledge bases that store large

amounts of knowledge in a structured manner [14,15]

the resulting knowledge bases can be used to retrieve

relevant facts, to organize and interpret disparate knowl-

edge and to computationally evaluate hypotheses

and model posited by scientists [2,18,19]. For example,

EcoCyc is a comprehensive source of structured knowl-

edge on metabolic pathways in E. Coli and can be used

to reason about E. Coli metabolism. Reactome is a

source of structured knowledge on BPs related to sig-

nal transduction, gene regulation and metabolism in

eukaryotic organisms [13]. The creation of such

knowledgebases requires that the task of curation be

carried out with great detail and that the tradeoffs

between the complexity of the annotation structure

required and the curation overhead entailed by that

be balanced. Understanding the curation cost is a signif-

icant factor in determining the feasibility of proposed

knowledge-driven applications [12].

There are several public as well as private groups that

curate biomedical literature and other data to create

highly structured knowledge bases. A majority of these

knowledge bases are centered onbiological pathways and

Ecocyc and Reactome are the leading examples. In Phar-

macogenomics, PharmGKB is a resource that provides

curated knowledge on the interactions between geno-

type and pharmacological effects of drugs [31]. The

Semantic Web Applications in Neuroscience (SWAN)

project is a resource providing curated knowledge on

Alzheimer’s research with a focus on capturing the evol-

ving scientific discourse as the research progresses [16].

In the commercial sector, companies such as Ingenuity

offer subscription access to curated literature content

as well as curation-for-fee services.

Such curated and structured content is primarily

used to interpret the results of high-throughput data-

sets in the light of prior knowledge. At the simplest

level, coloring nodes of a pathway according the in-

crease or decrease in their expression level in a partic-

ular assay is a widely used approach. Another widely

used approach is that of counting the annotations,

such as the association with a particular BP, assigned

to a set of biological entities, such as genes deemed

significant for a particular cancer, and analyzing for a

statistically significant difference in the distribution of

the annotation counts as compared to a reference such

as the set of all the genes assayed.

228B Biomedical Data/Content Acquisition, Curation
The other key use of curated and structured con-

tent is to support computer aided reasoning; with the

goal of inferring possible explanations for biological

phenomena [25], for evaluating alternative explana-

tions for biological phenomena[19], for automated

question answering [29] and automatically construct-

ing as well as extending existing structured descrip-

tions of BPs such as pathways [23].

Future Directions
As the amount and diversity of data, information and

knowledge rise in the biomedical domain, there is a

recognized need to be able to compute with the exist-

ing knowledge [5]. As the use of ontology rises in the

biomedical domain [30], the appreciation for the need

of curated content is also rapidly increasing; along with

the realization that manual curation is unlikely to keep

pace with the needs of the community [3].

These trends have led several groups, such as the

BioAI group at Arizona State University and the

SWAN group, to propose the use of distributed and

collaborative curation in an attempt to leverage the

‘‘wisdom of the masses’’ [10,17]. Collaborative cura-

tion holds tremendous promise for the field if the

community can arrive at an agreed upon platform

and formalism using which researchers can contribute

structured content. The other clear future direction

is the use of text-mining in the curation pipeline as a

‘‘force multiplier’’ to increase the productivity of exist-

ing curation efforts. The computational pharmacology

group at University of Colorado is conducting exciting

research in this direction. Both community-based col-

laborative curation as well as the use of text-mining to

increase the efficiency of curation tools will be activ-

ities to follow closely for those interested in biomedical

data acquisition and curation.

Cross-references
▶Annotation

▶Biological Metadata Management

▶Curation

Recommended Reading
1. Ashburner M., et al. Gene ontology: tool for the unification of

biology. Nat. Genet., 25(1):25–29, 2000.

2. Baral C., et al. A knowledge based approach for representing

and reasoning about signaling networks. Bioinformatics, 20

(1):15–22, 2004.
3. Baumgartner Jr, et al. Manual curation is not sufficient

for annotation of genomic databases. Bioinformatics, 23

(13):41–48, 2007.

4. BioPax-Consortium. BioPAX: Biological Pathways Exchange.

Available from: http://www.biopax.org/ 2006.

5. Bodenreider O. and Stevens R. Bio-ontologies: current trends

and future directions. Brief. Bioinform., 7(3):256–274, 2006.

6. Camon E.B., et al. An evaluation of GO annotation retrieval for

BioCreAtIvE and GOA. BMC Bioinform., 6(Suppl 1):S17, 2005.

7. Cherry J.M., et al. SGD: saccharomyceas genome database.

Nucleic Acids Res., 26(1):73–79, 1998.

8. Ciccaresse P., Wu E., and Clark T. An overview of the SWAN 1.0

ontology of scientific discourse. In Proc. 16th Int. World Wide

Web Conference, 2007.

9. Clark T. and Kinoshita J. Alzforum and SWAN: the present

and future of scientific web communities. Brief. Bioinform.,

8(3):163–171, 2007.

10. Gao Y., et al. SWAN: a distributed knowledge infrastructure for

Alzheimer disease research. J. Web Semantics, 4(3):222–228, 2006.

11. Gibson M. Phenote. Berkeley Bioinformatics and Ontology

Project (BBOP), National Center for Biomedical Ontology,

Lawrence Berkeley National Laboratory, 2007.

12. Hunter L. and Cohen K.B. Biomedical language processing:

what’s beyond PubMed? Mol. Cell., 21(5):589–594, 2006.

13. Joshi-Tope G., et al. Reactome: a knowledge base of biological

pathways. Nucleic Acids Res., 33(Database Issue): D428–432,

2005.

14. Karp P.D. An ontology for biological function based on

molecular interactions. Bioinformatics, 16(3):269–285, 2000.

15. Karp P.D. Pathway databases: a case study in computational

symbolic theories. Science, 293(5537):2040–2044, 2001.

16. Katz A.E., et al. Molecular staging of genitourinary malignancies.

Urology, 47(6):948–958, 1996.

17. Leslie M. Netwatch. Science, 312:1721, 2006.

18. Massar J.P., et al. BioLingua: a programmable knowledge envi-

ronment for biologists. Bioinformatics, 21(2):199–207, 2004.

19. Racunas S.A., et al. HyBrow: a prototype system for

computer-aided hypothesis evaluation. Bioinformatics, 20

(Suppl 1):257–264, 2004.

20. Reactome Curator Guide. http://wiki.reactome.org/index.php/

Reactome_Curator_Guide

21. Rise of the Bio-Librarian – the field of biocuration expands as

the data grow. http://www.the-scientist.com/article/display/

23316/.

22. Ruttenberg A., et al. Advancing translational research with the

Semantic Web. BMC Bioinform., 8(Suppl 3):S2, 2007.

23. Rzhetsky A., et al. GeneWays: a system for extracting, analyzing,

visualizing, and integrating molecular pathway data. J. Biomed.

Inform., 37(1):43–53, 2004.

24. Second International Biocuration Meeting, San Jose, CA,

October 25–28, 2007. http://biocurator.org/Mtg2007/index.

html.

25. Shrager J., et al. Deductive biocomputing. PLoS ONE, 2(4):

e339, 2007.

26. Sim I., Olasov B., and Carini S. The Trial Bank system: capturing

randomized trials for evidence-based medicine. AMIA Annu.

Symp. Proc., 2003:1076, 2003.

Biomedical Image Data Types and Processing B 229

B

27. Smith B., et al. Relations in biomedical ontologies. Genome

Biol., 6(5):R46, 2005.

28. Spasic I., Ananiadou S., McNaught J., and Kumar A. Text mining

and ontologies in biomedicine: making sense of raw text. Brief.

Bioinform. 6(3):239–251, 2005.

29. Tari L., et al. BioQA. http://cbioc.eas.asu.edu/bioQA/v2/index.

html, 2007.

30. The National Center for Biomedical Ontology. Available at:

www.biontology.org, 2006.

31. Thorn C.F., Klein T.E., and Altman R.B. PharmGKB: the

pharmacogenetics and pharmacogenomics knowledge base.

Meth. Mol. Biol., 311:179–91, 2005.
Biomedical Image Data Types and
Processing

SAMEER ANTANI

National Institutes of Health, Bethesda, MD, USA

Synonyms
Data Types: Image, Video, Pixel, Voxel, Frame; Con-

ceptual data types: Pixel, Point, Edge, Volume, Region

of interest, Shape, Color, Texture, Feature; Format:

Joint photographic experts group (JPEG), Digital

imaging and communications in medicine (DICOM),

JPEG2000, Imaging Technique: X-Ray, Magnetic reso-

nance imaging (MRI), Computerized tomography (CT),

Ultrasound, Positron emission tomography (PET),

Nuclearmagnetic resonance (NMR),Microscopy, Single

photon emission computerized tomography (SPECT),

Fluoroscopy; Image Processing: Compression, Wavelet

compression, Functional mapping, Image reconstruc-

tion, 2D image processing, Texture analysis, Edge detec-

tion, 3D image processing, Surface detection, Image

content analysis; Storage and Retrieval: Image databases,

Content-based image retrieval (CBIR), Visual similarity,

Feature indexing, Multimedia information retrieval

Definition
The entry term describes biomedical image types

(X-Ray, CT, MR, PET) stored in a particular format

(DICOM, JPEG) that can be processed for visual

enhancement (windowing, leveling) or extraction of

features for further processing as needed in specific

applications (generate 3D volumes from 2D slices,

Content-Based Image Retrieval (CBIR)).
Historical Background
Both image processing and databases have been stud-

ied for over four decades. Biomedical processing and

storage systems have received significant attention

within the last two decades. Imaging and image pro-

cessing has gained significant importance in clinical

medicine, biomedical research and education and cor-

respondingly, biomedical image databases have also

found increasing use in recent years. Images are still

largely stored as flat files on file servers and made

accessible via links stored in revelant database records.

Significant progress has been made in image types,

formats, and content being computed and stored in

these databases. This information can help in pro-

cessing and further use of these data. Image and

image feature indexing is a topic of significant research

interest with some specialized types are already in

practical use.

Foundations
Imaging has taken on a very important role in clinical

medicine, biomedical research, and education. Biomedi-

cal visual data are acquired using a variety of techniques:

single frame images; 3D volumes composed of single

frame images; and made and as time-synchronized mul-

tiple frames as video data. In addition, these data are

acquired at varying scales ranging from gross anatomy

to the cellular level. Each image data type has specific

acquisitionmethods, set of image processingmethods for

feature extraction that aid in analysis for targeted pur-

poses, compression and storage methods, and particular

data handlingmethods [1]. The image database primarily

serves as a file storage mechanism with various processes

for analysis and retrieval traditionally included in utility

applications. Image databases are typically found in prac-

tical use as ‘‘multimedia databases’’ or ‘‘multimedia

information systems’’ in the form of Radiological Infor-

mation Systems (RIS), Hospital Information Systems

(HIS), and Picture Archiving and Communication Sys-

tems (PACS). Such systems link textual data to image

data through file links stored in database records. Image

databases imply use of image feature indexing strategies

such as metric index trees, multidimensional data trees,

spatial databases, and R-trees, for specialized use such as

Content-Based Image Retrieval (CBIR) [8].

Image data types are challenging to define in stan-

dard terms such as integers, characters, strings, etc.

An image is composed of pixels or in case of 3D images

may be considered to composed of a set of elements of

230B Biomedical Image Data Types and Processing
conceptual data type called voxels. Wikipedia (http://

www.wikipedia.org) defines voxel as a portmanteau of

words volumetric and pixel representing a unit element

on a 3D image. Each such element (pixel or voxel) can be

considered a complex data type as its content may be

expressed using n-bits where n may be 8, 12, 16, 24, or

32. Typically 8-, 12-, and 16-bit images are gray scale

images. A color pixel is typically 24-bits in depth com-

prising of three 8-bit channels for the additive color

primaries (RED, GREEN, BLUE), though it is possible

to have color images with other bit depths. This infor-

mation is not natively stored in the image but needs to be

exposed to the application through image metadata that

may be stored in particular formats, such as a DICOM

(http://dicom.nema.org/) on JPEG image header [6].

The images can be generated using a variety of tech-

niques. Radiographic or X-Ray images, Computerized

Tomography (CT), Magnetic Resonance images (MRI),

Positron Emission Tomography (PET) images are exam-

ples of various imaging techniques. Techniques such as

CT and MRI image the desired anatomical region in

closely spaced sections. These sectional images can then

be processed to create views along desired axes (axial,

coronal, sagittal, oblique) as well as generate 3D volu-

metric data rendering.

Image processing is a term that includes functions

and methods that focus on enhancement of images

for improved human visualization or computer ana-

lysis, such as windowing, leveling, object edge detec-

tion, among others [3,9]. It also is synonymous with

application of methods whereby features such as

edges, textures, and surfaces, among others, can be

computed for making measurements, computer-

aided diagnosis, visual enhancement, identifying ana-

tomical structures, determining unique image content

signature, etc. For instance, using the above example

of generating 3D volumetric data from 2D image

slices, for a data set of MRI slices of the brain, it

would be necessary to segment the edges from each

2D MRI image slice and register them with

corresponding edges from the same anatomy in

other slices. The next step would be to convert these

edges into surfaces formed across these slices in order

to generate 3D volumetric data.

With the increasing use of images in medical care

and research, it becomes necessary make this data

connect with other image and non-image data. The

resulting database systems have evolved as PACS, RIS,

and HIS and are commonly found in modern hospitals
and medical centers. These database systems are capa-

ble of storing and retrieving text data, for example,

a patient record containing test results and other

medical history, along with image data. The systems

may exist on a single computer, a local network of

computers, or distributed over a wide area network.

Variants of these systems developed for medical

research studies can also correlate between different

study participant information and keep track of lon-

gitudinal information.

In database processing it is often necessary to de-

fine the image to be of a particular type. This can assist

in data and type verification as well as communication

of semantics to other applications that may be using

the data. Some database systems require storage of

images in their native form as undefined BLOB data

types while others, including most PACS, prefer to

maintain references to image data files that are stored

in traditional directory (folder) file structures. The

choice between these approaches is largely determined

by storage and computational efficiency and depen-

dent on particular applications and solutions. In either

scenario it is efficient to store the image metadata

as database records. While this information may be

available in image header files, it requires the addition-

al step of accessing and opening each image file for

any database operation involving images.

Image processing steps often result in features

extracted from images. These features could be regions

of pixels, measurements of color, texture, edges form-

ing a shape, surfaces, etc. Each of these features could

be standardized to be a data type or could use standard

data types, e.g., a 3-channel color histogram could

be represented using 3D arrays that could represent

3D histograms. Each such conceptual type may be used

as a predefined data type. Other operations could

include transforming the image or extracted charac-

teristics from the spatial domain several into other

domains through Fourier analysis or Wavelet trans-

forms. Selecting these or other image processing

methods is heavily dependent on the nature of the

images and several methods are covered in [1,3,9].

Further, it may be necessary to compress the images

in order to minimize data storage requirements or

improve transmission efficiency over networks. These

decisions must be made carefully in light of possible

data loss found in typical implementations of common

image compression methods such as JPEG or

JPEG2000 [6].

Biomedical Image Data Types and Processing B 231

B

In summary, biomedical image processing is criti-

cal to analysis and use of biomedical images for clinical

medicine, research and education. These images may

also have other associated images as well as text

data. All this information is stored in biomedical

databases that use a combination of image types,

header information, image units, and content through

the extracted features as data types. Images may be

indexed through multidimensional indexing trees

or be linked to flat files stored in a folder or accessed

via a file server.

Key Applications
Multimedia Medical Information Systems: Medical

Information Systems, like the PACS, hold medical

data about patients, medical research study partici-

pants, etc. This medical data is typically heterogeneous

comprising of electronic medical records containing

the medical history, clinical notes, lab reports, and

any acquired images. The text data can be fielded or

exist as a block of free text. The image data can be from

various sources and in a variety of formats. As such, a

PACS can be considered a special type of a Multimedia

Medical Information System. Another example of

a Multimedia Medical Information System is the

Multimedia Database Tool (MDT) being developed at

the National Library of Medicine (NLM), part of the

National Institutes of Health (NIH). The MDT is a

Web-based system [5] with a MySQL back-end data-

base that enables retrieval of text and image data in

response to specific queries. For example, from a data-

base of a cervical cancer study being conducted by

the National Cancer Institute (NCI) one could query

for ‘‘all women with cervical intraepithelial neoplasia

3 whose cytologic results are atypical squamous cells

of undetermined significance.’’

The MDT was developed to access, evaluate, and

collect information from thousands of uterine cervix

images or cervigrams for cancer studies. It is one of

two systems developed to work with these images: the

boundary marking tool (BMT) for marking areas of

particular importance in the images and the MDT

for Internet dissemination of the images and to relate

them with text data and information collected with

the BMT. The MDT has system architecture capable

of deploying color images and related information

on the Web with minimal reprogramming. It has the

flexibility to accept new datasets with the required

customization performed at the level of a database
administrator, rather than a programmer. It also has

the capability of querying a database of text and

images over the Web, of showing the query results

consisting of multiple images and text data, and

of exporting these results for statistical analysis. Ad-

ditionally, the MDT is designed for data collection

from remote users; given adequate password protec-

tion and anonymized data to assure patient privacy,

experts worldwide will be able to access the data

resource. Through the Internet, they will evaluate

images and test data, perform analysis of the infor-

mation, and record their evaluations in a central

database. Additionally, because of its architecture,

the MDT system can support a broad class of text

and image databases. Therefore, the MDT is designed

to grow if additional groups wish to merge their data

on cervical cancer or to use it to manage their own

multimedia collections.

Content-Based Image Retrieval (CBIR): While the

MDT allows querying of text and images using text

keywords and structured SQL-like queries, an alterna-

tive complementary form of image-based querying has

gained significant research interest in recent years.

This approach, called Content-Based Image Retrieval

(CBIR), uses distinguishing features extracted from

images to serve as indices. These features are then

used to find images similar to an image query. For

example, in the Spine Pathology Image Retrieval Sys-

tem (SPIRS) [4], developed at NLM, the boundary

edges of individual vertebra are used to query the

X-ray images of the spine captured as a part of the

Second National Health and Nutrition Examination

Survey (NHANES II). This shape feature was chosen

because the pathology of interest is expressed along the

vertebral boundary seen in the spine imaged on the

sagittal plane. Perturbations along the boundary are

indicative of pathology. In contrast, the set of cervi-

grams from the NCI cancer study is an example of an

image class where color, texture, and location informa-

tion are much more important than edge information.

In this latter case, the pathology of interest is aceto-

whitened regions [10] on the cervical wall.

Finding similar images tends to be a very subjec-

tive matter and is heavily dependent on the extracted

features from the images. Additionally, it is also

dependent on the level of detail extracted. For exam-

ple, one measure of image similarity is overall ap-

pearance of the image, which in case of X-Ray

images, can be characterized by a histogram of

232B Biomedical Informatics
pixel intensity levels in the image. While this global

measure may be sufficient for overall similarity, it is

insufficient in expressing local pathology that can only

be captured by feature extraction within the region of

interest. An intelligently implemented hierarchical

strategy works better in a heterogeneous collection

of images.

Given the subjective nature of image content

and human perception, it is challenging to evaluate

systems through system characteristics or reported

performance measures alone. These results are sensi-

tive to the kinds of image data that the system is

operating on, extracted features, query capability,

and several other gaps that need to be overcome for

developing an ‘‘ideal’’ system. A framework for these

gaps is discussed in [2]. Other medical systems are

reviewed in [7]. The Cross Language Evaluation

Forum (CLEF) benchmarking competition has evalu-

ates image classification and image retrieval in a

biomedical setting on an annual basis (CLEF-Cam-

paign, http://www.clef-campaign.org) and permits

use of text data commonly found with medical images

to improve usability. Due to the transient nature of

academic systems, and lack of detail available in com-

mercial systems, such a venue provides valuable

metrics for comparing various systems and assessing

the state-of-the-art.

Cross-references
▶Annotation-Based Image Retrieval

▶ 2D Shape Retrieval

▶ Feature-Based 3D Object Retrieval

▶ Feature Extraction for Content-Based Image

Retrieval

▶ Image

▶ Image Content

▶ Image Database

▶ Image Management for Biological Data

▶ Image Metadata

▶ Image Representation

▶ Image Retrieval

▶ Image Retrieval and Relevance Feedback

▶ Image Salient Points and Features

▶ Image Segmentation

▶ Indexing and Similarity Search

▶ Indexing Metric Spaces

▶ Lossless Data Compression

▶ Low Level Image Content Analysis (Color, Texture

Shape)
▶Multimedia Data

▶Multimedia Databases

▶Multimedia Data Indexing

▶Multimedia Data Storage

▶Radiology Information Systems

▶Relevance Feedback for Content-Based Information

Retrieval

▶ Spatial Data Types

▶Visual Content Analysis
Recommended Reading
1. Beutel J., Kundel H.L., and Van Metter R.L. (eds.). Handbook

of Medical Imaging. Vols. 1, 2, and 3. SPIE Press,

Bellingham, WA.

2. Deserno T.M., Antani S., Long R. Ontology of Gaps in Content-

Based Image Retrieval. J Digital Imaging, February 2008.

3. Gonzales R.C. and Woods R.E. (eds.). Digital Image Processing

(2nd edn.). Prentice Hall, Upper Saddle River, NJ.

4. Hsu W., Antani S., Long LR. SPIRS: a framework for content-

based image retrieval from large biomedical databases. Medinfo,

12 (Pt 1):188–92, 2007.

5. Jeronimo J., Long L.R., Neve L., Bopf M., Antani S., SchiffmanM.

Digital tools for collecting data from cervigrams for research

and training in colposcopy. J. Lower Genital Tract Dis.,

10(1):16–25, 2006

6. Joint Photographic Experts Group (JPEG) http://www.jpeg.org/.

American Medical Information Association (AMIA 2007),

Chicago, November 2007, pp. 826–830.

7. Müller H., Michoux N., Bandon D., Geissbuhler A. A Review

of Content-Based Image Retrieval Systems in Medical

Applications – Clinical Benefits and Future directions. Int J

Med Inform., 73(1):1–23, 2004.

8. Samet H. Foundations of Multidimensional and Metric Data

Structures. Morgan Kaufman. San Francisco, CA, 2006.

9. Sonka M., Hlavac V., and Boyle R. (eds.). Image Processing,

Analysis, and Machine Vision (2nd edn.). PWS Publishing,

Washington, DC.

10. Xue Z., Antani S.K., Long L.R., Jeronimo J., Thoma G.R.

Investigating CBIR techniques for cervicographic images. In

Proc. 2007 Annual Symposium of the American Medical Infor-

mation Association, 2007, pp. 826–830.
Biomedical Informatics

▶ Implications of Genomics for Clinical Informatics

▶Taxonomy: Biomedical Health Informatics

Biomedical Scientific Textual Data Types and Processing B 233

B

Biomedical Literature

▶Biomedical Scientific Textual Data Types and

Processing
Biomedical Scientific Textual Data
Types and Processing

LI ZHOU
1, HUA XU

2

1Partners HealthCare System Inc., Boston, MA, USA

Harvard Medical School, Boston, MA, USA
2Columbia University, New York, NY, USA

Synonyms
Scientific knowledge bases; Biomedical literature; MED-

LINE/PubMed; Curation; Annotation; Information

retrieval; Information retrieval models/metrics/opera-

tions; Indexing; Semi-structured text retrieval; Text ex-

traction; Text mining; Web search and crawling
Definition
Vast amounts of biomedical scientific information and

knowledge are recorded in text [1,7]. Various scientific

textual data in the biomedical domain may generally be

disseminated through the following resources [7,11]:

biomedical literature (e.g., original reports and sum-

maries of research in journals, books, reports, and

guidelines), biological databases (e.g., annotations in

gene/protein databases), patient records (e.g., clinical

narrative reports), and web content.

A variety of techniques have been applied to identify,

extract, manage, integrate and exploit knowledge from

biomedical text. Some researchers [11] divide biomedical

scientific textual data processing into three major activ-

ities as shown in Figure 1: information retrieval (IR),

information extraction (IE), and text mining (TM).

Information retrieval [2,11] is the science of

indexing and searching for information particularly

in text or other unstructured forms. The aim of IR is

to identify relevant documents in response to a partic-

ular query, which forms the basis of any knowledge

discovery process.

Information extraction [11] aims to identify and

extract categorized or semantically well-defined data

(entities, relations or events) from text documents in a

certain domain, as well as to create structured knowledge
bases that can be accessed by other informatics applica-

tions. Typical subtasks of IE are named entity, relation

and event recognition (e.g., recognition of protein

names and interactions between proteins), coreference

(e.g., identifying whether a chain of noun phrases refer

to the same object), and terminology extraction (e.g.,

finding the relevant terms for a given corpus).

Text mining (TM) [2,6] is the process of discover-

ing and extracting interesting and non-trivial patterns

and knowledge from unstructured text data. The pri-

mary goal of TM is to retrieve knowledge that is hidden

in text, and to present the distilled knowledge to users

in a concise form. Typical subtasks of TM may include

pattern discovery, hypothesis generation, correlation

discovery, etc. However, some researchers give a

broader definition of TM which overlaps with IR and

IE on certain tasks such as text classification, text

clustering and named entity recognition.

Historical Background
Before the invention of computers, results of biomedi-

cal research have been published as journal or confer-

ence prints for a long time. Bibliographic databases

that typically contained references to literature on

library shelves was the first application of using com-

puters to improve library service. MEDLINE (Medical

Literature Analysis and Retrieval System Online) is the

U.S. National Library of Medicine’s (NLM) premier

bibliographic database that contains over 16 million

references to journal articles in life sciences with a

concentration on biomedicine. As an online interactive

searchable bibliographic database, MEDLINE was

introduced in 1971 by NLM, to replace its previous

version called MEDLARS (Medical Literature Analysis

and Retrieval System). In 1997, PubMed was developed

by the National Center for Biotechnology Information

(NCBI) at the NLM, to provide free and efficient access

to MEDLINE through the World WideWeb. Currently,

MEDLINE/PubMed is probably the best-known bio-

medical literature reference database. The use of high-

throughput experimental technologies has dramatically

increased the pace of biomedical knowledge discovery.

In 2006, over 623,000 references to published articles

were added to the MEDLINE database. A large amount

of effort has been spent on improving the performance

of IR on theMEDLINE database. A distinctive feature of

MEDLINE is that the records are indexed with NLM’s

Medical Subject Headings (MeSH).

Biomedical Scientific Textual Data Types and Processing. Figure 1. Major stages of processing biomedical scientific

textual data and relevant subtasks [11].

234B Biomedical Scientific Textual Data Types and Processing
During the past decade, more and more full-text

biomedical publications have become available on the

Internet, though most of them have restricted access.

In 1999, a bold new initiative called PubMed Central

(PMC) was designed at the U.S. National Institutes of

Health (NIH) to provide a central repository for liter-

ature in the life sciences with open access. To date,

there are more than 300 journals that have joined

PMC and they provide free access to their publications.

BioMed Central, a commercial publisher, also provides

free access to papers published in their journals.

Various text processing methods, such as natural

language processing (NLP) and machine learning

(ML) technologies, have been extensively studied in

the domain of computer and information science. How-

ever, they have not been widely applied to biomedical

text before the 1990s, largely due to the lack of available

biomedical text. Starting at the mid 1990s, text proces-

sing technologies have been gradually applied to bio-

medical text on different tasks, such as information

retrieval, biomedical entity recognition, text clustering

and classification, and knowledge discovery.

Foundations
As mentioned above, biomedical scientific textual data

processing applies methods and technologies from

multiple disciplines, including linguistics, computer

science, statistics, and so on. In general, the major

stages of processing scientific textual data to exploit

rich knowledge include retrieval of relevant docu-

ments, extraction of named entities and relations,

and discovery of new knowledge. However, some pro-

cesses may not follow the exact steps. This entry adopts

a classification by Natarajan et al. [11] on major con-

stituent technologies for knowledge discovery in text
(see Fig. 1). Scientific fundamentals for each stage will

be discussed in the following sections.

Information Retrieval

Conventional IR methods are often based on keyword

queries, using Boolean logic, vector space models or

probabilistic models [1,7]. One of the simplest forms

of IR is to search keywords in documents that are

indexed by a set of keywords. Search algorithms are

used to identify the relevant documents based on the

number of index keywords that match query keywords.

One disadvantage of this approach is that the docu-

ments are determined either relevant or irrelevant.

There is no further ranking. Vector space model is an

algebraic model for representing text documents.

When applying the model to IR, both the query and

documents are represented as vectors, whose dimen-

sions correspond to different terms in the query or

documents. There are different methods to compute

the weight of terms in the vectors and the tf-idf weight-

ing is one of the best known schemes. Relevancy rank-

ings of documents to a query can be determined by

calculating the document similarities between the

query and documents, via measurements such as cosine

similarity of two vectors. Probabilistic models treat the

process of document retrieval as a probabilistic infer-

ence and similarities are computed as probabilities that

a document is relevant for a given query. An advantage

of probabilistic model is that documents are ranked in

decreasing order of their probability of being relevant

to the query.

Information Extraction

Approaches to named entity recognition generally fall

into three categories: lexicon based, rule based and

statistically-based [1]. For example, part-of-speech

Biomedical Scientific Textual Data Types and Processing B 235

B

tagging, inductive rule learning, decision trees, Bayes-

ian model, support vector machines, as well as com-

bined methods have been applied to this problem. For

discovering relationships among entities, variant tech-

niques have been used. Shallow parsing is often used to

focus on specific parts of the text to analyze predefined

words such as verbs and nouns. Some systems combine

natural language processing and co-occurrence techni-

ques, while others apply machine learning techniques.

Text Mining

Text classification and clustering are the most widely

used techniques in biomedical text mining. While text

classification is a form of learning from pre-classified

examples, text clustering is referred to as unsupervised

learning. Bayesian models were widely used in the early

days. In recent years, more advanced machine learning

methods, such as k-nearest neighbors, artificial neural

networks, support vector machines, expectation maxi-

mization, and fuzzy clustering have been used. Logical

inference models [13] have been applied to hypothesis

generation which attempts to uncover relationships

that are not present in the text but instead are inferred

by the other existing relationships. There are a variety

of techniques for knowledge discovery from biomedi-

cal text using graphs and knowledge models.

Key Applications
Information retrieval technologies have been used ex-

tensively to help users to find relevant articles that they

are interested in. MEDLINE/PubMed has used various

methods to improve the performance of searches. It

provides keyword-based Boolean search to allow users

to search by keywords, as well as document-based

search, which implements the vector space model and

could find documents for similar topics. With the

availability of full-text articles online, more IR applica-

tions have tried to search full-text articles for detailed

information. For example, the focus of the 2006 geno-

mics track of the Text Retrieval Conference (TREC) [8]

was to retrieve answers for biological questions from

full text articles. The European Bioinformatics Insti-

tute (EBI) at the European Molecular Biology Labora-

tory (EMBL) has developed a biomedical information

retrieval system called ‘‘CiteXplore,’’ which combines

literature search with text mining tools for biology. It

also links biomedical literature sources to existing bio-

informatics databases, such as SwissProt.
Although most of biomedical text processing tools

are still in the research stage, some of them have shown

potential uses. Many information extraction systems

have been used to build knowledge bases from bio-

medical literature. Different approaches have been

reported to extract relations among biomedical entities

of interest (e.g., gene/protein). GENIES (GENomic

Information Extraction System) [4] is an NLP-based

system that extracts molecular pathways from litera-

ture. It semantically parses sentences into a structured

form for relation extraction. PASTA (Protein Active

Site Template Acquisition) [5] is a system that uses

manually created templates to extract relationships

between amino acid residues and their functions with-

in a protein. The PreBIND [3] system uses Support

Vector Machine (SVM) technology to locate protein-

protein interaction data in the literature, thus to facili-

tate the curation process for protein databases. IR

and IE systems are also combined to build more sophis-

ticated systems to help specific tasks in biology, such as

biological database curation tools that can help curators

find related articles and identify critical findings from

biological articles [14]. The iHOP [9] system extracts

protein-relationship from the literature. It also includes

advanced search modes for discovery and visualization

of protein-protein-interaction network [9].

Another potential application of text mining tools is

to discover new knowledge from literature, for example,

helping biomedical researchers to generate new research

hypotheses. ARROWSMITH and BITOLA [9,14] are

two online tools that provide the function of literature-

based knowledge discovery. ARROWSMITH detects

indirect associations between concepts that are not di-

rectly linked in the literature. BITOLA is designed for

disease candidate gene discovery by mining the biblio-

graphic database MEDLINE.

Cross-references
▶Data Mining

▶Data, Text, and Web Mining in Healthcare

▶ Information Retrieval

▶Text Mining of Biological Resources

▶Text Mining
Recommended Reading
1. Chen H., Friedman C., Hersh W., and Fuller S.S. (eds.) Medical

Informatics: Knowledge Management and Data Mining in Bio-

medicine. Springer, Secaucus, NJ, 2005.

236B Biostatistics and Data Analysis
2. Cohen A.M. and Hersh W.R. A survey of current work in

biomedical text mining. Brief Bioinform., 6(1):57–71, 2005.

3. Donaldson I., Martin J., deBruijn B., Wolting C., Lay V.,

Tuekam B., Zhang S., Baskin B., Bader G., Michalickova K.,

et al. PreBIND and Textomy – mining the biomedical literature

for protein-protein interactions using a support vector machine.

BMC Bioinformatics, 4:11, 2003.

4. Friedman C., Kra P., Yu H., Krauthammer M., and Rzhetsky A.

GENIES: a natural-language processing system for the extraction

of molecular pathways from journal articles. Bioinformatics, 17

(Suppl 1):S74–S82, 2001.

5. Gaizauskas R., Demetriou G., Artymiuk P.J., and Willett P.

Protein structures and information extraction from biological

texts: the PASTA system. Bioinformatics, 19(1):135–143, 2003.

6. Hearst M. Untangling text data mining. In Proc. 27th Annual

Meeting of the Assoc. for Computational Linguistics, 1999.

7. Hersh W. Information Retrieval: A Health and Biomedical Per-

spective. Springer, NY, 2003.

8. Hersh W., Cohen A., Roberts P., and Rekapalli H.K. TREC

2006 genomics track overview. In Proc. TREC 2006. Available

at: http://trec.nist.gov/pubs/trec15/papers/GEO06. OVERVIEW.

pdf

9. Hoffmann R. and Valencia A. A gene network for navigating the

literature. Nat. Genet., 36(7):664, July 2004.

10. Hristovski D. and Peterlin B. Literature-based disease candidate

gene discovery. In Proc. Medinfo. American Medical Informatics

Association, Bethesda, 2004, p. 1649.

11. Natarajan J., Berrar D., Hack C.J., and Dubizky W. Knowledge

discovery in biology and biotechnology texts: a review of tech-

niques, evaluation strategies, and applications. Crit. Rev. Bio-

technol., (25):31–52, 2005.

12. Smalheiser N. and Swanson D. Using ARROWSMITH: a

computer-assisted approach to formulating and assessing

scientific hypotheses. Comput. Methods Programs Biomed.,

57:149–153, 1998.

13. Swanson D.R. Complementary structure in disjoint science lit-

eratures. In Proc. 23rd Annual Int. ACM SIGIR Conf. on Re-

search and Development in Information Retrieval, 1990,

pp. 280–289.

14. Yeh A.S., Hirschman L., and Morgan A.A. Evaluation of text

data mining for database curation: lessons learned from the

KDD Challenge Cup. Bioinformatics, 19 (Suppl 1):i331–i339,

2003.
Biostatistics and Data Analysis

MEHMET M. DALKILIÇ

Indiana University, Bloomington, IN, USA

Definition
Biostatistics is the application of probability and statisti-

cal techniques to the biological sciences. Probability
has played a significant role in areas like genetics

where combinatorics validate conjectures about the

relationships of genes and the environment. Recently,

combinatorics has become one of the main approaches

to solving problems e.g., motif discovery in bioinfor-

matics. In the nineteenth century, well-known biolo-

gists like Herman von Helmholtz advocated that

biological phenomenon could be understood using

techniques in the physical sciences (remnants of this

view still are present today). That approach, together

with the ‘‘vitalism’’ movement [3] impeded the use of

statistics. By the beginning of this century, however,

statistics has become de rigueur in virtually all

biological publications.

Historical Background
Although statistics as a mathematical area can be

traced further, biostatistics is often associated with

the work of Francis Galton (1822–1911). His major

contribution was demonstrating that statistical meth-

ods could be beneficial in biology. Carrying on this

tradition were Karl Pearson (1857–1936) and R.A.

Fisher (1890–1962). While a number of standard appli-

cations and techniques have not changed for more than

half-a-century, the availability of computing has made

some (heretofore infeasible) techniques available.

The classic text in this area is by Sokal and Rohlf,

‘‘Biometry’’ [5] now in its third edition. It should be

pointed out that the demarcation often cited between

‘‘frequentists’’ [6] and ‘‘Bayesians’’ [1] is fairly well

evident in biostatistics. In the former, physical, repeat-

able, identical, and random experiments can be asso-

ciated to a mathematical limit e.g., PðheadsÞ ¼
limflips!1

#heads
flips

¼ 1=2 is the probability of getting

heads when flipping a coin. Bayesians, on the other

hand presume probability to be a degree of belief (or

subjective probability). This can be written as pos-

terior / prior � likelihood, in symbols P(H jE) / P(H)

P(E jH). The distinctive feature is that Bayesian statis-

ticians will associate values with the posterior, hypothe-

sis, and prior (likelihood), whereas non-Bayesian

statisticians will only consider the hypotheses in con-

strained settings. Classical statistics is often the prima-

ry choice. However, Bayesian techniques are becoming

increasingly popular in systems biology–biology that

integrates and evaluates disparate data usually in the

form of very large graphs. In these graphs, nodes are

typically genes and edges evidence of relationship.

Biostatistics and Data Analysis B 237

B

Foundations
As explained eloquently in [5], there is a deeper philo-

sophical debate centered onwhether biological phenom-

ena can ultimately be modeled using deterministic

approaches. That debate aside, the use of statistics is

continuing to grow as the amounts of biological data

grow. Indeed, recent technologies (high-throughput) are

producing several orders of magnitude more data in

comparison to traditional approaches. Statistical tools,

from this perspective, becomes a necessity. Furthermore,

a growing number of biologists now believe that there is

benefit in examining data normally not studied within

one’s own specialized domain–this is called a systems

biology. While the foundations for systems biology are

still under development it is clear that it will rely heavily

on Bayesian reasoning. Typically the disparate experi-

mental, textual, etc. data are structured as a directed,

acyclic graph where nodes are random variables and

edges are effects. The basic attempt is to discover sets of

independent variables and form a better understand-

ing of the joint probability. For example, one might

take the some 14,000 Drosophila m. genes and presume

a joint distribution P(X1,X2,...,X14000) where Xi repre-

sents the probability that gene i has some expression

level. Bayesians build large graphs relying on condi-

tional probabilities and so-called ‘‘separations’’ that

expose which random variables are independent of

one another. They then examine the behavior of the

graph under particular conditions. The interested

reader is guided to [4]. Topics studied in biostatistics

are too numerous to list (for example multivariate

regression, analysis of covariance, linear discriminant

analysis, principal component analysis, and so forth;

therefore, a sample that reflects the kind of tools that

are used and most prevalent techniques will be given.

Most of the biostatistics used is parameteric; themodels

result from human expertise. This is opposed to non-

parametric models (or data-driven) that rely on the

data itself. With the availability of cheap, fast computa-

tion, however, the use of nonparametric models has

exploded. Given a set of data x ¼ x1, x2,...,xn, the

probability P(x jy1,y2,...,ym) is parametric if m is not

dependent on n; otherwise it is non-parametric. Linear

Regression is a parametric model that presumes a linear

relationship between two random variables (rv) both

having Gaussian distributed noise. It is presumed the

variables are real valued. If rv Y is a function of rv X,

then the phrase, ‘‘A regression of Yon X,’’ is used. One

is determining the optimal coefficients b0,b1 given
data D ¼{hx1,y1i,...,hxn,yni} on function Y ¼ b1X þ
b0. Regression, though simple, provides a first step in

understanding the relationship between to rvs. Regression

can be used to predict, adjust, explain, etc. and is com-

mon in biostatistics. Regression produces an optimal

linear relationship between rvs Y and X. Typically, one

minimizes the squares of the residuals–the difference

between the hypothetical point and observed point. The

use is so ubiquitous that virtually every mathematical or

statistical package has this available. As pointed out many

times in the area, because two rvs are not linearly related,

does not mean they are not functionally related.

Correlation, related to Linear Regression, is as often

used. It is so similar in so many ways to Linear Regres-

sion that the literature will often have the use of one,

when in fact, it is the other that is warranted or even

makes sense. Succinctly, Regression examines how one

rv depends on another; Correlation examines how

two rvs behave together–in concert or more formally

covary. Correlation is related to moments and is often

called product-moments. One of the most popular is

the Pearson product-moment r ¼ sXY
sXsY

where si is the

variance of the joint (numerator) and individual rvs

(denominator). The value r ∈ [�1,1] where as jr j �
1, the variables appear to have an association. As r
approaches 0, this indicates they do not. The positive

and negative score reflects the direction of the associa-

tion. Another popular correlation examines how pairs

of pairs of values behave called ranks. Kendall’s t
examines two pairs of pairs hxi, yyi,hxj, yji observing

if both values of one pair are greater or smaller than the

other pair; if so, then the pair of pairs is called concor-

dant. If this is not satisfied, then the pair of pairs is

discordant. The formula for Kendall’s t ¼ N
nðn�1Þ where

N is the count of ranks and n the sample size. It should

be pointed out this is a nonparametric statistic and

value t ∈ (�1,1).

A good deal of analysis is done with simple hy-

pothesis testing of sample statistics. Because an entire

population can be seldom checked, to establish a

degree of certainty about a property we use sampling

techniques (statistics). Sampling is done randomly to

hopefully reflect the underlying distribution, espe-

cially if it is not known. If the sample is consistent

with the conjecture about the existence of a property

(called a hypothesis), then the hypothesis is said to be

accepted; if not, it is rejected. There exists two disparate

hypotheses that are simultaneously proposed when

doing this analysis. The Null hypothesis, typically

238B Biostatistics and Data Analysis
denoted H0, is that the property was observed likely

through chance. The Alternative hypothesis, typically

denoted by Ha, is that the property is not due to

chance. While recapitulating this process in its entirety

is not appropriate here, we summarize the following

sequence of standard steps that are typically followed

for such analysis: (0) State the two hypotheses H0

and Ha. It must be the case that only one can be true;

(1) Establish the protocol for acquiring and using

sample data. The decision usually depends on a chosen

test statistic (a real-valued function of the sample);

(3) Calculate the test statistic’s value; (4) Check wheth-

er the statistic’s value is likely to have occurred by

chance or not typically using tables [2].

There are two types of errors that can result in this

procedure. A Type I error will reject a null hypothesis

when it is actually true. The significance level is the

probability of committing this error and is often

denoted by a. A Type II error is accepting a null

hypothesis when it is actually false. The power of the

test is the probability of not committing a Type II error.

A P-value is, in a sense, an extreme case in examining

H0. It will reflect the strength of the evidence. P-values

are very useful, since one can apply any number of

significance levels reflecting confidence in the data.

ANOVA (analysis of variance), developed by

Fisher almost a century ago remains a popular tool

that examines differences in populations means

m ¼ SN
i¼1

Xi

N
, for values X1,X2,...,XN one of the mea-

sures of central tendency of a population (e.g., median,

mode). Population variance, s2 ¼ SN
i¼1

ðXi�mÞ2
N

, mea-

sures the spread of values. There are two models of

ANOVA, Model I and Model II, which form H0 and Ha

based on mean and variance, respectively. The interest-

ed reader is guided to [5] for an in-depth presentation.
Key Applications
The initial application of biostatistics was to study

evolution and natural selection. It now plays an essen-

tial role in sequence and genome analysis, protein

structure prediction, proteomics, phylogenetics, etc.

A current challenge for data analysis is to consider

extensions to relational data, to include probabilistic

data and uncertainty, as they their roles in biological

inquiry. Database researchers, one of the challenges is

to move in thinking from a Boolean model (relational)

to one that involves probability and uncertainty,

conflicting data, non-replicable data, and data that
has orders of magnitude more attributes than tuples.

Data in biology is often un-normalized and may lack

primary key identifiers normalization.
Future Directions
Biologists and computer scientists use different para-

digms when considering data and analysis. Biologists

are reductionists and focus on tightly constrained pro-

blems, whereas computer scientists pursue generic

technological solutions that can be applied to multiple

problems. Researchers in data management and bio-

statistics must keep these differences in mind as they

move towards developing useful yet generic tools

to serve biologists into the future. The future of bio-

statistics will depend directly on the computational

resources available. Typically, two different approaches

to problems are taken: combinatorial (or enumerative)

or statistical. The former is usually very fast, but lacks

the ability to discover nuanced relationships. Statistical

approaches are computationally expensive, e.g., Expec-

tation-Maximization, but with increasingly powerful

computers and clusters, this computational impedi-

ment is slowly eroding.
Cross-reference
▶Annotation

▶Biomedical Data/Content Acquisition, Curation

▶Clustering

▶Curation

▶Data Quality Assessment

▶ F-measure

▶Metadata-based Query Processing for Statistical Data

▶Principal Component Analysis

▶Probabilistic Databases

▶ Spectral Clustering

▶Taxonomy: Biomedical Health Informatics

▶Term Weighting

▶Text Analytics

▶Text Compression

▶Two-Poisson Model

▶Uncertainty in Events
Recommended Reading
1. Lee P.M. Bayesian Statistics, 2nd Ed. Arnold, 2003.

2. Lindley D.V. and Scott W.F. New Cambridge Statistics Tables

2nd Ed. Cambridge University Press, 1995.

Bi-Temporal Indexing B 239

B

3. Myers C.S. Vitalism: A Brief Historical and Critical Review.

Mind, 9(35):319–331, 1900.

4. Neapolitan R.E. Learning Bayesian Networks. Prentice Hall, 2003.

5. Sokal R. and Rohlf F.J. Biometry. W.H. Freeman and Com-

pany, NY, 3rd edition, 1995.

6. von Mises R. Probability, Statistics, and Truth. 1939. Translated

by J. Neyman and D. Scholl and E. Rabinowitsch.
BIR Model

▶ Probabilistic Retrieval Models and Binary Indepen-

dence Retrieval (BIR) Model
Bit Vector Join

▶ Semijoin
Bi-temporal Access Methods

▶Bi-Temporal Indexing
Bitemporal Algebras

▶Temporal Algebras
Bitemporal Data Model

▶Temporal Data Models
Bi-Temporal Indexing

MIRELLA M. MORO
1, VASSILIS J. TSOTRAS

2

1The Federal University of Rio Grande dosul, Porto

Alegre, Brazil
2University of California-Riverside, Riverside,

CA, USA

Synonyms
Bi-temporal access methods
Definition
A bi-temporal index is a data structure that supports

both temporal time dimensions, namely, transaction-

time (the time when a fact is stored in the database) and

valid-time (the time when a fact becomes valid in reali-

ty). The characteristics of the time dimensions sup-

ported imply various properties that the bi-temporal

index should have to be efficient. As traditional indices,

the performance of a temporal index is described by

three costs: (i) storage cost (i.e., the number of pages

the index occupies on the disk), (ii) update cost (the

number of pages accessed to perform an update on

the index; for example when adding, deleting or updat-

ing a record), and (iii) query cost (the number of pages

accessed for the index to answer a query).

Historical Background
Most of the early work on temporal indexing has con-

centrated on providing solutions for transaction-time

databases. A basic property of transaction-time is

that it always increases. Each newly recorded piece of

data are time-stamped with a new, larger, transaction

time. The immediate implication of this property is

that previous transaction times cannot be changed.

Hence, a transaction-time database can ‘‘rollback’’ to,

or answer queries for, any of its previous states.

On the other hand, a valid-time database maintains

the entire temporal behavior of an enterprise as best

known now. It stores the current knowledge about

the enterprise’s past, current or even future behavior.

If errors are discovered about this temporal behavior,

they are corrected by modifying the database. In gen-

eral, if the knowledge about the enterprise is updated,

the new knowledge modifies the existing one. When a

correction or an update is applied, previous values are

not retained. It is thus not possible to view the database

as it was before the correction/update.

By supporting both valid and transaction time, a bi-

temporal database combines the features of the other

temporal database types. While it keeps its past states, it

also supports changes anywhere in the valid time do-

main. Hence, the overlapping and persistent methodol-

ogies proposed for transaction-time indexing can be

applied [5,6,9]. The difference with transaction-time

indexing is that the underlying access method should

be able to dynamically manage intervals (like an R-tree,

a quad-tree etc.). For a worst-case comparison of tem-

poral access methods, the reader is referred to [7].

240B Bi-Temporal Indexing
Foundations
When considering temporal indexing, it is important to

realize that the valid and transaction time dimensions

are orthogonal [3]. While in various scenarios it may be

assumed that data about a fact is entered in the data-

base at the same time as when it happens in the real

world (i.e., valid and transaction time coincide),

in practice, there are many applications where this

assumption does not hold. For example, data records

about the sales that occurred during a given day are

recorded in the database at the end of the day (when

batch processing of all data collected during the day is

performed). Moreover, a recorded valid time may rep-

resent a later time instant than the transaction time

when it was recorded. For example, a contract may be

valid for an interval that is later than the (transaction)

time when this information was entered in the data-

base. The above properties are critical in the design of a

bi-temporal access method since the support of both

valid and transaction time affects directly the way

records are created or updated. Note that the term

‘‘interval’’ is used here to mean a ‘‘convex subset of

the time domain’’ (and not a ‘‘directed duration’’).

This concept has also been named a ‘‘period’’; in this

discussion however, only the term ‘‘interval’’ is used.

The reader is referred to the entry on Transaction-

Time Indexing, in which a transaction time database

was abstracted as an evolving collection of objects;

updates arrive in increasing transaction-time order

and are always applied on the latest state of this set.

In other words, previous states cannot be changed.

Thus a transaction-time database represents and stores

the database activity; objects are associated with inter-

vals based on this database activity. In contrast, in the

chapter on Valid-Time Indexing, a valid-time database

was abstracted as an evolving collection of interval-
Bi-Temporal Indexing. Figure 1. A bi-temporal database.
objects, where each interval represents the validity

interval of an object. The allowable changes in this

environment are the addition/deletion/modification

of an interval-object. A difference with the transac-

tion-time abstraction is that the collection’s evolution

(past states) is not kept. Note that when considering

the valid time dimension, changes do not necessarily

come in increasing time order; rather they can affect

any interval in the collection. This implies that a valid-

time database can correct errors in previously recorded

data. However, only a single data state is kept, the one

resulting after the correction is applied.

A bi-temporal database has the characteristics of

both approaches. Its abstraction maintains the evolu-

tion (through the support of transaction-time) of

a dynamic collection of (valid-time) interval-objects.

Figure 1 offers a conceptual view of a bi-temporal

database. Instead of maintaining a single collection

of interval-objects (as a valid-time database does) a

bi-temporal database maintains a sequence of such

collections C(ti) indexed by transaction-time. Assume

that each interval I represents the validity interval of a

contract in a company. In this environment, the user

can represent how the knowledge about company con-

tracts evolved. In Fig. 1, the t-axis (v-axis) corresponds

to transaction (valid) times. At transaction time t1, the

database starts with interval-objects Ix and Iy . At t2, a

new interval-object Iz is recorded, etc. At t5 the valid-

time interval of object Ix is modified to a new length.

When an interval-object Ij is inserted in the data-

base at transaction-time t, a record is created with the

object’s surrogate (contract_no Ij), a valid-time inter-

val (contract duration), and an initial transaction-time

interval [t,UC]. When an object is inserted, it is not yet

known if it (ever) will be updated. Therefore, the right

endpoint of the transaction-time interval is filled with

Bi-Temporal Indexing. Figure 2. The bounding-

rectangle approach for bi-temporal objects.

Bi-Temporal Indexing B 241

B

the variable UC (Until Changed), which will be

changed to another transaction time if this object is

later updated. For example, the record for interval-

object Iz has transaction-time interval [t2, t4], because

it was inserted in the database at transaction-time t2
and was ‘‘deleted’’ at t4. Note that the collections C(t3)

and C(t4) correspond to the collections Ca and Cb of

Fig. 1 in the Valid-Time Indexing chapter, assuming

that at transaction-time t4 the erroneous contract Iz
was deleted from the database.

Based on the above discussion, an index for a

bi-temporal database should: (i) store past states, (ii)

support addition/deletion/modification changes on

the interval-objects of its current logical state, and

(iii) efficiently access and query the interval-objects

on any state.

Figure 1 summarizes the differences among the

various database types. Each collection C(ti) can be

thought of on its own, as a separate valid-time data-

base. A valid-time database differs from a bi-temporal

database since it keeps only one collection of interval-

objects (the latest). A transaction-time database differs

from a bi-temporal database in that it maintains the

history of an evolving set of plain-objects instead of

interval-objects. A transaction-time database differs

from a conventional (non-temporal) database in that

it also keeps its past states instead of only the latest

state. Finally, the difference between a valid-time and a

conventional database is that the former keeps interval-

objects (and these intervals can be queried).

There are three approaches that can be used for

indexing bi-temporal databases.

Approach 1: The first one is to have each

bi-temporal object represented by a ‘‘bounding rectan-

gle’’ created by the object’s valid and transaction-time

intervals, and to store it in a conventional multi-

dimensional structure like the R-tree. While this

approach has the advantage of using a single index to

support both time dimensions, the characteristics of

transaction-time create a serious overlapping problem

[5]. A bi-temporal object with valid-time interval I that

is inserted in the database at transaction time t, is

represented by a rectangle with a transaction-time

interval of the form [t, UC]. All bi-temporal objects

that have not been deleted (in the transaction sense)

will share the common transaction-time endpoint UC

(which in a typical implementation, could be repre-

sented by the largest possible transaction time). Fur-

thermore, intervals that remain unchanged will create
long (in the transaction-time axis) rectangles, a reason

for further overlapping. A simple bi-temporal query

that asks for all valid time intervals that at transaction

time ti contained valid time vj, corresponds to finding

all rectangles that contain point (ti, vj).

Figure 2 illustrates the bounding-rectangle

approach; only the valid and transaction axis are

shown. At t5, the valid-time interval I1 is modified

(enlarged). As a result, the initial rectangle for I1 ends

at t5, and a new enlarged rectangle is inserted ranging

from t5 to UC.

Approach 2: To avoid overlapping, the use of two

R-trees has also been proposed [5]. When a bi-temporal

object with valid-time interval I is added in the database

at transaction-time t, it is inserted at the front R-tree.

This tree keeps bi-temporal objects whose right trans-

action endpoint is unknown. If a bi-temporal object is

later deleted at some time t’ > t, it is physically deleted

from the front R-tree and inserted as a rectangle of

height I and width from t to t’ in the back R-tree. The

back R-tree keeps bi-temporal objects with known

transaction-time interval. At any given time, all bi-

temporal objects stored in the front R-tree share the

property that they are alive in the transaction-time

sense. The temporal information of every such object

is thus represented simply by a vertical (valid-time)

interval that ‘‘cuts’’ the transaction axis at the transac-

tion-time when this object was inserted in the data-

base. Insertions in the front R-tree objects are in

increasing transaction time while physical deletions

can happen anywhere on the transaction axis.

In Fig. 3, the two R-trees methodology for

bi-temporal data are divided according to whether

their right transaction endpoint is known. The scena-

rio of Fig. 2 is presented here (i.e., after time t5 has

elapsed). The query is then translated into an interval

intersection and a point enclosure problem. A simple

Bi-Temporal Indexing. Figure 3. The two R-tree

methodology for bi-temporal data.

242B Bi-Temporal Indexing
bi-temporal query that asks for all valid time intervals

which contained valid time vj at transaction time ti, is

answered with two searches. The back R-tree is

searched for all rectangles that contain point (ti, vj).

The front R-tree is searched for all vertical intervals

that intersect a horizontal interval H that starts from

the beginning of transaction time and extends until

point ti at height vj.

When an R-tree is used to index bi-temporal data,

overlapping may also incur if the valid-time intervals

extend to the ever-increasing now. One approach could

be to use the largest possible valid-time timestamp

to represent the variable now. In [2] the problem of

addressing both the now and UC variables is addressed

by using bounding rectangles/regions that increase

as the time proceeds. A variation of the R-tree, the

GR-tree is presented. The index leaf nodes capture

the exact geometry of the bi-temporal regions of

data. Bi-temporal regions can be static or growing,

rectangles or stair-shapes. Two versions of the GR-tree

are explored, one using minimum bounding rectangles

in non-leaf nodes, and one using minimum bounding

regions in non-leaf nodes. Details appear in [2].

Approach 3: Another approach to address bi-

temporal problems is to use the notion of partial

persistence [1,4]. This solution emanates from the

abstraction of a bi-temporal database as a sequence of

collections C(t) (in Fig. 1) and has two steps. First, a
good index is chosen to represent each C(t). This index

must support dynamic addition/deletion of (valid-

time) interval-objects. Second, this index is made par-

tially persistent. The collection of queries supported by

the interval index structure implies which queries are

answered by the bi-temporal structure. Using this

approach, the Bi-temporal R-tree that takes an R-tree

and makes it partially persistent was introduced in [5].

Similar to the transaction-time databases, one can

use the ‘‘overlapping’’ approach [3] to create an index

for bi-temporal databases. It is necessary to use an

index that can handle the valid-time intervals and an

overlapping approach to provide the transaction-time

support. Multi-dimensional indexes can be used for

supporting intervals. For example, an R-tree or a quad-

tree. The Overlapping-R-tree was proposed in [6],

where an R-tree maintains the valid time intervals

at each transaction time instant. As intervals are

added/deleted or updated, overlapping is used to

share common paths in the relevant R-trees. Likewise,

[9] proposes the use of quad-trees (which can also be

used for spatiotemporal queries).

There are two advantages in ‘‘viewing’’ a bi-temporal

query as a ‘‘partial persistence’’ or ‘‘overlapping’’ prob-

lem. First, the valid-time requirements are disassociated

from the transaction-time ones. More specifically, the

valid time support is provided from the properties of

the R-tree while the transaction time support is achieved

by making this structure ‘‘partially persistent’’ or ‘‘over-

lapping.’’ Conceptually, this methodology provides fast

access to the C(t) of interest on which the valid-time

query is then performed. Second, changes are always

applied to the most current state of the structure and

last until updated (if ever) at a later transaction time,

thus avoiding the explicit representation of variable

UC. Considering the two approaches, overlapping has

the advantage of simpler implementation, while the

partial-persistence approach avoids the possible loga-

rithmic space overhead.

Key Applications
The importance of temporal indexing emanates from

the many applications that maintain temporal data.

The ever increasing nature of time imposes the need

for many applications to store large amounts of tem-

poral data. Accessing such data specialized indexing

techniques is necessary. Temporal indexing has offered

many such solutions that enable fast access.

Bitemporal Relation B 243

B

Cross-references
▶B+-Tree

▶Rtree

▶Temporal Database

▶Transaction-Time Indexing

▶Valid-Time Indexing

Recommended Reading
1. Becker B., Gschwind S., Ohler T., Seeger B., and Widmayer P.

An asymptotically optimal multiversion B-tree. VLDB J., 5

(4):264–275, 1996.

2. Bliujute R., Jensen C.S., Saltenis S., and Slivinskas G. R-tree

based indexing of now-relative bitemporal data. In Proc. 24th

Int. Conf. on Very Large Data Bases, 1998, pp. 345–356.

3. Burton F.W., Huntbach M.M., and Kollias J.G. Multiple genera-

tion text files using overlapping tree structures. Comput. J.,

28(4):414–416, 1985.

4. Driscoll J.R., Sarnak N., Sleator D.D., and Tarjan R.E. Making

data structures persistent. J. Comput. Syst. Sci., 38(1):86–124,

1989.

5. Kumar A., Tsotras V.J., and Faloutsos C. Designing access meth-

ods for bitemporal databases. IEEE Trans. Knowl. Data Eng.,

10(1):1–20, 1998.

6. Nascimento M.A. and Silva J.R.O. Towards historical R-trees.

In Proc. 1998 ACM Symp. on Applied Computing, 1998,

pp. 235–240.

7. Salzberg B. and Tsotras V.J. A comparison of access methods for

time-evolving data. ACM Comput. Surv., 31(2):158–221, 1999.

8. Snodgrass R.T. and Ahn I. Temporal databases. IEEE Comput.,

19(9):35–42, 1986.

9. Tzouramanis T., Vassilakopoulos M., and Manolopoulos Y.

Overlapping linear quadtrees and spatio-temporal query proces-

sing. Comput. J., 43(4):325–343, 2000.
Bitemporal Interval

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Definition
Facts in a bitemporal database may be timestamped by

time values that are products of time intervals drawn

from two orthogonal time domains that model valid

time and transaction time, respectively. A bitemporal

interval then is given by an interval from the valid-

time domain and an interval from the transaction-time

domain, and denotes a rectangle in the two-dimensional

space spanned by valid and transaction time.
When associated with a fact, a bitemporal interval

then identifies an interval (valid time) during which

that fact held (or holds or will hold) true in reality, as

well as identifies an interval (transaction time) when

that belief (that the fact was true during the specified

valid-time interval) was held, i.e., was part of the

current database state.

Key Points
In this definition, a time interval denotes a convex

subset of the time domain. Assuming a discrete time

domain, a bitemporal interval can be represented with

a non-empty set of bitemporal chronons or granules.

Cross-references
▶Bitemporal Relation

▶Chronon

▶Temporal Database

▶Temporal Granularity

▶Time

▶Time Domain

▶Time Interval

▶Transaction Time

Recommended Reading
1. Bettini C., Dyreson C.E., Evans W.S., Snodgrass R.T., and

Wang X.S. A glossary of time granularity concepts. In Temporal

Databases: Research and Practice, O. Etzion, S. Jajodia,

S. Sripada (eds.). LNCS 1399. Springer, Berlin Heidelberg New

York, 1998, pp. 406–413.

2. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts–February 1998 version. In Temporal

Databases: Research and Practice, O. Etzion, S. Jajodia,

S. Sripada (eds.). LNCS 1399. Springer, Berlin Heidelberg

New York, 1998, pp. 367–405.
Bitemporal Relation

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Temporal relation; Fully temporal relation; Valid-time

and transaction-time relation

244B Bitmap Index
Definition
A bitemporal relation captures exactly one valid time

aspect and one transaction time aspect of the data

it contains. This relation inherits its properties from

valid-time relations and transaction-time relations.

There are no restrictions as to how either of these

temporal aspects may be incorporated into the tuples.

Key Points
In this definition, ‘‘bi’’ refers to the capture of exactly two

temporal aspects. An alternative definition states that a

bitemporal relation captures one or more valid times

and one or more transaction times. In this definition,

‘‘bi’’ refers to the existence of exactly two types of times.

One may adopt the view that the data in a relation

represents a collection of logical statements, i.e., state-

ments that can be assigned a truth values. The valid

times of these so-called facts are the times when these

are true in the reality modeled by the relation. In cases

where multiple realities are perceived, a single fact may

have multiple, different valid times. This might occur

in a relation capturing archaeological facts for which

there no agreements among the archaeologists. In ef-

fect, different archaeologists perceive different realities.

Transaction times capture when database objects

are current in a database. In case an object migrates

from one database to another, the object may carry

along its transaction times from the predecessor

databases, termed temporal generalization. This then

calls for relations that capture multiple transaction

times.

The definition of bitemporal is used as the basis

for applying bitemporal as a modifier to other con-

cepts such as ‘‘query language.’’ A query language is

bitemporal if and only if it supports any bitemporal

relation. Hence, most query languages involving both

valid and transaction time may be characterized as

bitemporal.

Relations are named as opposed to databases be-

cause a database may contain several types of relations.

Most relations involving both valid and transaction

time are bitemporal according to both definitions.

Concerning synonyms, the term ‘‘temporal rela-

tion’’ is commonly used. However, it is also used in a

generic and less strict sense, simply meaning any rela-

tion with time-referenced data.

Next, the term ‘‘fully temporal relation’’ was origi-

nally proposed because a bitemporal relation is capable

of modeling both the intrinsic and the extrinsic time
aspects of facts, thus providing the ‘‘full story.’’ How-

ever, this term is no longer used.

The term ‘‘valid-time and transaction-time rela-

tion’’ is precise and consistent with the other terms,

but is also lengthy.
Cross-references
▶Bitemporal Interval

▶Temporal Database

▶Temporal Generalization

▶Transaction Time

▶Valid Time

Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts–February 1998 version. In Temporal

Databases: Research and Practice, O. Etzion, S. Jajodia,

S. Sripada (eds.). LNCS 1399. Springer, Berlin Heidelberg New

York, 1998, pp. 367–405.
Bitmap Index

CHEE YONG CHAN

National University of Singapore, Singapore,

Singapore

Definition
An index on an attribute provides an efficient way to

access data records associated with a given range of values

for the indexed attribute. Typically, an index stores a list

of RIDs (called a RID-list) of all the records associated

with each distinct value v of the indexed attribute. In a

bitmap index, each RID-list is represented in the form

of a bit vector (i.e., bitmap) where the size of each

bitmap is equal to the cardinality of the indexed rela-

tion, and the ith bit in each bitmap corresponds to the

ith record in the indexed relation. The simplest bitmap

index design is the Value-List index, which is illustrated

in Fig. 1b for an attribute A of a 12-record relation R in

Fig. 1a. In this bitmap index, there is one bitmap Ev

associated with each attribute value v 2 [0,9] such that

the ith bit of Ev is set to 1 if and only if the ith record

has a value v for the indexed attribute.

Bitmap Index. Figure 1. Examples of bitmap indexes. (a) indexed attribute A (b) equality-encoded index (or value-list

index) (c) range-encoded index (or base-10 bit-sliced index) (d) interval-encoded index.

Bitmap Index B 245

B

Historical Background
The idea of using bitmap indexes to speed up selection

predicate evaluation has been recognized since the

early 1970s [4]. Some early implementations of bitmap

processing techniques include PCDBMSs (e.g., FoxPro,

Interbase), a scientific/statistical database application

developed at Lawrence Berkeley Laboratory [11], and

Model 204, which is a commercial DBMS for the IBM

mainframe [7].

The main advantage of using a bitmap index is the

CPU efficiency of bitmap operations (AND, OR, XOR,

NOT). Furthermore, compared to RID-based indexes,

bitmap indexes are more space-efficient for attributes

with low cardinality and more I/O-efficient for evalu-

ating selection predicates with low selectivities. For

example, assuming each RID requires four bytes of

storage and ignoring any compression, bitmap

indexes are more space-efficient if the attribute cardi-

nality is less than 32, and reading a bitmap is more I/O-

efficient than reading a RID-list if the selectivity factor

of the selection predicate is more than 1
32
(� 3.2%).

Another advantage of bitmap indexes is that they are

very amenable to parallelization due to the equal-sized

bitmaps and the nature of the bitwise operations.

A variety of bitmap index designs have been

proposed since the early days. Besides the simple

Value-List index illustrated in Fig. 1b, another early

bitmap index design is the Bit-Sliced index (BSI) which

is implemented in Model 204 and Sybase IQ [7].

A BSI for an attribute with a cardinality of C consists

of k = dlog2(C)e bitmaps, with one bitmap associa-

ted with each bit in the binary representation of C.

Compared to the Value-List index, the BSI is more

space-efficient with an attribute value v being
encoded by a string of k bits corresponding to its

binary representation. The BSI design can be

generalized to use a non-binary base b such that it

consists of k(b � 1) bitmaps

fBj
i : 1 � i � k; 0 � j < bg, where k ¼ dlogb(C)e.

Each attribute value v is expressed in base b as a

sequence of k base-b digits vkvk�1...v2v1, and each

bitmap B
j
i represents the set of records with vi � j.

Using a larger base number improves the index’s per-

formance for evaluating range predicates at the cost of

an increased space cost. An example of a base-10 BSI is

shown in Fig. 1c. Both Model 204 and Sybase IQ

implemented base-10 Bit-Sliced indexes [7].

Several bitmap index designs have also been imple-

mented in a scientific/statistical database application

at Lawrence Berkeley Laboratory [11]. These bitmap in-

dexes include binary encoded indexes (equivalent to bi-

nary BSI), unary encoded indexes (equivalent to non-

binary BSI), K-of-N encoded indexes (generalizations of

Value-List indexes where each attribute value is encoded

by a N-bit string with exactly K bits set to 1), and super-

imposed encoded indexes based on superimposed encod-

ing which is useful for indexing set-valued attributes.

Interest in bitmap indexes was revived in the mid

1990s due to the emergence of data warehousing appli-

cations which are characterized by read-mostly query

workloads dominated by large, complex ad hoc queries

[7]. All the major DBMS vendors (IBM, Microsoft,

Oracle, and Sybase) also started to support bitmap

indexes in their products around this time.

246B Bitmap Index
Foundations
Chan and Ioannidis propose a two-dimensional frame-

work to characterize the design space of bitmap inde-

xes [2]. The two orthogonal parameters identified for

bitmap indexes (with an attribute cardinality of C) are

(i) the arithmetic used to represent attribute values;

i.e., how an attribute value is decomposed into digits

according to some base (e.g., base-C arithmetic is used

in a Value-List index); and (ii) the encoding scheme of

each decomposed digit in bits (e.g., each attribute

value in a Value-List index is encoded by turning

on exactly one out of C bits). Consider an attribute

value v 2 [0,C) and a sequence of n base numbers

B ¼<bn; bn�1;:::;b1> , where bn ¼ CQn�1

i¼1
bi

� �
and bi

� 2, i 2 [1,n]. Using B, v can be decomposed into

a unique sequence of n digits <vn,vn�1,...,v1>

as follows: vi = V i mod bi, where V 1 = v and

Vi ¼ Vi�1

bi�1

j k
, for 1 < i � n. Thus,

v ¼ vn
Qn�1

j¼1 bj

� �
þ :::þ vi

Qi�1
j¼1bj

� �
þ:::þ v2b1 þ v1.

Note that each vi is a base-bi digit (i.e., 0 � vi < bi).

Each choice of n and base-sequence B gives a different

representation of attribute values, and therefore a dif-

ferent index (known as a Base-B index). The index

consists of n components (i.e., one component

per digit) where each component individually is

now a collection of bitmaps. Figure 2b shows a base-

<3,4> Value-List index that consists of two compo-

nents: the first component has four bitmaps
Bitmap Index. Figure 2. Example of base- <3,4> indexes. (a

(c) range-encoded index (d) interval-encoded index.
fE3
1; E

2
1; E

1
1; E

0
1g, and the second component has three

bitmaps fE2
2; E

1
2; E

0
2g. Note that the kth bit in

each bitmap E
j
i is set to 1 if and only if vi = j, where

<v2,v1> is the <3,4>-decomposition of the kth

record’s indexed attribute value. For the encoding

scheme dimension, there are two basic encoding

schemes: equality encoding and range encoding. Consid-

er the ith component of an index with base bi, and a

value vi 2 [0,bi � 1]. In the equality encoding scheme, vi
is encoded by bi bits, where all the bits are set to 0 except

for the bit corresponding to vi, which is set to 1. Thus,

an equality-encoded component (with base bi) consists

of bi bitmaps fEbi�1
i ;:::;E0

i g such that the kth bit in each

bitmap E
j
i is set to 1 if and only if vi = j, where vi is the

ith digit of the decomposition of the kth record’s

indexed attribute value. In the range encoding scheme,

vi is encoded again by bi bits, with the vi rightmost bits

set to 0 and the remaining bits (starting from the one

corresponding to vi and to the left) set to 1. The kth bit

in each bitmap R
j
i is set to 1 if and only if vi � j, where

vi is the ith digit of the decomposition of the kth

record’s indexed attribute value. Since the bitmap

Rbi�1
i has all bits set to 1, it does not need to be stored,

so a range-encoded component consists of (bi � 1)

bitmaps fRbi�2
i ;:::;R0

i g. Value-List and Bit-Sliced

indexes therefore correspond to equality-encoded and

range-encoded indexes, respectively. Figures 1c and 2c

show the range-encoded indexes corresponding to the

equality-encoded indexes in Figs. 1b and 2b. Details of
) indexed attribute A (b) equality-encoded index

Bitmap Index B 247

B

query processing algorithms and space-time tradeoffs

of equality/range-encoded, multi-component bitmap

indexes are given in [4].

A new encoding scheme, called interval encoding,

was proposed in [5]. For an attribute with a cardinality

of C, a value v 2 [0,C) is encoded using dC
2
e bits such

that if v < dC
2
e, then v is encoded by setting the (v + 1)

rightmost bits to 1 and the remaining bits to 0; other-

wise, v is encoded by setting the (C � 1 � v) leftmost

bits to 1 and remaining bits to 0. Thus, the

interval encoding scheme consists of dC
2
e bitmaps

fI dC2e�1;:::;I0g, where each bitmap Ij is associated with

a range of (m + 1) values [j,j + m], m ¼ C
2

� �
� 1, such

that the kth bit in a bitmap Ij is set to 1 if and only if the

kth record’s indexed attribute value is in [j,j + m].

Figures 1d and 2d show the interval-encoded indexes

corresponding to the equality-encoded indexes in Figs.

1b and 2b. Note that interval encoding has better

space-time tradeoff than range encoding: it has the

same worst-case evaluation cost of two bitmap scans

as range encoding but its space requirement is about

half that of range encoding.

Wu and Bachmann proposed a variant of binary

BSI called encoded bitmap index (EBI) [12,13]. Instead

of encoding each attribute value simply in terms of its

binary representation, an EBI uses a lookup table tomap

each attribute value to a distinct bit string; this flexibility

enables optimization of the value-to-bit-stringmapping,

by exploiting knowledge of the query workload, to

reduce the number of bitmap scans for query evaluation.

Thus, binary BSI is a special case of EBI. Another similar

index design called Encoded-Vector index (EVI) is used

in IBMDB2. Instead of storing the index as a collection

of dlogb(C)e bitmaps as in EBI, EVI is organized as a

single vector of dlogb(C)e-bit strings, and the purpose

of the lookup table optimization is to reduce the

CPU cost of bit string comparisons when evaluating

selection queries of the form ‘‘A 2 {v1,v2,...,vn}.’’ An-

other related index is the Projection index [7], which

is implemented in Sybase IQ.

Complex, multi-table join queries (such as star-

join queries) can also be evaluated very efficiently

using bitmapped join indexes [6], which are indexes

that combine the advantages of join indexes and

bitmap representation. A join index for the join be-

tween two relations R and S is a precomputation of

their join result defined by PR.rid,S.rid(R ⋈ pS), where

p is the join predicate between R and S. Thus, a join

index on R ⋈ S can be thought of as a conventional
index on the table R, where the attribute being indexed

is the ‘‘virtual’’ attribute S.rid; i.e., each distinct S.rid

value v is associated with a list of all R.rid values that

are related to v via the join. A bitmapped join index [6]

is simply a join index with the RID-lists represented

using bitmaps. Bitmapped join indexes are implemen-

ted in Informix Red Brick Warehouse and Oracle.

Bitmap indexes can also be applied to evaluate queries

that involve aggregate functions (e.g., SUM, MIN/

MAX, MEDIAN); evaluation algorithms for Value-

List and Bit-Sliced indexes are discussed in a paper by

O’Neil and Quass [7]. Efficient algorithms for

performing arithmetic operations (addition and sub-

traction) on binary BSIs are proposed in [8].

As bitmap indexes become less efficient for larger

attribute cardinality, a number of approaches have

been developed to reduce their space requirement.

Besides using multi-component bitmap indexes

[2,11], another common space-reduction technique is

to apply compression. In Model 204 [7], the bitmaps

are compressed by using a hybrid representation; spe-

cifically, each individual bitmap is partitioned into a

number of fixed-size segments, and segments that are

dense are stored as verbatim bitmaps while sparse

segments are converted into RID-lists. While generic

compression techniques (e.g., LZ77) are effective in

reducing both the disk storage and retrieval cost of

bitmap indexes, the savings in I/O cost can be offset

by the high CPU cost incurred for decompressing the

compressed bitmaps before they can be operated with

other bitmaps. A number of specialized compression

techniques that enable bitmaps to be operated on

without a complete decompression have been pro-

posed: Byte-aligned Bitmap Code (BBC) (which is

used by Oracle), and Word-Aligned Hybrid code

(WAH) [14]. Some performance study of compressed

bitmap indexes are reported in [1–3,14].

A different approach proposed to reduce the size of

bitmaps is to use range-based bitmaps (RBB) [15],

which have been applied to index large data sets

in tertiary storage systems as well as large, multi-

dimensional data sets in scientific applications [14].

Unlike Value-List indexes where there is one bitmap

for each distinct attribute value, the RBB approach

partitions the attribute domain into a number of dis-

joint ranges and constructs one bitmap for each range

of values (this is also known as binning). Thus, RBB

provides a form of lossy compression which requires

additional post-processing to filter out false positives.

248B Bitmap-based Index Structures
Koudas [5] has examined space-optimal RBBs for

equality queries when both the attribute and query

distributions are known; these results have been ex-

tended for range queries [9]. More recently, Sinha and

Winslett have proposed multi-resolution bitmap index-

es to avoid the cost of filtering out false positives for

RBB [10]. For example, in a two-resolution bitmap

index, it has a lower resolution index consisting of

RBB (i.e., with each bitmap representing a range of

attribute values) and a higher resolution index consist-

ing of one bitmap for each distinct attribute value.

By combining the efficiency of lower resolution index-

es and the precision of higher resolution indexes,

queries can be evaluated efficiently without false posi-

tive filtering.

Key Applications
Today, bitmap indexes are supported by all major data-

base systems, and they are particularly suitable for data

warehousing applications [7]. Bitmap indexes have also

been used in scientific databases (e.g., [10,11,14]),

indexing data on tertiary storage systems (e.g., [1]),

and data mining applications.

Future Directions
The design space for bitmap indexes is characterized

by four key parameters: levels of resolution (which

affects the number of levels of bitmap indexes and

the index granularity at each level), attribute value

representation (which affects the number and size of

the index components at each level) encoding scheme

(which affects how the bitmaps in each component are

encoded), and storage format (i.e., uncompressed,

compressed, or a combination of compressed and un-

compressed). While there are several performance

studies that have examined various combinations of

the above parameter space, a comprehensive investi-

gation into the space-time tradeoffs of the entire

design space is, however, still lacking and deserves to

be further explored. The result of such a study can be

applied to further enhance automated physical data-

base tuning tools.
Cross-references
▶Access Path

▶Bitmap-based Index Structures

▶Data Warehouse
Recommended Reading
1. Amer-Yahia S. and Johnson T. Optimizing queries on com-

pressed bitmaps. In Proc. 26th Int. Conf. on Very Large Data

Bases, 2000, pp. 329–338.

2. Chan C.Y. and Ioannidis Y.E. Bitmap index design and evalua-

tion. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1998, pp. 355–366.

3. Chan C.Y. and Ioannidis Y.E. An efficient bitmap encoding

scheme for selection queries. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1999, pp. 215–226.

4. Knuth D.E. Retrieval on secondary keys. In The Art of Computer

Programming: Sorting and Searching, vol. 3. Chap. 6. Addison-

Wesley, Reading, Mass., 1973, pp. 550–567.

5. Koudas N. Space efficient bitmap indexing. In Proc. Int. Conf.

on Information and Knowledge Management, 2000,

pp. 194–201.

6. O’Neil P. and Graefe G. Multi-table joins through bitmapped

join indices. ACM SIGMOD Record. September 1995, pp. 8–11.

7. O’Neil P. and Quass D. Improved query performance with

variant indexes. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1997, pp. 38–49.

8. Reinfret D., O’Neil P., and O’Neil E. Bit-sliced index arithmetic.

In Proc. ACM SIGMOD Int. Conf. on Management of Data.

2001, pp. 47–57.

9. Rotem D., Stockinger K., and Wu K. Optimizing candidate

check cost for bitmap indices. In Proc. Int. Conf. on Information

and Knowledge Management, 2005, pp. 648–655.

10. Sinha R. and Winslett M. Multi-resolution bitmap indexes for

scientific data. ACM Trans. Database Syst., 32(3):1–39, 2007.

11. Wong H.K.T., Liu H-F., Olken F., Rotem D., and Wong L. Bit

transposed files. In Proc. 11th Int. Conf. on Very Large Data

Bases, 1985, pp. 448–457.

12. Wu M.C. Query optimization for selections using nitmaps. In

Proc. ACM SIGMOD Int. Conf. on Management of Data 1999,

pp. 227–238, 1999.

13. WuM.C. and Buchmann A.P. Encoded bitmap indexing for data

warehouses. In Proc. 14th Int. Conf. on Data Engineering, 1998,

pp. 220–230.

14. Wu K., Otoo E.J., and Shoshani A. Optimizing bitmap indices

with efficient compression. ACMTrans. Database Syst., 31(1):1–38,

2006.

15. Wu K.L. and Yu P.S. Range-based bitmap indexing for high

cardinality attributes with skew. Technical report, IBM Watson

Research Center, May 1996.
Bitmap-based Index Structures

GUADALUPE CANAHUATE, HAKAN FERHATOSMANOGLU

The Ohio State University, Columbus, OH, USA

Synonyms
Bitmap Index; Projection Index

Bitmap-based Index Structures B 249

B

Definition
A bitmap-based index is a binary vector that represents

an interesting property and indicates which objects in

the dataset satisfy the given property. The vector has a

1 in position i if the i-th data object satisfies the

property, and 0 otherwise. Queries are executed using

fast bitwise logical operations supported by hardware

over the binary vectors.t

Historical Background
Bitmap-based indexing was first implemented in Com-

puter Corporation of America’s Model 204 in the mid-

1980s by Dr. Patrick O’Neil. The bitmap index from

Model 204 was a hybrid between verbatim (uncom-

pressed) bitmaps and RID lists. Originally, a bitmap

was created for each value in the attribute domain. The

entire bitmap index is smaller than the original data as

long as the number of distinct values is less than the

number of bits used to represent the attribute in the

original data. For example, if an integer attribute has

cardinality 10 and integers are stored using 32 bits,

then the bitmap index for such an attribute, which

only has 10 bit vectors, is 3.2 times smaller than the

original data. For floating point attributes, the bitsliced

index (BSI) [8] stores each bit of the binary represen-

tation of the attribute independently. Bitsliced indexes

are never more than the size of the original data.

However, in general, all bitslices need to be accessed

to answer a query.

In order to reduce the number of bit vectors that

needed to be read to answer a query, more complex

encodings for bitmap-based indexes have been pro-

posed, such as range encoded bitmaps [15,8], encoded

bitmaps [16], and interval encoded bitmaps [4,5].

For attributes with high cardinality including floating

point attributes, binning [7,13] was proposed to reduce
Bitmap-based Index Structures. Figure 1. Bitmap index exa
the number of values in the domain, and therefore

the number of bit vectors in the index. In addition,

special compression techniques were developed to im-

prove the performance of the bitmap indexes. The two

most popular techniques are Byte-aligned Bitmap Code

(BBC) [1], and Word Aligned Hybrid (WAH) [18]

compression method. These compression techniques

allow query execution over the compressed bitmaps.

With compression, bitmap indexes have been proven

to perform well with high cardinality attributes [17].

Foundations
Bitmap tables are a special type of binary matrices. Each

binary row in the bitmap table represents one tuple in

the database. The bitmap columns are produced by

quantizing the attributes in the database into categories

or bins. Each tuple in the database is then encoded

based on which bin each attribute value falls into.

Bitmap index encoding is based on the properties of

physical row identifiers and there is a one-to-one corre-

spondence between the data objects and the bits in the

bitmap vector. Therefore, given a bit position, the loca-

tion of its corresponding table row can be computed by

simple arithmetic operations. For tables with a clus-

tered-index or index-ordered tables, a mapping table is

used to map bit positions to row locations.

Bitmap Encoding

For equality encoded bitmaps (also called simple

encoding or projection index) [8], if a value falls into

a bin, this bin is marked ‘‘1’’, otherwise ‘‘0’’. Since a

value can only fall into a single bin, only a single ‘‘1’’

can exist for each row of each attribute. After binning,

the whole database is converted into a large 0–1

bitmap, where rows correspond to tuples and columns

correspond to bins. Figure 1 shows an example using

a table with one attribute with cardinality 4. Columns
mples for a table with one attribute with cardinality 4.

250B Bitmap-based Index Structures
3–6 of Fig. 1 show the equality encoded bitmap for this

table. The first tuple t1 has value 1, therefore only the

corresponding bit in the bitmap =1 is set. Columns 7

and 8, show the bitmaps for equality encoding with

binning. In this example, the attribute was quantized

into two bins.

For range encoded bitmaps [4], a bin is marked ‘‘1’’

if the value falls into it or a smaller bin, and ‘‘0’’

otherwise. Using this encoding, the last bin for each

attribute is all 1s. Thus, this column is not explicitly

stored. Columns 9–11 in Fig. 1 show the range encod-

ing for the attribute. The first tuple t1 has the smallest

value 1, therefore all the bitmaps have the first bit set.

For interval encoded bitmaps, every bitmap represents

a range of dC
2
e values, where C is the cardinality of the

attribute. This encoding allows to answer any range

or point query on one attribute by reading at most two

bit vectors [4,5]. Columns 12–14 in Fig. 1 show the

interval encoded bitmap. The fifth tuple t5 has value 2,

therefore the fifth bit is set for the [1,2] and [2,3]

interval bitmaps. Bit-sliced indexes (BSI) [8] can be

considered as a special case of the encoded bitmaps

[16]. With the bit-sliced index the bitmaps encode the

binary representation of the attribute value. Columns

15–17 of Fig. 1 show the bit-sliced index of the table.

The third tuple t3 has value 3 which is represented by

the binary number 011, therefore the corresponding

bit in slices 21 and 20 are set. Encoded bitmaps encode

the binary representation of the attribute bins. There-

fore, only dlog2binse bitmaps are needed to represent

all values.

With binning, several values are encoded in the

same bitmap. However, the results from the queries

are supersets of the actual results, therefore additional

disk access may be needed to evaluate the candidates

and retrieve the exact results. Several binning strate-

gies, based on data distribution and query workloads,

and several strategies for candidate evaluation have

been proposed [10,11]. A binned bitmap index aug-

mented with an auxiliary order-preserving bin-based

Clustering (OrBiC) [19] can significantly reduce the

I/O cost of candidate evaluation.

Query Execution

Bitmap indexes can provide efficient performance for

point and range queries thanks to fast bitwise opera-

tions (AND, OR, NOT) which are supported by hard-

ware. With equality encoded bitmaps a point query

is executed by ANDing together the bit vectors
corresponding to the values specified in the query con-

ditions. For example, finding the data points that cor-

respond to a query where Attribute 1 is equal to 3 and

Attribute 2 is equal to 5 is only a matter of ANDing the

two bitmaps together. Equality Encoded Bitmaps are

optimal for point queries. Range queries are executed

by first ORing together all the bit vectors specified by

each range in the query conditions and then ANDing

the answers together. If the query range for an attribute

queried includes more than half of the cardinality then

one executes the query by taking the complement of the

ORed bitmaps that are not included in the query con-

dition. The performance of queries with large-range

query conditions can be improved by using multi-res-

olution bitmap indexes [12], i.e., bitmaps with different

interval size: at the highest level one bit vector corre-

sponds to an individual value and at lower levels each

bit vector corresponds to a bin of values. Queries are

executed using combined resolution bitmaps that min-

imize both the number of bitwise operations and the

number of candidate points. With more complex

encodings, the query evaluation strategy depends on

the encoding and the range being queried.

Bitmap Compression

The goal of the bitmap index compression is twofold:

to reduce the space requirement of the index and to

maintain query execution performance by executing

the query over the compressed index. The two most

popular run-length compression techniques are the

Byte-aligned Bitmap Code (BBC) [1] and the Word-

Aligned Hybrid (WAH) compression method [18].

BBC stores the compressed data in bytes while WAH

stores it in words. WAH is simpler because it only has

two types of words, while BBC has four. Both techni-

ques are based on the idea of run length encoding that

represents consecutive bits of the same symbol (also

called a fill or a gap) by their bit value and their length.

The bit value of a fill is called the fill bit. BBC first

divides the bit sequence into bytes and then group

bytes into runs. A run consists of a fill word followed

by a tail of literal bytes. A run always contains a

number of whole bytes as it represents the fill length

as number of bytes rather than number of bits. The

byte alignment property limits a fill length to be an

integer multiple of bytes. This ensures that during any

bitwise logical operation a tail byte is never broken into

individual bits. Similar to BBC, WAH is a hybrid

between the run length encoding and the literal

Bitmap-based Index Structures B 251

B

scheme. WAH stores compressed data in words rather

than in bytes. The most significant bit of a word dis-

tinguishes between a literal word(0) and a fill word(1).

Lower bits of a literal word contain the bit values from

the bit sequence. The second most significant bit of a

fill word is the fill bit and the lower (w-2) bits store the

fill length. Imposing word alignment ensures that the

logical operation functions only need to access words

not bytes or bits. In general, bit operations over the

compressed WAH bitmap file are faster than BBC

while BBC gives better compression ratio.

Typically, complex encoded bitmaps do not com-

press well as the bit density of such bitmaps is relatively

high. Recently, reordering has been proposed as a pre-

processing step for improving the compression of bit-

maps. The objective with reordering is to increase

the performance of run length encoding. By reordering

the data, the compression ratio of large boolean matri-

ces can be improved [6]. However, optimal matrix reor-

dering is NP-hard and the authors use traveling

salesman heuristics to compute the new order. The

idea of reordering is also applied to compression of

bitmap indexes [9]. The authors show that the tuple

reordering problem is NP-complete and propose a Gray

code ordering heuristic.

Bitmap update is an expensive operation. The com-

mon practice is to drop the index, do a batch update,

and recreate the index. For improved update perfor-

mance, it is possible to add to each compressed bitmap

a pad-word that encodes all possible rows using non-set

bits [3]. For insertions, only the updated column needs

to be accessed as opposed to all the bitmap columns.

This technique is suitable for maintaining an online

index when the update rate is not very high. An alterna-

tive to run-length compression proposed in the litera-

ture is the Approximate Bitmap Encoding [2], where

hashing is used to encode the data objects in a bloom

filter. This technique can offer improved performance

for selection queries over small number of rows.

Key Applications
Bitmap indexing has been traditionally used in data

warehouses to index large amount of data that are infre-

quently updated. More recently, bitmaps have found

many other applications such as visualization and

indexing of scientific data. Other works have applied

bitmaps for term matching and similarity searches. In

general, one could claim that bitmapswould outperform

most approaches in the domains where full scan of the
data are unavoidable and computations can be done

using parallel bitwise operations.

Bitmap-based indexes are successfully implemen-

ted in commercial Database Management Systems.

Oracle implements a version of the simple bitmap

encoding compressed using BBC. Sybase IQ has two

different types of bitwise indexes. IBM DB2 dynami-

cally builds bitmaps from a single-column B-tree to

join tables. Informix uses bitmapped indexes since

version 8.21 released in 1998. PostgreSQL supports

bitmap index scans since version 8.1 where dynamic

bitmaps are created to combine the results of multiple

index conditions using bitwise operations.

Cross-references
▶Approximation and Data Reduction Techniques

▶ Indexing

▶Query Processing and Optimization in Object

Relational Databases

Recommended Reading
1. Antoshenkov, G. Byte-aligned bitmap compression. In Data

Compression Conference, 1995. Oracle Corp.

2. Apaydin, T., Canahuate, G., Ferhatosmanoglu, H., and Tosun, A.

Approximate encoding for direct access and query processing

over compressed bitmaps. In Proc. 32nd Int. Conf. on Very Large

Data Bases, 2006.

3. Canahuate, G., Gibas, M., Ferhatosmanoglu, H. Update con-

scious bitmap indices. In Proc. 19th Int. Conf. on Scientific

and Statistical Database Management, 2007.

4. Chan, C.Y. and Ioannidis, Y.E. Bitmap index design and evalua-

tion. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1998.

5. Chan, C.Y. and Ioannidis, Y.E. An efficient bitmap encoding

scheme for selection queries. ACM SIGMOD Rec., 1999.

6. Johnson, D., Krishnan, S., Chhugani, J., Kumar, S., and Venka-

tasubramanian, S. Compressing large boolean matrices using

reordering techniques. In Proc. 30th Int. Conf. on Very Large

Data Bases, 2004.

7. Koudas, N. Space efficient bitmap indexing. In Proc. Int. Conf.

on Information and Knowledge Management, 2000.

8. O’Neil, P. and Quass, D. Improved query performance with

variant indexes. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1997.

9. Pinar, A., Tao, T., and Ferhatosmanoglu, H. Compressing

bitmap indices by data reorganization. In Proc. 21st Int. Conf.

on Data Engineering, 2005.

10. Rotem, D., Stockinger, K., and Wu, K. Optimizing candidate

check costs for bitmap indices. In Proc. Int. on Information and

Knowledge Management, 2005.

11. Rotem, D., Stockinger, K., and Wu, K. Minimizing I/O costs of

multi-dimensional queries with bitmap indices. In Proc. 18th Int.

Conf. on Scientific and Statistical Database Management, 2006.

252B Blind Signatures
12. Sinha, R., Winslett, M. Multi-resolution bitmap indexes for

scientific data. ACM Trans. Database Syst., 2007.

13. Stockinger, K. Design and implementation of bitmap indices for

scientific data. In Proc. Int. Conf. on Database Eng. and Appli-

cations, 2001.

14. Stockinger, K., Wu, K., and Shoshani, A. Evaluation strategies for

bitmap indices with binning. In Proc. 15th Int. Conf. Database

and Expert Syst. Appl., 2004.

15. Wong, H.K., Liu, H., Olken, F., Rotem, D., and Wong, L. Bit

transposed files. In Proc. 11th Int. Conf. on Very Large Data

Bases, 1985.

16. Wu, M-C. and Buchmann, A. Encoded bitmap indexing for data

warehouses. In Proc. 14th Int. Conf. on Data Engineering, 1998.

17. Wu, K., Otoo, E.J., and Shoshani, A. On the performance of

bitmap indices for high cardinality attributes. In Proc. 30th Int.

Conf. on Very Large Data Bases, 2004.

18. Wu, K., Otoo, E.J., and Shoshani, A. Optimizing bitmap indexes

with efficient compression. ACM Trans Database Syst., 2006.

19. Wu, K., Stockinger, K., Shoshani, A. Breaking the curse of

cardinality on bitmap indexes. In Proc. 20th Int. Conf. on

Scientific and Statistical Database Management, 2008.
Blind Signatures

BARBARA CARMINATI

University of Insubria, Varese, Italy

Definition
In blind signature schemes, the sender and the signer

of the message are two distinguished entities. Given a

message m, blind signatures have the property that

the signer digitally signs a blinded version of m, i.e.,

m0, without the disclosure of any information about

the original message. The obtained blind signature can

be verified by using the public key of the signer and the

original message m, instead of m0.
Key Points
In 1982, David Chaum introduced the concept of

blind signatures for protecting user privacy during

electronic payment transactions [1]. This scheme has

been devised for scenarios where the sender and the

signer of the message are two distinguished entities,

with the aim of preventing the signer from observing

the message he or she signs. More precisely, given a

messagem generated by A, a signer B is able to digitally

sign a blinded version of m0, i.e., DSB(m
0), without the

disclosure of any information about the original mes-

sage. The key property of blind signatures is that the

obtained signature DSB(m
0) can be verified by using
the public key of B and the original message m, instead

of m0. This property makes blind signatures particularly

suitable for applications where sender privacy is

the main concern, like for instance, in digital cash

protocols and electronic voting systems.

Several digital signature schemes can be used to

obtain a blind signature, like for instance RSA and DSA

schemes. In the following to explain the generation and

verification of a blind signature, the RSA algorithm is

considered. Let PKB = (n, e) and SKB = (n, d) be the

public and private keys of signer B.

Blinding. Let k be a random integer chosen by the

sender A, such that 0 � k � n � 1 and gcd(n, k) = 1.

Thus, given a message m, the sender generates the

blinded version of it, i.e., m0, by combing m with k.

According to RSA, the blinded version of m is com-

puted as m0 = (mke) mod n.

Blind signature generation. The signer digitally signs

the blinded version m0 using the RSA digital signature

algorithm; that is, DSB(m
0) = (m0)d mod n.

Signature unblinding. The intended verifier can

obtain the signature of m, i.e., DSB(m), as follows

DSB(m) = k�1DSB(m
0). This signature can be validated

by the RSA verification algorithm, according to the

standard process.
Cross-references
▶Digital Signatures

▶ Privacy Enhancing Technologies

Recommended Reading
1. Chaum D. Blind signatures for untraceable payments,

advances in cryptology. In Proceedings of Crypto ’82, 1983,

pp. 199–203.
Bloom Filter Join

▶ Semijoin
Bloom Filters

MICHAEL MITZENMACHER

Harvard University, Boston, MA, USA

Bloom Filters B 253

B

Synonyms
Hash filter

Definition
A Bloom filter is a simple, space-efficient randomized

data structure based on hashing that represents a set in

a way that allows membership queries to determine

whether an element is a member of the set. False posi-

tives are possible, but not false negatives. In many

applications, the space savings afforded by Bloom

filters outweigh the drawbacks of a small probability

for a false positive. Various extensions of Bloom filters

can be used to handle alternative settings, such as

when elements can be inserted and deleted from the

set, and more complex queries, such as when each

element has an associated function value that should

be returned.

Historical Background
Burton Bloom introduced what is now called a Bloom

filter in his 1970 paper [2], where he described the

technique as an extension of hash-coding methods

for applications where error-free methods require too

much space and were not strictly necessary. The spe-

cific application he considered involved hyphenation:

a subset of words from a standard dictionary require

specialized hyphenation, while the rest could be han-

dled by a few simple and standard rules. Keeping a

Bloom filter of the words requiring specialized hyphen-

ation dramatically cut down disk accesses. Here, false

positives caused words that could be handled by the

simple rules to be treated as special cases. Bloom filters

were also used in early UNIX spell-checkers [12,13],

where a false positive would allow a misspelled word to

be ignored, and were suggested as a way of succinctly

storing a dictionary of insecure passwords, where a

false positive would disallow a potentially secure pass-

word [16].

Bloom filters were applied in databases to reduce

the amount of communication and computation for

join operations, especially distributed join operations

[1,4,11]. The term Bloomjoin is sometimes used to

describe a semijoin operation that utilizes Bloom fil-

ters. The Bloom filter is used to represent join column

values, so that matching values can be found by query-

ing the Bloom filter. False positives cause false matches

of tuples that must later be removed. However, the

communication and computation gains from using
the filter can yield significant advantages even with

these false positives.
Foundations
A Bloom filter for representing a set S = {x1,x2,...,xn} of

n elements from a universe U consists of an array of

m bits, initially all set to 0. The filter uses k independent

hash functions h1,...,hk with range {1,...,m}. For each

element x 2 S, the bits hi(x) are set to 1 for 1 � i � k.

(A location can be set to 1 multiple times.) To check if

an item y is in S, one checks whether all hi(y) are set to

1. If not, then clearly y is not a member of S. If all hi(y)

are set to 1, the data structure returns that y is in S.

There is no possibility of a false negative, but it is

possible that for y =2 S, all hi(y) are set to 1, in which

case the data structure gives a false positive.

The fundamental issue in the analysis of the Bloom

filter is the false positive probability for an element not

in the set. In the analysis, generally it is assumed that

the hash functions map each element in the universe to

a random number independently and uniformly over

the range. While this is clearly an optimistic assump-

tion, it appears to be suitable for practical implemen-

tations. With this assumption, after all the elements of

S are hashed into the Bloom filter, the probability that

a specific bit is still 0 is

p0 ¼ 1� 1=mð Þkn � e�kn=m:

It is convenient to use the approximation p = e�kn∕m in

place of p0. If r is the proportion of 0 bits after all the n

elements are inserted in the table, then conditioned on

r the probability f of a false positive is

f ¼ ð1� rÞk � ð1� p0Þk � ð1� pÞk ¼ 1� e�kn=m
� �k

:

These approximations follow since E[r] = p0, and r can

be shown to be highly concentrated around p0 using

standard techniques [8].

The optimal number of hash function can be found

by finding where (1 � e�kn∕m)k is minimized as a

function of k. Simple calculus reveals the optimum

occurs when k = ln2 � (m∕n), giving a false positive

probability f of

f ¼ 1� e�kn=m
� �k

¼ ð1=2Þk � ð0:6185Þm=n:

In practice, k must be an integer, and the choice of k

might depend on application-specific questions.

254B Bloom Filters
Key Applications
Essentially any application that requires membership

checks against a list or set of objects, and for which

space is at a premium, is a candidate for a Bloom filter.

In some applications, Bloom filters may also save

computational resources. The consequences of false

positives, however, need to be carefully considered in

all circumstances.

Bloom filters enjoyed a recent resurgence in the

networking community after their use in a paper by

Fan et al. on distributed Web caches [9]. Instead of

having caches distribute lists of URLs (or lists of their

16-byte MD5 hashes) corresponding to the cache con-

tents, the authors demonstrate a system that saves in

communication costs by sharing Bloom filters of URLs.

False positives may cause a server to request a page

from another nearby server, even when that server does

not hold the page. In this case, the page must subse-

quently be retrieved from the Web. If the false positive

probability is sufficiently low, the penalty from these

occasional failures is dominated by the improvement in

overall network traffic. Countless further applications

in databases, peer-to-peer networks, overlay networks,

and router architectures have arisen, and the use of

Bloom filters and their many variants and extensions

has expanded dramatically [5].

In databases, applications include the previously

mentioned Bloomjoin variation of the semijoin. In a

similar manner, Bloom filters can be effectively used to

estimate the size of semijoin operations, using the fact

that Bloom filters can be used to estimate the size of a

set (and the size of set unions and intersections) [14].

Another early database application utilizes differential

files [10]. In this setting, all changes to a database that

occur during a given time period are processed as a

batch job, and a differential file tracks changes that

occur until the batched update occurs. To read a record

then requires determining if the record has been

changed by some transaction in the differential file.

If not, the record can be read directly from the data-

base, which is generally much quicker and more effi-

cient than performing the necessary processing on the

differential file. Instead of keeping a list of all records

that have changed since the last update, a Bloom filter

of the records that have been changed can be kept.

Here, a false positive would force the database to

check both the differential file and the database on a

read even when a record has not been changed. If false

positives are sufficiently rare, this cost is minimal.
Future Directions
Recent research related to Bloom filters has followed

three major directions: alternative constructions, im-

proved analysis, and extensions to more challenging

questions. All three of these directions are likely to

continue to grow.

Research in alternative constructions has focused on

building data structures with the same capabilities as a

Bloom filter or related data structures with improved

efficiency, sometimes particularly for a specialized do-

main, such as router hardware. Improved analysis has

considered reducing for example the amount of ran-

domness required for a Bloom filter, or its performance

under specific classes of hash functions.

The largest area of research has come from extend-

ing the basic idea of the Bloom filter to more general

and more difficult problems. Arguably, the success of

Bloom filters relies on their flexibility, and numerous

variations on the theme have arisen. For example,

counting Bloom filters extend Bloom filters by allowing

sets to change dynamically via insertions and deletions

of elements [9,15]. Spectral Bloom filters extend Bloom

filters to handle multi-sets [7]. Count-min sketches

extend Bloom filters to approximately track counts

associated to items in a data stream, such as byte-counts

for network flows [8]. Bloomier filters extend Bloom

filters to the situation where each element of S is asso-

ciated with a function value from a discrete, finite set

of values, and the data structure should return that

value [6]. Approximate concurrent state machines fur-

ther extend Bloom filter to the setting where both the

set can change due to insertions and deletions and the

function values associated with set elements can

change dynamically [3]. The list of variations con-

tinues to grow steadily as more applications are found.
URL to Code
� en.wikipedia.org/wiki/Bloom_filter

� www.patrow.net/programming/hashfunctions/

index.html

� search.cpan.org/~mceglows/Bloom-Filter-1.0/

Filter.pm
Cross-references
▶ Join

▶ Semijoin

BM25 B 255

B

Recommended Reading
1. Babb E. Implementing a relational database by means of

specialized hardware. ACM Trans. Database Syst., 4(1):1–29,

1979.

2. Bloom B. Space/time tradeoffs in hash coding with allowable

errors. Commun. ACM, 13(7):422–426, 1970.

3. Bonomi F., Mitzenmacher M., Panigrahy R., Singh S., and

Varghese G. Beyond Bloom filters: from approximate member-

ship checks to approximate state machines. Comput. Commun.

Rev., 36(4):315–326, 2006.

4. Bratbergsengen K. Hashing methods and relational algebra

operations. In Proc. 10th Int. Conf. on Very Large Data Bases,

1984, pp. 323–333.

5. Broder A. and Mitzenmacher M. Network applications of

Bloom filters: a survey. Internet Math., (4):485–509, 2005.

6. Chazelle B., Kilian J., Rubinfeld R., and Tal A. The Bloomier

filter: an efficient data structure for static support lookup tables.

In Proc. 15th Annual ACM-SIAM Symp. on Discrete Algo-

rithms, 2004, pp. 30–39.

7. Cohen S. and Matias Y. Spectral Bloom filters. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2003,

pp. 241–252.

8. Cormode G. and Muthukrishnan S. An improved data

stream summary: the count-min sketch and its applications.

J. Algorithms, 55(1):58–75, 2003.

9. Fan L., Cao P., Almeida J., and Broder A.Z. Summary cache:

a scalable wide-area Web cache sharing protocol. IEEE/ACM

Trans. Network., 8(3):281–293, 2000.

10. Gremilion L.L. Designing a Bloom filter for differential file

access. Commun. ACM, 25:600–604, 1982.

11. Mackett L.F. and Lohman G.M. R* optimizer validation and

performance evaluation for distributed queries. In Proc. 27th

Int. Conf. on Very Large Data Bases, 1986, pp. 149–159.

12. McIlroy M.D. Development of a spelling list. IEEE Trans.

Commun., 30(1):91–99, January 1982.

13. Mullin J.K. and Margoliash D.J. A tale of three spelling checkers.

Software Pract. Exp., 20(6):625–630, June 1990.

14. Mullin J.K. Estimating the size of a relational join. Inf. Syst.,

18(3):189–196, 1993.

15. Mitzenmacher M. Compressed Bloom filters. IEEE/ACM Trans.

Network., 10(5):604–612, October 2002.

16. Spafford E.H. Opus: preventing weak password choices. Comp.

Sec., 11:273–278, 1992.
Bloom Join

▶ Semijoin
BM25

GIAMBATTISTA AMATI
Ugo Bordoni Foundation, Rome, Italy

Synonyms
OKAPI retrieval function; Probabilistic model

Definition
BM25 is a ranking function that ranks a set of docu-

ments based on the query terms appearing in each

document, regardless of the inter-relationship between

the query terms within a document (e.g., their relative

proximity). It is not a single function, but actually a

whole family of scoring functions, with slightly differ-

ent components and parameters. It is used by search

engines to rank matching documents according to

their relevance to a given search query and is often

referred to as ‘‘Okapi BM25,’’ since the Okapi informa-

tion retrieval system was the first system implementing

this function. The BM25 retrieval formula belongs

to the BM family of retrieval models (BM stands for

Best Match), that is the weight of a term t in a docu-

ment d is:

tf

k þ tf
ln

ðrtþ0:5Þ � ðN � R � ntþ rt þ 0:5Þ
ðnt � rt þ 0:5Þ � ðR � rt þ 0:5Þ

½BM ’s family

where

– R is the number of documents known to be relevant

to a specific topic,

– rt is the number of relevant documents containing

the term,

– N is the number of documents of the collection,

– nt is the document frequency of the term,

– tf is the frequency of the term in the document,

– k is a parameter.

The BM25 document-query matching function is:

X
t2q

wt � In
ðr t þ 0:5Þ � ðN�R � ntþ rt þ0:5Þ
ðnt � rt þ 0:5Þ � ðR � rt þ 0:5Þ ½BM25

ð1Þ

where

– q is the query,

– wt ¼ ðk1 þ 1Þ tf
kþ tf

� ðk3 þ 1Þ tfq
ðk3 þ tfqÞ

– tfq is the frequency of the term within the topic

from which q was derived

– l and l are respectively the document length and

average document length.

256B BM25
– k is k1 ð1� bÞ þ bðl
l
Þ

� �
.

– k1, b and k3 are parameters which depend on the

nature of the queries and possibly on the database.

– k1 and b are set by default to 1.2 and 0.75 respec-

tively, k3 to 1000.

By using these default parameters, the unexpandedBM25

ranking function, that is the BM25 applied in the

absence of information about relevance (R¼r¼0), is:

X
t2q

2:2 � tf
0:3þ 0:9 l

l
þ tf

� 1001 � tfq
1000þ tfq

ln
N � nt þ 0:5

nt þ 0:5
ð2Þ
Historical Background
The successful formula of the BM family, the BM25,

was introduced by Robertson and Walker in 1994 [1,3]

and it has its root in Harter’s 2-Poisson model of

litheness for indexing. Before BM25, a direct exploita-

tion of itheness for document retrieval was explored by

Robertson, Van Rijsbergen, Porter, Williams andWalker

[3,4] who plugged the Harter 2-Poisson model into the

standard probabilistic model of relevance o Robertson

and Spark Jones [2]. The evolution of the 2-Poisson

model as designed by Robertson, Van Rijsbergen and

Porter has thus motivated the birth of the BM family of

term-weighting forms. The BM25 formula is the

matching function of the Okapi information retrieval

system of City University in London.

Foundations
BM25 derives from both the 2-Poisson model and the

probabilistic binary independence model of relevance,

that is as a combination of the probabilistic model

Probðrel; djqÞ /
Y
t2q\d

ProbðtjrelÞ � ProbðtjrelÞ
ProbðtjrelÞ � ProbðtjrelÞ

ð3Þ

and the 2-Poisson model

ProbðX ¼ tfÞ ¼ p � e
�lEt lEt

tf

tf !
þ ð1� pÞ �

e
�l

EtlEt
tf

tf !

ð4Þ

where p is the probability of a document to belong to

the Elite set.

However, the 2-Poisson has three parameters: the

mean term frequency of the term in the elite set lEt
(a set of documents with a large number of occurrences
of the term), the mean term frequency of the term in the

rest of the collection, lEt , and the mixing parameter p.

Therefore, the 2-Poisson model needs reasonable

approximations in order to make the probabilistic

mixture a workable retrieval model.

The combination of the notion of eliteness with that

of relevance generates the Robertson, Van Rijsbergen

and Porter’s query term-document matching function:

w ¼ ln
ðp1lEt tfe�lEt þ ð1� p1ÞlEt

tfe
�l

Et Þ
ðp2lEt tfe�lEt þ ð1� p2ÞlEt

tfe
�l

Et Þ

ðp2e�lEt þ ð1� p2Þe
�l

Et Þ
ðp1e�lEt þ ð1� p1Þe

�l
Et Þ

ð5Þ

where p1 and p2 are the conditional probabilities

of a document to be or not in the elite set res-

pectively, given the set of relevant documents. Since

elite set (documents with high query-term fre-

quency) and relevance (documents relevant to the

query) are highly correlated then it can be assumed

that p1>p2.

With little algebra, (5) is equivalent to

w ¼ ln

p1 þ 1� p1ð Þ l
Et

lEt

� �tf
e
lEt�l

Et

	

p2 þ 1� p2ð Þ l
Et

lEt

� �tf
e
lEt�l

Et

	

p2e
�lEtþl

Et þ 1� p2ð Þ
� �

p1e
�lEtþl

Et þ 1� p1ð Þ
� �

ð6Þ

Equation (6) can be rewritten as

wðtfÞ ¼ lnCðtfÞ þ lnC0

where C0 is the ratio of the two components of the

cross-product ratio not containing the variable tf. The

first derivative with respect to the variable tf is

dw

dtf
¼

ðp1 � p2Þ � e
lEt�l

Et � l
Et

lEt

� �tf
� ln lEt

l
Et

	

CðtfÞ

The derivative is always positive because p1>p2,

lEt � lEt and thus ln
lEt
l
Et

	

> 0 in the 2-Poisson

model. Therefore w(tf) is a monotonically increasing

function. The limiting form of (6) for tf !1 is

Boolean Model B 257

B
w ¼ ln
p1 p2e

�lEtþl
Et þ 1� p2ð Þ

� �

p2 p1e
�lEtþl

Et þ 1� p1ð Þ
� �

Since e
�lEtþl

Et � 0, this limit is very close to

w � In
p1ð1� p2Þ
p2ð1� p1Þ ð7Þ

Because (6) is monotonic with respect to the within–

document term-frequency tf, document ranking is

obtained by decreasing order of the tf value. Hence

because for the highest values of the term frequency tf

(i.e., for tf !1), the limiting form of (7) can be taken

as the actual score of the topmost documents.

In 1994, Robertson and Walker defined as an

approximation of w of (7) the product

w ¼ tf

tfþK
� In ProbðtjrelÞProbðtjrelÞ

ProbðtjrecÞProbðtjrelÞ
ð8Þ

Indeed, both (6) and (8) have Formula 7 as their limit for

large tf. Varying the parameter K and using equation

ProbðtjrecÞProbðtjrecÞ
ProbðtjrecÞProbðtjrecÞ ¼

ðrt þ 0:5Þ � ðN� R � nt þ rt þ 0:5Þ
ðnt � rt þ 0:5Þ � ðR � rt þ 0:5Þ

ð9Þ

the BM weighting formulas are derived.
Cross-references
▶Divergence from Randomness Models

▶ Information Retrieval

▶ Probabilistic Retrieval Models and Binary Indepen-

dence Retrieval (BIR) Model

▶Relevance

▶Term Weighting

▶TF*IDF

▶Two-Poisson Model

Recommended Reading
1. Robertson S.E., Walker S., Beaulieu M.M., Gatford M., and

Payne A. Okapi at trec-4. In Harman D.K. (ed.). NIST Special

Publication 500-236: In Proc. The 4th Text Retrieval Conference.

1996.

2. Robertson S.E. and Sparck-Jones K. Relevance weighting of

search terms. J. Am. Soc. Inform. Sci., 27:129–146, 1976.

3. Robertson S.E. and Walker S. Some simple approximations to

the 2-Poisson Model for Probabilistic Weighted Retrieval. In
Proc. 17th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, June 1994, pp. 232–241.

4. Robertson S.E., Van Rijsbergen C.J., and Porter M. Probabilistic

models of indexing and searching. In Robertson S.E., Van

Rijsbergen C.J., and Williams P.W. (eds.). Information retrieval

Research, Chap. 4, Butterworths, 1981, pp. 35–56.
Boolean Model

MASSIMO MELUCCI

University of Padua, Padua, Italy

Definition
In the Boolean Model for Information Retrieval, a

document collection is a set of documents and an

index term is the subset of documents indexed by the

term itself. An index term can also be seen as a propo-

sition which asserts whether the term is a property of a

document, that is, if the term occurs in the document

or, in other words, if the document is about the con-

cept represented by the term.

The interpretation of a query is set-theoretical. In

practice, a query is a Boolean expression where the set

operators are the usual intersection, union and com-

plement, and the operands are index terms. The docu-

ment subsets which corresponds to the index terms

of the query are combined through the set operators.

The system returns the documents which belong to the

subset expressed by the query.

Historical Background
The Boolean model for Information Retrieval was

proposed as a paradigm for accessing large scale systems

since the 1950s. The idea of composing queries as

Boolean propositions was at that time considered

advantageous for the end user and simple to implement,

so that its use rapidly spread in the 1960s. The main

reason for the rapid advent of the Boolean model was

the presence of experienced end users who also were

expert of the domain of the searched documents. These

users were expected to be able to quite effectively express

their own information needs by composing index terms

and operators as propositions. More recently, some user

studies suggested that even experienced users tended

to employ the less Boolean operators as possible and to

submit quite simple queries.

258B Boolean Model
A possible reason for the potential success of the

Boolean model was the controlled, coordinated and

very often manual indexing of the collections; these

terms were often quite homogeneous terms, namely,

referred to a restricted domain, therefore, indexing

carefully avoided ambiguous terms and correctly asso-

ciated related terms. Since then, the Boolean model

was adopted by various other information manage-

ment systems, e.g., office information systems, library

catalogue systems, and database systems.

Currently, the Boolean model is quite ubiquitous

since the advanced search functions constitute a con-

stant of almost every information management sys-

tems, Web search engines included. However, it is a

matter of fact that the success of this model decreased

over time because of the decreasing proportion of ex-

perienced end users, the increasing heterogeneity of the

document collections and the lack of a support for

ranking documents. The most glaring example is the

WorldWideWeb, which fuels the search engine indexes

with more and more heterogenous Web pages accessed

by an increasing number of unexperienced end users.

Various research works showed that the percentage of

users who use advanced search functions is very limit-

ed, even when they are quite expert of the domain or in

using the interface.

Foundations
A parallel can be established between database design

and Boolean model. As far as database systems are

concerned, the design process aims at structuring entities,

relationships and attributes accessed through relational

query languages. When Boolean Information Retrieval

systems are considered, the document properties are

index terms and the design process aims at selecting the

index terms of the document through an indexing pro-

cess. Once every document has been indexed, the docu-

ment collection is described by an index whose terms

are associated to the documents in which they occur.

The basic information retained by the system is the

membership of the document to the index term.

Suppose, for example, some authors are writing

their own documents, say, d1,d2,d3 using, say, three

terms, namely, A,B,C. The terms unambiguously

describe one concept each – the absence of ambiguity

of the natural language is an important assumption so

as to make this model effective. As a document may

be about one or two concepts, a document may belong

to more subsets. Suppose, for example, that the
collection stores the documents d1,d2,d3, which respec-

tively contains the following index terms: {A,C}, {A,B},

{B}. According to the Boolean model, three subsets

A = {d1,d2}, B = {d2,d3}, C = {d1} are defined after

indexing the collection. (It is customary to label the

subset with the index term.)

The example shows that a concept is addressed by

one or more documents and a term is associated to a

single document subset. These document subsets are

the extensional expressions of the concept described by

an index term. In other words, the enumeration of the

document subset is the description of the concept

labeled by the index term. Indeed, the Boolean model

was thought as a means for describing concepts with-

out recurring to ontological description, but to a sim-

ple, yet powerful logical language.

The index terms and the associated document sub-

sets are decided at indexing time by a human indexer

or an automated process driven by an indexing algo-

rithm. If the set operators were not available, the end

user could use one index term at a time for formulating

his own query thus having a very few degrees of free-

dom for formulating his own information need.

Thanks to the set-based view imposed by the Boolean

model, the end user can utilize the Boolean algebra for

constructing new subsets. These new subsets are what

results from Boolean expressions based on the classical

operators, namely, intersection, union and comple-

ment. Suppose, for example, A,B,C are the document

subsets associated to three index terms; let A = {d1,d2},

B = {d2,d3}, C = {d1} and A AND NOT C be a new

subset. This subset contains d2 only thus expressing the

fact that d2 is about A AND NOT C.

What is important here is that the construction of

document subsets through the Boolean algebra allows

the end user for expressing new concepts which were

not explicitly thought by the authors. Indeed, the au-

thor of d2 did not think that d2 was about A AND NOT

C. With this respect, the Boolean model is a powerful

language because would permit to represent the

knowledge stored in a document collection by means

of an algebra. A system based on the Boolean model

can efficiently answer these queries by performing

some simple algorithms which implement set opera-

tions and process sets.

Despite its strengths and simplicity, the Boolean

model has some weaknesses. Understanding the main

weaknesses of the Boolean model is crucial for making

the application of this model to realistic contexts

Boolean Model B 259

B

effective. The weaknesses of the Boolean model can be

summarized as follows (see also Cooper, 1988):

� Set operator confusion

� Expressiveness gap

� Index term ambiguity

� Null output

� Output overload

Null output and output overload are due to the lack of

support for ranking documents.

Set operator confusion occurs whenever intersec-

tion and union, namely, AND and OR are exchanged

when composing a query. Because of the imprecision

of the natural language, humans often use ‘‘or’’ for

saying ‘‘and,’’ and viceversa. This confusion causes a

similar exchange when using the artificial Boolean

language. Suppose, for example, the collection is

{d4,d5}, d4 is about A and d5 is about B. Using the

natural language, end user’s information need might

be ‘‘the documents about A and B’’ to mean the whole

document collection. To obtain the whole collection as

a result, the user should use A OR B. However, if the

user translated the ‘‘and’’ of his own natural language

request into an AND operator, the translation of the

request into an artificial language would be A AND B,

which returns the empty set. Things are more difficult

as the query is more complex.

Expressiveness gap is the loss of expressiveness en-

countered whenever an information need has to be

translated to an artificial language like the Boolean

language from a more expressive natural language.

Suppose, for example, the end user wants to retrieve

documents about the Boolean language in Information

Retrieval or Database Systems. The use of the Boolean

query language requires that each word or group of

words is corresponded to an index term, namely, to a

document subsets, and that some set operators are

applied to these sets; for example, a query might

be (boolean AND information retrieval)

OR database systems. The problem of the expres-

siveness gap is amplified by the multiplicity of queries

which can be formulated as a representation of the

same information need. As a consequence, a variety

of document subsets not all being the same can be

retrieved. Suppose, for example, the end user wants

to retrieve documents about the Boolean language in

Information Retrieval or Database Systems. Potential

Boolean queries are, for example:
� (boolean AND information retrieval)

OR database systems

� boolean AND (information retrieval

OR database systems)

The expressiveness gap occurs because the request

expressed in natural language does not indicate if and

where the parentheses are located, whereas the location

of the parentheses is crucial when using the Boolean

algebra. Although both are valid expressions, they pro-

vide different results.

Index term ambiguityoccurswhenever a termhas two

distinctmeanings (polysemy) or two terms have the same

meaning (synonymy).When a term is polysemous, docu-

ments about two distinct concepts co-occur in the same

subset. As a consequence, irrelevant documents may be

retrieved when the end user employs the term in his own

query. Suppose, for example, bank = {d6,d7}, but d6 is

about bank as river bank and d7 is about bank as bank

branch. When the user expresses his own Boolean

query using bank as term, both documents are re-

trieved. If, however, the user needs information about

river banks, one irrelevant document, i.e., d7, is re-

trieved. In this event, precision is lower than the precision

measured if ambiguity does not occur. When two terms

are synonyms, two distinct document subsets are defined,

yet the documents are about the same concept. As a

consequence, relevant documents may be missed when

the end user employs only one of the two terms in his

own query. Suppose, for example, personalcompu-

ter = {d8,d9} and PC = {d10}, but PC is the acronym of

personal computer and therefore d10 should be

retrieved, but it is not. When the user expresses his own

Boolean query using PC as term, only d10 is retrieved.

If, however, the use needs information about personal

computers, two relevant documents, i.e., d8,d9,

are missed. In this event, recall decreases.

Null output occurs whenever the end user submits

a very restrictive query to the system to an extent to

make the returned document subset very small, if not

even empty. Limit examples are terms being absent

from the index, which are associated to the empty

document set or two index terms whose intersection

is empty because there are no common documents.

The event of intersecting disjoint document subsets

is very probable since the document subsets are usually

small if compared with the document collection. More-

over, Boolean systems do not usually keep track of

the semantic relationships between terms, and

260B Boolean Model
therefore connecting by AND two semantically related

terms whose document subsets are disjoint would give

the empty set as result. To reduce null output, some

query terms can be related by OR or some AND should

be removed by the user.

Output overload occurs whenever the result docu-

ment subset is too large for being effectively browsed

by the end user. This drawback often happens when

too many ORs or too few ANDs are utilized for formu-

lating the query. Even though a document subset is

small if compared with the document collection, a

subset of, say, 1,000 documents is very large for the

end user who is required to inspect all of them.

A strategy for avoiding output overload is reducing

the number of OR or adding some AND.

Overall, the side effects of null output and output

overload are hardly controlled by the end user who is

requested to add and delete terms or Boolean opera-

tors so as to make the query an effective description of

his own information need. This task, which is called

Query Expansion, would overload the cognitive effort

of the end user, if performed using a Boolean systems.

To overcome the problems of null output and out-

put overload, the notion of level of coordination was

introduced. The level of coordination is a measure of

the degree to which each returned document matches

the query. In this way, the level of coordination pro-

vides a score for ranking the documents. This ranking

allows the user for deciding how many documents to

inspect and the system for cutting the bottom ranked

documents off the list.

The level of coordination is calculated as follows.

A Boolean query is transcribed in conjunctive normal

form, namely, as a list of propositions related by AND –

each proposition is a disjunction of terms. The level of

coordinationofadocumentisthenumberofpropositions

satisfied by the document. Suppose, for example, A,B,C

are the document subsets associated to three index

terms; let A = {d1,d2}, B = {d2,d3}, C = {d3} and A

AND (C OR B) be the query; the level of coordination of

d1 is 1 because only the first proposition is satisfied by

d1, the level of d2 is 2 and that of d3 is 1 – d1,d3 would

have not been retrieved if the level of coordination

were not been calculated because they do not satisfy

the query.

A variation of the level of coordination was intro-

duced for taking the variable size of document subsets

into account – indeed, the document subsets are of

arbitrary size and therefore a small subset may be
treated as a large subset. This variation has been called

weighted level of coordination: instead of assigning a

constant weight to each proposition made true by a

document, a different weighted is assigned depending

on the proposition; for example, an IDF may be used.

The weighed level of coordination is then the sum of

the weights assigned to every proposition.
Key Applications
The research papers and articles on the Boolean model

flourished until when other models, e.g., the probabilis-

tic models and the vector-space model, appeared on the

scene of the Information Retrieval theater and the Web

search engines drastically changed the audience and the

document collections. The knowledge of this model,

however, is a basic element of an Information Retrieval

system because the Boolean query language is provided

by many if not all information management systems. Of

course, this model is the starting point for facing the

non-classical logic models for Information Retrieval.
Cross-references
▶ Indexing Units

▶ Logical Models of Information Retrieval

▶ Precision

▶ Probabilistic Retrieval Models and Binary Indepen-

dence Retrieval (BIR) Model

▶Query Expansion for Information Retrieval

▶Query Expansion Models

▶Recall

▶Relevance Feedback

▶Vector-Space Model
Recommended Reading
1. Bar-Hillel Y. Language and information. Addison-Wesley,

Reading, MA, USA, 1964.

2. Belkin N.J., Cool C., Croft W.B., and Callan J.P. The Effect of

Multiple Query Representations on Information Retrieval System

Performance. In Proc. 16th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1993,

pp. 339–346.

3. Blair D. Language and representation in information retrieval.

Elsevier, Amsterdam, 1990.

4. Cooper W. Getting beyond Boole. Inform. Process. Manage.,

24:243–248, 1988.

5. Croft W., Turtle H., and Lewis D. The Use of phrases and

structured queries in information retrieval. In Proc. 14th Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 1991, pp. 32–45.

Boosting B 261

B

6. Grefenstette G. (ed.), Cross-Language Information Retrieval,

International Series on Information Retrieval, Kluwer

Academic, Dordecht, 1998.

7. Hersh W. and Hickam D. An evaluation of interactive Boolean

and natural language searching with an online medical textbook.

J. Am. Soc. Inform. Sci., 46(7):478–489, 1995.

8. Hull D. A weighted Boolean model for Cross Language Text

Retrieval. In Grefenstette [6], pp. 119–136.

9. Korfhage R. Information Storage and Retrieval. Wiley, New

York, 1997.

10. Kowalski G. and Maybury M. Information retrieval systems:

Theory and implementation. Kluwer, Dordecht, 2000.

11. Lancaster F. and Warner A. Information retrieval today. Infor-

mation Resources, Arlington, VA, 1993.

12. Lee J. Properties of Extended Boolean Models in Information

Retrieval. In Proc. 17th Annual Int. ACM SIGIR Conf. on Re-

search and Development in Information Retrieval, 1994,

pp. 182–190.

13. Lee J., KimW., KimM., and Lee Y. On the evaluation of Boolean

operators in the extended Boolean retrieval framework. In Proc.

16th Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 1993, pp. 291–297.

14. Radecki T. Generalized boolean methods of information

Retrieval. Int. J. Man–Machine Studies, 18(5):407–439, 1983.

15. van Rijsbergen C. The Geometry of Information Retrieval.

Cambridge University Press, UK, 2004.

16. Wong S., Ziarko W., Raghavan V., and Wong P. Extended bool-

ean query processing in the generalized vector space model.

Inform. Syst., 14(1):47–63, 1989.
Boosting

ZHI-HUA ZHOU
Boosting. Figure 1. The AdaBoost algorithm.
Nanjing University, Nanjing, China

Definition
Boosting is a kind of ensemble method which produces

a strong learner that is capable of making very accurate

predictions by combining rough and moderately inac-

curate learners (which are called as base learners or

weak learners). In particular, Boosting sequentially

trains a series of base learners by using a base learning

algorithm, where the training examples wrongly pre-

dicted by a base learner will receive more attention

from the successive base learner. After that, it generates

a final strong learner through a weighted combination

of these base learners.

Historical Background
In 1988, Kearns and Valiant posed an interesting

question for the research of computational learning

theory, i.e., whether a weak learning algorithm that

performs just slightly better than random guess can

be ‘‘boosted’’ into an arbitrarily accurate strong learn-

ing algorithm. In other words, whether two complexity

classes, weakly learnable and strongly learnable pro-

blems, are equal. In 1989, Schapire [9] proved that

the answer to the question is ‘‘yes’’, and the proof he

gave is a construction, which is the first Boosting algo-

rithm. One year later, Freund developed a more effi-

cient algorithm. However, both algorithms suffered

from some practical drawbacks. Later, in 1995, Freund

and Schapire [4] developed the AdaBoost algorithm

262B Boosting
which is effective and efficient in practice, and then a

hot wave of research on Boosting arose.

Foundations
AdaBoost is the most influential Boosting algorithm. Let

X and Y denote the instance space and the set of class

labels, respectively, and assume Y ¼ f�1;þ1g. Given
a training set D ¼ fðx1; y1Þ; ðx2; y2Þ;:::;ðxm; ymÞg
where xi 2 X and yi 2 Y (i = 1,...,m), and a base

learning algorithm which can be decision tree, neural

networks or any other learning algorithms, the Ada-

Boost algorithm works as follows.

First, it assigns equal weights to all the training

examples (xi, yi) (i 2 {1,...,m}). Denote the distribution

of the weights at the tth learning round as Dt. From

the training set and Dt the algorithm generates a base

learner ht : X ! Y by calling the base learning algo-

rithm. Then, it uses the training examples to test ht,

and the weights of the incorrectly classified examples

will be increased. Thus, an updated weight distribution

Dt+1 is obtained. From the training set and Dt+1 Ada-

Boost generates another base learner by calling the base

learning algorithm again. Such a process is repeated for

T times, each of which is called a round, and the final

learner is derived by weighted majority voting of the T

base learners, where the weights of the learners are deter-

mined during the training process. In practice, the base

learning algorithm may be a learning algorithm which

can use weighted training examples directly; otherwise

the weights can be exploited by sampling the training

examples according to the weight distribution Dt. The

pseudo-code of AdaBoost is shown in Fig. 1.

Freund and Schapire [4] proved that the training

error of the final learner H is upper-bounded by

ED ¼ Pri�D HðxiÞ 6¼ yi½
 � 2T
YT
t¼1

ffi
Et ð1� EtÞ;

p

which can be written as

ED � YT
t¼1

ffi
1� 4g2t � exp

q
�2
XT
t¼1

g2t

 !
;

where gt = 1 ∕ 2 � Et. Thus, if each base learner is

slightly better than random so that gt � g for some

g > 0, the training error will drop exponentially fast

in T since the upper bound is at most e�2Tg2 .

Freund and Schapire [4] also gave a generalization

error bound of H in terms of its training error ED, the
size m of the training set, the VC-dimension d of the
base learner space, and the number of rounds T, by

E � ED þ ~O

ffiffiffiffiffiffi
Td

m

r !

with high probability, where ~O(�) is used to hide all

logarithmic and constant factors [10] instead of using

O(�) which hides only constant factors.

The above generalization error bound suggests that

AdaBoost will overfit if it runs for many rounds since T

is in the numerator. However, empirical observations

show that AdaBoost often does not overfit even after a

large number of rounds, and sometimes it is even able to

reduce the generalization error after the training error

has already reached zero. Thus, later, Schapire et al. [11]

presented another generalization error bound,

E � Pri�D marginf xi; yi
� �

� y
h i

þ ~O

ffiffiffiffiffiffiffiffi
d

my2

r !

for any y > 0 with high probability, where the margin

of f on (xi, yi) was defined as

marginf ðxi; yiÞ ¼
yif ðxiÞPT
t¼1jat j

¼ yi
PT

i¼1at ht ðxÞPT
t¼1jat j

;

whose value is in [�1,+1] and is positive only if H

classifies (xi, yi) correctly. In fact, the magnitude of

margin can be explained as a measure of confidence

in prediction. The larger the magnitude of margin,

the higher confidence of prediction. Note that when

H(xi) = yi, marginf (xi, yi) can still be increased as

t increases. Thus, the above margin-based generaliza-

tion bound gives an answer to the question of why

AdaBoost is able to reduce the generalization error

even after the training error reaches zero, that is, the

confidence in prediction can be increased further.

However, Breiman [2] showed that improving the

margin does not necessarily lead to the improvement

of generalization, which doubted the above margin-

based explanation to AdaBoost.

In addition to the previously mentioned studies,

the behavior of AdaBoost has been explained from the

views of game theory [2,3], additive model [5], etc.

Many variants or extensions of AdaBoost have been

developed [6,10], which makes Boosting become a big

family of ensemble methods.

In contrast to another famous ensemble method,

Bagging (which reduces variance significantly but has

Boosting B 263

B

little effect on bias), Boosting can significantly reduce

bias in addition to reducing variance. So, on weak

learners such as decision stumps, which are one-level

decision trees, Boosting is usually more effective.
Key Applications
The first application of Boosting was onOptical Charac-

ter Recognization by Drucker et al. Later, Boosting was

applied to diverse tasks such as text categorization,

speech recognization, image retrieval, medical diagnosis,

etc. [6,10]. It is worth mentioning that AdaBoost has

been combined with a cascade process for face detection

[12], and the resulting face detector was 15 times faster

than state-of-the-art face detectors at that time but with

comparable accuracy, whichwas recognized as one of the

major breakthroughs in computer vision (in particular,

face detection) during the past decade.
Future Directions
The margin-based explanation to why Boosting often

does not overfit was seriously challenged by Breiman’s

indication that larger margin does not necessarily

mean better generalization [2]. Recently, Reyzin and

Schapire [8] found that Breiman considered minimum

margin instead of average or median margin. If the

margin-based explanation can survive, it may be pos-

sible to establish a unified theoretical framework for

the two powerful learning approaches, i.e., Boosting

and support vector machine, since it is well-known

that support vector machine works by maximizing

the margin in a feature space.

It has been observed that Boosting performs poorly

when abundant noise exists. Making Boosting more

robust to noise is an important task. Moreover, Boost-

ing suffers from some general deficiencies of ensemble

methods, such as the lack of comprehensibility, i.e., the

knowledge learned by Boosting is not understandable

to the user. Trying to overcome those deficiencies is an

important future direction.

Experimental Results
Empirical studies on Boosting have been reported in

many papers, such as [1,7].
Data Sets
A large collection of datasets commonly used for exp-

eriments can be found at http://www.ics.uci.edu/�
mlearn/MLRepository.html.

URL to Code
Thecodeof anextendedAdaBoost algorithm,BoosTexter,

which was designed for multi-class text categorization,

can be found at http://www.cs.princeton.edu/ schapire/

boostexter.html.

Cross-references
▶Bagging

▶Decision Tree

▶ Ensemble

▶Neural Networks

▶ Support Vector Machine

Recommended Reading
1. Bauer E. and Kohavi R. An empirical comparison of voting

classification algorithms: Bagging, Boosting, and variants.

Mach. Learn., 36(1–2):105–139, 1999.

2. Breiman L. Prediction games and arcing classifiers. Neural Com-

put., 11(7):1493–1517, 1999.

3. Freund Y. and Schapire R.E. Game theory, on-line prediction

and Boosting. In Proc. Ninth Annual Conf. on Computational

Learning Theory, 1996, pp. 325–332.

4. Freund Y. and Schapire R.E. A decision-theoretic generalization

of on-line learning and an application to Boosting. J. Comput.

Syst. Sci., 55(1):119–139, 1997. (A short version appeared in the

Proceedings of EuroCOLT’95).

5. Friedman J., Hastie T., and Tibshirani R. Additive logistic

regression: A statistical view of Boosting with discussions. Ann.

Stat., 28(2):337–407, 2000.

6. Meir R. and Rätsch G. An introduction to Boosting and lever-

aging. In Advanced Lectures in Machine Learning, S. Mendelson

and A.J. Smola (eds.). LNCS, Vol. 2600, Springer, Berlin, 2003,

pp. 118–183.

7. Opitz D. and Maclin R. Popular ensemble methods: An empiri-

cal study. J. Artif. Intell. Res., 11:169–198, 1999.

8. Reyzin L. and Schapire R.E. How boosting the margin can also

boost classifier complexity. In Proc. 23rd Int. Conf. on Machine

Learning, 2006, pp. 753–760.

9. Schapire R.E. The strength of weak learnability. Mach. Learn.,

5(2):197–227, 1990.

10. Schapire R.E. The Boosting approach to machine learning: An

overview. In Nonlinear Estimation and Classification. D.D.

Denison, M.H. Hansen, C. Holmes, B. Mallick, and B. Yu

(eds.). Springer, Berlin, 2003.

11. Schapire R.E., Freund Y., Bartlett P., and Lee W.S. Boosting the

margin: A new explanation for the effectiveness of voting meth-

ods. Ann. Stat., 26(5):1651–1686, 1998.

264B Bootstrap
12. Viola P. and Jones M. Rapid object detection using a boosted

cascade of simple features. In Proc. IEEE Comp. Soc. Conf. on

Computer Vision and Pattern Recognition, 2001, pp. 511–518.
Bootstrap

HWANJO YU

University of Iowa, Iowa City, IA, USA

Synonyms
Bootstrap sampling; Bootstrap estimation

Definition
The bootstrap is a statistical method for estimating the

performance (e.g., accuracy) of classification or regres-

sion methods. The bootstrap is based on the statistical

procedure of sampling with replacement. Unlike other

estimation methods such as cross-validation, the same

object or tuple can be selected for the training set more

than once in the boostrap. That is, each time a tuple is

selected, it is equally likely to be selected again and re-

added to the training set.

Historical Background
The bootstrap sampling was developed by Bradley

Efron in 1979, and mainly used for estimating the

statistical parameters such as mean, standard errors,

etc. [2]. A meta-classification method using the boot-

strap called bootstrap aggregating (or bagging) was pro-

posed by Leo Breiman in 1994 to improve the

classification by combining classifications of randomly

generated training sets [1].

Foundations
This section discusses a commonly used bootstrap

method, .632 bootstrap. Given a dataset of N tuples,

the dataset is sampled N times, with replacement,

resulting in a bootstrap sample or training set of N

tuples. It is very likely that some of the original data

tuples will occur more than once in the training set.

The data tuples that were not sampled into the training

set end up forming the test set. If this process is

repeated multiple times, on average 63.2% of the orig-

inal data tuples will end up in the training set and the

remaining 36.8% will form the test set (hence, the

name, .632 bootstrap).
The figure, 63.2%, comes from the fact that a tuple

will not be chosen with probability of 36.8%. Each

tuple has a probability of 1∕N of being selected, so the

probability of not being chosen is (1 � 1 ∕N). The
selection is done N times, so the probability that

a tuple will not be chosen during the whole time

is (1 � 1 ∕N)N. If N is large, the probability approaches

e�1 = 0.368. Thus, 36.8% of tuples will not be selected

for training and thereby end up in the test set, and

the remaining 63.2% will form the training set.

The above procedure can be repeated k times,

where in each iteration, the current test set is used to

obtain an accuracy estimate of the model obtained

from the current bootstrap sample. The overall accu-

racy of the model is then estimated as

AccðMÞ ¼
Xk
i¼1

ð0:632� AccðMiÞtest set þ 0:368

� AccðMiÞtrain set Þ; ð1Þ

where AccðMiÞtrain set and AccðMiÞtest set are the accu-

racy of the model obtained with bootstrap sample i

when it is applied to training set and test set respec-

tively in sample i.

Key Applications
The bootstrap method is preferably used for estimating

the performance when the size of dataset is relatively

small.

Cross-references
▶Cross-Validation

▶Holdout Test

▶ Sampling

▶Validation

Recommended Reading
1. Breiman L. Bagging predictors. Machine Learning, 1996.

2. Efron B. and Tibshirani R.J. An Introduction to the Bootstrap.

CRC Press, Boca Raton, 1994.
Bootstrap Aggregating

▶Bagging
Bootstrap Estimation

BP-Completeness B 265
▶Bootstrap
B

Bootstrap Sampling

▶Bootstrap
Bottom-up Semantics

▶ Emergent Semantics
Boyce-Codd Normal Form

MARCELO ARENAS

Pontifical Catholic University of Chile, Santiago, Chile

Synonyms
BCNF

Definition
Let R(A1,...,An) be a relation schema and S a set of

functional dependencies over R(A1,...,An). Then (R, S)
is said to be in Boyce-Codd Normal Form (BCNF) if

for every nontrivial functional dependency X ! A

implied by S, it holds that X is a superkey for R.

Key Points
In order to avoid update anomalies in database schemas

containing functional dependencies, BCNF was intro-

duced by Codd (In [2], Codd pointed out that this

normal form was developed by Raymond F. Boyce and

himself.) in [2]. This normal form is defined in terms of

the notion of superkey as shown above. For example,

given a relation schema R(A, B, C) and a set of func-

tional dependencies S = {AB! C, C! B}, it does not

hold that (R(A, B, C), S) is in BCNF since C is not a

superkey for R. On the other hand, (S (A, B, C), G) is
in BCNF if G = {A ! BC}, since A is a superkey for S

in this case.

It should be noticed that relation schema R(A, B, C)

above is in 3NF if S = {AB! C, C! B}, although this
schema is not in BCNF. In fact, BCNF is strictly stron-

ger than 3NF; every schema in BCNF is in 3NF, but

there exist schemas (as the one shown above) that are

in 3NF but not in BCNF.

For every normal form two problems have to be

addressed how to decide whether a schema is in that

normal form, and how to transform a schema into an

equivalent one in that normal form. As opposed to the

case of 3NF, it can be tested efficiently whether a

relation schema is in BCNF. A relation schema (R, S)
is in BCNF if and only if for every nontrivial functional

dependency X ! Y 2 S, it holds that X is a superkey.

Thus, it is possible to check efficiently whether (R, S) is
in BCNF by using the linear-time algorithm for func-

tional dependency implication developed by Beeri and

Bernstein [1]. On the negative side, given a relation

schema S, it is not always possible to find a database

schema S0 such that S0 is in BCNF and S0 is a lossless

and dependency preserving decomposition of S. In

fact, relation schema R(A, B, C) and set of functional

dependencies {AB ! C, C ! B} does not admit a

dependency preserving decomposition in BCNF.
Cross-references
▶ Fourth Normal Form (4NF)

▶Normal Forms and Normalization

▶ Second Normal Form (2NF)

▶Third Normal Form (3NF)
Recommended Reading
1. Beeri C. and Bernstein P. Computational Problems Related to

the Design of Normal Form Relational Schemas. ACM Trans.

Database Sys., 4(1):30–59, 1979.

2. Codd E.F. Recent Investigations in Relational Data Base Systems.

In Proc. IFIP Congress. 1974, pp. 1017–1021.
BP-Completeness

DIRK VAN GUCHT

Indiana University, Bloomington, IN, USA

Synonyms
Instance-completeness; Relation-completeness

266B BPEL
Definition
A relational query languageQ is BP-complete if for each

relational database D, the set of all relations defined by

the queries of Q on D is equal to the set of all first-

order definable relations over D. More formally, fix

some infinite universe U of atomic data elements. A

relational database schema S is a finite set of relation

names, each with an associated arity. A relational data-

base Dwith schema S assigns to each relation name of S

a finite relation over U of its arity. The domain of D,

dom(D), is the set of all atomic data elements occurring

in the tuples of its relations. Let FOS be the set of first-

order formulas over signature S and the equality predi-

cate, and let FOS(D) = {’(D)|’ 2 FOS}. (For a formula

’ 2 FOS with free variables (x1,...,xm), ’(D) denotes

the m-ary relation over dom(D) defined by ’, where

the variables in ’ are assumed to range over dom(D).)

Let QS denote those queries of Q defined over schema

S, and let QS(D) = {q(D)|q 2 QS}, i.e., the set of

relations defined by queries of Q applied to D. Then,

Q is BP- complete if for each relational database D over

schema S,

QSðDÞ ¼ FOSðDÞ:

In the words of Chandra and Harel, ‘‘BP-completeness

can be seen to be a measure of the power of a language

to express relations and not of its power to express

functions having relations as outputs, i.e., queries.’’ In

fact, there exist BP-complete languages that do not

express the same queries.
Key Points
Chandra and Harel introduced the concept of

BP-completeness and attributed it to Bancilhon and

Paredaens who were the first to study it. Bancilhon and

Paredaens considered the following decision problem:

given a relational database D and a relation R defined

over dom(D), does there exists a first-order formula ’

such that ’(D) = R? (Paredaens considered this

problem for the relational algebra, but by Codd’s

theorem on the equivalence of first-order logic and

the relational algebra, these decision problems are the

same.) They gave an algebraic, language-independent

characterization of this problem by showing that such

a first-order formula exists if and only if for each bijec-

tion h : dom(D)!dom(D), if h(D) = D then h(R) = R.

Equivalently, if h is an automorphism of D then it is

also an automorphism of R. (Here, h(D) and h(R) are
the natural extensions of h toD and R, respectively.) For

a relational database D over schema S and a relation R,

denote by Aut(D) and Aut(R) the sets of auto-

morphisms of D and R, respectively, and let RS(D) =

{R j R is a relation over dom(D) such that Aut(D) �
Aut(R)}. Then, an alternative characterization for the

BP-completeness of Q is to require that for each rela-

tional database D over schema S,

QSðDÞ ¼ RSðDÞ:

Van den Bussche showed that this characterization

follows from Beth’s Theorem about the explicit and

implicit definability of first-order logic. The concept

of BP-completeness has been generalized as well as

specialized to query languages over other database

models.

Cross-references
▶Complete Query Languages

▶Query Language

▶Relational Calculus and Algebra

Recommended Reading
1. Bancilhon F. On the completeness of query languages for rela-

tional databases. In Proc. Mathematical Foundations of Com-

puter Science, 1978.

2. Chandra A. and Harel D. Computable Queries for relational

databases. J. Comput. Syst. Sci., 25:99–128, 1982.

3. Paredaens J. On the expressive power of the relational algebra.

Inform. Process. Lett., 7(2):107–111, 1978.

4. Van den Bussche. J. Applications of Alfred Tarski’s Ideas in

Database Theory. In Computer Science Logic, Lect. Notes

Comput. Sci., 2142:20–37, 2001.
BPEL

▶Business Process Execution Language
BPEL4WS

▶Business Process Execution Language
BPMN

▶Business Process Modeling Notation

Browsing B 267

B

Bpref

NICK CRASWELL

Microsoft Research Cambridge, Cambridge, UK

Definition
Bpref is a preference-based information retrieval

measure that considers whether relevant documents

are ranked above irrelevant ones. It is designed to be

robust to missing relevance judgments, such that it

gives the same experimental outcome with incomplete

judgments that Mean Average Precision would with

complete judgments.

Key Points
In a test collection where all relevant documents have

been identified, experiments using bpref and MAP

should give the same outcome, for example both sys-

tems should agree that system A is better than system

B. However, if the relevance judgments are incomplete,

for example where only half the pool has been judged,

MAP becomes unstable and may incorrectly show that

system B is better than system A. The bpref measure

was developed to maintain the correct ordering of

systems (A better than B) even with incomplete

judgments.

Given a ranked list of search results and a set of R

known relevant documents and N known irrelevant

documents, bpref first identifies the top-R irrelevant

documents in the list. For these irrelevant documents n

and relevant documents r the measure is:

bpref ¼ 1

R

X
r

1� jn ranked higher than rj
min R;Nð Þ

	

The bpref paper [1] found good agreement between

full-judgment MAP and reduced-judgment bpref even

if the judged set was reduced by 80%. Later work has

introduced other measures with similar or better prop-

erties, notably Inferred Average Precision [2].
Cross-references
▶Mean Average Precision

▶ Precision-Oriented Effectiveness Measures
Recommended Reading
1. Buckley C. and Voorhees E.M. Retrieval evaluation with

incomplete information. In Proc. 30th Annual Int. ACM SIGIR
Conf. on Research and Development in Information Retrieval,

2004, pp. 25–32.

2. Yilmaz E. and Aslam J.A. Estimating average precision with

incomplete and imperfect judgments. In Proc. Int. Conf. on

Information and Knowledge Management, 2006, pp. 102–111.
Branch

▶OR-Split
Bridging

▶Mediation
Browsing

KENT WITTENBURG

Mitsubishi Electric Research Laboratories, Inc.,

Cambridge, MA, USA

Synonyms
Perusal; Scanning

Definition
‘‘Browsing’’ has two definitions in the context of visual

interfaces for database systems:

1. The human activity of visual perception and inter-

pretation of electronic content when there is no

specific target object being sought.

2. The human activity of clicking or tapping on a se-

quence of elements in an information display that

results in a sequence of screens of information state.

Definition (1) implies something about the mental

intent of the user performing the act of information

processing. The intent can be to learn the gist of ‘‘what

is there.’’ It may be to take in information in order to be

entertained or informed. Or it may simply be a part of

involuntary visual scanning within an environment. In

the physical world, examples include flipping through

the pages of a book, scanning quickly through a menu,

or glancing down a store aisle.

Definition (2) is used in the context of contrasting

the human-computer interaction paradigm of link-

following in World Wide Web applications versus

searching, which entails forming queries. ‘‘Browsing’’

268B Browsing in Digital Libraries
in this context refers to a sequence of clicking or

tapping behaviors on highlighted elements (hyper-

links) in order to go directly to a subsequent state of

the information display. In contrast, ‘‘searching’’

entails specifying and then executing a query. The

interaction paradigms of browsing and searching are

independent of the intentional state of the user – the

individual may or may not be looking for something

specific in either case.

Key Points
A branch of research in visual interfaces for browsing

in the first sense is Rapid Serial Visual Presentation

(RSVP) [2, Sect. 4.2]. The human psychology of visual

perception, specifically models of short-term visual

memory, can inform the design of visual interfaces

for browsing. Visual information can be presented in

space or in time or in some combination thereof. For

image presentation specifically, is it better to utilize

screen real estate to present multiple images concur-

rently or to present them over time? If over time,

should images move in some specified path or remain

motionless? What are the best controls to give to the

user in order to support the tasks of rapid perusal in

order to get a gist of the content within that informa-

tion space or to help in making a selection for further

detailed investigation? These are some of the questions

being asked by researchers and designers in the context

of RSVP interfaces.

An important aspect of browsing as link-following

has to do with information ‘‘scent.’’ Just as animals’

scent can be used as an indicator of their territory or

former presence, the presentation of information links

provides hints of what a user would find were he or she

to follow the link. The theory of information foraging

[1] provides insight into human behavior in informa-

tion seeking that can help inform the design for inter-

faces and electronic documents. According to Pirolli,

humans tend to make decisions about what links to

follow and how long to continue along certain paths

based on resource-limited assessments of the costs of

such activities relative to a judgment of payoff.

Cross-references
▶Browsing in Digital Libraries

▶Discovery

▶Human-Computer Interaction

▶ Information Foraging

▶ Information Navigation
▶ Information Retrieval

▶ Searching Digital Libraries

▶Visual Interaction

▶Visual Interfaces

▶Web Information Retrieval Models

Recommended Reading
1. Pirolli P. Information Foraging Theory: Adaptive Interaction

with Information. Oxford University Press, New York, NY, 2007.

2. Spence R. Information Visualization: Design for Interaction

(2nd edn.). Pearson/Prentice Hall, Upper Saddle River, NJ, 2007.
Browsing in Digital Libraries

RAO SHEN
1, EDWARD A. FOX

2

1Yahoo!, Sunnyvale, CA, USA
2Virginia Tech, Blacksburg, VA, USA

Synonyms
Exploring; Surfing; Looking over/through

Definition
Informally, browsing is a process that involves looking

through a collection of information. Thus, in a tradi-

tional library, one may wander about the stacks, glanc-

ing at titles of works, in regions where one expects to

find interesting material. In the broadest sense, brows-

ing is considered as one type of exploration, typically

less directed or purposeful than searching, in that the

goal or result is not always precisely known in advance.

In the World Wide Web, this is very common, making

use of ‘‘browsers’’ like Firefox or Internet Explorer.

Sometimes the colorful term ‘‘surfing’’ is used when it

seems appropriate to emphasize the excitement that

some feel when exploring newWeb content, or the thrill

of getting closer to some desirable result. Yet, theWWW

is but one example of a hypertext (or, if multiple media

types are considered, hypermedia) environment. Ac-

cordingly, in a digital library, which many believe must

include a hypertext [4], browsing involves moving from

one information object to another according to some

connections or links or structures.

Historical Background
A hypertext is a high level interactive navigational struc-

ture which allows non-sequential exploration of and

access to information [3]. In the most general case, it

consists of nodes connected by directed links in a graph

Browsing in Digital Libraries B 269

B

structure. A directed link in the hypertext graph is called

a hyperlink. Today’smost famous hypertext system is the

World Wide Web. The Web’s structure contains hyper-

links connecting nodes that each can be associated with

either a complete document (e.g., HTML page) or with

a location in a document (e.g., a start tag in an

HTML page).

Three models for Web browsing defined by

Baeza-Yates and Ribeiro-Neto [1] are flat browsing,

structure guided browsing, and utilizing the hypertext

model. If a document collection is organized as a one

dimensional list, exploring the document space is an

example of flat browsing; if the organization is hierarchi-

cal instead of flat, then browsing is structure guided. The

first two models have a hypertext graph that is made up

of a disconnected bipartite graph and a tree, respectively,

so they are special cases of the third model.
Browsing in Digital Libraries. Figure 1. A simple

hypertext.

Browsing in Digital Libraries. Figure 2. Multi-dimensional b
Browsing and searching are two paradigms for

finding things on the Web. Some Web search engines

provide Web directories used for browsing (and also

for searching). Web directories are hierarchical taxo-

nomies that classify human knowledge. Although a

taxonomy can be considered as a tree, there can be

cross references. One of the advantages of browsing a

Web directory, in most cases, is that if a user finds what

she is looking for in the taxonomy, then the answer

that is found classified under that category almost

certainly will be useful. In Web directories, a search

can be reduced to a sub-tree of the taxonomy. How-

ever, searching may miss related pages that are not in

that part of the taxonomy, if a user cannot formulate

her information need sufficiently broadly.

Foundations
Browsing and searching are two methods of pursuing

information on the Web; they also are two major

paradigms for exploring digital libraries. The Web has

no maintenance organization. Individuals add and

delete pages at will. On the other hand, digital libraries

require proper collection maintenance, and they will

succeed only if their content is well organized [2].

The 5S (Streams, Structures, Scenarios, Spaces, and

Societies) framework [4], which is used as a formal

base upon which to describe digital libraries, defines

structures to specify the way in which parts of a whole

are managed or organized. In such digital libraries,

structures can represent hypertexts.

For example, Fig. 1 illustrates a simple hypertext

designed to provide access to objects in a digital library,

in chronological order. It is made up of structural

hyperlinks that follow chronological order (see solid
rowsing.

270B Browsing in Digital Libraries
arrows in Fig. 1) and external reference links (see

dashed arrows in Fig. 1).

Thus, a formal and precise definition of browsing is

illustrated in Fig. 1: Given a hypertext of a digital

library, with vertex set V and edge set E, browsing is a
Browsing in Digital Libraries. Figure 3. Search saucer recor

Browsing in Digital Libraries. Figure 4. Equus records are re
set of sequences of traverse link events over the hyper-

text, such that event e of traversing from node vk to vt is

associated with a function which retrieves the contents

of node vt. Hence, browsing a digital library is the
ds.

trieved through basic searching.

Browsing in Digital Libraries B 271

B

procedure of navigating the hypertext, and it also can

be understood as a traversal of a directed linked graph.

Returning to the previous example, one can ob-

serve that the left part of Fig. 1 is a directed linked

graph (V, E), where each the right part is a set of

contents C = {c1, c2, c3}, and where ci (1 <= i <= 3)

is the contents of a Web page associated with node vi.

An event of traversing along edge e1 = (v1, v2) is

associated with a function: E ! C, which retrieves

the contents of node v2, i.e., c2.

Note that (sorted) lists and hierarchical trees can be

represented as hypertexts, so browsing can be over

common organizations, such as alphabetical lists

of authors, or indented lists of categories and sub-

categories; these are familiar from books with author

indexes or tables of contents.
Key Applications
Modeling and analyzing browsing in digital libraries

helps ease development and maintenance in those dig-

ital libraries. Some domain specific digital libraries

have heterogeneous data that should be organized

using several schemes. Thus, digital objects in an ar-

chaeological digital library may fit into various
Browsing in Digital Libraries. Figure 5. Retrieved equus rec
categories of archaeological data such as figurine

images, bone records, locus sheets, and site plans.

They can be organized according to different hierar-

chical structures (e.g., animal bone records are

organized based on sites where they are excavated,

temporal sequence, and animal names). These hierar-

chical structures contain one or more hierarchically

arranged categories. In addition, they can be refined

based on taxonomies existing in botany and zoology,

or through classification and description of artifacts by

archaeologists.

Thus, an archaeological digital library may provide

multi-dimensional browsing (see Fig. 2) to allow users

to move along any of the navigational dimensions,

or a combination thereof. Navigational dimensions

correspond to hierarchical structures used to browse

digital objects, as mentioned above.

For example, an archaeologist might browse

through three dimensions: space, object, and time.

She can start from any of these dimensions and move

along by clicking. The scenario shown in Fig. 2 tells

that she is interested in the artifact records from the

tomb numbered 056 in area A of the Bab edh-Dhra

site. The clickstream representing her navigation path is
ords are organized into 3 dimensions.

Browsing in Digital Libraries. Figure 6. Overview of an archaeological digital library.

272B Browsing in Digital Libraries
denoted ‘‘Site=Bab edh-Dhra>>PARTITION=A>>

SUBPARTITION=056.’’ While this navigation path is

within the first dimension, it also is associated with the

other dimensions. The second dimension shows there is

only one type of object, i.e., pottery, from that particular

location. The third dimension presents the two time

periods associated with those pottery records. Hence,

the dynamic coverage and hierarchical structure of

those dimensions yields a tool supporting learning and

exploring. The user can navigate across dimensions. By

clicking ‘‘EARLY BRONZE II’’ in the third dimension,

she can view all of the interesting artifact records from

the EARLY BRONZE II period.

Browsing may present a useful starting point for

active exploration of an answer space. Subsequent

browsing and searching, in any combination, also can

be employed to refine or enhance users’ initial, possibly

under-specified, information needs.

Browsing context is associated with a user’s

navigation path. Browsing results within a certain

browsing context typically are a set of records (web

pages), e.g., there are 35 pottery records within the

browsing context represented by the navigation path

denoted ‘‘Site=Bab edh-
Dhra>>PARTITION=A>>SUBPARTITION=056.’’

For example, assume a user wants to find saucer

records in the set of thirty five pottery records. She

types ‘‘saucer’’ in the search box as shown in Fig. 3. She

switches from browsing to searching, so searching then

is a natural extension of browsing.

Browsing may be provided as a post-retrieval ser-

vice to organize searching results hierarchically in dig-

ital libraries. For example, in Fig. 4 one can see that

eighty eight equus records are retrieved through the

basic searching service, in response to a query ‘‘equus’’.

They are organized into three dimensions after the user

clicks the button ‘‘View search results hierarchically’’

(see Fig. 5).

Browsing may be supported by visualization to

provide a starting point for users. Graphic overviews

of a digital library collection can display category labels

hierarchically based on the facets. Categories can be

visualized as a hyperbolic tree [5] as well as through a

traditional node-link representation of a tree.

A hyperbolic tree in Fig. 6 shows hierarchical rela-

tionships among excavation data in an archaeological

digital library based on spatial, temporal, and artifact-

related taxonomies. A node name represents a

B-Tree Locking B 273

B

category, and a bubble attached to a node represents a

set of archaeological records. The size of a bubble

attached to a node reflects the number of records

belonging to that category. The hyperbolic tree sup-

ports ‘‘focus + context’’ navigation; it also provides an

overview of records organized in the archaeological

digital library. It shows that the records are from

seven archaeological sites (the Megiddo site has the

most) and are of twelve different types.

Future Directions
Browsing and searching are often provided by digital

libraries as separate services. Developers commonly

see these functions as having different underlying

mechanisms, and they follow a functional, rather than

a task-oriented, approach to interaction design. While

exhibiting complementary advantages, neither para-

digm alone is adequate for complex information

needs. Searching is popular because of its ability to

identify information quickly. On the other hand,

browsing is useful when appropriate search keywords

are unknown or unavailable to users. Browsing also is

appropriate when a great deal of contextual informa-

tion is obtained along the navigation path. Therefore,

a synergy between searching and browsing is required

to support users’ information seeking goals. Browsing

and searching can be converted and switched to each

other under certain conditions [5]. This suggests some

new possibilities for blurring the dividing line between

browsing and searching. If these two services are not

considered to have different underlying mechanisms,

they will not be provided as separated functions in

digital libraries, and may be better integrated.

Text mining and visualization techniques provide

digital libraries additional powerful exploring ser-

vices, with possible beneficial effects on browsing and

searching. Digital library exploring services such as

browsing, searching, clustering, and visualization can

be generalized in the context of a formal digital library

framework [5]. The theoretical approach may provide

a systematic and functional method to design and

implement exploring services for domain focused

digital libraries.

Experimental Results
See Fig. 2 – Fig. 6 above, and the corresponding

explanation.
Data Sets
See Fig. 2 – Fig. 6 above, and the ETANA Digital

Library [5].
Cross-references
▶Digital Libraries

Recommended Reading
1. Baeza-Yates R. and Ribeiro-Neto B. Modern Information

Retrieval. Addison-Wesley, Reading, MA, 1999.

2. Fox E.A. and Urs S.R. Digital libraries, chap. 12. In Annual

Review of Information Science and Technology, Vol. 36,

B. Cronin (ed.); Medford, NJ, Information Today, Inc. 2002,

pp. 503–589.

3. Fox E.A., Rous B., and Marchionini G. ACM’s hypertext and

hypermedia publishing projects. In Hypertext/Hypermedia

Handbook, E. Berk, J. Devlin (eds.). McGraw-Hill, NY, 1991,

pp. 465–467.

4. Goncalves M., Fox E.A., Watson L., and Kipp N. Streams, struc-

tures, spaces, scenarios, societies (5S): a formal model for digital

libraries. ACM Trans. Inf. Syst., 22(2):270–312, 2004.

5. Shen R., Vemuri N., Fan W., Torres R., and Fox E.A. Exploring

digital libraries: integrating browsing, searching, and visualiza-

tion. In Proc. 6th ACM/IEEE-CS joint Conference on Digital

Libraries, 2006, pp. 1–10.
B-Tree

▶B+-Tree
B-Tree Concurrency Control

▶B-Tree Locking
B-Tree Locking

GOETZ GRAEFE

Hewlett-Packard Laboratories, Palo Alto, CA, USA

Synonyms
B-tree concurrency control; Row-level locking; Key

value locking; Key range locking; Lock coupling;

Latching; Latch coupling; Crabbing

274B B-Tree Locking
Definition
B-tree locking controls concurrent searches and updates

in B-trees. It separates transactions in order to protect

the B-tree contents and it separates threads in order to

protect the B-tree data structure. Nowadays, the latter is

usually called latching rather than locking.

Historical Background
Bayer and Schkolnick [1] presented multiple locking

(latching) protocols for B*-trees (all data records in the

leaves, merely separator keys or ‘‘reference keys’’ in

upper nodes) that combined high concurrency with

deadlock avoidance. Their approach for insertion and

deletion is based on deciding during a root-to-leaf

traversal whether a node is ‘‘safe’’ from splitting (dur-

ing an insertion) or merging (during a deletion), and

on reserving appropriate locks (latches) for ancestors

of unsafe nodes.

Lehman and Yao defined Blink-trees by relaxing the

B-tree structure in favor of higher concurrency [8].

Srinivasan and Carey demonstrated their high perfor-

mance using detailed simulations [13]. Jaluta et al.

recently presented a detailed design for latching in

Blink-trees, including a technique to avoid excessive

link chains and thus poor search performance [7].

IBM’s System R project explored multiple transac-

tion management techniques, including transaction iso-

lation levels and lock duration, predicate locking and

key value locking, multi-granularity and hierarchical

locking, etc. These techniques have been adapted and

refined in many research and product efforts since then.

Research into multi-level transactions [14] and into

open nested transactions [3,12] enables crisp separation

of locks and latches – the former protecting database

contents against conflicts among transactions and the

latter protecting in-memory data structures against con-

flicts among concurrent threads.

Mohan’s ARIES/KVL design [10,11] explicitly sepa-

rates locks and latches, i.e., logical database contents

versus ‘‘structure maintenance’’ in a B-tree. A key value

lock covers both a gap between two B-tree keys and the

upper boundary key. In non-unique indexes, an inten-

tion lock on a key value permits operations on separate

rows with the same value in the indexed column. In

contrast, other designs include the row identifier in the

unique lock identifier and thus do not need to distin-

guish between unique and non-unique indexes.

Lomet’s design for key range locking [4] attempts

to adapt hierarchical and multi-granularity locking to
keys and half-open intervals but requires additional

lock modes, e.g., a ‘‘range insert’’ mode, to achieve the

desired concurrency. Graefe’s design [9] applies tradi-

tional hierarchical locking to keys and gaps (open inter-

vals) between keys, employs ghost (pseudo-deleted)

records during insertion as well as during deletion,

and permits more concurrency with fewer special cases.

The same paper also outlines hierarchical locking

exploiting B-trees’ hierarchical structure or multi-field

B-tree keys.

Foundations
The foundations of B-tree locking are the well-known

transaction concepts, including multi-level transac-

tions and open nested transactions, and pessimistic

concurrency control, i.e., locking. Multiple locking

concepts and techniques are employed, including

two-phase locking, phantom protection, predicate

locks, precision locks, key value locking, key range

locking, multi-granularity locking, hierarchical lock-

ing, and intention locks.

Preliminaries

Most work on concurrency control and recovery in

B-trees assumes what Bayer and Schkolnick call

B*-trees [1] and what Comer calls B+-trees [2], i.e.,

all data records are in leaf nodes and keys in non-leaf or

‘‘interior’’ nodes act merely as separators enabling

search and other operations but not carrying logical

database contents. Following this tradition, this entry

ignores the original design of B-trees with data records

in interior nodes.

Also ignored are many other variations of B-trees

here. This includes what Comer, following Knuth, calls

B*-trees, i.e., attempting to merge an overflowing node

with a sibling rather than splitting it immediately.

Among the ignored techniques are whether or not

underflow is recognized and acted upon by load balanc-

ing and merging nodes, whether or not empty nodes are

removed immediately or ever, whether or not leaf nodes

form a singly ordoubly linked list using physical pointers

(page identifiers) or logical boundaries (fence keys equal

to separators posted in the parent node during a split),

whether suffix truncation is employed when posting a

separator key, whether prefix truncation or any other

compression is employed on each page, and the type of

information associated with B-tree keys. Most of these

issues have little or no bearing on locking in B-trees, with

B-Tree Locking B 275

B

the exception of sibling pointers, as indicated below

where appropriate.

Two Forms of B-Tree Locking

B-tree locking, or locking in B-tree indexes, means two

things. First, it means concurrency control among

concurrent database transactions querying or modify-

ing database contents and its representation in B-tree

indexes. Second, it means concurrency control among

concurrent threads modifying the B-tree data structure

in memory, including in particular images of disk-

based B-tree nodes in the buffer pool.

These two aspects have not always been separated

cleanly. Their difference becomes very apparent when a

single database request is processed by multiple parallel

threads. Specifically, two threads within the same trans-

action must ‘‘see’’ the same database contents, the same

count of rows in a table, etc. This includes one thread

‘‘seeing’’ updates applied by the other thread. While one

thread splits a B-tree node, however, the other thread

should not observe intermediate and incomplete data

structures. The difference also becomes apparent in the

opposite case when a single operating system thread is

multiplexed to serve all user transactions.

These two purposes are usually accomplished by

two different mechanisms, locks and latches. Unfortu-

nately, the literature on operating systems and pro-

gramming environments usually uses the term locks

for the mechanisms that in database systems are called

latches, which can be confusing.

Locks separate transactions using read and write

locks on pages, on B-tree keys, or even gaps (open inter-

vals) between keys. The latter twomethods are called key

value locking and key range locking. Key range locking is

a form of predicate locking that uses actual key values in

the B-tree and the B-tree’s sort order to define predicates.

By default, locks participate in deadlock detection and

are held until end-of-transaction. Locks also support

sophisticated scheduling, e.g., using queues for pending

lock requests and delaying new lock acquisitions for lock

conversions, e.g., an existing shared lock to an exclusive

lock. This level of sophistication makes lock acquisition

and release fairly expensive, often thousands of CPU

cycles, some of those due to cache faults in the lock

manager’s hash table.

Latches separate threads accessing B-tree pages,

the buffer pool’s management tables, and all other in-

memory data structures shared among multiple threads.

Since the lock manager’s hash table is one of the data
structures shared by many threads, latches are required

while inspecting or modifying a database system’s lock

information.With respect to shared data structures, even

threads of the same user transaction conflict if one thread

requires a write latch. Latches are held only during a

critical section, i.e., while a data structure is read or

updated. Deadlocks are avoided by appropriate coding

disciplines, e.g., requesting multiple latches in carefully

designed sequences. Deadlock resolution requires

a facility to roll back prior actions, whereas deadlock

avoidance does not. Thus, deadlock avoidance is more

appropriate for latches, which are designed for minimal

overhead and maximal performance and scalability.

Latch acquisition and release may require tens of instruc-

tions only, usually with no additional cache faults since

a latch can be embedded in the data structure it protects.

Latch Coupling and Blink-Trees

Latches coordinate multiple concurrent threads acces-

sing shared in-memory data structures, including

images of on-disk storage structures while in the buffer

pool. In the context of B-trees, latches solve several

problems that are similar to each other but nonetheless

lend themselves to different solutions.

First, a page image in the buffer pool must not be

modified (written) by one thread while it is interpreted

(read) by another thread. For this issue, database sys-

tems employ latches that differ from the simplest

implementations of critical sections and mutual exclu-

sion only by the distinction between read-only latches

and read-write latches, i.e., shared or exclusive access.

Latches are useful not only for pages in the buffer

pool but also for the buffer pool’s table of contents or

the lock manager’s hash table.

Second, while following a pointer (page identifier)

from one page to another, e.g., from a parent node to a

child node in a B-tree index, the pointer must not be

invalidated by another thread, e.g., by deallocating a

child page or balancing the load among neighboring

pages. This issue requires retaining the latch on the

parent node until the child node is latched. This tech-

nique is traditionally called ‘‘lock coupling’’ or better

‘‘latch coupling.’’

Third, ‘‘pointer chasing’’ applies not only to parent-

child pointers but also to neighbor pointers, e.g., in a

chain of leaf pages during a scan. This issue is similar to

the previous, with two differences. On the positive side,

asynchronous read-ahead may alleviate the frequency of

buffer faults. On the negative side, deadlock avoidance

276B B-Tree Locking
among scans in opposite directions requires that latch

acquisition code provides an immediate failure mode.

Fourth, during a B-tree insertion, a child node may

overflow and require an insertion into its parent node,

which may thereupon also overflow and require an

insertion into the child’s grandparent node. In the

most extreme case, the B-tree’s root node splits and a

new root node is added. Going back from the leaf

towards the B-tree root works well in single-threaded

B-tree implementations, but in multi-threaded code

it introduces the danger of deadlocks. This issue

affects all updates, including insertion, deletion, and

even record updates, the latter if length changes in

variable-length records can lead to nodes splitting or

merging. The most naı̈ve approach, latching an entire

B-tree with a single exclusive latch, is obviously not

practical in multi-threaded servers.

One approach latches all nodes in exclusive mode

during the root-to-leaf traversal. The obvious problem

in this approach is the potential concurrency bottle-

neck, particularly at a B-tree’s root. Another approach

performs the root-to-leaf search using shared latches

and attempts an upgrade to an exclusive latch when

necessary. A third approach reserves nodes using ‘‘up-

date’’ or ‘‘upgrade’’ latches. A refinement of these

three approaches retains latches on nodes along its

root-to-leaf search only until a lower, less-than-full

node guarantees that split operations will not propa-

gate up the tree beyond the lower node. Since most

nodes are less than full, most insertion operations will

latch no nodes in addition to the current one.

A fourth approach splits nodes proactively during a

root-to-leaf traversal for an insertion. This method

avoids both the bottleneck of the first approach and

the failure point (upgrading a latch) of the second

approach. Its disadvantage is that it wastes some space

by splitting earlier than truly required. A fifth approach

protects its initial root-to-leaf searchwith shared latches,

aborts this search when a node requires splitting, restarts

a new one, and upon reaching the node requiring a split,

acquires an exclusive latch and performs the split.

An entirely different approach relaxes the data

structure constraints of B-tress and divides a node

split into two independent steps. Each node has a

high fence key and a pointer to its right neighbor,

thus the name Blink-trees. The right neighbor might

not yet be referenced in the node’s parent and a root-

to-leaf search might need to proceed to the node’s right

neighbor. The first step of splitting a node creates the
high fence key and a new right neighbor. The second,

independent step posts the high fence key in the par-

ent. The second step should happen as soon as possible

yet it may be delayed beyond a system reboot or even a

crash. The advantage of Blink-trees is that allocation of

a new node and its initial introduction into the B-tree

is a local step, affecting only one preexisting node. The

disadvantages are that search may be a bit less efficient,

a solution is needed to prevent long linked lists among

neighbor nodes during periods of high insertion rates,

and verification of a B-tree’s structural consistency is

more complex and perhaps less efficient.

Key Range Locking

Locks separate transactions reading and modifying

database contents. For serializability, read locks are

retained until end-of-transaction. Write locks are alw-

ays retained until end-of-transaction in order to ensure

the ability to roll back all changes if the transaction

aborts. High concurrency requires a fine granularity of

locking, e.g., locking individual keys in B-tree indexes.

The terms key value locking and key range locking

are often used interchangeably.

Key range locking is a special form of predicate

locking. The predicates are defined by intervals in the

sort order of the B-tree. Interval boundaries are the

key values currently existing in the B-tree, which form

half-open intervals including the gap between two

neighboring keys and one of the end points.

In the simplest form of key range locking, a key and

the gap to the neighbor are locked as a unit. An exclusive

lock is required for any form of update of this unit,

including modifying non-key fields of the record, dele-

tion of the key, insertion of a new key into the gap, etc.

Deletion of a key requires a lock on both the old key and

its neighbor; the latter is required to ensure the ability to

re-insert the key in case of transaction rollback.

High rates of insertion can create a hotspot at the

‘‘right edge’’ of a B-tree index on an attribute corre-

lated with time. With next-key locking, one solution

verifies the ability to acquire a lock on +1 but does

not actually retain it. Such ‘‘instant locks’’ violate two-

phase locking but work correctly if a single acquisition

of the page latch protects both verification of the lock

and creation of the new key on the page.

In those B-tree implementations in which a deletion

does not actually erase the record and instead merely

marks the record as invalid, ‘‘pseudo-deleted,’’ or a

‘‘ghost’’ record, each ghost record’s key participates in

B-Tree Locking B 277

B

key range locking just like a valid record’s key. Another

technique to increase concurrency models a key, the

appropriate neighboring open interval, and the combi-

nation of key and open interval as three separate items

[9]. These items form a hierarchy amenable to multi-

granularity locking. Moreover, since key, open interval,

and their combination are all identified by the key value,

additional lock modes can replace multiple invocations

of the lock manager by a single one, thus eliminating the

execution costs of this hierarchy.

Multi-granularity locking also applies keys and indi-

vidual rows in a non-unique index, whether such rows

are represented using multiple copies of the key, a list

of row identifiers associated with a single copy of the key,

or even a bitmap. Multi-granularity locking techniques

exploiting a B-tree’s tree structure or a B-tree’s com-

pound (multi-column) key have also been proposed.

Finally, ‘‘increment’’ locks may be very beneficial for

B-tree indexes on materialized summary views [5].

Both proposals need many details worked out, e.g.,

appropriate organization of the lock manager’s hash

table to ensure efficient search for conflicting locks and

adaptation during structure changes in the B-tree (node

splits, load balancing among neighboring nodes, etc.).

Key Applications
B-tree indexes have been called ubiquitous more than a

quarter of a century ago [2], and they have become

ever more ubiquitous since. Even for single-threaded

applications, concurrent threads for maintenance and

tuning require concurrency control in B-tree indexes,

not to mention online utilities such as online backup.

The applications of B-trees and B-tree locking are

simply too numerous to enumerate them.

Future Directions
Perhaps the most urgently needed future direction

is simplification – concurrency control and recovery

functionality and code are too complex to design,

implement, test, tune, explain, and maintain. Elimina-

tion of any special cases without a severe drop in

performance or scalability would be welcome to all

database development and test teams.

At the same time, B-trees are employed in new

areas, e.g., Z-order UB-trees for spatial and temporal

information, various indexes for unstructured data

and XML documents, in-memory and on-disk indexes

for data streams and as caches of reusable intermediate

query results. It is unclear whether these application
areas require new concepts or techniques in B-tree

concurrency control.

Online operations – load and query, incremental

online index creation, reorganization & optimization,

consistency check, trickle load and zero latency in data

warehousing including specialized B-tree structures.

Scalability – granularities of locking between page

and index based on compound keys or on B-tree struc-

ture; shared scans and sort-based operations including

‘‘group by,’’ merge join, and poor man’s merge join

(index nested loops join); delegate locking (e.g., locks

on orders cover order details) including hierarchical

delegate locking.

B-tree underpinnings for non-traditional database

indexes, e.g., blobs, column stores, bitmap indexes, and

master-detail clustering.

Confusion about transaction isolation levels in

plans with multiple tables, indexes, materialized and

indexed views, replicas, etc.
URL to Code
Gray and Reuter’s book [6] shows various examples of

sample code. In addition, the source of various open-

source database systems is readily available.
Cross-references
▶Concurrency Control and Recovery

▶Database benchmarks – online transaction

processing

▶ Locking Granularity and Lock Types

▶ pessimistic concurrency control

▶ phantoms

▶ precision locks

▶ predicate locks

▶ relational data warehousing

▶ System Recovery

▶ two-phase commit

▶ two-phase locking

▶write-ahead logging
Recommended Reading
1. Bayer R. and Schkolnick M. Concurrency of operations on

B-trees. Acta Inf., 9:1–21, 1977.

2. Comer D. The ubiquitous B-tree. ACM Comput. Surv.,

11(2):121–137, 1979.

3. Eliot J. and Moss B. Open Nested Transactions: Semantics

and Support. In Proc. Workshop on Memory Performance

Issues 2006.

278B Buffer Management
4. Graefe G. Hierarchical locking in B-tree indexes. BTW Conf.,

2007, pp. 18–42.

5. Graefe G. and Zwilling M.J. Transaction support for indexed

views. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2004.

6. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1993.

7. Jaluta I., Sippu S., and Soisalon-Soininen E. Concurrency con-

trol and recovery for balanced B-link trees. VLDB J.,

14(2):257–277, 2005.

8. Lehman P.L. and Yao S.B. Efficient locking for concurrent opera-

tions on B-trees. ACM Trans. Database Syst., 6(4):650–670,

1981.

9. Lomet D.B. Key range locking strategies for improved concur-

rency. In Proc. 19th Int. Conf. on Very Large Data Bases, 1993,

pp. 655–664.

10. Mohan C. ARIES/KVL: A key-value locking method for con-

currency control of multiaction transactions operating on B-tree

indexes. In Proc. 16th Int. Conf. on Very Large Data Bases, 1990,

pp. 392–405.

11. Mohan C., Haderle D.J., Lindsay B.G., Pirahesh H., and

Schwarz P.M. ARIES: A transaction recovery method supporting

fine-granularity locking and partial rollbacks using write-ahead

logging. ACM Trans. Database Syst., 17(1):94–162, 1992.

12. Ni Y., Menon V., Adl-Tabatabai A-R., Hosking AL., Hudson RL.,

Moss JEB., Saha B., and Shpeisman T. Open nesting in software

transactional memory. In Proc. 12th ACM SIGPLAN Symp.

on Principles and Practice of Parallel Programming, 2007,

pp. 68–78.

13. Srinivasan V. and Carey M.J. Performance of B-tree concurrency

algorithms. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1991, pp. 416–425.

14. Weikum G. Principles and realization strategies of multilevel

transaction management. ACM Trans. Database Syst.,

16(1):132–180, 1991.
Buffer Management

GIOVANNI MARIA SACCO

University of Torino, Torino, Italy

Definition
The database buffer is a main-memory area used to

cache database pages. Database processes request pages

from the buffer manager, whose responsibility is to

minimize the number of secondary memory accesses

by keeping needed pages in the buffer. Because typical

database workloads are I/O-bound, the effectiveness of

buffer management is critical for system performance.
Historical Background
Buffer management was initially introduced in the

1970s, following the results in virtual memory systems.

One of the first systems to implement it was IBM

System-R. The high cost of main-memory in the

early days forced the use of very small buffers, and

consequently moderate performance improvements.

Foundations
The buffer is a main-memory area subdivided into

frames, and each frame can contain a page from a

secondary storage database file. Database pages are

requested from the buffer manager. If the requested

page is in the buffer, it is immediately returned to the

requesting process with no secondary memory access.

Otherwise, a fault occurs and the page is read into a

free frame. If no free frames are available, a ‘‘victim’’

page is selected and its frame is freed by clearing its

content, after writing it to secondary storage if the

page was modified. Usually any page can be selected

as a victim, but some systems allow processes actively

using a page to fix or pin it, in order to prevent the

buffer manager from discarding it [5]. Asynchronous

buffered write operations have an impact on the re-

covery subsystem and require specific protocols not

discussed here.

There are obvious similarities between buffer man-

agement and virtual memory (VM) systems [3]. In

both cases, the caching system tries to keep needed

pages in main-memory in order to minimize second-

ary memory accesses and hence speed up execution.

As in VM systems, buffer management is characterized

by two policies: the admission policy, which determines

when pages are loaded into the buffer, and the replace-

ment policy, which selects the page to be replaced when

no empty frames are available. The admission policy

normally used is demand paging (i.e., a missing page is

read into the buffer when requested by a process),

although prefetching (pages are read before processes

request them) was studied (e.g., [1]). Since the inter-

action with the caching system is orders of magnitude

less frequent in database systems than in VM systems,

‘‘intelligent’’ replacement policies such as LRU [3] (the

Least Recently Used page is selected for replacement)

can be implemented in software, with no performance

degradation. Inverted page tables are used because

their space requirement is proportional to the buffer

size rather than to the entire database space as in

Buffer Management B 279

B

normal page tables. Finally, database pages in the buff-

er can be shared among different processes, whereas

the amount of sharing in VM systems is usually

negligible.

The VM Approach

Besides minor architectural differences, the buffer man-

ager can be used exactly as a virtual memory system for

database pages, so that buffer management is transpar-

ent for the database system. In this VM approach, re-

search is focused on effective replacement policies, which

include GCLOCK and LRD (Least Reference Density)

[5], LRU, and, more recently, efficient policies that ac-

count for page popularity, such as LRU-K [11].

LRU does not discriminate between frequently and

infrequently referenced pages, and once a page is ad-

mitted in a buffer of B frames, it will stay there for at

least B-1 references, even if not referenced again.

Therefore, a potentially large portion of the buffer

can be wasted by caching useless (i.e., infrequent)

pages. LRU-K dynamically estimates the interreference

distance for each page in the buffer by keeping

the history of the last K references for each page in

the buffer. A shorter interreference distance means a

more frequently accessed page. Consequently, the page

selected for replacement is the one with the largest

interreference distance, i.e., the one with the maximum

backward K-distance. The backward K-distance

bt(p, K) at time t is defined as the distance backward

to the Kth most recent reference the page p. When

K = 1, only the last reference is considered, and
Buffer Management. Figure 1. Number of faults as a functio
LRU-1 is equivalent to LRU. As K grows, so do space

and time overheads, because longer histories must be

stored and kept ordered. At the same time, larger

values of K improve the estimate of the interreference

distance, but make the algorithm less responsive to

dynamic changes in page popularity, so that, in prac-

tice, LRU-2 is normally used. The 2Q (two queues) [7]

algorithm provides an efficient, constant-time algo-

rithm equivalent to LRU-2 replacement.

Although LRU-K improves LRU replacement th-

rough additional information about page access fre-

quency, it is fundamentally different from the Least

Frequently Used (LFU) replacement, because LFU does

not adapt its estimate to evolving access patterns. The

idea of exploiting both recency and frequency of access

(also present in LRD replacement [5]) is extended by

LRFU (least recently/frequently used) replacement [9],

to model a parametric continuum of replacement poli-

cies ranging from LRU to LFU. The Combined Recency

and Frequency (CRF) information is associated to each

page in the buffer. CRF weights page references giving

higher weights to more recent references, and combines

frequency and recency information through a parame-

ter l (0 � l � 1). The page to be replaced is the one

with minimum CRF. When l = 0, LRFU becomes LFU;

when l = 1, it becomes LRU. The optimal l depends on

the actual workload, but a self-tuning strategy can be

used. An efficient implementation of LRFU exists, and

experiments show this replacement strategy to outper-

form LRU-Kwith small buffer sizes.
n of the available buffer space, under LRU replacement.

280B Buffer Management
A known problem in the VM approach is that pro-

cesses with fast sequential scans over large relations tend

to fill the buffer with useless pages accessed in the scan

and flush the active pages of other processes out of

memory, thereby significantly increasing the overall

fault rate [12]. In a sequential scan, the current page is

(i) rapidly accessed several times in order to read all the

tuples on it, (ii) once the last tuple in the page is read,

the page will never be reaccessed again. Reaccess in (i)

makes VM strategies to incorrectly estimate that the

current page is likely to be reaccessed in the future,

and therefore to keep it in the buffer at the expense of

other pages. In order to avoid this problem, some stra-

tegies use parametric correctives. LRU-K, for instance,

uses the Correlated Reference Period. During this peri-

od, a page freshly admitted to the buffer cannot be

replaced because additional references are expected. At

the same time, subsequent references during this period

are not tracked because they are expected to be corre-

lated and do not give a reliable indication of future

behavior. The length of such period is at the same time

critical and difficult to estimate.

The Predictive Approach

A completely different, predictive approach was

proposed with the hot set model [12,13]. In database

systems with non-procedural data manipulation lan-

guages (such as relational or object-relational database

systems), it is not the programmer but the system

query optimizer that determines the access plan for a

query. Such access plan is based on a small number of

access primitives, such as sequential scans, nested loop

joins, etc., whose reference string is known or can be

estimated before actual execution. As an example, con-

sider the execution of a tuplewise nested loop join

between relation R (3 tuples/page, 40 pages) and rela-

tion S (2 tuples/page, 30 pages). Assuming S inner and

indicating by Xi the i-th page of relation X, and by {a}N

N repetitions of string a, the reference string is exactly

{R1, {S1}2,...,{S30}2}3, {R2, {S1}2,...,{S30}2}3,...,{R40,

{S1}2,...,{S30}2}3. Figure 1 plots the number of faults

as a function of the available buffer space, under LRU

replacement.

Figure 1 shows that, differently from what happens

in VM systems where fault curves tend to be smooth,

the fault curve here is discontinuous. If the buffer is

not large enough to contain all the pages in the inner

relation plus one frame for the current page in the

outer one, no reusal occurs and the fault rate is
the same as for 1 frame. If sufficient space exists, all

the needed pages are kept in the buffer, and the cost

becomes linear in the number of pages of the two

relations. In this case, the entire behavior of the plan

in which S is inner is completely characterized by

two hot points and their corresponding fault rate:

� hp1 = 1, faults(hp1) = |R|(1 + pages(S))

� hp2 = 1 + pages(S), faults(hp2) = pages

(R) + pages(S)

The number of frames needed by a plan is called its

hot set size, and usually is the largest hot point no

larger than the total buffer size. Note that the length

of the loop on the inner relation is exactly known at

the database level, but it is very hard to discover in the

VM approach.

The basic idea of the hot set model is that, given an

access plan and a replacement policy, the number of

faults as a function of the available buffer space can be

predicted. Three main types of reusal, modeled upon

primitive strategies, are considered:

1. Simple reusal. It models the sequential scan of a rela-

tion: the current page is accessed several times in order

to read all the tuples on it, but once the last tuple in the

page is read, the page will never be reaccessed again.

There is only one hot point at 1 frame.

2. Loop reusal. Used in the example in Fig. 1. There

are as many hot points as there are loops.

3. Index reusal. It includes both clustered and unclus-

tered index access. Reusal can occur when indices

are used in a join, or when an index is accessed

by several processes. In unclustered index access,

data pages are accessed randomly, and the hot set is

estimated through Yao’s function.

It must be stressed that LRU replacement is not re-

quired, and that other replacement strategies can be

adopted [2,13]. As a matter of fact, both simple and

loop reusal do not benefit from LRU replacement at all.

The query locality set model (QLSM) [2] extends the

hot set model by determining the hot set size on a file-

instance basis rather than on a primitive operation

basis, and by adopting replacement policies appropri-

ate for each type of reusal. As an example, a nested loop

join between R and S (S inner) is characterized by two

different access patterns: a simple reusal (sequential

scan) on R, requiring 1 frame, and a loop reusal on S,

requiring 1 to pages(S) frames. MRU (most recently

Buffer Management B 281

B

used) replacement can be used for loop reusal, since

it is optimal for this type of reference string.

Since the reference string of the application is known,

optimal replacement policies can be used. This opportu-

nity is exploited in OLRU [14], which derives an opti-

mal replacement policy for clustered index reusal, e.g.,

repeated access to clustered B+ trees. In this case, the

Independent Reference Model (IRM) [3] is used. IRM

was originally proposed as a theoretical evaluation

model for VM systems, and assumes, in extreme syn-

thesis, that the probability of reaccess for each page is

known and stationary. Under this assumption, it can

be proven that the optimal buffering strategy for a

buffer of B frames consists of ordering the pages by

decreasing reaccess probabilities, fixing the first B-1

high-probability pages in the buffer and using the

remaining frame to access all the other low-probability

pages. Since the optimal strategy only requires a rank-

ing among pages, it can be straightforwardly applied to

a B+ tree of order m and height h by assuming a

uniform distribution of access to the leaf level. In this

case, the probability of reaccessing a page at level j

(0 � j < h) is 1/mj. The optimal policy is then an

allocation by levels, i.e., fixing the first levels in the

tree in the buffer. LRU replacement allocates the buffer

by traversal stacks and is therefore suboptimal, unless

severe deviations from uniformity in data page access

occur, in which case OLRU and LRU are similar in

performance. LRU-K, which assumes IRM as well,

can be seen as a run-time approximation of OLRU.

A complete characterization of query buffer require-

ments and corresponding access costs is required for

two major reasons. First, query optimizers need to

have a precise cost estimate as a function of the available

buffer size, in order to discriminate execution plans.

This is especially important because (i) cost curves can

intersect as shown in Fig. 1: R inner is cheaper in the

interval [1,30], whereas S inner is better or no worse

for buffer sizes of at least 31 frames; (ii) many query

evaluation strategies (e.g., nested loops) do not explic-

itly account for memory, and they must be compared

with other strategies (such as fragmentation/recursive

hash partitioning join) in which available buffer space

is fully accounted for and directly managed.

Second, thrashing phenomena [3] can occur in

database buffers as in virtual memory systems, and

become potentially more frequent as the number of

concurrent active users increases. Thrashing occurs

when the available memory is insufficient to keep all
the pages each active process needs. Consequently,

processes steal pages from each other and, if the avail-

able memory is severely overcommitted, the system

collapses because all activity is devoted to swapping

pages to and from main-memory. In VM systems,

thrashing can be avoided by (i) monitoring the pagi-

nation device for excessive utilization or (ii) using the

working set model [3] in order to estimate the memory

requirements of active processes. In buffer manage-

ment, there is no pagination device and accesses may

be directed to a high number of secondary devices.

In addition, the working set model, which is an expen-

sive run-time estimator, cannot be efficiently used in

database systems [13].

Thrashing avoidance, and the more general prob-

lem of scheduling queries for execution in order to

optimally use buffer resources, is considerably simpli-

fied in the predictive approach because buffer require-

ments for each query are known before execution. The

simplest policy [13] schedules queries for execution in

such a way that the sum of their hot set sizes does not

exceed the total buffer space. Each query can then be

run in isolation in its own buffer partition, and this,

by definition, avoids thrashing. However, page shar-

ing, which is relatively frequent in database systems, is

not accounted for. If two different processes request

the same page, two faults occur. If sharing is consid-

ered these additional faults can be avoided, and the

actual required buffer size can decrease because a page

shared by several processes requires only one frame.

For these reasons, hot set scheduling [12,13] main-

tains an additional global LRU chain to manage free

pages, and, on a local page fault, scans the entire

buffer for potential shared pages. In addition, a mea-

sure of buffer consumption is used in order to avoid

unnecessarily inflating hot set sizes, which would

result in serializing small queries behind queries

with high buffer requirements. Variations of this

scheduling algorithm include DBMIN [2] (where dif-

ferent local replacement policies can be used), sched-

uling with marginal gains [10], and scheduling with

prefetching [1].
The VM Versus the Predictive Approach

When compared to the predictive approach, the VM

approach has the advantage of placing all concerns on

buffering into a single system component that can be

seen as a black box from the rest of the system. In

282B Buffer Management
addition, the VM approach is more generally applica-

ble since it does not require non-procedural interac-

tions, and inherently implements page sharing.

However, for non-procedural systems, the predic-

tive approach solves a number of important problems:

� Uniformity of estimated costs for query optimiza-

tion. Query plans can be compared, regardless of

whether methods directly manage memory or not.

� Thrashing avoidance, and efficient, low cost query

scheduling. The predictive approach characterizes

requirements before execution and does not require

expensive run-time estimators.

� Resource planning for self-tuning databases. Predic-

tive characterization of buffer requirements can be

used to determine the optimal buffer size for actual

workloads.

� Better performance. Since reference strings are

known, optimal replacement policies can be used

and buffer requirements carefully tuned.

There is a duality between detecting sequential scans

and detecting page sharing. The VM approach has

no problems in implementing page sharing. VM stra-

tegies work reasonably well for index access, but, de-

spite correctives, they tend to break on simple and loop

reusal. Conversely, sequential scan detection and inner

loop size detection is trivial in the predictive approach,

but, since prediction is based on a query run in isola-

tion, run-time corrections are required for page shar-

ing. This duality suggests that a combination of the

two approaches might be beneficial.

Key Applications
The trend towards cheaper and larger main-memories

does not make buffer management less important. In

fact, the increase in available main-memory has been so

far matched by a larger increase in secondary storage

capacity and in the amount of data to bemanaged, in the

complexity of queries, and in the number of users. Con-

sequently, buffer management continues to be a funda-

mental topic for database systems, and indeed its results

carry over to different areas, such as web caching.

Current research areas in database systems include

automatic buffer sizing in self-tuning databases [15],

extendibility of buffer management strategies [6], spe-

cific buffering strategies for object databases [8], XML

databases and P2P data architectures, multidimension-

al databases, real-time databases where process priori-

ties must be considered in scheduling, and, of course,
new index structures or evaluation strategies for which

buffer analysis is required [4]. In addition, challenging

applications managing very large amounts of data such

as sensor data, search engines, large digital libraries,

etc. require high-performance buffer management.

Cross-references
▶ Evaluation of Relational Operators

▶ Indexing

▶Recovery Techniques
Recommended Reading
1. Cai F.F., Hull M.E.C., and Bell D.A. Buffer management for

high performance database systems. In Proc. High-Performance

Computing on the Information Superhighway (HPC-Asia’97).

Seoul, Korea, 1997, pp. 633–638.

2. Chou H.-T. and DeWitt D.J. An evaluation of buffer manage-

ment strategies for relational database systems. In Proc. 11th Int.

Conf. on Very Large Data Bases, 1985, pp. 174–188.

3. Coffman Jr. and Denning P.J. Operating Systems Theory. Prentice-

Hall, Englewood Cliffs, NJ, 1973.

4. Corral A., Vassilakopoulos M., and Manolopoulos Y. The impact

of buffering on closest pairs queries using R-trees. In Proc. Fifth

East European Conference on Advances in Databases and Infor-

mation Systems, 2001, pp. 41–54.

5. Effelsberg W. and Haerder T. Principles of database buffer man-

agement. ACM Trans. Database Syst., 9(4):560–595, 1984.

6. Goh L., Shu Y., Huang Z., and Ooi C. Dynamic buffer manage-

ment with extensible replacement policies. VLDB J., 15(2):

99–120, 2006.

7. Johnson T. and Shasha D. 2Q: a low overhead high performance

buffer management replacement algorithm. In Proc. 20th Int.

Conf. on Very Large Data Bases, 1994, pp. 439–450.

8. Kemper A. and Kossmann D. Dual-buffering strategies in object

bases. In Proc. 20th Int. Conf. on Very Large Data Bases, 1994,

pp. 427–438.

9. Lee D., Choi J., Kim J.-H., Noh S.H., Min S.L., Cho Y., and

Kim C.S. On the existence of a spectrum of policies that sub-

sumes the least recently used (LRU) and least frequently

used (LFU) policies. In Proc. Int. Conf. on Measurement and

Modeling of Computer Systems, 1999, pp. 134–143.

10. Ng R., Faloutsos C., and Sellis T. Flexible buffer allocation based

on marginal gains. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1991, pp. 387–396.

11. O’Neil E.J., O’Neil P.E., and Weikum G. The LRU-K page

replacement algorithm for database disk buffering. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1993,

pp. 297–306.

12. Sacco G.M. and Schkolnick M. A mechanism for managing the

buffer pool in a relational database system using the hot set model.

In Proc. 8th Int. Conf. on Very Data Bases, 1982, pp. 257–262.

13. Sacco G.M. and Schkolnick M. Buffer management in relational

database systems. ACM Trans. Database Syst., 11(4):473–498,

1986.

Buffer Manager B 283

B

14. Sacco G.M. Index access with a finite buffer. In Proc. 13th Int.

Conf. on Very Large Data Bases, 1987, pp. 301–309.

15. Storm A.J., Garcia-Arellano C., Lightstone S.S., Diao Y., and

Surendra M. Adaptive self-tuning memory in DB2. In Proc.

12th Int. Conf. on Very Large Data Bases, 2006, pp. 1081–1092.
Buffer Manager

GOETZ GRAEFE

Hewlett-Packard Laboratories, Palo Alto, CA, USA

Synonyms
Cache manager

Definition
If a buffer pool is employed in a database management

system, the associated software must provide appropri-

ate services for efficient query processing, correct trans-

action execution, and effective sharing and reuse of

database pages. It must provide interfaces for page

access including pinning and latching pages, and it must

invoke primitives for disk I/O and synchronization.
Historical Background
Database buffer pool management was studied heavily

in the 1970s and 1980s as the new relational data-

base management system posed new challenges,

in particular non-procedural queries with range scans.

Reliance of virtual memory and file system buffer pool

was investigated but rejected due to performance issues

(read-ahead, prefetch) and correctness issues (transaction

management, write-behind, write-through).

Buffer pool management is currently not a very

active research area. It may be revived in order to

serve deep storage hierarchies, e.g., slow disk, fast

disk, flash memory, main memory, and CPU cache. It

may also be revived in the context of very large memo-

ries, e.g., query optimization that considers residence

in the buffer pool or physical database design that

includes temporary or partial indexes that exist only

in the buffer pool.
Foundations
This section describes a database system’s buffer

pool and its management by focusing on management

of individual pages in the buffer pool, replacement
policies, asynchronous I/O, and the requirements

imposed by concurrency control and recovery.
Buffer Pool Interfaces

The principal methods provided by the buffer pool

manager request and release a page. A page request

fixes or pins a page, i.e., it protects it from replacement

as well as movement within the buffer pool, thus

permitting access to the page by in-memory pointers.

Variants of requesting and releasing a page apply to

disk pages immediately after allocation (no need to

read the page contents from disk) and immediately

after deallocation (no need to save the page contents).

In addition, a buffer pool may provide methods for

concurrency control among threads in order to protect

page contents, also known as latching. Pragmatically,

the methods to pin and to release a page include para-

meters that control latching.

Concurrency control among transactions is usually

not provided by the buffer pool. In aid of logging and

recovery, a buffer pool must support a method to force

a page to disk and may support a method to retain one

page until another page has been written.

For performance, a buffer pool may support meth-

ods to hint asynchronous prefetch, read-ahead, and

write-behind. If the buffer pool serves a memory

pool for other software layers, it must support methods

for memory allocation and deallocation.

The principal methods upon which a buffer pool

manager relies are disk reading and writing, including

asynchronous operations, and scheduling primitives to

implement latching. If the buffer pool size is dynamic,

memory allocation and deallocation are also required.

If the buffer pool supports multiple page sizes, it

requires fast methods for moving (copying) page con-

tents from one memory address to another.

Replacement Policies

The goal of the replacement policy (or retention policy)

is to speed up future page accesses. Prediction of future

accesses can be based on past accesses (how recent, how

frequent, whether read or write) or on hints from higher

software layers within the database management system.

Standard policies include LRU (least recently used,

implemented using a doubly-linked list), LRU-K (least

recent K uses), LFU (least frequently used), second

chance (usually implemented following a clock meta-

phor), generalized clock (using counters instead of a

284B Buffer Manager
single bit per page frame), and combinations of those.

Many combinations have been proposed, including the

hot set model, the query locality set model, adaptive

replacement cache, etc.

They differ in their heuristics to separate pages used

only once, e.g., in a large sequential scan, from pages

likely to be reused, e.g., pages containing the database

catalog or root pages of B-tree indexes. Alternative

designs let higher software layers hint the likelihood

of reuse, e.g., love/hate hints or keep/toss hints.

Dirty pages (containing recent updates) may be

retained longer than clean ones because their replace-

ment cost and delay are twice as high (write plus read

instead of merely a read operation) and because correct

preparation for recovery may impose restrictions on

the order in which pages are written. For example,

write-ahead logging requires writing the relevant log

page to stable storage before overwriting old database

contents. On the other hand, non-logged operations

(e.g., index creation) require flushing dirty pages as

part of transaction commit.
Asynchronous I/O

Rather than merely responding to requests from higher

software layers, a buffer pool may employ or enable

asynchronous I/O, in three forms:

Write-behind cleans the buffer pool of dirty pages

in order to complete update transactions as fast as

possible yet enable quick page replacement without

needing a write operation prior to a read operation.

However, most write-behind is driven by checkpoints

rather than page faults, based on typical checkpoint

intervals (very few minutes) and retention intervals as

calculated or optimized using the five-minute rule

(many minutes or even hours). A write-behind opera-

tion may leverage a disk seek forced by another read or

write operation. Alternatively, a write-behind opera-

tion may move the data to achieve this effect, e.g., in

log-structured file systems and write-optimized data-

base indexes.

Read-ahead speeds up large scans, e.g., a range

scan in a B-tree or a complete scan of a heap structure.

The appropriate amount of read-ahead is the product

of bandwidth and latency, i.e., the smallest of I/O

bandwidth and processing bandwidth multiplied with

the delay from initiation to completion of a read oper-

ation. Read-ahead may be triggered by observation of
the access pattern or by a hint from a higher software

layer, e.g., a table scan in a query execution plan.

Prefetch accelerates fetch operations by loading into

the buffer pool precisely those pages that contain need-

ed data records. Prefetch in heap structures is quite

straightforward. In B-tree indexes, prefetch may apply

to all tree levels or merely to the leaf level, combined

with synchronous read operations or large read-ahead

for interior B-tree nodes. Prefetch speeds up not only

to ordinary forward processing but also to transaction

rollback as well as system recovery.
Concurrency Control and Recovery

The buffer pool may participate in concurrency con-

trol, e.g., if multi-version concurrency control requires

multiple versions of individual pages. The mechanisms

for pinning and latching are essential for coordination

of multiple threads accessing the same in-memory

data structures, including in-memory images of on-

disk pages.

The buffer pool always participates in the prepara-

tion for recovery including transaction rollback, media

recovery, and system recovery. For example, by retain-

ing all modified pages in the buffer pool until transac-

tion commit, one can avoid logging undo information

in the persistent log – this is called a ‘‘no steal’’ policy.

By forcing merely log pages to stable storage, one can

avoid writing all modified database pages back to

disk – this is called a ‘‘no force’’ policy. Most database

management systems use ‘‘steal – no force’’ by default.

The log volume of index creation and similar opera-

tions is often minimized using a ‘‘force’’ policy.

Logging volume can be reduced by ensuring

specific write sequences. For example, when a B-tree

node is split and some records are moved to a new

node, one can avoid logging the moved records

by writing the new page before writing the modified

old page.

The buffer pool also participates in checkpoint pro-

cessing. In addition to recording active transactions,

a checkpoint must write all dirty database pages to

the log or to the database. Proactive asynchronous

write-behind may lessen the number of write operations

during the checkpoint.

Cooperative Buffer Pool Management

Multiple buffer pools may cooperate. Prototypical

examples include client-server operation (in which

Buffer Manager B 285

B

the buffer pools form a hierarchy) and shared-disk

database systems (in which the buffer pools are

peers). Those environments require optimizations for

both data traffic among buffer pools and control mes-

sages, in particular for concurrency control and lock

management.

Key Applications
A buffer pool and its management software are required

in any database management system that employ multi-

ple levels in a memory hierarchy, process and store data

at different levels, and do not rely other means for

moving data between those levels. The main example is

main memory and disks – the buffer pool manager

manages which data pages are immediately available

for access, e.g., from the query execution engine. A

CPU cache is a level in the memory hierarchy above

the main memory, but data movement between main

memory and CPU cache are automatic. A database

management system could rely on a file system and

its buffer pool manager but usually does not due to

performance issues (e.g., read-ahead, prefetch) and

due to correctness issues (write-behind, write-

through). A database management system could rely

on virtual memory provided by the operating system

but typically does not for the same reasons.

Future Directions
While basic buffer pool management in traditional

database management systems is well understood,

there are many developments that build upon it. For

example, integration of database cache, mid-tier cache,

and web cache may become imperative in order to

maximize efficiency and thus minimize costs for hard-

ware, management, power, and cooling.

Buffer pools and buffer management will become

more pervasive with the increased virtualization of

storage and processing. At the same time, it will be-

come more complex due to missing information on

the true cost and location of data. It will also become

more pervasive and complex due to increasing use of

peer-to-peer storage, communication, and processing.

Any buffer pool becomes more effective with data

compression and co-location. Compression reduces the

space required locally (in the buffer pool) and remotely.

Co-location techniques such as master-detail clustering

enable access to multiple related records or pieces of

information within a single frame in the buffer pool and

with a single access to the remote location.
In a very large buffer pool, one might create tem-

porary on-disk structures that never even exist on disk.

For example, a temporary index on a permanent table

may be created yet retained in the buffer pool. During

contention in the buffer pool, the index is dropped.

Ideally, such an index is partitioned, created and

dropped incrementally, and left behind as a free side

effect of query execution.

The data structures that manage a buffer pool, both

its contents descriptors and its replacement policy, can

be complex yet require very high concurrency, in par-

ticular in forthcoming many-core processors. Hard-

ware-assisted transactional memory may simplify the

software implementation effort as well as increase con-

currency and performance.

In deep memory hierarchies, e.g., a three-level

hierarchy of traditional memory, flash memory, and

disk, contents descriptors and data structures in aid

of the replacement policy may be separate. For exam-

ple, the contents descriptors may need to be persistent

if the flash memory is part of the persistent database,

but all data structures for the replacement policy (be-

tween flash memory and disk) might be in the tradi-

tional memory.

Cross-references
▶Buffer pool

▶B-tree locking

▶Concurrency control and recovery

▶Flash memory

▶Lock manager

▶Storage hierarchy

▶Storage layer

▶Storage manager

Recommended Reading
1. Bansal S. and Modha D.S. CAR: Clock with adaptive replace-

ment. In Proc. 3rd USENIX Conf. on File and Storage Technol-

ogies, 2004, pp. 187–200.

2. Chou H-T. and DeWitt D.J. An evaluation of buffer manage-

ment strategies for relational database systems. Algorithmica,

1(3):311–336, 1986.

3. Effelsberg W. and Härder T. Principles of database buffer man-

agement. ACM Trans. Database Syst., 9(4):560–595, 1984.

4. Gray J. and Putzolu G.R. The 5 minute rule for trading memory

for disk accesses and the 10 byte rule for trading memory for

CPU Time. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1987, pp. 395–398.

5. Ramamurthy R. and DeWitt D.J. Buffer-pool Aware Query

Optimization. In Proc. 2nd Biennial Conf. on Innovative Data

Systems Research, 2005, pp. 250–261.

286B Buffer Pool
6. Stonebraker M. Operating System Support for Database

Management. Commun. ACM, 24(7):412–418, 1981.
Buffer Pool

GOETZ GRAEFE

Hewlett-Packard Laboratories, Palo Alto, CA, USA

Synonyms
I/O cache, Page cache

Definition
Cost constraints (dollars per gigabyte) prohibit in-

memory databases in most cases, but processors can

access and manipulate data only while it is in memory.

The in-memory buffer pool holds database pages cur-

rently in use and retains those deemed likely to be used

again soon.

The buffer pool and the buffer management compo-

nent within the storage layer of a database management

system provide fast access and fast recall of on-disk pages

using in-memory images of those pages. In addition

to the size of individual pages and of the entire buffer

pool, key issues are (i) page replacement in response to

buffer faults, and (ii) page retention and update in aid

of database recovery.

A database buffer pool differs from virtual memory

as it contributes to correctness and efficiency of query

and update processing, e.g., by pinning pages while in

use and by ensuring a write sequence that guarantees

the ability to recover. In some systems, the buffer pool

permits ‘‘stealing’’memory for query processing opera-

tions such as sorting and hash join, for utilities such as

reorganization and consistency checks, etc.

Historical Background
Gray and Putzolo’s paper introducing the five-minute

rule makes a strong case for using multiple levels of the

memory hierarchy for data collections that include

both hot and cold data, i.e., data that are accessed

with different frequencies. Hot data are kept at a high

level of the memory hierarchy, whereas cold data are

fetched as needed and buffered temporarily.

Abuffer pool is also needed if the provided granularity

of access is too coarse. Disks permit randompage accesses,

whereas query execution, predicate evaluation, etc. re-

quire accesses to individual records, fields, and bytes.
Early research demonstrated that virtual memory is

not appropriate for use in database management sys-

tems, as observed by Härder, Stonebraker, Traiger, and

their research teams for early relational database man-

agement systems. Reasons include both correctness,

specifically with respect to recovery, and performance,

specifically asynchronous read-ahead and write-behind.

In order to avoid double page faults, a buffer pool

should not be subject to page replacement by virtual

memory provided by the operating system. One means

to achieve this is to vary the size of the buffer pool

in response to paging rates of the virtual memory. The

five-minute rule gives guidance for the appropriate

sizing of memory and buffer pool.

Techniques to map on-disk database contents into

virtual memory advanced in the context of object-

oriented databases and persistent programming lan-

guages but did not result in wide adoption.

Flashmemory still requires an in-memory buffer pool

for access to bytes within pages, yet it can also serve as a

buffer pool for pages that require faster access than rotat-

ing disks can provide. In fact, buffer pool management

techniques such as replacement policies apply to all levels

in a multi-level memory hierarchy, e.g., CPU caches,

RAM, flash memory, disk caches, rotating disk, tape

media, etc. In an extreme case, a fast disk may serve a

buffer pool for a slower disk; alternatively, both disks may

serve as permanent storage and buffer replacement poli-

cies may be adapted for page placement on those disks,

possibly including frequent page migration.

Foundations
This section describes a database system’s buffer pool,

replacement policies, and the requirements imposed by

concurrency control and recovery.

Buffer Frames

A buffer pool contains many frames, each capable of

holding the image of an on-disk page. Pages can be

fixed-length or variable-length, i.e., multiple base pages,

typically a power of 2. Space management is complex for

variable-length pages; one technique employed commer-

cially relies onmultiple buffer pools with a single page size

in each, i.e., a fixed-length page frame in each buffer pool.

In addition to being idle or unused, buffer frames

can be pinned to protect the page from replacement,

latched (locked) to protect against concurrent readers

or writers, or in transit from or to disk. Pinning and

latching are important for performance; they enable

Buffer Pool B 287

B

the database’s query execution software to inspect or

update records directly in the buffer pool.

A buffer pool may hold multiple versions of the

same on-disk page in aid of transaction isolation,

compression, asynchronous write-behind, or protec-

tion from partial writes. Write-behind with a single

copy inhibits further updates until the write operation

completes. The copy step may compact free space

between variable-length records.

A small descriptor data structure is used for each

frame in the buffer pool. It identifies the on-disk page

and its status with respect to pinning, latching, version-

ing, etc. The descriptor also participates in a look-up

scheme, typically a hash table, and in data structures

used for page replacement.

Buffer Pool Data Structures

In addition to page frames and their descriptors, a buffer

pool needs data structures to locate buffered pages and

to manage page replacement including page frames cur-

rently unused. Locating a buffered page, i.e., mapping

from a disk address (page number) to an in-memory

address, usually is implemented with a hash table.

The data structures needed for page replacement

depend on the page replacement policy – one method

that is simple but not ideal is to employ a doubly

linked list of page descriptors with pages ordered the

time since they were last used. When a page is pinned,

it is removed from the list. When it is unpinned, it is

inserted at the head of the list. When a page is needed

for replacement, the page at the tail of the list is chosen.

Replacement Policies

The goal of the replacement policy (or retention policy) is

to speed up future page accesses. Prediction of future

accesses can be based on past accesses (how recent, how

frequent, whether read or write) or on hints from higher

software layers within the database management system.

Standard policies include LRU (least recently used, imple-

mented using a doubly-linked list), LRU-K (least recent K

uses), LFU (least frequently used), second chance (usually

implemented following a clock metaphor), generalized

clock (using counters instead of a single bit per page

frame), and combinations of those. Many combinations

have been proposed, including the hot set model, the

query locality set model, adaptive replacement cache, etc.

They differ in their heuristics to separate pages used

only once, e.g., in a large sequential scan, from pages

likely to be reused, e.g., pages containing the database
catalog or root pages of B-tree indexes. Alternative

designs let higher software layers hint the likelihood

of reuse, e.g., love/hate hints or keep/toss hints.

Dirty pages (containing recent updates) may be

retained longer than clean ones because their replace-

ment cost and delay are twice as high (write plus read

instead of merely a read operation) and because correct

preparation for recovery may impose restrictions on

the order in which pages are written. For example,

write-ahead logging requires writing the relevant log

page to stable storage before overwriting old database

contents. On the other hand, non-logged operations

(e.g., index creation) require flushing dirty pages as

part of transaction commit.

Key Applications
A buffer pool and its management software are required

in any database management system that employ mul-

tiple levels in a memory hierarchy, process and store

data at different levels, and do not rely other means for

moving data between those levels. The main example is

main memory and disks – the buffer pool manager

manages which data pages are immediately available

for access, e.g., from the query execution engine. A

CPU cache is a level in the memory hierarchy above

the main memory, but data movement between main

memory and CPU cache are automatic. A database

management system could rely on a file system and its

buffer pool manager but usually does not due to perfor-

mance issues (e.g., read-ahead, prefetch) and due

to correctness issues (write-behind, write-through). A

database management system could rely on virtual

memory provided by the operating system but typically

does not for the same reasons.

Future Directions
In deep memory hierarchies, e.g., a three-level hierarchy

of traditional memory, flashmemory, and disk, contents

descriptors and data structures in aid of the replacement

policy may be separate. For example, the contents

descriptorsmay need to be persistent if the flashmemory

is part of the persistent database, but all data structures

for the replacement policy (between flash memory and

disk) might be in the traditional memory.

Cross-references
▶B-tree locking

▶Concurrency control and recovery

▶ Lock manager

288B Business Intelligence
▶ Flash memory

▶ Storage hierarchy

▶ Storage layer

▶ Storage manager

Recommended Reading
1. Bansal S. and Modha D.S. CAR: Clock with adaptive replace-

ment. In Proc. 3rd USENIX Conf. on File and Storage Technol-

ogies, 2004, pp. 187–200.

2. Chou H-T. and DeWitt D.J. An evaluation of buffer manage-

ment strategies for relational database systems. Algorithmica,

1(3):311–336, 1986.

3. Effelsberg W. and Härder T. Principles of database buffer man-

agement. ACM Trans. Database Syst., 9(4):560–595, 1984.

4. Gray J. and Putzolu G.R. The 5 minute rule for trading memory

for disk accesses and the 10 byte rule for trading memory for

CPU time. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1987, pp. 395–398.

5. Ramamurthy R. and DeWitt D.J. Buffer-pool aware query

optimization. In Proc. 2nd Biennial Conf. on Innovative Data

Systems Research, 2005, pp. 250–261.

6. Stonebraker M. Operating system support for database manage-

ment. Commun. ACM, 24(7):412–418, 1981.
Business Intelligence

STEFANO RIZZI

University of Bologna, Bologna, Italy

Definition
Business intelligence is a business management term that

indicates the capability of adding more intelligence to the

way business is done by companies. More precisely, it

refers to a set of tools and techniques that enable a

company to transform its business data into timely and

accurate information for the decisional process, to be

made available to the right persons in the most suitable

form. Business intelligence systems are used by decision

makers to get a comprehensive knowledge of the business

and of the factors that affect it, as well as to define and

support their business strategies. The goal is to enable

data-based decisions aimed at gaining competitive ad-

vantage, improving operative performance, responding

more quickly to changes, increasing profitability and, in

general, creating added value for the company.
Key Points
Though business intelligence has its roots in reporting

systems, it was born as a termwithin the industrial world
in the early 1990’s, to indicate a set of technologies aimed

at satisfying the managers’ request for efficiently and

effectively analyzing the enterprise data in order to better

understand the situation of their business and improving

the decision process. In the mid-1990’s business intelli-

gence became an object of interest for the academic

world, and ten years of research managed to transform

a bundle of naive techniques into a well-founded ap-

proach to information extraction and processing that

led to defining the modern architectures of data ware-

housing systems. Currently, business intelligence

includes not only the tools to gather, provide access to,

and analyze data and information about company

operations, but also a wide array of technologies used

to support a closed decisional loop (known as Business

Performance Management) where the company perfor-

mance is measured by a set of indicators (commonly

called Key Performance Indicators, KPIs) whose target

values are determined by the company strategy, and

where the actions taken are aimed at matching current

and target values for these indicators.

From an architectural point of view, the core of a

business intelligence system is usually a data warehouse

that stores the corporate historical data in a consistent

and integrated form. A number of applications may be

built around the data warehouse, for instance aimed at

supporting OLAP analysis, data mining, what-if analy-

sis, forecasting, balanced scorecards preparation, geos-

patial analysis, click-stream analysis. The architecture

may be completed by a reactive data flow, more suited

for monitoring the time-critical operational processes

by supporting real-time applications.

Cross-references
▶Data Mining

▶Data Warehouse Applications

▶Data Warehousing Systems: Foundations and Archi-

tectures

▶On-Line Analytical Processing

▶What-if Analysis

Recommended Reading
1. Eckerson W. Performance dashboards: Measuring, monitoring,

and managing your business. Wiley, 2005.

2. Golfarelli M., Rizzi S., Cella I. Beyond data warehousing: What’s

next in business intelligence? In Proc. ACM 7th Int. Workshop

on Data Warehousing and OLAP, 2004, pp. 1–6.

3. Moss L.T. and Atre S. Business Intelligence Roadmap:

The complete project lifecycle for decision-support applications.

Addison-Wesley Information Technology Series, 2003.

Business Process Execution Language B 289

B

Business Process Execution
Language

W. M. P. VAN DER AALST

Eindhoven University of Technology, Eindhoven,

The Netherlands

Synonyms
BPEL; BPEL4WS

Definition
The Business Process Execution Language for Web Ser-

vices (BPEL) has emerged as a standard for specifying

and executing processes. It is supported by many ven-

dors and positioned as the ‘‘process language of the

Internet.’’ BPEL is XML based and aims to enable

‘‘programming in the large,’’ i.e., using BPEL new ser-

vices can be composed from other services.

Key Points
BPEL [2,3] supports the modeling of two types

of processes: executable and abstract processes.

An abstract, (not executable) process is a business pro-

tocol, specifying the message exchange behavior be-

tween different parties without revealing the internal

behavior for any one of them. This abstract process

views the outside world from the perspective of a single

organization or (composite) service. An executable

process views the world in a similar manner. However,

things are specified in more detail such that the process

becomes executable, i.e., an executable BPEL process

specifies the execution order of a number of activities

constituting the process, the partners involved in the

process, the messages exchanged between these part-

ners, and the fault and exception handling required in

cases of errors and exceptions.

A BPEL process itself is a kind of flow-chart, where

each element in the process is called an activity. An

activity is either a primitive or a structured activity.

The set of primitive activities contains: invoke, in-
voking an operation on a web service; receive, wait-
ing for a message from an external source; reply,
replying to an external source; wait, pausing for a
specified time; assign, copying data from one place
to another; throw, indicating errors in the execution;
terminate, terminating the entire service instance;
and empty, doing nothing.

To enable the presentation of complex structures the

following structured activities are defined: sequence,
for defining an execution order; switch, for condi-
tional routing; while, for looping; pick, for race
conditions based on timing or external triggers; flow,
for parallel routing; and scope, for grouping activities
to be treated by the same fault-handler. Structured
activities can be nested and combined in arbitrary
ways. Within activities executed in parallel the execu-
tion order can further be controlled by the usage of
links (sometimes also called control links, or guarded
links), which allows the definition of directed graphs.
The graphs too can be nested but must be acyclic.

The terminology above is based on BPEL 1.1

which was introduced in 2003 [3]. A new version of

the standard [2] was published in 2007. This version

has been approved as an OASIS Standard. This

new version resolves many semantical issues [1,5].

Moreover, new activity types such as repeatUntil,
validate, forEach (parallel and sequential),
rethrow, extensionActivity, and compen-
sateScope, have been added and some of the existing
activities have been renamed (switch/case renamed
to if/else andterminate renamed to exit). Cur-
rently, many extensions are under development, includ-
ing BPEL4People which enables BPEL activities to
be executed by human resources [4].

Cross-references
▶BPMN

▶Business Process Management

▶Choreography

▶Composition

▶Orchestration

▶Web Services

▶Workflow Management

▶Workflow Patterns

Recommended Reading
1. Aalst van der W.M.P., Dumas M., ter Hofstede A.H.M., Russell

N., Verbeek H.M.W., and Wohed P. Life after BPEL? In WS-FM,

2005, pp. 35–50.

2. Alves A., Arkin A., Askary S., Barreto C., Bloch B., Curbera F.,

Ford M., Goland Y., Guzar A., Kartha N., Liu C.K., Khalaf R.,

Koenig D., Marin M., Mehta V., Thatte S., Rijn D., Yendluri P.,

and Yiu A. Web services business process execution language,

version 2.0 (OASIS Standard). WS-BPELTC OASIS. http://docs.

oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

3. Andrews T., Curbera F., Dholakia H., Goland Y., Klein J.,

Leymann F., Liu K., Roller D., Smith D., Thatte S., Trickovic I.,

and Weerawarana S. Business process execution language for

web services, version 1.1. Standards Proposal by BEA Systems,

International Business Machines Corporation, and Microsoft

Corporation, 2003.

290B Business Process Management
4. Kloppmann M., Koenig D., Leymann F., Pfau G., Rickayzen A.,

von Riegen C., Schmidt P., and Trickovic I. WS-BPEL extension

for people BPEL4People. In Proc. 22nd Int. Conf. on Conceptual

Modeling, 2005.

5. Wohed P., van der Aalst W.M.P., Dumas M., and ter Hofstede

A.H.M. Analysis of Web Services Composition Languages: The

Case of BPEL4WS. In I.Y. Song, S.W. Liddle, T.W. Ling, and

P. Scheuermann, editors. In Proc. 22nd Int. Conf. on Conceptual

Modeling, 2003, pp. 200–215.
Business Process Management

W. M. P. VAN DER AALST

Eindhoven University of Technology, Eindhoven,

The Netherlands

Synonyms
Workflow management; Process management; Case

handling

Definition
Information technology has changed business pro-

cesses within and between enterprises. Traditionally,

information technology was mainly used to support

individual tasks (‘‘type a letter’’) and to store informa-

tion. However, today business processes and their

information systems are intertwined. Processes heavily

depend on information systems and information sys-

tems are driven by the processes they support [1].

Business Process Management (BPM) is concerned

with the interactions between processes and informa-

tion systems. An important element of BPM is the

modeling and analysis of processes. Processes can be

designed using a wide variety of languages ranging

from BPMN to Petri nets. Some of these languages

allow for analysis techniques (e.g., model checking

and simulation) to answer questions related to correct-

ness and performance. Models can be used to config-

ure generic software tools, e.g., middleware, workflow

management systems, ERP systems, etc. These systems,

also referred to as Business Process Management Systems

(BPMS), are used to enact relevant business processes.

A business process management system can be defined

as: a generic software system that is driven by explicit

process designs to enact and manage operational business

processes. The system should be ‘‘process-aware’’ and

‘‘generic’’ in the sense that it is possible to modify the

processes it supports. The process designs are often
graphical and the focus is on structured processes

that need to handle many cases. Workflow manage-

ment systems are typical examples of such ‘‘process-

aware’’ systems. An important technological enabler

for business process management systems is the

Service Oriented Architecture (SOA). The partitioning

of processes into services makes it easier to isolate the

process-logic.
Historical Background
Traditionally, information systems are viewed from

either a process-centric or an information-centric per-

spective. The information-centric view focuses on the

information managed by the system. Database man-

agement systems provide the functionality required to

store and retrieve data. Since the 1970’s, there have

been consensus on the modeling of data. Although

there are different languages and different types of

database management systems, the fundamental con-

cepts are quite stable for the information-centric view

of information systems. The process-centric view on

information systems on the other hand can be char-

acterized by the term ‘‘divergence.’’ There is little con-

sensus on the fundamental concepts. Despite the

availability of established formal languages (e.g., Petri

nets and process calculi) industry has been pushing

ad-hoc/domain-specific languages. As a result there is

a plethora of systems and languages available today.

An good starting point from a scientific perspective

is the early work on office information systems. In

the 1970’s, people like Skip Ellis, Anatol Holt, and

Michael Zisman already worked on so-called office

information systems, which were driven by explicit

process models [6]. It is interesting to see that the

three pioneers in this area independently used Petri-

net variants to model office procedures. During the

1970’s and 1980’s, there was great optimism about

the applicability of office information systems. Unfor-

tunately, few applications succeeded. As a result of

these experiences, both the application of this technol-

ogy and research almost stopped for a decade. Conse-

quently, hardly any advances were made in the 1980’s.

In the 1990’s, there again was a huge interest in these

systems [7]. The number of workflow management

systems developed in the period 1995–2005 and the

many papers on workflow technology illustrate the

revival of office information systems. Today workflow

Business Process Management B 291

B

management systems are readily available. However,

their application is still limited to specific industries

such as banking and insurance. In fact, workflow tech-

nology is often hidden inside other systems. For exam-

ple, ERP systems like SAP and Oracle provide workflow

engines. Many other platforms include workflow-like

functionality. For example, integration and application

infrastructure software such as IBM’s Websphere pro-

vides extensive process support.

When comparing today’s business process manage-

ment systems to the workflow management systems of

the nineties two things can be noted. First of all, the

focus is no longer exclusively on automation and en-

actment, e.g., process analysis (simulation, process

mining, verification, etc.) is increasingly important.

Second, the use of web technology makes it easier to

realize such systems even if processes are scattered over

multiple organizations.

Foundations
Business process management looks at the relation-

ships between business processes and information sys-

tems. Using information systems in an innovative way

enables new types of business processes. For example,

making paper documents electronic may enable the

concurrent execution of tasks thus shortening flow

times. Moreover, characteristics of business processes
Business Process Management. Figure 1. Architecture of a
lead to requirements for business process management

systems (cf. workflow patterns). Business process man-

agement is not limited to the automation of business

processes. For example, it is vital to analyze processes

before and after they are enacted. During the design

phase it is vital to use verification techniques to assess

the correctness of the process design. Moreover, simu-

lation techniques can be used to estimate the perfor-

mance of the process once it is realized. While the

processes is running, the information system needs to

record information about actual events and realized

performance. Using process mining techniques and

other types of business intelligence, the event logs of

systems can be analyzed. Based on such a diagnosis, the

process can be improved.

The modeling and analysis of processes plays a

central role in business process management. There-

fore, the choice of language to represent an organiza-

tion’s processes is essential. Three types of languages

can be identified:

1. Formal languages: Processes have been studied

using theoretical models. Mathematicians have

been using Markov chains, queueing networks,

etc. to model processes. Computer scientists have

been using Turing machines, transition systems,

Petri nets, and process algebras to model processes.
business process management system.

Business Process Management. Figure 2. BPM life-cycle.

292B Business Process Management
All of these languages have in common that they

have unambiguous semantics and allow for analysis.

2. Conceptual languages: Users in practice have pro-

blems using formal languages. They prefer to use

higher-level languages. Examples are BPMN (Busi-

ness Process Modeling Notation), EPCs (Event-

Driven Process Chains), UML activity diagrams,

etc. These language are typically informal, i.e., they

do not have a well-defined semantics and do not

allow for analysis. Moreover, the lack of semantics

makes it impossible to directly execute them.

3. Execution languages: Formal language typically

abstract from ‘‘implementation details’’ (e.g., data

structures) and conceptual languages only provide

an approximate description of the desired behavior.

Therefore, more technical languages are needed for

enactment. An example is the BPEL (Business Pro-

cess Execution Language) language. Most vendors

provide a proprietary execution language.

The existence and parallel use of these three types of

languages causes many problems. The lack of consen-

sus makes it difficult to exchange models. The gap

between conceptual languages and execution languages

leads to re-work and a disconnect between users and

implementers. Moreover, both types of languages are

not supported by advanced analysis tools.

Figure 1 shows the typical architecture of a business

process management system. The figure also shows

three roles of people involved: management, designer,

and worker. The ‘‘heart’’ of the business process man-

agement system is the enactment service also known as

‘‘workflow engine’’ [4,7]. This engine is offering the
right pieces of work (work-items) to workers at the

right point in time. In order to do this, it needs to have

detailed descriptions of the processes and organiza-

tions involved. Using design tools one can model pro-

cesses and organizations. Note that Fig. 1 presents an

idealized view. As indicated before there may be differ-

ent languages (formal, conceptual, and execution lan-

guages) involved. The designer may first model the

process in an informal manner. This model is then

converted into a model that can be enacted or ana-

lyzed. The enactment service is driven by models in

order to offer the right piece of work to the right

persons at the right time. Moreover, the enactment

service is starting applications and provides access to

case data. During execution all kinds of information

are recorded and at any time there is a (partial) history

(i.e., audit trails, event logs, etc.) and a current state

(run-time data). This information can be used for all

kinds of analysis. Some types of analysis focus on the

process design (e.g., verification and simulation).

Other types of analysis focus on the actual behavior

of the process (e.g., process mining).

As indicated before, different types of people

are involved (management, designers, and workers).

Moreover, business process management systems have

a characteristic life-cycle. Figure 2 shows the four

phases of such a life-cycle [7]. In the design phase, the

processes are (re)designed. In the configuration phase,

designs are implemented by configuring a process

aware information system (e.g., a BPMS). After con-

figuration, the enactment phase starts where the opera-

tional business processes are executed using the system

configured. In the diagnosis phase, the operational pro-

cesses are analyzed to identify problems and to find

things that can be improved. The focus of traditional

workflow management (systems) is on the lower half

of the BPM life-cycle. As a result there is little support

for the diagnosis phase. Moreover, support in the design

phase is limited to providing an editor while analysis

and real design support are missing. It is remarkable

that few systems provide good support simulation, ver-

ification, and validation of process designs. Another

problem of conventional workflow systems is the lack

of flexibility. Fortunately, the emphasis is shifting from

automation of highly structured processes to issues such

as flexibility and analysis. Case handling systems such as

FLOWer and academic prototypes such as DECLARE,

YAWL/worklets, and ADEPT offer innovative ways of

supporting flexible processes. Process mining tools such

Business Process Management B 293

B

as ProM, ARIS PPM, etc. allow for the analysis of actual

behavior. This supports the diagnosis phase and triggers

process improvement.

The architecture demonstrated in Fig. 1 does not

show any organizational boundaries. In the traditional

setting it was very difficult to support inter-organiza-

tional processes. Web services and the Service Oriented

Architecture (SOA) simplify the distribution of pro-

cesses over different organizations [8]. Moreover, the

paradigm shift towards services has also changed the

architecture within a single organization. When focus-

ing on processes, two terms are important: (i) chore-

ography and (ii) orchestration.

Choreography is concerned with the exchange of

messages between those services. Orchestration is con-

cerned with the interactions of a single service with its

environment. While choreography can be character-

ized by reaching an agreement and the monitoring

of the overall progress, the focus of orchestration is

more on the implementation of a particular service by

describing the process logic and linking this to neigh-

boring services. Orchestration languages are close to

traditional workflow languages (BPMN, BPEL, Petri

nets, etc.). An important characteristic of such lan-

guages is the ability to compose a service by using

other services. The role of choreography languages

(e.g., WS-CDL) is less clear.

Business process management is clearly related to

management science. For example, topics such as opera-

tions research, operations management, business pro-

cess re-engineering are highly relevant [9]. There are

also clear links with coordination languages and theory.

Coordination can be defined as ‘‘managing dependen-

cies between activities.’’ Process modeling languages and

concepts such as choreography and orchestration are

obviously related to coordination.
Key Applications

Banking

The financial industry has changed dramatically

using both business process re-engineering and work-

flow-like technologies. Many processes have been

rationalized using business process management tech-

niques. The rise of e-banking led to a dramatic reduc-

tion of people and offices. Banking processes are

supported and monitored by business process manage-

ment systems.
Government

Government organizations need to react quickly to

new legislation, i.e., the corresponding processes need

to be modified based on changes in tax laws, customs

procedures, immigration laws, corporate governance,

safety regulations, etc. Business process management

assists in dealing with these changes and further im-

proving the processes.

Business-to-Business

Mergers and virtual enterprises trigger the need for

cross-organizational workflows.Web services and busi-

ness process management techniques can assist in con-

necting process fragments from different organizations.

The SOA combined with languages like BPEL pro-

vides a good basis for cross-organizational workflows.

Health-care

Business process management techniques have mainly

been applied to structured processes. Given the nature of

care processes, it is not easy to streamline these pro-

cesses and to support them with workflow-like systems.

However, they only way to reduce costs and improve

effectively is to provide better support for such processes.

Hence, the health-care domain poses an interesting and

relevant challenge for business processmanagement.
Cross-references
▶BPEL

▶BPMN

▶Composition

▶Choreography

▶Orchestration

▶ Process Mining

▶Web Services

▶Workflow Management

▶Workflow Management and Workflow Management

Systems

▶Workflow Model Analysis

▶Workflow Patterns
Recommended Reading
1. Dumas M., van der Aalst W.M.P., and ter Hofstede A.H.M.

Process-Aware Information Systems: BridgingPeople andSoftware

ThroughProcessTechnology.Wiley, New York, NY, USA, 2005.

2. Georgakopoulos D., Hornick M., and Sheth A. An Overview of

Workflow Management: From Process Modeling to Workflow

Business Process Modeling Notation. Figure 1. BPMN notation.

294B Business Process Model
Automation Infrastructure. Distrib. Parallel Databases,

3:119–153, 1995.

3. Jablonski S. and Bussler C. Workflow Management: Modeling

Concepts, Architecture, and Implementation. International

Thomson Computer, London, UK, 1996.

4. Leymann F. and Roller D. Production Workflow: Concepts and

Techniques. Prentice Hall PTR, Upper Saddle River, NJ, USA,

1999.

5. Reijers H. Design and Control of Workflow Processes: Business

Process Management for the Service Industry. LNCS 2617.

Springer, Berlin Heidelberg New York, 2003.

6. van der Aalst W.M.P. Business process management demystified:

a tutorial on models, systems and standards for workflow man-

agement. In Lectures on Concurrency and Petri Nets, J. Desel,

W. Reisig, G. Rozenberg (eds.). LNCS 3098. Springer, Berlin

Heidelberg New York, 2004, pp. 1–65.

7. van der Aalst W.M.P. and van Hee K.M. WorkflowManagement:

Models, Methods, and Systems. MIT, Cambridge, MA, 2004.

8. Weske M. Business Process Management: Concepts, Languages,

Architectures. Springer, Berlin Heidelberg New York, 2007.

9. zur Muehlen M. Workflow-Based Process Controlling: Founda-

tion, Design and Application of Workflow-Driven Process Infor-

mation Systems. Logos, Berlin, 2004.
Business Process Model

▶Workflow Model
Business Process Modeling
▶Workflow Modeling
Business Process Modeling Notation

W. M. P. VAN DER AALST

Eindhoven University of Technology, Eindhoven,

The Netherlands

Synonyms
BPMN

Definition
The Business Process Modeling Notation (BPMN) is a

graphical notation for drawing business processes. It is

proposed as a standard notation for drawing models

understandable by different business users. BPMN

aims to bridge the communication gap that frequently

occurs between business process design and imple-

mentation. The language is similar to other informal

notations such as UML activity diagrams and extended

event-driven process chains.

Key Points
BPMN was initially developed by Business Process

Management Initiative (BPMI). It is now being main-

tained by the Object Management Group (OMG) who

released a ‘‘Final Adopted Specification’’ in 2006 [3].

The intent of BPMN is to standardize a business

Business Process Reengineering B 295

B

process modeling notation in the face of many differ-

ent modeling notations and viewpoints.

A model expressed in terms of BPMN is called a

Business Process Diagram (BPD). A BPD is essentially

a flowchart composed of different elements. There

are four basic categories of elements: (i) Flow Objects,

(ii) Connecting Objects, (iii) Swimlanes, and (iv) Arti-

facts [3]. Flow objects are the main graphical elements

to define the behavior of a process. There are three

types of flow objects: Events, Activities, and Gateways.

Events are comparable to places in a Petri net, i.e., they

are used to trigger and/or connect activities. There are

different types of activities. Atomic activities are re-

ferred to as tasks. Gateways are used to model splits

and joins. The flow objects can be connected to estab-

lish a control-flow. Swimlanes are just a means to

structure processes. Artifacts are used to add data or

to further annotate process models.

Figure 1 shows the basic set of symbols used by

BPMN. These symbols can be combined to construct a

BPD. On the left hand side, four types of events are

shown. Three type of splits are shown. The data-based

XOR gateway split passes control to exactly one of its

output arcs. The parallel fork gateway passes control to

all output arcs. The event-based XOR gateway selects

one output arc based on the occurrence of the

corresponding event. Note that Fig. 1 shows only a

subset of all possible notations. The complete language

is rather complex. The specification itself [3] is 308

pages without providing any formal semantics.

BPMN is an informal language aiming at the com-

munication and not directly at execution. Therefore,

the language is positioned as the design language for

BPEL, i.e., BPMN diagrams are gradually refined into

BPEL specifications. Given the lack of formal seman-

tics this is not a trivial task [2,4]. Therefore, several

attempts have been made to provide semantics for a

subset of BPMN [1].

Cross-references
▶BPEL

▶Business Process Management

▶Composition

▶Orchestration

▶ Petri Nets

▶Web Services

▶Workflow Management

▶Workflow Patterns
Recommended Reading
1. Weske M. Business Process Management: Concepts, Languages,

Architectures. Springer, Berlin Heidelberg New York, 2007.

2. White S. Using BPMN to model a BPEL process. BPTrends,

3(3):1–18, March 2005.

3. White S.A. et al. Business Process Modeling Notation Specifica-

tion (Version 1.0, OMG Final Adopted Specification), 2006.

4. Wohed P., van der AalstW.W.P., DumasM., ter Hofstede A.H.M.,

and Russell N. On the Suitability of BPMN for Business Process

Modelling. In Proc. Int. Conf. Business Process Management

2006, pp. 161–176.
Business Process Monitoring

▶ Event-Driven Business Process Management
Business Process Optimization

▶ Process Optimization
Business Process Redesign

▶Business Process Reengineering
Business Process Reengineering

CHIARA FRANCALANCI

Politecnico di Milano University, Milan, Italy

Synonyms
Business Process Redesign

Definition
Business process reengineering refers to a substantial

change of a company’s organizational processes that

(i) is enabled by the implementation of new informa-

tion technologies that were not previously used by the

company, (ii) takes an interfunctional (or interorgani-

zational) perspective, i.e., involves multiple organiza-

tional functions (or organizations) that cooperate

296B Business Process Reengineering
along processes (iii) considers end-to-end processes, i.

e., processes that deliver a service to a company’s cus-

tomers, (iv) emphasizes the integration of information

and related information technologies to obtain seam-

less technological support along processes.
Historical Background
In 1993, Hammer and Champy [3] introduced the

concept of business process reengineering as a radical

and fast change of organizational processes that leverages

information technology. Their work was the first of a

wave of research contributions that analyzed the role and

impact of information technologies in business process

reengineering. This research was accompanied by a wide-

spread use of the term business process reengineering in

the industry to indicate large projects that involved the

implementation of client-server architectures and the

concurrent redesign of core business processes. Client-

server enabled a more extensive sharing of organizational

data within organizations by making server data accessi-

ble to personal computers through more user friendly

client applications. In turn, this enabled a redesign of

end-to-end business processes towards greater inter-

functional cooperation. These changes primarily involved

service companies, such as insurance companies, banks,

research institutions, and so on, since client server had

much broader application in service industries due to

a more widespread use of personal computers by all

employees and in all activities, both clerical and

operating. More recently, the term has been extended to

indicate any substantial redesign of business processes

that is enabled by information technologies.
Foundations
The interfunctional integration of business processes

has been recognized as a fundamental lever to improve

organizational performance ever since the early stu-

dies within the information perspective of organizational

theory. Going back to Galbraith’s analysis [5], two com-

plementary methods for increasing the information pro-

cessing capacity of an organization are proposed. The first

improves the communication of information within

organizations along hierarchies of authority through

vertical information systems. Information is gathered

from lower hierarchical levels, consolidated, and con-

veyed to higher decision-making centers. While very

effective for routine decisionmaking, vertical information
systems can quickly become overloaded in conditions of

increasing uncertainty. In this case, firms can resort to

direct lateral communication, Galbraith’s second meth-

od. Liaison roles, task forces, project teams, and matrix

structures are increasingly powerful mechanisms to

facilitate this lateral interchange of information.

While the first method reinforces the communication

of information across levels of authority, the second

consists of a set of organizational solutions allowing

information exchanges orthogonal to the hierarchy.

Solutions for direct lateral communication per-

mit higher organizational efficiency when hierarchies

become inadequate information processors because

of increasing coordination needs. This happens when

dependencies between agents are difficult to foresee, as

they continually change over time. In principle, within a

hierarchy, lateral communication can take place only

through levels of authority. Any two agents communi-

cating through hierarchical levels experience an efficien-

cy that is inversely proportional to their distance in the

hierarchy. If dependencies between agents are stable and

cause recurring paths of lateral communication, hierar-

chies of authority can be built by grouping agents who

require most frequent interaction. By minimizing the

distance between interacting agents, hierarchical coor-

dination can be efficient. On the contrary, when orga-

nizations operate in conditions of high uncertainty,

lateral information exchange becomes essential. Since

demands for responsiveness and flexibility in today’s

business environment are raised as a result of increased

uncertainty, the lateral exchange of information

becomes critical to support overall information proces-

sing needs. Business process reengineering involves the

redesign of organizational processes towards a higher

degree of lateral communication.

Traditional Intra-Organizational Reengineering

Historically, mainframe-based architectures could sup-

port the implementation of vertical information

systems, but were inherently inadequate for lateral

communication. In centralized architectures, no dis-

tinction was made between data and applications. Data

belonged to the application creating them and could be

accessed only through that same application. Consis-

tent with Galbraith’s recommendations for the use of

IT to support vertical communication, design meth-

odologies witnessed a focus on the hierarchical con-

ception and implementation of information systems.

For example, the Normative Application Portfolio [9]

Business Process Reengineering. Figure 1. The supply chain management (SCM) learning cycle.

Business Process Reengineering B 297

B

adopted a layered view of organizations, following

Anthony’s hierarchical framework of planning and

control systems. Three main classes of applications

were distinguished, supporting operations, manage-

ment, and strategy, respectively. The application port-

folio was created by building vertically from one level

to the next, in order to guarantee that activities on

lower levels supported higher level activities.

In the mid-1970s, databases and database manage-

ment systems (DBMS) introduced significant changes

in the design of IT architectures. Based on database

technology, a new type of IT architecture was imple-

mented, which can be broadly categorized as centra-

lized. Centralized architectures allow the logical

separation between data and applications. The layer

of software services constituting the DBMS logically

separated data and applications and permitted their

independent design. Data common to different appli-

cations could be designed and managed as a unified

resource. Database management systems exported data

manipulation services that could be accessed by any

application.

The management of data as a unified resource

favored information sharing by integrating data com-

mon to different applications. Users running different

applications could exchange information by storing and

retrieving data in the central database. Conversely,

designers could conceive new applications taking advan-

tage of previously gathered and integrated information.

A classical example is the use of accounting data by

financial applications, allowing more precise financial
analyses through detailed information on a firm’s cash

flows. Likewise, replenishment could be optimized

through integration with order fulfillment data.

In the 1990s, client-server architectures allowed

the physical separation between data and applications.

Unlike the logical separation provided by databases

in centralized architectures, the physical separation

allowed the storage of data and the execution of appli-

cations on any computer. Within a client-server envi-

ronment, shared data were typically stored on the

server, but applications could be stored and run on

local servers or personal computers.

The DBMS layer of centralized architectures was

complemented by an additional layer of network ser-

vices achieving the physical separation between data

and applications. This made the number and the loca-

tion of resources transparent to individual nodes in the

architecture. By relying on peripheral processing and

storage capacities of individual nodes, distributed

architectures could grow incrementally. This provided

the flexibility to continuously adjust to requirements

and to implement a variety of applications according

to individual needs. This greater flexibility enabled

lateral organizational solutions that allowed different

functions to take full advantage of organizational in-

formation with a variety of functionalities that could

be more easily adjusted to changing requirements.

These functionalities are now incorporated inside

ERP (Enterprise Resource Planning) systems repre-

senting fully integrated software solutions that embed

laterally integrated organizational processes.

298B Business Process Reengineering
Supply Chain Management Process Reengineering

More recently, the Web service paradigm is shifting

reengineering activities towards interorganizational

and interpersonal processes. Web service platforms

are designed to wrap a company’s information system

and make selected functionalities available as web ser-

vices to both internal and external users. This opens up

a number of new opportunities. First, the Web service

paradigm is causing a radical redesign of supply chain

management processes (see Fig. 1). Supply chain man-

agement applications (SCM) support the integration

of suppliers into a company’s information system. This

integration allows concurrent and efficient planning

of production activities along the value chain. SCM

involve a learning process, as shown in Fig. 1. This

learning process starts from the monitoring of suppli-

ers to measure their performance and, hence, optimize

procurement activities. Then, a subset of efficient and

reliable suppliers is selected for tighter integration,

ranging from electronic orders to requirement man-

agement and electronic requirement management and

codesign. If the supplier management process is effec-

tive, a company can build and evaluation and qualifi-

cation system that can lead to official certifications that

suppliers themselves can leverage as part of their brand

equity. Overall, SCM involves a deep reengineering of

supply management processes that represents the

objective of a number of current projects.

Knowledge Management Process Reengineering

Knowledge management processes constitute a second

important objective of current business process reengi-

neering activities enabled by the Web and by the more

recent Web service paradigm. Knowledge management

systems (KMS) are ‘‘IT-based systems developed to

support and enhance the organizational processes

of knowledge creation, storage/retrieval, transfer, and

application’’ ([1]: 114). KMS span a large and complex

spectrum from help desk and customer care applica-

tions to those designed to develop employee skills.

Virtual communities and collaborative environments

are forms of KMS and KMS can also serve as corporate

knowledge repositories and maps of expertise.

The literature on Knowledge Management Systems

(KMS) largely assumes that an individual’s knowledge

can be captured and converted into group or

organization-available knowledge. When individuals

do not contribute to such systems, the knowledge

creation capability of the firm is adversely affected.
However, there is little clarity in the information sys-

tems literature on which mechanisms are necessary for

conversion to take place. Many in the information

systems literature (e.g., [6]) have argued for social

influences (such as culture), hierarchical authority,

and/or economic incentives, all of which are external

influences that rely on the broader social context out-

side the KMS system. An alternative view to these

external influences is internal or intrinsic motivation.

This view assumes that there is little that a broader

context outside of the person and the person’s interac-

tions with KMS can do to enhance contributions.

‘‘Creating and sharing knowledge are intangible activ-

ities that can neither be supervised nor forced out of

people. They only happen when people cooperate vol-

untarily’’ [6]. Intrinsic motivation implies that the

activity is performed because of the immediate satis-

faction it provides in terms of flow, self-defined goal,

or obligations of personal and social identity rather

than some external factor or goal. The external factors

can even undermine knowledge contributions if they

interfere with intrinsic motivation. Although both

views are likely to play a role in knowledge sharing,

the internal view is important in organizations that

take on characteristics of knowledge era (or postmod-

ern) organizations. Such organizations require a more

participative and self-managing knowledge worker

compared to industrial era organizations. Knowledge-

era organizations are associated with increased egali-

tarianism among positions, increased availability of

information and knowledge resources, and increased

self-management of knowledge workers. Wikipedia.

org represents a typical example of postmodern self-

organizing KMS, in which everyone in the world

can contribute spontaneously with personal expertise

and where control over contributions appropriateness

is not based on any hierarchical structure, but is

completely peer-based.

In a postmodern organization, an employee’s

commitment to his or her organization results from

autonomous forms of organizing and the resulting

self-expression and feelings of responsibility and con-

trol of the outputs of work. With knowledge workers,

where work is associated with flows of knowledge

and information, rather than flows of materials, self-

expression, responsibility, and control are often tar-

geted to knowledge outputs. Knowledge workers

want to share their knowledge across the organization

while preserving their association with these

Business Process Reengineering B 299

B

contributions. This type of psychological attachment,

or emotional connection between the person and

knowledge is well documented in open source initia-

tives. When given a choice to require or not require

attribution to one’s creative works (permit others to

copy, distribute, display, modify the work but only if

given credit without any economic implications), indi-

viduals invariably choose the requirement of future

users of their knowledge to attribute knowledge to

them (http://Creative commons.org/). The importance

of psychological attachment to knowledge is no less

important in commercial contexts.

KMS do not necessarily harness psychological

attachment between knowledge embedded in the

system and the individual who is the source of that

knowledge. On one side, it is risky for the organization

to let knowledge reside within the minds of individuals,

in a form that can easily leak across the firm’s boundaries

and lead to a loss of competitive advantage. On the other

hand, individual employees may perceive their personal

goals to be poorly served by sharing knowledge unless

the system helps to manage the knowledge worker’s

personal attachment to knowledge andmake this attach-

ment known in relevant organizational communities. In

knowledge intensive organizations, people’s distinc-

tiveness depends upon their possessed knowledge.

KMS that do not help construct, communicate, and

defend the psychological attachment between the knowl-

edge and the knowledge worker, and the rest of the

organization can reduce the motivation to contribute

knowledge to KMS. Fostering psychological attachment

is likely to increase the knowledge workers quality of

contributions, not only the quantity. In fact, the more

complex and tacit the knowledge contributed to KMS,

the higher the effort that knowledge workers are likely to

put in their contributing activities. When the KMS fos-

ters psychological attachment to contributions, knowl-

edge workers increase their likelihood to engage also

those knowledge sharing activities that require greater

effort in order to be carried out.

Process Modeling Languages and Techniques

Reengineering initiatives typically involve a process

modeling phase that supports the analysis of existing

processes and the specification of new processes.

UML (www.uml.org) represents a quasi-standard for

process modeling and is widely used in business pro-

cess reengineering.
Over the years, the scope of business processes and

BPM has broadened. Initially, BPM, or workflow, was a

technique that helped design largely human-based,

paper-driven processes within a corporate department.

For example, to handle a claim, an insurance claims

process, taking as input a scanned image of a paper

claims form, would pass the form electronically from

the mailbox (or worklist) of one claims specialist to

that of another, mimicking the traditional movement

of interoffice mail from desk to desk. The contempo-

rary process orchestrates complex system interactions,

and is itself a service capable of communicating and

conversing with the processes of other companies

according to well-defined technical contracts. A retai-

ler’s process to handle a purchase order, for example, is

a service that uses XML messages to converse with the

service-based processes of consumers and warehouses.

A number of new modeling languages have recently

been proposed to accommodate this complexity. For

example, the i* model and its subsequent develop-

ments within the TROPOS project allow the represen-

tation of strategic relationships between organizations

and their relationships with goals, resources and sys-

tem components (cf.[10]). The impact of the structure

of cooperation forms on the interactions among actors

are modeled in the field of Multi-Agent Systems to

determine an architectural solution based on typical

software non-functional requirements (i.e., security, in-

tegrity, modularity, etc.). Moreover, the i* model sup-

ports the analysis of high-level goals together with

non-functional requirements. The ability to move

from high-level goals to sub-goals is also provided by

KAOS (cf.[4]). KAOS is a formal approach for analyzing

goals and for transforming goals into requirements for

the software system. Finally, GBRAM (Goal Based

RequirementsAnalysisMethod, cf.[2]) proposes ameth-

od supporting the initial identification of high-level

goals. Different from i* and KAOS, GBRAM does not

assume that high-level goals are previously identified

and provides a set of strategies to elicit goals from all

available sources of information.

Key Applications
Enterprise Resource Planning (ERP), Web Services

(WS), Knowledge Management Systems (KMS).

Cross-references
▶Data architectures

▶DBMS

▶ ERP

▶ IT architectures

▶UML

▶Web services
Recommended Reading
1. Alavi M. and Leidner D.E. Knowledge management and knowl-

edge management systems: Conceptual foundations and

research issues. MIS Q, 25(1):107–136, 2001.

2. Anton A. Goal Identification and Refinement in the Specifica-

tion of Software-based Information Systems, Ph.D. Dissertation.

Georgia Institute of Technology, Atlanta, 1997.

3. Champy J. and Hammer M. Reengineering the Corporation.

Harper Collins, New York, NY, 1993.
4. Dardenne A., Lamsweerde vanA., and Fickas S. Goal-directed

requirements acquisition. Sci. Comput. Program., 20(1–2):3–50,

1993.

5. Galbraith J.R. Organization Design. Addison-Wesley Publishing

Company, Reading, MA, 1977.

6. Jarvenpaa S.L. and Staples D.S. The use of collaborative electron-

ic media for information sharing: An exploratory study of

determinants. J. Strateg. Inform. Syst., 9(2–3):129–154, 2000.

7. Kim W.C. and Mauborgne R. Procedural justice, strategic deci-

sion making, and the knowledge economy. Strateg. Manage. J.,

19:323–338, 1988.

8. Malone T.W. and Crowston K. The Interdisciplinary study of

coordination. ACM Comput. Surv., 26(1):87–119, 1994.

9. Nolan R.L. Managing the Data Resource Function. West

Publishing Company, St. Paul, Minnesota, MN, 1982.

10. Yu E. and Mylopoulos J. Using goal, rules and methods to

support reasoning in business process reengineering. Int. J.

Intell. Syst. Account. Finance Manage., 5(1):1–13, 1996.

C

Cache Manager

▶Buffer Manager
Cache Performance

▶ Performance Analysis of Transaction Processing

Systems
Cache-Aware Query Processing

▶Cache-Conscious Query Processing
Cache-Conscious Query Processing

KENNETH A. ROSS

Columbia University, New York, NY, USA

Synonyms
Cache-aware query processing; Cache-sensitive query

processing

Definition
Query processing algorithms are designed to efficiently

exploit the available cache units in the memory hierar-

chy. Cache-conscious algorithms typically employ

knowledge of architectural parameters such as cache

size and latency. This knowledge can be used to ensure

that the algorithms have good temporal and/or spatial

locality on the target platform.

Historical Background
Between 1980 and 2005, processing speeds improved

by roughly four orders of magnitude, while memory

speeds improved by less than a single order of magni-

tude. As a result, it is common (at the time of writing)
2009 Springer ScienceþBusiness Media, LLC
for data accesses to RAM to require several hundred

CPU cycles to resolve. Many database workloads have

shifted from being I/O bound to being memory/CPU-

bound as the amount of memory per machine has

been increasing. For such workloads, improving the

locality of data-intensive operations can have a direct

impact on the system’s overall performance.

Foundations
A cache is a hardware unit that speeds up access to

data. Several cache units may be present at various

levels of the memory hierarchy, depending on the

processor architecture. For example, a processor may

have a small but fast Level-1 (L1) cache for data, and

another L1 cache for instructions. The same processor

may have a larger but slower L2 cache storing both data

and instructions. Some processors may even have an

L3 cache. On multicore processors, the lower level

caches may be shared among groups of cores.

Some initial analysis would typically be performed

to determine the performance characteristics of a

workload. For example, Ailamaki et al. [1] used hard-

ware performance counters to demonstrate that several

commercial systems were, at that time, suffering many

L2 data cache misses and L1 instruction cache misses.

Based on such observations, one can determine that

the L2 data cache and L1 instruction cache are targets

for performance tuning.

If the operating system does not provide direct

access to system parameters such as the cache size, a

database system can run a calibration test to estimate

the relevant parameters [13].

To get good cache performance, algorithm

designers typically utilize one or more of the following

general approaches:

� Improve spatial locality, so that data items that

are often accessed together are in the same cache

lines.

� Improve temporal locality for data, so that after

an initial cache miss, subsequent data item accesses

occur while the item is still cache-resident.

302C Cache-Conscious Query Processing
� Improve temporal locality for instructions, so that

code that needs to be applied to many data items

is executed many times while the instructions re-

side in the cache.

� Hide the latency. Latency can be hidden in several

ways. If the data access pattern is predictable, pre-

fetching data elements into the cache can overlap

the memory latency with other work. On architec-

tures that support multiple simultaneous outstand-

ing memory requests, cache miss latencies can be

overlapped with one another.

� Sample the data to predict the cache behavior, and

choose an algorithm accordingly.

Examples of each of these approaches are given below.
Spatial Locality

In many query-processing contexts, only a few columns

for a table are needed. In such cases, it pays to organize the

table column-wise, so that column values from consecu-

tive records are contiguous. Cache lines then contain

many useful data elements. A row-wise organization

would require more cache-line accesses, since each cache

line would contain some data from unneeded columns.

Examples of systems with column-wise storage are Sybase

IQ [12], MonetDB [3], and C-Store [19]. The PAX stor-

agemodel [6] allows for column-wise storage within each

disk page. Themain advantage of such an approach is that

existing page-oriented database systems can improve

cache behavior with limited changes to the whole system.

Chilimbi et al. [7] advocate placing multiple levels

of a binary tree within a cache line, to reduce the

number of cache misses per traversal. Chilimbi et al.

also use cache coloring to place frequently accessed

items in certain ranges of physical memory. The idea

is to reduce the number of conflict misses by making

sure that the low order bits of the addresses of certain

items cannot be the same.

To reduce the number of cache lines needed to search

for an item in an index, Rao andRoss proposedCSS-trees

[16] andCSB+-trees [17]. CSS-trees eliminate pointers; a

node contains only keys. Nodes are of fixed size, typically

one cache line, aligned to the cache line boundaries.

Nodes are stored in an array in such a way that the

children of a node can be determined using simple arith-

metic operations, making pointers unnecessary. CSB+-

trees extend this idea, allowing just one pointer per

node and requiring that all sibling nodes be contiguous.

CSB+-trees have better update performance than CSS-

trees, while retaining almost all of the cache-efficiency.
The diagram below shows a CSB+-Tree of Order 1. Note

that each node has only one child pointer and that each

node’s children are allocated contiguously.

Several other ways to compress B+-tree nodes for

cache performance, such as key compression and key-

prefix truncation, are discussed in [11].

Temporal Locality

Blocking is a general technique for ensuring temporal

locality. Data is processed in cache-sized units, so that

all data within the block stays cache-resident. The

blocks are then combined in a later phase. Alpha-Sort

[14] is an example of such a method: cache-sized units

of input data are read and quick-sorted into runs.

These runs are merged in a later phase. Padmanabhan

et al. [15] modified a commercial database system to

pass data between certain operators in blocks, and

demonstrated improved cache behavior.

Buffering is a related strategy to improve temporal

locality. Zhou and Ross [20] propose buffering to

speed up bulk B-tree index lookups. By sending pro-

bes only one level at a time through the tree, in batches,

one can amortize the cost of reading an index node

over many probes. The savings in data cache misses

usually outweigh the extra cost of reading and writing

to intermediate buffers. Zhou and Ross also examine

the code size of database operators, and propose to

buffer data to ensure that the footprint of the active

code is smaller than the size of the L1 instruction cache

[21]. Again, the savings in instruction cache misses

usually outweigh the cost of buffering.

Partitioning the data into cache-sized units for later

processing is the dual of blocking. Examples include

the partitioned hash join [18] and radix-join [3].

When multiple processors, or multiple threads

within a single processor access a shared cache, cache

interference can result. Even if each individual thread

is cache-conscious, the total cache resources may be

Cache-Conscious Query Processing C 303

C

insufficient for all threads, and cache thrashing may

result. To counter this interference, one could design

cooperative threads that work together on a common

task using common cache-conscious data structures.

Multithreaded join operators [10,22] and aggregation

operators [8] have been proposed.

Many divide-and-conquer style algorithms gener-

ate temporal locality at recursively smaller granulari-

ties. Such algorithms have been termed cache oblivious

because they can achieve locality at multiple levels of

the memory hierarchy without explicit knowledge of

the cache parameters [9].

Prefetching

Prefetching involves reading data into the cache ahead of

when it is to be used. When access patterns can be

predicted in advance, and when memory bandwidth is

not saturated, prefetching can effectively hide the mem-

ory latency. Some hardware platforms automatically rec-

ognize certain access patterns, such as regular fixed-stride

access to memory. The hardware then automatically

prefetches ahead in the access sequence. For access pat-

terns that are not so easily recognized, or for hardware

platforms that do not support hardware prefetching, one

can explicitly prefetch memory locations using software.

Chen et al. [6] show how to prefetch parts of a B+-

tree node or CSB+-tree node to get a bigger effective

node size. For example, if the memory system can

support n outstanding memory requests, then a node

consisting of n cache lines could be retrieved in only

slightly more time than a single cache line. Since wider

nodes result in shallower trees, the optimal node size

might be several cache lines wide.

Chen et al. [4] use prefetching to speed up hash joins.

The internal steps for processing records are divided into

stages. A memory access is typically required between

stages. Stages for multiple records are scheduled so that

while data for a forthcoming operation is being pre-

fetched, usefulwork is being performed on other records.

Zhou et al. [22] define the notion of a work-ahead

set, a data structure that describes a memory location

and a computation stage for some data-intensive oper-

ation. One thread of a two-threaded system is devoted

purely to prefetching the data into the cache, while the

other thread does the algorithmic work.

Sampling

Inspector joins sample the data during an initial parti-

tioning phase [5]. This information is used to acceler-

ate a cache-optimized join algorithm for processing

the partitions. Cieslewicz et al. [8] sample a stream
of tuples for aggregation to estimate (among other

things) the locality of reference of group-by values.

Based on that information, an appropriate aggregation

algorithm is chosen for the remainder of the stream.

Key Applications
Data intensive operators such as sorts, joins, aggre-

gates, and index lookups, form the ‘‘assembly lan-

guage’’ into which complex queries are compiled. By

making these operators as efficient as possible on mod-

ern hardware, all database system users can effectively

exploit the available resources.

Future Directions
Future processors are likely to scale by placing many

cores on a chip, with only a modest increase in clock

frequency. As a result, the amount of cache memory

per processor may actually decrease over time, making

cache optimization even more critical. For chips with

shared caches, interference between cores will be a

significant performance hazard. While locality is good

for cache behavior, it can be bad for concurrency due

to hot-spots of contention [8]. Cache performance will

need to be considered together with parallelism to find

appropriate performance trade-offs.

Cross-references
▶Architecture-Conscious Database System

▶Cache-Conscious Transaction Processing

Recommended Reading
1. Ailamaki A., Dewitt D.J., Hill M.D., andWood D.A. DBMSs on a

modern processor: where does time go? In Proc. 25th Int. Conf.

on Very Large Data Bases, 1999, pp. 266–277.

2. Ailamaki A., DeWitt D.J., Hill M.D., and Skounakis M. Weaving

relations for cache performance. In Proc. 27th Int. Conf. on Very

Large Data Bases, 2001, pp. 169–180.

3. Boncz P.A., Manegold S., and Kersten M.L. Database architec-

ture optimized for the new bottleneck: memory access. In Proc.

25th Int. Conf. on Very Large Data Bases, 1999, pp. 54–65.

4. Chen S., Ailamaki A., Gibbons P.B., and Mowry T.C. Improving

hash join performance through prefetching. In Proc. 20th Int.

Conf. on Data Engineering, 2004, pp. 116–127.

5. Chen S. et al. Inspector joins. In Proc. 31st Int. Conf. on Very

Large Data Bases, 2005, pp. 817–828.

6. Chen S., Gibbons P.B., and Mowry T.C. Improving index per-

formance through prefetching. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2001, pp. 235–246.

7. Chilimbi T.M., Hill M.D., and Larus J.R. Cache-conscious struc-

ture layout. In Proc. ACM SIGPLAN Conf. on Programming

Language Design and Implementation, 1999, pp. 1–12.

8. Cieslewicz J. and Ross K.A. Adaptive aggregation on chip multi-

processors. In Proc. 33rd Int. Conf. on Very Large Data Bases,

2007, pp. 339–350.

304C Cache-Sensitive Query Processing
9. Frigo M., Leiserson C.E., Prokop H., and Ramachandran S.

Cache-oblivious algorithms. In Proc. 40th Annual Symp. on

Foundations of Computer Science, 1999, pp. 285–298.

10. Garcia P. and Korth H. Database hash-join algorithms on multi-

threaded computer architectures. In Proc. 3rd Conf. on Com-

puting Frontiers, 2006, pp. 241–251.

11. Graefe G. and Larson P. B-tree indexes and CPU caches. In Proc.

17th Int. Conf. on Data Engineering, 2001, pp. 349–358.

12. MacNicol R. and French B. Sybase IQ multiplex – designed

for analytics. In Proc. 30th Int. Conf. on Very Large Data

Bases, 2004, pp. 1227–1230.

13. Manegold S., Boncz P.A., and Kersten M.L. What happens during a

join? dissecting CPU and memory optimization Effects. In Proc.

26th Int. Conf. on Very Large Data Bases, 2000, pp. 339–350.

14. Nyberg C., Barclay T., Cvetanovic Z., Gray J., and Lomet D.B.

AlphaSort: a cache-sensitive parallel external sort. VLDB J., 4

(4):603–627, 1995.

15. Padmanabhan S., Malkemus T., Agarwal R., and Jhingran A.

Block oriented processing of relational database operations in

modern computer architectures. In Proc. 17th Int. Conf. on

Data Engineering, 2001, pp. 567–574.

16. Rao J. and Ross K.A. Cache conscious indexing for decision-

support in main memory. In Proc. 25th Int. Conf. on Very Large

Data Bases, 1999, pp. 78–89.

17. Rao J. and Ross K.A. Making B+ trees cache conscious in main

memory. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2000, pp. 475–486.

18. Shatdal A., Kant C., and Naughton J.F. Cache conscious

algorithms for relational query processing. In Proc. 20th Int.

Conf. on Very Large Data Bases, 1994, pp. 510–521.

19. Stonebraker M., Abadi D.J., Batkin A., Chen X., Cherniack M.,

Ferreira M., Lau E., Lin A., Madden S., O’Neil E.J., O’Neil P.E.,

Rasin A., Tran N., and Zdonik S.B. C-Store: a column-oriented

DBMS. In Proc. 31th Int. Conf. on Very Large Data Bases, 2005,

pp. 553–654.

20. Zhou J. and Ross K.A. Buffering accesses to memory-resident

index structures. In Proc. 29th Int. Conf. on Very Large Data

Bases, 2003, pp. 405–416.

21. Zhou J. and Ross K.A. Buffering database operations for

enhanced instruction cache performance. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2004, pp. 191–202.

22. Zhou J., Cieslewicz J., Ross K., and Shah M. Improving database

performance on simultaneous multithreading processors. In

Proc. 31st Int. Conf. on Very Large Data Bases, 2005, pp. 49–60.
Cache-Sensitive Query Processing

▶Cache-Conscious Query Processing
Calculus Expression

▶Comprehensions
Calendar

CHRISTIAN S. JENSEN
1, RICHARD SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Definition
A calendar provides a human interpretation of time.

As such, calendars ascribe meaning to temporal values

such that the particular meaning or interpretation

provided is relevant to its users. In particular, calendars

determine the mapping between human-meaningful

time values and an underlying time line.

Key Points
Calendars are most often cyclic, allowing human-

meaningful time values to be expressed succinctly.

For example, dates in the common Gregorian calendar

may be expressed in the form <month, day, year>

where the month and day fields cycle as time passes.

The concept of calendar defined here subsumes

commonly used calendars such as the Gregorian cal-

endar, the Hebrew calendar, and the Lunar calendar,

though the given definition is much more general. This

usage is consistent with the conventional English

meaning of the word.

Dershowitz and Reingold’s book presents complete

algorithms for fourteen prominent calendars: the pres-

ent civil calendar (Gregorian), the recent ISO commer-

cial calendar, the old civil calendar (Julian), the Coptic

an Ethiopic calendars, the Islamic (Muslim) calendar,

the modern Persian (solar) calendar, the Bahá’ı́ calendar,

the Hebrew (Jewish) calendar, the Mayan calendars, the

French Revolutionary calendar, the Chinese calendar,

and both the old (mean) and new (true) Hindu (Indian)

calendars. One could also envision more specific calen-

dars, such as an academic calendar particular to a school,

or a fiscal calendar particular to a company.

Cross-references
▶Calendric System

▶ SQL

▶Temporal Database

Recommended Reading
1. Bettini C., Dyreson C.E., Evans W.S., Snodgrass R.T., and

Wang X.S. A Glossary of Time Granularity Concepts. In

Temporal Databases: Research and Practice, O. Etzion, S.

Jajodia, S. Sripada (eds.). LNCS, vol. 1399, Springer, Berlin,

pp. 406–413, 1998.

Cardinal Direction Relationships C 305

C

2. Dershowitz N. and Reingold E.M. Calendrical Calculations,

Cambridge, 1977.

3. Jensen C.S. and Dyreson C.E. (eds.). Böhlen M., Clifford J.,

Elmasri R., Gadia S.K., Grandi F., Hayes P., Jajodia S.,

Käfer W., Kline N., Lorentzos N., Mitsopoulos Y., Montanari

A., Nonen D., Peressi E., Pernici B., Roddick J.F., Sarda N.L.,

Scalas M.R., Segev A., Snodgrass R.T., Soo M.D., Tansel A.,

Tiberio R. and Wiederhold G. A Consensus Glossary of Tempo-

ral Database Concepts – February 1998 Version. In Temporal

Databases: Research and Practice, O. Etzion, S. Jajodia, S. Sripada

(eds.). LNCS, vol. 1399, Springer, Berlin, 1998, pp. 367–405.

4. Urgun B., Dyreson C.E., Snodgrass R.T., Miller J.K., Kline N.,

Soo M.D., and Jensen C.S. Integrating Multiple Calendars using

tZaman. Software Pract. Exper., 37(3):267–308, 2007.
Calendric System

CURTIS E. DYRESON
1, CHRISTIAN S. JENSEN

2,

RICHARD SNODGRASS
3

1Utah State University, Logan, UT, USA
2Aalborg University, Aalborg, Denmark
3University of Arizona, Tucson, AZ, USA

Definition
A calendric system is a collection of calendars. The

calendars in a calendric system are defined over

contiguous and non-overlapping intervals of an under-

lying time-line. Calendric systems define the human

interpretation of time for a particular locale as differ-

ent calendars may be employed during different

intervals.

Key Points
A calendric system is the abstraction of time available at

the conceptual and logical (query language) levels. As

an example, a Russian calendric system could be con-

structed by considering the sequence of six different

calendars used in that region of the world. In prehistor-

ic epochs, the Geologic calendar and Carbon-14 dating

(another form of calendar) are used to measure time.

Later, during the Roman empire, the lunar calendar

developed by the Roman republic was used. Pope

Julius, in the first century B.C., introduced a solar calen-

dar, the Julian calendar. This calendar was in use until

the 1917 Bolshevik revolution when the Gregorian

calendar, first introduced by Pope Gregory XIII in

1572, was adopted. In 1929, the Soviets introduced

a continuous schedule work week based on 4 days of

work followed by 1 day of rest, in an attempt to break

tradition with the 7-day week. This new calendar, the

Communist calendar, had the failing that only eighty
percent of the work force was active on any day, and

it was abandoned after only 2 years in favor of the

Gregorian calendar, which is still in use today.

The term ‘‘calendric system’’ has been used to de-

scribe the calculation of events within a single calendar.

However, the given definition generalizes that usage to

multiple calendars in a very natural way.

Cross-references
▶Calendar

▶Temporal Database

▶Time Interval

Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). Böhlen M., Clifford J.,

Elmasri R., Gadia S.K., Grandi F., Hayes P., Jajodia S., Käfer W.,

Kline N., Lorentzos N., Mitsopoulos Y., Montanari A., Nonen D.,

Peressi E., Pernici B., Roddick J.F., Sarda N.L., Scalas M.R.,

Segev A., Snodgrass R.T., Soo M.D., Tansel A., Tiberio R. and

Wiederhold G., A Consensus Glossary of Temporal Database

Concepts – February 1998 Version. In Temporal Databases:

Research and Practice, O. Etzion, S. Jajodia, S. Sripada (eds.).

LNCS, vol. 1399, Springer, Berlin, 1998, pp. 367–405.
Camera Break Detection

▶Video Shot Detection
Capsule

▶ Snippet
Cardinal Direction Relationships

SPIROS SKIADOPOULOS

University of Peloponnese, Tripoli, Greece

Synonyms
Orientation relationships; Directional relationships

Definition
Cardinal direction relationships are qualitative spatial

relations that describe how an object is placed relative

to other objects utilizing a co-ordinate system. This

knowledge is expressed using symbolic (qualitative)

and not numerical (quantitative) methods. For in-

stance, north and southeast are cardinal direction rela-

tionships. Such relationships are used to describe and

306C Cardinal Direction Relationships
constrain the relative positions of objects and can be

used to pose queries such as ‘‘Find all objects a, b and c

such that a is north of b and b is southeast of c’’.

Historical Background
Qualitative spatial relationships (QSR) approach com-

mon sense knowledge and reasoning about space using

symbolic rather than numerical methods [5]. QSR has

found applications in many diverse scientific areas

such as geographic information systems, artificial in-

telligence, databases, and multimedia. Most re-

searchers in QSR have concentrated on the three

main aspects of space, namely topology, distance and

direction. The uttermost aim in these lines of research

is to define new and more expressive categories of

spatial operators, as well as to build efficient algo-

rithms for the automatic processing of queries involv-

ing these operators.

Foundations
Several models capturing cardinal direction relation-

ships have been proposed in the literature. Typically, a

cardinal direction relationship is a binary relation that

describes how a primary object a is placed relative to a

reference object b utilizing a co-ordinate system (e.g.,

object a is north of object b). Early models for cardinal

direction relationships approximate an extended spa-

tial object by a representative point [3,6], e.g., objects

in Fig. 1 are approximated by their centroid. Typically,

such models partition the space around the reference

object b into a number of mutually exclusive areas. For

instance, the projection model partitions the space

using lines parallel to the axes (Fig. 1a) while the cone

model partitions the space using lines with an origin

angle f (Fig. 1b). Depending on the adopted model,

the relation between two objects may change. For

instance, consider Fig. 1c. According to the projection

model, a is northeast of b while according to the

cone model, a is north of b. Point based approxima-

tions may be crude [4], thus, later models more finely
Cardinal Direction Relationships. Figure 1. Projection-base
approximate an object using a representative area

(most commonly the minimum bounding box (The

minimum bounding box of an object a is the smallest

rectangle, aligned with the axis, that encloses a.)) and

express directions on these approximations [7,9]. Un-

fortunately, even with finer approximations, models

that approximate both the primary and the reference

object may give misleading directional relations when

objects are overlapping, intertwined, or horseshoe-

shaped [4].

Recently, more precise models for cardinal direc-

tion relationships have been proposed. Such models

define directions on the exact shape of the primary

object and only approximate the reference object

(using its minimum bounding box). The projection-

based directional relations (PDR) model is the first

model of this category [4,11,12]. The PDR model

partitions the plane around the reference object into

nine areas similarly to the projection model (Fig. 2a).

These areas correspond to the minimum bounding

box (B) and the eight cardinal directions. Intuitively,

the cardinal direction relationship is characterized by

the names of the reference areas occupied by the primary

object. For instance, in Fig. 2b, object a is partly NE and

partly E of object b. This is denoted by a NE:E b.

Similarly in Fig. 2c, a B:S:SW:W:NW:N:E:SE b holds.

In total, the PDR model identifies 511 (= 29 � 1)

relationships.

Clearly, the PDR model offers a more precise and

expressive model than previous approaches that approx-

imate objects using points or rectangles [4]. The PDR
model adopts a projection-based partition using lines

parallel to the axes (Fig. 2a). Typically, most people

find it more natural to organize the surrounding space

using lines with an origin angle similarly to the cone

model (Fig. 3a). This partition of space is adopted by

the cone-based directional relations (CDR) model. Sim-

ilarly to the PDRmodel, the CDRmodel uses the exact

shape of the primary object and only approximates the

reference object using its minimum bounding box
d and cone-based point models.

Cardinal Direction Relationships C 307

C

[14]. But, for the CDR model the space around the

reference object is partitioned into five areas (Fig. 3a).

The cardinal direction relationship is formed by the

areas that the primary object falls in. For instance, in

Fig. 3b, a is south of b. This is denoted by a S b.

Similarly in Fig. 3c, a B:W:N b holds. In total, the

CDR model identifies 31 (= 25 � 1) relationships.

In another line of research, cardinal direction rela-

tionships are modeled as ternary relationships [2].

Given three objects a, b and c, the ternary model

expresses the direction relation of the primary object

a with respect to a reference frame constructed by

objects b and c. Specifically, the convex-hull, the inter-

nal and the external tangents of objects b and c divide

the space into five areas as in Fig. 4a. These areas corre-

spond to the following directions: right-side (RS), before

(BF), left-side (LS), after (AF) and between (BT).

Similarly to PDR and CDR, the name of the areas that
Cardinal Direction Relationships. Figure 3. Extending the c

Cardinal Direction Relationships. Figure 4. Ternary cardina

Cardinal Direction Relationships. Figure 2. Extending the p
a falls into, determines the relation. For instance, in Fig.

4b, a is before and to the left-side of b and c. This is

denoted by LS:BF(a,b,c). Notice that, if the order of the

reference objects changes, the relationship also changes.

For instance, in Fig. 4b, RS:AF(a,c,b) also holds.

For all the above models of cardinal direction rela-

tionships, research has focused on four interesting

operators: (i) efficiently determining the relationships

that hold between a set of objects, (ii) calculating the

inverse of a relationship, (iii) computing the composi-

tion of two relationships and (iv) checking the consis-

tency of a set of relationships. These operators are used

as mechanisms that compute and infer cardinal direc-

tion relations. Such mechanisms are important as they

are in the heart of any system that retrieves collections

of objects similarly related to each other using spatial

relations. Table 1 summarizes current research on the

aforementioned problems.
one model.

l direction relationships.

rojection model.

Cardinal Direction Relationships. Table 1. Operations for cardinal direction relationships

Model Computation Inverse Composition Consistency

Point approximations [10] [6] [6] [6]

Rectangle approximations [9] [9] [9] [9]

PDR [13] [1] [11] [8, 12]

CDR Open problem [14] [14] Open problem

Ternary [2] [2] Open problem Open problem

308C Cartesian Product
Key Applications
Cardinal direction relationships intuitively describe

the relative position of objects and can be used to

constrain and query spatial configurations. This infor-

mation is very useful in several applications like geo-

graphic information systems, spatial databases, spatial

arrangement and planning, etc.
Future Directions
There are several open and important problems

concerning cardinal direction relations. For the models

discussed in the previous section, as presented in Table 1,

there are four operators that have not been studied

(two for the CDR and two for the ternary model).

Another open issue is the integration of cardinal direc-

tion relationships with existing spatial query answer-

ing algorithms and data indexing structures (like the

R-tree). Finally, with respect to the modeling aspect,

even the most expressive cardinal direction relation-

ships models define directions by approximating the

reference objects. Currently, there is not a simple and

easy to use model that defines cardinal direction rela-

tionships on the exact shape of the involved objects.
Cross-references
▶Geographic Information System

▶ Spatial Operations and Map Operations

▶Topological Relationships
Recommended Reading
1. Cicerone S. and Di Felice P. Cardinal directions between spatial

objects: the pairwise-consistency problem. Inf. Sci., 164

(1–4):165–188, 2004.

2. Clementini E. and Billen R. Modeling and computing ternary

projective relations between regions. IEEE Trans. Knowl. Data

Eng., 18(6):799–814, 2006.

3. Freksa C. Using orientation information for qualitative spatial

reasoning. In Proceedings of COSIT’92, LNCS, vol. 639, 1992,

pp. 162–178.
4. Goyal R. Similarity Assessment for Cardinal Directions Between

Extended Spatial Objects. PhD Thesis, Department of Spatial

Information Science and Engineering, University of Maine,

April 2000.

5. Hernández D. Qualitative Representation of Spatial Knowledge,

LNCS, vol. 804. Springer, Berlin, 1994.

6. Ligozat G. Reasoning about cardinal directions. J. Visual Lang.

Comput., 9:23–44, 1998.

7. Mukerjee A. and Joe G. A qualitative model for space. In Proc.

7th National Conf. on AI, 1990, pp. 721–727.

8. Navarrete I., Morales A., and Sciavicco G. Consistency checking

of basic cardinal constraints over connected regions. In Proc.

20th Int. Joint Conf. on AI, 2007, pp. 495–500.

9. Papadias D. Relation-based representation of spatial knowledge.

PhD Thesis, Department of Electrical and Computer Engineer-

ing, National Technical University of Athens, 1994.

10. Peuquet D.J. and Ci-Xiang Z. An algorithm to determine the

directional relationship between arbitrarily-shaped polygons in

the plane. Pattern Recognit, 20(1):65–74, 1987.

11. Skiadopoulos S. and Koubarakis M. Composing cardinal direc-

tion relations. Artif. Intell., 152(2):143–171, 2004.

12. Skiadopoulos S. and Koubarakis M. On the consistency of car-

dinal directions constraints. Artif. Intell., 163(1):91–135, 2005.

13. Skiadopoulos S., Giannoukos C., Sarkas N., Vassiliadis P.,

Sellis T., and Koubarakis M. Computing and managing cardi-

nal direction relations. IEEE Trans. Knowl. Data Eng., 17

(12):1610–1623, 2005.

14. Skiadopoulos S., Sarkas N., Sellis T., and Koubarakis M. A family

of directional relation models for extended objects. IEEE Trans.

Knowl. Data Eng., 19(8):1116–1130, 2007.
Cartesian Product

CRISTINA SIRANGELO

University of Edinburgh, Edinburgh, UK

Synonyms
Cross product

Definition
Given two relation instances R1, over set of attributes

U1, and R2, over set of attributes U2 – with U1 and U2

disjoint – the cartesian product R1 � R2 returns a new

Cataloging in Digital Libraries C 309

C

relation, over set of attributes U1 [U2, consisting of

tuples {tjt(U1) 2 R1 and t(U2) 2 R2}. Here t(U) denotes

the restriction of the tuple t to attributes in the set U.

Key Points
The cartesian product is an operator of the relational

algebra which extends to relations the usual notion of

cartesian product of sets.

Since the sets of attributes of the input relations are

disjoint, in R1 � R2 each tuple of R1 is combined with

each tuple of R2; moreover the arity of the output

relation is the sum of the arities of R1 and R2.

As an example, consider a relation Students over

attributes (student-number, student-name), containing

tuples {(1001, Black), (1002, White)}, and a relation

Courses over attributes (course-number, course-name),

containing tuples {(EH1, Databases), (GH5, Logic)}.

Then Students � Courses is a relation over attributes

(student-number, student-name, course-number, course-

name) containing tuples (1001, Black, EH1,Databases),

(1001, Black, GH5, Logic), (1002, White, EH1, Data-

bases), (1002, White, GH5, Logic).

The cartesian product can also be viewed as a

special case of natural join, arising when the set of

attributes of the operands are disjoint. However, rela-

tions over non-disjoint sets of attributes can also be

combined by the cartesian product, provided that the

renaming operator is used to rename common attri-

butes in one of the two relations.

In the presence of attribute names, the cartesian

product is commutative. In the case that relation

schemas do not come with attribute names, but are

specified by a relation name and arity, the cartesian

product R1 � R2 returns the concatenation t1t2 of all

pairs of tuples such that t1 2 R1 and t2 2 R2. Moreover

the output schema is specified by the sum of the arities

of the input schemas. In this case the cartesian product

is a non-commutative operator.

Cross-references
▶ Join

▶Relation

▶Relational Algebra

▶Renaming
Cartography

▶Visual Interfaces for Geographic Data
CAS

▶ Storage Security
CAS Query

▶Content-and-Structure Query
Case Handling

▶Business Process Management
Case Management

▶Workflow Management
Case Report Forms

▶Clinical Data Acquisition, Storage and Management
Cataloging

▶Cataloging in Digital Libraries
Cataloging in Digital Libraries

MARY LYNETTE LARSGAARD

University of California-Santa Barbara, Santa Barbara,

CA, USA

Synonyms
Cataloging; Classification

Definition
Cataloging is using standard rules to create a mainly

text surrogate that describes an object sufficiently in

detail so that the object is uniquely differentiated from

all other objects. Without looking at the object, a user

may know enough about the object to know if it suits

310C Cataloging in Digital Libraries
the user’s needs. It is generally considered to include

bibliographic description, and the application of sub-

jects, both as words and as classification.

Historical Background
Devising and using methods of arranging and describ-

ing information – respectively termed, within the stan-

dard library world, classification and cataloging – have

been primary concerns of libraries ever since libraries

began, in the ancient world of the Greeks and the

Romans. A collection of information without classifica-

tion and cataloging is not a library. The whole point of

classification and cataloging is to make access quick and

easy for users; it was discovered very early that putting

like objects together (classification) and creating text or

relatively speaking much smaller surrogates to describe

an information object (cataloging) made finding infor-

mation much quicker for the user.

Experiments in using digital records in libraries

started in approximately the late 1960s. But it was

only in the mid-1970s, with the success of what is

called ‘‘shared cataloging’’ – many libraries using a

catalog record contributed as ‘‘original cataloging’’ by

the first library to catalog the item – that using digital

systems for cataloging came into its own. This sharing

of bibliographic records in online form began with

OCLC, initially as a consortium of college libraries in

Ohio (starting in 1967), but growing rapidly to become

the most successful such library utility, currently with

about 60,000 participating libraries in 112 countries and

territories (http://www.oclc.org). The development of

integrated library systems (ILS) or library management

systems (LMS) – software, or a combination of software

and hardware, that permits a library to performmultiple

functions, such as acquisitions/ordering, cataloging and

classification, circulation, preservation, and reference,

using digital files in large databases with many tables –

has continued to the present in the ‘‘Library of Congress

Authorities’’ online authority system, http://authorities.

loc.gov).

The inception and speedy growth of the

World Wide Web (Web) since the mid-1990s has

spread this interest in arrangement and description

of, and access to, information objects to non-library

communities, and within the library world to how

specifically to arrange and describe digital objects

made available over the Web in digital libraries.

There have been many standards for the description

of information objects. They are most often inten-

ded either to apply at least in theory to all materials
(e.g., Anglo-American Cataloging Rules, hereafter

referred to as AACR; Dublin Core, which began in

1995, http://www.dublincore.org/documents/dces/) or

to apply to the description of a specific body of infor-

mation (e.g., for digital geospatial data, ‘‘Content Stan-

dard for Digital Geospatial Metadata’’; 2nd edition,

1998, http://www.fgdc.gov/standards/projects/FGDC-

standards-projects/metadata/base-metadata/v2_0698.

pdf and ISO Standard 19115, ‘‘Geographic Informa-

tion, metadata; Information géographique, métadon-

nées,’’ 2003).

Foundations

Classification

Classification and cataloging complement each other.

Classification is a form of subject cataloging, which is

where the major overlap between the two occurs. Classi-

fication tends to be hierarchical, breaking a given

world of information or knowledge into broad divisions

(e.g., Law) and then breaking that into smaller divisions

(e.g., education for law; law of various countries; etc.).

Classification is most often placing like items about

like subjects (e.g., works by Shakespeare) and like genres

or formats (e.g., maps) together. It also provides a physi-

cal locationwithin a library for each object, be it digital or

hardcopy. The most prominent systems used are the

Dewey Decimal Classification (often used by public

libraries and smaller libraries generally), and the Library

of Congress Classification (most often used by university

and other research libraries in the United States). There

are many more systems, such as the Bliss Classification

and the Colon Classification, and special and research

libraries (such as theNewYork Public Library) devise and

maintain their own systems. Devising a classification

system is easy, but maintaining it is very difficult and

time-consuming. Often a library maintaining a classifi-

cation system unique to itself will find that it is far less

work to convert to a rigorously maintained system that

is used by many libraries than it is to maintain a unique

system not used by any other collections.

Classification of digital objects at first glance seems

unnecessary. Why not just assign an arbitrary number

(e.g., a unique identifier that database software assigns

to each separate catalog record) and be done with it?

Libraries of digital objects have found that, for several

reasons, it is very practical to assign classification to

digital objects just as one would to hard-copy objects.

The main one is that very often one needs to move

around, or to perform the same operation (e.g., create

Cataloging in Digital Libraries C 311

C

distribution forms) on large numbers of digital objects

in groups of items that are, e.g., the same file type. For

example, the Alexandria Digital Library (ADL), a col-

lection of digital geospatial data, with a catalog that

includes catalog records both for digital and hard-copy

geospatial data (http://webclient.alexandria.ucsb.edu),

always gives a digital geospatial data object (e.g., a scan

of a paper map; a born-digital object) the same classi-

fication number as the hardcopy geospatial data equiv-

alent (e.g., the paper map that has been scanned).

Classification of digital objects allows one file to be

accessible from multiple classification numbers, an

action that few libraries of hardcopy items have ever

been able to afford. For example, a digital map of

California and Nevada may have two classification

numbers (either pointing toward one file, or storing

the same file two separate places), one for California

and one for Nevada. Few libraries of hardcopy items

have financial resources available to buy multiple cop-

ies of an item and store a copy at each applicable

classification number.

Cataloging

A catalog record (whether in hardcopy or in digital

form) provides information on the thematic and phys-

ical nature of an item (whether hard-copy or digital)

being cataloged. Libraries first used hard-copy cata-

logs, generally book-format catalogs, then cards, and

then beginning in the late 1960s the use of databases as

catalogs. This started with in 1969 the Library of Con-

gress’ MARC, MAchine-Readable Catalog format for

the transmission of catalog-card information in digital

form (http://www.loc.gov/marc/). While MARC may

be used as the machine format for bibliographic

records formulated using any set of cataloging rules,

it is most often used for records based on the catalo-

ging rules of the Anglo-American library community,

AACR (Anglo-American Cataloging Rules) in its vari-

ous editions, first issued in 1967. AACR itself is based

on the International Standard Bibliographic Descrip-

tions (ISBDs) as far as content of fields, and field order,

are concerned.

The purpose of ISBDs is to standardize the form

and content – including in what order information

appears – for the bibliographic description of an

object. ISBDs specifically do not include rules for fields

for subject cataloging, added entries for additional

authors, or classification. The idea of ISBDs arose at a

conference of the International Meeting of Catalog-

ing Experts held in 1969, with the first ISBD (for
monographic publications) being issued in 1971.

ISBDs were issued for numerous categories of publicati-

ons (e.g., computer files; cartographic materials; serials;

etc.; for full list, see http://www.ifla.org/VI/3/nd1/isbd-

list.htm). In 2002, work began on a single consolidated

ISBD, to supersede all existing ISBDs. The consolidated

edition (available online at http://www.ifla.org/VII/s13/

pubs/cat-isbd.htm) was published in 2007 (Internation-

al standard bibliographic description (ISBD), 2007).

The same organization that issues ISBDS – the

International Federation of Library Associations

(IFLA) – has been a prime agent in the move toward

an international cataloging standard. In the early

1990s, IFLA’s Study Group on the Functional Require-

ments for Bibliographic Records (FRBR) began work

on its report to recommend basic functionalities of a

catalog and bibliographic-record data requirements.

The Group’s final report was issued in 1998 (Function-

al Requirements for Bibliographic Records (FRBR)).

While FRBR put forward several ideas, the one that

most engaged the interest and discussion of the library

community was the importance of incorporating into

the bibliographic description the concept of the rela-

tionship between the work, the expression, the mani-

festation, and the item (called Group 1 Entities).

A work is a distinct intellectual or artistic creation but

a concept rather than an actual physical object. An

expression is the intellectual or artistic realization of a

work but still not generally an actual physical object.

The manifestation is all copies of a published object

(e.g., all copies of a printed map; all copies of a DVD of

a specific piece of music), and the item is one copy of a

manifestation. For example, all digital versions of one

given map (one could be raster and the other could be

vector; there could be more than one level of resolution

of raster and of vector images), and all hard-copy ver-

sions of the same map (e.g., paper; microfiche; micro-

film) are two expressions’ the basic map itself is the

work and the 1973 edition of all copies of the papermap

is a specific manifestation, with each one of those

printed maps being an item.
Key Applications
Key applications of classification and cataloging:

Classification: Arrangement of digital objects in digital

libraries. See previous section

Cataloging: Creation of metadata for digital objects in

digital libraries

312C Cataloging in Digital Libraries
While full-text searching is extremely useful and a

major step forward in the history of information retriev-

al, it does have the following main problems: it may give

the user very large numbers of hits; it is not as efficient

as searching well-constructed text surrogates; and it

does not work for what are primarily non-text materials

(e.g., music; maps; etc.). The reason for creating meta-

data records for digital objects is the same as that for

performing standard cataloging – constructing a surro-

gate for the item so that users may quickly and efficiently

find resources that suit the users’ needs. Metadata is

constructed by non-library entities (e.g., federal govern-

ment agencies) and by libraries. Metadata records in-

clude but are not limited to the information contained

in what the standard library cataloging world terms

‘‘bibliographic records.’’

Metadata records tend to be considerably longer

than catalog records, because they contain far more

and generally more detailed technical information than

a catalog record would. The latter is muchmore likely to

simply include a URL that points to an online version of

that technical information, quite possibly to a metadata

record. The reasons for this are that metadata records

tend to be constructed for very focused, often technically

skilled audiences, and a geographic digital dataset (such

as a geographic information system, more commonly

known as a GIS) is often quite large and complicated,

with many layers of information, and therefore is by

no means as easily browsed – in order to determine

its suitability for use – as is a hard-copy map. For

example, the catalog record for Digital Orthophoto

Quarter Quadrangles (DOQQs; mosaics of rectified aeri-

al photographs) is relatively brief – about one standard

printed page –when comparedwith themetadata record

for DOQQs, which is seven pages. For example, see

http://fisher.lib.virginia.edu/collections/gis/doq/helps/

doqq_meta.html (Fig. 1).

A library generating metadata records has two

major options: load the records into the library’s

ILS (integrated library system) online catalog; or

create what is in effect another ILS, or at the very least

an online catalog for the metadata records. The first

technique generally requires that the records be in

MARC format, since the alternative is that the online-

catalog software must be capable of searching over

multiple catalog-record databases in different formats.

For the second technique, the following is required:

software (UNIX; a database manager; a user interface;

and middleware to connect inquiries on the user inter-

face with the data and return results); hardware;
computer technical staff/programmers (for a digital

library of any size, a minimum of three computer

programmers to deal with adding new data and meta-

data and maintaining and improving the system, in-

cluding the interface, plus one more programmer

to deal with the operating system, disk storage, and

manipulation and maintenance of the directories of

digital material).

An example of this is the ADL (Alexandria Digital

Library) Catalog, http://webclient.alexandria.ucsb.edu.

The ADL webpage (http://www.alexandria.ucsb.edu)

provides an outline as to what kind and how much

work is required to start up, develop, and maintain

such a library; software is free for download, and

general instructions are given as to what work should

be done in order to get the software working.

As previously indicated, there are numerous meta-

data standards. The following are major standards that

digital libraries creating metadata records will probably

need to deal with, at least in the United States: Dublin

Core; XML; METS; and MODS.

Dublin Core

Dublin Core (DC) (http://dublincore.org/) is extremely

heavily used by libraries cataloging digital content. Its

adaptability to any form or type of digital data and its

brevity (15 fields, what libraries term minimal-level cat-

aloging) with no fields required and all fields repeatable,

makes it very flexible. While DC may be used either as

‘‘qualified’’ (each of the 15 elements may be qualified in

some way tomake the information clear, e.g., for Cover-

age, one might state that the geographic area is given in

decimal degrees), the experience in libraries over the

nearly 15 years since DC was made available for use is

that it is strongly advised only qualifiedDCbe used. This

is because unqualified DC results in metadata records

that are so unstructured as to be nearly useless [12]. For

digital libraries needing keep at least one foot solidly in

the traditional library world, there is a DC-to-MARC2

crosswalk at http://www.loc.gov/marc/dccross.html, and

also one the other direction.

XML

XML has achieved primacy as the format of choice

for metadata for digital libraries and is of consider-

able importance to the standard library world, as

evidenced by the Library of Congress having

MARC21 in XML available over the Web at http://www.

loc.gov/standards/marcxml/Sandburg/sandburg.xml.

It was announced in April 2005 that the ISO

Cataloging in Digital Libraries. Figure 1. Record from a library online catalog.

Cataloging in Digital Libraries C 313

C

committee for Technical Interoperability – Informa-

tion and Documentation was to vote on a proposal

for a New Work Item concerning an XML schema to

wrap MARC records. ISO 2709 had been used for

many years and has worked well, but the library

community needed a standard exclusively for MARC

records (of which there are over 100 million worldw

ide) in XML. The standard is to be published as ISO
25577 with the short name of MarcXchange; the

temporary Webpage for the standard is http://www.

bs.dk/marcxchange/.
METS and MODS

METS (Metadata Encoding and Transmission Standard)

is a standard for encoding descriptive, administrative,

314C Cataloging in Digital Libraries
and structural metadata of objects in a digital library

(http://www.loc.gov/standards/mets/).

The ‘‘Metadata Object Description Schema’’

(MODS) is intended both to carry metadata from

existing MARC21 records, and to be used to create

new catalog records. It has a subset of MARC fields,

and – unlike MARC21. It uses language-based tags

rather than numeric tags. It occasionally regroups ele-

ments from the MARC21 bibliographic format (http://

www.loc.gov/standards/mods/). METS and MODS are

both expressed using XML, and are maintained by the

Library of Congress’s Network Development and

MARC Standards Office.

Conclusion

Organizations creating metadata records and arran-

ging digital files are best advised to follow well-

maintained national or international standards. In no

case should organizations just starting out on this work

create their own standards. Instead, use of sturdy stan-

dards – some of which have an extensions feature, to

enable customization of the records to the library

users’ needs – is recommended.

Creating metadata records is relatively easy com-

pared with the difficult and expensive work of setting

up what is in effect an ILS online catalog. Libraries need

to consider this very carefully. If the library cannot

sustain the programming effort required to develop

and then to maintain and add to the catalog, then the

library should not begin the project. If anything, digital

libraries and their catalogs are, at the moment, at least

as expensive and time-consuming to develop and

maintain as are hard-copy libraries.

Cross-references
▶Annotation

▶Audio Metadata

▶Biomedical Data/Content Acquisitions

▶Biomedical Metadata Management and Resource

Discovery

▶Browsing in Digital Libraries

▶Classification by Association Rule Analysis

▶Classification on Streams

▶Clinical Data/Content Acquisition

▶Cross-Modal Information Retrieval

▶Curation

▶Data Warehouse Metadata

▶Digital Libraries

▶Discovery
▶Dublin Core (DC)

▶ Field Based Information Retrieval Models

▶Geographic Information Retrieval

▶ Image Metadata

▶ Indexing Historical Spatio-Temporal Data

▶ Information Retrieval

▶ Information Retrieval Model

▶ ISO/IEC 11179

▶Knowledge Discovery Metamodel

▶Metadata

▶Metadata Interchange Specification(MDIS)

▶Metadata Registry

▶Metadata Repository

▶Metasearch Engines

▶METS

▶Multimedia Metadata

▶Ontologies

▶Ontology

▶ Schema Mapping

▶ Searching Digital Libraries

▶Text Indexing and Retrieval

▶XML

▶XML Metadata Interchange

Recommended Reading
1. Anglo-American Cataloging Rules, American Library Associa-

tion, Chicago, 2005.

2. Borgman C.L. From Gutenberg to the Global Information

Infrastructure: Access to Information in the Networked World.

MIT Press, Cambridge, MA, 2000.

3. Chan L.M. Cataloging and Classification: An Introduction.

Scarecrow Press, Blue Ridge Summit, PA, 2007.

4. IFLA Study Group. Functional Requirements for Bibliographic

Records (FRBR). K.G. Saur, Munchen, 1998, (UBCIM publica-

tions, new series; vol. 19). Available online at: http://www.ifla.

org/VII/s13/frbr/frbr.htm.

5. IFLA Study Group. International Standard Bibliographic

Description (ISBD), (Preliminary consolidated edn.). K.G.

Saur, München, 2007 (IFLA series on bibliographic control;

vol. 31).

6. Kochtanek T.R. Library Information Systems, From Library

Automation to Distributed Information Access Solutions.

Libraries Unlimited, Westport, CT, 2002.

7. Libraries. Encyclopedia Britannica, Micropedia 7:333–334;

Macropedia 22:947–963. Encyclopedia Britannica, Chicago,

2002. Available online at: http://search.eb.com/.

8. Library of Congress. 1969?MARC21Concise Bibliographic, Library

of Congress, Washington, DC. Available online at http://www.loc.

gov/marc/.

9. Linton J. Beyond Schemas, Planning Your XMLModel. O’Reilly,

Sebastopol, CA, 2007.

10. Reitz J.M. Dictionary for Library and Information Science.

Libraries Unlimited, Westport, CT, 2004.

Certain (and Possible) Answers C 315

C

11. Svenonius E. The Intellectual Foundation of Information Orga-

nization. MIT Press, Cambridge, MA, 2000.

12. Tennant R. Bitter Harvest: Problems and Suggested Solutions

for OAI-PMH Data and Service Providers. California Digital

Library, Oakland, CA, 2004. Available online at:http://www.

cdlib.org/inside/projects/harvesting/bitter_harvest.html.
CDA

▶Clinical Document Architecture
CDA R1

▶Clinical Document Architecture
CDA R2

▶Clinical Document Architecture
CDP

▶Continuous Data Protection
CDs

▶ Storage Devices
CDS

▶Clinical Decision Support
Cell Complex

▶ Simplicial Complex
Certain (and Possible) Answers

GÖSTA GRAHNE

Concordia University, Montreal, QC, Canada

Synonyms
True answer (Maybe answer); Validity (Satisfiability)
Definition
Let T be a finite theory expressed in a language L, and

f an L-sentence. Then T finitely entails f, in notation

T ⊨ f, if all finite models of T also are models of f. A
theory T is said to be complete in the finite if for each

L-sentence f either T ⊨ f or T ⊨ :f. In particular, if

T is incomplete (not complete in the finite), then there

is an L-sentence f, such that T ⊭ f and T ⊭ :f. It
follows from classical logic that a first order theory is

complete in the finite if and only if all its finite models

are isomorphic. Consider now a theory

T 1 ¼
Rða; bÞ ^ Rða; cÞ;

8x; y : Rðx; yÞ ! ðx; yÞ ¼ ða; bÞ _ ða; cÞ;

a 6¼ b; a 6¼ c; b 6¼ c:

8><
>:

where a, b, and c are constants. This theory is complete,

and clearly for instance T ⊨ R(a, b), T ⊨ R(a, c), and

T ⊭ R(d, c), for all constants d different from a and b.

Consider then the theory

T 2 ¼
Rða; bÞ _ Rða; cÞ;

8x; y : Rðx; yÞ ! ðx; yÞ ¼ ða; bÞ _ ða; cÞ;

a 6¼ b; a 6¼ c; b 6¼ c:

8><
>:

This theory is incomplete, since for instanceT2 ⊭ R(a, b),

and T2 ⊭ :R(a, b). If ‘‘finitely entails’’ is equated with

‘‘certainly holds,’’ it is possible to say that R(a, b) and

R(a, c) certainly hold in T1. Dually, it is possible to say

that R(a, b) possibly holds in T2, since T2 ⊭ :R(a, b),
and similarly that R(a, c) possibly holds in T2.
Key Points
An incomplete database is similar to a logical theory: it

is defined using a finite specification, usually a table T

(relation with nulls and conditions) of some sort, and a

function Rep that associates a set of complete (ordi-

nary, finite) databases Rep(T) with T. Then each in-

stance I 2 Rep(T) represents one isomorphism class

(isomorphism up to renaming of the constants) of the

finite models of the table T regarded as a logical theory.

Depending on the interpretation of facts missing from

T, either the closed world assumption is made [9],

which postulates or axiomatizes (as in the middle

‘‘row’’ in T1 and T2) that any facts not deducible

from T are false, or the open world assumption (omit

the middle rows), in which there are certain and possi-

ble facts, but no false ones. There is actually a spectrum

316C Certain (and Possible) Answers
of closed world assumptions, ranging up to semantics

best axiomatized in third order logic [4].

Having settled on a representationT, and an interpre-

tation Rep, the certain answer to a queryQ on an incom-

plete database T, is now defined as
T

I2Rep(T)Q(I),

sometimes also denoted
T

Q(Rep(T)). In database

parlance the certain answer consists of those facts that

are true in every possible database instance I that T

represents. Likewise, the possible answer to a query

Q on an incomplete database T, consists of those

facts which are true in some possible database, i.e.,S
I2Rep(T)Q(I). Needless to say, the possible answerS
Q(Rep(T)) is interesting only under a closed world

assumption, since otherwise every fact is possible.

These definitions are clear and crisp, but unfortu-

nately it doesn’t mean that they always have tractable

computational properties. Consider the membership

problem for the set

CERTðQÞ ¼ fðt ;TÞ : t 2
\

QðRepðTÞÞg:

If T actually is a complete instance I, it is well known

that CERT(Q) has polynomial time complexity, for any

first order (relational algebra) or datalog query Q.

Likewise, the set

POSSðQÞ ¼ fðt ;TÞ : t 2
[

QðRepðTÞÞ:

has PTIME complexity for first order and datalog

queries Q, and tables T that actually are complete

databases.

A table Twith unmarked nulls is a classical instance

containing existentially quantified variables (nulls),

such that each existential quantifier has only one vari-

able in its scope. This means that each occurrence of a

null can be independently substituted by a constant for

obtaining one possible database in Rep(T).

If only simple incomplete databases with un-

marked nulls are allowed, only existential first order

queries Q need to be admitted, or alternatively alge-

braic expressions with operators from {p, s, [, ⋈},

in order for CERT(Q) to become coNP-complete, and

POSS(Q) to become NP-complete [2]. The use of

inequalities 6¼ or disjunctions ∨ in Q is essential. If

the use of inequalities and disjunctions is denied, CERT

(Q) and POSS(Q) remain in PTIME. If one admits

arbitrary first order or full relational queries Q, along

with an open world assumption, CERT(Q) and POSS(Q)

become undecidable. This follows from validity and

satisfiability of a variant of first order logic known to
be undecidable [3]. (Note that under the open world

assumption POSS(Q) equals all possible databases, as-

suming POSS(Q) 6¼ ;. The problem then becomes to

decide whether POSS(Q) is non-empty or not.)

On the other hand, if the representation mecha-

nism allowed for T is more powerful that the simple

incomplete databases above, CERT(Q) and POSS(Q)

again become coNP and NP complete, respectively,

already with Q being the identity query. For this, the

conditional tables of [6] are needed. As observed in [5],

conditional tables can be obtained as a closure of

simple incomplete databases by requiring that the

exact result {q(I) : I 2 Rep(T)} of any relational algebra

query on a any table T is representable by conditional

table. In other words, for each T conditional table and

Q relational algebra query, there exists a conditional

table U, such that Rep(U) = Q(Rep(T)).

Another way of representing incomplete data-

bases, is to consider an information integration scenar-

io, where the basic facts are stored in views of a

virtual global schema. For instance, in the integration

scenario

T 3 ¼

V ðaÞ;
8x; y : Rðx; yÞ ! V ðxÞ;
8x : V ðxÞ ! x ¼ a;
8x; y : Rðx; yÞ ! x ¼ a

8>><
>>:

gives (closed world) Rep(T3) = {I : VI = p1(R
I) ={(a)}}.

(RI means the value (interpretation) of predicate sym-

bol R in instance/model I. The meaning of VI is simi-

lar.) Open world (omit in T3 the third and fourth rows)

Rep(T3) would be defined as {I : VI � {(a)}, p1(R
I) �

{(a)}. If T is allowed to use conjunctive queries (such as

the second row of T3) to express the views V in terms of

the global relations R, then CERT(Q) is in PTIME for

existential first order and datalog queries under the

open world assumption, and coNP complete under

the closed world assumption [1]. The latter is due to

the negation implicit in the closed world assumption.

If one allows inequalities 6¼ in the query, CERT(Q) is

coNP complete also under the open world assumption.

Undecidability of CERT(Q) is achieved by allowing ne-

gation in the query or the view definitions, or, under

the open world assumption by allowing view defini-

tions in (recursive) datalog.

Finally, one can see the data exchange problem [7,8]

as a variation of the integration problem. The data

exchange problem consists of importing the data

from a source database Rs to a target database Rt,

Change Detection on Streams C 317

C

using data dependencies (implicational sentences)

to express the translation. For example, a (closed

world) exchange scenario could be

T 4 ¼ RsðaÞ; 8x : ½RsðxÞ $ 9y : Rtðx; yÞ�:f

The base facts are in a source database Rs, and the user

query is expressed against the target database Rt. As T4

obviously is incomplete, the certain answer of Q on T4

is defined as \Q(Rep(T4), and the possible answer as

[Q(Rep(T4). It is perhaps no big surprise that essen-

tially the same complexity landscape for CERT(Q) and

POSS(Q) as in the previous table- and integration-

scenarios emerges: the boundaries between undecid-

ability, intractability, and polynomial time depend on

similar restrictions on the use of negation, of inequal-

ities or unions in the exchange mappings, and on the

open or closed world assumptions.
Cross-references
▶Conditional Tables

▶ Incomplete Information

▶Naive Tables

▶Null Values
Recommended Reading
1. Abiteboul S. and Duschka O.M. Complexity of answering

queries using materialized views. In Proc. 17th ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems,

1998, pp. 254–263.

2. Abiteboul S., Kanellakis P.C., and Grahne G. On the representa-

tion and querying of sets of possible worlds. Theor. Comput.

Sci., 78(1):158–187, 1991.

3. Di Paola R.A. The recursive unsolvability of the decision prob-

lem for the class of definite formulas. J. ACM, 16(2):324–327,

1969.

4. Eiter T., Gottlob G., Gurevich Y. Curb your theory! a circum-

spective approach for inclusive interpretation of disjunctive

information. In Proc. 13th Int. Joint Conf. on AI, 1993,

pp. 634–639.

5. Green T.J. and Tannen V. Models for incomplete and pro-

babilistic information. In Proc. EDBT 2006 workshops LNCS

Vol. 4251, 2006.

6. Imielinski T. and Lipski W. Incomplete information in relational

databases. J. ACM, 31(4):761–791, 1984.

7. Kolaitis P.G. Schema mappings, data exchange, and metadata

management. In Proc. 24th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 2005, pp. 61–75.

8. Libkin L. Data exchange and incomplete information. In Proc.

25th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2006, pp. 60–69.

9. Reiter R. On closed world data bases. In Logic and Data Bases,

1977, pp. 55–76.
Chandra and Harel Complete Query
Languages

▶Complete query languages
Change Detection and Explanation
on Streams

▶Change Detection on Streams
Change Detection on Streams

DANIEL KIFER

Yahoo! Research, Santa Clara, CA, USA

Synonyms
Change detection and explanation on streams

Definition
A data stream is a (potentially infinite) sequence of

data items x1,x2,.... As opposed to traditional data

analysis, it is not assumed that the data items are

generated independently from the same probability

distribution. Thus change detection is an important

part of data stream mining. It consists of two tasks:

determining when there is a change in the character-

istics of the data stream (preferably as quickly as possi-

ble) and explaining what is the nature of the change.

The nature of the data stream model means that it

may be infeasible to store all of the data or to make

several passes over it. For this reason, change detection

algorithms should satisfy the following desiderata: the

memory requirements should be constant or increase

logarithmically, and the algorithm should require only

one pass over the data.

Historical Background
There has been a lot of work on detecting change in

time series data after all of the data has been collected.

Change point analysis [5] is a statistical field devoted

to detecting the point in time where the distribution of

the data has changed. The description of the change is

often concerned with how the parameters of the dis-

tributions (such as the mean) have changed. Scan

statistics [11] can be used to detect and describe

changes (not just along the time dimension) by

318C Change Detection on Streams
identifying regions where the probability mass has

changed the most. For examples of offline analysis of

change in terms of data mining models see [6] for

itemset mining, [10] for itemset mining and decision

trees, and [14] for burst detection. Offline algorithms

for describing change include [1] for hierarchical nu-

merical data and [7,8] for semi-structured data.

The offline methods are useful for data analysis,

but as data acquisition becomes easier and easier, the

data stream model becomes more and more relevant.

The assumptions behind this model are that there is

so much data that it cannot all be stored on disk

(let alone kept in memory) and that the data arrives at

such a rate that expensive online computations are

impractical. Often results are expected in real-time –

for example, notification of change should occur as

soon as possible. The data stream model is discussed in

detail in [2].

In the data streammodel, one can predefine a certain

set of stochastic processes. One of these processes is

initially active and the goal is to determine when a

different process in that set becomes active [3]. The

description of the change is then the identity of the

new process. Alternative approaches [9,13] avoid

making distributional assumptions by using ideas from

nonparametric statistics. In these approaches the main

idea is to divide the domain of the data into (possibly

overlapping) regions, estimate the probability of the

regions, and then determine whether the changes in

probability in any of the regions are statistically signifi-

cant. Alternate approaches for handling change include

testing if the data are exchangeable (i.e., any permutation

of the data is equally likely) [15] and developing data

mining algorithms (such as decision tree construction)

that adapt to change [12].

Foundations
Let x1,x2,..., be a potentially infinite sequence of data

points. To detect changes in the data stream, one first

has to determine a plausible framework that describes

how the data can be generated. In the simplest case,

data are generated from one of two probability distri-

butions S1 and S2 (for example a Gaussian with mean

0 and variance 1, and a Gaussian with mean 10 and

variance 1). Initially, the data points are generated

independently from S1 and after some time the data

are generated independently from S2. The celebrated

CUSUM algorithm by Page [4] can be used to detect

that a change from S1 to S2 occurred by comparing the
likelihoods that parts of the data were generated by S1
or S2. Suppose S1 has density f1 and S2 has density f2,

and let d > 0 be a threshold.

A user of the change-detection system is interested

in the first time k where.
Pnow
i¼k

log f2 xið Þ=f1 xið ÞÞ > dð .

When this happens, the system signals that a change

has occurred and can return k as a plausible estimate of

the change point. This test can be done in an online

fashion by defining T0 = 0 and Tk = max(Tk�1 + log

(f2(xk) ∕ f1(xk)),0) and signaling a change if Tnow > d.
Typically S1 is chosen based on an initial sample of the

data stream and S2 is then chosen to represent the

smallest change whose detection is desired. For exam-

ple, suppose that S1 is chosen to be a Gaussian with

mean 0 and variance 1, and suppose that for the

current application it is desirable to detect any change

in mean greater than 10. Then a natural choice for S2 is

a Gaussian with mean 10 and variance 1.

This framework has been generalized by Bansal

and Papantoni-Kazakos [3] to the case where S1 and

S2 are stochastic processes that need not generate each

point independently. Additional generalizations of

the CUSUM algorithm, including the case of multiple

data generating distributions, are discussed in [4].

The framework of the CUSUM algorithm is an

example of a parametric framework: the set of possible

data-generating distributions has been prespecified and

elements in that set can be identified using a small

number of parameters. Parametric approaches are

powerful in cases where they can accurately model the

data. In cases where the data is not well modeled by a

parametric framework, performancemay deteriorate in

terms of more false change reports and/or fewer detec-

tion of changes.

Kifer, Ben-David, and Gehrke [13] showed how

to avoid problems with parametric approaches by

using a nonparametric framework. In this framework

the data points x1,x2,..., are k-dimensional vectors of

real numbers. Point x1 is generated by some (arbitrary)

probability distribution F1, x2 is generated by F2 (inde-

pendently of x1), x3 is generated by probability

distribution F3 (independently of x1 and x2), etc.

A change is defined as a change in the data-generating

distribution; if the first change occurs at time n1
then F1 ¼ F2 ¼ ::: ¼ Fn1�1 6¼ Fn1 ; if the second change

occurs at time n2 then Fn1 ¼ Fn1þ1 ¼ ::: ¼ Fn2�1 6¼ Fn2 ,

etc. This framework for detecting change consists of

three parts: a collection of regions of interests, a meth-

od for estimating probabilities, and a statistical test.

Change Detection on Streams C 319

C

Regions of Interest

A collection of regions of interest serves two purposes:

to restrict attention to changes that are considered

meaningful, and to provide a means for describing

the change.

Ideally a change is said to have occurred whenever

the data-generating distribution changes. However,

for many practical applications not all changes are

meaningful. For example, consider the case where F1
is a probability distribution that assigns probability 1

to the set of real numbers between 0 and 1 whose

seventeenth significant digit is odd and furthermore

suppose that F1 is uniform over this set. From time 1

up to n � 1 the data are generated independently from

the distribution F1. At time n a change occurs and

from that point the data are generated independently

from the distribution Fn defined as follows: Fn assigns

probability 1 to the set of real numbers between 0 and 1

whose seventeenth significant digit is even and is

uniform over this set. Letting f1 be the probability

density function for F1 and fn be the probability density

function for Fn it can be seen that f1 and fn are very

different according to some common similarity mea-

sures. Indeed, the L1 distance between f1 and fn (i.e.,R 1
0
f1 xð Þ � fn xð Þj j dx), is as large as possible. However,

in many applications it is of no practical consequence

whether the true distribution is F1 or Fn. This is

because one may be interested only in questions such

as ‘‘what is the probability that the next point is larger

than 0.75’’ or ‘‘what is the probability that the next

point is within the safety range of 0.14–0.95.’’ For these

types of questions one would only be interested in

the probabilities of various intervals, so instead of

receiving notification of arbitrary types of change,

one would be happy to know only when some interval

has become more or less probable. In this case, the

intervals are said to be the regions of interest. In general,

if the domain of each data element is D then the set

of regions of interest is a collection of subsets of D.
Note that regions of interest can be overlapping, as

in the case of intervals, or they can form a partition

of the domain. Dasu et al. [9] also proposed to

partition the domain based on an initial sample of

the data.

Once the regions of interest have been specified, the

goal is to report a change whenever the system detects

that the probability of a region has changed. The re-

gion (or regions) with the largest change in probability

are then given as the description of the change.
Estimating Probabilities

Since the true distributions Fi are unknown, it is neces-

sary to estimate them. A window of size m is a set of m

consecutive data points. The initial distribution is esti-

mated using a window that contains the first m data

points and the most recent distribution is estimated

using a window containing the most recent m data

points (in practice, several change detection algorithms

can be run in parallel, each using a different value

of m). In each window Wi, the probability of a partic-

ular region of interest R can be estimated by
jWi\Rj
jWi j , the

fraction of points in the window that occur in the

region. Alternatively, if the regions of interest form a

partition of the domain into k regions, then a Bayesian-

style correction
jWi\Rjþa
jWi jþak can also be used [9].

Statistical Testing

In this setting, a statistic f is a function that assigns a

number to a pair of windows (W1,W2). The larger this

number is, the more likely it is that the points in one

window were generated from one distribution and the

points in the other window were generated from a

different distribution. A statistical test is a statistic f

and a real number t that serves as a threshold; when

f(W1,W2) � t then one can conclude that the points in

W1 were generated from a different distribution than

the points in W2.

For each i � 1 let Wi be the window that contains

the points xi,...,xi+m�1, so that W1 is the set of the first

m data points. To use a statistical test f with threshold

t, one computes the values f (W1,Wm), f (W1,Wm+2),

f (W1,Wm+3),..., and signals a change the first time i

such that f (W1,Wi) � t. At this time, the current

window Wi is considered to be a set of m points

generated from the new distribution. The distribution

may change again in the future, so one proceeds by

computing the values of f(Wi,Wi+m), f(Wi,Wi+m+1),

f(Wi+m+2), etc., until another change is detected.

Note that in order for it to be useful, a statistic

should be easy to compute since a new value must

be computed every time a new data point arrives.

The value of the threshold t should also be carefully

chosen to avoid incorrect detections of change. A false

positive is said to have occurred if the algorithm reports

a change when the underlying distribution has not

changed. Since a stream is a potentially unbounded

source of data, false positives will occur and so instead

of bounding the probability of a false positive, the goal

is to choose a value of t that bounds the expected rate of

320C Change Detection on Streams
false positives. Several statistics for detecting change

and a method for choosing t are presented next.

Let A be the collection of regions of interest. LetW

and W 0 be two windows and let P and P 0 be the

corresponding probability estimates: for any A 2 A, P
(A) is the estimated probability of region A based on

window W and P 0(A) is the estimated probability of A

based on window W 0. The following statistics can be

used in the change detection framework [13]:

dAðW ;W 0Þ ¼ sup
A2A
jPðAÞ � P0ðAÞj

fAðW ;W 0Þ ¼ sup
A2A

jPðAÞ � P0ðAÞjffi
min

PðAÞþP0ðAÞ
2

; 1� PðAÞþP0ðAÞ
2

n or

XAðW ;W 0Þ ¼ sup
A2A

jPðAÞ � P0ðAÞjffi
PðAÞþP0ðAÞ

2
1� PðAÞþP0ðAÞ

2

� �r

Note that when A is the set of intervals of the form

(�1, b) then dA is also known as the Kolmogorov-

Smirnov statistic. For any one of these statistics, the

region A 2 A which maximizes the statistic is the

region where the change in observed probability is

the most statistically significant; this region (or the ‘

most significant regions, depending on user prefer-

ences) and its change in probability is therefore the

description of the change.

To use these statistics, one must determine the value

of the threshold t and the corresponding expected rate

of false positives. To do this one can take advantage of

the fact that for one-dimensional data, the worst-case

behavior of the dA, fA, and XA statistics occur when

the data are generated by continuous distributions

and that the statistics behave in the same way for

all continuous distributions [13]. This means that

one can perform an offline computationally-intensive

simulation to determine t and then use this value for

any one-dimensional stream afterwards.

To perform the simulation, a user must specify a

test statistic f and four parameters: a window size m, a

real number p between 0 and 1
2
, a large integer q > =

2m (e.g., 1 million), and the number of repetitions B.

For each repetition i, generate q points independen-

tly from any continuous distribution (e.g., from a

Gaussian distribution with mean 0 and variance 1).

Compute the value ti � maxm	j	q�m+1f (W1,Wj) (this

represents the largest value of the statistic f that would

have encountered if this were the real data). After B
repetitions, choose a value for the threshold t such that
t is greater than (1 � p)B of the values t1,...,tB. This
value of t guarantees that the probability of a false

positive in the first q points is approximately p.

To compute the expected rate of false positives

corresponding to t, one first notes that false reports

of change should occur in pairs for the following

reason. Once a false positive has occurred, one has a

window with points that are considered anomalous

(since they caused a change to be reported); as new

data points arrive, one compares the m most recent

points (which are still generated from the original

distribution) with this anomalous window using the

chosen test statistic and therefore a second report

of change should soon occur. Thus one can upper

bound the expected number H of false positives in

the first q points using the following probability distri-

bution: P(H = 2) = p, P(H = 4) = p2, etc., and

PðH ¼ 0Þ ¼ 1�2p
1�p . The expected value is 2p

ð1�pÞ2 and

one can use this as an upper bound on the number of

false positives in the first q points. One can approxi-

mate the expected number of errors in the next q

points also by 2p

ð1�pÞ2 so that the expected rate of false

positives is approximated by 2p

qð1�pÞ2 .

When the regions of interest form a partition of

the domain into k regions, other statistics, such as the

KL-distance can be used [9]:

KLAðW ;W 0Þ ¼
X
A2A

PðAÞ log PðAÞ
P0ðAÞ

where the probabilities P(A) and P 0(A) are estimated

using the Bayesian correction (i.e., PðAÞ ¼ jW\AjþajW jþak).

Dasu et al. propose using the KL-distance with the

following scheme (which uses a user-defined parame-

ter g): initially collect m data points for the window

W1 and use these points to create the regions of inte-

rest which partition the (possibly high-dimensional)

domain; then compute KLAðW 1;WmÞ;KLAðW 1;

Wmþ1Þ;KLAðW 1;Wmþ2Þ, etc., and report a change

whenever ng consecutive values of the statistic exceed

a threshold t. The value of t depends on the points

in W1 and must be recomputed every time a change is

detected. As before, t is estimated via simulation.

To determine the value of t, choose a parameter

p (0 < p < 1∕2) and number of repetitions B. For each

repetition i, use the probability distribution P esti-

mated from W1 to generate two windows V1 and V2

of m points each. Define ti to be KLAðV 1;V 2Þ. After B

Channel-Based Publish/Subscribe C 321

C

repetitions, choose t so that it is greater than (1 � p)B

of the t1,...,tB.

Key Applications
Data mining, network monitoring.

Future Directions
Key open problems include efficiently detecting

change in high-dimensional spaces (see also [9]) and

detecting change in streams where data points are not

generated independently.

Cross-references
▶ Stream Data Management

▶ Stream Mining
Recommended Reading
1. Agarwal D., Barman D., Gunopulos D., Korn F., Srivastava D.,

and Young N. Efficient and effective explanation of change

in hierarchical summaries. In Proc. 13th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2007,

pp. 6–15.

2. Babcock B., Babu S., Datar M., Motwani R., and Wisdom J.

Models and issues in data stream systems. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2002, pp. 1–16.

3. Bansal R.K. and Papantoni-Kazakos P. An algorithm for

detecting a change in a stochastic process. IEEE Trans. Inf.

Theor., 32(2):227–235, 1986.

4. Basseville M. and Nikiforov I.V. Detection of Abrupt

Changes: Theory and Application. Prentice-Hall, Englewood

Cliffs, NJ, 1993.

5. Carlstein E., Müller H.-G., and Siegmund D. (eds.) Change-

point problems. Institute of Mathematical Statistics, Hayward,

CA, USA, 1994.

6. Chahrabarti S., Sarawagi S., and Dom B. Mining surprising

patterns using temporal description length. In Proc. 24th Int.

Conf. on Very Large Data Bases, 1998, pp. 606–617.

7. Chawathe S.S., Abiteboul S., and Widom J. Representing

and querying changes in semi-structured data. In Proc. 14th

Int. Conf. on Data Engineering, 1998, pp. 4–13.

8. Chawathe S.S. and Garcia-Molina H. Meaningful change

detection in structured data. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1997, pp. 26–37.

9. Dasu T., Krishnan S., Venkatasubramanian S., and Yi K.

An information-theoretic approach to detecting changes in

multi-dimensional data streams. In Proc. 38th Symp. on the

Interface of Statistics, Computing Science, and Applications,

2006.

10. Ganti V., Gehrke J., and Ramakrishnan R. Mining data streams

under block evolution. SIGKDD Explorations, 3(2):1–10, 2002.

11. Glaz J. and Balakrishnan N. (eds.) Scan Statistics and Applica-

tions. Birkhäuser, Boston, USA, 1999.
12. Hulten G., Spencer L., and Domingos P. Mining time-changing

data streams. In Proc. 7th ACM SIGKDD Int. Conf. on Knowl-

edge Discovery and Data Mining, 2001, pp. 97–106.

13. Kifer D., Ben-David S., and Gehrke J. Detecting change in data

streams. In Proc. 30th Int. Conf. on Very Large Data Bases, 2004,

pp. 180–191.

14. Kleinberg J.M. Bursty and hierarchical structure in streams.

In Proc. 8th ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining, 2002, pp. 91–101.

15. Vovk V., Nouretdinov I., and Gammerman A. Testing exchange-

ability on-line. In Proc. 20th Int. Conf. on Machine Learning,

2003, pp. 768–775.
Channel-Based Publish/Subscribe

HANS-ARNO JACOBSEN

University of Toronto, Toronto, ON, Canada

Synonyms
Event channel; Event service

Definition
Channel-based publish/subscribe is a communication

abstraction that supports data dissemination among

many sources and many sinks. It is an instance of the

more general publish/subscribe concept. The commu-

nication channel mediates between publishing data

sources and subscribing data sinks and decouples

their interaction.

Key Points
Publishing data sources submit messages to the channel

and subscribing data sinks listen to the channel. All

messages published to the channel are received by all

subscribers listening on the channel. The channel broad-

casts a publication message to all listening subscribers.

The channel decouples the interaction among pub-

lishing data sources and subscribing data sinks. The

same decoupling characteristics as discussed under the

general publish/subscribe concept apply here as well.

Realizations of this model found in practice vary in

the exact decoupling offered. To properly qualify as

publish/subscribe, at least the anonymous communi-

cation style must exist. That is publishing clients must

not be aware of who the subscribing clients are and how

many subscribing clients exist, and vice versa. Thus,

channel-based publish/subscribe enables the decoupled

interaction of n sources with m sinks for n, m � 1.

322C Channel-Based Publish/Subscribe
Channel-based publish/subscribe systems often

allow the application developer to create multiple log-

ical channels, where each channel can be configured to

offer different qualities-of-service to an application.

Furthermore, a channel can be dedicated to the dissemi-

nation of messages pertaining to a specific subject or

type. The channel-based publish/subscribe model does

not support message filtering, except through the use of

various channels to partition the publication space. It is

the clients’ responsibility to select the right channel for

the dissemination of messages, which are sent to all

listeners on the channel. This enables a limited form of

filtering by constraining messages to be disseminated on

one channel to a given message type. Finally, channel-

based publish/subscribe is often coupled with client-side

filtering, where messages are still broadcast throughout

the channel, but filtered upon arrival at the data sink

before passing to the application. More fine-grained

filtering functionalities are provided by the other pub-

lish/subscribe models, such as the topic-based model

and the content-based model.

In channel-based publish/subscribe, the publica-

tion data model is defined by the type of message the

channel-based communication abstraction supports.

This is often closely tied to the programming language

or the library that implements the model.

Similarly, the subscription language model is

defined by the programming language or library that

allows the application developer to select channels

to listen to, unless special provisions for subscriber-

side filtering are offered. If supported, subscriber-side

filtering can be arbitrarily complex, even selecting

messages based on their content, as offered by the

content-based publish/subscribe model.

Matching in the sense of evaluating a publication

message against a set of subscriptions, as is common in

the other publish/subscribe instantiations, does not

occur in channel-based publish/subscribe.

Channel-based publish/subscribe systems are often

coupled with different client interaction styles. These

are the push-style and the pull-style. In the push-style,

data sources initiate the transfer of messages to the

channel, which delivers the messages to all listening

data sinks. In the pull-style, data sinks initiate the

message transfer by requesting messages from the

channel, which requests any available messages from

all connected data sources. Both interaction styles can

also be combined. That is on one channel some clients

can connect to the channel through the push-style,

while others connect via the pull-style.
Channel-based publish/subscribe systems are dis-

tinguished by the qualities-of-service the channel offers

to its clients, such as various degrees of reliability,

persistence, real-time constraints, and message delivery

guarantees. Channel-based publish/subscribe relates

to topic-based publish/subscribe in that publishing a

message to a channel is similar to associating a message

with a topic, which could be the name or identity of the

channel. However, in topic-based publish/subscribe

this association is reflected in the message itself, while

in channel-based publish/subscribe the association is

indirect, reflected by selecting a channel, not part of

the message. Also, topics can go far beyond channel

identities, as discussed under the topic-based publish/

subscribe concept. Examples that follow the channel-

based publish/subscribe model are the CORBA Event

Service [2], IP multicast [?], Usenet newsgroups [?],

mailing lists, and group communication [?]. Elements

of channel-based publish/subscribe can also be found in

the Java Messaging Service [1], the OMG Data Dissemi-

nation Service [3], and other messaging middleware.

However, these approaches are not directly following

the channel-based model as described above; rather

these approaches are enriched with elements of message

queuing, topic-based publish/subscribe, and content-

based publish/subscribe.

There are many applications of channel-based

publish/subscribe. Examples include change notifica-

tion, update propagation, information dissemination,

newsgroups, email lists, and system management.

Channel-based publish/subscribe serves well, if one

or more entities have to communicate date to an

anonymous group of receivers that may change over

time, without the need of filtering messages within

the channel.

In the literature the term channel-based publish/

subscribe is not used uniformly. Abstractions that

exhibit the above described functionality are also

often referred to as event services, event channels,

and simply channels. Messages disseminated to listen-

ers are also often referred to as events. Publishing data

sources are often referred to as publishers, producers

or suppliers, and subscribing data sinks are often

referred to as subscribers, consumers or listeners.
Cross-references
▶Content-Based Publish/Subscribe

▶ Publish/Subscribe

▶Topic-Based Publish/Subscribe

Chase C 323

C

Recommended Reading
1. Hapner M., Burridge R., and Sharma R. Java Message Service.

Sun Microsystems, version 1.0.2 edition, Nov 9, 1999.

2. OMG. Event Service Specification, version 1.2, formal/04–10–02

edition, October 2004.

3. OMG. Data Distribution Service for Real-time Systems, version

1.2, formal/07–01–01 edition, January 2007.
Chart

HANS HINTERBERGER

ETH Zurich, Zurich, Switzerland

Synonyms
Chart; Map; Diagram; Information graphic; Graph

Definition
A chart is an instrument to consolidate and display

information.

The term is applied to virtually any graphic that

displays information, be it a map used for navigation, a

plan for military operations, a musical arrangement,

barometric pressure, genealogical data, and even lists

of tunes that are most popular at a given time.

Definitions of specialized charts typically include

the graphical method on which the chart is based (e.g.,

bar chart) and or its application area (e.g., CPM chart)

but it does not specify design principles. Tufte [2]

introduces the notion of ‘‘chartjunk’’ and defines it to

be that part of the chart which functions only as

decoration, all of which is considered to redundant

data ink.

Sometimes charts are reduced to refer to maps and

diagrams, excluding graphs and tables.

Key Points
Because charts are used for different purposes there exist

almost as many different types of charts as there are

applications. Some maps, however, are more general in

their use and therefore assigned to one of the following

four categories: Graphs, Maps, Diagrams, and Tables.

Each of these categories is broken down further into

subcategories. In the category Diagrams, one therefore

finds pie charts as well as flow charts or organization

charts. A detailed categorization can be found in [1].

Charts are not only used to visualize data. They

serve as a useful tool for many tasks where information

is the main ingredient such as planning, presentation,

analysis, monitoring.
Cross-references
▶Data Visualization

▶Diagram

▶Graph

▶Map

▶Table

▶Thematic Map

Recommended Reading
1. Harris R.L. Information Graphics: A Comprehensive

Illustrated Reference, Oxford University Press, New York/

Oxford, 1999.

2. Tufte E.R. The Visual Display of Quantitative Information.

Graphics Press, Cheshire, CT, 1983.
Chase

ALIN DEUTSCH
1, ALAN NASH

2

1University of California-San Diego, La Jolla, CA, USA
2Aleph One LLC, La Jolla, CA, USA

Definition
The chase is a procedure that takes as input a set S
of constraints and an instance I. The chase does not

always terminate, but if it does it produces as output

an instance U with the following properties:

1. U ⊨ S; that is, U satisfies S.
2. I ! U; that is, there is a homomorphism from I

to U.

3. For every instance J (finite or infinite), if J ⊨ S and

I! J, then U! J.

In [7], an instance that satisfies (1) and (2) above is

called a model of S and I and an instance that satisfies

(3) above is called strongly universal.

In summary, the chase is a procedure which –

whenever it terminates – yields a strongly-universal

model.

Comments

1. The set S of constraints is usually a set of

tuple-generating dependencies (tgds) and equality-

generating dependencies (egds) [5], or, equivalently,

embedded dependencies [5,10]. However, the chase

has been extended to wider classes of constraints and

to universality under functions other than homo-

morphisms [6,7,9]. In this case, the chase often pro-

duces a strongly-universal model set (see below),

instead of a single model.

324C Chase
2. It was noted in [7] that in database applications,

weak universality (condition 3 above restricted to

finite instances) would suffice. Nevertheless, the

chase gives strong universality.
Historical Background
The term ‘‘chase’’ was coined in [14], where it was

used to test the logical implication of dependencies

(i.e., whether all databases satisfying a set S of depen-

dencies must also satisfy a given dependency s). The
implication problem was one of the key concerns of

dependency theory, with applications to automatic

schema design. The chase was defined in [14] for the

classes of functional, join and multivalued dependen-

cies. Related chase formulations for various kinds of

dependencies were introduced in [15,17]. The work [5]

unified the treatment of the implication problem

for various dependency classes by introducing and

defining the chase for tuple-generating and equality-

generating dependencies (sufficiently expressive to

capture all prior dependencies).

Ancestors of the chase (introduced as unnamed

algorithms) appear in [2–4]. [4] introduces tableaux,

a pattern-based representation for relational queries,

and shows how to check the equivalence of tableau

queries in the presence of functional dependencies,

with applications to query optimization. To this end,

the tableaux are modified using an algorithm that

coincides with the chase with functional dependencies.

The same algorithm is used in [3] for minimization

of tableaux under functional dependencies. This algo-

rithm is extended in [2] to include also multivalued

dependencies, for the purpose of checking whether

the join of several relations is lossless (i.e., the origi-

nal relations can be retrieved as projections of the

join result).

The chase was extended to include disjunction and

inequality in [9], and to arbitrary 8∃-sentences in [6].

Independently, [13] extended the chase to a parti-

cular case of disjunctive dependencies incorporating

disjunctions of equalities between variables and con-

stants (see also [12]). There are also extensions of

the chase to deal with more complex data models

beyond relational. The chase (and the language of

embedded dependencies) is extended in [16] to work

over complex values and dictionaries. For an excel-

lent survey of the history of the chase prior to 1995,

consult [1].
Foundations
A tuple-generating dependency (tgd) is a constraint s
of the form

8�x; �y ðað�x; �yÞ ! 9�zbð�x;�zÞÞ

where a and b are conjunctions of relational atoms.

Furthermore, every variable in �x appears in both a
and b. The 8�x; �y prefix of universal quantifiers is usu-

ally omitted. If �z is empty, then s is full.

An equality-generating dependency (egd) is a con-

straint f of the form

8x1; x2; �y ðaðx1; x2; �yÞ ! x1 ¼ x2Þ

where a is a conjunction of relational atoms.

The chase is used on instances whose active

domain consists of constants and labeled nulls. A

homomorphism from A to B is denoted A ! B. It

is a mapping h on the constants and nulls in A that

(i) preserves constants (i.e., h(c) = c for every constant

c) and preserves relationships (i.e., for every tuple

R(x1,...,xn) 2 A, that is R(h(x1),...,h(xn)) 2 B). Two

instances A and B are homomorphically equivalent if

A! B and B! A.

The chase is a natural procedure for building strong

universal models. Indeed, it turns out that checking

for strong universality is undecidable as shown in [7]).

In contrast, checking whether an instance is a model

can be done efficiently. Therefore, it is natural to define

any procedure for constructing strong universal mod-

els by steps which always preserve strong universality

while attempting to obtain a model and then to

check whether a model was indeed obtained. This is

precisely what the chase does.

A tgd s 2 S fails (or applies) on instance A and

tuple �a if there is tuple �b in A such that the premise a
of s satisfies A ⊨ a(�a, �b), yet there is no tuple �c in A

such that the conclusion b of s satisfies A ⊨ b(�a, �c).
Assume that the instance A0 is obtained by adding to A

the tuples in b(�a, �n) where �n is a tuple of new

nulls. Then A0 is the result of firing s on A, �a. Notice

that A
 A0 and that s does not fail on A0, �a. It is easy to

verify that if A is strongly universal for S and I, then

so is A0 (towards this, it is essential that all the nulls

in �n be new and distinct).

An egd s 2 S fails (or applies) on instance A

and values a1, a2 if there is tuple �b in A such that

the premise a of s satisfies A ⊨ a(a1, a2, �b), yet a1 6¼
a2. If a2 is a null a2 is replaced everywhere in Awith a1

Chase C 325

C

to obtain A0, then say that A0 is the result of firing s on

A, a1, a2. Notice that A! A0 and that s does not fail on

A0, a1, a1. It is easy to verify that ifA is strongly universal

for S and I, then so is A0. If a2 is a constant, but a1 is

null, then it is possible to replace a1 everywhere in A

with a2 instead. However, if both a1 and a2 are con-

stants, then it is not possible to satisfy s and preserve

strong universality and the chase fails.

The standard chase procedure proceeds as follows.

1. Set A0 = I.

2. Repeat the following:

a. If An is a model of S and I, stop and return An.

b. Otherwise, there must be either
i. a tgd s and �a such that s fails on A, �a, or

ii. an egd s0 and a1, a2 such that s0 fails on A,

a1, a2.

Obtain An+1 by picking one such s and �a and

firing s on An, �a, or by picking one such s0 and a1,

a2 and firing s0 on A, a1, a2. (This is one chase step

of the standard chase.)
:

Notice that, at every chase step, there may be a

choice of s and �a, respectively s0 and a1, a2. How

these choices are picked is often left unspecified and

in that case the standard chase is non-deterministic.

The chase terminates if An is a model of S and I for

some n.

The chase of instance I with tgds S produces a

sequence of instances I = A0
 A1
 A2
 ... such

that every Ai is strongly universal for S and I. The chase

with tgds and egds produces a sequence I = A0! A1!
A2 ! ... such that every Ai is strongly universal for

S and I. In the presence of egds, it is no longer the case

that Ai
 Aj for i 	 j and there is the additional

complication that a chase step may fail. The chase for

tgds and egds is described in more detail in [1].

Example 1 Consider the schema consisting of two

relations:

1. employee Emp(ss#, name, dept#), with social secu-

rity, name, and dept. number, and

2. department Dept(dept#, name, location, mgr#),

with dept. number, name, location, and its man-

ager’s social security number.

Assume that S consists of the constraints

s1: dept# is a foreign key in Emp,

s2: mgr# is a foreign key in Dept, and

s3: every manager manages his own department.
(This omits the constraints that say that ss# is a key for

Emp and that dept# is a key for Dept to keep the

example simple.) These constraints can be written as

follows (where s1 and s2 are tgds and s3 is an egd):

s1: Dept(d, e, ‘, m)!∃n, d0Emp(m, n, d0),

s2: Emp(s, n, d)!∃e, ‘, mDept(d, e, ‘, m), and

s3: Dept(d, e, ‘, m), Emp(m, n, d0)! d = d0.

Consider the initial instance

I0 ¼ Deptð1; }HR}; }somewhere}; 333� 33� 3333Þ

containing a single tuple. Then in the first step of the

chase, s1 fires, giving

I1 ¼ fDeptð1;}HR};}somewhere}; 33Þ;
Empð33; a; bÞg

where a and b are labeled nulls. In the second step,

both s2 and s3 apply. If s3 fires, then b is set to 1 and

yields

I2 ¼ fDeptð1; }HR}; }somewhere}; 33Þ; Empð33; a; 1Þg

Since I2 satisfies S, the chase terminates. However, if

instead at the second step s2 fires, then it gives

I 02 ¼ fDeptð1; }HR}; }somewhere}; 33Þ;
Empð33; a; bÞ; Deptðb; g; d; Eg

where g, d, and e are new nulls. In this case, it is

possible to continue firing s1, s2, and s3 in such a

way as to obtain a chase that does not terminate,

perpetually introducing new nulls.

If the standard chase (or any other chase listed

below) terminates, it yields a strongly-universal

model of S and I and it is straightforward to verify

that all such models are homomorphically equivalent.

Therefore the result of the standard chase is unique up

to homomorphic equivalence. However, the choice of

what constraint to fire and on what tuple may affect

whether the chase terminates or not.

There are several variations of the chase, which shall

be called here the standard chase, the parallel chase,

and the core chase. The standard chase was described

above. In the parallel chase, at every chase step s is fired

on An, �a for all pairs (s, �a) such that s fails on A, �a.

One writes IS for the result of the chase on S and I,

if the chase terminates. In that case, one says that

IS is defined. In general, it holds that if A ! B, then

AS! BS, whenever the latter are defined.

326C Chase
It was shown in [7] that the standard chase is

incomplete, in the following sense: it may be that S
and I have a strongly-universal model, yet the standard

chase does not terminate. The parallel chase is also

incomplete in this sense. In contrast, the core chase

introduced in [7] is complete: if a strongly universal-

model exists, the core chase terminates and yields such

a model. A chase step of the core chase consists of one

chase step of the parallel chase, followed by computing

the core of the resulting instance.

Any of the above mentioned variations of the chase

can be applied to sets of constraints which consist of

1. tgds only

2. tgds and egds

3. tgds and egds with disjunctions

4. tgds and egds with disjunctions and negation which

are equivalent to general 8∃ sentences

The chase with tgds and egds has been described above.

The chase has been extended to handle disjunction and

negation. In this case, it gives not a single model, but a

set S of models which is strongly universal, in the sense

that for any model J (finite or infinite) of S and I, there

is a model A 2 S such that A! J. Such a set arises from

a single initial model by branching due to disjunction.

For example, consider the set S with the single dis-

junctive tgd

s : RðxÞ ! SðxÞ _ TðxÞ

and the instance I containing the single fact R(1).

Clearly every model of S and I, must contain either

S(1) or T(1). It is easy to verify that the set S = {I1, I2}

where I1 = {R(1), S(1)} and I2 = {R(1), T(1)} is strongly

universal for I and S, but no proper subset of S is. The

disjunctive chase with S on I consists of a single step,

which produces not a single model, but the set S of

models. Intuitively, whenever a disjunctive tgd fires

on a set W of models, it produces, for every instance

A 2W, one instance for every disjunct in its conclusion.

For details, to see how negation is handled, and to see

how universality for functions other than homo-

morphisms is achieved, see [6,7].

It was shown in [7] that it is undecidable whether

the standard, parallel, or core chase with a set of tgds

terminates. A widely-applicable, efficiently-checkable

condition on a set S of tgds, which is sufficient to

guarantee that the chase with S on any instance I

terminates, was introduced in [9,11]. A set of tgds

satisfying this condition is called weakly acyclic in
[11] and is said to have stratified witnesses in [9].

A more widely-applicable condition, also sufficient

for chase termination, was introduced in [7], where a

set of tgds satisfying this condition is called stratified.
Key Applications
The chase has been used in many applications,

including

� Checking containment of queries under constraints

(which in turn is used in such query rewriting tasks

as minimization, rewriting using views, and seman-

tic optimization)

� Rewriting queries using views

� Checking implication of constraints

� Computing solutions to data exchange problems

� Computing certain answers in data integration

settings

To check whether a query P is contained in a query Q

under constraints S, written P vSQ, it is sufficient to

(1) treat P as if it was an instance in which the free

variables are constants and the bound variables are

nulls (this is known as the ‘‘frozen instance’’ or ‘‘ca-

nonical database’’ [1] corresponding to P) (2) chase it

with S, and if this chase terminates to yield PS (3)

check whether the result of this chase is contained inQ,

written P S v Q. In symbols, if the chase described

above terminates, then

PvSQ iff PS v Q:

That is, the chase reduces the problem of query con-

tainment under constraints to one of query contain-

ment without constraints.

To check whether a set S of tgds implies a tgd s of

the form

8�x; �yðað�x; �yÞ ! 9�zbð�x;�zÞÞ

which is logically equivalent to

8�x 9�yað�x; �yÞð|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Qað�xÞ

! 9�zbð�x;�zÞ|fflfflfflfflffl{zfflfflfflfflffl}
Qbð�xÞ

Þ;

it suffices to check whether the queryQa in the premise

of s is contained under the constraints S in the query

Qb in the conclusion of s. That is, if Qa
S is defined,

then

S � s iffQa vS Qb iff Q
S
a v Qb:

Checksum and Cyclic Redundancy Check Mechanism C 327

C

The chase was also employed to find equivalent

rewritings of conjunctive queries using conjunctive

query views, in the presence of constraints. Given a

set V of conjunctive query views and a conjunctive

query Q, one can construct, using the chase, a query

R expressed in terms of V, such that Q has some

equivalent rewriting using V if and only if R is itself

such a rewriting. Moreover, every minimal rewriting of

Q is guaranteed to be a sub-query of R. The algorithm

for constructing R and exploring all its sub-queries is

called the Chase&Backchase (CB) [8], and it is sound

and complete for finding all minimal rewritings under

a set S of embedded dependencies, provided the chase

with S terminates [9]. The CB algorithm constructs R

by simply (i) constructing a set SV of tgds extracted

from the view definitions, and (ii) chasing Q with

S [SV and restricting the resulting query to only the

atoms using views in V.
In [11] is was shown that the certain answers to a

union Q of conjunctive queries on a ground instance I

under a set S of source-to-target tgds and target tgds

and egds can be obtained by computing Q(U) – where

U is a universal solution for I under S – then discarding

any tuples with nulls. Universal solutions, which are

the preferred solutions to materialize in data exchange,

are closely related to strongly-universal models [7] and

it was shown in [11] that they can be obtained using

the chase.
Cross-references
▶Data Exchange

▶Data Integration

▶Database Dependencies

▶ Equality-Generating Dependencies

▶Query Containment

▶Query Optimization

▶Query Rewriting

▶Query Rewriting Using Views

▶Tuple-Generating Dependencies
Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases.

Addison Wesley, Reading, MA, 1995.

2. Aho A.V., Beeri C., and Ullman J.D. The theory of joins

in relational databases. ACM Trans. Database Syst.,

4(3):297–314, 1979.

3. Aho A.V., Sagiv Y., and Ullman J.D. Efficient optimization

of a class of relational expressions. ACM Trans. Database Syst.

4(4):435–454, 1979.
4. Aho A.V., Sagiv Y., and Ullman J.D. Equivalence of relational

expressions. SIAM J. Comput., 8(2):218–246, 1979.

5. Beeri C. and Vardi M.Y. A proof procedure for data dependen-

cies. J. ACM, 31(4):718–741, 1984.

6. Deutsch A., Ludaescher B., and Nash A. Rewriting queries

using views with access patterns under integrity constraints.

In Proc. 10th Int. Conf. on Database Theory, 2005, pp. 352–367.

7. Deutsch A., Nash A., and Remmel J. The chase revisited. In Proc.

27th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2008, pp. 149–158.

8. Deutsch A., Popa L., and Tannen V. Physical Data Independence,

Constraints, and Optimization with Universal Plans. In Proc.

25th Int. Conf. on Very Large Data Bases, 1999, pp. 459–470.

9. Deutsch A. and Tannen V. XML queries and constraints,

containment and reformulation. Theor. Comput. Sci. 336(1):

57–87, 2005, preliminary version in ICDT 2003.

10. Fagin R. Horn clauses and database dependencies. J. ACM,

29(4):952–985, 1982.

11. Fagin R., Kolaitis P.G., Miller R.J., and Popa L. Data Exchange:

Semantics and Query Answering. Theor. Comput. Sci., 336

(1):89–124, 2005, preliminary version in PODS 2005.

12. Fuxman A., Kolaitis P.G., Miller R.J., and Tan W.C. Peer

Data Exchange. ACM Trans. Database Syst., 31(4):1454–1498,

2006, preliminary version in PODS 2005.

13. Grahne G. and Mendelzon A.O. Tableau Techniques for

Querying Information Sources through Global Schemas.

In Proc. 7th Int. Conf. on Database Theory, 1999, pp. 332–347.

14. Maier D., Mendelzon A.O., and Sagiv Y. Testing

implications of data dependencies. ACM Trans. Database Syst.,

4(4):455–469, 1979.

15. Maier D., Sagiv Y., and Yannakakis M. On the complexity

of testing implication of functional and join dependencies.

J. ACM, 28(4):680–695, 1981.

16. Popa L. and Tannen V. An Equational Chase for Path-

Conjunctive Queries, Constraints, and Views. In Proc. 7th Int.

Conf. on Database Theory, 1999, pp. 39–57.

17. Vardi M. Inferring multivalued dependencies from functional

and join dependencies. Acta Informatica, 19:305–324, 1983.
Checkpoint

▶ Logging and Recovery
Checksum and Cyclic Redundancy
Check Mechanism

KENICHI WADA

Hitachi, Ltd, Tokyo, Japan

Synonyms
Cyclic Redundancy Check (CRC)

328C Choreography
Definition
Checksum and CRC are schemes for detecting the

errors of data which occur during transmission or

storage. The data computed and appended to original

data in order to detect errors are also referred as

checksum and CRC.

A checksum consists of a fixed number of bits

computed as a function of the data to be protected,

and is appended to the data. To detect errors, the

function is recomputed, and the result is compared

to that appended to the data. Simple implementation

of checksum is to divide the data into same length

bits chunk and to make exclusive-or of all chunks.

Cyclic redundancy check mechanism exploits mathe-

matical properties of cyclic codes. Specifically, CRC

uses polynomial devisor circuits with a given generator

polynomial so as to obtain the remainder polynomial.

The remainder is similarly appended to the original

data for transmission and storage, and then utilized

for error detection. CRC can be used as a kind of

checksum.
Key Points
CRC is usually expressed by the use of binary polyno-

mials due to mathematical convenience. When original

data M(x) is given, basic CRC mechanism calculates

redundancy data R(x) by using a pre-defined generator

polynomial G(x). That is, supposing the degree of G

(x) is m, a polynomial M(x) * xm is divided by G(x)

and the remainder is used for R(x) such that a con-

catenated polynomial T(x) = M(x) * xm + R(x) is

divisible by G(x). The obtained T(x) is used for trans-

mission or storage. For error detection, CRC mecha-

nism similarly checks the divisibility of T(x) by G(x).

These encoding and detection processes can be imple-

mented by using multi-level shift register circuits.

Given below is an example of CRC calculation.

Assume that a generator polynomial and original

data are given as follows.

GðxÞ ¼ x3 þ x þ 1 ðbinary expression: 1011Þ

MðxÞ ¼ x4 þ 1 ð10001Þ

In this case, a remainder polynomial R(x) can be

obtained by dividing M(x) * x3 by G(x).

RðxÞ ¼ x ð010Þ
Therefore, the resulting data T(x) can be obtained

as follows.

TðxÞ ¼ x7 þ x3 þ x ð10001010Þ

Theoretically, CRC is capable of detecting m-bit

long or shorter bust errors. This property is suitable

for communication infrastructure and storage infra-

structure, which often introduce burst errors rather

than random errors.

Cross-references
▶Disk

Recommended Reading
1. Houghton A. Error Coding for Engineers. Kluwer Academic

Publishers, Dordrecht, 2001.

2. Sweeney P. Error Control Coding from Theory to Practice.

Wiley, NY, 2002.
Choreography

W. M. P. VAN DER AALST

Eindhoven University of Technology, Eindhoven, The

Netherlands

Definition
In a service oriented architecture (SOA) services are

interacting by exchanging messages, i.e., by combining

services more complex services are created. Choreog-

raphy is concerned with the composition of such ser-

vices seen from a global viewpoint focusing on the

common and complementary observable behavior.

Choreography is particulary relevant in a setting

where there is not a single coordinator.

Key Points
The terms orchestration and choreography describe

two aspects of integrating services to create business

processes [1,3]. The two terms overlap somewhat and

the distinction is subject to discussion. Orchestration

and choreography can be seen as different ‘‘perspec-

tives.’’ Choreography is concerned with the exchange

of messages between those services. Orchestration is

concerned with the interactions of a single service with

its environment.

Figure 1 illustrates the notion of choreography. The

dashed area shows the focal point of choreography,

Choreography. Figure 1. Choreography.

CIFS C 329

C

i.e., the aim is to establish a ‘‘contract’’ containing a

‘‘global’’ definition of the constraints under which mes-

sages are exchanged. Unlike orchestration, the view-

point is not limited to a single service. The Web

Services Choreography Description Language (WS-

CDL, cf. [2]) and the Web Service Choreography Inter-

face (WSCI) are two languages aiming at choreography.

Since the focus is on agreement rather than enactment,

choreography is quite different from traditional work-

flow languages. The goal is not to control and enact but

to coordinate autonomous parties. Some characterize

choreography as ‘‘Dancers dance following a global sce-

nario without a single point of control’’ to emphasize

this distinction.

Cross-references
▶BPEL

▶Business Process Management

▶Orchestration

▶Web Services

▶Workflow Management

Recommended Reading
1. Dumas M., van der Aalst W.M.P., and ter Hofstede A.H.M.

Process-Aware Information Systems: Bridging People and Soft-

ware through Process Technology. Wiley, New York, 2005.

2. Kavantzas N., Burdett D., Ritzinger G., Fletcher T., and Lafon Y.

Web Services Choreography Description Language Version 1.0

(W3C Candidate Recommendation). http://www.w3.org/TR/

2005/CR-ws-cdl-10-20051109/, 2005.

3. Weske M. Business Process Management: Concepts, Languages,

Architectures. Springer, Berlin, 2007.
Chronicle Recognition

▶ Event Detection
Chronon

CURTIS DYRESON

Utah State University, Logan, UT, USA

Synonyms
Instant; Moment; Time quantum; Time unit

Definition
A chronon is the smallest, discrete, non-decomposable

unit of time in a temporal data model. In a one-

dimensional model, a chronon is a time interval or

period, while in an n-dimensional model it is a non-

decomposable region in n-dimensional time. Impor-

tant special types of chronons include valid-time,

transaction-time, and bitemporal chronons.

Key Points
Data models often represent a time line by a sequence

of non-decomposable, consecutive time periods of

identical duration. These periods are termed chronons.

A data model will typically leave the size of each par-

ticular chronon unspecified. The size (e.g., one micro-

second) will be fixed later by an individual application

or by a database management system, within the

restrictions posed by the implementation of the data

model. The number of chronons is finite in a bounded

model (i.e., a model with a minimum and maximum

chronon), or countably infinite otherwise. Consecutive

chronons may be grouped into larger intervals or seg-

ments, termed granules; a chronon is a granule at the

lowest possible granularity.

Cross-references
▶Temporal Granularity

▶Time Domain

▶Time Instant

▶Time Interval

Recommended Reading
1. Dyreson C.E. and Snodgrass R.T. The base-line clock. In The

TSQLZ temporal query language, Kluwer, pp. 73–92, 1987.

2. Dyreson C.E. and Snodgrass R.T. Timestamp Semantics and

Representation. Inf. Syst., 18(3):143–166, 1993.
CIFS

▶ Storage Protocols

330C Cipher
Cipher

▶Data Encryption
Citation

PRASENJIT MITRA

The Pennsylvania State University, University Park,

PA, USA

Synonyms
Reference; Bibliography

Definition
A citation is a reference from one article to another

article. A citation is a record that consists of the names

of the authors, the title of the referred article, the time

and place of publication, as well as various other fields.

The fields in the citation should collectively specify

unambiguously where the full text of the referred arti-

cle could be obtained. Typically, all citations are pre-

sented at the end of the referring article. However,

articles in certain domains list the citations as foot-

notes in the pages where the reference occurs. Citations

can range from references to be to single articles or to

entire books.

Key Points
Often, authors have to refer to knowledge that is deri-

ved from another work. For example, when quoting

text from another article or book, the author must

specify from which article or book the quotation is

obtained. Authors need to refer to other works in order

to point out preliminary information on the shoulders

of which the current treatise stands, to refer to related

work and contrast the currentworkwith previousworks,

etc. A citation is used for primarily two purposes:

(i) to provide a reference to an article or book such

that the reader can retrieve the article or book easily

and read the article to gain additional knowledge, and

(ii) to provide credit (or discredit for ‘‘negative’’ cita-

tions) to the authors of the works that are being cited.

There are various widely used formats for citations.

Citation formats vary by discipline; typically a discipline

adheres to one (or a few) ‘‘style-guide’’ that indicates

what fields should be mentioned in a citation and

how the fields should be formatted and presented. Re-

cently, with the proliferation of electronic documents
published over the World-Wide-Web, citations to

Uniform Resource Locators (URLs) of websites are in-

creasingly common. Unlike printed articles and books,

websites are dynamic and can change frequently. There-

fore, in order to specify precisely which version of the

webpage was being referred, apart from the publication

date, authors usually provide the date on which the

website was accessed.

Citations analysis has been performed to identify

the impact of published articles. Because different

authors use different formats, automatic analysis of

citations requires citation matching. Citation matching

helps identify which different citations formatted dif-

ferently refer to the same article or book. The term

bibliometrics is used to refer to metrics designed based

on citation analysis. Citation indexing for academic

journals was popularized by Eugene Garfield [1,2].

A citation index contains the information about

which document cites which. The term co-citation

refers to the frequency with which two documents are

cited together [3]. Today, Google Scholar (http://schol-

ar.google.com) provides a readily-available collection

of indexed citations on the web.

Cross-references
▶Digital Library

Recommended Reading
1. Garfield E. Citation Indexing: Its Theory and Application in

Science, Technology, and Humanities. Wiley, New York, NY,

USA, 1979.

2. Garfield E. Citation analysis as a tool in journal evaluation:

journals can be ranked by frequency and impact of citations

for science policy studies. Science, 178(4060):471–479, 1972.

3. Small H. Co-citation in the scientific literature: a new measure of

the relationship between two documents. J. Am. Soc. Inf. Sci.,

Wiley Periodicals, 24(4):265–269, 1973.
CLARA (Clustering LARge
Applications)

▶K-Means and K-Medoids
CLARANS (Clustering Large
Applications Based Upon
Randomized Search)

▶K-Means and K-Medoids

Classification C 331

C

Classification

IAN H. WITTEN

University of Waikato, Hamilton, New Zealand

Synonyms
Classification learning; Supervised learning; Learning

with a teacher, Concept learning; Statistical decision

techniques

Definition
In Classification learning, an algorithm is presented

with a set of classified examples or ‘‘instances’’ from

which it is expected to infer a way of classifying unseen

instances into one of several ‘‘classes’’. Instances have a

set of features or ‘‘attributes’’ whose values define that

particular instance. Numeric prediction, or ‘‘regres-

sion,’’ is a variant of classification learning in which

the class attribute is numeric rather than categorical.

Classification learning is sometimes called supervised

because the method operates under supervision by

being provided with the actual outcome for each of

the training instances. This contrasts with clustering

where the classes are not given, and with association

learning which seeks any association – not just one that

predicts the class.

Historical Background
Classification learning grew out of two strands of work

that began in the 1950s and were actively pursued

throughout the 1960s: statistical decision techniques

and the Perceptron model of neural networks. In 1955,

statisticians Bush and Mosteller published a seminal

book Stochastic Models for Learning which modeled in

mathematical terms the psychologist B. F. Skinner’s

experimental analyses of animal behavior using re-

inforcement learning [2]. The ‘‘perceptron’’ was a

one-level linear classification scheme developed by

Rosenblatt around 1957 and published in his book

Principles of Neurodynamics: Perceptrons and the Theory

of Brain Mechanisms [10]. In a response published in

1969, Minsky and Papert argued that perceptrons were

simplistic in terms of their representational capability

and had been greatly over-hyped as potentially univer-

sal learning machines [6]. This scathing response by

widely-respected artificial intelligence pioneers damp-

ened research in neural nets and machine learning

in general. Meanwhile, in 1957 others were investigat-

ing the application of Bayesian decision schemes
to pattern recognition; the general conclusion was

that full Bayesian models were prohibitively expensive.

In 1960 Maron investigated in the context of infor-

mation retrieval what has since become known as

the ‘‘naı̈ve Bayes’’ approach, which assumes independ-

ence between attributes notwithstanding overwhelm-

ing evidence to the contrary [5]. Other early machine

learning work was buried in cybernetics, the study of

feedback and derived concepts such as communication

and control in living and artificial organisms. Through-

out the 1960s classification learning applied to pattern

recognition was the central thread of the embryo field

of machine learning, as underlined by the subtitle of

Nilsson’s 1965 landmark book Learning Machines –

Foundations of Trainable Pattern-Classifying Systems [7].

Symbolic learning techniques began to recover from

the doldrums in the late 1970s, with influential and

almost simultaneous publications by Breiman et al. on

classification and regression trees (the CARTsystem) [1]

and Quinlan on decision tree induction (the ID3 and

later C4.5 systems) [8,9]. Whereas Breiman was a stat-

istician, Quinlan was an experimental computer scien-

tist who first used decision trees not to generalize but to

condense large collections of chess end-games. Their

work proceeded independently, and the similarities

remained unnoticed until years later. CART (by default)

producesmultivariate trees whose tests can involvemore

than one attribute: these are more accurate and smaller

than the univariate trees produced by Quinlan’s systems,

but take longer to generate.

The first workshop devoted to machine learning

was held in 1980 at Carnegie-Mellon University. Fur-

ther workshops followed in 1983 and 1985. These

invitation-only events became an open conference in

1988. Meanwhile the journal Machine Learning was

established in 1986. By the 1990s the subject had be-

come the poster child of artificial intelligence – a suc-

cessful, burgeoning, practical technology that eschewed

the classical topics of general knowledge representation,

logical deduction, theorem proving, search techniques,

computational linguistics, expert systems and philo-

sophical foundations that still characterize the field

today. Classification learning, which forms the core of

machine learning, outgrew its behaviorist and neurolog-

ical roots andmoved into the practical realm of database

systems.

Early work focused on the process of learning –

learning curves, the possibility of sustained learning, and

the like – rather than the results of learning. However,

332C Classification
with the new emphasis on applications, objective tech-

niques of empirical testing began to supplant the sce-

nario-based style of evaluation that characterized the

early days. A major breakthrough came during the

1980s, when researchers finally realized that evaluating

a learning system on its training data gave misleading

results, and instead put the subject on a secure statisti-

cal footing.

Foundations
One of the most instructive lessons learned since the

renaissance of classification in the 1980s is that simple

schemes often work very well. Today, practitioners

strongly recommend the adoption of a ‘‘simplicity-

first’’ methodology when analyzing practical datasets.

There are many different kinds of simple structure that

datasets can exhibit. One dataset might have a single

attribute that does all the work, the others being irrele-

vant or redundant. Alternatively, the attributes might

contribute independently and equally to the final

outcome. Underlying a third dataset might be a simple

contingent structure involving just a few attributes.

In a fourth, a few independent rules may govern the

assignment of instances to classes. In a fifth, classifica-

tions appropriate to particular regions of instance

space might depend on the distance between the

instances themselves. A sixth might exhibit depen-

dence among numeric attributes, determined by a

sum of attribute values with appropriately chosen

weights. This sum might represent the final output

for numeric prediction, or be compared to a fixed

threshold in a binary decision setting. Each of these

examples leads to a different style of method suited to

discovering that kind of structure.

Rules Based on a Single Attribute

Even when instances have several attributes, the classi-

fication decision may rest on the value of just one of

them. Such a structure constitutes a set of rules that all

test the same attribute (or, equivalently, a one-level

decision tree). It can be found by evaluating the suc-

cess, in terms of the total number of errors on the

training data, of testing each attribute in turn, predict-

ing the most prevalent class for each value of that

attribute. If an attribute has many possible values –

and particularly if it has numeric values – this may

‘‘overfit’’ the training data by generating a rule that has

almost as many branches as there are instances. Minor

modifications to the scheme overcome this problem.
A startling discovery published in 1993 was that

‘‘very simple classification rules perform well on most

commonly used datasets’’ [3]. In an empirical investiga-

tion of the accuracy of rules that classify instances on

the basis of a single attribute, on most standard datasets

the resulting rule was found to be as accurate as the

structures induced by the majority of machine learning

systems – which are far more complicated. The moral? –

always compare new methods with simple baseline

schemes.
Statistical Modeling (see entry Bayesian Classification)

Another simple technique is to use all attributes and

allow them to make contributions to the decision that

are equally important and independent of one another,

given the class. Although grossly unrealistic – what

makes real-life datasets interesting is that the attributes

are certainly not equally important or independent –

it leads to a statistically-based scheme that works sur-

prisingly well in practice. Employed in information

retrieval as early as 1960 [5], the idea was rediscovered,

dubbed ‘‘naı̈ve Bayes,’’ and introduced into machine

learning 30 years later [4]. Despite the disparaging

moniker it works well on many actual datasets. Over-

reliance on the independence of attributes can be

countered by applying attribute selection techniques.
Divide and Conquer Technique (see entry Decision

Tree Classification)

The process of constructing a decision tree can be

expressed recursively. First, select an attribute to use

at the root, and make a branch for each possible value.

This splits the instance set into subsets, one for every

value of the attribute. Now repeat the process recursively

for each branch, using only those instances that actually

reach the branch. If all instances at a node have the same

classification, stop developing that part of the tree. This

method of ‘‘top-down induction of decision trees’’ was

explored and popularized by Quinlan [8,9]. The nub of

the problem is to select an appropriate attribute at each

stage. Ofmany heuristics that have been investigated, the

dominant one is to measure the expected amount of

information gained by knowing that attribute’s actual

value. Having generated the tree, it is selectively pruned

back from the leaves to avoid over-fitting. A series of

improvements include ways of dealing with numeric

attributes,missing values, and noisy data; and generating

rules from trees.

Classification C 333

C

Covering Algorithms (see entry Rule-Based

Classification)

Classification rules can be produced by taking each

class in turn and seeking a rule that covers all its

instances, at the same time excluding instances not in

the class. This bottom-up approach is called covering

because at each stage a rule is identified that ‘‘covers’’

some of the instances. Although trees can always be

converted into an equivalent rule set, and vice versa,

the perspicuity of the representation often differs.

Rules can be symmetric whereas trees must select one

attribute to split on first, which can produce trees that

are much larger than an equivalent set of rules. In

the multiclass case a decision tree split takes account

of all classes and maximizes the information gained,

whereas many rule generation methods concentrate

on one class at a time, disregarding what happens to

the others.

Instance-Based Learning (see entry Nearest Neighbor

Classification)

Another approach is to store training instances verba-

tim and, given an unknown test instance, use a distance

function to determine the closest training instance and

predict its class for the test instance. Suitable distance

functions are the Euclidean or Manhattan (city-block)

metric; attributes should be normalized to lie between

0 and 1 to compensate for scaling effects. For nominal

attributes that assume symbolic rather than numeric

values, the distance between two values is 1 if they are

not the same and 0 otherwise. In the k-nearest neigh-

bor strategy, some fixed number of nearest neighbors –

say five – are located and used together to determine

the class of the test instance by majority vote. Another

way of proofing the database against noise is to selec-

tively and judiciously choose the exemplars that are

added. Nearest-neighbor classification was notoriously

slow until advanced data structures like kD-trees were

applied in the early 1990s.

Linear Models (see entry Linear Regression)

When the outcome and all attributes are numeric,

linear regression can be used. This expresses the class

as a linear combination of the attributes, with weights

that are calculated from the training data. Linear re-

gression has been popular in statistical applications for

decades. If the data exhibits a nonlinear dependency,

the best-fitting straight line will be found, where ‘‘best’’

is interpreted in the least-mean-squared-difference
sense. Although this line may fit poorly, linear models

can serve as building blocks for more complex learning

schemes.

Linear Classification (see entry Neural Networks,

Support Vector Machine)

The idea of linear classification is to find a hyperplane in

instance space that separates two classes. (In the multi-

class case, a binary decision can be learned for each

pair of classes.) If the linear sum exceeds zero the first

class is predicted; otherwise the second is predicted. If

the data is linearly separable – that is, it can be separated

perfectly using a hyperplane – the perceptron learn-

ing rule espoused by Rosenblatt is guaranteed to find

a separating hyperplane [10]. This rule adjusts the

weight vector whenever the prediction for a particular

instance is erroneous: if the first class is predicted the

instance (expressed as a vector) is added to the weight

vector (making it more likely that the result will be

positive next time around); otherwise the instance is

subtracted.

There have been many powerful extensions of this

basic idea. Support vector machines use linear deci-

sions to implement nonlinear class boundaries by

transforming the input using a nonlinear mapping.

Multilayer perceptrons connect many linear models

in a hierarchical arrangement that can represent non-

linear decision boundaries, and use a technique called

‘‘back-propagation’’ to distribute the effect of errors

through this hierarchy during training.

Missing Values

Most datasets encountered in practice contain missing

values. Sometimes different kinds are distinguished (e.g.,

unknown vs. unrecorded vs. irrelevant values). They

may occur for a variety of reasons. There may be some

significance in the fact that a certain instance has an

attribute value missing – perhaps a decision was taken

not to perform some test – and that might convey infor-

mation about the instance other than the mere absence

of the value. If this is the case, not tested should be

recorded as another possible value for this attribute.

Only someone familiar with the data can make an

informed judgment as to whether a particular value

being missing has some significance or should simply

be coded as an ordinary missing value. For example,

researchers analyzing medical databases have noticed

that cases may, in some circumstances, be diagnosable

strictly from the tests that a doctor decides to make,

334C Classification
regardless of the outcome of the tests. Then a record of

which values are ‘‘missing’’ is all that is needed for a

complete diagnosis – the actual measurements can be

ignored entirely!

Meta-Learning

Decisions can often be improved by combining the

output of several different models. Over the past decade

or so the techniques of bagging, boosting, and stacking

have been developed that learn an ensemble of models

and deploy them together. Their performance is often

astonishingly good. Researchers have struggled to under-

stand why, and during that struggle new methods have

emerged that are sometimes even better. For example,

whereas human committees rarely benefit from noisy

distractions, shaking up bagging by adding random var-

iants of classifiers can improve performance. Boosting –

perhaps the most powerful of the three methods – is

related to the established statistical technique of additive

models, and this realization has led to improved

procedures.

Combined models share the disadvantage of being

rather hard to analyze: they can comprise dozens or

even hundreds of individual learners and it is not easy

to understand in intuitive terms what factors are con-

tributing to the improved decisions. In the last few years

methods have been developed that combine the perfor-

mance benefits of committees with comprehensible

models. Some produce standard decision tree models;

others introduce new variants of trees that provide

optional paths.

Evaluation

For classification problems, performance is naturally

measured in terms of the error rate. The classifier pre-

dicts the class of each test instance: if it is correct, that

is counted as a success; if not, it is an error. The error

rate is the proportion of errors made over a whole set

of instances, and reflects the overall performance of the

classifier. Performance on the training set is definitely

not a good indicator of expected performance on an

independent test set. A classifier is overfitted to a data-

set if its structure reflects that particular set to an

excessive degree. For example, the classifier might be

generated by rote learning without any generalization

whatsoever. An overfitted classifier usually exhibits

performance on the training set which is excellent but

far from representative of performance on other data-

sets from the same source.
In practice, one must predict performance bounds

based on experiments with whatever data is available.

Labeled data is required for both training and testing,

and is often hard to obtain. A single data set can be

partitioned for training and testing in various different

ways. In a popular statistical technique called cross-

validation the experimenter first decides on a fixed

number of ‘‘folds,’’ or partitions of the data – say three.

The data is split into three approximately equal portions,

and each in turn is used for testing while the remainder

serves for training. The procedure is repeated three times

so that in the end every instance has been used exactly

once for testing. This is called threefold cross-validation.

‘‘Stratification’’ is the idea of ensuring that all classes

are represented in all folds in approximately the right

proportions. Stratified tenfold cross-validation has

become a common standard for estimating the error

rate of a classification learning scheme. Alternatives

include leave-one-out cross-validation, which is effec-

tively n-fold cross-validation where n is the size of the

data set; and the bootstrap, which takes a carefully-

judged number of random samples from the data with

replacement and uses these for training, combining the

error rate on the training data (an optimistic estimate)

with that on the test data (a pessimistic estimate, since

the classifier has only been trained on a subset of the full

data) to get an overall estimate.

Key Applications
Classification learning is one of the flagship triumphs

of research in artificial intelligence. It has been used for

problems that range from selecting promising embryos

to implant in a human womb during in vitro fertiliza-

tion to the selection of which cows in a herd to sell off

to an abattoir. Fielded applications are legion. They

include decisions involving judgment, such as whether

a credit company should make a loan to a particular

person; screening images, such as the detection of oil

slicks from satellite images; load forecasting, such as

combining historical load information with current

weather conditions and other events to predict hourly

demand for electricity; diagnosis, such as fault finding

and preventative maintenance of electromechanical

devices; marketing and sales, such as detecting custo-

mers who are likely to switch to a competitor.

URL to Code
The Weka machine learning workbench is a popular

tool for experimental investigation and comparison

Classification by Association Rule Analysis C 335
of classification learning techniques, as well as other

machine learning methods. It is described in [11] and

available for download from http://www.cs.waikato.ac.

nz/ml/weka.
C

Cross-references
▶Abstraction

▶Association Rules

▶Bagging

▶Bayesian Classification

▶Boosting

▶Bootstrap

▶Cataloging in Digital Libraries

▶Classification by Association Rule Analysis

▶Clustering Overview and Applications

▶Cross-Validation

▶Data Mining

▶Decision Rule Mining in Rough Set Theory

▶Decision Tree Classification

▶ Fuzzy Set Approach

▶Genetic Algorithms

▶ Linear Regression

▶ Log-Linear Regression

▶Nearest Neighbor Classification

▶Neural Networks

▶Receiver Operating Characteristic

▶Rule-Based classification

▶ Support Vector Machine
Recommended Reading
1. Breiman L., Friedman J.H., Olshen R.A., and Stone C.J. Classifi-

cation and Regression Trees. Wadsworth, Pacific Grove, CA,

1984.

2. Bush R.R. and Mosteller F. Stochastic Models for Learning.

Wiley, New York, 1955.

3. Holte R.C. Very simple classification rules perform well on most

commonly used datasets. Mach. Learn., 11:63–91, 1993.

4. Kononebko I. ID3, sequential Bayes, naı̈ve Bayes and Bayesian

neural networks. In Proc. 4th European Working Session on

Learning, 1989, pp. 91–98.

5. Maron M.E. and Kuhns J.L. On relevance, probabilistic indexing

and information retrieval. J. ACM, 7(3):216–244, 1960.

6. Minsky M.L. and Papert S. Perceptrons. Cambridge, MIT Press,

1969.

7. Nilsson N.J. Learning Machines. McGraw-Hill, New York,

1965.

8. Quinlan J.R. Induction of decision trees. Mach. Learn.,

1(1):81–106, 1986.

9. Quinlan J.R. C4.5: Programs for Machine Learning. Morgan

Kaufmann, San Francisco, CA, 1993.
10. Rosenblatt F. Principles of Neurodynamics. Spartan, Washington,

DC, 1961.

11. Witten I.H. and Frank E. Data Mining: Practical Machine

Learning Tools and Techniques (2nd edn.). Morgan Kaufmann,

San Francisco, CA, 2003.
Classification by Association Rule
Analysis

BING LIU

University of Illinois at Chicago, Chicago, IL, USA

Synonyms
Associative classification

Definition
Given a training dataset D, build a classifier (or a

classification model) from D using an association rule

mining algorithm. The model can be used to classify

future or test cases.

Historical Background
In the previous section, it was shown that a list of

rules can be induced or mined from the data for classi-

fication. A decision tree may also be converted to a set

of rules. It is thus only natural to expect that association

rules [1] be used for classification as well. Yes, indeed!

Since the first classification system (called CBA) that

used association rules was reported in [10], many tech-

niques and systems have been proposed by researchers

[2–4,6–8,13,15,16]. CBA is based on class association

rules (CAR), which are a special type of association

rules with only a class label on the right-hand-side of

each rule. Thus, syntactically or semantically there is no

difference between a rule generated by a class associa-

tion rule miner and a rule generated by a rule induction

system (or a decision tree system for that matter).

However, class association rule mining inherits the

completeness property of association rule mining [1].

That is, all rules that satisfy the user-specified mini-

mum support and minimum conference are generated.

Other classification algorithms only generate a small

subset of rules existing in data for classification [9,10].

Most existing classification systems based on asso-

ciation rules (also called associative classifiers) employ

CARs directly for classification, although their ways

of using CARs can be quite different [3,7,8,10,15,16].

336C Classification by Association Rule Analysis
To deal with unbalanced class distributions, the multi-

ple minimum class supports approach is proposed

in [9,11], which gives each class a different minimum

support based on its relative frequency in the data.

In [2,4,6,13], the authors also proposed to use rules

as features or attributes to augment the original data

or even to replace the original data. That is, in these

techniques, CARs are not directly used for classifica-

tion, but are used only to expand or to replace the

original data. Any classification technique can be used

subsequently to build the final classifier based on

the expanded data, e.g., naı̈ve Bayesian and SVM.

Since the number of class association rules can be

huge, closed rule sets have been proposed for classifi-

cation in [3]. This approach helps solve the problem

that in many data sets the complete sets of CARs

cannot be generated due to combinatorial explosion.

The closed rule set is a smaller, lossless and concise

representation of all rules. Thus, long rules (rules with

many conditions) may be used in classification,

which otherwise may not be generated but can be

crucial for accurate classification. Finally, normal asso-

ciation rules may be used for prediction or classifica-

tion as well.

This section thus introduces the following three

approaches to using association rules for classification:

1. Using class association rules for classification

2. Using class association rules as features or attributes

3. Using normal association rules for classification

The first two approaches can be applied to tabular data

or transactional data. The last approach is usually

employed for transactional data only. Transactional

data sets are difficult to handle by traditional classifi-

cation techniques, but are very natural for association

rules. Below, the three approaches are described in

turn. Note that various sequential rules can be used

for classification in similar ways as well if sequential

data sets are involved [6].

Foundations

Classification Using Class Association Rules

As mentioned above, a class association rule (CAR) is

an association rule with only a class label on the right-

hand side of the rule. Any association rule mining

algorithm can be adapted for mining CARs. For exam-

ple, the Apriori algorithm [1] for association rule

mining was adapted to mine CARs in [10].
There is basically no difference between rules gen-

erated from a decision tree (or a rule induction system)

and CARs if only categorical (or discrete) attributes

(more on this later) are considered. The differences are

in the mining processes and the final rule sets. CAR

mining finds all rules in data that satisfy the user-

specified minimum support (minsup) and minimum

confidence (minconf) constraints. A decision tree or a

rule induction system finds only a subset of the rules

(expressed as a tree or a list of rules) for classification.

In many cases, rules that are not in the decision tree

(or the rule list) may be able to perform the classifica-

tion more accurately. Empirical comparisons reported

by several researchers have shown that classification

using CARs can perform more accurately on many

data sets than decision trees and rule induction systems

[7,8,10,15,16].

The complete set of rules from CAR mining is

also beneficial from the rule usage point of view. In

many applications, the user wants to act on some

interesting rules. For example, in an application for

finding causes of product problems in a manufacturing

company, more rules are preferred to fewer rules be-

cause with more rules, the user is more likely to

find rules that indicate causes of problems. Such

rules may not be found by a decision tree or a rule

induction system. A deployed data mining system

based on CARs is reported in [12] for finding action-

able knowledge from manufacturing and engineering

data sets.

One should, however, also bear in mind of the

following differences between CAR mining and deci-

sion tree construction (or rule induction):

1. Decision tree learning and rule induction do not

use the minsup or minconf constraint. Thus, some

rules that they find can have very low supports,

which, of course, are likely to be pruned because

the chance that they overfit the training data is

high. Although a low minsup for CAR mining can

be used, it may cause combinatorial explosion.

In practice, in addition to minsup and minconf, a

limit on the total number of rules to be generated

may be used to further control the CAR generation

process. When the number of generated rules

reaches the limit, the algorithm stops. However,

with this limit, long rules (with many conditions)

may not be generated. Recall that the Apriori algo-

rithm works in a level-wise fashion, i.e., short

Classification by Association Rule Analysis C 337

C

rules are generated before long rules. In some

applications, this may not be an issue as short

rules are often preferred and are sufficient for clas-

sification or for action. Long rules normally have

very low supports and tend to overfit the data.

However, in some other applications, long rules

can be useful.

2. CAR mining does not use continuous (numeric)

attributes, while decision trees deal with continu-

ous attributes naturally. Rule induction can use

continuous attributes as well. There is still no satis-

factory method to deal with such attributes

directly in association rule mining. Fortunately,

many attribute discretization algorithms exist

that can automatically discretize the value range

of a continuous attribute into suitable intervals

[e.g., [5]], which are then considered as discrete

values.

Mining Class Association Rules for Classification There

are many techniques that use CARs to build classifiers.

Before describing them, it is useful to first discuss some

issues related to CAR mining for classification.

Rule pruning: CAR rules are highly redundant, and

many of them are not statistically significant (which

can cause overfitting). Rule pruning is thus needed.

The idea of pruning CARs is basically the same as tree

pruning in decision tree building or rule pruning in

rule induction. Thus, it will not be discussed further

(see [8,10] for some of the pruning methods).

Multiple minimum class supports: A single minsup

may be inadequate for mining CARs because many

practical classification data sets have uneven class dis-

tributions, i.e., some classes cover a large proportion of

the data, while others cover only a very small propor-

tion (which are called rare or infrequent classes).

For example, there is a data set with two classes, Y

and N. 99% of the data belong to the Y class, and

only 1% of the data belong to theN class. If the minsup

is set to 1.5%, no rule for classN will be found. To solve

the problem, the minsup needs to be lowered. Suppose

the minsup is set to 0.2%. Then, a huge number of

overfitting rules for class Y may be found because

minsup = 0.2% is too low for class Y.

Multiple minimum class supports can be applied to

deal with the problem. A different minimum class sup-

port minsupi for each class ci can be assigned, i.e., all the

rules of class ci must satisfy minsupi. Alternatively, one

single total minsup can be provided, denoted by
t_minsup, which is then distributed to each class

according to the class distribution:

minsupi ¼ t minsup � sup cið Þ

where sup(ci) is the support of class ci in the training

data. The formula gives frequent classes higher mins-

ups and infrequent classes lower minsups. There is also

a general algorithm for mining normal association

rules using multiple minimum supports in [9,11].

Parameter selection: The parameters used in CAR

mining are the minimum supports and the minimum

confidences. Note that a different minimum confi-

dence may also be used for each class. However, mini-

mum confidences do not affect the classification much

because classifiers tend to use high confidence rules.

One minimum confidence is sufficient as long as it

is not set too high. To determine the best minsupi
for each class ci, a range of values can be tried to

build classifiers and then use a validation set to select

the final value. Cross-validation may be used as well.

Classifier Building After all CAR rules are found, a

classifier is built using the rules. There are many exist-

ing approaches, which can be grouped into three

categories.

Use the strongest rule: This is perhaps the simplest

strategy. It simply uses CARs directly for classification.

For each test instance, it finds the strongest rule that

covers the instance. A rule covers an instance if the

instance satisfies the conditions of the rule. The

class of the strongest rule is then assigned as the class

of the test instance. The strength of a rule can be

measured in various ways, e.g., based on confidence,

w2 test, or a combination of both support and confi-

dence values.

Select a subset of the rules to build a classifier: The

representative method of this category is the one used

in the CBA system [10]. The method is similar to the

sequential covering method, but applied to class asso-

ciation rules with additional enhancements as dis-

cussed above.

Let the set of all discovered CARs be S. Let the

training data set be D. The basic idea is to select a

subset L (
 S) of high confidence rules to cover D.

The set of selected rules, including a default class, is

then used as the classifier. The selection of rules

is based on a total order defined on the rules in S.

Definition: Given two rules, ri and rj, ri �rj(called ri
precedes rj, or ri has a higher precedence than rj) if

338C Classification by Association Rule Analysis
1. The confidence of riis greater than that of rj, or

2. Their confidences are the same, but the support of riis

greater than that of rj, or

3. Both the confidences and supports of riand rj are the

same, but ri is generated earlier than rj.
Cla
A CBA classifier L is of the form:

L = < r1, r2,...,rk, default-class>
where ri 2 S, ra � rb if b > a. In classifying a test

case, the first rule that satisfies the case classifies it.

If no rule applies to the case, it takes the default class

(default-class). A simplified version of the algorithm

for building such a classifier is given in Fig. 1. The

classifier is the RuleList.

This algorithm can be easily implemented by

making one pass through the training data for every

rule. However, this is extremely inefficient for large

data sets. An efficient algorithm that makes at most

two passes over the data is given in [10].

Combine multiple rules: Like the first approach,

this approach does not have an additional step to

build a classifier. At the classification time, for each

test instance, the system first finds the subset of

rules that covers the instance. If all the rules in the

subset have the same class, the class is assigned to

the test instance. If the rules have different classes, the

system divides the rules into groups according to their

classes, i.e., all rules of the same class are in the same

group. The system then compares the aggregated

effects of the rule groups and finds the strongest

group. The class label of the strongest group is assigned

to the test instance. To measure the strength of a

rule group, there again can be many possible techni-

ques. For example, the CMAR system uses a weighted

w2 measure [8].

Class Association Rules as Features

In the above two approaches, rules are directly used for

classification. In this approach, rules are used as
ssification by Association Rule Analysis. Figure 1. A sim
features to augment the original data or simply form

a new data set, which is then fed to a traditional

classification algorithm, e.g., decision trees or the

naı̈ve Bayesian algorithm.

To use CARs as features, only the conditional

part of each rule is needed, and it is often treated

as a Boolean feature/attribute. If a data instance in

the original data contains the conditional part, the

value of the feature/attribute is set to 1, and 0 other-

wise. Several applications of this method have been

reported [2,4,6,13]. The reason that this approach

is helpful is that CARs capture multi-attribute or

multi-item correlations with class labels. Many classi-

fication algorithms do not find such correlations (e.g.,

the naı̈ve Bayesian method), but they can be quite

useful.

Classification Using Normal Association Rules

Not only can class association rules be used for classifi-

cation, but also normal association rules. For example,

association rules are commonly used in e-commerce

Web sites for product recommendations, whichwork as

follows: When a customer purchases some products,

the system recommends him/her some other related

products based on what he/she has already purchased.

Recommendation is essentially a prediction prob-

lem. It predicts what a customer is likely to buy. Associa-

tion rules are naturally applicable to such applications.

The classification process is as follows:

1. The system first uses previous purchase transac-

tions (the same as market basket transactions) to

mine association rules. In this case, there are no

fixed classes. Any item can appear on the left-hand

side or the right-hand side of a rule. For recom-

mendation purposes, usually only one item appears

on the right-hand side of a rule.

2. At the prediction (e.g., recommendation) time,

given a transaction (e.g., a set of items already
ple classifier building algorithm.

Classification by Association Rule Analysis C 339

C

purchased by a customer), all the rules that cover

the transaction are selected. The strongest rule is

chosen and the item on the right-hand side of the

rule (i.e., the consequent) is the predicted item and

is recommended to the user. If multiple rules are

very strong, multiple items can be recommended.

This method is basically the same as the ‘‘use the

strongest rule’’ method described earlier. Again, the

rule strength can be measured in various ways, e.g.,

confidence, w2 test, or a combination of both sup-

port and confidence. Clearly, the other two classi-

fication methods discussed earlier can be applied here

as well.

The key advantage of using association rules for

recommendation is that they can predict any item

since any item can be the class item on the right-

hand side. Traditional classification algorithms only

work with a single fixed class attribute, and are not

easily applicable to recommendations.

Finally, it should be noted that multiple minimum

supports in rule mining [11] can be of significant help.

Otherwise, rare items will never be recommended,

which is called the coverage problem [14]. It is shown

in [14] that using multiple minimum supports can

dramatically increase the coverage.

Key Applications
The applications of associative classifiers are very wide.

Three main scenarios are briefly described below.

1. Since classification using class association rules is a

supervised learning technique, it can be (and has

been) used as a classification algorithm just like

any other classification algorithm from machine

learning, e.g., decision trees, naı̈ve Bayesian classi-

fiers, SVM, and rule induction. In many cases, an

associative classifier performs better than these

classic machine learning techniques.

2. Apart from classification, individual class associa-

tion rules themselves are very useful in practice due

to the completeness property. In many practical

applications (especially diagnostic data mining

applications), the user wants to find interesting

rules that are actionable. As discussed earlier, tradi-

tional classification algorithms (e.g., rule induction

or any other technique) are not suitable for such

applications because they only find a small subset

of rules that exist in data. Many interesting or

actionable rules are not discovered. A deployed
data mining system, called Opportunity Map, for

Motorola Corporation was based on class associa-

tion rules [12]. When this entry was written, the

system had been in use in Motorola for more than

2 years and further improvements were still being

made. Although the system was originally designed

for finding rules that indicate causes of phone call

failures, it had been used in a variety of other

applications in Motorola.

3. Using normal association rules for classification

or prediction is also very common, especially

for the transaction type of data. For such kind of

data, as described above, traditional classification

techniques are not easily applicable because they

can only predict some fixed class items (or labels).

Cross-references
▶Association Rule Mining on Streams

▶Decision Trees

▶Rule Induction

Recommended Reading
1. Agrawal R. and Srikant R. Fast algorithms for mining association

rules. In Proc. 20th Int. Conf. on Very Large Data Bases, 1994,

pp. 487–499.

2. Antonie M.L. and Zaiane O. Text document categorization by

term association. In Proc. 2002 IEEE Int. Conf. on Data Mining,

2002, pp. 19–26.

3. Baralis E. and Chiusano S. Essential classification rule sets. ACM

Trans. Database Syst, 29(4):635–674, 2004.

4. Cheng H., Yan X., Han J., and Hsu C.-W. Discriminative frequent

pattern analysis for effective classification. In Proc. 23rd Int. Conf.

on Data Engineering, 2007, pp. 706–715.

5. Dougherty J., Kohavi R., and Sahami M. Supervised and unsu-

pervised discretization of continuous features. In Proc. 12th Int.

Conf. on Machine Learning, 1995, pp. 194–202.

6. Jindal N. and Liu B. Identifying comparative sentences in text

documents. In Proc. 32nd Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2006,

pp. 244–251.

7. Li J., Dong G., and Ramamohanarao K. Making use of the most

expressive jumping emerging patterns for classification. In

Advances in Knowledge Discovery and Data Mining, 4th

Pacific-Asia Conf., 2000, pp. 220–232.

8. Li W., Han J., and Pei J. CMAR: Accurate and efficient classifica-

tion based on multiple class-association rules. In Proc. 2001

IEEE Int. Conf. on Data Mining, 2001, pp. 369–376.

9. Liu B. Web data mining: exploring hyperlinks, contents and

usage data. Springer, Berlin, 2007.

10. Liu B., Hsu W., and Ma Y. Integrating classification and associa-

tion rule mining. In Proc. 4th Int. Conf. on Knowledge Discov-

ery and Data Mining, 1998, pp. 80–86.

11. Liu B., Hsu W., and Ma Y. Mining association rules with

multiple minimum supports. In Proc. 5th ACM SIGKDD

340C Classification Learning
Int. Conf. on Knowledge Discovery and Data Mining, 1999, pp.

337–341.

12. Liu B., Zhao K., Benkler J., and Xiao W. Rule interestingness

analysis using OLAP operations. In Proc. 12th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2006, pp.

297–306.

13. Meretakis D. and Wüthrich B. Extending naı̈ve bayes classifiers

using long itemsets. In Proc. 5th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, 1999, pp. 165–174.

14. Mobasher B., Dai H., Luo T., and Nakagawa N. Effective perso-

nalization based on association rule discovery from web usage

data. In Proc. 3rd ACM Workshop on Web Information and

Data Management, 2001, pp. 9–15.

15. Wang K., Zhou S., and He Y. Growing decision trees on support-

less association rules. In Proc. 6th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, 2000, pp. 265–269.

16. Yin X. and Han J. CPAR: classification based on predictive

association rules. In Proc. SIAM International Conference on

Data Mining, 2003.
Classification Learning

▶Classification
Classification in Streams

CHARU C. AGGARWAL

IBM T. J. Watson Research Center, Yorktown Heights,

NY, USA

Synonyms
Learning in streams; Knowledge discovery in streams

Definition
The classification problem is a well defined problem in

the data mining domain, in which a training data set is

supplied, which contains several feature attributes, and

a special attribute known as the class attribute. The

class attribute is specified in the training data, which is

used to model the relationship between the feature

attributes and the class attribute. This model is used

in order to predict the unknown class label value for

the test instance.

A data stream is defined as a large volume of con-

tinuously incoming data. The classification problem

has traditionally been defined on a static training or

test data set, but in the stream scenario, either the

training or test data may be in the form of a stream.
Historical Background
The problem of classification has been studied so widely

in the classification literature, that a single source for

the problem cannot be identified. Most likely, the

problem was frequently encountered in practical com-

mercial scenarios as a statistical problem, long before the

field of machine learning was defined. With advances

in hardware technology, data streams becamemore com-

mon, and most data mining problems such as clustering

and association rule mining were applied to the data

stream domain. Domingos and Hulten [2] were the first

to model the problem in the context of data streams.

Foundations
There are numerous techniques available for classifica-

tion in the classical literature [3]. However, most of

these techniques cannot be used directly for the stream

scenario. This is because the stream scenario creates a

number of special constraints which are as follows:

� The data stream typically contains a large volume

of continuously incoming data. Therefore the tech-

niques for training or testing need to be very effi-

cient. Furthermore, a data point may be examined

only once over the course of the entire computa-

tion. This imposes hard constraints on the nature

of the algorithms which may be used for stream

classification. This constraint is generally true of

almost all data mining algorithms.

� Often the patterns in the underlying data may evolve

continuously over time. As a result, the model may

soon become stale for data mining purposes. It is

therefore important to keep the models current even

when the patterns in the underlying data may

change. This issue is known as concept drift.

� Many stream classification methods have consider-

able memory requirements in order to improve

computational efficiency. The stream case is partic-

ularly resource constrained, since the memory may

sometimes be limited, while the computational

efficiency requirements continue to be very high.

� In many cases, the rate of incoming data cannot be

controlled easily. Therefore, the classification pro-

cess needs to be nimble enough in order to provide

effective tradeoffs between accuracy and efficiency.

Most of the known classification methods can be made

to work in the data stream scenario with a few mod-

ifications. These modifications are generally designed

to deal with either the one-pass constraint, or the

Classification in Streams C 341

C

stream evolution scenario. The different types of clas-

sifiers which can be modified for the data stream

scenario are as follows:

� Nearest Neighbor Classifiers: In these techniques,

the class label of the nearest neighbor to the target

record is used in order to perform the classification.

Since the nearest neighbor cannot be defined easily

over the entire stream, a stream sample is used in

order to perform the classification. This stream sam-

ple can be dynamically maintained with the one-pass

constraint with the use of a technique called reservoir

sampling. In order to deal with issues of stream

evolution, one can used biased reservoir sampling.

In biased sampling, a time decay function is used in

order to maintain a sample which is biased towards

more recent data points.

� Decision Tree Classifiers: In this techniques, decision

trees need to be built in one pass of the stream.

A method known as Very Fast Decision Trees

(VFDT)was proposed in [2] which uses probabilistic

split methods in order to create decision trees with

predictable accuracy. In particular, the Hoeffding

inequality is used in order to ensure that the gener-

ated tree produces the same tree as a conventional

learner. Several other techniques were proposed by

the same authors subsequently, which deal with the

time-changing aspect of the data streams.

� Cluster-based Classifiers: An on-demand stream

classification model was proposed which uses clus-

tering techniques in order to build the optimal

model for a classifier on demand. In this technique,

a micro-clustering technique is used in order to

compress the underlying data into clusters. The

data belonging to different classes are compressed

into different clusters. For a given test example, the

class of the closest cluster is used in order to predict

the class label. One key aspect of this classifier is

that it assumes that both the training and the test

data are in the form of a stream. The technique

calculates the optimal horizon for using the cluster

statistics.

� Ensemble Classifiers: In this case, a combination of

different models is used in order to deal with the

issue of concept drift. This is because different

kinds of models work better with different kinds

of data patterns. Therefore, an optimal model is

picked depending upon the current data pattern.

The idea is that different classifiers are more
effective for different kinds of data patterns. There-

fore, by making an optimal choice of the classifier

from the ensemble, it is possible to improve the

classification accuracy significantly.

� Bayes Classifiers: The naive Bayes classifier com-

putes the Bayes a-posteriori probabilities of a test

instance belonging to a particular class using the

inter-attribute independence assumption. The key

in adapting such classifiers is to be able to effective-

ly maintain the statistics used to compute condi-

tional probabilities in one pass. In the case of an

evolving data stream, the statistics need to be main-

tained over particular user-specific horizons.

A number of other methods for stream classification

also exist which cannot be discussed within the scope

of this entry. A detailed survey on classification meth-

ods may be found in [3].

Key Applications
Stream classification finds application to numerous

data domains such as network intrusion detection,

target marketing and credit card fraud detection.

In many of these cases, the incoming data clearly has

very large volume. For example, typical intrusion sce-

narios have a large volume of incoming data. Similarly,

in the case of target-marketing, super-store transac-

tions may have very large volumes of incoming data.

Many of the traditional classification applications

are still used in the batch mode, since the stream tech-

nology is still in its infancy, and it is sometimes simpler

to collect a sample of the data set and run a batch

process on it. Most of the traditional problems for the

classification domain will eventually be transformed to

the data stream scenario. This is because more and

more data domains are being converted to the stream

scenario with advances in hardware technology.

Cross-references
▶Association Rule Mining on Streams

▶Clustering on Streams

▶Data Stream

Recommended Reading
1. Aggarwal C.C. (ed.). Data Streams: Models and Algorithms.

Springer, Berlin Heidelberg, New York, 2007.

2. Domingos P. and Hulten G. Mining high speed data streams.

In Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining, 2000, pp. 71–80.

3. James M. Classification Algorithms. Wiley, New York, 1985.

342C Classification Tree
Classification Tree

▶Decision Tree Classification
Classification Trees

▶Decision Trees
Classifier Combination

▶ Ensemble
Client-Server DBMS. Figure 1. Client-server reference

architecture.
Client-Server DBMS

M. TAMER ÖZSU

University of Waterloo, Waterloo, ON, Canada

Definition
Client-server DBMS (database management system)

refers to an architectural paradigm that separates

database functionality between client machines and

servers.

Historical Background
The original idea, which is to offload the database

management functions to a special server, dates back

to the early 1970s [1]. At the time, the computer on

which the database system was run was called the

database machine, database computer, or backend com-

puter, while the computer that ran the applications

was called the host computer. More recent terms for

these are the database server and application server,

respectively.

The client-server architecture, as it appears today, has

become a popular architecture around the beginning

of 1990s [2]. Prior to that, the distribution of database

functionality assumed that there was no functional

difference between the client machines and servers (i.e.,

an earlier form of today’s peer-to-peer architecture).
Client-server architectures are believed to be easier to

manage than peer-to-peer systems, which has increased

their popularity.
Foundations
Client-server DBMS architecture involves a number of

database client machines accessing one or more data-

base server machines. The general idea is very simple

and elegant: distinguish the functionality that needs to

be provided and divide these functions into two clas-

ses: server functions and client functions. This pro-

vides a two-level architecture that makes it easier to

manage the complexity of modern DBMSs and the

complexity of distribution.

In client-server DBMSs, the database management

functionality is shared between the clients and the

server(s) (Fig. 1). The server is responsible for the

bulk of the data management tasks as it handles

the storage, query optimization, and transaction man-

agement (locking and recovery). The client, in addition

Client-Server DBMS. Figure 2. Database server

approach.

Client-Server DBMS C 343

C

to the application and the user interface, has a DBMS

clientmodule that is responsible for managing the data

that are cached to the client, and (sometimes) manag-

ing the transaction locks that may have been cached

as well. It is also possible to place consistency checking

of user queries at the client side, but this is not com-

mon since it requires the replication of the system

catalog at the client machines. The communication

between the clients and the server(s) is at the level of

SQL statements: the clients pass SQL queries to the

server without trying to understand or optimize

them; the server executes these queries and returns

the result relation to the client. The communication

between clients and servers are typically over a com-

puter network.

In themodel discussed above, there is only one server

which is accessed by multiple clients. This is referred to

as multiple client-single server architecture [3]. There

are a number of advantages of this model. As indicated

above, they are simple; the simplicity is primarily

due to the fact that data management responsibility

is delegated to one server. Therefore, from a data

management perspective, this architecture is similar

to centralized databases although there are some (im-

portant) differences from centralized systems in the

way transactions are executed and caches are managed.

A second advantage is that they provide predictable

performance. This is due to the movement of non-

database functions to the clients, allowing the server

to focus entirely on data management. This, however,

is also the cause of the major disadvantage of client-

server systems. Since the data management functional-

ity is centralized at one server, the server becomes a

bottleneck and these systems cannot scale very well.

The disadvantage of the simple client-server sys-

tems are partially alleviated by a more sophisticated

architecture where there are multiple servers in the

system (the so-called multiple client-multiple server

approach). In this case, two alternative management

strategies are possible: either each client manages its

own connection to the appropriate server or each client

knows of only its ‘‘home server’’, which then commu-

nicates with other servers as required. The former

approach simplifies server code, but loads the client

machines with additional responsibilities, leading to

what has been called ‘‘heavy client’’ systems. The latter

approach, on the other hand, concentrates the data

management functionality at the servers. Thus, the
transparency of data access is provided at the server

interface, leading to ‘‘light clients.’’

The integration of workstations in a distributed

environment enables an extension of the client-server

architecture and provides for a more efficient function

distribution. Application programs run onworkstations,

called application servers, while database functions

are handled by dedicated computers, called database

servers. The clients run the user interface. This leads to

the present trend in three-tier distributed system archi-

tecture, where sites are organized as specialized servers

rather than as general-purpose computers (Fig. 2).

The application server approach (indeed, a n-tier

distributed approach) can be extended by the introduc-

tion of multiple database servers and multiple applica-

tion servers, as can be done in client-server architectures.

In this case, it is common for each application server to

be dedicated to one or a few applications, while database

servers operate in the multiple server fashion discussed

above.

Key Applications
Many of the current database applications employ either

a two-layer client-server architecture of the three-layer

application-server approach.

344C Clinical Classifications
Cross-references
▶DBMS Architecture

Recommended Reading
1. Canaday R.H., Harrisson R.D., Ivie E.L., Rydery J.L., and

Wehr L.A. A back-end computer for data base management.

Commun. ACM, 17(10):575–582, 1974.

2. Orfali R., Harkey D., and Edwards J. Essential Client/Server

Survival Guide, Wiley, New York, 1994.

3. Özsu M.T. and Valduriez P. Principles of Distributed

Database Systems, 2nd edn., Prentice-Hall, Englewood Cliffs,

NJ, 1999.
Clinical Classifications

▶Clinical Ontologies
Clinical Content Database

▶Clinical Knowledge Repository
Clinical Content Registry

▶Clinical Knowledge Repository
Clinical Content Repository

▶Clinical Knowledge Repository
Clinical Data Acquisition, Storage
and Management

CHIMEZIE OGBUJI

Cleveland Clinic Foundation, Cleveland, OH, USA

Synonyms
Electronic data capture; Case report forms; Clinical

data management systems
Definition
The management of clinical data for supporting

patient care and for supporting retrospective clinical

research requires a means to acquire the clinical data

and a repository that stores the data and provides

the functions necessary for managing them over their

lifetime. Typically, patient data are collected ‘‘at the

point of care’’ (i.e., onsite where health care is being

provided) and entered into a patient record system [2].

Data entry is typically the first line of precaution

for maintaining a certain amount of quality on the

data collected. Subsequently, a representative from

an externally sponsoring organization or authorized

personnel from within the health care institution

then extracts a select set of medical record data into

a Clinical Data Management System (CDMS). The

entries in such systems are often referred to as second-

ary patient records since they are derived from a pri-

mary patient record and are used by personnel who are

not involved in direct patient care [2]. These systems

are also often referred to as patient registries.

The study committee of the Institute of Medicine

(IOM) defined [2] a computer-based patient record

(CPR) as

" an electronic patient record that resides in a system

specifically designed to support users by providing

accessibility to complete and accurate data, alerts,

reminders, clinical decision support systems, links to

medical knowledge, and other aids.

Such systems are also often referred to as Electronic

Health Records (EHRs). The committee also defined

a primary patient record as one used by health care

professionals while providing patient care services

to review patient data or document their own obser-

vations, actions, or instructions [2]. Finally, the com-

mittee emphasized the distinction between clinical

data and the systems that capture and process this

data by defining a patient record system as

" the set of components that form the mechanism by

which patient records are created, used, stored, and

retrieved.

A CDMS is the repository for the management of the

data used for clinical studies or trials. One of the core

services provided by a CDMS is to facilitate the identi-

fication (and correction) of errors due to human entry

as well as errors that existed in the source from which

Clinical Data Acquisition, Storage and Management C 345

C

the data was gathered. Data completeness implies that

CDMS will accommodate an expected range and com-

plexity for the data in the system [2]. In addition, the

CDMS can employ the use and enforcement of one or

more vocabulary standards.

Finally, a CDMS will also provide services for

querying the data as well as generate reports from the

data. The generated reports and results of such queries

are typically transmitted to a centralized authority

or normalized for use by statistical analysis tools.
Historical Background
Virtually every person in the United States who has

received health care in the United States since 1918

has a patient record [2]. Most of these records consist

of structured paper forms with sections that con-

sist solely of narrative text. However, conventional

patient records can also appear in other forms such

as scanned media, microfilm, optical disk, etc.

They are created and used most frequently in health

care provider settings. However, their use also extends

to other facilities such as correctional institutions,

the armed forces, occupational health programs, and

universities [2].

The process of recording patient care information

has primarily consisted of entry into a paper patient

record. For the purpose of a clinical trial or study,

data are manually transcribed into a paper Case

Report Form (CRF). CRFs are typically in the form

of a questionnaire formulated to collect informa-

tion specific to a particular clinical trial. The ICH

Guidelines for Good Clinical Practice define [4] the

CRF as:

" A printed, optical, or electronic document designed to

record all of the protocol required information to be

reported to the sponsor on each trial subject.

CRFs are then collected by a representative from the

sponsoring organization and manually entered into a

CDMS. This secondary transcription is often called

double data entry. In some cases, Optical Character

Recognition (OCR) is used to semi-automate the

transcription from a CRF into a CDMS [1].

Traditionally, clinical data management systems

consist of infrastructure built on top of relational

database management systems. Depending on the

nature of the requirements for the creation of analysis
data sets for biostatisticians, accuracy of the data,

and speed of data entry, a wide spectrum of database

management or spreadsheet systems are used as the

underlying medium of storage for the CDMS.

Good database design and proper application

of relational model theory for normalizing the data

is typically used to ensure data accuracy. Traditional

relational query languages such as SQL are used to

identify and extract relevant variables for subsequent

analysis or reporting purposes.
Foundations

Electronic Data Capture

There is a slow, but steady move by pharmaceutical

companies towards the adoption of an electronic

means of capturing patient record information directly

from the source and at the point of care into an

electronic system that submits the data relevant to

the trial to the sponsor or to other consumers of

electronic patient record data. This new shift of em-

phasis from paper to a direct electronic system is often

referred to (in the health care industry) as Electronic

Data Capture (EDC) [3].
Infrastructure and Standards for Data Exchange

Once patient record data are collected and stored in

an electronic information system, the increasing need

to transfer the machine-readable data to external

systems emphasizes the importance of standardized

formats for communication between these disparate

systems [2]. Efforts to standardize a common for-

mat for communication between health care systems

and other external consumers of health care data

have settled on the adoption of Extensible Markup

Language (XML) as the primary data format for the

transmission of Health Level 7 (HL7) messages.

HL7 is an organization with a mission to develop

standards that improve the delivery of care, optimize

the management of workflow, reduce ambiguity in

clinical terminology and facilitate efficient transfer of

knowledge between the major stakeholders.
Document Models and Management Systems

As its name implies, XML is a markup language for

describing structured data (or documents) in a manner

346C Clinical Data Acquisition, Storage and Management
that is both human- and machine-readable. It can be

extended to support users who wish to define their

own vocabularies. It is meant to be highly reusable

across different information systems for a variety

of purposes. It is recommended by the World Wide

Web Consortium (W3C) and is a free and open

standard.

XML is at the core of an entire suite of technologies

produced by the W3C that includes languages for

querying XML documents as well as describing their

structure for the purpose of validating their content.

This suite of technologies is meant to serve as infra-

structure for a contemporary set of information

systems each known more broadly as a Document

Management System (DMS).
Common Components of Information Systems

Like most information systems, document manage-

ment systems are comprised of a particular data

model (XML in this case), one or more query lan-

guages, and a formal processing model for systems

that wish to support queries written in language

against the underlying data. Document management

systems (and information systems in general) typically

also offer security services that ensure limited access to

the data. This is particularly important for clinical data

management systems.

With respect to the kind of services they provide for

the systems that are built on top of them (such as

clinical data management systems), document man-

agement systems are very much like relational database

management systems. However, whereas relational

database management systems have an underlying

relational model that is tabular and rigid, document

management systems have a data model that is hierar-

chical with data elements that can be extended to

support new terminology over the life of the data.
Text-Oriented Information Systems

Most modern computer-based patient record systems

mainly adopt information systems with hierarchical,

relational, or text-oriented data models. Text-based

information systems typically store their content pri-

marily as narrative text and often employ natural

language processing for extracting structured data for

transcription into a clinical data management system.

Querying such systems usually involves keyword-based

searches that use text indexes that are used to associate
words with the sections of narrative in which they can

be found.
Key Applications
Electronic data capture and clinical data management

systems constitute the majority of the infrastructure

necessary in the overall process of clinical research from

the point of interaction with primary patient records all

the way to the analysis of the curated clinical research

data. The sections below describe the major areas where

their application makes a significant difference.
Electronic Data Collection Options

There are a variety of ways in which data can be

acquired electronically for transcription into a clinical

data management system. The most desired means is

one where the data are directly retrieved electronically

from an existing source such as the primary patient

record. This method is often referred to as single entry

[1]. It requires that the primary patient record adopt

or align with a set of consistent format standards such

that they can facilitate the support of primary care

as well as reuse for the purpose of (unanticipated)

clinical research. Unfortunately the lack of adoption

of computer-based patient records remains a primary

impediment to this more direct means of acquiring

clinical data [2,3].

Alternatively, clinical data can be transcribed from

a primary patient record into a secondary patient

record using some form of an electronic user interface

on a particular device. Typically, such user interfaces

are either web browser-based (i.e., they are built on top

of an existing web browser such as Internet Explorer or

Firefox) or they are written as independent applica-

tions that are launched separately. The latter approach

is often referred to as a thick-client system [6].
Patient Registries

The set of functions associated with a secondary

computer-based patient record system is often adopted

from the underlying information system. Modern doc-

ument and relational database management systems

are equipped with a wide spectrum of capabilities

each of which is directly relevant to the needs of

users of these systems. This includes: content organi-

zation, archival, creation of documents, security, query

services, disaster recovery, and support for web-based

user interfaces.

Clinical Data Acquisition, Storage and Management C 347

C

Clinical Workflow Management

Equally important to the clinical data is the manage-

ment of the pattern of activity, responsibilities, and

resources associated with a particular clinical study

or trial. These patterns are often referred to as work-

flow. Orchestrating the overall process can also have a

significant impact on the success of a clinical study.

Clinical data management systems sometimes have off-

the-shelf capabilities for managing workflow. These

usually support some amount of automation of the

workflow process. Document management systems

that include capabilities for building customized appli-

cation are well-suited for supporting workflows that

are either specific to a particular study protocol or

capable of supporting multiple (or arbitrary) protocols.

Quality Management, Report Generation, and Analysis

Finally, document management and relational data-

base management systems include capabilities for

monitoring error in the data collected. This is often

supported through the application of a set of common

constraints that are relevant to the research protocol.

Typically, these systems have an automated mechanism

for indicating when the underlying data does not

adhere to the constraints specified.

In addition, document management and relational

database management systems include services for

generating reports and extracting variables for statisti-

cal analysis.

Future Directions
Modern information management systems are adopt-

ing standards for representation formats that push

the envelope of machine-readability. In particular, the

W3C has recently been developing a suite of technol-

ogies that build on the standards associated with the

World Wide Web and introduce a formal model for

capturing knowledge in a manner that emphasizes

the meaning of terms rather than their structure.

Such approaches to modeling information are often

referred to as knowledge representation or conceptual

models. This particular collection of standards is com-

monly referred to as semantic web technologies [5].

Semantic web technologies are built on a graph-

based data model known as the Resource Description

Framework (RDF) as well as a language for describing

conceptual models for RDF data known as Ontology

Web Language (OWL). RDF leverages a highly-

distributable addressing and naming mechanism
known as Uniform Resource Identifiers (URIs) that is

the foundation of the current web infrastructure.

Semantic web technologies also include a formal

mechanism for rendering or transforming XML docu-

ment dialects into RDF known as Gleaning Resources

Descriptions from Dialects of Languages (GRDDL). Fi-

nally a common query language has been defined for

accessing data expressed in RDF known as SPARQL.

The Institute of Medicine has indicated [2] that the

flexibility of computer-based patient records is primar-

ily due to their adoption of a data dictionary that

can be expanded to accommodate new elements. In

addition, the IOM has identified [2] the following

as crucial to the evolution of content and standard

formats in computer-based patient record systems:

� The content of CPRs must be defined and contain a

uniform core set of data elements.

� Data elements must be named consistently via the

enforcement of some form of vocabulary control.

� Format standards for data exchange must be devel-

oped and used.

In addition, the IOM’s study committee identified the

ability for CPRs to be linked with other clinical records

as a critical attribute of a comprehensive computer-

based patient record. The combination of these obser-

vations is a strong indication that in the future, clinical

data management systems will be built on informa-

tion management systems that adopt semantic web

technologies in order to better meet the growing

needs of the management of clinical research data.

Finally, a new generation of technologies for build-

ing declarative web applications will lower the techno-

logical barrier associated with the kind of user interfaces

necessary for the adoption of electronic data capture

methods at health care institutions. In particular, an

XML-based technology known as XForms is well posi-

tioned to have a significant impact on the front end

of the clinical data pipeline (data collection).

XForm applications are web form-based, indepen-

dent of the device on which they are deployed and use

XML as the data model of the underlying content. This

approach has strong correspondence with the current

direction of clinical data exchange standards with the

adoption of XML as the format for communication

between health care systems.

In the near future, lightweight devices (such as Tab-

let PCs) will connect to remote, distributed computer-

based patient record systems over a secure web-based

348C Clinical Data and Information Models
network protocol. Electronic data capture will be imple-

mented by XForm applications that run in a browser

and compose XML documents that represent sections of

a computer-based patient record. These documents will

adhere to a standard document format for the exchange

of medical records such as the HL7 Clinical Document

Architecture (CDA). The HL7 CDA is an XML-based

document markup standard that specifies the structure

and semantics of clinical documents for the purpose

of exchange.

These documents will be securely transmitted direc-

tly into a primary computer-based patient record which

employs XML as its core data model and uses GRDDL

to also store an RDF representation of the document

that conforms to a formal, standard ontology (expressed

in OWL) that describes the meaning of the terms.

This ontology provides a certain degree of logical con-

sistency that facilitates ad hoc analysis through the use

of logical inference.

Patients that meet the criteria for a particular

research protocol will be identified by a SPARQL

query that is dispatched against the patient record

system, which uses terminology easily understood by

the investigators themselves (rather than an intermedi-

ary database administrator). These patient records will

then be transmitted directly into a clinical data man-

agement system (or patient registry) that will include

the facilities for managing the workflow associated

with the relevant research protocol. These facilities

will be implemented as web applications built on the

same underlying information management systems as

those used by the primary computer-based patient

records.

Cross-references
▶Clinical Content Management

▶Clinical Data Quality and Validation

▶Data warehousing and Quality Management for

Clinical Practice

▶ Electronic Health Record

▶ Life Cycles and Provenance

▶Versioning

Recommended Reading
1. Anisfeld M.H. and Prokscha S. Practical Guide to Clinical Data

Management. CRC Press, Boca Raton, FL, 1999.

2. Committee on Improving the Patient Record, Institute of

Medicine. The computer-based patient record: an essential

technology for health care (revised edition). National Academies

Press, 1997.
3. Lori A. and Nesbitt. Clinical Research: What It Is and How It

Works. Jones and Bartlett Publishers, Sudbury, MA, 2003.

4. Rondel R.K., Varley S.A., and Webb C.F. Clinical Data Manage-

ment. Wiley, Chichester, 2000.

5. Ruttenberg A., Clark T., Bug W., Samwald M., Bodenreider O.,

Chen H., Doherty D., Forsberg K., Gao Y., Kashyap V., Kinoshita

J., Luciano J., Marshall M.S., Ogbuji C., Rees J., Stephens S.,

Wong G.T., Elizabeth Wu, Davide Zaccagnini, Tonya Hongser-

meier, Neumann E., Herman I., and Cheung K.-H. Advancing

translational research with the Semantic Web. BMC Bioinfor-

matics, 8(Suppl. 3), 2007.

6. Wilson D., Pace M.D., Elizabeth W., and Staton, M. S. T. C.

Electronic Data Collection Options for Practice-Based Research

Networks. Ann. Fam. Med., 3:S2–S4, 2005.
Clinical Data and Information
Models

CHINTAN PATEL, CHUNHUA WENG

Columbia University, New York, NY, USA

Definition
A formal representation of the clinical data using

entities, types, relationships and attributes. The abs-

traction of clinical data into an information model

enables reusability and extensibility of the database to

satisfy different application needs and accommodate

changes in the underlying data.

Key Points
The clinical domain is a data rich environment with

multitude of different data entities ranging from several

thousands of laboratory tests, procedures or medica-

tions that change often with new ones getting added

almost every day. Furthermore these data are generated

from different information systems or devices (often

from different vendors) in the hospital. Integrating

such wide variety of data streams into a common infor-

mation model is a challenging task.

Most healthcare databases use generic information

models [3,4] such as event-component models with an

Entity-Attribute-Value [5] (EAV) schema to represent

the data (see Fig. 1). The advantage of using a generic

information model is to accommodate the data het-

erogeneity and extensibility. Generally, an external ter-

minology or vocabulary is used in conjunction with a

generic information model to represent the clinical

domain (laboratory tests, medications and so on)

and the healthcare activities, for example, LOINC is a

Clinical Data and Information Models. Figure 1. The event component information model.

Clinical Data Quality and Validation C 349

C

standard vocabulary for representing laboratory data

or SNOMED CT for healthcare activities.

Various information models have been proposed

towards standardizing the representation of clinical

data. The goal of standardizing the information model

is to facilitate exchange, sharing and reuse of clinical

data by different systems locally as well as nationally.

Following are some current standardized models:

HL7 Reference Information Model: The HL7

standards organization [2] has developed a Reference

Information Model (RIM) to share consistent meaning

of healthcare data beyond local context. The RIM

specifies a set of abstract bases classes Entity, Role, Partic-

ipation and Act, which contain specific classes/attributes

such as Person, Organization, Patient, Provider, Intent,

Observation and so on. This model is used to create

concrete concepts by combining the RIM types, for ex-

ample, elevated blood pressure would be represented

in RIM as class = Observation with code = Finding

of increased blood pressure (SNOMED#241842005),

mood = Event, interpretation code = abnormal

(HL7#A), target site = heart (LOINC#LP7289). Note

that standardized terminology codes (SNOMED CT

and LOINC) are used to represent specific findings and

modifiers. An implementation ofHL7 RIM basedmodel

over a relational database schema is described here [1].

openEHR Reference Model: The openEHR specifica-

tion [6] (developed largely by the institutions in EU and

Australia) provides informationmodels for the electron-

ic health record (EHR), demographics, data structures,

integration and so on. The openEHR EHRmodel repre-

sents various facets of EHR such as clinician/patient

interaction, audit-trailing, technology/data format inde-

pendence and supporting secondary uses. The openEHR

project uses the notion of archetypes that enable domain

experts to formally model a domain concept (or an

aggregation of concepts), corresponding constraints and

other compositions, for example, an archetype on blood

pressure measurement consists of systolic, diastolic mea-

surements and units with other clinically relevant infor-

mation such as history.
Recommended Reading
1. Eggebraaten T.J., Tenner J.W., and Dubbels J.C. A health-care

data model based on the HL7 reference information model.

IBM Syst. J., 46(1):5–18, 2007.

2. HL7 Reference Information Model. Available at: http://www.hl7.

org/ (Accessed April 18, 2008).

3. Huff S., Rocha R., Bray B., Warner H., and Haug P. An

event model of medical information representation. J. Am.

Med. Inform. Assoc., 2(2):116–134, 1995.

4. Johnson S. Generic data modeling for clinical repositories.

J. Am. Med. Inform Assoc., 3(5):328–367, 1996.

5. Nadkarni P., Marenco L., Chen R., Skoufos E., Shepherd G.,

and Miller P. Organization of heterogeneous scientific data

using the EAV/CR representation. J. Am. Med. Inform. Assoc.,

6(6):478–571, 1999.

6. openEHR Reference Information Model. Available at: http://

www.openehr.org/ (Accessed April 18, 2008).
Clinical Data Management Systems

▶Clinical Data Acquisition, Storage and Management
Clinical Data Quality and Validation

CHINTAN PATEL, CHUNHUA WENG

Columbia University, New York, NY, USA

Definition
Clinical data quality is defined as the accuracy and

completeness of the clinical data for the purposes

of clinical care, health services and other secondary

uses such as decision support and clinical research.

The quality of clinical data can be achieved by the

standardization, inspection and evaluation of the data

generating processes and tools [2].

Key Points
The term data quality can potentially have different

meanings or interpretation based on the domain or the

application using the data [1]. Even within the context

350C Clinical Decision Support
of clinical databases, there exists a multitude of different

data types (administrative data, procedure data, labora-

tory data and so on) thatmay beused for several different

applications such as clinical report generation, billing

or research. The major components of clinical data

quality can be broadly characterized as follows:

Accuracy

Clinical data are often generated by automated systems

(such as lab equipment) or manually entered by clin-

icians (notes). These data generating processes are

prone to errors that result in incorrect data being

stored in the database. The severity of errors can vary

significantly, for example, a minor misspelling in pat-

ient history note versus a prescription error in drug

dosage order can lead to drastically different outcomes

in terms of patient care. The accuracy of clinical data is

defined as the proportion of correct data (truly repre-

senting the actual patient condition or measurement)

in the clinical database. The accuracy of clinical data

depends on the enforcement of well-defined data entry

standards and protocols.

Completeness

It is defined as the availability of data elements in

a clinical database that are necessary to accomplish a

given task, for example, a clinical trial recruitment

application with detailed eligibility criteria would

require information from the clinical notes in addition

to coded problem list data. The completeness of

a patient record is critical for a clinician to choose a

most appropriate treatment plan for the patient.

The availability of complete patient information is

critical during an emergency condition. In the case

of unavailability of data elements, some applications

tend to substitute data sources, which can lead to

sub-optimal results. Consider for example, a clini-

cal decision support application reusing coarse ICD

(International Classification of Disease) classification

to generate decisions.

Reliability

The notion of ‘‘repeatability’’ – to determine whether

the clinical data generation processes produce consis-

tent data at different times or settings. Hospitals are

a chaotic environment with multiple care providers

taking care of a single patient. It becomes critical

to develop data entry protocols to ensure consistent

representation of patient information in the clinical
database. Often to eliminate the variations across

different users the data entry software systems such as

the EMR (electronic medical record) contain various

checks to ensure the correctness and completeness

of the data elements [3]. The coding of clinical data

using terminologies such as ICD has to be done in a

consistent fashion to facilitate applications that require

data integration or comparative analysis.

Maintaining quality in clinical databases is a con-

tinuous process requiring strong commitment from

different stakeholders involved. The amount of elec-

tronic biomedical data generated is growing at an

exponential rate. Developing high quality clinical data-

bases can have significant implications for the appli-

cations reusing the data.

Cross-references
▶Quality and Trust of Information Content and

Credentialing

Recommended Reading
1. Arts D., De Keizer N., and Scheffer G. Defining and improving

data quality in medical registries: a literature review, case study,

and generic framework. J. Am. Med. Inform. Assoc., 9(6):

600–611, 2002.

2. Black N. High-quality clinical databases: breaking down

barriers. Lancet, 353(9160):1205–1211, 2006.

3. Hogan W. and Wagner M. Accuracy of data in computer-

based patient records. J. Am. Med. Inform. Assoc., 4(5):

342–397, 1997.
Clinical Decision Support

ADAM WRIGHT

Partners HealthCare, Boston, MA, USA

Synonyms
CDS; Decision support

Definition
Clinical Decision Support systems are computer sys-

tems which assist humans in making optimal clinical

decisions. While clinical decision support systems are

most often designed for clinicians, they can also be

developed to assist patients or caregivers. Common

examples of clinical decision support systems include

drug-drug interaction checks, dose range checking for

medication and preventive care reminders.

Clinical Decision Support C 351

C

Historical Background
The first clinical decision support systemwas described

in 1959 by Robert Ledley and Lee Lusted [6] in their

paper ‘‘Reasoning foundations of medical diagnosis;

symbolic logic, probability, and value theory aid our

understanding of how physicians reason.’’ Ledley and

Lusted described an analog computer used to sort

cards containing a diagnosis and a series of punches

which represented symptoms. By selecting the cards

which matched the symptoms present in a given case a

clinician could develop a possible set of diagnosis.

In 1961, Homer Warner [15] described a clinical

decision support system for diagnosing congenital

heart defects. The system was developed around a

contingency table that mapped clinical symptoms to

forms of congenital heart disease. A physician would

input the patient’s symptoms and findings from the

clinical exam and other studies into the system, which

would then proceed to suggest the most probable

diagnoses based on the contingency table.

In the 1970s, Edward Shortliffe developed the well-

known MYCIN system for antibiotic therapy. MYCIN

was an expert system with a large knowledge base of

clinical rules [12]. Users of MYCIN would input

known facts about their patient, and MYCIN would

apply them to the rule base using backward chaining to

yield a probable causative agent for infections as well as

suggestions for antibiotic therapy.

While the systems described so far all focused on a

specific area of medicine, the INTERNIST-I system,

developed by Randy Miller, Harry Pople and Jack

Myers [8] targeted the broad domain of diagnosis in

internal medicine. The INTERNIST-I knowledge base

consisted of a large set of mappings between symptoms

and diagnoses. These links were scored along three

axes: evoking strength (the likelihood that a patient

has a diagnosis given a particular symptom), frequency

(how often a symptom is present given a particular

diagnosis) and import (how critical it is that a particu-

lar diagnosis be considered given that it is possible or

probable based on a set of symptoms). Octo Barnett’s

DXplain system for diagnostic decision support was

developed around the same time as INTERNIST-I.

The earliest decision support systems were stan-

dalone, but the second wave in clinical decision

support, beginning in the 1970s, was the integration

of decision support systems into broader clinical infor-

mation systems. The first two examples of this integra-

tion were the Health Evaluation through Logical
Processing (HELP) system at the University of Utah

and LDS Hospital, and the Regenstrief Medical

Records System (RMRS) developed at the Regenstrief

Institute in Indianapolis. The HELP system, which

was used for many facets of patient care, had support

for the development of a variety of kinds of decision

support, and was especially well known for its Bayesian

reasoning modules. The RMRS was developed,

from the ground up, with a large knowledge base of

clinical care rules. Both HELP and RMRS are in active

use today.

Most current commercially available clinical infor-

mation systems have some support for clinical decision

support, and efforts to standardize representation and

enable the sharing of decision support content are

ongoing.

Foundations
Development of clinical decision support systems

entails a variety of issues. The first step in develop-

ing any clinical information system is to identify an

important clinical target, and then consider interven-

tions. The most critical database systems related issues

are knowledge representation, storage and standards.

Issues of Knowledge Representation

Once a desired clinical decision support target has

been identified and relevant medical knowledge has

been collected, the knowledge must somehow be repre-

sented. Knowledge in clinical decision support systems

has been represented in a variety of ways, the most

common being if-then rules, expert systems, probabi-

listic and Bayesian systems and reference content.

Perhaps the simplest form of knowledge is if-then

rules. Much of clinical decision support content can

be represented this way (for example ‘‘if the acetamin-

ophen dose is 10 g per day, alert the user that this is too

high’’ or ‘‘if the patient is over 50 years of age and has

not had a sigmoidoscopy, recommend one’’). These

rules are frequently designed to be chained together,

although generally in a fixed and predetermined pattern.

More complex than simple if-then rules are expert

systems. These systems are composed of large knowl-

edge bases which contain many intermediate states and

assertions. Like if-then rules, these rules are composed

of an antecedent, a consequent and an implication.

However, expert systems are generally designed to elicit

emergent behavior from extensive chaining including,

in many cases, goal-directed backward chaining.

352C Clinical Decision Support
Probabilistic and Bayesian systems share much in

common with if-then rules. However, instead of mod-

eling knowledge and clinical states as deterministic

values, they use probabilities. By combining these

probabilities with knowledge provided by the user,

these systems can estimate the likelihood of various

diagnostic possibilities, or the relative utility of dif-

ferent therapeutic modalities. It is important to note

that many expert systems employ probabilistic or

Bayesian reasoning.

A simpler form of knowledge representation is

reference knowledge designed to be read by a human.

This form of decision support provides information to

the user but expects him or her to formulate a plan of

action on his or her own. In many cases knowledge,

such as clinical guidelines, can be equivalently modeled

as rules or as reference content. Reference content is

simpler to construct, but it sometimes can not be as

proactive as rule-based content.

Storage of Clinical Knowledge in Database Systems

A key challenge for developers of database systems

for clinical decision support is selecting the optimal

strategy for storing clinical knowledge in a database.

This selection has many tradeoffs among performance,

space, maintainability and human readability.

Rule based decision support content is often stored

as compiled or interpreted code and, when properly

integrated into clinical information support systems,

can be very efficient. However, many systems instead

choose to store rules in some intermediate form, often

indexed according to their trigger (a clinical event,

such as a new prescription, which causes decision

support rules to fire). A chained hash table with

these triggers as its keys and decision support rules to

invoke as values can be a particularly efficient

representation.

In cases of particularly high transaction volume,

where performance is important and the number of

rules to evaluate is large, more sophisticated storage

and processing mechanisms can be used. One of the

most effective in terms of performance (although not

necessarily in terms of space) is Charles Fogarty’s Rete

algorithm. The Rete algorithm is an efficient network-

based method for pattern matching in rule-based

systems.

Because it is not rule based, reference knowledge

requires a different set of storage and retrieval strate-

gies, based largely on the principles of information
retrieval. In general, these strategies employ one or

some combination of full-text search and metadata

queries.

Standards for Sharing Clinical Decision Support

Content between Database Systems

In addition to the aforementioned issues of internal

representation of clinical knowledge, there are also

issues relating to the sharing of clinical decision sup-

port content between systems. Several standards for

sharing such content have been proposed, beginning

with Arden Syntax, a standard for event-driven rule-

based decision support content. Other standards, such

as Guideline Interchange Format (GLIF) and the related

expression language GELLO exist to represent more

complex forms of clinical knowledge. While construc-

tion of standards for representing clinical knowledge

may seem straightforward, issues relating to termino-

logy and a reference model for patient information have

proven formidable.

An alternate approach to strict structured knowl-

edge representation formalisms for sharing clinical

decision support content is the use of services. Sev-

eral recent efforts, including SEBASTIAN and SANDS

have defined a set of interfaces and, in the case of

SANDS, patient data models to help overcome prior

difficulties in sharing decision support content.

Key Applications
Applications of clinical decision support can be cate-

gorized along a variety of axes, including intervention

type (alert, reminder, reference information, etc.), clin-

ical purpose (diagnosis, therapy, prevention), disease

target (diabetes, hypertension, cancer, etc.) and user

(physician, nurse, patient, etc.).

Several clinical decision support systems have been

described in the historical background section. Addi-

tional significant systems include:

� Morris Collen’s system for ‘‘Automated Multiphasic

Screening And Diagnosis.’’

� Howard Bleich’s system for diagnosis and treat-

ment of acid-base disorders.

� A system for the diagnosis and management of ab-

dominal complaints developed by F.T. de Dombal.

� The ATTENDING system developed by PerryMiller

and designed to critique and suggest improvements

to anesthesia plans.

� A system for ventilator management by Dean Sittig.

Clinical Document Architecture C 353

C

� A blood product ordering critiquing system by

Reed Gardner.

� An antibiotic advising system by Scott Evans.

Experimental Results
There is a long experimental tradition in the field of

clinical decision support, and many systems have

shown strong results, even for the earliest systems.

Warner’s system for congenital heart defects was com-

pared favorably to experienced cardiologists, MYCIN

proposed clinically appropriate antibiotic therapy 75%

of the time (and got better as more rules were added)

and INTERNIST performed about as well as average

doctors at diagnosis.

Just as significant is the effect that such systems

have on physician practice. In a landmark paper,

Clem McDonald described the results of an experi-

mental trial performed within the RMRS system. In

the trial, half of the physician users of RMRS received

patient care suggestions based on the knowledge base

of rules, while half did not. Physicians who received the

suggestions carried them out 51% of the time, while

physicians who did not receive suggestions performed

the actions that would have been suggested only 22%

of the time. When the reminder system was turned off,

physician performance returned almost immediately

to baseline.

There have been several significant systematic

reviews of clinical decision support systems. A 2005

review by Amit Garg [2] found that decision support

systems were associated with improved provider per-

formance in 64% of the controlled trials reviewed.

Another systematic review by Ken Kawamoto found

that decision support systems improved performance

in 68% of trials, and that systems designed to the

highest criteria improved performance in 94% of trials.

Cross-references
▶Clinical Data and Information Models

▶Clinical Prediction Rule

Recommended Reading
1. Bates D.W., Kuperman G.J., and Wang S., et al. Ten command-

ments for effective clinical decision support: making the practice

of evidence-based medicine a reality. J. Am. Med. Inform.

Assoc., 10(6):523–530, 2003.

2. Garg A.X., Adhikari N.K., and McDonald H., et al. Effects of

computerized clinical decision support systems on practitioner

performance and patient outcomes: a systematic review. Jama,

293(10):1223–1238, 2005.
3. Kawamoto K., Houlihan C.A., Balas E.A., and Lobach D.F.

Improving clinical practice using clinical decision support

systems: a systematic review of trials to identify features critical

to success. BMJ, 330(7494):765, 2005.

4. Kawamoto K. and Lobach D.F. Design, implementation, use, and

preliminary evaluation of SEBASTIAN, a standards-based web

service for clinical decision support. In Proc. AMIA Symposium,

2005, pp. 380–384.

5. Kuperman G.J., Gardner R.M., and Pryor T.A. HELP:

A Dynamic Hospital Information System. Springer, New York,

1991.

6. Ledley R.S. and Lusted L.B. Reasoning foundations of medical

diagnosis; symbolic logic, probability, and value theory aid

our understanding of how physicians reason. Science,

130(3366):9–21, 1959.

7. McDonald C.J. Protocol-based computer reminders, the quality

of care and the non-perfectability of man. N. Engl. J. Med.,

295(24):1351–1355, 1976.

8. Miller R.A., Pople H.E. Myers J.D. Internist-1, an experimental

computer-based diagnostic consultant for general internal med-

icine. N. Engl. J. Med., 307(8):468–476, 1982.

9. Osheroff J.A., Pifer E.A., Sittig D.F., Jenders R.A., and Teich J.M.

Improving Outcomes with Clinical Decision Support: an

Implementers’ Guide. HIMSS, Chicago, 2005.

10. Osheroff J.A., Teich J.M., Middleton B., Steen E.B., Wright A.,

and Detmer D.E. A roadmap for national action on clinical deci-

sion support. J. Am. Med. Inform. Assoc., 14(2):141–145, 2007.

11. Sittig D.F., Wright A., and Osheroff J.A., et al. Grand challenges

in clinical decision support. J. Biomed. Inform., 41(2):

387–392, 2007.

12. Shortliffe E.H., Davis R., Axline S.G., Buchanan B.G., Green C.C.,

and Cohen SN. Computer-based consultations in clinical

therapeutics: explanation and rule acquisition capabilities

of the MYCIN system. Comput. Biomed. Res., 8(4):303–320,

1975.

13. Wright A., Goldberg H., Hongsermeier T., and Middleton B.

A description and functional taxonomy of rule-based decision

support content at a large integrated delivery network. J. Am.

Med. Inform. Assoc., 14(4):489–496, 2007.

14. Wright A., Sittig D.F., SANDS: A service-oriented architecture

for clinical decision support in a National Health Informa-

tion Network. J. Biomed. Inform. (2008), doi:10.1016/j.

jbi.2008.03.001.

15. Warner H.R., Toronto A.F., Veasey L.G., and Stephenson R.

A mathematical approach to medical diagnosis. Application to

congenital heart disease. Jama, 177:177–183, 1961.
Clinical Document Architecture

AMNON SHABO (SHVO)

IBM Research Lab-Haifa, Haifa, Israel

Synonyms
CDA; CDA R1; CDA R2

354C Clinical Document Architecture
Definition
The Clinical Document Architecture (CDA) is a

document markup standard that specifies the structure

and semantics of clinical documents for the purpose

of exchange and share of patient data. The standard

is developed by Health Level Seven (HL7) – a Stan-

dards Development Organization [2] focused on

the area of healthcare. At the time of writing this

entry, two releases of CDA were approved: CDA R1

was approved in 2000 and CDA R2 in 2005. Both

releases are part of the HL7 new generation of stan-

dards (V3), all derived from a core reference informa-

tion model (RIM) that assures semantic consistency

across the various standards such as laboratory,

medications, care provision and so forth. The RIM is

based on common data types and vocabularies, and

together these components constitute the HL7 V3

Foundation that is an inherent part of the CDA stan-

dard specification.

Key Points
Clinical documents such as discharge summaries,

operative notes and referral letters are ubiquitous

in healthcare and currently exist mostly in paper. The

computerized clinical document is similar in purpose

to its paper counterpart and the clinician’s narratives

are a key component of both versions. Narratives are

compositions based on the natural language of the

writer, while computerized structuring of a document

is limited to some computer language. The design of

the CDA standard strives to bridge the gap between

these ‘‘languages’’ especially when it comes to the mix-

ture of structured and unstructured data intertwined

to describe the same phenomena, while addressing

two important goals: human readability and machine-

processability. The drive to structure medical narratives

is also challenging the thin line between art and crafts-

manship in the medical practice [3].

The basic structure of a CDA document consists of a

header and a body. The header represents an extensive

set of metadata about the document such as time

stamps, the type of document, encounter details and

of course the identification of the patient and those who

participated in the documented encounter or service.

While the header is a structured part of the document

and is similar in the two releases of CDA, the body

consists of clinical data organized in sections and
only in CDA R2 it enables the formal representation of

structured data along with narratives [1]. Data is

structured in clinical statements based on entries

such as observations, medication administrations, or

adverse events where several entries are associated into

a compound clinical statement. Nevertheless, only the

narrative parts of the CDA body are mandatory, which

makes CDA easy to adopt if structured data is not yet

available. It is even possible to simply wrap a non-XML

document with the CDA header or create a document

with a structured header and sections containing only

narrative content. The purpose of this design is to en-

courage widespread adoption, while providing an infor-

mation infrastructure to incrementally move toward

structured documents, serving the goal of semantic

interoperability between disparate health information

systems.

Beside text, CDA can also accommodate images,

sounds, and other multimedia content. It can be trans-

ferred within a message and can be understood inde-

pendently, outside the relaying message and its sending

and receiving systems. CDA documents are encoded in

Extensible Markup Language (XML), and they derive

their machine processable meaning from the RIM,

coupled with specific vocabularies.

A CDA document is a collection of information

that is intended to be legally authenticated and has

to be maintained by an organization entrusted with

its care (stewardship). Inherent in the HL7 CDA stan-

dard are mechanisms for dealing with the authen-

tication and versioning of documents so that it can

be used in medical records enterprise repositories as

well as in cross-institutional sharing of personal health

information to facilitate continuity of care.

Cross-references
▶ Electronic Health Record

Recommended Reading
1. Dolin R.H., Alschuler L, Boyer S, Beebe C, Behlen FM, Biron PV,

Shabo A. HL7 Clinical Document Architecture, Release 2. J. Am.

Med. Inform. Assoc., 13(1):30–39, 2006.

2. Health Level Seven (HL7) – http://www.hl7.org.

3. Shabo A. Synopsis of the Patient Records Section: Struc-

turing the Medical Narrative in Patient Records – A Further

Step towards a Multi-Accessible EHR. The IMIA 2004

Yearbook of Medical Informatics: Towards Clinical Bioinfor-

matics, 2004.

Clinical Event C 355

C

Clinical Event

DAN RUSSLER

Oracle Health Sciences, Redwood Shores, CA, USA

Definition

Vernacular Definition

1. In event planning circles, a ‘‘clinical event’’ is

an event, e.g., meeting or party, attended by clinic-

ians as opposed to administrative or financial

personnel.

Technical Definitions

1. A state transition, normally a ‘‘create’’ or ‘‘update’’

state transition, targeting a record in an electronic

medical record system or one of the systems asso-

ciated with an electronic medical record system.

2. A report generated within a clinical trial that is sub-

sequently evaluated for the presence of an adverse

event by a clinical trial Clinical Event Committee.

Words often confused by use of the term ‘‘Clinical

Event’’ include: Clinical Event (multiple definitions);

Adverse Event; Clinical Act; Patient Event, Information

Event.

The primary technical definition of ‘‘clinical event’’

includes the kind of ‘‘events’’ that are monitored by a

‘‘clinical event monitor’’[1–3] used in synchronous or

asynchronous decision support functions. Examples

of these events include clinical orders, electronic med-

ical record entries, admission, transfer and discharge

notifications, lab results, and patient safety reports.

These events trigger state transitions in an electronic

medical record system or related system.

Typically, once the clinical event monitoring sys-

tem, such as an HL7 Arden Syntax-based system,

discovers a state transition, in the electronic medical

record system, a decision support rule is applied to the

clinical event and related data in order to determine

whether a notification of a person or another system is

required.

Key Points
‘‘Event’’ or ‘‘Action’’ analysis traces its roots to the

work of Aristotle on propositions. Propositions usually

follow the form of Subject-Predicate and, upon analy-

sis, may be found to be ‘‘true’’ or ‘‘false.’’ The classic
example of a proposition is ‘‘Socrates is a man.’’

‘‘Socrates’’ is the ‘‘Subject’’ and ‘‘is a man’’ is the

‘‘Predicate.’’ An analogous proposition in healthcare

is ‘‘Peter has a potassium level of 5.5 mg/dl.’’ Clinical

Events are propositions in healthcare that may be

evaluated themselves by clinicians as ‘‘true’’ or ‘‘false’’

or may be applied in rules that evaluate to true or false.

For example, the creation of a record asserting that

‘‘Peter has a potassium level of 5.5 mg/dl’’ might trigger

a clinical event monitoring system to implement the

rule: ‘‘If potassium level record created, then evaluate if

(‘‘record value’’ >5.0); if ‘‘true,’’ then notify Dr. X.’’

‘‘Event-driven programming’’ as opposed to ‘‘pro-

cedural programming’’ utilizes the same kinds of pred-

icate logic in evaluating state transitions or triggers to

state transitions in a modern computer-programming

environment. Consequently, Clinical Events drive pro-

gramming logic in many modern systems.

The HL7 Reference Information Model (RIM)

describes clinical events; the term ‘‘Act’’ in the RIM

identifies objects that are instantiated in XML com-

munications between systems or in records within the

electronic healthcare systems themselves. These ‘‘Acts’’

correspond to ‘‘clinical events’’ used for monitoring

systems in healthcare. However, in the RIM, ‘‘Event’’

is defined narrowly as an instance of an Act that has

been completed or is in the process of being com-

pleted. Clinical event monitoring systems may also

evaluate HL7 ‘‘Orders or Requests’’ or other kinds

of ‘‘Act’’ instances as events of interest (www.hl7.org).
Cross-references
▶Clinical Observation

▶Clinical Order

▶ Interface Engines in Healthcare

▶ Event Driven Architecture

▶HL7 Reference Information Model

▶ Predicate Logic

▶ Propositions
Recommended Reading
1. Glaser J., et al. Impact of information events on medical care.

HIMSS, 1996.

2. Hripisak G., et al. Design of a clinical event monitor. Comp.

Biomed. Res., 29:194–221, 1996.

3. McDonald C. Action-oriented Decisions in Ambulatory

Medicine. Yearbook Medical Publishers, Chicago, IL, 1981.

356C Clinical Genetics
Clinical Genetics

▶ Implications of Genomics for Clinical Informatics
Clinical Genomics

▶ Implications of Genomics for Clinical Informatics
Clinical Judgment

▶Clinical Observation
Clinical Knowledge Base

▶Clinical Knowledge Repository
Clinical Knowledge Directory

▶Clinical Knowledge Repository
Clinical Knowledge Management
Repository

▶Clinical Knowledge Repository
Clinical Knowledge Repository

ROBERTO A. ROCHA

Partners Healthcare System, Inc., Boston, MA, USA

Synonyms
Clinical knowledge base; Clinical content repository;

Clinical content database; Clinical knowledge manage-

ment repository; Clinical content registry; Clinical

knowledge directory

Definition
A clinical knowledge repository (CKR) is a multipur-

pose storehouse for clinical knowledge assets. ‘‘Clinical
knowledge asset’’ is a generic term that describes any

type of human or machine-readable electronic content

used for computerized clinical decision support. A CKR

is normally implemented as an enterprise resource

that centralizes a large quantity and wide variety of

clinical knowledge assets. A CKR provides integrated

support to all asset lifecycle phases such as authoring,

review, activation, revision, and eventual inactivat-

ion. A CKR routinely provides services to search,

retrieve, transform, merge, upload, and download clini-

cal knowledge assets. From a content curation perspec-

tive, a CKR has to ensure proper asset provenance,

integrity, and versioning, along with effective access

and utilization constraints compatible with collaborative

development and deployment activities. A CKR can be

considered a specialized content management system,

designed specifically to support clinical information sys-

tems. Within the context of clinical decision support

systems, a CKR can be considered a special kind of

knowledge base – one specially designed to manage

multiple types of human and machine-readable clinical

knowledge assets.

Key Points
In recent years, multiple initiatives have attempted to

better organize, filter, and apply the ever-growing bio-

medical knowledge. Among these initiatives, one of the

most promising is the utilization of computerized

clinical decision support systems. Computerized clini-

cal decision support can be defined as computer sys-

tems that provide the correct amount of relevant

knowledge at the appropriate time and context, con-

tributing to improved clinical care and outcomes.

A wide variety of knowledge-driven tools and methods

have resulted in multiple modalities of clinical deci-

sion support, including information selection and

retrieval, information aggregation and presentation,

data entry assistance, event monitors, care workflow

assistance, and descriptive or predictive modeling.

A CKR provides an integrated storage platform that

enables the creation and maintenance of multiple types

of knowledge assets. A CKR ensures that different

modalities of decision support can be combined to

properly support the activities of clinical workers.

Core requirements guiding the implementation of a

CKR include clinical knowledge asset provenance

(metadata), versioning, and integrity. Other essential

requirements include the proper representation of

access and utilization constraints, taking into account

Clinical Knowledge Repository C 357

C

the collaborative nature of asset development pro-

cesses and deployment environments. Another funda-

mental requirement is to aptly represent multiple types

of knowledge assets, where each type might require

specialized storage and handling. The CKR core

requirements are generally similar to those specified

for other types of repositories used for storage and

management of machine-readable assets.

Historical Background
Biomedical knowledge has always been in constant

expansion, but unprecedented growth is being observed

during the last decade. Over 30% of the 16.8 million

citations accumulated by MEDLINE until December of

2007 were created in the last 10 years, with an average

of over 525,000 new citations per year [5]. The number

of articles published each year is commonly used as an

indicator of how much new knowledge the scientific

community is creating. However, from a clinical per-

spective, particularly for those involved with direct

patient care, the vast amount of new knowledge repre-

sents an ever-growing gap between what is known and

what is routinely practiced. Multiple initiatives in recent

years have attempted to better organize, filter, and apply

the knowledge being generated. Among these various

initiatives, one of the most promising is the utilization

of computerized clinical decision support systems [6].

In fact, some authors avow that clinical care currently

mandates a degree of individualization that is inconceiv-

able without computerized decision support [1].

Computerized clinical decision support can be

defined as computer systems that provide the correct

amount of relevant knowledge at the appropriate time

and context, ultimately contributing to improved clini-

cal care and outcomes [3]. Computerized clinical deci-

sion support has been an active area of informatics

research and development for the last three decades

[2]. Awide variety of knowledge-driven tools and meth-

ods have resulted in multiple modalities of clinical deci-

sion support, including information selection and

retrieval (e.g., infobuttons, crawlers), information aggre-

gation and presentation (e.g., summaries, reports, dash-

boards), data entry assistance (e.g., forcing functions,

calculations, evidence-based templates for ordering and

documentation), event monitors (e.g., alerts, reminders,

alarms), care workflow assistance (e.g., protocols, care

pathways, practice guidelines), and descriptive or pre-

dictive modeling (e.g., diagnosis, prognosis, treatment

planning, treatment outcomes). Each modality requires
specific types of knowledge assets, ranging from produc-

tion rules to mathematical formulas, and from auto-

mated workflows to machine learning models. A CKR

provides an integrated storage platform that enables the

creation and maintenance of multiple types of assets

using knowledge management best practices [4].

The systematic application of knowledge manage-

ment processes and best practices to the biomedi-

cal domain is a relatively recent endeavor [2].

Consequently, a CKR should be seen as a new and

evolving concept that is only now being recognized as

a fundamental component for the acquisition, storage,

and maintenance of clinical knowledge assets. Most

clinical decision support systems currently in use still

rely on traditional knowledge bases that handle a single

type of knowledge asset and do not provide direct

support for a complete lifecycle management process.

Another relatively recent principle is the recognition

that different modalities of decision support have to be

combined and subsequently integrated with informa-

tion systems to properly support the activities of clini-

cal workers. The premise of integrating multiple

modalities of clinical decision support reinforces the

need for knowledge management processes supported

by a CKR.

Foundations
Core requirements guiding the implementation of a

CKR include clinical knowledge asset provenance

(metadata), versioning, and integrity. Requirements

associated with proper access and utilization con-

straints are also essential, particularly considering the

collaborative nature of most asset development pro-

cesses and deployment environments. Another funda-

mental requirement is to aptly represent multiple

types of knowledge assets, where each type might re-

quire specialized storage and handling. The CKR

core requirements are generally similar to those speci-

fied for other types of repositories used for storage

and management of machine-readable assets (e.g.,

‘‘ebXML Registry’’ (http://www.oasis-open.org/com-

mittees/tc_home.php?wg_abbrev = regrep)).

Requirements associated with asset provenance can

be implemented using a rich set of metadata properties

that describe the origin, purpose, evolution, and status

of each clinical knowledge asset. The metadata proper-

ties should reflect the information that needs to be

captured during each phase of the knowledge asset

lifecycle process, taking into account multiple iterative

358C Clinical Knowledge Repository
authoring and review cycles, followed by a possibly

long period of clinical use that might require multiple

periodic revisions (updates). Despite the diversity of

asset types, each with a potentially distinct lifecycle

process, a portion of the metadata properties should

be consistently implemented, enabling basic searching

and retrieval services across asset types. Ideally, the

shared metadata should be based on metadata stan-

dards (e.g., ‘‘Dublin Core Metadata Element Set’’

(http://dublincore.org/documents/dces/)). The adop-

tion of standard metadata properties also simplifies

the integration of external collections of clinical

knowledge assets in a CKR. In addition to a shared

set of properties, a CKR should also accommodate

extended sets of properties specific for each clinical

knowledge asset type and its respective lifecycle pro-

cess. Discrete namespaces are commonly used to rep-

resent type-specific extended metadata properties.

Asset version and status, along with detailed change

tracking, are vital requirements for a CKR. Different

versioning strategies can be used, but as a general

rule there should be only one clinically active version

of any given knowledge asset. This general rule is easily

observed if the type and purpose of the clinical knowl-

edge asset remains the same throughout its lifecycle.

However, a competing goal is created with the very

desirable evolution of human-readable assets to

become machine-readable. Such evolution invariably

requires the creation of new knowledge assets of differ-

ent types and potentially narrower purposes. In order

to support this ‘‘natural’’ evolution, a CKR should

implement the concept of asset generations, while pre-

serving the change history that links one generation to

the next. Also within a clinical setting, it is not uncom-

mon to have to ensure that knowledge assets comply

with, or directly implement, different norms and reg-

ulations. As a result, the change history of a clinical

knowledge asset should identify the standardization

and compliance aspects considered, enabling subseq-

uent auditing and/or eventual certification.

Ensuring the integrity of clinical knowledge assets

is yet another vital requirement for a CKR. Proper

integrity guarantees that each asset is unique within a

specific type and purpose, and that all its required

properties are accurately defined. Integrity require-

ments also take into account the definition and preser-

vation of dependencies between clinical knowledge

assets. These dependencies can be manifested as simple

hyperlinks, or as integral content defined as another
independent asset. Creating clinical knowledge assets

from separate components or modules (i.e., modular-

ity) is a very desirable feature in a CKR – one that

ultimately contributes to the overall maintainability

of the various asset collections. However, modularity

introduces important integrity challenges, particularly

when a new knowledge asset is being activated for

clinical use. Activation for clinical use requires a close

examination of all separate components, sometimes

triggering unplanned revisions of components already

in routine use. Another important integrity require-

ment is the ability to validate the structure and the

content of a clinical knowledge asset against predefined

templates (schemas) and dictionaries (ontologies).

Asset content validation is essential for optimal inte-

gration with clinical information systems. Ideally,

within a given healthcare organization all clinical

information systems and the CKR should utilize the

same standardized ontologies.

Contextual characteristics of the care delivery pro-

cess establish the requirements associated with proper

access, utilization, and presentation of the clinical

knowledge assets. The care delivery context is a multi-

dimensional constraint that includes characteristics of

the patient (e.g., gender, age group, language, clinical

condition), the clinical worker (e.g., discipline, specia-

lty, role), the clinical setting (e.g., inpatient, outpatient,

ICU, Emergency Department), and the information

system being used (e.g., order entry, documentation,

monitoring), among others. The care delivery context

normally applies to the entire clinical knowledge asset,

directly influencing search, retrieval, and presentation

services. The care delivery context can also be used

to constrain specific portions of a knowledge asset,

including links to other embedded assets, making

them accessible only if the constraints are satisfied.

An important integrity challenge created by the sys-

tematic use of the care delivery context is the need for

reconciling conflicts caused by incompatible asset con-

straints, particularly when different teams maintain

the assets being combined. In this scenario, compet-

ing requirements are frequently present, namely the

intention to maximize modularity and reusability

versus the need to maximize clinical specificity and

ease or use.

The accurate selection, retrieval, and presentation

of unstructured assets is generally perceived as a simple

but very useful modality of clinical decision support,

particularly if the information presented to the clinical

Clinical Observation C 359

C

worker is concise and appropriate to the care being

delivered. However, the appropriateness of the infor-

mation is largely defined by the constraints imposed by

the aforementioned care delivery context. Moreover,

the extent of indexing (‘‘retrievability’’) of most collec-

tions of unstructured clinical knowledge assets is not

sufficient to fully recognize detailed care delivery con-

text expressions. Ultimately, the care delivery context

provides an extensible mechanism for defining the

appropriateness of a given clinical knowledge asset in

response to a wide variety of CKR service requests.

The requirements just described are totally or par-

tially implemented as part of general-purpose (enter-

prise) content management systems. However, content

management systems have been traditionally con-

structed for managing primarily human-readable

electronic content. Human-readable content, more

properly characterized as unstructured knowledge

assets, include narrative text, diagrams, and multime-

dia objects. When combined, these unstructured assets

likely represent the largest portion of the inventory of

clinical knowledge assets of any healthcare institution.

As a result, in recent years different healthcare organi-

zations have deployed CKRs using enterprise content

management systems, despite their inability to manage

machine-readable content.

Key Applications
Computerized Clinical Decision Support, Clinical

Knowledge Engineering, Clinical Information Systems.

Cross-references
▶Biomedical Data/Content Acquisition, Curation

▶Clinical Data Acquisition, Storage and Management

▶Clinical Decision Support

▶Dublin Core

▶ Evidence Based Medicine

▶ Executable Knowledge

▶Metadata

▶Reference Knowledge

Recommended Reading
1. Bates D.W. and Gawande A.A. Improving safety with informa-

tion technology. N. Engl. J. Med. 348(25):2526–2534, 2003.

2. Greenes R.A (ed.). Clinical Decision Support: The road ahead.

Academic Press, Boston, 2007, pp. 544.

3. Osheroff J.A., Teich J.M., Middleton B., Steen E.B., Wright A.,

and Detmer D.E. A roadmap for national action on clinical

decision support. J. Am. Med. Inform. Assoc., 14(2):141–145,

2007.
4. Rocha R.A., Bradshaw R.L., Hulse N.C., and Rocha B.H.S.C.

The clinical knowledge management infrastructure of Inter-

mountain Healthcare. In: Clinical Decision Support: The road

ahead, RA.Greenes (ed.). Academic Press, Boston, 2007, pp.

469–502.

5. Statistical Reports on MEDLINE1/PubMed1 Baseline Data,

National Library of Medicine, Department of Health and

Human Services [Online]. Available at: http://www.nlm.nih.

gov/bsd/licensee/baselinestats.html. Accessed 8 Feb 2008.

6. Wyatt J.C. Decision support systems. J. R. Soc. Med., 93(12):

629–633, 2000.
Clinical Nomenclatures

▶Clinical Ontologies
Clinical Observation

DAN RUSSLER

Oracle Health Sciences, Redwood Shores, CA, USA

Synonyms
Clinical result; Clinical judgment; Clinical test; Finding

of observation

Definition
1. The act of measuring, questioning, evaluating, or

otherwise observing a patient or a specimen from a

patient in healthcare; the act of making a clinical

judgment.

2. The result, answer, judgment, or knowledge gained

from the act of observing a patient or a specimen

from a patient in healthcare.

These two definitions of ‘‘observation’’ have caused

confusion in clinical communications, especially when

applying the term to the rigor of standardized terminol-

ogies. When developing a list of observations, the termi-

nologists have differed on whether the list of terms

should refer to the ‘‘act of observing’’ or the ‘‘result of

the observation.’’

Logical Observation Identifiers Names and Codes

(LOINC) (www.loinc.org) focus on observation as

the ‘‘act of observing.’’ Systematized Nomenclature of

Medicine (SNOMED) (www.ihtsdo.org) asserts that

‘‘General finding of observation of patient’’ is a syno-

nym for ‘‘General observation of patient.’’ Of note is

the analysis in HL7 that identifies many shared

360C Clinical Ontologies
attributes between descriptions of the act of obser-

ving and the result obtained. As a consequence, in

HL7 Reference Information Model (RIM), both the

act of observing and the result of the observation

are contained in the same Observation Class (www.

hl7.org).

Key Points
The topic of clinical observation has been central to

the study of medicine since medicine began. Early phy-

sicians focused on the use of all five senses in order to

make judgments about the current condition of the

patient, i.e., diagnosis, or to make judgments about

the future of patients, i.e., prognosis. Physical exam

included sight, touch, listening, and smell. Physicians

diagnosed diabetes by tasting the urine for sweetness.

As more tests on bodily fluids and tissues were

discovered and used, the opportunity for better diag-

nosis and prognosis increased. Philosophy of science

through the centuries often included the study of

clinical observation in addition to the study of other

observations in nature.

During the last century, the study of rigorous test-

ing techniques that improve the reproducibility and

interpretation of results has included the development

of extensive nomenclatures for naming the acts of

observation and observation results, e.g., LOINC and

SNOMED. These terminologies were developed in

part to support the safe application of expert system

rules to information recorded in the electronic health

care record.

The development of the HL7 Reference Informa-

tion Model (RIM) was based on analysis of the ‘‘act of

observing’’ and the ‘‘result of the act of observing’’ [1].

Today, new Entity attributes proposed for the HL7 RIM

are evaluated for inclusion based partly on whether the

information is best communicated in a new attribute

for an HL7 Entity or best communicated in an HL7

Observation Act.

Improved standardization of clinical observation

techniques, both in the practice of bedside care and the

recording of clinical observations in electronic health-

care systems is thought to be essential to the continuing

improvement of healthcare and patient safety.

Cross-references
▶Clinical Event

▶Clinical Order

▶ Interface Engines in Healthcare
Recommended Reading
1. Russler D., et al. Influences of the unified service action

model on the HL7 reference information model. In

JAMIA Symposium Supplement, Proceedings SCAMC, 1999,

pp. 930–934.
Clinical Ontologies

YVES A. LUSSIER, JAMES L. CHEN

University of Chicago, Chicago, IL, USA

Synonyms
Clinical terminologies; Clinical nomenclatures; Clini-

cal classifications

Definition
An ontology is a formal representation of a set of hete-

rogeneous concepts. However, in the life sciences, the

term clinical ontology has also beenmore broadly defined

as also comprising all forms of classified terminologies,

including classifications and nomenclatures. Clinical on-

tologies provide not only a controlled vocabulary but

also relationships among concepts allowing computer

reasoning such that different parties, like physicians and

insurers, can efficiently answer complex queries.

Historical Background
As the life sciences integrates increasingly sophisticated

systems of patient management, different means of

data representation have had to keep pace to support

user systems. Simultaneously, the explosion of genetic

information from breakthroughs from the Human

Genome Project and gene chip technology have further

expedited the need for robust, scalable platforms for

handling heterogeneous data. Multiple solutions have

been developed by the scientific community to answer

these challenges at all different levels of biology.

This growing field of ‘‘systems medicine’’ starts

humbly at the question – how can one best capture

and represent complex data in a means that can be

understood globally without ambiguity? In other

words, does the data captured have the same semantic

validity after retrieval as it did prior? These knowledge-

bases are in of themselves organic. They need to be

able to expand, shrink, and rearrange themselves

based on user or system needs. This entry will touch

upon existing clinical ontologies used in a variety of

applications.

Clinical Ontologies C 361

C

Foundations
The complexity of biological data cannot be understated.

Issues generally fall into challenges with (i) definition, (ii)

context, (iii) composition, and (iv) scale. One cannot

even take for granted that the term ‘‘genome’’ is well-

understood. Mahner found five different character-

izations for the term ‘‘genome’’ [8]. Ontologies then

provide a means of providing representational consisten-

cy through their structure and equally important provide

the ability to connect these terms together in a semanti-

cally informative and computationally elegant manner

[9]. This has led to their ubiquity in the life sciences.

Formal ontologies are designated using frames or de-

scription logics [5]. However, few life science knowledge-

bases are represented completely in this manner due to

difficulties with achieving consensus on definitions re-

garding the terms and the effort required to give context

to the terms. Thus, this article defines well-organized

nomenclatures and terminologies as clinical ontologies

– regardless if their terms adhere to strict formalism.

Looking at elevations in gene expression, it matters

what organism and under what experimental condi-

tions the experiment was conducted. Clinical context

changes the meaning of terms. The term ‘‘cortex’’ can

either indicate a part of the kidney or that of the brain.

Generalized or ‘‘essential hypertension’’ can be what is

known colloquially as ‘‘high blood pressure’’ or loca-

lized to the lungs as ‘‘pulmonary hypertension.’’ One

can have pulmonary hypertension but not essential

hypertension. This leads to the next representational

challenge – that of composition. Should hypertension

be represented implicitly as ‘‘essential hypertension’’

and as ‘‘pulmonary hypertension’’? Or should it be

stored explicitly as ‘‘hypertension’’ with a location

attribute? These representational decisions are driven

by the queries that may be asked. The difficulty arises
Clinical Ontologies. Table 1. Properties of clinical ontologie

Ontology

Architect

Concept
oriented

Formal semantic
definition

Co
perm

ICD-9 þ
LOINC

CPT

SNOMED þ þ
UMLS þ

M = Monohierarchy/tree, P = Polyhierarchy, DAG = Directed Acyclic G
in anticipating the queries and in post-processing

of the query to split the terminological components

of the overall concept. Finally, the knowledge model

needs to be able to scale upward. The same decision

logic that was relevant when the knowledgebase con-

tained 100 concepts needs to still be relevant at

1,000,000 concepts.

Properties of Clinical Ontologies

Ontologies vary widely in their degree of formalism

and design. With this comes differing computability.

In 1998, Cimino proposed desirable properties for

purposes of clinical computation [3,4]. Table 1 sum-

marizes the overall properties of the commonly used

clinical ontologies.

1. Concept-oriented: a single concept is the preferred

unit

2. Formal semantic definition: well-defined terms

3. Nonredundancy: each concept needs to be unique

4. Nonambiguity: different concepts should not over-

lap or be conflated

5. Relationships: the structure of connections between

concepts differentiate ontologies:

– Monohierarchy (tree): each concept only has one

parent concept

– Polyhierarchy: each concept may multiply inherit

from multiple parents

– Directed Acycle Graph (DAG): there are no cycles

in the graph – in other words, children concepts

may not point to parent terms

Key Applications
This section reviews different, well-used life science

ontologies used to annotate datasets. First, this discus-

sion summarizes a select number of archetypal clinical
s

ure

Relationship
ncept
anence Nonredundancy Uniqueness

 þ þ M

þ þ P

 M

þ þ þ DAG

þ þ þ CG

raph, CG = cyclic graph

Clinical Ontologies. Table 2. Coverage of classification, nomenclatures and ontologies

Ontology

Content Number of concepts (order of
magnitude)Diseases Anatomy Morphology Labs Procedures Drugs

ICD-9 X 104

LOINC X 105

CPT X 104

SNOMED X X X X X X 105

UMLS X X X X X X 106

362C Clinical Ontologies
ontologies that comprise one or several types of clinical

entities such as diseases, clinical findings, procedures,

laboratory measurements, and medications. Table 2

below summarizes the content coverage of each of

archetypal health ontologies.

Prototypical Clinical Ontologies

a. The Systematized Nomenclature of Medicine (SNOMED

CT) SNOMED CT is the most extensive set of pub-

lically available collection of clinical concepts. It is

organized as a directed acyclic graph (DAG) and

contains class/subclass relationships and partonomy

relationships. It is maintained by the College of Amer-

ican Pathologists and is available in the United States

through a license from the National Library of Medicine

in perpetuity. SNOMEDCT is one of the designated data

standards for use in U.S. Federal Government systems

for the electronic exchange of clinical health informa-

tion. SNOMED CT is now owned by the International

Healthcare Terminology Standards Development Orga-

nization [6].

b. International Statistical Classification of Diseases

(ICD-9, ICD-10, ICD-CM) ICD-9 and ICD 10 are

detailed ontologies of disease and symptomatology

used ubiquitiously for reimbursement systems (i.e.,

Medicare/Medicaid) and automated decision support

in medicine. ICD-10 is used worldwide for morbidity

and mortality statistics. Owned by the World Health

Organization (WHO), licenses are available generally

free for research. ICD-9 CM is a subtype of ICD-9 with

clinical modifiers for billing purposes [11].

c. Medical Subject Headings (MeSH) MeSH grew out

of an effort by the NLM for indexing life science

journal articles and books. {Nelson S.J., 2001 #6}.

The extensive controlled vocabulary MeSH serves as
the backbone of the MEDLINE/PubMed article data-

base. MeSH can be browsed and downloaded free of

charge on the Internet [10].

d. International Classification of Primary Care (ICPC-2,

ICPC-2-E) ICPC is a primary care encounter classifica-

tion system [12]. It has a biaxial structure of 17 clinical

systems and 7 types of data. It allows for the classifica-

tion of the patient’s reason for encounter (RFE), the

problems/diagnosis managed, primary care interven-

tions, and the ordering of the data. of the primary care

session in an episode of care structure. ICPC-2-E refers

to a revised electronic version.

e. Diagnostic and Statistical Manual of Mental Disorders

(DSM-IV, DSM-V) The DSM is edited and published by

the American Psychiatric Association provides cate-

gories of and diagnosis criteria for mental disorders

[2]. It is used extensively by clinicians, policy makers

and insurers. The original version of the DSM was

published in 1962. DSM-V is due for publication in

May 2012. The diagnosis codes are developed to be

compatible with ICD-9.

f. Logical Observation Identifiers Names and Codes

(LOINC) LOINC is a database protocol aimed at stan-

dardizing laboratory and clinical codes. The Regen-

strief Institute, Inc, maintains the LOINC database

and supporting documentation. LOINC is endorsed

by the American Clinical Laboratory Association and

College of American Pathologist and is one of the

accepted standards by the US Federal Government for

information exchange [7].

g. Current Procedural Terminology (CPT) The CPT

code set is owned and maintained by the American

Medical Association through the CPT Editorial

Panel [1]. The CPT code set is used extensively to

Clinical Order C 363
communicate medical and diagnostic services that

were rendered among physicians and payers. The cur-

rent version is the CPT 2008.
C
Cross-references
▶Anchor text

▶Annotation

▶Archiving Experimental Data

▶Biomedical Data/Content Acquisition, Curation

▶Classification

▶Clinical Data Acquisition, Storage and Management

▶Clinical Data and Information Models

▶Clinical Decision Support

▶Data Integration Architectures and Methodology for

the Life Sciences

▶Data Types in Scientific Data Management

▶Data Warehousing for Clinical Research

▶Digital Curation

▶ Electronic Health Record

▶ Fully-Automatic Web Data Extraction

▶ Information Integration Techniques for Scientific

Data

▶ Integration of Rules and Ontologies

▶ Logical Models of Information Retrieval

▶Ontologies

▶Ontologies and Life Science Data Management

▶Ontology

▶Ontology Elicitation

▶Ontology Engineering

▶Ontology Visual Querying

▶OWL: Web Ontology Language

▶Query Processing Techniques for Ontological Infor-

mation

▶ Semantic Data Integration for Life Science Entities

▶ Semantic Web

▶ Storage Management

▶Taxonomy: Biomedical Health Informatics

▶Web Information Extraction
Recommended reading
1. American Medical Association [cited; Available at: http://www.

cptnetwork.com].

2. American Psychiatric Association [cited; Available at: http://

www.psych.org/MainMenu/Research/DSMIV.aspx].

3. Cimino J.J. Desiderata for controlled medical vocabularies in

the twenty-first century. Methods Inf. Med., 37(4–5):394–403,

1998.

4. Cimino J.J. In defense of the Desiderata. [comment]. J. Biomed.

Inform., 39(3):299–306, 2006.
5. Gruber T.R. Toward principles for the design of ontologies used

for knowledge sharing. Int. J. Hum. Comput. Stud., 43(4–5):

907–928, 1995.

6. I.H.T.S.D. [cited; Available from: http://www.ihtsdo.org/our-

standards/snomed-ct].

7. Khan A.N. et al. Standardizing laboratory data by

mapping to LOINC. J Am Med Inform Assoc, 13(3):353–355,

2006.

8. Mahner M. and Kary M. What exactly are genomes, genotypes

and phenotypes? And what about phenomes? J. Theor. Biol.,

186(1):55–63, 1997.

9. Musen M.A. et al. PROTEGE-II: computer support for develop-

ment of intelligent systems from libraries of components. Med-

info, 8 (Pt 1):766–770, 1995.

10. Nelson S.J., Johnston D., and Humphreys. B.L Relationships in

medicical subject headings. In Relationships in the Organization

of Knowledge, A.B. Carol, G. Rebecca (eds.). Kluwer, Dordecht,

2001, pp. 171–184.

11. World Health Organization [cited; Available at: http://www.who.

int/classifications/icd/en/].

12. World Organization of National Colleges, Academies, and Aca-

demic Associations of General Practitioners/Family Physicians,

ICPC. International Classification of Primary Care. Oxford

University Press, Oxford, 1987.
Clinical Order

DAN RUSSLER

Oracle Health Sciences, Redwood Shores, CA, USA

Synonyms
Order item; Service order; Service request; Service

item; Procedure order; Procedure request

Definition
The act of requesting that a service be performed for

a patient.

Clinical orders in healthcare share many char-

acteristics with purchase orders in other industries.

Both clinical orders and purchase orders establish

a customer-provider relationship between the person

placing the request for a service to be provided and the

person or organization filling the request. In both

cases, the clinical order and purchase order are fol-

lowed by either a promise or intent to fill the request, a

decline to fill the request, or a counter-proposal

to provide an alternate service. In both scenarios,

an authorization step such as an insurance company

authorization or a credit company authorization may

be required. Therefore, the dynamic flow of commu-

nications between a placer and filler in a clinical order

364C Clinical Research Chart
management system and a purchase order manage-

ment system are very similar.

Both clinical order and purchase order manage-

ment systems maintain a catalog of items that may be

requested. These items in both kinds of systems may

represent physical items from supply or services from a

service provider. Each of these items in both kinds

of systems is associated with an internally unique

identifier, a text description, and often a code. Dates,

status codes, delivery locations, and other attributes of

a clinical order and purchase order are also similar.

Therefore, in addition to similarities in the dynamic

flow of order communications, the structure of the

content in clinical orders and purchase orders is similar.

Logical Observation Identifiers Names and Codes

(LOINC) (www.loinc.org) describe many of the

requested services in healthcare, especially in labora-

tory systems. Other procedural terminologies exist

for healthcare, either independently in terminologies

like LOINC or included in more comprehensive ter-

minologies such as Systematized Nomenclature of

Medicine (SNOMED) (www.ihtsdo.org).

Key Points
Clinical orders exist in the context of a larger clinical

management, process. The order management business

process of an organization, that includes defining a

catalog of services to be provided and then allowing

people to select from the catalog of services, is common

in many industries. However, the decision support

opportunities for helping providers select the optimum

set of services for a patient are often more complex in

healthcare than occurs in other industries. The out-

comes of this selection process are studied in clinical

research, clinical trials on medications and devices, and

in organizational quality improvement initiatives. Fi-

nally, the outcomes of the service selection process are

used to improve the clinical decision support processes

utilized by providers selecting services for patients. This

business process in healthcare as well as in many other

industries describes a circular feedback loop defined by

the offering of services, the selection of services, the

delivery of services, the outcome of services, and finally,

the modification of service selection opportunities and

decision support.

In the HL7 Reference Information Model

(RIM), ‘‘ACT’’ classes sub-typed with the moodCode

attribute support the healthcare improvement process
(www.hl7.org). These objects with process ‘‘moods’’

support the sequence of objects created during the exe-

cution of a process defined in Business Process Execu-

tion Language (BPEL) in a service oriented architecture

that begins with an ‘‘order’’, evolves into an ‘‘appoint-

ment’’, which then is completed as an ‘‘event’’. The reason

the term ‘‘mood’’ is used is that the values of the mood-

code attribute are analogous to the models of verbs in

many languages, e.g., the ‘‘Definition mood’’ used to

define service catalogs corresponds to the ‘‘infinitive’’

verbal mood, i.e., a possible action; the ‘‘Request or

Order mood’’ corresponds to the ‘‘imperative’’ verbal

mood; the ‘‘Event mood’’ corresponds to the ‘‘indica-

tive’’ verbal mood; and the ‘‘Goal mood,’’ which

describes the desired outcome of the selected service,

corresponds to the ‘‘subjunctive’’ verbal mood.

Cross-references
▶Clinical Event

▶Clinical Observation

▶ Interface Engines in Healthcare
Clinical Research Chart

▶Data Warehousing for Clinical Research
Clinical Result

▶Clinical Observation
Clinical Terminologies

▶Clinical Ontologies
Clinical Test

▶Clinical Observation
Clock

▶ Physical Clock

▶Time-Line Clock

Closed Itemset Mining and Non-redundant Association Rule Mining C 365

C

Closed Itemset Mining and
Non-redundant Association Rule
Mining

MOHAMMED J. ZAKI

Rensselaer Polytechnic Institute, Troy, NY, USA

Synonyms
Frequent concepts; Rule bases
Definition
Let I be a set of binary-valued attributes, called items.

A set X
 I is called an itemset. A transaction database

D is a multiset of itemsets, where each itemset, called a

transaction, has a unique identifier, called a tid. The

support of an itemset X in a dataset D, denoted sup(X),

is the fraction of transactions in D where X appears

as a subset. X is said to be a frequent itemset in D if

sup(X) � minsup, where minsup is a user defined

minimum support threshold. An (frequent) itemset

is called closed if it has no (frequent) superset having

the same support.

An association rule is an expression A) B,

where A and B are itemsets, and A \ B = ;. The support
of the rule is the joint probability of a transaction

containing both A and B, given as sup(A) B) =

P(A ∧ B) = sup(A [B). The confidence of a rule

is the conditional probability that a transaction

contains B, given that it contains A, given as:

conf ðA) BÞ ¼ PðBjAÞ ¼ PðA^BÞ
PðAÞ ¼

supðA[BÞ
supðAÞ . A rule is

frequent if the itemset A [B is frequent. A rule

is confident if conf � minconf, where minconf is a

user-specified minimum threshold. The aim of non-

redundant association rule mining is to generate a rule

basis, a small, non-redundant set of rules, from which

all other association rules can be derived.
Historical Background
The notion of closed itemsets has its origins in the

elegant mathematical framework of Formal Concept

Analysis (FCA) [3], where they are called concepts. The

task of mining frequent closed itemsets was independent-

ly proposed in [7,11]. Approaches for non-redundant

association rule mining were also independently pro-

posed in [1,9]. These approaches rely heavily on the

seminal work on rule bases in [5,6]. Efficient algorithms

for mining frequent closed itemsets include CHARM
[10], CLOSET [8] and several new approaches described

in the Frequent Itemset Mining Implementations work-

shops [4].

Foundations
Let I = {i1,i2,...,im} be the set of items, and let T = {t1,

t2,...,tn} be the set of tids, the transaction identifiers.

Just as a subset of items is called an itemset, a subset of

tids is called a tidset. Let t : 2I ! 2T be a function,

defined as follows:

tðXÞ ¼ ft 2 T j X
 iðtÞg

That is, t(X) is the set of transactions that contain all

the items in the itemset X. Let i : 2T! 2I be a function,

defined as follows:

iðY Þ ¼ fi 2 I j 8t 2 Y ; t contains xg

That is, i(T) is the set of items that are contained in

all the tids in the tidset Y . Formally, an itemset X is

closed if i ∘ t(X) = X, i.e., if X is a fixed-point of the

closure operator c = i ∘ t. From the properties of

the closure operator, one can derive that X is the

maximal itemset that is contained in all the transac-

tions t(X), which gives the simple definition of a closed

itemset, namely, a closed itemset is one that has no

superset that has the same support.

Based on the discussion above, three main families

of itemsets can be distinguished. Let F denote the set

of all frequent itemsets, given as

F ¼ fX j X
 I and supðXÞ � minsupg

Let C denote the set of all closed frequent itemsets,

given as

C ¼ fX jX 2 F and 6 9Y � X with supðXÞ ¼ supðYÞg

Finally, letM denote the set of all maximal frequent

itemsets, given as

M¼ fX jX 2 F and 6 9Y � X; such that Y 2 Fg

The following relationship holds between these sets:

M
 C
 F , which is illustrated in Fig. 1, based on

the example dataset shown in Table 1 and using mini-

mum support minsup = 3. The equivalence classes of

itemsets that have the same tidsets have been shown

clearly; the largest itemset in each equivalence class is a

closed itemset. The figure also shows that the maximal

itemsets are a subset of the closed itemsets.

Closed Itemset Mining and Non-redundant Association Rule Mining. Figure 1. Frequent, closed frequent and maximal

frequent itemsets.

Closed Itemset Mining and Non-redundant Association

Rule Mining. Table 1. Example transaction dataset

i(t)

1 ACTW

2 CDW

3 ACTW

4 ACDW

5 ACDTW

6 CDT

366C Closed Itemset Mining and Non-redundant Association Rule Mining
Mining Closed Frequent Itemsets

CHARM [8] is an efficient algorithm for mining closed

itemsets. Define two itemsets X,Yof length k as belong-

ing to the same prefix equivalence class, [P], if they

share the k � 1 length prefix P, i.e., X = Px

and Y = Py, where x,y 2 I. More formally, [P] = {Pxi j
xi 2 I}, is the class of all itemsets sharing P as a

common prefix. In CHARM there is no distinct candi-

date generation and support counting phase. Rather,

counting is simultaneous with candidate generation.

For a given prefix class, one performs intersections of

the tidsets ofall pairs of itemsets in the class, and checks

if the resulting tidsets have cardinality at least minsup.

Each resulting frequent itemset generates a new class

which will be expanded in the next step. That is, for a

given class of itemsets with prefix P, [P] = {Px1,Px2,...,

Pxn}, one performs the intersection of Pxi with all Pxj
with j > i to obtain a new class [Pxi] = [P 0] with
elements P 0xj provided the itemset Pxixj is frequent.

The computation progresses recursively until no more

frequent itemsets are produced. The initial invocation

is with the class of frequent single items (the class [;]).
All tidset intersections for pairs of class elements are

computed. However in addition to checking for fre-

quency, CHARM eliminates branches that cannot lead

to closed sets, and grows closed itemsets using subset

relationships among tidsets. There are four cases: if

t(Xi) � t(Xj) or if t(Xi) = t(Xj), then replace every

occurrence of Xi with Xi [Xj, since whenever Xi occurs

Xj also occurs, which implies that c(Xi)
 c(Xi [Xj). If

t(Xi) � t(Xj) then replace Xj for the same reason.

Finally, further recursion is required if t(Xi) 6¼ t(Xj).

These four properties allow CHARM to efficiently

prune the search tree (for additional details see [10]).

Figure 2 shows how CHARMworks on the example

database shown in Table 1. First, CHARM sorts the

items in increasing order of support, and initializes

the root class as [;] = {D � 2456, T � 1356, A �
1345, W � 12345, C � 123456}. The notation D �
2456 stands for the itemset D and its tidset t(D) =

{2,4,5,6}. CHARM first processes the node D � 2456;

it will be combined with the sibling elements. DT and

DA are not frequent and are thus pruned. Looking at

W, since t(D) 6¼ t(W),W is inserted in the new equiva-

lence class [D]. For C, since t(D)�t(C), all occurrences
of D are replaced with DC, which means that [D] is

also changed to [DC], and the element DW to DWC. A

recursive call with class [DC] is then made and since

Closed Itemset Mining and Non-redundant Association Rule Mining. Figure 2. CHARM: mining closed frequent

itemsets.

Closed Itemset Mining and Non-redundant Association Rule Mining C 367

C

there is only a single itemsetDWC, it is added to the set

of closed itemsets C. When the call returns to D (i.e.,

DC) all elements in the class have been processed, so

DC itself is added to C.
When processing T, t(T) 6¼ t(A), and thus CHARM

inserts A in the new class [T]. Next it finds that t(T) 6¼
t(W) and updates [T] = {A,W}. When it finds t(T)

�t(C) it updates all occurrences of Twith TC. The class
[T] becomes [TC] = {A,W}. CHARM then makes a

recursive call to process [TC]. When combining TAC

with TWC it finds t(TAC) = t(TWC), and thus replaces

TAC with TACW, deleting TWC at the same time. Since

TACW cannot be extended further, it is inserted in C.
Finally, when it is done processing the branch TC, it

too is added to C. Since t(A) �t(W) �t(C) no new

recursion is made; the final set of closed itemsets C
consists of the uncrossed itemsets shown in Fig. 2.

Non-redundant Association Rules

Given the set of closed frequent itemsets C, one can

generate all non-redundant association rules. There are

two main classes of rules: (i) those that have 100%

confidence, and (ii) those that have less than 100%

confidence [9]. Let X1 and X2 be closed frequent item-

sets. The 100% confidence rules are equivalent to those

directed from X1 to X2, where X2
 X1, i.e., from a

superset to a subset (not necessarily proper subset).

For example, the rule C) W is equivalent to the rule

between the closed itemsets c(W))c(C) � CW) C.

Its support is sup(CW) = 5∕6, and its confidence is
supðCW Þ
supðW Þ ¼ 5=5 ¼ 1, i.e., 100%. The less than 100% con-

fidence rules are equivalent to those from X1 to X2
where X1 � X2, i.e., from a subset to a proper super-

set. For example, the rule W) T is equivalent to

the rule c(W))c(W [T)� CW)ACTW. Its support

is sup(TW) = 3∕6 = 0.5, and its confidence is
supðTW Þ
supðW Þ ¼ 3=5 ¼ 0:6 or 60%. More details on how to

generate these non-redundant rules appears in [9].

Key Applications
Closed itemsets provide a loss-less representation of the

set of all frequent itemsets; they allow one to determine

not only the frequent sets but also their exact support. At

the same time they can be orders of magnitude fewer.

Likewise, the non-redundant rules provide amuch smal-

ler, and manageable, set of rules, from which all other

rules can be derived. There are numerous applications of

thesemethods, such asmarket basket analysis, web usage

mining, gene expression pattern mining, and so on.

Future Directions
Closed itemset mining has inspired a lot of subsequent

research in mining compressed representations or

summaries of the set of frequent patterns; see [2] for

a survey of these approaches. Mining compressed pat-

tern bases remains an active area of study.

Experimental Results
A number of algorithms have been proposed to mine

frequent closed itemsets, and to extract non-redundant

rule bases. The Frequent Itemset Mining Implementa-

tions (FIMI) Repository contains links to many of

the latest implementations for mining closed item-

sets. A report on the comparison of these methods

368C Closest Pairs
also appears in [4]. Other implementations can be

obtained from individual author’s websites.
Data Sets
The FIMI repository has a number of real and syn-

thetic datasets used in various studies on closed itemset

mining.
Url to Code
The main FIMI website is at http://fimi.cs.helsinki.fi/,

which is also mirrored at: http://www.cs.rpi.edu/~zaki/

FIMI/
Cross-references
▶Association Rule Mining on Streams

▶Data Mining
Recommended Reading
1. Bastide Y., Pasquier N., Taouil R., Stumme G., and Lakhal L.

Mining minimal non-redundant association rules using fre-

quent closed itemsets. In Proc. 1st Int. Conf. Computational

Logic, 2000, pp. 972–986.

2. Calders T., Rigotti C., and Boulicaut J.-F. A Survey on

Condensed Representation for Frequent Sets. In Constraint-

based Mining and Inductive Databases, LNCS, Vol. 3848, J-F.

Boulicaut, L. De Raedt, and H. Mannila (eds.). Springer, 2005,

pp. 64–80.

3. Ganter B. and Wille R. Formal Concept Analysis: Mathematical

Foundations. Springer, Berlin Heidelberg New York, 1999.

4. Goethals B. and Zaki M.J. Advances in frequent itemset mining

implementations: report on FIMI’03. SIGKDD Explor., 6(1):

109–117, June 2003.

5. Guigues J.L. and Duquenne V. Familles minimales d’implica-

tions informatives resultant d’un tableau de donnees binaires.

Math. Sci. hum., 24(95):5–18, 1986.

6. Luxenburger M. Implications partielles dans un contexte. Math.

Inf. Sci. hum., 29(113):35–55, 1991.

7. Pasquier N., Bastide Y., Taouil R., and Lakhal L. Discovering

frequent closed itemsets for association rules. In Proc. 7th Int.

Conf. on Database Theory, 1999, pp. 398–416.

8. Pei J., Han J., and Mao R. Closet: An efficient algorithm for

mining frequent closed itemsets. In Proc. ACM SIGMODWork-

shop on Research Issues in Data Mining and Knowledge Discov-

ery, 2000, pp. 21–30.

9. Zaki M.J. Generating non-redundant association rules. In Proc.

6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data

Mining, 2000, pp. 34–43.

10. Zaki M.J. and Hsiao C.-J. CHARM: An efficient algorithm for

closed itemset mining. In Proc. SIAM International Conference

on Data Mining, 2002, pp. 457–473.

11. Zaki M.J. and OgiharaM. Theoretical foundations of association

rules. In Proc. ACM SIGMODWorkshop on Research Issues in

Data Mining and Knowledge Discovery, 1998.
Closest Pairs

▶Closest-Pair Query

Closest-Pair Query

ANTONIO CORRAL
1, MICHAEL VASSILAKOPOULOS

2

1University of Almeria, Almeria, Spain
2University of Central Greece, Lamia, Greece

Synonyms
Closest pairs; k-Closest pair query; k-Distance join;

Incremental k-distance join; k-Closest pair join

Definition
Given two sets P and Q of objects, a closest pair (CP)

query discovers the pair of objects (p, q) with a dis-

tance that is the smallest among all object pairs in the

Cartesian product P�Q. Similarly, a k closest pair

query (k-CPQ) retrieves k pairs of objects from P and

Q with the minimum distances among all the object

pairs. In spatial databases, the distance is usually de-

fined according to the Euclidean metric, and the set of

objects P and Q are disk-resident. Query algorithms

aim at minimizing the processing cost and the number

of I/O operations, by using several optimization tech-

niques for pruning the search space.

Historical Background
The closest pair query, has been widely studied in

computational geometry. More recently, this prob-

lem has been approached in the context of spatial

databases [4,8,12,14]. In spatial databases, existing

algorithms assume that P and Q are indexed by a

spatial access method (usually an R-tree [1]) and uti-

lize some pruning bounds and heuristics to restrict the

search space.

[8] was the first to address this issue, and proposed

the following distance-based algorithms: incremental

distance join, k distance join and k distance semijoin

between two R-tree indices. The incremental proces-

sing reports one-by-one the desired elements of the

result in ascending order of distance (k is unknown in

advance and the user can stop when he/she is satisfied

by the result). The algorithms follow the Best-First

(BF) traversal policy, which keeps a heap with the

entries of the nodes visited so far (it maintains a

priority queue which contains pairs of index entries

Closest-Pair Query C 369

C

and objects, and pop out the closest pair and process

it). BF is near-optimal for CP queries; i.e., it only visits

the pairs of nodes necessary for obtaining the result

with a high probability. In [12] several modifications

to the algorithms of [8] had been proposed in order to

improve performance. Mainly, a method was proposed

for selecting the sweep axis and direction for the plane

sweep technique in bidirectional node expansion

which minimizes the computational overhead of [8].

Later, an improved version of BF and several algo-

rithms that follow Depth-First (DF) traversal ordering

from the non-incremental point of view (which assumes

that k is known in advance and reports the k elements of

the result all together at the end of the algorithm) was

proposed in [4]. In general, a DF algorithm visit the

roots of the two R-trees and recursively follows the pair

of entries < EP, EQ >, EP 2 RP and EQ 2 RQ, whose

MINMINDIST is the minimum distance among all

pairs. At the opposite of BF, DF is sub-optimal, i.e., it

accesses more nodes than necessary. The main disad-

vantage of BF with respect to DF is that it may suffer

from buffer thrashing if the available memory is not

enough for the heap (it is space-consuming), when a

great quantity of elements of the result is required. In

this case, part of the heap must be migrated to disk,

incurring frequent I/O accesses. The implementation

of DF is by recursion, which is available in most of the

programming languages, and linear-space consuming

with respect to the height of the R-trees. Moreover, BF

is not favored by page replacement policies (e.g., LRU),

as it does not exhibit locality between I/O accesses.

Another interesting contribution to the CP query was

proposed by [14], in which a new structure called the

b-Rdnn tree was presented, along with a better solution

to the k-CP query when there is high overlap between

the two datasets. The main idea is to find k objects from

each dataset which are the closest to the other dataset.

There are a lot of papers related to k-CP query, like

buffer query [3], iceberg distance join query [13],multi-

way distance join query [6], k-nearest neighbor join [2],

closest pair query with spatial constraints [11], etc. For

example, a buffer query [3] involves two spatial datasets

and a distance threshold r; the answer to this query is a
set of pairs of spatial objects, one from each input

dataset, that are within distance r of each other.

Foundations
In spatial databases, existing algorithms assume that

sets of spatial objects are indexed by a spatial access
method (usually an R-tree [1]) and utilize some prun-

ing bounds to restrict the search space. An R-tree is a

hierarchical, height balanced multidimensional data

structure, designed to be used in secondary storage

based on B-trees. The R-trees are considered as excel-

lent choices for indexing various kinds of spatial data

(points, rectangles, line-segments, polygons, etc.).

They are used for the dynamic organization of a set

of spatial objects approximated by their Minimum

Bounding Rectangles (MBRs). These MBRs are char-

acterized by min and max points of rectangles with

faces parallel to the coordinate axis. Using the MBR

instead of the exact geometrical representation of the

object, its representational complexity is reduced to

two points where the most important features of the

spatial object (position and extension) are maintained.

The R-trees belong to the category of data-driven

access methods, since their structure adapts itself

to the MBRs distribution in the space (i.e., the parti-

tioning adapts to the object distribution in the embed-

ding space). Figure 1a shows two points sets P and

Q (and the node extents), where the closest pair is

(p8, q8), and Fig. 1b is the R-tree for the point set

P = {p1, p2,...,p12} with a capacity of three entries per

node (branching factor or fan-out).

Assuming that the spatial datasets are indexed on any

spatial tree-like structure belonging to the R-tree family,

then the main objective while answering these types

of spatial queries is to reduce the search space. In [5],

three MBR-based distance functions to be used in algo-

rithms for CP queries were formally defined, as an ex-

tension of the work presented in [4]. These metrics are

MINMINDIST, MINMAXDIST and MAXMAXDIST.

MINMINDIST (M1, M2) between two MBRs is the

minimum possible distance between any point in

the first MBR and any point in the second MBR.

Maxmaxdist between two MBRs (M1, M2) is the maxi-

mum possible distance between any point in the

first MBR and any point in the second MBR. Finally,

MINMAXDIST between two MBRs (M1, M2) is the

minimum of the maximum distance values of all

the pairs of orthogonal faces to each dimension. For-

mally, they are defined as follows:

Given twoMBRs M1 = (a, b) andM2 = (c, d), in the

d-dimensional Euclidean space,

M1 = (a, b), where a = (a1, a2,...,ad) and b = (b1,

b2,...,bd) such that ai 	 bi 1 	 i 	 d

M2 = (c, d), where c = (c1, c2,...,cd) and d = (d1,

d2,...,dd) such that ai 	 bi 1 	 i 	 d

Closest-Pair Query. Figure 1. Example of an R-tree and a point CP query.

Closest-Pair Query. Figure 2. MBR-based distance

functions in 2-dimensional Euclidean space.

370C Closest-Pair Query
the MBR-based distance functions are defined as

follows:

MINMINDISTðM1;M2Þ ¼ffi
Xd
i¼1

ðci � biÞ2; ci > bi

ðai � diÞ2; ai > di

0; otherwise

8><
>:

vuuuut

MAXMAXDISTðM1;M2Þ ¼ffi
Xd
i¼1

ðdi � aiÞ2; ci > bi

ðbi � ciÞ2; ai > di

max ðdi � aiÞ2; ðbi � ciÞ2
� �

; otherwise

8><
>: :

vuuuut

MINMAXDIST M1;M2ð Þ ¼

ffi
min
1	j	d

x2j þ
Xd

i¼1;i 6¼j
y2i

()vuut

where

xj ¼ min aj � cj
�� ��; aj � dj

�� ��; bj � cj
�� ��; bj � dj

�� ��� �
and

yi ¼ max ai � dij j; bi � cij jf g

To illustrate the distance functionsMINMINDIST,MIN-

MAXDIST and MAXMAXDIST which are the basis of

query algorithms for CPQ, in Fig. 2, two MBRs and

their MBR-based distance functions and their relation

with the distance (dist) between two points (pi, qj) are

depicted in 2-dimensional Euclidean space.

According to [5], MINMINDIST(M1,M2) is

monotonically non-decreasing with the R-tree heights.

MINMINDIST(M1,M2) and MAXMAXDIST(M1, M2)

serve respectively as lower and upper bounding func-

tions of the Euclidean distance from the k closest pairs

of spatial objects within the MBRs M1, and M2. In the
same sense, MINMAXDIST(M1, M2) serves as an

upper bounding function of the Euclidean distance

from the closest pair of spatial objects enclosed by the

MBRs M1 andM2. As long as the distance functions are

consistent, the branch-bound algorithms based on

them will work correctly [5].

Moreover, the general pruning mechanism for

k-CP queries over R-tree nodes using branch-and-

bound algorithms is the following: if MINMINDIST

(M1, M2) > z, then the pair of MBRs (M1, M2) will be

discarded, where z is the distance value of the k-th

closest pair that has been found so far (during the

processing of the algorithm), or the distance value of

the k-th largest MAXMAXDIST found so far (z is also

called as the pruning distance).

Branch-and-bound algorithms can be designed fol-

lowing DF or BF traversal ordering (Breadth-First tra-

versal order (level-by-level) can also be implemented,

but the processing of each level must follow a BF order)

to report k closest pairs in non-incremental way (for

incremental processing the ordering of traversal must

be BF [8]).

Closest-Pair Query C 371

C

As an example, Fig. 3 shows the BF k-CPQ algo-

rithm for two R-trees, for the non-incremental proces-

sing version. This algorithm needs to keep a minimum

binary heap (H) with the references to pairs of internal

nodes (characterized by their MBRs) accessed so far

from the two different R-trees and their minimum

distance (<MINMINDIST, AddrMPi, AddrMQj>). It

visits the pair of MBRs (nodes) with the minimum

MINMINDIST in H, until it becomes empty or the

MINMINDIST value of the pair of MBRs located in

the root of H is larger than the distance value of the

k-th closest pair that has been found so far (z). To keep

track of z, an additional data structure that stores the k

closest pairs discovered during the processing of the

algorithm is needed. This data structure is organized as

a maximum binary heap (k-heap) and holds pairs of

objects according to their minimum distance (the pair

with the largest distance resides in the root). In the

implementation of k-CPQ algorithm, the following

cases must be considered: (i) initially the k-heap is
Closest-Pair Query. Figure 3. Best-First k-CPQ Algorithm usi
empty (z is initialized to 1), (ii) the pairs of objects

reached at the leaf level are inserted in the k-heap until it

gets full (z keeps the value of1), (iii) if the distance of a

new pair of objects discovered at the leaf level is smaller

than the distance of the pair residing in the k-heap root,

then the root is extracted and the new pair is inserted in

the k-heap, updating this data structure and z (distance

of the pair of objects residing in the k-heap root).

Several optimizations had been proposed in order

to improve performance, mainly with respect to the

CPU cost. For instance, a method for selecting the

sweep axis and direction for the plane sweep technique

has been proposed [12]. But the most important opti-

mization is the use of the plane-sweep technique for

k-CPQ [5,12], which is a common technique for com-

puting intersections. The basic idea is to move a sweep-

line perpendicular to one of the dimensions, so-called

the sweeping dimension, from left to right. This tech-

nique is applied for restricting all possible combina-

tions of pairs of MBRs from two R-tree nodes from RP
ng R–trees.

372C Closest-Pair Query
and RQ. If this technique is not used, then a set with

all possible combinations of pairs of MBRs from two

R-tree nodes must be created. In general, the technique

consists in sorting the MBRs of the two current R-tree

nodes, based on the coordinates of one of the lower left

corners of the MBRs in increasing order. Each MBR

encountered during a plane sweep is selected as a pivot,

and it is paired up with the non-processed MBRs in

the other R-tree node from left to right. The pairs of

MBRs with MINMINDISTon the sweeping dimension

that are less than or equal to z (pruning distance) are

selected for processing. After all possible pairs of

MBRs that contain the pivot have been found, the

pivot is updated with the MBR of the next smallest

value of a lower left corner of MBRs on the sweeping

dimension, and the process is repeated. In summary,

the application of this technique can be viewed as

a sliding window on the sweeping dimension with a

width of z starting in the lower end of the pivot MBR,

where all possible pairs of MBRs that can be formed

using the MBR of the pivot and the other MBRs from

the remainder entries of the other R-tree node that fall

into the current sliding window are chosen. For exam-

ple, in Fig. 4, a set of MBRs from two R-tree nodes

({MP1, MP2, MP3, MP4, MP5, MP6} and {MQ1, MQ2,

MQ3, MQ4, MQ5, MQ6, MQ7}) is shown. Without

plane-sweep, 6*7 = 42 pairs of MBRs must be gener-

ated. If the plane-sweep technique is applied over the

X axis (sweeping dimension) and taking into account

the distance value of z (pruning distance), this number

of possible pairs will reduced considerably (the num-

ber of selected pairs of MBRs using the plane sweep

technique is only 29).
Closest-Pair Query. Figure 4. Using plane-sweep technique
Key Applications

Geographical Information Systems

Closest pair is a common distance-based query in

the spatial database context, and it has only recently

received special attention. Efficient algorithms are

important for dealing with the large amount of spatial

data in several GIS applications. For example, k-CPQ can

discover the K closest pairs of cities and cultural land-

marks providing an increase order based on its distances.

Data Analysis

Closest pair queries have been considered as a core

module of clustering. For example, a proposed cluster-

ing algorithm [10] owes its efficiency to the use of

closest pair query, as opposed to previous quadratic-

cost approaches.

Decision Making

A number of decision support tasks can be modeled

as closest pairs query. For instance, find the top

k factory-house pairs ordered by the closeness to one

another. This gives us a measure of the effect of indi-

vidual factory on individual household, and can give

workers a priority to which factory to address first.

Future Directions
k-closest pair query is a useful type of query in many

practical applications involving spatial data, and the

traditional technique to handle this spatial query gen-

erally assumes that the objects are static. Objects repre-

sented as a function of time have been studied in other

domains, as in spatial semijoin [9]. For this reason,
over MBRs from two R-tree nodes.

Cloud Computing C 373

C

closest pair query in spatio-temporal databases could

be an interesting line of research.

Another interesting problem to study is the moni-

toring of k-closest pairs over moving objects. It aims at

maintaining closest pairs results while the underlying

objects change the positions [15]. For example, return

k pairs of taxi stands and taxies that have the smallest

distances.

Other interesting topics to consider (from the

static point of view) are to study k-CPQ between

different spatial data structures (Linear Region Quad-

trees for raster and R-trees for vector data), and

to investigate k-CPQ in non-Euclidean spaces (e.g.,

road networks).
Experimental Results
In general, for every presented method, there is an

accompanying experimental evaluation in the corres-

ponding reference. [4,5,8] compare BF and DF travers-

al order for conventional k-CPQ (from the incremental

and non-incremental point of view). In [7], a cost

model for k-CPQ using R-trees was proposed, evaluat-

ing their accuracy. Moreover, experimental results on

k-closest pair queries to support the fact that b-Rdnn

tree is a better alternative with respect to the R*-trees,

when there is high overlap between the two datasets,

were presented in [14].
Data Sets
A large collection of real datasets, commonly used

for experiments, can be found at: http://www.

rtreeportal.org/
URL to Code
R-tree portal (see above) contains the code for most

common spatial access methods (mainly R-tree and

variations), as well as data generators and several useful

links for researchers and practitioners in spatial

databases.

The sources in C + + of k-CPQ are in: http://www.

ual.es/�acorral/DescripcionTesis.htm

Cross-references
▶Multi-Step Query Processing

▶Nearest Neighbor Query

▶R-Tree (and family)

▶ Spatial Indexing Techniques

▶ Spatial Join
Recommended Reading
1. Beckmann N., Kriegel H.P., Schneider R., and Seeger B. The

R*-tree: an efficient and robust access method for points and

rectangles. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1990, pp. 322–331.

2. Böhm C. and Krebs F. The k-nearest neighbour join: Turbo

charging the KDD process. Knowl. Inform. Syst., 6(6):728–749,

2004.

3. Chan E.P.F. Buffer queries. IEEE Trans. Knowl. Data Eng.,

15(4):895–910, 2003.

4. Corral A., Manolopoulos Y., Theodoridis Y., and Vassilakopou-

los M. Closest pair queries in spatial databases. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2000,

pp. 189–200.

5. Corral A., Manolopoulos Y., Theodoridis Y., and

Vassilakopoulos M. Algorithms for processing K-closest-pair

queries in spatial databases. Data Knowl. Eng., 49(1):67–104,

2004.

6. Corral A., Manolopoulos Y., Theodoridis Y., and

Vassilakopoulos M. Multi-way distance join queries in spatial

databases. GeoInformatica, 8(4):373–402, 2004.

7. Corral A., Manolopoulos Y., Theodoridis Y., and

Vassilakopoulos M. Cost models for distance joins queries

using R-trees. Data Knowl. Eng., 57(1):1–36, 2006.

8. Hjaltason G.R. and Samet H. Incremental distance join algo-

rithms for spatial databases. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1998, pp. 237–248.

9. Iwerks G.S., Samet H., and Smith K. Maintenance of spatial

semijoin queries on moving points. In Proc. 30th Int. Conf. on

Very Large Data Bases, 2004, pp. 828–839.

10. Nanopoulos A., Theodoridis Y., and Manolopoulos Y. C2P:

clustering based on closest pairs. In Proc. 27th Int. Conf. on

Very Large Data Bases, 2001, pp. 331–340.

11. Papadopoulos A.N., Nanopoulos A., and Manolopoulos Y.

Processing distance join queries with constraints. Comput. J.,

49(3):281–296, 2006.

12. Shin H., Moon B., and Lee S. Adaptive multi-stage distance join

processing. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 2000, pp. 343–354.

13. Shou Y., Mamoulis N., Cao H., Papadias D., and Cheung D.W.

Evaluation of iceberg distance joins. In Proc. 8th Int. Symp.

Advances in Spatial and Temporal Databases, 2003, pp. 270–288.

14. Yang C. and Lin K. An index structure for improving

closest pairs and related join queries in spatial databases. In

Proc. Int. Conf. on Database Eng. and Applications, 2002, pp.

140–149.

15. Zhu M., Lee D.L., and Zhang J. k-closest pair query monitoring

over moving objects. In Proc. 3rd Int. Conf. on Mobile Data

Management, 2002, pp. 14–14.
Cloud Computing

▶Replication in Multi-Tier Architectures

▶ Storage Grid

374C Cluster and Distance Measure
Cluster and Distance Measure

DIMITRIOS GUNOPULOS
1,2

1Computer Science and Eng. Dept., Univ. of California

Riverside, Riverside, CA 92521, USA
2Dept. of Informatics and Telecommunications,

University of Athens, Athens, Greece

Synonyms
Unsupervised learning; Segmentation

Definition

Clustering

Clustering is the assignment of objects to groups of

similar objects (clusters). The objects are typically

described as vectors of features (also called attributes).

So if one has n attributes, object x is described as a

vector (x1,..,xn). Attributes can be numerical (scalar) or

categorical. The assignment can be hard, where each

object belongs to one cluster, or fuzzy, where an object

can belong to several clusters with a probability. The

clusters can be overlapping, though typically they are

disjoint. Fundamental in the clustering process is the

use of a distance measure.

Distance Measure

In the clustering setting, a distance (or equivalently a

similarity) measure is a function that quantifies the

similarity between two objects.

Key Points
The choice of a distance measure depends on the

nature of the data, and the expected outcome of

the clustering process. The most important consider-

ation is the type of the features of the objects. One

first focuses on distance measures when the features

are all numerical. This includes features with continu-

ous values (real numbers) or discrete values (integers).

In this case, typical choices include:

1. The Lp norm. It is defined as D(x,y)¼P
1	i	n ðX1 � Y1Þp

	
1=p
. Typically p is 2 (the intui-

tiveandthereforewidelyusedEuclideandistance),or

1 (the Manhattan or city block distance), or infinity

(theMaximumdistance).

2. The Mahalanobis distance. It is defined as

Dðx; yÞ ¼ ðx � yÞ
P �1ðx � yÞTwhich generalizes

the Euclidean and allows the assignment of differ-

ent weights to different features.
3. The angle between two vectors, computed using the

inner product of two vectors x·y.

4. The Hamming distance, which measures the num-

ber of disagreements between two binary vectors.

In different settings different distance measures can be

used. The edit, or Levenshtein, distance, is an exten-

sion of the Hamming distance, and is typically used for

measuring the distance between two strings of charac-

ters. The edit distance is defined as the minimum

number of insertions, deletions or substitutions that

it takes to transform one sting to another.

When two time series are compared, the Dynamic

TimeWarping distancemeasure is often used to quantify

their distance. The length of the Longest Common Sub-

sequence (LCSS) of two time series is also frequently

used to provide a similarity measure between the time

series. LCSS is a similarity measure because the longest

common subsequence becomes longer when two time

series are more similar. To create a distance measure,

LCSS is typically normalized by dividing by the length

of the longest of the two sequences, and then subtracting

the ratio from one.

Finally, when sets of objects are compared, the

Jaccard coefficient is typically used to compute their

distance. The Jaccard coefficient of sets A and B is

defined as JðA;BÞ ¼ jA \ Bj=jA [Bj, that is, the frac-
tion of the common elements over the union of the

two sets.

The majority of the distance measures used in

practice, and indeed most of the ones described

above are metrics. Formally, a distance measure D is

a metric if it obeys the following properties:

For objects A, B, (i) D(A,B)\geq 0, (ii) D(A,B) = 0 if

and only if A = B, and (iii) D(A,B) = D(B,A), and (iv)

for any objects A,B,C, D(A,B) + D(B,C)\geq D(A,C)

(triangle inequality).

Most distance measures can be trivially shown to

observe the first three properties, but do not necessarily

observe the triangle inequality. For example, the con-

strained Dynamic Time Warping distance, a typically

used measure to compute the similarity between time

series which does not allow arbitrary stretching of a time

series, is not a metric because it does not satisfy the

triangle inequality. Experimental results have shown

that the constrained Dynamic Time Warping distance

performs at least as good as the unconstrained one and it

is also faster to compute, thus justifying its use although

it is not a metric. Note however that, if it is so required,

any distance measure can be converted into a metric by

Clustering for Post Hoc Information Retrieval C 375
taking the shortest path between objects A and B in the

complete graph where each object is a node and each

edge is weighted by the distance between the two nodes.
C
Cross-references
▶Clustering Overview and Applications

▶Data Mining
Recommended Reading
1. Everitt B.S., Landau S., Leese M. Cluster Analysis. Wiley, 2001.

2. Jain A.K., Murty M.N., and Flyn P.J. Data Clustering: A Review.

ACM Comput Surv, 31(3):1999.

3. Theodoridis S. and Koutroubas K. Pattern recognition. Academic

Press, 1999.
Cluster Database Replication

▶Replica Control
Cluster Databases

▶ Process Structure of a DBMS
Cluster Replication

▶Replication for Scalability

▶Replication in Multi-Tier Architectures
Cluster Stability

▶Clustering Validity
Cluster Validation

▶Clustering Validity
Clustering

▶Deduplication in Data Cleaning

▶ Physical Database Design for Relational Databases
Clustering for Post Hoc Information
Retrieval

DIETMAR WOLFRAM

University of Wisconsin-Milwaukee, Milwaukee, WI,

USA

Synonyms
Document clustering

Definition
Clustering is a technique that allows similar objects to be

grouped together based on common attributes. It has

been used in information retrieval for different retrieval

process tasks and objects of interest (e.g., documents,

authors, index terms). Attributes used for clusteringmay

include assigned terms within documents and their

co-occurrences, the documents themselves if the focus

is on index terms, or linkages (e.g., hypertext links of

Web documents, citations or co-citations within docu-

ments, documents accessed). Clustering in IR facilitates

browsing and assessment of retrieved documents for

relevance and may reveal unexpected relationships

among the clustered objects.
Historical Background
A fundamental challenge of information retrieval (IR)

that continues today is how to best match user queries

with documents in a queried collection. Many mathe-

matical models have been developed over the years to

facilitate the matching process. The details of the

matching process are usually hidden from the user,

who is only presented with an outcome. Once a set of

candidate documents has been identified, they are pre-

sented to the user for perusal. Traditional approaches

have relied on ordered linear lists of documents based

on calculated relevance or another sequencing criteri-

on (e.g., date, alphabetical by title or author). The

resulting linear list addresses the assessed relationship

of documents to queries, but not the relationships

of the documents themselves. Clustering techniques

can reduce this limitation by creating groups of

documents (or other objects of interest) to facilitate

more efficient retrieval or perusal and evaluation of

retrieved sets.

The application of clustering techniques to IR

extends back to some of the earliest experimental

IR systems including Gerard Salton’s SMART system,

which relied on document cluster identification within

376C Clustering for Post Hoc Information Retrieval
a vector space as a means of quickly identifying sets of

relevant documents. The rationale for applying cluster-

ing was formalized as the ‘‘cluster hypothesis,’’ proposed

by Jardine and van Rijsbergen [6]. This hypothesis pro-

poses that documents that are relevant to a query are

more similar to each other than to documents that

are not relevant to the query. The manifestation of this

relationship can be represented in different ways by

grouping like documents or, more recently, visualizing

the relationships and resulting proximities in a multi-

dimensional space.

Early applications of clustering emphasized its use

to more efficiently identify groups of related, relevant

documents and to improve search techniques. The

computational burden associated with real-time clus-

ter identification during searches on increasingly larger

data corpora and the resulting lackluster performance

improvements have caused clustering to lose favor as a

primary mechanism for retrieval. However, clustering

methods continue to be studied and used today (see,

for example, [7]). Much of the recent research into

clustering for information retrieval has focused on

other areas that support the retrieval process. For in-

stance, clustering has been used to assist in query

expansion, where additional terms for retrieval may

be identified. Clustering of similar terms can be used

to construct thesauri, which can be used to index

documents [3].

Recent research on clustering has highlighted its

benefits for post hoc retrieval tasks, in particular for

the presentation of search results to better model user

and usage behavior. The focus of applications pre-

sented here is on these post hoc IR tasks, dealing with

effective representation of groups of objects once iden-

tified to support exploratory browsing and to provide

a greater understanding of users and system usage for

future IR system development.
Foundations
Methods used to identify clusters are based on cluster

analysis, a multivariate exploratory statistical tech-

nique. Cluster analysis relies on similarities or differ-

ences in object attributes and their values. The

granularity of the analysis and the validity of the result-

ing groups are dependent on the range of attributes

and values associated with objects of interest. For IR

applications, clusters are based on common occur-

rences and weights of assigned terms for documents,
the use of query terms, or linkages between objects of

interest represented as hypertext linkages or citations/

co-citations.

Clustering techniques can be divided into hierarchi-

cal and non-hierarchical approaches. Non-hierarchical

clustering methods require that a priori assumptions be

made about the nature and number of clusters, but can

be useful if specific cluster parameters are sought. Hier-

archical clustering, which is more commonly used,

begins with many small groups of objects that serve as

initial clusters. Existing groups are clustered into larger

groups until only one cluster remains. Visually, the

structure and relationship of clusters may be represented

as a dendrogram, with different cluster agglomerations

at different levels on the dendrogram representing the

strength of relationship between clusters. Other visuali-

zation techniques may be applied and are covered else-

where. In hierarchical methods, the shorter the

agglomerative distance, the closer the relationship and

the more similar the clusters are. As an exploratory

technique, there is no universally accepted algorithm to

conduct the analysis, but the general steps for conduct-

ing the analysis are similar. First, a similarity measure is

applied to the object attributes, which serves as the basis

for pairwise comparisons. Standard similarity or dis-

tancemeasures applied in IR research such as the Euclid-

ean distance, cosine measure, Jaccard coefficient, and

Dice coefficient can be used. Next, a method for cluster

determination is selected. Common methods include:

single complete linkage, average linkage, nearest neigh-

bor, furthest neighbor, centroid clustering (representing

the average characteristics of objects within a cluster),

and Ward’s method. Each method uses a different algo-

rithm to assess cluster membership andmay be found to

be more appropriate in given circumstances. Outcomes

can vary significantly depending on the method used.

This flexibility underscores one of the challenges for

effectively implementing cluster analysis. With no one

correct or accepted way to conduct the analysis, out-

comes are open to interpretation, but may be viewed as

equally valid. For example, single linkage clustering,

which links pairs of objects that most closely resemble

one another, is comparatively simple to implement and

has been widely used, but can result in lengthy linear

chains of clusters. Parameters may need to be specified

that dictate the minimum size of clusters to avoid situa-

tions where there are large orders of difference in cluster

membership. Another challenge inherent in clustering is

that different clustering algorithms can produce similar

Clustering for Post Hoc Information Retrieval C 377

C

numbers of clusters, but if some clusters contain few

members, this does little to disambiguate the members

within large clusters. The number of clusters that parti-

tion the object set can be variable in hierarchical cluster-

ing. More clusters result in fewer objects per cluster with

greater inter-object similarity, but with potentially more

groups to assess. It is possible to test for an optimal

number of clusters using various measures that calcu-

late how differing numbers of clusters affect cluster

cohesiveness.

Clustering may be implemented in dynamic envir-

onments by referencing routines based on specific clus-

tering algorithms developed by researchers or through

specialty clustering packages. Details on clustering algo-

rithms for information retrieval can be found in

Rasmussen [8]. Standard statistical and mathematical

software packages such as SAS and SPSS also support a

range of clustering algorithms. Special algorithms may

need to be applied to very large datasets to reduce

computational overhead, which can be substantial for

some algorithms.

Key Applications
In addition to early applications of clustering for im-

proving retrieval efficiency, clustering techniques in IR

have included retrieval results presentation, and mod-

eling of IR user and usage characteristics based on

transactions logs. Although largely a topic of research

interest, some applications have found their way into

commercial systems. Clustering of search results has

been applied by several Web-based search services since

the late 1990s, some of which are no longer available.

Most notable of the current generation is Clusty

(clusty.com), which organizes retrieval results from

several search services around topical themes.

The application of clustering to support interactive

browsing has been an active area of investigation in

recent years. Among the earliest demonstrations for

this purpose was the Scatter/Gather method outlined

by Cutting et al. [4], inwhich the authors demonstrated

how clustering of retrieved items can facilitate browsing

for vaguely defined information needs. This approach

was developed to serve as a complement to more fo-

cused techniques for retrieval assessment. In applica-

tion, the method presents users with a set of clusters

that serves as the starting point for browsing. The user

selects the clusters of greatest interest. The contents of

those clusters are then gathered into a single cluster,

which now serves as the corpus for a new round of
clustering, into which the new smaller corpus of items

is scattered. The process continues until the user’s in-

formation need is met or the user abandons the search.

To support real time clustering of datasets, the authors

developed an efficient clustering algorithm, called

buckshot, plus a more accurate algorithm, called frac-

tionation, to permit more detailed clustering in offline

environments where a timely response is less critical.

Another algorithm, called cluster digest, was used to

encapsulate the topicality of a given cluster based on the

highest weighted terms within the cluster. Hearst and

Pedersen [5] evaluated the efficacy of Scatter/Gather on

the top-ranked retrieval outcomes of a large dataset,

and tested the validity of the cluster hypothesis. The

authors compared the number of known relevant items

to those appearing in the generated clusters. A user

study was also conducted, which demonstrated that

participants were able to effectively navigate and inter-

act with the system incorporating Scatter/Gather.

Increasingly, IR systems provide access to hetero-

geneous collections of documents. The question arises

whether the cluster hypothesis, and the benefits of

capitalizing on its attributes, extends to the distributed

IR environment, where additional challenges include the

merger of different representations of documents and

identification of multiple occurrences of documents

across the federated datasets. Crestani and Wu [2] con-

ducted an experimental study to determine whether the

cluster hypothesis holds in a distributed environment.

They simulated a distributed environment by using

different combinations of retrieval environments and

document representation heterogeneity, with the most

sophisticated implementation representing three differ-

ent IR environments with three different collections.

Results of the different collections and systems were

clustered and compared. The authors concluded that

the cluster hypothesis largely holds true in distributed

environments, but fails when brief surrogates of full

text documents are used.

With the growing availability of large IR system

transaction logs, clustering methods have been used

to identify user and usage patterns. By better under-

standing patterns in usage behavior, IR systems may be

able to identify types of behaviors and accommodate

those behaviors through context-sensitive assistance or

through integration of system features that accommo-

date identified behaviors. Chen and Cooper [1] relied

on a rich dataset of user sessions collected from the

University of California MELVYL online public access

378C Clustering Index
catalog system. Based on 47 variables associated with

each user session (e.g., session length in seconds, aver-

age number of items retrieved, average number of

search modifications), their analysis identified six clus-

ters representing different types of user behaviors dur-

ing search sessions. These included help-intensive

searching, knowledgeable usage, and known-item

searching. Similarly, Wen et al. [9] focused on cluster-

ing of user queries in an online encyclopedia environ-

ment to determine whether queries could be effectively

clustered to direct users to appropriate frequently

asked questions topics. IR environments that cater to

a broad range of users are well-known for short query

submissions by users, which make clustering applica-

tions based solely on query term co-occurrence unreli-

able. In addition to the query content, the authors

based their analysis on common retrieved documents

viewed by users. By combining query content with

common document selections, a link was established

between queries that might not share search terms. The

authors demonstrated how the application of their

clustering method, which was reportedly adopted by

the encyclopedia studied, could effectively guide users

to appropriate frequently asked questions.

The previous examples represent only a sample of

clustering applications in an IR context. Additional

recent research developments and applications using

clustering may be found in Wu et al. [10].
Cross-references
▶Data Mining

▶Text Mining

▶Visualization for Information Retrieval
Recommended Reading
1. Chen H.M. and Cooper M.D. Using clustering techniques to

detect usage patterns in a web-based information system. J. Am.

Soc. Inf. Sci. Technol., 52(11):888–904, 2001.

2. Crestani F. and Wu S. Testing the cluster hypothesis in

distributed information retrieval. Inf. Process. Manage.,

42(5):1137–1150, 2006.

3. Crouch C.J. A cluster-based approach to thesaurus construction.

In Proc. 11th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 1988, pp. 309–320.

4. Cutting D.R., Karger D.R., Pedersen J.O., and Tukey J.W. Scatter/

Gather: a cluster-based approach to browsing large document

collections. In Proc. 15th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1992,

pp. 318–329.

5.Hearst M.A. and Pedersen J.O. Reexamining the cluster hypoth-

esis: Scatter/Gather on retrieval results. In Proc. 19th Annual Int.
ACM SIGIR Conf. on Research and Development in Informa-

tion Retrieval, 1996, pp. 76–84.

6. Jardine N. and van Rijsbergen C. The use of hierarchic clustering

in information retrieval. Inf. Storage Retr., 7(5):217–240, 1971.

7. Liu X. and Croft W.B. Cluster-based retrieval using language

models. In Proc. 30th Annual Int. ACM SIGIR Conf. on Re-

search and Development in Information Retrieval, 2004, pp.

186–193.

8. Rasmussen E. Clustering algorithms. In Information Retrieval

Data Structures & Algorithms, W.B. Frakes, R. Baeza-Yates

(eds.). Prentice Hall, Englewood Cliffs, NJ, 1992, pp. 419–442.

9. Wen J.R., Nie J.Y., and Zhang H.J. Query clustering using user

logs. ACM Trans. Inf. Syst., 20(1):59–81, 2002.

10. Wu W., Xiong H., and Shekhar S. (eds.) Clustering and Infor-

mation Retrieval. Kluwer, Norwell, MA, 2004.
Clustering Index

▶ Primary Index
Clustering on Streams

SURESH VENKATASUBRAMANIAN

University of Utah, Salt Lake City, UT, USA

Definition
An instance of a clustering problem (see clustering)

consists of a collection of points in a distance space,

a measure of the cost of a clustering, and a measure of

the size of a clustering. The goal is to compute a

partitioning of the points into clusters such that the

cost of this clustering is minimized, while the size is

kept under some predefined threshold. Less common-

ly, a threshold for the cost is specified, while the goal is

to minimize the size of the clustering.

A data stream (see data streams) is a sequence of

data presented to an algorithm one item at a time.

A stream algorithm, upon reading an item, must per-

form some action based on this item and the contents

of its working space, which is sublinear in the size of

the data sequence. After this action is performed

(which might include copying the item to its working

space), the item is discarded.

Clustering on streams refers to the problem of

clustering a data set presented as a data stream.

Historical Background
Clustering (see clustering) algorithms typically require

access to the entire data to produce an effective clus-

tering. This is a problem for large data sets, where

Clustering on Streams C 379

C

random access to the data, or repeated access to the

entire data set, is a costly operation. For example, the

well-known k-means heuristic is an iterative procedure

that in each iteration must read the entire data set

twice. One set of approaches to performing clustering

on large data involves sampling: a small subset of data

is extracted from the input and clustered, and then this

clustering is extrapolated to the entire data set.

The data stream paradigm [14] came about in two

ways: first, as a way to model access to large streaming

sources (network traffic, satellite imagery) that by vir-

tue of their sheer volume, cannot be archived for off-

line processing and need to be aggregated, summarized

and then discarded in real time. Second, the streaming

paradigm has shown itself to be the most effective way

of accessing large databases: Google’s Map Reduce [9]

computational framework is one example of the effica-

cy of stream processing.

Designing clustering algorithms for stream data

requires different algorithmic ideas than those use-

ful for traditional clustering algorithms. The online

computational paradigm [4] is a potential solution:

in this paradigm, an algorithm is presented with

items one by one, and using only information learned

up to the current time, must make a prediction or

estimate on the new item being presented. Although

the online computing paradigm captures the sequen-

tial aspect of stream processing, it does not capture the

additional constraint that only a small portion of the

history may be stored. In fact, an online algorithm

is permitted to use the entirety of the history of the

stream, and is usually not limited computationally

in any way. Thus, new ideas are needed to perform

clustering in a stream setting.

Foundations

Preliminaries

Let X be a domain and d be a distance function defined

between pairs of elements in X. Typically, it is assumed

that d is a metric (i.e., it satisfies the triangle inequality

d(x, y) + d(y, z) � d(x, z)8x,y,z 2 X). One of the

more common measures of the cost of a cluster is the

so-called median cost: the cost of a cluster C
 X is

the function

costðCÞ ¼
X
x2C

dðx; c�Þ

where c * 2 X, the cluster center, is the point that

minimizes cost(C). The k-median problem is to find a
collection of k disjoint clusters, the sum of whose costs

is minimized.

An equally important cost function is the mean

cost: the cost of a cluster C
 X is the function

costðCÞ ¼
X
x2C

d2ðx; c� Þ

where c* is defined as before. The k-means problem is

to find a collection of clusters whose total mean cost

is minimized. It is useful to note that the median cost is

more robust to outliers in the data; however, the mean

cost function, especially for points in Euclidean spaces,

yields a very simple definition for c *: it is merely the

centroid of the set of points in the cluster. Other

measures that are often considered are the k-center

cost, where the goal is to minimize the maximum

radius of a cluster, and the diameter cost, where the

goal is to minimize the maximum diameter of a cluster

(note that the diameter measure does not require one

to define a cluster center).

A data stream problem consists of a sequence of

items x1, x2,...,xn, and a function f(x1,...,xn) that one

wishes to compute. The limitation here is that the

algorithm is only permitted to store a sublinear num-

ber of items in memory, because n is typically too large

for all the items to fit in memory. Further, even random

access to the data is prohibitive, and so the algorithm is

limited to accessing the data in sequential order.

Since most standard clustering problems (includ-

ing the ones described above) are NP-hard in general,

one cannot expect solutions that minimize the cost of

a clustering. However, one can often show that an

algorithm comes close to being optimal: formally,

one can show that the cost achieved by an algorithm

is within some multiplicative factor c of the optimal

solution. Such an algorithm is said to be a c-approxi-

mation algorithm. Many of the methods presented

here will provide such guarantees on the quality of

their output. As usual, one should keep in mind

that these guarantees are worst-case, and thus apply

to any possible input the algorithm may encounter.

In practice, these algorithms will often perform far

better than promised.

General Principles

Stream clustering is a relatively new topic within the

larger area of stream algorithms and data analysis.

However, there are some general techniques that have

proven their usefulness both theoretically as well as

practically, and are good starting points for the design

Algorithm 1: Clustering with representations

Initialize cluster centers randomly
While chunk of data remains to be read do

Read a chunk of data (as much as will fit in memory),
and cluster it using the k-means algorithm.
For each cluster, divide the points contained within it
into the core (points that are very close to the center
under various measures), and the periphery.
Replace the set of points in the core by a summary as
described above. Discard all remaining points.
Use the current cluster list as the set of centers for the
next chunk.

380C Clustering on Streams
and analysis of stream clustering methods. This section

reviews these ideas, as well as pointing to examples of

how they have been used in various settings.

Incremental Clustering The simplest way to think

about a clustering algorithm on stream data is to

imagine the stream data arriving in chunks of ele-

ments. Prior to the arrival of the current chunk, the

clustering algorithm has computed a set of clusters for

all the data seen so far. Upon encountering the new

chunk, the algorithm must update the clusters, possi-

bly expanding some and contracting others, merging

some clusters and splitting others. It then requests the

next chunk, discarding the current one. Thus, a core

component of any stream clustering algorithm is a

routine to incrementally update a clustering when

new data arrives. Such an approach was develo-

ped by Charikar et al. [6] for maintaining clusterings

of data in a metric space using a diameter cost func-

tion. Although their scheme was phrased in terms

of incremental clusterings, rather than stream cluster-

ings, their approach generalizes well to streams. They

show that their scheme yields a provable approxima-

tion to the optimal diameter of a k-clustering.

Representations One of the problems with clustering

data streams is choosing a representation for a cluster. At

the very least, any stream clustering algorithm stores the

location of a cluster center, and possibly the number of

items currently associated with this cluster. This repre-

sentation can be viewed as a weighted point, and can be

treated as a single point in further iterations of the

clustering process. However, this representation loses

information about the geometric size and distribution

of a cluster. Thus, another standard representation of a

cluster consists of the center and the number of points

augmented with the sum of squared distances from the

points in the cluster to the center. This last term infor-

mally measures the variation of points within a cluster,

and when viewed in the context of density estimation via

Gaussians, is in fact the sample variance of the cluster.

Clusters reduced in this way can be treated as

weighted points (or weighted balls), and clustering

algorithms should be able to handle such generalized

points. One notable example of the use of such a

representation is the one-pass clustering algorithm of

Bradley et al. [5], which was simplified and improved

by Farnstrom et al. [11]. Built around the well known

k-means algorithm (that iteratively seeks to minimize
the k-means measure described above), this technique

proceeds as follows.
It is important that representations be linear.

Specifically, given two chunks of data c,c 0, and their

representations r,r 0, it should be the case that the

representation of c [c 0 be formed from a linear com-

bination of r and r 0. This relates to the idea of sketching

in stream algorithms, and is important because it

allows the clustering algorithm to work in the (re-

duced) space of representations, rather than in the

original space of data. Representations like the one

described above are linear, and this is a crucial factor

in the effectiveness of these algorithms.

Hierarchical Clustering Viewing a cluster as a weight-

ed point in a new clustering problem quickly leads to

the idea of hierarchical clustering: by thinking of a point

as a single-element cluster, and connecting a cluster

and its elements in a parent-child relationship, a clus-

tering algorithm can represent multiple levels of

merges as a tree of clusters, with the root node being

a single cluster containing all the data, and each leaf

being a single item. Such a tree is called a Hierarchical

Agglomerative Clustering (HAC), since it can be

viewed bottom-up as a series of agglomerations. Build-

ing such a hierarchy yields more general information

about the relationship between clusters, and the ability

to make better judgments about how to merge clusters.

The well-known clustering algorithm BIRCH [15]

makes use of a hierarchy of cluster representations to

cluster a large database in a few passes. In a first pass, a

tree called the CF-tree is constructed, where each in-

ternal node represents a cluster of clusters, and each

leaf represents a cluster of items. This tree is controlled

by two parameters: B, the branching factor, and T, a

diameter threshold that limits the size of leaf clusters.

Clustering on Streams C 381

C

In further passes, more analysis is performed on the

CF-tree to compress clusters further. The tree is built

much in the way a B+-tree is built: new items are

inserted in the deepest cluster possible, and if the

threshold constraint is violated, the cluster is split,

and updates are propagated up the tree.

BIRCH is one of the best-known large-data clus-

tering algorithms, and is generally viewed as a bench-

mark to compare other clustering algorithms against.

However, BIRCH does not provide formal guarantees

on the quality of the clusterings thus produced. The

first algorithm that computes a hierarchical clustering

on a streamwhile providing formal performance guar-

antees is a method for solving the k-median problem

developed by Guha et al. [12,13]. This algorithm is best

described by first presenting it in a non-streaming

context:
Algorithm 2: Small space

Divide the input into l disjoint parts.
Cluster each part into O(k) clusters. Assign each point to
its nearest cluster center.
cluster the O(lk) cluster centers, where each center is
weighted by the number of points assigned to it.
Note that the total space required by this algorithm

is O(‘k + n ∕‘). The value of this algorithm is that it

propagates good clusterings: specifically, if the interme-

diate clusterings are computed by algorithms that yield

constant-factor approximations to the best clustering

(under the k-median cost measure), then the final

output will also be a (larger) constant factor approxi-

mation to the best clustering. Also note that the final

clustering step may itself be replaced by a recursive call

to the algorithm, yielding a hierarchical scheme.

Converting this to a stream algorithm is not too

difficult. Consider each chunk of data as one of the

disjoint parts the input is broken into. Suppose each

part is of sizem, and there exists a clustering procedure

that can cluster these points into 2k centers with rea-

sonable accuracy. The algorithm reads enough data to

obtain m centers (m2∕ 2k points). Thesem ‘‘points’’ can

be viewed as the input to a second level streaming

process, which performs the same operations. In gen-

eral, the ith-level stream process takes m2∕2k points

from the (i � 1)th-level stream process and clusters

them into m points, which are appended to the stream

for the next level.
The guarantees provided by the method rely on

having accurate clustering algorithms for the interme-

diate steps. However, the general paradigm itself is

useful as a heuristic: the authors show that using the

k-means algorithm as the intermediate clustering step

yields reasonable clustering results in practice, even

though the method comes with no formal guarantees.

On Relaxing the Number of Clusters If one wishes to

obtain guarantees on the quality of a clustering, using

at least k clusters is critical; it is easy to design examples

where the cost of a (k � 1)-clustering is much larger

than the cost of a k-clustering. One interesting aspect

of the above scheme is how it uses weaker clustering

algorithms (that output O(k) rather than k clusters)

as intermediate steps on the way to computing a k-

clustering. In fact, this idea has been shown to be useful

in a formal sense: subsequent work by Charikar et al.

[7] showed that if one were to use an extremely weak

clustering algorithm (in fact, one that produces

O(k logn) clusters), then this output can be fed into a

clustering algorithm that produces k clusters, while

maintaining overall quality bounds that are better

than those described above. This idea is useful espe-

cially if one has a fast algorithm that produces a larger

number of clusters, and a more expensive algorithm

that produces k clusters: the expensive algorithm can

be run on the (small) output of the fast algorithm to

produce the desired answer.

Clustering Evolving Data

Stream data is often temporal. Typical data analysis

questions are therefore often limited to ranges of

time (‘‘in the last three days,’’ ‘‘over the past week,’’

‘‘for the period between Jan 1 and Feb 1,’’ and so on).

All of the above methods for clustering streams assume

that the goal is to cluster the entire data stream, and the

only constraint is the space needed to store the data.

Although they are almost always incremental, in that

the stream can be stopped at any time and the resulting

clustering will be accurate for all data seen upto that

point, they cannot correctly output clusterings on win-

dows of data, or allow the influence of past data to

gradually wane over time. Even with non-temporal

data, it may be important to allow the data analysis

to operate on a subset of the data to capture the notion

of concept drift [10], a term that is used to describe a

scenario when natural data characteristics change as

the stream evolves.

382C Clustering on Streams
Sliding Windows A popular model of stream analysis

is the sliding window model, which introduces a new

parameter W. The goal of the stream analysis is to

produce summary statistics (a clustering, variance esti-

mates or other statistics), on the most recent W items

only, while using space that is sublinear in W. This

model can be thought of as represented by a sliding

window of length W with one end (the sliding end)

anchored to the current element being read. The chal-

lenge of dealing with sliding windows is the problem of

deletion. Although not as general as a fully dynamic

data model where arbitrary elements can be inserted

and deleted, the sliding window model introduces with

the problem of updating a cluster representation under

deletions, and requires new ideas.

One such idea is the exponential histogram, first

introduced by Datar et al. [8] to estimate certain sta-

tistical properties of sliding windows on streams, and

used by Babcock et al. [3] to compute an approximate

k-median clustering in the sliding window model. The

idea here is to maintain a set of buckets that together

partition all data in the current window. For each

bucket, relevant summary statistics are maintained.

Intuitively, the smaller the number of items assigned

to a bucket, the more accurate the summary statistics

(in the limit, the trivial histogram has one bucket for

each of the W items in the window). The larger this

number, the fewer the number of buckets needed.

Balancing these two conflicting requirements yields a

scheme where each bucket stores the items between

two timestamps, and the bucket sizes increase expo-

nentially as they store items further in the past. It

requires more detailed analysis to demonstrate that

such a scheme will provide accurate answers to queries

over windows, but the use of such exponentially in-

creasing bucket sizes allows the algorithm to use a few

buckets, while still maintaining a reasonable approxi-

mation to the desired estimate.

Hierarchies of Windows The sliding window model

introduces an extra parameter W whose value must

be justified by external considerations. One way of get-

ting around this problem is to maintain statistics for

multiple values of W (typically an exponentially in-

creasing family). Another approach, used by Aggarwal

et al. [1] is to maintain snapshots (summary represen-

tations of the clusterings) at time steps at different

levels of resolution. For example, a simple two level

snapshot scheme might store the cluster representations
computed after times t, t + 1,...t + W, as well as t, t + 2,

t + 4,...t + 2W (eliminating duplicate summaries as

necessary). Using the linear structure of representa-

tions will allow the algorithm to extract summaries

for time intervals: they show that such a scheme uses

space efficiently while still being able to detect evolu-

tion in data streams at different scales.

Decaying Data For scenarios where such a justifica-

tion might be elusive, another model of evolving data

is the decay model, in which one can think of a data

item’s influence waning (typically exponentially) with

time. In other words, the value of the ith item, instead

of being fixed at xi, is a function of time xi(t) = xi(0)exp

(�c(t � i)). This reduces the problem to the standard

setting of computing statistics over the entire stream,

while using the decay function to decide which items to

remove from the limited local storage when computing

statistics. The use of exponentially decaying data is quite

common in temporal data analysis: one specific example

of its application in the clustering of data streams is the

work on HPStream by Aggarwal et al. [2].

Key Applications
Systems that manage large data sets and perform data

analysis will require stream clustering methods. Many

modern data cleaning systems require such tools, as

well as large scientific databases. Another application

of stream clustering is for network traffic analysis: such

algorithms might be situated at routers, operating on

packet streams.

Experimental Results
Most of the papers cited above are accompanied by

experimental evaluations and comparisons to prior

work. BIRCH, as mentioned before, is a common

benchmarking tool.

Cross-references
▶Data Clustering

▶ Information Retrieval

▶Visualization

Recommended Reading
1. Aggarwal C.C., Han J., Wang J., and Yu P.S. A framework for

clustering evolving data streams. In Proc. 29th Int. Conf. on Very

Large Data Bases, 2003, pp. 81–92.

2. Aggarwal C.C., Han J., Wang J., and Yu P.S. A framework for

projected clustering of high dimensional data streams. In Proc.

30th Int. Conf. on Very Large Data Bases, 2004, pp. 852–863.

Clustering Overview and Applications C 383

C

3. Babcock B., Datar M., Motwani R., and O’Callaghan L. Main-

taining variance and k-medians over data stream windows. In

Proc. 22nd ACM SIGACT-SIGMOD-SIGART Symp. on Princi-

ples of Database Systems, 2003, pp. 234–243.

4. Borodin A. and El-Yaniv R. Online computation and competitive

analysis. Cambridge University Press, New York, NY, USA, 1998.

5. Bradley P.S., Fayyad U.M., and Reina C. Scaling Clustering

Algorithms to Large Databases. In Proc. 4th Int. Conf. on

Knowledge Discovery and Data Mining, 1998, pp. 9–15.

6. Charikar M., Chekuri C., Feder T., and Motwani R. Incremen-

tal Clustering and Dynamic Information Retrieval. SIAM J.

Comput., 33(6):1417–1440, 2004.

7. Charikar M., O’Callaghan L., and Panigrahy R. Better streaming

algorithms for clustering problems. In Proc. 35th Annual ACM

Symp. on Theory of Computing, 2003, pp. 30–39.

8. Datar M., Gionis A., Indyk P., and Motwani R. Maintaining

stream statistics over sliding windows: (extended abstract). In

Proc. 13th Annual ACM -SIAM Symp. on Discrete Algorithms,

2002, pp. 635–644.

9. Dean J. and Ghemaway S. MapReduce: simplified data proces-

sing on large clusters. In Proc. 6th USENIX Symp. on Operating

System Design and Implementation, 2004, pp. 137–150.

10. Domingos P. and Hulten G. Mining high-speed data streams. In

Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and

Data Mining, 2000, pp. 71–80.

11. Farnstrom F., Lewis J., and Elkan C. Scalability for clustering

algorithms revisited. SIGKDD Explor., 2(1):51–57, 2000.

12. Guha S., MeyersonA., MishraN., Motwani R., and O’Callaghan L.

Clustering Data Streams: Theory and practice. IEEE Trans.

Knowl. Data Eng., 15(3):515–528, 2003.

13. Guha S., Mishra N., Motwani R., and O’Callaghan L. Clustering

data streams. In Proc. 41st Annual Symp. on Foundations of

Computer Science, 2000, p. 359.

14. Muthukrishnan S. Data streams: algorithms and applications.

Found. Trend Theor. Comput. Sci., 1(2), 2005.

15. Zhang T., Ramakrishnan R., and Livny M. BIRCH: A New Data

Clustering Algorithm and Its Applications. Data Min. Knowl.

Discov., 1(2):141–182, 1997.
Clustering Overview and
Applications

DIMITRIOS GUNOPULOS
1,2

1Computer Science and Eng. Dept., Univ. of California

Riverside, Riverside, CA 92521, USA
2Dept. of Informatics and Telecommunications,

University of Athens, Athens, Greece

Synonyms
Unsupervised learning

Definition
Clustering is the assignment of objects to groups

of similar objects (clusters). The objects are typically
described as vectors of features (also called attributes).

Attributes can be numerical (scalar) or categorical. The

assignment can be hard, where each object belongs

to one cluster, or fuzzy, where an object can belong

to several clusters with a probability. The clusters can

be overlapping, though typically they are disjoint.

A distance measure is a function that quantifies the

similarity of two objects.

Historical Background
Clustering is one of themost useful tasks in data analysis.

The goal of clustering is to discover groups of similar

objects and to identify interesting patterns in the data.

Typically, the clustering problem is about partitioning a

given data set into groups (clusters) such that the data

points in a cluster are more similar to each other

than points in different clusters [4,8]. For example, con-

sider a retail database where each record contains items

purchased at the same time by a customer. A clustering

procedure could group the customers in such a way

that customers with similar buying patterns are in the

same cluster. Thus, the main concern in the clustering

process is to reveal the organization of patterns into

‘‘sensible’’ groups, which allow one to discover simila-

rities and differences, as well as to derive useful conclu-

sions about them. This idea is applicable to many fields,

such as life sciences, medical sciences and engineering.

Clustering may be found under different names in dif-

ferent contexts, such as unsupervised learning (in pat-

tern recognition), numerical taxonomy (in biology,

ecology), typology (in social sciences) and partition

(in graph theory) [13].

The clustering problem comes up in so many

domains due to the prevalence of large datasets for

which labels are not available. In one or two dimen-

sions, humans can perform clustering very effectively

visually, however in higher dimensions automated

procedures are necessary. The lack of training examples

makes it very difficult to evaluate the results of the

clustering process. In fact, the clustering process may

result in different partitioning of a data set, depending

on the specific algorithm, criterion, or choice of para-

meters used for clustering.

Foundations

The Clustering Process

In the clustering process, there are no predefined clas-

ses and no examples that would show what kind of

384C Clustering Overview and Applications
desirable relations should be valid among the data.

That is the main difference from the task of classifica-

tion: Classification is the procedure of assigning an

object to a predefined set of categories [FSSU96].

Clustering produces initial categories in which values

of a data set are classified during the classification

process. For this reason, clustering is described as

‘‘unsupervised learning’’; in contrast to classification,

which is considered as ‘‘supervised learning.’’ Typi-

cally, the clustering process will include at least the

following steps:

1. Feature selection: Typically, the objects or observa-

tions to be clustered are described using a set of

features. The goal is to appropriately select the fea-

tures on which clustering is to be performed so as to

encode as much information as possible concerning

the task of interest. Thus, a pre-processing step may

be necessary before using the data.

2. Choice of the clustering algorithm. In this step the

user chooses the algorithm that is more appropriate

for the data at hand, and therefore is more likely

to result to a good clustering scheme. In addition, a

similarity (or distance) measure and a clustering

criterion are selected in tandem

– The distance measure is a function that quanti-

fies how ‘‘similar’’ two objects are. In most of

the cases, one has to ensure that all selected

features contribute equally to the computation

of the proximity measure and there are no fea-

tures that dominate others.

– The clustering criterion is typically a cost func-

tion that the clustering algorithmhas to optimize.

The choice of clustering criterion has to take into

account the type of clusters that are expected to

occur.

3. Validation and interpretation of the results. The

correctness of the results of the clustering algo-

rithm is verified using appropriate criteria and

techniques. Since clustering algorithms define clus-

ters that are not known a priori, irrespective of the

clustering methods, the final partition of the data

typically requires some kind of evaluation. In many

cases, the experts in the application area have to

integrate the clustering results with other experi-

mental evidence and analysis in order to draw the

right conclusion.

After the third phase the user may elect to use the

clustering results obtained, or may start the process
from the beginning, perhaps using different clustering

algorithms or parameters.

Clustering Algorithms Taxonomy

With clustering being a useful tool in diverse research

communities, a multitude of clustering methods has

been proposed in the literature. Occasionally similar

techniques have been proposed and used in different

communities. Clustering algorithms can be classified

according to:

1. The type of data input to the algorithm (for exam-

ple, objects described with numerical features or

categorical features) and the choice of similarity

function between two objects.

2. The clustering criterion optimized by the algorithm.

3. The theory and fundamental concepts on which

clustering analysis techniques are based (e.g.,

fuzzy theory, statistics).

A broad classification of clustering algorithms is the

following [8,14]:

1. Partitional clustering algorithms: here the algorithm

attempts to directly decompose the data set into a

set of (typically) disjoint clusters. More specifically,

the algorithm attempts to determine an integer

number of partitions that optimize a certain crite-

rion function.

2. Hierarchical clustering algorithms: here the algo-

rithm proceeds successively by either merging

smaller clusters into larger ones, or by splitting lar-

ger clusters. The result of the algorithm is a tree

of clusters, called dendrogram, which shows how

the clusters are related. By cutting the dendrogram

at a desired level, a clustering of the data items

into disjoint groups is obtained.

3. Density-based clustering : The key idea of this type

of clustering is to group neighbouring objects of a

data set into clusters based on density conditions.

This includes grid-based algorithms that quantise

the space into a finite number of cells and then do

operations in the quantised space.

For each of above categories there is a wealth of sub-

types and different algorithms for finding the clusters.

Thus, according to the type of variables allowed in

the data set additional categorizations include [14]:

(i) Statistical algorithms, which are based on statistical

analysis concepts and use similarity measures to parti-

tion objects and they are limited to numeric data.

Clustering Overview and Applications C 385

C

(ii) Conceptual algorithms that are used to cluster

categorical data. (iii) Fuzzy clustering algorithms,

which use fuzzy techniques to cluster data and allow

objects to be classified into more than one clusters.

Such algorithms lead to clustering schemes that are

compatible with everyday life experience as they han-

dle the uncertainty of real data. (iv) Crisp clustering

techniques, that consider non-overlapping partitions

so that a data point either belongs to a class or not.

Most of the clustering algorithms result in crisp clus-

ters, and thus can be categorized in crisp clustering.

(v) Kohonen net clustering, which is based on the

concepts of neural networks.

In the remaining discussion, partitional clustering

algorithms will be described in more detail; other

techniques will be dealt with separately.

Partitional Algorithms

In general terms, the clustering algorithms are based on a

criterion for assessing the quality of a given partitioning.

More specifically, they take as input some parameters

(e.g., number of clusters, density of clusters) and attempt

to define the best partitioning of a data set for the given

parameters. Thus, they define a partitioning of a data

set based on certain assumptions and not necessarily the

‘‘best’’ one that fits the data set.

In this category, K-Means is a commonly used

algorithm [10]. The aim of K-Means clustering is the

optimisation of an objective function that is described

by the equation:

E ¼
Xc
i¼1

X
x2Ci

dðx;miÞ

In the above equation, mi is the center of cluster Ci,

while d(x, mi) is the Euclidean distance between a

point x andmi. Thus, the criterion function E attempts

to minimize the distance of every point from the center

of the cluster to which the point belongs.

It should be noted that optimizing E is a combinato-

rial problem that is NP-Complete and thus any practical

algorithm to optimize it cannot guarantee optimality.

The K-means algorithm is the first practical and effective

heuristic that was suggested to optimize this criterion,

and owes its popularity to its good performance in

practice. The K-means algorithm begins by initialising

a set of c cluster centers. Then, it assigns each object of

the dataset to the cluster whose center is the nearest, and

re-computes the centers. The process continues until the

centers of the clusters stop changing.
Another algorithm of this category is PAM (Parti-

tioning Around Medoids). The objective of PAM is to

determine a representative object (medoid) for each

cluster, that is, to find the most centrally located objects

within the clusters. The algorithm begins by selecting an

object as medoid for each of c clusters. Then, each of the

non-selected objects is grouped with the medoid to

which it is the most similar. PAM swaps medoids with

other non-selected objects until all objects qualify as

medoid. It is clear that PAM is an expensive algorithm

with respect to finding the medoids, as it compares an

object with the entire dataset [12].

CLARA (Clustering Large Applications), is an imple-

mentation of PAM in a subset of the dataset. It draws

multiple samples of the dataset, applies PAMon samples,

and then outputs the best clustering out of these samples

[12]. CLARANS (Clustering Large Applications based

on Randomized Search), combines the sampling techni-

ques with PAM. The clustering process can be presented

as searching a graph where every node is a potential

solution, that is, a set of k medoids. The clustering

obtained after replacing amedoid is called the neighbour

of the current clustering. CLARANS selects a node

and compares it to a user-defined number of their

neighbours searching for a local minimum. If a better

neighbor is found (i.e., having lower-square error),

CLARANS moves to the neighbour’s node and the pro-

cess starts again; otherwise the current clustering is a

local optimum. If the local optimum is found, CLAR-

ANS starts with a new randomly selected node in search

for a new local optimum.

The algorithms described above result in crisp clus-

ters, meaning that a data point either belongs to a cluster

or not. The clusters are non-overlapping and this kind

of partitioning is further called crisp clustering. The issue

of uncertainty support in the clustering task leads to

the introduction of algorithms that use fuzzy logic con-

cepts in their procedure. A common fuzzy clustering

algorithm is the Fuzzy C-Means (FCM), an extension

of classical C-Means algorithm for fuzzy applications

[2]. FCM attempts to find the most characteristic point

in each cluster, which can be considered as the ‘‘center’’

of the cluster and, then, the grade of membership for

each object in the clusters.

Another approach proposed in the literature to

solve the problems of crisp clustering is based on

probabilistic models. The basis of this type of cluster-

ing algorithms is the EM algorithm, which provides

a quite general approach to learning in presence of

386C Clustering Overview and Applications
unobservable variables [11]. A common algorithm is

the probabilistic variant of K-Means, which is based on

the mixture of Gaussian distributions. This approach

of K-Means uses probability density rather than dis-

tance to associate records with clusters. More spe-

cifically, it regards the centers of clusters as means

of Gaussian distributions. Then, it estimates the prob-

ability that a data point is generated by the jth Gauss-

ian (i.e., belongs to jth cluster). This approach is based

on Gaussian model to extract clusters and assigns the

data points to clusters assuming that they are gener-

ated by normal distribution. Also, this approach is

implemented only in the case of algorithms based on

the EM (Expectation Maximization) algorithm.

Another type of clustering algorithms combine

graphpartitioning andhierarchical clustering algorithms

characteristics. Such algorithms include CHAMELEON

[9], which measures the similarity among clusters based

on a dynamic model contrary to the clustering algo-

rithms discussed above. Moreover in the cluster-

ing process both the inter-connectivity and closeness

between two clusters are taken into account to decide

how to merge the clusters. The merge process based on

the dynamic model facilitates the discovery of natural

and homogeneous clusters. Also it is applicable to all

types of data as long as a similarity function is specified.

Finally, BIRCH [ZRL99] uses a data structure called CF-

Tree forpartitioning the incomingdatapoints inanincre-

mental and dynamic way, thus providing an effective

way to cluster very largedatasets.

Partitional algorithms are applicable mainly to

numerical data sets. However, there are some variants

of K-Means such as K-prototypes, and K-mode [7]

that are based on the K-Means algorithm, but they

aim at clustering categorical data. K-mode discovers

clusters while it adopts new concepts in order to han-

dle categorical data. Thus, the cluster centers are

replaced with ‘‘modes,’’ a new dissimilarity measure

used to deal with categorical objects.

The K-means algorithm and related techniques

tend to produce spherical clusters due to the use of a

symmetric objective function. They require the user to

set only one parameter, the desirable number of clus-

ters K. However, since the objective function gets smal-

ler monotonically as K increases, it is not clear how to

define what is the best number of clusters for a given

dataset. Although several approaches have been pro-

posed to address this shortcoming [14], this is one

of the main disadvantages of partitional algorithms.
Another characteristic of the partitional algorithms is

that they are unable to handle noise and outliers and

they are not suitable to discover clusters with non-

convex shapes. Another characteristic of K-means is

that the algorithm does not display a monotone behav-

ior with respect to K. For example, if a dataset is

clustered into M and 2M clusters, it is intuitive to

expect that the smaller clusters in the second clustering

will be subsets of the larger clusters in the first; however

this is typically not the case.
Key Applications
Cluster analysis is very useful task in exploratory data

analysis and a major tool in a very wide spectrum of

applications in many fields of business and science.

Clustering applications include:

1. Data reduction. Cluster analysis can contribute to

the compression of the information included in the

data. In several cases, the amount of the available

data is very large and its processing becomes very

demanding. Clustering can be used to partition the

data set into a number of ‘‘interesting’’ clusters.

Then, instead of processing the data set as an entity,

the representatives of the defined clusters are adopted

in the process. Thus, data compression is achieved.

2. Hypothesis generation. Cluster analysis is used here

in order to infer some hypotheses concerning the

data. For instance, one may find in a retail database

that there are two significant groups of customers

based on their age and the time of purchases. Then,

one may infer some hypotheses for the data, that it,

‘‘young people go shopping in the evening,’’ ‘‘old

people go shopping in the morning.’’

3. Hypothesis testing. In this case, the cluster analysis is

used for the verification of the validity of a specific

hypothesis. For example, consider the following

hypothesis: ‘‘Young people go shopping in the

evening.’’ One way to verify whether this is true is

to apply cluster analysis to a representative set of

stores. Suppose that each store is represented by its

customer’s details (age, job, etc.) and the time of

transactions. If, after applying cluster analysis, a

cluster that corresponds to ‘‘young people buy in

the evening’’ is formed, then the hypothesis is sup-

ported by cluster analysis.

4. Prediction based on groups. Cluster analysis is

applied to the data set and the resulting clusters are

characterized by the features of the patterns that

Clustering Overview and Applications C 387

C

belong to these clusters. Then, unknown patterns can

be classified into specified clusters based on their

similarity to the clusters’ features. In such cases,

useful knowledge related to this data can be

extracted. Assume, for example, that the cluster anal-

ysis is applied to a data set concerning patients

infected by the same disease. The result is a number

of clusters of patients, according to their reaction to

specific drugs. Then, for a new patient, one identifies

the cluster inwhich he/she can be classified and based

on this decision his/her medication can be made.

5. Business Applications and Market Research. In busi-

ness, clustering may help marketers discover sign-

ificant groups in their customers’ database and

characterize them based on purchasing patterns.

6. Biology and Bioinformatics. In biology, it can be

used to define taxonomies, categorize genes with

similar functionality and gain insights into struc-

tures inherent in populations.

7. Spatial data analysis. Due to the huge amounts of

spatial data that may be obtained from satellite

images, medical equipment, Geographical Infor-

mation Systems (GIS), image database exploration

etc., it is expensive and difficult for the users to

examine spatial data in detail. Clustering may help

to automate the process of analysing and under-

standing spatial data. It is used to identify and

extract interesting characteristics and patterns that

may exist in large spatial databases.

8. Web mining. Clustering is used to discover significant

groups of documents on the Web huge collection

of semi-structured documents. This classification of

Web documents assists in information discovery.

Another application of clustering is discovering

groups in social networks.

In addition, clustering can be used as a pre-processing

step for other algorithms, such as classification, which

would then operate on the detected clusters.

Cross-references
▶Cluster and Distance Measure

▶Clustering for Post Hoc Information Retrieval

▶Clustering on Streams

▶Clustering Validity

▶Clustering with Constraints

▶Data Mining

▶Data Reduction

▶Density-Based Clustering

▶Dimension Reduction Techniques for Clustering
▶Document Clustering

▶ Feature Selection for Clustering

▶Hierarchial Clustering

▶ Semi-Supervised Learning

▶ Spectral Clustering

▶ Subspace Clustering Techniques

▶Text Clustering

▶Visual Clustering

▶Visualizing Clustering Results

Recommended Reading
1. Agrawal R., Gehrke J., Gunopulos D., and Raghavan P. Automatic

subspace clustering of high dimensional data for data mining

applications. In Proc. ACM SIGMOD Int. Conf. onManagement

of Data, 1998, pp. 94–105.

2. Bezdeck J.C., Ehrlich R., and Full W. FCM: Fuzzy C-Means

algorithm. Comput. Geosci., 10(2–3):191–203, 1984.

3. Ester M., Kriegel H.-Peter., Sander J., and Xu X. A density-based

algorithm for discovering clusters in large spatial databases with

noise. In Proc. 2nd Int. Conf. on Knowledge Discovery and Data

Mining, 1996, pp. 226–231.

4. Everitt B.S., Landau S., and Leese M. Cluster Analysis. Hodder

Arnold, London, UK, 2001.

5. Fayyad U.M., Piatesky-Shapiro G., Smuth P., and Uthurusamy R.

Advances in Knowledge Discovery and Data Mining. AAAI

Press, Menlo Park, CA, 1996.

6. Han J. and Kamber M. Data Mining: Concepts and Techniques.

Morgan Kaufmann Publishers, San Fransisco, CA, 2001.

7. Huang Z. A fast clustering algorithm to cluster very large

categorical data sets in data mining. In Proc. ACM SIGMOD

Workshop on Research Issues in Data Mining and Knowledge

Discovery, 1997.

8. Jain A.K., Murty M.N., and Flyn P.J. Data clustering: a review.

ACM Comput. Surv., 31(3):264–323, 1999.

9. Karypis G., Han E.-H., and Kumar V. CHAMELEON: a

hierarchical clustering algorithm using dynamic modeling.

IEEE Computer., 32(8):68–75, 1999.

10. MacQueen J.B. Some methods for classification and analysis

of multivariate observations. In Proc. 5th Berkeley Symp.

on Mathematical Statistics and Probability, vol. 1, 1967,

pp. 281–297.

11. Mitchell T. Machine Learning. McGraw-Hill, New York, 1997.

12. Ng R. and Han J. Efficient and effective clustering methods for

spatial data mining. In Proc. 20th Int. Conf. on Very Large Data

Bases, 1994, pp. 144–155.

13. Theodoridis S. and Koutroubas K. Pattern Recognition.

Academic Press, New York, 1999.

14. Vazirgiannis M., Halkidi M., and Gunopulos D. Uncertainty

Handling and Quality Assessment in Data Mining. Springer,

New York, 2003.

15. Wang W., Yang J., and Muntz R. STING: A statistical informa-

tion grid approach to spatial data mining. In Proc. 23th Int.

Conf. on Very Large Data Bases, 1997, pp. 186–195.

16. Zhang T., Ramakrishnman R., and Linvy M. BIRCH: an efficient

method for very large databases. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1996, pp. 103–114.

388C Clustering Validity
Clustering Validity

MICHALIS VAZIRGIANNIS

Athens University of Economics & Business, Athens,

Greece

Synonyms
Cluster validation; Cluster stability; Quality assess-

ment; Stability-based validation of clustering

Definition
A problem one faces in clustering is to decide the

optimal partitioning of the data into clusters. In this

context visualization of the data set is a crucial verifi-

cation of the clustering results. In the case of large

multidimensional data sets (e.g., more than three

dimensions) effective visualization of the data set is

cumbersome. Moreover the perception of clusters

using available visualization tools is a difficult task

for humans that are not accustomed to higher dimen-

sional spaces. The procedure of evaluating the results

of a clustering algorithm is known under the term

cluster validity. Cluster validity consists of a set of

techniques for finding a set of clusters that best fits

natural partitions (of given datasets) without any a

priori class information. The outcome of the clustering

process is validated by a cluster validity index.

Historical Background
Clustering is a major task in the data mining process

for discovering groups and identifying interesting dis-

tributions and patterns in the underlying data. In the

literature a wide variety of algorithms for different

applications and sizes of data sets. The application of

an algorithm to a data set, assuming that the data set

offers a clustering tendency, aims at discovering its

inherent partitions. However, the clustering process is

an unsupervised process, since there are no predefined

classes or examples. Then, the various clustering algo-

rithms are based on some assumptions in order to

define a partitioning of a data set. As a consequence,

they may behave in a different way depending on: i. the

features of the data set (geometry and density distribu-

tion of clusters) and ii. the input parameter values.

One of the most important issues in cluster analysis

is the evaluation of clustering results to find the parti-

tioning that best fits the underlying data. This is

the main subject of cluster validity. If clustering
algorithm parameters are assigned an improper value,

the clustering method results in a partitioning scheme

that is not optimal for the specific data set leading to

wrong decisions. The problems of deciding the num-

ber of clusters better fitting a data set as well as the

evaluation of the clustering results has been subject of

several research efforts. The procedure of evaluating

the results of a clustering algorithm is known under the

term cluster validity. In general terms, there are three

approaches to investigate cluster validity. The first is

based on external criteria. This implies that the results

of a clustering algorithm are evaluated based on a pre-

specified structure, which is imposed on a data set and

reflects one’s intuition about the clustering structure of

the data set. The second approach is based on internal

criteria. The results of a clustering algorithm may be

evaluated in terms of quantities that involve the vectors

of the data set themselves (e.g., proximity matrix). The

third approach of clustering validity is based on rela-

tive criteria. Here the basic idea is the evaluation of a

clustering structure by comparing it to other clustering

schemes, resulting by the same algorithm but with

different parameter values. There are two criteria pro-

posed for clustering evaluation and selection of an

optimal clustering scheme: (i) Compactness, the mem-

bers of each cluster should be as close to each other as

possible. A common measure of compactness is the

variance, which should be minimized. (ii) Separation,

the clusters themselves should be widely spaced.

Foundations
This section discusses methods suitable for the quanti-

tative evaluation of the clustering results, known as

cluster validity methods. However, these methods

give an indication of the quality of the resulting parti-

tioning and thus they can only be considered as a tool

at the disposal of the experts in order to evaluate the

clustering results. The cluster validity approaches

based on external and internal criteria rely on statisti-

cal hypothesis testing. In the following section, an

introduction to the fundamental concepts of hypothe-

sis testing in cluster validity is presented.

In cluster validity the basic idea is to test whether

the points of a data set are randomly structured or not.

This analysis is based on theNull Hypothesis, denoted as

Ho, expressed as a statement of random structure of a

data set X. To test this hypothesis, statistical tests are used,

which lead to a computationally complex procedure.

Clustering Validity C 389

C

Monte Carlo techniques are used as a solution to this

problem.

External Criteria

Based on external criteria, one can work in two differ-

ent ways. First, one can evaluate the resulting cluster-

ing structure C, by comparing it to an independent

partition of the data P built according to one’s intui-

tion about the clustering structure of the data set.

Second, one can compare the proximity matrix P to

the partition P.

Comparison of C with Partition P (Non-hierarchical

Clustering) Let C = {C1...Cm} be a clustering struc-

ture of a data set X and P = {P1...Ps} be a defined

partition of the data. Refer to a pair of points (xv, xu)

from the data set using the following terms:

� SS: if both points belong to the same cluster of the

clustering structure C and to the same group of

partition P.

� SD: if points belong to the same cluster of C and to

different groups of P.

� DS: if points belong to different clusters of C and to

the same group of P.

� DD: if both points belong to different clusters of C

and to different groups of P.

Assuming now that a, b, c and d are the number of SS,

SD,DSandDDpairs respectively, then aþbþ cþd=M

which is the maximum number of all pairs in the data

set (meaning, M = N(N�1)/2 where N is the total

number of points in the data set).

Now define the following indices to measure the

degree of similarity between C and P :

1. Rand Statistic: R = (a þ d)/M

2. Jaccard Coefficient: J = a/(a þ b þ c)
The above two indices range between 0 and 1, and

are maximized when m=s. Another known index is

the:
3. Folkes and Mallows index:

FM ¼ a=
ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p ¼
ffi
a

aþ b
� a

aþ c

r
½1�

where m1 = (a + b), m2= (a + c).
For the previous three indices it has been proven

that the higher the values of these indices are the

more similar C and P are. Other indices are:
4. Huberts Gstatistic:

G ¼ ð1=MÞ
XN�1
i¼1

XN
j¼iþ1

Xði; jÞYði; jÞ ½2�
High values of this index indicate a strong similarity

between the matrices X and Y.
5. Normalized G statistic:

G
^
¼
ð1=MÞ

PN�1
i¼1

PN
j¼iþ1
ðXði; jÞ�mXÞðYði; jÞ�mYÞ

" #

sXsY

½3�

where X(i, j) and Y(i, j) are the (i, j) element of the
matrices X, Y respectively that one wants to com-

pare. Also mx, my, sx, sy are the respective means

and variances of X, Y matrices. This index takes

values between –1 and 1.
All these statistics have right-tailed probability density

functions, under the random hypothesis. In order to

use these indices in statistical tests, one must know

their respective probability density function under

the Null Hypothesis, Ho, which is the hypothesis

of random structure of the data set. Thus, if one

accepts the Null Hypothesis, the data are randomly

distributed. However, the computation of the proba-

bility density function of these indices is computation-

ally expensive. A solution to this problem is to use

Monte Carlo techniques.

After having plotted the approximation of the

probability density function of the defined statistic

index, its value, denoted by q, is compared to the

q(Ci) values, further referred to as qi. The indices R,

J, FM, Gdefined previously are used as the q index

mentioned in the above procedure.

Internal Criteria

Using this approach of cluster validity the goal is to

evaluate the clustering result of an algorithm using

only quantities and features inherited from the data

set. There are two cases in which one applies internal

criteria of cluster validity depending on the clustering

structure: (i) hierarchy of clustering schemes, and (ii)

single clustering scheme.

Validating Hierarchy of Clustering Schemes A matrix

called cophenetic matrix, Pc, can represent the

390C Clustering Validity
hierarchy diagram that is produced by a hierarchical

algorithm. The element Pc(i, j) of cophenetic matrix

represents the proximity level at which the two vectors

xi and xj are found in the same cluster for the first time.

A statistical index can be defined to measure the degree

of similarity between Pc and P (proximity matrix)

matrices. This index is called Cophenetic Correlation

Coefficient and defined as:

CPCC

¼
1=Mð Þ

PN�1
i¼1

PN
j¼iþ1

dijcij � mPmC
ffi
1=Mð Þ

PN�1
i¼1

PN
j¼iþ1

d2ij � m2P

" #
1=Mð Þ

PN�1
i¼1

PN
j¼iþ1

c2ij � m2C

" #vuut
;

½4�

where M = N�(N�1)/2 and N is the number of points

in a data set. Also, mp and mc are the means of matrices

P and Pc respectively, and are defined in the (Eq. 5):

mP ¼ 1=Mð Þ
XN�1
i¼1

XN
j¼iþ1

P i; jð Þ;

mC ¼ 1=Mð Þ
XN�1
i¼1

XN
j¼iþ1

Pc i; jð Þ
½5�

Moreover, dij, cij are the (i, j) elements of P and

Pc matrices respectively. The CPCC values range in

[–1, 1]. A value of the index close to 1 is an indication

of a significant similarity between the two matrices.

Validating a Single Clustering Scheme The goal here is

to find the degree of match between a given clustering

scheme C, consisting of nc clusters, and the proximity

matrix P. The defined index for this approach is

Hubert’s Gstatistic (or normalized Gstatistic). An

additional matrix for the computation of the index

is used, that is

Y i; jð Þ ¼ 1; if xi and xj belong to different clusters

0; otherwise array: where i; j ¼ 1; 1=4;N:

�

The application of Monte Carlo techniques is also

a means to test the random hypothesis in a given

data set.

Relative Criteria

The major drawback of techniques based on internal or

external criteria is their high computational complexity.

A different validation approach is discussed in this
section. The fundamental idea of the relative criteria is

to choose the best clustering scheme of a set of defined

schemes according to a pre-specified criterion. More

specifically, the problem can be stated as follows:

Let Palg be the set of parameters associated with a

specific clustering algorithm (e.g., the number of clus-

ters nc). Among the clustering schemes Ci, i = 1,...,nc,

is defined by a specific algorithm. For different values

of the parameters in Palg, choose the one that best fits

the data set.

Then, consider the following cases of the problem:

1. Palg does not contain the number of clusters, nc, as a

parameter. In this case, the choice of the optimal

parameter values are described as follows: The al-

gorithm runs for a wide range of its parameters’

values and the largest range for which nc remains

constant is selected (usually nc << N (number of

tuples)). Then the values that correspond to the

middle of this range are chosen as appropriate

values of the Palg parameters. Also, this procedure

identifies the number of clusters that underlie the

data set.

2. Palg contains nc as a parameter. The procedure

of identifying the best clustering scheme is based

on a validity index. Selecting a suitable perfor-

mance index, q, one proceeds with the following

steps:

� clustering runs for all values of nc between ncmin

and ncmax defined a priori by the user.

� For each of nc values, the algorithm runs r times,

using different sets of values for the other para-

meters of the algorithm (e.g., different initial

conditions).

� The best values of the index q obtained by each

nc are plotted as the function of nc.

Based on this plot, the best clustering schemes are

identified. There are two approaches for defining the

best clustering depending on the behavior of q with

respect to nc. Thus, if the validity index does not

exhibit an increasing or decreasing trend as nc
increases, one seeks the max (min) of the plot. On

the other hand, for indices that increase (decrease) as

the number of clusters increase, one searches for the

values of nc at which a significant local change in value

of the index occurs. This change appears as a ‘‘knee’’ in

the plot and it is an indication of the number of

clusters underlying the data set. The absence of a

knee is an indication that the data set possesses no

Clustering Validity C 391

C

clustering structure. Below, some representative rela-

tive validity indices are presented.

The Modified Hubert G Statistic

The definition of the modified Hubert Gstatistic is

given by the equation

G ¼ ð1=MÞ
XN�1
i¼1

XN
j¼iþ1

Pði; jÞ �Qði; jÞ ½6�

where N is the number of objects in a data set, M = N

(N�1)/2, P is the proximity matrix of the data set

and Q is an N � N matrix whose (i, j) element is

equal to the distance between the representative points

(vci, vcj) of the clusters where the objects xi and xj
belong.

Similarly, one can define the normalized Hubert

Gstatistic, given by equation

Ĝ ¼
ð1=MÞ

PN�1
i¼1

PN
j¼iþ1
ðPði; jÞ � mPÞðQði; jÞ � mQÞ

" #

sPsQ

:

½7�

where mP, mQ, sP, sQ are the respective means and

variances of P, Q matrices.

If the d(vci, vcj) is close to d(xi, xj) for i, j =1, 2,...,N,

P and Q will be in close agreement and the valuesof

G and Ĝ(normalized G) will be high. Conversely, a

high value of G (Ĝ) indicates the existence of compact

clusters. Thus, in the plot of normalized G versus nc,

one seeks a significant knee that corresponds to a

significant increase of normalized G. The number

of clusters at which the knee occurs is an indication

of the number of clusters that occurs in the data. Note

that for nc = 1 and nc = N, the index is not defined.

Dunn Family of Indices

A cluster validity index for crisp clustering proposed

by Dunn (1974), aims at the identification of ‘‘compact

and well separated clusters’’. The index is defined in the

following equation for a specific number of clusters

Dnc ¼ min
i¼1;::;nc

min
j¼iþ1;:::;nc

d ci; cj
	

max
k¼1;:::;nc

diam ckð Þð Þ

0
@

1
A

8<
:

9=
; ½8�

where d(ci, cj) is the dissimilarity function between two

clusters ci and cj defined as dðci; cjÞ ¼ min
x2Ci ;y2Cj

dðx; yÞ,
and diam(c) is the diameter of a cluster, which may be

considered as a measure of clusters’ dispersion.

The diameter of a cluster C can be defined as follows:

diam Cð Þ ¼ max
x;y2C

d x; yð Þf g ½9�

If the data set contains compact and well-separated

clusters, the distance between the clusters is expected

large and the diameter of the clusters is expected small.

Based on the Dunn’s index definition, one concludes

that large values of the index indicate the presence of

compact and well-separated clusters.

The problems of the Dunn index are: (i) its consid-

erable time complexity, and (ii) its sensitivity to the

presence of noise in data sets, since these are likely to

increase the values of the diameter.

RMSSDT, SPR, RS, CD

This family of validity indices is applicable in the cases

that hierarchical algorithms are used to cluster the data

sets. Hereafter the discussion refers to the definitions

of four validity indices, which have to be used simulta-

neously to determine the number of clusters existing in

the data set. These four indices are applied to each step

of a hierarchical clustering algorithm and they are

known as:

� Root-mean-square standard deviation (RMSSTD) of

the new cluster,

� Semi-partial R-squared (SPR),

� R-squared (RS),

� Distance between two clusters (CD).

Getting into a more detailed description of them, one

can say that:

RMSSTD of a new clustering scheme defined at a level

of a clustering hierarchy is the square root of the variance

of all the variables (attributes used in the clustering pro-

cess). This indexmeasures the homogeneity of the formed

clusters at each step of the hierarchical algorithm. Since

the objective of cluster analysis is to form homogeneous

groups the RMSSTD of a cluster should be as small as

possible. Where the values of RMSSTD are higher than

the ones of the previous step, one has an indication that

the new clustering scheme is worse.

In the following definitions, the term SS is used,

which means Sum of Squares and refers to the equation:

SS ¼
Xn
i¼1
ðXi � XÞ2 ½10�

392C Clustering Validity
Along with this, additional terms will be used,

such as:

1. SSw referring to the sum of squares within group,

2. SSb referring to the sum of squares between

groups,

3. SSt referring to the total sum of squares, of the

whole data set.

In the case cluster join to form a new one, SPR- for the

new cluster – is defined as the difference between SSw
of the new cluster and the sum of the SSw’s values of

clusters joined to obtain the new cluster (loss of homo-

geneity), divided by the SSt for the whole data set. This

index measures the loss of homogeneity after merging

the two clusters of a single algorithm step. If the index

value is zero then the new cluster is obtained by merg-

ing two perfectly homogeneous clusters. If its value is

high then the new cluster is obtained by merging two

heterogeneous clusters.

RS of the new cluster is the ratio of SSb over SSt. SSb
is a measure of difference between groups. Since

SSt = SSb + SSw, the greater the SSb the smaller the

SSw and vice versa. As a result, the greater the differ-

ences between groups, the more homogenous each

group is and vice versa. Thus, RS may be considered

as a measure of dissimilarity between clusters. Further-

more, it measures the degree of homogeneity between

groups. The values of RS range between 0 and 1. Where

the value of RS is zero, there is an indication that no

difference exists among groups. On the other hand,

when RS equals 1 there is an indication of significant

difference among groups.

Key Applications
There is a certain cross disciplinary interest for clustering

validity method and indices. A prominent area where

cluster validity measures apply is the area of biological

data [2,6]. Patterns hidden in gene expression data offer

a tremendous opportunity for an enhanced understand-

ing of functional genomics. However, the large number

of genes and the complexity of biological networks great-

ly increase the challenges of comprehending and inter-

preting the resultingmass of data, which often consists of

millions ofmeasurements. The datamining process aims

to reveal natural structures and identify interesting

patterns in the underlying data. Clustering techniques

constitute a first essential step toward addressing this

challenge. Moreover recent research effort papers in the

area of image segmentation [13,3].
The area is fertile as the clustering issue is a funda-

mental problem and the application domains are still

widening. Challenging relevant research directions [9]

follow:

� Is there a principled way to measure the quality of

a clustering on particular data set?

� Can every clustering task be expressed as an opti-

mization of some explicit, readily computable,

objective cost function?

� Can stability be considered a first principle for

meaningful clustering?

� How should the similarity between different clus-

terings be measured?

� Can one distinguish clusterable data from struc-

tureless data?

� What are the tools that should be imported from

other relevant areas of research?
Cross-references
▶Cluster and Distance Measure

▶Clustering on Streams

▶Clustering with Constraints

▶Density-Based Clustering

▶Document Clustering

▶ Feature Selection for Clustering

▶Hierarchial Clustering

▶ Semi-Supervised Learning

▶ Spectral Clustering

▶ Subspace Clustering Techniques

▶Text Clustering

▶Visual Clustering

▶Visualizing Clustering Results
Recommended Reading
1. Bezdek J.C. and Pal N.R. Some new indexes of cluster validity,

IEEE Trans., Systems, Man, and Cybernetics, Part B. 28

(3):301–315, 1998.

2. Datta S. and Datta S. Comparisons and validation of statistical

clustering techniques for microarray gene expression data. Bio-

informatics, 19(4):459–466, 2003.

3. El-Melegy M.T., Zanaty E.A., Abd-Elhafiez W.M., and

Farag A.A. On cluster validity indexes in fuzzy and hard cluster-

ing algorithms for image segmentation. In Proc. Int. Conf.

Image Processing, 2007, pp. 5–8.

4. Halkidi M., Batistakis Y., and Vazirgiannis M. On clustering

validation techniques. J. Intell. Inf. Syst., 17(2–3):107–145, 2001.

5. Halkidi M., Gunopulos D., Vazirgiannis M., Kumar N., and

Domeniconi C. A clustering framework based on subjective

and objective validity criteria. ACM Trans. Knowl. Discov.

Data, 1(4), 2008.

Clustering with Constraints C 393

C

6. Jiang D., Tang C., and Zhang A. Cluster Analysis for Gene

Expression Data: A Survey. IEEE Trans. Knowl. Data Eng.,

16(11):1370–1386, 2004.

7. Kim M. and Ramakrishna R.S. New indices for cluster

validity assessment. Pattern Recogn. Lett., 26(15):2353–2363,

2005.

8. Maulik U. and Bandyopadhyay S. Performance evaluation of

some clustering algorithms and validity indices. IEEE Trans.

Pattern Anal. Mach. Intell., 24(12):1650–1654, 2002.

9. NIPS 2005 workshop on theoretical foundations of clustering,

Saturday, December 10th, 2005. Available at: (http://www.kyb.

tuebingen.mpg.de/bs/people/ule/clustering_workshop_nips05/

clustering_workshop_nips05.htm_).

10. Pal N.R. and Bezdek J.C. On cluster validity for the fuzzy

c-means model, IEEE Trans. Fuzzy Systems., 3(3):370–379, 1995.

11. Rand W.M. Objective criteria for the evaluation of clustering

methods. J. Am. Stat. Assoc., 66(336):846–850, 1971.

12. Wang J.-S. and Chiang J.-C. A cluster validity measure with a

hybrid parameter search method for the support vector cluster-

ing algorithm. Pattern Recognit., 41(2):506–520, 2008.

13. Zhang J. and Modestino J.W. A model-fitting approach to

cluster validation with application to stochastic model-based

image segmentation. IEEE Trans. Pattern Anal. Mach. Intell.,

12(10):1009–1017, 1990.
Clustering with Constraints

IAN DAVIDSON

University of California-Davis, Davis, CA, USA

Synonyms
Semi-supervised clustering

Definition
The area of clustering with constraints makes use of

hints or advice in the form of constraints to aid or

bias the clustering process. The most prevalent form

of advice are conjunctions of pair-wise instance level

constraints of the form must-link (ML) and cannot-

link (CL) which state that pairs of instances should

be in the same or different clusters respectively. Given

a set of points P to cluster and a set of constraints C,

the aim of clustering with constraints is to use the

constraints to improve the clustering results. Con-

straints have so far being used in two main ways:

(i) Writing algorithms that use a standard distance

metric but attempt to satisfy all or as many constraints

as possible and (ii) Using the constraints to learn a

distance function that is then used in the clustering

algorithm.
Historical Background
The idea of using constraints to guide clustering was

first introduced by Wagstaff and Cardie in their semi-

nal paper ICML 2000 [13] with a modified COBWEB-

style algorithm that attempts to satisfy all constraints.

Later [14] they introduced constraints to the k-means

algorithms. Their algorithms (as most algorithms now

do) look at satisfying a conjunction of must-link

and cannot-link constraints. Independently, Cohn,

Caruana and McCallum [3,4] introduced constraints

as a user feedback mechanism to guide the clustering

algorithm to a more useful result.

In 2002 Xing and collaborators [15] (NIPS 2002)

and Klein and collaborators (ICML 2002) [12] ex-

plored making use of constraints by learning a distance

function for non-hierarchical clustering and a distance

matrix for hierarchical clustering respectively.

Basu and collaborators more recently have looked

at key issues such as which are the most informative sets

of constraints [2] and seeding algorithms using con-

straints [1]. Gondek has explored using constraints to

find orthogonal/alternative clusterings of data [3,11].

Davidson and Ravi explored the intractability issues

of clustering under constraints for non-hierarchical

clustering [6], hierarchical clustering [5] and non-

hierarchical clustering with feedback [9].

Foundations
Clustering has many successful applications in a variety

of domains where the objective function of the cluster-

ing algorithm finds a novel and useful clustering. How-

ever, in some application domains the typical objective

functions may lead to well-known or non-actionable

clusterings of the data. This could be overcome by an ad

hoc approach such as manipulating the data. The in-

troduction of constraints into clustering allows a prin-

cipled approach to incorporate user preferences or

domain expertise into the clustering process so as to

guide the algorithm to a desirable solution or away

from an undesirable solution. The typical semi-super-

vised learning situations involves having a label asso-

ciated with a subset of the available instances. However

in many domains, knowledge of the relevant categories

is incomplete and it is easier to obtain pairwise con-

straints either automatically or from domain experts.

Types of Constraints. Must-link and cannot-link

constraints are typically used since they can be easily

generated from small amounts of labeled data (gener-

ate a must-link between two instances if the labels

394C Clustering with Constraints
agree, cannot-link if they disagree) or from domain

experts. They can be used to represent geometric prop-

erties [6,14] by noting that for instance, making the

maximum cluster diameter be a is equivalent to enfor-

cing a conjunction of cannot-link constraints between

all points whose distance is greater than a. Similarly,

clusters can be separated by distance at at least d by

enforcing a conjunction of must-link constraints be-

tween all points whose distance is less than d. Both
types of instance-level constraints have interesting

properties that can be used to effectively generate

many additional constraints. Must-link constraints

are transitive:ML(x,y),ML(y,z)!ML(x,z) and cannot

link constraints have an entailment property:ML(a,b),

ML(x,y), CL(a,x)! CL(a,y), CL(b,x), CL(b,y).

How Constraints Are Used. Constraints have typ-

ically been used in clustering algorithms in two ways.

Constraints can be used to modify the cluster assign-

ment stage of the cluster algorithm [4,14], to enforce

satisfaction of the constraints or as many as possible
Clustering with Constraints. Figure 1. Input instances and c

Clustering with Constraints. Figure 2. A clustering that sati
[2,6]. These approaches typically use a standard dis-

tance or likelihood function. Alternatively, the distance

function of the clustering algorithm can also be trained

either before or after the clustering actually occurs

using the constraints [12,15]. The former are called

constraint-based approaches and the later distance

based approaches.

Constraint-Based Methods. In constraint-based

approaches, the clustering algorithm itself (typically

the assignment step) is modified so that the available

constraints are used to bias the search for an appropri-

ate clustering of the data. Fig. 2 shows how though two

clusterings exist (a horizontal and vertical clustering)

just three constraints can rule out the former.

Constraint-based clustering is typically achieved

using one of the following approaches:

1. Enforcing constraints to be satisfied during the

cluster assignment in the clustering algorithm

[5,13].
onstraints.

sfies all constraints.

Clustering with Constraints C 395

C

2. Modifying the clustering objective function so that

it includes a term for satisfying specified constraints.

Penalties for violating constraints have been explored

in the maximum likelihood framework [2] and dis-

tance framework [6].

3. Initializing clusters and inferring clustering con-

straints based on neighborhoods derived from

labeled examples [1].

Each of the above approaches provides a simple meth-

od of modifying existing partitional and agglomerative

style hierarchical algorithms to incorporate con-

straints. For more recent advances in algorithm design

such as the use of variational techniques for con-

strained clustering see [3].

Distance-Based Methods. In distance-based

approaches, an existing clustering algorithm that uses

a distance measure is employed. However, rather than

use the Euclidean distance metric, the distance
Clustering with Constraints. Figure 3. Input instances and c

Clustering with Constraints. Figure 4. A learnt distance spa
measure is first trained to ‘‘satisfy’’ the given con-

straints. The approach of Xing and collaborators [15]

casts the problem of learning a distance metric from

the constraints so that the points (and surrounding

points) that are part of the must-link (cannot-link)

constraints are close together (far apart). They con-

sider two formulations: firstly learning a generalized

Mahanabolis distance metric which essentially stret-

ches or compresses each axis as appropriate. Figure 4

gives an example where the constraints can be satisfied

by stretching the x-axis and compressing the y-axis and

then applying a clustering algorithm to the new data

space. The second formulation allows a more complex

transformation on the space of points.

Klein and collaborators [12] explore learning a dis-

tance matrix from constraints for agglomerative clus-

tering. Only points that are directly involved in the

constraints are brought closer together or far apart
onstraints.

ce respective of the constraints.

396C CM Sketch
using a multi-step approach of making must-linked

points have a distance of 0 and cannot-linked points

having the greatest distance.

There have been some algorithms that try to both

enforce constraints and learn distance functions from

constraints [2].

Key Applications
Key application areas include images, video, biology,

text, web pages, audio (speaker identification) [3] and

GPS trace information [14].

URL to Code
http://www.constrained-clustering.org

Cross-references
▶Clustering

▶ Semi-Supervised Learning

Recommended Reading
1. Basu S., Banerjee A., and Mooney R. Semi-supervised clustering

by seeding. In Proc. 19th Int. Conf. on Machine Learning, 2002,

pp. 27–34.

2. Basu S., Banerjee A., and Mooney R.J. Active semi-supervision

for pairwise constrained clustering. In Proc. SIAM International

Conference on Data Mining, 2004.

3. Basu S., Davidson I., and Wagstaff K. (eds.). Constrained

Clustering: Advances in Algorithms, Theory and Applications.

Chapman & Hall, CRC Press, 2008.

4. Cohn D., Caruana R., and McCallum A. Semi-Supervised Clus-

tering with User Feedback. Technical Report 2003–1892. Cornell

University, 2003.

5. Davidson I. and Ravi S.S. Agglomerative hierarchical clustering

with constraints: theoretical and empirical results. In Principles

of Data Mining and Knowledge Discovery, 9th European Conf.,

2005, pp. 59–70.

6. Davidson I. and Ravi S.S. Clustering with constraints: feasibility

issues and the k-means algorithm. In Proc. SIAM International

Conference on Data Mining, 2005.

7. Davidson I. and Ravi S.S. Identifying and generating easy sets of

constraints for clustering. In Proc. 15th National Conf. on AI,

2006.

8. Davidson I., Ester M., and Ravi S.S. Efficient incremental

clustering with constraints. In Proc. 13th ACM SIGKDD Int.

Conf. on Knowledge Discovery and Data Mining, 2007, pp. 204–

249.

9. Davidson I. and Ravi S.S. Intractability and clustering with

constraints. In Proc. 24th Int. Conf. on Machine Learning,

2007, pp. 201–208.

10. Davidson I. and Ravi S.S. The complexity of non-hierarchical

clustering with instance and cluster level constraints. Data

Mining Know. Discov., 14(1):25–61, 2007.

11. Gondek D. and Hofmann T. Non-redundant data clustering. In

Proc. 2004 IEEE Int. Conf. on Data Mining, 2004, pp. 75–82.
12. Klein D., Kamvar S.D., and Manning C.D. From instance-level

constraints to space-level constraints: making the most of prior

knowledge in data clustering. In Proc. 19th Int. Conf. on

Machine Learning, 2002, pp. 307–314.

13. Wagstaff K. and Cardie C. Clustering with instance-level con-

straints. In Proc. 17th Int. Conf. on Machine Learning, 2000,

pp. 1103–1110.

14. Wagstaff K., Cardie C., Rogers S., and Schroedl S. Constrained

K-means clustering with background knowledge. In Proc. 18th

Int. Conf. on Machine Learning, 2001, pp. 577–584.

15. Xing E., Ng A., Jordan M., and Russell S. Distance metric

learning, with application to clustering with side-information.

Adv. Neural Inf. Process. Syst. 15, 2002.
CM Sketch

▶Count-Min Sketch
CMA

▶Computational Media Aesthetics
CO Query, Content-Only Query

▶Content-Only Query
CO+S Query

▶Content-and-Structure Query
Co-clustering

▶ Subspace Clustering Techniques
CODASYL Data Model

▶Network Data Model
Collaborative Software

▶ Social Applications

Column Segmentation C 397
Co-locations

▶ Spatial Data Mining
C

Colored Nets

▶ Petri Nets
Column Segmentation

SUNITA SARAWAGI

IIT Bombay, Mumbai, India

Synonyms
Text segmentation; Record extraction; Information

extraction

Definition
The term column segmentation refers to the segmen-

tation of an unstructured text string into segments

such that each segment is a column of a structured

record.

As an example, consider a text string S=‘‘18100

New Hampshire Ave. Silver Spring, MD 20861’’

representing an unstructured form of an Address re-

cord. Let the columns of this record be House number,

Street name, City name, State, Zip and Country. In

column segmentation, the goal is to segment S and

assign a column label to each segment so as to get an

output of the form:

Historical Background
The column segmentation problem is a special case of a

more general problem of Information Extraction (IE)

that refers to the extraction of structure from unstruc-

tured text. Column segmentation is typically per-

formed on short text strings where most of the

tokens belong to one of a fixed set of columns. In the

more general IE problem, the unstructured text could

be an arbitrary paragraph or an HTML document
where the structured entities of interest form a small

part of the entire string.

There is a long history of work on information

extraction [5]. Most of the early work in the area was

in the context of natural language processing, for exam-

ple for extracting named entities like people names,

organization names, and location names from news arti-

cles. The early systems were based on hand-coded set of

rules and relied heavily on dictionaries of known records.

Later systems were based on statistical methods like

maximum entropy taggers [9], Hidden Markov Models

[11] and Conditional Random Fields (CRFs) [7].

In the database research community, interest in

column segmentation arose in the late nineties as a

step in the process of cleaning text data for data ware-

housing. Many commercial tools were developed pure-

ly for the purposes of cleaning names and addresses.

These were based on hand-coded, rule-based, data-

base driven methods that work only for the region

that they are developed for and do not extend to

other domains. Much manual work has to be done

to rewrite these rules when shifting the domain from

one locality to another. This led to the adoption of

statistical techniques [1,3] which proved to be more

robust to noisy inputs.

Foundations
A formal definition of column segmentation follows.

Let Y ¼{y1,...,ym} denote the set of column types of

the structured record. Given any unstructured text

string x, column segmentation finds segments of x

and labels each with one of the columns in Y . The

input x is typically treated as a sequence of tokens

obtained by splitting x along a set of delimiters.

Let x1,...,xn denote such a sequence of tokens. A seg-

mentation of x is a sequence of segments s1...sp. Each

segment sj consists of a start position tj , an end position

uj , and a label yj 2 Y [{‘‘Other’’’}. The special label

‘‘Other’’ is used to label tokens not belonging to any of

the columns. The segments are assumed to be contigu-

ous, that is, segment sjþ1 begins right after segment sj
ends. Also, the last segment ends at n and the first

segment starts at 1.

As a second example consider a citation String

T=P.P.Wangikar, T.P. Graycar, D.A. Estell,

D.S. Clark, J.S. Dordick (1993) Protein and

Solvent Engineering of Subtilising BPN’

in Nearly Anhydrous Organic Media J.Amer.

Chem. Soc. 115, 12231-12237. and a set of

398C Column Segmentation
columns: Author names, title, year, publication venue,

volume, number. A segmentation of this string is:

In this example, the tokens ‘‘in’’, ‘‘(‘‘ and ‘‘)’’ of the

input have been assigned label ‘‘Other’’.
Challenges

The problem of column segmentation is challenging

because of the presence of various kinds of noise in the

unstructured string.

� The same column might be represented in many

different forms, for example ‘‘Street’’ might be

abbreviated as ‘‘St.’’ or ‘‘st’’.

� The order in which columns appear might be dif-

ferent in different strings: for example, in some

citations authors could be before title, and after

title in others.

� Columns might be missing: some addresses might

contain a country name, others may not.

� Strings from different sources might be formatted

differently: for example, some citations might use a

comma to separate fields whereas others might

have no regular delimiter between fields.

Main Techniques

A column segmentation technique needs to combine

information from multiple different sources of evi-

dence to be able to correctly recognize segmentations

in noisy strings. One source is the characteristic words

in each elements, for example the word ‘‘street’’

appears in road-names. A second source is the limited

partial ordering between its element. Often the first

element is a house number, then a possible building

name and so on and the last few elements are zipcode

and state-name. A third source is the typical number

of words in each element. For example, state names

usually have one or two words whereas road names

are longer. Even within a field, some words are more

likely to appear in the beginning of the field rather

than towards its end. Often, there is a pre-existing

database of known values of columns. Match of a

substring of the text to an existing database column,
can be a valuable clue for segmentation. The format

of the entry, presence of certain regular expression,

capitalization, and punctuation patterns can be use-

ful when word-level matches are absent. A good

column segmentation technique would combine evi-

dence from all of these clues in performing the final

segmentation.

The three main types of column segmentation

techniques are:

Rule-Based Systems

A rule-based technique, as the name suggests, encodes

one or more of the above clues as rules. These are

applied in a specified order and when more than two

rules conflict, another set of rule resolution mechan-

isms are used to decide which one wins.

Here are some examples of rules that can be used to

extract columns from citation records:

Punctuation CapsWord{2–10} Dot!Title

CapsWord Comma Initial Dot Initial Dot!Author

name

Initial Dot CapsWord Comma!Author name

AllCaps Words{1–2} Journal!Journal

For example, the first rule marks as title any substring

of two to ten capitalized words appearing between a

punctuation and a full-stop. The second rule marks as

an author name any substring consisting of a capita-

lized word followed by comma and two initials. This

would identify strings of the form ‘‘Gandhi, M. K.’’ as

author names. Whereas the third rule would mark

strings like ‘‘V. Ganti,’’ as author names. The fourth

rule would mark string like ‘‘ACM computing Journal’’

as journal names.

Such rules could be either hand-coded or learnt

from example datasets [2,6]. Existing rule-based tech-

niques are able to concentrate only on a subset of the

above mentioned clues to limit the complexity of the

learnt rules. They provide high precision segmentation

in uniform settings where the amount of noise is

limited. When the input becomes noisy, rule-based

systems tend to lose on recall.

Hidden Markov Models

Hidden Markov Models (HMMs) provide an intuitive

statistical method for combining many of the above

clues in a unified model. A HMM is a probabilistic

finite state automata where the states represent the

fields to be extracted, directed edges between edges

are attached with probability values indicating

Column Segmentation C 399

C

probability of transitioning from one state to another,

and states are attached with a distribution over the

words that can be generated from the state. A segmen-

tation of a string S is achieved by finding the sequence

of states for which the product of the probability of

generating the words in S and following the transitions

in state sequences is maximized. Such a path can be

found efficiently using a dynamic programming algo-

rithm. The parameters controlling the transition and

word distributions of states are learnt using examples

of correctly segmented strings.

An example, of a Hidden Markov Model trained to

recognize Indian addresses appears in Fig.1. The num-

ber of states is 10 and the edge labels depict the state

transition probabilities. For example, the probability of

an address beginning with House Number is 0.92 and

that of seeing a City after Road is 0.22. The dictionary

and the emission probabilities are not shown for

compactness.

For more details on the use of HMMs in column

segmentation see [1,3,11].

Conditional Models

A limitation of HMMs is that the distribution that con-

trols the generation of words within a state is generative,

and can therefore capture only a limited set of properties

of the words it can generate. For example, it is compli-

cated to account for various orthographic properties of

words, like its capitalization pattern, or the delimiter

following that word. These limitations are removed by

recently proposed formalisms like Conditional Random

Fields (CRFs) that capture the conditional distribution

of column sequence given the sequence of words in a
Column Segmentation. Figure 1. An example of trained HM
string S. This enables the incorporation of any arbi-

trary set of clues derived from a word and the

words in its neighborhood. Also it becomes easy to

incorporate clues derived from the degree of match

of a proposed column with pre-existing values in the

database.

A CRF models the conditional probability distribu-

tion over segmentations s for a given input sequence x

as follows:

Pr sjx;Wð Þ ¼ 1

Z xð Þ exp W:
X
j

f j; x; sð Þ
 !

ð1Þ

where f(j,x,s) is a vector of local feature functions

f1... fN of s at the j th segment and W = (W1,W2,...,

WN) is a weight vector that encodes the importance

of each feature function in f. Z(x) = ∑s0 exp(W �∑ j f(j,

x,s0)) is a normalization factor. The label of a segment

depends on the label of the previous segment and

the properties of the tokens comprising this segment

and the neighboring tokens. Thus a feature for seg-

ment sj = (tj, uj, yj) is a function of the form f (yj, yj�1, x,

tj, uj) that returns a numeric value. Example of such

features are:

f8 yi; yi�1; x; 3; 5ð Þ
¼ x3x4x5 appears in a journal list½ �½ �: yi ¼ journal½ �½ �

f12 yi; yi�1; x; 19; 19ð Þ
¼ x19 is an integer½ �½ �: yi ¼ year½ �½ �: yi�1 ¼ month½ �½ �

The weight vector W is learnt during training via

a variety of methods, such as likelihood maximiza-

tion [7]. During segmentation, the goal is to find a
M for segmenting addresses.

400C Committee-based Learning
s = s1...sp for the input sequence x = x1...xn such that

Pr(sjx, W) (as defined by (1) is maximized.

argmax
s

Pr sjx;Wð Þ¼ argmax
s

W:
X
j

f yi;yj�1;x; tj ;uj
	

The right hand side can be efficiently computed using

dynamic programming. Let L be an upper bound on

segment length. Let si:y denote set of all partial segmen-

tation starting from 1 (the first index of the sequence)

to i, such that the last segment has the label y and

ending position i. Let V (i, y) denote the largest value

of W �∑jf(j, x, s
0) for any s02si:y. The following recur-

sive calculation finds the best segmentation:

V ði;yÞ¼
maxy 0;i0¼i�L:::i�1V ði0; y 0Þ
þW � fðy;y 0;x;i 0 þ1; iÞ if i > 0

0 if i = 0

�1 if i < 0

8><
>:

The best segmentation then corresponds to the path

traced by maxyV (jxj, y).
More details on CRFs can be found in [7] and

the extension of CRFs for segmentation can be found

in [10]. [8] reports an empirical evaluation of CRFs

with HMMs for segmenting paper citations. [4] shows

how to perform efficient segmentation using CRFs in

the presence of a large pre-existing database of known

values.

Key Applications
Column segmentation has many applications,

including,

Cleaning of text fields during warehouse construc-

tion: In operational datasets, text fields like addresses

are often recorded as single strings. When warehousing

such datasets for decision support, it is often useful

to identify structured elements of the address. This

not only allows for richer structured queries, it also

serves as a useful pre-processing step for duplicate

elimination.

Creation of citation databases: A key step in the

creation of citation databases like Citeseer and Google

Scholar, is to resolve for each citation, which paper it

refers to in the database. Citations as extracted from

papers are unstructured text strings. These have to be

segmented into component author names, titles, years,

and publication venue before they can be correctly

resolved to a paper entry in the database.

Extraction of product information from product

descriptions: Comparison shopping websites often need
to parse structured fields representing various attri-

butes of product from unstructured HTML sources.

URL to Code
Java packages for column segmentation using condi-

tional random fields are available via Source Forge at

http://crf.sf.net and as part of the Mallet package at

http://mallet.cs.umass.edu

Cross-references
▶Data Cleaning

Recommended Reading
1. Agichtein E. and Ganti V. Mining reference tables for

automatic text segmentation. In Proc. 10th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2004,

pp. 20–29.

2. Aldelberg B. Nodose: a tool for semi-automatically extracting

structured and semi-structured data from text documents. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1998,

pp. 283–294.

3. Borkar V.R., Deshmukh K., and Sarawagi S. Automatic

text segmentation for extracting structured records. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2001,

pp. 175–186.

4. Chandel A., Nagesh P.C., and Sarawagi S. Efficient batch top-k

search for dictionary-based entity recognition. In Proc. 22nd Int.

Conf. on Data Engineering, 2006.

5. Cunningham H. Information Extraction, Automatic. Encyclo-

pedia of Language and Linguistics, 2nd edn., 2005.

6. Kushmerick N., Weld D.S., and Doorenbos R. Wrapper induc-

tion for information extraction. In Proc. 15th Int. Joint Conf. on

AI., 1997, pp. 729–737.

7. Lafferty J., McCallum A., and Pereira F. Conditional random

fields: Probabilistic models for segmenting and labeling se-

quence data. In Proc. 18th Int. Conf. on Machine Learning,

2001, pp. 282–289.

8. Peng F. and McCallum A. Accurate information extraction from

research papers using conditional random fields. In HLT-

NAACL. 2004, pp. 329–336.

9. Ratnaparkhi A. Learning to parse natural language with maxi-

mum entropy models. Mach. Learn., 34, 1999.

10. Sarawagi S. and Cohen W.W. Semi-markov conditional random

fields for information extraction. In Advances in Neural Inf.

Proc. Syst. 17, 2004.

11. Seymore K., McCallum A., and Rosenfeld R. Learning Hidden

Markov Model structure for information extraction. In Papers

from the AAAI-99 Workshop on Machine Learning for Infor-

mation Extraction. 1999, pp. 37–42.
Committee-based Learning

▶ Ensemble

Common Warehouse Metamodel C 401
Common Object Request Broker
Architecture

▶CORBA

C

Common Subexpression Elimination

▶Multi-Query Optimization
Common Warehouse Metadata
Interchange (CWMI)

▶Common Warehouse Metamodel (CWMTM)
Common Warehouse Metamodel

LIAM PEYTON

University of Ottawa, Ottawa, ON, Canada

Synonyms
Common Warehouse Metadata Interchange (CWMI);

CWM

Definition
The Common Warehouse Metamodel (CWM™) is

an adopted specification from the OMG (Object Man-

agement Group) standards body. It defines standard

interfaces that can be used to enable easy interchange

of data warehouse and business intelligence metadata

between data warehouse tools, data warehouse plat-

forms and data warehouse metadata repositories in

distributed heterogeneous environments. It supports re-

lational, non-relational, multi-dimensional, and most

other objects found in a data warehousing environment.

It leverages three other standards from OMG:

� UML – Unified Modeling Language

� MOF – Meta Object Facility

� XMI – XML Metadata Interchange

The Object Management Group has been an interna-

tional, open membership, not-for-profit computer in-

dustry consortium since 1989 with over 700 member

organizations.
Historical Background
An initial Request For Proposal (RFP) for a common

warehousemetadata interchange (CWMI) was issued by

the OMG (Object Management Group) in 1998. A joint

submission was received by the OMG in 1999 from

Dimension EDI, Genesis Development Corporation,

Hyperion Solutions, International Business Machines,

NCR, Oracle, UBS AG, and Unisys.

At the time, there was a competing initiative from

the Meta Data Coalition (MDC) which was supported

by Microsoft and others. In 2000, however the two

initiatives merged when the MDC joined OMG [5]. In

2001, version 1.0 of the specification was adopted with

the name: CommonWarehouse Metamodel (CWM™).

The currently adopted version is 1.1 [1] (March, 2003).

The purpose of the Common Warehouse Metamo-

del specification was to make it possible for large

organizations to have a metadata repository with a

single metamodel. In practice this was not possible to

achieve, since every data management and analysis

tool requires different metadata and different metadata

models [3]. Instead, the CWM specification defines

interfaces that facilitate the interchange of data ware-

house metadata between tools. In particular, the OMG

Meta-Object Facility (MOF™) bridges the gap be-

tween dissimilar meta-models by providing a common

basis for meta-models. If two different meta-models

are both MOF-conformant, then models based on

them can reside in the same repository.

However, compliance with the CWM specification

does not guarantee tools from different vendors will

integrate well, even when they are ‘‘CWM-compliant.’’

The OMG addressed some of these issues by releasing

patterns and best practices to correct these problems

in a supplementary specification, the Common Ware-

house Metamodel (CWM™)) Metadata Interchange

Patterns (MIP) Specification. Version 1.0 [2] was re-

leased in March 2004.

Foundations
The Common Warehouse Metamodel enables organi-

zations and tool vendors to define and represent their

metadata, metadata models and the processes which

manipulate them in a common format so that the infor-

mation can be streamed between tools and accessed

programmatically [4].

The basic architecture and key technologies support-

ing the Common Warehouse Metamodel are shown

in Fig. 1, on the next page. Metadata in a variety of

402C Common Warehouse Metamodel
formats, and from a variety of sources (Tools, Reposi-

tories, Databases, Files, etc.) is defined and represented

in UML notation, based on the objects and classes that

are defined in the Common Warehouse Metamodel.

That representation is persisted in an XML notation

that can be streamed to other tools, repositories, data-

bases or files based on the XMI protocol. Finally, MOF is

used to provide a broker facility that supports the ability

to define and manipulate metamodels programmati-

cally using fine grained CORBA interfaces. Using this

architecture, organizations can create a single common

repository which stores all the CWM-modeled descrip-

tions of metadata and metamodels.

An example of a CWMdescription of a table from a

relational database is shown below, along with the

metadata description of the type of one of its columns

(type="22");

<CWMRDB:Table xmi.id="_15" name="MyTableName">

<CWM:Classifier.feature>

<CWMRDB:Column xmi.id="_16" name="myPri-

maryKeyID" precision="4" type="_17"/>

<CWMRDB:Column xmi.id="_18" name="myFor-

eignKey1ID" precision="4" type="_17"/>

<CWMRDB:Column xmi.id="_19" name="myFor-

eignKey2ID" precision="4" type="_17"/>

<CWMRDB:Column xmi.id="_20" name=" myFor-

eignKey3ID" precision="4" type="_17"/>

<CWMRDB:Column xmi.id="_21" name="descrip-

tion" length="200" type="_22" />

</CWM:Classifier.feature>

<CWM:Namespace.ownedElement>

<CWMRDB:ForeignKey xmi.id="_23" name="un-

named_23" namespace="_15" feature="_19" unique-

Key="_24"/>

</CWM:Namespace.ownedElement>

</CWMRDB:Table>

<CWMRDB:SQLSimpleType

xmi.id="_22"

name="VARCHAR2"

visibility="public"characterMaximumLength="200"

characterOctetLength="1" type

Number="12"/>

The CWM specifications consists of a collection of

metamodels (defined in UML) that capture all the

elements of metadata, metamodels, and their processing

that can be expressed when exchanging information

between tools. These are what is identified in Fig. 1 as

the Common Warehouse Metamodel. It is organized

into five layers of abstraction.
Object Model

The Object Model layer is the base layer of the

Common Warehouse Metamodel. The metamodels

in the Object Model layer define the subset of UML

that is used for creating and describing the CWM.

They are the building blocks used by all the meta-

models in the upper layers. This enables CWM to

leverage UML’s concepts without requiring imple-

mentations to support all full of UML’s capabilities.

� Core
The Core metamodel contains basic classes and

associations used by all other CWM metamodels

like Namespace, Constraint, Attribute, Modeled-

Element etc.

� Behavioral
The Behavioral metamodel describe the beha-

vior of CWM types and how that behavior

is invoked with classes like Event, Parameter,

CallAction etc.

� Relationships
The Relationships metamodel describes two types

of relationships between object within a CWM

information store: generalizations (for parent-

child relationships) and associations (for links

between objects).

� Instance
The Instance metamodel contains classes to sup-

port the inclusion of data instances with the

metadata.

Foundation

The metamodels in the Foundation layer contain

general model elements that represent concepts and

structures shared by other CWM packages. Metamo-

dels in this layer are not necessarily complete, but serve

as a common basis that can be shared with other

metamodels.

� Data Types
The DataTypes metamodel supports definition of

metamodel constructs that modelers can use to

create the specific data types they need with classes

like Enumeration, Union, EnumerationLiteral,

UnionMember, etc.

� Expression
The Expressions metamodel supports the defini-

tion of expression trees.

� Keys and Indexes
This metamodel defines the basic concepts of Index,

IndexedFeature, UniqueKey, and KeyRelationship.

Common Warehouse Metamodel. Figure 1. Common warehouse metamodel architecture.

Common Warehouse Metamodel C 403

C

� Type Mapping
This metamodel is used to support the mapping of

types between different tools or data sources.

� Business Information
The Business Information metamodel supports

business-oriented information about model ele-

ments with classes like ResponsibleParty, Contact,

ResourceLocater etc.

� Software Deployment
The Software Deployment metamodel contains

classes like SoftwareSystem, Component, Site to

record how the software in a datawarehouse is used.

Resource

The metamodels in the resource layer define the type

of data sources and formats that are supported.

� Relational
The Relational metamodel describes relational

data this is accessed through an interface like

ODBC, JDBC or the native interface of a relational

database.
� Record
The Record metamodel describes the concept

of a record and its structure that can be applied

to data records stored in files and databases, or to

programming language structured data types.

� Multi-Dimensional
The Multi-Dimensional metamodel describes a

generic representation of a multidimensional

database using classes like Schema, Dimension,

Member etc.

� XML
The XML metamodel describes the metadata of

XML data with classes like ElementType, Attribute

etc.

Analysis

The metamodels in the analysis layer define the types

of interaction with metadata that are supported.

� Transformation
The Transformation metamodel contains classes

to describe common transformation metadata used

404C Communication Boundary of a DBMS
in Extract, Transform, Load (ETL) tools and

processes.

� OLAP
The OLAP metamodel contains classes to describe

common analysis metadata using in OLAP pro-

cessing with classes like MemberSelection and

CubeDeployment.

� Data Mining
The Data Mining metamodel provide the necessary

abstractions to model generic representations of

both data mining tasks and models (i.e., mathe-

matical models produced or generated by the exe-

cution of data mining algorithms).

� Information Visualization
The Information Visualization metamodel contains

classes like Rendering, RenderedObject, to describe

metadata associated with the display of data.

� Business Nomenclature
The Business Nomenclature metamodel supports

the definition of terms used in capturing busi-

ness requirements with classes like Nomencla-

ture, BusinesDomain, Taxonomy, Glossary, Term,

Concept, etc.

Management

The metamodels in the management layer define two

aspects of warehouse management.

� Warehouse Process
The Warehouse Process metamodel supports the

documentation of process flows used to execute

transformations. A process flow can associate a

transformation with a set of events, which will be

used to trigger the execution of the transformation.

� Warehouse Operation
The Warehouse Operation metamodel contains

classes for the day-to-day operation and mainte-

nance of the warehouse including scheduled activ-

ities, measurements, and change requests.
Key Applications
Vendors of data warehouse tools, conform to the

CWM specification to ensure that the metadata in

their tools is open and accessible to any CWM compli-

ant tool.

Large organizations leverage the specification in

order to be able to manage and maintain there data

warehouses in a common metadata repository. By

using the CWM specification IT administrators and
system integrators can extract and link metadata

from different vendors tools.

Oracle, IBM, SA, Informatica, Meta Integration

Technology Incorporated are among several industry

leaders who have data warehouse tools that are CWM

compliant to facilitate interoperability.
Cross-references
▶Data Warehouse Metadata

▶Metadata

▶Metadata Interchange Specification

▶Metadata Registry, ISO/IEC 11179

▶Meta Object Facility

▶Metamodel

▶Unified Modelling Language

▶XML Metadata Interchange
Recommended Reading
1. Common Warehouse Model (CWM) Specification, Version 1.1,

Object Management Group. Needham, MA, March 2, 2003.

http://www.omg.org/technology/documents/formal/cwm.htm.

2. CWMMetadata Interchange Patterns Specification, Version 1.0,

Object Management Group. Needham, MA, March 25, 2004.

3. Grossman R.L., Hornick M.F., and Meyer G. Data mining stan-

dards initiatives. Commun. ACM., 45(8):59–61, 2002.

4. Poole J., Chang D., Tolbert D., and Mellor D. Common Ware-

house Metamodel: An Introduction to the Standard for Data

Warehouse Integration. Wiley, 2002.

5. Vaduva A. and Dittrich K.R. Metadata Management for Data

Warehousing: Between Vision and Reality. In Proc. Int. Conf. on

Database Eng. and Applications, 2001, p. 0129.
Communication Boundary of a
DBMS

▶DBMS Interface
Compact Suffix Tries

▶ Suffix Trees
Comparative Analysis

▶Comparative Visualization

Compensating Transactions C 405

C

Comparative Visualization

HANS HINTERBERGER

ETH Zurich, Zurich, Switzerland

Synonyms
Comparative analysis

Definition
Comparative visualization refers to

1. Methods that support the process of understanding

inwhat way different datasets are similar or different.

2. Methods that allow comparing different character-

istics of a given dataset.

3. Methods that allow a comparison of different types

of (linked) data graphics.

Key Points
Comparisons of datasets may occur in different ways.

Data value to data value: entries of different datasets are

compared to one another based on their values; derived

quantity to derived quantity: these could be statistical

moments of data fields or topological characteristics;

methodology to methodology: comparisons of meth-

odologies involve quantifying differences in experiment

or simulation parameters; and, if the data are visualized,

image to image: such comparisons quantify the differ-

ences in the visualizations produced by a given graphical

method.

Comparative visualizationmethods have been devel-

oped as an enabling technology for computational and

experimental scientists whose ability to collect and gen-

erate data far outpaces their ability to analyze and

understand such data. The Visualization and Analysis

Center for Enabling Technologies (http://www.vacet.

org), for example, provides (publicly available) compar-

ative data visualization software [1] for the scientists at

the various research labs associated with the

US Department of Energy.

Graphical displays that readily allow simultaneous

comparisons of several characteristics of multivariate

datasets – the parallel coordinate display for example –

are sometimes referred to as ‘‘comparative graphs.’’

There is evidence that visual explorations into

a dataset’s structure are particularly effective when

the data can be compared by simultaneously obser-

ving different visualizations of the same data. Today’s

data visualization packages routinely include several
different graphic methods to allow such comparisons.

To be truly effective, the different graphics should be

operationally linked. See [2] and [3] for two examples

among others.
Cross-references
▶ Exploratory Data Analysis

▶ Parallel Coordinates
Recommended Reading
1. Bavoil L., Callahan S.P., Crossno P.J., Freire J., Scheidegger C.E.,

Silva C.T., and Vo H.T. VisTrails: enabling interactive multiple-

view visualizations. In Proc. IEEE Visualization, 2005.

2. Schmid C. and Hinterberger H. Comparative multivariate

visualization across conceptually different graphic displays. In

Proc. 7th Int. Working Conf. on Scientific and Statistical Data-

base Management, 1994.

3. Siirtola H. Combining parallel coordinates with the reorderable

matrix. In Proc. Int. Conf. on Coordinated & Multiple Views in

Exploratory Visualization, 2003.
Compensating Transactions

GREG SPEEGLE

Baylor University, Waco, TX, USA

Definition
Given a transaction T, and its compensating transac-

tion C, then for any set of transactions H executing

concurrently with T, the database state D resulting

from executing THC is equivalent to the database

state D 0 resulting from executing H alone. Typically,

equivalent means both D and D 0 satisfy all database

consistency constraints, but D and D 0 do not have to

be identical.

A compensating transaction is defined in terms of

its corresponding failed transaction, and once started,

must be completed. This may involve re-executing the

compensating transaction multiple times. The result of

compensation is application dependent.
Key Points
A compensating transaction is a set of database opera-

tions that perform a logical undo of a failed transac-

tion. The goal of the compensating transaction is to

restore any database consistency constraints violated

406C Computationally Complete Relational Query Languages
by the failed transaction without adversely affecting

other concurrent transactions (e.g., cascading aborts).

However, it does not require the database to be in the

exact same state as if the transaction had never exe-

cuted as with traditional ACID properties. A compen-

sating transaction also removes the externalized affects

of a failed transaction [2].

Compensating transactions can best be understood

by comparing them to traditional atomicity require-

ments. Under traditional atomicity, either all effects of

a transaction are present in the database, or none of

them are. Thus, if a transaction T1 updates a data item

and transactions T2 reads that update, in order to

remove all of the effects of T1, T2 must also be

removed. With compensating transactions, the abort

of T2 is not be required.

Consider an example application of a company

manufacturing widgets. The transaction for buying

widgets consists of two subtransactions, one to order

the widgets and another to pay for them. Since this

business is very efficient, as soon as the widgets are

ordered, another transaction starts executing the

desired widgets. It is possible to compensate for the

ordered widgets by simply removing the order from

the system. The extra widgets would be produced, but

they will be consumed by later orders. Under tradi-

tional atomicity requirements, the production transac-

tion would have to be aborted if the buying transaction

failed after the order was placed (for example, if the

customer could not pay for the widgets).

Compensating transactions are used in long dura-

tion transactions called Sagas [1], and other applica-

tions that require semantic atomicity. Unfortunately,

compensation is not universally possible – the com-

mon example of an externalized event that cannot be

undone is the launching of a missile – or may be very

complex. Thus, compensating transactions are used

when the benefits of avoiding cascading aborts and

early externalization of results outweigh the difficulty

in determining the compensation.

Cross-references
▶ACID Properties

▶ Sagas

▶ Semantic Atomicity

Recommended Reading
1. Garcia-Molina H. and Salem K. SAGAS. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1987, pp. 249–259.
2. Korth H.F., Levy E., and Silberschatz A. A formal approach of

recovery by compensating transactions. In Proc. 16th Int. Conf.

on Very Large Data Bases, 1990, pp. 95–106.
Computationally Complete
Relational Query Languages

VICTOR VIANU
1, DIRK VAN GUCHT

2

1University of California-San Diego, La Jolla, CA, USA
2Indiana University, Bloomington, IN, USA

Synonyms
Complete query languages; Chandra and Harel

complete query languages

Definition
A relational query language (or query language) is a

set of expressions (or programs). The semantics of a

query language defines for each of these expressions

a corresponding query which is a generic, computable

function from finite relation instances to finite relation

instances over fixed schemas. A query language is com-

putationally complete (or complete) if it defines all

queries.

The genericity condition is a consistency criterion

requiring that a query commute with isomorphisms

of the database domain. Thus, when applied to iso-

morphic input relation instances, a query returns

isomorphic output relation instances. The concept of

genericity is based on the well-accepted idea that the

result of a query should be independent of the repre-

sentation of data in a database, and should treat the

elements of the database as uninterpreted objects [4].

The computability condition requires that the query

can be effectively computed, in other words it must be

implementable by a program of a Turing-complete

programming language under some suitable encoding

of relation instances into objects of that language.

Historical Background
The search for an appropriate notion of ‘‘complete’’

query language began soon after the introduction of

the relational model by Codd, with its accompanying

query languages relational algebra (RA) and relational

calculus (RC) [9]. Initially, RA was proposed as a

yardstick for query expressiveness. A language was

called by Codd ‘‘relationally complete’’ if it was able

Computationally Complete Relational Query Languages C 407

C

to simulate RA [10]. Bancilhon and Paredaens inde-

pendently proposed the notion of BP-completeness

of a language, using an instance-based approach: a

language is BP-complete if for every pair of input and

output instances satisfying a consistency criterion (The

criterion requires that every automorphism of the input

be also an automorphism of the output) there exists a

query in the language mapping the input instance to

the output instance [5,13]. The notion of genericity

was first articulated in the database context by Aho and

Ullman [4], although its roots can already be found in

the consistency criterion used in the definition of BP-

completeness, and an idea similar to genericity under-

lies Tarski’s concept of ‘‘logical notion,’’ introduced in a

series of lectures in the mid 1960s [15]. The modern

notion of computationally complete query language is

due to Chandra and Harel, who also defined the first

such language, QL [7].

Foundations
Codd introduced the relational model and its

query languages, relational algebra (RA) and relational

calculus (RC). These query languages are equivalent,

i.e., they define the same set of queries. For example,

assuming that R and S are relation schemas both

of arity 2, then the RA-expression p1,4(s2=3(R � S))

[(R� S), and the RC-expression {(x, y) j ∃z : (R(x, z)
∧S(z, y)) ∨ (R(x, y) ∧¬S(x, y))} define the same

computable query Q which maps each relation in-

stance R over R and each relation instance S over S to

their join unioned with their set difference. Notice that

Q is also generic: consider, for example, the input

relation instances

R1 ¼
a b

a c
S1 ¼

a b

b d

and the isomorphic input relation instances

R2 ¼
e f

e g
S2 ¼

e f

f h

thenQ(R1, S1) andQ(R2, S2) are the isomorphic output

relation instances a c and e g , respectively. (As a

caveat to genericity, consider the query C defined by

the RA-expression s1=a(R), where a is some constant

interpreted as a. Then, C(R1) = R1, but C(R2) = ;. The
difficulty is that, though R1 and R2 are isomorphic,

they are not isomorphic by an isomorphism that

fixes a. If however, the value of e in R2 is replaced by
a, then C(R2
e←a) = R2

e←a. This suggests that when

constants are involved, genericity should be modified

to isomorphisms that fix these constants. In the litera-

ture, this is referred to as C-genericity.)

The development of the relational model led to the

introduction of the query language SQL which has, at

its logical core, a sub-language pure-SQL, that is equiv-

alent with RA and RC. For example, in pure-SQL, the

query Q can be defined by the expression (Here A, B,

C, and D are attribute names referring to the first and

second columns of R, and the first and second columns

of S, respectively.)

(SELECTR.A,S.DASBFROMR,SWHERER.B=S.C)

UNION

(

(SELECT R.A, R.B FROM R)

EXCEPT

(SELECT S.C AS A, S.D AS B FROM S)

);

A natural question is now ‘‘Are RA, RC, and pure-

SQL complete query languages?’’ The answer is no. To

this end, consider the following three queries, which

are easily seen to be generic and computable:

1. TC maps each binary relation instance R to its

transitive closure R∗.

2. EVEN maps each unary relation instance R to {()}

(true) if jRj is even, and to ; (false), otherwise.
3. EVEN< maps each pair of a unary relation instance

R and a binary relation instance O to EVEN(R) if O

defines an ordering on dom(R), and is undefined

otherwise. (Here, dom(R) denotes the set of values

that occur in the tuples of R.)

It turns out that none of the above queries is

expressible in RA (or RC, or pure-SQL). Consider

(1). Fagin showed in [11] that the TC query cannot

be defined by any RC expression (the result was later

re-proven for RA by Aho and Ullman [4]). Intuitively,

the difficulty in computing TC is the following. For

each i� 0, there exists an RA-expression Ei that defines

the pairs of elements in R at distance i in the directed

graph represented by R. However, there does not exist a

single RA-expression that defines the union of all these

pairs, as needed for computing TC. A solution to this

problem is to augment RA with an iteration construct.

This led Chandra and Harel to define the language

While (initially introduced as RQ in [8] and LE

in [6]). The language uses, in addition to database

relations, typed relational variables (of fixed arity)

408C Computationally Complete Relational Query Languages
initialized to ;, to which RA expressions can be

assigned. Iteration is provided by a construct ‘‘while

change to R do hprogrami od’’ whose semantics is to

iterate hprogrami as long as the value of the relational

variable R changes. For example, the following While

program defines TC:

TC :¼ R;

while change to TC

do TC :¼ TC [p1;4ðs3¼4ðTC� RÞÞ od:

Here TC is a binary relation variable (initialized to ;).
The program first assigns R to TC, then loops as long

as TC changes. Upon termination, this value is R∗.

Onemight hope thatWhile is a complete query language.

However, this is not the case. Indeed, even though it is

easy to write a While program that defines the EVEN<

query, Chandra showed that no such program can

define the simple linear-time computable EVEN

query [6]. Thus, While is not computationally com-

plete. Intuitively, While programs do not have the

ability to compute with natural numbers, unless such

computations can be simulated by utilizing an order-

ing on the elements of its input. With such orderings

available, While can define precisely the PSPACE-

computable queries [17]. The PSPACE upper bound

(that holds with or without order) is a consequence of

the fact that a program’s finite set of variables are of

fixed arity and can only hold relation instances built

from the elements of its inputs.

To overcome these problems, it appears natural to

embed RA into a language that can perform arbitrarily

powerful computations. This is in the spirit of ‘‘em-

bedded SQL’’ languages, in which a computationally

complete programming language such as C or Java

accesses the database using SQL queries. A language

called LC (for Looping+Counters), abstracting the ‘‘em-

bedded SQL’’ paradigm, was introduced by Chandra

[6] (with a variant called WhileN later defined in [1]).

The language LC extends While by allowing integer

variables (initialized to zero) that can be incremented

or decremented. Iteration for computation on inte-

gers is provided by an additional while loop of the

form ‘‘while i > 0 do hprogrami od’’ which causes

hprogrami to iterate as long as the value of the integer

variable i is positive. For example, consider the follow-

ing program in an LC-like syntax: (The ‘‘if-else’’ state-

ment is a macro that can be easily written using just the

‘‘while-change’’ construct.)
TC :¼ R;

n :¼ 0;

while change to TC

do

n :¼ nþ 1;

TC :¼ TC [p1;4ðs2¼3ðTC� RÞÞ
od;

if n 	 1 return fðÞg else return ;

At the end of the computation, n contains the number

of times the body of the while loop was executed. Thus,

if R is non-empty, the final value of n is the diameter of

the directed graph represented by R (here the diameter

means the maximum finite distance between two

nodes). The program returns {()} (true) if n 	 1 and ;
(false) otherwise. Note that, since LC is computation-

ally complete on the integers, the condition ‘‘n 	 1’’

could be replaced by any computable property of n.

Thus, LC can test any computable property of the

diameter of R. Clearly, LC can define strictly more

queries than While, since all computable functions on

natural numbers can be defined and used. This leads to

the next question: ‘‘Is LC a complete query language?’’

Again, the answer is no. Indeed, Chandra showed that

the EVEN query can still not be defined in this lan-

guage. This time, the difficulty stems from the fact that,

even though the values of the relation and natural

number variables can depend on each other, LC pro-

grams lack the ability to explicitly coerce (encode) these

values into each other. However, when input relation

instances are accompanied by an ordering of the do-

main, such coercions can be simulated, and Abiteboul

and Vianu showed that then LC is complete [1].

To obtain a complete language without order, sev-

eral solutions are possible. A brute force approach to

the coercion problem is to augment LC with an encod-

ing function enc mapping relations to integers, and a

decoding function dec returning query answers from

their encodings and the original input database. Since

LC is computationally complete on integers, it can com-

pute the integer encoding of the answer from that of the

input. Although this theoretically produces a complete

language, manipulating integer encodings of databases is

not a satisfying solution, so further discussion of this

approach is omitted. Instead, two more appealing alter-

natives are described, that both go back to While as a

starting point and extend it in different ways. Recall that

While is limited to PSPACE computations, as a

Computationally Complete Relational Query Languages C 409

C

consequence of two facts: (i) only relations of fixed arity

are used, and (ii) the relations can be populated by tuples

using only elements occurring in the input. The first

approach, proposed by Chandra and Harel, breaks the

PSPACE space barrier by relaxing (i) it allows untyped

relational variables, whose arity can grow arbitrarily. The

other approach, introduced by Abiteboul and Vianu,

relaxes (ii) it keeps typed relational variables but allows

the introduction of new domain values in the course of

the computation. These languages are described next.

The complete language proposed by Chandra and

Harel was called QL [6]. Up to minor syntactic differ-

ences, QL is very similar to While, only with untyped

relation variables. Consider the following QL program

(For simplicity, the syntax used here differs slightly

from the original QL syntax.) which is strikingly simi-

lar to the LC program shown above:

TC :¼R;

ONE :¼ p1ðRÞ[p2ðRÞ;
N :¼fðÞg;
while change to TC

do

N :¼N�ONE;

TC :¼ TC[p1;4ðs2¼3ðTC�RÞÞ
od;

if ðN¼fðÞgÞ or ðN¼ONEÞ then return fðÞg else
return ;:

In this program, R is a binary relation input variable,

and TC, ONE, and N are relation variables. Note that

the arities of TC and ONE remain fixed throughout

the execution of the program, while the arity of N

changes. Integers can be easily simulated using the

arity of relations. Thus, starting with relation instance

R, the variable ONE is initialized to dom(R), which

plays the role of the natural number 1. The variable N

plays the role of a natural number variable n. The

statement N :={()} corresponds the statement n = 0,

and the statement N := N�ONE serves to increment n

by 1; notice that the � operator plays the role of the

addition operator + over natural numbers, and the

decrement operator can be simulated by projection.

Similarly to the earlier LC program, the final arity

of N is the diameter of the directed graph represented

by R. The final ‘‘if ’’ statement compares N to {()} or

ONE, and the program returns {()} (true) if the diam-

eter of R is at most 1, and ; (false) otherwise. Observe
therefore that this QL program defines the same query

as its corresponding LC program.

The above example illustrates how arithmetic on

natural numbers can be simulated in QL. So far, this

allows simulating LC. Recall that LC is not complete,

but becomes so if an ordering of the domain is

provided. QL is however complete even if an ordering

is not provided, because it can construct its own order-

ings! Indeed, such orderings of the domain can simply

be constructed in QL by building one relation whose

arity equals the size of the input domain. In such a

relation, any tuple that does not contain repeated ele-

ments provides a successor relation on the domain,

which in turns induces an ordering. The completeness

of QL now follows from the completeness of LC on

ordered domains. Thus, QL can express all computable

queries. But is everything it expresses a query? It is easy

to see that all mappings defined by QL programs are

computable and generic. The difficulty is to guarantee

that a QL program always produces answers of the

desired arity. In fact, this property is undecidable for

QL programs. Fortunately, there is an effective syntac-

tic restriction guaranteeing that QL programs are ‘‘well

behaved,’’ i.e., always produce answers of fixed arity.

Moreover, all computable queries can be expressed by

QL programs satisfying the syntactic restriction.

The language WhileNew, introduced by Abiteboul

and Vianu in [3], extends While by allowing the crea-

tion of new values throughout the computation. This

is achieved by an instruction of the form S := new(R),

where R and S are relational variables and arity(S) =

arity(R) + 1. The semantics is the following. Given a

relation instance R over R, the relation instance S over

S is obtained by extending each tuple of R by one

distinct new value not occurring in the input, the

current state, or in the program. For example, if R is

the relation instance in Fig. 1 then S is of the form

shown in the same figure. The values a,b,g are distinct

new values. Note that the new construct is, strictly

speaking, nondeterministic. Indeed, the new values

are arbitrary, so several outcomes are possible depend-

ing on the choice of values. However, the different

outcomes differ only in the choice of new values.

The ability to successively introduce new values

throughout the computation easily allows simulating

integers and arithmetic, yielding the power of LC.

Moreover, orderings of the input domain can also be

constructed and marked by distinct new values. Since

LC is complete on ordered domains, this shows that

410C Computationally Complete Relational Query Languages
WhileNew can express all computable queries. As in

the case of QL, one must ask whether all mappings

expressed by WhileNew are in fact queries according to

the definition. The difficulty arises from the presence

of new values. Indeed, if new values may appear in the

outputs of a WhileNew program, the mapping it

defines is non-deterministic. Moreover, it is undecid-

able whether a WhileNew program never contains new

values in its output. The solution to this problem is

similar to the one for QL: one can impose a syntactic

restriction on WhileNew programs guaranteeing that

no new value appears in their answers. All generic

computable queries can be expressed by WhileNew

programs satisfying the syntactic restriction.

As an aside, suppose the definition of query is

extended by allowing new values in query answers.

This arises naturally in some contexts such as object-

oriented databases, where outputs to queries may con-

tain new objects with their own fresh identifiers. One

might hope that WhileNew remains complete for this

extension. Surprisingly, it was shown by Abiteboul and

Kanellakis that the answer is negative [2]. Indeed,

WhileNew cannot express the query containing the

input/output pair shown in Fig. 2, where c0,...,c3 are

new values. As shown by Abiteboul and Kanellakis,
Computationally Complete Relational Query

Languages. Figure 1. An application of new. Here,

S = new(R).

Computationally Complete Relational Query

Languages. Figure 2. A query with new values not

expressible in WhileNew.
completeness with new values can be achieved by

adding to WhileNew a construct called duplicate elimi-

nation. This is however a rather complex construct,

that encapsulates a test for isomorphism of relations.

The search for a language using more natural primi-

tives and complete for queries with new values in the

answer remains open.

The relational model, though very simple, is not

always the most natural model for databases in certain

application domains. In the late 1980s and early 1990s

database researchers considered object-oriented data-

bases as an alternative to the relational model, and a

significant amount of theory was developed around the

model and its query languages, including the complete-

ness of object-oriented query languages (see [1,16]).

Finally, consistency notions other than genericity can

be considered for specialized application domains.

This was done, for example, in the context of spatial

databases [12,14].

Key Applications
The theoretical query languages discussed here are

closely related to various practical languages. Thus,

RA and RC correspond to pure-SQL. The language

While corresponds to wrapping programming con-

structs such as loops around SQL, as done in PL/SQL

(Oracle); assignment statements can be implemented

using SQL insert and delete operations.

The language LC (or WhileN) can again be

simulated in PL/SQL augmented with natural number

variables (with no coercion allowed). Another ap-

proach is to embed SQL in a programming language

such as C or Java. In such languages, relational vari-

ables must be statically defined and so have fixed arity.

One significant feature of the embedded SQL lan-

guages that sets them apart from LC is that they

allow accessing tuples in relations one at a time, using

looping over cursors. In particular, this allows coercing

the entire database into a native data structure, and

yields computational completeness. However, there is

a catch: programs using cursors are generally non-

deterministic, in the sense that running the same

program on the same database content may yield dif-

ferent results. Unfortunately, it is undecidable whether

a given embedded SQL program is deterministic, and

no natural syntactic restriction is known that ensures

determinism while preserving completeness. Thus,

completeness is achieved at the cost of losing the guar-

antee of determinism.

Complex Event C 411

C

The computationally complete language QL can be

simulated in Dynamic SQL. In this language one can

dynamically create relation variables whose schemas

depend on the data in the database. This can be used

to support untyped relational variables. The language

WhileNew allowing the introduction of new domain

values is akin to object-oriented languages that allow

the creation of new object identifiers.

Future Directions
The database area is undergoing tremendous expan-

sion and diversification under the impetus of the Web

and a host of specialized applications. Consequently,

new structures and objects have to be modeled and

manipulated. For example, in biological and scientific

applications, sequences and matrices occur promi-

nently; in XML databases, text and tree-structured

documents are the main objects. This has led to new

database models and query languages. Their formal

foundations are fast developing, but are not yet as

mature as for the relational data model. Notions of

computationally complete languages for the new mod-

els are still emerging, and are likely to build upon the

theory developed for relational databases.

Cross-references
▶BP-completeness

▶Constraint Query Languages

▶Data Models with Nested Collections and Classes

▶ Ehrenfeucht-Fraı̈ssé Games

▶ Expressive Power of Query Languages

▶Object Data Models

▶Query Language

▶Relational Calculus

▶Relational Model

▶ Semantic Web Query Languages

▶ Semi-Structured Query Languages

▶ SQL

▶XML

▶XPath/XQuery

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases.

Addison-Wesley, Reading, MA, 1995.

2. Abiteboul S. and Kanellakis P.C. Object identity as a query

language primitive. J. ACM, 45(5):798–842, 1998.

3. Abiteboul S. and Vianu V. Procedural languages for database

queries and updates. J. Comput. Syst. Sci., 41(2):181–229, 1990.

4. Aho A.V. and Ullman J.D. Universality of data retrieval lan-

guages. In Proc. 6th ACM SIGACT-SIGPLAN Symp. on Princi-

ples of Programming Languages, 1979, pp. 110–120.
5. Bancilhon F. On the completeness of query languages for rela-

tional data bases. In Proc. 7th Symp. on the Mathematical

Foundations of Computer Science, 1978, pp. 112–123.

6. Chandra A. Programming primitives for database languages. In

Proc. 8th ACM SIGACT-SIGPLAN Symp. on Principles of Pro-

gramming Languages, 1981, pp. 50–62.

7. Chandra A. and Harel D. Computable queries for relational data

bases. J. Comput. Syst. Sci., 21(2):156–178, 1980.

8. Chandra A. and Harel D. Structure and complexity of relational

queries. J. Comput. Syst. Sci., 25:99–128, 1982.

9. Codd E. A relational model for large shared databanks. Com-

mun. ACM, 13(6):377–387, 1970.

10. Codd E. Relational completeness of data base sublanguages. In

Data Base Systems, R. Rustin (ed.). Prentice-Hall, Englewood,

Cliffs, NJ, 1972, pp. 65–98.

11. Fagin R. Monadic generalized spectra. Zeitschrift für Math.

Logik Grundlagen d. Math, 2189–96, 1975.

12. Gyssens M., Van den Bussche J., and Van Gucht D. Complete

geometric query languages. J. Comput. Syst. Sci., 58(3):483–511,

1999.

13. Paredaens J. On the expressive power of the relational algebra.

Inf. Process. Lett., 7(2):107–111, 1978.

14. Paredaens J. Spatial databases, a new frontier. In Proc. 5th Int.

Conf. on Database Theory. 1995, pp. 14–32.

15. Tarski A. What are logical notions? History Phil. Logic, 7:154,

1986. J. Corcoran (ed.).

16. Van den Bussche J., Van Gucht D., Andries M., and Gyssens M.

On the completeness of object-creating database transformation

languages. J. ACM, 44(2):272–319, 1997.

17. Vardi M.Y. The complexity of relational query languages. In

Proc. 14th Annual ACM Symp. on Theory of Computing,

1982, pp. 137–146.
Complex Event

OPHER ETZION

IBM Research Lab in Haifa, Haifa, Israel

Synonyms
Composite event; Derived event

Definition
A complex event is an event derived from a collection of

events by either aggregation or derivation function [3].

Key Points
A complex event [2], [1] is a derived event; it can be

derived by various means:

1. Explicit concatenation of a collection of events,

� Example: Create an event that contains all the

events that are related to the 2008 USA presi-

dential elections.

412C Complex Event Processing
2. Derivation of an aggregated value from a collection

of events from the same type.

� Example: Create an event that contains the

average, maximal and minimal value of a cer-

tain stock during a single trade day.

3. Derivation [4] of an event as a function of other

events that is a result of event pattern detection.

� Example: Whenever a sequence of three

complain-events from the same customer occurs

within a single week, create an event ‘‘angry

customer’’ with the customer-id.

Note that this event may or may not contain the

raw complain events.

Cross-references
▶Complex Event Processing

▶ Event Pattern Detection

Recommended Reading
1. Ericsson A.M., Pettersson P., Berndtsson M., Seiriö M. Seamless

formal verification of complex event processing applications. In

Proc. Inaugural Int. Conf. Distributed Event-Based Systems,

2007, pp. 50–61.

2. Luckham D. The Power of Events. Addison-Wesley, 2002.

3. Luckham D., and Schulte R. (eds.) - EPTS Event Processing

Glossary version 1.1. http://complexevents.com/?p=409.

4. Zimmer D., and Unland R. On the Semantics of Complex Events

in Active Database Management Systems. In Proc. 15th Int.

Conf. on Data Engineering, 1999, pp. 392–399.
Complex Event Processing. Figure 1. Various CEP solution s
Complex Event Processing

OPHER ETZION

IBM Research Lab in Haifa, Haifa, Israel

Synonyms
Event processing; Event stream processing

Definition
Complex event processing deals with various types of

processing complex events.

Key Points
Figure 1 shows that the different applications of the CEP

technology are not monolithic, and can be classified

into five different solution segments, which differ in

their motivation, from the user’s perspective, they are:

� RTE (Real-Time Enterprise): The processing should

affect business processes while they are still run-

ning. For example, stop an instance of a workflow

that deals with trading a certain stock, if the trade

request has been withdrawn.

� Active Diagnostics: Finding the root-cause of a

problem based on events that are symptoms.

� Information Dissemination: A personalized subscrip-

tion that enables subscriptions in lower granularity,

where the subscription does notmatch the published
emgents.

Complex Event Processing. Figure 2. Relationships among major complex event processing terms.

Composed Services and WS-BPEL C 413

C

event, but a combination of event. For example,

notify me when IBM stock has gone up 2% within

1 hour.

� BAM (Business Activity Management): Monitor for

exceptional behavior, by defining KPI (Key Perfor-

mance indicators) and other exceptional behavioral

constraints. For example, the delivery has not been

shipped by the deadline.

� Prediction: Mitigate or eliminate future predicted

events.

Figure 2 shows the relations among the different terms

around complex event processing. Complex event may

be a derived event, but the overlapping among them is

partial, the complex event processing is materialized by

detecting patterns which may correspond to situations

(cases that require action). The exact definitions of

terms can be found in the EPTS glossary.

Cross-references
▶Complex Event

▶ Event Pattern Detection

Recommended Reading
1. Etzion O. Event processing, architecture and patterns, Tutorial.

In Proc. 2nd Int. Conf. Distributed Event-Based Systems, 2008.

2. Event processing glossary. Available at: http://www.epts.com

3. Luckham D. The Power of Events. Addison-Wesley, Reading,

MA, 2002.

4. Sharon G. and Etzion O. Event processing networks – model

and implementation. IBM Syst. J., 47(2):321–334, 2008.
5. Zimmer D. and Unland R. On the semantics of complex events

in active database management systems. In Proc. 15th Int. Conf.

on Data Engineering, 1999, pp. 392–399.
Complex Event Processing (CEP)

▶ Event and Pattern Detection over Streams

▶ Stream Processing
Compliance

▶ Storage Security
Component Abstraction

▶Abstraction
Composed Services and WS-BPEL

FRANCISCO CURBERA

IBM Research, T.J. Watson Research Center,

Hawthorne, NY, USA.

Synonyms
Service orchestration; Service choreography; WS-BPEL;

Web services business process execution language

414C Composed Services and WS-BPEL
Definition
Service oriented architectures (SOAs) are models

of distributed software components where business

or scientific functions are delivered by a network of

distributed services. Services can be classified into

atomic services and composed services, based on how

they are created and run. Atomic services are those that

do not depend on other services for their operation,

and are typically built on technologies native to a

specific platform, such as COBOL or Enterprise Java

Beans. Composed services are created by composing

the function provided by one or more external services

into a new service. There is no restriction implied as to

the programming model used to create composed ser-

vices; platform specific programming models such as

Enterprise Java Beans or C# have been extended to

support the creation of composed services. In addition

to that approach, service centric programming models

have been defined to support the development of

composed services. Foremost among those is the

Web Services Execution Language for Web Services

(WS-BPEL or BPEL), a service composition language

based on the workflow programming model.

Historical Background
The service oriented architecture model [1] evolved

early on to include aspects of a component oriented

architecture, based on the similarity between the reuse

of services and of traditional software components.

Component oriented software development has been

a constant reference point in the development of SOA.

Service composition also draws from the experience of

workflow programming and business process re-

engineering [5] as it developed throughout the 1990s.

The workflow programming model relies on a two level

programming paradigm in which applications are

combined to accomplish a business goal by means of

a graph oriented programming approach. The term

‘‘two level programming’’ derives from the differentia-

tion between the programming task whose goal is to

create the individual applications and the creation of

the workflow control and data graphs whose goal is

the use of those applications to achieve a particular

business goal. Because of the close alignment between

two level programming and SOA service reuse through

composition, workflow programming became a second

reference point in the early development of the SOA

model, leading to process oriented service composition

models and eventually the WS-BPEL language [10].
Foundations

Services and Components

The component oriented software development model

(COSD) assumes that software applications and sys-

tems can be more efficiently developed and managed

when created through the aggregation (composition)

of a set of software building blocks (components)

independently produced by third parties. Szyperski

[8] restricts components to binary code and associated

resources, to differentiate components from other soft-

ware abstractions. More importantly, components are

units of deployment (can be independently deployed)

and composition (can be independently integrated

in composed applications). Components are endowed

with well defined interfaces through which they

interact with other components.

Service oriented architectures build on this same

paradigm. Services in SOA are nothing but the inter-

faces of SOA components. SOAs add an important

new perspective to the usual COSD approach. Com-

ponents in SOAs are not only units of independent

deployment, but also units of independent ownership

and management by third parties. The implication is

that when creating a composite application two related

perspectives are possible. In a traditional COSD ap-

proach (‘‘component composition’’), a single party

deploys and maintains control and management rights

over all components. The subjects of the composition

task are individual software (binary) components. At

runtime they are managed as parts of the composed

application to which they belong. By contrast, in a

service oriented approach, the subjects of the compo-

sition are the services exposed by software compo-

nents, which are in principle deployed and managed

independently of the composite application itself.

The term ‘‘service composition’’ is used to refer to a

new SOA application created by composing services.

The services exposed by a service composition are

called ‘‘composite services.’’

The traditional COSD approach is followed by the

Service Component Architecture (SCA, see [2]), which

defines a straightforward model for the deployment

and composition of service oriented components.

In SCA, components are ‘‘wired’’ to each other by

connecting their interfaces, to create new SCA applica-

tions or ‘‘composites.’’ SCA composites are component

compositions, and they can provide services by expos-

ing one or more service interfaces. Composites are

Composed Services and WS-BPEL C 415

C

deployed by deploying and configuring their constitu-

ent component’s binary implementations. SCA com-

posites are potentially components themselves, thus

supporting a recursive composition model.

Service Composition Models

Focusing on both the development time and run-

time natures of a service composition, it is possible

to distinguish two types of service composition

strategies.

‘‘Localized’’ compositions specify the composite’s

application internal operation and its dependencies

on a set of external services, including in particular

the expected behavior of those services. Localized com-

positions are concerned with applications executing

in a single logical location of control. The composition

relies on a single logical node where the application

logic is executed and from which the interactions with

the composed services are controlled. The services used

by the composite are naturally executed in separate

nodes, but their operation is not the concern of the

composition except for its externally visible behavior.

The term ‘‘service orchestration’’ is sometimes used to

refer to localized service compositions. WS-BPEL is

the model for this type of service composition.

‘‘Distributed’’ service compositions specify the

behavior of a set of independent SOA applications

interacting through service interfaces as part of a

distributed composite application. In its purest form,

a distributed composition doesn’t specify the internal

behavior of any of the participating applications,

but only the interactions between the participating

services. The execution of the composite is assumed

to be distributed among a set of independent nodes,

which coordinate their operation according to the

composition’s specification. The Web Services Chore-

ography Description Language [7] is the prime exam-

ple of this type of composition. It is also important to

mention in this category of service composition the use

of SCA as a service wiring specification, in particular in

the context of Enterprise Service Bus runtimes; this

usage of SCA is discussed later in this entry, under

‘‘Key Applications.’’

In spite of the difference in approach, all service

composition models share a set of common character-

istics. Both types of service composition require the

specification of the expected behavior from the com-

posed services. Expected behavior refers here to the

message exchange sequence between the services,
which is frequently referred to as a ‘‘service conversa-

tion.’’ A service conversation is the realization of a

business protocol between two parties, over a SOA

infrastructure, and is the basis for business level inter-

operability between services.

Together with a particular service conversation, the

relationship between two services is characterized by a

particular interaction pattern. Several of these patterns

are possible. In a hierarchical organization, the lifecycle

of one service is subordinated to another’s, such that

the later is responsible for the creation and termination

of runtime instances of the former. This is the relation-

ship between a process and a sub-process. In a peer-to-

peer interaction, both services maintain independent

lifecycles and interact as peers. Again, both relation-

ships are possible in both localized and distributed

compositions.

It is clear that maintaining the appropriate level of

distributed coordination between participating services

at runtime is a non-trivial problem. Hierarchical life-

cycle dependencies as well as distributed transactional

behavior must rely on coordination middleware to

ensure agreement on the outcome and synchronization

of the interaction. These ‘‘coordinated behaviors’’ of

distributed systems are supported in the Web services

specification stack by the Web Services Coordination

specification, which defines a framework for the

creation of distributed protocols [11].

Finally, ‘‘recursive composition’’ is a common char-

acteristic of all service compositionmodels, and the basis

for the creation of composite services through composi-

tion. In a recursive model, the service composition

becomes a service itself, available for further invocation

and composition. WS-BPEL, SCA and WS-CDL all

allow the creation of new services through composition.

A survey of different methodologies for development of

service compositions can be found in [4].

Workflow Oriented Composition in WS-BPEL

WS-BPEL is the model and industry standard for loca-

lized service composition. WS-BPEL is also the proto-

type for workflow (or process) oriented composition, a

form of service composition that follows the workflow

programming model. The WS-BPEL specification

adapts the workflow two level programming model to

a service centric environment.

The WS-BPEL language consists of two main

parts, one dealing with the representation of service

interaction requirements and a second one dealing

416C Composed Services and WS-BPEL
with the specification of the control and data logic of

the workflow.

Service Interaction in Processes AWS-BPEL compo-

sition is called a ‘‘process model.’’ Service interaction

requirements are defined in terms of ‘‘abstract’’ Web

services interfaces, that is, XML interface definitions

containing no references to service access details such

as interaction protocol or endpoint address. Abstract

interfaces are defined using the Web Services Descrip-

tion Language (WSDL, see [11]); abstract interfaces

are called portTypes in WSDL 1.1. The interaction

between the process model and each of the composed

services requires in the general case two such abstract

interfaces, one used by the process to call the service

and one for the service to call back on the process. This

pair of interfaces characterizes the interaction and is

called a ‘‘partner link’’ in WS-BPEL. The actual ways in

which these interfaces are exercised is defined by the

business logic of the process definition, which is de-

scribed later in this section.

WS-BPEL service composition takes place at the

interface type level (‘‘service types composition’’) in-

stead at the instance level (‘‘service instance composi-

tion’’): abstract service interfaces are referenced by the

process, instead of actually deployed services. The goal

of this approach to composition is to expand

the reusability of WS-BPEL processes, since it allows

the same process composition to be used with different

services and using different access protocols, as long as

the correct portTypes are supported. One particular

consequence of this approach is the absence of quality

of service specifications in WS-BPEL processes.

A second aspect of the interaction between services

is the identification of dynamic correlation data fields

for process instance identification and message rout-

ing. A WS-BPEL process specifies a model for the

execution of individual ‘‘process instances.’’ A new

process instance is started any time a ‘‘start’’ message

(as defined by the process model business logic) is

received by the process engine. At any point in time,

many instances of the each process model are executing

the same process engine. In traditional workflow infra-

structures, each instance is identified by a unique

identifier, which is carried by all messages sent to the

process instance. By carrying this identifier, messages

can be routed to the correct instance.

WS-BPEL takes a different approach to the routing

problem. The correlation between messages and pro-

cess instances is done using business information
fields, grouped in data sets that the WS-BPEL specifi-

cation calls ‘‘correlation sets.’’ A correlation set is a

group of message fields that collectively identify the

executing process instance. Correlation fields are iden-

tified using XPath expressions to point to individual

data fields within the messages received by the process,

allowing content based message routing to instances.

Correlation information is also specified in outgoing

messages, when the values of these fields need to be

communicated to an external service. The main benefit

of the WS-BPEL correlation approach is to replace

the use of platform specific artifacts by business mean-

ingful information for the purpose of interoperable

message routing and transaction identification. Corre-

lation values are a key element of any message oriented

business protocol.

Specification of Business Logic in Process Composi-

tions Business logic (the control and data graphs of

a workflow) is specified in WS-BPEL by means of a set

of ‘‘atomic’’ and ‘‘structured activities.’’ Atomic activ-

ities represent individual steps in the computation of

the process graph, and they stand for external service

interaction steps (calling or being called by a service),

or data manipulation primitives (assignment of data

fields). Atomic activities are combined according to

a particular sequence of execution using structured

activities. WS-BPEL provides structured activities

for sequential, parallel as well as conditional and itera-

tive execution. These activities allow the creation of

‘‘structured’’ process graphs, those in which the pro-

gramming style is similar to that of structured

programming languages (albeit with intrinsic parallel

capabilities).

WS-BPEL also supports a graph oriented process

modeling approach, where atomic activities are com-

bined as nodes of an explicit graph. Edges of the graph

are called ‘‘control links,’’ and represent explicit trans-

fer of control between a source and a target activity

(as opposed to the implicit dependency defined by a

sequence activity for example). The execution of the

control link graph follows the ‘‘dead path elimination’’

operational semantics where those graph branches not

followed in the execution of a process instance (typi-

cally because of conditional statements are not satis-

fied) are transitively eliminated to ensure that every

activity in the graph is eventually executed or marked

as part of an eliminated ‘‘dead path.’’ Dead path elimi-

nation and the rule that prevents cyclic control graphs

ensure the termination of every valid WS-BPEL

Composed Services and WS-BPEL C 417

C

graph’s execution. The graph and structured styles are

however not strictly separated and can be combined

in a rich but at times challenging authoring style.

Dead path elimination semantics are embedded in

the structured execution model through exception

handling, see [3].

Data flow in WS-BPEL is not explicitly modeled,

but implied by the use of a set of process variables as

inputs and outputs of atomic activities. Data variables

in WS-BPEL contain XML data, which is typed accord-

ing to the XML Schema language.

WS-BPEL contains error handling and recovery

primitives to support business interaction in loosely

coupled environment. Error handling is supported

through the introduction of ‘‘fault handlers’’ which

are charged with recovering from errors generated in

the course of process execution: faults generated in the

course of a service call, errors explicitly raised by the

process when certain business conditions are detected,

and system generated faults raised when the under-

lying execution runtime cannot comply with the

requirements of process logic (such as errors accessing

message data and other error conditions).

Fault handlers are associated with sections of the

process called ‘‘scopes,’’ the complete process being

the outermost scope. Faults originated within a scope

are handled by the fault handlers attached to the

scope. In the course of recovering from a fault, it may

be determined that a particular action already com-

peted must be ‘‘undone.’’ A ‘‘compensation handler’’

may be associated with that action (atomic activity) or

with a collection of actions (a scope) to indicate the

steps required to ‘‘undo’’ that activity or scope, and

would then be executed by the fault handler. A compen-

sation handler defines a set of business level actions that

provide a logical reversal (backward execution path) of

the action in question. Compensation recovery repre-

sents an alternative to automatic rollback, and is neces-

sary in service oriented scenarios where loosely coupled

services cannot participate in transactions with atomic

semantics and automatic rollback recovery. Business

transaction in SOA environments require looser trans-

actional semantics (see [7] for details) where recovery is

typically specified at the application level.

Key Applications
Current practice of service composition is closely tied to

two types of SOA runtimes available in the industry:

SOA-enabled business processmanagement (BPM)plat-

forms and enterprise service bus (ESB) infrastructures.
WS-BPEL service composition on BPM platforms

represents is by far the most extensive application

of the service composition model in enterprise com-

puting. Its success is due to two factors: the increa-

sed focus of enterprises on end-to-end business

automation, and the fact that service composition

builds on the well known business process integration

paradigm.

There are important differences between platforms

for process oriented service composition and tradi-

tional BPM, appearing in two main areas: the reach

of the process integration capabilities and the approach

to process management. Service oriented process com-

position adds a new perspective typically absent from

traditional BPM platforms, namely, a uniform model

for representing internal and external business func-

tion based on the service paradigm. The result is the

ability to seamlessly incorporate cross departmental

and cross organizational services to capture and auto-

mate end-to-end business requirements. End-to-end

business automation is the main driver of SOA adop-

tion by businesses today.

The management capabilities of the BPM platform

are also significantly affected by the service oriented

model. Full management is now limited to the process

itself and any services deployed locally within the BPM

platform. Unlike in traditional BPM, the ability to

manage other services is limited (or missing altogether)

because they are typically run andmanaged by different

parties (other departmental organizations or different

enterprises). BPM platforms supporting service com-

position must rely on service management standards

(such as the Web Services Distributed Management

specification [7]) and service level agreements (such

as the Web Services Agreement specification, [7]) to

provide visibility and limited control over the execution

of remote services.

The enterprise service bus architecture (ESB, see [7])

is quickly gaining widespread adoption because it

enables simplified service access and reuse across the

enterprise. Services are plugged to the ESB to make

them available for access by other enterprise applica-

tions. ESBs are usually built as service extensions to

traditional messaging backbones (‘‘messaging clouds’’).

Services and applications are connected across the

ESB by creating ‘‘wires’’ that declaratively create a logi-

cal communication channel between the two. The

SCA component and wiring model is used in this con-

text both to drive deployment of SOA components and

also to wire existing services, thus exposing its ability to

418C Composite Event
function as both a component and a service composi-

tion model.

Scientific computing middleware software has,

independently of its commercial counterpart, identi-

fied the need for an architectural model in which

computing resources are consumed following the ser-

vice model. The Open Grid Services Architecture (see

[6,7]) shows how the Grid application model is

supported by SOA. In this context, scientific workflows

have been characterized as compositions of scientific

services and specialized languages have been developed

to enable the composition of complex scientific com-

puting experiments as process oriented service compo-

sitions [9]. The Grid Process Execution Language

(GPEL) in particular adapts WS-BPEL to deal with

scientific and Grid computing requirements such as

processing extremely large data sets, allocating dynam-

ic resources from a Grid infrastructure, and supporting

the integration with legacy scientific code among sev-

eral others (see Chapter 15 in [9]).
Cross-references
▶Workflow Management and Workflow Management

System
Recommended Reading
1. Burbeck S. The Tao of e-business services. Available at

http://www.ibm.com/developerworks/webservices/library/ws-tao/,

October 2000.

2. Curbera F., Ferguson D., Nally M., and Stockton M. Toward a

Programming Model for Service-Oriented Computing. In Proc.

3rd Int. Conf. Service-Oriented Computing. 2005, pp. 33–47.

3. Curbera F., Khalaf R., Leymann F., and Weerawarana S. Excep-

tion Handling in the BPEL4WS Language, In Proc. Int. Conf.

Business Process Management, 2003, pp. 276–290.

4. Dustdar S. and Schreiner W. A survey on web services composi-

tion. Int. J. Web Grid Serv.,1(1):1–30, 2005.

5. Leymann F. and Roller D. Production Workflow. Prentice Hall,

Englewood Cliffs, NJ, 1999.

6. Open Grid Services Architecture, Version 1.5. Available at

http://www.ggf.org/documents/GFD.80.pdf, July 2006.

7. Papazoglou M. Web Services: Principles and Technology.

Prentice Hall, Englewood Cliffs, NJ, 2007.

8. Szyperski C. Component Software. Addison Wesley, Reading,

MA, 2002.

9. Taylor I.J., Deelman E., Gannon D.B., Shields M., (eds.). Work-

flows for e-Science. Scientific Workflows for Grids. Springer,

Berlin, 2007.

10. Web Services Business Process Execution Language Version 2.0.

Available at http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-

v2.0-OS.html, April 2007.
11. Weerawarana S., Curbera F., Leymann F., Storey T., and

Ferguson D. Web Services Platform Architecture. Prentice Hall,

Englewood Cliffs, NJ, 2005.
Composite Event

ANNMARIE ERICSSON, MIKAEL BERNDTSSON,

JONAS MELLIN

University of Skövde, Skövde, Sweden

Definition
A composite event is a set of events matching an event

specification.

Key Points
Pioneering work on composite events was done in the

HiPAC project [3] and the ideas were extended and

refined in most proposals for active object-oriented

databases during the early 1990s.

A composite event is composed according to an

event specification (in an event algebra), where the

composition is performed using a set of event opera-

tors such as disjunction, conjunction and sequence.

More advanced event operators have been suggested

in literature, e.g., [2,4,5].

The initiator of a composite event is the event

initiating the composite event occurrence and the ter-

minator is the event terminating the composite event

occurrence.

Events contributing to composite events may carry

parameters (e.g., temporal) in which the event is said

to occur. Events contributing to composite events are

also referred to as constituent events.

Composite events need to be composed according

to some event context that define which event that

can participate in the detection of a composite event.

The event context is an interpretation of the streams of

contributing events. The seminal work by Chakravarthy

et al. [1,2], defines four different event contexts (or

consumption policies): recent, chronicle, continuous,

and cumulative.

In the recent event context, only the most recent

constituent events will be used to form composite

events. The recent event context is, for example, useful

if calculations must be performed on combinations of

the last measured values of temperature and pressure

in a tank [1,2].

Composition C 419

C

In the chronicle event context, events are consumed

in chronicle order. The earliest unused initiator/termi-

nator pair are used to form the composite event. The

chronicle event context is, for example, useful if sen-

sors are placed along a conveyor-belt monitoring

objects traveling along the belt and combinations of

sensor events triggered by the same object is needed. In

that case events must be combined in occurrence order

since the first event from the first sensor and the first

event from the second sensor are likely triggered by the

same object [1,2].

In the continuous event context, each initiator

starts the detection of a new composite event and a

terminator may terminate one or more composite

event occurrences. The difference between continuous

and chronicle event contexts is that in the continuous

event context, one terminator can detect more than

one occurrence of the composite event.

In the cumulative event context, all events contri-

buting to a composite event are accumulated until

the composite event is detected. When the composite

event is detected, all contributing events are consumed

[1,2].
Cross-references
▶Active Database (aDB)

▶Active Database Execution Model

▶Active Database Knowledge Model

▶Active Database (Management) System (aDBS/

aDBMS)

▶ ECA Rules

▶ Event

▶ Event Detection

▶ Event Specification
Recommended Reading
1. Chakravarthy S., Krishnaprasad V., Anwar E., and Kim S.K.

Composite events for active databases: semantics contexts and

detection. In Proc. 20th Int. Conf. on Very Large Data Bases,

1994, pp. 606–617.

2. Chakravarthy S. and Mishra D. Snoop: an expressive event

specification language for active databases. Data Knowl. Eng.,

14(1):1–26, 1994.

3. Dayal U., Blaustein B., Buchmann A., and Chakravarthyand S.

et al. HiPAC: A Research Project in Active, Time-Constrained

Database Management. Tech. Rep. CCA-88-02, Xerox Advanced

Information Technology, Cambridge, 1988.

4. Gatziu S. Events in an Active Object-Oriented Database System.

Ph.D. thesis, University of Zurich, Switzerland, 1994.
5. Gehani N., Jagadish H.V., and Smueli O. Event Specification in

an Active Object-Oriented Database. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1992, pp. 81–90.
Composite Event Query

▶ Event Specification
Composite Web Applications

▶Web Mashups
Composition

W. M. P. VAN DER AALST

Eindhoven University of Technology, Eindhoven,

The Netherlands

Synonyms
Service composition; Process composition

Definition
In computer science, composition is the act or mecha-

nism to combine simple components to build more

complicated ones. Composition exists at different levels.

For example, one can think of the usual composition of

functions in mathematics, i.e., the result of the composed

function is passed to the composing one via a parameter.

If one has to functions f and g, these can be combined

into a new function h = f.g, i.e., h(x) = f(g(x)). Another

level of abstraction is the level of activities. Here all kinds

of process modeling languages can be used to compose

activities into processes (e.g., Petri nets, BPMN, etc.).

Typical composition operators are sequential composi-

tion, parallel composition, etc. Process composition is

related to business processmanagement, workflowman-

agement,etc.Yetanotherlevelofabstractionisprovidedby

services,i.e.,morecomplexservicescanbecomposedfrom

simpler ones even when they do not reside in the same

organization. Service composition is sometimes also re-

ferred to as orchestration and a typical language used for

thispurpose isBPEL.

Key Points
The composition of more complex components

from simpler components has been common practice

420C Comprehensions
in computer science right from the start. It is clear

that composition is needed to allow for ‘‘divide and

conquer’’ strategies and reuse. One of the most com-

plex issues is the compositionof processes. There are basi-

cally two types of composition approaches: graphs-

based languages and process algebras. Examples of

graph-based languages are Petri nets, state charts,

BPMN, EPCs, etc. In these languages activities and

subprocesses are connected to impose some ordering

relations. For example two transitions in a Petri net can

be connected by a place such that the first one triggers the

second one [3]. Process algebras enforce a more

structured way ofmodeling processes. Typical operations

are sequential composition (x.y, i.e., x is followed by y),

alternative composition (x + y, i.e., there is a choice

between x and y), and parallel composition (xjjy, i.e., x
and y are executed in parallel) [1,2]. Languages like

BPEL provide a mixture of both styles, e.g., operators

such as sequence, switch, while and pick cor-
respond to the typical process-algebraic operators
while the flow construct defines in essence an acyclic
graph.

The principle of compositionality states that the

meaning of a composite is determined by the meanings

of its constituent parts and the rules used to combine

them. For example, if a process is composed of parts

that have certain properties, then these properties

should be preserved by the composition and should

not depend on lower-level interactions. Such proper-

ties can be obtained by simplifying the language used

or restricting the compositions allowed.

Cross-references
▶Abstraction

▶BPEL

▶BPMN

▶Business Process Management

▶Orchestration

▶ Petri Nets

▶Web Services

▶Workflow Management

▶Workflow Patterns
Recommended Reading
1. Baeten J.C.M. and Weijland W.P. Process Algebra. Cambridge

Tracts in Theoretical Computer Science, vol. 18. Cambridge

University Press, Cambridge, 1990.

2. Milner R. Communicating andMobile Systems: The Pi-Calculus.

Cambridge University Press, Cambridge, UK, 1999.
3. van der Aalst W.M.P. Business Process Management Demysti-

fied: ATutorial on Models, Systems and Standards for Workflow

Management. In J. Desel, W. Reisig, G. Rozenberg (eds.). Lec-

tures on Concurrency and Petri Nets. LNCS, vol. 3098. Springer,

Berlin, 2004, pp. 1–65.
Comprehensions

PETER M.D. GRAY

University of Aberdeen, Aberdeen, UK

Synonyms
Calculus expression; List comprehension; Set abstrac-

tion; ZF-expression

Definition
The comprehension comes from ideas of mathematical

set theory. It originated as a way of defining sets

of values so as to avoid the famous paradoxes of

early set theory, by starting from other well-defined

sets and using some carefully chosen constructors

and filters. The values in the sets could be tuples of

basic values, which suits the relational model, or they

could be object identifiers, which fits with ODMG

object data models [2], or they could be tagged variant

records which fit well with semi-structured data. They

could even be sets, lists or bags defined by other

comprehensions.

The abstract structure of a comprehension precise-

ly describes almost all the computations done in func-

tional query languages, despite their very different

surface syntax. Better still, it allows many optimiza-

tions to be expressed as well defined mathematical

transformations.
Key Points
Consider an example, using SQL syntax, to find the set

of surnames of persons whose forename is ‘‘Jim’’:

SELECT surname FROM person WHERE fore-

name = "Jim"

Using a list comprehension this can be written as:

[surname(p) | p<- person; f <- forename

(p); f = "Jim"]

This denotes the list of values of the expression to

the left of the vertical bar. This expression usually

Compression of Mobile Location Data C 421

C

includes variables such as p which are instantiated by

generators to the right of the bar. It can be transliter-

ated as:

The set of values of the surname of p such that p is in

the set person and f is in the set of forenames of p and f

is equal to ‘‘Jim’’. Here forename(p) could alternatively

be written p.forename or (forename p).

Thus, the vertical bar can be read as such that and

the semicolons as conjunctions (and). The arrows act

as generators, supplying alternative possible values,

subject to restrictions by predicate terms to the right,

acting as filters. Thus p is generated from the set

of persons but is only chosen where the forename of

p satisfies the test of equalling ‘‘Jim’’.

In the above syntax the arrow operator is over-

loaded , so that if a function such as forename delivers

a single value instead of a set then the arrow just

assigns that single value to the variable on its left.

Strictly, one should make a singleton set containing

this value, and then extract it:

[surname(p) | p <- person; f <- [fore-

name(p)]; f = "Jim"]

This wasteful operation would be compiled away to

give this equivalent form:

[surname(p) | p <- person; forename

(p) = "Jim"]

The term ‘‘list comprehension’’ is commonly used, but

one should really distinguish between lists, sets and

bags [1]. Thus comprehensions are usually represented

internally as lists, but often the order is ignored, as in

sets, and sometimes it is necessary to keep duplicates

and form a bag, especially when totaling up the con-

tents! Particular classes of operator used in compre-

hensions give rise to monad comprehensions and

monoid comprehensions with valuable mathematical

properties.
Cross-references
▶OQL
Recommended Reading
1. Buneman P., Libkin L., Suciu D., Tannen V., and Wong L.

Comprehension syntax. ACM SIGMOD Rec., 23(1):87–96,

1994.

2. Fegaras L. and Maier D. Towards an effective calculus for Object

Query Languages. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1995, pp. 47–58.
Compressed and Searchable Data
Format

▶ Indexing Compressed Text
Compressed Full-Text Indexing

▶ Indexing Compressed Text
Compressed Suffix Array

▶ Indexing Compressed Text
Compressed Suffix Tree

▶ Indexing Compressed Text
Compressing XML

▶Managing Compressed Structured Text
Compression of Mobile Location
Data

GOCE TRAJCEVSKI
1, OURI WOLFSON

2,

PETER SCHEUERMANN
1

1Northwestern University, Evanston, IL, USA
2University of Illinois at Chicago, Chicago, IL, USA

Synonyms
Spatio-temporal data reduction

Definition
In moving objects databases (MOD) [8], the data

pertaining to the whereabouts-in-time of a given

mobile object is commonly represented as a sequence

of (location, time) points, ordered by the temporal

dimension. Depending on the application’s settings,

such points may be obtained by different means, e.g.,

an on-board GPS-based system, RFID sensors, road-

network sensors, base stations in a cellular architecture,

422C Compression of Mobile Location Data
etc. The main motivation for compressing the location

data of the moving objects is twofold: (i) Reducing the

storage requirements: for example, maintaining the

information about the daily routes of a few million

vehicles, even if the GPS samples are taken once every

30s, can still generate Terra-Bytes (TB) of data. In

addition, with the increase in the number of cellular

phones and personal digital assistants that are location

aware, the volume of the data corresponding all the

mobile entities in a given region will even further

increase. However, if a given point, say, (x,y,t) can be

eliminated from the representation of the particular

trajectory without prohibitively sacrificing the accura-

cy of its representation, then the space required for that

point’s storage can be saved; (ii) If a particular point

along a given trajectory can be eliminated as soon

as it is ‘‘generated’’ (i.e., when the location value is

obtained by the on-board GPS at a given time), yet

another type of savings can be achieved – that object

need not transmit the (location, time) value to a given

server, thus reducing the bandwidth consumption.

This entry explains the basic problems involved in

compressing spatio-temporal data corresponding to

trajectories of mobile objects, and outlines the founda-

tions of the approaches that have addressed some of

those problems.

Historical Background
The field of data compression originated in the works of

Shannon, Fano, and Huffman in the 1940s [11], and its

main goal is to represent information in as compact

form as possible. Some popular forms of data com-

pression have, historically, been around even earlier,

for instance, the Morse code has been used in telegra-

phy since the mid-nineteenth century. Based on the

observation that some letters occur more frequently

than others, the code assigns shorter sequences of

(combinations of) ‘‘�’’ and ‘‘�’’ to such letters. Thus,

for example, ‘‘e’’ ! ‘‘ � ’’, ‘‘a’’ ! ‘‘ ��’’. On the other

hand, the letters which occur less frequently, are

assigned longer sequences like, for example, ‘‘q’’ !
‘‘����’’. In this setting, the frequency of the occur-

rence of single letters provided statistical structure that

was exploited to reduce the average time to transmit a

particular message since, in practice, the duration of

the symbol ‘‘� ’’ is (approximately) three times longer

than the duration of the ‘‘�’’ symbol. A natural exten-

sion is to use frequency of the words over a given

alphabet, in order to further compress the encoding
of a given text, which is used in the Grad-2 Braille

coding. When the probability model of the source is

known, thepopular approach forencodinga collectionof

letters of a given alphabet is the Huffman coding [11].

Contrary to the ASCII/EBDCIC which are fixed-

length codes, in the sense that every symbol is assigned

same number of bits, Huffman code is a variable-length

one, which assigns shorter codewords to symbols oc-

curring less frequently, in an optimal manner with

respect to the entropy of the source. When dealing

with texts, some statistical correlations can be detected

in terms of the occurrences of words. Taking this into

consideration the, so called, dictionary techniques for

data compression have been obtained, an example of

which is the UNIX compress command. In computer

science, the need for compression techniques was

mainly motivated by the reduction of the size of the

data for storage and transmission purposes.

Different kind of data may exhibit different kinds

of structures that can be exploited for compression,

provided a proper model is developed. For example,

given the sequence of numbers {9,11,11,11,14,13,

15,17,16,17,20,21}, let xn denote its nth element. If

one transmits the binary representation of each xi (i 2
{1,2,...,12}), 5bits-per-sample are needed, for a total of

60bits transmitted. However, if one provides a model

represented by the equation xn ¼ n þ 8, then the dif-

ference-sequence (i.e., the residual) of the initial se-

quence, represented as en ¼ xn � xn becomes: {0, 1,

0, �1, 1, �1, 0, 1, �1, �1, 1, 1}. This sequence consists
of only three different numbers {� 1, 0, 1} Using the

mapping ‘‘ � 1’’! ‘‘00’’; ‘‘0’’ ! ‘‘ � 1’’; ‘‘1’’ ! ‘‘10’’,

each ei can be encoded with only 2bits. Hence, the

sequence can be transmitted with a total of 24bits,

achieving 60% compression ratio and, consequently,

savings in the transmission. Such intrinsic properties

of the underlying domain have been heavily exploited

in the areas of speech compression, image compres-

sion, etc. [11].

There are several classification of compression

techniques. One example, as mentioned above, is

fixed vs. variable length, however, one may also need

to distinguish between static (the codewords are fixed,

say, before the transmission) and dynamic/adaptive.

The classification that is most relevant for this article

is lossless vs. lossy compression. With lossless compres-

sion, the original data can be exactly recovered from

the compressed one, which it is not the case for the

lossy compression.

Compression of Mobile Location Data C 423

C

There are several different measures regarding

the quality of a given compression method: (i) the

complexity of the algorithms; (ii) the memory foot-

print required; (iii) the amount of compression;

(iv) the quality of the data (in lossy compression).

The main goal of the methods for compressing

spatio-temporal data is to strike a good balance bet-

ween the complexity of the algorithm and the error-

bound on the compressed data with respect to the

original one.

There are two research fields that have addressed

problems similar in spirit to the ones of compressing

mobile location data:

1. Cartography. The goal of the map generalization

in cartography is to reduce the size/complexity

of a given map for the purpose of simplified repre-

sentation of the details appropriate to a given

scale [16].

2. Computational geometry (CG). In particular, the

problem of polyline (which is, a sequence of nodes

specifying a chain of line segments) simplification

[3], that can be described as follows. Given a poly-

line PL1 with vertices {v1,v2,...,vn} in a respective

k-dimensional Euclidean space, and a tolerance

e, construct another polyline PL1
0 with vertices

{v1
0,v2
0,...,vm

0} in the same space, such that

m 	 n and for every point P 2 PL1 its distance

from PL1
0 is smaller than a given threshold: dist(P,

PL1
0) 	 e. In case {v1

0,v2
0,...,vm

0}
 {v1, v2,...,vn},

PL1
0 is a strong simplification of PL1; otherwise

PL1
0 is called a weak simplification. There are two

distinct facets of the minimal line simplification

problem: (i) Given PL and e, minimize the number

of points m in PL0 (known as min-# problem) [5],

and (ii) Given PL and the ‘‘budget’’ m of the verti-

ces in PL0, minimize the error e (known as min-e
problem).

A popular heuristic for polyline simplification in

the context of map generalization was proposed by
Compression of Mobile Location Data. Figure 1. Douglas–P
Douglas and Peucker in [6]. Essentially, it recursively

approximates a given polyline in a ‘‘divide and con-

quer’’ manner, where the farthest vertex, according to

the distance used, is selected as the ‘‘divide’’ point.

Given a begin_vertex pi and an end_vertex pj, if the

greatest distance from some vertex pk to the straight

line segment pipj is greater than the tolerance e, then
the trajectory is broken into two parts at pk and the

procedure is recursively called on each of the sub-

polylines {pi,...,pk} and {pk,...,pj}; Otherwise, the verti-

ces between pi and pj are removed from trajectory and

this segment is simplified as a straight line

pipj . An illustration of the DP heuristic is given in

Fig. 1. Although the original version of the algorithm,

as presented in [6], has a running time O(n2), an

O(n logn) algorithm was presented in [9]. However,

none of these algorithms can ensure an optimality, in

terms of the size of the compression (alternatively,

in terms of a minimal e-error for a fixed reduction

factor). An optimal algorithm was presented in [5],

with a complexity of O(n2), subsequently extended for

3D and higher dimensions in [3].

Foundations
Assuming that the objects are moving in a 2D space

with respect to a given coordinate system, a trajectory,

which is often used in the MOD literature [8,13,15] to

describe the motion of the moving objects, is defined

as a function Ft : T ! R2 which maps a given (tem-

poral) interval [tb,te] into a one-dimensional subset of

R2. It is represented as a sequence of 3D points (2D

geography þ time) (x1,y1,t1), (x2,y2,t2),...,(xn,yn,tn),

where tb = t1 and te = tn and t1 	 t2 	 ...	 tn. Each

point (xi,yi,ti) in the sequence represents the 2D

location (xi,yi) of the object, at the time ti. For every

t 2 (ti,tiþ1), the location of the object is obtained by a

linear interpolation between (xi,yi) and (xiþ1,yiþ1) with

the ratio (t � ti) ∕ (tiþ1 � ti), which is, in between two

points the object is assumed to move along a straight

line-segment and with a constant speed. The 2D
eucker heuristic.

424C Compression of Mobile Location Data
projection of the trajectory is a polygonal chain with

vertices (x1,y1), (x2,y2)...(xn,yn), called a route.

Observe that a trajectory may represent both the

past and the future motion, i.e., the motion plan of a

given object (c.f. [8]). Typically, for future trajectories,

the user provides the starting location, starting time

and the destination (plus, possibly, a set of to-be-

visited) points, and the MOD server uses these, along

with the distribution of the speed-patterns on the

road segments as inputs to a dynamic extension of

the Dijkstra’s algorithm [13], to generate the shortest

travel-time trajectory.

One may be tempted to straightforwardly apply the

existing results on polyline simplification from the CG

literature (e.g., the DP [6,9] or the optimal algorithm

[3,5]), in order to compress a given trajectory. How-

ever, as pointed out in [4], the semantics of the

spatial þ temporal domain combined, raises two

major concerns:

1. What is the function used to measure the distance

between points along trajectories?

2. How does the choice of that function affect the

error that the compressed trajectory introduces in

the answers of the popular spatio-temporal

queries? In the sequel, each of these questions is

addressed in a greater detail.
Compression of Mobile Location Data. Figure 2. Hausdorff
Distance Function

A popular distance function between two curves, often

used in CG applications is the, so called, Hausdorff

distance [1]. Essentially, two curves C1 and C2, their

Hausdorff distance simply looks for the smallest e such
that C1 is completely contained in the e-neighborhood
of C2 (i.e., C1 is completely contained in the

Minkowski Sum of C2 and a disk with radius e) and
vice versa. Although it is arguably a very natural dis-

tance measure between curves and/or compact sets, the

Hausdorff distance is too ‘‘static’’, in the sense that it

neither considers any direction nor any dynamics of

the motion along the curves. A classical example of the

inadequacy of the Hausdorff distance, often used in

the CG literature [1,2] is the “man walking the dog’’.

Figure 2 illustrates the corresponding routes of the

man (M-route) and the dog (D-route), as well as their

trajectories M-trajectory and D-trajectory. Observe

that, ignoring the temporal aspect of their motions,

the D-route and the M-route are within Hausdorff

distance of e, as exemplified by the points A and B in

the XY plane. However, their actual temporally aware

distance corresponds to the minimal length of the leash

that the man needs to hold. The 3D part of Fig.2 illus-

trates the discrepancy between the distances among the

points along the routes, and their corresponding coun-

terparts along trajectories: when the dog is at the point
vs. Fréchet distance.

Compression of Mobile Location Data C 425

C

A, which is at time t, the man is actually at M(t), and

their distance is much greater then e (the man is at the

geo-location B at the time t1 > t). The Fréchet distance

[2] is more general than the Hausdorff one, in the

sense that it allows for a variety of possible motion-

patterns along the given route-segments. As an illus-

tration, observe that on the portion of the D-trajectory,

the dog may be moving non-uniformly (i.e., accelerat-

ing) along a route segment.

The discussion above illustrates two extreme points

along the spectrum of distance functions for moving

objects. Although the Fréchet distance is the most

general one, regarding the possible dynamics of

motions, it is unnecessarily complex for the common

trajectory model in MOD settings. The inadequacy of

the L2 norm as a distance function for spatio-temporal

trajectories was pointed out in [4] where, in order to

properly capture the semantics of the problem domain,

alternative distance functions were introduced. Given a

spatio-temporal point pm = (xm,ym,tm) and a trajec-

tory segment pi; pj between the vertices pi = (xi,yi,ti)

and pj = (xj,yj,tj), [4] proposed the Eu and Et distance

functions between the pm and pi; pj , which are

explained next

1. Eu – The three dimensional time_uniform distance,

which is defined when tm 2 [ti,tj], as follows:

Euðpm; pipjÞ ¼
ffi
ðxm � xcÞ2 þ ðym � ycÞ

2
q

where
Compression of Mobile Location Data. Figure 3. Eu distanc
pc = (xc,yc,tc) is the unique point on pipj which

has the same time value as pm (i.e., tc = tm). An

illustration of using the Eu distance function for

reducing the size of a given trajectory is presented

in Fig.3. Intuitivelly, the distance is measured at

equal horizontal planes, for the respective values

of the temporal dimension. One can ‘‘visually’’

think of the relationship between the original tra-

jectory and the compressed trajectory as follows:

the original trajectory is contained inside the

sheared cylinder obtained by sweeping (the center

of) a horizontal disk with radius e along the com-

pressed trajectory.

2. Et – The time distance is defined as:

Et ðpm; pipjÞ ¼ jtm � t c j, where tc is the time

of the point on the XY projection p0ip
0
j of pipj ,

which is closest (in terms of the 2D Euclidean

distance) to the XY projection p0m of pm. Intuitively,

to find the time distance between pm and pipj ,

one needs to:

1. Project each of them on the XY plane;

2. Find the point p0c 2 p0i; p
0
j that is closest to p0m;

3. Find the difference between the corresponding

times of pc and pm.

An important observation regarding the computa-

tion of the compressed version of a given original

trajectory as an input, is that both the DP [6] and the
e function for trajectory compression.

Compression of Mobile Location Data. Table 1.

Distance soundness and error-bound on spatio-temporal

query answers

Where_at When_at Intersect
Nearest
neighbor

E2
(L2over
routes)

Unsound Unsound Unsound Unsound

Eu Sound (e) Unsound Sound (e) Sound (2e)

Et Unsound Sound (e) Unsound Unsound

426C Compression of Mobile Location Data
optimal algorithm [5] can be used, provided they are

appropriately modified to reflect the distance function

used. Experimental results in [4] demonstrated that

the DP heuristics yields a compression factor that is

very comparable to the one obtained by the optimal

algorithm, however, its execution is much faster.

Spatio-Temporal Queries and Trajectory Compression

The most popular categories of spatio-temporal

queries, whose efficient processing has been investi-

gated by many MOD researchers [8] are:

1. where_at(T,t) – returns the expected location at

time t.

2. when_at(T,x,y) – returns the time t at which a

moving object on trajectory T is expected to be at

location (x,y).

3. intersect(T,P,t1,t2) – is true if the trajectory T inter-

sects the polygon P between the times t1 and t2.

This is an instance of the, so called, spatio-temporal

range query).

4. nearest_neighbor(T,O,t) – The operator is defined

for an arbitrary set of trajectories O, and it returns a

trajectory T 0 of O. The object moving according to

T 0, at time t, is closest than any other object of O to

the object moving according to T.

5. join(O, Y) – O is a set of trajectories and the

operator returns the pairs (T1,T2) such that their

distance, according to the distance function used, is

less than a given threshold Y.

An important practical consideration for compressing

trajectory data is how the (im)precision generated by

the compression, affects the answers of the spatio-

temporal queries. As it turns out, the distance function

used in the compression process plays an important

role and, towards this, the concept of soundness [4] of a

distance function with respect to a particular query was

introduced in [4]. A pair (distance_function, query) is

called sound if the error of the query-answer, when

processed over the compressed trajectory is bounded.

In case the error is unbounded, which is, although the

compression itself guarantees a distance-error of e
between the points on the compressed trajectory with

respect to the original one, the error of the answer to

the query can grow arbitrarily large, the pair is called

unsound. Table1 below (adapted from [4]) summarizes

the soundness properties of three distance functions

with respect to five categories of spatio-temporal

queries.
As one can see, there is no single distance function

that is sound for all the possible spatio-temporal

queries.

The compression techniques for spatio-temporal

data presented thus far, implicitly assumed that the

trajectories are available in their entirety, i.e., they are

past-motion trajectories. However, in practice, it is

often the case that the (location, time) data is generated

on-board mobile units, and is transmitted to the MOD

server in real time [7,17]. Dead-reckoning is a policy

which essentially represents an agreement between a

given moving object and the MOD server regarding

the updates transmitted by that particular object. The

main idea is that the communication between them can

be reduced (consequently, network bandwidth can be

spared) at the expense of the imprecision of the data

in the MOD representing the object’s motion. In order

to avoid an unbounded error of the object’s location

data, the agreement specifies a threshold d that is a

parameter of the policy, which can be explained as

follows:

1. The object sends its location and the expected veloc-

ity to the MOD server and, as far as the MOD

server is concerned, the future trajectory of that

object is an infinite ray originating at the update

point and obtained by extrapolation, using the

velocity vector.

2. The information that the MOD server has is

the expected trajectory of the moving object. How-

ever, each moving object is aware of its actual

location, by periodically sampling it, e.g., using an

on-board GPS.

3. For as long as its actual location at a given time ti
does not deviate by more than d from the location

that the MOD estimates at ti using the informa-

tion previously transmitted, the object does not

Compression of Mobile Location Data C 427

C

transmit any new updates. When the actual dis-

tance deviates by more then d from its location on

the expected trajectory, the object will send another

(location, time, velocity) update.

The policy described above is commonly known as

a distance-based dead reckoning, and an illustration is

given in Fig.4. At time t0 the object sent its location

and the predicted velocity (arrowed line) to the MOD

server. The dashed line extending the vector indicate

the expected trajectory of the moving object and the

squares along it indicate the object’s positions at six

time instances, as estimated by the MOD, while the

shaded circles indicate the actual positions of the ob-

ject. Typically, the actual trajectory is obtained by con-

necting the GPS points with straight line-segments,

assuming that in-between two updates, the object was

moving with a constant speed. As illustrated, at t6 the

distance between the actual position and the MOD-

estimated one exceeds the threshold agreed upon

(d6>d) and the object sends a new update, at which

point the MOD changes the expected trajectory, based
Compression of Mobile Location Data. Figure 4. Distance-b
on that update. Thus, at t6, the MOD server actually

performs two tasks:

1. Corrects its own ‘‘knowledge’’ about the recent past

and approximates the actual trajectory between t0
and t6 with a straight line-segment, which defines

the actual simplification of the near-past trajectory;

2. generates another infinite ray corresponding to

the future-expected trajectory, starting at the last

update-point, and using the newly received velocity

vector for extrapolation.

Various trade-offs between the update costs and the

(impacts on the) imprecision of the MOD data for

several different variants of dead reckoning are investi-

gated in [17]. The dead-reckoning, in a sense, achieves

in real-time both of the goals of compression: – reduces

the communication, and enables the MOD server to

store only a subset of the actual trajectory. Assuming

that a dead-reckoning policy with threshold d was

used in real-time, clearly, the MOD has obtained a

compressed past-trajectory, say Trm
c, of a given mobile
ased dead-reckoning policy.

428C Compression of Mobile Location Data
object om. If om was to transmit every single GPS-based

update, i.e., no dead-reckoning applied, the MOD

would have an uncompressed trajectory Trm available.

The results in [14] have established that Trm
c is a strong

simplification of Trm, with an error-bound 2d.

Key Applications
The compression of moving objects trajectories data

is of interest in several scientific and application

domains.

Wireless Sensor Networks (WSN)

Wireless sensor networks consist of a large number of

sensors – devices that are capable of measuring various

phenomena; performing elementary calculations; and

communicating with each other, organizing them-

selves in an ad hoc network [19]. A particularly critical

aspect of the WSN is the efficient management of the

energy-reserves, given that the communication be-

tween two nodes drains a lot more battery-power

than the operations of sensing and (local) computing.

Consequently, in many tracking applications that can

tolerate delays and imprecision in the (location, time)

data, performing local compression of the trajectory

data, before it is sent to a particular sink, can yield

substantial increase in the networks’ lifetime. Different

policies for such compressions are presented in [18].

Location-Based Services (LBS)

A variety of applications in LBS depend on the data for

mobile objects with different mobility properties (e.g.,

pedestrians, private vehicles, taxis, public transportation,

etc.). Typically, LBS are concerned with a context-aware

delivery of the data which matches the preferences of

users based on their locations [12]. In order to provide

faster response time, and more relevant information, the

LBS should be able to predict, based on the motion

patterns, what kind of data will be relevant/requested in

a near future by given users. This, in turn, implies some

accumulated knowledge about the mobility patterns of

the users in the (near) past. However, keeping such data

in its entirety can impose prohibitively high storage

requirements.

Geographic Information Systems (GIS)

Recently, a plethora of services and devices has

emerged for providing path planning and navigation

for the mobile users: from MapQuest and Google-

maps, through Garmin and iPaq Travel Companion.
Each of these services relies on some traffic-based

information in order generate the optimal (in distance

or travel-time) path for their users. However, as the

traffic conditions fluctuate, the future-portions of the

routes may need to be recalculated. In order to better

estimate the impact of the traffic fluctuations, some

knowledge from the past is needed which, ultimately

means storing some past information about trajec-

tories. However, as observed in the literature [4], stor-

ing the uncompressed trajectory data corresponding to

daily driving activities of few millions of users, could

require TBs of data.

Spatio-Temporal Data Mining

Clustering is a process of grouping a set of (physical or

abstract) objects into classes of similar objects, and its

purpose is to facilitate faster data analysis in a given

domain of interest. With the recent advances in minia-

turization of computing devices and communications

technologies, the sheer volume makes it very costly to

apply clustering to the original trajectories’ data. Com-

pressing such data, especially if one can guarantee a

bounded error for the queries of interest, can signifi-

cantly improve the processing time for many algo-

rithms for trajectories clustering [10].

Future Directions
Any problem-domain that depends on storing large

volumes of trajectories’ data, in one way and level or

another, needs some sort of data compression in order

to reduce the storage requirements and to speed up

processing of spatio-temporal queries of interest.

Clearly, a desirable property of the compression tech-

niques is to ensure a bound on the errors of the

answers to the queries.

There are several directions of interest for the fu-

ture research on mobile data compression. In applica-

tions like GIS and LBS, it is a paramount to add some

context-awareness to the compression techniques. For

example, combining the mobile location data com-

pression with the particular tourists attractions and

the season/time, could provide a speed-up in algo-

rithms which are used for generating real-time adver-

tisements, while ensuring that the error (in terms of

users that received particular ad) is bounded. An inter-

esting aspect that has been presented in [4] is the,

so-called, aging of the trajectories: a trajectory that is

1-week old could have higher impact on the traffic-

impact analysis, than a trajectory that was recorded

Computational Media Aesthetics C 429

C

5weeks ago. Consequently, one may reduce the older

trajectory with a higher error-bound, thus further redu-

cing the storage requirements. Automatizing this pro-

cess in a manner that reflects the specifics of a given

problem-domain (e.g., context-aware information de-

livery) is an open question. Despite the large body

of works on OLAP and warehousing of traditional

data, very little has been done on spatio-temporal

OLAP. It is likely that the process of mobile data com-

pression will play an important role in these directions.
Cross-references
▶Data Compression

▶Data Mining

▶Moving Objects Databases

Recommended Reading
1. Alt H. and Guibas L. Discrete geometric shapes: matching,

interpolation, and approximation. In Handbook of Computa-

tional Geometry. Elsevier, Amsterdam, 1999.

2. Alt A., Knauer C., and Wenk C. Comparison of distance mea-

sures for planar curves. Algorithmica, 38(1):45–58, 2004.

3. Barequet G., Chen D.Z., Deascu O., Goodrich M.T., and

Snoeyink J. Efficiently approximating polygonal path in three

and higher dimensions. Algorithmica, 33(2):150–167, 2002.

4. Cao H., Wolfson O., and Trajcevski G. Spatio-temporal

data reduction with deterministic error bounds. VLDB J.,

15(3):211–228, 2006.

5. Chan W. and Chin F. Approximation of polygonal curves with

minimum number of line segments or minimal error. Int. J.

Computat. Geometry Appl., 6(1):59–77, 1996.

6. Douglas D. and Peucker T. Algorithms for the reduction of the

number of points required to represent a digitised line or its

caricature. Can. Cartographer, 10(2):112–122, 1973.

7. Gedik B. and Liu L. Mobieyes: a distributed location monitoring

service using moving location queries. IEEE Trans. Mobile Com-

put., 5(10):1384–1402, 2006.

8. Güting R.H. and Schneider M. Moving objects databases. Mor-

gan Kaufmann, Los Altos, CA, 2005.

9. Hershberger J. and Snoeyink J. Speeding up the douglas-peucker

line-simplification algorithm. In Proc. 5th Int. Symp. on Spatial

Data Handling, 1992, pp. 134–143.

10. Jensen C.S., Lin D., and Ooi B.C. Continuous clustering of

moving objects. IEEE Trans. Knowl. Data Eng., 19(9):1161–

1174, 2007.

11. Sayood K. Introduction to Data Compression. Morgan Kauf-

mann, Los Altos, CA, 1996.

12. Schiller J. and Voisard A. Location-Based Services. Morgan

Kaufmann, Los Altos, CA, 2004.

13. Trajcevski G., Wolfson O., Hinrichs K., and Chamberlain K.

Managing uncertainty in moving objects databases. ACM

Trans. Database Syst., 29(3):463–507, 2004.

14. Trajcevski G., Cao H., Wolfson H., Scheuermann P., and

Vaccaro D. On-line data reduction and the quality of history
in moving objects databases. In Proc. 5th ACM Int. Workshop

on Data Eng. for Wireless and Mobile Access, 2006, pp. 19–26.

15. Vlachos M., Hadjielefteriou M., Gunopulos D., and Keogh E.

Indexing multidimensional time-series. VLDB J., 15(1):1–20,

2006.

16. Weibel R. Generalization of spatial data: Principles and selected

algorithms. In Algorithmic Foundations of Geographic Infor-

mation Systems. Van Kreveld M. Nievergelt J., Roos T., and

Widmayer P. (eds.). LNCS Tutorial Springer, Berlin, 1998.

17. Wolfson O., Sistla A.P., Chamberlain S., and Yesha Y. Updating

and querying databases that track mobile units. Distrib. Parallel

Databases, 7(3):257–387, 1999.

18. Xu Y. and Lee W.-C. Compressing moving object trajectory

in wireless sensor networks. Int. J. Distrib. Sensor Netw. 3(2):

151–174, 2007.

19. Zhao F. and Guibas L. Wireless sensor networks: an information

processing approach. Morgan Kaufmann, Los Altos, CA, 2004.
Computational Media Aesthetics

CHITRA DORAI

IBM T. J. Watson Research Center, Hawthorne, NY,

USA

Synonyms
CMA; Media semantics; Production-based approach

to media analysis

Definition
Computational media aesthetics is defined as the

algorithmic study of a variety of image and aural

elements in media founded on their patterns of use

in film grammar, and the computational analysis of the

principles that have emerged underlying their mani-

pulation, individually or jointly, in the creative art of

clarifying, intensifying, and interpreting some event

for the audience [3]. It is a computational framework

to establish semantic relationships between the various

elements of sight, sound, and motion in the depicted

content of a video and to enable deriving reliable, high-

level concept-oriented content annotations as opposed

to verbose low-level features computed today in video

processing for search and retrieval, and nonlinear brows-

ing of video. This media production knowledge-guided

semantic analysis has led to a shift away from a focus on

low level features that cannot answer high level queries

for all types of users, to applying the principled approach

of computational media aesthetics to analyzing and

interpreting diverse video domains such as movies, in-

structional media, broadcast video, etc.

430C Computational Media Aesthetics
Historical Background
With the explosive growth of media available on the

Web, especially on hugely popular video sharing web-

sites such as YouTube, managing the digital media col-

lections effectively and leveraging the media content in

the archives in new and profitable ways continues to be a

challenge to enterprises, big and small. Multimedia con-

tent management refers to everything from ingesting,

archival and storage of media to indexing, annotation

and tagging of content for easy access, search and retriev-

al, and browsing of images, video and audio. One of the

fundamental research problems in multimedia content

management is the semantic gap – that renders all auto-

matic content annotation systems of today brittle and

ineffective – between the shallowness of features in their

descriptive power that can be currently computed auto-

matically and the richness ofmeaning and interpretation

that users desire search algorithms to associate with their

queries for easy searching and browsing of media.

Smeulders et al. [8] describe that while ‘‘the user seeks

semantic similarity, the database can only provide simi-

larity on data processing.’’ This semantic gap is a crucial

obstacle that content management systems have to over-

come in order to provide reliable media descriptions to

drive search, retrieval, and browsing services that can

gain widespread user acceptance and adoption. There is

a lack of framework to establish semantic relationships

between the various elements in the content since cur-

rent features are frame/shot-representational and far too

simple in their expressive power.

Addressing the semantic gap problem in video

processing will enable innovative media management,

annotation, delivery and navigational services for

enrichment of online shopping, help desk services,

and anytime-anywhere training over wireless devices.

Creating technologies to annotate content with deep

semantics results in an ability to establish semantic

relationships between the form and the function in

the media, thus for the first time enabling user access

to stored media not only in predicted manner but

also in unforeseeable ways of navigating and accessing

media elements. Semantics-based media annotations

will break the traditional linear manner of accessing

and browsing media, and support vignette-oriented

viewing of audio and video as intended by the content

creators. This can lead to new offerings of customized

media management utilities for various market seg-

ments such as education and training video archives,
advertisement houses, news networks, broadcasting

studios, etc.

Foundations
Computational Media Aesthetics advocates an app-

roach that markedly departs from existing methods

for deriving video content descriptions by analyzing

audio and visual features (for a survey of representative

work, see [8]). It proposes that to go beyond describing

just what is seen in a video, the visual and emotional

impact of how the content is depicted needs to be

understood. Both media compositional and aesthetic

principles need to guide media analysis for richer,

more expressive descriptions of the content depicted

and seen.

What are the methodologies for analyzing and inter-

preting media? Structuralism, in film studies for exam-

ple, proposes film segmentation followed by an analysis

of the parts or sections. Structural elements or portions

of a video, when separated from cultural and social

connotations can be treated as plain data and therefore,

can be studied using statistical and computational tools.

Another rich source is production knowledge or film

grammar. Directors regularly use accepted rules and

techniques to solve problems presented by the task of

transforming a story from a written script to a captivat-

ing visual and aural narration [2]. These rules encom-

pass a wide spectrum of cinematic aspects ranging from

shot arrangements, editing patterns and the triangular

camera placement principle to norms for cameramotion

and action scenes. Codes and conventions used in nar-

rating a story with a certain organization of a series of

images have become so standardized and pervasive over

time that they appear natural to modern day film pro-

duction and viewing. However, video production mores

are found more in history of use, than in an abstract

predefined set of regulations, are descriptive rather than

prescriptive, and elucidate on ways in which basic visual

and aural elements can be synthesized into larger struc-

tures and on the relationships that exist between the

many cinematic techniques employed worldwide and

their intended meaning to a movie audience.

Media aesthetics is both a process of examination

of media elements such as lighting, picture composi-

tion, and sound by themselves, and a study of their

role in manipulating the viewer’s perceptual reactions,

in communicating messages artistically, and in syn-

thesizing effective media productions [10]. Inspired

Computational Media Aesthetics C 431

C

by it, Dorai and Venkatesh defined Computational

media aesthetics [3] as the algorithmic study of a

variety of image and aural elements in media guided

by the patterns of their use, and the computational

analysis of the principles for manipulating these ele-

ments to facilitate high-level content annotations.

Computational media aesthetics provides a handle

on interpreting and evaluating relative communica-

tion effectiveness of media elements in productions

through knowledge of film codes that mediate per-

ception of the content shown in the video. It exposes

the semantic and semiotic information embedded in

the media production by focusing not merely on the

representation of perceived content in digital video, but

on the semantic connections between the elements and

the emotional, visual appeal of the content seen and

remembered. It advocates a study of mappings between

specific cinematic elements and narrative forms, and

their intended visual and emotional import.

In multimedia processing, many research efforts

have sought tomodel and describe specific events occur-

ring in a particular video domain in detail for providing

high-level descriptions; computational media aesthetics,

on the other hand enables development of video analysis

techniques founded upon production knowledge for

film/video understanding, for the extraction of high-

level semantics associated with the expressive elements

and narrative forms synthesized from the cinematic ele-

ments, and for the detection of high-level mappings

through the use of software models. It highlights the

systematic use of film grammar, as motivation and

also as foundation in the automated process of analyz-

ing, characterizing, and structuring of produced videos

for media search, segment location, and navigational

functions.

Computational media aesthetics provides a frame-

work to computationally determine elements of form

and narrative structure in videos from the basic units

of film grammar namely, the shot, the motion, the

recording distances, and from the practices of com-

bination that are commonly followed during the

audiovisual narration of a story. At first, primitive

computable aspects of cinematographic techniques

are extracted. New expressive elements (higher order

semantic entities) can then be defined and constructed

from these primitive aspects. Both the definition and

extraction of these semantic entities are based on film

grammar, and these entities are formulated only if
directors purposefully design them and manipulate

them. The primitive features and the higher order

semantic notions thus form the vocabulary of content

description language for media.

Key Applications
In seeking to create tools for the automatic understan-

ding of media, computational media aesthetics states

the problem as one of faithfully reflecting the forces at

play inmedia production, and interpreting the datawith

its maker’s eye. Several studies have explored the work-

ings of Computational Media Aesthetics when applied

to extraction of meaning using many of the aesthetic

elements introduced by Zettl [10]: Time, sound and

color. Adams et al. [1] took an example of carrying one

aspect of film grammar all the way from literature to

computable entity, namely tempo and pace for higher

level analysis of movies. Adams et al. [1] showed that

although descriptive and sometimes fuzzy in scope, film

grammar provides rich insights into the perception of

subjective time as tempo and pace and its manipulation

by the makers of film for drama. Further research

[9,6,5,7,4] has applied this approach pervasively from

extractingmood inmusic, emotion inmovies, to adding

musical accompaniment to videos and extracting se-

mantic metadata for mobile images at the time of

image capture.

Film is not the only domain with a grammar to

leverage in analysis. News, sitcoms, educational video,

etc., all have more or less complex grammars that

may be used to capture their crafted structure and to

derive semantic descriptions with automated techni-

ques following the framework of computational media

aesthetics.

Cross-references
▶Media Semantics

▶Multimedia Processing

▶Video Analysis

Recommended Reading
1. Adams B., Dorai C., and Venkatesh S. Towards automatic

extraction of expressive elements from motion pictures: tempo.

In Proc. IEEE Int. Conf. on Multimedia and Expo, 2000, pp.

641–645.

2. Arijon D. Grammar of the film language. Silman-James Press,

Los Angeles, CA, 1976.

3. Dorai C. and Venkatesh S. Computational media aesthetics:

finding meaning beautiful. IEEE Multimed., 8(4):10–12, 2001.

432C Computational Ontology
4. Marc Davis. Editing out video editing. IEEE Multimed.,

10(2):2–12, 2003.

5. Mulhem P., Kankanhalli M.S., Ji Yi., and Hassan H. Pivot vector

space approach for audio-video mixing. IEEE Multimed., 10

(2):28–40, 2003.

6. Salway A. and Graham M. Extracting information about emo-

tions in films, In Proc. 9th Int. Conf. on Multimedia Modeling,

2003, pp. 299–302.

7. Sarvas R., Herrarte E., Wilhelm A., and Davis M. Metadata

creation system for mobile images. In Proc. 2nd Int. Conf.

Mobile Systems, Applications and Services, 2004, pp. 36–48.

8. Smeulders A., Worring M., Santini S., and Gupta A. Content

based image retrieval at the end of the early years. IEEE Trans.

Pattern Anal. Mach. Intell., 22(12):1349–1380, 2000.

9. Yazhong Feng, YuetingZhuang, andYunhePan.Music information

retrieval by detecting mood via computational media aesthetics. In

Proc. IEEE/WIC Int. Conf. onWeb Intelligence, 2003, pp. 235–241.

10. Zettl H. Sight, Sound, Motion: Applied Media Aesthetics

Wadsworth Publishing, Belmont, CA, 1999.
Computational Ontology

▶Ontology
Computer Human Interaction (CHI)

▶Human-Computer Interaction
Computer-based Physician Order
Entry

▶Computerized Physician Order Entry
Computer-based Provider Order
Entry

▶Computerized Physician Order Entry
Computer-Interpretable Formalism

▶ Executable Knowledge
Computerized Order Entry (COE)

▶Computerized Physician Order Entry
Computerized Physician Order Entry

MICHAEL WEINER

Indiana University School of Medicine, Indianapolis,

IN, USA

Synonyms
Computer-based physician order entry; Computer-

based provider order entry; Computerized provider

order entry; Computerized order entry (COE); Physi-

cian order entry

Definition
In daily medical practice, physicians routinely create

plans of diagnosis and treatment for their patients.

These plans typically contain specific, formal orders –

directives – that are expected to be implemented

by other medical professionals, such as nurses or per-

sonnel at laboratories or pharmacies. When such per-

sonnel are expected to implement part of a physician’s

diagnosis or treatment plan, corresponding orders

must be created and documented in the patient’s med-

ical record. Physicians have traditionally used paper-

based charting systems to record medical orders.

Computerized physician order entry (CPOE) is a

process by which physicians directly enter medical

orders into a computer. CPOE is typically done when

the computer is being used to access an electronic health

record (EHR), and the physician is creating a treatment

plan for a specific patient in a clinical setting.

In many medical institutions, non-physicians such

as nurses, dieticians, social workers, pharmacists, thera-

pists, or advanced nurse practitioners can also enter

certain types of orders, hence the broader, useful term

‘‘computerized provider order entry.’’
Historical Background
CPOE was first implemented and described in the latter

half of the twentieth century. In the US, early reports

came from several institutions, including Harvard Medi-

cal School and Brigham and Women’s Hospital, the

US Veterans Health Administration [16,20], Vanderbilt

University [8], University of Virginia [12], Indiana

University, andRegenstrief Institute forHealthCare [14].

In 1994, Sittig and Stead published ‘‘Computer-

based physician order entry: the state of the art’’ [17],

summarizing many of the early results. Many difficul-

ties were reported regarding leadership, delays, cultural

Computerized Physician Order Entry C 433

C

resistance, high costs, technical support, workflow, and

other operational difficulties for end users.

By the end of 2006, CPOE was on the rise, though

adoption rates – often correlated with adoption of

EHRs – varied widely throughout the world. Most

modern EHR systems, whether developed by public,

private, or academic institutions, would be expected to

include at least some form of CPOE. In the US, only

10% of hospitals had complete availability of CPOE in

2002 [2]. In the United Kingdom, Australia, and New

Zealand [21], the fraction is much higher, since use of

EHRs exceeds 80% and is approaching 99% among

general practitioners in ambulatory practice.

Foundations
CPOE can be used to order a variety of medical ser-

vices. In some medical institutions with EHRs, CPOE

can be used to order any type of medical service and

may be required to generate any order. When not

required, providers may have the opportunity to select

between writing orders in a paper-based chart or an

EHR, or clerks or other professionals may perform

CPOE on a provider’s behalf or direction.
Computerized Physician Order Entry. Figure 1. A user inter

would typically authenticate himself or herself, identify a pati

through a series of forms, each of which might facilitate a cer

allow entry of orders for drugs, diagnostic tests, and other ty

of orders into categories is done primarily for the user’s conv

underlying data models.
CPOE is performed via a user interface of some kind,

though this may occur on a desktop computer, terminal

or thin client, personal digital assistant, other portable

computer, or other form of computer. A user would

typically authenticate himself or herself, identify a pa-

tient, and proceed to enter orders, often by navigating

through a series of forms, each of which might facilitate

a certain type of order, such as for radiology, laboratory,

pharmacy, nursing, or referral (see Fig. 1). The layout or

interface seen by the user is highly variable and may

depend on the developer, personal preferences, under-

lying database structures, or medical or administrative

processes generated in response to specific orders.

Many EHRs allow providers to generate orders and

non-order documentation in a single computer session.

Non-order documentation may include clinical details

such as historical information, measurements, other

observations, patient’s preferences or directives, or nar-

rative notes or reports. The workflow imposed by a

CPOE system should be considered carefully in conjunc-

tion with the user’s baseline workflow. Greatest success

with implementation can often be found when the sys-

tem does not disrupt the user’s own pattern of work.
face for computerized physician order entry. A user

ent, and proceed to enter orders, often by navigating

tain type of order. This screenshot shows form fields that

pes of orders (e.g., nursing). The visual separation of types

enience and organization; it may or may not reflect

434C Computerized Physician Order Entry
Once a session is completed, the orders generated

lead to action. This may occur via simple printing of the

orders or through electronic delivery to remote loca-

tions, such as a radiology department, consultant’s

office, laboratory, or pharmacy. Some orders, such

as for prescriptions for drugs or lifestyle changes, may

be provided to patients for direct implementation or

delivery elsewhere. A session’s orders are then typically

archived in the EHR. Consistent with traditional medi-

cal documentation, orders from CPOE are generated

once and cannot be modified or deleted once finalized,

though what is being ordered can often later be mod-

ified or discontinued with a subsequent order.

CPOE has been developed and implemented for a

variety of reasons. Many advantages have been postu-

lated, including rectification of substantial legibility pro-

blems with handwritten orders. CPOE systems have the

potential to refer to all of a patient’s medical history as

well as all available medical knowledge, to improve the

quality of medical care in real time, at the point of care.

One of the most important potentials of CPOE is inclu-

sion of clinical decision support, by which the computer

can be programmed to suggest tailored orders de novo

(e.g., for a vaccination recommended by clinical
Computerized Physician Order Entry. Figure 2. Example of

prescribed benazepril. The software responds, as shown, by p

monitor for possible side effects from the drug. To enable thi

clinical rules that combine guidelines or medical knowledge w
guidelines) or respond to specific orders, such as in

the event of a possible drug reaction [11] or contrain-

dication to a procedure (see Fig. 2). CPOE can reduce

the rate of certain medication errors by more than half

[4]. Removing the healthcare provider from electronic

order entry, or moving CPOE outside the point of care,

could negate these large potential benefits.

Some institutions are starting with, focus, or limit

their computer-based development to electronic pre-

scribing, or ‘‘e-prescribing.’’ This is a form of CPOE.

E-prescribing is targeted especially because prescribing

is frequent, can be targeted by CPOE algorithms, and

represents a most common form of medical error

[13,18]. In the US, the Institute of Medicine has recom-

mended e-prescribing of drugs, in conjunction with

clinical decision support [9].

Medical orders symbolize but also allow and direct

the operations behind medical care. By encoding and

electronically documenting orders, CPOE improves

capabilities to assess and improve quality of care and

to conduct clinical research related to diagnosis and

treatment. Medical practices, governments, and other

authorities can gather and study data from CPOE

systems to improve knowledge about how medical
clinical decision support. In this instance, the user has

rompting the user to decide about ordering blood tests, to

s capability, the application has been programmed with

ith this patient’s medical history, evaluation, or treatment.

Computerized Physician Order Entry C 435

C

care is formulated and delivered. CPOE can also facili-

tate billing processes that depend on orders, such as for

certain procedures or drugs. Query languages or sys-

tems must be designed to accommodate data models

used for CPOE.

Customization of CPOE systems may allow indi-

vidual providers or groups of providers to create tem-

plates or order sets, which are groups of orders often

used or often used together. This could save time,

improve standardization, and improve care.

CPOE does have costs, risks, and unintended con-

sequences [5]. A CPOE system must be developed

thoughtfully and be maintained frequently and regu-

larly, to ensure that it accommodates the latest tests,

treatments, and guidelines, both locally and more

broadly. If an institution does not stock a particular

drug, the system might not allow that drug to be or-

dered ormight at least alert the provider about the issue.

Institutional changes and policies that can affect CPOE

are frequent and so must lead to corresponding mod-

ifications to the CPOE system.

CPOE can increase the time required to generate a

medical order [3,15]. Studies of this have reported

mixed findings, with increases in some and decreases

in others. Increased time for initial learning and ongo-

ing use can cause dissatisfaction among providers

and even complete failures of systems. Increasing

time to generate or implement orders can have adverse

clinical effects. Adverse effects might be expected espe-

cially in emergencies or acute care, when life-saving

drugs may be needed rapidly. Errors in processing elec-

tronic orders could also be expected to lead to adverse

effects in at least some cases. In 2005, Koppel et al.

reported that one CPOE system design often facilitated

medication-related errors, such as by providing inade-

quate views of medications and increasing inappropri-

ate dosing and incompatible orders [10].

If not implemented effectively, increased use of

computers in healthcare might distract providers,

causing them to spend less time with patients or de-

crease patient’s satisfaction [7,19]. This could have an

adverse effect on patient-provider relationship or

patient’s health. Provider-to-provider communication

might also suffer if appropriate internal communica-

tions systems are not used.

Clinical decision support, a key feature of CPOE

systems, can backfire by presenting too many or

inappropriate alerts. Effective solutions to ‘‘alert

overload’’ are not yet well developed or widespread,
though some solutions have been discussed [18].

Several recent studies of interventions in decision sup-

port have had negative results and require further

investigation.

Financial costs of implementing CPOE can be high,

especially initially. Developing cost-effectiveness ana-

lyses of EHRs and CPOE systems are thus complex,

because benefits or harms can occur much later than

implementation of a system and later than the time of

initial care or clinical presentation.

Moving orders from paper to computers has created

situations that require new handling. Computer pro-

grams, for example, must know the authority of the

authenticated user and whether the user has permission

to generate the requested orders. This need also exists

with paper systems but is handled in those environ-

ments by people, rather than computers. In addition,

the use of templates or order sets has not been heavily

studied. Templates may in some cases decrease quality

of care if they are adopted hastily or used in the wrong

setting. In ultimately pooling or sharing data across

institutions, it will be important to use standards and

customary terminologies to represent orders.

Technical Issues

‘‘Prescription’’ is another term for medical order,

though the term is used conventionally to refer to

providing instructions to patients. The structure of a

traditional drug prescription provides a useful frame-

work for understanding the primary components of

medical orders. Drug orders have a superscription (in-

cluding timestamp and patient’s identifier), inscription

(name and amount or strength of ingredient), subscrip-

tion (formulation or method to prepare), and signa

(‘‘sig,’’ or directions including route and frequency).

Orders of any other type have analogous components,

though somemay have additional or somewhat different

components. CPOE systems should handle components

of orders with agility. Below are discussed a few key

technical issues that present themselves in the design,

study, and implementation of CPOE systems.

Data Models for CPOE. One must consider what

data model would best support CPOE. For example,

should orders be categorized and, if so, how? Many

institutions have found that categories of orders, such

as laboratory, consultative, pharmacy, nursing, and ra-

diological, are clinically and informationally logical but

may also be necessary from the standpoint of linking

disparate data systems. A key goal in the design is the

436C Computerized Physician Order Entry
ability to accommodate future expansion of order types

and categories even before those types are developed or

identified. This can prompt a somewhat ‘‘flat’’ model, in

which the nature, type, or category of an order is a value

of a database field, rather than a field or variable itself.

Other important aspects of orders that may have impli-

cations for the data model are the indication for the

order, urgency (i.e., when it should be implemented),

and who is expected to implement it.

Standardization of text in an order can be helpful

for both accuracy of implementation and research. For

example, an order that can have multiple forms, such

as ‘‘take two 40-mg tablets by mouth twice daily’’ and

‘‘take one 80-mg tablet by mouth every 12 hours’’ can

complicate both clinical care and research. Allowing

providers to add narratives or free text is essential for

tailoring to patient’s needs, but this demands effective

handling in data storage and clinical decision support.

A system that can standardize the order accurately

without hindering the user’s experience is desirable

but challenging to create. Standardization of termi-

nology used in orders should accommodate query

systems. One difficulty is that each type of order –

such as for a drug, diet, radiological procedure,

or laboratory test – may have unique ‘‘domains’’ or

components. For example, only drugs have a dose, yet

the dose may need to be a discrete, searchable compo-

nent of a query. Therefore, an ideal data model can

handle all types of orders, as well as new types, but it

can also identify and distinguish between various

values of key components of orders, regardless of how

widespread those components are across various types

of orders.

Order sets can often translate directly into a group of

individual orders, but users often desire the ability to

customize order sets. This may meanmaintaining a base

of order sets but also the customizations that are unique

to each provider or role. Order sets also need to be

integrated with any available decision support systems,

and many providers seek to share customized order sets

with each other. There are thus aspects of order sets that

pertain to the system itself and to particular patients,

groups of providers, and individual providers. Asso-

ciated with each order set is also generally information

about conditions under which the order set applies,

such as a diagnosis, age group, or other criteria found

in a clinical guideline – hence the possible need for order

sets to be linked to ontologies or terminology systems

that in turn link to such guidelines.
Specific types of orders often require further pro-

cessing or delivery to specific clinical departments.

Therefore, the processing needed must be encoded

into the system, though it might be a part of the

main data engine more than a core part of the data

model or record. In any case, if laboratory orders, for

example, need to be delivered to the laboratory, then

the data system must support this well enough so that

all laboratory orders – and only laboratory orders – are

processed in this way. Similarly, systems that notify

particular professionals or departments should be

modular enough that those systems can be updated

readily as personnel or even departments change.

An audit trail is important for documentation,

accreditation, and quality and safety of care. Included

in the data system should be a method to indicate

formally not just who created a record and when, but

what happened to the record: where it was sent and

who accessed it later. Whether this is part of CPOE

or the larger records system may depend on the cir-

cumstances and design of a system. Many alert systems

that stem from orders do not currently provide effec-

tive prioritization, so this is an area of important

research.

Key Applications
CPOE continues to undergo development and will for

the foreseeable future. Due to the difficulty and time

required to generate electronic orders, various forms

of data entry are being explored. These include transcrip-

tion with or without voice recognition and input using

portable devices, digital pens, or tablets. Due to capability

for electronic communication of orders, development

is also occurring in remote areas or environments

with limited access to healthcare, such as for rural or

homebound patients.

CPOE is undergoing significant development espe-

cially in the US, the United Kingdom and other parts

of Europe, Asia, Australia, and New Zealand. It can be

expected to grow throughout the world, even as devel-

oping countries create EHR systems.

Future Directions
The largest looming issues for CPOE are how to maxi-

mize efficiency of data entry and effectiveness of deci-

sion support in the complex environment. There are

also unmet needs for CPOE to be linked to access to

general medical knowledge. Health policy, attention to

quality, patient safety, and reimbursement will likely

Conceptual Data Model C 437

C

gain importance in driving uses of CPOE, especially in

areas where its use is currently low. The precise roles,

usefulness, impact, and specifications of incentives for

healthcare providers to adopt health information tech-

nologies such as CPOE are not yet clear.
Cross-references
▶Clinical Decision Support

▶Data Acquisition

▶ Electronic Health Record
Recommended Reading
1. Agency for Healthcare Research and Quality. AHRQ National

Resource Center for Health Information Technology. 2007.

Available online at: http://healthit.ahrq.gov/ (accessed on August

29, 2007).

2. Ash J.S., Gorman P.N., Seshadri V., and Hersh W.R. Computer-

ized physician order entry in U.S. hospitals: results of a 2002

survey. J. Am. Med. Inform. Assoc., 11(2):95–99, 2004.

3. Bates D.W., Boyle D.L., and Teich J.M. Impact of computerized

physician order entry on physician time. In Proc. Annual Symp.

on Computer Applications in Medical Care, 1994, p. 996.

4. Bates D.W., Leape L.L., Cullen D.J., et al. Effect of computerized

physician order entry and a team intervention on prevention of

serious medication errors. JAMA, 280(15):1311–1316, 1998.

5. Campbell E.M., Sittig D.F., Ash J.S., Guappone K.P., and Dykstra

R.H. Types of unintended consequences related to computerized

provider order entry. J. Am. Med. Inform. Assoc., 13(5):

547–556, 2006.

6. Certification Commission for Healthcare Information Technol-

ogy. 2007. Available online at: http://www.cchit.org/ (accessed

on August 29, 2007).

7. Frankel R., Altschuler A., George S., et al. Effects of exam-room

computing on clinician-patient communication: a longitudinal

qualitative study. J. Gen. Intern. Med., 20(8):677–682, 2005.

8. Geissbuhler A. and Miller R.A. A new approach to the imple-

mentation of direct care-provider order entry. In Proc. AMIA

Annual Fall Symposium, 1996, pp. 689–693.

9. Institute of Medicine. Crossing the Quality Chasm: A New

Health System for the 21st Century. The National Academies

Press, Washington, DC, 2001.

10. Koppel R., Metlay J.P., Cohen A., et al. Role of computerized

physician order entry systems in facilitating medication errors.

JAMA, 293(10):1197–1203, 2005.

11. Kuperman G.J., Bobb A., Payne T.H., et al. Medication-related

clinical decision support in computerized provider order entry

systems: a review. J. Am. Med. Inform. Assoc., 14(1):29–40,

2007.

12. Massaro T.A. Introducing physician order entry at a major

academic medical center: I. Impact on organizational culture

and behavior. Acad. Med., 68(1):20–25, 1993.

13. Miller R.A., Gardner R.M., Johnson K.B., and Hripcsak G.

Clinical decision support and electronic prescribing systems: a
time for responsible thought and action. J. Am. Med. Inform.

Assoc., 12(4):403–409, 2005.

14. Overhage J.M., Mamlin B., Warvel J., Warvel J., Tierney W., and

McDonald C.J. A tool for provider interaction during patient

care: G-CARE. In Proc. Annual Symp. on Computer Applica-

tions in Medical Care, 1995, pp. 178–182.

15. Overhage J.M., Perkins S., Tierney W.M., and McDonald C.J.

Controlled trial of direct physician order entry: effects on phy-

sicians’ time utilization in ambulatory primary care internal

medicine practices. J. Am. Med. Inform. Assoc., 8(4):361–371,

2001.

16. Payne T.H. The transition to automated practitioner order

entry in a teaching hospital: the VA Puget Sound experience.

In Proc. AMIA Annual Symposium, 1999, pp. 589–593.

17. Sittig D.F. and Stead W.W. Computer-based physician order

entry: the state of the art. J. Am. Med. Inform. Assoc., 1(2):

108–123, 1994.

18. Teich J.M., Osheroff J.A., Pifer E.A., Sittig D.F., and Jenders R.A.

Clinical decision support in electronic prescribing: recommen-

dations and an action plan: report of the joint clinical decision

support workgroup. J. Am. Med. Inform. Assoc., 12(4):365–376,

2005.

19. Weiner M. and Biondich P. The influence of information tech-

nology on patient-physician relationships. J. Gen. Intern. Med.,

21(Suppl 1):S35–S39, 2006.

20. Weir C, Lincoln M, Roscoe D, Turner C, and Moreshead G.

Dimensions associated with successful implementation of a

hospital based integrated order entry system. In Proc. Annual

Symp. on Computer Applications in Medical Care, 1994,

pp. 653–657.

21. Wells S., Ashton T., and Jackson R. Electronic clinical decision

support. 2005. Updated October 2005. Available via Internet

at: http://www.hpm.org/survey/nz/a6/2 (accessed on August

29, 2007).
Computerized Provider Order Entry

▶Computerized Physician Order Entry
Concept Languages

▶Description Logics
Conceptual Data Model

▶ Semantic Data Model

438C Conceptual Image Data Model
Conceptual Image Data Model

▶ Image Content Modeling
Conceptual Model

▶ Semantic Data Model
Conceptual Modeling

▶ Semantic Modeling for Geographic Information

Systems
Conceptual Modeling for
Geographic Information System

▶ Semantic Modeling for Geographic Information

Systems
Conceptual Modeling for Spatio-
Temporal Applications

▶ Semantic Modeling for Geographic Information

Systems
Conceptual Schema Design

ALEXANDER BORGIDA
1, JOHN MYLOPOULOS

2

1Rutgers University, New Brunswick, NJ, USA
2University of Trento, Trento, Italy

Definition
Conceptual schema design is the process of generating

a description of the contents of a database in high-level

terms that are natural and direct for users of the data-

base. The process takes as input information require-

ments for the applications that will use the database, and
produces a schema expressed in a conceptual modeling

notation, such as the Extended Entity-Relationship

(EER) Data Model or UML class diagrams. The chal-

lenges in designing a conceptual schema include: (i) tur-

ning informal information requirements into a cognitive

model that describes unambiguously and completely

the contents of the database-to-be; and (ii) using the

constructs of a data modeling language appropriately

to generate from the cognitive model a conceptual

schema that reflects it as accurately as possible.

Historical Background
The history of conceptual schema design is intimately

intertwined with that of conceptual data models (aka

semantic data models). In fact, for many years research-

ers focused on the design of suitable languages for con-

ceptual schemas, paying little attention to the design

process itself. Jean-Raymond Abrial proposed the

binary semantic model in 1974 [1], shortly followed

by Peter Chen’s entity-relationship model (ER for

short) [4]. Both were intended as advances over logical

data models proposed only a few years earlier, and

both emphasized the need to model more naturally

the contents of a database. The ER model and its

extensions were relatively easy to map to logical

schemas for relational databases, making EER [9] the

first conceptual modeling notation to be used widely

by practitioners. On the other hand, Abrial’s semantic

model was more akin to object-oriented data models

that became popular more than a decade later.

The advent of object-oriented software analysis

techniques in the late 1980s revived interest in object-

oriented data modeling and led to a number of propo-

sals. Some of these, notably OMT [7] adopted many

ideas from the EER model. These ideas were consoli-

dated into the Unified Modeling Language (UML),

specifically UML class diagrams.

The process of designing conceptual schemas by

using such modeling languages was not studied until

the late 1970s, see for instance [8]. In the early 1980s,

the DATAID project proposed a state-of-the-art design

process for databases, including conceptual schema

design [2].

Throughout this history, research on knowledge rep-

resentation in Artificial Intelligence (AI) has advanced a

set of concepts that overlaps with those of conceptual

data models. Notably, semantic networks, first proposed

in the 1960s, were founded on the notions of concept,

Conceptual Schema Design C 439

C

link and isA hierarchy (analogously to entity, relation-

ship and generalization for the EER model). The formal

treatment of these notations has led to modern mod-

eling languages such as Description Logics, including

OWL, for capturing the semantics of web data. In fact,

Description Logics have been shown to be able to

capture the precise semantics of conceptual modeling

notations such as EER diagrams and UML class

diagrams.

Another important recent development has been

the rise of ontological analysis. An ontology is a specifi-

cation of a conceptualization of a domain. As such, an

ontology offers a set of concepts for modeling an

application, and foundational ontologies strive to

uncover appropriate cognitive primitives with which

to describe and critique conceptual modeling nota-

tions [5]. Foundational ontologies have been used to

analyze the appropriate use of EER constructs [10] and

UML [6]. Based on this work, a two-phase perspective

is adopted here by distinguishing between the design of

a cognitive model based on cognitive primitives, and

the design of a corresponding conceptual schema that

is based on the constructs of a conceptual model such

as the EER or UML class diagrams.

Foundations

Building a cognitive model. Information requirements

for a database-to-be are generally expressed informally,

based onmultiple sources (e.g., applications/queries that

need to be supported, existing paper and computerized

systems). Information requirements describe some

part of the world, hereafter the application domain (or

universe of discourse). A cognitive model is a human

conceptualization of this domain, described in terms

of cognitive primitives that underlie human cognition.

The following are some of the most important among

these primitives.

An object is anything one may want to talk

about, and often represents an individual (‘‘my dog,’’

‘‘math422’’). Usually, individual objects persist over

many states of the application domain. Moreover, they

have qualities (such as size, weight), and can be related

to other individuals by relations (e.g., ‘‘friendOf,’’ ‘‘part

of,’’ ‘‘between’’). Individuals may be concrete (such as

‘‘Janet,’’ or ‘‘that tree’’), abstract (e.g., ‘‘the number 12,’’

‘‘cs422’’), or even hypothetical (e.g., ‘‘Santa,’’ ‘‘the king

of the USA’’). Individuals have a notion of identity,

allowing them, for example, to be distinguished and
counted. For some individuals such as ‘‘Janet,’’ identity

is an intrinsic notion that distinguishes her from all

other objects. Values are special individuals whose

identity is determined by their structure and properties

(e.g., numbers, sets, lists and tuples). The number ‘‘7,’’

for example, is the unique number that comes after

‘‘6,’’ while ‘‘{a, b, c}’’ is the unique set with elements

‘‘a,’’ ‘‘b’’ and ‘‘c.’’

Individuals can be grouped into categories (also

called concepts, types), where each category (e.g.,

‘‘Book’’) captures common properties of all its

instances (e.g., ‘‘my DB textbook,’’ ‘‘Ivanhoe’’). Cate-

gories themselves are usefully structured into taxo-

nomies according to their generality/specificity. For

instance, ‘‘Book’’ is a specialization of ‘‘LibraryMater-

ial,’’ along with ‘‘Journal’’ and ‘‘DVD.’’ Moreover,

‘‘Book’’ has its own specializations, such as ‘‘Hard-

back,’’ ‘‘Paperback.’’

Many categories (e.g., ‘‘Person’’) are primitive, in

the sense that they don’t have a definition. By implica-

tion, there is no algorithm to determine whether a given

individual object is an instance of such a category – one

must be told explicitly such facts. Other categories

are defined, in the sense that instances can be recog-

nized based on some rule. For example, an instance

of ‘‘Teenager’’ can be recognized given an instance of

‘‘Person’’ and its age.

Relations relate two or more objects, for example

‘‘book45 is on loan to Lynn,’’ or ‘‘Trento is between

Bolzano and Verona’’ and can represent among others

a dependence of some sort between these objects. Each

relation is characterized by a positive integer n–its

arity–representing the number of objects being related.

In the example above, ‘‘onLoanTo’’ is binary, while

‘‘between’’ is ternary. Predicate logic notation is used

to express specific relations between individuals, e.g.,

‘‘between(Trento,Bolazano,Verona).’’ Like their indi-

vidual counterparts, relations can be grouped into

relation categories. In turn, relation categories can

be organized into subcategory hierarchies: ‘‘broth-

erOf ’’ and ‘‘sisterOf ’’ are subcategories of ‘‘siblingOf,’’

which in turn is a subcategory of ‘‘relativeOf.’’ A binary

relation category has a domain and a range. A cognitive

model can specify arbitrary constraints between rela-

tions and categories, which describe the valid states

(‘‘semantics’’) of the application domain. Cardinality

constraints, for instance, specify upper/lower bounds

on how many instances of the range of a relation

440C Conceptual Schema Design
can be associated to an instance of the domain, and

vice versa.

A subtle complexity arises when one wants to de-

scribe information about a relation, for example when

did it become or ceased to be true. In such cases the

modeler can resort to reification. For example, the reifi-

cation of ‘‘Trento is between Bolzano and Verona’’ con-

sists of creating a new individual, ‘‘btw73’’ which is an

instance of the category ‘‘Between’’ and is related to its

three arguments via three functional relations: ‘‘refersTo

(btw73,Trento),’’ ‘‘source(btw73,Bolzano),’’ ‘‘destination

(btw73,Verona).’’ Note that this representation allows

another instance of ‘‘Between,’’ say ‘‘btw22,’’ with func-

tions to the same three individuals. To avoid this redun-

dancy, one needs suitable constraints on ‘‘Between.’’ One

can now model other information about such reified

relations, e.g., ‘‘believes(yannis,btw73).’’

There are several categories of relations that deserve

special consideration.

PartOf (with inverse hasPart) represents the part-

whole relation that allows composite conceptualizations

consisting of simpler parts. PartOf actually represents

several distinct relations with different formal properties

[5]. Most prominent among them are the relations

componentOf (e.g., cover is a component of book)

and memberOf (e.g., player member of a team). PartOf

is frequently confused with other relations, such as

containment, connectedness, hasLocation. A useful diag-

nostic test for this confusion is to check that if A is

part of B, and B is damaged, then A is also considered

damaged. Note how ‘‘love-note placed inside book’’

fails this test.

The relation between an object and a category

is often called instanceOf, and the set of all instances

of a category are called its extension. The isA (subcate-

gory) relation represents a taxonomic ordering between

categories, e.g., ‘‘isA(HardcoverBook,Book).’’ The isA

relation is transitive and anti-symmetric and interacts

with instanceOf in an important way: if ‘‘isA(A, B)’’ and

‘‘instanceOf(x,A)’’ then ‘‘instanceOf(x,B).’’ Any general

statements one associates with a category, apply to all its

specializations. For example, ‘‘every book has a title’’ will

automatically apply to subcategories (‘‘every Hardcover-

Book has a title’’); this is called inheritance of con-

straints. In many cases, a group of subcategories are

mutually disjoint (e.g., ‘‘Hardcover,’’ ‘‘Paperback,’’ are

disjoint subcategories of the category ‘‘Book’’). Some-

times, a set of subcategories covers their common

parent category in the sense that every instance of the
latter is also an instance of at least one subcategory (for

example, ‘‘Male,’’ ‘‘Female’’ cover ‘‘Person’’). When

a collection of subcategories partitions a parent cate-

gory, it is often because some relation (e.g., ‘‘gender’’)

takes on a single value from an enumerated set (e.g.,

{‘‘M,’’ ‘‘F’’}).

When building an isA hierarchy, it is useful to start

by building a backbone consisting of primitive, disjoint

concepts that describe the basic categories of indivi-

duals in the application domain. Some categories can

be distinguished from others by their rigidity property:

an instance of the category remains an instance

throughout its lifetime. For example, ‘‘Person’’ is such

a category (in the sense of ‘‘once a person, always a

person’’), but ‘‘Student’’ is not. Once a backbone tax-

onomy has been constructed, other categories, such as

role categories, can be added to the hierarchy as spe-

cializations of the categories. Welty and Guarino [11]

present a principled approach to the construction of

taxonomies. A useful rule for building meaningful

isA hierarchies is to ensure that the children of any

category are all at the same level of granularity. A leaf

category in an isA hierarchy should be further refined

if it has instances that can be usefully grouped into

sub-categories, which participate in new relations or

which are subject to new constraints.

Categories may also be seen as objects, and can then

be grouped into meta-categories that capture common

meta-properties of their instances. For example, the

meta-category ‘‘LibraryMaterialType’’ has instances

such as ‘‘Book,’’ ‘‘Hardback’’ and ‘‘DVD,’’ and may have

an integer-valued meta-property such as ‘‘number-

on-order.’’

In most worlds there are not just enduring objects

but also occurrences of events, activities, processes,

etc., such as borrowing, renewing or returning a

book. These phenomena are called events. An event

can be described from a number of perspectives:

First, there are the participants in an event: the material

borrowed, the patron who did the borrowing, the

library from which the material was borrowed, the

date when the material is required to be returned, etc.

Often these participants are given names describing the

role they play in the event: ‘‘borrower,’’ ‘‘lender,’’ ‘‘due

date.’’ Second, every event takes place in time, so its

temporal aspects can be represented: starting and pos-

sibly ending time if it is of a long duration, cyclic

nature, etc. Third, events may also have parts – the

sub-events that need to take place (e.g., taking the

Conceptual Schema Design C 441

C

book to the counter, proffering the library card,...).

There may also be special relations, such as causality

or temporal precedence that hold among events.

In database modeling, one often ignores events

because they are transient, while the database is sup-

posed to capture persistence. However, events are in

fact present in the background: relations between

objects other than ‘‘partOf ’’ are usually established or

terminated by events. The ‘‘onLoan’’ relation, for ex-

ample, is created by a ‘‘borrow’’ event and terminated

by a ‘‘return’’ event. And values for many qualities (e.g.,

the size or weight of an object) are established through

events representing acts of observation. As a result,

relations often carry information about the events.

Thus information about the ‘‘borrow’’ activity’s parti-

cipants is present in the arguments of the ‘‘onLoan’’

relation. And since ‘‘renew’’ shares the main partici-

pants of ‘‘borrow,’’ its traces can also be attached to

‘‘onLoan,’’ through an additional temporal argument,

such as ‘‘lastRenewedOn.’’

Note that it is application requirements that deter-

mine the level of detail to be maintained in a cogni-

tive model. For example, whether or not one records

the time when the borrowing and renewal occurred,

or whether it is sufficient to have a ‘‘dueDate’’ attribute

on the ‘‘onLoan’’ relation. In addition, the details of

the subparts of ‘‘borrow’’ will very likely be suppressed.

On the other hand, semantic relations between events,

such as the fact that a book renewal can only occur

after the book has been borrowed, do need to be

captured.

Because databases often have multiple sets of users,

there may be several conflicting interpretations of

terms and information needs. The important process

of reconciling such conflicts, known in part as ‘‘view

integration’’ is not addressed in this entry.

From a cognitive model to a conceptual schema.

The above account has focused on the construction of a

model that captures information requirements in terms

of cognitive primitives, with constraints expressed in a

possibly very rich language. Every effort was made to

keep the modeling and methodology independent of a

particular modeling language. Next, one must tackle the

problem of producing a conceptual schema expressed in

some particular formal notation, in this case the EER.

Comparable discussions apply if the target was UML

class diagrams, or even OWL ontologies.

The basic mapping is quite straightforward: cate-

gories of individuals in the conceptual model are
mapped to ER entity sets; relation categories in the

conceptual model are modeled directly as relationship

sets, with the participating entities playing (potentially

named) roles in the relationship set. Qualities and

values related to individuals by binary relations, or

appearing as arguments of relations become attributes.

Cardinality constraints of the cognitive model are

mapped directly to the conceptual schema.

One complex aspect of EER schema development

is the definition of keys consisting of one or more

attributes that uniquely distinguish each individual

instance of an entity set. Moreover, the values of these

attributes must be stable/unchanging over time. For

example, ‘‘isbnNr’’ or ‘‘callNumber’’ would be a natural

key attributes for ‘‘Book.’’ Globally unique identifiers are

actually relatively rare. Instead, entities are often identi-

fied with the help of intermediate relationships (and

attributes). For example, ‘‘BookCopy,’’ has attribute

‘‘copyNr,’’ which surely does not identify a particular

book copy; but if ‘‘BookCopy’’ is represented as a weak

entity, related to ‘‘Book’’ via the ‘‘copyOf ’’ identifying

relationship then ‘‘BookCopy’’ will have a composite

identifier. In other situations where one would need a

large set of attributes to identify an entity, and espe-

cially if these attributes are not under the control of

database administrators, the designer may introduce

a new surrogate entity attribute specifically for identi-

fication purposes (e.g., ‘‘studentId’’ for the entity set

‘‘Student’’).

Sub-categories, with possible disjoint and coverage

constraints, are represented in a direct manner in EER

since it supports these notions. Significantly, in most

version of EER key attribute(s) can only be specified

for the top-most entity in a hierarchy, and must then

be inherited by all sub-entities. Therefore one cannot

have ‘‘Employee’’ with key ‘‘ssn,’’ while sub-class ‘‘Tea-

chingAssistant’’ has key ‘‘studentId.’’ The reason for

this is to avoid multiple ways of referring to what

would otherwise be the same individual.

Since the EER model supports n-ary relationships,

reified relationships are normally only required in case

the model needs to make ‘‘meta’’ statements about rela-

tionships, e.g., recording that a particular loan was ver-

ified by a clerk. In variants of the EER that allow aggregate

relationships, this is modeled by relating entity ‘‘Clerk’’

via relationship ‘‘hasVerified’’ to the aggregate represent-

ing the ‘‘lentTo’’ relationship. In impoverished variants

of EER that do not support aggregates, this can be

encoded using weak entities that reify the relationship.

442C Conceptual Schema Design
The EER notation (in constrast to UML, say),

does not provide support for distinguishing partOf

relationships, nor for relationship hierarchies. How-

ever, the designer may encode these using reified

relationships.

Conceptual Schema Design in Practice

There is a plethora of commercial tools for conceptual

schema design based on the EER model or UML class

diagrams. These support the drawing, documenting

and layout of conceptual schemas, and even the auto-

matic generation of standard logical (relational)

schemas to support database design.

More advanced tools, such as icom (http://www.

inf.unibz.it/~franconi/icom/), allow not just the draw-

ing of conceptual schemas, but their translation to

formal logic. Advantages of such tools include (i) pre-

cise, formal semantics for all the constructs of the

conceptual model; (ii) the ability to check the concep-

tual schema for consistency–an issue which is particu-

larly interesting in the case of finite models; (iii) the

ability to augment a conceptual schema with con-

straints expressed in the underlying logic.

Key Applications
Conceptual schema design is the first–and for many

the most important–step in the design of any database.

Future Directions
One of the major research challenges of the new cen-

tury is data integration, and the semantics of data

captured in conceptual models has been shown to

form a useful foundation for merging multiple infor-

mation sources. In this context, one can imagine using

a conceptual schema as the mediating schema to access

different database sources.

The advent of the Web has made databases a public

resource that can be shared world-wide. In such a

setting, where the user may know nothing about a

database she is accessing, the issues that dominate are

(i) encapsulating the semantics of data along with the

data, so that the user can interpret the data; (ii) ensur-

ing data quality, so that the user can determine wheth-

er the data are suitable for her purposes; (iii) ensuring

compliance with privacy, security and governance reg-

ulations. In turn, these new requirements are going

to redefine the scope of database design in general

and conceptual schema design in particular.
Specifically, extended conceptual modeling lan-

guages and conceptual schema design techniques are

envisioned where quality, privacy, security and gover-

nance policies can be expressed explicitly and can be

accommodated during the design process to produce

conceptual schemas that are well-suited to address

such concerns. We also envision extensions to concep-

tual modeling languages that introduce primitive con-

cepts for modeling dynamic, intentional and social

aspects of an application domain. These aspects con-

stitute an important component of the semantics

of any database and a prerequisite for dealing with

data quality and regulation compliance.

Cross-references
▶Conceptual Data Model

▶Description Logics

▶ Logical Schema Design

▶ Schema Integration

▶ Semantic Data Model

Recommended Reading
1. Abrial J-R. Data Semantics. In Data Management Systems,

K. Koffeman North-Holland, Amsterdam, 1974.

2. Atzeni P., Ceri S., Paraboschi S., and Torlone R. Database

Systems: Concepts, Languages & Architectures. McGraw Hill,

New York, 1999.

3. Batini C., Ceri S., and Navathe S. Conceptual Database Design.

Benjamin/Cummings Publishing Company, Inc., Menlo Park,

CA, 1991.

4. Chen P.P. The entity-relationship model – toward a unified view

of data. ACM Trans. Database Syst., 1(1):9–36, 1976.

5. GangemiA.,GuarinoA.,MasoloC.,Oltramari A., and Schneider L.

Sweetening ontologies with DOLCE. In Proc. 12th Int. Conf.

Knowledge Eng. and Knowledge Management: Ontologies and

the Semantic Web, 2002, pp. 166–181.

6. Guizzardi G., Herre H., and Wagner G. Towards Ontological

Foundations for UMLConceptual Models. In Proc. Confederated

Int. Conf. DOA, CoopIS and ODBASE, 2002, pp. 1100–1117.

7. Rumbaugh J., BlahaM., Premerlani W., Eddy F., and LorensenW.

Object-Oriented Modeling and Design. Prentice Hall, Englewood

Cliffs, NJ, 1991.

8. Sakai H. Entity-relationship approach to the conceptual schema

design. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1980, pp. 1–8.

9. Teorey T., Yang D., and Fry J. A logical design methodology for

relational databases using the extended entity-relationship

model. ACM Comput. Surv., 18(2):197–222, 1986.

10. Wand Y., Storey V.C., and Weber R. An ontological analysis of

the relationship construct in conceptual modeling. ACM Trans.

Database Syst., 24(4):494–528, 1999.

11. Welty C. and Guarino N. Supporting ontological analysis of

taxonomic relationships. Data Knowl. Eng., 39:51–74, 2001.

Concurrency Control – Traditional Approaches C 443
Conceptual Schemas

▶Resource Description Framework (RDF) Schema

(RDFS)

C

Concurrency Control

▶Concurrency Control – Traditional Approaches

▶Correctness Criteria Beyond Serializability

▶ Performance Analysis of Transaction Processing

Systems
Concurrency Control – Traditional
Approaches

GOTTFRIED VOSSEN

University of Münster, Münster, Germany

Synonyms
Concurrency control; Transaction execution; Schedul-

ing; Page locking; Two-phase-locking

Definition
The core requirement on a transactional server is to

provide the ACID properties for transactions, which

requires that the server includes a concurrency control
Concurrency Control – Traditional Approaches. Figure 1. I
component as well as a recovery component. Con-

currency control essentially guarantees the isolation

properties of transactions, by giving each transaction

the impression that it operates alone on the underlying

database and, more technically, by providing serializable

executions. To achieve serializability, a number of algo-

rithms have been proposed. Traditional approaches

focus on the read-writemodel of transactions and devise

numerous ways for correctly scheduling read-write

transactions. Most practical solutions employ a variant

of the two-phase locking protocol.

Key Points
Concurrency control for transactions is done by the

transaction manager of a database system and within

that component by a scheduler. The scheduler imple-

ments an algorithm that takes operations from active

transactions and places them in an interleaving or

schedule that must obey the correctness criterion of

serializability. As illustrated in Fig. 1, which indicates

the ‘‘positioning’’ of a transaction manager within

the multi-layer architecture of a database system, the

scheduler receives steps from multiple transactions, one

after the other, and tries to attach them to the schedule

already output. This is possible if the new schedule is

still serializable; otherwise, the scheduler can block or

even reject a step (thereby causing the respective trans-

action to abort) [1,5,6]. The algorithm a scheduler

follows must be such that serializability can be tested
llustration of a transaction scheduler.

Concurrency Control – Traditional Approaches.

Figure 2. Overview of concurrency control protocol

classes.

444C Concurrency Control – Traditional Approaches
on the fly; moreover, it must be very efficient so that

high throughput rates (typically measured in [com-

mitted] transactions per minute) can not only be

achieved, but even be guaranteed.

Classification of Approaches

Scheduling algorithms for database transactions can be

classified as ‘‘traditional’’ if they concentrate on sched-

uling read-write transactions; non-traditional schedu-

lers takes semantic information into account which is

not available at the syntactic layer of read and write page

operations. Traditional schedulers generally fall into two

categories: A scheduler is optimistic or aggressive if it

mostly lets steps pass and rarely blocks; clearly, this

bears the danger of ‘‘getting stuck’’ eventually when the

serializability of the output can no longer be guaran-

teed. An optimistic scheduler is based on the assump-

tion that conflicts between concurrent transactions are

rare; it will only test from time to time whether the

schedule produced so far is still serializable, and it takes

appropriate measures if the schedule is not.

On the other hand, a scheduler is pessimistic or

conservative if it mostly blocks (upon recognizing con-

flicts); in the extreme yet unlikely case that all transac-

tions but one have been blocked, the output would

become a serial schedule. This type of scheduler is

based on the assumption that conflicts between trans-

actions are frequent and therefore need to be con-

stantly observed. Pessimistic schedulers can be locking

or non-locking schedulers, where the idea of the former

is to synchronize read or write access to shared data

by using locks which can be set on and removed from

data items on behalf of transactions. The intuitive

meaning is that if a transaction holds a lock on a data

object, the object is not available to transactions that

execute concurrently. Non-locking schedulers replace

locks, for example, by timestamps that are attached

to transactions. Among locking schedulers, the most

prominent protocol is based on a two-phase appro-

ach (and hence abbreviated two-phase locking or

2PL) in which, for each transaction, a first phase dur-

ing which locks are obtained is strictly separated from a

second phase where locks can only be released. Non-

two-phase schedulers replace the two-phase property,

for example, by an order in which transactions may

access data objects. Figure 2 summarizes the major

classes of concurrency control protocols. Beyond the

approaches shown in Fig. 2, the concurrency control

problem can even be broken into two subproblems,
which could then be solved individually by possibly

distinct protocols: (i) read operations are synchronized

against write operations or vice versa; (ii) write opera-

tions are synchronized against other write operations,

but not against reads. If these synchronization tasks are

distinguished, a scheduler can be thought of as con-

sisting of two components, one for each of the respec-

tive synchronization tasks. Since the two components

need proper integration, such a scheduler is called a

hybrid scheduler. From an application point of view,

most classes of protocols surveyed above, including the

hybrid ones, have not achieved great relevance in prac-

tice. Indeed, 2PL is by far the most important concur-

rency control protocol, since it can be implemented

with low overhead, it can be extended to abstraction

levels beyond pure page operations, and it has always

outperformed any competing approaches [2–4].

Cross-references
▶B-Tree Locking

▶Distributed Concurrency Control

▶ Locking Granularity and Locks Types

▶ Performance Analysis of Transaction Processing

Systems

▶ Serializability

▶ Snapshot Isolation

▶Two-Phase Locking

Recommended Reading
1. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison-Wesley,

Reading, MA, 1987.

Concurrency Control Manager C 445

C

2. Bernstein P.A. and Newcomer E. Principles of Transaction Pro-

cessing for the Systems Professional. Morgan Kaufmann, San

Francisco, CA, 1997.

3. Claybrook B. OLTP – Online Transaction Processing Systems.

Wiley, New York, 1992.

4. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1993.

5. Papadimitriou C.H. The Theory of Database Concurrency Con-

trol. Computer Science, Rockville, MD, 1986.

6. Weikum G. and Vossen G. Transactional Information Systems –

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, San Francisco, CA, 2002.
Concurrency Control and Recovery

▶Transaction Management
Concurrency Control Manager

ANDREAS REUTER
1,2

1EML Research GmbH Villa Bosch, Heidelberg,

Germany
2Technical University Kaiserslautern, Kaiserslautern,

Germany

Synonyms
Concurrency control manager; Lock manager;

Synchronization component

Definition
The concurrency control manager (CCM) synchro-

nizes the concurrent access of database transactions

to shared objects in the database. It is responsible for

maintaining the guarantees regarding the effects of

concurrent access to the shared database, i.e., it will

protect each transaction from anomalies that can result

from the fact that other transactions are accessing the

same data at the same time. Ideally, it will make sure

that the result of transactions running in parallel is

identical to the result of some serial execution of the

same transactions. In real applications, however, some

transactions may opt for lower levels of synchroniza-

tion, thus trading protection from side effects of other

transactions for performance. The CCM is responsible

for orchestrating all access requests issued by the trans-

actions such that each transaction receives the level

of protection it has asked for. The CCM essentially
implements one of a number of different synchroniza-

tion protocols, each of which ensures the correct exe-

cution of parallel transactions, while making different

assumptions regarding prevalent access patterns, fre-

quency of conflicts among concurrent transactions,

percentage of aborts, etc. The protocol that most

CCMs are based on is using locks for protecting data-

base objects against (inconsistent) parallel accesses;

for that reason, the CCM is often referred to as the

‘‘lock manager.’’ Some CCMs distinguish between mul-

tiple versions of a data object (e.g., current version,

previous version) in order to increase the level of

parallelism [2].

Key Points
The CCM monitors all access requests issued by

higher-level components, be it to the primary data

(tuples, records), or to access paths, directory data,

etc. on behalf of the database transactions. This infor-

mation (transaction X accesses object O in order to

perform action A at time T) is employed in different

ways, depending on the synchronization protocol used.

In case of locking protocols, each access request has to be

explicitly granted by the CCM. If no conflict will arise by

performing action A on object O, the access request is

granted. If, however, a conflict is detected (e.g., A is an

update request, and some other transaction Y is already

updating object O), the request is not granted, and the

CCM will record the fact that X has to wait for the

completion of transaction Y. In case of optimistic proto-

cols, the requests are granted right away, but when X

wants to commit, all its accesses are checked for conflicts

with accesses performed by other transactions that are

either still running or have committed while X was active.

In those situations the time T of the access request is

relevant. So the basic data structure maintained by the

CCM is a table of accesses/access requests. For locking

protocols, the CCM will also maintain a list of which

transaction waits for the completion of which other

transaction(s). That list is tested by the CCM for dead-

locks. If a deadlock or, in case of optimistic protocols, a

conflict is detected, the CCM decides which transaction

will be aborted. It then informs the transaction manager,

who will initiate the abort; rollback of the operations is

performed by the recovery manager [1].

Cross-references
▶Degrees of Consistency

▶Dependency

446C Condition Event Nets
▶ Isolation

▶ Locking

▶ Scheduling

▶ Synchronization

Recommended Reading
1. Gray J. and Reuter A. Transaction Processing – Concepts and

Techniques. Morgan Kaufmann, San Mateo, 1993.

2. Weikum G. and Vossen G. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control.

Morgan Kaufmann, San Mateo, 2001.
T1 A B C ’
Condition Event Nets

▶ Petri Nets

a b x true

e f g true

T2 B C D ’

y c d true
Conditional Branching

▶OR-Split
Conditional Routing

▶OR-Split
Conditional Tables

GÖSTA GRAHNE

Concordia University, Montreal, QC, Canada

Synonyms
C-tables; Extended relations

Definition
A conditional table [4] generalizes relations in two

ways. First, in the entries in the columns, variables,

representing unknown values, are allowed in addition

to the usual constants. The second generalization is

that each tuple is associated with a condition, which

is a Boolean combination of atoms of the form x = y,

x = a, a = b, for x, y null values (variables), and a, b

constants. A conditional table essentially represents an

existentially quantified function free first order theory.
Formally, let con be a countably infinite set of con-

stants, and var be a countably infinite set of variables,

disjoint from con. LetU be a finite set of attributes, and

R
U a relational schema. A tuple in a c-table over R is

a mapping from R, and a special attribute, denoted ’,

to con [var [b, where b is the set of all Boolean

combinations of equality atoms, as above. Every attri-

bute in Rmaps to a variable or a constant, and ’maps

to b. In a multirelational database schema, there are

multi-tables, meaning in effect that variables can be

shared between tables (just as constants are). An exam-

ple of a 2-multitable is shown below. The conditions ’

are all true, and it so happens that the two tables do not

share any variables.
Key Points
It is now possible to extend the complete set of regular

relational operators {p,s,⋈,[,�,r} to work on

c-tables. To distinguish the operators that apply to

tables from the regular ones, the extended operators

are accented by a dot. For instance, c-table join is

denoted ffl_ . The extended operators work as follows:

projection _p is the same as relational projection, except

that the condition column ’ can never be projected

out. Selection _sA=a(T) retains all tuples t in table T,

and conjugates the condition t(A) = a to t(’). A join

Tffl_ T 0 is obtained by composing each tuple t 2 Twith

each tuple t 02 T 0. The new tuple t � t 0 has condition
t(’) ∧ t 0(’) ∧ d(t,t 0), where condition d(t,t 0) states

that the two tuples agree on the values of the join

attributes. The example below serves as an illustration

of this definition. The union [_ is the same as relation-

al union, and so is renaming _r, except that the ’-

column cannot be renamed. Finally, the set difference,

say T _�T 0 is obtained by retaining all tuples t 2 T and

conjugating to them the condition stating that the

tuple t differs from each tuple t0 in T 0. A tuple t differs

from a tuple t0, if it differs from t0 in at least one

column.

Confidentiality Protection C 447
Let T1 and T2 be as in the figure above. The

three c-tables in the figure below, illustrate the

result of evaluating _sC=g(T1), T1 ffl_ T2, and

_pBCðT 2Þ _� _pBCðT 1Þ, respectively.
A B C ’

a b x x = g

e f g g = g

A B C D ’

a y x d b = y ∧ x = c

e y g d f = y ∧ g = c

B C ’

y c (y6¼b ∨ c6¼x) ∧ (y6¼f ∨ c6¼g)

C

Note that the second tuple in the first c-table has

a tautological condition. Likewise, since any two con-

stants differ, the condition of the second tuple in the

middle c-table is contradictory.

So far, nothing has been said about what the

c-tables mean. In the possible worlds interpretation,

an incomplete database is a usually infinite set of ordi-

nary databases, one of which corresponds to the actual

(unknown) database. Considering c-tables, they serve as

finite representations of sets of possible databases. One

(arbitrary) such database is obtained by instantiating the

variables in the c-table to constants. Each occurrence of a

particular variable is instantiated to the same constant.

Formally, the instantiation is a valuation v : con [var!
con, that is identity on the constants. Valuations are

extended to tuples and conditions tables in the obvious

way, with the caveat that given a particular valuation v,

only those tuples t for which v(t(j)) � true, are

retained in v(T). Consider for instance the first table

above. For those valuations v, for which v(x) = g, there

will be two tuples in v(T), namely (a,b,g) and (e,f,g).

For valuations v 0, for which v(x) 6¼g, there will only be
the tuple (e,f,g) in v 0(T).

The remarkable property of c-tables is that for all

c-tables T and relational expressions E, it holds that

v(_E(T)) = E(v(T)) for all valuations v. In other

words, the extended algebra is a Codd sound and
complete inference mechanism for c-tables. Further-

more, c-tables are closed under relational algebra,

meaning that the result of applying any relational

expression on any (schema-wise appropriate) c-table

can be represented as another c-table. The extended

algebra actually computes this representation, as was

seen in the example above.

Needless to say, all of this comes with a price.

Testing whether a c-table is satisfiable, that is, whether

there exists at least one valuation v, such that v(T) 6¼ ;
is an NP-complete problem [2]. Furthermore, even if

one starts with a simple c-table where all variables are

distinct, and all conditions are true, applying even a

monotone relational expression to such a c-table can

result in quite a complex table, so here again [2]

satisfiability of the resulting table is NP-complete [2].

To make matters even worse, testing containment

of c-tables is Pp
2-complete. A c-table T is contained in

a c-table T 0, if every for every valuation v of T, there

exists a valuation v 0 of T 0, such that v(T) = v(T 0).

Nonetheless, c-tables possess a natural robustness.

For instance, it has been shown [1,3] that the set of

of possible databases defined by a set of materialized

views, can be represented as a c-table.

Cross-references
▶Certain (and Possible) Answers

▶ Incomplete Information

▶Maybe answer

▶Naive tables
Recommended Reading
1. Abiteboul S., Duschka O.M. Complexity of Answering Queries

Using Materialized Views. In Proc. 17th ACM SIGACT-SIG-

MOD-SIGART Symp. on Principles of Database Systems, 1998,

pp. 254–263.

2. Abiteboul S., Kanellakis P.C., Grahne G. On the Representation

and Querying of Sets of Possible Worlds. Theor. Comput. Sci.,

78(1):158–187, 1991.

3. Grahne G., Mendelzon A.O. Tableau Techniques for Querying

Information Sources through Global Schemas. In Proc. 7th Int.

Conf. on Database Theory, 1999, pp. 332–347.

4. Imielinski T., Lipski W. Jr. Incomplete Information in Relational

Databases. J. ACM, 31(4):761–791, 1984.
Confidentiality Protection

▶ Statistical Disclosure Limitation For Data Access

448C Conflict Serializability
Conflict Serializability

▶Two-Phase Locking
Conjunctive Query

VAL TANNEN

University of Pennsylvania, Philadelphia, PA, USA

Synonyms
SPC query; Horn clause query

Definition
Conjunctive queries are first-order queries that both

practically expressive and algorithmically relatively

tractable. They were studied first in [2] and they have

played an important role in database systems since

then.

As a subset of the relational calculus, conjunctive

queries are defined by formulae that make only use of

atoms, conjunction, and existential quantification. As

such they are closely related to Horn clauses and hence

to logic programming. A single Datalog rule can be

seen as a conjunctive query [1].

Optimization and reformulation for various pur-

poses is quite feasible for conjunctive queries, as op-

posed to general relational calculus/algebra queries.

The equivalence (and indeed the containment) of con-

junctive queries is decidable, albeit NP-complete [1].

Key Points
This entry uses terminology defined in the entry Rela-

tional Calculus.

Conjunctive queries are first-order queries of a par-

ticular form: {he1,...,eni j ∃x1...xmc} where c is an

(equality-free) conjunction of relational atoms, i.e.,

atoms of the form R(d1,...,dk) (where d1,...,dk are

variables of constants). In addition, it is required that

any variable among e1,...,en must also occur in one of

the relational atoms of c. This last condition, called
range restriction [3] is necessary for domain indepen-

dence, e.g., consider {(x, y)jR(x)}, and, in fact, it is also

sufficient.

The semantics of a conjunctive query in an instance

I , as a particular case of first-order queries, involves

assignments m defined on the variables among e1,...,en
such that I ; m �9 x1:::xmc. Note however that this is
the same as extending m to a valuation n defined in

addition on x1...xm and such that I ; n �c . Since c is

a conjunction of relational atoms, this amounts to n
being a homomorphism from c seen as a relational

instance (the canonical instance associated to the

query) into I . This simple observation has many useful

consequences, including some that lead to the decid-

ability of equivalence (containment). It also leads to an

alternative way of looking at conjunctive queries,

related to logic programming. Here is an example of

a conjunctive query in both relational calculus form

and in a Prolog-like, or ‘‘rule-based,’’ formalism, also

known as a Datalog rule [1,3]:

fðx; c; xÞ j 9y Rðc; yÞ ^ Sðc; x; yÞgansðx; c; xÞ :
� Rðc; yÞ; Sðc; x; yÞ

In the spirit of rule-based/logic programming, the out-

put tuple of a conjunctive query is sometimes called the

‘‘head’’ of the query and the atom conjunction part

the ‘‘body’’ of the query. So far, this discussion has

considered only the class CQ of conjunctive without

equality in the body. The class CQ= which allows equal-

ities in the body defines essentially the same queries

but there are a couple of technical complications. First,

the range restriction condition must be strengthened

since, for example, {(x, y)j∃z R(x) ∧ y = z} is domain

dependent. Therefore, for CQ= it is required that any

variable among e1,...,en must equal, as a consequence

of the atomic equalities in c, some constant, or some

variable that occurs in one of the relational atoms of c.
CQ= has the additional pleasant property (shared,

in fact, with the full relational calculus) that query

heads can be restricted to consist of just distinct

variables.

Clearly CQ
 CQ=. The converse is ‘‘almost true.’’

It is possible to get rid of equality atoms in a conjunc-

tive query iff the query is satisfiable i.e., there exists

some instance on which the query returns a non-

empty answer. All the queries in CQ are satisfiable

(take the canonical instance). Queries in CQ= are sat-

isfiable iff the equalities in their body do not imply the

equality of distinct constants. Thus, for conjunctive

queries (of both kinds) satisfiability is decidable, as

opposed to general first-order queries. Now, any satis-

fiable query in CQ= can be effectively translated into an

equivalent query in CQ.

The conjunctive queries correspond to a specific

fragment of the relational algebra, namely the fragment

Connectionist Model C 449

C

that uses only the selection, projection, and cartesian

product operations. This fragment is called the SPC

algebra. There is an effective translation that takes

every conjunctive query into an equivalent SPC algebra

expression. There is also an effective translation that

takes every SPC algebra expression into an equivalent

conjunctive query.

Via the translation to the SPC algebra it can be seen

that conjunctive queries correspond closely to certain

SQL programs. For example, the CQ= query ans(x, y) :

�R(x, z), x = c, S(x, y, z) corresponds to

select r.1, s.2

from R r, S s

where r.1=c and s.1=r.1 and r.3=s.2

Such SQL programs, in which the ‘‘where’’ clause is a

conjunction of equalities arise often in practice. So,

although restricted, conjunctive queries are important.

Cross-references
▶Datalog

▶Relational Algebra

▶Relational Calculus

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases:

The Logical Level. Addison Wesley, Reading, MA, 1994.

2. Chandra A.K. and Merlin P.M. Optimal Implementation of

Conjunctive Queries in Relational Data Bases. In Proc. 9th

Annual ACM Symp. on Theory of Computing, 1977, pp. 77–90.

3. Ullman J.D. Principles of Database and Knowledge-Base Sys-

tems, Vol. I. Computer Science, Rockville, MD, 1988.
Connection

SAMEH ELNIKETY

Microsoft Research, Cambridge, UK

Synonyms
Database socket

Definition
A connection is a mechanism that allows a client to

issue SQL commands to a database server. In a typical

usage, the client software opens a connection to the

database server, and then sends SQL commands and

receives responses from the server.

To open a connection, the client specifies the data-

base server, database name, as well as the client’s
credentials. Opening the connection includes a hand-

shake between the client software and the database

server. The client sends its credentials, for example in

the simplest form a user name and password. The

server examines the credentials to authorize the con-

nection. Further information may also be negotiated

such as the specific protocol and data encoding.

Key Points
Handling and servicing connections is an important

part of database servers because connections are the

main source of concurrency.

Database servers limit the number of connections

they can accept and may provide differentiated service

to connections from high priority clients (e.g., from

database administrators).

Connections are implemented using inter-process

(e.g. pipes) or remote (e.g., TPC sockets) communica-

tion mechanisms. Database vendors and third-party

providers supply libraries that client programs use

to open connections to database servers. Several stan-

dards have emerged such as ODBC (Open Database

Connectivity) [2], JDBC (Java Database Connectivity)

[3], andADO.NET (data access classes inMicrosoft.NET

platform) [1].

When client software uses a database system exten-

sively, it employs a connection pool to reuse a group of

open connections, allowing multiple concurrent SQL

commands. Using a connection pool avoids closing

and reopening connections, as well as opening too

many connections that tie up resources at both ends

of the connection.

Cross-references
▶ Session

Recommended Reading
1. Adya A., Blakeley J., Melnik S., and Muralidhar S. Anatomy of

the ADO.NET entity framework. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2007, pp. 877–888.

2. Data Management: SQL Call Level Interface (CLI), Technical

Standard C451–15/10/1993, The Open Group.

3. Sun Microsystems, Java Database Connectivity. Available at:

http://java.sun.com/javase/technologies/database/
Connectionist Model

▶Neural Networks

450C Consistency in Peer-to-Peer Systems
Consistency in Peer-to-Peer Systems

▶Updates and Transactions in Peer-to-Peer Systems
Consistency Models For Replicated
Data

ALAN FEKETE

University of Sydney, Sydney, NSW, Australia

Synonyms
Replica consistency; Memory consistency

Definition
When a distributed database system keeps several copies

or replicas for a data item, at different sites, then the

system may ensure that the copies are always consistent

(that is, they have the same value), or the system may

allow temporary discrepancy between the copies. Even if

the copies are not the same, the algorithms that manage

the data may be able to hide the discrepancies from

clients. A consistency model defines the extent to

which discrepancies can exist or be observed, between

the copies. If the system offers a strong consistency

model, then clients will not be aware of the fact that

the system has replicated data, while a weak consistency

model requiresmore careful programming of the clients,

so they can cope with the discrepancies they observe.

Historical Background
Most replication research in the 1970s aimed to pro-

vide the illusion of an unreplicated database offering

serializability. In the early 1980s, Bernstein and collea-

gues formalized this notion as a strong consistency

model [2].

The late 1980s and early 1990s focused on systems

that offered weak consistency in various definitions.

Eventual consistency was introduced in the work of

Demers et al. [3], while consistency models in which

reads might see stale values were also explored by sev-

eral groups [1,5].

Since 2000, a new strong consistency model, one-

copy SI, was introduced [4], and it has attracted much

attention.

Foundations
There are many different system architectures that can

be used for a distributed database with replicated data.
For example, clients may submit operations directly to

the different databases, or instead requests may all go

through a middleware layer; the local databases may

communicate directly with one another, or only with

the clients or middleware; the requests that arrive at a

local database may be a read or write on the local

replica of an item, or they may be a SQL statement

(which might involve many reads and/or writes), or

indeed a whole transaction may form a single request;

a read may be performed on one replica and writes on

all replicas (read-one-write-all), or else a complex quo-

rum rule may determine where reads and writes are

performed; and each site may perform the operations

once only, or else there may be possibilities for opera-

tions to be done tentatively, then (after conflicting

information is received) the system might be able to

roll back some operations and then replay them in a

different order. Sometimes several system designs offer

clients the same functionality, so the choice would be

based only on performance, or the validity of assump-

tions in the design (such as the ability to know in

advance which transactions access which items). If

the client cannot learn, by the values returned or the

operations which are allowed, which system design is

used, then one can say that the different designs offer

the same consistency model. However, sometimes a

difference in design does change the functionality of

the whole system, in ways that clients can detect. If one

abstracts away the details of the system design, and

instead focuses on what the essential features are that

distinguish between the properties, then one is describ-

ing the consistency model offered by the system. For

example, some system designs allow clients to learn

about the existence of several copies. Perhaps one client

might read the same item several times and see different

values in each read. These values may have been taken

from different older transactions. This can’t happen in

a system where all the data is at one site, with one copy

for each item. Thus this system provides a consistency

model which reveals the existence of copies to the

client.

A system provides a strong consistency model if

it provides clients with the illusion that there is a

single copy of each piece of data, hiding all evidence

of the replication. There are in fact several variants

among strong models, because there are several differ-

ent isolation models used by different DBMS plat-

forms, and because the formal definition of isolation

doesn’t always capture exactly the properties of an

Consistency Preservation C 451

C

implementation. For example, one-copy serializability

(q.v.) was defined in [2] as a consistency model in

which clients have the illusion of working with a sin-

gle-site unreplicated database which uses a concurren-

cy control algorithm that offer serializability (q.v.) as

the isolation level. In contrast, one-copy SI [4] is a

different strong consistency model, where clients

see the same behaviors as in an unreplicated system

where concurrency control is done by Snapshot Iso-

lation (q.v.).

In contrast to strong consistency models which

maintain an illusion of a single-site system, in weaker

models the clients are able to see that the system has

replicas. Different models are characterized by the ways

in which the divergence between replicas is revealed.

The best-known weak consistency model is eventual

consistency (q.v.) which is suitable for replicated data-

bases where an updating transaction can operate at any

replica, and the changes are then propagated lazily to

other replicas through an epidemic mechanism. Even-

tually, each replica learns about the updates, and this

consistency model ensures that a reconciliation mech-

anism resolves conflicting information, so that when

the system quiesces, the values in all the replicas of

a logical item eventually converge to the same value. In

a system providing eventual consistency, there is

not much that can be said about the value seen by a

read, before convergence has been reached.

A different weak consistency model is common in

systems where there is a single master copy for each

item, and all updates are done first at the master, before

being propagated in order, to the replicas. In this

model, writes happen in a well-defined order, and

each read sees a value from some prefix of this order;

however, a read can see a value that is stale, that is, it

does not include the most recent updates to the item.

Key Applications
The commercial DBMS vendors all offer replication

mechanisms with their products. The performance

impact of strong consistency models is usually seen

as high, and these are typically provided only within

a single cluster. For replication across dispersed

machines, most platforms offer some form of weak

consistency. There are also a range of research proto-

types which give the user a choice between several

consistency models; in general the user sees a tradeoff,

where improved performance comes from accepting

weaker consistency models.
Future Directions
Effective database replication is not yet a solved prob-

lem; the existing proposals compromise somehow

among many desired properties, such as scalability

for read-heavy workloads, scalability for update-

heavy workloads, availability in face of failures or par-

titions, generality of the clients supported, ease of

system programming, capacity to use varied local data-

bases as black boxes, and the consistency provided.

Thus the design space of possible systems is still

being actively explored, and sometimes a new design

achieves a consistency model different from those pre-

viously seen. One topic for ongoing research is how

users can express their requirements for performance

and for different levels of consistency, and how a sys-

tem can then choose the appropriate replica control

mechanism to provide the user with what they need.

Research is also likely in consistency models that deal,

to some extent, with malicious (often called ‘‘Byzan-

tine’’) sites.
Cross-references
▶Data Replication

▶ Strong Consistency Models for Replicated Data

▶Weak Consistency Models for Replicated Data

Recommended Reading
1. Alonso R., Barbará D., and Garcia-Molina H. Data caching

issues in an information retrieval system. ACM Trans. Database

Syst., 15(3):359–384, 1990.

2. Attar R., Bernstein P.A., and Goodman N. Site initialization,

recovery, and backup in a distributed database system. IEEE

Trans. Software Eng., 10(6):645–650, 1984.

3. Demers A.J., Greene D.H., Hauser C., Irish W., Larson J.,

Shenker S., Sturgis H.E., Swinehart D.C., and Terry D.B.

Epidemic algorithms for replicated database maintenance. In

Proc. ACM SIGACT-SIGOPS 6th Symp. on the Principles of

Dist. Comp., 1987, pp. 1–12.

4. Plattner C. and Ganymed G.A. Scalable replication for transac-

tional web applications. In Proc. ACM/IFIP/USENIX Int.

Middleware Conf., 2004, pp. 155–174.

5. Sheth A.P. and Rusinkiewicz M. Management of interdependent

data: specifying dependency and consistency requirements.

In Proc. Workshop on the Management of Replicated Data,

1990, pp. 133–136.
Consistency Preservation

▶ACID Properties

452C Consistent Facts
Consistent Facts

▶ Possible Answers
Consistent Query Answering

LEOPOLDO BERTOSSI

Carleton University, Ottawa, ON, Canada

Definition
Consistent query answering (CQA) is the problem of

querying a database that is inconsistent, i.e., that fails

to satisfy certain integrity constraints, in such a way

that the answers returned by the database are consis-

tent with those integrity constraints. This problem

involves a characterization of the semantically correct

or consistent answers to queries in an inconsistent

database.

Key Points
Databases may be inconsistent in the sense that cer-

tain desirable integrity constraints (ICs) are not satis-

fied. However, it may be necessary to still use the

database, because it contains useful information, and,

most likely, most of the data is still consistent, in some

sense. CQA, as introduced in [1], deals with two pro-

blems. First, with the logical characterization of the

portions of data that are consistent in the inconsistent

database. Secondly, with developing computational

mechanisms for retrieving the consistent data. In par-

ticular, when queries are posed to the database, one

would expect to obtain as answers only those answers

that are semantically correct, i.e., that are consistent

with the ICs that are violated by the database as a whole.

The consistent data in the database is characterized

[1] as the data that is invariant under all the database

instances that can be obtained after making minimal

changes in the original instance with the purpose of

restoring consistency. These instances are the so-called

(minimal) repairs. In consequence, what is consistently

true in the database is what is certain, i.e., true in the

collection of possible worlds formed by the repairs.

Depending on the queries and ICs, there are different

algorithms for computing consistent answers. Usually,

the original query is transformed into a new query,

possibly written in a different language, to be posed

to the database at hand, in such a way that the usual
answers to the latter are the consistent answers to

the former [1]. For surveys of CQA and specific

references, c.f. [2,3].

Cross-references
▶Database Repairs

▶ Inconsistent Databases

Recommended Reading
1. Arenas M., Bertossi L., and Chomicki J. Consistent query

answers in inconsistent databases. In Proc. 18th ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems,

1999, pp. 68–79.

2. Bertossi L. Consistent query answering in databases. ACM

SIGMOD Rec., 35(2):68–76, 2006.

3. Chomicki J. Consistent query answering: five easy pieces.

In Proc. 11th Int. Conf. on Database Theory, 2007, pp. 1–17.
Constant Span

▶ Fixed Time Span
Constrained Frequent Itemset
Mining

▶ Frequent Itemset Mining with Constraints
Constraint Databases

FLORIS GEERTS

University of Edinburgh, Edinburgh, UK

Definition
Constraint databases are a generalization of relational

databases aimed to store possibly infinite-sized sets of

data by means of a finite representation (constraints)

of that data. In general, constraints are expressed by

quantifier-free first-order formulas over some fixed

vocabulary O and are interpreted in some O-structure
M¼ hU;Oi. By varying O andM, constraint data-

bases can model a variety of data models found in

practice including traditional relational databases,

spatial and spatio-temporal databases, and databases

with text fields (strings). More formally, let O be a

fixed vocabulary consisting of function, predicate and

constant symbols, and let R ¼ fR1;:::;R‘:g be a rela-

tional schema, where each relation name Ri is of arity

Constraint Databases C 453

C

ni > 0. An O-constraint database D with schema R
maps each relation Ri 2 R to a quantifier-free formula

’D
Ri
ðx1;:::;xniÞ (with ni free variables x1;:::;xni)

in first-order logic over O. When interpreted over

an O-structure M¼ hU;Oi, an O-constraint data-

base D with schema R corresponds to the collection

of the M-definable sets Ri½ �½ �DM ¼ fða1;:::;aniÞ 2 Uni

j M � ’D
Ri
ða1;:::;aniÞg, for Ri 2 R. Constraint query

languages have been devised to manipulate and query

constraint databases.

Key Points
The primary motivation for constraint databases

comes from the field of spatial and spatio-temporal

databases where one wants to store an infinite set of

points in the real Euclidean space and query it as if all

(infinitely) many points are present [3,4,5]. In the

spatial context, the constraints used to finitely repre-

sent data are Boolean combinations of polynomial

inequalities. For instance, the infinite set of points in

the real planeR2 depicted in Fig. 1(a) can be described

by means of a disjunction of polynomial inequalities

with integer coefficients as follows: ’(x, y) = (x2∕25+
y2∕16 = 1)∨(x2 + 4x + y2 � 2y 	 4)∨(x2� 4x + y2 � 2y

	�4)∨(x2 + y2 � 2y = 8 ∧ y < �1). In the language

of constraint databases, ’(x, y) is a quantifier-free first-

order formula over O = (+,�,0,1,<) and Fig. 1(a)

represents the M-definable set in R2 corresponding

to the formula ’ for the O-structureM¼ hR;Oi. If
R is a relational schema consisting of a binary relation

R, then the O-constraint database D with schema R
defined by R 7! ’(x, y) ‘‘stores’’ the set in Fig. 1(a).

In this case, the M-definable sets are also known as

semi-algebraic sets [2].

When Boolean combination of linear inequalities

suffice, such as in geographical information systems

(GIS), one considers constraint databases over O =

(+,0,1,<) andM¼ hR;Oi. Fig. 1(b) shows an exam-

ple of a set defined by means of a first-order formula
Constraint Databases. Figure 1. Example of set

definable by (a) polynomial constraints and (b) linear

constraints.
over O = (+,0,1,<). The advantage of the constraint

approach to represent spatial data is the uniform rep-

resentation of the various spatial entities. Whereas in

GIS one normally defines a special data-type for each

spatial object such as line, poly-line, circle,..., each of

those are now represented by constraints in the same

constraint language.

Other common scenarios of constraint databases

include: dense order constraints over the rationals, where

O = (<,(c)c2Q) and M¼ hQ;Oi. That is, rational

numbers with order and constants for every c 2 Q;

and constraints over strings, where O = ((fa)a2S,≺,el)

andM¼ hS�;Oi [1]. Here, S is a finite alphabet, fa
is a function that adds a at the end of its argument,≺ is

the prefix relation and el(x, y) is a binary predicate that

holds if jxj = jyj, where j�j stands for the length of a

finite string. In the latter case, theM-definable sets are

precisely the regular languages over S.
Finally, standard relational databases with schema

R can be considered as constraint databases over

equality constraints over an arbitrary infinite domain

U, where O ¼ ððcÞc2UÞ and M¼ hU;Oi. Indeed,

consider a tuple t = (a1,...,an) consisting of some

constants ai 2 U, for i 2 [1,n]. The tuple t can be

expressed by the formula ’t(x1,...,xn) = (x1 = a1)

∧...∧ (xn = an) over the signature O ¼ ððcÞc2UÞ.
More generally, an instance I = {t1,...,tN} over R 2 R
corresponds to ’I ¼

WN
i¼1’t i

. Therefore, a relational

instance (I1,...,I‘) over R can be represented as the

constraint database D defined by Ri 7! ’I i
ðx1;:::;xniÞ,

for i 2 [1,‘]. This shows that constraint databases

indeed generalize standard relational databases.

Cross-references
▶Constraint query languages

▶Geographic information system

▶Relational model

▶ Spatial Data Types

Recommended Reading
1. Benedikt M., Libkin L., Schwentick T., and Segoufin L. Definable

relations and first-order query languages over strings. J. ACM,

50(5):694–751, 2003.

2. Bochnak J., Coste M., and Roy M.F. Real Algebraic Geometry.

Springer, Berlin, 1998.

3. Kanellakis P.C., Kuper G.M., and Revesz P.Z. Constraint query

languages. J. Comput. Syst. Sci., 51(1):26–52, 1995.

4. Kuper G.M., Libkin L., and Paredaens J. (eds.) Constraint data-

bases. Springer, Berlin, 2000.

5. Revesz P.Z. Introduction to Constraint Databases. Springer,

Berlin, 2002.

454C Constraint Query Languages
Constraint Query Languages

FLORIS GEERTS

University of Edinburgh, Edinburgh, UK

Definition
A constraint query language is a query language for

constraint databases.

Historical Background
The field of constraint databases was initiated in

1990 in a paper by Kanellakis, Kuper and Revesz [9].

The goal was to obtain a database-style, optimizable

version of constraint logic programming. It grew out

of the research on DATALOG and constraint logic

programming. The key idea was that the notion of

tuple in a relational database could be replaced by a

conjunction of constraints from an appropriate lan-

guage, and that many of the features of the relational

model could then be extended in an appropriate way.

In particular, standard query languages such as those

based on first-order logic and DATALOG could be

extended to such a model.

It soon became clear, however, that recursive con-

straint query languages led to non-effective languages.

The focus therefore shifted to non-recursive constraint

query languages. The standard query language is the

constraint relational calculus (or equivalently, the con-

straint relational algebra). The study of this query lan-

guage turned out to lead to many interesting research

problems. During the period from 1990 to 2000, the

constraint setting has been studied in great generality

which led to deep connections between constraint data-

bases and embedded finite model theory. Also, the

potential application of constraint databases in the

spatial context led to numerous theoretical results

and concrete implementations such as the DEDALE

and the DISCO systems. The connection with so-called

o-minimal geometry underlies many of the results in

the spatial setting. The success of this research led to

the publication of a comprehensive survey of the area in

2000 [11] and a textbook in 2002 [13].

In recent years, constraint query languages have

been studied in new application domains such a

strings, spatio-temporal and moving objects.

Foundations
In the constraint model, a database is viewed as a

collection of constraints specified by quantifier-free
first-order logic formulas over some fixed vocabu-

lary O. When interpreted over an O-structure
M¼ hU;Oi, each constraint corresponds to an

M-definable set. Consequently, when interpreted

over M, an O-constraint database corresponds to a

collection ofM-definable sets. For instance, consider

the vocabulary O = (þ, �, 0, 1, <) andM¼ hR;Oi.
Constraints in first-order logic over O, denoted

by FO(O), correspond to Boolean combinations of

polynomial inequalities with integer coefficients. The

corresponding M-definable sets are better known as

semi-algebraic sets. Let R ¼ fR; Sg be a relational

schema consisting of two binary relations R and S

and let D be the constraint database that maps

R 7! ’R(x, y) = (x2 þ y2 	 1) ∧ (y � x � 0) and

S 7! ’S(x, y) = (x2 + y2 	 1) ∧ (�y � x � 0). The two

M-definable sets in R2 corresponding to ’R and ’S

are shown in Figs. 1(a) and (b) respectively.

A constraint database can therefore be viewed from

two different perspectives: First, one can simply look

at the finite representations (constraints) stored in

them; Second, one can regard them as a set of definable

sets. Whereas in traditional relational databases, a

query is simply a mapping that associates with each

database an answer relation, in the constraint setting

the two different perspectives give rise to two different

notions of queries.

Indeed, for a fixed vocabulary O, relational schema

R consisting of relation names R1,...,R‘, where each

relation Ri is of arity ni > 0, and natural number k, a

k-ary constraint query with schema R over O, is a

(partial) function Q that maps each O-constraint data-
basesD with schemaR to a k-aryO-constraint relation
Q(D). That is, a constraint query works entirely on the

representational (constraint) level. On the other hand,

given an additional O-structureM¼ hU;Oi, a k-ary

unrestricted query with schemaR overM is a (partial)

function Q that maps each collection D of sets in Uni ,

for i 2 [1, ‘], to a set Q(D) in Uk . Such a collection of

setsUni , for i 2 [1, ‘], is called an unrestricted database

with schema R overM.

For instance, consider again O = (þ, �,0,1,<)

and R ¼ fR; Sg. The mapping Q1 that associates

each O-constraint database D over R with the binary

O-constraint relation defined by taking the disjunction

of the constraints in R and S, is an example of a 2-ary

constraint query overO. When applied on the database

D given above,Q1(D) is mapped to ’R(x, y)∨ ’S(x, y).

Similarly, the mapping Q2 that maps D to the

Constraint Query Languages. Figure 1. Sets inR2 defined by ’R(x, y) (a); by ’S(x, y) (b); by ’R(x, y)∨ ’S(x, y) (c); and by

’1(x, y) (d). The set in R defined by ’2(x) (e). An example of a non-definable set in R2 (f).

Constraint Query Languages C 455

C

constraint in R or S that contains the polynomial with

the largest coefficient (if there is no such unique con-

straint then Q2 is undefined) is also a constraint query.

It will be undefined on the example database D

since both R and S consist of a polynomial with coeffi-

cient one.

So far, only constraint queries have been consid-

ered. To relate constraint and unrestricted queries

requires some care. Clearly, a constraint query only

makes sense if it corresponds to an unrestricted query.

In this case, a constraint query is called consistent. More

formally, a constraint query Q is called consistent if

there exists an unrestricted query Q0 such that for any

constraint database D and any unrestricted database

D0, ifD representsD0, thenQ(D) is defined if and only

if Q0(D0) is defined and furthermore, Q(D) represent

Q0(D0). One also says that Q represents Q0.

For instance, consider again O = (þ, �,0,1,<),

M¼ hR;Oi and R ¼ fR; Sg. The mapping ~Q1 that

assigns to any two sets A
 R2 and B
 R2,

corresponding to R and S, respectively, their union

A [B
 R2 is an unrestricted query. It is clear that

Q1 and ~Q1 satisfy the condition of consistency and

therefore Q1 is consistent. Fig. 1(c) shows ~Q1(D0) for

the unrestricted databaseD0 shown in Fig. 1(a) and (b).

This set is indeed represented by the constraint rela-

tion Q1(D) 7! ’R(x, y) ∨ ’S(x, y). On the other hand,

it is easily verified that Q2 is not consistent. Indeed, it

suffices to consider the behavior of Q2 on D defined

above and D0 defined by R 7! ’0R(x, y) = (x2 + y2 	 1)

∧ (6(y � x) � 0) and S 7! ’0S(x, y) = (x2 + y2 	 1) ∧
(�y� x� 0). While both D and D0 represent the same

unrestricted database, note that Q2(D) is undefined

while Q2(D
0) 7! ’R. Hence, no unrestricted query

that is consistent with Q2 can exist.

Finally, unrestricted queries are defined without

any reference to the class ofM-definable sets. A desir-

able property, however, is that when an unrestricted

query Q is defined on an unrestricted database D that

consists of M-definable sets, then also Q(D) is an
M-definable set. Such unrestricted queries are called

closed. Note that an unrestricted query that is repre-

sented by a consistent constraint query is uniquely

defined and moreover is trivially closed. An example

of an unrestricted query for O = (+,�,0,1,<) and

M¼ hR;Oi that is not closed is the query Q that

maps anyM-definable set A in R2 to its intersection

A \ ℚ2. Fig. 1(f) shows (approximately) the result of

this query on ~Q1(D0) (i.e., Fig. 1(c)). Since this is not a

semi-algebraic set inR2, it cannot be defined by means

of a quantifier-free FO(O)-formula. As a consequence,

Q is not closed.

Now that the notion of query is defined in the

setting of constraint databases, the basic constraint

query language is introduced. This language, in the

same spirit as the relational calculus for traditional

relational databases, is the relational calculus or first-

order logic of the given class of constraints. More

specifically, given a vocabulary O and relational sche-

ma R, a relational calculus formula over O is a first-

order logic formula over the expanded vocabulary

ðO;RÞ obtained by expanding O with the relation

names (viewed as predicate symbols) of the schema

R. This class of queries is denoted by FOðO;RÞ, or
simply FO(O) whenR is understood from the context.

For instance, for O = (þ, �, 0, 1, <) and

R ¼ fR; Sg, the expressions ’1(x, y) = (R(x, y) ∨
S(x, y)) ∧ x > 0 and ’2(x) = ∃y’1(x, y) are formulas

in FO(þ, �, 0, 1, <, R, S).

Given an O-structure M¼ hU;Oi, formulas in

FOðO;RÞ express (everywhere defined) unrestricted

queries with schema R over M. Indeed, a formula

’ðx1;:::;xkÞ 2 FOðO;RÞ defines the k-ary unrestricted
query Q overM as follows: consider the expansion of

M to a structure hM;Di ¼ hU;O;Di over the ex-

panded vocabulary ðO;RÞ by adding the sets in the

unrestricted database D toM for each Ri 2 R. Then,
QðDÞ¼ fða1;:::;akÞ2Uk j 0hM;Di � ’ða1;:::;akÞg:

For instance, for O = (þ,�,0,1,<) and

M¼hR;OÞ, the formula ’1(x, y) defined above

456C Constraint Query Languages
corresponds to the unrestricted query Q1 that takes the

union of the two sets in R2 corresponding to R and S,

respectively, restricted to those points in R2 with

strictly positive x-coordinate. Similarly for ’2, but

with an additional projection on the x-axis. The results

of these two unrestricted queries have been shown in

Figs. 1(d), (e), respectively.

The previous example raises the following two

questions: (i) are the unrestricted queries expressed

by formulas in first-order logic closed, and (ii) if so,

can one find a corresponding constraint query that is

effectively computable? The fundamental mechanism

underlying the use of first-order logic as a constraint

query language is the following observation that pro-

vides an answer to both questions:

" Every relational calculus formula ’ expresses a consis-

tent, effectively computable, total constraint query

that represents the unrestricted query expressed by

’, if and only if M admits effective quantifier

elimination.

Here, an O-structure M admits effective quantifier

elimination if there exists an effective algorithm that

transforms any first-order formula in FO(O) to an

equivalent (in the structure M) quantifier-free first-

order formula in FO(O).
Consider the two FO(þ,�,0,1,<, R, S)-formulas

’1 and ’2 given above. It is known that the struc-

ture hR, þ, �, 0, 1, <) admits effective quantifier-

elimination. In case of ’1 it is easy to see that the result

of corresponding constraint query is obtained by

‘‘plugging’’ in the constraints for R (resp. S) as given

by the constraint database into the expression for ’1.

That is, on the example database D, ’1 corresponds

to the constraint query that maps D to (’R(x, y) ∨
’S(x, y)) ∧ (x > 0), which is a 2-ary O-constraint
relation. In case of ’2, however, first plug in the

descriptions of the constraints as before, resulting in

∃y (’R(x, y) ∨ ’S(x, y)) ∧ (x > 0). In order to obtain

an O-constraint relation, one needs perform quantifi-

er-elimination. It is easily verified that in this example,

a corresponding constraint query is one that maps D

to (0 < x) ∧ (x 	 1) which is consistent with Fig. 1(e).

ForO-structuresM that admit effective quantifier-

elimination, this suggests the following effective evalu-

ation mechanism for constraint relational calculus

queries ’ on a constraint database D: (i) plug in

the contents of D in the appropriate slots (relations).

Denote the resulting formula by plug(’, D); and
(ii) eliminate the quantifiers in plug(’, D). Since D

consists of quantifier-free formulas, the number of

quantifiers that need to be eliminated is the same as in

’ and is therefore independent of D. For many struc-

turesM this implies that the evaluation of constraint

queries can be done in polynomial data complexity,

which is a desirable property for any query language.

It is important to point out that the classical equiv-

alence between the relational calculus and the relation-

al algebra can be easily extended to the constraint

setting. That is, for a fixed O and schema R, one can
define a constraint relational algebra and show that

every constraint relational calculus formula can be

effectively converted to an equivalent constraint rela-

tional algebra expression, and vice versa. This equiva-

lence is useful for concrete implementations of

constraint database systems.

The study of expressivity of FOðO;RÞ for various
O-structures M has led to many interesting results.

In particular, the impact of the presence of the ‘‘extra’’

structure on the domain elements in U has been

addressed when D consists of an ordinary finite

relational database that takes values from U [3]. In

particular, the correspondence between natural and

active-domain semantics has been revisited. That is,

conditions are identified for M¼ hU;Oi such that

the language FOðO;RÞ is equal to FOactðO;RÞ, the
query language obtained by interpreting 8x and ∃x
over the active domain of D instead of over U.

Such structures are said to admit the natural-

active collapse. Similarly, ordered structures M are

identified that admit the active-generic collapse. That

is, FOactðO;RÞ is equal to FOactð<;RÞ with respect to

the class of generic queries. In other words, every

generic query definable under active domain semantics

with O-constraints is already definable with just order

constraints. Finally, structuresM are considered that

allow the natural-generic collapse. This is the same as

the active-generic collapse but with natural domain

semantics instead of active domain semantics. The

study of these collapse properties for various structures

not only sheds light on the interaction of the structure

on U and the query language, it is also helpful to

understand the expressiveness of constraint query

languages [3,11].

Indeed, let O = (þ, �, 0, 1, <) andM¼ hR;Oi.
It can be shown that M admits all three collapses

because it is a so-called o-minimal structure. As a

consequence, the query EVEN that returns yes if the

Constraint Query Languages C 457

C

cardinality of D is even and no otherwise, is not ex-

pressible in FOðO;RÞ. Indeed, if it would be express-

ible by a query ’ in FOðO;RÞ it would already have

been expressible by a query in FOactð<;RÞ, which is

known not to be true in the traditional database

setting.

The expressivity of FOðO;RÞ has been studied ex-

tensively as well when D corresponds to sets of infinite

size. In particular, expressiveness questions have

been addressed in the spatial setting where O = (+, �,
0, 1, <) and M¼ hR;Oi (polynomial constraints);

and O0 = (þ, 0, 1, <) andM¼ hR;O0i (linear con-
straints). In this setting, many reductions are pre-

sented in [7] to expressiveness questions in the finite

case. Combined with the collapse results mentioned

above, these reductions were used to show that, for

example, topological connectivity of O- (resp. O0-)
constraint databases is not expressible in first-order

logic. Indeed, a proof of this results relies on the fact

that the EVEN-query is not expressible in FOðO;RÞ
(resp. FOðO0;RÞ) [7].

An interesting line of work in the spatial context

concerns the expressive power of FOðO;RÞ with respect

to queries that preserve certain geometrical properties.

More formally, let G be a group of transformations of

Rk. A query Q is called G-generic if, for every transfor-
mation g 2 G, and for any two databases D and D0,

g(D) = D0 implies g(Q(D)) = Q(D0). Transformation

groups and properties of the corresponding generic

queries have been studied for the group of homeo-

morphisms, affinities, similarities, isometries, among

others [8]. Especially the study of the topologically

queries (those that are generic under homeomorph-

isms) has received considerable attention [10,2].

To conclude, both for the historical reasons men-

tioned above and in view of the limited expressive

power of FOðO;RÞ, various recursive extensions of

FOðO;RÞ have been proposed such as: constraint tran-
sitive-closure logic [5], constraint DATALOG [9], and

FOðO;RÞ extended with a WHILE-loop [8]. The inter-

action of recursion with the structure on U imposed

by O leads in most cases to computationally com-

plete query languages. Worse still, queries defined in

these languages may not be closed or even terminate.

To remedy this, special-purpose extensions of FOðO;RÞ
have been proposed that guarantee both termina-

tion and closure. Characteristic examples include

FOðO;RÞ þ AVG and FOðO;RÞ þ SUM in the con-

text of aggregation [4]. In the spatial setting,
extensions of FOðO;RÞ with various connectivity

operators have been proposed [1].

Results concerning constraint query languages have

been both extended to great generality and applied to

concrete settings. Refer to [14] for a gentle introduction

and to [11] for a more detailed survey of this research

area up to 2000. Some more recent results are included

in Chapter 5 of [12] for the general constraint setting

and Chapter 12 in [6] for the spatial setting.

Key Applications
Manipulation and querying of constraint databases,

querying of spatial data.

Cross-references
▶Computationally Complete Relational Query

Languages

▶Constraint Databases

▶ FOL

▶ FOLModeling of IntegrityConstraints (Dependencies)

▶Query Language

▶Relational Calculus

▶Relational Model

Recommended Reading
1. Benedikt M., Grohe M., Libkin L., and Segoufin L. Reachability

and connectivity queries in constraint databases. J. Comput.

Syst. Sci., 66(1):169–206, 2003.

2. Benedikt M., Kuijpers B., Christ of Löding, Van den Bussche J.,

and Wilke T. A characterization of first-order topological prop-

erties of planar spatial data. J. ACM, 53(2):273–305, 2006.

3. Benedikt M. and Libkin L. Relational queries over interpreted

structures. J. ACM, 47(4):644–680, 2000.

4. Benedikt M. and Libkin L. Aggregate operators in constraint

query languages. J. Comput. Syst. Sci., 64(3):628–654, 2002.

5. Geerts F., Kuijpers B., and Van den Bussche J. Linearization and

completeness results for terminating transitive closure queries

on spatial databases. SIAM J. Comput., 35(6):1386–1439, 2006.

6. Geerts F. and Kuijpers B. Real algebraic geometry and constraint

databases. In M. Aiello, I. Pratt-Hartmann, and J. Van Benthem,

editors, Handbook of Spatial Logics. Springer 2007.

7. Grumbach S. and Su J. Queries with arithmetical constraints.

Theor. Comput. Sci., 173(1):151–181, 1997.

8. Gyssens M., Van den Bussche J., and Van Gucht D. Complete

geometric query languages. J. Comput. Syst. Sci., 58(3):483–511,

1999.

9. Kanellakis P.C., Kuper G.M., and Revesz P.Z. Constraint Query

Languages. J. Comput. Syst. Sci., 51(1):26–52, 1995.

10. Kuijpers B., Paredaens J., and Van den Bussche J. Topological

elementary equivalence of closed semi-algebraic sets in the real

plane. J. Symb. Log., 65(4):1530–1555, 2000.

11. Kuper G.M., Libkin L., and Paredaens J. Constraint Databases.

editors. Springer, 2000.

458C Constraint-Driven Database Repair
12. Libkin L. Embedded finite models and constraint databases.

In Grädel E., Kolaitis P.G., Libkin L., Marx M., Spencer J.,

Vardi M.Y., Venema Y. and Weinstein S., editors, Finite Model

Theory and Its Applications. Springer, 2007.

13. Revesz P.Z. Introduction to Constraint Databases. Springer,

2002.

14. Van den Bussche J. Constraint databases. A tutorial introduc-

tion. ACM SIGMOD Record, 29(3):44–51, 2000.
Constraint-Driven Database Repair

WENFEI FAN1,2

1University of Edinburgh, Edinburgh, UK
2Bell Laboratories, Murray Hill, NJ, USA

Synonyms
Data reconciliation; Minimal-change integrity mainte-

nance; Data standardization

Definition
Given a set S of integrity constraints and a database

instance D of a schema R, the problem of constraint-

driven database repair is to find an instance D 0 of the

same schema R such that (i) D 0 is consistent, i.e., D 0

satisfies S, and moreover, (ii) D 0 minimally differs

from the original database D, i.e., it takes a minimal

number of repair operations or incurs minimal cost to

obtain D 0 by updating D.

Historical Background
Real life data is often dirty, i.e., inconsistent, inaccu-

rate, stale or deliberately falsified. While the prevalent

use of the Web has made it possible, on an unprece-

dented scale, to extract and integrate data from diverse

sources, it has also increased the risks of creating and

propagating dirty data. Dirty data routinely leads to

misleading or biased analytical results and decisions,

and incurs loss of revenue, credibility and customers.

With this comes the need for finding repairs of dirty

data, and editing the data to make it consistent. This

is the data cleaning approach that US national statisti-

cal agencies, among others, has been practicing for

decades [10].

The notion of constraint-based database repairs is

introduced in [1], highlighting the use of integrity

constraints for characterizing the consistency of the

data. In other words, constraints are used as data

quality rules, which detect inconsistencies as violations

of the constraints. Prior work on constraint-based
database repairs has mostly focused on the following

issues. (i) Integrity constraints used for repair. Earlier

work considers traditional functional dependencies,

inclusion dependencies and denial constraints [1,2,4,

6,12]. Extensions of functional and inclusion depen-

dencies, referred to as conditional functional and

inclusion dependencies, are recently proposed in [3,9]

for data cleaning. (ii) Repair semantics. Tuple deletion

is the only repair operation used in [6], for databases in

which the information is complete but not necessarily

consistent. Tuple deletion and insertion are conside-

red in [1,4] for databases in which the information

may be neither consistent nor complete. Updates, i.e.,

attribute-value modification are proposed as repair

operations in [12]. Cost models for repairs are studied

in [2,8]. (iii) Algorithms. The first algorithms for

finding repairs are developed in [2], based on tradition-

al functional and inclusion dependencies. Algorithms

for repairing and incrementally repairing databases are

studied in [8], using conditional functional dependen-

cies. The repair model adopted by these algorithms

supports updates as repair operations. (iv) Fundamen-

tal issues associated with constraint-based repairs. One

issue concerns the complexity bounds on the database

repair problem [2,6]. Another issue concerns the static

analysis of constraint consistency [3,9] for determining

whether a given set of integrity constraints is dirty

or not itself.

Constraint-based database repairs are one of the

two topics studied for constraint-based data cleaning.

The other topic, also introduced in [1], is consistent

query answers. Given a query Q posed on an inconsis-

tent database D, it is to find tuples that are in the

answer of Q over every repair of D. There has been a

host of work on consistent query answers [1,4,6,11,12]

(see [5,7] for comprehensive surveys).

Foundations
The complexity of the constraint-based database repair

problem is highly dependent upon what integrity con-

straints and repair model are considered.

Integrity Constraints for Characterizing Data

Consistency

A central technical issue for data cleaning concerns how

to tell whether the data is dirty or clean. Constraint-based

database repair characterizes inconsistencies in terms of

violations of integrity constraints. Constraints employed

for data cleaning include functional dependencies,

Constraint-Driven Database Repair C 459

C

inclusion dependencies, denial constraints, conditional

functional dependencies and conditional inclusiondepen-

dencies. To illustrate these constraints, consider the fol-

lowing relational schema R, which consists of three

relation schemas:

customer(name, country-code, area-code, phone,

city, street, zip)

order(name, country-code, area-code, phone,

item-id, title, price, item-type)

book(isbn, title, price, format)

Traditional functional dependencies and inclusion

dependencies defined on the schema R include:

FD: customer(country-code, area-code, phone !
city, street, zip)

IND: order(name, country-code, area-code,

phone)
 customer(name, country-code, area-code,

phone)

The functional dependency FD asserts that the phone

number (country-code, area-code and phone) of a cus-

tomer uniquely determines her address (state, city, street,

zip). That is, for any two customer tuples, if they have

the same country-code, area-code and phone number,

then they must have the same state, city, street, zip

code. The inclusion dependency IND asserts that for

any order tuple t, there must exist a customer tuple

t 0 such that t and t 0 match on their name, country-

code, area-code and phone attributes. In other words,

an item cannot be ordered by a customer who does

not exist.
Constraint-Driven Database Repair. Figure 1. Example data
Consider a set S consisting of FD and IND . One

may want to use S to specify the consistency of data-

base instances of R. An example instance D of R is

shown in Fig. 1. This database is inconsistent, because

tuples t3 and t4 in D violate the functional dependency

FD . Indeed, while t3 and t4 have the same country-

code, area-code and phone number, they differ in their

street attributes. In other words, t3, t4 or both of them

may be dirty.

One may also want to add a denial constraint to the

set S:
DC : 8nm, cc, ac, ph, id, tl, tp, pr: (order(nm, cc,

ac, ph, id, tl, pr, tp) ∧pr > 100)

Here nm, cc, ac, ph, id, tl, tp, pr stand for name,

country-code, area-code, phone number, item-id, title,

item type and price, respectively. This constraint says

that no items in the order table may have a price higher

than 100. In the database D of Fig. 1, tuple t6 violates

the constraint DD : the price of the CD is too high to

be true. In general denial constraints can be expressed

as universally quantified first-order logic sentences of

the form:

8�x1;:::;�xm :ðR1ð�x1Þ ^ :::^Rmð�xmÞ ^’ð�x1;:::;�xmÞÞ;

where Ri is a relation symbol for i 2 [1,m], and ’ is a

conjunction of built-in predicates.

Now consider an instance D 0 of D by removing t3
from D and changing t6[pr] to, e.g., 7.99. Then the

database D 0 satisfies S. However, D 0 is not quite clean:

it violates each of the following constraints. In other
base instance.

460C Constraint-Driven Database Repair
words, if one further extends S by including the fol-

lowing constraints, then D0 no longer satisfies S.

CFD1 : customer(country-code = 44, zip! street)

CFD2 : customer(country-code = 44, area-code =

131, phone! city = EDI, street, zip)

CFD3 : customer(country-code = 01, area-code =

908, phone! city = MH, street, zip)

CIND1 : order(id, title, price; item-type = book)

book(isbn, title, price)

Here CFD1, CFD2 and CFD3 are conditional function-

al dependencies defined on the customer relation. The

constraint CFD1 asserts that for each customer in the

UK, i.e., when the country code is 44, her zip code

uniquely determines her street. In contrast to tradi-

tional functional dependencies, CFD1 does not hold on

the entire customer relation. Indeed, it does not hold

on customer tuples with, e.g., country-code = 01. In-

stead, it is applicable only to the set of customer tuples

with country-code = 44. Constraints CFD2 and CFD3

refine the traditional functional dependency FD given

earlier: CFD2 requires that when the country-code is

44 and area-code is 131, the city must be Edinburgh

(EDI); similarly for CFD3. None of these can be

expressed as traditional functional dependencies.

The constraint CIND1 is a conditional inclusion

dependency, asserting that when the type of an item

t in the order table is book, there must exist a

corresponding tuple t 0 in the book table such that

t and t 0 match on their id, title and price. Again this is

a constraint that only holds conditionally. Indeed,

without the condition item-type = book, a traditional

inclusion dependency order(id, title, price)
 book

(isbn, title, price) does not make sense since, among

other things, it is unreasonable to require each

CD item in the order table to match a tuple in the

book table.

These conditional dependencies tell us that the

database D 0 is not clean after all. Indeed, tuples t1,t2
in the customer table violate CFD1: while they both

represent customers in the UK and have the same zip

code, they differ in their street attributes. Furthermore,

each of t1 and t2 violates CFD2: while its area-code is

131, its city is NYC instead of EDI. Similarly, t4 violates

CFD3. From these one can see that while it takes two

tuples to violate a traditional functional dependency, a

single tuple may violate a conditional functional de-

pendency. The inconsistencies in D 0 are not limited to

the customer table: while tuple t5 in the order table has
item-type = book, there exists no tuple t 0 in the book

table such that t5 and t 0 match on their id, title and

price attributes. Thus either t5 in the order table is

not error-free, or the book table is incomplete or

inconsistent.

Conditional functional and inclusion dependencies

are extensions of traditional functional and inclusion

dependencies, respectively. In their general form each

conditional functional (resp. inclusion) dependency is

a pair comprising of (i) a traditional functional (resp.

inclusion) dependency and (ii) a pattern tableau con-

sisting of tuples that enforce binding of semantically

related data values. Traditional functional (resp. inclu-

sion) dependencies are a special case of conditional

functional (resp. inclusion) dependencies, in which

the tableaux do not include tuples with patterns of

data values. As opposed to traditional functional and

inclusion dependencies that were developed mainly for

schema design, conditional functional and inclusion

dependencies aim to capture the consistency of the

data, for data cleaning. As shown by the example

above, conditional dependencies are capable of detect-

ing more errors and inconsistencies than what their

traditional counterparts can find.

In summary, integrity constraints specify a funda-

mental part of the semantics of the data. Indeed, errors

and inconsistencies in real-world data often emerge as

violations of integrity constraints. The more expressive

the constraints are, the more errors and inconsistencies

can be caught. On the other hand, as will be seen

shortly, the expressive power of the constraints often

comes with the price of extra complexity for finding

database repairs.

Repair Models

Consider functional dependencies, inclusion depen-

dencies, denial constraints, conditional functional

dependencies and inclusion dependencies. Given a da-

tabase instance D of a schema R, if D violates a set S
consisting of these constraints, one can always editD to

obtain a consistent instance D 0 of R, such that D 0

satisfies S. An extreme case is to delete all tuples

from D and thus get an empty D 0. Such a fix is obvi-

ously impractical: it removes inconsistencies as well as

correct information. Apparently database repairs

should not be conducted with the price of losing infor-

mation of the original data. This motivates the criteri-

on for database repairs to minimally differ from the

original data.

Constraint-Driven Database Repair C 461

C

Several repair models have been proposed [1,6].

One model allows tuple deletions only, assuming that

the information in the database D is inconsistent but

is complete. In this model, a repair D 0 is a maximal

subset of D that satisfies S. For example, consider S
consisting of FD given above, and the database D

shown in Fig. 1. Then a repair of D can be obtained

by removing either t3 or t4 from the customer table.

Another model allows both tuple deletions and

insertions. In this model, a repair D 0 is an instance of

R such that (i) D 0 satisfies S, and (ii) the difference

between D and D 0, i.e., (D ∖ D 0) [(D0∖ D), is minimal

when D 0 ranges over all instances of R that satisfy S. As
an example, let S consist of FD and CIND given above,

and D be the database of Fig. 1. Then one can obtain a

repair of D either by removing both t3 and t5, or by

removing t3 but inserting a tuple t 0 to the book table

such that t5 and t 0 agree on their id, title and price

attributes.

A more practical model is based on updates, i.e.,

attribute-value modifications. To illustrate this, let us

consider S consisting of all the constraints that have

been encountered, i.e., FD, IND, DD, CFD1, CFD2,

CFD3 and CIND given above, and the database D of

Fig. 1. Observe that every tuple in the customer rela-

tion violates at least one of the (conditional) functional

dependencies in S. In the two models mentioned

above, the only way to find a repair is by removing all

tuples from the customer table. However, it is possible

that only some fields in a customer tuple are not

correct, and thus it is an overkill to remove the entire

tuple. A more reasonable fix is to update the tuples by,

e.g., changing t1[city] and t2[city] to EDI (for CFD2),

t1[street] to Crichton (forCFD1), t3[city] and t4[city]

to MH (for CFD3), t3[street] to Mountain Ave

(for FD), t6[price] to 7.99 (for DD), and t5[title] to

Harry Porter (for CIND). This yields a repair in the

update model.

An immediate question about the update model

concerns what values should be changed and what

values should be chosen to replace the old values.

One should make the decisions based on both the

accuracy of the attribute values to be modified, and

the ‘‘closeness’’ of the new value to the original value.

Following the practice of US national statistical agencies

[10], one can define a cost metric as follows [2,8].

Assuming that a weight in the range [0,1] is associated

with each attribute A of each tuple t in D, denoted

by w(t,A) (if w(t,A) is not available, a default weight
can be used instead). The weight reflects the confi-

dence of the accuracy placed by the user in the attribute

t[A], and can be propagated via data provenance

analysis in data transformations. For two values v,v 0

in the same domain, assume that a distance function

dis(v,v 0) is in place, with lower values indicating great-

er similarity. The cost of changing the value of an

attribute t[A] from v to v 0 can be defined to be:

cost ðv; v0Þ ¼ wðt ;AÞ � dis ðv; v0Þ=max ðjvj; jv0jÞ;

Intuitively, the more accurate the original t[A] value v

is and more distant the new value v 0 is from v, the

higher the cost of this change. The similarity of v and

v 0 is measured by dis(v,v 0) ∕max(jvj,jv 0j), where jvj is
the length of v, such that longer strings with 1-charac-

ter difference are closer than shorter strings with

1-character difference. The cost of changing the value

of a tuple t to t 0 is the sum of cost(t[A],t 0[A]) when A

ranges over all attributes in t for which the value of t

[A] is modified. The cost of changing D to D0, denoted

by cost(D 0,D), is the sum of the costs of modifying

tuples in D. A repair of D in the update model is

an instance D0 of R such that (i) D 0 satisfies S, and
(ii) cost(D0,D) is minimal when D 0 ranges over all

instances of R that satisfy S.
The accuracy of a repair can be measured by preci-

sion and recall metrics, which are the ratio of the

number of errors correctly fixed to the total number

of changes made, and the ratio of the number of errors

correctly fixed to the total number of errors in the

database, respectively.

Methods for Finding Database Repairs

It is prohibitively expensive to find a repair of a dirty

database D by manual effort. The objective of

constraint-based database repair is to automatically

find candidate repairs of D. These candidate repairs

are subject to inspection and change by human experts.

There have only been preliminary results on methods

for finding quality candidate repairs, as outlined below.

Given a set S of integrity constraints, either defined

on a schema R or discovered from sample instances of

R, one first wants to determine whether or not S is

dirty itself. That is, before S is used to find repairs ofD,

one has to check, at compile time, whether or not S
is consistent or makes sense, i.e., whether or not

there exists a nonempty database instance of R that

satisfies S. For traditional functional and inclusion

dependencies, this is not an issue: one can specify

462C Constraint-Driven Database Repair
arbitrary functional and inclusion dependencies without

worrying about their consistency. While conditional in-

clusion dependencies alone retain this nice property, it is

no longer the case when it comes to conditional func-

tional dependencies. For example, consider the follow-

ing conditional functional dependencies: c1 = R(A =

true! B = b1), c2 = R(A = false! B = b2), c3 = R(B =

b1! A = false), and c4 = R(B = b2! A = true), where

the domain of attribute A is Boolean. While each of

these constraints can be separately satisfied by a non-

empty database instance, there exists no nonempty

instance that satisfies all of these constraints. Indeed,

for any tuple t in an instance, no matter what Boolean

value t[A] has, these constraints force t[A] to take the

other value from the Boolean domain.

The consistency problem is already NP-complete

for conditional functional dependencies alone [9], and

it becomes undecidable for conditional functional and

inclusion dependencies taken together [3]. In light of

the complexity, the consistency analysis is necessarily

conducted by effective heuristic methods, ideally with

performance guarantee. There has been approximate

algorithms developed for checking the consistency of

conditional functional dependencies, and heuristic

algorithms for conditional functional and inclusion

dependencies taken together.

After S is confirmed consistent, one needs to

detect the inconsistencies in the database D, i.e., to

find all tuples in D that violate one or more constraints

in S. It has been shown that it is possible to automati-

cally generate a fixed number of SQL queries from S,
such that these queries can find all violations in D. This

strategy works when S consists of functional depen-

dencies, inclusion dependencies, conditional function-

al and inclusion dependencies [9]. Better yet, the size

of the queries is dependent upon neither the number

of constraints in S nor the pattern tableaux in the

conditional dependencies in S.
After all violations are identified, the next step is

to find an accurate repair of D by fixing these viola-

tions. This is challenging: in the repair model based

on attribute-value updates, the problem of finding a

database repair is already NP-complete even when the

database schema is fixed and only a fixed number of

traditional functional (or inclusion) dependencies are

considered [2].

To cope with the tractability of the problem, several

heuristic algorithms have been developed, based on

the cost model given above. A central idea of these

algorithms is to separate the decision of which attribute
values should be equal from the decision of what value

should be assigned to these attributes. Delaying value

assignment allows a poor local decision to be improved

in a later stage of the repairing process, and also allows

a user to inspect and modify a repair. To this end an

equivalence class eq(t,A) can be associated with each

tuple t in the dirty database D and each attribute A in t.

The repairing is conducted by merging and modifying

the equivalence classes of attributes in D. For example,

if tuples t1,t2 in D violate a functional dependency

R(X ! A), one may want to fix the inconsistency by

merging eq(t1,A) and eq(t2,A) into one, i.e., by forcing

t1 and t2 to match on their A attributes. If a tuple t1
violates an inclusion dependency R1[X]
 R2[Y], one

may want to resolve the conflict by finding an existing

tuple t2 in the R2 relation or inserting a new tuple t2
into the R2 table, such that for each corresponding

attribute pair (A,B) in [X] and [Y], t1[A] = t2[B] by

merging eq(t1,A) and eq(t2,B) into one. A target value

is assigned to each equivalence class when no more

merging is possible.

Based on this idea, effective heuristic algorithms have

been developed for repairing databases using traditional

functional and inclusion dependencies (e.g., [8]). The

algorithms modify tuple attributes in the right-hand

side of a functional or inclusion dependency in the pres-

ence of a violation. This strategy, however, no longer

works for conditional functional dependencies: the pro-

cess may not even terminate if only tuple attributes in the

right-hand side of a conditional functional dependency

can be modified. Heuristic algorithms for repairing con-

ditional functional dependencies have been develo-

ped [8], which are also based on the idea of equivalence

classes but may modify tuple attributes in either the left-

hand side or right-hand side of a conditional functional

dependency in the presence of a violation.

Key Applications
Constraint-based database repairs have a wide range of

applications in, e.g., data standardization, data quality

tools, data integration systems, master data manage-

ment, and credit-card fraud detection.

Future Directions
The study of constraint-based database repair is still in

its infancy. There is naturally much more to be done.

One topic for future research is to identify new integ-

rity constraints that are capable of detecting inconsis-

tencies and errors commonly found in practice,

without incurring extra complexity. The second topic

Content-and-Structure Query C 463

C

is to develop more accurate and practical repair mod-

els. The third topic is to find heuristic methods, with

performance guarantees, for reasoning about integrity

constraints used for data cleaning, such as their consis-

tency and implication analyses. The fourth yet the

most challenging topic is to develop scalable algo-

rithms for finding database repairs with performance

guarantee, such as to guarantee that the precision and

recall of the repairs found are above a predefined

bound with a high confidence.

Cross-references
▶Data Cleaning

▶Data Quality Models

▶Database Dependencies

▶Database Repair

▶ Functional Dependency

▶ Inconsistent Databases

▶Record Linkage

▶Relational Integrity Constraints

▶Uncertain Databases

Recommended Reading
1. Arenas M., Bertossi L.E., and Chomicki J. Consistent

query answers in inconsistent databases. In Proc. 18th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1999, pp. 68–79.

2. Bohannon P., Fan W., Flaster M., and Rastogi R. A cost-based

model and effective heuristic for repairing constraints by value

modification. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2005.

3. Bravo L., Fan W., and Ma S. Extending dependencies with

conditions. In Proc. 33rd Int. Conf. on Very Large Data Bases,

2007, pp. 243–254.

4. Calı̀ A., Lembo D., and Rosati R. On the decidability and

complexity of query answering over inconsistent and incom-

plete databases. In Proc. 22nd ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 2003, pp. 260–271.

5. Chomicki J. Consistent query answering: Five easy pieces. In

Proc. 11th Int. Conf. on Database Theory, 2007, pp. 1–17.

6. Chomicki J. and Marcinkowski J. Minimal-change integrity

maintenance using tuple deletions. Inf. Comput., 197(1–2):

90–121, 2005.

7. Chomicki J. and Marcinkowski J. On the computational com-

plexity of minimal-change integrity maintenance in relational

databases. Inconsistency Tolerance :119–150, 2005.

8. Cong G., Fan W., Geerts F., Jia X., and Ma S. Improving data

quality: Consistency and accuracy. In Proc. 33rd Int. Conf. on

Very Large Data Bases, 2007, pp. 315–326.

9. Fan W., Geerts F., Jia X., and Kementsietsidis A. Conditional

functional dependencies for capturing data inconsistencies.

ACM Trans. Database Syst., 33(2), 2008.

10. Fellegi I. and Holt D. A. systematic approach to automatic edit

and imputation. J. Am. Stat. Assoc., 71(353):17–35, 1976.
11. Lopatenko A. and Bertossi L.E. Complexity of consistent query

answering in databases under cardinality-based and incremental

repair semantics. In Proc. 11th Int. Conf. on Database Theory,

2007, pp. 179–193.

12. Wijsen J. Database repairing using updates. ACM Trans. Data-

base Syst., 30(3):722–768, 2005.
Content Delivery Networks

▶ Storage Grid
Content-and-Structure Query

THIJS WESTERVELD
1,2

1Teezir Search Solutions, Ede, Netherlands
2CWI, Amsterdam, Netherlands

Synonyms
CAS query; CO+S query

Definition
A content-and-structure query is a formulation of an

information need in XML retrieval or, more generally,

in semi-structured text retrieval that includes explicit

information about the structure of the desired result.

Key Points
Content-and-structure query is a term from semi-

structured text retrieval, used predominantly for XML

retrieval. The term refers to a specific way of querying a

structured document collection. In addition to describ-

ing the (topical) content of the desired result, content-

and-structure queries include explicit hints about the

structure of the desired result or the structure of the

context it appears in. Content-and-structure queries

are useful for users who have knowledge about the

collection structure and want to express the precise

structure of the information they are after. For example,

they can express the granularity of the desired results,

e.g., return sections about architecture, or they can

express the structural context of the information they

are looking for, e.g., return sections about architecture

within documents about Berlin. It is up to the retrieval

system to decide how to use the structural hints in

locating the most relevant information. In INEX, the

Initiative for the Evaluation of XML Retrieval [1],

content-and-structure queries are known as CAS

queries or CO+S queries (Content-Only queries with

464C Content-based Image Retrieval (CBIR)
structural hints) and expressed in the NEXI language

[2]. More information on query languages, including

content-only and content-and-structured queries in

the field of XML search can be found in [1].

Cross-references
▶Content-Only Query

▶NEXI

▶XML Retrieval

Recommended Reading
1. Amer-Yahia S. and Lalmas M. XML search: languages, INEX and

scoring. ACM SIGMOD Rec., 35(4):16–23, 2006.

2. Trotman A. and Sigurbjörnsson B. Narrowed extended xpath i

(NEXI). In Advances in XML Information Retrieval: Third In-

ternational Workshop of the Initiative for the Evaluation of

XML Retrieval, INEX 2004. N. Fuhr, M. Lalmas, S. Malik, and

Z. Szlavik (eds). Dagstuhl Castle, Germany, December 6–8, 2004,

Revised Selected Papers , Vol. 3493. Springer, Berlin Heidelberg

New York, GmbH, May 2005. http://www.springeronline.com/

3-540-26166-4.
Content-based Image Retrieval
(CBIR)

▶ Image Database
Content-Based Publish/Subscribe

HANS-ARNO JACOBSEN

University of Toronto, Toronto, ON, Canada

Definition
Content-based publish/subscribe is a communication

abstraction that supports selective message dissemi-

nation among many sources and many sinks. The

publication message content is used to make notifica-

tion decisions. Subscribers express interest in receiving

messages based on specified filter criteria that are eval-

uated against publication messages. Content-based

publish/subscribe is an instance of the publish/sub-

scribe concept.

Key Points
Content-based publish/subscribe is an instance of the

publish/subscribe concept. In the content-based model
clients interact by publishing messages and subscribing

to messages through the publish/subscribe system. The

key difference between the content-based and other

publish/subscribe models is that the content of publica-

tion messages is used as the basis for disseminating

publications to subscribers. Subscriptions consist of

filters that specify subscriber interests making reference

to publication message content. The publish/subscribe

system matches publications against subscriptions by

evaluating the publication message content against the

filters expressed in subscriptions. The kind of content to

subscribe to that exists in content-based publish/sub-

scribe systems is either out-of-band information and

must be know to clients, or is dynamically discoverable

by clients based on additional support provided by the

system.

A publication message published to the content-

based publish/subscribe system is delivered to all sub-

scribers with matching subscriptions. A subscription

is a Boolean function over predicates. A publication

matches a subscription, if the Boolean function repre-

senting it evaluates to true, otherwise the publication

does not match the subscription.

As in the other publish/subscribe models, the

content-based publish/subscribe model decouples the

interaction among publishing data sources and sub-

scribing data sinks. The same decoupling characteris-

tics as discussed under the general publish/subscribe

concept apply here as well. Specific realizations of this

model found in practice vary in the exact decoupling

offered. To properly qualify as publish/subscribe, at

least the anonymous communication style must exist.

That is publishing clients must not be aware of who

the subscribing clients are and how many subscribing

clients exist, and vice versa. Thus, content-based pub-

lish/subscribe enables the decoupled interaction of

n sources with m sinks for n, m � 1.

In content-based publish/subscribe, the publication

data model is defined by the data model underlying the

definition of publication messages. The publication

data model defines the structure and the type of publi-

cation messages processed by the system. In many

approaches, a publication is a set of attribute-value

pairs, where values are explicitly or implicitly typed.

In explicit typing, each attribute-value pair has an

additional type component specifying the type of

the value. In implicit typing, no type is specified, and

the type interpretation for matching is conveyed by the

operator specified in the subscription referencing the

Content-Based Publish/Subscribe C 465

C

attribute. The type-based publish/subscribe concept is

a refinement of this based on programming language

type theory.

Some content-based publish/subscribe approaches

exist that define multi-valued attributes, where an attri-

bute may have more than one value. Also, publication

schemas and patterns have been introduced that specify

certain attributes as required, while others are optional.

Besides representing publications as attribute-value

pairs, many other representations of publications have

been introduced in the literature, such as XML, RDF,

and strings.

The subscription language model is closely tied to

the publication data model and defines the subscrip-

tions the publish/subscribe system processes. The sub-

scription language model that corresponds to the

above described attribute-value pair-based publication

data model, represents subscriptions as Boolean func-

tions over predicates. Most content-based publish/

subscribe systems process conjunctions of predicates

only. In these systems, more general subscriptions

must be represented as separate conjunctive subscrip-

tions. A predicate is an attribute- operator-value triple

that evaluates to true or false. Besides representing sub-

scriptions as Boolean functions over predicates, many

other representations of publications have been intro-

duced in the literature, such as XPath, RQL, regular

expressions, and keywords.

Subscription language and publication data model

define subscriptions and publications processed by

the publish/subscribe system. The matching semantic

defines when a publication matches a subscription.

Commonly the matching semantic is crisp; that is a

publication matches a subscription or it does not.

However, other semantics have been explored, such

as an approximate match, a similarity-based match,

or even a probabilistic match.

The publish/subscribe matching problem is stated

as follows: Given a set of subscriptions and a publica-

tion, determine the subscriptions that match for the

given publication. The publish/subscribe system can be

interpreted as a filter that based on the subscriptions

it stores, publications that do not match are filtered

out, while those that match are forwarded to sub-

scribers that have expressed interest in receiving infor-

mation by registering subscriptions. The challenge

is to efficiently solve this problem without compu-

ting a separate match between all subscriptions and

the given publication. This is possible since in many
applications, subscriptions share predicates, subsump-

tion relationships exist among different subscriptions,

and the evaluation of one predicate may allow to

determine the result of other predicates without re-

quiring explicit computation.

Content-based publish/subscribe systems differ in

the publication data model, the subscription language

model, the matching semantic, and the system archi-

tecture. In a system based on a centralized architecture,

all publishers and subscribers connect to one and the

same publish/subscribe system. In a system based on

a distributed architecture, publishers and subscribers

connect to one of many publish/subscribe systems that

are interconnected in a federation. The federated pub-

lish/subscribe system offers the same functionality

and solves the same matching problem as the centra-

lized one.

Content-based publish/subscribe differs from topic-

based publish/subscribe in that the entire message

content is used for matching, while in a topic-based

approach only the topic associated with a message

is used.

Content-based publish/subscribe differs from data-

base stream processing in that the publish/subscribe

systemprocesses publications ofwidely varying schemas.

In the extreme case, every publication processed by

the system could be based on a different schema. In

stream processing, each data stream follows one and

the same schema, which is an important assumption in

thedesignof the streamquery engine.

Content-based publish/subscribe has been an active

area of research, since at least the late 1990s. The early

work in the area was influenced from approaches in

active databases, network management, and distributed

systems. Many academic and industry research projects

have developed content-based publish/subscribe sys-

tems. Various standards exhibit elements of the above

described content-based publish/subscribemodel. These

standards are the CORBA Notification Service [3], the

OMGData Dissemination Service [4], the OGF’s Info-D

specification [2], and the Advanced Message Queuing

Protocol [1].

Content-based publish/subscribe intends to support

applications that need to highly selectively disseminate

messages from one or more data sources to several

data sinks. The mapping of sources to sinks can change

dynamically with every message published and is fully

determined by the publication content and the at publi-

cation time existing subscriptions. Given no change in

466C Content-based Retrieval
the subscription set, one and the same message pub-

lished twice, is sent to the same recipient set. Applica-

tions that require fine-grained filtering capabilities are

ideally suited for realizationwith content-based publish/

subscribe.Most existing publish/subscribe systems allow

the application to dynamically change subscriptions

at run-time. There are many applications that follow

these characteristics. Examples include selective infor-

mation dissemination, information filtering, database

trigger processing, application-level firewalls, intrusion

detection systems, and notification and altering ser-

vices. Furthermore, recently it was demonstrated how

higher-level applications can be build effectively with

content-based publish/subscribe. Scenarios in this cate-

gory are business activity monitoring, business process

execution, monitoring and control of service level agree-

ments, and automatic service discovery.

In the literature, the term content-based publish/

subscribe refers to the above-described model and

encompasses the centralized as well as the distributed

realization of the publish/subscribe concept. In this

context the terms matching and filtering are used inter-

changeably. The term content-based routing is reserved

for the distributed realization of the model, where

the publish/subscribe system is also referred to as

a router, a broker, or a publish/subscribe message

broker. In information retrieval, the publish/subscribe

matching problem is referred to as information filtering.

Subscriptions are then referred to asprofiles orfilters.

Cross-references
▶Content-Based Routing

▶ Publish/Subscribe

▶Type-Based Publish/Subscribe

Recommended Reading
1. AMQP Consortium. Advanced Message Queuing Protocol

Specification, version 0–10 edition, 2008.

2. OGF. Information Dissemination in the Grid Environment Base

Specifications, 2007.

3. OMG. Notification Service Specification, version 1.1, formal/

04–10–11 edition, October 2004.

4. OMG. Data Distribution Service for Real-time Systems, version

1.2, formal/07–01–01 edition, January 2007.
Content-based Retrieval

▶Multimedia Information Retrieval Model
Content-Based Video Retrieval

CATHAL GURRIN

Dublin City University, Dublin, Ireland

Synonyms
Digital video search; Digital video retrieval

Definition
Content-based Video Retrieval refers to the provi-

sion of search facilities over archives of digital video

content, where these search facilities are based on

the outcome of an analysis of digital video content

to extract indexable data for the search process.

Historical Background
As the volume of digital video data in existence constant-

ly increases, the resulting vast archives of professional

video content and UCC (User Created Content) are

presenting an opportunity for the development of

content-based video retrieval systems. Content-based

video retrieval system development was initially lead by

academic research such as the Informedia Digital

Video Library [3] from CMU and the Fı́schlár

Digital Video Suite [6] from DCU (Dublin City Univer-

sity). Both of these systems operated over thousands of

hours of content, however digital video search has now

become an everyday WWW phenomenon, with millions

of items of digital video being indexed by the major

WWW search engines and video upload sites. The early

research focused content-based digital video systems,

such as the offerings from CMU and DCU, exploited

aspects of text search and content-based image search in

order to provide intelligent indexing, retrieval, summari-

zation and visualization of digital video content. In recent

years, the emerging WWW search engines have focused

on the textual indexing of large quantities of digital

video, at the expense of performing complex and time-

consuming visual content analysis.

Foundations
The aim of a content-based video search system is to

answer user queries with a (ranked) list of appropriate

video content. Many different sources of video content

exist and each needs to be treated differently. Firstly

there is professional created content such as TV news

content, documentaries, TV programmes, sports video

and many others. Professional content is directed and

Content-Based Video Retrieval C 467

C

polished content with many visual effects, such as a

movie, music video or TV programme. Secondly there

is the increasing quantities of UCC (User Created

Content), such as home movie content or amateur/

semi-professional content and finally there is security

video content, which is increasingly being captured as

the number of surveillance cameras in use increases. In

addition to the type of content, another factor of key

importance for content-based video search is the

unit of retrieval.

Unit of Retrieval

Different content types will require different units of

retrieval. In most WWW video search systems such as

YouTube or Google Video, the unit of retrieval is

the entire video content, which is sensible because

most of the video content is short UCC or UUC

(User Uploaded Content) clips. Retrieval of entire

video units is not ideal for other types of content, for

example TV news video, where the logical unit of

retrieval would be a news story. There are a number

of units of retrieval that are typically employed in

addition to the entire video unit.

A shot in digital video is a sequence of continu-

ous images (frames) from a single camera. A shot
Content-Based Video Retrieval. Figure 1. StoryBoard Interf
boundary is crossed when a recording instance ends

and a new one begins. In many content-based video

search systems the (automatically segmented) shot is

the preferred unit of retrieval due to the fact that it is

relatively easy to split a video file into its constituent

shot in an automatic process called shot boundary

detection [1]. Once a video stream has been segmented

into shots, it can be browsed or indexed for subsequent

search and retrieval, as shown in Fig. 1. A scene in

digital video is a logical combination of video shots

that together comprise some meaningful semantic

unit. A news story is a special type of scene that is

found in the context of news video. News stories can

be automatically segmented from news video in a

process called story-segmentation. This, like scene seg-

mentation, is not a simple process, though reasonable

accuracy can be achieved by replying on a number of

individual cues from the video content and can be

improved by exploiting the unique video production

techniques of a particular broadcaster. For some video

content, generating a summary or a video skim is a

logical unit of retrieval. These summaries can be inde-

pendent of any user need (context or query) or can be

generated in response to a user need. Summaries have

been successfully employed in the domain of field
ace from the Fı́schlár Video Retrieval System [2].

468C Content-Based Video Retrieval
sports [4] or news summaries of reoccurring news

topics [2]. Finally, as mentioned earlier, the entire

video content may be returned in response to a user

query, as is the case on many WWW video search

engines in 2008.

Representing Video Content Visually on Screen

The quality of the interface to a content-based video

retrieval system has a great effect on the usefulness of

the system. In order to represent digital video visually,

one or more keyframes (usually JPEG images) are

usually extracted from the video to represent the con-

tent. These keyframes can then be employed for visual

analysis of the video content by representing a video

clip (typically a shot) by its keyframe and applying

visual analysis techniques to the keyframe. In addition,

these keyframes may be employed for visual presenta-

tion of video contents to support a degree of random

access into the content. By processing video into a

sequence of shots/scenes, and representing each shot/

scene with one or more keyframes allows for the dis-

play of an entire video as a sequence of keyframes

in what is called a StoryBoard interface, as shown in

Fig. 1. Clicking on any keyframe would typically begin

video playback from that point.

However, relying on simply presenting keyframes

in screen can still require browsing through a very large

information entity for long videos, maybe having over

a hundred keyframes (shots) per hour. Therefore the

ability to search within video content to locate a de-

sired section of the video is desirable.

Searching Archives of Digital Video

The goals of supporting search through digital video

archives are to (i) understand video content and

(ii) understand how relevant content is likely to be to

a user’s query and to (iii) present the most highest

ranked content for user consideration. We try to

achieve these goals by indexing video content utilizing

a number of sources (textual, audio and visual), either

alone or in any combination. The unit of retrieval can

be shots, scenes, stories, entire video units or any other

unit of retrieval required.

Content-Based Retrieval using Text Sources The most

common searching technology used for video retrieval

in the WWW is content searching using proven text

search techniques. This implies that it is possible to

generate textual content (often referred to as a text
surrogate) for the video. There are a number of sources

of text content that can be employed to generate

these textual surrogates, for example sources based on

analyzing the digital video or the broadcast video

stream:

� Spoken words, generated by utilizing a speech-to-

text tool. The spoken words will provide an indica-

tion of the content of the video.

� Written words, extracted using a process of OCR

(OCR – Optical Character Recognition) from the

actual visual content of the video frames.

� Professional closed caption annotation, which are the

closed caption (teletext) transcripts of video that

accompanies much broadcast video content.

In addition there are many sources of textual evi-

dence that can be employed that do not directly rely on

the content of the digital video stream, and typically,

these would be available for publicly available WWW

digital video content:

� Professionally annotated metadata from the content

provider which, if available, provides a valuable

source of content for the textual surrogate.

� Community annotated metadata from general users

of the content. On WWW video sharing sites users

are encouraged to annotate comments about the

video content and these annotations can be a valu-

able source of indexable content.

All of these sources of textual data can be employed

alone, or in any combination to generate textual sur-

rogates for video content (shots, scenes, stories or

entire videos). Users can query such systems with

conventional text queries and this is the way that

most WWW video search engines operate. Text search

through video archives is a very effective way to sup-

port search and retrieval and relies on well-known and

proven text search techniques.

Content-Based Retrieval using Visual Sources

Digital Video, being a visual medium, can also be

analyzed using visual analysis tools, which typically

operate over individual keyframes to visually index

each clip (typically a shot or scene). The visual content

analysis tools are often borrowed from the domain of

visual image analysis. The first generation of video

analysis systems relied on modeling video with easily

extractable low-level visual features such as color,

texture and edge detection. However a significant

Content-Based Video Retrieval C 469

C

‘semantic gap’ exists between these low-level visual

features and the semantic meaning of the video con-

tent, which is how a typical user would like to query a

video search system. To help bridge this semantic gap,

video content in the current generation of video search

systems is processed to seek more complex semantic

(higher-level or derived) visual concepts, such as peo-

ple (faces, newsreaders), location (indoor/outdoor,

cityscape/landscape), objects (buildings, cars, air-

planes), events (explosions, violence) and production

techniques such as camera motion. The output of these

higher-level concept detectors can, with sufficient

development and training, be successfully integrated

(mainly as filters) into content-based video retrieval

systems. However, the development of these concept

detectors can be a difficult process and it is not reason-

able to assume the development of tens of thousands of

concept detectors to cover all concepts for the video

archive. Research carried out by the Informedia team

at CMU suggest that ‘‘concept-based’’ video retrieval

with fewer than 5,000 concepts, detected with minimal

accuracy of 10% mean average precision is likely

to provide high accuracy results, comparable to text

retrieval on the web, for a typical broadcast news video

archive. Extending into other domains besides broad-

cast news may require some additional concepts.

A review of image analysis techniques will provide

more details of these semantic visual concept detectors

and how they can be developed.

The output of easily extracted low-level feature

analysis can be also employed in a content-based

video retrieval system to support linking between visu-

ally similar content, though it is unlikely to be used to

support direct user querying. Semantic features can

form part of a user query, whereby a user, knowing

the semantic factures extracted from a video archive,

can specify semantic features that are required/not

required in the result of a video search. For example,

a user may request video content concerning forest

fires, that also contains the feature ‘fire’.

Content-Based Retrieval using Audio Sources

Apart from the speech-to-text there are other uses

of audio sources for content-based video retrieval.

For example, security video to identify non-standard

audio events, such as a window breaking to provide a

special access point to security video at this point.

Key events in sports video can be identified using

visual analysis (e.g., goal-mouth detection, or onscreen
scoreboard changing) but also using audio analysis,

for example crowd noise level or commentator excite-

ment level.

Effective Retrieval

As can be seen from the current generation of WWW

video search engines, most content-based video re-

trieval relies on user text queries to operate over text

surrogates of video content. In typical situations the

use of visual sources does not achieve any noticeable

improvement in performance over using textual

sources (such as CC text or ASR text). However,

combining both sources of evidence can lead to

higher performance than using either source alone.

Figure 2 summarizes a typical shot-level content-

based indexing process for digital video and illustrates

some of the indexing options available.

Often successful academic video search systems

allow the user to search to find the location in a piece

of video which is likely to be of interest, with the user

being encouraged to browse this area of the video by

presenting keyframes from shots in the general video

area (before and after).

Key Applications
The key application areas can be broadly divided into

two categories; domain dependent video retrieval and

generic (non-domain) video retrieval. In domain de-

pendent video retrieval, the domain of the search sys-

tem is limited, thereby allowing the search tool to

exploit any domain dependent knowledge to develop

a tailored and more effective content-based video re-

trieval system. Typical domains include news video

where the unit of retrieval would a news story. Domain

dependent additions for news video retrieval include

anchor person detection to aid in the identification

of news story bounds, inter-story linkage, story trails

and timeline story progression. An example of a typical

news story retrieval system is the Fı́schlár-News Digital

Video Library that was operational from 2001 to 2004

at Dublin City University, and shown in Fig. 3.

Another example domain dependent application

area is sports video, where research has been progres-

sing on generating automatic summaries of field sports

events and a third example is security video where

research is ongoing into the automatic analysis of

security footage to identify events of interest or even

to identify and track individuals and objects in the

video streams from many cameras in a given location.

Content-Based Video Retrieval. Figure 2. The content-based indexing process for digital video (from Fı́schlár system at

TRECVid in 2004) showing some text extraction, some low-level features and some higher level (derived) features

(concepts).

470C Content-Based Video Retrieval
Domain independent video retrieval attempts to

index all types of content, such as general TV pro-

grammes or generic UCC. Given that there are no

domain specific clues to exploit, retrieval is usually

on textual indexing of a textual surrogate or extracted

visual concepts, such as objects [5], locations, people,

etc. The unit of retrieval would typically be a shot or an

entire video clip, but could also be a non-shot unit that

matches the user request. Domain independent video

retrieval is most commonly seen in WWW video

search engines, which index content based on text

surrogates and returns entire videos in the result set.
Future Directions Future applications of, and research

into content-based video search will likely focus on

developing techniques for providing access to large

archives of digital video content as broadcasters con-

tinue the process of digitizing their huge archives of

programmes and the raw video content (rushes) that

is used in the making of TV programmes. For rushes

content especially, one will not be able to rely on text
transcripts for indexing purposes. In addition, the ever

increasing volume of UCC requires content-based re-

trieval techniques to be developed that will provide an

improved semantic search facility over this content.

Finally, the third point of research into the future will

likely be in migrating content-based retrieval tools

onto consumer devices (PVRs for example), which

themselves are becoming capable of storing hundreds

of hours of recorded video and UCC.

Experimental Results In the field of content-based

video retrieval there exists an annual, worldwide

forum for the evaluation of techniques for video

search, called TRECVid [7] which began in 2001. The

TRECVid workshop is (2007) part of the TREC [8]

conference series is sponsored by the National Institute

of Standards and Technology (NIST). In 2007, 54

teams from Europe, the Americas, Asia, and Australia

participated in TRECVid. Over the course of the

TRECVid evaluations, data employed has been either

TV news, documentaries, educational video and rushes

C
o
n
te
n
t-
B
a
se
d
V
id
e
o
R
e
tr
ie
v
a
l.

F
ig
u
re

3
.
Fı́
sc
h
lá
r-
N
e
w
s,
a
d
o
m
ai
n
d
e
p
e
n
d
e
n
t
co
n
te
n
t-
b
as
e
d
vi
d
e
o
re
tr
ie
va
l
sy
st
e
m
.

Content-Based Video Retrieval C 471

C

Content-Based Video Retrieval. Table 1. Inferred

Average Precision (infAP (In terms of infAP, a value of 1.0

infers that the technique locates only correct examples of

the concept, whereas a value of 0.0 infers that the

technique only locates incorrect examples)) measurement

for the top performing techniques for visual concept

detection at the TRECVid workshop in 2007

CONCEPT infAP CONCEPT infAP

Sports 0.144 Computer/TV
screen

0.209

Weather 0.062 US flag 0.041

Office 0.222 Airplane 0.226

Meeting 0.279 Car 0.265

Desert 0.155 Truck 0.108

Mountain 0.12 Boat/ship 0.212

Waterscape/
waterfront

0.374 People marching 0.104

Police/security 0.046 Explosion/fire 0.069

Military personnel 0.081 Maps 0.236

Animal 0.249 Charts 0.225

472C Content-Based Video Retrieval
(Rushes content, is the unproduced content that is

used to prepare TV programming.) content. TRECVid

has organized a number of tasks for the annual evalua-

tions which may change each year. The tasks evaluated,

2001, have included shot boundary determination,

interactive and automatic (no query modification or

browsing) video search, high-level concept detection,

story boundary determination for TV news and cam-

era motion analysis, among others.

In addition to TRECVid, other evaluation forums

also exist such as Video Analysis and Content Extraction

(VACE) which is a US program that addresses the lack

of tools to assist human analysts monitor and annotate

video for indexing. The video data used in VACE is

broadcast TV news, surveillance, Unmanned Aerial

Vehicle, meetings, and ground reconnaissance video.

Other evaluation forums such as the French ETISEO

and EU PETS evaluations have evaluated content-based

retrieval (event detection and object detection) from

surveillance video. ARGOS, sponsored by the French

government, evaluated tasks similar to TRECVid and

employed video data from TV news, scientific docu-

mentaries and surveillance video archives.

Some summary findings from content-based video

retrieval research are that employing visual analysis

of the video content does not provide a significant

increase in search performance over using text tran-

scripts, that text transcripts provide the single most

important clue for searching content, that employing

as many text sources as possible aids text search quali-

ty, and finally that, incorporating visual content search

can improve retrieval over that of text indexing alone.

The performance of visual indexing tools suggests that

this is an unsolved problem with much research need-

ed. As an example, the highest accuracy attained (in

terms of Inferred Average Precision) for the twenty

visual concepts evaluated at TRECVid in 2007 are

shown in Table 1.

Finally, it should be noted that the interface to an

interactive video search system (for example [3,6]) can

make a huge difference for effective content-based

video search and retrieval. Content searching through

text transcripts can locate the area of the video, but a

good storyboard interface to find the exact video shot

of interest is a valuable addition.

Data Sets The TRECVid evaluation framework pro-

vides a number of datasets to support the comparative

and repeatable evaluation of TREC. Since 2001, these
datasets, along with the associated queries and relevance

judgements are available. The video data employed in

these datasets comes from various sources, such as the

video from the Movie Archive of the Internet Archive,

news video data in a number of languages (English,

Arabic and Chinese) and rushes content. Datasets used

in other evaluation forums are also available

Cross-references
▶Video Abstraction

▶Video Content Analysis

▶Video Content Modeling

▶Video Metadata

▶Video Representation

▶Video Scene and Event Detection

▶Video Segmentation

▶Video Shot Detection

▶Video Skimming

▶Video Summarization
Recommended Reading
1. Browne P., Smeaton A.F., Murphy N., O’Connor N., Marlow S.,

and Berrut C. Evaluating and combining digital video shot

boundary detection algorithms. In Proc. IMVIP 2000 – Irish

Machine Vision and Image Processing Conference, 2000,

pp. 93–100.

Context C 473

C

2. Christel M.G., Hauptmann A.G., Wactlar H.D., and Ng T.D.,

Collages as dynamic summaries for news video. In Proc. 10th

ACM Int. Conf. on Multimedia, 2002, pp. 561–569.

3. Hauptmann A. lessons for the future from a decade of

informedia video analysis research, image and video retrieval.

In Proc. 4th Int. Conf. Image and Video Retrieval, 2005, pp.

1–10.

4. Sadlier D. and O’Connor N. Event detection in field sports

video using audio-visual features and a support vector machine.

IEEE Trans. Circuits Syst. Video Technol., 15(10):1225–1233,

2005.

5. Sivic J. AND Zisserman A. Video Google: a text retrieval ap-

proach to object matching in videos. In Proc. 9th IEEE Conf.

Computer Vision, Vol. 2, 2003, pp. 1470–1477.

6. Smeaton A.F., Lee H., and Mc Donald K. Experiences of creating

four video library collections with the Fı́schlár system. Int. J.

Digit. Libr., 4(1):42–44, 2004.

7. Smeaton A.F., Over P., and Kraaij W. Evaluation campaigns and

TRECVid. In Proc. 8th ACM SIGMM Int. Workshop on Multi-

media Information Retrieval, 2006, pp. 321–330.

8. http://trec.nist.gov Last visited June ’08.
Content-Only Query

THIJS WESTERVELD
1,2

1Teezir Search Solutions, Ede, The Netherlands
2CWI, Amsterdam, The Netherlands

Synonyms
Content-only query; CO query

Definition
A content-only query is a formulation of an infor-

mation need in XML retrieval or, more generally, in

semi-structured text retrieval that does not contain

information regarding the structure of the desired

result.

Key Points
Content-only query or CO query is a term from semi-

structured text retrieval, used predominantly for XML

retrieval. The term refers to a specific way of querying a

semi-structured document collection. Content-only

queries ignore the structure of the collection and only

refer to the (topical) content of the desired result. In

that sense, they are similar to the keyword queries

typically used in traditional information retrieval sys-

tems or in web search engines. The fact that structural

information is lacking from the query formulation

does not mean structure does not play a role. When a
content-only query is posed, it is up to the retrieval

system to decide the appropriate level of granularity to

satisfy the information need. This contrasts so-called

content-and-structure queries where the user specifies

structural clues regarding the desired result. More

information on query languages, including content-

only and content-and-structured queries in the field

of XML search can be found in [1].

Cross-references
▶Content-and-structure query

▶NEXI

▶Xml Retrieval

Recommended Reading
1. Amer-Yahia S. and Lalmas M. XML search: languages, INEX and

scoring. ACM SIGMOD Rec., 35(4):16–23, 2006.
Content-oriented XML Retrieval

▶XML Retrieval
Context

OPHER ETZION

IBM Research Lab in Haifa, Haifa, Israel

Synonyms
Life-span (in part); Space-span (in part)

Definition
A context is a collection of semantic dimensions within

which the event occurs. These dimensions may in-

clude: temporal context, spatial context, state-related

context and reference-related context.

Key Points
Event processing is being done within context, which

means that an event is interpreted differently in differ-

ent contexts, and may trigger different actions in dif-

ferent contexts, or be irrelevant in certain context. In

the event processing network, each agents operates

within a single context. While the term context has

been associated with the spatial dimension, in event

processing it is most strongly associated with the tem-

poral dimension.

474C Context-aware Interfaces
Each context-dimension may be specified either

explicitly, or by using higher level abstractions.

Examples are:

� Temporal context:
– Explicit: Everyday between 8AM–5PM EST.

– Implicit: From sunrise to sunset.

– Mixed: Within two hours from admission to

the hospital.
� Spatial context:
– Explicit: Within 1 KM from coordinate + 51� 30

45.7100, �1� 180 25.5600.
– Implicit: Within the borders of the city of

Winchester.

– Mixed: Within 1 KM north of the border

between Thailand and Laos.
� State-oriented context:
– Explicit: When ‘‘red alert’’ is present.

– Implicit: During traffic jam in the area.
� Reference-oriented context:
– Explicit: Context-instance for each platinum-

customer with credit-limit > $1M.

– Implicit: Context-instance for each ‘‘angry

customer.’’
Note that the state-oriented dimension is different,

since it does not relate to the event itself, and is global

in nature. A context may consist of one dimension only

or combination of dimensions. The reference-oriented

context is mainly used to partition the event space.

Context instances may or may not cover the entire

space of possibilities, a context can also be created

from binary operations on contexts (union, intersec-

tion, difference).

Cross-references
▶Complex Event Processing

▶ Event Processing Network

▶Retrospective Event Processing

Recommended Reading
1. Adi A., Biger A., Botzer D., Etzion O., and Sommer Z. Context

awareness in Amit. In Proc. 5th Annual Workshop on Active

Middleware Services, 2003, pp. 160–167.

2. Barghouti N.S. and Krishnamurthy B. Using event contexts and

matching constraints to monitor software processes. In Proc.

17th Int. Conf. on Software Eng., 1995, pp. 83–92.

3. Buvac S. Quantificational logic of context. In Proc. 10th Nation-

al Conf. on AI, 1996, pp. 600–606.

4. Hong C., Lee K., Suh Y., Kim H., Kim H., and Lee H. Developing

context-aware system using the conceptual context model.
In Proc. 6th IEEE Int. Conf. on Information Technology, 2006,

pp. 238.

5. Rakotonirainy A., Indulska J., Loke S.W., and Zaslavsky A.

Middleware for reactive components: An integrated use of con-

text, roles, and event based coordination. In Proc. IFIP/ACM Int.

Conf. on Dist. Syst. Platforms, 2001, pp. 77–98.
Context-aware Interfaces

▶Adaptive Interfaces
Contextual Advertising

▶Web Advertising
Contextualization

JAANA KEKÄLÄINEN, PAAVO ARVOLA, MARKO JUNKKARI

University of Tampere, Tampere, Finland

Definition
In relation to structured text retrieval, contex-

tualization means estimating the relevance of a given

structural text unit with information obtainable from –

besides the unit itself – the surrounding structural text

units, that is, from the context of the unit. From now

on, structural text units are referred to as elements in

accordance with [4]. In other words, in contextualiza-

tion it is assumed that the context of an element gives

hints about the relevance of the element.

Historical Background
Structured information retrieval typically addresses

documents marked-up with, for instance, SGML or

XML. In this article, XML documents are used as a

sample case of structured documents. These docu-

ments have a hierarchical structure, which is often

represented as a tree. In structured text retrieval, like

in information retrieval (IR) in general, querying is

based on words representing the information needed.

Structural conditions, concerning the tree, may or may

not be added to the query. An information retrieval

system (IRS) returns a list of elements ranked by their

retrieval status values (RSV), which are scores given by

the IRS. Typically, RSVs are based on the statistics of

Contextualization. Figure 1. A sample document tree.

Contextualization C 475

C

words (cf. definitional entry Term statistics) appearing

in the element and the query, although other features

of the document or its structure may be used in

addition.

The idea of XML retrieval is not to return whole

documents but those elements that are best matches

to the query–relevant elements with the least irrelevant

content. The length of the textual content varies as the

size of the elements varies in the hierarchy, so that des-

cendant elements oftenhave less text than their ancestors.

As a consequence, small elements down in the hierarchy

may have too few words in commonwith the query, that

is, too little evidence to be matched with the query,

although they might be more exact matches than their

ancestors. This problem, known as the vocabulary

mismatch, is typical for text retrieval, and is caused by

natural language allowing severalways to refer to objects.

However, elements are often dependent on each other

because of textual cohesion. Thus, one solution is to use

the context of the element to give more evidence about

the subject of the element. One could say that ‘‘good

elements’’ appear in ‘‘good company.’’ This approach

was first proposed by Sigurbjörnsson, Kamps, and

deRijke in [8].

Another problem related to the nested structure of

structured texts is the calculation of word statistics.

There are no obvious indexing units like in nonstruc-

tured (flat) text retrieval (cf. entry Indexing units). The

calculation of word weights is challenging since the

length of the elements vary, which has effects on

word frequencies. Moreover, inverted element frequen-

cies, corresponding to inverted document frequencies

(idfs) in weight calculation, vary depending on the

indexing unit. As a solution for this, the concept of

document pivot factor (originally introduced in [9] for

classical document retrieval) is suggested by Mass and

Mandelbrod [6] to scale the final relevance status value

of an element in XML IR. In [6] the scaling is based

on the document pivot factor, RSV of the topmost

ancestor (the root element), and the RSV of the ele-

ment. This can be regarded as contextualization

though for different reasons than in the first men-

tioned case.

Foundations
An XML document consists of elements, which in turn

may contain smaller elements. If an element x contains

immediately another element y, then x is called the

parent of y, whereas y is called a child of x. Any element
containing x is an ancestor of y, and y is a descendant of

those elements. A sample XML document is represented

as a tree in Fig. 1. The document is an article consisting

of a title, sections, subsections, and paragraphs. All

elements are labeled with Dewey indices for reference.

Depending on how a collection is organized, an

element may be viewed at various levels of context.

For example, assuming that documents follow an

article-section-subsection-paragraph division as in

the sample, then the article, the section and the sub-

section form different levels of context for a paragraph.

Further, a subsection can be viewed in the contexts of

the section or article. The length of the path from the

context element to the element at hand determines the

level of context. For example, the parent of an element

determines the first level context; the ancestor with the

path length 2 determines the second level context, etc.

The root element forms the topmost context.

As an example, the paragraph labeled <1,2,2,1> in

Fig. 1 is examined. Now Subsection<1,2,2> forms the

first level context and Section <1,2> the second level

context of this paragraph. The article is the root ele-

ment, or it determines the topmost context of this

paragraph. In turn, Section <1,2> forms the first

level context, and the article the second level (or top-

most) context of Subsection<1,2,2>. The article pos-

sesses no context.

The idea of contextualization is based on the assump-

tion that an element in a relevant context should be

ranked higher than a similar element in a nonrelevant

context. In contextualization, the RSV of an element is

tuned by the RSVof its context element(s). If the RSVof

the context is low (predicting nonrelevance), the RSV

476C Contextualization
of the element should be decreased; if the RSV of the

context is high (predicting relevance), the RSVof the ele-

ment should be increased. Here low and high are relative

to the element RSVand the RSVs of other contexts.

As an example three special contextualization cases

are considered – parent, root or all ancestors as a

context. In defining contextualization function the

following notations, presented in [1], are used:

parent(e) yields the parent element of the element e,

root(e) yields the root element of the element e,

he1,e2,...,enimeans the path from the root element e1 to

its descendant en such that 8i 2 {1,...,n�1} holds

ei = parent(ei+1), and

w(q, e) denotes the RSVof the element e with respect to

the query q.

With relation to the query expression q, contextualiza-

tion based on the nearest context (parent) of the ele-

ment e can be calculated by averaging the RSVs of the

element e and its parent element. Averaging is applied

as an example because it increases the RSV of the

element whose context’s RSV is higher, and decreases

the RSVof such elements whose context’s RSV is lower.

The function for this is denoted by the symbol cp:

cpðq; eÞ ¼
wðq; eÞ þ wðq; parentðeÞÞ

2
:

The contextualization by the topmost context is

denoted by the function symbol cr and it can be calcu-

lated by averaging the RSVs of the element e and its

root element.

crðq; eÞ ¼
wðq; eÞ þ wðq; rootðeÞÞ

2
:

The contextualization function ct is called tower con-

textualization and it yields the average of the RSVs of

all the elements within the path from the root element

to the element e, that is, all ancestors.

ctðq; eÞ ¼

Pn
i¼1

wðq; eiÞ

n
;

when e1 = root(e) and en = e in the path he1,...,eni.
Now, Dewey indices are utilized as a method for

handling the XML tree structure. In the following, the

contextualization for any path between the element and

the root is generalized. The notations used are as follows:

– The symbol x is used for denoting a Dewey index

labeling an element. An element possessing the

index x is called the x element.
– The set of indices related to the XML collection at

hand is denoted by IS.

– The length of an index x is denoted by len(x). For
example len(h1,2,2,3i) is 4.

– The index hii consisting of an integer i (i.e., its

length is 1) is called root index and it is associated

with the whole document.

– Let x be an index and i a positive integer, then the

cutting operation di(x) selects the sub-index of the

index x consisting of its i first integers. For example

if x = ha,b,ci then d2(x) = ha,bi. In terms of the

cutting operation the root index at hand is denoted

by d1(x) whereas the index of the parent element

can be denoted by dlen(x)�1(x).

A general contextualization function C has the follow-

ing arguments: q, x, and g. The arguments q (query)

and x (index) are defined above. The argument g is

called contextualization vector and is set-theoretically

represented as a tuple, consisting of values by which

elements between the root element and x element are

weighted in contextualization. The length of g is len(x).
When referring to the ith position of the contextuali-

zation vector g, the notation g[i] is used. For example,

if g = ha,b,ci then g[2] = b. The value in g[i] relates to

the element with the index di(x). For example, if

x = h1,2,2i then g is the 3-tuple ha,b,ci where a is the

contextualization weight of the root element h1i (i.e.,
the element with index d1(x)), b is the contextualiza-

tion weight of the h1,2i element (i.e., the element with

index d2(x)), and c is the weight of the h1,2,2i element

(i.e., the element with the index dlen (x)(x)). The contex-
tualized RSVs of elements are calculated by weighted

average based on the contextualization vector and

the index at hand. In the sample case above the con-

textualized RSV is calculated as (a * w(q, h1i) + b *w(q,

h1,2i) + c * w(q, h1,2,2i))/(a + b + c). Contextualiza-

tion is applied only to those elements whose basic RSV

is not zero. The general contextualization function C is

formally defined:

Cðq; x; gÞ ¼

0; if wðq; xÞ ¼ 0PlenðxÞ
i¼1

g ½i��wðq;diðxÞÞ

PlenðxÞ
i¼1

g ½i�
; otherwise:

8>>><
>>>:

The values in g are not bound to any range. This means

that in terms of g, different levels of the context can be

weighted in various ways. For example, weighting may

increase or decrease toward the topmost context (root

element).

Contextualization C 477

C

Now, parent and root contextualization with the

given generalized notation are considered. For simplic-

ity, binary contextualization weights are used, that is,

only such cases where the values of g are either 1 or 0.

Zero value means that the corresponding element is

not taken into account in the contextualization. With

relation to a query expression q, the contextualization

based on the first level (parent) context of the x ele-

ment is calculated using the contextualization vector

where two last elements have the value 1 and the others

zero value. This function is denoted cp(q, x) and de-

fined as follows:

cpðq; xÞ¼Cðq; x; gÞ

where g =

g ½lenðxÞ� ¼ 1

g ½lenðxÞ � 1� ¼ 1;when lenðxÞ > 1

g ½i�
lenðxÞ�2

i¼1
¼ 0;when lenðxÞ > 2

8>>><
>>>:

The contextualization by the topmost context (or

by the root element) is denoted by the function symbol

cr. In this case the weights for the first and the last

element are 1 and the other weights are 0 in the

contextualization vector.

crðq; xÞ¼Cðq; x; gÞwhere g ¼

g ½lenðxÞ� ¼ 1

g ½1� ¼ 1

g ½i�
lenðxÞ�1

i¼2
¼ 0;

when lenðxÞ > 2:

8>>>>><
>>>>>:

There are alternative interpretations and presentations

of the idea of contextualization, for example [8,6,10].

The idea of mixing evidence from the element itself

and its surrounding elements was presented for the

first time by Sigurbjörnsson, Kamps, and de Rijke

[8]. They apply language modeling based on a mixture

model. The final RSV for the element is combined

from the RSV of the element itself and the RSV of the

root element as follows:

wmixðq; eÞ ¼ lpðeÞ þ a � wðq; rootðeÞÞ
þ ð1� aÞ � wðq; eÞ;

where the notation is as given above; wmix(q,e) is the

combined RSV for the element, lp(e) is the length

prior, and a is a tuning parameter.

In [6] independent indices are created for different –

selected – element types. Some indices have sparse data
compared with others, that is, all the words of root

elements are not contained in lower level elements. This

has effects on inverted element frequencies and compa-

rability of the word weights across the indices. To resolve

the problem the final element RSV is tuned by a scaling

factor and the RSV of the root element. With the nota-

tion explained above this can be represented as follows:

wpðq; eÞ ¼DocPivot � wðq; rootðeÞÞ
þ ð1� DocPivotÞ � wðq; eÞ

where wp(q,e) is the pivoted RSV of the element, and

DocPivot is the scaling factor.

In [10], the structural context of the element is

utilized for scoring elements. Original RSVs are

obtained with the Okapi model [7]. For this, word

frequencies are calculated for elements rather than

documents, and normalized for each element type.

The combined RSV for the element is calculated as a

sum of the RSVof the context and the original RSV for

the element, each score multiplied by a parameter.

Machine learning approach is applied for learning the

parameters. Let x = {t1, t2,...,td} be a vector of features

representing the element e. The features are RSVs of

the element e and its different contexts. Then the

combined RSV is

foðxÞ ¼
Xd
j¼1

oj tj ;

where o = {o1, o2,...,od} are the parameters to be

learned. The approach was tested with the parent and

root as the contexts.

Key Applications
Contextualization and similar approached have been

applied in XML retrieval with different retrieval mod-

els: tf-idf based ranking and structural indices [1], the

vector space model [6], and the language modeling [8].

The key application is element ranking. The results

obtained with different retrieval systems seem to

indicate that the root contextualization is the best

alternative.

In traditional text retrieval a similar approach has

been applied to text passages [3,5]. The idea of contex-

tualization is applicable to all structured text documents;

yet the type of the documents to be retrieved has effects

on contextualization. Lengthy documents with one or

few subjects are more amenable for the method than

short documents, or documents with diverse subjects;

contextualization might not work in an encyclopedia

478C Continuous Backup
with short entries, but can improve effectiveness, say, in

the retrieval of the elements of scientific articles.

Experimental Results
The effectiveness of contextualization in XML retrieval

has been experimented with the INEX test collection

consisting of IEEE articles [1,2]. All three contextualiza-

tion types mentioned above (parent, root, and tower

contextualization) were tested. The results show clear

improvement over a non-contextualized baseline; the

best results were obtained with the root and tower

contextualization. Additionally, approaches suggested

in [8,6,10] were tested with the same INEX collection

and reported to be effective compared with non-

contextualized baselines, that is, compared with ranking

based on elements’ basic RSVs.

Cross-references
▶ Indexing Units

▶Term Statistics for Structured Text Retrieval

▶XML Retrieval

Recommended Reading
1. Arvola P., Junkkari M., and Kekäläinen J. Generalized contex-

tualization method for XML information retrieval. In Proc. Int.

Conf. on Information and Knowledge Management, 2005, pp.

20–27.

2. Arvola P., Junkkari M., and Kekäläinen J. Query evaluation with

structural indices. In Proc. 4th Int. Workshop of the Initiative for

the Evaluation of XML Retrieval, 2005, pp. 134–145.

3. Callan J.P. Passage-level evidence in document retrieval. In Proc.

30th Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 2004, pp. 302–310.

4. Extensible Markup Language (XML) 1.0 (Fourth Edition). W3C

Recommendation 16 August 2006. Available at: http://www.w3.

org/TR/xml/[retrieved 17.8.2007].

5. Kaszkiel M., Zobel J., and Sacks-Davis R. Efficient passage

ranking for document databases. ACM Trans. Infor. Syst.,

17(4):406–439, 1999.

6. Mass Y. and MandelbrodM. Component ranking and automatic

query refinement for XML retrieval. In Proc. 4th Int. Workshop

of the Initiative for the Evaluation of XML Retrieval, 2005,

pp. 73–84.

7. Robertson S.E., Walker S., Jones S., Hancock-Beaulieu M.M.,

and Gatford M. Okapi at TREC-3. In Proc. The 3rd Text Re-

trieval Conf., 1994, pp. 500–226.

8. Sigurbjörnsson B, Kamps J., and De Rijke M. An element-based

approach to XML retrieval. In Proc. 2nd Int. Workshop of the

Initiative for the Evaluation of XML Retrieval, 2003, 19–26.

Available at: http://inex.is.informatik.uni-duisburg.de:2003/

proceedings.pdf [retrieved 29.8.2007].

9. Singhal A., Buckley C., and Mitra M. Pivoted document length

normalization. In Proc. 19th Annual Int. ACM SIGIR Conf. on
Research and Development in Information Retrieval, 1996,

21–29.

10. Vittaut J.-N. and Gallinari P. Machine learning ranking for

structured information retrieval. In Proc. 28th European Conf.

on IR Research, 2006, 338–349.
Continuous Backup

▶Continuous Data Protection (CDP)
Continuous Data Feed

▶Data Stream
Continuous Data Protection

KENICHI WADA

Hitachi, Ltd, Tokyo, Japan

Synonyms
Continuous backup

CDP

Definition
CDP is a data protection service capturing data

changes to storage, often providing the capability of

restoring any point in time copies.

Key Points
CDP differs from usual backups in that users do not

need to specify the point in time until they recover data

from backups. From an application point of view,

every time when it updates data in an original volume,

CDP keeps updates. In case of recovery, when users

specify the point in time, CDP creates the point in time

copy from an original volume and updates.

In several CDP implementations, users can specify

the granularities of restorable objects which help them

to specify the point in time easily. For example, restor-

able objects range from crash-consistent images to

logical objects such as files, mail boxes, messages, data-

base files, or logs.

Cross-references
▶Backup and Restore

Continuous Monitoring of Spatial Queries C 479
Recommended Reading
1. Laden G., et al. Architectures for Controller Based CDP. In Proc.

5th USENIX conf. on File and Storage Technologies, 2007,

pp. 107–121.
C

Continuous Monitoring of Spatial
Queries

KYRIAKOS MOURATIDIS

Singapore Management University, Singapore,

Singapore

Synonyms
Spatio-temporal stream processing

Definition
A continuous spatial query runs over long periods of

time and requests constant reporting of its result as the

data dynamically change. Typically, the query type is

range or nearest neighbor (NN), and the assumed

distance metric is the Euclidean one. In general, there

are multiple queries being processed simultaneously.

The query points and the data objects move frequently

and arbitrarily, i.e., their velocity vectors and motion

patterns are unknown. They issue location updates to a

central server, which processes them and continuously

reports the current (i.e., updated) query results. Con-

sider, for example, that the queries correspond to

vacant cabs, and that the data objects are pedestrians

that ask for a taxi. As cabs and pedestrians move, each

free taxi driver wishes to know his/her closest client.

This is an instance of continuous NN monitoring.

Spatial monitoring systems aim at minimizing the

processing time at the server and/or the communica-

tion cost incurred by location updates. Due to the

time-critical nature of the problem, the data are usually

stored in main memory to allow fast processing.

Historical Background
The first algorithms in the spatial database literature

process snapshot (i.e., one-time) queries over static

objects. They assume disk-resident data and utilize

an index (e.g., an R-tree) to restrict the search space

and reduce the I/O cost. Subsequent research consid-

ered spatial queries in client-server architectures. The

general idea is to provide the user with extra informa-

tion (along with the result at query-time) in order

to reduce the number of subsequent queries as he/she
moves (see entryNearest Neighbor Query). These meth-

ods assume that the data objects are either static or

moving linearly with known velocities. Due to the wide

availability of positioning devices and the need for

improved location-based services, the research focus

has recently shifted to continuous spatial queries. In

contrast with earlier assumed contexts, in this setting

(i) there are multiple queries being evaluated simulta-

neously, (ii) the query results are continuously

updated, and (iii) both the query points and the data

objects move unpredictably.

Foundations
The first spatial monitoring method is called Q-index

[13] and processes static range queries. Based on the

observation that maintaining an index over frequently

moving objects is very costly, Q-index indexes the

queries instead of the objects. In particular, the moni-

tored ranges are organized by an R-tree, and moving

objects probe this tree to find the queries that they

influence. Additionally, Q-index introduces the con-

cept of safe regions to reduce the number of location

updates. Specifically, each object p is assigned a circular

or rectangular region, such that p needs to issue an

update only if it exits this area (because, otherwise, it

does not influence the result of any query). Figure 1

shows an example, where the current result of query q1
contains object p1, that of q2 contains p2, and the

results of q3, q4, and q5 are empty. The safe regions

for p1 and p4 are circular, while for p2 and p3 they are

rectangular. Note that no query result can change

unless some objects fall outside their assigned safe

regions. Kalashnikov et al. [4] show that a grid imple-

mentation of Q-index is more efficient (than R-trees)

for main memory evaluation.

Monitoring Query Management (MQM) [1] and

MobiEyes [2] also monitor range queries. They further

exploit the computational capabilities of the objects to

reduce the number of updates and the processing load

of the server. In both systems, the objects store locally

the queries in their vicinity and issue updates to the

server only when they cross the boundary of any of

these queries. To save their limited computational cap-

abilities, the objects store and monitor only the queries

they may affect when they move. MQM and MobiEyes

employ different strategies to identify these queries.

The former applies only to static queries. The latter

can also handle moving ones, making however the

assumption that they move linearly with fixed velocity.

Continuous Monitoring of Spatial Queries. Figure 1.

Circular and rectangular safe regions.

480C Continuous Monitoring of Spatial Queries
Mokbel et al. [7] present Scalable INcremental

hash-based Algorithm (SINA), a system that monitors

both static and moving ranges. In contrast with the

aforementioned methods, in SINA the objects do not

perform any local processing. Instead, they simply

report their locations whenever they move, and the

objective is to minimize the processing cost at the

server. SINA is based on shared execution and incre-

mental evaluation. Shared execution is achieved by

implementing query evaluation as a spatial join be-

tween the objects and the queries. Incremental evalua-

tion implies that the server computes only updates

(i.e., object inclusions/exclusions) over the previously

reported answers, as opposed to re-evaluating the

queries from scratch.

The above algorithms focus on ranges, and their

extension to NN queries is either impossible or non-

trivial. The systems described in the following target

NN monitoring. Hu et al. [3] extend the safe region

technique to NN queries; they describe a method that

computes and maintains rectangular safe regions sub-

ject to the current query locations and kNN results.

Mouratidis et al. [11] propose Threshold-Based algo-

rithm (TB), also aiming at communication cost reduc-

tion. To suppress unnecessary location updates, in TB

the objects monitor their distance from the queries

(instead of safe regions). Consider the example in

Fig. 2, and assume that q is a continuous 3-NN query

(i.e., k = 3). The initial result contains p1, p2, p3. TB

computes three thresholds (t1, t2, t3) which define a

range for each object. If every object’s distance from
q lies within its respective range, the result of the query

is guaranteed to remain unchanged. Each threshold is

set in the middle of the distances of two consecutive

objects from the query. The distance range for p1 is

[0, t1), for p2 is [t1, t2), for p3 is [t2, t3), and for p4, p5 is

[t3,1). Every object is aware of its distance range, and

when there is a boundary violation, it informs the

server about this event. For instance, assume that p1,

p3, and p5 move to positions p01; p
0
3 and p05, respectively.

Objects p3 and p5 compute their new distances from q,

and avoid sending an update since they still lie in their

permissible ranges. Object p1, on the other hand, vio-

lates its threshold and updates its position to the server.

Since the order between the first two NNs may have

changed, the server requests for the current location of

p2, and updates accordingly the result and threshold t1.

In general, TB processes all updates issued since the last

result maintenance, and (if necessary) it decides which

additional object positions to request for, updates the k

NNs of q, and sends new thresholds to the involved

objects.

All the following methods aim at minimizing the

processing time. Koudas et al. [6] describe aDaptive

Indexing on Streams by space-filling Curves (DISC),

a technique for e-approximate kNN queries over

streams of multi-dimensional points. The returned

(e-approximate) kth NN lies at most e distance units

farther from q than the actual kth NN of q. DISC

partitions the space with a regular grid of granularity

such that the maximum distance between any pair of

points in a cell is at most e. To avoid keeping all

arriving data in the system, for each cell c it maintains

only K points and discards the rest. It is proven that an

exact kNN search in the retained points corresponds to

a valid ekNN answer over the original dataset provided

that k 	 K. DISC indexes the data points with a B-tree

that uses a space filling curve mechanism to facilitate

fast updates and query processing. The authors show

how to adjust the index to: (i) use the minimum amount

of memory in order to guarantee a given error bound

e, or (ii) achieve the best possible accuracy, given a

fixed amount of memory. DISC can process both snap-

shot and continuous ekNN queries.

Yu et al. [17] propose a method, hereafter referred

to as YPK-CNN, for continuous monitoring of exact

kNN queries. Objects are stored in main memory

and indexed with a regular grid of cells with size

d�d. YPK-CNN does not process updates as they

arrive, but directly applies them to the grid. Each NN

Continuous Monitoring of Spatial Queries C 481

C

query installed in the system is re-evaluated every T

time units. When a query q is evaluated for the first

time, a two-step NN search technique retrieves its

result. The first step visits the cells in an iteratively

enlarged square R around the cell cq of q until k objects

are found. Figure 3a shows an example of a single NN

query where the first candidate NN is p1 with distance

d from q; p1 is not necessarily the actual NN since there

may be objects (e.g., p2) in cells outside R with distance

smaller than d. To retrieve such objects, the second step

searches in the cells intersecting the square SR centered

at cq with side length 2·d + d, and determines the actual

kNN set of q therein. In Fig. 3a, YPK-CNN processes p1
Continuous Monitoring of Spatial Queries. Figure 2. TB

example (k = 3).

Continuous Monitoring of Spatial Queries. Figure 3. YPK-C
up to p5 and returns p2 as the actual NN. The accessed

cells appear shaded.

When re-evaluating an existing query q, YPK-CNN

makes use of its previous result in order to restrict the

search space. In particular, it computes the maximum

distance dmax among the current locations of the pre-

vious NNs (i.e., dmax is the distance of the previous

neighbor that currently lies furthest from q). The new

SR is a square centered at cq with side length 2·dmax + d.
In Fig. 3b, assume that the current NN p2 of q moves

to location p02. Then, the rectangle defined by

dmax ¼ distðp02; qÞ is guaranteed to contain at least

one object (i.e., p2). YPK-CNN collects all objects

(p1 up to p10) in the cells intersecting SR and identifies

p1 as the new NN. Finally, when a query q changes

location, it is handled as a new one (i.e., its NN set is

computed from scratch).

Xiong et al. [16] propose Shared Execution Algo-

rithm for Continuous NN queries (SEA-CNN). SEA-

CNN focuses exclusively on monitoring the NN

changes, without including a module for the first-

time evaluation of an arriving query q (i.e., it assumes

that the initial result is available). Objects are stored

in secondary memory, indexed with a regular grid.

The answer region of a query q is defined as the circle

with center q and radius NN_dist (where NN_dist is

the distance of the current kth NN). Book-keeping

information is stored in the cells that intersect the

answer region of q to indicate this fact. When updates

arrive at the system, depending on which cells they
NN examples.

482C Continuous Monitoring of Spatial Queries
affect and whether these cells intersect the answer

region of the query, SEA-CNN determines a circular

search region SR around q, and computes the new kNN

set of q therein. To determine the radius r of SR, the

algorithm distinguishes the following cases: (i) If some

of the current NNs move within the answer region or

some outer objects enter the answer region, SEA-CNN

sets r = NN_dist and processes all objects falling in the

answer region in order to retrieve the new NN set.

(ii) If any of the current NNs moves out of the answer

region, processing is similar to YPK-CNN; i.e., r = dmax

(where dmax is the distance of the previous NN that

currently lies furthest from q), and the NN set

is computed among the objects inside SR. Assume

that in Fig. 4a the current NN p2 issues an update

reporting its new location p02. SEA-CNN sets

r ¼ dmax ¼ distðp02; qÞ, determines the cells intersect-

ing SR (these cells appear shaded), collects the

corresponding objects (p1 up to p7), and retrieves p1
as the new NN. (iii) Finally, if the query q moves to a

new location q0, then SEA-CNN sets r = NN_dist + dist

(q, q0), and computes the new kNN set of q by proces-

sing all the objects that lie in the circle centered at q0

with radius r. For instance, in Fig. 4b the algorithm

considers the objects falling in the shaded cells (i.e.,

objects from p1 up to p10 except for p6 and p9) in order

to retrieve the new NN (p4).

Mouratidis et al. [9] propose another NNmonitoring

method, termed Conceptual Partitioning Monitoring

(CPM). CPM assumes the same system architecture

and uses similar indexing and book-keeping structures
Continuous Monitoring of Spatial Queries. Figure 4. SEA-C
as YPK-CNN and SEA-CNN.When a query q arrives at

the system, the server computes its initial result by

organizing the cells into conceptual rectangles based

on their proximity to q. Each rectangle rect is defined

by a direction and a level number. The direction is U, D,

L, or R (for up, down, left and right), and the level

number indicates how many rectangles are between

rect and q. Figure 5a illustrates the conceptual space

partitioning around the cell cq of q. If mindist(c,q) is

the minimum possible distance between any object in

cell c and q, the NN search considers the cells in

ascendingmindist(c, q) order. In particular, CPM initi-

alizes an empty heap H and inserts (i) the cell of q with

key equal to 0, and (ii) the level zero rectangles for each

direction DIR with keymindist(DIR0, q). Then, it starts

de-heaping entries iteratively. If the de-heaped entry is

a cell, it examines the objects inside and updates ac-

cordingly the NN set (i.e., the list of the k closest

objects found so far). If the de-heaped entry is a rect-

angle DIRlvl, it inserts into H (i) each cell c ∈ DIRlvl

with key mindist(c, q) and (ii) the next level rectangle

DIRlvl + 1 with key mindist(DIRlvl + 1, q). The algorithm

terminates when the next entry in H (corresponding

either to a cell or a rectangle) has key greater than

the distance NN_dist of the kth NN found. It can be

easily verified that the server processes only the cells

that intersect the circle with center at q and radius

equal to NN_dist. This is the minimal set of cells

to visit in order to guarantee correctness. In Fig. 5a,

the search processes the shaded cells and returns p2 as

the result.
NN update handling examples.

Continuous Monitoring of Spatial Queries. Figure 5. CPM examples.

Continuous Monitoring of Spatial Queries C 483

C

The encountered cells constitute the influence re-

gion of q, and only updates therein can affect the

current result. When updates arrive for these cells,

CPM monitors how many objects enter or leave the

circle centered at q with radius NN_dist. If the outgoing

objects are more than the incoming ones, the result is

computed from scratch. Otherwise, the new NN set of

q can be inferred by the previous result and the update

information, without accessing the grid at all. Consider

the example of Fig. 5b, where p2 and p3 move to

positions p02 and p03, respectively. Object p3 moves clos-

er to q than the previous NN_dist and, therefore, CPM

replaces the outgoing NN p2 with the incoming p3. The

experimental evaluation in [11] shows that CPM is

significantly faster than YPK-CNN and SEA-CNN.

Key Applications

Location-Based Services

The increasing trend of embedding positioning sys-

tems (e.g., GPS) in mobile phones and PDAs has

given rise to a growing number of location-based ser-

vices. Many of these services involve monitoring

spatial relationships among mobile objects, facilities,

landmarks, etc. Examples include location-aware

advertising, enhanced 911 services, and mixed-reality

games.

Traffic Monitoring

Continuous spatial queries find application in traffic

monitoring and control systems, such as on-the-fly
driver navigation, efficient congestion detection and

avoidance, as well as dynamic traffic light scheduling

and toll fee adjustment.

Security Systems

Intrusion detection and other security systems rely

on monitoring moving objects (pedestrians, vehicles,

etc.) around particular areas of interest or important

people.

Future Directions
Future research directions include other types of spa-

tial queries (e.g., reverse nearest neighbor monitoring

[15,5]), different settings (e.g., NN monitoring over

sliding windows [10]), and alternative distance metrics

(e.g., NN monitoring in road networks [12]). Similar

techniques and geometric concepts to the ones pre-

sented above also apply to problems of a non-spatial

nature, such as continuous skyline [14] and top-k

queries [8,18].

Experimental Results
The methods described above are experimentally eval-

uated and compared with alternative algorithms in the

corresponding reference.

Cross-references
▶B+-Tree

▶Nearest Neighbor Query

▶R-tree (and Family)

▶Reverse Nearest Neighbor Query

484C Continuous Multimedia Data Retrieval
▶Road Networks

▶ Space-Filling Curves for Query Processing

Recommended Reading
1. Cai Y., Hua K., and Cao G. Processing range-monitoring queries

on heterogeneous mobile objects. In Proc. 5th IEEE Int. Conf.

on Mobile Data Management, 2004, pp. 27–38.

2. Gedik B. and Liu L. MobiEyes: Distributed processing of contin-

uously moving queries on moving objects in a mobile system. In

Advances in Database Technology, Proc. 9th Int. Conf. on

Extending Database Technology, 2004, pp. 67–87.

3. Hu H., Xu J., and Lee D. A generic framework for monitoring

continuous spatial queries over moving objects. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2005,

pp. 479–490.

4. Kalashnikov D., Prabhakar S., and Hambrusch S. Main memory

evaluation of monitoring queries over moving objects. Distrib.

Parallel Databases, 15(2):117–135, 2004.

5. Kang J., Mokbel M., Shekhar S., Xia T., and Zhang D. Continu-

ous evaluation of monochromatic and bichromatic reverse near-

est neighbors. In Proc. 23rd Int. Conf. on Data Engineering,

2007, pp. 806–815.

6. Koudas N., Ooi B., Tan K., and Zhang R. Approximate NN

queries on streams with guaranteed error/performance

bounds. In Proc. 30th Int. Conf. on Very Large Data Bases,

2004, pp. 804–815.

7. Mokbel M., Xiong X., and Aref W. SINA: Scalable incremental

processing of continuous queries in spatio-temporal databases.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2004, pp. 623–634.

8. Mouratidis K., Bakiras S., Papadias D. Continuous monitoring

of top-k queries over sliding windows. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2006, pp. 635–646.

9. Mouratidis K., Hadjieleftheriou M., and Papadias D. Conceptual

partitioning: an efficient method for continuous nearest

neighbor monitoring. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2005, pp. 634–645.

10. Mouratidis K. and Papadias D. Continuous nearest

neighbor queries over sliding windows. IEEE Trans. Knowledge

and Data Eng., 19(6):789–803, 2007.

11. Mouratidis K., Papadias D., Bakiras S., and Tao Y. A threshold-

based algorithm for continuousmonitoring of k nearest neighbors.

IEEE Trans. Knowledge and Data Eng., 17(11):1451–1464, 2005.

12. Mouratidis K., Yiu M., Papadias D., and Mamoulis N. Continu-

ous nearest neighbor monitoring in road networks. In Proc.

32nd Int. Conf. on Very Large Data Bases, 2006, pp. 43–54.

13. Prabhakar S., Xia Y., Kalashnikov D., Aref W., and Hambrusch S.

Query indexing and velocity constrained indexing: scalable tech-

niques for continuous queries on moving objects. IEEE Trans.

Comput., 51(10):1124–1140, 2002.

14. Tao Y. and Papadias D. Maintaining sliding window skylines on

data Streams. IEEE Trans. Knowledge and Data Eng., 18(3):

377–391, 2006.

15. Xia T. and Zhang D. Continuous reverse nearest neighbor mon-

itoring. In Proc. 22nd Int. Conf. on Data Engineering, 2006.

16. Xiong X., Mokbel M., and Aref W. SEA-CNN: Scalable proces-

sing of continuous k-nearest neighbor queries in spatio-temporal
databases. In Proc. 21st Int. Conf. on Data Engineering, 2005,

pp. 643–654.

17. Yu X., Pu K., and Koudas N. Monitoring k-nearest neighbor

queries over moving objects. In Proc. 21st Int. Conf. on Data

Engineering, 2005, pp. 631–642.

18. Zhang D., Du Y., and Hu L. On monitoring the top-k unsafe

places, In Proc. 24th Int. Conf. on Data Engineering, 2008,

pp. 337–345.
Continuous Multimedia Data
Retrieval

JEFFREY XU YU

Chinese University of Hong Kong, Hong Kong, China

Definition
Continuous multimedia is widely used in many ap-

plications nowadays. Continuous multimedia objects,

such as audio and video streams, being stored on

disks with different requirements of bandwidths, are

required to be retrieved continuously without interrup-

tion. The response time is an important measurement

in supporting continuous multimedia streams. Several

strategies are proposed in order to satisfy the require-

ments of all users in a multi-user environment where

multiple users are trying to retrieve different continuous

multimedia streams together.

Historical Background
Several multimedia data retrieval techniques are pro-

posed to support the real-time display of continuous

multimedia objects. There are three categories [6]. The

first category is to sacrifice the quality of the data in

order to guarantee the required bandwidth of multi-

media objects. The existing techniques either use lossy

compression techniques (such as predictive [15], fre-

quency oriented [11], and importance oriented [10]),

or use a low resolution device. The second category is

to use the placement techniques to satisfy the continu-

ous requirement by arranging the data to appropriate

disk locations. In other words, it is to organize multi-

media data across the surface of a disk drive to maxi-

mize its bandwidth when it is retrieved [4,5,16,22,20].

The third category is to increase the bandwidth of

storage device by using parallelism. The basic idea is

to employ the aggregate bandwidth of several disk

drives by putting an object across multiple disks, for

Continuous Multimedia Data Retrieval C 485

C

example, a Redundant Arrays of Inexpensive Disk

(RAID) [17]. The existing works [9,19] focus on this

direction.

Foundations
This section focuses on the second and third categories,

and discusses multimedia data retrieval regarding

single/multiple stream(s) and single/multiple disk(s).

Retrieval of a Single Stream on a Single Disk

For the retrieval of a single multimedia stream on a

single disk, the stream data is read into a first-in-first-

out queue (FIFO) continuously first, and then is sent

to the display devices, possibly via a network, at the

appropriate rate. In order to satisfy the real-time

requirements – to display multimedia data continu-

ously on a display, it is required to keep the FIFO non

empty. In other words, there is some multimedia data

to be displayed in the FIFO in the duration of the

playback. As pointed in [6], pre-fetching all the data

into the FIFO before playback is not a feasible solution

because the size of the stream can be very large.

Suppose that a read request of a large multimedia

data is issued. The starting time and the minimum

buffer space, to display the retrieved multimedia data

continuously, are determined as follows, under the

following conditions: (i) the timing of data retrieval

is known in advance, (ii) both the transfer rate and

consumption rate are constant, and (iii) the transfer

rate of the storage device is at least as great as the

consumption rate. Consider Fig. 1. First, the amount

of data, that needs to be consumed by a display, is

illustrated as the dotted line marked data read. The

vertical line segments show the amount of data that

needs to be consumed in order to continuously display,
Continuous Multimedia Data Retrieval. Figure 1.

Finding minimum buffer space and start time (Fig. 2 in [6]).
and the horizontal line shows the time periods such

amount of data is consumed on a display. Second, the

solid zigzag line, marked data buffered, shows the

data to be accessed in the data buffers. The vertical

line segments show the data to be read into the buffers

followed by the line segments that show data is con-

sumed in the buffer during a certain time interval.

Here, in the solid zigzag line, there is a minimum point

(marked minimum-shift up to zero), which is a

possible negative value and is denoted as z(< 0).

Third, the dotted zigzag line (marked shifted buffer

plot) is the line by shifting the entire solid zigzag

line up by the amount of jzj where z < 0. Finally, the

starting time to display is determined as the point at

which the shifted-up dotted zigzag line (shifted

buffer plot) and the dotted line (data read) inter-

sect, which is indicated as intersection - start

time in Fig. 1. Also, the minimum buffer size is the

maximum value of in the line of shifted buffer

plot, which is indicated as required buffer

space in Fig. 1. Details are discussed in [7].

Retrieval of a Single Stream on Multiple Disks

The multimedia data retrieval using multiple disks is a

technique to retrieve a data stream continuously at

the required bandwidth. The main idea behind is

to de-cluster the data stream into several fragments

[14,2], and distribute these fragments across multiple

processors (and disks). By combining the I/O band-

widths of several disks, a system can provide the

required retrieval rate to display a continuous multi-

media stream in real-time. Assume that the required

retrieval rate is B and the bandwidth of each disk is BD.

The degree of de-clustering can be calculated as

M ¼ d B
BD
e, which implies the number of disks that

is needed to satisfy the required retrieval rate.

When the degree of de-clustering is determined,

the fragments can be formed using a round-robin

partitioning strategy as illustrated in Fig. 2, where an

object x is partitioned into M fragments stored on M

disks. The round-robin partitioning is conducted as

follows. First, the object x is divided in N blocks (disk

pages) depending on the disk-page size allowed on

disks. In Fig. 2, the number of blocks is N = M � M.

The first block0 is assigned to first fragment indicated

as x1 in Fig. 2, and the second block1 is assigned to the

second fragment indicated as x2. The first M blocks

from block0 to blockM�1 are assigned to the M frag-

ments one by one. In next run, the next set of blocks,

Continuous Multimedia Data Retrieval. Figure 2.

Round-robin partitioning of object x (Fig. 5 in [9]).

486C Continuous Multimedia Data Retrieval
from blockM to block2M�1 will be assigned to the M

fragments in the similar fashion. The process repeats

until all data blocks are assigned to the fragments in a

round-robin fashion.

Retrieval of Multiple Streams on a Single Disk

In a multi-user environment, several users may re-

trieve data streams simultaneously. Therefore, there

are multiple data streams requested on a single disk.

The data streams are retrieved in rounds, and each

stream is allowed a disk access or a fixed number of

disk accesses at one time. All data retrieval requests

need to be served in turn. Existing solutions include

SCAN, round-robin, EDF, and Sorting-Set algorithms.

The round-robin algorithm retrieves data for each data

retrieval request, in turn, in a predetermined order.

The SCAN algorithm moves the disk head back and

forth, and retrieves the requested blocks when the disk

head passes over the requested blocks [18]. The EDF

(earliest-deadline-first) algorithm serves the request

with the earliest deadline first, where a deadline is

given to a data stream [13]. The sorting-set algorithm

is designed to exploit the trade-off between the num-

ber of rounds between successive reads for a data

stream and the length of the round [8,21], by assigning

each data stream to a sorting set. Fixed time slots are

allocated to a sorting set in a round during which its

requests are possibly processed.
Retrieval of Multiple Streams on Multiple Disks

In order to support multiple stream retrieval, making

use of parallel disks is an effective method, where a

data stream is striped across the parallel disks. There

are several approaches to retrieve data streams when

they are stored on parallel disks (Fig. 3). It is important

to note that the main issue here is to increase the

number of data streams to be retrieved simultaneously.

It is not to speed up retrieval for an individual data

stream using multiple disks. Consider the striped re-

trieval as shown in Fig. 3a, where a data stream is

striped across m parallel disks. Suppose that each disk

has rc bandwidth, m parallel disks can be together used

to increase the bandwidth up to m � rc. However, the

issue is the system capacity in terms of the number of

data streams it can serve, for example, from n data

streams to m � n data streams using m parallel disks.

Suppose that each data stream will be served in turn.

When it increases the number of data streams from n

tom � n, in the striped retrieval, the round length (or in

other words consecutive reads for a single data stream)

increases proportionally from n to m � n. It implies

that, in order to satisfy the required retrieval rate, it

needs to use a larger buffer, which also implies a larger

startup delay. An improvement over striped retrieval is

to use split-stripe retrieval which allows partial stripes

to be used (Fig. 3b), in order to reduce the buffer size

required in the striped retrieval. But, it has its limit to

significantly reduce startup delay and buffer space.

Observe the data transfer patterns in the striped

retrieval and the split-striped retrieval, which show

busty patterns for data to be read into the buffer. For

instance, consider Fig. 3a, an entire strip for a single

data stream will be read in and be consumed in a

period which is related to the round length. It requests

larger buffer sizes, because it needs to keep the data to

be displayed continuously until the next read, in par-

ticular when the number of streams increases from n

tom � n. Instead, an approach is proposed to read small

portion of data frequently, in order to reduce the buffer

space required. The approach is called cyclic retrieval.

As shown in Fig. 3c, the cyclic retrieval tries to read

multiple streams rather than one stream at one time.

Rather than retrieving an entire stripe at once, the

cyclic retrieval retrieves each striping unit of a stripe

consecutively [1,3]. Using this approach, the buffer

space is significantly reduced. But the reduction

comes with cost. The buffer space reduction is

achieved at the expense of cuing (a stream is said to

Continuous Multimedia Data Retrieval. Figure 3. Retrieval of multiple streams on multiple disks [6].

Continuous Multimedia Data Retrieval. Table 1. A

comparison of multi-disk retrieval strategies supporting

n streams (Table 1 in [6])

Striped Cyclic Replicated

Instant restart yes no yes

Clock skew
tolerance

yes no yes

Easy scaling no no yes

Capacity per-system per-system per-title

Startup delay O(n) O(n) O(1)

Buffer space O(n2) O(n) O(n)

Continuous Multimedia Data Retrieval C 487

C

be cued if it is paused and playback may be initiated

instantaneously) and clock skew tolerance.

As an alternative to striped (split-striped) or cyclic

retrieval, it can deal with each disk independently rather

than treating them as parallel disks. Here, each disk

stores a number of titles (data streams). When there is

a multimedia data retrieval request, a disk that contains

the data stream will respond. The data streams that are

frequently requested may be kept in multiple disks using

replication. The number of replications can be deter-

mined based on the retrieval frequency of data streams

[12], as shown in Fig. 3d. Based on the replicated

retrieval, both the startup delay time and buffer space

can be reduced significantly. It is shown that it is easy

to scale when the number of data streams increase at

the expense of more disk space required. [9] discusses

data replication techniques.

A comparison among striped-retrieval, cyclic re-

trieval, and replicated retrieval in supporting n streams

is shown in Table 1.
Key Applications
Continuous multimedia data retrieval is used in many

real-time continuous multimedia streams such as audio

and video through the network. Especially in a multi-

user environment, the continuous multimedia data re-

trieval techniques are used to support simultaneous

display of several multimedia objects in real-time.

488C Continuous Queries in Sensor Networks
Cross-references
▶Buffer Management

▶Buffer Manager

▶Multimedia Data Buffering

▶Multimedia Data Storage

▶Multimedia Resource Scheduling

▶ Scheduling Strategies for Data Stream Processing

▶ Storage Management

▶ Storage Manager

Recommended Reading
1. Berson S., Ghandeharizadeh S., Muntz R., and Ju X.

Staggered striping in multimedia information systems. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1994,

pp. 79–90.

2. Carey M.J. and Livny M. Parallelism and concurrency

control performance in distributed database machines. ACM

SIGMOD Rec., 18(2):122–133, 1989.

3. Chen M.S., Kandlur D.D., and Yu P.S. Storage and

retrieval methods to support fully interactive playout in a dis-

k-array-based video server. Multimedia Syst., 3(3):126–135,

1995.

4. Christodoulakis S. and Ford D.A. Performance analysis

and fundamental performance tradeoffs for CLV optical disks.

ACM SIGMOD Rec., 17(3):286–294, 1988.

5. Ford D.A. and Christodoulakis S. Optimizing random retrievals

from CLV format optical disks. In Proc. 17th Int. Conf. on Very

Large Data Bases, 1991, pp. 413–422.

6. Gemmell D.J. Multimedia information storage and manage-

ment, chap. 1. Disk Scheduling for Continuous Media. Kluwer,

Norwell, MA, USA, 1996.

7. Gemmell J. and Christodoulakis S. Principles of delay-sensitive

multimedia data storage retrieval. ACM Trans. Inf. Syst.,

10(1):51–90, 1992.

8. Gemmell D.J. and Han J. Multimedia network file servers:

multichannel delay-sensitive data retrieval. Multimedia Syst.,

1(6):240–252, 1994.

9. Ghandeharizadeh S. and Ramos L. Continuous retrieval of

multimedia data using parallelism. IEEE Trans. on Knowl. and

Data Eng., 5(4):658–669, 1993.

10. Green J.L. The evolution of DVI system software.

Commun. ACM, 35(1):52–67, 1992.

11. Lippman A. and Butera W. Coding image sequences for interac-

tive retrieval. Commun. ACM, 32(7):852–860, 1989.

12. Little T.D.C. and Venkatesh D. Popularity-based assignment

of movies to storage devices in a video-on-demand system.

Multimedia Syst., 2(6):280–287, 1995.

13. Liu C.L. and Layland J.W. Scheduling algorithms for multipro-

gramming in a hard real-time environment. In Tutorial:

Hard Real-Time Systems. IEEE Computer Society, Los Alamitos,

CA, USA, 1989, pp. 174–189.

14. Livny M., Khoshafian S., and Boral H. Multi-disk management

algorithms. SIGMETRICS Perform. Eval. Rev., 15(1):69–77,

1987.

15. Luther A.C. Digital video in the PC environment, (2nd edn.).

McGraw-Hill, New York, NY, USA, 1991.
16. McKusick M.K., Joy W.N., Leffler S.J., and Fabry R.S. A fast

file system for UNIX. Comput. Syst., 2(3):181–197, 1984.

17. Patterson D.A., Gibson G.A., and Katz R.H. A case for

redundant arrays of inexpensive disks (RAID). In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1988,

pp. 109–116.

18. Teorey T.J. and Pinkerton T.B. A comparative analysis of disk

scheduling policies. In Proc. 3rd ACM Symp. on Operating System

Principles, 1971, pp. 114.

19. Tsai W.J. and Lee S.Y. Storage design and retrieval of con-

tinuous multimedia data using multi-disks. In Proc. 1994

Int. Conf. on Parallel and Distributed Systems, 1994,

pp. 148–153.

20. Wong C.K. Minimizing expected head movement in one-

dimensional and two-dimensional mass storage systems. ACM

Comput. Surv., 12(2):167–178, 1980.

21. Yu P.S., Chen M.S., and Kandlur D.D. Grouped sweeping

scheduling for DASD-based multimedia storage management.

Multimedia Syst., 1(3):99–109, 1993.

22. Yue P.C. and Wong C.K. On the optimality of the probability

ranking scheme in storage applications. J. ACM, 20(4):624–633,

1973.
Continuous Queries in Sensor
Networks

YONG YAO, JOHANNES GEHRKE

Cornell University, Ithaca, NY, USA

Synonyms
Long running queries

Definition
A powerful programming paradigm for data acqui-

sition and dissemination in sensor networks is a

declarative query interface. With a declarative query

interface, the sensor network is programmed for long

term monitoring and event detection applications

through continuous queries, which specify what data

to retrieve at what time or under what conditions.

Unlike snapshot queries which execute only once, con-

tinuous queries are evaluated periodically until the

queries expire. Continuous queries are expressed in a

high-level language, and are compiled and installed on

target sensor nodes, controlling when, where, and what

data is sampled, possibly filtering out unqualified data

through local predicates. Continuous queries can have

a variety of optimization goals, from improving result

quality and response time to reducing energy con-

sumption and prolonging network lifetime.

Continuous Queries in Sensor Networks C 489

C

Historical Background
In recent years sensor networks have been deployed

successfully for a wide range of applications from

environmental sensing to process monitoring. A data-

base approach to programming sensor networks has

gained much importance: Clients program the net-

work through queries without knowing how the results

are generated, processed, and returned to the client.

Sophisticated catalog management, query optimiza-

tion, and query processing techniques abstract the

client from the physical details of contacting the rele-

vant sensors, processing the sensor data, and sending

the results to the client. The concept of a sensor net-

work as a database was first introduced in [3]. A

number of research projects, including TinyDB [9]

and Cougar [14] have implemented continuous

queries as part of their database languages for sensor

networks. In these systems time is divided into epochs

of equal size, and continuous queries are evaluated

once per epoch during their lifetime. Figure 1 shows

this database view of sensor networks.

Two properties are significant to continuous query

processing in sensor networks: energy conservation and

fault-tolerance in case of failures of sensors, both topics

that are not of importance in traditional database

systems or data stream systems. Advanced query

processing techniques have been proposed to enable

energy-efficient query processing in the presence of
Continuous Queries in Sensor Networks. Figure 1.

Database view of sensor networks.
frequent node and communication failures. For exam-

ple, a lot of research has been dedicated to in-network

query processing [6,9,14] to reduce the amount of data

to be transmitted inside the network. Another approach

is to permit approximate query processing [4,5], which

produces approximate query answers within a pre-

defined accuracy range, but consumes much less energy.

Sensor data is correlated in time and space. Data

compression in sensor networks and probabilistic

data models [1,7,8] exploit data correlation and remove

redundant data from intermediate results.

Next generation sensor network may consist of

media-rich and mobile sensor nodes, which result in

new challenges arise for continuous query processing

such as mobility and high data rates. ICEDB [15]

describes a new framework for continuous query pro-

cessing in sensor networks with intermittent network

connectivity and large amount of data to transfer.

Foundations
Continuous queries are a natural approach for data

fusion in sensor networks for long running applications

as they provide a high-level interface that abstracts

the user from the physical details of the network. The

design and implementation of continuous queries needs

to satisfy several requirements. First, it has to preserve

the scarce resources such as energy and bandwidth in

battery-powered sensor networks. Thus the simple ap-

proach of transmitting all relevant data back to a central

node for query evaluation is prohibitive for sensor net-

works of non-trivial size, as communication using the

wireless medium consumes a lot of energy. Since sensor

nodes have the ability to perform local computation,

communication can be traded for computation by

moving computation from the clients into the sensor

network, aggregating partial results or eliminating irrel-

evant data. Second, sensor network applications usually

have different QoS requirements, from accuracy, energy

consumption to delay. Therefore the continuous query

model needs to be flexible enough to adopt various

processing techniques in different scenarios.

Sensor Data Model

In the view of a sensor network as a database, each

sensor node is modeled as a separate data source that

generates records with several fields such as the sensor

type, location of the sensor node, a time stamp, and

the value of the reading. Records of the same sensor

type from different nodes have the same schema, and

490C Continuous Queries in Sensor Networks
these records collectively form a distributed table of

sensor readings. Thus the sensor network can be con-

sidered as a large distributed database system consist-

ing of several tables of different types of sensors.

Sensor readings are samples of physical signals

whose values change continuously over time. For ex-

ample, in environmental monitoring applications, sen-

sor readings are generated every few seconds (or even

faster). For some sensor types (such as PIR sensors that

sense the presence of objects) their readings might

change rapidly and thus may be outdated rather quickly,

whereas for other sensors, their value changes only

slowly over time as for temperature sensors that usually

have a small derivative. Continuous queries recompute

query results periodically and keep query results up-to-

date. For applications that require only approximate

results, the system can cache previous results and lower

the query update rate to save energy.

Instead of querying raw sensor data, most applica-

tions are more interested in composite data which

captures high-level events monitored by sensor net-

works. Such composite data is produced by complex

signal processing algorithms given raw sensor mea-

surements as inputs. Composite data usually has a

compact structure and is easier to query.

Continuous Query Models

In TinyDB and Cougar, continuous queries are repre-

sented as a variant of SQL with a few extensions. A

simple query template in Cougar is shown in the figure

below. (TinyDB uses a very similar query structure.)

SELECT {attribute, aggregate}

FROM {Sensordata S}

WHERE {predicate}

GROUP BY {attribute}

HAVING {predicate}

DURATION time interval

EVERY time span e

The template can be extended to support nested

queries, where the basic query block shown below can

appear within the WHERE or HAVING clause of another

query block. The query template has an obvious se-

mantics: the SELECT clause specifies attributes and

aggregates from sensor records, the FROM clause speci-

fies the distributed relation describing the sensor type,

the WHERE clause filters sensor records by a predicate,

the GROUP BY clause classifies sensor records into dif-

ferent partitions according to some attributes, and the
HAVING clause eliminates groups by a predicate. Join

queries between external tables and sensor readings are

constructed by including the external tables and sensor

readings in the FROM clause and join predicates in the

WHERE clause.

Two new clauses introduced for continuous queries

are DURATION and EVERY; The DURATION clause spe-

cifies the lifetime of the continuous query, and the

EVERY or clause determines the rate of query answers.

TinyDB has two related clauses:LIFETIME and SAMPLE

INTERVAL, specifying the lifetime of the query and the

sample interval, respectively. The LIFETIME clause

will be discussed in more detail a few paragraphs later.

In event detection applications, sensor data is col-

lected only when particular events happen. The above

query template can be extended with a condition

clause as a prerequisite to determine when to start or

stop the main query. Event-based queries have the

following structure in TinyDB:

ON EVENT {event(arguments)}:

{query body}

Another extension to the basic query template is life-

time-based queries, which have no explicit EVERY or

SAMPLE INTERVAL clause; only the query lifetime is

specified through a LIFETIME clause [9]. The system

automatically adjusts the sensor sampling rate to the

highest rate possible with the guarantee that the sensor

network can process the query for the specified life-

time. Lifetime-based queries are more intuitive in

some mission critical applications where user queries

have to run for a given period of time, but it is hard to

predict the optimal sampling rate in advance. Since the

sampling rate is adjusted continuously according to the

available power and the energy consumption rate in

the sensor network, lifetime-based queries are more

adaptive to unpredictable changes in sensor networks

deployed in a harsh environment.

Common Types of Continuous Queries in Sensor

Networks Select-All Queries

Recent sensor network deployments indicate that a

very common type of continuous queries is a select-

all query, which extracts all relevant data from the

sensor network and stores the data in a central place

for further processing and analysis. Although select-all

queries are simple to express, efficient processing

of select-all queries is a big challenge. Without optimi-

zation, the size of the transmitted data explodes

Continuous Queries in Sensor Networks C 491

C

quickly, and thus the power of the network would be

drained in a short time, especially for those nodes

acting as bridge to the outside world; this significantly

decreases the lifetime of the sensor network.

One possible approach is to apply model-based data

compression at intermediate sensor nodes [7]. For

many types of signals, e.g., temperature and light, sen-

sor readings are highly correlated in both time and

space. Data compression in sensor networks can signif-

icantly reduce the communication overhead and in-

crease the network lifetime. Data compression can

also improve the signal quality by removing unwanted

noise from the original signal. One possible form of

compression is to construct and maintain a model of

the sensor data in the network; the model is stored both

on the server and on sensor nodes in the network. The

model on the server can be used to predicate future

values within a pre-defined accuracy range. Data com-

munication happens to synchronize the data model on

the server with real sensor measurements [7].

Aggregate Queries

Aggregate queries return aggregate values for each

group of sensor nodes specified by the GROUP BY

clause. Below is is an example query that computes

the average concentration in a region every 10 seconds

for the next hour:

SELECT AVG(R.concentration)

FROM ChemicalSensor R

WHERE R.loc IN region

HAVING AVG(R.concentration) > T

DURATION (now,now+3600)

EVERY 10

Data aggregation in sensor networks is well-studied

because it scales to sensor networks with even

thousands of nodes. Query processing proceeds along

a spanning tree of sensor nodes towards a gateway

node. During query processing, partial aggregate

results are transmitted from a node to its parent in the

spanning tree. Once an intermediate node in the tree

has received all data from nodes below it in a round,

the node compute a partial aggregate of all received

data and sends that output to the next node. This

solution works for aggregate operators that are incre-

mentally computable, such as avg, max, and moments

of the data. The only caveat is that this in-network

computation requires synchronization between sensor

nodes along the communication path, since a node
has to ‘‘wait’’ to receive results to be aggregated.

In networks with high loss rates, broken links are hard

to differentiate from long delays due to high loss rates,

making synchronization a non-trivial problem [13].
Join Queries

In a wide range of event detection applications, sensor

readings are compared to a large number of time and

location varying predicates to determine whether a

user-interesting event is detected [1]. The values of

these predicates are stored in a table. Continuous

queries with a join operator between sensor readings

and the predicate table are suitable for such applications.

Similar join queries can beused to detect defective sensor

nodes whose readings are inaccurate by checking their

readings against readings from neighboring sensors

(again assuming spatial correlation between sensor read-

ings). Suitable placement of the join operator in a sensor

network has also been examined [2].
Key Applications

Habitat Monitoring

In the Great Duck Island experiment, a network of

sensors was deployed to monitor the microclimate in

and around nesting burrows used by birds, with the goal

of developing a habitatmonitoring kit that would enable

researchers worldwide to engage in non-intrusive and

non-disruptive monitoring of sensitive wildlife and

habitats [10]. In a more recent experiment, a sensor

network was deployed to densely record the complex

spatial variations and the temporal dynamics of the

microclimate around a 70-meter tall redwood tree [12].
The Intelligent Building

Sensor networks can be deployed in intelligent build-

ings for the collection and analysis of structural

responses to ambient or forced excitation of the build-

ing’s structure, for control of light and temperature to

conserve energy, and for monitoring of the flow of

people in critical areas. Continuous queries are used

both for data collection and for event-based monitor-

ing of sensitive areas and to enforce security policies.

Industrial Process Control

Idustrial manufacturing processes often have strict

requirements on temperature, humidity, and other

environmental parameters. Sensor networks can be

492C Continuous Query
deployed to monitor the production environment

without expensive wires to be installed. Continuous

join queries compare the state of the environment to a

range of values specified in advance and send an alert

when an exception is detected [1].

Cross-references
▶Approximate Query Processing

▶Data Acquisition and Dissemination in Sensor

Networks

▶Data Aggregation in Sensor networks

▶Data Compression in Sensor Networks

▶Data Fusion in Sensor Networks

▶Database Languages for Sensor Networks

▶Distributed Database Systems

▶ In-Network Query Processing

▶ Sensor Networks

Recommended Reading
1. Abadi D., Madden S., and Lindner W. REED: robust, efficient

filtering and event detection in sensor networks. In Proc. 31st

Int. Conf. on Very Large Data Bases, 2005, pp. 768–780.

2. Bonfils B. and Bonnet P. Adaptive and decentralized

operator placement for in-network query processing. In Proc.

2nd Int. Workshop Int. Proc. in Sensor Networks, 2003,

pp. 47–62.

3. Bonnet P., Gehrke J., and Seshadri P. Towards sensor database

systems. In Proc. 2nd Int. Conf. on Mobile Data Management,

2001, pp. 3–14.

4. Chu D., Deshpande A., Hellerstein J., and HongW. Approximate

data collection in sensor networks using probabilistic models.

In Proc. 22nd Int. Conf. on Data Engineering, 2006.

5. Considine J., Li F., Kollios G., and Byers J. Approximate aggre-

gation techniques for sensor databases. In Proc. 20th Int. Conf.

on Data Engineering, 2004, pp. 449–460.

6. Deligiannakis A., Kotidis Y., and Roussopoulos N. Hierarchical

in-network data aggregation with quality guarantees. In Advances

in Database Technology, Proc. 9th Int. Conf. on Extending Data-

base Technology, 2004, pp. 658–675.

7. Deshpande A., Guestrin C., Madden S., Hellerstein J., and

Hong W. Model-driven data acquisition in sensor networks.

In Proc. 30th Int. Conf. on Very Large Data Bases, 2004,

pp. 588–599.

8. Kanagal B. and Deshpande A. Online filtering, smoothing and

probabilistic modeling of streaming data. In Proc. 24th Int.

Conf. on Data Engineering, 2008, pp. 1160–1169.

9. Madden S., Franklin M., Hellerstein J., and Hong W. The design

of an acquisitional query processor for sensor networks. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2003,

pp. 491–502.

10. Mainwaring A., Polastre J., Szewczyk R., Culler D., and

Anderson J. Wireless sensor networks for habitat monitoring.

In Proc. 1st ACM Int. Workshop on Wireless Sensor Networks

and Applications, 2002, pp. 88–97.
11. Stoianov I., Nachman L., Madden S., and Tokmouline T.

PIPENET: a wireless sensor network for pipeline monitoring.

In Proc. 6th Int. Symp. Inf. Proc. in Sensor Networks, 2007,

pp. 264–273.

12. Tolle G., Polastre J., Szewczyk R., Culler D., Turner N., Tu K.,

Burgess S., Dawson T., Buonadonna P., Gay D., and Hong W.

A macroscope in the redwoods. In Proc. 3rd Int. Conf. on

Embedded Networked Sensor Systems, 2005.

13. Trigoni N., Yao Y., Demers A.J., Gehrke J., and Rajaraman R.

Wave scheduling and routing in sensor networks. ACM Trans.

Sensor Netw., 3(1):2, 2007.

14. Yao Y. and Gehrke J. Query processing in sensor networks. In

Proc. 1st Biennial Conf. on Innovative Data Systems Research,

2003.

15. Zhang Y., Hull B., Balakrishnan H., and Madden S.

ICEDB: intermittently connected continuous query process-

ing. In Proc. 23rd Int. Conf. on Data Engineering, 2007,

pp. 166–175.
Continuous Query

SHIVNATH BABU

Duke University, Durham, NC, USA

Synonyms
Standing query

Definition
A continuous query Q is a query that is issued once

over a databaseD, and then logically runs continuously

over the data inD untilQ is terminated.Q lets users get

new results from D without having to issue the same

query repeatedly. Continuous queries are best under-

stood in contrast to traditional SQL queries overD that

run once to completion over the current data in D.

Key Points
Traditional database systems expect all data to be

managed within some form of persistent data sets. For

many recent applications, where the data is changing

constantly (often exclusively through insertions of new

elements), the concept of a continuous data stream is

more appropriate than a data set. Several applications

generate data streams naturally as opposed to data sets,

e.g., financial tickers, performancemeasurements in net-

work monitoring, and call detail records in telecommu-

nications. Continuous queries are a natural interface for

monitoring data streams. In network monitoring, e.g.,

continuous queries may be used to monitor whether all

routers and links are functioning efficiently.

ConTract C 493

C

The Tapestry system [3] for filtering streams of

email and bulletin-board messages was the first to

make continuous queries a core component of a data-

base system. Continuous queries in Tapestry were

expressed using a subset of SQL. Barbara [2] later

formalized continuous queries for a wide spectrum of

environments. With the recent emergence of general-

purpose systems for processing data streams, continu-

ous queries have become the main interface that users

and applications use to query data streams [1].

Materialized views and triggers in traditional data-

base systems can be viewed as continuous queries. A

materialized view V is a query that needs to be reeval-

uated or incrementally updated whenever the base data

over which V is defined changes. Triggers implement

event-condition-action rules that enable database sys-

tems to take appropriate actions when certain events

occur.

Cross-references
▶Database Trigger

▶ ECA-Rule

▶Materialized Views

▶ Processing

Recommended Reading
1. Babu S. and Widom J. Continuous queries over data streams.

ACM SIGMOD Rec., 30(3):109–120, 2001.

2. Barbara D. The characterization of continuous queries. Int. J.

Coop. Inform. Syst., 8(4):295–323, 1999.

3. Terry D., Goldberg D., Nichols D., and Oki B. Continuous

queries over append-only databases. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1992, pp. 321–330.
Continuous Query Languages

▶ Stream-oriented Query Languages and Operators
Continuous Query Processing
Applications

▶ Streaming Applications
Continuous Query Scheduling

▶ Scheduling Strategies for Data Stream Processing
ConTract

ANDREAS REUTER
1,2

1EML Research aGmbH Villa Bosch, Heidelberg,

Germany
2Technical University Kaiserslautern, Kaiserslautern,

Germany

Definition
A ConTract is an extended transaction model that

employs transactional mechanisms in order to provide

a run-time environment for the reliable execution of

long-lived, workflow-like computations. The focus is

on durable execution and on correctness guarantees

with respect to the effects of such computations on

shared data.
Key Points
The notion of a ConTract (concatenated transacti-

ons) combines the principles of workflow programing

with the ideas related to long-lived transactions. The

ConTract model is based on a two-tier programing

approach. At the top level, each ConTract is a script

describing a (long-lived) computation. The script des-

cribes the order of execution of so-called steps. A step is

a predefined unit of execution (e.g., a service invocation)

with no visible internal structure. A step can access

shared data in a database, send messages, etc.

A ConTract, once it is started, will never be lost

by the system, no matter which technical problems

(short of a real disaster) will occur during execution.

If completion is not possible, all computations

performed by a ConTract will be revoked, so in a

sense ConTracts have transactional behaviour in that

they will either be run to completion, or the impossi-

bility of completion will be reflected in the invocation

of appropriate recovery measures.

The ConTract model draws on the idea of Sagas,

where the notion of compensation is employed as a

means for revoking the results of computations beyond

the boundaries of ACID transactions. In a ConTract, by

default each step is an ACID transaction. But it is possi-

ble to group multiple steps (not just linear sequences)

into a transaction. Compensation stepsmust be supplied

by the application explicitly.

The ideas of the ConTract model have selectively

been implemented in some academic prototypes, but a

full implementation has never been attempted. It has

494C ConTracts
influenced many later versions of ‘‘long-lived transac-

tion’’ schemes, and a number of its aspects can be

found in commercial systems such as BizTalk.

Cross-references
▶ Extended Transaction Models

▶ Persistent Execution

▶ Sagas

▶Workflow

Recommended Reading
1. Reuter A. and Waechter H. The ConTract model. In Readings in

Database in Database Systems, (2nd edn.), M. Stonebraker,

J. Hellerstein, (eds.). Morgan Kaufmann, Los Altos, CA, 1992,

pp. 219–263.
ConTracts

▶ Flex Transactions
Contrast Pattern

▶ Emerging Patterns
Contrast Pattern Based
Classification

▶ Emerging Pattern Based Classification
Control Data

NATHANIEL PALMER

Workflow Management Coalition, Hingham,

MA, USA

Synonyms
Workflow control data; Workflow engine state data;

Workflow enactment service state data

Definition
Data that is managed by the Workflow Management

System and/or a Workflow Engine. Such data is inter-

nal to the workflow management system and is not

normally accessible to applications.
Key Points
Workflow control data represents the dynamic state of

the workflow system and its process instances.

Workflow control data examples include:

� State information about each workflow instance.

� State information about each activity instance

(active or inactive).

� Information on recovery and restart points within

each process, etc.

The workflow control data may be written to persistent

storage periodically to facilitate restart and recovery of

the system after failure. It may also be used to derive

audit data.

Cross-references
▶Activity

▶ Process Life Cycle

▶Workflow Management and Workflow Management

System

▶Workflow Model
Control Flow Diagrams

▶Activity Diagrams
Controlled Vocabularies

▶ Lightweight Ontologies
Controlling Overlap

▶ Processing Overlaps
Convertible Constraints

CARSON KAI-SANG LEUNG

University of Manitoba, Winnipeg, MB, Canada

Definition
A constraint C is convertible if and only if C is con-

vertible anti-monotone or convertible monotone.

Coordination C 495

C

A constraint C is convertible anti-monotone provided

there is an orderR on items such that when an ordered

itemset S satisfies constraint C, so does any prefix of

S. A constraint C is convertible monotone provided

there is an order R0 on items such that when an

ordered itemset S0 violates constraint C, so does any

prefix of S0.
Key Points
Although some constraints are neither anti-monotone

nor monotone in general, several of them can be

converted into anti-monotone or monotone ones by

properly ordering the items. These convertible con-

straints [1-3] possess the following nice properties. By

arranging items according to some proper order R,
if an itemset S satisfies a convertible anti-monotone

constraint C, then all prefixes of S also satisfy C. Simi-

larly, by arranging items according to some proper

orderR0, if an itemset S violates a convertible monotone

constraint C 0, then any prefix of S also violates C 0.

Examples of convertible constraints include avg(S.

Price)�50, which expresses that the average price of

all items in an itemset S is at least $50. By arranging

items in non-ascending orderR of price, if the average

price of items in an itemset S is at least $50, then the

average price of items in any prefix of S would not be

lower than that of S (i.e., all prefixes of S satisfying a

convertible anti-monotone constraint C also satisfy C).

Similarly, by arranging items in non-descending order

R�1 of price, if the average price of items in an itemset

S falls below $50, then the average price of items in any

prefix of S would not be higher than that of S (i.e., any

prefix of S violating a convertible monotone constraint

C also violates C). Note that (i) any anti-monotone

constraint is also convertible anti-monotone (for any

order R) and (ii) any monotone constraint is also con-

vertible monotone (for any order R0).
Cross-references
▶ Frequent Itemset Mining with Constraints
Recommended Reading
1 Pei J. and Han J. Can we push more constraints into frequent

pattern mining? In Proc. 6th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, 2000, pp. 350–354.

2. Pei J., Han J., and Lakshmanan L.V.S. Mining frequent item sets

with convertible constraints. In Proc. 17th Int. Conf. on Data

Engineering, 2001, pp. 433–442.
3. Pei J., Han J., and Lakshmanan L.V.S. Pushing convertible

constraints in frequent itemset mining. Data Mining Knowl.

Discov. 8(3):227–252, 2004.
Cooperative Classification

▶Visual Classification
Cooperative Content Distribution

▶ Peer-To-Peer Content Distribution
Cooperative Storage Systems

▶ Peer-to-Peer Storage
Coordination

W.M.P. VAN DER AALST

Eindhoven University of Technology, Eindhoven,

The Netherlands

Definition
Coordination is about managing dependencies be-

tween activities, processes, and components. Unlike

the classical computation models, a coordination

model puts much more emphasis on communication

and cooperation than computation.

Key Points
Turing machines are a nice illustration of the classical

‘‘computation-oriented’’ view of systems. However, this

view is too limited for many applications (e.g., web

services). Many systems can be viewed as a collection

of interacting entities (e.g., communicating Turing

machines). For example, in the context of a service

oriented architecture (SOA) coordination is more im-

portant than computation. There exist many approaches

tomodel and support coordination. Linda is an example

496C ||-Coords
of a language to model coordination and communica-

tion among several parallel processes operating upon

objects stored in and retrieved from a shared, virtual,

associative memory [1]. Linda attempts to separate

coordination from computation by only allowing inter-

action through tuplespaces. However, one could argue

that this is also possible in classical approaches such as

Petri nets (e.g., connect processes through shared

places), synchronized transition systems/automata, pro-

cess algebra, etc. Coordination also plays an important

role in agent technology [2].

Some authors emphasize the interdisciplinary na-

ture of coordination [3]. Coordination is indeed not a

pure computer science issue and other disciplines like

organizational theory, economics, psychology, etc. are

also relevant.
Cross-references
▶Business Process Management

▶Choreography

▶Web Services

▶Workflow Management
Recommended Reading
1. Gelernter D. and Carriero N. Coordination languages and their

significance. Commun. ACM, 35(2):97–107, 1992.

2. Jennings N.R. Commitments and conventions: the foundation

of coordination in multi-agent systems. Knowl. Eng. Rev.,

8(3):223–250, 1993.

3. Malone T.W. and Crowston K. The interdisciplinary study of

coordination. ACM Comput. Surv., 26(1):87–119, 1994.
||-Coords

▶ Parallel Coordinates
Copy Divergence

▶Weak Consistency Models for Replicated Data
Copy Transparency

▶ Strong Consistency Models for Replicated Data
Copyright Issues in Databases

MICHAEL W. CARROLL

Villanova University School of Law, Villanova,

PA, USA

Synonyms
Intellectual property; License

Definition
Copyright is a set of exclusive rights granted by law to

authors of original works of authorship. It applies

automatically as soon as an original work is created

and fixed in a tangible medium of expression, such as

when it is stored on a hard disk. Originality requires

independent creation by the author and a modicum of

creativity. Copyright covers only an author’s original

expression. Facts and ideas are not copyrightable.

Copyright usually applies only partially to databases.

Copyrightable expression usually is found in database

structures, such as the selection and arrangement of

field names, unless these do not reflect any creativity or

are standard within an area of research. Copyright will

also apply to creative data, such as photographs or

expressive and sufficiently long text entries. By and

large, the rule on facts and ideas means that most

numerical data, scientific results, other factual data,

and short text entries are not covered by copyright.

Historical Background
Copyright has evolved from a limited right to control

the unauthorized distribution of a limited class of

works, primarily books, to a more expansive set of

rights that attach automatically to any original work

of authorship. Copyright law has always been national

in scope, but through international treaties most

nations now extend copyright to non-resident copy-

right owners. To comply with these treaties, copyright

is now also automatic in the USA, which has aban-

doned requirements that a copyright owner register

the work with the Copyright Office or publish the

work with the copyright symbol – � – in order to

retain copyright.

Foundations

Copyright

Copyright attaches to an original work of authorship

that has been embodied in a fixed form. The ‘‘work’’ to

Copyright Issues in Databases C 497

C

which copyright attaches can be the structure of the

database or a relatively small part of a database, includ-

ing an individual data element, such as a photograph.

It is therefore possible for a database to contain multi-

ple overlapping copyrighted works or elements. To

the extent that a database owner has a copyright, or

multiple copyrights, in elements of a database, the

rights apply only to those copyrighted elements. The

rights are to reproduce, publicly distribute or commu-

nicate, publicly display, publicly perform, and prepare

adaptations or derivative works.

Standards for Obtaining Copyright

Originality Copyright protects only an author’s ‘‘orig-

inal’’ expression, which means expression indepen-

dently created by the author that reflects a minimal

spark of creativity. A database owner may have a copy-

right in the database structure or in the user interface

with the database, whether that be a report form or

an electronic display of field names associated with

data. The key is whether the judgments made by the

person(s) selecting and arranging the data require the

exercise of sufficient discretion to make the selection or

arrangement ‘‘original.’’ In Feist Publications, Inc. v.

Rural Telephone Service Company, the US Supreme

Court held that a white pages telephone directory

could not be copyrighted. The data—the telephone

numbers and addresses – were ‘‘facts’’ which were not

original because they had no ‘‘author.’’ Also, the selec-

tion and arrangement of the facts did not meet the

originality requirement because the decision to order

the entries alphabetically by name did not reflect the

‘‘minimal spark’’ of creativity needed.

As a practical matter, this originality standard

prevents copyright from applying to complete

databases – i.e., those that list all instances of a particu-

lar phenomenon – that are arranged in an unoriginal

manner, such as alphabetically or by numeric value.

However, courts have held that incomplete databases

that reflect original selection and arrangement of data,

such as a guide to the ‘‘best’’ restaurants in a city, are

copyrightable in their selection and arrangement. Such

a copyright would prohibit another from copying and

posting such a guide on the Internet without permis-

sion. However, because the copyright would be limited

to that particular selection and arrangement of restau-

rants, a user could use such a database as a reference

for creating a different selection and arrangement of
restaurants without violating the copyright owner’s

copyright.

Copyright is also limited by the merger doctrine,

which appears in many database disputes. If there are

only a small set of practical choices for expressing an

idea, the law holds that the idea and expression merge

and the result is that there is no legal liability for using

the expression.

Under these principles, metadata is copyrightable

only if it reflects an author’s original expression. For

example, a collection of simple bibliographic metadata

with fields named ‘‘author,’’ ‘‘title,’’ ‘‘date of publica-

tion,’’ would not be sufficiently original to be copy-

rightable. More complex selections and arrangements

may cross the line of originality. Finally, to the extent

that software is used in a databases, software is pro-

tectable as a ‘‘literary work.’’ A discussion of copyright

in executable code is beyond the scope of this entry.

Fixation A work must also be ‘‘fixed’’ in any medium

permitting the work to be perceived, reproduced,

or otherwise communicated for a period of more

than a transitory duration. The structure and arrange-

ment of a database may be fixed any time that it is

written down or implemented. For works created

after January 1, 1978 in the USA, exclusive rights

under copyright shower down upon the creator at the

moment of fixation.

The Duration of Copyright

Under international treaties, copyright must last for at

least the life of the author plus 50 years. Some

countries, including the USA, have extended the length

to the life of the author plus 70 years. Under U.S. law,

if a work was made as a ‘‘work made for hire,’’ such as

a work created by an employee within the scope of

employment, the copyright lasts for 120 years from

creation if the work is unpublished or 95 years

from the date of publication.

Ownership and Transfer of Copyright

Copyright is owned initially by the author of the work.

If the work is jointly produced by two or more authors,

such as a copyrightable database compiled by two

or more scholars, each has a legal interest in the

copyright. When a work is produced by an employee,

ownership differs by country. In the USA, the employer

is treated as the author under the ‘‘work made for hire’’

doctrine and the employee has no rights in the resulting

498C Copyright Issues in Databases
work. Elsewhere, the employee is treated as the author

and retains certain moral rights in the work while the

employer receives the economic rights in the work.

Copyrights may be licensed or transferred. A non-

exclusive license, or permission, may be granted orally

or even by implication. A transfer or an exclusive license

must be done in writing and signed by the copyright

owner. Outside of the USA, some or all of the author’s

moral rights cannot be transferred or terminated by

agreement. The law on this issue varies by jurisdiction.

The Copyright Owner’s Rights

The rights of a copyright owner are similar throughout

the world although the terminology differs as do the

limitations and exceptions to these rights.

Reproduction As the word ‘‘copyright’’ implies, the

owner controls the right to reproduce the work in

copies. The reproduction right covers both exact dupli-

cates of a work and works that are ‘‘substantially similar’’

to the copyrighted work when it can be shown that the

alleged copyist had access to the copyrighted work. In

the USA, some courts have extended this right to cover

even a temporary copy of a copyrighted work stored in

a computer’s random access memory (‘‘RAM’’).

Public Distribution, Performance, Display or Communi-

cation The USA divides the rights to express the work

to the public into rights to distribute copies, display a

copy, or publicly perform the work. In other parts of

the world, these are subsumed within a right to com-

municate the work to the public.

Within the USA, courts have given the distribution

right a broad reading. Some courts, including the

appeals court in the Napster case, have held that a

download of a file from a server connected to the

internet is both a reproduction by the person request-

ing the file and a distribution by the owner of the

machine that sends the file. The right of public perfor-

mance applies whenever the copyrighted work can be

listened to or watched by members of the public at

large or a subset of the public larger than a family unit

or circle of friends. Similarly, the display right covers

works that can be viewed at home over a computer

network as long as the work is accessible to the public

at large or a subset of the public.

Right of Adaptation, Modification or Right to Prepare

Derivative Works A separate copyright arises with
respect to modifications or adaptations of a copy-

righted work so long as these modifications or adapta-

tions themselves are original. This separate copyright

applies only to these changes. The copyright owner has

the right to control such adaptations unless a statutory

provision, such as fair use, applies.

Theories of Secondary Liability

Those who build or operate databases also have to be

aware that copyright law holds liable certain parties

that enable or assist others in infringing copyright.

In the USA, these theories are known as contributory

infringement or vicarious infringement.

Contributory Infringement Contributory copyright

infringement requires proof that a third party intended

to assist a copyright infringer in that activity. This

intent can be shown when one supplies a means of

infringement with the intent to induce another to

infringe or with knowledge that the recipient will in-

fringe. This principle is limited by the so-called Sony

doctrine, by which one who supplies a service or tech-

nology that enables infringement, such as a VCR or

photocopier, will be deemed not to have knowledge of

infringement or intent to induce infringement so long

as the service or technology is capable of substantial

non-infringing uses.

Two examples illustrate the operation of this rule.

In A&M Records, Inc. v. Napster, Inc., the court of

appeals held that peer-to-peer file sharing is infringing

but that Napster’s database system for connecting users

for peer-to-peer file transfers was capable of substantial

non-infringing uses and so it was entitled to rely on

the Sony doctrine. (Napster was held liable on other

grounds.) In contrast, inMGM Studios, Inc. v. Grokster,

Ltd., the Supreme Court held that Grokster was liable

for inducing users to infringe by specifically advertis-

ing its database service as a substitute for Napster’s.

Vicarious Liability for Copyright Infringement Vicari-

ous liability in the USAwill apply whenever (i) one has

control or supervisory power over the direct infringer’s

infringing conduct and (ii) one receives a direct finan-

cial benefit from the infringing conduct. In the Napster

case, the court held that Napster had control over its

users because it could refuse them access to the Napster

server and, pursuant to the Terms of Service Agree-

ments entered into with users, could terminate access if

infringing conduct was discovered. Other courts have

Copyright Issues in Databases C 499

C

required a greater showing of actual control over the

infringing conduct.

Similarly, a direct financial benefit is not limited

to a share of the infringer’s profits. The Napster court

held that Napster received a direct financial benefit

from infringing file trading because users’ ability

to obtain infringing audio files drew them to use

Napster’s database. Additionally, Napster could poten-

tially receive a financial benefit from having attracted a

larger user base to the service.

Limitations and Exceptions

Copyrights’ limitations and exceptions vary by juris-

diction. In the USA, the broad ‘‘fair use’’ provision is a

fact-specific balancing test that permits certain uses of

copyrighted works without permission. Fair use is

accompanied by some specific statutory limitations

that cover, for example, certain uses in the classroom

use and certain uses by libraries. The factors to consid-

er for fair use are: (i) the purpose and character of the

use, including whether such use is of a commercial

nature or is for nonprofit educational purposes; (ii)

the nature of the copyrighted work; (iii) the amount

and substantiality of the portion used in relation to the

copyrighted work as a whole; and (iv) the effect of

the use upon the potential market for or value of the

copyrighted work. The fact that a work is unpublished

shall not itself bar a finding of fair use if such finding is

made upon consideration of all the above factors.

Countries whose copyright law follows that of

the United Kingdom, a more limited ‘‘fair dealing’’

provision enumerates specific exceptions to copyright.

In Europe, Japan, and elsewhere, the limitations and

exceptions are specified legislatively and cover some

private copying and some research or educational uses.

Remedies and Penalties

In general, a copyright owner can seek an injunction

against one who is either a direct or secondary in-

fringer of copyright. The monetary consequences of

infringement differ by jurisdiction. In the USA, the

copyright owner may choose between actual or statu-

tory damages. Actual damages cover the copyright

owner’s lost profits as well as a right to the infringer’s

profits derived from infringement. The range for stat-

utory damages is $750–$30,000 per copyrighted work

infringed. If infringement is found to have been willful,

the range increases to $150,000. The amount of statu-

tory damages in a specific case is determined by the
jury. There is a safe harbor from statutory damages for

non-profit educational institutions if an employee

reproduces a copyrighted work with a good faith belief

that such reproduction is a fair use.

A separate safe harbor scheme applies to online

service providers when their database is comprised of

information stored at the direction of their users. An

example of such a database would be YouTube’s video

sharing database. The service provider is immune from

monetary liability unless the provider has knowledge

of infringement or has control over the infringer and

receives a direct financial benefit from infringement.

The safe harbor is contingent on a number of require-

ments, including that the provider have a copyright

policy that terminates repeat infringers, that the pro-

vider comply with a notice-and-takedown procedure,

and that the provider have an agent designated to

receive notices of copyright infringement.

Key Applications
In cases arising after the Feist decision, the courts have

faithfully applied the core holding that facts are in the

public domain and free from copyright even when

substantial investments are made to gather such facts.

There has been more variation in the characterization

of some kinds of data as facts and in application of the

modicum-of-creativity standard to the selections and

arrangements in database structures.

On the question of when data is copyrightable,

a court of appeals found copyrightable expression

in the ‘‘Red Book’’ listing of used car valuations.

The defendant had copied these valuations into its

database, asserting that it was merely copying unpro-

tected factual information. The court disagreed, liken-

ing the valuations to expressive opinions and finding a

modicum of originality in these. In addition, the selec-

tion and arrangement of the data, which included a

division of the market into geographic regions, mileage

adjustments in 5,000-mile increments, a selection of

optional features for inclusion, entitled the plaintiff to

a thin copyright in the database structure.

Subsequently, the same court found that the prices

for futures contracts traded on the New York Mercan-

tile Exchange (NYMEX) probably were not expressive

data even though a committee makes some judgments

in the setting of these prices. The court concluded that

even if such price data were expressive, the merger

doctrine applied because there was no other practica-

ble way of expressing the idea other than through a

500C CORBA
numerical value and a rival was free to copy price data

from NYMEX’s database without copyright liability.

Finally, where data are comprised of arbitrary num-

bers used as codes, the courts have split. One court of

appeals has held that an automobile partsmanufacturer

owns no copyright in its parts numbers, which are

generated by application of a numbering system that

the company created. In contrast, another court of

appeals has held that the American Dental Association

owns a copyright in its codes for dental procedures.

On the question of copyright in database struc-

tures, a court of appeals found that the structure of

a yellow pages directory including listing of Chinese

restaurants was entitled to a ‘‘thin’’ copyright, but that

copyright was not infringed by a rival database that

included 1,500 of the listings because the rival had not

copied the plaintiff ’s data structure. Similarly, a differ-

ent court of appeals acknowledged that although a

yellow pages directory was copyrightable as a compi-

lation, a rival did not violate that copyright by copy-

ing the name, address, telephone number, business

type, and unit of advertisement purchased for each

listing in the original publisher’s directory. Finally,

a database of real estate tax assessments that arranged

the data collected by the assessor into 456 fields

grouped into 34 categories was sufficiently original

to be copyrightable.

Cross-references
▶ European Law in Databases

▶ Licensing and Contracting Issues in Databases

Recommended Reading
1. American Dental Association v. Delta Dental Plans Ass’n, 126

F.3d 977 (7th Cir.1997).

2. Assessment Technologies ofWI, LLC v.WIRE data, Inc., 350 F.3d

640 (7th Cir. 2003).

3. Bellsouth Advertising & Publishing Corp. v. Donnelly Informa-

tion Publishing, Inc., 999 F.2d 1436 (11th Cir. 1993) (en banc).

4. CCC Information Services, Inc. v. MacLean Hunter Market

Reports, Inc., 44 F.3d 61 (2d Cir. 1994).

5. Feist Publications, Inc. v. Rural Telephone Service Co., 499 U.S.

340 (1991).

6. Ginsburg J.C. Copyright, common law, and sui generis protec-

tion of databases in the United States and abroad, University of

Cincinnati Law Rev., 66:151–176, 1997.

7. Key Publications, Inc. v. Chinatown Today Publishing Enter-

prises, Inc., 945 F.2d 509 (2d Cir. 1991).

8. New York Mercantile Exchange, Inc. v. Intercontinental-

Exchange, Inc., 497 F.3d 109, (2d Cir. 2007).

9. Southco, Inc. v. Kanebridge Corp., 390 F.3d 276 (3d Cir. 2004)

(en banc).
CORBA

ANIRUDDHA GOKHALE

Vanderbilt University, Nashville, TN, USA

Synonyms
Object request broker; Common object request broker

architecture

Definition
The Common Object Request Broker Architecture

(CORBA) [2,3] is standardized by the Object Manage-

ment Group (OMG) for distributed object computing.
Key Points
The CORBA standard specifies a platform-independent

and programming language-independent architecture

and a set of APIs to simplify distributed application

development. The central idea in CORBA is to decou-

ple the interface from the implementation. Applica-

tions that provide services declare their interfaces and

operations in the Interface Description Language

(IDL). IDL compilers read these definitions and syn-

thesize client-side stubs and server-side skeletons,

which provide data marshaling and proxy capabilities.

CORBA provides both a type-safe RPC-style object

communication paradigm called the Static Invocation

Interface (SII), and a more dynamic form of communi-

cation called the Dynamic Invocation Interface (DII),

which allows creation and population of requests dyna-

mically via reflection capabilities. The DII is often used

to bridge different object models. CORBA defines a

binary format for on-the-wire representation of data

called the Common Data Representation (CDR). CDR

has been defined to enable programming language-

neutrality.

The CORBA 1.0 specification (October 1991) and

subsequent revisions through version 1.2 (December

1993) defined these basic capabilities, however, they

lacked any support for interoperability across different

CORBA implementations.

The CORBA 2.0 specification (August 1996) de-

fined an interoperability protocol called the General

Inter-ORB Protocol (GIOP), which defines the packet

formats for data exchange between communicating

CORBA entities. GIOP is an abstract specification and

must be mapped to the underlying transport protocol.

The most widely used concrete mapping of GIOP is

Correctness Criteria Beyond Serializability C 501

C

called the Internet Inter-ORB Protocol (IIOP) used for

data exchange over TCP/IP networks.

Despite these improvements, the earlier versions of

CORBA focused only on the client-side portability and

lacked any support for server-side portability. This

limitation was addressed in the CORBA 2.2 specifi-

cation (August 1996) through the Portable Object

Adapter (POA) concept. The POA enables server-side

transparency to applications and server-side portabi-

lity. The POA provides a number of policies that can

be used to manage the server-side objects.

The CORBA specification defines compliance

points for implementations to ensure interoperability.

The CORBA specification has also been enhanced with

additional capabilities that are available beyond the

basic features, such as the Real-time CORBA specifica-

tion [1]. Implementations of these specifications must

provide these additional capabilities.

In general, CORBA enhances conventional proce-

dural RPC middleware by supporting object oriented

language features (such as encapsulation, interface in-

heritance, parameterized types, and exception handling)

and advanced design patterns for distributed communi-

cation. The most recent version of CORBA specification

at the time of this writing is 3.3 (January 2008), which

also includes support for a component architecture.

Cross-references
▶Client-Server Architecture

▶DCE

▶DCOM

▶ J2EE

▶ Java RMI

▶ .NET Remoting

▶Request Broker

▶ SOAP

Recommended Reading
1. ObjectManagement Group, Real-TimeCORBA Specification, Ver-

sion 1.2, OMG Document No. formal/2005-01-04, January 2005.

2. Object Management Group, Common Object Request Broker

Architecture (CORBA), Version 3.1, OMG Document No. for-

mal/2008-01-08, January 2008.

3. Soley R.M. and Stone C.M. Object Management Architecture

Guide, 3rd edn., Object Management Group, June 1995.
Corpora

▶Document Databases
Corpus

▶Test Collection
Correctness Criteria Beyond
Serializability

MOURAD OUZZANI
1, BRAHIM MEDJAHED

2,

AHMED K. ELMAGARMID
1

1Purdue University, West Lafayette, IN, USA
2The University of Michigan – Dearborn, Dearborn,

MI, USA

Synonyms
Concurrency control; Preserving database consistency

Definition
A transaction is a logical unit of work that includes one

or more database access operations such as insertion,

deletion, modification, and retrieval [8]. A schedule (or

history) S of n transactions T1,...,Tn is an ordering of

the transactions that satisfies the following two condi-

tions: (i) the operations of Ti (i = 1,...,n) in S must

occur in the same order in which they appear in Ti, and

(ii) operations from Tj (j 6¼ i) may be interleaved with

Ti’s operations in S. A schedule S is serial if for every

two transactions Ti and Tj that appear in S, either all

operations of Ti appear before all operations of Tj, or

vice versa. Otherwise, the schedule is called nonserial

or concurrent. Non-serial schedules of transactions

may lead to concurrency problems such as lost update,

dirty read, and unrepeatable read. For instance, the lost

update problem occurs whenever two transactions,

while attempting to modify a data item, both read

the item’s old value before either of them writes the

item’s new value [2].

The simplest way for controlling concurrency is

to allow only serial schedules. However, with no con-

currency, database systems may make poor use of their

resources and hence, be inefficient, resulting in smaller

transaction execution rate for example. To broaden the

class of allowable transaction schedules, serializability

has been proposed as the major correctness criterion

for concurrency control [7,11]. Serializability ensures

that a concurrent schedule of transactions is equivalent

to some serial schedule of the same transactions [12].

While serializability has been successfully used in

502C Correctness Criteria Beyond Serializability
traditionaldatabaseapplications, e.g., airline reservations

andbanking,ithasbeenproventoberestrictiveandhardly

applicable in advanced applications such as Computer-

Aided Design (CAD), Computer-Aided Manufacturing

(CAM), office automation, and multidatabases. These

applications introduced new requirements that either

prevent the use of serializability (e.g., violation of local

autonomy in multidatabases) or make the use of serial-

izability inefficient (e.g., long-running transactions in

CAD/CAM applications). These limitations have moti-

vated the introduction of more flexible correctness

criteria that gobeyond the traditional serializability.

Historical Background
Concurrency control began appearing in database sys-

tems in the early to mid 1970s. It emerged as an active

database research thrust starting from 1976 as wit-

nessed by the early influential papers published by

Eswaren et al. [5] and Gray et al. [7]. A comprehensive

coverage of serializability theory has been presented

in 1986 by Papadimitriou in [12]. Simply put, serial-

izability theory is a mathematical model for proving

whether or not a concurrent execution of transactions

is correct. It gives precise definitions and properties

that non-serial schedules of transactions must satisfy

to be serializable. Equivalence between a concurrent

and serial schedule of transactions is at the core of

the serializability theory. Two major types of equi-

valence have then been defined: conflict and view

equivalence. If two schedules are conflict equivalent

then they are view equivalent. The converse is not

generally true.

Conflict equivalence has initially been introduced by

Gray et al. in 1975 [7]. A concurrent schedule of

transactions is conflict equivalent to a serial schedule

of the same transactions (and hence conflict serializ-

able) if they order conflicting operations in the same

way, i.e., they have the same precedence relations of

conflicting operations. Two operations are conflicting if

they are from different transactions upon the same

data item, and at least one of them is write. If two

operations conflict, their execution order matters. For

instance, the value returned by a read operation

depends on whether or not that operation precedes

or follows a particular write operation on the same

data item. Conflict serializability is tested by analyzing

the acyclicity of the graph derived from the execution

of the different transactions in a schedule. This graph,

called serializability graph, is a directed graph that
models the precedence of conflicting operations in

the transactions.

View equivalence has been proposed by Yannakakis

in 1984 [15]. A concurrent schedule of transactions is

view equivalent to a serial schedule of the same trans-

actions (and hence view serializable) if the respective

transactions in the two schedules read and write the

same data values. View equivalence is based on

the following two observations: (i) if each transaction

reads each of its data items from the same writes,

then all writes write the same value in both schedules;

and (ii) if the final write on each data item is the same

in both schedules, then the final value of all data items

will be the same in both schedules. View serializability

is usually expensive to check. One approach is to

check the acyclicity of a special graph called polygraph.

A polygraph is a generalization of the precedence graph

that takes into account all precedence constraints

required by view serializability.

Foundations
The limitations of the traditional serializability concept

combined with the requirement of advanced database

applications triggered a wave of new correctness cri-

teria that go beyond serializability. These criteria aim

at achieving one or several of the following goals:

(i) accept non serializable but correct executions by

exploiting the semantics of transactions, their struc-

ture, and integrity constraints (ii) allow inconsistencies

to appear in a controlled manner which may be accept-

able for some transactions, (iii) limit conflicts by cre-

ating a new version of the data for each update, and

(iv) treat transactions accessing more than one data-

base, in the case of multidatabases, differently from

those accessing one single database and maintain

overall correctness. While a large number of correct-

ness criteria have been presented in the literature,

this entry will focus on the major criteria which

had a considerable impact on the field. These criteria

will be presented as described in their original

versions as several of these criteria have been either

extended, improved, or applied to specific contexts.

Table 1 summarizes the correctness criteria outlined

in this section.

Multiversion Serializability

Multiversion databases aim at increasing the degree of

concurrency and providing a better system recovery. In

such databases, whenever a transaction writes a data

Correctness Criteria Beyond Serializability. Table 1. Representative correctness criteria for concurrency control

Correctness
criterion Basic idea

Examples of application
domains Reference

Multiversion
serializability

Allows some schedules as serializable if a read is performed
on some older version of a data item instead of the newer
modified version.

Multiversion database
systems

[1]

Semantic
consistency

Uses semantic information about transactions to accept
some non-serializable but correct schedules.

Applications that can provide
some semantic knowledge

[6]

Predicatewise
serializability

Focuses on data integrity constraints. CAD database and office
information systems

[9]

Epsilon-
serializability

Allows inconsistencies to appear in a controlled manner by
attaching a specification of the amount of permitted
inconsistency to each transaction.

Applications that tolerate
some inconsistencies

[13]

Eventual
consistency

Requires that duplicate copies are consistent at certain
times but may be inconsistent in the interim intervals.

Distributed databases with
replicated or interdependent
data

[14]

Quasi
serializability

Executes global transactions in a serializable way while
taking into account the effect of local transactions.

Multidatabase systems [4]

Two-level
serializability

Ensures consistency by exploiting the nature of integrity
constraints and the nature of transactions in multidatabase
environments.

Multidatabase systems [10]

Correctness Criteria Beyond Serializability C 503

C

item, it creates a new version of this item instead of

overwriting it. The basic idea of multiversion serial-

izability [1] is that some schedules can be still seen as

serializable if a read is performed on some older ver-

sion of a data item instead of the newer modified

version. Concurrency is increased by having transac-

tions read older versions while other concurrent trans-

actions are creating newer versions. There is only one

type of conflict that is possible; when a transactions

reads a version of a data item that was written by

another transaction. The two other conflicts (write,

write) and (read, write) are not possible since each

write produces a new version and a data item cannot

be read until it has been produced, respectively. Based

on the assumption that users expect their transactions

to behave as if there were just one copy of each data

item, the notion of one-copy serial schedule is defined.

A schedule is one-copy serial if for all i, j, and x, if a

transaction Tj reads x from a transaction Ti, then either

i = j or Ti is the last transaction preceding tj that

writes into any version of x. Hence, a schedule is

defined as one-copy serializable (1-SR) if it is equivalent

to a 1-serial schedule. 1-SR is shown to maintain

correctness by proving that a multiversion schedule

behaves like a serial non-multiversion schedule (there

is only one version for each data item) if the multi-

version schedule is one-serializable. The one-copy
serializability of a schedule can be verified by checking

the acyclicity of the multiversion serialization graph of

that schedule.

Semantic Consistency

Semantic consistency uses semantic information about

transactions to accept some non-serializable but cor-

rect schedules [6]. To ensure that users see consistent

data, the concept of sensitive transactions has been

introduced. Sensitive transactions output only consis-

tent data and thus must see a consistent database

state. A semantically consistent schedule is one that

transforms the database from a consistent state to

another consistent state and where all sensitive trans-

actions obtain a consistent view of the database with

respect to the data accessed by these transactions, i.e.,

all data consistency constraints of the accessed data are

evaluated to True. Enforcing semantic consistency

requires knowledge about the application which must

be provided by the user. In particular, users will need

to group actions of the transactions into steps and

specify which steps of a transaction of a given type

can be interleaved with the steps of another type of

transactions without violating consistency. Four types

of semantic knowledge are defined: (i) transaction

semantic types, (ii) compatibility sets associated with

each type, (iii) division of transactions into steps,

504C Correctness Criteria Beyond Serializability
and (iv) counter-steps to (semantically) compensate

the effect from some of the steps executed within

the transaction.

Predicatewise Serializability

Predicatewise serializability (PWSR) has been intro-

duced as a correctness criterion for CAD database

and office information systems [9]. PWSR focuses

solely on data integrity constraints. In a nutshell, if

database consistency constraints can be expressed in a

conjunctive normal form, a schedule is said to be

PWSR if all projections of that schedule on each

group of data items that share a disjunctive clause

(of the conjunctive form representing the integrity

constraints) are serializable. There are three different

types of restrictions that must be enforced on PWSR

schedules to preserve database consistency: (i) force

the transactions to be of fixed structure, i.e., they are

independent of the database state from which they

execute, (ii) force the schedules to be delayed read,

i.e., a transaction Ti cannot read a data item written

by a transaction Tj until after Tj has completed all of its

operations, or (iii) the conjuncts of the integrity con-

straints can be ordered in a way that no transaction

reads a data item belonging to a higher numbered

conjunct and writes a data item belonging to a lower

numbered conjunct.

Epsilon-Serializability

Epsilon-serializability (ESR) [13] has been introduced

as a generalization to serializability where a limited

amount of inconsistency is permitted. The goal is to

enhance concurrency by allowing some non serializ-

able schedules. ESR introduces the notion of epsilon

transactions (ETs) by attaching a specification of the

amount of permitted inconsistency to each (standard)

transaction. ESR distinguishes between transactions

that contain only read operation, called query epsilon

transaction or query ET, and transactions with at least

one update operation, called update epsilon transac-

tion or update ET. Query ETs may view uncommitted,

possibly inconsistent, data being updated by update

ETs. Thus, update ETs are seen as exporting some

inconsistencies while query ETs are importing these

inconsistencies. ESR aims at bounding the amount of

imported and exported inconsistency for each ET. An

epsilon-serial schedule is defined as a schedule where

(i) the update ETs form a serial schedule if considered

alone without the query ETand (ii) the entire schedule
consisting of both query ETs and update ETs is such

that the non serializable conflicts between query ETs

and update ETs are less than the permitted limits

specified by each ET. An epsilon-serializable schedule

is one that is equivalent to an epsilon-serial schedule.

If the permitted limits are set to zero, ESR corresponds

to the classical notion of serializability.

Eventual Consistency

Eventual consistency has been proposed as an alterna-

tive correctness criterion for distributed databases with

replicated or interdependent data [14]. This criterion is

useful is several applications like mobile databases,

distributed databases, and large scale distributed systems

in general. Eventual consistency requires that duplicate

copies are consistent at certain times but may be incon-

sistent in the interim intervals. The basic idea is that

duplicates are allowed to diverge as long as the copies

are made consistent periodically. The times where these

copies are made consistent can be specified in several

ways which could depend on the application, for exam-

ple, at specified time intervals, when some events occur,

or at some specific times. A correctness criterion that

ensures eventual consistency is the current copy serial-

izability. Each update occurs on a current copy and is

asynchronously propagated to other replicas.

Quasi Serializability

Quasi Serializability (QSR) is a correctness criterion

that has been introduced for multidatabase systems

[4]. A multidatabase system allows users to access

data located in multiple autonomous databases. It

generally involves two kinds of transactions: (i) Local

transactions that access only one database; they are

usually outside the control of the multidatabase sys-

tem, and (ii) global transactions that can access more

than one database and are subject to control by both

the multidatabase and the local databases. The basic

premise is that to preserve global database consistency,

global transactions should be executed in a serializable

way while taking into account the effect of local trans-

actions. The effect of local transactions appears in

the form of indirect conflicts that these local transac-

tions introduce between global transactions which may

not necessarily access (conflict) the same data items.

A quasi serial schedule is a schedule where global

transactions are required to execute serially and local

schedules are required to be serializable. This is in

contrast to global serializability where all transactions,

Correctness Criteria Beyond Serializability C 505

C

both local and global, need to execute in a (globally)

serializable way. A global schedule is said to be quasi

serializable if it is (conflict) equivalent to a quasi serial

schedule. Based on this definition, a quasi serializa-

ble schedule maintains the consistency of multidata-

base systems since (i) a quasi serial schedule preserves

the mutual consistency of globally replicated data

items, based on the assumptions that these replicated

data items are updated only by global transactions, and

(ii) a quasi serial schedule preserves the global transac-

tion consistency constraints as local schedules are seri-

alizable and global transactions are executed following

a schedule that is equivalent to a serial one.

Two-Level Serializability

Two-level serializability (2LSR) has been introduced to

relax serializability requirements in multidatabases and

allow a higher degree of concurrency while ensuring

consistency [10]. Consistency is ensured by exploiting

the nature of integrity constraints and the nature of

transactions in multidatabase environments. A global

schedule, consisting of both local and global transac-

tions, is 2LSR if all local schedules are serializable

and the projection of that schedule on global transac-

tions is serializable. Local schedules consist of all

operations, from global and local transactions, that

access the same local database. Ensuring that each

local schedule is serializable is already taken care of

by the local database. Furthermore, ensuring that the

global transactions are executed in a serializable way

can be done by the global concurrency controller using

any existing technique from centralized databases like

the Two-phase-locking (2PL) protocol. This is possible

since the global transactions are under the full control

of the global transaction manager. [10] shows that

under different scenarios 2LSR preserves a strong notion

of correctness where the multidatabase consistency is

preserved and all transactions see consistent data.

These different scenarios differ depending on (i) which

kind of data items, local or global, global and local

transactions are reading or writing, (ii) the existence of

integrity constraints between local and global data items,

and (iii) whether all transaction are preserving the con-

sistency of local databases when considered alone.

Key Applications
The major database applications behind the need

for new correctness criteria include distributed data-

bases, mobile databases, multidatabases, CAD/CAM
applications, office automation, cooperative applica-

tions, and software development environments. All

of these advanced applications introduced require-

ments and limitations that either prevent the use of

serializability like the violation of local autonomy in

multidatabases, or make the use of serializability inef-

ficient like blocking long-running transactions.

Future Directions
A recent trend in transaction management focuses

on adding transactional properties (e.g., isolation, atom-

icity) to business processes [3]. A business process (BP)

is a set of tasks which are performed collaboratively to

realize a business objective. Since BPs contain activities

that access shared and persistent data resources, they

have to be subject to transactional semantics. However,

it is not adequate to treat an entire BP as a single ‘‘tradi-

tional’’ transaction mainly because BPs: (i) are of long

duration and treating an entire process as a transaction

would require locking resources for long periods of time,

(ii) involve many independent database and application

systems and enforcing transactional properties across

the entire process would require expensive coordination

among these systems, and (iii) have external effects and

using conventional transactional rollbackmechanisms is

not feasible. These characteristics open new research

issues to take the concept of correctness criterion and

how it should be enforced beyond even the correctness

criteria discussed here.

Cross-references
▶ACID Properties

▶Concurrency Control

▶Distributed

▶ Parallel and Networked Databases

▶ System Recovery

▶Transaction Management

▶Two-Phase Commit

▶Two-Phase Locking

Recommended Reading
1. Bernstein P.A. and Goodman N. Multiversion concurrency

control – theory and algorithms. ACM Trans. Database Syst.,

8(4):465–483, 1983.

2. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

control and recovery in database systems. Addison-Wesley,

Reading, MA, 1987.

3. Dayal U., Hsu M., and Ladin R. Business process coordination:

state of the art, trends, and open issues. In Proc. 27th Int. Conf.

on Very Large Data Bases, 2001, pp. 3–13.

506C Correctness Criterion for Concurrent Executions
4. Du W. and Elmagarmid A.K. Quasi serializability: a correctness

criterion for global concurrency control in Interbase. In Proc.

15th Int. Conf. on Very Large Data Bases, 1989, pp. 347–355.

5. Eswaran K.P., Gray J., Lorie R.A., and Traiger I.L. The notions of

consistency and predicate locks in a database system. Commun.

ACM, 19(11):624–633, 1976.

6. Garcia-Molina H. Using semantic knowledge for transaction

processing in a distributed database. ACM Trans. Database

Syst., 8(2):186–213, 1983.

7. Gray J., Lorie R.A., Putzolu G.R., and Traiger I.L. Granularity of

locks in a large shared data base. In Proc. 1st Int. Conf. on Very

Data Bases, 1975, pp. 428–451.

8. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, Los Altos, CA, 1993.

9. Korth H.F. and Speegle G.D. Formal model of correctness with-

out serializability. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1988, pp. 379–386.

10. Mehrotra S., Rastogi R., Korth H.F., and Silberschatz A. Ensur-

ing consistency in multidatabases by preserving two-level serial-

izability. ACM Trans. Database Syst., 23(2):199–230, 1998.

11. Papadimitriou C.H. The serializability of concurrent database

updates. J. ACM, 26(4):631–653, 1979.

12. Papadimitriou C.H. The Theory of Database Concurrency

Control. Computer Science, Rockville, MD, 1986.

13. Ramamritham K. and Pu C. A formal characterization of epsilon

serializability. IEEE Trans. Knowl. Data Eng., 7(6):997–1007,

1995.

14. Sheth A., Leu Y., and Elmagarmid A. Maintaining Consistency

of Interdependent Data in Multidatabase Systems. Tech. Rep.

CSD-TR-91-016, Purdue University, http://www.cs.toronto.edu/

georgem/ws/ws.ps, 1991.

15. Yannakakis M. Serializability by locking. J. ACM, 31(2):

227–244, 1984.
Correctness Criterion for Concurrent
Executions

▶ Serializability
Correlated Data Collection

▶Data Compression in Sensor Networks
Correlation

▶ Similarity and Ranking Operations
Correlation Clustering

▶ Subspace Clustering Techniques
Cost Estimation

STEFAN MANEGOLD

CWI, Amsterdam, The Netherlands

Definition
Execution costs, or simply costs, is a generic term to

collectively refer to the various goals or objectives of

database query optimization. Optimization aims at

finding the ‘‘cheapest’’ (‘‘best’’ or at least a ‘‘reasonably

good’’) query execution plan (QEP) among semanti-

cally equivalent alternative plans for the given query.

Cost is used as a metric to compare plans. Depending

on the application different types of costs are consid-

ered. Traditional optimization goals include minimiz-

ing response time (for the first answer or the complete

result), minimizing resource consumption (like CPU

time, I/O, network bandwidth, or amount of memory

required), or maximizing throughput, i.e., the number

of queries that the system can answer per time. Other,

less obvious objectives – e.g., in amobile environment –

may be to minimize the power consumption needed to

answer the query or the on-line time being connected

to a remote database server.

Obviously, evaluating a QEP to measure its execu-

tion cost does not make sense. Cost estimation refers to

the task of predicting the (approximate) costs of a

given QEP a priori, i.e., without actually evaluating it.

For this purpose, mathematical algorithms or para-

metric equations, commonly referred to as cost models,

provide a simplified ‘‘idealized’’ abstract description of

the system, focusing on the most relevant components.

In general, the following three cost components are

distinguished.

1. Logical costs consider only the data distributions

and the semantics of relational algebra operations

to estimate intermediate result sizes of a given

(logical) query plan.

2. Algorithmic costs extend logical costs by taking also

the computational complexity (expressed in terms

of O-classes) of the algorithms into account.

3. Physical costs finally combine algorithmic costs with

system/hardware specific parameters to predict the

total costs, usually in terms of execution time.

Next to query optimization, cost models can serve

another purpose. Especially algorithmic and physical

cost models can help database developers to understand

Cost Estimation C 507

C

and/or predict the performance of existing algorithms

on new hardware systems. Thus, they can improve the

algorithms or even design new ones without having

to run time and resource consuming experiments to

evaluate their performance.

Since the quality of query optimization strongly

depends on the quality of cost estimation, details of

cost estimation in commercial database products are

usually well kept secrets of their vendors.

Historical Background
Not all aspects of database cost estimation are treated as

independent research topic of their own. Mainly selec-

tivity estimation and intermediate result size estimation

have received intensive attention yielding a plethora of

techniques proposed in database literature. Discussion

of algorithmic costs usually occurs with the proposal of

new or modified database algorithms. Given its tight

coupling with query optimization, physical cost estima-

tion has never been an independent research topic of its

own. Apart from very few exceptions, new physical cost

models and estimation techniques are usually published

as ‘‘by-products’’ in publications that mainly deal with

novel optimization techniques.

The first use of (implicit) cost estimation were com-

plexity analyses that led to heuristic optimization rules.

For instance, a join is always considered cheaper than

calculating first the Cartesian product, followed by a

selection. Likewise, linear operations that tend to reduce

the data stream (selections, projections) should be eval-

uated as early as data dependencies allow, followed by

(potentially) quadratic operations that do not ‘‘blow-

up’’ the intermediate results (semijoins, foreign-key

joins). More complex, and hence expensive, operations

(general joins, Cartesian products) should be executed

as late as possible.

Since a simple complexity metric does not necessari-

ly reflect the same ranking of plans as the actual execu-

tion costs, first explicit cost estimation in database query

optimization aimed at estimating intermediate result

sizes. Initial works started with simplifications such as

assuming uniform data distributions and independence

of attribute values. Over time, the techniques have been

improved to model non-uniform data distributions. Til

date, effective treatment of (hidden) correlations is

still an open research topic.

The following refinement was the introduction of

physical costs. With I/O being the dominating cost

factor in the early days of database management
systems, the first systems assessed query plans by mere-

ly estimating the number of I/O operations required.

However, I/O systems exhibit quite different perfor-

mance for sequential and randomly placed I/O opera-

tions. Hence, the models were soon refined to

distinguish between sequential and random accesses,

weighing them with their respective costs, i.e., time to

execute one operation.

With main memory sizes growing, more and more

query processing work is done within main memory,

minimizing disk accesses. Consequently, CPUandmem-

ory access costs can no longer be ignored. Assuming

uniform memory access costs, memory access has initi-

ally been covered by CPU costs. CPU costs are estimated

in terms of CPU cycles. Scoring them with the CPU’s

clock speed yields time, the common unit to combine

CPU and I/O costs to get the overall physical costs.

Only recently with the advent of CPU caches

and extended memory hierarchies, the impact of

memory access costs has become so significant that it

needs to be modeled separately [15,16]. Similarly to

I/O costs, memory access costs are estimated in terms

of number of memory accesses (or cache misses) and

scored by their penalty to achieve time as common

unit.

In parallel and distributed database systems, also

network communication costs are considered as con-

tributing factors to the overall execution costs.

Foundations
Different query execution plans require different

amounts of effort to be evaluated. The objective func-

tion for the query optimization problems assigns every

execution plan a single non-negative value. This value

is commonly referred to as costs in the query optimi-

zation business.

Cost Components

Logical Costs/Data Volume The most important cost

component is the amount of data that is to be processed.

Per operator, three data volumes are distinguished: input

(per operand), output, and temporary data. Data

volumes are usuallymeasured as cardinality, i.e., number

of tuples. Often, other units such as number of I/O

blocks, number of memory pages, or total size in bytes

are required. Provided that the respective tuple sizes,

page sizes, and block sizes are known, the cardinality

can easily be transformed into the other units.

508C Cost Estimation
The amount of input data is given as follows: For the

leaf nodes of the query graph, i.e., those operations that

directly access base tables stored in the database, the

input cardinality is given by the cardinality of the base

table(s) accessed. For the remaining (inner) nodes of the

query graph, the input cardinality is given by the output

cardinality of the predecessor(s) in the query graph.

Estimating the output size of database operations –

or more generally, their selectivity – is anything else but

trivial. For this purpose, DBMSs usually maintain sta-

tistic about the data stored in the database. Typical

statistics are

1. Cardinality of each table,

2. Number of distinct values per column,

3. Highest/lowest value per column (where applicable).

Logical cost functions use these statistics to estimate

output sizes (respectively selectivities) of database opera-

tions. The simplest approach is to assume that attribute

values are uniformly distributed over the attribute’s

domain. Obviously, this assumption virtually never

holds for ‘‘real-life’’ data, and hence, estimations based

on these assumption will never be accurate. This is espe-

cially severe, as the estimation errors compound expo-

nentially throughout the query plan [9]. This shows,

that more accurate (but compact) statistics on data dis-

tributions (of base tables as well as intermediate results)

are required to estimate intermediate results sizes.

The importance of statistics management has led to

a plethora of approximation techniques, for which [6]

have coined the general term ‘‘data synopses’’. Such

techniques range from advanced forms of histograms

(most notably, V-optimal histograms including multi-

dimensional variants) [7,10] over spline synopses

[12,11], sampling [3,8], and parametric curve-fitting

techniques [4,20] all the way to highly sophisticated

methods based on kernel estimators [1] or Wavelets

and other transforms [2,17].

A logical cost model is a prerequisite for the fol-

lowing two cost components.

Algorithmic Costs/Complexity

Logical costs only depend on the data and the query

(i.e., the operators’ semantics), but they do not consid-

er the algorithms used to implement the operators’

functionality. Algorithmic costs extend logical costs

by taking the properties of the algorithms into account.

A first criterion is the algorithm’s complexity in

the classical sense of complexity theory. Most unary

operator are in O(n), like selections, or O(n log n), like
sorting; n being the input cardinality. With proper

support by access structures like indices or hash tables,

the complexity of selection may drop to O(log n) or

O(1), respectively. Binary operators can be in O(n),

like a union of sets that does not eliminate duplicates,

or, more often, in O(n2), as for instance join operators.

More detailed algorithmic cost functions are used to

estimate, e.g., the number of I/O operations or the

amount of main memory required. Though these func-

tions require some so-called ‘‘physical’’ information

like I/O block sizes or memory pages sizes, they are

still considered algorithmic costs and not physical cost,

as these informations are system specific, but not hard-

ware specific. The standard database literature provides

a large variety of cost formulas for the most frequently

used operators and their algorithms. Usually, these

formulas calculate the costs in terms of I/O operations

as this still is the most common objective function for

query optimization in database systems [5,13].

Physical Costs/Execution Time

Logical and algorithmic costs alone are not sufficient

to do query optimization. For example, consider two

algorithms for the same operation, where the first

algorithm requires slightly more I/O operations

than the second, while the second requires significantly

more CPU operations than the first one. Looking

only at algorithmic costs, both algorithms are not

comparable. Even assuming that I/O operations are

more expensive than CPU operations cannot in gener-

al answer the question which algorithm is faster.

The actual execution time of both algorithms depends

on the speed of the underlying hardware. The physical

cost model combines the algorithmic cost model

with an abstract hardware description to derive the

different cost factors in terms of time, and hence

the total execution time. A hardware description

usually consists of information such as CPU speed,

I/O latency, I/O bandwidth, and network bandwidth.

The next section discusses physical cost factors on

more detail.

Cost Factors

In principle, physical costs are considered to occur in

two flavors, temporal and spatial. Temporal costs cover

all cost factors that can easily be related to execution

time, e.g., by multiplying the number of certain events

with there respective cost in terms of some time unit.

Spatial costs contain resource consumptions that can-

not directly (or not at all) be related to time. The

Cost Estimation C 509

C

following briefly describes the most prominent cost

factors of both categories.

Temporal Cost Factors

Disk-I/O This is the cost of searching for, reading, and

writing data blocks that reside on secondary storage,

mainly on disk. In addition to accessing the database

files themselves, temporary intermediate files that are

too large to fit in main memory buffers and hence are

stored on disk also need to be accessed. The cost of

searching for records in a database file or a temporary

file depends on the type of access structures on that file,

such as ordering, hashing, and primary or secondary

indexes. I/O costs are either simply measured in terms

of the number of block-I/Ooperations, or in terms of the

time required to perform these operations. In the latter

case, the number of block-I/O operations is multiplied

by the time it takes to perform a single block-I/O opera-

tion. The time to perform a single block-I/O operation

is made up by an initial seek time (I/O latency) and the

time to actually transfer the data block (i.e., block size

divided by I/O bandwidth). Factors such as whether

the file blocks are allocated contiguously on the same

disk cylinder or scattered across the disk affect the

access cost. In the first case (also called sequential I/O),

I/O latency has to be counted only for the first of a

sequence of subsequent I/O operations. In the second

case (random I/O), seek time has to be counted for

each I/O operation, as the disk heads have to be repo-

sitioned each time.

Main-Memory Access These are the costs for

reading data from or writing data to main memory.

Such data may be intermediate results or any other

temporary data produced/used while performing data-

base operations.

Similar to I/O costs, memory access costs can be

modeled be estimating the number of memory accesses

(i.e., cache misses) and scoring them with their respec-

tive penalty (latency) [16].

Network Communication In centralized DBMSs,

communication costs cover the costs of shipping the

query from the client to the server and the query’s

result back to the client. In distributed, federated, and

parallel DBMSs, communication costs additionally

contain all costs for shipping (sub-)queries and/or

(intermediate) results between the different hosts that

are involved in evaluating the query.

Also with communication costs, there is a latency

component, i.e., a delay to initiate a network con-

nection and package transfer, and a bandwidth
component, i.e., the amount of data that can be trans-

fer through the network infrastructure per time.

CPU Processing This is the cost of performing

operations such as computations on attribute values,

evaluating predicates, searching and sorting tuples, and

merging tuples for join. CPU costs are measured in

either CPU cycles or time. When using CPU cycles, the

timemay be calculated by simply dividing the number of

cycles by the CPU’s clock speed. While allowing limited

portability between CPUs of the same kind, but with

different clock speeds, portability to different types of

CPUs is usually not given. The reason is, that the same

basic operations like adding two integers might require

different amounts of CPU cycles on different types

of CPUs.

Spatial Cost Factors

Usually, there is only one spatial cost factor considered

in database literature: memory size. This cost it the

amount of main memory required to store intermedi-

ate results or any other temporary data produced/used

while performing database operations.

Next to not (directly) being related to execution time,

there is another difference between temporal and spatial

costs that stems from the way they share the respective

resources. A simple example shall demonstrate the differ-

ences. Consider to operations or processes each of which

consumes 50% of the available resources (i.e., CPU

power, I/O-, memory-, and network bandwidth). Fur-

ther, assume that when run one at a time, both tasks have

equal execution time. Running both tasks concurrently

on the same system (ideally) results in the same execution

time, now consuming all the available resources. In case

each individual process consumes 100% of the available

resources, the concurrent execution time will be twice the

individual execution time. In other words, if the com-

bined resource consumption of concurrent tasks exceed

100%, the execution time extends to accommodate the

excess resource requirements. With spatial cost factors,

however, such ‘‘stretching’’ is not possible. In case two

tasks together would require more than 100% of the

available memory, they simply cannot be executed at

the same time, but only after another.

Types of (Cost) Models

According to their degree of abstraction, (cost) models

can be classified into two classes: analytical models and

simulation models.

Analytical Models In some cases, the assumptions

made about the real system can be translated into

510C Cost Estimation
mathematical descriptions of the system under study.

Hence, the result is a set of mathematical formulas that

is called an analytical model. The advantage of an

analytical model is that evaluation is rather easy and

hence fast. However, analytical models are usually not

very detailed (and hence not very accurate). In order to

translate them into a mathematical description, the

assumptions made have to be rather general, yielding

a rather high degree of abstraction.

Simulation Models Simulation models provide a

very detailed and hence rather accurate description of

the system. They describe the system in terms of (a)

simulation experiment(s) (e.g., using event simula-

tion). The high degree of accuracy is charged at the

expense of evaluation performance. It usually takes

relatively long to evaluate a simulation base model,

i.e., to actually perform the simulation experiment(s).

It is not uncommon, that the simulation actually

takes longer than the execution in the real system

would take.

In database query optimization, though it would

appreciate the accuracy, simulation models are not

feasible, as the evaluation effort is far to high. Query

optimization requires that costs of numerous alterna-

tives are evaluated and compared as fast as possible.

Hence, only analytical cost models are applicable in

this scenario.

Architecture and Evaluation of Database Cost Models

The architecture and evaluation mechanism of database

cost models is tightly coupled to the structure of query

execution plans. Due to the strong encapsulation offered

by relational algebra operators, the cost of each operator,

respectively each algorithm, can be described individu-

ally. For this purpose, each algorithm is assigned a set of

cost functions that calculate the three cost components

as described above. Obviously, the physical cost func-

tions depend on the algorithmic cost functions, which

in turn depend on the logical cost functions. Algebraic

cost functions use the data volume estimations of the

logical cost functions as input parameters. Physical

cost functions are usually specializations of algorith-

mic cost functions that are parametrized by the hard-

ware characteristics.

The cost model also defines how the single operator

costs within a query have to be combined to calculate

the total costs of the query. In traditional sequential

DBMSs, the single operators are assumed to have

no performance side-effects on each other. Thus, the
cost of a QEP is the cumulative cost of the operators

in the QEP [18]. Since every operator in the QEP

is the root of a sub-plan, its cost includes the cost

of its input operators. Hence, the cost of a QEP is

the cost of the topmost operator in the QEP. Likewise,

the cardinality of an operator is derived from the

cardinalities of its inputs, and the cardinality of

the topmost operator represents the cardinality of the

query result.

In non-sequential (e.g., distributed or parallel)

DBMSs, this subject is much more complicated, as

more issues such as scheduling, concurrency, resource

contention, and data dependencies have to considered.

For instance, in such environments, more than one

operator may be executed at a time, either on disjoint

(hardware) resources, or (partly) sharing resources.

In the first case, the total cost (in terms of time) is

calculated as the maximum of the costs (execution

times) of all operators running concurrently. In the

second case, the operators compete for the same

resources, and hence mutually influence their perfor-

mance and costs. More sophisticated cost function and

cost models are required here to adequately model this

resource contention [14,19].
Cross-references
▶Distributed Query Optimization

▶Multi-Query Optimization

▶Optimization and Tuning in Data Warehouses

▶ Parallel Query Optimization

▶ Process Optimization

▶Query Optimization

▶Query Optimization (in Relational Databases)

▶Query Optimization in Sensor Networks

▶Query Plan

▶ Selectivity Estimation

▶ Spatio-Temporal Selectivity Estimation

▶XML Selectivity Estimation
Recommended Reading
1. Blohsfeld B., Korus D., and Seeger B. A comparison of selectivity

estimators for range queries on metric attributes. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1999,

pp. 239–250.

2. Chakrabarti K., Garofalakis M.N., Rastogi R., and Shim K.

Approximate query processing using wavelets. In Proc. 26th

Int. Conf. on Very Large Data Bases, 2000, pp. 111–122.

3. Chaudhuri S., Motwani R., and Narasayya V.R. On random

sampling over joins. In Proc. ACM SIGMOD Int. Conf.

Count-Min Sketch C 511

C

on Management of Data, Philadephia, PA, USA, June 1999,

pp. 263–274.

4. Chen C.M. and Roussopoulos N. Adaptive selectivity estimation

using query feedback. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1994, pp. 161–172.

5. Garcia-Molina H., Ullman J.D., andWidom J. Database Systems:

The Complete Book. Prentice Hall, Englewood Cliffs, NJ, USA,

2002.

6. Gibbons P.B. and Matias Y. Synopsis data structures for massive

data sets. In Proc. 10th Annual ACM-SIAM Symp. on Discrete

Algorithms, 1999, pp. 909–910.

7. Gibbons P.B., Matias P.B., and Poosala V. Fast incremental

maintenance of approximate histograms. In Proc. 23th Int.

Conf. on Very Large Data Bases, 1997, pp. 466–475.

8. Haas P.J., Naughton J.F., Seshadri S., and Swami A.N. Selectivity

and cost estimation for joins based on random sampling.

J. Comput. Syst. Sci., 52(3):550–569, 1996.

9. Ioannidis Y.E. and Christodoulakis S. On the propagation of

errors in the size of join results. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1991, pp. 268–277.

10. Ioannidis Y.E. and Poosala V. Histogram-based approximation

of set-valued query-answers. In Proc. 25th Int. Conf. on Very

Large Data Bases, 1999, pp. 174–185.

11. König A.C. and Weikum G. Combining histograms and

parametric curve fitting for feedback-driven query result-size

estimation. In Proc. 25th Int. Conf. on Very Large Data Bases,

1999, pp. 423–434.

12. König A.C. and Weikum G. Auto-tuned spline synopses

for database statistics management. In Proc. Int. Conf. on Man-

agement of Data, 2000.

13. Korth H. and Silberschatz A. Database Systems Concepts.

McGraw-Hill, Inc., New York, San Francisco, Washington, DC,

USA, 1991.

14. Lu H., Tan K.L., and Shan M.C. Hash-based join algorithms for

multiprocessor computers. In Proc. 16th Int. Conf. on Very

Large Data Bases, 1990, pp. 198–209.

15. Manegold S. Understanding, Modeling, and Improving

Main-Memory Database Performance. PhD Thesis, Univer-

siteit van Amsterdam, Amsterdam, The Netherlands, December

2002.

16. Manegold S., Boncz P.A., and Kersten M.L. Generic

database cost models for hierarchical memory systems.

In Proc. 28th Int. Conf. on Very Large Data Bases, 2002,

pp. 191–202.

17. Matias Y., Vitter J.S., andWangM.Wavelet-based histograms for

selectivity estimation. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1998, pp. 448–459.

18. Selinger P.G., Astrahan M.M., Chamberlin D.D., Lorie R.A., and

Price T.G. Access path selection in a relational database manage-

ment system. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1979, pp. 23–34.

19. SpiliopoulouM. and Freytag J.-C. Modelling resource utilization

in pipelined query execution. In Proc. European Conference on

Parallel Processing, 1996, pp. 872–880.

20. Sun W., Ling Y., Rishe N., and Deng Y. An instant and accurate

size estimation method for joins and selection in a retrieval-

intensive environment. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1993, pp. 79–88.
Count-Min Sketch

GRAHAM CORMODE

AT&T Labs–Research, Florham Park, NJ, USA

Synonyms
CM Sketch
Definition
The Count-Min (CM) Sketch is a compact summary

data structure capable of representing a high-

dimensional vector and answering queries on this vec-

tor, in particular point queries and dot product

queries, with strong accuracy guarantees. Such queries

are at the core of many computations, so the structure

can be used in order to answer a variety of other

queries, such as frequent items (heavy hitters), quantile

finding, join size estimation, and more. Since the data

structure can easily process updates in the form of

additions or subtractions to dimensions of the vector

(which may correspond to insertions or deletions, or

other transactions), it is capable of working over

streams of updates, at high rates.

The data structure maintains the linear projection

of the vector with a number of other random vectors.

These vectors are defined implicitly by simple hash

functions. Increasing the range of the hash functions

increases the accuracy of the summary, and increasing

the number of hash functions decreases the probabi-

lity of a bad estimate. These tradeoffs are quantified

precisely below. Because of this linearity, CM sketches

can be scaled, added and subtracted, to produce sum-

maries of the corresponding scaled and combined

vectors.
Historical Background
The Count-Min sketch was first proposed in 2003 [5]

as an alternative to several other sketch techniques,

such as the Count sketch [3] and the AMS sketch [1].

The goal was to provide a simple sketch data structure

with a precise characterization of the dependence on the

input parameters. The sketch has also been viewed as a

realization of a counting Bloom filter or Multistage-

Filter [8], which requires only limited independence

randomness to show strong, provable guarantees.

The simplicity of creating and probing the sketch has

led to its wide use in disparate areas since its initial

description.

512C Count-Min Sketch
Foundations
The CM sketch is simply an array of counters of width

w and depth d, CM [1, 1] ... CM [d, w]. Each entry of

the array is initially zero. Additionally, d hash functions

h1:::hd : f1:::ng ! f1:::wg

are chosen uniformly at random from a pairwise-

independent family. Once w and d are chosen, the

space required is fixed: the data structure is represented

by wd counters and d hash functions (which can each

be represented in O(1) machine words [14]).

Update Procedure

Consider a vector a, which is presented in an implicit,

incremental fashion (this abstract model captures a

wide variety of data stream settings, see entries on

Data Stream Models for more details). This vector

has dimension n, and its current state at time t is

aðtÞ ¼ ½a1ðtÞ;:::aiðtÞ;:::anðtÞ�. Initially, að0Þ is the

zero vector, 0, so ai(0) is 0 for all i. Updates to individ-

ual entries of the vector are presented as a stream of

pairs. The tth update is (it, ct), meaning that

ait ðtÞ ¼ ait ðt � 1Þ þ ct

ai0 ðtÞ ¼ ai0 ðt � 1Þ i0 6¼ it

This procedure is illustrated in Fig. 1. In the remainder

of this article, t is dropped, and the current state of the

vector is referred to as just a for convenience. It is

assumed throughout that although values of ai increase

and decrease with updates, each ai � 0. The Count-

Min sketch also applies to the case where ais can be less

than zero, with small factor increases in space. Here,

details of these extensions are omitted for simplicity of

exposition (full details are in [5]).

When an update (it, ct) arrives, ct is added to one

count in each row of the Count-Min sketch; the
Count-Min Sketch. Figure 1. Each item i is mapped

to one cell in each row of the array of counts: when an

update of ct to item it arrives, ct is added to each

of these cells.
counter is determined by hj . Formally, given (it, ct),

the following modifications are performed:

81 	 j 	 d : CM ½ j; hjðit Þ� CM ½ j; hjðit Þ� þ ct

Because computing each hash function takes O(1)

(constant) time, the total time to perform an update

is O(d), independent of w. Since d is typically small in

practice (often less than 10), updates can be processed

at high speed.
Point Queries

A point query is to estimate the value of an entry in the

vector ai. The point query procedure is similar to

updates: given a query point i, an estimate is found

as âi ¼ min1	j	dCM ½ j; hjðiÞ�. Since the space used by

the sketch is typically much smaller than that required

to represent the vector exactly, there is necessarily some

approximation in the estimate, which is quantified as

follows:

Theorem 1 (Theorem 1 from [5]). If w ¼ deee and
d ¼ dln 1

de, the estimate âi has the following guarantees:

ai 	 âi ; and, with probability at least 1 � d,

âi 	 ai þ ekak1:

The proof follows by considering the estimate in each

row, and observing that the expected error in using

CM [j, hj(i)] as an estimate has expected (non-nega-

tive) error kak1=w. By the Markov inequality [14], the

probability that this error exceeds Ekak1 is at most
1
e
(where e is the base of the natural logarithm, i.e.,

2.71828 . . ., a constant chosen to optimize the space

for fixed accuracy requirements). Taking the smallest

estimate gives the best estimator, and the probabi-

lity that this estimate has error exceeding Ekak1 is

the probability that all estimates exceed this error,

i.e., e�d 	 d.
This analysis makes no assumption about the

distribution of values in a. However, in many applica-

tions there are Zipfian, or power law, distributions

of item frequencies. Here, the (relative) frequency

of the ith most frequent item is proportional to i�z,

for some parameter z, where z is typically in

the range 1–3 (z = 0 gives a perfectly uniform distribu-

tion). In such cases, the skew in the distribut-

ion can be used to show a stronger space/accuracy

tradeoff:

Theorem 2 (Theorem 5.1 from [7]). For a Zipf

distribution with parameter z, the space required to

Count-Min Sketch C 513

C

answer point queries with error Ekak1 with probability at
least 1 � d is given by O (e�min{1,1/z} ln1∕d).

Moreover, the dependency of the space on z is

optimal:

Theorem 3 (Theorem 5.2 from [7]). The space

required to answer point queries correctly with any con-

stant probability and error at most Ekak1 is O(e
�1) over

general distributions, and O(e�1∕z) for Zipf distributions
with parameter z, assuming the dimension of a, n is

O(e�min{1,1/z}).
Range, Heavy Hitter and Quantile Queries

A range query is to estimate
Pr

i¼l ai for a range [l...r].

For small ranges, the range sum can be estimated as a

sum of point queries; however, as the range grows, the

error in this approach also grows linearly. Instead, logn

sketches can be kept, each of which summarizes a

derived vector ak where

ak½j� ¼
Xðjþ1Þ2k�1
i¼j2k

ai

for k = 1...log n. A range of the form j2k...(j + 1)2k � 1

is called a dyadic range, and any arbitrary range [l...r]

can be partitioned into at most 2log n dyadic ranges.

With appropriate rescaling of accuracy bounds, it fol-

lows that:

Theorem 4 (Theorem 4 from [5]). Count-Min

sketches can be used to find an estimate r̂ for a range

query on l...r such that

r̂ � Ekak1 	
Xr
i¼l

ai 	 r̂

The right inequality holds with certainty, and the left

inequality holds with probability at least 1� d. The total
space required is Oðlog

2n
E log 1

dÞ.
Closely related to the range query is the f-quantile

query, which is to find a point j such that

Xj
i¼1

ai 	 fkak1 	
Xjþ1
i¼1

ai:

A natural approach is to use range queries to binary

search for a j which satisfies this requirement approxi-

mately (i.e., tolerates up to Ekak1 error in the above

expression) given f. In order to give the desired guar-

antees, the error bounds need to be adjusted to account

for the number of queries that will be made.
Theorem 5 (Theorem 5 from [5]). e-approximate

f-quantiles can be found with probability at least 1 � d
by keeping a data structure with space

O 1
E log

2ðnÞ log log n
d

� �� �
. The time for each insert or delete

operation is O logðnÞ log log n
d

� �� �
, and the time to find

each quantile on demand is O logðnÞ log log n
d

� �� �
.

Heavy Hitters are those points i such that

ai � fkak1 for some specified f. The range query

primitive based on Count-Min sketches can again be

used to find heavy hitters, by recursively splitting dy-

adic ranges into two and querying each half to see if the

range is still heavy, until a range of a single, heavy, item

is found. Formally,

Theorem 6 (Theorem 6 from [5]). Using space

O 1
ElogðnÞlog

2logðnÞ
df

� �� �
, and time O logðnÞ log 2logn

df

� �� �
per update, a set of approximate heavy hitters can be

output so that every item with frequency at least

ðfþ EÞkak1 is output, and with probabilitye 1 � d no

item whose frequency is less than fkak1 is output.
For skewed Zipfian distributions, as described

above, with parameter z > 1, it is shown more strongly

that the top-k most frequent items can be found with

relative error e using space only ~OðkEÞ [7].

Inner Product Queries

The Count-Min sketch can also be used to estimate the

inner product between two vectors; in database terms,

this captures the (equi)join size between relations.

The inner product a � b, can be estimated by treating

the Count-Min sketch as a collection of d vectors of

length w, and finding the minimum inner product

between corresponding rows of sketches of the two

vectors. With probability 1 � d, this estimate is at

most an additive quantity Ekak1kbk1 above the true

value of a � b. This is to be compared with AMS

sketches which guarantee Ekak2kbk2 additive error,

but require space proportional to 1
E2 to make this

guarantee.
Interpretation as Random Linear Projection

The sketch can also be interpreted as a collection of

inner-products between a vector representing the input

and a collection of random vectors defined by the hash

functions. Let a denote the vector representing the

input, so that a½i� is the sum of the updates to the ith

location in the input. Let rj,k be the binary vector such

514C Count-Min Sketch
that rj,k[i] = 1 if and only if hj(i) = k. Then it follows

that CM ½j; k� ¼ a � rj;k . Because of this linearity, it fol-
lows immediately that if sketches of two vectors, a and

b, are built then (i) the sketch of a þ b (using the same

w,d,hj) is the (componentwise) sum of the sketches

(ii) the sketch of la for any scalar l is l times the

sketch of a. In other words, the sketch of any linear

combination of vectors can be found. This property

is useful in many applications which use sketches.

For example, it allows distributed measurements to

be taken, sketched, and combined by only sending

sketches instead of the whole data.

Conservative Update

If only positive updates arrive, then an alternate update

methodology may be applied, known as conservative

update (due to Estan and Varghese [8]). For an

update (i,c), âi is computed, and the counts are

modified according to 81 	 j 	 d : CM ½ j; hjðiÞ�
maxðCM ½ j; hjðiÞ�; âi þ cÞ. It can be verified that pro-

cedure still ensures for point queries that ai 	 âi , and

that the error is no worse than in the normal update

procedure; it is remarked that this can improve accu-

racy ‘‘up to an order of magnitude’’ [8]. Note however

that deletions or negative updates can no longer be

processed, and the additional processing that must

be performed for each update could effectively halve

the throughput.

Key Applications
Since its description and initial analysis, the Count-

Min Sketch has been applied in a wide variety of

situations. Here is a list of some of the ways in which

it has been used or modified.

� Lee et al. [13] propose using least-squares optimi-

zation to produce estimates from Count-Min

Sketches for point queries (instead of returning

the minimum of locations where the item was

mapped). It was shown that this approach can

give significantly improved estimates, although at

the cost of solving a convex optimization problem

over n variables (where n is the size of the domain

from which items are drawn, typically 232 or

higher).

� The ‘‘skipping’’ technique, proposed by Bhatta-

charrya et al. [2] entails avoiding adding items to

the sketch (and saving the cost of the hash function

computations) when this will not affect the
accuracy too much, in order to further increase

throughout in high-demand settings.

� Indyk [9] uses the Count-Min Sketch to estimate

the residual mass after removing a subset of items.

That is, given a (small) set of indices I, to estimateP
i=2I ai . This is needed in order to find clusterings

of streaming data.

� The entropy of a data stream is a function of the

relative frequencies of each item or character within

the stream. Using Count-Min Sketches within a

larger data structure based on additional hashing

techniques, Lakshminath and Ganguly [12] showed

how to estimate this entropy to within relative

error.

� Sarlós et al. [17] gave approximate algorithms for

personalized page rank computations which make

use of Count-Min Sketches to compactly represent

web-size graphs.

� In describing a system for building selectivity esti-

mates for complex queries, Spiegel and Polyzotis

[18] use Count-Min Sketches in order to allow

clustering over a high-dimensional space.

� Rusu and Dobra [16] study a variety of sketches for

the problem of inner-product estimation, and con-

clude that Count-Min sketch has a tendency to

outperform its theoretical worst-case bounds by a

considerable margin, and gives better results than

some other sketches for this problem.

� Many applications call for tracking distinct counts:

that is, ai should represent the number of distinct

updates to position i. This can be achieved by

replacing the counters in the Count-Min sketch

with approximate Count-Distinct summaries,

such as the Flajolet-Martin sketch. This is described

and evaluated in [6,10].

� Privacy preserving computations ensure that mul-

tiple parties can cooperate to compute a function of

their data while only learning the answer and not

anything about the inputs of the other participants.

Roughan and Zhang demonstrate that the Count-

Min Sketch can be used within such computations,

by applying standard techniques for computing

privacy preserving sums on each counter indepen-

dently [15].

Related ideas to the Count-Min Sketch have also been

combined with group testing to solve problems in the

realm of Compressed Sensing, and finding significant

changes in dynamic streams.

Count-Min Sketch C 515

C

Future Directions
As is clear from the range of variety of applications

described above, Count-Min sketch is a versatile data

structure which is finding applications within Data

Stream systems, but also in Sensor Networks, Matrix

Algorithms, Computational Geometry and Privacy-

Preserving Computations. It is helpful to think of the

structure as a basic primitive which can be applied

wherever approximate entries from high dimensional

vectors or multisets are required, and one-sided error

proportional to a small fraction of the total mass can

be tolerated (just as a Bloom filter should be consid-

ered in order to represent a set wherever a list or set is

used and space is at a premium). With this in mind,

further applications of this synopsis can be expected to

be seen in more settings.

As noted below, sample implementations are freely

available in a variety of languages, and integration into

standard libraries will further widen the availability of

the structure. Further, since many of the applications

are within high-speed data stream monitoring, it is

natural to look to hardware implementations of the

sketch. In particular, it will be of interest to understand

how modern multi-core architectures can take advan-

tage of the natural parallelism inherent in the Count-

Min Sketch (since each of the d rows are essentially

independent), and to explore the implementation

choices that follow.
Experimental Results
Experiments performed in [7] analyzed the error

for point queries and F2 (self-join size) estimation, in

comparison to other sketches. High accuracy was

observed for both queries, for sketches ranging from a

few kilobytes to a megabyte in size. The typical para-

meters of the sketchwere a depth d of 5, and awidthw of

a few hundred to thousands. Implementations on

desktop machines achieved between and two and

three million updates per second. Other implementa-

tion have incorporated Count-Min Sketch into high

speed streaming systems such as Gigascope [4], and

tuned it to process packet streams of multi-gigabit

speeds.

Lai and Byrd report on an implementation of

Count-Min sketches on a low-power stream processor

[18], capable of processing 40 byte packets at a

throughput rate of up to 13 Gbps. This is equivalent

to about 44 million updates per second.
URL To Code
Several example implementations of the Count-

Min sketch are available. C code is given by the

MassDal code bank: http://www.cs.rutgers.edu/�
muthu/massdal-code-index.html. C++ code due to

Marios Hadjieleftheriou is available from http://

research.att.com/~marioh/sketches/index.html.
Cross-references
▶AMS Sketch

▶Data sketch/synopsis

▶ FM Synopsis

▶ Frequent items on streams

▶Quantiles on streams
Recommended Reading
1. Alon N., Matias Y., and Szegedy M. The space complexity of

approximating the frequency moments. In Proc. 28th Annual

ACM Symp. on Theory of Computing, 1996, pp. 20–29. Journal

version in J. Comput. Syst. Sci., 58:137–147, 1999.

2. Bhattacharrya S., Madeira A., Muthukrishnan S., and Ye T. How

to scalably skip past streams. In Proc. 1st Int. Workshop on

Scalable Stream Processing Syst., 2007, pp. 654–663.

3. Charikar M., Chen K., and Farach-Colton M. Finding frequent

items in data streams. In 29th Int. Colloquium on Automata,

Languages, and Programming, 2002, pp. 693–703.

4. Cormode G., Korn F., Muthukrishnan S., Johnson T.,

Spatscheck O., and Srivastava D. Holistic UDAFs at streaming

speeds. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2004, pp. 35–46.

5. Cormode G. and Muthukrishnan S. An improved data

stream summary: the count-min sketch and its applications.

J. Algorithms, 55(1):58–75, 2005.

6. Cormode G. and Muthukrishnan S. Space efficient mining of

multigraph streams. In Proc. 24th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2005,

pp. 271–282.

7. Cormode G. and Muthukrishnan S. Summarizing and mining

skewed data streams. In Proc. SIAM International Conference

on Data Mining, 2005.

8. Estan C. and Varghese G. New directions in traffic measurement

and accounting. In Proc. ACM Int. Conf. of the on Data Com-

munication, 2002, pp. 323–338.

9. Indyk P. Better algorithms for high-dimensional proximity pro-

blems via asymmetric embeddings. In Proceedings of ACM-

SIAM Symposium on Discrete Algorithms, 2003.

10. Kollios G., Byers J., Considine J., Hadjieleftheriou M., and Li F.

Robust aggregation in sensor networks. Q. Bull. IEEE TC on

Data Engineering, 28(1):26–32, 2005.

11. Lai Y.-K. and Byrd G.T. High-throughput sketch update on a

low-power stream processor. In Proc. ACM/IEEE Symp. on

Architecture for Networking and Communications Systems,

2006, pp. 123–132.

516C Coupling and De-coupling
12. Lakshminath B. and Ganguly S. Estimating entropy over data

streams. In Proc. 14th European Symposium on Algorithms,

2006, pp. 148–159.

13. Lee G.M., Liu H., Yoon Y., and Zhang Y. Improving

sketch reconstruction accuracy using linear least squares

method. In Proc. 5th ACM SIGCOMM Conf. on Internet Mea-

surement, 2005, pp. 273–278.

14. Motwani R. and Raghavan P. Randomized Algorithms.

Cambridge University Press, 1995.

15. Roughan M. and Zhang Y. Secure distributed data mining

and its application in large-scale network measurements. Com-

puter Communication Review, 36(1):7–14, 2006.

16. Rusu F. and Dobra A. Statistical analysis of sketch estimators. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2007,

pp. 187–198.

17. Sarlós T., Benzúr A., Csalogány K., Fogaras D., and Rácz B. To

randomize or not to randomize: space optimal summaries for

hyperlink analysis. In Proc. 15th Int. World Wide Web Confer-

ence, 2006, pp. 297–306.

18. Spiegel J. and Polyzotis N. Graph-based synopses for relational

selectivity estimation. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2006, pp. 205–216.
Coupling and De-coupling

SERGUEI MANKOVSKII

CA Labs, CA, Inc., Thornhill, ON, Canada

Definition
Coupling is a measure of dependence between compo-

nents of software system.

De-coupling is a design or re-engineering activity

aiming to reduce coupling between system elements.

Key Points
Coupling of system components refers to a measure of

dependency among them. Coupled components might

depend on each other in different ways. Some exam-

ples of the dependencies are:

� One component might depend on syntax, format, or

encoding of data produced by another component.

� One component might depend on the execution

time within another component.

� One component might depend on state of another

component.

Notion of coupling is connected to notion of cohesion.

Cohesion is a measure of how related and focused

are responsibilities of a software component. For

example a highly cohesive component might group

responsibilities
� using the same syntax, format or encoding of data.

� performed at the same time.

� executed in the same state.

Highly cohesive components lead to fewer dependen-

cies between components and voice versa.

Notions of coupling and cohesion were studied in

structured and object oriented programming. The re-

search developed software tools to calculate coupling

and cohesion metrics.

Low coupling is often desirable because it leads to

reliability, easy of modification, low maintenance costs,

understandability, and reusability. Low coupling can

be achieved by deliberately designing system with low

values of coupling metric. It can also be achieved by

re-engineering of existing software system through re-

structuring of system into a set of more cohesive com-

ponents. These activates are called de-coupling.

Cross-references
▶Cohesion

▶OODB (Object-Oriented Database)

▶ Structured Programming
Coverage

▶ Specificity
Covering Index

DONGHUI ZHANG

Northeastern University, Boston, MA, USA

Definition
Given an SQL query, a covering index is a composite

index that includes all of the columns referenced in

SELECT, JOIN, and WHERE clauses of this query.

Because the index contains all the data needed by

the query, to execute the query the actual data in the

table does not need to be accessed.

Key Points
Covering indexes [1] support index-only execution

plans. In general, having everything indexed tends to

increase the query performance (in number of I/Os).

However, using a covering index with too many columns

Crash Recovery C 517

C

can actually degrade performance. Typically, multi-di-

mensional index structures, e.g., the R-tree, perform

poorer than linear scan with high dimensions. Some

guidelines of creating a covering index are: (i) Create a

covering index on frequently used queries. There are

overheads in creating a covering index, which is often

more significant than creating a regular index with

fewer columns. Hence, if a query is seldom used, the

overhead to create a covering index on it is not sub-

stantiated. This corresponds to Amdahl’s law: improve

the ‘‘interesting’’ part to receive maximum overall

benefit of a system. (ii) Try to build a covering index

by expanding an existing index. For instance, if there

already exists an index on ‘‘age’’ and ‘‘salary,’’ and one

needs a covering index on ‘‘age,’’ ‘‘salary,’’ and ‘‘in-

come,’’ it is often better to expand the existing index

rather than building a new index, which would share

two columns with the existing index.

The term ‘‘covering index’’ is sometimes used to

mean the collection of single-column, non-clustered

indexes on all the columns in a table. This is due to the

‘‘index intersection’’ technique incorporated into the

Microsoft SQL Server’s query optimizer [1]. In partic-

ular, the query optimizer can build, at run time, a

hash-based ‘‘covering index’’ to speedup queries on a

frequently used table. This covering index is really a

hash table, which is built based on multiple existing

indexes. Creating single-column indexes on all col-

umns encourages the query optimizer to perform

index intersection, i.e., to build dynamic covering

indexes.

Cross-references
▶Access Methods

▶ Indexing

Recommended Reading
1. McGehee B. Tips on Optimizing Covering Indexes. http://www.

sql-server-performance.com/tips/covering_indexes_p1.aspx, 2007.
Covert Communication

▶ Steganography
CPU Cache

▶ Processor Cache
Crabbing

▶B-Tree Locking
Crash Recovery

THEO HÄRDER

University of Kaiserslautern, Kaiserslautern, Germany

Synonyms
Failure handling; System recovery; Media recovery;

Online recovery; Restart processing; Backward

recovery

Definition
In contrast to transaction aborts, a crash is typically a

major failure by which the state of the current database

is lost or parts of storage media are unrecoverable

(destroyed). Based on log data from a stable log, also

called temporary log file, and the inconsistent and/or

outdated state of the permanent database, system re-

covery has to reconstruct the most recent transaction-

consistent database state. Because DBMS restart may

take too long to be masked for the user, a denial of

service can be observed. Recovery from media failures

relies on the availability of (several) backup or archive

copies of earlier DB states – organized according to

the generation principle – and archive logs (often

duplexed) covering the processing intervals from the

points of time the backup copies were created. Archive

recovery usually causes much longer outages than sys-

tem recovery.

Historical Background
Log data delivering the needed redundancy to recover

from failures was initially stored on nonvolatile core

memory to be reclaimed at restart by a so-called log

salvager [3] in the ‘‘pre-transaction area’’. Advances in

VLSI technology enabled the use of cheaper and larger,

but volatile semiconductor memory as the computers’

main memory. This technology change triggered

by 1971 in industry – driven by database product

adjustments – the development of new and refined

concepts of logging such as log sequence numbers

(LSNs), write-ahead log protocol (WAL), log duplex-

ing and more. Typically, these concepts were not pub-

lished, nevertheless they paved the way towards the use

518C Crash Recovery
of ACID transactions. As late as 1978, Jim Gray docu-

mented the design of such a logging system implemen-

ted in IMS in a widely referenced publication [5].

Many situations and dependencies related to fail-

ures and recovery from those in databases have been

thoroughly explored by Lawrence Bjork and Charles

Davies in their studies concerning DB/DC systems

back in 1973 leading to the so-called ‘‘spheres of con-

trol’’ [2]. The first published implementation of the

transaction concept by a full-fledged DBMS recovery

manager was that of System R, started in 1976 [4]. It

refined the Do-Undo-Redo protocol and enabled au-

tomatic recovery for new recoverable types and opera-

tions. In 1981, Andreas Reuter presented in his Ph.D.

dissertation further investigations and refinements of

concepts related to failure handling in database sys-

tems [9]. Delivering a first version of the principles of

transaction-oriented database recovery [Härder and

Reuter 1979], including the Ten Commandments [6],

this classification framework, defining the paradigm of

transaction-oriented recovery and coining the acro-

nym ACID for it [7], was finally published in 1983.

The most famous and most complete description of

recovery methods and their implementation was pre-

sented by C. Mohan et al. in the ARIES paper [8] in

1992, while thorough treatment of all questions related

to this topic appeared in many textbooks, especially

those of Bernstein et al. [1], Gray and Reuter [3], and

Weikum and Vossen [11]. All solutions implemented

for crash recovery in industrial-strength DBMSs are

primarily disk-based. Proposals to use ‘‘safe RAM’’,

for example, were not widely accepted.

Foundations
The most difficult failure type to be recovered from is

the system failure or system crash (see Logging and

Recovery). Due to some (expected, but) unplanned

failure event (a bug in the DBMS code, an operating

system fault, a power or hardware failure, etc.), the

current database – comprising all objects accessible to

the DBMS during normal processing – is not available

anymore. In particular, the in-memory state of the

DBMS (lock tables, cursors and scan indicators, status

of all active transactions, etc.) and the contents of the

database buffer and the log buffer are lost. Further-

more, the state lost may include information about

LSNs, ongoing commit processing with participating

coordinators and participants as well as commit re-

quests and votes. Therefore, restart cannot rely on such
information and has to refer to the temporary log file

(stable log) and the permanent (materialized) database,

that is, the state the DBMS finds after a crash at the

non-volatile storage devices (disks) without having

applied any log information.

Consistency Concerns

According to the ACID principle, a database is consis-

tent if and only if it contains the results of successful

transactions – called transaction-consistent database.

Because a DBMS application must not lose changes of

committed transactions and all of them have contrib-

uted to the DB state, the goal of crash recovery is to

establish the most recent transaction-consistent DB

state. For this purpose, redo and undo recovery is

needed, in general. Results of committed transactions

may not yet be reflected in the database, because exe-

cution has been terminated in an uncontrolled manner

and the corresponding pages containing such results

were not propagated to the permanent DB at the time

of the crash. Therefore, they must be repeated, if nec-

essary – typically by means of log information. On the

other hand, changes of incomplete transactions may

have reached the permanent DB state on disk. Hence,

undo recovery has to completely roll back such un-

committed changes.

Because usually many interactive users rely in their

daily business on DBMS services, crash recovery is very

time-critical. Therefore, crash-related interruption of

DBMS processing should be masked for them as far as

possible. Although today DBMS crashes are rather rare

events and may occur several times a month or a year –

depending on the stability of both the DBMS and its

operational environment – , their recovery should take

no more than a number of seconds or at most a few

minutes (as opposed to archive recovery), even if

GByte or TByte databases with thousands of users

are involved.

Forward Recovery

Having these constraints and requirements in mind,

which kind of recovery strategies can be applied?

Despite the presence of so-called non-stop systems

(giving the impression that they can cope with failures

by forward recovery), rollforward is very difficult, if

not impossible in any stateful system. To guarantee

atomicity in case of a crash, rollforward recovery had

to enable all transactions to resume execution so that

they can either complete successfully or require to be

Crash Recovery C 519

C

aborted by the DBMS. Assume the DB state containing

the most recent successful DB operations could be

made available, that is, all updates prior to the crash

have completely reached the permanent DB state. Even

then rollforward would be not possible, because a

transaction cannot resume in ‘‘forward direction’’ un-

less its local state is restored. Moreover in a DBMS

environment, the in-memory state lost makes it entirely

impossible to resume from the point at the time

the crash occurred. For these reasons, a rollback strat-

egy for active transactions is the only choice in case

of crash recovery to ensure atomicity (wiping out

all traces of such transactions); later on these transac-

tions are started anew either by the user or the DBMS

environment. The only opportunities for forward

actions are given by redundant structures where it is

immaterial for the logical DB content whether or

not modifying operations are undone or completed.

A typical example is the splitting operation of a

B-tree node.

Logging Methods and Rules

Crash recovery – as any recovery from a failure – needs

some kind of redundancy to detect invalid or missing

data in the permanent database and to ‘‘repair’’ its state

as required, i.e., removing modifications effected by

uncommitted transactions from it and supplementing

it with updates of complete transactions. For this task,

the recovery algorithms typically rely on log data col-

lected during normal processing. Different forms of

logging are conceivable. Logical logging is a kind of

operator logging; it collects operators and their argu-

ments at a higher level of abstraction (e.g., for internal

operations (actions) or operations of the data manage-

ment language (DML)). While this method of logging

may save I/O to and space in the log file during normal

processing, it requires at restart time a DB state that is

level-consistent w.r.t. the level of abstraction used for

logging, because the logged operations have to be exe-

cuted using data of the permanent database. For exam-

ple, action logging and DML-operation logging require

action consistency and consistency at the application

programming interface (API consistency), respectively

[6]. Hence, the use of this kind of methods implies the

atomic propagation (see below) of all pages modified

by the corresponding operation which can be imple-

mented by shadow pages or differential files. Physical

logging – in the simplest form collecting the before-

and after-images of pages – does not expect any form
of consistency at higher DB abstraction levels and, in

turn, can be used in any situation, in particular, when

non-atomic propagation of modified pages (update-

in-place) is performed. However, writing before- and

after-images of all modified pages to the log file, is very

time-consuming (I/O) and not space-economical at

all. Therefore, a combination of both kinds leads to

the so-called physiological logging, which can be rough-

ly characterized as ‘‘physical to a page and logical

within a page’’. It enables compact representation of

log data (logging of elementary actions confined to

single pages, entry logging) and leads to the practically

most important logging/recovery method; non-atomic

propagation of pages to disk is sufficient for the appli-

cation of the log data. Together with the use of log

sequence numbers in the log entries and in the headers

of the data pages (combined use of LSNs and

PageLSNs, see ARIES Protocol), simple and efficient

checks at restart detect whether or not the modifica-

tions of elementary actions have reached the perma-

nent database, that is, whether or not undo or redo

operations have to be applied.

While, in principle, crash recovery methods do not

have specific requirements for forcing pages to the

permanent DB, sufficient log information, however,

must have reached the stable log. The following rules

(for forcing of the log buffer to disk) have to be

observed to guarantee recovery to the most recent

transaction-consistent DB state:

� Redo log information must be written at the latest

in phase 1 of commit.

� WAL (write ahead logging) has to be applied to

enable undo operations, before uncommitted

(dirty) data is propagated to the permanent

database.

� Log information must not be discarded from the

temporary log file, unless it is guaranteed that it

will no longer be needed for recovery; that is, the

corresponding data page has reached the perma-

nent DB. Typically, sufficient log information

has been written to the archive log, in addition.

Taxonomy of Crash Recovery Algorithms

Forcing log data as captured by these rules yields the

necessary and sufficient condition to successfully cope

with system crashes. Specific assumptions concerning

page propagation to the permanent database only

influence performance issues of the recovery process.

520C Crash Recovery
When dirty data can reach the permanent DB (steal

property), recovery must be prepared to execute undo

steps and, in turn, redo steps when data modified by a

transaction is not forced at commit or before (no-force

property). In contrast, if propagation of dirty data is

prevented (no-steal property), the permanent DB only

contains clean (but potentially missing or old) data,

thus making undo steps unnecessary. Finally, if all

transaction modifications are forced at commit (force

property), redo is never needed at restart.

Hence, these properties concerning buffer replace-

ment and update propagation are maintained by the

buffer manager/transaction manager during normal

processing and lead to four cases of crash recovery

algorithms which cover all approaches so far proposed:

1. Undo/Redo: This class contains the steal/no-force

algorithms which have to observe no other require-

ments than the logging rules. However, potentially

undo and redo steps have to be performed during

restart after a crash.

2. Undo/NoRedo: The so-called steal/force algorithms

guarantee at any time that all actions of committed

transactions are in the permanent DB. However,

because of the steal property, dirty updates may

be present, which may require undo steps, but

never redo steps during restart.

3. NoUndo/Redo: The corresponding class members

are known as no-steal/no-force algorithms which

guarantee that dirty data never reaches the perma-

nent DB. Dirty data pages are either never replaced

from the DB buffer or, in case buffer space is in

short supply, they are displaced to other storage

areas outside the permanent DB. Restart after a

crash may require redo steps, but never undo steps.

4. NoUndo/NoRedo: This ‘‘magic’’ class of the so-

called no-steal/force algorithms always guarantees a
Crash Recovery. Figure 1. Taxonomy of crash recovery algo
state of the permanent DB that corresponds to the

most recent transaction-consistent DB state. It

requires that no modified data of a transaction

reaches the permanent DB before commit and that

all transaction updates are atomically propagated

(forced) at commit. Hence, neither undo nor redo

steps are ever needed during restart.

The discussion of these four cases is summarized in

Fig. 1 which represents a taxonomy of crash recovery

algorithms.

Implementation Implications

The latter two classes of algorithms (NoUndo) require

a mechanism which can propagate a set of pages in an

atomic way (with regard to the remaining DBMS pro-

cessing). Such a mechanism needs to defer updates to

the permanent DB until or after these updates become

committed and can be implemented by various forms

of shadowing concepts or differential file approaches.

Algorithms relying on redo steps, i.e., without the

need to force committed updates to the permanent

DB, have no control about the point of time when

committed updates reach the permanent DB. While

the buffer manager will propagate back most of the

modified pages soon after the related update opera-

tions, a few hot-spot pages are modified again and

again, and, since they are referenced so frequently,

have not been written from the buffer. These pages

potentially have accumulated the updates of many

committed transactions, and redo recovery will there-

fore have to go back very far on the temporary log.

As a consequence, restart becomes expensive and the

DBMS’s out-of-service time unacceptably long. For

this reason, some form of checkpointing is needed to

make restart costs independent of mean time between

failures. Generating a checkpoint means collecting
rithms.

Crash Recovery C 521

C

information related to the DB state in a safe place,

which is used to define and limit the amount of redo

steps required after a crash. The restart logic can then

return to this checkpoint state and attempt to recover

the most recent transaction-consistent state.

From a conceptual point of view, the algorithms of

class 4 seem to be particularly attractive, because they

always preserve a transaction-consistent permanent DB.

However in addition to the substantial cost of providing

atomic update propagation, the need of forcing all

updates at commit, necessarily in a synchronous way

which may require a large amount of physical I/Os

and, in turn, extend the lock duration for all affected

objects, makes this approach rather expensive. Further-

more, with the typical disk-based DB architectures,

pages are units of update propagation, which has the

consequence that a transaction updating a record in a

page cannot share this page with other updaters, because

dirty updates must not leave the buffer and updates of

complete transactionsmust be propagated to the perma-

nent DB at commit. Hence, no-steal/force algorithms

imply at least page locking as the smallest lock granule.

One of these cost factors – either synchronously

forced updates at commit or atomic updates for

NoUndo – applies to the algorithms of class 2 and 3

each. Therefore, they were not a primary choice for the

DBMS vendors competing in the today’s market.

Hence, the laissez-faire solution ‘‘steal, no-force’’

with non-atomic update propagation (update-in-

place) is today’s favorite solution, although it always

leaves the permanent DB in a ‘‘chaotic state’’ containing

dirty and outdated data pages and keeping the latest

version of frequently used pages only in the DB buffer.

Hence, with the optimistic expectation that crashes

become rather rare events, it minimizes recovery pro-

visions during normal processing. Checkpointing is nec-

essary, but the application of direct checkpoints flushing

the entire buffer at a time, is not advisable anymore,

when buffers of several GByte are used. To affect nor-

mal processing as little as possible, so-called fuzzy check-

points are written; only a few pages with metadata

concerning the DB buffer state have to be synchronously
Crash Recovery. Figure 2. Two ways of DB crash recovery a
propagated, while data pages are ‘‘gently’’ moved to the

permanent DB in an asynchronous way.

Archive Recovery

So far, data of the permanent DB was assumed to be

usable or at least recoverable using the redundant data

collected in the temporary log. This is illustrated by the

upper path in Fig. 2. If any of the participating com-

ponents is corrupted or lost because of other hardware

or software failure, archive recovery – characterized by

the lower path – must be tried. Successful recovery also

implies independent failure modes of the components

involved.

The creation of an archive copy, that is, copying the

online version of the DB, is a very expensive process;

for example, creating a transaction-consistent DB copy

would interrupt update operation for a long time

which is unacceptable for most DB applications.

Therefore, two base methods – fuzzy dumping and

incremental dumping – were developed to reduce the

burden of normal DB operation while an archive copy

is created. A fuzzy dump copies the DB on the fly in

parallel with normal processing. The other method

writes only the changed pages to the incremental

dump. Of course, both methods usually deliver incon-

sistent DB copies such that log-based post-processing

is needed to apply incremental modifications. In a

similar way, either type of dump can be used to create

a new, more up-to-date copy from the previous one,

using a separate offline process such that DB operation

is not affected.

Archive copies are ‘‘hopefully’’ never or very infre-

quently used. Therefore, they may be susceptible to

magnetic decay. For this reason, redundancy is needed

again, which is usually solved by keeping several gen-

erations of the archive copy.

So far, all log information was assumed to be writ-

ten only to the temporary log file during normal pro-

cessing. To create the (often duplexed) archive log,

usually an independent and asynchronously running

process copies the redo data from the temporary log.

To guarantee successful recovery, failures when using
nd the components involved.

522C Crawler
the archive copies must be anticipated. Therefore,

archive recovery must be prepared to start from the

oldest generation and hence the archive log must span

the whole distance back to this point in time.
Key Applications
Recovery algorithms, and in particular for crash recov-

ery, are a core part of each commercial-strength DBMS

and require a substantial fraction of design/implemen-

tation effort and of the code base: ‘‘A recoverable action

is 30% harder and requires 20%more code than a non-

recoverable action’’ (J. Gray). Because the occurrence

of failures can not be excluded and all data driving

the daily business are managed in databases, mission-

critical businesses depend on the recoverability of

their data. In this sense, provisions for crash recovery

are indispensable in such DBMS-based applications.

Another important application area of crash recovery

techniques are file systems, in particular their metadata

about file existence, space allocation, etc.
Future Directions
So far, crash recovery provisions are primarily disk-

based. With ‘‘unlimited’’ memory available, main-

memory DBMSs will provide efficient and robust

solutions without the need of non-volatile storage for

crash recovery. More and more approaches are

expected to exploit specialized storage devices such as

battery-backed RAM or to use replication in grid-

organized memories. Executing online transaction

processing sequentially, revolutionary architectural

concepts are already proposed which may not require

transactional facilities at all [10].
Cross-references
▶ACID Properties

▶Application Recovery

▶B-Tree Locking

▶Buffer Management

▶ Logging and Recovery

▶Multi-Level Recovery and the ARIES Algorithm

Recommended Reading
1. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison-Wesley,

Reading, MA, 1987.

2. Davies C.T. Data processing spheres of control. IBM Syst. J.,

17(2):179–198, 1978.
3. Gray H. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1993.

4. Gray J., McJones P., Blasgen M., Lindsay B., Lorie R., Price T.,

Putzolu F., and Traiger I.L. The recovery manager of the

System R database manager. ACM Comput. Surv., 13(2):

223–242, 1981.

5. Gray J, Michael J. Feynn, Jim Gray, Anita K. Jones, Klans Lagally,

Holger Opderbeck, Gerald J. Popek, Brian Randell, Jerome H.

Saltfer, Hans-Rüdiger Wiehle. Notes on database operating sys-

tems. In Operating Systems: An Advanced Course. Springer,

LNCS 60, 1978, pp. 393–481.

6. Härder T. DBMS Architecture – Still an Open Problem. In Proc.

German National Database Conference, 2005, pp. 2–28.

7. Härder T. and Reuter A. Principles of transaction-

oriented database recovery. ACM Comput. Surv., 15(4):

287–317, 1983.

8. Mohan C., Haderle D.J., Lindsay B.G., Pirahesh H., and Schwarz

P.M. ARIES: a transaction recovery method supporting fine-

granularity locking and partial rollbacks using write-ahead

logging. ACM Trans. Database Syst., 17(1):94–162, 1992.

9. Reuter A. Fehlerbehandlung in Datenbanksystemen. Carl

Hanser, Munich, 1981, p. 456.

10. Stonebraker M., Madden S., Abadi D.J., Harizopoulos S.,

Hachem N., and Helland P. The End of an Architectural Era

(It’s Time for a Complete Rewrite). In Proc. 33rd Int. Conf. on

Very Large Data Bases, 2007, pp. 1150–1160.

11. Weikum G. and Vossen G. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, San Francisco, CA, 2002.
Crawler

▶ Incremental Crawling
Credulous Reasoning

▶ Possible Answers
Cross Product

▶Cartesian Product
Cross-language Cross-Language
Mining and Retrieval C217
Informational Retrieval

▶Cross-Language Mining and Retrieval

Cross-Language Mining and Retrieval C 523

C

Cross-Language Mining and
Retrieval

WEI GAO
1, CHENG NIU

2

1The Chinese University of Hong Kong, Hong Kong,

China
2Microsoft Research Asia, Beijing, China

Synonyms
Cross-language text mining; Cross-language web

mining; Cross-language informational retrieval; Trans-

lingual information retrieval

Definition
Cross-language mining is a task of text mining dealing

with the extraction of entities and their counterparts

expressed in different languages. The interested entities

may be of various granularities from acronyms, syno-

nyms, cognates, proper names to comparable or parallel

corpora. Cross-Language Information Retrieval (CLIR)

is a sub-field of information retrieval dealing with the

retrieval of documents across language boundaries, i.e.,

the language of the retrieved documents is not the same

as the language of the queries. Cross-language mining

usually acts as an effective means to improve the perfor-

mance of CLIR by complementing the translation

resources exploited by CLIR systems.
Historical Background
CLIR addresses the growing demand to access large

volumes of documents across language barriers. Unlike

monolingual information retrieval, CLIR requires

query terms in one language to be matched with the

indexed keywords in the documents of another lan-

guage. Usually, the cross-language matching can be

done by making use of bilingual dictionary, machine

translation software, or statistical model for bilingual

words association. CLIR generally takes into account

but not limited to the issues like how to translate query

terms, how to deal with the query terms nonexistent

in a translation resource, and how to disambiguate

or weight alternative translations (e.g., to decide that

‘‘traitement’’ in a French query means ‘‘treatment’’ but

not ‘‘salary’’ in English, or how to order the French

terms ‘‘aventure,’’ ‘‘business,’’ ‘‘affaire,’’ and ‘‘liaison’’ as

relevant translations of English query ‘‘affair’’), etc.

The performance of CLIR can be measured by the

general evaluation metrics of information retrieval,
such as recall precision, average precision, and mean

reciprocal rank, etc.

The first workshop on CLIR was held in Zürich

during the SIGIR-96 conference. Workshops have been

held yearly since 2000 at the meetings of CLEF (Cross

Language Evaluation Forum), following its predeces-

sor workshops of TREC (Text Retrieval Conference)

cross-language track. The NTCIR (NII Test Collec-

tion for IR Systems) workshop is also held each year

in Japan for CLIR community focusing on English

and Asian languages.

The study of cross-language mining appears relative-

ly more lately than CLIR, partly due to the increasing

demands on the quality of CLIR and machine transla-

tion, as well as the recent advancement of text/Web

mining techniques. A typical early work on cross-lingual

mining is believed to be PTMiner [14] that mines par-

allel text from theWeb used for query translation. Other

than parallel data mining, people also tried to mine the

translations of Out-of-Vocabulary (OOV) terms from

search results returned from search engine [5,18] or

from web anchor texts and link structures [12]. Based

on phonetic similarity, transliteration (the phonetic

counterpart of a name in another language, e.g.,

‘‘Schwarzenegger’’ is pronounced as ‘‘shi wa xin ge’’ in

Chinese pinyin) of foreign names also could be

extracted properly from the Web [10]. These methods

are proposed to alleviate the OOV problem of CLIR

since there is usually lack of appropriate translation

resources for new terminologies and proper names,

particularly in the scenario of cross-language web

search.

Foundations
Most approaches to CLIR perform query translation

followed by monolingual retrieval. So the retrieval

performance is largely determined by the quality of

query translation. Queries are typically translated

either using a bilingual dictionary [15], a machine

translation (MT) software [7], bilingual word associa-

tion model learned from parallel corpus [6,14], or

recently a query log of a search engine [9]. Despite

the types of the resources being used, OOV translation

and translation disambiguation are the two major bot-

tlenecks for CLIR. On one hand, translation resources

can never be comprehensive. Correctly translating

queries, especially Web queries, is difficult since they

often contain new words (e.g., new movies, brands,

celebrities, etc.) occurring timely and frequently, yet

524C Cross-Language Mining and Retrieval
being OOV to the system; On the other hand, many

words are polysemous, or they do not have a unique

translation, and sometimes the alternative translations

have very different meanings. This is known as trans-

lation ambiguity. Selecting the correct translation is

not trivial due to the shortage of context provided in

a query, and effective techniques for translation disam-

biguation are necessary.

It should be mentioned that document translation

with MT in the opposite direction is an alternative

approach to CLIR. However, it is less commonly used

than query translation in the literature mainly because

MT is computationally expensive and costly to devel-

op, and the document sets in IR are generally very

large. For cross-language web search, it is almost im-

practical to translate all the web pages before indexing.

Some large scale attempts to compare query transla-

tion and document translation have suggested no clear

advantage for either of the approaches to CLIR [12].

But they found that compared with extremely high

quality human query translations, it is advantageous

to incorporate both document and query translation

into a CLIR system.

Cross-Language Web Mining

Mining Parallel Data The approaches of mining par-

allel text make extensive use of bilingual websites

where parallel web pages corresponding to the speci-

fied language pair can be identified and downloaded.

Then the bilingual texts are automatically aligned in

terms of sentences and words by statistical aligning

tools, such as GIZAþþ [21]. The word translation

probabilities can be derived with the statistics of

word pairs occurring in the alignments, after which

one can resort to statistical machine translation mod-

els, e.g., IBM model-1 [4], for translating given queries

into the target language. The typical parallel data

mining tools include PTMiner [14], STRAND [16]

and the DOM-tree-alignment-based system [17].

Mining OOV Term Translation Web pages also contain

translations of terms in either the body texts or the

anchor texts of hyper-links pointing to other pages.

For example, in some language pairs, such as Chinese-

English or Japanese-English, the Web contains rich

body texts in a mixture of multiple languages. Many

of them contain bilingual translations of proper nouns,

such as company names and person names. The work
of [5,16] exploits this nice characteristic to automati-

cally extract translations from search result for a large

number of unknown query terms. Using the extracted

bilingual translations, the performance of CLIR be-

tween English and Chinese is effectively improved.

Both methods select translations based on some var-

iants of co-occurrence statistics.

The anchor text of web pages’ hyperlinks is another

source for translational knowledge acquisition. This

is based on the observation that the anchor texts

of hyperlinks pointing to the same URL may contain

similar descriptive texts. Lu et al. [11] uses anchor text

of different languages to extract the regional aliases

of query terms for constructing a translation lexicon.

A probabilistic inference model is exploited to estimate

the similarity between query term and extracted trans-

lation candidates.
Query Translation Disambiguation

Translation disambiguation or ambiguity resolution is

crucial to the query translation accuracy. Compared to

the simple dictionary-based translation approach with-

out addressing translation disambiguation, the effective-

ness of CLIR can be 60% lower than that of monolingual

retrieval [3]. Different disambiguation techniques have

been developed using statistics obtained from document

collections, all resulting in significant performance im-

provement. Zhang et al. [19] give concise review on

three main translation disambiguation techniques.

These methods include using term similarity [1], word

co-occurrence statistics of the target language docu-

ments, and language modeling based approaches [20].

In this subsection, we introduce these approaches fol-

lowing the review of Zhang et al. [19].
Disambiguation by Term Similarity Adriani [1] pro-

posed a disambiguation technique based on the conc-

ept of statistical term similarity. The term similarity is

measured by the Dice coefficient, which uses the term-

distribution statistics obtained from the corpus.

The similarity between term x and y, SIM(x, y), is

calculated as:

SIMðx; yÞ ¼ 2
Pn
i¼1
ðwxiwyiÞ

� Pn
i¼1

w2
xiþ
Pn
i¼1

w2
yi

 �

where wxi and wyi is the weights of term x and y

in document i. This method computes the sum of

maximum similarity values between each candidate

Cross-Language Mining and Retrieval C 525

C

translation of a term and the translations of all other

terms in the query. For each query term, the transla-

tion with the highest sum is selected as its translation.

The results of Indonesian-English CLIR experiments

demonstrated the effectiveness of this approach. There

are many variant term association measures like Jac-

card, Cosine, Overlap, etc. that can be applied similarly

for calculating their similarity.
Disambiguation by Term Co-occurrence Ballesteros

and Croft [3] used co-occurrence statistics obtained

from the target corpus for resolving disambiguation.

They assume the correct translations of query terms

should co-occur in target language documents and

incorrect translations tend not to co-occur. Similar

approach is studied by Gao et al. [8]. They observed

that the correlation between two terms is stronger

when the distance between them is shorter. They

extended the previous co-occurrence model by incor-

porating a distance factor Dðx; yÞ ¼ e
�aðDisðx;yÞ�1Þ

. The

mutual information between term x and y, MI(x, y), is

calculated as:

MIðx; yÞ ¼ log
fwðx; yÞ
fx fy

þ 1

 �
� Dðx; yÞ

where fw(x, y) is the co-occurrence frequency of x and y

that occur simultaneously within a window size of w in

the collection, fx is the collection frequency of x, and

fy is the collection frequency of y. D(x, y) decreases

exponentially when the distance between the two terms

increases, where a is the decay rate, and D(x, y) is the

average distance between x and y in the collection. The

experiments on the TREC9 Chinese collection showed

that the distance factor leads to substantial improve-

ments over the basic co-occurrence model.
Disambiguation by Language Modeling In the work

of [20], a probability model based on hidden Markov

model (HMM) is used to estimate the maximum

likelihood of each sequence of possible translations

of the original query. The highest probable transla-

tion set is selected among all the possible translation

sets. HMM is a widely used for probabilistic model-

ing of sequence data. In their work, a smoothing

technique based on absolute discounting and inter-

polation method is adopted to deal with the zero-

frequency problem during probability estimation. See

[20] for details.
Pre-/Post-Translation Expansion

Techniques of OOV term translation and translation

disambiguation both aim to translate query correctly.

However, it is arguable that precise translation may not

be necessary for CLIR. Indeed, in many cases, it is

helpful to introduce words even if they are not direct

translations of any query word, but are closely rela-

ted to the meaning of the query. This observation has

led to the development of cross-lingual query expan-

sion (CLQE) techniques [2,13]. [2] reported the en-

hancement on CLIR by post-translation expansion.

[13] made performance comparison on various

CLQE techniques, including pre-translation expansion,

post-translation expansion and their combinations. Rel-

evance feedback, the commonly used expansion tech-

nique in monolingual retrieval, is also widely adopted in

CLQE. The basic idea is to expand original query by

additional terms that are extracted from the relevant

retrieval result initially returned. Amongst different rel-

evance feedback methods, explicit feedback requires

documents whose relevancy is explicitly marked by

human; implicit feedback is inferred from users’ beha-

viors that imply the relevancy of the selected docu-

ments, such as which returned documents are viewed

or how long they view some of the documents; blind or

‘‘pseudo’’ relevance feedback is obtained by assuming

that top n documents in the initial result are relevant.

Cross-Lingual Query Suggestion

Traditional query translation approaches rely on static

knowledge and data resources, which cannot effectively

reflect the quickly shifting interests of Web users.

Moreover, the translated terms can be reasonable

translations, but are not popularly used in the target

language. For example, the French query ‘‘aliment bio-

logique’’ is translated into ‘‘biologic food,’’ yet the

correct formulation nowadays should be ‘‘organic

food.’’ This mismatch makes the query translation in

the target language ineffective. To address this prob-

lem, Gao et al. [9] proposed a principled framework

called Cross-Lingual Query Suggestion (CLQS), which

leverages cross-lingual mining and translation disam-

biguation techniques to suggest related queries found

in the query log of a search engine.

CLQS aims to suggest related queries in a language

different from the original query. CLQS is closely

related to CLQE, but is distinct in that it suggests full

queries that have been formulated by users so that the

query integrity and coherence are preserved in the

526C Cross-Language Mining and Retrieval
suggested queries. It is used as a new means of query

‘‘translation’’ in CLIR tasks. The use of query log for

CLQS stems from the observation that in the same

period of time, many search users share the same or

similar interests, which can be expressed in different

manners in different languages. As a result, a query

written in a source language is possible to have an

equivalent in the query log of the target language.

Especially, if the user intends to perform CLIR, then

original query is even more likely to have its corre-

spondent included in the target language log. There-

fore, if a candidate for CLQS appears often in the query

log, it is more likely to be the appropriate one to

suggest. CLQS is testified being able to cover more

relevant documents for the CLIR task.

The key problem with CLQS is how to learn a simi-

larity measure between two queries in different lan-

guages. They define cross-lingual query similarity based

on both translation relation and monolingual similarity.

The principle for learning is, for a pair of queries, their

cross-lingual similarity should fit the monolingual simi-

larity between one query and the other query’s transla-

tion. There are many ways to obtain a monolingual

similarity between queries, e.g., co-occurrence based

mutual information and w2. Any of them can be used

as the target for the cross-lingual similarity function to

fit. In this way, cross-lingual query similarity estima-

tion is formulated as a regression task:

simCLðqf ; qeÞ ¼ w � ’ðf ðqf ; qeÞÞ ¼ simMLðTqf ; qeÞ

where given a source language query qf, a target

language query qe, and a monolingual query similar-

ity between them simML, the cross-lingual query simi-

larity simCL can be calculated as an inner product

between a weight vector and the feature vector in the

kernel space, and ’ is the mapping from the input

feature space onto the kernel space, and w is the weight

vector which can be learned by support vector regression

training. The monolingual similarity is measured by

combining both query content-based similarity and

click-through commonality in the query log.

This discriminative modeling framework can inte-

grate arbitrary information sources to achieve an opti-

mal performance. Multiple feature functions can be

incorporated easily into the framework based on dif-

ferent translation resources, such as bilingual diction-

aries, parallel data, web data, and query logs. They

work uses co-occurrence-based dictionary translation
disambiguation, IBM translation model-1 based on par-

allel corpus, andWeb-based query translation mining as

means to discover related candidate queries in the query

log. Experiments on TREC6 French-English CLIR task

demonstrate that CLQS-based CLIR is significantly

better than the traditional dictionary-based query trans-

lation with disambiguation and machine translation

approaches.

Latent Semantic Index (LSI) for CLIR

Different from most of the alternative approaches dis-

cussed above, LSI for CLIR [6] provides a method for

matching text segments in one language with the seg-

ments of similar meaning in another language without

having to translate either. Using a parallel corpus, LSI

can create a language-independent representation of

words. The representation matrix reflects the patterns

of term correspondences in the documents of two

languages. The matrix is factorized by Singular Value

Decomposition (SVD) for deriving a latent semantic

space with a reduced dimension, where similar terms

are represented by similar vectors. In latent semantic

space, therefore, the monolingual similarity between

synonymous terms from one language and the cross-

lingual similarity between translation pairs from dif-

ferent languages tend to be higher than the similarity

with irrelevant terms. This characteristic allows rele-

vant documents to be retrieved even if they do not

share any terms in common with the query, which

makes LSI suitable for CLIR.

Key Applications
Cross-language mining and retrieval is the foundation

technology for searching web information across

multiple languages. It can also provide the cross-

lingual functionality for the retrieval of structured,

semi-structured and un-structured document data-

bases of specific domains or in large multinational

enterprises.

Experimental Results
In general, for every presented work, there is an accom-

panying experimental evaluation in the corresponding

reference. Especially, the three influential international

workshops held annually, i.e., CLEF, NTCIR and TREC,

defines many evaluation tasks for CLIR, and there are a

large number of experimental results being published

based on these benchmark specifications.

Cross-Language Mining and Retrieval C 527
Data Sets
Data sets for benchmarking CLIR are released to the

participants of TREC, CLEF and NTCIR workshops

annually with license agreements.
C

Cross-references
▶Anchor Text

▶Average Precision

▶Document databases

▶Document Links and Hyperlinks

▶ Evaluation Metrics for Structured Text Retrieval

▶ Information Extraction

▶ Information Retrieval

▶MAP

▶MRR

▶Query Expansion for Information Retreival

▶Query Translation

▶Relevance Feedback

▶ Singular Value Decomposition

▶ Snippet

▶ Stemming

▶ Stoplists

▶Term Statistics for Structuerd Text Retrieval

▶Term Weighting

▶Text Indexing and Retrieval

▶Text Mining

▶Web Information Extraction

▶Web Search Relevance Feedback
Recommended Reading
1. Adriani M. Using statistical term similarity for sense disambigu-

ation in cross-language information retrieval. Inform. Retr.,

2(1):71–82, 2000.

2. Ballestors L.A. and Croft W.B. Phrasal translation and

query expansion techniques for cross-language information

retrieval. In Proc. 20th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1997,

pp. 84–91.

3. Ballestors L.A. and Croft W.B. Resolving ambiguity for cross-

language information retrieval. In Proc. 21st Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 1998, pp. 64–71.

4. Brown P.F., Pietra S.A.D., Pietra V.D.J., and Mercer R.L.

The mathematics of machine translation: parameter estimation.

Comput. Linguist., 19:263–312, 1992.

5. Cheng P.-J., Teng J.-W., Chen R.-C., Wang J.-H., Lu W.-H., and

Chien L.-F. Translating unknown queries with Web corpora

for cross-language information retrieval. In Proc. 30th Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 2004, pp. 146–153.
6. Dumais S.T., Landauer T.K., and Littman M.L. Automatic cross-

linguistic information retrieval using latent semantic indexing.

ACM SIGIR Workshop on Cross-Linguistic Information

Retrieval, 1996, pp. 16–23.

7. Fujii A. and Ishikawa T. Applying machine translation to two-

stage cross-language information retrieval. In Proc. 4th Conf.

Association for Machine Translation in the Americas, 2000,

pp. 13–24.

8. Gao J., Zhou M., Nie, J.-Y., He H., and Chen W. Resolving query

translation ambiguity using a decaying co-occurrence model

and syntactic dependence relations. In Proc. 25th Annual Int.

ACM SIGIR Conf. on Research and Development in Informa-

tion Retrieval, 2002, pp. 183–190.

9. Gao W., Niu C., Nie J.-Y., Zhou M., Hu J., Wong K.-F., and

Hon H.-W.: Cross-lingual query suggestion using query logs of

different languages. In Proc. 33rd Annual Int. ACM SIGIR Conf.

on Research and Development in Information Retrieval, 2007,

pp. 463–470.

10. Jiang L., Zhou M., Chien L.-F., and Niu C. Named entity trans-

lation with Web mining and transliteration. In Proc. 20th Int.

Joint Conf. on AI, 2007, pp. 1629–1634.

11. Lu W.-H., Chien L.-F., and Lee H.-J. Translation of Web queries

using anchor text mining. ACM Trans. Asian Lang. Information

Proc., 1(2):159–172, 2002.

12. McCarley J.S. Should we translate the documents or the queries in

cross-language information retrieval? In Proc. 27th Annual

Meeting of the Assoc. for Computational Linguistics, 1999,

pp. 208–214.

13. McNamee P. and Mayfield J. Comparing cross-language

query expansion techniques by degrading translation resources.

In Proc. 25th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2002, pp. 159–166.

14. Nie J.-Y., Smard M., Isabelle P., and Durand R. Cross-language

information retrieval based on parallel text and automatic

mining of parallel text from the Web. In Proc. 22nd Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 1999, pp. 74–81.

15. Pirkola A., Hedlund T., Keshusalo H., and Järvelin K.

Dictionary-based cross-language information retrieval: pro-

blems, methods, and research findings. Inform. Retr., 3(3–4):

209–230, 2001.

16. Resnik P. and Smith N.A. The Web as a parallel corpus. Comput.

Linguist., 29(3):349–380, 2003.

17. Shi L., Niu C., Zhou M., and Gao J. A DOM Tree alignment

model for mining parallel data from the Web. In Proc. 44th

Annual Meeting of the Assoc. for Computational Linguistics,

2006, pp. 489–496.

18. Zhang Y. and Vines P. Using the Web for automated translation

extraction in cross-language information retrieval. In Proc. 30th

Annual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 2004, pp. 162–169.

19. Zhang Y., Vines P., and Zobel J. An empirical comparison of

translation disambiguation techniques for Chinese-English

Cross-Language Information Retrieval. In Proc. 3rd Asia Infor-

mation Retrieval Symposium, 2006, pp. 666–672.

20. Zhang Y., Vines P., and Zobel J. Chinese OOV translation

and post-translation query expansion in Chinese-English

528C Cross-language Text Mining
cross-lingual information retrieval. ACM Trans. Asian Lang.

Information Proc., 4(2):57–77, 2005.

21. http://www.fjoch.com/GIZA++.html
Cross-language Text Mining

▶Cross-Language Mining and Retrieval
Cross-language Web Mining

▶Cross-Language Mining and Retrieval
Cross-lingual Information Retrieval

▶Cross-Language Mining and Retrieval
Cross-lingual Text Mining

▶Cross-Language Mining and Retrieval
Cross-media Information Retrieval

▶Cross-Modal Multimedia Information Retrieval
Cross-Modal Multimedia
Information Retrieval

QING LI, YU YANG

City University of Hong Kong, Hong Kong, China

Synonyms
Multi-modal information retrieval; Cross-media infor-

mation retrieval

Definition
Multimedia information retrieval tries to find the dis-

tinctive multimedia documents that satisfy people’s

needs within a huge dataset. Due to the vagueness on

the representation of multimedia data, usually the user
may only have some clues (e.g., a vague idea, a rough

query object of the same or even different modality as

that of the intended result) rather than concrete and

indicative query objects. In such cases, traditional mul-

timedia information retrieval techniques as Query-By-

Example (QBE) fails to retrieve what users really want

since their performance depends on a set of specifically

defined features and carefully chosen query objects.

The cross-modal multimedia information retrieval

(CMIR) framework consists of a novel multifaceted

knowledge base (which is embodied by a layered

graph model) to discover the query results on multiple

modalities. Such cross-modality paradigm leads to

better query understanding and returns the retrieval

result which meets user need better.

Historical Background
Previous works addressing multimedia information

retrieval can be classified into two groups: approaches

on single-modality, and those on multi-modality

integration.

Retrieval Approaches on Single-Modality

The retrieval approach in this group only deals with

a single type of media, so that most content-based

retrieval (CBR) approaches [2,3,5,8,9] fall into this

group. These approaches differ from each other in

either the low-level features extracted from the data,

or the distance functions used for similarity calculation.

Despite the differences, all of them are similar in two

fundamental aspects: (i) they all rely on low-level fea-

tures; (ii) they all use the query-by-example paradigm.

Retrieval Approaches on Multi-Modality Integration

More recently there are some works that investigate the

integration of multi-modality data, usually between

text and image, for better retrieval performance. For

example, iFind [7] proposes a unified framework

under which the semantic feature (text) and low-level

features are combined for image retrieval, whereas

the 2M2Net [12] system extends this framework to

the retrieval of video and audio. WebSEEK [9] extracts

keywords from the surrounding text of image and

videos, which is used as their indexes in the retrieval

process. Although these systems involve more than

one media, different types of media are not actually

integrated but are on different levels. Usually, text is

only used as the annotation (index) of other medias.

In this regard, cross-modal multimedia information

Cross-Modal Multimedia Information Retrieval C 529

C

retrieval (CMIR) enables an extremely high degree of

multi-modality integration, since it allows the interac-

tion among objects of any modality in any possible

ways (via different types of links).

MediaNet [1] andmultimedia thesaurus (MMT) [10]

seek to provide a multimedia representation of semantic

concept – a concept described by various media objects

including text, image, video, etc – and establish

the relationships among these concepts. MediaNet

extends the notion of relationships to include even

perceptual relationships among media objects. Both

approaches can be regarded as ‘‘concept-centric’’

approaches since they realize an organization of

multi-modality objects around semantic concepts. In

contrast, CMIR is ‘‘concept-less’’ since it makes no

attempt to identify explicitly the semantics of each

object.

Foundations
The cross-modality multimedia information retrieval

(CMIR) mechanism shapes a novel scenario for multi-

media retrieval: The user starts the search by supplying

a set of seed objects as the hints of his intention, which

can be of any modality (even different with the

intended objects), and are not necessarily the eligible

results by themselves. From the seeds, the system fig-

ures out the user’s intention and returns a set of cross-

modality objects that potentially satisfy this intention.

The user can give further hints by identifying the

results approximating his need, based on which the

system improve its estimation about the user intention

and refines the results towards it. This scenario can be

also interpreted as a cooperative process: the user tries

to focus the attention of the system to the objects by

giving hints on the intended results, while the system

tries to return more reasonable results that allows user

to give better hints. A comparison between CMIR and

the current CBR approaches is shown in Table 1.
Cross-Modal Multimedia Information Retrieval. Table 1. C

CBR paradigms Drawb

Interaction Highly representative
sample object

Vague idea, or clea
appropriate sampl

Data index Low-level features Inadequate to cap

Results Single-modality,
perceptually similar objects

Looks like or sound
what user actually
To support all the necessary functionalities for such

an ideal scenario, a suite of unique models, algorithms

and strategies are developed in CMIR. As shown in

Fig. 1, the foundation of the whole mechanism is a

multifaceted knowledge base describing the relation-

ships among cross-modality objects. The kernel of the

knowledge base is a layered graph model, which char-

acterizes the knowledge on (i) history of user beha-

viors, (ii) structural relationships among media

objects, and (iii) content of media objects, at each

of its layers. Link structure analysis—an established

technique for web-oriented applications—is tailored

to the retrieval of cross-modality data based on the

layered graph model. A unique relevant feedback tech-

nique that gears with the underlying graph model is

proposed, which can enrich the knowledge base by

updating the links of the graph model according to

user behaviors. The loop in Fig. 1 reveals the hill-

climbing nature of the CMIR mechanism, i.e., it

enhances its performance by learning from the previ-

ously conducted queries and feedbacks.

Layered Graph Model

As the foundation of the retrieval capability, the mul-

tifaceted knowledge base accommodates a broad range

of knowledge indicative of data semantics, mainly in

three aspects: (i) user behaviors in the user-system

interaction, (ii) structural relationships among media

objects, and (iii) content of each media object. The

kernel of the knowledge base is a three-layer graph

model, with each layer describing the knowledge in

one aspect, called knowledge layer. Its formal defini-

tion is given as follows.

Definition 1 A knowledge layer is a undirected graph

G = (V, E), where V is a finite set of vertices and E is a

finite set of edges. Each element in V corresponds to a

media object Oi ∈ O, where O is the collection of media
BR paradigms, drawbacks, and suggested remedies in CMIR

acks Suggested remedies in CMIR

r idea without
es

Cross-modality seed objects, only
as hints

ture semantics Multifaceted knowledge (user
behaviors, structure, content)

s like, but not
needs

Cross-modality, semantically related
objects

530C Cross-Modal Multimedia Information Retrieval
objects in the database. E is a ternary relation defined on

V � V � R, where R represents real numbers. Each edge

in E has the form of <Oi, Oj, r>, denoting a semantic

link between Oi and Oj with r as the weight of the link.

The graph corresponds to a |V| � |V| adjacency matrix

(The adjacency matrix defined here is slightly different

from the conventional definition in mathematics, in

which each component is a binary value indicating the

existence of the corresponding edge.) M = [mij], where
Cross-Modal Multimedia Information Retrieval. Figure 2. T

Cross-Modal Multimedia Information Retrieval.

Figure 1. Overview of the CMIR mechanism.
mij = mji always holds. Each element mij = r if there is an

edge <Oi, Oj, r>, and mij = 0 if there is no edge between

Oi and Oj. The elements on the diagonal are set to zero,

i.e., mii = 0.

Each semantic link between two media objects may

have various interpretations, which corresponds to one

of the three cases: (i) a user has implied the relevance

between the two objects during the interaction, e.g.,

designating them as the positive example in the same

query session; (ii) there is a structural relationships

between them, e.g., they come from the same or linked

web page(s); or (iii) they resemble each other in terms

of their content. The multifaceted knowledge base

seamlessly integrates all these links into the same

model while preserving their mutual independence.

Definition 2 The multifaceted knowledge base is a

layered graph model consisting of three superimposed

knowledge layers, which from top to bottom are user

layer, structure layer, and content layer. The vertices

of the three layers correspond to the same set of media

objects, but their edges are different either in occurrences

or in interpretations.

Figure 2 illustrates the layered graph model. Note

that the ordering of the three layers is immutable,

which reflects their priorities in terms of knowledge

reliability. The user layer is placed uppermost since

user judgment is assumedmost reliable (not necessarily

always reliable). Structure links is a strong indicator of

relevance, but not as reliable as user links. The lowest

layer is the content layer. As a generally accepted fact in
he Layered graph model as multifaceted knowledge base.

Cross-Modal Multimedia Information Retrieval C 531

C

CBR area, content similarity does not entail any well-

defined mapping with semantics.

A unique property of the layered graph model is

that it stores the knowledge on the links (or relation-

ships) among media objects, rather than on the

nodes (media objects) upon which most existing re-

trieval systems store the data index. All the algorithms

based of this model can be interpreted as manipulation

of links: to serve the user query, relevant knowledge is

extracted from this graph model by analyzing the

link structure; meanwhile, user behaviors are studied

to enrich the knowledge by updating the links. An

advantage of such link-based approach is that the re-

trieval can be performed in a relatively small locality

connected via links instead of the whole database, and

therefore it can afford more sophisticated retrieval

algorithms.

Link Analysis Based Retrieval

As illustrated in Fig. 3, the retrieval process can be

described as a circle: the intended objects are retrieved

through the upper semicircle, and the user evaluations

are studied and incorporated into the knowledge

base though the lower half-circle, which initiates a

new circle to refine the previously retrieved results

based on the updated knowledge. Consequently, it is

a hill-climbing approach in that the performance

is enhanced incrementally as the loop is repeated.

The retrieval process consists of five steps (as shown

in Fig. 3): (i) generate the seed objects as the hints of
Cross-Modal Multimedia Information Retrieval. Figure 3. O
the user’s intention; (ii) span the seeds to a collection

of candidate objects via the links in the layered graph

model; (iii) distill the results by ranking the candidates

based on link structure analysis, (iv) update the knowl-

edge base to incorporate the user evaluation of the

current results, and (v) refine the results based on

user evaluations.

Key Applications

Multimedia Information Retrieval System

For multimedia data, the modalities supported can be

texts (surrounding or tagged), images, videos and

audios. An ongoing prototype [11] utilizes the primitive

features and similarity functions for these media shown

in Table 2. The experimental results prove the useful-

ness of the approach for better query understanding.

Future Directions
Due to the generality and extensibility of the CMIR,

there are many potential directions that can be imple-

mented on it:

Navigation. The graph model provides abundant

links through which the user can traverse from an

object to its related objects. An intuitive scenario for

navigation is when the user is looking at a certain

object, he is recommended with the objects that are

linked to it in the graph model, ranked by their link

weights and link types, from which he may select one

as the next object he will navigate to.
verview of the link analysis based retrieval algorithm.

Cross-Modal Multimedia Information Retrieval. Table 2. Primitive features and similarity function used in prototype

Text Image Video

Primitive
features

Keywords,
weighted by
TF*IDF

256-d HSV color histogram, 64-d LAB
color coherence, 32-d Tamura
directionality

First frame of each shot as key-frame, indexing
key-frame as an image

Similarity
function

Cosine
distance

Euclidean distance for each feature,
linear combination of different
similarities

Key-frame (image) similarity as shot similarity,
average pair-wise shot similarity as video
similarity

532C Cross-Validation
Clustering. Clustering cross-modality objects into

semantically meaningful groups is also an important

and challenging issue, which requires an underlying

similarity function among objects, along with a method

that produces clusters based on the similarity function.

The layered graph model provides knowledgeable and

rich links, based on which different similarity func-

tions can be easily formulated. Meanwhile, many exist-

ing approaches can be employed as the clustering

method, such as simulated and deterministic annealing

algorithm [4]. Moreover, CMIR inherently allows the

clustering of cross-modality objects, rather than single-

modality objects that most previous classification

approaches can deal with.

Personalized retrieval. The user layer of the graph

model characterizes the knowledge obtained from the

behaviors of the whole population of users, and allows

a query from a single user to benefit from such com-

mon knowledge. However, each user may have his/her

personal interests, which may not agree with each

other. The ‘‘multi-leveled user profile’’ mechanism [6]

leads a good direction for future study.

Cross-references
▶Multimedia Data

▶Multimedia Information Retrieval

Recommended Reading
1. Benitez A.B., Smith J.R., and Chang S.F. MediaNet: a multimedia

information network for knowledge representation. In Proc.

SPIE Conf. on Internet Multimedia Management Systems, vol.

4210, 2000, pp. 1–12.

2. Chang S.F., Chen W., Meng H.J., Sundaram H., and Zhong D.

VideoQ: an automated content based video search system using

visual cues. In Proc. 5th ACM Int. Conf. on Multimedia, 1997.

3. Flickner M., Sawhney H., Niblack W., and Ashley J. Query by

image and video content: the QBIC system. IEEE Comput.,

28(9):23–32, 1995.

4. Hofmann T. and Buhmann J.M. Pairwise data clustering by

deterministic annealing. IEEE Trans. Pattern Anal. Mach. Intell.,

19(1):1–14, 1997.
5. Huang T.S., Mehrotra S., and Ramchandran K. Multimedia

analysis and retrieval system (MARS) project. In Proc. 33rd An-

nual Clinic on Library Application of Data Processing-Digital

Image Access and Retrieval, 1996.

6. Li Q., Yang J., and Zhuang Y.T. Web-based multimedia retrieval:

balancing out between common knowledge and personalized

views. In Proc. 2nd Int. Conf. on Web Information Systems

Eng., 2001.

7. Lu Y., Hu C.H., Zhu X.Q., Zhang H.J., and Yang Q. A unified

framework for semantics and feature based relevance feedback

in image retrieval systems. In Proc. 8th ACM Int. Conf. on

Multimedia, 2000, pp. 31–38.

8. Smith J.R. and Chang S.F. VisualSEEk: a fully automated

content-based image query system. In Proc. 4th ACM Int.

Conf. on Multimedia, 1996.

9. Smith J.R. and Chang S.F. Visually searching the web for content.

IEEE Multimed. Mag., 4(3):12–20, 1997.

10. Tansley R. The Multimedia Thesaurus: An Aid for Multimedia

Information Retrieval and Navigation. Master Thesis, Computer

Science, University of Southampton, UK, 1998.

11. Yang J., Li Q., and Zhuang Y. Octopus: Aggressive search of

multi-modality data using multifaceted knowledge base. In

Proc. 11th Int. World Wide Web Conference, 2002, pp. 54–64.

12. Yang J., Zhuang Y.T., and Li Q. Search for multi-modality data in

digital libraries. In Proc. Second IEEE Pacific-Rim Conference

on Multimedia, 2001.
Cross-Validation

PAYAM REFAEILZADEH, LEI TANG, HUAN LIU

Arizona State University, Tempe, AZ, USA

Synonyms
Rotation estimation

Definition
Cross-Validation is a statistical method of evaluating and

comparing learning algorithms by dividing data into two

segments: one used to learn or train amodel and the other

used to validate themodel. In typical cross-validation, the

training and validation sets must cross-over in successive

Cross-Validation C 533

C

rounds such that each data point has a chance of being

validated against. The basic form of cross-validation is

k-fold cross-validation. Other forms of cross-validation

are special cases of k-fold cross-validation or involve

repeated rounds of k-fold cross-validation.

In k-fold cross-validation, the data is first parti-

tioned into k equally (or nearly equally) sized segments

or folds. Subsequently k iterations of training and vali-

dation are performed such that within each iteration a

different fold of the data is held-out for validation

while the remaining k � 1 folds are used for learning.

Fig. 1 demonstrates an example with k = 3. The darker

section of the data are used for training while the

lighter sections are used for validation. In data mining

and machine learning 10-fold cross-validation (k = 10)

is the most common.

Cross-validation is used to evaluate or compare

learning algorithms as follows: in each iteration, one or

more learning algorithms use k� 1 folds of data to learn

one or more models, and subsequently the learned

models are asked to make predictions about the data

in the validation fold. The performance of each learning

algorithm on each fold can be tracked using some pre-

determined performance metric like accuracy. Upon

completion, k samples of the performance metric will

be available for each algorithm. Different methodolo-

gies such as averaging can be used to obtain an aggre-

gate measure from these sample, or these samples can

be used in a statistical hypothesis test to show that

one algorithm is superior to another.

Historical Background
In statistics or data mining, a typical task is to learn a

model from available data. Such a model may be a
Cross-Validation. Figure 1. Procedure of three-fold cross-va
regression model or a classifier. The problem with eval-

uating such amodel is that it may demonstrate adequate

prediction capability on the training data, but might

fail to predict future unseen data. cross-validation is a

procedure for estimating the generalization performance

in this context. The idea for cross-validation originated

in the 1930s [6]. In the paper one sample is used for

regression and a second for prediction. Mosteller and

Tukey [9], and various other people further developed

the idea. A clear statement of cross-validation, which is

similar to current version of k-fold cross-validation,

first appeared in [8]. In 1970s, both Stone [12] and

Geisser [4] employed cross-validation as means for

choosing proper model parameters, as opposed to

using cross-validation purely for estimating model per-

formance. Currently, cross-validation is widely accepted

in data mining and machine learning community, and

serves as a standard procedure for performance estima-

tion and model selection.

Foundations
There are two possible goals in cross-validation:

� To estimate performance of the learned model from

available data using one algorithm. In other words,

to gauge the generalizability of an algorithm.

� To compare the performance of two or more dif-

ferent algorithms and find out the best algorithm

for the available data, or alternatively to compare

the performance of two or more variants of a para-

meterized model.

The above two goals are highly related, since the sec-

ond goal is automatically achieved if one knows the

accurate estimates of performance. Given a sample
lidation.

534C Cross-Validation
of N data instances and a learning algorithm A, the

average cross-validated accuracy of A on these N

instances may be taken as an estimate for the accuracy

of A on unseen data when A is trained on all N

instances. Alternatively if the end goal is to compare

two learning algorithms, the performance samples

obtained through cross-validation can be used to per-

form two-sample statistical hypothesis tests, compar-

ing a pair of learning algorithms.

Concerning these two goals, various procedures are

proposed:

Resubstitution Validation

In resubstitution validation, the model is learned from

all the available data and then tested on the same set of

data. This validation process uses all the available data

but suffers seriously from over-fitting. That is, the

algorithm might perform well on the available data

yet poorly on future unseen test data.

Hold-Out Validation

To avoid over-fitting, an independent test set is pre-

ferred. A natural approach is to split the available data

into two non-overlapped parts: one for training and

the other for testing. The test data is held out and not

looked at during training. Hold-out validation avoids

the overlap between training data and test data, yield-

ing a more accurate estimate for the generalization

performance of the algorithm. The downside is that

this procedure does not use all the available data and

the results are highly dependent on the choice for the

training/test split. The instances chosen for inclusion

in the test set may be too easy or too difficult to classify

and this can skew the results. Furthermore, the data in

the test set may be valuable for training and if it is held-

out prediction performance may suffer, again leading

to skewed results. These problems can be partially

addressed by repeating hold-out validation multiple

times and averaging the results, but unless this repeti-

tion is performed in a systematic manner, some data

may be included in the test set multiple times while

others are not included at all, or conversely some data

may always fall in the test set and never get a chance to

contribute to the learning phase. To deal with these

challenges and utilize the available data to the max,

k-fold cross-validation is used.

K-Fold Cross-Validation

In k-fold cross-validation the data is first partitioned

into k equally (or nearly equally) sized segments or
folds. Subsequently k iterations of training and valida-

tion are performed such that within each iteration a

different fold of the data is held-out for validation

while the remaining k � 1 folds are used for learning.

Data is commonly stratified prior to being split into k

folds. Stratification is the process of rearranging the

data as to ensure each fold is a good representative of

the whole. For example in a binary classification prob-

lem where each class comprises 50% of the data, it is

best to arrange the data such that in every fold, each

class comprises around half the instances.

Leave-One-Out Cross-Validation

Leave-one-out cross-validation (LOOCV) is a special

case of k-fold cross-validation where k equals the

number of instances in the data. In other words in

each iteration nearly all the data except for a single

observation are used for training and the model is

tested on that single observation. An accuracy estimate

obtained using LOOCV is known to be almost unbi-

ased but it has high variance, leading to unreliable

estimates [3]. It is still widely used when the available

data are very rare, especially in bioinformatics where

only dozens of data samples are available.

Repeated K-Fold Cross-Validation

To obtain reliable performance estimation or compar-

ison, large number of estimates are always preferred. In

k-fold cross-validation, only k estimates are obtained.

A commonly used method to increase the number of

estimates is to run k-fold cross-validation multiple

times. The data is reshuffled and re-stratified before

each round.

Pros and Cons

Kohavi [5] compared several approaches to estimate

accuracy: cross-validation(including regular cross-

validation, leave-one-out cross-validation, stratified

cross-validation) and bootstrap (sample with replace-

ment), and recommended stratified 10-fold cross-

validation as the best model selection method, as

it tends to provide less biased estimation of the

accuracy.

Salzberg [11] studies the issue of comparing two

or more learning algorithms based on a performance

metric, and proposes using k-fold cross-validation

followed by appropriate hypothesis test rather than

directly comparing the average accuracy. Paired t-test is

one test which takes into consideration the variance of

training and test data, and is widely used in machine

Cross-Validation. Table 1. Pros and Cons of different

validation methods

Validation
method Pros Cons

Resubstitution
Validation

Simple Over-fitting

Hold-out
Validation

Independent
training and
test

Reduced data for
training and testing;
Large variance

k-fold cross
validation

Accurate
performance
estimation

Small samples of
performance
estimation;
Overlapped training
data; Elevated Type I
error for comparison;
Underestimated
performance variance
or overestimated
degree of freedom for
comparison

Leave-One-Out
cross-validation

Unbiased
performance
estimation

Very large variance

Repeated
k-fold
cross-validation

Large number
of performance
estimates

Overlapped training
and test data
between each round;
Underestimated
performance variance
or overestimated
degree of freedom for
comparison

Cross-Validation C 535

C

learning. Dietterich [2] studied the properties of 10-fold

cross-validation followed by a paired t-test in detail

and found that such a test suffers from higher than

expected type I error. In this study, this high type I

error was attributed to high variance. To correct for

this Dietterich proposed a new test: 5 � 2-fold cross-

validation. In this test 2-fold cross-validation is run

five times resulting in 10 accuracy values. The data

is re-shuffled and re-stratified after each round. All 10

values are used for average accuracy estimation in the

t-test but only values from one of the five 2-fold cross-

validation rounds is used to estimate variance. In this

study 5 � 2-fold cross-validation is shown to have

acceptable type I error but not to be as powerful as

10-fold cross validation and has not been widely accep-

ted in data mining community.

Bouckaert [1] also studies the problem of inflated

type-I error with 10-fold cross-validation and argues

that since the samples are dependent (because the

training sets overlap), the actual degrees of freedom is

much lower than theoretically expected. This study

compared a large number of hypothesis schemes, and

recommend 10 � 10 fold cross-validation to obtain

100 samples, followed with t-test with degree of free-

dom equal to 10 (instead of 99). However this method

has not been widely adopted in data mining field either

and 10-fold cross-validation remains the most widely

used validation procedure.

A brief summery of the above results is presented

in Table 1.

Why 10-Fold Cross-Validation: From Ideal to Reality

Whether estimating the performance of a learning

algorithm or comparing two or more algorithms in

terms of their ability to learn, an ideal or statistically

sound experimental design must provide a sufficiently

large number of independent measurements of the

algorithm(s) performance.

To make independent measurements of an algo-

rithm’s performance one must ensure that the factors

affecting the measurement are independent from one

run to the next. These factors are: (i) the training

data the algorithm learns from and, (ii) the test data

one uses to measure the algorithm’s performance. If

some data is used for testing in more than one round,

the obtained results, for example the accuracy mea-

surements from these two rounds, will be dependent

and a statistical comparison may not be valid. In fact, it

has been shown that a paired t-test based on taking

several random train/test splits tends to have an
extremely high probability of Type I error and should

never be used [2].

Not only must the datasets be independently con-

trolled across different runs, there must not be any

overlap between the data used for learning and the

data used for validation in the same run. Typically,

a learning algorithm can make more accurate predic-

tions on a data that it has seen during the learning

phase than those it has not. For this reason, an overlap

between the training and validation set can lead to

an over-estimation of the performance metric and is

forbidden. To satisfy the other requirement, namely

a sufficiently large sample, most statisticians call for

30+ samples.

For a truly sound experimental design, one would

have to split the available data into 30 � 2 = 60

partitions to perform 30 truly independent train-test

runs. However, this is not practical because the perfor-

mance of learning algorithms and their ranking is

generally not invariant with respect to the number of

536C Cross-Validation
samples available for learning. In other words, an esti-

mate of accuracy in such a case would correspond to

the accuracy of the learning algorithm when it learns

from just 1∕60 of the available data (assuming training

and validation sets are of the same size). However, the

accuracy of the learning algorithm on unseen data

when the algorithm is trained on all the currently

available data is likely much higher since learning

algorithms generally improve in accuracy as more

data becomes available for learning. Similarly, when

comparing two algorithms A and B, even if A is dis-

covered to be the superior algorithm when using 1∕60
of the available data, there is no guarantee that it

will also be the superior algorithm when using all the

available data for learning. Many high performing

learning algorithms use complex models with many

parameters and they simply will not perform well with

a very small amount of data. But theymay be exceptional

when sufficient data is available to learn from.

Recall that two factors affect the performance mea-

sure: the training set, and the test set. The training set

affects themeasurement indirectly through the learning

algorithm, whereas the composition of the test set has a

direct impact on the performance measure. A reason-

able experimental compromise may be to allow for

overlapping training sets, while keeping the test sets

independent. K-fold cross-validation does just that.

Now the issue becomes selecting an appropriate

value for k. A large k is seemingly desirable, since

with a larger k (i) there are more performance esti-

mates, and (ii) the training set size is closer to the full

data size, thus increasing the possibility that any con-

clusion made about the learning algorithm(s) under

test will generalize to the case where all the data is used

to train the learning model. As k increases, however,

the overlap between training sets also increases. For

example, with 5-fold cross-validation, each training

set shares only 3∕4 of its instances with each of the

other four training sets whereas with 10-fold cross-

validation, each training set shares 8 ∕ 9 of its instances

with each of the other nine training sets. Furthermore,

increasing k shrinks the size of the test set, leading

to less precise, less fine-grained measurements of the

performance metric. For example, with a test set size of

10 instances, one can only measure accuracy to the

nearest 10%, whereas with 20 instances the accuracy

can be measured to the nearest 5%. These competing

factors have all been considered and the general con-

sensus in the data mining community seems to be
that k = 10 is a good compromise. This value of k is

particularity attractive because it makes predictions

using 90% of the data, making it more likely to be

generalizable to the full data.

Key Applications
Cross-validation can be applied in three contexts:

performance estimation, model selection, and tuning

learning model parameters.

Performance Estimation

As previously mentioned, cross-validation can be used

to estimate the performance of a learning algorithm.

One may be interested in obtaining an estimate for any

of the many performance indicators such as accuracy,

precision, recall, or F-score. Cross-validation allows for

all the data to be used in obtaining an estimate. Most

commonly one wishes to estimate the accuracy of a

classifier in a supervised-learning environment. In

such a setting, a certain amount of labeled data is

available and one wishes to predict how well a certain

classifier would perform if the available data is used to

train the classifier and subsequently ask it to label

unseen data. Using 10-fold cross-validation one re-

peatedly uses 90% of the data to build a model and

test its accuracy on the remaining 10%. The resulting

average accuracy is likely somewhat of an underesti-

mate for the true accuracy when the model is trained

on all data and tested on unseen data, but in most cases

this estimate is reliable, particularly if the amount of

labeled data is sufficiently large and if the unseen data

follows the same distribution as the labeled examples.

Model Selection

Alternatively cross-validation may be used to compare

a pair of learning algorithms. This may be done in the

case of newly developed learning algorithms, in which

case the designer may wish to compare the perfor-

mance of the classifier with some existing baseline

classifier on some benchmark dataset, or it may be

done in a generalized model-selection setting. In

generalized model selection one has a large library of

learning algorithms or classifiers to choose from and

wish to select the model that will perform best for a

particular dataset. In either case the basic unit of work

is pair-wise comparison of learning algorithms. For

generalized model selection combining the results of

many pair-wise comparisons to obtain a single best

algorithm may be difficult, but this is beyond the

Cross-Validation C 537

C

scope of this article. Researchers have shown that when

comparing a pair of algorithms using cross-

validation it is best to employ proper two sample

hypothesis testing instead of directly comparing the

average accuracies. Cross-validation yields k pairs of

accuracy values for the two algorithms under test. It is

possible to make a null hypothesis assumption that

the two algorithms perform equally well and set out

to gather evidence against this null-hypothesis using

a two-sample test. The most widely used test is the

paired t-test. Alternatively the non-parametric sign

test can be used.

A special case of model selection comes into play

when dealing with non-classification model selection.

For example when trying to pick a feature selection [7]

algorithm that will maximize a classifier’s performance

on a particular dataset. Refaeilzadeh et al. [10] explore

this issue in detail and explain that there are in fact two

variants of cross-validation in this case: performing

feature selection before splitting data into folds

(OUT) or performing feature selection k times inside

the cross-validation loop (IN). The paper explains that

there is potential for bias in both cases: With OUT, the

feature selection algorithm has looked at the test set, so

the accuracy estimate is likely inflated; On the other

hand with IN the feature selection algorithm is looking

at less data than would be available in a real experi-

mental setting, leading to underestimated accuracy.

Experimental results confirm these hypothesis and

further show that:

� In cases where the two feature selection algorithms

are not statistically differentiable, IN tends to be

more truthful.

� In cases where one algorithm is better than another,

IN often favors one algorithm and OUT the other.

OUT can in fact be the better choice even if it demon-

strates a larger bias than IN in estimating accuracy. In

other words, estimation bias is not necessarily an indi-

cation of poor pair-wise comparison. These subtleties

about the potential for bias and validity of conclusions

obtained through cross-validation should always be

kept in mind, particularly when the model selection

task is a complicated one involving pre-processing as

well as learning steps.

Tuning

Many classifiers are parameterized and their para-

meters can be tuned to achieve the best result with a
particular dataset. In most cases it is easy to learn the

proper value for a parameter from the available data.

Suppose a Naı̈ve Bayes classifier is being trained on a

dataset with two classes: {+, –}. One of the parameters

for this classifier is the prior probability p(+). The best

value for this parameter according to the available data

can be obtained by simply counting the number of

instances that are labeled positive and dividing this

number by the total number of instances. However

in some cases parameters do not have such intrinsic

meaning, and there is no good way to pick a best value

other than trying out many values and picking the one

that yields the highest performance. For example, sup-

port vector machines (SVM) use soft-margins to deal

with noisy data. There is no easy way of learning the best

value for the soft margin parameter for a particular

dataset other than trying it out and seeing how it

works. In such cases, cross-validation can be performed

on the training data as to measure the performance with

each value being tested. Alternatively a portion of the

training set can be reserved for this purpose and not used

in the rest of the learning process. But if the amount of

labeled data is limited, this can significantly degrade the

performance of the learned model and cross-validation

may be the best option.
Cross-references
▶Classification

▶ Evaluation Metrics for Structured Text Retrieval

▶ Feature Selection for Clustering
Recommended Reading
1. Bouckaert R.R. Choosing between two learning algorithms

based on calibrated tests. In Proc. 20th Int. Conf. on Machine

Learning, 2003, pp. 51–58.

2. Dietterich T.G. Approximate statistical tests for comparing

supervised classification learning algorithms. Neural Comput.,

10(7):1895–1923, 1998.

3. Efron B. Estimating the error rate of a prediction rule:

improvement on cross-validation. J. Am. Stat. Assoc., 78:

316–331,1983.

4. Geisser S. The predictive sample reuse method with applications.

J. Am. Stat. Assoc., 70(350):320–328,1975.

5. Kohavi R. A study of cross-validation and bootstrap for accuracy

estimation and model selection. In Proc. 14th Int. Joint Conf. on

AI, 1995, pp. 1137–1145.

6. Larson S. The shrinkage of the coefficient of multiple correla-

tion. J. Educat. Psychol., 22:45–55, 1931.

7. Liu H. and Yu L. Toward integrating feature selection algo-

rithms for classification and clustering. IEEE Trans. Knowl.

Data Eng., 17(4):491–502, 2005.

538C Cryptographic Hash Functions
8. Mosteller F. and Tukey J.W. Data analysis, including statistics. In

Handbook of Social Psychology. Addison-Wesley, Reading, MA,

1968.

9. Mosteller F. and Wallace D.L. Inference in an authorship

problem. J. Am. Stat. Assoc., 58:275–309, 1963.

10. Refaeilzadeh P., Tang L., and Liu H. On comparison of

feature selection algorithms. In Proc. AAAI-07 Workshop on

Evaluation Methods in Machine Learing II. 2007, pp. 34–39.

11. Salzberg S. On comparing classifiers: pitfalls to avoid and a recom-

mended approach. Data Min. Knowl. Disc., 1(3):317–328, 1997.

12. Stone M. Cross-validatory choice and assessment of statistical

predictions. J. Royal Stat. Soc., 36(2):111–147, 1974.
Cryptographic Hash Functions

▶Hash Functions
C-Tables

▶Conditional Tables
Cube

TORBEN BACH PEDERSEN

Aalborg University, Aalborg, Denmark

Synonyms
Hypercube

Definition
A cube is a data structure for storing and and analyzing

large amounts of multidimensional data, often referred

to as On-Line Analytical Processing (OLAP). Data in a

cube lives in a space spanned by a number of hierar-

chical dimensions. A single point in this space is called a

cell. A (non-empty) cell contains the values of one or

more measures.

Key Points
As an example, a three-dimensional cube for capturing

salesmay have a Product dimension P, a Time dimension

T, and a Store dimension S, capturing the product sold,

the time of sale, and the store it was sold in, for each

sale, respectively. The cube has two measures: Dollar

Sales and ItemSales, capturing the sales price and the

number of items sold, respectively. In a cube, the
combinations of a dimension value from each dimen-

sion define a cell of the cube. The measure value(s),

e.g., DollarSales and ItemSales, corresponding to the

particular combination of dimension values are then

stored stored in the corresponding cells.

Data cubes provide true multidimensionality. They

generalize spreadsheets to any number of dimensions,

indeed cubes are popularly referred to as ‘‘spreadsheets

on stereoids.’’ In addition, hierarchies in dimensions

and formulas are first-class, built-in concepts, meaning

that these are supported without duplicating their

definitions. A collection of related cubes is commonly

referred to as a multidimensional database or a multi-

dimensional data warehouse.

In a cube, dimensions are first-class concepts with

associated domains, meaning that the addition of new

dimension values is easily handled. Although the term

‘‘cube’’ implies three dimensions, a cube can have any

number of dimensions. It turns out thatmost real-world

cubes have 4–12 dimensions [3]. Although there is no

theoretical limit to the number of dimensions, current

tools often experience performance problems when

the number of dimensions is more than 10–15. To

better suggest the high number of dimensions, the

term ‘‘hypercube’’ is often used instead of ‘‘cube.’’

Depending on the specific application, a highly vary-

ing percentage of the cells in a cube are non-empty,

meaning that cubes range from sparse to dense. Cubes

tend to become increasingly sparse with increasing

dimensionality and with increasingly finer granularities

of the dimensionvalues. A non-empty cell is called a fact.

The example has a fact for each combination of time,

product, and store where at least one sale was made.

Generally, only two or three dimensions may be

viewed at the same time, although for low-cardinality

dimensions, up to four dimensions can be shown by

nesting one dimension within another on the axes.

Thus, the dimensionality of a cube is reduced at

query time by projecting it down to two or three

dimensions via aggregation of the measure values

across the projected-out dimensions. For example, to

view sales by Store and Time, data is aggregates over

the entire Product dimension, i.e., for all products, for

each combination of Store and Time.

OLAP SQL extensions for cubes were pioneered by

the proposal of the data cube operators CUBE and

ROLLUP [1]. The CUBE operator generalizes GROUP

BY, crosstabs, and subtotals using the special ‘‘ALL’’ value

that denotes that an aggregation has been performed

Cube Implementations C 539

C

over all values for one ormore attributes, thus generating

a subtotal, or a grand total.

Cross-references
▶Cube Implementations

▶Dimension

▶Hierarchy

▶Measure

▶Multidimensional Modeling

▶On-Line Analytical Processing

Recommended Reading
1. Gray J., Chaudhuri S., Bosworth A., Layman A., Venkatrao M.,

Reichart D., Pellow F., and Pirahesh H. Data cube: a relational

aggregation operator generalizing group-by, cross-tab and

sub-totals. Data Mining Knowl. Discov., 1(1):29–54, 1997.

2. Pedersen T.B., Jensen C.S., and Dyreson C.E. A foundation

for capturing and querying complex multidimensional data.

Inf. Syst., 26(5):383–423, 2001.

3. Thomsen E. OLAP Solutions: Building Multidimensional

Information Systems. Wiley, New York, 1997.
Cube Implementations

KONSTANTINOS MORFONIOS, YANNIS IOANNIDIS

University of Athens, Athens, Greece

Synonyms
Cube materialization; Cube precomputation

Definition
Cube implementation involves the procedures of com-

putation, storage, and manipulation of a data cube,

which is a disk structure that stores the results of the

aggregate queries that group the tuples of a fact table on

all possible combinations of its dimension attributes.

For example in Fig. 1a, assuming that R is a fact table

that consists of three dimensions (A, B, C) and one

measure M (see definitional entry for Measure), the

corresponding cube of R appears in Fig. 1b. Each cube

node (i.e., view that belongs to the data cube) stores

the results of a particular aggregate query as shown in

Fig. 1b. Clearly, if D denotes the number of dimensions

of a fact table, the number of all possible aggregate

queries is 2D; hence, in the worst case, the size of the

data cube is exponentially larger with respect to D than

the size of the original fact table. In typical applica-

tions, this may be in the order of gigabytes or even

terabytes, implying that the development of efficient
algorithms for the implementation of cubes is ex-

tremely important.

Let grouping attributes be the attributes of the fact

table that participate in the group-by clause of an

aggregate query expressed in SQL. A common repre-

sentation of the data cube that captures the computa-

tional dependencies among all the aggregate queries

that are necessary for its materialization is the cube

lattice [6]. This is a directed acyclic graph (DAG) where

each node represents an aggregate query q on the fact

table and is connected via a directed edge with every

other node whose corresponding group-by part is

missing one of the grouping attributes of q. For exam-

ple, Fig. 2 shows the cube lattice that corresponds to

the fact table R (Fig. 1a).

Note that precomputing and materializing parts of

the cube is crucial for the improvement of query-

response times as well as for accelerating operators

that are common in On-Line Analytical Processing

(OLAP), such as drill-down, roll-up, pivot, and slice-

and-dice, which make an extensive use of aggregation

[3]. Materialization of the entire cube seems ideal for

efficiently accessing aggregated data; nevertheless, in

real-world applications, which typically involve large

volumes of data, it may be considerably expensive in

terms of storage space, as well as computation and

maintenance time. In the existing literature, several

efficient methods have been proposed that attempt to

balance the aforementioned tradeoff between query-re-

sponse times and other resource requirements. Their

brief presentation is the main topic of this entry.

Historical Background
Most data analysis efforts, whether manual by analysts

or automatic by specialized algorithms, manipulate the

contents of database systems in order to discover

trends and correlations. They typically involve com-

plex queries that make an extensive use of aggregation

in order to group together tuples that ‘‘behave in a

similar fashion.’’ The response time of such queries

over extremely large data warehouses can be prohibi-

tive. This problem inspired Gray et al. [3] to introduce

the data-cube operator and propose its off-line com-

putation and storage for efficiency at query time. The

corresponding seminal publication has been the seed

for a plethora of papers thereafter, which have dealt

with several different aspects of the lifecycle of a data

cube, from cube construction and storage to indexing,

query answering, and incremental maintenance.

Cube Implementations. Figure 2. Example of a cube

lattice.

Cube Implementations. Figure 1. Fact table R and the corresponding data cube.

540C Cube Implementations
Taking into account the format used for the

computation and storage of a data cube, the

cube-implementation algorithms that have appeared

in the literature can be partitioned into four main

categories: Relational-OLAP (ROLAP) algorithms

exploit traditional materialized views in RDBMSes;

Multidimensional-OLAP (MOLAP) algorithms take

advantage of multidimensional arrays; Graph-Based

methods use specialized graph structures; finally,
approximation algorithms use various in-memory

representations, e.g., histograms.

The literature also deals with the rest of the cubes

lifecycle [12]. Providing fast answers to OLAP aggre-

gate queries is the main purpose of implementing data

cubes to begin with, and various algorithms have been

proposed to handle different types of queries on the

formats above. Moreover, as data stored in the original

fact table changes, data cubes must follow suit; other-

wise, analysis of obsolete data may result into invalid

conclusions. Periodical reconstruction of the entire

cube is impractical, hence, incremental-maintenance

techniques have been proposed.

The ideal implementation of a data cube must

address efficiently all aspects of cube functionality in

order to be viable. In the following section, each one of

these aspects is further examined separately.

Foundations
In the following subsections, the main stages of

the cube lifecycle are analyzed in some detail, including

subcube selection, computation, query processing,

and incremental maintenance. Note that the referen-

ces given in this section are only indicative, since

the number of related publications is actually very

Cube Implementations C 541

C

large. A more comprehensive survey may be found

elsewhere [11].

Subcube Selection

In real-world applications, materialization of the entire

cube is often extremely expensive in terms of compu-

tation, storage, and maintenance requirements, mainly

because of the typically large fact-table size and the

exponential number of cube nodes with respect to the

number of dimensions. To overcome this drawback,

several existing algorithms select an appropriate sub-

set of the data cube for precomputation and storage

[4,5,6]. Such selection algorithms try to balance the

tradeoff between response times of queries (sometimes

of a particular, expectedworkload) and resource require-

ments for cube construction, storage, and maintenance.

It has been shown [6] that selection of the optimum

subset of a cube is an NP-complete problem. Hence, the

existing algorithms use heuristics in order to find near-

optimal solutions.

Common constraints used during the selection

process involve constraints on the time available for

cube construction and maintenance, and/or on the

space available for cube storage. As for the criteria

that are (approximately) optimized during selection,

they typically involve some form of the benefit gained

from the materialization of a particular cube subset.

A particularly beneficial criterion for the selection

problem that needs some more attention, since it has

been integrated in some of the most efficient cube-

implementation algorithms (including Dwarf [17] and

CURE [10], which will be briefly presented below) is the

so-called redundancy reduction. Several groups of

researchers have observed that a big part of the cube

data is usually redundant [7,8,10,12,17,20]. Formally, a

value stored in a cube is redundant if it is repeated

multiple times in the same attribute in the cube. For

example, in Fig. 1b, tuples h1, 20i of node A, h1, 2, 20i
of AB, and h1, 2, 20i of AC are redundant, since they can

be produced by properly projecting tuple h1, 2, 2, 20i of
node ABC. By appropriately avoiding the storage of

such redundant data, several existing cube-implementa-

tion algorithms achieve the construction of compressed

cubes that can still be considered as fully materialized.

Typically, the decrease in the final cube size is impres-

sive, a fact that benefits the performance of computation

as well, since output costs are considerably reduced

and sometimes, because early identification of
redundancy allows pruning of parts of the computation.

Furthermore, during query answering, aggregation and

decompression are not necessary; instead, some simple

operations, e.g., projections, are enough.

Finally, for some applications (e.g., for mining

multidimensional association rules), accessing the

tuples of the entire cube is not necessary, because

they only need those group-by tuples with an aggregate

value (e.g. count) above some prespecified minimum

support threshold (minsup). For such cases, the

concept of iceberg cubes has been introduced [2].

Iceberg-cube construction algorithms [2,16] take

into consideration only sets of tuples that aggregate

together giving a value greater than minsup. Hence,

they perform some kind of subcube selection, by stor-

ing only the tuples that satisfy the aforementioned

condition.

Cube Computation

Cube computation includes scanning the data of the

fact table, aggregating on all grouping attributes, and

generating the contents of the data cube. The main

goal of this procedure is to place tuples that aggregate

together (i.e., tuples with identical grouping-attribute

values) in contiguous positions in main memory, in

order to compute the required aggregations with as few

data passes as possible. The most widely used algo-

rithms that accomplish such clustering of tuples are

sorting and hashing. Moreover, nodes connected in the

cube lattice (Fig. 2) exhibit strong computational

dependencies, whose exploitation is particularly bene-

ficial for the performance of the corresponding com-

putation algorithms. For instance, assuming that the

data in the fact table R (Fig. 1a) is sorted according to

the attribute combination ABC, one can infer that it is

also sorted according to both AB and A as well. Hence,

the overhead of sorting can be shared by the computa-

tion of multiple aggregations, since nodes ABC !AB

!A !Ø can be computed with the use of pipelining

without reclustering the data. Five methods that take

advantage of such node computational dependencies

have been presented in the existing literature [1] in

order to improve the performance of computation

algorithms: smallest-parent, cache-results, amortize-

scans, share-shorts, and share-partitions.

Expectedly, both sort-based and hash-based aggre-

gation methods perform more efficiently when the

data they process fits in main memory; otherwise,

542C Cube Implementations
they are forced to use external-memory algorithms,

which generally increase the I/O overhead by a factor

of two or three. In order to overcome such problems,

most computation methods initially apply a step that

partitions data into segments that fit in main memory,

called partitions [2,10,15]. Partitioning algorithms dis-

tribute the tuples of the fact table in accordance with

the principle that tuples that aggregate together must

be placed in the same partition. Consequently, they can

later process each partition independently of the

others, since by construction, tuples that belong to

different partitions do not share the same grouping-

attribute values.

In addition to the above, general characteristics of

cube-computation algorithms, there are some further

details that are specific to each of four main categories

mentioned above (i.e., ROLAP, MOLAP, Graph-Based,

and Approximate), which are touched upon below.

ROLAP algorithms store a data cube as a set of

materialized relational views, most commonly using

either a star or a snowflake schema. Among these algo-

rithms, algorithm CURE [10] seems to be the most

promising, since it is the only solutionwith the following

features: It is purely compatible with the ROLAP frame-

work, hence its integration into any existing relational

engine is rather straightforward. Also, it is suitable not

only for ‘‘flat’’ datasets but also for processing datasets

whose dimension values are hierarchically organized.

Furthermore, it introduces an efficient algorithm for

external partitioning that allows the construction of

cubes over extremely large volumes of data whose size

may far exceed the size ofmainmemory. Finally, it stores

cubes in a compressed form, removing all types of

redundancy from the final result.

MOLAP algorithms store a data cube as a multidi-

mensional array, thereby avoiding to store the dimen-

sion values in each array cell, since the position of the

cell itself determines these values. The main drawback

of this approach comes from the fact that, in practice,

cubes have a large number of empty cells (i.e., cubes are

sparse), rendering MOLAP algorithms inefficient with

respect to their storage-space requirements. To over-

come this problem, the so-called chunk-based algo-

rithms have been introduced [21], which avoid the

physical storage of most of the empty cells, storing

only chunks, which are nonempty subarrays. Array-

Cube [21] is the most widely accepted algorithm in

this category. It has also served as an inspiration to

algorithm MM-Cubing [16], which applies similar
techniques just to the dense areas of the cube, taking

into account the distribution of data in a way that

avoids chunking.

Graph-Based algorithms represent a data cube as

some specialized graph structure. They use such struc-

tures both in memory, for organizing data in a fashion

that accelerates computation of the corresponding

cube, and on disk, for compressing the final result

and reducing storage-space requirements. Among the

algorithms in this category, Dwarf [17] seems to be the

strongest overall, since it is the only one that guaran-

tees a polynomial time and space complexity with

respect to dimensionality [18]. It is based on a highly

compressed data structure that eliminates prefix and

suffix redundancies efficiently. Prefix redundancy

occurs when two or more tuples in the cube share the

same prefix, i.e., the same values in the left dimensions;

suffix redundancy, which is in some sense complemen-

tary to prefix redundancy, occurs when two or more

cube tuples share the same suffix, i.e., the same values

in the right dimensions and the aggregate measures.

An advantage of Dwarf, as well as of the other graph-

based methods, is that not only does its data structure

store a data cube compactly, but it also serves as an

index that can accelerate selective queries.

Approximate algorithms assume that data mining

and OLAP applications do not require fine grained or

absolutely precise results in order to capture trends

and correlations in the data; hence, they store an

approximate representation of the cube, trading accu-

racy for level of compression. Such algorithms exploit

various techniques, inspired mainly from statistics,

including histograms [14], wavelet transformations

[19], and others.

Finally, note that some of the most popular indus-

trial cube implementations include Microsoft SQL

Server Analysis Services (http://www.microsoft.com/

sql/technologies/analysis/default.mspx) and Hyperion

Essbase, which has been bought by ORACLE in 2007

(http://www.oracle.com/hyperion).

Query Processing

The most important motivation for cube materializa-

tion is to provide low response times for OLAP queries.

Clearly, construction of a highly-compressed cube is

useless if the cube format inhibits good query answering

performance. Therefore, efficiency during query proces-

sing should be taken into consideration as well when

selecting a specific cube-construction algorithm and its

Cube Implementations C 543

C

corresponding storage format. Note that the latter deter-

mines to a great extent the access methods that can be

used for retrieving data stored in the corresponding

cube; hence, it strongly affects performance of query

processing algorithms over cube data.

Intuitively, it seems that brute-force storage of an

entire cube in an uncompressed format behaves best

during query processing: in this case, every possible

aggregation for every combination of dimensions is

precomputed and the only cost required is that of

retrieving the data stored in the lattice nodes partici-

pating in the query. On the other hand, query proces-

sing over compressed cubes seems to induce additional

overhead for on-line computation or restoration of

(possibly redundant) tuples that have not been materi-

alized in the cube.

Nevertheless, the literature has shown that the

above arguments are not always valid in practice.

This is mostly due to the fact that indexing an uncom-

pressed cube is nontrivial in real-world applications,

whereas applying custom indexing techniques for

some sophisticated, more compact representations

has been found efficient [2]. Furthermore, storing

data in specialized formats usually offers great oppor-

tunities for unique optimizations that allow a wide

variety of query types to run faster over compressed

cubes [2]. Finally, recall that several graph-based algo-

rithms, e.g., Dwarf [17], store the cube in a way that is

efficient with respect to both storage space and query

processing time.

Incremental Maintenance

Asmentioned earlier, in general, fact tables are dynamic

in nature and change over time, mostly as new records

are inserted in them. Aggregated data stored in a cube

must follow the modifications in the corresponding

fact table; otherwise, query answers over the cube will

be inaccurate.

According to the most common scenario used in

practice, data in a warehouse is periodically updated in

a batch fashion. Clearly, the window of time that is

required for the update process must be kept as narrow

as possible. Hence, reconstruction of the entire cube

from scratch is practically not a viable solution; techni-

ques for incremental maintenance must be used instead.

Given a fact table, its corresponding cube, and a set

of updates to the fact table that have occurred since

the last cube update, let delta cube be the cube formed

by the data corresponding to these updates. Most
incremental-maintenance algorithms proposed in the

literature for the cube follow a common strategy [20]:

they separate the update process into the propagation

phase, during which they construct the delta cube, and

the refresh phase, during which they merge the delta

cube and the original cube, in order to generate the

new cube. Most of them identify the refresh phase as

the most challenging one and use specialized techni-

ques to accelerate it, taking into account the storage

format of the underlying cube (some examples can be

found in the literature [12,17]). There is at least one

general algorithm, however, that tries to optimize the

propagation phase [9]. It selects particular nodes of the

delta cube for construction and properly uses them in

order to update all nodes of the original cube.
Key Applications
Efficient implementation of the data cube is essential

for OLAP applications in terms of performance, since

they usually make an extensive use of aggregate

queries.

Cross-references
▶Data Warehouse

▶Dimension

▶Hierarchy

▶Measure

▶OLAP

▶ Snowflake Schema

▶ Star Schema

Recommended Reading
1. Agarwal S., Agrawal R., Deshpande P., Gupta A., Naughton J.F.,

Ramakrishnan R., and Sarawagi S. On the computation of mul-

tidimensional aggregates. In Proc. 22th Int. Conf. on Very Large

Data Bases, 1996, pp. 506–521.

2. Beyer K.S. and Ramakrishnan R. Bottom-up computation of

sparse and iceberg CUBEs. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1999, pp. 359–370.

3. Gray J., Bosworth A., Layman A., and Pirahesh H. Data cube: a

relational aggregation operator generalizing group-by, cross-tab,

and sub-total. In Proc. 12th Int. Conf. on Data Engineering,

1996, pp. 152–159.

4. Gupta H. Selection of views to materialize in a data warehouse.

In Proc. 6th Int. Conf. on Database Theory, 1997, pp. 98–112.

5. Gupta H. and Mumick I.S. Selection of views to materialize

under a maintenance cost constraint. In Proc. 7th Int. Conf.

on Database Theory, 1999, pp. 453–470.

6. Harinarayan V., Rajaraman A., and Ullman J.D. Implement-

ing data cubes efficiently. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1996, pp. 205–216.

544C Cube Materialization
7. Kotsis N. and McGregor D.R. Elimination of redundant

views in multidimensional aggregates. In Proc. 2nd Int. Conf.

Data Warehousing and Knowledge Discovery, 2000,

pp. 146–161.

8. Lakshmanan L.V.S., Pei J., and Zhao Y. QC-Trees: an

efficient summary structure for semantic OLAP. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2003,

pp. 64–75.

9. Lee K.Y. and Kim M.H. Efficient incremental maintenance of

data cubes. In Proc. 32nd Int. Conf. on Very Large Data Bases,

2006, pp. 823–833.

10. Morfonios K. and Ioannidis Y. CURE for cubes: cubing using a

ROLAP engine. In Proc. 32nd Int. Conf. on Very Large Data

Bases, 2006, pp. 379–390.

11. Morfonios K., Konakas S., Ioannidis Y., and Kotsis N. ROLAP

implementations of the data cube. ACM Comput. Surv., 39(4),

2007.

12. Morfonios K. and Ioannidis Y. Supporting the Data cube

Lifecycle: the Power of ROLAP. VLDB J., 17(4):729–764, 2008.

13. Mumick I.S., Quass D., and Mumick B.S. Maintenance of

data cubes and summary tables in a warehouse. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1997,

pp. 100–111.

14. Poosala V. and Ganti V. Fast approximate answers to

aggregate queries on a data cube. In Proc. 11th Int. Conf.

on Scientific and Statistical Database Management, 1999,

pp. 24–33.

15. Ross K.A. and Srivastava D. Fast computation of sparse data-

cubes. In Proc. 23th Int. Conf. on Very Large Data Bases, 1997,

pp. 116–125.

16. Shao Z., Han J., and Xin D. MM-Cubing: computing iceberg

cubes by factorizing the lattice Space. In Proc. 16th Int. Conf.

on Scientific and Statistical Database Management, 2004,

pp. 213–222.

17. Sismanis Y., Deligiannakis A., Roussopoulos N., and Kotidis Y.

Dwarf: shrinking the PetaCube. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2002, pp. 464–475.

18. Sismanis Y. and Roussopoulos N. The complexity of fully mate-

rialized coalesced cubes. In Proc. 30th Int. Conf. on Very Large

Data Bases, 2004, pp. 540–551.

19. Vitter J.S. and Wang M. Approximate computation of multidi-

mensional aggregates of sparse data using wavelets. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1999,

pp. 193–204.

20. Wang W., Feng J., Lu H., and Yu J.X. Condensed cube: an

efficient approach to reducing data cube size. In Proc. 18th Int.

Conf. on Data Engineering, 2002, pp. 155–165.

21. Zhao Y., Deshpande P., and Naughton J.F. An array-based algo-

rithm for simultaneous multidimensional aggregates. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1997,

pp. 159–170.
Cube Materialization

▶Cube Implementations
Cube Precomputation

▶Cube Implementations
Curation

▶Biomedical Scientific Textual Data Types and

Processing
Current Date

▶Now in Temporal Databases
Current Semantics

MICHAEL H. BÖHLEN
1, CHRISTIAN S. JENSEN

2,

RICHARD T. SNODGRASS
3

1Free University of Bozen-Bolzano, Bolzano, Italy
2Aalborg University, Aalborg, Denmark
3University of Arizona, Tucson, AZ, USA

Synonyms
Temporal upward compatibility

Definition
Current semantics constrains the semantics of non-

temporal statements applied to temporal databases.

Specifically, current semantics requires that non-

temporal statements on a temporal database behave

as if applied to the non-temporal database that is the

result of taking the timeslice of the temporal database

as of the current time.

Key Points
Current semantics [3] requires that queries and views on

a temporal database consider the current information

only and work exactly as if applied to a non-temporal

database. For example, a query to determine who man-

ages the high-salaried employees should consider the

current database state only. Constraints and assertions

also work exactly as before: they are applied to the

current state and checked on database modification.

Database modifications are subject to the same con-

straint as queries: they should work exactly as if applied

Curse of Dimensionality C 545

C

to a non-temporal database. Database modifications,

however, also have to take into consideration that the

current time is constantly moving forward. Therefore,

the effects of modifications must persist into the future

(until overwritten by a subsequent modification).

The definition of current semantics assumes a

timeslice operator t[t](Dt) that takes the snapshot

of a temporal database Dt at time t. The timeslice

operator takes the snapshot of all temporal relations

in Dt and returns the set of resulting non-temporal

relations.

Let now be the current time [2] and let t be a

time point that does not exceed now. Let Dt be a

temporal database instance at time t. Let M1,...,Mn,

n � 0 be a sequence of non-temporal database

modifications.

Let Q be a non-temporal query. Current semantics

requires that for all Q, t, Dt, and M1,...,Mn the

following equivalence holds:

QðMnðMn�1ð:::ðM1ðDt Þ:::ÞÞÞÞ
¼ QðMnðMn�1ð:::ðM1ðt½now�ðDt ÞÞÞ:::ÞÞÞ

Note that for n = 0 there are no modifications, and the

equivalence becomes Q(Dt) = Q(t[now](Dt)), i.e., a

non-temporal query applied to a temporal database

must consider the current database state only.

An unfortunate ramification of the above equiva-

lence is that temporal query languages that introduce

new reserved keywords not used in the non-temporal

languages they extend will violate current semantics.

The reason is that the user may have previously used

such a keyword as an identifier (e.g., a table name) in the

database. To avoid being overly restrictive, it is reason-

able to consider current semantics satisfied even when

reserved words are added, as long as the semantics of all

statements that do not use the new reserved words is

retained by the temporal query language.

Temporal upward compatibility [1] is a synonym

that focuses on settings where the original temporal

database is the result of rendering a non-temporal

database temporal.
Cross-references
▶Nonsequenced Semantics

▶Now in Temporal Databases

▶ Sequenced Semantics

▶ Snapshot Equivalence

▶Temporal Database
▶Temporal Data Models

▶Temporal Query Languages

▶Timeslice Operator

Recommended Reading
1. Bair J., Böhlen M.H., Jensen C.S., and Snodgrass R.T. Notions of

upward compatibility of temporal query languages. Wirtschaft-

sinformatik, 39(1):25–34, February 1997.

2. Clifford J., Dyreson C., Isakowitz T., Jensen C.S., and

Snodgrass R.T. On the Semantics of ‘‘NOW’’ in Databases.

ACM Trans. Database Syst., 22:171–214, June 1997.

3. Snodgrass R.T. Developing Time-Oriented Database Applica-

tions in SQL. Morgan Kaufmann, Los Altos, CA, 1999.
Current Time

▶Now in Temporal Databases
Current Timestamp

▶Now in Temporal Databases
Curse of Dimensionality

LEI CHEN

Hong Kong University of Science and Technology,

Hong Kong, China

Synonyms
Dimensionality curse

Definition
The curse of dimensionality, first introduced by Bellman

[1], indicates that the number of samples needed to

estimate an arbitrary function with a given level of

accuracy grows exponentially with respect to the num-

ber of input variables (i.e., dimensionality) of the

function.

For similarity search (e.g., nearest neighbor query

or range query), the curse of dimensionality means that

the number of objects in the data set that need to be

accessed grows exponentially with the underlying

dimensionality.

546C Cursor
Key Points
The curse of dimensionality is an obstacle for solving

dynamic optimization problems by backwards induc-

tion. Moreover, it renders machine learning problems

complicated, when it is necessary to learn a state-of-

nature from finite number data samples in a high

dimensional feature space. Finally, the curse of dimen-

sionality seriously affects the query performance

for similarity search over multidimensional indexes

because, in high dimensions, the distances from a

query to its nearest and to its farthest neighbor are

similar. This indicates that data objects tend to be close

to the boundaries of the data space with the increasing

dimensionality. Thus, in order to retrieve even a few

answers to a nearest neighbor query, a large part of the

data space should be searched, making the multi-

dimensional indexes less efficient than a sequential

scan of the data set, typically with dimensionality

greater than 12 [2]. In order to break the curse of

dimensionality, data objects are usually reduced to vec-

tors in a lower dimensional space via some dimension-

ality reduction technique before they are indexed.

Cross-references
▶Dimensionality Reduction

Recommended Reading
1. Bellman R.E. Adaptive Control Processes. Princeton University

Press, Princeton, NJ, 1961.
2. Beyer K.S., Goldstein J., Ramakrishnan R., Shaft U. When is

‘‘Nearest Neighbor’’ Meaningful? In Proc. 7th Int. Conf. on

Database Theory, 1999, pp. 217–235.
Cursor

▶ Iterator
CW Complex

▶ Simplicial Complex
CWM

▶Common Warehouse Metamodel
Cyclic Redundancy Check (CRC)

▶Checksum and Cyclic Redundancy Check (CRC)

Mechanism

D

DAC

▶Discretionary Access Control
Daplex

TORE RISCH

Uppsala University, Uppsala, Sweden

Definition
Daplex is a query language based on a functional data

model [1] with the same name. The Daplex data model

represents data in terms of entities and functions.

The Daplex datamodel is close to the entity-relationship

(ER) model with the difference that relationships be-

tween entities inDaplex have a logical direction, whereas

ER relationships are directionless. Unlike ER entities,

relationships, and properties are all represented as

functions in Daplex. Also, entity types are defined as

functions without arguments returning sets of a built-

in type ENTITY. The entity types are organized in a

type/subtype hierarchy. Functions represent properties

of entities and relationships among entities. Functions

also represent derived information. Functions may be

set-valued and are invertible. The database is repre-

sented as tabulated function extents. Database updates

change the function extents.

The Daplex query language has been very influen-

tial for many other query languages, both relational,

functional, and object oriented. Queries are expressed

declaratively in an iterative fashion over sets similar to

the FLWR semantics of the XQuery language. Daplex

queries cannot return entities but a value returned

from a query must always be a literal.

The query language further includes schema (func-

tion) definition statements, update statements, con-

straints, etc.
2009 Springer ScienceþBusiness Media, LLC
Key Points
Daplex functions are defined using a DECLARE state-

ment, for example:

DECLARE name(Student) = STRING

Where ‘‘Student’’ is a user defined entity type and

‘‘STRING’’ is a built-in type. Set valued functions are

declared by a ‘‘ = > >’’ notation, e.g.,

DECLARE course(Student) = > > Course

Entity types are functions returning the built-in

type ENTITY, for example:

DECLARE Person() = > > ENTITY

Inheritance among entity types is defined by defining

entities as functions returning supertypes, for example:

DECLARE Student() = > > Person

Functions may be overloaded on different entity

types.

Queries in Daplex are expressed using a FOR

EACH – SUCH THAT – PRINT fashion similar to

the FLWR semantics of XQuery. For example:

FOR EACH X IN Employee

SUCH THAT Salary(X) > Salary(Manager (X))

PRINT Name(X)

The PRINT statement is here not regarded as a side

effect but rather as defining the result set from the

query. Derived functions are defined though the DE-

FINE statement, e.g.,

DEFINE Course(Student) = > Course

SUCH THAT

FOR SOME Enrollment

Stud#(Student) = Stud#(Enrollment) AND

Course#(Enrollment) = Course#(Course)

Daplex was first implemented in the Multibase sys-

tem [2]. There, it was used as a multi-database query

language to query data from several databases.

The P/FDM [1] data model and query language is

close toDaplex. Thequery languagesOSQLandAmosQL

are also based on Daplex. These languages extend Daplex

with object identifiers (OIDs) to represent actual entities

and thus queries can there return entities as OIDs.

548D DAS
Cross-references
▶AmosQL

▶ Functional Data Model

▶OSQL

▶ P/FDM

▶Query Language

▶XPath/XQuery
Recommended Reading
1. Gray P.M.D., Kerschberg L., King P.J.H., and Poulovassilis A.

(eds.). The Functional Approach to DataManagement. Springer,

Berlin, 2004.

2. Landers T. and Rosenberg R.L. An overview of Multibase. In

Proc. 2nd Int. Symp. on Distributed Databases, 1982, pp.

153–184.

3. Shipman D.W. The functional data model and the data language

DAPLEX. ACM Trans. Database Syst., 6(1):140–173, 1981.
DAS

▶Direct Attached Storage
Data Acquisition

▶Data Acquisition and Dissemination in Sensor

Networks
Data Acquisition and Dissemination
in Sensor Networks

TURKMEN CANLI, ASHFAQ KHOKHAR

University of Illinois at Chicago, Chicago, IL, USA

Synonyms
Data gathering; Data collection; Data acquisition

Definition
Wireless sensor networks (WSNs) are deployed to mon-

itor and subsequently communicate various aspects of

physical environment, e.g., acoustics, visual, motion,
vibration, heat, light, moisture, pressure, radio, magne-

tic, biological, etc. Data acquisition and dissemination

protocols for WSNs are aimed at collecting information

from sensor nodes and forwarding it to the subscribing

entities such that maximum data rate is achieved while

maximizing the overall network life time. The informa-

tion can be simple raw data or processed using basic

signal processing techniques such as filtering, aggrega-

tion/compression, event detection, etc.

Historical Background
Wireless sensor networks consist of tiny dispensable

smart sensor nodes, with limited battery power and

processing/communication capabilities. In addition,

these networks also employ more powerful ‘‘sink’’

node(s) that collect information from the sensor nodes

and facilitate interfacing with the outside computing

and communication infrastructure. WSNs are config-

ured to execute two fundamental tasks: information

acquisition/collection at the sink nodes, and dissemina-

tion of information to the nodes across the network.

Existing data acquisition and dissemination techniques

have been investigated for different levels of application

abstractions including: structured data collection

[1,5,6,11,12] in a query-database paradigm, and raw

data acquisition in for field reconstruction and event

recognition at the sink nodes [2,3,4,7,9,10,13].

Foundations
In WSNs, devices have limited battery life, which is

generally considered non-replenishable, therefore the

pertinent challenge is to design protocols and algo-

rithms that maximize the network life time. In data

acquisition and dissemination tasks, data volume is

high therefore another optimization criteria is to in-

crease throughput while reducing power consumption.

Several data collection protocols aiming at data reduc-

tion using data transformation techniques have been

suggested [2,10]. In [10], authors have proposed the

use of wavelet compression to reduce data volume in

structure monitoring WSN applications, thus resulting

in low power consumption and reduced communication

latency. Similar data transformation and compression

techniques have been used to compute summary of the

raw data [2].

In most of the data collection algorithms, the net-

work nodes are organized into logical structures, and

communication among the nodes and with the sink is

Data Acquisition and Dissemination in Sensor Networks D 549

D

realized using such logical structures. For example,

in tree based data acquisition protocols, a collection

tree is built that is rooted at the data collection center

such as the sink node [8]. The dissemination of the

data requests from the participating nodes and collec-

tion of data from the sensor nodes are accomplished

using this tree. A cluster based data acquisition

mechanism has been proposed in [3]. As shown in

Fig. 1, nodes are organized into a fixed number of

clusters, and nodes within each cluster dynamically

elect a cluster head.

The data acquisition is carried out in two phases. In

the first phase, cluster heads collect data from their

cluster nodes. In the second phase, cluster heads send

collected data to the nodes that have subscribed to the

data. The cluster heads are re-elected to balance energy

consumption among the nodes in the cluster. Zhang

et al. [13] have proposed an adaptive cluster based data

collection protocol that dynamically adjusts the number

of cluster heads to the traffic load in the network. This

dynamic traffic model is developed at the sink node.

In [7], network is divided into virtual grids and

sensor nodes in each grid are classified as either gateway

nodes or internal nodes. For example, in Fig. 2 nodes B,

G are selected as gateway nodes that are responsible for

transmitting data to nodes outside the grid. By doing

so, data contention and redundant data transmission

of a packet are reduced, which saves energy.

The common characteristic of all the aforementioned

protocols is the pro-actively built routing infrastructure.

As an alternative, authors in [4] have proposed the
Data Acquisition and Dissemination in Sensor

Networks. Figure 1. Clustering concept as proposed in

LEACH [3].
directed diffusion approach. The routing infrastructure

is constructed on the fly. The sink node disseminates its

interest to the network and gradients are set-up from

nodes that match the sink’s interest. There may be more

than one path from a sensor node to the sink node. Sink

nodes regulate data rate across all the paths.

Data acquisition and dissemination techniques

designed with a higher level of application abstraction

model the sensor network as a distributed database

system. In these techniques, data center disseminates

its queries, and database operation such as ‘‘join’’ or

‘‘select’’ operations are computed distributively using

sensor nodes that have the requested data. For exam-

ple, in [12] a new layer, referred to as query layer, is

proposed that is logically situated between the network

and application layers of the network protocol stack.

This layer processes descriptive queries and determines

a power efficient execution plan that makes use of in-

network processing and aggregation operations. An

in-network aggregation is realized by packet merging

or by incrementally applying aggregation operators

such as min, max, count, or sum.

Cougar system [11] presents a framework for spe-

cifying a Query execution plan in WSNs. It allows

specification of routing among sensor nodes and exe-

cution of aggregate operation over the collected data.

As depicted in Fig. 3, each sensor node samples the

environment as specified by the query. According to

the execution plan, sampled data is sent to a leader

node, or together with the partially aggregated data

received from other nodes, an aggregation operators is

applied. The new partially aggregated value is then

sent towards the leader node. Partial aggregation is

possible only for the aggregation operators that can

be computed incrementally. The volume of data is

decreased by partial or incremental aggregation. The
Data Acquisition and Dissemination in Sensor

Networks. Figure 2. Principle of LAF.

Data Acquisition and Dissemination in Sensor Networks. Figure 3. Query plan at a source and leader node [11].

550D Data Acquisition and Dissemination in Sensor Networks
responsibility of the leader node is to combine all the

partially aggregated results and report it to the gateway

node if the value exceed the set threshold.

In TinyDB framework [5], WSN is viewed as one

big relational table. The columns of the table corre-

spond to the type of phenomenon observed, i.e.,

humidity, temperature, etc. The aim is to reduce the

power consumption during data acquisition by in-

network processing of raw data. In other words, it

addresses questions such as when data should be sam-

pled for a particular query, which sensors should re-

spond to a query, in which order sensors should

sample the data, and how to achieve balance between

in-network processing of the raw samples and collec-

tion of the raw samples at sink nodes without any

processing. Moreover, the structured query language

(SQL) is extended specifically for sensor network

applications. Keywords such as, SAMPLE, ON EVENT

and LIFETIME have been added to SQL language

to facilitate realization of basic sensor network

applications.

Through SAMPLE clause, the sampling rate of the

sensors can be controlled. LIFETIME allows automatic

sampling rate adjustment for a given lifetime. ON

EVENT is used for trigger, i.e., query is executed only

when the specified event occurs. A query sample shown

below [5] illustrates the use of extended SQL. In this

example query, the sampling period is set via introdu-

cing SAMPLE clause. The query planner needs meta

data information regarding power consumption, sens-

ing and communication costs to compute lifetime

approximation and execute the LIFETIME clause. ON

EVENT type queries may trigger multiple instances of

same type of internal query.
SELECT COUNT(*)

FROM sensors AS s, recentLight AS r1

WHERE r1.nodeid=s.nodeid

AND s.light < r1.light

SAMPLE INTERVAL 10s

Optimization of the data sampling order can also

reduce energy consumption significantly. Typically, a

sensor node has more than one on-board sensor, i.e.,

nodes may have all temperature, humidity, pressure,

etc. sensors on a single sensing platform. If in the query

it is requested to report the temperature of the nodes

where humidity value is greater than some threshold, it

would be inefficient to simultaneously sample temper-

ature and humidity values. The energy spent on sam-

pling temperature values where humidity is less than

the threshold could be saved by reordering the predi-

cate evaluation [5].

The semantic tree (SRT) [5] is a mechanism that

allows nodes to find out whether their children have

the data for the incoming query. Every parent node

stores the range of its children’s values. Therefore when

query arrives to a node it is not forwarded to those

children that do not have the data. For instance in

Fig. 4, node 1 will not send query request to node 2,

similarly, node 3 will not send query to node 5.

Authors in [1] have used probabilistic models

to facilitate efficient query processing and data acqui-

sition on sensor networks. The idea is to build statisti-

cal model of the sensor readings from stored and

current readings of the sensors. Whenever an SQL

query is submitted to the network, constructed

model is used to provide answers. Accuracy of the

requested data can be specified by setting the

Data Acquisition and Dissemination in Sensor Networks. Figure 5. Model based querying in sensor networks [1].

Data Acquisition and Dissemination in Sensor Networks. Figure 4. A semantic routing tree in use for a query. Gray

arrows indicate flow of the query down the tree, gray nodes must produce or forward results in the query [5].

Data Acquisition and Dissemination in Sensor Networks D 551

D

552D Data Aggregation in Sensor Networks
confidence interval in the SQL statement. Figure 5

illustrates typical SQL query. Depending on error tol-

erance levels, response to the query may involve col-

lecting information from every sensor node, for

example, if 100% accuracy is required. On the other

hand, if the error tolerance is high, query can be

answered by only using the constructed model.
Key Applications
Building Health Monitoring, Micro-climate Monitor-

ing, Habitat Monitoring, Hazardous Environment

Monitoring.

Cross-references
▶Ad-hoc Queries in Sensor Networks

▶Continuous Queries in Sensor Networks

▶Data Aggregation in Sensor Networks

▶Data Compression in Sensor Networks

▶Data Estimation in Sensor Networks

▶Data Fusion in Sensor Networks

▶Data Storage and Indexing in Sensor Networks

▶Database Languages for Sensor Networks

▶Model-Based Querying in Sensor Networks

▶Query Optimization in Sensor Networks

▶ Sensor Networks
Recommended Reading
1. Deshpande A., Guestrin C., Madden S.R., Hellerstein J.M., and

Hong W. Model-driven data acquisition in sensor networks. In

Proc. 30th Int. Conf. on Very Large Data Bases, 2004, pp. 588–

599.

2. Ganesan D., Greenstein B., Perelyubskiy D., Estrin D., and

Heidemann J. An evaluation of multi-resolution storage for

sensor networks. In Proc. 1st Int. Conf. on Embedded Net-

worked Sensor Systems, 2003, pp. 89–102.

3. Heinzelman W.R., Chandrakasan A., and Balakrishnan H.

Energy-efficient communication protocol for wireless microsen-

sor networks. In Proc. 33rd Annual Hawaii Conf. on System

Sciences, 2000, pp. 8020.

4. Intanagonwiwat C., Govindan R., Estrin D., Heidemann J., and

Silva F. Directed diffusion for wireless sensor networking. IEEE/

ACM Trans. Netw., 11(1):2–16, 2003.

5. Madden S., Franklin M.J., Hellerstein J.M., and Hong W. The

design of an acquisitional query processor for sensor networks. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2003,

pp. 491–502.

6. Madden S.R., Franklin M.J., Hellerstein J.M., and Hong W.

TinyDB: an acquisitional query processing system for sensor

networks. ACM Trans. Database Syst., 30(1):122–173, 2005.

7. Sabbineni M.H. and Chakrabarty S.M.K. Location-aided flood-

ing: an energy-efficient data dissemination protocol for wireless

sensor networks. IEEE Trans. Comput., 54(1):36–46, 2005.
8. Szewczyk R., Osterweil E., Polastre J., Hamilton M., Mainwaring

A., and Estrin D. Habitat monitoring with sensor networks.

Commun. ACM, 47(6):34–40, 2004.

9. Xi Y., Yang W., Yamauchi N., Miyazaki Y., Baba N., and Ikeda H.

Real-time data acquisition and processing in a miniature wire-

less monitoring system for strawberry during transportation. In

Proc. Int. Technical Conf. of IEEE Region 10 (Asia Pacific Re-

gion), 2006.

10. Xu N., Rangwala S., Chintalapudi K.K., Ganesan D., Broad A.,

Govindan R., and Estrin D. A wireless sensor network for struc-

tural monitoring. In Proc. 2nd Int. Conf. on Embedded Net-

worked Sensor Systems, 2004, pp. 13–24.

11. Yao Y. and Gehrke J. The cougar approach to in-network

query processing in sensor networks. ACM SIGMOD Rec., 31

(3):9–18, 2002.

12. Yao Y. and Gehrke J. Query processing in sensor networks, 2003.

13. Zhan X., Wang H., and Khokhar A. An energy-efficient data

collection protocol for mobile sensor networks. Vehicular Tech-

nology Conference, 2006, pp. 1–15.
Data Aggregation in Sensor
Networks

JUN YANG
1, KAMESH MUNAGALA

1, ADAM SILBERSTEIN2

1Duke University, Durham, NC, USA
2Yahoo! Research Silicon Valley, Santa Clara, CA, USA

Definition
Consider a network ofN sensor nodes, each responsible

for taking a reading vi ð1 � i � NÞ in a given epoch.

The problem is to compute the result of an aggregate

function (cf. Aggregation) over the collection of all

readings n1; v2; :::; vN taken in the current epoch.

The final result needs to be available at the base station

of the sensor network. The aggregate function ranges

from simple, standard SQL aggregates such as SUM

and MAX, to more complex aggregates such as top-k,

median, or even a contour map of the sensor field

(where each value to be aggregated is a triple

hxi; yi; zii, with xi and yi denoting the location co-

ordinates of the reading zi).

In battery-powered wireless sensor networks,

energy is the most precious resource, and radio

communication is often the dominant consumer of

energy. Therefore, in this setting, the main optimiza-

tion objective is to minimize the total amount of

communication needed in answering an aggregation

query. A secondary objective is to balance the energy

consumption across all sensor nodes, because the first

Data Aggregation in Sensor Networks D 553

D

node to run out of battery may render a large portion

of the network inaccessible.

There are many variants of the above problem

definition. For example, the aggregation query may

be continuous and produce a new result for each

epoch; not all nodes may participate in aggregation;

the result may be needed not at the base station but at

other nodes in the network. Some of these variants are

further discussed below.
Historical Background
Early deployments of wireless sensor networks collect

and report all data to the base station without summa-

rization or compression. This approach severely limits

the scale and longevity of sensor networks, because

nodes spend most their resources forwarding data on

behalf of others. However, many applications do not

need the most detailed data; instead, they may be

interested in obtaining a summary view of the sensor

field, monitoring outlier or extreme readings, or

detecting events by combining evidence from readings

taken at multiple nodes. Data aggregation is a natural

and powerful construct for applications to specify

such tasks.

Data aggregation is supported by directed diffusion

[9], a data-centric communication paradigm for sen-

sor networks. In directed diffusion, a node diffuses its

interests for data in the network. Then, nodes with data

matching the interests return the relevant data along

the reverse paths of interest propagation. Intermediate

nodes on these paths can be programmed to aggregate

relevant data as it converges on these nodes. Systems

such as TinyDB and Cougar take a database approach,

providing a powerful interface for applications to pose

declarative queries including aggregation over a sensor

network, and hiding the implementation and optimi-

zation details from application programmers. The

seminal work by Madden et al. [12] on TAG (Tiny

AGgregation) is the first systematic study of database-

style aggregation in sensor networks. One of the first

efforts at supporting more sophisticated aggrega-

tion queries beyond SQL aggregates is the work by

Hellerstein et al. [8], which shows how to extend

TAG to compute contour maps, wavelet summaries,

and perform vehicle tracking. Since these early efforts,

the research community has made significant progress

in sensor data aggregation; some of the developments

are highlighted below.
Foundations
The key to efficient sensor data aggregation is in-

network processing. On a typical sensor node today,

the energy cost of transmitting a byte over wireless

radio is orders-of-magnitude higher than executing a

CPU instruction. When evaluating an aggregate query,

as data converges on an intermediate node, this node can

perform aggregate computation to reduce the amount

of data to be forwarded, thereby achieving a favorable

tradeoff between computation and communication.

To illustrate, consider processing a simple SUM

aggregate with TAG [12]. TAG uses a routing tree

rooted at the base station spanning all nodes in the

network. During aggregation, each node listens to

messages from its children in the routing tree, com-

putes the sum of all values in these messages and its

own reading, and then transmits this result – which

equals the sum of all readings in the subtree rooted at

this node – to its parent. To conserve energy, each node

only stays awake for a short time interval to listen,

compute, and transmit. To this end, TAG coordinates

the nodes’ communication schedules: the beginning of

a parent node’s interval must overlap with the end of

its children’s intervals, so that the parent is awake to

receive children’s transmissions. Overall, to compute

SUM, each node needs to send only one constant-size

message, so the total amount of communication

is Y(N). In comparison, for the naı̈ve approach,

which sends all readings to the root, the amount of

data that needs to be forwarded by a node increases

closer to the root, and the total amount of communi-

cation can be up to Y(Nd), where d is the depth of the

routing tree. Clearly, in-network aggregation not only

decreases overall energy consumption, but also bal-

ances energy consumption across nodes.

The above algorithm can be generalized to many

other aggregates. Formally, an aggregate function can be

implemented using three functions: an initializer fi con-

verts an input value into a partial aggregate record; a

merging function fm combines two partial aggregate

records into one; finally, an evaluator fe computes the

final result from a partial aggregate record. During

aggregation, each node applies fi to its own reading;

each non-leaf node invokes fm to merge partial aggre-

gate records received from its children with that of its

own; the root uses fe to compute the aggregate result

from the final partial aggregate record. As an example,

standard deviation can be computed (in theory, without

regard to numerical stability) using the following

554D Data Aggregation in Sensor Networks
functions, where the partial aggregate record is a triple

hs; r; ni consisting of a sum (s), a sum of squares (r),

and a count (n):

fiðvÞ ¼ hv; v2; 1i;

fmðhs1; r1; n1i; hs2; r2;n2iÞ ¼ hs1 þ s2; r1 þ r2; n1 þ n2i;

feðhs; r; niÞ ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nr � s2

p
:

In general, one cannot expect the partial aggregate

record to be of constant size for arbitrary aggregate

functions. Consider the following examples. For a top-k

aggregate, which finds the k largest values, a partial

aggregate record needs to be of size Y(k). For exact

median computation, the size requirement becomes

Y(N), which is no better than the naı̈ve approach of

sending all readings to the root. For contour map

construction, the size of the partial aggregate records

depends on the complexity of the field being sensed,

and can be Y(N) in the worst case.
Approximate Aggregation

Approximation is a popular and effective technique for

bounding the communication cost in evaluating com-

plex aggregation functions. The basic idea is to replace

an exact partial aggregate record with an approximate

partial aggregate record that consumes less space and is

therefore cheaper to send. An early example of apply-

ing this idea is the work by Hellerstein et al. [8]. Since

then, a diverse collection of approximation methods

has been developed for many aggregate functions; a

few illustrative examples are given below.

To compute order-statistics (e.g., quantile queries

including top-k and median), Greenwald and Khanna

[7] propose a technique based on e-approximate quan-

tile summaries. An e-approximate quantile summary for

a collection S of sensor readings is an ordered subset

{qi} of S, where each qi is associated with a lower bound

rmini and an upper bound rmini on qi’s rank within S,

and the difference between r maxi+1 and r mini is no

greater than 2e Sj j. Any quantile query over S can be

answered instead on this summary within an additive

rank error of e Sj j. Specifically, a query requesting the r -
th ranked reading can be answered by returning qj
from the summary, where r � e Sj j � rminj and

rmax � r þ e Sj j. Greenwald and Khanna represent a

partial aggregate record sent up from a node u by a set

of quantile summaries – at most one for each class
numbered 1 through log N – which together disjointly

cover all readings in the subtree rooted at u; the sum-

mary for class i covers between 2i and 2i+1�1 readings

using at most ðlogN=eþ 1Þ of these readings. Each

sensor node starts with an e=2-approximate summary

of all its local readings. Each intermediate node merges

summaries from its children together with its own

summary into up to log N merged summaries, prunes

each of them down to the maximum size allowed, and

then sends them up to the parent. Finally, the root

merges all summaries into a single one and prunes it

down to ðlogN=eþ 1Þ readings. Although pruning

introduces additional error, the use of per-class sum-

maries bounds the error in a class-i summary to

e=2þ ði=ð2 logN=eÞÞ, which in turn allows the error

in the final summary to be bounded by e. Overall, the

communication cost incurred by each node during

aggregation is only oðlog2 N=eÞ.
Silberstein et al. [15] approach the problem of

computing top-k aggregates using a very different

style of approximation. Instead of having each node

always sending the top k readings in its subtree, a node

sends only the top k 0 readings among its local reading

and those received from its children, where k 0 � k.

The appropriate setting of k 0 for each node is based

on the samples of past sensor readings, or, more gen-

erally, a model capturing the expected behavior of

sensor readings. Intuitively, a subtree that tends to

contribute few of the top values will be allotted a

smaller k 0. Unlike the e-approximate quantile summa-

ries, which provide hard accuracy guarantees, the ac-

curacy of this approach depends on how well the past

samples or the model reflect the current behavior of

readings. Nevertheless, the approach can be augment-

ed by transmitting additional information needed to

establish the correctness of some top-k answers, there-

by allowing the approximation quality to be assessed.

As a third example, the contour map of a sensor

field is a complex spatial aggregate defined over not

only values but also locations of the sensor readings. In

this case, the partial aggregate record produced by a

node is a compact, usually lossy, representation of the

contour map encompassing all readings in this node’s

subtree. In Hellerstein et al. [8], each contour in the

map is represented by an orthogonal polygon whose

edges follow pre-imposed 2-d rectangular grid lines.

This polygon is obtained by starting with the mini-

mum bounding rectangle of the contour, and then

repeatedly subtracting the largest-area rectangle that

Data Aggregation in Sensor Networks D 555

D

does not contain any point in the contour, until a

prescribed limit on the number of vertices is reached.

Gandhi et al. [5] use general polygons instead of

orthogonal ones. During aggregation, each node con-

structs and sends to its parent an approximate descrip-

tion of its contour map consisting of up to k possibly

disconnected line segments. The root then connects

and untangles such line segments to obtain the final

contour map. It is shown that the approximation error

in the k -segment representation produced by dis-

tributed aggregation is within a constant factor of the

smallest possible error attainable by any k segments,

and it is conjectured that the resulting contour map

has size o(k).

Duplicate-Insensitive Aggregation

Approximate aggregation methods based on duplicate-

insensitive synopses are especially worth noting because

of their resiliency against failures, which are common

in sensor networks. Tree-based aggregation techniques

are vulnerable to message failures. If a message carry-

ing the partial aggregate record from a node fails, all

information from that subtree will be lost, resulting in

significant error. Sending the same message out on

multiple paths towards the base station decreases the

chance of losing all copies, and is a good solution for

aggregation functions such as MAX. However, for

other aggregation functions whose results are sensitive

to duplicates in their inputs, e.g., SUM and COUNT,

having multiple copies of the same partial aggregation

record causes a reading to participate multiple times in

aggregation, leading to incorrect results. In general, if

an aggregation method is order- and duplicate-insensi-

tive (ODI) [14], it can be implemented with more

failure-resilient routing structures such as directed acy-

clic graphs, without worrying about the duplicates they

introduce. The challenge, then, is in designing ODI

aggregation methods for duplicate-sensitive aggrega-

tion functions.

Duplicate-insensitive synopses provide the basis for

computing many duplicate-sensitive aggregation func-

tions approximately in an ODI fashion. This approach

is pioneered by Considine et al. [1] and Nath et al. [14].

To illustrate the idea, consider COUNT, which is

duplicate-sensitive. Nodes in the sensor network are

organized into rings centered at the base station,

where the i -th ring includes all nodes at i hops away

from the base station. A partial aggregate record is

a Flajolet-Martin sketch, a fixed-size bit-vector for
estimating the number of distinct elements in a

multi-set. This sketch is duplicate-insensitive by

design: conceptually, it is obtained by hashing each

element to a bitmap index (using an exponential

hash function) and setting that bit to one. During

aggregation, each node first produces a sketch for

its local sensors. A node in the i-th ring receives

sketches from its neighbors (i.e., nodes within direct

communication distance) in the (i+1)-th ring, takes

the bitwise OR of all these sketches and its own, and

broadcasts the result sketch to all its neighbors in the

(i�1)-th ring. Taking advantage of broadcast commu-

nication, each node sends out only one message during

aggregation, but the information therein can reach

the base station via multiple paths, boosting reliability.

The overall COUNT can be estimated accurately with

high probability using sketches of size Y(log N).

The failure-resiliency feature comes with two costs

in the above approach: the final answer is only approx-

imate, and the size of each message is larger than the

tree-based exact-aggregation approach. Manjhi et al.

[13] have developed an adaptive, hybrid strategy that

combines the advantages of the two approaches by

applying them to different regions of the network,

and dynamically exploring the tradeoffs between the

two approaches.

Temporal Aspects of Aggregation

The preceding discussion has largely ignored the tem-

poral aspects of aggregation. In practice, aggregation

queries in sensor networks are often continuous. In

its simplest form, such a query executes continuously

over time and produces, for each epoch, an aggregate

result computed over all readings acquired in this

epoch. A key optimization opportunity is that sensor

readings often are temporally correlated and do not

change haphazardly over time. Intuitively, rather than

re-aggregating from scratch in every epoch, evaluation

efforts should focus only on relevant changes since

the last epoch.

An effective strategy for implementing the above

intuition is to install on nodes local constraints that

dictate when changes in subtrees need to be reported.

These constraints carry memory about past readings

and filter out reports that do not affect the current

aggregate result, thereby reducing communication. For

example, to compute MAX continuously, Silberstein

et al. [16] set a threshold at each node, which is always

no less than its local reading and its children’s

556D Data Aggregation in Sensor Networks
thresholds. A node sends up the current maximum

value in its subtree only if that value exceeds the

threshold; the threshold is then adjusted higher. If the

current global maximum falls, nodes with thresholds

higher than the new candidate maximum must be

visited to find the new maximum; at the same time,

their thresholds are adjusted lower. Thresholds control

the tradeoff between reporting and querying costs, and

can be set adaptively at runtime. Alternatively, opti-

mum settings can be found by assuming adversarial

data behavior or using predictive models of data

behavior.

As another example, consider continuous SUM.

Unlike MAX, even a small change in one individual

reading affects the final SUM result. Approximation is

thus needed to do better than one message per node

per epoch. Deligiannakis et al. [4] employ an interval

constraint at each node, which bounds the sum of

all current readings within the subtree. In each epoch,

the node sends its estimate of this partial sum to its

parent only if this value falls outside its interval; the

interval then recenters at this value. The length of

the interval controls the error allowance for the sub-

tree. Periodically, based on statistics collected, the in-

terval lengths are adjusted by recursively redistributing

the total error allowed in the final result to all nodes.

Continuous versions of more complex queries, for

which approximation is needed to reduce the size of

partial aggregate records, have also been studied. For

example, Cormode et al. [2] show how to continuously

compute e-approximate quantile summaries using a

hierarchy of constraints in the network to filter out

insignificant changes in subtree summaries. As with

other techniques described above, a major technical

challenge lies in allocating error tolerance to each con-

straint; optimum allocation can be computed for pre-

dictive models of data behavior. Xue et al. [17] consider

the continuous version of the contour map query. In-

stead of sending up the entire partial aggregate record

(in this case, a contour map for the subtree), only its

difference from the last transmitted version needs to

be sent.

In the continuous setting, aggregation can apply not

only spatially to the collection of readings acquired in

the same epoch, but also temporally over historical data

(e.g., recent readings in a sliding window). Cormode

et al. [3] consider the problem of continuously com-

puting time-decaying versions of aggregation functions

such as SUM, quantiles, and heavy hitters. The
contribution of a reading taken at time t0 to the aggre-

gate result at the current time t 0 ¼ t 0 þ D is weighted

by a user-defined decay function f ðDÞ � 0, which is

non-increasing with D. The solution is based on dupli-

cate-insensitive sketching techniques, and it approxi-

mates a general decay function using a collection of

sliding windows of different lengths.

Other Aspects of Aggregation in Sensor Networks

Besides the above discussion, there are many other

aspects of sensor data aggregation that are not covered

by this entry; some of them are outlined briefly below.

Most techniques presented earlier opportunistically

exploit in-network processing, whenever two partial

aggregate records meet at the same node following

their standard routes to the base station. More generally,

routing can bemade aggregation-driven [11] by encour-

aging convergence of data that can be aggregated more

effectively (e.g., the merged partial aggregate record uses

less space to achieve the required accuracy).

Oftentimes, only a sparse subset of nodes contribute

inputs to aggregation, and this subset is not known a

priori, e.g., when aggregation is defined over the output

of a filter operation evaluated locally at each node. The

challenge in this scenario is to construct an ad hoc aggre-

gation tree of high quality in a distributed fashion [6].

Finally, for some applications, the final aggregate

result is needed at all nodes in the sensor network as

opposed to just the base station. Gossiping is an effec-

tive technique for this purpose [10], which relies only

on local communication and does not assume any

particular routing strategy or topology.

Key Applications
Aggregation is a fundamental query primitive indis-

pensible to many applications of sensor networks. It is

widely used in expressing and implementing common

sensor network tasks such as summarization, compres-

sion, monitoring, and event detection. Even for appli-

cations that are interested in collecting all detailed

sensor readings, aggregation can be used in monitoring

system and data characteristics, which support main-

tenance of the sensor network and optimization of its

operations.

Cross-references
▶Ad-Hoc Queries in Sensor Networks

▶Aggregation

▶Continuous Queries in Sensor Networks

Data Broadcasting, Caching and Replication in Mobile Computing D 557

D

▶Data Compression in Sensor Networks

▶Data Fusion in Sensor Networks

Recommended Reading
1. Considine J., Li F., Kollios G., and Byers J. Approximate aggre-

gation techniques for sensor databases. In Proc. 20th Int. Conf.

on Data Engineering, 2004, pp. 449–460.

2. Cormode G., Garofalakis M., Muthukrishnan S., and Rastogi R.

Holistic aggregates in a networked world: distributed tracking of

approximate quantiles. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2005, pp. 25–36.

3. Cormode G., Tirthapura S., and Xu B. Time-decaying sketches

for sensor data aggregation. In Proc. ACM Symposium on

Principles of Distributed Computing, 2007, pp. 215–224.

4. Deligiannakis A., Kotidis Y., and Roussopoulos N. Hierarchical

in-network data aggregation with quality guarantees. In

Advances in Database Technology, In Proc. 9th Int. Conf. on

Extending Database Technology, 2004, pp. 658–675.

5. Gandhi S., Hershberger J., and Suri S. Approximate isocontours

and spatial summaries for sensor networks. In Proc. 6th Int.

Symp. Inf. Proc. in Sensor Networks, 2007, pp. 400–409.

6. Gao J., Guibas L.J., Milosavljevic N., and Hershberger J. Sparse

data aggregation in sensor networks. In Proc. 6th Int. Symp. Inf.

Proc. in Sensor Networks, 2007, pp. 430–439.

7. Greenwald M. and Khanna S. Power-conserving computation of

order-statistics over sensor networks. In Proc. 23rd ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2004, pp. 275–285.

8. Hellerstein J.M., Hong W., Madden S., and Stanek K. Beyond

average: toward sophisticated sensing with queries. In Proc. 2nd

Int. Workshop Int. Proc. in Sensor Networks, 2003, pp. 63–79.

9. Intanagonwiwat C., Govindan R., and Estrin D. Directed diffu-

sion: a scalable and robust communication paradigm for sensor

networks. In Proc. 6th Annual Int. Conf. on Mobile Computing

and Networking, 2000, pp. 56–67.

10. Kempe D., Dobra A., and Gehrke J. Gossip-based computation

of aggregate information. In Proc. 44th Annual Symp. on Foun-

dations of Computer Science, 2003, pp. 482–491.

11. Luo H., Y. Liu, and S. Das. Routing correlated data with fusion

cost in wireless sensor networks. IEEE Transactions on Mobile

Computing, 11(5):1620–1632, 2006.

12. Madden S., Franklin M.J., Hellerstein J.M., and Hong W. TAG: a

tiny aggregation service for ad-hoc sensor networks. In Proc. 5th

USENIX Symp. on Operating System Design and Implementa-

tion, 2002.

13. Manjhi A., Nath S., and Gibbons P.B. Tributaries and deltas:

efficient and robust aggregation in sensor network streams. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2005,

pp. 287–298.

14. Nath S., Gibbons P.B., Seshan S., and Anderson Z.R. Synopsis

diffusion for robust aggregation in sensor networks. In Proc. 2nd

Int. Conf. on Embedded Networked Sensor Systems, 2004,

pp. 250–262.

15. Silberstein A., Braynard R., Ellis C., and Munagala K.

A sampling-based approach to optimizing top-k queries in sen-

sor networks. In Proc. 22nd Int. Conf. on Data Engineering,

2006.
16. Silberstein A., Munagala K., and Yang J. Energy-efficient moni-

toring of extreme values in sensor networks. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2006.

17. Xue W., Luo Q., Chen L., and Liu Y. Contour map matching

for event detection in sensor networks. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2006, pp. 145–156.
Data Analysis

▶Data Mining
Data Anomalies

▶Data Conflicts
Data Broadcasting, Caching and
Replication in Mobile Computing

PANOS K. CHRYSANTHIS
1, EVAGGELIA PITOURA

2

1University of Pittsburgh, Pittsburgh, PA, USA
2University of Ioannina, Ioannina, Greece

Synonyms
Data dissemination; Push/pull delivery; Data copy

Definition
Mobile computing devices (such as portable computers

or cellular phones) have the ability to communicate

while moving by being connected to the rest of the

network through a wireless link. There are two general

underlying infrastructures: single-hop and multi-hop

ones. In single-hop infrastructures, each mobile device

communicates with a stationary host, which corre-

sponds to its point of attachment to the wired network.

In multi-hop infrastructures, an ad-hoc wireless net-

work is formed in which mobile hosts participate in

routing messages among each other. In both infrastruc-

tures, the hosts between the source (or sources) and the

requester of data (or data sink) form a dissemination

tree. The hosts (mobile or stationary) that form the

dissemination tree may store data and participate in

computations towards achieving in network processing.

Challenges include [14], (i) intermittent connectivity,

which refers to both short and long periods of network

558D Data Broadcasting, Caching and Replication in Mobile Computing
unavailability, (ii) scarcity of resources, including stor-

age and battery life, and (iii) mobility itself.

To handle these challenges, data items may be

stored locally (cached or replicated) at the requester

or at the intermediate nodes of the dissemination tree.

Cache and replication aim at increasing availability in

the case of network disconnections or host failures as

well as at handling intermittent connectivity. Mobility

introduces additional challenges in maintaining cache

and replica consistency and in replica placement pro-

tocols. Wireless data delivery in both infrastructures

physically supports broadcasting. This broadcast facil-

ity has been used for providing a push-mode of

data dissemination where a server broadcasts data to

a large client population often without an explicit

request from the clients. Issues addressed by related

research include broadcast scheduling and organiza-

tion (i.e., which items to broadcast and in which order),

indexing broadcast data, and update propagation.
Historical Background
Mobile computing can be traced back to file systems

and the need for disconnected operations in the late

1980s. With the rapid growth in mobile technologies

and the cost effectiveness in deploying wireless networks

in the 1990s, the goal of mobile computing was the

support of AAA (anytime, anywhere and any-form)

access to data by users from their portable computers,

mobile phones and other devices with small displays

and limited resources. These advances motivated

research in data management in the early 1990s.
Foundations

Data Broadcasting

Many forms of wireless network infrastructures rely on

broadcast technology to deliver data to large client

populations. As opposed to point-to-point data deliv-

ery, broadcast delivery is scalable, since a single broad-

cast response can potentially satisfy many clients

simultaneously. There are two basic modes of broad-

cast data delivery: pull-based and push-based. With

push-based data delivery, the server sends data to cli-

ents without an explicit request. With pull-based or on-

demand broadcast delivery, data are delivered only

after a specific client request. In general, access to

broadcast data is sequential with clients monitoring

the broadcast channel and retrieving any data items
of interest as they arrive. The smallest access unit of

broadcast data is commonly called a bucket or page.

Scheduling and Organization

A central issue is determining the content of the broad-

cast or broadcast scheduling. Scheduling depends on

whether we have on demand, push or hybrid delivery.

In on-demand broadcast, there is an up-link channel

available to clients to submit requests. The item to be

broadcast next is chosen among those for which there

are pending requests. Common heuristics for on-de-

mand scheduling include First Come First Served and

Longest Wait First [7]. The R � W strategy selects the

data item with the maximal R � W value, where R is

the number of pending requests for an item and W the

amount of time that the oldest pending request for that

item has spent waiting to be served [3]. More recent

schemes extended R �W to consider the semantics of

the requested data and applications such as subsump-

tion properties in data cubes [15]. Push-based broad-

cast scheduling assumes a-priori knowledge of client

access distributions and prepares an off-line schedule.

Push-based data delivery is often periodic. In hybrid

broadcast, the set of items is partitioned, so that some

items are pushed, i.e., broadcast continuously, and

the rest are pulled, i.e., broadcast only after being

requested [2]. Commonly, the partition between push

and pull data is based on popularity with the most

popular items being pushed periodically and the rest

delivered on demand. One problem is that for push

items, there is no way to detect any changes in their

popularity. One solution is to occasionally stop broad-

casting some pushed items. This forces clients to send

explicit requests for them, which can be used to esti-

mate their popularity [16]. An alternative that avoids

flooding of requests requires a percentage of the clients

to submit an explicit request irrespective of whether or

not a data item appears on the broadcast [5].

The organization of the broadcast content is

often called broadcast program. In general, broadcast

organizations can be classified as either flat where each

item is broadcast exactly once or skewed where an item

may appear more than once. One can also distinguish

between clustered organizations, where data items

having the same or similar values at some attribute

appear consecutively, and non-clustered ones, where

there is no such correlation. In skewed organizations,

the broadcast frequency of each item depends on its

popularity. For achieving optimal access latency or

Data Broadcasting, Caching and Replication in Mobile Computing D 559

D

response time, it was shown that (i) the relative number of

appearances of items should be proportional to the square

root of their access probabilities and (ii) successive broad-

casts of the same item should be at equal distances [7]. It

was also shown that the Mean Aggregate Access (MAD)

policy that selects to broadcast next the item whose

access probability � the interval since its last broadcast

is the highest achieves close to optimal response time

[17]. Along these lines, a practical skewed push broad-

cast organization is that of broadcast disks [1]. Items

are assigned to virtual disks with different ‘‘speeds’’

based on their popularity with popular items being

assigned to fast disks. The spin speed of each disk is

simulated by the frequency with which the items

assigned to it are broadcast. For example, the fact

that a disk D1 is three times faster than a disk D2,

means that items assigned to D1 are broadcast

three times as often as those assigned to D2. To achieve

this, each disk is split into smaller equal-sized units

called chunks, where the number of chunks per disk is

inversely proportional to the relative frequence of the

disk. The broadcast program is generated by broad-

casting one chunk from each disk and cycling through

all the chunks sequentially over all the disks.

Indexing

To reduce energy consumption, a mobile device may

switch to doze or sleep mode when inactive. Thus,

research in wireless broadcast also considers reducing

the tuning time defined as the amount of time a mobile

client remains active listening to the broadcast. This is

achieved by including index entries in the broadcast so

that by reading them, the client can determine when to

tune in next to access the actual data of interest. Adding

index entries increases the size of the broadcast and thus

may increase access time. The objective is to develop

methods for allocating index entries together with data

entries on the broadcast channel so that both access and

tuning time are optimized. In (1, m) indexing [18], an

index for all data items is broadcast following every

fraction (1 ∕m) of the broadcast data items. Distributed

indexing [18] improves over this method by instead of

replicating the whole index m times, each index seg-

ment describes only the data items that follow it.

Following the same principles, different indexing

schemes have been proposed that support different

query types or offer different trade-offs between access

and tuning time. Finally, instead of broadcasting an

index, hashing-based techniques have also been applied.
Data Caching and Replication

A mobile computing device (such as a portable com-

puter or cellular phone) is connected to the rest of

the network through a wireless link. Wireless commu-

nication has a double impact on the mobile device

since the limited bandwidth of wireless links increases

the response times for accessing remote data from a

mobile host and transmitting as well as receiving of

data are high energy consumption operations. The

principal goal of caching and replication is to store

appropriate pieces of data locally at the mobile device

so that it can operate on its own data, thus reducing the

need for communication that consumes both energy

and bandwidth. Several cost-based caching policies

along the principles of greedy-dual ones have been

proposed that consider energy cost.

In the case of broadcast push, the broadcast itself

can be viewed as a ‘‘cache in the air.’’ Hence, in contrast

to traditional policies, performance can be improved

by clients caching those items that are accessed fre-

quently by them but are not popular enough among all

clients to be broadcast frequently. For instance, a cost-

based cache replacement policy selects as a victim the

page with the lowest p ∕x value, where p is the local

access probability of the page and x its broadcast fre-

quency [1]. Prefetching can also be performed with

low overhead, since data items are broadcast anyway.

A simple prefetch heuristic evaluates the worth of each

page on the broadcast to determine whether it is more

valuable than some other page in cache and if so, it

swaps the cache page with the broadcast one.

Replication is also deployed to support disconnec-

ted operation that refers to the autonomous operation

of a mobile client, when network connectivity becomes

either unavailable (for instance, due to physical con-

straints), or undesirable (for example, for reducing

power consumption). Preloading or prefetching data

to sustain a forthcoming disconnection is often termed

hoarding. Optimistic approaches to consistency control

are typically deployed that allow data to be accessed

concurrently at multiple sites without a priori synchro-

nization between the sites, potentially resulting in short

term inconsistencies. At some point, operations per-

formed at the mobile device must be synchronized

with operations performed at other sites. Synchroniza-

tion depends on the level at which correctness is sought.

This can be roughly categorized as replica-level correct-

ness and transaction-level correctness. At the replica

level, correctness or coherency requirements are

560D Data Broadcasting, Caching and Replication in Mobile Computing
expressed per item in terms of the allowable divergence

among the values of the copies of each item. At the

transaction level, the strictest form of correctness is

achieved through global serializability that requires

the execution of all transactions running at mobile

and stationary hosts to be equivalent to some serial

execution of the same transactions. With regards to

update propagation with eager replication, all copies

of an item are synchronized within a single transaction,

whereas with lazy replication, transactions for keeping

replica coherent execute as separate, independent data-

base transactions after the original transaction commits.

Common characteristics of protocols for consis-

tency in mobile computing include:

� The propagation of updates performed at the

mobile site follows in general lazy protocols.

� Reads are allowed at the local data, while updates of

local data are tentative in the sense that they need to

be further validated before commitment.

� For integrating operations at the mobile hosts with

transactions at other sites, in the case of replica-

level consistency, copies of each item are reconciled

following some conflict resolution protocol. At the

transaction-level, local transactions are validated

against some application or system level criterion.

If the criterion is met, the transaction is committed.

Otherwise, the execution of the transaction is either

aborted, reconciled or compensated.

Representative approaches along these lines include

isolation-only transactions in Coda, mobile open-nested

transactions [6], two-tier replications [8], two-layer

transactions [10] and Bayou [9].

When local copies are read-only, a central issue

is the design of efficient protocols for disseminating

server updates to mobile clients. A server is called

stateful, if it maintains information about its clients

and the content of their caches and stateless otherwise.

A server may use broadcasting to efficiently propagate

update reports to all of its clients. Such update reports

vary on the type of information they convey to

the clients, for instance, they may include just the

identifiers of the updated items or the updated values

themselves. They may also provide information for

individual items or aggregate information for sets of

items. Update propagation may be either synchronous

or asynchronous. In asynchronous methods, update

reports are broadcast as the updates are performed.

In synchronous methods, the server broadcasts an
update report periodically. A client must listen for the

report first to decide whether its cache is valid or not.

This adds some latency to query processing, however,

each client needs only tune in periodically to read the

report. The efficiency of update dissemination proto-

cols for clients with different connectivity behavior,

such as for workaholics (i.e., often connected clients)

and sleepers (i.e., often disconnected clients), is evalu-

ated in [4].

Finally, in the case of broadcast push-data delivery,

clients may read items from different broadcast pro-

grams. The currency of the set of data items read by

each client can be characterized based on the current

values of the corresponding items at the server and on

the temporal discrepancy among the values of the

items in the set [13]. A more strict notion of correct-

ness may be achieved through transaction-level cor-

rectness by requiring the client read-only transactions

to be serializable with the server transactions. Meth-

ods for doing so include: (i) an invalidation method

[12], where the server broadcasts an invalidation re-

port that includes the data items that have been

updated since the broadcast of the previous report,

and transactions that have read obsolete items are

aborted, (ii) serialization graph testing (SGT) [12],

where the server broadcasts control information related

to conflicting operations, and (iii) multiversion broad-

cast [11], where multiple versions of each item are

broadcast, so that client transactions always read a

consistent database snapshot.

Key Applications
Data broadcasting, caching and replication techniques

are part of the core of any application that requires

data sharing and synchronization among mobile

devices and data servers. Such applications include

vehicle dispatching, object tracking, points of sale

(e.g., ambulance and taxi services, Fedex/UPS), and

collaborative applications (e.g., homecare, video

gaming). They are also part of embedded or light ver-

sions of database management systems that extend en-

terprise applications to mobile devices. These include

among others Sybase Inc.’s SQL Anywhere, IBM’s DB2

Everyplace, Microsoft SQL Server Compact, Oracle9i

Lite and SQL Anywhere Technologies’ Ultralite.

Cross-references
▶Concurrency Control

▶Hash-Based Indexing

Data Cleaning D 561
▶MANET Databases

▶Mobile Database

▶Replicated Database Concurrency Control

▶Transaction Management
D
Recommended Reading
1. Acharya S., Alonso R., Franklin M.J., and Zdonik S.B. Broadcast

disks: data management for asymmetric communications envir-

onments. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1995, pp. 199–210.

2. Acharya S., Franklin M.J., and Zdonik S.B. Balancing push

and pull for data broadcast. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1997, pp. 183–194.

3. Aksoy D. and Franklin M.J. RxW: a scheduling approach for

large scale on-demand broadcast. IEEE/ACM Trans. Netw.,

7(6):846–860, 1999.

4. Barbará D. and Imielinski T. Sleepers and workaholics: caching

strategies in mobile environments. VLDB J., 4(4):567–602, 1995.

5. Beaver J., Chrysanthis P.K., and Pruhs K. To broadcast push or

not and what? In Proc. 7th Int. Conf. on Mobile Data Manage-

ment, 2006, pp. 40–45.

6. Chrysanthis P.K. Transaction processing in a mobile computing

environment. In Proc. IEEE Workshop on Advances in Parallel

and Distributed Systems, 1993, pp. 77–82.

7. Dykeman H.D., Ammar M.H., and Wong J.W. Scheduling algo-

rithms for videotex systems under broadcast delivery. In Proc.

IEEE Int. Conf. on Communications, 1986, pp. 1847–1851.

8. Gray J., Helland P., Neil P.O., and Shasha D. The dangers of

replication and a solution. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1996, pp. 173–182.

9. Petersen K., Spreitzer M., Terry D.B. Theimer M., and

Demers A.J. Flexible update propagation for weakly consistent

replication. In Proc. 16th ACM Symp. on Operating System

Principles, 1997, pp. 288–301.

10. Pitoura E. and Bhargava B. Data consistency in intermittently

connected distributed systems. IEEE Trans. Knowl. Data Eng.,

11(6):896–915, 1999.

11. Pitoura E. and Chrysanthis P.K. Exploiting versions for handling

updates in broadcast disks. In Proc. 25th Int. Conf. on Very

Large Data Bases, 1999, pp. 114–125.

12. Pitoura E. and Chrysanthis P.K. Scalable processing of read-only

transactions in broadcast push. In Proc. 19th Int. Conf. on

Distributed Computing Systems, 1999, pp. 432–439.

13. Pitoura E., Chrysanthis P.K., and Ramamritham K. Character-

izing the temporal and semantic coherency of broadcast-based

data dissemination. In Proc. 9th Int. Conf. on Database Theory,

2003, pp. 410–424.

14. Pitoura E. and Samaras G. Data Management for Mobile

Computing. Kluwer, Boston, USA, 1998.

15. Sharaf MA. and Chrysanthis P.K. On-demand data broadcasting

for mobile decision making. MONET, 9(6):703–714, 2004.

16. Stathatos K., Roussopoulos N., and Baras J.S. Adaptive data

broadcast in hybrid networks. In Proc. 23th Int. Conf. on Very

Large Data Bases, 1997, pp. 326–335.

17. Su C.J, Tassiulas L., and Tsotras V.J. Broadcast scheduling for

information distribution. Wireless Netw., 5(2):137–147, 1999.
18. T I., Viswanathan S., and Badrinath B.R. Data on air:

organization and access. IEEE Trans. Knowl. Data Eng.,

9(3):353–372, 1997.
Data Cache

▶ Processor Cache
Data Cleaning

VENKATESH GANTI

Microsoft Research, Redmond, WA, USA

Definition
Owing to differences in conventions between the exter-

nal sources and the target data warehouse as well as

due to a variety of errors, data from external sources

may not conform to the standards and requirements at

the data warehouse. Therefore, data has to be trans-

formed and cleaned before it is loaded into a data

warehouse so that downstream data analysis is reliable

and accurate. Data Cleaning is the process of standar-

dizing data representation and eliminating errors in

data. The data cleaning process often involves one or

more tasks each of which is important on its own.

Each of these tasks addresses a part of the overall data

cleaning problem. In addition to tasks which focus

on transforming and modifying data, the problem of

diagnosing quality of data in a database is important.

This diagnosis process, often called data profiling, can

usually identify data quality issues and whether or not

the data cleaning process is meeting its goals.

Historical Background
Many business intelligence applications are enabled

by data warehouses. If the quality of data in a data

warehouse is poor, then conclusions drawn from busi-

ness data analysis could also be incorrect. Therefore,

much emphasis is placed on cleaning and maintaining

high quality of data in data warehouses. Consequently,

the area of data cleaning received considerable atten-

tion in the database community. An early survey of

automatic data cleaning techniques can be found in

[14]. Several companies also started developing do-

main-specific data cleaning solutions (especially for

the customer address domain). Over time, several ge-

neric data cleaning techniques have been also been

562D Data Cleaning
developed (e.g., [10,5,15,8,9,1]) and, domain neutral

commercial data cleaning software also started making

its appearance (e.g., [13,11]).

Foundations

Main Data Cleaning Tasks

In this section, the goals of several data cleaning tasks

are introduced informally. The set of tasks mentioned

below consists of those addressing commonly encoun-

tered problems in data cleaning and may not be a

comprehensive list. However, note that most of the

tasks mentioned below are important whether one

wants to clean data at the time of loading a data

warehouse or at the time of querying a database [6].

Column Segmentation Consider a scenario where a

customer relation is being imported to add new

records to a target customer relation. Suppose the

address information in the target relation is split into

its constituent attributes [street address, city, state, and

zip code] while in the source relation they are all

concatenated into one attribute. Before the records

from the source relation could be inserted in the target

relation, it is essential to segment each address value in

the source relation to identity the attribute values at

the target. The goal of a column segmentation task is to

split an incoming string into segments, each of which

may be inserted as attribute values at the target. A

significant challenge to be addressed by this task is to

efficiently match sub-strings of an input string with

patterns such as regular expressions and with members

of potentially large reference tables in order to identify

values for target attributes. Note that, in general data

integration may involve more complex schema transfor-

mations than achieved by the column segmentation task.

Record Matching Consider a scenario where a new

batch of customer records is being imported into a

sales database. In this scenario, it is important to verify

whether or not the same customer is represented in

both the existing as well as the incoming sets and only

retain one record in the final result. Due to representa-

tional differences and errors, records in both batches

could be different and may not match exactly on their

key attributes (e.g., name and address or the Custo-

merId). The goal of a record matching task is to identify

record pairs, one in each of two input relations, which

correspond to the same real world entity. Challenges
to be addressed in this task include (i) identification

of criteria under which two records represent the same

real world entity, and (ii) efficient computation strate-

gies to determine such pairs over large input relations.

Deduplication Consider a scenario where one obtains

a set of customer records or product records from an

external (perhaps low quality) data source. This set

may contain multiple records representing the same

real world (customer or product) entity. It is important

to ‘‘merge’’ records representing the same entity into

one record in the final result. The goal of a deduplica-

tion task is to partition a relation into disjoint sets of

records such that each group consists of records which

represent the same real world entity. Deduplication

may (internally) rely on a record matching task but

the additional responsibility of further grouping

records based on pairwise matches introduces new

challenges. The output of record matching may not

be transitively closed. For instance, a record matching

task comparing record pairs in a relation may output

pairs (r1, r2) and (r2, r3) as matches, but not (r1, r3).

Then, the problem of deriving a partitioning that

respects the pairwise information returned by record

matching is solved by deduplication.

Data Standardization Consider a scenario where a

relation contains several customer records with miss-

ing zip code or state values, or improperly formatted

street address strings. In such cases, it is important to

fill in missing values and adjust, where possible,

the format of the address strings so as to return correct

results for analysis queries. For instance, if a business

analyst wants to understand the number of customers

for a specific product by zip code, it is important for

all customer records to have correct zip code values.

The task of improving the quality of information

within a database is often called data standardization.

Similar tasks also occur in various other domains such

as product catalog databases. The data standardiza-

tion task may also improve the effectiveness of record

matching and deduplication tasks.

Data Profiling The process of cleansing data is often an

iterative and continuous process. It is important to

‘‘evaluate’’ quality of data in a database before one initi-

ates data cleansing process, and subsequently assesses its

success. The process of evaluating data quality is called

data profiling, and typically involves gathering several

Data Cleaning D 563

D

aggregate data statistics which constitute the data pro-

file, and ensuring that the values match up with expec-

tations. For example, one may expect the customer

name and address columns together to uniquely deter-

mine each customer record in a Customer relation. In

such a case, the number of unique [name, address]

values must be close to that of the total number of

records in the Customer relation. Note that a large

subset of elements of a data profile may each be

obtained using one or more SQL queries. However,

because all the elements of a data profile are computed

together, there is an opportunity for a more efficient

computation strategy. Further, the data profile of a

database may also consist of elements which may not

easily be computed using SQL queries.

Besides the set of data cleaning tasks mentioned

above, other data cleaning tasks such as filling in miss-

ing values, identifying incorrect attribute values and

then automatically correcting them based on known

attribute value distributions are also important for

applications such as cleaning census data.

Data Cleaning Platforms

The above requirements for a variety of data cleaning

tasks have led to the development of utilities that

support data transformation and cleaning. Such soft-

ware falls into two broad categories:

Vertical Solutions: The first category consists of

verticals such as Trillium [15] that provide data clean-

ing functionality for specific domains, e.g., addresses.

Since they understand the domain where the vertical is

being applied, they can fine tune their software for the

given domain. However, by design, these are not ge-

neric and hence cannot be applied to other domains.

Horizontal Platforms: The other approach of

building data cleaning software is to define and imple-

ment basic data cleaning operators. The broad goal

here is to define a set of domain neutral operators,

which can significantly reduce the load of developing

common data cleaning tasks such as those outlined

above. An example of such a basic operator is the set

similarity join which may be used for identifying

pairs of highly similar records across two relations

(e.g., [16,4]). The advantage is that custom solutions

for a variety of data cleaning tasks may now be devel-

oped for specialized domains by composing one or

more of these basic operators along with other (stan-

dard or custom) operators. These basic operators do

the heavy lifting and thus make the job of developing
data cleaning programs easier. Examples of such plat-

forms include AJAX [7,8] and Data Debugger [3].

The above mentioned data cleaning operators may

then be included in database platforms so as to enable

programmers to easily develop custom data cleaning

solutions. For instance, ETL (extract-transform-load)

tools such as Microsoft SQL Server Integration Ser-

vices (SSIS) [13] and IBM Websphere Information

Integration [11] that can be characterized as ‘‘horizon-

tal’’ platforms. These platforms are applicable across a

variety of domains, and provide a set of composable

operators (e.g., relational operators) enabling users to

build programs involving these operators. Further,

these platforms also allow users to build their own

custom operators which may then be used in these

programs. Hence, such ETL platforms provide a great

vehicle to include core data cleaning operators.

Key Applications
Data cleaning technology is critical for several infor-

mation technology initiatives (such as data warehous-

ing and business intelligence) which consolidate,

organize, and analyze structured data. Accurate data

cleaning processes are typically employed during data

warehouse construction and maintenance to ensure

that subsequent business intelligence applications

yield accurate results.

A significant amount of recent work has been focus-

ing on extracting structured information from docu-

ments to enable structured querying and analysis over

document collections [2,12]. Invariably, the extracted

data is unclean and many data cleaning tasks discussed

above are applicable in this context as well.
Cross-references
▶Column segmentation

▶Constraint-driven database repair

▶Data deduplication

▶Data profiling

▶Record matching

▶ Similarity functions for data cleaning
Recommended Reading
1. Borkar V. Deshmukh V. and Sarawagi S. Automatic segmen-

tation of text into structured records. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2001.

2. Cafarella M.J. Re C. Suciu D. Etzioni O. and Banko M.

Structured querying of the web text. In Proc. 3rd Biennial

Conf. on Innovative Data systems Research, 2007.

564D Data Collection
3. Chaudhuri S. Ganti V. and Kaushik. R. Data debugger: an

operator-centric approach for data quality solutions. IEEE

Data Eng. Bull., 2006.

4. Chaudhuri S. Ganti V. and Kaushik. R. A primitive operator

for similarity joins in data cleaning. In Proc. 22nd Int. Conf. on

Data Engineering, 2006.

5. Cohen. W. Integration of heterogeneous databases without

common domains using queries based on textual similarity. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1998.

6. Fuxman A. Fazli E. and Miller. R.J. Conquer: efficient

management of inconsistent databases. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2005.

7. Galhardas H. Florescu D. Shasha D. and Simon. E. An extensible

framework for data cleaning. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1999.

8. Galhardas H. Florescu D. Shasha D. Simon E. and Saita. C.

Declarative data cleaning: language, model, and algorithms. In

Proc. 27th Int. Conf. on Very Large Data Bases, 2001.

9. Gravano L. Ipeirotis P.G. Jagadish H.V. Koudas N.

Muthukrishnan S. and Srivastava. D. Approximate string joins

in a database (almost) for free. In Proc. 27th Int. Conf. on Very

Large Data Bases, 2001.

10. Hernandez. M. and Stolfo. S. The merge/purge problem for

large databases. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1995.

11. IBMWebsphere information integration. http://ibm.ascential.com.

12. Ipeirotis P.G. Agichtein E. Jain P. and Gravano. L. To search or to

crawl? towards a query optimizer for text-centric tasks. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2006.

13. Microsoft SQL Server 2005 integration services.

14. Rahm E. and Do. H.H. Data cleaning: problems and current

approaches. IEEE Data Engineering Bulletin, 2000.

15. Raman V. and Hellerstein. J. An interactive framework for data

cleaning. Technical report, University of California, Berkeley, 2000.

16. Sarawagi S. and Kirpal. A. Efficient set joins on similarity

predicates. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 2004.

17. Trillium Software. www.trilliumsoft.com/trilliumsoft.nsf.
Data Collection

▶Data Acquisition and Dissemination in Sensor

Networks
Data Compression in Sensor
Networks

AMOL DESHPANDE

University of Maryland, College Park, MD, USA

Synonyms
Distributed source coding; Correlated data collection;

Data suppression
Definition
Data compression issues arise in a sensor network

when designing protocols for efficiently collecting all

data observed by the sensor nodes at an Internet-

connected base station. More formally, let Xi denote

an attribute being observed by a node in the sensor

network – Xi may be an environmental property being

sensed by the node (e.g., temperature), or it may be

the result of an operation on the sensed values (e.g., in

an anomaly-detection application, the sensor node

may continuously evaluate a filter such as ‘‘temperature

> 100’’ on the observed values). The goal is to design

an energy-efficient protocol to periodically collect

the observed values of all such attributes (denoted

X1,...,Xn) at the base station, at a frequency specified

by the user. In many cases, a bounded-error approxi-

mation might be acceptable, ie., the reported values

may only be required to be within � 2 of the observed

values, for a given 2. The typical optimization metric is

the total energy expended during the data collection

process, commonly approximated by the total commu-

nication cost. However, metrics such as minimizing the

maximum energy consumption across all nodes or

maximizing the lifetime of the sensor network may

also be appropriate in some settings.

Key Points
The key issue in designing data collection protocols is

modeling and exploiting the strong spatio-temporal

correlations present in most sensor networks. Let Xi
t

be a random variable that denotes the value of Xi

at time t (assuming time is discrete), and let H(Xi
t)

denote the information entropy of Xi
t. In most sensor

network deployments, especially in environmental

monitoring applications, the data generated by the

sensor nodes is typically highly correlated both

in time and in space — in other words, H(Xi
t+1jXi

t)

� H(Xi
t+1), and H(X1

t,...,Xn
t) � H(X1

t) + ... H(Xn
t).

These correlations can usually be captured quite easily

by constructing predictive models using either prior

domain knowledge or historical data traces. However,

because of the distributed nature of data generation in

sensor networks, and the resource-constrained nature

of sensor nodes, traditional data compression techni-

ques cannot be easily adapted to exploit such

correlations.

The distributed nature of data generation has been

well-studied in the literature under the name of

Distributed Source Coding, whose foundations were

Data Conflicts D 565

D

laid almost 35 years ago by Slepian and Wolf [6]. Their

seminal work proves that it is theoretically possible to

encode the correlated information generated by

distributed data sources at the rate of their

joint entropy even if the data sources do not communi-

cate with each other. However this result is non-

constructive, and constructive techniques are known

only for a few specific distributions [4]. More impor-

tantly, these techniques require precise and perfect

knowledge of the correlations. This may not be accept-

able in practical sensor networks, where deviations

from the modeled correlations must be captured accu-

rately. Pattem et al. [3] and Chu et al. [2], among

others, propose practical data collection protocols

that exploit the spatio-temporal correlations while

guaranteeing correctness. However, these protocols

may exploit only some of the correlations, and further

require the sensor nodes to communicate with each

other (thus increasing the overall cost).

In many cases, it may not be feasible to construct a

predictive model over the sensor network attributes, as

required by the above approach, because of mobility,

high failure rates or inherently unpredictable nature of

the monitored phenomena. Suppression-based proto-

cols, that monitor local constraints and report to the

base station only when the constraints are violated,

may be used instead in such scenarios [5].

Sensor networks, especially wireless sensor net-

works, exhibit other significant peculiarities that

make the data collection problem challenging. First,

sensor nodes are typically computationally constrained

and have limited memories. As a result, it may not be

feasible to run sophisticated data compression algo-

rithms on them.

Second, the communication in wireless sensor net-

works is typically done in a broadcast manner – when a

node transmits a message, all nodes within the radio

range can receive the message. This enables many opti-

mizations that would not be possible in a one-to-one

communication model.

Third, sensor networks typically exhibit an extreme

asymmetry in the computation and communication

capabilities of the sensor nodes compared to the base

station. This motivates the design of pull-based data

collection techniques where the base station takes an

active role in the process. Adler [1] proposes such a

technique for a one-hop sensor network. The proposed

algorithm achieves the information-theoretical lower

bound on the number of bits sent by the sensor nodes,
while at the same time offloading most of the compute-

intensive work to the base station. However, the number

of bits received by the sensor nodes may be very high.

Finally, sensor networks typically exhibit high mes-

sage loss and sensor failure rates. Designing robust and

fault-tolerant protocols with provable guarantees is a

challenge in such an environment.

Cross-references
▶Continuous Queries in Sensor Networks

▶Data Aggregation in Sensor Networks

▶Data Fusion in Sensor Networks

▶ In-Network Query Processing

▶Model-based Querying in Sensor Networks

Recommended Reading
1. Adler M. Collecting correlated information from a sensor net-

work. In Proc. 16th Annual ACM -SIAM Symp. on Discrete

Algorithms, 2005.

2. Chu D., Deshpande A., Hellerstein J., and HongW. Approximate

data collection in sensor networks using probabilistic models. In

Proc. 22nd Int. Conf. on Data Engineering, 2006.

3. Pattem S., Krishnamachari B., and Govindan R. The impact of

spatial correlation on routing with compression in wireless sen-

sor networks. In Proc. 3rd Int. Symp. Inf. Proc. in Sensor Net-

works, 2004.

4. Pradhan S. and Ramchandran K. Distributed source coding

using syndromes (DISCUS): Design and construction. IEEE

Trans. Inform. Theory, 49(3), 2003.

5. Silberstein A., Puggioni G., Gelfand A., Munagala K., and Yang J.

Making sense of suppressions and failures in sensor data: a

Bayesian approach. In Proc. 33rd Int. Conf. on Very Large

Data Bases, 2007.

6. Slepian D. and Wolf J. Noiseless coding of correlated informa-

tion sources. IEEE Trans. Inform. Theory, 19(4), 1973.
Data Confidentiality

▶ Security Services
Data Conflicts

HONG-HAI DO

SAP AG, Dresden, Germany

Synonyms
Data problems; Data quality problems; Data anoma-

lies; Data inconsistencies; Data errors

566D Data Conflicts
Definition
Data conflicts are deviations between data intended to

capture the same state of a real-world entity. Data with

conflicts are often called ‘‘dirty’’ data and can mislead

analysis performed on it. In case of data conflicts, data

cleaning is needed in order to improve the data quality

and to avoid wrong analysis results. With an under-

standing of different kinds of data conflicts and their

characteristics, corresponding techniques for data

cleaning can be developed.

Historical Background
Statisticians were probably the first who had to face

data conflicts on a large scale. Early applications, which

needed intensive resolution of data conflicts, were sta-

tistical surveys in the areas of governmental adminis-

tration, public health, and scientific experiments. In

1946, Halbert L. Dunn already observed the problem of

duplicates in data records of a person’s life captured at

different places [3]. He introduced the term Record

Linkage to denote the process to resolve the problem,

i.e., to obtain and link all unique data records to a

consistent view on the person. In 1969, Fellegi and

Sunter provided a formal mathematical model for the

problem and thereby laid down the theoretical foun-

dation for numerous record linkage applications de-

veloped later on [5].

Soon it became clear that record linkage is only the

tip of the iceberg of the various problems, such as

wrong, missing, inaccurate, and contradicting data,

which makes it difficult for humans and applications

to obtain a consistent view on real-world entities. In

the late 1980s, computer scientists began to systemati-

cally investigate all problems related to data quality,
Data Conflicts. Figure 1. Examples of multi-source problem
increasingly from a practical perspective in the context

of business applications. This was essentially pushed by

the need to integrate data from heterogeneous sources

for business decision making and by the emergence

of enterprise data warehouses at the beginning of the

1990s. To date, various research approaches and com-

mercial tools have been developed to deal with the

different kinds of data conflicts and to improve data

quality [1,2,4,7].

Foundations

Classification of Data Conflicts

As shown in Fig. 1, data conflicts can be classified

according to the following criteria:

� Single-source versusmulti-source: Data conflicts can

occur among data within a single source or between

different sources.

� Schema-level versus instance-level: Schema-level

conflicts are caused by the design of the data

schemas. Instance-level conflicts, on the other

hand, refer to problems and inconsistencies in the

actual data contents, which are not visible at the

schema level.

Figure 1 also shows typical data conflicts for the vari-

ous cases. While not shown, the single-source conflicts

occur (with increased likelihood) in the multi-source

case, too, besides specific multi-source conflicts.

Single-Source Data Conflicts The data quality of a

source largely depends on the degree to which it is gov-

erned by schema and integrity constraints controlling

permissible data values. For sources without a schema,
s at schema and instance level.

Data Conflicts D 567

D

such as files, there are few restrictions onwhat data can be

entered and stored, giving rise to a high probability of

errors and inconsistencies. Database systems, on the

other hand, enforce restrictions of a specific data model

(e.g., the relational approach requires simple attribute

values, referential integrity, etc.) as well as application-

specific integrity constraints. Schema-related data quality

problems thus occur because of the lack of appropri-

ate model-specific or application-specific integrity con-

straints, e.g., due to data model limitations or poor

schema design, or because only a few integrity constraints

were defined to limit the overhead for integrity control.

Instance-specific problems are related to errors and

inconsistencies that cannot be prevented at the schema

level (e.g., misspellings).

Both schema- and instance-level conflicts can be

further differentiated according to the different prob-

lem scopes attribute, record, record type, and source. In

particular, a data conflict can occur within an individ-

ual attribute value (attribute), between attributes of

a record (record), between records of a record type

(record type), and between records of different record

types (source). Examples of data conflicts in each prob-

lem scope are shown and explained in Tables 1 and 2

for the schema and instance level, respectively. Note

that uniqueness constraints specified at the schema

level do not prevent duplicated instances, e.g., if infor-

mation on the same real world entity is entered twice

with different attribute values (see examples in

Table 2).

Multi-Source Data Conflicts The problems present in

single sources are aggravated when multiple sources

need to be integrated. Each source may contain dirty

data and the data in the sources may be represented

differently, may overlap, or contradict. This is because
Data Conflicts. Table 1. Examples for single-source problem

Scope Type of conflict Dirty d

Attribute Illegal values birthdate = 13/30/1970

Record Violated attribute
dependencies

city = ‘‘Redmond,’’ zip = 7777

Record
type

Uniqueness
violation

emp1 = (name = ‘‘John Smith,
emp2 = (name = ‘‘Peter Miller,

Source Referential
integrity violation

emp = (name = ‘‘John Smith,’’
the sources are typically developed, deployed and main-

tained independently to serve specific needs. This results

in a large degree of heterogeneity with respect to data-

basemanagement systems, datamodels, schema designs,

and the actual data.

At the schema level, data model and schema design

differences are to be addressed by the steps of schema

translation and schema integration, respectively. The

main problems with respect to schema design are

naming and structural conflicts. Naming conflicts

arise when the same name is used for different objects

(homonyms) or different names are used for the same

object (synonyms). Structural conflicts occur in many

variations and refer to different representations of the

same object in different sources, e.g., attribute versus

table representation, different component structure,

different data types, different integrity constraints, etc.

In addition to schema-level conflicts, many con-

flicts appear only at the instance level. All problems

from the single-source case can occur with different

representations in different sources (e.g., duplicated

records, contradicting records). Furthermore, even

when there are the same attribute names and data

types, there may be different value representations

(e.g., M/F vs. Male/Female for marital status) or differ-

ent interpretation of the values (e.g., measurement

units Dollar vs. Euro) across sources. Moreover, infor-

mation in the sources may be provided at different

aggregation levels (e.g., sales per product vs. sales per

product group) or refer to different points in time

(e.g., current sales as of yesterday for Source 1 vs. as

of last week for Source 2).

A main problem for cleaning data from multiple

sources is to identify overlapping data, in particular

matching records referring to the same real-world

entity (e.g., a particular customer). This problem is
s at schema level (violated integrity constraints)

ata Reasons/Remarks

Values outside of domain
range

7 City and zip code should
correspond

’’ SSN = ‘‘123456’’),
’’ SSN = ‘‘123456’’)

Uniqueness for SSN (social
security number) violated

deptno = 127) Referenced department (127)
not defined

Data Conflicts. Table 2. Examples for single-source problems at instance level

Scope Type of conflict Dirty data Reasons/Remarks

Attribute Missing values phone = 9999–999999 Unavailable values during data
entry (dummy values or null)

Misspellings city = ‘‘London’’ Usually typos, phonetic errors

Cryptic values,
Abbreviations

experience = ‘‘B’’; occupation = ‘‘DB Prog.’’ Use of code lists

Embedded
values

name = ‘‘J. Smith 02/12/70 New York’’ Multiple values entered in one
attribute (e.g., in a free-form field)

Misfielded
values

city = ‘‘Germany’’ City field contains value of
country field

Record Violated
attribute
dependencies

city = ‘‘Redmond,’’ zip = 77777 City and zip code should
correspond

Record
type

Word
transpositions

name1 = ‘‘J. Smith,’’ name2 = ‘‘Miller P.’’ Usually in a free-form field

Duplicated
records

emp1 = (name = ‘‘John Smith,’’ . . .);
emp2 = (name = ‘‘J. Smith,’’ . . .)

Same employee represented
twice due to some data entry
errors

Contradicting
records

emp1 = (name = ‘‘John Smith,’’ bdate = 02/12/70);
emp2 = (name = ‘‘John Smith,’’ bdate = 12/12/70)

The same real world entity is
described by different values

Source Wrong
references

emp = (name = ‘‘John Smith,’’ deptno = 17) Referenced department (17) is
defined but wrong

568D Data Conflicts
also referred to as the record linkage problem, the

object identity problem, or the deduplication problem.

Frequently, the information is only partially redundant

and the sources may complement each other by

providing additional information about an entity.

Thus duplicate information should be purged and

complementing information should be consolidated

and merged in order to achieve a consistent view of

real-world entities.

The two relational sources, Source 1 and Source 2,

in the example of Fig. 2 exhibit several kinds of con-

flicts. At the schema level, there are name conflicts

(synonyms Customer vs. Client, CID vs. Cno, Sex vs.

Gender) and structural conflicts (different structures

for names Name vs. {LastName, FirstName}, and for

addresses {Street, City, Zip} vs. Address). At the in-

stance level, one can see that there are different gender

representations (‘‘0’’/‘‘1’’ vs. ‘‘F ’’/‘‘M ’’) and presum-

ably a duplicate record (Kristen Smith). The latter

observation also reveals that while CID and Cno are

both source-specific identifiers, their contents are not

comparable between the sources; different numbers

(‘‘11,’’ ‘‘49’’) refer to the same person while different

persons have the same number (‘‘24’’).
Dealing with Data Conflicts

Data conflicts can be dealt with in a preventive and/or

corrective way. As resolving existing data conflicts is

generally an expensive task, preventing dirty data to be

entered is promising to ensure a high data quality. This

requires appropriate design of the database schema

with corresponding integrity constraints and strict en-

forcement of the constraints in the databases and data

entry applications. For most applications, however, a

corrective strategy, i.e., data cleaning (a.k.a. cleansing

or scrubbing), is needed in order to remove conflicts

from given data and make it suitable for analysis.

Typically, this process involves thorough analysis of

the data to detect conflicts and transformation of the

data to resolve the identified conflicts.

Key Applications

Data Warehousing

Data warehousing aims at a consolidated and consistent

view of enterprise data for business decision making.

Transactional and non-transactional data from a variety

of sources is aggregated and structured typically in a

multidimensional schema to effectively support dynamic

Data Conflicts. Figure 2. Classification of data conflicts in data sources.

Data Corruption D 569

D

querying and reporting, such as Online Analytical Pro-

cessing (OLAP). As multiple data sources are considered,

the probability that some of the sources contain

conflicting data is high. Furthermore, the correctness of

the integrated data is vital to avoid wrong conclusions.

Due to the wide range of possible data inconsistencies

and the sheer data volume, data cleaning is one of the

biggest problems for data warehousing. Data conflicts

need to be detected and resolved during the so-called

ETL process (Extraction, Transformation, and Load),

when source data is integrated from corresponding

sources and stored into the data warehouse.

Data Mining

Data mining, or knowledge discovery, is the analysis of

large data sets to extract new and useful information.

Developed algorithms utilize a number of techniques,

such as data visualization (charts, graphs), statistics

(summarization, regression, clustering), and artificial

intelligence techniques (classification, machine learning,

and neural networks). As relevant data typically needs

to be integrated from different sources, data warehous-

ing represents a promising way to build a suitable data

basis for data mining. However, due to performance

reasons on large data sets, specialized data mining algo-

rithms often operate directly on structured files. In

either case, resolving data conflicts to obtain correct

data is crucial for the success of data mining. On the

other hand, the powerful data mining algorithms can

also be utilized to analyze dirty data and discover

data conflicts.
Cross-references
▶Data Cleaning

▶Data Quality

▶Duplicate Detection
Recommended Reading
1. Barateiro J. and Galhardas H. A survey of data quality tools.

Datenbank-Spektrum, 14:15–21, 2005.

2. Batini C. and Scannapieco M. Data Quality – Concepts, Meth-

odologies and Techniques. Springer, Berlin, 2006.

3. Dunn H.L. Record linkage. Am. J. Public Health,

36(12):1412–1416, 1946.

4. Elmagarmid A.K., Ipeirotis P.G., and Verykios V.S. Duplicate

record detection – a survey. IEEE Trans. Knowl. Data Eng.,

19(1):1–16, 2007.

5. Fellegi I.P. and Sunter A.B. A theory for record linkage. J. Am.

Stat. Assoc., 64(328):1183–1210, 1969.

6. Kim W., Choi B.-J., Kim S.-K., and Lee D. A taxonomy of dirty

data. Data Mining Knowl. Discov., 7(1):81–99, 2003.

7. Rahm E. and Do H.-H. Data cleaning – problems and current

approaches. IEEE Techn. Bull. Data Eng., 23(4):3–13, 2000.
Data Copy

▶Data broadcasting, caching and replication
Data Corruption

▶ Storage Security

570D Data Deduplication
Data Deduplication

▶Record Matching
Data Dependency

▶Database Dependencies
Data Dictionary

JAMES CAVERLEE

Texas A&M University, College Station, TX, USA

Synonyms
System catalog; Metadata repository

Definition
A data dictionary catalogs the definitions of data ele-

ments, data types, data flows and other conventions that

are used in an information system. Data dictionaries

have been widely adopted by both (i) the database com-

munity, where a dictionary typically describes database

entities, schemas, permissions, etc.; and (ii) the software

development community, where a dictionary typically

describes flows of information through the system. In

essence, a data dictionary is a virtual database of meta-

data about an information system itself. A data dictio-

nary may also be referred to as a ‘‘system catalog.’’

Key Points
Understanding and managing an information system –

both from a design and from an implementation

point-of-view – requires some documentation of the

schema, capabilities, constraints, and other descriptive

features of the system. This documentation is typically

embodied by a data dictionary – that is, a repository of

information for an information system that describes

the entities represented as data, including their attri-

butes and the relationships between them [3].

The importance of a systematic way to store and

manage the metadata associated with an information

system has been well known since the earliest days of

database and large-scale systems development. By the

time the relational model was garnering attention in

the 1970s, metadata management via a system catalog
was a standard feature in database management sys-

tems (DBMSs) like System R [1] and INGRES [5].

Around the same time, the structured analysis ap-

proach for large-scale systems development also advo-

cated for the use of a data dictionary [2].

The phrase data dictionary has two closely related

meanings: (i) as documentation primarily for consump-

tion by human users, administrators, and designers; and

(ii) as a mini-database managed by a DBMS and tightly

coupled with the software components of the DBMS.

In the first meaning, a data dictionary is a docu-

ment (or collection of documents) that provides a

conceptual view of the structure of an information

system for those developing, using, and maintaining

the system. In this first meaning, a data dictionary

serves to document the system design process, to iden-

tify the important characteristics of the system (e.g.,

schemas, constraints, data flows), and to provide the

designers, users, and administrators of the system a

central metadata repository [6]. A data dictionary can

provide the names of tables and fields, types for data

attributes, encoding information, and further details of

an overall structure and usage. The owner of a database

or database administrator (DBA) might provide it as a

book or a document with additional descriptions and

diagrams, or as generated documentation derived from

a database. Database users and application developers

then benefit from the data dictionary as an accepted

reference, though this hardcopy version is not always

provided nor required.

In the second meaning, a data dictionary is a mini-

database tightly coupled and managed by an informa-

tion system (typically a DBMS) for supporting query

optimization, transaction processing, and other typical

features of a DBMS. When used in this sense, a data

dictionary is often referred to as a catalog or as a system

catalog. As a software component of a database or a

DBMS, a data dictionary makes up all the metadata and

additional functions needed for a database manipulation

language (DML) to select, insert, and generally operate on

data. A database user will do this in conjunction with a

high-level programming language or from a textual or

graphical user interface (GUI). The data dictionary for a

database or DBMS typically has these elements:

� Descriptions of tables and fields

� Permissions information, such as usernames and

privileges

� How data is indexed

Data Encryption D 571

D

� Referential integrity constraints

� Definitions for database schemas

� Storage allocation parameters

� Usage statistics

� Stored procedures and database triggers

For an example, a developer unfamiliar with what

tables are available within a database could query the

virtual INFORMATION_SCHEMA database, which

serves as the data dictionary for MySQL databases [4].

Besides this low-level version of a data dictionary,

some software frameworks add another layer of abstrac-

tion to create a high-level data dictionary as well. This

layer can reduce development time by providing features

not supported at the lower level, such as alternative

database scheme models. One example is Object-

Relational Mapping (ORM), which seeks to map the

data types created in the Object-Oriented Programming

(OOP) paradigm to a relational database.

Cross-references
▶Metadata

▶Metadata Repository

Recommended Reading
1. Astrahan M. et al. (1979) System R: a relational data base

management system. IEEE Comput. 12(5):42–48, 1979.

2. Demarco T. Structured Analysis and System Specification.

Yourdon, 1978.

3. Elmasri R. and Navathe S. Fundamentals of database systems.

Addison-Wesley, Reading, MA, 2000.

4. MySQL MySQL 5.0 Reference Manual, 2008.

5. Stonebraker M., Wong E., Kreps P., and Held G. The design

and implementation of INGRES. ACM Trans. Database Syst.,

1(3):189–222, 1976.

6. Yourdon E. Modern Structured Analysis. Yourdon, 1989.
Data Dissemination

▶Data broadcasting, caching and replication
Data Encryption

NINGHUI LI

Purdue University, West Lafayette, IN, USA

Synonyms
Encryption; Cipher
Definition
Data encryption is the process of transforming data

(referred to as plaintext) to make it unreadable except

to those possessing some secret knowledge, usually

referred to as a key. The result of the process

is encrypted data (referred to as ciphertext). Data

encryption aims at preserving confidentiality of mes-

sages. The reverse process of deriving the plaintext

from the ciphertext (using the key) is known as de-

cryption. A cipher is a pair of algorithms which per-

form encryption and decryption. The study of data

encryption is part of cryptography. The study of

how to break ciphers, i.e., to obtaining the meaning

of encrypted information without access to the key, is

called cryptanalysis.

Historical Background
Encryption has been used to protect communications

since ancient times by militaries and governments to

facilitate secret communication. The earliest known

usages of cryptography include a tool called Scytale,

which was used by the Greeks as early as the seventh

century BC, and the Caesar cipher, which was used by

Julius Caesar in the first century B.C.

The main classical cipher types are transposition

ciphers, which rearrange the order of letters in a message,

and substitution ciphers, which systematically replace

letters or groups of letters with other letters or groups

of letters. Ciphertexts produced by classical ciphers al-

ways reveal statistical information about the plaintext.

Frequent analysis can be used to break classical ciphers.

Early in the twentieth century, several mechanical

encryption/decryption devices were invented, includ-

ing rotor machines – most famously the Enigma ma-

chine used by Germany in World War II. Mechanical

encryption devices, and successful attacks on them,

played a vital role in World War II.

Cryptography entered modern age in the 1970s,

marked by two important events: the introduction of

the U.S. Data Encryption Standard and the invention

of public key cryptography. The development of digital

computers made possible much more complex ciphers.

At the same time, computers have also assisted crypt-

analysis. Nonetheless, good modern ciphers have stayed

ahead of cryptanalysis; it is usually the case that use of a

quality cipher is very efficient (i.e., fast and requiring few

resources), while breaking it requires an effort many

orders of magnitude larger, making cryptanalysis so

inefficient and impractical as to be effectively impossible.

572D Data Encryption
Today, strong encryption is no longer limited to se-

cretive government agencies. Encryption is now widely

used by the financial industry to protectmoney transfers,

by merchants to protect credit-card information in elec-

tronic commerce, by corporations to secure sensitive

communications of proprietary information, and by citi-

zens to protect their private data and communications.

Foundations
Data encryption can be either secret-key based or pub-

lic-key based. In secret-key encryption (also known as

symmetric encryption), a single key is used for both

encryption and decryption. In public-key encryption

(also known as asymmetric encryption), the encryption

key (also called the public key) and the corresponding

decryption key (also called the private key) are different.

Modern symmetric encryption algorithms are often

classified into stream ciphers and block ciphers.

Stream Ciphers

In a stream cipher, the key is used to generate a pseu-

do-random key stream, and the ciphertext is computed

by using a simple operation (e.g., bit-by-bit XOR or

byte-by-byte modular addition) to combine the plain-

text bits and the key stream bits. Mathematically, a

stream cipher is a function f :{0,1}‘ !{0,1}m, where

‘ is the key size, and m determines the length of the

longest message that can be encrypted under one key;

m is typically much larger than ‘. To encrypt a message

x using a key k, one computes c = f(k) ⊕ x, where ⊕
denote bit-by-bit XOR. To decrypt a ciphertext c using

key k, one computes f(k) ⊕ c.

Many stream ciphers implemented in hardware

are constructed using linear feedback shift registers

(LFSRs). The use of LFSRs on their own, however,

is insufficient to provide good security. Additional var-

iations and enhancements are needed to increase the

security of LFSRs.

The most widely-used software stream cipher is

RC4. It was designed by Ron Rivest of RSA Security

in 1987. It is used in popular protocols such as Secure

Sockets Layer (SSL) (to protect Internet traffic) and

WEP (to secure wireless networks).

Stream ciphers typically execute at a higher speed

than block ciphers and have lower hardware complexity.

However, stream ciphers can be susceptible to serious

security problems if used incorrectly; in particular, the

same starting state (i.e., the same generated key stream)

must never be used twice.
Block Ciphers

A block cipher operates on large blocks of bits, often

64 or 128 bits. Mathematically, a block cipher is a

pair of functions E : f0; 1g‘ � f0; 1gn ! f0; 1gn and

D : f0; 1g‘ � f0; 1gn ! f0; 1gn, where ‘ is the key size
and n is the block size. To encrypt a message x using

key k, one calculates Eðk; xÞ, which is often written

as Ek½x�. To decrypt a ciphertext c using key k, one

calculates Dðk; cÞ, often written as Dk½c�. The pair E
and D must satisfy

8k 2 f0; 1g‘ 8x 2 f0; 1gn Dk½Ek½x�� ¼ x:

The two most widely used block ciphers are the Data

Encryption Standard (DES) and the Advanced Encryp-

tion Standard (AES).

DES is a block cipher selected as Federal Informa-

tion Processing Standard for the United States in 1976.

It has subsequently enjoyed widespread use interna-

tionally. The block size of DES is 64 bits, and the key

size 56 bits. The main weakness of DES is its short key

size, which makes it vulnerable to bruteforce attacks

that try all possible keys.

One way to overcome the short key size of DES is to

use Triple DES (3DES), which encrypts a 64-bit block

by running DES three times using three DES keys.

More specifically, let ðE;DÞ be the pair of encryption

and decryption functions for DES, then the encryp-

tion function for 3DES is

3DESk1;k2;k3ðxÞ ¼ Ek1 ½Dk2 ½Ek3ðxÞ��:

AES was announced as an U.S. Federal Information

Processing Standard on November 26, 2001 after a

5-year selection process that is opened to the public. It

became effective as a standard May 26, 2002. The algo-

rithm is invented by Joan Daemen and Vincent Rijmen

and is formerly known as Rijndael. AES uses a block size

of 128 bits, and supports key sizes of 128 bits, 192 bits,

and 256 bits.

Because messages to be encrypted may be of arbi-

trary length, and because encrypting the same plaintext

under the same key always produces the same output,

several modes of operation have been invented which

allow block ciphers to provide confidentiality for mes-

sages of arbitrary length. For example, in the electronic

codebook (ECB) mode, the message is divided into

blocks and each block is encrypted separately. The

disadvantage of this method is that identical plaintext

blocks are encrypted into identical ciphertext blocks.

Data Encryption D 573

D

It is not recommended for use in cryptographic pro-

tocols. In the cipher-block chaining (CBC) mode, each

block of plaintext is XORed with the previous cipher-

text block before being encrypted. This way, each

ciphertext block is dependent on all plaintext blocks

processed up to that point. Also, to make each message

unique, an initialization vector must be used in the

first block and should be chosen randomly. More spe-

cifically, to encrypt a message x under key k, let x1,

x2,... ,xm denote the message blocks, then the ciphertext

is c0jjc1jj...jjcm where jj denote concatenation, c0 = IV,

the randomly chosen initial value, and

ci ¼ Ek½xi� 	 ci�1 for 1 � i � m. Other well-known

modes include Cipher feedback (CFB), Output feed-

back (OFB), and Counter (CTR).

Public Key Encryption Algorithms

When using symmetric encryption for secure commu-

nication, the sender and the receiver must agree upon a

key and the key must kept secret so that no other party

knows the key. This means that the key must be

distributed using a secure, but non-cryptographic,

method; for example, a face-to-face meeting or a

trusted courier. This is expensive and even impossible

in some situations. Public key encryption was invented

to solve the key distribution problem. When public key

encryption is used, users can distribute public keys

over insecure channels.

One of the most widely used public-key encryption

algorithm is RSA. RSA was publicly described in 1977

by Ron Rivest, Adi Shamir and Leonard Adleman at

MIT; the letters RSA are the initials of their surnames.

To generate a pair of RSA public/private keys, one does

the following: choose two distinct large prime numbers

p, q, calculate N = pq and f(N) = (p � 1)(q � 1),

choose an integer e such that 1 < e < f(N), and e and

f(N) share no factors other than 1. The public key is

(N, e), and the private key is (N, d), where ed
 1(mod

f(N)). A message to be encrypted is encoded using a

positive integer x where x < N. To encrypt x, compute

c = xe mod N. To decrypt a ciphertext c, compute

ce mod N. Practical RSA implementations typically

embed some form of structured, randomized padding

into the value x before encrypting it. Without such

padding, the ciphertext leaks some information about

the plaintext and is generally considered insecure for

data encryption. It is generally presumed that RSA is

secure if N is sufficiently large. The lengths of N are

typically 1,024–4,096 bits long.
A central problem for public-key cryptography is

proving that a public key is authentic and has not been

tampered with or replaced by a malicious third party.

The usual approach to this problem is to use a public-

key infrastructure (PKI), in which one or more third

parties, known as certificate authorities, certify owner-

ship of key pairs.

Asymmetric encryption algorithms are much more

computationally intensive than symmetric algorithms.

In practice, public key cryptography is used in combi-

nation with secret-key methods for efficiency reasons.

For encryption, the sender encrypts the message with a

secret-key algorithm using a randomly generated key,

and that random key is then encrypted with the reci-

pient’s public key.

Attack Models

Attack models or attack types for ciphers specify how

much information a cryptanalyst has access to when

cracking an encrypted message. Some common attack

models are:

� Ciphertext-only attack: the attacker has access only

to a set of ciphertexts.

� Known-plaintext attack: the attacker has samples of

both the plaintext and its encrypted version

(ciphertext).

� Chosen-plaintext attack: the attacker has the capa-

bility to choose arbitrary plaintexts to be encrypted

and obtain the corresponding ciphertexts.

� Chosen-ciphertext attack: the attacker has the capa-

bility to choose a number of ciphertexts and obtain

the plaintexts.

Key Applications
Data encryption is provided by most database manage-

ment systems. It is also used in many settings in which

database is used, e.g., electronic commerce systems.

Cross-references
▶Asymmetric Encryption

▶ Symmetric Encryption

Recommended Reading
1. Diffie W. and Hellman M.E. New directions in cryptography.

IEEE Trans. Inform. Theory, 22:644–654, 1976.

2. Federal information processing standards publication 46-3: data

encryption standard (DES), 1999.

3. Federal information processing standards publication 197:

advanced encryption standard, Nov. 2001.

574D Data Errors
4. Kahn D. The codebreakers: the comprehensive history of secret

communication from ancient times to the internet. 1996.

5. Menezes A.J., Oorschot P.C.V., and Vanstone S.A. Handbook of

applied cryptography (revised reprint with updates). CRC, West

Palm Beach, FL, USA, 1997.

6. Rivest R.L., Shamir A., and Adleman L.M. A method for obtain-

ing digital signatures and public-key cryptosystems. Commun.

ACM, 21:120–126, 1978.

7. Singh S. The code book: the science of secrecy from ancient

Egypt to quantum cryptography. Anchor, Garden City, NY,

USA, 2000.
Data Errors

▶Data Conflicts
Data Estimation in Sensor Networks

LE GRUENWALD

University of Oklahoma, Norman, OK, USA

Synonyms
Data imputation

Definition
In wireless sensor networks, sensors typically transmit

their data to servers at predefined time intervals. In

this environment, data packets are very susceptible to

losses, delays or corruption due to various reasons, such

as power outage at the sensor’s node, a higher bit error

rate of the wireless radio transmissions compared to the

wire communication alternative, an inefficient routing

algorithm implemented in the network, or random

occurrences of local interferences (e.g., mobile radio

devices, microwaves or broken line-of-sight path). To

process queries that need to access the missing data, if

repeated requests are sent to sensors asking them to

resend the missing information, this would incur

power-costly communications as those sensors must be

constantly in the listening mode. In addition, it is not

guaranteed that those sensors would resend their miss-

ing data or would resend them in a timely manner.

Alternatively, one might choose to estimate the missing

data based on the underlying structure or patterns of the

past reported data. Due to the low power-cost of com-

putation, this approach represents an efficient way of

answering queries that need to access the missing
information. This entry discusses a number of existing

data estimation approaches that one can use to estimate

the value of a missing sensor reading.
Key Points
To estimate the value of a missing sensor reading, the

quality of service in terms of high estimate accuracy

and low estimation time needs to be observed. Data

estimation algorithms can be divided into three major

groups: (i) traditional statistical approaches; (ii) statis-

tical-based sensor/stream data approaches, and (iii)

association rule data mining based approaches. Many

traditional statistical data approaches are not appro-

priate for wireless sensor networks as they require

either the entire data set to be available or data to be

missed at random, or do not consider relationships

among sensors. Some statistical based sensor/stream

data estimation algorithms include SPIRIT [3] and

TinyDB [2]. SPIRIT is a pattern discovery system that

uncovers key trends within data of multiple time series.

These trends or correlations are summarized by a

number of hidden variables. To estimate current miss-

ing values, SPIRIT applies an auto-regression forecast-

ing model on the hidden variables. TinyDB is a sensor

query processing system where missing values are esti-

mated by taking the average of all the values reported

by the other sensors in the current round. Two associ-

ation rule based data estimation algorithms areWARM

[1] and FARM [1]. WARM identifies sensors that are

related to each other in a sliding window containing the

latest w rounds using association rule mining. When the

reading of one of those sensors is missing, it uses the

readings of the other related sensors to estimate the

missing reading. FARM is similar to WARM except

that it does not use the concept of sliding window and

it considers the freshness of data.
Cross-references
▶Association Rule Mining on Streams

▶Data Quality

▶ Sensor Networks

▶ Stream Data Analysis
Recommended Reading
1. Gruenwald L., Chok H., and Aboukhamis M. Using data mining

to estimate missing sensor data. In Proc. 7th IEEE ICDMWork-

shop on Optimization-Based Data Mining Techniques with

Applications, 2007, pp. 207–212.

Data Exchange D 575
2. Madden S., Franklin M., Hellerstein J., and Hong W. TinyDB:

an acquisitional query processing system for sensor networks.

ACM Trans. Database Syst., 30(1):122–173, 2005.

3. Papadimitriou S., Sun J., and Faloutsos C. Pattern discovery

in multiple time-series. In Proc. 31st Int. Conf. on Very Large

Data Bases, 2005, pp. 697–708.
D

Data Exchange

LUCIAN POPA

IBM Almaden Research Center, San Jose, CA, USA

Synonyms
Data translation; Data migration; Data transformation

Definition
Data exchange is the problem of materializing an

instance of a target schema, given an instance of a

source schema and a specification of the relationship

between the source schema and the target schema.

More precisely, a data exchange setting is a quadruple

of the form (S, T, Sst, St), where S is the source schema,

T is the target schema, Sst is a schema mapping that

expresses constraints between S and T, and St is a set

of constraints on T. Such a setting gives rise to the

following data exchange problem: given an instance I

over the source schema S, find an instance J over the

target schema T such that I and J together satisfy the

schema mapping Sst, and J satisfies the target con-

straints St. Such an instance J is called a solution for I

in the data exchange setting. In general, many different

solutions for an instance Imay exist. The main focus of

the data exchange research is to study the space of all

possible solutions, to identify the ‘‘best’’ solutions to

materialize in a practical application, and to develop

algorithms for computing such a best solution.

Historical Background
The first systems supporting the restructuring and

translation of data were built several decades ago. An

early such systemwas EXPRESS [21], which performed

data exchange between hierarchical schemas. The need

for systems supporting data exchange has persisted

over the years and has become more pronounced

with the proliferation of data in various formats rang-

ing from traditional relational database schemas to

semi-structured/XML schemas and scientific formats.
An example of a modern data exchange system is Clio

[18,20], a schema mapping prototype developed at

IBM Almaden Research Center and in collaboration

with University of Toronto that influenced both theo-

retical and practical aspects of data exchange.

The data exchange problem is related to the data

integration problem [16] in the sense that both problems

are concerned with management of data stored in hete-

rogeneous formats. The two problems, however, are

different for the following reasons. In data exchange,

the main focus is on actually materializing a target

instance (i.e., a solution) that reflects the source data

as accurately as possible. This presents a challenge, due

to the inherent under-specification of the relationship

between the source and the target, which means that in

general there are many different ways to materialize

such a target instance. In contrast, a target instance

need not be materialized in data integration. There, the

main focus is on answering queries posed over the

target schema using views that express the relationship

between the target and source schemas.

Fagin et al. [8] were the first to formalize the data

exchange problem and to embark on an in-depth inves-

tigation of the foundational and algorithmic issues that

surround it. Their framework focused on data exchange

settings in which S and T are relational schemas, Sst is

a set of tuple-generating dependencies (tgds) between

S and T, also called source-to-target tgds, and St is a

set of tgds and equality-generating dependencies

(egds) on T. Fagin et al. isolated a class of solutions

for the data exchange problem, called universal solu-

tions, and showed that they have good properties that

justify selecting them as the preferred solutions in data

exchange. Universal solutions are solutions that can be

homomorphically mapped into every other solution;

thus, intuitively, universal solutions are the most gen-

eral solutions. Moreover, in a precise sense, universal

solutions represent the entire space of solutions. One

of the main results in [8] is that, under fairly general

conditions (weak acyclicity of the set of target tgds),

a canonical universal solution can be computed (if

solutions exist) in polynomial time, by using the

classical chase procedure [2].

In general, universal solutions need not be unique.

Thus, in a data exchange setting, there may be many

universal solutions for a given source instance. Fagin,

Kolaitis and Popa [9] addressed the issue of further

isolating a ‘‘best’’ universal solution, by using the con-

cept of the core of a graph or a structure [14]. By

576D Data Exchange
definition, the core of a structure is the smallest sub-

structure that is also a homomorphic image of that

structure. Since all universal solutions for a source in-

stance I are homomorphically equivalent, it follows that

they all have the same core (up to isomorphism). It is

then shown in [9] that this core is also a universal

solution, and hence the smallest universal solution. The

uniqueness of the core of a universal solution together

with its minimality make the core an ideal solution for

data exchange. In a series of papers that started with [9]

and continuedwith [12,13], it was shown that the core of

the universal solutions can be computed in polynomial

time, for data exchange settings where Sst is a set of

source-to-target tgds and St is the union of a weakly-

acyclic set of tgds with a set of edgs. This is in contrast

with the general case of computing the core of an

arbitrary structure, for which it is known that, unless

P¼NP, there is no polynomial-time algorithm.

There are quite a few papers on data exchange

and theory of schema mappings that extended or

made use of the concepts and results introduced in

[8,9]. Some of the more representative ones addressed:

extensions to XML data exchange [1], extensions to

peer data exchange [11], the study of solutions under

the closed-world assumption (CWA) [17], combined

complexity of data exchange [15], schema mapping

composition [10,19] and schema mapping inversion

[7]. The Clio system, which served as both motivation

and implementation playground for data exchange,

was the first to use source-to-target dependencies as

a language for expressing schema mappings [20].

Mapping constraints, expressed as either embedded

dependencies (which comprise tgds and egds) or as

equalities between relational or SQLS expressions,

also play a central role in the model management

framework of Bernstein and Melnik [3].

Foundations
Given a source schema S and a target schema T that are

assumed to be disjoint, a source-to-target dependency is,

in general, a formula of the form 8x(fS(x) ! wT(x)),
where fS(x) is a formula, with free variables x, over the

source schema S, and wT(x) is a formula, with free

variables x, over the target schema T. The notation x

signifies a vector of variables x1,...xk. A target depen-

dency is, in general, a formula over the target schema T

(the formalism used to express a target dependency

may be different in general from those used for the

source-to-target dependencies). The source schema
may also have dependencies that are assumed to be

satisfied by every source instance. Source dependencies

do not play a direct role in data exchange, because the

source instance is given.

The focus in [8] and in most of the subsequent

papers on data exchange theory is on the case when S

and T are relational schemas and when the dependen-

cies are given as tuple-generating dependencies (tgds)

and equality-generating dependencies (egds) [2]. More

precisely, each source-to-target dependency in Sst is

assumed to be a tgd of the form

8xðfSðxÞ ! 9ycTðx; yÞÞ;

where fS(x) is a conjunction of atomic formulas over S

and cT(x, y) is a conjunction of atomic formulas

over T. All the variables in x are assumed to appear in

fS(x). Moreover, each target dependency in St is either

a tgd (of the form shown below left) or an egd (of

the form shown below right):

8xðfTðxÞ ! 9ycTðx; yÞÞ 8xðfTðxÞ ! ðx1 ¼ x2ÞÞ

In the above, fT(x) and cT(x, y) are conjunctions

of atomic formulas over T, where all the variables in

x appear in fT(x), and x1, x2 are among the variables

in x. An often used convention is to drop the universal

quantifiers in front of a dependency, and implicitly

assume such quantification. However, the existential

quantifiers are explicitly written down.

Source-to-target tgds are a natural and expressive

language for expressing the relationship between a

source and a target schema. Such dependencies are

semi-automatically derived in the Clio system [20]

based on correspondences between the source schema

and the target schema. In turn, such correspondences

can either be supplied by a human expert or discovered

via schema matching techniques. Source-to-target tgds

are also equivalent to the language of ‘‘sound’’ global-

and-local-as-view (GLAV) assertions often used in data

integration systems [16].

It is natural to take the target dependencies to be

tgds and egds: these two classes together comprise

the (embedded) implicational dependencies [6]. How-

ever, it is somewhat surprising that tgds, which were

originally ‘‘designed’’ for other purposes (as con-

straints), turn out to be ideally suited for specifying

desired data transfer.

Example 1. Figure 1b shows a source schema

(on the left) and a target schema (on the right) with

Data Exchange. Figure 1. A data exchange example.

Data Exchange D 577

D

correspondences between their attributes. The source

schema models two different data sources or databases,

src1 and src2, each representing data about students.

The first source consists of one relation, src1.students,

while the second source consists of two relations, src2.

students and src2.courseEvals. The attributes S,N,C,G,F

represent, respectively,‘‘student id,’’ ‘‘student name,’’

‘‘course,’’ ‘‘grade’’ (only in src1), and ‘‘file evaluation’’

(a written evaluation that a student receives for a

course; only in src2). The attribute K in src2 is used to

link students with the courses they take; more con-

cretely, K plays the role of a foreign key in src2.students

and the role of a key in src2.courseEvals. As seen in the

instance in Fig.1a, information in the two sources may

overlap: the same student can appear in both sources,

with each source providing some information that

the other does not have (e.g., either grade or file

evaluation).

The two data sources are mapped into a target

schema with three relations: students (with general

student information), enrolled (listing course entries

for each student), and evals (with evaluation entries

per student and per course). The attribute E (evalua-

tion id) is used to link enrollment entries with the

associated evaluation records (E is a foreign key in

enrolled and a key in evals). Similarly, the attribute S

(student id) links enrolled with students.

The relationship between the individual attributes

in the schemas is described by the arrows or corre-

spondences that ‘‘go’’ between the attributes. However,

the more precise mapping between the schemas is

given by the set Sst ¼ {t1,t2} of source-to-target tgds

that is shown in Fig.1c.
The first source-to-target tgd, t1, specifies that for

each tuple in src1.students there must exist three

corresponding tuples in the target: one in students,

one in enrolled, and one in evals. Moreover, t1 specifies

how the four components of the source tuple (i.e., s, n,

c, g) must appear in the target tuples. The tgd also

specifies the existence of ‘‘unknown’’ values (via the

existential variables E and F) for the target attributes

that do not have any corresponding attribute in the

source. Note that existential variables can occur multi-

ple times; in the example, it is essential that the same

variable E is used in both enrolled and evals so that the

association between students, courses and their grades

is not lost in the target.

The second source-to-target tgd, t2, illustrates a case

where the source pattern (the premise of the tad) is not

limited to one tuple of a relation but encodes a join

between multiple relations. In general, not all variables

in the source pattern must occur in the target (e.g.,

k does not occur in the target). In this example, t2 plays

a ‘‘complementary’’ role to t1, since it maps a different

source that contains file evaluations rather than grades.

The target dependencies in St are formulas

expressed solely in terms of the target schema that

further constrain the space of possible target instances.

In this example, the tgds i1 and i2 are inclusion depen-

dencies that encode referential integrity constraints

from enrolled to students and evals, respectively. The

egds e1, e2 and e3 encode functional dependencies. that

must be satisfied. In particular, e1 requires that a stu-

dent and a course must have a unique evaluation id,

while e2 and e3 together specify that the evaluation id

must be a key for evals.

578D Data Exchange
Solutions In general, in a data exchange setting (S,

T, Sst,St), there can be zero or more solutions J for a

given source instance I. In other words, there can be

zero or more target instances J such that: (1) J satisfies

the target dependencies in St, and (2) I together with J

satisfy the source-to-target dependencies in Sst. The

latter condition simply means that the instance hI, J i
that is obtained by considering together all the rela-

tions in I and J satisfies Sst. Note that hI, Ji is an

instance over the union of the schemas S and T.

Example 2. Figure 2 illustrates three target

instances that are plausible for the source instance I

shown in Fig.1a, and given the dependencies Sst and

St in Fig.1b. Consider the first instance J0, shown in

Fig.2a. It can be seen that hI, J0i satisfies all the source-
to-target dependencies in Sst; in particular, for any

combination of the source data in I that satisfies the

premises of some source-to-target tad in Sst, the ‘‘re-

quired’’ target tuples exist in J0. Note that in J0, the

special values E1,...E4, F1, F2, G3 and G4 are used to

represent ‘‘unknown’’ values, that is, values that do not

occur in the source instance. Such values are called

labeled nulls or nulls and are to be distinguished from

the values occurring in the source instance, which are

called constants. (See the later definitions.) It can then

be seen that J0 fails to satisfy the set St of target

dependencies; in particular, the egd e1 is not satisfied

(there are two enrolled tuples for student 001 and

course CS120 having different evaluation ids, E1 and

E3). Thus, J0 is not a solution for I.

On the other hand, the two instances J1 and J2
shown in Fig.2b and c, respectively, are both solutions

for I. The main difference between J1 and J2 is that J2 is
Data Exchange. Figure 2. Examples of target instances.
more ‘‘compact’’: the same null E2 is used as an evalu-

ation id for two different pairs of student and course

(in contrast, J1 has different nulls, E2 and E4).

In this example, J1 and J2 illustrate two possible

ways of filling in the target that both satisfy the given

specification. In fact, there are infinitely many possible

solutions: one could choose other nulls or even con-

stants instead of E1,E2,..., or one could add ‘‘extra’’

target tuples, and still have all the dependencies satis-

fied. This raises the question of which solutions to

choose in data exchange and whether some solutions

are better than others.

Universal solutions. A key concept introduced in [8]

is that of universal solutions, which are the most general

among all the possible solutions.

Let Const be the set, possibly infinite, of all the

values (also called constants) that can occur in source

instances. Moreover, assume an infinite set Var of values,

called labeled nulls, such that Var \ Const ¼ ;.
The symbols I, I0, I1, I2,... are reserved for instances

over the source schema S and with values in Const. The

symbols J, J0, J1, J2,... are reserved for instances over the

target schema T and with values in Const [Var.

All the target instances considered, and in particular,

the solutions of a data exchange problem, are assumed

to have values in Const [Var. If J is a target instance,

then Const(J) denotes the set of all constants occurring

in J, and Var(J) denotes the set of labeled nulls occur-

ring in J.

Let J1 and J2 be two instances over the target sche-

ma. A homomorphismh : J1 ! J2 is a mapping from

Const(J1) [Var(J1) to Const(J2) [Var(J2) such that:

(1) h(c) ¼ c, for every c 2 Const(J1); (2) for every tuple

Data Exchange D 579

D

t in a relation R of J1, the tuple h(t) is in the relation R

of J2 (where, if t¼(a1,...as), then h(t)¼(h(a1),...,h

(as))). The instance J1 is homomorphically equivalent

to the instance J2 if there are homomorphisms h : J1!
J2 and h0 : J2!J1.

Consider a data exchange setting (S,T,Sst,St). If I is

a source instance, then a universal solution for I is a

solution J for I such that for every solution J0 for I,

there exists a homomorphism h : J!J0.

Example 3. The solution J2 in Fig. 2c is not univer-

sal. In particular, there is no homomorphism from J2
to the solution J1 in Fig. 2b. Specifically, the two

enrolled tuples (005, CS500, E2) and (001,CS200,E2)

of J2 cannot be mapped into tuples of J1 (since E2
cannot be mapped into both E2 and E4). Thus, J2 has

some ‘‘extra’’ information that does not appear in all

solutions (namely, the two enrolled tuples for (005,

CS500) and (001,CS200) sharing the same evaluation

id). In contrast, a universal solution has only informa-

tion that can be homomorphically mapped into every

possible solution. It can be shown that J1 is such a

universal solution, since it has a homomorphism to

every solution (including J2).

As the above example suggests, universal solutions

are the preferred solutions in data exchange, because

they are at least as general as any other solution (i.e.,

they do not introduce any ‘‘extra’’ information).

Computing universal solutions with the chase. Fagin

et al. [8] addressed the question of how to check the

existence of a universal solution and how to compute

one, if one exists. They showed that, under a weak

acyclity condition on the set St of target dependencies,

universal solutions exist whenever solutions exist.

Moreover, they showed that, under the same condi-

tion, there is a polynomial-time algorithm for com-

puting a canonical universal solution, if a solution

exists; this algorithm is based on the classical chase

procedure.

Intuitively, the following procedure is applied to

produce a universal solution from a source instance I:

start with the instance hI, ;i that consists of I for the
source, and the empty instance for the target; then

chase hI, ;i with the dependencies in Sst and St in

some arbitrary order and for as long as they are appli-

cable. Each chase step either adds new tuples in the

target or attempts to equate two target values (possibly

failing, as explained shortly). More concretely, let hI, Ji
denote an intermediate instance in the chase process

(initially J ¼ ;). Chasing with a source-to-target tgd
fS(x) !∃ycT(x, y) amounts to the following: check

whether there is a vector a of values that interprets x

such that I ⊨fS(a), but there is no vector b of values

that interprets y such that J ⊨cT(a, b); if such a exists,

then add new tuples to J, where fresh new nulls Y

interpret the existential variables y, such that the

resulting target instance satisfies cT(a, Y). Chasing

with a target tgd is defined similarly, except that only

the target instance is involved. Chasing with a target

egd fT(x)!(x1 ¼ x2) amounts to the following: check

whether there is a vector a of values that interprets x

such that J ⊨fT(a) and such that a1 6¼ a2; if this is the

case, then the chase step attempts to identify a1 and a2,

as follows. If both a1 and a2 are constants then the

chase fails; it can be shown that there is no solution

(and no universal solution) in this case. If one of a1
and a2 is a null, then it is replaced with the other one

(either a null or a constant); this replacement is global,

throughout the instance J. If no more chase steps are

applicable, then the resulting target instance J is a

universal solution for I.

Example 4. Recall the earlier data exchange scenar-

io in Fig. 1. Starting from the source instance I, the

source-to-target tgds in Sst can be applied first. This

process adds all the target tuples that are ‘‘required’’ by

the tuples in I and the dependencies in Sst. The result-

ing target instance after this step is an instance that is

identical, modulo renaming of nulls, to the instance J0
in Fig. 2a. Assume, for simplicity, that the result is J0.

The chase continues by applying the dependencies

in St to J0. The tgds (i1) and (i2) are already satisfied.

However, the egd (e1) is not satisfied and becomes

applicable. In particular, there are two enrolled tuples

with the same student id and course but different

evaluation ids (E1 and E3). Since E1 and E3 are nulls,

the chase with e1 forces the replacement of one with the

other. Assume that E3 is replaced by E1. After the

replacement, the two enrolled tuples become identical

(hence, one is a duplicate and is dropped). Moreover,

there are now two evals tuples with the same evaluation

id (E1). Hence, the egds e2 and e3 become applicable.

As a result, the null G3 is replaced by the constant A

and the null F1 is replaced by the constant file01. The

resulting target instance is the instance J1 in Fig. 2b,

which is a canonical universal solution for I.

As a remark on the expressive power of depen-

dencies (and of their associated chase), note how

the above process has merged, into the same tuple,

information from two different sources (i.e., the

580D Data Exchange
grade, and respectively, the file, for student 001 and

course CS120). Also note that the chase is, inherently,

a recursive procedure.

In general, the chase with an arbitrary set of target

tgds and egds may not terminate. Hence, it is natural to

ask for sufficient conditions for the termination of the

chase. An extensively studied condition that guaran-

tees termination is that the target tgds in St form a

weakly acyclic set of tgds (the latter is also known as a set

of constraints with stratified witnesses) [8,5]. Two im-

portant classes of dependencies that are widely used in

database dependency theory, namely sets of full target

tgds and acyclic sets of inclusion dependencies, are

special cases of weakly acyclic sets of tgds.

The following theorem summarizes the use of chase

in data exchange and represents one of the main results

in [8].

Theorem 1 Assume a data exchange setting (S, T,

Sst,St) where Sst is a set of source-to-target tgds, and

St is the union of a weakly acyclic set of tgds with a set of

egds. Then: (1) The existence of a solution can be checked

in polynomial time. (2) A universal solution exists if and

only if a solution exists. (3) If a solution exists, then a

universal solution can be produced in polynomial time

using the chase.

The weak acyclicity restriction is essential for the

above theorem to hold. In fact, it was shown in [15]

that if the weak-acyclicity restriction is removed,

the problem of checking the existence of solutions

becomes undecidable.

Multiple universal solutions and core. In general, in a

data exchange setting, there can be many universal solu-

tions for a given source instance. Nevertheless, it has

been observed in [9] that all these universal solutions

share one common part, which is the core of the univer-

sal solutions. The core of the universal solutions is

arguably the ‘‘best’’ universal solution to materialize,

since it is the unique most compact universal solution.

It is worth noting that the chase procedure computes

a universal solution that may not necessarily be the

core. So, additional computation is needed to produce

the core.

A universal solution that is not a core necessarily

contains some ‘‘redundant’’ information which does

not appear in the core. Computing the core of the

universal solutions could be performed, conceptually,

in two steps: first, materialize a canonical universal

solution by using the chase, then remove the redun-

dancies by taking to the core. The second step is tightly
related to conjunctive query minimization [4], a proce-

dure that is in general intractable. However, by exploit-

ing the fact that in data exchange, the goal is on

computing the core of a universal solution rather

than that of an arbitrary instance, polynomial-time

algorithms were shown to exist for certain large classes

of data exchange settings. Specifically, for data

exchange settings where Sst is a set of arbitrary

source-to-target tgds and St is a set of egds, two poly-

nomial-time algorithms, the blocks algorithm and the

greedy algorithm, for computing the core of the uni-

versal solutions were given in [9]. By generalizing the

blocks algorithm, this tractability case was further ex-

tended in [12] to the case where the target tgds are full

and then in [13] to the more general case where the

target tgds form a weakly acyclic set of tgds.

Further results on query answering. The semantics

of data exchange problem (i.e., which solution to

materialize) is one of the main issues in data exchange.

Another main issue is that of answering queries for-

mulated over the target schema. Fagin et al. [8]

adopted the notion of the ‘‘certain answers’’ in incom-

plete databases for the semantics of query answering in

data exchange. Furthermore, they studied the issue of

when can the certain answers be computed based on

the materialized solution alone; in this respect, they

showed that in the important case of unions of con-

junctive queries, the certain answers can be obtained

simply by running the query on an arbitrary universal

solution and by eliminating the tuples that contain

nulls. This in itself provided another justification for

the ‘‘goodness’’ of universal solutions. The followup

paper [9] further investigated the use of a materialized

solution for query answering; it showed that for the

larger class of existential queries, evaluating the query

on the core of the universal solutions gives the best

approximation of the certain answers. In fact, if one

redefines the set of certain answers to be those that

occur in every universal solution (rather than in every

solution), then the core gives the exact answer for

existential queries.

Key Applications
Schema mappings are the fundamental building blocks

in information integration. Data exchange gives theo-

retical foundations for schema mappings, by studying

the transformation semantics associated to a schema

mapping. In particular, universal solutions are the

main concept behind the ‘‘correctness’’ of any

Data Fusion in Sensor Networks D 581
program, query or ETL flow that implements a schema

mapping specification. Data exchange concepts are

also essential in the study of the operators on schema

mappings such as composition of sequential schema

mappings and inversion of schema mappings.
D

Cross-references
▶Data Integration

▶ Schema Mapping

▶ Schema Mapping Composition
Recommended Reading
1 Arenas M. and Libkin L. XML data exchange: consistency and

query answering. In Proc. 24th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2005, pp.

13–24.

2. Beeri C. and Vardi M.Y. A proof procedure for data dependen-

cies. J. ACM, 31(4):718–741, 1984.

3. Bernstein P.A. and Melnik S. Model management 2.0: manipu-

lating richer mappings. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2007, pp. 1–12.

4. Chandra A.K. and Merlin P.M. Optimal implementation of

conjunctive queries in relational data bases. In Proc. 9th Annual

ACM Symp. on Theory of Computing, 1977, pp. 77–90.

5. Deutsch A. and Tannen V. XML queries and constraints, con-

tainment and reformulation. Theor. Comput. Sci., 336

(1):57–87, 2005.

6. Fagin R. Horn clauses and database dependencies. J. ACM, 29

(4):952–985, 1982.

7. Fagin R. Inverting schema mappings. ACM Trans. Database

Syst., 32(4), 2007.

8. Fagin R., Kolaitis P.G., Miller R.J., and Popa L. Data exchange:

semantics and query answering. Theor. Comput. Sci., 336

(1):89–124, 2005.

9. Fagin R., Kolaitis P.G., and Popa L. Data exchange: getting to the

core. ACM Trans. Database Syst., 30(1):174–210, 2005.

10. Fagin R., Kolaitis P.G., Popa L., and Tan W.-C. Composing

schema mappings: second-order dependencies to the rescue.

ACM Trans. Database Syst., 30(4):994–1055, 2005.

11. Fuxman A., Kolaitis P.G., Miller R.J., and Tan W.-C. Peer

data exchange. ACM Trans. Database Syst., 31(4): 1454–1498,

2006.

12. Gottlob G. Computing cores for data exchange: new algorithms

and practical solutions. In Proc. 24th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2005.

13. Gottlob G. and Nash A. Data exchange: computing cores in

polynomial time. In Proc. 25th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2006, pp.

40–49.

14. Hell P. and Nešetřil J. The core of a graph. Discrete Math,

109:117–126, 1992.

15. Kolaitis P.G., Panttaja J., and Tan W.C. The complexity of

data exchange. In Proc. 25th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 2006, pp. 30–39.
16. Lenzerini M. Data Integration: A Theoretical Perspective.

In Proc. 21st ACM SIGACT-SIGMOD-SIGART Symp. on Prin-

ciples of Database Systems, 2002, pp. 233–246.

17. Libkin L. Data exchange and incomplete information. In Proc.

25th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2006, pp. 60–69.

18. Miller R.J., Haas L.M., and Hernández M.A. Schema mapping as

query discovery. In Proc. 26th Int. Conf. on Very Large Data

Bases, 2000, pp. 77–88.

19. Nash A., Bernstein P.A., and Melnik S. Composition of

mappings given by embedded dependencies. ACM Trans. Data-

base Syst., 32(1):4, 2007.

20. Popa L., Velegrakis Y., Miller R.J., Hernández M.A., and Fagin R.

Translating Web data. In Proc. 28th Int. Conf. on Very Large

Data Bases, 2002, pp. 598–609.

21. Shu N.C., Housel B.C., Taylor R.W., Ghosh S.P., and Lum V.Y.

EXPRESS: A Data EXtraction, Processing, and REStructuring

System. ACM Trans. Database Syst., 2(2):134–174, 1977.
Data Expiration

▶Temporal Vacuuming
Data Extraction

▶ Screen Scraper
Data Flow Diagrams

▶Activity Diagrams
Data Fusion

▶ Semantic Data Integration for Life Science Entities
Data Fusion in Sensor Networks

AMAN KANSAL, FENG ZHAO

Microsoft Research, Redmond, WA, USA

Synonyms
Distributed sensor fusion

582D Data Fusion in Sensor Networks
Definition
Data fusion in sensor networks is defined as the set of

algorithms, processes, and protocols that combine data

from multiple sensors. The goal may be to extract

information not readily apparent in an individual sen-

sor’s data, improve the quality of information com-

pared to that provided by any individual data, or

improve the operation of the network by optimizing

usage of its resources.

For instance, the output of a magnetic sensor and

an audio sensor may be combined to detect a vehicle

(new information), outputs of multiple vibration sen-

sors may be combined to increase the signal to noise

ratio (improving quality), or a passive infrared sensor

may be combined with a camera in a people detection

network to reduce the frame-rate of the camera for

conserving energy (improving operation).

The sensors fused may be of the same or different

types. Key features of data fusion in sensor networks,

that distinguish it from other methods to combine

multiple sources of data, are that the former methods

are designed to (i) reduce the amount of communica-

tion among and from the sensors, and (ii) increase the

life-time of the sensor network when all or some of the

sensors are battery operated. The methods used to

combine the data may leverage past observations

from the same sensors, previously known models of

the sensed phenomenon, and other information in

addition to the sensor data.

Historical Background
Data fusion in sensor networks is founded on the

methods developed for fusion of data in several older

systems that used multiple sensors but not under the

same system constraints as are typical of sensor net-

works. The Radar systems used in World War II pres-

ent one of the first notable examples of such systems.

The advantages that these systems demonstrated in

robustness to failure of a fraction of sensors increased

quality of data due to increased dimensionality of

the measurement space. Since then, better discrimina-

tion between available hypotheses have led to the use of

fusion methods in many sensor systems.

Most of the algorithms for sensor data processing

can be viewed as derivatives of the Kalman filter

and related Bayesian methods [7,9]. Decentralized

forms of these methods have been developed to take

data from multiple sensors as input and produced a

single higher quality fused output [15,16]. Latest
advances in these areas are discussed at the IEEE Sen-

sor Array and Multichannel Signal Processing Work-

shop and the International Conference on Information

Fusion among other venues. Other related works on

fusion of sensor data are found in computer vision,

tracking, and defense applications [2,3,5,6,8].

The achievable advantage in reducing signal distor-

tion through fusion of multiple sensor inputs has been

derived using information theoretic methods for gen-

eral and Gaussian models for the phenomenon and

sensor noise [1,12,13].
Foundations
The basic data fusion problem may be expressed as

follows. The sensor network is deployed to measure a

phenomenon represented by a state vector x(t). For

example, if the phenomenon is an object being tracked,

x(t) may represent a vector of position and velocity of

the object at time t. The observation model at sensor i,

that relates the observation z to state x, is assumed to

be Gaussian in many of the works, for computational

tractability:

ziðtÞ ¼ HiðxðtÞÞ þ wiðtÞ ð1Þ

Linear models where H is a matrix are often used.

The belief about the phenomenon at time t is

defined to be the a posteriori distribution of x:

pðxjz1; :::; znÞ ð2Þ

where n is the number of sensors. The belief is suffi-

cient to characterize the phenomenon and compute

typical statistics such as the expected value of x and its

residual uncertainty after the estimation.

The centralized methods to determine this belief

from the observations require a knowledge of measure-

ments zi from all the sensors. The decentralized Kal-

man filters, such as [15,16], typically assume that each

of the n sensors in the sensor network is connected to

every other sensor and an O(n2) communication over-

head is acceptable. This design may be used for fusion

in systems with a small number of sensors or when

high data rate communication links are present among

sensors, such as networks of defense vehicles. However,

such a high overhead is not acceptable in sensor net-

works based on embedded and wireless platforms. In

these systems, both due to the large number of sensors

and the low data rates supported by their radios for

battery efficiency, the fusion methods must minimize

Data Fusion in Sensor Networks D 583

D

the communication requirements. Such fusion meth-

ods are said to be distributed.

One approach [17,18] to realize a distributed fusion

method is to selectively use only a subset of the large

number of sensors that have the most relevant informa-

tion about the phenomenon being sensed. The fusion

method then is also required to provide for appropriate

selection of these most informative sensors and to dyna-

mically adapt the set of selected sensor as the phenome-

non evolves over time. To this end, a quantitative

measure of the usefulness of a sensor for fusion is

introduced, referred to as the information content of

that sensor. An information utility function is defined:

c : PðRdÞ ! R ð3Þ

that acts on the class PðRdÞ of all probability distribu-
tions on Rd and returns a real number, with d being

the dimension of x. Specific choices of c are derived

from information measures known from information

theory, such as entropy, the Fischer information

matrix, the size of the covariance ellipsoid for Gaussian

phenomena models, sensor geometry based measures

and others. An example form of c if information

theoretic entropy is used, is:

cðpxÞ ¼
Z
S

pxðxÞlogðpxðxÞÞdx ð4Þ

where S represents the domain of x and px is its proba-

bility distribution. LetU� {1,...,n} be the set of sensors

whose measurements have been incorporated into the

belief, i.e., the current belief is:

pðxjfzigi2U Þ ð5Þ

If the measurement from sensor j is also selected for

inclusion in the computation of belief, the belief

becomes:

pðxjfzigi2U [fzjgÞ ð6Þ

To select the sensor that has the maximum information

content, the sensor j should be selected to maximize

the information utility of the belief after including zj.

Noting that j is to be selected from set A = {1,...,n}�U,

the best sensor ĵ is:

ĵ ¼ arg j2Amax c pðxjfzigi2U [fzjgÞ
� �

ð7Þ

However, in practice, the knowledge about zj is not

available before having selected j. The most likely best
sensor j can then be selected by computing the expec-

tation of the information utility with respect to zj:

ĵ ¼ arg j2Amax Ezj ½c pðxjfzigi2U [fzjgÞ
� �

jfzigi2U �
ð8Þ

among other options.

Also, the cost of communication from a sensor is

explicitly modeled. Suppose the current belief is held at

sensor l, referred to as the leader node. Suppose Mc(l, j)

denotes the cost of communication to sensor j. Then

the sensor selection method choses the best sensor as

follows:

ĵ ¼ arg j2Amax½aMuðjÞ � ð1� aÞMcðl; jÞ� ð9Þ

where Mu(j) denotes the expectation of the informa-

tion utility as expressed in (8), and a 2 [0,1] balances

the contribution from Mu and Mc.

These fundamentals can be used to develop a

distributed data fusion algorithm for a sensor network.

Suppose the sensor nodes are synchronized in time, and

the phenomenon is initially detected at time t = 0.

At this time, a known distributed leader election algo-

rithm may be executed to select a node l as the leader,

which computes the initial belief using only its own

observation. It now selects the next sensor to be

included in the belief calculation using (9). The pro-

cess continues until the belief is known to a satisfactory

quality as characterized by known statistical measures.

The flowchart of the fusion algorithm followed at all

the nodes is shown in Fig. 1.

The sensor selection process used in the algorithm

above is a greedy one – at each selection step, it only

considers a single sensor that optimizes the selectionmet-

ric. It is possible that selectingmultiple sensors at the same

time yields a better choice. This can be achieved at the cost

of higher computation complexity by selecting a set of

sensors instead a single sensor j in (9), using appropriate

modifications to the cost and utility metrics.

The distributed fusion method described above

limits the number of sensors used and hence signifi-

cantly reduces the communication overhead as com-

pared to the O(n2) overhead of decentralized methods.

It is well-suited for problems where the sensed phe-

nomenon is localized, such as an object being tracked,

since the number of most informative nodes selected

can then yield fused results close to that provided by

the entire network.

Data Fusion in Sensor Networks. Figure 1. Distributed sensor fusion based on selecting only the most informative and

cost effective sensors.

584D Data Fusion in Sensor Networks
In another approach, a distributed Kalman filter is

derived. The sensing model is as expressed before in

(1). However, instead of using a centralized Kalman

filter to estimate the state x, n micro-Kalman filters,

each executing locally at the n sensor nodes, using the

measurements from only the local node, are used. In

addition, two consensus problems are solved using a

method that requires communication only with one

hop wireless neighbors [10,11]. This approach is more

relevant when the observations from all the nodes in

the network are important, such as when measuring a

distributed phenomenon.

Distributed fusion methods that are tolerant to

communication losses and network partitioning have

also been developed using message passing on junc-

tion trees [14] and techniques from assumed density

filtering [4].

Additionally, distributed methods are also available

for cases where the sensed phenomenon is not itself

required to be reproduced but only some of its properties
are to be obtained. These properties may be global and

depend on the measurements of all the sensors in the

network, such as the number of targets in the region, the

contours of a given phenomenon value in a heat map, or

tracking relations among a set of objects [17].

The field of data fusion in sensor networks is rapidly

evolving with new advances being presented frequently at

forums including the ACM/IEEE IPSN and ACM SenSys.

Key Applications
Infrastructure monitoring, pervasive health-care, de-

fense, scientific experimentation, environmental sens-

ing, urban monitoring, home automation, supply-

chain control, industrial control, business process

monitoring, security.

Data Sets
Several data sets collected from experimental sensor

network deployments are available for researchers to

test their data fusion methods:

Data Integration Architectures and Methodology for the Life Sciences D 585

D

Center for Embedded Networked Sensing, http://

www.sensorbase.org/

Intel Lab Data, http://db.csail.mit.edu/labdata/lab

data.html

Cross-references
▶Data Aggregation in Sensor Networks

▶Data Estimation in Sensor Networks

▶ In-Network Query Processing

Recommended Reading
1. Berger T., Zhang Z., and Vishwanathan H. The CEO problem.

IEEE Trans. Inform. Theory, 42(3):887–902, 1996.

2. Brooks R.R. and Iyengar S.S. Multi-sensor fusion: Fundamentals

and applications with software. Prentice-Hall, Englewood, Cliffs,

NJ, 1997.

3. Crowley J.L. and Demazeau Y. Principles and techniques

for sensor data fusion. Signal Process., 32(1–2):5–27, 1993.

4. Funiak S., Guestrin C., Paskin M., and Sukthankar R.

Distributed inference in dynamical systems. In Advances in

Neural Information Processing Systems 19, B. Scholkopf,

J. Platt, and T. Hoffman (eds.). MIT, Cambridge, MA, 2006,

pp. 433–440.

5. Hall D.L. and McMullen S.A.H. Mathematical Techniques in

Multisensor Data Fusion. Artech House, 2004.

6. Isard M. and Blake A. Condensation – conditional density prop-

agation for visual tracking. Int. J. Comput. Vision, 29(1):5–28,

1998.

7. Jazwinsky A. Stochastic processes and filtering theory. Academic,

New York, 1970.

8. Lodaya M.D. and Bottone R. Moving target tracking

using multiple sensors. In Proc. SPIE, Vol. 4048, 2000,

pp. 333–344.

9. Maybeck P.S. The kalman filter: an introduction to concepts. In

Autonomous Robot vehicles, I.J. Cox and G.T. Wilfong, Eds.

Springer-Verlag New York, New York, NY, 1990, pp. 194–204.

10. Olfati-Saber R. Distributed kalman filtering for sensor networks.

In Proc. 46th IEEE Conf. on Decision and Control. 2007.

11. Olfati-Saber R. and Shamma J.S. Consensus filters for sensor

networks and distributed sensor fusion. In Proc. 44th IEEE

Conf. on Decision and Control. 2005.

12. Oohama Y. The rate distortion function for the quadratic Gauss-

ian CEO problem. IEEE Trans. Inform. Theory, 44(3), 1998.

13. Pandya A., Kansal A., Pottie G.J., and Srivastava M.B. Fidelity

and resource sensitive data gathering. In 42nd Allerton Confer-

ence, 2004.

14. Paskin M., Guestrin C., and McFadden J. A robust architecture

for distributed inference in sensor networks. In Proc. 4th Int.

Symp. Inf. Proc. in Sensor Networks, 2005.

15. Rao B., Durrant-Whyte H., and Sheen J. A fully decentralized

multi-sensor system for tracking and surveillance. Int. J. Robot.

Res., 12(1):20–44, 1993.

16. Speyer J.L. Computation and Transmission requirements for a

decentralized linear-quadratic-Gaussian control problem. IEEE

Trans. Automat. Control, 24(2):266–269, 1979.
17. Zhao F., Liu J., Liu J., Guibas L., and Reich J. Collaborative

Signal and Information Processing: An Information Directed

Approach. In Proc. IEEE, 91(8):1199–1209, 2003.

18. Zhao F. and Guibas L. Wireless Sensor Networks: An Informa-

tion Processing Approach. Morgan Kaufmann, 2004.
Data Gathering

▶Data Acquisition and Dissemination in Sensor

Networks
Data Grids

▶ Storage Grid
Data Imputation

▶Data Estimation in Sensor Networks
Data Inconsistencies

▶Data Conflicts
Data Integration

▶ Information Integration
Data Integration Architectures and
Methodology for the Life Sciences

ALEXANDRA POULOVASSILIS

University of London, London, UK

Definition
Given a set of biological data sources, data integration

is the process of creating an integrated resource com-

bining data from the data sources, in order to allow

queries and analyses that could not be supported by

the individual data sources alone. Biological data

586D Data Integration Architectures and Methodology for the Life Sciences
sources are characterized by their high degree of het-

erogeneity, in terms of their data model, query inter-

faces and query processing capabilities, data types

used, and nomenclature adopted for actual data values.

Coupled with the variety, complexity and volumes of

biological data that are becoming increasingly avail-

able, integrating biological data sources poses many

challenges, and a number of methodologies, architec-

tures and systems have been developed to support it.

Historical Background
If an application requires data from different data

sources to be integrated in order to support users’

queries and analyses, one possible solution is for the

required data transformation and aggregation function-

ality to be encoded into the application’s programs.

However, this may be a complex and lengthy process,

andmay also affect the robustness andmaintainability of

the application. These problems have motivated the

development of architectures and methodologies which

abstract out data transformation and aggregation func-

tionality into generic data integration software.

Much work has been done since the early 1990s

in developing architectures and methodologies for inte-

grating biological data sources in particular. Many sys-

tems have been developed which create and maintain

integrated data resources: examples of significant sys-

tems are DiscoveryLink [7], K2/Kleisli [3], Tambis [6],

SRS [16], Entrez [5], BioMart [4]. The main aim of such

systems is to provide users with the ability to formulate

queries and undertake analyses on the integrated re-

source which would be very complex or costly if per-

formed directly on the individual data sources,

sometimes prohibitively so.

Providing access to a set of biological data sources via

one integrated resource poses several challenges, mainly

arising from the large volumes, variety and complexity

of othe data, and the autonomy and heterogeneity of

the data sources [2,8,9]. Data sources are developed by

different people in differing research environments for

differing purposes. Integrating them tomeet the needs of

new users and applications requires the reconciliation

of their different data models, data representation and

exchange formats, content, query interfaces, and query

processing capabilities.Data sources are in general free to

change their data formats and content without consid-

ering the impact this may have on integrated resources

derived from them. Integrated resourcesmay themselves

serve as data sources for higher-level integrations,
resulting in a network of dependencies between

biological data resources.

Foundations
Three main methodologies and architectures have

been adopted for biological data integration, materia-

lized, virtual and link-based:

� With materialized integration, data from the data

sources is imported into a data warehouse and it is

transformed and aggregated as necessary in order

to conform to the warehouse schema. The ware-

house is the integrated resource, typically a rela-

tional database. Queries can be formulated with

respect to the warehouse schema and their evalua-

tion is undertaken by the database management

system (DBMS), without needing to access the

original data sources.

� With virtual integration, a schema is again created

for the integrated resource. However, the integrated

resource is represented by this schema, and the

schema is not populated with actual data. Addi-

tional mediator software is used to construct map-

pings between the data sources and the integrated

schema. The mediator software coordinates the

evaluation of queries that are formulated with re-

spect to the integrated schema, utilizing the map-

pings and the query processing capabilities of the

database or file management software at the data

sources. Data sources are accessed via additional

‘‘wrapper’’ software for each one, which presents a

uniform interface to the mediator software.

� With link-based integration no integrated schema is

created. Users submit queries to the integration

software, for example via a web-based user interface.

Queries are formulated with respect to data sources,

as selected by the user, and the integration software

provides additional capabilities for facilitating query

formulation and speeding up query evaluation. For

example, SRS [16] maintains indexes supporting

efficient keyword-based search over data sources,

and also maintains cross-references between differ-

ent data sources which are used to augment query

results with links to other related data.

A link-based integration approach can be adopted if

users will wish to query the data sources directly, will

only need to pose keyword and navigation-style

queries, and the scientific hypotheses that they will be

investigating will not require any significant

Data Integration Architectures and Methodology for the Life Sciences D 587

D

transformation or aggregation of the data. Otherwise,

the adoption of a materialized or virtual integration

approach is indicated. The link-based integration ap-

proach is discussed further in [1] and in the entry on

Pathway Databases.

A key characteristic of materialized or virtual inte-

gration is that the integrated resource can be queried

as though it were itself a single data source rather than

an integration of other data sources: users and applica-

tions do not need to be aware of the schemas or formats

of the original data sources, only the schema/format of

the integrated resource. Materialized integration is usu-

ally chosen for query performance reasons: distributed

access to remote data sources is avoided and sophisticat-

ed query optimization techniques can be applied to

queries submitted to the data warehouse. Other advan-

tages are that it is easier to clean and annotate the source

data than by usingmappings within a virtual integration

approach. However, maintaining a data warehouse can

be complex and costly, and virtual integration may be

the preferred option if these maintenance costs are too

high, or if it is not possible to extract data from the data

sources, or if access to the latest versions of the data

sources is required.

Examples of systems that adopt the materialized

integration approach are GUS [3], BioMart [4], Atlas

[14], BioMap [12]. With this approach, the standard

methodology and architecture for data warehouse cre-

ation and maintenance can be applied. This consists of

first extracting data from the data sources and trans-

porting it into a ‘‘staging’’ area. Data from the data

sources will need to be re-extracted periodically in

order to identify changes in the data sources and to

keep the warehouse up-to-date. Data extraction from

each data source may be either full extraction or incre-

mental extraction. With the former, the entire source

data is re-extracted every time while with the latter it is

only relevant data that has changed since the previous

extraction. Incremental extraction is likely to be more

efficient but for some data sources it may not be

possible to identify the data that has changed since

the last extraction, for example due to the limited

functionality provided by the data sources, and full

extraction may be the only option. After the source

data has been brought into the staging area, the

changes from the previous versions of the source data

are determined using ‘‘difference’’ algorithms (in the

case of full re-extraction) and the changed data is

transformed into the format and data types specified
by the warehouse schema. The data is then ‘‘cleaned’’

i.e., errors and inconsistencies are removed, and it is

loaded into the warehouse. The warehouse is likely to

contain materialized views which transform and aggre-

gate in various ways the detailed data from the data

sources. View maintenance capabilities provided by the

DBMS can be used to update such materialized views

following insertions, updates and deletions of the de-

tailed data. It is also possible to create and maintain

additional ‘‘data marts’’ each supporting a set of spe-

cialist users via a set of additional views specific to their

requirements. The warehouse serves as the single data

source for each data mart, and a similar process of

extraction, transformation, loading and aggregating

occurs to create and maintain the data mart.

One particular characteristic of biological data in-

tegration, as compared with business data integration

for example, is the prevalence of both automated

and manual annotation of data, either prior to its

integration, or during the integration process, or

both. For example, the Distributed Annotation System

(DAS) (http://www.biodas.org) allows annotations to

be generated and maintained by the owners of data

resources, while the GUS data warehouse supports

annotations that track the origins of data, information

about algorithms or annotation software used to derive

new inferred data, and who performed the annotation

and when. Being able to find out the provenance of

any data item in an integrated resource is likely to be

important for users, and this is even more significant

in biological data integration where multiple annota-

tion processes may be involved.

Another characteristic of biological data integration

is the wide variety of nomenclatures adopted by different

data sources. This greatly increases the difficulty of

aggregating their data and has led to the proposal of

many standardized ontologies, taxonomies and con-

trolled vocabularies to help alleviate this problem e.g.,

from the Gene Ontology (GO) Consortium, Open Bio-

medical Ontologies (OBO) Consortium, Microarray

Gene Expression Data (MGED) Society and Proteomics

Standards Initiative (PSI). The role of ontologies in

scientific data integration is discussed in the entry on

Ontologies in Scientific Data Integration. Another key

issue is the need to resolve possible inconsistencies in the

ways that biological entities are identifiedwithin the data

sources. The same biological entity may be identified

differently in different data sources or, conversely, the

same identifier may be used for different biological

588D Data Integration Architectures and Methodology for the Life Sciences
entities in different data sources. There have been a

number of initiatives to address the problem of incon-

sistent identifiers e.g., the Life Sciences Identifiers (LSID)

initiative and the International Protein Index (IPI). De-

spite such initiatives, there is still a legacy of large num-

bers of non-standardized identifiers in biological

datasets and therefore techniques are needed for asso-

ciating biological entities independently of their identi-

fiers. One technique is described in [12] where a

clustering approach is used to identify sets of data source

entities that are likely to refer to the same real-world

entity.

Another area of complexity is that data sources may

evolve their schemas over time to meet the needs of new

applications or new experimental techniques (hence-

forth, the term ‘‘data source schema’’ is used to encom-

pass also the data representation and exchange formats of

data sources that are not databases). Changes in the data

source schemas may require modification of the extrac-

tion-transformation-loading (ETL), viewmaterialization

and view maintenance procedures. Changes in the ware-

house schema may impact on data marts derived from it

and on the procedures for maintaining these.

Turning now to virtual data integration, architec-

tures that support virtual data integration typically

include the following components:

� A Repository for storing information about data

sources, integrated schemas, and the mappings be-

tween them.

� A suite of tools for constructing integrated schemas

and mappings, using a variety of automatic and

interactive methods.

� A Query Processor for coordinating the evaluation

of queries formulated with respect to an integrated

schema; the Query Processor first reformulates

such a query, using the mappings in the Repository,

into an equivalent query expressed over the data

source schemas; it then optimizes the query and

evaluates it, submitting as necessary sub-queries to

the appropriate data source Wrappers and merging

the results returned by them.

� An extensible set of Wrappers, one for each type of

data source being integrated; each Wrapper extracts

metadata from its data source for storage in the

Repository, translates sub-queries submitted to it

by the Query Processor into the data source’s query

formalism, issues translated sub-queries to the data

source, and translates sub-query results returned by
the data source into the Query Processor’s data

model for further post-processing by the Query

Processor.

An integrated schema may be defined in terms of a

standard data modeling language, or it may be a

source-independent ontology defined in an ontology

language and serving as a ‘‘global’’ schema for multiple

potential data sources beyond the specific ones that

are being integrated (as in TAMBIS for example). The

two main integration methodologies are top-down and

bottom-up. With top-down integration, the integrated

schema, IS, is first constructed, or may already exist

from previous schema design, integration or standar-

dization efforts. The set of mappings, M, between IS

and the data source schemas are then defined. With

bottom-up integration, an initial version of IS and M

are first constructed – for example, these may be based

on just one of the data source schemas. The integrated

schema IS and the set of mappings M are then incre-

mentally extended by considering in turn each of the

other data source schemas: for each object O in each

source schema, M is modified so as to encompass the

mapping between O and IS, if it is possible to do so

using the current IS; otherwise, IS extended as neces-

sary in order to encompass the data represented by O,

and M is then modified accordingly.

A mixed top-down/bottom-up approach is also

possible: an initial IS may exist from a previous design

or standardization activity, but it may need to be ex-

tended in order to encompass additional data arising

from the set of data sources being integrated within it.

With either top-down, bottom-up ormixed integration,

it is possible that IS will not need to encompass all of

the data of the data sources, but only a subset of the

data which is sufficient for answering key queries and

analyses – this avoids the possibly complex process of

constructing a complete integrated schema and set of

mappings.

There are a number of alternatives to defining the

set of mappings M above, and different data integra-

tion systems typically adopt different approaches: with

the global-as-view (GAV) approach, each mapping

relates one schema object in IS with a view that is

defined over the source schemas; with the local-as-

view (LAV) approach, each mapping relates one sche-

ma object in one of the source schemas with a view

defined over IS; and with the global-local-as-view

(GLAV) approach, each mapping relates a view over a

Data Integration Architectures and Methodology for the Life Sciences D 589

D

source schema with a view over IS [10,11]. Another

approach is the both-as-view [13] approach supported

by the AutoMed system. This provides a set of primi-

tive transformations on schemas, each of which adds,

deletes or renames a schema object. The semantic

relationships between objects in the source schemas

and the integrated schema are represented by reversible

sequences of such transformations. The ISPIDER proj-

ect [15] uses AutoMed for virtual integration of several

Grid-enabled proteomics data sources.

In addition to the approach adopted for specifying

mappings between source and integrated schemas, dif-

ferent systems may also make different assumptions

about the degree of semantic overlap between the

data sources: some systems assume that each data

source contributes to a different part of the integrated

resource (e.g., K2/Kleisli); some relax this assumption

but do not undertake any aggregation of duplicate

or overlapping data that may be present in the data

sources (e.g., TAMBIS); and some can support aggre-

gation at both the schema and the data levels (e.g.,

AutoMed). The degree of data source overlap impacts

on the degree of schema and data aggregation that

will need to be undertaken by the mappings, and

hence on their complexity and the design effort

involved in specifying them. The complexity of the

mappings in turn impacts on the sophistication of

the query processing mechanisms that will be needed

in order to optimize and evaluate queries posed on the

integrated schema.

Key Applications
� Integrating, analyzing and annotating genomic

data.

� Predicting the functional role of genes and integrat-

ing function-specific information.

� Integrating organism-specific information.

� Integrating and analyzing chemical compound data

and metabolic pathway data to support drug

discovery.

� Integrating protein family, structure and pathway

data with gene expression data, to support func-

tional genomics data analysis.

� Integrating, analyzing and annotating proteomics

data sources recording data from experiments on

protein separation and identification.

� Supporting systems biology research.

� Integrating phylogenetic data sources for genealog-

ical reconstruction.
� Integrating data about genomic variations in

order to analyze the impact of genomic variations

on health.

� Integrating genomic and proteomic data with clin-

ical data to support personalized medicine.

Future Directions
Identifying semantic correspondences between different

data sources is a necessary prerequisite to integrating

them. This is still largely a manual and time-consuming

process undertaken with significant input from domain

experts. Semi-automatic techniques are being developed

to alleviate this problem, for example name-based or

structural comparisons of source schemas, instance-

based matching at the data level to determine overlap-

ping schema concepts, and annotation of data sources

with terms from ontologies to facilitate automated

reasoning over the data sources.

The transformation of source data into an integrated

resourcemay result in loss of information, for example due

to imprecise knowledge about the semantic correspon-

dences between data sources. This is leading to research

into capturing within the integrated resource incomplete

and uncertain information, for example using probabilis-

tic or logic-based representations and reasoning.

Large amounts of information are potentially

available in textual form within published scientific

articles. Automated techniques are being developed

for extracting information from such sources using

grammar and rule-based approaches, and then inte-

grating this information with other structured or semi-

structured biological data.

Traditional approaches to data integration may

not be sufficiently flexible to meet the needs of

distributed communities of scientists. Peer-to-peer

data integration techniques are being developed in

which there is no single administrative authority for

the integrated resource and it is maintained instead by

a community of peers who exchange, transform and

integrate data in a pair-wise fashion and who cooper-

ate in query processing over their data.

Finally, increasing numbers of web services are

being made available to access biological data and

computing resources - see, for example, the entry on

Web Services and the Semantic Web for Life Science

Data. Similar problems arise in combining such web

services into larger-scale workflows as in integrating

biological data sources: the necessary services are often

created independently by different parties, using

590D Data Integration in Web Data Extraction System
different technologies, formats and data types, and

therefore additional code needs to be developed to

transform the output of one service into a format

that can be consumed by another.
Cross-references
▶Data Provenance

▶Ontologies and Life Science Data Management

▶ Pathway Databases

▶ Provenance in Scientific Databases

▶ Semantic Data Integration for Life Science Entities

▶Web Services and the Semantic Web for Life

Science Data
Recommended Reading
1. Cohen-Boulakia S., Davidson S., Froidevaux C., Lacroix Z., and

Vidal M.E. Path-based systems to guide scientists in the maze

of biological data sources. J. Bioinformatics Comput. Biol.,

4(5):1069–1095, 2006.

2. Davidson S., Overton C., and Buneman P. Challenges in

integrating biological data sources. J. Comput. Biol., 2(4):

557–572, 1995.

3. Davidson S.B., et al. K2/Kleisli and GUS: experiments

in integrated access to genomic data sources. IBM Syst. J., 40

(2):512–531, 2001.

4. Durnick S., et al. Biomart and Bioconductor: a powerful

link between biological databases and microarray data analysis.

Bioinformatics, 21(16):3439–3440, 2005.

5. Entrez – the life sciences search engine. Available at: http://www.

ncbi.nlm.nih.gov/Entrez

6. Goble C.A., et al. Transparent access to multiple bioinformatics

information sources. IBM Syst. J., 40(2):532–551, 2001.

7. Haas L.M., et al. Discovery Link: a system for integrated access to

life sciences data sources. IBM Syst. J., 40(2):489–511, 2001.

8. Hernandez T. and Kambhampati S. Integration of biological

sources: current systems and challenges ahead. ACM SIGMOD

Rec., 33(3):51–60, 2004.

9. Lacroix Z. and Critchlow T. Bioinformatics: Managing Scientif-

ic Data. Morgan Kaufmann, San Francisco, CA, 2004.

10. Lenzerini M. Data integration: a theoretical perspective. In Proc.

21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2002, pp. 233–246.

11. Madhavan J. and Halevy A.Y. Composing mappings among data

sources. In Proc. 29th Int. Conf. on Very Large Data Bases, 2003,

pp. 572–583.

12. Maibaum M., et al. Cluster based integration of hetero-

geneous biological databases using the AutoMed toolkit. In

Proc. 2nd Int. Workshop on Data Int. in the Life Sciences,

2005, pp. 191–207.

13. McBrien P. and Poulovassilis A. Data integration by bi-

directional schema transformation rules. In Proc. 19th Int.

Conf. on Data Engineering, 2003, pp. 227–238.

14. Shah S.P., et al. Atlas – a data warehouse for integrative

bioinformatics. BMC Bioinformatics, 6:34, 2005.
15. Zamboulis L., et al. Data access and integration in the

ISPIDER Proteomics Grid. In Proc. 3rd Int. Workshop on

Data Integration in the Life Sciences, 2006, pp. 3–18.

16. Zdobnov E.M., Lopez R., Apweiler R., and Etzold T. The

EBI SRS Server – recent developments. Bioinformatics,

18(2):368–373, 2002.
Data Integration in Web Data
Extraction System

MARCUS HERZOG
1,2

1Vienna University of Technology, Vienna, Austria
2Lixto Software GmbH, Vienna, Austria

Synonyms
Web information integration and schema matching;

Web content mining; Personalized Web

Definition
Data integration in Web data extraction systems refers

to the task of providing a uniform access to multiple

Web data sources. The ultimate goal of Web data

integration is similar to the objective of data integra-

tion in database systems. However, the main difference

is that Web data sources (i.e., Websites) do not feature

a structured data format which can be accessed and

queried by means of a query language. In contrast,

Web data extraction systems need to provide an addi-

tional layer to transform Web pages into (semi)-

structured data sources. Typically, this layer provides

an extraction mechanism that exploits the inherent

document structure of HTML pages (i.e., the docu-

ment object model), the content of the document (i.e.,

text), visual cues (i.e., formatting and layout), and the

inter document structure (i.e., hyperlinks) to extract

data instances from the given Web pages. Due to

the nature of the Web, the data instances will most

often follow a semi-structured schema. Successful data

integration then requires to solve the task of reconcil-

ing the syntactic and semantic heterogeneity, which

evolves naturally from accessing multiple independent

Web sources. Semantic heterogeneity can be typically

observed both on the schema level and the data in-

stance level. The output of the Web data integration

task is a unified data schema along with consolidated

data instances that can be queried in a structured way.

From an operational point of view, one can distinguish

between on-demand integration of Web data (also

Data Integration in Web Data Extraction System D 591

D

referred to as metasearch) and off-line integration

of Web data similar to the ETL process in data

warehouses.

Historical Background
The concept of data integration was originally con-

ceived by the database community. Whenever data are

not stored in a single database with a single data sche-

ma, data integration needs to resolve the structural and

semantic heterogeneity found in databases built by

different parties. This is a problem that researches

have been addressing for years [8]. In the context of

web data extraction systems, this issue is even more

pressing due to the fact that web data extraction sys-

tems usually deal with schemas of semi-structured data,

which are more flexible both from a structural and

semantic perspective. The Information Manifold [12]

was one of the systems that not only integrated rela-

tional databases but also took Web sources into ac-

count. However, these Web sources were structured in

nature and were queried by means of a Web form.

Answering a query involved a join across the relevant

web sites. The main focus of the work was on providing

a mechanism to describe declaratively the contents and

query capabilities of the available information sources.

Some of the first research systems which covered the

aspects of data integration in the context of Web data

extraction systemswere ANDES, InfoPipes, and a frame-

work based on the Florid system. These systems combine

languages for web data extraction with mechanisms to

integrate the extracted data in a homogeneous data

schema. ANDES [15] is based on the Extensible Style-

sheet Language Transformations (XSLT) for both data

extraction and data integration tasks. The ANDES

framework merges crawler technology with XML-based

extraction techniques und utilized templates, (recursive)

path expressions, and regular expressions for data ex-

traction, mapping, and aggregation. ANDES is primarily

a software framework, requiring application developers

to manually build a complete process from components

such as Data Retriever, Data Extractor, Data Checker,

and Data Exporter.

The InfoPipes system [10] features a workbench for

visual composition of processing pipelines utilizing

XML-based processing components. The components

are defined as follows: Source, Integration, Transfor-

mation, and Deliverey. Each of those components fea-

tures a configuration dialog to interactively define the

configuration of the component. The components can
be arranged on the canvas of the workbench and can be

connected to form information processing pipelines,

thus the name InfoPipes. The Source component uti-

lized ELOG programs [13] to extract semi-structured

data from Websites. All integration tasks are subse-

quently performed on XML data. The Integration

component also features a visual dialog to specify the

reconciliation of the syntactic and semantic heteroge-

neity in the XML documents. These specifications are

then translated into appropriate XSLT programs to

perform the reconciliation during runtime.

In [14] an integrated framework for Web explora-

tion, wrapping, data integration, and querying is de-

scribed. This framework is based on the Florid [13]

system and utilizes a rule-based object-oriented language

which is extended by Web accessing capabilities and

structured document analysis. The main objective of this

framework is to provide a unified framework – i.e., data

model and language – in which all tasks (from Web data

extraction to data integration and querying) are per-

formed. Thus, these tasks are not necessarily separated,

but can be closely intertwined. The framework allows for

modeling theWeb both on the page level as well as on the

parse-tree level. Combined rules for wrapping,mediating,

and Web exploration can be expressed in the same lan-

guage and with the same data model.

More recent work can be found in the context ofWeb

content mining. Web content mining focuses on extract-

ing useful knowledge from the Web. In Web content

mining, Web data integration is a fundamental aspect,

covering both schema matching and data instance

matching.

Foundations

Semi-structured Data

Web data extraction applications often utilize XML as

data representation formalism. This is due to the fact

that the semi-structured data format naturally matches

with the HTML document structure. In fact, XHTML

is an application of XML. XML provides a common

syntactic format. However, it does not offer any means

for addressing the semantic integration challenge.

Query languages such as XQuery [5], XPath [1] or

XSLT [11] provide the mechanism to manipulate the

structure and the content of XML documents. These

languages can be used as basis for implementing inte-

gration systems. The semantic integration aspect has to

be dealt with on top of the query language.

592D Data Integration in Web Data Extraction System
Schema and Instance Matching

The main issue in data integration is the finding the

semantic mapping between a number of data sources.

In the context of Web extraction systems, these sources

are web pages or more generally websites. There are

three distinct approaches to the matching problem:

manual, semiautomatic, or automatic matching. In

the manual approach, an expert needs to define the

mapping by using a toolset. This is of course time

consuming. Automatic schema matching in contrast

is AI-complete [3] and well researched in the database

community [16], but typically still lacks reliability. In

the semiautomatic approach, automatic matching

algorithms suggest certain mappings which are vali-

dated by an expert. This approach saves time due to

filtering out the most relevant matching candidates.

An example for manual data integration frame-

work is given in [6]. The Harmonize framework [9]

deals with business-to-business (B2B) integration on

the ‘‘information’’ layer by means of an ontology-based

mediation. It allows organizations with different data

standards to exchange information seamlessly without

having to change their proprietary data schemas. Part

of the Harmonize framework is a mapping tool that

allows for manually generating mapping rules between

two XML schema documents.

In contrast to the manual mapping approach, auto-

mated schema mapping has to rely on clues that can be

derived from the schema descriptions: utilizing the

similarities between the names of the schema elements

or taking the amount of overlap of data values or data

types into account.

While matching schemas is already a time-

consuming task, reconciling the data instances is even

more cumbersome. Due to the fact that data instances

are extracted from autonomous and heterogeneous

websites, no global identifiers can be assumed. The same

real world entity may have different textual representa-

tions, e.g., ‘‘CANOSCAN 3000ex 48 Bit, 1200�2400

dpi’’ and ‘‘Canon CanoScan 3000ex, 1200 � 2400dpi,

48Bit.’’ Moreover, data extracted from the Web is often

incomplete and noisy. In such a case, a perfect match

will not be possible. Therefore, a similarity metric for

text joins has to be defined. Most often the widely used

and established cosine similarity metric [17] from the

information retrieval field is used to identify string

matches. A sample implementation of text joins forWeb

data integrationbasedonanunmodifiedRDBMSisgiven

in[17].Due tothe fact that thenumberofdata instances is
much higher than the number of schema elements, data

instance reconciliation has to rely on automatic

procedures.

Web Content Mining

Web content mining uses the techniques and principles

of data mining to extract specific knowledge fromWeb

pages. An important step in Web mining is the integra-

tion of extracted data. Due to the fact that Web mining

has to work on Web-scale, a fully automated process is

required. In the Web mining process, Web data records

are extracted from Web pages which serve as input for

the subsequent processing steps. Due to the large scale

approach of Web mining it calls for novel methods that

draw from a wide range of fields spanning data mining,

machine learning, natural language processing, statis-

tics, databases, and information retrieval [4].

Key Applications
Web data integration is required for all applications

that draw data from multiple Web sources and need to

interpret the data in a new context. The following main

application areas can be identified:

Vertical Search

In contrast to web search as provided by major search

engines, vertical search targets a specific domain such as

e.g., travel offers, job offers, or real estate offers. Vertical

search applications typically deliver more structured

results than conventional web search engines. While

the focus of the web search is to cover the breath of all

available websites and deliver the most relevant web-

sites for a given query, vertical search typically searches

less websites, but with the objective to retrieve relevant

data objects. The output of a vertical search query is a

result set that contains e.g., the best air fares for a

specific route. Vertical search also needs to address the

challenge of searching the deep Web, i.e., extracting

data by means of automatically utilizing web forms.

Data integration in the context of vertical search is

both important for interface matching, i.e., merge the

source query interfaces and map onto a single query

interface, and result data object matching, where data

extracted from the individual websites is matched

against a single result data model.

Web Intelligence

In Web Intelligence applications, the main objective is

to gain new insights from the data extracted on the

Data Map D 593

D

Web. Typical application fields are market intelligence,

competitive intelligence, and price comparison. Price

comparison applications are probably the most well

known application type in this field. In a nutshell these

applications aggregate data from the Web and integrate

different Web data sources according to a single data

schema to allow for easy analysis and comparison of

the data. Schema matching and data reconciliation are

important aspects with this type of applications.

Situational Applications

Situational applications are a new type of application

where people with domain knowledge can build an

application in a short amount of time without the

need to setup an IT project. In the context of the

Web, Mashups are addressing these needs. With Mash-

ups, readymade widgets are used to bring together

content extracted from multiple websites. Additional

value is derived by exploiting the relationship between

the different sources, e.g., visualizing the location of

offices in a mapping application. In this context, Web

data integration is required to reconcile the data

extracted from different Web sources and to resolve

the references to real world objects.
Cross-references
▶Data Integration

▶ Enterprise Application Integration

▶ Enterprise Information Integration

▶ Schema Matching

▶Web Data Extraction

Recommended Reading
1. Baumgartner R., Flesca S., and Gottlob G. Visual web informa-

tion extraction with Lixto. In Proc. 27th Int. Conf. on Very Large

Data Bases, 2001, pp. 119–128.

2. Berglund A., Boag S., Chamberlin D., Rernandez M.F., Kay M.,

Robie J., and Simeon J. (eds.). XML XPath Language 2.0. W3C

Recommendation, 2007.

3. Bernstein P.A., Melnik S., Petropoulos M., and Quix C.

Industrial-strength schema matching. ACM SIGMOD Rec.,

33(4):38–43, 2004.

4. Bing L. and Chen-Chuan-Chang K. Editorial: special issue

on web content mining. ACM SIGKDD Explorations Newsletter,

6(2):1–4, 2004.

5. Boag S., Chamberlin D., Fernandez M.F., Florescu D., Robie J.,

and Simeon J. (eds.). XQuery 1.0. An XML Query Language.

W3C Recommendation, 2007.

6. Fodor O. and Werthner E. Harmonise: a step toward an interop-

erable e-tourism marketplace. Intl. J. Electron. Commerce,

9(2):11–39, 2005.
7. Gravano L., Panagiotis G.I., Koudas N., and Srivastava D. Text

joins in an RDBMS for web data integration. In Proc. 12th Int.

World Wide Web Conference, 2003, pp. 90–101.

8. Halevy A., Rajaraman A., and Ordille J. Data integration: the

teenage years. In Proc. 32nd Int. Conf. on Very Large Data Bases,

2006, pp. 9–18.

9. Harmonise Framework. Available at: http://sourceforge.net/pro

jects/hmafra/.

10. Herzog M. and Gottlob G. InfoPipes: a flexible framework

for m-commerce applications. In Proc. 2nd Int. Workshop on

Technologies for E-Services, 2001, pp. 175–186.

11. Kay M. (ed.). XSL Transformations. Version 2.0. W3C Recom-

mendation, 2007.

12. Kirk T., Levy A.Y., Sagiv Y., and Srivastava D. The information

manifold. In Proc. Working Notes of the AAAI Spring Symp. on

Information Gathering from Heterogeneous, Distributed Envir-

onments. Stanford University. AAAI Press, 1995, pp. 85–91.

13. Ludäscher B., Himmeröder R., Lausen G., May W., and Schlep-

phorst C. Managing semistructured data with florid: a deductive

object-oriented perspective. Inf. Syst., 23(9):589–613, 1998.

14. May W. and Lausen G. A uniform framework for integration of

information from the web. Inf. Syst., 29:59–91, 2004.

15. Myllymaki J. Effective web data extraction with standard XML

technologies. Comput. Networks, 39(5):653–644, 2002.

16. Rahm E. and Bernstein P.A. A survey of approaches to auto-

matics schema matching. VLDB J., 10(4):334–350, 2001.

17. Salton G. and McGill M.J. Introduction to Modern Information

Retrieval. McGraw-Hill, New York, NY, 1983.
Data Integrity Services

▶ Security Services
Data Lineage

▶Data Provenance
Data Manipulation Language

▶Query Language
Data Map

▶Thematic Map

594D Data Mart
Data Mart

IL-YEOL SONG

Drexel University, Philadelphia, PA, USA

Definition
A data mart is a small-sized data warehouse focused on

a specific subject. While a data warehouse is meant for

an entire enterprise, a data mart is built to address the

specific analysis needs of a business unit. Hence, a data

mart can be defined as ‘‘a small-sized data warehouse

that contains a subset of the enterprise data warehouse

or a limited volume of aggregated data for specific

analysis needs of a business unit, rather than

the needs of the whole enterprise.’’ Thus, an enterprise

usually ends up having many data marts.
Key Points
While a data warehouse is for a whole enterprise, a

data mart focuses on a specific subject of a specific

business unit. Thus, the design and management of a

data warehouse must consider the needs of the whole

enterprise, while those of a data mart are focused on the

analysis needs of a specific business unit such as

the sales department or the finance department. Thus,

a data mart shares the characteristics of a data ware-

house, such as being subject-oriented, integrated, non-

volatile, and a time-variant collection of data [1]. Since

the scope and goal of a datamart is different from a data

warehouse, however, there are some important differ-

ences between them:

� While the goal of a data warehouse is to address the

needs of the whole enterprise, the goal of a data

mart is to address the needs of a business unit such

as a department.

� While the data of a data warehouse is fed from

OLTP (Online Transaction Processing) systems,

those of a data mart are fed from the enterprise

data warehouse.

� While the granularity of a data warehouse is raw at

its OLTP level, that of a data mart is usually lightly

aggregated for optimal analysis by the users of the

business unit.

� While the coverage of a data warehouse is fully

historical to address the needs of the whole enter-

prise, that of a data mart is limited for the specific

needs of a business unit.
An enterprise usually ends up having multiple data

marts. Since the data to all the data marts are fed from

the enterprise data warehouse, it is very important to

maintain the consistency between a data mart and the

data warehouse as well as among data marts themselves.

A way to maintain the consistency is to use the notion

of conformed dimension. A conformed dimension is a

standardized dimension or a master reference dimen-

sion that are shared across multiple data marts [2].

The technology for advanced data analysis for the

business intelligence in the context of data mart envi-

ronment is called OLAP (Online Analytic Processing).

Two OLAP technologies are ROLAP (Relational

OLAP) and MOLAP (Multidimensional OLAP). In

ROLAP, data are structured in the form a star schema

or a dimensional model. In MOLAP, data are struc-

tured in the form of multidimensional data cubes.

For MOLAP, a specialized OLAP software is used to

support the creation of data cubes and OLAP opera-

tions such as drill-down and roll-up.
Cross-references
▶Active and Real-Time Data Warehousing

▶Business Intelligence

▶Data Mining

▶Data Warehouse

▶Data Warehouse Life-Cycle and Design

▶Data Warehouse Maintenance, Evolution and

Versioning

▶Data Warehouse Metadata

▶Data Warehouse Security

▶Data Warehousing and Quality Data Management

for Clinical Practice

▶Data Warehousing for Clinical Research

▶Data Warehousing Systems: Foundations and

Architectures

▶Dimension

▶ Extraction, Transformation, and Loading

▶Multidimensional Modeling

▶On-Line Analytical Processing

▶Transformation
Recommended Reading
1. Inmon W.H. Building the Data Warehouse, 3rd edn. Wiley, New

York, 2002.

2. Kimball R. and Ross M. The Data Warehouse Toolkit, 2nd edn.

Wiley, New York, 2002.

Data Mining D 595
Data Migration

▶Data Exchange
D
Data Mining

JIAWEI HAN

University of Illinois at Urbana-Champaign, Urbana,

IL, USA

Synonyms
Knowledge discovery from data; Data analysis; Pattern

discovery

Definition
Data mining is the process of discovering knowledge or

patterns from massive amounts of data. As a young

research field, data mining represents the confluence

of a number of research fields, including database sys-

tems, machine learning, statistics, pattern recognition,

high-performance computing, and specific application

fields, such as WWW, multimedia, and bioinforma-

tics, with broad applications. As an interdisciplinary

field, data mining has several major research themes

based on its mining tasks, including pattern-mining

and analysis, classification and predictive modeling,

cluster and outlier analysis, and multidimensional

(OLAP) analysis. Data mining can also be categorized

based on the kinds of data to be analyzed, such asmulti-

relational datamining, textmining, streammining, web

mining, multimedia (or image, video) mining, spatio-

temporal data mining, information network analysis,

biological data mining, financial data mining, and so

on. Itcanalsobeclassifiedbasedontheminingmethodol-

ogyor the issues tobe studied, such asprivacy-preserving

data mining, parallel and distributed data mining, and

visual datamining.

Historical Background
Datamining activities can be traced back to the dawn of

early human history when data analysis methods (e.g.,

statistics and mathematical computation) were needed

and developed for finding knowledge from data. As a

distinct but interdisciplinary field, knowledge discov-

ery and data mining can be viewed as starting at

The First International Workshop on Knowledge Dis-

covery fromData (KDD) in 1989. The first International
Conference on Knowledge Discovery and Data Mining

(KDD) was held in 1995. Since then, there have been a

number of international conferences and several scien-

tific journals dedicated to the field of knowledge discov-

ery and data mining. Many conferences on database

systems, machine learning, pattern recognition, statis-

tics, and World-Wide Web have also published influen-

tial research results on data mining. There are also many

textbooks published on data mining, such as

[5,7,8,11,12], or on specific aspects of data mining,

such as data cleaning [4] andwebmining [2,9]. Recently,

there is also a trend to organize dedicated conferences

and workshops on mining specific kinds of data or

specific issues on data mining, such as International

Conferences onWeb Search and DataMining (WSDM).

Foundations
The overall knowledge discovery process usually consists

of a few steps, including (i) data preprocessing, e.g., data

cleaning and data integration (and possibly building up

data warehouse), (ii) data selection, data transformation

(and possibly creating data cubes by multidimensional

aggregation), and feature extraction, (iii) data mining,

(iv) pattern or model evaluation and justification, and

(v) knowledge update and application. Data mining is

an essential step in the knowledge discovery process.

As a dynamic research field, many scalable and

effective methods have been developed for mining pat-

terns and knowledge from an enormous amount of

data, which contributes to theories, methods, imple-

mentations, and applications of knowledge discovery

and data mining. Several major themes are briefly

outlined below.

Mining Interesting Patterns from Massive Amount

of Data

Frequent patterns are the patterns (e.g., itemsets, sub-

sequences, or substructures) that occur frequently in

data sets. This line of research started with association

rule mining [1] and has proceeded to mining sequen-

tial patterns, substructure (or subgraph) patterns, and

their variants. Many scalable mining algorithms have

been developed and most of them explore the Apriori

(or downward closure) property of frequent patterns,

i.e., any subpattern of a frequent pattern is frequent.

However, to make discovered patterns truly useful in

many applications, it is important to study how to

mine interesting frequent patterns [6], e.g., the patterns

that satisfy certain constraints, patterns that reflect

596D Data Mining
strong correlation relationships, compressed patterns,

and the patterns with certain distinct features. The

discovered patterns can also be used for classification,

clustering, outlier analysis, feature selection (e.g., for

index construction), and semantic annotation.
Scalable Classification and Predictive Modeling

There are many classification methods developed in ma-

chine learning [10] and statistics [8], including decision

tree induction, rule induction, naive-Bayesian, Bayesian

networks, neural networks, support vector machines,

regression, and many statistical and pattern analysis

methods [5,7,8,11,12]. Recent data mining research has

been exploring scalable algorithms for such methods as

well as developing new classification methods for hand-

ling different kinds of data, such as data streams, text

data, web data, multimedia data, and high-dimensional

biological data. For example, a pattern-based classifica-

tion method, called DDPMine [3], that first extracts

multidimensional features by discriminative frequent

pattern analysis and then performs classification using

these features has demonstrated high classification accu-

racy and efficiency.
Cluster and Outlier Analysis

Data mining research has contributed a great deal to the

recent development of scalable and effective cluster anal-

ysismethods. Newmethods have been proposed tomake

partitioning and hierarchical clustering methods more

scalable and effective. For example, the micro-clustering

idea in BIRCH [13] has been proposed that first groups

objects into tight, micro-clusters based on their inhe-

rent similarity, and then performs flexible and effi-

cient clustering on top of a relatively small number of

micro-clusters. Moreover, new clustering methodolo-

gies, such as density-based clustering, link-based cluster-

ing, projection-based clustering of high-dimensional

space, user-guided clustering, pattern-based clustering,

and (spatial) trajectory clustering methods have been

developed and various applications have been explored,

such as clustering high-dimensional microarray data

sets, image data sets, and interrelated multi-relational

data sets. Furthermore, outlier analysis methods have

been investigated, which goes beyond typical statistical

distribution-based or regression deviation-based outlier

analysis, and moves towards distance-based or density-

based outlier analysis, local outlier analysis, and tra-

jectory outlier analysis.
Multidimensional (OLAP) Analysis

Each object/event in a dataset usually carries multidi-

mensional information. Mining data in multidimen-

sional space will substantially increase the power and

flexibility of data analysis. By integration of data cube

and OLAP (online analytical processing) technologies

with data mining, the power and flexibility of data

analysis can be substantially increased. Data mining

research has been moving towards this direction with

the proposal of OLAP mining, regression cubes, pre-

diction cubes, and other scalable high-dimensional

data analysis methods. Such multidimensional, espe-

cially high-dimensional, analysis tools will ensure that

data can be analyzed in hierarchical, multidimensional

structures efficiently and flexibly at user’s finger tips.

OLAP mining will substantially enhance the power and

flexibility of data analysis and lead to the construction

of easy-to-use tools for the analysis of massive data

with hierarchical structures in multidimensional space.

Mining Different Kinds of Data

Different data mining methods are often needed for

different kinds of data and for various application

domains. For example, mining DNA sequences, moving

object trajectories, time-series sequences on stock prices,

and customer shopping transaction sequences require

rather different sequence mining methodology. There-

fore, another active research frontier is the development

of data- or domain-specific mining methods. This leads

to diverse but flourishing research on mining different

kinds of data, including multi-relational data, text data,

web data, multimedia data, geo-spatial data, temporal

data, data streams, information networks, biological

data, financial data, and science and engineering data.

Key Applications
Data mining claims a very broad spectrum of applica-

tions since in almost every domain, there is a need for

scalable and effective methods and tools to analyze

massive amounts of data. Two applications are illu-

strated here as examples:

Biological Data Mining

The fast progress of biomedical and bioinformatics

research has led to the accumulation of an enormous

amount of biological and bioinformatics data. How-

ever, the analysis of such data poses much greater

challenges than traditional data analysis methods.

For example, genes and proteins are gigantic in size

Data Mining D 597

D

(e.g., a DNA sequence could be in billions of base

pairs), very sophisticated in function, and the patterns

of their interactions are largely unknown. Thus it is a

fertile field to develop sophisticated data mining meth-

ods for in-depth bioinformatics research. Substantial

research is badly needed to produce powerful mining

tools for biology and bioinformatics studies, including

comparative genomics, evolution and phylogeny,

biological data cleaning and integration, biological se-

quence analysis, biological network analysis, biological

image analysis, biological literature analysis (e.g.,

PubMed), and systems biology. From this point view,

data mining is still very young with respect to biology

and bioinformatics applications.
Data Mining for Software Engineering

Software program executions potentially (e.g., when

program execution traces are turned on) generate

huge amounts of data. However, such data sets are

rather different from the datasets generated from the

nature or collected from video cameras since they

represent the executions of program logics coded by

human programmers. It is important to mine such

data to monitor program execution status, improve

system performance, isolate software bugs, detect soft-

ware plagiarism, analyze programming system faults,

and recognize system malfunctions.

Data mining for software engineering can be parti-

tioned into static analysis and dynamic/stream analy-

sis, based on whether the system can collect traces

beforehand for post-analysis or it must react at real

time to handle online data. Different methods have

been developed in this domain by integration and

extension of the methods developed in machine

learning, data mining, pattern recognition, and statis-

tics. For example, statistical analysis such as hypothe-

sis testing approach can be performed on program

execution traces to isolate the locations of bugs which

distinguish program success runs from failure runs.

Despite of its limited success, it is still a rich domain

for data miners to research and further develop sophis-

ticated, scalable, and real-time data mining methods.
Future Directions
There are many challenging issues to be researched fur-

ther, and therefore, there are great many research fron-

tiers in data mining. Besides the mining of biological

data and software engineering data, as well as the above
introduced advancedminingmethodologies, a fewmore

research directions are listed here.

Mining Information Networks

Information network analysis has become an impor-

tant research frontier, with broad applications, such

as social network analysis, web community discov-

ery, cyberphysical network analysis, and network in-

trusion detection. However, information network

research should go beyond explicitly formed, homo-

geneous networks (e.g., web page links, computer

networks, and terrorist e-connection networks) and

delve deeply into implicitly formed, heterogeneous,

dynamic, interdependent, and multidimensional in-

formation networks, such as gene and protein net-

works in biology, highway transportation networks

in civil engineering, theme-author-publication-cita-

tion networks in digital libraries, wireless telecom-

munication networks among commanders, soldiers

and supply lines in a battle field.

Invisible Data Mining

It is important to build data mining functions as an

invisible process in many systems (e.g., rank search

results based on the relevance and some sophisticated,

preprocessed evaluation functions) so that users may

not even sense that data mining has been performed

beforehand or is being performed and their browsing

and mouse clicking are simply using the results of or

further exploration of data mining. Google has done

excellent invisible data mining work for web search

and certain web analysis. It is highly desirable to intro-

duce such functionality to many other systems.

Privacy-Preserving Data Mining

Due to the security and privacy concerns, it is appeal-

ing to perform effective data mining without disclo-

sure of private or sensitive information to outsiders.

Much research has contributed to this theme and it

is expected that more work in this direction will lead to

powerful as well as secure data mining methods.

Experimental Results
There are many experimental results reported in nu-

merous conference proceedings and journals.

Data Sets
There are many, many data sets (mostly accessible on

the web) that can be or are being used for data mining.

598D Data Mining in Bioinformatics
University of California at Irvine has an online

repository of large data sets which encompasses a

wide variety of data types, analysis tasks, and applica-

tion areas. The website of UCI Knowledge Discovery in

Databases Archive is http://kdd.ics.uci.edu.

Researchers and practitioners should work on real

data sets as much as possible to generate data mining

tools for real applications.

URL to Code
Weka (http://www.cs.waikato.ac.nz/ml/weka) presents

a collection of machine learning and data mining algo-

rithms for solving real-world data mining problems.

RapidMiner (http://rapid-i.com), which was previ-

ously called YALE (Yet Another Learning Environ-

ment), is a free open-source software for knowledge

discovery, data mining, and machine learning.

IlliMine (IlliMine.cs.uiuc.edu) is a collection of

data mining software derived from the research of the

Computer Science department at the University of

Illinois at Urbana-Champaign.

For frequent pattern mining, the organizers of the

FIMI (Frequent Itemset Mining Implementations)

workshops provides a repository for frequent itemset

mining implementations at http://fimi.cs.helsinki.fi.

There are many other websites providing source or

object codes on data mining.

Cross-references
▶Association Rules

▶Bayesian Classification

▶Classification

▶Classification by Association Rule Analysis

▶Clustering Overview and Applications

▶Data, Text, and Web Mining in Healthcare

▶Decision Rule Mining in Rough Set Theory

▶Decision Tree Classification

▶Decision Trees

▶Dimentionality Reduction

▶ Event pattern detection

▶ Event Prediction

▶ Exploratory data analysis

▶ Frequent graph patterns

▶ Frequent itemset mining with constraints

▶ Frequent itemsets and association rules

▶Machine learning in Computational Biology

▶Mining of Chemical Data

▶Opinion mining

▶ Pattern-growth methods
▶ Privacy-preserving data mining

▶ Process mining

▶ Semi-supervised Learning

▶ Sequential patterns

▶ Spatial Data Mining

▶ Spatio-temporal Data Mining

▶ Stream Mining

▶Temporal Data Mining

▶Text Mining

▶Text mining of biological resources

▶Visual Association Rules

▶Visual Classification

▶Visual Clustering

▶Visual Data Mining
Recommended Reading
1. Agrawal R. and Srikant R. Fast algorithms for mining association

rules. In Proc. 20th Int. Conf. on Very Large Data Bases, 1994,

pp. 487–499.

2. Chakrabarti S. Mining the Web: Statistical Analysis of Hypertex

and Semi-Structured Data. Morgan Kaufmann, 2002.

3. Cheng H., Yan X., Han J., and Yu P.S. Direct discriminative

pattern mining for effective classification. In Proc. 24th Int.

Conf. on Data Engineering, 2008, pp. 169–178.

4. Dasu T. and Johnson T. Exploratory Data Mining and Data

Cleaning. Wiley, 2003.

5. Duda R.O., Hart P.E., and Stork D.G. Pattern Classification, 2nd

edn. Wiley, New York, 2001.

6. Han J., Cheng H., Xin D., and Yan X. Frequent pattern mining:

Current status and future directions. Data Min. Knowl. Disc.,

15:55–86, 2007.

7. Han J. and Kamber M. Data Mining: Concepts and Techniques,

2nd edn. Morgan Kaufmann, 2006.

8. Hastie T., Tibshirani R., and Friedman J. The Elements of Statis-

tical Learning: Data Mining, Inference, and Prediction, Springer,

2001.

9. Liu B. Web Data Mining: Exploring Hyperlinks, Contents, and

Usage Data. Springer, 2006.

10. Mitchell T.M. Machine Learning. McGraw-Hill, 1997.

11. Tan P., Steinbach M., and Kumar V. Introduction to Data

Mining. Addison Wesley, 2005.

12. Witten I.H. and Frank E. DataMining: PracticalMachine Learning

Tools and Techniques, 2nd edn. Morgan Kaufmann, 2005.

13. Zhang T., Ramakrishnan R., and Livny M. BIRCH: an efficient

data clustering method for very large databases. In Proc. ACM-

SIGMOD Int. Conf. onManagement of Data, 1996, pp. 103–114.
Data Mining in Bioinformatics

▶Machine Learning in Computational Biology

Data Partitioning D 599
Data Mining in Computational
Biology

▶Machine Learning in Computational Biology
D

Data Mining in Moving Objects
Databases

▶ Spatio-Temporal Data Mining
Data Mining in Systems Biology

▶Machine Learning in Computational Biology
Data Mining Pipeline

▶KDD Pipeline
Data Mining Process

▶KDD Pipeline
Data Model Mapping

▶ Logical Database Design: From Conceptual to Logi-

cal Schema
Data Organization

▶ Indexing and Similarity Search
Data Partitioning

DANIEL ABADI

Yale University, New Haven, CT, USA

Definition
Data Partitioning is the technique of distributing data

across multiple tables, disks, or sites in order to improve
query processing performance or increase database

manageability. Query processing performance can be

improved in one of two ways. First, depending on how

the data is partitioned, in some cases it can be deter-

mined a priori that a partition does not have to be

accessed to process the query. Second, when data is

partitioned across multiple disks or sites, I/O parallel-

ism and in some cases query parallelism can be attained

as different partitions can be accessed in parallel. Data

partitioning improves database manageability by op-

tionally allowing backup or recovery operations to be

done on partition subsets rather than on the complete

database, and can facilitate loading operations into

rolling windows of historical data by allowing individ-

ual partitions to be added or dropped in a single

operation, leaving other data untouched.

Key Points
There are two dominant approaches to data

partitioning.

Horizontal partitioning divides a database table

tuple-by-tuple, allocating different tuples to different

partitions. This is typically done using one of five

techniques:

1. Hash partitioning allocates tuples to partitions by

applying a hash function to an attribute value (or

multiple attribute values) within the tuple. Tuples

with equivalent hash function values get allocated

to the same partition.

2. Range partitioning allocates tuples to partitions by

using ranges of attribute values as the partitioning

criteria. For example, tuples from a customer table

with last name attribute beginning with ‘‘A’’–‘‘C’’

are mapped to partition 1, ‘‘D’’–‘‘F’’ mapped to

partition 2, etc.

3. List partitioning allocates tuples to partitions by

associating a list of attribute values with each par-

tition. Using range or list partitioning, it can be

difficult to ensure that each partition contains ap-

proximately the same number of tuples.

4. Round-robin partitioning allocates the ith tuple

from a table to the (i mod n)th partition where n

is the total number of partitions.

5. Composite partitioning combines several of the

above techniques, typically range partitioning fol-

lowed by hash partitioning.

Vertical partitioning divides a table column-by-

column, allocating different columns (or sets of

600D Data Pedigree
columns) to different partitions. This approach is less

frequently used relative to horizontal partitioning since

it is harder to parallelize query processing over multi-

ple vertical partitions, and merging or joining parti-

tions is often necessary at query time. Column-stores

are databases that specialize in vertical partitioning,

usually taking the approach to the extreme, storing

each column separately.

Cross-references
▶Horizontally Partitioned Data

▶ Parallel Query Processing
Data Pedigree

▶Data Provenance
Data Perturbation

▶Matrix Masking
Data Privacy and Patient Consent

DAVID HANSEN
1, CHRISTINE M. O’KEEFE

2

1The Australian e-Health Research Centre, Brisbane,

QLD, Australia
2CSIRO Preventative Health National Research

Flagship, Acton, ACT, Australia

Synonyms
Data protection

Definition
Data privacy refers to the interest individuals and

organisations have in the collection, sharing, use and

disclosure of information about those individuals or

organizations. Common information types raising

data privacy issues include health (especially genetic),

criminal justice, financial, and location. The recent

rapid growth of electronic data archives and associated

data technologies has increased the importance of data

privacy issues, and has led to a growing body of legis-

lation and codes of practice.
Patient consent, in relation to data, refers to a

patient’s act of approving the collection, sharing, use

or disclosure of information about them. It is impor-

tant because data with appropriate patient consent

often falls into exception clauses in privacy legislation.

The challenge in data privacy is to balance the need

to share and use data with the need to protect person-

ally identifiable information and respect patient con-

sent. For example, a person may have an expectation

that their health data is being held securely but is

available to clinicians involved in their care. In addi-

tion, researchers seek access to health data for medical

research and to answer questions of clinical and policy

relevance. Part of the challenge is that there are a range

of views about, for example, what constitutes legiti-

mate uses of data, what level of consent is required and

how fine-grained that consent should be, what consti-

tutes a clinical ‘‘care team,’’ and what privacy legisla-

tion should cover.

The development of technologies to support data

privacy and patient consent is currently attracting

much attention internationally.

Historical Background
Privacy issues began to attract attention in Europe and

North America in the 1960s, and shortly thereafter in

Australia. Probably a large factor in the relatively late

recognition of privacy as a fundamental right is that

most modern invasions of privacy involve new tech-

nology. For example, before the invention of computer

databases, data were stored on paper in filing cabinets

which made it difficult to find and use the information.

The traditional ways of addressing the harm caused by

invasions of privacy through invoking trespass, assault

or eavesdropping were no longer sufficient in dealing

with invasions of privacy enacted with modern infor-

mation technologies.

In the health care area, the notion of consent arose

in the context of both treatment and clinical trials in

research into new treatments. Patients undergoing a

procedure or treatment would either be assumed to

have given implicit consent by their cooperation, or

would be required to sign an explicit statement of

consent. Participants in clinical trials would be asked

to give a formal consent to a trial, considered necessary

because of the risk of harm to the individual due to the

unknown effects of the intervention under research.

The notion of consent has transferred to the context of

the (primary) use of data for treatment and the

Data Privacy and Patient Consent D 601

D

(secondary) use of data for research. For example,

implied or expressed consent would be required for

the transfer of medical records to a specialist or may be

required for the inclusion of data in a research database

or register. Increasingly, and somewhat controversially,

health data are being made available for research with-

out patient consent, but under strict legal and ethical

provisions. Where this is the case, ethics committees

are given the responsibility to decide if the research

benefits outweigh to a substantial degree the public

interest in protecting privacy. Ethics committees will

generally look for de-identified data to be used wher-

ever practical.

A recent development related to the privacy of

health data is the concept of participation or moral

rights (http://www.privireal.org/). This can be viewed

as an objection to the use of personal information on

moral grounds; that individuals should have the right

to know, and veto, how their data is used, even when

there is no risk to the release of that personal

information.

The major data privacy-related legislative provi-

sions internationally are Directive 95/46/EC of the

European Parliament and of the Council of 24 October

1995 on the protection of individuals with regard to

the processing of personal data and on the free move-

ment of such data, the Health Insurance Portability

and Accountability Act (HIPAA) enacted by the US

Congress in 1996, the Data Protection Act 1998 of the

UK Parliament and the Australian Privacy Act 1988.

There are apparent differences between these provi-

sions in terms of both their scope and philosophy.

Recent technological approaches to data privacy

include: tight governance and research approvals

processes, restricted access through physical and IT

security, access control mechanisms, de-identification,

statistical disclosure limitation and remote server tech-

nology for remote access and remote execution. Patient

consent is often built into the approvals process, but

can also be a component of the access control mecha-

nism. In all cases the purpose of access to the data is of

prime importance.

Foundations
The use of sensitive personal data falls broadly into two

areas: primary and secondary use.

Primary use of data refers to the primary reason the

data was captured. Increasing amounts of personal

health data are being stored in databases for the
purpose of maintaining a life long health record of an

individual. While in most cases this will provide for

more appropriate care, there will be times when the

individual will not want sensitive data revealed, even to

a treating clinician. This may particularly be the case

when the data is judged not relevant to the current

medical condition.

In some electronic health record programs, patients

will have the option to opt-in or opt-out of the pro-

gram. This can be a controversial aspect of health

record systems and often legislation is needed to sup-

port this aspect of any collection of health related data.

Once the patient data has been entered into an

electronic health record system, there will generally

be several layers of security protecting the data. Au-

thentication is often performed using a two pass sys-

tem – a password and a certificate are required to enter

the system, to ensure that the person accessing the

system is correctly authenticated. Once the person is

authenticated access to appropriate data must be man-

aged. Often a Role Based Access System (RBAC) [5] is

implemented to ensure that access to the data is only

granted to people who should have it. There are also

now XML based mark up languages, such as XACML,

which enable Role Based Access Control rules to be

encoded using the language and hence shared by mul-

tiple systems. Audit of access to electronically stored

health data is also important, to enable review access

granted to data.

Storage and transmission of data is also an issue for

privacy and confidentiality of patient data.

Encryption of the data when being transmitted is

one way of ensuring the security of the data. There are

also new computer systems which support Mandatory

Access Control (MAC) which embed the security algo-

rithms in the computer hardware, rather than at the

software level, which are now available for the storage

and access of electronic data. Security Assertion Mark-

up Language (SAML) token are one technology which

is being used to store privacy and security information

with health data as they are transmitted between

computers.

The USA HIPAA legislation covers the require-

ments of how to capture, store and transmit demo-

graphic and clinical data.

The secondary use of data is more problematic

when it comes to data privacy and patient consent,

since it refers to usage of the data for purposes which

are not directly related to the purpose for which it was

602D Data Privacy and Patient Consent
collected. This includes purposes like medical research

and policy analysis, which are unlikely to have a direct

affect on the treatment of the patient whose data is

used.

There are a range of technological approaches to

the problem of enabling the use of data for research

and policy analysis while protecting privacy and confi-

dentiality. None of these technologies provides a com-

plete answer, for each must be implemented within an

appropriate legislative and policy environment and

governance structure, with appropriate management

of the community of authorised users and with an

appropriate level of IT security including user authen-

tication, access control, system audit and follow-up. In

addition, none of the technologies discussed here is the

only solution to the problem, since there are many

different scenarios for the use of data, each with a

different set of requirements. It is clear that different

technologies and approaches have different strengths

and weaknesses, and so are suitable for different

scenarios.

A high level discussion of the problem of enabling

the use of data while protecting privacy and confi-

dentiality typically discusses two broad approaches.

The first is restricted access, where access is only

provided to approved individuals and for approved

purposes. Further restrictions can be imposed, such

as access to data only given at a restricted data centre,

restrictions on the types of analyses which can be

conducted and restrictions on the types of outputs

which can be taken out of a data centre. There can be

a cost associated with access to the data. The second is

restricted or altered data, where something less than

the full data set is published or the data are altered in

some way before publication. Restricted data might

involve removing attributes, aggregating geographic

classifications or aggregating small groups of data.

For altered data, some technique is applied to the

data so that the released dataset does not reveal private

or confidential information. Common examples here

include the addition of noise, data swapping or the

release of synthetic data. Often these broad approaches

are used in combination.

Below, three current technological approaches to

the problem are reviewed. These fall into the category

restricted or altered data described above, and all are

used in combination with restricted access.

The first approach is to release de-identified data to

researchers under strict controls. De-identification is a
very complex issue surrounded by some lack of clarity

and standard terminology. It is also very important as

it underpins many health information privacy guide-

lines and legislation.

First, it is often not at all clear what is meant when

the term ‘‘de-identified’’ is used to refer to data. Some-

times it appears to mean simply that nominated iden-

tifiers such as name, address, date of birth and unique

identifying numbers have been removed from the data.

At other times its use appears to imply that individuals

represented in a data set cannot be identified from the

data – though in turn it can be unclear what this

means. Of course simply removing nominated identi-

fiers is often insufficient to ensure that individuals

represented in a data set cannot be identified – it can

be a straightforward matter to match some of the

available data fields with the corresponding fields

from external data sets, and thereby obtain enough

information to determine individuals’ names either

uniquely or with a low uncertainty. In addition, suffi-

ciently unusual records in a database without nomi-

nated identifiers can sometimes be recognized. This is

particularly true of health information or of informa-

tion which contains times and/or dates of events.

The second approach is statistical disclosure con-

trol where the techniques aim to provide researchers

with useful statistical data at the same time as preserv-

ing privacy and confidentiality.

It is widely recognized that any release of data or

statistical summaries increases the risk of identification

of some individual in the relevant population, with the

consequent risk of harm to that individual through

inference of private information about them. On the

other hand, attempts to limit such disclosures can

adversely affect the outcomes or usefulness of statisti-

cal analyses conducted on the data. Statistical disclo-

sure control theory attempts to find a balance between

these opposing objectives.

Statistical disclosure control techniques can be

organized into categories in several different ways. First,

there are different techniques for tabular data (where data

are aggregated into cells) versus microdata (individual

level data). Second, techniques can be perturbative or

non-perturbative. Perturbative methods operate by

modifying the data, whereas non-perturbative methods

do not modify the data. Perhaps the most well-known

perturbative method is the addition of random ‘‘noise’’

to a dataset, and perhaps the most well-known non-

perturbative method is cell suppression. In fact, current

Data Privacy and Patient Consent D 603

D

non-perturbative methods operate by suppressing or

reducing the amount of information released, and there

is much ongoing debate on whether a good perturba-

tive method gives more useful information than a non-

perturbative method. On the other hand, it has been

noted that perturbative techniques which involve add-

ing noise provide weak protection and are vulnerable to

repeated queries, essentially because the noise becomes

error in models of the data. There is much activity

directed at developing perturbative techniques that do

not suffer from this problem.

Virtually every statistical disclosure control tech-

nique can be implemented with differing degrees of

intensity, and hence depends on a parameter which is

usually pre-specified.

Remote analysis servers are designed to deliver

useful results of user-specified statistical analyses with

acceptably low risk of a breach of privacy and

confidentiality.

The third approach is the technology of remote

analysis servers. Such servers do not provide data to

users, but rather allow statistical analysis to be carried

out via a remote server. A user submits statistical

queries by some means, analyses are carried out on

the original data in a secure environment, and the user

then receives the results of the analyses. In some cases

the output is designed so that it does not reveal private

information about the individuals in the database.

The approach has several advantages. First, no in-

formation is lost through confidentialization, and

there is no need for special analysis techniques to

deal with perturbed data. In many cases it is found to

be easier to confidentialize the output of an analysis, in

comparison to trying to confidentialize a dataset when

it is not known which analyses will be performed.

However, analysis servers are not free from the risk

of disclosure, especially in the face of multiple, inter-

acting queries. They describe the risks and propose

quantifiable measures of risk and data utility that can

be used to specify which queries can be answered and

with what output. The risk-utility framework is illu-

strated for regression models.

Each of the broad technologies is implemented

within the context that the analyst is trusted to comply

with legal and ethical undertakings made. However, the

different approaches have been designed with different

risks of disclosure of private information, and so rely

more or less heavily on trust. De-identification requires

the greatest trust in the researcher, while remote servers
require the least. Statistical disclosure control, whether

used alone or in combination with a remote analysis

server, is somewhere inbetween these two extremes.

De-identification provides the most detailed informa-

tion to the researcher, while remote servers provide the

least. Again, Statistical Disclosure Control is inbetween.

These mechanisms of maintaining data privacy are

made more difficult when it is necessary to link two or

more databases together for the purpose of building a

linked data set for analysis. This sort of research is

increasingly being used as a way of reducing the cost

of collecting new data and to make better use of exist-

ing data. The difficulties are two fold. First, there is the

linkage step, i.e., recognizing that patients are the same

across the data sets. Recent work has included blind-

folded linkage methodologies [1,2] and encryption

techniques [4] as ways of linking datasets while not

revealing any patient information. The second difficul-

ty lies in the greater chance of revealing information

from a linked data set than a single data set, especially

when combining data from multiple modalities, e.g.,

health data and geographic data.

Key Applications
As discussed above, data privacy and patient consent

has an impact on large sections of the health care

industry and the biomedical research community.

There are many applications which will need to con-

sider data privacy and patient consent issues. Below is a

discussion of Electronic Health Records, possibly the

fastest growing example of data collected for primary

use, and medical research, often the largest source of

requests for data for secondary use.

Electronic Health Records

Electronic Health Records (EHR) are the fastest growing

example of an application which concern data privacy

and patient consent. Increasing amounts of personal

health data are being stored in databases for the purpose

of maintaining a life long health record of an individual.

The data is being stored according to a number of

different international and local standards and devel-

opment for the format of the data, for example open-

EHR (http://www.openehr.org/), and the transmission

of the data, such as HL7 (http://www.hl7.org/). Some

of this data is stored using codes from clinical ter-

minologies, while some of it will be free text reports.

This data are being stored so that the data are available

to clinicians for the purpose of treating the individual.

604D Data Problems
While in most cases this will provide more appropriate

care, there will be times when the individual will not

want sensitive data revealed, even to a treating clini-

cian. This may particularly be the case when the data is

judged not relevant to the current medical condition.

With a number of countries introducing Electronic

Health Records, there are concerns over who will

have access to the data. Generally these are governed

by strict privacy policies, as well as allowing patients

the opportunity to have some level of control over

whether data is added to the EHR or not.

Medical Research

Secondary use of data is primarily concerned with

providing health data for clinical or medical research.

For most secondary data use, it is possible to use de-

identified data, as described above. Increasingly, sec-

ondary use of data involves the linkage of data sets to

bring different modalities of data together, which raises

more concerns over the privacy of the data as described

above. The publication of the Human Genome gave

rise to new ways of finding relationships between clin-

ical disease and human genetics. The increasing use

and storage of genetic information also impacts the use

of familial records, since the information about the

patient also provides information on the patient’s rela-

tives. The issues of data privacy and patient confidenti-

ality and the use of the data for medical research are

made more difficult in this post-genomic age.

Cross-references
▶Access Control

▶Anonymity

▶ Electronic Health Record

▶ Exploratory Data Analysis

▶Health Informatics

▶ Privacy Policies and Preferences

▶ Privacy-Enhancing Technologies

▶ Privacy-Preserving data mining

▶Record Linkage

Recommended Reading
1. Agrawal R., Evfimievski A., and Srikant R. Information sharing

across private databases. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2003, pp. 86–97.

2. Churches T. and Christen P. Some methods for blindfolded

record linkage. BMC Med. Inform. Decis. Making, 4:9, 2004.

3. Domingo-Ferrer J. and Torra V. (eds.). Privacy in Statistical

Databases. Lect. Notes Comput. Sci., Vol 3050. Springer Berlin

Heidelberg, 2004.
4. OKeefe C.M., Yung M., and Baxter R. Privacy-preserving linkage

and data extraction protocols. In Workshop on Privacy in the

Electronic Society in conjunction with the 11th ACM CCS

Conference, 2004.

5. Sandhu R.S., Coyne E.J., Feinstein H.L., and Youman C.E.

Role-based access control models. IEEE Comput., 29(2):38–47,

1996.
Data Problems

▶Data Conflicts
Data Profiling

THEODORE JOHNSON

AT&T Labs – Research, Florham, Park, NJ, USA

Synonyms
Database profiling

Definition
Data profiling refers to the activity of creating small

but informative summaries of a database [5]. These

summaries range from simple statistics such as the num-

ber of records in a table and the number of distinct values

of a field, to more complex statistics such as the distri-

bution of n-grams in the field text, to structural proper-

ties such as keys and functional dependencies. Database

profiles are useful for database exploration, detection

of data quality problems [4], and for schema matching

in data integration [5]. Database exploration helps a

user identify important database properties, whether it

is data of interest or data quality problems. Schema

matching addresses the critical question, ‘‘do two fields

or sets of fields or tables represent the same informa-

tion?’’ Answers to these questions are very useful for

designing data integration scripts.

Historical Background
Databases which support a complex organization

tend to be quite complex also. Quite often, documen-

tation and metadata are incomplete and outdated, no

DBA understands the entire system, and the actual data

fails to match documented or expected properties [2].

These problems greatly complicate already difficult

tasks such as database migration and integration, and

in fact database profiling was originally developed for

Data Profiling D 605

D

their support. Newer developments in database pro-

filing support database exploration, and finding and

diagnosing data quality problems.

Foundations
A database profile is a collection of summaries

about the contents of a database. These summaries

are usually collected by making a scan of the database

(some profiles use sampled data, and some require

multiple complex queries). Many of the profile statis-

tics are collected by the DBMS for query optimization.

If the optimizer statistics are available, they can be

retrieved instead of calculated – though one must

ensure that the optimizer’s statistics are current before

using them. Profile summaries are typically stored in a

database for fast interactive retrieval.

Basic Statistics

These statistics include schema information (table

and field names, field types, etc.) and various types of

counts, such as the number of records in a table, and

the number of special values of a field (typically, the

number of null values).

Distributional Statistics

These statistics summarize the frequency distribution of

field values: for each distinct value of a field, how often

does it occur. Examples include the number of distinct

values of a field, the entropy of the frequency distri-

bution [10], and the most common values and their

frequency of occurrence. Another summary is the inverse

frequency distribution, which is the distribution of the

frequency distribution (e.g., the number of distinct

values which occur once, occur twice, and so on).

While the inverse frequency distribution is often

small, it can become large and in general needs to be

summarized also.

Textual Summaries

A textual summary represents the nature of the data

in a field. These summaries are very useful for explor-

ing the value and pattern distributions and for field

content matching in a schema matching task, i.e., to

determine whether or not two fields across tables or

databases represent similar content.

Textual summaries apply to fields with numeric

as well as string data types. The issue is that many

identifiers are numeric, such as telephone numbers,

Social Security numbers, IP addresses, and so on.
These numeric identifiers might be stored as numeric

or string fields in a given table – or even combined with

other string fields. To ensure that field matches can

be made in these cases, numeric fields should be con-

verted to their string representation for textual match-

ing. Patterns (say, regular expressions) which most

field values conform to are very useful in identifying

anomalies and data quality issues.

Minhash Signatures: One type of summary is

very useful in this regard, the minhash signature [1].

To compute a minhash signature of a field, one starts

with N hash functions from the field domain to the

integers. For each hash function, compute the hash

value of each field value, and collect the minimum.

The collection of minimum hash values for each hash

function constitutes the minhash signature.

For example, suppose our set consists of

X = {3,7,13,15} and our two hash functions are

h1(x) = x mod 10, and h2(x) = x mod 5 (these are simple

but very poor hash functions). Then, min{h1(x) | x

in X} = 3, and min{h2(x) | x in X} = 2. Therefore the

minhash signature of X is {3,2}.

A surprising property of the minhash signature

is its ability to determine the intersection of two sets.

Given two minhash signatures for sets A and B, the

number of hash functions with the same minimum

value divided by the number of hash functions is

an estimator for the resemblance of two sets, which

is the size of the intersection of A and B divided

by the union of A and B (r = |A∩B|/|AUB|). Given
knowledge of |A| and |B| (from the distributional

statistics), an estimate of the size of the intersection is

|A∩B| = r(|A| + |B|)/(1 + r).
If one extends the minhash signature to include

the number of times that the minimum value of a

hash function occurred, one can summarize the tail

of the inverse frequency distribution [3]. Augmenting

the minhash signature summary with the counts of

the most frequent values (from the distributional

statistics), which constitute the head, completes the

summary.

Substring summaries: Another type of textual sum-

mary determines if two fields have textually similar

information, i.e., many common substrings. As with

approximate string matching [6], these summaries rely

on q-grams – all consecutive q-letter sequences in the

field values. One type of approximate textual summary

collects the distribution of all q-grams within a field’s

values, and summarizes this distribution using a sketch

606D Data Profiling
such as the minhash signature or the min-count sketch

[3]. Two fields are estimated to be textually similar if

their q-gram distributions, represented by the sketches,

are similar.

Structural Summaries

Some summaries represent patterns among fields in

a table. The two most common examples are keys and

functional dependencies (FDs). Since a table might be

corrupted by data quality problems, another type of

structural summary are approximate keys and approxi-

mate FDs [7], which hold for most (e.g., 98%) of the

records in a table.

Key and FD finding is a very expensive procedure.

Verifying whether or not a set X of fields is a key can be

performed using a count distinct query on X, which

returns the number of distinct values of X. Now, X is an

(approximate) key if the number of distinct values of X

is (approximately) equal to the size of the table. And,

an FD X ! Y (approximately) holds if the number of

distinct values of X is (approximately) equal to the

number of distinct values of (X U Y). An exhaustive

search of a d field table requires 2d expensive count-

distinct operations on the table. There are several ways

to reduce this cost. For one, keys and FDs with a small

number of fields are more interesting than ones with a

large number of fields (large keys and FDs are likely

spurious – because of the limited size of the table – and

likely do not indicate structural properties of the data).

If the maximum set of fields is k (e.g., k = 3), then the

search space is limited to O(dk). The search space can

be trimmed further by searching for minimal keys and

functional dependencies [7]. Finally, one can hash

string fields to reduce the cost of computing count

distinct queries over them (if exact keys and FD are

required, a candidate key or FD found using hashing

must be verified by a query over the actual table).

Samples

A random sample of table records also serves as sum-

mary of the contents of a table. A few sampled rows

of a table are surprisingly informative, and can be used

to estimate a variety of distributions, e.g., identifying

the most frequent values or patterns and their fre-

quencies in a field.

Sampling can be used to accelerate the expensive

computation of profile data. For example, when com-

puting keys and FDs on a large table (e.g., one with

many records), one can sample the table and compute
keys and FDs over the sample. If a key or FD is

(approximately) valid over the base table then it is

also valid on a sample. But, it is possible that a key or

FD which is valid on the sample may not be a valid on

the base table. Therefore, a random sample can be used

to identify candidate keys and FDs. If exact keys and

FDs are needed, candidates can be verified by queries

over the actual table.

A minhash signature can be computed over sam-

pled data. Suppose that F and G are again keys with

identical sets of strings and of size S, and that one

computes minhash signatures over F’ and G’, which

are sampled from F and G (respectively) at rate p.

Then, the resemblance of F’ and G’ is

r0 ¼ jF0 \ G0j=ðjF0j þ jG0j � jF0 \ G0jÞ
¼ p2S=ð2pS � p2SÞ ¼ p=ð2� pÞ � p=2

While the resemblance decreases linearly with

p (and experiences a larger decrease than the sample

intersection), minhash signatures have the advantage

of being small. A profiling system which collects min-

hash signatures might use a signature size of, e.g., 250

hashes – small enough that an exhaustive search for

matching fields can be performed in real time. Very

large tables are sampled to accelerate the computation

of the minhash signatures, say p = .1. When comparing

two fields which both represent identical key values,

there will be about 13 matches on average – enough to

provide a reliable signal. In contrast, small uniform

random samples of similar sizes drawn from the two

fields may not provide accurate estimates of the resem-

blance. For instance, collecting 250 samples from a

table with 1,000,000 rows requires a sampling rate of

p = 0.00025, meaning that the intersection of the

samples of F and G is very likely to be empty.

While random sampling is a common data synop-

sis used to estimate a wide variety of data properties, its

use as a database profile is limited. For one, a random

sample cannot always provide an accurate estimation

of the number of distinct values in a field, or of the

frequency distribution of a field. Table samples are also

ineffective for computing the size of the intersection of

fields. Suppose that fields F and G are keys and contain

the same set of strings, and suppose that they are

sampled at rate p. Then, the size of the intersection of

the sample is p2|F| = p2|G|. One can detect that F and G

are identical if the size of the intersected sample is

p times the size of the samples. However, if p is small

Data Profiling D 607

D

enough for exhaustive matching (e.g., p = 0.001), then

p2|F| is likely to be very small – and therefore an

unreliable indicator of a field match.

Implementation Considerations

Profiling a very large database can be a time-consuming

and computationally intensive procedure. A given

DBMS might have features, such as sampling, grouping

sets, stored procedures, user-defined aggregate func-

tions, etc., which can accelerate the computation of

various summaries. Many profile statistics are com-

puted by the DBMS for the query optimizer, and

might be made available to users.

However, database profiles are often used to com-

pare data from different databases. Each of these data-

bases likely belongs to its own administrative domain,

which will enable or disable features depending on the

DBA’s needs and preferences. Different databases often

reside in different DBMSs. Therefore, a profiling tool

which enables cross-database comparisons must in

general make use of generic DBMS facilities, making

use of DBMS-specific features as an optimization only.

Modes of Use

The types of activities supported by database profiles

can be roughly categorized into database exploration

and schema matching. Database exploration means to

help a user identify important database properties,

whether it is data of interest, data quality problems,

or properties that can be exploited to optimize data-

base performance. For example, the user might want to

know which are the important tables in a database, and

how do they relate (how can they be joined). The

number of records in a table is a good first indicator

of the importance of a table, and a sample of records is

a good first indicator of the kind of data in the table.

The most frequent values of a field will often indicate

the field’s default values (often there is more than one).

Other types of information, e.g., keys and field resem-

blance, help to identify join paths and intra-table

relationships.

By collecting a sequence of historical snapshots of

database profiles, one can extract information about

how the database is updated. A comparison of profiles

can indicate which tables are updated, which fields

tend to change values, and even reveal changes in

database maintenance procedures [3]. For example,

in the two large production databases studied in [3],

only 20–40% of the tables in the database changed at
all from week to week. Furthermore, most of the tables

which ever changed experienced only a small change.

Only 13 of the 800 + tables were found to be dynamic.

A schema matching activity asks the question, ‘‘do

these two instances represent the same thing?’’ – fields,

sets of fields, tables, etc. For example, textual summa-

ries are designed to help determine if two fields have

the same (or nearly the same) contents. However, any

single type of information (schema, textual, distribu-

tional) can fail or give misleading results in a large

number of cases. The best approach is to use all avail-

able information [11].

Key Applications

Data profiling techniques and tools have been devel-

oped for database exploration, data quality explora-

tion, database migration, and schema matching.

Systems and products include Bellman [4], Ascential

[8] and Informatica [9].

Cross-references
▶Count-Min Sketch

▶Data Sketch/Synopsis

▶Hash Functions

Recommended Reading
1. Broder A. On the resemblance and containment of documents.

In Proc. IEEE Conf. on Compression and Comparison of

Sequences, 1997, pp. 21–29.

2. Dasu T. and Johnson T. Exploratory Data Mining and Data

Cleaning. Wiley Interscience, New York, 2003.

3. Dasu T., Johnson T., and Marathe A. Database exploration using

database dynamics. IEEE Data Eng. Bull. 29(2):43–59, 2006.

4. Dasu T., Johnson T., Muthukrishnan S., and Shkapenyuk V.

Mining database structure; or, how to build a data quality

browser. In Proc. ACM SIGMOD Int. Conf. on Management

of data, 2002, pp. 240–251.

5. Evoke Software. Data Profiling and Mapping, The Essential First

Step in Data Migration and Integration Projects. Available at:

http://www.evokesoftware.com/pdf/wtpprDPM.pdf 2000.

6. Gravano L., Ipeirotis P.G., Jagadish H.V., Koudas N.,

Muthukrishnan S., and Srivastava D. Approximate String Joins

in a Database (Almost) for Free. In Proc. 27th Int. Conf. on Very

Large Data Bases, 2001, pp. 491–500.

7. Huhtala Y., Karkkainen J., Porkka P., and Toivonen H. TANE: an

efficient algorithm for discovering functional and approximate

dependencies. Comp. J., 42(2):100–111, 1999.

8. IBM Websphere Information Integration. Available at: http://

ibm.ascential.com

9. Informatica Data Explorer. Available at: http://www.informatica.

com/products_services/data_explorer

10. Kang J. and Naughton J.F. On schema matching with opaque

column names and data values. In Proc. ACM SIGMOD Int.

608D Data Protection
Conf. on Management of Data, San Diego, CA, 2003, pp. 205–

216.

11. Shen W., DeRose P., Vu L., Doan A.H., and Ramakrishnan R.

Source-aware entity matching: a compositional approach.

In Proc. 23rd Int. Conf. on Data Engineering, pp. 196–205.
Data Protection

▶Data Privacy and Patient Consent

▶ Storage Protection
Data Provenance

AMARNATH GUPTA

University of California San Diego, La Jolla, CA, USA

Synonyms
Provenance metadata; Data lineage; Data tracking;

Data pedigree

Definition
The term ‘‘data provenance’’ refers to a record trail that

accounts for the origin of a piece of data (in a database,

document or repository) together with an explanation

of how and why it got to the present place.

Example: In an application like Molecular Biology,

a lot of data is derived from public databases, which in

turn might be derived from papers but after some

transformations (only the most significant data were

put in the public database), which are derived from

experimental observations. A provenance record will

keep this history for each piece of data.

Key Points
Databases today do not have a good way of managing

provenance data and the subject is an active research

area. One category of provenance research focuses on

the case where one database derives some of its data by

querying another database, and one may try to ‘‘invert’’

the query to determine which input data elements con-

tribute to this data element. A different approach is to

explicitly add annotations to data elements to capture

the provenance. A related issue is to keep process prov-

enance, especially in business applications, where an

instrumented business process capturing software is

used to track the data generation and transformation
life cycle. While keeping a trail of provenance data is

beneficial for many applications, storing, managing and

searching provenance data introduces an overhead.

Cross-references
▶Annotation

▶ Provenance

Recommended Reading
1. Bose R. and Frew J. Lineage retrieval for scientific data proces-

sing: a survey. ACM Comput. Surv., 37(1):1–28, 2005.

2. Buneman P., Khanna S., Tajima K., and Tan W.-C. Archiving

scientific data. In Proc. ACM SIGMOD Conf. on Management

of Data, 2002, pp. 1–12.

3. Buneman P., Khanna S., and Tan W.C. On propagation of

deletions and annotations through views. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2002, pp. 150–158.

4. Simmhan Y.L., Plale B., and Gannon D. A Survey of Data

Provenance Techniques. Technical Report TR618, Department

of Computer Science, Indiana University, 2005.

5. Widom J. Trio: A System for Integrated Management of

Data, Accuracy, and Lineage. In Proc. 2nd Biennial Conference

on Innovative Data Systems Research, 2005, pp. 262–276.
Data Quality

▶ Information Quality and Decision Making

▶ Information Quality Policy and Strategy
Data Quality Assessment

CARLO BATINI

University of Milano – Bicocca, Milan, Italy

Synonyms
Data quality measurement; Data quality benchmarking

Definition
The goal of the assessment activity in the area of data

quality methodologies is to provide a precise evaluation

and diagnosis of the state of databases and data flows of an

information system with regard to data quality issues. In

the assessment the evaluation is performedmeasuring the

quality of data collections along relevant quality dimen-

sions. The term (data quality) measurement is used to

address the issue of measuring the value of a set of data

quality dimensions. The term (data quality) assessment

Data Quality Assessment D 609

D

is used when such measurements are analyzed in order

to enable a diagnosis of the quality of the data collec-

tion. The term (data quality) benchmarking is used

when the output of the assessment is compared against

reference indices, representing average values or best

practices values in similar organizations. The term (data

quality) readiness aims at assessing the overall predis-

position of the organization in accepting and taking

advantages of data quality improvement programs.

The assessment activity may concern: (i) the sche-

ma of the data base (the intension), (ii) the values of

data (the extension), and (iii) the costs of poor data

quality to the organization. Therefore, the principal

outputs of assessment methodologies are: (i) measure-

ments of the quality of databases and data flows, both

schemas and values, (ii) costs to the organization due

to the present low data quality, and (iii) a comparison

with data quality levels considered acceptable from

experience, or else a benchmarking with best practices,

together with suggestions for improvements.

Historical Background
Ever since computer applications have been used to

automate more and more business and administrative

activities, it has become clear that available data often

result from inaccurate observations, imputation, and

elaborations, resulting in data quality problems. More

importantly, in the last decades, information systems

have been migrating from a hierarchical/monolithic to

a network-based structure; therefore, the potential

sources that organizations can use for the purpose of

their businesses are dramatically increased in size and

scope. Data quality problems have been further wors-

ened by this evolution, since the external sources are

created and updated at different times and by different

organizations or persons and are characterized by vari-

ous degrees of trustworthiness and accuracy, frequently

unknown a priori. As a consequence, the overall quality

of the data that flow between information systems may

rapidly degrade over time if both processes and their

inputs are not themselves subject to quality assessment.

Foundations
The typical steps to assess data quality are:

1. Data analysis, which examines data schemas and

performs interviews to reach a complete under-

standing of data and related architecture and man-

agement rules.
2. Requirements analysis, which surveys the opinion of

data users and administrators to identify quality

issues and set new quality targets.

3. Identification of critical areas, which selects the most

relevant databases and data flows to be assessed

quantitatively.

4. Process modeling, which provides a model of the

processes producing or updating data.

5. Measurement of quality, which selects relevant qual-

ity dimensions, defines corresponding metrics and

performs the actual measurement.

The usual process followed in the measurement of

quality step has two main activities: qualitative assess-

ment, based on subjective judgments of experts, and

objective assessment, based on measures of data quality

dimensions.

Qualitative assessment is performed through ques-

tionnaires and interviews with stakeholders and with

internal and external users, with the goal of under-

standing the consequences and impact of poor data

quality on the work of internal users and on products

and services provided to information consumers, and

the extent the needs of external users and customers

are currently satisfied.

Quantitative assessment is based on the selection of

quality dimensions and their measurement through

metrics. Over 50 quality dimensions have been pro-

posed in the literature (see the respective entry and [2]

for a thorough description of dimensions and pro-

posed classifications). The most frequently mentioned

concern the values of data, and are accuracy, complete-

ness, currency/timeliness, and inconsistency.

Examples of methodologies for the choice of

dimensions and measures and for the objective vs.

subjective evaluation are given in [3,7–9]. With regard

to dimension classification, dimensions are classified

in [7] into sound, useful, dependable, and usable,

according to their positioning in quadrants related

to ‘‘product quality/service quality’’ and ‘‘conforms to

specifications/meets or exceeds consumer expecta-

tions’’ coordinates. The goal of the classification is to

provide a context for each individual quality dimen-

sion and metric, and for consequent evaluation. In the

following the five phases of the methodology proposed

in [3] are described in more detail (see Fig. 1).

Phase 1, attribute selection, concerns the identifica-

tion, description, and classification of the main data

attributes to be assessed. Then, they are characterized

Data Quality Assessment. Figure 1. The main phases of the assessment methodology described in [2].

610D Data Quality Assessment
according to their meaning and role. The possible

characterizations are qualitative/categorical, quantita-

tive/numerical, and date/time.

In Phase 2, analysis, data quality dimensions and

integrity constraints to be measured are identified.

Statistical techniques are used for the inspection of

data. Selection and inspection of dimensions is related

to process analysis, and has the final goal of discovering

the main causes of erroneous data, such as unstruc-

tured and uncontrolled data loading and data updating

processes. The result of the analysis on selected dimen-

sions leads to a report with the identification of

the errors.

In Phase 3, objective/quantitative assessment, appro-

priate indices are defined for the evaluation and quan-

tification of the global data quality level. The number of

low quality data items for the different dimensions and

the different data attributes is first evaluated with sta-

tistical and/or empirical methods, and, subsequently,

normalized and summarized.

Phase 4 deals with subjective/qualitative assessment.

The qualitative assessment is obtained by merging

independent evaluations from (i) business experts,

who analyze data from a business process point of

view, (ii) final users (e.g., for financial data, a trader),

and (iii) data quality experts, who have the role of

analyzing data and examining its quality.

Finally, in the comparison phase objective and sub-

jective assessments are compared. For each attribute

and quality dimension, the distance between the per-

centages of erroneous observations obtained from
quantitative analysis, mapped in a discrete domain,

and the quality level defined by the judgment of the

evaluations is calculated. Discrepancies are analyzed by

the data quality experts, to further detect causes of

errors and to find alternative solutions to correct them.

The above mentioned methodologies, although not

explicitly, refer to the assessment of structured data,

namely, data represented in terms of typed files or

relational tables and databases. Recently, the atten-

tion in data quality assessment has moved towards

semi-structured and un-structured data. Assessment

methodologies for evaluating specific qualities of web

sites are proposed in [1,6]. Atzeni et al. [1] is specifi-

cally focused on accessibility, evaluated on the basis of a

mixed quantitative/qualitative assessment. The quanti-

tative assessment activity checks the guidelines provided

by the World Wide Web Consortium in (W3C. http://

www.w3.org/WAI/). The qualitative assessment is based

on experiments performed with disabled users. Frater-

nali et al. [6] focuses on the usability of the site and

proposes an approach based on the adoption of con-

ceptual logs, which are web usage logs enriched with

meta-data derived from the application of conceptual

specifications expressed by the conceptual schema of

the web site.

Since data and information are often the most

relevant resource consumed in administrative and

business processes, several authors consider the evalu-

ation of costs of poor data quality as part of the data

quality assessment problem. Figure 2 shows the classi-

fication proposed in [4], for which comments follow:

Data Quality Assessment. Figure 2. A comprehensive

classification of costs of poor data quality [4].

Data Quality Assessment D 611

D

� Process failure costs result when poor quality infor-

mation causes a process to not perform properly.

As an example, inaccurate mailing addresses cause

correspondence to be misdelivered.

� Information scrap and rework costs occur every time

data of poor quality requires several types of defect

management activities, such as reworking, cleaning,

or rejecting. Examples of this category are (i) redun-

dant data handling, if the poor quality of a source

makes it useless, time and money has to be spent
to collect and maintain data in another database,

(ii) business rework costs, due to re-performing

failed processes, such as resending correspondence,

(iii) data verification costs, e.g., when data users do

not trust the data, they perform their own quality

inspection.

� Loss and missed opportunity costs correspond to the

revenues and products not realized because of poor

information quality. For example, due to low accu-

racy of customer e-mail addresses, a percentage of

customers already acquired cannot be reached in

periodic advertising campaigns, resulting in lower

revenues, roughly proportional to the decrease of

accuracy in addresses.

Data quality assessment has been investigated also

under a managerial perspective. Following the results

of the assessment, a managerial activity might be the

analysis of the main barriers in the organization to the

quality management perspective in terms of resistance

to change processes, control establishment, informa-

tion sharing, and quality certification.
Key Applications
Quality assessment is used in a large set of business

and administrative activities, such as organization

assessment, strategic planning, supply chain, market-

ing, selling, demographic studies, health experiments,

management of health files, census applications, epi-

demiological analyses. The perception of the impor-

tance of quality assessment is increasing in the area of

risk management, such as operational risk manage-

ment related to the Basel II norms.
Future Directions
Open areas of research in data quality assessment con-

cern quality dimensions and the relationship between

data quality assessment and process quality assessment.

The first area concerns assessment of a wider set of

dimensions, such as performance, availability, security,

with concern also to risk management, and investigation

on dependencies among dimensions. For example, a de-

pendency among currency and accuracy is the rule ‘‘70%

of all outdated data is also inaccurate.’’ Knowledge about

dependencies can greatly aid in finding causes of low

data quality, and in conceiving improvement activities.

The relationship between data quality and process

quality is a wide area of investigation, due to the

612D Data Quality Attributes
relevance and diversity of characteristics of business

processes in organizations. The different impacts of

data quality at the three typical organizational levels,

namely operations, the tactical level, and the strategic

level, are analyzed in [10] reporting interviews and the

outcomes of several proprietary studies. Data quality

and its relationship with the quality of services, pro-

ducts, business operations, and consumer behavior is

investigated in very general terms in [9,11]. The sym-

metric problem of investigating how to improve infor-

mation production processes positively influences data

quality is analyzed in [10].
Cross-references
▶Data Quality Dimensions

▶Design for Data Quality

▶ Information Quality Assessment

▶ Information Quality Policy and Strategy

▶Quality of Data Warehouses
Recommended Reading
1. Atzeni P., Merialdo P., and Sindoni G. Web site evaluation:

methodology and case study. In Proc. Int. Workshop on Data

Semantics in Web Information Systems, 2001.

2. Batini C. and Scannapieco M. Data Quality: Concepts, Meth-

odologies and Techniques. Springer, 2006.

3. De Amicis F. and Batini C. A methodology for data quality

assessment on financial data. Stud. Commn. Sci., 4(2):115–136,

2004.

4. English L.P. Improving Data Warehouse and Business Informa-

tion Quality. Wiley, 1999.

5. English L.P. Process management and information quality: how

improving information production processes improves informa-

tion (product) quality. In Proc. 7th Int. Conf. on Information

Quality, 2002, pp. 206–209.

6. Fraternali P., Lanzi P.L., Matera M., and Maurino A. Model-

driven web usage analysis for the evaluation of web application

quality. J. Web Eng., 3(2):124–152, 2004.

7. Kahn B., Strong D.M., and Wang R.Y. Information quality

benchmarks: product and service performance. Commun.

ACM, 45(4):184–192, 2002.

8. Lee Y.W., Strong D.M., Kahn B.K., and Wang R.Y. AIMQ:

a methodology for information quality assessment. Inf. Manag.,

40(2):133–146, 2001.

9. Pipino L., Lee Y.W., and Wang R.Y. Data quality assessment.

Commun. ACM, 45(4):211–218, 2002.

10. Redman T.C. The impact of poor data quality on the typical

enterprise. Commun. ACM, 41(2):70–82, 1998.

11. Sheng Y.H. Exploring the mediating and moderating effects of

information quality on firms? Endeavor on information systems.

In Proc. 8th Int. Conf. on Information Quality, 2003, pp.

344–353.
Data Quality Attributes

▶Data Quality Dimensions
Data Quality Benchmarking

▶Data Quality Assessment
Data Quality Criteria

▶Data Quality Dimensions
Data Quality Dimensions

KAI-UWE SATTLER

Technical University of Ilmenau, llmenau, Germany

Synonyms
Data quality criteria; Data quality attributes; Data

quality measurement

Definition
Data quality (DQ) is usually understood as a multi-

dimensional concept. The dimensions represent the

views, criteria, or measurement attributes for data qua-

lity problems that can be assessed, interpreted, and pos-

sibly improved individually. By assigning scores to these

dimensions, the overall data quality can be determined

as an aggregated value of individual dimensions relevant

in the given application context.

Historical Background
Since the mid-1990s data quality issues have been

addressed by systematic research studies. In this context,

relevant dimensions of data quality have also been inves-

tigated. One of the first empirical studies by Wang and

Strong [6] has identified 15 relevant dimensions out of

179 gathered criteria. This list was later supplemented by

other researchers. Initially, there were proposed diver-

gent definitions of the same dimensions, mostly due to

different views, e.g., management perspectives versus

data-oriented perspectives as well as application-specific

views. In addition, several classifications for data quality

problems and criteria were proposed.

Data Quality Dimensions D 613

D

Todate there is still a different understanding of several

dimensions, depending on the application scenario and

its requirements. However, there exists a set of agreed

upon dimensions that are relevant in most domains.

Foundations
The selection of dimensions relevant in a given sce-

nario is mostly application-dependent. In addition,

many dimensions are not independent and, therefore,

should not be used together. However, because quality

dimensions characterize potential data quality pro-

blems they can be classified according some important

characteristics. In the following, some representative

classifications are introduced followed by a discussion

of the most important dimensions:

Classifications

A first approach for classifying DQ dimensions pro-

posed by Redman [5] is based on DQ problems or

conflicts by considering the different levels where

they can occur:

� The intensional level comprises criteria concerning

the content of the conceptual schema relevance, clar-

ity of definition, the scope, the level of detail (e.g.,

granularity of attributes, the precision of the attribute

domains) as well as consistency and flexibility.

� The extensional level considers the data values

comprising criteria such as accuracy and correct-

ness of values, timeliness, and completeness of data.

� The level of data representation addresses problems

related to the data format, e.g., interpretability,

portability, adequateness.

In contrast to this data-oriented approach, the classi-

fication introduced by Naumann [4] is more compre-

hensive. Dimensions are classified into four sets:

1. Content-related dimensions consider the actual

data and therefore data-intrinsic properties such

as accuracy, completeness, and relevance.

2. Technical dimensionsaddressaspectsof thehard-and

software used for maintaining the data. Examples

are availability, latency, response time, but also price.

3. Intellectual dimensions represent subjective aspects,

such as trustworthiness or reputation.

4. Instantiation-related dimensions concern the pre-

sentation of data, e.g., the amount of data, under-

standability, and verifiability.

An alternative way of classifying DQ dimensions is to

look at the process of data evolution by analogy of data
with products. In [3] an approach is presented pro-

moting hierarchical views on data quality following the

steps of the data life cycle: collection, organization,

presentation, and application. Based on an analysis of

possible root causes for poor quality relevant dimen-

sions can be identified and assigned to the different

DQ views:

� Collection quality refers to problems during data

capturing, such as observation biases or measure-

ment errors. The relevant dimensions are, among

others, accuracy, completeness, and trustworthi-

ness of the collector.

� Organization quality deals with problems of data

preparation and manipulation for storing it in a

database. It comprises dimensions such as consis-

tency, storage, and retrieval efficiency. Further-

more, collection quality is also a component of

organization quality.

� Presentation quality addresses problems during

processing, re-interpretation, and presentation of

data. Dimensions are for example interpretability,

formality as well as the organization quality

component.

� Application quality concerns technical and social

constraints preventing an efficient utilization of

data and comprises dimensions like timeliness, pri-

vacy, and relevance in addition to the presentation

quality component.

Among all these dimensions the most important ones

in many application scenarios are completeness, accu-

racy, consistency, and timeliness that are now des-

cribed in detail.

Completeness

Missing or incomplete data is one of the most impor-

tant data quality problem in many applications. How-

ever, there are different meanings of completeness.

An obvious and often used definition is the absence

of null values or more exactly the ratio of non-null

values and the total number of values. This measure

can be easily assessed. Given a relation R(A1,...,An) then

NAi
denotes the set of all non-null values in Ai:

NAi
¼ ft 2 RjNotNullðt :AiÞg

Completeness QC(Ai) can be now defined as:

QCðAiÞ ¼
jNAi

j
jRj

614D Data Quality Dimensions
This can be also extended to take tuples into account

instead of single values by determining the number of

tuples containing no null values:

QCðRÞ ¼
jNA1;...;An

j
jRj

Note that null can have different meanings which have

to be treated in a special way: it could represent a

missing value or simply a not-applicable case, e.g., a

customer without a special delivery address.

Sometimes, not all attributes are of equal impor-

tance, e.g., whereas a customer identifier is always

required, the customer’s email address is optional. In

this case, weights can be assigned to the individual

attributes or rules of the form ‘‘if A1 is not available

(null) then A2 is important, otherwise not’’ are used.

This notion of completeness concerns only the data

inside the database. An alternative definition for com-

pleteness is the portion of real-world objects stored in

the database. It addresses the case that for instance not

all customers are represented in the database and

therefore the data is incomplete. This is also known

as coverage. However, assessing this completeness is

often much more difficult because it requires either

additional metadata (e.g., it is known that the DBLP

digital library contains only computer science litera-

ture) or a (manual) checking with the real world,

possibly supported by sampling.

Besides these extensional views, completeness can

be also interpreted from an intensional point of view.

Here, completeness (or density) is defined as the num-

ber of attributes represented in the database compared

to the required real-world properties. Again, assessing

this kind of completeness requires manual inspection.

Improvement of completeness is generally achieved

by choosing better or additional data sources. In

some cases, null values can be replaced with the help

of dictionaries or reference sources (e.g., an address

database). Depending of the usage of data missing

numeric values can be sometimes also imputed based

on knowledge about data characteristics, such as value

distribution and variance.
Accuracy

A second data quality problem is often caused by

measurement errors, observation biases or simply im-

proper representation. Accuracy can be defined as the

extent to which data are correct, reliable, and certified
free of error. Note that the meaning of correctness is

application-dependent: it can specify the distance to

the actual real-world value or just the optimal degree

of detail of an attribute value. Assuming a table repre-

senting sales volumes for products a value $10,000

could be interpreted as inaccurate if the actual value,

e.g., obtained in a different way, is $10,500. However,

if the user is interested only in some sales categories

(low: � 20K, high: > 20K) the value is accurate.

In order to assess accuracy for a given value v

the real world value v or at least a reference value is

needed. Then, the distance can be easily computed for

numeric values as jv � vj or – for textual values – as

the syntactic distance using the edit distance measure.

However, particularly for textual attributes sometimes

the semantic distance has to be considered, e.g., the

strings ‘‘Munich’’ and ‘‘München’’ are syntactically

different but represent the same city. Solving this prob-

lem requires typically a dictionary or ontology.

Based on the distance of single attribute values,

the accuracy of tuples or the whole relation can be

computed as shown above for completeness, for exam-

ple by determining the fraction of tuples with only

correct values.

An improvement of accuracy is often possible only

by removing inexact values or preferably by applying

data cleaning techniques.

Consistency

Though modern database systems provide advanced

support for ensuring integrity and consistency of

data, there are many reasons why inconsistency is a

further important data quality problem. Thus, consis-

tency as a DQ dimension is defined as the degree to

which data managed in a system satisfy specified

constraints or business rules. Such rules can be classic

database integrity constraints, such as uniqueness of

customer identifiers or referential integrity (e.g., ‘‘for

each order, a customer record must exist,’’) or more

advanced business rules describing relationships be-

tween attributes (for instance ‘‘age = current-date �
data-of-birth,’’ ‘‘driver license number can only exist, if

age
 16.’’) These rules have to be specified by the user or

can be derived automatically from training data by ap-

plying rule induction. Using a set B of such rules, the set

of tuples from a relation R satisfying these rules can be

determined:

W B ¼ ft 2 RjSatisfiesðt ;BÞg

Data Quality Measurement D 615

D

Then, the consistency measure for relation R can

be computed as the fraction of tuples in WB as shown

above.

As for accuracy, an improvement of consistency

can be achieved by removing or replacing inconsistent

data.

Timeliness

Another reason for poor quality of data is outdated

data. This problem is captured by the dimension

timeliness describing the degree to which the

provided data is up-to-date. Depending on the appli-

cation this is not always the same as the ordinary age

(time between creation of data and now). For in-

stance, in a stock information system stock quotes

data from 2000 are outdated if the user is interested

in the current quotes. But if he asks for stock quotes

from the time of the dot-com bubble, it would be still

sufficient.

Therefore, both the age age(v) of a value v (as the

time between observation and now) and the update

frequency fu(v) (updates per time unit) have to be

considered, where fu(v) = 0 means the value is never

updated. Using this information, timeliness QT(v) of v

can be computed as

QT ðvÞ ¼
1

f uðvÞ � ageðvÞ þ 1

This takes into account that an object with a higher

update frequency ages faster and that objects that are

never updated have the same timeliness.
Further Dimensions

Finally, the following further dimensions are also im-

portant for many applications.

Relevance, also known from information retrieval,

is the degree to which the provided information satis-

fies the users need. The problem of relevance occurs

mainly if keyword-based search is used for querying

data or documents. In database systems using exact

queries, relevance is inherently high.

Response time measures the delay between the

submission of a request (e.g., a query) and the arrival

of the complete response. Though a technical criterion,

response time is particularly important for users, be-

cause they usually do not want to wait more than a

couple of seconds for an answer. Related to response

time is latency defining the delay to the arrival of the
first result data. Often, a small latency compensates a

larger response time in user satisfaction.

Believability, trustworthiness, and reputation are

dimensions which often depend on each other. Be-

lievability and trustworthiness can be understood as

the degree to which data is accepted by the user as

correct, accurate or complete. In contrast, reputation

describes the degree to which a data (source) has a

good standing by users. Reputation is based on the

memory and summary of behavior from past transac-

tions, whereas believability is more an subjective

expectation.
Key Applications
DQ dimensions are primarily used for quality assess-

ment. They define the criteria under which data quality

is measured and for which quality scores can be

derived. A further application are data quality models

for explicitly representing data quality scores that can

be used for annotating the data.

Cross-references
▶Data Conflicts

▶Data Quality Assessment

▶Data Quality Models
Recommended Reading
1. Batini C. and Scannapieco M. Data Quality – Concepts,

Methodologies and Techniques. Springer, 2006.

2. Gertz M., Özsu M.T., Saake G., and Sattler K. Report on

the Dagstuhl Seminar: data quality on the Web. ACM SIGMOD

Rec., 33(1):127–132, 2004.

3. Liu L. and Chi L. Evolutional data quality: a theory-specific

view. In Proc. 7th Int. Conf. on Information Quality, 2002, pp.

292–304.

4. Naumann F. Quality-Driven Query Answering for Integrated

Information Systems. LNCS 2261, Springer, Berlin, 2002.

5. Redman T. Data Quality for the Information Age. Artech House,

Norwood, MA, USA, 1996.

6. Wang R. and Strong D. Beyond Accuracy: What Data Quality

Means to Data Consumers. J. Inf. Syst., 12(4):5–34, 1996.

7. Wang R., Ziad M., and Lee Y. Data Quality. Kluwer, Boston, MA,

USA, 2001.
Data Quality Measurement

▶Data Quality Dimensions

▶Data Quality Assessment

616D Data Quality Models
Data Quality Models

MONICA SCANNAPIECO

University of Rome, Rome, Italy

Synonyms
Data quality representations

Definition
Data quality models extend traditional models for data-

bases for the purpose of representing data quality

dimensions and the association of such dimensions to

data. Therefore, data quality models allow analysis of a

set of data quality requirements and their representation

in terms of a conceptual schema, as well as accessing and

querying data quality dimensions by means of a logical

schema. Data quality models also include process mod-

els tailored to analysis and design of quality improve-

ment actions. These models permit tracking data from

their source, through various manipulations that data

can undergo, to their final usage. In this way, they sup-

port the detection of causes of poor data quality and the

design of improvement actions.
Historical Background
Among the first data quality models, in 1990 the polygen

model [5] was proposed for explicitly tracing the ori-

gins of data and the intermediate sources used to arrive

at that data. The model is targeted to heterogeneous

distributed systems and is a first attempt to represent

and analyze the provenance of data, which has been

recently investigated in a more general context.

In the mid-1990’s, there was a first proposal of

extending the relational model with quality values

associated to each attribute value, resulting in the

quality attribute model [6]. An extension of the Entity

Relationship model was also proposed in the same

years ([4], and [7], Chapter 3), similarly focused on

associating quality dimensions, such as accuracy or

completeness, to attributes. More recently, models for

associating quality values to data-oriented XML docu-

ments have been investigated (e.g., [2]). Such models

are intended to be used in the context of distributed

and cooperative systems, in which the cooperating

organizations need to exchange data each other, and

it is therefore critical for them to be aware of the

quality of such data. These models are semi-structured,

thus allowing each organization to export the quality
of its data with a certain degree of flexibility; quality

dimensions can be associated to various elements of

the data model, ranging from the single data value

to the whole data source, in this way being different

from the previous attribute-based models.

The principal data quality models that are oriented

towards process representation are based on the prin-

ciple that data can be seen as a particular product of

a manufacturing activity, and so descriptive models

(and methodologies) for data quality can be based

on models conceived in the last two centuries for

manufacturing traditional products. The Information

Product Map (IP-MAP) [3] is a significant example of

such models and follows this view, being centered on

the concept of information product. The IP-MAP

model has been extended in several directions (see

[1], Chap. 3). Indeed, more powerful mechanisms

have been included, such as event process chain dia-

grams representing the business process overview, the

interaction model (how company units interact), the

organization model (who does what), the component

model (what happens), and the data model (what data

is needed). A further extension called IP-UML consists

of a UML profile for data quality based on IP-MAP.

Foundations
Data quality models can be distinguished in data-

oriented models, focused on the representation of

data quality dimensions, and process-oriented models

focused on the representation of the processes thatmani-

pulate data and on their impact on the data quality.

Data-oriented models include extensions of the

Entity Relationship model, of the relational model,

and of the XML data model.

When extending the Entity Relationship model for

representing data quality, one possibility is to intro-

duce two types of entities, explicitly defined to express

quality dimensions and their values: a data quality

dimension entity and a data quality measure entity.

The goal of the data quality dimension entity is to

represent possible pairs <DimensionName,

Rating> of dimensions and corresponding ratings

resulting from measurements. The data quality dimen-

sion entity characterizes the quality of an attribute

and the scale may obviously depend on the attribute.

In these cases, it is necessary to extend the properties

of the data quality dimension entity to include the

attribute, that is <DimensionName, Attribute,

Rating>.

Data Quality Models D 617

D

In order to represent metrics for dimensions, and

the relationship with entities, attributes, and dimen-

sions, the model introduces the data quality measure

entity; its attributes are Rating, the values of which

depend on the specific dimension modeled, and

DescriptionOfRating. The complete data qual-

ity schema, shown by means of the example in Fig. 1, is

made up of:

� The original data schema, in the example repre-

sented by the entity Class with the attribute

Attendance.

� The DQ Dimension entity with a pair of attri-

butes <DimensionName, Rating >.

� The relationship between the entity Class, the

related attribute Attendance, and the DQ

Dimension entity with a many-to-many rela-

tionship ClassAttendanceHas; a distinct re-

lationship has to be introduced for each attribute of

the entity Class.
Data Quality Models. Figure 1. An example of IP-MAP.
� The relationship between the previous structure

and the DQ Measure entity with a new represen-

tation structure that extends the Entity Relation-

ship model, and relates entities and relationships.

An extension of the relational data model is provided

by the quality attribute model, explained in the follow-

ing by means of the example shown in Fig. 2.

The figure shows a relational schema Employee,

defined on attributes EmployeeId, Address,

DateofBirth, and others, and one of its tuples.

Relational schemas are extended adding an arbitrary

number of underlying levels of quality indicators (only

one level in the figure) to the attributes of the schema,

to which they are linked through a quality key. In the

example, the attribute EmployeeId is extended with

one quality attribute, namely accuracy, the attribute

Address with two quality attributes, namely accu-

racy and currency, while the attribute DateofBirth

is extended with accuracy and completeness. The

Data Quality Models. Figure 2. An extension of the entity relationship model.

618D Data Quality Models
values of such quality attributes measure the quality

dimensions’ values associated with the whole relation

instance (top part of the figure). Therefore, complete-

ness equal to 0.8 for the attribute DateofBirth

means that the 80% of the tuples have a non-null

value for such an attribute. Similar structures are

used for the instances of quality indicator relations

(bottom part of the figure); if there are n attributes

of the relational schema, n quality tuples will be asso-

ciated to each tuple in the instance.

The model called Data and Data Quality (D2Q) is

among the first models for associating quality values to

data-oriented XML documents. D2Q can be used in

order to certify dimensions like accuracy, consistency,

completeness, and currency of data. The model is

semi-structured, thus allowing each organization to

export the quality of its data with a certain degree of

flexibility. More specifically, quality dimension values

can be associated with various elements of the data

model, ranging from the single data value to the

whole data source. The main features of the D2Q

model are summarized as follows:

� A data class and a data schema are introduced to

represent the business data portion of the D2Q

model.

� A quality class and a quality schema correspond to

the quality portion of the D2Q model.

� A quality association function that relates nodes of

the graph corresponding to the data schema to
nodes of the graph corresponding to the quality

schema. Quality associations represent biunivocal

functions among all nodes of a data schema and all

non-leaf nodes of a quality schema.

In Fig. 3, an example of a D2Q schema is depicted.

On the left-hand side of the figure, a data schema is

shown representing enterprises and their owners.

On the right-hand side, the associated quality

schema is represented. Specifically, two quality classes,

Enterprise_Quality and Owner_Quality

are associated with the Enterprise and Owner

data classes. Accuracy nodes are shown for both

data classes and related properties. For instance,

Code_accuracy is an accuracy node (of type

t-accuracy) associated with the Code property, while

Enterprise_accuracy is an accuracy node asso-

ciated with the data class Enterprise. The arcs

connecting the data schema and the quality schema

with the quality labels represent the quality association

functions. The D2Q model is intended to be easily

translated into the XML data model. This is important

for meeting the interoperability requirements that are

particularly stringent in cooperative systems.

Process-oriented models have their principal repre-

sentative in the Information Product Map (IP-MAP)

model. An information product map is a graphical

model designed to help people comprehend, evaluate,

and describe how an information product, such as an

invoice, a customer order, or a prescription, is

Data Quality Models D 619

D

assembled in a business process. IP-MAPs are designed

to help analysts visualize the information production

process, identify ownership of process phases, under-

stand information and organizational boundaries, and

estimate time and quality metrics associated with the

current production process. There are eight types of

construct blocks that can be used to form the IP-MAP:

source, customer, data quality, processing, data stor-

age, decision, business boundary, and information
Data Quality Models. Figure 4. An extension of the relation

Data Quality Models. Figure 3. An example of a D2Q schem
systems boundary. An example of information product

map is shown in Fig. 4. Information products (IP in

the figure) are produced by means of processing activ-

ities and data quality checks on raw data (RD), and

semi-processed information called component data

(CD). In the example, it is assumed that high schools

and universities of a district have decided to cooperate

in order to improve their course offering to students,

avoiding overlap and being more effective in the
al model.

a.

620D Data Quality Problems
education value chain. To this end, they have to share

historical data on students and their curricula. There-

fore, they perform a record linkage activity that

matches students in their education life cycle (‘‘Per-

form Record Linkage’’ block). To reach this objective,

high schools periodically supply relevant information

on students; in case it is in paper format, the informa-

tion has to be converted in electronic format. At this

point, invalid data are filtered and matched with the

database of university students. Unmatched students

are sent back to high schools for clerical checks, and

matched students are analyzed. The result of the anal-

ysis of curricula and course topics are sent to the

advisory panel of the universities.

Key Applications
Data-oriented and process-oriented data quality models

can be used to represent quality dimensions and quality

related activities thus supporting techniques for data

quality improvement. However, such techniques seldom

rely on the described model extensions, with the dis-

tinctive exception of the IP-MAP model. Indeed, only

a few prototypical DBMSs have experienced the

adoption of some of the approaches mentioned. This

is mainly due to the complexity of the representational

structures proposed in the different approaches. Indeed,

measuring data quality is not an easy task, hence models

that impose to associate data quality dimensions values

at attribute level have proven not very useful in practice.

A greater flexibility is more useful in real applications,

like for instance, in scenarios of e-Government or

e-Commerce. In these scenarios, which involve coopera-

tion between different organizations, a more successful

case is provided by XML data exchanged with associated

quality profiles, which are based on semi-structured data

quality models.

Future Directions
The future of research on models appears to be in

provenance and semi-structured data quality models.

In open information systems and in peer-to-peer ones,

knowing the provenance and having a flexible tool to

associate quality to data is crucial. Indeed, such sys-

tems have to be able to trace the history of data and to

certify the level of quality of the retrieved data.

Cross-references
▶Data Quality Dimensions

▶ Entity Relationship Model
▶ Information Product Management

▶ Provenance

▶Relational Model

▶ Semi-Structured Data

▶XML

Recommended Reading
1. Batini C. and Scannapieco M. Data Quality: Concepts,

Methodologies, and Techniques. Springer, Berlin, 2006.

2. Scannapieco M., Virgillito A., Marchetti C., Mecella M., and

Baldoni R. The DaQuinCIS architecture: a platform for exchang-

ing and improving data quality in cooperative information

systems. Inf. Syst., 29(7):551–582, 2004.

3. Shankaranarayan G., Wang R.Y., and Ziad M. Modeling

the manufacture of an information product with IP-MAP.

In Proc. 5th Int. Conf. on Information Quality, 2000, pp. 1–16.

4. Storey V.C. and Wang R.Y. An analysis of quality requirements

in database design. In Proc. 4th Int. Conf. on Information

Quality, 1998, pp. 64–87.

5. Wang R.Y. andMadnick S.E. A polygen model for heterogeneous

database systems: the source tagging perspective. In Proc. 16th

Int. Conf. on Very Large Data Bases, 1990, pp. 519–538.

6. Wang R.Y., Reddy M.P., and Kon H. Toward data quality:

an attribute-based approach. Decision Support Syst., 13(3–

4):349–372, 1995.

7. Wang R.Y., Ziad M., and Lee Y.W. Data Quality. Kluwer, Boston,

MA, USA, 2001.
Data Quality Problems

▶Data Conflicts
Data Quality Representations

▶Data Quality Models
Data Rank/Swapping

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona, Catalonia

Synonyms
Data swapping; Rank swapping

Definition
Data swapping was originally designed by Dalenius

and Reiss [1] as a masking method for statistical disclo-

sure control of databases containing only categorical

Data Reduction D 621

D

attributes. The basic idea behind the method is to trans-

form a database by exchanging values of confidential

attributes among individual records. Records are ex-

changed in such a way that low-order frequency counts

or marginals are maintained.

Rank swapping is a variant of data swapping [2,3].

First, values of an attribute Xi are ranked in ascend-

ing order, then each ranked value of Xi is swapped

with another ranked value randomly chosen within a

restricted range (e.g., the rank of two swapped values

cannot differ by more than p% of the total number

of records, where p is an input parameter). This algo-

rithm is independently used on each original attribute

in the original data set.

Key Points
It is reasonable to expect that multivariate statistics

computed from data swapped with this algorithm will

be less distorted than those computed after an uncon-

strained swap. In empirical work on SDC scores, rank

swapping with small swapping range has been identified

as a particularly well-performing method in terms of

the trade-off between disclosure risk and information

loss. Consequently, it is one of the techniques that have

been implemented in the m � Argus package [3].

Cross-references
▶Data Rank/Swapping

▶Disclosure Risk

▶ Inference Control in Statistical Databases

▶ Information Loss Measures

▶K-anonymity

▶Microaggregation

▶Microdata

▶Microdata rounding

▶Noise Addition

▶Non-perturbative masking methods

▶ Pram

▶Record Linkage

▶ Synthetic Microdata

▶ SDC Score

▶Tabular Data

Recommended Reading
1. Dalenius T. and Reiss S.P. Data-swapping: a technique for

disclosure control (extended abstract). In Proc. ASA Section

on Survey Research Methods. American Statistical Association,

Washington DC, 1978, pp. 191–194.

2. Domingo-Ferrer J. and Torra V. A quantitative comparison

of disclosure control methods for microdata. In Confidentiality,
Disclosure and Data Access: Theory and Practical Applications

for Statistical Agencies. P. Doyle, J.I. Lane, J.J.M. Theeuwes, and

L. Zayatz (eds.). Amsterdam, North-Holland, 2001, pp. 111–134.

3. Hundepool A., Van de Wetering A., Ramaswamy R., Franconi F.,

Polettini S., Capobianchi A., De Wolf P.-P., Domingo-Ferrer J.,

Torra V., Brand R. and Giessing S. m-Argus User’s Manual

version 4.1, February 2007.
Data Reconciliation

▶Constraint-Driven Database Repair
Data Reduction

RUI ZHANG

University of Melbourne, Melbourne, VIC, Australia

Definition
Data reduction means the reduction on certain aspects

of data, typically the volume of data. The reduction can

also be on other aspects such as the dimensionality of

data when the data is multidimensional. Reduction on

any aspect of data usually implies reduction on the

volume of data.

Data reduction does not make sense by itself unless

it is associated with a certain purpose. The purpose in

turn dictates the requirements for the corresponding

data reduction techniques. A naive purpose for data

reduction is to reduce the storage space. This requires a

technique to compress the data into a more compact

format and also to restore the original data when the

data needs to be examined. Nowadays, storage space

may not be the primary concern and the needs for data

reduction come frequently from database applications.

In this case, the purpose for data reduction is to save

computational cost or disk access cost in query

processing.

Historical Background
The need for data reduction arises naturally. In early

years (pre-1990’s), storage was quite limited and ex-

pensive. It fostered the development of a class of tech-

niques called compression techniques to reduce the data

volume for lower consumption of resources such

as storage space or bandwidth in telecommunication

settings. Another requirement for a compression

622D Data Reduction
technique is to reproduce the original data (from the

compressed data) for reading. Here ‘‘reading’’ has dif-

ferent meanings depending on the data contents. It

means ‘‘listening’’ for audio data, ‘‘viewing’’ for video

data, ‘‘file reading’’ for general contents, etc. Therefore

the reproduction of the data should be either exactly

the same as the original data or very close to the original

data by human perception. For example, MP3 is an

audio compression technique which makes a com-

pressed audio sound almost the same to the original

one. Until today, compression techniques is still a very

active research topic. But, instead of concerning data

size of kilobytes or megabytes as in the early years,

today’s compression techniques concern data size of

gigabytes or even terabytes.

As the rapid advances of hardware technologies,

storage limit is no longer the most critical issue in

many cases. Another huge force driving the need for

data reduction appears in database applications. Stor-

ing the data may not be a problem, but retrieving data

from the storage (typically hard disk) is still a quite

expensive operation due to the slow improvement in

disk seek time. Database queries commonly need to

retrieve large amount of data from the disk. Therefore

data reduction is compelling for providing high per-

formance in query processing. Different from data

compression, data reduction in database applications

usually do not need to generate a reproduction that is

exactly the same as the original data or sounds/looks

very close to the original data. Instead, an approxima-

tion of the intended answer suffices, which gives more

flexibility for data reduction.

Traditionally, data reduction techniques have been

used in database systems to obtain summary statistics,

mainly for estimating costs of query plans in a query

optimizer. Here, an approximation of the expected

cost suffices as an estimate. At the same time, highly

reduced data (summary statistics) is essential to make

evaluation of the query plans much cheaper than eval-

uation of the query.

In the last two decades, there has been enormous

interest in online analytic processing (OLAP), which is

characterized by complex queries involving group-by

and aggregation operators on extremely large volume

of data. OLAP is mainly performed in decision support

applications, which analyze data and generate summa-

ries from data. Organizations need these results to

support high-level decision making. The data typically

comprises of data consolidated from many sources of
an organization, forming a repository called a data

warehouse. In face of the high data volume, efficient

OLAP calls for data reduction techniques. Due to the

analytical and exploratory nature of the queries, ap-

proximate answers are usually acceptable and the error

tolerance can sometimes be quite high.

Foundations
Compression techniques and data reduction techni-

ques in databases are discussed separately below due

to the differences in their purposes and general char-

acteristics. Compression techniques are more often

studied in the information retrieval research commu-

nity while data reduction techniques in databases are

studied in the database research community. Compres-

sion techniques is a subcategory of data reduction

techniques, although sometimes the term compression

technique is used in a less strict way to refer to data

reduction in general.

Compression techniques involve the processes of

encoding and decoding. Encoding converts the original

data to a more compact format based on a mapping

from source messages into codewords. Decoding per-

forms the inverse operation to reproduce the original

data. If the reproduction is exactly the same as the

original data, the compression technique is lossless;

otherwise, it is lossy. Lossless compression techniques

are used for generally any data format without needing

to know the contents or semantics of the data. Popular

techniques include ZIP invented by Phil Katz in late

1980s and RAR invented by Eugene Roshal in early

1990s. If some domain knowledge on the data is avail-

able, usually lossy compression techniques yield better

compression rates. For example, JEPG, MP3 and MPEG

are popular compression techniques for audio, image

and video data, respectively. Lossy compression techni-

ques leave out the less important information and noise

to achieve higher compression. More concretely, the

MP3 audio encoding format removes the audio details

most human beings cannot hear tomake the compressed

audio sound like a faithful reproduction of the original

uncompressed one. Different compression techniques

mainly differ in the mapping from source messages

into codewords. A survey of compression techniques is

given in [6]. Readers interested in recent research results

in compression techniques are referred to the proceed-

ings of the Data Compression Conference [1].

Data reduction in databases can make use of various

techniques. Popular ones include histograms, clustering,

Data Reduction D 623

D

singular value decomposition (SVD), discrete wavelet

transform (DWT), etc. The techniques can be divided

intotwocategories,parametric and nonparametric tech-

niques, depending on whether the technique assumes

a certain model. Histograms and clustering are non-

parametric techniques while SVD and DWT are para-

metric techniques. A summary of data reduction

techniques for databases can be found in [3].

Histograms

A histogram is a data structure used to approximate

the distribution of values. The value domain is divided

into subranges called buckets. For each bucket, a count

of the data items whose values fall in the bucket is

maintained. Therefore a histogram basically contains

the information of the boundaries of the buckets and

the counts. The data distribution can be approximated

by the average values of the buckets and the counts.

Commonly, two types of histograms are used, equi-

width and equidepth histograms, distinguished by how

the buckets are determined. In an equiwidth histo-

gram, the length of every bucket is the same while in

an equidepth histogram, the count for every bucket is

the same (Sometimes, an exact same count cannot be

achieved and then the counts for the buckets are ap-

proximately the same.). Figure 1 shows an example

data distribution in the value domain [0,8] and the

equiwidth and equidepth histograms for the data as-

suming three buckets. A thick vertical line represents

the count for a value; a dashed line represent a bucket
Data Reduction. Figure 1. Histograms.
range and the estimated count for the values in the

bucket. The estimated count of a certain value is simply

the average count in the bucket. In the equiwidth

histogram (Fig. 1a), each bucket has the range of

length 3. The estimated counts for most values are

quite close to the actual values. Equiwidth histograms

are simple and easy to maintain, but the estimate is less

accurate for skewed distribution such as the count of

value 3. This problem is alleviated in the equidepth

histogram (Fig. 1b). Each bucket has the count of

about 9. The estimate count for value 3 is very accu-

rate. The disadvantage of equidepth histograms is that

determining the boundaries of buckets is more diffi-

cult. There are other types of histograms such as com-

pressed histograms and v-optimal histograms. A

thorough classification on various histograms can be

found in [7].

Clustering

Clustering is a technique to partition objects into

groups called clusters such that the objects within a

group are similar to each other. After clustering,

operations can be performed on objects collectively

as groups. The information of data can be represented

at the cluster level and hence greatly reduced. The

data to perform clustering on usually contain multi-

ple attributes. Therefore each data object can be

represented by a multidimensional point in space.

The similarity is measured by a distance function.

Typically, a metric function, such as Euclidean

624D Data Reduction
distance, is used as the distance function. Given a

data set, there is no single universal answer for the

problem of clustering. The result of clustering

depends on the requirements or the algorithm used

to perform clustering. A classic algorithm is the k-

means algorithm, which partitions the data into k

clusters. Given a data set and a number k, the algo-

rithm first picks k points randomly or based on some

heuristics to serve as cluster centroids. Second, every

point (object) is assigned to its closest centroid.

Then the centroid for each cluster is recomputed

based on the current assignment of points. If the

newly computed centroids are different from the

previous ones, all the points are assigned to their

closest centroids again and then the centroids are

computed again. This process is repeated until the

centroids do not change. Figure 2 shows an example

where k = 3. The black dots are data points, squares are

initial centroids and the dashed circles show the resul-

tant clusters. In the beginning, the value of k is given by

the user in a very subjective manner, usually depending

on the application needs. Another algorithm called k-

medoid works in a very similar manner but with a

different way of choosing their cluster representatives,

called medoids, and with a different stop condition.

Recently, algorithms designed for large data sets were

proposed in the database research community such as

BIRCH [9] and CURE [4].
Data Reduction. Figure 2. k-means clustering.
Singular Value Decomposition (SVD)

Any m � n real matrix A can be decomposed as

follows:

A ¼ USVt ð1Þ

where U is a column-orthonormal m � r matrix, r is

the rank of the matrix A, S is a diagonal r � r matrix

and V is a column-orthonormal n � r matrix (bold

symbols are used to represent matrices and vectors). It

can be further expressed in the spectral decomposition

[5] form:

A ¼ l1u1vt1 þ l2u2vt2 þ :::þ lrurvtr ð2Þ

where ui and vi are column vectors of U and V, respec-

tively, and li are the diagonal elements of S. A can be

viewed as m n-dimensional points (each row being a

point). Because vi are orthogonal vectors, they form a

new basis of the space. li represents the importance of

the basis vector vi (dimension i) and ui represents the

coordinates of the m points in dimension i in this new

coordinate system. Assume that li are sorted in des-

cending order. Then, v1 is the direction (dimension)

with the largest dispersion (variance) of the points; v2
is the direction with the second largest dispersion of

the points, and so on. If the last few li values are small

and one omits them when calculating A, the resulted

error will be very small. Therefore SVD is widely used

in dimensionality reduction and matrix approxima-

tion. The following is an example, with A given as

A ¼

�2 1

�2 �1

1 1

2 3

4 4

5 2

2
6666664

3
7777775

The SVD of A is

A¼

�0:118 0:691
�0:250 0:125
0:158 0:079
0:383 0:441
0:633 0:316
0:593 �0:454

2
6666664

3
7777775

8:82 0

0 2:87

� �
0:811 0:585
�0:585 0:811

� �

Here, l1 ¼ 8:82; l2 ¼ 2:87; v1 ¼
0:811
0:585

� �
and

v2 ¼
�0:585
0:811

� �
: Figure 3 shows the data points, and

the directions of v1 and v2.

Data Reduction. Figure 3. SVD.

Data Reduction. Figure 4. Haar transform.

Data Reduction D 625

D

Discrete Wavelet Transform (DWT)

Wavelet Transform is a commonly used signal proces-

sing technique like other transforms such as Fourier

Transform or Cosine Transform. In databases, com-

monly used is the discrete version called Discrete

Wavelet Transform (DWT). After applying DWT, a

multi-resolution decomposition of the original signal

is obtained in the form of wavelet coefficients. The

wavelet coefficients are projections of the signal onto

a set of orthogonal basis vectors. The choice of the

basis vectors determines the type of DWT. The most

popular one is the Haar transform, which is easy to

implement and fast to compute. Some of the wavelet

coefficients obtained may be small, therefore they can

be replaced by zeros and hence the data is reduced.

Inverse DWT can be applied on the reduced wavelet

coefficients to get an approximation of the original sig-

nal. This is basically how DWT is used for compression.

DWT based compression provides better lossy compres-

sion than Discrete Fourier Transform and Discrete Co-

sine Transform.

In the Haar transform, elements of a signal

are processed pairwise. Specifically, the average and

difference of every two neighboring elements are

computed. The averages serve as a lower-resolution

approximation of the signal and the differences

(divided by 2) are the coefficients. For example, signal

S = {2, 4, 5, 5, 3, 1, 2, 2}. Computing the average of

every two neighboring elements results in a lower-

resolution signal S1 = {3, 5, 2, 2}. The coefficients are

obtained by computing the difference of every two

neighboring elements divided by 2, which is D1 =

{�1, 0, 1, 0}. S can be restored exactly by adding
(or subtracting) the coefficient to the corresponding

element in S1. For example, S(1) = S1(1) + D1(1) = 3 +

(�1) = 2; S(2) = S1(1) � D1(1) = 3 � (�1) = 4.

Similarly, a even lower-resolution signal S2 can be

obtained by applying the same process on S1. This

can be done recursively until the length of the signal

becomes 1. The full decomposition on S is shown in

Fig. 4. The Haar transform of S is given as the average

over all elements (3), and all the coefficients, S0 = {3, 1,

�1, 0, �1, 0, 1, 0}.

Key Applications

Data Storage and Transfer

Compression techniques are essential for data storage

and transfer in many applications.

Database Management Systems

Histograms is a popular technique for maintaining

summary information in database management sys-

tems. It is especially useful for a cost-based query

optimizer.

OLAP

Due to the huge volume of data in OLAP applications,

data reduction techniques such as sampling are com-

monly used to obtain quick approximate answers.

Multimedia Data

Multimedia data is characterized by large size. Therefore

data reduction techniques are usually applied on multi-

media data from storage to data processing. For example,

the MP3, JPEG, MPEG formats for audio, image and

video data, respectively, all use compression techniques.

The new JPEG digital image standard, JPEG-2000, uses

DWT for all its codecs [8]. Similarity search on multime-

dia data usually needs to deal with very high-dimensional

point representations. SVD can be used to reduce the

dimensionality to achieve better search performance. In a

recent paper [2], DWT is used to represent 3D objects to

obtain better data retrieval performance.

626D Data Replication
Taxonomy

Clustering is widely used in almost all taxonomy appli-

cations such as taxonomies of animals, plants, diseases

and celestial bodies. It can also help visualization

through a hierarchically clustered structure.

Cross-references
▶Clustering

▶Discrete Wavelet Transform and Wavelet Synopses

▶Histogram

▶Nonparametric Data Reduction Techniques

▶ Parametric Data Reduction Techniques

▶ Singular Value Decomposition

Recommended Reading
1. http://www.cs.brandeis.edu/�dcc/index.html.

2. Ali M.E., Zhang R., Tanin E., and Kulik L. A motion-aware

approach to continuous retrieval of 3D objects. In Proc. 24th

Int. Conf. on Data Engineering, 2008.

3. Barbará D., DuMouchel W., Faloutsos C., Haas P.J., Hellerstein

J.M., Ioannidis Y.E., Jagadish H.V., Johnson T., Ng R.T., Poosala

V., Ross K.A., and Sevcik K.C. The New Jersey data reduction

report. IEEE Data Eng. Bull., 20(4):3–45, 1997.

4. Guha S., Rastogi R., and Shim K. CURE: an efficient clustering

algorithm for large databases. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1998, pp. 73–84.

5. Jolliffe I.T. Principal component analysis. Springer, Berlin, 1986.

6. Lelewer D.A. and Hirschberg D.S. Data compression. ACM

Comput. Surv., 19(3):261–296, 1987.

7. Poosala V., Ioannidis Y.E., Haas P.J., and Shekita E.J. Improved

histograms for selectivity estimation of range predicates. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1996, pp.

294–305.

8. The JPEG 2000 standard. http://www.jpeg.org/jpeg2000/index.

html.

9. Zhang T., Ramakrishnan R., and Livny M. BIRCH: an efficient

data clustering method for very large databases. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1996, pp. 103–114.
Data Replication

BETTINA KEMME

McGill University, Montreal, QC, Canada

Synonyms
Database replication; Replication

Definition
Using data replication, each logical data item of a data-

base has several physical copies, each of them located on

a different machine, also referred to as site or node.
Depending on the context and the type of replication

architecture, the term replica can refer to one of

the physical copies of a particular data item, or to

an entire site with all its data copies. Data replication

can serve different purposes. First, it can be used to

increase availability and provide fault-tolerance since

the data can, in principle, be accessed as long as one

replica is available. Second, it can provide good perfor-

mance. By storing replicas close to users that want to

access the data, replication allows fast local access.

Third, access requests can be distributed across the

replicas. By adding more replicas to the system a higher

incoming workload can be handled, and hence, a

higher throughput can be achieved. Thus, replication

is a means to achieve scalability. Finally, for some

applications, replication is a natural choice, e.g., if

mobile users have to access data while disconnected

from their corporate data server.

The main challenge of replication is that the repli-

cas have to be kept consistent when updates occur.

This is the task of replica control. It has to translate

the read and write operations that users submit on the

logical data items into operations on the physical cop-

ies. In the most common approach, read operations

are performed on one replica while write operations

have to be performed on all replicas (ROWA, or read-

one-write-all approach). Ideally, all copies of a data

item have the same value at all times. In reality, many

different consistency models have been developed that

reflect the needs for different application domains.

Additionally, replica allocation algorithms have the

task to decide where and when to install or remove

replicas. They have to find a trade-off between the

performance benefits for read operations and the over-

head of keeping the copies consistent.

Historical Background
Data replication has gained attention in two different

communities. The database community typically con-

siders the replication of data items of a database, e.g.,

records or tables of a relational database. It has to

consider that transactions and queries not only access

individual data items, but read and write a whole set of

related data items. In contrast, the distributed systems

community mainly focuses on replication techniques

for objects that are typically accessed individually,

such as distributed file systems and web-servers. Nev-

ertheless, in all the application types, similar issues

arise regarding replica control and allocation, and the

Data Replication D 627

D

associated coordination and communication over-

head. Thus, there has always been an active exchange

of research ideas, such as [1,5], and there exist several

publication venues where work from both commu-

nities appears.

Work on database replication had an early peak in

the 1980s, where it was first introduced for availability

purposes, and most approaches provided strong con-

sistency properties. A good overview is given in [2].

A seminal paper by Gray et al. in 1996 [6] revived

research in this area. It provided a first characterization

of replica control algorithms and presented an analyti-

cal model showing that existing strong consistency

solutions come with a large performance penalty.

Since then, replication has remained an active research

area. Emphasis has been put on reducing the high

communication and coordination overhead of the

early solutions. One research direction aims at reduc-

ing the costs by delaying the sending of updates to

remote replicas. However, in this case, replicas might

have stale or even inconsistent data. Solutions have

been proposed to avoid inconsistencies (e.g., [3]), to

provide limits on the staleness of the data (e.g., [8]),

and to detect and then reconcile inconsistencies [9].

Another research direction has developed techniques

to provide strong consistency guarantees at acceptable

costs, for example, by taking advantage of multicast

and group maintenance primitives provided by group

communication systems [14].

In the distributed systems community, early work

focused on replicated file systems (e.g., [10,13]). Later,

web-server replication [12] and file replication in

peer-2-peer systems, (e.g., [7]) have attained consider-

able attention. A wide range of consistency models has

been defined to accommodate application needs. Also,

a large body of literature exists regarding object repli-

cation for fault-tolerance purposes [4,11].

Foundations

Replica Control

Replica control, which has the task of keeping the

copies consistent despite updates, is the main issue to

be tackled by any replication solution. Replica control

has to decide which data copies read operations should

access, and when and how to update individual data

copies in case of write operations. Thus, most of the

work done in the area of database replication is to

some degree associated with replica control. The
entry Replica Control provides a detailed overview of

the main challenges.

Replica Control and Concurrency Control

In order to work properly with a database system

providing transactional semantics, replica control has

to be integrated with concurrency control. Even in a

nonreplicated and nondistributed system, as soon as

transactions are allowed to execute concurrently, con-

currency control mechanisms restrict how the read and

write operations of different transactions may interleave

in order to provide each transaction a certain level of

isolation. If data items are now replicated, the issue

becomesmore challenging. In particular, different trans-

actions might start their execution on different replicas

making it difficult to detect conflicts.

For a nonreplicated database system, the most

studied isolation level is serializability, which indicates

that the concurrent execution of transactions should

be equivalent to a serial execution of the same tran-

sactions. This is typically achieved via locking, optimis-

tic, or multi-version concurrency control. Thus, one of

the first steps in the research of replicated databases was

to define a corresponding correctness criterion 1-copy-

serializability, which requires that the concurrent exe-

cution of transactions over all replicas is equivalent

to a serial execution over a single logical copy of the

database. Many replica control algorithms have been

developed to provide this correctness criterion, often

extending the concurrency control algorithms of non-

replicated systems to work in a replicated environment.

In early solutions, replicas run some form of co-

ordination during transaction execution to guarantee

an appropriate serialization. This type of protocols is

often called eager or synchronous since all replicas co-

ordinate their operations before transaction commit.

Textbooks on distributed systems typically contain a

chapter on these replica control algorithms since they

serve as a nice example of how to design coordination

protocols in a distributed environment. A problem

with most of these traditional replication solutions is

that they induce a large increase in transaction re-

sponse times which is often not acceptable from an

application point of view.

More recent approaches addressed this issue and

designed replica control algorithms providing 1-copy-

serializability or other strong consistency levels that are

tuned for performance. Many envision a cluster archi-

tecture, where a set of database replicas is connected

628D Data Replication
via a fast local area network. In such a network, eager

replication can be feasible since communication delays

are short. Replication is used to provide both scalabili-

ty and fault-tolerance. The entries Replication based on

Group Communication and Replication for Scalability

describe recent, efficient replica control algorithms

providing strong consistency levels for cluster

architectures.

Consistency Models and Conflict Resolution

By definition, eager replication incorporates coordina-

tion among replicas before transaction commit. Alter-

natively, lazy replication (also called asynchronous

or optimistic) allows a transaction to commit data

changes at one replica without coordination with

other replicas. For instance, all update transactions

could be executed and committed at a specific primary

replica which then propagates changes to other replicas

sometime after commit. Then, secondary replicas lag

behind the current state at the primary. Alternatively,

all replicas might accept and execute updates, and even-

tually propagate the changes to the rest of the replicas. In

this case, replicas can become inconsistent. Conflicting

updates are only detected after update propagation and

inconsistent data has to be reconciled. In this context, a

considerable body of research exists defining correctness

criteria weaker than 1-copy-serializability. In particular,

many formalisms exist that allow the defining of limits

to the allowed divergence between the copies of a data

item.

Availability

Replication can increase the availability of the system

since, in principle, a data item is available as long as

one replica is accessible. However, in practice, it is not

trivial to design a high-available replication solution.

As discussed before, most replication algorithms re-

quire all updates to be performed at all replicas

(ROWA, or read-one-write-all). If this is taken in the

strict sense, then, if one replica is update transactions

cannot execute, and the availability observed by update

transactions is actually lower than in a nonreplicated

system. To avoid this, most replica control algorithms

actually implement a read-one-write-all-available

(ROWAA) strategy that only updates replicas that are

actually accessible. When a replica recovers after a

crash, it first has to get the current state from the

available replicas. This can be a complex process. The

possibility of network partitions imposes an additional
challenge. Although a particular replica might be up

and running, it might not be accessible because of an

interruption in the network connectivity. Many com-

mercial database systems offer specialized high-avail-

ability replication solutions. Typically, a primary

database is replicated at a backup database system.

All transactions are executed at the primary that

sends updates to the backend. Only when the primary

crashes, the backup takes over.

Quorum systems are an alternative high-availability

replication approach. In quorum approaches both read

and write operations have to access a quorum of data

replicas. For example, a quorum could be a majority of

replicas. This guarantees that any two operations over-

lap in at least one replica. Thus, each read operation

reads at least one replica that has the most recent

update, and any two concurrent write operations are

serialized at least at one replica. There exist many ways

to define quorums differing in the structure and the

sizes of the quorums. Quorums are an elegant solution

to network partitions and are attractive for write inten-

sive applications since writes do not need to access

all replicas. However, they have worse performance

than ROWA for the more common read-intensive

applications.

Replica Allocation

Using full replication, every site has copies of all exist-

ing data items. This simplifies the execution of read

operations but has high update costs since all sites have

to perform the updates for all data items. In contrast,

in partial replication each site has only copies of some

of the data items. The advantage is that an update on a

data item does not lead to costs at all sites but only at

those that contain a replica of the data item. However,

read operations become more challenging. First, in a

wide-area setting, if no local replica is available, read

operations observe higher delays since they have to

access a remote replica. Furthermore, if a request has

to access several objects within a single query, the

query might have to access data items on different

sites, leading to distributed queries. Thus, replica allo-

cation algorithms have to decide on the placement of

replicas considering issues such as communication

and update costs.

Related to replica allocation is the task to adjust the

replication configuration automatically and dynami-

cally to the needs of the application. This is particula-

rily interesting in a cluster-based configuration where

Data Replication D 629

D

sites are located in a local area network and replication

is used for load distribution and fault-tolerance. In

here, configuration does not only relate to the number

of replicas needed, but also to the question of how to

distribute load across replicas, how to accomodate

different applications on the replicated data, and how

to optimally use all available resources. An important

issue is that advanced information systems do not only

have a database system but consist of a multi-tier

architecture with web-servers, application servers,

and database systems that interact with each other.

Materialized views are a special form of data repli-

cation, where the data retrieved by the most typical

database queries is stored in a pre-formatted form.

Typically, queries can be run over materialized views

as if they were base tables. Since the data is already in

the format needed by the query, query processing time

can be considerably reduced. However, updates on the

views are usually disallowed but have to be performed

directly on the base tables. Special refresh algorithms

then guarantee that materialized views are updated

when the base data changes.

Replication in Various Computing Environments

Replication is a fundamental technique for data man-

agement that can be applied in various computing

environments. The different purposes replication can

generally have in LANs (clusters) and in wide-area

environments have already been discussed above.

Peer-to-peer (P2P) networks are a special form of

wide-area environment. In here, each site is both client

and server. For instance, each peer can provide storage

space to store documents or data items that can be

queried by all peers in the system. Or it provides

processing capacity that can be used by other peers to

perform complex calculations. In turn, it can request

data items or processing capacity from other peers. A

large body of research has developed algorithms that

decide where to store data items and how to find

them in the P2P network. Replication plays an impor-

tant task for fault-tolerance, fast access, and load

distribution.

Replication also plays an important role in mobile

environments that differ in some fundamental ways

from wired networks. Firstly, communication between

mobile units and the servers on the standard network

is typically slow and unreliable. Secondly, mobile

devices are usually less powerful and have considerably

less storage space than standard machines leading to an
asymmetric architecture. Furthermore, mobile devices,

such as laptops, are often disconnected from the net-

work and only reconnect periodically. Thus, having

replicas locally on the mobile device provides increased

availability during disconnection periods.
Key Applications
Data replication is widely used in practice. Basically, all

database vendors offer a suite of replication solutions.

Additionally, replication is often implemented ad-hoc

at the application layer or as a middleware layer as the

need arises. Replication is used in many application

domains. Below some examples are listed.

� Companies use high-availability replication solu-

tions for their mission critical data that has to be

available 24/7. Examples are banking or trading

applications.

� Companies use cluster replication, ideally with au-

tonomic behavior, in order to provide a scalable

and fault-tolerant database backend for their busi-

ness applications. In particular companies that do

e-business with a large number of users resort to

database replication to be able to obtain the re-

quired throughput. This also includes techniques

such as materialized views.

� Globally operating companies often have databases

located at various sites. Parts of these databases are

replicated at the other locations for fast local access.

Examples are companies maintaining warehouses

at many locations.

� Replication of web-sites is a common technique to

achieve load-balancing and fast local access. As the

information shown on the web becomes more and

more dynamic (i.e., it is retrieved from the database

in real-time), database replication techniques need

to be applied.

� Companies that have employees working off-site,

such as consulting or insurance companies, use

mobile replication solutions. Data replicas are

downloaded to mobile units such as laptops in

order to work while disconnected. Upon reconnec-

tion to the network, the replicas are reconciled with

the master replica on the database server. Typically,

database vendors provide specialized software in

order to allow for such types of replication.

� There exist many P2P-based document sharing sys-

tems, e.g., to share music, video files. Entire file

systems can be built on P2P networks.

630D Data Replication Protocols
� Data Warehouses can be seen as a special form of

replication where the transactional data is copied

and reformatted to be easily processed by data

analysis tools.

Future Directions
Being a fundamental data management technology,

data replication solutions will need to be adjusted and

revisited whenever new application domains and com-

puting environments are developed. Thus, data repli-

cation will likely be a topic that will be further explored

as our IT infrastructure and our demands change.

Cross-references
▶Autonomous Replication

▶Consistency Models for Replicated Data

▶Data Broadcasting, Caching and Replication in

Mobile Computing

▶Distributed Database Design

▶Middleware Support for Database Replication and

Caching

▶One-Copy-Serializability

▶Optimistic Replication and Resolution

▶ Partial Replication

▶ P2P Database

▶Quorum Systems

▶Replication

▶Replica Control

▶Replica Freshness

▶Replication based on Group Communication

▶Replication for High Availability

▶Replication for Scalability

▶Replication in Multi-Tier Architectures

▶ Strong Consistency Models for Replicated Data

▶Traditional Concurrency Control for Replicated

Databases

▶WAN Data Replication

▶Weak Consistency Models for Replicated Data

Recommended Reading
1. Alonso G., Charron-Bost B., Pedone F., and Schiper A.

(eds.), A 30-year Perspective on Replication, Monte Verita,

Switzerland, 2007.

2. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison Wesley,

Boston, MA, 1987.

3. Breitbart Y., Komondoor R., Rastogi R., Seshadri S., and

Silberschatz A. Update Propagation Protocols For Replicated

Databases. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1999, pp. 97–108.
4. Budhiraja N., Marzullo K., Schneider F.B., and Toueg S. The

primary-backup approach. In Distributed Systems (2nd edn.).

S. Mullender (ed.). AddisonWesley, New York, NY, pp. 199–216.

5. Cabrera L.F. and Pâris J.F. (eds.). In Proc. 1st Workshop on the

Management of Replicated Data, 1990.

6. Gray J., Helland P., O’Neil P., and Shasha D. The dangers of

replication and a solution. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1996, pp. 173–182.

7. Lv Q., Cao P., Cohen E., Li K., and Shenker S. Search and

replication in unstructured peer-to-peer networks. In Proc.

16th Annual Int. Conf. on Supercomputing, 2002, pp. 84–95.

8. Röhm U., Böhm K., Schek H.J., and Schuldt H. FAS - a

freshness-sensitive coordination middleware for a cluster of

OLAP components. In Proc. Int. Conf. on Very Large Data

Bases, 2002, pp. 754–765.

9. Saito Y. and Shapiro M. Optimistic replication. ACM Comput.

Surv., 37(1):42–81, 2005.

10. Satyanarayanan M., Kistler J.J., Kumar P., Okasaki M.E., Siegel

E.H., and Steere D.C. Coda: a highly available file system for a

distributed workstation environment. IEEE Trans. Comput., 39

(4):447–459, 1990.

11. Schneider F.B. Replication management using the state-machine

approach. In Distributed Systems (2nd edn.), S. Mullender (ed.).

Addison Wesley, New York, NY, 1993, pp. 169–198.

12. Sivasubramanian S., Szymaniak M., Pierre G., and van Steen M.

Replication for web hosting systems. ACM Comput. Surv., 36

(3):291–334, 2004.

13. Terry D.B., Theimer M., Petersen K., Demers A.J., Spreitzer M.,

and Hauser C. Managing update conflicts in Bayou, a weakly

connected replicated storage system. In Proc. 15th ACM Symp.

on Operating System Principles, 1995, pp. 172–183.

14. Wiesmann M. and Schiper A. Comparison of database replica-

tion techniques based on total order broadcast. IEEE Trans.

Knowl. Data Eng., 17(4):551–566, 2005.
Data Replication Protocols

▶Replica Control
Data Sampling

QING ZHANG

The Australian e-health Research Center, Brisbane,

QLD, Australia

Definition
Repeatedly choosing random numbers according to a

given distribution is generally referred to as sampling.

It is a popular technique for data reduction and

Data Sampling D 631

D

approximate query processing. It allows a large set of

data to be summarized as a much smaller data set, the

sampling synopsis, which usually provides an estimate

of the original data with provable error guarantees.

One advantage of the sampling synopsis is easy and

efficient. The cost of constructing such a synopsis is

only proportional to the synopsis size, which makes the

sampling complexity potentially sublinear to the size

of the original data. The other advantage is that the

sampling synopsis represents parts of the original data.

Thus many query processing and data manipulation

techniques that are applicable to the original data, can

be directly applied on the synopsis.

Historical Background
The notion of representing large data sets through small

samples dates back to the end of nineteenth century

and has led to the development of many techniques [5].

Over the past twodecades, sampling techniques have been

greatly developed in various database areas, especially on

query optimization and approximate query processing.

� Query Optimization: Query optimizer identifies an

efficient execution plan for evaluating the query. The

optimizer generates alternative plans and chooses

the cheapest one. It uses the statistical information

stored in the system catalog to estimate the cost of a

plan. Sampling synopsis plays a critical role in the

query optimization of a RDBMS. Some commercial

products, such as DB2 and Oracle, have already

adopted sampling techniques to estimate several

catalog statistics. In the Heterogeneous DBMS, the

global query optimizer also employs sampling tech-

niques to estimate query plans when some local

statistical information is unavailable [6].

� Approximate Query Processing: Sampling is mainly

used to generate approximate numeric answers

for aggregate queries over a set of records, such as

COUNT, SUM, MAX, etc. Compared with other

approximate query processing techniques, such as

histogram and wavelet, sampling is easy to be imple-

mented and efficient to generate approximate an-

swers with error guarantees. Many prototypes on

approximate query processing have adopted sam-

pling approaches [2,3,4].

Foundations
A sampling estimation can be roughly divided into

two stages. The first stage is to find a suitable sampling
method to construct the sampling synopsis from

the original data set. The second stage is to analyze

the sampling estimator to find the characteristics

(bounds and parameters) of its distribution.

Sampling Method: Existing sampling methods can

be classified into two groups, the uniform random

sampling and biased sampling. The uniform random

sampling is a straightforward solution. Every tuple of

the original data has the same probability to be sam-

pled. Thus for aggregate queries, the estimation from

samples is the expected value of the answer. Due to the

usefulness of uniform random sampling, commercial

DBMSs have already supports operators to collect

uniform samples. However, there are some queries

for which the uniform random sampling are less effec-

tive on estimation. Given a simple group-by query

which intends to find the average value of different

groups, a smaller group is often as important to the

user as those larger groups. It is obvious that the

uniform random sampling will not have enough infor-

mation for the smaller group. That is why the biased

sampling methods are developed in these cases. Strati-

fied sampling, for example, is a typical biased sam-

pling, which will be explained in detail later. The four

basic sampling methods, two uniform sampling and

two biased sampling, are listed below. Figure 1 shows

corresponding sampling synopses generated by those

methods on the sample data.

1. Random sampling with replacement: This method

creates a synopsis by randomly drawing n of the N

original data records, where the probability of

drawing any record is 1
N
. In other words, the records

that have already been drawn are not to be remem-

bered. So the chance exists that a certain record will

be repeatedly drawn in several runs.

2. Random sampling without replacement: This is sim-

ilar to the random sampling with replacement

method except that in each run the drawn record

will be remembered. That is, the same record will

not be chosen on subsequent runs. Although sam-

pling without replacement appears to lead to better

approximation results, sampling with replacement

is significantly easier to be implemented and ana-

lyzed. Thus in practice the negligible difference

between these two methods’ effects makes the sam-

pling with replacement a desirable alternative.

3. Cluster sampling : The N original data records are

grouped into M mutually disjoint clusters. Then a

Data Sampling. Figure 1. Sampling methods (sampling synopsis size = 3).

632D Data Sampling
random sampling onM clusters is obtained to form

the cluster sampling synopsis. That is, the clusters

are treated as sampling units so statistical analysis is

done on a population of clusters.

4. Stratified sampling : Like the cluster sampling, the N

records are grouped into M mutually disjoin clus-

ters, called strata. A stratified sampling synopsis is

generated through running a random sampling on

each cluster. This method is especially useful when

the original data has skew distribution. In this way,

the cluster with smallest number of records will be

sure to be represented in the synopsis.

These basic sampling methods are straightforward

solutions although they usually can not satisfy the

error or space requirements. However, they are build-

ing blocks of more advanced methods that can either

be used in certain situations or guarantee the estima-

tion error with a confidence level.

Here is an example of a specially designed sampling

method, which extends the basic random sampling

method to be usable in the data stream environment.

Note that the basic unbiased random sampling method

requires a fixed data set with pre-defined data size. How-

ever, in a data stream environment, the size of the original

data set is unknown. Thus the dynamic samplingmethod

is required to get an unbiased sampling synopsis over the

whole data stream. For this purpose, reservoir based

sampling methods were originally proposed in [7].

Suppose constructing an unbiased sampling synop-

sis against a data stream T. A sample reservoir of n

records is maintained from the stream. That is the first
n records of T will be added to the reservoir for initi-

alization. Any t � th new coming record will be added

to the reservoir with probability n
t
. If a new record is

added to the reservoir, any existing records of

the reservoir will be discarded with probability 1
n
.

Figure 2 demonstrates the construction steps of the

reservoir. Finally, when all data of T has been pro-

cessed, the n records of the reservoir form an unbiased

random sampling synopsis of all the records of T.

Similar reservoir based sampling method can also be

developed for biased sampling [1].

Sampling Analysis : This stage analyzes the random

variable generated by sampling methods. More specifical-

ly, it analyzes the distribution of the random variable

through discovering its bound and distribution para-

meters. Given N records, assume that the function f(N)

represents an operation on the N records. Let S repre-

sent a sampling synopsis of N, and f ðSÞ is often closely

related to f ðNÞ for most common operations, such as

AVERAGE or MAX. Let X ¼ f ðSÞ. X is the random

variable that are going to be analyzed. If f ðNÞ repre-
sents some linear aggregation functions, such as AVER-

AGE, X can be approximated as a normal distribution,

according to the Central Limit Theorem. If however,

f ðNÞ represents other functions, such as MAX, proba-

bilistic bounds based on key distribution parameters,

such as expectation EðXÞ and variance Var½X �, need to

be found. This is often quite acceptable as an alterna-

tive to characterize the entire distribution of X.

There exist a number of inequalities to estimate the

probabilistic bound. These inequalities are collectively

Data Sampling. Figure 2. Random sampling with a reservoir.

Data Sampling D 633

D

known as tail bounds. Given a random variable X, if

E½X � is known, Markov’s Inequality gives:

8 a > 0; PrðX
 aÞ � E½X �
a

The variance of X, Var½X � is defined as:

Var½X � ¼ E½ðX � E½X �Þ2�

A significantly stronger tail bound can be obtained by

Chebyshev’s Inequality if Var½X � is known:

8 a > 0; Prð X � E½X �j j
 aÞ � Var½X �
a2

The third inequality is an extremely powerful tool

called Chernoff bounds, which gives exponentially de-

creasing bounds on the tail distribution. These are

derived by applying Markov’s Inequality to etX for

some well-chosen value t. Bounds derived from this

approach are generally referred to collectively as Chern-

off bounds. The most commonly used version of the

Chernoff bound is for the tail distribution of a sum of

independent 0–1 random variable. Let X1;:::;Xn be in-

dependent Poisson trials such that PrðXiÞ ¼ pi .

Let X ¼
Pn

i¼1 Xi and m ¼ E½X �. For 0 < d < 1,

Prð X � mj j
 mdÞ � 2e�md2=3

Finally, an example to illustrate the different tail

bounding abilities of the three inequalities is given
below. Suppose estimating the synopsis size generated

by a random sampling with replacement of N data

records. Each record has a same probability 1
2

to

be sampled. Let X denote the size of the sampling

synopsis. Then the size expectation is E½X � ¼ N
2
. The

probabilities of the synopsis size greater than 3
4
N ,

under estimations from different inequalities, are:

Markov’s Inequality : Pr X
 3
4
N

� �
� 2

3

Chebyshev’s Inequality : Pr X
 3
4
N

� �
� 4

N

Chernoff Bounds : Pr X
 3
4
N

� �
� 2e�N=24

Key Applications

Query Optimization

Data sampling is one of the primary techniques used

by query optimizers. In some multi-dimensional cases,

it becomes the only easy and viable solution.

Approximate Query Processing

Data sampling is one of the three major data deduction

techniques (the other two are histogram and wavelet)

employed by approximate query processors.

Data Streaming

Sampling is a simple yet powerful method for synopsis

construction in data stream.

634D Data Sketch/Synopsis
Cross-references
▶Approximate Query Processing

▶Data Reduction

▶Data Sketch/Synopsis

▶Histogram

▶Query Optimization

Recommended Reading
1. Aggarwal C.C. On biased reservoir sampling in the presence of

stream evolution. In Proc. 32nd Int. Conf. on Very Large Data

Bases, 2006.

2. Chaudhuri S. et al. Overcoming limitations of sampling for

aggregation queries. In Proc. 17th Int. Conf. on Data Engineer-

ing, 2001.

3. Ganti V., Lee M.-L., and Ramakrishnan R. ICICLES: Self-tuning

samples for approximate query answering. In Proc. 28th Int.

Conf. on Very Large Data Bases, 2000.

4. Gibbons P.B. and Matias Y. 1New sampling-based summary

statistics for improving approximate query answers. In Proc.

ACM SIGMOD int. conf. on Management of Data, 1998.

5. Kish L. Survey Sampling. Wiley, New York, xvi, 643, 1965.

6. Speegle G.D. and Donahoo M.J. Using statistical sampling

for query optimization in heterogeneous library information

systems. In Proc. 20th ACM Annual Conference on Computer

Science, 1993.

7. Vitter J.S. Random sampling with a reservoir. ACM Trans.

Math. Softw., 11(1):37–57, 1985.
Data Sketch/Synopsis

XUEMIN LIN

University of New South Wales, Sydney, NSW,

Australia

Synonyms
Summary

Definition
A synopsis of dataset D is an abstract of D. A sketch is

also referred to an abstract of dataset D but is usually

referred to an abstract in a sampling method.

Key Points
Sketch/synopsis techniques have many applications.

They are mainly used for statistics estimation in query

processing optimization and for supporting on-line

data analysis via approximate query processing. The

goal is to develop effective and efficient techniques

to build a small space synopsis while achieving high

precision. For instance, a key component in query
processing optimization is to estimate the result sizes

of queries. Many techniques [1,2] have been developed

for this purpose, including histograms, wavelets, and

join synopses.

In data stream applications, the space requirements

of synopses/sketches are critical to keep them in mem-

ory for on-line query processing. Streams are usually

massive in size and fast at arrival rates; consequently

it may be infeasible to keep a whole data stream in

memory. Many techniques [3] have been proposed

with the aim to minimize the space requirement for

a given precision guarantee. These [3] include heavy

hitter, quantiles, duplicate-insensitive aggregates, joins,

data distribution estimation, etc.

Cross-references
▶Approximate Query Processing

▶Histograms on Streams

▶Wavelets on Streams

Recommended Reading
1. Alon N., Gibbons P.B., Matias Y., and Szegedy M. Tracking

join and self-join sizes in limited storage. In Proc. 18th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Data-

base Systems, 1999.

2. Gibbons P.B. and Matias Y. Synopsis data structures for massive

data sets. In Proc. ACM-SIAM Symposium on Discrete Algo-

rithms, 1999.

3. Zhang Y., Lin X., Xu J., Korn F., and Wang W. Space-efficient

relative error order sketch over data streams. In Proc. 22nd Int.

Conf. on Data Engineering, 2006.
Data Skew

LUC BOUGANIM

INRIA-Rocquencourt, Le Chesnay, France

Synonyms
Biased distribution; Non-uniform distribution

Definition
Data skew primarily refers to a non uniform distribu-

tion in a dataset. Skewed distribution can follow com-

mon distributions (e.g., Zipfian, Gaussian, Poisson),

but many studies consider Zipfian [3] distribution to

model skewed datasets. Using a real bibliographic da-

tabase, [1] provides real-world parameters for the Zipf

distribution model. The direct impact of data skew on

Data Storage and Indexing in Sensor Networks D 635

D

parallel execution of complex database queries is a

poor load balancing leading to high response time.

Key Points
Walton et al. [2] classify the effects of skewed data

distribution on a parallel execution, distinguishing

intrinsic skew from partition skew. Intrinsic skew is

skew inherent in the dataset (e.g., there are more citi-

zens in Paris than in Waterloo) and is thus called

Attribute value skew (AVS). Partition skew occurs on

parallel implementations when the workload is not

evenly distributed between nodes, even when input

data is uniformly distributed. Partition skew can fur-

ther be classified in four types of skew. Tuple placement

skew (TPS) is the skew introduced when the data

is initially partitioned (e.g., with range partitioning).

Selectivity skew (SS) is introduced when there is varia-

tion in the selectivity of select predicates on each node.

Redistribution skew (RS) occurs in the redistribution

step between two operators. It is similar to TPS. Finally

join product skew (JPS) occurs because the join selec-

tivity may vary between nodes.

Cross-references
▶Query Load Balancing in Parallel Database Systems

Recommended Reading
1. Lynch C. Selectivity estimation and query optimization in

large databases with highly skewed distributions of column

values. In Proc. 14th Int. Conf. on Very Large Data Bases,

1988, pp. 240–251.

2. Walton C.B., Dale A.G., and Jenevin R.M. A taxonomy and

performance model of data skew effects in parallel joins. In

Proc. 17th Int. Conf. on Very Large Data Bases, 1991, pp.

537–548.

3. Zipf G.K. Human Behavior and the Principle of Least Effort:

An Introduction to Human Ecology. Addison-Wesley, Reading,

MA, 1949.
Data Sorts

▶Data Types in Scientific Data Management
Data Standardization

▶Constraint-Driven Database Repair
Data Storage and Indexing in Sensor
Networks

PHILIP B. GIBBONS

Intel Labs Pittsburgh, Pittsburgh, PA, USA

Definition
Sensor data can either be stored local to the sensor

node that collected the data (local storage), transmitted

to one or more collection points outside of the sensor

network (external storage), or transmitted and stored at

other nodes in the sensor network (in-network storage).

There are trade-offs with each of these approaches, as

discussed below, depending on the volume of data

collected at each sensor node, the query workload,

and the resource limitations of each node. Moreover,

the local and in-network storage scenarios often re-

quire in-network indexes in order to reduce the over-

heads of answering queries on data stored within the

sensor network. Such indexes can be classified as either

exact-match indexes or range indexes.

Historical Background
External storage is in some sense the default approach

for sensor networks, reflecting the common scenario in

which the application is interested in all the collected

sensor readings. Early work in local storage includes

Cougar [11] and TinyDB [8]; both push SQL-style

queries out to data stored at the sensor nodes. In

TinyDB and in Directed Diffusion [6] (another early

work) the query workload dictates which sensors are

turned on. This functionality can be used for external,

local, or in-network storage, depending on where these

collected data get stored. Seminal work on in-network

storage includes the work on geographic hash tables

(GHTs) [10], which support exact-match indexing.

The authors advocate data-centric storage, a class of

in-network storage in which data are stored according

to named attribute values. Early work on supporting

range indexes for in-network storage includes DIFS [5]

and DIM [7].
Foundations
External Storage, in which all the sensor readings are

transmitted to collection points outside of the sensor

network, has several important advantages. First, stor-

age is plentiful outside the sensor network, so that all

the data can be archived, as well as disseminated to any

636D Data Storage and Indexing in Sensor Networks
interested party (e.g., posted on the web). Archiving all

the data is quite useful for testing out new theories

and models on these historical data, and for forensic

activities. Second, processing power, memory, and

energy are plentiful outside the sensor network, so

that queries and complex data analysis can be executed

quickly and without exhausting the sensors’ limited

energy reserves. Finally, such data processing can be

done using standard programming languages and tools

(such as MatLab) that are not available on sensor

nodes. On the other hand, external storage suffers the

disadvantage that it incurs the costs (primarily energy,

but also bandwidth and latency) of transmitting all the

data to outside the network.

Local storage, in which sensor readings are stored

local to the node that collected the data, avoids the

costs of transmitting all the data. Instead, it incurs

the costs of pushing queries into the network and

returning the query answers. Queries are often flooded

through the sensor network. A collection tree is con-

structed hop-by-hop from the query source (called the

root), as follows [8]. The root broadcasts the query, and

each sensor node that hears the broadcast makes the

root its parent in the tree. These nodes in turn broad-

cast the query, and any node that hears one or more

broadcasts (and is not yet in the tree) selects one of

these nodes as its parent, and so on. This tree is used to

collect query answers: Each leaf node sends its piece of

the answer to its parent, and each internal node collects

these partial answers from its children, combines them

with its own piece of the answer, and sends the result

to its parent. The process proceeds level-by-level up

the tree to the root. Thus, the cost of pushing the query

and gathering the answer can be high.

Nevertheless, the amount of data transmitted when

using local storage can often be far less than when

using external storage. First, queries are often long

running (continuous queries); for such queries, the

costs of query flooding and tree construction are in-

curred only once at the start of the query (although

maintaining the tree under failures can incur some

additional costs). Second, indexes can be used (as dis-

cussed below) to narrow the scope of the query to a

subset of the nodes. Third, queries can be highly selec-

tive (e.g., looking for rare events such as an intruder

sighting), so that most sensors transmit little or no real

data. In camera sensor networks (e.g., IrisNet [4]),

local filtering of images can result in query answers

that are orders of magnitude smaller than the raw
images. Fourth, many queries are amenable to efficient

in-network aggregation, in which partial answers

received from children can be combined into a single

fixed-sized packet. For example, in a Sum query each

internal node can send to its parent a single value equal

to the sum of its value and the values received from its

children. Finally, in sensor networks supporting

queries of live data only (i.e., only the latest data are

of interest), the amount of data sensed can far exceed

the amount of data queried.

A key consideration when using local storage is that

the amount of such storage is limited. Thus, at some

point old data need to be discarded or summarized to

make room for new data [2]. Moreover, the local

storage is often flash memory, and hence flash-friendly

techniques are needed to minimize the costs for acces-

sing and updating locally stored data [9].

In-network storage, in which sensor readings are

transmitted and stored at other nodes in the sensor

network, falls in between the extremes of external storage

and local storage. Caching data that passes through a

sensor node during query processing is a simple form of

in-network storage. As cached data become stale over

time, caremust be taken to ensure that the datameets the

query’s freshness requirements [4]. In TinyDB [8], ‘‘stor-

age point’’ queries can be used to collect data satisfying a

query (e.g., all temperature readings in the past 8 sec-

onds, updated every second) at nodes within the net-

work. In data-centric storage [10], data are stored

according to named attribute values; all data with

the same general name (e.g., intruder sightings) are

stored at the same sensor node. Because data items

are stored according to their names, queries can re-

trieve all data items associated with a target name from

just a single ‘‘home’’ node for that name (as opposed

to potentially all the nodes when using local storage).

The approach relies on building and maintaining

indexes on the names, so that both sensor readings and

queries can be routed efficiently to the corresponding

home node.

In-network indexes, in which the index is main-

tained inside the sensor network, are useful for both

local storage and in-network storage. The goal is to

map named data to the sensor node(s) that hold such

data, in order to minimize the cost of answering queries.

Queries using the index are guided to the sensor nodes

holding the desired data. In TinyDB each internal node

of a collection tree maintains a lower and upper bound

on the attribute values in the subtree rooted at the node;

Data Storage and Indexing in Sensor Networks D 637

D

this index is used to restrict the query processing to only

subtrees containing the value(s) of interest. In Directed

Diffusion [6], queries expressing interests in some target

data are initially flooded out from the query node. Paths

leading to nodes that are sources of the target data are

reinforced, resulting in an ad hoc routing tree from the

sources back to the query node. This can be viewed as an

ad hoc query-specific index.

A geographic hash table (GHT) [10] is an exact-

match in-network indexing scheme for data-centric

storage. A GHT hashes a data name (called a key) to

a random geographic location within the sensor field.

The home node for a key is the sensor node that is

geographically closest to the location returned by the

hash of the key. (For fault tolerance and to mitigate hot

spots, data items are also replicated on nearby nodes.)

Geographic routing is used to route sensor readings and

queries to the home node. In geographic routing each

node knows its geographic coordinates and the coor-

dinates of its neighbors. Upon receiving a packet, a

node forwards the packet to the neighbor closest to the

home node. In this way, the packet attempts to take a

shortest path to the home node. The packet can get

stuck, however, in a local minimum node v such that

no neighbor of v is closer to the home node than v

itself. Different geographic routing schemes provide

different approaches for recovering from local minima,

so that the home node can always be reached.

Follow-on work on GHTs (e.g., [1]) has focused on

improving the practicality (efficiency, robustness, etc.)

of geographic routing and hence GHTs.

In-network storage based on a GHT is less costly

than local storage whenever the savings in data trans-

mitted in querying exceed the additional costs of trans-

mitting sensor data to home nodes. In a square sensor

field of n sensors, routing to a home node takesOð ffiffiffi
n

p Þ
hops. Consider a workload where there are E event

messages to be transmitted andQ queries each request-

ing all the events for a distinct named event type. With

in-network storage based on a GHT, the total hops is

Oð ffiffiffi
n

p ðQ þ EÞÞ. With local storage, the total hops is O

(Qn), as it is dominated by the cost to flood the query.

Thus, roughly, the in-network scheme is less costly

when the number of events is at most a factor of
ffiffiffi
n

p

larger than the number of queries. However, this is in

many respects a best case scenario for in-network stor-

age, and in general, local or external storage can often

be less costly than in-network storage. For example,

with a single continuous query that aggregates data
from all the sensor nodes for t � 1 time periods (i.e.,

E = tn), in-network storage based on a GHT incurs O

(tn1.5) total hops while local storage with in-network

aggregation incurs only O(tn) total hops, as the cost is

dominated by the t rounds of hops up the collection

tree.

Moreover, a GHT is not well-suited to answering

range queries. To remedy this, a variety of data-centric

storage schemes have been proposed that provide

effective range indexes [5,7,3]. DIM [7], for example,

presents a technique (inspired by k-d trees) for con-

structing a locality-preserving geographic hash func-

tion. Combined with geographic routing, this extends

the favorable scenarios for in-network storage to in-

clude also multi-dimensional range queries.

In summary, which of the external, local, or in-

network storage schemes is preferred depends on the

volume of data collected at each sensor node, the query

workload, and the resource limitations of each node.

Key Applications
Sensor networks, Applications of sensor network data

management.

Cross-references
▶Ad-Hoc Queries in Sensor Networks

▶Applications of Sensor Network Data Management

▶Continuous Queries in Sensor Networks

▶Data Acquisition and Dissemination in Sensor

Networks

▶Data Aggregation in Sensor Networks

▶Data Compression in Sensor Networks

▶Data Fusion in Sensor Networks

▶ In-Network Query Processing

▶ Sensor Networks

Recommended Reading
1. Ee C.T., Ratnasamy S., and Shenker S. Practical data-centric

storage. In Proc. 3rd USENIX Symp. on Networked Systems

Design & Implementation, 2006, pp. 325–338.

2. Ganesan D., Greenstein B., Estrin D., Heidemann J., and

Govindan R. Multiresolution storage and search in sensor

networks. ACM Trans. Storage, 1(3):277–315, 2005.

3. Gao J., Guibas L.J., Hershberger J., and Zhang L. Fractionally

cascaded information in a sensor network. In Proc. 3rd Int.

Symp. Inf. Proc. in Sensor Networks, 2004, pp. 311–319.

4. Gibbons P.B., Karp B., Ke Y., Nath S., and Seshan S. IrisNet: An

architecture for a worldwide sensor web. IEEE Pervasive Com-

put, 2(4):22–33, 2003.

5. Greenstein B., Estrin D., Govindan R., Ratnasamy S., and

Shenker S. DIFS: A distributed index for features in sensor

638D Data Stream
networks. In Proc. First IEEE Int. Workshop on Sensor Network

Protocols and Applications, 2003, pp. 163–173.

6. Intanagonwiwat C., Govindan R., Estrin D., Heidemann J., and

Silva F. Directed diffusion for wireless sensor networking. IEEE/

ACM Trans. Network., 11(1):2–16, 2003.

7. Li X., Kim Y.J., Govindan R., and Hong W. Multi-dimensional

range queries in sensor networks. In Proc. 1st Int. Conf. on

Embedded Networked Sensor Systems, 2003, pp. 63–75.

8. Madden S.R., Franklin M.J., Hellerstein J.M., and Hong W.

TinyDB: An acquisitional query processing system for sensor

networks. ACM Trans Database Syst, 30(1):122–173, 2005.

9. Mathur G., Desnoyers P., Ganesan D., and Shenoy P. Capsule:

An energy-optimized object storage system for memory-

constrained sensor devices. In Proc. 4th Int. Conf. on Embedded

Networked Sensor Systems, 2006, pp. 195–208.

10. Ratnasamy S., Karp B., Shenker S., Estrin D., Govindan R.,

Yin L., and Yu F. Data-centric storage in sensornets with GHT,

a geographic hash table. Mobile Networks Appl., 8(4):427–442,

2003. Springer.

11. Yao Y. and Gehrke J. Query processing for sensor networks. In

Proc. 1st Biennial Conf. on Innovative Data Systems Research,

2003.
Data Stream

LUKASZ GOLAB

AT&T Labs-Research, Florham Park, NJ, USA

Synonyms
Continuous data feed

Definition
A data stream S is an ordered collection of data items,

s1, s2,..., having the following properties:

� Data items are continuously generated by one or

more sources and sent to one or more processing

entities.

� The arrival order of data items cannot be controlled

by the processing entities.

For instance, an Internet Service Provider (ISP) may be

interested in monitoring the traffic on one or more of

its links. In this case, the data stream consists of data

packets flowing through the network. The processing

entities, e.g., monitoring software, may be located di-

rectly on routers inside the ISP’s network or on remote

nodes.

Data streams may be classified into two types: based

and derived. A base stream arrives directly from the

source. A derived stream is a pre-processed base stream,
e.g., an intermediate result of a query or a sub-query over

one or more base streams. In the network monitoring

scenario, the base stream corresponds to the actual

IP packets, whereas a derived stream could contain

aggregate measurements of traffic between each source

and destination in a five-minute window.
Key Points
Depending upon the application, a data stream may

be composed of raw data packets, relational tuples,

events, pieces of text, or pieces of an XML document.

Furthermore, each data stream item may be asso-

ciated with two timestamps: generation time (assigned

by the source) and arrival time (assigned by the pro-

cessing entity). The order in which items arrive may be

different from their generation order, therefore these

two timestamps may produce different orderings of

the data stream.

A data stream may arrive at a very high speed (e.g.,

a router may process hundreds of thousands of packets

per second) and its arrival rate may vary over time.

Hence, a data stream may be unbounded in size. In

particular, the processing entity may not know if and

when the stream ‘‘ends.’’
Cross-references
▶ Stream-Oriented Query Languages and Operators

▶ Stream processing

▶One-pass algorithm

▶ Stream mining

▶ Synopsis structure
Recommended Reading
1. Babcock B., Babu S., Datar M., Motwani R., and Widom J.

Models and issues in data streams. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2002, pp. 1–16.

2. Golab L. and Özsu M.T. Issues in data stream management.

ACM SIGMOD Rec., 32(2):5–14, 2003.

3. Muthukrishnan S. Data streams: algorithms and applications.

Found. Trends Theor. Comput. Sci., 1(2):1–67, 2005.
Data Stream Algorithm

▶One-Pass Algorithm

Data Stream Management Architectures and Prototypes D 639

D

Data Stream Management
Architectures and Prototypes

YANIF AHMAD, UĞUR ÇETINTEMEL

Brown University, Providence, RI, USA

Definition
Data stream processing architectures perform data-

base-style query processing on a set of continuously

arriving input streams. The core query executor in this

type of architecture is designed to process continuous

queries, rather than ad-hoc queries, by pushing inputs

through a series of operators functioning in a pipelined

and potentially non-blocking manner. Stream proces-

sing applications perform explicit read and write

operations to access storage via asynchronous disk

I/O operations. Other architectural components that

differ significantly from standard database designs

include the stream processor’s scheduler, storage

manager and queue manager.

Historical Background
Support database-style query processing for long-

running applications that operate in high (data)

volume environments, and impose high throughput

and low latency requirements on the system. There

have been several efforts from both the academic and

industrial communities at developing functional pro-

totypes of stream processing engines (SPEs), to dem-

onstrate their usefulness and to better understand the

challenges posed by data stream applications. The first

general purpose relational stream processing archi-

tectures appeared from the research community in

2001–2002, while the initial industrial offerings began

to appear in 2003–2004. As a historical note, non-

relational approaches to stream or event processing

have existed in many forms prior to the early 2000s,

especially in the embedded systems and signal proces-

sing communities.

Foundations
An SPE has a radically different architecture than that

of a traditional database engine. Conceptually, the

architectural differences can be captured by the follow-

ing key characteristics:

1. Continuous query model

2. Inbound processing model

3. Single-process model
In the continuous query model, the queries execute

continuously as new input data becomes available.

This contrasts with the prevailing one-time query

model where users (or clients) issue queries that pro-

cess the available input data and produce one-time

results. In other words, in the continuous model, the

queries are persistent and input data is transient,

whereas in the traditional model, queries are transient

and input data is persistent, as illustrated in Fig. 1.

An SPE supports inbound processing, where in-

coming event streams immediately start to flow

through the query processing operators as they enter

the system. The operators process the events as they

move, continuously producing results, all in main

memory when possible. Read or write operations to

storage are optional and can be executed asynchronously

in many cases, when they are present. Inbound proces-

sing overcomes a fundamental limitation of the tradi-

tional outbound processing model, employed by all

conventional database management systems, where data

are always inserted into the database (usually as part of a

transaction) and indexed as a first step before any pro-

cessing can take place to produce results. By removing

the storage from the critical path of processing, an SPE

achieves significant performance gains compared to the

traditional outbound processing approach.

An SPE often adopts a single-process model, where

all time-critical operations (including data processing,

storage, and execution of custom application logic) are

run in a single process space. This integrated approach

eliminates high-overhead process context switches that

are present in solutions that use multiple software

systems to collectively provide the same set of capabil-

ities, yielding high throughput with low latency.

The SPE prototypes developed independently in

the academic community share core design principles

and architectural components to implement push-

based dataflows. At a high level, an SPE’s core includes

a query executor maintaining plans for users’ queries, a

queue manager and storage manager to govern mem-

ory resources and perform optional disk access and

persistence, a stream manager to handle stream I/O

with data sources and sinks, and a scheduler to deter-

mine an execution strategy. Figure 2 presents a dia-

grammatic overview of these core components.

SPEs implement continuous queries and inbound

processing inside the query executor, by instantiating

query plans with non-blocking operators that are ca-

pable of producing result tuples from each individual

Data Stream Management Architectures and Prototypes. Figure 1. Illustration of storage-oriented and

streaming-oriented architectures. The former requires outbound processing of data, whereas the latter enables

inbound (or straight-through) processing.

Data Stream Management Architectures and Prototypes. Figure 2. Architectural components of an SPE.

640D Data Stream Management Architectures and Prototypes
input tuple, or a window of tuples, depending on the

operator type. This is in contrast to traditional opera-

tors that wait for relations to be scanned from disk.

The query executor represents query plans as operators
connected together with queues that buffer continu-

ously-arriving inputs (as found in the Aurora and

Stream prototypes [2,5]), and any pending outputs

(for example Fjords in TelegraphCQ [8]), while each

Data Stream Management Architectures and Prototypes D 641

D

operator performs its processing. A queue manager is

responsible for ensuring the availability of memory

resources to support buffering inputs and outputs,

and interacts with other system components to engage

alternative processing techniques when memory avail-

ability guarantees cannot be upheld [3].

Operators may choose to access inputs, or share state

with other operators, through persistent storage. Disk

access is provided through a storage manager that is

responsible for maintaining cursors on external tables,

and for performing asynchronous read and write opera-

tions while continuing to process data streams. Ad-

vanced storage manager features include the ability to

spill operator queues and state to disk under dwindling

memory availability, as well as the ability to maintain

approximations of streams, queues and states. SPEs typ-

ically include a stream manager component to handle

interaction with the network layer as data sources trans-

mit stream inputs typically over TCP or UDP sockets.

The stream manager is additionally responsible for any

data format conversions through built-in adaptors, and

to indicate the arrival of new inputs to the scheduler as

the new inputs are placed on the operators’ queues.

An operator scheduler [5,7] is responsible for devis-

ing an execution order based on various policies to

ensure efficient utilization of system resources. These

policies typically gather operator cost and selectivity

statistics in addition to resource utilization statistics to

determine a schedule that improves throughput and

latencies. While SPEs execute under a single-process

model, various scheduler threading designs have been

proposed to provide query processing parallelism.

Finally, SPEs also include query optimizers such as load

shedders [15] and adaptive plan optimizers [6], that also

monitor the state of the running query in terms

of statistics and other optimizer-specific monitors to

dynamically and adaptively determine advantageous

modifications to query plans and operator internals.

Prototypes

The key features in the architectural design of stream

processors primarily arose from academic prototypes,

before being extended by industrial-grade tools based

on the commercialization of the academic efforts.

These features are described for a subset of the proto-

types below.

Aurora/Borealis: The Aurora and Borealis [2,1]

projects are first- and second-generation stream

processing engines built in a collaboration by Brandeis,
Brown and MIT. The Aurora engine was implemented

from scratch in C++, and included the basic archi-

tectural components described above to produce a

single-site design. Aurora was a general-purpose en-

gine that provided a relational operator set to be used

to construct queries visually in an editor, as a work-

flow. This workflow-style programming paradigm

(sometimes referred to as ‘‘boxes-and-arrows’’) dif-

fered significantly from similar research projects

which focused more on providing stream-oriented

language extensions to SQL.

The Aurora architecture included a multi-threaded

scheduler capable of supporting tuple-trains and super-

box scheduling. Aurora also supported load shedding,

the concept of selectively processing inputs in the pres-

ence of excessive load due to high-rate data streams.

The Aurora engine also supported embedded tables to

enable operators to share state. The embedded tables

were implemented as BerkeleyDB stores and the core

operator set included operators capable of performing

a subset of SQL queries on these tables.

The Borealis project extended the Aurora architec-

ture for amulti-site deployment, and implemented com-

ponents to address the novel challenges exposed by

distributed execution. These included a decentralized

catalog structure maintaining metadata for the set of

deployed queries, and a distributed statistics collector

and optimizer. The optimizer targeted distributed

query optimizations such as spreading load across mul-

tiplemachines to achieve both a balanced allocation, and

resilience to changes in load, in addition to a distributed

load shedding mechanism that factored in the allocation

of operators to sites.

Stream: The Stream project at Stanford [5] devel-

oped a C++ implementation of a stream processing

engine with a similar high-level architecture to the

design described above. The novel features of the

Stream architecture included its use of the Continuous

Query Language (CQL) which extended SQL with

DDL statements to define data streams and subse-

quently provided DML clauses for several types of

windowing operations on these streams.

The core engine included a single-threaded sched-

uler that continuously executes operators based on a

scheduling policy, while the operators implement non-

blocking query execution through the use of queues.

In addition to this basic query executor, the Stream

project studied various resource management, query

approximation and adaptive query processing

642D Data Stream Management Architectures and Prototypes
techniques. These included memory management

techniques implemented by both a scheduling policy

that executes groups of operators to minimize queue

sizes, and by exploiting shared synopses (window

implementations) and constraints in the arrival pat-

terns of data streams (such as bounding the arrival

delay between interacting inputs). In terms of query

approximation, Stream provided both a load-shedding

algorithm that approximates query results to reduce

CPU load, in addition to synopsis compaction techni-

ques that reduced memory requirements at operators.

Finally, Stream is capable of adapting the running

query through the aid of two components, a profiler

that continuously collects statistics during query exe-

cution, and a reoptimizer component that maintains

both filter and join orderings based on changing

selectivities.

TelegraphCQ: In contrast to the ground up design of

Aurora and Stream, the TelegraphCQ project [8] at UC

Berkeley developed a stream processing engine on top of

the PostgreSQL open-source database. This approach

allowed the reuse of several PostgreSQL components,

such as the system catalogs, parser and optimizer.

TelegraphCQ is divided into two high-level com-

ponents, a frontend and a backend. The frontend is

responsible for client interaction such as parsing and

planning queries, in addition to returning query

results. The TelegraphCQ backend is a continually

executing process that performs the actual query

processing, and adds query plans submitted by the

frontend to the set of executable objects. The backend

is implemented in a multi-threaded fashion enabling

processing parallelism. The query executor in the Tele-

graphCQ backend is principally designed to support

adaptive query processing through the use of Eddies to

dynamically route tuples between a set of commutative

operators (thus performing run-time reordering). The

executor also leans heavily on exploiting opportunities

for shared processing, both in terms of the state main-

tained internally within operators (such as aggregates),

and in terms of common expressions used by selec-

tions through grouped filters. Finally, as a result of

its PostgreSQL base, TelegraphCQ investigated query

processing strategies combining the use of streamed

data and historical data from a persistent source.

Gigascope: The Gigascope data stream engine [10]

was developed at AT&T Labs-Research to primarily

study network monitoring applications, for example

involving complex network and protocol analyses of
BGP updates and IP packets. Gigascope supports

textual queries through GSQL, a pure stream query

language that is a simplified form of standard SQL.

GSQL queries are internally viewed as having a two-

level structure, where queries consist of high-level and

low-level operators comprising a graph-structured pro-

gram, depending on the optimization opportunities

determined by a query optimizer. Low-level operators

are extremely lightweight computations to perform pre-

liminary filtering and aggregation prior to processing

high-level operators, and in some cases these low-level

operatorsmay be performed on the network cards of the

machines present in the network monitoring applica-

tion. Gigascope queries are thus compiled into C and

C++ modules and linked into a run-time system for

highly-efficient execution. Gigascope also investigated

the blocking properties of both high- and low-level

operators and developed a heartbeat mechanism to

effectively alleviate operators’ memory requirements.

Nile: The Nile stream processing engine was devel-

oped at Purdue on top of the Predator [14] object-

relational DBMS. Nile implements data streams as an

enhanced datatype in Predator and performs stream

processing with the aid of a stream manager compo-

nent. This stream manager is responsible for buffering

input streams and handing data to the execution en-

gine for query processing. Nile uses a separate thread

for its stream manager, and performs round-robin

scheduling for processing new inputs on streams.

In addition to the basic stream processing engine

design, the Nile project investigated various query cor-

rectness issues and optimization opportunities arising

in the stream processing context. This included study-

ing scheduling strategies to exploit resource sharing

amongst queries, for example sharing windowed join

operators between multiple queries, and pipelining

mechanisms based on strategies to expire tuples in

multiple windows.

System S: The System S [12] project is a recent en-

deavor at IBM Research investigating large-scale

distributed stream processing systems focusing primarily

on analytical streaming applications through the use of

data mining techniques. System S processes data streams

with a dataflow-oriented operator network consisting of

processing elements (PEs) that are distributed across a set

of processing nodes (PNs) and communicate through a

transport component known as the data fabric. Some of

the prominent architectural features of System S include

the design and implementation of streaming analytic

Data Suppression D 643

D

operators, including clustering and decision-tree based

algorithms, and appropriate resource management algo-

rithms to support these types of operators, such as a

variety of load shedding and diffusion algorithms. System

S also leverages data-parallelism through a content-based

load partitioning mechanism that spreads the processing

of an input or intermediate streamacrossmultiple down-

stream PEs.

Key Applications
Stream processing architectures have been motivated

by, and used in, several domains, including:

� Financial services: automated trading, market feed

processing (cleaning, smoothing, and translation),

smart order routing, real-time risk management

and compliance (MiFID, RegNMS)

� Government and Military: surveillance, intrusion

detection and infrastructure monitoring, battlefield

command and control

� Telecommunications: network management, quali-

ty of service (QoS)/service level agreement (SLA)

management, fraud detection

� Web/E-business: click-stream analysis, real-time

customer experience management (CEM)

URL to Code
Borealis: http://www.cs.brown.edu/research/borealis/

public/

Stream: http://infolab.stanford.edu/stream/code/

Cross-references
▶Continuous Query

▶Data Stream

▶ Stream-oriented Query Languages and Operators

▶ Stream Processing

▶ Streaming Applications

▶Windows

Recommended Reading
1. Abadi D., Ahmad Y., Balazinska M., Çetintemel U., Cherniack M.,

Hwang J.-H., Lindner W., Maskey A.S., Rasin A., Ryvkina E.,

Tatbul N., Xing Y., and Zdonik S. The design of the Borealis stream

processing engine. In Proc. 2nd Biennial Conf. on Innovative Data

Systems Research, 2005.

2. Abadi D.J., Carney D., Çetintemel U., Cherniack M., Convey C.,

Lee S., Stonebraker M., Tatbul N., and Zdonik S. Aurora: A new

model and architecture for data stream management. VLDB J.,

2003.

3. Arasu A., Babcock B., Babu S., McAlister J., and Widom J.

Characterizing memory requirements for queries over
continuous data streams. ACM Trans. Database Syst., 29

(1):162–194, 2004.

4. Babcock B., Babu S., Datar M., Motwani R., and Thomas D.

Operator scheduling in data stream systems. VLDB J., 13

(4):333–353, 2004.

5. Babcock B., Babu S., Datar M., Motwani R., and Widom J.

Models and issues in data stream systems. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2002.

6. Babu S., Motwani R., Munagala K., Nishizawa I., and Widom J.

Adaptive ordering of pipelined stream filters. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2004, pp. 407–418.

7. Carney D., Çetintemel U., Rasin A., Zdonik S.B., Cherniack M.,

and Stonebraker M. Operator scheduling in a data stream man-

ager. In Proc. 29th Int. Conf. on Very Large Data Bases, 2003,

pp. 838–849.

8. Chandrasekaran S., DeshpandeA., FranklinM., andHellerstein J.

TelegraphCQ: Continuous dataflow processing for an uncertain

world. In Proc. 1st Biennial Conf. on Innovative Data Systems

Research, 2003.

9. Chen J., DeWitt D.J., Tian F., and Wang Y. Niagaracq: A scalable

continuous query system for internet databases. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2000, pp. 379–

390.

10. Cranor C.D., Johnson T., Spatscheck O., and Shkapenyuk V.

Gigascope: a stream database for network applications. In

Proc. ACM SIGMOD Int. Conf. on Management of Data,

2003, pp. 647–651.

11. Gehrke J. (ed.) Data stream processing. IEEE Data Eng. Bull., 26

(1), 2003.

12. Gedik B., Andrade H., Wu K.-L., Yu P.S., and Doo M. SPADE:

The Systems S Declarative Stream Processing Engine. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2008.

13. Golab L. and Özsu M.T. Issues in data stream management.

ACM SIGMOD Rec., 32(2):5–14, 2003.

14. Hammad M.A., Mokbel M.F., Ali M.H., Aref W.G., Catlin A.C.,

Elmagarmid A.K, Eltabakh M.Y., Elfeky M.G., Ghanem T.M.,

Gwadera R., Ilyas I.F., Marzouk M.S., and Xiong X. Nile: a query

processing engine for data streams. In Proc. 20th Int. Conf. on

Data Engineering, 2004, p. 851.

15. Tatbul N., Çetintemel U., Zdonik S.B., Cherniack M., and Stone-

braker M. Load shedding in a data streammanager. In Proc. 29th

Int. Conf. on Very Large Data Bases, 2003, pp. 309–320.
Data Stream Processing

▶ Stream Processing
Data Suppression

▶Data Compression in Sensor Networks

644D Data Swapping
Data Swapping

▶Data/Rank Swapping
Data Time

▶Valid Time
Data Tracking

▶Data Provenance
Data Transformation

▶Data Exchange
Data Translation

▶Data Exchange
Data Types for Moving Objects

▶ Spatio-Temporal Data Types
Data Types in Scientific Data
Management

AMARNATH GUPTA

University of California San Diego, La Jolla, CA, USA

Synonyms
Data sorts; Many sorted algebra; Type theory

Definition
In mathematics, logic and computer science, the term

‘‘type’’ has a formal connotation. By assigning a vari-

able to a type in a programming language, one implic-

itly defines constraints on the domains and operations

on the variable. The term ‘‘data type’’ as used in data
management derives from the same basic idea. A data

type is a specification that concretely defines the

‘‘structure’’ of a data variable of that type, the opera-

tions that can be performed on that variable, and any

constraints that might apply to them. For example, a

‘‘tuple’’ is a data type defined as a finite sequence (i.e.,

an ordered list) of objects, each of a specified type; it

allows operations like ‘‘projection’’ popularly used in

relational algebra.

In science, the term ‘‘data type’’ is sometimes used

less formally to refer to a kind of scientific data. For

example, one would say ‘‘gene expression’’ or ‘‘4D

surface mesh of a beating heart’’ is a data type.

Foundations

Commonly Used Data Types in Science Applications

There is a very large variety of data types used in

scientific domains. The following data types are com-

monly used in several different scientific disciplines.

Arrays Multidimensional arrays are heavily used in

many scientific applications; they not only serve as

natural representation for many kinds of scientific

data, but they are supported by programming lan-

guages, object relational databases, many computa-

tional software libraries, as well as data visualization

routines. The most common operation on arrays is

index-based access to data values. However, more com-

plex (and useful) operations can be defined on arrays.

Marathe and Salem [6,7] defined an algebra on multi-

dimensional arrays where a cell may contain a vector of

values. The algebra derives from nested relational alge-

bra, and allows one to perform value-based relational

queries on arrays. Arrays are a very general data

type and can be specialized with additional semantics.

Baumann [1] defined a somewhat different array alge-

bra for modeling spatiotemporal data for a system

called RasDaMan. Reiner et al. [10] present a storage

model for large scale arrays.

Time-Series Temporal data is a very important class

of information for many scientific applications. Time-

series data is a class of temporal data where the value of

a variable may change with a roughly regular interval.

On the other hand, the salary history of an employee is

temporal data but not necessarily time-series data be-

cause the change in salary can happen at arbitrary

frequencies. Data from any sensors (temperature,

Data Types in Scientific Data Management. Figure 1.

A finite element mesh.

Data Types in Scientific Data Management D 645

D

seismic, strain gages, electrocardiograms and so on)

come in the form of a stream of explicitly or implicitly

time-stamped sequence numbers (or characters). Time

series data collection and storage is based on granulari-

ty, and often different data are collected at different

granularity that need to be queries together [8]. All

database management systems assume a discrete time

line of various granularities. Granularity is a partition

of a time line, for instance, years, days, hours, micro-

seconds and so forth. Bettini et al have illustrated a

formal notion of time granularities [2]. An interesting

class of operations on time-series data is similarity

between two time-series data. This operation can be-

come complicated because one time series data can be

recorded at a different time resolution than another

and may show local variations, but still have overall

similarity in the shape of the data envelope. This has

prompted the investigation of efficient operators to

perform this similarity. Popivanov and Miller [9] for

example, has developed a measure of time-series simi-

larity based on wavelet decomposition.

Finite Element Meshes Numerical modeling of a

physical system is fundamental to many branches of

science. A well known technique in this domain is

called finite element analysis where a continuous do-

main (e.g., a 3D terrain) is partitioned into a mesh,

and variables are recorded over the nodes of this mesh

or regions covering multiple cells of the mesh. Assume

that Fig. 1 shows the distribution of electric potential

over a continuous surface. Every node of the mesh will

have a (positive or negative) charge value, while a

variable like ‘‘zero charge region’’ will be defined over

regions of the mesh. Figure 1 also illustrates that mesh

is not always regular – a region with a higher variation

of data values will be partitioned into a finer mesh than

a region will less variation.

Finite element meshes are used in many modeling

as well as visualization software. In cases, where the size

of the mesh is very large, and complex manipulation of

data (like repartitioning based on some conditions) is

needed over the elements of the mesh, the existing

software do not offer robust and scalable solutions.

Recently, the CORIE system [5] has developed a sys-

tematic approach to modeling a general data structure

they call a gridfield to handle finite element meshes,

and an algebra for manipulating arbitrary gridded

datasets together with algebraic optimization techni-

ques to improve efficiency of operations.
Graphs Like arrays, graphs form a ubiquitous data

type used in many scientific applications. Eckman

and Brown [4] describes the use of graphs in molecular

and cell biology. In their case, graphs denote relation-

ships between biomolecular entities (A and B) that

constitute molecular interaction networks, represent-

ing information like A is similar to B, A interacts with

B, A regulates the expression of B, A inhibits the

activity of B, A stimulates the activity of B, A binds to

B and so forth. Operators on the graph data type

include those that extract a subgraph from a large

graph, compare one graph to another, transform one

graph to another, decompose a graph into its nodes

and edges, compute the intersection, union, or dis-

junction of two graphs, compute structural derivatives

such as transitive closure and connected components

and so on. In chemistry, data mining techniques are

used to find most frequent subgraphs of a large num-

ber of graphs. Graphs play a dominant role in social

sciences where social network analysts are interested in

the analysis of the connectivity structure of the graphs.

A class of operations of interest centers around the

notion of aggregate properties of the graph structure.

One such property is centrality, a quantity that mea-

sures for each node in a graph a value that denotes how

well the node is connected to the rest of the nodes in

the graph. This class of measures have been investi-

gated in the context of data mining [11] where the task

was to find the most likely subgraph ‘‘lying between’’ a

646D Data Types in Scientific Data Management
set of query-defined nodes in the graph. While there

are many alternate definitions of centrality, it should be

clear that computing these aggregate values on the fly

requires a different kind of data representation and

operators than the previous case, where traversal and

subgraph operations were dominant.

Some Basic Issues about Scientific Data Types

While database systems do not offer extensive support

for scientific data types, there are many specialized

software libraries that do, and hence are widely used

by the scientific community. This leads to a fundamen-

tal problem as observed by the authors of [5]. On the

one hand, the performance of SQL queries for manip-

ulating large numeric datasets is not competitive with

specialized tools. For example, database extensions for

processing multidimensional discrete data can only

model regular, rectilinear grids (i.e., arrays). On the

other hand, specialized software products such as vi-

sualization software libraries are designed to process

arbitrary gridded datasets efficiently. However, no al-

gebra has been developed to simplify their use and

afford optimization. In almost all cases, these libraries

are data dependent – physical changes to data repre-

sentation or organization break user programs. This

basic observation about type specific scientific software

holds for almost all of scientific data types. This calls

for future research in developing storage and an alge-

braic manipulation for scientific data type as well as for

an effort to incorporate in these techniques in scientific

data management systems.

A second basic problem regarding scientific data

types arises from the fact that the same data can be

viewed differently for different forms of analysis and

thus need to support multiple representations and stor-

age or indexes. Consider the data type of character

sequences often used in genomic studies. If S is a se-

quence, it is common to determine is S is ‘‘similar to’’

another sequence T, where Tmay have additional char-

acters and missing characters with respect to S. It has

been shown that a suffix tree like representation of

sequences is suitable for operations of this category.

However, in biology, scientists are also interested in an

arbitrary number of subsequences of on the same

sequences like S to which they would assign an arbitrary

number of properties (called ‘‘annotations’’ in biology)

to each subsequence. Finding similar subsequences is not

a very common operation in this case. The focus is rather

on interval operations like finding all subsequences
overlapping a given interval that satisfies some condi-

tions on their properties, and on finding the 1D spatial

relationships among subsequences that satisfy some

given properties. These operations possibly require a

different storage and access structure such as an interval

tree. Since a scientific application both kinds of opera-

tions would be necessary, it becomes important for

the data management system to handle the multiplic-

ity of representations and operations so that the right

representations can be chosen as run time for efficient

access.

Key Applications
Bioinformatics, cheminformatics, engineering databases.
Cross-references
▶Graph Data Management in Scientific Applications

▶Mining of Chemical Data

▶ Storage of Large Scale Multidimensional Data
Recommended Reading
1. Baumann P. A database array algebra for spatio-temporal data and

beyond. In Proc. Fourth Int. Workshop on Next Generation Infor-

mation Technologies and Systems, 1999, pp. 76–93.

2. Bettini C., Jajodia S., and Wang S.X. Time Granularities in

Database, Data Mining, and Temporal Reasoning. Springer,

2000.

3. Borgatti S.P. and Everett M.G. A graph-theoretic perspective on

centrality. Soc. Netw., 28(4):466–484, 2006.

4. Eckman B.A. and Brown P.G. Graph data management for mo-

lecular and cell biology. IBM J. Res. Dev., 50(6):545–560, 2006.

5. Howe B. and Maier D. Algebraic manipulation of scientific data

sets. VLDB J., 14(4):397–416, 2005.

6. Marathe A.P. and Salem K. A language for manipulating

arrays. In Proc. 23rd Int. Conf. on Very Large Data Bases,

1997, pp. 46–55.

7. Marathe A.P. and Salem K. Query processing techniques

for arrays. ACM SIGMOD Rec., 28(2):323–334, 1999.

8. Merlo I., Bertino E., Ferrari E., Gadia S., and Guerrini G.

Querying multiple temporal granularity data. In Proc. Seventh

Int. Conf. on Temporal Representation and Reasoning, 2000,

pp. 103–114.

9. Popivanov I. andMiller R.J. Similarity search over time-series data

usingwavelets. In Proc. 18th Int. Conf. onData Engineering, 2002,

pp. 212–221.

10. Reiner B., Hahn K., Höfling G., and Baumann P. Hierarchical

storage support and management for large-scale multidimen-

sional array database management systems. In Proc. 13th Int.

Conf. Database and Expert Syst. Appl., 2002, pp. 689 –700.

11. Tong H. and Faloutsos C. Center-piece subgraphs: problem

definition and fast solutions. In Proc. 12th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2006,

pp. 404–413.

Data Uncertainty Management in Sensor Networks D 647
Data Types: Image, Video, Pixel,
Voxel, Frame

▶Biomedical Image Data Types and Processing
D

Data Uncertainty Management in
Sensor Networks

SUNIL PRABHAKAR
1, REYNOLD CHENG

2

1Purdue University, West Lafayette, IN, USA
2The University of Hong Kong, Hong Kong, China

Synonyms
Imprecise data; Probabilistic data; Probabilistic

querying

Definition
Data readings collected from sensors are often impre-

cise. The uncertainty in the data can arise frommultiple

sources, including measurement errors due to the sens-

ing instrument and discrete sampling of the measure-

ments. For some applications, ignoring the imprecision

in the data is acceptable, since the range of the possible

values is small enough not to significantly affect the

results. However, for others it is necessary for the sensor

database to record the imprecision and also to take

it into account when processing the sensor data.

This is a relatively new area for sensor data manage-

ment. Handling the uncertainty in the data raises chal-

lenges in almost all aspects of data management. This

includes modeling, semantics, query operators and

types, efficient execution, and user interfaces. Probabi-

listic models have been proposed for handling the un-

certainty. Under these models, data values that would

normally be single values are transformed into groups of

data values or even intervals of possible values.

Historical Background
The management of uncertain data in database manage-

ment systems is a relatively new topic of research, espe-

cially for attribute-level uncertainty. Earlier work has

addressed the case of tuple-level uncertainty and also

node-level uncertainty for XML data. The earliest work

on attribute-level uncertainty is in the area of moving

object databases. In order to reduce the need for very

frequent updates from moving objects, the frequency

of the updates is reduced at the expense of uncertainty
in the location of the object (in the database). For

example, the notion of a dead-reckoning update policy

allows an object to not report updates as long as it has

not moved by more than a certain threshold from its last

update.

In most of the earlier works, the use of probability

distributions of values inside an uncertainty interval as

a tool for quantifying uncertainty was not considered.

Further, discussions of queries on uncertain data were

often limited to the scope of aggregate functions or

range queries. A model for probabilistic uncertainty

was proposed for moving-objects and later extended

to general numeric data for sensors in [2]. A probabi-

listic data model for data obtained from a sensor net-

work was described in [6]. Past data are used to train

the model through machine-learning techniques, and

obtain information such as data correlation, time-

varying functions of probability distributions, as well

as how probability distributions are updated when new

sensor values are acquired. Recently, new relational

models have been proposed to manage uncertain

data. These projects include MauveDB [9], Mystiq

[6], Orion [15], and Trio [1]. Each of these projects

aims to develop novel database systems for handling

uncertain data.

Foundations

Modeling Uncertainty

Uncertainty in sensor data is often the result of either

inherent limitations in the accuracy with which the

sensed data is acquired or limitations imposed by

concerns such as efficiency and battery life. Consider

for example, a moving object application that uses GPS

devices to determine the locations of people as they

move about. Although GPS accuracy has improved

significantly, it is well known that the location reported

by a GPS sensor is really an approximation – in fact,

the actual location is likely to be distributed with a

Gaussian probability distribution around the reported

location. This is an example of uncertainty due to the

limitation of the measurement instrument.

Since most sensors are powered by batteries that

can be quickly depleted, most sensor applications take

great pains to conserve battery power. A common

optimization is to not measure and transmit readings

continuously. Instead, the data are sampled at some

reasonable rate. In this case the exact values are only

known at the time instances when samples are taken.

648D Data Uncertainty Management in Sensor Networks
Between samples, the application can only estimate

(based on the earlier samples) the values. For certain

sensors, the battery overhead for taking certain types of

measurements is much lower than that for others. Fur-

thermore, the cheaper readings are correlated with more

expensive reading. This allows the sensor to estimate the

costlier reading by taking a cheaper reading and exploit-

ing the correlation. However the estimate is not exact,

which introduces some uncertainty.

Even when sensor readings are precise and fre-

quently sampled, uncertainty can creep in. For exam-

ple, if a given sensor is suspected of being faulty or

compromised, the application may only partially trust

the data provided by the sensor. In these cases, the data

are not completely ignored but their reliability can be

reduced. Alternatively, sensor input may be processed

to generate other information – e.g., face detection on

video data from a sensor. Post processing methods may

not yield certain matches – the face detection algo-

rithm may have a known degree of error or may give a

degree of confidence with which it has detected a face

(or a given person). In these cases, the unreliability of

the raw or processed sensor data can be captured as

uncertain data.

Each of these examples shows that sensor readings

are not precise. Instead of data having a definite dis-

crete value, data has numerous alternative values, pos-

sibly with associated likelihood (probabilities). The

types of uncertainty in sensor data can be divided

into two categories:

� Discrete uncertainty. Instead of a single value, a data

item could take on one out of a set of alternative

values. Each value in this set may further be asso-

ciated with a probability indicating the likelihood

of that particular value being the actual value.
Data Uncertainty Management in Sensor Networks. Figure

uncertainty; (b) points with uncertainty.
� Continuous uncertainty. Instead of a single value, a

data item can take on any one value within an

interval. In addition, there may be an associated

probability density function (pdf) indicating the

distribution of probabilities over this interval.

In each of these cases, the total probability may or may

not total to 1 for each data item. Several models for

handling probabilistic data based upon the relational

data model have been proposed in the literature. Most

of these models can only handle discrete data wherein

each alternative value for a given data time is stored in

the database along with its associated probability. Extra

rules are imposed over these records to indicate that

only one of the alternative values for a given data time

will actually occur. The Orion model is explicitly

designed for handling continuous uncertainty. Under

this model, uncertain attributes can be expressed as

intervals with associated pdfs or as a discrete set.

Representing probabilities symbolically as pdfs instead

of enumerating every single alternative allows the

model to handle continuous distributions.

Queries

As data becomes imprecise, there is a direct impact on

the nature of query results. Figure 1 shows an example

of points in two-dimensional space, a range query (Q),

and a nearest-neighbor query (q) with two cases:

(i) with no uncertainty; and (ii) with different types

of uncertainty for different objects. Consider the two-

dimensional range query Q shown in Fig. 1a. The

result of the query are the identities of those points

that fall within the range of the query – Points b and d

in this example. If the data is imprecise (as in Fig. 1b),

the data consist of regions of space (and possibly with

associated probability distributions). Some of these
1. A two-dimensional example: (a) exact points with no

Data Uncertainty Management in Sensor Networks D 649

D

regions may clearly lie outside the query region and the

corresponding moving objects are thus excluded from

the answer (e.g., Point a). Those that lie completely

within the query region are included in the answer, as

in the case of precise point data (e.g., Point b). However,

those objects that partially overlap the query region

represent points that may or may not actually be part

of the query answer (Points d and e). These points may

be reported as a special subset of the answer. In [14]

Future Temporal Logic (FTL) was proposed for proces-

sing location-based queries over uncertain data with no

probability information. Thus an object is known to be

located somewhere within a given spatial region. Queries

are augmentedwith eitherMUST orMAY keywords.With

the MUST keyword, objects that have even a small

chance of not satisfying a query are not included in the

results. On the other hand, with the MAY keyword, all

objects that have even a remote chance of satisfying a

query are included. FTL therefore provides some quali-

tative treatment for queries over uncertain data.

With the use of probability distributions, it is pos-

sible to give a more quantitative treatment to queries

over uncertain data. In addition to returning the query

answers, probability of each object satisfying the

query can be computed and reported. In order to

avoid reporting numerous low probability results,

queries can be augmented with a probability threshold,

t. Only those objects that have a probability greater

than t of satisfying the query are reported. This notion
of probabilistic queries was introduced in [2]. Most

work on uncertain data management gives a quantita-

tive treatment to queries. It should be noted that the

MUST and MAY semantics can be achieved by choos-

ing the threshold to be 1 or 0, respectively.

An important issue with regards to queries over

uncertain data is the semantics of the query. What

exactly does it mean to execute an arbitrary query

over uncertain data? Most researchers have adopted

the well-established possible worlds semantics (PWS)

[10]. Under PWS, a database with uncertain (probabi-

listic) data consists of numerous probabilistic events.

Depending upon the outcome of each of these events,

the actual database is one out of an exponential num-

ber of possible worlds. For example, consider a single

relation with two attributes: Sensor_id and

reading. Assume there is a single tuple in this

table, with Sensor_id S1, and an uncertain reading

which could be 1 with probability 0.3 and 2 with

probability 0.7. This uncertain database consists of a
single event, and there are two possible worlds: in

one world (W1), the relation consists of the single

tuple <S1, 1>; in world W2, the relation consists of

the single tuple <S1, 2>. Furthermore, the probability

of W1 is 0.3 and that of W2 is 0.7. In general, with

multiple uncertain events, each world corresponds to a

given outcome of each event and the probability of the

world is given by the product of the probabilities of

each event that appears in the world. It should be noted

that there is no uncertainty in a given world. Each

world looks like a regular database relation.

Under PWS, the semantics of a query are as

follows. Executing a query over an uncertain data is

conceptually composed of three steps: (i) Generate all

possible worlds for the given data with associated

probabilities; (ii) execute the query over each world

(which has no uncertainty); and (iii) Collapse the

results from all possible worlds to obtain the uncertain

result to the original query. While PWS provides very

clean semantics for any query over an uncertain data-

base, it introduces challenges for efficient evaluation.

First, if there is continuous uncertainty in the data,

then there are an infinite number of possible worlds.

Even when there are a finite number of possible worlds,

the total number is exponential in the number of events.

Thus it is impractical to enumerate all worlds and

execute the query over each one. Techniques to avoid

enumerating all worlds while computing the query cor-

rectly were proposed in [6]. They showed that there is a

class of safe queries over uncertain data which can be

computed using query plans similar to those for cer-

tain data.

Implementation

With the goal of supporting PWS over uncertain data,

systems that support uncertainty need to define prob-

abilistic versions of database operators such as selec-

tion, projection, cross products, and comparison

operators. Typically this involves operations over the

probability distributions of the data, and tracking

dependencies that are generated as a result of proces-

sing. Efficient management of dependencies between

derived data is among the greatest challenges for un-

certain data management. The base data in an uncer-

tain database are assumed to be independent (with the

exception of explicit dependencies that are expressed in

the base data). However, as these data are used to

produce other data, the derived data may no longer

be independent of each other [6]. These dependencies

650D Data Uncertainty Management in Sensor Networks
affect the correct evaluation of query operators. To

correctly handle dependencies, it is necessary to track

them. Thus the model has to be augmented to store

not only the data, but also dependencies among them.

In the Trio system this information is called Lineage,

the Orion model calls it History, and the MauveDB

model handles dependencies using factor tables. As

data is processed multiple times, the size and complex-

ity of this dependency information can grow signifi-

cantly. Efficient handling of this information is

currently an active area of research.

Query processing algorithms over uncertain data

have been developed for range queries [13], nearest-

neighbor queries [2,11], and skyline queries [12]. Effi-

cient join algorithms over uncertain data have been

proposed in [3]. Despande et al. [7] studied the problem

of answering probabilistic queries over data streams.

They proposed algorithms to return results with mini-

mum resource consumption. In [5], Cormode et al.

proposed space- and time-efficient algorithms for

approximating complex aggregate queries over probabi-

listic data streams. For queries that cannot be correctly

processed using these modified operators and safe query

plans, one alternative is to use approximation techniques

based upon sampling. Samples of possible worlds can be

drawn using the probabilities of the various events that

make up the uncertain database. The query is then

executed on these sample worlds and the results are

aggregated to obtain an approximation of the true

answer.

Indexing Indexing is a well known technique for im-

proving query performance. Indexing uncertain data
Data Uncertainty Management in Sensor Networks. Figure
presents some novel challenges. First, uncertain data

do not have a single value as is the case for traditional

data. Consequently indexes such as B+-trees (and also

hash indexes, since hashing requires exact matches)

are inapplicable. By treating the uncertain intervals

(regions) as spatial data, it is possible to use spatial

indexes, such as R-trees or interval indexes, over uncer-

tain attributes. These indexes can provide pruning based

upon the extent and location of the uncertainty intervals

alone. However, these index structures do not consider

probability information, and are therefore incapable

of exploiting probability for better evaluation. This is

especially true in the case for probabilistic threshold

queries.

There has been some recent work on developing index

structures for uncertain data [4,11,13]. These index struc-

tures take the probability distribution of the underlying

data into account. In particular, the Probability Thresh-

old Index (PTI), is based on the modification of a

one-dimensional R-tree. Each entry in this R-tree vari-

ant is augmented with multiple Minimum Bounding

Rectangles (MBRs) to facilitate pruning. The extra

MBRsarecalledx-bounds. Consider a one-dimensional

data set. An MBR can been viewed as a pair of

bounds: a left bound that is the right-most line that

lies to the left of every object in the given node; and a

right bound that is the left-most line that lies to the

right of every object in the given node. The notion of

x-bounds is similar, except that a left-x-bound is the

right-most line that ensures that no object in the given

node has a probability greater than x of lying to the left

of this bound. The right-x-bound is similarly defined.

Figure 2 shows an example of these bounds. Using these
2. An example of X-Bounds for PTI.

Data Visualizations D 651

D

bounds it is possible to achieve greater pruning as shown

by the range query in the figure. This query has a thresh-

old bound of 0.4. Even though the query intersects

with overall MBR, using the right-0.4-bound it is clear

that there is no need to visit this subtree for this query.

Since the query does not cross the right-0.4-bound, there

can be no objects under this node that have a probability

greater than 0.4 of overlapping with the query.

Key Applications
Uncertainty in sensor data is found in virtually all

applications of sensors. For many applications, how-

ever, it may be acceptable to ignore the uncertainty and

treat a given value as a reasonable approximation of the

sensor reading. For others, such approximations and

the resulting errors in query answers are unacceptable.

In order to provide correct answers for these applica-

tions it is necessary to handle the uncertainty in the

data. Examples include location-based services and

applications that introduce uncertainty in order to

provide some degree of privacy.
Future Directions
Work on the problem of handling uncertain data in

sensor databases has only just begun. Much remains to

be done. A long-term goal of several current projects is

the development of a full-fledged database manage-

ment system with native support for uncertain data as

first-class citizens. Examples of current systems include

Orion, MauveDB, Mystiq, and Trio. Immediate steps in

building such systems include the development of

query optimization techniques. This includes cost esti-

mation methods, query plan enumeration techniques,

and approximate query evaluation methods. In addi-

tion, an important facet of system development is the

user interface. Interesting issues for user interfaces in-

clude: How do users make sense of the probabilistic

answers? How do they input probabilistic data and pose

queries? Are new query language constructs needed?

Should the probabilistic nature of the data be hidden

from the user or not?
Cross-references
▶Data Storage and Indexing in Sensor Networks

▶ Location-Based Services

▶Moving Objects Databases and Tracking

▶ Probabilistic Databases

▶R-Tree (and family)
Recommended Reading
1. Benjelloun O., Sarma A.D., Halevy A., and Widom J. ULDBs:

databases with uncertainty and lineage. In Proc. 32nd Int. Conf.

on Very Large Data Bases, 2006, pp. 953–964.

2. Cheng R., Kalashnikov D., and Prabhakar S. Evaluating proba-

bilistic queries over uncertain data. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2003.

3. Cheng R., Singh S., Prabhakar S., Shah R., Vitter J., and Xia Y.

Efficient join processing over uncertain data. In Proc. ACM 15th

Conf. on Information and Knowledge Management, 2006.

4. Cheng R., Xia Y., Prabhakar S., Shah R., and Vitter J. Efficient

indexing methods for probabilistic threshold queries over un-

certain data. In Proc. 30th Int. Conf. on Very Large Data Bases,

2004.

5. Cormode G. and Garofalakis M. Sketching probabilistic data

streams. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2005, pp. 143–154.

6. Dalvi N. and Suciu D. Efficient query evaluation on probabilistic

databases. In Proc. 30th Int. Conf. on Very Large Data Bases.

2004.

7. Despande A., Guestrin C., Hong W., and Madden S. Exploiting

correlated attributes in acquisitional query processing. In Proc.

21st Int. Conf. on Data Engineering, 2005.

8. Deshpande A., Guestrin C., Madden S., Hellerstein J., and

Hong W. Model-driven data acquisition in sensor networks.

In Proc. 30th Int. Conf. on Very Large Data Bases, 2004.

9. Deshpande A. and Madden S. MauveDB: supporting model-

based user views in database systems. In Proc. ACM SIGMOD

Int. Conf. Management of Data. 2006, pp. 73–84.

10. Halpern J.Y. Reasoning about uncertainty. MIT, Cambridge,

USA, 2003.

11. Ljosa V. and Singh A. ALPA: indexing arbitrary probability dis-

tributions. In Proc. 23rd Int. Conf. on Data Engineering, 2007.

12. Pei J., Jiang B., Lin X., and Yuan Y. Probabilistic skylines on

uncertain data. In Proc. 33rd Int. Conf. on Very Large Data

Bases, 2007.

13. Singh S., Mayfield C., Prabhakar S., Shah R., and Hambrusch S.,

Indexing uncertain categorical data. In Proc. 23rd Int. Conf. on

Data Engineering, 2007.

14. Sistla P.A., Wolfson O., Chamberlain S., and Dao S. Querying the

uncertain positions of moving objects. Temporal databases: re-

search and practice 1998.

15. The Orion Uncertain Database Management System. Available

at: http://orion.cs.purdue.edu/
Data Utility Measures

▶ Information Loss Measures
Data Visualizations

▶Dense Pixel Displays

Data Visualization. Figure 1. Ca. 6200 BC. The oldest

known map, from a museum at Konya, Turkey.

652D Data Visualization
Data Visualization

HANS HINTERBERGER

ETH Zurich, Zurich, Switzerland

Synonyms
Graphic representation of data; Information

visualization

Definition
Data Visualization: (i) Interpreting information in

visual terms by forming a mental picture based on

data. (ii) Applying suitable methods to put data into

visible form.

This definition is consistent with the Oxford

English Dictionary definitions of ‘data’: Facts, esp.

numerical facts, collected together for reference or infor-

mation and of ‘visualization’: (i) The action or fact of

visualizing; the power or process of forming a mental

picture or vision of something not actually present to

the sight; a picture thus formed. (ii) The action or pro-

cess of rendering visible.

The first part of the definition refers to the human

cognitive activity of forming a mental picture, inde-

pendent of how something is represented. If this

is the only activity of interest, then the term ‘infor-

mation visualization’ is more commonly used. Simi-

larly, ‘data visualization’ is often reduced to the second

part of the definition.

Some authors explicitly include the computer and

cognition in their definition of visualization: The use of

computer supported, interactive, visual representations of

data to amplify cognition [1]. Others emphasize how

data visualization differs from information visualiza-

tion: data visualization is for exploration, for uncovering

information, as well as for presenting information. It is

certainly a goal of data visualization to present any

information in the data, but another goal is to display

the raw data themselves, revealing the inherent variabil-

ity and uncertainty [16].
Data Visualization. Figure 2. Ca. 950. First known

graphic of a time series visualizing data of planetary orbits.
Historical Background
Up to the 15th Century. Over eight thousand year old

maps, carved in stone, suggest that the visualization of

information is as old as civilization (Fig. 1). The ear-

liest known data visualization, a time series plot,

depicting the changing values of several planets’ posi-

tions, is estimated to have appeared in the tenth
century (Fig. 2). In the middle of the fourteenth cen-

tury, Nicole Oresme introduced an early form of coor-

dinate graphing. He marked points in time along a

horizontal line and for each of these points he drew a

bar whose length represented the object’s velocity at

that moment.

1500–1800. Meteorological maps, showing the

prevalence of winds on a geographical map, date back

to 1686. In 1782, Marcellin du Carla-Boniface issues

the first modern topographical maps (Fig. 3) and

August Crome prints the first thematic map, showing

economic production data across Europe. Also in this

time period appear the first graphics used for descrip-

tive statistics, for example Christian Huygens’ plot of a

function to graphically determine the years of life

remaining given the current age, published in 1669.

William Playfair, an English political economist, laid

the ground for business graphics in 1786 with his Com-

mercial and Political Atlas in which he documented

commercial and political time series using curves, bar

charts and column charts (Fig. 4). Playfair is also

Data Visualization D 653

D

arguably the inventor of the pie chart (Statistical Bre-

viary, 1801).

1800–1949. Scientists and civil servants are begin-

ning to use thematic maps and statistical graphics to

support their arguments. Famous examples are the dot

map that Dr. John Snow drew by plotting the locations

of deaths from cholera in central London during the

1854 epidemic (Fig. 5) and Florence Nightingale’s

comparison of deaths due to injuries in combat and

deaths due to illness in an army hospital for which she

invented her own graphic, the Polar-Area Diagram

(Fig. 6). The second half of the nineteenth century

saw a 50 year long debate on the standardization of

statistical maps and diagrams which failed to produce

concrete results. Early in the twentieth century there

followed a 50 year period of consolidation where the
Data Visualization. Figure 3. 1782. Detail of Marcellin du

Carla-Boniface’s topological map.

Data Visualization. Figure 4. 1786. William Playfair’ chart, de

queens.
accomplishments of the previous one hundred years

became widely accepted.

1950–1975. Researchers started to face enormous

challenges when analyzing the deluge of data produced

by electronic equipment that was put in use after the

Second World War. In this environment, John Tukey

led the way, established the field of Exploratory Data

Analysis [15] (Fig. 8) and sparked a flurry of activities

that have and still are producing many novel graphical

methods [5,8], including techniques that marked the

beginning of dynamic statistical graphics. In the 1960s,

when signals from remote sensing satellites needed to

be processed graphically, geographers started to com-

bine spatially referenced data, spatial models and map

based visualizations in geographic information sys-

tems. The French cartographer Jacques Bertin worked

on a theory of graphics [3] and introduced with his

reorderable matrix an elegant technique to graphically

process quantitative data [2] (Fig. 7).

From 1975–present. Fast, interactive computers

connected to a high resolution color graphic display

created almost unlimited possibilities for scientific

visualizations of data generated by imaging techniques,

computational geometry or physics based models [10].

Event oriented programming made it easy to link dif-

ferent data displays, encouraging new techniques such

as brushing [5]. Statisticians started to tackle high

dimensional data by interactively ‘touring’ low dimen-

sional projections. Large display areas encouraged

graphic methods based on multiple plots [5], space

filling techniques (e.g., mosaic plots) and graphics

with high data densities. For an overview the reader

is referred to [1,5,16]. In the early 1990s, virtual
picting prices, wages, and the reigns of British kings and

Data Visualization. Figure 5. 1854. Detail of the

pioneering statistical map drawn by John Snow to

illustrate patterns of disease.

Data Visualization. Figure 6. 1858. Polar-Area diagram,

invented by Florence Nightingale to convince authorities

of the need to improve sanitary conditions in hospitals.

654D Data Visualization
environments were introduced as methods to immer-

sively investigate scientific data [4]. (Fig. 10) Another

way to overcome the restrictions of two dimensional

displays was shown by Alfred Inselberg with his con-

cept of parallel coordinates [9], today a ubiquitous

method to visualize multidimensional data (Fig. 9).
To further explore the history of data visualization

the reader is referred to [7,14].

Foundations
The literature on scientific fundamentals of data visua-

lizations fall into three independent but related fields:

(i) computer graphics, (ii) presentation techniques,

(iii) cognition.

Computer graphics, primarily the domain of

computer scientists and mathematicians, builds on

elementary principles in the following broad areas:

visualization algorithms and data structures, modeling

and (numerical) simulation, (volume) rendering, par-

ticle tracing, grid generation, wavelet transforms, mul-

tiscale and multiresolution methods as well as optics

and color theory. A more exhaustive treatment of

computer graphics fundamentals related to data visu-

alization can be found in [10,12,17].

Most of the literature on presentation techniques

can be found in statistics and computer science al-

though economists and cartographers also made sub-

stantial contributions. The publications of John Tukey

[15] and Andrew Ehrenberg [6] show how tables can

be used as simple but effective presentation technique

to organize data and demonstrate the method’s useful-

ness for statistics and data analysis. In 1967 Jacques

Bertin formulated a comprehensive theory for a graph-

ical system [3] and subsequently applied parts of it to

graphic information processing [2]. Other classics were

published in 1983 when William Cleveland wrote an

excellent methodological resource for the design of

plots and Edward Tufte published his review on the

graphical practice to visualize quantitative data. A ref-

erence, featuring perhaps the most complete listing

of graphs, maps, tables, diagrams, and charts has

been compiled by Robert Harris [8]. Parallel coordi-

nates is one of the leading methodologies for multidi-

mensional visualization [9]. Starting from geometric

foundations, Al Inselberg explains how n-dimensional

lines and planes can be represented in 2D through

parallel coordinates. The most recent publications ex-

plain mostly dynamic, interactive methods. Antony

Unwin concentrates on graphics for large datasets

[16] while Robert Spence favors techniques that allow

user interaction [13].

Ultimately, to be of any use, data visualization must

support human cognition. The challenges this raises

are of interest to cognitive scientists, psychologists, and

computer scientists specializing in human-computer

Data Visualization. Figure 7. 1967. Bertin’s reorderable matrix, a visualization method embedded in a comprehensive

theory of graphics.

Data Visualization. Figure 8. 1977. Tukey’s

box-and-whisker plot graphically summarizes effectively

key characteristics of the data’s distribution.

Data Visualization D 655

D

interaction. Rudolf Arnheim investigated the role of

visual perception as a crucial cognitive activity of

reasoning [1]. Also in the domain of ‘visual thinking’

is the work of Colin Ware [17] as he, among other

contributions, proposes a foundation for a science of

data visualization based on human visual and cognitive

processing. Card et al. discuss topics of computer

graphics as well as presentation techniques with a

focus on how different methods support cognition. A

more general approach worth mentioning is taken by

Donald Norman when he argues that people deserve

information appliances that fit their needs and

lives [11].

To summarize, most of the literature on data visu-

alization describes the efforts of computer scientists

and cognitive scientists to develop new techniques for

people to interact with data, from small statistical

datasets to large information environments.

Key Applications
There are few – if any – application areas that do not

benefit from data visualization simply because graphi-

cal methods assist the fundamental human activity of

cognition and because in an increasingly digital world

people are flooded with data. In the following four

areas, data visualization plays a key role:
Statistics

Descriptive statistics has traditionally been the stron-

gest customer for data visualization, primarily through

its application to support exploratory data analysis.

The use of data visualization as part of descriptive

statistics has become a matter of fact wherever data

are being collected.

Data Visualization. Figure 9. 1999. A continued mathematical development of parallel coordinates led to software for

‘visual data mining’ in high dimensional data sets.

Data Visualization. Figure 10. 2006. Immersive

Geovisualization at West Virginia University.

656D Data Visualization
Information Systems

Data visualization has become an important compo-

nent in the interface to information systems simply

because information is stored as data. The process
of recovering information from large and complex

databases often depends on data mining techni-

ques. Visual data mining – a new and rapidly growing

field – supports people in their data exploration activ-

ity with graphical methods. Geographic information

systems have traditionally been key applications, par-

ticularly for map-based visualizations.
Documentation

Ever since thematic maps and statistics graphics be-

came popular with commerce, government agencies

and the sciences, data visualization methods are being

used routinely to illustrate that part of documents

which deal with data.
Computational Science

Progress in solving scientific and engineering problems

increasingly depends on powerful software for model-

ing and simulation. Nevertheless, success in the end

Data Warehouse D 657

D

often only comes with effective scientific visualizations.

Computational science as a key application for data

visualization is a strong driving force behind the devel-

opment of graphical methods for huge amounts of

high dimensional data.

Cross-references
▶Chart

▶Comparative Visualization

▶Dynamic Graphics

▶ Exploratory Data Analysis

▶Graph

▶Methods

▶Multivariate Data Visualization

▶ Parallel Coordinates

▶Result Display

▶ Symbolic Representation
Recommended Reading
1. Arnheim R. Visual Thinking. University of California Press,

Berkeley, CA, 1969.

2. Bertin J. Graphics and Graphic Information-Processing. Walter

de Gruyter, Berlin/New York, 1981.

3. Bertin J. Semiology of Graphics (translation by W.J. Berg).

University of Wisconsin Press, USA, 1983.

4. Card S.K., MacKinlay J.D., and Shneiderman B. Readings in

Information Visualization: Using Vision to Think. Morgan

Kaufmann, San Francisco, CA, 1999.

5. Cleveland W.S. The Elements of Graphing Data (Revised Edi-

tion). Hobart Press, Summit, NJ, 1994.

6. Ehrenberg A.S.C. A Primer in Data Reduction. Wiley, Chichester,

UK, 1982.

7. Friendly M. The History of Thematic Cartography, Statistical

Graphics, and Data Visualization.

8. Harris R.L. Information Graphics: A Comprehensive Illustrated

Reference. Oxford University Press, New York, 1999.

9. Inselberg A. The plane with parallel coordinates. The Visual

Comput., 1(2):69–91, 1985.

10. Nielson G.M., Hagen H., and Müller H. Scientific Visualization:

Overviews, Methodologies, Techniques. IEEE Computer Society

Press, USA, 1997.

11. Norman D.A. The Invisible Computer. The MIT Press, 1998.

12. Post F.H., Nielson G.M., and Bonneau, G.-P. (eds.). Data Visu-

alization: The State of the Art. Kluwer Academic, 2002.

13. Spence R. Information Visualization: Design for Interaction

(2nd edn.). Pearson Education, 2007.

14. Tufte E.R. The Visual Display of Quantitative Information. Gra-

phics Press, 1983.

15. Tukey J.W. Exploratory Data Analysis. Addison-Wesley, Reading,

MA, 1977.

16. Unwin A., Theus M., and Hofmann H. Graphics of Large Data-

sets: Visualizing a Million. Springer Series in Statistics and

Computing, Berlin, 2006.

17. Ware C. Information Visualization: Perception for Design (2nd

edn.). Morgan Kaufmann, 2004.
Data Warehouse

IL-YEOL SONG

Drexel University, Philadelphia, PA, USA

Synonyms
Information repository; DW

Definition
A data warehouse (DW) is an integrated repository of

data put into a form that can be easily understood,

interpreted, and analyzed by the people who need to

use it to make decisions. The most widely cited defini-

tion of a DW is from Inmon [2] who states that ‘‘a data

warehouse is a subject-oriented, integrated, nonvola-

tile, and time-variant collection of data in support of

management’s decisions.’’

The subject-oriented property means that the data

in a DW are organized around major entities of

interests of an organization. Examples of subjects are

customers, products, sales, and vendors. This property

allows users of a DW to analyze each subject in depth

for tactical and strategic decision-making.

The integrated property means that the data in a

DW are integrated not only from all operational data-

base systems but also some meta-data and other

related external data. When data are moved from

operational databases to a DW, they are extracted,

cleansed, transformed, and then loaded. This makes a

DW a centralized repository of all the business data

with common semantics and formats.

The nonvolatile property means that the data in a

DWare not usually updated. Once the data are loaded

into a DW, they are not deleted. Any change to the data

that were already moved to a DW is recorded in the

form of a snapshot. This allows a DW to keep track of

the history of the data.

The time-variant property means that a DWusually

contains multiple years of data. It is not uncommon

for a DW to contain data for more than ten years.

This allows users of a DW to analyze trends, patterns,

correlations, rules, and exceptions from a historical

perspective.
Key Points
DWs have become popular for addressing the needs

of a centralized repository of business data in decision-

making. An operational database system, also known as

an online transaction processing (OLTP) system,

658D Data Warehouse Back Stage
supports daily business processing. On the other hand, a

DW usually supports tactical or strategic business pro-

cessing for business intelligence. While an OLTP system

is optimized for short transactions, a DW system is

optimized for complex decision-support queries. Thus,

a data warehouse system is usually maintained separate-

ly from operational database systems. This distinction

makes DW systems different from OLTP systems in

many aspects.

The data in a DW are usually organized in formats

for easy access and analysis in decision-making. The

most widely used data model for DWs is called the

dimensional model or the star schema [3]. A dimen-

sional model consists of two types of entities – a fact

table and many dimensions. A fact table stores transac-

tional or factual data called measures that are analyzed.

Examples of fact tables are order, sale, return, and claim.

A dimension represents an axis that analyzes the fact

data. Examples of dimensions are time, customer, prod-

uct, promotion, store, and market. The dimensional

model allows users of a data warehouse to analyze the

fact data from any combination of dimensions. Thus, a

dimensional model simplifies end-user query proces-

sing and provides a multidimensional analysis space

within a relational database.

The different goals and data models of DWs need

special access, implementation methods, maintenance,

and analysis methods, different from those of OLTP

systems [1]. Therefore, a data warehouse requires an

environment that uses a blend of technologies.

Cross-references
▶Active and Real-Time Data Warehousing

▶Business Intelligence

▶Data Mart

▶Data Mining

▶Data Warehouse Life-cycle and Design

▶Data Warehouse Maintenance, Evolution and

Versioning

▶Data Warehouse Metadata

▶Data Warehouse Security

▶Data Warehousing and Quality Data Management

for Clinical Practice

▶Data Warehousing for Clinical Research

▶Data Warehousing Systems: Foundations and

Architectures

▶Dimension

▶Multidimensional Modeling

▶On-Line Analytical Processing
Recommended Reading
1. Chaudhuri S. and Dayal U. An overview of data warehousing

and OLAP technology. ACM SIGMOD Rec., 26(1):65–74, 1997.

2. Inmon W.H. Building the Data Warehouse, 3rd edn. Wiley, New

York, 2002.

3. Kimball R. and Ross M. The Data Warehouse Toolkit, 2nd edn.

Wiley, New York, 2002.
Data Warehouse Back Stage

▶ Extraction, Transformation and Loading
Data Warehouse Design
Methodology

▶Data Warehouse Life-Cycle and Design
Data Warehouse Life-Cycle and
Design

MATTEO GOLFARELLI

University of Bologna, Bologna, Italy

Synonyms
Data Warehouse design methodology

Definition
The term data warehouse life-cycle is used to indicate

the phases (and their relationships) a data warehouse

system goes through between when it is conceived and

when it is no longer available for use. Apart from the

type of software, life cycles typically include the follow-

ing phases: requirement analysis, design (including

modeling), construction, testing, deployment, opera-

tion, maintenance, and retirement. On the other hand,

different life cycles differ in the relevance and priority

with which the phases are carried out, which can vary

according to the implementation constraints (i.e., eco-

nomic constraints, time constraints, etc.) and the soft-

ware specificities and complexity. In particular, the

specificities in the data warehouse life-cycle derive

from the presence of the operational database that

Data Warehouse Life-Cycle and Design D 659

D

feeds the system and by the extent of this kind of system

that must be considered in order to keep the cost and

the complexity of the project under control.

Although the design phase is only a step within the

overall life cycle, the identification of a proper life-cycle

model and the adoption of a correct design methodology

are strictly related since each one influences the other.

Historical Background
The data warehouse (DW) is acknowledged as one of

the most complex information system modules, and its

design andmaintenance is characterized by several com-

plexity factors, which determined, in the early stages of

this discipline, a high percentage of project failures. A

clear classification of the critical factors of Data Ware-

housing projects was already available in 1997 when

three different risk categories were identified [1]:

� Socio-technical: DW projects have deep impact on

the decisional processes and political equilibriums,

thus reducing the power of some stakeholders

who will be willing to interfere with the project.

For example, data ownership is power within an

organization. Any attempt to share or take control

over somebody else’s data is equivalent to a loss of

power of this particular stakeholder. Furthermore,

no division or department can claim to possess

100% clean, error-free data. The possibility of re-

vealing the quality problems of data within the

information system of the department is definitely

frustrating for the stakeholders affected.

� Technological: DW technologies are continuously

evolving and their features are hard to test. As a

consequence, problems related to the limited scal-

ability of the architecture, difficulty in sharing

meta-data between different components and the

inadequate expertise of the programmers may

hamper the projects.

� Design: designing a DW requires a deep knowledge

of the business domain. Some recurrent errors are

related to limited involvement of the user commu-

nities in the design as well as the lack of a deep

analysis of the quality of the source data. In both

these cases, the information extracted from the DW

will have a limited value for the stakeholders since

they will turn out to be unreliable and outside the

user focus.

The awareness of the critical nature of the problems

and the experience accumulated by practitioners
determined the development of different design meth-

odologies and the adoption of proper life cycles that

can increase the probability of completing the project

and fulfill the user requirements.

Foundations
The choice of a correct life cycle for the DWmust take

into account the specificities of this kind of systems,

which according to [2], are summarized as follows:

1. DWs rely on operational databases that represent

the sources of the data.

2. User requirements are difficult to collect and usu-

ally change during the project.

3. DW projects are usually huge projects: the average

time for their construction is 12–36 months and

their average cost ranges from 0.5 to 10 million

dollars.

4. Managers are demanding users that require reliable

results in a time compatible with business needs.

While there is no consensus on how to address points

(i) and (ii), the DW community has agreed on an

approach that cuts down cost and time to make a

satisfactory solution available to the final users. Instead

of approaching the DW development as a whole in a

top-down fashion, it is more convenient to build it

bottom-up working on single data marts [3]. A data

mart is part of a DW with a restricted scope of content

and support for analytical processing, serving a single

department, part of an organization, and/or a particu-

lar data analysis problem domain. By adopting a bot-

tom-up approach, the DW will turn out to be the

union of all the data marts.

This iterative approach promises to fulfill require-

ment (iii) since it cuts down development costs and

time by limiting the design and implementation efforts

to get the first results. On the other hand, requirement

(iv) will be fulfilled if the designer is able to implement

first those data marts that are more relevant to the

stakeholders.

As stated by many authors, adopting a pure

bottom-up approach presents many risks originating

from the partial vision of the business domain that will

be available at each design phase. This risk can be

limited by first developing the data mart that plays a

central role within the DW, so that the following can be

easily integrated into the existing backbone; this kind

of solution is also called bus architecture. The basis for

designing coherent data marts and for achieving an

660D Data Warehouse Life-Cycle and Design
integrated DW is the agreement of all the design teams

on the classes of analysis that are relevant for the

business. This is primarily obtained by the adoption

of conformed dimensions of analysis [4]. A dimension is

conformed when two copies of the dimensions are

either exactly the same (including the values of the

keys and all the attributes), or else one dimension is a

proper subset of the other. Therefore, using the same

time dimension in all the data marts implies that

the data mart teams agree on a corporate calendar.

All the data mart teams must use this calendar and

agree on fiscal periods, holidays, and workdays. When

choosing the first data mart to be implemented the

designer will probably cope with the fact that the most

central data mart (from a technical point of view) is

not the most relevant to the user. In that case, the

designer choice must be a trade-off between technical

and political requirements.

Based on these considerations the main phases

for the DW life-cycle can be summarized as follows:

1. DW planning: this phase is aimed at determin-

ing the scope and the goals of the DW, and deter-

mines the number and the order in which the data

marts are to be implemented according to the busi-

ness priorities and the technical constraints [5].

At this stage the physical architecture of the

system must be defined too: the designer carries

out the sizing of the system in order to identify

appropriate hardware and software platforms and

evaluates the need for a reconciled data level aimed

at improving data quality. Finally, during the proj-

ect planning phase the staffing of the project is

carried out.

2. Data mart design and implementation: this macro-

phase will be repeated for each data mart to be

implemented and will be discussed in more detail

in the following. At every iteration, a new data mart

is designed and deployed. Multidimensional model-

ing of each data mart must be carried out
Data Warehouse Life-Cycle and Design. Figure 1. The main
considering the available conformed dimensions

and the constraints derived from previous

implementations.

3. DW maintenance and evolution: DW maintenance

mainly concerns performance optimization that

must be periodically carried out due to user re-

quirements that change according to the problems

and the opportunities the managers run into. On

the other hand, DWevolution concerns keeping the

DW schema up-to-date with respect to the business

domain and the business requirement changes: a

manager requiring a new dimension of analysis for

an existing fact schema or the inclusion of a new

level of classification due to a change in a busi-

ness process may cause the early obsolescence of

the system (Fig. 1).

DW design methodologies proposed in the literature

mainly concern phase 2 and thus should be better

referred to as data mart design methodologies. Though

a lot has been written about how a DW should be

designed, there is no consensus on a design method

yet. Most methods agree on the opportunity of distin-

guishing between the following phases:

� Requirement analysis: identifies which information

is relevant to the decisional process by either con-

sidering the user needs or the actual availability of

data in the operational sources.

� Conceptual design: aims at deriving an implemen-

tation-independent and expressive conceptual

schema for the DW, according to the conceptual

model chosen (see Fig. 2).

� Logical design: takes the conceptual schema and cre-

ates a corresponding logical schema on the chosen

logical model. While nowadays most of the DW

systems are based on the relational logical model

(ROLAP), an increasing number of software vendors

are proposing also pure or mixed multidimensional

solutions (MOLAP/HOLAP). Figure 3 reports the
phases for the DW life-cycle.

Data Warehouse Life-Cycle and Design. Figure 2. A conceptual representation for the SALES fact based on the DFM

model [6].

Data Warehouse Life-Cycle and Design. Figure 3. A relational implementation of the SALE fact using the well-known

star schema.

Data Warehouse Life-Cycle and Design D 661

D

relational implementation of the SALE fact based

on the well-known star schema [4].

� ETL process design: designs the mappings and the

data transformations necessary to load into the

logical schema of the DW the data available at

the operational data source level.

� Physical design: addresses all the issues specif-

ically related to the suite of tools chosen for

implementation – such as indexing and allocation.

Requirement analysis and conceptual design play a

crucial role in handling DW peculiarities (i) and (ii)
described at the beginning of the present section. The

lack of settled user requirements and the existence of

operational data sources that fix the set of available

information make it hard to develop appropriate mul-

tidimensional schemata that on the one hand fulfill

user requirements and on the other can be fed from

the operational data sources. Two different design prin-

ciples can be identified: supply-driven and demand-

driven [5].

� Supply-driven approaches [3,6] (also called data-

driven) start with an analysis of operational data

662D Data Warehouse Life-Cycle and Design
sources in order to reengineer their schemata and

identify all the available data. Here user involve-

ment is limited to select which chunks of the avail-

able data are relevant for the decision-making

process. While supply-driven approaches simplify

the design of the ETL because each piece of data

in the DW corresponds to one or more attributes

of the sources, they give user requirements a sec-

ondary role in determining the information con-

tents for analysis as well as giving the designer little

support in identifying facts, dimensions, and mea-

sures. Supply-driven approaches are feasible when

all of the following are true: (i) detailed knowledge

of data sources is available a priori or easily achiev-

able; (ii) the source schemata exhibit a good degree

of normalization; and (iii) the complexity of source

schemata is not too high.

� Demand-driven approaches [7,8] start from deter-

mining the information requirements of busi-

ness users. The emphasis is on the requirement

analysis process and on the approaches for facili-

tating user participations. The problem of mapping

these requirements onto the available data sources

is faced only a posteriori, and may fail thus deter-

mining the users’ disappointment as well as a waste

of the designer’s time.

Based on the previous approaches some mixed model-

ing solutions have been proposed in the last few years

in order to overcome the weakness of each pure

solution.

Conceptual design is widely recognized to be the

necessary foundation for building a DW that is well-

documented and fully satisfies the user requirements.

The goal of this phase is to provide the designer with a

high level description of the data mart possibly at

different levels of detail. In particular, at the DW level

it is aimed at locating the data mart within the overall

DW picture, basically characterizing the class of infor-

mation captured, its users, and its data sources. At

the data mart level, a conceptual design should identify

the set of facts to be built and their conformed dimen-

sions. Finally, at the fact level a nonambiguous

and implementation-independent representation of

each fact should be provided. If a supply driven ap-

proach has been followed for requirement analysis, the

conceptual model at the schema level can be semi-

automatically derived from the source schemata by

identifying the many-to-one relationship [3,6].
Concerning the formalism to be adopted for represent-

ing information at this level, researchers and practi-

tioners agreed that, although the E/R model has

enough expressivity to represent most necessary con-

cepts, in its basic form, it is not able to properly

emphasize the key aspects of the multidimensional

model. As a consequence many ad-hoc formalisms has

been proposed in the last years (e.g., [6,9]) and a com-

parison of the different models done by [10] pointed

out that, abstracting from their graphical form, the core

expressivity is similar, thus proving that the academic

community reached an informal agreement on the re-

quired expressivity.

Logical design is the phase that most attracted the

interest of researchers in the early stage of Data Ware-

housing since it strongly impacts the system perfor-

mance. It is aimed at deriving out of the conceptual

schemata the data structure that will actually implement

the data mart by considering some sets of constraints

(e.g., concerning disk space or query answering time) [11].

Logical design ismore relevant when a relational DBMS

is adopted (ROLAP) while in the presence of a native

multidimensional DBMS (MOLAP) the logical model

derivation is straightforward. On the other hand, in

ROLAP system, the choices concern, for example the

type of schema to be adopted (i.e., star o snowflake), the

specific solution for historicization of data (i.e., slowly

changing dimensions) and schema.

ETL process design is considered to be the most

complex design phase and usually takes up to 70%

of the overall design time. Complexity arises from

the need of integrating and transforming heterogeneous

and inconsistent data coming from different data

sources. This phase also includes the choice of the

strategy for handling wrong and incomplete data (e.g.,

discard, complete). Obviously, the success of this phase

impacts the overall quality of DW data. Different from

other design phases little efforts have been made in the

literature to organize and standardize this phase [12,13],

and actually none of the formalisms proposed have been

widely adopted in real projects that usually rely on the

graphical representation obtained from the ETL tool for

documentation purposes.

Finally, during physical design, the logical structure is

optimized based on the means made available by

the adopted suite of tools. Specialized DBMSs usually

include ad hoc index types (e.g., bitmap index

and join index) and can store the meta-knowledge nec-

essary to automatically rewrite a given query on

Data Warehouse Life-Cycle and Design D 663

D

the appropriate materialized view. In DW systems, a

large part of the available disk space is devoted to opti-

mization purposes and it is a designer task to find out its

assignment to the different optimization data structures

in order to maximize the overall performance [14].

Despite the basic role played by a well-structured

methodological framework in ensuring that the DW

designed fully meets the user expectations, only a few

of the cited papers cover all the design phases [6,13].

In addition, an influential book, particularly from the

practitioners’ viewpoint, is the one by Kimball [4],

which discusses the major issues arising in the design

and implementation of data warehouses. The book

presents a case-based approach to data mart design

that is bottom-up oriented and adopts a mixed ap-

proach for collecting user requirements.

Finally it should be noted that, though most ven-

dors of DW technology propose their own CASE solu-

tions (that are very often just wizards capable of

supporting the designer during the most tedious and

repetitive phases of design), the only tools that cur-

rently promise to effectively automate some phases of

design are research prototypes. In particular, [3,15],

embracing the supply-driven philosophy, propose

two approaches for automatically deriving the concep-

tual multidimensional schema from the relational data

sources. On the contrary the CASE tool proposed

in [12] follows the demand-driven approach and

allows the multidimensional conceptual schemata to

be drawn from scratch and to be semi-automatically

translated into the target commercial tool.
Key Applications
The adoption of an appropriate methodological app-

roach during design phases is crucial to ensure the

project success. People involved in the design must be

skilled on this topic, in particular.
Designers

Designers should have a deep knowledge of the pros

and cons of different methodologies in order to adopt

the one that best fits the project characteristics.

Business Users

Users should be aware of the design methodology

adopted and their role within it in order to properly

support the designer’s work and to provide the correct

information at the right time.
Future Directions
Research on this topic should be directed to general-

izing the methodologies discussed so far in order to

derive a consensus approach that, depending on the

characteristics of the project, will be made up of diffe-

rent phases. Besides, more generally, mechanisms

should appear to coordinate all DW design phases

allowing the analysis, control, and traceability of data

and metadata along the project life-cycle. An interest-

ing approach in this direction consists in applying the

Model Driven Architecture to automate the inter sche-

ma transformations from requirement analysis to im-

plementation [16]. Finally, the emergence of new

applications for DW such as spatial DW [17],

web DW, real-time DW [18], and business perfor-

mance management [19] will have their side-effects

on the DW life-cycle and inevitably more general

design methodologies will be devised in order to

allow their correct handling.

Cross-references
▶Cube Implementations

▶Data Mart

▶Data Warehouse Maintenance, evolution and ver-

sioning

▶Data Warehousing Systems: Foundations and

Architectures

▶Multidimensional Modeling

▶Optimization and Tuning in Data Warehouses

▶ Snowflake Schema

▶ Star Schema

Recommended Reading
1. Abello A., Samos J., and Saltor F.YAM2: a multidimensional

conceptual model extending UML. Infor. Syst., 31(6):541–567,

2006.

2. Bimonte S., Towards S., and Miquel M.Towards a Spatial Multi-

dimensional Model. In Proc. ACM 8th Int. Workshop on Data

Warehousing and OLAP, 2005.

3. Demarest, M. The politics of data warehousing. Retrieved June

2007 from http://www.noumenal.com/marc/dwpoly.html.

4. Giorgini P., Rizzi S., and Garzetti M. GRAnD: A goal-oriented

approach to requirement analysis in data warehouses. Decision

Support System, 2008, 45(1):4–21.

5. Golfarelli M., Maio D., and Rizzi S. The dimensional fact

model: a conceptual model for data warehouses. Int. J. Coop.

Inf. Syst. 7(2–3): 215–247, 1998.

6. Golfarelli M. and Rizzi S.WAND: ACASE tool for datawarehouse

design. In Proc. 17th Int. Conf. on Data Engineering, 2001.

7. Golfarelli M., Rizzi S., and Cella I. Beyond data warehousing:

What’s next in business intelligence? In Proc. ACM 7th Int. Work-

shop on Data Warehousing and OLAP, 2004.

664D Data Warehouse Maintenance, Evolution and Versioning
8. Golfarelli M., Rizzi S., and Saltarelli E. Index selection for data

warehousing. In Proc. 4th Int. Workshop on Design and Man-

agement of Data Warehouses, 2002.

9. Hüsemann B., Lechtenbörger J., and Vossen G. Conceptual data

warehouse design. In Proc. 2nd Int. Workshop on Design and

Management of Data Warehouses, 2000.

10. Jarke M., Lenzerini M., Vassiliou Y., and Vassiliadis P. Funda-

mentals of Data Warehouses. Springer, 2000.

11. Jensen M., Holmgren T., and Pedersen T. Discovering Multidi-

mensional Structure in Relational Data. In Proc. 6th Int. Conf.

Data Warehousing and Knowledge Discovery, 2004.

12. Kimbal R., Reeves L., Ross M., and Thornthwaite W. The Data

Warehouse Lifecycle Toolkit. Wiley, New York, 1998.

13. Laender A., Freitas G., and Campos M. MD2 – Getting users

involved in the development of data warehouse applications. In

Proc. 14th Int. Conf. on Advanced Information Systems Eng., 2002.

14. Mazon J., Trujillo J., Serrano M., and Piattini M. Applying MDA

to the development of data warehouses. In Proc. ACM 8th Int.

Workshop on Data Warehousing and OLAP, 2005.

15. Theodoratos D. and Sellis T. Designing data Data warehouses.

Data & Knowl. Eng., 31(3):279–301, 1999.

16. Tho N. and Tjoa A. Grid-Based Zero-Latency DataWarehousing

for continuous data streams processing. In Proc. 6th Int. Conf.

Information Integration and Web Based Applications & Ser-

vices, 2004.

17. Trujillo J. and Luján-Mora S.A. UML Based Approach for

Modeling ETL Processes in Data Warehouses. In Proc. 22nd

Int. Conf. on Conceptual Modeling, 2003.

18. Trujillo J., Luján-Mora S., and Medina E. The Gold model case

tool: An environment for designing OLAP applications. In Proc.

ACM 5th Int. Workshop on Data Warehousing and OLAP, 2002.

19. Vassiliadis P., Simitsis A., and Skiadopoulos S. Conceptual mod-

eling for ETL processes. In Proc. ACM 5th Int. Workshop on

Data Warehousing and OLAP, 2002.

20. Winter R. and Strauch B. A method for demand-driven infor-

mation requirements analysis in data warehousing. In Proc. 36th

Annual Hawaii Int. Conf. on System Sciences, 2003.
Data Warehouse Maintenance,
Evolution and Versioning

JOHANN EDER
1, KARL WIGGISSER

2

1University of Vienna, Vienna, Austria
2University of Klagenfurt, Klagenfurt, Austria

Synonyms
Temporal data warehousing

Definition
A multidimensional data warehouse consists of three

different levels: The schema level (dimensions, cate-

gories), the instance level (dimension members, master

data) and the data level (data cells, transaction data).
The process and methodology of performing changes

on the schema and instance level to represent changes

in the data warehouse’s application domain or require-

ments is called Data Warehouse Maintenance. Data

Warehouse Evolution is a form of data warehouse main-

tenance where only the newest data warehouse state

is available. Data Warehouse Versioning is a form of

data warehouse maintenance where all past versions of

the data warehouse are kept available. Dealing with

changes on the data level, mostly insertion of new

data, is not part of data warehouse maintenance, but

part of a data warehouse’s normal operation.

Historical Background
Data warehouses are supposed to provide func-

tionality for storing and analyzing data over a long

period of time. Since the world is changing, the need

for applying changes to data warehouse structures

arose. Kimball [8] was probably the first to describe

the problem and propose solutions. Several more

sophisticated proposals followed (see below).

Foundations
A multidimensional data warehouse consists of three

different levels: The schema level, the instance level, and

the data level. On the schema level a data warehouse

is defined by a set of dimensions and corresponding

dimension categories, which build up a category hier-

archy. On the instance level a data warehouse is de-

fined by a set of dimension members for each

dimension. Dimension members build up a member

hierarchy which corresponds to the category hierarchy

of the respective dimension. Schema and instance

level together define the structure of a data ware-

house. Different multidimensional models deal with

measures in different ways. If no particular measure

dimension is defined, measures are modeled as attri-

butes of the fact table, thus are seen as part of the

schema. If there is a measure dimension existing,

measures are members of this particular dimension

and therefore seen as instances. On the data level, a

data warehouse consists of a set of data cells, which

hold the actual values to analyze. A data cell is defined

by selecting one dimension member from each

dimension.

Whereas changes on the data level, most of the time

data inserts, are part of the daily business in data

warehouse systems, modifications of the data ware-

house structure need additional effort. Structural

Data Warehouse Maintenance, Evolution and Versioning D 665

D

modifications can be implied by changes in the appli-

cation domain of a data warehouse system or by

changes in the requirements.

Levels of the Maintenance Problem

Data warehouse maintenance systems must provide

means to keep track of schema modifications as well

as of instance modifications. On the schema level one

needs operations for the Insertion,Deletion and Change

of dimensions and categories. Category changes are for

instance adding or deleting user defined attributes.

Also the hierarchical relations between categories may

be modified. On the instance level operations for the

Insertion, Deletion and Change of dimension members

are needed, as well as operations for changing the hierar-

chical relations between dimension members. Whether

changing measures is a schema or instance change

depends on the underlying multidimensional model.

Typically, schema changes happen rarely but need much

effort to be dealt with, whereas modifications of instances

may happen quite often, but need fewer effort.

Keeping track of the data warehouse structure is

only one aspect of data warehouse maintenance. The

structure of the cell data contained in a data warehouse

is determined by the data warehouse’s structure. Thus,

if this structure changes, existing cell data may have to

be adjusted to be consistent with the new structure.

Such adjustments can range from simple reaggregation

to complex data transformations because for instance

some unit of a measure is changed. These data adapta-

tions must not be mistaken for data change operations

as mentioned above, for instance loading new data into

the data warehouse.

Figure 1 shows an example for instance and schema

changes. It contains three subsequent versions of one

dimension of a car dealer’s data warehouse structure

together with the categories for this dimension. On

top, the initial version is shown. The dealer sells differ-

ent car models of different brands. Each model has an

attribute which denotes the engine power. For tradi-

tional German models this is given in horsepower, for

English models it is given in kilowatt. The outline in

the middle shows the subsequent version, where two

instance changes can be seen: a new model (BMW 1) is

introduced, and one model (Phantom V) is discontin-

ued. The bottom outline shows the current structure

version. Here one can see a schema change: a new

category (Company) is inserted into the category hier-

archy. On the instance level there are a number of
changes: one brand (Puch) is removed from the prod-

uct portfolio. The model (Modell G) attached to this

brand is now sold under another brand (Mercedes).

Furthermore a new brand (Chrysler) was added to

the product portfolio, together with one model

assigned to it. For the newly introduced category two

dimension members (BMW&Rolls-Royce and Daimler-

Chrysler) are added and the brands are connected to

the respective company. The attribute denoting the

power of a model is unified for all models to kilowatt.

All the mentioned structure modifications are due to

changes in the application domain. A requirements

change leading to structure updates could for instance

be that besides analyzing the number of car sells, the

car dealer also wants to keep track of the resulting

profit (insert measure).

A data adjustment for this example would be the

reaggregation to express that Modell G is now sold

under the brand of Mercedes. Data transformation

could for instance result from changing the currency

from ATS to EUR, where every money-related value

has to be divided by 13.7603.

Data Warehouse Versioning Versus Data Warehouse

Evolution

In principle two methods of maintenance can be

distinguished: Evolution and Versioning. Both of these

techniques rely on the defined operations for structure

changes but significantly vary in terms of query flexibil-

ity, query costs and data management effort. This dis-

tinction between versioning and evolution can be

applied for both the schema and the instance level.

With Data Warehouse Evolution, every applied

operation changes the structure of the data warehouse

and the old structure is lost. The respective cell data

is transformed to fit the new structure. As the old struc-

ture is lost, queries can only be done against the current

structure. Queries spanning different structure versions

are not possible. As the data follows one single structure,

no adaptations have to be done during query runtime,

which results in a better query performance compared to

the versioning approach. Furthermore, no information

about former versions has to be kept, which reduces the

effort for data management.

With Data Warehouse Versioning every applied

operation again leads to a new structure version. But in

contrast to the evolutionary approach the old version

is also kept available. Existing cell data does not need

to be adapted, but can be stored further on following

Data Warehouse Maintenance, Evolution and Versioning. Figure 1. Changes in Data Warehouse Structure.

666D Data Warehouse Maintenance, Evolution and Versioning
the respective structure version. This facilitates queries

spanning multiple structure versions. When running

such multiversion queries, data has to be either adapted

in runtime, which reduces query performance, or pre-

calculated and stored, which increases the required space

and maintenance effort. Keeping track of structure ver-

sion history is mandatory, which results in a con-

siderable effort for the data management.

Approaches Addressing the Maintenance Problem

There are a set of approaches addressing the data ware-

house maintenance problem. Kimball [8] is one of the

first, discovering the need for evolving data warehouses

and introducing three methods for dealing with ‘‘slowly

changing dimensions’’. The first method proposes sim-

ply overwriting old instances with their new values.

Tracking a change history is not possible. The second

method consists in creating a new instance for each

change. This will create a change history, but needs

additional effort in data management. One has to intro-

duce a surrogate key, because the natural primary keys

may not be unique any longer. For relating the various

instances for an object to each other, creating a time
stamp for the validity of each version is proposed.

The third method proposes creating a new attribute

for the instance, such that the original and the current

attribute value can be saved. This method can of course

only handle two versions of an instance. All three

methods are quite straightforward and only allow very

basic modifications on the instance level.

With FIESTA [2] Blaschka, Sapia and Höfling pres-

ent a schema design technique supporting schema

evolution. Evolution for instances is not supported,

but FIESTA provides an automatism to adapt existing

instances after schema modification. For this adapta-

tion two alternatives are proposed: adaption on the

physical level (i.e., database changes) and adaption on

the logical level (i.e., create a filter for accessing the

instances). The authors define a rich set of schema

changing operations, including the creation and dele-

tion of dimensions, categories and attributes.

In [11] Ravat and Teste present their approach for

dealing with changing instances. The authors define an

object-oriented approach for data warehouse modeling,

based on the class concept proposed by the Object Data-

baseManagement Group. Awarehouse object (instance)

Data Warehouse Maintenance, Evolution and

Versioning. Table 1. Classification of data warehouse

maintenance approaches

Versioning Evolution

Schema and instance
maintenance

[4] [14]

Schema maintenance only [6] [2,10]

Instance maintenance only [9,11,13] [7,3,8,15]

Data Warehouse Maintenance, Evolution and Versioning D 667

D

is defined by its current state and a set of historical and

archived states. The difference between historical

and archived states is that historical states can be exactly

reestablished, whereas for archived states only aggrega-

tions are kept, for reducing data size. Mapping functions

describe the building process fromwhich the data ware-

house classes are generated.

The approach of Hurtado, Mendelzon and Vaisman

[14] allows data warehouse evolution on the schema

and the instance level. Both schema and instances are

modeled using a directed acyclic graph where the nodes

represent levels and instances, respectively. The edges

are labeled with their valid time intervals. Nodes

connected to edges are only valid in the time interval

where the edge is valid. Operations for inserting and

deleting categories and instances are provided. Evolution

of instances is not supported.Definingwhether a specific

instance is part of the current schema happens by time-

stamping the edgewhich connects the node to the graph.

Additionally the temporal query language TOLAP is

defined to enable queries over a set of temporal dimen-

sions and temporal fact tables.

In [4,5] Eder and Koncilia present their COMET

Metamodel for temporal data warehousing. Based on

the principles of temporal databases, they introduce a

system that supports data warehouse versioning on the

schema and the instance level. COMET provides a rich

set of maintenance operations, which comprise inser-

tion, deletion, and update of schema elements and

instances. Also the complex operations split member

and merge members are defined. In contrast to other

approaches these operations can also be applied on the

time and fact dimensions. COMET furthermore

defines so called transformation functions, which

allow to transform the cell data between arbitrary ver-

sions of the data warehouse. This provides the func-

tionality of queries spanning several structure versions.

In [6] Golfarelli et al. present their approach for

schema versioning in data warehouse. Based on a graph

model of the data warehouse schema they present their

algebra for schema modifications. This approach sup-

ports versioning, therefore past versions are not lost.

Based on those schema versions the authors describe

a mechanism to execute cross-version queries, with

the help of so called augmented schemas. For creating

such an augmented schema, an old schema version is

enriched with structure elements from a subsequent

version, such that the data belonging to the old schema

version can be queried as if it follows the new version.
Besides these research proposals there are also two

commercial products which introduce basic means for

data warehouse maintenance. SAP Inc. describes in a

white paper [9] how to produces different types of

reports over existing data. This can be a report using

the current constellation, a report using an old con-

stellation, a report showing the historical truth, and a

report showing comparable results. This approach

supports only basic operations on dimension data.

The KALIDO Dynamic Information Warehouse

[7] also realizes some aspects of data warehouse main-

tenance. Their support for change is based on the so

called generic data modeling. The data warehouse

model consists of three categories of data, the transac-

tion data (which describes the activities of the business

and the measures associated with them), the busi-

ness context data (which is the analog to the instances),

and the metadata (which comprises among others,

parts the schema). With evolving the business context

data, instance evolution is supported.

There are a set of alternative approaches which

have not been mentioned yet. The different techniques

addressing the data warehouse maintenance problem

can be classified by two features: First, by whether they

support structure versioning or structure evolution,

and second by the level of modifications they can

handle. Table 1 shows this classification for some of

the best known approaches in this area. So each of the

mentioned approaches provides the features naming

the respective row and column.

Besides the classical maintenance requirements of

keeping track of changes in data warehouse, mainte-

nance methodologies can also be used to facilitate so

called what–if-analysis. In [1] Bebel et al. present their

approach for the management of multiversion data

warehouses. They differentiate between real versions

and alternative versions. Real versions are used to histor-

icize data warehouse modifications resulting from

real world changes. Alternative versions provide the

668D Data Warehouse Maintenance, Evolution and Versioning
functionality to create several versions, each of them

representing a possible future situation and then apply

what–if-analysis on them. Additionally, alternative

versions can be used to simulate datawarehouse changes

for optimization purposes.

Another instance of data warehouse maintenance

is the so called view maintenance. Whereas the app-

roaches presented above assume a data warehouse struc-

ture which is defined somehow independent from

underlying data sources and is populated with data by

ETL-processes, a data warehouse can also be seen as

materialized view over a set of data sources. Such amate-

rialized view is of course directly affected by changes

in the sources. For instance, in [16] Zhuge et al. present

their approach for view maintenance. But as these

approaches most times only deal with data updates,

they are out of scope for data warehouse maintenance.

Rundensteiner et al. [12] present a view mainte-

nance approachwhich can also deal with changing struc-

tures. Their evolvable view management is realized as

middleware between the data sources and the data ware-

house. A core feature is the so called evolvable SQLwhich

allows to define preferences for view evolution. With

these preferences it is possible to redefine the view after

some source changes, such that the resulting view is

possibly not equivalent the to original view any more,

but still fulfills the user’s needs.

Key Applications
Data warehouses are often used to efficiently support

the decision making process in companies and public

authorities. To fulfil this task they have to represent the

application domain and users’ requirements. To keep

the analysis results accurate and correct over the time,

data warehouse maintenance is a crucial issue. Appli-

cation domains which are typically vulnerable to

changing structures are among others statistic and

geographic applications (for instance statistical data

in the European Union), health care (for instance

switching from International Classification of Deceases

Version 9 to Version 10), or stock market (for instance

splitting stocks). In each of these domains, traceability

and comparability of data over long periods of time are

very important, thus effective and efficient means to

provide these capabilities have to be defined.

Future Directions
Current commercial systems assume the data warehouse

structure to be constant, therefore their support for
modifications is rather limited. On the other hand, in

real-world applications the demand for changing struc-

tures is rather high, as the data warehouse has to be

consistent with the application domain and the require-

ments. Despite the fact that more effort is put into

integrating maintenance capabilities into commercial

data warehouse systems [9,7], current products are still

not well prepared for this challenge.

Whereas schema and instance maintenance is quite

elaborated in current research papers, the efficient

transformation of cell data between different versions

is still subject to research. The main problems with

data transformation are first of all defining semantically

correct transformation functions, and second the

oftentimes huge amount of cell data which has to be

handled in an efficient way.

Related to data transformation is the problem of

multiversion queries. The problem with such queries

is defining the desired semantics and structure of

the outcome, i.e., whether and how elements and cell

values, which are not valid for all affected versions

should be included in the result.
Cross-references
▶Data Warehousing Systems: Foundations and

Architectures

▶On-line Analytical Processing

▶Optimization and Tuning in Data Warehouses

▶Quality of Data Warehouses

▶ Schema Versioning

▶Temporal Database

▶What-If Analysis
Recommended Reading
1. Bȩbel B., Eder J., Koncilia C., Morzy T., and Wrembel R. Crea-

tion and management of versions in multiversion data ware-

house. In Proc. 2004 ACM Symp. on Applied computing, 2004,

pp. 717–723.

2. Blaschka M., Sapia C., and Höfling G. On schema evolution in

multidimensional databases. In Proc. Int. Conf. on Data Ware-

housing and Knowledge Discovery, 1999, pp. 153–164.

3. Chamoni P. and Stock S. Temporal structures in data

warehousing. In Proc. Int. Conf. on Data Warehousing and

Knowledge Discovery, 1999, pp. 353–358.

4. Eder J., Koncilia C., and Morzy T. The COMET Metamodel for

Temporal Data Warehouses. In Proc. Int. Conf. on Advanced

Information Systems Engineering, 2002, pp. 83–99.

5. Eder J., Koncilia C., and Wiggisser K. Maintaining temporal

warehouse models. In Proc. Int. Conf. on Research and Practical

Issues of Enterprise Information Systems, 2006, pp. 21–30.

Data Warehouse Metadata D 669

D

6. Golfarelli M., Lechtenbörger J., Rizzi S., and Vossen G. Schema

versioning in data warehouses: Enabling cross-version querying

via schema augmentation. Data & Knowledge Eng., 59:435–459,

2006.

7. KALIDO Dynamic Information Warehouse: A Technical Over-

view. Tech. rep., Kalido, 2004.

8. Kimball R. Slowly Changing Dimensions. DBMS Magazine,

9(4):14, 1996.

9. Multi-Dimensional Modeling with BW: ASAP for BWAccelera-

tor. Tech. rep., SAP Inc., 2000.

10. Quix C. Repository Support for Data Warehouse Evolution. In

Proc. Int. Workshop on Design and Management of Data Ware-

houses, 1999.

11. Ravat F. and Teste O. A Temporal Object-Oriented Data Ware-

house Model. In Proc. Int. Conf. on Database and Expert Sys-

tems Applications, 2000, pp. 583–592.

12. Rundensteiner E.A., Koeller A., and Zhang X. Maintaining data

warehouses over changing information sources. Commun.

ACM, 43(6):57–62, 2000.

13. Sarda N.L. Temporal Issues in Data Warehouse Systems. In Proc.

Int. Symp. on Database Applications in Non-Traditional Envir-

onments, 1999.

14. Vaisman A. and Mendelzon A. A Temporal Query Language for

OLAP: Implementation and a Case Study. In Proc. Int. Work-

shop on Database Programming Languages, 2001, pp. 78–96.

15. Yang J. and Widom J. Maintaining temporal views over non-

temporal information sources for data warehousing. In Proc.

Int. Conf. on Extending Database Technology. 1998, pp. 389–

403.

16. Zhuge Y., Garcia-Molina H., Hammer J., and Widom J. View

Maintenance in a Warehousing Environment. In Proc. ACM

SIGMOD Int Conf. on Management of Data, 1995, pp. 316–327.
Data Warehouse Indexing

▶ Indexing of Data Warehouses
Data Warehouse Integration

▶ Interoperability in Data Warehouses
Data Warehouse Metadata

PANOS VASSILIADIS

University of Ioannina, Ioannina, Greece

Definition
Data warehouse metadata are pieces of information

stored in one or more special-purpose metadata
repositories that include (i) information on the con-

tents of the data warehouse, their location and their

structure, (ii) information on the processes that take

place in the data warehouse back-stage, concerning the

refreshment of the warehouse with clean, up-to-date,

semantically and structurally reconciled data, (iii) in-

formation on the implicit semantics of data (with

respect to a common enterprise model), along with

any other kind of data that aids the end-user exploit

the information of the warehouse, (iv) information on

the infrastructure and physical characteristics of com-

ponents and the sources of the data warehouse, and,

(v) information including security, authentication, and

usage statistics that aids the administrator tune the

operation of the data warehouse as appropriate.
Historical Background
Data warehouses are systems with significant complex-

ity in their architecture and operation. Apart from the

central data warehouse itself, which typically involves

an elaborate hardware architecture, several sources

of data, in different operational environments are

involved, along with many clients that access the data

warehouse in various ways. The infrastructure com-

plexity is only one part of the problem; the largest part

of the problem lies in the management of the data that

are involved in the warehouse environment. Source

data with different formats, structure, and hidden se-

mantics are integrated in a central warehouse and then,

these consolidated data are further propagated to dif-

ferent end-users, each with a completely different

perception of the terminology and semantics behind

the structure and content of the data offered to them.

Thus, the administrators, designers, and application

developers that cooperate towards bringing clean, up-

to-date, consolidated and unambiguous data from the

sources to the end-users need to have a clear under-

standing of the following issues (see more in the fol-

lowing section):

1. The location of the data

2. The structure of each involved data source

3. The operations that take place towards the propa-

gation, cleaning, transformation and consolidation

of the data towards the central warehouse

4. Any audit information concerning who has been

using the warehouse and in what ways, so that its

performance can be tuned

670D Data Warehouse Metadata
5. The way the structure (e.g., relational attributes) of

each data repository is related to a common model

that characterizes each module of information

Data warehouse metadata repositories store large

parts (if not all) of this kind of data warehouse meta-

data and provide a central point of reference for all the

stakeholders that are involved in a data warehouse

environment.

What happened was that all areas of data ware-

housing, ad-hoc solutions by industrial vendors and

consultants were in place before the academic world

provided a principled solution for the problem of the

structure and management of data warehouse metadata.

Early attempts of academic projects that related to

wrapper-mediator schemes of information integration

(Information Manifold, WHIPS, Squirrel, TSIMMIS –

see [9] for a detailed discussion of the related litera-

ture), did not treat metadata as first-class concepts in

their deliberations. At the same time, early standardi-

zation efforts from the industrial world (e.g., the MDIS
Data Warehouse Metadata. Figure 1. Role and structure of
standard [13]) were also poor in their treatment of the

problem.

The first focused attempt towards the problem of

data warehouse metadata management was made in

the context of the European Project ‘‘Foundations of

Data Warehouse Quality (DWQ)’’ [7,5]. In Fig. 1, the

vertical links represent levels of abstraction: the data

warehouse metadata repository, depicted in the middle

layer, is an abstraction of the way the warehouse envi-

ronment is structured in real life (depicted in the

lowest layer of Fig. 1). At the same time, coming up

with the appropriate formalism for expressing the con-

tents of the repository (depicted in the upper layer of

Fig. 1), provided an extra challenge that was tackled

by [7] through the usage of the Telos language.
Foundations
Structure of the data warehouse metadata repository.

A principled approach towards organizing the struc-

ture of the data warehouse metadata repository was
a data warehouse metadata repository [12].

Data Warehouse Metadata D 671

D

first offered by [7,8]. The ideas of these papers were

subsequently refined in [9] and formed the basis of the

DWQ methodology for the management of data ware-

house metadata. The specifics of the DWQ approach

are fundamentally based on the separation of data and

processes and their classification in a grid which is

organized in three perspectives, specifically the concep-

tual, the logical and the physical one and three location

levels, specifically, the source, warehouse and client

levels (thus the 3 � 3 contents of the middle layer of

Fig. 1 and also the structure of Fig. 2). The proposal

was subsequently extended to incorporate a program

versus data classification (Fig. 1) that discriminates

static architectural elements of the warehouse environ-

ment (i.e., stored data) from process models (i.e.,

software modules).

The location axis is straightforward and classifies

elements as source, data warehouse and client ele-

ments. The data warehouse elements incorporate

both the officially published data, contained in fact

and dimension tables as well as any auxiliary data

structures, concerning the Operational Data Store

and the Data Staging Area. Similarly, any back-stage

Extract-Transform-Clean (ETL) processes that popu-

late the warehouse and the data marts with data are

also classified according to the server in which they

execute. The most interesting part of the DWQmethod
Data Warehouse Metadata. Figure 2. The DWQ proposal fo

repository [4].
has to do with the management of the various models

(a.k.a. perspectives in the DWQ terminology) of the

system. Typically, in all DBMS’s –and, thus, all

deployed data warehouses- the system catalog includes

both a logical model of the data structure (i.e., the

database schema) as well as a physical schema, indicat-

ing the physical properties of the data (tablespaces,

internal representation, indexing, statistics, etc) that

are useful to the database administrator to perform

his everyday maintenance and tuning tasks. The

DWQ approach claimed that in a complicated and

large environment like a data warehouse it is absolutely

necessary to add a conceptual modeling perspective to

the system that explains the role of each module of the

system (be it a data or a software module). Clearly, due

to the vast number of the involved information sys-

tems, each of them is accompanied by its own model,

which is close enough to the perception of its users.

Still, to master the complexity of all these submodels, it

is possible to come up with a centralized, reference

model of all the collected information (a.k.a., enterprise

model) – exploiting, thus, the centralized nature of

data warehouses. The interesting part of the method

is the idea of expressing every other submodel of the

warehouse as a ‘‘view’’ over this enterprise model.

Thus, once an interested user understands the enter-

prise model, he/she can ultimately understand the
r the internal structure of the data warehouse metadata

672D Data Warehouse Metadata
particularities of each submodel, independently of

whether it concerns a source or client piece of data or

software.

In [15], the authors discuss a coherent frame-

work for the structuring of data warehouse metadata.

The authors discriminate between back-stage technical

metadata, concerning the structure and population of

the warehouse and semantic metadata, concerning the

front-end of the warehouse, which are used for query-

ing purposes. Concerning the technical metadata, the

proposed structure is based on (i) entities, comprising

attributes as their structural components and (ii)

an early form of schema mappings, also called map-

pings in the paper’s terminology, that try to capture

the semantics of the back-stage ETL process by appro-

priately relating the involved data stores through

aggregations, joins etc. Concerning the semantic meta-

data, the authors treat the enterprise model as a

set of business concepts, related to the typical OLAP

metadata concerning cubes, dimensions, dimension

levels and hierarchies. The overall approach is a coher-

ent, UML-based framework for data warehouse meta-

data, defined at a high-level of abstraction. Specialized

approaches for specific parts (like definitions of OLAP

models, or ETLworkflows) can easily be employed in a

complementary fashion to the framework of [6] (pos-

sibly through some kind of specialization) to add more

detail to the metadata representation of the warehouse.

It is also noteworthy to mention that the fundamental

distinction between technical and business metadata

has also deeply influenced the popular, industrially

related literature [11].

Contents of the data warehouse metadata repository

(data warehouse metadata in detail). The variety and

complexity of metadata information in a data warehouse

environment are so large that giving a detailed list of all
Data Warehouse Metadata. Figure 3. Metadata concerning
metadata classes that can be recorded is mundane. The

reader who is interested in a detailed list is referred to

[12] for a broader discussion of all these possibilities, and

to [11] for an in depth discussion with a particular

emphasis on ETL aspects (with the note that the ETL

process is indeed the main provider of entries in the

metadata repository concerning the technical parts of

the warehouse). In the sequel, the discussion is classified

in terms of data and processes.

Data. Figure 3 presents a summarized view of rele-

vant metadata concerning the static parts of the ware-

house architecture. The physical-perspective metadata

are mostly related to (i) the location and naming of the

information wherever data files are used and (ii)

DBMS catalog metadata wherever DBMS’s are used.

Observe the need for efficiently supporting the end-

user in his navigation through the various reports,

spreadsheets and web pages (i.e., answering the ques-

tion ‘‘where can I find the information I am looking

for?’’) also observe the need to support the questions

‘‘what information is available to me anyway?’’ which

is supported at the logical perspective for the client

level. The rest of the logical perspective is also straight-

forward and mostly concerns the schema of data; nev-

ertheless business rules are also part of any schema and

thus data cleaning requirements and the related busi-

ness rules can also be recorded at this level. The con-

ceptual perspective involves a clear recording of the

involved concepts and their intra-level mappings

(source-to-DW, client-to-DW). As expected, academic

efforts adopt rigorous approaches at this level [9],

whereas industrial literature suggests informal, but

simpler methods (e.g., see the discussion on ‘‘Business

metadata’’ at [11]).

It is important to stress the need of tracing the map-

pings between the different levels and perspectives in the
the data of the warehouse.

Data Warehouse Metadata D 673

D

warehouse. The physical-to-logical mapping is typically

performed by the DBMS’s and their administra-

tive facilities; nevertheless, the logical-to-conceptual

mapping is not. Two examples are appropriate in this

place: (i) the developer who constructs (or worse,

maintains) a module that processes a source file

of facts, has to translate cryptic code-and-value pairs

(e.g., CDS_X1 = 145) to data that will be stored in the

warehouse and (ii) an end-user who should see data

presented with names that relate to the concepts he is

familiar with (e.g., see a description ‘‘Customer name’’

instead of the attribute name CSTR_NAME of a dimen-

sion table). In both cases, the logical-to-conceptual

mappings are of extreme importance for the appropri-

ate construction and maintenance of code and reports.

This is also the place to stress the importance of

naming conventions in the schema of databases and

the signatures of software modules: the huge numbers

of involved attributes and software modules practically

enforce the necessity of appropriately naming all data

and software modules in order to facilitate the mainte-

nance process (see [11] for detailed instructions).

Processes. When the discussion comes to the meta-

data that concern processes, things are not very com-

plicated again, at the high level (Fig. 4). There is a set of

ETLworkflows that operate at the warehouse level, and

populate the warehouse along with any pre-canned

reports or data marts on a regular basis. The structure

of the workflow, the semantics of the activities and the

regular scheduling of the process form the conceptual

and logical parts of the metadata. The physical loca-

tions and names of any module, along with the man-

agement of failures form the physical part of the

metadata, concerning the design level of the software.

Still, it is worth noting that the physical metadata can
Data Warehouse Metadata. Figure 4. Metadata concerning
be enriched with information concerning the execu-

tion of the back-stage processes, the failures, the

volumes of processed data, clean data, cleansed or

impossible-to-clean data, the error codes returned by

the DBMS and the time that the different parts of the

process took. This kind of metadata is of statistical

importance for the tuning and maintenance of the

warehouse back-stage by the administration team. At

the same time, the audit information is of considerable

value, since the data lineage is recorded as every step

(i.e., transformation or cleaning) in the path that the

data follow from the sources to their final destination

can be traced.

Standards. The development of standards for data

warehouse metadata has been one of the holy grails

in the area of data warehousing. The standardization of

data warehouse metadata allows the vendors of all

kinds of warehouse-related tools to extract and retrieve

metadata in a standard format. At the same time,

metadata interchange among different sources and

platforms –and even migration from one software

configuration to another – is served by being able to

export metadata from one configuration and loading it

to another.

The first standardization effort came from

the MetaData Coalition (MDC), an industrial, non-

profitable consortium. The standard was namedMeta-

Data Interchange Specification (MDIS) [13] and its

structure was elementary, comprising descriptions for

databases, records, dimensions and their hierarchies

and relationships among them. Some years after

MDIS, the Open Information Model (OIM) [14] fol-

lowed. OIM was also developed in the context of the

MetaData Coalition and significantly extends MDIS by

capturing core metadata types found in the operational
the process of the warehouse.

674D Data Warehouse Metadata
and data warehousing environment of enterprises. The

MDCOIMuses UML both as a modeling language and

as the basis for its core model. The OIM is divided into

sub-models, or packages, which extend UML in order

to address different areas of information management,

including database schema elements, data transforma-

tions, OLAP schema elements and data types. Some

years later, in 2001, the Object Management Group

(OMG) initiated its own standard, named Common

Warehouse Metamodel (CWM) [4]. CWM is built on

top of other standard OMG notations (UML, MOF,

XMI) also with the aim to facilitate the interchange of

metadata between different tools and platforms. As of

2007, CWM appears to be very popular, both due to its

OMG origin and as it is quite close to the parts

concerning data warehouse structure and operation.

Much like OIM, CWM is built around packages, each

covering a different part of the data warehouse life-

cycle. Specifically, the packages defined by CWM cover

metadata concerning (i) static parts of the warehouse

architecture like relational, multidimensional and

XML data sources, (ii) back-stage operations like data

warehouse processes and operations, as well as data

transformations and (iii) front-end, user-oriented con-

cepts like business concepts, OLAP hierarchies, data

mining and information visualization tasks. A detailed

comparison of earlier versions of OIM and CWM can

be found in [19].

Key Applications
Data Warehouse Design. Typically, the data warehouse

designers both populate the repository with data and

benefit from the fact that the internal structure and

architecture of the warehouse is documented in the

metadata repository in a principled way. [17] implements

a generic graphical modeling tool operating on top of a

metadata repository management system that uses the

IRDS standard. Similar results can be found in [3,18].

Data Warehouse Maintenance. The same reasons

with data warehouse design explain why the data ware-

house administrators can effectively use the metadata

repository for tuning the operation of the warehouse.

In [16], there is a first proposal for the extension of the

data warehouse metadata with operators characterizing

the evolution of the warehouse’s structure over time. A

more formal approach on the problem is given by [6].

Data Warehouse Usage. Developers constructing or

maintaining applications, as well as the end-users in-

teractively exploring the contents of the warehouse can
benefit from the documentation facilities that data

warehouse metadata offer (refer to [11] for an example

where metadata clarify semantic discrepancies for

synonyms).

Data Warehouse Quality. The research on the an-

notation of data warehouse metadata with annotations

concerning the quality of the collected data (a.k.a.

quality indicators) is quite large. The interested reader

is referred to [10,9] for detailed discussions.

Model Management. Model management was

built upon the results of having a principled structure

of data warehouse metadata. The early attempts in

the area [1,2] were largely based on the idea of mapping

source and client schemata to the data warehouse schema

and tracing their attribute inter-dependencies.

Design of large Information Systems. The mental

tools developed for the management of large, intra-

organizational environments like data warehouses can

possibly benefit other areas –even as a starting point.

The most obvious candidate concerns any kind of open

agoras of information systems (e.g., digital libraries)

that clearly need a common agreement in the hidden

semantics of exported information, before they can

interchange data or services.
Cross-references
▶CWM

▶Data Quality

▶Data Warehouse Life-Cycle and Design

▶Data Warehouse

▶MDC

▶Metadata

▶Metadata Repository

▶Model Management

▶OIM
Recommended Reading
1. Bernstein P., Levy A., and Pottinger R. AVision for management

of complex models. ACM SIGMOD Rec. 29(4):55–63, 2000.

2. Bernstein P.A. and Rahm E. Data warehouse scenarios for model

management. In Proc. 19th Int. Conf. on Conceptual Modeling,

2000, pp. 1–15.

3. Carneiro L., and Brayner A. X-META: A methodology for data

warehouse design with metadata management. In Proc. 4th Int.

Workshop on Design and Management of Data Warehouses,

2002, pp. 13–22.

4. Common Warehouse Metamodel (CWM) Specification, version

1.1. OMG, March 2003.

5. Foundations of Data Warehouse Quality (DWQ) homepage.

http://www.dblab.ece.ntua.gr/�dwq/.

Data Warehouse Security D 675

D

6. Golfarelli M., Lechtenbörger J., Rizzi S., and Vossen G. Schema

versioning in data warehouses: enabling cross-version querying

via schema augmentation. Data Knowl. Eng., 59(2):435–459,

2006.

7. Jarke M., Jeusfeld M.A., Quix C., and Vassiliadis P. 1998, Archi-

tecture and quality in data warehouses. In Proc. 10th Conf. on

Advanced Information Systems Engineering, 1998. LNCS,

vol. 1413, 1998, pp. 93–113.

8. Jarke M., Jeusfeld M.A., Quix C., and Vassiliadis P. Architecture

and quality in data warehouses. Inf. Syst., 24(3):229–253, 1999.

9. Jarke M., Lenzerini M., Vassiliou Y., and Vassiliadis P. (eds.).

Fundamentals of Data Warehouses (2nd edn.). Springer, 2003,

p. 207.

10. Jeusfeld M.A., Quix C., and Jarke M. Design and analysis of

quality information for data warehouses. In Proc. 17th Int. Conf.

on Conceptual Modeling, 1998, pp. 349–362.

11. Kimball R. and Caserta J. The Data Warehouse ETL Toolkit.

Wiley, New York, NY, 2004.

12. Kimbal R., Reeves L., Ross M., and Thornthwaite W. The Data

Warehouse Lifecycle Toolkit: Expert Methods for Designing,

Developing, and Deploying Data Warehouses. Wiley, 1998.

13. Metadata Coalition: Proposal for version 1.0 metadata

interchange specification, 1996.

14. MetaData Coalition. Open Information Model, version 1.0

(1999).

15. Müller R., Stöhr T., and Rahm E. An integrative and uniform

model for metadata management in data warehousing environ-

ments. In Proc. Int. Workshop on Design and Management of

Data Warehouses, 1999.

16. Quix C. Repository support for data warehouse evolution.

In Proc. Int. Workshop on Design and Management of Data

Warehouses, 1999.

17. Sapia C., Blaschka M., and Höfling G. GraMMi: Using a stan-

dard repository management system to build a generic graphical

modeling tool. In 33rd Annual Hawaii Int. Conf. on System

Sciences, 2000.

18. Vaduva A, Kietz J-U, Zücker R. M4 - A metamodel for data

preprocessing. In Proc. ACM 4th Int. Workshop on Data Ware-

housing and OLAP, 2001.

19. Vetterli T, Vaduva A, and Staudt M. Metadata standards for data

warehousing: open information Model vs. Common warehouse

metamodel. ACM SIGMOD Rec., 29(3):68–75, 2000.
Data Warehouse Query Processing

▶Query Processing in Data Warehouses
Data Warehouse Refreshment

▶ Extraction, Transformation and Loading
Data Warehouse Security

CARLOS BLANCO
1, EDUARDO FERNÁNDEZ-MEDINA

1,

JUAN TRUJILLO
2, MARIO PIATTINI

1

1University of Castilla-La Mancha, Ciudad Real, Spain
2University of Alicante, Alicante, Spain

Synonyms
Secure datawarehouses; Datawarehouses confidentiality

Definition
Security, as is stated in the ISO/IEC 9126 International

Standard, is one of the components of software quality.

Information Security can be defined as the preser-

vation of confidentiality, integrity and availability of

information [5], in which confidentiality ensures that

information is accessible only to those users with au-

thorization privileges. Integrity safeguards the accu-

racy and completeness of information and process

methods, and availability ensures that authorized

users have access to information and associated assets

when required. Other modern definitions of Informa-

tion Security also consider properties such as authen-

ticity, accountability, non-repudiation, and reliability.

Therefore, Data Warehouse (DW) Security is defined

as the mechanisms which ensure the confidentiality,

integrity and availability of the data warehouse and its

components. Confidentiality is especially important

once the Data Warehouse has been deployed, since

the most frequent operations that users perform are

SQL and OLAP queries, and therefore the most fre-

quent security attack is against the confidentiality of

data stored in the data warehouse.
Historical Background
Considering that DWs are the basis of companies’ deci-

sion making processes, and due to the fact that they

frequently contain crucial and sensitive internal infor-

mation, and that DWs are usually managed by OLAP

tools, most of the initial approaches to data warehouse

security were focused on the definition and enforcement

of access control policies for OLAP tools [6,10], taking

into consideration one of the most traditional access

control models (Discretional Access Control) and also

managing the concept of role defined as subject. Other

approaches dealt with real implementation in specific

commercial tools by using multidimensional elements

[10]. Indirect access and cover channel problems have

676D Data Warehouse Security
also been detected in Statistical Databases but an entirely

satisfactory solution has not yet been found.

Moreover, data stores in DWs come from hetero-

geneous data sources, which must be integrated, thus

provoking various security problems. However, few

works dealing with the security defined in data sources

(which tackle the problem of merging different secu-

rity measures established in each source) appear to

exist. This problem has, nevertheless, been addressed

in the field of Federated Databases, and some authors

have used this parallelism to propose an architecture

for developing Data Warehouses through the integra-

tion of Multilevel Access Control (MAC) policies de-

fined in data sources [12]. Furthermore, ETL processes

have to load the information extracted and trans-

formed from the data sources into the Data Ware-

house, but these processes do not consider security

issues and must use the security defined in the data

source and add new security measures for the detected

lacks of security. In this field, the proposed works focus

solely upon ETL model processes, and do not consider

security issues.

In recent decades, the development of DWs has

evolved from being a handmade method, to being a

more engineering-based method, and several approaches

have been defined for the conceptual modeling of DWs,

e.g., [4,8]. Unfortunately none of these proposals has

considered security issues. However, one of these

approaches has recently been extended to propose a

Model Driven Multidimensional approach for
Data Warehouse Security. Figure 1. Data warehouse archite
developing secure DWs [1]. This approach permits the

inclusion of security requirements (audit and access con-

trol) from the first stages of the DWs life cycle, and it is

possible to automatically generate code for different tar-

get platforms through the use of model transformation.

The scientific community demands the integration of

security engineering and software engineering in order

to ensure the quality and robustness of the final applica-

tions [9], and this approach fulfills this demand.

Foundations
The DWdevelopment process follows the scheme pre-

sented in Fig. 1. Therefore, security should be considered

in all stages of this process by integrating the existing

security measures defined in data sources, considering

these measures in ETL processes, defining models that

represent security constraints at a high level of abstraction

and finally, enforcing these security constraints in the

OLAP tools in which the DW is deployed.

Security in Data Sources

In DWs architecture, data coming from heterogeneous

data sources are extracted, cleaned, debugged, and

stored. Once this process is completed, the DW will

be composed of these stored and integrated data, with

which users will be able to discover information in

strategic decision making processes. Data sources are

heterogeneous, can use different representation models

(relational databases, object-orientated databases,

XML files, etc.), and may or may not have associated
cture.

Data Warehouse Security D 677

D

security policies. Although DW users will be different

from data sources, these security policies should be

considered and integrated into the DW security design.

Data source security can be defined by using vari-

ous security policies such as Discretional Access Con-

trol (DAC) which restricts access to objects based on

the identity of subjects with a certain access permis-

sion: Mandatory Access Control (MAC), which restricts

access to objects based on the sensitivity of the infor-

mation contained in the objects and the formal autho-

rization of subjects to access information of such

sensitivity; or Role-Based Access Control (RBAC), an

approach which restricts system access to authorized

users by assigning permissions to perform certain

operations to specific roles. The integration of these

policies presents a problem which has been studied in

Federated Databases [12]. Some research efforts have

been made to integrate different multilevel policies in a

semi-automatic manner by using a schema integration

process which obtains the ordered set and the transla-

tion functions between each ordered set belonging to

each component database and the federated ordered

set. In addition, the integration of different role-based

policies has been dealt with by representing role con-

figurations as role graphs and by applying techniques

of graph integration to obtain the final role configura-

tion. Other authors, such as Rosenthal and Sciore [11],

have applied inference mechanisms to data sources in

order to obtain access control policies and have used

them to set up DW security.

After considering the parallelism between DW and

Federated Information Systems (FIS), Saltor et al. [12]

propose a seven layered architecture for preserving

and integrating the multilevel security established in

data sources. This architecture extends the five laye-

red architecture developed for FIS, including two

schemas: ‘‘authorization schemas’’ for each authoriza-

tion level and ‘‘external schemas’’ with which to repre-

sent multilevel security information of the data sources

in a Canonical Data Model (CDM). These ‘‘external

schemas’’ with security information will later be used

to obtain DW and Data Marts (DM) schemas.

Security in ETL Processes

ETL (Extraction-Transformation-Loading) processes

participate in the first stage of acquisition and extract

information from heterogeneous data sources, debug

it, integrate it and finally, load it into data warehouses

following their previously defined design.
It is necessary to define security measures in ETL

processes, in order to both use, adapt and integrate the

security measures defined in the data sources and to

add new security measures for the possibly detected

lacks of security. At present, despite the existence of

proposals with which to model ETL processes which

can be extended to include security issues, none of the

said proposals include the aforementioned concepts.

Some interesting works on the modeling of ETL

processes exist, but they do not deal with security

issues. Vassiliadis and Simitsis use their own graphic

notation for modeling ETL processes at a conceptual

level, propose how to transform these conceptual

designs into logical designs [13], and define a frame-

work for designing and maintaining ETL processes

(ARKTOS). Trujillo and Luján-Mora [15] model ETL

processes by using the UML notation and OCL to

establish constraints. Their proposal does not take

attributes into consideration but simplifies the design

and maintenance processes, and the use of UML and

OCL provides one with possibilities which greatly sim-

plify the extension of this model with security.

Security in Data Warehouses Modeling

Multidimensional modeling is the foundation of DWs,

Multidimensional Databases and On-Line Analytical

Processing Applications (OLAP) and is different from

traditional database modeling in that it is adapted to

the characteristics of these approaches. Despite the

quantity of interesting background on security mea-

sures and access control models specified for relational

databases which is available, it cannot be directly ap-

plied as it is not appropriate for DWs. Both are models

but they are based on different concepts. Relational

security measures use terms of database tables, rows

and columns, and DW security uses multidimensional

terms of facts, dimensions or classification hierarchy.

Several modeling proposals specifically created for

DWs consider their properties, but none use standard

notations or include security issues, e.g., [4,8].

A model driven multidimensional modeling ap-

proach for developing secure DWs has been proposed

by Fernández-Medina et al. [1]. This approach pro-

poses a Query/Views/Transformations (QVT) and

Model-Driven Architecture (MDA) based approach

(see Fig. 2). This aligns MDA with the DWs develop-

ment process, considering multidimensional models as

being PIM, logical models (such as ROLAP, MOLAP

and HOLAP) as being Platform-Specific Model (PSM),

Data Warehouse Security. Figure 2. Model driven architecture.

678D Data Warehouse Security
and the DBMS and OLAP tools as being the target

platforms. This proposal is made up of a security

model (access control and audit model) for DW [2],

an extension of UML for modeling secure multidimen-

sional models [3] as Platform-Independent Models

(PIM), and an extension of the Common Warehouse

Metamodel (CWM) [14] as a Platform-Specific Model

(PSM). This proposal is currently being extended within

the extremes of MDA architecture: the Computational-

Independent Model (CIM) level is being defined

through an extension of i* which defines security goals

and subgoals, and the code generation is being carried

out by considering Oracle, SQL Server Analysis Services,

and Pentaho as target platforms of the architecture.

Security in OLAP Tools

OLAP systems are mechanisms with which to discover

business information and use a multidimensional

analysis of data to make strategic decisions. This infor-

mation is organized according to the business para-

meters, and users can discover unauthorized data by

applying a set of OLAP operations to the multidimen-

sional view. Therefore, it is of vital importance for the

organization to protect its data from unauthorized

accesses including security constraints in OLAP sys-

tems which take these OLAP operations (roll-up,

drill-down, slice-dice and pivoting) into account, and

from indirect accesses (inferences) which use parallel

navigation, tracker queries, etc. The inference problem

is an important security problem in OLAP which has

yet to be solved and which can be studied by using the
existing parallelism with Statistical Databases. Several

solutions to the inference problem have been applied.

Various solutions to the problem of controlling infer-

ence exist, such as the perturbation of data or the

limitation of queries, but these imply a large amount

of computational effort. On the other hand the estab-

lishment of security constraints at cell level allows one

to control inferences without this lack of efficiency.

Several works attempting to include security issues

in OLAP tools by implementing the previously defined

security rules at a conceptual level have been proposed,

but these works focus solely upon Discretional Access

Control (DAC) and use a simplified role concept

implemented as a subject. For instance, Katic et al.

[6] proposed a DWs security model based on meta-

models which provides one with views for each user

group and uses Discretional Access Control (DAC)

with classification and access rules for security objects

and subjects. However, this model does not allow

one to define complex confidentiality constraints.

Kirkgöze et al. [7] defined a role-based security con-

cept for OLAP by using a ‘‘constraints list’’ for each

role, and this concept is implemented through the

use of a discretional system in which roles are defined

as subjects.

Priebe and Pernul later proposed a security des-

ign methodology, analyzed security requirements, clas-

sifying them into basic and advanced, and dealt with

their implementation in commercial tools. First, in

[10] they used adapted UML to define a Discretio-

nal Access Control (DAC) system with roles defined

Data Warehousing for Clinical Research D 679

D

as subjects at a conceptual level. They then went on

to implement this in Microsoft Analysis Services

(SQL Server 2000) by using Multidimensional Expres-

sions (MDX). They created a Multidimensional Secu-

rity Constraint Language (MDSCL) based on MDX

and put forward HIDE statements with which to

represent negative authorization constraints on cert-

ain multidimensional elements: cube, measure, slice,

and level.

Key Applications
DWs security is a highly important quality aspect of

a DW, which must be taken into account at all stages

of the development process. If security measures are

not established, then unauthorized users may obtain

the business information used for making strate-

gic decisions which is vital to the survival of the orga-

nization. DWs security has to be considered in all

the fields involved. These are, principally, the follow-

ing: the application of techniques through which to

integrate different kinds of security policies detected in

the data sources; the definition of models, which per-

mit the establishment of security constraints at upper

abstraction levels; and the study of the final implemen-

tation of the defined security measures in OLAP tools

in order to protect information from malicious opera-

tions such as navigations or inferences.
Cross-references
▶Data Warehousing Systems: Foundations and

Architectures

▶ Extraction

▶Multidimensional Modeling

▶On-Line Analytical Processing

▶Transformation and Loading
Recommended Reading
1. Fernández-Medina E., Trujillo J., and Piattini M. Model driven

multidimensional modeling of secure data warehouses. Eur. J.

Inf. Syst., 16:374–389, 2007.

2. Fernandez-Medina E., Trujillo J., Villarroel R., and Piattini M.

Access control and audit model for the multidimensional mod-

eling of data warehouses. Decis. Support Syst., 42(3):1270–1289,

2006.

3. Fernandez-Medina E., Trujillo J., Villarroel R., and Piattini M.

Developing secure data warehouses with a UML extension. Inf.

Syst., 32(6):826–856, 2007.

4. Golfarelli M., Maio D., and Stefano R. The dimensional fact

model: a conceptual model for data warehouses. Int. J. Coop.

Inf. Syst., 7(2–3):215–247, 1998.
5. ISO27001, ISO/IEC 27001 Information technology – Security

techniques – Information security management systems –

Requirements, 2005.

6. Katic N., Quirchmayr G., Schiefer J., Stolba M., and Tjoa A. 1A

prototype model for DW security based on metadata. In Proc.

Ninth Int. Workshop on Database and Expert Systems Applica-

tions, 1998, p. 300.

7. Kirkgöze R., Katic N., Stolda M., and Tjoa A. A security concept

for OLAP. In Proc. 8th Int. Workshop on Database and Expert

System Applications, 1997, p. 0619.

8. Lujan-Mora S., Trujillo J., and Song I.-Y. A UML profile for

multidimensional modeling in data warehouses. Data Knowl.

Eng., 59(3):725–769, 2006.

9. Mouratidis H. and Giorgini P. Integrating Security and Software

Engineering: Advances and Future Visions. Idea Group, Hershey,

PA, 2006.

10. Priebe T. and Pernul G. A pragmatic approach to conceptual

modeling of OLAP security. In Proc. 20th Int. Conf. on Concep-

tual Modeling, 2001, pp. 311–324.

11. Rosenthal A. and Sciore E. View security as the basis for data

warehouse security. In Proc. 2nd Int. Workshop on Design and

Management of Data Warehouses, 2000, p. 8.

12. Saltor F., Oliva M., Abelló A., and Samos J. Building secure data

warehouse schemas from federated information systems. In

Heterogeneous Information Exchange and Organizational

Hubs, D.T. Bestougeff (ed.). Kluwer Academic, 2002.

13. Simitsis A. and Vassiliadis P. A method for the mapping of

conceptual designs to logical blueprints for ETL processes.

Decis. Support Syst., 45(1):22–40, 2007.

14. Soler E, Trujillo J., Fernández-Medina E., and Piattini M.

SECRDW: an extension of the relational package from

CWM for representing secure data warehouses at the logical

level. In Proc. 5th Int. Workshop on Security in Information

Systems. 2007, pp. 245–256.

15. Trujillo J. and Luján-Mora S. A UML based approach for mod-

eling ETL processes in data warehouses. In Proc. 22nd Int. Conf.

on Conceptual Modeling, 2003, pp. 307–320.
Data Warehousing for Clinical
Research

SHAWN MURPHY

Massachusetts General Hospital, Boston, MA, USA

Synonyms
Clinical research chart

Definition
The clinical data warehouse allows rapid querying

and reporting across patients. It is used to support

the discovery of new relationships between the cause

and effects of diseases, and to find specific patients that

qualify for research studies.

680D Data Warehousing for Clinical Research
Historical Background
In healthcare, the term ‘‘data warehouse’’ is generally

reserved for those databases optimized for analysis and

integrated queries across patient populations. This is

as opposed to the transactional database, which is

optimized for rapid updating and highly specific

kinds of retrieval (like those based upon a specific

patient identifier).

There appear to be three fundamentally different

approaches to organizing the healthcare data ware-

house. The first is to extract tables from the transaction

systems of the healthcare organization and load them

into the database platform of the data warehouse with

minimal transformation of the data model. The codes

present in the columns are usually transformed to

make them compatible with codes from other systems.

For example, an ICD9 diagnosis code stored as ‘‘27.60’’

in one system may be transformed to a common for-

mat of 02760. However, the tables are left in essentially

the same schema as the transaction system [2].

The second approach is more ambitious, where

not just the codes from different systems are trans-

formed to look the same, but the data is transformed

to look the same as well. The diverse data coming from

different systems must be made to fit into new tables.

This involves a considerable amount of data transfor-

mation, but queries against the warehouse are then

much less complex [1]. This is the approach that will

be described.

The third approach is to keep the data located at

its source in a ‘‘distributed’’ data warehouse. Queries

are distributed to the local databases across a network.

This strategy can be successful when patients have all of

their data contained within one of the local systems

(such as when systems exist in distant cities). However,

if a single patient’s data is distributed across many

of these local databases, detailed data would need to

travel across the network to be accumulated in the inter-

nal processing structures of a central CPU to allow the

execution of query plans. This will have a severe negative

impact on the performance of these types of systems.

Foundations

Database Design for Clinical Research Data Warehouse

The clinical data warehouse allows rapid querying and

reporting across patients, which unexpectedly is not

available in most clinical transaction systems. Rather,

transaction systems are optimized for lookups, inserts,
updates, and deletes to a single patient in the database.

Transactions usually occur in small packets during the

day, such as when a patient’s lab test is sent to the

database. Transaction systems are usually updated by

small bits of data at a time, but these bits come in at

the rate of thousands per second. Therefore the typical

clinical database used for patient care must be optimized

to handle these transactions [2].

Because the clinical data warehouse does not need

to handle high volumes of transactions all day long,

the data warehouse can be optimized for rapid, cross

patient searching. For optimal searching of a database

it is best to have very large tables. These can be indexed

such that a single index allows a global search. So when

one designs a clinical data warehouse, one adopts a

few tables that can hold nearly all the available data.

The way to hold many forms of healthcare data in the

same table is by the classical entity-attribute-value

schema (or EAV for short) [4,5].

The EAV schema forces one to define the funda-

mental fact of healthcare [2]. The fundamental fact of

healthcare will be the most detailed rendition possible

of any healthcare observation as reported from the data

warehouse. This can be defined as an observation on a

patient, made at a specific time, by a specific observer,

during a specific event. The fact may be accompanied

by any number of values or modifiers. Each observa-

tion is tagged with a specific concept code, and each

observation is entered as a row in a ‘‘fact table.’’ This

fact table can grow to billions of rows, each represent-

ing an observation on a patient. The fact table is

complimented by a least an event table, a patient

table, a concept table, and an observer table [4].

The Patient table is straightforward. Each row

in the table represents a patient in the database.

The table includes common fields such as gender,

age, race, etc. Most attributes of the patient dimension

table are discrete (i.e., Male/Female, Zip code, etc.) or

relevant dates.

The Event table represents a ‘‘session’’ where obser-

vations were made. This ‘‘session’’ can involve a patient

directly such as a visit to a doctor’s office, or it can

involve the patient indirectly such as running several

tests on a tube of the patient’s blood. Several observa-

tions can be made during a visit. Visits have a start and

end date-time. The visit record also contains specifics

about the location of the session, like which hospital

or clinic the session occurred, and whether the patient

was an inpatient or outpatient at the time of the visit.

Data Warehousing for Clinical Research D 681

D

The Observer table is a list of observers. Generally,

each row in the observer dimension represents a pro-

vider at an institution, but more abstractly, it may

be an observing machine, such as an Intensive Care

Unit continuous blood pressure monitor.

The Concept table is the key to understanding

how to search the fact table. A concept specifies exactly

what observation was made on the patient and is being

represented in a particular row of the fact table. A code

is used to represent the concept in the fact table, and

the concept table links if to a human-readable descrip-

tion of the code (Fig. 1).

Metadata Management in Clinical Research Data

Warehouse

When looking at rows in the concept table, one is

introduced to Metadata. Metadata is everywhere in a

data warehouse. It represents data about the data, and

is where medical knowledge is represented in the clini-

cal data warehouse. The primary form of representa-

tion is in the groupings of terms so they can be queried

as groups of similar concepts. The terms are grouped

into hierarchies, each level up usually expressing a

more general medical concept.

Many diverse concepts about a patient can exist

in the fact table. In a clinical data warehouse, typically

100–500 thousand different concepts exist. All sorts of

concepts including ICD-9 codes (International Classifi-

cation ofDiseases 9th Edition,most common codes used

in hospitals to classify diagnoses), CPT codes (Current
Data Warehousing for Clinical Research. Figure 1. Optimal
Procedural Terminology, most common codes used in

hospitals to classify procedures), NDC codes (National

Drug Codes, most common codes used in hospitals to

classify medication), and LOINC codes (Logical Obser-

vation Identifiers Names and Codes, most common

codes used in hospitals to classify laboratory tests) as

well as numerous local coding systems are used to de-

scribe the patient. The challenge is maintaining and

updating the classification of the concepts. This classifi-

cation needs to seamlessly absorb new codes, and be

back-compatible to old coding and classification

systems.

The organization of concepts hierarchically allows

the user to navigate and use the concepts in a query.

Like a file path in the Windows Explorer, the path of the

hierarchy indicates inwhich groups the concept belongs,

with the most general group being listed on the far left

and each group to the right of that growing more and

more specific.

An interface to present this concept representation

is shown below (Fig. 2). The use of this interface has

been described in detail [3], but is essentially a way of

building queries using concepts represented in the

concept and provider dimension tables.

Privacy Management in the Clinical Research Data

Warehouse

The clinical data warehouse should be built with patient

privacy in mind. The most common strategy is to sepa-

rate the data warehouse into two databases. The clinical
star schema database design for healthcare data warehouse.

Data Warehousing for Clinical Research. Figure 2. Construction of query using the metadata from a healthcare data

warehouse.

682D Data Warehousing for Clinical Research
data goes into one database, and the identifiers of the

patients go into a second database. Access to the second,

identified, database is strictly controlled, and only acces-

sed during data loading and the building of the data

marts. The patients are given codes in the clinical data-

base and these codes can only be looked up in the

identified database. In this way, customers can use the

clinical database and not have access to the patient

identifiers.

Data Flow in Clinical Research Data Warehouse

Data generally flows into the data warehouse by loading

it from the transaction systems, or by receiving

a duplicate feed of data that are going into the transac-

tion systems. Data are usually loaded from the transac-

tion systems once it is provided as large ‘‘data dumps,’’ or

downloads. Transaction systems may contain many

millions of records, but with current technology they

can usually be written out in their entirety in just hours.

Reloading all this data into the data warehouse similarly

takes only a few hours, and the simplicity of this model,

as opposed to the complexity of update models, often

makes this a muchmore desirable process. The risk of an
update process is that errors in update flagswill cause the

data warehouse to become desynchronized with the

transaction system. To note many transaction systems

do not have a way to provide updates and a full ‘‘data

dump’’ is all that is possible from the transaction system.

When the data is loaded from the transaction sys-

tems, it is usually first loaded to a ‘‘staging area.’’ As

previously discussed, the data structure usually differs

considerably between the transaction system and the

data warehouse. Loading the transaction data into a

staging area allows the data to be studied and quality

assured before introducing the complexity of trans-

forming the data into the format of the data warehouse.

Because the teams from the transaction systems are

usually very familiar with the data in this form, it is

desirable to have the transaction team responsible for

their corresponding staging area, and allow them to

transfer and load the data into this area.

The data warehouse will usually distribute data

back to the data consumers as a ‘‘data mart.’’ These

are subsets of the data from the data warehouse.

The advantage of this approach is that the data can

be prepared per request in a consumer-friendly format.

Data Warehousing for Clinical Research D 683

D

Attempting to allow customers to query the clinical

data warehouse using Structured Query Language

(SQL) is rarely successful. The EAV scheme is notori-

ously unfriendly to the causal user of data [5]. Further-

more, the metadata exists in tables that are not

obviously connected to the patient data, so that tables

in the data warehouse often contain no humanly read-

able content. Finally, the data in the data warehouse is

often updated once every day and so analysis would

need to go against constantly shifting data. The result is

that the data is often exported into a user friendly data

mart. This also limits the set of patients that a custo-

mer can view, which is important from the patient

privacy point-of-view.

Key Applications
This clinical research data warehouse allows research-

ers to quickly obtain information that can be critical

for winning corporate and government sponsored re-

search grants, and easily gather data on patients iden-

tified for research studies. It allows clinical data to be

available for research analysis where security and con-

fidentiality are an integral part of the design, bringing

clinical information to researchers’ fingertips while

controlling and auditing the distribution of patient

data within the guidelines of the Institutional Review

Boards. It also serves as a ‘‘building-block’’ that enables

high-throughput use of patient data in some of the

following applications:

1. Bayesian inference engines. Bayesian inference

can be used to synthesize many diverse observations

into fundamental atomic concepts regarding a patient.

For example, a code may be assigned to a patient from

several sources indicating that a patient has a disease

such as diabetes. Some sources may indicate the

patient has type I diabetes, while others indicate

the patient has type II diabetes. Since these two types

of diabetes are mutually exclusive, it is clear that one of

the sources is in error. A determination of the true

diagnosis can be estimated by assigning a prior proba-

bility to each source as to how often it contains correct

information, and use these probabilities, to calculate

the likelihood of each diagnosis.

2. Clinical trials performed ‘‘in-silico.’’ Performing

an observational phase IV clinical trial is an expensive

and complex process that can be potentially modeled in

a retrospective database using groups of patients avail-

able in the large amounts of highly organized medical

data. This application would allow a formalized way of
discovering new knowledge frommedical databases in a

manner that is well accepted by the medical community.

For example, a prospective trial examining the potential

harm of Vioxx would entail recruiting large numbers of

patients and several years of observation. However, an

in-silico clinical trial would entail setting up the database

to enroll patients into a patient set automatically when

they are given a prescription for Vioxx and watching

them for adverse events as these events are entered in

the course of clinical care. Besides requiring fewer

resources, these trials could be set up for thousands of

medications at a time and thereby provide a much

greater scope of observational trials.

3. Finding correlations within data. When multiple

variables are measured for each patient in a data set,

there exists an underlying relationship between all pairs

of variables, some highly correlated and some not. Cor-

relations between pairs of variables may be discovered

with this application, leading to new knowledge, or

further insight into known relationships. Unsupervised

techniques using Relevance Networks andMutual Infor-

mation algorithms can generate hypothesis from sec-

ondary observed correlations in the data. This is a way

to exploit existing electronic databases for unsupervised

medical knowledge discovery without a prior model for

the information content. Observations collected within

labs, physical examinations, medical histories, and gene

expressions can be expressed as continuous variables

describing human physiology at a point in time. For

example, the expression of RNA found within a tumor

cell may be found to correlate with the dose of effective

chemotherapy for that tumor. This would allow future

tumors to have their RNA expression determined and

matched to various chemotherapies, and the chemother-

apy found to correlate most with that gene expression

would be chosen as the agent for that individual.
Cross-references
▶Health Informatics

▶Data Integration in Web Data Extraction System

▶Data Mining

▶Data Models
Recommended Reading
1. Inmon W.H. Building the Data Warehouse, 2nd edn. Wiley,

NY, 1996.

2. Kimball R. The Data Warehousing Toolkit. Wiley, NY, 1997.

3. Murphy S.N., Gainer V.S., and Chueh H. A visual interface

designed for novice users to find research patient cohorts in

684D Data Warehousing Systems: Foundations and Architectures
a large biomedical database. In Proc. AMIA Annu. Fall Symp.,

489–493, 2003.

4. Murphy S.N., Morgan M.M., Barnett G.O., and Chueh H.C.

Optimizing healthcare research data warehouse design

through past COSTAR query analysis. In Proc. AMIA Fall

Symp., 892–896, 1999.

5. Nadkarni P.M. and Brandt C. Data extraction and ad hoc

query of an entity-attribute-value database. J. Am. Med. Inform.

Assoc., 5:511–517, 1998.
Data Warehousing Systems:
Foundations and Architectures

IL-YEOL SONG

Drexel University, Philadelphia, PA, USA

Definition
A data warehouse (DW) is an integrated repository

of data for supporting decision-making applications of

an enterprise. The most widely cited definition of a

DW is from Inmon [3] who states that ‘‘a data ware-

house is a subject-oriented, integrated, nonvolatile,

and time-variant collection of data in support of man-

agement’s decisions.’’

Historical Background
DW systems have evolved from the needs of decision-

making based on integrated data, rather than an indivi-

dual data source. DW systems address the two primary

needs of enterprises: data integration and decision

support environments. During the 1980s, relational

database technologies became popular. Many organi-

zations built their mission-critical database systems

using the relational database technologies. This trend

proliferated many independent relational database sys-

tems in an enterprise. For example, different business

lines in an enterprise built separate database systems at

different geographical locations. These database sys-

tems improved the operational aspects of each business

line significantly. Organizations, however, faced the

needs of integrating the data which were distributed

over different database systems and even the legacy

database systems in order to create a central knowledge

management repository. In addition, during the 1990s,

organizations faced increasingly complex challenges in

global environments. Organizations realized the need

for decision support systems that can analyze historical

data trends, generate sophisticated but easy-to-read

reports, and react to changing business conditions in
a rapid fashion. These needs resulted in the develop-

ment of a new breed of database systems that can

process complex decision-making queries against

integrated, historical, atomic data. These new database

systems are now commonly called data warehousing

systems because they store a huge amount of data –

much more than operational database systems – and

they are kept for long periods of time. A data ware-

housing system these days provides an architectural

framework for the flow of data from operational sys-

tems to decision-support environments. With the

rapid advancement in recent computing technologies,

organizations build data warehousing systems to im-

prove business effectiveness and efficiency. In a mod-

ern business environment, a data warehousing system

has emerged as a central component of an overall

business intelligence solution in an enterprise.

Foundations

OLTP vs. Data Warehousing Systems

Data warehousing systems contain many years of

integrated historical data, ending up storing a huge

amount of data. Directly storing the voluminous data

in an operational database system and processing

many complex decision queries would degrade the

performance of daily transaction processing. Thus,

DW systems are maintained separately from opera-

tional databases, known as online transaction proces-

sing (OLTP) systems. OLTP systems support daily

business operations with updatable data. In contrast,

data warehousing systems provide users with an envi-

ronment for the decision-making process with read-

only data. Therefore, DW systems need a query-centric

view of data structures, access methods, implementa-

tion methods, and analysis methods. Table 1 highlights

the major differences between OLTP systems and data

warehousing systems.

Rolap and Molap

The data in a DWare usually organized in formats made

for easy access and analysis in decision-making. Themost

widely used data model for DWs is called the dimension-

al model or the star schema [6]. A dimensional model

consists of two types of entities–a fact table and many

dimensions. A fact table stores transactional or factual

data calledmeasures that get analyzed. Examples of fact

tables are Order, Sale, Return, and Claim. A dimension

represents an axis that analyzes the fact data. Examples of

Data Warehousing Systems: Foundations and Architectures. Table 1. A comparison between OLTP and data

warehousing systems

OLTP Data warehouse & OLAP

Purpose Daily business support Decision support

Transaction processing Analytic processing

User Data entry clerk, administrator, developer Decision maker, executives

DB design Application oriented Subject-oriented

DB design model ER model Star, snowflake, Multidimensional model

Data structures Normalized, Complex Denormalized

Simple

Data redundancy Low High

Data contents Current, up-to-date operational data Historical

Atomic Atomic and summarized

Data integration Isolated or limited integration Integrated

Usage Repetitive, Routine Ad-hoc

Queries Predictable, predefined Unpredictable, Complex, long queries

Simple joins

Optimized for small transactions Optimized for complex queries

Update Transactions constantly generate new data Data is relatively static

Often refreshed weekly, daily

Access type Read/update/delete/insert Read/append mostly

Number of Records per access Few Many

Concurrency level High Low

Data retention Usually less than a year 3–10 years or more

Response time Subsecond to second Seconds, minutes, worse

Systems Requirements Transaction throughput, Data consistency Query throughput, Data accuracy

Data Warehousing Systems: Foundations and Architectures. Figure 1. The typical structure of the star schema.

Data Warehousing Systems: Foundations and Architectures D 685

D

dimensions are Time, Customer, Product, Promotion,

Store, and Market. Since a DW contains time-variant

data, the Time dimension is always included in dimen-

sional schemas and the data in a fact table are organized

by a unit of time. An extensive list of dimensions
commonly found in DWs including those dimensions

used in [1,6] are presented in [4]. A typical structure

of the dimensional model is illustrated in Fig. 1.

Syntactically, all the dimensions are connected with

the fact table by one-to-many relationships. Thus, when

686D Data Warehousing Systems: Foundations and Architectures
a dimension has a many-to-many relationship with the

fact table, a special technique such as an intersection

table should be used. All the dimensions have a surrogate

key, which establishes an identifying relationship with

the fact table. In a star schema, all the dimensions

are usually denormalized to simplify the query structure

in order tominimize the number of joins. When dimen-

sions are normalized into the third normal form, the

schema is called a snowflake schema [6].

A dimensional model simplifies end-user query

processing by simplifying the database structure with

a few well-defined join paths. Conceptually, a dimen-

sional model characterizes a business process with the

fact table, the dimensions, and themeasures involved in

the business process. The dimensional model allows

users of a DW to analyze the fact data from any

combination of dimensions. The structure provides a

multidimensional analysis space within a relational

database.

Interactive data analysis of the data in a DW envi-

ronment is called online analytic processing (OLAP).

When the data in a dimensional model is stored in a

relational database, the analysis is called relational

online analytic processing (ROLAP). ROLAP engines

extend SQL to support dimensional model schema and

advanced OLAP functions.

DWdata can also be stored in a specialized multidi-

mensional structure called a data cube or a hypercube.

Data analysis of the data stored in a data cube is called

multidimensional OLAP (MOLAP). Compared with
Data Warehousing Systems: Foundations and Architectures

dimensions Time, Item, and Location for MOLAP.
ROLAP engines, MOLAP engines are usually limited

in data storage, but provide more efficient OLAP pro-

cessing by taking advantage of the multidimensional

data cube structure. A typical structure of a data cube is

illustrated in Fig. 2.

Hybrid OLAP (HOLAP) servers take advantage of

both ROLAP and MOLAP technologies. They usually

store large volumes of detailed data in a ROLAP server

and store aggregated data in a MOLAP server.

Data Warehousing Architecture

A data warehousing system is an environment that

integrates diverse technologies into its infrastructure.

As business data and analysis requirements change,

data warehousing systems need to go through an evo-

lution process. Thus, DW design and development

must take growth and constant change into account

to maintain a reliable and consistent architecture.

A DW architecture defines an infrastructure by which

components of DW environments are organized.

Figure 3 depicts the various components of a typical

DW architecture that consists of five layers – data

source systems, ETL management services, DW storage

and metadata repository, data marts and OLAP

engines, and front-end tools.

Data Source Systems The data source system layer

represents data sources that feed the data into the DW.

An enterprise usually maintains many different data-

bases or information systems to serve different OLTP
. Figure 2. A three dimensional data cube having

Data Warehousing Systems: Foundations and Architectures D 687

D

functions. Since a DW integrates all the important data

for the analysis requirements of an enterprise, it needs

to integrate data from all disparate sources. Data could

include structured data, event data, semi-structured

data, and unstructured data. The primary source for

data is usually operational OLTP databases. A DWmay

also integrate data from other internal sources such as

legacy databases, spreadsheets, archived storages, flat

files, and XML files. Frequently, a DW system may also

include any relevant data from external sources. Exam-

ples of such data are demographic data purchased from

an information vendor to support sales and marketing

analysis and standard reference data from the industry or

the government. In order to analyze trends of data from

a historical perspective, some archived data could also be

selected. Thus, data warehousing systems usually end up

with huge amounts of historical data.

These data are regularly fed into the second layer for

processing. The interval between each feed could

be monthly, weekly, daily, or even real-time,
Data Warehousing Systems: Foundations and Architectures

architecture with ROLAP/MOLAP/Hybrid OLAP.
depending on the frequency of changes in the data and

the importance of up-to-datedness of the data in theDW.

ETL Management Services The second layer extracts

the data from disparate data sources, transforms the

data into a suitable format, and finally loads them to a

DW. This process is known as ETL processing.

A DW does not need all the data from the data

source systems. Instead, only those data that are neces-

sary for data analysis for tactical and strategic decision-

making processes are extracted. Since these data come

from many different sources, they could come in het-

erogeneous formats. Because a DW contains integrated

data, data need to be kept in a single standard format

by removing syntactic and semantic variations from

different data source systems. Thus, these data are

standardized for the data model used in the DW in

terms of data type, format, size, unit of data, encoding

of values, and semantics. This process ensures that the

warehouse provides a ‘‘single version of the truth’’ [3].
. Figure 3. An enterprise data warehousing system

688D Data Warehousing Systems: Foundations and Architectures
Only cleaned and conformed data are loaded into the

DW. The storage required for ETL processing is called a

staging database.

The ETL process is usually the most time-consum-

ing phase in developing a data warehousing system [7].

It normally takes 60–80% of the whole development

effort. Therefore, it is highly recommended that ETL

tools and data cleansing tools be used to automate the

ETL process and data loading.

Data Warehouse Storage and Metadata Repository

The third layer represents the enterprise DWand meta-

data repository. The enterprise DW contains all the

extracted and standardized historical data at the atom-

ic data level. A DW addresses the needs of cross-

functional information requirements of an enterprise.

The data will remain in the warehouse until they reach

the limit specified in the retention strategy. After that

period, the data are purged or archived.

Another component of this layer is the metadata

repository. Metadata are data about the data. The repos-

itory contains information about the structures, opera-

tions, and contents of the warehouse. Metadata allows

an organization to track, understand, and manage the

population and management of the warehouse. There

are three types of metadata – business metadata, tech-

nical metadata, and process metadata [7]. Business

metadata describe the contents of the DW in business

terms for easy access and understanding. They include

the meaning of the data, organizational rules, policies,

and constraints on the data as well as descriptive names

of attributes used in reports. They help users in finding

specific information from the warehouse. Technical

metadata define the DW objects such as tables, data

types, partitions, and other storage structures, as well as

ETL information such as the source systems, extraction

frequency, and transformation rules. Process metadata

describe events during ETL operations and query sta-

tistics such as begin time, end time, CPU seconds, disk

reads, and rows processed. These data are valuable for

monitoring and troubleshooting the warehouse.

Metadata management should be carefully planned,

managed, and documented. OMG’s Common Ware-

house Metamodel [9] provides the metadata standard.

Data Mart and OLAP Engines The fourth layer repre-

sents the data marts and OLAP engines. A data mart is

a small-sized DW that contains a subset of the enter-

prise DW or a limited volume of aggregated data for
the specific analysis needs of a business unit, rather

than the needs of the whole enterprise. This definition

implies three important features of a data mart, differ-

ent from a DW system. First, the data for a data mart is

fed from the enterprise DW when a separate enterprise

DW exists. Second, a data mart could store lightly

aggregated data for optimal analysis. Using aggregated

data improves query response time. Third, a data mart

contains limited data for the specific needs of a busi-

ness unit. Conceptually, a data mart covers a business

process or a group of related business processes of a

business unit. Thus, in a fully-developed DWenviron-

ment, end-users access data marts for daily analysis,

rather than the enterprise DW.

An enterprise usually ends up having multiple data

marts. Since the data to all data marts are fed from the

enterprise DW, it is very important to maintain the

consistency between a data mart and the DWas well as

among data marts themselves. A way to maintain the

consistency is to use the notion of conformed dimension.

A conformed dimension is a standardized dimension or

a master reference dimension that is shared across

multiple data marts [6]. Using conformed dimensions

allows an organization to avoid repeating the ‘‘silos of

information’’ problem.

Data marts are usually implemented in one or

more OLAP servers. OLAP engines allow business

users to perform data analysis using one the underly-

ing implementation model – ROLAP, MOLAP, or

HOLAP.

Front-end Tools The fifth layer represents the front-

end tools. In this layer, end-users use various tools

to explore the contents of the DW through data

marts. Typical analyses include standard report gen-

erations, ad-hoc queries, desktop OLAP analysis,

CRM, operational business intelligence applications

such as dashboards, and data mining.

Other DW Architectures

Figure 3 depicts the architecture of a typical data ware-

housing system with various possible components. The

two primary paradigms for DW architectures are en-

terprise DW design in the top-down manner [3] and

data mart design in the bottom-up manner [6]. A

variety of architectures based on the two paradigms

and other options exists [3,6,8,10,12]. In this section,

seven different architectures are outlined. Figures 4–9

illustrate those architectures.

Data Warehousing Systems: Foundations and

Architectures. Figure 4. Independent data marts.

Data Warehousing Systems: Foundations and

Architectures. Figure 5. Data mart bus architecture with

conformed dimensions.

Data Warehousing Systems: Foundations and

Architectures. Figure 6. Centralized DW architecture

with no data marts.

Data Warehousing Systems: Foundations and

Architectures. Figure 7. Hub-and-spoke architecture.

Data Warehousing Systems: Foundations and Architectures D 689

D

Independent Data Marts Architecture In this architec-

ture, multiple data marts are created independently of

each other. The data marts do not use conformed

dimensions and measures. Thus, there is no unified
view of enterprise data in this architecture. As the num-

ber of data marts grows, maintenance of consistency

among data marts are difficult. In the long run, this

architecture is likely to produce ‘‘silos of data marts.’’

Data Warehousing Systems: Foundations and Architectures. Figure 8. Distributed DW architecture.

690D Data Warehousing Systems: Foundations and Architectures
Data Mart Bus Architecture with Conformed Dimen-

sions In this architecture, instead of creating a single

enterprise level DW, multiple dimensional data marts

are created that are linked with conformed dimensions

and measures to maintain consistency among the data

marts [6,7]. Here, an enterprise DW is a union of all

the data marts together with their conformed dimen-

sions. The use of the conformed dimensions and mea-

sures allows users to query all data marts together. Data

marts contain either atomic data or summary data.

The strength of the architecture is that data marts can

be delivered quickly, and multiple data marts can be

delivered incrementally. The potential weaknesses are

that it does not create a single physical repository of

integrated data and some data may be redundantly

stored in multiple data marts.

Centralized Data Warehouse Architecture In this

architecture, a single enterprise level DW is created

for the entire organization without any dependent

data marts. The warehouse contains detailed data for

all the analytic needs of the organization. Users and

applications directly access the DW for analysis.
Hub-and-Spoke Architecture (Corporate Information

Factory) In this architecture, a single enterprise DW,

called the hub, is created with a set of dimensional data

marts, called spokes, that are dependent on the enterprise

DW. The warehouse provides a single version of truth for

the enterprise, and each data mart addresses the analytic

needs of a business unit. This architecture is also called

the corporate information factory or the enterprise

DW architecture [3]. The warehouse contains data at

the atomic level, and the datamarts usually contain either

atomic data, lightly summarized data, or both, all fed

from the warehouse. The enterprise warehouse in this

architecture is usually normalized for flexibility and scal-

ability, while the datamarts are structured in star schemas

for performance. This top-down development method-

ology provides a centralized integrated repository of the

enterprise data and tends to be robust against business

changes. The primary weakness of this architecture is that

it requires significant up-front costs and time for devel-

oping the warehouse due to its scope and scale.

Distributed Data Warehouse Architecture A distri-

buted DW architecture consists of several local DWs

Data Warehousing Systems: Foundations and Architectures. Figure 9. Federated DW architecture.

Data Warehousing Systems: Foundations and Architectures D 691

D

and a global DW [3]. Here, local DWs have mutually

exclusive data and are autonomous. Each local ware-

house has its own ETL logic and processes its own

analysis queries for a business division. The global ware-

house may store corporate-wide data at the enterprise

level. Thus, either corporate-level data analysis at the

enterprise level or global data analyses that require data

from several local DWs will be done at the global DW.

For example, a financial analysis covering all the business

divisions will be done at the global DW. Depending on

the level of data and query flows, there could be several

variations in this architecture [3]. This architecture

supports multiple, geographically distributed business

divisions. The architecture is especially beneficial when

local DWs run on multiple vendors.

Federated Data Warehouse Architecture A federated

DW architecture is a variation of a distributed DW

architecture, where the global DW serves as a logical

DW for all local DWs. The logical DW provides users
with a single centralized DW image of the enterprise.

This architecture is a practical solution when an enter-

prise acquires other companies that have their own

DWs, which become local DWs. The primary advan-

tage of this architecture is that existing environments

of local DWs can be kept as they are without physically

restructuring them into the global DW. This architec-

ture may suffer from complexity and performance

when applications require frequent distributed joins

and other distributed operations. The architecture is

built on an existing data environment rather than

starting with a ‘‘clean slate.’’

Virtual Data Warehouses Architecture In a virtual DW

architecture, there is no physical DWor any data mart.

In this architecture, a DW structure is defined by a set

of materialized views over OLTP systems. End-users

directly access the data through the materialized views.

The advantages of this approach are that it is easy to

build and the additional storage requirement is

692D Data, Text, and Web Mining in Healthcare
minimal. This approach, however, has many disadvan-

tages in that it does not allow any historical data; it

does not contain a centralized metadata repository; it

does not create cleansed standard data items across

source systems; and it could severely affect the perfor-

mance of the OLTP system.

Key Applications
Numerous business applications of data warehousing

technologies to different domains are found in [1,6].

Design and development of clickstream data marts is

covered in [5]. Applications of data warehousing tech-

nologies to customer relationship management (CRM)

are covered in [2,11]. Extension of data warehousing

technologies to spatial and temporal applications is

covered in [8].
URL to Code
Two major international forums that focus on data

warehousing and OLAP research are International

Conferences on Data Warehousing and Knowledge

Discovery (DaWaK) and ACM International Work-

shop on Data Warehousing and OLAP (DOLAP).

DaWaK has been held since 1999, and DOLAP has

been held since 1998. DOLAP papers are found at

http://www.cis.drexel.edu/faculty/song/dolap.htm. A

collection of articles on industrial DW experience and

design tips by Kimball is listed in http://www.ralph-

kimball.com/, and the one by Inmon is listed in www.

inmoncif.com.
Cross-references
▶Active and Real-time Data Warehousing

▶Cube

▶Data Mart

▶Data Mining

▶Data Warehouse

▶Data Warehouse Life-Cycle and Design

▶Data Warehouse Maintenance, Evolution and

Versioning

▶Data Warehouse Metadata

▶Data Warehouse Security

▶Dimension

▶ Extraction, Transformation, and Loading

▶Materialized Views

▶Multidimensional Modeling

▶On-line analytical Processing

▶Optimization and Tuning in Data Warehouses
▶Transformation

▶View Maintenance

Recommended Reading
1. Adamson C. and Venerable M. Data Warehouse Design Solu-

tions. Wiley, New York, 1998.

2. Cunningham C., Song I.-Y., and Chen P.P. Data warehouse

design for customer relationship management. J. Database

Manage., 17(2):62–84, 2006.

3. Inmon W.H. Building the Data Warehouse, 3rd edn., Wiley,

New York, 2002.

4. Jones M.E. and Song I.-Y. Dimensional modeling: identification,

classification, and evaluation of patterns. Decis. Support Syst.,

45(1):59–76, 2008.

5. Kimball R. and Merz R. The Data Webhouse Toolkit: Building

the Web-Enabled Data Warehouse. Wiley, New York, 2000.

6. Kimball R. and Ross M. The Data Warehouse Toolkit: The

Complete Guide toDimensionalModeling, 2nd edn., Wiley, 2002.

7. Kimball R., Ross M., Thorntwaite W., Munday J., and Becker B.

1The Data Warehouse Lifecycle Toolkit, 2nd edn., Wiley,

2008.

8. Malinowski E. and Zimanyi E. Advanced Data Warehouse De-

sign: From Conventional to Spatial and Temporal Applications.

Springer, 2008.

9. Poole J., Chang D., Tolbert D., and Mellor D. Common Ware-

house Metamodel: An Introduction to the Standard for Data

Warehouse Integration. Wiley, 2002.

10. Sen A. and Sinha P. A comparison of data warehousing meth-

odologies. Commun. ACM, 48(3):79–84, 2005.

11. Todman C. Designing a Data Warehouse Supporting Customer

Relationship Management. Prentice-Hall, 2000.

12. Watson H.J. and Ariyachandra T. Data Warehouse Architec-

tures: Factors in the Selection, Decision, and the Success of

the Architectures. Technical Report, University of Georgia,

2005. Available from http://www.terry.uga.edu/�hwatson/

DW_Architecture_Report.pdf
Data, Text, and Web Mining
in Healthcare

ELIZABETH S. CHEN

Partners HealthCare System, Boston, MA, USA

Synonyms
Data mining; Text data mining; Web mining; Web data

mining; Web content mining; Web structure mining;

Web usage mining

Definition
The healthcare domain presents numerous opportu-

nities for extracting information from heterogeneous

sources ranging from structured data (e.g., laboratory

results and diagnoses) to unstructured data (e.g.,

Data, Text, and Web Mining in Healthcare D 693

D

clinical documents such as discharge summaries) to

usage data (e.g., audit logs that record user activity for

clinical applications). To accommodate the unique

characteristics of these disparate types of data and

support the subsequent use of extracted information,

several existing techniques have been adapted and ap-

plied including Data Mining, Text Mining, and Web

Mining [7]. This entry provides an overview of each of

these mining techniques (with a focus on Web usage

mining) and example applications in healthcare.

Historical Background
Given the exponential growth of data in all domains,

there has been an increasing amount of work focused

on the development of automated methods and tech-

niques to analyze data for extracting useful informa-

tion. Datamining is generally concerned with large data

sets or databases; several specialized techniques have

emerged such as text mining and Web mining that are

focused on text data and Web data, respectively. Early

applications were in the domains of business and

finance; however, the past decade has seen an increas-

ing use of mining techniques in the life sciences, bio-

medicine, and healthcare. In the healthcare domain,

data mining techniques have been used to discover

medical knowledge and patterns from clinical data-

bases, text mining techniques have been used to analyze

unstructured data in the electronic health record, and

Web mining techniques have been used for studying

use of healthcare-related Web sites and systems.

Foundations

Data Mining

Knowledge Discovery in Databases (KDD) and data

mining are aimed at developing methodologies and

tools, which can automate the data analysis process

and create useful information and knowledge from

data to help in decision-making [9,11]. KDD has

been defined as ‘‘the non-trivial process of identifying

valid, novel, potentially useful, and ultimately under-

standable patterns in data.’’ This process is interactive

and iterative and consists of several steps: data selection,

preprocessing, transformation, data mining, and inter-

pretation. Data mining is considered one step in the

KDD process and is concerned with the exploration

and analysis of large quantities of data in order to dis-

covermeaningful patterns and rules [9,11]. Two primary

goals of data mining are prediction and description.
Text Mining

While data mining focuses on algorithmic and

database-oriented methods that search for previously

unsuspected structure and patterns in data, text mining

is concerned with semi-structured or unstructured

data found within text documents [5,12]. A narrower

definition of text mining follows that of data mining in

that it aims to extract useful information from text data

or documents; a broader definition includes general

text processing techniques that deal with search, extrac-

tion, and categorization [17]. Example applications

include document classification, entity extraction, and

summarization.

Web Mining

Web mining is the application of data mining techni-

ques to automatically discover and extract information

from data related to the World Wide Web [9,24,25].

Three categories of Web mining have been defined

[18,6]:

� Web content mining: involves the discovery of useful

information from Web content. These techniques

involve examining the content of Web pages as well

as results of Web searching.

� Web structure mining: obtains information from the

organization of pages on the Web. These techniques

seek to discover the model underlying link struc-

tures of the Web.

� Web usage mining: discovers usage patterns from

Web data. These techniques involve analyzing data

derived from the interactions of users while inter-

acting with the Web.

Web usage mining seeks to understand the behavior of

users by automatically discovering access patterns from

their Web usage data. These data include Web server

access logs, proxy server logs, browser logs, user ses-

sions, and user queries. The typical Web usage mining

process has three phases: preprocessing, pattern dis-

covery, and pattern analysis [6,18,25].

Key Applications

Data Mining in Healthcare

Several studies have discussed the use of structured

and unstructured data in the electronic health record

for understanding and improving health care pro-

cesses [5]. Applications of data mining techniques for

structured clinical data include extracting diagnostic

694D Data, Text, and Web Mining in Healthcare
rules, identifying new medical knowledge, and discover-

ing relationships between different types of clinical data.

Using association rule generation, Doddi et al. discov-

ered relationships between procedures performed on a

patient and the reported diagnoses; this knowledge

could be useful for identifying the effectiveness of a

set of procedures for diagnosing a particular disease

[8]. To identify factors that contribute to perinatal out-

comes, a database of obstetrical patients was mined

for the goal of improving the quality and cost effective-

ness of perinatal care [23]. Mullins et al. explored a set

of data mining tools to search a clinical data repository

for novel disease correlations to enhance research

capabilities [21].

Text Mining in Healthcare

Natural language processing and text mining techniques

have been applied in healthcare for a range of applica-

tions including coding and billing, tracking physician

performance and resource utilization, improving pro-

vider communication, monitoring alternate courses

of treatment, and detecting clinical conditions and

medical errors [15]. Several studies have focused on the

development of text mining approaches for identifying

specific types of co-occurring concepts (e.g., concept

pairs such as disease-drug or disease-finding) in clini-

cal documents (e.g., discharge summaries) and biomed-

ical documents (e.g., Medline articles). In one study,

associations between diseases and findings (extracted

from discharge summaries using a natural language pro-

cessing tool) were identified and used to construct a

knowledge base for supporting an automated problem

list summarization system [2]. Another study discusses

the mining of free-text medical records for the creation

of disease profiles based on demographic information,

primary diseases, and other clinical variables [14].
Data, Text, and Web Mining in Healthcare. Figure 1. WebC

users’ (e.g., clinicians) interactions with patient data. Log file l

how information was accessed in a patient’s record. Each line

address, Medical Record Number (MRN), data type, and action

example, the subtype ‘‘2002–09–30–12.15.00.000000’’ for the

Basic Metabolic Panel) for the patient.
Web Usage Mining in Healthcare

Major application areas of Web usage mining include

personalization, system improvement, site modifica-

tion, business intelligence, and usage characterization

[25]. Web usage mining is viewed as a valuable source

of ideas and methods for the implementation of

personalized functionality in Web-based information

systems [10,22]. Web personalization aims to make

Web-based information systems adaptive for the

needs and interests of individual users. The four basic

classes of personalization functions are: memorization,

guidance, customization, and task performance support.

A number of research projects have used Web usage

mining techniques to add personalization functio-

nality in Web-based systems [20].

There are several reports of applying advanced

techniques such as Web usage mining to study

healthcare-related Web sites and systems. Malin has

looked at correlating medical status (represented in

health insurance claims as ICD-9 codes) with how

information is accessed in a health information

Web site [19]. The value of log data for public health

surveillance has been explored for detecting possible

epidemics through usage logs that record accesses to

disease-specific on-line health information [16,13].

Zhang et al. used Web usage data to study users’ infor-

mation-seeking patterns of MyWelch, a Web-based

medical library portal system [27]. Rozic-Hristovski

et al. have used data warehouse and On-Line Analytical

Processing (OLAP) techniques to evaluate use of the

Central Medical Library (CMK) Web site. They found

that existing Web log analysis tools only provided a set

of predefined reports without any support for interactive

data exploration, while their data warehouse and

OLAP techniques would allow for dynamic generation

of different user-defined reports that could be used to
IS log file records. The WebCIS log files record details for

ines provide information on who, what, when, where, and

has seven fields: timestamp, application name, userID, IP

. Data types may have subtypes (delimited by ‘‘^’’). For

data type ‘‘lab’’ refers to a specific laboratory result (e.g.,

Data, Text, and Web Mining in Healthcare. Figure 2. Transforming usage patterns to rules to shortcut rules. Each

usage pattern (mined from the CIS log files (a) can be converted to a rule (b) and some patterns can be transformed to

shortcut rules that exclude viewing of the department listings such as a listing of radiology results (c).

Data, Text, and Web Mining in Healthcare D 695

D

restructure the CMK Web site [26]. Another study ex-

plored regression analysis as a Web usage mining tech-

nique to analyze navigational routes used to access the

gateway pages of the Arizona Health Sciences Library

Web site. Bracke concluded that this technique could

supplement Web log analysis for improving the design

of Web sites [1].

Experimental Results
Depending on the clinical task, often only subsets of

data are of interest to clinicians. Identifying these

data, and the patterns in which they are accessed, can

contribute to the design of efficient clinical informa-

tion systems. At NewYork-Presbyterian Hospital

(NYP), a study was performed to learn the patient-

specific information needs (need for data in the

patient record) of clinicians from the log files of

WebCIS (a Web-based clinical information system

at NYP) and subsequently apply this knowledge to

enhance PalmCIS (a wireless handheld extension to

WebCIS) [3,4].

Based on existing mining techniques (i.e., data

mining and Web usage mining), ‘‘CIS Usage Mining’’

was developed as an automated approach for identify-

ing patterns of usage for clinical information systems

through associated log files (CIS log files). The CIS

usage mining process consists of four phases: Data

Collection – identify sources of CIS log files and

obtain log file data (Fig. 1); Preprocessing – perform

various tasks to prepare data for pattern discovery

techniques including de-identification, data cleaning,

data enrichment, and data transformation; Pattern

Discovery – apply techniques for discovering statistics,

patterns, and relationships such as descriptive statistical

analysis, sequential pattern discovery, classification, and

association rule generation; and, Pattern Analysis – filter

out uninteresting patterns and determine how the

discovered knowledge can be used through visualization

techniques or query mechanisms.
The CIS usage mining techniques were applied to

the log files of WebCIS to obtain usage statistics and

patterns for all WebCIS users as well as particular

classes of users (e.g., role-based groups such as physi-

cians or nurses or specialty-based groups like pediat-

rics and surgery). A subset of the patterns were

transformed into rules and stored in a knowledge

base for enhancing PalmCIS with context-sensitive

‘‘shortcuts’’, which seek to anticipate what patient

data the clinician may be interested in viewing next

and provide automated links to those data (Fig. 2).

Preliminary evaluation results indicated that shortcuts

may have a positive impact and that CIS usage mining

techniques may be valuable for detecting clinician

information needs in different contexts.

Cross-references
▶Association Rules

▶Data Mining

▶Text Mining

▶Text Mining of Biological Resources

▶Visual Data Mining
Recommended Reading
1. Bracke P.J. Web usage mining at an academic health sciences

library: an exploratory study. J. Med. Libr. Assoc., 92(4):

421–428, 2004.

2. Cao H., Markatou M., Melton G.B., Chiang M.F., and

Hripcsak G. Mining a clinical data warehouse to discover

disease-finding associations using co-occurrence statistics. In

Proc. AMIA Annual Symposium, 2005, pp. 106–110.

3. Chen E.S. and Cimino J.J. Automated discovery of patient-

specific clinician information needs using clinical information

system log files. In Proc. AMIA Annual Symposium, 2003,

pp. 145–149.

4. Chen E.S. and Cimino J.J. Patterns of usage for a web-based

clinical information system. In Proc. Medinfo, 2004, pp. 18–22.

5. Chen H., Fuller S., Friedman C., and Hersh W. Knowledge

Management and Data Mining in Biomedicine. Springer, 2005.

6. Cooley R., Mobasher B., and Srivastava J. Web mining: informa-

tion and pattern discovery on the World Wide Web. In Proc.

696D Database Adapter and Connector
Nineth IEEE Int. Conf. on Tools with Artificial Intelligence,

1997, pp. 558–567.

7. Data Mining, Web Mining, Text Mining, and Knowledge Dis-

covery. wwwkdnuggetscom.

8. Doddi S., Marathe A., Ravi S.S., and Torney D.C. Discovery of

association rules in medical data. Med. Inform. Internet Med.,

26(1):25–33, 2001.

9. Dunham M. Data Mining Introductory and Advanced Topics.

Prentice-Hall, Englewood, Cliffs, NJ, 2003.

10. Eirinaki M. and Vazirgiannis M. Web mining for web persona-

lization. ACM Trans. Internet Techn., 3(1):1–27, 2003.

11. Fayyad U., Piatetsky-Shapiro G., Smyth P., and Uthurusamy R.

Advances in Knowledge Discovery and Data Mining. AAAI/MIT,

1996.

12. Hearst M. Untangling text data mining. In Proc. 27th Annual

Meeting of the Assoc. for Computational Linguistics, 1999.

13. Heino J. and Toivonen H. Automated detection of epidemics

from the usage logs of a physicians’ reference database. In Prin-

ciples of Data Mining and Knowledge Discovery, 7th European

Conf, 2003, pp. 180–191.

14. Heinze D.T., Morsch M.L., and Holbrook J. Mining free-text

medical records. In Proc. AMIA Symposium, 2001, pp. 254–258.

15. Hripcsak G., Bakken S., Stetson P.D., and Patel V.L. Mining

complex clinical data for patient safety research: a framework

for event discovery. J. Biomed. Inform. 36(1–2):120–30, 2003.

16. Johnson H.A., Wagner M.M., Hogan W.R., Chapman W.,

Olszewski R.T., and Dowling J. et al. Analysis of web access logs

for surveillance of influenza. In Proc. Medinfo, 2004, p. 1202.

17. Konchady M. Text Mining Application Programming. Charles

River Media. 2006, p. 2.

18. Kosala R. and Blockeel H. Web mining research: a survey.

SIGKDD Explor., 2(1):1–15, 2000.

19. Malin B.A. Correlating web usage of health information

with patient medical data. In Proc. AMIA Symposium, 2002,

pp. 484–488.

20. Mobasher B., Cooley R., and Srivastava J. Automatic perso-

nalization based on web usage mining. Commun. ACM,

43(8):142–151, 2000.

21. Mullins I.M., Siadaty M.S., Lyman J., Scully K., Garrett C.T., and

Greg Miller W. et al. Data mining and clinical data repositories:

insights from a 667,000 patient data set. Comput. Biol. Med., 36

(12):1351–77, 2006.

22. Pierrakos D., Paliouras G., Papatheodorou C., and

Spyropoulos C. Web usage mining as a tool for personalization:

a survey. User Model. User-Adap., 13(4):311–372, 2003.

23. Prather J.C., Lobach D.F., Goodwin L.K., Hales J.W., Hage M.L.,

and Hammond W.E. Medical data mining: knowledge discovery

in a clinical data warehouse. In Proc. AMIA Annual Fall Sympo-

sium, 1997, pp. 101–105.

24. Scime A. Web mining: applications and techniques. Idea Group

Inc. 2005.

25. Srivastava J., Cooley R., Deshpande M., and Tan P. Web usage

mining: discovery and applications of usage patterns from web

data. SIGKDD Explor., 1(2):12–23, 2000.

26. Rozic-Hristovski A., Hristovski D., and Todorovski L. Users’

information-seeking behavior on a medical library Website.

J. Med. Libr. Assoc., 90(2):210–217, 2002.
27. Zhang D., Zambrowicz C., Zhou H., and Roderer N. User

information seeking behavior in a medical web portal environ-

ment: a preliminary study. J. Am. Soc. Inform. Sci. Tech., 55(8):

670–684, 2004.
Database Adapter and Connector

CHANGQING LI

Duke University, Durham, NC, USA

Synonyms
Database connectivity

Definition
A database connector is a software that connects an

application to any database. A database adapter is an

implementation of a database connector. The connec-

tor is more at the conceptual level, while the adapter is

at the implementation level, though they refer to the

same thing. For simplicity, in the remaining parts of

this entry, a database adapter will not be explicitly

distinguished from a database connector, i.e., they are

used to have the same meaning in the rest sections.

Unlike the way to access data with a fixed schema,

stored procedures, or queues, one can access table

data directly and transparently with a database adapter.

Open Database Connectivity (ODBC) [2] and Java

Database Connectivity (JDBC) [4] are two main data-

base adapters to execute Structured Query Language

(SQL) statements and retrieve results.

Historical Background
Before the universal database adapters, one has to write

code that talks to a particular database using an appro-

priate language. For example, if a program needs to

talk to an Access database and an Oracle database, the

program has to be coded with two different database

languages. This can be a quite daunting task, therefore

uniform database adapters emerged.

Here the histories of the two main universal data-

base adapters, i.e., ODBC and JDBC, are introduced.

ODBC enables applications connect to any database

for which an ODBC driver is available. ODBC was

created in 1992 by Microsoft, in partnership with

Simba Technologies, by adapting the Call Level Interface

(CLI) from the SQL Access Group (SAG). Later ODBC

was aligned with the CLI specification making its way

through X/Open (a company name) and International

Database Adapter and Connector D 697

D

Organization for Standardization (ISO), and SQL/CLI

became part of the international SQL standard in 1995.

JDBC is similar to ODBC, but is designed specifi-

cally for Java programs. JDBC was firstly developed by

JavaSoft, a subsidiary of Sun Microsystems, then de-

veloped under the Java Community Process. JDBC is

part of the Java Standard Edition and the Java package

java.sql contains the JDBC classes.

Foundations
A data architecture defines a data source interface to an

application through connectors, and also by com-

mands. Thus, a configurable request for data is issued

through commands to the adapters of the data sources.

This architecture provides the ability to create custom

connectivity to disparate backend data sources.

Universal connectors enable rapid access to hetero-

geneous data and allow a broad range of seamless

connectivity to file systems, databases, web applica-

tions, business applications and industry-standard

protocols on numerous platforms. Business connectors

allow customers to participate in collaboration, while

web database adapters allow direct access to the data-

base from web services.

Relational Database (RDB) adapters efficiently pro-

vide access to RDB data and systems. Standard SQL

statements may be used to access RDB data via connec-

tors including ODBC, OLE DB (Object Linking and

Embedding, Database), JDBC, XML, iWay Business Ser-

vices (Web services), MySQL Connector/ODBC and

Connector/NET driver, and others.

Due to the longer history, ODBC offers connectivity

to a wider variety of data sources than other new data-

access Application Programming Interfaces (APIs) such

as OLE DB, JDBC, and ADO.NET (ADO stands for

ActiveX Data Objects).

Before the information from a database can be used

by an application, an ODBC data source name must be

defined, which provides information about how to

connect the application server to a database, such as

Microsoft SQL Server, Sybase, Oracle, or IBM DB2.

The implementations of ODBC can run on different

operating systems such as Microsoft Windows, Unix,

Linux, OS/2, and Mac OS X. Hundreds of ODBC

drivers exist for different database products including

Oracle,DB2,Microsoft SQLServer, Sybase,MySQL, Post-

greSQL, Pervasive SQL, FileMaker, andMicrosoft Access.

The first ODBC product was released by Microsoft

as a set of Dynamic-Link Libraries (DLLs) for
Microsoft Windows. In 2006, Microsoft ships its own

ODBC with every supported version of Windows.

Independent Open Database Connectivity (iODBC)

offers an open source, platform-independent imple-

mentation of both the ODBC and X/Open specifica-

tions. iODBC has been bundled into Darwin and Mac

OS X, and it has also been ported by programmers to

several other operating systems and hardware platforms,

including Linux, Solaris, AIX, HP-UX, Digital UNIX,

Dynix, FreeBSD, DG-UX, OpenVMS, and others.

Universal Database Connectivity (UDBC), laid the

foundation for the iODBC open source project, is a

cross-platform fusion of ODBC and SQL Access Group

CLI, which enables non-Windows-based DBMS-inde-

pendent (Database Management System independent)

application development when shared-library imple-

mentations on Unix occurred only sporadically.

Headed, maintained and supported by Easysoft Di-

rector Nick Gorham, unixODBC has become the most

common driver-manager for non-Microsoft Windows

platforms and for one Microsoft platform, Interix. In

advance of its competitors, unixODBC fully supports

ODBC3 and Unicode. Most Linux distributions includ-

ing Red Hat, Mandriva and Gentoo, now ship uni-

xODBC. unixODBC is also used as the drivers by

several commercial database vendors, including IBM

(DB2, Informix), Oracle and SAP (Ingres). Many open

source projects also make use of unixODBC. unixODBC

builds on any platform that supports most of the GNU

(a computer operating system composed entirely of free

software) autoconf tools, and uses the LGPL (Lesser

General Public License) and the GPL (General Public

License) for licensing.

ODBC provides the standard of ubiquitous connec-

tivity and platform-independence because hundreds of

ODBC drivers exist for a large variety of data sources.

However, ODBC has certain drawbacks. Writing

ODBC code to exploit DBMS-specific features requires

more advanced programming. An application needs to

use introspection to call ODBC metadata functions

that return information about supported features,

available types, syntax, limits, isolation levels, driver

capabilities and more. Even when adaptive techniques

are used, ODBC may not provide some advanced

DBMS features. Important issues can also be raised

by differences between drivers and driver maturity.

Compared with drivers deployed and tested for years

which may contain fewer bugs, newer ODBC drivers

do not always have the stability.

698D Database Adapter and Connector
Developers may use other SQL APIs if ODBC does

not support certain features or types but these features are

required by the applications. Proprietary APIs can be used

if it is not aiming for platform-independence; whereas if it

is aiming to produce portable, platform-independent,

albeit language specific code, JDBC API is a good choice.

Sun’s (a company name) Java (a programming

language) 2 Enterprise Edition (J2EE) Connector

Architecture (JCA) defines a standard architecture for

connecting the Java 2 Platform to heterogeneous Enter-

prise Information Systems (EISs). The JCA enables an

EIS vendor to provide a standard resource adapter

(connector). The JDBC Connector is used to connect

relational data sources. DataDirect technology is a pio-

neer in JDBC which provides resource adapters as an

installable option for JDBC. The JDBCDeveloper Center

provides the most current, developer-oriented JDBC

data connectivity information available in the industry.

Multiple implementations of JDBC can exist and be

used by the same application. A mechanism is provided

by the API to dynamically load the correct Java packages

and register them with the JDBC Driver Manager, a

connection factory for creating JDBC connections.

Creating and executing statements are supported

by JDBC connections. These statements may either be

update statements such as SQL CREATE, INSERT,

UPDATE and DELETE or query statements with

SELECT.

Update statements e.g., INSERT, UPDATE and DE-

LETE return how many rows are affected in the data-

base, but do not return any other information.

Query statements, on the other hand, return a

JDBC row result set, which can be walked over. Based

on a name or a column number, an individual column

in a row can be retrieved. Any number of rows may exist

in the result set and the row result set has metadata to

describe the names of the columns and their types.

To allow for scrollable result sets and cursor sup-

port among other things, there is an extension to the

basic JDBC API in the javax.sql package.

Next the bridging configurations between ODBC

and JDBC are discussed:

ODBC-JDBC bridges: an ODBC-JDBC bridge con-

sists of an ODBC driver, but this ODBC driver uses the

services of a JDBC driver to connect to a database.

Based on this driver, ODBC function calls are translat-

ed into JDBC method calls. This bridge is usually used

when an ODBC driver is lacked for a particular data-

base but access to a JDBC driver is provided.
JDBC-ODBC bridges: a JDBC-ODBC bridge con-

sists of a JDBC driver, but this JDBC driver uses the

ODBC driver to connect to the database. Based on this

driver, JDBC method calls are translated into ODBC

function calls. This bridge is usually used when a partic-

ular database lacks a JDBC driver. One such bridge is

included in the Java Virtual Machine (JVM) of Sun

Microsystems. Sun generally recommends against the

use of its bridge. Far outperforming the JVM built-in,

independent data-access vendors now deliver JDBC-

ODBC bridges which support current standards.

Furthermore, the OLE DB [1], the Oracle Adapter

[3], the iWay [6] Intelligent Data Adapters, and

MySQL [5] Connector/ODBC and Connector/NET

are briefly introduced below:

OLE DB (Object Linking and Embedding, Data-

base), maybe written as OLEDB or OLE-DB, is an API

designed by Microsoft to replace ODBC for accessing

different types of data stored in a uniform manner.

While supporting traditional DBMSs, OLE DB also

allows applications to share and access a wider variety

of non-relational databases including object databases,

file systems, spreadsheets, e-mail, and more [1].

The Oracle Adapter for Database and Files are part

of the Oracle Business Process Execution Language

(BPEL) Process Manager installation and is an imple-

mentation of the JCA 1.5 Resource Adapter. The

Adapter is based on open standards and employs the

Web Service Invocation Framework (WSIF) technolo-

gy for exposing the underlying JCA Interactions as

Web Services [3].

iWay Software’s Data Adapter can be used for

ALLBASE Database, XML, JDBC, and ODBC-Based En-

terprise Integration. The Intelligent Data Adapters of

iWayWork Together; each adapter contains a communi-

cation interface, a SQL translator to manage adapter

operations in either SQL or iWay’s universal Data Ma-

nipulation Language (DML), and a database interface to

translate standard SQL into native SQL syntax [6].

MySQL supports the ODBC interface Connector/

ODBC. This allows MySQL to be addressed by all the

usual programming languages that run under Micro-

soft Windows (Delphi, Visual Basic, etc.). The ODBC

interface can also be implemented under Unix, though

that is seldom necessary [5]. The Microsoft .NET

Framework, a software component of Microsoft Win-

dows operating system, provides a programming inter-

face to Windows services and APIs, and manages the

execution of programs written for this framework [7].

Database Clustering Methods D 699

D

Key Applications
Database adapters and connectors are essential for the

current and future Web Services and Service Oriented

Architecture, Heterogeneous Enterprise Information Sys-

tems, Data Integration andData Interoperability, and any

other applications to access any data transparently.

URL To Code
The catalog and list of ODBC Drivers can be found at:

http://www.sqlsummit.com/ODBCVend.htm and http://

www.unixodbc.org/drivers.html.

The guide about how to use JDBC can be found at:

http://java.sun.com/javase/6/docs/technotes/guides/

jdbc/.

Cross-references
▶Data Integration

▶ Interface

▶ Java Database Connectivity

▶ .NET Remoting

▶Open Database Connectivity

▶Web 2.0/3.0

▶Web Services

Recommended Reading
1. Blakeley J. OLE DB: a component dbms architecture. In Proc.

12th Int. Conf. on Data Engineering, 1996.

2. Geiger K. Inside ODBC. Microsoft, 1995.

3. Greenwald R., Stackowiak R., and Stern J. Oracle Essentials:

Oracle Database 10g. O’Reilly, 2004.

4. Hamilton G., Cattell R., and Fisher M. JDBC Database Access

with Java: A Tutorial and Annotated Reference. Addison Wesley,

USA, 1997.

5. Kofler M. The Definitive Guide to MySQL5. A press, 2005.

6. Myerson J. The Complete Book of Middleware. CRC, USA, 2002.

7. Thai T., Lam H., .NET Framework Essentials. O’Reilly, 2003.
Database Clustering Methods

XUE LI

The University of Queensland, Brisbane, QLD,

Australia

Synonyms
Similarity-based data partitioning

Definitions
Given a database D = {t1, t2,...,tn}, of tuples and a user

defined similarity function s, 0 � s(ti, tj) � 1, ti, tj 2 D,
the database clustering problem is defined as a parti-

tioning process, such that D can be partitioned into a

number of (such as k) subsets (k can be given), as C1,

C2,...,Ck, according to s by assigning each tuple in D to

a subset Ci. Ci is called a cluster such that Ci = {ti | s(ti,

tr)
 s(ti,ts), if ti,tr 2 Cj and ts =2 Cj}.

Key Points
Database clustering is a process to group data objects

(referred as tuples in a database) together based on a

user defined similarity function. Intuitively, a cluster

is a collection of data objects that are ‘‘similar’’ to each

other when they are in the same cluster and ‘‘dissimi-

lar’’ when they are in different clusters. Similarity can

be defined in many different ways such as Euclidian

distance, Cosine, or the dot product. For data objects,

their membership belonging to a certain cluster can

be computed according to the similarity function.

For example, Euclidian distance can be used to com-

pute the similarity between the data objects with the

numeric attribute values, where the geometric distance

is used as a measure of the similarity. In a Euclidian

space, the data objects are to each other, the more

similar they are. Another example is to use the Euclid-

ian distance to measure the similarity between a data

object and a central point namely centroid of

the cluster. The closer to the centroid the object is,

the more likely it will belong to the cluster. So in this

case, the similarity is decided by the radius of the

points to their geometric centre.

For any given dataset a challenge question is how

many natural clusters that can be defined. The answer

to this question is generally application-dependent and

can be subjective to user intentions.

In order to avoid specifying k for the number

of clusters in a clustering process, a hierarchical meth-

od can be used. In this case, two different appro-

aches, either agglomerative or divisive, can be

applied. Agglomerative approach is to find the clusters

step-by-step through a bottom-up stepwise merging

process until the whole dataset is grouped as a single

cluster. Divisive approach is to find the clusters step-

by-step through a top-down stepwise split process

until every data object becomes a single cluster.

Although hierarchical approaches have been widely

used in many applications such as biomedical

researches and experimental analysis in life science,

they suffer from the problems of unable to undo the

intermediate results in order to approach a global

700D Database Clusters
optimum solution. In an agglomerative approach,

once two objects are merged, they will be together for

all following merges and cannot be reassigned. In a

divisive approach, once a cluster is split into two sub-

clusters, they cannot be re-grouped into the same

cluster for the further split.

In addition to hierarchical approaches, which

do not need to specify how many clusters to be dis-

covered, a user may specify an integer k for clustering

data objects. In general, the task of finding a global

optimal k partitions belongs to the class of NP-hard

problem. For this reason, heuristics are used in many

algorithms to achieve a balance between the efficiency

and effectiveness as much as possible to close to

the global optimum. Two well-known algorithms are

the k-means and k-medoids.

One important feature of database clustering is that

a dataset tends to be very large, high-dimensional, and

coming at a high speed. By using a balanced tree struc-

ture, BIRCH algorithm [3] makes a single scan on the

incoming data stream. BIRCH algorithm consists of

two phases: (i) a summary of historical data is incre-

mentally maintained in main memory as a clustering

tree (CF tree). A node in CF tree gives the cardinality,

centre, and radius of the cluster. Based on some heur-

istics, each new arriving data object is assigned to a sub-

cluster, which leads to the update of its cluster feature in

the CF tree. (ii) The clustering process is then applied

on the leaf nodes of the CF tree. When the final cluster

needs to be generated, the sub-clusters are treated as

weighted data points and various traditional clustering

algorithms can be applied in phase two computation

without involving I/O operations.

DBSCAN [1] is a density based approach consider-

ing the coherence of the data objects. As a result, the

nonconvex shapes clusters can be found based on the

density that connect the data objects forming any kind

of shapes in a Euclidian space. Spatial data indexes

such as R* tree can be used to improve the system

performance. STING [2] is another hierarchical

approach that uses a grid structure to stores density

information of the objects.

The key features of database clustering approaches

are that (i) they are designed to deal with a large

volume of data so a trade-off of accuracy and efficiency

often needs to be considered. (ii) They are not able to

see the complete dataset before the objects are clus-

tered. So a progressive resolution refinement is used to

approach the optimal solutions. (iii) They are designed
to deal with constant data streams and so the incre-

mental maintenances of the clustering results are

required.

Cross-references
▶Data Partitioning

▶K-Means and K-Medoids

▶Unsupervised Learning

Recommended Reading
1. Ester M., Kriegel H.P., Sander J., and Xu X. A density-based

algorithm for discovering clusters in large spatial databases

with noise, In Proc. 2nd Int. Conf. on Knowledge Discovery

and Data Mining, 1996, pp. 226–231.

2. Han J., Kamber M., and Tung A.K.H. 1Spatial clustering

methods in data mining: a survey, In Geographic Data Mining

and Knowledge Discovery, H. Miller, J. Han (eds.). Taylor and

Francis, UK, 2001.

3. Zhang T., Ramakrishnan R., and Livny M. Birch: An efficient

data clustering method for very large databases. In Proc. 1996

ACM SIGMOD Int. Conf. on Management of Data. Quebec,

Canada, 1996, pp. 103–114.
Database Clusters

MARTA MATTOSO

Federal University of Rio de Janeiro, Rio de Janeiro,

Brazil

Synonyms
DBC

Definition
A database cluster (DBC) is as a standard computer

cluster (a cluster of PC nodes) running a Database

Management System (DBMS) instance at each node.

A DBC middleware is a software layer between a data-

base application and the DBC. Such middleware is

responsible for providing parallel query processing on

top of the DBC. It intercepts queries from applications

and coordinates distributed and parallel query execu-

tion by taking advantage of the DBC. The DBC term

comes from an analogy with the term PC cluster,

which is a solution for parallel processing by assem-

bling sequential PCs. In a PC cluster there is no need

for special hardware to provide parallelism as opposed

to parallel machines or supercomputers. A DBC takes

advantage of off-the-shelf sequential DBMS to run

parallel queries. There is no need for special software

Database Clusters D 701

D

or hardware as opposed to parallel database systems.

The idea is to offer a high performance and cost-

effective solution based on a PC cluster, without need-

ing to change the DBMS or the application and its

database.

Historical Background
Traditionally, high-performance of database query pro-

cessing has been achieved with parallel database systems

[7]. Parallel processing has been successfully used to

improve performance of heavy-weight queries, typically

by replacing the software and hardware platforms with

higher computational capacity components (e.g., tightly-

coupled multiprocessors and parallel database systems).

Although quite effective, this solution requires the data-

base system to have full control over the data, requiring

an efficient database partitioning design. It also requires

adapting applications from the sequential to the parallel

environment. Migrating applications is complex (some-

times impossible), since it may require modifications to

the source code. In addition, often it requires the expan-

sion of the computational environment and the applica-

tion modification, which can be very costly. A cheaper

hardware alternative is to use parallel database systems

for PC clusters. However, the costs can still be high

because of a new database partitioning design and

some solutions require specific software (DBMS) or

hardware (e.g., SAN – Storage Area Network).

The DBC approach has been initially proposed by

the database research group from ETH Zurich through

the PowerDB project [10] to offer a less expensive and
Database Clusters. Figure 1. DBC architecture.
cost-effective alternative for high performance query

processing. Thus, DBC is based on clusters of PC

servers and pre-existing DBMS and applications. How-

ever, PowerDB is not open-source nor available for

download. Several open-source DBC systems (e.g.,

RepDB*, C-JDBC, ParGRES, and Sequoia) have been

proposed to support database applications by using

different kinds of database replication on the DBC

to obtain inter- and intra-query parallelism and fault

tolerance.

Foundations
While many techniques are available for high perfor-

mance query processing in parallel database systems,

the main challenge of a DBC is to provide parallelism

from outside the DBMS software.

A typical DBC architecture is a set of PC servers

interconnected by a dedicated high-speed network,

each one having its own processor(s) and hard disk

(s), and running an off-the-shelf DBMS all coordinat-

ed by the DBC software middleware (Fig. 1). The DBC

middleware is responsible for offering a single external

view of the whole system, like a virtual DBMS. Appli-

cations need not be modified when database servers

are replaced by their cluster counterparts. The DBC

approach is considered to be non-intrusive since it

does not require changes on the current application,

its queries, its DBMS and its database.

Typically, the application is on the client side while

the DBMS and the database is fully replicated at the PC

cluster nodes. The DBC software middleware

702D Database Clusters
intercepts the application queries at the moment they

are sent to the DBMS through the database driver. The

DBC middleware then defines the best strategy to

execute this query on the DBC to obtain the best

performance from the DBC configuration. The DBC

software middleware is typically divided on a global

component which orchestrates the parallelism and a

local component which tunes the local execution to

participate on load balancing.

High performance in database applications can

be obtained by increasing the system throughput, i.e.,

improving the number of transactions processed per

second, and by speeding-up the query execution time

for long running queries. The DBC query execution

strategy varies according to the type of transactions

being submitted and the DBC load. To improve system

throughput, the DBC uses inter-query parallelism. To

improve queries with long time execution the DBC

implements intra-query parallelism. Inter- and intra-

query parallelism can be combined. The query execu-

tion strategy is based on available database replicas.

Inter-query parallelism consists of executing many

queries at the same time, each at a different node.

Inter-query parallelism is implemented inDBCby trans-

parently distributing queries to nodes that contain repli-

cas of the required database. When the database is

replicated at all nodes of the DBC, read-only inter-

query parallelism is almost straightforward. Any read

query can be sent to any replica node and execute in

parallel. However, in the presence of updates the DBC

must ensure the ACID transaction properties. Typically,

a DBC global middleware has a component that man-

ages a pool of connections to running DBMSs. Each

request received by the DBC is submitted to a scheduler

component that controls concurrent request executions

and makes sure that update requests are executed in the

same order by all DBMSs. Such scheduler should be

able to be configured to enforce different parallel levels

of concurrency.

Intra-query parallelism consists of executing the

same query in parallel, using sub-queries that scan dif-

ferent parts of the database (i.e., a partition), each at a

different node. In a DBC, scanning different partitions

without hurting the database autonomy is not simple to

implement. In DBC, independent DBMSs are used

by the middleware as ‘‘black-box’’ components. It is up

to the middleware to implement and coordinate parallel

execution. This means that query execution plans gen-

erated by such DBMSs are not parallel. Furthermore, as
‘‘black-boxes,’’ they cannot bemodified to become aware

of the other DBMS and generate cooperative parallel

plans. Physically partitioning the database relies on a

good distribution designwhichmay not work for several

queries. An interesting solution to implement intra-

query parallelism in DBC is to keep the database repli-

cated and design partitions using virtual partitioning

(VP) as proposed by Akal et al. [1]. VP is based on

replication and dynamically designs partitions. The

basic principle of VP is to take one query, rewrite it

as a set of sub-queries ‘‘forcing’’ the execution of each

one over a different subset of the table. Then the final

query result is obtained through a composition of the

partial results generated by the sub-queries.

Key Applications
DBC obtained much interest for various database

applications like OLTP, OLAP, and e-commerce. Such

applications can be easily migrated from sequential

environments to the low cost DBC solution and obtain

high performance in query processing. Different DBC

open source solutions are available to cost-effective

parallelism for various database applications. Since

the high-performance requirements vary according to

the typical queries of the applications, different DBC

parallel techniques are provided. C-JDBC [3] and

Sequoia [11] are DBC focused on e-commerce and

OLTP applications. They use inter-query parallelism

and are based on fault tolerance and load balancing

in query distribution. RepDB* [8] is a DBC focused

on throughput, which offers HPC for OLTP transac-

tions. It uses inter-query parallelism and it is based on

replica consistency techniques. ParGRES [6] is the only

open-source DBC to provide for intra-query parallel

processing [5], thus it is focused on OLAP applications.

All these solutions have shown significant speedup

through high performance query processing. Experi-

mental results using the TPC series of benchmarks

can be found for each one of the specific DBC software

middlewares, for example TPC-W with C-JDBC and

Sequoia, TPC-C with RepDB* and TPC-H with

ParGRES.

Future Directions
Grid platforms can be considered a natural extension

of PC clusters. They are also an alternative of high

performance computing with large volumes of data.

Several challenges in grid data management are dis-

cussed in [9]. An extension of the DBC approach to

Database Clusters. Figure 2. ParGRES DBC – TPC-H query execution times.

Database Clusters D 703

D

grids is proposed [4]. However, communication and

data transfer can become a major issue.
Experimental Results
The graphic in Fig. 2 shows query execution time

decreasing as more processors are included to process

queries from the TPC-H benchmark. Query execution

times in the graphic are normalized. These experi-

ments have used a 32 PC cluster from Grid05000 [2].

The graphic also shows the execution time that should

be obtained if linear speedup was achieved. The speed-

up achieved by ParGRES while processing isolated

queries with different number of nodes (from 1 to 32)

is superlinear for most queries. A typical OLAP trans-

action is composed by a sequence of such queries,

where one query depends on the result of the previ-

ous query. The user has a time frame to take his

decisions after running a sequence of queries. Since

OLAP queries are time consuming, running eight

queries can lead to a four hour elapsed time, accord-

ing to these tests using one single node for an 11 GB

database. These eight queries can have their execution

time reduced from four hours of elapsed time to less

than one hour, just by using a small four nodes

cluster configuration. With 32 nodes these queries

are processed in a few minutes.
Data Sets
‘‘TPC BenchmarkTM H – Revision 2.1.0’’, url: www.

tpc.org.
URL to Code
url: cvs.forge.objectweb.org/cgi-bin/viewcvs.cgi/pargres/

pargres/
Cross-references
▶Data Partitioning

▶Data Replication

▶Data Warehouse Applications

▶Distributed Database Design

▶Grid File (and family)

▶ JDBC

▶ODBC

▶On-line Analytical Processing

▶ Parallel Database

▶ Parallel Query Processing

▶ Storage Area Network

Recommended Reading
1. Akal F., Böhm K., and Schek H.J. OLAP query evaluation

in a database cluster: a performance study on intra-query

parallelism. In Proc. Sixth East-European Conference on

Advances in Databases and Information Systems, 2002,

pp. 218–231.

2. Cappello F., Desprez F., and Dayde, M., et al. Grid5000: a large

scale and highly reconfigurable grid experimental testbed. In

International Workshop on Grid Computing, 2005, pp. 99–106.

3. Cecchet E. C-JDBC: a middleware framework for database

clustering. IEEE Data Eng. Bull., 27:19–26, 2004.

4. Kotowski N., Lima A.A., Pacitti E., Valduriez P., and Mattoso

M., Parallel Query Processing for OLAP in Grids. Concurrency

and Computation: Practice & Experience, 20(17):2039–2048,

2008.

704D Database Connectivity
5. Lima A.A.B., Mattoso M., and Valduriez P. Adaptive virtual

partitioning for OLAP query processing in a database cluster.

In Proc. 14th Brazilian Symp. on Database Systems, 2004,

pp. 92–105.

6. Mattoso M. et al. ParGRES: a middleware for executing OLAP

queries in parallel. COPPE-UFRJ Technical Report, ES-690,

2005.

7. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems (2nd edn.). Prentice Hall, Englewood Cliffs, NJ, 1999.

8. Pacitti E., Coulon C., Valduriez P., and Özsu M.T. Preventive

replication in a database cluster. Distribut. Parallel Databases,

18(3):223–251, 2005.

9. Pacitti E., Valduriez P., and Mattoso M. Grid data manage-

ment: open problems and new issues. J. Grid Comput.,

5(3):273–281, 2007.

10. Röhm U., Böhm K., Scheck H.-J., and Schuldt H. FAS - A

freshness-sensitive coordination middleware for a cluster of

OLAP components. In Proc. 28th Int. Conf. on Very Large

Data Bases, 2002, pp. 754–768.

11. Sequoia Project, http://sequoia.continuent.org.
Database Connectivity

▶Database Adapter and Connector
Database Constraints

▶Database Dependencies
Database Dependencies

MARC GYSSENS

University of Hasselt & Transnational University of

Limburg, Diepenbeek, Belgium

Synonyms
Database constraints; Data dependency

Definition
For a relational database to be valid, it is not sufficient

that the various tables of which it is composed con-

form to the database schema. In addition, the instance

must also conform to the intended meaning of the

database [15]. While many aspects of this intended

meaning are inherently informal, it will generally in-

duce certain formalizable relationships between the
data in the database, in the sense that whenever a

certain pattern is present among the data, this pattern

can either be extended or certain data values must be

equal. Such a relationship is called a database depen-

dency. The vast majority of database dependencies in

the literature are of the following form [5]:

ð8x1Þ:::ð8xnÞ’ðx1; :::;xnÞ
) ð9z1Þ:::ð9zkÞcðy1; :::; ym; z1; :::; zkÞ:

Here, {y1,...,ym} � {x1,...,xn}, ’ is a (possibly empty)

conjunction of relation atoms using all the variables

x1,...,xn, and c is either a single equality atom involving

universally quantified variables only (in which case

the dependency is called equality-generating); or c is a

non-empty conjunction of relation atoms involving all

the variables y1,...,ym, z1,...,zk (in which case the depen-

dency is called tuple-generating. A tuple-generating

dependency is called full if it has no existential quanti-

fiers: In the other case, it is called embedded.

Historical Background
The theory of database dependencies started with the

introduction of functional dependencies by Codd in his

seminal paper [8]. They are a generalization of (super)

keys. A relation satisfies a functional dependency X! Y

(where X and Y are sets of attributes) if, whenever two

tuples agree on X, they also agree on Y . For example,

if in a employee relation of a company database with

schema

O ¼ fEMP-NR; EMP-NAME; JOB; SALARYg;

the functional dependencies

fEMP-NRg ! fEMP-NAME;DEPT ;
JOB; SALARYg;

fDEPT ; JOBg ! fSALARYg

hold, this means that EMP-NR is a key of this relation,

i.e., uniquely determines the values of the other attri-

butes, and that JOB in combination with DEPT

uniquely determines SALARY.

Codd also noticed that the presence of a functional

dependency X ! Y also allowed a lossless decomposi-

tion of the relation into its projections onto X [Y

and X [Y (Y denoting the complement of Y). In

the example above, the presence of {DEPT, JOB} !
{SALARY} allows for the decomposition of the original

relation into its projections onto {DEPT, JOB, SALARY}

and {EMP-NR, EMP-NAME, DEPT}.

Database Dependencies D 705

D

Hence, the identification of constraints was not

only useful for integrity checking but also for more

efficient representation of the data and avoiding

update anomalies through redundancy removal.

Subsequent researchers (e.g., [18]) noticed indepen-

dently that the presence of the functional dependency

X ! Y is a sufficient condition for decomposability of

the relation into its projection onto X [Y and X [Y ,

but not a necessary one. For example,
Drinker Beer Bar

Jones Tuborg Far West

Smith Tuborg Far West

Jones Tuborg Tivoli

Smith Tuborg Tivoli
can be decomposed losslessly into its projections onto

{DRINKER, BEER} and {BEER, BAR}, but neither

{BEER} ! {DRINKER} nor {BEER} ! {BAR} holds.

This led to the introduction of the multivalued depen-

dency: a relation satisfies the multivalued dependency

X � ↡ Y exactly when this relation can be decomposed

losslessly into its projections onto X [Y and X [Y .

Fagin [10] also introduced embedded multivalued

dependencies: A relation satisfies the embedded multi-

valued dependency X� ↡ Y jZ if its projection onto X [
Y [Z can be decomposed losslessly into its projections

onto X [Y and X [Z. Sometimes, however, a relation

be decomposed losslessly into three or more of its

projections but not in two. This led Rissanen [17] to

introduce a more general notion: a relation satisfies a

join dependency X1⋈ ... ⋈Xk if it can be decomposed

losslessly into its projections onto X1,...,Xk.

Quite different considerations led to the introduc-

tion of inclusion dependencies [6], which are based on

the concept of referential integrity, already known to

the broader database community in the 1970s. As an

example, consider a company database in which one

relation, MANAGERS, contains information on de-

partment managers, in particular, MAN-NAME, and

another, EMPLOYEES, contains general information

on employees, in particular, EMP-NAME. As each

manager is also an employee, every value MAN-

NAME in MANAGERS must also occur as a value of

EMP-NAME in EMPLOYEES. This is written as

the inclusion dependency MANAGERS[MAN-NAME]

� EMPLOYEES[EMP-NAME]. More generally, a
database satisfies the inclusion dependency R[A1,...,

An] � S[B1,...,Bm] if the projection of the relation R

onto the sequence of attributes A1,...,An is contained in

the projection of the relation S onto the sequence of

attributes B1, ...,Bn.

The proliferation of dependency types motivated

researchers to propose subsequent generalizations,

eventually leading to the tuple- and equality-generat-

ing dependencies of Beeri and Vardi [5] defined higher.

For a complete overview, the reader is referred to [14]

or the bibliographic sections in [1]. For the sake of

completeness, it should also be mentioned that depen-

dency types have been considered that are not captured

by the formalism of Beeri and Vardi. An example is the

afunctional dependency of De Bra and Paredaens (see,

e.g., Chap. 5 of [15]).

Foundations
The development of database dependency theory has

been driven mainly by two concerns. One of them is

solving the inference problem, and, when decidable,

developing tools for deciding it. The other is, as point-

ed out in the historical background, the use of database

dependencies to achieve decompositions of the

database contributing to more efficient data represen-

tation, redundancy removal, and avoiding update ano-

malies. Each of these concerns is discussed in some

more detail below.

Inference

The inference problem is discussed here in the context of

tuple- and equality-generating dependencies. The ques-

tion that must be answered is the following: given a

subtype of the tuple- and equality generating dependen-

cies, given as input a set of constraints C and a single

constraint c, both of the given type, is it decidable

whether C logically implies c In other words, is it

decidable if each database instance satisfying C also

satisfies c? Given that database dependencies have

been defined as first-order sentences, one might be

inclined to think that the inference problem is just an

instance of the implication problem in mathematical

logic. However, for logical implication, one must con-

sider all models of the given database scheme, also

those containing infinite relations, while database rela-

tions are by definition finite. (In other words, the study

of the inference of database dependencies lies within

finite model theory.) To separate both notions of infer-

ence, a distinction is made between unrestricted

706D Database Dependencies
implication (denoted C � c) and finite implication

(denoted C�f c) [5]. Since unrestricted implication

is recursively enumerable and finite implication is co-r-

ecursively enumerable, their coincidence yields that the

finite implication problem is decidable. The opposite,

however, is not true, as is shown by the following

counterexample. Consider a database consisting of a

single relation R with scheme {A, B}. Let

C ¼ fB ! A;R½B� � R½A�g and let c be the inclusion

dependency R[A] � R[B]. One can show that C�f c,

but C j6¼ c, as illustrated by the following, necessarily

infinite, counterexample:
A B

0 1

1 2

2 3

3 4
..
. ..

.

As will be pointed out later, the finite implication

problem for functional dependencies and so-called

unary inclusion dependencies (i.e., involving only one

attribute in each side) is decidable.

An important tool for deciding (unrestricted)

implication is the chase. In the chase, a table is created

for each relation in the database. For each relation

atom in the left-hand side of the dependency c to be

inferred, its tuple of variables is inserted in the

corresponding table. This set of tables is then chased

with the dependencies of C: in the case of a tuple-

generating dependency, new tuples are added in a

minimal way until the dependency is satisfied (in

each application, new variables are substituted for ex-

istential variables); in the case of an equality-generat-

ing dependency, variables are equated until the

dependency is satisfied. The result, chaseðCÞ, which
may be infinite, can be seen as a model for C. It is the
case that C � c if and only if the right-hand side of c is

subsumed by some tuple of chaseðCÞ (in the case of a

tuple-generating dependency) or the required equality

has been applied during the chase procedure.

In the case where only full tuple-generating depen-

dencies and equality-generating dependencies are

involved, the chase procedure is bound to end, as no

existential variables occur in the dependencies, and
hence no new values are introduced. In particular, the

unrestricted implication problems coincides with the

finite implication problem, and is therefore decidable.

Deciding this inference problem is EXPTIME-com-

plete, however.

The inference problem for all tuple- and equality-

generating dependencies is undecidable, however (hence

unrestricted and finite implication do not coincide).

In 1992, Herrmann [13] solved a longstanding open

problem by showing that the finite implication prob-

lem is already undecidable for embedded multivalued

dependencies.

Another approach towards deciding inference of

dependency types is trying to find an axiomatization:

a finite set of inference rules that is both sound and

complete. The existence of such an axiomatization

is also a sufficient condition for the decidability of

inference. Historically, Armstrong [2] was the first

to propose such an axiomatization for functional

dependencies. This system of inference rules was

eventually extended to a sound and complete axiomat-

ization for functional and multivalued dependencies

together [3]:

ðF1Þ ; � X ! Y if Y � X ðreflexivityÞ
ðF2Þ X ! Yf g � XZ ! YZ ðaugmentationÞ
ðF3Þ X ! Y ;Y ! Zf g � X ! Z ðtransitivityÞ
ðM1Þ X ↡Yf g � X ↡ �Y ðcomplementationÞ
ðM2Þ ; � X ↡ Y if Y � X ðreflexivityÞ
ðM3Þ X ↡Yf g � XZ ↡YZ ðaugmentationÞ
ðM4Þ X ↡Y ;Y ↡Zf g � X ↡Z � Y ðpseudo�

transitivityÞ
ðFM1Þ X ! Yf g � X ↡Y ðconversionÞ
ðFM2Þ X ↡Y ;Y ! Zf g�X ! Z � Y ðinteractionÞ

Moreover, (F1)–(F3) are sound and complete for

the inference of functional dependencies alone, and

(M1)–(M4) are sound and complete form the infer-

ence of multivalued dependencies alone. The above

axiomatization is at the basis of an algorithm to decide

inference of functional and multivalued dependencies

in low polynomial time.

Of course, the inference problem for join dependen-

cies is also decidable, as they are full tuple-generating

dependencies. However, there does not exist a sound

and complete axiomatization for the inference of

join dependencies [16], even though there does exist

Database Dependencies D 707

D

an axiomatization for a larger class of database

dependencies.

There also exists a sound and complete axiomati-

zation for inclusion dependencies [6]:

ðI1Þ ; � R X½ � � R X½ � ðreflexivityÞ
ðI2Þ R A1; ::: ;Am½ � � S B1; :::; Bm½ �f g � R Ai1; :::Aik½ �

� S Bi1; :::; Bik½ �
if i1; :::; ik is a sequence of integers in 1;:::;mf g

ðprojectionÞ
ðI3Þ R X½ � � S Y½ �; S Y½ � � T Z½ �f g � R X½ � � T Z½ �

ðtransitivityÞ

Above, X, Y , and Z represent sequences rather than sets

of attributes.

Consequently, the implication problem for inclu-

sion dependencies is decidable, even though inclusion

dependencies are embedded tuple-generating depen-

dencies. However, deciding implication of inclusion

dependencies is PSPACE-complete.

It has already been observed above that the unre-

stricted and finite implication problems for functional

dependencies and unary inclusion dependencies taken

together do no coincide. Nevertheless, the finite impli-

cation problem for this class of dependencies is decid-

able. Unfortunately, the finite implication problem for

functional dependencies and general inclusion depen-

dencies taken together is undecidable (e.g., [7]).
Decompositions

As researchers realized that the presence of functional

dependencies yields the possibility to decompose the

database, the question arose as to how far this decom-

position process ought to be taken. This led Codd in

follow-up papers to [8] to introduce several normal

forms, the most ambitious of which is Boyce-Codd

Normal Form (BCNF). A database is in BCNF if, when-

ever one of its relations satisfies a nontrivial functional

dependency X ! Y (i.e., where Y is not a subset of X),

X must be a superkey of the relation (i.e., the functi-

onal dependency X! U holds, where U is the set of all

attributes of that relation). There exist algorithms that

construct a lossless BCNF decomposition for a given

relation. Unfortunately, it is not guaranteed that such a

decomposition is also dependency-preserving, in the

following sense: the set of functional dependencies that

hold in the relations of the decomposition and that can
be inferred from the given functional dependencies is

in general not equivalent with the set of the given

functional dependencies. Even worse, a dependency-

preserving BCNF decomposition of a given relation

does not always exist. For that reason, Third Normal

Form (3NF), historically a precursor to BCNF, is also

still considered. A datatabase is in 3NF if, whenever

one of its relations satisfies a nontrivial functional

dependency X !{A} (A being a single attribute), the

relation must have a minimal key containing A. Every

database in BCNF is also in 3NF, but not the other way

around. However, there exists an algorithm that, given

a relation, produces a dependency-perserving lossless

decomposition in 3NF. Several other normal forms

have also been considered, taking into account multi-

valued dependencies or join dependencies besides

functional dependencies.

However, one can argue that, by giving a join

dependency, one actually already specifies how one

wants to decompose a database. If one stores this

decomposed database rather than the original one,

the focus shifts from integrity checking to consistency

checking: can the various relations of the decomposi-

tions be interpreted as the projections of a universal

relation? Unfortunately, consistency checking is in gen-

eral exponential in the number of relations. Therefore,

a lot of attention has been given to so-called acyclic join

dependencies [4]. There are many equivalent defini-

tions of this notion, one of which is that an acyclic

join dependency is equivalent to a set of multivalued

dependencies. Also, global consistency of a decompo-

sition is already implied by pairwise consistency if and

only if the join dependency defining the decomposi-

tion is acyclic, which explains in part the desirability of

acyclicity. Gyssens [12] generalized the notion of acy-

clicity to k-cyclicity, where acyclicity corresponds with

the case k = 2. A join dependency is k-cyclic if it is

equivalent to a set of join dependencies each of which

has at most k components. Also, global consistency of a

decomposition is already implied by k-wise consisten-

cy if and only if the join dependency defining the

decomposition is k-cyclic.

Key Applications
Despite the explosion of dependency types during the

latter half of the 1970s, one must realize that the

dependency types most used in practice are still func-

tional dependencies (in particular, key dependencies)

and inclusion dependencies. It is therefore unfortunate

708D Database Design
that the inference problem for functional and inclusion

dependencies combined is undecidable.

At a more theoretical level, the success of studying

database constraints from a logical point view and the

awareness that is important to distinguish between

unrestricted and finite implication certainly contribu-

ted to the interest in and study and further develop-

ment of finite model theory by theoretical computer

scientists.

Finally, decompositions of join dependencies led to

a theory of decompositions for underlying hyper-

graphs, which found applications in other areas as

well, notably in artificial intelligence (e.g., [9,11]).
Cross-references
▶Boyce-Codd Normal Form

▶Chase

▶ Equality-Generating Dependencies

▶ Fourth Normal Form

▶ Functional Dependency

▶ Implication of Constraints

▶ Inconsistent Databases

▶ Join Dependency

▶Multivalued Dependency

▶Normal Forms and Normalization

▶Relational Model

▶ Second Normal Form (2NF)

▶Third Normal Form

▶Tuple-Generating Dependencies
Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of databases.

Addison-Wesley, Reading, Mass., 1995. (Part C).

2. Armstrong W.W. Dependency structures of data base relation-

ships. In Proc. IFIP Congress 74, 1974, pp. 580–583.

3. Beeri C., Fagin R., and Howard J.H. A complete axiomatiza-

tion for functional and multivalued dependencies. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1978,

pp. 47–61.

4. Beeri C., Fagin R., Maier D., and Yannakakis M. On the

desirability of acyclic database schemes. J. ACM, 30

(3):479–513, 1983.

5. Beeri C. and Vardi M.Y. The implication problem for data

dependencies. In Proc. Int. Conf. on Algorithms, Languages,

and Programming, 1981. Springer, 1981, pp. 73–85.

6. Casanova M.A., Fagin R., and Papadimitriou C.H. Inclusion

dependencies and their interaction with functional dependen-

cies. J. Comput. Syst. Sci., 28(1):29–59, 1984.

7. Chandra A.K. and Vardi M.Y. The implication problem for

functional and inclusion dependencies is undecidable. SIAM J.

Comput., 14(3):671–677, 1985.
8. Codd E.F. A relational model of data for large shared data banks.

Commun. ACM, 13(6):377–387, 1970.

9. Cohen D.A., Jeavons P., and Gyssens M. A unified theory

of structural tractability for constraint satisfaction problems.

J. Comput. Syst. Sci., 74(5):721–743, 2008.

10. Fagin R. Multivalued dependencies and a new normal form for

relational databases. ACM Trans. Database Syst., 2(3):262–278,

1977.

11. Gottlob G., Miklós Z., and Schwentick T. Generalized hypertree

decompositions: NP-hardness and tractable variants. In Proc.

26th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2007, pp. 13–22.

12. Gyssens M. On the complexity of join dependencies. Trans.

Database Syst., 11(1):81–108, 1986.

13. Herrmann C. On the undecidability of implications between

embedded multivalued dependencies. Inform. Comput., 122

(2):221–235, 1995.

14. Kanellakis P.C. Elements of relational database theory. In: Van

Leeuwen J. (ed.). Handbook of theoretical computer science,

Elsevier, 1991, pp. 1074–1156.

15. Paredaens J., De Bra P., Gyssens M., and Van Gucht D.

The structure of the relational database model. In EATCS

Monographs on Theoretical Computer Science, Vol. 17.

Brauer W., Rozenberg G., and Salomaa A., (eds.). Springer, 1989.

16. Petrov S.V. Finite axiomatization of languages for representation

of system properties. Inform. Sci., 47(3):339–372, 1989.

17. Rissanen J. Independent components of relations. ACM Trans.

Database Syst., 2(4):317–325, 1977.

18. Zaniolo C. Analysis and design opf relational schemata for

database systems. Ph. D. thesis, University of California at Los

Angeles, 1976. Technical Report UCLA-Eng-7669.
Database Design

JOHN MYLOPOULOS

University of Trento, Trento, Italy

Definition
Database design is a process that produces a series of

database schemas for a particular application. The

schemas produced usually include a conceptual, logical

and physical schema. Each of these is defined using a

different data model. A conceptual or semantic data

model is used to define the conceptual schema, while

a logical data model is used for the logical schema.

A physical schema is obtained from a logical schema by

deciding what indexes and clustering to use, given

a logical schema and an expected workload for the

database under design.

Key Points
For every existing database, there is a design team and

a design process that produced it. That process can

Database Design D 709

D

make or break a database, as it determines what infor-

mation it will contain and how will this information

be structured.

The database design process produces a concep-

tual, a logical and a physical database schema. These

schemas describe the contents of a database at different

levels of abstraction. The conceptual schema focuses

on the entities and relationships about which informa-

tion is to be contained in the database. The Entity-

Relationship Model is the standard model for defining

conceptual schemas, though there have been many

other proposals. UML class diagrams can also be used

for this design phase. The logical schema describes the

logical structure of the database. The Relational Model

is the standard model for this phase, which views a

database as a collection of tables. Alternative data

models include the Hierarchical and the Network

Data Models, but also object-oriented data models

that view a database as a collection of inter-related

objects instantiating a collection of classes.

The need to create different schemas that describe

the contents of a database at different levels of abstrac-

tion was noted as far back as 1975 in a report by the

American National Standards Institute (ANSI) [1], but

has also evolved since. The report proposed a three-

level architecture consisting of several external schemas

representing alternative user views of a database, a

conceptual schema whose information content sub-

sumed that of external schemas, and an internal sche-

ma that represented database content in terms of a

particular database technology (such as a relational

Database Management System). For database design

purposes, conceptual schemas have to be built up-

front, whereas external schemas can be created dyna-

mically according to user needs. Moreover, the notion

of an internal schema has been refined to that of a

logical and a physical schema.

The database design process often consists of four

phases: requirements elicitation, conceptual schema

design, logical schema design, and physical schema

design. Requirements elicitation gathers information

about the contents of the database to be designed from

those who have a stake (a.k.a. stakeholders) This infor-

mation is often expressed in natural language and

may be ambiguous and/or contradictory. For example,

two stakeholders may differ on what information

about customers or patients is useful and should be

included in the database-to-be. A conceptual schema is

extracted from a given set of requirements through a
series of steps that focus on noun phrases to identify

entities, verb phrases to identify important relation-

ships among entities, and other grammatical construc-

tions to identify attributes about which information

is useful to include in the database.

A conceptual schema is then transformed to a logical

one through a series of well-defined transformations

that map collections of entities and relationships into

a relation whose attributes and keys are determined

by the source entities and relationships. The logical sche-

ma design phase often includes a normalization step

where an initial logical schema with associated functional

dependencies is transformed into a normalized schema

using one of several well-studied normal forms.

Physical schema design starts with a logical schema

and determines the index to be used for each relation

in the logical schema. This decision is based on the

expected workload for the database-to-be, defined by

the set of most important queries and updates that

will be evaluated against the database. In addition,

physical design determines the clustering of tuples in

physical storage. This clustering plays an important

role in the performance of the system as it evaluates

queries that return many tuples (for example, queries

that include joins). Physical schema design may dictate

the revision of the logical schema by splitting/merging

relations to improve performance. This step is known

as denormalization.

As suggested by denormalization, the database

design process should not be viewed as a sequential

process that begins with requirements elicitation

and proceeds to generate a conceptual, logical and

physical schema in that order. Rather, the process con-

sists of four linearly ordered phases and is iterative:

after completing any one phase, the designer may

return to earlier ones to revise the schemas that have

been produced so far, and even the requirements that

have been gathered.

Cross-references
▶Conceptual Data Model

▶Normalization Theory

▶ Physical Database Design for Relational Databases

▶ Semantic Data Model
Recommended Reading
1. American National Standards Institute. Interim Report: ANSI/

X3/SPARC Study Group on Data Base Management Systems.

FDT – Bull. ACM SIGMOD, 7(2):1–140, 1975.

710D Database Design Recovery
2. Atzeni P., Ceri S., Paraboschi S., and Torlone R. Database

Systems: Concepts, Languages and Architectures. McGraw Hill,

New York, 1999.
Database Design Recovery

▶Database Reverse Engineering
Database Engine

▶Query Processor
Database Implementation

▶ Physical Database Design for Relational Databases
Database Interaction

▶ Session
Database Languages for Sensor
Networks

SAMUEL MADDEN

Massachusetts Institute of Technology, Cambridge,

MA, USA

Synonyms
Acquisitional query languages; TinySQL

Definition
Sensor networks – collections of small, inexpensive

battery-powered, wirelessly networked devices equip-

ped with sensors (microphones, temperature sensors,

etc.) – offer the potential to monitor the world with

unprecedented fidelity. Deploying software for these

networks, however, is difficult, as they are complex,

distributed, and failure prone. To address these com-

plexities, several sensor network database systems,

including TinyDB [7], Cougar [12], and SwissQM [8]

have been proposed. These systems provide a high level

SQL-like query language that allows users to specify
what data they would like to capture from the network

and how they would like that data processed without

worrying about low-level details such power manage-

ment, network formation, and time synchronization.

This entry discusses the main features of these lan-

guages, and their relationship to SQL and other data-

base languages.
Historical Background
Cougar and TinyDB were the first sensor network

databases with the bulk of their development occurring

between 1999 and 2003. They emerged as a result of

rising interest in wireless sensor networks and other

tiny, embedded, battery powered computers. TinyDB

was co-developed as a part of the TinyOS operating

system [2] for Berkeley Mote-based sensor networks.

Initial versions of the motes used Atmel 8-bit micro-

processors and 40 kbit s�1 radios; newer generations,

developed by companies like Crossbow Technologies

(http://www.xbow.com) and Moteiv Technologies

(http://www.moteiv.com) use Zigbee (802.15.4) radios

running at 250 kbit s�1 and Atmel or Texas Instruments

8 or 16 bit microprocessors running at 4–8 MHz.

Nodes typically are very memory constrained (with

4–10 Kbytes of RAM and 48–128 Kbytes of non-

volatile flash-based program memory.) Most nodes

can be interfaced to sensors that can capture a variety

of readings, including light, temperature, humidity,

vibration, acceleration, sounds, or images. The limited

processing power and radio bandwidth of these devices

constrains sample rates to at most a few kilosamples/s.

Using such tiny devices does allow power consumption

to be quite low, especially when sample rates are kept

down; for example, networks that sample about once

a second from each node can provide lifetimes of a

month or longer on coin-cell batteries or a year or

more on a pair of AA batteries [4].

The promise of sensor network databases is that they

provide a very simple way to accomplish one of the

most common goals of sensor networks: data collection.

Using a simple, high level declarative language, users

specify what data they want and how fast they want it.

The challenge of building a sensor network database lies

in capturing the required data in a power-efficient and

reliable manner. The choice of programming language

for these systems – the main topic of this entry – is

essential to meeting that challenge. The language must

be expressive enough to allow users to get the data they

Database Languages for Sensor Networks D 711

D

want, but also implementable in a way that is power-

efficient, so that the network lasts as long as possible.

To understand how sensor network querying

works, it is important to understand how sensor net-

work databases are used. The typical usage model is as

follows: a collection of static sensor nodes is placed in

some remote location; each node is pre-programmed

with the database software. These nodes report data

wirelessly (often over multiple radio hops) to a nearby

‘‘basestation’’ – typically a laptop-class device with an

Internet connection, which then relays data to a server

where data is stored, visualized, and browsed.

Users interact with the system by issuing queries at

the basestation, which in turn broadcasts queries out

into the network. Queries are typically disseminated

via flooding, or perhaps using some more clever gossip

based dissemination scheme (e.g., Trickle [3]). As

nodes receive the query, they begin processing it. The

basic programming model is data-parallel: each node

runs the same query over data that it locally produces

or receives from its neighbors. As nodes produce query

results, they send them towards the basestation.

When a node has some data to transmit, it relays it

to the basestation using a so-called tree-based routing

protocol. These protocols cause the nodes to arrange

themselves into a tree rooted at the basestation. This

tree is formed by having the basestation periodically

broadcast a beacon message. Nodes that hear this bea-

con re-broadcast it, indicating that they are one hop

from the basestation; nodes that hear those messages in

turn re-broadcast them, indicating that they are two

hops from the basestation, and so on. This process of

(re)broadcasting beacons occurs continuously, such

that (as long as the network is connected) all nodes

will eventually hear a beacon message. When a node

hears a beacon message, it chooses a node from which

it heard the message to be its parent, sending messages

through that parent when it needs to transmit data to

the basestation (In general, parent selection is quite

complicated, as a node may hear beacons from several

candidate parents. Early papers by Woo and Culler

[11] and DeCouto et al. [1] provide details.). Note

that this ad hoc tree-based network topology is signifi-

cantly different than the any-to-any routing networks

that are used in traditional parallel and distributed

database systems. As discussed below, this imposes

certain limitations on the types of queries that are

feasible to express efficiently in sensor network data-

base systems.
Foundations
Most sensor network databases systems provide a SQL-

like query interface. TinySQL, the query language used

in TinyDB, for example, allows users to specify queries

(through a GUI or command line interface) that app-

ear as follows:

SELECT <select list>

FROM <table list>

WHERE <condition list>

GROUP BY <field list>

HAVING <condition list>

SAMPLE PERIOD <duration>

<additional clauses>

Most of these clauses behave just as they do in

standard SQL. There are a few differences, however.

First, the SAMPLE PERIOD clause requests that a data

reading be produced once every <duration> seconds.

This means that unlike most databases, where each

query produces a single result set, in most sensor

databases, each query produces a continuous stream

of results. For example, to request the temperature

from every node in a sensor network whose value is

greater than 25˚C once per sec, a user would write:

SELECT nodeid, temperature

FROM sensors

WHERE temperature > 25˚C

SAMPLE PERIOD 1s

Besides the continuous nature of sensor network query

languages, this example illustrates that the data model

provided by these systems is also somewhat unusual.

First, the nodeid attribute is a unique identifier

assigned to each sensor node and available in every

query. Second, the table sensors is virtual table of

sensor readings. Here, virtual means that it concep-

tually contains one row for every sensor type (light,

temperature, etc.) from every sensor node at every

possible instant, but all of those rows and columns

are not actually materialized. Instead, only the sensor

readings needed to answer a particular query are actu-

ally generated. The research literature refers to such

languages as acquisitional, because they specify the rate

and location where data should be acquired by the

network, rather that simply querying a pre-existing

table of data stored in the memory of the device [6].

Note also that although this table appears to be a

single logical table its rows are actually produced by

different, physically disjoint sensors. This suggests that

712D Database Languages for Sensor Networks
some elements of query processing may be done inside

of the network, before nodes transmit their data. For

example, in the TAG system [5] a method for efficiently

computing aggregates inside of a sensor network was

proposed.

Restricted Expressiveness

It is important to note that sensor network query

languages are less expressive than more general lan-

guages like SQL. By restricting expressiveness of their

query languages, sensor network databases are able to

ensure reasonably efficient query execution. For exam-

ple, the TinyDB system imposes the following restric-

tions on queries:

� Arbitrary self-joins with the sensors table are not

allowed. Such joins would require propagation of

the entire table to all other nodes in the system.

Queries with an equality predicate on nodeid can

be evaluated efficiently and may be allowed.

� Nested queries are not allowed. Such queries po-

tentially require disseminating query state through-

out the network. For example, the query:

SELECT nodeid, temp

FROM sensors

WHERE temp >

(SELECT AVG(temp)

FROM sensors)

SAMPLE PERIOD 1s

requires disseminating the average throughout the net-

work in order to compute the query in a distributed

fashion. Centralized implementations – where all of the

data is sent to the basestation – are likely the only feasible

implementation but can be quite inefficient due to the

large amount of required data transmission.

Not all nested queries are inefficient to imple-

ment. For example, queries that compute aggregates

over local state and then compute global aggregates

over those local values (e.g., the average of the last five

minutes temperatures at each node) have a natural

distributed implementation. To avoid a confusing

language interface where some nested queries are

allowed and some are not, the designers of TinyDB

chose to support certain classes of nested queries

through two additional syntactic clauses: temporal

aggregates and the storage points.

� Temporal aggregates allow users to combine a series

of readings collected on a single node over time.
For example, in a building monitoring system for

conference rooms, users may detect occupancy by

measuring the maximum sound volume over time

and reporting that volume periodically; this could

be done with the following query:

SELECT nodeid, WINAVG(volume,

30s, 5s)

FROM sensors

GROUP BY nodeid

SAMPLE PERIOD 1s

This query will report the average volume from each

sensor over the last 30 seconds once every 5 seconds,

sampling once per second. The WINAVG aggregate is an

example of a sliding-window operator. The final two

parameters represent the window size, in seconds, and

the sliding distance, in seconds, respectively.

� Storage points add a simple windowing mecha-

nism to TinyDB that can be used to compute

certain classes of locally nested queries. A stor-

age point simply defines fixed-size materializa-

tion buffer of local sensor readings that

additional queries can be posed over. Consider,

as an example:

CREATE

STORAGE POINT recentLight SIZE

8 seconds

AS (SELECT nodeid, light FROM

sensors

SAMPLE PERIOD 1s)

This statement provides a shared, local (i.e., single-

node) location called recentLight to store a stream-

ing view of recent data.

Users may then issue queries which insert into or

read from storage points, for example, to insert in the

recentLight storage point a user would write:

SELECT nodeid, light

INTO recentLight

SAMPLE PERIOD 1s

And to read from it, he might write:

SELECT AVG(light)

FROM recentLight

SAMPLE PERIOD 5s

Joins are also allowed between two storage points on the

same node, or between a storage point and the sensors

Database Languages for Sensor Networks D 713

D

relation. When a sensors tuple arrives, it is joined

with tuples in the storage point at its time of arrival.

The SwissQM [8] system does allow some forms of

nested queries to be specified, but like TinyDB’s STOR-

AGE POINT syntax, these queries can operate only on a

node’s local state. For example, the internal query

can compute each node’s minimum temperature over

the last 5 minutes, and then a global aggregate query

can be used to compute the global minimum tempera-

ture over all nodes.
Specialized Language Constructs

Sensor network query languages usually include a

number of specialized features designed to allow

them to take advantage of the special hardware avail-

able on the sensor nodes they run on. For example, a

user may wish to actuate some piece of attached hard-

ware in response to a query. In TinyDB queries may

specify an OUTPUT ACTION that will be executed when

a tuple satisfying the query is produced. This action

can take the form of a low-level operating system

command (such as ‘‘Turn on the red LED’’), or the

instantiation of another query. For example, the query:

SELECT nodeid, temp

WHERE temp > 100˚ F

OUTPUT ACTION alarm()

SAMPLE PERIOD 1 minute

will execute the command alarm() whenever a tuple

satisfying this query is produced. This command is an

arbitrary piece of C code that is written by the user and

stored in a system catalog.

A related feature that is important in sensor net-

works is event handling. The idea is to initiate data

collection when a particular external event occurs –

this event may be outside of the database system (for

example, when a switch on the physical device is trig-

gered.) Events are important because they allow the

system to be dormant until some external condition

occurs, instead of continually polling or blocking,

waiting for data to arrive. Since most microprocessors

include external interrupt lines than can wake a sleep-

ing device to begin processing, efficient implementa-

tions of event processing are often possible.

As an example, the TinyDB query:

ON EVENT switch-pressed(loc):

SELECT AVG(light), AVG(temp),

event.loc
FROM sensors AS s

WHERE dist(s.loc, event.loc) < 10m

SAMPLE PERIOD 2 s FOR 30 s

reports the average light and temperature level at sen-

sors when a switch on the device is pressed. Every time

a switch-pressed event occurs, the query is issued

from the detecting node and the average light and

temperature are collected from nearby nodes once

every 2 seconds for 30 seconds. The switch-pressed

event is signaled to TinyDB by a low piece of driver-like

C code that interfaces to the physical hardware.

Key Applications
Sensor network query languages have applications in

any wireless sensing domain. They are particularly

designed for environments where relatively simple pro-

grams that capture and process data are needed.

Systems that implement such languages are often com-

parably efficient to hand-coded programs that require

hundreds of times more code to implement.

Applications where sensor network databases have

been deployed to good effect include environmental

[10] and industrial [9] monitoring.

Cross-references
▶ In-Network Query Processing

▶ SQL

▶ Stream Processing

Recommended Reading
1. Couto D.S.J.D., Aguayo D., Bicket J., and Morris R. A high-

throughput path metric for multi-hop wireless routing. In

Proc. 9th Annual Int. Conf. on Mobile Computing and Net-

working, 2003.

2. Hill J., Szewczyk R., Woo A., Hollar S., Culler D., and Pister K.

System architecture directions for networked sensors. In Proc.

9th Int. Conf. on Architectural Support for Programming Lan-

guages and Operating Systems, 2000.

3. Levis P., Patel N., Culler D., and Shenker S. Trickle: a self-

regulating algorithm for code propagation and maintenance in

wireless sensor network. In Proc. 1st USENIX Symp. on Net-

worked Systems Design & Implementation, 2004.

4. Madden S. The Design and Evaluation of a Query Processing

Architecture for Sensor Networks. Ph.D. thesis, UC Berkeley,

2003.

5. Madden S., Franklin M.J., Hellerstein J.M., and Hong W. TAG:

A Tiny AGgregation Service for Ad-Hoc Sensor Networks. In

Proc. 5th USENIX Symp. on Operating System Design and

Implementation, 2002.

6. Madden S., Franklin M.J., Hellerstein J.M., and Hong W. The

design of an acquisitional query processor for sensor networks.

714D Database Machine
In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2003.

7. Madden S., Hong W., Hellerstein J.M., and Franklin M. TinyDB

Web Page.

8. Müller R., Alonso G., and Kossmann D. SwissQM: next genera-

tion data processing in sensor networks. In Proc. 3rd Biennial

Conf. on Innovative Data Systems Research, 2007, pp. 1–9.

9. Stoianov I., Nachman L., Madden S., and Tokmouline T.

PIPENET: a wireless sensor network for pipeline monitoring.

In Proc. 6th Int. Symp. Inf. Proc. in Sensor Networks, 2007, pp.

264–273.

10. Tolle G., Polastre J., Szewczyk R., Culler D.E., Turner N., Tu K.,

Burgess S., Dawson T., Buonadonna P., Gay D., and Hong W.

A macroscope in the redwoods. In Proc. 3rd Int. Conf. on

Embedded Networked Sensor Systems, 2005, pp. 51–63.

11. Woo A., Tong T., and Culler D. Taming the underlying chal-

lenges of reliable multihop routing in sensor networks. In Proc.

1st Int. Conf. on Embedded Networked Sensor Systems, 2003.

12. Yao Y. and Gehrke J. Query processing in sensor networks.

In Proc. 1st Biennial Conf. on Innovative Data Systems Research,

2003.
Database Machine

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Definition
A database machine is a computer system which has

special hardware designed and/or tuned for database

accesses. Database machines may sometimes be cou-

pled with a frontend server and, in this case, the data-

base machines are called backend processors.

Key Points
The basic idea behind database machines was to put

database computation closer to disk drives so as to

achieve significant performance improvements. Data-

base machines were actively studied in the 1970’s

and 1980’s.

Early researchers explored filter processors which

could efficiently examine data transferred from disk

drives to a frontend server. Filter processors were cate-

gorized into four groups by D. DeWitt et al. [2].

A Processor-per-Track (PPT) machine is a system

which consists of a number of cells (a set of tracks)

and cell processors. As the data track rotates, the cell

processor can scan the data and process search opera-

tions on the fly. A Processor-per-Head (PPH) machine

is a system in which a processor is coupled with each
head. Data is transferred in parallel from a set of heads

and then processed in a set of processors. Thus, a whole

cylinder is searched in a single rotation. In contrast to

the PPT and PPH machines which need special disk

hardware, a Processor-per-Disk (PPD) machine cou-

ples a processor with each disk drive. PPD can be seen

as a compromising design, which has less performance

advantage but can be realized at lower cost. A Multi-

Processor Cache (MPC) machine is a system which

couples multiple processors and multiple disk cache

modules with each disk drive. The cache space is used

for the processors to exchange the ability of selection

operation.

When it came to the 1980s, researches of database

machines were shifted to massive parallel comput-

ing. General-purpose processors and disk drives were

tightly coupled into a node, and such nodes were then

combined by a high-speed interconnect. Some of

these types of database machines attained much suc-

cess in the industry.

Cross-references
▶Active Storage

▶ Intelligent Storage Systems

Recommended Reading
1. DeWitt D.J. and Gray J. Parallel database systems: The future of

high performance database systems. Commun. ACM, 36

(6):85–98, 1992.

2. DeWitt D.J. and Hawthorn P.B. A performance evaluation of

data base machine architectures. In Proc. 7th Int. Conf. on Very

Data Bases, 1981, pp. 199–214.

3. Hurson A.R., Miller L.L., and Pakzad S.H. Parallel architectures

for database systems. IEEE CS Press, 1989.
Database Management System

PAT HELLAND

Microsoft Corporation, Redmond, WA, USA

Synonyms
DBMS

Definition
A database management system is a software-based

system to provide application access to data in a con-

trolled and managed fashion. By allowing separate def-

inition of the structure of the data, the database

Database Management System D 715

D

management system frees the application frommany of

the onerous details in the care and feeding of its data.

Historical Background
The first general purpose database systems emerged in

the 1960s and represented their data in the network

data model which presumes that portions of the data

(typically called records) would explicitly reference any

related data items in a graph (or network). The model

was standardized as the CODASYL (Conference on

Data Systems Languages) model and remained a strong

influence on database systems into the 1980s.

In the late 1960s, the hierarchical data model emer-

ged as exemplified by IBM’s IMS (Information Man-

agement System). In the hierarchical data model, data

was oriented in a hierarchy and the most natural

form of navigation was via a parent-child relationship.

Starting in the 1970s, the relational data model

emerged based on theoretical work done by Ted

Codd and the System R research project at IBM’s San

Jose Research Lab. Out of System R emerged the SQL

language. Concurrent with the System R effort, the

Ingres project at UC Berkeley contributed strongly to

both the development of the concepts and implemen-

tation techniques of the relational data model.

In the relational data model, data is represented in

tables which can be related to each other by value in an

operation called a join. Seminal to the relational data

model is the absence of any explicit navigational links

in the data. Relational systems continue to dominate

what most people think of as a database system.

Other systems such as Object-Relational (O-R)

systems and Entity-Relationship (E-R) systems either

augment or compete with pure relational systems by

formalizing the representation of relationships and

objects (or entities) in the abstractions formally man-

aged by the system. Industry opinions vary as to

whether the O-R and E-R functionality should be

included in the database management system itself or

provided by the application layered on top of the

database management system.

The notion of a database management system is

under pressure to evolve in many different ways:

� In the 1980s, stored procedures and triggers were

introduced into some system allowing the execu-

tion of application logic within the database itself.

Stored procedures, combined with referential in-

tegrity and other declarative forms of business
rules, pushed portions of the application into the

database management system itself, blurring the

traditional delineation between ‘‘app and data.’’

� As the single mainframe evolved into distributed

systems, databases evolved to span many computers

while attempting to provide the same behavior (on

a larger scale) as provided by the centralized system.

As the scope of the systems grows to thousands of

machines, the semantics of the access to the data can

no longer be identical to the smaller systems. Hence,

the meaning of access to data is evolving.

� As huge numbers of devices and sources of data

have arrived, it is no longer always enough to con-

sider data as a passive collection. Consequently,

innovations are seen in streaming databases where-

in questions are posed about data which has not yet

been completely gathered.

� With the arrival of the Internet, data is frequently

sent outside of the database and then is returned

back into it (potentially with changes). Database

management systems have been designed to have

complete control over their data and the effect of

the Internet and other widely distributed systems

pose challenges.

� As multiple applications (and their data) are inde-

pendently created and then brought together in an

increasingly connected world, the concept of a cen-

tralized definition of the data is under increasing

pressure and forcing new innovation.

Database management systems focus on the data as

separated from the application. While the concepts and

implementations have evolved, the emphasis on data

has remained at the center.

Foundations
The basic charter of a database management system is

to focus on the separate management of data to reduce

the costs and increase the functionality. Key to data-

base management systems is the creation of higher

level abstractions around how the application is sepa-

rated from the data.

Today’s database management systems are domi-

nated by the relational data model. With the relational

model, the high level abstraction is expressed as the

DDL (Data Definition Language) which defines the

schema for the data. In DDL, the data is laid out in

tables and rows. Above the DDL abstraction, the appli-

cation can manipulate the data. Below the DDL

716D Database Management System
abstraction, the database management system can han-

dle the storage, protection, high-performance reading

and writing, and many other services. In so many ways,

it is the existence of the DDL abstraction layer that is

the essence of a database management system.

The high-level abstractions that separate the data

from the application allows for a number of valuable

characteristics:

� Independent Evolution

With the existence of the schema, the application

can evolve based on the schema itself. Indeed, in most

modern database management systems, the schema

itself can be evolved while maintaining continuous

support for existing applications.

In addition, the schema as seen by the application

(the conceptual or logical schema) is typically separated

from the physical schema which defines the actual

layout of the storage and its associated indices. Lever-

aging the separation provided by the schema, the actual

representation of the data may evolve to respond to

changes in technology.

An essential part of a database management system

is the protection of the investment in the application

(which is typically very large) to allow for changes in

technology. It is the higher level abstraction captured

in the schema (via the DDL definition) that enable the

protection of the investment in the application.

� Multiple Applications Sharing the Same Data

As the data is represented in a fashion based on its

underlying semantics, it is possible to write new appli-

cations that modify the same shared data. By capturing

the high-level conceptual schema, the underlying

access to the physical storage is managed by the data-

base management system. The combination of clearly

separated meaning and the delegation of physical

access to the intermediary provided by the database

management system allows for new applications to be

written against the same data.

� Ad-Hoc Access to Data

An important usage of database management sys-

tems has emerged in the form of business intelligence.

Users are allowed to directly query and/or modify the

contents of the data using direct access to the database

management system itself. Ad-hoc access to data is

made possible by the existence of the higher-level

abstraction of the conceptual schema which describes
the data independently of its physical schema and of

its applications.

Business intelligence has, on its own, grown to a

multi-billion dollar industry. Many enterprises find

that the knowledge extracted from rapid and ad-hoc

queries against their data can dramatically influence

the business.

Essential to providing these abstractions are three

application visible mechanisms, schema definition,

data manipulation language (DML), and transactions.

� Schema Definition

Schema definition is typically done at two levels, the

conceptual (or logical) schema and the physical schema.

The conceptual schema definition is the expres-

sion of the shape and form of the data as viewed by

the application. In relational database management

systems, the conceptual schema is described as tables,

rows, and columns. Each column has a name and a

data type. A collection of columns comprise a row, and

a collection of rows, a table. The goal of the conceptual

schema is to express the data organization as concisely

as possible with each piece of knowledge represented in

a single way.

The physical schema definition maps the concep-

tual schema into the underlying access methods which

store the data onto disk. Both the storage of the under-

lying records and the capturing of various indices used

for locating the records must be declared in the physi-

cal schema.

� Data Manipulation

Data manipulation refers to the mechanism by

which the application extracts data from the database

and changes data within the database. In relational

systems, data manipulation is expressed as set oriented

operations known as queries or updates. The SQL

language, originally defined as a part of IBM’s System

R project in the late 1970s, has emerged as an ANSI

standard and is, by far, the most commonly used DML

(Data Manipulation Language) in modern relational

database management systems.

The means for expressing access to and manipula-

tion of data is one of the most important interfaces in

computing. As innovations in data representation

(such as XML) arrive, there are frequent debates

about how to codify the access to those representa-

tions. There are competing forces in that the preserva-

tion of the existing interfaces is essential to the

Database Management System D 717

D

industry-wide investment in applications and in pro-

grammer expertise. Applying pressure to that is the

desire to innovate in the representation and usage of

data as system evolve. The evolution of database man-

agement systems is currently driven by the pressures of

the blurring of data versus application, Internet scale

distribution, streaming databases, and independently

defined systems coming together.

The data manipulation portion of database man-

agement systems is a vibrant and lively space for inno-

vation both in academia and industry.

� Transactions

The ability to process data using relations within

the relational model of database management is de-

pendent on transactions to combine the data in a

meaningful and predictable way.

The transaction is a unit of work with four proper-

ties whose first letters spell ACID:

Atomic – The changes made within the transaction are

all or nothing (even when failures occur).

Consistent – Rules enforced within the database (e.g.,

don’t lose money in a bank) remain in effect when

many transaction are concurrently executing.

Isolated – An ongoing transaction cannot see the effects

of any other ongoing transaction.

Durable – When a transaction is committed, it remains

committed.

It is the combination of Atomic, Isolated, and Du-

rable which, when provided by the database manage-

ment system, allow the application to provide its own

notion of consistency.

Underlying these application visible mechanisms

lays a lot of technology. Consider, in turn, query pro-

cessing, access methods, and concurrency control and

recovery.

� Query Processing

Since the advent of relational systems, set oriented

expressions of data and updates to data have proven to

be extraordinarily powerful. Application developers

are given mechanisms for describing large amounts of

data to be examined or modified and the system deter-

mines the best approach to accomplishing the intent

expressed by the application. SQL DML allows for

these powerful queries and updates as do some newly

arriving other representations such as XQuery. There is

an entire discipline within database management
systems called query processing which applies set ori-

ented operations to the underlying data and leverages

whatever optimizations are appropriate to efficiently

perform the application’s work.

Efficient query processingmust considermany factors

over and above the expressed desires of the application.

The available indices on the data, potential distribution of

the data, the expected result sizes of the various sets of data

that must be created as intermediaries, the performance

characteristics of the processors, disks, networks, and

remote computers all play a role in deciding a strategy

by which the work will be accomplished.

One of the most important aspects to modern

query processing is that these performance concerns

are removed from the application programmer in

most cases. Separating performance concerns from

the application program’s intent allows for an invest-

ment in applications which can survive many changes

in the machines and data set sizes. The query processor

may change its optimization strategies based upon new

knowledge while the application program remains in-

tact. While the ideal of performance independence is

not completely realized in complex cases, it is true for a

large number of applications.

Similar to the pressures on DML, query processing

remains a vibrant discipline in a changing world.

� Access Methods

Access methods provide mechanisms for storing

and retrieving the data. The dominant semantics for

access methods is called a key-value pair. A key-value

pair provides the ability to insert a blob of data asso-

ciated with a unique key and then subsequently re-

trieve that blob. Some access methods allow searching

for adjacent keys within a sort order of the keys. Other

access methods only allow reading and writing based

exclusively on exact matches of the key.

Much of the work in the 1970s and early 1980s in

access method was dominated by methods for rapidly

determining the disk address for the data. Initially, the

records in the network and hierarchical schemes in-

cluded direct disk addresses and it was straightforward

for the system to retrieve the record. Soon, hashing

schemes were employed wherein a single primary key,

not a direct pointer, could be used locate a bucket of

records and do so with high probability of accessing

the record with a single disk operation. Separate

indices where needed to find records based on non-

primary key values.

718D Database Management System
Originally introduced in 1971 by Rudolf Bayer and

Ed McCreight, B-Trees have emerged as the standard

mechanism for self-organizing access methods. A

B-Tree keeps an ordered list of keys in a balanced

fashion which ensures a fixed depth from the base of

the tree to the root even in the face of tremendous

changes and churn. Since the mid-1990s, most modern

database systems use a variant called a B+Tree in which

the payload (the blob described above in the key-blob

pair) is always kept in the collection of leaf nodes and a

balanced structure of keys and pointers to other

pages in the B+tree is kept in the non-leaf pages of

the B+Tree.

Access methods (intertwined with the Concurrency

Control and Recovery mechanism described below)

are responsible for managing the storage of data within

DRAM and when that data must be written out to disk.

As the sizes of DRAM have increased more rapidly

than most databases, there is an increasing trend

towards in-memory databases. Indeed, the tipping

point towards B+Trees as the dominant form of access

method occurred when DRAM memories became

large enough that the upper levels of the tree were

essentially guaranteed to be in memory. That meant

climbing the B+Tree did not require extra disk I/Os

as it did when used with a smaller memory footprint.

B+Trees offer exceptional advantages for database

management systems. In addition to access times that

are uniform due to the uniform depth of the tree, each

operation against the tree can be performed in a

bounded (functional to O(log-n) of the size of the

tree) time. Perhaps most importantly, B+Trees are

self-managing and do not face challenges with empty

space and garbage collection.

� Concurrency Control and Recovery

The goal of concurrency control is to provide the

impression to the application developer that nothing

else is happening to the contents of the database while

the application’s work proceeds. It should appear as if

there is some serial order of execution even when lots

of concurrent activity is happening. Practitioners of

concurrency control speak of serializability. The effects

of tightly controlling the concurrency are to make the

execution behave as if it were within a serial order even

when lots of work is happening concurrently. The

ability to make a serial order is serializeabilty. While

there are other more relaxed guarantees, serializability

remains an important concept.
Recovery includes all the mechanisms used to en-

sure the intact recreation of the database’s data even

when things go wrong. These potential problems span

system crashes, the destruction of the disks holding the

database, and even the destruction of the datacenter

holding the database.

Concurrency control and recovery systems use

locking and other techniques for ensuring isolation.

They are also responsible for managing the cached

pages of the database as they reside in memory. So-

phisticated techniques based on logging have allowed

for high-performance management of caching, trans-

actional recovery, and concurrency control.

Key Applications
Database management systems are widely in use to cap-

ture most of the data used in today’s businesses. Almost

all enterprise applications are written using database

management systems. While many client-based applica-

tions are based on file system representations of data,

most server-based applications use a DBMS.

Cross-references
▶Abstraction

▶Access Control

▶ACID Properties

▶Active and Real-Time Data Warehousing

▶Atomicity

▶B+-Tree

▶Conceptual Schema Design

▶Concurrency Control–Traditional Approaches

▶Concurrency Control Manager

▶Distributed DBMS

▶ Entity Relationship Model

▶Generalization of ACID Properties

▶Hierarchical Data Model

▶ Logical Schema Design

▶Network Data Model

▶QUEL

▶Query Language

▶Query Processing

▶Query Processing (in relational databases)

▶Relational Model

▶ Schema Evolution

▶ Secondary Index

▶ Serializability

▶ Stream Models

▶ Stream Processing

▶ System R(R*) Optimizer

Database Middleware D 719

D

▶Transaction

▶Transaction Management

▶Transaction Manager

▶Top-k XML Query Processing

▶XML

▶XPath/XQuery

Recommended Reading
1. Bayer R. Binary B-Trees for Virtual Memory. In Proc. ACM-

SIGFIDET Workshop, 1971, pp. 219–235.

2. Blasgen M.W., Astrahan M.M., Chamberlin D.D., Gray J., King

W.F., Lindsay B.G., Lorie R.A., Mehl J.W., Price T.G., Putzolu

G.F., Schkolnick M., Slutz D.R., Selinger P.G., Strong H.R.,

Traiger I.L., Wade B., and Yost B. SystemR – an Architectural

Update. IBM RJ IBM RJ 2581, IBM Research Center, 95193,

7/17/1979. 42 pp.

3. Gray J. Data management: past, present, and future. IEEE

Comput., 29(10):38–46, 1996.

4. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques, Morgan Kaufmann, San Mateo, CA, 1992.

5. Stonebraker M., Wong E., Kreps P., and Held G. The Design

and Implementation of INGRES. ACM Trans. Database Syst.,

1(3):189–222, 1979.
Database Materialization

▶ Physical Database Design for Relational Databases
Database Middleware

CRISTIANA AMZA

University of Toronto, Toronto, ON, Canada

Synonyms
Database scheduling; Load balancing; Mediation and

adaptation

Definition
Database middleware is a generic term used to refer to

software infrastructure that supports (i) functionality,

such as, interoperability between software compo-

nents, or distributed transaction execution, (ii) im-

proved database service, such as, performance scaling

or fault tolerance of a database back-end in a larger

system, or (iii) adaptations to workloads e.g., through

the use of adaptive queuing middleware or of a sched-

uler component for adaptive reconfiguration of a

database back-end.
Historical Background
Historically, TP Monitors were the first recognized

database middleware components. TP Monitors,

thus database middleware, was originally run on main-

frames to connect different applications. Later, with the

advent of e-business applications andmodernmulti-tier

architectures that supported them, similar functionality

as in the original TP Monitors became integrated in

software components within the software stack used in

these infrastructures, software components known as:

‘‘application servers,’’ middleware components for ‘‘en-

terprise application integration,’’ ‘‘enterprise service

bus,’’ and ‘‘transactional middleware.’’ Transactional

middleware supported the execution of distributed elec-

tronic transactions, and often provided much more

functionality than just transactions. Modern e-business

architectures consist of multiple tiers, such as client,

application server, and database server. In these archi-

tectures typically replication in the database back-end is

used for scaling. In these architectures, middleware

components, such as, schedulers and load balancers

are interposed in front of a database back-end for the

purposes of scheduling database transactions, maintain-

ing fault tolerance or providing data availability.

Foundations
Software for database middleware is very diverse, and

serves a variety of purposes, e.g., integration of various

data sources, load balancing for scaling, fault tolerance,

etc. This entry distinguishes between the following

middleware classes:middleware for integration,middle-

ware for performance scaling and availability, transac-

tional and messaging middleware, and middleware for

adaptation and reconfiguration. This section will review

these main types of database middleware and their

uses, providing a brief survey of each of these areas.

Database Middleware for Integration

Database middleware, such as, Oracle9i, Informix Uni-

versal Server, MOCHA [12], DISCO [11], and Garlic

[13] support integration of possibly heterogeneous,

distributed data sources. Specifically, database middle-

ware of this type may commonly consist of a data inte-

gration server, accessing the data at the remote data

sources through a gateway, which provides client appli-

cations with a uniform view and access mechanism to

the data available in each source. Several existing com-

mercial database servers use this approach to access

remote data sources through a database gateway, which

720D Database Middleware
provides an access method to the remote data, e.g., the

IBM DB2 DataJoiner, and Sybases’s Direct Connect,

and Open Server Connect products. These products

enable viewing multi-vendor, relational, nonrelational,

and geographically remote data, as if it were local data.

The alternative is to use a mediator server for the

same purpose. In this approach, the mediator server is

capable of performing distributed query processing for

the purposes of integration of the various data sources.

Both methods superimpose a global data model on top

of the local data models used at each data source. For

example, the mediator uses wrappers to access and

translate the information from the data sources into

the global data model. Furthermore, in both of these

middleware solutions, specialized libraries defining ap-

plication data types and query operators are used by

the clients, integration servers, gateways or wrappers

deployed in the system.

Database Middleware for Scaling and Availability

Middleware components, such as, schedulers, load

balancers and optimizers have been used for perfor-

mance scaling of workloads on LAN-based database

clusters, and/or for data availability. Schedulers and

optimizers have been used for maintaining data con-

sistency in replicated database clusters, and for mini-

mizing the data movement in shared-nothing database

clusters employing data partitioning, respectively.

Shared-nothing database cluster architectures have

been traditionally used for scaling classic database

applications, such as, on-line transaction processing

(OLTP) workloads. Data partitioning across the cluster

[4,6] was absolutely necessary to alleviate the massive

I/O needs of these applications through in-memory

data caching. Data partitioning implied using rather

complex optimizers to minimize reconfigurations and

data movement between machines [5].

In contrast, more recently, due to the advent of larger

memories, and the impact of modern e-commerce

applications with more localized access patterns, sched-

uling applications for performance scaling on a cluster,

using database replication has gained more attention

[2,3]. For example, for the usual application sizes, there

is little disk I/O in dynamic content applications [1], due

to the locality exhibited by these applications. For exam-

ple, in on-line shopping, bestsellers, promotional items

and new products are accessed with high frequency.

Similarly, the stories of the day and items on auction

are hot objects in bulletin board and on-line bidding
applications, respectively. This makes replication much

more promising, and considerably easier to use than

data partitioning.

However, replication for scaling incurs the cost of

replicating the execution of update queries for main-

taining the table replicas consistent. Fortunately, in

dynamic content applications, queries that update

the database are usually lightweight compared to

read-only requests. For instance, in e-commerce, typi-

cally, only the record pertaining to a particular cus-

tomer or product is updated, while any given customer

may browse the product database using complex search

criteria. More importantly, the locality in access pat-

terns of dynamic content applications may imply

higher conflict rates relative to traditional applications,

given a sufficiently high fraction of writes. For instance

the probability that a ‘‘best seller’’ book is being bought

concurrently by two different customers, incurring a

conflict on that item’s stock is much higher than the

probability that two customers access their joint account

at the same time. Thus, intuitively, e-commerce applica-

tions have potentialy higher conflict rates than tradition-

al OLTP applications. This trend has motivated more

recent schemes on middleware support for scheduling

transactions using a combination of load balancing

and conflict-aware replication [2,3,10]. These techni-

ques have shown good scaling in the tens of database

engines range for the most common e-commerce

workloads, e.g., on experiments using the TPC-W in-

dustry standard e-commerce benchmark. Middleware

for caching query results has also been used in isolation

or in combination with replication, e.g., through

caching query results within the scheduler component

corrdinating replication on a cluster, as an ortho-

gonal technique for performance scaling of web sites

supporting these workloads.

Finally, replication brings with it fault tolerance and

high data availability as a bonus. Middleware compo-

nents for fault tolerance support different degrees of

failure transparency to the client. In the most common

case, transaction aborts due to failures are exposed to

the client when a failure of a replica occurs. More

sophisticated fail-over schemes focus on precise error

semantics, and on hiding failures from the client. More-

over, providing fault tolerance and data availability in a

multi-tier architecture consisting of web-servers, appli-

cation servers and database servers that interact with

each other raises important trade-offs in terms of archi-

tecture design.

Database Middleware D 721

D

Middleware for precise failure semantics, such as

exactly-once transactions [7], provide an automated

end-to-end solution involving the client. Such middle-

ware tracks client transactions through the software

stack e.g., composed of client, application server, and

database server, and can be used to automatically han-

dle client duplicate requests, and reissue aborted trans-

actions, thus seamlessly hiding failures in the database

back-end from the client.

Transactional and Messaging Middleware

Transactional middleware provides control and the

transfer of data between clients and a set of distributed

databases. The main purpose is to run distributed

transactions in an efficient manner. Transactional mid-

dleware systems, such as BEATuxedo, typically support

a subset of the ACID properties, such as atomicity

(by running a 2-phase-commit protocol over the

distributed databases), durability or isolation. Transac-

tional middleware is especially important in three-tier

architectures that employ load balancing because a

transaction may be forwarded to any of several servers

based on their load and availability.

Message Queueing systems offer analogous func-

tionality to TP Monitors, such as, improving reliability

and scalability, although they typically offer weaker con-

sistency guarantees than TP Monitors. Several messages

may be required to complete an overall transaction, and

those messages will each tend to reflect the latest system

state rather than consistently looking back to the state of

the system at the time the transaction started.

Messaging-oriented middleware provides an inter-

face between client and server applications, allowing

them to send data back and forth intermittently. If the

target computer isn’t available, the middleware stores

the data in a message queue until the machine becomes

available.

Middleware for Adaptation and Reconfiguration

Recent systems investigate adaptive reconfiguration in

two classic middleware scenarios: database replication

and message queuing systems.

In the context of database replication, dynamic

adaptation has been used for reconfiguration of a da-

tabase cluster to adapt to workload changes. Specifical-

ly, recent work adapts the configuration of a database

cluster dynamically in response to changing demand

by (i) adapting the placement of primary replicas and

the degree of multi-programming at each replica [9] or
by (ii) changing the number of replicas allocated to a

workload [14]. For example, recent techniques for

dynamic replica allocation in a database cluster

employ an on-line technique based on middleware or

group communication [8,14] for bringing a new repli-

ca up to date with minimal disruption of transaction

processing on existing replicas in the application’s

allocation.

Key Applications
Database middleware is widely used in practice. All

database vendors also offer a suite of middleware solu-

tions for data integration, load balancing, scheduling,

data replication, etc. Transactional middleware, mes-

sage queuing systems, and middleware for fault toler-

ance, availbility and reconfiguration of the database

back-end are commonly used in all modern e-business

solutions, and in particular in multi-tier dynamic con-

tent web sites, such as, amazon.com and e-bay.com.

Cross-references
▶Adaptive Middleware for Message Queuing Systems

▶Mediation

▶Message Queuing Systems

▶Middleware Support for Database Replication and

Caching

▶Middleware Support for Precise Failure Semantics

▶Replication in Multi-tier Architectures

▶Transactional Middleware

Recommended Reading
1. Amza C., Cecchet E., Chanda A., Cox A., Elnikety S., Gil R.,

Marguerite J., Rajamani K., and Zwaenepoel W. Specification

and implementation of dynamic web site benchmarks. In Proc.

5th IEEE Workshop on Workload Characterization, 2002.

2. Amza C., Cox A., and Zwaenepoel W. Conflict-aware scheduling

for dynamic content applications. In Proc. 5th USENIX Symp.

on Internet Technologies and Systems, 2003, pp. 71–84.

3. Amza C., Cox A.L., and Zwaenepoel W. Distributed versioning:

Consistent replication for scaling back-end databases of dyna-

mic content web sites. In Proc. ACM/IFIP/USENIX Int. Middle-

ware Conf., 2003, pp. 282–304.

4. Boral H., Alexander W., Clay L., Copeland G., Danforth S.,

Franklin M., Hart B., Smith M., and Valduriez P. Prototyping

Bubba, a highly parallel database system. IEEE Trans. Knowl.

Data Eng., 2:4–24, 1990.

5. Chaudhuri S. andWeikum G. Rethinking database system archi-

tecture: Towards a self-tuning RISC-style database system. In

Proc. 26th Int. Conf. on Very Large Data Bases, 2000, pp. 1–10.

6. Copeland G., Alexander W., Boughter E., and Keller T. Data

placement in Bubba. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1988, pp. 99–108.

722D Database Physical Layer
7. Frolund S. and Guerraoui R. e-transactions: End-to-end reliabil-

ity for three-tier architectures. IEEE Trans. Software Eng.,

28(4):378–395, 2002.

8. Liang W. and Kemme B. Online recovery in cluster databases. In

Advances in Database Technology, Proc. 11th Int. Conf. on

Extending Database Technology, 2008.

9. Milan-Franco J.M., Jimenez-Peris R., Patio-Martnez M., and

Kemme B. Adaptive middleware for data replication. In Proc.

ACM/IFIP/USENIX Int. Middleware Conf., 2004.

10. Plattner C. and Alonso G. Ganymed: scalable replication for

transactional web applications. In Proc. ACM/IFIP/USENIX

Int. Middleware Conf., 2004.

11. Rashid L., Tomasic A., and Valduriez P. Scaling heterogeneous

databases and the design of DISCO. In Proc. 16th Int. Conf. on

Distributed Computing Systems, 1996.

12. Rodriguez-Martinez M. and Roussopoulos N. MOCHA: a self-

extensible database middleware system for distributed data

sources. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2000.

13. Roth M.T. and Schwarz P. Don’t scrap it, wrap it! a wrapper

architecture for legacy data sources. In Proc. 23rd Int. Conf. on

Very Large Data Bases, 1997.

14. Soundararajan G. and Amza C. Reactive provisioning of back-

end databases in shared dynamic content server clusters. ACM

Trans. Auto. Adapt. Syst., 1(2):151–188, 2006.
Database Physical Layer

▶ Storage Access Models
Database Profiling

▶Data Profiling
Database Protection

▶Database Security
Database Provisioning

▶Autonomous Replication
Database Redocumentation

▶Database Reverse Engineering
Database Repair

LEOPOLDO BERTOSSI

Carleton University, Ottawa, ON, Canada

Definition
Given an inconsistent database instance, i.e., that fails

to satisfy a given set of integrity constraints, a repair is

a new instance over the same schema that is consistent

and is obtained after performing minimal changes on

the original instance with the purpose of restoring

consistency.
Key Points
Database instances may be inconsistent, in the sense

that they may not satisfy certain desirable integrity

constraints. In order to make the database consistent,

certain updates can be performed on the database

instance. However, it is natural to expect that any

new consistent instance obtained in this way does not

differ too much from the original instance. The notion

of repair of the original instance captures this intui-

tion: it is an instance of the same schema that does

satisfy the integrity constraints and differs from the

original instance by a minimal set of changes. Depend-

ing on what is meant by minimal set of changes,

different repair semantics can be obtained.

The notion of repair, also calledminimal repair, was

introduced in [1]. Database instances can be seen as

finite sets of ground atoms. For example, Students(101,

joe) could be a database atom representing an entry

in the relation Students. In order to compare two

instances of the same schema, it is possible to consider

their (set-theoretic) symmetric difference. A repair, as

introduced in [1], will make the symmetric difference

with the original instance minimal under set inclusion.

That is, no other consistent instance differs from the

original instance by a proper subset of database tuples.

It is implicit in this notion of repair that changes on the

original instance are obtained through insertions or

deletions of complete database atoms. This notion of

repair was used in [1] to characterize the consistent

data in an inconsistent database as the data that is

invariant under all possible repairs.

In the same spirit, other repairs semantics have also

been investigated in the literature. For example, an

alternative definition of repair might minimize the

cardinality of the symmetric difference. There are also

Database Reverse Engineering D 723

D

repairs that are obtained via direct updates of attribute

values (as opposed to deletions followed by insertions,

which might not represent a minimal change). In

this case, the number of those local changes could

be minimized. A different, more general aggregation

function of the local changes could be minimized

instead (cf. [2,3] for surveys).

Cross-references
▶Consistent Query Answering

▶ Inconsistent Databases

Recommended Reading
1. Arenas M., Bertossi L., and Chomicki J. Consistent query

answers in inconsistent databases. In Proc. 18th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1999, pp. 68–79.

2. Bertossi L. Consistent query answering in databases. ACM SIG-

MOD Rec., 35(2):68–76, 2006.

3. Chomicki J. Consistent query answering: five easy pieces. In

Proc. 11th Int. Conf. on Database Theory, 2007, pp. 1–17.
Database Replication

▶Data Replication

▶Replica Control
Database Reverse Engineering

JEAN-LUC HAINAUT, JEAN HENRARD, VINCENT

ENGLEBERT, DIDIER ROLAND, JEAN-MARC HICK

University of Namur, Namur, Belgium

Synonyms
Database redocumentation; Database design recovery

Definition
Database reverse engineering is the process through

which the logical and conceptual schemas of a legacy

database, or of a set of files, are reconstructed from

various information sources such as DDL code, data

dictionary contents, database contents or the source

code of application programs that use the database.

Basically, database reverse engineering comprises

three processes, namely physical schema extraction,
logical schema reconstruction, and schema conceptuali-

zation. The first process consists in parsing the DDL code

or the contents of an active data dictionary in order to

extract the physical schema of the database. Reconstruct-

ing the logical schema implies analyzing additional

sources such as the data and the source code of the

application programs to discover implicit constraints

and data structures, that is, constructs that have not

been declared but that are managed by the information

system or by its environment. The conceptualization pro-

cess aims at recovering the conceptual schema that the

logical schema implements.

Database reverse engineering is often the first step

in information system maintenance, evolution, migra-

tion and integration.

Historical Background
Database reverse engineering has been recognized to be

a specific problem for more than three decades, but

has been formally studied since the 1980’s, notably in

[3,6,12]. The first approaches were based on simple

rules, that work nicely with databases designed in a

clean and disciplined way. A second generation of

methodologies coped with physical schemas resulting

from empirical design in which practitioners tend to

apply non standard and undisciplined techniques.

More complex design rules were identified and inter-

preted [2], structured and comprehensive approaches

were developed [11,7] and the first industrial tools

appeared (e.g., Bachman’s Reengineering Tool). Many

contributions were published in the 1990’s, addressing

practically all the legacy technologies and exploiting

such sources of information as application source

code, database contents or application user interfaces.

Among synthesis publications, it is important to men-

tion [5], the first tentative history of this discipline.

These second generation approaches were faced

with two kinds of problems induced by empirical de-

sign [8]. The first problem is the recovery of implicit

constructs, that is, structures and constraints that have

not been explicitly declared in the DDL code. The

second problem is that of the semantic interpretation

of logical schemas that include non standard data

structures.

Foundations
The ultimate goal of reverse engineering a piece of

software is to recover its functional and technical spe-

cifications, starting mainly from the source code of the

724D Database Reverse Engineering
programs [4]. The problem is particularly complex

with old and ill-designed applications. In this case,

there is no documentation to rely on; moreover, the

lack of systematic methodologies for designing and

maintaining them have led to tricky and obscure

code. Therefore, reverse engineering has long been

regarded as a complex, painful and failure-prone activ-

ity, in such a way that it is simply not undertaken most

of the time, leaving huge amounts of invaluable knowl-

edge buried in legacy software, lost for all practical

purposes.

In most software engineering cases, analysts have to

content themselves with the extraction of abstract and/

or partial information, such as call graphs, dependency

graphs or program slices in order to ease the mainte-

nance and evolution of the software. The result of

reverse engineering a database is more satisfying, in

that reconstructing the logical and conceptual schemas

of an undocumented database is achievable with rea-

sonable effort.

Database Design Revisited

To understand the problems, challenges and techni-

ques specific to database reverse engineering, it is nec-

essary to reexamine the way databases are developed,

both in theory and in practice.

Standard Database Design Methodology Standard da-

tabase design comprises four formal processes, namely

conceptual analysis, logical design, physical design and

coding.

Conceptual analysis produces the conceptual sche-

ma of the database, that is, an abstract description of

the concepts that structure the application domain, of

the relationships between these concepts and of the

information to be collected and kept about theses

classes and relationships. This schema is independent

of the application programs that will use the database

and is expressed in an abstract formalism such as some

variant of the Entity-relationship model. It must be

readable, maintainable, normalized and independent

of any implementation technology.

Logical design translates the conceptual schema into

data structures compliant with the data model of a

family of DBMSs. This process is best described by a

transformation plan, according to which the constructs

(or components) of the conceptual schema that cannot

be directly translated into the target DDL are first

transformed into constructs of the DBMS model. For
instance, a single-valued atomic attribute is directly

translated into a column. On the contrary, a N:N

relationship type cannot be expressed in the relational

DDL. Therefore, it is first transformed into a relation-

ship entity type and two N:1 relationship types, which

in turn are translated into a relationship table and two

foreign keys. The resulting logical schema is the basis

for program development. It must be clear, simple and

devoid of any performance concern. Denoting the

conceptual and logical schemas respectively by CS

and LS, this process can be synthesized by the func-

tional expression LS = logical-design(CS), that

states that the logical schema results from the transfor-

mation of the conceptual schema.

Physical design enriches and potentially reshapes

the logical schema to make it meet technical and per-

formance requirements according to a specific technol-

ogy (DBMS). Physical design can be expressed by

PS = physical-design(LS), where PS denotes the

physical schema.

Coding expresses the physical schema in the DDL of

the DBMS. Some of the data structures and integrity

constraints can be translated into explicit DDL state-

ments. Such is the case, in relational databases, for

elementary data domains, unique keys, foreign keys

and mandatory columns. However, the developer

must resort to other techniques to express all the

other constructs. Most relational DBMSs offer check

and trigger mechanisms to control integrity, but other

servers do not include such facilities, so that many

constraints have to be coped with by procedural code

distributed and duplicated in the application pro-

grams. The derivation of the code can be expressed

by code = coding(PS). The code itself can be decom-

posed into the DDL code in which some constructs are

explicitly expressed and the external code that controls

and manages all the other constructs: code = codeddl

[codeext. Similarly, the coding function can be de-

veloped into a sequence of two processes

(codingddl(PS); codingext(PS)).

The production of the database code from the

conceptual schema (forward engineering or FE) can

be written as code = FE(CS), where function FE is

the composition coding o physical-design o

logical-design.

Empirical Database Design Actual database design

and maintenance do not always follow a disciplined

approach such as that recalled above. Many databases

Database Reverse Engineering D 725

D

have been built incrementally to meet the evolving

needs of application programs. Empirical design relies

on the experience of self-taught database designers,

who often ignore the basic database design theories

and best practices. This does not mean that all these

databases are badly designed, but they may include

many non-standard patterns, awkward constructs and

idiosyncrasies that make them difficult to understand

[2]. Since no disciplined approach was adopted, such

databases often include only a logical schema that

integrates conceptual, logical, physical and optimiza-

tion constructs. Quite often too, no up-to-date docu-

mentation, if any, is available. An important property

of the functional model of database design evoked in

previous section is that it is still valid for empirical

design. Indeed, if empirical design rules of the desig-

ner are sorted according to the criteria of the three

processes, functions logical-design’, physical-

design’ and coding’ can be reconstructed into an

idealized design that was never performed, but that

yields the same result as the empirical design.

Database Reverse Engineering Processes

Broadly speaking, reverse engineering can be seen

as the reverse of forward engineering [1], that is,

considering the function RE = FE�1, CS = RE(code).

Since most forward engineering processes consist of

schema transformations [9], their reverse counterparts

should be easily derivable by inverting the forward

transformations.

Unfortunately, forward engineering is basically a

lossy process as far as conceptual specifications are

concerned. On the one hand, it is not unusual to discard

bits of specifications, notably when they prove difficult

to implement. On the other hand, the three processes

areseldominjectivefunctionsinactualsituations. Indeed,

there is more than one way to transform a definite con-

struct and several distinct constructs can be transformed

into the same target construct. For instance, there are

severalways to transform an is-a hierarchy into relational

structures, including the use of primary-foreign keys

(forward engineering). However, a primary-foreign

key can also be interpreted as the implementation of a 1:1

relationship type, as the trace of entity type splitting or

as the translation of an is-a relation (reverse engineer-

ing). Clearly, the transformational interpretation of

these processesmust be refined.

Nevertheless it is important to study and to model

the reverse engineering as the inverse of FE, at least to
identify and describe the pertinent reverse processes.

Decomposing the initial relation CS = RE(code), one

obtains:

CS = conceptualization(LS)

LS = logical-reconstruction(PS, codeext)

PS = physical-extraction(codeddl)

RE = conceptualization o logical-

reconstruction o physical-extraction

where

Conceptualization = logical-design�1

Logical-reconstruction = physical-design�1

|| codingext
�1

Physical-extraction = codingddl
�1

This model emphasizes the role of program code as

a major source of information. As explained below,

other sources will be used as well.

Physical Schema Extraction

This process recovers the physical schema of the data-

base by parsing its DDL code (codeddl) or, equivalent-

ly, by analyzing the contents of its active data

dictionary, such as the system tables in most relational

systems. This extraction makes visible the explicit con-

structs of the schema, that is, the data structures and

constraints that have been explicitly declared through

DDL statements and clauses. Such is the case for pri-

mary keys, unique constraints, foreign keys and man-

datory fields. Generally, this process is fairly

straightforward. However, the analysis of sub-schemas

(e.g., relational views, CODASYL sub-schemas or IMS

PCBs) can be more intricate. Indeed, each sub-schema

brings a partial, and often refined view of the global

schema. In addition, some data managers, such as

standard file managers, ignore the concept of global

schema. ACOBOL file for instance, is only described in

the source code of the programs that use it. Each of

them can perceive its data differently. Recovering the

global physical schema of a COBOL file requires a

potentially complex schema integration process.

Logical Schema Reconstruction

This process addresses the discovery of the implicit

constructs of the schema. Many logical constructs have

not been declared by explicit DDL statements and

clauses. In some favorable situations, they have been

translated into programmed database components

such as SQL checks, triggers and stored procedures.

726D Database Reverse Engineering
However, most of them have been translated into appli-

cation program fragments (nearly) duplicated and scat-

tered throughout millions of lines of code (codeext).

For instance, a popular way to check a referential

constraint consists in accessing the target record before

storing the source record in its file. Recovering these

implicit constructs, in contrast with explicit constructs,

which have been expressed in DDL, requires a precise

analysis of various pieces of procedural code. Though

program source code is the richest information source,

the database contents (the data), screen layout, report

structure, program execution, users interview and, of

course, (possibly obsolete) documentation will be ana-

lyzed as well. As a final step of the reconstruction,

physical components are discarded inasmuch as they

are no longer useful to discover logical constructs.

Implicit Constructs All the structures and constraints

that cannot be expressed in the DDL are implicit by

nature. However, many database schemas include im-

plicit constructs that could have been declared at design

time but that were not, for such reasons as convenience,

standardization, inheritance from older technology or

simply by ignorance or bad design. Two popular exam-

ples can be mentioned. In network and hierarchical

databases, some links between record types are translat-

ed into implicit foreign keys despite the fact that rela-

tionship types could have been explicitly declared

through set types or parent-child relationship types. In

many legacy relational databases, most foreign keys are

not declared through foreign key clauses, but are

managed by an appropriate set of triggers. The most

important implicit constructs are the following [8].

Exact field and record structure. Compound and

multivalued fields are often represented by the con-

catenation of their elementary values. Screen layout

and program analysis are major techniques to discover

these structures.

Unique keys of record types and multivalued fields.

This property is particularly important in strongly

structured record types and in sequential files.

Foreign keys. Each value of a field is processed as a

reference to a record in another file. This property can

be discovered by data analysis and program analysis.

Functional dependencies. The values of a field can

depend on the values of other fields that have not been

declared or elicited as a candidate key. This pattern is

frequent in older databases and file systems for perfor-

mance reasons.
Value domains. A more precise definition of

the domain of a field can be discovered by data and

program analysis. Identifying enumerated domains is

particularly important.

Meaningful names. Proprietary naming standards

(or, worse, the absence thereof) may lead to cryptic

component names. However, the examination of pro-

gram variables and electronic form fields in/from

which field values are moved can suggest more signifi-

cant names.

Sources and Techniques Analytical techniques ap-

plied to various sources can all contribute to a better

knowledge of the implicit components and properties

of a database schema.

Schema analysis. Spotting similarities in names,

value domains and representative patterns may help

identify implicit constructs such as foreign keys.

Data analysis. Mining the database contents

can be used in two ways. First, to discover implicit

properties, such as functional dependencies and foreign

keys. Second, to check hypothetic constructs that have

been suggested by other techniques. Considering the

combinatorial explosion that threaten the first approach,

data analysis is most often applied to check the existence

of formerly identified patterns.

Program analysis. Understanding how programs

use the data provides crucial information on properties

of these data. Even simple analysis, such as dataflow

graphs, can bring valuable information on field struc-

ture (Fig. 1) and meaningful names. More sophisticat-

ed techniques such as dependency analysis and

program slicing can be used to identify complex con-

straint checking or foreign keys.

Screen/report layout analysis. Forms, reports and

dialog boxes are user-oriented views on the database.

They exhibit spatial structures (e.g., data aggregates),

meaningful names, explicit usage guidelines and, at

run time, data population that, combined with data-

flow analysis, provide much information on implicit

data structures and properties.

Schema Conceptualization

The goal of this process is to interpret the logical

schema semantically by extracting a conceptual schema

that represents its intended meaning. It mainly relies

on transformational techniques that undo the effect

of the logical design process. This complex process

is decomposed in three subprocesses, namely

Database Reverse Engineering. Figure 1. Illustration of the physical schema extraction and logical schema

reconstruction processes.

Database Reverse Engineering. Figure 2. Conceptualization of a complex field.

Database Reverse Engineering D 727

D

untranslation, de-optimization and conceptual normal-

ization. The untranslation process consists in reversing

the transformations that have been used to draw the

logical schema from the conceptual schema. For in-

stance, each foreign key is interpreted as the imple-

mentation of a N:1 relationship type. This process

relies on a solid knowledge of the rules and heuristics

that have been used to design the database. Those rules

can be standard, which makes the process fairly

straightforward, but they can also be specific to the

company or even to the developer in charge of the

database (who may have left the company), in which

case reverse engineering can be quite tricky. The main

constructs that have to be recovered are relationship

types (Fig. 2), super-type/subtype hierarchies, multi-

valued attributes, compound attributes and optional

attributes. The de-optimization process removes the

trace of all the optimization techniques that have been

used to improve the performance of the database.

Redundancies must be identified and discarded, unnor-

malized data structures must be decomposed and hori-

zontal and vertical partitioning must be identified and

undone. Finally, conceptual normalization improves the

expressiveness, the simplicity, the readability and the

extendability of the conceptual schema. It has the same

goals and uses the same techniques as the

corresponding process in Conceptual analysis.
Tools

Reverse engineering requires the precise analysis of

huge documents such as programs of several millions

of lines of code and schemas that include thousa-

nds of files and hundreds of thousands of fields. It

also requires repeatedly applying complex rules on

thousands of patterns. In addition, many reverse

processes and techniques are common with those of

forward engineering, such as transformations, valida-

tion and normalization. Finally, reverse engineering is

only a step in larger projects, hence the need for

integrated environments that combine forward and

reverse tools and techniques [11].

Examples

Figure 1 illustrates the respective roles of the physical

schema extraction and logical schema reconstruction

processes. Parsing the DDL code identifies column

CUS_DESCR as a large atomic field in the physical

schema (left). Further dataflow analysis allows this

column to be refined as a compound field (right).

The conceptualization of a compound field as

a complex relationship type is illustrated in Figure 2.

The multivalued field O-DETAIL has a component

(O-REF) that serves both as an identifier for its values

(the values of O-DETAIL in an ORDER record have

distinct values of O-REF) and as a reference to an

728D Database Scheduling
ITEM record. This construct is interpreted as an N:N

relationship type between ORDER and ITEM.

Key Applications
Database reverse engineering is most often the first

step in information system maintenance, evolution

[10], migration and integration. Indeed, such complex

projects cannot be carried out when no complete,

precise and up-to-date documentation of the database

of the information system is available.

The scope of data reverse engineering progressively

extends to other kinds of information such as web

sites, electronic forms, XML data structures and any

kind of semi-structured data. Though most techniques

and tools specific to database reverse engineering re-

main valid, additional approaches are required, such as

linguistic analysis and ontology alignment.

Cross-references
▶Database Design

▶ Entity-Relationship Model

▶Hierarchical Data Model

▶Network Data Model

▶Relational Model

Recommended Reading
1. Baxter I. and Mehlich M. Reverse engineering is reverse forward

engineering. Sci. Comput. Programming, 36:131–147, 2000.

2. Blaha M.R. and Premerlani W.J. Observed idiosyncrasies of

relational database designs. In Proc. 2nd IEEE Working Conf.

on Reverse Engineering, 1995, p. 116.

3. Casanova M.A. and Amaral de Sa J.E. Mapping uninterpreted

schemes into entity-relationship diagrams: two applications to

conceptual schema design. IBM J. Res. Develop., 28(1):82–94,

1984.

4. Chikofsky E.J. and Cross J.H. Reverse engineering and design

recovery: a taxonomy. IEEE Softw., 7(1):13–17, 1990.

5. Davis K.H. and Aiken P.H. Data reverse engineering: a historical

view. In Proc. 7th Working Conf. on Reverse Engineering, 2000,

pp. 70–78.

6. Davis K.H. and Arora A.K. A methodology for translating a

conventional file system into an entity-relationship model. In

Proc. 4th Int. Conf. on Entity-Relationship Approach, 1985,

p. 148–159.

7. Edwards H.M. and Munro M. Deriving a logical model for a

system using recast method. In Proc. 2nd IEEE Working Conf.

on Reverse Engineering, 1995, pp. 126–135.

8. Hainaut J.-L. Introduction to database reverse engineering,

LIBD lecture notes, Pub. University of Namur, Belgium, 2002,

p. 160. Retrieved Oct. 2007 from http://www.info.fundp.ac.be/

~dbm/publication/2002/DBRE-2002.pdf.

9. Hainaut J.-L. The transformational approach to database engi-

neering. In Generative and Transformational Techniques in
Software Engineering, R. Lämmel, J. Saraiva, J. Visser (eds.),

LNCS 4143. Springer-Verlag, 2006, pp. 89–138.

10. Hainaut J.-L., Clève A., Henrard J., and Hick J.-M. Migration

of Legacy Information Systems. In Software Evolution,

T. Mens, S. Demeyer (eds.). Springer-Verlag, 2007, pp. 107–138.

11. Hainaut J.-L., Roland D., Hick J-M., Henrard J., and Englebert V.

Database reverse engineering: from requirements to CARE tools.

J. Automated Softw. Eng., 3(1/2):9–45, 1996.

12. Navathe S.B. and Awong A. Abstracting relational and hierarchi-

cal data with a semantic data model. In Proc. Entity-Relation-

ship Approach: a Bridge to the User. North-Holland, 1987, pp.

305–333.
Database Scheduling

▶Database Middleware
Database Security

ELENA FERRARI

University of Insubria, Varese, Italy

Synonyms
Database protection

Definition
Database security is a discipline that seeks to protect

data stored into a DBMS from intrusions, improper

modifications, theft, and unauthorized disclosures.

This is realized through a set of security services,

which meet the security requirements of both the

system and the data sources. Security services are

implemented through particular processes, which are

called security mechanisms.

Historical Background
Research in database security has its root in operating

system security [6], whereas its developments follow

those in DBMSs. Database security has many branches,

whose main historical developments are summarized

in what follows:

Access control. In the 1970s, as part of the research on

System R at IBM Almaden Research Center, there

was a lot of work on access control for relational

DBMSs [3]. About the same time, some early work

on Multilevel Secure Database Management Systems

(MLS/DBMSs) was reported, whereas much of the

Database Security D 729

D

development on MLS/DBMSs began [9] only after the

Air Force Summer Study in 1982 [1]. This has resulted

in different research prototypes, such as for instance

those developed at MITRE, SRI International and

Honeywell Inc. Access control models developed for

relational databases have then been extended to cope

with the new requirements of advanced DBMSs, such

as object-oriented, object-relational, multimedia and

active DBMSs [9], GIS [7], and XML DBMSs [5], and

other advanced data management systems and appli-

cations, including digital libraries, data warehousing

systems, and workflow management systems [9]. Role-

based access control has been proposed in the 1990s

[8] as a way to simplify authorization management

within companies and organizations.

Privacy protection. Given the vast amount of personal

data that is today collected by DBMSs, privacy is

becoming a primary concern, and this has resulted in

various research activities that have been started quite

recently. A first research direction is related to privacy-

preserving data mining, that is, how to apply data

mining tools without compromising user privacy. All

approaches developed so far are based on modifying or

perturbing the data in some way. One of the issues is

therefore how to maintain the quality of the modified

data in such a way that they can be useful for data

mining operations. Another line of research deals with

the support of privacy policies, within the DBMS. In

this direction, one of the most mature and promising

proposal is the concept of Hippocratic database recent-

ly proposed by Agrawal et al. [3].

Auditing. Research on this issue has mainly focused

on two directions: organization of the audit data and

use of these data to discover possible security breaches.

Another important research area is how to protect the

audit data to prevent their malicious tampering.

Authentication. The simplest form of authentication

is the one based on password. Throughout the years,

several efforts have been made to make this scheme

more robust against security threats or to develop

schemes more suited to distributed and web-based

environments. This is the case, for instance, of token-

based schemes, that is, schemes based on biometric

information, or single sign-on (SSO) schemes, particu-

larly suited for distributed environments since they

allow a user to authenticate once and gain access to

the resources of multiple DBMSs. Recently, an innova-

tive form of authentication has been proposed, based

on user social relationships [4].
Foundations
Today data are one of the most crucial assets of

any organization and, as such, their protection from

intrusions, improper modifications, theft, and unau-

thorized disclosures is a fundamental service that any

DBMS must provide [3,9,13]. Since data in a database

are tightly related by semantic relationships, a damage

of a data portion does not usually affect a single user or

application, but the entire information system. Secu-

rity breaches are typically categorized into the follow-

ing categories: unauthorized data observation, incorrect

data modification, and data unavailability. Security

threats can be perpetrated either by outsiders or by

users legitimately entitled to access the DBMS. The

effect of unauthorized data observation is the disclo-

sure of information to users not entitled to access such

information. All organizations one may think of, rang-

ing from commercial organizations to social or mili-

tary organizations, may suffer heavy losses from both

financial view and human point of view upon unau-

thorized data observation. Incorrect modifications of

data or incorrect data deletion, either intentional or

unintentional, results in an inconsistent database state.

As a result, the database is not any longer correct. Any

use of incorrect data may again result in heavy losses

for the organization. Think, for instance, of medical

data, where different observations of the same vital

parameter may be used to make a clinical diagnosis.

For the correct diagnosis it is crucial that each obser-

vation has not been incorrectly modified or deleted.

When data are unavailable, information that are cru-

cial for the proper functioning of the organization may

not be readily accessible when needed. For instance,

consider real-time systems, where the availability of

some data may be crucial to immediately react to

some emergency situations.

Therefore, data security requires to address three

main issues:

1. Data secrecy or confidentiality. It prevents improper

disclosure of information to unauthorized users.

When data are related to personal information, pri-

vacy is often used as a synonym of data confidenti-

ality. However, even if some techniques to protect

confidentiality can be used to enforce privacy,

protecting privacy requires some additional coun-

termeasures. More precisely, since information pri-

vacy relates to an individual’s right to determine

how, when, and to what extent his or her personal

730D Database Security
information will be released to another person or to

an organization [11], protecting privacy requires to

deal with additional issues with regard to confidenti-

ality, such as, for instance, verifying that data are used

only for the purposes authorized by the user and not

for other purposes, or obtaining and recording the

consents of users.

2. Data integrity. It protects data from unauthorized

or improper modifications or deletions.

3. Data availability. It prevents and recovers data from

hardware and software errors and from malicious

data denials making the database or some of its

portions not available.

Today, access to databases is mainly web-based and, in

this context, two additional issues, besides the above-

mentioned one, should be addressed, in order to pro-

vide strong guarantees about data contents to users:

Data authenticity. It ensures that a user receiving

some data can verify that the data have been generated

by the claimed source and that they have not been

maliciously modified.

Data completeness. The user can verify whether he or

she has received all the data he or she requested.

A DBMS exploits the services of the underlying

operating system to manage its data (for instance to

store data into files). This applies also to security.

However, protecting data stored into a DBMS is differ-

ent from protecting data at the operating system level,

and therefore it requires additional and more sophisti-

cated mechanisms. The main reasons are the following:

1. DBMSs and operating systems adopt different data

models. In particular, data in a DBMS can be repre-

sented at different level of abstraction (physical, logi-

cal, view level), whereas an operating system adopts a

unique representation of data (i.e., data are stored

into files) and this simplifies data protection.

2. DBMSs are characterized by a variety of granularity

levels for data protection. For instance, in a rela-

tional database, data can be protected at the rela-

tion or view level. However, sometimes finer

granularity levels are needed, such as for instance

selected attributes or selected tuples within a table.

In contrast, in an operating system data protection

is usually enforced at the file level.

3. In a database, objects at the logical level may

be semantically related and these relations must be

carefully protected. Moreover, several logical objects
(e.g., different views) may correspond to the same

physical object (e.g., the same file). These issues do

not have to be considered when protecting data in an

operating system.

Therefore, it is necessary that a DBMS is equipped with

its own security services. Of course it can also exploit

the security services provided by the underlying

operating system, as well as those enforced at the

hardware and network level. Generally, each security

property is ensured by more than one DBMS service.

In particular, the access control mechanism ensures data

secrecy. Whenever a subject tries to access an object,

the access control mechanism checks the right of the

subject against a set of authorizations, stated usually

by some Security Administrators or users. The access

is granted only if it does not conflict with the stated

authorizations. An authorization states which subject

can perform which action on which object and,

optionally, under which condition. Authorizations are

granted according to the security policies of the orga-

nization. Data confidentiality is also obtained through

the use of encryption techniques, either applied to the

data stored on secondary storage or when data are

transmitted on a network, to avoid that an intruder

intercepts the data and accesses their contents. Data

integrity is jointly ensured by the access control mecha-

nism and by semantic integrity constraints. Similarly to

confidentiality enforcement, whenever a subject tries to

modify some data, the access control mechanism verifies

that the subject has the right to modify the data, accord-

ing to the specified authorizations and, only in this case,

it authorizes the update request. Additionally, current

DBMSs allow one to specify a set of integrity constraints,

using SQL in case of an RDBMS, that expresses cor-

rectness conditions on the stored data, and therefore

avoids incorrect data updates and deletions. These

constraints are automatically checked by the constraint

checker subsystem upon the request for each update

operation. Furthermore, digital signature techniques

can be applied to detect improper data modifications.

They are also used to ensure data authenticity. Finally,

the recovery subsystem and the concurrency control

mechanism ensure that data are available and correct

despite hardware and software failures and despite data

accesses from concurrent application programs. In

particular, to properly recover the correct state of the

database after a failure, all data accesses are logged. Log

files can then be further used for auditing activities,

Database Security. Figure 1. Security mechanisms.

Database Security. Table 1. Security requirements and

enforcement techniques

Security
properties Techniques

Secrecy Access control mechanism, data
encryption

Integrity Access control mechanism, semantic
integrity constraints, digital signatures

Availability Recovery subsystem, concurrency
control mechanism,

techniques preventing DoS attacks

Authenticity Digital signatures

Completeness Non standard digital signatures

Database Security D 731

D

that is, they can be analyzed by an intrusion detection

system to discover possible security breaches and their

causes. Data availability, especially for data that are

available on the web, can be further enhanced by the

use of techniques avoiding query floods [2] or other

Denial-of-Service (DoS) attacks. Completeness en-

forcement is a quite new research direction, which

is particularly relevant when data are outsourced to

(untrusted) publishers for their management [12]. It

can be ensured through the use of nonstandard digital

signature techniques, like Merkle trees and aggregation

signatures. Table 1 summarizes the security properties

discussed so far and the techniques for their

enforcement.

732D Database Socket
The above described security services must rely for

their proper functioning on some authentication mech-

anism, which verifies whether a user wishing to con-

nect to the DBMS has the proper credentials. Such a

mechanism identifies users and confirms their identi-

ties. Commonly used authentication mechanisms are

based on the use of login and password, whereas more

sophisticated schemes include those using biometric

information, or token-based authentication.

The security mechanisms discussed so far and their

interactions are graphically summarized in Fig. 1.

Additionally, security mechanisms should be devised

when data are accessed through web applications.

These applications can be exploited to perpetrate one

of the most serious threats to web-accessible databases,

that is, SQL-Injection Attacks (SQLIAs) [10]. In the

worst case, these attacks may cause the intruder to

gain access to all the data stored into the database, by

by-passing the security mechanisms, and, therefore, it

gives him or her the power to leak, modify, or delete

the information that is stored in the database. SQLIAs

are very widespread, as reported by a study by Gartner

Group over 300 Internet websites, which has shown

that most of them could be vulnerable to SQLIAs.

SQLIAs basically exploit insufficient input validation

in the application code. One of the simplest form of

SQLJ attack is that of inserting SQL meta-characters

into web-based input fields to manipulate the execu-

tion of the back-end SQL queries. Although several

techniques to prevent such attacks have been recently

proposed [10], there are so many variants of SQLIAs

that finding a complete solution to these threats is still

a challenging research issue.

Key Applications
Database security services are nowadays used in any

application environment that exploits a DBMS to

manage data, including Healthcare systems, Banking

and financial applications, Workflow Management

Systems, Digital Libraries, Geographical and Multi-

media management systems, E-commerce services,

Publish-subscribe systems, Data warehouses.

Cross-references
▶Access Control

▶Auditing and Forensic Analysis

▶Authentication

▶Concurrency Control–Traditional Approaches

▶Data Encryption
▶Digital Signatures

▶ Intrusion Detection Technologies

▶Merkle Trees

▶ Privacy

▶ Privacy-Enhancing Technologies

▶ Privacy-Preserving Data Mining

▶ Secure Data Outsourcing

▶ Secure Database Development

▶ Security Services

Recommended Reading
1. Air Force Studies Board and Committee on Multilevel data

management security. Multilevel data management security.

National Academy, WA, USA, 1983.

2. Bertino E., Laggieri D., and Terzi E. Securing DBMS: character-

izing and detecing query flood. In Proc. 9th Information Securi-

ty Conference, 2004, pp. 195–206.

3. Bertino E. and Sandhu R.S. Database security: concepts,

approaches, and challenges. IEEE Trans. Depend. Secure Com-

put., 2(1):2–19, 2005.

4. Brainard J., Juels A., Rivest R.L., SzydloM., and YungM. Fourth-

factor authentication: somebody you know. In Proc. 13th ACM

Conf. on Computer and Communications Security, 2006.

5. Carminati B., Ferrari E., and Thuraisingham B.M. Access control

for web data: models and policy languages. Annals Telecomm.,

61(3–4):245–266, 2006.

6. Castano S., Fugini M.G., Martella G., and Samarati P. Database

security. Addison-Wesley, Reading, MA, 1995.

7. Damiani M.L. and Bertino E. Access control systems for

geo-spatial data and applications. In Modelling and Manage-

ment of Geographical Data over Distributed Architectures,

A. Belussi, B. Catania, E. Clementini, E. Ferrari (eds.). Springer,

2007, pp. 189–214.

8. Ferraiolo D.F., Sandhu R.S., Gavrila S.I., Kuhn D.R., and

Chandramouli R. Proposed NIST standard for role-based access

control. ACM Trans. Inf. Syst. Secur., 4(3):224–274, 2001.

9. Ferrari E. and Thuraisingham B.M. Secure database systems.

In Advanced Databases: Technology and Design, O. Diaz, M.

Piattini (eds.). Artech House, London, 2000.

10. Halfond W.G., Viegas J., and Orso A. A classification of

SQL-injection attacks and countermeasures. Int. Symp. on Se-

cure Software Engineering, 2006.

11. Leino-Kilpi H., Valimaki M., Dassen T., Gasull M., Lemonidou

C., Scott A., and Arndt M. Privacy: a review of the literature. Int.

J. Nurs. Stud., (38):663–671, 2001.

12. Pang H. and Tan K.L. Verifying completeness of relational query

answers from online servers. ACM Trans. Inf. Syst. Secur., 11(2),

2008, article no. 5.

13. Pfleeger C.P. and Pfleeger S.L. Security in computing, 3rd edn.

Prentice-Hall, Upper Saddle River, NJ, USA, 2002.
Database Socket

▶Connection

Database Techniques to Improve Scientific Simulations D 733
Database Storage Layer

▶ Storage Access Models
D

Database Techniques to Improve
Scientific Simulations

BISWANATH PANDA, JOHANNES GEHRKE,

MIREK RIEDEWALD

Cornell University, Ithaca, NY, USA

Synonyms
Indexing for online function approximation

Definition
Scientific simulations approximate real world physical

phenomena using complex mathematical models. In

most simulations, the mathematical model driving the

simulation is computationally expensive to evaluate

and must be repeatedly evaluated at several different

parameters and settings. This makes running large-scale

scientific simulations computationally expensive. A com-

monmethod used by scientists to speed up simulations is

to store model evaluation results at some parameter

settings during the course of a simulation and reuse the

stored results (instead of direct model evaluations) when

similar settings are encountered in later stages of the

simulation. Storing and later retrieving model evalua-

tions in simulations can bemodeled as a high dimension-

al indexing problem. Database techniques for improving

scientific simulations focus on addressing the new chal-

lenges in the resulting indexing problem.
Historical Background
Simulations have always been an important method used

by scientists to study real world phenomena. The general

methodology in these application areas is similar. Scien-

tists first understand the physical laws that govern the

phenomenon. These laws then drive a mathematical

model that is used in simulations as an approximation

of reality. In practice scientists often face serious compu-

tational challenges. The more realistic the model, the

more complex the corresponding mathematical equa-

tions. As an example, consider the simulation of a com-

bustion process thatmotivated the line of work discussed

in this entry. Scientists study how the composition of
gases in a combustion chamber changes over time due to

chemical reactions. The composition of a gas particle is

described by a high-dimensional vector (10–70 dimen-

sions). The simulation consists of a series of time steps.

During each time step some particles in the chamber

react, causing their compositions to change. This reaction

is described by a complex high-dimensional function

called the reaction function, which, given the current

composition vector of a particle and other simulation

properties, produces a new composition vector for the

particle. Combustion simulations usually require up to

108–1010 reaction function evaluations each of which

requires in the order tens of milliseconds of CPU time.

As a result, even small simulations can run into days.

Due to their importance in engineering and science,

many algorithms have been developed to speed up

combustion simulations. The main idea is to build an

approximate model of the reaction function that is

cheaper to evaluate. Early approaches were offline,

where function evaluations were collected from simu-

lations and used to learn multivariate polynomials

approximating the reaction function [8]. These poly-

nomials were then used later in different simulations

instead of the reaction function. Recently, more

sophisticated models like neural networks and self

organizing maps have also been used [3]. The off-

line approaches were not very successful because a

single model could not generalize to a large class

of simulations. In 1997, Pope developed the In Situ

Adaptive Tabulation (ISAT) Algorithm [7]. ISAT was

an online approach to speeding up combustion simu-

lations. The algorithm cached reaction function eva-

luations at certain frequently seen regions in the

composition space and then used these cached values

to approximate the reaction function evaluations

at compositions encountered later on in the simula-

tion. The technique was a major breakthrough in

combustion simulation because it enabled scientists

to run different simulations without having to first

build a model for the reaction function. Until today,

the Algorithm remains the state of the art for combus-

tion simulations. Several improvements to ISAT have

been proposed. DOLFA [9] and PRISM [1] proposed

alternative methods of caching reaction function eva-

luations. More recently, Panda et al. [6] studied the

storage/retrieval problem arising out of caching/

reusing reaction function evaluations in ISAT

and this entry mainly discusses their observations

and findings.

Database Techniques to Improve Scientific

Simulations. Figure 1. Pseudocode of the ISAT

algorithm.

734D Database Techniques to Improve Scientific Simulations
Foundations
Even though the ISATalgorithmwas originally proposed

in the context of combustion simulations the algorithm

can be used for building an approximate model for any

high dimensional function (f), that is expensive to com-

pute. This section begins with a discussion of Local

Models, that represent the general class of models built

by ISAT (section ‘‘Local Models’’). This is followed by a

description of the ISAT Algorithm that uses selective

evaluations of the expensive function f to build a local

model (section ‘‘ISAT Algorithm’’). The algorithm

introduces a new storage/retrieval, and hence indexing,

problem. The section then discusses the indexing

problem in detail: its challenges and solutions that

have been proposed (sections ‘‘Indexing Problem’’

and ‘‘An Example: Binary Tree’’) and concludes with

some recent work on optimizing long running simula-

tions (section ‘‘Long Running Simulations’’).
Local Models

Local Models are used in many applications to approx-

imate complex high dimensional functions. Given a

function f : Rm ! Rn; a local model defines a set of

high dimensional regions in the function domain:

R ¼ R1:::RnjRi � Rmf g. Each region Ri is associated

with a function f̂Ri
: Ri ! Rn; such that

8x 2 Ri : jjf̂Ri
ðxÞ � f ðxÞ jj � E; where e is a specified

error tolerance in the model and jj is some specified

error metric such as the Euclidean distance. Using a

local model to evaluate f at some point x in the func-

tion domain involves first finding a region (R 2 R)

that contains x and then evaluating f̂RðxÞ as an approx-

imation to f (x).
ISAT Algorithm

Main algorithm: ISAT is an online algorithm for func-

tion approximation; its pseudocode is shown in Fig. 1.

The algorithm takes as input a query point x at which

the function value must be computed and a search

structure S that stores the regions in R. S is empty

when the simulation starts. The algorithm first tries to

compute the function value at x using the local model

it has built so far (Lines 2–3). If that fails the algorithm

computes f(x) using the expensive model (Line 5) and

uses f(x) to update existing or add new regions in the

current local model (Line 6). The algorithm is online

because it does not have access to all query points when

it builds the model.
Model updating: ISATupdates the local model using

a strategy outlined in Fig. 2. In general it is extremely

difficult to exactly define a region R and an associated

f̂R , such that f̂R approximates f in all parts of R.

ISAT proposes a two step process to discover regions. It

initially starts with a region that is very small and con-

servative but where it is known that a particular f̂R
approximates f well. It then gradually grows the con-

servative approximations over time. More specifically,

the update process first searches the index S for regions

R where x lies outside R but jjf̂RðxÞ � f ðxÞjj � E. Such
regions are grown to contain x (Lines 2–7). If no

existing regions can be grown a new conservative re-

gion centered around x and associated f̂R is added to

the local model (Line 9). The grow process described is

a heuristic that works well in practice for functions that

are locally smooth. This assumption holds in combus-

tion and in many other applications.

Instantiation: While the shape of the regions and

associated functions can be arbitrary, the original ISAT

algorithm proposed high dimensional ellipsoids as

regions and used a linear model as the function in a

region. The linear model is initialized by computing

the f value and estimating the derivative of f at the

center of the ellipsoidal region:

f̂RðxÞ ¼ f ðaÞ þ F 0
a � ðx � aÞ;

where a, is the center of the region R and F 0
a is the

derivative at a.

ISAT performs one of the following high level

operations for each query point x. Retrieve: Comput-

ing the function value at x using the current local

model by searching for a region containing x. Grow:

Searching for regions that can be grown to contain x

and updating these regions in S. Add: Adding a new

region (R) and an associated f̂R into S.

Database Techniques to Improve Scientific

Simulations. Figure 2. Pseudocode for updating a local

model.

Database Techniques to Improve Scientific Simulations D 735

D

Indexing Problem

The indexing problem in function approximation pro-

duces a challenging workload for the operations on

index S in Figs. 1 and 2. The retrieve requires the

index to support fast lookups. The grow requires

both a fast lookup to find growable ellipsoids and

then an efficient update process once an ellipsoid is

grown. Finally, an efficient insert operation is required

for the add step. There are two main observations

which make this indexing problem different from tra-

ditional indexing [2,4]:

� The regions that are stored in the index are not

predefined but generated by the add and grow

operations. Past decisions about growing and add-

ing affect future performance of the index, there-

fore the algorithm produces an uncommon query/

update workload.

� The framework in which indexes must be evaluated

is very different. Traditionally, the performance of

index structures has been measured in terms of the

cost of a search and in some cases update. There are

two distinct cost factors in the function approxi-

mation problem. First, there are the costs asso-

ciated with the search and update operations on

the index. Second, there are costs of the function

approximation application which include function

evaluations and region operations. Since the goal of

function approximation is to minimize the total

cost of the simulation, all these costs must be

accounted for when evaluating the performance of

an index.

In the light of these observations a principled analysis

of the various costs in the function approximation

algorithm leads to the discovery of novel tradeoffs.
These tradeoffs produce significant and different effects

on different index structures. Due to space constraints,

only a high-level discussion of the various costs in the

algorithm and the associated tradeoffs is included. The

remainder of this section briefly describes the tradeoffs

and the tuning parameters that have been proposed to

exploit the different tradeoffs. The indexing problem is

studied here using the concrete instantiation of the ISAT

algorithm using ellipsoidal regions with linear models.

Therefore, regions are often referred to as ellipsoids in

the rest of the section. However, it is important to note

that the ideas discussed are applicable to any kind of

regions and associated functions.
Tuning Retrieves

In most high dimensional index structures the ellip-

soid containing a query point is usually not the first

ellipsoid found. The index ends up looking at a num-

ber of ellipsoids before finding ‘‘the right one.’’ The

additional ellipsoids that are examined by the index are

called false positives. For each false positive the algo-

rithm pays to search and retrieve the ellipsoid from the

index and to check if the ellipsoid contains the query

point. In traditional indexing problems, if an object that

satisfies the query condition exists in the index, then

finding this object during search is mandatory. There-

fore, the number of false positives is a fixed property of

the index. However, the function approximation prob-

lem provides the flexibility to tune the number of false

positives, because the expensive function can be evalu-

ated if the index search was not successful. The number

of false positives can be tuned by limiting the number of

ellipsoids examined during the retrieve step. This pa-

rameter is denoted by Ellr. Ellr places an upper bound

on the number of false positives for a query. Tuning Ellr

controls several interesting effects.

� Effect 1: Decreasing Ellr reduces the cost of the

retrieve operation as fewer ellipsoids are retrieved

and examined.

� Effect 2: Decreasing Ellr decreases the chances of

finding an ellipsoid containing the query point there-

by resulting in more expensive function evaluations.

� Effect 3: Misses that result from decreasing Ellr can

grow and add other ellipsoids. These grows and adds

index new parts of the domain and also change the

overall structure of the index. Both of these affect the

probability of retrieves for future queries. This is a

more subtle effect unique to this problem.

736D Database Techniques to Improve Scientific Simulations
Tuning Grows and Adds

Just like the retrieve, the grow and add operations can be

controlled by the number of ellipsoids examined for

growing denoted as Ellg. Since an add is performed only

if a grow fails, this parameter controls both the operations.

Ellg provides a knob for controlling several effects that

affect performance of the index and the algorithm.

� Effect 4: The first part of the grow process involves

traversing the index to find ellipsoids that can be

grown. Decreasing Ellg reduces the time spent in

the traversal.

� Effect 5: Decreasing Ellg decreases the number of

ellipsoids examined for the grow and hence the

number of ellipsoids actually grown. This results

in the following effects.
Dat
– Effect 5a: Reducing the number of ellipsoids

grown reduces index update costs that can be

significant in high dimensional indexes.

– Effect 5b: Growing a large number of ellipsoids

on each grow operation indexes more parts of

the function domain, thereby improving the

probability of future retrieves.

– Effect 5c: Growing a large number of ellipsoids

on each grow results in significant overlap
abase Techniques to Improve Scientific Simulations. Figure
among ellipsoids. Overlap among objects

being indexed reduces search selectivity in

many high dimensional indexes.
� Effect 6: Decreasing Ellg increases the number

of add operations. Creating a new region is more

expensive than updating an existing region since

it involves initializing the function f̂R in the new

region.

In summary, the two tuning parameters have many

different effects on index performance and the cost of

the simulation. What makes the problem interesting is

that these effects often move in opposite directions.

Moreover, tuning affects different types of indexes

differently and to varying degrees, which makes it

necessary to analyze each type of index individually.

An Example: Binary Tree

The previous section presented a qualitative discussion

of the effects that tuning Ellr and Ellg can have on

index performance and simulation cost. This section

makes the effects outlined in the previous section more

concrete using an example index structure, called the

Binary Tree. The tree indexes the centers of the ellip-

soids by recursively partitioning the space with cutting
3. Binary tree.

Database Techniques to Improve Scientific Simulations D 737

D

planes. Leaf nodes of the tree correspond to ellipsoid

centers and non-leaf nodes represent cutting planes.

Figure 3 shows an example tree for three ellipsoids A,

B, C and two cutting planes X and Y . We focus on the

tree in the top part of Fig. 3 and use it to describe the

operations supported by the index.

Retrieve

There are two possible traversals in the index that

result in a successful retrieve.

Primary Retrieve. The first called a Primary Re-

trieve is illustrated with query point q2. The retrieve

starts at the root, checking on which side of hyper-

plane X the query point lies. The search continues

recursively with the corresponding subtree, the left

one in the example. When a leaf node is reached, the

ellipsoid in the leaf is checked for the containment of

the query point. In the example, A contains q2, and

hence, a successful retrieve.

Secondary Retrieve. Since the binary tree only in-

dexes centers, ellipsoids can straddle cutting planes,

e.g., A covers volume on both sides of cutting plane

X. If ellipsoids are straddling planes, then the Primary

Retrieve can result in a false negative. For example,

q3 lies to the right of X and so the Primary Retrieve

fails even though there exists an ellipsoid A containing

it. To overcome this problem the Binary Tree performs

a more expensive Secondary Retrieve if the Primary

fails. The main idea of the Secondary Retrieve is to

explore the ‘‘neighborhood’’ around the query point by

examining ‘‘nearby’’ subtrees. In the case of q3, the

failed Primary Retrieve ended in leaf B. Nearby sub-

trees are explored by moving up a level in the tree and

exploring the other side of the cutting plane. Specifi-

cally, C is examined first(after moving up to Y , C is in

the unexplored subtree). Then the search would con-

tinue with A (now moving up another level to X and

accessing the whole left subtree). This process con-

tinues until a containing ellipsoid is found, or Ellr

ellipsoids have been examined unsuccessfully.

Update

Scenario 1 (Grow) and 2 (Add) of Fig. 3 illustrate the

update operations on the index.

Grow. The search for growable ellipsoids proceeds

in exactly the same way as a Secondary Retrieve, start-

ing where the failed Primary Retrieve ended. Assume

that in the example in Fig. 3, ellipsoid B can be grown

to include q4, but C and A cannot. After the retrieve
failed, the grow operation first attempts to grow C.

Then it continues to examine B, then A (unless Ellg

< 3). B is grown to include q4, as shown on the bottom

left (Scenario 1). Growing of Bmade it straddle hyper-

plane Y . Hence, for any future query point near q4 and

‘‘below’’ Y , a Secondary Retrieve is necessary to find

containing ellipsoid B, which is ‘‘above’’ Y .

Add. The alternative to growing B is illustrated on

the bottom right part of Fig. 3 (Scenario 2). Assume

Ellg = 1, i.e., after examining C, the grow search ends

unsuccessfully. Now a new ellipsoid F with center q4
is added to the index. This is done by replacing leaf C

with an inner node , which stores the hyper-plane that

best separates C and F. The add step requires the

expensive computation of f, but it will enable future

query points near q4 to be found by a Primary Retrieve.

Tuning parameter Ellg affects the Binary Tree in its

choice of scenario 2 over 1. This choice, i.e., performing

an add instead of a grow operation, reduces false posi-

tives for future queries, but adds extra-cost for the

current query. Experiments on real simulation work-

loads have shown that this tradeoff has a profound

influence on the overall simulation cost [6].

Long Running Simulations

When ISAT is used in long running combustion simu-

lations (
 108 time steps), updates to the local model

are unlikely after the first few million queries and the

time spent in building the local model is very small

compared to the total simulation time. Based on

these observations, Panda et al. have modeled a long

running combustion simulation as a traditional super-

vised learning problem [5]. They divide a combustion

simulation into two phases. During the first phase, the

ISAT algorithm is run and at the same time (x,f(x))

pairs are sampled uniformly from the composition

space accessed by the simulation. At the end of the

first phase, the sampled (x,f(x)) pairs are used as train-

ing data for a supervised learning algorithm that tries to

find a ‘‘new’’ local model with lower retrieve cost than

the model built using ISAT. This new model is then used

for the remainder of the simulation. Their experiment

shows that the algorithm adds little overhead and that

the new model can reduce retrieve costs by up to 70% in

the second phase of the simulation.

Key Applications
The ISATalgorithm and its optimizations have primar-

ily been applied to combustion simulation workloads.

738D Database Trigger
However, the ideas are applicable to any simulation

setting that requires repeated evaluations in a fixed

domain of a function that is locally smooth and expen-

sive to compute are required.

Cross-references
▶ Spatial and Multidimensional Databases

Recommended Reading
1. Bell J.B., Brown N.J., Day M.S., Frenklach M., Grcar J.F., Propp

R.M., and Tonse S.R. Scaling and efficiency of PRISM in adap-

tive simulations of turbulent premixed flames. In Proc. 28th Int.

Combustion Symp., 2000.

2. Böhm C., Berchtold S., and Keim D.A. Searching in high-

dimensional spaces: index structures for improving the

performance of multimedia databases. ACM Comput. Surv.,

33(3):322–373, 2001.

3. Chen J.Y., KollmannW., and Dibble R.W. A self-organizing-map

approach to chemistry representation in combustion applica-

tions. Combust. Theory and Model., 4:61–76, 2000.

4. Gaede V. and Günther O. Multidimensional access methods.

ACM Comput. Surv., 30(2):170–231, 1998.

5. Panda B., Riedewald M., Gehrke J., and Pope S.B. High speed

function approximation. In Proc. 2007 IEEE Int. Conf. on Data

Mining, 2007.

6. Panda B., Riedewald M., Pope S.B., Gehrke J., and Chew L.P.

Indexing for function approximation. In Proc. 32nd Int. Conf.

on Very Large Data Bases, 2006.

7. Pope S.B. Computationally efficient implementation of combus-

tion chemistry using in situ adaptive tabulation. Combust. The-

ory Model., 1:41–63, 1997.

8. Turanyi T. Application of repro-modeling for the reduction of

combustion mechanisms. In Proc. 25th Symp. on Combustion,

1994, pp. 949–955.

9. Veljkovic I., Plassmann P., and Haworth D.C. A scientific on-line

database for efficient function approximation. In Proc. Int.

Conf. on Computational Science and its Applications, 2003,

pp. 643–653.
Database Trigger

MIKAEL BERNDTSSON, JONAS MELLIN

University of Skövde, Skövde, Sweden

Synonyms
Triggers

Definition
A database trigger is code that is executed in response

to events that have been generated by database com-

mands such as INSERT, DELETE, or UPDATE.
Key Points
Triggers are code that are executed in response to events

that have been generated before or after a database oper-

ation. They are sometimes separated as pre- and post-

triggers in the literature. A pre-trigger can be used as an

extra validation check before the database command is

executed, whereas a post-trigger can be used as a notifi-

cation that the database command has been executed.

Triggers can be classified according to trigger gran-

ularity: row-level triggers or statement-level triggers. In

case of row-level triggers, each row will generate an

event, whereas statement-level triggers occur only once

per database command.

Overviews of database triggers can be found in [1,2].

Cross-references
▶Active Database (aDB)

▶Active Database (Management) System (aDBS/

aDBMS)

▶ ECA Rules

▶ Event

Recommended Reading
1. Kulkarni K.G., Mattos N.M., and Cochrane R. Active Database

Features in SQL3. In Active Rules in Database Systems. 1999,

pp. 197–219.

2. Sudarshan S., Silberschatz A., and Korth H. Triggers, chap. 8.6.

2006, pp. 329–334.
Database Tuning using
Combinatorial Search

SURAJIT CHAUDHURI
1, VIVEK NARASAYYA

1,

GERHARD WEIKUM
2

1Microsoft Corporation, Redmond, WA, USA
2Max-Planck Institute for Informatics, Saarbrücken,

Germany

Definition
Some database tuning problems can be formulated

as combinatorial search, i.e., the problem of searching

over a large space of discrete system configurations

to find an appropriate configuration. One tuning prob-

lem where feasibility of combinatorial search has been

demonstrated is physical database design. As part of the

self-management capabilities of a database system, it is

desirable to develop techniques for automatically recom-

mending an appropriate physical design configuration

Database Tuning using Combinatorial Search D 739

D

to optimize database system performance. This entry

describes the application of combinatorial search tech-

niques to the problem of physical database design.

Historical Background
Combinatorial search (also referred to as combinatorial

optimization) [8] is branch of optimization where the

set of feasible solutions (or configurations) to the prob-

lem is discrete, and the goal is to find the ‘‘best’’ possible

solution. Several well-known problems in computer

science such as the Traveling Salesman Problem, Mini-

mum Spanning Tree Problem, Knapsack Problem etc.

can be considered as examples of combinatorial search.

Several combinatorial search problems have been shown

to be NP-Hard, and exact algorithms that guarantee

optimality are not scalable. In such cases, heuristic

search algorithms such as greedy search, simulated

annealing, genetic algorithms etc. are often used to

ensure scalability.

In the area of database tuning problems, the com-

binatorial search paradigm has been successfully used

for problems such as query optimization [2] and phys-

ical database design tuning [5]. These are described in

more details below.

Foundations
Some of the key aspects of combinatorial search are:

� The search space, i.e., the space of discrete config-

urations from which the solution is picked.

� A metric for evaluating the ‘‘goodness’’ of a con-

figuration in the search space. This is essential

for being able to quantitatively compare different

configurations.

� A search algorithm for efficiently searching the

space to find a configuration with the minimum

(or maximum) value of the goodness metric.

One early example of use of combinatorial search for

tuning in database systems is query optimization (see [2]

for an overview on query optimization in relational

database systems). The goal of query optimization is to

produce an efficient execution plan for a given query

using the physical operators supported by the under-

lying execution engine. The above key aspects of combi-

natorial search are now illustrated for the problem of

query optimization. The search space of execution plans

considered by a query optimizer depends on: (i) The

set of algebraic transformations that preserve equiva-

lence of query expressions (e.g., commutativity and
associativity of joins, commutativity of group by and

join, rules for transforming a nested subquery into

a single-block query, etc.) (ii) The set of physical opera-

tors supported in the system (e.g., three different phy-

sical operators Index Nested Loops Join, Hash Join,

Merge Join for implementing a join). Query optimizers

use a cost model that defines the goodness metric

for evaluating the ‘‘goodness’’ of an execution plan.

In particular for a given execution plan, the cost

model computes an overall number based on estimates

of the CPU, I/O and communication costs of physical

operators in the execution plan. Finally, different kinds

of search algorithms are used in today’s query optimi-

zers including bottom-up approaches (e.g., in the

Starburst query optimizer [7]) as well as top-down

approaches (e.g., optimizers based on the Volcano/

Cascades [6] framework).

Example: Physical Database Design using

Combinatorial Search

An in-depth example is now considered, the problem

of physical database design. A crucial property of a

relational DBMS is that it provides physical data inde-

pendence. This allows physical structures such as

indexes and materialized views to be added or dropped

without affecting the output of the query; but such

changes do impact efficiency. Thus, together with the

capabilities of the execution engine and the optimizer,

the physical database design determines how efficiently

a query is executed on a DBMS. Over the years, the

importance of physical design has become amplified as

query optimizers have become sophisticated to cope

with complex decision support queries. Since query

execution and optimization techniques have become

more sophisticated, database administrators (DBAs)

can no longer rely on a simplistic model of the engine.

Thus, tools for automating physical database design

can ease the DBA’s burden and greatly reduce the total

cost of ownership. For an overview of work in the area

of physical database design, refer to [5].

The role of the workload, including SQL queries

and updates, in physical design is widely recognized.

Therefore, the problem of physical database design can

be stated as: For a given workload, find a configuration,

i.e., a set of indexes and materialized views that mini-

mize the cost of the given workload. Typically, there

is a constraint on the amount of storage space that

the configuration is allowed to take. Since the early

1970s, there has been work on trying to automate

740D Database Tuning using Combinatorial Search
physical database design. However, it is only in the past

decade that automated physical database design tools

have become part of all major commercial DBMS

vendors [5].

Search Space: The search space of configurations

(i.e., set of physical design structures) for a given

query (and hence the given workload) can be very

large. First, the set of physical design structures that

are relevant to a query i.e., can potentially be used by

the query optimizer to answer the query, is itself

large. For example, consider a query with n selection

predicates. An index defined on any subset of the

columns referenced in the predicates is relevant. The

order of columns in the index is also significant; thus,

in principle any permutation of the columns of the

subset also defines a relevant index. The space of rele-

vant materialized views is larger than the space of

indexes since materialized views can be defined on

any subset of tables referenced in the query. Finally,

the search space of configurations for the physical data-

base design problem is the power set of all relevant

indexes and materialized views.

Today’s physical database design tools approach the

issue of large search space by adopting heuristics for

restricting the search space. For example in [3], a key

decision is to define the search space as consisting of

the union of (only) the best configurations for each

query in the workload, where the best configuration

itself is the one with lowest optimizer estimated cost

for the query. Intuitively, this candidate selection step

leverages the idea that an index (or materialized view)

that is not part of an optimal (or close to optimal)

configuration for at least one query, is unlikely to be

optimal for the entire workload. To improve the quali-

ty of the solution in the presence of constraints (e.g., a

storage bound), the above space is augmented with an

additional set of indexes (and materialized views)

derived by ‘‘merging’’ or ‘‘reducing’’ structures from

the above space (e.g., [1]). These additional candidates

exploit commonality across queries in the workload,

and even though they may not be optimal for any

individual query in the workload, they can be optimal

for the workload as a whole in the presence of the

constraint.

Metric: It is not feasible to estimate goodness of a

configuration for a workload by actual creation of phys-

ical design structures and then executing the queries and

updates in the workload. Early papers on physical design

tuning used an external model to estimate the cost
of a query for a given configuration. However, this has

the fundamental problem that the decisionsmade by the

physical design tool could be ‘‘out-of-sync’’ with the

decisions made by the query optimizer. This can lead

to a situation where the physical design tool recom-

mends an index that is never used by the query opti-

mizer to answer any query in the workload.

In today’s commercial physical design tools, the

goodness of a configuration for a query is measured

by the optimizer estimated cost of the query for that

configuration. Unlike earlier approaches that used an

external cost model, this approach has the advantage

that the physical design tool is ‘‘in-sync’’ with the

query optimizer.

One approach for enabling this measure of goodness

is by making the following key server-side enhance-

ments: (i) Efficient creation of a hypothetical (or

‘‘what-if ’’) index. This requires metadata changes to

signal to the query optimizer the presence of a what-if

index (or materialized view). (ii) An extension to the

‘‘Create Statistics’’ command to efficiently generate

the statistics that describe the distribution of values

of the column(s) of a what-if index via the use of sam-

pling. (iii) A query optimization mode that enabled

optimizing a query for a selected subset of indexes

(hypothetical or actually materialized) and ignoring the

presence of other access paths. This is important as the

alternative would have been repeated creation and

dropping of what-if indexes, a potentially costly solu-

tion. For more details, refer to [4].

Search algorithm: Given a workload and a set of

candidate physical design structures (e.g., obtained as

described above using the candidate selection step), the

goal of the search algorithm is to efficiently find a

configuration (i.e., subset of candidates) with the smal-

lest total optimizer cost for the workload. Note that the

problem formulation allows the specification of a set of

constraints that the enumeration step must respect,

(e.g., to respect a storage bound). Since the index

selection problem has been shown to be NP-Hard

[9], the focus of most work has been on developing

heuristic solutions that give good quality recommen-

dations and can scale well.

One important observation is that solutions that

naively stage the selection of different physical design

structures (e.g., select indexes first followed by materi-

alized views, select partitioning for table first followed

by indexes etc.) can result in poor recommendations.

This is because: (i) The choices of these structures

Database Tuning using Online Algorithms D 741

D

interact with one another (e.g., optimal choice of index

can depend on how the table is partitioned and vice

versa). (ii) Staged solutions can lead to redundant

recommendations. (iii) It is not easy to determine

a priori how to partition the storage bound across

different kinds of physical design structures. Thus,

there is a need for integrated recommendations that

search the combined space in a scalable manner.

Broadly the search strategies explored thus far can

be categorized as bottom-up (e.g., [3]) or top-down

[1] search, each of which has different merits. The

bottom up strategy begins with the empty (or pre-

existing configuration) and adds structures in a greedy

manner. This approach can be efficient when available

storage is low, since the best configuration is likely to

consist of only a few structures. In contrast, the top-

down approach begins with a globally optimal config-

uration but it could be infeasible if it exceeds the

storage bound. The search strategy then progressively

refines the configuration until it meets the storage

constraints. The top-down strategy has several key

desirable properties and this strategy can be efficient

in cases where the storage bound is large.
Future Directions
The paradigm of combinatorial search has been effec-

tively used in database tuning problems such as

query optimization and physical database design. It

is future research to consider if this paradigm can

also be effectively applied to other database tuning

problems such as capacity planning and optimizing

database layout.
Cross-references
▶Administration Wizards

▶ Index Tuning

▶ Physical Layer Tuning

▶ Self-Management Technology in Databases
Recommended Reading
1. Bruno N. and Chaudhuri S. Automatic physical design tuning:

a relaxation based approach. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 2005.

2. Chaudhuri S. An overview of query optimization in relational

systems. In Proc. 17th ACM SIGACT-SIGMOD-SIGART Symp.

Principles of Database Systems, 1998.

3. Chaudhuri S. and Narasayya V. An efficient cost driven index

selection tool for microsoft SQL server. In Proc. 23rd Int. Conf.

on Very Large Data Bases, 1997.
4. Chaudhuri S. and Narasayya V. AutoAdmin ‘‘What-If ’’ index

analysis utility. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1998.

5. Chaudhuri S. and Narasayya V. Self-tuning database systems:

a decade of progress. In Proc. 33rd Int. Conf. on Very Large Data

Bases, 2007.

6. Graefe G. The Cascades framework for query optimization. Data

Eng. Bull., 18(3), 1995.

7. Haas L., Freytag C., Lohman G., and Pirahesh H. Extensible

query processing in Starburst. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1989.

8. Papadimitriou C.H. and Steiglitz K. Combinatorial optimiza-

tion: algorithms and complexity. Dover, 1998.

9. Piatetsky-Shapiro G. The optimal selection of secondary indices

is NP-complete. ACM SIGMOD Rec., 13(2):72–75, 1983.
Database Tuning using Online
Algorithms

NICOLAS BRUNO
1, SURAJIT CHAUDHURI

1,

GERHARD WEIKUM
2

1Microsoft Corporation, Redmond, WA, USA
2Max-Planck Institute for Informatics, Saarbrücken,

Germany

Definition
A self-managing database system needs to gracefully

handle variations in input workloads by adapting its

internal structures and representation to changes in the

environment. One approach to cope with evolving

workloads is to periodically obtain the best possible

configuration for a hypothetical ‘‘average’’ scenario.

Unfortunately, this approach might be arbitrarily sub-

optimal for instances that lie outside the previously

determined average case. An alternative approach is

to require the database system to continuously tune

its internal parameters in response to changes in the

workload. This is the online tuning paradigm. Although

solutions for different problems share the same under-

lying philosophy, the specific details are usually

domain-specific. In the context of database systems,

online tuning has been successfully applied to issues

such as buffer pool management, statistics construc-

tion and maintenance, and physical design.

Historical Background
Database applications usually exhibit varying work-

load characteristics over time. Moreover, changes in

workloads cannot be easily modeled beforehand. As a

742D Database Tuning using Online Algorithms
consequence, database systems traditionally provided

offline tools to make corrections to the system’s current

configuration. Examples include physical design tools

that take a representative workload and return a new

database design that would be beneficial in the future,

or the possibility of refreshing the statistical informa-

tion about values stored in database columns. These

approaches allow a database administrator to react

to environmental changes but only after they had hap-

pened (and potentially disrupted a previously well-

tuned system).

Although offline tuning tools have been successfully

introduced in several commercial database systems,

there has been a growing need for additional functional-

ity that is outside the scope of such tools. As database

applications increase in size and complexity, it becomes

more difficult to even decide when offline tools should

be called. Additionally, offline tools are sometimes re-

source intensive and assume that there are idle periods of

time on which they can be applied, which is not neces-

sarily the case. To cope with these new requirements,

a new set of algorithms emerged (e.g., [1,2,6,8,11,12]),

which are based on a different principle. The idea is to

monitor the database system as queries are processed,

and in the background reorganize its internal state to

cope with changes in the workload. In this way, the

database system is continuously modifying itself in a

closed ‘‘monitor-diagnose-tune’’ loop.

Foundations
A requirement towards understanding online tuning is

to conceptualize the transition from scenarios in which

full information is known about the system in consid-

eration (and can therefore identify the optimal solu-

tion). Within the online tuning paradigm, only partial

information is known as time passes (and therefore

it is necessary to approximate optimal solutions at all

times without knowing the future). For illustration

purposes, some specific examples of online tuning are

reviewed briefly, and one such example is provided in

more detail.

An example of online tuning is that of automati-

cally managing memory allocation across different

memory pools [2,12]. Complex queries generally use

memory-intensive operators (e.g., hash-joins) whose

performance depends on the amount of memory that

is given to each operator at runtime. However, only a

finite amount of memory is available at any time, and

it has to be distributed among all the competing
operators. This problem is further complicated by the

fact that new queries are continually being served by

the database system, and therefore any static policy to

distribute available memory might be inadequate as

workloads change. Reference [7] presents an online

algorithm to manage memory that is based on the

ability of operators to dynamically grow and shrink

their own memory pools. By using a feedback loop

while statements are being executed, this technique is

able to incrementally model the optimal resource allo-

cation and adapt the distribution of memory to the

current operators to maximize performance.

Another example of online tuning is physical data-

base design, which is concerned with identifying the

best set of redundant access paths (e.g., indexes or

materialized views) that would accelerate workloads

[5]. While there has been work on offline tools that

assume that the representative input workload would

repeat indefinitely in the future, many scenarios exhib-

it unpredictable changes in workload patterns. Online

physical design tuning takes a different approach: it

monitors incoming queries and measures the relative

cost/benefit of each of the present and hypothetical

(i.e., not part of the current design) structures. By

carefully measuring the impact of creating and dropp-

ing structures (e.g., indexes), the system is able to

change the underlying database configuration in re-

sponse to changes in workload characteristics [3].

Expanded Example: Self Tuning Histograms

Consider, as an in-depth example, the problem of

statistics management in database systems. Relational

query optimization has traditionally relied on single-

or multi-column histograms to model the distribution

of values in table columns. Ideally, histogram buckets

should enclose regions of the data domain with ap-

proximately uniform tuple density (i.e., roughly the

same number of tuples per unit of space in a bucket),

to accurately estimate the result size of range queries.

At the same time, histograms (especially multi-column

ones) should be sufficiently compact and efficiently

computable. Typically, histogram construction strate-

gies inspect the data sets that they characterize without

considering how the histograms will be used (i.e., there

is an offline algorithm that builds a given histogram,

possibly as a result of bad performance of some work-

load query). The implicit assumption while building

such histograms is that all queries are equally likely.

This assumption, however, is rarely true in practice,

Database Tuning using Online Algorithms D 743

D

and certain data regions might be much more heavily

queried than others. By analyzing workload queries

and their results, one could detect buckets that do

not have uniform density and ‘‘split’’ them into smaller

and more accurate buckets, or realize that some adja-

cent buckets are too similar and ‘‘merge’’ them, thus

recuperating space for more critical regions.

In other words, rather than computing a given

histogram at once, without knowledge of how it is

going to be used, one can instead incrementally refine

the statistical model based on workload information

and query feedback. This is the essence of self-tuning

histograms. Intuitively, self-tuning histograms exploit

query workload to zoom in and spendmore resources in

heavily accessed areas, thus allowing some inaccuracy in

the rest. These histograms also exploit query feedback

as truly multidimensional information to identify

promising areas to enclose in histogram buckets. As a

result, the resulting histograms are more accurate

for the expected workload than traditional workload-

independent ones. Self-tuning histograms can also

gracefully adapt to changes in the data distribution

they approximate, without the need to periodically

rebuild them from scratch.

Reference [1] presents STGrid, the first multidi-

mensional histogram that uses query feedback to refine

buckets. STGrid histograms greedily partition the data

domain into disjoint buckets that form a grid, and

refine their frequencies using query feedback by adjust-

ing the expected cardinality of buckets based on ob-

served values. After a predetermined number of queries

have been executed, the histogram is restructured by

merging and splitting rows of buckets at a time. Effi-

ciency in histogram tuning is the main goal of this

technique, at the expense of accuracy. Since STGrid

histograms need to maintain the grid structure at all

times, and also due to the greedy nature of the tech-

nique, some locally beneficial splits and merges have

the side effect of modifying distant and unrelated

regions, hence decreasing the overall accuracy of the

resulting histograms.

To alleviate this problem, STHoles histograms, intro-

duced in [4], are based on a novel partitioning strategy

that is especiallywell suited to exploit workload informa-

tion. STHoles histograms allow inclusion relationships

among buckets, i.e., some buckets can be completely

included inside others. Specifically, each bucket in an

STHoles histogram identifies a rectangular range in

the data domain, similar to other histogram
techniques. However, unlike traditional histograms,

STHoles histograms identify bucket sub-regions with

different tuple density and ‘‘pull’’ them out from the

corresponding buckets. Hence a bucket can have holes,

which are themselves first-class histogram buckets. In

this way, these histograms implicitly relax the require-

ment of rectangular regions while keeping rectangular

bucket structures. By allowing bucket nesting, the

resulting histograms do not suffer from the problems

of STGrid histograms and can model complex shapes

(not restricted to rectangles anymore); by restricting

the way in which buckets may overlap, the resulting

histograms can be efficiently manipulated and updated

incrementally by using workload information.

STHoles histograms exploit query feedback in a truly

multidimensional way to improve the quality of the

resulting representation. Initially, an STHoles histogram

consists of a single bucket that covers the whole data

domain. For each incoming query from the workload,

the query optimizer consults existing histograms and

produces a query execution plan. The resulting plan is

then passed to the execution engine, where it is pro-

cessed. A build/refine histogram module intercepts the

stream of tuples that are returned, and tunes the relevant

histogram buckets so that the resulting histogram

becomes more accurate for similar queries. Specifically,

to refine an STHoles histogram, one first intercepts the

stream of results from the corresponding query execu-

tion plan and counts how many tuples lie inside each

histogram bucket. Next, one determines which regions

in the data domain can benefit from using this new

information, and refines the histogram by ‘‘drilling

holes,’’ or zooming into the buckets that cover the

region identified by the query plan. Finally, to adhere

to the budget constraint, it is possible to consolidate

the resulting histogram by merging similar buckets.

Recently, [10] introduces ISOMER (Improved Sta-

tistics andOptimization byMaximum-Entropy Refine-

ment), a new algorithm for feedback-driven histogram

construction. ISOMER uses the same partitioning strat-

egy as STHoles, but it is based on a more efficient

algorithm to restructure the histogram, which does not

require counting the number of tuples that lie within

each histogram bucket. In contrast, ISOMER uses the

information-theoretic principle of maximum entropy to

approximate the true data distribution by a histogram

distribution that is as ‘‘simple’’ as possible while being

consistent with all the previously observed cardinalities.

In this manner, ISOMER avoids incorporating

744D Database Tuning using Trade-off Elimination
extraneous (and potentially erroneous) assumptions

into the histogram. ISOMER’s approach amounts to

imposing uniformity assumptions (as made by tradi-

tional optimizers) when, and only when no other statis-

tical information is available. ISOMER can be seen as

combining the efficient refinement characteristics from

STGrid histograms with the accuracy of STHoles histo-

grams. A related piece of work is [9], which addresses the

problem of combining complementary selectivity esti-

mations frommultiple sources (which themselves can be

computed using ISOMER histograms) to obtain a con-

sistent selectivity estimation using the idea of maximum

entropy. Similar to the approach in ISOMER, this work

exploits all available information and avoids biasing the

optimizer towards plans for which the least information

is known.

Future Directions
Online tuning is dramatically gaining importance as

more and more applications exhibit unpredictable

workload evolution. In particular, this is a requirement

for cloud-based data services. In such scenarios, the

backend data services are shared by multiple applica-

tions and must be able to cope with changing access

patterns. It should be noted that feedback-driven control

is another paradigm that has been applied for continu-

ous incremental tuning of systems, e.g., in the context

of automated memory management [7]. A detailed dis-

cussion of feedback-driven control and its applications

to computing systems can be found in [8].

Cross-references
▶Histogram

▶ Self-Management Technology in Databases

Recommended Reading
1. Aboulnaga A. and Chaudhuri S. Self-tuning histograms: build-

ing histograms without looking at data. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1999.

2. Brown K.P., Mehta M., Carey M.J., and Livny M. Towards auto-

mated performance tuning for complex workloads. In Proc. 20th

Int. Conf. on Very Large Data Bases, 1994, pp. 72–84.

3. Bruno N. and Chaudhuri S. An online approach to physical

design tuning. In Proc. 23rd Int. Conf. on Data Engineering,

2007.

4. Bruno N., Chaudhuri S., and Gravano L. STHoles: a multidi-

mensional workload-aware histogram. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2001.

5. Chaudhuri S. and Narasayya V.R. Self-tuning database sys-

tems: a decade of progress. In Proc. 33rd Int. Conf. on Very

Large Data Bases, 2007.
6. Chen C.-M. and Roussopoulos N. Adaptive selectivity estima-

tion using query feedback. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1994, pp. 161–172.

7. Dageville B. and Zait M. SQL memory management in Oracle9i.

In Proc. 28th Int. Conf. on Very Large Data Bases, 2002.

8. Diao Y., Hellerstein J.L., Parekh S.S., Griffith R., Kaiser G.E., and

Phung D.B. Self-managing systems: a control theory foundation.

In Proc. 12th IEEE Int. Conf. Engineering of Computer-Based

Systems, 2005, pp. 441–448.

9. Markl V., Haas P.J., Kutsch M., Megiddo N., Srivastava U., and

Tran T.M., Consistent selectivity estimation via maximum

entropy. VLDB J., 16(1):55–76, 2007.

10. Srivastava U. et al. ISOMER: consistent histogram construction

using query feedback. In Proc. 22nd Int. Conf. on Data Engi-

neering, 2006.

11. Stillger M., Lohman G.M., Markl V., and Kandil M. LEO - DB2’s

LEarning Optimizer. In Proc. 27th Int. Conf. on Very Large Data

Bases, 2001, pp. 19–28.

12. Weikum G., König A.C., Kraiss A., and Sinnwell M. Towards

self-tuning memory management for data servers. IEEE Data

Eng. Bull., 22(2):3–11, 1999.
Database Tuning using Trade-off
Elimination

SURAJIT CHAUDHURI
1, GERHARD WEIKUM

2

1Microsoft Corporation, Redmond, WA, USA
2Max-Planck Institute for Informatics, Saarbrücken,

Germany

Definition
Database systems need to be prepared to cope with

trade-offs arising from different kinds of workloads

that different deployments of the same system need to

support. To this end, systems offer tuning parameters

that allow experienced system administrators to tune

the system to the workload characteristics of the appli-

cation(s) at hand. As part of the self-management cap-

abilities of a database system, it is desirable to eliminate

these tuning parameters and rather provide an algo-

rithm for parameter settings such that near-optimal

performance is achieved across a very wide range of

workload properties. This is the trade-off elimination

paradigm. The nature of the solution for trade-off

elimination depends on specific tuning problems; its

principal feasibility has been successfully demonstrated

on issues such as file striping and cache management.

Historical Background
To cope with applications that exhibit a wide variety

of workload characteristics, database systems have

Database Tuning using Trade-off Elimination D 745

D

traditionally provided a repertoire of alternative algo-

rithms for the same or overlapping functionalities, and

have also exposed a rich suite of quantitative tuning

parameters. Examples include a choice of page sizes

and a choice of striping units at the underlying storage

level, a choice of different data structures for single-

dimensional indexing, and various tuning options for

cache management. This approach prepares the system

for trade-offs that arise across different workloads and

within mixed workloads.

More than a decade ago, exposing many options

and tuning parameters to system administrators had

been widely accepted, but has eventually led to prohib-

itive costs for skilled staff. In the last 10 years, many

trade-offs have become much better understood and

analytically or experimentally characterized in a

systematic manner. In some cases, the analysis led to

the insight that a specific criteria for parameter settings

could yield satisfactory performance across a wide

range of workloads. Typically, this insight was derived

hand in hand with progress on the underlying algo-

rithmics or hardware technology. This can form the

basis for eliminating various tuning options such as

page sizes, striping units, data structures for single-

dimensional indexing, and cache management strate-

gies. Some of these research results have been adopted

by commercial engines for self-management; in other

cases, tuning parameters are still exposed.
Foundations
The first step towards trade-off elimination is to better

understand the nature of the trade-off. The key ques-

tions to consider and analyze are the following: Why

are different alternatives needed for the given para-

meter or function? Is the variance across (real or con-

ceivable) workloads really so high that tuning options

are justified? Do different options lead to major differ-

ences in performance? Do some options result in very

poor performance? Are there any options that lead to

acceptably good performance across a wide spectrum

of workloads?

For illustration consider the following specific

tuning issues:

1. Page sizes: There is a trade-off between disk I/O

efficiency and efficient use of memory [4]. Larger

page sizes lead to higher disk throughput because

larger sequential transfers amortize the initial disk-

arm seeks. Smaller page sizes can potentially make
better use of memory because they contain exactly

the actual requested data and there are more of

such small pages that fit into memory. The impact

of this trade-off was large more than 10 years ago

with much smaller memory sizes. Today, memory

sizes are usually at comfortable level, and disk con-

trollers always fetch entire tracks anyway. Thus, a

page size of one disk track (e.g., 100 Kilobytes) is

almost always a good choice, and neither hurts disk

efficiency nor memory usage too much.

2. Striping units: When files or tablespaces are parti-

tioned by block or byte ranges and striped (i.e.,

partitions being allocated in round-robin manner)

across multiple disks, the partition size, aka. striping

unit, leads to a trade-off regarding I/O parallelism

versus disk throughput [2,9]. Small striping units

lead to high parallelism when reading large amounts

of data from the disk-array, but they consume much

more disk-arm time for all involved disks together,

compared to larger striping units with lower degree

of parallelism. Thus, larger striping units can achieve

higher I/O throughput. In some applications, it may

still be worthwhile to tune striping units of different

files according to their request size distributions. But

in database systems, there is usually only a mix of

single-block random accesses and sequential scans.

For such workloads, large striping units in the order

of one Megabyte achieve near-optimal throughput

while still allowing I/O parallelism for scans.

3. Single-dimensional indexing:Many commercial sys-

tems offer the (human or automated) tuning wiz-

ard a choice between a B+-tree or a hash index, for

each single-attribute index that is to be created.

B+-trees provide high efficiency for both random

key lookups and sequential scans, and have proven

their high versatility. Hash indexes offer random-

ization to counter access skew (with some keys

being looked upmuchmore frequently than others)

and even better worst-case performance for look-

ups. Hashing guarantees exactly one page access,

whereas B+-tree indexes have to access a logarith-

mic number of pages in their descent towards the

requested key. This was an important trade-off to

consider for tuning a decade ago. But today, the

disadvantages of B+-trees for certain workloads

have become minor: randomization can be achie-

ved as well by using hash-transformed keys in the

tree (at the inherent expense of penalizing range

queries); and the extra costs of the tree descent

746D Database Tuning using Trade-off Elimination
are negligible given the high fan-out and resulting

low depth of index trees and the fact that all index

levels other than leaf pages virtually always reside

in memory. So if one were to build a lean, largely

self-managing database engine today, it would

have to support only B+-tree indexes (but, of

course, have hash-based algorithms in its reper-

toire for joins and grouping).

These examples demonstrate the kinds of insights and

simplifications towards self-managing systems that may

be achieved by means of trade-off analysis. The analyses

may be based on mathematical modeling (e.g., for esti-

mating response times and throughput of different

striping units), draw from comprehensive experimenta-

tion or simulation, or assess strengths and weaknesses

qualitatively (e.g., functionality and computational costs

of index implementations). Often a combination of dif-

ferent methodologies is needed. None of these

approaches can be automated; while automatic tool sup-

port is standard (e.g., for evaluating analytic models and

for sensitivity analyses) the final assessment requires

human analytics and judgment. Thus, the trade-off elim-

ination paradigm is a ‘‘thinking tool’’ for system-design

time, providing guidance towards self-tuning systems.
Example: Cache Management with Trade-off Elimination

As a more detailed example, consider the management

of a shared page cache in a database system and

the tuning issue that underlies the page replacement

strategy. It is discussed in more depth here, as it is

not only another illustration of eliminating trade-

offs, but also an important performance issue by itself.

For choosing a cache replacement victim, cache

managers assess the ‘‘worthiness’’ of the currently

cache-resident pages and drop the least worthy page.

Ideally, one would predict the future access patterns:

the least worthy page is the one whose next access is

farthest in the future [3]. But the cache manager only

knows the past accesses, and can remember only a

bounded amount of information about the previous

patterns. In this regard, a page shows evidence of being

potentially worthy if it exhibits a history frequent

accesses or recent accesses. The traditional replacement

strategies give priority to either frequency or recency,

but neither is optimal and the co-existence of the two

criteria presents a trade-off for the cache manager.

Frequency-based worthiness would be optimal if

access patterns were in steady state, i.e., if page-access
frequencies had a time-invariant distribution with

merely stochastic fluctuation. The algorithm of choice

would then be LFU, which always replaces the least-

frequently-used page. However, if the workload evolves

and the distributions of access frequencies undergo

significant changes, LFU is bound to perform poorly

as it takes a long time to adjust to new load character-

istics and re-estimate page-access probabilities. There-

fore, the practically prevalent method is actually LRU,

which always replaces the least-recently-used page. The

LRU strategy automatically adapts itself to evolving

access patterns and is thus more robust than LFU.

Despite its wide use and salient properties, LRU

shows significantly sub-optimal behavior under vari-

ous workloads. One issue is the co-existence of random

accesses and sequential scans. Pages that are accessed

only once during a scan will be considered by LRU

although they may never be referenced again in the

near future. This idiosyncrasy is typically fixed in

industrial-strength database system by allowing the

query processor to pass hints to its cache manager

and advise it to give low priority to such a read-once

page. However, there are further situations where the

specifics of the access patterns reveal shortcomings of

the LRU strategy.

Consider a workload with random accesses only,

but with very high variance of the individual pages’

access probabilities. Assume that there is a sequence of

primary-key lookups on a database table that results in

alternating accesses to uniformly selected index and

data pages. As there are usually many more data pages

than index pages (for the same table), the individual

index pages have much higher access frequencies than

each of the data pages. This indicates that index pages

are more worthy for staying in the cache, but LRU

considers only recency and is inherently unable to dis-

criminate the two kinds of pages. In steady state, LRU

would keep the same numbers of index pages and data

pages in the cache, but the optimal behavior would

prioritize index pages. Ironically, LFU would be opti-

mal for this situation (but fails in others).

The LRFU algorithm [6] has addressed this issue by

defining the worthiness of a page as a linear combina-

tion of its access recency and access frequency. Unfor-

tunately, the performance of this method highly

depends on proper tuning of the weighting coefficients

for the two aspects and on additional parameters that

govern the aging of frequency estimates. Another

sophisticated approach that at least one commercial

Database Tuning using Trade-off Elimination D 747

D

system had taken is to support multiple caches with

configurable sizes and allow the administrator to as-

sign different tablespaces to different caches. This way,

the cache management for data vs. index pages or

pages of different tables and indexes can be tuned

extremely well. But this requires very good human

skills; automating this approach would be a major

challenge for databases with hundreds of tables and

highly diverse workloads.

An approach that aims at eliminating all such tun-

ing parameters is the LRU-k algorithm [8]. Its main

principle is to dynamically estimate the access frequen-

cy of ‘‘interesting’’ pages by tracking the time points of

the last k accesses to each page. It can be viewed as a

maximum-likelihood estimator for page-access prob-

abilities, and uses a sliding-window technique for

built-in aging of the estimates. Worthiness of a page

is now defined as the reciprocal of the backward dis-

tance to its kth last access, and this has been shown to

be optimal among all replacement algorithms that have

the same information about the access history. For

k = 1, LRU-k behaves exactly like LRU; for k
 2, it

has enough information to properly handle sequential-

ly scanned read-once pages and to automatically dis-

criminate page classes with very different access

frequencies and patterns.

LRU-k introduces additional bookkeeping that

incurs overhead compared to the best, extremely light-

weight, implementations of standard LRU. In particular,

it needs to track the last k accesses ofmore pages than the

cache currently holds. There is a robust heuristics, based

on the ‘‘5-min rule of thumb’’ [4], for deciding which

pages should be tracked at all. But the bookkeeping uses

a non-negligible amount of memory – the very resource

whose usage the cachemanager aims to optimize with so

much scrutiny. Thus, LRU-k invests some memory and

effectively reduces the size of the cache by that amount,

in order to improve the overall caching benefit. It has

been experimentally shown that this cost/benefit ratio

is indeed profitable: even if the cache size is reduced

by the bookkeeping memory, LRU-k (for k
 2) still

significantly outperforms LRU (but one would typi-

cally limit k to 2 or 3).

LRU-k also needs more CPU time than LRU because

its replacement decision criterion, the backward distance

to the kth last accesses of the currently cache-resident

pages, requires a priority queue rather than a simple

linked list. Even with the best possible implementation

techniques, this leads to logarithmic rather than
constant cost per page access. However, there are ex-

cellent ways of implementing approximate versions of

the LRU-k principle without this overhead. The 2Q

algorithm [5] and the ARC algorithm [7] use LRU-like

linked lists but separate pages in two lists: one for pages

with at least k accesses and one for pages with less

accesses in the current bookkeeping. By devising smart

rules for migrating pages between lists, these algorithms

achieve cache hit ratios that are as good as LRU-k while

keeping the implementation overhead as low as that of

LRU. Other extensions of the LRU-k principle are cache

replacement algorithms for variable-size data items such

as files or Web pages [1,10].

The best algorithms of the LRU-k family have suc-

cessfully eliminated the recency-frequency trade-off

and provide self-tuning cache management. The

insights from this line of research provide several,

more general or potentially generalizable, lessons:

� It is crucial to analyze the nature of the trade-off

that led to the introduction of tuning options or

alternative algorithms for the same function.

� It is beneficial to unify the modeling and treatment

of different classes of access patterns (workloads),

thus providing a basis for simplifying algorithms

and systems.

� Additional bookkeeping to better capture the work-

load can be worthwhile even if it consumes the very

same resource that is to be optimized. But the

overhead needs to be carefully limited.

� To eliminate a ‘‘troublesome’’ tuning option, self-

managing algorithms may introduce additional

second-order parameters (e.g., for bookkeeping

data structures). The art is to ensure that the new

parameters must be such that it should be easy to

find a robust setting that leads to near-optimal

behavior under almost all workloads.
Future Directions
Trade-off elimination is a general paradigm, but not

a directly applicable recipe for self-management. Thus,

future research should consider studying more trade-

offs and tuning problems in view of this paradigm,

bearing in mind both its potential benefits and

intricacies.

Cross-references
▶Memory Hierarchy

▶ Self-Management Technology in Databases

748D Database Use in Science Applications
Recommended Reading
1. Cao P. and Irani S. Cost-awareWWWproxy caching algorithms.

In Proc. 1st USENIX Symp. on Internet Tech. and Syst., 1997.

2. Chen P.M., Lee E.L., Gibson G.A., Katz R.H., and Patterson D.A.

RAID: high-performance, reliable secondary storage. ACM

Comput. Surv., 26(2):145–185, 1994.

3. Coffman E.G. Jr. and Denning P.J. Operating Systems Theory.

Prentice-Hall, Englewood, Cliffs, NJ, 1973.

4. Gray J. and Graefe G. The five-minute rule ten years later, and

other computer storage rules of thumb. ACM SIGMOD Rec., 26

(4):63–68, 1997.

5. Johnson T. and Shasha D. 2Q: a low overhead high performance

buffer management replacement algorithm. In Proc. 20th Int.

Conf. on Very Large Data Bases. 1994, pp. 439–450.

6. Lee D., Choi J., Kim J.-H., Noh S.H., Min S.L., Cho Y., and

Kim C.-S. LRFU: a spectrum of policies that subsumes the least

recently used and least frequently used policies. IEEE Trans.

Comput., 50(12):1352–1361, 2001.

7. Megiddo N. and Modha D.S. Outperforming LRU with an

adaptive replacement cache algorithm. IEEE Comput., 37

(4):58–65, 2004.

8. O’Neil E.J., O’Neil P.E., and Weikum G. The LRU-K page

replacement algorithm for database disk buffering. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1993, pp.

297–306.

9. Scheuermann P., Weikum G., and Zabback P. Data partitioning

and load balancing in parallel disk systems. VLDB J., 7(1):48–66,

1998.

10. Young N.E. On-line file caching. Algorithmica, 33(3):371–383,

2002.
Database Use in Science
Applications

AMARNATH GUPTA

University of California-San Diego, La Jolla, CA, USA

Definition
A science application is any application where a natu-

ral, social or engineering problem is investigated.

The Problem

Many science applications are data intensive. Scientific

experiments produce large volumes of complex data,

and have a dire need to create persistent repositories

for their data and knowledge. It would seem natural

that data management systems and technology will be

heavily used in science. And yet, scientists traditionally

do not use database management systems, and often

develop home-grown solutions, or file-based software

for their complex data management needs. Clearly,
there is a gap between scientists’ intended use of data

and what current data management systems provide.

Foundations
There are many reasons, both technical and non-

technical, that explain why science users do not use

data management systems for their applications.

A recent study [3] highlights a number of factors scien-

tists have cited. Others [2,4,6] have analyzed different

reasons why scientific studies are not effectively sup-

ported by today’s database management systems. Some

of the factors contributing to the problem are:

1. Lack of Support for Scientific Data Types: Scientists

use a wide variety of data types – sequences, graphs,

images, surface meshes, time-varying fields, etc.,

that traditional data management systems have

little support for. The standard advantages of data-

bases, including set-at-a-time processing, transac-

tion management, automatic query optimization,

efficient storage management, etc., do no work well

for these data types. Although there has been sig-

nificant research investigating data management

issues for some of these data types (e.g., sequences),

most commercial DBMS vendors and many of the

open source DBMS providers do not supply ade-

quate, out-of-the-box support for them. An impor-

tant shortcoming is the lack of adequate support

for time-varying versions of any data, ranging from

time-series of scalar values to evolving geometric

objects or changing graphs. Though one can define

new data types in current data management sys-

tems, it does not help the science community,

where an average user is not technically advanced

enough to use these capabilities. Very often, the

type extensibility provides limited flexibility be-

cause the user can define the structure and methods

for a new type, but cannot associate storage man-

agement for the structure or cost-functions for

the operators without going into significant high-

expertise programming efforts.

2. Lack of Support for Scientific Queries: While busi-

ness queries demonstrate a wide range of complex-

ity, scientific queries are very often quite different

and unconventional. Common computations per-

formed by scientists in different disciplines include

nearest-neighbor queries in high dimensions,

dimensionality reduction and coordinate transfor-

mation operations, computations of cliques or

Database Use in Science Applications D 749

D

strong components in large graphs, eigenvalue

computations on large matrices, statistical model

fitting and tests of significance, all-by-all similarity

computation with user-defined similarity func-

tions, etc. In addition, specific domains require

their own specialized computation. To perform

these computations efficiently, the data manage-

ment systems need to have special data and index

structures. Again, despite academic research in

these areas, most database systems do not have

the ability to perform such computations. Compu-

tationally, many domains require solving differential

equations, or fine-element analysis, and other forms

of ‘‘modeling and simulation’’ support that a DBMS

is not designed to provide. Consequently, scientists

use different specialty software (like MATLAB) to

handle their computational needs and stay within

the data handling capabilities of these systems.

Scientists who need to manage large data volumes

and perform these complex computations typically

end up writing their own custom software that fits

their research needs. These software modules are

usually not designed to work on top of a DBMS,

and almost never designed to work from inside a

DBMS.

3. Lack of Support for Data Visualization: In many

scientific disciplines (ranging from molecular sci-

ence to biodiversity modeling), visualization of

data is a very important aspect of the scientific

process. Scientists want to visualize data for different

reasons – to roughly check for its correctness before

storing it persistently, to inspect the results of a

query or analysis, as a way to explore sampled con-

tents of a data store before deciding if this is the

appropriate store to query or analyze. Since scientific

data is not all relational, supporting data visualiza-

tion implies that the system needs to have a visuali-

zation scheme for each type and allow the users to

select the type/desire of visualization they [1].

For example, if the data consists of time series of

temperature and pressure over a quarter degree grid

on the Pacific Ocean, it is not trivial to visualize

the result of even the simplest of selection queries.

In these situations, it is often easier for scientists

to use domain-specific visualization (e.g., volume

visualization) software that operates on the raw

data and allows the user to manipulate ‘‘knobs’’

like the coloring scheme, the shape and sizes of

icons etc. to make the output visually informative.
4. Formulation of Queries and Analysis: One of the key

features of databases is the ability to form declarative

queries that can be evaluated optimally. A large frac-

tion of scientific data manipulation and retrieval has

complex procedural logic. Although every DBMS

comes with a database programming language, scien-

tists often find it easier to use their favorite program-

ming language and software API to implement their

analysis. It has been observed that data flow systems

such as Kepler [5] or Scitegic (http://www.scitegic.

com/), where the user can define a graph of functions

strung together with a visual interface, is a more

popular tool for formulating complex analysis tasks.

Lack of suitable query formulation tools that may

guide scientists through the steps of formulating cor-

rect queries prevents many science users from using

powerful data manipulation and query capabilities

offered by a DBMS.

5. Data Cleaning and Curation: Scientific data often

have a lot of ‘‘noise,’’ i.e., spurious and erroneous

values. The noise occurs not only because of data

value entry errors but because of measurement

errors, computational errors, data obsolescence,

definitional errors, and so on. In addition, due to

the way information is generated or acquired, data

can often be ‘‘fragmented’’ where data elements

that are supposed to belong in a single collection

are in multiple locations without enough informa-

tion to coherently reassemble them. Scientists often

write custom tools to clean and combine the data in

a way that suits their individual needs because a

typical DBMS will not provide the correct tools for

cleaning this kind of data, nor would it provide

enough hooks so that user-defined data cleaning

and curation tools can be assembled into the tool

suite of an existing DBMS.

6. Schema and Application Evolution: The scientific

enterprise works differently from a commercial en-

terprise. Science is often study-driven. A scientist

wants to understand a natural phenomenon, or

test a hypothesis, and therefore designs experi-

ments, collects data, integrates information with

collaborators’ and other publicly available data,

performs the analysis all geared toward the study

being undertaken. As scientific questions change,

study designs and all other data content and analy-

sis requirements change, and thus a new setting is

developed. Even within a study, as the investigation

proceeds, there is a need to acquire new data

750D Databases for Biomedical Images
(or discard previously acquired data) and perform

new analysis. This situation requires a lot more

agility from the information system. One aspect

of the agility is that the schema that was designed

for a study at one point of time is very likely change

in the course of the experiment. Despite significant

work in schema evolution and database versioning

in the research world, a standard DBMS today is

not very well geared toward schema evolution.

Scientists find their home-grown file based data

management systems are much more amenable to

their changing application requirements.

7. Poor Provenance and Annotation Support: The prac-

tice of science involves a significant degree of

data transformation and reuse. Scientist A will

use a portion of the data collected by him and

another portion of the data collected by Scientist B,

after changing the units of the values and shifting the

origin of the data to a more appropriate coordinate

system. Two years later, this combined data will be

transformed in someother way and be used for a new

analysis. This practice makes it important to record

and track the origin and transformations performed

on data as it is split, merged, changed and copied

through its life cycle – an effort that is collectively

known as provenance management. Although there

is much recent research on provenance issues, a sys-

tematic treatment of provenance is currently not

provided by today’s DBMS software. A related capa-

bility, also not provided by current datamanagement

systems, is the ability to annotate data, whereby a

user ‘‘marks’’ an existing piece of data and notes a

remark on it. This remark is as important as the data

itself and possibly should be carried along as the data

is transformed – in a fashion similar to the propaga-

tion of provenance data. To be truly useful for scien-

tists, the task of annotation and provenance

management should be uniformly managed over

any scientific data type – a capability that scientist

need but DBMS’s do not provide.

There are many more factors that contribute to the

lack of use of databases by science applications. Non-

technical reasons (purchase and maintenance cost,

steep learning curve, expensive personnel cost) are

equally responsible as the technical shortcomings of

data management systems.

Since both the database research community and

the vendor community are aware of these issues, there
is now a recent trend among data management re-

search and practices to address them directly. As a

result, new modules are being added to DBMS to target

specific science markets. In particular, the life science

market is becoming a dominant force to demand new

features and capabilities of future data management

systems. The BLASTsearch used by molecular biologists

is now ‘‘wrapped’’ into an IBM product for data inte-

gration. It is expected that as scientists move from

science-in-the-small to large-scale science, scientists

will understand and accept the value of data manage-

ment systems. At the same time, as the scientific data

management market becomes stronger and more de-

manding, commercial and open-source data manage-

ment products will become more capable of handling

scientific data and analyses.

Key Applications
Bioinformatics, cheminformatics, engineering databases.

Cross-references
▶Data Integration Architectures and Methodology

for the Life Sciences

▶Data Types in Scientific Data Management

▶ Provenance

Recommended Reading
1. Altintas I., Berkley C., Jaeger E., Jones M., Ludäscher B.,

and Mock S. Kepler: an extensible system for design and execu-

tion of scientific workflows. In Proc. 16th Int. Conf. Scientific

and Statistical Database Management, 2004, pp. 423–424.

2. Buneman P. Why Scientists Don’t Use Databases? NeSC presen-

tation, 2002. Available from www.nesc.ac.uk/talks/opening/

no_use.pdf.

3. Gray J., Liu D.T., Nieto-Santisteban M.A., Szalay A.S., Heber G.,

and DeWitt D. Scientific data management in the coming

decade. ACM SIGMOD Rec., 34(4): 35–41, 2005.

4. Liebman M.J. Data management systems: science versus tech-

nology? OMICS J. Integr. Biol., 7(1):67–69, 2003.

5. Livny M., Ramakrishnan R., Beyer K., Chen G., Donjerkovic D.,

Lawande S., Myllymaki J., and Wenger K. DEVise: Integrated

Querying and Visual Exploration of Large Datasets. In Proc.

2007 ACM SIGMOD Int. Conf. on Management of Data.

Tucson, AZ, 1997, pp. 301–312.

6. Maier D. Will database systems fail bioinformatics, too? OMICS

J. Integr. Biol., 7(1):71–73, 2003.
Databases for Biomedical Images

▶ Image Management for Biological Data

Datalog D 751
Dataguide

▶ Structure Indexing
D
Datalog

GRIGORIS KARVOUNARAKIS

University of Pennsylvania, Philadelphia, PA, USA

Synonyms
Deductive databases

Definition
An important limitation of relational calculus/algebra

is that it cannot express queries involving ‘‘paths’’

through an instance, such as taking the transitive clo-

sure over a binary relation. Datalog extends conjunc-

tive queries with recursion to support such queries.

A Datalog program consists of a set of rules, each of

which is a conjunctive query. Recursion is introduced

by allowing the same relational symbols in both the

heads and the bodies of the rules. A surprising and

elegant property of Datalog is that there are three

very different but equivalent approaches to define its

semantics, namely the model-theoretic, proof-theoretic,

and fixpoint approaches. Datalog inherits these proper-

ties from logic programming and its standard language

Prolog. The main restriction that distinguishes Datalog

from Prolog is that function symbols are not allowed.

Several techniques have been proposed for the effi-

cient evaluation of Datalog programs. They are usually

separated into two classes depending on whether they

focus on top-down and bottom-up evaluation. The ones

that have had the most impact are centered around

magic sets rewriting, which involves an initial prepro-

cessing of the Datalog program before following a

bottom-up evaluation strategy. The addition of nega-

tion to Datalog rules yields highly expressive languages,

but the semantics above do not extend naturally to

them. For Datalog¬, i.e., Datalog with negated atoms

in the body of the rules, stratified semantics, which

impose syntactic restrictions on the use of negation

and recursion, is natural and relatively easy to under-

stand. The present account is based primarily on the

material in [1]. Each of [1,2,9] has an excellent intro-

duction to Datalog (Capitalization of the name follows

the convention used in [2,8] (rather than [1,9]).).
An informal survey can be found in [8]. The individual

research contributions to Datalog are cited in the

union of the bibliographies of these textbooks.

Historical Background
Datalog is a restriction of the paradigm of logic

programming (LP) and its standard programming

language, Prolog, to the field of databases. What

makes logic programming attractive is its declarative

nature, as opposed to the more operational flavor of

other programming paradigms, be they imperative,

object-oriented, or functional. In the late 1970’s and

into the 1980’s, this led to much LP-related activity in

Artificial Intelligence and even supercomputing (The

Fifth Generation Project) which has later subsided

dramatically. In databases this remains a useful para-

digm, since the relational calculus is also a declarative

language and LP provides a mechanism for extending

its expressiveness with so-called recursive queries.

The name ‘‘Datalog’’ was coined by DavidMaier [1].

Research on recursive queries in databases picked up in

the 1980’s and eventually led to several prototype deduc-

tive database systems [8,9] whose data is organized into

relations, but whose queries are based on Datalog.

Datalog has not quite made it as a practical query

language due to the preeminence of SQL. When the

need for recursive queries was recognized by RDBMS

vendors, they preferred to extend SQL with some lim-

ited forms of recursion [8]. Nonetheless, more recent

research on data integration has found Datalog to be a

useful conceptual specification tool.

Foundations

Datalog Syntax

The syntax of Datalog follows that of the logic pro-

gramming language Prolog with the proviso that

only constants and relational symbols are allowed (no

function symbols).

Definition 1

Fix a relational schema. (The use of the symbol :- has its

roots in Prolog, but some texts, e.g., [1], use the sym-

bol ←instead, to convey the fact that each rule is

closely related to a logical implication, as explained in

the discussion of model-theoretic semantics.) A Data-

log rule has the form:

TðxÞ :� qðx; yÞ

752D Datalog
where x = x1,...,xn is a tuple of distinguished variables, y

= y1,...,ym is a tuple of ‘‘existentially quantified’’ vari-

ables, T is a relation and q is a conjuction of relational

atoms. The left-hand side is called the head of the rule

and corresponds to the output/result of the query and

the right-hand side is called the body of the rule. Note

that all distinguished variables in the head need to

appear in at least one atom in the body, i.e., the rules

are range restricted. A Datalog rule is identical to a

conjunctive query in rule-based syntax, except that

the latter does not always have a name for the head

relation symbol. A Datalog program is a finite set of

Datalog rules over the same schema. Relation symbols

(a.k.a. predicates) that appear only in the body of the

program’s rules are called edb (extensional database)

predicates, while those that appear in the head of some

rule are called idb (intensional database) predicates.

A Datalog program defines a Datalog query when

one of the idb predicates is specified as the output.

For example, if G is a relation representing edges of

a graph, the following Datalog program PTC computes

its transitive closure in the output predicate T:

Tðx; yÞ :- Gðx; yÞ
Tðx; yÞ :- Gðx; zÞ;Tðz; yÞ

Semantics

Three different but equivalent definitions can be given

for the semantics of Datalog programs, namely the

model-theoretic, proof-theoretic and fixpoint semantics.

A countably infinite set D of constants is fixed as

the sole universe for structures/instances. Since there are

no function symbols, any relational instance over D is

an Herbrand interpretation in the sense used in logic

programming.

In the model-theoretic semantics of Datalog,

each rule is associated with a first-order sentence

as follows. First recall that as a conjunctive query,

T(x) :- q (x, y) corresponds to the first-order query

T
 {x j ∃y q(x, y)}. To this, one associates the sen-

tence 8x (∃y q(x, y)!T(x)) which is clearly satisfied in

a structure in which T is interpreted as the answer to the

query. Note that this sentence is a definite Horn clause.

More generally, given a Datalog program P, let SP be

the set of Horn clauses associated to the rules of P.

Let I be an input database instance, in this case

an instance of the schema consisting only of edb pre-

dicates. Amodel of P is an instance of the entire schema
(both edb and idb relation symbols) which coincides

with I on the edb predicates and which satisfies SP.

However, there can be infinitely many instances that

satisfy a given program and instance of the edb relations.

Thus, logic programming, and consequentlyDatalog use

a minimal model, i.e., one such that no subset of it is

also a model. This is usually understood as a manifes-

tation of the closed world assumption: don’t assume

more than you need! It can be shown that for Datalog,

there is exactly one minimal model, which is also the

minimum model.

In the proof-theoretic approach of defining the

semantics of Datalog, note first that a tuple of constants

in a relation can be seen as the head of a rule with empty

body. Such rules are called facts. As previously seen,

Datalog rules can be associated with first-order sen-

tences. Facts correspond to just variable-free relational

atoms. Now, the main idea of the proof-theoretic se-

mantics is that the answer of a Datalog program con-

sists of the set of facts that can be proven from the edb

facts using the rules of the program as proof rules. More

precisely, a proof tree of a fact A is a labeled tree where

(i) each vertex of the tree is labeled by a fact; (ii) each

leaf is labeled by a fact in the base data; (iii) the root is

labeled by A; and (iv) for each internal vertex, there

exists an instantiation A1 :- A2,...,An of a rule r such

that the vertex is labeled A1 and its children are respec-

tively labeled A2,...,An and the edges are labeled r.

Example 1. Consider the program:

ðr1Þ Sðx1; x3Þ :- T ðx1; x2Þ;Rðx2; a; x3Þ
ðr2Þ Tðx1; x4Þ :- R ðx1; a; x2Þ;Rðx2; b; x3Þ;Tðx3; x4Þ
ðr3Þ Tðx1; x4Þ :- R ðx1; a; x2Þ;Rðx2; a; x3Þ

and the instance

fRð1; a; 2Þ;Rð2; b; 3Þ;Rð3; a; 4Þ;Rð4; a; 5Þ;Rð5; a; 6Þg

A proof tree of S(1, 6) is shown in Fig. 1.

Because rule instantiation and application corre-

spond to standard first-order inference rules (substitu-

tion and modus ponens), the proof trees are actually

rearrangements of first-order proofs. This connects

Datalog, through logic programming, to automated

theorem-proving. One technique for constructing

proofs such as the one above in a top-down fashion

(i.e., starting from the fact to be proven) is SLD resolu-

tion [1]. Alternatively, one can start from base data and

apply rules on them (and subsequently on facts derived

this way) to create proof trees for new facts.

Datalog. Figure 1. Proof tree.

Datalog D 753

D

The third approach is an operational semantics for

Datalog programs stemming from fixpoint theory. The

main idea is to use the rules of the Datalog program to

define the immediate consequence operator, which

maps idb instances to idb instances. Interestingly, the

immediate consequence operator can be expressed in

relational algebra, in fact, in the SPCU (no difference)

fragment of the relational algebra, enriched with edb

relation names. For example, the immediate conse-

quence operator F for the transitive closure above is:

FðTÞ ¼ G ffl T [G

One way to think about this operator is that it applies

rules on existing facts to get new facts according to the

head of those rules. In general, for a recursive Datalog

program, the same operator can be repeatedly applied

on facts produced by previous applications of it. It is

easy to see that the immediate consequence operator is

monotone. Another crucial observation is that it will

not introduce any constants beyond those in the edb

instance or in the heads of the rules. This means that

any idb instance constructed by iteration of the imme-

diate consequence operator is over the active domain of

the program and the edb instance. This active domain

is finite, so there are only finitely many possible idb

instances. They are easily seen to form a finite poset

ordered by inclusion. At this point one of several

technical variants of fixpoint theory can be put to

work. The immediate consequence operator has a

least fixpoint which is an idb instance and which is

the semantics of the program. It can be shown that

this idb instance is the same as the one in the minimal

model semantics and the one in the proof tree
semantics. It can also be shown that this least fixpoint

can be reached after finitely many iterations of the

immediate consequence operator which gives a Data-

log evaluation procedure called bottom-up.
Evaluation and Optimization of Datalog

The simplest bottom-up evaluation strategy, also called

naive evaluation, is based directly on fixpoint Datalog

semantics. The main idea is to repeatedly apply the

immediate consequence operator on results of all pre-

vious steps (starting from the base data in the first

step) until some step doesn’t yield any new data. It is

clear that naive evaluation involves a lot of redundant

computation, since every step recomputes all facts

already computed in previous steps. Seminaive evalua-

tion tries to overcome this deficiency, by producing

at every step only facts that can be derived using at

least one of the new facts produced in the last step (as

opposed to all previous steps).

In some cases, bottom-up evaluation can produce

a lot of ‘‘intermediate’’ tuples that are not used in

derivations of any facts in the output relation of the

query. The top-down approach avoids this problem by

using heuristic techniques to focus attention on rele-

vant facts, i.e., ones that appear in some proof tree of

a query answer, especially for Datalog programs with

constants appearing in some atoms. Themost common

approach in this direction is called the query-subquery

(QSQ) framework. QSQ generalizes the SLD resolution

technique, on which the proof-theoretic semantics are

based, by applying it in sets, as opposed to individual

tuples, as well as using constants to select only relevant

tuples as early as possible. In particular, if an atom of an

idb relation appears in the body of a rule with a constant

for some attribute, this constant can be pushed to rules

producing this idb. Similarly, ‘‘sideways information

passing’’ is used to pass constant binding information

between atoms in the body of the same rule. Such

constant bindings are expressed using adornments or

binding patterns on atoms in the rules, to indicate

which attributes are bound to some constant and

which are free.

Magic set techniques simulate the pushing of

constants and selections that happens in top-down

evaluation to optimize bottom-up evaluation. In par-

ticular, they rewrite the original Datalog program into

a new programwhose seminaive bottom-up evaluation

produces the same answers as the original one, as

754D Datalog Query Processing and Optimization
well as producing the same intermediate tuples as the

top-down approaches such as QSQ.

Datalog with Negation

The language Datalog¬ extends Datalog by allowing

negated atoms in the body of the rules. Unfortunately,

the semantics described above do not extend naturally to

Datalog¬ programs. For example, if the fixpoint

semantics are followed, there are programs that do not

have a fixpoint or havemultiple least fixpoints, or even if

there is a least fixpoint the constructive method de-

scribed above does not converge or its limit is not the

least fixpoint. For model-theoretic semantics, unique-

ness of the minimal model is not guaranteed. For these

reasons, the common approach is to only consider a

syntactically restricted use of negation in Datalog¬ pro-

grams, called stratification, for which natural extensions

of the usual Datalog semantics do not have these pro-

blems. A stratification of Datalog¬ is a partition of its

rules into subprograms that can be ordered in strata, so

that for each relation R in the program, all rules defin-

ing R (i.e., with R in the head) are in the same stratum

and for all atoms in the bodies of those rules, the

definitions of those relations are in a smaller or the

same stratum, if the atom is positive, or strictly in a

smaller stratum, for negative atoms.

For stratified Datalog¬ programs, one can evaluate

within each stratum considering atoms of relations de-

fined in smaller strata as edbs. Then, a negated atom

is satisfied in the body of the rule if the corresponding

tuple does not appear in that relation (as it appears in

the base data or computed for the subprograms of

smaller strata).

Key Applications

Current and Potential Users and the Motivation of

Studying This Area

Although Datalog was originally proposed as the foun-

dation of deductive databases, which never succeeded

in becoming part of commercial systems, it has recently

seen a revival in the areas of data integration and

exchange. This is due to the similarity of Datalog rules

with popular schema mapping formalisms (GLAV or

tuple generating dependencies [5]) used to describe

relationships between heterogeneous schemas. In par-

ticular, [3] proposed the inverse rules algorithm for

reformulating queries over a target schema to queries

over source schemas in data integration. Other work
has used Datalog rules to compute data exchange [7]

or update exchange [4] solutions. In these cases, the

authors employed an extension of Datalog with Skolem

functions in the head of rules, to deal with existentially

quantified variables in the target of mappings. Another

extension of Datalog, Network Datalog (NDlog) [6]

allows the declarative specification of a large variety of

network protocols with a handful of lines of program

code, resulting to orders of magnitude of reduction in

programsize.

Cross-references
▶Conjunctive Query

▶Relational Calculus

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases.

Addison-Wesley, MA, USA, 1995.

2. Bidoit N. Bases de Données Déductives: Présentation de

Datalog. Armand Colin, 1992.

3. Duschka O., Genesereth M., and Levy A. Recursive query

plans for data integration. J. Logic Program., 43(1), 2000.

4. Green T.J., Karvounarakis G., Ives Z.G., and Tannen V.

Update exchange with mappings and provenance. In Proc.

33rd Int. Conf. on Very Large Data Bases, 2007.

5. Lenzerini M. Tutorial – data integration: a theoretical per-

spective. In Proc. 21st ACM SIGACT-SIGMOD-SIGART Symp.

on principles of Database Systems, 2002.

6. Loo B.T., Condie T., Garofalakis M.N., Gay D.E., Hellerstein

J.M., Maniatis P., Ramakrishnan R., Roscoe T., and Stoica I.

Declarative networking: language, execution and optimization.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2006, pp. 97–108.

7. Popa L., Velegrakis Y., Miller R.J., Hernández M.A., and Fagin R.

Translating web data. In Proc. 28th Int. Conf. on Very Large

Data Bases, 2002.

8. Ramakrishnan R. and Gehrke J. Database Management Systems,

3rd edn. McGraw-Hill, New York, 2003.

9. Ullman J.D. Principles of Database and Knowledge-Base

Systems, Volume II. Addison-Wesley, MA, USA, 1989.
Datalog Query Processing and
Optimization

▶Query Processing in Deductive Databases
Datastream Distance

▶ Stream Similarity Mining

DBMS Interface D 755
Datawarehouses Confidentiality

▶Data Warehouse Security
D
DBC

▶Database Clusters
DBMS

▶Database Management System
DBMS Component

JOHANNES GEHRKE

Cornell University, Ithaca, NY, USA

Synonyms
DBMS Module

Definition
A component is a self-contained piece of software in a

database system. A component can be defined at dif-

ferent levels of coarseness. At the coarsest level, the

components of a relational database management sys-

tem consist of the client communications manager, the

process manager, a relational query processor, a trans-

actional storage manager, and utilities [1].

Key Points
The components of a relational database management

system can be further refined into subcomponents [1].

The client communications manager consists of local

client protocols and remote client protocols. The pro-

cess manager consists of admission control and dis-

patch and scheduling. The relational query processor

consists of query parsing and authorization, query

rewrite, query optimization, plan execution, and

DDL and utility processing. The transactional storage

manager consists of access methods, a buffer manager,

a lock manager, and a log manager. Sub-components

that comprise the utilities component include the cat-

alog manager, the memory manager, and replication

and loading services.
This high-level division varies among commercial

and open-source database products, both by level of

granularity and by functionality of individual (sub-)

components. Database management systems opti-

mized for certain types of workloads (for example,

decision support workloads) or database management

systems with specialized architectures (for example,

main-memory database management systems) may

lack some of these components [2].

Cross-references
▶Client Communications Manager

▶ Process Management

▶Relational Query Processor

▶Transactional Storage Manager.

Recommended Reading
1. Hellerstein J.M., Stonebraker M. and Hamilton J. Architecture

of a Database System. In Foundations and Trends in Databases,

1(2):141–259, 2007.

2. Ramakrishnan R. and Gehrke J. Database Management Systems,

3rd edition. McGraw-Hill Science/Engineering/Math, 2002.
DBMS Interface

JOHANNES GEHRKE

Cornell University, Ithaca, NY, USA

Synonyms
Communication boundary of a DBMS

Definition
A DBMS interface is the abstraction of a piece of

functionality of a DBMS. It usually refers to the com-

munication boundary between the DBMS and clients

or to the abstraction provided by a component within

a DBMS. A DBMS interface hides the implementation

of the functionality of the component it encapsulates.

Key Points
DBMS interfaces can be external or internal [3].

The external DBMS interface is the communication

boundary between the DBMS and clients. The external

DBMS interface enables clients to access internal

DBMS functionality without exposing the mechanisms

of how this functionality is implemented. Well-known

external DBMS interfaces are SQL, XPath, and XQuery.

There are many different types of external DBMS

interfaces, for example, stand-alone languages (such

756D DBTG Data Model
as SQL), extensions to existing languages with features

from SQL (such as JDBC), and integration into middle-

tier programming languages (such as PHP). The exter-

nal DBMS interface can also be graphical; for example,

the DBMS interface to the data data definition language

is often a graphical editor enabling database designers to

visualize and manipulate logical and physical database

schemas in the Entity-Relationship Model or in UML.

Internal DBMS interfaces exist between different

DBMS components, for example, the query processor

and the storage manager [2]. Although standards for

these interfaces do not exist, their design is as important

as the design of the external interfaces. For example, by

exposing a queue interface for internal DBMS compo-

nents and arranging the DBMS components in stages, the

DBMS can be designed such that queries interact with a

single component at a given time, permitting enhanced

processor utilization during query processing [1].

Cross-references
▶DBMS Component

▶Query Language

▶ SQL

▶XPath/XQuery

Recommended Reading
1. Harizopoulos S. and Ailamaki A. StagedDB: Designing Database

Servers for Modern Hardware. IEEE Data Engineering Bulletin,

28(2):11–16, June 2005.

2. Hellerstein J.M., Stonebraker M. and Hamilton J. Architecture

of a Database System. In Foundations and Trends in Databases,

1(2):141–259, 2007.

3. Ramakrishnan R. and Gehrke J. Database Management Systems,

3rd edition. McGraw-Hill Science/Engineering/Math, 2002.
DBTG Data Model

▶Network Data Model
DCE

ANIRUDDHA GOKHALE

Vanderbilt University, Nashville, TN, USA

Synonyms
Distributed computing environment
Definition
The Distributed Computing Environment (DCE) [1–3]

is a technology standardized by the Open Group for

client/server computing. A primary goal of DCE is inter-

operability using remote procedure call semantics.
Key Points
The Distributed Computing Environment (DCE)

technology was developed through the efforts of the

Open Software Foundation (OSF) in the late 1980s and

early 1990s as an interoperable solution for client-

server distributed computing. A primary objective

was to overcome the heterogeneity in operating sys-

tems and network technologies. The DCE technology

uses procedural programming semantics provided by

languages, such as C. OSF is now part of the Open

Group, which releases DCE code under the LGPL

license via its DCE portal [2].

A primary feature provided by DCE is the remote

procedure call [1]. DCE is, however, not only about

remote procedure calls. In addition, DCE provides

a number of fundamental building blocks to make appli-

cations secure, as well as provides a number of services,

such as a cell directory service, a distributed file system

service, a time service and a threading service.

DCE supports the notion of a cell, which is a

collection of nodes that are managed by a single au-

thority. Intra-cell communication is highly optimized

and secure. Inter-cell communication requires more

advanced configurations. The distributed file system

service provides a high performance network file sys-

tem. A POSIX-like API available locally hides the

distributed aspects of the file system.

The DCE concepts and technology laid the founda-

tion for the next generation of object-oriented client-

server paradigms, such as CORBA in the mid 1990s.

DCE RPC is used as the building block technology for

Microsoft COM/DCOM technologies.
Cross-references
▶Client-Server Architecture

▶CORBA

▶DCOM

▶ J2EE

▶ Java RMI

▶ .NET Remoting

▶Request Broker

▶ SOAP

Decay Models D 757
Recommended Reading
1. The Open Group, DCE 1.1: Remote Procedure Call, CAE Speci-

fication, Document no. C706, 1997, Published online at http://

www.opengroup.org/onlinepubs/9629399.

2. The Open Group, DCE Portal, http://www.opengroup.org/dce/.

3. Software Engineering Institute, Distributed Computing Envi-

ronment, http://www.sei.cmu.edu/str/descriptions/dce.html.
D

DCOM

ANIRUDDHA GOKHALE

Vanderbilt University, Nashville, TN, USA

Synonyms
Distributed component object model

Definition
Distributed Component Object Model (DCOM) [1,2]

is a Microsoft technology for component-based

distributed computing.

Key Points
Distributed Component Object Model (DCOM) is an

extension of Microsoft’s Component Object Model

(COM) to enable distribution across address spaces

and networks. By leveraging COM, which is the funda-

mental technology used to build many Microsoft

applications, DCOM applications can derive all the

power of COM applications. Distribution capabilities

in DCOM are realized by leveraging DCE Remote

Procedure Call mechanisms and extending them to

support the notion of remote objects.

DCOMprovidesmost of the capabilities of a Request

Broker. For example, it supports location transpar-

ency, connection management, resource management,

concurrency control, versioning, language-neutrality

and QoS management. Since DCOM is a component

model, additional capabilities for composing and

deploying component-based applications also exist.

Despite its numerous benefits, DCOM has its

own limitations. For example, DCOMuses its own bina-

ry protocol for communicating between applications,

which restricts interoperability to communication be-

tween the same object models. Additionally, although

some efforts exist at porting DCOM to other platforms,

such as Linux, DCOM remains predominantly a Micro-

soft platform-specific technology, which limits its appli-

cability to a wider range of applications.
These limitations have necessitated the move to-

wards more advanced technologies, such as .NET

Remoting, which provide a wider range of interopera-

ble solutions.

Cross-references
▶Client-Server Architecture

▶CORBA

▶DCE

▶DCOM

▶ J2EE

▶ Java RMI

▶ .NET Remoting

▶Request Broker

▶ SOAP

Recommended Reading
1. Brown N. and Kindel C. Distributed Component Object Model

Protocol – DCOM/1.0, Internet Draft, NetworkWorking Group,

November 1996.

2. Horstmann M. and Kirtland M. DCOM Architecture, DCOM

Technical Articles, Microsoft Developer Network Library, July

23, 1997.
Deadlocks in Distributed Database
Systems

▶Distributed Deadlock Management
Decay Models

EDITH COHEN

AT&T Labs-Research, Florham Park, NJ, USA

Definition
Decay models are applicable on data sets where data

items are associated with points in a metric space

(locations) and there is a notion of ‘‘significance’’ of a

data item to a location, which decays (decreases) with

the distance between the item and the location. This

decrease is modeled by a decay function.

Each location has a ‘‘view’’ of the data set

through a different weight distribution over the

items: the weight associated with each item is its

decayed weight which is a product of its original weight

and a decay function applied to its distance from the

observing location.

758D Decay Models
While global aggregates or statistics are computed

over the set of items and their original weights, decaying

aggregates or decaying statistics depend on the location

with respect to which the aggregation is performed and

on the decay function. Figure 1 illustrates a small net-

work and the decaying sum with respect to all nodes.

Historical Background

Kernel Estimation

The earliest use of decay models that the author is

aware of is Kernel estimation. Kernel estimation is a

non-parametric density function estimation method

[19]. The metric space is the Euclidean space and the

method is applied to a set of points with weights. The

decay function captures a spherically symmetric prob-

ability density (typically a Gaussian which corresponds

to Exponential decay); the decaying sum at a point is

the density estimate.

Recently, Hua et al. [16] proposed the use of

decayed sum to assign typicality score to items, based

on Kernel estimation. They also propose methods to
Decay Models. Figure 1. Decaying sum over a network

with respect to decay function gðdÞ ¼ 1
1þd

. Items of

distance 1 have decayed weight that is 1∕ 2 of their

original weight. Similarly, items of distance 2 have

decayed weight that is 1 ∕ 3 of their original weight.

The global (non-decaying) sum is 14. The decaying sums

(listed for all nodes) are location-dependent.
efficiently compute approximate decaying sum in a

high dimensional Euclidean space.

Time-Decay

Time-decay, where significance of a data point

decreases with elapsed time (or with number of ob-

served items), is a natural model. Decaying aggregation

on data streams predates the formal analysis of stream

algorithms but was mostly limited to exponential

decay. Several applications are listed next.

The random early detection (RED) protocol: RED is

a popular protocol deployed in Internet routers for

congestion avoidance and control. RED uses the

weighted average of previous queue lengths to esti-

mate the impending congestion at the router; the

estimate is then used to determine what fraction of

packets to discard [13,17]. Holding-time policies for

ATM virtual circuits: Circuit-switched data connec-

tions have an associated cost of being kept open; data

transfers are bursty and intermittent and, when a data

burst arrives, it incurs smaller delay when the circuit is

open. Thus, when there are multiple connections, it is

important to assess the anticipated idle times (time to

the next data burst) of each circuit and to close first

those circuits that have longer anticipated idle times.

This can be done using a time-decaying weighted av-

erage of previous idle times [18]. A similar model

applies to maintaining open TCP connections at a

busy Web server [7]. Internet gateway selection pro-

ducts: Multiple internet paths are available to each desti-

nation host and the product needs to assess the reliability

of each path in order to facilitate a better selection of a

path. A time-decaying average of previous measure-

ments can be used as a measure of path quality [2].

Datar et al. [12] introduced the sliding-window

model for data streams. Sliding-window are a threshold

decay function defined over the sequence number of data

items. They introduced a synopsis data structure called

Exponential Histograms that supports approximate sum

queries on sliding windows with respect to the ‘‘current’’

time and developed algorithms for approximately main-

taining sum and average aggregates and variance [1].

Gibbons and Tirthapura [14] developed an alternative

data structure that can handle multiple streams. The

sliding window model was extensively studied.

Cohen and Strauss [8,9] considered decaying ag-

gregation on data streams under general decay func-

tions. They showed that general decay can be reduced

to sliding windows decay. However, sliding window

Decay Models D 759

D

decay is in a sense the ‘‘hardest’’ decay function and

other functions, such as polynomial and exponential

decay can be computed more efficiently.

Network

Decaying aggregation over a network is a generaliza-

tion of decaying aggregation over data streams (data

streams correspond to path networks). It was first

considered by Cohen in [3] as Threshold decay (aggre-

gation over neighborhoods). Cohen proposed efficient

algorithms for decaying sum. General decay functions,

other aggregates, and efficient algorithms and analysis to

maintain these sketches in distributed settings were con-

sidered by Cohen and Kaplan [5,6]. On networks, just

like on data streams, threshold decay is the ‘‘hardest’’

decay function, as all-distances sketches that support

sums over neighborhoods, also support decaying sums

under general decay functions. It is not known, however,

whether other decay functions such as exponential or

polynomial decay can be computed or approximated

more efficiently by a tailored approach. Further work

on decayed aggregation over a networks includes [10].

Euclidean Plane

Cohen and Kaplan [5] also considered decaying sums

in the Euclidean plane and proposed an efficient con-

struction of a data structure (based on incremental

construction of Voronoi diagrams [15]) that can sup-

port point queries. That is, for a query location and a

query decay function, the data structure returns a

respective approximate decaying sum.

Foundations

Metric Space

Decaying aggregates were considered on different metric

spaces. The simplest one is one-dimensional Euclidean

space such as the time dimension. Items have time

stamps or sequence numbers and the relevance of an

item at a certain time decays with elapsed time or with

the number of items with a later time stamp. Decayed

aggregates are also used on a higher dimensional Euclid-

ean space and on a networks (directed or undirected

graphs) where nonnegative lengths are associated with

edges and distances correspond to shortest paths lengths.

Decay Functions

The decayed weight of an item at a location depends

linearly on its original weight and decreases with
distance. It is defined as a product of its original weight

and the value of the decay function on the distance of

the item from the location. A decay function g(x) is a

non-increasing function defined over the nonnegative

reals. It is often convenient to define g(0) = 1. Some

natural decay functions are threshold functions, where

items within a certain distance from the location have

their original weights and other items have 0 weight,

Exponential decay, where the weight decreases expo-

nentially with the distance, and Polynomial decay,

where the weight decreases polynomially with the

distance.

Threshold decay assigns equal importance to all

data values within a distance of r and disregards all

other data values. Exponential decay is defined with

respect to a parameter l > 0, g(x) = exp(�lx). Expo-
nential decay is convenient to compute when used for

time decay as it can be maintained easily using a single

register (It is not known, however, if it is simpler to

compute than other decay functions on other metric

spaces). Exponential-decay over time captures some

natural phenomena such as radioactive decay.

Polynomial decay has the form g(x) = 1 ∕ (1 + axa)

for parameters a > 0 and a
 1. Many natural effects

(for example, electro-magnetic radiation) have poly-

nomial decrease with distance. Polynomial decay is

often a natural choice when a smooth decay is desired

and when Exponential decay is too drastic [9]. In many

natural graphs (like d-dimensional grids), the neigh-

borhood size increases polynomially with the distance

and exponential decay suppresses longer horizons.

Aggregate Functions

Any aggregate function over a set of weighted items

can be applied to the decayed weights of the items to

obtain a corresponding decaying aggregate.

The decaying sum is the sum of the decaying

weights of the items. In the special case where the

weights are binary, this aggregate is referred to as the

decaying count. A related aggregate is the decaying

average, defined as the ratio of the decaying sum and

the decaying count of the items. Important aggregates

that can be reduced to (approximate) decaying sums

are (approximate) decaying variance and moments [4].

These aggregates can also be defined with respect to a

subpopulation of items that is specified by a predicate.

Other aggregates are decaying weighted random

sample of a certain size with or without replacement

and derived aggregates such as quantiles (using a

760D Decay Models
folklore technique, an approximate quantile with con-

fidence 1 � d can be obtained by taking the p quantile

of O(2�2 lnd�1) independent random samples) and

heavy hitters (all distinct identifiers with total decaying

weight above some threshold).
Computational Challenges

A decaying aggregate of a location with respect to a

decay function can be computed by processing all

items, calculating the distances and computing the

decayed weights, and finally computing the desired

aggregate on this set. This approach provides exact

answers (up to numerical computation errors) but is

highly inefficient and often infeasible.

This naive approach requires a linear pass over all

items for each location and decay function pair of

interest in aggregates with respect to multiple locations

or multiple decay functions.

On massive data sets, this approach is infeasible: on

massive data stream, one can not store the full history

of observed items and in distributed data sets, one can

not replicate the full information at every node.

The common approach for massive data sets is to

use summaries that enable more efficient computation

of approximate aggregate values. Algorithms maintain

a concise data structures that ‘‘summarizes’’ the full

information. The size of these data structure deter-

mines the amount of book keeping and/or communi-

cation required. A desirable feature of these summaries

is that they support aggregations over selected subpo-

pulations of the items.

Decaying aggregation, where summaries must be

able to support multiple locations and decay functions,

imposes greater challenges.
All Distances Sketches

Useful data structures for decayed aggregation are all-

distances sketches. The all-distances sketch of a loca-

tion is a concise encoding of sketches of the weighted

sets of items that are within some distance from the

location, for all possible distances. If the sketches

support approximate sum, the all-distances sketch

supports decaying sum with respect to any decay

function.

In many applications, it is desired to efficiently

obtain these sketches for multiple locations. Fortunate-

ly, all-distances sketches can be computed and main-

tained efficiently in many settings.
Exponential histograms [1] and the wave summa-

ries [14] are applicable on data streams. For the more

general network setting, all-distances k-mins sketches

[3], which can be computed efficiently in a dis-

tributed setting [5]. All-distances bottom-k sketches,

which provide tighter estimates of the decaying

sum than all-distances k-mins sketches were proposed

in [6].

The data structure used in [5] for the Euclidean

plane essentially encodes all-distances k-mins sketch

for any query point in the plane.

Key Applications
Applications of decaying aggregation can be classified

into two main categories.

The first category is prediction or estimation of a

value at a location. In this context, the data items are

viewed as samples or measurements from some under-

lying smooth distribution and the decayed aggregate is

a way to estimate or predict the value or some statistics

at a query location. For example, the items are mea-

surements of some environmental parameter (humid-

ity, temperature, air pollution) collected by a sensor

network and the decaying aggregate is an estimate of

the value at other location. Application in this category

are [7,13,16–18].

The second category is some measure of influence:

the items constitute the complete data set and the

decayed aggregate is a measure of influence or close-

ness of a property to a location. For example, items are

undirected sources of electro magnetic radiation and the

decaying aggregate is a measure of the radiation level at

a query location. Other applications in this category

are content-based routing in p2p networks [11].
Cross-references
▶Approximate Query Processing

▶Data Sketch/Synopsis

▶Data Stream
Recommended Reading
1. Babcock B., Babu S., Datar M., Motwani R., and Widom J.

Models and issues in data stream systems. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2002.

2. Bremler-Barr A., Cohen E., Kaplan H., and Mansour Y. Predict-

ing and bypassing internet end-to-end service degradations.

In Proc. 2nd ACM SIGCOMMWorkshop on Internet Measure-

ment, 2002.

Decision Rule Mining in Rough Set Theory D 761

D

3. Cohen E. Size-estimation framework with applications to tran-

sitive closure and reachability. J. Comput. Syst. Sci., 55:441–453,

1997.

4. Cohen E. and Kaplan H. Efficient estimation algorithms for

neighborhood variance and other moments. In Proc. 15th An-

nual ACM-SIAM Symp. on Discrete Algorithms, 2004.

5. Cohen E. and Kaplan H. Spatially-decaying aggregation over a

network: model and algorithms. J. Comput. Syst. Sci.,

73:265–288, 2007.

6. Cohen E. and Kaplan H. Summarizing data using bottom-k

sketches. In Proc. ACM SIGACT-SIGOPS 26th Symp. on the

Principles of Dist. Comp., 2007.

7. Cohen E., Kaplan H., and Oldham J.D. Managing TCP connec-

tions under persistent HTTP. Comput. Netw., 31:1709–1723,

1999.

8. Cohen E. and Strauss M. Maintaining time-decaying stream

aggregates. In Proc. 22nd ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 2003.

9. Cohen E. and Strauss M. Maintaining time-decaying stream

aggregates. J. Algorithms, 59:19–36, 2006.

10. Cormode G., Tirthapura S., and Xu B. Time-decaying sketches

for sensor data aggregation. In Proc. ACM SIGACT-SIGOPS

26th Symp. on the Principles of Dist. Comp., 2007.

11. Crespo A. and Garcia-Molina H. Routing indices for peer-to-

peer systems. In Proc. 18th Int. Conf. on Data Engineering,

2002.

12. Datar M., Gionis A., Indyk P., and Motwani R. Maintaining

stream statistics over sliding windows. SIAM J. Comput., 31

(6):1794–1813, 2002.

13. Floyd S. and Jacobson V. Random early detection gateways for

congestion avoidance. IEEE/ACM Trans. Netw., 1(4), 1993.

14. Gibbons P.B. and Tirthapura S. Distributed streams algorithms

for sliding windows. In Proc. 14th Annual ACM Symp. on

Parallel Algorithms and Architectures, 2002, pp. 63–72.

15. Guibas L.J., Knuth D.E., and Sharir M. Randomized incremental

construction of Delaunay and Voronoi diagrams. Algorithmica,

7:381–413, 1992.

16. Hua M., Pei J., Fu A.W.C., Lin X., and Leung H.-F. Efficiently

answering top-k typicality queries on large databases. In Proc.

33rd Int. Conf. on Very Large Data Bases, 2007.

17. Jacobson V. Congestion avoidance and control. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1988.

18. Keshav S., Lund C., Phillips S., Reingold N., and Saran H.

An empirical evaluation of virtual circuit holding time policies

in IP-over-ATM networks. J. Select. Areas Commun., 13

(8):1371–1382, 1995.

19. Scott D.W. Multivariate Density Estimation: Theory, Practice

and Visualization. Wiley, New York, 1992.
Decentralized Data Integration
System

▶ Peer Data Management System
Decision Rule Mining in Rough Set
Theory

TSAU YOUNG (T.Y.) LIN

San Jose State University, San Jose, CA, USA

Synonyms
Decision rules; Classification rules; Rough Set theory

(RST); Extensional relational databases (ERDB)

Definition
Rough set theory (RST) has two formats, abstract and

table formats. In this entry, abstract format is hardly

touched. The table format, by definition, is a theory of

extensional relational databases (ERDB). However,

their fundamental goals are very different. RST is on

data analysis and mining, while databases are on data

processing.

In RST, a relation, which is also known as informa-

tion table, is called a decision table (DT), if the attri-

butes are divided into two disjoint families, called

conditional and decision attributes. A tuple in such a

DT, is interpreted as a decision rule, namely, the condi-

tional attributes functionally determine decision attri-

butes. A sub-relation is called a Value Reduct, if it

consists of a minimal subset of minimal length deci-

sion rules that has the same decision power as the

original decision table. RST has the following distin-

guished theorem.

Every decision table can be reduced to a value

reduct [5].

This theorem has been regarded as a data mining

theorem. However, in its true natural, it is a data

reduction theorem. There are some trivial points in

this theorem: If there is a conditional attribute that

is a candidate key, then the column is an attribute

reduct, and each attribute value is a value reduct.

There are more than one value reducts.

One fundamental weak point of this theorem is the

assumption that every tuple is a rule. So a new theory,

based on the assumption that only the high frequency

tuples can be regarded as rules, has started, but not

very far [3,4].
Historical Background
Rough set theory (RST) has two formats, abstract and

table formats. In the abstract format, a rough set is repre-

sented by the upper and lower approximations of

762D Decision Rule Mining in Rough Set Theory
equivalence classes. In terms of pure math, they are the

closure and interior of special topological spaces, called

clopen spaces. However, this entry does not cover this

aspect.

The table format of RST is a formal theory derived

from the logical studies of tables (relations). So theo-

retically speaking, RST is a sub-theory of ERDB, how-

ever, historically, they were developed under different

philosophies. RDB assumes the semantics of data

is known and focuses on organizing data through its

semantics. On the other hand, RST assumes data

is completely defined by the given table, and focuses

on data analysis, rule discovery and etc.
U Location Test New Case Result

ID-1 Houston 10 92 03 10

ID-2 San Jose 10 92 03 10

ID-3 Palo Alto 10 92 04 10

ID-4 Berkeley 11 92 04 50

ID-5 New York 11 92 04 50

ID-6 Atlanta 11 92 04 50

ID-7 Chicago 11 93 70 99
Foundations
Though RST has been regarded as amethodology of data

mining, the core results are actually data reduction or

rule reduction. Namely, RST provides a methodology to

reduce a decision table to a minimal but an equivalent

table. They are equivalent in the sense that both tables

provide the same decision power. This minimal decision

table is called value reduct. This reduction is not unique.

In other words, given a decision table, there is a set of

value reducts, each is equivalent to the original table.

In this section some fundamental concepts will be

introduced, In addition, the procedure will be illu-

strated by an example. There are two major steps;

one is the attribute reducts that are generalization of

candidate keys. The second step is tuple reduction.

ID-8 Baltimore 11 93 70 99

ID-9 Seattle 11 93 70 99

ID-10 Chicago 51 95 70 94

ID-11 Chicago 51 95 70 95
Attribute(Column) Reducts and Candidate Keys

In a relation, an attribute, or a set of attributes K is

called a candidate key if all attributes of the relation

is functionally depended on K (or K functionally deter-

mines every attribute), and K is a minimal set [1]. In

other words, candidate key is a set of ‘‘independent

variables’’ that all other attributes can be expressed as

functions of the candidate keys. In decision table, the

corresponding concept is equivalent to find a set of

‘‘independent conditions’’ for ‘‘if-then’’ rules.

Let S = ðU ;A ¼ C
S
D;Dom; rÞ be a decision

table, where

C ¼ A1;A2; :::;Ai; :::;An;

D ¼ B1;B2; :::;Bi; :::; Bm:

Then S is said to be a consistent decision table, if C
functionally determine D.
Definition 1 B is called a attribute reduct of S, if B
is a minimal subset of C such that B functionally

determine D.

It is clear that such a B is not necessarily unique. If

D is chosen to be the whole table A, then the reduct

is the extensional candidate key. The algorithm of

finding the attribute reduct is quite straightforward;

it is nearly the same as that of finding a candidate

key, which can be found in almost any database text.

Value Reducts – Simplest Decision Rules

In the step of attribute reduct, the reduction algorithm

find the sets of minimal columns. In this section, a

similar procedure is considered, but one tuple at a

time. The minimal set is called value reduct.

Illustration

Without losing the generality, the idea can be

explained by the following table:
Select a Decision Table From the table given above,

the following decision table will be considered: Let U

be the universe, RESULT be the decision attribute,

and C = TEST, NEW, CASE be the set of conditional

attributes.

Each tuple in the DT is considered as an if-

then rule.

Split the Decision Table Two tuples ID-10 and ID-11

form a table of inconsistent rules. Nine tuples ID-1 to

ID-9 form a consistent table. From now on the term

in this section ‘‘decision table’’ is referred to this

consistent table.

U Test New Result

ID-1 10 92 10

ID-2 10 92 10

ID-3 10 92 10

ID-4 11 92 50

ID-5 11 92 50

ID-6 11 92 50

ID-7 11 93 99

ID-8 11 93 99

ID-9 11 93 99

U Test Case Result

ID-1 10 03 10

ID-2 10 03 10

ID-3 10 04 10

ID-4 11 04 50

ID-5 11 04 50

ID-6 11 04 50

ID-7 11 70 99

ID-8 11 70 99

ID-9 11 70 99

Decision Rule Mining in Rough Set Theory D 763

D

Decision Classes The equivalence relation IND(RE-

SULT) classifies entities into three equivalence classes,

called decision classes

DECISION1¼fID-1; ID-2; ID-3g¼ ½10�RESULT
DECISION2¼fID-4; ID-5; ID-6g¼ ½50�RESULT
DECISION3¼fID-7; ID-8; ID-9g¼ ½99�RESULT

Condition Classes Let C = {TEST, NEW, CASE} be the

conditional attributes. The equivalence relation IND

(C) classifies entities into four equivalence classes,

called condition classes:

IND(C)-1 ¼ fID-1; ID-2g;
IND(C)-3 ¼ fID-4; ID-5; ID-6g;
IND(C)-2 ¼ fID-3g;
IND(C)-4 ¼ fID-7; ID-8; ID-9g

Knowledge Dependencies Pawlak regards a partition

(classification) as a knowledge, and observe that an

attribute defines a partition on the entities. So relation-

ships between attributes are regarded as relationships

between partitions, and hence between knowledges.

Observe that the entities that are indiscernible by

conditional attributes are also indiscernible by deci-

sion attributes, namely the following inclusions are

obtained

IND(C)-1 � DECISION1;

IND(C)-2 � DECISION1;

IND(C)-3 � DECISION2;

IND(C)-4 � DECISION3:

These inclusions imply that the equivalence relation

IND(C) is a refinement of IND(RESULT) in mathe-

matics. In RST, they imply that the knowledge IND

(RESULT) is knowledge depended on (coarser than)

the knowledge IND(C). Or equivalently, RESULT are

Knowledge Depended on C.

If-then Rules Knowledge dependences can be

expressed by if-then rules:

1. IfTEST=10,NEW=92,CASE=03,thenRESULT=10

2. IfTEST=10,NEW=92,CASE=04,thenRESULT=10

3. IfTEST=11,NEW=92,CASE=04,thenRESULT=50

4. IfTEST=11,NEW=93,CASE=70,thenRESULT=99
Attribute (Column) Reducts It is easy to verify that

{TEST, NEW} and {TEST CASE} are two attribute

reducts. Note that row ID-10 and ID-11 do not con-

tribute to the consistent decision; so they should be

ignored (For clarity, these have been removed.)

The two tables can be expressed as two sets of

uniformly shortened rules:
Set One:

1. If TEST = 10 and NEW = 92, then RESULT = 10

2. If TEST = 11 and NEW = 92, then RESULT = 50

3. If TEST = 11 and NEW = 93, then RESULT = 99

Set Two:

1. If TEST = 10, and CASE = 3, then RESULT =10

2. If TEST = 10, and CASE = 4, then RESULT = 10

3. If TEST = 11, and CASE = 4, then RESULT = 50

4. If TEST = 11, and CASE = 70, then RESULT = 99

More plainly, the consistent decisions made from the

original decision table can be accomplished equiva-

lently by either one of the two sets.

U Test New Result

ID-1 10 X 10

ID-2 10 X 10

ID-3 10 X 10

ID-4 11 92 50

ID-5 11 92 50

ID-6 11 92 50

ID-7 11 X 99

ID-8 11 X 99

ID-9 11 X 99

ID-10 51 95 94

ID-11 51 95 95

U Test Case Result

ID-1 10 X 10

ID-1 X 03 10

ID-2 10 X 10

ID-2 X 03 10

ID-3 10 04 10

ID-4 11 04 50

ID-5 11 04 50

ID-6 11 04 50

ID-7 11/X 70 99

ID-8 11/X 70 99

ID-9 11/X 70 99

ID-10 51 70 94

ID-11 51 70 95

764D Decision Rule Mining in Rough Set Theory
Value Reducts First, observe that ID-10 and ID-11

have been moved back. The reasons are that the two

inconsistent rules will have impact to the final form of

value reduct; see below. The first table gives

1. FIRST SET of Shortest Rules

Rule1 If TEST = 10, then RESULT = 10

Rule2 If TEST = 11 and NEW = 92, then

RESULT = 50

Rule3 If NEW = 93, then RESULT = 99

A casual user will not realize that the rules are derived

from the consistent sub-table. So a more natural view

is to look at the whole table. Fortunately these three

rules are not disturbed by the inclusion of ID-10 and

ID-11 tuples. In other words, The FIRST SET is a value

reduct of the consistent rules.
The second table provides two sets of Shortest

Rules

2. SECOND SET of Shortest Rules are: [Rule4a],

[Rule6], [Rule7] in the list below.

3. THIRD SET of Shortest Rules are: [Rule4b],

[Rule5], [Rule6], [Rule7] where each bracket [�]
is referring to the following rules:

Rule4a If TEST = 10, then RESULT = 10

Rule4b If CASE = 3, then RESULT = 10

Rule5 If TEST = 10 then RESULT = 10

Rule6 If TEST= 11 andCASE= 4, thenRESULT= 50

Rule7 If TEST = 11 and CASE = 70, then

RESULT = 99

C-Rule8 If CASE = 70, then RESULT = 99 (This

rule is valid only on consistence table.)

Note that the choice of [C-Rule8] is valid, if only the

consistence table is considered. Pawlak had adopted

this view [5]. However, as remarked earlier, a more

natural view is: the value reduct is derived from the

original whole table. In this case, [C-Rule8] is not a

rule, as it is ‘‘in conflict’’ with ID-10 and ID-11. So

Rule7 is used.

The illustrations on how to find the minimal sets

of shortest rules is completed. There are three solutions

(a modified view of Lin): (1) FIRST SET (Rule 1-3)

(2) SECOND SET (Rule4a, 6, 7), and (3) THIRD

SET (Rule4b, 6, 7). Taking the approach of Pawlak’s

book, the FIRST and SECOND SETS are the same

as those of the author, but Third SET is (Rule4b, 6,

C-Rule8).

Several comments are in order. In rough set theory,

Pawlak had assumed that every tuple in a decision table

is a rule; this assumption is debatable. So the view –

only high frequency tuples (as in frequent itemsets)

can be regarded as rules – should be explored. There

are such efforts, but not very far [3,4]. Other variations

also exist and should be explored.
Cross-references
▶Data Mining

▶Data Reduction

▶Decision Tree Classification

▶Decision Trees

▶ Frequent Itemsets and Association Rules

▶Rough Set Theory, Granular Computing on

Partition

▶Rough Set Theory (RST)

Decision Tree Classification D 765

D

Recommended Reading
1. Gracia-Molina H., Ullman J., and Windin J. Database Systems

The Complete Book, Prentice-Hall, Englewood, Cliffs, NJ, 2002.

2. Lee T.T. Algebraic theory of relational databases. Bell Syst. Tech.

J., 62(10):3159–3204, December 1983.

3. Lin T.Y. Rough set theory in very large databases. In Symp. in

Modelling Analysis and Simulation, 1996, pp. 936–941.

4. Lin T.Y. and Han J. High frequent value reduct in very large

databases. RSFDGrC, 2007, pp. 346–354.

5. Pawlak Z. Rough Sets. Theoretical Aspects of Reasoning about

Data. Kluwer, Dordecht, 1991.
Decision Rules

▶Decision Rule Mining in Rough Set Theory

▶Deductive Data Mining Using Granular Computing
Decision Support

▶Clinical Decision Support
Decision Tree

▶Decision Tree Classification
Decision Tree Classification

ALIN DOBRA

University of Florida, Gainesville, FL, USA

Synonyms
Decision tree; Classification tree

Definition
Decision tree classifiers are decision trees used for

classification. As any other classifier, the decision tree

classifiers use values of attributes/features of the data to

make a class label (discrete) prediction. Structurally,

decision tree classifiers are organized like a decision tree

in which simple conditions on (usually single) attri-

butes label the edge between an intermediate node and

its children. Leaves are labeled by class label predic-

tions. A large number of learning methods have been

proposed for decision tree classifiers. Most methods

have a tree growing and a pruning phase. The tree

growing is recursive and consists in selecting an
attribute to split on and actual splitting conditions

then recurring on the children until the data

corresponding to that path is pure or too small in

size. The pruning phase eliminates part of the bottom

of the tree that learned noise from the data in order to

improve the generalization of the classifier.

Historical Background
Decision tree classifiers were first introduced by

Breiman and his collaborators [2] in 1984 in the statis-

tics community. While the impact in statistics was not

very significant, with their introduction in 1986 by

Quinlan in machine learning literature[11], the deci-

sion tree classifiers become of the premier classification

method. A large amount of research was published on

the subject since in the machine learning literature.

There was a renewed interest in decision tree classifiers

in the 1990 in the data-mining literature due to the

fact that scalable learning is nontrivial and, more

importantly, the business community prefers decision

tree classifiers to other classification methods due to

their simplicity. A comprehensive survey of the work

on decision tree classifiers can be found in [10].

Foundations
Decision tree classifiers are especially attractive in a

data mining environment for several reasons. First,

due to their intuitive representation, the resulting

model is easy to assimilate by humans [2]. Second,

decision tree classifiers are non-parametric and thus

especially suited for exploratory knowledge discovery.

Third, decision tree classifiers can be constructed rela-

tively fast compared to other methods [8]. And last,

the accuracy of decision tree classifiers is comparable

or superior to other classification models [8].

As it is the case for most classification tasks, the

kind of data that can be represented by decision tree

classifiers is of tabular form, as depicted in Table 1.

Each data point occupies a row in the table. The names

of columns are characteristics of the data and are called

attributes. Attributes whose domain is numerical are

called numerical attributes, whereas attributes whose

domain is not numerical are called categorical attri-

butes. One of the categorical attributes is designated as

the predictive attribute. The predictive attribute needs

to be predicted from values of the other attributes.

For the example in Table 1, ‘‘Car Type’’ is a categorical

attribute, ‘‘Age’’ is a numerical attribute and ‘‘Lives in

Suburb?’’ is the predictor attribute.

766D Decision Tree Classification
Figure 1 depicts a classification tree, which was

built based on data in Table 1. It predicts if a person

lives in a suburb based on other information about

the person. The predicates, that label the edges (e.g.,

Age � 30), are called split predicates and the attributes

involved in such predicates, split attributes. In tradi-

tional classification and regression trees only determin-

istic split predicates are used (i.e., given the split

predicate and the value of the the attributes, it can be

determined if the attribute is true or false). Prediction

with classification trees is done by navigating the tree on

true predicates until a leaf is reached, when the predic-

tion in the leaf (YES or NO in the example) is returned.
Decision Tree Classification. Table 1. Example training

database

Car Type Driver Age Children Lives in Suburb?

sedan 23 0 yes

sports 31 1 no

sedan 36 1 no

truck 25 2 no

sports 30 0 no

sedan 36 0 no

sedan 25 0 yes

truck 36 1 no

sedan 30 2 yes

sedan 31 1 yes

sports 25 0 no

sedan 45 1 yes

sports 23 2 no

truck 45 0 yes

Decision Tree Classification. Figure 1. Example of decision
Formal Definition

A classification tree is a directed, acyclic graph T with

tree shape. The root of the tree – denoted by RootðT Þ –
does not have any incoming edges. Every other node

has exactly one incoming edge and may have 0,

2 or more outgoing edges. A node Twithout outgoing

edges is called leaf node, otherwise T is called an inter-

nal node. Each leaf node is labeled with one class label;

each internal node T is labeled with one attribute

variable XT, called the split attribute. The class label

associated with a leaf node T is denoted by Label(T).

Each edge (T, T 0) from an internal node T to one

of its children T 0 has a predicate q(T,T 0) associated

with it where q(T,T 0) involves only the splitting

attribute XT of node T. The set of predicates QT on

the outgoing edges of an internal node Tmust contain

disjoint predicates involving the split attribute whose

conjunction is true – for any value of the split attribute

exactly one of the predicates in QT is true. The set

of predicates in QT will be reffered to as splitting

predicates of T.

Given a classification tree T , the associated classifi-

er is defined as CT ðx1; :::; xmÞ in the following recursive

manner:

Cðx1; :::; xm;TÞ ¼

LabelðTÞ if T is a

leaf node

Cðx1; :::; xm;TjÞ if T is an

internal node,

Xi is label

of T , and

q(T , Tj) (xi)=

true

8>>>>>>>>><
>>>>>>>>>:
tree classifier for training data in Table 1.

Decision Tree Classification D 767
CT ðx1; :::; xmÞ ¼ Cðx1; :::; xm; RootðT ÞÞ

thus, to make a prediction, start at the root node and

navigate the tree on true predicates until a leaf is

reached, when the class label associated with it is

returned as the result of the prediction.
D

Building Decision Tree Classifiers

Several aspects of decision tree construction have been

shown to be NP-hard. Some of these are: building

optimal trees from decision tables [6], constructing

minimum cost classification tree to represent a simple

function [4], and building optimal classification trees

in terms of size to store information in a dataset [14].

In order to deal with the complexity of choosing

the split attributes and split sets and points, most

of the classification tree construction algorithms use

the greedy induction schema in Fig. 2. It consists in

deciding, at each step, upon a split attribute and split

set or point, if necessary, partitioning the data accord-

ing with the newly determined split predicates and

recursively repeating the process on these partitions,

one for each child. The construction process at a node

is terminated when a termination condition is satis-

fied. The only difference between the two types of

classification trees is the fact that for k-ary trees no

split set needs to be determined for discrete attributes.

By specifying the split attribute selection criteria and

the split point selection criteria various decision tree

classifier construction algorithms are obtained.

Once a decision is made to make a node a leaf, the

majority class is used to label the leaf and will be the

prediction made by the tree should the leaf be reached.
Decision Tree Classification. Figure 2. Classification tree ind
Split Attribute and Split Point Selection

At each step in the recursive construction algorithm, a

decision on what attribute variable to split is made.

The purpose of the split is to separate, as much as

possible, the class labels from each others. To make

this intuition useful, a metric that estimates how much

the separation of the classes is improved when a par-

ticular split is performed is needed. Such a metric is

called a split criteria or a split selection method.

There is extensive research in the machine learning

and statistics literature on devising split selection cri-

teria that produce classification trees with high predic-

tive accuracy [10].

The most popular class of split selection methods

are impurity-based [2,11]. The popularity is well

deserved since studies have shown that this class of

split selection methods have high predictive accuracy

[8], and at the same time they are simple and intuitive.

Each impurity-based split selection criteria is based on

an impurity function F(p1,...,pk), with pj interpreted as

the probability of seeing the class label cj. Intuitively,

the impurity function measures how impure the data is.

It is required to have the following: (i) to be concave,

(ii) to have a unique maximum at (1∕k,...,1∕k) (the most

impure situation), and (iii) to achieve the minimum

value for (1, 0,...,0), (0, 1, 0,...,0), ..., (0,...,0,1) (i.e.,when

all data has the same class label). Given such an impurity

measure, the impurity of a node T is i(T) = F(P[C =

c1jT],..., P[C = ckjT]), where P[C = cjjT] is the proba-
bility that the class label is cj given that the data reaches

node T. These statistics are computed from the training

data in the process of building the decision tree

classifier.
uction schema.

768D Decision Tree Classification
Given a set Q of split predicates on attribute vari-

able X that split a node T into nodes T1,. . .,Tn, define

the reduction in impurity as:

DiðT ;X ;QÞ ¼ iðTÞ �
Xn
i¼1

P½TijT � : iðTiÞ

¼ iðTÞ �
Xn
i¼1

P½qðT ;TiÞðXÞjT � : iðTiÞ
ð1Þ

Intuitively, the reduction in impurity is the amount of

purity gained by splitting, where the impurity after split

is the weighted sum of impurities of each child node.

Two popular impurity measures are:

Giniindex: giniðp1; :::; pnÞ ¼ 1�
Xn
i¼1

p2i

Entropy: entropyðp1; :::; pnÞ ¼ �
Xn
i¼1

pi logðpiÞ

When used in conjunction with the (1), they produce

the Gini Gain and Information Gain split point selec-

tion criteria. A split attribute criteria can simply be

defined as the largest value of the split point selection

criteria for any predicate involving the attribute (i.e.,

the best split). In this way, the best split point is

determined simultaneously with the evaluation of an

attribute thus no other criteria is necessary.

The selection of the attribute can be dissociated

from the selection of the split point. A measures that

test the usefulness of a split on an attribute without

considering split points is w2-test.
Some comments on efficiently finding the split point

for the two types of attributes, categorical and numerical,

are in order. For numerical attributes, only splits of the

form X > 10 are considered thus only as many split as

there are data-points are possible. For categorical attri-

butes in the case when k-ary splits are allowed (Quinlan

decision tree classifier), there is only one possible split on

an attribute. The situation is more complicated for bina-

ry split trees (Breiman et al.) since there are an exponen-

tial number of possible split points (sets in this case) to

consider. Fortunately, in this last situation a powerful

result due to Breiman [2] leads to a linear algorithm after

a sort in a specific order is performed.

Tree Pruning

An important question with respect to building deci-

sion tree classifiers is when to stop the growing of the
tree. Since the estimation of probabilities that make up

the formulas for the split criteria becomes less and less

statistically reliable as the tree is build (data is frag-

mented at an exponential speed due to splits) the tree

will eventually learn noise. In machine learning termi-

nology this is called overfitting and should be avoided

to the greatest extent possible.

Finding the point where the actual learning stops

and overfitting starts is problematic. For decision tree

classification there are two distinct approaches to

addressing this problem: (i) detect overfitting during

tree growth and stop learning, and (ii) grow a large tree

and, using extra independent data, determine what

part of the tree is reliable and what part should be

discarded.

A statistical test like w2-test can be used to detect

the point where overfitting occurs. This turns out

to work in some circumstances but not others. This

method of stopping the tree growth is preferred when

the w2-test is used for attribute selection as well.

The most popular method to producing good qual-

ity trees is to prune an overly large tree. The most

popular method to pruning is Quinlan’s Re-substitu-

tion Error Pruning. Re-substitution error pruning con-

sists of eliminating subtrees in order to obtain a tree

with the smallest error on the pruning set, a separate

part of the data used only for pruning. To achieve

this, every node estimates its contribution to the error

on pruning data when the majority class is used as an

estimate. Then, starting from the leaves and going

upward, every node compares the contribution to

the error by using the local prediction with the smal-

lest possible contribution to the error of its children

(if a node is not a leaf in the final tree, it has no

contribution to the error, only leaves contribute),

and prunes the tree if the local error contribution is

smaller – this results in the node becoming a leaf.

Since, after visiting any of the nodes the tree is opti-

mally pruned – this is the invariant maintained –

when the overall process finishes, the whole tree is

optimally pruned.

Other pruning techniques can be found in [9].

They tend to be significantly more complicated than

re-substitution error pruning.
Key Applications
Scientific classification, medical diagnosis, fraud detec-

tion, credit approval, targeted marketing, etc.

Decision Trees. Figure 1. Example of a decision tree for

selecting a database.

Decision Trees D 769

D

URL to Code
http://www.dtreg.com/

http://eric.univ-lyon2.fr/�ricco/sipina_overview.html

http://www.statistics.com/resources/glossary/c/cart.php

http://www.statsoft.com/textbook/stcart.html

http://www.salfordsystems.com/

Cross-references
▶Classification

▶Decision Trees

Recommended Reading
1. Agresti A. Categorical data analysis. John Wiley and Sons, 1990.

2. Breiman L., Friedman J.H., Olshen R.A., and Stone C.J. Classifi-

cation and regression trees. Belmont: Wadsworth, 1984.

3. Buntine W. Learning classification trees. Artificial Intelligence

frontiers in statistics Chapman & Hall, London, pp. 182–201.

4. Cox L.A., Qiu Y., and Kuehner W. Heuristic least-cost computa-

tion of discrete classification functions with uncertain argument

values. Annals of Operations Research, 21: 1–30, 1989.

5. Frank E. Pruning decision trees and lists. Doctoral dissertation,

Department of Computer Science, University of Waikato,

Hamilton, New Zealand, 2000.

6. Hyafil L., and Rivest R.L. Constructing optimal binary decision

trees is np-complete. Information Processing Letters, 5:15–17,

1976.

7. James M. Classification algorithms.Wiley, 1985.

8. Lim T.-S., Loh W.-Y., and Shih Y.-S. An empirical comparison

of decision trees and other classification methods (Technical

Report 979). Department of Statistics, University of Wisconsin,

Madison, 1997.

9. Loh W.-Y. and Shih Y.-S. Split selection methods for classifica-

tion trees. Statistica Sinica, 1997, p.7.

10. Murthy S.K. Automatic construction of decision trees from

data: A multi-disciplinary survey. Data Mining and Knowledge

Discovery, 1997.

11. Quinlan J.R. Induction of decision trees. Machine Learning,

1:81–106, 1986.

12. Quinlan J.R. Learning with Continuous Classes. In Proc.

5th Australian Joint Conference on Artificial Intelligence,

1992, pp. 343–348.

13. Quinlan J.R. C4.5: Programs for machine learning. Morgan

Kaufman, 1993.

14. Murphy O.J. andMccraw R.L. Designing storage efficient decision

trees. IEEE Transactions on Computers, 40: 315–319, 1991.
Decision Trees

ALIN DOBRA

University of Florida, Gainesville, FL, USA

Synonyms
Classification trees
Definition
Decision trees are compact tree like representations of

conditions that specify when a decision should be ap-

plied together with the actions/decision. Decision trees

consist into intermediate nodes and leaf nodes. The

outgoing edges from intermediate nodes are labeled by

conditions. The leaf nodes are labeled by decisions or

actions. The way decision trees are used is by starting at

the root then navigating down on true conditions until a

leaf is reached. The action or decision in the leaf is then

taken. Decision trees are just a compact representation of

decision rules: the condition under which an action is

taken is the conjunction of conditions starting at the root

of the decision tree and leading to the leaf labeled by the

action. An example of a decision tree is given in Fig. 1.

Key Points
Decision trees are an important type of representation

for any kind of complex set of decisions that are

conditioned onmultiple factors. They aremore compact

than decision rules but less flexible. The main appeal of

decision trees is their intuitiveness; it is very easy to

understand how the decision is taken.

While they have uses in any areas that need decision

support of some kind, in databases their main use is in

specifying decision tree classifiers and decision tree

regressors. Decision trees are mostly used in one of

these two forms in databases.

Cross-references
▶Decision Tree Classification

▶ Scalable Decision Tree Construction

Recommended Reading
1. Lindley D.V. Making Decisions. Wiley, Hoboken, NJ, USA, 1991.

770D Declarative Networking
Declarative Networking

TIMOTHY ROSCOE

ETH Zurich, Zurich, Switzerland

Synonyms
Declarative overlay networks

Definition
Declarative Networking refers to the technique of

specifying aspects of networked systems, such as rout-

ing algorithms, in terms of declarative queries over

distributed network state. These queries are then exe-

cuted by a distributed query processor to obtain

the same effect as executing an implementation of the

algorithm in an imperative language such as C or Java.

Executable descriptions of distributed algorithms as

queries are typically much more concise than impera-

tive implementations, and more amenable to auto-

mated analysis.

Historical Background
Declarative Networking emerged in about 2004 as an

application of results in data management and logic

programming to problems of network overlay mainte-

nance. Its roots can be traced in several areas: attempts

to describe real-world network configurations formally,

e.g., [11], network management systems built over a

declarative framework, such as IBM Tivoli Console and

various research systems, e.g., [12,15], and perhaps

most significantly the field of distributed query pro-

cessing systems (e.g., [5,6,10]).

The observation that distributed query processors

need to construct overlay networks of some form to

route data led to the idea that the routing protocols

required might be specified declaratively. The idea of

describing Internet routing protocols (and new var-

iants on them) as queries over distributed data was

proposed in [9], and shortly afterwards real systems

for building overlay networks from declarative specifi-

cations began to appear. P2 [8] uses a variant of the

Datalog language and pushes most aspects of the

distributed algorithm into the declarative realm,

while Node Views [3] uses a SQL-like language [2]

and builds overlay networks as views over an underly-

ing node database.

Further work has expanded the applicability of

the approach from routing algorithms networks to
more general distributed algorithms such as Chandy-

Lamport consistent snapshots [14], specifying security

properties of networks [1], and building complete

sensor network applications [4].
Foundations
The basic principle of declarative networking can be

illustrated by reference to the example of routing pro-

tocols. The purpose of a routing protocol is to con-

tinously maintain a routing table at each node in the

network. This table provides a mapping from destina-

tion addresses to ‘‘next hop’’ nodes – those which are

directly connected to the node where the table resides.

The collection of routing tables in a network can be

viewed as the result of a distributed calculation whose

inputs are external data such as node liveness, link load

levels, user-specified policy, etc. If one represents such

external data as relations, routing tables can be

regarded as a distributed view over such relations,

and consequently the routing – the process of main-

taining the routing tables – can be regarded as an

instance of distributed view maintenance.

This can be illustrated further with the example of

link-state routing (as used by the widespread Internet

routing protocols OSPF and IS-IS), where connectiv-

ity information is flooded globally through the net-

work and each router performs shortest-path

computations on the complete connectivity graph.

Using the simplified notation of [9], based on Data-

log, one can write:

path(S,D,P,C) :- link(S,D,C),

P = f concatPath(link

(S,D,C), nil).

path(S,D,P,C) :- link(S,Z,C1), path

(Z,D,P2,C2),

C = f_sum(C1, C2),

P = f concatPath

(link(S,Z,C1), P2).

These first two query rules give the standard inductive

defintion of reachability in a network: there is a path P

from source node S to destination Dwith cost C if there

is a (direct) link of costC from S to D, or if there is a path

P2 to D from a node Z adjacent to S, and C is the sum of

the link cost C1 to Z and the path cost C2 from Z to D.

Two further rules can compute the best path from S

to D, using the standard Datalog function for

aggregates:

Declarative Networking D 771

D

bestPathCost(S,D,AGG<C>) :- path

(S,D,P,C).

bestPath(S,D,P,C) :- bestPathCost

(S,D,C),

path(S,D,P,C).

Note that the definition of ‘‘best’’ in this example is

deliberately unbound: by changing the sum function

f_sum and the aggregate AGG, a variety of network

metrics can be used. This illustrates some of the key

claimed benefits of declarative networking: conciseness

of specification, and ease of modification.

While the four rules above specify a link-state rout-

ing algorithm in some sense, they of course say nothing

about how such a specification is to executed, where

the rules are evaluated, or what messages need to

traverse the network. However, as [9] shows, each

term in a rule head and body can be annotated with a

‘‘location specifier’’, which identifies which node the

tuple resides on when the rule is executed. With such

identifiers, the specification above becomes:

path(@S,D,P,C) :- link(@S,D,C),

P = f concatPath(link

(@S,D,C), nil).

path(@S,D,P,C) :- link(@S,Z,C1), path

(@Z,D,P2,C2),

C = f_sum(C1, C2),

P = f concatPath(link

(@S,Z,C1), P2).

bestPathCost(@S,D,AGG<C>) :- path

(@S,D,P,C).

bestPath(@S,D,P,C) :- bestPathCost

(@S,D,C),

path(@S,D,P,C).

It can be seen that all rules execute entirely locally (on

whichever node corresponds to the value S in the

operand tuples) except the second one. For this, a

message must be sent from Z to S, which is convenient-

ly directly connected to S. Such a specification can

be trivially planned and executed independently on

each node in a network, and will result in best-path

routing table on each node. Furthermore, the messages

that will be sent during execution correspond to those

that an imperative link-state implementation would

need to transmit.

Loo et al. [7] detail various evaluation strategies,

and also discuss some automated checks that may be

performed on such algorithm specifications. In
particular, if a set of relations (such as link in the

above example) are asserted to mean direct connec-

tivity, the system can determine at query plan time

whether or not the routing protocol is well-formed,

in that it will only cause a node to send messages to

its direct neighbours. It is this ‘‘global’’ specification

of rules which sets declarative networking systems

apart from purely local event-condition-action

(ECA) systems.

A declarative networking system like P2 [8] can

directly execute such a specification, allowing very con-

cise programs for distributed algorithms. [8] presents

an implementation of the Chord overlay in 47 lines of

Datalog, considerably shorter than the several thousand

lines of C++ in the original imlemenentation.

A further key benefit of declarative networking

is the flexibility afforded by the query framework.

Very few assumptions are made about the network in

question – even the point-to-point link predicate

in the example above could be replaced a more com-

plex relation conveying direct connectivity, for exam-

ple one giving radio strength in a wireless network. The

declarativity of the specification allows external data

about the network to be cleanly integrated into the

algorithmic framework using familiar techniques in

ways that would be tedious, cumbersome, and brittle

in an imperative implementation.
Key Applications
Declarative networking is currently the domain of

research rather than industrial adoption. In addition

to the specification of protocols for extensible network

routing and the overlay component of distributed

applications, the approach has been applied to building

sensor network applications over wireless networks and

the implementation of fault-tolerant replication algo-

rithms for the purposes of performance analysis [13].

Future Directions
There are a number of open questions in declarative

networking. Evaluating rules concurrently on a node so

as to preserve intelligible semantics to the programmer

is an open area, as is the field of optimizations of

such distributed queries over the kinds of sparsely-

connected graphs found computer networks. The best

way of integrating the declarative networking function-

ality of a distributed application with imperative func-

tionality local to a node is an area of ongoing study.

772D Declarative Overlay Networks
URL to Code
http://p2.berkeley.intel-research.net/, mirrored at

http://p2.cs.berkeley.edu/

http://developer.berlios.de/projects/slow/

http://www.dvs.tu-darmstadt.de/research/OverML/

index.html

Cross-references
▶Deductive Databases

▶Distributed Query Processing

▶ Event-Condition-Action Systems
Recommended Reading
1. Abadi M. and Loo B.T. Towards a declarative language and

system for secure networking. In Proc. 3rd Int. Workshop on

Networking meets Databases, USA, April 2007.

2. Behnel S. SLOSL – a modelling language for topologies and

routing in overlay networks. In Proc. 1st Int. Workshop on

Modeling, Simulation and Optimization of Peer-to-Peer Envir-

onments, 2008.

3. Behnel S. and Buchmann A. Overlay networks – implementation

by specification. In Proc. ACM/IFIP/USENIX 6th Int. Middle-

ware Conf., 2005.

4. Chu D., Tavakoli A., Popa L., and Hellerstein J. Entirely declara-

tive sensor network systems. In Proc. 32nd Int. Conf. on Very

Large Data Bases, 2006, pp. 1203–1206.

5. Chun B., Hellerstein J.M., Huebsch R., Jeffery S.R., Loo B.T.,

Mardanbeigi S., Roscoe T., Rhea S., Shenker S., and Stoica I.

Querying at Internet Scale (Demo). In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2004.

6. Huebsch R., Chun B., Hellerstein J.M., Loo B.T., Maniatis P.,

Roscoe T., Shenker S., Stoica I., and Yumerefendi A.R. The

architecture of PIER: an Internet-scale query processor. In

Proc. 2nd Biennial Conf. on Innovative Data Systems Research,

2005.

7. Loo B.T., Condie T., Garofalakis M., Gay D.E., Hellerstein J.M.,

Maniatis P., Ramakrishnan R., Roscoe T., and Stoica I.

Declarative networking: language, execution and optimization.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2006, pp. 97–108.

8. Loo B.T., Condie T., Hellerstein J.M., Maniatis P., Roscoe T.,

and Stoica I. Implementing declarative overlays. In Proc. 20th

ACM Symp. on Operating System Principles, 2005, pp. 75–90.

9. Loo B.T., Hellerstein J.M., Stoica I., and Ramakrishnan R.

Declarative routing: extensible routing with declarative queries.

In Proc. Int. Conf. of the on Data Communication, 2005.

10. Loo B.T., Huebsch R., Hellerstein J.M., Roscoe T., and Stoica I.

Analyzing P2P overlays with recursive queries. Technical

Report IRB-TR-003-045, Intel Research, November 2003.

11. Roscoe T., Hand S., Isaacs R., Mortier R., and Jardetzky P.

Predicate routing: enabling controlled networking. In Proc,

First Workshop on Hot Topics in Networks, 2002.

12. Roscoe T., Mortier R., Jardetzky P., and Hand S. InfoSpect: using

a logic language for system health monitoring in distributed

systems. In Proc. 2002 ACM SIGOPS EuropeanWorkshop, 2002.
13. Singh A., Maniatis P., Druschel P., and Roscoe T. BFT protocols

under fire. In Proc. 5th USENIX Symp. on Networked Systems

Design and Implementation, 2008.

14. Singh A., Maniatis P., Roscoe T., and Druschel P. Using

queries for distributed monitoring and forensics. In Proc. First

European Systems Conference, 2006.

15. Wawrzoniak M., Peterson L., and Roscoe T. Sophia: an informa-

tion plane for networked systems. In Proc. 5th USENIX Symp.

on Networked Systems Design & Implementation, 2003.
Declarative Overlay Networks

▶Declarative Networking
Deductive Data Mining using
Granular Computing

TSAU YOUNG (T. Y.) LIN

San Jose State University, San Jose, CA, USA

Synonyms
Deductive data mining, model for automated data

mining; Rough set theory, granular computing on

partition

Definition
What is Deductive Data Mining (DDM)? It is a meth-

odology that derives patterns from the mathematical

structure of a given stored data. Among three core

techniques of data mining [1], classifications and asso-

ciation rule mining are deductive data mining, while

clustering is not, because its algorithms often use some

properties of the ambient space.

What is Granular Computing (GrC)? In general, it

is a problem solving methodology deeply rooted in

human thinking. For example, human body is granu-

lated into head, neck, and etc. However, the main

concerns here are on the data mining aspect of GrC.

Two views are presented. One is based on current

technology, and the other is on the incremental ap-

proach to the ultimate goal.

A) Mining Relational Databases (RDB) using GrC : In

GrC, a relation K (also known as information table in

rough set theory) is a knowledge representation that

maps a set U of entities into a set of attribute values.

The collection of entities that is mapped to the same

attribute value is called a granule. By replacing each

Deductive Data Mining using Granular Computing D 773

D

attribute value with its granule, a relation of granules is

formed. Observe that the collection of granules in each

column is a partition (hence an equivalence relation)

on U. Hence, the relation of granules is equivalent to

the pair ðU ;RÞ, called Granular Data Model (GDM),

where R is the set of equivalence relations that are

defined by those columns. Observe that GDM deter-

mines a relation (up to isomorphism) uniquely. See

Table 1. Note that GDM has a very explicit mathemat-

ical structure of data, hence

1. Mining RDB using GrC is DDM on GDM (or rela-

tion of granules). See ‘‘Key Applications – Deductive

Data Mining on GDM’’. Two striking results will be

explained.
B) Mining RDB over ‘‘real world sets’’ using GrC:

This is a goal statement. What is a ‘‘real world set’’?

Strictly speaking, this can not be answered mathe-

matically (there is no semantics in mathematics).

In GrC, the ‘‘real world set’’ has been modeled by

the Fifth GrC model (relational GrC model), (U,

b), where b is a collection of n-ary relations (n is

not fixed). In this approach, the focus has been on

capturing the interactions among elements of the

universe. For example, in human society, n person

may form a committee (hence they interact). In

this formulation, the committee is a tuple (as

each person may play a disticnt role) in one of the

relation in b [18]. Note that Fifth GrC Model (in

finite U) is the relational structure of the First

Order Logic (without function symbols). RDB

over a model of ‘‘real world set’’ can be viewed as

a Semantic Oriented RDB. For now, the ‘‘real world

set’’ is Fifth GrC Model, so the corresponding

GDM is Relational GrC Model (Fifth GrC Model)

based GDM, denoted by RGDM.
2. Mining RDB over ‘‘real world sets’’ using GrC is

DDM on RGDM. See ‘‘Future Directions’’.
Historical Background
How was the term GrC coined? In the academic year

1996–1997, when T. Y. Lin took his sabbatical leave at

UC-Berkeley, Zadeh suggested granular mathematics

to be his research area. To limit the scope, Lin proposed

the term granular computing [25] to label the research

area. Though the label is new, the notion is quite an-

cient, e.g., the infinitesimal granules led to

the invention of calculus. More recent examples are

Heisenberg uncertainty principle (A precise position
can only determine a granule of momentum) and fuzzy

set theory [24]. For database and data analysis areas, the

first work may be due to Hsiao in 1970 [7]; incidentally

he is also well known for database machines. His model

is essentially equivalent to relational database model and

was called Attribute Based File Organization (evolved

into attribute based data model (ABDM)) by Eugene

Wong in 1971 [2]; Wong and Stonebraker co-founded

database system INGRESS.

In ABDM, Hsiao imposed equivalence relations on

attribute domains to increase the precision of data

access. Around 1981, Ginsburg and Hull imposed an-

other binary relation, ‘‘partial ordering’’ on attribute

domains [4,5]. The goal is to capture the additional

information provided by the order.

About the same time, Pawlak (1982) and Lee

(1983) observed that an attribute can be regarded as a

partition of the universe [8,23], and developed rough

set theory and algebraic theory of relational databases.

Their approaches are quite different from previous

theories.

In 1988–1989, for approximate retrievals, Lin

generalized topological neighborhood system to Neigh-

borhood Systems (NS) by simply dropping the axioms

of topology. He imposed NS structure on attribute

domains and studied the Topological Data Model

[9,11] (see cross references). NS is equivalent to a set of

binary relations, so it is mathematically a generalization

equivalence relation (Hsiaos works) and partial ordering

(Ginsburg and Hulls works). However, semantically,

they are different; in NS, each neighborhood (a granule)

is regarded as a unit of uncertainty. Also in 1989, Lin

applied the idea of computer security [10]. This is related

to the information flow on access control model (see

cross references) In 1992, Lin developed a NS-version of

RS theory [12]. These are pre-GrC stories.

Next, are early works. By mapping NS onto Zadehs

intuitive statements, Lin used NS as his first mathe-

matical GrC model, developed Binary Relation based

Data Model [13,21], and observed ‘‘complete Pawlak

theories’’ in symmetric binary relations and some par-

tial covering [19]. Binary relation based Data Model

has many names, such as binary knowledge based,

granular table, clustered table, semantic oriented

table and, etc.; now it is called a Binary Granular

Data Models (BGDM). Intrinsically, BGDM is a se-

mantic oriented data model, and has been used to

mine semantic oriented decisions (classifications) and

association rules; it is still an ongoing theory.

774D Deductive Data Mining using Granular Computing
Foundations

What is Data Mining?

What is data mining? There is no universally accepted

formal definition of data mining, however the follow-

ing informal description from [3] is rather universal:

‘‘data mining is a non-trivial process of identifying

valid, novel, potentially useful, and ultimately under-

standable patterns from data.’’

As having been pointed out previously in several

occasions, the terms, ‘‘novel,’’ ‘‘useful,’’ and ‘‘under-

standable’’ represent subjective views, and hence can

not be used for scientific purpose, it is paraphrased as

follows:

1. Deriving useful patterns from data.

This ‘‘definition’’ points out four key ingredients:

data, patterns, derivation methodology and the real

world meaning of patterns (implied by usefulness).

Deductive Data Mining

Convention. A symbol is a string of ‘‘bit and bytes’’ that

has no formal real world meaning, or whose real world

interpretation (if there is one) does not participate in

formal processing. A symbol is termed a word, if the

intended real world meaning does participate in the

formal processing.

What is the nature of the data in DDM? It is best to

examine how the data are created: In traditional data

processing: (i) first a set of attributes, called relational

schema, is selected. Then (ii) tuples of words are entered

the system. They represent a set of real world entities.

These words are called attribute values. Each such aword

is created to represent a real world fact, however, only the

symbol, but not the real world semantic, is stored.

How are the data processed? In traditional data

processing environment, DBMS processes these data,

under human commands, carries out the human

perceived-semantics. However, from the system point

of view, each word is a pure symbol (semantics are not

stored). So in an automated data mining algorithm

(without the human in the loop),

1. Words are treated as symbols.

For example, association mining algorithm merely

counts the symbols without consulting their real world

meanings. So association mining algorithm transforms

a table of symbols into a set of expressions (frequent

itemsets) of symbols. In summary,
1. A relation is a table of stored symbols.

2. Patterns are the mathematical expressions of the

stored symbols. For examples, frequency itemsets.

3. Principle of derivations is the mathematical

deduction.

Definition 1 Deductive data mining is a data mining

methodology that derives (using mathematical deduc-

tions only) patterns from the mathematical structure of

stored symbols.

Among three core topics of data mining [1],

Theorem 1 Classifications and association rule mining

are deductive data mining, while clustering may be not,

because its algorithms use some properties of the ambient

space.
Isomorphism – A Critical Concept

As having pointed out that a relation is a table of

symbols. So the following definition of isomorphism

is legitimate: Let K ¼ ðV ;AÞ and H ¼ ðV ;BÞ be

two relations, where A = {A1, A2,...,An} and B = {B1,

B2,...,Bm}.

Attributes Ai and Aj are isomorphic iff there is a

one-to-one and onto map, s : Dom(Ai) ! Dom(Aj)

such that Aj(v) = s(Ai(v))8v 2 V. The map s is called

an isomorphism. Intuitively, two attributes (columns)

are isomorphic if one column turns into another one

by properly renaming its attribute values.

Definition 2 Two relations K and H are said to be iso-

morphic if there is a one-to-one and onto correspondence

between two families of attributes so that every Ai is

isomorphic to the corresponding Bj, and vice versa.

Two relational Schema K and H are said to be

isomorphic if all their instances are isomorphic.

Isomorphism is an equivalence relation defined on

the family of all relational tables, so it classifies the tables

into isomorphic classes. Moreover, in [15], the following

observationwasmade: Isomorphic relations have isomor-

phic patterns. Its implications are rather far reaching. It

essentially declares that patterns are syntactic in nature.

They are patterns of the whole isomorphic class, even

though many isomorphic relations may have very dif-

ferent semantics. Here is the important theorem:

Theorem 2 A pattern is a property of an isomorphic

class.

Deductive Data Mining using Granular Computing D 775

D

In next section, a canonical model, called Granular

Data Model (GDM), for each isomorphic class will be

constructed.

Granular/Relational Data Models

In RDB, a relation (called an information table

in rough set theory) can be viewed as a knowledge rep-

resentation of a given universe U(a set of entities) in

terms of a given set of attributes A ¼ fA1;A2;:::;Ang.
A tuple(row) is a representation of an entity. An attri-

bute (column) Aj is a mapping that maps U to its

attribute domain dom(Aj) (another classical set). Let

those entities that are mapped to the same value be

called granules. By replacing each attribute value with

the corresponding granule, a new relation of granules is

formed. Observe that the collection of granules in a

column are mutually disjoint So it defines a partition

and hence an equivalent relation. Let R be the collec-

tion of such equivalence relations. So the pair ðU ;RÞ,
called a granular data model (GDM), is equivalent to

the relation of granules.

The details are further illustrated in Table 1. Note

that the first two columns, A-partition and B-partition,

is a relation of granules. It is obviously equivalence

to the GDM (U, {A � partition, B � partition}).

The last two columns, A-NAME and B-NAME, is

the original given relation. It can be viewed as a rela-

tion of ‘‘meaningful’’ names of these granules. So a

relation also will be called Data Model of Names

(DMN), to emphasize this contrast to the relation of

granules. Table 1 also illustrates the following iso-

morphism theorem, which was observed by Pawlak

([23], p. 56).
Deductive Data Mining using Granular Computing.

Table 1. The granular data model of a relation

Relation of granules Original relation

U ! A-partition B-partition A-NAME B-NAME

e1 ! {e1, e2, e6, e7} {e1, e4} diaper sss

e2 ! {e1, e2, e6, e7} {e2, e6, e7} diaper beer

e3 ! {e3, e5, e8} {e3, e8} coo ttt

e4 ! {e4} {e1, e4} paat sss

e5 ! {e3, e5, e8} {e5} coo bar

e6 ! {e1, e2, e6, e7} {e3, e8} diaper beer

e7 ! {e1, e2, e6, e7} {e2, e6, e7} diaper beer

e8 ! {e3, e5, e8} {e3, e8} coo ttt
Theorem 3 A relation (up to isomorphism) determines

a GDM and vice versa. In short, DMN, up to isomor-

phism, is equivalent to GDM.

So ‘‘data’’ processing is equivalent to ‘‘granule’’

processing – Granular Computing. This introduced

the data mining aspect of GrC in RDB.

Key Applications
In this section, two key applications are presented.

Conceptually, the results are rather striking and coun-

terintuitive; see Theorem 4 and Theorem 5.

Feature Constructions

What is an attribute (feature)? Surprisingly, this is

a thought provoking question. In database theory, an

attribute (in a relation schema) is a property, a view, or

a reference (e.g., a coordinate). These are the concepts

in human level. Based on these concepts, database

experts represent entities into relations. Unfortunately,

such knowledge representations are not thorough,

namely, the semantics of attributes and attribute values

are not stored in computer systems. So, automated

data mining algorithms cannot utilize these semantics,

simply because they are not in the computer systems.

So the key question is:

1. How could the concept of features be described by

data?

The first two columns of the Table 1 illustrates the

idea: an attribute is a partition of the universe. Since

the universe is a finite set, so there are the following

surprise:

Theorem 4 The number of non-isomorphic features

that can be constructed from the given relation is finite;

see [15].

This is rather counterintuitive results. The reason is

largely due to the fact that most people view features

from data processing point of view, not data mining

point of view.

The following example may illuminate the critical

concepts: Consider a numerical relation of two col-

umns. It can be visualized as a finite set of points in

Euclidean plane. In this view, attributes are coordi-

nates. So by simply rotating the X–Y-coordinate system

(from 0o to 360o), infinitely many relations of Py can

be generated, where y is the angle rotated. Now we

will examine these Py and four points whose polar

coordinates are (1, 0o),(1, 30o),(1, 45o),(1, 90o); see

776D Deductive Data Mining using Granular Computing
Table 2. Note that the Xy-partition and Yy-partition do

not change most of the time, when y moves. It

only changes at y = 45o and its multiples, namely,

y = 135o, 315o. Note that though Xy-coordinate and

Yy-coordinate do change, but most of them are iso-

morphic to each other. Non-isomorphic ones occurs

only at y = 45o and its multiples.

The key point is:

1. As U is finite, both A-Partition and B-partition

columns only have finitely many possible distinct

choices.

High Frequency Patterns in RDB

GDM is a powerful data mining representation:

Observe that the frequency of the pair, (diaper, beer),

is equal to the cardinality of the intersection of two

granules, the diaper granule {e1, e2, e6, e7} and the beer

granule {e2, e6, e7}.
Deductive Data Mining using Granular Computing.

Table 2. The granular data model of a relation

Relation of
granules of P0 Original relation P0

U ! X0-
partition

Y0-
partition

X0-
coordinate

Y0-
coordinate

p1 ! {p1} {p1} 1 0

p2 ! {p2} {p2}
ffiffiffi
3

p
=2 1∕2

p3 ! {p3} {p3}
ffiffiffi
2

p
=2

ffiffiffi
2

p
=2

p4 ! {p4} {p4} 1∕2
ffiffiffi
3

p
=2

p5 ! {p5} {p5} 0 1

Relation of granules
of P30o

Original relation P30o

U ! X30o -
partition

Y 30o -
partition

X30o -
coordinate

Y 30o -
coordinate

p1 ! {p1} {p1}
ffiffiffi
3

p
=2 � 1 ∕ 2

p2 ! {p2} {p2} 1 0

p3 ! {p3} {p3}
ffiffiffi
3

p
=2 1 ∕ 2

p4 ! {p4} {p4}
ffiffiffi
2

p
=2

ffiffiffi
2

p
=2

p5 ! {p5} {p5} 1∕2
ffiffiffi
3

p
=2

Relation of granules
of P45o

Original relation P45o

U ! X45o -
partition

Y 45o -
partition

X45o -
coordinate

Y 45o -
coordinate

p1 ! {p1, p4} {p1}
ffiffiffi
2

p
=2 �

ffiffiffi
2

p
=2

p2 ! {p2} {p2}
ffiffiffi
3

p
=2 � 1 ∕ 2

p3 ! {p3} {p3} 1 0

p4 ! {p1, p4} {p4}
ffiffiffi
2

p
=2

ffiffiffi
2

p
=2
This illustration immediately gives us the following

generalization. Let D be the Boolean algebra generated

by granules. Then a Boolean algebraic expression in D
is a set theoretical expression in U, hence it has the

cardinality.

Definition 3 A Boolean algebraic expression in D is a

high frequency pattern (generalized frequent itemsets), if

the cardinality of the expression is greater than the given

threshold [14].

This idea can also be expressed by Pawlak’s decision

logic. A formula is a high frequency pattern, if its mean-

ing set has adequate cardinality. Here is a striking result:

Theorem 5 High frequency patterns can be enumerated

by solving a set of linear inequalities; see [17].

This theorem has not been useful in applications;

this is due to the high volume of the patterns. Theoreti-

cally, this theorem together with the facts in ‘‘Paradoxi-

cal Phenomena in Data Mining’’ led to the conclusion:

Semantic oriented patterns are needed.

Future Directions
There are three subsections. In the first subsection, the

goal statement and incremental approaches are out-

lined. In the second subsection, an example is given to

illustrate the inadequacy of current results. The last

subsection shows the feasibility of the outline in the

first subsection will work.

Relational Database Theory Over ‘‘Real World Sets’’

RDB and RST are based on classical set theory, in

which every set is discrete. In other words, there are

no interactions among elements of any set. However, a

‘‘real world set’’ contains interactions. For example in

human society, n persons may form a committee

(hence they have interactions). In GrC modeling,

Fifth GrC Model (U, b) have been proposed as a

model of ‘‘real world sets’’, where b is a collection of

n-ary relations (n is not a fixed integer) that represent

the interactions among elements in U [18]. Note that

the roles of each member in the committee may be all

distinct, so members are not exchangeable. So granules

are tuples, not necessarily subsets. Many authors, in-

cluding (Lin), have used subsets as granules; such

notions may not be general enough.

A relational database over ‘‘real world sets,’’ as in

the classical relational database, is equivalent to ‘‘real

world’’ GDM ððU ; bÞ;RÞ, where (U, b) is a model of

‘‘real world sets’’ and R is a family of ‘‘equivalence

Deductive Data Mining using Granular Computing D 777

D

relations’’ on the model of a ‘‘real world sets,’’ (U, b). In
this paper, only the idea of simplest case will be illu-

strated, namely, b is a single n-nary relation. By com-

bining b and R, the pair ððU ; bÞ;RÞ can be

transformed to the pair ðU ;SÞ, where each member

Si of S is a new relation that combined the n-nary

relation b and the ‘‘equivalence relations’’ Ri. Namely,

each attribute value in a relation b is replaced by an

equivalence class of Ri. The resulting new b is Si.

In this entry, only the case n = 2 will be discussed.

In other words, only the following type of GDM over

‘‘real world sets’’ ðU ;BÞ, called Binary GrC Data Model

(BGDM), will be considered, where B is a collection of

binary relations.

Paradoxical Phenomena in Data Mining

In this subsection, some paradoxical phenomena in data

mining will be discussed. First, two semantically very

different, but syntactically equivalent relations K and

K’ are presented; see Table 3. Namely, two isomorphic

relations K and K’. are considered (see ‘‘Isomorphism –

ACritical Concept’’, where K is a relation about human

beings and the other K’ is about hardware. The central

theme is their paradoxical phenomena of high fre-

quency patterns. Let the threshold be 3, namely, a

sub-tuple in Table 3 is regarded as a pattern (frequent

itemset or undirected association rule), if its number of

occurrences is greater then or equal to 3:

1. Relation K:(TWENTY, SJ) is an interesting rule; it

means the amount of business in San Jose is likely

to be 20 million.

10 Relation K’ (20, BRASS) is an isomorphic pattern.

However, this rule is not meaningful at all. Material,
Deductive Data Mining using Granular Computing. Table 3

Relation K

(S# Amount Birth month CITY) (P

(S1 TWENTY MAR SC) (P

(S2 TEN MAR SJ) (P

(S3 TEN FEB MV) (P

(S4 TEN FEB MV) (P

(S5 TWENTY MAR SJ) (P

(S6 TWENTY MAR SJ) (P

(S7 TWENTY APR SJ) (P

(S8 FIFTY NOV LA) (P

(S9 FIFTY NOV LA) (P
such as BRASS, has no specific weight. The schema

indicates that weight 20 is referred to PIN, not BRASS.

20 Relation K’:(SCREW, BRASS) is interesting rule; it

says screws are most likely made from BRASS.

2. Relation K: (MAR, SJ) is an isomorphic pattern; it

is not interesting, because MAR refers to the birth

month of a supplier, not to a city. The schema

indicates that totally unrelated two columns (attri-

butes) contain the pair.

30 Relation K’: (20, SCREW) is interesting rule; it says

screws are most likely weighing 20.

3. Relation K: (TWENTY, MARCH) is an isomorphic

pattern; TWENTY refers to an ability of a supplier,

not to birth month.

This analysis clearly indicates that the ‘‘real word’’ mean-

ings of the universe and attribute domains have to be

considered. In other words, a relational database theory

over ‘‘real word set’’ is needed; in GrC, the real world

model is Fifth GrC Model (relational GrC Model).

BGDM – Mining with Constraints

In this section, the solutions for the case n = 2 is

illustrated: The following ‘‘real word’’ BGDM struc-

tures are added to K and K’ ; K’ is unchanged. But,

binary relations BAmount and BCity are defined on the

two attribute domains of Relation K:

1. BAmount is the smallest reflexive and symmetric

binary relation that has the pair (TWENTY, TEN)

as its member (Recall that a binary relation is a

subset of the Cartesian Product of Domains.

2. BCity is the smallest reflexive and symmetric binary

relation, in which the three cites, SC, MV, SJ are
. Relational table K and K’

Relation K’

Weight Part name Material)

1 20 SCREW STEEL)

2 10 SCREW BRASS)

3 10 NAIL ALUMINUM)

4 10 NAIL ALUMINUM)

5 20 SCREW BRASS)

6 20 SCREW BRASS)

7 20 PIN BRASS)

8 300 HAMMER ALLOY)

9 300 HAMMER ALLOY)

778D Deductive Data Mining using Granular Computing
considered to be very near to each other and very

far away from LA.

Note that BAmount and BCity induce two binary relations

BA and BC on U (they form the S in previous discus-

sions). Again K’ has no changes. Relation K with two

additional binary relations and Relation K define the

following BGDM

1. BGDM of K is (U, RBirthMonth, BA, BC).

2. BGDM of K’ has no changes, namely, (U, RWeight,

RPartName, RMaterial),

where RAj
denotes the equivalence relation induced by

the attribute Aj. So from BGDM point of view, the two

relation K and K’ are not isomorphic. and hence the

paradoxical phenomena disappear. This is a formal

model for data mining with constraints.

Various GrC models provided various degree of

‘‘real world set’’ structures on attribute domains. GrC

may provide a right direction to ‘‘real world’’ deductive

data mining.

Cross-references
▶Access Control

▶Association Rules

▶Data Mining

▶Data Reduction

▶Decision Tree Classification

▶Decision Tree

▶ Frequent Itemsets and Association Rules

▶ Frequent Itemset Mining with Constraints

▶ Information Integration

▶Rough Set Theory, Granular Computing on

Partition

▶Rough Set Theory (RST)

▶ Search Engine Metrics

▶Topological Data Models

Recommended Reading
1. Dunham M. Data Mining Introduction and Advanced Topics.

Prentice Hall, Englewood Cliffs, NJ, 2003.

2. EugeneWong T.C. Chiang: canonical structure in attribute based

file organization. Commun. ACM 14(9):563–597, 1971.

3. Fayad U.M., Piatetsky-Sjapiro G., and Smyth P. From data

mining to knowledge discovery: an overview. In Knowledge

Discovery in Databases, Fayard, Piatetsky-Sjapiro, Smyth,

and Uthurusamy (eds.). AAAI/MIT Press, Cambridge, MA,

1996.

4. Ginsburg S. and Hull R. Ordered attribute domains in the

relational model. XP2Workshop on Relational Database Theory,

1981.
5. Ginsburg S. and Hull R. Order dependency in the relational

model. Theor. Comput. Sci., 26:149–195, 1983.

6. Gracia-Molina H., Ullman J., and Windin J. Database Systems –

The Complete Book. Prentice Hall, Englewood Cliffs, NJ, 2002.

7. Hsiao D.K., and Harary F. A formal system for information

retrieval from files. Commun. ACM 13(2), 1970; Corrigenda,

13(4), April 1970.

8. Lee T.T. Algebraic theory of relational databases. The Bell System

Tech. J., 62:(10)3159–3204, 1983.

9. Lin T.Y. Neighborhood systems and relational database. In Proc.

15th ACM Annual Conference on Computer Science, 1988,

p. 725.

10. Lin T.Y. (1989) Chinese wall security policy – an aggressive

model. In Proc. 5th Aerospace Computer Security Application

Conf., 1989, pp. 286–293.

11. Lin T.Y. Neighborhood systems and approximation in database

and knowledge base systems. In Proc. 4th Int. Symp. on

Methodologies of Intelligent Systems (Poster Session), 1989,

pp. 75–86.

12. Lin T.Y. (1992) Topological and fuzzy rough sets. In Decision

Support by Experience – Application of the Rough Sets Theory,

R. Slowinski (ed.). Kluwer, Dordecht, 1992, pp. 287–304.

13. Lin T.Y. Granular computing on binary relations: I. Da min-

ing and neighborhood systems. I, II: Rough set representati-

ons and belief functions. In Rough Sets in Knowledge

Discovery, A. Skoworn and L. Polkowski (eds.). Physica-Verlag,

Wurzburg, 1998, pp. 107–140.

14. Lin T.Y. Data mining andmachine oriented modeling: a granular

computing approach. Appl. Intell. 13(2)113–124, 2000.

15. Lin T.Y. Attribute (feature) completion – the theory of attributes

from data mining prospect. In Proc. 2002 IEEE Int. Conf. on

Data Mining, 2002:282–289.

16. Lin T.Y. Chinese wall security policy models: information flows

and confining Trojan horses. DBSec 2003:282–289.

17. Lin T.Y. Mining associations by linear inequalities. In Proc. 2004

IEEE Int. Conf. on Data Mining, 2004, pp. 154–161.

18. Lin T.Y. Granular computing: examples, intuitions and model-

ing, In Proc. IEEE Int. Conf. on Granular Computing, 2005, pp.

40–44.

19. Lin T.Y. A roadmap from rough set theory to granular comput-

ing, In Proc. 1st Int. Conf. Rough sets and Knowledge Theory,

2006, pp. 33–41.

20. Lin T.Y. and Chiang I.J. A simplicial complex, a hypergraph,

structure in the latent semantic space of document clustering.

Int. J. Approx. Reason. 40(1–2):55–80, 2005.

21. Lin T.Y. and Liau C.J. Granular computing and rough sets. Data

Min. Knowl. Discov. Handbook 2005:535–561, 2004.

22. Louie E. and Lin T.Y. Finding association rules using fast

bit computation: machine-oriented modeling. In Proc.

12th Int. Symp. Foundations of Inteligent Systems, 2000,

pp. 486–494.

23. Pawlak Z. Rough sets. Theoretical aspects of reasoning about

data. Kluwer, Dordecht, 1991.

24. Zadeh L.A. Fuzzy Sets Inf. Control 8(3):338–353, 1965.

25. Zadeh L.A. Some reflections on soft computing, granular

computing and their roles in the conception, design and utiliza-

tion of information/ intelligent systems. Soft Comput., 2:23–25,

1998.

Deduplication D 779
Deductive Data Mining, Model for
Automated Data Mining

▶Deductive Data Mining using Granular Computing
D

Deductive Databases

▶Datalog
Dedup

▶Deduplication
Deduplication

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Synonyms
Dedup; Single Instancing

Definition
The term Deduplication refers to the task of eliminat-

ing redundant data in data storage so as to reduce the

required capacity. The benefits of Deduplication in-

clude saving rack space and power consumption of

the data storage. Deduplication is often implemented

in archival storage systems such as content-addressable

storage (CAS) systems and virtual tape libraries (VTLs).

The term Deduplication is sometimes shortened to

Dedup.

Key Points
An address mapping table and a hash index are often

used for implementing Deduplication. The address

mapping table converts a logical address to a physical

location for each block, and the hash index converts a

hash value to a physical location for each block. When

a block X is to be written to the data storage, a hash

value is calculated from the content of X and then the

hash index is searched. If the same hash value is not

found in the hash index, a new block is allocated in

the storage space, X is written to the allocated block,

and then the mapping table and the hash index are
updated: a pair of the logical address and the physical

location of X is registered to the mapping table, and a

pair of the hash value and the physical location is also

registered to the hash index. In contrast, if the same

hash value is found, an identical block is supposed to

exist in the storage. A pair of the logical address of X

and the physical location retrieved from the hash index

is merely registered to the mapping table, such that the

block redundancy can be avoided. Note, above, that

the possibility of hash collision is ignored. In reality

there is the potential that the hash function produces

the same hash value for different block contents, and in

such rare cases, Deduplication would lose data in the

data storage. To mitigate the issue, some vendors in-

troduce hash algorithms which have a very low possi-

bility of hash collisions. However, this solution cannot

eliminate the potential of data loss completely. Others

have chosen to check block contents every time the

same hash value is found in the hash index. Such

careful block checking may degrade archiving through-

put, but can completely avoid data loss.

Deduplication techniques may generally operate at

different granularities and at different implementation

levels. For example, file systems may do Deduplication

at the file level, and disk array controllers may do

Deduplication at the sector level.

In enterprise systems, Deduplication is often imple-

mented at the controller of archiving storage systems

such as content-addressable storage (CAS) systems and

virtual tape libraries (VTLs). Intrinsically, enterprise

systems often store redundant data in the data storage.

Suppose that an email message which attaches a docu-

ment file is forwarded to many persons in the office.

A separatemailbox of each recipient thus stores the same

document file. Eliminating such duplication at archival

storage systems sounds a natural and effective idea.

Deduplication is recognized as a technique of energy

saving in data centers. Deduplication has the benefit of

reducing the number of disk drives that are required to

accommodate the explosively expanding data. Conse-

quent effects of saving electric power are expected

to help the improvement of system cost efficiency and

the reduction of environmental impact.

Cross-references
▶ Information Lifecycle Management

▶ Storage Management

▶ Storage Power Management

▶ Storage Virtualization

780D Deduplication in Data Cleaning
Recommended Reading
1. Diligent Technologies. Hyper Factor: a breakthrough in data

reduction technology. White Paper.

2. Patterson H. Dedupe-centric storage for general applications.

White Paper, Data Domain.

3. Quinlan S. and Dorward S. Venti: a new approach to archival

storage. In Proc. 1st USENIX Conf. on File and Storage Tech-

nologies, 2002, pp. 89–102.
Deduplication in Data Cleaning

RAGHAV KAUSHIK

Microsoft Research, Redmond, WA, USA

Synonyms
Reference reconciliation; Record matching; Merge-

purge; Clustering
Definition
Many times, the same logical real world entity has

multiple representations in a relation, due to data

entry errors, varying conventions, and a variety of

other reasons. For example, when Lisa purchases pro-

ducts from SuperMart twice, she might be entered as

two different customers, e.g., [Lisa Simpson, Seat-

tle, WA, USA, 98025] and [Simson Lisa, Seat-

tle, WA, United States, 98025]. Such duplicated

information can cause significant problems for the

users of the data. For example, it can lead to increased

direct mailing costs because several customers may be

sent multiple catalogs. Or, such duplicates could cause

incorrect results in analytic queries (say, the number of

SuperMart customers in Seattle), and lead to errone-

ous data mining models. Hence, a significant amount

of time and effort are spent on the task of detecting and

eliminating duplicates.

This problem of detecting and eliminating dupli-

cated data is referred to as deduplication. It is an im-

portant problem in the broader area of data cleaning.

Note that this is markedly more challenging than the

standard duplicate elimination problem for answering

select distinct queries in relational database sys-

tems, which consider two tuples to be duplicates if

they match exactly.

Historical Background
The problem of deduplication has been studied for a

long time under application-specific settings such as
library cataloging [17] and the Census Bureau [19].

Several techniques for measuring the similarity between

records for these domains have been developed. For

instance, the BigMatch technique [19] is used for dedu-

plication by the US Census Bureau.

With the advent of data warehouses, data cleaning

and deduplication in particular arose as a critical step

in the Extract-Transform-Load (ETL) cycle of loading

a data warehouse. Ensuring good quality data was

essential for the data analysis and data mining steps that

followed. Since themost commonfield of interest was the

customer address field used for applications such

as direct mailing, several tools such as Trillium [16]

emerged that performed deduplication of addresses.

For the past several years, the database research

community has addressed the deduplication problem

[1,4,10,11,13]. This has been largely in a domain-inde-

pendent context. The idea is to seek fundamental

operations that can be customized to any specific ap-

plication domain. This domain-independent approach

has had a commercial presence. For instance, Microsoft

SQL Server 2005 Integration Services supports data

cleaning operators called Fuzzy Lookup and Fuzzy

Grouping that respectively perform approximate

matching and deduplication.

A new area of application for data cleaning tech-

nology and deduplication in particular has been with

the data on the internet. There are web sites such as

Citeseer, Google Scholar, Live Search Academic, Froo-

gle and Live Products that integrate structured data

such as citations and product catalogs from various

sources of data and need to perform deduplication

prior to hosting the web service.

Foundations
Deduplication can be loosely thought of as a fuzzy or

approximate variant of the relational select dis-

tinct operation. It has as its input a table and a set

of columns; the output is a partition of this table where

each individual group denotes a set of records that

are approximately equal on the specified columns.

A large amount of information can be brought to

bear in order to perform deduplication, namely the

textual similarity between records, constraints that

are expected to hold over clean data such as functio-

nal dependencies and attribute correlations that are

known to exist. Techniques that use this wide variety

of information have been explored in prior work.

Figure 1 shows an example table containing citations

Deduplication in Data Cleaning. Figure 1. Example citation data and its deduplication.

Deduplication in Data Cleaning D 781

D

and a partition defined over all the textual columns,

illustrating the output of deduplication.

At the core of the deduplication operation is a

similarity function that measures the similarity or dis-

tance between a pair of records. It returns a similarity

score which is typically a value between 0 and 1, a

higher value indicating a larger similarity with 1 denot-

ing equality. Example similarity functions are edit

distance, jaccard similarity, Jaro-Winkler distance,

hamming similarity and cosine similarity [12]. Given

a table, the similarity function can be applied to all

pairs of records to obtain a weighted similarity graph

where the nodes are the tuples in the table and there is

a weighted edge connecting each pair of nodes, the

weight representing the similarity. Figure 2 shows the

similarity graph for the data in Fig. 1 (the numbers

inside the nodes correspond to the IDs). In practice, the

complete graph is rarely computed since this involves a

cross-product. Rather, only those edges whose weight is

above a given threshold are materialized. There are well-

known similarity join algorithms that perform this step

efficiently as the data scales.

The deduplication operation is defined as a parti-

tion of the nodes in the similarity graph. Intuitively,

one desires a partition where nodes that are connected

with larger edge weights have a greater likelihood of

being in the same group. Since similarity functions

often do not satisfy properties such as triangle inequal-

ity, there are multiple ways of partitioning the similar-

ity graph. Accordingly, several intuitive ways of

partitioning the graph have been proposed in the liter-

ature. Note that this is closely related to the problem of

clustering in data mining. Not surprisingly, a lot of the
clustering algorithms such as K-means clustering [15]

are also applicable for deduplication. While a compre-

hensive survey of these methods is beyond the scope

of this entry, some of the key graph partitioning

algorithms are reviewed.

In the Single-Linkage Clustering algorithm [14], at

any point there is a partitioning of the nodes. At each

step, the algorithm chooses a pair of groups to merge by

measuring the similarity between all pairs of groups and

picking the pair that has the highest similarity. The

similarity between two groups of nodes is defined as

the maximum similarity among all pairs of nodes, one

from each group. The algorithm can be terminated in

various ways, for example if there are a given number of

clusters or if there are no more pairs of groups to merge

which happens when all the connected components in

the similarity graph have been collapsed. Figure 2 also

shows the output of single-linkage when thresholds

the similarity graph and retains only edges whose sim-

ilarity is larger than or equal to 0.8. Notice that this

partition corresponds to the one shown in Fig. 1.

One of the limitations of the single-linkage ap-

proach is that nodes two groups may be merged even

if only one pair of nodes has a high similarity even if all

other pairs do not. In order to address this limitation,

an alternative is to decompose the graph into cliques.

This ensures that whenever two tuples are collapsed,

their similarity is large. Figure 3a shows the output of

the clique decomposition for the similarity graph in

Fig. 2, which only considers edges whose threshold is

greater than or equal to 0.8. Since the similarity between

nodes 2 and 3 is smaller than 0.8, the three nodes 1,2,3

cannot be collapsed as with single-linkage. Clique

Deduplication in Data Cleaning. Figure 2. Weighted similarity graph.

Deduplication in Data Cleaning. Figure 3. Example partitions.

782D Deduplication in Data Cleaning
partitioning can often be overly restrictive and leads to

many pairs that have a large similarity getting split into

multiple groups, as is the case with nodes 1 and 3 in Fig.

3a. Further, clique partitioning is known to be NP-

hard.

To address this limitation, a relaxed version of the

clique approach is proposed, namely star clustering [2].

A star is a pattern consisting of a single center node and

a set of satellite nodes such that there is an edge with

weight above a given threshold that connects the center

to each of the satellite nodes. The intuition behind this

choice is that for similarity functions that do satisfy the

triangle inequality, the similarity between any pair of

satellite nodes cannot be arbitrarily low. Aslam et al.

[2] propose a greedy algorithm to compute a star

partitioning of the input similarity graph. The graph

is thresholded in that only edges with weight above a

given threshold are retained. At any point in the algo-

rithm, one operates with a current partitioning of the

nodes. Nodes that are not assigned to any partition so

far are deemed uncovered. At each step, one picks the

uncovered node that such that the sum of the weights

of its uncovered neighbors is the largest. This node and

is uncovered neighbors define the next star and are
grouped together. This process is repeated until no

node is left uncovered. This algorithm has been empir-

ically proven to be effective on several real-world data-

sets and is deployed commercially in the Fuzzy

Groupby transform in Microsoft SQL Server 2005 In-

tegration Services. Figure 3b shows the output of the

star clustering algorithm over the data in Fig. 2.

One of the more recently proposed partitioning

algorithms is correlation clustering [3]. Here, each

edge in the similarity graph is viewed as a positive(+)

edge when the similarity is high, say above a fixed

threshold and as a negative(�) edge if it is not a

positive edge. Figure 3c shows the similarity graph in

which one views each edge with weight greater than or

equal to 0.8 as a positive edge. Negative edges are not

shown explicitly. The goal of correlation clustering is

then to find a partition of the nodes that has the least

disagreement with the pairwise edges. For a given

partition of the nodes, the disagreement cost is the

number of positive edges where the nodes at either

end are split into different groups plus the number of

negative edges where the nodes at either end are

grouped together. While finding the optimal partition

is NP-hard, efficient approximation algorithms have

Deduplication in Data Cleaning D 783

D

been proposed [3,7]. In fact, a simple one-pass rando-

mized algorithm similar in spirit to the star-clustering

algorithm can be shown to be a 3-approximation with

high probability. The algorithm maintains a current

partition of the nodes. At each step, it picks a random

uncovered node. This node with all its uncovered pos-

itive neighbors define the next group to be merged.

This process is repeated until no node is uncovered.

Figure 3c shows the output of the correlation cluster-

ing algorithm on the data in Fig. 2.

Multi-Attribute Deduplication

Thus far, the entire discussion has focused on the com-

putation of a single partition of the input table. However,

one might often wish to partition the same input table or

even multiple tables in a database in different ways. For

example, the data in Fig. 1 could be partitioned by

author, by title and by conference. These parti-

tions of the data do not necessarily have to agree. One

approach to computing these partitions is to separately

run the algorithms described above for each of the

chosen attributes. But clearly these attributes are not

independent of one another. For example, the fact that

the paper titles of papers 2 and 3 are grouped together

provides additional evidence that the respective con-

ference values must also be grouped together.

Ananthakrishna et al. [1] exploit this intuition in

a multi-table setting where there is a hierarchical

relationship among the different tables. For example,

consider an address database with separate tables for

nations, states, cities and street addresses. The idea is

to proceed bottom-up in this hierarchy. The idea

is to begin by deduplicating streets and then follow

it up with cities, states and finally nations. At each

step, the output of the previous step is used as contextual

information for the current step. For example, if two

states share many common cities, this provides further

evidence that the two states must be collapsed.

The same intuition has also been explored in a

more general setting where the data objects are

arranged in a graph [9].

Constraints

A large body of work has focused on incorporating

various constraints over the data into the deduplica-

tion process [3–5,8,18]. Five classes of work are identi-

fied in this overall space of incorporating constraints.

The first consists of constraints on individual tuples.

These are constraints that express the condition that
only some tuples (for instance ‘‘authors that have pub-

lished in SIGMOD’’) may participate in the deduplica-

tion. Such constraints are easily enforced by pushing

these filter conditions before deduplication is invoked.

The second consists of constraints that are in effect

parameters input to the deduplication algorithm. For

instance, the K-means clustering algorithm takes as

input the number K that indicates the number of

output groups desired. If the user of deduplication

has some expectation for the number of groups

returned after the data is partitioned, this may be

used as a constraint during the deduplication itself.

Another class of constraints consists of positive and

negative examples [5]. For example, for the data in

Fig. 1, one might know that records 1 and 2 are indeed

the same. Alternatively, one might also provide nega-

tive examples such as the fact that records 1 and 4 are

not identical. These constraints may be used either as

hard constraints to only consider partitions where the

constraints are met, or to adapt the similarity function

to accommodate the input examples.

The role of functional dependencies and inclusion

dependencies in deduplication has also been explored

[6]. The idea is to model the deduplication problem as

a renaming problem where one is allowed to rename

the attribute values of any record. At the end of the

renaming, the partitions are defined by exact match-

ing. Thus if the titles of records 1 and 2 in Fig. 1 are

renamed to be the same, this signifies that these two

titles have been collapsed. Every renaming has a cost

defined by a distance function. The cost of a renaming

is the distance between the new and old values. The

input also consists of a set of functional and inclusion

dependencies that are supposed to hold on the clean

data. For example, one might require that title

functionally determine conference for the data in

Fig. 1. The goal is to compute the lowest cost renaming

such that the output of the renaming satisfies all the

constraints. Since this problem is NP-hard to solve

optimally, efficient heuristics are proposed in [6].

Finally, the use of groupwise constraints for dedu-

plication has also been investigated [18,8]. Here every

group of tuples is expected to satisfy a given aggregate

constraint. Such constraints arise when multiple sour-

ces of data are integrated. For instance, suppose one is

integrating data from ACM and DBLP and that one

is performing deduplication on the set of authors in

the union of these sources. One constraint one might

wish to assert on any subset of authors being considered

784D Deep-Web Search
for a collapse is that the set of papers authored in ACM

and DBLP have a substantial overlap.

With an appropriate use of similarity function

thresholds, constraints, and correlation attributes a

user can guide the deduplication process to achieve

the desired result.
Key Applications
See applications of data cleaning.

Cross-references
▶Data Cleaning

▶Data Integration

▶ Inconsistent Databases

▶ Probabilistic Databases

▶Record Matching
Recommended Reading
1. Ananthakrishna R., Chaudhuri S., and Ganti V. Eliminating

fuzzy duplicates in data warehouses. In Proc. 28th Int. Conf.

on Very Large Data Bases, 2002.

2. Aslam J.A., Pelehov K., and Rus D. A practical clustering algo-

rithm for static and dynamic information organization. In Proc.

10th Annual ACM -SIAM Symp. on Discrete Algorithms, 1999.

3. Bansal N., Blum A., and Chawla S. Correlation clustering. Mach.

Learn., 56(1–3):89–113, 2002.

4. Bhattacharya I. and Getoor L. Collective entity resolution in

relational data. In Q. Bull. IEEE TC on Data Engineering, 2006.

5. Bilenko M., Basu S., and Mooney R.J. Integrating constraints and

metric learning in semi-supervised clustering. In Proc. 21st Int.

Conf. on Machine Learning, 2004.

6. Bohannon P., Fan W., Flaster M., and Rastogi R. A cost based

model and effective heuristic for repairing constraints by value

modification. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2005.

7. Charikar M., Guruswami V., and Wirth A. Clustering

with qualitative information. In J. Comp. and System Sciences,

2005.

8. Chaudhuri S., Sarma A., Ganti V., and Kaushik R. Leveraging

aggregate constraints for deduplication. In Proc. ACM SIGMOD

Int. Conf. on Management of Data. 2007.

9. Dong X., Halevy A.Y., and Madhavan J. Reference reconciliation

in complex information spaces. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2005.

10. Fuxman A., Fazli E., and Miller R.J. ConQuer: efficient manage-

ment of inconsistent databases. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2005.

11. Galhardas H., Florescu D., Shasha D., Simon E., and Saita C.

Declarative data cleaning: Language, model, and algorithms.

In Proc. 27th Int. Conf. on Very Large Data Bases, 2001.

12. Koudas N., Sarawagi S., and Srivastava D. Record linkage: simi-

larity measures and algorithms. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2006.
13. Sarawagi S. and Bhamidipaty A. Interactive deduplication using

active learning. In Proc. 8th ACM SIGKDD Int. Conf. on Knowl-

edge Discovery and Data Mining, 2002.

14. Single Linkage Clustering. http://en.wikipedia.org/wiki/Single_

linkage_clustering.

15. The K-Means Clustering Algorithm. http://mathworld.wolfram.

com/K-MeansClusteringAlgorithm.html.

16. Trillium Software. http://www.trilliumsoft.com/trilliumsoft.nsf.

17. Toney S. Cleanup and deduplication of an international biblio-

graphic database. Inform. Tech. Lib., 11(1), 1992.

18. Tung A.K.H., Ng R.T., Lakshmanan L.V.S., and Han J. Con-

straint-based clustering in large databases. In Proc. 8th Int.

Conf. on Database Theory, 2001.

19. Yancey W.E. Bigmatch: a program for extracting probable

matches from a large file for record linkage. Statistical Research

Report Series RRC2002/01, US Bureau of the Census, 2002.
Deep-Web Search

KEVIN C. CHANG

University of Illinois at Urbana-Champaign, Urbana,

IL, USA

Synonyms
Hidden-Web search

Definition
With the proliferation of dynamic Web sites, whose

contents are provided by online databases in response

to querying, deep-Web search aims at finding informa-

tion from this ‘‘hidden’’ or ‘‘deep’’ Web. Current search

engines crawl and index pages from statically linked

Web pages, or the ‘‘surface’’ Web. As such crawlers

cannot effectively query online databases, much of

the deepWeb is not generally covered by current search

engines, and thus remains invisible to users. A deep-

Web search system queries over online databases to

help users search these databases uniformly.

Historical Background
In the last few years, the Web has been rapidly ‘‘deep-

ened’’ by the massive networked databases on the Inter-

net. While the surface Web has linked billions of static

HTML pages, a far more significant amount of infor-

mation is hidden in the deep Web, behind the query

forms of searchable databases. A July 2000 survey [1]

claims that there were 500 billion hidden pages in 105

online sources, and an April 2004 study [3] reports 1.2

million query interfaces on the Web. Such information

cannot be accessed directly through static URL links;

Deep-Web Search D 785

D

they are only available as responses to dynamic queries

submitted through the query interface of a database.

Because current crawlers cannot effectively query data-

bases, such data is invisible to traditional search

engines, and thus remain largely hidden from users.

With the proliferation of such dynamic sources,

deep-Web search has become crucial for bridging

users to the vast contents behind query forms. Unlike

traditional search on the surface Web, searching over

the deep Web requires integrating structured data

sources at a large scale. While information integration

has been investigated actively for decades, since 2000,

large scale information integration has become the

key issue for enabling deep-Web search: How to tackle

the challenge of large scale? How to take advantage

of large scale?
Foundations

Search Architecture

With the dynamic, structured nature of deep-Web data

sources, depending on the application domains of

focus, a deep-Web search system can take two forms

of architecture:

1. Crawl-and-Index: A search system can crawl deep-

Web sources regularly to build a local index for

search, similar to what the current ‘‘surface-oriented’’

Web search engines do. This approach, by building a

local index, will give fast online search performance

but may risk returning stale data, if target sources

are updated frequently. For comprehensive and up-

to-date crawling from data sources offline to retrieve

their structured data objects, it will require special

‘‘structure-aware’’ crawling techniques that can deal

with query-driven sources.

2. Discovery-and-Forward: A search engine can auto-

matically discover databases from the Web, by
Deep-Web Search. Figure 1. Query interfaces examples.
crawling and indexing their query interfaces (and

not their data pages), and forward user queries to

the right sources for the actual search of data, upon

user querying. This approach, with its on-the-fly

querying, gives up-to-date results, while there may

be increased query latency online. As a key chal-

lenge, it needs to be able to interact with data

sources to execute user queries.

Source Modeling

How does one to find sources and model what they are

about? In building a deep-Web search system, one first

needs to determine the set of sources to integrate, either

by crawling offline or querying online. With the large

scale of the Web, where numerous sources are scattered

everywhere, it is necessary to crawl the Web to discover

and model their query interfaces. After crawling finds a

query interface, its query attributes and capabilitiesmust

be extracted. The objective of this form extraction, which

extracts the structure of query forms, is to provide a

‘‘model’’ of how a source is queried, so that the search

system can interact with the source.

Guarding data behind them, such query interfaces are

the ‘‘entrance’’ to the deep Web. These interfaces, usually

in HTML query forms, express query conditions for

accessing objects from databases behind. Each condi-

tion, in general, specifies an attribute, one or more

supported operators (or modifiers), and a domain

of allowed values. A condition is thus a three-tuple

[attribute; operators; domain], e.g., [author;

{"first name. . .", "start. . .", "exact name"};

text] in interface shown in Fig. 1a. Users can then

use the condition to formulate a specific constraint (e.g.,

[author = "tom clancy"] by selecting an operator

(e.g., "exact name") and filling in a value (e.g., "tom

clancy"). Formodeling and integratingWeb databases,

the very first step is to ‘‘understand’’ what a query inter-

face says – i.e., what query capabilities a source supports

786D Deep-Web Search
through its interface, in terms of specifiable conditions.

For instance, Amazon.com (Fig. 1a) supports a set of

five conditions (on author, title, . . ., publisher).

Such query conditions establish the schema model un-

derlying the Web query interface. These extracted

schema model, each of which representing the query

capabilities of a source, can then be used for determin-

ing whether a source is relevant to the desired applica-

tions or user queries and how to query the source.

There are two main approaches for form extrac-

tion: The first approach, grammar-based parsing [9],

observes that there are common visual patterns in the

layout of query forms, abstracts these patterns as gram-

mar production rules, and executes a ‘‘best-effort pars-

ing’’ to extract the form structure. That is, given the set of

grammar rules, it assembles the ‘best-possible’’ parse of

the query form. In this approach, it is shown that a small

set of (20–30) patterns can already capture common

layouts across different subject domains (books, airlines,

etc.) of query forms.

The second approach, classifier-based recognition,

applies learning-based or rule-based classifiers to

determine the role of each form element, to formulate

an overall interpretation of the form (e.g., [4]). It can

first identify, for each input element (e.g., a text input

box), a set of text elements as the candidates of its

labels. Based on the candidates for each input element,

the process then goes on to form a global assignment,

which will reconcile conflicts between the candidates.

The recognition of candidates can be based on features

such as the proximity between elements (e.g., what are

the closest text elements to this input element?) or the

content of text elements (e.g., can one classify this text

element as likely a label, e.g., ‘‘author’’?).

Schema Matching

Schema matching, for corresponding attributes at dif-

ferent sources, is crucial for translating queries (as will

be discussed later) to search these sources. It has been a

central problem in information integration, and thus

also a key challenge for deep-Web search. Because one

is dealing with querying Web sources, such matching

takes query forms (as extracted by source modeling) as

input schemas (where attributes are specified for que-

rying) and attempts to unify them by finding their

correspondence (or by matching them to a common

mediated schema). While a classic problem, however, it

takes a new form in this context, with both new chal-

lenges and new insights.
As the new challenge, for searching the deep Web,

in many application scenarios, such matching must

deal with large scale, to match numerous sources

(e.g., many airfare sources; book sources). Traditional

schema matching targets at finding attribute corre-

spondence between a pair of sources. Such pairwise

matching, by tackling two sources at a time, does not

directly handle a large number of data sources.

On the other hand, however, the new setting also

hints on new approaches that can exploit the scale. Given

there are many sources on the Web, instead of focusing

on each pair of sources, one can observe the schemas of

all the sources together, to take advantage of the ‘‘holis-

tic’’ information observable only across many sources.

Such holistic methods can, in particular, explore the

‘‘regularity’’ existing among Web sources. Note that –

since one is dealing with query forms for schema match-

ing – these query forms are ‘‘external’’ schemas, which

are designed for users to easily understand. Unlike ‘‘in-

ternal’’ schemas (say, for database tables), which may use

arbitrary variable names (e.g., ‘‘au_name’’), these exter-

nal schemas tend to use common terms (e.g., ‘‘author’’)

as the names of attributes. As conventions naturally

emerge, it has been observed [2] that certain regularities

exist, in particular, for what attributes are likely to ap-

pear and what names they may be labeled with.

There are several approaches that leverage this new

insight of holistic schema matching, to exploit the

regularities across multiple sources. First, the approach

of model discovery [2]: Schema matching may be con-

sidered as discovering a hidden generative model that

dictates the occurrences of attribute names (such as

when to use ‘‘author’’ versus ‘‘first name’’ and ‘‘last

name’’). Such a model effectively captures how attri-

bute terms would occur – some attributes are synonyms

that will not be used together (e.g., ‘‘author’’ and

‘‘name’’), and some attributes are usually grouped

with each other (e.g., ‘‘first name’’ and ‘‘last name’’).

With this conceptual view, the schema matching prob-

lem is transformed into finding an underlying model

that is statistically consistent with the input schemas

(to be matched). Various statistical methods can then

be used for this model discovery, such as hypothesis

testing or correlation mining.

Second, the approach of attribute clustering: In this

view, one considers finding synonym attributes as clus-

tering of those attributes into equivalent classes [8].

Given a set of query forms, where attributes are extracted

with a hierarchy that indicates how they are related to

Deep-Web Search D 787

D

each other in a form, this approach clusters attributes

from different sources into a hierarchy of clusters that

represent their synonym and grouping relationships. The

clustering process will exploit the hierarchical relation-

ship extracted from each individual query form as well as

the similarities between attribute labels.

Furthermore, another new insight can be observed

that, in the context of the deep Web, since one is

dealing with matching between query interfaces, it is

possible to actually try out querying, or probing, each

source to derive their attribute correspondence.

Exploiting the dynamic response of query forms has

been explored for schema matching [6].

Offline Crawling

In the Crawl-and-Index architecture, like a typical

search engine, data objects can be collected from vari-

ous sources, index them in a local database, and pro-

vide search from the database. To realize this search

framework, one needs to crawl data offline (before user

searches) from various sources. The objective of this

deep Web crawling is to collect data, as exhaustively as

possible, from each source to provide comprehensive

coverage. As such sources are accessed by querying

through their query forms, a deep Web ‘‘crawler’’ [5]

thus, for each source, repeatedly submitting queries

and collect data from query results. There are two

issues for realizing this crawling:

First, comprehensiveness: How to formulate queries

so that the results cover as much as possible the data at

the source? Each query is a way to fill in the query form

of the source. For those query attributes that have a

clearly defined set of input values (e.g., a selection-box

of two choices {paperback, hardcover} for book for-

mat), each value can be enumerated in querying. For

attributes with an open set of input values, such as a

text input that takes any keywords, the crawler will need

to be driven by certain ‘‘domain knowledge’’ that can

generate a set of keyword terms relevant to the applica-

tion, e.g., {computer, internet, web, databases, . . .}.

Second, efficiency: How to minimize the number of

queries to submit to a source for crawling its content?

Since different queries may retrieve overlapping

results, it is possible to choose different sets of queries

for crawling. For efficiency, one wants to minimize the

cost of querying, such as the number of queries sub-

mitted. The problem is thus, as each data object can be

reached by multiple queries, to select the smallest set of

queries that together reach all the data objects [7].
Online Querying

In the Discover-and-Forward architecture, user queries

are directed to search relevant sources, at the time of

querying. Unlike offline crawling, which aims at col-

lecting all the data from each source by any query

(subject to cost minimization), this online querying

must execute a specific user query at run time. Given a

query (in some unified front-end language), for each

source, one needs to translate the query for the source,

to fill in its query form. This query translation will

rewrite the original query into a new format that

satisfies two criteria: First, it is executable at the source:

The new query must contain only query conditions

and operators that the source can accept in its query

form. Second, it is a good approximation of the origi-

nal query: The translated query, if not ‘‘equivalent’’ to

the original query, should be as close to it as possible.

In terms of techniques, query translation (e.g., [10])

can be driven by either generic type hierarchies (e.g.,

how to transform commonly-used data types such as

date and number) or specialized domain knowledge.

Key Applications
� Enhancing General Web Search: Current search

engines have started to combine specialized search

responses for certain categories of queries (e.g.,

returning stock information for search of company

names).

� Enabling Vertical Web Search: Searching data on the

Web in specific domains, such as travel or real estate.
Cross-references
▶ Information Integration

▶Query Translation

▶ Schema Matching
Recommended Reading
1. BrightPlanet.com. The Deep Web: Surfacing Hidden Value. http://

www.brightplanet.com/resources/details/deepweb.html, 2000.

2. He B. and Chang K.C.C. Statistical Schema Matching across

Web Query Interfaces. In Proc. ACM SIGMOD Int. Conf. on

Management of Data,, 2003, pp. 217–228.

3. He H., Meng W., Lu Y., Yu C.T., and Wu Z. Towards deeper

understanding of the search interfaces of the deep Web. In Proc.

16th Int. World Wide Web Conference, 2007, pp. 133–155.

4. He B., Patel M., Zhang Z., and Chang K.C.C. Accessing the deep

Web: a survey. Commun ACM, 50(5): 94–101, 2007.

5. Raghavan S. and Garcia-Molina H. Crawling the hidden Web.

In Proc. 27th Int. Conf. on Very Large Data Bases, 2001,

pp. 129–138.

788D Degrees of Consistency
6. Wang J., Wen J.R., Lochovsky F.H., and Ma W.Y. Instance-based

schema matching for web databases by domain-specific query

probing. In Proc. 30th Int. Conf. on Very Large Data Bases, 2004,

pp. 408–419.

7. Wu P., Wen J.R., Liu H., and Ma W.Y. Query selection

techniques for efficient crawling of structured Web sources.

In Proc. 22nd Int. Conf. on Data Engineering, 2006, p. 47.

8. Wu W., Yu C.T., Doan A., and Meng W. An interactive

clustering-based approach to integrating sourc query interfaces

on the deep Web. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 2004, pp. 95–106.

9. Zhang Z., He B., and Chang K.C.C. Understanding Web query

interfaces: best-effort parsing with hidden syntax. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2004, pp. 117–

118.

10. Zhang Z., He B., and Chang K.C.C. Light-weight domain-based

form assistant: querying web databases on the fly. In Proc. 31st

Int. Conf. on Very Large Data Bases, 2005, pp. 97–108.
Degrees of Consistency

▶ SQL Isolation Levels
DEMs

▶Digital Elevation Models
Degrees of Cosistency

▶ SQL Isolation Levels
Dendrogram

▶Visualizing Clustering Results
Dense Index

MIRELLA M. MORO
1, VASSILIS J. TSOTRAS

2

1Federal University of Rio Grande do Sul, Porte Alegre,

Brazil
2University of California-Riverside, Riverside, CA, USA

Definition
Consider a tree-based index on some numeric attribute

A of a relation R. This index is called dense if every
search-key value of attribute A in relation R also

appears in the index. Hence for every search-key

value x in A, there is an index record of the form

<x, pointer>, where pointer points to the first record

(if many such exist) in relation R that has R.A = x.
Key Points
Tree-based indices are built on numeric attributes

and maintain an order among the indexed search-key

values. Hence, they provide efficient access to the

records of a relation by attribute value. Consider for

example an index built on attribute A of relation R.

The leaf pages of the index contain index-records of

the form <search-key, pointer>, where search-key cor-

responds to a value from the indexed attribute A and

pointer points to the respective record in the indexed

relation R with that attribute value. If all distinct values

that appear in R.A also appear in index records, this

index is dense, otherwise it is called sparse. If there are

many records in relation R that have R.A = x, then the

index record <x, pointer> points to the first of these

records. If relation R is ordered on attribute A, the rest

of these records are immediately following after the

first accessed record (in the same page of the relation

file). If relation R is not ordered according to attribute

A, the remaining records can be accessed from a list of

pointers after this first record.

Tree-indices are further categorized by whether

their search-key ordering is the same with the relation

file’s physical order (if any). Note that a relation file

may or may not be ordered. For example, if a relation R

is ordered according to the values on the A attribute,

the values in the other attributes will not be in order. If

the search-key of a tree-based index is the same as the

ordering attribute of a (ordered) file then the index is

called primary. An index built on any non-ordering

attribute of a file is called secondary. If an index is

secondary then it should also be dense. Since the

index is secondary, the relation is not ordered accord-

ing to the search-key value of this index. As a result,

finding a given record in the file by this index requires

that all search-key values of the indexed attribute are

present in the index, i.e., it is a dense index.

A dense index is typically larger than a sparse index

(since all search-key values are indexed) and thus

requires more space. It also needs to be updated for

every relation update that involves the attribute value

being indexed.

Dense Pixel Displays D 789

D

Cross-references
▶Access Methods

▶Bþ-Tree

▶ Indexing

▶ Index Sequential Access Method (ISAM)

Recommended Reading
1. Elmasri R. and Navathe S.B. Fundamentals of Database Systems,

5th edn. Addisson-Wesley, Boston, MA, 2007.

2. Manolopoulos Y., Theodoridis Y., and Tsotras V.J. Advanced

Database Indexing. Kluwer, Dordecht, 1999.

3. Silberschatz A., Korth H.F., and Sudarshan S. Database System

Concepts, 5th edn. McGraw-Hill, New York, 2006.
Dense Pixel Displays

DANIEL A. KEIM, PETER BAK, MATTHIAS SCHÄFER

University of Konstanz, Konstanz, Germany

Synonyms
Data visualization; Information displays; Pixel orient-

ed visualization techniques; Visual data exploration;

Information visualization; Visualizing large data sets;

Visualizing multidimensional and multivariate data;

Visual data mining
Definition
Dense Pixel Displays are a visual data exploration

technique. Data exploration aims at analyzing large

amounts of multidimensional data for detecting

patterns and extracting hidden information. Human

involvement is indispensable to carry out such a

task, since human’s powerful perceptual abilities and

domain knowledge are essential for defining interest-

ing patterns and interpreting findings. Dense pixel

displays support this task by an adequate visual repre-

sentation of as much information as possible while

avoiding aggregation of data-values. Data is shown

using every pixel of the display for representing one

data point. Attributes of the data are mapped in

separate sub-windows of the display, leaving one attri-

bute for one sub-window. The data point’s value for

an attribute is mapped to the pixel’s color. The ar-

rangement of pixels in sub-windows is determined

by the mapping of the data-sequence into a two

dimensional space preserving the pixel’s neighborhood

relations.
A number of different pixel-oriented visualizat-

ion techniques have been proposed in recent years and

shown to be useful for visually exploring data in many

applications. These techniques differ mainly in their

approach to arrange individual pixels in relation to

each other, and in their choice of shaping the sub-

windows to make maximal use of space.

Historical Background
Scientific, engineering and environmental databases

containing automatically collected data have grown

to an overwhelming size, which need to be analyzed

and explored. The desire to augment human’s percep-

tual abilities and understand multidimensional data

inspired many scientists to develop visualization

methodologies. The progress in information technolo-

gy offers more and more options to visualize data,

in particular multidimensional data. Detecting infor-

mation in low dimensions (1D, 2D, 3D) by taking

advantage of human’s powerful perceptual abilities is

crucial to understand the higher dimensional data set.

This assumption is fundamental in all visualization

techniques.

One important thing in analyzing and exploring large

amounts of data is to visualize the data in a way that

supports the human. Visual representations of the data

are especially useful for supporting a quick analysis of

large amounts ofmulti-modal information, providing the

possibility of focusing on minor effects while ignoring

known regular features of the data. Visualization of data

which have some inherent two- or three-dimensional

semantics has been done even before computers were

used to create visualizations. In the well-known books

[13,14], Edward R. Tufte provides many examples of

visualization techniques that have been used for many

years. Since computers are used to create visualizations,

many novel visualization techniques have been developed

by researchers working in the graphics field. Visualization

of large amounts of arbitrary multidimensional data,

however, is a fairly new research area. Early approaches

are scatterplot matrices and coplots [5], Chernoff faces

[4], parallel coordinates [6], and others [1,3]. Researchers

in the graphics/visualization area are extending these

techniques to be useful for large data sets, as well as

developing new techniques and testing them in different

application domains. Newer approaches for dense pixel

displays are developed for several applications for visua-

lizing data, i.e., geospatial data [10], financial data [9,15],

text [11], and neuroscience data [12].

790D Dense Pixel Displays
Foundations

Dense Pixel Displays as Optimization Problem – Pixel

Arrangement

One of the first questions in creating a dense pixel display

is how the pixels are arranged within each of the sub-

windows. Therefore, only a good arrangement will allow

a discovery of clusters and correlations among the attri-

butes. It is reasonable to distinguish between data sets

where a natural ordering of the items is given, such as in

time-series data or a production-line, and between data

sets without inherent ordering, such as results of search-

queries. In all cases, the arrangement has to consider the

preservation of the distance of the one-dimensional or-

dering in the two-dimensional arrangement.

Mappings of ordered one-dimensional data sets

to two dimensions have been attracted the attention

of mathematicians already long before computer came

into existence.

So called space-filling curves attempt to solve this

problem. The Peano-Hilbert curve provides one possi-

ble solution. However, with this method it is often

difficult to follow the flow of items. The Morton

curve is an alternative proposed to overcome this

problem, which has a simpler regularity.

The general idea of Recursive Pattern, as first pro-

posed in [8] is based on the idea of a line and column-

wise arrangement of the pixels. If simple left-right or

top-down arrangements are used on pixel level, the

resulting visualizations do not provide useful results,

since it creates random neighborhoods that bias user’s

perception of correlations and clusters.
Dense Pixel Displays. Figure 1. Left: Schematic representati

Recursive arrangement of financial data (September 1987–Fe

below left: DOW JONES, below right GOLD) (adopted from [8
One possibility to improve the visualizations is to

organize the pixels in small groups and arrange the

groups to form some global pattern, as suggested by

recursive pattern visualizations. The basic idea of recur-

sive pattern visualization technique is based on a

scheme which allows lower-level patterns to be used as

building blocks for higher-level patterns. In the simplest

case the patterns for all recursion levels are identical. In

many cases, however, the data has some inherent struc-

ture which should be reflected by the pattern of the

visualization. In order to create an appropriate visuali-

zation of patterns in a recursive manner, the algorithm

must allow users to provide parameters for defining the

structure for the low and high recursion levels.

Therefore, one major difference between the ‘‘re-

cursive pattern’’ technique and other visualization

techniques is that it is based on a generic algorithm

allowing the users to control the arrangement of pixels.

By specifying the height and width for each of the

recursion levels, users may adapt the generated visua-

lizations to their specific needs. This allows the ‘‘recur-

sive pattern’’ technique to be used for a wide range of

tasks and applications.

A schematic example for a highly structured ar-

rangement is provided in the Fig. 1 The visualization

shows the financial data of four assets for eight years.

The subspaces are subdivided into different time

intervals. A sub-window represent the whole time

period, which is further divided into single years,

months, weeks and days. Since days represent the low-

est recursion level, they correspond to one single pixel

(as schematically shown in Fig. 1 Left). This structure
on of a highly structured arrangement. Right:

bruary 1995: above left IBM, above right DOLLAR,

]).

Dense Pixel Displays D 791

D

is preserved in the visual representation of the dense

pixel display allowing fast extraction detailed informa-

tion (Fig. 1 Right). One of the tasks that would benefit

from such a representation is detecting a strong corre-

lation for example between IBM stock-prices and the

dollar’s exchange rate in the first 2.5 years.

Dense Pixel Displays as Optimization Problem – Shape

of Sub-windows

The second important question concerns how the shapes

inside the sub-windows should be designed. Sub-

windows are used to represent single attributes of the

dataset. In the optimization functions used in the past,

the distance between the pixel-attributes belonging to

the same data object was not taken into account. This,

however, is necessary in order to find appropriate shapes

for the sub-windows. In many cases a rectangular parti-

tioning of the display was suggested. The rectangular

shape of the sub-windows allows a good screen usage,

but at the same time it leads to a dispersal of pixels

belonging to one data object over the whole screen,

especially for data sets with many attributes. Because

the sub-windows for the attributes are rather far apart,

it might be difficult to detect correlating patterns.

An idea for an alternative shape of the sub-

windows is the circle segments technique. The technique

tries to minimize the average distance between the pixels

that belong to the dimensions of one data object.

The fundamental idea of the ‘‘circle segments’’ visu-

alization technique is to display the data dimensions as

segments of a circle (as shown in Fig. 2). If the data
Dense Pixel Displays. Figure 2. Left: Circle segment techniq

years of daily data of the FAZ Index (January 1974–April 1995
consists of k attribute-dimensions, the circle is parti-

tioned into k segments, each representing one dimen-

sion. The data items within one segment are arranged

in a back and forth manner orthogonal to the line that

halves the two border lines of the segment (cf. Fig. 2).

The drawing starts in the centre of the circle and draws

the pixels from one border line of the segment to the

other. Whenever the drawing hits one of the border

lines, it is moved towards the outside of the circle by

changing the direction. When the segment is filled out

for one attribute, the next segment will start, until all

dimensions are visualized. A schematic representation

is shown in Fig. 2 (left). The results for such a repre-

sentation is shown for 50 stock prices from the Frank-

furt stock index, representing about 265,000 data

values (Fig. 2 Right). The main advantage of this

technique is that the overall representation of the

whole data set is better perceivable – including poten-

tial dependencies, analogies, and correlations between

the dimensions.

Another arrangement of sub-windows is the arrange-

ment as bar chart, and the resulting technique is called

Pixelbarcharts (see Fig. 4). The basic idea of Pixelbarch-

arts is to use the intuitive and widely used presentation

paradigm of bar charts, but also use the available

screen space to present more detailed information.

By coloring the pixels within the bars according to

the values of the data records, very large amounts of

data can be presented to the user. To make the display

more meaningful, two parameters of the data records

are used to impose an ordering on the pixels in the
ue schema for eight attribute-dimensions. Right: Twenty

) (adopted from [1]).

Dense Pixel Displays. Figure 3. The upper image shows 51 funds of the same financial institution and their performance

over time compared to the market. Periods of time where a fund performed well compared to other funds are colored in

green, and where it performed worse than others in red. The lower image shows 65 funds of a different financial

institution. A comparative visual analysis reveals that the funds in the second image are more continuous and do not have

as many red areas.

792D Dense Pixel Displays
x- and y-directions. Pixel bar charts can be seen as a

generalization of bar charts. They combine the general

idea of xy-plots and bar charts to allow an overlap-free,

non-aggregated display of multi-attribute data.
Dense Pixel Displays as Optimization Problem –

Ordering of Dimensions

The final question to consider is the ordering of attri-

butes. This problem is actually not just a problem of

pixel-oriented techniques, but a more general problem

which arises for a number of other techniques such as

the parallel coordinates technique. The idea is that the

data attributes have to be positioned in some one- or

two-dimensional ordering on the screen, and this is

usually done more or less by chance – namely in the

order in which the dimensions happen to appear in
the data set. The ordering of dimensions, however,

has a major impact on the expressiveness of the visual-

ization. One solution for finding an effective order of

dimensions is to arrange the dimensions according to

their similarity. For this purpose, the technique has

to define measures which determine the similarity of

two dimensions. Data mining algorithms, such as re-

gression models or clustering tools, but also statistical

approaches, such as inter-correlation matrixes, can

provide solutions for such a problem.
Key Applications
Dense Pixel Displays have a wide range of applications.

They are especially important for very large high dimen-

sional data sets, which occur in a number of applications.

Example applications include financial data analysis like

Dense Pixel Displays. Figure 4. Illustrates an example of a multi-pixel bar chart of 405,000 multi-attribute web sales

transactions. The dividing attribute is product type; the ordering attributes are number of visits and dollar amount.

The colors in the different bar charts represent the attributes dollar amount, number of visits, and quantity

(adopted from[7]).

Dense Pixel Displays D 793

D

the ‘‘Growth Matrix’’ [9], business data analysis

like ‘‘Pixelbarcharts’’ [7], text analysis like ‘‘literature

fingerprinting’’ [11] and geospatial analysis like ‘‘Pixel-

Maps’’ [10]. The following sections show a few examples

of the techniques.

Growth Matrix

The ‘‘Growth Matrix’’ [9] is a pixel-based visualization

technique that displays the return rates of assets for

all possible combinations of time intervals between

point of purchase and point of sale in one single

view. It creates unique triangular fingerprints of the

financial performance of assets, and allows a visual

comparative analysis of large amounts of assets at the

same time. In addition to that, it is also possible to

compare the ranking of assets compared to all assets on

the market for all time intervals, which allows a com-

plete overview on the real performance of an invest-

ment. Figure 3 shows an example of this visualization

technique.

Pixelbarcharts

Pixelbarcharts retain the intuitiveness of traditional

bar charts while allowing very large data sets to be

visualized in an effective way. For an effective pixel

placement, it solves the complex optimization prob-

lem. In Fig. 4 the following facts can be observed:
� Product type 10 and product type 7 have the top

dollar amount customers (dark colors of bar 7 and

10 in Fig. 4a).

� The dollar amount spent and the number of visits

are clearly correlated, especially for product type 4

(linear increase of dark colors at the top of bar 4 in

Fig. 4b).

� Product types 4 and 11 have the highest

quantities sold (dark colors of bar 4 and 11 in

Fig. 4 c).

� By clicking on a specific pixel (A), one may find out

that customer A visited 25 times, bought 500 items,

and spent $345,000 on product type 5.
Literature Fingerprinting

In computer-based literary analysis different types of

features are used to characterize a text. Usually, only a

single feature value or vector is calculated for the whole

text. ‘‘Literature fingerprinting’’ combines automatic

literature analysis methods with an effective visualiza-

tion technique to analyze the behavior of the feature

values across the text. For an interactive visual analysis,

a sequence of feature values per text is calculated and

presented to the user as a characteristic fingerprint.

The feature values may be calculated on different hier-

archy levels, allowing the analysis to be done on

Dense Pixel Displays. Figure 5. Analysis of the discrimination power of several text measures for authorship attribution.

Each pixel represents a text block and the pixels are grouped into books. Color is mapped to the feature value, e.g., in c) to

the average sentence length. If a measure is able to discriminate between the two authors, the books in the first line (that

have been written by J. London) are visually set apart from the remaining books (written by M. Twain). This is true for

example for the measure that was used in c) and d) but not for the measure that was used to generate f). Outliers (such as

the book Huckleberry Finn in c)) stick out immediately. The technique allows a detailed analysis of the development of

the values across the text (adopted from [11]).

794D Dense Pixel Displays
different resolution levels. Figure 5 gives an impression

of the technique.

Cross-references
▶Data Visualization

▶Text Visualization

▶Visual Analytics
▶Visual Data Mining

▶Visualizing Categorical Data

▶Visualizing Clustering Results

▶Visualizing Hierarchical Data

▶Visualizing Network Data

▶Visualizing Quantitative Data

Density-based Clustering D 795

D

Recommended Reading
1. Anderson E. A semigraphical method for the analysis of complex

problems. In Proc. Nat. Acad. Sci. USA, 13:923–927, 1957.

2. Ankerst M., Keim D.A., and Kriegel H.-P. Circle segments: a

technique for visually exploring large multidimensional data

sets. In Proc. IEEE Symp. on Visualization, 1996.

3. Brissom D. Hypergraphics: Visualizing Complex Relationships

in Art, Science and Technology (AAAS Selected Symposium;

24). Westview Press, 1979.

4. Chernoff H. The use of faces to represent points in k-dimensional

space graphically. J. Am. Stat. Assoc., 68(342):361–368, 1973.

5. ClevelandW.S. Visualizing Data. Hobart Press, Summit, NJ, 1993.

6. Inselberg A. N-Dimensional Graphics Part I: Lines and Hyper-

planes, IBM LA Science Center Report, # G320–2711, 1981.

7. Keim D.A., Hao M.C., Dayal U., and Hsu M. Pixel bar charts: a

visualization technique for very large multi-attribute data sets.

Inf. Visualization, 1(1):20–34, 2001.

8. Keim D.A., Kriegel H.-P., and Ankerst M. Recursive pattern: a

technique for visualizing very large amounts of data. In Proc.

IEEE Symp. on Visualization, 1995, pp. 279–286.

9. Keim D.A., Nietzschmann T., Schelwies N., Schneidewind J.,

Schreck T. and Zeigler H. A Spectral Visualization System for

Analyzing Financial Time Series Data. In Euro Vis 2006: Euro-

graphics/IEEE-VGTC Symposium on Visualization, 2006, pp.

195–202.

10. Keim D.A., North S.C., Panse C., and Sips M. PixelMaps: a new

visual data mining approach for analyzing large spatial data sets.

In Proc. 2003 IEEE Int. Conf. on DataMining, 2003, pp. 565–568.

11. Keim D.A. and Oelke D. Literature fingerprinting: a new method

for visual literary analysis. In Proc. IEEE Symp. on Visual Ana-

lytics and Technology, 2007.

12. Langton J.T., Prinz A.A., Wittenberg D.K., and Hickey T.J. Lever-

aging layout with dimensional stacking and pixelization to

facilitate feature discovery and directed queries. In Proc. Visual

Information Expert Workshop, 2006.

13. Tufte E.R. The Visual Display of Quantitative Information. Gra-

phics Press, Cheshire, CT, 1983.

14. Tufte E.R. Envisioning Information. Graphics Press, Cheshire,

CT, 1990.

15. Ziegler H., Nietzschmann T., Keim D.A. Relevance driven visuali-

zation of financial performance measures. In Proc. Eurographics/

IEEE-VGTC Symposium on Visualization, 2007, pp. 19–26.
Density-based Clustering

MARTIN ESTER

Simon Fraser University, Burnaby, BC, Canada

Definition
Density-based clusters are dense areas in the data

space separated from each other by sparser areas. Fur-

thermore, the density within the areas of noise is lower

than the density in any of the clusters. Formalizing this

intuition, for each core point the neighborhood of
radius Eps has to contain at least MinPts points, i.e.,

the density in the neighborhood has to exceed some

threshold. A point q is directly-density-reachable from a

core point p if q is within the Eps-neighborhood of p,

and density-reachability is given by the transitive clo-

sure of direct density-reachability. Two points p and q

are called density-connected if there is a third point o

from which both p and q are density-reachable. A clus-

ter is then a set of density-connected points which

is maximal with respect to density-reachability. Noise

is defined as the set of points in the database not

belonging to any of its clusters. The task of density-

based clustering is to find all clusters with respect to

parameters Eps and MinPts in a given database.

Historical Background
In the 1990s, increasingly large spatial databases

became available in many applications. This drove

not only the development of techniques for efficiently

managing and querying these databases, it also pro-

vided great potential for data mining. The application

of clustering algorithms to spatial databases raised the

following requirements:

1. Discovery of clusters with arbitrary shape, because

the shape of clusters in spatial databases may be

spherical, drawn-out, linear, elongated etc.

2. Good efficiency on large databases, i.e., on data-

bases of significantly more than just a few thousand

objects.

3. Minimal requirements of domain knowledge to

determine the input parameters, because appropri-

ate values are often not known in advance when

dealing with large databases.

Due to the local nature of density-based clusters, this

new clustering paradigm promised to address all of

these requirements. As required, dense connected

areas in the data space can have arbitrary shape.

Given a spatial index structure that supports region

queries, density-based clusters can be efficiently com-

puted by performing at most one region query per

database object. Different from clustering algorithms

that optimize a certain objective function, the number

of clusters does not need to be specified by the user.

Foundations
The paradigmof density-based clusteringwas introduced

in [4]. Let D be a database of points. The definition of

density-based clusters assumes a distance function dist

796D Density-based Clustering
(p, q) for pairs of points. The Eps-neighborhood of a

point p, denoted by NEps(p), is defined by NEps

(p) = {q 2 D | dist(p, q)� Eps}. A point p is directly

density-reachable from a point q w.r.t. Eps, MinPts if

(1) p 2 NEps(q) and (2) |NEps(q)|
MinPts. A point

p is density-reachable from a point q w.r.t. Eps and

MinPts if there is a chain of points p1,...,pn, p1 = q,

pn = p such that pi + 1 is directly density-reachable

from pi. Density-reachability is a canonical extension

of direct density-reachability. Since this relation is not

transitive, another relation is introduced. A point

p is density-connected to a point q w.r.t. Eps andMinPts

if there is a point o such that both, p and q are density-

reachable from o w.r.t. Eps and MinPts. Figure 1 illus-

trates these concepts.

Intuitively, a density-based cluster is a maximal set

of density-connected points. Formally, a cluster C wrt.

Eps and MinPts is a non-empty subset of D satisfying

the following two conditions:

1. 8p; q : if p 2 C and q is density-reachable from

p w.r.t. Eps and MinPts, then q 2 C. (maximality)

2. 8p; q 2 C : p is density-connected to q w.r.t. Eps

and MinPts. (connectivity)

Let C1, ..., Ck be the clusters of the database D w.r.t. Eps

and MinPts. The noise is defined as the set of points in
Density-based Clustering. Figure 1. Density-reachability an

Density-based Clustering. Figure 2. Reachability-plot for da

and shapes.
D not belonging to any cluster Ci, i.e.,

noise ¼ fp 2 Dj 8i : p =2Cig.
Density-based clustering distinguishes three differ-

ent types of points (see Fig. 2):

1. Core points, i.e., points with a dense neighborhood

(|NEps(p)|
MinPts)

2. Border points, i.e., points that belong to a cluster,

but whose neighborhood is not dense, and

3. Noise points, i.e., points which do not belong to any

cluster

In the right part of Fig. 1, e.g., o is a core point, p and q

are border points, and n is a noise point.

Density-based clusters have two important proper-

ties that allow their efficient computation. Let p be a

core point in D. Then the set O = {o | o2 D and o is

density-reachable from p wrt. Eps and MinPts} is a

cluster with regard to Eps and MinPts. Let C be a

cluster in D. Each point in C is density-reachable

from any of the core points of C and, therefore,

a cluster C contains exactly the points which are

density-reachable from an arbitrary core point of C.

Thus, a cluster C with regard to Eps and MinPts is

uniquely determined by any of its core points. This is

the foundation of the DBSCAN algorithm for density-

based clustering [5].
d connectivity.

ta set with hierarchical clusters of different sizes, densities

Density-based Clustering D 797

D

DBSCAN

To find a cluster, DBSCAN starts with an arbitrary data-

base point p and retrieves all points density-reachable

from p wrt. Eps andMinPts, performing region queries

first for p and if necessary for p’s direct and indirect

neighbors. If p is a core point, this procedure yields a

cluster wrt. Eps andMinPts. If p is not a core point, no

points are density-reachable from p. DBSCAN assigns

p to the noise and applies the same procedure to the

next database point. If p is actually a border point of

some cluster C, it will later be reached when collecting

all the points density-reachable from some core point

of C and will then be (re-)assigned to C. The algorithm

terminates when all points have been assigned to a

cluster or to the noise.

In theworst case,DBSCANperforms one region query

(retrieving the Eps-neighborhood) per database point.

Assuming efficient index support for region queries, the

runtime complexity of DBSCAN is Oðn log nÞ, where n
denotes the number of database points. In the absence

of efficient index structures, e.g., for high-dimensional

databases, the runtime complexity is Oðn2Þ. Ester et al.
[4] show that a density-based clustering can be updated

incrementally without having to re-run the DBSCAN

algorithm on the updated database. It examines which

part of an existing clustering is affected by an update of

the database and presents algorithms for incremental

updates of a clustering after insertions and deletions.

Due to the local nature of density-based clusters, the

portion of affected database objects tends to be small

which makes the incremental algorithm very efficient.

GDBSCAN

The basic idea of density-based clusters can be gene-

ralized in several important ways [8]. First, any notion

of a neighborhood can be used instead of a distance-

based Eps-neighborhood as long as the definition of the

neighborhood is based on a predicate NPred(p, q)

which is symmetric and reflexive. The neighborhood

N of p is then defined as the set of all points q satis-

fying NPred(p, q). Second, instead of simply counting

the elements in a neighborhood, a more general predi-

cate MinWeight(N) can be used to determine whether

the neighborhood N is ‘‘dense,’’ ifMinWeight is mono-

tone in N, i.e., if MinWeight is satisfied for all super-

sets of sets that satisfy N. Finally, not only point-like

objects but also spatially extended objects such as

polygons can be clustered. When clustering polygons,

for example, the following predicates are more natural

than the Eps-neighborhood and the MinPts cardinality
constraint: ‘‘NPred (X, Y) iff intersect (X, Y)’’ and

‘‘MinWeight(N) iff
P
P2N

populationðPÞ
 MinPop.’’

The GDBSCAN algorithm [8] for finding generalized

density-based clusters is a straightforward extension of

the DBSCAN algorithm.
Denclue

Denclue [6] takes another approach to generalize the

notion of density-based clusters, based on the concept

of influence functions that mathematically model the

influence of a data point in its neighborhood. Typical

examples of influence functions are square wave func-

tions or Gaussian functions. The overall density of the

data space is computed as the sum of the influence

functions of all data points. Clusters can then be deter-

mined by identifying density-attractors, i.e., local max-

ima of the overall density function. Most data points

do not contribute to the density function at any given

point of the data space. Therefore, the Denclue algo-

rithm can be implemented efficiently by computing

only a local density function, guaranteeing tight error

bounds. A cell-based index structure allows the algo-

rithm to scale to large and high-dimensional datasets.

OPTICS

In many real-life databases the intrinsic cluster struc-

ture cannot be characterized by global density para-

meters, and very different local densities may be needed

to reveal clusters in different regions of the data space. In

principle, one could apply a density-based clustering al-

gorithmwith different parameter settings, but there are an

infinite number of possible parameter values. The basic

idea of theOPTICS algorithm [2] to address this challenge

is to produce a novel ‘‘cluster-ordering’’ of the database

objects with respect to its density-based clustering struc-

ture containing the information about every clustering

level of the data set (up to a ‘‘generating distance’’ Eps).

This ordering is visualized graphically to support in-

teractive analysis of the cluster structure.

For a constantMinPts-value, density-based clusters

with respect to a higher density (i.e., a lower value for

Eps) are completely contained in clusters with respect

to a lower density (i.e., a higher value for Eps). Conse-

quently, the DBSCAN algorithm could be extended to

simultaneously cluster a database for several Eps

values. However, objects which are density-reachable

with respect to the lowest Eps value would always have

to be processed first to guarantee that clusters with

respect to higher density are finished first. OPTICS

798D Density-based Clustering
works in principle like such an extended DBSCAN

algorithm for an infinite number of distance para-

meters Epsi which are smaller than a ‘‘generating dis-

tance’’ Eps. The only difference is that it does not assign

cluster memberships, but stores the order in which

the objects are processed (the clustering order) and

the following two pieces of information which would

be used by an extended DBSCAN algorithm to assign

cluster memberships. The core-distance of an object p is

the smallest distance Eps’ between p and an object in

its Eps-neighborhood such that p would be a core

object with respect to Eps’ if this neighbor is contained

in NEps (p). The reachability-distance of an object

p with respect to another object o is the smallest dis-

tance such that p is directly density-reachable from o if

o is a core object. The clustering structure of a data set

can be visualized by a reachability plot (see Fig. 2) that

shows the reachability-distance values r for all objects

sorted according to the clustering order. ‘‘Valleys’’ in

the reachability plot correspond to clusters, which can

be hierarchically nested. In Fig. 2, e.g., cluster A can be

decomposed into subclusters A1 and A2.

Grid-Based Methods

Sheikholeslami et al. [9] present a grid-based approach

to density-based clustering, viewing the dataset as a

multi-dimensional signal and applying signal proces-

sing techniques. The input data is first discretized, and

then a wavelet transform is applied to convert the dis-

cretized data into the frequency space, in which the

natural clusters become more distinguishable. Clusters

are finally identified as dense areas in the transformed

space. A strength of the WaveCluster algorithm is

that, due to the multi-resolution property of wavelet

transforms, clusters can be discovered at multiple reso-

lutions. The runtime complexity of WaveCluster is

Oðn �mdÞ, where m denotes the number of discrete

intervals per dimension and d denotes the number of

dimensions, i.e., it is linear in the dataset size and

exponential in the number of dimensions.

In high-dimensional datasets, clusters tend to reside

in lower-dimensional subspaces rather than in the full-

dimensional space, which has motivated the task of

subspace clustering. As a prominent algorithm for this

task, the CLIQUE algorithm [1] discretizes the data

space and defines a subspace cluster as a set of neighbor-

ing dense cells in an arbitrary subspace. Such subspace

clusters can be efficiently discovered in a level-wise man-

ner, starting with 1-dimensional clusters, and extending

clusters by one dimension at every level. In CLIQUE,
as in all grid-based approaches, the quality of the

results crucially depends on the appropriate choice of

the number and width of the grid cells. To address this

problem, Hinneburg and Keim [7] suggest a method

of contracting projections of the data space to deter-

mine the optimal cutting hyperplanes for partitioning

the data. Dimensions are only partitioned if they have

a good partitioning plane. It can be shown analytically

that the OptiGrid algorithm finds all center-defined

clusters, which roughly correspond to clusters generated

by a Gaussian distribution.

Key Applications

Geographic Information Systems (GIS)

GIS manage spatial data including points, lines and

polygons and support a broad range of applications. In

geo-marketing, one may want to find clusters of homes

with a given characteristic, e.g., high-income homes,

while in crime analysis one of the goals is to detect

crime hotspots, i.e., clusters of certain types of crimes.

Density-based clustering is a natural choice in these

applications.

Image Data

Clustering is an important tool to discover objects in

image data. Clusters in such data can have non-spherical

shapes and varying density, and they can be hierarchi-

cally nested. Density-based clustering has been success-

fully applied to generate landusemaps from satellite data

and to detect celestial sources from astronomical images.

Future Directions
While the driving applications for density-based clus-

tering were geographic information systems, recently

other applications of density-based clustering have

emerged, in particular in data streams and graph data,

which create interesting challenges for future research.

For density-based clustering of data streams, Cao et al.

[3] introduces the concepts of core-micro-clusters, po-

tential core-micro-clusters and outlier micro-clusters

tomaintain the relevant statistical information. A novel

pruning strategy is designed based on these concepts,

which allows accurate clustering in the context of lim-

ited memory. One of the major tasks in social network

analysis is the discovery of communities, which can be

understood as dense subnetworks. As the first algo-

rithm adopting the paradigm of density-based cluster-

ing to networks, SCAN [10] efficiently detects not only

communities, but also hubs and outliers, which play

prominent roles in social networks.

Description Logics D 799

D

URL to Code
The open source data mining software Weka includes

Java implementations of DBSCAN and OPTICS, see

http://www.cs.waikato.ac.nz/~ml/weka/index.html.

Cross-references
▶Clustering Overview and Applications

▶ Indexing and Similarity Search

Recommended Reading
1. Agrawal R., Gehrke J., Gunopulos D., and Raghavan P. Auto-

matic subspace clustering of high dimensional data for data

mining applications. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1998, pp. 94–105.

2. Ankerst M., Breunig M.M., Kriegel H-P., and Sander J. OPTICS:

Ordering Points To Identify the Clustering Structure. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1999, pp.

49–60.

3. Cao F., Ester M., Qian W., and Zhou A. Density-based clustering

over an evolving data stream with noise. In Proc. SIAM Conf. on

Data Mining, 2006.

4. Ester M., Kriegel H-P., Sander J., Wimmer M., and Xu X.

Incremental Clustering for Mining in a Data Warehousing

Environment. In Proc. 24th Int. Conf. on Very Large Data

Bases, 1998, pp. 323–333.

5. Ester M., Kriegel H-P., Sander J., and Xu X. A Density-Based

Algorithm for Discovering Clusters in Large Spatial Databases

with Noise. In Proc. 2nd Int. Conf. on Knowledge Discovery and

Data Mining, 1996, pp. 226–231.

6. Hinneburg A. and Keim D.A. An Efficient Approach to Cluster-

ing in Large Multimedia Databases with Noise. In Proc. 4th

Int. Conf. on Knowledge Discovery and Data Mining, 1998,

pp. 58–65.

7. Hinneburg A. and Keim D.A. Optimal Grid-Clustering: Towards

Breaking the Curse of Dimensionality in High-Dimensional

Clustering. In Proc. 25th Int. Conf. on Very Large Data Bases,

1999, pp. 506–517.

8. Sander J., Ester M., Kriegel H-P., and Xu X. Density-based

clustering in spatial databases: the algorithm GDBSCAN and

its applications. Data Min. Knowl. Discov., 2(2):169–194, 1998.

9. Sheikholeslami G., Chatterjee S., and Zhang A. WaveCluster:

A Multi-Resolution Clustering Approach for Very Large Spatial

Databases. In Proc. 24th Int. Conf. on Very Large Data Bases,

1998, pp. 428–439.

10. Xu X., Yuruk N., Feng Z., Thomas A., and Schweiger J. SCAN:

a structural clustering algorithm for networks. In Proc. 13th

ACM SIGKDD Int. Conf. on Knowledge Discovery and Data

Mining, 2007, pp. 824–833.
Dependencies

▶ FOL Modeling of Integrity Constraints

(Dependencies)
Derived Event

▶Complex Event
Description Logics

ALEXANDER BORGIDA

Rutgers University New Brunswick, NJ, USA

Synonyms
Terminologic languages; KL-ONE style languages;

Concept languages

Definition
Description Logics (DLs) are a family of knowledge

representation languages providing features for defin-

ing and describing concepts. The associated formal

logics answer such questions as ‘‘Is concept C or knowl-

edge base T consistent?’’ and ‘‘Is concept A more specific

(subsumed by) concept B ?.’’

DLs view the world as being populated by indivi-

duals, grouped into classes (‘‘concepts’’), and related by

binary relationships (‘‘roles’’). DLs define concepts recur-

sively starting from atomic identifiers by using concept

and role constructors. A key characteristic of every DL’s

expressiveness is therefore the set of constructors it sup-

ports. The collection of constructors considered has been

determined empirically, by experience with a variety of

tasks in Natural Language processing and other subfields

of Artificial Intelligence. Considerable research has been

devoted to finding the complexity of reasoning with vari-

ous DLs. The result is a family of logics that is intermedi-

ate in expressive power between propositional logic and

first order logic, with emphasis on decidable fragments.

DLs are particularly useful in the field of databases

for conceptual modeling and the specification of

ontologies used for information integration or in the

Semantic Web.

Historical Background
Semantic Networks and Frame Systems, as originally

used for representing knowledge in Artificial Intelli-

gence, were faulted for lack of precise semantics, and

Brachman [4] was the first to suggest a (graphical)

notation, called KL-ONE, for structured networks

based on so-called ‘‘epistemologic primitives,’’ with a

precise intended meaning. Brachman and Levesque [5]

800D Description Logics
introduced the more logical compositional syntax and

semantics for a restricted DL, and considered for the

first time the famous expressiveness vs. complexity

trade-off: more expressive concept constructors often

require provably harder reasoning.

DLs have recently attracted considerable attention

since they form the basis of the OWL web ontology

language, and there are several widely available

implementations.

The Description Logic Handbook [1] is the definitive

reference book on this topic, covering the theory, im-

plementation and application of Description Logics.
Foundations

Concept and Role Constructors

Consider the concept ‘‘objects that are related by loca-

tedIn to some City, an d by ownedBy to some Person’’.

Much like one can build a complex type in a program-

ming language by using type constructors, or a com-

plex boolean formula using connectives that can be

viewed as term constructors (e.g., p ∧¬q written as

the term and(p,not(q))), so in a DL one could specify

this concept using a term-like syntax

andðsomeðlocatedIn;CityÞ; some ðownedBy; PersonÞÞ

The conventional notation used for this in the research

literature is actually

ð9locatedIn:City u 9ownedBy:PersonÞ

where ∃r. A denotes all object with at least one r-role

filler being in concept A, and u intersects the set

of instances of its argument concepts. A variety of

other syntactic notations for complex concepts exist,

including one for the OWL web ontology language,

based on XML.

Other frequently used concept constructors include:

so-called ‘‘boolean connectives’’ for unioning t ,

or complementing ¬ concepts; value restrictions 8p.C,
as in 8locatedIn.SmallTown denoting individuals

related by locatedIn only to instances of SmallTown;

cardinality constraints such as
n p.C , as in
2own-

edBy.RichPerson denoting objects that are owned by

at least two instances of concept RichPerson; enumera-

tions {J1, J2,...}, as in {ROMULUS,REMUS} denoting

the set of these two individuals. Other constructors

can often be defined in terms of these e.g., objects

with RED hair color value (hair_color : RED) is just

∃hair_color.{RED}
Useful role constructors include: role inversion r�,

as in ownedBy� denoting what might be called the

‘‘ownerOf ’’ relationship; role restriction rjC, as in

childOf jMale denoting what might be called ‘‘sonOf ’’;

and role composition, as in (childOf ∘childOf), denot-
ing what might be called ‘‘grandchildOf.’’

Of particular utility for database applications are

concept constructors that concern role fillers that are

‘‘concrete types’’ such as integers and strings (e.g., 8age.
min(15) denotes objects whose age value is at least 15),

and those that select individuals for whom combina-

tions of roles act as unique identifiers (‘‘keys’’).

Summarizing, the following properties are notable

and distinguishing features of DLs as far as concept

constructors:

� Although concepts resemble programming lan-

guage record types, roles are multi-valued, in con-

trast to record fields; e.g., a house may be ownedBy

by more than person.

� Although symbols like 8 and ∃ are used in the

mathematical notation of DLs, there are in fact

no variables (free or bound) appearing in concept

specifications.

� Complex concepts can be constructed by nesting, as

in ∃ownedBy.(Person u (
3childOf �.Teenager)),

with intended meaning ‘‘objects which are owned

by a person that is the parent of at least three teen-

agers’’; and they need not be given names, acting

as complex noun phrases with relative clauses.

Formal Semantics

The precise meaning/denotation of concepts is usually

specified by an interpretation I = (DI ,:I), which

assigns to every concept name a subset of the domain

DI , to every role name a subset of DI� DI , and to

every individual name some object in DI . Table 1

shows how this is extended from atomic identifiers to

complex terms for some of the concept and role con-

structors. (The others can be defined from these using

complement.) It is often possible to achieve the same

effect indirectly by providing a translation from con-

cepts/roles to Predicate Calculus formulas with one/

two free variables.

Using Concepts in Knowledge Bases

Concepts and roles do not actuallymake any assertions –

they are like formulas with free variables. The follow-

ing are some of the possible uses for them.

First, one can make assertions about necessary

properties of atomic concepts, e.g., ‘‘every house is

Description Logics. Table 1. Semantics of composite concepts and roles

Term Interpretation Translation to FOPC

C u D CI \ DI C(x)∧D(x)

¬ C DI ∖CI ¬C(x)

∃p.C {d 2DI j pI (d)\CI 6¼;} ∃y p(x,y)∧C(y)

np.C {d 2DI jjpI (d)\CI j
n} ∃z1,...,∃zn p(x,z1)∧...∧ p(x,zn) ∧ zi 6¼ zj ∧
C(zi)

{b1,...,bm} {bI1 ,...,b
I
m} x¼b1 ∨...∨x¼bm

p� {(d,d0)j(d0,d) 2RI } p(y,x)

pjC {(d,d0) 2pI jd0 2CI } p(x,y)∧C(y)

p∘q pI ∘qI ∃z p(x,z)∧q(z,y)

Description Logics D 801

D

located in some city and is owned by some person,’’ by

using a syntax like

House v ð9 locatedIn:City u 9 ownedBy:PersonÞ

wherev is read as ‘‘is subsumed by.’’ An assertion such

as A v B is satisfied only in interpretations where AI is

a subset of BI .

Second, one can give definitions to atomic names;

e.g., ‘‘a French house’’ can be defined to be a house

located in a French city, using the syntax

FrenchHouse
 ðHouse u 8locatedIn:FrenchCityÞ

For database cognoscenti, definitions will be familiar

as views.

If one allows general inclusion axioms of the form

a v b, the definition above is equivalent to two state-

ments

FrenchHouse v ðHouse u 8locatedIn:FrenchCityÞ
ðHouse u 8locatedIn:FrenchCityÞ v FrenchHouse

Such assertions about concepts form part of the termi-

nology of a domain, and hence are gathered in a so-

called TBox T . Other assertions in a TBox may specify

properties of roles, such as role inclusion (e.g., own-

edBy vcanSell) or whether a role is transitive.

Given a terminology T , one can then ask whether

some subsumption a v b follows from it, written as

T � a v b, i.e., whether the subsumption holds in

all interpretations satisfying T . This is the basis of

a number of standard services that are provided by a

DL reasoner, such as automatically classifying all iden-

tifiers into a subsumption taxonomy, or checking

whether concepts or the entire knowledge base are

(in)coherent. Other, non-standard but useful reasoning

services include computing the least common subsu-

mer of a pair of concepts (a non-trivial task if one
excludes concept union t as a constructor), rewriting

concepts using definitions in a TBox for goals such

as abbreviation, and pinpointing errors/reasoning in

inconsistent terminologies.

In order to describe specific states of a world, one

uses formulas of two forms: (i) LYON : City, expressing

that the individual LYON is an instance of concept

City; and (ii) locatedIn(LYON,EUROPE), indicating

that LYON and EUROPE are related by the locatedIn

relationship. A collectionA of such assertions about the

state of the world is called an ABox. A reasoner can then

determine whether a particular concept membership

(resp. role relationship) follows from an (ABox, TBox)-

pair: ðA; T Þ � d : b (resp. ðA; T Þ � rðd; eÞ). For ex-
ample, from the above facts about LYON, and the

definition EuropeanCity
 (City u locatedIn : EUR-

OPE), one can conclude that LYON : EuropeanCity.

Based on the above judgment, DL reasoners can deter-

mine the (in)consistency of an ABox A with respect to

a TBox T , and can classify individuals in A under the

most specific concept in the taxonomy. It is important

to note that, unlike standard databases, DLs do not

adopt the so-called ‘‘closed-world assumption,’’ so

that from the above facts one cannot conclude that

LYON is located in only one place; i.e., to obtain this

conclusion, (LYON:� 1locatedIn) needs to be explicitly

added to the previous collection of assertions.

Mathematical Properties

The formal complexity of reasoning with a DL-based

knowledge base is determined by the concept and role

constructors allowed, and the form of the axioms (e.g.,

Are axioms permitted to create cyclic dependencies

among concept names? Are there role subsumption

axioms?). Also, interesting connections have been

found between DLs and epistemic propositional

802D Description Logics
logic, propositional dynamic logic, and various re-

stricted subsets of First Order Logic. Many of these

results have been summarized in [1].

Implementations

Unlike the earliest implemented systems (KL-ONE and

LOOM), the second generation of systems (BACK,

KANDOR, and CLASSIC), took seriously the notion

of computing all inferences with respect to some seman-

tic specification of theDL, and in fact tried to stay close to

polynomial time algorithms for judgments such as sub-

sumption, often by finding a normal form for concepts.

In contrast, the DLs implemented in the past decade

have been considerably more expressive (theoretically,

the worst-case complexity of deciding subsumption

ranges from PSPACE to non-deterministic exponential

space complete), and are implemented using so-called

‘‘tableaux techniques,’’ whichhave beenhighlyoptimized

so thatperformanceonpracticalKBs is acceptable.

Key Applications

Conceptual Modeling

As knowledge representation languages, with concept

constructors that have been found to be empirically useful

for capturing real-world domains of discourse, DLs are

relevant to databases as conceptual modeling languages,

used in the first step of database design; and for database

integration, as the mediated conceptual schema seen by

external users. The advantages of DLs over other nota-

tions such as Extended ER diagrams and UML is their

greater expressive power and the existence of implemen-

ted reasoners that are provably correct, and that can, for

example, detect inconsistencies in domain models. In

fact, it has been shown that EER and UML class diagrams

can be translated into the SHIQ DL [2,6], for which

multiple implementations exist currently.

Ontology Specification

DLs have been adopted as the core (OWL-DL) of the

OWL web ontology language proposed by W3C [8].

Ontologies, and reasoning with them, are predicted to

play a key role in the Semantic Web, which should

support not just data integration but also web service

composition, orchestration, etc.

Management and Querying of Incomplete Information

Because of open-world reasoning, and the ability tomake

assertions about objects not explicitly present in the
knowledge base (e.g., VLDB09 : 8takesPlaceIn.(City u
locatedIn : ASIA u8hasPopulation.min(1000000)) says

that wherever VLDB09 will be held, the city will be in

Asia, and it will have population over 1 million), DLs

are particularly well suited to represent and reason

with partial knowledge [3]. Among others, DLs face

and resolve aspects of the view update problem. Indus-

trial applications of this have been found in configura-

tion management. Research has also addressed issues

related to more complex queries, with a flurry of recent

results concerning conjunctive query answering over

ABoxes, starting with [7].

Query Organization and Optimization

Since a complex concept C can be used to return all

individuals b classified under it (i.e., b : C), C can be

thought of as a query, though one of somewhat limited

power since it cannot express all conditions that might

be stated in SQL, nor can it return sets of tuples. In

exchange, query containment (which is just subsump-

tion) is decidable, and sometimes efficiently comput-

able. This can be used to organize queries, and help

answer queries using results of previous queries.

In addition, DL-based conceptual models of data-

base schemata can be used to enable advanced seman-

tic query optimization, in particular when combined

with DL-based description of the physical layout of

data. In this setting, identification constraints, such

as keys and functional dependencies, are often added

to DLs [9] and subsequently used to enable rewriting

of queries for purposes such as removing the need for

duplicate elimination in query answers.

Future Directions
In addition to continued work on extending the ex-

pressive power of DLs, and various forms of imple-

mentations, important topics of current concern

include (i) representation and reasoning about actions,

(ii) extracting modules from and otherwise combining

DL ontologies, (iii) restricted expressive power DLs

that are tractable or of low complexity yet can handle

important practical ontologies in the life sciences and

conceptual models, (iv) combining rules with DLs,

and, (v) conjunctive query processing over DL ABoxes.

URL to Code
http://www.dl.kr.org/ The Description Logics web site.

Among others, look for links to the Description Logic

Workshops (containing the most up-to-dateresearch in

Design for Data Quality D 803
the field), the ‘‘navigator’’ for the complexity of reasoning

with variousDLs, and for DL implementations.
D

Cross-references
▶Conceptual Modeling

▶Data Integration

▶ Semantic Web
Recommended Reading
1. Baader F., Calvanese D., McGuinness D.L., Nardi D., and Patel-

Schneider P.F. The Description Logic Handbook: Theory, Imple-

mentation, and Applications, 2nd edn. Cambridge University

Press, 2003.

2. Berardi D., Calvanese D., and De Giacomo G. Reasoning on

UML class diagrams. Artif. Intell. J., 168(1-2): 70–118, 2005.

3. Borgida A. Description logics in data management. IEEE Trans.

Knowl. Data Eng., 7(5): 671–682, 1995.

4. Brachman R.J. What’s in a concept: structural foundations for

semantic networks. Int. J. Man-Machine Studies, 9(2): 127–152,

1997.

5. Brachman R.J. and Levesque H.J. The tractability of subsump-

tion in frame-based description languages. In Proc. 4th National

Conf. on AI, 1984, pp. 34–37.

6. Calvanese D., Lenzerini M., and Nardi D. Unifying class-based

representation formalisms. J. Artif. Intell. Res., 11:119–240, 1999.

7. Horrocks I. and Tessaris S. A conjunctive query language

for description logic aboxes. In Proc. 12th National Conf. on

AI, 2000, pp. 399–404.

8. OWL Web Ontology Language Reference, http://www.w3.org/

TR/owl-ref/

9. Toman D. and Weddell G. On keys and functional dependencies

as first-class citizens in description logics. J. Auto. Reason.,

40(2–3): 117–132, 2008.
Design for Data Quality

CARLO BATINI, ANDREA MAURINO

University of Milan Bicocca, Milan, Italy

Synonyms
Schema normalization; Design for quality

Definition
The design for data quality (DQ) is the process of

designing data artifacts, such as information systems,

databases, and data warehouses where data quality

issues are considered relevant.

In information systems different types of data are

managed; these may be structured such as relational

tables in databases, semi-structured data such as XML
documents, and unstructured data such as textual

documents. Information manufacturing can be seen

as the processing system acting on raw data of different

types, whose aim is to produce information products.

According to this approach, the design for data quality

aims to design information-related processes (e.g.,

creation, updating, and delivering of information) tak-

ing into account data quality dimensions.

In the database field, the design for data quality has

the objective of producing good (with respect to a

given set of quality dimensions) conceptual and rela-

tional schemas and corresponding good data values.

Concerning schema design, the most important qua-

lity dimensions are:

� Correctness with respect to the model concerns the

correct use of the categories of the model in repre-

senting requirements

� Correctness with respect to requirements concerns

the correct representation of the requirements in

terms of the model categories

� Minimality requires that every part of the require-

ments is represented only once in the schema

� Completeness measures the extent to which a con-

ceptual schema includes all the conceptual elements

necessary to meet some specified requirement

� Pertinence measures how many unneeded concep-

tual elements are included in the conceptual

schema

� Readability imposes that the schema is expressed in

a clear way for the intended usage

It is worth noting that the quality of data is strongly

influenced by the quality of the schema that dictates

the structure of these data. Consequently, the design

for data quality can be seen as the first activity in a DQ

management program. In fact, let consider a schema

composed of the two relations: Movie(Title, Director,

Year, DirectorDateOfBirth) and Director(Name, Sur-

name, DateOfBirth). The schema does not satisfy the

minimality dimension due to the duplication of the

DateOfBirth attribute. This design error will reflect on

the data values that could suffer from consistency and

accuracy problems.

The design for data quality is a relevant problem

also for data warehouse systems. The data warehouse

design process has to consider several dimensions.

The completeness dimension is concerned with the

preservation of all the entities in data sources in the

data warehouse schema. The minimality dimension

804D Design for Data Quality
describes the degree up to which undesired redun-

dancy is avoided during the source integration process.

The traceability dimension is concerned with the fact

that all kinds of data processing of users, designers,

administrators and managers should be traceable in

the data warehouse system. The interpretability dimen-

sion ensures that all components of the data warehouse

schema are well described.

Historical Background
The problem of designing for data quality was consid-

ered relevant to the area of information systems since

the late 1980s. The total data quality management

methodology (TDQM) [11] introduces the information

product (IP) approach, which considers information as

one of the products that an organization produces. As a

consequence, traditional manufacturing design for

quality strategies can be applied to IPs also. Within the

TDQM methodology, the IP conceptual definition

phase is in charge of defining an Entity-Relationship

(ER) schema enhanced with quality features, which

defines the IP, its information quality (IQ) require-

ments, an information manufacturing system that

describes how the IP is produced, and the interactions

among information suppliers (vendors), manufacturers,

consumers, and IP managers. In this way, many IQ

requirements can be enforced into the new information

manufacturing system, resulting in design for informa-

tion quality procedures analogous to that of design for

quality in product manufacturing.

From a historical viewpoint, early methodologies

for database design did not consider data quality issues

as a relevant problem. Subsequently, design methodol-

ogies incorporated DQ issues by extending concep-

tual and logical models with quality features. Several

solutions have been proposed for extending the Entity-

Relationship model with quality characteristics. In [8],

a methodology for modeling the quality of attribute

values as another attribute of the same entity is

described. A different approach is proposed in the

Quality Entity-Relationship (QER) model [9], which

extends the ER model by providing a mechanism to

embed quality indicators into conceptual schemas.

QER introduces two generic entities, DQ_Dimension

and DQ_Measure. DQ_Dimension, with attributes

Name and Rating, models all possible quality dimen-

sions (e.g., accuracy) for an attribute (e.g., Addr-

ess) and its values (e.g., accuracy = ‘‘0.8’’). The

entity DQ_Measure is used to represent metrics for
corresponding data quality measurement values (e.g.,

in a [0,1] scale, ‘‘0’’ for very inaccurate, ‘‘1’’ for very

accurate). For what concerns logical database models,

[13] presents an attribute based model that extends the

relational model by adding an arbitrary number of

underlying quality indicator levels to attributes. Attri-

butes of a relational schema are expanded into ordered

pairs, called quality attributes, consisting of the attri-

bute and a quality key. The quality key is a reference to

the underlying quality indicator(s). Other extensions

of the relational model are presented in [14,15]. Stud-

ies on normal forms, and more in general on the

normalization process provide techniques for avoiding

certain anomalies such as duplication of values or

updates. These techniques can be considered as evalu-

ation techniques for measuring the quality of logical

schemas.

More recently, [5] presents a new design for data

quality methodology for incorporating data quality

requirements into database schemas by means of

goal-oriented requirement analysis techniques. The

proposal extends existing approaches for addressing

data quality issues during database design in two

ways. First, authors consider data quality requirements

(including descriptive, supportive and reflective

requirements). Second, a systematic way to move

from high-level, abstract quality goals into quality as-

surance requirements is presented.

For what concerns data warehouse design, research

on designing schemas with quality properties is limited.

One of the most important results in this field is the

DWQ framework proposed in [3], where a general-

purpose model of quality has been defined to capture

the set of quality factors associated to the various data

warehouse objects, and to perform their measurement

for specific quality goals. In particular, it is shown that

the refreshment process and the selection of the materi-

alized views are demonstrative examples where quality

can drive the design process [10].

Foundations
In the design of information systems the term infor-

mation quality refers to processes involving the infor-

mation life-cycle (creation, updating, and delivering

of information). In particular, two important quality

dimensions can be defined: efficiency, which measures

process by comparing the production with costs and

resources, and effectiveness, which measures the process

outcome; namely the real result of the process for

Design for Data Quality D 805

D

which the process has been conceived. The most pop-

ular model for designing quality information systems

is IP-MAP [7].

IP-MAP is a graphical model designed to help

people to comprehend, evaluate, and describe how an

information product such as an invoice, a customer

order, or a prescription is assembled in a business

process. The IP-MAP is aimed at creating a systematic

representation for capturing the details associated

with the manufacturing of an information product.

IP-MAP models (hereafter IP-MAPs) are designed to

help analysts visualize the information production

process, identify ownership of the process phases, un-

derstand information and organizational boundaries,

and estimate time and quality metrics associated with

the production process to be considered. Figure 1

shows an example of IP-MAP representing high

schools and universities of a district that have agreed

to cooperate in order to improve their course offering

to students, avoiding overlapping and becoming more

effective in the education value chain. To this end, high

schools and universities have to share historical data

on students and their curricula. Therefore, they per-

form a record linkage activity that matches students in

their education life cycle. To reach this objective, high

schools periodically supply relevant information on

students; in case it is in paper format the information

has to be converted into electronic format. At this
Design for Data Quality. Figure 1. Example of IP-MAP.
point, invalid data are filtered and matched with the

database of university students. Unmatched student

records are sent back to high schools for clerical checks,

and matched student records are analyzed; the results

of the analysis on curricula and course topics are sent

to the advisory panel of universities.

Typical activities for database design that are influ-

enced by data quality include (see Fig. 2):

1. DQ requirements elicitation

2. Conceptual modeling

3. Logical modeling

4. Data processing and Physical modeling

The process starts with the data quality requirements

elicitation. Here there is a similarity between softw-

are development processes and the design for data

quality in databases. In fact, in software development

processes, functional requirements describe what the

software does, while the non-functional properties de-

scribe qualities that functionalities need to support. In

the design for data quality process, data requirements

describe the Universe of Discourse that the design has

to represent in the database, while data quality require-

ments model quality dimensions by which a user eval-

uates DQ and quality processes related to data

acquisition, and update. Furthermore, quality attri-

butes are considered at two levels: quality parameters,

model quality dimensions by which a user evaluates

Design for Data Quality. Figure 2. Design for data

quality process.

Design for Data Quality. Figure 3. Representing quality

dimensions in the entity-relationship model.

806D Design for Data Quality
DQ (e.g., accuracy and currency); quality indicators

capture aspects of the data manufacturing process

(e.g., when, where, how data is produced) and provide

information about the expected quality of the data

produced. The data quality requirements elicitation

phase produces quality requirements that are inputs

to the conceptual modeling phase.

During the conceptual modeling phase, concepts

and their attributes are elicited and organized into a

conceptual schema. Moreover, quality parameters are

identified and associated to attributes in the schema.

Finally, each parameter is refined into one or more

quality indicators. There are two possible design

choices. A first possibility is to model the quality of

attribute values as another attribute of the same entity

for each attribute [8,9]. As an example, in order to add

a quality dimension (e.g., accuracy or completeness)

for the attribute Address of an entity Person, it is

possible to add (see Fig. 3) a new attribute Address-

QualityDimension to the entity.

The drawback of this solution is that now the entity

is no longer normalized. Another drawback is that if

there is the need to define several dimensions, a new
attribute for each dimension has to be added, resulting

in a proliferation of attributes. The second possibility

is to add specified data quality entities, and to create a

many-to-many relationship among these entities and

application entities.

The conceptual schema is the input of the next

phase, concerned with logical modeling. In the process

of translation from the conceptual schema to the

logical schema, normalization has to be achieved. Nor-

mal forms guarantee the absence of data processing

anomalies; as such normal forms are a relevant concept

in design for data quality. The same holds true for

intra-relational and inter-relational integrity con-

straints defined in the logical modeling phase; integrity

constraints are the fundamental means to guarantee

the consistency dimension for data.

The logical schema is an input for the physical mod-

eling and data processing phase. Data processing activ-

ities are one of the most critical tasks from a data quality

perspective. A careful design of the data processing pro-

cedures can significantly reduce data quality problems.

For example, if the domain of an attribute is composed of

a fixed set of values (e.g., the educational degrees), the use

of predefined lists to insert values in attributes reduce

possible typos and increases the syntactic accuracy.

The design of distributed databases especially

when independently developed databases are consid-

ered, raises more challenges in the design for data

quality. In this case, in fact, existing schemas cannot

be modified and issues related to the quality of schema

cannot be dealt with. The only possibility to partially

work out the quality issues is the definition of effective

schema integration techniques. Schema level conflicts

include: i) heterogeneity conflicts, occurring when dif-

ferent data models are used; ii) semantic conflicts,

regarding the relationship between model element

extensions, iii) description conflicts, concerning con-

cepts with different attributes, and iv) structural con-

flicts, regarding different design choices within the

same data model. Instance level conflicts are another

typical problem of distributed databases and occur

Design for Quality D 807

D

when conflicting data values are provided by distinct

sources for representing the same objects. At design

time, it is possible to plan conflict resolution selecting

suitable aggregation functions [2]; such functions take

two (or more) conflicting values of an attribute as

input and produce a value as output that must be

returned as the result of the posed query. Common

resolution functions are MIN, MAX, AVG. Other tech-

niques are discussed and compared in [1]. Techniques

for instance level conflict resolution at design time

have a major optimization problem. Consider two

relations EmployeeS1 and EmployeeS2 defined in

two different databases, representing information

about employees of a company. Also assume that no

schema conflict is detected. Suppose that the two rela-

tions have instance level conflicts for the Salary attri-

bute. Moreover, suppose that at design time it is

specified that in case of conflicts the minimum salary

must be chosen. Given the global schema, Employee

(EmployeeID, Name, Surname, Salary, Email), let con-

sider the following query:

SELECT EmployeeID, Email

FROM Employee

WHERE Salary < 2000

Since the Salary attribute is involved in the query, all

employees must be retrieved in order to compute the

minimumsalary, not only employeeswith Salary< 2000,

even if no conflicts on salary occur. Therefore conflict

resolution at design time may be very inefficient.

Future Directions
The problem of measuring and improving the quality

of data has been dealt with in the literature as an

activity to be performed a posteriori, instead of during

the design of the data. As a consequence, the design for

data quality is still a largely unexplored area. In partic-

ular, while the data quality elicitation and the transla-

tion of DQ requirement into conceptual schemas have

been investigated; there is a lack of comprehensive

methodologies covering all the phases of design of

information systems/databases/data warehouse sys-

tems. Moreover, easy-to-use and effective design tools

could help the database designer.

Open areas of research concern the definition of

quality information dimensions for semi-structured

and unstructured data. In particular, while the use of

XML technologies is growing within organizations, the

research on design of the XML quality schemas is at an

early stage.
Cross-references
▶Data Profiling

▶Data Provenance

▶Data Quality Assessment

▶ Information Quality

▶Quality Data Management

▶Quality in Data Warehouses

Recommended Reading
1. Batini C. and Scannapieco M. Data Quality: Concepts, Meth-

odologies and Techniques, Springer, New York, 2006.

2. Dayal U. Query processing in a multidatabase system. In Query

Processing in Database Systems, W. Kim, D.S. Reiner, D.S.

Batory (eds.). Springer, 1985, pp. 81–108.

3. Jarke M., Jeusfeld M.A., Quix C., and Vassiliadis P. Architecture

and quality in data warehouses: an extended repository ap-

proach. Inf. Syst. 24(3):229–253, 1999.

4. Jeusfeld M.A., Quix C., and Jarke M. Design and analysis

of quality information for data warehouses. In Proc. 17th Int.

Conf. on Conceptual Modeling, 1998, pp. 349–362.

5. Jiang L., Borgida A., Topaloglou T., and Mylopoulos J. Data

quality by design: a goal-oriented approach. In Proc. 12th

Conf. on Information Quality, 2007.

6. Navathe S.B., Evolution of data modeling for databases.

Commun. ACM, 35(9):112–123, 1992.

7. Shankaranarayanan G., Wang R.Y., and Ziad M. IP-MAP: repre-

senting the manufacture of an information product. In Proc. 5th

Conf. on Information Quality, 2000.

8. Storey V. and Wang R.Y. Extending the ER model to represent

data quality requirements. In Data Quality, R. Wang, M. Ziad,

W. Lee (eds.). Kluwer Academic, Boston, MA, 2001.

9. Storey V.C. and Wang R.Y. Modeling quality requirements in

conceptual database design. In Proc. 3rd Conf. on Information

Quality, 1998, pp. 64–87.

10. Vassiliadis P., Bouzeghoub M., and Quix C. Towards quality-

oriented data warehouse usage and evolution. In Proc. 11th

Conf. on Advanced Information Systems Engineering, 1999,

pp. 164–179.

11. Wang R.Y. A product perspective on total data quality manage-

ment. Commun. ACM, 41(2):58–65, 1998.

12. Wang R.Y., Kon H.B., and Madnick S.E. Data quality require-

ments analysis and modeling. In Proc. 9th Int. Conf. on Data

Engineering, 1993, pp. 670–677.

13. Wang R.Y., Reddy M.P., and Kon H.B. Toward quality data:

an attribute-based approach. Decision Support Syst., 13

(3–4):349–372, 1995.

14. Wang R.Y., Storey V.C., and Firth C.P. A framework for analysis

of data quality research. IEEE Trans. Knowl. Data Eng., 7

(4):623–640, 1995.

15. Wang R.Y., Ziad M., and Lee Y.W. Data Quality. Kluwer Aca-

demic, Boston, MA, 2001.

Design for Quality

▶Design for Data Quality

808D Desktop Metaphor
Desktop Metaphor

▶Direct Manipulation
Detail-in-Context

▶Distortion Techniques
Deviation from Randomness

▶Divergence from Randomness Models
Dewey Decimal Classification

▶Dewey Decimal System
Dewey Decimal System

PRASENJIT MITRA

Pennsylvannia State University, University Park,

PA, USA

Synonyms
Dewey decimal classification
Definition
The Dewey Decimal Classification (DDC) System is

a system primarily used in libraries to classify books.

In general, the system claims to provide a set of cate-

gories for all human knowledge. The system consists of

a hierarchy of classes. At the top level, there are ten

main classes, that are divided into 100 divisions which

are sub-divided into 1,000 sections. The system was

conceived by Melvil Dewey in 1873 and published in

1876. DDC uses Arabic numerals to number the classes

and explicates the semantics of a class and its relation

to other classes.
Key Points
Since its first publication in 1876 by Melvil Dewey [2],

the Dewey Decimal Classification (DDC) has been

updated to accommodate changes to the body of

human knowledge. The current version, DDC 22, was

published in mid-2003 [3] (http://www.oclc.org/

dewey/versions/ddc22print/). Currently, the Online

Computer Library Center (OCLC) (http://www.oclc.

org) of Dublin Ohio owns the copyrights associated

with the Dewey Decimal system. Each new book is

assigned a DDC number by the Library of Congress.

As of the date this article was written, the OCLC has

accepted all assignments of DDC numbers made by the

Library of Congress. The OCLC claims that libraries in

more than 135 countries use the DDC and it has been

translated to over 30 languages (http://www.oclc.org/

dewey/versions/ddc22print/intro.pdf).

The DDC has ten main classes: Computer Science,

information and general works; Philosophy and psychol-

ogy; Religion; Social Sciences; Language; Science; Tech-

nology; Arts and recreation; Literature; and History and

geography [1]. Consequently, all fiction books fall

under the category Literature (800). To avoid a large

number of rows in the 800 range, libraries separately

stack non-fiction and fiction books in different sec-

tions. To allow for further subdivision of classes, the

DDC number for a class can contain further subdivi-

sions of ten after the three digit number. After the three

digits for a class number, the classes can be further

subdivided. While determining the subject of a work,

the editor, at the Dewey editorial office at the Decimal

Classification Division of the Library of Congress, tries

to determine the author’s intent. The entire content of

the book is taken into account along with reviews,

reference works, and opinions of subject experts.

The DDC forms the basis for the more expressive

Universal Decimal Classification. Alternatives to the

DDC are the Library of Congress Classification. The

construction of the DDC was top down (designed

by one person, Dewey) and is somewhat inflexible to

accommodating changes in human knowledge. In

contrast, the Library of Congress Classification has 21

classes at the top-level of the hierarchy and was developed

by domain experts in a bottom-up fashion. The simple

numbering system of the DDC makes it easy to use.

Cross-references
▶ Library of Congress METS

Diagram D 809
Recommended Reading
1. Chan L.M. Dewey Decimal Classification: A Practical Guide.

Forest, 1994.

2. Dewey M. Dewey; Decimal classification and relative index for

libraries, clippings, notes. Library Bureau, 1891.

3. Mitchell J.S. Summaries DDC 22: Dewey Decimal Classification.

OCLC, 2003.
D

DHT

▶Distributed Hash Table
Diagram

CARLO BATINI

University of Milan Bicocca, Milan, Italy

Synonyms
Diagram; Diagrammatic Representation; Graph;

Graphic

Definition
A diagram is (i) a set of symbols selected in an alphabet

of elementary shapes, such as rectangles, circles, and

complex shapes, built by composing elementary shapes,

and (ii) a set of connections linking symbols, such as

straight lines, curved lines, directed lines, etc. Dia-

grams are used to visualize in all aspects of data base

design and usage a wide set of concepts, artifacts, sche-

mas, values, such as conceptual schemas, logical schemas,

UML diagrams, database instances, queries, results of

queries.

The visual representation made possible by a dia-

gram expresses a functional relationship between

concepts represented and symbols/connections repre-

senting them. e.g., in the diagrammatic representation

of Entity Relationship schemas, a rectangle is asso-

ciated to an entity, a diamond is associated to a

relationship.

When drawing a diagram, human beings and

display devices adopt suitable drawing conventions,

aesthetic criteria, and drawing constraints. Drawing

conventions express general constraints on the geo-

metric representation of symbols and connections.

The geometric representation is characterized by the
number of spatial dimensions; the usual representation

adopted is 2-dimensional (2D), other representations

are 1D, 3D, 2–3D. Other drawing conventions refer to

general rules on symbols and connections, for exam-

ple, polyline drawing correspond to connections made

of sequences of straight lines and orthogonal drawing

use connections made of horizontal and vertical lines.

Aesthetic criteria concern the shape of the diagram,

independently from the meaning of symbols, and try

to capture universal criteria for expressing the idea of

beauty. Drawing constraints refer to the semantics of

the underlying represented schema or instance.

Key Points
The above concepts are explained by means of Fig. 1.

Concerning drawing conventions, both diagrams

adopt a 2D representation. Diagram b adopts a further

drawing convention, namely, symbols are inscribed in

a rectangular grid. Drawing conventions may express

some characteristic of the semantics of the diagram; for

example, upward drawings visualize hierarchical rela-

tionships, such as generalization hierarchies in concep-

tual schemas.

Examples of aesthetic criteria are: (i) minimization

of crossing between connections, (ii) minimization of

the number of bends in connections, (iii) minimization

of the area occupied by the diagram, (iv) maximization

of the display of symmetries. The above comment to

‘‘try to capture universal criteria’’ is based upon recog-

nition that an expression of beauty in Chinese culture,

for example, is asymmetry, and not symmetry. Consid-

ering criterion (i), diagram a. has 6 crossings, while

diagram b. has no crossing. In diagram b. Employee is

symmetric with respect to Vendor, Worker, and Engi-

neer. Note that one cannot simultaneously optimize

aesthetic criteria, as intuitively understood considering,

for example, previous criteria (i) and (iii).

Examples of drawing constraints are (i) place a

given symbol in the centre of the drawing (e.g., Em-

ployee in Fig. 1b), keep a group of symbols close

together.

Graph drawing is the research area that investigates

algorithms that, having in input a nonvisual specifica-

tion of a diagram, produce a corresponding diagram

respecting a given set of drawing conventions, aesthetic

criteria, and drawing constraints (see [1] and [2]).

Diagrams can be extensively used for displaying visual

information [3].

Diagram. Figure 1. Examples of unpleasant and good diagrams.

810D Diagrammatic Representation
Cross-references
▶Chart

▶Data Visualization

▶Graph

▶Visual Formalisms

▶Visual Representation

Recommended Reading
1. Cruz I.F. and Tamassia R. Graph Drawing Tutorial, http://www.

cs.brown.edu/~rt/
2. Di Battista G., Eades P., Tamassia R. and Tollis I.G. Graph

Drawing. Prentice-Hall, Englewood Cliffs, NJ, 1999.

3. Tufte E.R. The Visual Display of Quantitative Information.

Graphic Press, Cheshire, CT, 1998.
Diagrammatic Representation

▶Diagram

Digital Archives and Preservation D 811

D

Difference

CRISTINA SIRANGELO

University of Edinburgh, Edinburgh, UK

Synonyms
Set-difference

Definition
The difference of two relation instances R1 and R2 over

the same set of attributes U, denoted by R1 � R2, is

another relation instance overU containing precisely the

set of tuples occurring in R1 and not occurring in R2.

Key Points
The difference is one of the primitive operators of the

relational algebra. It coincides with the notion of set

difference, with the additional restriction that it can be

applied only to relations over the same set of attributes.

However the difference of two arbitrary relations hav-

ing the same arity can be obtained by first renaming

attributes in one of the two relations.

As an example, consider a relation Students over

attributes (number, name), containing tuples {(1001,

Black),(1002,White)}, and a relation Employees over

attributes (number, name), containing tuples {(1001,

Black),(1003,Brown)}. Then the difference Students �
Employees is a relation over attributes (number, name)

containing the only tuple (1002,White).

In the absence of attribute names, the difference is

defined on two relations with the same arity: the out-

put is a relation with the same arity as the input,

containing the difference of the the sets of tuples in

the two input relations.

The number of tuples in the output relation is

bounded by the the number of tuples in R1.

Cross-references
▶Relation

▶Renaming

▶Relational Algebra

Digital Archives and Preservation

REAGAN W. MOORE

University of California-San Diego, La Jolla, CA, USA

Synonyms
Persistent archives
Definition
Preservation is the set of processes that maintain the

authenticity, integrity, and chain of custody of records

for long periods of time. Authenticity is defined as the

management of provenance information about the

creation of the record. Integrity is defined as the ability

to create an authentic copy. Chain of custody tracks all

processing done to the record, including migration to

new storage systems or to new data encoding formats.

Digital preservation addresses the challenge of technol-

ogy evolution by managing preservation properties

independently of the choice of software and hardware

systems. Preservation properties include the names

used to identify archivists, records, and storage sys-

tems, and the preservation metadata which includes

provenance information and administrative infor-

mation about record management. The display and

manipulation of digital data is maintained through

the use of representation information that describes

how the record can be parsed and interpreted. Digital

preservation environments implement trustworthiness

assessment criteria, enabling verification that the pres-

ervation properties are maintained over time.
Historical Background
The preservation community bases digital preservation

upon the same concepts that are used to preserve paper

records. The preservation environment manages the

authenticity, integrity, and chain of custody of the

digital records. At least four approaches have been

implemented that define the digital preservation pro-

cesses and policies that are needed to maintain authen-

ticity and integrity. (i) Diplomatics defines the

required provenance information that describes the

institution, event, and ingestion information asso-

ciated with the documentation of an event. Examples

of events are treaties and government communiqués.

The records are assumed to be held forever. (ii) The US

National Archives and Records Administration associ-

ates records with a life-cycle data requirements guide.

Each record is associated with a record group (institu-

tion), a record series (the set of records governed by a

submission agreement), a file unit, and an entity. Each

record series has a defined retention and disposition

schedule. The arrangement of the records is governed

by the submission order in the record series. Standard

preservation processes include appraisal, accession,

arrangement, description, preservation, and access.

(iii) The digital library community manages

812D Digital Archives and Preservation
preservation within the context of a collection, with the

required preservation metadata and the arrangement

governed by the purpose under which the collection

was formed. (iv) The continuum model manages

records within an active access environment. Records

that are generated for one record series may be used as

the basis for generating a new record series. The relation-

ships between records within the multiple record series

are tracked as part of their provenance. Each of these

four communities imposes the preservation processes

and preservation policies required to enforce their goals.

The OAIS standard defines a model for preservation

that focuses on record submission, record preservation

and record access. The information required for each

process is aggregated respectively into a Submission

Information Package (SIP), an Archival Information

Package (AIP), and a Dissemination Information Pack-

age (DIP). An information package contains content (the

digital record) and representation information (all infor-

mation needed to understand the record). The OAIS

representation information includes the structure and

semantics of the record and links to a knowledge base

of a designated community for interpreting the semantic

term. TheOAIS standard stores Preservation Description

Information within an AIP that includes Fixity informa-

tion, Provenance information, Context information, and

Reference information. This approach attempts to pro-

vide the context needed both to understand how to

display and manipulate a record, and to interpret the

meaning of the record.

The management of technology evolution is a

major concern for digital data that is addressed outside

of the OAIS model [3]. The storage technology may

impose a proprietary referencing mechanism on the

data that locks the record onto a single vendor’s sys-

tem. When that vendor goes out of business, access to

the records may be lost. Display applications may no

longer be available for reading a record. Even though

the record can be accessed, it may not be possible to

interpret the internal structure correctly. A preserva-

tion environment is the interface between the fixed

records and the changing external world. A digital

archive must ensure that the records can be viewed in

the future, while maintaining authenticity, integrity,

and chain of custody.

Foundations
Preservation is an active process, starting with the

extraction of records from the environment in which
they were created. Each record documents an event,

or the materials upon which decisions have been made,

or the material that is used to support a research or

business or legislative objective. The extraction pro-

cesses start with appraisal, the determination of which

records are worthy of preservation. A formal accession

process documents the ingestion of the records into

the preservation environment, along with the prove-

nance information needed to identify the source of the

records, the representation information needed to in-

terpret and understand the records, and the adminis-

trative information needed to document the ingestion

process. Once the records are under the control of

the archivist, a description process organizes the prov-

enance information and an arrangement process orga-

nizes the records. A preservation process creates

archival information packages that link the preserva-

tion information to the record and stores the records.

An access process provides mechanisms to discover,

display, and manipulate the records.

Preservation is a form of communication with

the future. Since the technology that will be used in

the future is expected to be more sophisticated and

more cost effective than present technology, this appears

to be an intractable situation. How can records that are

archived today be accessible through arbitrary choices of

technology in the future? By viewing preservation as an

active process, this challenge can be addressed. At the

point in time when new technology is being assimilated

into the preservation infrastructure, both the old and

new technologies are present. Infrastructure that sup-

ports interoperability across multiple versions of soft-

ware and hardware systems make it possible to evolve

preservation environments over time. The approach is

called infrastructure independence, and is based on data

virtualization, trust virtualization, andmanagement vir-

tualization. The preservation environment is the set of

software that enables management of persistent archives

independently of the choice of storage system, infor-

mation syntax, access protocol, discovery mechanism,

and display service. Preservation environments insulate

records from changes in the environment, while holding

fixed the set of standard preservation processes and the

name spaces used to identify records, archivists, and

storage systems.

Data virtualization consists of two components:

(i) persistent name spaces for identifying records, pres-

ervation metadata, archivists, and storage systems,

(ii) standard operations for interacting with storage

Digital Archives and Preservation D 813

D

repository protocols. Data grid technology provides

both components, enabling the integration of new stor-

age technology into a preservation environment, the

use of new access protocols for interacting with records,

and the migration of records to new encoding syntax.

Trust virtualization is the management of authori-

zation independently of the choice of preservation

technology. Data grids provide access controls that

enforce relationships between any pair of persistent

name spaces. For example, authorization may be a

constraint imposed on the archivist identity and the

record identity, or a constraint imposed on preserva-

tion metadata and the archivist identity, or a constraint

based on record identity and storage identity. The

constraints may be applied across multiple types of

data management environments (file systems, tape

archives, databases). Since the name spaces are man-

aged by the data grid, the constraints remain invariant

as the records are moved between storage systems

within the preservation environment.

Preservation manages communication from the

past in order to make assertions about preservation

properties such as authenticity, integrity, and chain of

custody. For an assertion to be verifiable, a preserva-

tion environment must document the preservation

processes that have been applied to each record, and

the preservation policies that controlled the appli-

cation of the preservation processes. Unless both pro-

cesses and policies can be tracked over time, an

assertion cannot be verified. The outcome of the appli-

cation of each preservation process on a record should

be recorded as state information that is linked to the

record. Assertions can then be validated as queries on

the state information that verify that the desired prop-

erty has been conserved. The processes, policies, and

state information constitute representation informa-

tion about the preservation environment.

To manage the evolution of data formats, three

approaches are pursued: Emulation inwhich the original

display application is ported to future operating systems;

transformative migration in which the encoding format

of the record is changed to a future encoding format; and

persistent objects in which the structure and relation-

ships present within the record are characterized and

migrated to future information and knowledge repre-

sentations. Operations that can be performed upon rela-

tionships defined between structures can be applied in

the future by any application that knows how to manip-

ulate that specific relationship. An example is a query
on time track change relationships embedded in a

Microsoft Word document.
Key Applications
Multiple technologies can be used to implement the

preservation environment. However no single technol-

ogy provides all of the capabilities that are required.

A preservation environment is an integration of man-

agement systems, software systems, and hardware sys-

tems that isolate records from changes in technology,

while preserving authenticity, integrity, and chain of

custody. Technologies that implement subsets of the

capabilities needed for infrastructure independence

include:

� SRB – Storage Resource Broker data grid (http://

www.sdsc.edu/srb). The SRB implements the name

spaces needed for infrastructure independence, and

manages descriptive metadata that can be associated

with each collection and file. Collections stored in

the SRB include observational data, simulation out-

put, experimental data, educational material, office

products, images, web crawls, and real-time sensor

data streams. The SRB data grid enables the creation

of shared collections from data distributed across

multiple administrative domains, institutions, and

nations. Data may be stored in file systems, archives,

object-relational databases, and object ring buffers.

International data grids have been based on the

SRB technology through which hundreds of tera-

bytes of data have been replicated.
The system is designed to scale to petabytes

of data and hundreds of millions of files. Applica-

tions of the technology include use as data grids for

sharing data, digital libraries for publishing data,

and persistent archives for preserving data.

The set of standard operations that are per-

formed upon remote storage systems include

Posix file system I/O commands (such as open,

close, read, write, seek, stat, . . .) and operations

needed to mask wide-area network latencies. The

extended operations include support for aggrega-

tion of files into containers, bulk operations for

moving and registering files, parallel I/O streams,

and remote procedures that parse and subset files

directly at the remote storage system.

� LOCKSS-Lots of Copies Keep Stuff Safe (http://

www.lockss.org/lockss/Home). The LOCKSS system

manages attributes on files that may be distributed

814D Digital Archives and Preservation
across multiple storage systems. The original design

of the system focused on management of data dis-

tributed by publishers. The original copy of the file

was downloaded from a publisher through a security

module that supported the publisher authentication

requirements. Attributes were then associated with

each file to track the publication source. LOCKSS

systems that had retrieved data from the same pub-

lisher could then provide disaster recovery copies to

each other. Types of access that are supported include

file retrieval. The system is designed to scale to about

20 Tera bytes of archived data.

� IBP – Internet Backplane Protocol (http://loci.cs.

utk.edu/ibp/). The IBP was designed to enable

applications to treat the Internet as if it were a

processor backplane. The IBP replicates or caches

blocks of data across distributed storage systems at

multiple sites. A file system such as LSTORE (http://

www.lstore.org/pwiki/pmwiki.php) is implemented

on top of the IBP protocol to support the required

persistent file naming.

� DSpace (http://www.dspace.org/). This is a digital

library that provides standard preservation services

for accessing, managing and preserving scholarly

works. DSpace can store files on the local file sys-

tem, or in the SRB data grid.

� FEDORA – Flexible Extensible Digital Object

and Repository Architecture (http://www.fedora-

commons.org/). This is digital library middleware

that supports the characterization of relationships

between records. The relationships may be queried

to identify desired data subsets. Services support

the creation, management, publication, sharing,

annotation, and preservation of digital content.

� UVC-Universal Virtual Computer (http://en.wiki

pedia.org/wiki/Universal_Virtual_Computer). Thi

s is a software system that provides standard oper-

ations that can be migrated onto future operating

systems. The environment supports a Logical Data

Schema for type description, a format decoder, and a

Logical Data Viewer for displaying the parsed files.

� ADORE (http://african.lanl.gov/aDORe/projects/

adoreArchive/). This is a write-once/read-many

preservation system for digital objects. XML-

based representations of digital objects are conca-

tenated into a single, valid XML file called

XMLtape. The associated data streams are aggre-

gated into Internet Archive ARC files. Each

XMLtape is accessed through the Open Archives
Initiative – Protocol for Metadata Harvesting. The

ARC files are accessed through OpenURL.

Most of the above systems support discovery and ac-

cess to the record. A subset supports updates to the

records, schema extension for provenance metadata,

replicas, and bulk operations. The system managing

the largest amount of material is the SRB. The SRB is

used in the NARA Transcontinental Persistent Archive

Prototype (http://www.sdsc.edu/NARA/) as a research

tool for the investigation of properties that should be

supported by a preservation environment.

Systems that manage representation information

characterize records by file format type. The display

and access of the record are accomplished by identify-

ing an application that is capable of parsing the record

format. Example systems range from stand alone envir-

onments to web services to highly integrated environ-

ments. Examples include:

� MVD – Multivalent Document (http://elib.cs.ber-

keley.edu/ib/about.html). This system presumes

that a single document comprises multiple layers

of related material. Media adaptors parse each

layer. Behaviors that manipulate the parsed data

are dynamically loaded program objects. It is pos-

sible to add new behaviors independently of the

media adaptors to provide new operations for

manipulating or viewing the layers.

� DFDL-Data Format Description Language (http://

forge.ggf.org/sf/projects/dfdl-wg). This is an Open

Grid Forum standards effort that characterizes

the mapping of bit-steams to structures through

creation of an associated XML file. This is the

essential capability needed to interpret an arbitrary

file. The structures can be named.

� EAST (http://nssdc.gsfc.nasa.gov/nssdc_news/mar02/

EAST.html). EAST is a data description language that

supplies information about the format of the de-

scribed data. EAST is designed for building descrip-

tions of data that are maintained separately from the

data itself.

� CASPAR – Cultural, Artistic and Scientific knowl-

edge for Preservation, Access and Retrieval (http://

www.casparpreserves.eu/). This is a research project

to identify the representation information required

to understand digital objects. This includes not

only the data format types, but also the designated

community that will use the data, and the knowl-

edge base that defines the required semantic terms.

Digital Archives and Preservation D 815

D

� METS–Metadata Encoding and Transmission Stan-

dard (http://www.loc.gov/standards/mets/). This is

a standard for encoding descriptive, administrative,

and structural metadata regarding objects within a

digital library.

As pointed out by the CASPAR project, the ability to

interpret the representation information can require ad-

ditional representation information. In order to close

this recursion, a designated community is defined that

understands how to interpret the semantics of the final

set of representation information by accessing a commu-

nity knowledge base.

Future Directions
Rule-based data management systems have the potential

to virtualize management policies by providing infra-

structure that guarantees the application of the policies

directly at the remote storage systems independently

of the remote administrative domain. The iRODS

(integrated Rule Oriented Data Systems) data grid

(http://irods.sdsc.edu) installs software middleware

(servers) at each remote storage system. Each server

includes a rule engine that controls the execution of

micro-services at that storage system. The rules are

expressed as event: condition: action-sets: recovery-

sets, where the condition can include operations

on any of the persistent state information that is man-

aged by the data grid. The action-sets can include

micro-services or rules, enabling the aggregation of

micro-services into an execution hierarchy. For each

action, a recovery procedure is specified to enable the

tracking of transaction semantics. Additional name

spaces are required that include:

� The names of the micro-services that aggregate the

standard operations into well-defined functions.

� The names of the rules that control the execution of

the micro-services.

� The persistent state information that tracks the

results of applying the operations (think of the

location of a replica as persistent state that must

be saved).

Rule-based systems support asynchronous operations.

Micro-services can be queued for deferred or perio-

dic operations. Thus a recovery-set might include

the scheduling of a deferred attempt to complete

the operation, followed by an e-mail message if that

attempt does not succeed, or it might roll-back any

changed state information and report failure.
Rule-based systems make it possible to characterize

explicitly the set of management policies that control

the preservation environment. This includes the rules

that govern data integrity (replication, data distribu-

tion, media migration), the rules that assert the pres-

ence of required descriptive or provenance metadata

(including the extraction of the required metadata

from an authoritative source), and the rules that gov-

ern chain of custody (assignment of access controls

and parsing of audit trails to verify the enforcement).

Rule-based systems also explicitly characterize the

preservation processes as sets of named micro-services

that can be ported to new operating systems. In effect,

a rule-based data management system is able to build

an emulation environment for the set of management

policies and preservation processes that the archivist

wants to apply. The environment guarantees that the

desired policies and processes will continue to control

the preservation environment even when new technol-

ogy is incorporated into the system.

The identification of standard preservation manage-

ment policies is being attempted through theRLG/NARA

trustworthiness assessment criteria [4]. A mapping of

these assessment criteria to iRODS rules is possible, and

identifies some 105 rules that are required to enforce and

verify preservation criteria. The NARA Electronic

Records Archive has defined the set of capabilities that

they require for long-term preservation [1]. These cap-

abilities have also been mapped to iRODS rules and

micro-services. The goal is to build the set of manage-

ment principles and fundamental preservation processes

required for long term preservation [2].

When representation information for preservation

environments is available, it may be possible to design

a theory of digital preservation. The components will

include:

▶ Characterization of the representation information

for the preservation environment
� Definition of the properties that the preserva-

tion environment should conserve

� Definition of the management policies that en-

force the conservation of the desired properties

� Definition of the capabilities (preservation pro-

cesses) needed to apply the management policies
▶ Analysis that the system is complete
� Demonstration that assessment criteria can be

mapped to queries on persistent state informa-

tion that are managed independently of the

choice of technology

816D Digital Curation
� Demonstration that these management policies

can be mapped to well-defined rules

� Demonstration that the rules control the exe-

cution of well-defined micro-services that are

independent of the choice of preservation

technology
▶ Analysis that the system is closed
� Demonstration that the state persistent infor-

mation required to validate assessment criteria

are generated by each micro-service

� Demonstration that for every micro-service

the associated persistent state information is

updated on each successful operation
A theory of digital preservation defines the processes

required to assert that the preservation environment

has been implemented correctly and will successfully

enable long-term preservation.

Cross-references
▶Archiving Experimental Data

▶Data Warehouse

▶Disaster Recovery

▶ Information Lifecycle Management

▶ LOC METS

▶Metadata Repository

▶ Provenance

▶Replication

Recommended Reading
1. Electronic Records Archive capabilities list defines a com-

prehensive set of capabilities needed to implement a preserva-

tion environment, and can be examined at http://www.archives.

gov/era/pdf/requirements-amend0001.pdf.

2. Moore R. Building preservation environments with data grid

technology. Am Archivist, 69(1):139–158, 2006.

3. OAIS, Reference Model for an Open Archival Information Sys-

tem, ISO 14721:2003.

4. RLG/NARA TRAC – Trustworthy Repositories Audit and Certi-

fication: Criteria and Checklist. http://wiki.digitalrepositoryau

ditandcertification.org/pub/Main/ReferenceInputDocuments/

trac.pdf.

Digital Curation

GREG JANÉE

University of California-Santa Barbara, Santa Barbara,

CA, USA

Synonyms
Stewardship
Definition
Digital curation is the activity of maintaining and

adding value to a trusted body of digital information

for current and future use.

Key Points
Left unattended, digital information degrades over

time. Even if the information’s bits are correctly pre-

served (a difficult task in itself) the technological

context surrounding the bits – the computing plat-

forms, programming languages, applications, file for-

mats, and so forth – will change sufficiently over time

until the information is no longer usable. Changes in

the information’s social context are just as significant.

The communities and organizations involved in the

information’s initial creation and use may attach dif-

ferent values and interpretation to the information

over time, or cease to exist altogether. And the passage

of time only exacerbates contemporary problems

such as establishing the authenticity, quality, and prov-

enance of the information.

Curation is the activity of maintaining a body

of information so that it remains usable over time.

Curation covers the entire lifecycle of the information,

from creation to contemporary use, from archival to

reuse. Specific curation activities include: selection

and appraisal; capture of metadata and the informa-

tion’s larger technological, scientific, and social con-

texts; conversion to archival formats; establishment

and maintenance of authenticity and provenance;

annotation and linkage; provisioning for secure and

redundant storage; transformation, migration, and

emulation as needed over time; discoverability in

contemporary search systems; creation of meaningful

access mechanisms; and recontextualization.

Different types of information bring different cura-

tion requirements and present different challenges. Infor-

mation intended for direct human consumption, such as

many textual and multimedia documents, may only need

to be migrated to new formats as older formats fall out of

favor. But data, particularly scientific data, may require

significant reprocessing and transformation. For exam-

ple, climatalogical observations may need to be periodi-

cally recalibrated to support long-term longitudinal

studies, a process requiring deep understanding and em-

ulation of the original calibration.

Cross-references
▶ Preservation

Digital Elevation Models D 817

D

Recommended Reading
1. Beagrie N. Digital curation for science, digital libraries, and

individuals. Int. J. Digital Curat., 1(1), 2006.

2. Consultative Committee for Space Data Systems. Reference

Model for an Open Archival Information System (OAIS). ISO

14721:2003, 2002.

3. Trustworthy Repositories Audit and Certification: Criteria and

Checklist. Center for Research Libraries, 2007.
Digital Elevation Models

LEILA DE FLORIANI, PAOLA MAGILLO

University of Genova, Genova, Italy

Synonyms
Digital Terrain Model (DTM); Digital Surface Model

DEMs

Definition
A Digital Elevation Model (DEM) represents the 3D

shape of a terrain in a digital format. A terrain is

mathematically modeled as a function z = f(x, y)

which maps each point (x, y) in a planar domain D
Digital Elevation Models. Figure 1. A triangle-based terrain
into an elevation value f(x, y). In this view, the terrain

is the graph of function f over D.

In practice, a terrain is known at a finite set of

points within D, which may (i) lie at the vertices of a

regular grid, (ii) be scattered, or (iii) belong to contour

lines (also known as isolines), i.e., the intersections of

the terrain surface with a sequence of horizontal

planes.

In case (i), the DEM consists of the grid structure

plus elevation values at its vertices. This is called a

Regular Square Grid (RSG). Within each grid cell,

terrain elevation either is defined as constant, or it is

modeled by a function, which can be linear (this

involves cell decomposition in two triangles), or qua-

dratic (usually, bilinear).

In case (ii), usually the DEM is defined based on a

triangle mesh joining the data points in D and by a

piecewise-linear function interpolating elevations at

the three vertices of each triangle. This gives a Trian-

gulated Irregular Network (TIN) (see Fig. 1).

In case (iii), the DEM consists of the polygonal lines

forming each contour, plus the corresponding eleva-

tion, and the containment relation between contours

at consecutive elevations. This provides a contour map.
representation.

Digital Elevation Models. Figure 2. A cell in an RSG.

818D Digital Elevation Models
Historical Background
Historically, terrain models were represented as three-

dimensional relief maps, generally constructed for

military or educational purposes from plaster, papier-

marché, or vinyl plastic. For instance, such models

were used extensively by military forces during World

War II. Contour maps drawn on sheets of paper have

probably been the most common form of terrain

model. In the early ages of computer-based Geographic

Information Systems, these maps were converted into

digital format through scanning devices. DEMs based

on contour lines are a way for representing a terrain,

but not for performing computations, or simulations.

For other applications, they are usually converted into

triangulated models (TINs) by connecting two consec-

utive contour lines through a set of triangles.

The first DEMs of the computer age were Regular

Square Grids (RSGs). Very large and accurate gridded

DEMs are usually acquired through remote sensing

techniques, and are built from aerial or satellite raster

images. Thanks to the regular structure of an RSG,

both storing and processing an RSG is simple from

the point of view of design, but the huge size of such

models may cause serious inefficiency in both storage

and manipulation. This problem can be addressed by

applying techniques for terrain generalization, or

multi-resolution models. Generalization means deci-

mating data to achieve smaller memory size and faster

processing time, at the expense of less accuracy. This

can be achieved through grid subsampling or selection

of meaningful vertices to build a TIN. Multi-resolution

refers to the capability of maintaining multiple accuracy

levels at the same time, and selecting the most appro-

priate one for the current working session. This latter

aspect is covered in Multiresolution Terrain Modeling

by Eurico Puppo.

Triangulated Irregular Networks (TINs) are the

most general model from the point of view of model-

ing power, since they do not assume any spatial distri-

bution of the data. TINs can encompass morphological

terrain features, point features (e.g., peaks, pits and

passes) and line features (e.g., coast lines, rivers, con-

tour lines). On the other hand, the internal represen-

tations for TINs and the algorithms for their

construction are more complex than those for RSGs.

These latter have been extensively studied within the

field of computational geometry. Storing and manipu-

lating TINs require more computational resources

than RGSs, for the same number of vertices, but
they may need much fewer vertices to achieve the

same accuracy. This is especially true for terrains

with an irregular morphology, since a TIN can adapt

the density of the mesh to the local complexity of

the terrain.

Foundations
There are two major categories of DEMs: Regular

Square Grids (RSGs) and Triangulated Irregular Net-

works (TINs).

RSGs are based on a domain subdivision into a

square grid. There are two major ways of approximat-

ing a terrain based on a grid. In a stepped model, each

data point lies at the center of a grid cell, and its

elevation is assigned to the whole cell. The resulting

terrain model has the shape of a 2D histogram, and

thus the surface presents jump discontinuities at cell

edges. The second approach produces a continuous

surface. The data points are the vertices of the grid

cells. Within each cell, the elevation is approximated

through a function that interpolates the known eleva-

tions of the four cell vertices. Let (x0, y0) be the coor-

dinates of the lower left corner of the cell, (Dx, Dy) be

the cell size and z0,0,z0,1,z1,0 and z1,1 be the elevations of

its four corners (lower-left, upper-left, lower-right,

upper-right, respectively; see Fig. 2).

A bilinear interpolant estimates the elevation at a

point P = (x, y) within the cell as:

z ¼ z0;0 þ ðz0;1 � z0;0Þðy � y0Þ=Dyþ
ðz1;0 � z0;0Þðx � x0Þ=Dxþ
ðz1;1 � z0;1 � z1;0 þ z0;0Þðx � x0Þðy � y0Þ=DxDy

and provides a continuous (but not differentiable)

surface approximation.

RSGs are stored in a very simple data structure that

encodes just a matrix of elevation values, the grid being

implicitly represented. All other information (includ-

ing interpolating functions and neighbor relations

among cells) can be reconstructed in constant time.

Digital Elevation Models D 819

D

Moreover, the regular structure of RSGs makes them

well suited to parallel processing algorithms.

The RSG is the main format for distributing eleva-

tion data. Many existing DEMs are provided in this

format, including USGS (United States Geological Sur-

vey [11]) data as well as many proprietary GIS formats

(and the interchange Arc/Info ASCII grid). Usually, the

file contains a header followed by the elevations values

listed in either row or column order. The header con-

tains the information needed to decode the given

values and to locate the grid on the Earth surface

(geo-referencing). An RGS could also be encoded in a

standard image format by mapping the elevation range

to a grey level value, but this format does not support

geo-referencing.

The main disadvantage of an RSG is its uniform

resolution (i.e., the same cell size) over the whole

domain. This may imply undersampling in raw areas

and oversampling in flat areas for a terrain with irreg-

ular morphology. Uniformly increasing the resolution

produces huge matrices and thus high storage and

processing costs. Adaptive nested grids have been pro-

posed to overcome this problem.

A TIN is based on an irregular domain subdivision,

in which the cells are triangles, i.e., a triangle mesh with

vertices at the set S of data points. Usually, a linear

interpolating function is defined on the triangles of the

mesh, thus providing a continuous terrain approxima-

tion.More precisely, a triangle mesh T consists of a set of

triangles such that: (i) the set of vertices of T coincides

with S, (ii) the interiors of any two triangles of T do

not intersect, (iii) if the boundaries of two triangles

intersect, then the intersection is either a common

vertex, or a common edge (see Fig. 3). Each triangle

of T is mapped in the three-dimensional space by
Digital Elevation Models. Figure 3. (a) A set of data points;
considering the elevation values at its three vertices and

the plane passing through the resulting three points in 3D

space.

The quality of the terrain approximation provided

by a TIN depends on the quality of the underlying

triangle mesh, since the triangulation of a set of points

is not unique. The most widely used triangle mesh is

the Delaunay one. A Delaunay mesh is the one among

all possible triangle meshes joining a given set of points

in which the circumcircle of each triangle does not

contain any data point in its interior. This means that

the triangles of a Delaunay mesh are as much equian-

gular as possible, within the constraints imposed by the

distribution of the data points [9]. It has also been

proved that the use of a Delaunay mesh as the basis

for a TIN improves the quality of the terrain approxi-

mation and enhances numerical stability in computa-

tions. Other triangulation criteria have been proposed

which consider not only the 2D triangulation, but also

the corresponding triangles in 3D space [4].

In many practical cases, a TIN must embed not only

points, but also lines representing morphological terrain

features (coast lines, rivers, ridges), man-made structures

(roads, railways, gas lines), political or administrative

boundaries, contour lines. The Delaunay criterion has

been modified to deal with such lines in two different

ways: (i) in the constrained Delaunay triangulation, the

given lines appear as triangle edges [3]; (ii) in the

conforming Delaunay triangulation, each line is discre-

tized as a dense set of points [5] (see Fig. 4). The

constrained Delaunay triangulation may present sliver

triangles when segments are too long. Conforming

triangulations may add a very large number of points

in order to force the lines to be included in the result-

ing mesh.
(b) a triangle mesh; (c) Delaunay triangle mesh.

Digital Elevation Models. Figure 4. (a) A set of data points and lines; (b) Constrained Delaunay triangulation; (c) A

conforming Delaunay triangulation.

820D Digital Elevation Models
The simplest storage format for a TIN is a triangle

soup: each triangle is represented separately by listing

the nine coordinates of its three vertices. The indexed

format has been designed to avoid replicating the coor-

dinates of vertices shared by several triangles incident

in the same vertex. It stores each vertex of the TIN, as

three coordinates, in a list of vertices, and each triangle

as three vertex indices within such a list. This latter

format can be enriched by adding the adjacency rela-

tion linking each triangle with the three triangles its

shares an edge with. Triangle adjacency links support

efficient navigation inside a TIN. To support an effi-

cient traversal of the mesh passing through vertices, it

is convenient to attach to each vertex the index of one

of its incident triangles. The encoding of a TIN in an

indexed format requires one half of the space of a

triangle soup. The indexed format with adjacencies

requires about 2/3 of the space of a triangle soup.

Data structures and algorithms for TINs [1,3,12]

are more complex than those for RSGs. But, in many

cases, a TIN can reach the same approximation error as

an RGS in terrain representation with a much smaller

number of vertices. The main advantage of a TIN is its

flexibility in adapting the density of sampling in the

case of a terrain with irregular morphology, to include

relevant lines or points, and fit to irregularly shaped

domains. Many multi-resolution terrain models are

TIN-based.

Key Applications
Visualization of terrains is needed in many fields inclu-

ding environmental sciences, architecture, entertainment.

Morphology analysis, which is concerned with the

extraction of ridges, rivers, water basins, is important

in environmental monitoring and planning.
Visibility analysis of a terrain is concerned with the

computation of visible, or invisible, areas from a set of

viewpoints, with the computation of hidden or scenic

paths, with the extraction of networks of mutually

visible points. This is useful in many applications

such as communication, surveillance, visual impact of

infrastructures, etc.

Applications may require computing paths or point

networks of minimum cost according to some criteria

combining visibility, length, height variation, etc. A

wide range of simulations (e.g., flood, erosion, pollu-

tion, etc.) are also possible on a terrain model.

For details, see [3,7,10].

Future Directions
Some geographical applications need to represent

not only the surface of the earth, but also its internal

structure. This requires modeling 3D volumes as well

as 2D surfaces (e.g., boundaries between two rock

layers), and their adjacency relations. 3D extensions

of digital elevation models, such as RSGs and

TINs, leads to regular volume models and irregular

tetrahedral meshes, respectively. Regular volume mod-

els are grids of hexahedral cells connecting the

data points, while irregular tetrahedral meshes are

meshes formed by tetrahedra joining the data points.

Thus, challenging issues arise here, such as the devel-

opment of compact and effective data structures for

encoding digital volumetric models and of efficient

algorithms for building and manipulating such

models.

Another field for 3D terrain modeling is urban

terrain modeling, which provides the integration be-

tween elevation and urban data, i.e., laying buildings

and other landscape or vegetation elements over

Digital Libraries D 821

D

a terrain. With urban terrain models, high-quality

photorealistic rendering of 3D geovirtual environ-

ments can be achieved. These are used in common

products like GoogleEarth [11] or Virtual Earth [6].

Urban terrain modeling has also important applica-

tions to 3D town maps for business and entertainment,

and also for city administration and urban develop-

ment planning.

Another challenging field is incorporating time in a

DEM. This will allow modeling the evolution of a

terrain over time and it is relevant for both historical

record and simulation. From a mathematical point of

view, the reference model is no longer a 2D surface

embedded in 3D space, but a 3D volume embedded in

4D space (where the last dimension is time). Here, it is

necessary to define and develop digital volumetric

models, like regular models and irregular tetrahedral

meshes, but embedded in 4D space.

In all such applications, multi-resolution models

will play an important role, because of the even larger

size of the data sets and of the corresponding volumet-

ric models.

URL to Code
United States Geological Survey (USGS) home page,

http://www.usgs.gov/

Google Earth home page, http://earth.google.com/

Microsoft Virtual Earth home page, http://www.

microsoft.com/virtualearth/

Spatial Data Transfer Standard (SDTS) home page,

http://mcmcweb.er.usgs.gov/sdts/
Cross-references
▶GIS

▶Multi-Resolution Terrain Modeling

▶Three-Dimensional GIS and Geological Applications

▶Triangulated Irregular Network
Recommended Reading
1. de Berg M., van Kreveld M., Overmars M., and Schwarzkopf O.

Computational Geometry – Algorithms and Applications. 2nd

edn. Springer, Berlin, 2000.

2. De Floriani L., Magillo P., and Puppo E., Applications of compu-

tational geometry to Geographic Information Systems. In Hand-

book of Computational Geometry, Chap. 7, J.R. Sack, J. Urrutia

(eds.). Elsevier Science, 1999, pp. 333–388.

3. De Floriani L. and Puppo E. An On-line Algorithm for Con-

strained Delaunay Triangulation, Graphical Models and Image

Processing, 54(4):290–300, 1992.
4. Dyn N., Levin D., and Rippa S. Data dependent triangulations

for piecewise linear interpolation, IMA J. Numer. Analy.,

10:137–154, 1990.

5. Edelsbrunner H. and Tan T.S. An upper bound for conforming

Delaunay triangulation: Discrete Comput. Geom., 10:197–213,

1993.

6. Google Earth home page, http://earth.google.com/

7. Longley P.A., Goodchild M.F., Maguire D.J., and Rhind D.W.

(eds.) Geographical Information Systems, 2nd edn. Wiley, New

York, 1999.

8. Microsoft Virtual Earth home page, http://www.microsoft.com/

virtualearth/

9. O’Rourke J., Computational Geometry in C, 2nd edn.

Cambridge University Press, Cambridge, 1998.

10. Peckham R.J. and Jordan G. (eds.). Digital Terrain Modelling –

Development and Applications in a Policy Support Environ-

ment, Lecture Notes in Geoinformation and Cartography,

Springer, Berlin, 2007.

11. United States Geological Survey (USGS) home page, http://

www.usgs.gov/

12. van Kreveld M. Digital elevation models and TIN algorithms. In

Algorithmic Foundations of Geographic Information Systems,

number 1340 in Lecture Notes in Computer Science (tutorials),

M. van Kreveld, J . Nievergelt, T. Roos, and P. Widmayer (eds.).

Springer, Berlin, 1997, pp. 37–78.
Digital Image

▶ Image
Digital Libraries

VENKAT SRINIVASAN, SEUNGWON YANG,

EDWARD A. FOX

Virginia Tech, Blacksburg, VA, USA

Synonyms
Electronic libraries

Definition
Digital libraries (DLs) are complex information sys-

tems that have facilities for storage, retrieval, delivery,

and presentation of digital information. They are com-

plex in nature because of the broad range of activities

they may need to perform, and because they may

need to serve multiple types of audiences. Thus, the

broadest definitions include the people and agents/actors

involved, as well as the software, content, structure/

organization(s), services, policies, procedures, etc.

822D Digital Libraries
Historical Background
One of the earliest detailed works about digital libraries

(DLs) was prepared by Licklider [8], who envisioned a

network of computers with digitized versions of all of

the literature ever published. However, the term ‘‘digi-

tal library’’ became widely used only around 1991, in

connection with a series of workshops funded by the

US National Science Foundation, which later led to

significant NSF support of R&D DL projects (http://

www.dli2.nsf.gov/), e.g., Informedia, which focused on

digital video [2].

In a Delphi study of digital libraries, Kochtanek et al.

[7] defined a digital library as an ‘‘organized collection

of resources, mechanisms for browsing and searching,

distributed networked environments, and sets of ser-

vices objectified to meet users’ needs.’’ The President’s

Information Technology Advisory Committee (PITAC)

report [12] mentioned ‘‘These new libraries offer digital

versions of traditional library, museum, and archive

holdings, including text, documents, video, sound, and

images. But they also provide powerful new technologi-

cal capabilities that enable users to refine their inquiries,

analyze the results, and change the form of the informa-

tion to interact with it. . .’’.

Starting in 2005, the European Union, through the

DELOS Network of Excellence on Digital Libraries

(http://www.delos.info/) worked to develop a reference

model for the digital library field. Their DL manifesto

[1] defines a digital library as ‘‘a (potentially virtual)

organization that comprehensively collects, manages,

and preserves for the long term rich digital content and

offers to its user communities specialized functionality

on that content, of measurable quality, and according

to prescribed policies.’’

Foundations
While the DELOS Reference Model [1] has aimed to

identify the key constructs of a DL, in order to allow

standardization and interoperability, there is one other

effort that has tried to develop a formal foundation for

the DL field. The 5S framework [4,5] was developed in

the Digital Library Research Laboratory at Virginia

Tech as a scientific base for digital libraries. There are

five elements that underlie DL systems; these can be

described (informally) as:

1. Streams: all types of content, as well as communi-

cations and flows over networks or into sensors, or

sense perceptions. Examples include: text, video,
audio, and image. These can be formalized as a

sequence.

2. Structures: organizational schemes, including data

structures, databases, and knowledge representations.

Examples include: collection, catalog, hypertext, and

document metadata. These can be formalized as a

graph, with labels and a labeling function.

3. Spaces: 2D and 3D interfaces, GIS data, and repre-

sentations of documents and queries. Examples in-

clude: storage spaces used in indexing, browsing, or

searching services, as well as interfaces. These can be

formalized as a set with operations (vector, topolog-

ical, measurable, measure, and probability spaces).

4. Scenarios: system states and events, or situations of

use by human users or machine processes, yielding

services or transformations of data. Examples in-

clude: searching, browsing, and recommending.

These can be formalized as a sequence of related

transition events on a state set.

5. Societies: both software ‘‘service managers’’ and

fairly generic ‘‘actors’’ who could be (collaborating)

human users. Examples include: service managers

(software), actors (learners, teachers, etc.) [1,4,5].

These can be formalized as a pair (i.e., a set of

communities and a set of relationships).

A formal description can be found in [4].

DL systems encompass all the five Ss. The 5 Ss are

also used in a formal definition of a minimal DL [5],

which has the key constructs that most would agree

must be found in any DL system. Of course, most real

DLs are extended well beyond what constitutes a min-

imal DL, to better suit the needs of the users. Accord-

ingly, the 5S framework has led to a growing set of

meta-models for different types of DLs, each formally

defined from a minimalist perspective: archaeological

DL, image DL, personal DL, practical DL, and super-

imposed information DL (supporting annotations and

knowledge management of the annotations and base

information).

DLs also can be understood as a triad (see Fig. 1),

which consists of content, societies, and scenarios.

Digital libraries preserve and provide the ‘‘content’’

which is stored in various formats (Streams). The

contents have certain ‘‘Structures’’ to help DLs effi-

ciently serve their patrons and to help the administra-

tors manage them. ‘‘Spaces’’ are required to store the

content in a DL system. A DL system’s user interface is

the ‘‘Space’’ in which the patrons and the system

Digital Libraries. Figure 1. 5S framework [4,5]

represented as a triad.

Digital Libraries D 823

D

interact, to submit, download, share, and discuss about

the digital contents.

To perform a certain task, a series of steps is need-

ed. The interaction between the system and its patrons

involves ‘‘Scenarios,’’ which often are described as

workflows. Processes to be performed by the system

also belong to this category. For the ‘‘Societies’’ in the

triad, the people involved with any kind of DL activity

would fit into this category.
Building Digital Libraries

Building a DL is not an exact science. The historical

absence of formal models to guide the development of

DLs has led to divergence and duplication of efforts. Also,

interoperability has been a problem. There have been

many distributed, heterogeneous, and federated DLs,

e.g., NCSTRL (http://www.ncstrl.org) or the Alexandria

Digital Library [14], which were built using ad hoc prin-

ciples, wherein interoperability was achieved only on a

case by case basis. Standards have been defined to help

achieve interoperability, for example the Open Archives

Initiative (OAI), (http://www.openarchives.org/) Proto-

col for Metadata Harvesting. Clearly there are tradeoffs

between encouraging innovation and technological im-

provement, between functionality enhancement and au-

tonomy in creating DLs – and compromises made so as

to achieve interoperability.

Fortunately, a number of toolkits have been devel-

oped to aid those developing DLs. One of the first was

the EPrints system (http://www.eprints.org), initially

supporting electronic pre-prints, but later enhanced

to assist with the growing movement toward institu-

tional repositories.
Two other popular systems used to build DLs are

DSpace (http://www.dspace.org/) Greenstone (http://

www.greenstone.org) and Fedora (http://www.fedora.

info/). DSpace can simply be used out of the box to

build a DL. Figure 2 gives a high-level summary of the

parts and architecture of DSpace.

Digital library systems support access through an

application layer (see top of Fig. 2), which typically

includes a User Interface (UI). Also important is

support to load content in batch mode, to aid the

sharing of metadata (e.g., through the OAI proto-

cols), and to facilitate access to particular digital

objects by way of their unique identifiers (e.g., their

handles).

The main operations of a DL can be thought of as

the business logic (see middle of Fig. 2), including key

operations like searching (typically, with DSpace, using

Lucene, see http://lucene.apache.org/) and browsing.

For more flexibility, DLs can manage complex work-

flows. They can support authentication and authoriza-

tion, protecting privacy, management of user groups,

and broad suites of services to access and preserve

content. Ultimately, the content of a DL must be sup-

ported through a storage subsystem (see bottom of

Fig. 2), which typically makes use of database technol-

ogy, as well as handling of multimedia files.

Key Applications
DLs generally are effective content management sys-

tems, offering a broad range of services such as archiv-

ing, digital preservation, browsing, searching, and

presentation. Electronic libraries, virtual libraries, in-

stitutional repositories, digital repositories, courseware

management systems, and personalized information

systems are all considered to be different types of

DLs. Any research in the area of DLs is thus inherently

interdisciplinary in nature, encompassing especially

computer science (CS) areas like database manage-

ment (especially for the underlying storage layer),

information retrieval, multimedia, hypertext, human-

computer interaction, and library and information

science (LIS).

DLs can be applied to a variety of needs. Many DLs

of today are suitable for personal content management

systems, institutional repositories, or distributed glob-

al systems. DLs can be used to preserve documents

(e.g., electronic theses and dissertations, as coordinated

by NDLTD, at http://www.ndltd.org), to manage mul-

timedia content (e.g., Informedia [2], which focuses

Digital Libraries. Figure 2. DSpace institutional repository architecture (from: http://www.dspace.org).

824D Digital Libraries
on video), to support content-based retrieval of images

(e.g., in connection with the needs of archaeologists in

the ETANA DL, at http://www.etana.org), or to handle

a combination of digital formats (e.g., ADEPT [6],

which connects with GIS and mapping efforts).

One example of a highly visible and successful DL

initiative is the Perseus project (http://www.perseus.

tufts.edu/) which digitized ancient Greek literature

and makes it available as an online repository, with

many added services and additional information based

on careful analysis and use of powerful tools. This

project has completely changed the way classics are

taught in universities across the world. Thus, DLs

generally go well beyond archiving, providing value

added services as well.

Another example is the Traditional Knowledge

Digital Library (TKDL) [13], supported by the govern-

ment of India, to digitize traditional Indian medical

literature (relating to Ayurveda) in order to prevent

bio-piracy and patents.
Future Directions
The DL community continues to spread and grow.

Work on curricular resources [3,9,10,11] will help on

the education side. Publishing at conferences and on-

line magazines (e.g., http://www.dlib.org/) will help

with dissemination of findings related to research,

development, practice, and policy. Work on standards

and open access (http://www.openarchives.org/) will

facilitate interoperability. Improvement of systems

like DSpace will help with more widespread utilization

of effective software solutions, including support for

preservation. Additional help with archiving and pres-

ervation, beyond just preserving the bits (see, for ex-

ample, the LOCKSS effort, http://www.lockss.org/), is

required (see for example, http://home.pacbell.net/

hgladney/ddq.htm).

It is hoped that further work on foundations, in-

cluding the 5S framework and the DELOS Reference

Model, will lead to a firm theoretical and practical

base for the field. For example, work to apply 5S

Digital Rights Management D 825

D

to the growing need for personal DLs seems particu-

larly promising, supporting Personal Information

Management.

Greater efficiency and effectiveness of DL systems

can help address problems associated with the ‘‘infor-

mation glut,’’ and work on DL quality metrics can help

those who select or maintain DL systems and installa-

tions. More tools are needed for digital librarians, to

assist them as they address fundamental questions like

what to store, how to preserve, how to protect intellec-

tual property, how to display, etc. These, and many

similar questions, arising from technical, economical,

and sociological perspectives, also will need to be

addressed, as DLs are more widely employed. Then,

efforts in the research, development, deployment, and

operational sectors will better support the growing

community of digital librarians, who aim to provide

interested societies with cyberinfrastructure, which

incorporates suitable organizational structures and ap-

propriate services.

Experimental Results
See http://www.dli2.nsf.gov/

Data Sets
See http://www.dli2.nsf.gov/

Url to Code
See http://www.eprints.org/, http://www.dspace.org/,

and http://www.fedora.info/

Cross-references
▶Browsing

▶ Searching Digital Libraries

Recommended Reading
1. Candela L., Castelli D., Ioannidis Y., Koutrika G., Pagano P., Ross

S., Schek H.-J., and Schuldt H. Setting the foundations of digital

libraries: the DELOS manifesto. D-Lib Mag., 13(3/4), 2007.

2. Christel M., Wactlar H., and Stevens S. Informedia digital video

library. In Proc. 2nd ACM Int. Conf. on Multimedia, 1994,

pp. 480–481.

3. Digital Library Curriculum Development Project homepage

(2007). http://curric.dlib.vt.edu/.

4. Gonçalves M.A. Streams, Structures, Spaces, Scenarios, and

Societies (5S): A Formal Digital Library Framework and Its

Applications. PhD Thesis, Virginia Tech, Department of

Computer Science, 2004.

5. Gonçalves M., Fox E., Watson L., and Kipp N. Streams, struc-

tures, spaces, scenarios, societies (5S): a formal model for digital

libraries. ACM Trans. Inf. Syst., 22:270–312, 2004.
6. Janée G. and Frew J. The ADEPT digital library architecture. In

Proc. ACM/IEEE Joint Conf. on Digital Libraries, 2002.

7. Kochtanek T. and Hein K.K. Delphi study of digital libraries. Inf.

Process. Manage., 35(3):245–254, 1999.

8. Licklider J.C.R. Libraries of the Future. The MIT Press,

Cambridge, MA, 1965.

9. Pomerantz J., Oh S., Wildemuth B., Yang S., and Fox E.A.

Digital library education in computer science programs. In

Proc. ACM/IEEE Joint Conf. on Digital Libraries, 2007.

10. Pomerantz J., Oh S., Yang S., Fox E.A., and Wildemuth B. The

Core: Digital Library Education in Library and Information

Science Programs. D-Lib Magazine, 12(11), 2006.

11. Pomerantz J., Wildemuth B., Oh S., Fox E.A., and Yang S.

Curriculum development for digital libraries. In Proc. ACM/

IEEE Joint Conf. on Digital Libraries, 2006, pp. 175–184.

12. Reddy R. and Wladawsky-Berger I. Digital Libraries: Universal

Access to Human Knowledge – A Report to the President. Pre-

sident’s Information Technology Advisory Committee (PITAC),

Panel on Digital Libraries 2001.

13. Sen N. TKDL - A safeguard for Indian traditional knowledge.

Curr. Sci., 82(9):1070–71, 2002.

14. Smith T.R. and Frew J. Alexandria digital library. Commun.

ACM, 38(4):61–62, 1995.
Digital Rights Management

RADU SION

Stony Brook University, Stony Brook, NY, USA

Synonyms
DRM

Definition
Digital rights management (DRM) is a term that

encompasses mechanisms and protocols deployed by

content publishers and rights holders to enforce access

licensing terms. This entry discusses mainly DRM for

relational data, specifically such methods as database

watermarking. General DRM techniques are discussed

elsewhere [19].
Historical Background
Historically, DRM methods have found ample applica-

tion in consumer entertainment and multimedia indus-

tries since the late 1980s. More recently, with the advent

of massive relational data management and warehous-

ing systems, increasingly, valuable data has been pro-

duced, packaged and delivered in relational form. In

such frameworks, DRM assurances have become an

essential requirement. As traditional multimedia DRM

826D Digital Rights Management
mechanisms are ill-suited for the new data domain,

starting in 2001, researchers developed mechanisms for

relational data rights protection [1,5,10,11,12,13,14,15]

mainly centered around the concept of deploying stega-

nography in hiding copyright ‘‘watermarks’’ in the un-

derlying data. While initial efforts focused on basic

numeric data [5,11,14,6], subsequent work handled cat-

egorical [9,10,14], and streaming [16,18] data types.
Foundations

Overview

As increasing amounts of data are produced, packaged

and delivered in digital form, in a fast, networked envi-

ronment, one of itsmain features threatens to become its

worst enemy: zero-cost verbatim copies. The ability to

produce duplicates of digitalWorks at almost no cost can

now bemisused for illicit profit. Thismandates mechan-

isms for effective rights assessment and protection. Dif-

ferent avenues are available, eachwith its advantages and

drawbacks. Enforcement by legal means is usually inef-

fective, unless augmented by a digital counterpart such

as steganography (information hiding). Digital Water-

marking as a method of rights assessment deploys in-

formation hiding to conceal an indelible ‘‘rights

witness’’ (‘‘rights signature’’, watermark) within the dig-

ital Work to be protected – thus enabling ulterior court-

time proofs associating particular works with their re-

spective rights holders. The soundness of such a method

relies on the assumption that altering the Work in the

process of hiding the mark does not destroy the value of

the Work, while it is difficult for a malicious adversary

(‘‘Mallory’’) to remove or alter the mark beyond detec-

tion without doing so. The ability to resist attacks from

such an adversary, mostly aimed at removing the water-

mark, is one of the major challenges.

Watermarking for Rights Protection

But how does the ability to prove rights in court relates

to the final desiderata, namely to protect those rights?

The ability to prove/assess rights convincingly in court

constitutes a deterrent to malicious Mallory. It thus

becomes a tool for rights protection if counter-incentives

and legal consequences are set high enough. Such a

method only works however if the rightful rights-holder

(Alice) actually knows about Mallory’s misbehavior

and is able to prove to the court that: (i) Mallory

possesses a certain Work X and (ii) X contains a
‘‘convincing’’ (e.g., very rare with respect to the space

of all considered similar Works) and ‘‘relevant’’ water-

mark (e.g., the string ‘‘(c) by Alice’’). This illustrates

the game theoretic nature at the heart of the water-

marking proposition and of information security in

general. Watermarking is a game with two adversaries,

Mallory and Alice. At stake lies the value inherent in a

certain Work X, over which Alice owns certain rights.

When Alice releases X, to the public or to a licensed but

potentially untrusted party, she deploys watermarking for

the purpose of ensuring that one of the following holds:

(i) she can always prove rights in court over any copy or

valuable derivative of X (e.g., segment thereof), (ii) any

existing deviate Y of X, for which she cannot prove

rights, does not preserve any signiicant value (derived

from the value in X), (iii) the cost to produce such an

un-watermarked derived Y of X that is still valuable

(with respect to X) is higher than its value.

Once outsourced, i.e., out of the control of the

watermarker, data might be subjected to a set of attacks

or transformations; these may be malicious – e.g., with

the explicit intent of removing the watermark – or

simply the result of normal use of the data. An effective

watermarking technique must be able to survive such

use. In a relational data framework some of the impor-

tant attacks and transformations are:

1. Sampling. The attacker (Mallory) can randomly

select and use a subset of the watermarked data

set that might still provide value for its intended

purpose (‘‘subset selection’’). More specifically,

here the concern is with both (1a) horizontal and

(1b) vertical data partitioning – in which a valuable

subset of the attributes are selected by Mallory.

2. Data addition. Mallory adds a set of tuples to the

watermarked set. This addition is not to signifi-

cantly alter the useful properties of interest to

Mallory.

3. Alteration. Altering a subset of the items in the

watermarked data set such that there is still value

associated with the result. In the case of numeric

data types, a special case needs to be outlined here,

namely (3a) a linear transformation performed

uniformly to all of the items. This is of particular

interest as it can preserve significant valuable data-

mining related properties of the data.

4. Ulterior claims of rights. Mallory encodes an addi-

tionalwatermark in the alreadywatermarked data set

and claims rights based upon this second watermark.

Digital Rights Management D 827

D

5. Invertibility attack. Mallory attempts to establish a

plausible (watermark,key) pair that matches the

data set and then claims rights based on this

found watermark [2,3].

Consumer Driven Watermarking

An important point about watermarking should be

noted. By its very nature, a watermark modifies the

item being watermarked: it inserts an indelible mark in

the work such that (i) the insertion of the mark does not

destroy the value of the work, i.e., it is still useful for the

intended purpose; and (ii) it is difficult for an adversary

to remove or alter the mark beyond detection without

destroying this value. If the work to be watermarked

cannot be modified without losing its value then a

watermark cannot be inserted. The critical issue is

not to avoid alterations, but to limit them to acceptable

levels with respect to the intended use of the work.

Naturally, one can always identify some use that is

affected by even a minor change to any portion of

the data. It is therefore important that (i) the main

intended purpose and semantics that should be

preserved be identified during watermarking and that

(ii) the watermarking process not interfere with the final

data consumer requirements. This paradigm is called

consumer-driven watermarking. In consumer-driven

watermarking the rights holder andMallory play against

each other within subtle trade-off rules aimed at keep-

ing the quality of the result within acceptable bounds.

The data itself (its quality requirements) acts as an im-

partial referee moderating each and every ‘‘move’’.

In [4] Gross-Amblard introduce interesting theo-

retical results investigating alterations to relational

data (or associated XML) in a consumer-driven frame-

work in which a set of parametric queries are to be

preserved up to an acceptable level of distortion. The

author first shows that the main difficulty preserving

such queries ‘‘is linked to the informational complex-

ity of sets defined by queries, rather than their

computational complexity’’ [4]. Roughly speaking,

if the family of sets defined by the queries is not

learnable [20], no query-preserving data alteration

scheme can be designed. In a second result, the author

shows that under certain assumptions (i.e., query sets

defined by first-order logic and monadic second order

logic on restricted classes of structures – with a bound-

ed degree for the Gaifman graph or the tree-width

of the structure) a query-preserving data alteration

scheme exists.
Numerical Data Types

This section explores some of the watermarking solu-

tions in the context of relational data in which one or

more of the attributes are of a numeric type. Among

existing solutions one distinguishes between single-bit

(the watermark is composed of a single bit) and multi-

bit (the watermark is a string of bits) types. Orthogo-

nally, the encoding methods can be categorized into

two: direct-domain and distribution encodings. In a

direct-domain encoding, each individual bit alteration

in the process of watermarking is directly correlated to

(a part of) the encoded watermark. In distribution

encodings, the encoding channel lies often in higher

order moments of the data (e.g., running means, hier-

archy of value averages). Each individual bit alteration

impacts these moments for the purpose of watermark

encoding, but in itself is not directly correlated to any

one portion of the encoded watermark.

Single-bit encodings. In [1,5] Kiernan, Agrawal et al.

propose a direct domain encoding of a single bit wa-

termark in a numeric relational database. Its main

algorithm proceeds as follows. A subset of tuples are

selected based on a secret criteria; for each tuple, a

secret attribute and corresponding least significant

(x) bit position are chosen. This bit position is then

altered according to yet another secret criteria that is

directly correlated to the watermark bit to be encoded.

The main assumption is, that changes can be made to

any attribute in a tuple at any least significant x bit

positions. At watermark detection time, the process

will re-discover the watermarked tuples and, for each

detected accurate encoding, become more ‘‘confident’’

of a true-positive detection.

The authors discuss additional extensions and

properties of the solution including incremental

updatability, blind properties, optimization of para-

meters, as well as handling relations without primary

keys. To handle the lack of primary keys, the authors

propose to designate another attribute, or a number of

most significant bit-portions of the currently consid-

ered one, as a primary key. This however presents a

significant vulnerability due to the very likely existence

of duplicates in these values. Mallory could mount a

statistical attack by correlating marked bit values

among tuples with the same most significant bits.

This issue has been also considered in [7] where a

similar solution has been adopted.

Multi-bit encodings. While there likely exist appli-

cations whose requirements are satisfied by single-bit

828D Digital Rights Management
watermarks, often it is desirable to provide for ‘‘rele-

vance’’, i.e., linking the encoding to the rights holder

identity. This is especially important if the watermark

aims to defeat against invertibility attacks (5). In a

single-bit encoding this can not be easily achieved.

Additionally, while the main proposition of water-

marking is not covert communication but rather rights

assessment, there could be scenarios where the actual

message payload is of importance. One apparent direct

extension from single-bit to multi-bit watermarks

would be to simply deploy a different encoding, with

a separate watermark key, for each bit of the watermark

to be embedded. This however, might not be possible,

as it will raise significant issues of inter-encoding in-

terference: the encoding of later bits will likely distort

previous ones. This will also make it harder to handle

ulterior claim of rights attacks (4).

In [6] Li et al. extend the work by Kiernan, Agrawal

et al. [1,5] to provide for multi-bit watermarks in a

direct domain encoding. The scheme functions as fol-

lows. The database is parsed and, at each bit-encoding

step, one of the watermark bits is randomly chosen for

embedding; the solution in [1,5] is then deployed to

encode the selected bit in the data at the ‘‘current’’

point. The ‘‘strength of the robustness’’ of the scheme

is claimed to be increased with respect to [1,5] due

to the fact that the watermark now possesses an addi-

tional dimension, namely length. This should guaran-

tee a better upper bound for the probability that a valid

watermark is detected from unmarked data, as well

as for the probability that a fictitious secret key is

discovered from pirated data (i.e., invertibility attacks

(5)). This upper bound is said to be independent of

the size of database relations thus yielding robustness

against attacks that change the size of database rela-

tions. In [8] the same authors propose to use the

multi-bit watermarking method [6] for ‘‘fingerprint-

ing’’ relational data in order to track copyright

violators.

Multi-bit distribution encoding. Encoding water-

marking information in resilient numeric distribution

properties of data presents a set of advantages over

direct domain encoding, the most important one

being its increased resilience to various types of nu-

meric attacks. In [10,11,12,13,14,15], Sion et al. intro-

duce a multi-bit distribution encoding watermarking

scheme for numeric types. The scheme was designed

with both an adversary and a data consumer in mind.

More specifically the main desiderata were: (i)
watermarking should be consumer driven – i.e., de-

sired semantic constraints on the data should be pre-

served – this is enforced by a feedback-driven rollback

mechanism, and (ii) the encoding should survive

important numeric attacks, such as linear transforma-

tion of the data (3.a), sampling (1) and random altera-

tions (3).

The solution starts by receiving as user input

a reference to the relational data to be protected, a

watermark to be encoded as a copyright proof, a secret

key used to protect the encoding and a set of data

quality constraints to be preserved in the result. It

then proceeds to watermark the data while continu-

ously assessing data quality, potentially backtracking

and rolling back undesirable alterations that do not

preserve data quality.

Watermark encoding is composed of two main

parts: in the first stage, the input data set is securely

partitioned into (secret) subsets of items; the second

stage then encodes one bit of the watermark into

each subset. If more subsets (than watermark bits) are

available, error correction is deployed to result in an

increasingly resilient encoding. Each single bit is

encoded/represented by introducing a slight skew bias

in the tails of the numeric distribution of the

corresponding subset. The encoding is proved to be

resilient to important classes of attacks, including sub-

set selection, linear data changes and random item(s)

alterations.

In [10,14,15] the authors discuss a proof of concept

implementation. It is worth mentioning here due to

its consumer-driven design. In addition to a water-

mark to be embedded, a secret key to be used for

embedding, and a set of relations/attributes to water-

mark, the software receives as input also a set of exter-

nal usability plugin modules. The role of these plugins is

to allow user defined query metrics to be deployed

and queried at run-time without re-compilation

and/or software restart. The software uses those

metrics to re-evaluate data usability after each atomic

watermarking step.

To validate this consumer driven design the authors

perform a set of experiments showing how, for exam-

ple, watermarking with classification preservation can

be enforced through the usability metric plugin

mechanisms. Moreover, the solution is proved experi-

mentally on real data to be extremely resilient to ran-

dom alterations and uninformed alteration attacks.

This is due to its distribution-based encoding which

Digital Rights Management D 829

D

can naturally survive such alterations. For example,

altering the entire watermarked data set within 1% of

its original values only yields a distortion of less than

5% in the detected watermark.

Categorical Data Types

Categorical data is data drawn from a discrete distri-

bution, often with a finite domain. By definition, it is

either non-ordered (nominal) such as gender or city,

or ordered (ordinal) such as high, medium, or low

temperatures. There are a multitude of applications

that would benefit from a method of rights protection

for such data.

Additional challenges in this domain derive

from the fact that one cannot rely on arbitrary small

(e.g., numeric) alterations to the data in the embed-

ding process. Any alteration has the potential to be

significant, e.g., changing DEPARTURE_CITY from

‘‘Chicago’’ to ‘‘Bucharest’’ is likely to affect the data

quality of the result more than a simple change in a

numeric domain. There are no ‘‘epsilon’’ changes in

this domain. This completely discrete characteristic of

the data requires discovery of fundamentally new

bandwidth channels and associated encoding algo-

rithms. Moreover, the ability of the adversary to simply

re-map attributes values to a new domain needs to be

considered.

In [9,17] Sion et al. introduce a method of water-

marking relational data with categorical types, based on

a set of new encoding channels and algorithms. More

specifically, two domain-specific watermark embedding

channels are used, namely (i) inter-attribute associa-

tions and (ii) value occurrence frequency-transforms of

values. The mechanism starts with an initial user-level

assessment step in which a set of attributes to

be watermarked are selected. In its basic version,

watermark encoding in the inter-attribute association

channel is deployed for each attribute pair (K,A) in

the considered attribute set. A subset of ‘‘fit’’ tuples

is selected, as determined by the association between

A and K. These tuples are then considered for mark

encoding. Mark encoding alters the tuple’s value

according to secret criteria that induces a statistical

bias in the distribution for that tuple’s altered value.

The detection process then relies on discovering this

induced statistical bias. The authors validate the solu-

tion both theoretically and experimentally on real

data (Wal–Mart sales). They demonstrate resilience to

both alteration and data loss attacks, for example being
able to recover over 75% of the watermark from under

20% of the data.

The authors further discuss additional extensions

and properties of the solution, including a consumer-

driven design, incremental updatability, its blind nature,

optimizations for minimizing alteration distances, as

well as the ability to survive extreme vertical partition-

ing, handle multiple data sources as well as attribute

re-mapping.

Key Applications
Rights protection for relational data is important in

scenarios where it is sensitive, valuable and about to be

outsourced. A good example is a data mining applica-

tion, where data is sold in pieces to parties specialized

in mining it, e.g., sales patterns database, oil drilling

data, financial data. Other scenarios involve for exam-

ple online B2B interactions, e.g., airline reservation

and scheduling portals, in which data is made available

for direct, interactive use.

Watermarking in relational frameworks is a rela-

tively young technology that has begun its maturity

cycle towards full deployment in industry-level appli-

cations. Many of the solutions discussed above have

been prototyped and validated on real data. Patents

have been filed for several of them, including Agrawal

et al. [1,5] and Sion et al. [9,10,11,12,13,14,15,17]. In

the next few years one expects these solutions to be-

come available commercially, tightly integrated within

existing DBMS or as stand-alone packages that can be

deployed simultaneously on top of multiple data types

and sources. Ultimately, the process of resilient infor-

mation hiding will become available as a secure mech-

anism for not only rights protection but also data

tracing and authentication in a multitude of discrete

data frameworks.

Future Directions
Amultitude of associated future research avenues pres-

ent themselves in a relational framework, including:

the design of alternative primary or pseudo-primary

key independent encoding methods, a deeper theoreti-

cal understanding of limits of watermarking for a

broader class of algorithms, the ability to better defeat

additive watermark attacks, an exploration of zero-

knowledge watermarking, etc.

Moreover, while the concept of on-the-fly quality

assessment for a consumer-driven design has the po-

tential to function well, another interesting avenue for

830D Digital Signatures
further research would be to augment the encoding

method with direct awareness of semantic consistency

(e.g., classification and association rules). This would

likely result in an increase in available encoding band-

width, thus in a higher encoding resilience. One idea

would be to define a generic language (possibly subset

of SQL) able to naturally express such constraints and

their propagation at embedding time.

Additionally, of particular interest for future re-

search exploration are cross-domain applications of

information hiding in distributed environments such

as sensor networks, with applications ranging from

resilient content annotation to runtime authentication

and data integrity proofs.
Cross-references
▶ Steganography
Recommended Reading
1. Agrawal R., Haas P.J., and Kiernan J. Watermarking relational

data: framework, algorithms and analysis. VLDB J., 12

(2):157–169, 2003.

2. Craver S., Memon N., Yeo B.-L., and Yeung M.M. Resolving

rightful ownerships with invisible watermarking techniques:

Limitations, attacks, and implications. IEEE J. Select. Areas

Commun., 16(4):573–586, 1998.

3. Cox I., Bloom J., and Miller M. Digital watermarking. In Digital

Watermarking. Morgan Kaufmann, 2001.

4. Gross-Amblard D. Query-preserving watermarking of relational

databases and xml documents. In Proc. 22nd ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems.

2003, pp. 191–201.

5. Kiernan J. and Agrawal R. Watermarking relational

databases. In Proc. 28th Int. Conf. on Very Large Data Bases,

2002.

6. Li Y., Swarup V., and Jajodia S. A robust watermarking scheme

for relational data. In Proc. Workshop on Information Technol-

ogy and Systems, 2003, pp. 195–200.

7. Li Y., Swarup V., and Jajodia S. Constructing a virtual primary key

for fingerprinting relational data. In Proc. 2003 ACM Workshop

on Digital Rights Management, 2003, pp. 133–141.

8. Li Y., Swarup V., and Jajodia S. Fingerprinting relational data-

bases: Schemes and specialties. IEEE Transactions on Depend-

able and Secure Computing, 2(1):34–45, 2005.

9. Sion R. Proving ownership over categorical data. In Proc. 20th

Int. Conf. on Data Engineering, 2004.

10. Sion R. wmdb.*: A suite for database watermarking (demo). In

Proc. 20th Int. Conf. on Data Engineering, 2004.

11. Sion R., Atallah M., and Prabhakar S. On watermarking numeric

sets CERIAS Tech. Rep. 2001-60, Purdue University, 2001.

12. Sion R., Atallah M., and Prabhakar S. On watermarking

numeric sets. In Proc. Int. Workshop on Digital Watermarking,

2002.
13. Sion R., Atallah M., and Prabhakar S. Watermarking Databases

CERIAS TR 2002-28, Purdue University, 2002.

14. Sion R., Atallah M., and Prabhakar S. Rights protection for

relational data. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2003.

15. Sion R., Atallah M., and Prabhakar S. Relational data rights

protection through watermarking. IEEE Trans. Knowledge and

Data Eng., 16(6), 2004.

16. Sion R., Atallah M., and Prabhakar S. Resilient rights protection

for sensor streams. In Proc. 30th Int. Conf. on Very Large Data

Bases, 2004.

17. Sion R., Atallah M., and Prabhakar S. Rights Protection for

categorical data. IEEE Trans. Knowledge and Data Eng., 17

(7):912–926, 2005.

18. Sion R., Atallah M., and Prabhakar S. Rights protection for

discrete numeric streams. IEEE Trans. Knowledge and Data

Eng., 18(5), 2006.

19. Wikipedia. Digital Rights Management. http://en.wikipedia.org/

wiki/Digital_rights_management.

20. Valiant L.G. A theory of the learnable. In Proc. Symp. on the

Theory of Computing. 1984, pp. 436–445.
Digital Signatures

BARBARA CARMINATI

University of Insubria, Varese, Italy

Synonyms
Signatures

Definition
Informally, given a message M, the digital signature of

M generated by a signer S is a bit string univocally

bound to M and some secret key known only by S.

More precisely, since digital signature schemes are

based on asymmetric cryptography, it is possible to

define the digital signature of M generated by S as a

bit string dependent on M and the private key of S.

Digital signature schemes have the property that sig-

natures generated with a private key can be validated

only by the corresponding public key. This ensures the

authenticity of the message. Moreover, any modifica-

tion on the signed message will invalidate the signature

itself. This means that if the signature is validated

it provides an evidence that the message has not

been altered after the digital signature has been applied

on it. This ensures the integrity of the message.

Historical Background
The notion of digital signature appeared in 1976 in

a paper by Diffie and Hellman [1]. In this paper,

Digital Signatures D 831

D

authors introduced for the first time the concept

of asymmetric cryptography and discussed how it

could be combined with one-way functions to ensure

message authentication. However, the first digital sig-

nature scheme with a practical implementation

appeared only in 1978, proposed by Rivest et al. [7],

and still represents one of the most exploited signature

technique. Later on, several other schemes have been

proposed with an improved efficiency and/or offering

further functionalities (see [4] for a survey). An exam-

ple of these schemes are one-time signatures, that is,

digital signature schemes where keys can be used to

sign, at most, one message. These schemes have the

benefit that are very efficient, making them particularly

useful in applications requiring a low computational

complexity. Other examples are, for instance, arbitrated

digital signatures, where signatures are generated and

verified with the cooperation of a trusted third party,

or blind signature schemes devised in such a way that a

signer is not able to observe the message it signs. This

latter scheme are useful in digital cash protocols or

electronic voting systems.

Foundations
Digital signatures have been introduced to obtain, in

a digital form, the benefits of handwritten signatures.

In general, by appending a handwritten signature to a

document, the signer provides evidence that he or she

has validated the document. This could mean that the

document has been generated, modified, or at least

simply read for approval by the person who claims to

have done it. In a similar way, digital signatures aim to

provide evidence that the signer has really elaborated

the message. To achieve this result, digital signatures

exploit asymmetric cryptography and collision-resistant
Digital Signatures. Figure 1. (a) Digital signature generation
hash functions. This implies that a user A willing to

digitally sign a message has to be provided with a key

pair consisting of a private key, SKA, and a public key,

PKA. The security of the digital signature relies on

the assumption that the private key is kept secret by

the owner itself, whereas the public key is available to

all users. Note that various digital signature schemes

have been proposed, with differen signature and verifi-

cation algorithms, which will be discussed later on.

However, independently from the adopted algorithms,

the overall process to generate an validate a digital

signature is always the same. As an example, assume

that Alice wishes to send Bob a messag M completed

with its digital signature, denoted a DSAðMÞ. The
procedure to sign and verify the signature is described

in what follows.

Digital signature generation. To sign a message M,

Alice first generates a condensed version of M, called

digest of the message, which is obtained by a collision

resistant hash function h(). Then, the digest is signed

using Alice’s private key (cf. Fig. 1a). Notice that ‘‘sign-

ing’’ a digest implies to apply on it a set of transforma-

tions according to the digital signature scheme

adopted.

Digital signature verification. Assuming that Bob

receives the message M0 from Alice. To validate its

digital signature, i.e., to verify whether M0 is equal to

M, he first computes the digest of M0 by using the

same hash function used for signature generation.

Then, using Alice’s public key and the new digest

value he can verify whether the digital signature is

valid or not (cf. Fig. 1b).

Digital signatures provide several benefits. The first is

related to the property of asymmetric cryptography
. (b) Digital signature verification.

832D Digital Signatures
ensuring that it is computationally infeasible to vali-

date a signature DSA(M) with a public key PKx differ-

ent from the one corresponding to the private key used

for signature creation. Thus, if the signature is verified,

it guarantees that the message has been really generated

by the owner of the private key, that is, it ensures the

authenticity of the message. This property entails as

further benefits, the non repudiation of the message.

Indeed, in case of a lying signer A claiming that the

message was not generated by him or her, the digital

signature DSA(M) acts like an evidence of the oppo-

site, making thus A not able to repudiate the message.

A further benefit is given by properties of hash func-

tions, which ensures that it is computationally infeasi-

ble to find two different messagesM andM0such that

h(M) ¼ h(M). Thus, if the signature is validated, it

means that the digest computed on the received

message matches the digest extracted during the verifi-

cation process. A validated signature provides, there-

fore, evidence that the message has not been altered

after the digital signature has been applied on it. This

ensures the integrity of the message.

In the following, two of the most used digital

signature schemes, that is, the DSA and RSA algo-

rithms, are illustrated (see [4] for a detailed description

of them). However, for a more comprehensive

overview of digital signatures, besides cryptographic

details it is interesting to have also an example of

how they can be used in real world scenarios. Given

its relevance, it is considered the Web as reference

scenario. For this reason, in the second part of

this entry it is presented the standard proposed by

W3C for digital signature encoding, called XML

Signature [8].
Digital Signature Schemes

In general, a digital signature scheme is defined accord-

ing to three algorithms:

1. Key generation algorithm that randomly computes a

pair of keys (SKA, PKA) for the signer A.

2. Signature generation algorithm S(), which receives

as input the messagM to be digitally signed (Here-

after, the discussion refers to a generic message M.

However, it is important to recall that the signature

process usually requires to digitally sign the digest

of the original message.), the private key SKA of the

signer and generates the digital signature DSA(M)

of the message M.
3. Signature verification algorithm V(), that takes as

input the digital signature DSA(M) of the message

M, the public key PKA of the signer and, optional-

ly, the message M, and returns whether the verifi-

cation succeeds or not.

It is possible to organize the many schemes proposed

in the literature into two main classes, that is, digital

signature schemes with appendix and digital signature

schemes with message recovery, which are described in

what follows.
Digital Signature Schemes with Appendix

The main characteristic that distinguishes these

schemes with regard to those with message recovery

is that they require the original message during the

verification process. Thus, together with the signer’s

public key and the digital signature, the verification

algorithm takes as input also the original message. This

implies that the signer A has to send to the intended

verifier B the original message complemented with its

digital signature as ‘‘appendix.’’

In the literature, there exist several digital signature

schemes with appendix. However, the most relevant

and recognized is the one proposed in 1991 by the U.S.

National Institute of Standards and Technology

(NIST). The scheme, called Digital Signature Algo-

rithm (DSA) [3], became an U.S. Federal Information

Processing Standard (FIPS 186) in 1993, with the aim

to be the first digital signature scheme recognized by

any government (i.e., a Digital Signature Standard –

DSS) (In 2000, NIST extended the standard to three

FIPS-approved algorithms: Digital Signature Algo-

rithm (DSA), RSA (as specified in ANSI X9.31), and

Elliptic Curve DSA (ECDSA; as specified in ANSI

X9.62).).

A summary of DSA algorithms is given in the

following (the interested reader can refer to [6] for

more details).

DSA – Key generation algorithm. Let A be the entity

for which public and private keys are generated. PKA

and SKA are calculated as follows:

1. Select a prime number p, where 2L�1 < p < 2L, L is

multiple of 64, and 512 � L � 1024;

2. Select q, a prime divisor of p � 1, where 2159 < q <

2160;

3. Select g, a number whose multiplicative order

modulo p is q. (This can be calculated by g =

Digital Signatures D 833

D

h(p�1)∕q mod p, where h is any integer with 1 < h <

p � 1 such that h(p�1)∕q mod p > 1);

4. Generate a random or pseudorandom integer x,

where 0 < x < q;

5. Calculate y = gx mod p;

6. Set PKA = (p, q, g, y) and SKA = (x);

DSA – Signature algorithm. LetM be the message to be

signed with PKA, and h() be an hash function (FIPS

186–2 uses SHA-1 as hash function [5]. The forthcom-

ing FIPS 186–3 uses SHA-224/256/384/512.), the digi-

tal signature DSA(M) is generated as follows:

1. Generate a random or pseudorandom integer k,

where 0 < k < q;

2. Calculate r = gk mod p;

3. Calculate s = (k�1(h(m) + xr)) mod q, where k�1 is

the multiplicative inverse of k;

4. Set DSA(M) = (r,s);

DSA-Signature verification algorithm. Let M 0, r 0, and

s 0 be the received versions ofM, r, and s. To validate the

digital signature, an entity B should do the following:

1. Obtain the public key of A, PKA = (p, q, g, y);

2. Verify that 0 < r 0 < q and 0 < s 0 < q, if not the

signature shall be rejected;

3. Compute w = (s 0)�1 mod q;

4. Compute u1 = (h(M 0)w) mod q and u2 = (r 0w)

mod q;

5. Compute v ¼ ðððgÞu1ðyÞu2Þ mod p) mod q;

6. If v = r 0, then the signature is verified.

Digital Signature Schemes with Message Recovery

Differently to the previous signature schemes, these

schemes do not require the original message during

the verification process. In contrast, by taking as input

only the digital signature and the public key of the

signer, the verification algorithm V() recovers the orig-

inal message M directly from the digital signature. The

main advantage of these schemes is that they minimize

the length of the message to be transmitted, in that

only the digital signature has to be sent. This makes the

digital signatures with message recovery particularly

tailored to applications where the bandwidth is one

of the main concern.

However, it is important to notice that adopting

these schemes in the digital signature process depicted

in Fig. 1 requires to send the original message even

if V() is able to recover the message. Indeed, if the

message is hashed before signing it, these schemes are
not able to recover the original message, rather they

recover only its digest. Having the digest without the

original message makes the receiver not able to verify

the message integrity, in that it is not possible to match

the two hash values. For this reason, when these

schemes are adopted in the standard digital signature

process (see Fig. 1) they are used like schemes with

appendix, i.e., the digital signature is appended to the

corresponding message.

One of the most known digital signature scheme

with message recovery is the RSA algorithm [7], which

is the first one in public-key cryptography to be suit-

able for signature as well as encryption. RSA algo-

rithms are briefly illustrated in what follows, by

focusing only on signatures. An interested reader

should refer to [4] for a deeper discussion on RSA

public key cryptography, and to PKCS#1 standard [2]

for details on RSA implementation.

RSA – Key generation algorithm. Let A be the entity

for which public and private keys are generated. PKA

and SKA are calculated as follows:

1. Generate two large random or pseudorandom

prime numbers p and q;

2. Compute n = pq and f = (p � 1)(q � 1);

3. Select a random integer e, 1 < e < f, such that gcd

(e; f) = 1;

4. Compute the unique integer d, 1< d< f, such that
ed
 1(mod f);

5. Set PKA = (n, e) and SKA = (n, d);

RSA - Signature algorithm. Let M be the message to be

signed with SKA. The digital signature DSA(M) is gen-

erated as follows:

1. Compute s = Md mod n;

2. Set DSA(M) = (s).

RSA – Signature verification algorithm. Let s0 be the

received versions of s. To validate the digital signature

an entity B should do the following:

1. Compute M 0 = s 0e mod n;

2. If M = M0, then the signature is verified.

XML Signature

In conjunction with IETF, the W3C XML Signature

Working Group has proposed a recommendation,

called XML Signature [8], with the twofold goal of

defining an XML representation for digital signatures

of arbitrary data contents, as well as a description of

Digital Signatures. Figure 2. Taxonomy of XML Signatures.

Digital Signatures. Figure 3. Basic structure of an XML

Signature.

834D Digital Signatures
the operations to be performed as part of signature

generation and validation. The proposed XML syntax

has been designed to be very flexible and extensible,

with the result that a single XML Signature can sign

more that one type of digital content. For instance, a

single XML Signature can be used to sign an HTML file

and all the JPEG files containing images linked to the

HTML page. The overall idea is that data to be signed

are digested, each digest value is placed into a distinct

XML element with other additional information need-

ed for the validation. Then, all the resulting XML

elements are inserted into a parent element, which is

digested and digitally signed.

Additionally, the standard supports a variety of

strategies to locate the data being signed. These data

can be either external or local data, that is, a portion of

the XML document containing the signature itself. In

particular, the XML Signature recommendation sup-

ports three different kinds of signatures, which differ

for the localization of the signed data with regard to

the XML element encoding its signature (see Fig. 2):

the Enveloping Signature, where the signed data is em-

bedded into the XML Signature; the Enveloped Signa-

ture, in which the signed data embeds its signature; the

Detached Signature, where the signed data is either an

external data, or a local data included as a sibling

element of its signature.

In what follows, a brief overview of the process

needed for XML Signature generation is given. In

describing these steps the basic structure of an

XML Signature, reported in Fig. 3, is referred, where

symbol ‘‘?’’ denotes zero or one occurrences; ‘‘þ’’
denotes one or more occurrences; and ‘‘∗’’ denotes

zero or more occurrences.

The first step in the generation of an XML signa-

ture requires to specify which are the data to be signed.

To this purpose, an XML Signature contains a Refer-

ence element for each signed data, whose URI attri-

bute stores the address of the signed data (In the case of

enveloping signatures, URI attribute is omitted since

the data is contained in the signature element itself,

whereas for enveloped signature the URI attribute

denotes the element being signed via a fragment iden-

tifier.). Then, the digest of the data is calculated and

placed into the DigestValue supplement. Informa-

tion on the algorithm used to generate the digest

Digital Video Search D 835

D

are stored into the DigestMethod element. The Ref-

erence element may contain an optional Trans-

forms subelement specifying an ordered list of

transformations (such as for instance canonicalization,

compression, XSLT/XPath expressions) that have been

applied to the data before it was digested. The next step

is to collect all the Reference elements into a Sign-

edInfo element, which contains the information that

is actually signed. Before applying the digital signature,

the SignedInfo element is transformed into a stan-

dard form, called canonical form. The aim of such

transformation is that of eliminating from the element

additional symbols eventually introduced during the

processing (for instance, spaces introduced by an XML

parser and so on), that may cause mistakes during the

signature validation process. After the canonical form

has been generated, the digest of the whole Signe-

dInfo element is computed and signed. The resulting

value is stored into the SignatureValue element,

whereas information about the algorithm used for

generating the digital signature is contained in the

SignatureMethod element. The Signature ele-

ment can also give the recipient additional information

to obtain the keys to validate the signature. Such infor-

mation is stored into the optional KeyInfo subele-

ment. The last step is to wrap the SignedInfo,

SignatureValue, and KeyInfo elements into a

Signature element. In the case of enveloping signa-

ture the Signature element also contains the data

being signed, wrapped into the Object subelement.

Key Applications
Digital signatures are widely adopted in scenarios

where assurances of message authenticity and integrity

are crucial. Examples of these scenarios are email

applications. Due to the relevance of these applica-

tions, two different recommendation for applying dig-

ital signatures to email have been proposed (i.e., PGP

and S/MIME). Other scenarios are those requiring the

authenticity and integrity of messages exchanged dur-

ing protocols execution, like, for instance, the SSL

protocol which exploits digital signatures to create

secure Web sessions. A further relevant scenario is

given by Public Key Infrastructure (PKI). PKIs have

been introduced to univocally bind public keys to the

respective owners. PKI assumes the existence of one

or more trusted Certificate Authorities (CAs) in charge

of generating public key certificates containing infor-

mation about the identity of the key owner. To provide
evidence that a public key certificate has been gener-

ated by a CA, PKI requires that certificates are digitally

signed by CA.

Cross-references
▶Asymmetric Cryptography

▶Blind Signatures

▶Hash Functions

▶XML

Recommended Reading
1. Diffie W. and Hellman M. New directions in cryptography. IEEE

Trans. Inf. Theory, IT-22(6):644–654, 1976.

2. Jonsson J. and Kaliski B. Public-Key Cryptography Standards

(PKCS) No. 1: RSA Cryptography. Request for Comments 3447,

February 2003.

3. Kravitz D.W. (1993) Digital Signature Algorithm. U.S. Patent

No. 5, 231, 668.

4. Menezes A.J., van Oorschot P.C., and Vanstone S.A. Handbook

of Applied Cryptography. CRC, 1996.

5. National Institute of Standards and Technology. Secure Hash

Standard. Federal Information Processing Standards Publica-

tion, FIPS 180–1, 1995.

6. National Institute of Standards and Technology. Digital Signa-

ture Standard (DSS). Federal Information Processing Standards

Publication, FIPS 186–2, 2000.

7. Rivest R.L., Shamir A., and Adleman L.M. A method for obtain-

ing digital signatures and public-key cryptosystems. Commun.

ACM, 21:120–126,1978.

8. World Wide Web Consortium. XML-Signature Syntax and Pro-

cessing. W3C Recommendation, 2002.
Digital Surface Model

▶Digital Elevation Models (DEMs)
Digital Terrain Model (DTM)

▶Digital Elevation Models (DEMs)
Digital Video Retrieval

▶Content-Based Video Retrieval
Digital Video Search

▶Content-Based Video Retrieval

836D Dimension
Dimension

TORBEN BACH PEDERSEN

Aalborg University, Aalborg, Denmark

Definition
A dimension is a hierarchically organized set of dimen-

sion values, providing categorical information for

characterizing a particular aspect of the data stored in

a multidimensional cube.

Key Points
As an example, a three-dimensional cube for capturing

sales may have a Product dimension, a Time dimension,

and a Store dimension. The Product dimension captures

information about the product sold, such as textual

description, color, weight, etc., as well as groupings of

products (product groups, product families, etc.). The

Time dimension captures information about the time

of the sale, at the Date level or finer, as well as groupings

of time such as Week, Month, Weekday, Quarter and

Year. It may also contain application-specific time-

related information, e.g., what the temperature was on

the particular day (interesting for ice cream sellers) or

whether there was a special event in town on that day,

e.g., a big sports event. The Store dimension captures

information about stores (Name, Size, Layout), as well as

various groupings of Stores (City, State, Sales District).

The notion of a dimension is an essential and

distinguishing concept for multidimensional cubes,

where dimensions are a first-class object. Dimensions

are used for two purposes: the selection of data and

the grouping of data at a desired level of detail. A

dimension is organized into a containment-like hierar-

chy composed of a number of levels, each of which

represents a level of detail that is of interest to the

analyses to be performed. The instances of the dimen-

sion are typically called dimension values. Each such

value belongs to a particular level.

In some multidimensional models, a dimension

level may have associated with it a number of level

properties that are used to hold simple, non-hierarchical

information. For example, the Weekday of a particular

date can be a level property in the Date level of

the Time dimension. This information could also be

captured using an extra Weekday dimension. Using

the level property has the effect of not increasing the

dimensionality of the cube.
Unlike the linear spaces used in matrix algebra,

there is typically no ordering and/or distance metric

on the dimension values in multidimensional models.

Rather, the only ordering is the containment of lower-

level values in higher-level values. However, for some

dimensions, e.g., the Time dimension, an ordering

of the dimension values is available and is used for

calculating cumulative information such as ‘‘total sales

in year to date.’’

When implemented in a relational database, a di-

mension is stored in one or more dimension tables

using either a so-called star schema (one table per

dimension, with a surrogate key and one column

per dimension level or level property) or a so-called

snowflake schema (one table per dimension level, each

with a surrogate key and an attribute for the textual

name of the dimension value, as well as one attribute

per level property).
Cross-references
▶Cube

▶Hierarchy

▶Multidimensional Modeling

▶ Snowflake Schema

▶ Star Schema
Recommended Reading
1. Kimball R., Reeves L., Ross M., and Thornthwaite W. The Data

Warehouse Lifecycle Toolkit. Wiley Computer, 1998.

2. Pedersen T.B., Jensen C.S., and Dyreson C.E. A foundation for

capturing and querying complex multidimensional data. Inf.

Syst., 26(5):383–423, 2001.

3. Thomsen E. OLAP Solutions: Building Multidimensional Infor-

mation Systems. Wiley, New York, 1997.
Dimensional Modeling

▶Multidimensional Modeling
Dimensionality Curse

▶Curse of Dimensionality

Dimensionality Reduction D 837

D

Dimensionality Reduction

HENG TAO SHEN

The University of Queensland, Brisbane, QLD,

Australia

Definition
From database perspective, dimensionality reduction

(DR) is to map the original high-dimensional data into

a lower dimensional representation that captures the

content in the original data, according to some criteri-

on. Formally, given a data point P = {p1, p2,...,pD} inD-

dimensional space, DR is to find a d-dimensional sub-

space, where d < D, such that P is represented by a d-

dimensional point by projecting P into the

d-dimensional subspace.
Key Points
Advances in data collection and storage capabilities

have led to an information overload in most sciences.

Many new and emerging data types, such as multime-

dia, time series, biological sequence, have been studied

extensively in the past and present new challenges

in data analysis and management due to their high

dimensionality of data space. One known phenome-

non of ‘‘dimensionality curse’’ leads traditional data

access methods to fail [3]. High-dimensional datasets

present many mathematical challenges as well as

some opportunities. In many cases, not all dimensions

are equally ‘‘important’’ for understanding the under-

lying data. It is of interest in many applications to

reduce the dimension of the original data prior to

any modelling and indexing of the data, due to effi-

ciency and effectiveness concerns. Generally, di-

mensionality reduction can be used for the following

purposes:

Simplifying complex data: for many applications,

particularly in database and information retrieval, high

dimensionality of feature space leads to high complex-

ity of data representation. The dimensionality has to be

reduced to achieve satisfactory performance for an

indexing structure. Typical methods include tradition-

al Discrete Fourier transform (DFT) and Discrete

Wavelet Transform (DWT), Adaptive Piecewise Con-

stant Approximation (APCA), Principle Component

Analysis (PCA) and its various improvements, Latent

Semantic Indexing and its variants, and Locality Pres-

ervation Projection (LPP) etc. For these types of
applications, the dimensionality reduction method

must have an explicit mapping function to map the

query points into the low-dimensional subspace for

similarity search [2].

Modeling and analyzing data: for many applications,

particularly in classification and pattern recognition, the

underlying data structure is often embedded in a much

lower-dimensional subspace. The task of recovering the

meaningful low-dimensional structures hidden in high-

dimensional data is also known as ‘‘manifold learning’’.

Typical methods include Independent Component

Analysis (ICA), Multidimensional Scaling (MDS),

Isometric feature Mapping (Isomap) and its improve-

ments, Locally Linear Embedding (LLE), Laplacian

Eigenmaps, Semantic Subspace Projection (SSP), etc.

For these types of applications, the dimensionality re-

duction is typically a very expensive process and per-

formed on a small set of sample points for learning

purpose. Since they are defined only on the sample/

training data and have no explicit mapping function,

they are not applicable to information retrieval and

database applications [1].

Dimensionality reduction methods can be categor-

ized to be linear or non-linear. Linear techniques are

based on the linear combination of the original dimen-

sions, while non-linear methods are mainly used to

find an embedded non-linear manifold within the

high dimensional space.
Cross-references
▶Discrete Fourier Transform (Dft)

▶Discrete Wavelet Transform and Wavelet Synopses

▶ Independent Component Analysis (Ica)

▶ Isometric Feature Mapping (Isomap)

▶ Latent Semantic Indexing

▶ Locality-Preserving Mapping

▶ Locally Linear Embedding (Lle) Laplacian Eigenmaps

▶Multidimensional Scaling

▶Principle Component Analysis

▶ Semantic Subspace Projection (Ssp)
Recommended Reading
1. Roweis S.T. and Saul L.K. Nonlinear dimensionality reduction

by locally linear embedding. Science, 290(5500):2323–2326,

2000.

2. Shen H.T., Zhou X., and Zhou A. An adaptive and dynamic

dimensionality reduction method for high-dimensional

indexing. VLDB J, 16(2):219–234, 2007.

838D Dimension Reduction Techniques for Clustering
3. Weber R., Schek H.-J., Blott S. A quantitative analysis and

performance study for similarity-search methods in high-

dimensional spaces. In Proc. 24th Int. Conf. on Very Large

Data Bases, 1998, pp. 194–205.
Dimension Reduction Techniques
for Clustering

CHRIS DING

University of Texas at Arlington, Arlington, TX, USA

Synonyms
Subspace selection; Graph embedding

Definition
High dimensional datasets is frequently encountered in

data mining and statistical learning. Dimension reduc-

tion eliminates noisy data dimensions and thus and

improves accuracy in classification and clustering, in

addition to reduced computational cost. Here the

focus is on unsupervised dimension reduction. The

wide used technique is principal component analysis

which is closely related to K-means cluster. Another

popular method is Laplacian embedding which is

closely related to spectral clustering.

Historical Background
Principal component analysis (PCA) was introduced

by Pearson in 1901 and formalized in 1933 by Hotell-

ing. PCA is the foundation for modern dimension

reduction. A large number of linear dimension reduc-

tion techniques were developed during 1950–1970s.

Laplacian graph embedding (also called quadratic

placement) is developed by Hall [8] in 1971. Spectral

graph partitioning [6], is initially studied in 1970s; it

is fully developed and becomes popular in 1990s for

circuit layout in VLSI community (see a review [1]),

graph partitioning [10] and data clustering [3,7,11]. It

is now standard technique [2,9].

Foundations
High dimensional datasets is frequently encountered in

applications, such as information retrieval, image pro-

cessing, computational biology, global climate re-

search, For example, in text processing, the dimension

of a word vector is the size of the vocabulary of

a document collection, which is typically tens of

thousands. In molecular biology, human DNA gene
expression profiles typically involve thousands of

genes, which is the problem dimension. In image pro-

cessing, a typical 2D image has 1282 = 16,384 pixels

or dimensions.

Clustering data in such high dimension is a chal-

lenging problem. Popular clustering methods such as

K-means and EM methods suffer from the well-known

local minima problem: as iterations proceed, the system

is often trapped in the local minima in the configuration

space, due to the greedy nature of these algorithms. In

high dimensions, the iso-surface (where the clustering

cost function remains constant) is very rugged, the

system almost always gets trapped somewhere close to

the initial starting configuration. In other words, it is

difficult to sample through a large configuration space.

This is sometimes called curse of dimension. Dimension

reduction is widely used to relieve the problem. In this

direction, the principal component analysis (PCA) is

the most widely adopted. PCA is an example of linear

dimension reduction or mapping.

A related problem is graph clustering. Given a

graph with n nodes (objects) and a square matrix of

pairwise similarities as the edge weights, the task is to

cluster nodes into disjoint clusters. The state-of-the-art

algorithm is spectral clustering using graph Laplacian

eigenvectors. An effective implementation is to embed

the graph in metric space and use the K-means algo-

rithm to cluster the data. Here the graph embedding is

a key step, reducing a problem of n(n� 1) ∕2 data items

(pairwise similarities) into a problem of nK data items

where K is the dimension of the metric space. In this

direction, the Laplacian embedding is the most widely

adopted. Laplacian embedding is an example of non-

linear dimension reduction or mapping.

Dimension Reduction Versus Feature Selection

Dimension reduction often finds combinations of

many variables which satisfy certain global optimal

conditions. Feature selection (also called variable selec-

tion) considers individual variables separately, or com-

binations of small number variables. Although they

share similar goals for clustering and classification,

their approaches differ greatly. Only dimension reduc-

tion will be discussed here.

PCA and Other Linear Dimension Reduction

Linear dimension reduction seek linear combinations

of variables that optimizes certain criteria. PCA seek

linear combinations that maximizes the variances.

Dimension Reduction Techniques for Clustering D 839

D

Consider a set of input data vectors X = (x1,...,xn)

where xi is a p-dimensional vector. Let �x ¼
Pn

i¼1 xi ∕n
be the center of the data. The covariance matrix is

CX = (1∕n
Pn

i¼1 (xi��x)(xi��x)T. Let U = (u1,...,uk) be

the eigenvectors of CX associated with the k largest

eigenvalues of CX. The PCA is the linear transforma-

tion of the original p-dimensional data (x1,...,xn) into

k-dimensional data Y = (y1,...,yn) with

yi ¼ UTxi: ð1Þ

The most important property of the transformed data

Y is that they are uncorrelated:

CY ¼ 1

n

Xn
i¼1

ðyi � �yÞðyi � �yÞT ¼ UTCXU

¼
l1

. .
.

lk

0
BB@

1
CCA:

ð2Þ

Because of this, each dimension j of Y has a clean

variance lj. The second important property of the

transformed data is that dimensions of Y with small

variances are ignored. Note that in the original data X,

because different dimensions are correlated, there is no

clear way to identify a dimension with small variance

and eliminate it.

A third benefit is the relation to K-means cluster-

ing. The cluster centroids of the global solution of the

K-means clustering form a subspace. This subspace is

identical to the PCA subspace formed by transformed

data (u1,...,uk) when k is the number of clusters,

according to the theory of the equivalence [4] between

PCA and K-means clustering. In other words, PCA

automatically bring us to the narrow subspace contain-

ing the global solution of K-means clustering – a good

starting place to find near global solutions. For this

reason, PCA+K-means clustering is one of the most

effective approach for clustering.
Linear Discriminant Analysis

PCA performs the unsupervised dimension reduction,

without prior knowledge of class labels of each

data object. If the class information is known, more

appropriate dimension reduction can be devised.

This is call linear discriminant analysis (LDA). In

LDA, the optimal subspace G = (g1,...,gk) is obtained

by optimizing
max
U

Tr
GTSbG

GTSwG
; ð3Þ

where the between-class (Sb) and within-class (Sb)

scatter matrices are defined as

Sb ¼
X
k

nkðmk �mÞðmk �mÞT ;

Sw ¼
X
k

X
i2Ck

ðxi �mkÞðxi �mkÞT ; CX ¼ Sb þ Sw ;

ð4Þ

where mk is the mean of class Ck and m is the global

total mean. The central idea is to separate different

classes as much as possible (maximize the between-

class scatter Sb) while condense each class as much as

possible (minimize the within-class scatter Sw). The

solution of G is given the k eigenvectors of Sw
�1Sb

associated with the largest eigenvalues. The dimension

k of the subspace is set to k = C � 1 where C is

the number of classes.

Once G is computed, the transformed data is

yi = GTxi or Y = GTX. An important property of Y is

that components of Y are uncorrelated.

ðCY Þk‘ ¼ ðGTCXGÞk‘ ¼ gTk CXg‘ ¼ gTk Swg‘

þ gTk Sbg‘ ¼ 0; k 6¼ ‘: ð5Þ

When the data dimension p is greater than n, the

number of data points, Sw has zero eigenvalues and

Sw
�1 does not exist. This problem can resolved by first

project data into PCA subspace with a dimension less

than p � C and then perform LDA on the projected

data. LDA is very popularly in image processing where

the data dimension is very high.

Adaptive Dimension Reduction – Combining Dimension

Reduction and Clustering

The PCA subspace is not always the best subspace for

data clustering; Figure 1 shows an example. LDA sub-

space is more suitable for data clustering; but LDA

requires the knowledge of class labels. This dilemma

is resolved by the adaptive dimension reduction

(ADR).

ADR start with the PCA subspace and then adap-

tively compute the subspace by (A) clustering

to generate class labels and (B) doing LDA to obtain

the most discriminant subspace. (A) and (B) are

repeated until convergence. Figure 2 shows the pro-

cess: the computed 1D subspace (the direction)

Dimension Reduction Techniques for Clustering. Figure 1. A 2D dataset with 600 data points. Green dots are the

centroids of each cluster. The line indicates the subspace U. Top: K-means clustering results PCA subspace. Middle: After

two ADR iterations. Bottom: ADR converges after two more iterations. The subspace is the most discriminant.

840D Dimension Reduction Techniques for Clustering
gradually moves towards the most discriminative di-

rection. Theoretically, ADR optimizes the LDA objec-

tive function

max
G;H

Tr
GTSbG

GTSwG
ð6Þ

to obtain simultaneously the subspace G and the

clusters represented by the cluster membership indica-

tor matrix H, where Hik = 1 ∕ jCkj1 ∕ 2 if data point xi
belongs to cluster Ck ; Hik = 0 otherwise. jCkj is the size
of Ck.
Metric Scaling

Metric scaling is the simplest form of multidimensional

scaling and is also widely used in applications. Given a

square matrix of pairwise distances (dij), the task is to

embed the objects onto a lower dimensional embed-

ding space where jjyi �yjjj � dij.

Metric scaling is computed as the following. Let

A ¼ ðaijÞ; aij ¼ � 1
2
d2ij . Compute B matrix: B = (bij),
bij¼aij� 1
n

Pn
i¼1aij� 1

n

Pn
j¼1aijþ 1

n2

Pn
i¼1

Pn
j¼1aij : Com-

pute the eigenvalues lk and eigenvectors uk, i.e.,

B¼
Pn

k¼1 lkuku
T
k . If lk
 0, 8k, then the coordinates

of object i in the embedding space is given by

yi¼½l1=21 u1ðiÞ;...;l1=2m umðiÞ�
T

m is the embedding dimension. It can be verified that

jjyi �yjjj = dij. In general, only a fraction of the largest

lk
 0, and only positive eigenvalue subspace is em-

bedded into these.

Most linear dimension reduction techniques are

developed in early days from 1940s to 1970s. PCA,

LDA, metric scaling are the most widely techniques.

Many other techniques were also developed. Canonical

correlation analysis extract linear dimensions that best

capture the correlation between two set of variables.

Independent component analysis extract linear dimen-

sions one after another, using non-Gaussian criteria.

Partial least squares constructs subspace similarly to

PCA, but uses class label information.

Dimension Reduction Techniques for Clustering. Figure 2. Left (upper panel): Dataset A in 3D space. 700 data

points distributed on two interlocking rings. Left (lower panel): Dataset A in eigenspace (f2, f3). Middle: Dataset B as shown

in 2D space. Right: Dataset B in eigenspace (f2, f3).

Dimension Reduction Techniques for Clustering D 841

D

Laplacian Embedding and Other Nonlinear

Dimension Reduction

Laplacian Embedding The input is a square matrix W

of pairwise similarities among n objects. We view W

as the edge weights on a graph with n nodes. The task

is to embed the nodes of the graph in 1D space, with

coordinates (x1,...,xn). The objective is that if i, j are

similar (i.e., wij is large), they should be adjacent in

embedded space, i.e., (xi � xj)
2 should be small. This

is achieved by minimizing [8]

min
x

JðxÞ ¼
X
ij

ðxi � xjÞ2wij ¼ 2
X
ij

xiðD�W Þijxj

¼ 2xT ðD�W Þx;

ð7Þ

where D = diag(d1,...,dn) and di == ∑jWij. The mini-

mization of ∑ij(xi � xj)
2wij would get xi = 0 if there

is no constraint on the magnitude of the vector x.

Setting the normalization ∑ixi
2 = 1, and the constraint

∑xi = 0 (xi is centered around 0), the solution is given

by the eigenvectors of
ðD�W Þf ¼ lf : ð8Þ

L = D � W is called graph Laplacian. The solution is

given by f2 associated with the second smallest eigen-

value (also called the Fiedler vector in recognition of

his contribution to the graph connectivity).

This can be generalized to embedding in k-D space,

with coordinates ri 2 <k . Let jjri�rjjj be the Euclidean
distance between nodes i, j. The embedding is obtained

by optimizing

min
R

JðRÞ¼
Xn
i;j¼1

jjri� rj jj2wij ¼ 2
Xn
i;j¼1

rTi ðD�W Þij

rj ¼ 2 Tr RðD�W ÞRT ; R
ðr1; :::;rnÞ: ð9Þ

With the normalization constraints RRT = I, the solu-

tion is given by eigenvectors: R = (f2,...,fk+1)
T.

In solving (7) for 1D embedding, we may impose

the normalization ∑idixi
2 = 1, where di = ∑jwij. With

this condition, the solution for x of is given by the

generalized eigenvalue problem

ðD �W Þu ¼ lDu: ð10Þ

842D Dimension Reduction Techniques for Clustering
For k-dimensional embedding of (9), the normaliza-

tion is RDRT = I. The solution is given by the eigenvec-

tors: R = (u2,...,uk+1)
T. This approach is motivated by

the normalized cut clustering (see (12) below).

Figure 2 gives two examples of the Laplac-

ian embedding. The left panel [5] shows that the

Laplacian embedding can effectively separate two

interlocking data rings. It also shows that the embed-

ding is not topology preserving. The right panel shows

the self-aggregation property [5] of the embedding:

data points of the same cluster self-aggregate and col-

lapse onto a single centroid.

Relation to Spectral Clustering The most interesting

aspect of Laplacian embedding is related to graph

clustering, and its predecessor, the graph partitioning.

In early 1990s, high performance computing is a very

active research. One of the challenging task is to parti-

tion a mesh/graph into equal-size partition so that the

problem could be solved on distributed processors.

The popular technique of spectral graph partitioning

[10] utilizes the eigenvectors of the Laplacian (the Fiedler

vector f2). Specifically, a graph can be effectively parti-

tioned into two equal parts depending on the sign f2:

node i belongs to partition A if f2(i)
 0; it belongs to

partition B if f2(i) < 0.

Soon it is recognized [7] that the 2-way Ratio Cut

clustering objective function

Jratio-cut ¼
sðA;BÞ
jAj þ sðA;BÞ

jBj ; sðA;BÞ

X
i2A

X
j2B

wij

ð11Þ

can be solved by the same Fiedler vector f2. This 2-way

clustering is generalized tomulti-way clustering [3] using

K � 1 eigenvectors (f2,...,fK). f1 = (1,...,1) ∕n1 ∕ 2 is a

constant vector. Later it was realized that using the

sum of node degree to balance clusters has some

advantages. This is the normalized cut [11]

Jnormalized�cut ¼
sðA;BÞ
dA

þ sðA;BÞ
dB

; dA ¼
X
i2A

di;

dB ¼
X
i2B

di; di ¼
X
j

wij : ð12Þ

The solution to this problem is given by the second

eigenvector u2 in (10). The K-way clustering uses

eigenvectors (u2,...,uK). By 2001, the Laplacian based

clustering methodology is fully developed.
Other Nonlinear Embedding Methods

Nonlinear embedding is a rather diverse and

rapidly growing research area. They include (i) Multi-

dimensional scaling, which embed a set of objects in in

a lower-dimensional space while preserving the given

pair-wise distance; (ii) Extension of PCA to nonlinear

case, such as principal curves, kernel PCA, etc; (iii)

Manifold learning, which uncovers a low-dimensional

manifold embedded in the high-dimensional data

space; isomap, local linear embedding, tangent space

alignment, etc. (iv) Many other approaches, such as

neuronal network based approach, called nonlinear

PCA, etc.

A short description for some approaches. Isomap

uses geodesic distances along the manifold by con-

structing the kNN subgraphs as the lower-dimensional

manifold. It then use metric scaling to map objects into

metric space. Local Tangent Space Alignment is a rigor-

ous approach by building the local tangent spaces (which

are local PCAs) and alignment them into a global sys-

tem. Kernel PCA computes principal eigenvectors of

the kernel matrix and embed in the eigenvector space.

It should noted that even though manifold learning

algorithm uncover nonlinear data structures, their pri-

mary goal is not necessarily data clustering.

Key Applications
PCA is used widely in a broad range of applications,

from computer vision to text mining, gene expression

profiles. Any data with high dimensions are often pre-

processed with PCA. Laplacian embedding is used for

network analysis, graph clustering.
Cross-references
▶Dimensionality Reduction

▶K-Means and K-Medoids

▶Multidimensional Scaling

▶ Principal Component Analysis

▶ Social Networks

Recommended Reading
1. Alpert C.J. and Kahng A.B. Recent directions in netlist partition-

ing: a survey. Integ. VLSI J., 19:1–81, 1995.

2. Belkin M. and Niyogi P. Laplacian eigenmaps and spectral tech-

niques for embedding and clustering. In Advances in Neural

Information Processing Systems 14, 2001.

3. Chan P.K., Schlag M., and Zien J.Y. Spectral k-way ratio-cut

partitioning and clustering. IEEE Trans. CAD-Integ. Circuit.

Syst., 13:1088–1096, 1994.

Dimension-Extended Topological Relationships D 843

D

4. Ding C. and He X. K-means clustering and principal component

analysis. In Proc. 21st Int. Conf. on Machine Learning, 2004.

5. Ding C., He X., Zha H., and Simon H. Unsupervised learning:

self-aggregation in scaled principal component space. Principles

of Data Mining and Knowledge Discovery, 6th European Conf.,

2002, pp. 112–124.

6. Fiedler M. Algebraic connectivity of graphs. Czech. Math. J.,

23:298–305, 1973.

7. Hagen M. and Kahng A.B. New spectral methods for ratio cut

partitioning and clustering. IEEE. Trans. Comput. Aided Desig.,

11:1074–1085, 1992.

8. Hall K.M. R-dimensional quadratic placement algorithm. Man-

age. Sci., 17:219–229, 1971.

9. Ng A.Y., Jordan M.I., and Weiss Y. On spectral clustering: Anal-

ysis and an algorithm. In Advances in Neural Information Pro-

cessing Systems 14, 2001.

10. Pothen A., Simon H.D., and Liou K.P. Partitioning sparse matri-

ces with egenvectors of graph. SIAM J. Matrix Anal. Appl.,

11:430–452, 1990.

11. Shi J. and Malik J. Normalized cuts and image segmentation.

IEEE. Trans. Pattern Anal. Mach. Intell., 22:888–905, 2000.
Dimension-Extended Topological
Relationships

ELISEO CLEMENTINI

University of L’Aquila, L’Aquila, Italy

Definition
This definition includes a group of models for topo-

logical relationships that have in common the use of

two topological invariants – the set intersection empty/

non empty content and the dimension – for distin-

guishing various relationships between spatial objects.

These models had a strong impact in database technol-

ogy and the standardization process.
Historical Background
Early descriptions of topological relationships (e.g.,

[10]) did not have enough formal basis to support a

spatial query language, which needs formal definitions

in order to specify exact algorithms to assess relation-

ships. The importance of defining a sound and com-

plete set of topological relationships was recognized in

[13]. The first formal models were all based on point-

set topology. In [12], the authors originally described

the 4-intersection model (4IM) for classifying topolog-

ical relationships between one-dimensional intervals.

In [8], the authors adopted the same method for
classifying topological relationships between regions.

The 9-intersection model (9IM) is an extension of the

4IM based on considering the exterior of objects,

besides interior and boundary [9]. In [6], the authors

described the dimension-extended method (DEM), so

called because they extended the 4IM with the dimen-

sion of the intersections. In the same paper, they intro-

duced the Calculus-Based Method (CBM), made up

of five relations and three boundary operators. A com-

bination of the DEM and the 9IM was called the

DE + 9IM in [1]. In this latter paper, the authors

proved that the CBM was more expressive than

the 4IM, 9IM, and DEM and was equivalent to

the DE + 9IM. By expressive power they meant the

number of topological relationships the models were

able to distinguish. Later on, several extensions of all

these models were developed: for example, the extension

of the CBM to composite regions [5] and complex

objects [2], and the extension of the 4IM to regions

with holes [7].
Foundations
In the following, simple objects of the plane are con-

sidered, that is, regularly closed regions with connected

interior and exterior, curved lines with only two end-

points and without self-intersections, and single

points. The symbol l will be used to denote any geo-

metric object (simple region, simple line, or point),

and ∂l, l�, l, l�will denote the boundary, the interior,
the closure, and the exterior of l, respectively. The
function dimðlÞreturns the dimension of l, with pos-

sible values in the two-dimensional space of 0, 1, 2 or

nil (�) for the empty set. In case the object l consists

of multiple parts, the highest dimension is returned.

To assess the relationship between two geometric

objects, various point-sets can be considered, which

can be empty or non-empty. This is generally called

the content invariant and can be calculated for several

sets: intersections, set differences, symmetric differ-

ences [11]. The most convenient one is the intersec-

tion, since it gives a comprehensive categorization of

topological relationships. Six groups of relationships

can be distinguished: region/region (R/R), line/region

(L/R), point/region (P/R), line/line (L/L), point/line

(P/L), and point/point (P/P).

Definition 1. The 4IM is a 2 � 2 matrix of the inter-

sections of the interiors and boundaries of the two

objects l1 and l2:

844D Dimension-Extended Topological Relationships
l�1 \ l�2 l�1 \ @l2
@l1 \ l�2 @l1 \ @l2

� �

Each intersection may be empty (Ø) or non-empty

(¬Ø), resulting in a total of 24 ¼ 16 combinations.

Each case is represented by a matrix of values. It is

possible to apply some simple geometric constraints to

assess that not all combinations are possible. For ex-

ample, for the R/R group the 4IM is able to recognize

eight different relationships. All 16 combinations are

instead possible for the L/L group. The geometric

criteria to discover real cases are discussed in [1].

Overall, 43 real cases can be identified (see Table 1).

Definition 2. The 9IM is a 3� 3 matrix containing the

empty/non-empty values for interior, boundary, and

exterior intersections:

l�1 \ l�2 l�1 \ @l2 l�1 \ l�2
@l1 \ l�2 @l1 \ @l2 @l1 \ l�2
l�1 \ l�2 l�1 \ @l2 l�1 \ l�2

0
@

1
A

By considering the empty or nonempty content of such

nine sets, the total is 29 ¼ 512 theoretical combina-

tions. Excluding the impossible cases, 68 possible cases

are remaining, as shown in Table 1.

The introduction of other invariants allows finer

topological distinctions. A refinement of the con-

tent invariant is given by the dimension of each inter-

section set.

Definition 3. The DEM is a 2 � 2 matrix containing

the dimension of the intersections of the interiors and

boundaries of the two objects l1 and l2:

dimðl�1 \ l�2Þ dimðl�1 \ @l2Þ
dimð@l1 \ l�2Þ dimð@l1 \ @l2Þ

� �

Theoretically, with the four possible values for the

dimension the DEM matrix might result into 44 ¼
256 different cases. Geometric criteria can be adopted

to reduce this number of cases by referring to specific
Dimension-Extended Topological Relationships. Table 1. A

all groups between simple objects

Model/group R/R L/R P/R

4IM 8 11 3

9IM 8 19 3

DEM 12 17 3

DE + 9IM
 CBM 12 31 3
groups of relationships, for a total of 61 real cases (see

Table 1).

Definition 4. The DEþ 9IM is a 3� 3 matrix contain-

ing the dimension of interior, boundary, and exterior

intersections:

dimðl�1 \ l�2Þ dimðl�1 \ @l2Þ dimðl�1 \ l�2 Þ
dimð@l1 \ l�2Þ dimð@l1 \ @l2Þ dimð@l1 \ l�2 Þ
dimðl�1 \ l�2Þ dimðl�1 \ @l2Þ dimðl�1 \ l�2 Þ

0
@

1
A

There are in general for this method 49 ¼ 262144

different cases. Reducing this number with geometric

criteria, 87 real topological relationships are obtained

(see Table 1).

The CBM is made up of five relations and three

boundary operators. In [1], the authors proved that

the CBM is equivalent to the DE + 9IM regarding the

number of topological relationships these two models

are able to express. The model was extended for com-

plex objects in [2]. The definitions for simple objects

are the following.

Definition 5. The touch relationship (it applies to the

R/R, L/L, L/R, P/R, P/L groups of relationships, but not

to the P/P group):

< l1; touch; l2 >, ðl�1 \ l�2 ¼ �Þ ^ ðl1 \ l2 6¼ �Þ:

Definition 6. The in relationship (it applies to every

group):

< l1; in; l2 >, ðl1 \ l2 ¼ l1Þ ^ ðl�1 \ l�2 6¼ �Þ:

Definition 7. The cross relationship (it applies to the

L/L and L/R groups):

< l1; cross; l2 >, ðdimðl�1 \ l�2Þ
< maxðdimðl�1Þ; dimðl�2ÞÞÞ

^ ðl1 \ l2 6¼ l1Þ ^ ðl1 \ l2 6¼ l2Þ:

Definition 8. The overlap relationship (it applies to R/

R and L/L groups):
summary of topological relationships for all models and for

L/L P/L P/P Total

16 3 2 43

33 3 2 68

24 3 2 61

36 3 2 87

Dimension-Extended Topological Relationships. Figure 1. The 31 different L/R relationships of the DE + 9IM model.

Each box contains cases belonging to the same DEM case.

Dimension-Extended Topological Relationships D 845

D

< l1;overlap; l2 >, ðdimðl�1Þ ¼ dimðl�2Þ
¼ dimðl�1 \ l�2ÞÞ

^ ðl1 \ l2 6¼ l1Þ ^ ðl1 \ l2 6¼ l2Þ:

Definition 9. The disjoint relationship (it applies to

every group):

< l1; disjoint ; l2 >, l1 \ l2 ¼ �:

Definition 10. The boundary operator b for a region A:

The pair (A, b) returns the circular line ∂A.
Definition 11. The boundary operators from and to for

a line L: The pairs (L, f) and (L, t) return the two

endpoints of the set ∂L.
To illustrate some of the relationships, Fig. 1 shows

the list of the 31 L/R cases for the DE + 9IM.

Key Applications
The various models illustrated so far have been used

by the Open Geospatial Consortium (OGC) for the

definition of topological relationships in spatial
databases. The same definitions have been adopted by

the International Organization for Standardization

(ISO). Various spatial database systems (e.g., Oracle,

IBM DB2, PostgreSQL) have adopted the definitions

suggested by OGC or slight variations of them to

define the topological operators included in their spa-

tial query language.
Future Directions
The process of adding granularity to topological relation-

ships could be further extended by introducing more

refined topological invariants [3]. Another direction for

further research on the side of adding spatial operators to

query languages is to consider other categories of spatial

relationships besides topological, such as projective and

metric [4].
Cross-references
▶Topological Relationships

▶Vague Spatial Data Types

846D Direct Attached Storage
Recommended Reading
1. Clementini E. and Di Felice P. A comparison of methods for

representing topological relationships. Inf. Sci., 3(3):149–178,

1995.

2. Clementini E. and Di Felice P. A model for representing topo-

logical relationships between complex geometric features in

spatial databases. Inf. Sci., 90(1–4):121–136, 1996.

3. Clementini E. and Di Felice P. Topological invariants for lines.

IEEE Trans. Knowl. Data Eng., 10:38–54, 1998.

4. Clementini E. and Di Felice P. Spatial operators. ACM SIGMOD

Rec., 29:31–38, 2000.

5. Clementini E., Di Felice P., and Califano G. Composite regions

in topological queries. Inf. Syst., 20(7):579–594, 1995.

6. Clementini E., Di Felice P., and van Oosterom P. A small set of

formal topological relationships suitable for end-user interac-

tion. In Proc. 3rd Int. Symp. Advances in Spatial Databases,

1993, pp. 277–295.

7. Egenhofer M.J., Clementini E., and Di Felice P. Topological

relations between regions with holes. Int. J. Geogr. Inf. Syst.,

8:129–142, 1994.

8. Egenhofer M.J. and Franzosa R.D. Point-set topological spatial

relations. Int. J. Geogr. Inf. Syst., 5:161–174, 1991.

9. Egenhofer M.J. and Herring J.R. 1Categorizing Binary Topologi-

cal Relationships Between Regions, Lines, and Points in Geo-

graphic Databases. Department of Surveying Engineering,

University of Maine, Orono, ME, 1991.

10. Freeman J. The modelling of spatial relations. Comput. Graph.

Image Process, 4:156–171, 1975.

11. Herring J.R. The mathematical modeling of spatial and non-

spatial information in geographic information systems. In

Cognitive and Linguistic Aspects of Geographic Space,

D. Mark and A. Frank (eds.). Kluwer Academic, Dordrecht,

1991, pp. 313–350.

12. Pullar D.V. and Egenhofer M.J. Toward the definition

and use of topological relations among spatial objects.

In Proc. Third Int. Symp. on Spatial Data Handling, 1988,

pp. 225–242.

13. Smith T. and Park K. Algebraic approach to spatial reasoning.

Int. J. Geogr. Inf. Syst., 6:177–192, 1992.
Direct Attached Storage

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Synonyms
DAS

Definition
Direct Attached Storage is a dedicated storage device

which is directly connected to a server. The term Direct

Attached Storage is often abbreviated to DAS. Derived

from the original meaning, the term sometimes refers

to a conventional server-centric storage system in
which DAS devices are mainly connected; this defini-

tion is used in the context of explaining and comparing

storage network architectures.

Key Points
A typical DAS device is a SCSI storage device such as an

internal disk drive, a disk array or a tape library that is

connected only to a single server by a SCSI bus cable.

Such a DAS device is accessed only by the server to

which the device is directly connected. SCSI storage

devices sometimes have two or more SCSI interfaces

which can connect to different servers. But such a

storage device is also considered a DAS device rather

than a SAN device, because only one server can actually

access the storage device and the other servers are

merely prepared for fault tolerance. Recently small

servers sometimes accommodate Advanced Technology

Attachment/Integrated Drive Electronics (ATA/IDE)

disk drives and Universal Serial Bus (USB) disk drives,

which can be also considered DAS devices.

Cross-references
▶Network Attached Storage

▶ Storage Area Network

▶ Storage Network Architectures

Recommended Reading
1. Storage Network Industry Association. The Dictionary of

Storage Networking Terminology. Available at: http://www.

snia.org/.

2. Troppens U., Erkens R., and Müller W. Storage Networks

Explained. Wiley, New York, 2004.
Direct Manipulation

ALAN F. BLACKWELL
1, MARIA FRANCESCA COSTABILE

2

1University of Cambridge, Cambridge, UK
2University of Bari, Bari, Italy

Synonyms
Graphical interaction; Desktop metaphor

Definition
The term direct manipulation was introduced by

Shneiderman [2,3] to describe user interfaces that

offer the following desirable properties:

1. Visibility of the objects and actions of interest

2. Physical actions on the object of interest instead of

complex syntax

Disaster Recovery D 847

D

3. Effects of those actions that are rapid, incremental

and reversible

Direct manipulation is generally associated with

Graphical User Interfaces, although the above proper-

ties are also beneficial in interfaces where the user is

working with text or numeric data. Direct manipula-

tion has been most popularly applied in the ‘‘desktop

metaphor’’ for managing disk files, a visual representa-

tion where the objects of interest are the user’s files,

and they are therefore continuously presented on the

screen. This was an improvement over disk operating

system consoles in which file listings were only tran-

sient results of a directory listing command.

The currently most common direct manipulation

interfaces are called WIMP interfaces, referring to the

interaction devices they use, namely windows, icons,

menus and pointers. However, direct-manipulation

ideas are at the core of many advanced non-desktop

interfaces. Virtual reality, augmented reality, tangible

user interfaces are newer concepts that extend direct

manipulation.

Key Points
The main alternatives to direct manipulation are com-

mand line interfaces and programming languages. These

are characterized by abstract syntax, representation of

computational processes rather than data of interest, and

effects that will take place in the future rather than

immediately, perhaps suddenly and irreversibly. Some

GUIs (e.g., modal dialog boxes) have these latter proper-

ties, in which case they will not provide the benefits of

direct manipulation. For many database users, the object

of interest is their data, rather than the computational

features of the database. This offers a challenge to

designers of interactive database systems, for whom the

system itself might be an object of interest.

Direct manipulation interfaces represent a second

generation, which evolved from the first generation of

command line interfaces. DM interfaces often make

interaction easier for users who are not computer

science experts, by allowing them to point at and

move objects rather than instructing the computer by

typing commands in a special syntax.

Hutchins, Hollan and Norman [1] proposed a gen-

eralization of the direct manipulation principles, in

terms of minimizing the cognitive effort that is re-

quired to bridge the gulf between the user’s goals and

the way those goals must be specified to the system.

They drew attention to a gulf of execution, which must
be bridged by making the commands and mechanisms

of the system match the thoughts and goals of the user,

and a gulf of evaluation, bridged by making the output

present a good conceptual model of the system that is

readily perceived, interpreted, and evaluated. Both

gulfs can be bridged to some degree by use of an

appropriate visual metaphor.

Cross-references
▶Usability

▶Visual Interaction

▶Visual Interfaces

▶Visual Metaphor

Recommended Reading
1. Hutchins E.L., Hollan J.D., and Norman D.A. Direct manipula-

tion interfaces. In User Centered System Design, New Perspec-

tives on Human-Computer Interaction, Norman, D.A. Draper

(eds.). S.W. Lawrence Erlbaum, Hillsdale, NJ, 1986.

2. Shneiderman, B. The future of interactive systems and the

emergence of direct manipulation. Behav. Inf. Technol.,

1:237–256, 1982.

3. Shneiderman, B. Direct manipulation: a step beyond program-

ming languages. IEEE Comput., 16(8):57–69, 1983.
Direct Manipulation Interfaces

▶Visual Interfaces
Directional Relationships

▶Cardinal Direction Relationships
Dirichlet Tessellation

▶Voronoi Diagram
Disaster Recovery

KENICHI WADA

Hitachi Limited, Tokyo, Japan

Definition
The recovery of necessary data, access to that data,

and associated processing through a comprehensive

848D Disclosure Risk
process in which a redundant site (including both

equipment and work space) is set up, and operations

are recovered to enable business operations to continue

after a loss of all or part of a data center by disaster

including fire, earthquake, hurricane, flood, terrorism

and power grid failure. Such a recovery involves not

only an essential set of data but also all the hardware and

software needed to continue processing of the data.

Key Points
Disaster recovery should be a key focus of an organiza-

tion’s business continuity plan in case of disaster the

following are key metrics:

RPO (Recovery Point Objective): The maximum

acceptable time period prior to a failure or disaster

during which changes to data may be lost as conse-

quence of recovery. At a minimum, all data changes

that occur before this period preceding the failure

or disaster will be available after data recovery. RTO

(Recovery Time Objective): The maximum acceptable

time period required to bring one or more applications

and associated data back from an outage to a correct

operational state.

The most common disaster recovery plans include

the following strategies:

� Backups are made to tape and sent off-site at regu-

lar intervals.

� Backups are made to disk on-site and automatically

copied to an off-site disk, or made directly to an

off-site disk.

� Data is replicated to an off-site location, using

replication method including database replication,

file system replication and replication by storage

system.

Cross-references
▶Backup and Restore

▶Replication
Disclosure Risk

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona, Catalonia

Synonyms
Re-identification risk; Attribute disclosure; Identity

disclosure
Definition
In the context of statistical disclosure control, disclo-

sure risk can be defined as the risk that a user or an

intruder can use the protected dataset V0 to derive

confidential information on an individual among

those in the original dataset V. This approach to dis-

closure risk was formulated in Dalenius [1].

Key Points
Disclosure risk can be regarded from two different

perspectives, according to Paass [2]:

1. Attribute disclosure. Attribute disclosure takes

place when an attribute of an individual can be deter-

mined more accurately with access to the released

statistic than it is possible without access to that

statistic.

2. Identity disclosure. Identity disclosure takes place

when a record in the protected dataset can be linked

with a respondent’s identity. Two main approaches are

usually employed for measuring identity disclosure

risk: uniqueness and re-identification.
2.1. Uniqueness Roughly speaking, the risk of

identity disclosure is measured as the probability

that rare combinations of attribute values in the

released protected data are indeed rare in the origi-

nal population the data come from. This approach

is typically used with nonperturbative statistical

disclosure control methods and, more specifically,

sampling. The reason that uniqueness is not used

with perturbative methods is that, when protected

attribute values are perturbed versions of original

attribute values, it makes no sense to investigate the

probability that a rare combination of protected

values is rare in the original dataset, because that

combination is most probably not found in the

original dataset.

2.2. Re-identification This is an empirical app-

roach to evaluate the risk of disclosure. In this

case, software is constructed to estimate the number

of re-identifications that might be obtained by a

specialized intruder. The use of re-identification

methods as a way to measure disclosure risk goes

back, at least, to Spruill [3]. Re-identification meth-

ods provide a more unified approach than unique-

ness methods because the former can be applied to

any kind of masking and not just to non-perturba-

tive masking. Moreover, re-identification can also be

applied to synthetic data (see e.g., [4]).

Discounted Cumulated Gain D 849

D

Cross-references
▶ Inference Control in Statistical Databases

▶ Information Loss Measures

▶Microdata

▶Record Matching

▶ SDC Score

Recommended Reading
1. Dalenius T. Towards a methodology for statistical disclosure

control. Statistisk Tidskrift, 5:429–444, 1977.

2. Paass G. Disclosure risk and disclosure avoidance for microdata.

J. Bus. Econ. Stat., 6:487–500, 1985.

3. Spruill N.L. The confidentiality and analytic usefulness of

masked business microdata. In Proc. Section on Survey Research

Methods, Alexandria, VA. American Statistical Association,

1983, pp. 602–607.

4. Winkler W.E. Re-identification methods for masked microdata.

In Privacy in Statistical Databases, J. Domingo-Ferrer and

V. Torra (eds.). LNCS, vol. 3050, Springer, Berlin Heidelberg,

2004, pp. 216–230.
DISCO

▶Discovery
Discounted Cumulated Gain

KALERVO JÄRVELIN, JAANA KEKÄLÄINEN

University of Tampere, Tampere, Finland

Synonyms
Normalized discounted cumulated gain (nDCG);

Discounted cumulated gain (DCG)

Definition
Discounted Cumulated Gain (DCG) is an evaluation

metric for information retrieval (IR). It is based on

non-binary relevance assessments of documents ranked

in a retrieval result. It assumes that, for a searcher, highly

relevant documents are more valuable than margi-

nally relevant documents. It further assumes, that the

greater the ranked position of a relevant document (of

any relevance grade), the less valuable it is for the search-

er, because the less likely it is that the searcher will ever

examine the document – and at least has to pay more

effort to find it. DCG formalizes these assumptions by

crediting a retrieval system (or a query) for retrieving

relevant documents by their (possibly weighted) degree
of relevance which, however, is discounted by a factor

dependent on the logarithm of the document’s ranked

position. The steepness of the discount is controlled by

the base of the logarithm and models the searcher’s

patience in examining the retrieval result. A small base

(say, 2) models an impatient searcher while a large base

(say, 10) a patient searcher.

In its normalized form, as Normalized Discounted

Cumulated Gain (nDCG), the actual DCG performance

for a query is divided by the ideal DCG performance for

the same topic, based on the recall base of the topic in a

test collection.

Historical Background
Modern large retrieval environments tend to overwhelm

their users by their large output. Since all documents

are not equally relevant, highly relevant documents, or

document components, should be identified and ranked

first for presentation to the users. In order to develop IR

techniques in this direction, it is necessary to develop

evaluation approaches andmethods that credit IRmeth-

ods for their ability to retrieve highly relevant documents

and rank them higher. For this goal, non-binary or

graded relevance assessments and evaluation measures

are needed. Most traditional IR evaluation measures,

e.g., precision and recall, are based on binary relevance.

The nDCGmeasure family presented in this entry is one

solution for measuring IR effectiveness with graded

relevance.

Foundations

Ranked Retrieval Result

In an IR experiment, using a test collection, a topic set

and a recall base for each topic, the retrieval system gives

for each query representing a topic a ranked output,

which in the DCG based evaluation is examined from

ranked position 1 to position n for each query.

Document Relevance Scores and Weights

Documents have non-binary relevance scores given in

the recall base. Their range may be any continuous

scale of real numbers, e.g., [�10.0, +10.0], [�1.0,

+1.0], or [0.0, 1.0], or a discreet integer scale, say

{�3,...,+3} or {0,...,10}. In the evaluation, the relevance

scores may be reweighed if one wishes to emphasize the

differences of relevance scores from the user point of

view. In the following it is assumed that the relevance

scores 0–3 are used (3 denoting high value, 0 no value).

850D Discounted Cumulated Gain
Gain Vector

In the DCG evaluation, the relevance score of each

document, or its reweighed value, is used as a gained

value measure for its ranked position in the result.

Assuming relevance scores 0–3 and result lists up to

rank 200, one obtains corresponding gain vectors of

200 components each having the value 0, 1, 2 or 3.

For example: G’ = <3, 2, 3, 0, 0, 1, 2, 2, 3, 0,. . .>.

Cumulated Gain Vector

The cumulated gain at ranked position i is computed

by summing from position 1 to i when i ranges

from 1 to n, e.g., n = 200. Formally, the position i

in the gain vector G is denoted by G[i]. Now the

cumulated gain vector CG is defined recursively as

the vector CG where:

CG½i� ¼ G½1�; if i ¼ 1

CG½i � 1� þ G½i�; otherwise

	

For example, from G’ the vector CG’=<3, 5, 8, 8, 8,

9, 11, 13, 16, 16, . . .> is obtained. The cumulated gain

at any rank may be read directly, e.g., at rank 7 it is 11.

Discounting Principle

The discounting principle states that the greater the

rank of a document in the retrieval result, the smaller

share of the document score is added to the cumulated

gain. A discounting function is needed which progres-

sively reduces the document score as its rank increases

but not too steeply (e.g., as division by rank) to allow

for searcher persistence in examining further docu-

ments. A simple way of discounting with this require-

ment is to divide the document score by the log of its

rank. By selecting the base of the logarithm, sharper or

smoother discounts can be computed to model varying

searcher behavior.

Discounted Cumulated Gain Vector

Formally, if b denotes the base of the logarithm, the

cumulated gain vector with discount is defined recur-

sively as the vector DCG where:

DCG½i� ¼ CG½i�; if i < b

DCG½i � 1� þ G½i�= logbi; if i
 b

	

One must not apply the logarithm-based discount

at rank 1 because logb1 = 0. Moreover, the discount is

not applied for ranks less than the logarithm base (that

would give them a boost). This is also realistic, since
the larger the base, the smaller the discount and the

more likely the searcher is to examine the results at

least up to the base rank (say 10).

For example, let b = 2. From G’ given in the pre-

ceding section one obtains DCG’ = <3, 5, 6.89, 6.89,

6.89, 7.28, 7.99, 8.66, 9.61, 9.61, . . .>.

Average Vector

In an IR experiment, tests on IR methods are typically

run with a set of test topics. To obtain an understand-

ing of the average performance of an IR method, one

needs average vectors across a query set. To compute

the averaged vectors, one needs the vector sum opera-

tion and vector multiplication by a constant. Let

V = <v1, v2,...,vk> and W = <w1, w2,...,wk> be two

vectors. Their sum is the vector V + W = <v1+ w1, v2+

w2,...,vk+ wk>. For a set of vectors ν = {V1, V2,...,Vn},

each of k components, the sum vector is generalised as

SV 2 V V = V1 + V2+ ... + Vn. The multiplication of a

vector V = <v1, v2,...,vk> by a constant r is the vector

r*V = <r*v1, r*v2,...,r*vk>. The average vector AV

based on vectors ν= {V1, V2,...,Vn}, is given by the

function avg-vect(ν):

avg-vect nð Þ ¼ j nj�1 �SV 2 nV

Now the average CG and DCG vectors for vector

sets CG and DCG, over a set of test queries, are com-

puted by avg-vect(CG) and avg-vect(DCG).

Ideal Vector

In order to normalize the actual CG and DCG vectors

one compares them to the theoretically best possible

vectors for each topic. The latter vectors are con-

structed by arranging the recall base of each topic in

descending order by relevance and then turning it into

a gain vector, CG vector and DCG vector as described

above. A sample ideal gain vector is: I’ = <3, 3, 3, 2, 2,

2, 1, 1, 1, 1, 0, 0, 0, . . .> and its CG vector is CGI’ =<3,

6, 9, 11, 13, 15, 16, 17, 18, 19, 19, 19, 19, . . .>.

Normalized Vector

The (D)CG vectors for each IR technique can be nor-

malized by dividing them by the corresponding ideal

(D)CG vectors, component by component. In this

way, for any vector position, the normalized value 1

represents ideal performance, and values in the range

[0,1) the share of ideal performance cumulated by

each technique. Given an (average) (D)CG vector

Discounted Cumulated Gain D 851

D

V = <v1, v2,...,vk> of an IR technique, and the (aver-

age) (D)CG vector I = <i1, i2,...,ik> of ideal perfor-

mance, the normalized performance vector n(D)CG is

obtained by the function:

norm-vect V; Ið Þ¼< v1=i1; v2=i2;:::;vk=ik>

Normalized Discounted Cumulated Gain (nDCG) Vector

To assess whether two IR methods are significantly

different in effectiveness from each other or not,

when measured by DCG, one uses the normalized

vectors because the (D)CG vectors are not relative to

an ideal. Given an (average) DCG vector V of an IR

method, and the (average) DCG vector I of ideal per-

formance, the normalized performance vector nDCG

is obtained by norm-vect(V, I).

For example, based on CG’ and CGI’ from above,

one obtains the normalized CG vector nCG’ = norm-

vect(CG’, CGI’) = <1, 0.83, 0.89, 0.73, 0.62, 0.6, 0.69,

0.76, 0.89, 0.84, . . .>.

The Average Normalized Discounted Cumulated

Gain Indicator

The average of a (n)(D)CG vector, up to a given ranked

position, summarizes the vector (or performance) and

is analogous to the non-interpolated average precision

of a document cut-off value (DCV) curve up to the

same given ranked position. The average of a (n)

(D)CG vector V up to the position k is given by:

avg-pos V; kð Þ ¼ k�1 �
X
i¼1...k

V i½ �

These vector averages can be used in statistical

significance tests in the same way as average precision

in IR evaluation.

Properties of (n)(D)CG

The strengths of the proposed CG, DCG, nCG, and

nDCG measures can now be summarized as follows:

� They combine the degree of relevance of docu-

ments and their rank (affected by their probability

of relevance) in a coherent way.

� At any number of retrieved documents examined

(rank), CG and DCG give an estimate of the cumu-

lated gain as a single measure no matter what is the

recall base size.

� They are not heavily dependent on outliers (rele-

vant documents found late in the ranked order)
since they focus on the gain cumulated from the

beginning of the result up to any point of interest.

� They are obvious to interpret, they are more direct

than precision-recall curves by explicitly giving the

number of documents for which each n(D)CG value

holds. Precision-recall curves do not make the num-

ber of documents explicit for given performance and

may therefore mask bad performance [7].

In addition, the DCG measure has the following fur-

ther advantages:

� It realistically weights down the gain received

through documents found later in the ranked

results.

� It allows modeling searcher persistence in examin-

ing long ranked result lists by adjusting the dis-

counting factor.

Further, the normalized nCG and nDCG measures

support evaluation:

� They represent performance as relative to the ideal

based on a known (possibly large) recall base of

graded relevance assessments.

� The performance differences between IR techni-

ques are also normalized in relation to the ideal

thereby supporting the analysis of performance

differences.

The following issues concerning the (n)(D)CG mea-

sure have been discussed in the literature:

1. Averaging over topics is not statistically reliable

because the number of relevant documents (recall

base size) varies by topics.

2. DCG does not discount the gain when the rank is

smaller than the logarithm base.

3. Interpretation of non-normalized versions of the

measure (CG, DCG) is difficult.

4. The measures should be robust when relevance

judgements are incomplete.

These issues are discussed briefly below.

1. Averaging. This issue is discussed by, e.g., Hull [2]

and Sakai [9]. Averaging over topics has been con-

sidered problematic when a fixed length for the result

list (i.e., a fixed cut-off value, DCV) is used. Say, one

evaluates effectiveness at DCV 5. One topic has five

relevant documents with relevance score 3 retrieved

at positions 1–5; another topic has 100 relevant

documents with relevance score 3 and five of them

Discounted Cumulated Gain. Figure 1. (a) DCG curves. (b) nDCG curves.

852D Discounted Cumulated Gain
are retrieved at positions 1–5. The (n)DCG values for

the topics will be the same at DCV 5. From the point

of view of searcher’s effort this is correct; however, if

the system-oriented effectiveness as an equal share of

the relevant documents is aimed at, evaluation with

fixed DCV should be avoided. With high DCVs,

e.g., 500 or 1,000, the problem is less acute but the

user-orientation is also lost.
A related problem is caused by the variation in

the number of documents of different relevance

level: As the number of most relevant documents

tends to be low, weighting them strongly might

lead to instability in evaluation (a loss of one highly

relevant document in the top ranks hurts effective-

ness badly) [11]. As a remedy large topic pools with

varying recall bases could be used in evaluation.

One should also bear in mind the difference

between (n)DCG curves and averaging the scores

over topics at a given rank. The curves visualize the

performance over a range of ranks and are useful to

reveal crossovers concealed in averages. The single

figure averages are needed to give concise informa-

tion and for statistical testing.
2. Discounting. The original formulation of the

(n)DCG, given above, does not perform discount-

ing for ranks less than the base of the discount

logarithm. When the base is relatively large, say

10, modeling a patient searcher, the 10 first

ranks avoid discounting. Some scholars have been
concerned about this feature [10]. It can be solved

by modifying the discounting factor logbi to the

form (1 + logb i) [8]. By doing so the first case

(with the condition i < b) of the DCG formula can

be omitted: all ranks are consistently discounted.

3. Interpretation of the scores. The CG and DCG

measures are comparable only within one test

setting and relevance weighting scheme. The rele-

vance grades and their weights should be reported

in order to make CG and DCG curves interpretable.

Further, topics with large recall bases yield high

CG and DCG figures and affect averages over all

topics. The normalized versions are recommend-

able when averaging over topics or comparing over

test settings is needed.

4. Robustness. An evaluation measure should be ro-

bust with relation to missing relevance judgements

since, in practice, the whole test collection is sel-

dom assessed for relevance. The pooling method

for gathering documents for relevance judgement,

and the later reuse of the test collection with new

systems or methods leads unavoidably to a situa-

tion where all documents in the result lists are not

assessed for relevance. The (n)DCG measure has

been found robust in this respect, see [1,10].

Key Applications
The (n)(D)CG measures have been applied in tradi-

tional laboratory oriented evaluation with stable test

Discovery D 853

D

collections when graded relevance assessment are avail-

able. They have also gained popularity in web IR eval-

uation, and interactive IR test settings.

Sample (n)DCG curves for three TREC 7 runs

(A, B, C) are given in Fig. 1a and b. The measures use

graded relevance with four relevance levels. The levels

from non-relevant to the most relevant are weighted

0–1–10–100; logarithm base for discounting is 2.
Future Directions

Session-Based DCG

IR evaluation by (n)(D)CG assumes one query per

topic/session. In real life however, interactive searchers

often use multiple queries through reformulation and/

or relevance feedback until they are satisfied or give up

and move on to other means of information access.

Evaluation metrics assuming one query per topic are

insufficient in multiple query session evaluation, where

the searcher’s reformulation and feedback effort mat-

ters. Moreover, due to various reasons, the first queries

often are unsuccessful. In real life, also stopping deci-

sions are individual and variable and depend on many

factors, including personal traits, task, context, and

retrieval results. To overcome this limitation, it is pos-

sible to extend the (n)(D)CG into a session-based met-

ric for multiple interactive queries. Such an extended,

session-based DCG metric would incorporate query

sequences as a further dimension in evaluation scenar-

ios, allowing one to further discount any relevant docu-

ments found only after additional searcher effort, i.e.,

feedback or reformulation. The rationale here is that an

IR system (or searcher-system combination) should be

rewarded less for relevant results found by later queries.
Cross-references
▶ Information Retrieval

▶ Precision

▶Recall

▶ Standard Effectiveness Measures

Recommended Reading
1. Bompada T., Chang C., Chen J., Kumar R., and Shenoy R.

On the robustness of relevance measures with incomplete

judgments. In Proc. 33rd Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2007,

pp. 359–366.

2. Hull D. Using statistical testing in the evaluation of retrieval

experiments. In Proc. 26th Annual Int. ACM SIGIR Conf. on
Research and Development in Information Retrieval, 1993,

pp. 329–338.

3. Järvelin K. and Kekäläinen J. IR evaluation methods for retriev-

ing highly relevant documents. In Proc. 23rd Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2000, pp. 41–48.

4. Järvelin K. and Kekäläinen J. Cumulated gain-based evaluation

of IR techniques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

5. Kekäläinen J. Binary and graded relevance in IR evaluations –

comparison of the effects on ranking of IR systems. Information

Process. Manag., 41(5):1019–1033, 2005.

6. Kekäläinen J. and Järvelin K. Using graded relevance assess-

ments in IR Evaluation. J. Am. Soc. Inf. Sci. Technol.,

53(13):1120–1129, 2002.

7. Losee R.M. Text retrieval and filtering: Analytic models of per-

formance. Kluwer Academic, Boston, MA, 1998.

8. Sakai T. Average gain ratio: A simple retrieval performance

measure for evaluation with multiple relevance levels. In Proc.

26th Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 2003, pp. 417–418.

9. Sakai T. On the reliability of information retrieval metrics

based on graded relevance. Inf. Process. Manag. 43(2):531–548,

2007.

10. A suggestion by Susan Price (Portland State University, Portland,

OR, USA), May 2007, (private communication).

11. Voorhees E. Evaluation by highly relevant documents. In Proc.

24th Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 2001, pp. 74–82.
Discovery

SCHAHRAM DUSTDAR
1, CHRISTIAN PLATZER

1

BERND J. KRÄMER
2

1Technical University of Vienna, Vienna, Austria
2University of Hagen, Hagen, Germany

Synonyms
WS-discovery; DISCO

Definition
The term discovery, as far as Web services (WS) are

concerned, refers to the process of finding WS that

match certain computational needs and quality req-

uirements of service users or their software agents.

More technically speaking, WS discovery mechanisms

take a specification of certain functional or non-

functional criteria characterizing a service and try to

locate machine-readable descriptions of Web services

that meet the search criteria. The services found may

have been previously unknown to the requester.

854D Discovery
Historical Background
Since Web services were introduced in the early

1990’s, service-oriented architectures had to deal with

the discovery problem, and it still persists. Initially, the

possibilities to describe Web services properly were

limited. XML remote procedure calls (XML-RPCs),

which were used early on to connect WS, offered no

proper way of describing a Web service’s capabilities

and therefore forced system designers to find other

ways to publish this information. These early services

were typically used to achieve a platform independent

communication between remote peers, nothing more.

This requirement was met with an XML-structured

messaging protocol that evolved later to SOAP, a

standard protocol of today’s Web technology. For the

act of discovering services, the actually used protocol

made no difference. Services description files were

propagated mostly by artificial means, by sending the

file per e-mail for instance. In some cases, the develop-

er of the Web service also worked on the client-side

implementation.

A proper service description mechanism was only

introduced when application developers realized

that Web service technology had to be leveraged to a

level that obviated the need of service consumer and

provider to interact closely with each other prior to

using a service. With the definition of the Web service

description language (WSDL), it was finally possible

to describe the interface of a WS in a standardized

manner. The discovery problem, however, still per-

sisted because no means existed to publish a service

description in a widely known index or registry,

once the implementation on the provider side was

completed.

To overcome this barrier, a first draft of the Univer-

sal Description, Discovery and Integration, short

UDDI, standard was released in 1999. UDDI was

designed as a vendor-independent specification of an

XML-based registry for service descriptions maintained

in the form of WSDL documents. The standard was

completed in 2002. Its purpose was to enable service

providers and consumers to find each other if service

request and service offer matched and to provide infor-

mation aboutmessage formats and protocols accepted by

a Web service. Apart from defining data models and

registry structure, UDDI was also designed to offer sim-

ple search capabilities to help service consumers find

Web services. Thus UDDI contributed to solve the dis-

covery issue.
As a WSDL description of a Web service interface

just lists the operations the service may perform and

the messages it accepts and produces, the discovery

mechanism of UDDI was constrained to match func-

tionality only. If several candidate services could be

found, the service consumer was unable to distinguish

between them. Therefore people felt the need to be able

to express semantic properties or quality aspects of

requested services as well. But search mechanisms tak-

ing into account semantics and quality-of-service

properties require richer knowledge about a registered

Web service than WSDL can capture.

To complement the expressiveness of WSDL and fa-

cilitate service discovery, DAML-S, an ontology language

for Web services, was proposed to associate computer-

readable semantic informationwith service descriptions.

Semantic service descriptions are seen as a potential

enabler to enhance automated service discovery and

matchmaking in various service oriented architectures.

For the time being, however, services widely used in

practice lack semantic information because no easy

to use or even automated method to attach semantic

information to service descriptions exists.

Foundations
The service discovery process encompasses several

steps. Each step involves specific problems that have

to be solved independently. The following list will

discuss these steps in ascending order, beginning with

the most generic step.

Enabling Discovery

At a first glance, the act of discovering a service descrip-

tion matching a set of terms characterizing a service,

resembles a search processes for Web pages. Well-

known search engines like Google or Live utilize a crawl-

ing mechanism to retrieve links to Web documents and

create a index that can be searched effectively as users

enter search terms. A crawler just analyzes a given Web

page for hyperlinks and grinds through the tree structure

generated by such hyperlinks to find other Web docu-

ments. For Web services, or more precisely Web service

descriptions, the case is similar except for one major

difference: WSDL files do not contain links to other

services. Approaches to write crawlers that search web

pages for possibly published service descriptions will

produce very poor results, in general [4]. UDDI regis-

tries are just designed to eliminate the need for crawlers

or alike. As a matter of fact, open UDDI registries

Discovery D 855

D

for public Web services are increasingly loosing impor-

tance. Especially after the two largest UDDI registries

from IBM and Microsoft were shut down in 2005, the

vision of public services suffered immensely. Suddenly

the starting point to find a public Web service was lost,

leaving the possibility to query common Web search

engines for Web services as the only alternative. There

are, of course, some other registries but they usually do

not implement the UDDi specification, which suggests

that UDDI may not be an optimal solution for public

service registries.

In a corporate environment, however, the initial

discovery step is not a real issue. Web service descrip-

tions can easily be published on an internal Web page

or in a UDDI registry and are, therefore, easily accessi-

ble from within the institution.

Searching in Service Registries

Assuming that a comprehensive collection of service

descriptions has already been established, the question

is how to retrieve the closest match to a user query in

an efficient manner.

As the title suggests, searching is usually performed

by humans and not by software automatically. The

challenge is how to create an index of services

such that the addition and retrieval of service descrip-

tions can be achieved accurately and fast. Common

information retrieval methods are often used for this

purpose, ranging from the vector space model for

indexing and searching large repositories to graph

theoretical approaches for fast processing of a rich

data collection.

More or less every registry-based solution encom-

passes such a facility. Especially UDDI registries

often come with a rudimentary interface to query the

database for contained services. Unfortunately, the

general structure of UDDI with its tModel compo-

nent-layout, which serves as a container to store de-

tailed service information, complicates data retrieval.

Furthermore, most UDDI entries do not maintain a

complete service description but include links to such

descriptions kept elsewhere. But these links could be

broken or inaccessible at search time. As a result,

UDDI queries are usually processed on the business

data related to a service and not the service description

itself. This fact alone limits the usability of UDDI-

based search mechanisms enormously or more pre-

cisely: it leaves most of the index quality in the hand

of the users.
This area on the other hand is heavily investigated

throughout the research community and several

approaches have been presented that aim at improving

search capabilities on service collections. Those

approaches are mostly designed to handle natural

language queries like ‘‘USA weather service’’ and are

supposed to provide a user interface for various regis-

try implementations.

Querying Repositories

A more detailed form of search in service descriptions

is entitled as querying. Unlike direct search, in which a

user simply provides a set of search terms, queries are

formal expressions using some sort of query language.

In the case of relational databases, SQL is typically used

as a query language. Through a query expression it is

possible to search for a specific service signature in a set

of service descriptions. Assume, for example, that a

user wants to find a weather service and can provide

three bits of information: country, zip_code, and the

desired scale for presenting the temperature. Assume

further that the user wants to express certain quality

requirements. Then, a query expression in a language

alike SQL might read as follows:

SELECT description FROM services s WHERE

s.input.COMPOSEDOF(country AND zip_code

AND useCelsiusScale)

AND s.response_time < 200ms AND s.downtime

< 1%

This example also reveals a weakness of service

descriptions as their signatures are usually not speci-

fied using exact type information such as city or coun-

try but rather basic types like string, integer etc. are

used. Hence, it seems more appropriate to search for

signatures in terms of basic data types only. But this

would likely result in mismatches. Re-considering the

query above, a corresponding signature using the basic

types [string, integer, boolean] can easily be met by

other services. There is no way to distinguish positive

matches from unwanted ones without additional infor-

mation or a richer index. These problems are addressed

by introducing semantics and domain knowledge. For

the values of response_time and downtime in this ex-

ample, there already exist approaches that constantly

monitor and invoke the services in a registry to create

a statistical profile of the quality of such a service (QoS).

These approaches require a more sophisticated reg-

istry type than UDDI represents and are therefore

mostly implemented in research prototypes.

856D Discovery
Domain-Specific Knowledge in Service Descriptions

Another requirement that has to be met by more pow-

erful discovery mechanisms is domain-specific knowl-

edge about a service. To take on the sample above, a

discovery mechanism able to match the terms city,

zip_code and temperature with the semantic categories

location and weather would select just the intersection

of services dealing with location and temperature. Al-

though domain information is semantic information in

certain respects, it does not mean that the information

has to be provided upon service registration. Certain

approaches exist that are able to group service reposi-

tories according to their most probable domain. The

grouping can, for instance, be achieved by using statis-

tical cluster analysis and discover strongly related ser-

vice descriptions.

On the other hand, domain-knowledge can also be

gained by letting the service provider add this infor-

mation. In practice however, it proved to be problem-

atic to let users define semantic information for a

service. Once, this is due to the fact that a certain

amount of domain knowledge is needed by the pro-

grammer of the Web service but mostly because the

categorization assigned by indexers cannot be vali-

dated and could therefore be incorrect. This field, just

like the following, is still heavily investigated, e.g.,

under the heading ‘‘faceted search.’’ It addresses a

broad spectrum of issues but also bears a high potential

for innovation.

Semantic Annotations

The next logical step towards enhancing service dis-

covery is a complete semantic description of a Web

service. A multitude of approaches exist, in which

semantic annotations are used to define the concepts

behind operations of Web services and their input and

output messages. Those approaches use the widely
Discovery. Listing 1. DAML-S Sample.
known resource description framework (RDF) to add

custom-designed semantic markup to service descrip-

tions. A good example for such a semantic markup

language is called DAML-S. It is a DAML-based Web

service ontology, which supplies Web service providers

with a core set of markup language constructs for

describing the properties and capabilities of their

Web services in unambiguous, computer-interpretable

form. An example for such a markup is shown in

Listing 1. This very short listing basically shows a

Web service called BookstoreBuy and defines it as

a process and therefore as a subclass of the class Process

in the corresponding ontology. The second part shows

an input to BookstoreBuy which is it is a subprop-

erty of the property input of Process, from the process

model. With this example, some of the limitations for

semantic annotations become more obvious. First of

all, the creator of the Web service is required to have

additional knowledge about semantic annotations and

ontologies. Furthermore, the appended information

causes an additional amount of work. Secondly, the

ontology used defines sharp boundaries for the level of

detail that can be reached through the usage of such

annotations. In addition, the problem of misused or

erroneous annotations mentioned in the previous step

persists. Put together, semantic Web services are seen

as a technology with the potential to facilitate more

powerful service discovery and machine-readable

descriptions. Practical experience, however, showed

that an exploitation of semantic information is diffi-

cult and still leaves room for further improvements.

Quality-of-Service Properties

The consideration of quality-of-service (QoS) proper-

ties in discovery attempts requires the definition of

scales of measurements and metrics to qualify the

properties per domain. The scales can be of different

Discrete Wavelet Transform and Wavelet Synopses D 857

D

kinds including nominal, ordinal, interval or ratio.

They are used to assign appropriate QoS property

values to a service. Here, a service provider has the

choice to associate precise values or just value ranges

with service property descriptions. The metrics are

needed to rank services that match the functional and

semantic requirement of a search according their de-

gree of fulfillment of required QoS properties.

These issues and related modifications to service

discovery schemes are still subject to a number of re-

search projects. Wang et al. [6], for example, proposes a

services discovery approach in which functional, se-

mantic and QoS requirements are taken into account

by iteratively applying related filters.
Key Applications
Some of the concepts presented above, especially the

first, more general layers are already used in real world

implementations. Service registries, especially those

not strictly conforming to the UDDI specification are

the main area of application for innovative discovery

mechanisms. Search and matchmaking on the other

hand is particularly required by IDEs. Especially service

composition environments enormously benefit from

fast and exact discovery mechanisms. Finding substi-

tutes and alternatives for services in compositions is an

important topic in service-oriented architectures.
Future Directions
Future directions show considerable tendencies towards

the semantic web to enhance service discovery for Web

services. This fact, however, creates a diversion among

researchers on this particular area. Some argue that se-

mantic descriptions are too complicated to be of any

practical use, while others argue that they are the only

way to leverage Web service discovery and search to a

point where they can be processed automatically. Both

views are valid and which direction proves to be themost

promisingwill be decided by the work that is yet to come.

Some recent works have proposed a recommenda-

tion service and suggest to apply it to collaborative web

service discovery. Experiments with such solutions are

underway in research labs.
URL to Code
A Vector-space based search engine for Web services

including a clustering algorithm: http://copenhagen.

vitalab.tuwien.ac.at/VSMWeb/
AWeb service registry with invocation capabilities:

http://www.xmethods.net

Another Web service search engine: http://www.

esynaps.com/search/default.aspx

WSBen, a Web service discovery and composition

benchmark developed at Penn State: http://pike.psu.

edu/sw/wsben/

Cross-references
▶Business Process Management

▶ Publish/Subscribe

▶ Service Oriented Architecture

▶Web Services

Recommended Reading
1. Benatallah B., Hacid M.-S., Leger A., Rey C., and Toumani F. On

automating web services discovery. VLDB J., 14(1):84–96, 2005.

2. Bussler C., Fensel D., and Maedche A. A conceptual architecture

for semantic web enabled web services. ACM SIGMOD Rec.,

2002.

3. Kokash N., Birukou A., and D’Andrea V. Web service discovery

based on past user experience. In Proc. Int. Conf. on Business

Information Systems, pp. 95–107.

4. Platzer C. and Dustdar S. A vector space search engine for Web

services. In Proc. 3rd European IEEE Conf. on Web Services, 2005.

5. Rosenberg F., Platzer C., and Dustdar S. Bootstrapping perfor-

mance and dependability attributes of web services. In Proc.

IEEE Int. Conf. on Web Services, 2006, pp. 205–212.

6. Wang X., Vitvar T., Kerrigan M., and Toma I. Synthetical evalu-

ation of multiple qualities for service selection. In Proc. Fourth

Int. Conf. on Service Oriented Computing. Springer, 2006,

pp. 1–12.
Discrete Wavelet Transform and
Wavelet Synopses

MINOS GAROFALAKIS

Technical University of Crete, Chania, Greece

Definition
Wavelets are a useful mathematical tool for hierar-

chically decomposing functions in ways that are both

efficient and theoretically sound. Broadly speaking, the

wavelet transform of a function consists of a coarse

overall approximation together with detail coefficients

that influence the function at various scales. The wave-

let transform has a long history of successful applica-

tions in signal and image processing [11,12]. Several

recent studies have also demonstrated the effectiveness

858D Discrete Wavelet Transform and Wavelet Synopses
of the wavelet transform (and Haar wavelets, in partic-

ular) as a tool for approximate query processing over

massive relational tables [2,7,8] and continuous data

streams [3,9]. Briefly, the idea is to apply wavelet

transform to the input relation to obtain a compact

data synopsis that comprises a select small collection of

wavelet coefficients. The excellent energy compaction

and de-correlation properties of the wavelet transform

allow for concise and effective approximate representa-

tions that exploit the structure of the data. Further-

more, wavelet transforms can generally be computed in

linear time, thus allowing for very efficient algorithms.

Historical Background
A growing number of database applications require

on-line, interactive access to very large volumes of

data to perform a variety of data-analysis tasks. As an

example, large Internet Service Providers (ISPs) typi-

cally collect and store terabytes of detailed usage infor-

mation (NetFlow/SNMP flow statistics, packet-header

information, etc.) from the underlying network to

satisfy the requirements of various network-manage-

ment tasks, including billing, fraud/anomaly detection,

and strategic planning. This data gives rise to massive,

multi-dimensional relational data tables typically

stored and queried/analyzed using commercial data-

base engines (such as, Oracle, SQL Server, DB2). To

handle the huge data volumes, high query complex-

ities, and interactive response-time requirements

characterizing these modern data-analysis applica-

tions, the idea of effective, easy-to-compute approxi-

mate query answers over precomputed, compact data

synopses has recently emerged as a viable solution. Due

to the exploratory nature of most target applications,

there are a number of scenarios in which a (reasonably-

accurate) fast approximate answer over a small-footprint

summary of the database is actually preferable over an

exact answer that takes hours or days to compute. For

example, during a ‘‘drill-down’’ query sequence in ad-

hoc data mining, initial queries in the sequence fre-

quently have the sole purpose of determining the

truly interesting queries and regions of the database.

Providing fast approximate answers to these initial

queries gives users the ability to focus their explora-

tions quickly and effectively, without consuming in-

ordinate amounts of valuable system resources.

The key behind such approximate techniques

for dealing with massive data sets lies in the use of

appropriate data-reduction techniques for constructing
compact synopses that can accurately approximate the

important features of the underlying data distribution.

The Haar wavelet decomposition is one such technique

with deep roots in the fields of signal and image pro-

cessing, that has recently found its way into database

applications as an important approximate query pro-

cessing tool.

Foundations

Haar Wavelet Basics

Haar wavelets are conceptually simple, easy to com-

pute, and have been found to perform well in practice

for a variety of applications, ranging from image edit-

ing and querying to database selectivity estimation

tasks. Consider a one-dimensional data vector A con-

taining the N¼8 data values A¼[2,2,0,2,3,5,4,4].

The Haar wavelet transform of A can be computed as

follows. The values are first averaged together pairwise

to get a new ‘‘lower-resolution’’ representation of the

data with the following average values [2,1,4,4]. To

restore the original values of the data array, additional

detail coefficients must be stored to capture the infor-

mation lost due to this averaging. In Haar wavelets,

these detail coefficients are simply the differences of

the (second of the) averaged values from the computed

pairwise average, that is, [2�2,1�2,4�5,4�4]¼
[0,�1,�1,0]. No information has been lost in this

process – it is simple to reconstruct the eight values

of the original data array from the lower-resolution

array containing the four averages and the four

detail coefficients. Recursively applying the above pair-

wise averaging and differencing process on the lower-

resolution array containing the averages, gives the

following full transform:

The wavelet transform WA of A is the single coeffi-

cient representing the overall average of the data

values followed by the detail coefficients in the order

of increasing resolution, i.e., WA¼[11 ∕4,�5 ∕4,1 ∕2,0,
0,�1,�1,0] (each entry is called a wavelet coefficient).

For vectors containing similar values, most of the

detail coefficients tend to be very small; thus, eliminat-

ing them from the wavelet transform (i.e., treating

them as zeros) introduces only small errors when

reconstructing the original data, resulting in a very

effective form of lossy data compression [12].

A helpful tool for conceptualizing the recursive

Haar wavelet transform process is the error tree struc-

ture (shown in Fig.1a for the example array A). Each

Discrete Wavelet Transform and Wavelet Synopses. Figure 1. (a) Error-tree structure for the example data array A (N¼
8). (b) Support regions and signs for the 16 nonstandard two-dimensional Haar basis functions.

Discrete Wavelet Transform and Wavelet Synopses D 859

D

internal node ci (i¼0,...,7) is associated with a wavelet

coefficient value, and each leaf di (i¼0,...,7) is asso-

ciated with a value in the original data array; in both

cases, the index i denotes the positions in the (data or

wavelet transform) array. For instance, c0 corresponds

to the overall average of A. The resolution levels l for

the coefficients (corresponding to levels in the tree) are

also depicted.
Resolution Averages Detail coefficients

3 [2, 2, 0, 2, 3, 5, 4, 4] –

2 [2, 1, 4, 4] [0,�1,�1, 0]

1 [3/2, 4] [1/2, 0]

0 [11/4] [�5 ∕4]
Given an error tree T and an internal node t of T,

t6¼c0, leftleaves(t) (rightleaves(t)) denotes the

set of leaf (i.e., data) nodes in the subtree rooted at t’s

left (resp., right) child. Also, given any (internal or

leaf) node u, path(u) is the set of all (internal) nodes

in T that are proper ancestors of u (i.e., the nodes on

the path from u to the root of T, including the root but

not u) with non-zero coefficients. Finally, for any two

leaf nodes dl and dh, d(l : h) denotes the range sumPh
i¼l di. Using the error tree representation T, the
following important reconstruction properties of the

Haar wavelet transform can be outlined.

� (P1) The reconstruction of any data value di
depends only on the values of the nodes in path(di).

Morespecifically,di ¼
P

cj2pathðdiÞdij � cj , where dij¼þ1

if di 2leftleaves(cj) or j¼0, and dij¼�1

otherwise; for example, d4¼c0�c1þc6 =
11
4
� ð� 5

4
Þ þ ð�1Þ ¼ 3.

� (P2) An internal node cj contributes to the range

sum d(l : h) only if cj2path(dl) [path(dh). More

specifically, dðl : hÞ ¼
P

cj2pathðdlÞ[pathðdhÞxj , where

xj ¼
ðh�lþ1Þ�cj ; if j¼ 0

ðjleftleavesðcj ; l : hÞj �rightleavesðcj ; l : hÞjÞ�cj ; otherwise:

n

where leftleaves(cj, l : h)¼leftleaves(cj) \{ dl,
dlþ1,...,dh} (i.e., the intersection of leftleaves(cj)

with the summation range) and rightleaves(cj, l :

h) is defined similarly. (Clearly, coefficients whose sub-

tree is completely contained within the summation

range have a net contribution of zero, and can be

safely ignored.) For example, d(2 : 6)¼5c0þ(2�3)

c1�2c2¼5� 11
4
� ð� 5

4
Þ � 1 = 14.

Thus, reconstructing a single data value involves

summing at most log Nþ1 coefficients and recon-

structing a range sum involves summing at most

2 log Nþ1 coefficients, regardless of the width of the

range. The support region for a coefficient ci is defined

860D Discrete Wavelet Transform and Wavelet Synopses
as the set of (contiguous) data values that ci is used

to reconstruct.

The Haar wavelet transform can be naturally

extended to multi-dimensional data arrays using two

distinct methods, namely the standard and nonstan-

dard Haar transform [12]. As in the one-dimensional

case, the Haar transform of a d-dimensional data array

A results in a d-dimensional wavelet-coefficient array

WA with the same dimension ranges and number of

entries. Consider a d-dimensional wavelet coefficient

W in the (standard or nonstandard) wavelet-coefficient

array WA. W contributes to the reconstruction of a

d-dimensional rectangular region of cells in the origi-

nal data array A (i.e.,W ’s support region). Further, the

sign of W ’s contribution (þW or�W) can vary along

the quadrants of W ’s support region in A.

As an example, Fig.1b depicts the support regions

and signs of the sixteen nonstandard, two-dimensional

Haar coefficients in the corresponding locations of a

4 � 4 wavelet-coefficient array WA. The blank areas

for each coefficient correspond to regions of A whose

reconstruction is independent of the coefficient, i.e.,

the coefficient’s contribution is 0. Thus, WA[0,0] is

the overall average that contributes positively (i.e.,‘‘þ
WA[0,0]’’) to the reconstruction of all values in A,

whereas WA[3,3] is a detail coefficient that contributes

(with the signs shown) only to values in A’s upper

right quadrant. Each data cell in A can be accurately

reconstructed by adding up the contributions (with

the appropriate signs) of those coefficients whose sup-

port regions include the cell. Error-tree structures

for d-dimensional Haar coefficients are essentially

d-dimensional quadtrees, Ewhere each internal node

t corresponds to a set of (at most) 2d�1 Haar coeffi-

cients, and has 2d children corresponding to the quad-

rants of the (common) support region of all

coefficients in t ; furthermore, properties (P1) and (P2)

can also be naturally extended to the multi-dimensional

case [2,7,8].

Data Reduction and Approximate Query Processing

Consider a relational table R with d data attributes X1,

X2,...,Xd. The information in R can be represented as a

d-dimensional array AR, whose jth dimension is

indexed by the values of attribute Xj and whose cells

contain the count of tuples in R having the corre-

sponding combination of attribute values. AR is essen-

tially the joint frequency distribution of all the data

attributes of R. Given a limited amount of storage for
building a wavelet synopsis of an input relation R, a

thresholding procedure retains a certain number

B << N of the coefficients in the wavelet transform

of AR as a highly-compressed approximate representa-

tion of the original data (the remaining coefficients are

implicitly set to 0). (The full details as well as efficient

transform algorithms can be found in [2,13].) The goal

of coefficient thresholding is to determine the ‘‘best’’

subset of B coefficients to retain, so that some overall

error measure in the approximation is minimized – the

next subsection discusses different thresholding strate-

gies proposed in the database literature.

The construction of wavelet synopses typically

takes place during the statistics collection process,

whose goal is to create concise statistical approxima-

tions for the value distributions of either individual

attributes or combinations of attributes in the rela-

tions of a Database Management System (DBMS).

Once created, a wavelet synopsis is typically stored

(as a collection of B wavelet coefficients) as part of the

DBMS-catalog information, and can be exploited for

several different purposes. The primary (and, more

conventional) use of such summaries is as a tool

for enabling effective (compile-time) estimates of the

result sizes of relational operators for the purpose of

cost-based query optimization. (Accurate estimates of

such result sizes play a critical role in choosing an

effective physical execution plan for an input SQL

query.) For instance, estimating the number of data

tuples that satisfy a range-predicate selection like l �
X � h is equivalent to estimating the range summation

f (l : h)¼
Ph

i¼l fi , where f is the frequency distribution

array for attribute X. As mentioned earlier, given a

B-coefficient synopsis of the f array, computing f

(l : h) only involves retained coefficients in path(fl)[
path(fh) and, thus, can be estimated by summing

only min{B, 2 log Nþ1} synopsis coefficients [13].

A B-coefficient wavelet synopsis can also be easily

expanded (in O(B) time) into an O(B)-bucket histo-

gram (i.e., piecewise-constant) approximation of the

underlying data distribution with several possible uses

(e.g., as a data visualization/approximation tool).

More generally, wavelet synopses can enable very

fast and accurate approximate query answers [6] dur-

ing interactive data-exploration sessions. As demon-

strated by Chakrabarti et al. [2], an approximate

query processing algebra (which includes all conven-

tional aggregate and non-aggregate SQL operators,

such as select, project, join, sum, and average)

Discrete Wavelet Transform and Wavelet Synopses D 861

D

can operate directly over the wavelet synopses of rela-

tions, while guaranteeing the correct relational

operator semantics. Query processing algorithms for

these operators work entirely in the wavelet-coefficient

domain. This allows for extremely fast response times,

since the approximate query execution engine can

do the bulk of its processing over compact wavelet

synopses, essentially postponing the (expensive) expan-

sion step into relational tuples until the end-result of the

query.
Conventional and Advanced Wavelet Thresholding

Schemes

Recall that coefficient thresholding achieves data

reduction by retaining B << N of the coefficients in

the wavelet transform of AR as a highly-compressed,

lossy representation of the original relational data. The

goal, of course, is to minimize the amount of ‘‘loss’’

quantified through some overall approximation error

metric. Conventional wavelet thresholding (the meth-

od of choice for most studies on wavelet-based data

reduction) greedily retains the B largest Haar-wavelet

coefficients in absolute value after a simple normaliza-

tion step (that divides each coefficient value at resolu-

tion level l by
ffiffiffiffi
2l

p
). It is a well-known fact that this

thresholding method is in fact provably optimal with

respect to minimizing the overall root-mean-squared

error (i.e., L2-norm error) in the data compression

[12]. More formally, letting d̂i denote the (approxi-

mate) reconstructed data value for cell i, retaining

the B largest normalized coefficients implies that the

resulting synopsis minimizes L2ðd̂Þ ¼
ffiP

iðd̂i � diÞ
2

q
(for the given amount of space B).

Conventional wavelet synopses optimized for over-

all L2 error may not always be the best choice for

approximate query processing systems. The quality of

the approximate answers such synopses provide can

vary widely, and users have no way of knowing the

accuracy of any particular answer. Even for the sim-

plest case of approximating a value in the original data

set, the absolute and relative errors can show wide

variation. Consider the example depicted in Table 1.
Discrete Wavelet Transform and Wavelet Synopses. Table

Original data values 127 71 87 31 59 3

Wavelet answers 65 65 65 65 65 65
The first line shows the 16 original data values (the

exact answer), whereas the second line shows the 16

approximate answers returned when using conven-

tional wavelet synopses and storing eight coefficients.

Although the first half of the values is basically a mirror

image of the second half, all the approximate answers

for the first half are 65, whereas all the approximate

answers for the second half are exact! Similar data

values have widely different approximations, e.g., 30

and 31 have approximations 30 and 65, respectively.

The approximate answers make the first half appear as

a uniform distribution, with widely different values,

e.g., 3 and 127, having the same approximate answer

65. Moreover, the results do not improve when one

considers the presumably easier problem of approxi-

mating the sum over a range of values: for all possible

ranges within the first half involving x ¼ 2 to 7 of the

values, the approximate answer will be 65 � x, while the
actual answers vary widely. For example, for both the

range d0 to d2 and the range d3 to d5, the approximate

answer is 195, while the actual answer is 285 and 93,

respectively. On the other hand, exact answers are

provided for all possible ranges within the second half.

The simple example above illustrates that conven-

tional wavelet synopses suffer from several important

problems, including the introduction of severe bias in

the data reconstruction and wide variance in the quality

of the data approximation, as well as the lack of non-

trivial guarantees for individual approximate answers.

To address these shortcomings, recent work has pro-

posed novel thresholding schemes for building wavelet

synopses that try to minimize different approximation-

error metrics, such as the maximum relative error (with

an appropriate sanity bound s) in the approximation

of individual data values based on the synopsis; that is,

minimize maxi
jd̂i�di j

max jdi j;sf g

n o
. Such relative-error

metrics are arguably the most important quality mea-

sures for approximate query answers. (The role of the

sanity bound is to ensure that relative-error numbers

are not unduly dominated by small data values.)

More specifically, Garofalakis and Gibbons [7]

introduce probabilistic thresholding schemes based on

ideas from randomized rounding, that probabilistically
1. Errors with conventional wavelet synopses

43 99 100 42 0 58 30 88 72 130

65 65 100 42 0 58 30 88 72 130

862D Discrete Wavelet Transform and Wavelet Synopses
round coefficients either up to a larger rounding value

(to be retained in the synopsis) or down to zero.

Intuitively, their probabilistic schemes assign each

non-zero coefficient fractional storage y 2 [0,1] equal

to its retention probability, and then flip independent,

appropriately-biased coins to construct the synopsis.

Their thresholding algorithms are based on Dynamic-

Programming (DP) formulations that explicitly mini-

mize appropriate probabilistic metrics (such as the

maximum normalized standard error or the maximum

normalized bias) in the randomized synopsis construc-

tion; these formulations are then combined with a

quantization of the potential fractional-storage allot-

ments to give combinatorial techniques [7].

In more recent work, Garofalakis and Kumar [8]

show that the pitfalls of randomization can be avoided

by introducing efficient schemes for deterministic

wavelet thresholding with the objective of optimizing

a general class of error metrics (e.g., maximum or mean

relative error). Their optimal and approximate thresh-

olding algorithms are based on novel DP techniques

that take advantage of the Haar transform error-tree

structure. In a nutshell, their DP algorithms tabulate

the optimal solution for the subtree rooted at each

error-tree node cj given the error contribution that

‘‘enters’’ that subtree through the choices made at all

ancestor nodes of cj in the tree (i.e., the choice of coeffi-

cients on path(cj)). The key observation here is that,

since the depth of the error tree is O(log N), all such

possible selections can be tabulated while still keeping

the running-time of the thresholding algorithm in the

low-polynomial range. This turns out to be a fairly

powerful idea for wavelet synopsis construction that

can handle a broad, natural class of distributive error

metrics (which includes several useful error measures for

approximate query answers, such as maximum or mean

weighted relative error and weighted Lp-norm error) [8].

The above wavelet thresholding algorithms for

non-L2 error metrics consider only the restricted ver-

sion of the problem, where the algorithm is forced to

select values for the synopsis from the standard Haar

coefficient values. As observed by Guha and Harb [10],

such a restriction makes little sense when optimizing

for non-L2 error, and can, in fact, lead to sub-optimal

synopses. Their work considers unrestricted Haar

wavelets, where the values retained in the synopsis are

specifically chosen to optimize a general (weighted) Lp
error metric. Their proposed thresholding schemes rely
on a DP over the error tree (similar to that in [8]) that

also iterates over the range of possible coefficient values

for each node. To keep time and space complexities

manageable, techniques for bounding these coeffi-

cient-value ranges are also discussed [10].

Extended and Streaming Wavelet Synopses

Complex tabular data sets with multiple measures

(multiple numeric entries for each table cell) introduce

interesting challenges for wavelet-based data reduc-

tion. Such massive, multi-measure tables arise natural-

ly in several application domains, including OLAP

(On-Line Analytical Processing) environments and

time-series analysis/correlation systems. As an exam-

ple, a corporate sales database may tabulate, for each

available product (i) the number of items sold,

(ii) revenue and profit numbers for the product, and

(iii) costs associated with the product, such as shipping

and storage costs. Similarly, real-life applications that

monitor continuous time-series typically have to deal

with several readings (measures) that evolve over time;

for example, a network-traffic monitoring system takes

readings on each time-tick from a number of distinct

elements, such as routers and switches, in the underly-

ing network and typically several measures of interest

need to be monitored (e.g., input/output traffic num-

bers for each router or switch interface) even for a fixed

network element. Deligiannakis et al. [4] show that

obvious approaches for building wavelet synopses for

such multi-measure data can lead to poor synopsis-

storage utilization and suboptimal solutions even in

very simple cases. Instead, their proposed solution is

based on (i) extended wavelet coefficients, the first adap-

tive, efficient storage scheme for multi-measure wave-

let coefficients; and, (ii) novel algorithms for selecting

the optimal subset of extended coefficients to retain for

minimizing the weighted sum of L2 errors across all

measures under a given storage constraint.

Traditional database systems and approximation

techniques are typically based on the ability to make

multiple passes over persistent data sets, that are stored

reliably in stable storage. For several emerging applica-

tion domains, however, data arrives at high rates and

needs to be processed on a continuous (24 � 7) basis,

without the benefit of several passes over a static,

persistent data image. Such continuous data streams

arise naturally, for example, in the network installa-

tions of large Telecom and Internet service providers

Discrete Wavelet Transform and Wavelet Synopses D 863

D

where detailed usage information (Call-Detail-Records

(CDRs), SNMP/RMON packet-flow data, etc.) from

different parts of the underlying network needs to be

continuously collected and monitored for interesting

trends and phenomena (e.g., fraud or Denial-of-

Service attacks). Efficiently tracking an accurate wave-

let synopsis over such massive streaming data, using

only small space and time (per streaming update),

poses a host of new challenges. Recently-proposed

solutions [3, 9] rely on maintaining small-space, pseu-

do-random AMS sketches (essentially, random linear

projections) over the input data stream [1]. These

sketches can then be queried to efficiently recover the

topmost wavelet coefficients of the underlying data

distribution within provable error guarantees [3].

Key Applications
Wavelet synopses are a general data-reduction tool

with several important applications, including statis-

tics for query optimization, lossy data compression,

OLAP cube summarization, and interactive data

exploration, mining, and query processing.

Data Sets
Several publicly-available real-life data collections have

been used in the experimental study of wavelet

synopses (and other data-reduction methods); exam-

ples include the US Census Bureau data sets (http://

www.census.gov/), the UCI KDD Archive (http://kdd.

ics.uci.edu/), and the UW Earth Climate and Weather

Data Archive (http://www-k12.atmos.washington.edu/

k12/grayskies/).

Future Directions
The area of wavelet-based data reduction is still rife with

interesting algorithmic questions, including, for instance

(i) designing efficient methods for building wavelet

synopses that optimize different error metrics under

general streamingmodels (e.g., allowing both item inser-

tions and deletions), and (ii) developing a sound foun-

dation and appropriate summarization tools for

approximate set-valued (i.e., non-aggregate) queries.

Dealing with the curse of dimensionality that invariably

haunts space-partitioning techniques (such as wavelets

and histograms) is another big open issue; some initial

ideas based on combining these techniques with sta-

tistical-correlation models appear in [5]. And, of

course, from a systems perspective, the problem of
incorporating wavelets and other approximate query

processing tools in an industrial-strength database en-

gine (that can, e.g., select and optimize the appropriate

tools for each scenario) remains wide open.

Cross-references
▶Approximate Query Processing

▶Data Compression in Sensor Networks

▶Data Reduction

▶Data Sketch/Synopsis

▶ Synopsis Structure

▶Wavelets on Streams

Recommended Reading
1. Alon N., Matias Y., and Szegedy M. The space complexity of

approximating the frequency moments. In Proc. 28th Annual

ACM Symp. on Theory of Computing, 1996, pp. 20–29.

2. Chakrabarti K., Garofalakis M.N., Rastogi R., and Shim K.

Approximate query processing using wavelets. VLDB J.,

10(2-3): 199–223, September 2001.

3. Cormode G., Garofalakis M., and Sacharidis D. Fast app-

roximate wavelet tracking on streams. In Advances in Database

Technology, Proc. 10th Int. Conf. on Extending Database Tech-

nology, 2006.

4. Deligiannakis A., Garofalakis M., and Roussopoulos N.

Extended wavelets for multiple measures. ACM Trans. Database

Syst., 32(2), June 2007.

5. Deshpande A., Garofalakis M., and Rastogi R. Independence

is good: dependency-based histogram synopses for high-

dimensional data. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 2001.

6. Garofalakis M. and Gibbons P.B. Approximate query processing:

taming the terabytes. Tutorial in 27th International Conference

on Very Large Data Bases, 2001.

7. Garofalakis M. and Gibbons P.B. Probabilistic wavelet synopses.

ACM Trans. Database Syst., 29(1), March 2004.

8. Garofalakis M. and Kumar A. Wavelet synopses for general error

metrics. ACM Trans. Database Syst., 30(4), December 2005.

9. Gilbert A.C., Kotidis Y., Muthukrishnan S., and Strauss M.J.

One-pass wavelet decomposition of data streams. IEEE Trans.

Knowl. Data Eng., 15(3): 541–554, May 2003.

10. Guha S. and Harb B. Wavelet synopsis for data streams:

minimizing non-euclidean error. In Proc. 11th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2005, pp.

88–97.

11. Jawerth B. and Sweldens W. An overview of wavelet based multi-

resolution analyses. SIAM Rev., 36(3): 377–412, 1994.

12. Stollnitz E.J., DeRose T.D., and Salesin D.H. Wavelets for com-

puter graphics – theory and applications. Morgan Kaufmann,

San Francisco, CA, 1996.

13. Vitter J.S. and Wang M. Approximate computation of multi-

dimensional aggregates of sparse data using wavelets. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1999,

pp. 193–204.

864D Discretionary Access Control
Discretionary Access Control

GAIL-JOON AHN

Arizona State University, Tempe, AZ, USA

Synonyms
DAC; Identity-based Access Control; etc.

Definition
Discretionary access control (DAC) provides for

owner-controlled administration of access rights to

objects. DAC, as the name implies, permits the grant-

ing and revocation of access permissions to be left to

the discretion of the individual users. A DAC mecha-

nism allows users to grant or revoke access to any of the

objects under their control.

Historical Background
Trusted computer system evaluation criteria (TCSEC)

published by the US Department of Defense, com-

monly known as the Orange Book, defined two impor-

tant access control modes for information systems:

discretionary access control (DAC) and mandatory

access control (MAC). As the name implies, DAC

allows the creators or owners of files to assign access

rights. Also, a user (or subject) with discretionary

access to information can pass that information on

to another user (or subject). DAC has its genesis in

the academic and research setting from which time-

sharing systems emerged in the early 1970s.

Foundations
As defined in the TCSEC and commonly implemented,

DAC policy permits system users (or subjects) to allow

or disallow other users (or subjects) access to the

objects under their control. The TCSEC DAC policy

is defined as follows [1]:

A means of restricting access to objects based on the

identity of subjects or groups, or both, to which they

belong. The controls are discretionary in the sense

that a subject with a certain access permission is cap-

able of passing that permission (perhaps indirectly) on

to any other subject.

DAC is a means of restricting access to objects

based on the identity of users or the groups to which

they belong. The controls are discretionary in the sense

that a user or subject given discretionary access to a

resource is capable of passing that information on to

another subject. To provide this discretionary control,
DAC is based on the notion that individual users are

‘‘owners’’ of objects and therefore have complete dis-

cretion over who should be authorized to access the

object and in which access mode [2]. Ownership is

usually acquired as a consequence of creating the object

[3]. In other words, DAC policies govern the access of

users to the information on the basis of the user’s iden-

tity and authorizations (or rules) that specify the access

modes the user is allowed on the object. Each request of a

user to access an object is checked against the specified

authorizations. If there exists an authorization stating

that the user can access the object in the specific mode,

the access is granted, otherwise it is denied.

DAC mechanisms tend to be very flexible. The

flexibility of discretionary policies makes them suitable

for a variety of systems and applications. For these

reasons, they have been widely used in a variety of

implementations, especially in the commercial and

industrial environments.

DAC policies based on explicitly specified authoriza-

tion are said to be closed, in that the default decision of

the reference monitor is denial. Similar policies, called

open policies, could also be applied by specifying denials

instead of permissions [4,5]. In this case, the access

modes the user is forbidden on the object are specified.

Each access request by a user is checked against the

specified authorizations and granted only if no author-

izations denying the access exist. The use of positive

and negative authorizations can be combined, allowing

the specification of both the accesses to be authorized

as well as the accesses to be denied to the users. The

combination of positive and negative authorizations can

become enormously complicated. In addition, for many

enterprises within industry and government, their users

do not own the information to which they are allowed

access as is claimed by DAC policies. For such organiza-

tions, the organization is the actual owner of system

objects and it may not be appropriate to allow users to

manipulate access rights on the objects.

However, even though DACmechanisms are in wide

commercial use today, they are known to be inherently

weak since theydonot provide real assurance on the flow

of information in a system. Granting read access is

transitive so nothing stops a user from copying the

contents of other’s file to an object that s/he controls.

For example, a user who is able to read data can pass it to

other users not authorized to read it without the cogni-

zance of the owner. Therefore, it is easy to bypass the

access restrictions stated through the authorizations.

GRANT privileges

[ON relation]

TO users

[WITH GRANT OPTION]

Discretionary Access Control D 865

D

The reason is that discretionary policies do not impose

any restriction on the usage of information by a user

once the user has got it. In other words, further dissemi-

nation of information is not governed.

In addition, access rights need to be assigned ex-

plicitly to users who need access. Programs executed by

a user have the same access rights as the user who is

invoking it. This means that the security of the data-

base system depends on the applications that are being

executed. That is, a security breach in an application

can affect all the objects to which the user has access as

well. This makes DAC mechanisms vulnerable to ‘‘Tro-

jan Horse’’ attacks. Because programs inherit the iden-

tity of the users who are invoking them, a user may

write a program for other user that performs some

legitimate system activities, while at the same time

reads the contents of other user’s files and writes the

contents of the files to a location that both users can

access. The user may then move the contents of the files

to a location not accessible to the other user [6].

In summary, DAC is very flexible and suitable for

various applications but it has an inherent weakness

that information can be copied from one object to

another, so access to a copy is possible even if the

owner of the original does not provide access to the

original. Moreover, such copies can be propagated by

Trojan Horse software without explicit cooperation of

users who are allowed access to the original [7,8].

DAC in Relational Database

The SQL standard includes the access control facilities

to support DAC features. The creator of a relation in

an SQL database becomes an owner of the relation.

The owner also has the fundamental ability to grant

other users access to that relation. The access privi-

leges recognized in SQL correspond explicitly to the

CREATE, SELECT, INSERT, DELETE and UPDATE

statements. There is also a REFERENCES privilege to

control the foreign keys to a relation. SQL does not

require direct privilege for a user to create a relation,

unless the relation is defined to have a foreign key to

another relation. For the latter case the user must have

the REFERENCES privilege for the relation. To create a

view a user should have the SELECT privilege on every

relation mentioned in definition of the view. If a user

has access privileges on these relations, corresponding

privileges are obtained on the view as well.

In addition, the owner of a relation can grant one

or more access privileges to another user. This can be
done with or without the GRANT OPTION. If the

owner grants, say, SELECTwith the GRANT OPTION

the user receiving this grant can further grant SELECT

to other users. The general format of a grant operation

in SQL is as follows.
The GRANT command applies to base relations as

well as views. The ON and WITH clauses denote that

these are optional and may not be present in every

GRANT command. INSERT, DELETE and SELECT

privileges apply to the entire relation as a unit. INSERT

and DELETE are operations on entire rows so this is

appropriate. SELECT, however, allows users to select

on all columns. Selection on a subset of the columns

can be achieved by defining a suitable view, and grant-

ing SELECT on the view. The UPDATE privilege in

general applies to a subset of the columns. For exam-

ple, a user could be granted the privilege to update the

ADDRESS but not the GRADE of an STUDENT.

Also, the REVOKE statement is necessary to take

away a privilege that has been granted by a GRANT. It

is often required that revocation should cascade. In a

cascading revoke, not only is the revoked privilege

taken away, but also all GRANTs based on the revoked

privilege are accordingly revoked. For example say that

user Alice grants Bob SELECT on relation R with the

GRANT OPTION. Furthermore, Bob subsequently

grants Chris SELECTon R. Now suppose Alice revokes

SELECTon R from Bob. The SELECTon R privilege is

taken away not only from Bob, but also from Chris.

The precise methods of a cascading revoke is somewhat

complicated. Suppose Bob had received the SELECT

on R privilege not only from Alice, but also from David

before Bob granted the SELECT to Chris. In this case

Alice’s revocation of the SELECT from R privilege

from Bob will not cause either Bob or Chris to loose

this privilege. This is because the GRANT from David

remains legitimate.

Cascading revocation is not always desirable. A

user’s privileges to a given table are often revoked be-

cause the user’s job functions and responsibilities have

changed. Thus the Head of a Division may move on to a

866D Disk
different assignment. His/her privileges to that Divi-

sion’s data need to be revoked. However, a cascading

revoke may cause lots of employees of that Division to

loose their privileges. These privileges should be reas-

signed to maintain the business continuity.

Several database products take the approach that a

database is always created with a single user, usually

called the Database Administrator (DBA). The DBA

essentially has all privileges with respect to this data-

base. The DBA is also responsible for enrolling users

and creating relations. Some systems recognize a spe-

cial privilege which can be granted to other users at the

initial DBA’s discretion and allows these users to suc-

cessfully act as the DBA [9,10].
Key Applications
Database systems, operating systems, and owner-

centered web applications.

Future Directions
There are many subtle issues in DAC such as multi-step

grant, cascading revocation, and so on. All these

subtleties of DAC are still being discussed, debated

and refined in the literature. The driving principle of

DAC is ownership and such an owner-based access

control can be applied to preserve privacy attributes

in database systems. Nevertheless DAC has the inher-

ent weakness, DAC’s flexibility and suitability are need-

ed to be further studied to support emerging critical

applications.

Cross-references
▶Access Control

▶Access Control Administration Policies

▶Access Control Policy Languages

▶Mandatory Access Control

▶Role Based Access Control

Recommended Reading
1. Bertino E., Samarati P., and Jajodia S. Authorizations in rela-

tional database management systems. In Proc. 1st ACMConf. on

Computer and Communications Security, 1993, pp. 130–139.

2. Bishop M. Computer Security: Art and Science. Addison-

Wesley, Reading, MA, 2003.

3. Castano S., Fugini M.G., Martella G., and Samarati P. Database

Security. Addison Wesley, Reading, MA, 1994.

4. Fagin R. On an authorization mechanism. ACM Trans. Database

Syst., 3(3):310–319, 1978.

5. Ferraiolo D.F., Gilbert D.M., and Lynch N. An examination of

federal and commercial access control policy needs. In Proc.
NIST–NCSC National Computer Security Conference, 1993,

pp. 107–116.

6. Graham G.S. and Denning P.J. Protection: principles and

practice. In Proc. AFIPS Spring Joint Computer Conference.

40:417–429, 1972.

7. Griffiths P.P. and Wade B.W. An authorization mechanism for

a relational database system. ACM Trans. Database Syst.,

1(3):242–255, 1976.

8. Lampson B.W. Protection. In Proc. 5th Princeton Symp. on

Information Science and Systems, 1971, pp. 437–443. Reprinted

in ACM Operat. Syst. Rev., 8(1):18–24, 1974.

9. Rabitti F., Bertino E., Kim W., and Woelk D. A model of autho-

rization for next-generation database systems. ACM Trans.

Database Syst., 16(1), 1991.

10. Sandhu R.S. and Samarati P. Access control: principles and

practice. IEEE Commun., 32(9):40–48, 1994.
Disk

PETER BONCZ

CWI, Amsterdam, The Netherlands

Synonyms
Hard disk; Magnetic disk; Disk drive

Definition
In disk storage, data is recorded on planar, round and

rotating surfaces (disks, discs, or platters). A disk drive

is a peripheral device of a computer system, connected

by some communication medium to a disk controller.

The disk controller is a chip, typically connected to the

CPU of the computer by the internal communication

bus. Main implementations are hard disks, floppy

disks and optical discs, of which the first is the usual

interpretation.

Recently, Solid State Disks have been introduced;

though the term ‘‘disc’’ is a misnomer for these devices,

as internally they consist of NAND Flash memory

chips. Similarly, the term RAM Disk is used for a

storage device consisting of volatile DRAM memory.

Both offer the same data storage abstraction as a hard

disk at the operating system level, though their price,

size, performance and persistence characteristics are

very different from a hard disk.
Key Points
The history of the hard disk started at IBM in San Jose,

California, when Rey Johnson created a rotating drum

that was coated in a magnetically polarizable film that

RPM 3,600 5,400 7,200 10,000 15,000 Solid state

Disk model CDC wrenl
94145–3

Seagate
ST41600

Seagate
ST15150

Seagate
ST39102

Seagate
ST373453

Samsung
MCBOE

Year 1983 1990 1994 1998 2003 2008

Capacity (GB) 0.03 1.4 4.3 9.1 73.4 32

Seq. bandwidth
(MB/s)

0.6 4 9 24 86 80

Read latency (ms) 48.3 17.1 12.7 8.8 5.7 0.3

Write latency (ms) 40

Disk Power Saving D 867

D

could be used to store data by changing and sensing

magnetic polarization.

Hard disks nowadays consist of a number of platters

connected by a single axis, spinning at a fixed number

of rotations per minute (rpm). Data is on a platter

organized by track (distance from the center) and sector

(angular region on a track). The disk head, one for each

platter, mounted on a disk arm that moves in and out,

therefore cover more distance per unit of time on an

outer track than on an inner track. To read or write data,

the head must be moved to the correct position above

the track (seek time), and then wait until the region of

interest spins past it (rotational delay). Therefore, the

average random access latency of hard disks is seek

time plus rotational delay divided by two. The band-

width of a disk is determined by both communication

infrastructure with the controller as well as rotation

speed and data density, which determine the amount

of bits that pass the head per second. Data density is

closely related to disk capacity and has increased enor-

mously, surpassing the historical development of any

other performance factor in computer architecture (i.e.,

orders of magnitude faster than latency and quite a bit

faster than CPU MHz as well as disk bandwidth). The

historical development of disk performance parameters

is shown in the below table. For comparison, the last

column shows characteristics of a solid statedrive.

The consequence of these developments is that rela-

tively speaking, disk latency currently is much slower

with respect to all other performance factors than it

was a few decades ago, whichmeans that fast and scalable

algorithms involving I/Omust focus more on sequential

bulk access than fine-grained random access. Managing

and optimizing I/O access is one of the primary tasks

of a database system. In order to counter the trend of

expensive random disk access latency, modern database

systems (should) make use of asynchronous I/O to
amortize disk arm movements over multiple requests,

multi-disk or RAID systems to increase the I/O opera-

tion throughput, larger page sizes, as well as compres-

sion, clustered indices and efficient cooperative scan

techniques to profit more from efficient sequential I/O.

Cross-references
▶CPU

▶Non-Volatile Memory (Flash)

▶RAID

▶Random Access Memory (RAM)

▶ Storage Devices

▶Tapes
Disk Array

▶Redundant Array of Independent Disks (RAID)
Disk Drive

▶Disk
Disk Power Saving

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Definition
The term Disk Power Saving refers to the function of

reducing the electric power that is consumed in a disk

drive. Typically, Disk Power Saving cuts power supply

to a particular component of the disk drive or slows

down the component. In most cases, the disk drive

868D Disk Process
cannot respond to input/output requests while it is in

such a power saving mode.

Key Points
Power modes of modern disk drives are often classified

as normal and stand-by. A disk drive in the normal

mode is either processing read/write requests or ready

to immediately start processing read/write requests.

In this mode, all the components are almost fully

operating. The disk drive thus consumes higher elec-

tric power than in the other modes. In contrast, a disk

drive in the other modes cannot start processing read/

write requests immediately. In the stand-by mode, the

spindle motor is spun down and the head assembly is

unloaded to the ramp and powered off; only the

controller or a partial circuit of the controller remains

operational. The disk drive thus consumes much less

power than in the normal mode. Yet, when a disk

drive accepts a read/write request, the controller

needs to spin up the spindle motor and power on

the head assembly again so as to transition to the

normal mode. This process is often time- and ener-

gy-consuming.

Many commercial disk drives support stand-by

commands such that operating systems and applica-

tions running on host computers can control disk

power modes. In addition, some of the disk drives

have the capability of threshold-based hibernation;

those disk drives can automatically change to the

stand-by mode when a specified time has elapsed

after the last read/write access.

The difficulty of power management of disk drives

is due to the significant penalties of mode changing.

Many commercial disk drives need more than 10 sec

and over one hundred joules to change from the stand-

by mode to the normal mode.

Some manufacturers are providing more flexibility

by introducing new types of power saving modes such

as unloaded and low-rpm. In the unloaded mode, the

head assembly is merely unloaded to the ramp and the

other components are normally operating. In the low-

rpm mode, the head assembly is unloaded to the ramp

and powered off, but the spindle motor is spinning at

lower rotational speeds. These new modes can save less

power but give also smaller penalties than the tradi-

tional stand-by mode.

In another approach, some research groups are

studying the possibility of multi-speed disk drives,

which have the capability of dynamically changing
rotational speeds in the normal mode. The use of

the multi-speed disk drives sounds effective, but only

several prototypes have been reported so far.
Cross-references
▶Massive Array of Idle Disks

▶ Storage Power Management
Recommended Reading
1. Gurumurthi S., Sivasubramaniam A., Kandemir M., and

Franke H. Reducing disk power consumption in servers with

DRPM. IEEE Comput., 36(12):59–66, 2003.

2. HGST Inc. Quietly cool. White Paper, HGST, 2004.

3. Yada H., Ishioka H., Yamakoshi T., Onuki Y., Shimano Y.,

Uchida M., Kanno H., and Hayashi N. Head positioning servo

and data channel for HDDs with multiple spindle speeds. IEEE

Trans. Magn., 36(5):2213–2215, 2000.
Disk Process

▶ Storage Manager
Disk-based Model

▶ I/O Model of Computation
Distance between Streams

▶ Stream Similarity Mining
Distance Indexing

▶ Indexing Metric Spaces
Distance Space

▶Metric Space

Distortion Techniques D 869
Distance-preserving Mapping

▶ Space Filling Curves

▶ Space-Filling Curves for Query Processing
D

Distillation

▶ Summarization
Distortion Techniques

CARPENDALE SHEELAGH

University of Calgary, Calgary, AB, Canada

Synonyms
Fisheye views; Nonlinear magnification; Multiscale

views; Detail-in-context; or Focus-plus-context

Definition
While the word ‘‘distortion’’ often has unfavorable

connotations in terms of data, a distortion technique

in digital information viewing or data exploration is

the use of deformation of some aspect of the informa-

tion or data in order to provide a better view or better

access to some other aspect of the data.

Historical Background
The uses of distortion in digital information explora-

tion interfaces have two independent starting points:

Spence and Apperley’s Bifocal Display [18] and Furnas’

Generalized Fisheye Views [5]. From these origins,

research initially focused on developing algorithmic

solutions for distortion techniques. Well-known exam-

ples include: Sarkar and Brown’s Graphical Fisheyes

[16], which expand upon Furnas’ approach creating

spatial reorganizations of visual representations;

Hyperbolic Display [9], which uses mathematical

function to create detail-in-context presentations;

Perspective Wall [11], and Document Lens [15],

which make use of 3D perspective projection to create

detail-in-context presentations; and Elastic Presenta-

tion [3], which also uses 3D manipulations and per-

spective projection to offer a mathematical framework

that encompassed distortion techniques to date. Other

methods [1,5,8,12,16] create distortion presentations
by using a 2D-to-2D transformation function to spa-

tially adjust a given two-dimensional layout (for survey

see [10]).

Though many varieties exist and there continues to

be interest further developing the domain within the

research community, distortion techniques have not

yet received widespread acceptance. This may be due

to a general discomfort with the use of distortion and

fears that distortion might lead to misinterpretation of

data. There is still room for significant research into

the relative merit among differing distortion techni-

ques and it is likely that this kind of evaluation will be

dependent on the type of task, the nature of the infor-

mation, and the preferences and skills of the person

using it.

Foundations
With regard to data presentation, access, navigation,

and exploration, the development of distortion tech-

niques has not been the goal in itself. Instead, these

techniques are used to achieve, aid, or ease a data- or

task-related goal. As such, the discussion and concepts

that motivate the development of distortion techni-

ques are important and remain relevant.

The primary motivation has always been a lack of

display space. Whether it is because of the sheer size

of the data to be displayed or because of the number of

related windows needed to accomplish a task, it seems

that there is never enough display space. While the

amount of available display space is expanding – note

current interest in high-resolution, large displays – it is

not keeping up with either the computing power

or the deluge of data. The response to this trend has

been through interaction – zooming, scrolling, and

panning – and various distortion techniques. Different

types of distortion techniques were initially motivated

independently.

Spence and Apperley [18] started by noting the

frequency of both crowding and navigation problems

in interfaces in general. Their response was based on an

understanding of how human memory is often less

than precise and can lead to fuzzy search practices.

They discuss how searching in physical space is sup-

ported by several factors including spatial memory,

memory of previous actions, and visual and verbal

clues and can be reinforced by a reasonable degree of

constancy. They suggest that interfaces might better

support these factors by maintaining a full context in

which spatial constancy is preserved. Spatial constancy

Distortion Techniques. Figure 1. This image shows a

land usage map of Champaign, Illinois compressed

uniformly to fit.

Distortion Techniques. Figure 2. Magnifying one region

of the land use map of Champaign Illinois reveals details of

airport runways not previously visible.

870D Distortion Techniques
requires ensuring that all items stay present, and that

all parts or regions stay in the same positions relative

to each other. This thinking led to integrated views

with two distinct levels of magnification, called Bifocal

Displays [18].

Furnas [5] studied how people retain and present

information in various subject areas and workplaces

such as geography, history, and newspapers and noted

that people usually know the details about their own

interests, set in enough domain knowledge to provide

context. His widespread evidence led him to suggest

that Generalized Fisheye Views may be a useful and

intuitive way to present information. A Generalized

Fisheye View has a focus or center of interest about

which detail is displayed, gradually decreasing in detail

as the distance from the focus increases, with the

exception that some specific items of noted impor-

tance within the domain should be included regardless

of the distance from the focus. To achieve this, Furnas

proposed filtering the context by using a degree of

interest (DOI) function. A DOI is based upon the

distance from the current focus and a domain-specific

a priori importance (API) function. These concepts led

to a variety of filtered and variant magnification

presentations.

Another much-discussed point is the importance of

visual integration in reducing cognitive load. If a partic-

ular data presentation is too large to fit the available

display space, it can be compressed uniformly to fit

(Fig. 1). This can result in a presentation that is too

dense to discern detail. For instance, in Fig. 1 one

cannot see the two airports, which should show as

white lines on a green background. To obtain a better

view of these details one can zoom in, as in Fig. 2, and

see one of the airports. The viewer must now either flip

between views to know which airport is being displayed

or view both the compressed and detailed view side by

side and work out how the two views relate to each other.

In this case, this is not too difficult, but does impose some

additional attentional costs. Local magnification or an

inset-in-place can be used, as in Fig. 3, but now the

actual connections are occluded. Alternatively, an

integrated detail-in-context view can be used (Fig. 4).

Note that while visual integration is maintained, it

makes use of a distortion technique [3].

Several researchers noted that temporal continuity

was also important [3,17]. Misue et al. [12] raised the

issue of developing techniques that support a viewer’s

mental map. In particular, they note that the

Distortion Techniques. Figure 3. Magnified inset

occludes local context.

Distortion Techniques. Figure 4. Distortion technique

provides integrated detail-in-context view.

Distortion Techniques D 871

D

mathematical concepts of proximity, orthogonality,

and topology should be algorithmically ensured. Car-

pendale et al. [2] noted that viewing cues can aid in the

general readability of data presentations that utilize

distortion techniques.

In summary, the issues and considerations around

the development of distortion techniques include:

� Maintenance of spatial constancy to support spatial

memory;

� Maintenance of full context, that all items maintain

some visual evidence of presence;

� Introduction of more than one magnification scale

in a unified presentation;

� Reduction of cognitive effort needed for reintegra-

tion of information across separate views;

� Support for setting detail in its context, as is com-

mon practice in human memory patterns;

� Maintenance of sufficient context;

� Providing for varying needs for domain significant

data within a reduced context;

� Varying the amount of detail needed around the

focus;

� Exploring the possibility of more than one area of

interest, or foci;

� Utilizing degree of interest (DOI) functions, as

appropriate;

� Providing visual continuity;

� Providing temporal continuity; and

� Supporting the mental map by maintaining prox-

imity, orthogonally, and topology.

Three frameworks emerged from the great variety

of distortion techniques developed. Leung and Apper-

ley [10] categorized existing methods and unified them

by showing how to derive 2D-to-2D transformations

for 3D-based techniques. However, these are complex

formulations and have not been implemented.

There is also a family of 2D-to-2D distortion tech-

niques. In these, a 2D data representation is transformed

through use of a distortion technique to create an

adjusted presentation that provides magnified detail

in the foci, which are set in their context via distorted

regions. Of these techniques, Magnification Fields [8]

is probably the most general. It describes an approxi-

mate integration based approach that, given a pattern

to strive for, can create a magnification pattern. A 2D

distortion transformation function performs adjust-

ments in x and/or y. The resulting pattern of mag-

nification and compression is the derivative of the

Distortion Techniques. Figure 5. The relationships

between the displaced points and the apparent

magnification.

872D Distortion Techniques
transformation function. Magnification Fields deter-

mines the transformation function from the magni-

fication function [8]. This would allow a person

to create a multiscale view by requesting the pattern

magnification that suits their task. Their approach

starts with a grid and a set of desired magnifi-

cation amounts. The grid is adjusted iteratively,

ensuring that no grid points overlap until the diffe-

rence between the magnification provided by the

adjusted grid and the desired magnification is suffi-

ciently small [8].

Elastic Presentation Framework (EPF) [3] unifies

many individual distortion techniques, allowing

the seamless inclusion of more than one distortion

technique in a single interface. By interpolating

between the methods it describes, EPF identified

new variations. EPF achieved previous 2D-to-2D

approaches using an intermediate 3D step. The

3D-based approaches are quite different algorithmic-

ally than their 2D counterparts. The plane or sur-

face that holds the two-dimensional representation

is manipulated in three dimensions, and then vie-

wed through single-point perspective projection. The

transformation function results from the combinat-

ion of the manipulation of the surface and the perspec-

tive projection. This combination simplifies the

mathematics of the relationship between magnifica-

tion and transformation to the geometry of similar

triangles.

In EPF, data are placed on a 2D plane, which is then

placed in a 3D viewing volume on the baseplane, par-

allel to the viewplane at a distance along the z axis from

the viewpoint which defines unit magnification. The

next step is to provide the focal regions with the

intended magnification. What is needed is an asymp-

totic function that relates degree of magnification to z-

translation that also guarantees fine control as the

viewpoint is approached. This function can be derived

from similar triangles shown in Fig. 5 as follows:

xm

xi
¼ db

ds

mag ¼ xm

yi

hf ¼ db � ds

where xi is a point on the baseplane that is raised to a

height hf providing a magnification of mag. The
position xm is the apparent location after the displace-

ment of the point xi to a height hf :

hf ¼ db �
�

db

mag

�

This function offers infinite magnification control,

which is limited only by the numerical resolution

of the computer. The coordinates (xm, ym) allow the

option of performing transformations directly by

translating the point in x and y, or through perspective

by adjusting the height. To ensure full visibility

for multiple foci, the foci are viewer-aligned. That

is the focal center is aligned to the viewpoint. To ensure

uniform magnification response throughout the

display the translation vectors are normalized in z

(see [3]).

Now that focal magnification is obtained, an appro-

priate distortion that will link the foci to the context is

needed. This is achieved through a drop-off function.

Points on the surface are translated depending on the

value of the drop-off function when applied to the

distance of the point from the focal region. The extent

of the spread of the distortion into the context can be

controlled by the viewer through adjustments to the

domain and range of the drop-off function. In Figure 6,

the focal point fc is raised to height hf according to the

Distortion Techniques. Figure 6. Providing an integrated context.

Distortion Techniques D 873

D

magnification required. The height hp of any point pi at

a distance dp from the focal point fc can be calculated.

Many drop-off functions are effective. Perhaps the

simplest is a linear drop-off. In an EPF linear drop-off

function, the surface height hp of a point p, that is a

distance dpfrom the focal centre fc with a lens radius lr ,

and a focal height hf is calculated by:

hp ¼ hf � ð1� ðdp=lrÞÞ

Varying the lens radius lr affects the limits of the lens

and the resulting slope. A Gaussian drop-off function

offers a smooth visual integration with its bell curve.

hp ¼ hf � exp�ððd2p=sÞ

An inverse power function offers a very good drop-

off function for achieving high focal magnifications

while still offering full visual integration in the dis-

torted region.

hp ¼ hf � ð1� ðdp=lrÞÞk

Note that if k = 1, this is the equivalent to the linear

drop-off function. Alternatively, setting k = 2.7 results

in high-magnification focal regions. Having chosen the

focal magnification and the drop-off, the manipulated

surface is then viewed through perspective projection.

Single-point perspective projection preserves angles,

proximity, and parallelism on all x, y planes.

Many other possibilities exist for varying the dis-

tortion technique. For instance, different distance

metrics can be used. An Lp metric offers a continuum

between radial and orthogonal layouts (See Fig. 7). For

2D distances between points p1(x1, y2) and p2(x2, y2),

Lp metrics are defined as:
LðPÞ ¼
ffi
x1 � x2j jPþ y1 � y2j jPP

q

where L(2) is Euclidean distance.

The L(1) metric is:

Lð1Þ ¼
ffi
x1 � x2j j1þ y1 � y2j j11

q

which resolves to:

Lð1Þ ¼ maxð x1 � x2j j; y1 � y2j jÞ

While there is continued interest in developing

better distortion techniques – a recent new framework

[14] offers an image-based approach and incorporates

transparency blending into distortion techniques – the

focus within the research community has increasingly

shifted to empirical work. Distortion techniques have

been shown to offer advantages for command and

control [17], web navigation [13], and menu selection

[1]. However, usability problems have also been shown

to exist in important tasks such as targeting, steering,

and layout [6,7].
Key Applications
There has not yet been widespread acceptance of dis-

tortion techniques in readily-available applications

(notable exceptions include the Mac OS X Dock and

www.idelix.com). In considering potential applica-

tions, it is important to return to the definition of

distortion techniques, which involved a willingness

to make use of distortion to achieve a data or task

goal. In this light, it is probable that current distortion

frameworks and lenses will in the future be considered

as relatively crude functions. Consider a practical

Distortion Techniques. Figure 7. L-Metrics.

874D Distortion Techniques
example: drawing a map in which two quite distant

coastal towns are connected by two roads. One road

runs along the shoreline and the other road runs high

above it along a cliff top. Because of the cliff, there are

no connections between these two roads except at the

towns. Within the available display space, drawing the

map faithfully and to scale would place the roads

overtop each other at several points along the way.

This is a very familiar cartographic problem and dis-

tortion has been used for centuries to solve it. Here, the

data accuracy that is preserved is the fact that no

connection between the roads exists. The spatial dis-

tortion is a small price to pay. However, most current

distortion techniques would not provide a subtle and

graceful adjustment. There is considerable open re-

search space for more subtle and controllable distor-

tion techniques. Also, as Furnas [4] recently noted,

some of the concepts like DOIs lend themselves to

integrated solutions involving data as well as spatial

adjustments.
Cross-references
▶Context

▶Contextualization

▶Data Transformation Methods

▶ Information Navigation

▶Visualization for Information Retrieval

▶Zooming Techniques
Recommended Reading
1. Bederson B. Fisheye menus. In Proc. 13th Annual ACM Symp.

on User Interface Software and Technology, 2000, pp. 217–225.

2. Carpendale S., Cowperthwaite D., and Fracchia F.D. Making

distortions comprehensible. In Proc. 1997 IEEE Symp. on Visual

Languages, 1997, pp. 36–45.

3. Carpendale S. and Montagnese C. A Framework for unifying

presentation space. In Proc. 14th Annual ACM Symp. on User

Interface Software and Technology, 2001, pp. 61–70.
4. Furnas G. A fisheye follow-up: further reflections on focus+con-

text. In Proc. SIGCHI Conf. on Human Factors in Computing

Systems, 2006, pp. 999–1008.

5. Furnas G.W. Generalized fisheye views. In Proc. SIGCHI Conf.

on Human Factors in Computing Systems, 1986, pp. 16–23.

6. Gutwin C. Improving focus targeting in interactive fisheye

views. In Proc. SIGCHI Conf. on Human Factors in Computing

Systems, 2002, pp. 267–274.

7. Gutwin C. and Fedak C. Interacting with big interfaces on

small screens: a comparison of fisheye, zoom, and panning

techniques. In Proc. Graphics Interface, 2004, pp. 213–220.

8. Keahey A. The generalized detail-in-context problem. In Proc.

IEEE Symp. on Information Visualization, 1998, pp. 44–51.

9. Lamping J., Rao R., and Pirolli P. A focus+context technique

based on hyperbolic geometry for visualising large hierarchies.

In Proc. SIGCHI Conf. on Human Factors in Computing Sys-

tems, 1995, pp. 401–408.

10. Leung Y. and Apperley M. A review and taxonomy of distortion-

oriented presentation techniques. ACM Transactions on Com-

puter Human Interaction, 1(2):126–160, 1994.

11. Mackinlay J., Robertson G., and Card S. Perspective wall: detail

and context smoothly integrated. In Proc. SIGCHI Conf. on

Human Factors in Computing Systems, 1991, pp. 173–179.

12. Misue K., Eades P., Lai W., and Sugiyama K. Layout adjustment

and the mental map. J. Visual Lang. Comput., 6(2):183–210,

1995.

13. Munzner T. and Burchard P. Visualizing the structure of the

world wide web in 3D hyperbolic space. In Proc. 1995 Symp.

Virtual Reality Modeling Language, 1995, pp. 33–38.

14. Pietriga E. and Appert C. Sigma lenses: focus-context transi-

tions combining space, time and translucence. In Proc. SIG-

CHI Conf. on Human Factors in Computing Systems, 2008,

pp. 1343–1352.

15. Robertson G.G. andMackinlay J.D. The Document lens. In Proc.

6th Annual ACM Symp. on User Interface Software and Tech-

nology, 1993, pp. 101–108.

16. Sarkar M. and Brown M.H. Graphical fisheye views. Commun.

ACM, 37(12):73–84, 1994.

17. Schaffer D., Zuo Z., Greenberg S., Bartram L., Dill J., Dubs S.,

and Roseman M. Navigating hierarchically clustered networks

through fisheye and full-zoom methods. ACM Transactions on

Computer Human Interaction. 3(2):162–188, 1996.

18. Spence R. and Apperley M.D. Data base navigation: an office

environment for the professional. Behav. Inform. Technol.,

1(1):43–54, 1982.

Distributed Architecture D 875

D

Distributed Architecture

TORE RISCH

Uppsala University, Uppsala, Sweden

Synonyms
Parallel database; Federated database; Multi-database;

Peer-to-peer database

Definition
A distributed database [3] is a database where data

management is distributed over several nodes (com-

puters) in a computer network. In a central DBMS the

data is managed by one node whereas in a distributed

DBMS the data is managed by several nodes. A

distributed DBMS is a database manager consisting of

several nodes distributed over a network. Each node

is a database manager by itself that communicates with

other nodes in the network. In a regular distributed

DBMS it is up to the database administrator to manu-

ally specify how data collections (e.g., relational tables)

are distributed over the nodes when a distributed data-

base is designed. Queries and updates to the dis-

tributed relations are transparently translated by the

distributed DBMS into data operations on the affected

nodes giving the user the impression of using a single

database, called query and update transparency. Thus

the distributed DBMS provides distribution trans-

parency for database users but not for the database

administrator.

Closely related to distributed DBMSes are parallel

databases where a parallel DBMS engine runs on usu-

ally a cluster. The parallel DBMS automatically deter-

mines how data structures are internally distributed

over the nodes providing distribution transparency

also for the database administrator, called schema

transparency.

The purpose of heterogeneous databases is to be able

to combine data from several independently developed

autonomous databases. Heterogeneous databases can

be divided into federated databases, mediators, and

multi-databases. In a federated database the database

administrator defines a single global integration schema

describing how data in underlying databases are

mapped to the integration schema view. This provides

distribution transparency for integrated data. Media-

tors allow the definition of several views over data from
different data sources. Since it may be difficult to

define integration schemas and views when there are

many participating autonomous databases, multi-

databases relax the distribution transparency also for

the database users who there specify queries and

updates using a multi-database query language where

individual data collections in the participating nodes

can be explicitly referenced.

A related technology is peer-to-peer systems where

networks of files are distributed over the Internet.

Meta-data is associated with the files and the user can

search for files satisfying conditions. Peer-to-peer

search is usually made by propagating queries between

the peers. The consistency and correctness of queries

are relaxed compared to regular databases in order to

provide better performance and node autonomy.
Historical Background
Distributed DBMSs were pioneered by System R and

Ingres* in the beginning of the 1980s. Early distributed

DBMSs assumed slow communication between nodes

having limited amounts of main memory geographi-

cally distributed in a wide area network. The database

administrator instructed the distributed DBMS where

to place data, while the user could specify transparent

queries to the distributed DBMS without detailed

knowledge of where data was placed.

The evolvement of computer clusters provided

hardware resources for very high performing database

servers running on clusters, parallel databases. Since

the communication between cluster nodes is very fast

and not geographically distributed, the database ad-

ministrator need not provide manual placement

rules of distributed data, i.e., the parallel DBMS

provides full distribution transparency also for the

database administrator. With the evolvement of fast

wide area computer networks parallel DBMS technol-

ogy can be used also for some geographically

distributed databases. However, it should be noted

that update latency has to be taken into account for

large geographical distances because of the speed of

light. In general geographically distributed databases

still requires manual distribution.

Not least the development of the Internet has caused

the need to integrate data from many pre-existing

databases. The area of heterogeneous databases [4,2]

deals with tools and methodologies to combine data

876D Distributed Architecture
from several autonomous databases. While distributed

and parallel databases assumed all data managed by

one distributed DBMS, heterogeneous databases inte-

grate databases using different DBMS and different

schemas.

There are several flavors of heterogeneous databases:

1. Federated databases require the definition of a glob-

al integration schema containing mappings to the

participating databases’ schemas. The federated

database becomes a central server on top of the

participating autonomous databases.

2. As the number of databases to integrate increases it

becomes very difficult or impossible to define a

global integration schema over the large numbers

of autonomous databases. Multi-databases [2] pro-

vide no global conceptual schemas and instead a

multi-database query language allows specification

of queries searching through many participating

databases.

3. Mediators [5] provide a middle ground between

a single integration schema and no schema at all.

Instead the user can define mediator views that

combine and reconcile data from different data

sources. Such views require a query language that

can express queries over several databases, i.e., a

multi-database query language. The mediator sys-

tem becomes a middleware between users and

wrapped data sources.

While distributed databases could handle transpar-

ent queries and updates for a small number of nodes,

the evolvement of the Internet requires technologies to

deal with geographically distributed databases having

1,000s of nodes. Peer-to-peer systems enable such highly

distributed file access where users search for data

stored in peers. In a peer-to-peer database queries are

propagated between the participating peer nodes.

To improve performance at the expense of query cor-

rectness the propagation may stop after a certain num-

ber of hops. This is sufficient for many modern

applications that do not have strict consistency

requirements; for example Internet search engines do

not guarantee the full correctness of answers.

Foundations

Autonomy and Heterogeneity

Different distributed DBMS architectures provide

different levels of autonomy for the participating

nodes.
A homogeneous distributed database is a distributed

database where all nodes are managed by the same

distributed DBMS. A homogeneous distributed data-

base can be regarded as a central database distributed

over many nodes where data and processing is inter-

nally transparently distributed over several nodes. By

contrast, a heterogeneous database is a (distributed or

central) database where data originates from partici-

pating autonomous databases possibly using different

DBMSs.

Regular distributed and parallel databases are

homogeneous. One distributed DBMS manages all

data. Distributed database design involves designing

the schema in a top-down fashion as for a conven-

tional central database. Parallel databases provide au-

tomatic and transparent data placement without user

intervention, while regular distributed databases re-

quire the database administrator to specify how

data should be distributed over nodes. In regular

distributed and parallel database the nodes have no

autonomy at all.

Federated databases are central database servers that

integrate data from several participating databases.

Federated databases are thus heterogeneous. Global

integration schemas are defined that integrate data ori-

ginated in the participating databases. The design of

the integrated schema needs to deal with data integra-

tion issues on how to combine the same or similar data

represented differently in different participating data-

bases. Different participating databases may use differ-

ent DBMSs. The schemas of the participating databases

are designed before the integrated database schema

is designed. Thus the design process for heterogeneous

databases becomes bottom-up, whereas homogeneous

databases are usually designed top-down. The design

of the integrated schema needs to deal with data inte-

gration issues on how to combine the same or similar

data represented differently in different participating

databases.

Both federated databases, mediators, and multi-

databases are heterogeneous. The main difference be-

tween them is how integration schemas are defined.

Federated database assume one global integration

schema. If there are many different participating data-

bases it is difficult to define such a global integration

schema. This is relaxed in mediators, which allow the

definition of many integration schemas as views over

wrapped underlying data sources of different kinds. In

multi-databases the user is given access to a multi-

database query language where he can specify queries

Distributed Architecture D 877

D

over many sources. A multi-database query language

provides the basis for defining mediator views.

Finally, the aim of peer-to-peer databases is

distributed queries in a widely distributed network of

heterogeneous nodes. Unlike parallel and distributed

databases the individual nodes are not managed by a

single system, but independently.
Transparency

Distributed databases can be classified according to

what kinds of transparency they provide w.r.t. distri-

bution of data. Three different kinds of transparency

can be identified for different kinds of services

provided by the distributed DBMS, schema transpar-

ency, query transparency, and update transparency.

Schema transparency means that the distributed

DBMS decides completely on its own where to place

data on different nodes. The database administrator

has the impression of using a single database and

specifies the logical schema without considering

any distribution at all. However, often it is desirable

to allow the database administrator to specify how

to distribute data, and thus relax schema transpar-

ency. For example, for performance and to allow local

control, a geographically distributed database for a

large enterprise may need to cluster employee data

according to the countries where departments are

located. Therefore full schema transparency is often

provided only on local area networks or cluster com-

puters where the communication between nodes is

very fast.

With query transparency the distribution of data is

not reflected in user queries. Queries are transparently

translated by a distributed query optimizer into

queries and updates to the affected nodes giving the

user the impression of using a single database. By

analyzing a given user query the distributed query

optimizer can often statically determine which nodes

to access. Query execution plans can execute in parallel

on different nodes with partial results transported

between nodes and combined on other nodes. Query

transparency is very important for distributed data-

bases since it is very difficult and error prone to man-

ually implement distributed communicating execution

plans.

Update transparency allows database updates to

be specified without taking distribution into account.

A distributed transaction manager propagates updates

to affected nodes.
Distributed or Parallel DBMS Provide Update

Transparency

In the classification above, only parallel DBMSs pro-

vide complete transparency for everyone using the

database, database administrators as well as users.

The term regular distributed database refers to a

distributed DBMSwith query and update transparency

but without schema transparency.

With naming transparency, users are provided with

a single name for a distributed relation defined in

terms of several internal relations stored on separate

nodes. Regular distributed, parallel, federated, and

peer-to-peer databases provide naming transparency,

which is relaxed for mediators and multi-databases.

Distributed database design involves manual speci-

fication to the distributed DBMS of the distribution of

data collections. The database administrator can tune

the data placement in a wide area computer network.

The two fundamental methods for such manual data

distribution are fragmentation and replication. Frag-

mentation splits a collection (e.g., Table 1) into sepa-

rate non-overlapping segments on different nodes,

while replication stores identical copies of a collection

on different nodes. The distributed DBMS guarantees

that queries and updates of fragmented or replicated

collections are transparent so the user need not be

aware of how data is distributed.

Fragmentation (or partitioning) allows the admin-

istrator of a distributed database to manually specify

on which nodes the DBMS should place different sec-

tions of each distributed data collection. In a

distributed relational database tables are fragmented.

For example, the placement of employee records in a

relation can be fragmented according to in which

countries different employees work. Fragmentation

speeds up database queries and updates since it allows

parallel access to distributed fragments. Furthermore,

by analyzing queries and updates the query optimizer

can often determine exactly which nodes are affected

and send the query/update statements only to those

nodes.

Replication allows the DBA to declare to the

DDBMS to place the same data collections on more

than one node. For example, a relational table may be

replicated on several nodes. Replication speeds up data

access at the expense of update cost. However, as

explained below, if consistency is relaxed the update

cot may be reduced.

Federated databases also provide query and update

transparency by allowing the database administrator to

Distributed Architecture. Table 1. The Architectures of DDBMSs can be Classified Along Different Dimensions. The

Following Table Classifies Different Kinds of Distributed DBMS Architectures

Autonomy
Schema

transparency
Query

transparency
Update

transparency
Naming

transparency
Central
schema

Parallel No Yes Yes Yes Yes Yes

Regular
Distributed

No No Yes Yes Yes Yes

Federated Yes No Yes Limited Yes Yes

Mediators Yes No Yes Limited No No

Multi-
databases

Yes No No No No No

Peer-to-peer Yes No Yes Yes Yes No

878D Distributed Architecture
define a global integration schema that hides the under-

lying integrated databases.

Mediators provide some query transparency by

allowing users to define views over integrated data-

bases. Update transparency is more problematic as it

requires updatable views.

With multi-databases transparency is further re-

laxed so the user can reference individual databases

explicitly in queries and updates.

Finally, peer databases [1] provide query and up-

date transparency in widely distributed systems but do

not require fully correct query answers.
Consistency

If data is widely distributed over many nodes in a

network, the cost of maintaining data consistency may

be very high. The transaction manager must guarantee

that all transactions are atomic and updates propagated

to affected nodes so that the database is kept consistent.

Two and three phase commit protocols are needed

when more than one node is affected by an update to

guarantee full update transparency. These protocols are

expensive when many nodes are involved and relaxed

update transparency may suffice to enable higher trans-

action performance. If the same kind data is present on

many nodes updates must be propagated to all replicas,

which can be very expensive in a geographically

distributed database.

Regular distributed databases usually provide

transaction atomicity as an option. However, because

of the high cost of transaction atomicity modern

distributed DBMS also provide the option to propa-

gate updates lazily, thus compromising the consistency.
In a parallel DBMS running on a cluster, the nodes

inside the cluster run DBMS kernel software which is

completely controlled by the parallel DBMS. From

the user’s point of view it looks like a central DBMS;

the main difference being the higher performance

provided by parallelization of DBMS kernel software.

In regular distributed and parallel DBMSs a single

database kernel manages all distributed data. All indi-

vidual nodes are running the same distributed DBMS

software. Different nodes may have different roles,

e.g., some nodes handle query processing, some

nodes handle locking, some nodes handle recovery,

etc. The DBMS is a monolithic systems distributed

over several nodes controlling the consistency of the

individual nodes.

In general, consistent updates are difficult to

achieve with heterogeneous databases since the parti-

cipating databases are autonomous and the integrating

DBMS may not have access to transaction managers of

the participating databases.

In peer-to-peer databases the data consistency is

relaxed for higher update and query performance.

Data can be partly replicated for efficiency but the

system does not guarantee consistency among the

replicas so updates need not always be propagated

to all replicas at every update. This means that queries

may return less reliable result, which is often acceptable

in a widely distributed database. This is similar to

how search engines compromise query quality for

performance.

Distributed Catalog Management

A particular problem for distributed databases is how

and where to handle catalog data, such as the overall

Distributed Concurrency Control D 879

D

schema, statistics about data collections, the location

of data collections, and how data collections are repli-

cated and partitioned. The catalog information is

accessed intensively by database users in queries and

updates. On the other hand, in most DBMSs it is

assumed that schema and catalog information changes

slowly, which, for example, permits pre-compilation

of (distributed) database queries. The assumption

that catalog data changes slowly but is intensively

accessed is a case for replicating catalog information

on many nodes, in particular on those coordinating

nodes with which the users interact. On the other

hand, in a heterogeneous database with many partici-

pating autonomous nodes, the assumption that

schemas and data placements do not change usually

does not hold.

Regular distributed and parallel databases assume

few participating non-autonomous nodes and the cat-

alog is therefore replicated. Federated databases have a

central architecture where all interaction with the da-

tabase is through the global schema and it contains

replications of catalog information from the partici-

pating databases. For mediators, multi-databases, and

peer-to-peer there is no central global schema and the

query processing nodes are autonomous. Therefore

the catalogue data cannot be fully replicated and it

will be up to different nodes to cache catalog data

when needed. The validity of cached catalog data

needs to be properly handled though; otherwise

queries may fail or even return the wrong data.

Cross-references
▶Data partitioning

▶Data dictionary

▶Data replication

▶Distributed Concurrecy Control

▶Distributed database design

▶Distributed database systems

▶Distributed query optimization

▶Distributed transaction management

▶Distributed DBMS

▶ Information Integration

▶Mediation

▶ Parallel query processing

▶ Parallel Database Management

▶ Peer Data Management System

▶ Shared-Nothing Architecture

▶View-based data integration
Recommended Reading
1. Beng Chin Ooi and Kian-Lee Tan (guest eds.). Introduction:

special section on peer-to-peer-based data management. IEEE

Trans. Knowl. Data Eng., 16(7):785–786, 2004.

2. Litwin W., Mark L., and Roussopoulos N. Interoperability

of multiple autonomous databases ACM Comput. Surv.,

22(3):267–293, 1990.

3. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems (2nd edn.). Prentice Hall, NJ, 1999.

4. Sheth A.P. and Larson J.A. Federated database systems for man-

aging distributed, heterogeneous, and autonomous databases.

ACM Comput. Surv., 22(3):183–235, 1990.

5. Wiederhold G. Mediators in the architecture of future informa-

tion systems. IEEE Comput., 25(3):38–49, 1992.
Distributed Commit Protocol

▶Two-Phase Commit Protocol
Distributed Component Object
Model

▶DCOM
Distributed Computing Environment

▶DCE
Distributed Concurrency Control

MATHIAS WESKE

University of Potsdam, Potsdam, Germany

Synonyms
Synchronizing distributed transactions

Definition
Distributed concurrency control provides concepts

and technologies to synchronize distributed transac-

tions in a way that their interleaved execution does not

violate the ACID properties. Distributed transactions

are executed in a distributed database environm-

ent, where a set of connected data servers host rela-

ted data. A distributed transaction consists of a set of

Distributed Concurrency Control. Figure 1. Distributed

concurrency control problem: global serialization graph

contains a cycle, although serialization graphs of data

servers involved are acyclic.

880D Distributed Concurrency Control
subtransactions, each of which is executed by one data

server. Distributed concurrency control makes sure

that all subtransactions of a set of distributed transac-

tions are serialized identically in all data servers

involved. Therefore, not only local dependencies need

to be taken into account, but also dependencies involv-

ing multiple data servers. Concurrency control techni-

ques known from centralized database systems need to

be extended to cope with the new requirements im-

posed by the distribution aspect.

Historical Background
Distributed concurrency control was an emerging

research topic in the early 1980’s. Based on the seminal

work on concurrency control and locking protocols in

centralized database systems by Eswaran et al. [3], Gray

proposes implementation approaches for transactions

[4], and Spector and Schwarz investigate transactions

in the context of distributed computing [9].

In distributed database environments, data relevant

to a specific application domain is spread across a set

of data servers, each of which hosts a partition of the

data items [2,8]. The data servers form a distributed

database federation. Distributed database federations

are homogenous if they run the same database soft-

ware; they are heterogeneous if they do not.

To explain the core of distributed concurrency con-

trol, homogeneous database federations are addressed

first. Since transactions are representations of applica-

tion programs and data is spread across a set of data

servers in a distributed environment, transactions need

to access multiple data servers. Transactions with this

property are called distributed transactions. Distributed

transactions consist of a set of subtransactions, each of

which runs at one specific data server of the federation.

Distributed transactions – just like centralized

transactions – need to satisfy the ACID properties.

Conflict serializability is a theoretically proven and

practically relevant technique to ensure isolation of

centralized transactions. Given a pair of transactions,

all conflicting data access operations of these transac-

tions occur in the same order, i.e., the serialization

order of the transactions involved.

The complicating factor in the case of distribut-

ion is the lack of global knowledge. Assume transac-

tions t1 and t2 running on data servers Si and Sj.

Subtransactions for t1 and t2 are created and started

in Si and Sj. These subtransactions are executed in the

data sites according to the concurrency control
technique in place. Since each data server is aware of

the transactions and subtransactions that run locally,

any serialization ordering between these transactions is

fine, as long as no cycles in the global serialization

graph are introduced.

As a result different serialization orders might

emerge in the different data servers of the database

federation. This is the case, if, for example, t1 is serial-

ized in Si before t2, while in Sj, t2 is serialized before t1.

The serialization graph in Si contains t1 ! t2, indicat-

ing that t1 is serialized before t2, while in Sj the seriali-

zation ordering is in opposite direction. Due to the

lack of global knowledge, there is a cyclic serialization

dependency, a violation of conflict serializability that

none of the sites involved can detect. The distributed

concurrency control problem is depicted in Fig. 1.

Foundations
In homogeneous database federations, distributed two

phase locking is a variant of centralized two phase

locking: All locks that a distributed transaction holds

need to be held until no more locks need to be acquired

by that transaction. This means, for instance, that a

subtransaction of distributed transaction t1 can only

release its locks, if no subtransaction of t1 will acquire

additional locks. Local knowledge of a particular data

server is insufficient to decide about unlocking data

objects, because there can still be locking operations by

other subtransactions of the transaction that are active

in other data servers.

To provide a solution to this problem, informat-

ion about distributed transaction needs to be

Distributed Concurrency Control D 881

D

communicated between the data servers involved.

There are several approaches to providing this infor-

mation. When atomic commitment protocols – such

as the two phase commit protocol – are in place, then

distributed two phase locking can take advantage from

the commit protocols. To commit a distributed trans-

action t, the two phase commit protocol sends

a prepare-to-commit message to all sites that host

subtransactions of t. When a data server receives a

prepare-to-commit message for a transaction t, t will

no longer acquire new locks. When there is agreement

on committing the distributed transaction, each data

server commits the changes of its subtransaction of

t and releases its locks.

While distributed two phase locking solves the

distributed concurrency control problem, the deadlock

problem re-appears. Distributed deadlocks occur if

conflicting locks are set by subtransactions of different

transactions in a cyclic manner, and these locks are

distributed among multiple sites of the database feder-

ation. As a result, no transaction can ever terminate

successfully. In the example introduced above, if the

subtransaction of t1 in Si holds a lock that the sub-

transaction of t2 in Si needs, in Si, t2 waits for the

completion of t1. A distributed deadlock exists if at

the same time, t1 waits for the completion of t2 in Sj.

In this situation, there are local waiting conditions

involving the subtransactions of t1 and t2, but there are

also non-local waiting conditions: the subtransaction

of t1 in Si waits for the completion of its subtransaction

in Sj. Distributed deadlocks involve both local and

non-local waiting conditions. This situation is shown

in Fig. 2, marking local waiting conditions by solid

edges and non-local waiting conditions by dotted

edges.
Distributed Concurrency Control. Figure 2. Distributed

deadlock situation due to waiting conditions of

subtransactions involving multiple sites of a database

federation.
A simple approach to handling distributed dead-

locks is timeout, where the time span that a lock can

be held by a transaction is limited by a timeout value. If

the timeout expires, the subtransaction is aborted.

While distributed deadlocks are not possible using

time-outs, potentially high abortion rates are intro-

duced due to aborting transactions that are actually

not involved in a deadlock cycle. More elaborate tech-

niques are based on detecting distributed deadlocks,

which is done by communicating information about

waiting conditions between the data servers of a federa-

tion and aborting only those transactions that are actu-

ally involved in a distributed deadlock situation [6].

Timestamp ordering does not suffer from the dead-

lock problem; in this concurrency control technique, a

strict ordering on the set of transactions is introduced.

This ordering defines the order in which the transac-

tions are serialized. Conflicting operations pi[x] and

qj[x] are executed in the order pi[x] qj[x], if and only if

ts(ti) ts(tj), where ts(t) denotes the timestamp of trans-

action t. In the centralized case, assigning timestamps

to transactions is performed by the scheduler that uses

a logical clock to assign unique timestamps to newly

arriving transactions Fig. 3.

In the distributed case, the definition of globally

unique timestamps can be achieved by so called Lam-

port clocks, introduced in [7]. Lamport clocks use the

axiom that a message always arrives after it was sent.

This axiom is used to synchronize clocks in a

distributed system. Each message carries a timestamp

that reflects the local clock value of the sending system

when the message was sent. When a message arrives

with, for instance, timestamp 8, the receiving system

sets its local clock to 9, should it be lower than that

at the time of message arrival. To provide globally
Distributed Concurrency Control. Figure 3. Due to

indirect conflicts with local transactions in heterogeneous

database federations, global transaction manager cannot

detect violations of global serialization orderings.

882D Distributed Concurrency Control
unique timestamps for transactions, each timestamp

also contains the identifier of the data server from

which the transaction originated. If these mechanisms

regarding timestamps are in place in the distributed

database federation, concurrency control can be done

by the timestamp ordering technique, just like in the

centralized case.

To summarize, distributed concurrency control in

homogeneous database federations provides synchro-

nization transparency to application programs by

using variations of concurrency control techniques

that are in place in centralized database systems [1].

The situation is more complex in heterogeneous fed-

erations, where data servers run different database

management systems or are legacy systems that pro-

vide their functionality via application programming

interfaces that allow us to access data. Regardless of the

particular system in place, however, it must allow sub-

transactions of distributed transactions to read and

write data items.

The techniques that work well in the case of homo-

geneous federations cannot immediately be used in the

heterogeneous case. To cope with the heterogeneity

issue, a software component is introduced, responsible

for controlling the order in which subtransactions and

their operations are issued to the data servers. This

software component is called global transaction

manager.

While the global transaction manager can control

the ordering of subtransactions and their operations, it

cannot influence the ordering of local transactions and

their operations in the data servers. These local trans-

actions can introduce serialization problems that the

global transaction manager cannot take care of. These

problems are due to indirect conflicts between sub-

transactions of distributed transactions. Indirect con-

flicts involve local transactions, each of which has a

direct conflict with a subtransaction of a distributed

transaction. These conflicts lead to serialization order-

ings between subtransactions that are not visible by the

global transaction manager.

Assume data servers Si and Sj are in place, global

transactions t1,t2, that access both data servers. There

are local transactions ti in Si and tj in Sj. In data server

Si, the local transaction manager can serialize t1tit2,

while data server Sj serializes the transactions as t2,tj,

t1. Assuming that there are no direct conflicts bet-

ween the subtransactions of t1 and t2 in place, the
non-matching serialization cannot be detected by the

global transaction manager.

There are several approaches to deal with this

problem. Global serializability can be achieved by

local guarantees, for instance the property of rigorous-

ness, discussed in [10]. There are also approaches that

introduce direct conflicts between distributed transac-

tions in the data servers and, thus, make sure that

the local serialization orderings of the data servers are

in line.

An approach to solve the distributed concurre-

ncy control problem in heterogeneous federations is

based on global transaction managers creating dir-

ect conflicts between subtransactions of distributed

transactions by introducing additional data access

operations. These operations force local direct conflicts

that are handled by the individual data servers, using

their respective concurrency control techniques. These

data items are known as tickets, and the operations as

take-ticket operations.

To start accessing local data items, each subtransac-

tion of a distributed transactions first needs to take a

ticket and issues the respective operation. This opera-

tion reads the current value of the ticket (a data item

stored in the data server) and increments it, thus forc-

ing direct conflicts between any two subtransactions

accessing data in a particular data server of a heteroge-

neous federation. This technique makes sure that there

are always direct conflicts between subtransactions of

distributed transactions. However, the conflicts can

still have different orientation, and the serialization

orderings might still be different.

The information about the conflicts needs to be

communicated to the global transaction manager;

there are two variants to do so, an optimistic and a

conservative one. In the optimistic variant, there is no

restriction on the order in which subtransactions take

their tickets in the data servers. The global transaction

manager maintains a global ticket graph that repre-

sents the ordering in which distributed transactions

take tickets. This graph contains an edge ti ! tj if and

only if both distributed transactions have subtransac-

tions in one data server, and the ticket of ti has a lower

value than the ticket of tj at that site. In this case ti is

serialized before tj.

On commit of a distributed transaction t, the glob-

al transaction manager checks the global ticket graph.

A loop in this graph indicates a serialization violation,

Distributed Data Streams D 883

D

leading to aborting t. Just like in the centralized case, if

there is little contention, and few conflicts are in place,

the optimistic method is advantageous. However, high

contention leads to many conflicts, and the probability

of transaction abortions increases.

In the conservative ticketing method, the order in

which tickets are taken is restricted by the global trans-

action manager. A subtransaction is allowed to take a

ticket only if the global serialization ordering is not

violated by this taking a ticket. While at run time there

is additional overhead in checking whether a take-ticket

operation can be permitted, the conservative approach

reduces the number of abort operations. Therefore, the

conservative ticketing method is advantageous in case of

high contention, while the optimistic approach is likely

to perform better in low contention scenarios.
Future Directions
The internet has and is continuing to pose new require-

ments to existing solutions in various areas of database

technology, including distributed concurrency control.

If applications use resources and data provided by dif-

ferent organizations on the internet, transactional prop-

erties are ver/y hard, if not impossible, to satisfy. As a

result, new concepts and technologies are sought to

provide application level consistency. As one represen-

tative of these future directions of research, the work by

Pat Helland in the context of internet scale applications

and their challenges is mentioned [5].
Cross-references
▶ACID Properties

▶Conflict Serializability

▶Timestamp Ordering

▶Two-Phase Commit

▶Two-Phase Locking
Recommended Reading
1. Bernstein P.A. and Goodman N. Concurrency control in

distributed database systems. ACM Comput Surv., 13

(2):185–221, 1981.

2. Ceri S. and Pelagatti G. Distributed Databases: Principles and

Systems. McGraw-Hill, NY, USA, 1984.

3. Eswaran K.P., Gray J.N., Lorie R.A., and Traiger I.L. The notions

of consistency and predicate locks in a database system. Com-

mun. ACM, 19(11):624–633, 1976.

4. Gray J.N. The transaction concept: virtues and limitations. In

Proc. 7th Int. Conf. on Very Data Bases, 1981, pp 144–154.
5. Helland P. Life beyond distributed transactions: an Apostate’s

opinion In Proc. 3rd Biennial Conf. on Innovative Data Systems

Research, 2007, pp. 132–141.

6. Knapp E. Deadlock detection in distributed databases. ACM

Comput. Surv., 19(4):303–328, 1987.

7. Lamport L. Time, clocks, and the ordering of events in a

distributed system. Commun. ACM, 21(7):558–565, 1978.

8. Özsu M.T. and Valduriez P. Principles of distributed database

systems. 2nd edn. Prentice-Hall, 1999.

9. Spector A.Z. and Schwarz P.M. Transactions: a construct for

reliable distributed computing. ACM Operat. Syst. Rev., 17

(2):18–35, 1983.

10. Weikum G. and Vossen G. Transactional Information Systems –

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, 2002.
Distributed Data Streams

MINOS GAROFALAKIS

Technical University of Crete, Chania, Greece

Definition
A majority of today’s data is constantly evolving and

fundamentally distributed in nature. Data for almost

any large-scale data-management task is continuously

collected over a wide area, and at a much greater rate

than ever before. Compared to traditional, centralized

stream processing, querying such large-scale, evolving

data collections poses new challenges, due mainly to the

physical distribution of the streaming data and the com-

munication constraints of the underlying network.

Distributed stream processing algorithms should guar-

antee efficiency not only in terms of space and processing

time (as conventional streaming techniques), but also

in terms of the communication load imposed on the

network infrastructure.

Historical Background
The prevailing paradigm in database systems has been

understanding the management of centralized data:

how to organize, index, access, and query data that is

held centrally on a single machine or a small number

of closely linked machines. Work on parallel and

distributed databases has focused on different notions

of consistency and methods for effectively distributing

query execution plans over multi-node architectures –

the issues of monitoring or querying distributed,

high-speed data streams in a space-, time- and

communication-efficient manner were not addressed

884D Distributed Data Streams
in this realm. Similarly, the bulk of early research on

data-streaming algorithms and systems has concen-

trated on a centralized model of computation, where

the stream-processing engine has direct access to all the

streaming data records. Centralized stream-processing

models can obviously ignore communication-efficiency

issues; still, such models are also painfully inadequate

for many of the prototypical data-streaming applica-

tions, including IP-network and sensornet monitoring.

Foundations
Tracking and querying large-scale, evolving data collec-

tions poses a number of challenges. First, in contrast with

conventional, centralized models of data-stream pro-

cessing, the task is inherently distributed; that is, the

underlying infrastructure comprises several remote

sites (each with its own local data source) that can

exchange information through a communication net-

work. This also means that there typically are important

communication constraints owing to either network-

capacity restrictions (e.g., in IP-network monitoring,

where the volumes of collected utilization and traffic

data can be huge [7]), or power and bandwidthrestric-

tions (e.g., inwireless sensor networks, where communi-

cation overhead is the key factor in determining sensor

battery life [18]). Second, each remote sitemay see ahigh-

speed stream of data and, thus, must solve a local

(centralized) stream-processing problem within its

own local resource limitations, such as space or CPU-

time constraints. This is certainly true for IP routers

(that cannot possibly store the log of all observed

packet traffic at high network speeds), as well as wire-

less sensor nodes (that, even though may not observe

large data volumes, typically have very little memory

on-board). Finally, applications often require continu-

ous monitoring of the underlying streams (i.e., real-

time tracking of measurements or events), not merely

one-shot responses to sporadic queries.

To summarize, the focus is on techniques for pro-

cessing queries over collections of remote data streams.

Such techniques have to work in a distributed setting

(i.e., over a communication network), support one-

shot or continuous query answers, and be space, time,

and communication efficient. It is important to note

that, for most realistic distributed streaming applica-

tions, the naive solution of collecting all the data in a

single location is simply not a viable option: the vol-

ume of data collection is too high, and the capacity for

data communication relatively low. Thus, it becomes
critical to exploit local processing resources to effec-

tively minimize the burden on the communication

network. This establishes the fundamental concept of

‘‘in-network processing :’’ if more computational work

can be done within the network to reduce the commu-

nication needed, then it is possible to significantly

improve the value of the network, by increasing its

useful life and communication capacity, and extending

the range of computations possible over the network.

This is a key idea that permeates the bulk of existing

work on distributed data-stream processing – this

work can, in general, be characterized along three

(largely orthogonal) axes:

1. Querying Model: There are two broad classes of

approaches to in-network query processing, by analo-

gy to types of queries in traditional DBMSs. In the one-

shotmodel, a query is issued by a user at some site, and

must be answered by ‘‘pulling’’ the current state of

data in the network. For simple aggregates, this can

be done in a few rounds of communication where only

small, partial-aggregate messages are exchanged over a

spanning tree of the network. For more complex, ho-

listic aggregates (that depend on the complete data

distribution, such as quantiles, topk-k, count-distinct,

and so on), simple combination of partial results is

insufficient, and instead clever composable summaries

give a compact way to accurately approximate query

answers.

In the continuous model, users can register a query

with the requirement that the answer be tracked contin-

uously. For instance, a special case of such a continuous

query is a distributed trigger that must fire in (near)

real-time when an aggregate condition over a collec-

tion of distributed streams is satisfied (e.g., to catch

anomalies, SLA violations, or DDoS attacks in an ISP

network). This continuous monitoring requirement

raises further challenges, since, even using tree compu-

tation and summarization, it is still too expensive to

communicate every time new data is received by one

of the remote sites. Instead, work on continuous

distributed streams has focused on ‘‘push-based’’ tech-

niques that tradeoff result accuracy for reduced com-

munication cost, by apportioning the error in the

query answer across filter conditions installed locally

at the sites to reduce communication.

Approximation and randomization techniques are

also essential components of the distributed stream

querying model, and play a critical role in minimiz-

ing communication. Approximate answers are often

Distributed Data Streams D 885

D

sufficient when tracking the statistical properties of

large-scale distributed systems, since the focus is typi-

cally on indicators or patterns rather than precisely-

defined events. This is a key observation, allowing for

techniques that effectively tradeoff efficiency and ap-

proximation accuracy.

2. Communication Model: The architecture

and characteristics of the underlying communication

network have an obvious impact on the design of

effective distributed stream processing techniques.

Most existing work has focused on hierarchical (i.e.,

tree) network architectures, due to both their con-

ceptual simplicity and their importance for practical

scenarios (e.g., sensornet routing trees [18]). As an

example, Fig. 1a depicts a simple single-level hierarchi-

cal model with m + 1 sites and n (distributed) update

streams. Stream updates arrive continuously at the
Distributed Data Streams. Figure 1. (a) Single-level hierarch
remote sites 1,...,m, whereas site 0 is a special coordina-

tor site that is responsible for generating answers to

(one-shot or continuous) user queries Q over the n

distributed streams. In this simple hierarchical model,

the m remote sites do not communicate with each

other; instead, as illustrated in Fig. 1a, each remote

site exchanges messages only with the coordinator,

providing it with state information for (sub)streams

observed locally at the site.

More general,multi-level hierarchies have individu-

al substream-monitoring sites at the leaves and inter-

nal nodes of a general communication tree, and the

goal is to effectively answer or track a stream query

Q(S1,...,Sn) at the root node of the tree. The most

general setting are fully-distributed models, where

individual monitor sites are connected through an arbi-

trary underlying communication network (Fig. 1b);
ical stream-processing model. (b) Fully-distributed model.

886D Distributed Data Streams
this is a distinctly different distributed system architec-

ture since, unlike hierarchical systems, no centralized

authority/coordination exists and the end goal is for all

the distributed monitors to efficiently reach some form

of consensus on the answer of a distributed stream

query.

Besides the connectivity model, other important

network characteristics for distributed stream pro-

cessing include: the potential for broadcasting or mul-

ticasting messages to sites (e.g., over a limited radio

range as in wireless sensornets), and the node/link-

failure and data-loss characteristics of the supporting

hardware.

3. Class of Queries: The key dichotomy between

simple, non-holistic aggregate queries (e.g., MIN, SUM,

AVG) and holistic aggregates (e.g., median) has already

been discussed; clearly, holistic aggregates introduce

many more challenges for efficient distributed stream-

ing computation. Another important distinction is

that between duplicate-sensitive aggregates (that sup-

port bag/multi-set semantics, such as median, SUM, or

top-k) and duplicate-insensitive aggregates (that sup-

port set semantics, such as MIN or count-distinct).

Finally, another important class is that of complex

correlation queries that combine/correlate streaming

data across different remote sites (e.g., through a

streaming join computation). Such correlations can

be critical in understanding important trends and

making informed decisions about measurement or

utilization patterns. Different classes of streaming

queries typically require different algorithmic machin-

ery for efficient distributed computation.

The remainder of this section provides a brief over-

view of some key results in distributed data streaming,

for both the one-shot and continuous querying mod-

els, and concludes with a short survey of systems-

related efforts in the area.

One-Shot Distributed Stream Processing. Madden

et al. [18] present simple, exact tree-based aggregation

schemes for sensor networks and propose a general

framework based on generate, fuse, and evaluate func-

tions for combining partial results up the aggregation

tree. They also propose a classification of different

aggregate queries based on different properties, such

as duplicate in/sensitivity, example or summary

results, monotonicity, and whether the aggregate is

algebraic or holistic (which essentially translates to

whether the intermediate partial state is of constant

size or growing). While the exact computation of
holistic aggregates requires linear communication cost,

guaranteed-quality approximate results can be obtained

at much lower cost by approximating intermediate

results through composable data synopses [1,9].

Robustness is a key concern with such hierarchical

aggregation schemes, as a single failure/loss near the

root of the tree can have a dramatic effect on result

accuracy. Multi-path routing schemes mitigate this

problem by propagating partial results along multiple

different paths. This obviously improves reliability and

reduces the impact of potential failures; in addition,

this improved reliability often comes essentially ‘‘for

free’’ (e.g., in wireless sensornets where the network is a

natural broadcast medium). Of course, multi-path

routing also implies that the same partial results can

be accounted for multiple times in the final aggregate.

As observed by Nath et al. [20], this duplication has no

effect on aggregates that are naturally Order and Du-

plicate Insensitive (ODI), such as MIN and MAX; on the

other hand, for non-ODI aggregates, such as SUM and

COUNT, duplicate-insensitive sketch synopses (e.g., based

on the Flajolet-Martin sketch [9]) can be employed to

give effective, low-cost, multi-path approximations

[20]. Hybrid approaches combining the simplicity of

tree aggregation (away from the root node) and the

robustness of multi-path routing (closer to the root)

have also been explored [19].

Gossip (or, epidemic) protocols for spreading infor-

mation offer an alternative approach for robust

distributed computation in the more general, fully-

distributed communication model (Fig. 1b). ODI

aggregates (and sketches) naturally fit into the gossip-

ing model, which basically guarantees that all n nodes

of a network will converge to the correct global ODI

aggregate/sketch after O(logn) rounds of communica-

tion. For non-ODI aggregates/sketches, Kempe et al.

[15] propose a novel gossip protocol (termed push-

sum) that also guarantees convergence in a logarithmic

number of rounds, and avoids double counting by

splitting up the aggregate/sketch and ensuring ‘‘conser-

vation of mass’’ in each round of communication.

Continuous Distributed Stream Processing. The con-

tinuous model places a much more stringent demand

on the distributed stream processing engine, since re-

mote sites must collaborate to continuously maintain a

query answer that is accurate (e.g., within specified

error bounds) based on the current state of the

stream(s). Approximation plays a critical role in the

design of communication-efficient solutions for such

Distributed Data Streams. Figure 2. (a) Using local filters for continuous distributed query processing: Most updates fall

within the local-filter ranges and require no communication with the coordinator (that can provide approximate

answers with guarantees depending on the filter ‘‘widths’’); only updates outside the local-filter range require new

information to be ‘‘pushed’’ by the local site to the coordinator. (b) Prediction-based approximate query tracking:

Predicted sketches are based on simple prediction models of local-stream behavior, and are kept in-sync between the

coordinator (for query answering) and the remote sites (for tracking prediction error).

Distributed Data Streams D 887

D

continuous monitoring tasks. In a nutshell, the key idea

is to tradeoff result accuracy and local processing at

sites for reduced communication costs, by installing

local filters at the remote sites to allow them to only

‘‘push’’ significant updates to the coordinator; of

course, these distributed local filters would have to be

safe, that is, they should guarantee the overall error

bound for the global query result (based on the exact

current state) at the coordinator. This idea of local

traffic filtering for continuous distributed queries is

pictorially depicted in Fig. 2a.

A key concept underlying most continuous

distributed monitoring schemes is that of adaptive

slack allocation – that is, adaptively distributing the

overall ‘‘slack’’ (or, error tolerance) in the query result

across the local filters at different participating sites

based on observed local update patterns. Obviously,

the complexity of such slack-distribution mechanisms

depends on the nature of the aggregate query being

tracked. Olston et al. [21] consider the simpler case of

algebraic aggregates (where breaking down the overall

slack to safe local filters is straightforward), and discuss

adaptive schemes that continuously grow/shrink local

filters based on the frequency of observed local viola-

tions. As expected, the situation is more complicated

in the case of holistic aggregates: Babcock and Olston

[2] discuss a scheme for tracking an approximate glob-

al top-k set of items using a cleverly-built set of local

constraints that essentially ‘‘align’’ the local top-k set at

a site with the global top-k; furthermore, their algo-

rithm also retains some amount of slack at the
coordinator to allow for possible localized resolutions

of constraint violations. Das et al. [8] consider the

problem of monitoring distributed set-expression car-

dinalities and propose tracking algorithms that take

advantage of the set-expression semantics to appropri-

ately ‘‘charge’’ updates arriving at the local sites.

Simple slack-allocation schemes are typically based

on a naive static model of local-site behavior; that is,

the site’s ‘‘value’’ is assumed constant since the last

update to the coordinator, and communication is

avoided as long as this last update value stays within

the slack bounds. Cormode and Garofalakis [5] pro-

pose the use of more sophisticated, dynamic prediction

models of temporal site dynamics in conjunction with

appropriate sketching techniques for communication-

efficient monitoring of complex distributed aggregate

queries. Their idea is to allow each site and the coordi-

nator to share a prediction of how the site’s local

stream(s) (and, their sketch synopses) evolve over

time. The coordinator uses this prediction to provide

continuous query answers, while the remote site checks

locally that the prediction stays ‘‘close’’ to the actual

observed streaming distribution (Fig. 2b). Of course,

using a more sophisticated prediction model can

also impose some additional communication to ensure

that the coordinator’s view is kept in-sync with the

up-to-date local stream models (at the remote sites).

Combined with intelligent sketching techniques and

methods for bounding the overall query error, such

approaches can be used to track a large class of complex,

holistic queries, only requiring concise communication

Distributed Data Streams. Figure 3. Distributed stream-processing dataflow.

888D Distributed Data Streams
exchanges when prediction models are no longer accu-

rate [5]. Furthermore, their approach can also be

naturally extended to multi-level hierarchical architec-

tures. Similar ideas are also discussed by Chu et al. [4]

who consider the problem of in-network probabilistic

model maintenance to enable communication-efficient

approximate tracking of sensornet readings.

A common feature of several distributed continu-

ous monitoring problems is continuously evaluating a

condition over distributed streaming data, and firing

when the condition is met. When tracking such

distributed triggers, only values of the ‘‘global’’ contin-

uous query that are above a certain threshold are of

interest (e.g., fire when the total number of connec-

tions to an IP destination address exceeds some value)

[13]. Recent work has addressed versions of this

distributed triggering problem for varying levels of

complexity of the global query, ranging from simple

counts [16] to complex functions [26] and matrix-

analysis operators [12]. Push-based processing using

local-filter conditions continues to play a key role for

distributed triggers as well; another basic idea here is to

exploit the threshold to allow for even more effective

local traffic filtering (e.g., ‘‘wider’’ yet safe filter ranges

when the query value is well below the threshold).

Systems and Prototypes. Simple, algebraic in-

network aggregation techniques have found widespread

acceptance in the implementation of efficient sensornet

monitoring systems (e.g., TAG/TinyDB [18]). On the

other hand, more sophisticated approximate in-network

processing tools have yet to gain wide adoption in

system implementations. Of course, Distributed

Stream-Processing Engines (DSPEs) are still a nascent

area for systems research: only a few research prototypes

are currently in existence (e.g., Telegraph/TelegraphCQ
[25], Borealis/Medusa [3], P2 [17]). The primary focus

in these early efforts has been on providing effective

system support for long-running stream-processing

dataflows (comprising connected, pipelined query

operators) over a distributed architecture (Fig. 3).

For instance, Balazinska et al. [3] and Shah et al. [25]

discuss mechanisms and tools for supporting parallel,

highly-available, fault-tolerant dataflows; Loo et al.

[17] propose tools for declarative dataflow design and

automated optimizations; Pietzuch et al. [22] consider

the problem of distributed dataflow operator place-

ment and propose techniques based on a cost-space

representation that optimize for network-efficiency

metrics (e.g., bandwidth, latency); finally, Xing et al.

[27] give tools for deriving distributed dataflow sche-

dules that are resilient to load variations in the input

data streams. To deal with high stream rates and po-

tential system overload, these early DSPEs typically

employ some form of load shedding [3] where tuples

from operators’ input stream(s) are dropped (either

randomly or based on different QoS metrics). Unfor-

tunately, such load-shedding schemes cannot offer any

hard guarantees on the quality of the resulting query

answers. A mechanism based on revision tuples can be

employed in the Borealis DSPE to ensure that results

are eventually correct [3]. AT&T’s Gigascope streaming

DB for large-scale IP-network monitoring [7] uses ap-

proximation tools (e.g., sampling, sketches) to efficiently

track ‘‘line-speed’’ data streams at the monitoring end-

points, but has yet to explore issues related to the physi-

cal distribution of the streams and holistic queries.

Key Applications
Enterprise and ISP Network Security: The ability to

efficiently track network-wide traffic patterns plays a

Distributed Data Streams D 889

D

key role in detecting anomalies and possible malicious

attacks on the network infrastructure. Given the sheer

volume of measurement data, continuously centraliz-

ing all network statistics is simply not a feasible option,

and distributed streaming techniques are needed.

Sensornet Monitoring and Data Collection: Tools

for efficiently tracking global queries or collecting all

measurements from a sensornet have to employ clever

in-network processing techniques to maximize the

lifetime of the sensors.

Clickstream and Weblog Monitoring: Monitoring

the continuous, massive streams of weblog data col-

lected over distributed web-server collections is critical

to the real-time detection of potential system abuse,

fraud, and so on.
Future Directions
The key algorithmic idea underlying the more sophis-

ticated distributed data-stream processing techniques

discussed in this article is that of effectively trading

off space/time and communication with the quality of

an approximate query answer. Exploring some of the

more sophisticated algorithmic tools discussed here in

the context of real-life systems and applications is one

important direction for future work on distributed

streams; other challenging areas for future research,

include:

� Extensions to other application areas and more

complex communication models, e.g., monitoring

P2P services over shared infrastructure (OpenDHT

[23] over PlanetLab), and dealing with constrained

communication models (e.g., intermittent-connec-

tivity and delay-tolerant networks (DTNs) [14]).

� Richer classes of distributed queries, e.g., set-valued

queryanswers,machine-learninginferencemodels[11].

� Developing a theoretical/algorithmic foundation of

distributed data-streaming models: What are fun-

damental lower bounds, how to apply/extend in-

formation theory, communication complexity, and

distributed coding. Some initial results appear in

the recent work of Cormode et al. [6].

� Richer prediction models for stream tracking: Can

models effectively capture site correlations rather

than just local site behavior? More generally, un-

derstand the model complexity/expressiveness tra-

deoff, and come up with principled techniques for

capturing it in practice (e.g., using the MDL prin-

ciple [24]).
� Stream computations over an untrusted distributed

infrastructure: Coping with privacy and authen-

tication issues in a communication/computation-

efficient manner. Some initial results appear in [10].

Data Sets
Publicly-accessible network-measurement data collec-

tions can be found at the Internet Traffic Archive:

(http://ita.ee.lbl.gov/), and CRAWDAD (the Communi-

ty Resource for Archiving Wireless Data at Dartmouth,

http://cmc.cs.dartmouth.edu/data/dartmouth.html).

Cross-references
▶AMS Sketch

▶Continuous Query

▶Count-Min Sketch

▶Data Stream

▶ Load Shedding

▶ Scheduling Strategies for Data Stream Processing

▶ Stream Models

▶ Stream Processing

▶ Stream Sampling

▶ Streaming Applications

▶ Synopsis Structure
Recommended Reading
1. Alon N., Matias Y., and Szegedy M. The space complexity of

approximating the frequency moments. In Proc. 28th Annual

ACM Symp. on the Theory of Computing, 1996, pp. 20–29.

2. Babcock B. and Olston C. Distributed top-K monitoring. In

Proc. 2003 ACM SIGMOD Int. Conf. on Management of Data,

2003.

3. Balazinska M., Balakrishnan H., Madden S., and Stonebraker M.

Fault-tolerance in the borealis distributed stream processing

system. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2005.

4. Chu D., Deshpande A., Hellerstein J.M., and Hong W.

Approximate data collection in sensor networks using probabi-

listic models. In Proc. 22nd Int. Conf. on Data Engineering,

2006.

5. Cormode G. and Garofalakis M. Sketching streams through the

net: distributed approximate query tracking. In Proc. 31st Int.

Conf. on Very Large Data Bases, 2005.

6. Cormode G., Muthukrishnan S., and Yi K. Algorithms for

distributed functional monitoring. In Proc. 19th Annual ACM-

SIAM Symp. on Discrete Algorithms, 2008.

7. Cranor C., Johnson T., Spatscheck O., and Shkapenyuk V. Giga-

scope: a stream database for network applications. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2003.

8. Das A., Ganguly S., Garofalakis M., and Rastogi R. Distributed

set-expression cardinality estimation. In Proc. 30th Int. Conf. on

Very Large Data Bases, 2004.

890D Distributed Database Design
9. Flajolet P. and Nigel Martin G. Probabilistic counting algorithms

for data base applications. J. Comput. Syst. Sci., 31:182–209, 1985.

10. Garofalakis M., Hellerstein J.M., and Maniatis P. Proof sketches:

verifiable in-network aggregation. In Proc. 23rd Int. Conf. on

Data Engineering, 2007.

11. Guestrin C., Bodik P., Thibaux R., Paskin M., and Madden S.

Distributed regression: an efficient framework for modeling

sensor network data. Inform. Process. Sensor Networks, 2004.

12. Huang L., Nguyen X., Garofalakis M., Hellerstein J.M.,

Jordan M.I., Joseph A.D., and Taft N. Communication-efficient

online detection of network-wide anomalies. In Proc. 26th An-

nual Joint Conf. of the IEEE Computer and Communications

Societies, 2007.

13. Jain A., Hellerstein J., Ratnasamy S., and Wetherall D. A wakeup

call for internet monitoring systems: The case for distributed

triggers. In Proc. Third Workshop on Hot Topics in Networks,

2004.

14. Jain S., Fall K., and Patra R. Routing in a delay tolerant network.

In Proc. ACM Int. Conf. of the on Data Communication, 2005.

15. Kempe D., Dobra A., and Gehrke J. Gossip-based computation

of aggregate information. In Proc. 44th Annual IEEE Symp. on

Foundations of Computer Science. 2003.

16. Keralapura R., Cormode G., and Ramamirtham J. Communica-

tion-efficient distributed monitoring of thresholded counts. In

Proc. 2006 ACM SIGMOD Int. Conf. on Management of Data,

2006, pp. 289–300.

17. Loo B.T., Condie T., Garofalakis M., Gay D.E., Hellerstein J.M.,

Maniatis P., Ramakrishnan R., Roscoe T., and Stoica I.

Declarative networking: language, execution, and optimization.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2006.

18. Madden S., Franklin M.J., Hellerstein J.M., and Hong W. TAG:

a tiny aggregation service for ad-hoc sensor networks. In Proc.

5th USENIX Symp. on Operating System Design and Implemen-

tation, 2002.

19. Manjhi A., Nath S., and Gibbons P. Tributaries and deltas:

efficient and robust aggregation in sensor network streams. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2005.

20. Nath S., Gibbons P.B., Seshan S., and Anderson Z.R. Synopsis

diffusion for robust aggrgation in sensor networks. In Proc. 2nd

Int. Conf. on Embedded Networked Sensor Systems. 2004.

21. Olston C., Jiang J., and Widom J. Adaptive filters for continuous

queries over distributed data streams. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2003.

22. Pietzuch P., Ledlie J., Schneidman J., Roussopoulos M., Welsh

M., and Seltzer M. Network-aware operator placement

for stream-processing systems. In Proc. 22nd Int. Conf. on

Data Engineering, 2006.

23. Rhea S., Godfrey B., Karp B., Kubiatowicz J., Ratnasamy S.,

Shenker S., Stoica I., and Yu H.Y. OpenDHT: a public dht service

and its uses. In Proc. ACM Int. Conf. of the on Data Communi-

cation, 2005.

24. Rissanen J. Modeling by shortest data description. Automatica,

14:465–471, 1978.

25. Shah M.A., Hellerstein J.M., and Brewer E. Highly available,

fault-tolerant, parallel dataflows. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2004.
26. Sharfman I., Schuster A., and Keren D. A geometric approach

to monitoring threshold functions over distributed data streams.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2006, pp. 301–312.

27. Xing Y., Hwang J.-H., Cetintemel U., and Zdonik S. Providing

resiliency to load variations in ditributed stream processing.

In Proc. 32nd Int. Conf. on Very Large Data Bases, 2006.
Distributed Database Design

KIAN-LEE TAN

National University of Singapore, Singapore,

Singapore

Synonyms
Horizontal fragmentation; Vertical fragmentation;

Data replication
Definition
Distributed database design refers to the following

problem: given a database and its workload, how

should the database be split and allocated to sites so as

to optimize certain objective function (e.g., to mini-

mize the resource consumption in processing the query

workload). There are two issues: (i) Data fragmentation

which determines how the data should be fragmented;

and (ii) Data allocation which determines how the

fragments should be allocated. While these two pro-

blems are inter-related, the two issues have traditionally

been studied independently, giving rise to a two-phase

approach to the design problem.

The design problem is applicable when a dis-

tributed database system has to be built from scratch.

In the case when multiple existing databases are to be

integrated (e.g., in multi-database context), there is

no design issue.
Historical Background
In a distributed database system, relations are typically

fragmented and stored at multiple sites. Fragmentation

of a relation is useful for several reasons. First, an appli-

cation typically accesses only subsets of relations. More-

over, different subsets are naturally needed at different

sites. As such, fragmenting a relation to facilitate locality

of accesses of applications can improve performance

(otherwise, the overhead of shipping relations from

one site to another may be unnecessarily high). Second,

Distributed Database Design D 891

D

as applications may operate on different fragments, the

degree of concurrency is thus enhanced. Even within a

single application, accessing multiple fragments that

are located at different sites essentially facilitates paral-

lelism. Third, for applications that require multiple

fragments from different relations, these fragments can

be colocated to minimize communication overhead.

However, like normalization, decomposing a relation

to fragments may lead to poorer performance when

multiple fragments need to be joined. In addition,

if two attributes with a dependency are split across

fragments, then it becomes more costly to enforce the

dependency. Most of the works on fragmentation were

done in the early 1980s [4,5,11,12,13]. One of the funda-

mental task in vertical fragmentation is to identify attri-

butes that should be grouped together. In [11,9], the

bond energy algorithm (BEA) was first proposed to

cluster together attributes with high affinity for each

other; based on this, the relation is then partitioned

accordingly.
Distributed Database Design. Figure 1. Fragmentation sche
The allocation problem received much more atten-

tion. Initial work dated back to as early as 1969 where

the file allocation problem was investigated [7]. In

[1,2,6], the data allocation problem was shown to be

NP-hard. In a dynamic environment, the workload and

access pattern may change. In [3,8], dynamic data

allocation algorithms were studied. These techniques

change the initial data allocation to adapt to changing

access patterns and workload.

There were also several works that combine both

fragmentation and allocation into an integrated solu-

tion [13,14].

Foundations

Fragmentation

In a distributed database system, a relation R may be

split in a number of fragments F = {R1, R2, ..., Rn} in

such a way that R can be reconstructed from them.

There are essentially three fragmentation schemes.
mes.

892D Distributed Database Design
In primary horizontal fragmentation, each fragment

is essentially a subset of the tuples in the original

relation (see Fig. 1a). In general, a fragment is defined

as a selection on the original relation, i.e., Ri ¼ sCi
ðRÞ

where Ci is a predicate used to construct Ri. A good

primary horizontal fragmentation of a relation typically

has three desirable properties:

1. Completeness: 8t 2 R, ∃Ri 2 F such that t 2 Ri. This

property states that every tuple in the original rela-

tion must be assigned to a fragment.

2. Disjointness: 8t 2 Ri, ∄Rj such that t 2 Rj, i 6¼ j, Ri,

Rj 2 F. This property states that all fragments are

disjoint, i.e., a tuple is assigned to only one frag-

ment. This property is useful as it leaves the deci-

sion to replicate fragments to the allocation phase.

3. Reconstruction: R =
S

n
i¼1Ri. This property states

that the original relation can be reconstructed by

simply union-ing all its fragments.

In derived horizontal fragmentation, a relation S is

fragmented based on the fragments of another relation

R. R is called the owner relation and S the member

relation. Each fragment of S is obtained using a semi-

join between S and a corresponding fragment of R,

i.e., Si ¼ S ⋉S:k¼Ri :kRi where k is the join attribute

(see Fig. 1b). Derived fragmentation is useful when

the fragments of R need to be combined with the

records of S with matching join keys. As such, the

corresponding derived fragment is the necessary sub-

set, and can be co-located with the R fragment. In

order to ensure completeness, referential integrity con-

straint has to be enforced, i.e., the set of distinct join

attribute values of the member relation must be a

subset of the set of distinct join attribute values of the

owner relation. Moreover, for disjointness property

to be achievable, the join attribute should be the key

of the owner relation.

In vertical fragmentation, a relation R[T] (where T

is the set of attributes in R’s schema) is decomposed

into, say k fragments R1[T1], R2[T2],...Rk[Tk] (where Ti
is the set of attributes in fragment Ri) (see Fig. 1c).

Each fragment Ri is defined as the projection of

the ordinal relation on the set of attributes Ti,

i.e., Ri ¼ pTi
ðRÞ. For completeness, T = [k

i¼1 Ti .

In addition, to reconstruct R from its fragments, the

lossless join property must be enforced, i.e., R

= fflk
i¼1 Ri . One way to achieve the lossless join prop-

erty is to repeat the key attributes in all the fragments,

i.e., 8i, key � Ti.
In practice, a combination of all the above frag-

mentation schemes can be applied on a single table.

For example, the EMP table can be first horizontally

partitioned based on the location, and then the frag-

ment at location S1 (EMP1) may be further vertically

partitioned into P1 = p#, Name, LocEMP1 and P2 = p#,
SalEMP1. Now a query over the original relation EMP

can then be evaluated as a query over the corresponding

fragments (cross-reference Distributed Query Proces-

sing). For example, a query to find the names of employ-

ees in location S1, expressed aspNamesLoc=S1EMP, can be

reduced to a query over one fragment: pNameP1. As can

be seen, fragmentation can lead to more efficient query

processing.

To generate the set of fragments, the following

strategy can be adopted. Given a set of simple predi-

cates P = {P1, P2, ..., Pm} (each Pi is of the form

attribute y value where y 2 {<, �, =, >,
}), a

set of minterm predicates M is generated. M is defined

as follows:

M ¼ fmjm ¼ ^Pk2PPk
�; 1 � k � mg

where Pk* is Pk or ¬Pk. After eliminating useless

minterm prediates, the resultant minterm predicates

can be used to produce the set of disjoint fragments:

sm(R) for allm 2M. As an example, suppose P = {A<

10, A > 5, Loc = S1, Loc = S2} is the set of simple

predicates. Moreover, assume that there are only 2 loca-

tions, S1 and S2. Then, there will be a total of 16

minterm predicates; several of these are empty set,

e.g., {A < 10 ∧ A > 5 ∧ Loc = S1 ∧ Loc = S2} and

{A< 10∧¬A> 5∧ Loc = S1∧ Loc = S2}. The resultant

set of minterm predicates consists of 6 predicates: {5<

A< 10∧ Loc = S1}, {5< A< 10∧ Loc = S2}, {A� 5∧
Loc = S1}, {A � 5 ∧ Loc = S2}, {A
 10 ∧ Loc = S1},

{A
 10∧ Loc = S2}. Each of these predicates will result

in a fragment.

Allocation

Once a database has been fragmented, the fragments are

allocated to the sites. This gives rise to the allocation

problem: Given a set of fragments F = {F1, F2, ..., Fn}

and a number of sites S = {S1, S2, ..., Sm} on which a

number of applicationsQ = {Q1,Q2, ...,Qp} is running,

allocate Fi 2 F to Sj 2 S such that some optimiza-

tion criterion is met (subject to certain constraints,

e.g., available storage at certain sites). Some optimiza-

tion criteria include maximizing throughput, mini-

mizing the average response time or minimizing the

Distributed Database Design D 893

D

total cost of serving Q. This (allocation) problem is

complex because the optimal solution depends on

many factors, for example, the location in which a

query originates, the query processing strategies (e.g.,

join methods) that are used, the hardware at the vari-

ous sites and so on. As such, for the problem to be

tractable, the problem is typically simplified with cer-

tain assumptions, e.g., only communication cost is

considered.

As an example, consider the following simple cost

models which determine the read, write and storage

cost of an arbitrary fragment f. (Note that a more

complex model will need to consider other factors

like fragment size, queries involving multiple frag-

ments, and so on.). The read cost of f is given by:

Xm
i¼1

t i �MINm
j¼1Cij

where i is the originating site of the request, ti is the

read traffic at Si and Cij is the cost to access fragment f

(stored) at Sj from Si. If only the transmission cost

is considered, then Cii = 0 if f is stored at site Si, and

Cij = 1 if f is not stored at site Sj. The update cost is

given by:

Xm
i¼1

Xm
j¼1

Xj � ui � Cij

where i is the originating site of the request, j is the site

being updated, Xj = 1 if f is stored at Sj and 0 otherwise,

ui is the write traffic at Si and Cij is the cost to update f

at Sj from Si. Finally, the storage cost is given by:

Xm
i¼1

Xi � di

where Xi = 1 if f is stored at Sj and 0 otherwise, and di is

the storage cost at Si.

Fragments can be allocated to minimize a combi-

nation of the above costs. Based on these cost models,

any optimization algorithm can be easily adapted to

solve it. For example, a randomized algorithm (such

as simulated annealing, iterative improvement) can

allocate fragments to sites and the allocation that

gives the best cost is the winner.

Heuristics have also been developed. For example, a

best-fit heuristic for non-replicated allocation works as

follows: For each fragment f, place it at the site j where

the total cost (for this fragment only) is minimum.
While this scheme is computationally efficient, it

ignores the effect of other fragments which may render

the allocation sub-optimal.
Future Directions
Even though the distributed database design has been

extensively studied, similar data partitioning and place-

ment (allocation) issues continue to be surfaced for

new architectural design. The focus here will be more

on load-balancing and dynamic data migration. For

example, in a highly dynamic and loosely connected

distributed systems like a peer-to-peer system, there

is yet no effective solution to dynamically adapt the

placement of data for optimal performance. Similarly,

in a distributed publish/subscribe environment, the

problem of migrating data (subscriptions) for optimal

performance has not been adequately explored. More-

over, in these systems, the logical network connection

between sites may be dynamically changing, and this

will influence the allocation of data.
Cross-references
▶Data Replication

▶ Parallel Database Management

▶ Peer Data Management System
Recommended Reading
1. Apers P.M. Data Allocation in distributed database systems.

ACM Trans. Database Syst., 13(2):263–304, 1988.

2. Bell D.A. Difficult data placement problems. Comput. J.,

27(4):315–320, 1984.

3. Brunstrom A., Leutenegger S.T., and Simha R. Experimental

evaluation of dynamic data allocation strategies in a distributed

database with changing workloads. In Proc. Int. Conf. on Infor-

mation and Knowledge Management, 1995, pp. 395–402.

4. Ceri S., Negri M., and Pelagatti G. Horizontal data partitioning

in database design. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1982, pp. 128–136.

5. Ceri S. and Pelagatti G. Distributed Databases: Principles

and Systems. McGraw-Hill, NY, USA, 1984.

6. Chang C.C. and Shieh J.C. On the complexity of file allocation

problem. In Proc. Int. Conf. on the Foundations of Data Orga-

nization, 1985, pp. 177–181.

7. Chu W.W. Optimal file allocation in a multiple computer

network. IEEE Trans. Comput., C-18(10):885–889, 1969.

8. Karlapalem K. and Ng M.P. Query-driven data allocation

algorithms for distributed database systems. In Proc. 8th Int.

Conf. Database and Expert Syst. Appl., 1997, pp. 347–356.

9. McCormick W.T., Schweitzer P.J., and White T.W. Problem

decomposition and data reorganization by a clustering techni-

qiue. Oper. Res., 20(5):993–1009, 1972.

894D Distributed Database Management System (DDBMS)
10. Muri S., Ibaraki T., Miyajima H., and Hasegawa T. Evaluation

of file redundancy in distributed database systems. IEEE

Trans. Software Eng., 11(2):199–205, 1995.

11. Navathe S., Ceri S., Wiederhold G., and Dou J. Vertical

partitioning of algorithms for database design. ACM Trans.

Database Syst., 9(4):680–710, 1984.

12. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems, 2nd edn. Prentice-Hall, 1999.

13. Sacca D. and Wiederhold G. Database partitioning in a cluster

of processors. ACM Trans. Database Syst., 10(1):29–56, 1985.

14. Yoshida M., Mizumachi K., Wakino A., Oyake I., and

Matsushita Y. Time and cost evaluation schemes of multiple

copies of data in distributed database systems. IEEE Trans.

Software Eng., 11(9):954–958, 1985.
Distributed Database Management
System (DDBMS)

▶Distributed DBMS
Distributed Database Systems

KIAN-LEE TAN

National University of Singapore, Singapore,

Singapore

Synonyms
Homogeneous distributed database systems; Heteroge-

neous distributed database systems; Federated data-

base systems; Multidatabases

Definition
A distributed database (DDB) is an integrated collection

of databases that is physically distributed across sites in a

computer network. A distributed database management

system (DDBMS) is the software system that manages

a distributed database such that the distribution aspects

are transparent to the users. To form a distributed

database system (DDBS), the files must be structured,

logically interrelated, and physically distributed across

multiple sites. In addition, there must be a common

interface to access the distributed data.

Historical Background
There are many reasons that motivated DDBS. First,

distributed databases reflect organizational structure.

Inmany organizations, the data are naturally distributed

across departments/branches where each department/
branch maintains its own local data. Moreover, it is not

alwayspossible tobuild a centralized system to consolidate

these data. In addition, by keeping these data at their

respective remote sites facilitates autonomy where each

site retains controlover thedata that it generates/possesses.

Next,aDDBSisexpectedtoofferbetterperformance–

data are placed at locations where they are frequently

accessed, and hence communication overhead can be

minimized; moreover, parallelism can be exploited

to process a query in parallel. Had data been stored in

a centralized site, the centralized site may become a bot-

tleneck, and the communication overhead may be

significant.

A DDBS also offers better availability – when a site

fails, the other operational sites can potentially still

be available for data retrieval and query processing.

A centralized site is vulnerable to single point of failure.

The concepts behind distributed DBMS were pio-

neered during the late 1970s through several research

projects including SDD-1 [8] developed by Computer

Corporation of America, Distributed INGRES [11]

started at the University of California at Berkeley, and

R*STAR [9] designed at IBM research lab.

The first well-publicized distributed DBMS prod-

uct was INGRES/Star, announced in 1987. Oracle also

announced its distributed DBMS capabilities in 1987,

and the first Oracle product to reasonably support dis-

tributed database processing is Oracle 7. IBM’s distri-

buted DBMS products, based on the distributed

relational data architecture, are largely systems for inte-

grating data sets across the different versions of DB2

that run on AIX, OS/2, OS/400, VM and MVS.

More recent trends have focused on multi-databases

(heterogeneous databases) and distributed systems that

offer more autonomy to individual system [10,12].

Foundations
In a distributed database system, data are distributed

across a number of sites [1,6]. A relation can be horizon-

tallyorvertically fragmented(cross-referenceDistributed

Database Design), and/or replicated. These fragments/

replicas are allocated to the sites to be stored there. In

a multi-database, where multiple databases are to be

integrated, one can view the local database as a fragment

of the integrateddatabase.

One key consideration in the design of a DDBS is the

notion of data transparency. With data transparency, the

user accesses the database thinking that (s)he is working

with one logical centralized database. There are several

Distributed Database Systems D 895

D

forms of transparency: (i) distribution transparency;

(ii) replication transparency; (iii) Location transparency;

and (d) Transaction transparency. In distribution trans-

parency, the user is not aware of how a relation has been

fragmented. In replication transparency, the user sees

only one logically unique piece of data. (S)he is masked

from the fact that some fragments may be replicated and

that replicas reside at different locations.

In location transparency, the user is masked from

the use of the location information when issuing the

query. In other words, there is no need for the user to

specify the location of data that (s)he is retrieving. This

follows from the distribution/replication transparen-

cies. In transaction transparency, the user is masked

from coordination activities required to achieve con-

sistency when processing queries. In fact, each transac-

tion maintains database consistency and integrity

across the multiple databases/replicas (without user

knowledge). A global transaction that accesses data

from multiple sites has to be divided into subtransac-

tions that process data at one single site.

A DDBMS comprises a number of components [2]:

(i) The database management component is a centra-

lized DBMS that manages the local database; (ii) The

data communication component handles the commu-

nication between sites in a DDBS; (iii) The data dictio-

nary which is extended to represent information about

the distribution of data (and sites) in the DDBS; (iv) the

distributed database component (DDB) that manages

the DDBS to ensure that the system functions correctly.

In particular, the DDB performs a number of tasks.

First, in processing a global transaction, the DDB needs

to determine a distributed query plan that is most

cost-effective. Distributed query processing algorithms

including semijoins are often used to reduce the com-

munication overhead.

Second, there is a need to synchronize the accesses

from multiple users to the distributed databases in order

to maintain the consistency and integrity of the database.

Unlike centralized database systems, the database con-

sistency has to be guaranteed at each site as well as across

all sites.

Third, as a global transaction may require accessing

data from multiple sites, the competition for these data

can result in deadlocks (for locking-based synchroniza-

tion mechanisms, which is the most commonly used).

In a DDBS, deadlocks may not occur within a site, but

occur across sites. As such, having a ‘‘global’’ view is

critical in order to detect and to recover from deadlocks.
Fourth, atomicity of global transactions is an impor-

tant issue. Clearly, if a subtransaction running at one

site commits while another substransaction running at

another site aborts, then the database will become incon-

sistent. As such, distributed transaction commit pro-

tocols must ensure that such a situation cannot arise.

The two-phase commit protocol is themost widely used.

Finally, as in any distributed systems, sites may fail or

become inaccessible as a result of network problems. As a

result, it is necessary to ensure the atomicity of global

transactions in the midst of failures. Moreover, mechan-

isms must be provided to ensure the consistency of the

database, and to bring the recovered failed nodes up-to-

date.

While DDBS offers a host of promises and advan-

tages, it is very difficult to realize a full-fledge DDBS.

For example, it has been argued that full transparency

makes the management of distributed data very diffi-

cult so much so that it can lead to poor manageability,

poor modularity and poor message performance [3]. As

another example, it is clearlymore complex to design the

DDB component and the respective mechanisms and

protocols for the DDBS to operate as promise and to

ensure consistency and reliability. Being connected to a

network alsomeans that it is more vulnerable to security

threats. Nevertheless, it is an exciting field that offers

many challenges for researchers to work on.

Key Applications
Manyof today’s applications are naturally distributed. For

example, in supply-chain management, there is a need to

access information concerning parts, products, suppliers

which are housed by different organizations. As another

example, in financial applications, a bank typically has

many branches locally or overseas, and each such branch

maintains its own databases to better serve their local

customers; there is, however, a need to have an integrated

viewof the bank aswell. Other applications include airline

reservation, government agencies, health care, and so on.

Future Directions
Distributed databases continue to be an interesting

area of research. In particular, the internet has made

large scale distributed systems possible and practical.

There are still many problems that have not been

adequately addressed. For example, it remains a chal-

lenge to find the optimal query optimization plan

especially when site autonomy are to be enforced.

Some recent works have examined these using

896D Distributed Databases
microeconomics principles [7]. Another direction is

the semantic interoperability problem [4]. Yet another

direction is in the design of advanced distributed data

management systems, e.g., peer-based data manage-

ment [5] (where peers are highly dynamic and may

join and leave the network anytime), mobile data

management (where nodes are mobile), and sensornet

databases (where sensor nodes are battery-powered,

has limited storage and processing capabilities).

Cross-references
▶Data Replication

▶Distributed Architecture

▶Distributed Database Design

▶Distributed Query Optimization

▶Distributed Query Processing

▶ Parallel Database Management

▶ Peer Data Management System

Recommended Reading
1. Bell D. and Grimson J. Distributed Database Systems. Addison-

Wesley, 1992.

2. Ceri S. and Pelagatti G. Distributed Databases: Principles and

Systems. McGraw-Hill, 1984.

3. Gray J. Transparency in Its Place – The Case Against Transparent

Access to Geographically Distributed Data. Technical Report

TR89.1, Cupertino, Calif.: Tandem Computers Inc., 1989.

4. Halevy A.Y., Ives Z.G., Suciu D., and Tatarinov I. Schema media-

tion for large-scale semantic data sharing. VLDB J., 14(1):68–83

2005.

5. Ng W.S., Ooi B.C., Tan K.L., and Zhou A. PeerDB: A P2P-based

System for Distributed Data Sharing. In Proc. 19th Int. Conf. on

Data Engineering, 2003, pp. 633–644.

6. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems, 2nd edn. Prentice-Hall, 1999.

7. Pentaris F. and Ioannidis Y.E. Query optimization in distributed

networks of autonomous database systems. ACM Trans. Data-

base Syst., 31(2):537–583, 2006.

8. Rothnie Jr., Bernstein P.A., Fox S., Goodman N., Hammer M.,

Landers T.A., Reeve C.L., Shipman D.W., and Wong E. Intro-

duction to a system for distributed databases (SDD-1). ACM

Trans. Database Syst., 5(1):1–17, 1980.

9. Selinger P.G. An architectural overview of R*: a distributed

database management system. In Proc. 5th Berkeley Workshop

on Distributed Data Management and Computer Networks,

1981, p. 187.

10. Sheth A.P. and Larson J.A. Federated database systems for man-

aging distributed, heterogeneous, and autonomous databases.

ACM Comput. Surv., 22(3):183–236., 1990.

11. Stonebraker M. The Design and Implementation of Distributed

INGRES. The INGRES Papers, 1986, pp. 187–196.

12. Stonebraker M., Aoki P.M., Pfeffer A., Sah A., Sidell J., Staelin C.,

and Yu A. Mariposa: a wide-area distributed database system.

VLDB J., 5(1):48–63, 1996.
Distributed Databases

▶ Storage Grid
Distributed DBMS

SAMEH ELNIKETY

Microsoft Research, Cambridge, UK

Synonyms
Distributed Database Management System (DDBMS)
Definition
A distributed DBMS is a software system that manages a

distributed database, which consists of data that are

partitioned and replicated among interconnected server

sites. The primary objective of a distributed DBMS is to

hide data distribution so that it appears as one logical

database system to the clients.
Historical Background
Distributed DBMS started in the late 1970s [2,10,12]

with shared-nothing parallel database systems [13],

which were designed for achieving higher performance

by exploiting parallelism in transaction workloads.

Work on distributed DBMS was mainly motivated by

the need to manage data for large organizations having

different offices and subsidiaries but slow computer

networks hampered the adoption of DDBMS [14]. In

the 1990s, advances in computer networking coupled

with the growing business needs to manage distributed

data fueled the work on distributed database systems.
Foundations
A distributed DBMS (DDBMS) manages a distributed

database that is accessed at multiple sites, where each

site contains a partition of the database. A single parti-

tion can be replicated across multiple sites. At one end

of the spectrum, in a fully-replicated database, each site

has a full copy of the database. At the other end of the

spectrum, a fully-partitioned database is divided into

disjoint partitions, also called fragments, and each is

placed at only one site. Hence, a DDBMS typically

maintains a data directory which maps each data

item to the sites at which the data item is maintained.

This design raises three key challenges for DDBMSs. The

Distributed DBMS D 897

D

first challenge is the distribution and placement of the

data. Second, the distributed DBMS must update all

copies of modified data items when executing update

transactions. The third challenge arises when a query

needs to access data items at multiple sites, requiring

coordination and communication among the sites. Des-

pite these challenges, there is a potential gain in perfor-

mance due to the proximity of data to applications and

due to inter-transaction and intra-transaction parallel-

ism in the workload.

Data Placement among Sites

As far as data placement is concerned, there is a perfor-

mance tradeoff. Applications running at a site prefer to

access all needed data items locally. At the same time,

this naturally leads to an increasing number of data

replicas, and updates become more expensive as they

need to reach more replicas. This tradeoff makes decid-

ing how the database is distributed one of the main

design decisions. The database designer typically deter-

mines which relations are allocated to which sites. Data

placement and distribution depend primarily on the

applications that access the database as well as on

the server network.More fine-grained data distribution

as used in parallel database systems [3,5] is also possi-

ble. For example, a single relation can be fragmented

horizontally (e.g., using a selection operator) or verti-

cally (e.g., using a projection operator) into several

sub-relations and each sub-relation is allocated to at

least one site.

Data placement can also be performed dynamically

[6]. Most approaches to dynamic data placement are

adaptive. They keep statistics on the workload and

move or copy data at different sites so as to adjust the

data placement to the current workload. For example,

a new copy of a set of data items could be established

to help balance the load among servers, or to reduce

wide-area network communication costs. When a new

copy of a data item is made, the copy is designated

as either a replica or a cache. A replica of a data

item is long-lived and maintained by reflecting the

item’s modification to the copy. On the other hand,

a cache is typically short-lived and invalidated on

changes to the data item. Due to the complexity of

the dynamic data placement problem, some research

work targets using economic models [6] to optimize

dynamic data placement. One can no longer discuss

caching and assume that the DDBMS maintains all

data item copies.
Propagating the Effects of Update Transactions

When an update transaction modifies the value of a

database item, the DDBMS is responsible for reflecting

this change to all copies of the data item; otherwise the

copies become inconsistent and consequently the data-

base servers may diverge, violating system correctness

properties. There is a large body of work on handling

updates, mainly inspired by the work in distributed

systems (e.g., quorum protocols). However, few ideas

have impacted commercial DDBMS products as they

mainly use ROWAA (Read One Write All Available)

protocols. In a ROWAA protocol, the update of a data

item has to reach all copies of that data item. It is,

however, sufficient to access only a single copy to read

any data item. Here the discussion focuses on a key

correctness property for ROWAA protocols: one-copy

semantics.

Whenadistributedsystemoffersone-copysemantics,

clients cannot tell whether they are communicating

with a single DBMS or a distributed DBMS. Without

one-copysemantics,applicationshavetodealwith incon-

sistencies while accessing the database. In practice, some

applications require one-copy semantics (e.g., airline res-

ervation, banking, and e-commerce systems). However,

a large class of applications can tolerate inconsistencies

(e.g., reporting applications).

The process of reflecting the changes of modified

data items is called update propagation, and there are

several protocols that implement it. For example in

eager protocols, all live copies of each modified data

item are changed as part of the update transaction. In

contrast, lazy protocols propagate the changes after the

commit of the update transaction.

One-copy semantics can be implemented using

eager or lazy update propagation protocols, but it

requires a total order on the propagated updates.

This total order is typically the commit order of update

transactions and each site applies its relevant updates

in an order consistent with the total order.

Distributed Query Execution

When a distributed DBMS receives a query, it gener-

ates a query execution plan that may access data at

multiple sites. Each site executes part of the plan and

may need to communicate with other sites. Commu-

nication among sites is expensive and good plans gen-

erally minimize the amount of data exchanged between

sites [8]. In wide-area networks, the cost of communi-

cation is generally higher than the cost of local

898D Distributed DBMS
processing. In contrast, the cost of communication is

equal to or less than the cost of local processing in

local-area networks. Optimizing distributed queries is

challenging [6] because the search space is large. It

includes the selection of data fragments to be accessed,

the order of operations in the plan, and the cost of

communication among the sites. The problem

becomes harder when optimizing multiple queries at

a time.

A DDBMS provides global transaction isolation

(e.g., one-copy serializability [9] or generalized snap-

shot isolation [4]) through distributed concurrency

control. To provide global isolation for transactions,

local concurrency control protocols alone are insuffi-

cient. For example, if each site individually ensures

local serializability, the global transaction execution

may violate global serializability since two sites could

locally serialize conflicting global transactions in dif-

ferent orders. Protocols that implement distributed

concurrency control (e.g., distributed two-phase lock-

ing or multi-version timestamp ordering) require

coordination among the sites.

For example in locking-based distributed concur-

rency control protocols, the primary-site [1] method

uses a central lock controller to manage the locks. Alter-

natively, in the primary-copy [15] method each data

item has one copy that is designated as the primary

copy, and only the primary copy is locked. This design

allows locks to be distributed with the data among

several sites.

Coordination among several sites can become a

significant source of overhead. Deadlocks and aborts

become more frequent in a distributed DBMS com-

pared to centralized DBMS because distributed trans-

actions require communication among multiple sites

and therefore take longer to execute.

Handling Failures

Fault-tolerance is an important aspect in any

distributed system. A DDBMS contains multiple sites

and each site can fail independently. TheDDBMS, there-

fore, needs to cope with and recover from site failures.

The DDBMS always guarantees the safety properties –

including atomicity and durability of distributed update

transactions – despite site failures [9,12]. To terminate

an update transaction while ensuring the safety proper-

ties, the DDBMS employs a distributed commit protocol

[1] (e.g., distributed two-phase commit, and three-phase
commit) that are specifically designed to handle site

failures. Liveness properties, which is concerned with

the ability to process transactions, depend on which

and how many sites are still connected and operating

normally. Liveness properties encompass system perfor-

mance and availability and usually require high degree of

DDBMS customization to meet the desired targets. For

example instead of using primitive techniques to recover

from a crash and bring a site’s database up-to-date, data

streaming from multiple sources at several sites sub-

stantially reduces database recovery time and therefore

improves the DDBMS availability.

Key Applications
Today, distributed DBMSs are used to manage dis-

tributed databases, such as in geographically distributed

systems (e.g., hotel chains and multi-plant manufac-

turing systems), and in databases under several admin-

istrative or autonomous domains. Distributed DBMSs

are also used to achieve fault-tolerance and scalability

when a centralized DBMS is not satisfactory, for instance

in financial transaction processing and airline reserva-

tion systems.

In modern data centers that host web services,

DDBMS technology appears in two forms. First in

fully replicated database systems, which consist of a

cluster of servers interconnected through a fast local-

area network. The objective of such replicated data-

bases is to achieve both higher availability since data

is available at several server nodes as well as higher

performance as transactions can be processed in paral-

lel at the database servers.

The second form is partitioned database systems in

which relations are striped (fragmented) among several

servers. A single query can be divided into smaller sub-

queries that execute on the servers, leading to a shorter

response time.

Future Directions
Currently, DDMBS technology is rarely used in large scale

information systems without extensive customization

necessary to obtain adequate performance. At the same

time, networking and storage technologies are advancing

at a pace much higher than the improvement in micro-

processors clock speeds. These trends suggest that

DDBMS use will increase in the future. But further

research is needed to ease the deployment and manage-

ment of DDBMS.

Distributed Deadlock Management D 899

D

Cross-references
▶DBMS

▶Distributed Concurrency Control

▶Distributed Databases

▶Distributed Database Design

▶ Parallel Database Management

▶Replication for High Availability

▶Replication for Scalability
Recommended Reading
1. Bernstein P. and Goodman N. Concurrency control in

distributed database systems. ACM Comput. Surv., 13

(2):185–221, 1981.

2. Bernstein P., Shipman D., and Rothnie J. Concurrency control

in a system for distributed databases (SDD-1). ACM Trans.

Database Syst., 5(1):18–51, 1980.

3. DeWitt D. and Gray J. Parallel database systems: the future

of high performance database systems. Commun. ACM.,

35(6):85–98, 1992.

4. Elnikety S., Pedone F., and Zwaenepoel W. Database replication

using generalized snapshot isolation. In Proc. 24th Symp. on

Reliable Distributed Syst., 2005.

5. Ghandeharizadeh S., Gao S., Gahagan C., and Krauss R.

High performance parallel database management systems. In

Handbook on Data Management in Information Systems,

J. Blazewicz, W. Kubiak, T. Morzy, M. Rusinkiewicz (eds.).

Springer, 2003, pp. 194–220.

6. Kossmann D. The state of the art in distributed query proces-

sing. ACM Comput. Surv., 32(4):422–469, 2000.

7. Muffin S.M. A Distributed Database Machine. ERL Technical

Report UCB/ERL M79/28, University of California at Berkeley,

CA, 1979.

8. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems. Prentice-Hall, Englewood Cliffs, NJ, 1991.

9. Pacitti E., Coulon C., Valduriez P., and Özsu T. Preventive

replication in a database cluster. Distrib. Parallel Databases.,

18(3):223–251, 2005.

10. Papadimitriou C. The theory of database concurrency control.

CS Press, AB, 1988.

11. Ries D. and Epstein R. Evaluation of Distribution Criteria for

Distributed Database Systems. UCB/ERLTechnical Report M78/

22, UC Berkeley, CA, 1978.

12. Skeen D. and Stonebraker M. A formal model of crash recovery

in a distributed system. IEEE Transactions on Software Engi-

neering 9(3):219–228, 1983.

13. Stonebraker M. The case for shared nothing. IEEE Database

Eng. Bull., 9: 4–9, 1986.

14. Stonebraker M. Readings in Database Systems (2nd ed.).

Morgan Kaufmann Publishers, Scan Mateo, CA, 1994.

15. Zaslavsky A., Faiz M., Srinivasan B., Rasheed A., and Lai S.

Primary copy method and its modifications for database repli-

cation in distributed mobile computing environment. In Proc.

15th Symp. on Reliable Distributed Syst., 1996.
Distributed Deadlock Management

WEE HYONG TOK

National University of Singapore, Singapore,

Singapore

Synonyms
Deadlocks in distributed database systems
Definition
In a database that supports locking protocol, accesses

to data are controlled using locks. Whenever a transac-

tion needs to access a shared object, it will be granted

a lock (and hence access) to the object if there is

no other conflicting locks on the object; otherwise,

the requesting transaction has to wait. A deadlock

occurs when transactions accessing shared data objects

are waiting indefinitely in a circular fashion until a

special action (such as aborting one of the transac-

tions) is taken. In a distributed database environment,

deadlocks can occur locally at a single site, or across

sites where a chain of transactions may be waiting for

one another to release the locks over a set of shared

objects.

For example, consider two data objects o1 and o2
stored at site 1 and site 2 respectively. Suppose two

transactions, T1 and T2, initiated at site 1 and site 2, are

updating o1 and o2 concurrently. As T1 is updating o1 at

site 1, it holds a write lock on o1. Similarly, T2 holds a

write lock on o2 at site 2. When T1 attempts to access

o2, it has to wait for T2 to release the lock on o2.

Likewise, T2 has to wait for T1 to release the lock

on o1. This leads to a deadlock as both transactions

cannot proceed.

Three techniques are commonly used to handle

deadlocks: prevention, avoidance, and detection and

resolution. Deadlock prevention methods ensure that

deadlocks will not occur in the database system. This is

achieved by preventing transactions which will cause

deadlocks from being executed. Deadlock avoidance

schemes preemptively detect potential deadlocks dur-

ing the scheduling of multiple transactions. Deadlock

detection protocols detect deadlocks in running trans-

actions by using a transaction wait-for graph. When-

ever deadlocks are detected, a resolution strategy

aborts some of the transactions in order to break the

deadlock.

900D Distributed Deadlock Management
Historical Background
When transactions access shared objects, there is a

dependency relationship between the transactions.

The dependency relationship captures how the trans-

actions wait for one another, and is commonly repre-

sented as a directed graph, called the wait-for graph

(WFG). Each node represents a transaction. An edge

(i.e., arc) in the graph is used to capture the wait-for

relationship. For example, if a directed edge is found

between node A and node B, then the transaction

represented by node A is waiting for another transac-

tion which is represented by node B. In distributed

database systems, the WFG is local if it involves only

the data at a single site, and is global if it involves data

from multiple sites. When a cycle exists in a WFG, a

deadlock occurs.

Deadlock detection algorithms for distributed da-

tabase systems can be categorized as: centralized, hier-

archical, and distributed [12].

Centralized deadlock detection algorithms [5,6]

use a central site for detecting deadlocks in a distributed

database system. This site is referred to as the central

deadlock detection site, C. C is responsible for build-

ing the global WFG. Other sites transmit their local

WFG to C. Subsequently, only the changes to the

local WFG are transmitted to C. These changes include

new or deleted edges in the local WFG. C continuously

checks for cycles in the global WFG and performs

deadlock resolution whenever cycles are detected. The

implementation of centralized deadlock detection

is simple and straightforward. However, due to the
Distributed Deadlock Management. Figure 1. Hierarchical d
need to continuously transmit new changes in the

local TWG to C, it can cause a high communication

overhead. In addition, the use of a single site makes it

susceptible to overloading and being a single point of

failure. Özsu and Valduriez [12] noted that centralized

two-phase locking (2PL) and deadlock detection is a

good, natural combination. Centralized deadlock de-

tection is implemented in Distributed INGRES [15].

Hierarchical deadlock detection algorithms [10,6]

rely on a hierarchical organization of the sites in a

distributed database system to detect deadlocks. Each

internal node (site) merges the WFG from its child

nodes into a WFG that captures the dependency rela-

tionship among the descendant nodes. It can thus

detect deadlocks in its descendant nodes. It also trans-

mits the combined WFG to its parent node. The key

idea in hierarchical deadlock detection is to ensure that

a deadlock can be detected as early as possible by a

nearby site. This reduces the need to escalate the de-

tection to the root site. As deadlock detection is spread

amongst several sites, hierarchical deadlock detection

algorithms incur less communication overheads com-

pared to centralized algorithms. The implementation

of hierarchical deadlock detection algorithms is more

complex due to the need to coordinate between the

multiple deadlock detectors. Figure 1 shows an exam-

ple of how five sites in a distributed database system is

organized in a hierarchy for deadlock detection. Some

sites might function as the deadlock detector for mul-

tiple levels of the hierarchy. Each deadlock detector is

denoted as DDls, where l and s denote the level and
eadlock detection.

Distributed Deadlock Management D 901

D

the site of the deadlock detector respectively. From the

figure, observe that in cluster 1, site 1 is the control site,

and detects deadlocks for sites 1, 2, and 3. Thus, sites 1,

2, and 3 will need to update the deadlock detector at

the next level (i.e., DD11) with their respective

local WFG. If the deadlock needs to be detected

between site 1 and site 5, then it will be detected by

the deadlock detector at the root of the tree (i.e., DD0s,

where 1 � s � 5).

Distributed deadlock detection algorithms [10,11]

rely on the cooperation of all the sites in the distributed

database system in order to detect deadlocks. Each site

in the distributed database system consists of a dead-

lock detector. Potential deadlock information is trans-

mitted from one site to another. Consequently, the

deadlock detector modifies its local WFG using infor-

mation about the potential deadlocks, as well as

whether a local transaction is waiting for transactions

at another sites. Distributed deadlock detection is

implemented in System R* [11].

In distributed database systems, effective global

deadlock detection rely on the the timely propagation

of local information from all the sites. However, some

sites might be slower in propagating local information.

As a result, this might lead to the detection of phantom

deadlocks. A phantom deadlock is a deadlock which

does not exist. Hence, in order to break the phantom

deadlocks, transactions might be aborted. Both the

centralized and hierarchical algorithms are prone to

the phantom deadlock problem. For example, in Fig. 2,

a global deadlock exists. However, at site 2, the
Distributed Deadlock Management. Figure 2. Global

wait-for graph.
transaction T5 might be aborted. T5 can aborted due

to the business logic encoded in the transaction. This

changes the local WFG for site 2. Consequently, no

more cycle exists in the global WFG. However, if the

changes in the local WFG are not propagated in a

timely manner to update the global WFG, a phantom

deadlock arises.

The book [12] provides a good overview of

distributed deadlock management techniques. The

surveys [4,7,14,1] provide a good discussion of various

distributed deadlock detection algorithms. Krivokapić

et al. [8] further categorizes deadlock detection app-

roaches as path-pushing [10], probe-based [13] or

having a global state strategy [2,3]. Using the categori-

zation, Krivokapić et al. [8] presented a detailed per-

formance analysis of representative algorithms for each

of the categories.

Foundations
A distributed database system consists of a collection

of database sites. A centralized database system is lo-

cated at each of the sites. The database sites communi-

cate with each other by sending messages via a

communication network. A transaction consists of a

sequence of operations (e.g., read, write) that are per-

formed on the data objects. Whenever a transaction

needs to perform an operation on a data object, it

sends a resource request to a transaction manager

(TM). The resource request can refer to operations

that are performed on local or remote data objects.

Transaction Wait-for Graph

Given N active transactions, T1...TN, in a database

system, a directed graph, called a transaction Wait-for

Graph (WFG), can be built. Each vertex of the graph

corresponds to an active transaction. A wait-for rela-

tionship exists between two transactions, Ti and Tj

(i 6¼ j), if Ti is waiting for Tj to release a lock. This is

denoted as a directed edge between two vertices, Vi and

Vj (i 6¼ j) in the graph. In most deadlock detection

algorithms, the WFG is used for analyzing deadlocks.

Deadlocks occur when cycles are detected in the graph.

In order to analyze deadlocks in a distributed

database system, a global transaction wait-for-graph

(WFG) is commonly used. The global WFG is con-

structed by taking the union of the local WFGs for all

the sites in the distributed database system. The

main difference between the local and global WFG is

that the global WFG captures inter-site wait-for

902D Distributed Deadlock Management
relationship. Inter-site waiting occurs when a transac-

tion, executing on one site, is waiting for the release of a

lock on a data object by another transaction executing on

another site. For example, in a distributed database

system, five transactions, T1 to T5 are active on two

sites. Figure 2 shows the global WFG, which captures

the wait-for relationship between the transactions. The

dashed lines are used to denote inter-site waiting.

From the figure, several observations can be made.

Firstly, one can observe that at site 1, transaction T1

is waiting for T2. At site 2, T5 is waiting for T4, and T4 is

waiting for T3. In addition, the transaction T2 (site 1)

is waiting for T5 (site 2), and T3 (site 2) is waiting for

T1 (site 1). As a cycle is detected in the global WFG, a

deadlock is detected.

Deadlock Models

Different types of models of deadlock are presented

in [7]. The models are used to capture the type of

resource requests that need to be processed by applica-

tion programs. The models include: one-resource,

AND, OR, AND-OR, (nk), and the unrestricted

model. In the one-resource model, a transaction can

have at most one resource request. Thus, the maxi-

mum outdegree for a WFG vertex is 1. In both the

AND and OR models, a transaction requests for access

to a set of shared data objects (i.e., resources). The

main difference between the two models is that in the

AND model, the transaction blocks until all the

requested resources are available, whereas in the OR

model, a transaction blocks until any one of the

resources is available. The AND-OR deadlock model

is a generalization of the AND and OR models. In

order to further generalize the AND-OR model, the

(n
k
) model is used. In this model, a transaction can

request for any k available resources from a set of n

available resources. The unrestricted model does not

impose any constraints on the number of resources

that are requested by a transaction. In the one resource

and AND deadlock model, a deadlock occurs whenever

there is a cycle in the WFG. The detection of deadlocks

in the other models require more complex computa-

tion, and is discussed in details in [7].

Static Vs Dynamic Deadlock Detection

Deadlock detection can be classified as static or dy-

namic. In static deadlock detection, the overall strategy

in which deadlocks is detected is fixed. For example,

in centralized deadlock detection, the central site is
pre-determined. Similarly, in hierarchical deadlock de-

tection, the hierarchical organization of the sites is also

pre-determined. In distributed deadlock detection, all

sites have individual deadlock detection mechanisms.

In dynamic deadlock detection, deadlock detection

agents (DDA) are dynamically created for transactions

that access the same data objects. This is first proposed

in [8]. This allows the DDA scheme to adapt or self-

tune to the system transaction load.

Deadlock Resolution

Whenever deadlocks are detected, deadlock resolution

is used to remove the deadlocks. The key idea in dead-

lock resolution is to minimize the cost incurred as a

result of resolving the deadlock. There are two possible

strategies for deadlock resolution. In the first strategy, a

deadlock resolver aborts one or more transactions

that caused the deadlock. In the second strategy, trans-

actions are timed-out whenever deadlock occurs.

In the first strategy, one or more transactions are

selected to be aborted. These transactions are referred

to as the victim transaction(s). Singhal [14] presents a

general strategy for deadlock resolution in distributed

database systems. A victim transaction which will opti-

mally resolve the deadlock is selected. The victim

transaction is aborted, and the locks that are held by

the transaction are released. Deadlock detection infor-

mation that are related to the victim transaction is

removed from the system. In a distributed database

system, several issues need to be considered when

aborting transactions. First, whenever a deadlock is

detected by a site, the site might not have access to

the global deadlock information. Second, multiple sites

might independently detect the same deadlock. This

might cause the sites to independently resolve the

deadlock. Consequently, this causes more transactions

to be aborted than necessary. To solve this issue, a

deadlock resolver can be selected from amongst the

sites or the deadlock detection by various sites can be

prioritized. In order to determine the set of victim

transactions, various heuristics can be used. Intuitively,

the heuristics ensure that the cost of aborting transac-

tions is minimized. Some of these heuristics include:

choosing the youngest transaction in the cycle [8]

or choosing the transaction that causes the maximum

number of cycles [9]. The first heuristic is motivated by

the observation that the youngest transaction has just

started execution. Hence, it is less costly to abort. In

contrast, an older transaction has executed for some

Distributed Hash Table D 903

D

time, and will be costly to abort. The second heuristic is

motivated by the observation that when deadlocks

occur, it is important to break the cycles in the global

WFG. If a transaction that caused themaximumnumber

of cycles is aborted, it can potentially removemore cycles

in the WFG. Hence, deadlock can be resolved faster.

In the second strategy, deadlocks are resolved using

time-outs. This strategy is suitable for the case where

deadlocks are infrequent. The time-out interval deter-

mines the waiting time for a transaction to be aborted.

Thus, the selection of an optimal time-out interval

is important. A short time-out interval will cause trans-

actions to be aborted unnecessarily. On the other

hand, a long time-out interval will result in the slow

resolution of deadlocks might not be resolved quickly.

Consequently, this impacts on the responsiveness of the

applications.

Key Applications
Deadlocks occur whenever locking-based protocols are

used to manage shared data objects or resources.

Distributed deadlock management is more challenging

to handle because none of the sites have global knowl-

edge of the entire system. The techniques that are

described can be applied and adapted for deadlock

management for various types of distributed systems.

Future Directions
The emergence of new computing platforms (e.g., Peer-

to-Peer (P2P), cloud computing) present new interac-

tion modalities with distributed data. As applications

built on these paradigms mature, a natural progression

would be the need for transactions which access shared

resources. This compels the need for locking-based pro-

tocols to be used for accessing the shared resources.

Consequently, many open issues arise for distributed

deadlock detection in these new computing platforms.

Cross-references
▶Distributed Concurrency Control

▶Distributed Database Design

▶Distributed Database Systems

▶Two-Pheese Loching
Recommended Reading
1. Abonamah A.A. and Elmagarmid A. A survey of deadlock detec-

tion algorithms in distributed database systems. Advances in

Distributed and Parallel Processing (vol. one): system paradigms

and methods, 1994, pp. 310–341.
2. Bracha G. and Sam T. Distributed deadlock detection.

Distributed Computing, 2(3):127–138, 1985.

3. Chandy K.M and Lamport L. Distributed snapshots:

Determining global states of distributed systems. ACM Trans.

Comput. Syst., 3(1):63–75, 1986.

4. Elmagarmid A.K. A Survery of distsributed deadlock algorithms.

ACM SIGMOD Record, 15(3):37–45, 1986.

5. Gray J. Notes on data base operating systems. In Advanced

Course: Operating Systems, pages 393–481, 1978.

6. Ho Gray S. and Ramamoorthy C.V. Protocols for deadlock

detection in distributed database systems. IEEE Trans. Softw.

Eng., 8(6):554–557, 1982.

7. Knapp E. Deadlock detection in distributed databases. ACM

Comput. Surv., 19(4):303–328, 1987.

8. Krivokapić., N. Kemper A. and Gudes E. Deadlock detection in

distributed database systems: a new algorithm and a compara-

tive performance analysis. VLDB J., 8(2):79–100, 1999.

9. Makki K. and Pissinou N. Detection and resolution of deadlocks

in distributed database systems. In Proc. Int. Conf. on Informa-

tion and Knowledge Management, 1995, pp. 411–416.

10. Menascé D.A. Muntz R. Locking and deadlock detection in

distributed data bases. IEEE Trans. Softw. Eng., 5(3):195–202,

1997.

11. Mohan C., Lindsay., and Bruce G. Obermarck Ron Transaction

management in the R* distributed database management sys-

tem. ACM Trans. Database Syst., 11(4):378–396, 1986.

12. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems, Second Edition. Prentice-Hall, 1999.

13. Roesler M., Burkhard W.A. and Cooper K.B. Efficient deadlock

resolution for lock-based concurrency control schemes. In Proc.

18th Int. Conf. on Distributed Computing Systems, 1998,

pp. 224–233.

14. Singhal M. Deadlock detection in distributed systems. Computer,

22(11):37–48, 1989.

15. Stonebraker M. The design and implementation of distributed

ingres. The INGRES Papers : anatomy of a Relational Database

System, 1986, pp. 187–196.
Distributed Hash Table

WOJCIECH GALUBA, SARUNAS GIRDZIJAUSKAS

EPFL, Lausanne, Switzerland

Synonyms
DHT

Definition
A Distributed Hash Table (DHT) is a decentralized

system that provides the functionality of a hash table,

i.e., insertion and retrieval of key-value pairs. Each node

in the system stores a part of the hash table. The nodes are

interconnected in a structured overlay network, which

enables efficient delivery of the key lookup and key

904D Distributed Join
insertion requests from the requestor to the node storing

the key. To guarantee robustness to arrivals and depar-

tures of nodes, the overlay network topology is main-

tained and the key-value pairs are replicated to several

nodes.

Key Points
Every DHT defines its key space. For example, in many

DHTs the keys are 160-bit integers, which is the output

of the popular SHA1 hash function. Each node in the

system has a specific location in the key space and

stores the key-value pairs that are close to that location.

The different DHTsystems vary in the exact algorithms

for deciding which node should store which key [2].

The DHTrelies on a structured overlay network for

some of its functionality. The overlay network uses the

DHT keys for addressing its nodes, i.e., the overlay is

content (key) addressable. The structured overlay net-

work provides the routing primitive which allows scal-

able and reliable delivery of key lookup and key

insertion messages. The structured overlay implemen-

tations maintain the overlay topology and ensure rout-

ing efficiency as the nodes arrive and depart from the

system (node churn) [1].

Not only the overlay topology but also the DHT

data storage must be tolerant to churn. To achieve that,

the key-value pairs are replicated across several nodes.

A sufficient number of replicas needs to be maintained

to prevent data loss under churn. There are a number

of approaches to replication (cf. Peer-to-peer storage

systems). In the most common replication strategy a

node joining the DHT contacts the nodes that are close

to it in the key space and replicates the key-value pairs

that they store.

Cross-references
▶Consistent Hashing

▶Distributed Hash Table

▶Overlay Network

▶ Peer to Peer Overlay Networks: Structure, Routing

and Maintenance

▶ Peer-to-Peer System

▶Replication in DHTs

Recommended Reading
1. Rhea S.C., Geels D., Roscoe T., and Kubiatowicz J. Handling

churn in a DHT. In Proc. USENIX 2004 Annual Technical Conf.,

2004, pp. 127–140.

2. Risson J. and Moors T. Survey of research towards robust peer-

to-peer networks: Search methods. Comput. Networks, 50(17):

3485–3521, 2006.
Distributed Join

KAI-UWE SATTLER

Technical University of Ilmenau, Ilmenau, Germany

Synonyms
Join processing; Distributed query
Definition
The distributed join is a query operator that combines

two relations stored at different sites in the following

way: each tuple from the first relation is concatenated

with each tuple from the second relation that satisfies a

given join condition, e.g., the match in two attributes.

The main characteristics of a distributed join is that at

least one of the operand relations has to be transferred

to another site.
Historical Background
Techniques for evaluating joins on distributed rela-

tions have already been dy discussed in the context

of the first prototypes of distributed database sys-

tems such as SDD-1, Distributed INGRES and R*.

In [6] the basic strategies ship whole vs. fetch

matches were discussed and results of experimental

evaluations were reported. Another report on an ex-

perimental comparison of distributed join strategies

was given in [5].

Special strategies for distributed join evaluation

that aim at reducing the transfer costs were developed

by Bernstein et al. [2] (semijoin) as well as Babb [1]

and Valduriez [11] (hashfilter join) respectively. The

problem of delayed and bursty arrivals of tuples during

join processing was addressed by particular techniques

like the XJoin [10]. Moreover, a technique for dealing

with limited query capabilities of wrappers in hetero-

geneous databases was introduced in [8] as a special

variant of the fetch matches strategy.
Foundations
For evaluating a distributed join several tasks have to

be addressed. First, the site where the actual join is

to be processed, has to be chosen. Second, the operand

relations have to be transferred to the chosen site if

they are not already available there. Finally, the join

between the two relations has to be computed locally

at that site. In the following, these different issues are

described in more details.

Distributed Join. Table 1. Transfer costs for join

strategies

Strategy
Query

issuing site

Transfer
volume
(KBytes)

Number of
messages

Ship
whole

Site 1 600 2

Ship
whole

Site 2 900 2

Fetch
matches

Site 1 220 4.000

Fetch
matches

Site 2 250 10.000

Distributed Join D 905

D

Site Selection

Choosing the site where the join operation is to be

performed on is usually part of query optimization.

For the simplest case of joining two relations R and S

there are three possible join sites: the site of R, the site

of S, and a third site at which the result is eventually

needed. For the decision several aspects must be taken

into account: the cost for transferring the operand rela-

tions, the join ordering (in case of multi-way joins) as

well as subsequent operators in the query, e.g., at which

site the join result is needed for further processing.

Relation Transfer

Given that one of the relations is available at the join

site, there are two basic strategies to transfer the other

relation. The ship whole approach works as follows:

1. The remote relation is shipped to the join site at a

whole.

2. After the relation is received by the join site, it can

be stored and used to perform the join locally.

In contrast, the fetch matches or fetch as needed strategy

consists of the following steps:

1. The relation at the join site is scanned.

2. Based on the current value of the join attribute, the

matching tuples from the other relation are

requested.

3. If the other site has matching tuples, they are sent

back and joined with the currently considered tuple.

The following example illustrates the costs (in terms

of transferred data and number ofmessages) of these two

strategies. Given two relations R (site 1) and S (site 2)

with cardinalities jRj = 2.000 and jSj = 5.000, where

the tuple sizes in bytes are width(R) = width(S) =

100 and the join attributes A 2 attr(R) and C 2 attr

(S) have width(A) = width(C) = 10. Furthermore,

a foreign key constraint A ! C is assumed meaning

that jR ⋈A=C Sj = 2.000.

Using the ship whole approach the complete relation

has to be shipped, i.e., in case of R the transfer volume is

jRj� width(R) + jR⋈A=C Sj� (width(R) + width(S)), but

only two messages are required (assuming that the rela-

tion is sent using a single message). With the fetch

matches strategy the join attribute value of each tuple is

shipped to the other site and for each tuple a result

message is sent back. Thus, for relation R 2jRj messages

are needed. However, in the first step jRj� width(A) bytes
are transferred and in the second step jR ⋈A=C Sj�
width(S) bytes are sent back. The results for all strategies
are shown in Table 1. Note, that only that cases are

shown, where the result is sent back to the query issuer.

Furthermore, for simplicity the message sizes are not

considered in the transfer volume.

The results show that:

� The ship whole approach needs a larger transfer

volume.

� The fetch matches strategy requires more messages.

� The smaller relation should always be shipped.

� The transfer volume in the fetch matches strategy

depends on the selectivity of the join.

These basic strategies can further be improved by

exploiting row blocking, i.e., sending several tuples in

a block. Second, in case of the fetch matches strategy

the relation can be sorted first in order to avoid fetch-

ing tuples for the same join values multiple times.
Local Join Processing

After having transferred the operand relations to the

join site, the join is evaluated using any of the conven-

tional algorithm known from centralized DBMS, e.g.,

nested-loops join, sort-merge join, or hash join. If local

indexes on the join attributes are available, they can be

exploited. Furthermore, for the ship whole strategy a

temporary index on the shipped relation can be created

and exploited. In any case, the decision which strategy

to use for the join evaluation is made in the local

optimization step.
Sequential vs. Pipelined Processing

Another aspect of local processing is the strategy for

dealing with delayed or bursty tuple arrivals. A first

Distributed Join. Figure 1. Basic strategies for join processing.

Distributed Join. Figure 2. Double pipelined hash join.

906D Distributed Join
approach is to simply ignore this issue and assume a

constant and on time arrival of tuples. Each incoming

tuple is processed according to the chosen join strategy.

In case of the sort-merge join this could mean to wait

for all tuples of the relation. With other strategies (e.g.,

if the shipped relation is the outer relation of a nested-

loops join) the incoming tuple is directly processed in

a pipelined fashion. However, if no tuple arrives, e.g.,

due to a network delay, no join result can be produced.

An alternative solution is to use a double pipelined

hash join, which exploits the inherent parallelism of

distributed processing and in this way allows to reduce

the overall response time.

Algorithms

In the following some special approaches of distributed

joins are described that extend the basic model of ship

whole and fetch matches.

Semijoin/hashfilter join. This join algorithms can

be regarded as a special variant of the fetch matches

join with the aim to reduce transfer costs. For this

purpose, only the projected join column or a compact

bitmap representation (computed by applying a hash

function) of that column of the first relation is sent

to the second site as a whole. Next, all matching tuples

are determined and sent back to the first site, where

the actual join is computed.

XJoin. In wide-area networks with unpredictable

response and transfer times, transmission delays may

result in delayed or bursty arrivals of data. Further-

more, slow data sources can also delay or even block

join processing. To address this problem and to allow

to deliver join results as early as possible and continu-

ously the XJoin [10] was proposed. It is based on

the symmetric hash join, which works as follows:
For each operand relation a hash table is maintai-

ned. Each incoming tuple is first inserted into the

corresponding hash table. Next, it is used for probing

the hash table of the other relation to find matching

tuples, compute the join with them, and output the

result immediately (Fig. 2). The XJoin extends this

algorithm by considering the case where the hash tables

exhaust the available main memory. For this purpose, a

partitioning strategy is applied to swap out portions

of the hash tables to disk-resident partitions. These

partitions are also used to produce results when the

site waits for the next tuples: in this case tuples from

the disk are joined with memory-resident partitions.

In order to avoid duplicates in the result special pre-

cautions are needed.

Bind join. In heterogeneous databases component

databases (data sources) are usually encapsulated by

wrappers responsible for query and result translation.

Depending on the kind of the sources (e.g., a legacy

system, a Website, or Web Service) these wrappers

sometimes do not allow fetching the whole table or

Distributed Join. Figure 3. Comparison of different join algorithms.

Distributed Join D 907

D

evaluating a join. Instead they support only parame-

terized selections of the form

select * from R where A = ‘‘?’’

In order to still join another relation with R a bind join

can be performed which is in fact a special fetch

matches strategy. By scanning the outer relation the

current value of the join column is passed on as the

parameter ‘‘?’’ to the wrapper query and the results

are collected and combined into the final join result.

This can further be improved by precompiling the

query plan, e.g., by exploiting prepared statements or

cursor caching techniques.

Key Applications
The main application of distributed joins is query

processing in distributed databases systems. In order

to evaluate a join operation on relations stored at

different sites a distributed strategy is needed.

A second area of application are heterogeneous

databases, e.g., in the form of mediators or federated

database systems. If legacy component databases or

their wrappers provide only limited query capabilities

(e.g., supporting only selections), a special strategy is

required, which was introduced above as bind join.

The XJoin presented above is also useful for evaluating

joins in this context.

Other application examples for distributed joins

include P2P systems for managing structured data,

e.g., Peer Data Management Systems (PDMS) and

P2P databases as well as distributed data stream pro-

cessing systems.

Experimental Results
Experimental comparisons of different join strategies

have been reported for example by Lu and Carey [5] as
well as by Mackert and Lohman [6]. Figure 3 shows

some results from [5] for the join between two rela-

tions from two different sites, each with 1,000 tuples

and a result size of 100 tuples.

The join algorithms considered in this experi-

ment are:

� A sequential combination of the ship whole ap-

proach with the nested-loops join for the local

processing (S-NL) and the sort-merge join

(S-SM). The shipped relation was stored in a tem-

porary table and for the nested-loops variant an

index was created before computing the join.

� Apipelined variant of this approach, where incoming

tuples were processed on the fly (P-NL and P-SM).

� A strategy equivalent to the fetch matches approach

using nested-loops join (F-NL) or sort-merge join

(F-SM).

In Fig. 3a the elapsed time for processing the joins

is shown, Fig. 3b depicts the number of messages.

Cross-references
▶ Evaluation of Relational Operators

▶ Semijoin
Recommended Reading
1. Babb E. Implementing a Relational Database by Means of

Specialized Hardware. ACM Trans. Database Syst., 4(1):1–29,

1979.

2. Bernstein P.A., Goodman N., Wong E., Reeve C.L., Rothnie J.B.

Query Processing in a System for Distributed Databases

(SDD-1). ACM Trans. Database Syst., 6(4): 602–625, 1981.

3. Hevner A.R., Yao S.B.: Query Processing in Distributed

Database Systems. IEEE Trans. on Software Eng., 5(3):177–182,

1979.

4. Kossmann D. The State of the Art in Distributed Query Pro-

cessing. ACM Comput. Surv., 32(4):422–469, 2000.

908D Distributed Query
5. Lu H., Carey M. Some Experimental Results on Distributed Join

Algorithms in a Local Network. In Proc. 11th Int. Conf. on Very

Large Data Bases, 1985, pp. 229–304.

6. Mackert L.F., Lohman G. R* Optimizer Validation and Perfor-

mance Evaluation for Local Queries. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1986, pp. 84–95.

7. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems, 2nd Edition. Prentice Hall 1999.

8. Roth M.T., Schwarz P. Don’t Scrap It, Wrap It! A Wrapper

Architecture for Legacy Data Sources. In Proc. 23rd Int. Conf.

on Very Large Data Bases, 1997, pp. 266–275.

9. Stonebraker M. The Design and Implementation of Distributed

INGRES. In The INGRES Papers, M. Stonebraker (ed.): Addi-

son-Wesley, Reading, MA, 1986.

10. Urhan T., Franklin M.J. XJoin: A Reactively-Scheduled Pipelined

Join Operator. Bulletin of the Technical Committee on Data

Engineering 23(2):27–33, 2000.

11. Valduriez P. Semi-Join Algorithms for Distributed Database

Machines. In Schneider J.-J. (Ed.) Distributed Data Bases,

North-Holland, 1982, pp. 23–37.

12. Williams R., Daniels D., Hass L., Lapis G., Lindsay B., Ng. P.,

Obermarck R., Selinger P., Walker A., Wilms P., and Yost R.

R*: An overview of the Architecture. IBM Research Lab, San

Jose, CA, 1981.
Distributed Query

▶Distributed Join

▶Distributed Query Processing
Distributed Query Optimization

STÉPHANE BRESSAN

National University of Singapore, Singapore,

Singapore

Synonyms
Query optimization in distributed database systems

Definition
Distributed query optimization refers to the process of

producing a plan for the processing of a query to a

distributed database system. The plan is called a query

execution plan. In a distributed database system, sche-

ma and queries refer to logical units of data. In a

relational distributed relation database system, for in-

stance, logical units of data are relations. These units

may be be fragmented at the underlying physical level.

The fragments, which can be redundant and replicated,
are allocated to different database servers in the

distributed system.

A query execution plan consists of operators and

their allocation to servers. Standard physical operators,

usually implementing the data model’s algebra, are

used to process data and to consolidate intermediary

and final results. Communication operators realize the

transfer, sending and receiving, of data from one server

to another. In the case of fragmentation the plan uses

fragments instead of logical data units. In the case of

replication, the plan defines the choice of replicas.

Distributed query optimization, like non-distributed

query optimization, involves the enumeration of candi-

date query execution plans and the selection of an opti-

mal or satisfactory plan with respect to a cost model.

A cost model for distributed query optimization

involves not only local processing cost, i.e., the cost

of central unit processing and of input/output opera-

tions but also the cost of communications.

A distributed query optimization algorithm selects

an optimal or satisfactory plan by exploring parts of

the combinatorial search space defined as the set of

possible query execution plans. The function of cost to

be optimized is called the objective function.

Historical Background
The three reference distributed relational database man-

agement systems are SDD-1 [1], Distributed Ingres [3]

and System R∗ [4]. Their respective distributed query

optimization algorithms are representative of the typi-

cal possible strategies.

The first distributed query optimization algorithm is

Wong’s ‘‘hill climbing’’ algorithm [10]. The algorithm

greedily tries and improves an initial feasible solution

and reaches, as the name indicates, a local optimum. The

algorithm is further refined in the distributed query

optimization algorithm of SDD-1 where it is extended

to include semijoin programs. SDD-1 supports neither

replication nor fragmentation. While Wong’s algorithm

works with a general objective function, SDD-1’s imple-

mentation considers total communication cost only.

Clearly, the overall focus of SDD-1’s optimization

approach is to reduce the volume of data transmitted.

SDD-1 distributed query optimization is static.

Distributed Ingres’ distributed query optimization

algorithm [3] deterministically explores the search

space of possible plans by making local optimization

decisions at each step. Distributed Ingres supports

horizontal fragmentation. The objective function is a

Distributed Query Optimization D 909

D

weighted combination of total time cost and response

time. It therefore includes both local and communica-

tion cost. Distributed Ingres’ distributed query optimi-

zation is dynamic and therefore can benefit by the

knowledge of the actual size of intermediary results.

System R∗’s distributed query optimization algo-

rithm is described in [7]. The algorithm exhaustively

explores the search space of all possible query execution

plans using dynamic programming to prune regions.

The implementation of the algorithm in System R∗

supports neither replication nor fragmentation.

The objective function is total cost and includes local

processing and communication cost. System R∗’s

distributed query optimization is static.

Several approaches to dynamic query optimization

have been proposed for parallel and distributed data-

bases (see [5] for a rapid overview). Query scrambling

[9], for instance, allows re-organization of the query

execution plan during its execution in order to cope

with unpredicted delays.

As an alternative to centralized optimization, the

first system explicitly proposing an economical model

for distributed query optimization is the Mariposa

system [8].

While most of today’s commercial database man-

agement system vendors offer distributed versions of

their software, the continuous technological develop-

ments and the new application perspectives constantly

compel extension and revision of existing distributed

query optimization techniques in order to meet the

needs of the new systems and applications.

Both textbooks [2,6] present and discuss in details

the state of the art of distributed database technology

in general and distributed query optimization in par-

ticular in the 1980s and 1990s, respectively. The survey

[5] is a more current account of the development of

these technologies and techniques.

Foundations
A distributed database management system consists of

several dispersed database servers interconnected by an

either local or wide area network. The database servers

can be homogeneous or heterogeneous in hardware

and software. The servers and network can be more

or less autonomous.

Fragmentation and Replication

Data in a distributed database application may be

fragmented. Logical units of data as they appear in
the schema of the application may be further decom-

posed. Fragmentation can generally be expressed by

means of logical operators. In the case of relational

distributed database applications, a vertical fragment

of a relation is the result of a relational projection,

while a horizontal fragment is the result of a relational

selection. Fragments are allocated to different servers

in the distributed database management system. Frag-

mentation should be a lossless decomposition. How-

ever fragments can be redundant and replicated.

Fragmentation independence (often referred to as

‘‘fragmentation transparency’’) assumes that program-

mers write programs in terms of the logical schema of

the application and ignore the details of fragmentation,

redundancy and replication, and allocation. This prop-

erty should be guaranteed for all design and program-

ming purposes except, if necessary, for performance

tuning.

The choice among possible fragments and replicas,

the allocation of operations together with the cost and

time needed for processing, as well as communication

with local storage and network communication define

the search space for the distributed query optimization

problem and its objective function. Given a query to a

distributed database system, its optimization, the

distributed query optimization problem, is the choice

of a query execution plan given fragmentation, redun-

dancy and replication, and allocation, which is optimal

or satisfactory with respect to the cost model, i.e., tries

and minimizes the objective function.

Plan Enumeration

A query execution plan for a query to a distributed

database management system is the decomposition of

the query into local plans accessing fragments together

with a global plan for the coordination of local execu-

tions, communications, and transmission, consolida-

tion and production of results.

Since fragments and replicas are usually defined by

logical operations, it is possible to rewrite the original

query into a query in the same language involving only

actual fragments and replicas. This decomposition is

straightforwardly done by replacing each logical unit

by a sub-query defining its reconstruction from frag-

ments and replicas. For instance, in the simplest cases,

a horizontally decomposed relation is the union of

its fragments; a vertically decomposed relation is

the natural join of its fragments. Because of redundan-

cy and replication, there can be several possible

910D Distributed Query Optimization
decompositions using alternative fragments and repli-

cas and therefore several alternative rewritings.

As with non-distributed query optimization, there

may be several candidate access and execution meth-

ods, therefore several possible physical operators, for

each logical operation. Furthermore, the data neces-

sary to an operation may not be available at the server

where the operation is allocated. Data needs to be

transmitted from the server where it is located to the

server where the operation is executed. When data

transmission is a dominant cost, an extended set of

operations can be considered to reduce data before

transmission: this is how the semijoin operator is

used in semijoin programs to favor transmission of

small amounts of data and local operations to trans-

mission of large amounts of data. One strategy consists

in trying and fully reducing (when queries are acyclic)

fragments before transmitting them.

A query execution plan is a tree of operators for

processing, as in non-distributed database manage-

ment systems, and, specifically to distributed database

management systems, for communication and trans-

mission of data. Every operator must be allocated to

one database server. Non-distributed query optimizers

are generally concerned with left- (or right-) deep trees

of operators, i.e., sequence of operations. Distributed

query optimizers need to consider bushy trees which

contain opportunities for parallel execution. Indeed

sibling sub-trees, when allocated to different servers,

can be executed in parallel.

In summary, the plan enumeration involves the enu-

meration of alternative fragments and replicas, the choice

of local execution methods, operations and communica-

tions, and of the choice of order and allocation of execu-

tion. As with non-distributed query optimization, the

size of the search space is combinatorial. Strategies ex-

ploring the entirety of the search space are unlikely to be

efficient. One can either use dynamic programming tech-

niques to prune the search space yet finding an optimal

solution, or use heuristics or randomized algorithms,

such as simulated annealing, to find near or local optima.

The exploration of the search space is guided by the

objective function, i.e., the cost associated to each plan.

Total Cost Model and Response Time

For each query execution plan the optimizer tries and

estimates its total cost, response time or a combination

of both. This is the objective function of the optimiza-

tion algorithm. The optimizer chooses the plan which
minimizes the cost, the response time or finds the

best combination or compromise.

At a coarse granularity, total cost is the sum of local

cost and communication cost. At a finer granularity,

the total cost model can be seen as an extension of

the standard cost model for centralized databases to

which is added the cost of network communications.

The total cost is the sum of the unit cost of central

unit processing, Ccpu, multiplied by the number of

cycles, #cycles, and the unit cost an input/output ope-

ration, CI ∕O, multiplied by the number of such

operations, #I ∕O, with the cost of communications.

Ctotal ¼ Ccpu �#cycles þ CI=O �#I=O þ Ccomm

It is commonly assumed that the cost of communica-

tion is linear in the number of bytes transmitted. The

cost of communication combines the cost of initiating

a message Cs_mess, the cost of receiving a messages

Cr_mess, the number of messages #mess, the cost of

transmitting one byte Ctr_byte, and the number of

bytes transmitted #bytes as follows.

Ccomm ¼ððCs mess þ Cr messÞ �#messÞ
þ ðCtr byte �#bytesÞ

Notice that the above formula requires the knowledge or

estimation of the size of the elementary data units being

processed as well as the selectivity of operations to

estimate the size of intermediary results. The unit of

cost is commonly time (in which case the model is

referred to as the ‘‘total time cost model’’). It is however

probably more accurate to assume a Dollar cost since

the total cost model is a measure of resource utilization.

The total cost model accounts for the usage of

resources but does not account for the benefits of pro-

cessing parallelism, input/output parallelism, and net-

work parallelism naturally available in distributed

database systems. Namely, processing, communication

with local storage and network communications can

happen in parallel since different machines inter-

connected by a physical network are involved.

Response time is the time, on the user’s clock,

needed by the system to execute a query. A simple

example is a sequential scan operation (for instance

in the case of a selection operation on a condition

for which neither indexing nor fragmentation can be

leveraged to rule out some fragments) of a relation

fragmented into n fragments allocated to n different

servers. The scan operation is decomposed into n scan

operations: one for each individual fragments. If, for

Distributed Query Optimization D 911

D

simplicity, it is assumed that all sequential scan opera-

tions start simultaneously, the response time is the time

of the longest scan operation plus the time of longest

request communication and the time of the last re-

sponse communication. The total time is the sum of

the times of individual sequential scans plus the sum of

the times of all point-to-point (or broadcast, as possible

in Distributed Ingres) communications.

Static versus Dynamic Distributed Query Optimization

Static query optimization is performed when compiling

the application programwithout knowledge of the actu-

al size of the elementary units of data. Dynamic query

optimization is performed just before query execution

thus allowing the optimizer to take such knowledge into

account. A simple solution consists in statically generat-

ing several candidate plans for the same query and then

dynamically choosing the planwith the best potential for

efficient execution. Another solution, intermediary be-

tween static and dynamic query optimization prepares a

query plan which is later allocated.

Furthermore modern distributed database appli-

cations leveraging the Internet are confronted with

the unpredictable nature of a best effort communica-

tion network and of typically autonomously managed

servers. Unpredictable delays result in queries execu-

tions being blocked sine die. Query scrambling is a

dynamic approach that considers re-planning of the

query during its execution. Initially a query execution

plan for the distributed query is produced as described

above. Re-planning takes the form of the rescheduling

of transmissions and physical algebraic operators. If a

plan execution is blocked because of a stalled commu-

nication, query scrambling attempts to perform other

data transmission and operations initially scheduled

for later in the original query execution plan. Query

scrambling is a form of re-optimization at execution

time (on-the-fly).

Global versus local, Centralized versus Distributed

Query Optimization, andEconomical Models

The optimization process consists of both global (to

the system) and local (to each database server) optimi-

zation. Global optimization is usually centralized at the

server initially receiving the query. Global optimiza-

tion needs to know or estimate the values required for

the estimation of local cost, response time and com-

munication cost, such as, for instance, the selectivity of

sub-trees locally executed in order to estimate the

number of bytes transmitted in the result. Details of
local optimization, such as the choice of access meth-

ods, can be left to the component database servers.

This assumes that the database server performing

the global optimization has or can collect sufficient

information about the network and the other servers

to properly estimate costs and to devise and choose a

plan. Yet this information (including statistics about

the network and local processing) may be difficult to

collect and maintain if servers and network are auton-

omous, if the overall system is dynamic in nature, as

well as if external independent factors influence its

performance (e.g., general traffic of a public network).

Naı̈ve attempts to distribute the classical distributed

query optimization algorithms do not scale and rapidly

lead to unsatisfactory sub-optimal solutions. One family

of models for distributed optimization among autono-

mous agents is the one of economical models. These

models try and simulate a free market regulated by

supply and demand with negotiations based on bidding,

auctioning or bargaining.

In a simple and simplified model with bidding for

‘‘distributed’’ distributed query optimization, the usage

of resources is first monetized. Users (or user programs)

assign a budget to their query and ask for the most

economical execution available. The budget of a query

is a decreasing function of response time, thus naturally

expressing the acceptable compromise between resource

usage and response time for the particular user. Brokers

perform the (possibly partially) global by asking for and

purchasing resources but remaining below the budget

curve. Servers can actively try and maximize profit from

selling resources by bidding for execution or buying or

selling data.

Future Directions
The evolution of technology together with new app-

lications places the optimization requirements for

different new and future distributed database applications

at various points on the spectrum between approaches

conventionally referred to as centralized databases, paral-

lel databases, distributed database, federated databases

and peer-to-peer databases. Varying degrees of autonomy

and heterogeneity, together with the relative importance

of the elementsdefining cost change the requirements. For

instance, while peer-to-peer database applicationsmay be

primarily concerned with response time and network

congestion,mobile adhocnetworkdatabases applications

(distributed databases applications on mobile devices)

may be primarily concerned with communication costs.

912D Distributed Query Processing
Cross-references
▶Distributed Databases

▶Distributed Database Design

▶Distributed Query Processing

▶Query Optimization

▶Query Processing

▶ Semijoin

▶ SemiJoin Program

Recommended Reading
1. Bernstein P.A., Goodman N.Wong E. Reeve C.L., and Rothnie Jr.

Query processing in a system for distributed databases (SDD-1).

ACM Trans. Database Syst., 6(4):602–625, 1981.

2. Ceri S. and Pelagatti G. Distributed Databases Principles and

Systems. McGraw-Hill, New York, NY, USA, 1984.

3. Epstein R.S., Stonebraker M., and Wong E. Distributed query

processing in a relational data base system. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1978, pp. 169–180.

4. Haas L.M., Selinger P.G., Bertino E., Daniels D., Lindsay B.G.,

Lohman G.M., Masunaga Y., Mohan C., Ng P., Wilms P.F., and

Yost R.A. R*: a research project on distributed relational dbms.

IEEE Database Eng. Bull., 5(4):28–32, 1982.

5. Kossmann D. The state of the art in distributed query proces-

sing. ACM Comput. Surv., 32(4):422–469, 2000.

6. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems, 2nd edn. 1999.

7. Selinger P.G. and Adiba M.E. Access Path Selection in

Distributed Database Management Systems. In Proc. Int. Conf.

on Data Bases, 1980, pp. 204–215.

8. Stonebraker M., Devine R., Kornacker M., Litwin W., Pfeffer A.,

Sah A., and Staelin C. An economic paradigm for query proces-

sing and data migration in mariposa. In Proc. 3rd Int. Conf.

Parallel and Distributed Information Systems, 1994, pp. 58–67.

9. Urhan T., Franklin M.J., and Amsaleg L. Cost based query scram-

bling for initial delays. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1998, pp. 130–141.

10. Wong E. Retrieving dispersed data from SDD-1: a system for

distributed databases. In Proc. 2nd Berkeley Workshop on

Distributed Data Management and Computer Networks, 1977,

pp. 217–235.
Distributed Query Processing

KAI-UWE SATTLER

Technical University of Ilmenau, Ilmenau, Germany

Synonyms
Distributed query; Distributed query optimization

Definition
Distributed query processing is the procedure of an-

swering queries (which means mainly read operations
on large data sets) in a distributed environment where

data is managed at multiple sites in a computer net-

work. Query processing involves the transformation of

a high-level query (e.g., formulated in SQL) into a

query execution plan (consisting of lower-level query

operators in some variation of relational algebra) as

well as the execution of this plan. The goal of the

transformation is to produce a plan which is equivalent

to the original query (returning the same result) and

efficient, i.e., to minimize resource consumption like

total costs or response time.

Historical Background
Motivated by the needs of large companies and orga-

nizations that manage their data at different sites,

distributed database systems are subject of research

since the late 1970s. In these years, three important

prototype systems were developed which already intro-

duced fundamental techniques of distributed query

processing. The first system was SDD-1 [1], developed

at Computer Corporation of America between 1976

and 1980, that run on PDP-10 mainframes connected

by Arpanet. SDD-1 pioneered among others optimiza-

tion techniques and semijoin strategies. The two others,

Distributed INGRES [8] (University of Berkeley, 1977–

1981) and R* [11] (IBM Research, 1981–1985) contrib-

uted further techniques for distributed databases but

none of these approaches was commercially successful.

In [10], Stonebraker and Hellerstein explained this by

the lack of an adequate and stable networking environ-

ment at this time and the slow market acceptance of

distributed DBMS. Today, this has radically changed:

the major DBMS vendors offer solutions that include

query processing facilities allowing to query and com-

bine remote tables. Typically, this is achieved by exten-

sions of the standard query processor such as special

operators for executing remote (sub-)queries, adding

distributed queries to the search space of the query

optimizer as well as cost functions dealing with network

communication.

Besides these classic techniques, several new app-

roaches have been developed since the early prototypes.

TheMariposa system[9]wasbasedonamicro-economic

model for query processing where sites (servers) bid in

an auction to execute parts of a query which is payed by

the query issuer (client). This allows different bidding

strategies for each server in order to maximize its own

profit and may better work in a non-uniform, wide-area

environment with a large number of sites. Another line

Distributed Query Processing D 913

D

of research addressed the problem of changing or unpre-

dictable communication times and data arrival rates

in a distributed environment by dynamic or adaptive

approaches. Proposed solutions range from operator-

level adaptation by introducing dedicated operators

(e.g., join strategies) to adaptation at query level by inter-

leavingofqueryoptimizationand execution [4].
Foundations
The subject of distributed query processing is to answer a

query on data managed at multiple sites. This involves

several steps for transforming a high-level query into

an efficient query execution plan and opens various

alternative ways for executing query operations of

this plan. In this rest of this section, these phases are

described and the most important techniques for each

step are discussed.
Phases of Distributed Query Processing

The procedure of distributed query processing (Fig. 1)

follows the approach of conventional query processing

in database systems: In the first phase, a given query is

parsed and translated into an internal representation

(e.g., a query graph with nodes representing operators

of an extended relational algebra). Next in the rewrit-

ing phase, the query is further transformed by applying

equivalence rules in order to normalize, unnest, and
Distributed Query Processing. Figure 1. Phases of Distribut
simplify it without taking physical aspects such as

cardinalities of relations, existence of indexes etc. into

account. In the next step, the query is optimized by

replacing the logical query operators by specific algo-

rithms (plan operators) and access methods as well as

by determining the order of execution. This is typically

done by enumerating alternative but equivalent plans,

estimating their costs and searching for the best solu-

tion. Finally, the chosen query execution plan is sent to

the query execution engine, possibly after generating

executable code.

In the distributed case, the phases of rewriting and

optimization are extended. During query rewrite global

relations referenced in the query have to be replaced by

the corresponding fragmentation and reconstruction

expressions resulting in fragment queries. Furthermore,

reduction techniques are applied to eliminate redundant

fragment queries or queries producing empty results.

These steps are called data localization.

The optimization phase is split into a global step

performed at the control site where the query was sub-

mitted and a local step which is done at each site main-

taining a fragment relation referenced in this query.

Global optimization involves the decision at which site

the operation is to be executed as well inserting commu-

nication primitives into the plan. Global optimization

typically ignores access methods like index usage for

fragment relations – this is part of the local optimization.
ed Query Processing.

914D Distributed Query Processing
Data Localization

Usually, a distributed database is designed in a way that

fragments of a global relation are stored at different

sites. These fragments are defined by fragmentation

expressions expressed for example as relational queries.

In order to provide location and fragment transparency

a query on a global relationR has to be transformed to a

query that accesses only the fragments of R. This is

achieved by replacing the global relation by the expres-

sion for reconstructing R from the fragments. Assum-

ing a global relation R(A, B, C) which is horizontally

fragmented into R1, R2, R3 as follows:

R1 ¼ sA<100ðRÞ
R2 ¼ s100�A�200ðRÞ
R3 ¼ sA>200ðRÞ

Then, R can be reconstructed by R = R1 [R2 [R3.

Using this fragmentation information, a global query

q1 := sA>150(R) is now transformed into the query

q01 :¼ sA>150ðR1 [R2 [R3Þ

Obviously, this is not an efficient query because R1 does

not contribute to the result. Therefore, reduction tech-

niques are applied which exploit equivalence transfor-

mations of relational algebra expressions in combination

with rules for identifying fragment queries. This produ-

ces empty results due to useless selections or joins. These

rules work mainly by analyzing predicates of fragment

expressions and queries and finding contradictions [2].

For instance, for horizontal fragmentation the fol-

lowing rule can be used:

spiðRjÞ ¼ ; if 8t 2 R : :ðpiðtÞ ^ pjðtÞÞ ð1Þ

Considering query q 0
1, the selection operator can be

pushed down to the fragments. Then, the rule finds the

contradicting predicate A < 100 ∧ A > 150 resulting

in an empty result:

sA>150ðR1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
;

[sA>150ðR2Þ [sA>150ðR3Þ

Thus, the fragment query sA>150(R1) can be

eliminated.

A similar technique is used for identifying useless

joins using the following rule:

Ri ffl Rj ¼ ; if 8t1 2 Ri;8t2 2 Rj :

:ðpiðt1Þ ^ pjðt2ÞÞ ð2Þ
Assume a second relation S(A, D) with the fragments:

S1 ¼ sA�200ðSÞ
S2 ¼ sA>200ðSÞ

A local query q2 := R ⋈ S has to be transformed into:

q02 :¼ ðR1 [R2 [R3Þ ffl ðS1 [S2Þ

By distributing the join over the unions and applying

rule (2) query q 0
2 can be rewritten into the following

form where three expressions can be identified as use-

less joins due to contradicting predicates:

ðR1 ffl S1Þ [ðR2 ffl S1Þ [ðR3 ffl S1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
;

[ðR1 ffl S2Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
;

[ðR2 ffl S2Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
;

[ðR3 ffl S2Þ

This is done by looking only at the predicates of the

fragment expressions and not at the relations.

For vertical fragmentation the main goal of reduc-

tion is to identify useless projections. Assuming the

following fragmentation of relation R:

P1 ¼ pA;BðRÞ
P2 ¼ pA;CðRÞ

the reconstruction expression is R = P1 ⋈ P2. Thus, a

query q3 := pA,C(R) has to be transformed into the

following query:

q03 :¼ pA;CðP1 ffl P2Þ ¼ pA;CðP1Þ ffl pA;CðP2Þ

A projection on a vertical fragment is useless, if there

are no common attributes between the projection and

the fragment beside the key attribute. Note, this does

not results in an empty relation – however, the result is

redundant. This can be formulated in the following

rule. Given a fragmentation Ri = pB(R) of relation R(K,

A1,...,An) where B � { K, A1,...,An}.

pK ;B0ðRiÞ is useless; if B0 \ B ¼ ; ð3Þ

Using this rule for query q03, the projection on frag-

ment P1 can be identified as useless and eliminated

from the query:

pA;CðP1Þ|fflfflfflfflffl{zfflfflfflfflffl}
useless

pA;CðP2Þ

For derived and hybrid fragmentation similar techni-

ques exist which are described e.g., in [7].

Distributed Query Processing D 915

D

Optimization of Distributed Queries

Whereas the local optimization step is the same as in a

centralized database system, the global optimization

comprises some special tasks.

As in conventional query optimization the ordering

of joins is one of the main challenges. Typically, in a

distributed DBMS bushy join trees are considered by

the optimizer in addition to linear (left or right deep)

trees. Bushy trees are a shape of join trees where both

operands can be intermediate results instead of requir-

ing one base relation operand. These bushy trees allow

better exploiting parallelism in distributed queries.

Furthermore, in a distributed database the problem

of site selection is added, i.e., at which site an operation

(e.g., a distributed join) is to be executed. In the simple

case of joining two relations stored at different sites

this can be decided simply by comparing the size of the

relations: the smaller relation is sent to the other site.

However, for a multi-way join the number of possible

strategies is much larger and the sizes of the interme-

diate join results have to be estimated and considered

for finding the optimal join ordering.

Basically, there are two fundamental options in site

selection: either the data is retrieved from the storing

site to the site executing the query (called data

shipping) or the evaluation of the query is delegated

to the site where the data is stored (query shipping).

These two models are shown in Fig. 2. Data shipping

can avoid bottlenecks on sites with frequently used

data if many queries have to be evaluated by exploiting

client resources. On the other hand, query shipping is

the better choice if otherwise large amount of data has

to be transferred to the processing site. Thus, a hybrid

strategy is sometimes the best solution [3].

A further task in the global optimization step is to

decide which strategies or algorithms are to be used
Distributed Query Processing. Figure 2. Data shipping

vs. query shipping.
to process the query operators. For example, a join

between two relations stored at different sites can be

processed in different ways: e.g., by shipping one rela-

tion to the site of the other relation as a whole (ship

whole), by scanning one of the relations and fetching

matching tuples from the other site, or by exploiting

a semijoin strategy. Thus, during plan enumeration

all these alternatives have to be considered by the

optimizer.

Choosing the best query execution plan from the

set of alternative plans requires to estimate costs. The

conventional approach in centralized DBMS focuses

on total resource consumption by estimating I/O and

CPU costs. In a distributed environment, communica-

tion costs depending on the network speed have to be

taken into account, too. However, the total resource

consumption approach optimizes the throughput of

a system, but ignores the inherent parallelism of a

distributed query. For example, a scan on two frag-

ments can be executed in parallel which reduces the

query execution time to the halve. An alternative

approach is the response time model which estimates

the time between initiating the query and the receipt-

ing of the query result. Figure 3 illustrates the differ-

ence between these two models. Given two relations R

and S, a query R ⋈ S submitted at site 3 and assume

that the costs are measured in time units.

Then, the total resource consumption Ttotal of the

query plan is

Ttotal ¼ 2 � TQ þ TSðsizeðRÞ þ sizeðSÞÞ

where TQ is the time for sending a message (in this case

the query request), Ts is the time for shipping a data
Distributed Query Processing. Figure 3. Total resource

consumption vs. response time.

916D Distributed Query Processing
unit from one site to another, and size(R) is the size of

relation R. In contrast, using the response time model

the cost is

Tresponse ¼ maxfTQ þ TS � sizeðRÞ;TQ þ TS � sizeðSÞg

This would prefer execution plans exploiting parallel

processing as well as resources of other sites and there-

fore is better suited for distributed environments if

communication is rather cheap.

Query Execution

Basically, the query execution phase of distributed

processing is very similar to centralized DBMS. How-

ever, there are some specialties which are

� The need for send/receive operators for submitting

fragment queries to other sites and shipping back

results to the query issuer.

� Dedicated algorithms are required particularly for

join processing, e.g., semijoin filtering or non-

blocking hash joins.

Finally, there are some special optimization techniques

which can be applied. First, in order to reduce the

communication overhead caused by network latency,

tuples are transferred in a block-wise manner (row

blocking) instead of sending each tuple at a time. Sec-

ond, caching results for reusing in future queries may

help to reduce communication costs, too. Caching

requires to balance the costs for loading and maintain-

ing the data and the benefits of answering a query

(partially) from the cache [6]. Furthermore, the cached

data chunks have to be described in order to be able to

check the containment of queries efficiently.
Key Applications
The main application of distributed query processing

are classic distributed databases allowing to store and

query data at different sites transparently. Another

application domain are client/server database systems

where the data is stored at a server and queries are

submitted at client machines. Often, the computing

resources of the client machines can be used for pro-

cessing (portions of) the queries, too. Typical examples

of such systems are object-oriented database systems

but also middleware technologies such as application

servers.

The existence of legacy databases of all flavors in

many companies leads to the need of accessing and
integrating them using queries in a standardized (e.g.,

relational) language on a composite schema. For this

purpose, heterogeneous DBMS and mediators were

developed that provide wrappers/gateways for encap-

sulating the system-specific transformation of queries

and results between the global level and the local

component system. Heterogeneous DBMS exploit

distributed query processing techniques but have to

deal with the heterogeneity of schema and data as

well as with the possibly limited query capabilities of

the component system. Commercial DBMS vendors

have quickly adopted these techniques and offer now

their own gateway solutions in addition to distributed

query processing features, e.g., Oracle Database Gate-

way and IBM Information Server.

P2P systems and sensor networks are a current ap-

plication area of distributed query processing. In these

approaches, a network of nodes or sensors can be seen

as a distributed database. Answering queries requires to

retrieve and process data from different nodes using

techniques described above. The challenges in these

areas are mainly scalability (e.g., querying thousands

of nodes) as well as dynamics and unreliability of the

network.

Cross-references
▶Distributed DBMS

▶Distributed Join

▶Distributed Query Optimization

▶Query Processing
Recommended Reading
1. Bernstein P.A., Goodman N., Wong E., Reeve C.L., and Rothnie

Jr., J.B. Query processing in a system for distributed databases

(SDD-1). ACM Trans. Database Syst. 6(4):602–625, 1981.

2. Ceri S. and Pelagatti G. Correctness of query execution strategies

in distributed databases. ACM Trans. Database Syst. 8

(4):577–607, 1983.

3. Franklin M., Jonsson B., and Kossmann D. Performance tradoffs

for client-server query processing. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1996, pp. 149–160.

4. IEEE Computer Society. Bull. Tech. Committee Data Eng., 23

(2), June 2000.

5. Kossmann D. The state of the art in distributed query proces-

sing. ACM Comput. Surv., 32(4):422–469, 2000.

6. Kossmann D., Franklin M., Drasch G., and Ag W. Cache

investment: integrating query optimization and distributed

data placement. ACM Trans. Database Syst. 25(4):517–558,

2000.

7. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems, 2nd edn. Prentice-Hall, USA, 1999.

Distributed Recovery D 917

D

8. Stonebraker M. The Design and Implementation of Distributed

INGRES. In stonebraker M. (ed.). The INGRES Papers, Addi-

son-Wesley, Reading, MA, 1986.

9. Stonebraker M., Aoki P., Litwin W., Pfeffer A., Sah A., Sidell J.,

Staelin C., and Yu A. Mariposa: a wide-area distributed database

system. VLDB J. 5(1):48–63, 1996.

10. Stonebraker M. and Hellerstein, J.M. Distributed Database Sys-

tems. In: M. Stonebraker and J.M. Hellerstein (eds.). Readings in

Database Systems, 3rd edn. Morgan Kaufmann, San Francisco,

CA, 1998.

11. Williams R., Daniels D., Hass L., Lapis G., Lindsay B., Ng. P.,

Obermarck R., Selinger P., Walker A., Wilms P., and Yost R. R*:

An overview of the Architecture. Technical Report RJ3325, IBM

Research Lab, San Jose, CA, 1981.

12. Yu C.T. and Chang C.C. Distributed query processing. ACM

Comput. Surv., 16(4):399–433, 1984.

13. Yu C.T. and Meng W. Principles of Database Query Processing

for Advanced Applications. Morgan Kaufmann, 1998.
Distributed Recovery

KIAN-LEE TAN

National University of Singapore, Singapore,

Singapore

Synonyms
Recovery in distributed database systems; Recovery in

distributed commit protocols; Recovery in replicated

database systems

Definition
In a distributed database system (DDBS), failures in

the midst of a transaction processing (such as failure of

a site where a subtransaction is being processed) may

lead to an inconsistent database. As such, a recovery

subsystem is an essential component of a DDBS [14].

To ensure correctness, recovery mechanisms must be in

place to ensure transaction atomicity and durability

even in the midst of failures.

Distributed recovery is more complicated than cen-

tralized database recovery because failures can occur at

the communication links or a remote site. Ideally, a

recovery system should be simple, incur tolerable over-

head, maintain system consistency, provide partial op-

erability and avoid global rollback [6].

Historical Background
A DDBS must be reliable for it to be useful. In particu-

lar, a reliable DDBS must guarantee transaction atom-

icity and durability when failure occurs. In other
words, a committed transaction’s actions must persist

across all the sites at which it is processed, and an

aborted transaction’s actions must not be allowed to

persist. A transaction is aborted either explicitly

(through an abort command) or implicitly as a result

of a failure prior to its completion (through the recov-

ery mechanism).

However, in a DDBS, besides traditional failures

types which occur in a centralized system (such as

media and power failures), new types of failures may

occur, e.g., communication link failure, network parti-

tioning, delayed/lost messages and remote site failure.

While existing recovery mechanisms on centralized sys-

tems can be employed to handle the former type of

failures, the latter kind is more complicated to deal with.

To ensure transaction atomicity, distributed

commit protocols have been proposed. These include

Two-Phase Commit and its variants [3,7,12] and

Three-Phase Commit [13]. To recover from failures,

a log is maintained at each site. As in centralized

system, the log contains information such as the

before and after view of an updated record. In addi-

tion, to facilitate distributed recovery, actions of the

distributed commit protocol are also logged. In this

way, each site knows the execution status of a transac-

tion prior to the failure, and can determine if a trans-

action is committed or not before taking the necessary

action. For example, for committed transaction, the

log facilitates replaying the operations in the same

order as they did before the failure; for uncommitted

transactions, the operations has to be undone.

Log-based recovery protocols incur high overhead

and may result in low transaction throughput. This is

because log records have to be forced-written out to

disks during logging, and have to be read from disks

again during recovery. In order for a failed site to be

recovered speedily, checkpointing techniques have also

been proposed [1,10,11]. These schemes periodically

maintain consistent states so that a failed site needs to

rollback to a recent consistent state to reduce actions to

be undone or redone.

There have been some efforts to reduce recovery

overhead, and to perform online recovery so as not to

disrupt transaction processing. In [15], an agent-based

recovery protocol is proposed. The key idea is to buffer

new database actions issued at the failed site (as it

recovers using an existing log recovery scheme), and

then replayed these buffered actions over the recovered

state independently. In [5], distributed and redundant

918D Distributed Recovery
logging is used in which a site redundantly logs records

to main memory and additionally to a remote site.

In this way, the expensive forced-writes are avoided

totally. In [9], HARBOR eliminates recovery logs

(and hence the expensive disk write operations for

log records) by exploiting replication/redundancy.

This is done by keeping replicas consistent so that

recovering a crashed site can be done by querying

remote, online sites for missing updates.

All commercial systems today employ log-based

roll-back recovery methods.

Foundations
ADDBS is vulnerable to failures that occur in centralized

systems, such as power failure that may result in lost

of data at a site. In addition, a DDBS is highly dependent

on the availability of all sites, as well as their ability to

communicate reliably with one another. When a site

fails, sub-transactions running at that site may render

the database inconsistent. Likewise, communication fail-

ures can result in the network becoming split into two

or more partitions whose data may not be consistent.

Even timeout may be deemed as a failure. As such,

recovery is more complicated for DDBS.

In DDBS, log-based techniques are the pre-domi-

nant schemes used to provide transaction atomicity

and durability. Each site maintains a log which extends

the widely used write ahead logging (WAL) scheme in

centralized systems [3,4]. Under WAL, all modifica-

tions to records are written to a log before they are

applied. Essentially, each log record contains a four-

tuple <tid, oid, vold, vnew> where tid is the transaction

identifier, oid is the object identifier, vold and vnew are

the old and new values of the updated object. There

are also additional log records <tid, start> and <tid,

commit>, <tid, abort> that capture the start of trans-

action tid and that it has committed or aborted. These

log records enable the system to redo an operation if a

transaction has committed (i.e., if the commit log

record is in the log, then it means the transaction has

committed, and the object can be updated to the new

value vnew). Similarly, if the log commit/abort records

are not found, then it means that failure has occurred

before the transaction is committed/aborted. Hence, it

may be necessary to undo some of the operations (by

overwriting the object value with vold). In this way, a

database can be restored to a consistent state.

The extension arises because of the distributed com-

mit protocols that are introduced to synchronize
subtransactions of a transaction during the commit

process. This calls for state transitions to be logged so

that a failed site knows the status of a transaction’s

execution and can recover independently without com-

munication from other sites. Consider the two-phase

commit protocol which operates as follows: (i) In

phase 1, the coordinator requests votes from all partici-

pants whichmay respond with a Yes vote (to commit the

transaction) or No vote (to abort the transaction). (ii) In

phase 2, the coordinator will make a global decision

based on the votes – if all participants vote Yes, then

the global decision is to commit the transaction; other-

wise, the global decision is to abort it. Failures can occur

at different state transitions.

The following log records will be generated at

the coordinator: (i) before commit is initiated, the

coordinator will generate a <Tid, start � 2PC> log

which also contains the list of participants involved in

processing the transaction Tid. (ii) When the coordi-

nator is ready to commit the transaction (after receiv-

ing positive votes from all the participants), it will

create a <Tid, commit> log record; alternatively, for

a global abort decision, a <Tid, abort> log record

is written instead. (iii) Finally, when all participants

acknowledged that the commit operations have been

performed, the coordinator will add a <Tid, end �
2PC> log.

On the other hand, at each participant, the follow-

ing log records will be created: (i) a participant that is

ready to commit upon receiving a request-for-vote

message will log its vote, i.e., a log record <Tid,

Wait � State> is created; on the other hand, a partici-

pant that will not commit the transaction will create a

log record <Tid, Abort>. (ii) Upon commit (after

receiving the global commit decision), the participant

will create a log commit record<Tid, Commit>. How-

ever, if the global decision is to abort the transaction,

if the participant voted Yes, then <Tid, Abort> will

be created.

When there is a failure during the commit process,

the operational sites will execute a termination proto-

col that will bring the transaction to a final state (either

global abort or commit depending on the states of the

operational sites). For two-phase commit, it is possible

that the operational sites will need to wait for the failed

sites to recover and become operational again before

any further action can be taken.

For the failed site, there are two possible cases. First,

the failed site is the coordinator. In this case, upon

Distributed Recovery D 919

D

recovery, the coordinator checks its log. (i) If the failure

happens prior to the initiation of the commit procedure

(i.e., the failed site did not find the <Tid,start � 2PC>

record in its log, then it can initiate the commit proce-

dure. (ii) If the failure occurs in the waiting state (i.e.,

<Tid, start � 2PC> is found in the log but not <Tid,

commit>), then it can restart the commit procedure.

(iii) Finally, if the failure takes place in the commit/

abort state, then if the coordinator has received all

acknowledgements, it can complete successfully;

otherwise, it will initiate the termination protocol as

if it is an operational site.

Second, the failed site is a participant site. Again,

there are several possible scenarios. (i) If the site failed

before receiving any initiation request, then it can

unilaterally abort the transaction. This is because the

operational site would have aborted the transaction.

(ii) If the site failed in the waiting state (i.e., <Tid,

Wait � State> is found in the log but not <Tid,

commit>), then the recovered site will initiate the

termination protocol as an operation site. (iii) Finally,

if the <Tid, commit> or <Tid, abort> or log record is

found in the log, then no further action is necessary, as

it means that the transaction has already committed/

aborted.

Now, the recovery process for variants of the two-

phase commit protocol is similar. In some case, one

can optimize by allowing non-blocking of operational

sites, in which case, the failed site may need to verify

the status of the distributed commit operation with

other operational sites upon recovery.

Key Applications
Since distributed systems will always encounter failure,

distributed recovery methods are needed in all

distributed systems to ensure data consistency. In par-

ticular, techniques developed for DDBS can be adapted

and extended to emerging platforms like peer-to-peer

(P2P) computing, mobile computing, middleware,

and publish/subscribe systems.

Future Directions
Although distributed recovery is a fairly established topic,

morework need to be done to support online recovery. In

addition, the emergence of new distributed computing

platforms (e.g., P2P computing, cloud computing, mo-

bile computing, middleware) brings new challenges that

require more effective solutions than what are currently

available in the literature. For example, in P2P systems,
the dynamism of node join and departure makes it

difficult for a failed node to recover fully (since nodes

that are operational at the time of the node’s failure may

no longer be in the network). It remains a challenge to

device an effective recovery scheme in this context. As

another example, consider mobile computing context

(where nodes are mobile). Here, the base stations may

be exploited to manage the logs [2]. However, because

connections may be intermittent, many transactions will

fail. A possible alternative is to allow a longer message

delay to be tolerated. In both the P2P and mobile envir-

onments, a relax notion of serializability may be more

practical. Yet another direction is to design recovery

mechanisms for middleware. Initial effort has been

done [7] but effective solutions are still lacking. Finally,

a networked system is vulnerable to attacks that may

corrupt the database. Recovering from such a state is an

important subject that has not yet received much atten-

tion from the database community.

Cross-references
▶Crash Recovery

▶ Logging and Recovery

▶Three-Phase Commit

▶Two-Phase Commit
Recommended Reading
1. Chrysanthis P.K., Samaras G., and Al-Houmaily Y.J. Recovery

and performance of atomic commit processing in distributed

database systems. In Recovery Mechanisms in Database Systems.

Kumar Hsu Prentice-Hall, 1998. Chapter 13.

2. Gore M., Ghosh R.K. Recovery of Mobile Transactions. In Proc.

DEXA 2000 Workshop, 23–27, 2000.

3. Gray J. Notes on data base operating systems. In Operating Sys-

tems – An Advanced Course. Bayer R., Graham R., Seegmuller G.

(eds.). LNCS, Vol. 60, pp. 393–481, Springer, 1978.

4. Gray J. et al. The recovery manager of the system R database

manager. ACM Comput. Surv., 3(2):223–243, 1981.

5. Hvasshovd S., Torbjornsen O., Bratsberg S., Holager P. The

clustra telecom database: high availability, high throughput,

and real-time response. In Proc. 21th Int. Conf. on Very Large

Data Bases, 1995, pp. 469–477.

6. Isloor S.S. and Marsland T.A. System recovery in distributed

databases. In Proc. 3rd Int. Computer Software Applications

Conf., 1979, pp. 421–426.

7. Jimenez-Peris R., Patino-Martinez M., and Alonso G. An

algorithm for non-intrusive, parallel recovery of replicated data

and its correctness. In Proc. 21st Symp. on Reliable Distributed

Syst., 2002, pp. 150–159.

8. Lampson, B. and Sturgis H. Crash recovery in a distributed data

storage system. Technical report, Computer Science Laboratory,

Xerox Palo Alto Research Center, California, 1976.

920D Distributed Sensor Fusion
9. Lau E. and Madden S. An integrated approach to recovery and

high availability in an updatable, distributed data warehouse. In

Proc. 32nd Int. Conf. on Very Large Data Bases, 2006, pp. 12–15.

10. Lin J. and Dunham M.H. A low-cost checkpointing

technique for distributed databases. Distrib. Parall. Databases,

10(3):241–268, 2001.

11. Lomet D. Consistent timestamping for transactions in

distributed systems. Tech. Report CRL90/3, Cambridge Research

Laboratory, Digital Equipment Corp., 1990.

12. Mohan C., Lindsay B., and Obermarck R. Transaction manage-

ment in the R* distributed data base management system. ACM

Trans. Database Syst., 11(4):378–396, 1986.

13. Skeen D. Non-blocking commit protocols. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1981, pp. 133–142.

14. Özsu M.T. and Valduriez P. Principles of distributed database

systems (2nd edn). Prentice-Hall, 1999.

15. Wang Y. and Liu X. Agent based dynamic recovery protocol in

distributed databases. In Proc. 2nd Int. Symp. on Parallel and

Distributed Computing, 2003.
Distributed Sensor Fusion

▶Data Fusion in Sensor Networks
Distributed Source Coding

▶Data Compression in Sensor Networks
Distributed Spatial Databases

PANOS KALNIS

National University of Singapore, Singapore,

Singapore

Definition
Distributed spatial databases belong to the broad cate-

gory of distributed database systems. Data reside in

more than one sites interconnected by a network, and

query processing may involve several sites. A site can be

anything from a server to a small mobile device. The

broad definition covers many research areas. This entry

gives an overview of the following sub-categories:

(i) Distributed spatial query processing, which focuses

mainly on spatial joins. (ii) Distributed spatial indexes

(e.g., a distributed version of the R-tree). (iii) Spatial

queries in large distributed systems formed by devices

such as PDAs, mobile phones, or even sensor networks.
Historical Background
Similar to relational databases, in spatial databases the

most important operator is the spatial join. In rela-

tional databases, distributed joins are often implemen-

ted by using the semijoin operator. Let R and S be

relations residing in two different sites Rsite and Ssite.

First Rsite calculates R
0 which is the projection of R on

the join attribute. R0 is transmitted to Ssite and is joined

with S; the result is called semijoin. That result is sent

back to Rsite where it is joined with R to produce the

final join between R and S.

The semijoin concept can be adapted for joins

between spatial datasets. However, the following char-

acteristics of spatial datasets must be taken into

account:

1. The relational semijoin is based on the assumption

that the projected relation R0 will be much smaller

than R (since it contains fewer attributes and there

are no duplicates), leading to lower transmission

cost. In spatial datasets, the equivalent to the join

attribute is the spatial object. The size of each

spatial object (typically a polygon) may be in the

order of hundreds or thousands of bytes, and usu-

ally dominates the size of other attributes. There-

fore, projecting on the join attribute is not likely to

reduce the transmission cost.

2. Evaluation of spatial relationships, such as contain-

ment, intersection and adjacency between two

polygons, is complex and expensive (in terms of

CPU and I/O cost), compared to testing the join

condition in relational databases.

To address these issues, existing work [1,14] imple-

ments distributed spatial joins by using approximations

of the spatial objects. This technique is common in

spatial databases and involves two phases: the first

phase operates on simple approximations of the

objects (e.g., Minimum Bounding Rectangle – MBR)

and produces a superset of the result. Since the approx-

imations are simpler than the original objects, this

phase is fast. The second phase removes the false hits

of the intermediate result by operating on the exact

polygons of the spatial objects.

The previous discussion assumes that the two sites

are collaborating and allow access to their internal

index structures. However, this is not always the case.

Mamoulis et al. [10] and Kalnis et al. [5] assume that a

mobile device is interested in the join of two spatial

datasets whose sites do not collaborate. To avoid

Distributed Spatial Databases D 921

D

downloading the entire datasets, the mobile device

interleaves the join with a statistics acquisition process

which prunes parts of the space.

In addition to implementing distributed versions

of spatial operators, several papers have focused on

distributed spatial data structures (e.g., k-RP∗;S [8]

and hQT∗ [7]). A typical problem in distributed tree

structures is that the server responsible for the root

node is overloaded, since all queries must traverse the

tree in a top-down fashion. Mouza et al. [12] proposed

the SD-Rtree, which is a distributed version of the

R-tree. Overloading the root is minimized by replicat-

ing a (possibly outdated) copy of the internal nodes of

the tree in all clients. Several researchers [4,6,11] have

also developed distributed spatial indices on top of

Peer-to-Peer systems.

Finally, many applications assume a large number

of mobile devices (e.g., PDAs, mobile phones) which

store spatial data and ask spatial queries. For example,

in the MobiEyes [3] system, mobile clients collaborate

to answers continuous range queries. Other papers

focus on broadcast-based wireless environments [15],

which broadcast periodically the spatial index and data

to all clients. Moreover, several sensor networks (e.g.,

Coman et al. [2]) optimize the query processing by

exploiting the spatial properties (e.g., location, com-

munication range and sensing range) of the sensors.

Foundations
The section on ‘‘Distributed Query Processing’’ discusses

query processing in distributed spatial databases and fo-

cusesmainly on two cases: (i) the sites collaborate and are
Distributed Spatial Databases. Figure 1. Distributed spatial
willing to share their internal indices (i.e., Tan et al. [14])

and (ii) the sites do not collaborate with each other (i.e.,

Mamoulis et al. [10]). Section ‘‘Distributed Spatial

Indices’’ presents distributed spatial indices, themost rep-

resentative being the SD-Rtree [12]. Finally, Section ‘‘Spa-

tialQueries InvolvingNumerousMobileClients’’discusses

spatial queries that involve numerous and possiblymobile

clients (e.g., smart phones, sensor networks, etc).

Distributed Query Processing

As mentioned above, distributed spatial joins are

implemented by using approximations of the spatial

objects. Tan et al. [14] investigate two approximation

methods. The first one assumes that at least one of the

datasets is indexed by an R-tree variant. In the example

of Fig. 1, let R be the indexed dataset. The method uses

the MBRs of the objects at level 0 (i.e., leaf level) or

level 1 of the R-tree. Assuming that level 0 is used, Rsite

sends to Ssite the following set of MBRs: R0 = {a1,a2,b1,

b2, c1, c2}. Ssite performs window queries for each object

in R0 and returns to Rsite the set S
0 ={ d1,d3} of objects

(i.e., polygons) which intersect with MBRs in R0. Fi-

nally Rsite examines the polygons of the pairs (a2, d1)

and (c2,d3) in order to remove any false hits. A second

example assumes that level 1 of the R-tree is used. In

this case Rsite sends the MBR set R0 = {A, B, C} and Ssite
returns the set of polygons S0 = {d1, d2, d3}. Finally, Rsite

computes the join result from R and S0. It is noted that,

if level 0 of the R-tree is used, R0 typically containsmany

MBRs, allowing very refined search in Ssite; consequen-

tly, S0 usually contains a small number of objects. On

the other hand, if level 1 is used, R0 contains less MBRs
join based on R-tree approximation.

922D Distributed Spatial Databases
but S0 may include more objects (for instance, d2 is a

false hit). The choice of the appropriate level depends on

the average size (in bytes) of the polygons in S.

The second approximation method used by Abel

et al. [1] and Tan et al. [14] is similar to the one

proposed by Orenstein [13]. The space is recursively

divided into cells, and each cell is given a unique base-5

key. The order of the keys follows the z-ordering space

filling curve. Each object is approximated by up to four

cells at various levels of the curve. Figure 2a shows

an example; the gray-shaded object is approximated

by cells 1100, 1233, 1300 and 1410. The keys of all

objects in Rsite and Ssite are sorted in ascending order,

generating two lists: Rlist and Slist. An example is shown

in Fig. 2b and c. Each object has between one (e.g., r3)

and four keys (e.g., r2); moreover, the keys of an object

may not be consecutive in the ordered list (e.g., s2).

Rsite transmits Rlist to Ssite. Ssite uses merge-join to join

the two lists. The join condition is cell-containment

rather than key equality. For instance, the pair

(1122,1100) is generated because cell 1122 is contained

in cell 1100. The result may contain duplicates; for

example (1122,1100) and (1124,1100) both represent

the object pair (r1,s1). Duplicates are eliminated and

Ssite sends the semijoin result (together with the poly-

gons of the corresponding S objects) to Rsite; in the

running example, the semijoin contains pairs (r1, s1)

and (r2, s2). Finally, Rsite eliminates the false hits (i.e.,

pair (r1,s1)) based on the exact object geometry.

According to the experimental evaluation in [14], the

total cost of the join (in terms of response time) is, in

most cases, lower when using the z-ordering approxi-

mation, compared to the R-tree approach.
Distributed Spatial Databases. Figure 2. Distributed spatial
A related problem is studied by Mamoulis et al.

[10]. Again, two spatial datasets R and S reside in Rsite

and Ssite, respectively; however, the two sites do not

collaborate. As an example, let R be a dataset which

stores the location of hotels and other points of inter-

est, whereas S stores information about the physical

layers of the region (e.g., rivers, forests, urban areas,

etc). Let u be a client with a mobile device (e.g., PDA,

smart mobile phone) that asks the query ‘‘find all

hotels which are at most 2km away from a forest.’’

The query is a spatial join. However, neither Rsite nor

Ssite can evaluate the join, because they do not collabo-

rate. A typical solution is to use a mediator. Neverthe-

less, for ad-hoc queries, it is unlikely that there is a

suitable mediator. Therefore, the query must be eval-

uated by the mobile device. It is assumed that the

servers support a simple query interface and can an-

swer window (i.e., find all objects in a region) and

count queries (i.e., how many objects are within a

region); the servers do not allow access to their internal

indices. Moreover, since telecommunication providers

charge by the amount of transferred data, u wants

to minimize that quantity and does not consider the

query cost at the servers. Figure 3 shows the two

datasets. The client partitions conceptually the data

by a 2 � 2 grid (i.e., AB12,AB34,CD12,CD34) and

requests the number of objects in each quadrant.

Since none of the quadrants is empty, all of them

may contain joining pairs. Therefore, the client recur-

sively partitions each quadrant and retrieves the new

statistics (i.e., number of objects in each cell). Now,

some cells (e.g., C1 in Rsite) are empty; u eliminates

these cells, since they cannot contain any solution.
join based on z-ordering approximation.

Distributed Spatial Databases D 923

D

For the remaining cells umay partition them again and

ask for more statistics. However, if the distribution

of objects in a cell is roughly uniform, further parti-

tioning is unlikely to eliminate any cells. [3] presents a

cost model to estimate when the cost of retrieving

refined statistics is more than the potential savings

due to pruning. At that point, u performs the spatial

join. For each cell, if the number of objects is similar

in both datasets, u downloads the objects of both cells

and performs hash-based spatial join. On the other

hand, if the number of objects differs drastically (e.g.,

the cell in R has much more objects than the

corresponding cell in S), then u downloads only the

objects from S and performs nested-loop join by send-

ing a series of window queries to R. Kalnis et al. [5]

developed more efficient algorithms for the same

problem.

A similar method was used by Liu et al. [9] for

evaluating k-nearest-neighbor queries. They assume a

client-server architecture (only one server), where the

server can execute only window queries. Therefore,

the client must estimate the minimum window that

contains the result. The authors propose a method-

ology that either estimates the window progressively,

or approximates it using statistics about the data.
Distributed Spatial Databases. Figure 4. SD-Rtree example.

Distributed Spatial Databases. Figure 3. MobiHook

example.
Statistical information is assumed to be available at

the client; hence there is no overhead for retrieving

statistics.

Distributed Spatial Indices

Several researchers have studied distributed versions of

common spatial indices. Litwin and Neimat [8] pro-

posed a distributed version of the kd-tree, called

k-RP*S, whereas Karlsson [7] developed hQT*, which

is a distributed quad-tree. Both papers focus on point

data. Recently, Mouza et al. [12] proposed the SD-

Rtree, which is a distributed version of the R-tree

capable of indexing regions. SD-Rtree is a binary bal-

anced tree. Initially (Fig. 4a), the entire tree resides in

one server S0. There is a data node d0, which contains

all spatial objects and an associated MBR A, which

encloses the objects of d0. d0 is a conceptual node and

typically contains a large number of objects, limited

only by the capacity of server S0. The objects inside d0
may be indexed by any spatial index (e.g., a local R-

tree). During insertion, a split is performed if the

capacity of S0 is reached. A new server S1 enters the

system and receives approximately half of the objects;

these are selected using the usual R-tree split algo-

rithms. In Fig. 4b the objects remaining in d0 are

enclosed by MBR B, whereas a new data node d1 is

created in S1; the corresponding MBR is C. Another

node r1 is created in S1; r1 has pointers to d0 and d1,

together with their MBRs. r1 is called routing node and

is similar to the internal nodes of common R-trees.

Figure 4c shows one more split of node d1. A new

server S2 enters the system and creates a data node d2
and a routing node r2. The new MBRs of d1 and d2 are

E and D, respectively. Finally, data is stored in three

servers (i.e., S0 stores d0, etc) and the routing informa-

tion is distributed in two servers (i.e., r1 is in S1 where-

as r2 is in S2). Due to splits, the tree may become

imbalanced; to achieve balance, node rotations similar

to the classical AVL tree are performed.

924D Distributed Spatial Databases
The set of all routing nodes is called image of the

tree. Each client application has a copy of the image. In

order to query (or update) the spatial data, the client

first searches the local image to identify the server that

stores the required data, and contacts that server di-

rectly. This is crucial for a distributed structure, since it

avoids traversing the tree through the root (i.e., it does

not overload the root server). However, a client’s image

may be outdated. In this case, the wrongly contacted

server forwards the query to the correct part of the tree

and updates the client’s image. Moreover, due to R-tree

node overlap, a query may need to traverse multiple

paths; some of them are redundant. To avoid this, if

two nodes overlap, they are annotated with additional

information about their intersection. In Fig. 5a, nodes

A and B store the set of objects in their intersection; in

this example the set is empty. The intersection set is

updated only if necessary. For instance, the split of

node B in Fig. 5b does not affect the intersection set.

On the other hand, the extension of D in Fig. 5c

changes the intersection set. If a query q arrives at D,

it can be answered directly by D (i.e., without contact-

ing the subtree of F), since the intersection set indicates

that there is no matching object in F.

Several researchers have proposed distributed spatial

indices on top of Peer-to-Peer (P2P) systems. For in-

stance, Mondal et al. [11] proposed a P2P version of

the R-tree, whereas Jagadish et al. [4] developed the

VBI-tree, a framework for deploying multi-dimensional

indices on P2P systems. Also, Kantere and Sellis [6]

proposed a spatial index similar to quad-tree, on top

of a structured P2P network. These approaches are

based on different assumptions for the update and

query frequency, and the stability (i.e., mean lifetime)

of peers in the network. Therefore, it is not clear which

approach is more suitable in practice.

Spatial Queries Involving Numerous Mobile Clients

There exist a variety of spatial distributed systems con-

sisting of numerous mobile clients. Such systems are
Distributed Spatial Databases. Figure 5. Example of overlap
optimized for the low battery life and the scarce

resources (e.g., storage, CPU) of the mobile devices.

Gedik and Liu [3] proposed MobiEyes, a grid-based

distributed system for continuous range queries.

MobiEyes pushes part of the computation to the mobile

clients, and the server is primarily used as a mediator.

The notion of monitoring regions of queries was intro-

duced to ensure that objects receive information about

the query (e.g., position and velocity). When objects

enter or leave the monitoring region, the server is noti-

fied. By using monitoring regions, objects only interact

with queries that are relevant; hence they conserve pre-

cious resources (e.g., storage and computation).

Another architecture is based on the fact that wire-

less networks are typically broadcast-based. All data are

broadcasted periodically and each client listens for its

relevant data. In a wireless broadcast environment, an

index called air index is commonly used to minimize

power consumption. A mobile device can utilize the

air index to predict the arrival time of the desired

data. Therefore, it can reduce power consumption by

switching to sleep mode for the time interval that no

desired data objects are arriving. The intuition behind

the air index is to interleave the index items with the

data objects being broadcasted. Zheng et al. [15] pro-

posed two air indexing techniques for spatial data

based on the one-dimensional Hilbert Curve and the

R-tree, respectively. Using those indices, they discuss

how to support Continuous Nearest Neighbor queries

in a wireless data broadcast environment.

A related subject is the processing of spatial queries

in sensor networks. Such networks are made of a large

number of autonomous devices that are able to store,

process and share data with neighboring devices. The

spatial properties of the sensors (e.g., location, com-

munication range and sensing range) are typically

exploited to route queries efficiently. For example,

Coman et al. [2] propose a system that answers range

queries (e.g., ‘‘find the temperature for each point in an

area’’). The system takes advantage of the fact that the
in SD-Rtree nodes.

Distributed Transaction Management D 925

D

sensing ranges of some sensors may completely cover

other sensors; consequently, the latter do not need to

be contacted.

Key Applications
Nowadays, the trend in databases is the separation

of the location of data from the abstract concept of

the database itself. Therefore a database may reside in

more than one location, but can be queried as a con-

tinuous unit. This is made possible due to the increase

of network speed. Numerous practical applications

can benefit from distributed spatial databases. As an

example, consider a spatial database that stores the

location of hotels and other points of interest in an

area, and a second database which stores information

about the physical layers of the region (e.g., rivers,

forests, urban areas, etc). Each database is useful by

its own. Nevertheless, by combining the two, the value

of the data increases, since the distributed system is

now able to answer queries such as ‘‘find all hotels

inside a forest.’’ There are also applications where

there is only one spatial dataset, but it is distributed

in many servers (or peers). For example, each peer may

monitor road congestion in its neighborhood. In order

to find routes in a city that avoid congested roads, the

spatial data in all peers must be indexed by a

distributed data structure.

Cross-references
▶Distributed Databases

▶Distributed Join

▶R-Tree (and Family)

▶ Spatial Indexing Techniques

▶ Spatial Join

Recommended Reading
1. Abel D.J., Ooi B.C., Tan K.-L., Power R., and Yu J.X. Spatial

Join Strategies in Distributed Spatial DBMS. In Proc. 4th Int.

Symp. Advances in Spatial Databases, 1995, pp. 348–367.

2. Coman A., Nascimento M.A., and Sander J. Exploiting Redun-

dancy in Sensor Networks for Energy Efficient Processing of

Spatiotemporal Region Queries. In Proc. Int. Conf. on Informa-

tion and Knowledge Management, 2005, pp. 187–194.

3. Gedik B. and Liu L. MobiEyes: Distributed Processing of Con-

tinuously Moving Queries on Moving Objects in a Mobile Sys-

tem. In Advances in Database Technology, Proc. 9th Int. Conf.

on Extending Database Technology, 2004, pp. 67–87.

4. JagadishH.V.,Ooi B.C., VuQ.H., Zhang R., and ZhouA. VBI-Tree:

A Peer-to-Peer Framework for Supporting Multi-Dimensional

Indexing Schemes. In Proc. 22nd Int. Conf. on Data Engineering,

2006.
5. Kalnis P., Mamoulis N., Bakiras S., and Li X. Ad-hoc Distributed

Spatial Joins on Mobile Devices. In Proc. 20th Int. Parallel &

Distributed Processing Symp., 2006.

6. Kantere V. and Sellis T.K. A Study for the Parameters of a

Distributed Framework That Handles Spatial Areas. In Proc.

10th Int. Symp. Advances in Spatial and Temporal Databases,.

2007, pp. 385–402.

7. Karlsson J.S. hQT*: A Scalable Distributed Data Structure for

High-Performance Spatial Accesses. In Proc. Int. Conf. of Foun-

dations of Data Organization, 1998, pp. 37–46.

8. Litwin W. and Neimat M.-A. k-RP*S: A Scalable Distributed

Data Structure for High-Performance Multi-Attribute Access.

In Proc. Int. Conf. on Parallel and Distributed Information

Systems, 1996, pp. 120–131.

9. Liu D.-Z., Lim E.-P., and Ng W.-K. Efficient k Nearest Neighbor

Queries on Remote Spatial Databases Using Range Estimation.

In Proc. 14th Int. Conf. on Scientific and Statistical Database

Management, 2002, pp. 121–130.

10. Mamoulis N., Kalnis P., Bakiras S., and Li X. Optimization of

Spatial Joins on Mobile Devices. In Proc. 8th Int. Symp.

Advances in Spatial and Temporal Databases, 2003, pp. 233–251.

11. Mondal A., Lifu Y., and Kitsuregawa M. P2PR-Tree: An R-Tree-

Based Spatial Index for Peer-to-Peer Environments. In Proc.

EDBT Workshops – P2P&DB, 2004, pp. 516–525.

12. du Mouza C., Litwin W., and Rigaux P. SD-Rtree: A Scalable

Distributed Rtree. In Proc. 23rd Int. Conf. on Data Engineering,

2007, pp. 296–305.

13. Orenstein J.A. A Comparison of Spatial Query Processing Tech-

niques for Native and Parameter Spaces. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1990, pp. 343–352.

14. Tan K.-L., Ooi B.C., and Abel D.J. Exploiting Spatial Indexes for

Semijoin-Based Join Processing in Distributed Spatial Data-

bases. IEEE Trans. Knowl. Data Eng., 12(6):920–937, 2000.

15. Zheng B., Lee W.-C., and Lee D.L. Search Continuous Nearest

Neighbor on Air. In Proc. Int. Conf. on Mobile and Ubiquitous

Systems: Networking and Services, 2004, pp. 236–245.
Distributed Storage Systems

▶ Peer-to-Peer Storage
Distributed Transaction
Management

WEE HYONG TOK

National University of Singapore, Singapore,

Singapore

Synonyms
Transaction management in distributed database

systems

926D Distributed Transaction Management
Definition
Distributed transaction management deals with the

problems of always providing a consistent distributed

database in the presence of a large number of transac-

tions (local and global) and failures (communication

link and/or site failures). This is accomplished through

(i) distributed commit protocols that guarantee atom-

icity property; (ii) distributed concurrency control

techniques to ensure consistency and isolation proper-

ties; and (iii) distributed recovery methods to preserve

consistency and durability when failures occur.

Historical Background
A transaction is a sequence of actions on a database that

forms a basic unit of reliable and consistent computing,

and satisfies the ACID property. In a distributed data-

base system (DDBS), transactionsmay be local or global.

In local transactions, the actions access and update

data in a single site only, and hence it is straightforward

to ensure the ACID property. However, in global trans-

actions, data from more than one site are accessed and

updated. A global transaction typically spawns sub

transactions at each of the sites in which data are

accessed. When multiple global transactions are run-

ning, these sub transactions’ processing may be inter-

leaved. Thus, distributed transactions must be carefully

managed to prevent errors that may corrupt the data-

base. In addition, sites or communication link may fail

and result in inconsistent database states across sites.

To ensure that a distributed database is always in a

consistent state, the distributed transactionmanagement

system must guarantee the ACID property. Transaction

atomicity is achieved through distributed commit

protocols, e.g., Two-Phase Commit and its variants

[8,10,11] and Three-Phase Commit [13]. These proto-

cols allow sub transactions (running at different sites) of

a global transaction to reach a final outcome of the

execution. In this way, either all sub transactions commit

(in which case the global transaction commits) or all sub

transactions abort (in which case the global transaction

aborts).

To ensure consistency and isolation properties,

distributed concurrency control techniques have been

designed. In particular, the notion of global serializability

has been introduced to ensure that global transactions are

serializable. These algorithms determine themanagement

of synchronization primitives (e.g., locks, timestamps,

serialization graphs), and the order in which database

operations (i.e., read andwrite) are executed concurrently
in a distributed manner. As such, anomalies such as the

reading of uncommitted data, unrepeatable reads, and

overwriting of uncommitted data can be prevented.

Distributed concurrency control algorithms can be classi-

fied into lock-based [1,4,11,14,15], timestamp-based

[12], and serialization graph testing (SGT) based [2,6,9].

Hybrid methods which use a combination of locks and

timestamps are discussed in [5]. For lock-based scheme,

(distributed) deadlocks have to be handled. Balter et al.

[3] discusses the relationship between deadlock manage-

ment and concurrency control algorithms.

Finally, when a transaction has committed, its effect

must persist in the database regardless of failures. Simi-

larly, if failure happens before a transaction commits,

then none of its effects must persist. For example, a

power failure that wipes out all main memory content

should not nullify the effect of a committed transaction.

Similarly, site failures should not affect the distributed

commit protocol. To ensure durability and consistency,

distributed recoverymethods have been developed. These

include log-based techniques [8] and checkpointing

methods [7] (cross-reference to Distributed Recovery).

The two-phase commit protocol and the distributed

2PL concurrency control algorithm are implemented in

the System R* [11] and NonSTOP SQL [15] systems.

Distributed INGRES [14] uses the two-phase commit

protocol and the primary copy 2PL for concurrency

control. Log-based protocols are the main recovery

methods employed in commercial systems.

Foundations
A distributed database system consists of a collection of

database sites. A centralized database system is located

at each of the sites. The database sites communicate

with each other by sending messages via a communica-

tion network. A transaction consists of a sequence of

operations that are performed on the data objects. Two

operations, oi(x) and oj(x), which are accessing the

shared data object x, are conflicting operations if

either oi(x) or oj(x) is a write operation.

Distributed Transaction Management

In order to handle both local and global transactions,

each site of a distributed database system consists

of the following components: transaction manager,

transaction coordinator, and recovery manager. The

transaction manager handles the execution of transac-

tions at each site, and maintains a log to facilitate

recovery. In order to ensure that the ACID properties

Distributed Transaction Management D 927

D

are guaranteed when multiple transactions are con-

currently executed, the transaction manager relies on

concurrency control techniques. The transaction coor-

dinator is used to plan and schedule sub transactions

that are executed on multiple sites. In addition, the

transaction coordinator determines whether the trans-

actions that are executed on multiple sites are com-

mitted or aborted. The recovery manager is used to

recover the database to a consistent state if failure

occurs. Figure 1 shows the various components in the

transaction management system at each database site.

Serializability Theory

Serializability theory provides the theoretical founda-

tion for proving the correctness of a concurrency con-

trol algorithm, by showing that the overall results of

executing a set of concurrent transactions is equivalent

to executing the transactions in a serial manner. In

serializability theory, this is referred to as a serializable

schedule. A serializable schedule ensures the consisten-

cy of a database system.

Let T denote a set of concurrently executing trans-

actions. The operations for the various transactions in

T can be executed in an interleaved manner. A com-

plete schedule, S, defines the execution order of all

operations. A schedule, S’, is a prefix of a complete

schedule. Formally, T = {T1, T2,...,Tn}, and S is a partial

order over T, with ordering relation, < S, where: (i)
Distributed Transaction Management. Figure 1. Transactio
S ¼
Sn
i¼1

Ti , (ii) <S �
Sn
i¼1

<i , and (iii) for any two

conflicting operations, oi and oj 2 S, either oi < S oj
or oj < S oi. The first condition states that S consists of

the operations which belong to the set of transactions

T. The second condition states that the ordering rela-

tion is a superset of the ordering relations of each of

the transactions. The third condition states that the

ordering of every pair of conflicting transaction is

given by the ordering relation < S. Two schedules,

S1 and S2 defined over T are conflict equivalent if for

each pair of conflicting operations oi and oj (i 6¼ j), if oi
< S1 oj, then oi < S2 oj. A schedule is serializable if and

only if it is conflict equivalent to a serial schedule.

In distributed database systems, global serializabil-

ity is required. For example, consider two transactions,

T1 and T2, that are initiated at two sites, site 1 and site 2

respectively. Suppose that both transactions access

objects x and y. Moreover, suppose that x is stored at

site 1, and y is stored at site 2, and that the constraint is

that x + y is a constant. Let Wi(x) denote a write action

on object x by transaction Ti. Suppose S1 and S2 are the

local schedules at site 1 and site 2 respectively. Now,

consider S1 = {w1(x), w2(x)} and S2 = {w2(y), w1(y)}.

Clearly, both S1 and S2 are locally serializable. However,

while the serial schedule for S1 is T1 ! T2, the serial

schedule for S2 is T2 ! Tl. These schedules may violate

the constraint and hence not globally serializable, if the
n management system at each database site.

928D Distributed Transaction Management
sequence of actions happens in the following order:

w1(x), w2(y), w2(x), w1(y). However, it has been shown

that as long as all the local schedules at each site are

serializable with the same serialization order, then the

global schedule is serializable. Moreover, the serializa-

tion order of the global schedule corresponds to that of

the local order. As an example, if S1 = {w1(x), w2(x)}

and S2 = {w1(y), w2(y)}, then the global schedule is

serializable with T1 ! T2.

Concurrency control algorithms are used to ensure

that the global schedule is serializable. For replicated

distributed databases, more issues need to be consid-

ered before serializability theory can be applied. This is

because even if the local schedules are serializable, the

mutual consistency of the database needs to be consid-

ered. For replicated, distributed databases, a one-copy

serializable global schedule is desired in order to ensure

the mutual consistency of the replicated data. In addi-

tion to concurrency control, a replica control protocol

(e.g., ROWA) is used to ensure that one-copy serial-

izability can be achieved.

Key Applications
Distributed transaction management forms an integral

part of distributed database systems. The concurrency

control techniques, commit protocols, and recovery

techniques can be applied and adapted for different

types of distributed database systems.

Future Directions
The emergence of new computing platforms (e.g.,

Peer-to-Peer (P2P), and cloud computing) introduces

new issues that need to be handled by distributed

transaction manager. P2P database systems are inher-

ently distributed systems, and have been studied exten-

sively by the database community. In P2P systems, the

absence of a global transaction manager introduces new

challenges. In addition, nodes join or leave the P2P

network. Transactions are often executed independently

on each peer. The maintenance of data consistency in

P2P database systems motivates the need for P2P-

based concurrency control algorithms. For example,

it may be necessary to maintain multiple versions of

data objects and/or a weaker notion of serializability

than the conventional notion of global serializability.

Recovery is also complicated by the fact that a failed

site may not find the operational sites (participating in

its transactions) available when it recovers (these sites

may have left the network). Thus, novel and online
recovery mechanisms are needed. Cloud computing is

an emerging computing platform for next-generation

applications. It provides basic services such as storage,

queuing, and computation. Hence, a data store can be

easily built using these basic services. The storage ser-

vices provided by the cloud can be perceived as a very

large shared disk. Different applications which use

the cloud will require different levels of concurrency

control. The need to support concurrent access on

the shared disk and different level of concurrency con-

trol motivates the need for concurrency control to be

offered on a à la carte basis. In addition, recovery

techniques for cloud computing have not been ade-

quately studied in the literature.

Cross-references
▶ACID Properties

▶Distributed Architecture

▶Distributed Concurrency Control

▶Distributed Deadlock Management

▶Distributed Recovery

▶Three-Phase Commit

▶Two-Phase Commit

Recommended Reading
1. Alsberg P. and Day J.D. A principle for resilient sharing of

distributed resources. In Proc. 2nd Int. Conf. on Software

Eng., 1976, pp. 562–570.

2. Badal D.Z. Correctness of concurrency control and implications

for distributed databases. In Proc. 3rd Computer Software and

Applications Conference, 1979, pp. 588–594.

3. Balter R., Berard P., and Decitre P. Why control of the concur-

rency level in distributed systems is more fundamental than

deadlock management. In Proc. ACM SIGACT-SIGOPS 1st

Symp. on the Principles of Dist. Comp., 1982, pp. 183–193.

4. Bernstein P.A. and Goodman N. Concurrency control in

distributed database systems. ACM Comput. Surv., 13 (2):

185–221, 1981.

5. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison-Wesley,

Boston, MA, 1987.

6. Casanova M.A. The concurrency control problem for database

systems. Lecture Notes in Computer Science, Springer Berlin

1981.

7. Chrysanthis P.K., Samaras G., and Al-Houmaily Y.J. Recovery

and performance of atomic commit processing in distributed

database systems, Chapter 13. In Recovery Mechanisms in Data-

base Systems, V. Kumar, M. Hsu Prentice-Hall, Upper Saddle

River, NJ, 1998.

8. Gray J. Notes on data base operating systems. In Operating

Systems – An Advanced Course, R. Bayer, R. Graham, G.

Seegmuller (eds.). Lecture Notes in Computer Science, vol. 60,

Springer, Berlin, 1978, pp. 393–481.

Divergence from Randomness Models D 929

D

9. Hadzilacos T. and Yannakakis M. Deleting completed transac-

tions. In Proc. 5th ACM SIGACT-SIGMOD Symp. on Principles

of Database Systems, 1986, pp. 43–46.

10. Lampson B. and Sturgis H. Crash recovery in a distributed data

storage system. Technical report, Computer Science Laboratory,

Xerox Palo Alto Research Center, CA, 1976.

11. Mohan C., Lindsay B.G., and Obermarck R. Transaction man-

agement in the R* distributed database management system.

ACM Trans. Database Syst., 11(4):378–396, 1986.

12. Shapiro R. and Millstein R. Reliability and fault recovery in

distributed processing. In OCEANS’77 Conf. Record, Vol. 9,

1977, pp. 425–429.

13. Skeen D. Non-blocking commit protocols. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, pp. 133–142.

14. Stonebraker M. and Neuhold E.J. A distributed database version

of ingres. In Proc. 2nd Berkeley Workshop on Distributed Data

Management and Computer Networks, 1977, pp. 19–36.

15. The Tandem Performance Group. Tandem database group –

nonstop sql: a distributed, high-performance, high-availability

implementation of sql. In Proc. Second Int. Workshop on High

Performance Transaction Systems, 1987, pp. 60–104.
Divergence Control

▶Replica Freshness
Divergence from Randomness
Models

GIAMBATTISTA AMATI

Ugo Bordon Foundation, Rome, Italy

Synonyms
Deviation from randomness

Definition
Divergence From Randomness (DFR) Information Re-

trieval models are term-document matching functions

that are obtained by the product of two divergence

functions. An example of DFR function is that related

to Jensen’s information of two probability distribu-

tions [9, pp. 26–28]:

X
i

I1ðp̂þi jjp̂iÞ: I2ðp̂þi jjp̂iÞ

where I1ðp̂þi jjp̂iÞ ¼ p̂þi � p̂i ¼ Dp̂i and I2ðp̂þi jjp̂iÞ ¼
log2

p̂iþDp̂i
p̂i
The DFR generalizes the Jensen’s information as

follows: X
i

I1ðp̂þi jjp̂iÞ: I2ðp̂þi jjpiÞ

where

� p is a prior probability density function of terms

(or documents) in the collection.

� p̂ is the frequency of the term in a document (or

in a subset of documents).

� p̂þ is the neighboring frequency of the term in

a document (or in a subset of documents).

� I1ðp̂þjjp̂iÞ ¼
P

i I1ðp̂þi jjp̂iÞ ¼ 0 if and only if

p̂þ ¼ p̂.

� I2ðp̂jjpÞ ¼
P

i I2ðp̂jjpÞ is minimum when p̂ ¼ p.

In a DFR model a term occurs randomly when p̂ ¼ p,

whereas a term is informative when p̂ � p.

Historical Background
Divergence FromRandomnessmodels were inspired by

Harter’s 2-Poisson model. Harter’s model assumes that

a word randomly distributedaccording to a Poisson

distribution is not informative, whereas a word that

does not follow a Poisson distribution indicates that it

conveys information [7]. The Okapi retrieval function,

BM25, was also inspired by Harter’s 2-Poisson model,

and indeed it can be derived from a DFR model [3].

Foundations
The Divergence From Randomness models have their

roots in information theory. Following Shannon’s the-

ory of information a document can be seen as a mes-

sage to transmit, where information is measured by the

cost of transmission. For example, if a message m(k) of

length k is generated by a set V of n symbols ti, each

symbol occurring with a frequency (prior probability)

pi, with 0 � i � n, then the information is:

I2 ¼ � log2 pðmðkÞÞ ¼ � log2

Yn
i¼1

p
k:pi
i

¼ �k
Xn
i¼1

: pi log2 pi

The entropy H of a the system generated by V is

defined as the average information transmitted by its

symbols

H ¼ � log2 pðmðkÞÞ
k

¼ �
X
0�i�n

pi log2 pi

Divergence from Randomness Models. Table 1.

The notations

Notation
Document
model

Term
model

tf The term frequency in
the document

Xi ¼ tfi The frequency of the
i -th term in the
observed document

Yj ¼ tfj The frequency of

930D Divergence from Randomness Models
The average information transmitted by an arbitrary

message m(k) of length k is approximated by

I2ðkÞ ¼ � log2 pðmðkÞÞ � k:H ð1Þ

A collection D of N documents can be also con-

ceived as a set of messages that are generated by a

vocabulary V of n words ti. There are two types of

DFR models:

1. The document model. Each document d of length k

generates a partition of its terms over n cells

(terms). The partition satisfies the constraintPn
i¼1 tf i ¼ k, where tfi is the term frequency of

the i -th term in the document, and each term ti
has a prior probability pi of occurrence in an arbi-

trary document of the collection.

2. The term model. All occurrences of a term t in a

collection D of N documents generates a partition

over N cells (documents). Each document has a

prior probability pi of being selected. The partition

satisfies the constraint
PN

i¼1 tf i ¼ TF, where tfi
is the term frequency in the i -th document and

TF is the term frequency in the collection.
the observed term
in the jTtH
document

X The vector of the Xi
random variables

Y The vector of the Yi
random variables

TF The term frequency in
the collection

nt The document
frequency of the term
in the collection

N The number of
documents

k The document length

p̂ The estimate of
probability density
from observations
(likelihood)

tf i
k

tf i
TF

p̂þ The neighboring value
of the probability
density from
observations

tf iþ1
kþ1

tf iþ1
TFþ1

p The prior probability
density

TFiP
n
i
TFi

or nt
N

1
N

Dðp̂jjpÞ The Kullback-Leibler
divergence of p̂
from p
Document Models

Equation (1) provides the mean information carried

by an arbitrary document d of length k with expected

term frequencies k � pi. However, if the term frequency

Xi in the observed document is tfi and not k � pi,

then the information of the document is given by the

multinomial distribution:

p X1¼ tf1; :::;Xn ¼ tfnÞ¼
k

tf1tf2:::tf n

� �
ptf11 ptf22 � � �ptfnn

�

Here, the term independence is assumed, according to

which a document is treated as an ensemble and is said

to be a bag of words. Setting p̂i to the term frequency

inthedocument tfi
k
, it can be shown that [9, Chap.1, Ex.

5.12] that:

lim
k!1

I2ðp̂jjpÞ
k

¼Dðp̂jjpÞ ð2Þ

where I2ðp̂jjpÞ ¼ � log2 pðX1 ¼ tf1; :::;Xn ¼ tfnÞ and
Dðp̂jjpÞ �

P
ti2 v p̂i log2

p̂i
pi

is the Kullback-Leibler

divergence.

The prior probability pi can be set to ni
N
, the

ratio of the number ni of documents in which the

term occurs and the number N of documents of
the collection (The contribution of a term not occur-

ring in a document is null, being tf � log2 tf!0 for

tf!0.):

I2ðp̂jjpÞ � k:Dðp̂jjpÞ ¼ k:
X
ti2v

p̂i: log2
p̂i

pi
�

X
ti2v

tf i log2
tf i:N

k:ni

ð3Þ

The approximation of (3) is additive on terms, and

additivity is a useful property to extract the

Divergence from Randomness Models D 931

D

contribution of single terms to information. For exam-

ple, given the query q the contribution of the query

terms to the document is:

I2ðp̂jjpÞ ¼ � log2 pðX1 ¼ tf1;:::;Xn ¼ tfnjqÞ

¼
X
ti2q

tf i log2
tf i:N

k:ni

ð4Þ
Term Models

DFR term models are developed similarly as the DFR

document models. The analogous formula of (3) is

I2ðp̂jjpÞ ¼ �log2ðpðY1 ¼ tf1;:::;Yn ¼ tfNÞÞ

� TF � Dðp̂jjpÞ ¼ TF �
XN
i¼1

p̂i � log 2

p̂i

pi

¼
XN
i¼1

tf i log 2

tf i � N
TF

ð5Þ

where p̂i ¼ tf i
TF

and pi ¼ 1
N

is the prior probability of

a document.

Document Length Normalization

Similarly to TF-IDF used in the vector space model,

also Formula 4 can be used for retrieval (see vector

space model). However, information (see (3)) grows

approximately linearly with the document length. If

Formula 4 were used as retrieval function, then long

documents would be preferred to short ones, while

retrieval evaluation has shown that users prefer more

distilled information. Formula 4 needs to be normal-

ized with respect to the document length. Length nor-

malization is a critical issue in information retrieval

models: for example the vector space model normalizes

weights by dividing them by the norms of the query

and documents vectors, whilst language models nor-

malizes by learning the value of a parameter that com-

bines the two term frequencies p and p̂.

It is indeed possible to average the information-

log p X1 ¼ tf1; :::;Xn ¼ tfnð Þð Þ by the length of the

document, obtaining the Kullback-Leibler divergence,

but in such a case shorter documents would be pre-

ferred to longer ones, because p̂i is higher in very short

documents than in long documents. A way to normal-

ize the information carried by the term is to compute

the information gain, which corresponds to the in-

crease of information provided by the addition of

one or more occurrences of the term, for example

when the term frequency increases from p̂i ¼ tf
k
to its

neighboring point p̂þi ¼ tfþ1
kþ1

. The increment rate of

information is
X
i

I1ðp̂þi jjp̂iÞ:I2ðp̂ijjpiÞ �
X
ti2q

1� p̂i

p̂þi

� �
k:p̂i: log2

p̂i

pi

ð6Þ

where I1ðp̂þi jjp̂iÞ ¼ 1� p̂i
p̂þ
i

.

The matching Formula 6 considers only the contri-

bution of the query terms and exploits the additivity

property of information over independent terms.

Examples of Document Models

The following two models are examples of DFRmodels

generated by (6):

� Example of a DFR document model. Let p̂i ¼ tf i
k
,

p̂þi ¼ tf iþ1
kþ1

. Equation (6) becomes

X
ti2q

1� p̂i

k � p̂i þ 1
ð� log2 pðx1 ¼ tf1;:::; xn ¼ tfnjqÞÞ

� k �
X
ti2q

1� p̂i

k � p̂i þ 1
� p̂i � log2

p̂i

pi

An approximation of �log2p(X1¼ tf1,..., Xn = tfn|q),

different from the Kullback-Leibler divergence can be

obtained exploiting the Stirling formula that is used for

the computation of the factorials [1]. This is a param-

eter free model of IR and an analogous formula is

implemented in the Terrier search engine [10] (The

increment rate is computed by the w-square divergence
between the two neighboring probabilities p̂i and p̂þi .).

� Example of a DFR term model. Let p̂i ¼ B tf i;ð
TF; nt

N
Þ; p̂þi ¼ B tf i þ 1; TFþ 1; nt

N

� �
where

B tf i; TF;pið Þ ¼ TF

tf i

� �
nt

N

� �tf i
1� nt

N

� �TF�tf i

Different from document model, term models do not

include the document length among its observable

random variables. Therefore, the term frequency tf

is not normalized with respect to the length of the

document. The following term frequency normaliza-

tion was shown to be very effective

tfn ¼ tf � ln 1þ c � �k
k

� �

where �k is the average document length and c is

a parameter [8]. Equation (6) becomes

X
ti2q

TFþ 1

nt � ðtfni þ 1Þ ð� log2 pðY1 ¼ tf1; :::; YN ¼ tfN;

Z ¼kjqÞÞ �
X
ti2q

TFþ 1

nt � ðtfni þ 1Þ � tfni � log2
tfni � N
TF

932D DNA Sequences
As for the previous document model, the Stripl-

ing formula can be used for the computation of

the factorials to obtain a better approximation

of � log2 p Y 1 ¼ tf1; :::;YN ¼ tfN;Z ¼ kjqÞð [3]. Other

DFR models can be built by varying the way both

information and the information gain are defined [3].

Key Applications
DFR models can be also applied to query expansion,

and to predict query performance [2].

Future Directions
The notion of information gain of the DFR models are

strictly connected to the theory of causation and of

aftereffect in future sampling (word burstiness) [4,5]

[6, pp. 399–402]. The notion of neighboring points

used in information gain is related to Fisher’s informa-

tion [9, pp. 26–28]. A deeper analysis of the relation of

information gain to these concepts can lead to the

discover of more performing models of IR.

URL to Code
DFR models are implemented in the search engine

Terrier http://ir.dcs.gla.ac.uk/terrier/.

Cross-references
▶ 2-Poisson Model

▶BM25

▶ Length Normalization

▶Query Expansion Models

Recommended Reading
1. Amati G. Frequentist and Bayesian approach to Information

Retrieval. In Proc. 28th European Conf. on IR Research, 2005,

pp. 13–24.

2. Amati G., Carpineto C., and Romano G. Query difficulty, ro-

bustness, and selective application of query expansion. In Proc.

26th European Conf. on IR Research, 2004, pp. 127–137.

3. Amati G. and Van Rijsbergen C.J. Probabilistic models of infor-

mation retrieval based on measuring the divergence from ran-

domness. ACM Trans. Inform. Syst., 20(4):357–389, 2002.

4. Gärdenfors P. Knowledge in Flux. MIT, 1988.

5. Gaussier E. and Clinchant S. The BNB distribution for text model-

ing. In ECIR, Lecture Notes in Computer Science. Springer, 2008.

6. Good I.J. A casual calculus i. Br. J. Phil. Sci., 11:305–318, 1961.

7. Harter S.P. A probabilistic approach to automatic keyword

indexing. PhD thesis, Graduate Library, The University of

Chicago, Thesis No. T25146, 1974.

8. He I. and Ounis B. On setting the hyper-parameters of the term

frequency normalisation for information retrieval. ACM Trans.

Inform. Syst., 2007.
9. Kullback S. Information Theory and Statistics. Wiley, New York,

1959.

10. Ounis I., Amati G., Plachouras V., He B., Macdonald C., and

Johnson D. Terrier Information Retrieval Platform. In Proc.

27th European Conf. on IR Research, 2005, pp. 517–519.
DNA Sequences

▶Biological Sequence
Document

ETHAN V. MUNSON

University of Wisconsin-Milwaukee, Milwaukee, WI,

USA

Definition
A document is a representation of information des-

igned for consumption by people. A document may

contain information in any medium or in multiple

media, though text is generally the dominant medium.

A document may be persistent and suitable for archival

uses or it may be ephemeral, lasting only for one

viewing.

Key Points
Dictionary definitions of the concept of a document

generally emphasize documents that have a physical

form. Even when computers are considered, the defini-

tions assume that a document is a file on a storage

device.

Modern computing, thanks especially to the Web,

has greatly expanded the scope of the term. Computers

make documents more diverse because comput-

ers allow users to create, store and manage material

from a variety of media using similar metaphors and

interfaces. Computers may also create documents on

the fly from fragments stored in a database, as is

common in e-commerce and other Web applications.

These documents may only exist long enough to be

transmitted from a server to a Web browser for a single

viewing by a single user.

Cross-references
▶Document Representations (Inclusive Native and

Relational)

Document Clustering D 933

D

Document Clustering

YING ZHAO
1, GEORGE KARYPIS

2

1Tsinghua University, Beijing, China
2University of Minnesota, Minneapolis, MN, USA

Synonyms
Text clustering; High-dimensional clustering; Unsu-

pervised learning on document datasets

Definition
At a high-level the problem of document clustering is

defined as follows. Given a set S of n documents, we

would like to partition them into a pre-determined

number of k subsets S1, S2,...,Sk, such that the docu-

ments assigned to each subset are more similar to each

other than the documents assigned to different subsets.

Document clustering is an essential part of text mining

and has many applications in information retrieval

and knowledge management. Document clustering

faces two big challenges: the dimensionality of the

feature space tends to be high (i.e., a document collec-

tion often consists of thousands or tens of thousands

unique words); the size of a document collection tends

to be large.

Historical Background
Fast and high-quality document clustering algorithms

play an important role in providing intuitive naviga-

tion and browsing mechanisms as well as in facilitating

knowledge management. The tremendous growth in

the volume of text documents available on the Inter-

net, digital libraries, news sources, and company-wide

intranets has led an increased interest in developing

methods that can help users to effectively navigate,

summarize, and organize this information with the

ultimate goal of helping them to find what they are

looking for. Fast and high-quality document clustering

algorithms play an important role towards this goal as

they provide both an intuitive navigation/browsing

mechanism by organizing large amounts of informa-

tion into a small number of meaningful clusters as well

as to greatly improve the retrieval performance either

via cluster-driven dimensionality reduction, term-

weighting, or query expansion.

Foundations
Figure 1 shows the commonly used three-step process

of transferring a document collection into clustering
results that are of value to a user. Original documents

are often plain text files, html files, xml files, or a

mixture of them. However, most clustering algorithms

cannot operate on such textual files directly. Hence, a

document representation is needed to transform the

original documents into the data model on which

clustering algorithms can operate. Depending on

the characteristics of the document collection and the

application requirements, the actual clustering process

can be performed using various types of clustering

algorithms including partitional clustering, agglomer-

ative clustering, model-based clustering, etc. Finally,

the quality of the clustering results need to be properly

assessed and presented to the users. Details on some of

the most commonly used methods in this three-step

process follows.

Document Representation

Documents are often represented using the term fre-

quency-inverse document frequency (tf-idf) vector-

space model [12]. In this model, each document d is

considered to be a vector in the term-space and is

represented by the vector

dtfidf ¼ tf1 logðn=df1Þ; tf2 logðn=df2Þ;:::; tfm logðn=dfmÞð Þ;

where tfi is the frequency of the ith term (i.e., term

frequency), n is the total number of documents, and dfi
is the number of documents that contain the ith term

(i.e., document frequency). To account for documents

of different lengths, the length of each document vec-

tor is normalized so that it is of unit length.
Similarity Measures

Two prominent ways have been proposed to measure

the similarity between two documents di and dj when

represented via their tf-idf representation. The first

method is based on the commonly used [12] cosine

function

cosðdi;djÞ ¼ dti dj=ðjjdijj jjdj jjÞ;

and since the document vectors are of unit length,

it simplifies to di
tdj. The second method computes

the similarity between the documents using the

Euclidean distance dis(di, dj) = ||di � dj||. Note that

besides the fact that one measures similarity and the

other measures distance, these measures are quite sim-

ilar to each other because the document vectors are of

unit length.

Document Clustering. Figure 1. Structure of document clustering learning system.

934D Document Clustering
Partitional Document Clustering

Partitional algorithms, such as K-means [11],

K-medoids [8], probabilistic [3], graph-partitioning-

based [14], or spectral based [1], find the clusters by

partitioning the entire dataset into either a predeter-

mined or an automatically derived number of clusters.

A key characteristic of many partitional clustering

algorithms is that they use a global criterion function

whose optimization drives the entire clustering pro-

cess. For some of these algorithms the criterion func-

tion is implicit (e.g., PDDP [1]), whereas for other

algorithms (e.g., K-means [11]) the criterion function

is explicit and can be easily stated. This latter class of

algorithms can be thought of as consisting of two key

components. First is the criterion function that the

clustering solution optimizes, and second is the actual

algorithm that achieves this optimization.

Criterion Function Criterion functions used in the

partitional clustering reflect the underlying definition

of the ‘‘goodness’’ of clusters. The partitional clustering

can be considered as an optimization procedure that

tries to create high quality clusters according to a partic-

ular criterion function. Many criterion functions have

been proposed and analyzed [8,6,16]. Table 1 lists a total

of seven different clustering criterion functions. These

functions optimize various aspects of intra-cluster
similarity, inter-cluster dissimilarity, and their combi-

nations, and represent some of the most widely used

criterion functions for document clustering. These cri-

terion functions utilize different views of the underly-

ing collection, by either modeling the objects as vectors

in a high-dimensional space, or by modeling the col-

lection as a graph.

The I1 criterion function (1) maximizes the sum of

the average pairwise similarities (as measured by the

cosine function) between the documents assigned to

each cluster weighted according to the size of each

cluster. The I 2 criterion function (2) is used by the

popular vector-space variant of the K-means algorithm

[2]. In this algorithm each cluster is represented by its

centroid vector and the goal is to find the solution that

maximizes the similarity between each document and

the centroid of the cluster that is assigned to. Compar-

ing I 1 and I 2 we see that the essential difference

between them is that I 2 scales the within-cluster simi-

larity by the ||Dr|| term as opposed to the nr term used

by I 1 . ||Dr|| is the square-root of the pairwise similari-

ty between all the document in Sr and will tend to

emphasize clusters whose documents have smaller

pairwise similarities compared to clusters with higher

pairwise similarities.

The E1 criterion function (3) computes the cluster-

ing by finding a solution that separates the documents

Document Clustering. Table 1. The mathematical

definition of various clustering criterion functions

Criterion
function Optimization function

I 1

ð1Þ maximize
Pk
i¼1

1
ni

P
v;u2Si

simðv; uÞ
 !

I 2

ð2Þ maximize
Pk
i¼1

ffiP
v;u2Si

simðv; uÞ
r

E1

ð3Þ minimize
Pk
i¼1

ni

P
v2Si ;u2S

simðv;uÞffiP
v;u2Si

simðv;uÞ
q

G1

ð4Þ minimize
Pk
i¼1

P
v2Si ;u2S

simðv;uÞP
v;u2Si

simðv;uÞ

G2

ð5Þ minimize
Pk
r¼1

cutðVr ;V�Vr Þ
W ðVr Þ

H1

ð6Þ maximize I1

E1

H2

ð7Þ maximize I2

E1

The notation in these equations are as follows: k is the total

number of clusters, S is the total objects to be clustered, Si is the

set of objects assigned to the ith cluster, ni is the number of

objects in the ith cluster, v and u represent two objects, and sim

(v,u) is the similarity between two objects.

Document Clustering D 935

D

of each cluster from the entire collection. Specifically, it

tries to minimize the cosine between the centroid vec-

tor of each cluster and the centroid vector of the entire

collection. The contribution of each cluster is weighted

proportionally to its size so that larger clusters will be

weighted higher in the overall clustering solution. E1

was motivated by multiple discriminant analysis and is

similar to minimizing the trace of the between-cluster

scatter matrix [6].

The H1 and H2 criterion functions (6) and (7) are

obtained by combining criterion I 1 with E1, and I 2

with E1, respectively. Since E1 is minimized, both H1

and H2 need to be maximized as they are inversely

related to E1.

The criterion functions that we described so far,

view each document as a multidimensional vector. An

alternate way of modeling the relations between docu-

ments is to use graphs. Two types of graphs are
commonly used in the context of clustering. The first

corresponds to the document-to-document similarity

graph Gs and the second to the document-to-term

bipartite graph Gb [15,4]. Gs is obtained by treating

the pairwise similarity matrix of the dataset as the adja-

cency matrix of Gs, whereas Gb is obtained by viewing

the documents and the terms as the two sets of vertices

(Vd and Vt) of a bipartite graph. In this bipartite

graph, if the ith document contains the jth term,

then there is an edge connecting the corresponding

ith vertex of Vd to the jth vertex of Vt. The weights of

these edges are set using the tf-idf model.

Viewing the documents in this fashion, edge-cut-

based criterion functions can be used to cluster docu-

ment datasets. G1 and G2 (4) and (5) are two such

criterion functions that are defined on the similarity

and bipartite graphs, respectively. The G1 function [5]

views the clustering process as that of partitioning the

documents into groups that minimize the edge-cut of

each partition. However, because this edge-cut-based

criterion function may have trivial solutions the edge-

cut of each cluster is scaled by the sum of the cluster’s

internal edges [5]. Note that cut(Sr , S� Sr) in (4) is the

edge-cut between the vertices in Sr and the rest of the

vertices S � Sr , and can be re-written as Dr
t(D � Dr)

since the similarity between documents is measured

using the cosine function. The G2 criterion function

[15,4] views the clustering problem as a simultaneous

partitioning of the documents and the terms so that it

minimizes the normalized edge-cut of the partitioning.

Note that Vr is the set of vertices assigned to the rth

cluster and W(Vr) is the sum of the weights of the

adjacency lists of the vertices assigned to the rth cluster.

Optimization Method There are many techniques that

can be used to optimize the criterion functions

described above. They include relatively simple greedy

schemes, iterative schemes with varying degree of hill-

climbing capabilities, and powerful but computation-

ally expensive spectral-based optimizers [11,1,15,4,7].

Here is a simple yet very powerful greedy strategy that

has been shown to produce comparable results to those

produced by more sophisticated optimization algo-

rithms. In this greedy straggly, a k-way clustering of a

set of documents can be computed either directly or

via a sequence of repeated bisections. A direct k-way

clustering is computed as follows. Initially, a set of k

objects is selected from the datasets to act as the seeds

of the k clusters. Then, for each object, its similarity to

936D Document Clustering
these k seeds is computed, and it is assigned to the

cluster corresponding to its most similar seed. This

forms the initial k-way clustering. This clustering is

then repeatedly refined so that it optimizes a desired

clustering criterion function. A k-way partitioning via

repeated bisections is obtained by recursively applying

the above algorithm to compute two-way clustering

(i.e., bisections). Initially, the objects are partitioned

into two clusters, then one of these clusters is selected

and is further bisected, and so on. This process con-

tinues k � 1 times, leading to k clusters. Each of these

bisections is performed so that the resulting two-way

clustering solution optimizes a particular criterion

function.

Agglomerative Document Clustering

Hierarchical agglomerative algorithms find the clusters

by initially assigning each object to its own cluster

and then repeatedly merging pairs of clusters until a

certain stopping criterion is met. Consider an n-object

dataset and the clustering solution that has been com-

puted after performing l merging steps. This solution

will contain exactly n � l clusters, as each merging

step reduces the number of clusters by one. Now,

given this (n � l)-way clustering solution, the pair of

clusters that is selected to be merged next, is the one

that leads to an (n� l� 1)-way solution that optimizes

a particular criterion function. That is, each one of

the (n � l) � (n � l � 1) ∕ two pairs of possible merges

is evaluated, and the one that leads to a clustering

solution that has the maximum (or minimum)

value of the particular criterion function is selected.

Thus, the criterion function is locally optimized within

each particular stage of agglomerative algorithms.

Depending on the desired solution, this process con-

tinues until either there are only k clusters left, or when

the entire agglomerative tree has been obtained.

The three basic criteria to determine which pair of

clusters to be merged next are single-link [13], com-

plete-link [10] and group average (i.e., unweighted

Pair Group Method with Arithmetic mean

(UPGMA)) [8]. The single-link criterion function

measures the similarity of two clusters by the maxi-

mum similarity between any pair of objects from each

cluster, whereas the complete-link uses the minimum

similarity. In general, both the single- and the com-

plete-link approaches do not work very well because

they either base their decisions to a limited amount

of information (single-link), or assume that all the
objects in the cluster are very similar to each other

(complete-link). On the other hand, the group average

approach measures the similarity of two clusters by the

average of the pairwise similarity of the objects from

each cluster and does not suffer from the problems

arising with single- and complete-link.

Evaluation of Document Clustering

Clustering results are difficult to evaluate, especially for

high dimensional data and without a priori knowledge

of the objects’ distribution, which is quite common in

practical cases. However, assessing the quality of the

resulting clusters is as important as generating the

clusters. Given the same dataset, different clustering

algorithms with various parameters or initial condi-

tions will give very different clusters. It is essential to

know whether the resulting clusters are valid and how

to compare the quality of the clustering results, so that

the right clustering algorithm can be chosen and the

best clustering results can be used for further analysis.

In general, there are two types of metrics for asses-

sing clustering results: metrics that only utilize the

information provided to the clustering algorithms

(i.e., internal metrics) and metrics that utilize a priori

knowledge of the classification information of the

dataset (i.e., external metrics).

The basic idea behind internal quality measures is

rooted from the definition of clusters. A meaningful

clustering solution should group objects into various

clusters, so that the objects within each cluster are

more similar to each other than the objects from dif-

ferent clusters. Therefore, most of the internal quality

measures evaluate the clustering solution by looking at

how similar the objects are within each cluster and how

well the objects of different clusters are separated. In

particular, the internal similarity measure, ISim, is de-

fined as the average similarity between the objects of

each cluster, and the external similarity measure, ESim,

is defined as the average similarity of the objects of

each cluster and the rest of the objects in the data set.

The ratio between the internal and external similarity

measure is also a good indicator of the quality of the

resultant clusters. The higher the ratio values, the bet-

ter the clustering solution is. One of the limitations of

the internal quality measures is that they often use the

same information both in discovering and in evaluat-

ing the clusters.

The approaches based on external quality measures

require a priori knowledge of the natural clusters that

Document Clustering D 937

D

exist in the dataset, and validate a clustering result by

measuring the agreement between the discovered clus-

ters and the known information. For instance, when

clustering document datasets, the known categoriza-

tion of the documents can be treated as the natural

clusters, and the resulting clustering solution will be

considered correct, if it leads to clusters that preserve

this categorization. A key aspect of the external quality

measures is that they utilize information other than

that used by the clustering algorithms. The entropy

measure is one such metric that looks are how the

various classes of documents are distributed within

each cluster.

Given a particular cluster, Sr , of size nr , the entropy

of this cluster is defined to be

EðSrÞ ¼ � 1

log q

Xq
i¼1

nir
nr

log
nir
nr

ð8Þ

where q is the number of classes in the data set, and nr
i

is the number of documents of the ith class that were

assigned to the rth cluster. The entropy of the entire

clustering solution is then defined to be the sum of the

individual cluster entropy weighted according to the

cluster size. That is,

Entropy ¼
Xk
r¼1

nr

n
EðSrÞ: ð9Þ

A perfect clustering solution will be the one that leads

to clusters that contain documents from only a single

class, in which case the entropy will be zero. In general,

the smaller the entropy values, the better the clustering

solution is.

Key Applications
Document clustering is used to organize large collec-

tions of documents into meaningful groups in order

to provide intuitive navigation aids, information sum-

marization, data compression, and dimensionality

reduction.

URL to Code
An illustrative example of a software package for clus-

tering low- and high-dimensional datasets and for

analyzing the characteristics of the various clusters is

Cluto [9]. Cluto has implementations of the various

clustering algorithms and evaluation metrics described

in previous sections. It was designed by the University

of Minnesota’s data mining’s group and is available at

http://www.cs.umn.edu/�karypis/cluto.
Data Sets
Utility tools for pre-processing documents into vector

matrices and some sample document datasets are also

available at http://www.cs.umn.edu/�karypis/cluto.

Cross-references
▶Clustering Assessment

▶Clustering for post-hoc information retrieval

▶ Information Retrieval

▶Text Mining

▶Unsupervised Learning
Recommended Reading
1. Boley D. Principal direction divisive partitioning. Data Mining

Knowl. Discov., 2(4), 1998.

2. Cutting D.R., Pedersen J.O., Karger D.R., and Tukey J.W. Scatter/

gather: A cluster-based approach to browsing large document

collections. In Proc. 15th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1992, pp.

318–329.

3. Dempster A.P., Laird N.M., and Rubin D.B. Maximum likeli-

hood from incomplete data via the em algorithm. J. R. Stat. Soc.,

39, 1977.

4. Dhillon I.S. Co-clustering documents and words using bipartite

spectral graph partitioning. In Knowledge Discovery and Data

Mining, 2001, pp. 269–274.

5. Ding C., He X., Zha H., Gu M., and Simon H. 1Spectral min-

max cut for graph partitioning and data clustering. Technical

Report TR-2001-XX, Lawrence Berkeley National Laboratory,

University of California, Berkeley, CA, 2001.

6. Duda R.O., Hart P.E., and Stork D.G. Pattern Classification.

Wiley, New York, 2001.

7. Fisher D. Iterative optimization and simplification of hierarchi-

cal clusterings. J. Artif. Intell. Res., 4:147–180, 1996.

8. Jain A.K. and Dubes R.C. Algorithms for Clustering Data. Pren-

tice Hall, New York, 1988.

9. Karypis G. Cluto: A clustering toolkit. Technical Report 02-017,

Department of Computer Science, University of Minnesota, 2002.

10. King B. Step-wise clustering procedures. J. Am. Stat. Assoc.,

69:86–101, 1967.

11. MacQueen J. Some methods for classification and analysis of

multivariate observations. In Proc. 5th Symp. Math. Stat. Prob.,

1967, pp. 281–297.

12. Salton G. Automatic Text Processing: The Transformation,

Analysis, and Retrieval of Information by Computer. Addison-

Wesley, Reading, MA, 1989.

13. Sneath P.H. and Sokal R.R. Numerical Taxonomy. Freeman,

London, UK, 1973.

14. Zahn K. Graph-tehoretical methods for detecting and describing

gestalt clusters. IEEE Trans. Comput., (C-20):68–86, 1971.

15. Zha H., He X., Ding C., Simon H., and Gu M. Bipartite graph

partitioning and data clustering. In Proc. Int. Conf. on Informa-

tion and Knowledge Management, 2001.

16. Zhao Y. and Karypis G. Criterion functions for document clus-

tering: Experiments and analysis. Mach. Learn. 55:311–331, 2004.

938D Document Databases
Document Databases

FRANK WM. TOMPA

University of Waterloo, Waterloo, ON, Canada

Synonyms
Document repositories; Text databases; Corpora
Definition
A document database is a collection of stored texts

managed by a system that provides query and update

facilities. Usually the database includes many docu-

ments related by their subject matter, origin, or applica-

bility to an enterprise. The content of each document

may be free text, semi-structured text including a

few well-identified fields (e.g., title, author, date), or

highly structured tagged text such as might be encoded

using XML. Occasionally documents may also contain

multimedia components.

In contrast, the term corpus (plural corpora) typi-

cally refers to a static collection of texts that have been

assembled by experts to study linguistic phenomena

(e.g., the Brown Corpus, created in 1964 to study

American English, and the Swedish Language Bank) or

to provide a rich source of text for lexicographic needs

(e.g., the Dictionary of Old English Corpus, including

all extant texts written in Old English in the period

600–1150 AD, and the British National Corpus).

Such corpora are often distributed or licensed in the

form of data only, independently of any document

management system.
Historical Background
Electronic documents have been stored on computers

almost as long as numeric data. Early document systems

supported text editing and formatting and evolved into

sophisticated document creation and publishing sys-

tems. Electronic document management became an

integral part of the move towards office automation

that grew substantially during the 1970s and 1980s.

Holding documents in computers also made possible

the growth of hypertexts and hypermedia more gener-

ally, starting in the 1960s and continuing today. This,

in turn, formed the core of the World Wide Web.

Simultaneously the field of information retrieval

developed in response to the recognition that libraries

hold a substantial volume of data that is often difficult

to access effectively without the intervention of
professional librarians. Initially, small document col-

lections were amassed to test the performance of vari-

ous algorithms designed to locate relevant sources of

data in response to users’ information needs. Informa-

tion retrieval has since advanced substantially to deal

efficiently and effectively with multi-gigabyte collec-

tions of texts, whether the objective is to find relevant

documents or to find answers to very specific factual

questions.

An outgrowth of office automation was the recog-

nition that corporate documents form a business re-

source that deserves management commensurate with

the effort put into managing capital, human resources,

and more traditionally recognized forms of data. Thus

document management may be viewed as an extension

of database management to handle documents and

document fragments with the same care as is given to

tabular and other forms of business data.

Document management systems have evolved

from each of three technologies: information retrieval

engines, as special applications of object management

systems, and as extensions to relational database

management systems. They provide facilities to define

sub-collections, to load new documents and delete

old ones, to update existing documents, to retrieve

documents that match precise criteria exactly, and to

rank documents against a set of keywords or against

criteria that specify users’ needs in a less precise

manner. Document databases form the core of Enter-

prise Content Management systems.

Foundations
Because document database systems arise from tradi-

tional database systems and traditional information

retrieval systems, the scientific fundamentals of those

technologies underlie document databases as well.

When the databases include semi-structured or stru-

ctured documents, they often include constraints in

the form of regular expressions or context-free gram-

mars; thus the principles and practices of regular

and context-free languages also underlie document

databases.

Key Applications
Document databases are typically created by corpora-

tions and other enterprises to subject various docu-

ments to database management protocols. Publishers

and other organizations (or organizational sub-units)

for which printed or electronic documents are their

Document Field D 939

D

products use document databases to maintain drafts

and other variants of their products as well as historical

materials. As consumers of such products, organiza-

tions’ digital libraries use document databases to hold

and manage their collections. Thus document data-

bases form a core technology for publishers, digital

libraries, e-government, and e-business more generally.

In addition, some document databases maintain

materials that are internal to the enterprise. These

might comprise policies, procedures, advertising, blogs,

email messages, customers’ comments, confidential

reports, etc. The content for other document databases

might be collected from external sources and may in-

clude annual reports, legal documents, suppliers’ prod-

uct descriptions, financial reviews, etc. Document

databases may also be created to support benchmarking

studies or to meet specific application needs, such as

source code repositories.

Cross-references
▶Digital Libraries

▶ Information Retrieval

▶ Semi-structured Data Model

▶ Semi-Structured Database Design

▶XML Retrieval

▶XML Storage
Recommended Reading
1. Bertino E., Ooi B., Sacks-Davis R., Tan K.-L., and Zobel J. Text

databases. In Indexing Techniques for Advanced Database Sys-

tems. Kluwer Academic, Norwell, MA, 1997, pp. 151–184.

2. Chin A.G. (ed.). Text Databases and Document Management:

Theory and Practice. Idea Group, Hershey, PA, 2001.

3. Christophides V., Abiteboul S., Cluet S., and Scholl M. From

structured documents to novel query facilities. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1994, pp.

313–324.

4. Kilpeläinen P., Lindén G., Mannila H., and Nikunen E.

1A structured text database system. In Proc. Int. Conf. on Elec-

tronic Publishing, Document Manipulation and Typography,

1990, pp. 139–151.

5. Loeffen A. Text databases: a survey of text models and systems.

ACM SIGMOD Rec., 23(1):97–106, 1994.

6. Lowe B., Zobel J., and Sacks-Davis R. A formal model for

databases of structured text, In Proc. 4th Int. Conf. on Database

Systems for Advanced Applications, 1995, pp. 449–456.

7. Macleod A. A data base management system for document

retrieval applications. Inf. Syst., 6(2):131–137, 1981.

8. Sacks-Davis R., Arnold-Moore T., and Zobel J. Database systems

for structured documents. In Proc. Int. Symp. on Advanced

Database Technologies and Their Integration, 1994, pp.

272–283.
9. Salminen A. and Tompa F.W. Requirements for XML document

database systems. In Proc. ACM Symp. on Document Engineer-

ing, 2001, pp. 85–94.

10. Stonebraker M., Stettner H., Lynn N., Kalash J., and Guttman A.

Document processing in a relational database system. ACM

Trans. Inf. Syst., 1(2):143–158, 1983.
Document Field

VASSILIS PLACHOURAS

Yahoo! Research, Barcelona, Spain

Definition
A document field is a part of a document or of the

document metadata in which the text has a particular

function. A document field can contain free or prefor-

matted text. Each field, according to its function, has

different characteristics, length, and term distributions.

Key Points
Textual documents have implicit structure, which aids

the understanding of the text. Long textual documents

are usually organized in chapters, sections, paragraphs,

and each of those can have a concise description in the

form of a title. In the case of hypertext documents,

explicit links between documents in the form of hyper-

links are often associated with anchor text. News wire

documents also have metadata such as date, or the

name of the author. Efforts to standardize metadata

about documents have resulted in projects such as the

Dublin Core Metadata Initiative [1].

Fields are also being used to represent the annota-

tions of text with semantic and syntactic information.

For example, the semantic information may corre-

spond to entities, or locations. The syntactic informa-

tion may correspond to the part of speech of tokens or

to syntactic relationships between tokens. Such infor-

mation can be used to perform search tasks such as

entity ranking [3].

The text and the distribution of terms in a particu-

lar field depend on the function of that field. For

example, a term may occur many times in a document,

because of the document’s verbosity. On the other

hand, the title of a document is a short and concise

description of the document. Hence, terms are

expected to appear only once or twice in the title of a

document, and the resulting term frequency distribu-

tion is almost uniform [2]. Similarly, the anchor text of

incoming hyperlinks of Web documents serves the

940D Document Formats
purpose of providing a concise description of a docu-

ment, and from this point of view, it is similar to the

title of documents. However, a document is likely to

have one title, while it is not unusual to have docu-

ments with several million incoming hyperlinks and

associated anchor texts.

Cross-references
▶Anchor Text

▶Dublin Core

▶ Field-based Information Retrieval Models

Recommended Reading
1. Dublin Core Metadata Initiative. Retrieved April 15, 2008,

http://dublincore.org/.

2. Jin R., Hauptmann A., and Zhai C. Title language model

for information retrieval. In Proc. 25th Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2002, pp. 42–48.

3. Zaragoza H., Rode H., Mika P., Atserias J., Ciaramita M., and

Attardi G. Ranking Very Many Typed Entities on Wikipedia. In

Proc. Int. Conf. on Information and Knowledge Management,

2007, pp. 1015–1018.
Document Formats

▶Document Representations
Document Identifier

▶Resource Identifier
Document Index and Retrieval

▶Text Indexing and Retrieval
Document Length Normalization

BEN HE

University of Glasgow, Glasgow, UK

Synonyms
Term frequency normalization; Length normalization
Definition
Document length normalization adjusts the term fre-

quency or the relevance score in order to normalize the

effect of document length on the document ranking.

Key Points
The reasons for employing a document length normal-

ization method in an IR system are quite subtle. In

general, the effect observed on the ranking by the pres-

ence of many lengthy documents in a collection is to

favor their retrieval with respect to shorter documents.

Singhal, Buckley and Mitra gave the following two

reasons for adopting a length normalization in the

vector space model [4]:

1. The same term usually occurs repeatedly in long

documents.

2. The vocabulary of a long document is usually large.

In 1994, Robertson and Walker also studied the effect

of document length in the context of the probabilistic

model. They observed that:

" Some documents may simply cover more material than

others, [. . .], a long document covers a similar scope to

a short document, but simply uses more words.

According to Robertson and Walker [2], term frequen-

cies may also depend on author’s writing style, that

may describe concepts and facts either in details or

concisely. Robertson and Walker called this phenome-

non as the verbosity hypothesis.

According to the language modeling approach,

the normalization of the document length is instead

related to the sparse data problem. The sparse data

problem is also the core problem in natural language

processing for the estimation of the probability of

string occurrences. The smoothing technique is usually

applied to cope with the sparse data problem in the

language modeling approach for IR [5].

In the context of Vector Space model, cosine nor-

malization adjusts the effect of document length on

document weights by computing the cosine similarity

between the query and the document weight vectors.

Singhal et al. proposed an improvement of cosine

normalization for the vector space model, called the

pivoted normalization [4]. The basic idea of the pivoted

normalization is to introduce a tunable hyper-parameter

to empirically adjust the normalization factor of a given

normalization method, by fitting the probability of re-

trieval to the probability of relevance. The probability of

Document Links and Hyperlinks D 941

D

retrieval is computed from returned documents for each

given query, and the probability of relevance is com-

puted from the relevance information given by the

human assessors.

In the context of probabilistic model, the BM25

weighting model employs a saturation function to

normalize term frequency [3]. This normalization

function is derived from the study of the document

length effect in the 2-Poisson model.

Some of Divergence from Randomness (DFR)

weighting models employ the Normalization 2 for

adjusting the relationship between term frequency

and document length, that assumes a decreasing term

frequency density function of document length [1].

Cross-references
▶ Probabilistic Retrieval Models and Binary Indepen-

dence Retrieval (BIR) Model

▶Probability Smoothing

Recommended Reading
1. Amati G. Probabilistic models for information retrieval based on

divergence from randomness. Ph.D. Thesis, Department of

Computing Science, University of Glasgow, 2003.

2. Robertson S. E. and Walker S. Some simple effective approxima-

tions to the 2-poisson model for probabilistic weighted retrieval.

In Proc. 17th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 1994, pp. 232–241.

3. Robertson S.E., Walker S., Jones S., and Hancock-Beaulieu M.

Okapi at trec-3. In Proc. The 3rd Text Retrieval Conference,

1994.

4. Singhal A., Buckley C., and Mitra M. Pivoted document length

normalization. In Proc. 19th Annual Int. ACM SIGIR Conf.

on Research and Development in Information Retrieval, 1996,

pp. 21–29.

5. Zhai C. and Lafferty J. A study of smoothing methods for

language models applied to ad hoc information retrieval. In

Proc. 24th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2001, pp. 334–342.
Document Links and Hyperlinks

VASSILIS PLACHOURAS

Yahoo! Research, Barcelona, Spain

Definition
Document links and hyperlinks are cross-references bet-

ween different documents or between different parts of

the same document. They facilitate the navigation of

users in the document space. However, information
seeking by only following hyperlinks is possible only

for relatively small collections of hyperlinked docu-

ments. Hyperlinks can have explicit or implicit types.

Two common types of links are organizational or navi-

gational links and informational links.

Key Points
Textual documents are rich in structure, one aspect of

which is the cross-references or links to different parts

of the same document or to other documents. Biblio-

graphic references is one form of links between docu-

ments for example. Bush [3] envisioned Hypertext as

a natural way to organize, store and search for infor-

mation, similar to the associative way in which the

humans organize information.

Document links and hyperlinks are explicit cross-

references between parts of the same document or

different documents. Such links alter the information

search process by allowing a user to navigate the docu-

ment space by following hyperlinks. Navigation may

be sufficient for small collections of documents. As

the number of documents increases, or when naviga-

tion is allowed across heterogeneous sets of hypertext

documents, however, users may not be able to locate

information by merely following links. IR techniques

address one aspect of this problem by allowing search

for information, or locating starting points for brows-

ing hypertext collection.

The links in hypertext systems can have explicit or

implicit types. Baron et al. [2] identified twomain types

of links, namely the organizational and the content-

based links. The former type of links was used to orga-

nize and help navigation among hypertext documents,

while the latter type was used for pointing to docu-

ments on similar topics. However, as with bibliographic

references in scientific publications, some hypertext

systems do not provide typed links. The automatic

inference of the link type is a difficult task, because it

requires understanding the context of both the source

and destination documents. Differently from identify-

ing the type of hyperlinks [1], investigated the auto-

matic typed linking of related documents. After linking

all pairs of documents, the similarity of which exceeds a

threshold, the resulting graph is simplified by iteratively

merging links. A type is assigned to the resulting links,

according to a predefined taxonomy.

Cross-references
▶Anchor text

942D Document Management
Recommended Reading
1. Allan J. Automatic hypertext link typing. In Proc. Seventh ACM

Conf. on Hypertext, 1996, pp. 42–52.

2. Baron L., Tague-Sutcliffe J., Kinnucan M.T., and Carey T.

Labeled, typed links as cues when reading hypertext documents.

J. Am. Soc. Inform. Sci., 47(12):896–908, 1996.

3. Bush V. As we may think. The Atlantic Monthly, July, 1945.
Document Management

▶ Enterprise Content Management
Document Path Query

▶ Path Query
Document Repositories

▶Document Databases
Document Representations
(Inclusive Native and Relational)

ETHAN V. MUNSON

University of Wisconsin-Milwaukee, Milwaukee, WI,

USA

Synonyms
Documents; Markup languages; Semi-structured data;

Page representations

Definition
Native document representations are file formats desig-

ned for documents. They can be roughly divided into

three types: page-oriented, stream-oriented, and tree-

structured. Hybrid types can also be found. Within

each type, document representations range from the

simple to the complex. All native representations as-

sume an implicit order of the document’s information,

reflecting the linear reading order of conventional

documents. The most important document represen-

tation is the Extensible Markup Language (XML),

which is tree-structured and can have any level of
complexity. It is seeing widespread use on the Web

and in business and is also popular for non-document

applications.

Relational databases use a variety of document

representations that map to a native representation.

Page-oriented and stream-oriented documents are

best stored in a coarse-grained manner and do not

appear to have stimulated much research. In contrast,

tree-structured documents are well-suited to fine-

grained decomposition for storage in relational data-

bases. As a result, XML databases are a very active

research topic. The challenge for relational sys-

tems is to maintain the implicit order of the docu-

ments’ elements while providing efficient access and

updates.

Historical Background
Furuta et al. [6] survey document formatting systems

up to 1982. The earliest document representations ap-

pear to have been created by programmers who wanted

to be able to create their own documents without the aid

of support staff, using readily available devices. All of

the representations described in the survey are markup

languages. The earliest markup languages, such as

RUNOFF and PUB, were stream-oriented. Their mark-

up was highly procedural, specifying changes to para-

meters of a simple formatter or line breaker. Later

markup languages, such as Scribe and GML, supported

higher levels of abstraction,were at least partially tree-

structured, and were used in systems with higher-quality

formatters. For the TeX system, Knuth developed

advanced formatting algorithms [9] whose quality has

yet to be surpassed. All markup language systems as-

sumed that their users would edit language files with a

text editor and then invoke a formatter on the command

line to produce output for a printer.

The personal computer revolution in the 1980s

spawned the creation of various word processing sys-

tems. These systems had user interfaces that were more

accessible to non-technical workers, but their document

representations were much simpler than those of the

later markup-based systems. Early word processors

used stream-based representations that were entirely

procedural, with no facility for abstract concepts like

figures or section headings. As these systems matured,

they gained more abstract structural features, such as

named styles for paragraphs, but their representations

have remained essentially stream-oriented. In general,

word processing document representations are not

Document Representations (Inclusive Native and Relational) D 943

D

human-readable and are proprietary, though conversion

tools between representations are widely available.

The simultaneous development of the laser printer

required a means to transmit a page from computer

to printer over the low-bandwidth connections then

available. In response, various companies designed

proprietary page description languages (PDLs) that

described pages at a higher level, thus requiring sub-

stantially less bandwidth. The most important were

Adobe’s PostScript, used in the first personal laser

printers, and Hewlett-Packard’s Printer Command

Language (PCL). Both are still widely used in printers,

but today the most important PDL is Adobe’s Portable

Document Format (PDF) [1] because it is printer-

independent, compact, and because Adobe distributes

free viewing and printing software for all widely-used

platforms.

By the mid-1980’s, the diversity of incompatible

markup languages and word-processing representations

was making collaboration between authors quite diffi-

cult. In response, two competing document interchange

formats were developed, the Standardized Generalized

Markup Language (SGML) [7] and theOpenDocument

Architecture (ODA). Only SGML was a success and its

success was limited. However, SGML was the basis for

the Hypertext Markup Language (HTML) used on the

World Wide Web. As HTML came to be used more as

a page description language than as a high-level tree-

structured specification, the Web community sought a

more structured solution. The result was the Extensible

Markup Language (XML) [3], which is designed to

allow Web documents to convey stronger semantics

and to better support sophisticated, even intelligent,

applications.

Foundations

Native Representations

Page-Oriented Representations There are two prin-

cipal page-oriented representations: page images and

page description languages (PDLs).

The simplest page-oriented document represen-

tation is a sequence of page images, usually created by

scanning paper documents. While this representation

may seem primitive, it is quite important because

of the substantial number of documents that predate

electronic representations of any kind or for which the

electronic version has been lost. Often, in digital
libraries, the page images will have been processed by a

document analysis system in order to generate a search-

able text stream or to produce an electronic version of

the page that can be scaled or reformatted without

producing image artifacts. The result is a hybrid repre-

sentation mixing pages with a stream or tree structure.

The development of efficient workflows for this analysis

process has been an interesting area of research [13].

PDLs are considerably more complex. The core

of any PDL is a two-dimensional vector graphics

language with strong support for high-quality text ren-

dering. This implies full support for scientific floating

point computation, for conversion between various

units of measure, and for specifying character fonts.

PDLs must also have commands to control paper

handling and common printing features like screening

and halftoning. The PDLs used in printers (principally

PostScript and PCL) are not suited to database applica-

tions because their documents are specific to particular

printers and cannot be guaranteed to print or display

correctly on all devices. In contrast, the PDF [1] repre-

sentation is a generalization of PostScript that is device-

independent and has evolved over time to have many of

the best qualities of stream-oriented and tree-structured

representations. Documents encoded by modern PDF

generators typically include a complete text stream that

can be indexed and searched. Both commercial and

open-source tools can be found to generate and manip-

ulate PDF. Finally, it worth mentioning that the Post-

Script PDL is a fully human-readable language that can

be created in a standard text editor, though it also sup-

ports binary data formats.

Stream-Oriented Representations Stream-oriented re-

presentations organize documents as a sequence of

characters or paragraphs. They may contain substan-

tial amounts of formatting information, but unlike the

page-oriented representations, generally do not encode

the exact appearance of the document on the page or

screen. The principal stream-oriented representations

are raw text, the Rich Text Format, and various word

processor formats.

A raw text document contains a sequence of char-

acters. Any organization of the characters into lines,

paragraphs, or pages is specified by the use of specialized

characters such as the ASCII line feed and form feed

characters. The most common character coding scheme

is ASCII, but the more general Unicode format is also

seen and may grow in importance over time. Raw text

944D Document Representations (Inclusive Native and Relational)
has the advantages of simplicity, compactness, porta-

bility, and ease of processing. Its primary disadvantage

is the inability to represent almost any useful typo-

graphic, hypertext, or multimedia effect. The raw text

representation is remarkably robust and remains in

widespread use, especially in the software development

community, where the ubiquity of programming tools

makes raw text an attractive representation. It is also

a common representation for e-mail.

Rich Text Format (RTF) [10] is a proprietary rep-

resentation that is widely used for interchange among

word processors. Its canonical form is a human-

readable ASCII markup language that describes a doc-

ument as a stream of paragraphs that may be divided

into sections. RTF’s sections and paragraphs embody

regions of content with common formatting character-

istics. Document content appears inside the para-

graphs along with other markup.

Word processor representations resemble RTF in

that they describe a sequence of paragraphs but until

recently most have been proprietary, binary represen-

tations. Recently, human-readable non-proprietary

formats for word processing have begun to be accepted,

with the most important being the Open Document

Format [11]. This format uses the tree-structured XML

markup language, but its underlying structure is still

a stream of paragraphs.

Tree-Structured Representations For databases, the

most interesting native document representations are

tree-structured markup languages. The most impor-

tant such language is the Extensible Markup Language

(XML) [3], which is essentially a simplification of

the earlier SGML standard. Because XML is simple,

general, and human-readable, it has become a standard

representation for data interchange.

XML is really two languages: a markup syntax for

documents and a context-free grammar meta-language

for defining classes of documents that can be encoded

in the markup syntax. The markup syntax primarily

defines how a tree of elements with embedded content

is specified by marking up the content with tags.

The following example shows a trivial, but complete,

‘‘bookdata’’ document. The bookdata element is

the root of the tree and contains title and editor

elements. The bookdata element also has two attri-

butes, which record the topic and year of the book.

In general, elements are designed to hold content that

will be shown to people and attributes are designed to
hold metadata that could be processed by automated

tools.

<? xml version="1.0" ?>

<bookdata topic="Databases" year ="2008">

<title>Encyclopedia of Database

Systems</title>

<editor>Ling Liu</editor>

<editor>Tamer \:{O}zsu</editor>

</bookdata>

XML has several important technical and philosophi-

cal differences from the page- and stream-oriented

representations.

� Unlike the PDLs, XML is almost purely declarative. It

is not a programming language and has no compu-

tational features. An XML document describes only

a hierarchical organization of content, possibly with

metadata.

� XML is designed to represent the logical organiza-

tion of a document rather than its appearance.

It has no predefined formatting features and

does not make any assumptions about media or

devices.

� While designed for representing documents, XML

is not limited to this application. In fact, XML’s

simplicity and clean syntax have resulted in many

unanticipated uses.

� XML is supported by a rich ecosystem of related

languages that support tasks including document

transformation (XSLT [8]) and alternative grammar

systems (or schemas) for defining document classes

(XSchema [5]). Especially important for databases

is the XQuery document query language [2].

XML documents are often categorized into three clas-

ses: structured, semi-structured, and marked-up text.

In a structured XML document class, all documents

have the same tree structure and every element has a

unique name. In semi-structured document classes,

there may be variations in the tree structure at certain

locations, such as alternate element types or variable

repetition of one element or a group of elements. In

both semi-structured and structured documents, doc-

ument content is only found in the leaf elements of the

tree. In contrast, marked-up text can have content at

any level of the tree and may permit huge variations in

tree structure. Marked-up text may have important

elements of logical structure, such as sentences, that

are not explicitly marked-up by elements and span

Document Representations (Inclusive Native and Relational) D 945

D

multiple elements. Most database research has focused

on structured and semi-structured XML.

Hybrid Representations Hybrid representations can

deliver the advantages of multiple representations at

the cost of increased complexity. They are most com-

monly seen as extensions that address the limitations

of page-oriented representations.

The combination of page images with a parallel

text stream has already been mentioned. This represen-

tation can be used to create document interfaces that

show the scanned image, but allow indexing and search-

ing of the content, including highlighting those portions

of the original page image that match a search string.

Considerably more elaborate is Tagged PDF [1],

which extends the page description core of PDF with a

structural tagging system to encode the roles of text frag-

ments (e.g., body text, footnote, etc.), adds explicit word

breaks, and maps all fonts to Unicode. Used properly,

Tagged PDF ensures that the content of a PDF document

can be scanned in the same order that a human reader

would scan it and clearly identifies elements likemarginal

notes and headers that are not part of the main text

flow. It also supports search and indexing, as well as

being able to encode some of the semantics of XML.

Relational Representations

In relational databases, documents can be represented

either as atomic entities, using large objects (LOB), or

decomposed into their component parts. The large

object approach can be used with all native representa-

tions. Decomposition is usually called ‘‘shredding’’ and

is only used with XML documents.

Large Object Representation LOB representation

stores an entire document or medium-sized parts of

an entire document as a large object in a relational

table. This is the natural representation for docu-

ments whose native representation is page-oriented

or stream-oriented and has some real advantages for

XML documents as well. Long documents may be

divided into a sequence of smaller LOBs, such as indi-

vidual pages or sections.

LOB representation is useful for documents that

do not need to be updated frequently and for which

interesting metadata can be computed at the time of

insertion into the database. In this case, the relational

system provides an efficient way to find documents

based on queries against the metadata. For page- and
stream-oriented documents, LOB representation is a

natural choice, because the internal structure of the

documents (i.e., pages or sections/paragraphs) princi-

pally conveys presentation and has little semantics

useful for queries and updates. In contrast, LOB repre-

sentation is unlikely to be used for XML documents

unless they are quite unstructured or if a description

of the document class is not available.

LOB representation has the disadvantage that

standard relational operations cannot be used to search

or update the internal structure and content of the

documents. Instead, access and update operations

must be performed by other tools. While these tools

may be useful and efficient for single documents, the

performance and scalability benefits of the relational

approach for large-scale collections are lost when using

the LOB representation.

Shredded Representation Shredding is the process

of tearing apart an XML document into its component

elements for storage in database relations. There are

many trade-offs in designing both relations and

queries for the shredded elements. Draper [12] dis-

cusses the full range of choices. A key issue is whether

the schema for the XML document class is known.

When a schema is not available for an XML docu-

ment class, the edge table representation is used.

An edge table has one tuple for each element or attri-

bute in a document. The tuple has the following form:

Edge(ID, parentID, name, value)

The root element has a null parent ID and internal

nodes of the tree have null values. A useful optimiza-

tion is to replace the name with a pathID that points

to another table holding the full path names of the

nodes. Using pathIDs can reduce both table size and

the number of joins required for common queries.

When a schema is available for the documents,

inlining is a more efficient representation. Under inlin-

ing, elements are only placed in separate relations

when they can appear multiple times. Elements that

only appear once become columns in the relation for

their parents. In the earlier ‘‘bookdata’’ example, there

would be two relations: one for the bookdata element

that would have columns for the two attributes and for

the title; and another to hold the list of authors that

would be connected to the bookdata element via a

foreign key. The design of efficient queries over inlined

databases is challenging. Shanmugasundaram et al.

946D Document Representations (Inclusive Native and Relational)
[12] showed that a complex query structure called

Sorted Outer Union provides the best combination

of efficiency and generality.

A key problem when working with shredded XML

documents is correctly maintaining the order of the

elements. This problem arises because the order of

the content in documents is usually quite important,

but it is only encoded implicitly. In the earlier ‘‘bookdata’’

example, the order of the author’s names should be

preserved, but it is only apparent from the order

in which the names appear in the XML source code.

Relational databases do not represent order automatical-

ly, so additional informationmust be added to the tables.

Tatarinov et al. [14] showed that the best choice of order

information depends on the type of query load. When

updates are rare, it is best to store a global order number

(an integer representing the node’s position in a pre-

order tree traversal). For loads that mix updates and

accesses, a variable-length numbering system related to

the Dewey Decimal Classification system is superior.
Key Applications
Documents are pervasive in human society, so there

are many applications for document representations.

The most important application is the Web, which can

be viewed narrowly as a document-sharing system.

Every Web page is a document written in HTML or

XHTML (an adaptation of HTML to the rules of

XML). A growing number of Web documents are

derived from information represented in XML or

from XML fragments taken from a database. Because

Web browsers have only limited support for XML

itself, it is primarily used as a back-end representation.

Other important applications include:

� Scanned document images are widely used to rep-

resent for historical, legal, and financial documents.

Systems that support scholars typically have rich

metadata attached to the page images.

� Page description languages (especially PDF) are

widely used as electronic representations of the

final form of documents, especially business and

official documents that are also distributed in print

form.

� The pervasive use of word-processing software

makes stream-based representations ubiquitous

for business documents. The lack of widely-

adopted open standards presents a real challenge

for systems that try to support them.
Cross-references
▶Dewey Decimal System

▶Digital Libraries

▶Document

▶Document Databases

▶ Indexing Semi-Structured Data

▶Markup Language

▶Meta Data

▶ Semantic Web

▶XML

▶XPath/Xquery

▶XSL/XSLT
Recommended Reading
1. Adobe Systems Incorporated, PDF reference. Sixth edn.,

2006.

2. Boag S., Chamberlin D., Fernández M.F., Florescu D., Robie J.,

and Siméon J. XQuery 1.0: an XML query language. World Wide

Web Consortium (W3C), 2007.

3. Bray T., Paoli J., Sperberg-McQueen C.M., Maler E., and

Yergeau F., Extensible Markup Language (XML) 1.0. World

Wide Web Consortium (W3C), fourth edn., 2006.

4. Draper D. Mapping between XML and Relational Data. In

XQuery from the experts: a guide to the W3C XML query

language. chap. 6, Addison Wesley, 2003.

5. Fallside D.C. and Walmsley P. XML Schema Part 0: Primer.

World Wide Web Consortium (W3C), second edn., 2004.

6. Furuta R., Scofield J., and Shaw A. Document formatting

systems: survey, concepts, and issues. ACM Comput. Surv., 14

(3):417–472, 1982.

7. Goldfarb C.F. (ed.) Information processing – text and office

systems – Standard Generalized Markup Language (SGML).

International Organization for Standardization, Geneva,

Switzerland, 1986, International Standard ISO 8879.

8. Kay M. XSL transformations (XSLT) version 2.0. World

Wide Web Consortium (W3C), 2007.

9. Knuth D.E. and Plass M.F. Breaking paragraphs into lines.

Software Prac. Exper., 11(11):1119–1184, 1982.

10. Microsoft Office Word 2007 Rich Text Format (RTF) Specifi-

cation. 2007, version 1.9. Downloaded from microsoft.com,

November 2007.

11. OASIS, Open Document Format for Office Applications

(OpenDocument) v1.1. 2007, http://docs.oasis-open.org/office/

v1.1/OS/, 2007.

12. Shanmugasundaram J., Shekita E., Barr R., Carey M., Lindsay B.,

Pirahesh H., and Reinwald B. Efficiently publishing relational

data as XML documents. VLDB J., 10(2–3), 2001.

13. Simske S.J. and Baggs S.C. Digital capture for automated

scanner workflows. In Proc. 2004 ACM Symp. on Document

Engineering, 2004, pp. 171–177.

14. Tatarinov I., Viglas S.D., Beyer K., Shanmugasundaram J.,

Shekita E., and Zhang C. Storing and querying ordered

XML using a relational database system. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2002, pp. 204–215.

Dublin Core D 947
Document Retrieval

▶ Information Retrieval
D
Document Segmentation

▶Text Segmentation
Document Summarization

▶Text Summarization
Document Term Weighting

▶ Information Retrieval Models
Document Visualization

▶Text Visualization
Documents

▶Document representations (inclusive native and

relational)
Domain Relational Calculus

▶Relational Calculus
Downward Closure Property

▶Apriori Property and Breadth-First Search

Algorithms
DRM

▶Digital Rights Management
Dublin Core

JAMES CAVERLEE
1, PRASENJIT MITRA

2,

MARY LAARSGARD
3

1Texas A&M University, College Station, TX, USA
2Pennsylvania State University, University Park, PA,

USA
3University of California-Santa Barbara,

Santa Barbara, CA, USA

Definition
Dublin Core is a standardized metadata set for describ-

ing information resources like documents, videos,

images, services, and other digital artifacts. Dublin

Core is intended to provide a simple metadata model

that can be adopted across a wide range of commu-

nities in an effort to enhance semantic interoperability.

The Dublin Core Metadata Element Set has been for-

mally endorsed by a number of standards bodies in-

cluding ISO [5], NISO [7], and IETF [6].

Historical Background
In 1995, the Online Computer Library Center (OCLC)

and the National Center for Supercomputing Applica-

tions (NCSA) co-sponsored a workshop to address the

challenge of developing a common metadata set for

describing networked resources [10]. The workshop was

motivated in part by the explosive growth of the Web in

the early 1990s and the inherent difficulty in findingWeb

resources. The name ‘‘Dublin’’ in Dublin Core derives

from the location of this first workshop in Dublin, Ohio;

the term ‘‘Core’’ refers to the basic importance of the

elements defined in the metadata standard that can be

applied broadly across a wide range of resources.

In the years since the first Dublin Core workshop,

the community has hosted annual workshops and con-

ferences devoted to Dublin Core and metadata appli-

cations. The continued development and organization

of the metadata standard is overseen by the cross-

disciplinary Dublin Core Metadata Initiative [3].
Foundations
Supporting information access, organization, and

management functionalities in a massively distributed

medium like theWeb is a serious challenge. In an effort to

provide support for these operations, Dublin Core advo-

cates the use of metadata to provide descriptive informa-

tion about information resources found on the Web, on

948D Dublin Core
digital libraries, in enterprize settings, and in other net-

worked domains. In contrast to content-based features of

information resources (like the text indexing of a Web

document for use in a search engine), the metadata

approach can rely on features that describe a resource

(and that are not necessarily contained in the resource) to

support information discovery, categorization, and other

information management functionalities [1].

The Dublin Core metadata set provides a standar-

dized set of metadata elements for describing a wide

variety of resources – be they audio files, videos, docu-

ments, services, software packages, images, etc. By de-

sign, Dublin Core is simple so that metadata may be

generated by experts and non-experts alike. The basic

Dublin Core standard supports 15 different metadata

elements that can be applied to a resource (as shown

in Fig. 1). Each element may be used multiple times

to describe a single resource, and only the necessary

elements need be used in a description of a resource.

The 15 elements are intended to be core descriptors

that could be applied regardless of the particular

domain of interest. To illustrate, the element ‘‘Creator’’

could refer to the painter of a picture, the author of a

book, or to an organization that publishes a software

tool. Similarly, the ‘‘Description’’ element could refer

to a free text description of a resource, the abstract of

an article, a table of contents, or some other descriptive

image or text. Although Dublin Core supports great

flexibility in the use of these metadata elements, it is

good practice to rely on some standard vocabularies

for certain elements, e.g., to use standard MIME media

types for the element ‘‘Format.’’
Dublin Core. Figure 1. The 15 Simple Dublin Core elements
As a concrete example, consider a resource like

an academic research paper. Figure 2 illustrates some

relevant Dublin Core metadata for a sample paper.

Qualified Dublin Core

Dublin Core additionally supports optional qualifiers

thatmay be used to extend and refine the 15 basicDublin

Core elements. Qualifiers can be used for either (i)

element refinement; or (ii) declaring an encoding

scheme [2,9].

Element refinement narrows the meaning of an

element. For example, the element ‘‘Date’’ can be

refined to ‘‘Created,’’ meaning that the metadata asso-

ciated with the element ‘‘Date’’ refers to a creation date

of the resource, and not to the date it was modified.

Alternatively, ‘‘Date’’ could be refined to ‘‘Modified’’

if the semantics of ‘‘Date’’ are meant to convey the date

the resource was modified, but not created.

Declaring an encoding scheme provides additional

information about the element that can be used for inter-

preting the meaning of the element value. For example,

the ‘‘Subject’’ element may be qualified with an encoding

scheme for the Library of Congress Subject Headings

(LCSH), a standard set of subject headings that are widely

adopted in libraries. By relying on a controlled vocabulary

instead of free text, the ‘‘Subject’’ element may provide

clearer meaning to applications relying on Dublin Core.

Since Dublin Core is intended to be simple and

easy-to-use, applications built to work with Dublin

Core metadata should be able to ignore qualifiers en-

tirely and still function in a useful way, albeit with

some loss of expressiveness.
[4].

Dublin Core. Figure 2. Sample Dublin Core metadata for a research paper.

Dublin Core. Figure 3. Example RDF/XML markup using Dublin Core.

Dump D 949

D

Encoding Dublin Core

Dublin Core metadata can be represented in a number

of different formats, including plain text, HTML, XML,

and RDF. With the rise in interest in the Semantic

Web and other knowledge management activities,

there has been a push to see Dublin Core widely

adopted using RDF [8]. As an illustration of encoding

Dublin Core in RDF, Fig. 3 shows the RDF-encoded

metadata for the same resource described in Fig. 2.

Key Applications
Web, Semantic Web, digital libraries, business-

to-business exchange.

Cross-references
▶Metadata

▶Metadata Registry

Recommended Reading
1. Cathro W. Metadata: An Overview. Standards Australia Seminar,

1997.

2. Dublin Core Metadata Initiative. Dublin Core Qualifiers, 2000.
3. Dublin Core Metadata Initiative. 2008, http://dublincore.org.

4. Dublin Core Metadata Initiative. Dublin Core Metadata

Element Set, Version 1.1, 2008.

5. International Organization for Standardization. ISO 15836-

2003 Information and Documentation – The Dublin Core Meta-

data Element Set, 2003.

6. Internet Engineering Task Force. IETF RFC 5013 – The Dublin

Core Metadata Element Set, 2007.

7. National Information Standards Organization. ANSI/NISO

Z39.85-2007 The Dublin Core Metadata Element Set, 2007.

8. Nilsson M., Powell A., Johnston P., and Naeve A. Expressing

Dublin Core Metadata Using the Resource Description

Framework (RDF), 2008.

9. Weibel S. The State of the Dublin Core Metadata Initiative. Bull.

Am. Soc. Inf. Sci., 25(5):18–22, 1999.

10. Weibel S., Godby J., Miller E., and Daniel R. OCLC/NCSA

Metadata Workshop Report, 1995.
Dump

▶ Logging and Recovery

950D Duplicate Detection
Duplicate Detection

▶Record Matching

▶ Semantic Data Integration for Life Science Entities
Duplicate Semantics

▶Bag Semantics
Duplication

▶Replication
Durability

▶ACID Properties
Duration

▶Time Interval
DVDs

▶ Storage Devices
DW

▶Data Warehouse
Dynamic Graphics

DIANNE COOK

Iowa State University, Ames, IA, USA

Synonyms
Multivariate data visualization; Multiple linked plots;

Motion graphics; Rotation; Tour; Animation
Definition
Dynamic graphics for data, means simulating motion or

movement using the computer. It may also be thought of

as multiple plots linked by time. Two main examples of

dynamic graphics are animations, and tours. An anima-

tion, very generally defined, may be produced for time-

indexed data by showing the plots in time order, for

example as generated by an optimization algorithm.

A tour is designed to study the joint distribution of

multivariate data, in search of relationships that may

involve several variables. It is created by generating

a sequence of low-dimensional projections of high-

dimensional data – typically 1D or 2D – so that many

different aspects of high-dimensional data can be ob-

served. Tours are thus used to find interesting lower-

dimensional projections of the data, ideally for data

which contains real-valued variables. The data Xn�p is

projected into Ap�d to produce a data projection

Yn�d = Xn�p A p�d. The projection matrix Ap�d is

orthonormal. The coefficients in Ap�d are generated

so that all values have some given probability of being

chosen and consecutive projections are close to the

previous, to provide apparently smooth motion.

Historical Background
The grand tour was defined and named by Asimov [2].

It computes the projections uniformly from a (p� 1)-D

sphere. All possible projections are equally likely.

To provide a smooth path, he generated sequential

projections by following a path on a high-dimensional

torus. Buja and Asimov [3] further developed the grand

tour by using an interpolated geodesic random walk,

between randomly generated basis planes. This im-

provement ensures that the grand tour efficiently covers

the space of all projections (Grassmann manifold), and

that within-plane spin is absent. The mathematics and

algorithms for this approach is described in detail by

Buja et al. [4]. A simpler approach to generating a grand

tour is used by Tierney [13].

The grand tour was first implemented by Buja et al.

[5] and the work developed to include a guided tour,

where projections are chosen according to a measure of

interestingness (e.g., projection pursuit) and a correla-

tion tour, where two sets of variables are toured using

1D projections in the horizontal and vertical direc-

tions. A correlation tour is related to regression analy-

sis, modeling one or more response variables against

many explanatory variables. The guided tour was de-

veloped further by Cook et al. [8].

Dynamic Graphics. Figure 1. A sequence of projections from a tour using 2D projections of 6D data. Within seconds of

watching the tour clustering of the observations can be seen.

Dynamic Graphics D 951

D

Cook and Buja [7] developed manual controls

for the tour, enabling the user to manually change the

projection matrix coefficients, to assess the impact of

selected variables on the visible data structure. Wegman

[14] developed the full dimensional grand tour, where

the projection is displayed in parallel coordinates, and

also as a scatterplot matrix [6]. He further developed the

image grand tour to study remote sensing data [15].

Scott [12] developed the density grand tour, where each

1D projection is shown as a density. Huh [11] developed

a grand tour with a tail. Locations of points in previous

projections are plotted for a given time period in future

projections, giving a fuller sense of the motion of points.

Andrews curves [1] are a pre-cursor to the grand

tour. A general explanation of tours suitable for a

reasonably untechnical audience can be found in a

book chapter by Cook et al. [9].

Foundations
The tour is ideally suited for examining the joint dis-

tribution of multivariate data, for relatively small p (on

the order of small tens rather than hundreds), where

the variables take on real-values. Figures 1–3 compare

structure detection in a tour with that in a parallel

coordinate plot.

In Fig. 1 a set of eight 2D projections of 6D data are

taken from the movie of projections shown in a grand
tour. The data has three very well-separated clusters,

that are elliptically shaped in the six dimensions.

It should be noted that in this data, the three clusters

are not perfectly visible in any pair of the six variables.

Within seconds of viewing the tour, this is obvious to

even the most novice audience. Viewers clue to the

clusters by separations between points in certain pro-

jections and also the motion patterns of the points.

In a parallel coordinate plot (Fig. 2) the three

clusters are not readily detectable. A trained eye can

easily see two clusters, by recognizing two groups of

similar trends in the lines. The third cluster of lines

is a little more difficult to discern. If the three clusters

are identified using color, then they become much

more visible in the parallel coordinate plot (Fig. 3).

Generally tours are better than parallel coordinate

plots for this type of data and structure such as this,

clusters, outliers, linear or nonlinear dependencies,

and relatively small dimension. Parallel coordinates

are more appropriate when there is a mix of categorical

and continuous variables, or when there are a large

number of variables.

Tours are usually implemented with the inclusion

of some navigation support. Figure 4 provides an

example. The circle with radial line segments in the

center of the plot represents the projection matrix,

A, which for this projection is:

Dynamic Graphics. Figure 2. A parallel coordinate plot of the same 6D data as shown in Fig. 1. Two clusters of different

line traces are readily seen but the three clusters are not so obviously recognized.

Dynamic Graphics. Figure 3. When the three clusters are colored they are more recognizably clusters in the parallel

coordinates plot.

952D Dynamic Graphics
A ¼

0:215 � 0:775
0:065 0:081

0:053 � 0:102
0:298 0:589
0:786 � 0:108
0:490 0:155

2
6666664

tars1

tars2

head

aede1

aede2

aede3

3
7777775

Look at the magnitude and sign of these values to

interpret the plot structure. The variables aede2 and

aede3 contribute the most to the horizontal direction

(first column). In this direction the orange (open

circle) cluster is separated from the green (solid cir-

cle) cluster and to some extent the purple (cross)

cluster. The variables tars1 and aede1 contribute the

most to the vertical direction (column 2), with the

contribution of tars1 being negative. In this direction

the green (solid circle) cluster is separated from the
purple (cross) cluster and to some extent the orange

(open circle) cluster. This suggests that variables

aede2, aede3 contribute to distinguishing between

the orange (open circle) cluster from the other two,

and variables tars1, aede1 contribute to distinguishing

between green (solid circle) and purple (cross) cluster.

These interpretations would be checked using pair-

wise scatterplots (middle, right), univariate plots, or

parallel coordinates (Fig. 3). Using these additional

aids one would decide that tars1 separates green

(solid circle) from purple (cross), and that aede2 sepa-

rates green (solid circle) from orange(open circle). It is

really a combination of these variables which makes

the difference between the clusters marked, but indi-

vidual variables contribute in partial ways to the

separation.

Dynamic Graphics. Figure 4. Circle inside the tour projection (left) provides navigation support for the tour.

Scatterplots (middle, right) help to confirm the interpretation of structure.

Dynamic Graphics D 953

D

Key Applications
Tours are a critical part of many different types of multi-

variate analyses: clustering, classification, multivariate

tests, principal components analysis and multidimen-

sional scaling. These types of methods are used in

many,manydifferent applications, including astronomy,

biology, physics, social science, education, geology,

agronomy, ecology, credit risk, defense (Wegman et al.

[15] use the image grand tour to detect land mines in

satellite images). The tour also can be used to study

the geometry of high-dimensional spaces. Tours are an

integral part of exploratory data analysis.

Cook and Swayne [10] provide many more exam-

ples where the tour might be used to gain insight into

multivariate structure in data, or in the performance of

multivariate methods and algorithms.
Future Directions
There is a lot of scope for research in dynamic graphics.

For the tour, one might investigate different probabi-

lity distributions for choosing projections, particularly

for handling much larger numbers of variables, and

making use of sparseness. Studies might be done to

suggest the optimal viewing times for watching a tour

in order to recognize different types of structure. Some-

one might study tours on something other than Euclid-

ean space, to enable the study of more complex data. For

example, a tour on the space of all permutations could be

used to explore categorical data. Other methods for

guiding the tour would be useful. Large data poses a

problem, because points get over-plotted. The projec-

tions might be represented as density plots or convex
hulls, if these can be computed sufficiently fast. There are

interesting connections with statistical theory thatmight

be explored. For example, most random projections

of multivariate data look approximately Gaussian, is

related to the Central Limit Theorem.

URL to Code
http://www.ggobi.org

Cross-references
▶Business Intelligence

▶Classification

▶Clustering

▶Cluster Visualization

▶Curse of Dimensionality

▶Data Mining

▶Dimension

▶Dimensionality Reduction

▶ Exploratory Data Analysis

▶ Feature Selection for Clustering

▶Geographic Information System

▶ Information Extraction

▶Machine Learning in Computational Biology

▶Mining of Chemical Data

▶Multidimensional Scaling

▶Multivariate Visualization Methods

▶ Parallel Coordinates

▶ Principal Components Analysis

▶ Spatial Data Mining

▶Visual Analytics

▶Visual Classification

▶Visual Clustering

▶Visual Data Mining

954D Dynamic Integrity Constraints
Recommended Reading
1. Andrews D.F. Plots of high-dimensional data, Biometrics,

28:125–136, 1972.

2. Asimov D. The grand tour: a tool for viewing multidimensional

data, SIAM J. Sci. Stat. Comput., 6(1):128–143, 1985.

3. Buja A. and Asimov D. Grand tour methods: an outline, Com-

put. Sci. Stat., 17:63–67, 1986.

4. Buja A., Cook D., Asimov D., and Hurley C. Computational

Methods for High-Dimensional Rotations in Data Visualization,

In Handbook of Statistics: Data Mining and Visualization,

C.R. Rao, E.J. Wegman, J.L. Solka (eds.). Elsevier/North-

Holland, 2005, pp. 391–414.

5. Buja A., Hurley C., and McDonald J.A. A data viewer for multi-

variate data, Comput. Sci. Stat., 17(1):171–174, 1986.

6. Carr D.B., Wegman E.J. and Luo Q. ExplorN: Design Considera-

tions Past and Present, Technical Report 129, Center for Compu-

tational Statistics, George Mason University, Fairfax, VA, 1996.

7. Cook D. and Buja A. Manual controls for high-dimensional

data projections, J. Comput. Graph. Stat., 6(4):464–480, 1997.

8. Cook D., Buja A., Cabrera J., and Hurley C. Grand tour and

projection pursuit, J. Comput. Graph. Stat., 4(3):155–172, 1995.

9. Cook D., Lee E.-K., Buja A., and Wickham H. Grand tours,

projection pursuit guided tours and manual controls, In Hand-

book of Data Visualization, C.-H. Chen, W. Härdle A. Unwin

(eds.). Springer, Berlin, Germany, 2006.

10. Cook D. and Swayne D.F. Interactive and Dynamic Graphics for

Data Analysis: With R and GGobi, Springer, New York, 2007.

11. Huh M.Y. and Kim K. Visualization of Multidimensional Data

Using Modifications of the Grand Tour. J. Appl. Stat., 29

(5):721–728, 2002.

12. Scott D. Incorporating density estimation into other exploratory

tools, In Proc. of the Section on Statistical Graphics, 1995,

pp. 28–35.

13. Tierney L. LispStat: An Object-Oriented Environment for Sta-

tistical Computing and Dynamic Graphics, Wiley, New York,

1991.

14. Wegman E.J. The Grand Tour in k-Dimensions, Technical Re-

port 68, Center for Computational Statistics, George Mason

University, 1991.

15. Wegman E.J., Poston W.L., and Solka J.L. Image Grand Tour, In

Automatic Target Recognition VIII – Proc. SPIE, 3371, SPIE,

Bellingham, WA, 1998, pp. 286–294.
Dynamic Integrity Constraints

▶Temporal Integrity Constraints
Dynamic Taxonomies

▶ Faceted Search
Dynamic Web Pages

MARISTELLA MATERA

Polytechnico di Milano University, Milan, Italy

Definition
They are Web pages that are composed at run-time, by

dynamically extracting contents from a data source

and composing them into pre-defined page templates.

Key Points
Historically, hypertext navigation was meant as a way to

move among ‘‘static’’ documents, i.e., Web pages whose

HTML code includes both the content to be presented,

as well as the mark-up tags determining content rendi-

tion. Real-life Web applications however require the

capability of serving to the users pages that dynamically

publish content coming from one or more data sources.

For example, the content of the home page of a news

magazine is refreshed daily, by extracting the latest news

from the news repository. This requirement goes be-

yond the original capabilities of the HTTP protocol,

which is designed to exchange requests and resources

between the browser and the server, and not to govern

the process by which the desired resource is built.

Some server-side technologies have therefore been

introduced to overcome these limitations and to enable

the construction of Web pages ‘‘on the fly.’’ The most

common solution is to adopt server-side scripting

technologies (such as JSP or PHP), which enable

inserting into an HTML page template some program-

ming instructions that a server-side program execute

to compute the contents to be extracted dynamically

from the application data source. The result sent back

to the client is then a properly formatted HTML page,

including the extracted contents.

Other solutions imply the extension of the Web

server, through execution engines (for example Java

Servlet API) able to serve the requests for the dynamic

construction of Web pages.

Cross-references
▶Web Characteristics and Evolution

E

eAccessibility

CONSTANTINE STEPHANIDIS
1,2

1Foundation for Research and Technology – Hellas

(FORTH), Heraklion, Greece
2University of Crete, Heraklion, Greece

Definition
eAccessibility refers to the access of Information and

Communication Technologies (ICT) by people with

disabilities, with particular emphasis on the World

Wide Web. It is the extent to which the use of an appli-

cation or service is affected by the user’s particular

functional limitations or abilities (permanent or tem-

porary). eAccessibility can be considered as a funda-

mental prerequisite of usability.

Historical Background
The percentage of disabled citizens has increased dra-

matically in the last century due to life condition

improvements, higher life expectancy, and population

aging. This trend is anticipated to further increase in

the next decades.

Traditional efforts to provide eAccessibility for

users with disabilities were based on the adaptation

of applications and services originally developed for

able-bodied users. In the context of the Information

Society, this raises the fundamental issue of granting

to disabled citizens access to a variety of technologies

that become progressively more entangled with all

types of everyday activities.

Early technical approaches to eAccessibility mainly

focused on two directions. The first treats each appli-

cation separately, and takes all the necessary imple-

mentation steps to arrive at an alternative accessible

version (product-level adaptation). Practically, product-

level adaptation often implies redevelopment from

scratch. The second approach ‘‘intervenes’’ at the level of

the particular interactive application environment (e.g.,

MS-Windows) in order to provide appropriate software

and hardware technology so as tomake that environment
2009 Springer ScienceþBusiness Media, LLC
accessible through alternative means (environment-level

adaptation). The latter option extends the scope of

eAccessibility to cover potentially all applications run-

ning under the same interactive environment, rather

than a single application, and is therefore acknowl-

edged as a more promising strategy.

The above approaches have given rise to several

methods for addressing eAccessibility, including tech-

niques for the configuration of input/output at the

level of the user interface, and the provision of Assistive

Technologies. Popular Assistive Technologies support-

ing eAccessibility include screen readers and Braille

displays for blind users, screen magnifiers for users

with low vision, alternative input and output devices

for motor impaired users (e.g., adapted keyboards,

mouse emulators, joystick, binary switches), special-

ized browsers (e.g., [10]), and text prediction systems

(e.g., [4]). Assistive Technologies are legally defined in

the US as ‘‘Any item, piece of equipment, or system,

whether acquired commercially, modified, or custo-

mized, that is commonly used to increase, maintain,

or improve functional capabilities of individuals with

disabilities [15].’’

Despite progress, Assistive Technologies and dedi-

cated design approaches have been criticized for their

essentially reactive nature [13]. Although the ‘‘reac-

tive’’ approach to eAccessibility may be the only viable

solution in many cases, it suffers from potentially seri-

ous shortcomings, such as limited and low quality

access, as well as difficulties in development, mainte-

nance, and keeping pace with technological evolution.

Therefore, the need for more systematic and pro-

active approaches to the provision of eAccessibility has

emerged, leading to the concepts of Universal Access

and Design for All.

Foundations
Universal Access implies the accessibility and usability

of Information Society Technologies by anyone, any-

where, anytime, with the aim to enable equitable access

and active participation of potentially all citizens in

existing and emerging computer-mediated human

956E eAccessibility
activities. This can be achieved by developing univer-

sally accessible and usable products and services, which

are capable of accommodating individual user require-

ments in different contexts of use and independently

of location, target machine, or run-time environment.

The discipline of Human-Computer Interaction (HCI)

plays a critical role towards ensuring Universal Access

to computer-based products and services, as users

experience new technologies through contact with

their user interfaces.

In the context of Universal Access, eAccessibility

refers to the extent to which the use of an application

or service is affected by the user’s particular functional

limitations or abilities (permanent or temporary), as

well as by other contextual factors (e.g., characteristics

of the environment). This implies that, for each user

task of an application or service, and taking into acc-

ount specific functional limitations and abilities, as

well as other relevant contextual factors, there is a

sequence of input actions and associated feedback,

via accessible input/output devices, which leads to

successful task accomplishment.

Universal Access is predominantly an issue of

design. Thus, the question arises of how it is possible

to design systems that permit systematic and cost-

effective approaches to accommodating the require-

ments of potentially all users. To this effect, the concept

of Design for All has been revisited in recent years in

the context of HCI [14].

Design for All, or Universal Design, is well known

in several engineering disciplines, such as, for example,

civil engineering and architecture, with many applica-

tions in interior design, building and road construc-

tion. In the context of Universal Access, Design for All

either subsumes, or is a synonym of, terms such as

accessible design, inclusive design, barrier-free design,

universal design, etc., each highlighting different

aspects of the concept. It has a broad and multidisci-

plinary connotation, abstracting over different per-

spectives, such as:

1. Design of interactive products, services and appli-

cations, which are suitable for most of the potential

users without any modifications. Related efforts

mainly aim to formulate eAccessibility guidelines

and standards. This is pursued in the context

of international collaborative initiatives. A signifi-

cant example is the effort carried out by the W3C-

WAI Initiative in the area of Web accessibility
guidelines [16]. Another source of web accessibility

guidance is Section 508 of the US Rehabilitation

Act [15].

2. Design of products which have standardized inter-

faces, capable of being accessed by specialized user

interaction devices. An example of this approach is

the Universal Remote Console, defined as a combi-

nation of hardware and software that allows a user

to control and view displays of any (compatible)

electronic and information technology device or

service (or ‘‘target’’) in a way that is accessible and

convenient to the user [18].

3. Design of products which are easily adaptable to

different users (e.g., by incorporating adaptable or

customizable user interfaces). The latter approach

fosters a conscious and systematic effort to proactive-

ly apply principles and methods, and employ appro-

priate tools, in order to develop interactive products

and services which are accessible and usable by all

citizens in the Information Society, thus avoiding the

need for a posteriori adaptations, or specialized de-

sign. This entails an effort to build access features

into a product starting from its conception, through-

out the entire development life-cycle [12].

Independently from the approach through which it may

be achieved, accessibility aims to make the user experi-

ence of people with diverse functional or contextual

limitations as near as possible, in terms of task accom-

plishment, to that of people without such limitations.

Under a Universal Access perspective, accessibility has to

be ‘‘designed into’’ the system rather than decided upon

and implemented a posteriori. This raises several

requirements regarding the methods, techniques and

tools which can be used to integrate accessibility

throughout the development lifecycle of interactive pro-

ducts and services. In this context, eAccessibility implies

the concurrent (or adaptation driven) availability of

alternative modalities, external devices and interaction

styles to accommodate different needs. Therefore, mul-

timodality plays a very important role [3].

Key Applications
eAccessibility is relevant to all interactive applications

and services addressing citizens in the Information

Society, in a variety of domains of everyday life, in-

cluding healthcare, access to information, education,

entertainment, and public administration. Some

significant examples are reported below.

eAccessibility E 957

E

Web Accessibility

Access of disabled users to the World Wide Web involves

the accessibility of bothweb content and browsing appli-

cations (web browsers). Web content accessibility is

usually addressed through conformance to guidelines

[16]. Various tools are available for the automatic or

semiautomatic accessibility assessment and repair of

web content [17]. More recent approaches go in the

direction of automatic web content transformation to

more accessible versions (e.g., [8]), as well as server side

automatic adaptation [1]. Accessibility of web browsers

is addressed through dedicated design for particular

target user groups (e.g., blind users, [10]) as well as

adaptation based approaches. The universally accessible

AVANTI web browser [1] provides an interface to web-

based information systems for a range of user categories,

including: (i) ‘‘able-bodied’’ people, (ii) blind people,

(iii) motor-impaired people with different degrees of

difficulty in employing traditional input devices.
Media Accessibility

The term ‘‘rich media’’ indicates a broad range of

digital interactive media downloadable or embedded

in a web site, including video, animations, images, and

sound. This type of content can be viewed or used

offline with media players. Media accessibility is usually

addressed through the provision of equivalent infor-

mation perceivable through different senses, e.g., cap-

tioning, audio description, subtitling, and sign

language translation. This requires the availability of

authoring tools which support the appropriate provi-

sion of such information (e.g., [11]). Access to rich

media by people with disabilities also requires the

availability of accessible media players (e.g., [10]).
Accessibility in Education

eLearning systems typically rely on repositories of online

materials that are made available to learners and tea-

chers. The accessibility of eLearning content implies

more than web or media accessibility, as it requires not

only equivalence of information among different mod-

alities, but also its appropriateness for the learning

experience of users with diverse abilities. Meta-data clas-

sifications are under elaboration, which allow the classi-

fication of learning content according to the needs and

preferences for alternative presentations of resources,

methods of controlling resources, equivalent to the

resources themselves and enhancements or support
required by the user [9]. Access to educational material

by people with disabilities also implies accessible soft-

ware for the interactive delivery of such material, as

well as authoring tools supporting the provision of

educational content in an accessible form (e.g., [7]).
Game Accessibility

Computer games are usually quite demanding in terms

of motor, sensor and mental skills needed for interac-

tion control, and they often require mastering inflexi-

ble, quite complicated, input devices and techniques.

These facts often render games inaccessible to a large

percentage of people with disabilities. Furthermore,

with respect to HCI, computer games have fundamen-

tal differences from all the other types of software

applications for which accessibility guidelines and

solutions are becoming available. Current approaches

to game accessibility include the development of main-

stream games compatible with the use of assistive

technologies, the development of special-purpose

games, optimally designed for people with disabilities,

like audio-based games for blind people and switch-

based games for the motor-impaired, as well as

the development of universally accessible games.

Examples of the latter approach are the UA-Chess

web-based chess game [5] and Access Invaders ([6] –

a universally accessible version of the popular classic

‘‘Space Invaders’’ action game), which can be played

concurrently by people with different abilities and

preferences, including people with disabilities (e.g.,

low-vision, blind and hand-motor impaired), and

Access Invaders [17], a universally accessible version

of the popular classic ‘‘Space Invaders’’ action game.
Future Directions
In the years ahead, as a result of the increasing demand

for ubiquitous and continuous access to information

and services, Information Society Technologies are

anticipated to evolve towards a new computing para-

digm referred to as Ambient Intelligence. Such an

environment will be characterised by invisible (i.e.,

embedded) computational power in everyday appli-

ances and other surrounding physical objects, and

populated by intelligent mobile and wearable devices.

Ambient Intelligence will have profound consequences

on the type, content and functionality of the emerging

products and services, as well as on the way people

will interact with them, bringing about multiple new

958E EAI
requirements for the development of Information

Society Technologies. In such a dynamically evolving

technological environment, accessibility and usability

of such a complex technological environment by users

with different characteristics and requirements can

not be addressed through solutions introduced once

the main building components of the new environ-

ment are in place. In such a context, the concepts of

Universal Access and Design for All acquire critical

importance towards streamlining accessibility into

the new technological environment through generic

solutions [2]. However, in the context of Ambient

Intelligence, Universal Access will need to evolve in

order to address a series of new challenges posed by

the evolving technological environment. Such chal-

lenges include the distribution of interaction in the

physical environment, the optimal degree of automa-

tion vs. human control, the identification of concrete

human needs and requirements in such an environ-

ment, as well as issues related to health and safety,

privacy and security, and social implications. In order

to support the development of Universal Access solu-

tions for Ambient Intelligence, new methodologies to

capture requirements, appropriate development meth-

ods and tools, as well as design knowledge in the form of

guidelines and standards will have to be provided, thus

dramatically altering the current notion and practices

of eAccessibility.

Cross-references
▶Human-Computer Interaction

▶Multimodal Interfaces

▶Usability

▶Visual Interfaces
Recommended Reading
1. Doulgeraki C., Partarakis N., Mourouzis A., Antona M., and

Stephanidis C. Towards Unified Web-based User Interfaces. Tech-

nical Report 394, ICS-FORTH, Heraklion, Crete, Greece, 2007,

p. 283. Available online at: http://www.ics.forth.gr/ftp/tech-

reports/2007/2007.TR394_Towards_Unified_Web-based_UI.pdf.

2. Emiliani P.-L. and Stephanidis C. Universal access to ambient

intelligence environments: opportunities and challenges for peo-

ple with disabilities. IBM Syst. J. (Special Issue on Accessibility),

44(3):605–619, 2003.

3. Furner S., Schneider-Hufschmidt M., Groh L., Perrin P.,

and Hine N. Human factors guidelines for multimodal interac-

tion, communication and navigation. In Proc. 19th Int. Symp.

on Human Factors in Telecommunication, 2003.
4. Garay-Vitoria N. and Abascal J. Text prediction systems: a sur-

vey. Universal Access Inf. Soc., 4(3):188–203, 2006.

5. Grammenos D., Savidis A., and Stephanidis C. 1UA-Chess: A

universally accessible board game. In Universal Access in HCI:

Exploring New Interaction Environments - Proc. 11th Int. Conf.

on Human-Computer Interaction (HCI International 2005),

vol. 7, C. Stephanidis (ed.). Lawrence Erlbaum, Mahwah, NJ,

2005.

6. Grammenos D., Savidis A., Georgalis Y., and Stephanidis C.

1Access invaders: Developing a universally accessible action

game. In Computers Helping People with Special Needs, Proc.

Tenth Int. Conf. Springer, 2006, pp. 388–395.

7. Grammenos D., Savidis A., Georgalis Y., Bourdenas T., and

Stephanidis C. Dual educational electronic textbooks: the

starlight platform. In Proc. 9th Int. ACM SIGACCESS Conf.

on Computers and Accessibility, 2007, pp. 107–114.

8. Hanson V.L. and Richards J.T. A web accessibility service: An

update and findings. In Proc. 6th Int. ACM Conf. on Assistive

Technologies, 2004, pp. 169–176.

9. IMS Global Learning Consortium, http://www.imsglobal.org/

accessibility/index.html.

10. Miyashita H., Sato D., Takagi H., and Asakawa C. Making

multimedia content accessible for screen reader users. In Proc.

Int. Cross-Disciplinary Conf. on Web Accessibility, 2007, pp.

126–127.

11. National Center for Accesible Media, http://ncam.wgbh.org/

webaccess/magpie/.

12. Stephanidis, C. (ed.). User Interfaces for All - Concepts, Meth-

ods, and Tools. Lawrence Erlbaum, Mahwah, NJ, 2001.

13. Stephanidis C. and Emiliani P.L. Connecting to the informa-

tion society: a European perspective. Technol. Disabil. J.,

10(1):21–44, 1999.

14. Stephanidis C., Salvendy G., Akoumianakis D., Bevan N., Brewer

J., Emiliani P.L., Galetsas A., Haataja S., Iakovidis I., Jacko J.,

Jenkins P., Karshmer A., Korn P., Marcus A., Murphy H.,

Stary C., Vanderheiden G., Weber G., and Ziegler J. Toward an

information society for all: an international R&D Agenda. Int. J.

Human-Comput. Interaction, 10(2):107–134, 1998.

15. The Rehabilitation Act Amendments (Section 508). Available at

http://www.section508.gov/.

16. W3C – WAI. (1999). Web Content Accessibility Guidelines 1.0.

Available at http://www.w3.org/TR/WCAG10/.

17. Web Accessibility Evaluation Tools: Overview. http://www.w3.

org/WAI/ER/tools/.

18. Zimmermann G., Vanderheiden G., and Gilman A. Universal

remote console - prototyping for the alternate interface access

standard. In Universal Access: Theoretical Perspectives, Practice

and Experience - Proc. Seventh ERCIM UI4ALL Workshop,

2002, pp. 524–531.
EAI

▶ Enterprise Application Integration

ECA Rules E 959
EC Transactions

▶ e-Commerce transactions
E
ECA Rule Action

JONAS MELLIN, MIKAEL BERNDTSSON

University of Skövde, Skövde, Sweden

Definition
An ECA rule action is typically arbitrary code invoked

if the condition of a triggered rule evaluates to true.
Key Points
The ECA rule actions are executed in response to

events triggering rules whose conditions evaluates

to true. The action is executed as part of a transaction

or as a transaction depending on the coupling mode in

the system. One major problem is that several actions

can be executed concurrently and these may be in

conflict. Another major problem is that executing an

action may results in events triggering rules, that is,

cascading rule triggering.
Cross-references
▶ ECA Rules

▶ ECA Rule Condition
ECA Rule Condition

JONAS MELLIN, MIKAEL BERNDTSSON

University of Skövde, Skövde, Sweden

Definition
An ECA rule condition is either a database query, a

logical expression or a call to a subprogram (function

or method) executing arbitrary code returning true

or false. If database queries are employed, then a

non-empty set is equivalent to true and an empty set

is equivalent to false.
Key Points
A key issue of an ECA rule condition is that it ought to

take parameters carried by the event triggering the

rule that, in turn, evaluates the condition. The condition

either returns a set (as a result of an SQL query) or a

boolean value (as a result of evaluation of the logical

expression or the execution of the subprogram). An

empty set is equal to false, and a non-empty set is equal

to true. Another key issue is that results of the condition

evaluation can be used to optimize rule action execu-

tion in many cases. Thus, there is a need to pass para-

meters from the condition evaluation to the rule action

execution.

Cross-references
▶ ECA Rules

▶ ECA Rule Action
ECA Rules

MIKAEL BERNDTSSON, JONAS MELLIN

University of Skövde, Skövde, Sweden

Synonyms
Triggers; Event-condition-action rules; Reactive rules

Definition
An ECA rule has three parts: an event, a condition, and

an action. The semantics of an ECA rule are: when the

event has been detected, evaluate the condition, and

if the condition is satisfied, execute the action.

Historical Background
ECA rules are used within active databases for support-

ing reactive behavior and were first proposed in the

HiPAC project [2].

Foundations
The semantics of an ECA rule is straightforward: when

an event is detected, evaluate the condition, and if the

condition is true, then execute the action. There are a

number of reasons why the reactive behavior is ab-

stracted to three different parts [1]:

First of all, events, conditions, and actions have

different roles. An event specifies when to trigger a

rule, a condition specifies what to check, and an action

960E ECM
specifies what to execute in response to the event.

Thus, the semantics of an ECA rule is clean, and avoids

ad hoc mixing of events, conditions, and actions.

Second, the separation into events, conditions, and

actions is also necessary if the application requires

flexible execution semantics, i.e., coupling modes.

Third, the distinct roles facilitates optimization.

The event part is a prerequisite for evaluating the

condition, thus conditions are evaluated when the

event occurs, and not always. If the active database

only allows specification of rule conditions as query

statements against the database, then the condition

part is a pure question on the database state and the

active database can thereby utilize well known query

optimization techniques.

Finally, conceptual modeling of reactive applica-

tions is made simpler if there is a corresponding notion

of events both within the application domain and

within the active database.

Cross-references
▶Active Database (aDB)

▶Active Database (Management) System (aDBS/

aDBMS)

Recommended Reading
1. Dayal U. Ten years of activity in active database systems: what

have we accomplished? In Proc. First Int. Workshop on Active

and Real-Time Database Systems, 1995, pp. 3–22.

2. Dayal U., Blaustein B., Buchmann A., et al. S.C. HiPAC:

a research project in active, time-constrained database manage-

ment. Tech. Rep. CCA-88-02, Xerox Advanced Information

Technology. Cambridge, MA, USA, 1988.
ECM

▶ Enterprise Content Management
e-Commerce Transactions

JARI VEIJALAINEN

University of Jyvaskyla, Jyvaskyla, Finland

Synonyms
Electronic commerce transactions; EC transactions
Definition
‘‘An electronic transaction is the sale or purchase of

goods or services, whether between businesses, house-

holds, individuals, governments, and other public or

private organizations, conducted over computer media-

ted networks. The goods and services are ordered

over those networks, but the payment and the ultimate

delivery of the good or service may be conducted on or

off-line.’’ [1]

A mobile e-Commerce transaction is an

e-Commerce transaction that is initiated and per-

formed using a mobile device, such as a mobile phone

or a laptop, over a wireless access network or a short-

range wireless link.

Key Points
E-commerce transactionwas defined by OECD [1] from

business and statistical perspective. The parties above

can be individual customers (C), companies (B), or

governments (A). One speaks accordingly about

B2C, B2A, B2B, C2C e-Commerce and e-Commerce

transactions. Historically, Electronic Data Interchange

(EDI) was the first technology used in B2B and B2A

e-commerce since 1970’s. EDI is based on a number of

agreed-upon (EDIFACT)message types whose instances

are exchanged by the parties. Notice that B2C, B2A, B2B

and C2C e-Commerce are usually governed by different

laws. HTTP, HTML, and WWW server and browser

technology matured during 1990’s and E-commerce for

individual customers (B2C, C2C) became possible.

Physical (tangible) goods need to be delivered through

a separate logistics channel, whereas digital information

(‘‘intangible goods’’) can be delivered through the same

digital network as the order. Especially the global digital

network (‘‘Internet’’), simultaneous emergence of suit-

able digital contents (software, music, videos, maps,

etc.), and global payment infrastructure (credit cards,

international banking) havemade global digital B2C and

other e-Commerce to explode since mid 1990’s. Per-

ceived as a distributed application one can require that

a typical (B2C) e-Commerce transaction, duringwhich a

customer buys a good or goods, must satisfy money

atomicity, goods atomicity, and certified delivery [2]. A

more technical view is that an e-Commerce transaction

is in general implemented as a distributed, hierarchical

workflow crossing organizational borders. While per-

formed, it must satisfy semantically defined atomicity

constraints at each level [3]. Money atomicity and

other desired properties follow from the constraints

Effectiveness Involving Multiple Queries E 961

E

and thus the system implementation must enforce

them. The challenges are that the steps must be per-

formed by autonomous organizations, the workflow

can last days or weeks (order book from USA to

Europe) and that the originating entity (customer’s

terminal) cannot directly control the emerging execu-

tion or its duration, because it cannot decide or even

know the emerging structure of the workflow. Rather,

the latter is dynamically decided by the seller and its

subcontractors (suppliers). A further challenge is that

the customer can later optionally cancel the order and

return the received goods to the seller. The time win-

dow typically varies from 7 to 30 days depending on

the local consumer protection legislation. Concep-

tually, this possible phase belongs to the E-commerce

transaction, but in practice this is taken care of by a

distinct exception handling transaction that is often

semi-automatically or manually performed.

Cross-references
▶Atomicity

▶Workflow Schema

▶Workflow Transactions

Recommended Reading
1. Annex 4. The OECD definitions of Internet and E-commerce

transactions. Available at: http://www.oecd.org/dataoecd/34/16/

2771174.pdf

2. Tygar D. Atomicity in electronic commerce, Chapter 33. In

Internet Besieged, P. Denning, D. Denning (eds.). ACM Press

and Addison Wesley, USA, 1997, pp. 389– 405.

3. Veijalainen J., Terziyan V., and Tirri H. Transaction management

for M-commerce at a mobile terminal. Electronic Commerce

Research and Applications., 5(3):229–245, 2006.
Eddies

▶Adaptive Query Processing
Edge Detection

▶ Image Segmentation
eDictionary

▶ Electronic Dictionary
eEncyclopedia

▶ Electronic Encyclopedia
EERM, HERM

▶ Extended Entity-Relationship Model
Effectiveness Involving Multiple
Queries

ERIC C. JENSEN
1, STEVEN M. BEITZEL

2, OPHIR FRIEDER
3

1Twitter, Inc., San Francisco, CA, USA
2Telcordia Technologies, Piscataway, NJ, USA
3Georgetown University, Washington, DC, USA

Synonyms
Relevance evaluation of IR systems

Definition
In information retrieval (IR), effectiveness is defined as

the relevance of retrieved information to a given query.

System effectiveness evaluation typically focuses on the

problem of document retrieval: retrieving a ranked

list of documents for each input query. Effectiveness

is then measured with respect to an environment of

interest consisting of the populations of documents,

queries, and relevance judgments defining which of

these documents are relevant to which queries. Sam-

pling methodologies are employed for each of these

populations to estimate a relevance metric, typically a

function of precision (the ratio of relevant documents

retrieved to the total number of documents retrieved)

and recall (the ratio of relevant documents retrieved to

the total number of relevant documents for that

query). Conclusions about which systems outperform

others are drawn from common experimental design,

typically focusing on a random sample of queries, each

with a corresponding value of the relevance metric.

These individual measurements for each query must

be aggregated across a sufficiently large sample of

queries to draw conclusions with confidence.

Historical Background
Effectiveness evaluation can be divided into user-

centered evaluation, where users are given access to

962E Effectiveness Involving Multiple Queries
an information retrieval system and observed while

attempting a task, and system (ad hoc) evaluation

where the retrieval process is evaluated over multiple

queries without user interaction. The Cranfield experi-

ments defined information retrieval experimentation

in terms of a document collection, a set of queries, and

a corresponding set of relevance judgments for each of

those queries [3]. However, they assumed that the

relevance of every document in the collection would

be judged for each query. The Text REtrieval Confer-

ence (TREC) extended this methodology to construct

reusable test collections without judging every docu-

ment in the collection. They achieve this by holding

constant the test collection and query set, pooling

the top X results (typically 100) from each system

and manually judging each document in the pool as

relevant or irrelevant. It has been shown that if X

(the judgment depth) is sufficiently large, these collec-

tions are reusable, in that the relative effectiveness of

runs from new systems over the same documents and

queries can be evaluated simply by applying the exist-

ing judgments and assuming documents that are not

judged are irrelevant [1]. Recent work examines how

to scale evaluation to collections the size of the World

Wide Web [2].

Foundations
Evaluation paradigms based on Cranfield (including

TREC) make several common assumptions:

� Documents are either relevant or irrelevant (rele-

vance is binary).

� Relevance of a given document is independent of

any others (relevance is independent).

� The information need for which the query was

derived does not change (static users).

Although these assumptions are obviously untrue in

practice, they continue to be the basis for simplifying

the evaluation problem. Various tracks at TREC have

investigated search tasks where these assumptions are

particularly broken. For example, navigational search,

where users are looking for a particular destination as

opposed to all of the information about a given topic

was studied for several years [4].

The majority of published work in information

retrieval leverages the TREC methodology and its

reusable test collections. This is due not only to the

scientific virtue of repeatable experiments, but also to

the extraordinary effort required to evaluate the
effectiveness of information retrieval systems. Judging

more and more documents as new retrieval algorithms

are evaluated is often prohibitive. However, the growth

of very large document collections such as the Web has

called into question the reusability of test collections

developed in this manner. Rather, some results indicate

that simply judging each of the top ranked results to a

shallow depth for a larger number of queries may be

more efficient for achieving reproducibility on such

large collections [6]. Most recently, methods of incor-

porating automatic evaluations (such as click through

evidence or known results from taxonomies) with

manual ones have been developed to reach reproduc-

ible conclusions with less manual effort [5].

There are many specific metrics available for com-

bined measurement of precision and recall, and for

aggregating these measurements across queries. The

F-measure is often used to combine point-wise preci-

sion and recall in tasks where only a single measure-

ment of each is available. Evaluating ranked lists,

however, provides an inherent threshold mechanism

for taking many such measurements, each at a different

depth into that list. Average precision combines these

measurements at varying depths, and is aggregated

across multiple queries by either the arithmetic mean

(MAP – Mean Average Precision) or geometric one

(GMAP – Geometric Mean Average Precision). Let

APn represents the Average Precision value for a

query from a set of n queries, then MAP and GMAP

can be computed as follows:

MAP ¼ 1

n

X
n

APn

GMAP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiY
n

APn
n

r

R-precision takes the precision and recall measure-

ments at depth R where R is the number of relevant

documents for that query, which averages well across

queries with varying numbers of relevant documents.

The arithmetic mean of the R-precision values for an

information retrieval system over a set of n queries is

called the Average R-precision.

Other information retrieval tasks, such as naviga-

tional searches focusing on one correct answer, do

not involve a recall component. These are often eval-

uated by the reciprocal rank of the correct result in

the list. Specifically, the Reciprocal Rank value of a

query is the reciprocal of the rank at which the first

Ehrenfeucht-Fraı̈ssé Games E 963

E

relevant result was retrieved for the query. When

the Reciprocal Rank values are averaged across multi-

ple queries, the measure is called the Mean Reciprocal

Rank (MRR).

Key Applications
As in any field, improvements in information retrieval

depend on the ability to evaluate. Researchers continue

to leverage these techniques to refine retrieval algo-

rithms. Search is also one of the most used features

on the web, making evaluating its effectiveness critical.

Data Sets
Text REtrieval Conference test collections: http://trec.

nist.gov.

URL to Code
TREC evaluation metric calculator: http://trec.nist.

gov/trec_eval/.

Cross-references
▶Average Precision

▶Average Precision Histogram

▶Average R-Precision

▶GMAP (Geometric Mean Average Precision)

▶MAP (Mean Average Precision)

▶MRR (Mean Reciprocal Rank)

▶ Precision-Oriented Effectiveness Measures

▶R-Precision

▶ Standard Effectiveness Measures

Recommended Reading
1. Buckley C. and Voorhees E.M. Evaluating evaluation measure

stability. In Proc. 23rd Annual Int. ACM SIGIR Conf. on Re-

search and Development in Information Retrieval, 2000, pp.

33–40.

2. Clarke C.L.A., Craswell N., and Soboroff I. Overview of the

TREC 2004 Terabyte track. In Proc. 15th Text Retrieval Confer-

ence, 2006, NIST Special Publication.

3. Cleverdon C.W., Mills J., and Keen E.M. Factors determining the

performance of indexing systems. Cranfield CERES: Aslib Cran-

field Research Project, College of Aeronautics, Cranfield. vol. 1:

Design, vol. 2: Results, 1996.

4. Hawking D. and Craswell N. Overview of the TREC 2001

web track. In Proc. 10th Text Retrieval Conference, 2001. NIST

Special Publication.

5. Jensen E.C., Beitzel S.M., Chowdhury A., and Frieder O.

On repeatable evaluation of search services in dynamic environ-

ments. ACM Trans. Inf. Syst., 26(1), 2007.

6. Sanderson M. and Zobel J. Information retrieval system evalua-

tion: effort, sensitivity, and reliability. In Proc. 28th Annual Int.

ACM SIGIR Conf. on Research and Development in Informa-

tion Retrieval, 2005, pp. 162–169.
EF-Games

▶ Ehrenfeucht-Fraı̈ssé Games
egd

▶ Equality-Generating Dependencies
EHR

▶ Electronic Health Record
Ehrenfeucht-Fraı̈ssé Games

NICOLE SCHWEIKARDT

Johann Wolfgang Goethe-University Frankfurt am

Main, Frankfurt, Germany

Synonyms
Ehrenfeucht games; EF-games

Definition
The Ehrenfeucht-Fraı̈ssé game (EF-game, for short) is

played by two players, usually called the spoiler and the

duplicator (in the literature, the two players are some-

times also called Samson andDelilah or, simply, player I

and player II). The board of the game consists of two

structures A and B of the same vocabulary. The spoi-

ler’s intention is to show a difference between the two

structures, while the duplicator tries to make them

look alike.

The rules of the classical EF-game are as follows:

The players play a certain number r of rounds. Each

round i consists of two steps. First, the spoiler chooses

either an element ai in the universe of A or an element

bi in the universe of B. Afterwards, the duplicator

chooses an element in the other structure, i.e.,

she chooses an element bi in the universe of B if the

spoiler’s move was in A, respectively, an element ai
in the universe of A if the spoiler’s move was in B.

After r rounds, the game finishes with elements

a1,...,ar chosen in A and b1,...,br chosen in B, and
exactly one of the two players has won the game.

Roughly speaking, the duplicator has won if and only

964E Ehrenfeucht Games
if the structures A and B, restricted to the elements

chosen during the rounds of the game, are indistin-

guishable. To give a precise description of the winning

condition let us assume, for simplicity, that the vocab-

ulary of the structures A and B only contains relation

symbols. Precisely, the duplicator has won the game if

and only if the following two conditions are met: (i) for

all i,j 2{1,...,r}, ai = aj iff bi = bj, and (ii) for each arity k,

each relation symbol R of arity k in the vocabulary, and

all i1,...,ik 2{1,...,r}, the tuple ðai1;:::;aik Þ belongs to the

interpretation of R in the structure A if and only if the

tuple ðbi1;:::;bik Þ belongs to the interpretation of R in

the structure B.
Since the game is finite, one of the two players must

have a winning strategy, i.e., he or she can always win

the game, no matter how the other player plays.

Key Points
EF-games are a tool for proving expressivity bounds

for query languages. They were introduced by Ehren-

feucht [1] and Fraı̈ssé [3]. The fundamental use of the

game comes from the fact that it characterizes first-order

logic as follows: The duplicator has a winning strategy in

the r-round EF-game on two structures A and B of the

same vocabulary if, and only if, A and B satisfy the

same first-order sentences of quantifier rank at most r

(recall that the quantifier rank of a first-order formula

is the maximum nesting depth of quantifiers occurring

in the formula). This is known as the Ehrenfeucht-

Fraı̈ssé Theorem, and it gives rise to the following meth-

odology for proving inexpressibility results, i.e., for

proving that certain Boolean queries cannot be

expressed in first-oder logic: To show that a Boolean

query Q is not definable in first-order logic, it suffices

to find, for each positive integer r, two structuresAr and

Br such that (i) Ar satisfies query Q, (ii) Br does not

satisfy query Q, and (iii) the duplicator has a winning

strategy in the r-round EF-game on Ar and Br .

Using this methodology, one can prove, for exam-

ple, that none of the following queries is definable in

first-order logic: ‘‘Does the given structure’s universe

have even cardinality?’’, ‘‘Is the given graph

connected?’’, ‘‘Is the given graph a tree?’’ (cf., e.g., the

textbook [4]).

In fact, the described methodology is the major tool

available for proving inexpressibility results when

restricting attention to finite structures. Applying it,

however, requires finding a winning strategy for the

duplicator in the EF-game, and this often is a non-trivial
task that involves complicated combinatorial arguments.

Fortunately, techniques are known that simplify this

task, among them a number of sufficient conditions

(e.g., Hanf-locality and Gaifman-locality) that guaran-

tee the existence of a winning strategy for the duplica-

tor (see e.g., the survey [2] and the textbook [4]).

Variants of EF-games exist also for other logics than

first-order logic, e.g., for finite variable logics and for

monadic second-order logic (details can be found in

the textbook [4]).
Cross-references
▶ Expressive Power of Query Languages

▶ FOL formulae syntax

▶ Locality

▶ Logical Structure

Recommended Reading
1. Ehrenfeucht A. An application of games to the completeness

problem for formalized theories. Fundamenta Mathematicae,

49:129–141, 1961.

2. Fagin R. Easier ways to win logical games. In Descriptive Com-

plexity and Finite Models, N. Immerman, P.G. Kolaitis (eds.).

DIMACS Series in Discrete Mathematics and Theoretical Com-

puter Science 31. American Mathematical Society, 1997,

pp. 1–32.

3. Fraı̈ssé R. Sur quelques classifications des systèmes de relations.

Université d’Alger, Publications Scientifiques, SérieA(1):35–182,

1954.

4. Libkin L. Elements of Finite Model Theory. Springer, Berlin,

2004.
Ehrenfeucht Games

▶ Ehrenfeucht-Fraı̈ssé Games
Electronic Commerce Transactions

▶ e-Commerce transactions
Electronic Data Capture

▶Clinical Data Acquisition, Storage and Management

Electronic Dictionary E 965

E

Electronic Dictionary

ROBERT A. AMSLER

CSC, Falls Church, VA, USA

Synonyms
eDictionary; Machine-readable dictionary (MRD);

Terminological database

Definition
An electronic dictionary contains lexicographic infor-

mation that is stored and accessed via a computer.

The term ‘‘electronic dictionary’’ may refer to the

data alone (e.g., a machine-readable dictionary), but

more typically refers to a software or software/hard-

ware system that provides access to dictionary data.

Although a dictionary may include encyclopedic

entries, it is typically distinct from an electronic ency-

clopedia. Terminological databases are special-purpose

dictionaries that are used primarily to distinguish

domain-specific terminology and choose appropriate

terms when translating technical documents. Thesauri

are special-purpose word books organized by relation-

ships between words. They may contain definitions,

but most famously, Roget’s Thesaurus (available in

electronic form from Project Gutenberg) does not.

Historical Background
The first widely available electronic data from print

dictionaries were produced in 1966–1968 by John

Olney at System Development Corporation. At that

time, compositor tapes were created by commercial

printers solely for their use in printing books under

contract with publishers. Printers encoded typesetting

information in proprietary formats. Even dictionary

publishers had no access to the electronic form of the

data. Therefore, to create an early electronic dictionary,

Olney supervised the transcription of the contents

of the Merriam-Webster New Pocket Dictionary

(MPD) and the Merriam-Webster Seventh Collegiate

Dictionary (W7) into punch-card images, which he

subsequently distributed under license as multi-reel

magnetic tape data sets.

As publishers began to realize the value of retaining

the content of their dictionaries in electronic form,

they began requesting printers to provide a digital

copy of the typesetting data along with the print copies

of the dictionary. The version of the Collins English
Dictionary distributed by the Oxford Text Archive

illustrates non-standard print formatting codes as

used by commercial print houses.

Subsequently, publishers embraced text encoding

standards, such as SGML. They teamed up with com-

puter scientists to convertmanyof their books, including

dictionaries, to use such standard formatting, and

requested printers to typeset their dictionaries from

these standard formats. The largest project to convert a

legacy print text dictionary into contemporary markup

text data was carried out by the Oxford University Press,

in conjunctionwith IBMand theUniversity ofWaterloo,

to computerize the Oxford English Dictionary [7].

The advent of the personal computer and CD-ROM

readers led to the direct sale of CD-ROM versions of

print dictionaries with proprietary interfaces and encod-

ings of the text content. The World Wide Web also

provided publishers with the opportunity to sell sub-

scription-based access to electronic monolingual and

bilingual dictionaries.

In 1978–1980, Amsler [2] directed a project at

the Linguistics Research Center of The University of

Texas at Austin to produce the first taxonomically

structured dictionary from the Olney 1968 MPD.

The project employed graduate students to manually

‘‘disambiguate’’ the kernel terms in dictionary defini-

tions, providing the basis for connecting the dictionary

entries defined by those terms into a ‘‘tangled’’ hierar-

chy. Olney had proposed such an enterprise a decade

earlier, but had run out of funding before it could be

undertaken.

Subsequent to Amsler’s work, Roy Byrd [3] at IBM

began a comprehensive program of computational

lexicology work to use the contents of the W7 for

computational linguistics. Using a new parsing algo-

rithm for dictionary definitions, Byrd et al. also created

a taxonomically structured version of the W7, but due

to copyright restrictions neither the Amsler nor the

Byrd taxonomic dictionaries were ever redistributed.

In 1986, George Miller planned the creation of the

WordNet electronic dictionary to test psychological

theories of semantic memory [4]. WordNet Version

1.0, released in 1991, offered alphabetic and taxonomic

access to English definitions. Miller avoided copyright

issues by creating his own definition texts, making it

possible to widely distribute WordNet for others to

use in academic and commercial ventures. WordNet

has spawned the creation of other special-purpose

electronic dictionaries, including monolingual and

966E Electronic Dictionary
bilingual WordNets for languages other than English.

It remains the major free electronic dictionary available

to the research community.

Foundations
Dictionaries are among the most complex documents,

owing to the large number of distinct fields they con-

tain. The structural elements found within electronic

dictionaries are typically represented by XML tags or

some other form of markup, such as described by the

Text Encoding Initiative [6].

A typical entry in a conventional monolingual dic-

tionary begins with a headword, usually divided into

syllables, and optionally including a homograph num-

ber to distinguish the entry from others with the same

headword. This is followed by the pronunciation(s),

with high and low stress marks for its syllables, fol-

lowed by any variant pronunciations. Next there are

part-of-speech (POS) labels, other labels that reflect

general usage (e.g., whether a word is formal or collo-

quial, whether its use is geographically restricted, and

whether it is used primarily within one discipline), and

inflected forms of the headword, if any. An etymology

may follow, containing various language designations

together with the word forms or affixes from which the

headword is believed to have been derived. The ety-

mology might also include dates and names of specific

individuals when a headword’s origin is reported to

come from a specific person or event.

Definitions in a major dictionary are divided into

distinct senses, sub-senses, sub-sub-senses, etc., down

several levels. The order of the senses in a dictionary is

typically either historical, with the earliest senses first,

or prioritized from most common to least common

senses. Each sense may include labels that document its

use as being restricted to a particular region or to a

particular discipline, and it may be illustrated by one

or more example sentences. In the oldest dictionaries,

examples were taken from notable authors, but this

practice has given way to artificially constructed exam-

ples designed to be simplified illustrations of the

meaning and usage of the sense. Definitions may also

contain cross-references to specific senses of related

headwords.

Following the definitions may be several additional

entry features. These include so-called run-on entries,

which are morphologically related extended forms

of the headword that do not warrant their own

entries elsewhere in the dictionary. These will typically
have their own syllables, parts of speech and pronun-

ciations listed. There may also be run-on entries for

common phrases. Finally, an entry may also contain

special treatments of synonyms and antonyms for the

headword.

Key Applications
In addition to the use of dictionaries to look up individ-

ual words and theirmeanings (or translations), electron-

ic dictionaries have been used in two major application

areas. The first was to better understand the nature of

lexical semantics through construction of taxonomies

out of dictionary definition texts [2]. The second was

to utilize electronic dictionaries for computational lin-

guistic tasks ranging from morphological analysis and

speech generation through word sense disambiguation.

The former purpose led to WordNet and the growth

of ontologies in artificial intelligence. The latter, while

initially seen as promising, led to disappointment on

the part of many computational linguists when they

found print dictionaries inadequate to the tasks of reli-

ably performing all computational linguistic processing

tasks. However, the introduction of large electronic dic-

tionaries changed the nature of computational linguistic

system development to step away from ‘‘toy system’’

lexicons of a few hundred words to forever establish

that systems had to be prepared for electronic dictio-

nary-sized lexicons. Subsequently some computational

linguists have embarked on creating specialized comput-

er-based lexical resources [5]: electronic dictionaries that

exist independently of the publishing community and

contain advanced syntactic and semantic information.

Cross-references
▶Document Databases

▶Document Representations (Inclusive Native and

Relational)

▶ SGML

▶XML

Recommended Reading
1. Amsler R.A. Machine-readable dictionaries, Chapter 6. In

Annual Review of Information Science and Technology

(ARIST), M.E. Williams (ed.). Knowledge Industry Publica-

tions, vol. 19, 1984.

2. Amsler R.A. The Structure of the Merriam-Webster Pocket

Dictionary. Ph.D. Dissertation, The University of Texas at

Austin, Austin, TX, 1980.

3. Byrd R.J., Calzolari N., Chodorow M.S., Klavans J.L., Neff M.S.,

and Rizk O.A. Tools and methods for computational lexicology.

Comput. Linguistics, 13(3–4):219–240, 1987.

Electronic Encyclopedia E 967

E

4. Fellbaum C. WordNet: An Electronic Lexical Database. MIT

Press, Cambridge, MA, 1998.

5. Sérasset G. Recent trends of electronic dictionary research and

development in europe. Technical Memorandum, Electronic

Dictionary Research (EDR). Tokyo, Japan, 1993, p. 93.

6. TEI Consortium. Dictionaries. TEI P5: Guidelines for Elec-

tronic Text Encoding and Interchange. Available online

at: http://www.tei-c.org/release/doc/tei-p5-doc/html/DI.html

(accessed on February 21, 2008).

7. Weiner E.S.C. Computerizing the Oxford English Dictionary.

Scholarly Publishing 16(3):239–253, 1985.
Electronic Encyclopedia

ROBERT A. AMSLER

CSC, Falls Church, VA, USA

Synonyms
eEncyclopedia

Definition
An electronic encyclopedia, like its print counter-

part, provides extensive information covering general

knowledge or specific disciplines through a vast collec-

tion of small articles, typically arranged alphabetically

or indexed by title. Initially, electronic encyclopedias

were restricted to ASCII encodings of the text portions

of entries in print encyclopedias. Advances in the rep-

resentation and presentation of universal character

sets, images, sound, video, and interactive graphics

allow today’s electronic encyclopedias to present mul-

timedia articles that are competitive with those found

in conventional print encyclopedias.

Key Points
Electronic encyclopedias were initially computer-based

delivery systems for their printed counterparts, accessed

primarily via optical media or over computer networks.

More recently, Wikipedia has demonstrated the effec-

tiveness of collaborative co-authoring to create an elec-

tronic encyclopedia that has no print equivalent.

Encyclopedias need to be current: if not continually

updated, they become obsolete with each change in

geo-politics, scientific advance, or the death of a prom-

inent individual. Furthermore, whereas print encyclo-

pedias have elaborate indexes, taking up one or more

volumes of their printed text, they cannot support

compound searches. By supporting Boolean search,
an electronic encyclopedia offers the ability to combine

multiple concepts unanticipated by the encyclopedia

editors. For example, it can support searches for entries

that mention both (Winston) Churchill and (Albert)

Einstein, and reveal that both won Nobel Prizes.

Entries in an electronic encyclopedia are typically

multimedia articles, having text encoded with XML.

Many articles also contain hyperlinks to other entries

(or even to other potential entries that do not yet exist,

as in Wikipedia).

Unlike commercial encyclopedias, Wikipedia is

a free Web-based encyclopedia that allows readers

to create and modify its content. For example, if a

Wikipedia reader follows a link to a non-existent

entry, the software invites the creation of the entry and

will immediately accept any text offered as the body for

that entry. Readers are also encouraged to update

any entry deemed to be incorrect or out of date. This

form of bootstrapping provides for the rapid creation

of numerous entries and the editing of information in

existing entries. Each editing change becomes a

new entry, but can be ‘‘reverted’’ back to the prior

entry by a future editor. Entries also have discussion

pages on which authors and potential editors can com-

ment on their content or explain their editing changes.

Modification of an entry can trigger the sending of

email to prior authors if they so choose, which gives

authors some control over what happens to their text. In

the event there are irreconcilable differences between

multiple authors, the Wikipedia core group can lock

down the article text and request authors to instead

debate the changes in the comments pages.

Due to its large user base and the ability to monitor

and revert entries to prior states, Wikipedia has flour-

ished with millions of entries in multiple languages.

However critics have questioned how it can achieve

and maintain a high level of accuracy in the absence of

authoritative controls over its contributors.

As well as including conventional encyclopedic in-

formation, Wikipedia has achieved broad coverage

of popular culture, much of which has traditionally

been regarded as trivia and unsuitable for inclusion

in a print encyclopedia. Yet, for decades there have

been specialty publications on trivia, crossword puzzle

terminology, and special reference works for every

conceivable category of information. Thus Wikipedia

is more than an alternative to traditional encyclope-

dias: it is a potential replacement for all reference

works.

968E Electronic Health Record
The Wikipedia software is also freely available

and has spawned the growth of numerous additional

Wiki-based encyclopedias on the World Wide Web.

Wiki software is used behind the scenes in many infor-

mational web sites. Modifications to the permissions

allow Wiki software to restrict changes in content

to select groups and thus permit its use in a variety

of circumstances.

Cross-references
▶Document Databases

▶ Electronic Dictionary

▶Hypertexts

▶Multimedia Databases

Recommended Reading
1. Giles J. Special report: internet encyclopaedias go head to

head. Nature, 438:900–901, 2005.
Electronic Health Record

AMNON SHABO (SHVO)

IBM Research Lab-Haifa, Haifa, Israel

Synonyms
Virtual health record; Shared health record; Longitu-

dinal health record; EHR

Definition
An electronic health record (EHR) is a standard-based

machine-processable information entity consisting of

health data pertaining to an individual. It is a result

of an exhaustive aggregation of personal health data,

which is longitudinal, cross-institutional and multi-

modal.

Historical Background
The term ‘‘medical record’’ usually refers to any re-

cording/documentation of medical care or services

given to a patient. The use of computerized patient

records within healthcare enterprises is already a com-

mon and well-appreciated practice that has started

about four decades ago [8]. It facilitates the documen-

tation process required for medico-legal reasons and

administrative procedures [10]. It also increases the
availability of clinical data at the point of care which

includes medical history, lab results, diagnostic imag-

ing and so forth. The availability of such data at the

point of care could help avoiding redundant tests thus

saving time and cutting costs. It could also reduce

medical errors and increase the overall quality and

safety of care [9].

Nevertheless,medical records are typically partial and

contain incomplete and inconsistent data due to frag-

mentation in the healthcare arena [5] where data is creat-

ed in disparate systems of various healthcare providers,

from single-physician offices to expert clinics, hospitals

and large HMOs (health managed organizations) to

name just a few (Note that the generic term ‘‘medical

record’’ is used to refer to records also known by the

acronyms ElectronicMedical Record (EMR), Computer-

ized Patient Record (CPR), and Electronic Patient Record

(EPR)). In addition, the computerizationof the tradition-

al paper-based records and charts has been slow thus far

and the user interfaces of many clinical information sys-

tems have been poorly designed causing time-pressed

clinicians to avoid the use of it altogether.

These factors and others made the benefit of com-

puterized patient records quite limited. This situation

gave rise to the emerging concept of an electronic

health record (EHR). An ISO technical report [11]

states that ‘‘Previous attempts to develop a definition

for the Electronic Health Record have foundered due

to the difficulty of encapsulating all of the many and

varied facets of the EHR in a single comprehensive

definition.’’ The report lists several definitions of

EHR which demonstrate the various aspects of EHRs

versus medical records such as the focus on sharing

data to support integrated care. In an attempt to con-

solidate the various definitions, the ISO report presents

the following combined definition: ‘‘A repository of

information regarding the health of a subject of care

in computer processable form, stored and transmit-

ted securely, and accessible by multiple authorized

users. The EHR has a standardized information model

which is independent of EHR systems. Its primary pur-

pose is the support of continuing, efficient and quality

integrated healthcare and it contains information which

is retrospective, concurrent and prospective.’’

As a result of the above challenges, there have been

several attempts in the past decade to realize the

emerging EHR concept through national EHR efforts

(e.g., in the UK [3]), regional health information

Electronic Health Record E 969

E

exchange efforts (e.g., in the US [1]) as well as through

eHealth initiatives (e.g., the Danish national eHealth

portal [2]). Most of those attempts are still facing

challenges due to several reasons ranging from techni-

cal issues in integrating data from dispersed sources, to

the semantic differences between various formats used

by healthcare providers and to socio-economic and

medico-legal issues such as privacy, ownership of the

EHR, access rights, governance and business models

of organizations undertaking the sustainability of

patient-centric EHRs.

Foundations
The term ‘‘health record’’ refers to an information

entity which extends the traditional medical record

entity described in the previous section. The extension

occurs along three dimensions (Fig. 1):

1. Content: A health record contains any health-

related information including self documentation,

life style, environmental data, personal preferences,

etc. and is not limited to medical data as in medical

records.

2. Source: While amedical record is created by a health-

care provider in order to record the care or services

given to a patient by that provider, a health record is a

broader information entity in the sense that it
Electronic Health Record. Figure 1. Extending the

traditional enterprise medical record information entity to

the all-encompassing EHR.
aggregates recordings created by all healthcare provi-

ders regarding that patient as well as other sources of

data pertaining to the health of the patient.

3. Time: A health record is a longitudinal information

entity aggregating data created possibly throughout

the lifetime of the individual, while amedical record

is typically a recording of medical care or services

given to a patient at a specific point in time.

It is important to note that this encyclopedia entry

describes the EHR information entity and does not

deal with information systems that handle medical and

health records. Most of these ‘‘EHR Systems’’ maintain

medical records of a single enterprise and cannot cope

with the EHR information entity as defined here.

The following sections describe each of the exten-

sion dimensions in more detail:
Content

Extending the content of medical records to any health-

related data involves the integration of data types that

have not been traditionally captured in medical records

such as the self documentation of habits and events as

experienced by the individual, whether instructed by a

healthcare professional or self initiated. Other types of

data include environmental and workplace related data

that can provide context to clinical data and may sup-

port reasoning about possible diagnoses and treatments.

A great challenge is the personal genetic data (e.g.,

personal DNA variations) that can assist in the realiza-

tion of the personalized medicine vision [4]. While

genetic data seems yet another type of lab results, there

are many differences that make it distinct and rarely

captured in common medical records. In particular,

the notion of genomics refer to new tests and assays

applied to multiple genes interacting through complex

biological pathways where personal changes in the DNA

sequence as well in the expression levels of coding DNA

and resulting polypeptides have significant impact on

the health of that individual. The challenge in this type

of data is not only its complexity and rapid changing

nature but also the association to phenotypic data,

whether observed in the patient or scientifically known

as possible interpretations of the genetic/genomic obser-

vations. The creation of genotype-phenotype associa-

tions relevant to an individual is perhaps the greatest

challenge of the emerging health record concept. Only

coherent and standard presentation can enable the safe

970E Electronic Health Record
and efficient use of this diverse data set to the benefit of

the patient [13].

Source

Extending the typical single-enterprise source of

medical records involves sharing data from multiple

healthcare providers, expert clinics, community health

services, clinical testing laboratories, diagnostic imag-

ing facilities and any other institute that creates data

about an individual. Sharing data for providing better

care to a patient is challenging both semantically and

technically wise.

At the semantic level, the challenge is to reconcile

the various formats by which the various medical

records are created. The format of a medical record

includes the structure (e.g., database schema, message

definition, etc.) and values assigned to data items in

a given structure (numeric value, medical codes, time

spec, free text, etc.). To come up with a meaningful

longitudinal view of the health record, it is essential

to normalize the various proprietary representations

of the source data; however, the lack of clear definition

of the record structure could seriously hinder such

effort.

At the technical level, the challenge is to find the

most appropriate approach to fulfilling the require-

ments of information systems which handle electronic

health records. The two main approaches of sharing

data are exchange and integration. Data exchange is

typically limited to a small number of systems ex-

changing information (e.g., point-to-point messaging)

although the emerging service oriented architecture

makes the service-based exchange more flexible.
Electronic Health Record. Figure 2. Major paradigms of dat
Data integration is the preferred approach for the

creation of EHRs. In principle, integration can be

achieved by means of federation or aggregation

(Fig. 2). In data federation (also known as ‘‘integration

on the glass’’), the source data is typically maintained

by the enterprise where it was created and the EHR is

compiled ‘‘on demand’’ by accessing the various

sources, retrieving the data and presenting the compi-

lation to the user. Curation and normalization are

difficult to achieve at the point of care when interactive

response times are expected. Efforts have been made to

reach a consensus around federated formats suitable

for clinical decision support and these formats are usu-

ally called Virtual Medical records (VMR). In contrast,

data aggregation can be done in an on-going fashion

bringing all source data into the EHR and reconciling

each new item with the existing normalized record. At

the point of care when the EHR is requested, an infor-

mation system that aggregated the data can serve a

coherent EHR in a timely fashion. The caveats of data

aggregation have to do mainly with legal issues such as

the release of health data by a healthcare provider and

addressing privacy issues appropriately so that the EHR

is highly secured and only authorized access is allowed

based on proper consent of the patient. Note that

the technical issues of data integartion have many gover-

nance implications and are influenced by national/

regional policies as well as considerations at the socio-

economic and medico-legal level [14].

Time

Medical records are typically episodic, describing

visits, operations, hospitalizations, consultations and
a sharing through which an EHR could be created.

Electronic Health Record E 971

E

other services occurred in specific points in time. An

EHR is a longitudinal aggregation of health data that

embeds the temporal medical records along with other

relevant data in a way that provides the opportunity to

computationally create summaries of the data such as

(i) non-redundant lists of essential data such as aller-

gies, immunizations, diagnoses, medications etc. and

(ii) useful summaries of the data such as a topical view

(e.g., all data pertaining to a specific disease of the

patient) or an event view (all data pertaining to a

trauma the patient has gone through).

Unlike medical records, the EHR is ideally a single

information entity per individual and its main value

added is that it enables the creation of information

layers atop of raw data (Fig. 3).

Key Applications
The main application of an electronic health record is

an EHR system – a computerized information system

that handles EHR information entities. EHR systems

are expected to create, maintain and serve patient-

centric EHRs to all authorized parties. Example of

such systems are those built within the recent national

and regional efforts across the globe aiming at sharing

of health information in order to provide better care

for the individual. Other emerging systems related to

EHR are those handling the so-called Personal Health

Records (PHR) – a type of EHR which is typically

owned and controlled by the individual with emphases

on the personal aspects in EHR such as self documen-

tation, life style, preferences, and the like.

To overcome the diversity of formats used in the

various sources integrated by an EHR system it is
Electronic Health Record. Figure 3. Layers of temporal and
crucial to use standardized formats, preferably inter-

nationally-recognized EHR standards. Indeed, in

the recent years, two significant standards have been

developed and published by international standards

development organizations. Health Level Seven coor-

dinated an intensive international effort to publish

a Functional Model Standard for EHR [7] and the

European Standardization Body (CEN) has finalized

an information model for EHR along with a new con-

straining formalism [12] to enable the standard repre-

sentation of common health data sets within the EHR.

A somewhat related standard is the Clinical Docu-

ment Architecture (CDA) that provides an electronic

counterpart of the so common paper-based clinical

documents such as operative notes, discharge summa-

ries, referral letters and so forth [6]. These documents

are a natural input to the longitudinal EHR as they

typically include summary of patient’s health condi-

tions. All those standards complement each other

and lay the ground for EHR Systems to finally be

ready to achieve the ultimate goal of a patient-centric,

standard-based, longitudinal and cross-institutional

electronic health record.

A key application in the area of sharing and man-

aging clinical documents as a step towards the EHR is

an integration profile that has been developed by

the IHE (Integrating the Healthcare Enterprise) and

is coined XDS (Cross-enterprise Document Sharing

[15]). The XDS integration profile is in fact a workflow

specification that a clinical affinity domain (CAD)

employs in order to share clinical documents created

in disparate locations about the same patient. A CAD

is established by enterprises that create and maintain
summative data constituting the EHR.

972E Electronic Ink Indexing
clinical documents and decided to share the docu-

ments through the affinity domain. Each CAD has

a centralized registry where metadata about each doc-

ument (e.g., the patient, author, authenticator,

encounter, services, etc.) are registered by ‘‘docum-

ent sources’’ so that queries can be posed by

‘‘document consumers.’’ The retrieved data from the

registry includes merely the metadata and once the

document consumer selects documents of interest,

the registry then approaches the relevant documents

repositories residing in the respective premises of the

CAD cooperating enterprises. Given proper authoriza-

tion of the document consumer, the selected docu-

ments are then presented to the consumer. These

documents could then be further processed to provide

summary or analysis content per the user request. Such

processes are complex to perform ‘‘on-the-fly’’ but the

hope is that simple analyses could show the benefits

of EHR to users who then might demand the creation

of a coherent patient-centric EHR out of all available

clinical documents and other types of medical records.

It is important to note that the XDS architect-

ure doesn’t allow for fully querying of the clinical

documents stored in the enterprise repositories. The

query can be done only against the metadata that was

registered by the document sources. Queries by clinical

data that is typically held in the body of the documents

cannot be queried using the XDS integration profile.

Nevertheless, the addition of an EHR data model on

the top of an XDS architecture could then make the

XDS repositories fully structured according to an EHR

data model such as that of the CEN 13606 standard.

Systems with such capabilities will also lend themselves

to queries which are not patient-specific, e.g., search

for data by disease, pathogens, populations and even

genetic data.
Cross-references
▶Clinical Document Architecture
Recommended Reading
1. Adler-Milstein J., McAfee A.P., Bates D.W., and Ashish K.J.

The state of regional health information organizations: current

activities and financing. Health Aff., 27(1):w60–w69, 2007.

2. Britze T.H. The Danish National e-health portal – increasing

quality of treatment and patient life. Technol. Health Care,

13(5):366–367, 2005.

3. Coiera E.W. Lessons from the NHS National Programme for IT.

Med. J. Aust., 186(1):3–4, 2007.
4. Davis R.L. and Khoury M.J. The journey to personalized medi-

cine. Personalized Med., 2(1):1–4, 2005.

5. DePhillips H.A. Initiatives and barriers to adopting health

information technology: a US perspective. Dis. Manag. Health

Outcomes, 15(1):1–6, 2007.

6. Dolin R.H., Alschuler L., Boyer S., Beebe C., Behlen F.M.,

Biron P.V., and Shabo A. HL7 clinical document architecture,

release 2. J. Am. Med. Inf. Assoc., 13(1):30–39, 2006.

7. Electronic Health Record System (EHR-S). Functional require-

ments standard. Available at: http://www.hl7.org/EHR/.

Accessed on October 28, 2008.

8. Giere W. Electronic patient information – pioneers and much-

More. A vision, lessons learned, and challenges. Methods Inf.

Med., 43(5):543–552, 2004.

9. Haux R., Ammenwerth E., Herzog W., and Knaup P. Health

care in the information society. A prognosis for the year 2013.

Int. J. Med. Inf., 66(1–3):3–21, 2002.

10. Hollerbach A., Brandner R., Bess A., Schmucker R., and Bergh B.

Electronically signed documents in health care – analysis

and assessment of data formats and transformation. Methods

Inf. Med., 44(4):520–527, 2005.

11. ISO/TC 215 technical report. Electronic health record definition,

scope, and context. Second draft, August 2003.

12. Kalra D. Electronic Health Record Standards. In: IMIAYearbook

of Medical Informatics 2006, R. Haux, C. Kulikowski (eds.).

Methods Inf. Med., 45:S136–S144, 2006.

13. Shabo A. The implications of electronic health records

for personalized medicine. Personalized Med., 2(3):251–258,

2005.

14. Shabo A. A global socio-economic-medico-legal model for

the sustainability of longitudinal electronic health records.

Methods Inf. Med., 45(3 Pt 1):240–245, Methods Inf. Med., 45

(5 Pt 2):498–505, 2006.

15. XDS - cross-enterprise document sharing. Developed by the IHE

(Integrating the Healthcare Enterprise) IT Infrastructure Com-

mittees. Available at: http://www.ihe.net/IT_infra/committees/

index.cfm
Electronic Ink Indexing

WALID G. AREF

Purdue University, West Lafayette, IN, USA

Synonyms
Handwritten text; Online handwriting

Definition
With the proliferation of personal digital assistants

(PDAs) and pen-based handheld devices, it is impor-

tant that computers understand handwritten text (or

electronic ink). In this pen-based environment, one

Electronic Ink Indexing E 973

E

can have handwritten file contents, handwritten file

names, handwritten directory names, handwritten

email messages, handwritten signatures, etc. With the

large bodies of handwritten content, indexing techni-

ques are essential in order to search for the relevant

content. The fact that the data is handwritten makes

the problem more difficult than in conventional situa-

tions. No two persons handwrite a word in exactly the

same way. Even the same person cannot write a word

in the same way twice. This makes the indexing and

retrieval of handwritten data a hard problem.

Historical Background
Retrieval techniques for handwritten data have to be

scalable so that they can handle the continually grow-

ing sizes of multimedia data, e.g., scanned documents

in digital libraries and handwriting databases. An ad-

ditional requirement for ink processing in a pen-based

and/or a personal digital assistant environment is the

need to support online retrieval and fast response time.

There are two approaches to dealing with handwritten

electronic data, namely, handwriting recognition and

ink pattern matching.

Handwriting recognition is a procedure for con-

verting pen strokes into strings of characters (or any

other fixed character set). Once converted into char-

acters, strings can be manipulated and searched in

conventional ways. One problem with handwriting

recognition is that it is prone to errors. Many critics

point out that handwriting recognition does not meet

the need of users. In fact, it is widely believed that this

shortcoming is one of the main causes why the sales of

pen-based tablets have fallen short of the expected

figures. Moreover, even if handwriting recognition

becomes highly accurate, it is clear that it provides a

mapping from a highly expressive medium such as ink

to a constrained medium, such as character strings.

Handwriting recognition is not directly applicable to

diagrams, drawings and many special symbols that the

user can write.

Becauseof thedrawbacksofhandwriting recognition,

the notions of approximate ink matching (AIM) and

pictograms have emerged as an interesting alternative

to handwriting recognition [11]. Pictograms are sim-

ply handwritten pictures, while AIM is the technique

that evaluates how well two pictograms match. By

using pattern matching techniques, AIM can take an

input pictogram and evaluate how well it matches each

one of the previously stored pictograms. AIM
eliminates the problems of expressiveness, language

and alphabet dependency and inaccuracy of handwrit-

ing recognition. The procedure simply focuses on

finding a pictogram that resembles the input, without

trying to ‘‘understand’’ or translate its meaning. AIM

algorithms with high matching accuracy have been

developed.

The problem with the AIM technique is that it

could be computationally expensive. Without any

other tool, AIM techniques are forced to sequentially

search the entire pictogram repository. As the size of

the pictogram repository grows, this process becomes

painfully slow and impractical, especially that pattern

matching techniques can be computationally expen-

sive. This highlights the need for scalable techniques

that provide fast response time for retrieval queries in

handwritten databases of larger sizes.
Foundations
Electronic handwritten ink in the form of a pictogram

needs to be transformed into a more robust form

before being passed to the database for further proces-

sing. This transformation needs to take place regardless

of whether the pictrogram is to be inserted into the

database, or used within a query to search the database.

Electronic ink can be expressed as a sequence of time-

stamped points in the plane:

s ¼ ðx1; y1; t1Þ; ðx2; y2; t2Þ;::::; ðXk;Y k; tkÞ;

where (xi,yi) represents the location of an electronic

ink pixel at time ti, ti � t i þ 1, and k is the number of

pixels in the pictogram.

Given a sequence S and a database of sequences

Sj (j = 1,...,M) an important operation is to search the

database for the sequences that are similar to S. Tradi-

tionally, databases use an alphanumeric representation

of the data. This representation is ideally unique, pre-

cise and stable. Electronic ink data lack these qualities,

making its matching a difficult problem. The data are

often corrupted with noise. Even ideal ink does not

provide an adequate basis for sequence identification,

because a pictogram needs to be identified given slightly

different variations in its shape. Different people cannot

write the same word in the same way. Even for the

same person, it is very difficult to generate exactly the

same pictogram twice (it will almost always be the case

that the stroke information varies each time the person

writes the same word).

Electronic Ink Indexing. Figure 1. Example illustrating the segmentation of the pictogram in (a) into (b) strokes, and

(c) alphabet symbols.

Electronic Ink Indexing. Figure 2. A handprinted word,

(b) a cursive handwritten word.

974E Electronic Ink Indexing
Electronic Ink Representation

In order to allow for approximate matching of hand-

written electronic ink, each handwritten pictogram

needs to be transformed into a more robust form.

The raw electronic ink data that corresponds to points

(or pixels) in the two-dimensional space is not robust

as a slight shift in the input sequence may change the

values of the x and y coordinates of the points repre-

senting a word. As a result, other features that are less

sensitive to common deformations, e.g., translation,

and rotation, are computed. Example features are the

bounding box that contains all the points that form a

pictogram, the average curvature, the number of

points, etc.

These features can be computed at different levels

of granularities. In this regard, handwritten electronic

ink can be viewed at three levels of abstraction: the

stroke level, the alphabet symbol level, and the picto-

gram level. Figure 1 illustrates a pictogram and its

segmentation into pen strokes and handwritten sym-

bols. Pictograms can be represented by any of the three

granules in the figure, i.e., as one entity containing the

entire pictogram (Fig. 1a), as a sequence of pen strokes

(Fig. 1b), or as a sequence of alphabet symbols

(Fig. 1c). For instance, in order to select the sym-

bols as granules, a segmentation algorithm is needed

to properly separate the symbols. For strokes, a sim-

ple segmentation algorithm picks local minimum (or

maximum) points and uses them to segment the curve.

Segmentation could be a difficult task for some types

of pictograms, such as cursive handwritten words

(Fig. 2b), or a simpler task as in handprinted

words (see Fig. 2a). Some languages, like Japanese,
lend themselves easily to symbol segmentation. In Jap-

anese, Kanji symbols are already separated by blank

spaces. The choice of granularity has an impact on the

type of indexes to be built.

The second issue is that, for matching purposes, it

is better to talk about pictogram (symbols or strokes)

classes instead of individual pictograms (symbols or

strokes). A pictogram class is the set of pictograms

that have the same semantics, according to the user.

Of course, it would be impractical to store a pictogram

class by storing the list of pictograms that belong to

it. Alternatively, a representative of the class and a

distance metric needs to be adopted. Inputs are

matched against the representative (after the necessary

preprocessing) and the distance metric ranks the

matches. The representative is not a pictogram, but

rather a model that captures the essential qualities of

the pictogram class. In the next section, a sample

model is presented that can be used to represent

pictograms.

Hidden Markov Models (HMM)

HMMs are already used in the field of speech

and handwriting recognition as a powerful tool for

Electronic Ink Indexing E 975

E

speech and handwritten document matching (see e.g.,

[11–13,15]). Each pictogram in the database can be

modeled by an HMM. The HMM is constructed so

that it accepts the specific pictogram with high proba-

bility (relative to the other pictograms in the database).

In order to recognize a given input pictogram, each

HMM in the database is executed and the one that

generates the input sequence with the highest proba-

bility is selected. Each HMM in the underlying se-

quence database has to be tested, which results in a

linear process, and the speed of execution becomes the

primary difficulty.

An HMM is a doubly stochastic process, where

there is a probability distribution that governs the

transitions between states and an output probability

distribution that identifies the distribution of output

symbols for each state. An excellent coverage of

HMMs can be found in [12,13]. For demonstration

purposes, one type of HMM structures, termed left-to-

right HMM [5] is illustrated in Fig. 3a. Left-to-right

HMMs are useful for modeling temporal signals as in

sound (see e.g., [13]) and cursive handwritten text (see

e.g., [11]) because the underlying state sequence asso-

ciated with the model has the property that, as time

increases, the state index increases (or stays the same) –

that is, the system states proceed from left to right.
Electronic Ink Indexing. Figure 3. (a) a left-to-right

HMM model with four states, (b) a parallel path

left-to-right HMMmodel with six states, and (c) the ergodic

model with three states.
A left-to-right HMM can be constructed to model a

handwritten word or an alphabet symbol. The HMM is

constructed so that it accepts the word (or the symbol)

with high probability (relative to the other words in the

database). Training techniques may be applicable in

the case where multiple instances of the word are

available (e.g., a word can be handwritten multiple

times, resulting in more than one sample). These sam-

ples can be used to train the HMM so that it can

match similar words with higher probabilities (see

e.g., [1,10]). The probability given by the HMM is

the distance metric used for ranking purposes.

Given an HMM that models a word (or symbol),

an input symbol can be run against the HMM to

obtain as output a matching probability. Given a set

of stored words (or symbols) with their associated

HMMs, an input word (or symbol) can be searched

by running each one of the corresponding HMMs

against the input and choosing those with the best

matching probability. In fact, the size of the answer

set can be set as a parameter to choose the k best

matches. To train HMMs and to use them to match a

word or a symbol, a more robust form of ink represen-

tation needs to be used.

Representation Granularity

Features can be computed at the stroke level, picto-

gram level, symbol level, or through a collection of

local features. For example, in the case of a stroke, a

pictogram is segmented into a set of strokes, where

each stroke is carefully described with a set of features.

Thus, a pictogram can be represented by a collection of

points in the feature space, one point per stroke. In

contrast, at the pictogram level, a set of global features

can be computed for the entire handwritten picto-

gram. Thus, each pictogram is described with a vector

of feature values and is represented as one point in a

multi-dimensional space.

Another simple, but efficient way of representing a

pictogram is to pick some sample points from the

pictogram (or symbol, or stroke) and compute some

local features, ones that depend on a sample point and

possibly the one (or two) surrounding points from

each side. Depending on the application, some of

these features may be more relevant than others, and

hence not all of the features need be computed at a

given point in the sequence. Common features are:

direction, velocity, change in direction, change in ve-

locity, accumulative angle (with respect to the initial

976E Electronic Ink Indexing
point), accumulative length and angle of bounding

box diagonal (also with respect to the initial point),

and accumulative sequence length [14]. As an example

of computing local features, the speed fs at point p can

be computed by: fs ¼ sqrtðDx2p þ Dy2pÞ=Dtp, where

Dxp = xp + 1 � xp, Dyp = yp þ 1 � yp, and Dtp = tp þ 1

tp þ 1 � tp. After computing the local features, the pic-

togram can be represented by a sequence of feature

vectors (v1, t1), (v2, t2),... The dimensionality of vi
corresponds to the number of local features at

each point.

Indexing Techniques

Sequential search does not scale well. The process

becomes unacceptably slow as the number of picto-

grams stored in the database grows. Therefore, indexing

techniques that help prune the choices are called for.

However, indexing techniques for handwritten picto-

grams must exhibit two characteristics that make them

different from traditional indexing techniques:

1. The structures must incorporate the underlying

model that is chosen to represent ink. The model

must play an active part of the index.

2. Due to the high variability of the ink data, the

indices must provide approximate matching.

The following sections overview two sample indexing

techniques that exhibit both of the characteristics

stated above.

Alphabet-Level Indexing The handwritten trie [2]

(Fig. 4) models ink at the alphabet symbol level and

represents each of the symbol classes by using HMMs.

The traditional trie data structure [4] is an M-ary tree

whose nodes have M entries, and each entry corre-

sponds to a digit or a character of the alphabet. Each

node on level l of the trie represents the set of all keys
Electronic Ink Indexing. Figure 4. An example Handwritten
that begin with a certain sequence of l characters; the

node specifies an M-way branch, depending on the

(l þ 1)th character.

As pointed out in [6], the memory space of the trie

structure can be significantly reduced (at the expense

of running time) by using a linked list for each node,

since most of the entries in the nodes tend to be empty.

This results in what is termed the forest trie.

The handwritten trie uses a variant of the forest trie

where nodes of the forest trie are packed into disk

pages (a disk-based trie). Alphabet symbols of the trie

are all handwritten. Since each symbol can be written

differently each time, a separate HMM model per

alphabet symbol is used in order to model that symbol.

Given a handwritten query word, say w, a preproces-

sing step takes place to breakdown or segment w into a

sequence of handwritten strokes or segments ws. Vari-

ous segmentation techniques can be used, e.g., [3].

Next, the handwritten trie is searched for an instance

of ws. Each of the HMMs at the root of the handwritten

trie is executed against the first symbol in ws and the

search branches to the child node that has the best

match. Mismatchings between ws and items in hand-

written trie are dealt with by backtracking and explor-

ing different paths based on best matches between

items of ws and the corresponding items in the trie.

An adapted version of the A* algorithm is used in

order to prioritize which nodes of the trie to visit next.

In the case of the handwritten trie, matching is

performed by using Hidden Markov Models (HMMs)

[12]. The handwritten trie uses one type of HMMs,

namely the left-to-right HMM [1] (see e.g., Fig. 3a),

which is useful for modeling temporal signals as in

sound (see e.g., [13]) and cursive handwritten text

(see e.g., [11]).

The backtracking search mechanism in the hand-

written trie takes care of 1-1 substitution errors, i.e.,
Trie.

Electronic Ink Indexing E 977

E

when a letter is mal-written, and hence is classified as

another letter. However, there are other types of errors

that are common in handwriting that needs to be dealt

with. For example, if one of the symbols or letters in

the query word is omitted (i.e., a deletion error), then

an entire level of the handwritten trie is skipped and a

node’s grandchildren instead of its children are

checked. Similarly, when an extraneous letter is intro-

duced, e.g., due to an error in the cursive writing

segmentation procedure (i.e., an insertion error), then

the corresponding symbol of the input query word

needs to be consumed without probing a node’s chil-

dren. To summarize, when deciding on how to match

a symbol from the input query word against a node

in the handwritten trie, all three types of error scenar-

ios (1-1 substitution, deletion, and insertion errors)

need to be investigated and prioritized using the A*

search algorithm. Details of this procedure can be

found in [4].

Stroke-Level Indexing

Indexing of handwritten text can be performed at

the stroke level. A pictogram is segmented into a

set of strokes. Each stroke is carefully described with

a set of features, and, thus, can be stored as points in

the feature space. Subsequently, any multi-dimensional

access method, such as the R-tree, can be used.

Similarity-based retrieval can be performed by execut-

ing a few range queries and then applying a voting

algorithm to the output to select the handwritten

words in the database that are most similar to the

query [8]. The main advantage of this approach is

that it is able to handle substring matching efficiently.

Also, in contrast to the handwritten trie, stroke-level

indexes are not order-dependent. For example, in sce-

narios where the order of handwriting a word may

differ, the difference in the order of writing the strokes

that compose Chinese characters does not adversely

affect the search process. The reason is that regardless

of the order, each stroke is mapped to a point into the

multi-dimensional space and the neighborhood of

each point is search for a best match, or best-k

matches. Some rank aggregation needs to take place

in order to merge all the returned best-k matches and

return the best matched handwritten word in the data-

base. Several techniques can be adopted to insure that

the index is resilient to the kind of errors that result

from the segmentation process, namely, stroke inser-

tion/deletion and substitution errors [9].
Pictogram-Level Indexing

At the pictogram level, a set of global features can

be computed for the entire handwritten pictogram.

Thus, each pictogram is described with a vector of

feature values and is represented as a point in a

multi-dimensional space. In contrast to indexes that

are based on stroke-level representations, no voting

algorithms are needed as each pictogram is represented

by only one point [9]. However, in order to increase

the robustness and the matching rate of this approach,

a multistage retrieval algorithm is adopted. At the first

stage, the index is used to reduce the search space to a

small set of candidate words that are similar to the

handwritten query pictogram. The candidate set is

then subjected to a pipeline of two sequential search

algorithms that use a different set of extracted features

and a distance ranking function to extract the most

similar pictogram to the handwritten query pictogram.

Handwritten Ink as a Special Form of

Time-Sequence Data

It is to be observed that handwritten text is one form of

time-sequence data. As a result, all the indexing tech-

niques applicable to handwritten text can also be ap-

plicable to the more general case of sequence data. For

example, modeling sequence data using HMMs and

similarity search and approximate matching techni-

ques are also applicable to general sequence data and

are not limited to only handwritten text. However, the

converse is not true. The techniques used for indexing

and similarity-based retrieval of time sequence data

need to be adapted to make use of the special nature

and features of electronic ink.

Cross-references
▶Document Databases

▶ Feature Extraction for Content-Based Image

Retrieval

▶ Feature Selection for Clustering

▶High Dimensional Indexing

▶ Indexing and Similarity Search

▶ Indexing Metric Spaces

▶Multimedia Data Indexing

▶Multimedia Databases

▶N-gram models

▶Nearest Neighbor Query

▶Object Recognition

▶ Similarity and Ranking Operations

▶Text Indexing and Retrieval

978E Electronic Libraries
▶Text Indexing Techniques

▶Tree-based Indexing

▶Trie

Recommended Reading
1. Aref W.G., Vallabhaneni P., and Barbara D. On training hidden

Markov models for recognizing handwritten text. In Proc. Int.

Workshop on Frontiers of Handwriting Recognition, 1994.

2. Aref W.G., Barbará D., and Vallabhaneni P. The Handwritten

Trie: Indexing Electronic Ink. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1995, pp. 151–162.

3. Aref W.G., Barbara D., Lopresti D.P., and Tomkins A. Ink as a

first-class multimedia object. In Multimedia Database Systems:

Issues and Research Directions, S. Jajodia and V.S. Subramanian

(eds.). Springer, Berlin, 1995.

4. Aref W.G. and Barbará D. Supporting electronic ink databases.

Inf. Syst., 24(4):303–326, 1999.

5. Bakis R. Continuous speech word recognition via centisecond

acoustic states. In Proc. 91st Mts. of the Acoustical Society of

America, 1976.

6. de la Briandais R. File searching using variable length keys. In

Proc. Western Joint Computer Conference, 1959, pp. 295–298.

7. Fredkin E. Trie memory, Commun. ACM, 3(9):490–500, 1960.

8. Kamel I. Fast retrieval of cursive handwriting. In Proc. Int. Conf.

on Information and Knowledge Management, 1996, pp. 91–98.

9. Kamel I. and Barbará D. Retrieving Electronic Ink by Content. In

Proc. Int. workshop onMuldimedia Database Systems, 1996, pp.

54–61.

10. Levinson S.E., Rabiner L.R., and Sondhi M.M. An Introduction

to the application of the theory of probabilistic functions of a

Markov process to automatic speech recognition. Bell Syst.

Tech. J., 62(4):1035–1074, 1983.

11. Lopresti D.P. and Tomkins A. Approximate matching of hand-

drawn pictograms. In Proc. 3rd Int. Workshop on Frontiers in

Handwriting Recognition, 1993, pp. 102–111.

12. Rabiner. L.R. A tutorial on hidden markov models and

selected applications in speech recognition. Proc. IEEE,

77(2):257–285, 1989.

13. Rabiner L.R. and Juang B.H. Fundamentals of Speech Recogni-

tion. Prentice Hall, Englewood Cliffs, NJ, 1993.

14. Rubine, D.H. The Automatic Recognition of Gestures, Ph.D.

Dissertation, Carnegie Mellon University, Pittsburgh, PA,

December, 1991. Also Technical Report Number CMU-CS-

91-202.

15. Sin B.K. and Kim J.H. A statistical approach with HMMs for on-

line cursive Hangul (Korean script) recognition. In Proc. 2nd

Int. Conf. on Document Analysis and Recognition, 1993, pp.

147–150.
Electronic Libraries

▶Digital Libraries
Electronic Newspapers

ROBERT B. ALLEN

Drexel University, Philadelphia, PA, USA

Definition
Newspapers collect, organize, and periodically dissem-

inate information to a community in the form of news

articles and other features. They are complex informa-

tion resources which generally must also be economi-

cally viable. Electronic newspapers can provide many

of the same types of services as traditional newspapers

but they have many additional advantages for the read-

ers. The electronic newspaper can be updated with the

latest bulletins, tailored to the reader’s interest, and

take advantage of multimedia. However, increasingly,

news and related services are being disaggregated and

provided by separate suppliers so that in some cases,

the electronic newspaper can sometimes be just a

personalized web portal.

Historical Background
Newspapers arose in the seventeenth century in

mercantile cities in Germany and the Netherlands. From

the eighteenth to the twentieth centuries, newspapers

were often the primary source of citizen’s knowledge of

the world beyond his immediate experience. Gradual

changes in news communication technologies such as

the telegraph, production technologies such as printing,

delivery technologies such as trucking, increased the

circulation and impact of newspapers throughout the

nineteenth and early twentieth centuries. Early electronic

media such as radio and television provided competition

but newspapers still thrived. However, at the end of

the twentieth century cable television began 24 h news

coverage. The 24-h news cycle means that there is a

greater need for newspapers to provide background

and analysis and in many cases newspapers seem to be

becoming more partisan. Interactive electronic media

have amplified these trends and dramatically lowered

the barriers to entry for news services. Among the nota-

ble effects has been the rise of blogging and citizen

journalism. Although some electronic editions are very

similar to their paper editions, in many cases it is better

to consider electronic newspapers as a set of relatively

looselyconnectedservicesrather thanmonolithicentities.

These technological upheavals have led to uncer-

tainty as to how to maintain viable business models

Electronic Newspapers E 979

E

for newspaper publishing. As a result of digital conver-

gence and shift to Web distribution most news content

is supported by Web advertising. Web development

and management also allows the multi-purposing

of news content across delivery platforms. However,

the Web has lowered the barriers to entry and allowed

non-traditional news sources such as blogs and citizen

journalism to flourish. Thus, the emerging news

sources are broader but do support the depth of news

gathering that has existed in the past.

While the focus of this review is on articles, elec-

tronic newspapers incorporate many other types of

content such as classifieds, financial data, editorials,

movie reviews, weather, sports, cartoons, and other

advertising. Indeed, the distinction between news and

entertainment is becoming blurred. Moreover, because

of the ease of electronic publication, many sources of

news are emerging such as blogs and citizen journal-

ism. Indeed, these many be seen broadening newspa-

pers’ role in developing an informed citizenry. While

dissemination of newspapers and journalism can

broaden freedom of information there remains the

possibility that information technology may ultimately

facilitate censorship.

Foundations
An electronic newspaper is not just the presentation

of a static newspaper page on a screen. Many electronic

services contribute to its production, dissemination,

and access and while news articles are the defining

characteristic of newspapers, there are many other

components which are coordinated to make up

the content.

Managing Content

Metadata A comprehensive set of metadata des-

criptions for news articles would include date, rights,

genre, and topic. An extensive set of XML-based

descriptive metadata for news has been developed by

the International Press and Telecommunications

Council (IPTC). Beyond the general genre and topic

descriptors for individual articles there are also content

tags (e.g., for named entities) and structural descrip-

tions for tabular material such as sports scores and

financial data. The IPTC descriptive systems also in-

clude metadata for news images such as metadata

describing the nature of the shot. For broader applica-

tions such as long term preservation and composite
news objects, a multilayer metadata description frame-

work such as the Multimedia Encoding and Transmis-

sion System (METS) can be used.

Digital Asset Management Systems Repositories

extend standard Web servers by supporting content

management services. The repositories used by electro-

nic newspapers may be best characterized as digital

assetmanagement systems.Different types ofdigital asset

management systems typically support different types

of activities. Content developers such as journalists,

editors, and layout designers would use a library-like

service to access stored digital resources. This could

provide access to stored content in away similar to tradi-

tional photo ‘‘morgues’’ used by newspapers. That is they

would share aspects of library services and production

management services. A second major area of applica-

tion for digital asset management systems in electronic

newspapers could be to organize and push content to

a web site. In other words, they would provide digital

supplychain services.

Automated Text Processing of News Resources

To support complex activities such as composing news

stories and allowing readers to interact with them,

digital asset management systems need to support

intermediate-level services such as summarization,

search, rights management, and preservation.

Information Extraction and Text Data Mining While

some news articles are now developed and disseminated

with rich metadata and semantic annotation embedded,

there is still a lot of untagged text. Extracting that

text from unstructured news information would allow

better text processing. The primary approach is based on

the extraction of named-entities. There are also other

extraction techniques such as template matching. Taken

together, such information extraction techniques are

examples of text data mining. Eventually, such text

mining might extract facts in the news articles and

allow them to be used in a question-answering system.

In addition, it could be used to track opinions expressed

on the Web in editorials, movie reviews, and blogs.

Event Detection and Tracking Of course, the main

purpose of news articles is to report events so extract-

ing, those events will be critical to any attempt to

process the news articles. Topic Detection and Tracking

(TDT) uses statistical approaches similar to those from

980E Electronic Newspapers
information retrieval (IR). In this approach a topic is

defined as a set of related stories. TDT is composed of

several tasks such as new topic identification and topic

tracking across a set of articles. The main technique is

statistical clustering. However, this is a challenging

task and the similarity is usually based on the entire

description, not just the primary event. In order to

improve accuracy, recent approaches have examined

events at a finer-grained level. These approaches typi-

cally employ rule-based linguistic methods. For in-

stance, they may attempt to determine the verb

frames which are employed.

Commercial News Aggregators, News Summarization,

and Searching Commercial news content aggregators

collect articles from various news sources. In order to

present them the aggregator generally clusters them.

The most effective of these techniques perform the

clustering on named-entities. The articles in each clus-

ter are then ranked by attributes of their source, esti-

mates of their scope and impact, and popularity and

then presented to users.

Although they are not yet common in commercial

news aggregation systems, summaries may be auto-

matically synthesized for the clusters. Because this

is done across news articles it is a type of multi-

document summarization. Like most complex text,

news text is composed of high-level rhetorical units.

Identifying those units turns out to be helpful for

generating summaries.

Individual articles and clusters of articles which

are collected by news aggregators may also be indexed

and searched. In addition to the usual parameters

for weighting index terms such as term frequency

and document frequency, terms in news articles can

also be ranked on factors such as the frequencies and

authority of the articles.

Additional Services and Issues

Preservation Services News has been called the ‘‘first

draft of history’’ and, more generally, newspapers can

be a significant cultural record. For instance, local

libraries generally like to keep records of their local

newspapers. This is an instance of keeping the record

of the community. Unlike paper, electronic copies are

ephemeral. However, with the decreasing cost of stor-

age, it is now possible to collect and save almost all

local news (with the possible exception of video).
Challenges remain in collecting the materials. In addi-

tion to the preservation of electronic news materials,

there is also now considerable interest in processing

digitized historical newspapers. However, automati-

cally extracting and processing the OCRd images has

proven difficult because of variable quality.

Rights Management As with many types of commer-

cially produced digital media, it remains unclear what

is the best business model for the producers to recoup

their expenses. Many publishers believe in maintaining

tight control over their resources. This is certainly an

issue for publishers with respect to the news aggre-

gators. A related contentious rights issue concerns

permission to store archival copies of the new items

collected. With traditional newspapers, libraries could

legally collect sets of old newspapers. At least in the

U.S., libraries and archives are not currently allowed to

made copies of digital objects for preservation.

Managing Multimedia News Content

Of course, a lot of news is on television and radio

broadcasts and, increasingly, Web-based electronic

newspapers include multimedia. The PRX and PBCore

metadata standards have been developed for public

broadcast radio and video. In addition, there are gen-

eral multimedia metadata standard such as MPEG-7

and PRISM which can be applied productively to mul-

timedia news objects.

As with data mining of text-based news articles,

there could be great value in mining multimedia

news objects. There has been considerable work on

information extraction and summarization from tele-

vision and radio news broadcasts. However, this is

very challenging because it may involve combinations

of different and complex processes including speech

processing (unless closed captions are available), image

recognition, and video segmentation. These processes

tend to be error-prone leading to inaccuracies in

named-entity extraction and this, in turn, affects the

quality of services such as summarization and search-

ing which use those named entities.

Presentation and Access Services

Personalized Interaction While traditional newspapers

aim to provide news which is suitable for a wide

range of readers, potentially news articles could be fil-

tered to match a profile of personal preferences. These

Eleven Point Precision-recall Curve E 981

E

personalized articles could be combined into an entire

personalized newspaper. Indeed, this sort of news inter-

face could already be constructed from articles provided

by Really Simple Syndication (RSS) services.

Recommendations Beyond personalization based on

an individual’s own profile, there are several ways

news-related behaviors can be used to increase perso-

nalization. One technique is collaborative filtering

in which suggestions are made from friends and co-

workers. The ubiquity of email forwarding associated

with electronic news papers shows the popularity of

this type of sharing.

Automated techniques for generating recom-

mendations are based on the pattern of news article

accesses by individuals who have no particular connec-

tion to the reader. Such recommendations, which are

also used for movies and music, are often calculated

correlations between the user’s choices and those of

other individuals. When massive amounts of data are

available, variations of singular-valued decomposition

(SVD) have proven effective. Another way to simplify

the data is by not using correlation but using simple

counts such as those provided by ‘‘co-visitation.’’

In any event, there are still substantial difficulties in

generating effective recommendations such as the sta-

bility of people’s interests ensuring unobtrusiveness

and privacy ensuring in the collection of those inter-

ests, and the cold-start problem which occurs when

there are no previous observations.

Cross-references
▶Digital Archives and Preservation

▶Digital Libraries

▶Digital Rights Management

▶ Indexing the Web

▶ Information Extraction

▶ Information Retrieval

▶Metadata

▶Multimedia Presentation Databases

▶ Personalized Web Search

▶ Social Networks

▶Text Mining

▶XML

Recommended Reading
1. Hatzivassiloglou V., Gravano L., and Maganti A. An investiga-

tion of linguistic features and clustering algorithms for topical

document clustering. In Proc. 23rd Annual Int. ACM SIGIR
Conf. on Research and Development in Information Retrieval,

2000, pp. 224–231.

2. Linden G. People who read this article also read. . . . IEEE Spectr.,

45(3):46–60, March 2008.

3. McKeown K., Barzilay R., Chen J., Elson D., Evans D., Klavans J.,

Nenkova A., Schiffman B., and Sigelman S. Tracking and

summarizing news on a daily basis with Columbia’s News-

blaster. In Proc. Human Language Technology Conf., 2002,

pp. 280–285.
Eleven Point Precision-recall Curve

ETHAN ZHANG
1,2, YI ZHANG

1

1University of California, Santa Cruz, CA, USA
2Yahoo! Inc., Santa Clara, CA, USA

Definition
The 11-point precision-recall curve is a graph plott-

ing the interpolated precision of an information

retrieval (IR) system at 11 standard recall levels,

that is, {0.0,0.1,0.2,...,1.0}. The method for inter-

polation is detailed below. The graph is widely used

to evaluate IR systems that return ranked do-

cuments, which are common in modern search

systems.
Key Points
In a precision-recall graph, precision is plotted as a

function of recall. Assume a search system has retrie-

ved n documents. Then for each k 2 [0,n], examine

the set of top k retrieved documents and calculate

the precision and recall for the set. These values

are then plotted on a graph of precision versus recall.

Figure 1 shows a typical precision-recall curve. It has a

saw-toothed shape because the recall remains the same

as k while the precision drops when the (k + 1)th

retrieved document is not relevant.

With the original precision-recall graph, averaging

the curve over different queries is not straightforward.

A standard approach is to plot interpolated precisions

at 11 recall levels, namely, 0.0,0.1,...,1.0. The interpo-

lated precision pinterp at recall level r is defined as the

highest precision for any recall level r 0� r :

pinterpðrÞ ¼ max
r 0�r

pðr 0Þ

Figure 2 shows the interpolated 11-point precision-

recall curve for a good system in TREC 8.

Eleven Point Precision-recall Curve. Figure 1.

Uninterpolated precision-recall curve.

Eleven Point Precision-recall Curve. Figure 2.

Interpolated 11-point precision-recall curve.

982E Embedded Networked Sensing
Cross-references
▶ Precision

▶Recall

▶ Standard Effectiveness Measures
Embedded Networked Sensing

▶ Sensor Networks
Emergent Semantics

PHILIPPE CUDRÉ-MAUROUX

Massachusetts Institute of Technology, Cambridge,

MA, USA

Synonyms
Bottom-up semantics; Evolutionary semantics
Definition
Emergent semantics refers to a set of principles and

techniques analyzing the evolution of decentralized

semantic structures in large scale distributed informa-

tion systems. Emergent semantics approaches model

the semantics of a distributed system as an ensemble of

relationships between syntactic structures. They consid-

er both the representation of semantics and the discovery

of the proper interpretation of symbols as the result of a

self-organizing process performed by distributed agents

exchanging symbols and having utilities dependent

on the proper interpretation of the symbols. This is a

complex systems perspective on the problem of dealing

with semantics.
Historical Background
Syntax is classically considered as the study of the rules

of symbol formation and manipulation [8]. Despite its

wide usage in many contexts, the notion of semantics

often lacks a precise definition. As a least common

denominator, it can be characterized as a relationship

or mapping established between a syntactic structure

and some domain. The syntactic structure is a set of

symbols that can be combined following syntactic

rules. The possible domains that are related to the

symbols may vary. In linguistics, such domains are

typically considered as domains of conceptual inter-

pretations. In mathematical logic, a semantic interpre-

tation for a formal language is specified by defining

mappings from the syntactic constructs of the language

to an appropriate mathematical model. Denotational

semantics applies this idea to programming languages.

Natural language semantics classically concerns a tri-

adic structure comprising a symbol (how some idea is

expressed), an idea (what is abstracted from reality)

and a referent (the particular object in reality) [9].

Emergent semantics expresses semantics through

purely syntactic, recursive domains. The notions

Emergent Semantics E 983

E

underlying emergent semantics are rooted in com-

putational linguistics works relating semantics to the

analysis of syntactic constructs. In his seminal work

on syntactic semantics [10,11], William J. Rapaport

defines semantic understanding as the process of

understanding one domain in terms of another –

antecedently understood – domain. This further raises

the question of how the antecedently domain is itself

understood. In the same vein, the antecedently under-

stood domain has to be understood in terms of yet

another domain, and so on and so forth recursively. To

avoid to ground the recursion to a hypothetical base

domain, Rapaport suggest the notions of semantics as

correspondence, and lets the semantic interpretation

function recursively map symbols to themselves or to

other symbols. By considering the union of the syntac-

tic and semantic domains, Rapaport regards semantics

as syntax, i.e., turns semantics into the study of rela-

tions within a single domain of symbols and their

interrelations. A dictionary is a simple example of a

construct based on that paradigm, where the interpre-

tations of symbols (i.e., words) are given by means of

the same symbols, creating a closed correspondence

continuum. Emergent semantics applies the concep-

tion of a closed correspondence continuum to the

analysis of semantics in distributed information systems,

by promoting recursive analyses of syntactic constructs –

such as schemas, ontologies or mappings – in order

to capture semantics.

Foundations
Beyond its implication in linguistics – where it is con-

jectured that human beings inevitably understand

meaning in terms of syntactic domains – emergent

semantics is considered as being mostly relevant to

computer science. Programs, database schemas, mod-

els, or ontologies have no capacity (yet) to refer to

reality. However, they have various mechanisms at

their disposal for establishing relationships between

internal symbols and external artifacts. In the settings

where humans provide semantics, relationships among

symbols – such as constraints in relational databases –

are means to express semantics. In order to rectify

some of the problems related to the implicit represen-

tation of semantics relying on human cognition, some

have proposed the use of an explicit reference system

for relating sets of symbols in a software system. Ontol-

ogies serve this purpose: an ontology vocabulary

consists of formal, explicit but partial definitions
of the intended meaning of a domain of discourse.

In addition, formal constraints (e.g., on the mandatori-

ness or cardinality of relationships between concepts)

are added to reduce the fuzziness of the informal defi-

nitions. Specific formal languages (such as OWL) allow

to define complex notions and support inference cap-

abilities. In that way, explicitly represented semantics

of syntactic structures in an information system con-

sist of relationships between those syntactic structures

and some generally agreed-upon syntactic struc-

ture. Thus, the semantics is itself represented by a

syntactic structure.

In a large scale distributed environment of informa-

tion agents, such as in the SemanticWeb or Peer-to-Peer

systems, the aim is to have the agents interoperate irre-

spective of their initial vocabularies. To that aim, an

agent has to map its vocabulary (carrying the meaning

as initially defined in its base schema or ontology) to

the vocabulary of other agents with which it wants to

interoperate. Hence, a relationship between local and

distant symbols is established. This relationship may be

considered as another form of semantics, independent

of the initial semantics of the symbols. Assuming that

autonomous agents acquire vocabulary terms through

relationships to other agents and that agents interact

without human intervention, the original human

assigned semantics would loose its relevance; from an

agent’s perspective, new semantics would then result

from the relationships to its environment. This is a

novel way of providing semantics to symbols of agents

relative to the symbols of other agents with which they

interact. Typically, this type of semantic representation

is distributed such that no agent holds a complete

representation of a generally agreed-upon semantics.

From a global perspective, considering a society of

autonomous agents as one system, one can observe

that the agents form a complex, self-referential and

dynamic system. It is well-accepted that such systems

often result in global states, which cannot be properly

characterized at the level of local components. This

phenomenon is frequently characterized by the notion

of self-organization. Thus, emergent semantics is not

only a local phenomenon, where agents obtain inter-

pretations locally through adaptive interactions with

other agents, but also a global phenomenon, where

global semantics emerge from the society of agents

and represent the common, current semantic agree-

ment in the system. This view of semantics as the

emergence of a distributed structure from a set of

984E Emergent Semantics
dynamic processes – or more specifically as some equi-

librium state of such processes – is in-line with the

generally accepted definitions of emergence and emer-

gent structures in the complex systems literature [2].

In that respect, emergent semantics can be related to

dynamic systems disciplines such as evolutionary game

theory, semiotic dynamics [13], or graph evolution.

Key Applications
Multimedia Systems: Distributed multimedia applica-

tions were the first information systems to take advan-

tage of emergent semantics principles in order to

capture the semantics of shared objects. In this context,

Santini et al. [12] argue that images do not have an

intrinsic meaning, but that they are endowed with a

meaning by placing them in the context of other

images. From this observation, they propose a system

where users are able to manipulate relations between

images, and where the semantics of an image is emer-

gent, in the sense that it is a product of the dual

activities of users manipulating sets of images and of

the database system. Along the same lines, Grosky et al.

[5] focus on the role of context for giving meaning to a

work of art. In their work, document semantics emerge

through the analysis of users’ browsing paths through a

multimedia collection. They categorize the semantics

of each item based on the collection of browsing paths.

Tagging Portals: Emergent semantics can be seen as

a natural paradigm to analyze the distributed, user-

driven process of giving semantics to items through

the use of tags. Extreme Tagging [14] is a technique

promoting the tagging of tags and the analysis of the

relations between tags. Yeung et al. [15] discuss how

shared documents acquire meaning through their

associations with other elements. In particular, they

demonstrate how different meanings of ambiguous

tags can be discovered through the analysis of a tripar-

tite graph involving users, tags, and resources. Herschel

et al. [6] discuss query expansion techniques by aggre-

gating users opinions as tags and discuss the role

of pragmatics in collaboratively creating semantics.

Heterogeneous Information Systems: Emergent sem-

antics has been suggested as a way to capture semantics

in decentralized and heterogeneous information systems

[4]. In contrast to mediated integration architectures,

recent decentralized integration architectures – such as

Peer Data Management Systems – do not require the

definition of any global schema or ontology. Thus, the

global semantics of such systems can only be captured by
considering the collection of conceptualizations as de-

fined by the local databases, along with their inter-

relations. Semantic Gossiping [1] analyzes transitive

closures of schema mappings in that context in order

to infer semantic agreement. Related techniques suggest

the use of graph theory or probabilistic networks [3]

in order to capture global semantics in similar environ-

ments. More broadly speaking, emergent semantics

techniques are increasingly being seen as a way to mini-

mize manual input and maintenance when dealing with

complex and heterogeneous information systems [7].
Cross-references
▶Data Integration

▶Meta Data Management System

▶Multimedia Databases

▶ Peer Data Management System

▶ Peer-to-Peer Data Integration

▶ Schema Mapping
Recommended Reading
1. Aberer K., Cudré-Mauroux P., and Hauswirth M. The Chatty

Web: emergent semantics through gossiping. In Proc. 12th Int.

World Wide Web Conference, 2003, pp. 197–206.

2. Bar-Yam Y. Dynamics of Complex Systems. Perseus Books

Group, 1997.

3. Cudré-Mauroux P. Emergent Semantics: Rethinking Interopera-

bility for Large-Scale Decentralized Information Systems. Ph.D.

thesis, 3690, EPFL, Switzerland, 2006.

4. Cudre-Mauroux P. et al. Viewpoints on Emergent Semantics.

J. Data Seman., VI:1–27, 2006.

5. Grosky W., Sreenath D., and Fotouhi F. Emergent Semantics

and the Multimedia Semantic Web. ACM SIGMOD Rec.,

31(4):54–58, 2002.

6. Herschel S., Heese R., and Bleiholder J. An Architecture

for Emergent Semantics. In Proc. 15th Int. Conf. on Conceptual

Modeling, 2006, pp. 425–434.

7. Howe B., Tanna K., Turner P., andMaier D. Emergent semantics:

towards self-organizing scientific metadata. In Proc. Int. Conf.

on Semantics of a Networked World, 2004, pp. 177–198.

8. Morris C. Foundations of the theory of signs. International

Encyclopedia of Unified Science, 1(2), 1938.

9. Ogden C. and Richards I. The Meaning of Meaning:

A Study of the Influence of Language upon Thought and of

the Science of Symbolism. 10th edn., Routledge & Kegan Paul,

London, 1923.

10. Rapaport W. Syntactic semantics: foundations of computa-

tional natural-language understanding. In Aspects of Artificial

Intelligence, Kluwer Academic, Dordrecht, Holland, 1988,

pp. 81–131.

11. Rapaport W. What Did You Mean by That? Misunderstanding,

Negotiation, ans Syntactic Semantics. Minds and Mach.,

13(3):397–427, 2003.

Emerging Patterns E 985

E

12. Santini S., Gupta A., and Jain R. Emergent Semantics

through Interaction in Image Databases. IEEE Trans. Knowl.

Data Eng., 13(3):337–351, 2001.

13. Steels L. Semiotic dynamics for embodied agents. IEEE

Intelligent Systems, 21(3):32–38, 2006.

14. Tanasescu V. and Streibel O. Extreme tagging: emergent seman-

tics through the tagging of tags. In Proc. Int. Workshop

on Emergent Semantics and Ontology Evolution, 2007,

pp. 84–94.

15. Yeung C., Gibbins N., and Shadbolt N. Understanding the

semantics of ambiguous tags in folksonomies. In Proc. Int.

Workshop on Emergent Semantics and Ontology Evolution,

2007, pp. 108–121.
Emerging Pattern Based
Classification

GUOZHU DONG
1, JINYAN LI

2

1Wright State University, Dayton, OH, USA
2Nanyang Technological University, Singapore,

Singapore

Synonyms
Contrast pattern based classification

Definition
The term ‘‘emerging-pattern based classification’’

refers to any classification algorithm that uses emerg-

ing patterns to directly build classifiers or to help

build/improve other classifiers.

Key Points
The first approach to consider emerging-pattern based

classification is CAEP (classification by aggregating

emerging patterns) [2]. The main idea is to aggregate

(sum) the discriminating power ofmany of the emerging

patterns contained in a case to be classified. The discrim-

inating power of an emerging pattern is often reflected

in the support difference of the pattern in the opposing

classes. For each class, the emerging patterns of that

class contained in the case are aggregated to form a

score; the class with the highest score is deemed to be

the class of the case. Score normalization can be used

to dealwith data/battern imbalance between classes. This

classification method can lead to high quality classifiers,

comparable or better than other classifiers.

A second major direction in emerging-pattern

based classification is the DeEPs method [2], which is
an instance-based classification method using emerging

patterns. After a case to be classified is given, DeEPs will

compute the jumping emerging patterns contained in

this case from the training data, and use the training data

(that contain some of the discovered jumping emerging

patterns) to compute the aggregated scores for the case

and the classes. The DeEPs method avoids a deficiency

of getting duplicate discriminating power contribution

from near equivalent emerging patterns.

Recently, many other emerging-pattern based classi-

fication methods have been introduced (e.g., [1]), and

several papers study the noise tolerance of emerging

pattern based classifiers. More references can be found

at www.cs.wright.edu/�gdong/EPC.html.

Cross-references
▶Applications of Emerging Patterns for Microarray

Gene Expression Data Analysis

▶Associative Classification

▶Classification

▶Classification by Association Rule Analysis

▶ Emerging Patterns

Recommended Reading
1. Alhammady H. and Ramamohanarao K. Using emerging

patterns to construct weighted decision trees. IEEE Trans.

Knowl. Data Eng., 18(7):865–876, 2006.

2. Dong G., Zhang X., Wong L., Li J. CAEP: classification

by aggregating emerging patterns. Discov. Sci., 30–42, 1999.

3. Li J., Dong G., Ramamohanarao K., and Wong L. DeEPs: a

new instance-based lazy discovery and classification system.

Mach. Learn., 54(2):99–124, 2004.
Emerging Patterns

GUOZHU DONG
1, JINYAN LI

2

1Wright State University, Dayton, OH, USA
2Nanyang Technological University, Singapore,

Singapore

Synonyms
Contrast pattern; Group difference

Definition
Roughly speaking, emerging patterns [3] are patterns

whose support changes significantly from one dataset

to another. The definition below captures significant

change in terms of big growth rate.

986E Emerging Patterns
Formally, let D1 and D2 be two datasets, and let X

be an itemset. For each integer i 2 {1, 2}, let suppi(X)

denote the support of X in Di . The growth rate of X ’s

support from D1 to D2 is defined as

GrowthRateðXÞ ¼

0
if supp1ðXÞ ¼ 0 and

supp2ðXÞ ¼ 0

1
if supp1ðXÞ ¼ 0 and

supp2ðXÞ 6¼ 0

supp2ðXÞ
supp1ðXÞ

otherwise

8>>>>>>>>><
>>>>>>>>>:

Observe that growth rates can also be defined in terms

of counts instead of supports. One can also adjust

the definition to avoid division by zero, by letting

GrowthRateðXÞ ¼ supp2ðXÞ
supp1ðXÞþE for some fixed E > 0.

Given a growth-rate threshold r > 1, an itemset

X is called a r-emerging pattern (or simply emerging

pattern, or EP) from D1 to D2 if GrowthRate(X) � r;
the dataset D1 is called the background dataset, and D2

the target dataset, of X. Emerging patterns whose

growth rate is 1 are called jumping emerging patterns

(JEPs).

As with frequent itemsets, the number of emerging

patterns can be large. One common approach to

overcome this problem is to focus on the minimal

emerging patterns with respect to the set containment

relation.

Historical Background
The concept of emerging patterns was motivated to

capture emerging trends or change patterns over time,

or significant differences/contrasts between datasets or

data classes. The mining of emerging patterns can be

viewed as a special case of comparative data mining,

where one compares several datasets against each other

in order to discover similarities and contrasts, etc.

among the datasets. Emerging patterns were initially

defined over relational or transactional data [3] and

were recently generalized to sequences [6] and graphs

[13], etc. In addition to emerging patterns, other

patterns on change/difference, together with their

mining, were also considered in many other studies

[2,3,11,14,16].

Several algorithms have been proposed to mine

emerging patterns, including the border-differential al-

gorithm [3], a constraint-based bounding algorithm, a

tree-based algorithm, a minimal hypergraph transversal

based algorithm [1], a ZBDD based algorithm [12], and
an incrementalmaintenance algorithm [9]. A theoretical

analysis on the complexity of emerging pattern mining

was reported in [16], and a study on the relationship

between emerging patterns and rough set reducts was

reported in [14]. Reference [10] proves that the space of

jumping emerging patterns is convex and linked that

space to version spaces. Reference [8] gives an efficient

algorithm for mining minimal (with respect to set con-

tainment) emerging patterns, and linked the mining of

emerging patterns to the mining of minimal generators

and closed patterns. The mining of emerging patterns

was also studied in several papers whose focus are on

classification using emerging patterns (cf www.cs.wright.

edu/�gdong/EPC.html).

The study of emerging patterns led to two main

directions of extensive and fruitful research, namely

the use of emerging patterns in classification, and the

application of emerging patterns for microarray gene

expression data analysis.

Foundations
The border-differential algorithm [3] computes the

border of certain sets of emerging patterns, by

performing border differential. Borders [3] represent,

in a concise manner, large convex collections of item-

sets, including certain collections of emerging patterns.

A border contains two boundary collections of item-

sets, namely a minB and a maxB; it represents the

convex set {z j ∃x 2 minB, ∃y 2 maxB such that x �
z � y} of itemsets. For example, <{{2}, {3, 4}}, {{2, 3,

4}} > is a border, where {{2}, {3, 4}} = minB (contain-

ing two itemsets) and {{2, 3, 4}} = maxB (containing

one itemset), representing {{2}, {2, 3}, {2, 4}, {3, 4},

{2, 3, 4}}. The main steps of the border-differential

algorithm are some iterative expansion–minimization

steps used to find the minimal itemsets which are

contained in a given positive transaction but which

are not contained in any of given negative transactions.

The border-differential algorithm can directly com-

pute the set of all jumping emerging patterns, and

the set of all emerging patterns whose support in one

dataset is lower than a threshold and whose support in

the other dataset is higher than another threshold.

Experiments show that the algorithm was fairly fast

and can handle datasets of up to 75 attributes.

Reference [9] studies how to incrementally modify

and maintain the concise border descriptions of the

collection of all jumping emerging patterns when

small changes to the original data occur. It introduces

Emerging Patterns E 987

E

algorithms to handle four types of changes: insertion

of new data, deletion of old data, addition of new

attributes, and deletion of old attributes. Similar to

the border-differential algorithm, the incremental

algorithms obtain the new borders by manipulating

the old borders. Experiments show that the incremen-

tal algorithms are much faster than the computing-

from-scratch method.

Reference [1] shows that computing minimal

jumping emerging patterns is equivalent to the well

known problem of enumerating the minimal transver-

sals of a hypergraph. It proposes a bottom up approach

for computing minimal hypergraph transversals

that is particularly suited to the types of hypergraphs

arising in jumping emerging pattern mining. Earlier,

the three authors of [1] also proposed a tree based

algorithm to mine emerging patterns; the tree stores

two (or more) counts for each node, one for each

dataset; two item orderings, one based on frequency

ratio and one based on frequency, are used; it was found

that the algorithm was faster than earlier ones and that

minimizing tree size may not lead to the shortest com-

putation time.

Reference [12] introduces an efficient algorithm

for mining emerging patterns (and generalizations).

The algorithm is based on the so-called zero suppressed

binary decision diagrams (ZBDDs). Binary decision

diagrams (BDDs) are directed acyclic graphs which

are efficient representations of boolean formulae. A

ZBDD is a special type of BDD, originally introduced

for set-manipulation in combinatorial problems. In

[12], ZBDD is used to compress sparse high dimen-

sional itemsets/data, and to allow the reuse of past

computations. This algorithm can be hundreds of

times faster than the tree-based algorithm, and can

successfully mine emerging patterns from data with

several hundreds (or even thousands) of attributes.

Key Applications
Emerging patterns are useful for capturing multi-

dimensional contrasts between datasets/classes. They

have been extensively used in classification, and for

microarray gene expression data analysis (especially

for cancers). Emerging patterns can also be used (i) to

discover emerging trends in temporal databases by

comparing datasets collected from two time intervals,

(ii) to identify rare events, and (iii) to detect network

intrusion. References on these can be found at www.cs.

wright.edu/�gdong/EPC.html.
Cross-references
▶Applications of Emerging Patterns for Microarray

Gene Expression Data Analysis

▶ Emerging Pattern Based Classification
Recommended Reading
1. Bailey J., Manoukian T., and Ramamohanarao K. A fast algo-

rithm for computing hypergraph transversals and its application

in mining emerging patterns. In Proc. 2003 IEEE Int. Conf. on

Data Mining, 2003, pp. 485–488.

2. Bay S.D. and Pazzani M.J. Detecting change in categorical data:

mining contrast sets. In Proc. 5th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, 1999, pp. 302–306.

3. Dong G., Li J. Efficient mining of emerging patterns: discovering

trends and differences. In Proc. 5th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, 1999, pp. 43–52. Jour-

nal version [5].

4. Dong G., Han J., Lam J.M.W., Pei J., Wang K., and Zou W.

Mining constrained gradients in large databases. IEEE Trans.

Knowl. Data Eng., 16(8):922–938, 2004.

5. Dong G. Li J. Mining border descriptions of emerging patterns

from dataset pairs. Knowl. Inf. Syst. 8(2):178–202, 2005.

6. Ji X., Bailey J., and Dong G. Mining minimal distinguishing

subsequence patterns with gap constraints. In Proc. 2005 IEEE

Int. Conf. on Data Mining, 2005, pp. 194–201. Journal

version [7].

7. Ji X., Bailey J., and Dong G. Mining Distinguishing Subse-

quences Patterns with Gap Constraints. Knowl. Inf. Syst. 11

(3):259–289, 2007.

8. Li J., Liu G., and Wong L. Mining statistically important equiva-

lence classes and d-discriminative emerging patterns. In Proc.

13th ACM SIGKDD Int. Conf. on Knowledge Discovery and

Data Mining, 2007, pp. 430–439.

9. Li J., Manoukian T., Dong G., and Ramamohanarao K. Incre-

mental maintenance on the border of the space of emerging

patterns. Data Min. Knowl. Discov. 9(1):89–116, 2004.

10. Li J., Ramamohanarao K., and Dong G. The space of jumping

emerging patterns and its incremental maintenance algo-

rithms. In Proc. 17th Int. Conf. on Machine Learning: 2000,

pp. 551–558.

11. Liu B., Hsu W., and Ma Y. Discovering the set of fundamental

rule changes. In Proc. 7th ACM SIGKDD Int. Conf. on Knowl-

edge Discovery and Data Mining, 2001, pp. 335–340.

12. Loekito E. and Bailey J. Fast Mining of High Dimensional

Expressive Contrast Patterns Using Zero-Suppressed Binary

Decision Diagrams. In Proc. 12th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, 2006, pp. 307–316.

13. Ting M.H.T. and Bailey J. Mining minimal contrast subgraph

patterns, In Proc. SIAM International Conference on Data

Mining, 2006, pp. 638–642.

14. Terlecki P. and Walczak K. On the relation between rough set

reducts and jumping emerging patterns. Inf. Sci., 177(1):74–83,

2007.

15. Vreeken J., van Leeuwen M., and Siebes A. Characterising the

difference. In Proc. 13th ACM SIGKDD Int. Conf. on Knowl-

edge Discovery and Data Mining, 2007, pp. 765–774.

988E Encryption
16. Wang L., Zhao H., Dong G., and Li J. On the complexity of

finding emerging patterns. Theor. Comput. Sci. 335(1):15–27,

2005.

17. Webb G.I., Butler S.M., and Newlands D.A. On detecting differ-

ences between groups. In Proc. 9th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, 2003, pp. 256–265.
Encryption

▶Data Encryption
End User

▶Actors/Agents/Roles
Ensemble

ZHI-HUA ZHOU

Nanjing University, Nanjing, China

Synonyms
Committee-based learning; Multiple classifier system;

Classifier combination

Definition
Ensemble is a machine learning paradigm where mul-

tiple learners are trained to solve the same problem. In

contrast to ordinary machine learning approaches

which try to learn one hypothesis from training data,

ensemble methods try to construct a set of hypotheses

and combine them.

Historical Background
It is difficult to trace the starting point of the history of

ensemble methods since the basic idea of deploying

multiple models has been in use for a long time.

However, it is clear that the hot wave of research on

ensemble methods since the 1990s owes much to two

works. The first is an applied research conducted by

Hansen and Salamon at the end of 1980s [5], where

they found that predictions made by the combination

of a set of neural networks are often more accurate

than predictions made by the best single neural net-

work. The second is a theoretical research conducted in

1989, where Schapire proved that weak learners which
are slightly better than random guess can be boosted to

strong learners that are able to make very accurate

predictions, and the proof resulted in Boosting, one

of the most influential ensemble methods [10].

Foundations

Terminologies

Learners composing an ensemble are usually called

base learners. Many ensemble methods are able to

boost weak learners which are slightly better than

random guess to strong learners which can make

very accurate predictions. So, ‘‘base learners’’ are also

referred as ‘‘weak learners’’. However, it is noteworthy

that although most theoretical analyses work on weak

learners, base learners used in practice are not neces-

sarily weak since using not-so-weak base learners often

results in better performance.

Base learners are usually generated from training

data by a base learning algorithm which can be decision

tree, neural network or other kinds of machine

learning algorithms. Most ensemble methods use a

single base learning algorithm to produce homogeneous

base learners, but there are also some methods which

use multiple learning algorithms to produce heteroge-

neous learners. In the latter case there is no single base

learning algorithm and thus, some people prefer call-

ing the learners individual learners or component lear-

ners to ‘‘base learners’’, while the names ‘‘individual

learners’’ and ‘‘component learners’’ can also be used

for homogeneous base learners.

Methods

Typically, an ensemble is constructed in two steps. In

the first step, a number of base learners are produced.

Here the base learners can be generated in a parallel

style, or in a sequential style where the generation

of a base learner has influence on the generation of

subsequent learners. In the second step, the base lear-

ners are combined to use. The most popular combina-

tion scheme for classification is majority voting, while

the most popular combination scheme for regression is

weighted averaging. The employment of different base

learner generation processes and/or different combina-

tion schemes leads to different ensemble methods.

The following three paragraphs briefly describe

the working routines of three representative ensemble

methods, Boosting [10], Bagging [2] and Stacking [13],

respectively. Here, binary classification is considered

Ensemble E 989

E

for simplicity. That is, let X and Y denote

the instance space and the set of class labels, res-

pectively, assuming Y ¼ f�1;þ1g. A training set

D ¼ fðx1; y1Þ; ðx2; y2Þ;:::;ðxm; ymÞg is given, where

xi 2 X and yi 2 Y (i = 1,...,m).

For Boosting, let us consider the most famous algo-

rithm, AdaBoost, as an example. In the first step, a

number of base learners are produced by emphasiz-

ing each learner on the training examples that are

wrongly predicted by preceding learners. Here, a weight

distribution is maintained over the training examples,

which is initialized by equal weights. In the tth learning

round, a base learner ht : X ! Y is generated from

the training set by using the current weight distribu-

tion, Dt. Then, ht is evaluated on the training

set and let et denote the error. The weight distribut-

ion for the next learning round, Dt+1, is generated

in the way that for the training example (xi,yi),

Dtþ1ðiÞ ¼ Dt ðiÞ
Zt

exp 1
2
ln 1�Et

Et

� �
yiht ðxiÞ

� �
where Zt

is a normalization factor which enables Dt+1 to

be a distribution. In the second step, the base

learners ht’s (t = 1,...,T) are combined by

HðxÞ ¼ sign
PT

t¼1 at ht ðxÞ
� �

.

For Bagging, in the first step a number of base

learners are trained from bootstrap samples. A boot-

strap sample is obtained by subsampling the training

set with replacement, where the size of a sample is as

the same as that of the training set. Thus, for a boot-

strap sample, some training examples may appear but

some may not, where the probability that an example

appears at least once is about 0.632. On each sample a

base learner ht : X ! Y is produced by calling a base

learning algorithm. In the second step, Bagging com-

bines the learners ht’s (t = 1,...,T) by majority voting,

i.e., HðxÞ ¼ argmaxy2Y
PT

t¼11 y ¼ ht xð Þð Þ where the

value of 1(a) is 1 if a is true and 0 otherwise.

For a typical implementation of Stacking, in the

first step, a number of individual learners, ht : X ! Y
(t = 1,...,T), are generated from the training set by

employing different learning algorithms. In the second

step, the individual learners are combined by using

another learner. Here, for the training example (xi,yi),

a corresponding example (zi,yi) is produced, where zi =

(h1 (xi),...,hT (xi)). Then, from {(zi,yi)} (i = 1,...,m)

a learner F : hTt ! Y is generated by calling a learning

algorithm, which is used to combine the individual

learners by H(x) = F (h1 (x),...,hT (x)).

The above methods have many variants. For exam-

ple, Random Forests [3], which has been deemed as one
of the most powerful ensemble methods, is a variant of

Bagging.

There are many other established ensemble meth-

ods, e.g., Random Subspace [6]. This method generates

a number of base learners from different subspaces of

the training set in the first step, and then combines

these base learners via majority voting in the second

step. Here, a subspace is actually a subset of the original

attribute set.

It is worth mentioning that in addition to classifi-

cation and regression, ensemble methods have also

been designed for clustering [11] and other kinds of

machine learning tasks.

It was thought that using more base learners will

lead to a better performance, yet Zhou et al. [15]

proved the ‘‘many could be better than all’’ theorem

which indicates that this may not be the fact. It was

shown that after generating a set of base learners,

selecting some base learners instead of using all of

them to compose an ensemble is a better choice. Such

ensembles are called selective ensembles.

Note that usually the computational cost for build-

ing an ensemble comprising T base learners is roughly

T times the cost of training a single learner. So, from

the view of computational complexity, training an

ensemble is almost as efficient as training a single

learner.

Why Useful?

The generalization ability of an ensemble is usually

much stronger than that of a single learner, which

makes ensemble methods very attractive. An impor-

tant question is, why can the ensembles be superior to

single learners? For this, Dietterich [4] gave three rea-

sons by viewing the nature of machine learning as

searching a hypothesis space for the most accurate

hypothesis. The first reason is that, the training data

might not provide sufficient information for choosing

a single best learner. For example, there may be many

learners performing equally well on the training set.

Thus, combining these learners may be a better choice.

The second reason is that, the search processes of the

learning algorithms might be imperfect. For example,

even if there exists a unique best hypothesis, it might be

difficult to achieve since running the algorithms results

in sub-optimal hypotheses. Thus, ensembles can com-

pensate for such imperfect search processes. The third

reason is that, the hypothesis space being searched

might not contain the true target function, while

990E Ensemble
ensembles can give some good approximation. For

example, it is well-known that the classification

boundaries of decision trees are linear segments paral-

lel to coordinate axes. If the target classification

boundary is a smooth diagonal line, using a single

decision tree cannot lead to a good result but a good

approximation can be achieved by combining a

set of decision trees. Although these intuitive explana-

tions are reasonable, they lack rigorous theoretical

analyses.

The bias-variance decomposition is often used in

studying the performance of ensemble methods [1,15].

It is known that Bagging can significantly reduce the

variance, and therefore it is better to be applied to

learners suffered from large variance, e.g., unstable lear-

ners such as decision trees or neural networks. Boosting

can significantly reduce the bias in addition to reducing

the variance, and therefore, on weak learners such as

decision stumps, Boosting is usually more effective.

There are many theoretical studies on famous

ensemble methods such as Boosting and Bagging,

yet it is far from a clear understanding of the underly-

ing mechanism of these methods. For example, empir-

ical observations show that Boosting often does not

overfit even after a large number of rounds, and some-

times it is even able to reduce the generalization

error after the training error has already reached zero.

Although many people have studied this phenomenon,

theoretical explanations are still in arguing.

Accuracy and Diversity

Generally, in order to construct a good ensemble, the

base learners should be as more accurate as possible,

and as more diverse as possible. This has been formally

shown by Krogh and Vedelsby [7], and emphasized by

many other people.

The definition of accuracy is clear, and there are

many effective processes for estimating the accuracy

of learners, such as cross-validation, hold-out test,

etc. However, there is no rigorous definition on what

is intuitively perceived as diversity. Although a number

of diversity measures have been designed, Kuncheva

and Whitaker [8] revealed that the usefulness of

existing diversity measures in building ensembles is

suspectable.

In practice, the diversity of the base learners can be

introduced fromdifferent channels, such as subsampling

the training examples, manipulating the attributes,

manipulating the outputs, injecting randomness into
learning algorithms, or even using multiple mechanisms

simultaneously.

Key Applications
Ensemble methods have already been used in diverse

applications such as optical character recognition, text

categorization, face recognition, medical diagnosis,

gene expression analysis, etc. Actually, ensemble meth-

ods can be used wherever machine learning techniques

can be used.

Future Directions
A serious deficiency of ensemble methods is the lack

of comprehensibility, i.e., the knowledge learned by

ensembles is not understandable to the user. Improv-

ing the comprehensibility of ensembles [14] is an im-

portant yet largely understudied direction.

Diversity plays an important role in ensembles, yet

currently no diversity measures is satisfying [8]. Ex-

ploring the relation between the performance of

ensembles and the properties of base learners to design

useful diversity measures is an interesting direction,

which may lead to the development of more powerful

ensemble methods.

Although there are much theoretical analyses on

ensemble methods, many underlying mechanisms of

successful ensemble methods are not clear. So, more

theoretical studies are needed. Another ambitious at-

tempt is to establish a general theoretical framework

for ensemble methods.

Experimental Results
Empirical studies on popular ensemble methods have

been reported in many papers, such as [1,9,12].

Data Sets
A large collection of datasets commonly used for

experiments can be found at http://www.ics.uci.edu/

�mlearn/MLRepository.html

Url To Code
The code of Random Forests can be found at http://

www.stat.berkeley.edu/�breiman/RandomForests/

Cross-references
▶Bagging

▶Boosting

▶Decision Tree

Enterprise Application Integration E 991

E

▶Neural Networks

▶ Support Vector Machine

Recommended Reading
1. Bauer E. and Kohavi R. An empirical comparison of voting

classification algorithms: bagging, Boosting, and variants.

Mach. Learn., 36(1–2):105–139, 1999.

2. Breiman L. Bagging predictors. Mach. Learn., 24(2):123–140,

1996.

3. Breiman L. Random forests. Mach. Learn., 45(1):5–32, 2001.

4. Dietterich T.G. Machine learning research: Four current

directions. AI Magn., 18(4):97–136, 1997.

5. Hansen L.K. and Salamon P. Neural network ensembles.

IEEE Trans. Pattern Anal. Mach. Intell., 12(10):993–1001, 1990.

6. Ho T.K. The random subspace method for constructing

decision forests. IEEE Trans. Pattern Anal. Mach. Intell.,

20(8):832–844, 1998.

7. Krogh A. and Neural network ensembles, cross validation,

and active learning. In Advances in Neural Information Proces-

sing Systems 7, G. Tesauro, D.S. Touretzky, and T.K. Leen (eds.).

MIT Press, Cambridge, MA, 1995, pp. 231–238.

8. Kuncheva L.I. and Whitaker C.J. Measures of diversity in

classifier ensembles and their relationship with the ensemble

accuracy. Mach. Learn., 51(2):181–207, 2003.

9. Opitz D. and Maclin R. Popular ensemble methods: An empiri-

cal study. J. Artif. Intell. Res., 11:169–198, 1999.

10. Schapire R.E. The Boosting approach to machine learning:

An overview. In Nonlinear Estimation and Classification, D.D.

Denison, M.H. Hansen, C. Holmes, B. Mallick, and B. Yu (eds.).

Springer, Berlin, 2003.

11. Strehl A. and Ghosh J. Cluster ensembles – a knowledge reuse

framework for combining multiple partitionings. J. Mach.

Learn. Res., 3:583–617, 2002.

12. Ting K.M. and Witten I.H. Issues in stacked generalization.

J. Artif. Intell. Res., 10:271–289, 1999.

13. Wolpert D.H. Stacked generalization. Neural Netw., 5(2):

241–260, 1992.

14. Zhou Z.-H., Jiang Y., and Chen S.-F. Extracting symbolic

rules from trained neural network ensembles. AI Commun.,

16(1):3–15, 2003.

15. Zhou Z.-H., Wu J., and Tang W. Ensembling neural networks:

Many could be better than all. Artif. Intell., 137(1–2):239–263,

2002.
Enterprise Application Integration

JANETTE WONG

IBM Canada Ltd, ON, Canada

Synonyms
EAI; Application-to-application integration; Application-

centric interfacing
Definition
Enterprise Application Integration (EAI) is concerned

with making applications work together seamlessly,

by sharing data and functions among data sources

and applications across heterogeneous platforms,

facilitated by the use of common middleware. The

applications can be a mixture of in-house developed,

commercially packaged, and open-source applications;

some are contemporary applications, some are legacy

systems. Some of the applications were not designed

to work together originally. The majority of the defini-

tions set the boundary of EAI for integration within an

enterprise. Integration across enterprises involves ad-

ditional and sometimes different considerations that

are covered by solutions that fall under the category of

business-to-business (B2B) integration [10]. Varia-

tions of the definition of EAI can be found in existing

literature. Some of the definitions include the idea that

the ultimate goal of EAI is to enable the creation of new

business solutions.

Historical Background
Integration of applications started with the sharing of

data using files. An application outputs data to a file

with specific file naming and placement conventions

so that other applications can retrieve the contents

of the file. Important decisions include deciding on

the file format and how frequently to produce and

consume the file. A common issue is that applications

can get out of synchronization. When an application

uses obsolete data, resulting consequences can be

severe.

The next step in the evolution of integration came

when client-server architectures became popular and

gave rise to the notion of Application Programming

Interfaces (APIs) through which a client can invoke the

services provided by a remote server. The underlying

remote invocation is handled by Remote Procedure

Calls (RPC). The main disadvantage is that the API

that is being invoked must be in a language and plat-

form compatible with the calling application, which

implies multiple APIs are needed to expose an applica-

tion to other applications on different platforms and

languages.

With the advent of object-oriented programming,

distributed components in the form of objects allow

applications to interact irrespective of their locations

and platforms. Common Object Request Broker Archi-

tecture (CORBA) took the RPC ideas further by

992E Enterprise Application Integration
applying them to an object-oriented environment. Al-

though the status of CORBA being the standard

distributed object platform has been replaced by

more recent platforms such as Java 2 Platform Enter-

prise Edition (J2EE) and .NET, the ideas from CORBA

are still being used today.

When using RPC and distributed objects, applica-

tions invoke the APIs of each other directly. This is

known as point-to-point integration and it has some

drawbacks which are aggravated as the number of

applications to be integrated increases. Point-to-point

integration results in tightly coupled applications and

is not a scalable approach.

In the 1990s, ERP (Enterprise Resource Planning)

systems became popular, providing a variety of

business functions such as accounting and inventory

management. Enterprises want to leverage existing

functions and data in the ERP systems, but it was

difficult to integrate them with other applications.

Vendors responded by providing connectors (also called

adapters) to the ERP systems. As the number of appli-

cations to be integrated increased, it became clear that

a common infrastructure which provides services to

allow the applications to interact and manages those

interactions would be useful. Such an infrastructure

would also minimize the dependencies and assump-

tions applications make about each other. Industry

analysts created the term EAI to represent the software

in this infrastructure which enables and facilitates

integration.

The success of the Internet provides new opportu-

nities to develop strategic business solutions that bring

competitive advantages and fuel the need for integra-

tion even further. Standards such as Extensible Markup

Language (XML) and industry-specific business pro-

tocols provide more common basis for integration.

The shift to service-oriented integration, supported

by technologies such as Web Services, SOA (Service

Oriented Architecture), and SCA (Service Component

Architecture) have now taken integration into a new

generation.
Foundations
Integrating a diverse set of applications is a big chal-

lenge. Following are typical business and technological

issues involved in EAI:

� The mindset and policies of organizations need to

adapt to an integrated environment. Traditionally,
an IT department has almost full control over the

applications for which it is responsible. In an

integrated environment, an application is only

one part of a bigger system. Successful integration

requires the cooperation between business units

and organizations in addition to cooperation

between applications.

� Considerable pressure and expectation are placed

on integrated systems to operate seamlessly and

optimally, even under adverse and unexpected con-

ditions. This is the result of many integrated sys-

tems providing vital business functions where

impact, such as cost and reputation, to the business

when a failure occurs can be severe.

� The number of applications to be integrated can

range from tens to hundreds, or even thousands in

a large enterprise.

� Applications to be integrated comprise of legacy

systems running on mainframes (e.g., CICS and

MVS applications), Commercial-Off the Shelf

(COTS) applications such as SAP R/3 and People-

Soft, in-house developed applications, database

management systems, corporate directories, and

open-source applications. Such a diverse set of

applications often use different technologies and

run on different platforms; use different architec-

tural styles: monolithic, 2-tiers, and 3-tiers. Data

format and semantics among the applications are

usually different. This is known as semantic disso-

nance. Qualities of services among the applications

may also be different and need reconciliation.

� Applications, particularly the older ones, were not

originally designed to be integrated with.

� Applications are often autonomous: they have dif-

ferent owners and will continue to evolve

independently.

� Applications are often geographically distribu-

ted which requires remote communication. Net-

works can be slow, unreliable, and insecure. The

applications themselves may also be unavailable

at times.

� Applications cannot be changed for the purpose of

integration due to organizational and technical

reasons. If changes are needed, they must be

minimized.

� The breadth of business knowledge and technolo-

gies involved require a broad set of skills that is

difficult to find in a small number of individuals or

in a single organization.

Enterprise Application Integration E 993

E

To overcome the technical issues, EAI solutions employ

a number of techniques:

� Use the design principle of loose coupling to mini-

mize assumptions and dependencies applications

have on each other. This will allow applications to

evolve independently and if one application

changes or an exception occurs, impact to other

applications is minimal.

� Use connectors to adapt applications to the

target integrated environment. Connectors provide

a variety of services including mapping interfaces,

transforming data, and exception handling. Perfor-

mance and reusability are two important aspects

in the design of connectors. Many reusable and

configurable connectors for a variety of appli-

cations and legacy systems are available from

vendors.

� Use a middleware integration layer to manage

interactions among the applications. This middle-

ware layer runs on a distributed object technology

platform and uses a hub and spoke or a Message

Bus [1] (also known as Enterprise Service Bus

(ESB)) architecture. These architectural styles are

highly scalable. Applications only need to be

connected to this middleware integration layer,

point-to-point integration is no longer needed.

� The middleware layer supports synchronous inter-

actions and asynchronous messaging, provides mes-

sage transformation and routing services, supports

distributed transactions and provides security

services.

� Asynchronous messaging is one of the techniques to

achieve loose coupling. With asynchronous messag-

ing, an application sends a message to a message

queue or a Message Channel [1] and the application

continues its own processing. There is no need for the

sending application to stop and wait for the receiving

application to receive the message and respond. This

is known as non-blocking communication. The mes-

sage is persisted by the Message Channel which is

responsible for forwarding the message to the re-

ceiving application. The messaging system also

provides transactional support for messages and

handles recovery in the case of failure.

� Message transformation is another technique to

achieve loose coupling. Transformation allows the

format of data and messages between interacting

applications to be different.
� Routing allows for the dynamic determination of

the target application that is to be invoked. The

source application which initiates the interaction

can still have some control over which target appli-

cation it interacts with, but it no longer has to bear

the full responsibility of determining the address

of the target application, a process known as bind-

ing. The middleware supports dynamic binding

which allows the actual address of a target applica-

tion to be determined based on factors such as load

balancing and availability. Dynamic binding is yet

another technique to achieve loose coupling.

� The middleware layer may also include sophisti-

cated servers such as:
� Process servers with embedded workflow engines

to orchestrate or choreograph applications to

carry out higher level business processes. Process

servers automate the execution of tasks within a

business process expressed using a standard lan-

guage such as Business Process Execution Lan-

guage (BPEL). Process servers often provide the

capability to use business rules to control the

execution of business tasks.

� Database and directory integration servers

which federates multiple databases and directory

servers.

� Portal servers which aggregate data from multi-

ple applications to create a unified view and

interaction experience for end users.
Although the middleware integration layer provides a

great deal of assistance in creating an integration solu-

tion, even before using the middleware, integration

architects still have much to reconcile between business

and technical requirements. One important area of

focus is on quality of service. Even when a participating

applicationmeets all of the functional and data require-

ments for integration into a target environment, that

application may lack quality of service. Quality of

service attributes of an application can include:

� Availability

� Reliability

� Performance

� Whether an application idempotent (i.e., no nega-

tive effects if invoked multiple times)

� Whether multiple instances of the application can

be invoked concurrently

� Whether an application can participate in a

transaction

994E Enterprise Application Integration
Approaches to Application Integration

With such a variety of technologies, considerations that

are technical and business in nature and span inter

and intra enterprises, patterns are good ways of acquir-

ing a high level understanding of application integration,

its key concepts, the recurring problems, and recom-

mended solutions. Over the years, approaches such as

the ones captured by Adams [2], Trowbridge et al. [3]

and Ruh et al. [4] have been documented as a set of

application integration patterns.

� Presentation integration connects applications to

give end users a unified view of the data. Among

the three approaches to integration, this is the

least complicated. Trowbridge [3] referred to this

approach as Portal Integration and elaborated

upon the different levels of sophistication, ranging

from simple display of data from multiple appli-

cations to cross-pane interactivity where user

actions in one portion of the display can affect

another portion of the display. Adams [2] provided

a broader coverage of presentation issues by con-

sidering access from different types of devices such

as voice-enabled devices, personalized delivery of

information according to user preferences, and se-

curity considerations such as single sign-on.

� Data integration connects multiple data stores to

give applications a unified view of the data. It is

responsible for resolving semantic dissonance

among the data stores. The two major approaches

to data integration are either physically replicating

data from the multiple data stores into a central

data store, or combining data from multiple data

stores in real time presenting an aggregated but

virtual view of the data. Sauter [5,6,7,9] identified

a several patterns for data integration including

Data Consolidation, Data Federation, and Data

Cleansing.

� Process integration orchestrates interactions among

multiple applications, using the services or sub-

processes provided by the applications to perform

a higher level business process often involving busi-

ness rules. As part of process integration, business

performance of processes and activities can be

monitored to provide data that are vital for day to

day business decisions.

In an integration solution, it is not uncommon to see a

combination of the different approaches. Adams [2]

additionally provided business patterns to consider the
business drivers and requirements before considering

the integration approaches.

Figure 1 depicts the different approaches to inte-

gration being used together.
Connecting to Applications

Once the overall business purpose of an integration

effort is clear and a logical high level understanding of

the integration solution has been achieved, another

important consideration is how to connect the parti-

cipating applications to the middleware layer. Many

contemporary business applications follow a three-

tiered architecture with one layer for presentation,

one layer for business logic, and a third layer for

handling data. This three-tiered architecture gives rise

to three common ways of connecting to an application:

� Connect an application to the middleware layer

through the presentation tier of an application.

This is the most limiting way of connecting to an

application because it is restricted to the data and

functions that an application exposes to its end

users. It usually is slow in performance and is

tightly coupled with the presentation tier of the

application and therefore has limited potential for

reuse. Screen scraping is a common technique to

integrate an application through its presentation

tier. The integration is achieved by capturing data

displayed by the application and extracting relevant

information from it.

� Connect an application to the middleware layer

through the business logic tier of the application.

Connections can be achieved by invoking APIs

provided by the application, for instance, by using

distributed object technologies, or by invoking the

web services interfaces of the application. Asyn-

chronous messaging is used in many cases. Hohpe

and Woolf [1] provide an extensive set of asynchro-

nous messaging patterns used for application

integration.

� Connect an application to the middleware layer

through the data tier of an application. This type

of connection mechanism is more flexible and pro-

vides access to more data than connecting to the

presentation tier. The main disadvantage is that the

business logic that resides in the application that

processes and manages the data is bypassed, which

can lead to data integrity problems. Another disad-

vantage is that the integration is tied to the data

Enterprise Application Integration. Figure 1. The middleware integration layer connecting various applications

(monolithic, 2-tier, 3-tier) and data sources (database, directory server). Different types of integration are supported by

the integration layer.

Enterprise Application Integration E 995

E

model of the application. Some applications do not

consider their data model to be part of their public

interface. Directly accessing a ‘‘private’’ data model

is a fragile approach. If the data model changes, the

integration code has to change accordingly. Con-

necting to the data tier is more suitable if separate

logic, independent of the ones in the existing appli-

cations, is intended for processing the aggregated

data. A data warehouse is a typical example where

logic resides to analyze the aggregated data for the

purposes of creating reports and making decisions.

The data warehouse typically connects to various

data sources through their data tier.

� A variety of tools and data access middleware can

be used to connect to an application through the

data tier. Such tools and middleware connect to the

databases using standard APIs such as Open Data-

base Connectivity (ODBC) or Java Database Con-

nectivity (JDBC). Often, the tools and middleware

provide data transformation as well.

Among the three ways of connecting to an application,

connecting to the business logic tier is the most flexible

and solves the widest range of integration problems,
and has the greatest reuse potential. When new busi-

ness logic and in particular, workflow and transaction-

al integrity, are involved, connecting to the business

logic tier is the most appropriate. However, connecting

to the business logic tier is also the most complicated

and requires the greatest set of skills. Connecting to the

data tier directly will always be useful where the situa-

tions call for direct connection to data sources and

bypassing existing business logic is not an issue.

It should not be surprising that the three major

approaches to integration have affinity to the different

ways of connecting to an application. The presentation

integration approach is typically combined with con-

necting to an application via its data or presentation

tier. The data integration approach is most often asso-

ciated with connecting to an application via its data

tier. Finally, the process integration approach is typi-

cally achieved by connecting to an application via its

business logic tier.

Standards for Application Integration

While EAI is often interpreted as application integra-

tion within an enterprise, with the need for application

integration outside of an enterprise, with supply chain,

996E Enterprise Application Integration
business partners, and regulatory agencies, many orga-

nizations want a consistent strategy and approach to

integration, irrespective of whether the integration is

for inter or intra enterprise. Vendors support this by

having their offerings designed to support both types

of integration, using the same set of tools and concepts,

maximizing reuse while avoiding duplication. Many

tools support standards that are applicable to integra-

tion. Chari and Seshadri [8] proposed a framework

for organizing and navigating the standards according

to three orthogonal dimensions. Each dimension is

divided into multiple categories.

� Application architecture: This dimension classifies a

standard according to the architectural layer of an

application to which the standard applies. Three

architectural layers comprise this dimension: pre-

sentation logic, business logic, and data logic.

� Integration level: This dimension classifies a stan-

dard according to the level of integration to which

the standard applies. Three levels of integration

comprise this dimension: transport, data format,

and process.

� Industry domain specificity: This dimension classi-

fies a standard according to whether the standard is

applicable to a variety of industries or to a particu-

lar industry.

Some standards are sufficiently broad in scope that

they belong to multiple categories within a dimension.
Key Applications
When EAI is employed effectively, an enterprise can

leverage its existing assets:

� To provide new products and services. An example

is the provisioning of an online travel reservation

application to employees so that by interacting

with a single application, an employee can obtain

approval for a business trip, book flights, and make

reservations for hotel and car rental.

� To improve its relationships with customers, sup-

pliers, and other stakeholders. An example is when

an enterprise wants to obtain a consolidated view of

all its business relationships with a customer.

� To streamline and improve its operations, for exam-

ple, by reducing data redundancy and overlapping

functions. An example is whenmergers, acquisitions,

or spin-offs happen. With these business activities

come duplicated and fragmented operations such as
multiple payroll systems, corporate directories, and

so on, which can be streamlined.

� To simplify interactions among its applications

by adopting a standard approach to integration.

Once an integration strategy has been created

and supported by an appropriate technical infra-

structure, adding new participating applications

or developing new applications with integration

as a key consideration will no longer be as difficult.

Cross-references
▶Business Process Execution Language

▶CORBA

▶ Enterprise Service Bus

▶ Java Database Connectivity

▶Messaging Systems

▶Multi-Tier Architecture

▶Open Database Connectivity

▶RMI

▶ Service Component Architecture (SCA)

▶ Service Oriented Architecture

▶Web Services

▶XML

Recommended Reading
1. Hohpe G. and Woolf B. Enterprise Integration Patterns –

Designing, Building, and Deploying Messaging Solutions. Addi-

son Wesley, Reading, MA, 2004.

2. Adams J. IBM Patterns for e-business: application

Integration pattern. IBM developerWorks. http://www-128.

ibm.com/developerworks/patterns/application/index.html

3. Trowbridge D., Roxburgh U., Hohpe G., Manolescu D.,

and Nadhan E.G. Integration Patterns. Microsoft Corporation,

2004.

4. Ruh W., Maginnis F., and Brown W. Enterprise Application

Integration – AWiley Tech Brief. Wiley, New York, 2001.

5. Sauter G., Mathews B., Selvage M., and Lane E. Information

service patterns, part 1: Data federation pattern. IBM developer-

Works, July 28, 2006. http://www.ibm.com/developerworks/

webservices/library/ws-soa-infoserv1/

6. Sauter G., Mathews B., Selvage M., and Ostic E. Information

service patterns, part 2: Data consolidation pattern. IBM devel-

operWorks, Dec 5, 2006. http://www.ibm.com/developerworks/

webservices/library/ws-soa-infoserv2/

7. Sauter G., Mathews B., and Ostic E. Information service

patterns part 3: Data cleansing pattern. IBM developerWorks,

Apr 6, 2007. http://www.ibm.com/developerworks/webservices/

library/ws-soa-infoserv3/

8. Chari K. and Seshadri S. Demystifying integration. Commun.

ACM, 47(7):59–63, 2004.

9. Dreibelbis A., Hechler E., Mathews B., Oberhofer M., and

Sauter G. Information service patterns, Part 4: Master data

management architecture patterns. IBM developerWorks,

Enterprise Service Bus E 997
Mar 29, 2007. http://www.ibm.com/developerworks/db2/li-

brary/techarticle/dm-0703sauter/

10. Gullege T. What is integration? Ind. Manage. & Data Syst.,

106(1):5–20, 2006.
E

Enterprise Content Management

FRANK WM. TOMPA

University of Waterloo, Waterloo, ON, Canada

Synonyms
ECM; Office automation; Records management;

Document management

Definition
Enterprise content refers to the collections of records

and documents that are used in support of business

processes. Much of this data is unstructured or semi-

structured text created by word processors and other

productivity software as part of an enterprises’ stan-

dard operating procedure. Enterprise content manage-

ment applies database principles to collect, organize,

index, and preserve such data, and ECM systems pro-

vide facilities for search, browsing, update, workflow

management, web content management, collaboration

support, version control, access control, record reten-

tion and destruction, legal compliance, and quality

control.

Office automation typically refers to the compo-

nents that create individual documents and manage

the workflow. Records management refers to the

components that protect and preserve the data and

ensure that it is eventually archived or destroyed

according to the enterprises’ policies.

Key Points
Until recently, unstructured data was usually stored on

the individual workstations of the office personnel who

created them. This made the data inaccessible to those

who wished to apply business intelligence procedures.

Enterprise content management systems provide cen-

tralized mechanisms to access and manipulate the

data, sometimes requiring that the data itself be cen-

tralized but often supporting distributed (federated)

data management.

In essence, enterprise content management applies

database principles and practices to the diverse forms
of data that were traditionally outside the purview of

relational database management systems.

Cross-references
▶Access Control Administration Policies

▶Document Databases

▶Regulatory Compliance in Data Management

▶Workflow Management

Recommended Reading
1. Jenkins T. Enterprise Content Management: What You Need to

Know, Open Text Corporation, Waterloo, ON, Canada, 2004.
Enterprise Information Integration

▶ Information Integration
Enterprise Service Bus

GREG FLURRY

IBM SOA Advanced Technology, Armonk, NY, USA

Synonyms
ESB; Service bus

Definition
The enterprise service bus (ESB) is a key architec-

tural pattern in the larger architectural pattern called

service-oriented architecture (SOA). The ESB supplies

loosely coupled connectivity between service reques-

ters and service providers in service-oriented solutions.

Loose coupling permits a clean separation of concerns

(temporal, technological, and organizational) between

the parts in a solution, enabling flexibility and agility

in both business processes and IT systems.

Historical Background
SOA is perhaps the latest stage in the continuing evo-

lution of distributed computing. SOA inherits many

principles form earlier stages of distributed comput-

ing. Client/server introduced the notion of less mono-

lithic application architectures. Distributed objects

focused on smaller-grained function and introduced

encapsulated behavior and well-defined interfaces. Web

services focused on the use of standards to enhance

998E Enterprise Service Bus
interoperability. SOA brings a strong focus on the prin-

ciples of service definition according to business value

instead of IT value, service composition via business

processes using choreography, and separation of con-

cerns to promote reuse, flexibility and agility.

The ESB contributes greatly to the principle of

separation of concerns in SOA. Similar to SOA, the

ESB is perhaps just the latest stage in the continuing

evolution of the connectivity used in distributed

computing and inherits principles from earlier stages.

Various messaging systems (sometimes called message-

oriented middleware) enabled direct point-to-point

interaction. Enterprise application integration intro-

duced centralized management of indirect connectivity

and the ability to adapt disparate applications or data

sources. Web services emphasized the notion of well-

defined interfaces, the use of standards and a service

registry to facilitate dynamic behavior. The ESB, in the

context of SOA, strengthens the focus on providing

loosely-coupled, highly dynamic interactions between

service requesters and service providers, whether they

adhere to standards or not.

Foundations
The architectural pattern called the ESB provides the

connectivity that enables service interaction in SOA. As

illustrated in Fig. 1, in any service interaction there are

two roles, the service provider which offers a business

function and the service requester that needs the busi-

ness function. Service requesters and providers interact

by exchanging messages. So more precisely, the ESB

architectural pattern provides connectivity between

service requesters and service providers. The ESB acts

as a logical intermediary in the interactions; it inter-

cepts messages from the requester, performs proces-

sing, often called mediation, on those messages, and

sends the processed messages to the provider. Thus

the ESB enables loosely-coupled service interactions.
Enterprise Service Bus. Figure 1. Enterprise Service Bus.
Loose coupling permits a clean separation of concerns

(temporal, technological and organizational) between

application services to enable flexibility and agility

desired from SOA.

The ESB can be physically realized in different

ways. The ESB appears like a centralized hub in Fig. 1,

and the physical realization of the architectural pattern

in many solutions in fact is a hub. The ESB, however,

can be distributed so that mediation can physically

take place in the service requester’s environment, the

service provider’s environment, in one or more hub

environments, or in any combination, allowing for opti-

mization based on the requirements of the solution.

The ESB and Connectivity

Service requesters and service providers implement

the application or business logic in a solution, targeted

at achieving domain-specific business goals. The ESB

implements the connectivity logic in a solution, tar-

geted at achieving loosely-coupled, flexible, and on-

demand interactions between service requesters and

providers. In an ideal service oriented solution, sepa-

ration of business logic and connectivity logic is clean,

meaning that the services implement no connectivity

logic, and that the ESB implements no business logic.

Only by architecting this clean separation can an en-

terprise achieve the flexibility, agility and reuse sought

from SOA.

It is sometimes difficult to distinguish between

business logic and connectivity logic. There are guide-

lines, but the distinction may depend on the nature

of the organization, or even a particular situation

within the organization. One guideline leverages the

distinction between semantics and syntax. A service

provider performs actions which depend on the

semantics, or meaning, of a service request, and so

has to understand the meaning of the request; e.g., it

creates, reads, updates or deletes business related

Enterprise Service Bus E 999

E

entities. The ESB compensates for any mismatches in

the syntax, or form, of the request between the service

requester and provider, and has no need to understand

the meaning of the request and does nothing to imple-

ment the semantics implied by the request. A related

guideline emphasizes the distinction between achiev-

ing business objectives versus simply enabling interac-

tion; since the ESB is an intermediary, removing the

ESB should have no impact on logically achieving the

business objectives; in other words, it adds no semantic

value to a service interaction; put another way, the

ESB never provides services, it always simply connects

services.

Part of the difficulty distinguishing business logic

and connectivity logic comes from the reality that the

connectivity logic may itself be defined or driven by

business considerations. For example, the ESB may

route service requests to one of several candidate pro-

viders based on factors important to the proper func-

tioning of the business, such as priority attributed to

the requester or the time of day.
ESB Core Principles

Support for various forms of mediation allows the ESB

to fulfill two core principles in support of separation

of concerns. The first principle is service virtuali-

zation. The term refers to the ability of the ESB to

compensate during service interactions for syntactic

differences in:

� Protocol & pattern – Interacting services need not

use the same communication protocol or interaction

pattern. For example, a requestermay require a single

monolithic interaction via HTTP, but the provider

may require interaction via some message-oriented

protocol, using two correlated interactions. The ESB

provides the conversion capability needed to mask

the protocol and pattern switch.

� Interface – Service requesters and providers need

not agree on the interface for an interaction. For

example, the requester may use one form of mes-

sage to retrieve customer information, and the

provider may use another form. The ESB provides

the transformation capability needed to reconcile

the differences.

� Identity – A service requester need not know the

identity (e.g., address) of the service provider, or

vice versa. For example, service requesters need not

be aware that a request could be serviced by any of
several candidate providers at different physical

locations. The actual provider is known only to,

and is chosen by the ESB, and in fact, may change

without impact to the requester. The ESB provides

the routing capability needed to mask identity.

The second core principle is aspect-oriented connec-

tivity. Service oriented solutions include multiple

cross-cutting concerns like management and security.

The ESB can implement or enforce such cross-cutting

concerns on behalf of service requesters and providers,

removing such concerns from of environment of the

requesters and providers.

The application of these core principles allows the

ESB to affect the qualities of service in interactions.

Some aspects of an interaction can be abstracted away

from the participants. Consider auditing, for example;

if a solution requires auditing, the ESB can ‘‘add’’ it to

interactions with no impact on the services. Similarly,

the ESB can ‘‘add’’ or perhaps ‘‘enhance’’ qualities of

service by retrying failed interactions, or in more so-

phisticated situations matching requester require-

ments with provider capabilities.
The ESB in an SOA Context

Figure 1 shows that the ESB performs its role in the

larger context of SOA working with other parts of the

architecture. The service registry (sometimes called a

service repository or service registry/repository) con-

tains and manages the metadata present in a service

oriented solution; examples include interface descrip-

tions, endpoint address and policies covering service

level agreements, security relationships and so on. This

service metadata contained in the registry, and thus

the registry itself, have a broad scope in service orien-

ted solutions, spanning governance, development and

administration as well as runtime. The ESB can provide

value using only static metadata provided during

development, but realization of fully dynamic service

virtualization and aspect-oriented connectivity requires

the ESB to access a service registry at runtime to imple-

ment the dynamic connectivity required in a solution.

Thus, the service registry can be considered the preferred

way to configure the ESB, i.e., the service registry is a

policy administration point for the ESB, and the ESB

can be considered a policy enforcement point for the

registry. As a result, the service registry, while not part

of the ESB due to it broader role in SOA, is characterized

as tightly coupled to the ESB.

1000E Enterprise Terminology Services
Note that some important capabilities of any

service oriented solution, specifically those related to

management, are shown independent of, but accessible

by the ESB. Management capabilities such as security

and IT monitoring and management have a solution-

wide scope, and require the coordination and coopera-

tion of parts of a solution beyond the scope of the ESB.

The ESB does not provide connectivity between ser-

vices and management capabilities, and it is possible to

secure and manage a solution without participation of

the ESB. It is also possible, and frequently desirable, for

the ESB to take an explicit, active role in helping secure

and manage a solution as part of aspect-oriented con-

nectivity. In this situation, the security and manage-

ment policies are set by the policy administration

points outside the ESB, and one can consider the ESB

as a policy enforcement point and sometimes a policy

decision point for such policies. Thus policy is set using

management and security services that have no direct

relationship to the ESB, but the ESB helps enforce the

policy. As a result management capabilities are charac-

terized as loosely coupled to the ESB.

An ESB requires tools for development and admin-

istration of the ESB. Developers use tools to develop

the connectivity logic, or mediations, running in the

ESB. Similarly, administrators use tools to deploy me-

diation and administer the ESB post-deployment. Ide-

ally such tools leverage the service registry. For

example, development tooling might allow the media-

tion developer to find the service providers required

for an interaction using the registry; administration

tooling might allow addition, deletion or modification

of service metadata intended to impact the dynamic

behavior of a solution.
Key Applications
An enterprise service bus provides the loose coupling

necessary to allow service oriented applications to

achieve the desired degree of separation of concerns.
Cross-references
▶ Service Component Architecture (SCA)

▶ SOA
Recommended Reading
1. An introduction to the IBM enterprise service bus. Available at:

http://www-128.ibm.com/developerworks/webservices/library/

ws-soa-progmodel4/index.html. July, 2005
2. Discover how an ESB can help you meet the requirements

for your SOA solution. Available at: http://www-128.ibm.com/

developerworks/architecture/library/ar-esbpat1/. April, 2007

3. Enterprise service bus. Available at: http://en.wikipedia.org/

wiki/Enterprise_service_bus. September, 2008

4. The enterprise service bus: making service-oriented architecture

real. Available at: http://researchweb.watson.ibm.com/journal/

sj/444/schmidt.html. 2005
Enterprise Terminology Services

LAWRENCE GERSTLEY

PSMI Consulting, San Francisco, CA, USA

Definition
Enterprise Terminology Services refers to the com-

plete lifecycle of vocabulary creation, publication, and

supporting processes for the entire electronic medical

record system. The supporting processes may include

quality assurance, search and retrieval supporting

other systems, and mapping for interoperability. Sup-

porting systems, such as managing workflow and reg-

ular publication, are also discussed.
Historical Background
One repeatedly encounters the same missing processes

and system components required to enable a produc-

tion level terminology system. In many cases, almost all

of the focus is put onto the terminology and storage

system, and terminology workflow, publication con-

trol, QA, and other sub-systems are added on as after-

thoughts. The terminology system itself should have

supporting structures, including historical data, meta-

data, publishing data, and workflow data to support a

system that can be fully maintained and utilized by

diverse groups.

Tooling in Terminology systems may be minimal or

non-existent; existing enterprise-owned applications

(such as an office suite of word processing, spreadsheets,

etc.) are used to fill the voids. This often results in the

author, editor, and user workflows being ‘‘shoe-horned’’

into the tools, rather than the tools being adapted to

enable maximum data quality, efficiency, and clarity.

The core terminology system and system tooling should

be thought of together as the entire Enterprise Terminol-

ogy System, and should evolve together to fit the needs of

the users with the users’ direct input.

Enterprise Terminology Services E 1001

E

Import and export of data to other internal enter-

prise systems, as well as importing and mapping to

and from industry standards and vendors (such as

SNOMED-CT, LOINC, ICD-9/10, CPT, First Data-

bank/Medispan, etc.) needs to also be considered as a

fundamental part of a complete system. Regular main-

tenance of supporting data, its impact on the enter-

prise terminology, and required quality assurance to

approve changes can range from a few hours to months

of effort. Planning and system tuning can pay back any

planning and expenditures many times over.

Foundations

System Architecture

1. Core terminology database. Core data model

itself may use established models, or be custom

developed.

2. Supporting metadata to indicate individual

row authorship, last changes, metadata commen-

tary, Dublin Core, and other institution-specific

information.

3. Human Workflow, providing complete terminolo-

gy lifecycle tracking for terminology requests, over-

all system requests, ad hoc projects, and other

project tasks that require tracking.

4. QA/Metrics Reporting layer, providing insights

into overall current status, historical throughput,

publishing status, and other system metrics.

5. Data interchange layer, providing services for im-

port and export of data to the system, ideally sup-

porting HL7 messaging as a subset of interchange.

6. Centralized knowledgebase for sharing of informa-

tion throughout the authoring group and end-users.

Key Applications

Case Studies and Experiences

Experience with multiple organizations shows a sur-

prising overlap in system issues and organizational chal-

lenges, despite different company work styles, authoring

teams, and end-users. In most cases, the problems were

due to expediency of getting a working system in place,

a philosophy of ‘‘add it later’’ when missing systems

were suggested during design phases or identified in

the normal course of work. One interesting note is that

in a majority of cases, users and managers turn immedi-

ately to a spreadsheet application to fill system function-

ality gaps, often with disastrous consequences.
Users employ spreadsheets to manage small pro-

jects, stage data before loading into the authoring sys-

tem, and other ad hoc tasks.While spreadsheets provide

wide flexibility in usage, their use often has unexpected

side effects. For example, groups using spreadsheet ex-

hibit internal codes and foreign keys changing through

the dropping of leading and trailing zeroes and round-

ing of decimal places. Intended to aid in the creation

of financial information, which was the foundation of

spreadsheets, these transformations have serious effects

to ICD-9 codes, foreign key mapping, and other scenar-

ios where keys must be treated as immutable. When

such functional deficiencies are discovered by authoring

groups, attempts are often made to make the spread-

sheet application more rigid by setting software options

to be standard in the group (disabling automatic for-

matting), developing internal templates that users

should not deviate from, and potentially even develop-

ing programmatic control (such as scripting languages

like VBA) behind the spreadsheet’s GUI.

This is a natural outcome of finding procedural

weaknesses; however, the investment of effort is wrongly

placed, creating an organic system that is created one

piece and a time, creating a fragile and overly complex

system. The problem stems from not using the correct

technology for the task. If the task is to stage data for

loading into the system, experience shows that the crea-

tion of a flexible staging model and authoring tools to

create terminology in the same system that will ultima-

tely store the verified and validated data centralizes the

information so multiple individuals may collaborate.

Additionally, the actual tasks of verification and valida-

tion are performed instantly making the data available

in the production environment.

When spreadsheets are used to perform project

management, problems arise when multiple versions

of spreadsheets are distributed, updated by multiple

individuals, passed in emails, and propagated through

a variety of other means, confusion as to which spread-

sheet acts as the source of ‘‘truth’’ reigns. Again, this

results from employing the wrong tool for the task.

Groups often employ project management tools, but

such tools focus on the project manager, resulting in a

single user overseeing a set of tasks. Terminology

authoring groups often need to see overall progress

of the active project. Additionally, work may need to

be performed piecemeal by teammembers who can self-

assign individual items to themselves from a centralized

pool of outstanding work. These challenges are ideally

1002E Enterprise Terminology Services
suited to a human workflow engine, such as Serena

Software’s TeamTrack or K2’s workflow products.

Such systems provide the ability to create centralized,

automated workflow entry, tracking, and reporting

with workflows that can be modeled to accurately rep-

resent the way that group’s work. Additionally, using

such systems focuses the group’s attention on methods

of improving workflow, gaining efficiencies and accura-

cy, obtaining approvals, and recording those approvals

from requesters and other interested parties.

In general, turning to open-source software pro-

ducts to help fill in the process gaps. Firstly, it permits

selection of a software tool actually geared towards the

problem in question. Too often software is chosen be-

cause it is already part of a group’s inventory. As with

spreadsheets, its use can be adapted to solve the prob-

lem at hand, but results in changing the group’s work-

flow, de-scoping the desired functionality, and other

short cuts. The effects of these ostensibly expedient

decisions will be encountered later, and as noted earlier

will lead to subsequent additional processes, short cuts,

and errors. Using open-source not only allows finding

close match between requirements and desired func-

tionality, but also permits tight integration between

systems by altering or extending the code base. Such

a solution is often more palatable to IT and other

engineering groups, and begins to develop a complete-

ly integrated work environment. The normal purchas-

ing process is removed from the start-up time, and

approvals usually become only technical approvals.

Standardizing and expressing editorial policies for-

mally in a computationally leverageable manner yields

many benefits. Using a very simple example, expressing

the standards for term string display may include cap-

italization rules, maximum string length for a particu-

lar string, and spaces after different punctuation marks

can be expressed as part of a centralized system para-

meter file. Using an XML format to express such rules

delivers many benefits:

1. Such a file is human-readable, providing more

transparency into the systems operation.

2. It is technology-agnostic, which means that any

future application can process the file for use

through standard libraries, regardless of language

or platform.

3. Changes may be made easily through any number

of tools, ranging from the simplest of text editors

(potentially dangerous) to XML editors.
4. As an XML file, it may be versioned with any

in-house versioning tool already employed for soft-

ware control (e.g., CVS, Subversion, SourceSafe,

ClearCase).

5. Through open-source technologies like XSLT and

FO, the file can be self-documenting, generating

formal PDF, Word, RTF, and other test formats

for system documentation.

Terminology data models often serve as the focus

of development, but often this model is developed to

represent the universe of active terminology in a pro-

duction-ready state. Consequently, it may have little

in it supporting developing terminology that must

go through a verification and validation process before

it is released to outside users. Metadata supporting

authoring, publication control, and quality assurance

is often missing from the data model, which creates the

need for supplemental systems to represent and alter

such information.

To illustrate, consider the need to create a new diag-

nosis in the system, which must be mapped to the

appropriate ICD-9/10 code(s) for that diagnosis. Until

such a time as a certified coder has looked at the display

string, potential synonyms, and the code itself, and

certified that code as accurate, such a diagnosis should

not be published for outside use. However, putting the

data into the authoring system itself means that either

the publication process knows not to include the record

until it has been verified, or the entire publication of

updated terminologymust be held until all records are in

a satisfactory, verified state (the ‘‘all-or-nothing’’method

of publishing). Sometimes, groups get around this by

staging data outside of the authoring system until it is

ready for loading, but this brings about additional issues,

including all of the previously mentioned issues sur-

rounding use of spreadsheets and other non-authoring

applications. Additionally, staging data may lead to a

situation where multiple updates to the same record

may be prepared outside of the system, and such work

will overwrite one another. This scenario often arises

during coding updates, or quality assurance and audit-

ing tasks.

These issues necessitate an authoring model

that can support records in various stages of comple-

tion. Also, it should support different levels of record

locking, so that others may see a record in a ‘‘dirty’’

status and be able (or unable) to alter it depending

upon their system role. Such a model should include

Entity Relationship Model E 1003

E

metadata about the terminology records themselves,

including:

1. Which user created (initiated) the record?

2. When the record was created?

3. Which user last updated the record?

4. When the last update occured?

5. Commentary about the row itself.

6. Record status (dirty, draft, awaiting publication,

propagated).

7. Record publication date/time.

Once an effective set of controlling metadata is in place

tracking terminology flow and validation, maintenance

routines may begin updating coding and other

integrated data, such as pharmaceutical information.

Too often such maintenance routines grow without any

control over languages used, processes requiring auto-

mation, or even documentation for completing updates

and handling diverse use-cases. This is the result of

different individuals creating processes as time permits,

with the tools that they are already familiar with, accom-

plishing what needs to be done at that point in time. The

same maintenance process may contain a potpourri of

technologies, each employed at a different point in the

process. In general, a small set of tools should be selected

and standardized for maintenance, and full documenta-

tion should be an absolute requirement for systemmain-

tenance. For scripting languages, Perl, Python, and Ruby

will all do the job and usually fit within any group’s

existing ITenvironment.

Defined metrics reporting should be designed on

top of the terminology model, and accessible to those

within the team as well asmanagement. Effective report-

ing systems have been assembled from purchased

packages, such as Crystal Reports, as well as open-source

packages, such as BIRT, PHP and Apache Cocoon.

Cocoon is intriguing in that it uses data ‘‘pipelines’’

which defines how the data is created, transformed,

and finally delivered to the requester. Pipelines work

with XML structures, so the output at any stage can be

brought into other systems. Cocoon also provides a

separation between the generation and presentation of

data, so that the same pipeline can generate PDF, XML,

Doc, HTML, and a number of other formats.

Terminology systems are often the result of evo-

lutionary development, and can benefit greatly from

redesign and standardization. Although groups often

balk at the time or investment that such a redesign

would take, often improvement in just one of the
aforementioned areas will pay back such an invest-

ment several fold. Additionally, the system will have

improvements of all other areas. Internal standardiza-

tion of the terminology system also prepares it for

eventual integration with outside systems, which is an

industry goal.

Cross-references
▶Business Intelligence

▶Business Process Management

▶Clinical Data Acquisition, Storage and Management

▶Controlled Vocabularies

▶Data Integration

▶Data Transformation

▶Database Management System

▶Dublin Core

▶ Information Lifecycle Management

▶Meta Data

▶ Pipeline

▶ Process Optimization

▶ Process

▶ Storage Management

▶XML Information Integration

▶XML

▶XSL/XSLT

Recommended Reading
1. Apache cocoon. Available at: http://cocoon.apache.org

2. Docbook. Available at: http://www.docbook.org

3. Dublin core metadata initiative. Available at: http://dublincore.

org/

4. Fogel K. and Bar M.1CVS: Open Source Development with CVS,

3rd edn. Paraglyph, Scottsdale, AZ, 2003.

5. Leymann F. and Roller D. Production Workflow, Concepts

and Techniques. Prentice Hall PTR, Upper Saddle River, NJ,

1999.

6. Walsh N. and Muellner L. DocBook: The Definitive Guide.

O’Reilly, Sebastopol, CA, 1999.
Entity Relationship Model

IL-YEOL SONG
1, PETER P. CHEN

2

1Drexel University, Philadelphia, PA, USA
2Louisiana State University, Baton Rouge, LA, USA

Synonyms
ER Model; ERM; Entity-Relationship Model

1004E Entity Relationship Model
Definition
The entity relationship model (ERM) is a conceptual

model that represents the information structure of a

problem domain in terms of entities and relationships.

The result of modeling using the ERM is graphically

represented as an entity relationship diagram (ERD).

Thus, an ERD represents the conceptual structure of a

problem domain being modeled. ERDs are widely used

in database design and systems analysis to capture

requirements of a system or a problem domain. In

particular, when used for data modeling, the ERD

assists the database designer in identifying both the

data and the rules that are represented and used in

a database. ERDs are readily translated into relational

database schemas.
Historical Background
The ERM was introduced by Peter Chen in 1976 [2].

The ERM and its variations have been widely used

in database modeling and design, systems analysis

and designmethodologies, computer-aided software en-

gineering (CASE) tools, and repository systems. The

popularity of the ER approach led to many extended

ER and semantic data models as well as to its variations

in notations of ERDs [9]. The ER model and its related

research work have also laid the foundation for object-

oriented analysis and design methodologies, which led

to the development of the Unified Modeling Language

(UML). Chen [4] presents historical events related to

the ERM up to the early 2000s and roles of the ERM on

the development of CASE tools.
Foundations
The three basic modeling components of the ERM are

entities, relationships, and attributes.
Entities, Entity Types, and Attributes

An entity is a primary object of a problem domain

about which users need to capture information. An

entity or an entity instance (or entity occurrence) is an

object in the real world with an independent existence.

An entity is characterized by its properties called attri-

butes. Thus, an entity can be differentiated from other

objects when it has at least one property different from

the others. An entity type E defines a collection of

entities that have the same attributes. For example,

‘‘John Smith’’ can be an entity instance of the entity

type called Employee. Attributes of the Employee entity
type could include first name, last name, social security

number, date of birth, address, and salary. Attributes of

a Customer entity type could include customer number,

first name, last name, address, and customer rating.

Thus, the Employee entity type is distinguished from

the Customer entity type because they have different

attributes. In the original ERM, all the attributes are

assumed to be simple atomic values, representing

numbers, character strings, and dates, not multi-valued

attributes such as sets or structures.

Typical entity types usually belong to certain entity

categories such as roles of people, locations, tangible

things with values, organizations, events, transactions,

etc. Thus, Employee, Store, Product, Company, Reserva-

tion, and Sale are all examples of entity types. In the

literature, an entity and its entity type are not frequently

distinguished from each other because the distinction

between them is usually clear in the context.

An entity type has two types of properties: identi-

fying attributes and descriptive attributes. An identify-

ing attribute uniquely determines each instance of an

entity type. An identifying attribute is called an entity

identifier or a key attribute. For every entity type, there

must be a designated key. For example, the attribute

social security number would uniquely identify each

instance of the entity type Employee. Hence, social

security number is called the entity identifier or the

primary key of the Employee entity type. A descriptive

attribute describes a non-unique property of an entity

type. Descriptive attributes of the Employee could in-

clude first name, last name, date of birth, address, and

salary. Only those attributes that are meaningful in the

problem under consideration are included in the ERD.

For example, eye color would not be included in the

Employee entity unless one needed to use eye color in a

meaningful way, e.g., using it in an eye-color activated

security system.

An attribute of an entity instance has a value. For

example, ‘‘John’’ is one value of the attribute first name.

The domain of an attribute is the collection of all

possible values an attribute can have. For example,

the domain of first name is a character string and that

of salary is a number.

Figure 1 summarizes the notation used in ERDs.

An entity type is depicted as a rectangle containing the

name of the entity type. The name of an attribute is

enclosed in an oval connected to the rectangle of the

entity type they describe. An entity identifier or a key is

underlined.

Entity Relationship Model. Figure 1. Symbols used in an Entity Relationship Diagram. (The notation for total

participation was adopted from Elmasri and Navathe [6]).

Entity Relationship Model E 1005

E

Relationships and Relationship Types

A relationship is an association between or among

entities. A relationship in the ERMdescribes a meaning-

ful association that needs to be remembered between or

among entities. A relationship type between entity types

E and Fmeaningfully relates some entities in E to some

entities in F. Formally, a relationship R is a Cartesian

product of n �2 entities{R (e1, e2,...,en) | e1 2 E1, e2 2
E2,...,en 2 En}, where ei is an entity instance, Ei is an

entity type, and R (e1, e2,...,en) is a relationship. Here, n

is called the degree of a relationship R, indicating how

many entity types are participating in R. When n = 2,

R is called a binary relationship; and when n = 3, R is

called a ternary relationship. That is, a binary relation-

ship is a meaningful association between two entity

types, and a ternary relationship is a meaningful asso-

ciation among three entity types. In typical modeling,

binary relationships are the most common and rela-

tionships with n > 3 are very rare. In a special binary

relationship in which E1 = E2, the relationship is called

a recursive relationship because an entity is related to

another entity of the same type. That is, a recursive

relationship is a meaningful association between entity

instances of the same entity type. As shown in Fig. 1,

relationships are depicted by diamonds between or

among entities in the ERD.

Cardinality and Participation Constraints

Cardinality is a constraint on a relationship between

two entities. Specifically, the cardinality constraint

expresses the maximum number of entities that can

be associated with another entity via a relationship

type. The values of cardinality are either ‘‘one’’ or
‘‘many’’. They are usually represented by either ‘‘1‘‘ or

‘‘N‘‘ in an ERD. A binary relationship can have three

possible cardinalities: one-to-one (1:1), one-to-many

(1:N), or many-to-many (M:N). Figure 2 shows the

three cardinality constraints between two entity types

Customer and Account. One-to-one cardinality states

that one customer can have at most one account and

one account can be owned by at most one customer.

One-to-many cardinality says that one customer can

have many accounts, but one account cannot be owned

by more than one customer. Many-to-many cardinality

says that one customer can have many accounts and one

account may be owned by many customers. Figure 3

shows examples of a recursive relationship, binary

relationships, and a ternary relationship as well as

various cardinality constraints.

Participation is also a relationship constraint. Partic-

ipation expresses the minimum number of entities that

can be associated with another entity via a relation-

ship type. There are two values for participation: total

(also known as mandatory) participation and partial

(also known as optional) participation. If every instance

of an entity must participate in a given relationship, then

that entity has total participation in the relationship.

But if every instance need not participate in a given

relationship, then the participation of that entity in the

relationship is partial. In an ERD, the total participation

of Entity type E to relationship type R is indicated by a

double line from E to R [6], as shown in Fig. 1. For

example, in Fig. 3, the participation of the Department

entity type in the Works_for relationship is total, while

that of the Employee entity type in the relationship is

partial. This implies that a Department instance must

Entity Relationship Model. Figure 2. Connectivity of binary relationships.

Entity Relationship Model. Figure 3. An example ERD with different types of relationships.

1006E Entity Relationship Model

Entity Relationship Model E 1007

E

have at least one Employee, while an Employee instance

can exist without working for a Department.

Cardinality and participation constraints are busi-

ness rules in the problem domain being modeled.

They represent the way one entity type is associated

with another entity type. They are also integrity con-

straints because they help ensure the accuracy of

the database. These constraints limit the ways in

which data from different parts of the database can

be associated. For example, say the cardinality of the

relationship between Customer and Account is one-to-

one, as in Fig. 2. If customer C1 is associated with

account A3, then C1 cannot be associated with any

other accounts and A3 cannot be associated with

any other customers.

Attributes of a Relationship

A relationship sometimes has attributes. A relationship

attribute represents a property of the relationship, but

not of any participating entity type. For example, in

Fig. 3, attribute #Hours is a property of the relationship

Works-on, not of Employee or Project. Another example

is the Quantity attribute of the ternary relationship

Supplies in Fig. 3, where Quantity is a property created

by the interaction of three participating entity types

Supplier, Project, and Part. Relationship attributes are

most common in many-to-many relationships or ter-

nary relationships.

Roles

The meaning of a relationship type is usually clear

between two associated entity types. However, the

meaning of a relationship type is not clear if there are

multiple relationship types between the participating

entity types. In these cases, roles are used to indicate the

meaning of an entity to the associated relationship

type. Roles are indicated in ERDs by labeling the rela-

tionship lines that connect diamonds to rectangles. For

example, a recursive relationship always has two lines

between an entity type and the recursive relationship.

In Fig. 3, Manages is a recursive relationship; Manager

and Subordinate are roles of Employee entity instances.

Thus, the relationship can be read as ‘‘an employee

with the role of a manager can manage many subordi-

nate employees, and an employee with the role of

subordinate can be managed by one manager employ-

ee.’’ Thus, in recursive relationships, it is customary to

add roles to clarify the meaning of each relationship

line. In other occasions, role labels are optional.
Ternary Relationships

A ternary relationship is a meaningful association

among three entity types. An important requirement

of a ternary relationship is that the three entity types

must always occur at the same time in the relationship.

For example, in Fig. 3, Supplies is a ternary relationship

among the Supplier, Project, and Part entity types. The

semantics of Supplies can be read as follows [7,12]:

� For a given pair of Supplier and Project instance,

there are many Part instances.

� For a given pair of Part and Supplier instance, there

are many Project instances.

� For a given pair of Part and Project instance, there

are many Supplier instances.
Weak Entity Types

An entity type that does not have its own unique

identifier is referred to as a weak entity type. A weak

entity type has one or more owner (or strong) entity

types connected through one or more one-to-many

relationships (called weak relationships). Therefore,

the primary key of a weak entity type is always com-

posite. The key consists of the primary keys of all the

owner entity types and a discriminator (or partial key)

of a weak entity set, where the discriminator is the set

of attributes that distinguishes among all the entities of

a weak entity.

As shown in Fig. 1, a weak entity type is depicted by

double rectangles, a weak relationship by double dia-

monds, and a discriminator is underlined with a

dashed line. For example, in Fig. 3, Dependent is a

weak entity, Dependent_of is a weak relationship, Em-

ployee is the owner entity type of Dependent, and

Dep_Name is the discriminator of Dependent. Thus,

the primary key of Dependent is a composite of Em-

ployee.SSN and Dependent.Dep_Name.

Two important properties of a weak entity type

are the identifier dependency (ID-dependency) and the

existence dependency. The ID-dependency means that

the primary key of the owner entity type is included in

that of the weak entity type. Therefore, a weak entity

always has total participation in its weak relationship,

as shown in Fig. 3. Due to this property, the weak

relationship is also called the identifying relationship.

The existence dependency means the existence of

a weak entity instance is dependent on the existence

of its related owner entity instance. For example, in

Fig. 3, if an Employee entity instance is deleted, then

1008E Entity Relationship Model
all of its associated Dependent entity instances must

also be deleted.

ER Modeling Techniques

Developing a syntactically and semantically correct ER

model for a domain requires both effective modeling

techniques and experience. Techniques for developing

a correct and complete ERD are beyond the scope of

this article. An excellent starting point for understand-

ing techniques of constructing ERDs from a problem

statement is presented by Chen [3]. Chen presents a

fundamental framework for developing an ERD from

English sentence structure by showing the similarity

between English grammar and ER modeling compo-

nents. Batini et al. [1] present conceptual modeling

using ERMs. Song et al. [9] present a comparison of

popular ERD notations as well as a comparison between

n-ary models and binary models. Ling [8] presents a

notion of a normalized ER diagrams. Dullea et al. [5]

discuss validity and redundancy in ER diagrams.

Teorey et al. [10] cover in detail the database modeling

and design using the ERM.

Translation of ERDs into a Relational Schema

This section briefly presents how to translate ERDs

into relational schemas. There are several different

methods for creating relational schemas from an

ERD. See [6,10,11] for more detailed treatments of

the subject. The one described here is the most popular

technique [6,10]. The rules are:

1. Every entity type becomes a table.

a. All the attributes of the entity become the attri-

butes of the table.

2. Each 1:N relationship type is mapped into the

associated N-side entity type as follows:

a. For each N-side entity type:
(a) Add the primary key (PK) of the 1-side

entity type. This added PK becomes a for-

eign key.

(b) Also add any descriptive attributes of the

relationship.

b. When this rule is applied to recursive

relationships:

(a) The PK of the 1-side entity type is anno-

tated with its role name.

3. Each M:N relationship type becomes a separate

table.

a. Add PKs of the participating entity types to the

table. They become foreign keys.
b. Add all the descriptive attributes of the relation-

ship type to the table.

c. The PK of the table consists of the PKs of the

two participating entity types.

d. When this rule is applied to M:N recursive

relationship type:

(a) The two foreign keys are annotated with

their role names.

4. Each 1:1 relationship type can be combined with

either side of the entity type or can be treated like a

1:N relationship type.

5. Aweak entity type becomes a table that includes the

primary key of the identifying owner entity type.

a. The PK of the table consists of the foreign key

and the discriminator.

6. Each relationship type becomes a separate table.

a. Add PKs of the participating entity types to the

table. They become foreign keys.

b. Add all the descriptive attributes of the relation-

ship type to the table.

c. The PKof the table consists of the foreign keys of

the three participating entity types when the

cardinality is many-many-many. When the car-

dinality is not many-many-many, the PK of

the table consists of at least two foreign keys,

where all the foreign keys coming from many-

side entity types must be included in the PK of

the table.

Applying the above translation rules to the

ERD shown in Fig. 3 yields the following relational

schema:

1. Employee (SSN, Name, D#, Manager_SSN).

2. Dependent (SSN, Dep_Name, Sex).

3. Department (D#, DName).

4. Project (P#, PName, D#).

5. Works_on (SSN, P#, #Hours).

6. Supplier (S#, SName).

7. Part (Pt#, PtName).

8. Supplies (P#, S#, Pt#, Quantity).

Key Applications
The ER model is widely used in database modeling and

design and in conceptual modeling of information

systems. Most commercial CASE tools support an

ERM or some of its variations. The ER approach has

been applied to design of object-oriented databases,

data warehouses, temporal databases, spatial databases,

and meta models. The ER model also laid the

Equality-Generating Dependencies E 1009

E

foundation for class modeling techniques of object-

oriented analysis and design.

URL to Code
An international conference that focuses on entity-

relationship approaches and conceptual modeling

has been held regularly since 1979. The conference

is now known as International Conferences on

Conceptual Modeling and is cataloged in http://

conceptualmodeling.org [7].

Cross-references
▶Conceptual Schema Design

▶Database Design

▶ Extended Entity-Relationship Model

▶ Logical Database Design: from Conceptual to

Logical Schema

▶Meta Data Repository

▶Object Data Models

▶ Semantic Data Model

▶Temporal Logical Models

▶Unified Modeling Language

Recommended Reading
1. Batini C., Ceri S., and Navathe S.B. Conceptual Database

Design: An Entity-Relationship Approach. Benjamin/Cum-

mings, Reading, MA, 1991.

2. Chen P.P. The entity relationship model – toward a unified view

of data. ACM Trans. Database Sys., 1(1):9–36, 1976.

3. Chen P.P. English sentence structure and entity relationship

diagrams. Inf. Sci., 29(2–3):127–149, 1983.

4. Chen P.P. Entity-relationship modeling: historical events, future

trends, and lessons learned. In Software Pioneers: Contributions

to Software Engineering, M. Broy, E. Denert (eds.). Springer, NY,

2002, pp. 100–114.

5. Dullea J., Song I.-Y., and Lamprou I. An analysis of structural

validity in entity-relationship modeling. Data Knowl. Eng., 47

(3):167–205, 2003.

6. Elmasri R. and Navathe S. Fundamentals of Database

Systems, 5th edn. Benjamin/Cummings, Reading, MA, (2007).

7. ER conferences. Available at: http://conceptualmodeling.org

8. Ling T.W. A normal form for entity-relationship diagrams.

In Proc. 4th Int. Conf. on Entity-Relationship Approach. IEEE

Computer Society, WA, 1985, pp. 24–35.

9. Song I.-Y., Evans M., and Park E.K. A comparative analysis

of entity-relationship diagrams. J. Comput. Softw. Eng., 3(4):

427–459, 1995.

10. Teorey T.J., Lightstone S.S., and Nadeau T. Database Modeling &

Design: Logical Design, 4th edn. Morgan Kauffman, San

Francisco, CA, 2005.

11. Teorey T.J., Yang D., and Fry J.P. A logical design methodology

for relational databases using the extended entity-relationship

model. Comput. Surv., 18(12):197–222, 1986.
Entity Resolution

▶Record Matching
Entity-Relationship Model

▶ Entity Relationship Model
EPN

▶ Event Processing Network
Equality Query

▶Membership Query
Equality Selection

▶Membership Query
Equality-Generating Dependencies

RONALD FAGIN

IBM Almaden Research Center, San Jose, CA, USA

Synonyms
egd

Definition
Equality-generating dependencies, or egds, are one of the

two major types of database dependencies (the other

major type consists of tuple-generating dependencies,

or tgds).

To define egds, it is necessary to begin with the

notion of an atomic formula, where an example is the

formula P(x1,...,xk), where P is a k-ary relational sym-

bol, and x1,...,xk are variables, not necessarily distinct.

Then egds are formulas of the form 8x(j(x) !
(x1 = x2)), where

1010E ER Model
1. j(x) is a conjunction of atomic formulas, all with

variables among the variables in x.

2. Every variable in x appears in j(x).
3. x1 and x2 are distinct variables in x.

Conditions (1) and (2) together are sometimes

replaced by the weaker condition that j(x) be an

arbitrary first-order formula with free variables exactly

those in x.

Key Points
The most important example of an egd is a functional

dependency, where an example is the formula

8x1 ::: 8xk8x0iðPðx1;:::;xkÞ
^ Pðx1;:::;xi�1; x

0
i; xiþ1;:::;xkÞ ! ðxi ¼ x0iÞÞ;

where P is a k-ary relation symbol.

Historically, functional dependencies were the first

database dependencies. They were introduced by Codd

[2] for the purpose of database normalization and

design. Fagin [3] defined the class of embedded impli-

cational dependencies, which includes both tgds and

egds, but he focused on the case where they are

(i) unirelational (so that all atomic formulas involve

the same relation symbol) and (ii) typed (so that no

variable can appear in both the ith and jth position of

an atomic formula if i 6¼j). Beeri and Vardi [1] defined

and named tgds and egds.

Cross-references
▶Database Dependencies

▶ Functional Dependency

▶Normal forms and Normalization

▶Tuple-Generating Dependencies

Recommended Reading
1. Beeri C. and Vardi M.Y. A proof procedure for data dependen-

cies. J. ACM, 31(4):718–741, 1984.

2. Codd E.F. Further normalization of the data base relational

model. Courant Computer Science Series 6: Database Systems.

Prentice-Hall, USA, 1972, pp. 33–64.

3. Fagin R. Horn clauses and database dependencies. J. ACM,

29(4):952–985, 1982.
ER Model

▶ Entity Relationship Model
ERM

▶ Entity Relationship Model
ESB

▶ Enterprise Service Bus
Escrow Transactions

PATRICK O’NEIL

University of Massachusetts, Boston, MA, USA

Synonyms
Escrow transactions

Definition
Escrow transactions [3] permit non-blocking concur-

rency for the most common high volume transactions,

those that perform updates of hotspot data only by

incrementing and decrementing aggregate data items.

An example of such a transaction is one that incre-

ments dollar sale total of a customer for each purchase

that decrements the quantity on hand of a product.

A hotspot of a database under a high volume transac-

tional workload consists of the set of data items,

each one of which frequently needs to be updated by

multiple concurrent transactions in order to maintain

needed throughput. While this is impossible using

read-write locking, since write operations do not com-

mute, high-volume OLTP applications of this kind can

be performed without blocking by a transactional sys-

tem that performs increments and decrements with the

appropriate protocols. Increment-decrement updates

have been used for years in the IMS Fast Path product

[1,2], supporting commuting high volume short-term

transactions on data items in a centralized DBMS.

Escrow transactions generalized this approach to sup-

port commuting long-lived transactions performing

increment-decrement updates of aggregate data items,

possibly in a distributed database.

Key Points
The term ‘‘escrow’’ is from banking: a large company

entering into a business transaction in a remote

Escrow Transactions E 1011

E

location would not want to ‘‘lock’’ it’s main bank

account for this purpose, but would elect an escrow

agent, to hold the money in trust pending fulfillment of

the transaction; if the transaction succeeds, the escrow

agent would transfer the money, but otherwise the

money would be returned to the company. Note that

this is a long-lived transaction in the sense that a

business transaction using escrow might take days or

weeks to complete. In the same way the Escrow trans-

actions perform quick increments and decrements to

an account, then hold no locks on what quantity

remains, and so lock only the portion of an aggregate

quantity needed for the business purpose of the

transaction.

Escrow transactions can be illustrated with an ex-

ample of a product table Prod with a primary key

prid and rows containing data about warehouse stor-

age of a product, e.g., storage_capacity, price, etc.

Updates to columns of Prod are infrequent and take

part in short-term update transactions, but orders

changing Quantity on Hand of the product are held

long-term in an Escrow data item qoh, as explained

below. The qoh item can be thought of as a composite

column for each row of the Prod table, having

the appropriate prid and a number of int fields, as

follows:

(qoh, prid, val, inf, sup)

The qoh item must be exempted from standard

transactional recovery using before images and after

images, since Escrow recover is special-purpose as

described below. Note that an increment operation

Inc(qoh, prid, tid, delta) by transaction tid can

represent either an increment (with a positive value of

delta) or a decrement (with a negative value of

delta). It is assumed that product orders such as

this can be held pending for an extended length of

time (weeks), and either committed or aborted at the

end of that time, with a fee paid by the customer for

this flexibility; thus each Inc operation can be thought

of as an Option to Buy (Return) if delta is negative

(positive).

The field val represents the value of the balance if

all outstanding transactions that have incremented this

quantity should abort, while the field inf(sup) repre-

sent the lowest (highest) values val could attain if all

transactions that have performed Inc operations with

positive-valued (negative-valued) delta increments

were to abort, while all increments with deltas of
the opposite sign commit. Thus as new Inc operations

are submitted, negative-valued deltas will lower the

inf value and positive valued deltas will increase the

sup value, while val will remain unchanged until one

of the transactions commits. In addition, as each Inc

operation causes qoh items to change, an Escrow log

(Elog) is created and both the Elog and the qoh are

made durable (written to mirrored disk for example),

to guarantee that the Elog will be recovered in event of

a system crash. Recovery from a system crash will

therefore result in recovery of qoh and all Elogs, so

each Escrow update is brought back to a state where it

can be either committed or aborted. There are also Max

and Min field values in the descriptor of the qoh data

item to provide a constraint on the maximum and

minimum attainable values for val. The seller will

disallow an Inc(delta) with negative delta which

brings inf below Min (usually zero since this would

mean that some purchase order will fail if no items are

returned, while there will also be a limit on how many

positive delta increments can be accepted for a given

product (sup will be constrained to be less than Max),

since there is a limited amount of storage. Back-orders

for purchase or return can be provided when circum-

stances permit.

Note that while Inc operations commute, they

do not commute with Reads or Writes. One cannot

Read or Write an Escrow item that has indeterminate

value (between inf and sup), although a Read func-

tion call to return this range of possible values could

be provided.
Escrow Commits and Aborts

The commutative property of Escrow transactions is

based on the fact that updates by multiple concurrent

transactions on any single Escrow data item can be

committed or aborted in any order. This is motivated

with a short example. Assume the qoh data item on a

product with prid = 1234 begins with val = 1000,

and that Max = 2000 and Min = 0. A sequence of

transactions Ti updates this qoh creating Escrow logs,

and then all Ti Commit (Ci) or Abort (Ai).

To start: (qoh, prid: 1234, val: 1000, inf: 1000,

sup:1000)

Inc1: Inc(qoh, prid: 1234, tid: 1, delta: �500)

Result: (qoh, prid: 1234, val: 1000, inf: 500,

sup:1000), Elog: (tid: 1, delta:�500, qoh[1234])

Inc2: Inc(qoh, prid: 1234, tid: 2, delta: + 500)

1012E e-Services
Result: (qoh, prid: 1234, val: 1000, inf: 500,

sup:1500), Elog: (tid: 2, delta: + 500, qoh[1234])

C2: (qoh, prid: 1234, val: 1500, inf: 1000,

sup:1500), Elog for tid = 2 was used and is now

invalidated.

A1: (qoh, prid: 1234, val: 1500, inf: 1500,

sup:1000), Elog for tid = 1 was used and is now

invalidated.

Recall that a positive increment such as Inc2: Inc

(qoh, prid: 1234, tid: 2, delta: + 500) causes the

sup value to increase by delta. Then an Abort A2,

reading off the Escrow log for Inc2, causes the sup

value to be decremented by delta again, with no

other field changed, while a Commit C2 causes the

inf, and val values to be incremented by the same

amount (if no other transactions remain active, the

val, inf and sup must end with the same values).

Similarly a negative increment Inc1: Inc(qoh, prid:

1234, tid: 1, delta: �500) causes the inf value to

be decremented by the negative delta; an Abort A2,

reading off the Escrow log for Inc1, will cause the inf

value to be incremented by delta (a positive value),

while a Commit will cause the val and sup values to

be decremented as well.

It should be clear from this that the minimum

value possible for val at the end of a sequence of

Commits and Aborts will be inf, and the maximum

value will be sup. Any combination of a specific set of

Aborts and Commits in any order will result in the

same val value.
Distributed Escrow Transactions

A classical definition of distributed transactions has a

Transactional Coordinator on one host performing

updates on its own host and coordinating updates on

several foreign hosts to provide ACID properties for a

global transaction. The updates lock records on all

hosts in the classical situation, often leading to diffi-

culties in terms of blocking, especially if one of the

non-coordinating hosts should crash at an inoppor-

tune moment during concluding Two-Phase Commit.

Escrow transactions are perfect for situations like

this, since they lock only the (usually small) portion

of an aggregate quantity needed for the business pur-

pose of the transaction, while original Escrow update

automatically requests Phase 1 of a Two-Phase Com-

mit. The upshot of all this is that there is no parti-

cular rush about completing Phase 2 of a Two-Phase
Commit, and indeed even if the Coordinator host

crashes after the final commit has started, one can

afford to wait for recovery without blocking all the

data items involved against further Escrow updates.

Cross-references
▶Concurrency Control

▶Distributed Transaction Management

▶ Logging and Recovery

▶Transaction Model

▶Transaction

Recommended Reading
1. Gawlick D. Processing ‘‘hot spots.’’ In Digest of Papers –

COMPCON, 1985, pp. 249–251.

2. Gawlick D. and Kinkade D. Varieties of concurrency control in

IMS/VS fast path. IEEE Database Eng. Bull., 8(2):3–10, 1985.

3. O’Neil P.E. The escrow transactional method. ACM Trans.

Database Syst., 11(4):405–430, 1986.
e-Services

▶Web Services
ETL

▶ Extraction, Transformation and Loading
ETL Process

▶ Extraction, Transformation and Loading
ETL Tool

▶ Extraction, Transformation and Loading
ETL Using Web Data Extraction
Techniques

▶Web ETL

European Law in Databases E 1013

E

European Law in Databases

MICHAEL CARROLL

Villanova University, Villanova, PA, USA

Synonyms
Intellectual Property; License

Definition
European law provides three types of legal rights to

database owners to control copying: (i) copyright law,

(ii) the right to impose contracts or licenses on users,

and (iii) a unique statutory right applicable to the non-

copyrightable information – such as factual data – in

European databases. This entry discusses only the third

of these rights. This stand-alone or ‘‘sui generis’’database

right gives a database owner a claim against one who

extracts or reuses the whole or a substantial part of the

database contents, where ‘‘substantial part’’ is evaluated

qualitatively or quantitatively.

Historical Background
Prior to 1996, the legal treatment of databases in

Europe varied in the requirements for copyright pro-

tection. In 1992, the European Commission proposed

that EU copyright law be harmonized with US law by

requiring originality for copyright protection to apply.

However, the European Commission also proposed

that a separate legal right should be granted for un-

original databases that require substantial investment

to create or update. After further revision to ensure

certain user rights, the proposal was adopted as Dir-

ective 96/9/EC of the European Parliament and of

the Council on the legal protection of databases. The

Directive required Member States to harmonize their

copyright treatment of databases with US law and to

further enact national legislation providing database

owners with a new stand-alone legal right to control

certain copying of non-copyrightable information in

databases. All 25 countries subject to the Directive have

complied with this requirement.

An analysis of the effect of the Directive conducted

by the European Commission in 2005 concluded that

‘‘[w]ith respect to ‘non-original’ databases, the assump-

tion that more and more layers of IP protection means

more innovation and growth appears not to hold up.’’

The report offered policymakers four options: (i) Repeal

the whole Database Directive; (ii) Withdraw the sui
generis right while leaving protection for creative data-

bases unchanged; (iii) Amend the sui generis provisions

in order to clarify their scope; (iv) Maintain the status

quo. Comments were solicited from specific stake-

holders. There was support for each option and as of

January 2008 no legislation was pending.
Foundations
Article 7 of the Directive requires that: ‘‘Member States

shall provide for a right for the maker of a database

which shows that there has been qualitatively and/or

quantitatively a substantial investment in either the

obtaining, verification or presentation of the contents

to prevent extraction and/or reutilization of the whole

or of a substantial part, evaluated qualitatively and/or

quantitatively, of the contents of that database.’’

This provision can be broken down into (i) the

eligibility criteria and (ii) the scope of the rights

granted to those deemed eligible.
Eligibility

Under the Directive, a database is ‘‘a collection of

independent works, data or other materials arranged in

a systematic or methodical way and individually accessi-

ble by electronic or other means.’’ To qualify for this

database right, the creator, which, unlike in European

copyright law, can be a corporation, must have made

qualitatively or quantitatively a substantial investment

in either the obtaining, verification or presentation of

the contents.’’

Notice that the eligibility criteria allow for multiple

rightsholders in the same data. For example, CompanyA

may make a substantial investment in collecting data.

Company A may then sell the data to Company B,

which makes a substantial investment in verifying the

data. Company Bmay then sell the data to Company C,

which makes a substantial investment in presenting

the data.

This database right is initially held by the person

or corporation which made the substantial invest-

ment, so long as (i) the person is a national or domi-

ciliary of a Member State or (ii) the corporation is

formed according to the laws of a Member State

and has its registered office or principal place of busi-

ness within the European Union. The database right

lasts for 15 years from the date of publication or,

in the case of unpublished databases, from the year of

creation.

1014E European Law in Databases
Scope of Rights – Extraction or Reutilization

Under the Directive, a rightsholder may bring a claim

for unauthorized ‘‘extraction’’ or ‘‘reutilization’’ of a

‘‘substantial part’’ of a database.

Extraction is defined broadly to mean ‘‘the perma-

nent or temporary transfer of all or a substantial part

of the contents of a database to another medium by

any means or in any form.’’

Reutilization is also defined broadly to mean ‘‘any

form of making available to the public all or a substan-

tial part of the contents of a database by the distribu-

tion of copies, by renting, by on-line or other forms of

transmission.’’

A substantial part of the database is to be evaluated

quantitatively or qualitatively, which means that even

extraction or reuse of a small amount of data may

infringe the right if that data has economic value to

the rightholder.

Somewhat in conflict with the express language

defining the right as covering only substantial parts of

the database, Article 7(5) also provides that ‘‘repeated

and systematic extraction and/or reutilization of insub-

stantial parts of the contents of the database implying

acts which conflict with a normal exploitation of that

database or which unreasonably prejudice the legitimate

interests of the maker of the database shall not be

permitted.’’
Exceptions and Limitations

The broad rights granted under the Directive are

subject to specific exceptions and limitations.

Where copies of the database are sold in material

form, such as on a CD ROM, the rightholder’s reutili-

zation right is exhausted after the first sale. This means

one may resell or otherwise redistribute one’s copy

of the database without liability. Public lending of

such a copy also is not an infringement of the reutili-

zation right.

In addition, the Directive provides three specific

exceptions under which a substantial part of a database

may be extracted or reutilized without permission:

1. In the case of extraction for private purposes of the

contents of a non-electronic database;

2. In the case of extraction for the purposes of illus-

tration for teaching or scientific research, as long as

the source is indicated and to the extent justified by

the non-commercial purpose to be achieved; and
3. In the case of extraction and/or reutilization for

the purposes of public security or an administrative

or judicial procedure.

Importantly, under the Directive, the rightsholder

may not supplement the protection of the database

right with a contractual license that restricts the user’s

right to use insubstantial parts of the database without

authorization.
Key Applications
At the national level, court judgments reflect a range of

databases considered eligible for the sui generis right.

These include listings of telephone subscribers; databases

compiling case-law and legislation; websites containing

classified advertisements; catalogs of various sorts; lists

of headings of newspaper articles. The European Court

of Justice also has accepted a broad reading of what

collections of information qualify as a database under

the Directive.

The eligibility requirement of ‘‘substantial in-

vestment’’ in the database has received varied, and

arguably conflicting, interpretations in the courts.

Examples of databases that courts have satisfied the

criterion include a compilation of several thousand

real estate listings (Belgium) and the effort to collect

and verify the data for the weekly ‘‘Top 10’’ hit chart

of music titles (Germany). Examples of databases that

have failed to show substantial investment include a

website containing information on building con-

struction (Germany) and a listing of newspaper head-

lines that were deemed to be a ‘‘spin-off ’’ of the

primary database of news articles (Netherlands). A

related area of divergent judgments concerns copying

from on-line databases and Internet-related activities

such as ‘‘hyper linking’’ or ‘‘deep-linking’’ using

search engines.

Related differences of opinion have emerged with

respect to what constitutes an extraction or reutiliza-

tion of a ‘‘substantial part’’ of the database, particularly

with regard to indexing of on-line resources such as

news sites by search engines.

Disputes over sports-related data were referred

to the European Court of Justice in 2004 to clarify

the scope of the Directive. The ECJ rejected claims by

sports bodies that organize contests to ownership over

the scores or results and other data related to these

contests.

Evaluation Metrics for Structured Text Retrieval E 1015
Cross-references
▶Copyright Issues in Databases

▶ Licensing and Contracting Issues in Databases
E

Recommended Reading
1. Comments on future of the Directive. http://circa.europa.eu/Public/

irc/markt/markt_consultations/library?l=/copyright_neighbouring/

database_consultation&vm=detailed&sb=Title

2. Commission of the European Communities, First evaluation

of Directive 96/9/EC on the legal protection of databases, 12

Dec. 2005, at http://ec.europa.eu/internal_market/copyright/

docs/databases/evaluation_report_en.pdf

3. Directive 96/9/EC of the European Parliament and of the

Council of 11 March 1996 on the legal protection of databases,

OJ L 77, 27.3.1996, pp. 20–28. http://eur-lex.europa.eu/smartapi/

cgi/sga_doc?smartapi!celexapi!prod!CELEXnumdoc&lg=en&

numdoc=31996L0009&model= guichett

4. Gervais, D.J. The Protection of Databases (2007): Chicago-Kent

Law Review, 82:1109–1168, 2007 available at http://works.bepress.

com/cgi/viewcontent.cgi?article=1011&context=daniel_gervais.

5. Judgments of the European Court of Justice in respect of

the Database Directive, http://ec.europa.eu/internal_market/

copyright/prot-databases/jurisprudence_en.htm

6. Maurer, S.M. Across Two Worlds: Database Protection in the

United States and Europe, In Intellectual Property and Innova-

tion in the Knowledge–Based Economy, 2001. http://strategis.ic.

gc.ca/epic/site/ippd-dppi.nsf/vwapj/13-EN2%20Maurer.pdf/$file/

13-EN2%20Maurer.pdf

7. Maurer, S.M., Hugenholtz, B.P., and Onsrud, Harlan J.

Europe’s Database Experiment, Science 2001, 294(5543):

789–790, 2001.

8. Overview of official documents. http://ec.europa.eu/internal_market/

copyright/prot-databases/prot-databases_en.htm

9. Study on the Implementation and Application of Directive

96/9/EC on the Legal Protection of Databases conducted

by NautaDulith. http://ec.europa.eu/internal_market/copyright/

docs/databases/etd2001b53001e72_en.pdf
Evaluation Forum

▶ INitiative for the Evaluation of XML retrieval

(INEX)
Evaluation in Information Retrieval

▶ Standard Effectiveness Measures
Evaluation Measures

▶ Search Engine Metrics
Evaluation Metrics for Structured
Text Retrieval

JOVAN PEHCEVSKI
1, BENJAMIN PIWOWARSKI

2

1INRIA Paris-Rocquencourt, Le Chesnay Cedex,

France
2University of Glasgow, Glasgow, UK

Synonyms
Performance metrics; Evaluation of XML retrieval

effectiveness

Definition
An evaluation metric is used to evaluate the effective-

ness of information retrieval systems and to justify

theoretical and/or pragmatic developments of these

systems. It consists of a set of measures that follow a

common underlying evaluation methodology.

There are many metrics that can be used to

evaluate the effectiveness of structured text retrieval

systems. These metrics are based on different evalua-

tion assumptions, incorporate different hypotheses of

the expected user behavior, and implement their own

evaluation methodologies to handle the level of overlap

among the units of retrieval.

Historical Background
Over the past 5 years, the initiative for the evaluation

of XML retrieval (INEX) has investigated various

aspects of structured text retrieval, by particularly fo-

cusing on XML retrieval. Major advances, both in

terms of approaches to XML retrieval and evaluation

of XML retrieval, have been made in the context of

INEX. The focus of this entry is on evaluation metrics

for XML retrieval, as evaluation metrics for structured

text retrieval have thus far been proposed in the con-

text of XML retrieval.

Compared to traditional information retrieval,

where whole documents are the retrievable units,

information retrieval from XML documents creates

additional evaluation challenges. By exploiting the

Evaluation Metrics for Structured Text Retrieval.

Table 1. Common notations used to describe formulae of

XML retrieval metrics

Notation Short description

e An XML element

ei The ith XML element in the list

spe(e) The (normalized) specificity

exh(e) The (normalized) exhaustivity

q(e) A quantization function

ℑ The set of ideal elements

ℒ The ideal ranked list of elements

‘ Arbitrary recall level

size(e) The size of element e, usually in number of
characters

overlap(i) The level of overlap between the ith element
of the list and the previously returned
elements

1016E Evaluation Metrics for Structured Text Retrieval
logical document structure, XML allows for more

focused retrieval by identifying information units (or

XML elements) as answers to user queries. Due to

the underlying XML hierarchy, in addition to finding

the most specific elements that at the same time

exhaustively cover the user’s information need, an

XML retrieval system needs to also determine the ap-

propriate level of answer granularity to return to the

user. The overlap problem of having multiple nested

elements, each containing identical textual infor-

mation, can have a huge impact on XML retrieval

evaluation [6].

Traditional information retrieval evaluation mea-

sures (such as recall and precision) mostly assume that

the relevance of an information unit (e.g., a document)

is binary and independent of the relevance of other

information units, and that the user has access to only

one information unit at a time. Furthermore, they also

assume that the information units are approximately

equally sized.

These two assumptions do not hold in XML re-

trieval, where the information units are nested ele-

ments of very different sizes. As nested elements share

parts of the same information, an evaluation metric for

XML retrieval can no longer assume than the relevance

of elements is independent. Moreover, since users can

access different parts of an XML document, it also can

no longer be assumed that they will have access to only

one element at a time. Each of the evaluation metrics

for XML retrieval supports the above assumptions to a

different extent.

Another limitation of the traditional information

retrieval metrics is that they are not adapted to the

evaluation of specific retrieval tasks, which could use

more advanced ways of presenting results that arise

naturally when dealing with XML documents. For

example, one task in XML retrieval is to present the

retrieved elements by their containing documents,

allowing for an easier identification of the relevant

information within each document.

INEX has been used as an arena to investigate the

behavior of a variety of evaluation metrics for XML

retrieval. Most of them are extensions of traditional

information retrieval metrics, namely precision-recall

and cumulated gain. Precision-recall is a bi-dimensional

metric that captures the concentration and the number

of relevant documents retrieved by an information

retrieval system. An alternative definition of this metric

calculates precision at a given recall level ‘ (between
0 and 100%) as the probability that a retrieved docu-

ment is relevant, provided that a user wants to see ‘

percent of the relevant documents that exist for the

topic of interest [12]. The precision-recall metric was

the first one extended for the purposes of XML retriev-

al evaluation.

The cumulated gain (CG) metric [2] relies on the

idea that each retrieved document corresponds to a gain

for the user, where the gain is a value between 0 and 1.

The metric then simply computes the CG at a given rank

k as a sum of the gains for the documents retrieved

between the first rank and rank k. When normalized,

the CG value is somewhat similar to recall, and it is

also possible to construct an equivalent of precision for

CG. The importance of extending this metric for XML

retrieval lies in the fact that it allows for non-binary

relevance, which means it can capture elements of

varying sizes and granularity.

Foundations
A common notation is used throughout this document

to describe the formulae of the different evaluation

metrics for XML retrieval. The notation is presented

in Table 1. It is also assumed that any XML element can

be represented as a textual segment that spans the text

corresponding to that XML element. This conceptual

representation is practical, as it is possible to define the

intersection, the union, the inclusion, and the size of

any two segments.

Evaluation Metrics for Structured Text Retrieval E 1017

E

Evaluation Concepts

In XML retrieval, the commonly used ad hoc retrieval

task simulates how a digital library is typically used,

where information residing in a static set of XML

documents is retrieved using a new set of topics. Dif-

ferent sub-tasks can be distinguished within the broad

ad hoc retrieval task.

XML Retrieval Tasks

The main XML retrieval tasks, considered to be sub-

tasks of the main INEX ad hoc retrieval task, are:

� Thorough, where XML retrieval systems are re-

quired to estimate the relevance of a retrieved ele-

ment and return a ranked list of all the overlapping

relevant elements.

� Focused, where the returned ranked list consists of

non-overlapping relevant elements.

� Relevant in context (RiC), where systems are re-

quired to return a ranked list of relevant articles,

where for each article a set of non-overlapping

relevant elements needs to be correctly identified.

� Best in context (BiC), where the systems are re-

quired to return a ranked list of relevant articles,

where for each article the best entry point for start-

ing to read the relevant information within the

article needs to be correctly identified.

User Behavior

The evaluation metrics typically model a sequential

user browsing behavior: given a ranked list of answer

elements, users start from the beginning of the list and

inspect one element at a time, until either all the ele-

ments in the list have been inspected, or users had

stopped inspecting the list since their information

needs were fully satisfied. However, while inspecting a

ranked list of elements, users of an XML retrieval

system could also have access to other structurally

related elements, or indeed could be able to inspect

the context where the answer elements reside (which

may be supported by features such as browsing, scrol-

ling, or table of contents).

Accordingly, in addition to modeling the sequential

user model, the evaluation metrics should also be able

to model various user browsing behaviors.

Relevance Dimensions

The relevance of a retrieved XML element to a query

can be described in many ways. It is therefore necessary
to define a relevance scale that can be used by the

evaluation metrics. Traditional information retrieval

usually uses a binary relevance scale, while in XML

retrieval there is a multi-graded (or continuous) rele-

vance scale that uses the following two relevance

dimensions:

� Exhaustivity (denoted exh), which shows the extent

to which an XML element covers aspects of the

information need.

� Specificity (denoted spe), which shows the extent

to which an XML element is focused on the infor-

mation need.

The two relevance dimensions have evolved over the

years (readers are referred to the relevance definitional

entry for more details). For simplicity, it will be as-

sumed that each relevance dimension uses a continu-

ous relevance scale with values between 0 and 1. For

example, the four-graded relevance scale used by the

two dimensions in INEX from 2002 until 2004 can be

mapped onto the values 0; 1
3
; 2
3
and 1.

The normalized exhaustivity and specificity of an

XML element e are respectively denoted as exh(e) and

spe(e). They can take values between 0 and 1.
Quantization

Quantization is the process of transforming the values

obtained from the two relevance dimensions into a

single normalized relevance score (which again takes

values between 0 and 1). It is used to represent the

extent to which the retrieved element is relevant.

For example, the strict quantization function can

be used to measure the XML retrieval performance

when only highly relevant elements are targets of

retrieval, while the generalized quantization function

can be used to measure the performance when ele-

ments with multiple degrees of relevance are targets of

retrieval:

qstrictðeÞ ¼
1 if exhðeÞ ¼ speðeÞ ¼ 1

0 otherwise

(

qgenðeÞ ¼ exhðeÞ� speðeÞ

The strict quantization can therefore be used to reward

systems that only retrieve elements that are fully ex-

haustive and specific, while the generalized quantiza-

tion rewards systems that retrieve elements with

multiple relevance degrees.

1018E Evaluation Metrics for Structured Text Retrieval
Ideality

The concept of ideality emerged in XML retrieval as a

concept that is used to distinguish those among all

judged relevant elements that users would prefer to

see as answers. For example, in order to distinguish

between the intrinsic relevance of a paragraph from the

inherited relevance of its containing section, it could be

said that, even though both elements are relevant, only

the paragraph is ideal. By definition, an ideal element

is always relevant but the reverse is true only in tradi-

tional information retrieval.

Ideal elements, unlike relevant elements, can be as-

sumed to be independent. Note that this assumption is

similar to the independence of document relevance in

traditional information retrieval; that is, ideal elements,

as documents, can overlap conceptually (they can con-

tain same answers to the underlying information need)

as long as they do not overlap physically. In XML re-

trieval, this assumption implies that ideal elements can-

not be nested. Note that ideality can be extended tomore

general units than elements, namely the passages.

Construction of Ideal Sets and Lists

To construct a set ℑ of ideal elements, one has to make

hypotheses about the underlying retrieval task and the

expected user behavior [5].

One example of methodology for identifying the

ideal elements is as follows [3]: given any two elements

on a relevant path, the element with the higher quan-

tized score is first selected. A relevant path is a path in

the document tree that starts from the document ele-

ment and ends with a relevant element that either does

not contain other elements, or contains only irrelevant

elements. If the two element scores are equal, the one

deeper in the tree is chosen. The procedure is applied

recursively to all overlapping pairs of elements along

a relevant path until only one element remains. It

is important that the methodology for identifying

ideal elements closely reflects the expected user behav-

ior, since it has been shown that the choice of method-

ology can have a dramatic impact on XML retrieval

evaluation [3].

Given a set of ideal elements, and an evaluation

metric that uses that set, it is then possible to construct

an ideal list L of retrieved elements that maximises the

metric score at each rank cutoff.

Near Misses and Overlap

Support of near misses is an important aspect that

needs to be considered by the evaluation metrics for
XML retrieval. Near misses are elements close to an

ideal element, which act as entry points leading to one

or more ideal elements. It is generally admitted that

systems that retrieve near misses should be rewarded

by the evaluation metrics, but to a lesser extent than

when ideal elements are retrieved [4].

Early attempts that extended the traditional infor-

mation retrieval metrics to support XML retrieval

rewarded near misses by assigning partial scores to

the elements nearby an ideal one [1,6]. However, this

implies that systems that return only ideal elements

will never achieve a 100% recall, since both ideal ele-

ments and near misses have to be returned to achieve

this level of recall [10].

Moreover, these metric extensions are commonly

considered to be ‘‘overlap positive” [14], which means

that they reward systems for retrieving twice the same

ideal element, either directly or indirectly, and that the

total reward for retrieving that ideal element increases

with the number of times it is retrieved. To cater for this

problem, overlap neutral and/or negative evaluation

metrics have since been developed [1,5].

It is therefore important to be able to compute

the degree of overlap between an element ei and

other elements previously retrieved in the ranked list

(e1,...,ei). A commonly adopted measure is the percent-

age of text in common between the element and the

other previously retrieved elements:

overlapðiÞ ¼
size ei \

Si�1

j¼ 1

ej

 !

sizeðeiÞ
ð1Þ

The overlap function equals 0 when there is no overlap

between the element ei and any of the previously

retrieved elements ej, and equals 1 when there is

full overlap (i.e., either all its descendants or one of

its ancestors have been retrieved). A value between

0 and 1 denotes intermediate possibilities.
Metric Properties

An evaluation metric for XML retrieval should provide

a support for the following properties.

� Faithfulness. The metric should measure what it is

supposed to measure (fidelity) and it should be

reliable enough so that its evaluation results can

be trusted.

� Interpretation. The outcome of the evaluation met-

ric should be easy to interpret.

Evaluation Metrics for Structured Text Retrieval E 1019

E

� Recall/precision. The metric should capture both

recall and precision, as they are complementary

dimensions whose importance have been recog-

nized in traditional information retrieval (some

retrieval tasks put more focus on recall while others

prefer precision).

� Ideality. The metric should support the notion of

ideal elements.

� Near misses. The metric should be able to properly

handle near misses.

� Overlap. The metric should properly handle the

overlap among retrieved and judged elements.

� Ideality graded scale. The metric should be able

to support multi-graded or continuous scales,

in order to distinguish the ideality of two

elements.

� User models and retrieval tasks. The metric should

be able to model different user behaviors and sup-

port different retrieval tasks, since XML retrieval

systems support a variety of features that allow

information access.
Evaluation Metrics for Structured Text Retrieval. Table 2. M

retrieval metrics supports them. In the table, ‘‘y’’ stands for yes

overlap negative, and ‘‘=’’ for overlap neutral. The question m

Metric
Property inex_eval inex_eval_ng n

Research publication [1] [1] [5

INEX metric (years) 02–04 03 0

Faithfulness ? ? y

Interpretation na na y

Recall y y y

Precision y y n

Near misses i i y

Overlap + - =

Ideality n n y

Ideality graded scale n/a n/a y

Explicit user model n n n

XML Retrie

Thorough y y y

Focused ? ? y

RiC i i i

BiC i i i

aBut for some special cases.
bWith parameter a set to 0 or 1.
cHighlighted passages are the ideal units in the case of HiXEval.
dThe ideality of an element is fixed and directly proportional to the a
Table 2 summarizes the above metric properties and

provides an overview of the extent to which each of the

evaluation metrics for XML retrieval (described in

the next section) provides a support for them.

Evaluation Metrics

This section presents the different evaluation metrics

that were proposed so far in XML retrieval.

The inex_eval Metric

For 3 years from 2002, the inex_eval metric [1] was

used as the official INEX metric to evaluate the effec-

tiveness of XML retrieval systems. This metric supports

weak ordering of elements in the answer list [12], where

one or more elements are assigned identical retrieval

status values by an XML retrieval system. For simplici-

ty, the discussion is restricted to the case where ele-

ments are fully ordered.

The inex_evalmetric assumes that the degree (or

probability) of relevance of an element e is directly

given by the quantization function q(e). Its degree
etric properties, and the extent to which each of the XML

, ‘‘n’’ for no, ‘‘i’’ for indirect, ‘‘+’’ for overlap positive, ‘‘�’’ for

ark ‘‘?’’ signifies unclear or not demonstrated property

XCG ep/gr T2I GR PRUM EPRUM HiXEval

] [5] [13] [10] [11] [9] [7]

5–06 05–06 06 07

y ? y y y y
b yb y y y y yb

y y y y y y

y y y y y y

y y y y y y

= = = = = =

y y y y y yc

y n y n y yd

n y y y y n

val Tasks

y ? y y y y

y y y y y y

i i y y y i

i i y y y i

mount of highlighted text.

1020E Evaluation Metrics for Structured Text Retrieval
of non-relevance can be symmetrically defined as (1 �
q(ei)). At a given rank k, it is then possible to define the

expected number of relevant (resp. non-relevant) R(k)

(resp. I(k)) elements as follows:

RðkÞ ¼
X
i�k

qðeiÞ IðkÞ ¼
X
i�k

ð1� qðeiÞÞ

For a given recall level ‘, the Precall [12] metric esti-

mates the probability that a retrieved element is rele-

vant to a topic (assuming that a user wants to find ‘%

of the relevant elements in the collection, or equiva-

lently ‘ 	 N relevant elements). If k‘ is the smallest rank

k for which R(k) is greater or equal to ‘ 	 N, then
precision is defined as follows:

Precisionð‘Þ ¼ number of seen relevant units

expected search length
¼ ‘ 	 N

k‘

ð2Þ

where N is assumed to be the expectation of the total

number of relevant elements that can be found for an

INEX topic, i.e., N = ∑ e q(e) across all the elements of

the collection.

Beyond the lack of support for various XML re-

trieval tasks, the main weakness of the inex_eval

metric is that one has to choose (with the quantization

function) whether the metric should allow near misses

or should be overlap neutral – both are not possible.

To support overlap, it is possible to compute a set of

ideal elements by setting the normalized quantization

scores of non-ideal elements to 0, thus not reward-

ing near misses. To reward near misses, the quantiza-

tion function should give a non-zero values for

elements nearby the ideal elements, but then the sys-

tem will get fully rewarded only if it returns both the

ideal and the other relevant elements. Another prob-

lematic issue is the use of non-binary relevance values

inside the inex_eval formula shown in (2), which

makes the metric ill-defined from a theoretical point

of view.
The inex_eval_ng Metric

The inex_eval_ng metric was proposed as an alter-

native evaluation metric at INEX 2003 [1]. Here, the

two relevance dimensions, exhaustivity and specificity,

are interpreted within an ideal concept space, and each

of the two dimensions is considered separately while

calculating recall and precision scores. There are two

variants of this metric, which differ depending on
whether overlap among retrieved elements is penalized

or not: inex_eval_ng(o), which penalises overlap

among retrieved elements; and inex_eval_ng(s),

which allows overlap among retrieved elements. Unlike

the inex_eval metric, this metric directly incorpo-

rates element sizes in their relevance definitions.

With inex_eval_ng(o), precision and recall at

rank k are calculated as follows:

PrecisionðkÞ ¼

Pk
i¼1

speðeiÞ 	 sizeðeiÞ 	 ð1� overlapðiÞÞ

Pk
i¼1

sizeðeiÞ 	 ð1� overlapðiÞÞ

RecallðkÞ ¼

Pk
i¼1

exhðeiÞ 	 ð1� overlapðiÞÞ

PN
i¼1

exhðeiÞ

With inex_eval_ng(s), recall and precision are

calculated in the same way as above, except that here

the overlap function is replaced by the constant 0 (by

which overlap among the retrieved elements is not

penalized).

The inex_eval_ng metric has an advantage over

inex_eval, namely the fact that it is possible to

penalise overlap. However, due to the fact that it

ignores the ideality concept, the metric has been

shown to be very unstable if one changes the order of

elements in the list, in particular the order of two

nested elements [11]. Moreover, inex_eval_ng treats

the two relevance dimensions in isolation by produc-

ing separate evaluation scores, which is of particular

concern in evaluation scenarios where combinations

of values from the two relevance dimensions are

needed to reliably determine the preferable retrieval

elements.

The XCG Metrics

In 2005 and 2006, the eXtended cumulated gain (XCG)

metrics [5] were adopted as official INEX metrics. The

XCG metrics are extensions of the cumulated gain

metrics initially used in document retrieval [2].

Gain and Overlap

When the cumulated gain (CG) based metrics are ap-

plied to XML retrieval, they follow the assumption that

the user will read the whole retrieved element, and not

any of its preceding or following elements. An element

is partially seen if one or more of its descendants have

Evaluation Metrics for Structured Text Retrieval E 1021

E

already been retrieved ð0 < overlapðiÞ < 1Þ, while it

is completely seen if any of its ancestors have been

retrieved ðoverlapðiÞ ¼ 1Þ.
To consider the level of overlap among judged

relevant elements, the XCG metrics make use of an

ideal set of elements, also known as the ideal recall

base. To consider the level of overlap among the re-

trieved elements in the answer list, the XCG metrics

implement the following result-list dependent rele-

vance value (or gain) function:

gainðiÞ ¼

qðeiÞ if overlapðiÞ ¼ 0

ð1� aÞ 	 qðeiÞ if overlapðiÞ ¼ 1

a 	

P
j=ej�ei

gainðjÞ 	 sizeðejÞ

sizeðeiÞ

þð1� aÞ 	 qðeiÞ

otherwise

8>>>>>>>><
>>>>>>>>:

ð3Þ

The parameter a influences the extent to which the

level of overlap among the retrieved elements is con-

sidered. For example, with a set to 1 (focused task), the

gain function returns 0 for a previously fully seen

element, reflecting the fact that an overlapping (and

thus redundant) element does not bring any retrieval

value in evaluation. Conversely, the level of overlap

among the retrieved elements is ignored with a set to

0 (thorough task).

The gain formula cannot guarantee that the sum of

the gain values obtained for descendants of an ideal

element are smaller than the ideal element gain, and so

it is necessary to ‘‘normalize” the gain value by forcing

an upper gain bound [5].
XCG Metrics

Given a ranked list of elements for an INEX topic, the

cumulated gain at rank k, denoted as XCG(k), is com-

puted as the sum of the normalized element gain values

up to and including that rank:

XCGðkÞ ¼
Xk
i¼1

gainðiÞ ð4Þ

Two XCGmetrics used as official XML retrieval metrics

at INEX in 2005 and 2006 are nXCG and ep/gr. The

nXCG metric is a normalized version of XCG(k), de-

fined as the ratio between the gain values obtained

for the evaluated list to the gain values obtained for

the ideal list.
The ep/gr metric was defined as an extension of

nXCG in order to average performances over runs and

to define an equivalent of precision. It consists of two

measures: effort-precision ep, and gain-recall gr.

The gain-recall gr, calculated at the rank k, is de-

fined as:

gr½k
 ¼ XCG½k
P
x2ℑ gainðxÞ

ð5Þ

The effort-precision ep is defined as the amount of

relative effort (measured as the number of visited

ranks) a user is required to spend compared to the

effort they could have spent while inspecting an opti-

mal ranking. It is calculated at a cumulated gain level

achieved at rank k and is defined as:

ep½k
 ¼ minfijXCGℒðiÞ � XCGðkÞg
k

ð6Þ

where the indice ℒ means that the score is evaluated

with respect to an ideal list of relevant elements. An

ep score of 1 reflects an ideal performance, in which

case the user made the minimum necessary effort

(computed in number of ranks) to reach that particu-

lar cumulated gain. An ep/gr curve can then be

computed by taking pairs (gr[k],ep[k]) for varying

rank k values.

The XCG metrics have advantages over inex_

eval and inex_eval_ng, since its use of an ideal

list ensures that the metric is overlap neutral. It also

properly handles near misses by the use of an appro-

priate quantization function. However, the construc-

tion of the ideal set of elements relies on heuristics [3].

Other problems of the metric is that the gain is difficult

to interpret for values of a other than 0 or 1, which also

makes the outcome of the metric somewhat difficult to

interpret.

The T2I metric

The tolerance to irrelevance (T2I) metric [13] relies on

the same evaluation assumptions as inex_eval, but

includes a different user model more suited to XML

documents. The underlying user model is based on the

intuition that a user processes the retrieved list of

elements until their tolerance to irrelevance have been

reached (or until they found a relevant element), at

which point the user proceeds to the next system

result. The T2I metric has only been theoretically pro-

posed, and is yet to be implemented and evaluated.

1022E Evaluation Metrics for Structured Text Retrieval
The (E)PRUM and GR Metrics

The expected precision recall with user modeling

(EPRUM) metric [9], which was used as an alternative

evaluation metric at INEX in 2005 and as one of

the official ones in 2006, extends the traditional defini-

tions of precision and recall to model a variety of

user behaviors. EPRUM is unique among all the

INEX metrics in that it stochastically defines the user

browsing behavior. It is the last defined within a set

of three metrics, the previous one being GR (gene-

ralized recall) and PRUM (precision recall with user

modeling).
The User Model

From a retrieved element, the user can navigate using

the corpus structure. The context of a list item is

defined as the set of elements that can be reached

through navigation from it. This includes the pointed

elements but also the context of the pointed elements

(siblings, ancestors, etc.). To model the user behavior

inside the context, the three metrics rely on a set of

probabilities on simple events of the form ‘‘navigating

from a list item to an element in the corpus”. The

probabilities of navigating from rank j in the list to

an element x can be set to values estimated by any

adequate method and is denoted P(j ⇝ x). When a

user is over with this exploration, they consult the next

entry of the list and repeat the process until their

information needs are satisfied. Note that this user

model is general enough so as to cope with all INEX

tasks, since there is no constraint on how a rank is

defined.

Users see an element when they navigate to it from

another element or from the list, and they discover an

element if they see it for the first time. The distinction

between ‘‘seen” and ‘‘discovered” is important because

the system is rewarded only when elements are discov-

ered. The probability that the user discovers f ideal

elements when consulting ranks between 1 and k in-

cluded is then given by:

PðFk ¼ f Þ ¼
X
A�ℑ
jAj¼f

Y
x2A

Pðx 2 SkÞ
Y

x2ℑnA
Pðx =2SkÞ ð7Þ

where Sk is the set of all elements seen by the user

who has consulted ranks 1 to k. The probability that

an element was seen is computed with Pðx 2 SkÞ ¼
1�

Q
k
j¼1ð1� Pðj⇝xÞÞ.
GR, PRUM and EPRUM

The GR metric is a generalization of recall with the

above specified user model. It simply estimates the

expected number of discovered elements at a given

rank k, and divides it by the expected number of

ideal elements in the database in order to get a normal-

ized value. PRUM is defined as the probability that a

consulted list item leads the user to discover an ideal

element. Its most important limitation is that it does

not handle well non-binary assessments.

EPRUM defines precision based on the comparison

of two minimum values: the minimum rank that

achieves the specified recall over all the possible lists

and over the evaluated list. For a given recall level ‘,

precision is thus defined as the percentage of effort (in

minimum number of consulted ranks) a user would

have to make when consulting an ideal list with respect

to the effort when consulting the evaluated list:

Precisionð‘Þ

¼ E

Minimum number of consulted
list items for achieving a recall ‘ over all lists
Minimum number of consulted list items

for achieving a recall ‘ over the evaluated list

2
64

3
75

where the assumption is that when the user cannot

achieve recall ‘ in the evaluated list, then the minimum

number of consulted list items for the evaluated list is

infinite (this assumption is the same as in traditional

information retrieval). This measure is an extension of

the standard precision-recall metric.

It is similarly possible to extend the traditional

definition of precision at a given rank k. If the

expected recall of the evaluated list at rank k is rk,

then precision at rank k is defined as the ratio of

the minimum number of consulted list items over all

possible lists to achieve recall rk to the number of

consulted ranks k.

The EPRUM metric solves some problems of

PRUM and substantially reduces its complexity. It

also allows proper handling of graded ideality. The

advantages of EPRUM metric are the fact that it han-

dles all the INEX tasks through its user model para-

meters, that the user model is very flexible (for example

allowing to reward near misses that are not direct

ancestors or descendant of an ideal element), and that

the outcome of the metric can easily be interpreted.

However, like the XCGmetrics, it assumes that the ideal

set of elements and the ideal list of retrieved elements

Evaluation Metrics for Structured Text Retrieval E 1023

E

can easily be determined, which is shown to be not as

straightforward in XML retrieval [3].

The HiXEval Metric

Since 2005, a highlighting assessment procedure is

used at INEX to gather relevance assessments for the

XML retrieval topics. In this procedure, assessors

from the participating groups are asked to highlight

sentences representing the relevant information in a

pooled set of retrieved documents. To measure the

extent to which an XML retrieval system returns rele-

vant information, INEX started to employ evaluation

metrics based on the HiXEval metric [7,8]. This is

motivated by the need to directly exploit the INEX

highlighting assessment procedure, and it also leads

to evaluation metrics that are natural extensions of

the well-established metrics used in traditional infor-

mation retrieval.

HiXEval only considers the specificity relevance

dimension, and it credits systems for retrieving ele-

ments that contain as much highlighted (relevant)

text as possible, without also containing a substantial

amount of non-relevant text. So, instead of counting

the number of relevant elements retrieved, HiXEval

measures the amount of relevant text retrieved. Like

the XCG metrics, it makes the assumption that the

user will read the whole retrieved element, and not

any of its preceding or following elements. An element

is partially seen by the user if one or more of its

descendants have already been retrieved, while it is

completely seen if any of its ancestors have been

retrieved.

Let rsize(ei) be the amount of highlighted (rele-

vant) text contained by an element e retrieved at

rank i, so that if there is no highlighted text in the

element, rsize(ei) = 0. (Note that rsize(ei) can also be

represented as: rsize(ei) = spe(ei)	 size(ei).) To measure

the value of retrieving relevant text from ei, the rele-

vance value function rval(i) is defined as follows:

rvalðiÞ ¼
rsizeðeiÞ if overlapðiÞ ¼ 0

ð1�aÞ 	 rsizeðeiÞ if overlapðiÞ ¼ 1

rsizeðeiÞ�a:
P

j=ej�ei

rvalðjÞ otherwise

8><
>:

ð8Þ

As with the XCG metrics, the parameter a is a weight-

ing factor that represents the importance of retrieving

non-overlapping elements in the ranked list.
Precision and recall at a rank k are defined as

follows:

PrecisionðkÞ ¼

Pk
i¼1

rvalðiÞ

Pk
i¼1

sizeðeiÞ

RecallðkÞ ¼ 1

Trel
:
Xk
i¼1

rvalðiÞ

In the above equation, Trel represents the total amount

of highlighted relevant text for an INEX topic.

Depending on the XML retrieval task, different Trel

values are used by the metric. For example, for the

focused task Trel is the total number of highlighted

characters across all documents. This means that the

total amount of highlighted relevant text for the

topic represents the sum of the sizes of the (non-over-

lapping) highlighted passages contained by all the rel-

evant documents. Conversely, for the thorough task

Trel is the total number of highlighted characters

across all elements. For this task, the total amount of

highlighted relevant text for the topic represents the

sum of the sizes of the (overlapping) highlighted pas-

sages contained by all the relevant elements.

The precision and recall scores can be combined

in a single score using the standard F-measure

(their harmonic mean). By comparing the F-measure

scores obtained from different XML retrieval systems,

it would be possible to see which system is more

capable of retrieving as much relevant informa-

tion as possible, without also retrieving a substantial

amount of non-relevant information.

HiXEval has the advantage of using a naturally

defined ideal unit, namely a highlighted passage,

and thus overcomes the problem of defining a set of

ideal elements in an arbitrary way. One shortcoming

of this metric is that it makes the assumption that the

degree of ideality of a passage is directly proportional

to the passage size. It also shares the same issue identi-

fied with the XCG metrics that, with a values different
from 0 or 1, the interpretation of the output of the rval

(i) function is not very straightforward.

Key Applications

Web Search

Due to the increasing adoption of XML on the World

Wide Web, information retrieval from XML document

1024E Evaluation of Fuzzy Queries Over Multimedia Systems
collections has the potential to be used in many Web

application scenarios. Accurate and reliable evaluation

of XML retrieval effectiveness is very important for

improving the usability of Web search, especially if

the evaluation captures the extent to which XML re-

trieval can be adapted to a particular retrieval task or a

user model. This could certainly justify the increasing

usage of XML in the ever-growing number of interac-

tive Web search systems.

Digital Libraries

Reliable evaluation of XML retrieval effectiveness is

also important for improving information retrieval

from digital libraries, especially since there is a large

amount of structured (XML) information that is in-

creasingly stored in modern digital libraries.

URL to Code
EvalJ project: http://evalj.sourceforge.net

Cross-references
▶ INitiative for the Evaluation of XML Retrieval

▶XML Retrieval

Recommended Reading
1. Gövert N., Fuhr N., Lalmas M., and Kazai G. Evaluating the

effectiveness of content-oriented XML retrieval methods. In-

form. Ret., 9(6):699–722, 2006.

2. Järvelin K. and Kekäläinen J. Cumulated gain-based evaluation of

IR techniques. ACM Trans. Inform. Syst., 20(4):422–446, 2002.

3. Kazai G. Choosing an ideal recall-base for the evaluation of the

Focused task: Sensitivity analysis of the XCG evaluation mea-

sures. In Proc. Comparative Evaluation of XML Information

Retrieval Systems: Fifth Workshop of the INitiative for the

Evaluation of XML Retrieval, 2007, pp. 35–44.

4. Kazai G. and Lalmas M. Notes on what to measure in INEX. In

Proc. INEX 2005 Workshop on Element Retrieval Methodology,

2005, pp. 22–38.

5. Kazai G. and Lalmas M. eXtended Cumulated Gain measures for

the evaluation of content-oriented XML retrieval. ACM Trans.

Inform. Syst., 24(4):503–542, 2006.

6. Kazai G., Lalmas M., and de Vries A.P. The overlap problem

in content-oriented XML retrieval evaluation. In Proc. 30th

Annual Int. ACM SIGIR Conf. on Research and Development

in Information Retrieval, 2004, pp. 72–79.

7. Pehcevski J. Evaluation of Effective XML Information Retrieval.

Ph.D. thesis, RMIT University, Melbourne, Australia, 2006.

8. Pehcevski J. and Thom J.A. HiXEval: Highlighting XML retrieval

evaluation. In Advances in XML Information Retrieval and

Evaluation: Proc. Fourth Workshop of the INitiative for the

Evaluation of XML Retrieval, 2006, pp. 43–57.

9. Piwowarski B. and Dupret G. Evaluation in (XML) information

retrieval: Expected Precision-recall with user modelling
(EPRUM). In Proc. 32nd Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2006, pp.

260–267.

10. Piwowarski B. and Gallinari P. Expected Ratio of Relevant Units:

A Measure for Structured Information Retrieval. In INEX 2003

Workshop Proceedings, 2003, pp. 158–166.

11. Piwowarski B., Gallinari P., and Dupret G. Precision recall with

user modelling (PRUM): Application to structured information

retrieval. ACM Trans. Inform. Syst., 25(1):1–37, 2007.

12. Raghavan V., Bollmann P., and Jung G. A critical investiga-

tion of recall and precision. ACM Trans. Inform. Syst., 7(3):

205–229, 1989.

13. de Vries A., Kazai G., and Lalmas M. Tolerance to Irrelevance:

A User-effort Evaluation of Retrieval Systems without Prede-

fined Retrieval Unit. In Proceedings of RIAO 2004, 2004,

pp. 463–473.

14. Woodley A. and Geva S. XCG Overlap at INEX 2004. In INEX

2005 Workshop Pre-Proceedings. 2005, pp. 25–39.
Evaluation of Fuzzy Queries Over
Multimedia Systems

▶Top-k Selection Queries on Multimedia Datasets
Evaluation of Relational Operators

JINGREN ZHOU

Microsoft Research, Redmond, WA, USA

Synonyms
Query evaluation; Query processing

Definition
A query usually consists of several relational operators.

The corresponding physical query plan is composed

of several physical operators. Generally speaking, a

physical operator is an implementation of a relational

operator. For each relational operator, there are several

alternative algorithms (physical operators) for its im-

plementation and there is no universally superior

one. So choosing physical operators wisely is crucial

for query performance. Which physical operator is the

best depends on several factors, such as the sizes

of the input relations, the existing sorting orders of

the input relations, the existing indexes/materialized

views, the buffer replacement policy, and the size of

the available buffer pool, etc.

Evaluation of Relational Operators. Figure 1. Selection

query.

Evaluation of Relational Operators E 1025

E

Historical Background
The relational operators serve as the building blocks

for query processing. Their implementation techni-

ques have been extensively studied ever since the first

relational DBMS was built.

Foundations
Efficient evaluation of relational operators is required

to provide good query performance. There are usually

different evaluation algorithms for a given relational

operator. Each evaluation algorithm is implemented by

a physical operator. There can be more than one phys-

ical query plan for a query. The query optimizer con-

siders various physical query plans and chooses the

cheapest plan in a cost-based fashion.

Pipelined Query Execution

Database systems usually employ a demand-pull query

execution model. Each query plan consists of a pipe-

line of physical operators. In this model, each operator

supports a group of three functions that allows a par-

ent operator to get the result one tuple at a time.

1. Open. The open() function initializes the state of

the iterator by allocating buffers for its inputs and

output, and is also used to pass in arguments such

as selection predicates that modify the behavior of

the operator.

2. Next. The next() function calls the next() function

on each input node recursively and processes the

input tuples until one output tuple is generated.

The state of the operator is updated to keep track of

how much input has been consumed.

3. Close. When all output tuples have been produced

through repeated calls to the next() function, the

close() function deallocates the state information

and performs final housekeeping.

The iterator interface supports pipelining of results nat-

urally. The decision to pipeline or materialize input

tuples is encapsulated in the operator-specific code that

processes input tuples. Pipelining requires much less

space for intermediate results during execution. The

demand-pull pipelined query execution model can be

executed by a single process or thread. This approach has

several advantages such as avoiding inter-process com-

munication between operators, avoiding process syn-

chronization and scheduling, minimizing data copies,

keeping only the current data items in memory, and

performing lazy operator evaluation.
Selection

Given a selection of the form sR.a y c(R), the algorithms

for selection use either scanning or indexing. The con-

dition R.a y c is also called the selection predicate.

See Fig. 1.

Selection Based on Scanning

If there is no secondary index on R.a and the relation R

is not sorted on R.a, the only choice of evaluation is to

scan the entire relation. For each tuple, the predicate is

evaluated and the tuple is added to the result if the

predicate is satisfied.

Selection Based on Indexing

If there is no secondary index on R.a but relation R is

sorted on R.a, relation R is said to be clustered on R.a

and can be viewed as a clustered index itself. A binary

search can be used to locate the first tuple that satisfies

the selection predicate. If the predicate is a range pred-

icate, for example, R.a> 1, the rest of the tuples can be

retrieved by scanning R from this location until the

predicate is no longer satisfied.

If there is a secondary index (usually a Bþ tree)

on R.a, an index lookup can be performed to locate the

first index entry pointing to a qualifying tuple. Then

the leaf pages of the index are scanned to retrieve all

entries with the key value satisfying the predicate.

Following each of these entries, the corresponding R

tuple is then retrieved and added to the result.

If an index contains all the columns that are required

by the query, the final R tuple retrieval can be skipped.

In this scenario, the selection is done by an index only

operation.

In summary,which strategy is the best depends on the

index availability, whether the index is clustered or non-

clustered, and the selectivity of the selection predicate.

Projection

In general, the projection is of the form pa, b, c(R).

Some projected columns may be computed from attri-

butes in R, for example, pR.a þ R. b, R. c(R). See Fig. 2.

To implement projection, unwanted attributes (i.e.,

1026E Evaluation of Relational Operators
those not specified in the projection) are removed and

expressions, if any, are computed on the fly.

Joins

The join operation, R ⋈R. r y S. s S, is one of the most

useful relational operations and is the primary means

of combining information from more than one rela-

tion. The condition R.ryS.s is called the join predicate.

A join operation can always be implemented as a

cross-product followed by selections and projections.

See Fig. 3. However, a cross-product generates much

larger results and thus can be quite inefficient. It is very

important to recognize joins and implement them

without materialized the underlying cross-product.

Join operations have received extensive research

over years. There are several alternative techniques

for implementing joins. Choosing the right join oper-

ation and the correct join order plays a major role in

finding an optimal physical plan. The decision depends

on various factors, such as the size of input relations,

the amount of available memory, and available alter-

native access methods, etc.

Nested Loops Join

Nested loops join is the simplest join algorithm. The

algorithm starts with reading the outer relation R, and

for each tuple R 2 R, the inner relation S is checked

and matching tuples are added to the result.
Evaluation of Relational Operators. Figure 3. Join

query.

Evaluation of Relational Operators. Figure 2. Projection

query.

Algorithm 1: Nested Loops Join: R⋈pred (r,s) S
foreach R 2 R do

foreach S 2 S do
if pred (R.r, S.s) then
add {R, S} to result

end
end

end
One advantage of nested loops join is that it can handle

any kind of join predicate, unlike sort-merge join and

hash join which mainly deal with an equality join

predicate. In order to effectively utilize buffer pages

and available indexes, there are two variations of

nested loops join.

Block Nested Loops Join Suppose that the memory can

hold B buffer pages. If there is enough memory to hold

the smaller relation, say R, with at least two extra buffer

pages left, the optimal approach is to read in the

smaller relation R and to use one extra page as an

input buffer to read in the larger relation S and one

extra buffer page as an output buffer.

If there is not enough memory to hold the smaller

relation, the best approach is to break the outer rela-

tion R into blocks of B � 2 pages each and scan the

whole inner relation S for each block of R. As described

before, one extra page is used as an input buffer and

the other as an output buffer. In this case, the outer

relation R is scanned only once while the inner relation

S is scanned multiple times.

Index Nested Loops Join If one of the two relations has

an index on the join attribute, an index nested loops

join can be used to take advantage of the index. Sup-

pose the relation S has a suitable index on the join

attribute S.s. For each tuple R 2 R, the index can be

used to retrieve all matching tuples of S. If the number

of matching S tuples for each R tuple is small, index

lookup is much more efficient than scanning the whole

S relation. However, index lookup usually involves

random I/Os. If the number of matching S tuples is

large, it might be worthwhile considering block nested

loops join.

Sort-Merge Join

If the join predicate is an equality predicate, sort-merge

join can be used. The basic idea of the sort-merge join

algorithm is to sort both relations on the join attribute

and to then merge the sorted relations by scanning

them sequentially and looking for qualifying tuples.

The sorting step groups all tuples with the same

value in the join attribute together. Such groups are

sorted based on the value in the join attribute so that it

is easy to locate groups from the two relations with

the same attribute value. Sorting operation can be

fairly expensive. If the size of the relation is larger

than the available memory, external sorting algorithm

Algorithm 2: Sort-Merge Join: R⋈R.r=S.s S
// sorting step
Sort the relation R on the attribute r;
Sort the relation S on the attribute s;
// merging step
R = first tuple in R;
S = first tuple in S;
S0 = first tuple in S;
while R 6¼ eof and S0 6¼ eof do

while R.r < S0.s do
R = next tuple in R after R

end
while R.r > S0.s do

S0 = next tuple in S after S0

end
S = S0;
while R.r == S0.s do

S = S0

while R.r == S.s do
add {R,S} to result;
S = next tuple in S after S;

end
R = next tuple in R after R;

end
S0 = S;

end

Evaluation of Relational Operators E 1027

E

is required. However, if one input relation is already

clustered (sorted) on the join attribute, sorting can be

completely avoided. That is why sort-merge join looks

even more attractive if any of the input relations is

sorted on the join attribute.

The merging step starts with scanning the relations

R and S and looking for matching groups from the

two relations with the same attribute value. The two

scans start at the first tuple in each relation. The

algorithm advances the scan of R as long as the current

R tuple has an attribute value which is less than that of

the current S tuple. Similarly, the algorithm advances

the scan of S as long as the current S tuple has an

attribute value which is less than that of the current R

tuple. The algorithm alternates between such advances

until an R tuple R and an S tuple S with R:r ¼ S:s.
The join tuple fR;Sg is added to result.

In fact, there could be several R tuples and several S

tuples with the same attribute value as the current

tuples R and S. That is, several R tuples may belong

to the current R group since they all have the same

attribute value. The same applies to the current S
group. Every tuple in the current R group joins with

every tuple in the current S group. The algorithm
them resumes scanning R and S, beginning with the

first tuples that follow the group of tuples that are just

processed.

When the two relations are too large to be held in

available memory, one improvement is to combine the

merging step of external sorting with the merging step

of the join if the number of buffers available is larger

than the total number of sorted runs for both R and S.

The idea is to allocate one buffer page for each run of R

and one for each run of S. The algorithm merges the

runs of R, merges the runs of S, and joins (merges)

the resulting R and S streams as they are generated.

If any of the two relations has an index on the join

attribute, another improvement is to merge join the

index instead of the relation. Sorting, in this case, can

be avoided. After the join, it may be necessary to

retrieve other attributes from the relation following

qualifying index entries.

Hash Join

The hash join algorithm is commonly used in database

systems to implement equijoins efficiently. In its sim-

plest form, the algorithm consists of two phases: the

‘‘build’’ phase and the ‘‘probe’’ phase. In the ‘‘build’’

phase, the algorithm builds a hash table on the smaller

relation, say R. In the ‘‘probe’’ phase, the algorithm

probes the hash table using tuples of the larger relation,

say S, to find matches.

The algorithm is simple, but it requires that the

smaller join relation fits into memory. If there is not

enough memory to hold all the tuples in R, an addi-

tional ‘‘partition’’ phase is required. There are several

variants of the basic hash join algorithm. They differ in

terms of utilizing memory and handling overflow.

Grace Hash Join The idea behind grace hash join is to

hash partition both relations on the join attribute,

using the same hash function. As the result, each rela-

tion is hashed into k partitions, and these partitions are

written to disk. The key observation is that R tuples

in partition i can join only with S tuples in the same

partition i. If any given partition of R can be held in

memory, the algorithm can read in and build a hash

table on the partition of R, and then probe the hash

table using tuples of the corresponding partition of S

for matches.

If one or more of the partitions still does not fit

into the available memory (for instance, due to data

skewness), the algorithm is recursively applied. An

1028E Evaluation of Relational Operators
additional orthogonal hash function is chosen to hash

the large partition into sub-partitions, which are then

processed as before.

Hybrid Hash Join The hybrid hash join algorithm is a

refinement of the grace hash join algorithmwhich takes

advantage ofmore availablememory. To partition R (S)

into k partitions, the grace hash join uses one input

buffer for reading in the relation and k output buffers,

one for each partitions.

Suppose there is sufficient memory to hold an in-

memory hash table for one partition, say the

first partition, of R, the hybrid hash join does not

write the partition to disk. Instead, it builds an in-

memory hash table for the first partition of R during

the ‘‘partition’’ phase. Similarly, when partitioning S,

for the tuples in the first partition of S, the algorithm

directly probes the in-memory hash table and writes

out the results. At the end of the ‘‘partition’’ phase, the

algorithm completes the join between the first parti-

tions of R and S while partitioning the two relations.

The algorithm then joins the remaining partitions as

the grace hash join algorithm.

Compared with the grace hash join algorithm, the

hybrid hash join algorithm avoids writing the first

partitions of R and S to disk during the ‘‘partition’’

phase and reading them in again during the ‘‘build’’

and the ‘‘probe’’ phases.
Algorithm 3: Grace Hash Join: R ⋈r=s S
//partition R into k partitions
foreach R 2 R do

read R and add it to buffer page h1 (R);
flush the page to disk it full;

end
//partition S into k partitions
foreach S 2 S do

read S and add it to buffer page h1 (S);
flush the page to disk it full;

end
//‘‘build’’ and ‘‘probe’’ phases
for i ← 1 to k do

foreach R 2 partition Ri do
read R and insert into the hash table using h2 (R);

end
foreach S 2 partition Si do

read S and probe the hash table using h2 (S);
for matching R tuples, add {R,S} to result;

end
clear the hash table and release the memory;

end
Aggregation

Simple aggregation operations include MIN, MAX, SUM,

COUNT, and AVG. Aggregation operations can also

be used in combination with a GROUP BY clause. See

Fig. 4. DISTINCT clause that removes duplicate values

can be viewed as a special aggregation operation too,

which groups the input by values and outputs one row

per group.

For aggregation queries without a GROUP BY clause,

the algorithm is straightforward: scan the entire rela-

tion and update some state information for each

scanned tuple. The state information varies for differ-

ent aggregation functions. For SUM, the algorithm

keeps track of the sum of the values retrieved so far.

For AVG, the algorithm keeps track of the sum of the

values and the total count of rows retrieved so far.

For COUNT, the algorithm keeps track of the total

count of values retrieved so far. For MAX (MIN), the

algorithm keeps track of the largest (smallest) value

retrieved so far.

For aggregation queries with a GROUP BY clause,

the aggregation algorithms use either sorting or

hashing.

Aggregation Based on Sorting

The sorting algorithm starts with sorting the relation

on the grouping attributes and then scanning it again to

compute the aggregations functions for each group. By

sorting, the algorithm groups together all tuples with

the same grouping attributes (therefore belong to the

same group). The computation of the aggregation

functions is similar to the way of aggregation computa-

tion without grouping, except that here the algorithm

has to watch for group boundaries.When the algorithm

sees a tuple with different grouping attributes, the cur-

rent group finishes and a new group starts.

Aggregation Based on Hashing

The hashing algorithm first builds an in-memory hash

table on the grouping attributes as it scans the relation.

Each hash entry corresponds to a group and contains the
Evaluation of Relational Operators. Figure 4.

Aggregation queries.

Event and Pattern Detection over Streams E 1029

E

state information required by each aggregation function

for the group. For each tuple, the algorithm probes the

hash table to find the entry for the group to which this

tuple belongs and update the state information. If such

entry does not exist, the algorithm creates a new hash

entry and initiates the state information.

If the relation is so large that the hash table does

not fit in memory, the algorithm hash partitions the

relation on the grouping attributes. Since all tuples in a

given group are in the same partition, the algorithm

can then scan each partition independently and com-

pute aggregation functions as described before.

It is also possible and sometimes preferable to

compute aggregation using an index as long as the

index covers all the attributes required by the aggrega-

tion query. The advantage is to read in a much smaller

index compared to the entire relation. If the grouping

attributes form a prefix of the indexed keys, the algo-

rithm can avoid the sorting step and scan the index

entries sequentially.
Key Applications
Each database query is composed of a few relational

operators. The final query plan may implement each

relation operator in different ways to achieve an opti-

mal performance. All the implementation techniques

are widely used in database systems.
Cross-references
▶Access Methods

▶Buffer Pool

▶Concurrency Control

▶Cost Model

▶ External Sorting

▶Hashing

▶ Parallel Query Processing

▶Query Optimization
Recommended Reading
1. Graefe G. Query evaluation techniques for large databases. ACM

Comput. Surv., 25(2):73–170, 1993.

2. Mishra P. and Eich M.H. Join processing in relational databases.

ACM Comput. Surv., 24(1):63–113, 1992.

3. Ramakrishnan R. and Gehrke J. Database Management Systems.

McGraw-Hill, New York, 2002.

4. Selinger P.G., Astrahan M.M., Chamberlin D.D., Lorie R.A., and

Price T.G. Access path selection in a relational database manage-

ment system. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1979, pp. 23–34.
Evaluation of XML Retrieval
Effectiveness

▶ Evaluation Metrics for Structured Text Retrieval
Event

▶Time Instant
Event and Pattern Detection over
Streams

MINGSHENG HONG, ALAN DEMERS, JOHANNES GEHRKE,

MIREK RIEDEWALD

Cornell University, Ithaca, NY, USA

Synonyms
Complex event processing (CEP); Event stream proces-

sing (ESP)

Definition
An event is a basic unit of information in streaming

data. An event pattern is a combination of events

correlated over time. Event pattern detection is an

important activity in complex event processing. In

this setting, the matches to the event patterns are

referred to as complex events.

Historical Background
In the early 1990s, a set of pioneering work in event

systems, such as SNOOP [3] and ODE [8], set out to

define query languages for expressing event patterns.

In these proposals, the data model for expressing

events is not fixed. More recently, the approaches pro-

posed by Cayuga [1,5,6] and SASE [14] for event

pattern detection align more closely to relational

query processing, in that each event is modeled by a

relational schema, and some of the operators for

expressing event pattern queries are drawn from rela-

tional algebra. Regardless of the data model for events,

these systems all use some variant of NFA (Nondeter-

ministic Finite state Automaton) as the processing

model.

With the advent of internet-scale message broker-

ing systems, content based publish-subscribe systems

1030E Event and Pattern Detection over Streams
such as [7] emerged. They are characterized by very

limited query languages, allowing simple selection pre-

dicates applied to individual events in a data stream.

Such systems trade expressiveness for performance –

when well engineered, they exhibit very high scalability

in both the number of queries and the stream rate.

However, their inability to express queries that span

multiple input events makes them unsuitable for event

pattern detection.

Another category of systems closely related to event

pattern detection is stream databases, such as Aurora

[2], STREAM [10], and TelegraphCQ [4]. Unlike

content based publish-subscribe systems, they focus

on expressiveness. Such systems have very powerful

query languages, typically including a rich functiona-

lity and extending SQL with provisions for sliding

window and grouping features. Though powerful,

stream databases are not designed for detecting event

patterns, and their query languages can be awkward for

expressing event pattern queries. Moreover, there is

little work on scaling up stream database engines

with the number of concurrent queries that are reason-

ably sophisticated.

Foundations

Event Pattern Query Model

An event stream is a potentially infinite sequence of

events. Each event has a timestamp value, and its

payload content is encoded by a relational tuple. Events

are processed in timestamp order by an event proces-

sing system. They can be filtered, transformed, and

correlated to form event patterns.

The computational model of matching event

patterns over event streams naturally extends that of

matching regular expression patterns over character

streams in the following aspects. First, each stream
Event and Pattern Detection over Streams. Figure 1. Event
event can contain multiple attribute-value pairs con-

forming to a relational schema, where the value domains

are potentially infinite. In comparison, each character

in a character stream provides for the same single

attribute a value drawn from a finite alphabet. Second,

given the multiple attributes for each stream event,

event patterns can perform relational operations on

the events, including filtering, projection and renaming

of attributes. This provides expressive power especially

to event correlation based on sequencing, where

the attribute values of multiple stream events can be

compared. Finally, event pattern detection involves a

temporal aspect, in that stream events have timestamps,

which event patterns reason about. In comparison,

regular expression processing only involves character

orderings in the streams, which can be viewed as a

weaker notion of time.

Event patterns are usually expressed in an event

algebra. Many such algebras have been proposed.

One representative is the Cayuga algebra [5]. The

Cayuga algebra is specifically designed for large-scale

event pattern detection. In addition to unary operators

for selection predicates and aggregates, the expressive

power of this algebra comes from two binary opera-

tors. The first binary operator, sequence, can correlate

two input events based on a join predicate. This join

predicate involves timestamps, and can optionally in-

volve other attributes in the stream schema. The sec-

ond operator, iteration, is a generalization of the

sequence operator. It is able to produce an event pat-

tern involving arbitrarily many input events by itera-

tively concatenating input events with the pattern

built so far. To allow users to interact with the system

in a user-friendly way, a SQL-style query language,

referred to as Cayuga Event Language (CEL) [6], has

been developed. Figure 1 shows an event pattern

query expressed in CEL. This event pattern query
pattern query to find stock price pattern.

Event and Pattern Detection over Streams E 1031

E

corresponds to a particular trend in stock prices. Intu-

itively, this query searches for the given price pattern

for any company. The pattern starts with a large trade

(Volume > 10,000), followed by a monotonic
decrease in price (FOLD clause), which lasts for at
least 10 min (DUR > 10min). Then the price rebounds
with a sudden increase by 5% (NEXT clause). The
NEXT and FOLD constructs respectively correspond to
the two binary operators in the Cayuga algebra intro-
duced above. NEXT matches the next event in the
stream that satisfies a given condition (same company
name and 5% higher price in the example). FOLD is
the iterated version of NEXT, i.e., it continues matching
the next event that satisfies a certain property until a
stopping condition is satisfied.

SASE [14] uses a query algebra similar to the Cayuga

algebra, where sequence and iteration are the key primi-

tives. SASE also supports negation-style event patterns,

where a pattern is matched by the absence of an input

event, rather than the presence. In addition to online

event stream processing supported by Cayuga and

SASE, work on sequence database systems has focused

on matching event patterns offline over archived data

[11,12,13]. Sequence is again the key primitive for

expressing event patterns in the SEQ query algebra

[13] and the SQL-TS query language [12].

Event Pattern Query Processing

As is mentioned earlier, an event pattern query is

typically implemented by a state machine. Continuing

the above query example, this approach is described

in the context of Cayuga. Each Cayuga automaton is

an extension to the classical non-deterministic finite

automaton [9] in the following aspects. First, each

automaton edge is associated with a predicate, and

for an incoming event, this edge is traversed if and

only if the predicate is satisfied by this event. This
Event and Pattern Detection over Streams. Figure 2. Cayu
mechanism implements the selection predicates in

the event patterns. Second, when patterns are matched,

to be able to generate witness events with concrete

content instead of boolean answers, each automaton

instance needs to store the attributes and values of

those events that have contributed to the pattern

instance.

Figure 2 shows the automaton for the example

query in Fig. 1. The two middle states correspond

to the FOLD and NEXT operators, respectively. The
predicates yi associated with automaton edges

originate either from FILTER conditions (y1, y6 in

the example) or from join conditions of the FOLD
and NEXT operators. Specifically, y1 implements the

filter predicate vol > 10,000. When an input stock
event e satisfying y1 occurs, a new automaton instance

I is created under stateA, remembering the content of e.

Each automaton instance encodes a particular

event pattern built from the prefix of the event stream

that has been processed so far. When an automaton

instance reaches the final state C, a match to the entire

event pattern specified in the query has been found,

and will be output by this automaton.

To continue the explanation of the example Cayuga

automaton in Fig. 2, y2 and y3 respectively implement

the two join predicates associated with FOLD in the
query shown in Fig. 1. These two predicates on the two

self-loop edges associated with state A together build a

monotonically decreasing sequence in the prices of a

particular stock. Specifically, after the occurrence of

event e, when a later stock event e 0 together with I

satisfies y2; i.e., e 0 and I have the same stock name

s (say), y3 is evaluated to check whether this event

pattern built so far can be extended. For this reason,

y2 serves as a criterion which, when satisfied, concate-

nates the next input event from Stock to the event
pattern built up so far, and y3 serves as a criterion
ga automaton example (source: [6]).

1032E Event and Pattern Detection over Streams
which, when satisfied, continues the extension of the

event pattern being built. The event building process

proceeds similarly to state B and C. The functions Fi
are responsible for transforming event stream schemas

and automaton state schemas.

Event pattern queries expressed in SASE and

SQL-TS are processed in a similar way. In SASE, NFA

is one of the run-time operators. Operator re-ordering

is performed as part of the query optimization to

produce efficient query plans. For example, a selection

predicate above an NFA operator can be pushed inside

the NFA operator to discard irrelevant input events

earlier, thus improving system throughput. In

SQL-TS, to optimize pattern search, the query engine

exploits the inter-dependencies between the elements

of a sequential pattern.

Evaluating one event pattern query efficiently is

relatively easy. However, it is challenging to efficiently

evaluate a large number of concurrent event patterns.

Multi-Query Optimization (MQO) techniques have

been developed to share the computation among con-

current event patterns. For example, in Cayuga, the

event processing engine achieves this goal by exploiting

the relationship of the query algebra to the automata-

based query execution, and the commonality among

queries. Specifically, each query is first translated into

a set of automata. These automata are then ‘‘merged’’

with existing ones in the engine. During the merging

process, two optimization techniques are used. First,

two automata with the same prefix of states can

merge these states, thus sharing computation and stor-

age. This is similar to the technique of finding com-

mon subexpressions in relational query processing.

Second, some of the filtering predicates on the auto-

maton edges can be managed efficiently by indexes in

a way similar to techniques for processing multiple

selection operators [7]. These two techniques enable

a throughput of thousands of events per second, even

for tens of thousands of active event pattern queries.

Key Applications
Event pattern detection targets a large class of both

well-established and emerging applications, including

supply chain management for RFID (Radio Frequency

Identification) tagged products, real-time stock trad-

ing, monitoring of large computing systems to detect

malfunctioning or attacks, and monitoring of sensor

networks, e.g., for surveillance. These event monitoring

applications need to process massive streams of events

in (near) real-time. There is great interest in these
applications as indicated by the establishment of sites

like http://www.complexevents.com, which bring to-

gether major industrial players like BEA, IBM, Oracle,

and TIBCO.

Future Directions
One important future direction is to integrate

event processing systems with stream databases. In

the past they have evolved along different paths, and

are designed for different query workloads, as is de-

scribed in the Historical Background section. It would

be beneficial to integrate these two categories of stream

processing systems, for two reasons. First, there is

much overlap in their functionality. For example,

both categories support stateless operations such as

filtering and projection, and some forms of stream

join. Second, there is a class of stream applications

that demand functionality from both categories.

There are two major challenges in the integration. At

the logical level, a unified query algebra is needed for

expressing queries in both categories. At the physical

level, it is desirable to evaluate both categories of

queries in the same engine. This is a challenging task

since current stream database engines, like relational

database engines, are usually based on operator trees,

while event engines are based on variants of NFAs.

Cross-references
▶Complex Event Processing

▶Continuous Query

▶Data Stream Management Architectures and

Prototypes

▶ Publish/Subscribe over Streams

▶ Stream Processing
Recommended Reading
1. Brenna L., Demers A., Gehrke J., Hong M., Ossher J., Panda B.,

Riedewald M., Thatte M., and White W. Cayuga: a

high-performance event processing engine. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2007, pp. 1100–1102.

2. Carney D., Çetintemel U., Cherniack M., Convey C., Lee S.,

Seidman G., Stonebraker M., Tatbul N., and Zdonik S. Monitor-

ing streams – a new class of data management applications.

In Proc. 28th Int. Conf. on Very Large Data Bases, 2002,

pp. 215–226.

3. Chakravarthy S., Krishnaprasad V., Anwar E., and Kim S.K.

Composite events for active databases: semantics, contexts

and detection. In Proc. 20th Int. Conf. on Very Large Data

Bases, 1994, pp. 606–617.

4. Chandrasekaran S., Cooper O., Deshpande A., Franklin M.J.,

Hellerstein J.M., Hong W., Krishnamurthy S., Madden S.R.,

Raman V., Reiss F., and Shah M.A. Telegraph CQ: continuous

Event Causality E 1033

E

dataflow processing for an uncertain world. In Proc. 1st Biennial

Conf. on Innovative Data Systems Research, 2003.

5. Demers A., Gehrke J., Hong M., Riedewald M., and White W.

Towards expressive publish/subscribe systems. In Advances

in Database Technology, Proc. 10th Int. Conf. on Extending

Database Technology, 2006, pp. 627–644.

6. Demers A., Gehrke J., Panda B., Riedewald M., Sharma V., and

White W. Cayuga: a general purpose event monitoring system.

In Proc. 3rd Biennial Conf. on Innovative Data Systems Re-

search, 2007, pp. 412–422.

7. Fabret F., Jacobsen H.A., Llirbat F., Pereira J., Ross K.A., and

Shasha D. Filtering algorithms and implementation for very

fast publish/subscribe. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2001, pp. 115–126.

8. Gehani N.H., Jagadish H.V., and Shmueli O. Composite event

specification in active databases: model and implementation.

In Proc. 18th Int. Conf. on Very Large Data Bases, 1992,

pp. 327–338.

9. Hopcroft J.E., Motwani R., and Ullman J.D. Introduction to

automata theory, languages, and computation. Addison-Wesley,

Reading, MA, USA, 2nd ed., 2000.

10. Motwani R., Widom J., Arasu A., Babcock B., Babu S., Datar M.,

Manku G.S., Olston C., Rosenstein J., and Varma R. Query

processing, approximation, and resource management in a

data stream management system. In Proc. 1st Biennial Conf.

on Innovative Data Systems Research, 2003.

11. Ramakrishnan R., Donjerkovic D., Ranganathan A., Beyer K.S.,

and Krishnaprasad M. SRQL: sorted relational query language.

In Proc. 10th Int. Conf. on Scientific and Statistical Database

Management, 1998, pp. 84–95.

12. Sadri R., Zaniolo C., Zarkesh A.M., and Adibi J. Optimization

of sequence queries in database systems. In Proc. 20th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2001, pp. 71–81.

13. Seshadri P., Livny M., and Ramakrishnan R. SEQ: a model for

sequence databases. In Proc. 11th Int. Conf. on Data Engineer-

ing, 1995, pp. 232–239.

14. Wu E., Diao Y., and Rizvi S. High-performance complex

event processing over streams. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2006, pp. 407–418.
Event Causality. Figure 1. Event causality.
Event Broker

▶Request Broker

Event Causality

GUY SHARON

IBM Research Labs-Haifa, Haifa, Israel

Definition
The definition of an event processing network includes

a relation to express un-modeled event processing

logic between events.
The fact that events of type eT1 cause events of type

eT2 is denoted by the relation causes(eT1,eT2).

In an EPN where E is the set of edges representing

event streams, EC is the set of Event Channels, C is the

set of Event Consumers and P is the set of Event

Producers, the relation is evaluated to be true if events

of type eT1 flow in an event stream e1(u,v): e12E,
u2EC, v2C and events of type eT2 flow in an event

stream e2(m,l): e22E, m2P, l2EC and there is some un-

modeled event processing logic between events of type

eT1 consumed by v2e1 and events of type eT2 pro-

duced by m2e2.
Key Points
The event processing intent defined by an event proces-

sing network may not cover the entire flow of events

through systems as there may be cases where an event is

handled by an event consumer, such as a software appli-

cation, and as a result the application publishes, as an

event producer, a new event to an event processing

network. In essence, there is some un-modeled proces-

sing logic performed by the application that results in a

new event that may be processed further on. The speci-

fics of this logic are not important for the realization of

an event processing network as this logic is implemented

and executed by a consumer such as an application,

however, having the relation causes(eT1,eT2) as part of

the model enables to describe the complete event-driven

interactions in systems and is used in performing model

analysis such as termination analysis [1–3].

In the model, event causality is represented as a

red, dashed, and directed edge from the event stream

being consumed to the event stream being produced

(Fig. 1).

The definition of event causality in an event proces-

sing network is meant to be theory neutral and

1034E Event Causality Graph
corresponds to common sense causal interpretation in

the physical world. Applying the many theories about

causation [4,5] to the cause of an event by another can

extend the perception of the event-driven interactions

and perhaps most productively enhance analysis cap-

abilities of models, but for the purpose of the realization

of an event processing network this is not necessary.

Cross-references
▶ Event Processing Network

Recommended Reading
1. Aiken A., Hellerstein J.M., and Widom J. Static analysis techni-

ques for predicting the behavior of active database rules. ACM

Trans. Database Syst., 20(1):3–41, 1995.

2. Bailey J. and Poulovassilis A. Abstract interpretation for termi-

nation analysis in functional active databases, J. Intelligent Inf.

Syst., 12(2–3):243–273, 1999.

3. Baralis E., Ceri S., and Paraboschi S. Compile-time and runtime

analysis of active behaviors, IEEE Trans. Knowledge Data Eng.,

10(3):353–370, 1998.

4. Fisk M. A defence of the principle of event causality. Br. J. Philos.

Sci., 18(2):89–108, 1967.

5. Pearl J. Causality: Models, Reasoning, and Inference. New York:

Cambridge University Press, 2000.
Event Causality Graph

▶ Event Flow
Event Channel

OPHER ETZION

IBM Research Labs-Haifa, Haifa, Israel

Synonyms
Event connection; Event pathway; Event topic

Definition
An event channel is a routing node in the event proces-

sing network that receives events from event sources

and event processing agents, and route them to event

sinks and event processing agents.

Key Points
An event channel [2] is the main routing vehicle in the

event processing network; it is being used to enable
loosely coupled architecture, in which the event pro-

ducer and event consumer does not have any depen-

dency among them [1]. An event channel receives an

event (in push or pull) from an event source or from an

event processing agent, and makes routing decisions.

The routing decision may be of several types:

1. Itinerary based routing: the consumers are expli-

citly specified within the event content.

2. Subscription based routing: using a ‘‘callback’’

protocol, the consumer subscribes to events on

the channel.

3. Intelligent routing: a decision process is activated

to decide on the event consumers.

4. Calendar based routing: Routing is controlled by

a calendar function.

The routing may be partitioned according to

context [3], if context is supported.
Cross-references
▶Channel-Based Publish/Subscribe

▶Context

▶ Event Processing Agent

▶ Event Processing Network

▶ Event Sink

▶ Event Source

▶ Event Stream
Recommended Reading
1. Crowcroft, J. Channel Islands in a Reflective Ocean: Large Scale

Event Distribution in Heterogeneous networks. In Proc. 2nd Int.

IFIP-TC6 Networking Conf., 2002, pp. 1–9.

2. Luckham, D., Schutle, R. (eds). EPTS Event Processing Glossary

version 1.1 http://complexevents.com/?p = 409

3. Sharon, G. Etzion, O. Event processing network: Model and

implementation. IBM System Journal, 47(2):321–334, 2008.
Event Cloud

OPHER ETZION

IBM Research Labs-Haifa, Haifa, Israel

Definition
Event Cloud is a partially ordered set of events (poset),

either bounded or unbounded, where the partial order-

ings are imposed by the causal, timing and other rela-

tionships between the events [2].

Event Detection E 1035

E

Key Points
Event cloud [1] consists of a set of events and one or

more partial order relations. The following event rela-

tions are being used:

� Causality relation: Each collection of events can be

considered as an event cloud, the causality relation

creates a partial order relation among a collection

of events, causality is transitive, anti-symmetric,

and non-reflexive.

� Precedes relation: defined as event e1 precedes event

e2, if it occurs in e1 occurs in reality before event e2.

This is a partially order set – since the relative timing

may not be known, or may overlap, if occur during

an interval.

Event cloud can be defined over the entire collection of

events that flow through some system within a certain

bounded or unbounded time[3,4]. A special case of

event cloud is all events that are input to a single event

processing agent and are ordered as a time-series, in this

case the event cloud is a collection of event streams.

Cross-references
▶Complex Event Processing

▶ Event Stream

Recommended Reading
1. Luckham, D. The Power of Events: An Introduction to Complex

Event Processing in Distributed Enterprise Systems. Addison-

Wesley, 2002.

2. Luckham, D., Shulte, R. (eds.). EPTS Event Processing Glossary

version 1.1. http://complexevents.com/?p=409

3. Rozsnyai, S., Vecera, R., Schiefer, J., and Schatten, A. Event cloud –

searching for correlated business events. InProc. 9th IEEE Int. Conf.

on E-Commerce Technology & 4th IEEE Int. Conf. on Enterprise

Comp., E-Commerce and E-Services, 2007, pp. 409–420.

4. Widder, A., von Ammon R., Schaeffer, P., and Wolff, C. Identifi-

cation of suspicious, unknown event patterns in an event cloud.

In Proc. Inaugural Int. Conf. on Distributed Event-based Sys-

tems, 2007, pp. 164–170.
Event Composition

▶ Event Detection
Event Composition (Partial Overlap)

▶ Event Pattern Detection
Event Connection

▶ Event Channel
Event Consumer

▶ Event Sink
Event Control

▶ Event Detection
Event Declaration

▶ Event Specification
Event Definition

▶ Event Specification
Event Detection

JONAS MELLIN, MIKAEL BERNDTSSON

University of Skövde, Skövde, Sweden

Synonyms
Chronicle recognition; Event trace analysis; Event con-

trol; Event composition; Monitoring of real-time logic

expressions

Definition
Event detection is the process of analyzing event

streams in order to discover sets of events matching

patterns of events in an event context. The event pat-

terns and the event contexts define event types. If a set

of events matching the pattern of an event type is

discovered during the analysis, then subscribers of the

event type should be signaled. The analysis typically

entails filtering and aggregation of events.

1036E Event Detection
Historical Background
Seminal work on event detection was done in HiPAC

[7,11] and Snoop [8,9] as well as in ODE [14] and

SAMOS [13]. Essentially, in Snoop, ODE, and SAMOS

different methods for realizing the matching of event

detection were investigated. In Snoop, implementa-

tions of the event operators are structured according

to the syntax tree of the event expression, where each

node represents an event operator. The event operator

in a node is the principal event operator of the event

type it corresponds to and each event operator is imple-

mented as a subprogram (e.g., procedure, method).

The procedures are invoked during evaluation of the
Event Detection. Figure 1. Syntax tree of (E1;E2)∧ E3 [18,

Fig. 4.6].

Event Detection. Figure 2. Petri-net representation of (E1;E2
expression. In contrast, in SAMOS [13] operators

expressed as Petri-nets are combined; and in ODE

[14], finite state automatas built from the event speci-

fications are employed.

For example, consider the expression Ec defined by

(E1;E2)∧ E3 that means an Ec occurs if a sequence of E1
and E2 and an event of type E3 occurs. This can be

transformed into the syntax tree in Snoop as depicted

in Fig. 1, since the conjunction ‘∧’ is the principal

event operator of Ec. As in data flow machines, the

idea is that the nodes are evaluated according to

some policy; for example, a common policy is that as

soon as there are data available (events) on the input

edges to an event, the operator is evaluated. Thus, the

node ‘;’ is evaluated if there are E1, E2 or both E1 and E2
events available. In colored Petri-nets used in SAMOS,

the expression Ec is represented as depicted in Fig. 2.

The events are represented as tokens in the places.

Further, the event expression can be translated into a

finite state automata as in ODE (depicted in Fig. 3),

where the transitions are labeled with Event∕Action
where actions denoted Ex means generate a composite

event occurrence Ex. A significant difference between

the three different representations of event operators is

whether they are capable of handling multiple situations

in which events are generated concurrently. The

approaches in Snoop and SAMOS can handle concur-

rent situations, whereas finite state automatas must be

augmented with processes executing the finite state
) ∧ E3 [18, Fig. 4.7].

Event Detection. Figure 3. Finite state automata representation of (E1;E2) ∧ E3 [18, Fig. 4.8].

Event Detection E 1037

E

automatas to enable this. The rest of the historical

background address the following significant issues:

(i) management of the combinatorial explosion in

the analysis of event streams; (ii) parameterized event

detection, and (iii) design issues.

In Snoop [8,9], event contexts or event parameter

consumption modes were introduced handle the com-

binatorial explosion, issue (i), in a systematic way. Each

event context represents some semantic or pragmatic

knowledge about the situations that are monitored.

For example, in recent event context only the most

recent event occurrences are allowed to be used to

form composite events. This context is meant to be

used in, for example, real-time applications. In con-

trast, in chronicle event context event matching is

based on historical order and is meant to be used to

monitor, for example, that communication protocols

are not violated.

Another way to handle the combinatorial explo-

sion is to limit the size of the past. Essentially, this is

a technique from distributed, parallel, and real-time

systems, in which time intervals are used to determine

the validity of events. For example, in remote pro-

cedure calls timeouts are generally used to detect fail-

ures such as server node crashes or network packet

omissions – timeouts occur if there is no response

within a specified time interval. The timeouts can be

used to limit the past by removing events that can no

longer be part of a composite event in the future. This

technique has been suggested in related areas, for ex-

ample, chronicle recognition [12], monitoring of real-

time logic [10], and general monitoring of distributed

systems [17]. For example, the technique of using time

windows to limit processing has been successfully

employed in event detection in real-time control [19].
One significant issue is parameterized event detec-

tion (issue (ii)), because it is often the case that events in

event specifications must carry parameters denoting the

situation inwhich the events were generated. In SAMOS,

a limited form of parameterized event detection is

allowed by either requiring that events stem from the

same transaction or the same user. Bækgaard and God-

skesen [2] introduced specification of parameterized

events based on TCCS (temporal calculi for communi-

cating systems). However, they have not shown how to

transform the specification into code or configuration of

event detection. In EPL [20] and XChangeEQ [4] para-

meterized event detection are addressed. Both EPL and

XChangeEQ stem from databases, for example, an in-

cremental join algorithm for parameterized event de-

tection is proposed by Bry and Eckert [5].

Significant results concerning design issues, issue

(iii), are that the following features are among the most

important: storage structures for event streams,

indexing techniques of event streams, handling of iso-

lation property of transaction with respect to event

detection as well as memory management techniques.

The BEAST benchmark [15] concluded that indexing

techniques and storage structures are more important

than, for example, choosing Petri-nets, finite state auto-

mata or code to perform the matching. In DeeDS [1],

the isolation property is violated in a controlled way by

integrating event detection in the transaction proces-

sing in such a way that events can violate isolation if

explicitly allowed to. The events are cached in a separate

filtered event log as well as stored as first class objects in

the database. This entails that the problem of doing

event detection in the scope of transaction is removed,

that is, event objects are not locked as is the case when

event detection is performed within transactions.

1038E Event Detection
The drawback is that the filtered event log must be

maintained, that is, support recovery processing and

the isolation property as well as support pruning of

invalid events.

Foundations
There are several issues that are significant. These

issues can be categorized into a usage and a develop-

ment perspective. The use of event detection entails

two difficult problems: (i) understanding what is actu-

ally happening and (ii) dealing with event detection in

different temporal scopes. The first problem has been

considered in, for example, visualization of event de-

tection [3]. It was observed that master’s students had

difficulty in understanding event detection when the

topic was covered in graduate courses. The most likely

explanation is that, in contrast to condition evaluation,

it is also necessary to know the previous results of event

detection to determine the result of the current evalu-

ation. For example, consider Fig. 4 for E12 defined by

E1;E2 where G(E,[t1,t2]) reads that ‘‘an event of type E

has occurred throughout the interval [t1,t2]’’; in this

example, the different results of event detection can

be confusing. All variations of E12 are discovered in

general (unconstrained) event context, and the com-

posite events marked with circles are discovered in the

recent event context, whereas the composite events

marked with triangles are discovered in chronicle
Event Detection. Figure 4. Example of event detection in so
event context. Note that, for example, to understand

that G(E,[2,4]) has been discovered require knowledge

of that G(E[1,3]) has been discovered and the conse-

quences for future event detection. Thus, there is need

for tools to help developing, verifying and validating

event specifications. These tools require that the event

detection process is instrumented in such a way that

internal states can be observed.

The second problem relates to parameterized event

detection. This is typically used to enable matching of

events with the same temporal scope (e.g., same trans-

action, same process, accessing the same object). One

problem is how these temporal scopes relate to each

other, for example, a transaction can encompass mul-

tiple processes and these processes can serve several

transactions. Sometimes it is necessary to mix tempo-

ral scopes, for example, the occurrence of an event

outside a temporal scope may negate the occurrence

of a composite event within the scope.

From a development perspective of ADBMS and

event detection in particular, there are two issues of

importance: (i) data structures for efficient event de-

tection, and (ii) decentralized event detection. In data-

base prototypes simple queue structures has been

employed to store events, whereas, for example, some

kind of a heap structure may provide better results. In

particular, if event detection is explicitly invoked rather

than implicitly invoked each time an event occurs, then
me event contexts [18, Fig. 6.1].

Event Detection E 1039

E

more advanced data structures can improve the per-

formance and time complexity of event detection.

Concerning issue (ii), event detection is suitable for

decentralized processing, since it follows the data flow

machine idea. However, there are a lot of issues that

must be considered in such situations. Guiding require-

ments are, among others, interoperability requirements

and the filtering effect of event detection for a particular

domain. An example of the latter requirement is net-

work event correlation [16], in which a major part of

network events filtered out and the design of event

detection should be optimized for pruning events.

In terms of performance, the algorithmic time com-

plexity depends on a number of factors: the type of event

context and whether a single signaled event is evaluated

(as in implicit invocation of event monitoring) or mul-

tiple signaled events are evaluated (as in explicit invoca-

tion of event monitoring). In general, the difference in

terms of algorithmic time complexity between differ-

ent event contexts disappears if multiple events are

evaluated. Table 1 describes the algorithmic time com-

plexity in situations where all signaled events results in

composite events. The meaning of the symbols are as

follows: H is the event history (set of buffered events),

M is the set of event types, E is an event expression, and

P is a the set of parameters carried by each event. The

function f depends on how event types are indexed in

the system. For example, if the red-black tree technique

is employed for indexing then f(n) = log(n), whereas f

(x) = 1 if hashing is employed instead. Other event

contexts (e.g., [6]) may have different algorithmic time

complexity characteristics.

The most important factor is the size of the event

history and by keeping this as short as possible it is

even possible to employ the unconstrained event con-

text in practice (cf. [19]). Event expressions are typi-

cally short unless they are automatically generated
Event Detection. Table 1. Algorithmic time complexity

of event detection [18].

Event context Single Multiple

Recent O(f(jMj) + jEjjPj) O(jHj(f(jMj) +
jEjjPj))Chronicle

Continuous O(f(jMj) + jHjjEjjPj)
Cumulative

General
(unconstrained)

O(jHjjEj)
from some other specifications. For example, if a set

of event types is required to occur in a particular order

and it is necessary to detect failures to do so as soon as

possible, then it is necessary to monitor all permuta-

tions of the correct order and in this case the size of

event expressions can become uncommonly large. The

size of the parameters is typically not a problem in high

bandwidth systems and is less significant compared to

the event history and the size of the event expressions.

Finally, the number of event types in a system is insig-

nificant as long as proper indexing is employed.

Key Applications
The key users of this area are the researchers and

developers of active functionality in, for example, ac-

tive databases.

Future Directions
Some future issues in event detection is the following:

1. To develop tools and techniques for developing,

understanding, verifying and validating event spe-

cifications. As addressed in this entry, the under-

standing of event detection is more complex than

condition evaluation and this is a really crucial

issue for successful use of event detection.

2. To investigate relevant data structures to improve

event detection, in particular, parameterized event

detection as well as decentralized event detection. If

large event expressions are prevalent in a system,

then this issue becomes critical.

3. To further investigate the performance characteris-

tics in, for example, decentralized event detection.

The reported study [18] has been performed for

centralized event detection. Further work need to

be done in other settings.

4. To investigate fault-tolerant event detection in var-

ious settings such as mobile ad-hoc networks.

5. To investigate if fuzzy reasoning inside event detec-

tion can be used. For example, in monitoring of

real-world situations, it is necessary to handle

uncertainties of various kinds.
Cross-references
▶Active Database Execution Model

▶Active Database Knowledge Model

▶ADBMS (Active Database Management System)

Architecture

▶Atomic Event

1040E Event Driven Architecture
▶Composite Event

▶ Event

▶ Event specification
Recommended Reading
1. Andler S., Hansson J., Eriksson J., Mellin J., Berndtsson M., and

Eftring B. DeeDS towards a distributed active and real-time

database system. Special Issue on Real Time Data Base Systems.

ACM SIGMOD Rec., 25(1):38–51, 1996.

2. Bækgaard L. and Godskesen J.C. Real-time event control in

active databases. J. Syst. Softw., 42(3):263–271, 1997.

3. Berndtsson M., Mellin J., and Högberg U. Visualization of the

composite event detection process. In Proc. Int. Workshop on

User Interfaces to Data Intensive Systems, 1999.

4. Bry F. and Eckert M. Rule-based composite event queries: the

language XChangeEQ and its semantics. In Proc. 1st Int. Conf.

on Web Reasoning and Rule Systems, 2007, pp. 16–30.

5. Bry F. and Eckert M. Temporal order optimizations of incremen-

tal joins for composite event detection. In Proc. Inaugural Int.

Conf. on Distributed Event-Based Systems, 2007, pp. 85–90.

6. Carlsson J. Event Pattern Detection for Embedded Systems.

Ph.D. thesis no 44, Mälardalen University, 2007.

7. Chakravarthy S., Blaustein B., BuchmannA.P., CareyM., Dayal U.,

Goldhirsch D., Hsu M., Jauhuri R., Ladin R., Livny M.,

McCarthy D., McKee R., and Rosenthal A. HiPAC: a research

project in active time-constrained database management.

Tech. Rep. XAIT-89-02, Xerox Advanced Information Technology,

1989.

8. Chakravarthy S., Krishnaprasad V., Anwar E., and Kim S.K.

Composite events for active database: semantics, contexts, and

detection. In Proc. 20th Int. Conf. on Very Large Data Bases,

1994, pp. 606–617.

9. Chakravarthy S. and Mishra D. Snoop: an event specification

language for active databases. Knowl. Data Eng., 14(1):1–26,

1994.

10. Chodrow S.E., Jahanian F., and Donner M. Run-time monitor-

ing of real-time systems. In Proc. Real-Time Systems Sympo-

sium, 1991, pp. 74–83.

11. Dayal U., Blaustein B., Buchmann A., Chakravarthy S., Hsu M.,

Ladin R., McCarty D., Rosenthal A., Sarin S., Carey M.J.,

Livny M., and Jauharu R. The HiPAC project: combining active

databases and timing constraints. ACM SIGMOD Rec., 17

(1):51–70, 1988.

12. Dousson C., Gaborit P., and Ghallab M. Situation recognition:

representation and algorithms. In Proc. 13th Int. Joint Conf. on

AI, 1993, pp. 166–172.

13. Gatziu S. Events in an Active Object-Oriented Database System.

Ph.D. thesis, University of Zurich, Switzerland, 1994.

14. Gehani N.H., Jagadish H.V., and Schmueli O. COMPOSE – a

system for composite event specification and detection. In Ad-

vanced Database Concepts and Research Issues. Springer, Berlin,

1993.

15. Geppert A., Berndtsson M., Lieuwen D., and Roncancio C.

Performance evaluation of object-oriented active database man-

agement systems using the BEAST benchmark. Theor. Pract.

Object Syst. 4(4):1–16, 1998.
16. Liu G., Mok A., and Yang E. Composite events for network event

correlation. In Proc. IFIP/IEEE Int. Symp. on Integrated Net-

work Management, 1999.

17. Mansouri-Samani M. and Sloman M. GEM: a generalized event

monitoring language for distributed systems. IEE/IOP/BCS Dis-

trib. Syst. Eng. J., 4(2):96–108, 1997.

18. Mellin J. Resource-Predictable and Efficient Monitoring of

Events. Ph.D. thesis no 876, University of Linköping, 2004.

19. Milne R., Nicol C., Ghallab M., Trave-massuyes L., Bousson K.,

Dousson C., Quevedo J., Martin J.A., and Guasch A. TIGER:

real-time situation assessment of dynamic systems. Intell. Syst.

Eng., 3(3):103–124, 1994.

20. Motakis I. and Zaniolo C. Composite temporal events in active

database rules: a logic-oriented approach. In Proc. 4th Int. Conf.

on Deductive and Object-Oriented Databases, 1995, pp. 19–37.
Event Driven Architecture

K. MANI CHANDY

California Institute of Technology, Pasadena,

CA, USA

Synonyms
Event driven service-oriented architecture; Event pro-

cessing systems; Sense and respond systems; Sensor

network systems; Active databases; Streaming database

systems

Definitions
An event driven architecture is a software architecture

for applications that detect and respond to events.

An event is a significant change in the state of a system

or its environment. The change may occur rapidly

or slowly. The occurrence of an event in the past, or

its current unfolding, or a prediction of an event in

the future is deduced from data. An event-driven

architecture includes sensors and other sources of

data; processors that fuse data from multiple sens-

ors and detect patterns over time, geographical loca-

tions, and other attributes and deduce events that

occurred or predict events; responders for initiating

actions in response to events; communication links

for transferring information between components;

and administrative software for monitoring, tailoring

and managing the application.

Historical Background
Event driven systems have been used in military

command and control systems, and in SCADA

Event Driven Architecture E 1041

E

(supervisory control and data acquisition) systems for

decades. Platforms for event driven applications have

been developed by several companies in the last de-

cade; these general-purpose platforms can be tailored

to obtain special-purpose event-driven applications.

The development of event-driven platforms has

evolved from several fields including databases, mes-

sage-driven middleware, rule-based systems, business

intelligence, statistics, and command and control

systems.

Foundations
The metrics for evaluating event driven applications

are different from those used to evaluate many other

information technology systems. A discussion of the

metrics helps highlight the goals of event driven sys-

tems and clarifies the differences between these systems

and more traditional information technologies.

Measures for Evaluating Event Driven Applications

Event-driven applications detect and respond to

events. Examples of such applications include those

that: take action when earthquakes, tsunamis, or hur-

ricanes are imminent; help manage investment portfo-

lios by sensing risks and opportunities in markets; help

disabled or aging people live independently by detect-

ing and responding to potential problems; and prevent

crime by identifying and responding to threats.

Measures by which event-driven applications are

evaluated include the usual measures of total cost of

ownership and measures, called the REACTS metrics

(after the first letters of the measures), which are more

specific to event driven architectures.

� Relevance: This measures the relevance of informa-

tion generated by the system to consumers of the

information. A message about a tsunami warning

sent to a person’s phone is highly relevant while she

is on a beach where the tsunami is about to strike

but is less relevant while she is hundreds of miles

away. Relevance depends on the state of the receiv-

er. Systems that send a great deal of irrelevant

information (spam) are likely to be ignored.

� Effort: This measures the effort required by opera-

tional people to define specifications of events and

responses and by IT staff to integrate event applica-

tions with existing systems. The time taken by end

users, such as stock traders, to tune systems to meet

their specific needs, and the time taken by ITstaff to
integrate event applications with existing infra-

structure are major costs.

� Accuracy: This measures the costs of inaccurate

information, such as false positives. A false tsunami

warning gets beaches to be evacuated unnecessarily.

High frequencies of inaccurate information result

in information being ignored.

� Completeness: This measures the costs of incomplete

information. For example, the absence of a hurri-

cane warning can results in thousands of deaths. A

single false negative has a higher cost than a single

false positive in most situations; however, systems

are often designed with very high rates of false posi-

tives compared to rates of false negatives.

� Timeliness: This measures the costs of detecting

events too late. The benefit of detecting an event

depends on the time available to execute an appro-

priate response. There is little added benefit in hav-

ing millisecond responses when responses in

minutes will do. There are, however, significant

costs in responses initiated too late: a tsunami warn-

ing received after a tsunami strikes offers no value.

� Security: This measures the costs of reducing

and managing intrusions and other attacks. Event

driven applications often run for extended peri-

ods and manage critical infrastructure. For exam-

ple, new infrastructure in the electrical power

grid enables utilities to control airconditioners

and other devices in homes and offices. Attacks

that shut off power to homes and factories have

severe consequences.

The design of event driven applications is a process of

evaluating, comparing, and trading off REACTS mea-

sures for different design options.
Components of Event Driven Architectures

An event – a significant state change – is different from

the data that describes the event; data that describes an

event is often called an event object. Event objects may

be stored in databases, sent as messages, or used within

programs. An action, such as issuing a warning about a

possible fraud, is itself an event. Information about the

action is captured in an event object or is not captured

at all.

Event driven architectures consist of data acquisi-

tion components such as sensors; event processors that

integrate data from multiple sensors and databases;

responders that initiate appropriate actions after

1042E Event Driven Architecture
events are detected; communication links that transmit

information between components and administrative

services that help in specifying and managing the op-

eration of event driven applications. Next, each of

these components is discussed briefly.

Sensors: Data acquisition components acquire data

from the environment and from within the enterprise;

this data is analyzed to detect patterns that signify

events. Data may be pushed to these components or

the components may acquire data by polling services.

For example, stock ticker feeds are data acquisition

components that push stock ticker information to the

application without having the application make an

explicit request for each stock price update. Other data

acquisition components poll Web sites or other ser-

vices according to fixed schedules or when requested to

do so by event processors. These components send the

polled information – or the difference between data

obtained on successive polls – to the application, or

store the data for later processing. Polling too frequently

is onerous for the site being polled, while polling infre-

quently can increase delays in event detection.

Event Processors: The role of event processors is to

integrate data from multiple sensors, add value to

event objects by incorporating data from databases

and business intelligence repositories, find patterns

that signal events, and initiate actions by responders.

Event processors may also request sensors to obtain

additional data, providing closed-loop coupling be-

tween data acquisition and processing. Common func-

tions of event processors include the following:

� Event Filtering: Data may be generated by sensors,

such as stock tickers or RFID readers, at rapid rates

and only a fraction of this data may be relevant to

an application. Event filters are specified by the data

that they pass through to later stages of processing.

Filters located near sensors, physically or logically,

reduce the amount of communication.

� Event Object Enrichment: Enriching an event ob-

ject by adding relevant data from databases helps in

later stages of processing. For example, an event

object describing a customer’s request for a new

service can be enriched by adding data about the

customer’s history.

� Event Fusion: Sequences of event objects sent by

multiple sensors and event processors are integrated,

or ‘‘fused’’ by other event processors, to generate

new event objects. For example, streams of event
objects generated by multiple package-delivery

trucks are fused into a single stream dealing with

all packages.

� Event Stream Splitting: A stream of event objects

can be split into multiple streams each of which

deals with a separate set of attributes; processing

streams of event objects all of which deal with the

same topics is simpler.

� Time Series Analysis: Event processors in many

applications carry out time series analyses to detect

anomalous behavior or to determine if behaviors

have changed significantly over time.

� Complex Event Processing and Event Prediction:

The detection of complex patterns requires analyt-

ics that spans time, geographical locations, and

business functions. Initiating responses in prepara-

tion for predicted events reduces reaction delay.

The detection of complex patterns in the historical

record and the accurate prediction of future events

often requires complex processing.

Responders

A typical response is the initiation of a business pro-

cess. Example responses include updating dashboards

that display key performance indicators, sending alerts,

setting up temporary task forces to respond to an

event, and updating databases and logs for later analy-

sis. The execution of the business process responding

to an event may, in turn, generate new events.

Communication Layer

Communication among sensors and event processors,

in some applications, is by means of wireless. In

some applications, wireless bandwidth may be low

because sensors may be required to be inexpensive,

power may have to be conserved, or the environment

may be noisy. The geographical layout of compo-

nents communicating by wireless is critical in such

applications.

The logical architecture for communication among

components in many applications is publish/subscribe.

Some components publish event objects, and some

components subscribe for specified types of event

objects with specified ranges of parameters. The pub/

sub network ensures delivery of event objects to appro-

priate destinations. The logical communication archi-

tecture can also be point-to-point, pushing event

objects asynchronously from one point in the network

to the next, or a broadcast system.

Event Driven Architecture E 1043

E

Administration Layer

The administration layer is used for several purposes

including the following: initially to tailor a general-

purpose event driven architecture to suit a specific

application; at run time to monitor an application;

and, at redesign time to replay scenarios for forensics

and for adapting systems to changing conditions. Since

event driven applications are often used to control

physical infrastructures over long periods, monitoring

sensors and responders is an essential aspect of these

applications. Thus, the administrative layer of an event

driven application is itself an event driven application.

System Specification

The process of implementing an event driven applica-

tion is, in essence, an application integration activ-

ity: sensors, processors and responders have to be

integrated into operations. The specification of an

event driven application consists of specifications of

the sensing, processing and responding subsystems and

their integration. The subsystems are quite different

from each other; therefore, the notations used in spe-

cifying them are different.

Specifications of sensing subsystems include identi-

fication of what data sources and sensors to use, where

they should be placed, how they should communicate,

activation and polling schedules, and mappings from

data models used by the external environment to data

models used within the application. Specifications of

event processing subsystems deal with functionalities

such as fusing, filtering and splitting that also occur in

database systems, rule-based systems and business intel-

ligence systems; therefore some notations for specifying

event processors use extensions of SQL, or rules, or

statistical packages. Specifications of responder subsys-

tems identify activities carried out when an event is

detected; these activities are often specified using nota-

tions for business process management (BPM) and

business application monitoring (BAM).

Key Applications
Many areas of science, commerce and education use

event-driven applications. All systems in which data

is produced continuously and which require timely re-

sponse to critical events are candidates for event-driven

architectures. Rapid accurate response is a competitive

advantage in financial trading of stocks, commodities

and foreign exchange. EDA is also used in responding to

fraud and non-compliance to regulations.
Cyber infrastructure – the integration of physical

infrastructure with information technology – is based

on event driven applications. Supply chain applications

including airline, railroad and trucking systems use

EDA. Energy management in the electrical power trans-

mission system is an increasingly important application

of EDA as smart meters and sensors are deployed in

homes. Many defense department and homeland secu-

rity applications, such as interdiction of radiation ma-

terial, use EDA. Crisis management systems, in public

and private sectors, are based on EDA.

Customer relationship management (CRM)

requires rapid detection and response to customer

interests while customers visit Web sites or call service

centers. Event driven applications are used in health-

care to monitor patients and to help an aging popula-

tion live independently for longer.

Future Directions
Event driven applications will become widespread as

sensors become ubiquitous and rates of data produc-

tion in blogs, news, videos, and other online sources

continue to increase. A subdiscipline of event driven

systems will be formed by integrating concepts from

disciplines such as databases, business intelligence and

statistics, distributed systems and control, signal pro-

cessing and state estimation, decision support and

operations research, and collaboration technologies.

Cross-references
▶Active Databases

▶Ad-hoc Queries in Sensor Networks

▶Business Intelligence

▶Complex Event

▶Continuous Query

▶Data Mining

▶ ECA Rules

▶ Event-Driven Business Process Management

▶Message Queuing Systems

▶ Publish/Subscribe

▶ Streaming Database Systems

▶Text Mining

Recommended Reading
1. Babcock B., Babu S., Datar M., Motwani R., and Widom J.

Models and issues in data streams. In Proc. ACM SIGACT-

SIGMOD Symp. on Principles of Database Systems, 2002.

2. Chandy K.M., Charpentier M., and Capponi A. Towards a

theory of events. In Proc. Inaugural Int. Conf. on Distributed

Event-based Systems, 2007, pp. 180–187.

1044E Event Driven Service-oriented Architecture
3. Deshpande A., Guestrin C., Madden S.R., Hellerstein J.M., and

Hong W. Model-driven data acquisition in sensor networks. In

Proc. 30th Int. Conf. on Very Large Data Bases, 2004.

4. Etzion O. Semantic approach to event processing. In Proc.

Inaugural Int. Conf. on Distributed Event-based Systems, 2007,

p. 139.

5. Luckham D. The Power of Events: The Power of Complex Event

Processing Addison Wesley, Reading, MA, USA, 2002.

6. Muhl G., Fiege L., and Pietzuch P. Distributed Event Based

Systems. Springer, Berlin, 2006.

7. Schulte R. The Business Impact of Event Processing: Why Main-

stream Companies will soon use a lot more EDA. In Proc. IEEE

Services Computing Workshop, 2006, pp. 51.

8. Zhao F. and Guibas L. Wireless sensor networks: an information

processing approach. Morgan Kaufmann, Los Altos, CA, 2004.
Event Driven Service-oriented
Architecture

▶ Event Driven Architecture
Event Emitter

▶ Event Source
Event Extraction

▶Video Scene and Event Detection
Event Flow

OPHER ETZION

IBM Research Labs-Haifa, Haifa, Israel

Synonyms
Event causality graph
Definition
An event flow is a partially ordered graph that traces

event instances and causality relations among them.
Key Points
When an event instance is produced by an event source

[1] and transferred to the event processing network, an

entry node is created into the ‘‘event flow’’ of the

specific application, every event created by an event

processing agent is added to the event flow, such that,

if the input event instances to the event processing

agent are <ei_1,...,ei_n> and the output event

instances are <eo_1,...,eo_m> then an edge in the

event flow is created for all pairs of the type.

<ei_i, eo_k> where i = 1,...,n and k = 1,...,m.

This denotes that there is some causality between the

input event-instance and the output event-instance.

An event flow may go beyond a single event processing

network [3]; an input event to an orchestration node

in a sink triggers an action, which in turn, creates more

events.

Event flows [2] are being used for purposes of

validation for event processing applications, as well as

for event lineage.

Cross-references
▶ Event Causality

▶ Event Lineage

▶ Event Processing Agent

Recommended Reading
1. Luckham D, Schulte R. (eds.). EPTS Event Processing Glossary

version 1.1 http://complexevents.com/?p=409

2. Schwanke R.W., Toward a Real-time Event Flow Architecture

Style. In Proc. 8th Annual Int. Conf. and Workshop on the

Engineering of Computer-based Systems, 2001, pp. 94–102.

3. Sharon G., Etzion O. Event Processing network: Model and

implementation. IBM Syst. J., 47(2):321–334, 2008.
Event in Active Databases

ANNMARIE ERICSSON, MIKAEL BERNDTSSON,

JONAS MELLIN

University of Skövde, Skövde, Sweden

Definition
Events in active databases are typically considered to be

atomic and instantaneous, i.e., they either happen or

not. Events are either primitive or composite, that is,

either they are part of the system (primitive) or they

are specified in terms of other events (composite).

Event in Temporal Databases E 1045

E

Key Points
An event is a happening of interest that can invoke

execution of reactive behavior, for example, trigger

an ECA rule. Events in active databases are typically

considered to be atomic and instantaneous [1,3,4],

that is, they either happen or not. However, this leads

to problems [2] addressed in the event specification

entry.

Events can be classified as primitive or composite

events. Primitive events refer to elementary occurrences

that are predefined in the system. Primitive events

are typically further categorized as database events,

time events, transaction events, method events etc. A

composite event is a set of events matching an event

specification.

Events can have attributes, that is, event parameters.

Event parameters are usually passed on to the condition

and action part of an ECA rule. In general, event para-

meters can be broadly classified into: (i) System level

information, and (ii) Application level information.

System level information is related to parameters such

as transaction identity, user identity and time stamp(s).

Application level information in an object-oriented

environment can, for example, include object identity

and parameters of the invoked method.

Events play a key role in active databases, since they

specify when an ECA rule is triggered. Whenever an

event is defined and used in an ECA rule, one can say

that the event is explicitly defined. If the active data-

base allows the event to be implied by the rule defini-

tion, then the event is said to be implicit. In this case,

the event specification of a rule is optional.
Cross-references
▶Active Database Execution Model

▶Active Database Knowledge Model

▶Atomic Event

▶Composite Event

▶ ECA Rules

▶ Event specification
Recommended Reading
1. Chakravarthy S. and Mishra D. Snoop: an expressive event

specification language for active databases. Data Knowl. Eng.,

14(1):1–26, 1994.

2. Galton A. and Augusto J. Two approaches to event definition. In

Proc. 13th Int. Conf. Database and Expert Syst. Appl., 2002, pp.

547–556.
3. Gatziu S. Events in an Active Object-Oriented Database System.

Ph.D. thesis, University of Zurich, Switzerland, 1994, Verlag Dr.

Kovac, Hamburg, Germany.

4. Gehani N., Jagadish H.V., and Smueli O. Event Specification in

an active object-oriented database. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1992, pp. 81–90.
Event in Temporal Databases

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Event relation; Instant relation

Definition
An event is an instantaneous fact, i.e., something

occurring at an instant of time.

Key Points
Some temporal data models support valid-time rela-

tions where tuples represent events and where the

tuples are thus timestamped with time values that

represent time instants. When granules are used as

timestamps, an event timestamped with granule

t occurs, or is valid, at some instant during t.

It may be observed that more general kinds of

events have also been considered in the literature,

including events with duration and complex and com-

posite events.

Cross-references
▶Temporal Database

▶Temporal Granularity

▶Time Instant

▶Valid Time

Recommended Reading
1. Bettini C., Dyreson C.E., Evans W.S., Snodgrass R.T., and

Wang X.S. A glossary of time granularity concepts. In Temporal

Databases: Research and Practice, O. Etzion, S. Jajodia, S. Sripada

(eds.). LNCS 1399. Springer, Berlin Heidelberg New York, 1998,

pp. 406–413.

2. Events. The Internet encyclopedia of philosophy. Available at:

http://www.iep.utm.edu/e/events.htm.

3. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary

of temporal database concepts – February 1998 version.

1046E Event Lineage
In Temporal Databases: Research and Practice, O. Etzion, S.

Jajodia, S. Sripada (eds.). LNCS 1399. Springer, Berlin Heidel-

berg New York, 1998, pp. 367–405.
Event Lineage

OPHER ETZION

IBM Research Labs-Haifa, Haifa, Israel

Synonyms
Event pedigree

Definition
An Event lineage is a path in the event process-

ing network that enables the tracing of the conse-

quences of an event, or finding the reasons for a

certain action.

Key Points
An event lineage is an audit feature that is determined

to answer one of two questions:

1. What were all the implications of event e?

2. What were the events and processing agents that

preceded action a?

The event lineage is obtained by maintaining the his-

tory of event processing networks using various

techniques.

Cross-references
▶Data Lineage

▶ Event Flow

▶ Event Processing Agent

▶ Event Processing Network

Recommended Reading
1. Benjelloun O., Sarma A.D., Halevy A.Y., Theobald M., and

Widom J. Databases with uncertainty and lineage. VLDB J.,

17(2):243–264, 2008.

2. Sharon G. and Etzion O. Event processing networks – model

and implementation. IBM Syst. J., 47(2):321–334, 2008.
Event Mapping

▶ Event Transformation
Event Network Edge

▶ Event Stream
Event Pathway

▶ Event Channel
Event Pattern Detection

OPHER ETZION

IBM Research Labs-Haifa, Haifa, Israel

Synonyms
Event composition (partial overlap)
Definition
Event Pattern detection is a computational process in

which a collection of events are evaluated to check

whether they satisfy a pre-defined pattern. Formally

an event pattern (EP) is defined as:

EP = <C, IE, PT, PRED, Policies, DER>

where:

� C = Context

� IE = List of Input Event types

� PT = Pattern Type

� Pred = Predicate

� Policies = Semantic fine-tuning policies

� Der = Derived Events

– A context is a collection of semantic dimensions

within which the event occurs. These dimen-

sions may include: temporal context, spatial con-

text, state-related context and reference-related

context.

– List of input event types provide the EPN edges

(event pipes/event streams) that are potentially

input to the pattern. Note that events that open

or close contexts are indirectly also input event to

the patterns within that context

– Pattern Types:

A pattern type is a formula with variables substituted

by event types, example- and (e1, e2) – where e1, e2 are

Event Pattern Detection E 1047

E

variables of type event type. There are serial pattern

types:

� Basic event oriented patterns, example: and (e1, e2).

� Basic set (stream) oriented patterns, example:

(average reading.temperature >35).

� Dimensional patterns – temporal, spatial, spatio-

temporal example: moving (e, north).

� Context termination patterns, example: absent (e1).

� Interval-oriented patterns, example: overlap

context.

– Predicates: Predicates among various of the input

events, example e1.a > e2. b.

– Policies: The policies have been determined to fine-

tune the semantics. Example: what should be done

if there is synonym events, e.g., the pattern type is

and (e1, e2) and there are three instances of e1

followed by five instances of e2 – how many times

this pattern will be detected and with which event

instances.

– Derived Events: derive one or more events out

of the input events that have participated in the

pattern detection. The derived event can be a col-

lection of events, or a single event that is derived

from the content of other events.
Event Pattern Detection. Figure 1. User oriented patterns.
Historical Background
Pattern detection has its roots in several different

areas:

1. Discrete event simulation: Automatic analysis of

event trends to find causality relations among the

events in simulation trace has resulted in the need

to find ‘‘event causality’’ relations, which has been

the motivation for introducing patterns. David

Luckham’s ‘‘complex event processing’’ has grown

up from research in that area

2. Network and system management: Network (and

later system) management attempt to find the

‘‘root cause’’ of a problem, by taking as an input a

collection of symptoms (e.g., device time-outs) and

diagnose the core problem that has caused these

symptoms. There are relatively simple patterns that

belong to this family

3. Active Databases: The work on ‘‘composite events’’

in active database is one of the example of event

patterns, it features some forms of patterns, and

also some policies (‘‘consumption modes’’)

4. Middleware: Publish/subscribe with content selec-

tion, and ESB mediations are sources of further

(relatively basic) patterns

1048E Event Pedigree
Foundations
The notion of pattern has originated from building

architecture, as a tool to capture architectural deci-

sions. The area of software design has borrowed this

term to document a collection of activities which issue

the ‘‘best practice’’ to solve a particular issue (Figure 1).

In event processing, the notion of patterns may have

several interpretations:

1. Detection of patterns over the event history – as

referred to in this entry

2. User-oriented templates that may be developed

into more than a single pattern.

3. Best practices pattern of design of use.
Key Applications
Patterns can be related to various types of applications:

1. Real-Time Enterprise application: in which pat-

terns are identified to create actions that are flow-

ing back into the business logic and effecting it.

Example: algorithmic trading, active liquidity man-

agement, various applications of autonomic

computing.

2. Business Activity Management: in which patters are

identified to find threats, opportunities and excep-

tional deviations from the norm or desired behav-

ior measured by constraints and Key Performance

Indicators.

3. Diagnostics application: In this application events

are symptoms and pattern detection is used in

order to determine the problem root cause.

4. Information dissemination: In some cases patterns

are used to enable more sophisticated subscription

systems, where the user wishes to subscribe not

to raw events but to cases in which patterns are

satisfied, example: IBM stock has gone up in 2%

within 2 h.

5. Prediction: In this case there should be a support in

predicted events and the pattern can include pre-

dicted events, where the reaction intends to miti-

gate or eliminate some situation from occurring.
Cross-references
▶Complex Event

▶Complex Event Processing

▶Composite Event

▶Context
Recommended Reading
1. Buschmann F., Henney K., and Schmidt D.C. Pattern-Oriented

Software Architecture, a Pattern Language for Distributed

Computing, vol. 4. Wiley, New York, 2007.

2. Coplien J.O. and Schmidt D.C. (eds.). Pattern Languages of Pro-

gram Design. ACM Press/Addison-Wesley, Reading, MA, 1995.

3. Etzion O. Event processing, architecture and patterns, tutorial.

In 2nd Int. Conf. on Distributed Event-based Systems, 2008.

4. Gawlick D. and Mishra S. CEP: functionality, technology

and context, Tutorial. In 2nd Int. Conf. on Distributed Event-

based systems, 2008.

5. Hoope G. and Woolf B. Enterprise Integration Patterns –

Designing, Building, and Deploying of messaging solutions.

Addison-Wesley, Reading, MA, 2003.

6. Luckham D. Power of Events, Addison-Wesley, Reading,

MA, 2002.

7. Römer K. Discovery of frequent distributed event patterns

in sensor networks. In Proc. 5th European Conf. on Event

Patterns in Wireless Sensor Networks, 2008, pp. 106–124.

8. Sharon G. and Etzion O. Event processing networks – model

and implementation. IBM Syst. J., 47(2):321–334, 2008.

9. Widder A., von Ammon R., Schaeffer P., and Wolff C. Identifica-

tion of suspicious, unknown event patterns in an event cloud.

In Proc. Inaugural Int. Conf. on Distributed Event-Based Systems,

2007, pp. 164–170.
Event Pedigree

▶ Event Lineage
Event Pipe

▶ Event Stream
Event Prediction

SEGEV WASSERKRUG

IBM Research Labs-Haifa, Haifa, Israel

Synonyms
Prediction regarding future events; Prediction of event

occurrence

Definition
Event prediction is the capability to estimate the pos-

sibility that some event may occur in the future. Some

applications may even be required to advance beyond

Event Prediction E 1049
simply predicting the occurrence of events and need to

influence the occurrence of some future event. For

example, this may involve either decreasing the chance

that a non-desirable event will occur or increasing the

chance that a desirable event will occur. To determine

whether or not such actions should indeed be carried

out requires decision-making capabilities.
E

Historical Background
The first event-based systems were active databases in

which automatic actions were carried out as a result

of database queries. This was done using the ECA

(Event-Condition-Action) paradigm. As such applica-

tions evolved, the events to which applications were

required to respond evolved beyond single queries

(e.g., insertion of deletions of data) and needed to be

deterministically inferred from several such queries.

As the complexity of such applications continued to

grow, and as event-based applications expanded into

other application domains, the need to handle explicit

uncertainty regarding the occurrence of events needed

to be accommodated. Event-based applications needed

to handle unreliable sensor readings and reason about

the occurrence of events that could not be determinis-

tically inferred.

The next evolutionary step to such event-based

capabilities is to enable event-based systems to reason

about the possibility that events will occur in the future

and provide facilities for reasoning about possibly

influencing such occurrences.
Foundations
Events that may or may not occur in the future are

inherently uncertain. Therefore, in many cases, event-

based applications are required to estimate the

likelihood that such events will occur and attempt to

influence this likelihood.

As an example, consider an e-trading web site

from a commercial bank. Customers interact with

this kind of site using banking transaction events,

which include queries regarding the account balance,

withdrawals, and deposits. Such events may serve as

indications of future events. For example, there may be

a number of withdrawal actions carried out by a cus-

tomer, the end result of which is that there is little or

no money left in the account. This set of events may

be an indication of the customer’s intent to close the

account.
In such a case, it would be beneficial for the bank

to be able to predict the likelihood that the customer

will indeed close the account based on the set of with-

drawal events. Furthermore, such an application

should be able to consider how possible actions could

potentially reduce the likelihood of such an event,

while taking into account the potential costs and ben-

efits involved.

As the above example illustrates, there are two

main components to a solution that addresses event

prediction:

� Component enabling prediction regarding future

events

� Component that facilitates decisions regarding

actions intended to impact the likelihood of future

events, while accounting for the implications of

these actions
Mechanisms for Event Prediction

A variety of data can be associated with the occurrence

of an event (this data is called the event payload). Two

examples of such data are the point in time at which an

event occurred and the new stock price in an event

describing a change in the price of a specific stock.

Some data are common to all events (e.g., their time

of occurrence), while others are specific only to some

events (e.g., data describing stock prices are relevant

only for stock-related events). The data items asso-

ciated with an event are termed attributes. Because an

event has attributes, the prediction of an event needs

to determine the likelihood of the event occurring as

well as the possible values of its attributes.

The definition of an event is very broad and may

encompass a wide variety of information. Therefore,

there are many relevant mechanisms from other

domains that can be applied to event prediction. How-

ever, when applying these mechanisms, characteristics

specific to event-based applications must be taken into

account. These characteristics include the need to pre-

dict the attribute values of future events and the ability

to take into account causal relations between events.

This is elaborated below.

Because each event has a set of attributes associated

with it, future predictions regarding an event must be

able to provide some information about the possible

values of the attributes, as well as some information

regarding the likelihood that a specific attribute will

indeed be assigned a specific value.

1050E Event Prediction
The need to take into account causal relations

between events stems from the fact that the occurrence

of some events may provide information regarding

the occurrence of other events. For example, it may

be the case that if an event e1 occurs, event e2 becomes

more likely to occur as well. Such causal relations could

be much more complex. For example, consider the

relation depicted in Fig. 1, which states the following:

� Event e1 occurring increases the likelihood of event

e2 occurring, as well as the likelihood of event e3
occurring.

� Event e2 occurring increases the likelihood of event

e4 occurring.

� Event e3 occurring also increases the likelihood

of event e4 occurring.

These relations between events need to be taken into

account in the correct manner. For example, if

the likelihood of events e2 and e3 occurring increase

independently of each other, the likelihood of event e4
occurring may be greater than the case in which the

likelihood of events e2 and e3 occur increases due only

to the fact that event e1 has occurred.
Event Prediction. Figure 2. Time series plot.

Event Prediction. Figure 1. Example of causal relations

between events.
Methods for event prediction can be divided

into two general types: explicit modeling methods

and implicit modeling methods.

Explicit modeling methods are methods that

require the ability to explicitly state the relationship

between existing knowledge and events which must be

predicted. Usually, such relationships take some

known functional form. An example of a well known

explicit modeling method is time series analysis, in

which some future value is estimated, based on past

values, using some function of the past values. The

form of the function is defined by the person building

the time series model, while the parameters of the

function are derived from past data.

Figure 2 shows a plotting of past time series data in

which the number of transactions is plotted for 17 time

points. Based on this data, the number of transactions

at the 18th time point can be predicted using time

series analysis methods.

Another explicit modeling method is event compo-

sition languages. Event composition languages enable

the definition of rules regarding the relationship

between events. While most event composition lan-

guages are deterministic, there are event composition

languages that can take uncertainty into account. Some

of these languages are also suitable for defining the

relationships required to enable event prediction. For

example, a rule could state that if event e1 is known to

have occurred, the probability of event e2 occurring at

some future time t is 0.7. Such languages have the

added benefit of naturally enabling the representa-

tion of the causal relationships between events.

Furthermore, if the language is general enough, it can

represent any functional form. Therefore, such lan-

guages can be seen as a generalization of all explicit

modeling methods.

Event Prediction. Figure 3. Sample utility decision tree.

Event Prediction E 1051

E

Implicit modeling involves models in which the

relationship between the evidence and future events

are not explicitly stated, but are directly derived from

historical data. An example of such a modeling method

is neural networks from the machine learning domain.

In the neural network model, a model is constructed

which may take many functional forms. The specific

functional form is then derived from historical data.

The advantage of explicit models is that they can

capture any inherent relationships between existing

knowledge and future events, and utilize this knowl-

edge to enable more accurate predictions. The disad-

vantage is that the person creating the models must

possess this knowledge and be able to articulate it in a

formal manner. Implicit models remove this burden

from the model creator, but require large amounts of

historical data. In addition, in implicit models it is

more difficult to utilize inherent knowledge to guide

the predictions. Consequently, there are also models

that attempt to combine the two approaches by

enabling the utilization of inherent knowledge when

such knowledge is readily available, while deriving

other parts of the model from historical data.

Influencing the Occurrence of Future Events

A solution for influencing the occurrence of future

events must take into account the following:

� A set of alternative actions A, where each action

a E A is intended to influence the event.

� For each action a E A, the cost ca of taking the

action.

� For each action a E A, the manner in which a will

influence the probability of the event.

� For an undesirable event, the benefit b if the event

does not occur.

� For a desirable event, the benefit b if the event

occurs.

� For an undesirable event, the penalty p if the event

occurs.

� For a desirable event, the penalty p if the event does

not occur.

For example, consider the event of a customer closing

a banking account. One possible way to prevent a

customer from closing the account is to offer better

terms, such as higher interest rates on savings. Offering

such terms is an action a E A. The loss of income due

the higher interest rates is the cost c of taking action a.

The benefit of the customer not closing the account
is b, while the penalty p is the penalty associated with

the customer closing the account.

Several methods exist for taking into account cri-

teria such as the one above. Perhaps the most well

known method is utility theory, where decisions are

made based on the maximization of some utility func-

tion u. The possible decisions in utility theory are often

represented by decision trees, such as the one in Fig. 3,

which represents the decision tree associated with the

event of a customer closing an account.

In Fig. 3, the two branches represent the two pos-

sibilities: The customer closing the account (the top

branch), and the customer not closing the account (the

bottom branch). The quantities at the end of the

branches represent the penalties and benefits asso-

ciated with each action. Therefore, the quantity at the

end of the top branch is �p, which is the penalty when

the customer closes the account, while the benefit of

the bottom branch is b, i.e., the benefit when the

account remains open. Note that this decision tree

represents the case in which no action is taken. In

this case, the expected utility can be calculated by

p1 	 �pð Þ þ 1� p1ð Þ 	 b.
Consider the case where it is expected that action a

will reduce the probability of the customer closing the

account from p1 to p2, such that p2 < p1. For this

second case, the expected utility is p2 	 �pð Þ þ
1� p2ð Þ 	 �c þ bð Þ. In such a case, the decision may

be to carry out action a whenever p2 	 �pð Þ þ
1� p2ð Þ 	 �c þ bð Þ > p1 	 �pð Þ þ 1� p1ð Þ 	 b.

Note that the above mechanism for decision making

does not explicitly represent an action a E A. Rather, this
representation was implicit in the different probability

spaces and benefits/costs. Other decision mechanisms,

such as Markov Decision Processes (MDPs), do enable

an explicit representation of the actions involved, the

1052E Event Processing
manner in which the actions influence the probability

of an even occurring, and the associated costs and

benefits.
Key Applications
Event-based applications that only react to past events

are termed reactive applications. Applications that pre-

dict, and act upon the prediction of future events,

are said to possess proactive functionality. Proactive

functionality may be required in almost all domains.

One such domain is Customer Relationship Manage-

ment (CRM), in which proactive actions are often

required to retain and/or grow market share and

benefit. The banking example used throughout this

entry is an example of an application in the CRM

domain.
Future Directions
While research in event-based applications has been

ongoing for several years, research in event prediction

is still in its infancy. Therefore, this field is still largely

unexplored and is ripe for future research.
Cross-references
▶Active and Real-time Data Warehousing

▶Active Database (aDB)

▶Active Database (management) System (aDBS/

aDBMS)

▶Atomic Event

▶Complex Event Processing

▶Complex Event

▶Composite Event

▶ Event

▶ Event and Pattern Detection over Streams

▶ Event Causality

▶ Event Driven Architecture

▶ Event Pattern Detection

▶ Explicit Event

▶ Implicit Event

▶Uncertainty in Events
Recommended Reading
1. Alpaydin E. Introduction to Machine Learning. MIT Press,

Cambridge, MA, 2004.

2. Brockwell P.J. and Davis R.A. Introduction to Time Series and

Forecasting. Springer, New York, 2002.

3. Fishburn P.C. The Foundations of Expected Utility. Kluwer,

Dordrecht, 1982.
4. Halpern J.Y. Reasoning about Uncertainty. MIT Press,

Cambridge, MA, 2003.

5. Luckham D. The Power of Events: An Introduction to Complex

Event Processing in Distributed Enterprise Systems. Addison-

Wesley, Reading, MA, 2002.

6. Wasserkrug S., Gal A., and Etzion O. A model for reasoning

with uncertain rules in event composition systems. In Proc. 21st

Annual Conf. on Uncertainty in Artificial Intelligence, 2005,

pp. 599–608.
Event Processing

▶Complex Event Processing
Event Processing Agent

OPHER ETZION

IBM Research Labs-Haifa, Haifa, Israel

Synonyms
Event processing component; Event processing

mediator

Definition
A software module and a node in the event processing

network that process events [2].

Key Points
An event processing agent [3] is a node in the event

processing network that receives one or more events as

input, processes them, and creates one or more events

as output. There are various types of event processing

agents [4]:

1. Filter agent: receives a single event and decides

based on a predicate expression whether to route

this event further or not (in this case it is a terminal

node for this specific event instance).

2. Validation agent: receives a single event and a pred-

icate expression that serves as an integrity con-

straint for this event. If the integrity constraint is

violated may act as a filter (reject the event), may

transform the event, or may orchestrate additional

actions in an event sink.

3. Transformation agent: receives a single event and

transforms this event to another event format.

Event Processing Network E 1053

E

4. Split agent: receives a single event and creates mul-

tiple events, all are functions of the original event

(may be either clones or the same events, or distinct

overlapping or non-overlapping events).

5. Aggregation agent: receives multiple events and

creates a derived event, whose values are aggregated

from the values of the input events.

6. Pattern-detection agent: receives multiple events

and based on a pre-defined pattern creates a com-

plex event from a collection of events that satisfy

the pattern.

Aggregation and pattern detection are statefull agents,

and the rest are stateless agents. Aggregation agent has

a small state that is incrementally updated, and the

input events are not kept; Pattern-detection agent

keeps some or the entire input event during the pro-

cessing period, thus, it may develop large states. Agents

may receive events by push or pull [3].

Cross-references
▶Complex Event

▶ Event Pattern Detection

▶ Event Processing Network

▶ Event Routing

▶ Event Transformation

Recommended Reading
1. Luckham D. The Power of Events. Addison-Wesley, 2002.

2. Luckham D., Schulte R. (eds.). EPTS Event Processing Glossary

version 1.1. http://complexevents.com/?p=409.

3. Loke S.W., Padovitz A., and Zaslavsky A. Context-Based Addres-

sing: The Concept and an Implementation for Large-Scale Mo-

bile Agent Systems Using Publish-Subscribe Event Notification.

In 4th Int. Conf. on Distributed Applications and Interoperable

Systems, 2003, pp. 274–284.

4. Sharon G., Etzion O. Event Processing network: Model and

implementation, IBM Syst. J., 47(2):321–334, 2008.
Event Processing Component

▶ Event Processing Agent
Event Processing Mediator

▶ Event Processing Agent
Event Processing Network

GUY SHARON

IBM Research Labs-Haifa, Haifa, Israel

Synonyms
EPN

Definition
An event processing network (EPN) is a graphG = (V,E)

where:

1. The set of nodes in an EPN graph G is denoted V

such that V = C [P [A [EC. V is a set of nodes of

four types; C denoting Event Consumer, P denot-

ing Event Producer, A denoting Event Processing

Agent and EC denoting Event Channel.

2. The set of edges in an EPN graph G is denoted

E such that E = {(u,v) | (u 2 (P ∨ A) ! v 2 EC)

∧ (u 2 EC ! v 2 (C ∨ A))}. E is a set of ordered

pairs of nodes representing directed edges. These

edges are between either an event producer to an

event channel, an event channel to an event consum-

er, an event processing agent to an event channel, or

an event channel to an event processing agent.

The EPN model also includes a relationship defini-

tion between edges called Event Causality.

An event processing network (EPN) describes how

events received from producers are directed to the

consumers through agents that process these events by

performing transformation, validation or enrichment.

Any event flowing from one component to another

must flow through a connection component. There-

fore, an EPNmodel consists of four components: Event

Producer, Event Consumer, Event Processing Agent,

and a connection component called Event Channel.

Historical Background
Event driven computation is not a new concept; it is

being used in user interfaces to perform a specific code

when a button is pushed and when a mouse button

is clicked or released. It is also being used in database

systems as triggers to perform specific logic when a

record is inserted, deleted or updated. Some existing

approaches in configuring and expressing the event pro-

cessing directives in event-driven systems are through

SQL-like languages, script languages, or rule languages

and are executed by standalone software, messaging

Event Processing Network. Figure 1. Event channel.

1054E Event Processing Network
systems or data stream management systems. While

event driven processing is not a new concept, there is a

need to provide conceptual techniques for definition

and modeling of an event driven architecture, making

it possible to express event processing intentions inde-

pendently to the implementation models and execu-

tions. This is done through a conceptual model called

Event Processing Network [3].

Foundations
As businesses are required to be more agile, to respond

to the market rapidly and to be able to adapt quickly

and efficiently, there is need for underlying systems and

business applications to support such an environment.

A sound and cost-effective way to achieve such goals

is to introduce an event-driven architecture (EDA).

The producer (source) of the events only knows

that the events transpired. The producer has no knowl-

edge of the events’ subsequent processing, or the interest-

ed parties, leading to entirely decoupled architecture.

Such architecture enables flexible definition of the event

processing logic: detection of event patterns, derivation of

new events, transformation, and routing from producers

to consumers based on the business logic required. Thus

businesses can react to changes, execute relevant processes

as a result, and influence ongoing processes based on the

changes. Furthermore, such definition of event proces-

sing can be easily modified and quickly deployed in

accordance with business needs such as changes to busi-

ness processes and policies. The Event Processing Net-

work (EPN) concepts model these processing directives.

An EPN model consists of four components: Event

Producer, Event Consumer, Event Processing Agent,

and a connection component called Event Channel.

Event Channel

An event channel [4] is a mechanism for delivering event

streams from event producers and event processing

agents to event consumers and event processing agents.

The event channel may receive multiple event

streams from different sources and may transfer a

combined event stream from all the sources to multiple

sinks. It is the responsibility of the event channel to

create an ordered and combined event stream from

the sources and provide this stream to each target.

Another responsibility of an event channel is to

retain the history of the events streaming through for

retrospective event processing [6], defined as the dis-

covery of event patterns over the history of events as
opposed to online event processing, detecting prede-

fined event patterns as new events become available.

Within a network of nodes and edges an event

channel is represented as a node with edges directed

to and from the node. Every incoming edge represents

an event stream from an event producer or processing

agent to publish events on to the channel. Every out-

going edge represents an event stream to an event

consumer or processing agent subscribed to the chan-

nel. In Fig. 1 a graphical representation of an event

channel is presented, where the name of the channel is

within the boxed arrow and the event types are given

on top of each edge to signify what type of events are

provided by the event stream.

An Event Channel is defined as follows:

1. Every node in ECmay have event retention policies

defined for retrospective processing.

2. The edges connected to a node in EC are defined as

8v 2 EC, ∃ein,eout 2 E: ein = (u 2 (P ∨ A), v),

eout = (v, u 2 (C ∨ A)).

Event Producer and Consumer

An event producer, also known as an event source or

event emitter, produces and publishes events through

event channels for any party of interest to consume.

This could be an event consumer or an event proces-

sing agent.

Within a network of nodes and edges an event

producer is represented as a source node, i.e., there

exist only edges directed from it. The number of edges

directed from it is the number of different event chan-

nels that the producer publishes to. The edges

connected to a node in P are defined as 8v 2 P, ∃eout
2 E: eout = (v, u 2 EC) (Fig. 2).

An event consumer, also known as an event sink, is

interested in events to perform its responsibilities.

Once the event of interest is known to the consumer

it will perform a certain task associated with this event.

Within a network of nodes and edges an event

consumer is represented as a sink point, i.e., only

edges directed to it. The number of edges directed to

Event Processing Network E 1055

E

it is the number of different event channels that the

consumer subscribes to. The edges connected to a node

in C are defined as 8v 2 C, ∃ein 2 E: ein = (u 2 EC, v)

(Fig. 3).

Event Processing Agent

There are cases where there is a gap between the events

produced by event producers, and the events required by

the event consumers. These events may have different

syntax (structure) and/or different semantic meaning

than expected. There are also cases where a single event

will not trigger an action performed by an event con-

sumer, instead, by a complex composition of events

happening at different times and in different contexts

[2]. Event processing agents (EPA), also know as event

mediators, are needed to detect patterns on ‘raw’ events,

then to process these events through enrichment, trans-

formation and validation, and finally to derive new

events and publish them. An event processing agent is

responsible in producing these derived events and deci-

des where and how these events should be published.

The event processing agent is made up of three

stages:

� Pattern detection – this stage is responsible in

selecting events for processing according to a spe-

cified pattern.

� Processing – this stage is responsible in applying the

processing functions on the selected events satisfy-

ing the pattern, resulting in derived events.
Event Processing Network. Figure 3. Event consumer.

Event Processing Network. Figure 2. Event producer.
� Emission – this stage is responsible in deciding

where and how to publish the derived events.

An event processing agent subscribes to event

channels for its pattern detection and publishes to

event channels while emitting events.

Within a network of nodes and edges an event

processing agent is represented as a node with edges

directed to and from the node. The number of

edges directed to it is the number of different event

channels that the agent subscribes to for detecting the

pattern. The number of edges directed from it is the

number of different event channels that the agent

publishes to based on the processing and emission

definitions.

The edges connected to a node in A are defined 8v 2 A,

∃ein,eout 2 E: ein = (u, v), eout = (v, w), u,w 2 EC. ein is

an event stream from an event channel the EPA is

subscribed to and eout is an event stream of derived

events to an event channel the EPA publishes to

(Fig. 4).

The following sub-sections discuss in detail the

different stages within an event processing agent.

Pattern Detection At the pattern stage of an agent, a

pattern is defined to be detected at runtime. A single

event may match the pattern. In cases where more than

one event is needed to detect a pattern, the collection

of these events is called a complex event. The single or

complex event is passed to the processing stage of an

agent. The pattern description consists of four aspects

and all are taken from the discipline of complex event

processing [1,5] (Fig. 5).

Context – specifies the relevance of the events parti-

cipating in pattern detection whether it is temporal

based, spatial based, or semantic based. Temporal

basedmeans that events have to occur within a definable

time frame. Spatial basedmeans within a definable space

concept such as geographical locations or regions. Se-

mantic based contextmeans that the events participating
Event Processing Network. Figure 4. Event processing

agent.

Event Processing Network. Figure 5. Aspects of the pattern detection stage.

1056E Event Processing Network
in pattern detection have relevance through a mutual

object or entity. All types of contexts can be used in the

same pattern detection and possibly more than once.

Thus, an intersection or union of time frames can

be specified as a context, or a context may be defined

where events must occur in the same region and within

the same time frame for pattern detection. Events occur-

ring within the context defined are denoted as candi-

dates to pattern detection.

Policies – specify how cases in which the semantics

need to be fine tuned are handled, discussed in [5] as

situation quantifiers. Policies include decisions such as:

� Whether to use the first, last or each of the events in

the stream to detect the pattern or any other set

operations

� Use only events satisfying a predicate on their

attributes

� Whether each event in the stream may override the

previous event and remove it from contributing to

a pattern detection

� Expiry time, relative or absolute, of an event con-

tributing in detecting the pattern

� Remove an event’s contribution, due to the occur-

rence of a converse event, an event which condi-

tionally implies the expiration of another event,

described as contradiction elements in [1]

Choosing each event to contribute to pattern de-

tection may result in multiple pattern detection, result-

ing in multiple complex events and therefore may

result in multiple event publication by the event pro-

cessing agent as a reaction to a single event consumed

by the agent. Events occurring within the context de-

fined and adhere to the defined policies are denoted as

candidates to pattern detection.
Pattern – specifies the relationship among events

complying with policies within context that is to be

detected. Patterns are described in a form of event

algebra discussed in [1] as situation operators. Some

examples to operation semantics are

� Any – any event that occurs within the specified

context and for which the policy holds, i.e., candi-

date, results in pattern detection.

� Collect – all events that occur within the specified

context and for which the policies hold, i.e., candi-

dates, are collected into one complex event at the

end of the detection interval, for example, end of

time window and exiting a geographical area.

� Determine if – similar to collect, however, the com-

plex event will only include a statement of true if

there were events within the detection interval and

false otherwise.

� And {eT1,...,eTn} – one event from each event type,

denoted as eTi must occur within the context for

this pattern to be detected. There may be multiple

pattern detections if there is more than one event of

each type. This is determined by policies and

whether the occurring events are candidates for

pattern detection.

The EPN model does not restrict the set of opera-

tions to express patterns nor does it restrict the seman-

tics given to operators.

Directives – specify directives for reporting on

pattern detection to the processing stage and what

to do with the events that contributed to the pattern

detection, discussed in [1] as situation triggering

expressions.

� Immediately as the pattern is detected.

� At the end of the detection interval.

Event Processing Network E 1057

E

� At time-outs associated with event attributes.

� At specifiable periods reporting on all the pattern

detections since the last period.

� Allow a single or multiple activation of the proces-

sing stage when more than one pattern is detected

during the detection interval.

� Consume, maintain always, or maintain an event

for certain number of times after pattern detection

for further detections, i.e., is the same event allowed

to contribute in further pattern detection.

� Include the events that have not contributed to

the pattern’s detection with the report to the pro-

cessing stage. When no pattern detection occurred

during the reporting time such as at end of detec-

tion interval or at time-outs, all events within

this period may be passed to the processing stage

as well.

Processing Once the pattern detection stage has

detected a pattern, it creates either a complex event,

in case more than one event contributed to the detec-

tion, or passed the original event, in case only it was

needed for the detection. This event is further pro-

cessed based on the processing definition configured

for the event processing agent. The result of the pro-

cessing stage is a derived event ready for emission.

There are four possible processing methods that can

be performed on the result of the pattern detection

stage:

� Transformation – specifies a transformation function

to be performed on complex events to produce

derived events. The transformation can cover a

many-to-many relationship. Mapping is in the case

of one-to-one where each output of the pattern

detection is mapped to a single event structure.

Splitting is in the case of one-to-many where

each output of the pattern detection is split to several

event structures, i.e., multiple derived events from

a single complex event. Aggregation is in the case

of many-to-one where an aggregation function

is performed on the collection of events that are

included within the complex event and a single

event structure is produced with the function’s

results. Many-to-many transformation is achieved

by applying aggregation and then splitting within

the same processing.

� Derivation – specifies computations to apply

on the collection of events reported by a comp-

lex event, which covers more than aggregation
transformation. The result can be a single or a set

of derived events.

� Enrichment – specifies directives in enriching the

event with data from external sources such as a

database. The result is a new event that is derived

from the event received at the processing stage. The

additional event data may be used to establish the

connection to and retrieval of data from the exter-

nal source.

� Validation – specifies constraints that the event

must comply with (assertion) and instructions on

how to handle the event in case it does not comply

and violates the constraints. The decision on how

to handle violation may be conditional and may

differ by the repair action.

� Alert and let the processing continue.

� Reject and terminate the processing for this

event. The event itself or a derived error event

may be published to an event channel for error

handling.

� Modify the event for the assertion to hold. When

this is not possible, treat it in the same manner as

rejecting the event.

� Perform change to external data if used in the

assertion to make it hold. Again when this is not

possible, treat it in the same manner as rejecting the

event.

Emission The emission stage is responsible to emit

the derived events to appropriate event channels and

is configured with decisions to what event channels to

emit and when to emit the events, such as immediately

when received from the previous stage, periodically,

at specific times or with time offsets. Thus, a single

derived event may be emitted to more than one event

channel.

Key Applications

Information Dissemination\Situation Awareness

Getting the right information in the right granularity

to the right person\target at the right time:

Asset Tracking, Advertising context based content,

Command and Control.

Active Diagnostics

Diagnose problems based on symptoms and resolve

them:

System Management

1058E Event Processing Systems
Real Time Enterprise Reactions to events as part of

business transactions – achieving low latency decisions

and quick reaction to threat and opportunities:

Claims processing, Utilities grid management

Business Activity Monitoring

Quick observation into exceptional business behavior

and notification to the appropriate people\targets:

Continuous Auditing, Fraud Detection

Predictive Processing

Mitigate or eliminate predicted events:

Epidemic control, Stock Trade

Cross-references
▶Complex Event

▶Complex Event Processing

▶Context

▶ EDA

▶ Event Causality

▶ Event Channel

▶ Event Driven Architecture

▶ Event Processing Agent

▶ Event Sink

▶ Event Source

▶Retrospective Event Processing

Recommended Reading
1. Adi A. A Language and an Execution Model for the Detection of

Reaction Situations, PhD dissertation, Technion – Israel Insti-

tute of Technology, 2003.

2. Adi A., Biger A., Botzer D., Etzion O., and Sommer Z. Context

Awareness in Amit. In Proc. 5th Annual Int. Workshop on Active

Middleware Services, 2003, pp. 160–167.

3. Etzion O. and Sharon G. Event Processing Network – A Concep-

tual Model. In Proc. 2nd Int. Workshop on Event-driven Archi-

tecture, Processing and Systems, 2007.

4. Event Processing Glossary, http://complexevents.com/?

p¼195#comments

5. Luckham D. The Power of Events: An Introduction to Complex

Event Processing in Distributed Enterprise Systems. Addison-

Wesley, Reading, MA, 2002.

6. Yang Y., Pierce T., and Carbonell J.G. A Study on Retrospective

and On-Line Event Detection. In Proc. 21st Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 1998, pp. 28–36.
Event Processing Systems

▶ Event Driven Architecture
Event Producer

▶ Event Source
Event Relation

▶ Event in Temporal Databases
Event Service

▶Channel-Based Publish/Subscribe
Event Sink

OPHER ETZION

IBM Research Labs-Haifa, Haifa, Israel

Synonyms
Event consumer

Definition
An entity that receive events from other entities [1].

Key Points
Event sink are nodes in the edge of the event processing

network (receiving only) that receive events from

the event processing network, event sinks are typically

of two types:

1. Orchestration event Sink: receives an event from

the event processing network and determines what

action should be triggered (e.g., ECA rule) [2]. An

action can be – database update, activating a software

module, activating/modifying/terminating a work-

flow instance [3].

2. Notification event sink: receives the event from

an event processing network and sends it to a

consumer – a person or a dashboard [4].

Note: the action that is triggered by the event sink may

be an event source and emit events to the same event

processing network or to another event processing

network, this will be reflected in the event causality

and event lineage.

Event Specification E 1059

E

Cross-references
▶ Event Causality

▶ Event Lineage

▶ Event Processing Network

▶ Event Source

Recommended Reading
1. Luckham D., Schulte D. (eds.). EPTS Event Processing Glossary

version 1.1. http://complexevents.com/?p=409.

2. Lin Chen, Minglu Li, Jian Cao, Yi Wang. An ECA Rule-

based Workflow Design Tool for Shanghai Grid. IEEE SCC

2005, 325–328.

3. Lin D., Sheng H., and Ishida T. Interorganizational Workflow

Execution Based on Process Agents and ECA Rules. IEICE

Transactions 90-D(9):1335–1342, 2007.

4. Ruby C.L., Green M.L., and Miller R. The Operations

Dashboard: A Collaborative Environment for Monitoring Vir-

tual Organization-specific Compute Element Operational Sta-

tus. Parallel Processing Letters 16(4):485–500, 2006.
Event Source

OPHER ETZION

IBM Research Labs-Haifa, Haifa, Israel

Synonyms
Event producer; Event emitter

Definition
Event source is an entity that provides event for the

processing cycle [3].

Key Points
Event sources are typically initial nodes (sending only)

in the event processing networks, and provide events

to the network for further processing. Event sources

can be of various types:

1. Software module – through instrumentation

2. Sensors [1]

3. Clock/Calendar

4. State observers in workflows (BPM).

An event can be obtained from a source in various

modes:

1. Push – the source initiates the event emission.

2. Periodic Pull – a calendar service pulls one or more

events from the source (e.g., by query the log) [2].
3. On-Demand Pull – an event processing agent pulls

the source using request/reply protocol.

Getting events from event sources to processing

typically requires adapter to create the event in the

desired format.

Cross-references
▶ Event Processing Network

▶ Event Sink

Recommended Reading
1. Chakraborty S., Poolsappasit N., and Ray I. Reliable Delivery of

Event Data from Sensors to Actuators in Pervasive Computing

Environments. In Proc. 21st Annual IFIP WG 11.3 Working

Conf. on Data and Applications Security, 2007, pp. 77–92.

2. Deolasee P., Katkar A., Panchbudhe A., Ramamritham K., and

Shenoy P.J. Adaptive Push-Pull: Dissemination of Dynamic Web

Data. In Proc. 10th Int. World Wide Web Conference, 2001,

pp. 265–274.

3. Luckham D., Schulte D. (eds.). EPTS Event Processing Glossary

version 1.1. http://complexevents.com/?p=409.
Event Specification

JONAS MELLIN, MIKAEL BERNDTSSON

University of Skövde, Skövde, Sweden

Synonyms
Event declaration; Event definition; Composite event

query

Definition
Event specifications define event types in terms of pat-

terns of other event types by using event operators

(either expressed as operators in an operator grammar

or as functions in a functional grammar) and event

contexts. Event types are categorized as atomic (or

primitive) or composite. An atomic event type is either

a system primitive (for example, begin transaction) or

it can be any defined atomic change in an activity such

as a method, procedure, task etc. (e.g., method has

been called). Event types defined in terms of other

event types are named composite event types.

Historical Background
Essentially, whenever something has to be defined, it is

necessary to have a specification. This can be found in

1060E Event Specification
several disciplines of computer science, for example,

programming languages, compiler technology etc.

Event specifications became significant with the

advent of the HiPAC project [10], in which seminal

work on composite event types were done. Prior to

HiPAC, mainly primitive event types were addressed in

research publications and the event specifications only

consisted of single atomic event types (often only sys-

tem primitives).

Atomic event types in active databases can be cate-

gorized according to their sources (e.g., cf. Buchmann

[4]): transactional events, temporal events, databasema-

nipulation events, and user-defined events. Transactio-

nal events are usually system primitives denoting state

changes such as ‘‘transaction has begun,’’ ‘‘transaction

has committed,’’ and ‘‘transaction has aborted.’’ Tempo-

ral events are either absolute (a specified point in time)

or relative to some other event and denotes that a

time point has passed; further, temporal events can be

repetitive and a special case of temporal events are peri-

odic events. The database manipulation events depend

on whether the database is relational, object-oriented

or object-relational. In relational databases, there is

typically only system primitives associated with the

state changes corresponding to insertion, update, and

deletion of entities (in particular, tuples). In object-

oriented databases, system primitive events are typically

associated with methods in existing classes associated

with the database schema. Finally, in object-relation

databases, a mix of system primitive events from

both the relational aspect as well as the object-oriented

aspect can be found. User-defined atomic events are

either associated with methods [4] or composite event

queries [3].

There are several event specification languages

(either as complete specification languages in their

own right or as intrinsic parts of another specification

language), usually associated with the active database

prototype (e.g., Snoop in Sentinel [8,9], SAMOS [12],

ODE [13]), but there are several others that are

not explicitly associated with active databases (e.g.,

GEM [16], monitoring of real-time logic [15]). All of

these event specification languages in active databases

share a basic set of event operators (e.g., Mellin [17],

Carlsson and Lisper [6]): sequence, conjunction, dis-

junction and non-occurrence. The non-occurrence of

events is always enclosed in an half-opened time inter-

val, the question is what event types can be employed

to delimit the interval. For example, in Snoop [8,9]

and its descendants (e.g., REACH [5]) and SAMOS
[12] intervals are delimited by arbitrary event types,

whereas in ODE [13] the interval is from when the

transaction, in which events occurs, begin. The interval

is typically closed by an request to commit transaction

or a relative temporal event with respect to the begin-

ning of the interval.

Composite events are specified by event expres-

sions in an operator grammar or in a functional

grammar. For example, in Snoop [9] a sequence of

events of type E1 followed by events of type E2 is

expressed as E1;E2, whereas in EPL [18] it is expressed

as SEQ(E1,E2). Note that this specification does not

dictate how many events of each type that matches

the specification and it does not dictate if the events of

different event types in the specification are interleaved.

Most approaches (e.g., HiPAC [10], Snoop [9,8],

SAMOS [12], ODE [13]) employ an operator grammar,

whereas, for example, EPL (Event Pattern Language)

[18] and XChangeEQ [3] are based on a functional

grammar. Additionally, XChangeEQ is based on XML

(e.g., Common Base Events [7]). The advantage of a

functional grammar over an operator grammar is

threefold:

1. There is no problem with associativity (e.g., the

expression SEQ (E1,E2,E3) does not have the amb-

iguity found in E1;E2;E3 that either can mean

E1;(E2;E3) or (E1;E2);E3)

2. There is no problem with operator priority, a prob-

lem that is found in any operator grammar. For

example, a conjunction should be prioritized over a

disjunction so that E1&E2jE3 is equivalent to

(E1&E2)jE3 meaning that either an E3 occurs or a

conjunction of E1 and E2 occurs, but how should

sequences be prioritized with respect to conjunc-

tions and disjunctions?

3. Operators in a functional grammar can be extend-

ed to be based on an arbitrary number of event

types (e.g., SEQ (E1,E2,...,En)).

There are some pitfalls in event specifications: the

definition of disjunctive event operator, and treating

all event types as instantaneous. One event operator

that have an unintuitive meaning in many event spe-

cification languages is disjunction (e.g., Snoop,

SAMOS). In logic, disjunction can be inclusive or

exclusive, but in many event specification languages it

is neither, but a hybrid. Essentially, if an E1 and an E2
event occurs concurrently and E defined by E1jE2 is

monitored, then the result is two event occurrences

of type E with the same end time rather than one

Event Specification E 1061

E

event occurrence of type E (inclusive disjunction) or

no event occurrence (exclusive disjunction).

Initially, all events, both atomic and composite,

were considered to be instantaneous [8,9]. However,

as pointed out by Galton and Augusto [11], if all events

are considered to be instantaneous, then this will

introduce ambiguities in event specifications. For

example, it is impossible to distinguish between E1;

(E2;E3) and E2;(E1;E3).

Parameterized events carry parameter apart from

the system default parameters of events, where the

default parameters typically are event type, time stamps,

and scope in which the event was generated (e.g., which

transaction was the event generated in). Somehow, the

event specification needs to enable specification of

event parameters as, for example, by Bækgaard et al.

[1]. Further, if parameterized event detection is allowed,

then it is necessary to specify what parameters are part of

the event type specification. Examples of specification

of parameterized event detection are found in TCCS [1],

XChangeEQ [3], and Solicitor [17].

Foundations
As always in formal specifications, there are two main

approaches: either to define a minimal specification

language that can handle all relevant situations or to

define an expressive specification language in which

the available expressions and operators are as close as

possible to what is needed to express. The latter is

prevalent in active database research (cf. Zimmer and

Unland [19]), since it is assumed to lead to more

comprehensive event specifications (e.g., the work by

Liu et al. [15] illustrates the difference between Snoop

and real-time logic)

There are four significant research issues that have

been pursued within active databases with respect to

event specifications: (i) the performance characteristics

of event composition, (ii) how to introduce algebraic

properties in event specification languages, (iii) how to

define event specification languages that enable com-

prehensive specifications and, in particular, how to

specify the orthogonal concepts of patterns and event

contexts; and (iv) tools and techniques for understand-

ing event specifications. Issue (i) has been dealt with

within a benchmark named BEAST [14] as well as in

algorithmic time complexity studies [17, ch. 9]. In the

BEAST benchmark study [14] it was concluded that

the underlying mechanism (e.g., finite state automatas,

Petri-nets, or arbitrary code) of event composition

was insignificant compared to typical information
maintenance issues such as indexing of event types. It

has been shown that the algorithmic time complexity

of event composition is mainly based on event con-

texts, not the event operators per se [17, ch. 9].

The introduction of algebraic properties in event

specification languages has been addressed by Carlsson

and Lisper [6]. Essentially, they have introduced alge-

braic properties to an event specification language by

defining a new event context: a variety of the recent

event context. It is also an attempt to make a minimal

language.

A few studies have addressed the specification

events (issue (iii)), in particular how to mix event ope-

rators and event contexts. There are three approaches:

(a) the event operator is locked to one event context as

in, for example, ODE [13] or the work by Carlsson

et al. [6]; (b) the event operators are explicitly asso-

ciated with an event context as in, for example, Solici-

tor [17]; and (c) the different event types in the

expressions are decorated with notation (For example,

SEQ(last : E1,first : E2) is an example of using the

proposed decorators first and last. This example speci-

fication is equivalent to SEQ(E1,E2) in recent event

context.) that indicate the event context as proposed

by Zimmer and Unland [19]. The most comprehensive

form is approach (b), but more work is required, in

particular on the topic of specifying parameterized

event detection. For example, assume that there are

concurrent processes accessing a shared variable and

it is desirable to check that the processes behave by

monitoring that processes enter and exit the critical

regions associated with the shared variable within an

expected time interval without a ‘‘terminate applica-

tion’’ event in between. In this case, the matching of

events representing entering and exiting the critical

regions must be based on that they are generated by

the same process, but the ‘‘terminate application’’

event is associated with all existing processes in the

application. Further, parameters may express temporal

scopes that subsume each other. For example, an event

may be generated in a transaction by a particular

process executing a specific component and events

may carry the identity of transaction, process and

component; in some cases, it is only desirable to only

match on the transactional level, but in other cases a

more precise scope such as the component level is

desirable.

Concerning issue (iv), Berndtsson et al. [2] iden-

tified, in their investigation of existing visualiza-

tion techniques of event composition, that event

1062E Event Specification
specifications are difficult to understand for M.Sc. level

students. The conclusion is that tools to understand

event specifications are necessary. Compared to condi-

tion evaluation, event composition is far more compli-

cated since, in addition to condition evaluation, it is

necessary to check what happened in previous evalua-

tions of event expressions.

Key Applications
Buchmann [4] claims that there are two reasons for

separating events from the condition in a rule: (i) to

add the semantics of when the rule should be evaluated

from what should be evaluated and (ii) efficiency of

rule execution. Essentially, event specifications are

employed for rule optimization in active databases.

Further, if an active database is part of an event based

system, then event specifications can be employed to

alert other applications outside the active database.

Future Directions
There are three major unresolved threads of research

on this topic: (i) specification of parameterized event

types for parameterized event detection; (ii) reuse of

event specifications; and (iii) usefulness of algebraic

properties. The first thread addresses a problem that

is similar to join in SQL queries and unification in

Prolog programming language. That is, it deals with

specifying that the values of certain parameters of an

event should match the values of other parameters

of another event in an event specification. For example,

E = E1;E2 where E1.p1 = E2.p2 could be a notation

stating that event occurrences of E only consists of

event occurrences of E1 and E2 where the values

of parameters p1 and p2 match. Making this kind of

specification comprehensive, precise, unambiguous,

and reusable is an open problem. (Note that the nota-

tion here is chosen for the likeness of SQL queries, it is

not necessarily the best way to specify parameterized

event types.)

Reuse of event specifications has not been

addressed within active databases, but is a significant

topic in software engineering. It would be interesting

to, for example, consider if template event specifica-

tions can be useful in active databases. For example, in

distributed systems call and reply semantics is

employed in, among other things, remote procedure

calls, that is, something is called and a reply is

expected. Assume that C, R and T are template para-

meters to be instantiated, then a template for detecting
a correct (Ec) or incorrect (Ei) sequence of call and

reply within a time window could be as follows (where

tps(E) and tpe(E) returns the time point of start and

end of E):

EchC;R;Ti defined by ðC;RÞwithout Ei within
½tpsðCÞ; tpsðCÞ þ T

EihC;R;Ti defined by non-occurrence of Ec within
½tpsðCÞ; tpsðCÞ þ T

Given this, a notation such as EchA, B, 10si can be used

to specify that C = A, R = B and T = 10s. This specifi-

cation should also introduce EihA, B, 10si implicitly.

With respect to the usefulness of algebraic proper-

ties, the question is how useful algebraic properties are?

As mentioned, Carlsson et al. [6] has shown that it is

possible, but how useful is it compared to existing

event contexts. This is still an open issue. For example,

basing event composition on historical order, as in the

chronicle event context, may become complicated, if

not impossible.

Cross-references
▶Active Database Coupling Modes

▶Active Database Execution Model

▶Active Database Knowledge Model

▶Atomic Event

▶Composite Event

▶ ECA Rules

▶ Event

▶ Event Detection
Recommended Reading
1. Bækgaard L. and Godskesen J.C. Real-time event control in

active databases. J. Syst. Softw., 42(3):263–271, 1997.

2. Berndtsson M., Mellin J., and Högberg U. Visualization of the

composite event detection process. In Proc. Int. Workshop on

User Interfaces to Data Intensive Systems, 1999, pp. 118–127.

3. Bry F. and Eckert M. Rule-based composite event queries: the

language XChangeEQ and its semantics. In Proc. First Int. Conf.

on Web Reasoning and Rule Systems, 2007, pp. 16–30.

4. Buchmann A.P. Active object systems. In Advances in Object-

Oriented Database Systems. A. Dogac, M.T. Ozsu, A. Biliris, and

T. Sellis (eds.). Springer-Verlag, Berlin, 1994, pp. 201–224.

5. Buchmann A.P., Zimmermann J., Blakeley J.A., and Wells D.L.

Building an integrated active OODBMS: requirements, architec-

ture, and design decisions. In Proc. 11th Int. Conf. on Data

Engineering, 1995, pp. 117–128.

6. Carlson J. and Lisper B. An event detection algebra for reactive

systems. In Proc. 4th ACM Int. Conf. on Embedded Software,

2004, pp. 147–154.

Event Stream Processing E 1063

E

7. Common base events. URL http://www.ibm.com/developer-

works/library/specification/ws-cbe/.

8. Chakravarthy S., Krishnaprasad V., Anwar E., and S.K. Kim

Composite events for active database: semantics, contexts, and

detection. In Proc. 20th Int. Conf. on Very Large Data Bases,

1994, pp. 606–617.

9. Chakravarthy S. and Mishra D. Snoop: an event specification

language for active databases. Knowl. Data Eng., 13(3):1–26,

1994.

10. Dayal U., Blaustein B., Buchmann A., Chakravarthy S., Hsu M.,

Ladin R., McCarty D., Rosenthal A., Sarin S., Carey M.J.,

Livny M., and Jauharu R. The HiPAC Project: combining

active databases and timing constraints. ACM SIGMOD Rec.,

17(1):51–70, 1988.

11. Galton A. and Augusto J. Two approaches to event definition.

In Proc. 13th Int. Conf. Database and Expert Syst. Appl., 2002,

pp. 547–556.

12. Gatziu S. Events in an Active Object-Oriented Database System.

Ph.D. thesis, University of Zurich, Switzerland, 1994.

13. Gehani N.H., Jagadish H.V., and Schmueli O. COMPOSE – a

system for composite event specification and detection. In Ad-

vanced Database Concepts and Research Issues. Springer-Verlag,

Berlin, 1993.

14. Geppert A., Berndtsson M., Lieuwen D., and Roncancio C.

Performance evaluation of object-oriented active database man-

agement systems using the BEAST benchmark. Theor. Pract.

Object Syst., 4(4):1–16, 1998.

15. Liu G., Mok A.K., and Konana P. A unified approach for

specifying timing constraints and composite events in active

real-time database systems. In Proc. 4th Real-Time Technology

and Applications Symp., 1998, pp. 199–208.

16. Mansouri-Samani M. and Sloman M. GEM: a generalized event

monitoring language for distributed systems. IEE/IOP/BCS Dis-

trib. Syst. Eng. J., 4(2):96–108, 1997.

17. Mellin J. Resource-Predictable and Efficient Monitoring of

Events. Ph.D. thesis, no. 876, University of Linköping, 2004.

18. Motakis I. and Zaniolo C. Formal semantics for compo-

site temporal events in active database rules. J. Syst. Integrat.,

7(3/4):291–325, 1997.

19. Zimmer D. and Unland R. On the semantics of complex events

in active database management systems. In Proc. 15th Int. Conf.

on Data Engineering, 1999, pp. 392–399.
Event Stream

OPHER ETZION

IBM Research Labs-Haifa, Haifa, Israel

Synonyms
Event pipe; Event network edge

Definition
An Event Stream is a collection of ordered events [4].
Key Points
An event stream is a collection of events, with one or

more order relations. The naı̈ve order relation is accord-

ing to the time that the event arrives to the processing

system, but this may not reflect the event order in reality

[2], which may define an additional order relation. An

event stream may be homogenous (all events have the

same structure and type) or heterogeneous (include

events that have different types). Homogenous streams

are also known as Data-Type Streams. For practical

usages, typically data-type streams are used. An edge

in the event processing network, known as event pipe

typically is a superset of event stream [5].

Sometimes event stream is used as a synonym to

event pipe. This term has some relation to ‘‘data

stream,’’ but it is not identical [1], and does not neces-

sarily correspond to SQL implementation. A typical

case of event stream is a time-series, and there are

some methods to handle out-of-order arrival in such

streams [3].
Cross-references
▶Data Stream

▶ Event Processing Network

▶ Event Flow
Recommended Reading
1. Albers K., Bodmann F., Slomka F. Hierarchical Event Streams

and Event Dependency Graphs: A New Computational Model

for Embedded Real-Time Systems. In Proc. 18th Euromicro

Conf. Real-Time Systems, 2006, pp. 97–106.

2. Barga R.S., Goldstein J., Ali M.H., Hong M. Consistent Stream-

ing Through Time: A Vision for Event Stream Processing. In

Proc. 3rd Biennial Conf. on Innovative Data Systems Research,

2007, pp. 363–374.

3. Li M., Liu M., Rundensteiner E.A., and Mani M. Event Stream

Processing with Out-of-Order Data Arrival. In Proc. 1st Int.

Workshop on Distributed Event Processing, Systems and Appli-

cations, 2007.

4. Luckham D., Schulte D. (eds.). EPTS Event Processing Glossary

version 1.1. http://complexevents.com/?p=409.

5. Sharon G., Etzion O. Event Processing network: Model

and implementation, IBM System Journal, 47(2):321–334,

2008.
Event Stream Processing

▶Complex Event Processing

1064E Event Stream Processing (ESP)
Event Stream Processing (ESP)

▶ Event and Pattern Detection over Streams

▶ Stream Processing
Event Topic

▶ Event Channel
Event Trace Analysis

▶ Event Detection
Event Transformation

PETER NIBLETT

IBM United Kingdom Limited, Winchester, UK

Synonyms
Event mapping

Definition
In its broadest definition Event Transformation refers

to any operation that takes as input a single event

message or stream of event messages, and produces a

single event message or stream of event messages as its

output. As such, this definition encompasses many of

the functions provided by an Event Processing Agent in

an Event Processing Network, including agents that do

complex pattern detection.

There is a somewhat narrower definition in which

the operation has to be either a translation, aggrega-

tion, split or composition function.

Historical Background
Event translation (transformation of a single input

event message into a single output event message) is

a special case of message translation – a more general

concept where the messages concerned do not neces-

sarily represent events. Message translation has long

been used to solve enterprise integration problems

where the applications to be integrated have different

data models. Enterprise integration sometimes also
involves split operations, where input messages are

split into multiple outputs. Hohpe and Woolf discuss

a number of message translation and splitting patterns

in [4].

Event Aggregation and Event Composition opera-

tions take streams of event messages as input and are

fundamental components of all event stream proces-

sing systems. They were included in stream pro-

cessing systems developed in research departments in

the early part of the current century. For more infor-

mation see the Aurora project [2] and Borealis project

[1] from Brandeis, Brown and MIT, or the STREAM

project [6] from Stanford. Further material on event

processing can be found in [5].
Foundations
Transformations may be classified into the following

types, depending on the nature of their input and

output:

� Translation. Gets one event at a time, applies a

translation operation and outputs the translated

event. A translation operation is sometimes refer-

red to as a mapping.

� Split. Gets one event at a time and splits the event to

N different events, each of which contains a (possi-

bly overlapping) subset of the event attributes.

� Aggregation. Takes a stream of events as input, and

uses a windowing process to collect events from

that stream into windows. The operation then pro-

cesses each window to produce zero or more

‘‘derived’’ events as output.

� Composition. Takes two or more input streams and

builds a window for each stream. The operation then

takes this set of windows and processes them to

produce zero or more derived events as output.

Aggregation and composition both operate against

streams of events and since a stream is potentially un-

bounded they require the concept of a window defined

over these input streams. A window is simply a set of

event messages that is fetched from the input stream; the

operation itself defines how the window is constructed

from the stream and the conditions under which it is

considered ready for processing. Examples include:

1. Non-sliding window of fixed size N. Events from

the input stream are assigned to an ‘‘open window.’’

When the specified number of events (N) has been

received, the window is closed, ready to be

Event Transformation E 1065

E

processed by the operation, and a new window is

opened. Each input event is assigned to one and

only one window (see Fig. 1).

2. Non-sliding variable size window. This is similar to

the fixed-size non-sliding window, except that the

closing of the window is triggered by some other

condition, for example the detection of a change

of type of the incoming event or the detection of a

change in the value of a particular attribute on an

incoming event (see Fig. 2).

3. Non-sliding time-basedwindow. The operator speci-

fies a time duration and a series of non-overlapping

windows is created each of the specified duration.

Events are assigned to a window instance based

on some timestamp (for example arrival time) asso-

ciated with the event. Such as if the window is

specified to have a length of 2 s, then the window

corresponding to time T would contain all events

whose timestamp t lies between time T and T-2

seconds (see Fig. 3).

4. Sliding window of fixed size N. A new window is

created when each incoming event is encountered.

The incoming event and the preceding N-1 events

(if any) are assigned to the window, which is then

processed by the operation. Unlike the non-sliding

examples, each event is assigned to multiple

windows (see Fig. 4).
Event Transformation. Figure 1. Non-sliding window of

fixed size.

Event Transformation. Figure 2. Non-sliding variable

size window.
5. Sliding time-based window. A new window is cre-

ated when each incoming event is encountered, but

each window has the same fixed time duration.

When a window is created, the incoming event is

assigned to the window, along with all preceding

events that lie within its time period, and the win-

dow is then processed. An alternative, possibly more

natural, way of visualizing this is that there is a single

windowwhichmoves in time; events are added to the

window when they are detected, and removed from

the window when they have overstayed the time

limit. With either definition, if the window is speci-

fied to have a length of 2 s, then at time T the window

would contain all events whose timestamp t lies bet-

ween time Tand T-2 s. (see Fig. 5).

Non-sliding windows are sometimes referred to as

tumbling windows.

Translate and split style transformations have no

requirement for a window, although they could be

regarded as operating on a non-sliding window of size 1.
Event Transformation. Figure 3. Non-sliding time-based

window.

Event Transformation. Figure 4. Sliding window of fixed

size.

Event Transformation. Figure 5. Sliding time-based

window.

1066E Event Transformation
A transformation where the result of processing a

given event is affected by previous events from the input

stream is referred to as a Stateful Transformation, where-

as transformations where previous events have no effect

on the processing of subsequent events are referred to as

stateless transformations. Aggregation and composition

are stateful by definition, whereas translate (and argu-

ably split) can be either stateful or stateless.

Translation

A translation operation takes one event at a time and

transforms it into another. Translation operations can

be categorized into a number of different types

depending on the amount of change they make to the

incoming event.

The least intrusive type of event translation is one

that changes the data representation (serialized form)

of the event message, without changing its content.

For example a translation might be used to convert

between an XML and a Comma-Separated Value

representation of the event, or to convert between

different character sets.

Translation operations are frequently used to make

more substantial changes to the content, and even the

type, of the event:

� A translation might keep the content of the event

unchanged, but modify the types used to represent

the attributes of the event. For example it might

convert a temperature attribute from Celsius to

Fahrenheit, or replace a US state name with a two

character code.

� A translation might modify the values of certain

attributes of the event. This kind of translation
can be used for data cleansing, for example repla-

cing obviously incorrect date values.

� A translation can remove attributes from an event,

while preserving the basic type structure of the

event. Attributes could be removed if they are not

needed by the event consumers, or because they

contain sensitive information. A transformation

that removes attributes is sometimes called a

projection.

� Attributes can be added to the event, this is some-

times called event enrichment. The values assigned

to the additional attributes can be:
� Fixed values assigned by the translation, for

example explicitly filling in default values for

attributes omitted from the input event.

� Values computed from other attributes in the

event, for example the translation could assign a

severity level to the event.

� Values computed using an external source of

information in addition to data from the

event. An example of this would be a translation

that uses a customer ID attribute from the input

event to retrieve a customer name and address

from a database and then adds these as attri-

butes to the output event.
Translations are frequently programmed using visual

editing tools, and can be represented using SQL

queries, XML Style Sheets [3] that operate on an

XML Infoset representation of the event, or other

transformation languages.

Splitting

A splitting operation takes a single incoming event

as input and produces multiple events as output.

It is equivalent to taking a number of copies of the

incoming event and applying a different translation

to each. Splitting transformations are frequently used

in combination with routing operations, with the

different output events being routed to different

recipients.

Some kinds of splitting transformation are partic-

ularly noteworthy:

� Splits that leave the original event untouched, but

produce one or more additional events that are

projections of the original event.

� Splits that break the original event apart by attri-

bute, and produce a projected for each one of the

attributes of the original event.

Event Transformation E 1067

E

� Splits that iterate through lists in the original

event and produce one projected event for each

list item.

A split transformation can be programmed as a set

of translations, this is sometimes referred to as a static

split, since the number of output events is determined

by the specification of the split operation. In contrast,

in an iterative split the number of output events is

determined by the data contained in the input event.

Aggregation

An aggregation operation is a function that operates

on the events in a window to produce a single output

event. The output event summarizes some aspect or

aspects of the input events, by either:

� Concatenating the content of the input events, or

� Performing a function on the attributes of the input

events; or

Examples of such functions include:

� Maximum, Minimum or ‘‘Top-k’’ values of an

attribute.

� Sum or Mean values of an attribute.

� Other forms of average value of an attribute such as

median or mode.

� Weighted averages, where one attribute in the event

is the value to be averaged and another gives its

weight. Weighted attributes are used to compute

Volume-Weighted Average Price (VWAP) used in

algorithmic trading applications.

� Count of the number of instances of an attribute, or

the number of distinct values of an attribute.

An aggregation operation can also carry forwards a

value from the previous window. For example when

computing a ‘‘running maximum’’ of an attribute, or a

VWAP, one may want to consider all events in a given

time period (such as the current trading day), rather

than just the events in the current window.

The choice of windowing style affects the output of

the aggregation. For example an Averaging function

with a non-sliding (tumbling) window will give a set

of discrete averages, one for each window, whereas the

use of sliding window will give a rolling average.

Composition

A composition operation takes windows from two (or

more) input streams and performs an operation on
them that produces zero, one or more output events.

The most common type of composition operation

is a Join.

Join operations are frequently used with sliding win-

dows, to perform correlation between two streams. Each

time an incoming event is detected on one of the

streams, it is compared against the events in the window

in the other stream using some kind of comparison test,

and an event is output if amatch is detected. This output

event is produced by performing an operation on the

attributes of the two matching events. In a two-way join

operation both input streams are treated equally, and an

incoming event on either stream is compared against the

window of events on the other stream.

If the input streams are homogenous, all the events

in a window have the same type, then standard rela-

tional Join operators can be used, with the two win-

dows being treated as the two tables that are

to be joined.

Key Applications
Event transformation of the types described here can

be found in most event processing applications, for

example in real-time monitoring, algorithmic trading,

business activity monitoring.

Event translation has a particular use when inte-

grating event producers and consumers that were not

originally intended to work together.

Event aggregation and composition have a particu-

lar use in monitoring and simple pattern detection

applications.

Cross-references
▶ Event Processing Network

▶ Event Routing

▶ Event Specification

Recommended Reading
1. Brandeis University, Brown University, and MIT, Borealis –

Distributed Stream Processing Engine. http://www.cs.brown.

edu/research/borealis/public/

2. Carney D. et al. Monitoring streams – A new class of data

management applications. In Proc. 28th Int. Conf. on Very

Large Data Bases, 2002, pp. 215–226.

3. Clark J. (ed.). XML Transformations (XSLT) 1.0. W3C Recom-

mendation, http://www.w3.org/TR/1999/REC-xslt-19991116,

1999.

4. Hohpe G. and Woolf B. Enterprise Integration Patterns: Design-

ing, Building and Deploying Messaging Solutions. Addison-

Wesley, Reading, MA, 2004.

1068E Event Uncertainty
5. Luckham D. The Power of Events: An Introduction to Complex

Event Processing in Distributed Enterprise Systems. Addison-

Wesley, Reading, MA, 2002.

6. Stanford University, STREAM project. http://infolab.stanford.

edu/stream/
Event Uncertainty

▶Uncertainty in Events
Event-Condition-Action Rules

▶ ECA Rules
Event-Driven Business Process
Management

RAINER VON AMMON

Center for Information Technology Transfer GmbH

(CITT), Regensburg, Germany

Synonyms
Workflow management; Business process monitoring

Definition
The term Event-Driven Business Process Management is

a combination of actually two different disciplines:

Business Process Management (BPM) and Complex

Event Processing (CEP). The common understanding

behind BPM is that each company’s unique way of

doing business is captured in its business processes.

For this reason, business processes are today seen as the

most valuable corporate asset. In the context of this

entry, BPM means a software platform which provides

companies the ability to model, manage, and optimize

these processes for significant gain. As an independent

system, Complex Event Processing (CEP) is a parallel

running platform that analyses and processes events.

The BPM- and the CEP-platform correspond via

events which are produced by the BPM-workflow en-

gine and by the IT services which are associated with

the business process steps.
Historical Background
The term ‘‘Event Driven Business Process Management’’

was first used in June 2003 in a white paper of Bruce

Silver Associates in connectionwith the FileNet P8-BPM

platform [3]. The term was understood as a synthesis

of workflow and Enterprise Application Integration

(EAI). Actually, also a concept of event processing

and real-time BAM was described in that white paper

already, but only as single event processing without

knowing anything about CEP which was not a discipline

yet. Although the book ‘‘The power of events’’ of David

Luckham [7] was already published in 2002, it wasn’t

well known until 2004 and there was no really working

CEP platform so far. In November 2007, the term was

explicitly used as a combination of BPM and CEP in

an interview with Ruma Sanyal from BEA Systems [4].

Foundations
Figure 1 shows the principle of how a BPM- and BAM/

CEP platform work together on the basis of events. The

dark shaded components concern workflow respective-

ly BPM, the light shaded components concern the real-

time BAM/CEP components. Just started with the

availability of commercial CEP platforms, there will

be two different kinds of specialists in the future: the

workflow modelers or business analysts and the event

modelers.

The Business Process Modeler

The workflow modeler identifies business processes,

starting from the value chain of an enterprise, he

analyses and reengineers or optimizes the business

processes by using a Business Process Analyzing-

(BPA) tool based on a standard notation like the Busi-

ness Process Modeling Notation (BPMN), invented

2002 by IBM and now standardized by the Object

Management Group (OMG) since 2005, published

February 2006 as version 1.0 [8]. A business process

model is a graphically designed network based on

symbols e.g., for flow objects like activities, gateways

and also events. Depending on their position in the

network, BPMN categorizes the events as start events,

intermediate events and stop events. Each event cate-

gory has different event types like timer-, message-,

exception events etc. In the present release of BPMN

1.1, there are around 25 event types, the new release

BPMN 2.0 is announced for Q3/2008. The modeling

of business processes is a highly skilled task for a

workflow modeler respectively a business analyst, but

Event-Driven Business Process Management. Figure 1. A reference model of the adoption of a CEP/BAM/BPM

platform [10].

Event-Driven Business Process Management E 1069

E

completely different from the task of an event modeler

for real-time BAM/CEP. The event modeler acts with

different kinds of events which are produced by the

business process instances or from other event sources,

like SNMP traps, RFID, log file entries etc.

[The business process models can be transformed

into an executable notation of a workflow engine,

respectively a BPM platform.] Executable notations are

being standardized by OASIS as Business Process Execu-

tion Language (BPEL) or as a different standard XPDL

by the Workflow Management Coalition (WfMC). To

make a business processmodel really executable, it has to

be remodeled more fine grained directly in the BPM

platform. From the point of view of the IT department,

for example, so called compensations and exceptions

have to be modeled, if an IT-service cannot be executed

or fails. This task cannot be done by the business analyst

who does not know anything about the internals of IT

services associated with the process steps. So, in the

future as well as with the upcoming BPM platforms

and the standards a new procedure for modeling and

implementing business processes is needed. Business

analysts from the operating departments must closely

work with IT specialists, modeling the process and its

associated IT services together. This is visualized as

BPMN, but directly in an integrated modeling tool of
the BPM platform. This is enhanced by a user interface

for defining technical information (such as port-

types, ports, partnerlinks, peoplelinks etc.), which is

needed for the process execution, e.g., by a BPEL-engine.

The upcoming BPM platforms are also able to produce

events automatically when a service is called or cannot

be executed and fails and so on. These are the event types

the event modeler has to know for realizing BAM dash-

boards and enterprise cockpits.

The Event Modeler

By cooperating with the process owners of the operating

departments or even with the C-level management of

an enterprise, the event modeler has to define which

BAM view has to be monitored in a dashboard, which

alerts are to send to which roles in the organization and

which actions shall be started automatically if a certain

event pattern occurs. Derived from such BAM views,

the event modeler looks for the needed event types and

their instances flowing through the event streams of an

enterprise or that are saved in an event store. It requires

a high level of skill to define the right event patterns for

a real-time BAM view. The event modeler has to know

the different event sources like JMS messages realized

on the basis of Publish/Subscribe topics etc. He has to

install the corresponding event adapters delivered by the

1070E Event-Driven Business Process Management
CEP platform as ‘‘out of the box’’ prebuilt features or

the event modeler has to care about the development

of not yet existing adapters.
Event Processing Languages

The event modeler defines the event patterns for a

BAM view on the basis of an Event Processing Lan-

guage (EPL). At present, there is no standard for an

EPL. The CEP community, founded as a discipline at

the first CEP symposium in Hawthorne/New York

in March 2006, is discussing the right standard for

an EPL. It seems that there will be different EPL-

approaches for different domains like Algorithmic

Trading, BAM etc. At present, the CEP community is

gathering use cases and is classifying them according to

their corresponding domains [5]. The CEP platforms

come with an SQL-like language (e.g., Coral8, Esper,

Oracle, StreamBase) or provide a rule-based EPL ap-

proach (e.g., AMiT from IBM) or have an abstract user

interface that hides any language and generates code like

Java (e.g., Tibco, AptSoft).

The models of business processes and event scenarios

are deployed into a middleware platform, e.g., into an

application server, which is responsible for high avail-

ability, limitless scalability, grid computing, failover,

transparency of heterogeneous infrastructures and so on.
Relation to the Database Technology

In connection with the term ‘‘Event-Driven BPM’’,

there are two major challenges from the point of view

of database technologies.

The challenge from the BPM side is storing millions

of instances of long running business processes and

their status. An enterprise such as a bank or the auto-

motive industry has several thousand business processes

like different types of an account opening for a depot,

giro account, credit application, project budget confir-

mation etc. Each business process has several thousand

process instances like the credit application of Betty

Miller, John Smith etc. For long running processes, the

BPM platform has to keep the status of the process

instances, e.g., when waiting for the signature of Mrs.

Miller or for the confirmation of the credit conditions

by the bank. Because that can take days or weeks, there

are millions of active business processes in a certain time

window at the same time. That is the reason, for exam-

ple, for overflows of queues in current projects.
The challenge from the BAM/CEP side is processing

thousands of events per second generated by business

processes and their associated IT-services by in-mem-

ory databases, realizing time windows. A memory-cen-

tric SQL engine is designed to execute queries without

ever writing data to disk. Such an engine also provides a

persistence feature for storing the data as ‘‘historic

events’’ in an event store for later processing, i.e., for

aggregating and correlating them with the current

events of the event streams. The basic idea is to route

an event through a lot of different in-memory filters, to

see what queries it satisfies, rather than executing many

queries in sequence against disk-based data. That is a

precondition for realizing real-time BAM or the idea of

‘‘predictive business’’ [9].

Examples

If an online credit system receives 50,000 or 100,000

credit applications per day, the bank likes to monitor

the application process by typical event patterns that

signal, for example, that a credit application could be

cancelled within the next moment. In this case, the

system shall trigger an action to keep the customer.

For this purpose, the event modeler has to identify the

corresponding events. If not available from the imple-

mented process, he has to take care of the generation of

additional appropriate events. This is a demanding,

challenging task.

As another example, BAM/CEP shall send an alert

to an employee of the bank, because the loss

by cancellations exceeds a certain threshold. However,

it wouldn’t make sense to send an alert each time a

cancellation happens, because too many alerts may

result, and the VIRT problem (valuable information

at the right time [6]) arises.

Key Applications
Key applications will take place in all domains and first

projects on the basis of Event Driven BPM-platforms

just start 2008:

Logistics applications, e.g., atDHL/DeutschePost [5].

Finance applications, e.g., Deutsche Bank, Team-

Bank [2].

Telco applications, e.g., Deutsche Telekom,

T-Mobile.

Current/future research projects, e.g., «Domain

specific reference models for event patterns for a faster

set-up of BPM/BAM applications» [1].

Eventual Consistency E 1071

E

Cross-references
▶Business Activity Monitoring

▶Complex Event Processing

▶ Event Driven Architecture

▶ Event Stream Processing

▶ Service Oriented Architecture

Recommended Reading
1. Ammon R.V., Silberbauer C., and Wolff C. Domain specific

reference models for event patterns – for faster developing of

business activity monitoring applications. In Proc. VIP Symp.

on Internet Related Research, 2007.

2. Brandl H.-M. and Guschakowski D. Complex Event Processing

in the Context of Business Activity Monitoring. An Evaluation

of Different Approaches and Tools Taking the Example of the

Next Generation Easycredit. Diploma thesis, 2007. http://www.

citt-online.de/downloads/Diplomarbeit_BaGu_Final.pdf

3. Bruce Silver Associates. FileNet P8 – event-driven business

process management. Industry trend reports, June 2003. Avail-

able at: http://www.ecm-unverzichtbar.de/Repository/48/files/

69_EvBPM.pdf; http://www.complexevents.com/

4. Danielsson K. and Trotta G. Key requirements for event-driven

BPM and SOA. Available at: http://www.ebizq.net/topics/bpm/

features/8700.html

5. Emmersberger C. and Springer F. Event Driven Business Process

Management. An Evaluation of the Approach of Oracle and the

Sopera Open Source Framework. Diploma thesis, 2008. http://

www.citt-online.de/downloads/EmmSpr_Diplomarbeit_Final.

pdf

6. Hayes-Roth F. Value information at the right time (VIRT): Why

less volume is more value in hastily formed networks. Available

at: www.nps.edu/cebrowski/Docs/VIRTforHFNs.pdf, 2007.

7. Luckham D. The Power of Events: An Introduction to Complex

Event Processing in Distributed Enterprise Systems. Addison-

Wesley, Reading, MA, 2002.

8. OMG/BPMI. Business process modeling notation (BPMN) in-

formation. Available at: http://www.bpmn.org/

9. Ranadive V. The Power to Predict: How Real Time Businesses

Anticipate Customer Needs, Create Opportunities and Beat the

Competition. McGraw-Hill, New York, NY, 2006.

10. Use cases of CEP applications. Available at: http://complexe

vents.com/?cat=16
Eventual Consistency

MARC SHAPIRO
1, BETTINA KEMME

2

1INRIA Paris-Rocquencourt and LIP6, Paris, France
2McGill University, Montreal, QC, Canada

Definition
In a replicated database, the consistency level defines

whether and how the values of the replicas of a logical
object may diverge in the presence of updates. Eventual

consistency is the weakest consistency level that guar-

antees useful properties. Informally, it requires that all

replicas of an object will eventually reach the same,

correct, final value, assuming that no new updates are

submitted to the object.
Key Points
Eventual consistency is an important correctness

criterion in systems with a lazy, update-anywhere strat-

egy, also referred to as optimistic replication (q.v.).

Update operations can be submitted and executed on

any node, and the propagation of updates occurs lazily

after commit. Conflict resolution and reconciliation

must ensure that all replicas (copies) of a logical object

eventually converge to the same value. Different

objects are considered independent.

In a system where updates are continuously sub-

mitted, eventual consistency can be defined by a weak

form of schedule equivalence [1]. A schedule Sn
x

describes the sequence of update operations node n

performs on its replica of object x. An element of

the schedule of the form wi represents the execution

of an update to object x, submitted by some user. Sn
x

contains an element of the form wi , if the update wi

was received by n, but either not executed, or aborted

due to conflict resolution.

Typically, two schedules are defined equivalent

by restricting how the order of operations in the two

schedules may differ. However, for eventual consisten-

cy only the convergence of object values matters. Thus,

equivalence is defined by comparing the final state of

the replicas. Two schedules are said state equivalent

when, starting from the same initial state, they produce

the same final state. For instance: (i) schedules S =

w1w2 and S0 = w2w1 are state-equivalent if w1 and w2

commute; (ii) schedules S = w1w2 and S
0 = w2 are state-

equivalent if w2 sets the state of the object to a

completely new value (e.g., x := 2).

Eventual consistency of a replicated object x is

defined by the following conditions, which must hold

at all times, at any node n with a replica of x [1]. It is

assumed that all replicas have the same initial state.

There is a prefix of the schedule Sn
x that contains the

same operations and is state-equivalent to a prefix of

the schedule Sn0
x of any other node n0 holding a replica

of x. Such a prefix is called a committed prefix of Sn
x.

1072E Evidence Based Medicine
� The committed prefix of Sn
x grows monotonically

over time, i.e., the extant set of operations and their

relative order remains unchanged.

� For every operation wi submitted by a user,

either wi or wi eventually appears in the committed

prefix of Sn
x (but not both, and not more than

once).

� An operation of the form wi in the committed

prefix satisfies all its preconditions (e.g., the state

of the object immediately before the execution of

the operation fulfills certain conditions).

As an example, assume operation w1 sets x to 2, and w2

sets it to 5. Operation w1 is submitted and executed at

n1 while w2 is first executed at n2. At this time the local

schedules are S1 = w1 and S2 = w2 and the committed

prefix at both nodes is the empty schedule. Now w1 is

propagated to n2 and w2 is propagated to n1. When n1
receives w2, it detects that w1 and w2 are concurrent

and conflict. Say that conflict reconciliation prioritizes

one of the operations, e.g., w1. Then, w2 is simply not

executed and the new schedule is Sx1 ¼ w1w2. At n2,

when w1 arrives, the conflict is also detected, w2 is

undone, w1 is executed and the final schedule is

S2 ¼ w2w1. At this time, S1 and S2 are themselves the

committed prefixes. Note that further concurrent

operations on x might move the schedules further,

but the extensions would still be tentative and only

become committed once they are reconciled at

all replicas.

Cross-references
▶Concurrency Control – Traditional Approaches

▶Data Replication

▶Distributed Concurrency Control

▶Distributed database systems

▶Middleware Support for Database Replication and

Caching

▶One-Copy-Serializability

▶Optimistic Replication and Resolution

▶Replica freshness

▶Replicated Database Concurrency Control

▶ Strong Consistency Models for Replicated Data

▶WAN Data Replication

▶Weak Consistency Models for Replicated Data
Recommended Reading
1. Saito Y. and Shapiro M. Optimistic replication. ACM Comput.

Surv., 37(1):42–81, 2005.
Evidence Based Medicine

MICHAEL WEINER

Indiana University School of Medicine, Indianapolis,

IN, USA

Synonyms
Evidence based practice; Scientific medicine

Definition
Evidence based medicine (EBM) is the ‘‘conscientious,

explicit, and judicious use of current best evidence

in making decisions about the care of individual

patients’’ [1].

Key Points
Although medical practice is historically based on ob-

servation and best attempts at scientific method, early

medical practices often involved trial and error or

observations of one or a few cases. In the last century,

advances in research, experience, technology, and com-

munications have moved medicine more towards

practice based on established evidence.

Individuals especially responsible for promoting,

developing, describing, and discussing EBM have

included Archie Cochrane, David Sackett [4], and

Gordon Guyatt [2]. The international Cochrane Col-

laboration [3] has emerged to continue to advance

EBM throughout the world. This and several other

organizations, such as the US Preventive Services

Task Force [1], have assembled, analyzed, and graded

collections of medical evidence. Specific evidence

reported from such groups often has gradings that

indicate the strength of evidence about a topic, based

on quality or scope of methods, statistics, reproduc-

ibility of findings, etc.

The representation of medical evidence in informa-

tion systems or databases can assume various forms,

especially because the type of evidence is likely to vary

substantially from one topic to the next. Nevertheless,

the use of standard clinical research methods, such as

randomized controlled trials, survival analysis, and

meta-analysis, can facilitate knowledge management

and representation by limiting the types of informa-

tion that need to be stored or communicated. Auto-

mated extraction of medical knowledge from research

reports may benefit from natural language processing

when reports are not more structured.

Executable Knowledge E 1073

E

EBM has several positive aspects. It can help to

increase adherence to clinical guidelines and minimize

variations in medical practice that may be viewed as

too large or experimental. It can help to reduce dispa-

rities and establish a minimum standard of care for a

population. To some degree, EBM seems to hold prac-

titioners and researchers more accountable for their

actions and pursuits and also distributes the knowl-

edge among a larger group of professionals and con-

sumers. EBM promotes the development of further

research.

Overreliance on EBM may stifle creativity, or it

may fail to take into account an individual’s prefer-

ences or characteristics that may not ‘‘fit the mold’’ or

may require special handling not covered by a guide-

line or established evidence. Thus, practicing EBM

requires the ability to find, understand, interpret, and

appropriately apply evidence with individual patients

or groups. The Internet is increasingly a useful source

of EBM knowledge, via databases, literature reviews,

and communications.

The rise of EBM has been associated with

corresponding local and federal health policies. For

example, medical institutions may prohibit certain

procedures without adequate evidence of benefit. Not

only the practice of medicine, but the reimbursement

of modern medical care, often depends on evidence.

Cross-references
▶Classification

▶Clinical Data Acquisition, Storage and Management

▶ Indexing of Data Warehouses

▶ Information Extraction

▶ Storage Management

▶Text Mining

▶Visual Content Analysis

▶Web Information Extraction

Recommended Reading
1. Agency for Healthcare Research and Quality. U.S. Preventive

Services Task Force (USPSTF). 2007. Available online at http://

www.ahcpr.gov/clinic/uspstfix.htm (accessed Aug 30, 2007).

2. Evidence-Based Medicine Working Group. Evidence-based

medicine. A new approach to teaching the practice of medicine.

JAMA. 268(17):2420–2425, 1992.

3. The Cochrane Collaboration. The Cochrane Collaboration.

2007. Available online at http://www.cochrane.org/ (accessed

Aug 30, 2007).

4. Sackett D.L., Rosenberg W.M., Gray J.A., Haynes R.B., and

Richardson W.S. Evidence based medicine: what it is and what

it isn’t. BMJ. 312(7023):71–72, 1996.
Evidence Based Practice

▶ Evidence Based Medicine
Evolutionary Algorithms

▶Genetic Algorithms
Evolutionary Computation

▶Genetic Algorithms
Evolutionary Semantics

▶ Emergent Semantics
Exactly Once Execution

▶Application Recovery
Executable Knowledge

MOR PELEG

University of Haifa, Haifa, Israel

Synonyms
Computer-interpretable formalism; Knowledge-based

systems

Definition
Executable knowledge is represented in a symbolic

formalism that can be understood by human beings

and interpreted and executed by a computer program.

It allows a computer program to match case data to the

knowledge, reason with the knowledge, select recom-

mended actions that are specific to the case data, and

deliver them to users. Executed knowledge can be

delivered in the form of advice, alerts, and reminders,

and can be used in decision-support or process

management.

1074E Executable Knowledge
Historical Background
Representing knowledge in a computer-interpretable

format and reasoning with it so as to support humans

in decision making started to be developed by

the artificial intelligence community in the 1970s.

According to Newell [6], knowledge is separate from

its representation. At the knowledge level, an agent has

as parts bodies of knowledge, actions, and goals. An

agent processes its knowledge to determine the actions

to take. An agent, behaving through the principal of

rationality, selects those actions that attain his goals.

Representing knowledge in a symbolic way (i.e., data

structures and algorithms) allows the expression of

knowledge in a way that would be understandable

by humans and would allow people and computer

programs to reason with the knowledge and select

actions in the service of goals. According to Davis

et al. [1], knowledge representation serves five roles:

(i) a surrogate to enable an entity to determine the

consequences of thinking, (ii) a set of ontological

commitments about how and what to see in the

world, (iii) a fragmentary theory of intelligent

reasoning, (iv) a medium for efficient computation,

and (v) a medium for human expression.

Research on knowledge representations started to

evolve in the 1970s with rule-based systems. One of

the most famous rule-based systems is Mycin [11].

This system represented clinical knowledge about di-

agnosis and treatment of infectious diseases and

allowed clinician users to enter patient findings and,

through execution of the if-then-else rules, arrive at

probable diagnoses and appropriate treatments. In

the 1980s decision-theoretic models, such as Bayesian

Networks, influence diagrams, and decision trees [7]

started to become popular ways of representing and

reasoning with decision knowledge in a probabilistic

way, under uncertainty.

By the late 1980s, researchers started to realize the

importance of integrating knowledge-based systems

with databases. In this way, the case data coming

from a database could drive the execution of encoded

knowledge. An example of an early formalism that

addressed data integration is the Arden Syntax

for Medical Logic Modules (MLMs) [4], discussed in

detail below.

In the 1990, ontologies [3] were developed to for-

malize a shared understanding of a domain. In knowl-

edge engineering, the term ontology is used to mean

definitions of concepts in a domain of interest and the
relationships among them (‘‘a specification of a con-

ceptualization of a domain’’ [3]). An ontology enables

software applications and humans to share and reuse

the knowledge consistently. Ontologies, as represented

in a formal language such as frames or description

logic, allow logical inference over the set of concepts

and relationships to provide decision support and

explanation facilities. Ontologies are much more

maintainable than rule-based systems. In rule-based

systems, the knowledge is represented as individual

rules. It is difficult to foresee the affect of addition,

deletion, or modification of a rule on the performance

of the rule-based system. This problem is solved by

ontologies. Research in the 1990s, led by Musen [5],

addressedmodeling of domain knowledge and problem-

solving methods as ontologies that could be combined

together, such that a problem solving method could be

applied to several domain ontologies, and decision-

support systems in a single domain could utilize sever-

al generic problem-solving methods.

In the 1990s, a new generation of executable

knowledge-based systems started to be developed by

two separate communities: the medical informatics

community and the business process community.

The common theme to the new developments by

both of these communities was that the executable

knowledge was no longer representing individual deci-

sions, but rather a process that unfolds over time and

includes many activities, and the fact that the knowl-

edge-based process system had to be integrated with

other systems in the organization. The process model-

ing languages in both communities were developed as

ontologies.

Foundations
Executable knowledge formalisms were developed

by several communities, including the artificial intelli-

gence community, the medical informatics communi-

ty, and the business process management community.

The rest of this article reviews work done by the medi-

cal informatics and business process communities.

Following the success of rule-based decision-

support systems, and at the same time, recognizing

the advantages of linking a knowledge-based system

to case data, a standard for encoding individual medi-

cal decisions, known as the Arden Syntax for Medical

Logic Modules (MLMs) [4], was defined in 1989.

Arden Syntax was developed initially under the

sponsorship of the American Society for Testing and

Executable Knowledge E 1075

E

Materials and subsequently of Health Level Seven

(HL7). Arden Syntax is a published as an American

National Standards Institute (ANSI) standard. MLMs,

in Arden Syntax, define decision logic via a knowledge

category that has data, evoke, logic, and action slots.

The event, logic and action slots specify respectively

the events that trigger the MLM (e.g., storage of a new

serum potassium test result into a database), the logi-

cal criterion that is evaluated (e.g., serum potassium

value <3.5), and the action that is performed if the

logical criterion holds, which is often an alert or re-

minder (e.g., potassium replacement therapy). The

data slot specifies mappings between the specific data-

base records and the MLM’s variables. However,

only part of this specification is defined by the syntax,

as it does not contain standard terminology or a data

model for electronic medical records.

In the 1990s, decision-support systems whose

knowledge is based on evidence-based clinical guide-

lines started to be developed. Clinical guidelines are

recommendations that are developed by healthcare

organizations based on evidence from clinical trials,

and are aimed at assisting practitioner and patient

decisions about appropriate healthcare for specific

clinical circumstances. Unlike individual clinical deci-

sions, such as MLMs, clinical guidelines involve

multi-step decisions and actions that unfold over

time. Guideline-based decision-support systems help

clinicians in the process of patient care, including

decision making and task management. These systems

are based on process-flow ontologies termed Task-

Network Models (TNM) [10] – a hierarchical decom-

position of guidelines into networks of component

tasks that unfold over time. The task types vary in

different TNMs, yet all of them support modeling of

medical actions, decisions, and nested tasks. These

models contain computer-interpretable specifications

of decision criteria and clinical actions that enable

an execution engine to interpret the guideline repre-

sentation and execute it for a given patient case data.

Important themes in executable guideline models

include the ability of some of them to integrate with

electronic databases (e.g., electronic health record sys-

tems (EHR)), using standard terminologies to express

medical actions (e.g., laboratory tests, drug prescrip-

tions) and patient data items upon which decision

criteria are written, using standard expression lan-

guages for writing decision criteria, and using messag-

ing standards for exchange of (clinical) data.
In 2003, researchers from six groups that developed

TNMs participated in a study that compared their

models using two clinical guidelines that served as

case studies [10]. The TNMs studied were Asbru,

EON, GLIF, Guide, PRODIGY, and PROforma. An

example of a guideline model represented in GLIF

is shown in Fig. 1. Although these formalisms all depict

a guideline as a TNM, they each have their own

emphasis. Asbru emphasizes specifying intentions as

temporal patterns; EON views the guideline model as

the core of an extensible set of models, such as a model

for performing temporal abstractions. EONuses a task-

based approach to define decision-support services

that can be implemented using alternative techniques;

GLIF emphasizes the ability to share and integrate

guideline specifications among software tools and

implementing institutions; GUIDE focuses on integra-

tion with organizational workflow using a workflow-

based model and linkage to decision-theoretic models,

PRODIGY (a project that is no longer active) aimed at

producing the simplest, most readily comprehensible

model necessary to represent chronic disease manage-

ment guidelines. It models guidelines as decision maps

organized as a collection of clinical contexts; in each

context, selection among relevant clinical actions is

made; PROforma advocates the support of safe guide-

line-based decision support and patient management

by combining logic programming and object-oriented

modeling. Its syntax and semantics are formally de-

fined. One aim of the PROforma project is to explore

the expressiveness of a deliberately minimal set of

modeling constructs: actions, compound plans, deci-

sions, and inquiries of patient data from a user.

The study compared the TNM models in term of

eight components that capture the structure of com-

puterized guidelines: (i) organization of guideline

plans, (ii) goals, (iii) model of guideline actions, (iv)

decision model, (v) expression language, (vi) data in-

terpretation/abstractions, (vii) medical concept model,

and (viii) patient information model.

The purpose of the study was to find consensus

among the different formalisms that could be a starting

point for creating a standard computerized guideline

formalism. Differences between the guideline model-

ing languages were most apparent in underlying deci-

sion models (ranging from simple switching constructs

to argumentation rules for and against decision alter-

natives, and even use of decision-theoretic models

such as influence diagrams and decision trees), goal

Executable Knowledge. Figure 1. Part of a GLIF model for a Diabetic Foot guideline, modeled using the Protégé-200

tool. Squares denote actions, diamonds – patient state steps, hexagons – decisions. The bottom part of the figure

shows the computable specification of the decision step ‘‘Limb-threatening Infection.’’ The decision criterion is based

on values of patient data items. Each patient data item is defined using a concept code taken from a controlled medical

vocabulary (Unified Medical Language System (UMLS) in this case) and by a patient data model class (e.g., Observation)

taken from a data model source, such as Health Level 7’s Reference Information Model (RIM).

1076E Executable Knowledge

Executable Knowledge E 1077

E

representation, use of scenarios (as a plan component

that defines a particular patient management context

that serves as entry points into guidelines), and

structured medical actions which could be mapped

into controlled vocabulary terms.

Consensus was found in plan organization (plans

could be nested and structured as plan components

arranged in sequence, in parallel, and in iterative and

cyclic structures), expression language for specifying

and sharing decision and eligibility criteria, patient

state definitions, and preconditions on system actions,

conceptual medical record model, medical concept

model, and data abstractions (i.e., definitions of ab-

stract terms using mathematical functions of other con-

cepts, temporal abstractions, and concept hierarchies

that allow reasoning at different levels of the hierarchy).

The HL7 Clinical Decision Support Technical

Committee (CDSTC) has focused on standardization of

two of the components for which consensus was found:

expression language and conceptual virtual medical re-

cord(vMR)model.Theobject-orientedguidelineexpres-

sion language, GELLO [12], is an extensible guideline

expression languagethatcanbeusedfor formallydefining

decision and eligibility criteria, as well as patient states. It

isbasedontheObjectConstraintLanguage(OCL)(http://

www-306.ibm.com/software/rational/uml/resources/

documentation.html). In 2004, it was established as a

standard of HL7. The CDSTC started the process of

standardizing a vMR, based on experiences with the pa-

tient information models of PRODIGY, EON and the

HL7RIM,which isalso thebasisofGLIF’sdefaultpatient

informationmodel. An object oriented vMRwould ease

the process of mapping guideline patient data items to

real EMRs, allowing decision criteria, eligibility criteria

andpatient states tobedefinedby inguidelinemodels by

reference to theVMR rather than specific EMRs.

The second community that started to develop a

new generation of executable knowledge-based systems

is the business process management community.

Workflow management systems started to be devel-

oped based on workflow formalisms that define a

model of business processes and a model of the orga-

nization, including its individual actors, roles, organi-

zational units, and resources that participate in

workflow activities. Several industrial groups defined

standards for workflows. The Web Services Business

Process Execution Language (BPEL) by the Advanced

Open Standards for the Information Society (OASIS),
is an executable formalism where the business process

behavior is based on Web Services. XML Process Defi-

nition Language (XPDL) is a standard that is under

development since 1998 by the WorkflowManagement

Coalition – An industry group dedicated to creating

software standards for workflow applications. The goal

of XPDL is to store and exchange the process diagrams

among different workflow tools, including workflow

modeling tools (editors) and workflow engines. In

2004 the Workflow Management coalition endorsed

the graphical workflow standard called Business Pro-

cess Modeling Notation (BPMN) developed by Object

Management Group, to standardize the way that pro-

cess definitions are visualized.

The business process management community has

developed many tools that enable modeling, analyzing,

verifying, simulating, and executing a business process.

While the medical informatics community devoted

much research to supporting clinical decision making

in addition to patient care task management, the busi-

ness process community made much progress on

modeling task management within an organization,

where the business process often involves many de-

partmental units and organizational roles. Workflow

systems aim to help in resource management, a task

that is not addressed by current executable guideline

systems.

Key Applications
A generic free and open-source tool for creating

ontologies, or knowledge-bases, is Protégé (http://pro-

tege.stanford.edu). The Protégé platform supports two

main ways of modeling ontologies via the frames and

Ontology Web Language (OWL) formalisms. Protégé is

implemented in the Java programming language and is

extensible. Protégé-frames knowledge bases could

be reasoned with several rule-engines, such as Jess and

Algernon. Additionally, the Protégé Axiom Language

could be used to define first-order-logic constraints

and check them for instances in the knowledge base.

Several reasoners can be used with Protégé-OWL to

classify instances or classes according to class definitions

and class hierarchies. They include the commercial

product Racer, and the commonly used free reasoners

Pellet and Factþþ. The SWRL rule-based engine could

also be used to reason with Protege-OWL.

The Arden Syntax for Medical Logic Modules

has been applied by universities such as Columbia

1078E Executable Knowledge
University Medical School and by several health infor-

mation systems vendors, such as Micromedex, Eclypsis

Corporation, McKesson Information Solutions, and

Siemens Medical Solutions Health Services Corpora-

tion to create MLMs that deliver clinical recommenda-

tions in the form of alerts and reminders. MLMs are

being used by many clinical institutions in the United

States (see http://cslxinfmtcs.csmc.edu/hl7/arden/ for a

partial list). The Department of BioMedical Informat-

ics at Columbia University developed a knowledge-

base of over 240 MLMs that are now available from

http://cslxinfmtcs.csmc.edu/hl7/arden/.

Many tools exist to support guideline development,

modeling, verification, and execution [2,8]. Asbru

modeling tools include Delt/A (http://ieg.ifs.tuwien.

ac.at/projects/delta/) and URUZ, both focusing on

easing the transition from narrative to formal repre-

sentations via a mark-up stage, AsbruView (http://

www.ifs.tuwien.ac.at/asgaard/asbru/tools.html), which

focuses on visualization and user interface for author-

ing, and CareVis (http://ieg.ifs.tuwien.ac.at/projects/

carevis/), which provides multiple simultaneous views

to cover different aspects of a complex underlying data

structure of treatment plans and patient data. Verifica-

tion of Asbru guidelines can be done using formal

verification methods [13]. Implementations in Asbru

were developed for diabetes, artificial ventilation, and

breast cancer guidelines.

EON guidelines can be authored in the knowledge-

modeling tool Protégé-2000 and executed by an execu-

tion engine that uses a temporal data mediator to

support queries involving temporal abstractions and

temporal relationships. A third component provides

explanation services for other components. EON has

been used to create hypertension and opiods guidelines

that are implemented in various hospitals and clinics

of the Veteran Affairs Hospital. Protégé-2000 is also the

modeling tool for GLIF guidelines. The GLIF execution

engine (GLEE) has been used to implement two guide-

lines: diabetic foot diagnosis and management and flu

vaccinations.

Guide has a new implementation of an author-

ing tool and an execution engine called NewGuide.

Guide has been used to implement guidelines for

stroke and for management of patients with heart

failure.

A number of software tools have been created

for creating, visualizing, and executing PROforma
guidelines. They include Arezzo and Tallis. Several

PROforma guidelines have been implemented and

some have undergone clinical trials to establish their

safety and utility. More information on PROforma

implementations as well as on implementations of

other guideline formalisms can be found at the open

clinical web site (www.openclinical.org) – a repository

of resources about decision support, clinical workflow

and other advanced knowledge management technol-

ogies for patient care and clinical research.

Key application for workflow management systems

include tools for modeling and executing workflows,

such as the open-source workflow tool Bonita (http://

bonita.objectweb.org), FLOWer (http://www.workflow-

download.com/workflow/flower.html), YAWL (http://

www.yawl-system.com/), and Together Workflow Edi-

tor andserver(http://www.together.at/together/prod/twe/),

and Oracle Workflow (http://www.oracle.com/tech-

nology/products/integration/workflow/workflow_fov.

html). Other tools exist for verifying [15] workflows

(Oracle Worklow). There are business process manage-

ment engines available from several vendors including

Software AG, Savvion, Lombardi, Appian, JBoss, and

Tibco.
Future Directions
The challenge of creating executable knowledge that

can be shared by multiple implementing institutions

and mapped to their information systems started to be

addressed by projects such as the Arden Syntax, GLIF,

Shareable Active Guideline Environment (SAGE) [14]

and Knowledge-Data Ontology Mapper [9], yet more

work needs to be done in this area to define how

knowledge can be authored in a way that is institu-

tion-specific and sharable.

One of the most interesting future directions

of executable knowledge concerns synergetic develop-

ment that draws upon developments made in the med-

ical informatics and the business process communities.

Such collaborations are emerging, as manifested

by health-care related workshops that are taking place

in business-process management and information sys-

tems conferences, such as the ProHealth Workshop,

which is part of the Business Process Management

conference.

Exhaustivity E 1079
Cross-references
▶Bayesian Classification

▶Ontologics

▶OWL: Web Ontology Language

▶Rule-Based classification
E

Recommended Reading
1. Davis R., Shrobe H., and Szolovits P. What is a knowledge

representation? AI Magazine, 14(1):17–33, 1993.

2. de Clercq P.A., Blom J.A., Korsten H.H.M., and Hasman A.

Approaches for creating computer-interpretable guidelines

that facilitate decision support. Artif. Intell. Med., 31:1–27,

2004.

3. Gruber T.R. Toward principles for the design of ontologies used

for knowledge sharing. Int. J. Human Comput. Stud.,

43:907–928, 1995.

4. Hripcsak G., Ludemann P., Pryor T.A., Wigertz O.B., and Clay-

ton P.D. Rationale for the arden syntax. Comput. Biomed. Res.,

27(4):291–324, 1994.

5. MusenM.A., Tu S.W., Eriksson H., Gennari J.H., and Puerta A.R.

PROTEGE-II: an environment for reusable problem-solving

methods and domain ontologies. In Proc. 13th Int. Joint Conf.

on AI, 1993.

6. Newell A. The knowledge level. AI Magazine, 2(2):1–20, 33,

1980.

7. Pearl J. Probabilistic Reasoning in Intelligent Systems. Morgan

Kaufmann, San Francisco, CA, 1988.

8. Peleg M. Guideline and workflow models. In Clinical Decision

Support – The Road Ahead, R.A. Greenes (ed.). Elsevier/Aca-

demic Press, Orlando, FL, 2006.

9. Peleg M., Keren S., and Denekamp Y. Mapping compu-

terized clinical guidelines to electronic medical records: knowl-

edge-data ontological mapper (KDOM). J. Biomed. Inform.,

41(1):180–201, 2008.

10. Peleg M., Tu S.W., Bury J., Ciccarese P., Fox J., Greenes R.A., et al.

Comparing computer-interpretable guideline models: a

case-study approach. J. Am. Med. Inform. Assoc., 10(1):52–68,

2003.

11. Shortliffe E.H. Computer-Based Medical Consultations: Mycin.

Elsevier/North Holland, New York, 1976.

12. Sordo M., Ogunyemi O., Boxwala A.A., Greenes R.A., and Tu S.

GELLO: a common expression language. Available online

at: http://cslxinfmtcs.csmc.edu/hl7/arden/2004–09-ATL/v3bal

lot_gello_aug2004.zip, 2004.

13. ten Teije A., Marcos M., Balser M., van Croonenborg J.,

Duelli C., van Harmelen F., et al. Improving medical pro-

tocols by formal methods. Artif. Intell. Med., 36(3):193–209,

2006.

14. Tu S.W., Campbell J.R., Glasgow J., Nyman M.A., McClure R.,

McClay J.P.C., Hrabak K.M., Berg D., Weida T., Mansfield J.G.,

Musen M.A., and Abarbanel R.M. The SAGE guideline model:

achievements and overview. J. Am. Med. Inform. Assoc.,

14(5):589–598, 2007.

15. van der Aalst W.M.P. The application of petri nets to

workflow management. J. Circuits Syst. Comput., 8(1):21–66,

1998.
Execution Skew

NIKOS HARDAVELLAS, IPPOKRATIS PANDIS

Carnegie Mellon University, Pittsburgh, PA, USA

Definition
Execution skew is a phenomenon observed during the

parallel evaluation of a database query, in which the

concurrent operators exhibit disparate execution

times.
Key Points
Execution skew is a phenomenon observed in the

parallel evaluation of a database query. It arises when

there are imbalances in the execution of the operators

running in parallel, resulting in some of the opera-

tors running for a longer time than others. The differ-

ences in execution times may cause some of the

processors to remain idle while others still compute a

part of the query. Execution skew can be a consequence

of other forms of skew within a query, e.g., data skew,

or arise because of temporally unavailable resources

that affect the execution speed of a unit of work. The

database system can minimize execution skew through

the careful allocation of processors to operators and

the selection of the appropriate parallel query plan.

Execution skew arises in both operator-level parallel-

ism as well as intra-operator parallelism. The interest-

ed reader is referred to [1] which presents a

classification of skew effects in parallel database

systems.
Cross-references
▶Data Skew

▶ Intra-Operator Parallelism

▶Operator-Level Parallelism
Recommended Reading
1. Märtens H. A Classification of Skew Effects in Parallel

Database Systems. In Proc. 7th Int. Euro-Par Conference, 2001,

pp. 291–300.
Exhaustivity

▶Relevance

1080E Existence Time
Existence Time

▶ Lifespan
Explicit Event

JONAS MELLIN, MIKAEL BERNDTSSON

University of Skövde, Skövde, Sweden

Definition
In active databases, an explicit event is explicitly

specified in the ECA rule definition.

Key Points
ECA rules were developed as an optimization of con-

dition action rules. The performance of rule evaluation

was improved by allowing, or even requiring, explicit

definition of when rules should be triggered in the

form of events. For example, (ON updateA follo-

wed_by updateB IF A = 5∧ B= 3 DO action) is a rule

specification that is triggered by the explicit event

updateA followed_by updateB (i.e., a sequence of

updates).

Cross-references
▶Atomic Event

▶Composite Event

▶ ECA Rules

▶ Event

▶ Event Detection

▶ Event Specification

▶ Implicit Event
Exploratory Data Analysis

HANS HINTERBERGER

ETH Zurich, Zurich, Switzerland

Definition
Exploratory Data Analysis (EDA) is an approach

to data analysis that employs a number of different

techniques to:

1. Look at data to see what it seems to say,

2. Uncover underlying structures,

3. Isolate important variables,
4. Detect outliers and other anomalies,

5. Suggest suitable models for conventional statistics.

Key Points
The term ‘‘Exploratory Data Analysis’’ was introduced

by John W. Tukey who in [2] shows how simple gra-

phical and quantitative techniques can be used to open-

mindedly explore data.

Typical graphical techniques are

1. Plotting the raw data (e.g., stem-and-leaf diagrams,

histograms, scatter plots)

2. Plotting simple statistics (e.g., mean plots, box

plots, residual plots)

3. Positioning (multiple) plots to amplify cognition

Typical quantitative techniques are

1. Interval estimation

2. Measures of location or of scale

3. Shapes of distributions

Exploratory data analysis can help to improve

the results of statistical hypothesis testing by forcing

one to look at data unbiased before formulating hypo-

theses which are subsequently tested using convention-

al statistics (confirmatory data analysis). Its techniques

allow analysts to better assess assumptions on which

statistical inference will be based and support the

selection of appropriate statistical tools. EDA can also

provide a background for further data collection.

For users of database systems it might be interesting

to note that many EDA techniques have been adopted

to support the exploration stage of data mining [1]. In

particular, they are being used to identify the most

relevant variables and to determine the complexity and

general nature of models that can be taken into account

for the model building and validation stages. Data

mining and EDA are complementary in the sense that

the former is more oriented towards applications and

the later can help understand the basic nature of the

underlying phenomena.

Cross-references
▶Data Visualization

Recommended Reading
1. Berry M.J.A. and Linoff G.S. Mastering Data Mining. Wiley,

New York, 2000.

2. Tukey J.W. Exploratory Data Analysis. Addison Wesley, Reading,

MA, 1977.

Expressive Power of Query Languages E 1081
Exploring

▶Browsing in Digital Libraries
E

Expressive Power of Query
Languages

LEONID LIBKIN

University of Edinburgh, Edinburgh, UK

Definition
The study of expressive power concentrates on com-

paring classes of queries that can be expressed in

different languages, and on proving expressibility –

or inexpressibility – of certain queries in a query

language.

Historical Background
Ever since Codd proposed relational calculus (first-order

predicate logic) as a basic relational query language,

it has been common for database query languages to

have limited expressiveness. If a language cannot express

everything computable, then it is natural to ask:

1. What queries cannot be expressed in a language L?
2. Which methods are available for proving such

results?

Furthermore, if there are two query languages L1 and

L2, one may want to compare their expressiveness: for

example, L1 ⊊ L2 means that all queries expressible in

L1 are also expressible in L2, but there are queries

expressible in L2 that are not expressible in L1.

In 1975, Fagin [4] showed that queries such as the

transitive closure of a graph and connectivity test can-

not be expressed in relational calculus. The 0-1 law for

first-order logic [5] implies that relational calculus

furthermore lacks the ability to count, which was con-

firmed by the design of SQL, that explicitly includes

counting primitives (aggregate functions). The field

of finite model theory [1,9,12] provided many tools

for studying the expressiveness of query languages: for

example, Ehrenfeucht-Fraı̈ssé games of different kinds,

locality, and automata-based techniques for more

expressive languages over special classes of structures

such as trees.

In the direction of comparing power of languages,

one of the most popular lines of work is comparing
the power of a language with the class of all queries

that have certain data complexity [3]. Classical results

along these lines include extensions of relational cal-

culus that describe familiar complexity classes such

as PTIME.

Foundations
Relational calculus and algebra have precisely the

power of first-order logic (FO) over finite relational

structures. Many classical tools from logic, however,

are inapplicable to finite structures. Investigation of

the power of FO that applies to both finite and infinite

structures was initiated by Ehrenfeucht and Fraı̈ssé

who developed the technique of Ehrenfeucht-Fraı̈ssé

games for characterizing the expressiveness of FO.

With this technique it is very easy to prove, for exam-

ple, that the parity query (is the number of elements of

a set even?) is not expressible in FO. A more compli-

cated application of Ehrenfeucht-Fraı̈ssé games shows

that the parity query is not FO-definable even over

linear orders.

While parity is a nice and simple example of a

query that involves counting, early questions about

expressiveness of relational query languages concen-

trated on queries such as the transitive closure of a

graph. For example, if a database represents a manage-

ment hierarchy, it is natural to ask whether employee x

reports to employee y. Such a query, in the absence of a

priori bounds on the possible length of a management

chain, involves transitive closure computation.

In 1975, Fagin [4] showed that graph connectivity

is not definable in FO. In fact he proved a stronger

result that it is not even definable in existential mo-

nadic second-order logic, whose formulae are of the

form ∃X1...∃Xk ’, where the Xi’s range over sets of

nodes and ’ is an FO formula. Inexpressibility of

graph connectivity implies inexpressibility of transitive

closure: had transitive closure E∗ of a graph E been

expressible, so would be connectivity by 8x8yE∗(x, y).
Early results have been proved using Ehrenfeucht-

Fraı̈ssé game techniques. Later easier techniques have

been developed, such as locality and zero-one laws.

Locality says that a formula ’(x1,...,xn) cannot ‘‘see’’

far beyond its free variables. For example, the transitive

closure is not local because in a graph with directed

edges (0, 1),(1, 2),(2, 3),...,(n � 1, n) a given formula

’(x, y) will not see the difference between pairs (j, k)

and (k, j) for j< k if the numbers k and j as well as k� j

and n � k are sufficiently large.

1082E Expressive Power of Query Languages
Zero-one laws say that asymptotically the truth

value of a sentence is almost surely false or almost

surely true. For example, parity violates this property,

as the proportion of structures of cardinality n for

which the parity query is true oscillates between

0 and 1. For surveys of these results, see [1,12].

Since FO cannot do nontrivial counting and can-

not express fixed-point computation, database theory

research looked in detail into such extensions of FO.

The simplest way to add counting is by means of

counting quantifiers ∃ix’(x) stating that there are at

least iwitnesses x of ’(x). For example, one can express

that the number of witnesses of ’(x) is even as ∃i∃!ix
’(x) ∧∃j (j + j = i), where ∃!ix ’(x) says that the

number of witnesses is exactly i (it is defined as ∃ix
’(x) ∧∃j(∃jx ’(x) ∧ j > i)).

One can then prove that such an extension of FO is

still local, which means, in particular, that queries such

as transitive closure and graph connectivity are not

expressible. However, this form of counting is very

different from the usual one in SQL, such as aggregate

functions together with GROUPBY and HAVING clauses.

These can be modeled by adding more powerful arith-

metic and aggregate terms to FO. The idea is that if

there are some aggregate functions F 1;:::;F k (such as

MIN, SUM, AVG), one can have expressions of the form

AGGRl ½i1 : F 1;:::;ik : F k
ðeÞ

whose semantics is basically that of the following SQL

query:

SELECT #1,...,#m;F 1(#i1),...,F k(#ik)

FROM E

GROUPBY #1,...,#l

where E is the result of the expression e, which is

assumed to produce a relation with m attributes

[10,11]. In fact even more general aggregate terms

could be permitted, and even with them, the resulting

queries that are expressed in such an extension remain

local. Hence, even aggregate extensions of FO cannot

express fixed-point computations required to compute

queries such as the transitive closure [11].

However, for this result it is essential that no opera-

tions are permitted on the domain of graph nodes;

for example, one cannot compare them and say a <

b. If an ordering is available, then even with very

basic aggregate functions, proving inexpressibility of

transitive closure is at least as hard as solving some
long-standing open problems related to separation of

complexity classes.

Another well-studied extension of FO is that with

fixed-point operators. For example, the following

Datalog program computes the transitive closure of a

graph represented by the edge relation e:

trclðx; yÞ : � eðx; yÞ
trclðx; yÞ : � eðx; zÞ;^trclðz; yÞ

This could also be expressed as a least fixed-point for-

mula LFPR,x,y (E(x, y) ∨∃z(E(x, z) ∧ R(z, y))), which

computes the least fixed-point of the operator that

sends each binary relation R to the relation F(R) =

E [E ∘ R, where ∘ is the relational composition.

For such formulae, it is essential that R occur posi-

tively (under an even number of negations), but many

different flavors of datalog and fixed-point logics are

known, which permit more flexible syntax and fewer

restrictions (often at the expense of a more compli-

cated semantics).

It was proved that such an extension of FO with

least fixed-point still has the zero-one law [2]. In par-

ticular, the parity query cannot be defined in it. In fact

this continues to hold for more powerful fixed-point

operators.

But similarly to the case of aggregates, the situation

changes dramatically if a linear ordering is allowed on

the domain. In that case, the Immerman-Vardi theo-

rem states that the least-fixed-point extension of FO

captures precisely the class of queries with PTIME data

complexity [8,14]. And various other fixed-point

logics have been proposed to capture complexity clas-

ses such as DLOGSPACE, NLOGSPACE, PSPACE over

ordered structures [9].

This gives rise to a natural question whether it is

possible to find a logical query language that captures

polynomial-time queries over unordered structures.

This question, asked for the first time in [3], remains

open, despite multiple attempts to solve it. For exam-

ple, adding both fixed-point operators and counting

still falls short of polynomial time. See Chapts. 1 and

2 in [6] for surveys. There are some positive results

when the class of structures is restricted: for example, a

different (inflationary) fixed-point operator together

with counting captures polynomial time on the class of

all unordered planar graphs [7].

Questions related to the expressive power of query

languages have been addressed for other data models as

Extended Entity-Relationship Model E 1083

E

well. Results on aggregates are closely related to the

expressiveness of relational languages under the bag

(multiset) semantics. Many results about expressiveness

of languages for nested relations can be derived from the

conservativity theorem of [15] stating a query from

relations to relations, even if it is expressed with the

help of the operators of nested relational algebra, can

be expressed in FO without any such operators. Similar

in flavor conservativity results have been proved for

constraint databases, and extensions of relational cal-

culus with various constraints, such as polynomial (in)

equalities over the reals (see Chapt. 5 of [6]).

Questions related to the expressive power of query

languages are also actively studied in the context of

XML and query languages for unranked trees (see, e.g.,

[13] for an overview).

Key Applications
The inability of relational calculus (and more generally

its extension with aggregation) to express fixed-point

queries was behind the addition of recursive constructs

to SQL3. For example, to find all descendants of a node

a in a graph represented by a relation Graph(source,

destination), one can write in SQL3:

WITH RECURSIVE TrCl(ancestor,

descendant) AS

((SELECT source as ancestor, desti

nation as descendant FROM Graph)

UNION

(SELECT Graph.source as ancestor,

TrCl.descendant

FROM Graph, TrCl

WHERE Graph.destination = TrCl.

ancestor)

)

SELECT descendant FROM TrCl where

ancestor=‘a’

Often it is the understanding of the expressiveness

of a language that guides the design of additional

features.

Cross-references
▶Aggregation

▶Data Complexity

▶Datalog

▶ Ehrenfeucht-Fraı̈ssé Games

▶ Locality

▶Zero-One Laws
Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases,

Addison-Wesley, Reading, MA, 1995.

2. Blass A., Gurevich Y., and Kozen D. A zero-one law for logic with

a fixed-point operator. Inform. Control, 67:70–90, 1985.

3. Chandra A. and Harel D. Structure and complexity of relational

queries. J. Comput. Syst. Sci., 25:99–128, 1982.

4. Fagin R. Monadic generalized spectra. Zeitschrift für Mathema-

tische Logik und Grundlagen der Mathematik, 21:89–96, 1975.

5. Fagin R. Probabilities on finite models. J. Symbolic Logic,

41:50–58, 1976.

6. Grädel E., Kolaitis Ph., Libkin L., Marx M., Spencer J.,

Vardi M.Y., Venema Y., and Weinstein S. Finite Model Theory

and its Applications. Springer, Berlin, 2007.

7. Grohe M. Fixed-point logics on planar graphs. In Proc. IEEE

Symposium on Logic in Computer Science, 1998, pp. 6–15.

8. Immerman N. Relational queries computable in polynomial

time (extended abstract). In Proc. ACM Symposium on Theory

of Computing, 1982, pp. 147–152.

9. Immerman N. Descriptive Complexity. Springer, Berlin, 1998.

10. Klug A. Equivalence of relational algebra and relational calculus

query languages having aggregate functions. J. ACM,

29:699–717, 1982.

11. Libkin L. Expressive power of SQL. Theor. Comput. Sci.,

296:379–404, 2003.

12. Libkin L. Elements of Finite Model Theory. Springer, Berlin,

2004.

13. Libkin L. Logics for unranked trees: an overview. Logic. Methods

Comput. Sci., 2(3), 2006.

14. Vardi M.Y. The complexity of relational query languages. In

Proc. ACM Symposium on Theory of Computing, 1982,

pp. 137–146.

15. Wong L. Normal forms and conservative extension properties

for query languages over collection types. J. Comput. Syst. Sci.,

52:495–505, 1996.
Extended Entity-Relationship Model

BERNHARD THALHEIM

Christian-Albrechts University Kiel, Kiel, Germany

Synonyms
EERM, HERM; Higher-Order Entity-Relationship

Model; Hierarchical Entity-Relationship Model

Definition
The extended entity-relationship (EER) model is a

language for defining the structure (and functionality)

of database or information systems. Its structure is

developed inductively. Basic attributes are assigned to

base data types. Complex attributes can be constructed

by applying constructors such as tuple, list or set

1084E Extended Entity-Relationship Model
constructors to attributes that have already been con-

structed. Entity types conceptualize structuring of

things of reality through attributes. Cluster types gen-

eralize types or combine types into singleton types.

Relationship types associate types that have already

been constructed into an association type. The types

may be restricted by integrity constraints and by speci-

fication of identification of objects defined for a type.

Typical integrity constraints of the extended entity-

relationship model are participation, look-across, and

general cardinality constraints. Entity, cluster, and re-

lationship classes contain a finite set of objects defined

on these types. The types of an EER schema are typi-

cally depicted by an EER diagram.

Historical Background
The entity-relationship (ER) model was introduced by

P.P. Chen in 1976 [1]. The model conceptualizes and

graphically represents the structure of the relational

model. It is currently used as the main conceptual

model for database and information system develop-

ment. Due to its extensive usage a large number of

extensions to this model were proposed in the 80s and

90s. Cardinality constraints [1,3,4,8] are the most im-

portant generalization of relational database con-

straints [7]. These proposals have been evaluated,

integrated or explicitly discarded in an intensive re-

search discussion. The semantic foundations proposed

in [2,5,8] and the various generalizations and exten-

sions of the entity-relationship model have led to the

introduction of the higher-order or hierarchical entity-

relationship model [8] that integrates most of the

extensions and also supports conceptualization of

functionality, distribution [9], and interactivity [6]

for information systems. Class diagrams of the UML

standard are a special variant of extended entity-

relationship models.

The ER conferences (annually; since 1996: Interna-

tional Conference on Conceptual Modeling, http://

www.conceptualmodeling.org/) are the main fora for

conceptual models and modeling.

Foundations
The extended entity-relationship model is mainly used

as a language for conceptualization of the structure of

information systems applications. Conceptualization

of database or information systems aims to represent

the logical and physical structure of an information

system. It should contain all the information required
by the user and required for the efficient behavior of

the whole information system for all users. Conceptu-

alization may further target the specification of data-

base application processes and the user interaction.

Structure descriptions are currently the main use of

the extended ER model.

An Example of an EER Diagram

The EER model uses a formal language for schema

definition and diagrams for graphical representation

of the schema. Let us consider a small university appli-

cation for management of Courses. Proposed courses are

based on courses and taught by a docent or an external

docent within a certain semester and for a set of pro-

grams. Proposals typically include a request for a room

and for a time and a categorization of the kind of the

course. These proposals are the basis for course

planning. Planning may change time, room and kind.

Planned courses are held at the university. Rooms may

be changed. The example is represented by the EER

diagram in Fig. 1.

Entity types are represented graphically by rectangles.

Attribute types are associated with the corresponding

entity or relationship type. Attributes primarily identify-

ing a type are underlined. Relationship types are rep-

resented graphically by diamonds and associated by

directed arcs to their components. A cluster type is repre-

sented by a diamond, is labeled by the disjoint union

sign, and has directed arcs from the diamond to its com-

ponenttypes.Alternatively, thedisjointunionrepresenta-

tion ⊕ is attached to the relationship type that uses
the cluster type. In this case directed arcs associate the
⊕ sign with component types. An arc may be annotated
witha label.

The Definition Scheme for Structures

The extended entity-relationship model uses a data

type system for its attribute types. It allows the con-

struction of entity types E ≗ (attr(E), SE) where E is

the entity type defined as a pair – the set attr(E) of

attribute types and the set SE of integrity constraints

that apply to E. The definition def of a type T is

denoted by T ≗ def.

The EERmodel lets users inductively build relation-

ship types R ≗ (T1,...,Tn, attr(R), SR) of order i (i � 1)

through a set of (labeled) types of order less than i, a set

of attribute types, and a set of integrity constraints that

apply to R. The types T1,...,Tn are the components of

the relationship type. Entity types are of order 0.

Extended Entity-Relationship Model. Figure 1. Extended Entity-Relationship Diagram for Course Management.

Extended Entity-Relationship Model E 1085

E

Relationship types are of order 1 if they have only entity

types as component types. Relationship types are of

order i if all component types are of order less than i

and if one of the component types is of order i � 1.

Additionally, cluster types C¼� T 1 [
	
:::[

	
Tn of

order i can be defined through a disjoint union [
	
of

relationship types of order less than i or of entity types.

Entity/relationship/cluster classes T C contain a set

of objects of the entity/relationship/cluster type T. The

EER model mainly uses set semantics, but (multi-)list

or multiset semantics can also be used. Integrity con-

straints apply to their type and restrict the classes. Only

those classes are considered for which the constraints

of their types are valid. The notions of a class and of a

type are distinguished. Types describe the structure

and constraints. Classes contain objects.

The data type system is typically inductively con-

structed on a base type B by application of constructors

such as the tuple or products constructor (..), set con-

structor {..}, and the list constructor < .. >. Types may

be optional component types and are denoted by [..].

The types T can be labeled l : T. The label is used as

an alias name for the type. Labels denote roles of the

type. Labels must be used if the same type is used

several times as a component type in the definition of

a relationship or cluster type. In this case they must be

unique.

An entity-relationship schema consists of a set of

data, attribute, entity, relationship, and cluster types

which types are inductively built on the basis of the

base types.

Given a base type system B. The types of the ER

schema are defined through the type equation:
T ¼ Bjðl1 : T ; :::; ln : TÞ jfTg j < T > j ½T
 jT[
	
Tjl :

T jN ¼� T

Structures in Detail

The classical four-layered approach is used for induc-

tive specification of database structures. The first layer

is the data environment, called the basic data type

scheme, which is defined by the system or is the

assumed set of available basic data types. The second

layer is the schema of a database. The third layer is the

database itself representing a state of the application’s

data often called micro-data. The fourth layer consists

of the macro-data that are generated from the micro-

data by application of view queries to the micro-data.

Attribute Types and Attribute Values The classical ER

model uses basic (first normal form) attributes. Com-

plex attributes are inductively constructed by applica-

tion of type constructors such as the tuple constructor

(..), set constructor {..}, and the list constructor < .. >.

Typical base types are integers, real numbers, strings,

and time. Given a set of names N and a set of base

types B, a basic attribute type A :: B is given by an

(attribute) name A 2 N and a base type B. The associ-

ation between the attribute name and the underlying

type is denoted by ::. The base type B is often called the

domain of A, i.e., dom(A) = B. Complex attributes are

constructed on base attributes by application of the

type constructors. The notion of a domain is extended

to complex attributes, i.e., the domain of the complex

attribute A is given by dom(A). Components of com-

plex attributes may be optional, e.g., the Title in the

attribute Name.

1086E Extended Entity-Relationship Model
Typical examples of complex and basic attributes

in Fig. 1 are

Name ≗ (FirstNames <FirstName>, FamName,

[AcadTitles], [FamilyTitle]),

PersNo ≗ EmplNo [
	
SocSecNo,

AcadTitles ≗ {AcadTitle},

Contact≗ (Phone({PhoneAtWork}, private), Email, URL,

WebContact, [Fax({PhoneAtWork})]),

PostalAddress ≗ (Zip, City, Street, HouseNumber) for

DateOfBirth :: date, AcadTitle :: acadTi-

tleType, FamilyTitle :: familyTitleAcro-

nym, Zip :: string7, SocSecNo :: string9,

EmplNo :: int, City :: varString, Street ::

varString, HouseNumber :: smallInt.

The complex attribute Name is structured into a se-

quence of first names, a family name, an optional

complex set-valued attribute for academic titles, and

an optional basic attribute for family titles. Academic

titles and family titles can be distinguished from each

other.

Entity Types and Entity Classes Entity types are char-

acterized by their attributes and their integrity con-

straints. Entity types have a subset K of the set of

attributes which serve to identify the objects of the

class of the type. This concept is similar to the concept

of key known for relational databases. The key

is denoted by ID(K). The set of integrity constraints

SE consists of the keys and other integrity constraints.

Identifying attributes may be underlined instead of

having explicit specification.

Formally, an entity type is given by a name E, a set

of attributes attr(E), a subset id(E) of attr(E), and a set

SE of integrity constraints, i.e.,

E ≗ (attr(E), SE).

The following types are examples of entity types

in Fig. 1:

Person ≗ ({Name, Login, URL, Address, Contact,

DateOfBirth, PersNo})

Course ≗ ({CourseID, Title, URL}, {ID({CourseID})}),

Room ≗ ({Building, Number, Capacity}, {ID({Building,

Number})}),

Semester ≗ ({Term, Date(Starts, Ends)}, { ID({ Term })}).

An ER schema may use the same attribute name with

different entity types. For instance, the attribute URL

in Fig. 1 is used for characterizing additional informa-

tion for the type Person and the type Course. If they
need to be distinguished, then complex names such as

CourseURL and PersonURL are used.

Objects on type E are tuples with the components

specified by a type. For instance, the object (or entity)

(HRS3, 408A, 15) represents data for the Room entity

type in Fig. 1.

An entity class EC of type E consists of a finite set of

objects on type E for which the set SE of integrity

constraints is valid.

Cluster Types and Cluster Classes A disjoint union [
	

of types whose identification type is domain compati-

ble is called a cluster. Types are domain compatible if

they are subtypes of a common more general type. The

union operation is restricted to disjoint unions since

identification must be preserved. Otherwise, objects in

a cluster class cannot be related to the component

classes of the cluster type. Cluster types can be consid-

ered as a generalization of their component types.

A cluster type (or ‘‘category’’)

C¼� l1 : R1 [
	
l2 : R2 [

	
:::[

	
lk : Rk is the (labeled) dis-

joint union of types R1; :::;Rk . Labels can be omitted if

the types can be distinguished.

The following type is an example of a cluster type:

Teacher ≗ ExternalDocent : CollaborationPartner [
	

Docent : Professor.

The cluster class CC is the ‘disjoint’ union of the sets

RC
1 ;:::;R

C
k . It is defined if R1

C,...Rk
C are disjoint on their

identification components. If the sets RC
1 ;:::;R

C
k are not

disjoint then labels are used for differentiating the

objects of clusters. In this case, an object uses a pair

representation (li,oi) for objects oi from Ri
C.

Relationship Types and Relationship Classes First

order relationship types are defined as associations

between entity types or clusters of entity types. Rela-

tionship types can also be defined on the basis of

relationship types that are already defined. This con-

struction must be inductive and cannot be cyclic.

Therefore, an order is introduced for relationship

types. Types can only be defined on the basis of types

which have a lower order. For instance, the type Pro-

fessor in Fig. 1 is of order 1. The type ProposedCourse is

of order 2 since all its component types are either entity

types or types of order 1. A relationship type of order i

is defined as an association of relationship types of

order less than i or of entity types. It is additionally

required that at least one of the component types is of

Extended Entity-Relationship Model E 1087

E

order i � 1 if i > 1. Relationship types can also be

characterized by attributes. Relationship types with

one component type express a subtype or an Is-A

relationship type. For instance, the type Professor is a

subtype of the type Person.

Component types of a relationship type may be

labeled. Label names typically provide an understand-

ing of the role of a component type in the relationship

type. Labeling uses the definition scheme Label : Type.

For instance, the Kind entity type is labeled by Proposal

for the relationship type ProposedCourse in Fig. 1.

Cluster types have the maximal order of their com-

ponent types. Relationship types also may have cluster

type components. The order of cluster type compo-

nents of a relationship type of order i must be less

than i.

Component types that are not used for identifica-

tion within the relationship type can be optional. For

instance, the Room component in Fig. 1 is optional for

the type PlannedCourse. If the relationship object in

the PlannedCourse class does not have a room then the

proposal for rooms in ProposedCourse is accepted.

A specific extension for translation of optional com-

ponents may be used. For instance, Room in Fig. 1 is

inherited to PlannedCourse from ProposedCourse if

the Room component for a PlannedCourse is missing.

Higher order types allow a convenient description

of types that are based on other types. For example,

consider the course planning application in Fig. 1.

Lectures are courses given by a professor or a collabo-

ration partner within a semester for a number of pro-

grams. Proposed courses extend lectures by describing

which room is requested and which time proposals and

which restrictions are made. Planing of courses assigns a

room to a course that has been proposed and assigns a

time frame for scheduling. The kind of the course may

be changed. Courses that are held are based on courses

planned. The room may be changed for a course. The

following types specify these assertions.

ProposedCourse ≗ (Teacher, Course, Proposal : Kind,

Request : Room, Semester, Set2 :

{Program}, {Time(Proposal, Side-

Condition)}, SProposedCourse),

PlannedCourse ≗ (ProposedCourse, [Reassigned : Kind],

[Reassigned : Room], {TimeFrame,

TermCourseID}, SPlannedCourse),

CourseHeld ≗ (PlannedCourse, [Reassigned : Room],

{StartDate, EndDate, AssistedBy}, SCourseHeld).
The second and third types use optional components

in case a proposal or a planning of rooms or kinds

is changed. Typically, planned courses are identified

by their own term-specific identification. Integrity

constraints can be omitted until they have been

defined.

Formally, a relationship type is given by a name R, a

set compon(R) of labeled components, a set of attri-

butes attr(R), and a set SR of integrity constraints

that includes the identification of the relationship

type by a subset id(R) of compon(R) [attr(R), i.e.,

R ≗ (compon(R), attr(R), SR).

It is often assumed that the identification of rela-

tionship types is defined exclusively through their com-

ponent types. Relationship types that have only one

component type are unary types. These relationship

types define subtypes. If subtypes need to be explicitly

represented then binary relationship types named by

IsA between the subtype and the supertype are used.

For instance, the type Professor in Fig. 1 is a subtype of

the type Person.

An object (or a ‘‘relationship’’) on the relationship

type R¼� ðR1;:::;Rn; fB1;:::;Bkg; idðRÞ;SRÞ is an element

of the Cartesian product RC
1 � :::� RC

n�
domðB1Þ � :::� domðBkÞ. A relationship class RC

consists of a finite set RC � RC
1 � :::� RC

n�
domðB1Þ � :::� domðBkÞ of objects on R for which

id(R) is a key of RC and which obeys the constraints SR.

Integrity Constraints Each database model also uses a

set of implicit model-inherent integrity constraints.

For instance, relationship types are defined over their

component types, and a (relationship) object presumes

the existence of corresponding component objects.

Typically only finite classes are considered. The EER

schema is acyclic. Often names or labels are associated

with a minimal semantics that can be derived from the

meaning of the words used for names or labels. This

minimal semantics allows us to derive synonym, hom-

onym, antonym, toponym, hypernym, and holynym

associations among the constructs used.

The most important class of integrity constraints of

the EER model is the class of cardinality constraints.

Other classes of importance for the EER model are

multivalued dependencies, inclusion and exclusion

constraints and existence dependencies[5]. Functional

dependencies, keys and referential constraints (or key-

based inclusion dependencies) can be expressed

through cardinality constraints.

1088E Extended Entity-Relationship Model
Three main kinds of cardinality constraints are

distinguished: participation constraints, look-across

constraints, and general cardinality constraints. Given a

relationship type R ≗ (compon(R), attr(R), SR), a com-

ponent R0 of R, the remaining substructure R00 = R∖R0

and the remaining substructure R000 = R00 uR compon

(R) without attributes of R.

The participation constraint card(R, R0) = (m, n)

restricts the number of occurrences of R0 objects in the

relationship class RC by the lower bound m and the

upper bound n. It holds in a relationship class RC if for

any object o02 R0C there are at least m and at most n

objects o 2 RC with pR0(o) = o0 for the projection

function pR0 that projects o to its R0 components.

Participation constraints relate objects of relation-

ship classes to objects of their component classes. For

instance, the constraint card(ProposedCourse, Semester-

Course) = (0, 3) restricts relationship classes for pro-

posals for courses per semester to at least 0 and at most

3, i.e., each course is proposed at most three times in a

semester. There are at most three objects o in Propo-

sedCourseC with the same course and semester objects.

The integrity constraint card(ProposedCourse, Docent-

Semester) = (3, 7) requires that each docent is giving at

least 3 courses and at most 7 courses. External docents

may be obliged by other restrictions, e.g., card(Propo-

sedCourse, ExternalDocentSemester) = (0,1).

Formally, the integrity constraint card(R,R0) =

(m,n) is valid in RC if m �j{o 2 RC : pR0(o) = o0}j� n

for any o02 pR0(RC) and the projection pR0(RC) of RC

to R0.

If card(R, R0) = (0, 1) then R0 forms an identifica-

tion or a key of R, i.e., ID(R0) for R. This identification

can also be expressed by a functional dependency

R : R0! R00.

The lookup or look-across constraint look(R, R0) =

m..n describes how many objects o000 from R000C may

potentially ‘see’ an object o0 from R0C. It holds in a

relationship class RC if for any object o0002 dom(R000)

there are at leastm and at most n related objects o0 with

pR0(o) = o0, i.e., m �j{o02 pR0(RC) : o 2 RC ∧ pR0(o) =

o0∧ pR000(o) = o000}j� n for any o0002Dom(R000). Typically,

look-across constraints are used for components con-

sisting of one type. Look-across constraints are not

defined for relationship types with one component type.

Look-across constraints are less intuitive for rela-

tionship types with more than two component types or

with attribute types. For instance, the look-across
constraint look(ProposedCourse, DocentSemester) =

0..7 specifies that for any combination of Teacher,

Room, Kind, and Program objects there are between

0 and 7 Docent and Semester combinations. The lower

bound expresses that there are Teacher, Room, Kind,

and Program which do not have a Docent and Semester

combination.

Look-across constraints for a binary relationship

type whose component types form a key of the rela-

tionship type can equivalently be expressed by partici-

pation constraints, i.e., look(R, R1) =m1..n1 if and only

if card(R, R2) = (m1, n1). Similarly, look(R, R2) =m2..n2
if and only if card(R, R1) = (m2, n2). This equivalence

is neither valid for binary relationship types which

cannot by identified by their components nor for rela-

tionship types with more than two components.

Participation and look-across constraints can be

extended to substructures and intervals and to other

types such as entity and cluster types. Given a relation-

ship type R, a substructure R0 of R, R00 and R000 as above,

and given furthermore an interval I � ℕ0 of natural

numbers including 0, the (general) cardinality con-

straint card(R, R0) = I holds in a relationship class RC

if for any object o02 pR0(RC) there are i 2 I objects o

with pR0(o) = o0, i.e., j{o 2 RC : pR0(o) = o0}j2 I for any

o02 pR0(RC).

The following participation, look-across and gen-

eral cardinality constraints are examples in Fig. 1:

For any R0 2 {Semester, Course, Kind} card(Proposed-

Course,R0) = (0, n),

card(ProposedCourse, SemesterCourseTeacher) = (0, 1),

card(CourseHeld, PlannedCourse) = (1, 1),

card(PlannedCourse, ProposedCourse[Semester]Room

TimeFrame) = (0, 1),

card(ProposedCourse,DocentSemester) = {0, 3, 4, 5, 6, 7}.

The first constraint does not restrict the database. The

second constraint expresses a key or functional depen-

dency. The types Semester Course Teacher identify any

of the other types in the type ProposedCourse, i.e.,

ProposedCourse: {Semester, Course, Teacher} ! {Re-

quest, Time, Proposal, Set2}.

The third constraint requires that any planned

course must be given. The fourth constraint requi-

res that rooms are not overbooked. The fifth con-

straint allows that docents may not teach in a

semester, i.e., have a sabbatical. If a docent is teaching

Extended Entity-Relationship Model E 1089

E

in a semester then at least 3 and at most 7 courses

are given by the docent.

Look-across constraints were originally intro-

duced by Chen [1] as cardinality constraints. UML uses

look-across constraints. Participation and look-across

constraints cannot be axiomatized through a Hilbert-

or Gentzen-type logical calculus. If only upper bounds

are of interest then an axiomatization can be found in

[3] and [4]. General cardinality constraints combine

equality-generating and object-generating constraints

such as keys, functional dependencies and referential

integrity constraints into a singleton construct.

Logical operators can be defined for each type.

A set of logical formulas using these operators can

define the integrity constraints which are valid for

each object of the type.

Schemata

The schema is based on a set of base (data) types which

are used as value types for attribute types.

A set fE1;:::En;C1;:::;Cl ;R1;:::;Rmg of entity, clus-

ter and (higher-order) relationship types on a data

scheme DD is called schema if the relationship and

cluster types use only the types from fE1;:::;

En;C1;:::;Cl ;R1;:::;Rmg as components and cluster

and relationship types are properly layered.

An EER schema is defined by the pair D = ðS;SÞ
where S is a schema and S is a set of constraints. A

databaseDC onD consists of classes for each type in D
such that the constraints S are valid.

The classes of the extended ER model have been

defined through sets of objects on the types. In addi-

tion to sets, lists, multi-sets or other collections of

objects may be used. In this case, the definitions used

above can easily be extended [8].

A number of domain-specific extensions have been

introduced to the ER model. One of the most impor-

tant is the extension of the base types by spatial data

types such as: point, line, oriented line, surface, com-

plex surface, oriented surface, line bunch, and surface

bunch. These types are supported by a large variety of

functions such as: meets, intersects, overlaps, contains,

adjacent, planar operations, and a variety of equality

predicates.

The translation of the schema to (object-)relational

or XML schemata can be based on a profile [4]. Profiles

define which translation choice is preferred over other

choices, how hierarchies are treated, which redundancy
and null-value support must be provided, which kind

of constraint enforcement is preferred, which naming

conventions are chosen, which alternative for represen-

tation of complex attributes is preferred for which

types, and whether weak types can be used. The treat-

ment of optional components is also specified through

the translation profile of the types of the schema.

A profile may require the introduction of identifier

types and base the identification on the identifier.

Attribute types may be translated into data formats

that are supported by the target system.

The EER schema can be used to define views. The

generic functions insert, delete, update, projection,

union, join, selection and renaming can be defined in

a way similarly to the relational model. Additionally,

nesting and unnesting functions are used. These func-

tions form the algebra of functions of the schema and

are the basis for defining queries. A singleton view is

defined by a query that maps the EER schema to new

types. Combined views also may be considered which

consist of singleton views which together form another

EER schema.

A view schema is specified over an EER schema D
by a schema V ¼ fS1;:::;Smg, an auxiliary schema A
and a (complex) query q : D�A ! V defined on D
andA. Given a database DC and the auxiliary database

AC . The view is defined by qðDC �ACÞ.

Graphical Representation

The schema in Fig. 1 consists of entity, cluster and

relationship types. The style of drawing diagrams is

one of many variants that have been considered in the

literature. The main difference of representation is the

style of drawing unary types. Unary relationship types are

often represented by rectangles with rounded corners or

by (directed) binary IsA-relationship types which associ-

ate by arcs the supertype with the subtype. Tools often

do not allow cluster types and relationship types of

order higher than one. In this case, those types can be

objectified, i.e., represented by a new (abstract) entity

type that is associated through binary relationship types

to the components of the original type. In this case,

identification of objects of the new type is either inherited

from the component types or is provided through a new

(surrogate) attribute. The first option results in the in-

troduction of so-called weak types. The direct translation

of these weak types to object-relational models must be

combined with the introduction of rather complex

1090E Extended Entity-Relationship Model
constraint sets. Typically, this complexity can be avoided

if the abstract entity type is mapped together with the

new relationship types to a singleton object-relational

type. This singleton type is also the result of a direct

mapping of the original higher-order relationship type.

The diagram can be enhanced by an explicit repre-

sentation of cardinality and other constraints. If par-

ticipation constraints card(R, R0) = (m, n) are used for

component consisting of one type R0 then the arc from

R to R0 is labeled by (m, n). If look-across constraints

look(R, R0) = m..n are used for binary relationship

types then the arc from R to R0 is labeled by m..n.

Key Applications
The main application area for extended ER models is

the conceptualization of database applications.

Database schemata can be translated to relational,

XML or other schemata based on transformation pro-

files that incorporate properties of the target systems.

Future Directions
The ER model has had a deep impact on the develop-

ment of diagramming techniques in the past and is still

influencing extensions of the unified modeling lan-

guage UML. UML started with binary relationship

types with look-across constraints and without rela-

tionship type attributes. Class diagrams currently allow

n-ary relationship types with attributes. Relationship

types may be layered. Cluster types and unary relation-

ship types allow for distinguishing generalization from

specialization.

ER models are not supported by native database

management systems and are mainly used for modeling

of applications at the conceptual or requirements

level. ER schemata are translated to logical models such

as XML schemata or relational schemata or object-

relational schemata. Some of the specifics of the target

models are not well supported by ER models and must

be added after translating ER schemata to target sche-

mata, e.g., specific type semantics such as list semantics

(XML) or as special ordering or aggregation treatment of

online analytical processing (OLAP) applications.

The ER model has attracted a lot of research over

the last 30 years. Due to novel applications and to

evolution of technology old problems and novel pro-

blems are challenging the research on this model. Typ-

ical old problems that are still not solved in a

satisfactory manner are: development of a science

of modeling, quality of ER schemata, consistent
refinement of schemata, complex constraints, normal-

ization of ER schemata, normalization of schemata in

the presence of incomplete constraint sets. Novel

topics for ER research are for instance: evolving sche-

ma architectures, collaboration of databases based on

collaboration schemata, layered information systems

and their structuring, schemata with redundant types,

ER schemata for OLAP applications.

Structures of database applications are often repre-

sented through ER models. Due to the complexity of

applications, a large number of extensions have recently

been proposed, e.g., temporal data types, spatial data

types, OLAP types and stream types. Additionally, da-

tabase applications must be integrated and cooperate

in a consistent form. The harmonization of extensions

and the integration of schemata is therefore a never

ending task for database research.

ER models are currently extended for support of

(web) content management that is based on structur-

ing of data, on aggregation of data, on extending data

by concepts and on annotating data sets for simple

reference and usage. These applications require novel

modeling facilities and separation of syntactic, seman-

tic and pragmatic issues. The ER model can be extend-

ed to cope with these applications.

The ER model is mainly used for conceptual speci-

fication of database structuring. It can be enhanced by

operations and a query algebra. Operations and the

queries can also be displayed in a graphical form, e.g.,

on the basis of VisualSQL. Most tools supporting ER

models do not currently use this option. Enhancement

of ER models by functionality is necessary if the con-

ceptualization is used for database development. Based

on functionality enhancement, view management

facilities can easily be incorporated into these tools.

ER models are becoming a basis for workflow sys-

tems data. The standards that have been developed for

the specification of workflows have not yet been

integrated into sophisticated data and application

management tools.

URL to Code
http://www.informatik.uni-kiel.de/\�thalheim/HERM.

htm

http://www.is.informatik.uni-kiel.de/�thalheim/ind

eeerm.htm

Readings on the RADD project (Rapid Application

and Database Development) Authors: M. Albrecht,

M. Altus, E. Buchholz, H. Cyriaks, A. Düsterhöft,

Extended Transaction Models and the ACTA Framework E 1091

E

J. Lewerenz, H. Mehlan, M. Steeg, K.D. Schewe, and

B. Thalheim.

Cross-references
▶ Entity Relationship Model

▶Relational Model

▶ Semantic Data Model

▶Unified Modeling Language

Recommended Reading
1. Chen P.P. The entity-relationship model: toward a unified view

of data. ACM Trans. Database Syst., 1(1):9–36, 1976.

2. Gogolla M. An Extended Entity-Relationship Model – Funda-

mentals and Pragmatics. LNCS 767. Springer, Berlin Heidelberg

New York, 1994.

3. Hartmann S. Reasoning about participation constraints and

Chen’s constraints. In Proc. 14th Australasian Database Conf.,

2003, pp. 105–113.

4. Hartmann S., Hoffmann A., Link S., and Schewe K.-D. Axioma-

tizing functional dependencies in the higher-order entity-

relationship model. Inf. Process. Lett., 87(3):133–137, 2003.

5. Hohenstein U. Formale Semantik eines erweiterten Entity-

Relationship-Modells. Teubner, Stuttgart, 1993.

6. Schewe K.-D. and Thalheim B. Conceptual modelling of web

information systems. Data Knowl. Eng., 54:147–188, 2005.

7. Thalheim B. Dependencies in Relational Databases. Teubner,

Leipzig, 1991.

8. Thalheim B. Entity-Relationship Modeling – Foundations of

Database Technology. Springer, Berlin Heidelberg New York,

2000.

9. Thalheim B. Codesign of structuring, functionality, distribution

and interactivity. In Proc. 1st Asian-Pacific Conf. on Conceptual

Modeling, 2004, pp. 3–12.
Extended Functional Dependencies

▶ Functional Dependencies for Semi-structured Data
Extended Relations

▶Conditional Tables

▶Naive Tables
Extended Transaction Models

▶Generalization of ACID Properties

▶Open Nested Transaction Models
Extended Transaction Models and
the ACTA Framework

PANOS K. CHRYSANTHIS
1, KRITHI RAMAMRITHAM

2

1University of Pittsburgh, Pittsburgh, PA, USA
2Indian Institute of Technology Bombay, Mumbai,

India

Synonyms
Advanced transaction models; Generalization of ACID

properties
Definition
Although powerful, the transaction model adopted in

traditional database systems is found lacking in func-

tionality and performance when used for applications

that involve reactive (endless), open-ended (long-lived)

and collaborative (interactive) activities. Hence, various

extensions to the traditional model have been proposed,

referred to as extended transactions. These models are

characterized by the structure of their transactions, the

commit and abort dependencies and the visibility rules

among transactions. ACTA is a comprehensive trans-

action framework that facilitate the specification, anal-

ysis and synthesis of extended transaction models. The

name ACTA, meaning actions in Latin, was chosen

given the framework’s appropriateness for expressing

the properties of actions used to compose a transac-

tional computation.
Key Points
Bymeans of the notion of transactions, database systems

offer reliability guarantees concerning the correctness

of data in spite of failures and concurrent accesses

by multiple users. However, the transaction model as

well as the simple data model adopted in traditional

database systems have been found lacking in functional-

ity and performance in their support of the emerg-

ing advanced database applications such as design

databases, computer publishing, network management,

multidatabases and mobile databases. In order to deal

with the inherent limitations of the traditional data and

atomic transaction model, researchers have proposed

semantic and object-oriented data models and exten-

sions to the traditional transaction model.Nested trans-

actions was the first such extension that added a

hierarchical structure to the traditional flat atomic

1092E Extended Transaction Models and the ACTA Framework
transactions.Thehierarchicalstructureallowsconcurren-

cywithinatransactionandfine-grainedfailureandexcep-

tion handling since subtransactions can abort

independentlywithout causing the abortion of thewhole

transaction.

The original nested transaction model was sub-

sequently enhanced with new types of subtransactions,

relaxed abort and commit dependencies and visibility

rules for externalizing partial results among transac-

tions. These extensions led to a variety of open-nested

transactions models such as Sagas, Split Transactions,

Flex Transactions, ConTracts and S-transactions, and

of correctness criteria such as quasi serializability,

epsilon-serializability, semantic atomicity, quasi failure-

atomicity.

All the above extensions have been introduced with

specific applications or with specific transaction prop-

erties in mind [2]. Their ad hoc character makes it

difficult to identify the properties of transactions that

adhere to a particular model and to ascertain in what

respects an extended transaction model is similar or

different from another. The need for a comprehensive

transaction framework that would facilitate the precise

specification of the properties of a model, vis a vis

visibility, consistency, recovery and permanence, and

allow the formal comparison of different models led to

the development of ACTA [1]. ACTA is a first-order

logic based formalism with a precedence relation that

allows a transaction modeler to specify both the high

level properties (requirements) of a model and the

lower level behavioral aspects of the model in terms

of axioms. Specifications include the following four

components: (i) the set of transaction management

events associated with the transaction model, such as

begin, commit, abort, split, and join; (ii) the semantics

of these significant events, characterized in terms of

their effect on objects (their value and synchronization

state) and other transactions (different types of depen-

dencies, such as commit dependency and abort depen-

dency); (iii) the view of each transaction, specifying

the state of objects visible to that transaction; and

(iv) the conflict set of each transaction, containing

those operations with respect to which conflicts need

to be considered.

Besides supporting the specification and analysis

of existing transaction models, ACTA has the power

to specify the requirements of new transactional appli-

cations and synthesize models that satisfy these
requirements. This was demonstrated by deriving new

transaction definitions either by starting from first prin-

ciples or by modifying and/or combining the specifica-

tions of existing transaction models. The exercise of

analyzing and synthesizing different transaction models

revealed the many advantages of using a simple formal-

ism like ACTA to deal with advanced transactions and

has influenced a lot of transaction processing work in

industry and academia.

Although ACTA has been developed to characterize

extended transaction models, it has been extended to

express the various correctness criteria beyond serializ-

ability. The use of this formalism resulted in a consoli-

dated notion of correctness in which the different

serializability-based criteria, such as predicatewise serial-

izability and cooperative serializability, can been seen

as special cases [3].

Cross-references
▶ACID Properties

▶Correctness Criteria beyond Serializability

▶ConTract

▶Compensating Transactions

▶ e-Commerce Transactions

▶ Flex Transactions

▶Generalization of ACID Properties

▶ Internet Transactions

▶Multilevel Transactions and Object-Model Transac-

tions

▶Nested Transaction Models

▶Open Nested Transaction Models

▶ Polytransactions

▶ Sagas

▶ Semantic Atomicity

▶ Split Transactions

▶Transaction

▶Transaction Management

▶Transactional Processes

▶Workflow Transactions

Recommended Reading
1. Chrysanthis P.K. and Ramamritham K. Synthesis of extended

transaction models using ACTA. ACM Trans. Database Syst.,

19(3):450–491, 1994.

2. Elamagarmid A. K. (Ed.). Database Transaction Models for Ad-

vanced Applications, Morgan Kaufmann, Los Altos, CA, 1992.

3. Ramamritham K. and Chrysanthis P.K. A taxonomy of correct-

ness criteria in database applications. VLDB J., 4(1):181–293,

1996.

Extendible Hashing. Figure 1. Illustration of the

Extendible Hashing.

Extendible Hashing E 1093

E

Extendible Hashing

DONGHUI ZHANG
1, YANNIS MANOLOPOULOS

2,

YANNIS THEODORIDIS
3, VASSILIS J. TSOTRAS

4

1Northeastern University, Boston, MA, USA
2Aristotle University, Thessaloniki, Greece
3University of Piraeus, Piraeus, Greece
4University of California – Riverside, Riverside,

CA, USA

Definition
Extendible hashing is a dynamically updateable disk-

based index structure which implements a hashing

scheme utilizing a directory. The index is used to

support exact match queries, i.e., find the record with

a given key. Compared with the B+-tree index which

also supports exact match queries (in logarithmic

number of I/Os), Extendible Hashing has better

expected query cost O(1) I/O. Compared with linear

hashing, extendible hashing does not have any over-

flow page. Overflows are handled by doubling the

directory which logically doubles the number of buck-

ets. Physically, only the overflown bucket is split.

Historical Background
The extendible hashing scheme was introduced by [1].

A hash table is an in-memory data structure that associ-

ates keys with values. The primary operation it supports

efficiently is a lookup: given a key, find the corresponding

value. It works by transforming the key using a hash

function into a hash, a number that is used as an index

in an array to locate the desired locationwhere the values

should be. Multiple keys may be hashed to the same

bucket, and all keys in a bucket should be searched

upon a query. Hash tables are often used to implement

associative arrays, sets and caches. Like arrays, hash tables

have O(1) lookup cost on average.

Foundations

Structure

Extendible hashing uses a directory to access its buck-

ets. This directory is usually small enough to be kept in

main memory and has the form of an array with 2d

entries, each entry storing a bucket address (pointer to

a bucket). The variable d is called the global depth

of the directory. To decide where a key k is stored,
extendible hashing uses the last d bits of some adopted

hash function h(k) to choose the directory entry. Mul-

tiple directory entries may point to the same bucket.

Every bucket has a local depth leqd. The difference

between local depth and global depth affects overflow

handling.

An example of extendible hashing is shown in

Fig. 1. Here there are four directory entries and four

buckets. The global depth and all the four local depths

are 2. For simplicity assume the adopted hash function

is h(k) = k. For instance, to search for record 15, one

refers to directory entry 15% 4 = 3 (or 11 in binary

format), which points to bucket D.

Overflow Handling

If a bucket overflow happens, the bucket is split into

two. The directory may or may not double, depending

on whether the local depth of the overflown bucket was

equal to the global depth before split.

If the local depth was equal to global depth, d bits

are not enough to distinguish the search values of the

overflown bucket. Thus a directory doubling occurs,

which effectively uses one more bit from the hash

value. The directory size is then doubled (this does not

mean that the number of buckets is doubled as buckets

will share directory entries). As an example, Fig. 2 illus-

trates extendible hashing after inserting a new record

with key 63 into Fig. 1. Bucket D overflows and the

records in it are redistributed between D (where the

last three bits of a record’s hash value are 011) and D 0

(where the last three bits of a record’s has value are 111).

The directory doubles. The global depth is increased by

one. The local depth of buckets D and D 0 are increased

Extendible Hashing. Figure 3. The directory does not

double after inserting 17 and 13 into Fig. 2.

Extendible Hashing. Figure 2. The directory doubles

after inserting 63 into Fig. 1.

1094E Extendible Hashing
by one, while the local depth of the other buckets

remains to be two. Except 111, which points to the

new bucketD 0, each of the new directory entries points

to the existing bucket which shares the last two bits.

For instance, directory entry 101 points to the bucket

referenced by directory entry 001.

In general, if the local depth of a bucket is d0, the

number of directory entries pointing to the bucket is

2d�d0. All these directory entries share the last d0 bits.

To split an overflown bucket whose local depth is

smaller than the global depth, one does not need to

double the size of the directory. Instead, half of the

2d�d 0
directory entries will point to the new bucket,

and the local depth of both the overflown bucket and

its split image are increased by one. For instance, Fig. 3

illustrates the extendible hashing after inserting 17 and

13 into Fig. 2. Bucket B overflows and a split image,

bucket B0, is created. There are two directory entries

(001 and 101) that pointed to B before the split. Half of

them (101) now points to the split image B0. The local

depth of both buckets B and B0 are increased by one.

Discussion

Deletion may cause a bucket to become empty, in

which case it can be merged with its buddy bucket.

The buddy bucket is referenced by the directory entry

which shares the last (local depth � 1) bits. For in-

stance, the buckets referenced by direction entries 1111

and 0111 are buddy buckets. Many deletions can cause

the directory to halve its size and thus decrease its

global depth. This is triggered by the bucket merging
which causes all local depth to be strictly smaller than

the global depth.

The fact that extendible hashing does not use any

overflow page may significantly increase the directory

size, as one insertion may cause the directory to double

more than once. Consider the case when global depth

is 3, and the bucket referenced by directory entry 001

overflows with five records 1, 17, 33, 49, 65. The

directory is doubled. Directory entries 0001 and 1001

points to the overflown bucket and the split image. All

the five keys will remain in the original bucket which is

again overflowing. Therefore the directory has to be

doubled again.

To alleviate this problem, one can allow a certain

degree of overflow page links. For instance, whenever

the fraction of buckets with overflow pages becomes

larger than 1%, double the directory.

Key Applications
Extendible Hashing can be used in applications where

exact match query is the most important query such as

hash join [2].

Cross-references
▶Bloom Filter

▶Hashing

▶Hash-based Indexing

▶ Linear Hashing

Extraction, Transformation, and Loading E 1095
Recommended Reading
1. Fagin R., Nievergelt J., Pippenger N., and Strong H.R. Extendible

hashing: a fast access method for dynamic files. ACM Trans.

Database Syst., 4(3):315–344, 1979.

2. Schneider D.A. and DeWitt D.J. Tradeoffs in processing complex

join queries via hashing in multiprocessor database machines. In

Proc. 16th Int. Conf. on Very Large Data Bases, 1990, pp.

469–480.
E

Extensible Markup Language

▶XML
eXtensible Stylesheet Language

▶XSL/XSLT
eXtensible Stylesheet Language
Transformations

▶XSL/XSLT
Extensional Relational Database
(ERDB)

▶Decision Rule Mining in Rough Set Theory
External Hashing

▶Hash-based Indexing
Extraction, Transformation, and
Loading

PANOS VASSILIADIS
1, ALKIS SIMITSIS

2

1University of Ioannina, Ioannina, Greece
2IBM Almaden Research Center, San Jose, CA, USA

Synonyms
ETL; ETL process; ETL tool; Data warehouse back

stage; Data warehouse refreshment
Definition
Extraction, transformation, and loading (ETL) pro-

cesses are responsible for the operations taking place

in the background of a data warehouse architecture. In

a high level description of an ETL process, first, the data

are extracted from the source data stores that can be on-

line transaction processing (OLTP) or legacy systems,

files under any format, web pages, various kinds of

documents (e.g., spreadsheets and text documents) or

even data coming in a streaming fashion. Typically, only

the data that are different from the previous execution

of an ETL process (newly inserted, updated, and delet-

ed information) should be extracted from the sources.

Secondly, the extracted data are propagated to a special-

purpose area of the warehouse, called the data staging

area (DSA), where their transformation, homogeniza-

tion, and cleansing take place. Themost frequently used

transformations include filters and checks to ensure

that the data propagated to the warehouse respect busi-

ness rules and integrity constraints, as well as schema

transformations that ensure that data fit the target data

warehouse schema. Finally, the data are loaded to the

central data warehouse (DW) and all its counterparts

(e.g., data marts and views). In a traditional data ware-

house setting, the ETL process periodically refreshes the

data warehouse during idle or low-load, periods of its

operation (e.g., every night) and has a specific time-

window to complete. Nowadays, business necessities

and demands require near real-time data warehouse

refreshment and significant attention is drawn to this

kind of technological advancement.

Historical Background
Despite the fact that ETL obtained its separate existence

during the first decade of the twenty-first century, ETL

processes have been a companion to database technology

for a longer period of time, in fact, from the beginning of

its existence. During that period, ETL software was just

silently hidden as a routine programming task without

any particular name or individual importance. ETL was

born on the first day that a programmer constructed a

program that takes records from a certain persistent file

and populates or enriches another file with this informa-

tion. Since then, any kind of data processing software

that reshapes or filters records, calculates new values, and

populates another data store than the original one is a

form of an ETL program.

The earliest form of ETL system goes back to the

EXPRESS system [13] that was intended to act as an

1096E Extraction, Transformation, and Loading
engine that produces data transformations given some

data definition and conversion nonprocedural state-

ments. In later years, during the early days of data

integration, the driving force behind data integration

were wrapper-mediator schemes; the construction of

the wrappers is a primitive form of ETL scripting [12].

In the mid 1990s, data warehousing came in the central

stage of database research and still, ETL was there, but

hidden behind the lines. Popular books [3] do not

mention ETL at all, although the different parts (trans-

formation, cleansing, staging of intermediate data, and

loading) are all covered – even if this is done very briefly

at times (it is also noteworthy that the third edition of

the same book in 2003 mentions ETL, although brief-

ly). At the same time, early research literature treated

data warehouses as collections of materialized views

since this abstraction was simple and quite convenient

for the formulation of research problems.

During the ’00s, it became increasingly prevalent

that ETL is really important for data integration

tasks since it is costly, labor-intensive, and mission-

critical – and for all these factors, important for the

success of a data warehousing project. The difficulty

lies in the combination of data integration and data

cleaning tasks: as a typical integration problem, where

data are moved and transferred from a certain data

store to another, the details of schema and value map-

pings play a great role. At the same time, the data can

be in highly irregular state (both in terms of duplicates,

constraint, and business rule violations, and in terms

of irregularities in the internal structure of fields – e.g.,

addresses). Therefore, finding effective ways for taming

this nonregularity into a typical relational structure is

very hard. Additionally, there are a number of persis-

tent problems: ETL processes are hard to standardize,

optimize, and execute in a failure-resilient manner

(and thus the problem is hard to solve).

Foundations

PART I. General description of an ETL process

Intuitively, an ETL process can be thought of as a

directed acyclic graph, with activities and record sets

forming the nodes of the graph, and input–output

relationships between nodes forming its edges.

Observe Figure 1, where two sources are depicted

in the lower left part of the figure with the names

S1.PARTS and S2.PARTS. The data from these sources

must be propagated to the target data warehouse fact
table DW.PARTS, depicted at the bottom right part of

the figure. Moreover, the newly inserted records must

be further propagated to refresh aggregate views V1

and V2. (In fact, the views of the example can be

anything among materialized views that are populated

by the ETL process, materialized views automatically

refreshed by the DBMS, convenient abstractions of

data marts, reports, and spreadsheets that are placed

in the enterprise portal for the end-users to download,

and any other form of aggregated information that is

published in some form to the end-users of the ware-

house.) The whole process of populating the fact table

and any of its views is facilitated by a workflow of

activities that perform all the appropriate filtering,

intermediate data staging, transformations and load-

ings. The upper part of Figure 1 depicts how the data

(which are extracted as snapshots of the sources) are

transported to a special purpose intermediate area of

the warehouse, called the data staging area (DSA) [4],

where the transformation phase takes place. First, the

snapshots are compared with their previous versions,

so that newly inserted or updated data are discovered.

Secondly, these new data are stored in a hard disk so

that in the case of a failure, the whole process should

not start from scratch. Then, the data pass through

several filters or transformations and they are ulti-

mately loaded in the data warehouse. As mentioned,

the warehouse fact or dimension tables are not neces-

sarily the end of the journey for the data: at the bottom

right of Figure 1, a couple of materialized views (stand-

ing as abstractions of reports, spreadsheets, or data

marts for the sake of the example) are also refreshed

with newly incoming data.
PART II. Individual steps

Extraction. The extraction step is conceptually the sim-

plest task of all, with the goal of identifying the correct

subset of source data that has to be submitted to the

ETL workflow for further processing. As with the rest

of the ETL process, extraction also takes place at idle

times of the source system – typically at night. Practi-

cally, the task is of considerable difficulty, due to two

technical constraints:

� The source should incur minimum overhead dur-

ing the extraction, since other administrative activ-

ities also take place during that period.

� Both for technical and political reasons, adminis-

trators are quite reluctant to accept major

E
xt
ra
ct
io
n
,
T
ra
n
sf
o
rm

a
ti
o
n
,
a
n
d
Lo

a
d
in
g
.
F
ig
u
re

1
.
A
n
e
xa
m
p
le

ET
L
w
o
rk
fl
o
w
.

Extraction, Transformation, and Loading E 1097

E

1098E Extraction, Transformation, and Loading
interventions to their system’s configuration; there-

fore, there must be minimum interference with the

software configuration at the source side.

Depending on the technological infrastructure and the

nature of the source system (relational database, COBOL

file, spreadsheet, web site etc.) as well as the volume of

the data that has to be processed, different policies can be

adopted for the extraction step, which usually is also

called ‘‘change data capture.’’ The most naı̈ve possibility

involves extracting the whole source and processing it as

if the original first loading of the warehouse was con-

ducted. A better possibility involves the extraction of a

snapshot of data, which is subsequently compared with

the previous snapshot of data (either at the source, or the

DSA side) and insertions, deletions, and updates

are detected. In this case, there is no need to further

process the data that remain the same. The work pre-

sented in [5] is particularly relevant in this context.

Another possibility involves the usage of triggers in the

source that are activated whenever a modification takes

place in the source database. Obviously, this can be done

only if the source database is a relational system; most

importantly though, both the interference with the

source system and the runtime overhead incurred are

deterring factors with respect to this option. An interest-

ing possibility, though, involves ‘‘log sniffing,’’ i.e., the

appropriate parsing of the log file of the source. In this

case, all modifications of committed transactions are

detected and they can be ‘‘replayed’’ at the warehouse

side.

A final point in the extraction step involves the

necessity of encrypting and compressing the data that

are transferred from the source to the warehouse, for

security and network performance reasons, respectively.

Transformation. Depending on the application and

the tool used, ETL processes may contain a plethora of

transformations. In general, the transformation and

cleaning tasks deal with classes of conflicts and pro-

blems that can be distinguished at two levels [7]: the

schema and the instance level. In this article, a broader

classification of the problems is presented that includes

value-level problems, too.

� Schema-level problems. The main problems with

respect to the schema level are (a) naming conflicts,

where the same name is used for different objects

(homonyms) or different names are used for the

same object (synonyms), and (b) structural con-

flicts, where one must deal with different
representations of the same object in different

sources, or converting data types between sources

and the warehouse.

� Record-level problems. The most typical problems at

the record level concern duplicated or contradict-

ing records. Furthermore, consistency problems

concerning the granularity or timeliness of data

occur, since the designer is faced with the problem

of integrating data sets with different aggregation

levels (e.g., sales per day vs. sales per year) or

reference to different points in time (e.g., current

sales as of yesterday for a certain source vs. as of last

month for another source).

� Value-level problems. Finally, numerous low-level

technical problems may be observed in different

ETL scenarios. To mention a few, there may exist

problems in applying format masks, like for exam-

ple, different value representations (e.g., for sex:

‘‘Male,’’ ‘‘M,’’ ‘‘1’’), or different interpretation of

the values (e.g., date formats: American ‘‘mm/dd/

yy’’ vs. European ‘‘dd/mm/yy’’). Other value-level

problems include assigning surrogate key manage-

ment, substituting constants, setting values to

NULL or DEFAULT based on a condition, or using

frequent SQL operators like UPPER, TRUNC, and

SUBSTR.

To deal with such issues, the integration and transfor-

mation tasks involve a wide variety of functions, such

as normalizing, denormalizing, reformatting, recalcu-

lating, summarizing, merging data from multiple

sources, modifying key structures, adding an element

of time, identifying default values, supplying decision

commands to choose between multiple sources, and

so forth.

Loading. The end of the source records’ journey

through the ETL workflow comes with their loading

to the appropriate table. A typical dilemma faced by

inexperienced developers concerns the choice between

bulk loading data through a DBMS-specific utility or

inserting data as a sequence of rows. Clear performance

reasons strongly suggest the former solution, due to

the overheads of the parsing of the insert statements,

the maintenance of logs and rollback-segments (or, the

risks of their deactivation in the case of failures).

A second issue has to do with the possibility of effi-

ciently discriminating records that are to be inserted for

the first time, from records that act as updates to previ-

ously loaded data. DBMSs typically support some

Extraction, Transformation, and Loading E 1099

E

declarative way to deal with this problem (e.g., Oracle’s

MERGE command [9]). In addition, simple SQL com-

mands are not sufficient since the ‘‘open-loop-fetch’’

technique, where records are inserted one by one, is

extremely slow for the vast volume of data to be loaded

in the warehouse. A third performance issue that has to

be taken into consideration has to do with the existence

of indexes, materialized views, or both, defined over the

warehouse relations. Every update to these relations

automatically incurs the overhead of maintaining the

indexes and the materialized views.

PART III. Global picture revisited

Design and Modeling. After the above analysis, one can

understand that the design of ETL processes is crucial

and complex at the same time. There exist several

difficulties underlying the physical procedures already

described.

At the beginning of a data warehousing project, the

design team in cooperation with the business managers

have to clarify the requirements, identify the sources and

the target, and determine the appropriate transforma-

tions for that specific project; i.e., the first goal is to

construct a conceptual design of the ETL process

[8,18,20]. The most important part of this task is to

identify the schema mappings between the source and

the target schemata. This procedure is usually done

through analysis of the structure and content of the

existing data sources and their intentional mapping to

the common data warehouse model. Possible data

cleaning problems can also be detected at this early

part of the design. Conceptual modeling formalisms

(both ad- hoc and UML-based) have been proposed in

the literature [8,18,20]. In addition, several research

approaches have been proposed toward the automa-

tion of the schema mapping procedure [10]; one of the

most prominent examples is CLIO, which has also

been adapted by commercial solutions proposed by

IBM [2]. However, so far, the automatic schema

mapping supports cases of simple ETL transforma-

tions. On the contrary, there exists a semi-automatic

method that uses ontologies and semantic web tech-

nology to infer the appropriate interattribute map-

pings along with the respective transformations

needed in an ETL process [16].

When this task ends, the design involves the specifi-

cation of a primary data flow that describes the route of

data from the sources toward the data warehouse, as

they pass through the transformations of the workflow.
The execution sequence of the workflow’s transforma-

tion is determined at this point. The data flow defines

what each process does and the execution plan defines

in which order and combination. The flow for the

logical exceptions – either integrity or business rules

violations is specified, too. Control flow operations

that take care of monitoring or failure occurrences

can also be specified. Most ETL tools provide the

designer with the functionality to construct both the

data and the control flow for an ETL process.

Optimization. Usually, an ETL workflow must be

completed in a specific time window and this task is

realized periodically; e.g., each night. In the case of a

failure, the quick recovery of the workflow is also

important [6]. Hence, for performance reasons, it is

necessary to optimize the workflow’s execution time.

Currently, although the leading commercial tools pro-

vide advanced GUI’s for the design of ETL scenarios,

they do not support the designer with any technique to

optimize the created scenarios. Unlike relational que-

rying, where the user declaratively expresses a query in

a high-level language and the DBMS optimizer decides

the physical execution of the query automatically, in

the case of ETL workflows it is the designer who must

decide the order and physical implementation for the

individual activities.

Practical alternatives involve (a) letting the

involved DBMS (in the case of DBMS-based scripts)

do the optimization and (b) treating the workflow as a

big multi-query. The solution where optimization is

handed over to the DBMS for execution is simply not

sufficient, since DBMS optimizers can interfere only

in portions of a scenario and not in its entirety.

Concerning the latter solution, it should be stressed

that ETL workflows are not big queries, since:

� It is not possible to express all ETL operations in

terms of relational algebra and then optimize the

resulting expression as usual. In addition, the cases

of functions with unknown semantics – ‘‘black-box’’

operations – or with ‘‘locked’’ functionality – e.g., an

external call to a DLL library – are quite common.

� Failures are a critical danger for an ETL workflow.

The staging of intermediate results is often imposed

by the need to resume a failed workflow as quickly

as possible.

� ETL workflows may involve processes running in

separate environments, usually not simultaneously

and under time constraints; thus their cost

1100E Extraction, Transformation, and Loading
estimation in typical relational optimization terms

is probably too simplistic.

All the aforementioned reasons can be summarized by

mentioning that neither the semantics of the workflow

can always be specified, nor its structure can be deter-

mined solely on these semantics; at the same time, the

research community has not come-up with an accurate

cost model so far. Hence, it is more realistic to consider

ETL workflows as complex transactions rather than as

complex queries. Despite the significance of such opti-

mization, so far the problem has not been extensively

considered in research literature, with results mainly

focused on the black-box optimization at the logical

level, concerning the order with which the activities are

placed in the ETL workflow [14,15].

Implementation and Execution. An ETL work-

flow can either be hand-coded, or specified and

executed via an ETL tool. The hand-coded implemen-

tation is a frequent choice, both due to the cost of ETL

tools and due to the fact that developers feel comfort-

able to implement the scripts that manipulate their

data by themselves. Typically, such an ETL workflow

is built as the combination of scripts written in some

procedural languages with high execution speed (for

example, C or Perl) or some vendor specific database

language (PL∖SQL, T-SQL, and so on). Alternatively,

ETL tools are employed, mainly due to the graphical

programming interfaces they provide as well as for

their reporting, monitoring, and recovery facilities.
Key Applications
ETL processes constitute the backbone of the data

warehouse architecture. The population, maintenance,

evolution, and freshness of the warehouse depends

heavily on its backstage where all the ETL operations

are taken place. Hence, in a corporate environment

there is a necessity for a team devoted to the design

and maintenance of the ETL functionality.

However, ETL is not useful only for the refreshment

of large data warehouses. Nowadays, with the advent of

Web 2.0 new applications have emerged. Among them,

mashups are web applications that integrate data that are

dynamically obtained via web-service invocations to

more than one sources into an integrated experience.

Example applications include Yahoo Pipes (http://pipes.

yahoo.com/), Google Maps (http://maps.google.com/),

IBM Damia (http://services.alphaworks.ibm.com/
damia/), and Microsoft Popfly (http://www.popfly.

com/). Under the hood, the philosophy for their oper-

ation is ‘‘pure’’ ETL. Although, the extraction phase

mainly contains functionality that allows the commu-

nication over the web, the transformations that consti-

tute the main flow resemble those which are already

built-in in most ETL tools. Different applications are

targeting to gather data from different users, probably

in different formats, and try to integrate them into a

common repository of datasets; an example application

is the Swivel (http://www.swivel.com/).

Future Directions
Although the ETL logic is not novel in computer

science, several issues still remain open. A main open

problem in the so called traditional ETL is the agree-

ment upon a unified algebra and/or a declarative lan-

guage for the formal description of ETL processes.

However, there are some first results in the context of

the data exchange problem [1]. As already mentioned,

the optimization of the whole ETL process and of any

individual transformation operators pose interesting

research problems. In this context, parallel processing

of ETL processes is of particular importance. Finally,

standardization is a problem that needs an extra note of

attention. The convergence toward a globally accepted

paradigm of thinking and educating computer scien-

tists on the topic is a clear issue for the academic

community.

However, the ETL functionality expands into new

areas beyond the traditional data warehouse environ-

ment, where the ETL is executed off-line, on a regular

basis. Such cases include but are not limited to: (a)

On-Demand ETL processes that are executed sporadi-

cally (typically for Web data), and they are manually

initiated by some user demand [11]; (b) Stream ETL

that involves the possible filtering, value conversion,

and transformations of incoming streaming informa-

tion in a relational format [11]; (c) (near)Real-Time

ETL that captures the need for a data warehouse con-

taining data as fresh as possible.

Finally, with the evolution of the technology and

the broader use of internet from bigger masses of users,

the interest is moved also to multiple types of data,

which do not necessarily follow the traditional rela-

tional format. Thus, modern ETL applications should

also handle novel kinds of data, like XML, spatial,

biomedical or multimedia data efficiently.

Extrinsic Time E 1101

E

Data Sets
Benchmarking the ETL process is a clear problem

nowadays (2007). The lack of any standard, principled

experimental methodology with a clear treatment of

the workflow complexity, the data volume, the amount

of necessary cleaning, and the computational cost of

individual activities of the ETL workflows is striking.

The only available guidelines for performing a narrow

set of experiments are given in the TPC-DS standard

[17], and the first publicly available benchmark for

ETL processes is presented in [19].

Cross-references
▶Active Data Warehousing

▶Data Cleaning

▶Data Warehouse

▶Multidimensional Modeling

▶ (near)Real-Time Data Warehousing

Recommended Reading
1. Fagin R., Kolaitis P.G., and Popa L. Data exchange: getting to the

core. ACM Trans. Database Syst., 30(1):174–210, 2005.

2. Haas L.M., Hernández M.A., Ho H., Popa L., and Roth M.

Clio grows up: from research prototype to industrial tool. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2005,

pp. 805–810.

3. Inmon W. Building the Data Warehouse, 2nd edn. Wiley,

New York, 1996.

4. Kimbal R., Reeves L., Ross M., and Thornthwaite W. The Data

Warehouse Lifecycle Toolkit: Expert Methods for Designing,

Developing, and Deploying Data Warehouses. Wiley,

New York, 1998.

5. Labio W. and Garcia-Molina H. Efficient snapshot differential

algorithms for data warehousing. In Proc. 22th Int. Conf. on

Very Large Data Bases, 1996, pp. 63–74.

6. LabioW., Wiener J.L., Garcia-Molina H., and Gorelik V. Efficient

resumption of interrupted warehouse loads. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2000, pp. 46–57.

7. Lenzerini M. Data integration: a theoretical perspective. In Proc.

21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2002, pp. 233–246.
8. Luján-Mora S., Vassiliadis P., and Trujillo J. Data Mapping

Diagrams for Data Warehouse Design with UML. In Proc.

23rd Int. Conf. on Conceptual Modeling, 2004, pp. 191–204.

9. Oracle , Oracle 9i SQL Reference. Release 9.2. 2002.

10. Rahm E. and Bernstein P.A. A survey of approaches to automatic

schema matching. VLDB J., 10(4):334–350, 2001.

11. Rizzi S., Abelló A., Lechtenbörger J., and Trujillo J. Research

in data warehouse modeling and design: dead or alive? In Proc.

9th ACM Int. Workshop on Data Warehousing and OLAP, 2006,

pp. 3–10.

12. Roth M.T. and Schwarz P.M. Don’t scrap it, wrap it! A wrapper

architecture for legacy data sources. In Proc. 23th Int. Conf. on

Very Large Data Bases, 1997, pp. 266–275.

13. Shu N.C., Housel B.C., Taylor R.W., Ghosh S.P., and Lum V.Y.

EXPRESS: a data extraction, processing, and restructuring sys-

tem. ACM Trans. Database Syst., 2(2):134–174, 1977.

14. Simitsis A., Vassiliadis P., and Sellis T.K. Optimizing ETL

processes in data warehouses. In Proc. 21st Int. Conf. on Data

Engineering, 2005, pp. 564–575.

15. Simitsis A., Vassiliadis P., and Sellis T.K. State-space optimiza-

tion of ETL workflows. IEEE Trans. Knowl. Data Eng., 17

(10):1404–1419, 2005.

16. Skoutas D. and Simitsis A. Designing ETL processes using

semantic web technologies. In Proc. 9th ACM Int. Workshop

on Data Warehousing and OLAP, 2006, pp. 67–74.

17. TPC, TPC-DS (Decision Support) specification, draft version

52. 2007.

18. Trujillo J. and Luján-Mora S. A UML based approach for mod-

eling ETL processes in data warehouses. In Proc. 22nd Int. Conf.

on Conceptual Modeling, 2003, pp. 307–320.

19. Vassiliadis P., and Karagiannis A., and Tziovara V.,

and Simitsis A. Towards a Benchmark for ETL Workflows. In

Proc. 5th Int. Workshop on Quality in Databases, 2007,

pp. 49–60.

20. Vassiliadis P., Simitsis A., and Skiadopoulos S. Conceptual

modeling for ETL processes. In Proc. 5th ACM Int. Workshop

on Data Warehousing and OLAP, 2002, pp. 14–21.
Extrinsic Time

▶Transaction Time

F

Faceted Browsing

▶ Faceted Search
Faceted Classifications

▶ Lightweight Ontologies
Faceted Search

SUSAN DUMAIS

Microsoft Research, Redmond, WA, USA

Synonyms
Dynamic taxonomies; Faceted browsing; Hierarchical

faceted metadata

Definition
The term facet means ‘‘little face’’ and is often used to

describe one side of a many-sided object, especially a

cut gemstone. In the context of information science,

where the item being described is an information ob-

ject, facets could refer to the object’s author, date,

topic, etc. Facets are used to describe both the organi-

zation of information (faceted classification), and to

interface techniques that provide flexible access to that

information (faceted search). The motivation for fac-

eted classification and search is that any single organi-

zational structure is too limiting to accommodate

access to complex domains. Multiple independent

facets provide alternative ways of getting to the same

information, thus supporting awider range of end-user

tasks and knowledge. The fields of faceted classification,

information architecture, and data modeling provide

theory and methods for identifying and organizing

facets. The user interface challenge for faceted systems

is in managing this added complexity, especially when
2009 Springer ScienceþBusiness Media, LLC
working with very large and diverse information collec-

tions. Most interfaces to faceted information provide

support for structured browsing (faceted navigation

or browsing). In addition, some systems offer search

capabilities and, more generally, tightly coupled views

of the same information. This entry covers both

the organization of information using facets, and the

design of user interfaces to support searchers in acces-

sing the information since the two aspects are closely

related and should be considered together in designing

information systems.

The term facet is widely used in the information

science community. In other disciplines attribute,

dimension, metadata, property, or taxonomy are used

to refer to similar concepts. Faceted search is used in

this entry to refer to flexible access to faceted informa-

tion, using both browsing and search. Other terms

such as hierarchical faceted metadata, faceted search

and browsing, and dynamic taxonomies refer to simi-

lar concepts.
Historical Background
Shiyali Ramamrita Ranganathan, an Indian mathema-

tician, first introduced the term ‘‘facet’’ in information

science in the 1930s when he developed a theory of

facet analysis, culminating with the publication of his

book Colon Classification in 1933 [7]. The name comes

from the use of colons to separate different facets

in writing composite class numbers. Ranganathan

applied the principles of faceted classification to orga-

nize all of human knowledge in libraries using five

main facets – personality, matter or property, energy,

space, and time. The Colon Classification system

is still used in libraries in India, and the principles

and techniques of facet analysis have been more widely

influential as reviewed by Vickery [13]. Faceted classi-

fication is also called analytico-synthetic classification,

after the two main processes involved – analysis which

breaks down each subject into its basic concepts

or facets, and synthesis which combines concepts

1104F Faceted Search
to describe the subset of information of interest. Thus,

in faceted classification, new classes are created by

a searcher from the logical combination of facets

and facet values. This is often contrasted with enumer-

ative classification in which all classes of interest

are specified by the indexer at the time of creation.

Most well-known library classification systems (Dewey

Decimal Classification (DDC), Universal Decimal

Classification (UDC) and Library of Congress Classifi-

cation (LCC)) are enumerative systems, although

DDC and UDC have elements of faceted classifications

as well.

In the 1950s, Calvin Mooers (who coined the term

information retrieval) and Mortimer Taube developed

new methods for searching information. Before this

time, most access was based on pre-coordinated

index terms. Index terms were assigned to objects

and only those specific index terms could be used to

retrieve items. This is very much the way that back-of-

the-book indices work, with the index creator antici-

pating the compound subjects that people will want to

search for. In contrast, in Mooers’ Zatocoding system

[5], there was one punch card per item and many index

terms coded by notch positions on the cards. At

retrieval time, a searcher used needles to isolate items

sharing a common term, and multiple terms could be

combined using Boolean logic. Taube, who coined

the term coordinate indexing, developed a system in

which each card represented a term (the so-called

uniterm system), along with a coding of the docu-

ments to which it referred [12]. Again, flexible post-

coordination of terms at retrieval time was supported.

Although the early coordinate indexing systems fo-

cused on index terms, the emphasis on analyzing

items of information so that retrieval could be per-

formed by the Boolean operations on simple index

entries made these ideas widely applicable to online

faceted systems. The first online retrieval systems

appeared in the 1960s, many containing quite sophis-

ticated retrieval functionality. The 1980s and 1990s saw

the development of much richer systems that com-

bined browsing and searching in more flexible ways

to support non-professional end users in finding in-

formation. Some early systems showing key capabil-

ities of faceted search include Pollitt [6] and Remde

et al. [8]. As described in more detail below, many of

the ideas explored in these systems are seen today in

faceted search systems and on some web sites, notably

e-commerce sites.
Foundations

An Example

As a concrete example, consider organizing and

providing access to a large collection of diverse techni-

cal publications. One way to do so is by general topic or

subject area, much as the entries in this encyclopedia

are organized. But there are many other facets in addi-

tion to Subject that can be used to characterize each

publication – for example: Publication date, Author,

Author’s institution, Publication, Genre, Language,

Length, Price, Tags, Download frequency, Citations

by other publications, etc. In a faceted organization,

each item is characterized by a value on each facet, and

there are no explicit relationships among the facets.

(There are a wide range of implicit relationships based

on which items share facet values.) A single hierarchical

structure can, of course, represent these same facets, with

each level representing one of the facets. There are added

storage costs since each facet needs to be replicated for

every subcategory. More importantly, a single hierarchy

imposes one fixed structure for navigation; each facet

must be visited in the order provided by the hierarchy.

Facets, on the other hand, providemany alternative ways

of getting to the same information and can be combined

in any order, thus providing much greater flexibility for

searchers to find information. (See Fig. 1.)

Faceted Organization

Ranganathan pioneered principles and methods for

identifying facets which Vickery and others extended

and summarized. More recently the field of informa-

tion architecture has developed these and related ideas

in the context of large electronically available collec-

tions. Two important tasks are to identify the most

appropriate facets for a collection and to assign a

value to each item on each facet. Identifying facets is

a challenging task and depends on the details of the

collection, anticipated user tasks, etc. and will not be

discussed in detail here. Rosenfeld and Morville [9]

provide an overview of recent work on information

architecture and data modeling.

The principles of faceted organization are widely

applicable and flexible. Each individual facet can be

organized in many ways, e.g., hierarchically, as a flat

list, or using other relations. Each facet has a name

(e.g., Subject) as well as values or labels (e.g., Biology,

Chemistry, Computer Science). Each item in the col-

lection is assigned one or more values on every facet.

Faceted Search. Figure 1. Comparison of faceted and hierarchical views.

Faceted Search F 1105

F

For example, a technical publication will usually have

only one Length or Date, but may have many Subjects,

Authors or Tags. A probability or confidence can be

associated with each value, as often happens when

values are assigned algorithmically, although interfaces

that expose this are rare. Any collection of items can be

represented by a faceted organization – documents,

web pages, images, videos, products, people, etc.

Once the facets for a collection have been deter-

mined, each item must be assigned values on every

facet. In early library systems, all facets were assigned

by trained human indexers, and many systems today

still depend on human assignment of values for at least

some of their facets. Machine learning techniques can

also be used to provide facet values for items. Typically

this involves a supervised learning phase in which items

with known labels are used to build a predictive model,

and an evaluation phase in which labels are assigned to

new items; text classification systems are a widely-used

example of this process. Sometimes values are captured

implicitly via an application or use. For example, in

email the sender and recipient are required for success-

ful use of the application and are thus captured. Facets

that reflect interaction with items (e.g., Download fre-

quency, User-generated tags) are also captured implic-

itly as part of ongoing interactions with applications.
A key motivation for faceted systems is that any

single organizational structure is too limiting to ac-

commodate access to complex domains. Multiple

facets provide many different ways of organizing infor-

mation, thus enabling flexible end-user access to the

information. Facets are a way of conveniently referring

to a subset of items in the collection. Facets can be

specified in any order, and the resulting sets can

be combined using Boolean logic. The most common

method for doing so (in interfaces) is to use AND to

combine values from different facets and OR to com-

bine values from within the same facet. Thus the

resulting query is a conjunct of disjuncts over the

selected facet labels. Other combination methods are

possible, although there are interesting challenges in

providing interfaces to do so. The ability to specify

facets in any order and to combine them using Boolean

logic illustrates the power and flexibility of faceted

organization.

Compared to a single hierarchical organization of

information, faceted systems provide many advan-

tages. First, facets provide an efficient way of discrimi-

nating among sets of items. A single hierarchy with

100,000 nodes would be required to represent all the

combinations that can be instantiated by 5 facets

each with 10 values. Second, the ability to combine

1106F Faceted Search
facets in any order provides users with more flexibility

to specify their interests using whatever facets they are

confident about for a particular search (as described in

more detail below). Finally, facets are easier to manage

and update, and efficient to use as input to machine

learning algorithms.

Faceted Access

Developing a faceted organization of information

is only the first step in any application. Using this

representation to support end-users in finding infor-

mation or in understanding large multi-dimensional

information spaces is critical for any successful appli-

cation. In this entry, the term faceted access is used

to refer to faceted browsing, search, and the integration

of the two.

Several faceted search systems have been designed

and deployed during the last two decades. The success

of any system in supporting end-users is highly depen-

dent on details of the domain of interest (e.g., search-

er’s tasks, their familiarity with the facets, etc.).

A brief summary of the key components is outli-

ned below. Most systems show the query, the facet

structure, the subset of results currently specified,

and sometimes a detailed view of an individual item.

(See Fig. 2.)

Browsing The most common access technique sup-

ported by facets is navigation. Faceted navigation is a
Faceted Search. Figure 2. Example faceted search interface,

the two.
way to browse information, guided by the facet struc-

ture. Selecting a facet label (e.g., Subject=Computer

Science) results in a list of all items described by that

label. Additional facet values can be selected at any time

and in any order (e.g., Date=2000; Author= Dumais;

Subject=Computer Science/Databases). Faceted brows-

ing allows searchers to refine a long list of results, using

multiple dimensions, in whatever order they choose.

From the user experience perspective, the big challenge

is in managing the scale and complexity of multiple

facets, each of which may contain thousands of values

organized in either a hierarchy or flat list. Consider how

cumbersome it can be to navigate using the file explorer

when there are hundreds of thousands of files. And this is

only a single facet (based on file location); now add other

facets such as file type, size, creation date, access patterns,

etc. and the design issues become apparent.

One challenge is to provide compressed views of

very large information structures in ways that balance

overview (context) and detailed (focus) information.

A common technique is to progressively expose details

for hierarchical facets, guided by the user. Initially only

the top level values for each facet are shown. Once a

facet is selected the next level of labels are exposed, and

previous levels may be collapsed to save space with

only a breadcrumb remaining. Yee et al. [14] show

several examples of this. Another technique is to trun-

cate long lists of values by showing a few labels with an

option to ‘‘see more.’’ The values can be selected in any
illustrating facet browsing, searching, and tight coupling of

Faceted Search F 1107

F

number of ways. In some cases an ordered list may be

binned (e.g., instead of showing all unique dates, the

dates can be grouped: before 1960; 1961–1980; 1981–

2000; after 2000). In other cases the values are chosen

alphabetically or numerically, to span the space, or based

on the most common user tasks. And, in some cases,

search over facet values is provided as a means of quickly

winnowing down a long list of possible values (e.g., [2]).

Another challenge is to select labels that are under-

standable to users, thus enabling them to know which

facet to select to get to the desired information. This is

relatively easy for some facets, like Date or Language or

Author, but more difficult for others like Subject (e.g.,

is a paper describing a user study of faceted navigation

in Subject=Computer Science or Subject=Psychology

or both or neither?). In cases like this, facet labels can

be expanded by including examples of labels at the next

level (e.g., Subject=Computer Science (AIgorithms,

Databases, Human-Computer Interaction), thus im-

proving the ‘‘information scent’’ of the description.

Many web directories like the Open Directory (http://

www.dmoz.org) label their categories in this manner.

An important technique for providing additional

guidance about what will be found by selecting a facet

value is called ‘‘dynamic query previews’’ (e.g., Greene

et al. [3] Shneiderman [14]). The basic idea is to show

some preview of the results that each query will generate.

For facet browsing, this is commonly done by showing

the number of results for each facet label next to the label

(e.g., Biology (32); Chemistry (1); Computer Science

(654); Geology (0)). Showing previews prevents also

prevents users from selecting facets that will return no

results. There are interesting challenges in efficiently

providing such previews in distributed networked envir-

onments, and in cases where the set of items has been

generated by some other means like a search.

Facet labels and query previews aid searchers in

selecting the right facets. Interfaces should also allow

for both specialization (narrowing a search) and gener-

alization (broadening a search). Techniques like bread-

crumbs are used to represent the current state of the

‘‘query’’ as it evolves over time through interaction.

This provides a visible and actionable representation –

searchers are able to understand the current set of

items, and to quickly generalize as well as specialize.

In addition to supporting facet navigation, the

interface should also show some representation of the

current set of results. A simple list is one method for

doing so. Richer list views in which the searcher can
control the sort order along one or more facets are also

used. Results sets can also be grouped by facet value to

enable a greater diversity of results to be shown and to

further reinforce the facet structure. Grouping is typi-

cally done using the next level for hierarchically

organized facets [14], or the facet used for sorting

[2]. In addition, some interfaces allow users to specify

queries by example. Given a result or set of results,

a new query can be generated to find other items that

share one or more facets.

Searching (and Integrated Browsing and Searching)

Search is often contrasted with browsing, and sug-

gested as a means for providing access to large, un-

structured collections of information. In web search

engines, for example, a query results in a long unstruc-

tured list of results. Many faceted browsing systems

also provide a search capability that is largely indepen-

dent of the facet structure.

An improved user experience can be achieved by

tightly coupling faceted browsing and searching cap-

abilities. The facet structure can be leveraged in several

ways to do this. A simple integration is to use the facets

to navigate to a subset of items of interest and then to

search within that. The converse is to start with search

and to show the distribution of search results in terms

of their corresponding facet structure. For example,

a query for ‘‘faceted search’’ returns results that have

a distribution of values on the Subject facet – e.g.,

Computer Science (654); Biology (32); Chemistry (1);

Geology (0).

The tightest coupling is to view both search and

navigation as techniques for specifying subsets of in-

formation, and to allow either method to be used at all

times. Thus search and navigation can be combined in

any order at any time, while maintaining a consistent

representation and interface. The Flamenco [14] and

Phlat [2] systems support this kind of seamless inte-

gration between search and navigation. Effective data

structures and algorithms have been developed to sup-

port quickly finding sets of results and summarizing

the distributions of their facet values [1,10].

Scale and Details An important design challenge in

faceted interfaces is handling scale – the overall size of

the collection, the number of different facets, and the

number of values per facet (especially for multi-valued

facets like names or user-generated tags). Displaying all

values for all facets is not possible in most realistic

1108F Faceted Search
applications without requiring users to spend most of

their time scrolling through very long lists or managing

multiple windows. Methods for progressively exposing

more detail for hierarchically organized facets, or for

showing a limited set of key values for each facet, with

more alternatives available on demand, are important

techniques for managing scale. Using the facet struc-

ture to tightly couple browsing and searching is in-

creasingly being used in e-commerce applications. This

provides the searcher with tools that support a wide

variety of tasks and states of knowledge.

There are still some capabilities that are difficult to

implement in a usable and discoverable fashion.

Searching over facet values when they are many values

(e.g., Author names, Tags), multi-select operations

within a facet, and using the same facet structure to

support both access and tagging are all still challenging

design issues. Decisions about which facets to display

and how to do so depend critically on the application

domain – e.g., price is very important in shopping but

less so in finding technical materials; supporting range

queries makes sense for Price, but probably not for

Subject. Hearst et al. [4] provide a number of examples

of how usability tests guided important interface de-

sign choices. These evaluations examine outcome mea-

sures such as task completion time and accuracy,

subjective preferences, interaction trajectories, etc.,

and are used to iterate on the design until user perfor-

mance goals are achieved.

Key Applications
Faceted search systems have been developed for a many

applications in e-commerce (music, books, e-bay), bib-

liographic databases, image collections, and for finding

files and email in theWindows andMacintosh operating

systems. The following is a small list of applications

available on the web, covering different domains.

� EBay Express, http://www.express.ebay.com/–gen-

eral product information

� Flamenco, http://flamenco.berkeley.edu/demos.

html – prototype applications for art images, archi-

tecture images and nobel prize winners

� NCSU Libraries http://www2.lib.ncsu.edu/cata-

log/–bibliographic records

� Tower Records, http://www.tower.com/–music,

videos and books

These applications all in fairly narrow vertical domains

and have readily available facet information. In the
Flamenco prototypes, hand-generated metadata was

available for each collection. In the NCSU applica-

tion, the facets were populated using bibliographic

records. And, in the e-commerce applications, many

of the facets displayed are required for business pur-

poses (e.g., price, manufacturer, etc.) and thus readily

available.

Future Directions
New interface techniques for managing scale in exist-

ing applications will continue to be a fruitful area for

innovation. Algorithms and architectures that can pro-

vide real-time dynamic previews of results in the con-

text of the facet structure are required for distributed

or networked applications. Developing methods for

representing and displaying a confidence score for

each facet value is another new direction.

Finally, it is interesting to consider why faceted

interfaces are not widely available for general web

search. There have been some attempts to structure

the web using a topic hierarchy like Open Directory

(http://www.dmoz.org) or Yahoo! in its early days.

However this represents only a single facet (topic),

and facet values are available for only a small subset

of web content. Facet values could be assigned auto-

matically using text classification techniques (e.g.,

topic, genre, commerciality), and Web pages already

have some structure that could support faceted

access (e.g., site names, creation date, modification

date, language, usage history). Understanding which

facets are most important to support the variety of

information needs that people use the web for, and

handling large-scale dynamic collections will be key in

determining the success of faceted search methods for

web content.

Cross-references
▶Browsing in Digital Libraries

▶Cataloging in Digital Libraries

▶Cross-Modal Multimedia Information Retrieval

▶Digital Libraries

▶Human-Computer Interaction

▶ Information Retrieval

▶Ontology

▶ Presenting Structured Text Retrieval Results

▶ Searching Digital Libraries

▶Text Categorization

▶Text Indexing and Retrieval

▶Web Information Retrieval Models

Fault-Tolerance and High Availability in Data Stream Management Systems F 1109

F

Recommended Reading
1. Bast H. and Weber I. The complete search engine: interactive,

efficient and towards IR & DB integration. In Proc. 3rd Biennial

Conf. on Innovative Data Systems Research, 2007, pp. 88–95.

2. Cutrell E., Robbins D.C., Dumais S.T., and Sarin R. Fast, flexible

filtering with Phlat – personal search and organization made

easy. In Proc. SIGCHI Conf. on Human Factors in Computing

Systems, 2006, pp. 261–270.

3. Greene S., Marchionini G., Plaisant C., and Shneiderman B.

Previews and overviews in digital libraries: designing surrogates

to support visual information-seeking. J. Am. Soc. Inform. Sci.,

51(3):380–393, 2000.

4. Hearst M., Smalley P., and Chander C. Faceted metadata for

information architecture and search. Course at SIGCHI Conf.

on Human Factors in Computing Systems, 2006.

5. Mooers C.N. Zatocoding applied to mechanical organization of

knowledge. Am. Doc., 2(1):20–32, 1951.

6. Pollitt A.S. A common query interface usingMenUSE – Amenu-

based user search engine. In Proc. 12th Int. Online Information

Meeting, 1988, pp. 445–457.

7. Ranganathan S.R. Colon classification. The Madras Library

Association, Madras, India and Goldston, London, 1933.

8. Remde J.R., Gomez L., and Landauer T.K. SuperBook: An auto-

matic tool for information exploration. In Proc. Hypertext’87,

Conf. Chapel Hill, NC, 1987, pp. 175–188.

9. Rosenfeld L. and Morville P. Information Architecture for the

World Wide Web. O’Reilly Media, Sebastapol, CA, 2006.

10. Sacco G.M. Dynamic taxonomies: a model for large information

bases. IEEE Trans. Knowl. Data Eng., 12(2):468–479, 2000.

11. Shneiderman B. Dynamic queries for visual information seek-

ing. IEEE Softw., 11(6): 70–77, 1994.

12. Taube M. et al. Studies in Coordinate Indexing (vols. 1–5).

Documentation Incorporation, Washington, DC, 1953–1959.

13. Vickery B.C. Faceted Classification: A Guide to the Construction

and Use of Special Schemes. ASLIB, London, 1960.

14. Yee K., Swearingen K., Li K., and Hearst M. Faceted metadata

for image search and browsing. In Proc. SIGCHI Conf. on

Human Factors in Computing Systems, 2003, pp. 401–408.
Facility-Location Problem

▶Resource Allocation Problems in Spatial Databases
Fact-Oriented Modeling

▶Object-Role Modeling
Failure Handling

▶Crash Recovery

▶ Logging and Recovery
False Negative Rate

▶ Precision and Recall
Fault Tolerant Applications

▶Application Recovery
Fault-Tolerance

▶Replication for High Availability
Fault-Tolerance and High
Availability in Data Stream
Management Systems

MAGDALENA BALAZINSKA
1, JEONG-HYON HWANG

2,

MEHUL A. SHAH
3

1University of Washington, Seattle, WA, USA
2Brown University, Providence, RI, USA
3HP Labs, Palo Alto, CA, USA

Definition
Just like any other software system, a data stream

management system (DSMS) can experience failures

of its different components. Failures are especially

common in distributed DSMSs, where query operators

are spread across multiple processing nodes, i.e., inde-

pendent processes typically running on different phys-

ical machines in a local-area network (LAN) or in a

wide-area network (WAN). Failures of processing

nodes or failures in the underlying communication

network can cause continuous queries (CQ) in a

DSMS to stall or produce erroneous results. These

failures can adversely affect critical client applications

relying on these queries.

Traditionally, availability has been defined as the

fraction of time that a system remains operational and

properly services requests. InDSMSs, however, availabil-

ity often also incorporates end-to-end latencies as appli-

cations need to quickly react to real-time events and thus

can tolerate only small delays. A DSMS can handle fail-

ures using a variety of techniques that offer different

levels of availability depending on application needs.

1110F Fault-Tolerance and High Availability in Data Stream Management Systems
All fault-tolerance methods rely on some form of

replication, where the volatile state is stored in indepen-

dent locations to protect against failures. This entry

describes several such methods for DSMSs that offer

different trade-offs between availability and runtime

overhead while maintaining consistency. For cases of

network partitions, it outlines techniques that avoid stal-

ling the query at the cost of temporary inconsistency,

thereby providing the highest availability. This entry

focuses on failures within a DSMS and does not discuss

failures of the data sources or client applications.

Historical Background
Recently, DSMSs have been developed to support crit-

ical applications that must quickly and continuously

process data as soon as they become available. Example

applications include financial stream analysis and net-

work intrusion detection (see Key Applications for

more). Fault-tolerance and high availability are impor-

tant for these applications because faults can lead to

quantifiable losses. To support such applications, a

DSMS must be equipped with techniques to handle

both node and network failures.

All basic techniques for coping with failures involve

some kind of replication. Typically, a system replicates

the state of its computation onto independently failing

nodes. It must then coordinate the replicas in order

to recover properly from failures. Fault-tolerance tech-

niques are usually designed to tolerate up to a pre-

defined number, k, of simultaneous failures. Using such

methods, the system is then said to be k-fault tolerant.

There are two general approaches for replication and

coordination. Both approaches assume that the compu-

tation can be modeled as a deterministic state-machine

[4,11]. This assumption implies that two non-faulty

computations that receive the same input in the same

order will produce the same output in the same order.

Hereafter, two computations are called consistent if they

generate the same output in the same order.

The first approach, known as the state-machine

approach, replicates the computation on k + 1 � 2 inde-

pendent nodes and coordinates the replicas by sending

the same input in the same order to all [11]. The details

of how to deliver the same input define the various

techniques. Later sections in this entry describe var-

iants that are specific to DSMSs. The state-machine

approach requires k + 1 times the resources of a single

replica, but allows for quick fail-over, so a failure

causes little disruption to the output stream. This
property is important for critical monitoring tasks

such as intrusion detection that require low-latency

results at all times.

The second general approach is known as rollback

recovery [4]. In this approach, a system periodically

packages the state of its computation into a checkpoint,

and copies the checkpoint to an independent node or a

non-volatile location such as disk. Between check-

points, the system logs the input to the computation.

Since disks have high latencies, existing fault-tolerance

methods for DSMSs copy the checkpointed state to

other nodes and maintain logs in memory. Upon fail-

ure, the system reconstructs the state from the most

recent checkpoint, and replays the log to recover the

exact pre-failure state of the computation. This

approach has much lower runtime overhead at the

expense of longer recovery times. It is useful in situa-

tions where resources are limited, the state of the

computation is small, fault-tolerance is important,

but rare moderate latencies are acceptable. An example

application is fabrication-line monitoring using a ser-

ver cluster with limited resources.

In some cases, users are willing to tolerate tempo-

rary inconsistencies to maintain availability at all

times. One example is in the wide-area where network

partitions are likely (e.g., large-scale network and sys-

tem monitoring). To maintain availability in face of

network partitions, the system must move forward

with the computation ignoring the disconnected mem-

bers. In this case, however, replicas that process differ-

ent inputs will have inconsistent states. There are two

general approaches for recovering from such inconsis-

tencies after the network partition heals. One approach

is to propagate all updates to all members and apply

various rules for reconciling conflicting updates [6,9].

The other approach is to undo all changes performed

during the partition and redo the correct ones [6,15].

This entry presents how these general approaches

can be adapted to distributed DSMSs. The main chal-

lenge is to ensure that applications receive low-latency

results during both normal processing and failures. To

do so, the methods presented leverage the structure of

continuous queries (CQs) in DSMSs.

This entry makes the following assumptions. A CQ

is a connected directed-acyclic graph of query opera-

tors. The operators can be distributed among many

processing nodes with possibly multiple operators per

node. A processing node is the unit of failure. For

simplicity of exposition, this entry focuses on the

Fault-Tolerance and High Availability in Data Stream

Management Systems. Figure 1. Active replicas. The

operators on replicas P1 and P2 are the producers. The

operators on C1 and C2 are the consumers.

Fault-Tolerance and High Availability in Data Stream Management Systems F 1111

F

case of k = 1 (i.e., two query replicas) although all

shown techniques can handle any k. This entry

describes methods to tolerate node crash failures and

temporary network partitions. Roughly speaking, a

node has crashed if it visibly halts or simply becomes

unresponsive [12]. A network partition splits nodes

into two or more groups where nodes from one

group cannot communicate with nodes in another.

Foundations

Techniques for Handling Crash Failures

This section describes new fault-tolerance techniques

devised by applying the general fault-tolerance meth-

ods to continuous queries in DSMSs.

Active Replicas Active replicas are an application of

the state-machine approach in which query operators

are replicated and run on independently failing nodes.

A simple variant of the active replicas approach uses

the traditional process-pair technique to coordinate

the replicas. The process-pair technique runs two cop-

ies of the query and specifies one to be the primary

and the other to be the secondary. In this approach,

the primary forwards all input, in the same order,

to the secondary and works in lock-step with the

secondary [5].

ADSMS can rely on a looser synchronization between

the replicas by taking advantage of the structure of

CQ dataflows. In a CQ dataflow, the operators obey

a producer-consumer relationship. To provide high avail-

ability, the system replicates both the producer and con-

sumer as illustrated in Fig. 1. In this model, there is no

notion of a primary or secondary. Instead, each produc-

er logs its output and forwards the output to its current

consumer(s). Each consumer sends periodic acknowl-

edgments to all producers to indicate that it has received

the input stream up-to a certain point. An acknowledg-

ment indicates that the input need not be resent in case

of failure, so producers can truncate their output logs.

Use of reliable, in-order network delivery (e.g., TCP) or

checkpoints allows important optimizations where con-

sumers send application-level acknowledgments to only

a subset of producers [7,14].

The symmetric design of active replicas has some

benefits. The normal-case behavior has few cases, so it

is simple to implement and verify. Additionally, with

sufficient buffering, each pipeline can operate at its

own pace, in looser synchronization with the other.
The Flux [14] approach was the first to investigate

this looser synchronization between replicated queries.

Flux is an opaque operator that can be interposed

between any two operators in a CQ. Flux implements

a simple variant of this protocol and assists in recovery.

The Borealis ‘‘Delay, Process, and Correct’’ (DPC)

protocol [1,2] also uses the above coordination

scheme, but differs from Flux in its recovery, as dis-

cussed later. The Flux and DPC approaches both en-

sure strict consistency in the face of crash failures: no

duplicate output is produced and no output is lost.

Passive Replicas There have been two applications of

the rollback recovery approach to CQs [7,8]. The first,

called passive standby, handles all types of operators.

The second, called upstream backup, is optimized for

more specific bounded-history operators that fre-

quently arise in CQs.

In the passive standby approach, a primary node

periodically checkpoints its state and sends that check-

point to a backup. The state includes any data main-

tained by the operators and tuples stored in queues

between operators. In practice, sending the entire state

at every checkpoint is not necessary. Instead, each

primary periodically performs only a delta-checkpoint

as illustrated in Fig. 2. During a delta-checkpoint, the

primary updates the backup by copying only the dif-

ference between its current state and the state at the

time of the previous checkpoint.

Because of these periodic checkpoints, a backup

always has its primary’s state as of the last checkpoint.

Fault-Tolerance and High Availability in Data Stream

Management Systems. Figure 3. Upstream backup.

Fault-Tolerance and High Availability in Data Stream

Management Systems. Figure 2. Passive standby.

1112F Fault-Tolerance and High Availability in Data Stream Management Systems
If the primary fails, the backup recovers by restarting

from that state and reprocessing all the input tuples

that the primary had processed since the last check-

point. To enable backups to reprocess such input

tuples, all primaries log their output tuples. If a down-

stream primary fails, each upstream primary re-sends

its output tuples to the downstream backup. In a CQ,

because the output of an operator can be connected

to more than one downstream consumer operator, pri-

maries discard logged output tuples only after all down-

stream backups have acknowledged a checkpoint.

For many important CQ operators, the internal

state often depends only on a small amount of recent

input. Examples of such operators include joins and

aggregates with windows that span a short time-period

or a small number of tuples. For such operators,

DSMSs can use the upstream backup method to

avoid any checkpointing overhead. In this approach,

primaries log their output tuples, but backups remain

idle as illustrated in Fig. 3. The primaries trim their

logs based on notifications from operators 1-level (or

more) downstream, indicating that the states of con-

suming operators no longer depend on the logged

input. To generate these notifications, downstream

operators determine, from their output, what logged

input tuples can be safely discarded. If a primary

fails, an empty backup rebuilds the latest state of the

primary using the logs kept at upstream primaries.

Failure Recovery When a failure occurs, a DSMSmust

first detect and then recover from that failure. DSMSs

detect failures using timeouts and, in general, rely on

standard group membership mechanisms to keep
consistent track of nodes entering and leaving the

system [10,13]. Recovery ensues after failure detection.

There are two parts to failure recovery. The first part

involves masking the failure by using the remaining

replica to continue processing. For active replicas, this

part is called fail-over. In both Flux andDPC, fail-over is

straightforward. Consumers and producers adjust their

connections to receive input data from or send output

data to the remaining live copy of the failed node. To

avoid stalls in the output stream, it is safe for active

replicas to proceed with fail-over without waiting for

group membership consensus [1,13]. For passive stand-

by and upstream backup, this first part also involves

bringing the state of the backup to the pre-failure state

of the failed primary, as described earlier, before the

backup starts sending data to downstream consumers.

The second part of recovery, called repair, allows

the query to repair its failed pieces and regain its

original level of fault-tolerance. In upstream backup,

the system regains its normal fault-tolerance level

when the new replica fills its output log with enough

data to rebuild the states of downstream nodes.

For both active replicas and passive standby, repair

can cause significant disruptions in the result stream

depending on the granularity of coordination in the

query. For example, if a system uses active replica

coordination only at the input(s) and output(s) of a

distributed query, the system must destroy the entire

query affected by the failure, stall the entire remaining

query, checkpoint its state, copy that state onto inde-

pendent nodes, and reintegrate the new copy with the

remaining query. The system must repair a query at a

time because it has no control over inflight data in the

Fault-Tolerance and High Availability in Data Stream Management Systems F 1113

F

network between nodes in a query. If the query state is

large, e.g., tens of gigabytes, repair can take minutes,

causing significant latencies in the result stream. Simi-

larly, coarse coordination in passive standby would

cause the first checkpoint after recovery to stall proces-

sing for a long time.

To remedy this problem, most high-availability

CQ schemes (e.g., Flux [14,13], BorealisDPC [1,2], Active

Standby [7], Passive Standby [7,8]) coordinate and repair

in smaller chunks: between nodes (containing groups of

operators), between operators, or even finer. Then, after

failure, they can repair the lost pieces one at time, allowing

the remaining pieces to continue processing and reduce

the impact of stalls. In the presence of k + 1 > 2 replicas,

DSMSs can use the extra replicas to further smooth the

impact of stalls during repair. Also with finer coordi-

nation, DSMSs need to repair only the lost pieces,

thereby reducing mean-time-to-recovery and improv-

ing system reliability, i.e., mean-time-to-failure [14].

Trade-Offs Among Crash Failure Techniques The

above techniques provide different trade-offs between

runtime overhead and recovery performance. Active

replicas provide quick fail-over because replicas are

always ‘‘up-to-date’’. With this approach, however, the

runtime overhead is directly proportional to the degree

of replication. Passive standby provides a flexible trade-

off between runtime overhead and recovery speed

through the configurable checkpoint interval. As the

checkpoint interval decreases, the runtime computation

and network overheads increase because the primaries

copy more intermediate changes to the backups. How-

ever, recovery speed improves because the backups are

in general more up-to-date when they take over. Finally,

upstream backup incurs the lowest overhead because

backups remain idle in the absence of failures. For up-

stream backup, recovery time is proportional to the

size of the upstream buffers. The size of these buffers,

in turn, depends on how much history is necessary to

rebuild the state of downstream nodes. Thus, upstream

backup is practical in small history settings.

Techniques for Handling Network Partitions

The previous techniques can mask crash failures and a

limited set of network failures (by converting discon-

nected nodes into crashed nodes), but cannot handle

network partitions in which data sources, processing

nodes, and clients are split into groups that cannot

communicate with each other.
In the presence of network partitions, a DSMS, like

all distributed systems, has two choices. It can either

suspend processing to ensure consistency, or continue

processing the remaining streams with best-effort

results to provide availability [3]. Existing work on

fault-tolerance in distributed DSMSs has explored

both options. The Flux protocol [13], originally set in

the local-area where network partitions are rare, favors

consistency. The Borealis’s DPC protocol, designed for

wide-area monitoring applications where partitions are

more frequent, favors availability. During partitions,

DPC generates best-effort result tuples which are labeled

as tentative. Further, DPC allows applications to speci-

fy a maximum tolerable latency for flexibly controlling

the tradeoff between consistency and availability [1,2].

Once a network partition heals, a stalled CQ node

can simply resume. A node that continued processing

with missing input, however, might be in a diverged

state, i.e., a state different from that of a failure-free

execution. To reconcile a node’s diverged state, a DSMS

can take two approaches. The system can revert the

node to a consistent, checkpointed state and replay the

subsequent, complete input, or the system can undo

and redo the processing of all tuples since the network

partition. To avoid stalling the output during reconcil-

iation, a DSMS must take care not to reconcile all

replicas of a node simultaneously. Moreover, nodes

must correct their previous output tentative tuples to

enable downstream nodes to correct their states, in

turn, and to allow applications to ultimately receive

the correct and complete output. The Borealis DPC

protocol supports these techniques [1,2].

Optimizations

Flux: Integrating Fault Tolerance and Load Balancing A

large-scale cluster is a dynamic environment in which

DSMSs face not only failures but also load imbalances

which reduce availability. In this setting, DSMSs

typically split the state of operators into partitions

and spread them across a cluster for scalability.

A single overloaded machine, in this setup, can severely

slow down an entire CQ. The Flux operator can be

interposed between producer–consumer partitions to

coordinate their communication. To absorb short

delays and imbalances, Flux allows out-of-order pro-

cessing of partition input. For long-term imbalances,

it supports fine-grained, online partition state move-

ment. The Flux operators interact with a global

1114F Fault-Tolerance and High Availability in Data Stream Management Systems
controller that coordinates repair and rebalancing, and

uses the same state movement mechanism for both

[13]. Integrating load balancing with fault tolerance

allows a system to better utilize available resources as

nodes enter and leave the system. These features allow

smooth hardware refresh and system growth, and are

essential for administering DSMSs in highly dynamic

and heterogeneous environments.

Leveraging Replication for Availability and Performance

in Wide-Area Networks In previous active replicas

approaches, a consumer replica receives the output

stream of only one of many producer replicas. In

wide area networks, the connection to any single pro-

ducer is likely to slow down or fail, thereby disrupting

the subsequent processing until fail-over completes. To

avoid such disruptions, each consumer replica in

Hwang et al.’s method [7] merges streams from multi-

ple producer replicas into a single duplicate-free

stream. This scheme allows each consumer, at any

instant, to use the fastest of its replicated input

streams. To further reduce latency, they redesign

operators to avoid blocking by processing input out-

of-order when possible, while ensuring that applica-

tions receive the same results as in the non-replicated,

failure-free case. Moreover, their scheme continually

adjusts the replication level and placement of operator

replicas to optimize global query performance in a

dynamically changing environment.

Passive Standby: Distributed Checkpointing and Parallel

Recovery The basic passive standby approach has two

drawbacks: it introduces extra latencies due to check-

points and has a slower recovery speed than active repli-

cas. Hwang et al.’s distributed checkpointing technique

overcomes both problems [8]. This approach groups

nodes into logical clusters and backs up each node

using the others in the same cluster. Because different

operators on a single node are checkpointed onto sepa-

rate nodes, they can be recovered in parallel. This ap-

proach dynamically assigns the backup node for each

operator and schedules checkpoints in a manner that

maximizes the recovery speed. To reduce disruptions,

this approach checkpoints a few operators at a time.

Such checkpoints also begin only at idle times.

Key Applications
There are a number of critical, online monitoring

tasks that require 24�7 operation. For example, IT
administrators often want to monitor their networks

for intrusions. Brokerage firms want to analyze quotes

from various exchanges in search for arbitrage oppor-

tunities. Phone companies want to process call-records

for correct billing. Web site owners want to analyze and

monitor click-streams to improve targeted advertising

and to identify malicious users. These applications,

and more, can benefit from fault-tolerant and highly

available CQ systems.

Future Directions
Key open problems in the area of fault-tolerance and

high availability in DSMSs include handling Byzantine

failures, integrating different fault-tolerance mechan-

isms, and leveraging persistent storage. Techniques for

handling failures of data sources or dirty data pro-

duced by data sources (e.g., sensors) are also areas for

future work.

Experimental Results
See [1,2,7,8,13,14] for detailed evaluations of the dif-

ferent fault-tolerance algorithms.

URL to Code
Borealis is available at: http://www.cs.brown.edu/re-

search/borealis/public/

Cross-references
▶Continuous Query

▶Data Stream

▶Distributed Data Streams

▶ Stream Processing

Recommended Reading
1. Balazinska M. Fault-Tolerance and Load Management in a

Distributed Stream Processing System. Ph.D. thesis,

Massachusetts Institute of Technology, 2006.

2. Balazinska M., Balakrishnan H., Madden S., and Stonebraker M.

Fault-Tolerance in the Borealis Distributed Stream Processing

System. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2005, pp. 13–24.

3. Brewer E.A. Lessons from giant-scale services. IEEE Internet

Comput., 5(4):46–55, 2001.

4. Elnozahy E.N.M., Alvisi L., Wang Y.M., and Johnson D.B. A

survey of rollback-recovery protocols in message-passing sys-

tems. ACM Comput. Surv., 34(3):375–408, 2002.

5. Gray J. Why do computers stop and what can be done about it?

Technical Report 85.7, Tandem Computers, 1985.

6. Gray J., Helland P., O’Neil P., and Shasha D. The dangers of

replication and a solution. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1996, pp. 173–182.

Feature Extraction for Content-Based Image Retrieval F 1115

F

7. Hwang J.H., BalazinskaM., Rasin A., Çetintemel U., Stonebraker

M., and Zdonik S. High-Availability Algorithms for Distributed

Stream Processing. In Proc. 21st Int. Conf. on Data Engineering,

2005, pp. 779–790.

8. Hwang J.H., Xing Y., Çetintemel U., and Zdonik S. A coopera-

tive, self-configuring high-availability solution for stream pro-

cessing. In Proc. 23rd Int. Conf. on Data Engineering, 2007,

pp. 176–185.

9. Kawell L., Beckhardt S., Halvorsen T., Ozzie R., and Greif I.

Replicated Document Management in a Group Communica-

tion System. In Proc. ACM Conf. on Computer-Supported

Cooperative Work, 1988.

10. Schiper A. and Toueg S. From set membership to group mem-

bership: a separation of concerns. IEEE Trans. Dependable

Secure Comput., 3(1):2–12, 2006.

11. Schneider F.B. Implementing fault-tolerant services using the state

machine approach: a tutorial. ACM Comput. Surv., 22(4):

299–319, 1990.

12. Schneider F.B. What good are models and what models are

good? In Distributed Systems. ACM/Addison-Wesley Publishing

Co, 2nd edn., 1993, pp. 17–26.

13. Shah M.A. Flux: A Mechanism for Building Robust, Scalable

Dataflows. Ph.D. thesis, University of California, Berkeley, 2004.

14. Shah M., Hellerstein J., and Brewer E. Highly-Available, Fault-

Tolerant, Parallel Dataflows. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 2004, pp. 827–838.

15. Terry D.B., Theimer M., Petersen K., Demers A.J., Spreitzer M.,

and Hauser C. Managing update conflicts in Bayou, a weakly

connected replicated storage system. In Proc. 15th ACM Symp.

on Operating System Principles, 1995, pp. 172–183.
FCP

▶ Storage Protocols
FD

▶ Functional Dependency
Feature Extraction for Content-
Based Image Retrieval

RAIMONDO SCHETTINI
1, GIANLUIGI CIOCCA

1,

ISABELLA GAGLIARDI
2

1University of Milano-Bicocca, Milan, Italy
2National Research Council (CNR), Milan, Italy

Synonyms
Image indexing
Definition
Feature extraction for content-based image retrieval

is the process of automatically computing a compact

representation (numerical or alphanumerical) of some

attribute of digital images, to be used to derive infor-

mation about the image contents. It can be seen as a

case of dimensionality reduction. A feature, or attri-

bute, can be related to a visual characteristic, but it may

also be related to an interpretative response to an

image or to a spatial, symbolic, semantic, or emotional

characteristic. A feature may relate to a single attribute

or be a composite representation of different attri-

butes. Features can be classified as general purpose or

domain-dependent. The general purpose features can

be used in any context, while the domain-dependent

features are designed specifically for a given applica-

tion. Every feature is intimately tied with the kind of

information that it captures. The choice of a particular

feature over another depends on the given application,

and the kind (level) of information required.

Historical Background
The interest of the scientific community in the prob-

lem of image retrieval can be dated back to the early

1990s. One of the pioneering examples on image fea-

ture extraction is the work by Swain and Ballard [6]

where the concept of color histogram is introduced for

image indexing. Since then, color (in many forms and

evolutions) has been one of the most widely used

features exploited for indexing the image contents.

This is mainly due to its power to visually capture

perceptual properties, robustness with respect to

many image transformations, and computation effi-

ciency. While more complex and sophisticated general

purpose and domain dependent features were being

developed, two important issues became evident: the

sensory gap and the semantic gap.

The sensory gap is the gap between the information

of the real world, and the information in a computa-

tional description derived from a digital recording of a

scene of the world. The semantic gap is the lack of

coincidence between the information that one can

extract from the visual data and the interpretation that

the same data have for a user in a given application [5].

The problems of the sensory and semantic gaps are

less relevant for very specific applications (e.g., medical

imaging) where the domain may be so narrow that high

knowledge can be embedded in few features. However,

for general purpose applications, sensory and semantic

1116F Feature Extraction for Content-Based Image Retrieval
gaps cannot be bridged by a few features alone. To cope

with the sensory gap problem, current approaches try to

combine different features (mostly at low or middle

levels of information), and different representations of

the same feature. One way to cope with the semantic gap

problem is not to tackle it at the feature level but at the

system-user interaction levelwith human-adaptive para-

digms. For these paradigms, the user represents a central

role for a content-based image retrieval system. User

interaction allows the system to automatically adapt to

the changing requests; for example, in the way the

images are organized, evaluated, or retrieved [7].
Foundations
Since an image conveys information at different levels,

the use of different features at the same time is a

necessary requisite to develop effective indexing

algorithms for content-based image retrieval. For ex-

ample, any visual property can have different feature

representations describing it. Visual properties can be

low level properties such as color, shape or texture;

middle level properties such as regions and spatial

relationships; high level properties such as the localiza-

tion and identification of objects or image categoriza-

tion. The process of choosing the best features for a

particular application is denoted as feature selection.

The selected features should ideally present the

following basic properties:

1. Perceptual similarity: the feature distance between two

images is great only if the images are not ‘‘similar’’;
Feature Extraction for Content-Based Image Retrieval. Figu
2. Efficiency: they can be rapidly computed;

3. Economy: their dimensions are small in order not

to affect retrieval efficiency;

4. Sscalability: the performance of the system is not

influenced by the size of the database;

5. Rrobustness: changes in the imaging conditions

(i.e., illuminations, geometric transformations,. . .)

of the database images should not affect retrieval.

Once the features have been selected, a similarity mea-

sure (one for each feature and/or a global one) is

chosen in order to evaluate the user query against the

images in the database, and rank the retrieved images.

Ideally a similarity measure should be correlated with

the user’s perception of image matching or image

similarity.

Figure 1 shows the different levels of information

that can be derived from an image: the dashed line

indicates where the semantic gap starts to influence the

feature extraction algorithms.

Figure 2 is an example of the different information

that can be obtained from an image. At each level of

information more complex features are required to

capture that kind of information. Details of each level

are as follows:

1. Digital image of a painting.

2. Pixels. The image is coded using a numerical repre-

sentation of physical properties derived from the

input device with implicit spatial relationships.

This representation may capture color as well as

pressure, range, heath, non visible wavelengths and
re 1. The levels of information, and the semantic gap.

Feature Extraction for Content-Based Image Retrieval. Figure 2. Example of features corresponding to different

levels of information. (a) the example image; (b) pixel level; (c) global low level features; (d) local low level features;

(e) semantic regions; (f) semantic context; (g) external information.

Feature Extraction for Content-Based Image Retrieval F 1117

F

so on. Each of these pieces of information physical

information can be described using different

numerical representations.

3. Low level information. These are global features that

can describe the image contents from different per-

spectives in a compact way. The examples shown are:

color contents in a quantized color space (top left),

global edges computed with the Canny edge detector

(bottom left), the gray level image (top middle), and

horizontal, vertical, and diagonal edges computed

from a wavelet transformation (to right, bottom

middle, and bottom right respectively). This infor-

mation is usually coded in terms of simple statistics

(mean, variance,. . .), histograms, or signatures to

improve their robustness to image variations, and

reduce their dimensions for retrieval efficiency.

The schema below shows an incomplete and non-

exhaustive categorization of some low level visual
properties, and their possible feature representations.

Many representations and sub-representations are

available for every feature (see Fig. 3). For further

information interested readers may refer to

[1,2,3,4].

4. Regions or ‘‘atomic objects.’’ These are visually

homogeneous regions that can be identified start-

ing from the combination of different low level

attributes (color, texture,. . .). Data clustering algo-

rithms can be exploited for this task. Domain-

dependent knowledge (for example specific spatial

relationships between the areas) can be exploited to

drive or refine the identification of these regions.

5. Objects/Actors. Identification of semantic objects

or categories may be performed by the analysis of

logically and spatially related regions. At this level

features should cope with the problem of the

semantic gap. The recognition of simple objects or

Feature Extraction for Content-Based Image Retrieval. Figure 3. Example of features, their corresponding

representations and sub-representations.

1118F Feature Extraction for Content-Based Image Retrieval
categories is very complex, and is currently fully

possible only for very narrow domains. Identifica-

tion of semantic objects can be done exploiting

pattern matching, classification and decision tree

algorithms. These algorithms give a semantic tag

or name to each candidate region (such as face,

people, skin, sky, car, building, water, . . .). Gener-

ally one tag for each region is assigned, although

multiple tags are sometimes allowed. This process

is generally known as image annotation. Semantic

tags can be expressed numerically or with more

meaningful textual strings. Textual strings can be

stored in traditional database systems to be used for

image retrieval based on keywords.

6. Context semantics. This information relates to

mutual spatial relationships as well as to specific

actors/objects characteristics that may allow recon-

struction/guessing of the overall image context.

Some characteristics of the actors/objects may be

derived using term taxonomies, synonyms, and

dictionaries. Spatial relationships can also be de-

scribed using textual strings by creating an ad-hoc

language grammar such as A < B meaning that

object A is at the left of object B or A ^ B meaning

that object A is above object B, and so on. It should

be noted that the classification and categorization

of an image as a whole may involve information at

the objects/actors level (the image itself is an object

that can be annotated using low level features), and
information at the semantic level (the presence of

objects/actors, and some related characteristics

can be used as clues in guessing the context of

the image).

7. External information. This information does not

describe some visual properties or intrinsic proper-

ties of the image. This auxiliary information cannot

be derived or inferred directly from the image itself:

external knowledge belonging to some entities (e.g.,

experts, common knowledge, etc. . .) is required. No

automatic algorithm can be exploited with this kind

of information: human intervention is the only via-

ble approach in creating textual annotations usually

given in free text form. The EXIF data also belong to

this information category. These data, automatically

embedded into the image by the hardware (e.g.,

camera), describe information about the device, de-

vice settings and scene information.
Key Applications
Feature extraction is a fundamental task for any

application requiring the analysis of images. In partic-

ular, content-based image retrieval is important in

many areas. The following is a sampling of possible

content-based image retrieval applications:

1. Architecture and design (finding the right

appearance)

2. Biochemical application (finding molecules)

Feature Selection for Clustering F 1119
3. Cultural heritage services (museum, art galleries)

4. Digital catalogs (browsing and searching)

5. Entertainment (image, film and video archive

indexing)

6. Journalism (research and past exploration)

7. Medicine (pathology comparisons)

8. Remote sensing (localization and target finding)

9. Surveillance (identification and recognition)
F
Cross-references
▶Automatic Image Annotation

▶Decision Tree Classification

▶ Image Content Modeling

▶ Image Metadata

▶ Image Representation

▶ Indexing and Similarity Search
Recommended Reading
1. Antani S., Kasturi R., and Jain R. Survey on the use of pattern

recognition methods for abstraction, indexing and retrieval of

images and video. Pattern recognit., 35:945–965, 2002.

2. Eakins J.P. Towards intelligent image retrieval. Pattern Recognit.,

35:3–14, 2002.

3. Schettini R., Ciocca G., and Zuffi S. Indexing and retrieval in

color image databases. In Color Imaging Science: Exploiting

Digital Media, R. Luo, L. MacDonald (eds.). Wiley, New york,

2002, pp. 183–211.

4. Sikora T. The MPEG-7 visual standard for content description –

An overview. IEEE Trans. Circuits Syst. Video Technol., 11

(6):696–702, 2001.

5. Smeulders A.W.M., Worring M., Santini S., Gupta A., and

Jain R. Content-based image retrieval at the end of the early

years. IEEE Trans. Pattern Anal. Mach. Intell., 2(2):1349–1380,

2000.

6. Swain M.J. and Ballard D.H. Indexing via color histograms. In

Proc. 3rd IEEE Conf. Computer Vision, 1990, pp. 390–393.

7. Zhou X.S. and Huang T.S. Relevance feedback in image retrieval:

a comprehensive review. Multimed. Syst., 8(6):536–544, 2003.
Feature Selection for Clustering

MANORANJAN DASH, POON WEI KOOT

Nanyang Technological University, Singapore,

Singapore

Definition
The problem of feature selection originates from the

fact that while collecting data, one tends to collect all
possible data. But for a specific learning task such as

clustering not all the attributes or features are impor-

tant. Feature selection is popular in supervised

learning or for the classification task because the class

labels are given and it is easier to select those features

that lead to these classes. But for unsupervised data

without class labels, or for the clustering task, it is not

so obvious which features are to be selected. Some of

the features may be redundant, some are irrelevant,

and others may be ‘‘weakly relevant’’. The task of fea-

ture selection for clustering is to select ‘‘best’’ set of

relevant features that helps to uncover the natural

clusters from data according to the chosen criterion.

Figure 1 shows an example using a synthetic data.

There are three clusters in F1–F2 dimensions which

follow Gaussian distribution whereas F3, which does

not define any cluster, follows a uniform distribution.

When all three features are used the clusters are un-

necessarily complex (see Fig.1a), whereas no clusters

can be found when one visualizes using only one

feature F1 (Fig.1c). Figure 1b with F1–F2 features

shows three well-formed clusters. Selecting features

F1 and F2 reduces the dimensionality of the data

while forming well separated clusters. The goal of

feature selection for clustering is to select important

original features for clustering thus reducing the data

size (and the computation time of other subsequent

data mining tasks), solving the problem of curse of

high-dimensionality and improving the knowledge

discovery performance and comprehensibility. There

are four basic steps in a typical feature selection meth-

od: a method to generate candidate subsets, an evalua-

tion function, a stopping criterion, and a validation

procedure (Fig. 2).

Historical Background
The literature for feature selection for classification,

which is a supervised learning task, is very vast (see a

review in [6]). On the other hand, there are only a few,

mostly recent, feature selection methods for clustering,

which is a unsupervised task. The reason behind this

gap in research is it is easier to validate the selected

features for classification (e.g., by accuracy of the clas-

sification) than to validate the selected features for

clustering. Although there are many cluster validation

techniques, the techniques have their limitations, and

thus there is lack of unanimity among the researchers

[19]. An issue that is yet to be resolved is how many

clusters are there in a data set. Particularly in real-world

Feature Selection for Clustering. Figure 1. Effect of features on clustering.

Feature Selection for Clustering. Figure 2. Feature selection process with validation.

1120F Feature Selection for Clustering
data sets often one encounters high-dimensional data

sets with unknown number of cluster. It is shown that

number of clusters and number of features have inter-

relation thus complicating the matter further [10].

Feature selection for clustering is the task of selecting

important features for the underlying clusters. These

methods can be divided using different categorization

such as: global vs. local and wrapper (i.e., with feedback)

vs. filter (i.e., without feedback – blind). Global methods

select features for the whole data set whereas local meth-

ods select features for each individual cluster.

Examples of global methods are [5,12,17,22]. In [5]

was proposed a filter method. A filter method is inde-

pendent from the clustering algorithm to be used,

whereas wrapper method uses the clustering method

itself to select features. In this paper, the authors we

proposed to measure entropy of the data set using
point-to-point distances. Entropy is independent of

number of features. Lower the entropy better the clus-

tering. Features were ranked from most important to

least important and a forward selection algorithm is used

to select the relevant features. In [12] Dy and Brodley

proposed a wrapper criterion for clustering. A candidate

subset of features is used to cluster the data and the

quality of clusters is evaluated using normalized cluster

separability (for K-means) or normalized likelihood

(for EM – expectation maximization – clustering).

The bias on the feature subsets with respect to di-

mensionality is ameliorated by cross-projection nor-

malization. In [11] the same authors used EM and

trace measure (which is invariant for varying number

of dimensions [9]) are used for evaluation. Visual aids

to decide the optimal number of features were

also proposed. The method described in [17] uses

Feature Selection for Clustering F 1121

F

K-means for evaluation of subsets of features. In [22]

authors proposed an objective function for choosing

the feature subset and finding the optimal number of

clusters for a document clustering problem using a

Bayesian statistical estimation framework.

Examples of local methods are [2,14,18,21]. In [14]

authors proposed a distance measure. Using this mea-

sure with usual distance based clustering algorithms

encourages the detection of subgroups of objects that

preferentially cluster on subsets of features. The relevant

feature subsets for each individual cluster can be differ-

ent and partially or completely overlap with those of

other clusters. In [18], feature saliency is integrated in

EM algorithm so that feature selection is performed

simultaneously with clustering process. Projected clus-

tering (ProClus [1]) finds subsets of features defining (or

important for) each cluster. ProClus first finds clusters

using K-medoid considering all features and then finds

the most important features for each cluster using Man-

hattan distance. The algorithm called CLIQUE in [2]

divides each dimension into a user given divisions. It

starts with finding dense regions (or clusters) in one-

dimensional data and works upward to find higher-

dimensional dense regions using candidate generation

algorithm Apriori. In [20,21] Talavera used category

utility to select features and these features are used to

construct COBWEB [13] (COBWEB is a hierarchical

clustering algorithm for categorical data.).

Foundations
This section first gives some insight into feature selec-

tion for clustering using an example method and then

briefly discusses other methods and techniques used.

An Example of a Filter-Global Method

Figure 3 shows the histogram of point-to-point dis-

tances for two datasets: one with clusters and the other

without clusters. The point-to-point distances are

computed, normalized and are used to populate the

bins of the histograms. An important distinction be-

tween the two histograms is that histogram for data

without clusters has a predictable shape similar to bell

shape. But the histogram for data with clusters has very

different distribution. The smaller buckets (or dis-

tances) are mostly intra-cluster while the latter ones

are mostly inter-cluster. Typically, if the dataset consists

of some clusters then, the majority of the intra-cluster

distances will be smaller than the majority of the
inter-cluster distances. This observation is true for a

wide range of data types. When clusters are very dis-

tinct this separation between intra-cluster and inter-

cluster distances is quite distinguishable. In [5] a meth-

od is proposed which, without doing clustering, can

distinguish between data with clusters and data with-

out clusters.

Distance-based Entropy Measure From entropy

theory it is known that entropy of a system can mea-

sure the amount of disorder in the system. Mathemat-

ically entropy of a dataset is given as:

E ¼ �
X
Xi

p xi1 ;:::; xiMð Þ log p xi1 ;:::; xiMð Þ

þ 1� p xi1 ;:::; xiMð Þð Þ log 1� p xi1 ;:::; xiMð Þð Þ
ð1Þ

where pðXi1 ;:::;XiM Þ is the probability or density at the
point ðXi1 ;:::;XiM Þ whereM is the dimensionality. The

second term in the expression inside summation is

used to make the expression symmetric. If the proba-

bility of each point is equal one is most uncertain

about the outcome, and entropy is the maximum.

This will happen when the data points are uniformly

distributed in the feature space. On the other hand,

when the data has well-formed clusters the uncertainty

is low and so also the entropy. So, the entropy can be

used to distinguish between data with clusters and data

without clusters in different subspaces.

A straightforward method to compute the proba-

bility at each point is by substituting probability with

distance in the following way:

E ¼ �
X
Xi

X
Xj

Dij logDij þ 1�Dij

� �
log 1�Dij

� �
ð2Þ

where Dij is the normalized distance (This uses Euclid-

ean (L2) measure although other distances such as

Manhattan (L1) can be used.) in the range [0.0–1.0]

between instances Xi and Xj. Figure 4a shows the rela-

tionship between entropy and distance after normal-

izing E to the range [0.0–1.0]. This measure assigns

lowest entropy (0.0) for the minimum (0.0) or the

maximum (1.0) distance and assigns highest entropy

(1.0) for the mean distance (0.5). Although, to some

extent, it works well in distinguishing data with clus-

ters from data without clusters, it suffers from the

following two drawbacks. (i) The mean distance of

0.5 can be an inter-cluster distance, but still it assigns

the highest entropy. The reason is the meeting point

Feature Selection for Clustering. Figure 3. Distance histograms of data with and without clusters.

1122F Feature Selection for Clustering
(m) of the two sides (i.e., left and right) of the plot is

fixed at distance 0.5. (ii) Entropy increases rapidly for

very small distances thus assigning very different en-

tropy values for intra-cluster distances. In summary,

this measure does not work very well in assigning small

entropy for both intra-cluster and inter-cluster dis-

tances. The second drawback can be easily overcome

by incorporating a coefficient (b) in the equation and

by using an exponential function in place of logarith-

mic function. Regarding the first drawback, the

meeting point (m) can be set so as to separate the
intra-cluster and inter-cluster distances. Considering

all these the following method was proposed:

E ¼
X
xi

X
xj

Eij ð3Þ

Eij ¼
exp b�Dijð Þ�exp 0ð Þ
exp b�mð Þ�exp 0ð Þ : 0 � Dij � m

expðb�ð1:0�Dij�expð0Þ
expðb�ð1:0�mÞÞ�expð0Þ : m � Dij � 1:0

8<
: ð4Þ

where Eij is normalized to the range [0.01-1.0].

Feature Selection for Clustering. Figure 4. Relationship between entropy and distance with varying b and m values.

Feature Selection for Clustering F 1123

F

Other Methods

Trace Measure In the wrapper and global methods

feature subsets are evaluated by a clustering algorithm

and the quality of clustering is evaluated using trace

measure [12,7]. The Trace measure ðtrðS�1
W SBÞÞ is

based on within and between cluster distances, where

tr is trace os a matrix which is the sum of its diagonal

elements; SW is a within-cluster scatter matrix given as:

SW ¼
Pc

i¼1

P
X2wi ðx �miÞðx �miÞt , and SB is a bet-

cluster scatter matrix given as: SB ¼
Pc

i¼1 (mi � m)

(mi � m)t where x is an instance vector, wi is the set of
instances in ith cluster, mi is the mean vector of ith

cluster,m is the mean vector of the data. The higher the

tr(SW
�1SB), the higher the ratio of between-cluster to

within-cluster scatter. If clustering is proper, then be-

tween cluster distance will be high and within cluster

distance is low. Although there are many cluster vali-

dation techniques (see [16]), trace measure is especial-

ly selected because it is independent of number of

features, i.e., irrespective of number of features in the

subspace, trace measure can evaluate the clustering

quality and compare among clusterings in different

subspaces of equal or different dimensionality.

EM Method In [18], Law et al. cast the feature

selection for clustering as an estimation problem rather

than a search problem thus they avoided the combina-

torial search through the feature space. Instead of

selecting a subset of features they estimated a set of

real-valued ([0,1]) quantities for each feature. They call

it feature saliency. This estimation is carried out by an

EM (Expectation Maximization) algorithm derived for

the task. They avoided the situation where all the
saliencies take the maximum possible value by adopt-

ing a minimum message length (MML) penalty. The

MML criterion encourages the saliencies of the irrele-

vant features to go to zero. They combined the feature

selection with EM clustering.

Conceptual Clustering Conceptual clustering is

applicable for feature selection for clustering for data

having only categorical features (e.g., COBWEB [13]).

It creates a hierarchy or tree of clusters. As each data

object is input to the system, the system categorizes the

object by sorting it through hierarchy from the root

node down to the leaves. At each level it determines

whether (i) to create a new cluster, or (ii) to place the

object in an existing cluster, and whether to restructure

the hierarchy by (iii) merging two sibling clusters

which were identified as the two best hosts for the

new object or (iv) splitting the host cluster.

In [20,21] Talavera proposed two local methods for

selecting features for conceptual clustering. In [21]

Talavera used salience measure (this is different from

the saliency measure in [18]) to select features. The

higher the salience the greater is its relevance for the

clustering. Salience measure originates from category

utility measure.

Devaney and Ram [8] also used COBWEB to select

features for clustering but they used it in a different

way. The basic idea is to employ a wrapper approach

with the average predictive accuracy over all features

replacing the predictive accuracy of class labels. They

used COBWEB as an evaluation function. The search

through the feature space is either forward or back-

ward. COBWEB is executed for each of these subsets

1124F Feature Selection for Clustering
and category utility is computed of the first partition

(children of the root) of the resulting concept hierar-

chy, retaining the highest score.

Important Applications

Feature selection has gained a wider audience in the

past few years due to the high-dimensionality of data-

bases. Due to the high number of low level features,

a lot of the current methods of clustering in low

dimensionality will fail miserably. Thus the only way

is to identify the most important features and reduce

dimensionality. In terms of applications, there are nu-

merous possibilities.

An important application of feature selection is in

the area of bioinformatics, using gene expression micro-

array data. Due to the nature of high dimensionality

(thousands of genes) and sparsity of the data in feature

space, clustering is exceptionally difficult. In [23] this

issue is addressed using CLIFF, an algorithm based on

normalized cut with their feature selection process. In

[24] Malik et al. paper, he proposed another method for

gene expression using recursive cluster elimination

(RCE) with SVM, and claimed to have improved accu-

racy compared to other methods. In [14] an application

of local feature selection for clustering is shown over

Yeast gene expression data set with 6,141 genes (features)

measured on 213 samples (instances).

Bekkerman et al. [4] applied feature selection with

SVM to the problem of text categorization to yield high

performance accuracy. Datasets used are: 20-Newgroups,

Reuters-21578 andWebKB. The 20-Newsgroups contains

19,997 articles from the Usenet newsgroup collection,

while Reuters-21578 corpus contains 21,578 articles

from the Reuters newswire, and WebKB is a collection

8,282 web pages from four academic domain.

Bach et al. [15] applied feature selection to the

reduction of attribute in image face recognition for

male/female classification. Datasets consist of 1,450

images (1,000 train, and 450 for test) with 5,100

features.

In [3], feature selection is applied to PrimeClub, a

game designed to teach prime numbers to sixth and

seventh grade students. The objective is to keep the

students continue learning, maintaining a high level of

engagement as the game progresses. Biometric devices

are attached to each student to detect the mental and

emotional state of their expressions. In it, 28 features

are recorded, and of those, only 4 are deemed impor-

tant for clustering.
While not going into details, some of the other

applications of feature selection are: customer relation-

ship management, image retrieval, text mining, pro-

tein classification and intrusion detection.

URL

While not many author published their programs or

code in the internet, there exist a few that do make

theirs available for others to download and compare.

‘‘RCE classification and feature selection’’ as described

in [24] is available for download at ‘‘http://showelab.

wistar.upenn.edu/’’

Mark Hall wrote a feature selection program for

Weka, described in his PhD dissertation ‘‘Correlation-

based Feature Subset Selection for Machine Learning.’’

CLOP is a Matlab package developed on top of the

Spider for the WCCI 2006 performance prediction

challenge, and it has produced some very good result

in the NIPS 2003 feature selection challenge.

RapidMiner, a freely available open source for data

mining and machine learning, has functionality for

feature selection. It is written in Java and works on all

major operating systems, available for download at

‘‘http://rapid-i.com/content/blogcategory/38/69/’’

INTERACT is a feature selectionmethod using incon-

sistency and symmetrical uncertainty measurements for

finding interacting features. It is describe in ‘‘http://www.

public.asu.edu/�huanliu/INTERACT/INTERACTsoft-

ware.html,’’ and available for download from the site.

Cross-references
▶Cluster and Distance Measure

▶Clustering Overview and Applications

▶Curse of Dimensionality

▶Data Cleaning

▶Dimensionality Reduction

▶Dimensionality Reduction Techniques for

Clustering

Recommended Reading
1. Aggarwal C.C., Procopiuc C., Wolf J.L., Yu P.S., and Park J.S. Fast

algorithms for projected clustering. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1999, pp. 61–72.

2. Agrawal R., Gehrke J., Gunopulos D., and Raghavan P. Automat-

ic subspace clustering of high dimensional data for data mining

applications. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1998, pp. 94–105.

3. Amershi S., Conati C., and Maclaren H. Using feature selection

and unsupervised clustering to identify affective expressions in

educational games. In Proc. Workshop on Motivational and

Affective Issues in ITS, 8th Int. Conf. on ITS, 2006, pp. 21–28.

Feature-Based 3D Object Retrieval F 1125

F

4. Bekkerman R., El-Yaniv R., Tishby N., andWinter Y. Distribution-

al Word Clusters vs Words for Text Categorization. J. Machine

Learning Res. 3:1183–1208, 2008.

5. Dash M., Choi K., Scheuermann P., and Liu H. Feature selection

for clustering – A filter solution. In Proc. 2002 IEEE Int. Conf.

on Data Mining, 2002, pp. 115–122.

6. Dash M. and Liu H. Feature selection for classification. Int. J.

Intell. Data Analy., 1(3):131–156, 1997.

7. Dash M. and Liu H. Handling large unsupervised data via

dimensionality reduction. In Proc. ACM SIGMOD Workshop

on Research Issues in Data Mining and Knowledge Discovery,

1999.

8. Devaney M. and Ram A. Efficient feature selection in conceptual

clustering. In Proc. 14th Int. Conf. on Machine Learning, 1997,

pp. 92–97.

9. Duda R.O. and Hart P.E. Pattern Classification and Scene Anal-

ysis, chap. Unsupervised learning and clustering. Wiley, New

York, 1973.

10. Dy J.G. and Brodley C.E. Feature subset selection and order

identification for unsupervised learning. In Proc. 17th Int.

Conf. on Machine Learning, 2000, pp. 247–254.

11. Dy J.G. and Brodley C.E. Visualization and interactive feature

selection for unsupervised data. In Proc. 6th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2000,

pp. 360–364.

12. Dy J.G. and Brodley E. Feature Selection for Unsupervised

Learning. J. of Machine Learning Res., 5:845–889, 2004.

13. Fisher D.H. Knowledge acquisition via incremental conceptual

clustering. Mach. Learn., 2:139–172, 1987.

14. Friedman J. and Meulman J. Clustering objects on subsets of

attributes. J. Royal Stat. Soc. B, 66(4):1–25, 2004.

15. Gilad-Bachrach R., Navot A., and Tishby N. Margin based

feature selection – theory and algorithms. In Proc. 21st Int.

Conf. on Machine Learning, 2004, pp. 43.

16. Jain A.K. and Dubes R.C. Algorithm for Clustering Data, chap.

Clustering Methods and Algorithms. Prentice-Hall Advanced

Reference Series, 1988.

17. Kim Y.S., Street W.N., and Menczer F. Feature selection in

unsupervised learning via evolutionary search. In Proc. 6th

ACM SIGKDD Int. Conf. on Knowledge Discovery and Data

Mining, 2000, pp. 365–369.

18. Law M.H.C., Figueiredo M.A.T., and Jain A.K. Simultaneous

Feature Selection and Clustering Using Mixture Models. IEEE

Trans. Pattern Analy. Mach. Intell., 26(9):1154–1166, 2004.

19. Milligan G.W. A monte carlo study of thirty internal criterion

measuresforclusteranalysis.Psychometrika, 46(2):187–198, 1981.

20. Talavera L. Feature selection as a preprocessing step for hierar-

chical clustering. In Proc. 16th Int. Conf. on Machine Learning,

1999, pp 389–397.

21. Talavera L. Feature selection and incremental learning of proba-

bilistic concept hierarchies. In Proc. 17th Int. Conf. on Machine

Learning, 2000, pp 951–958.

22. Vaithyanathan S. and Dom B. Model selection in unsupervised

learning with applications to document clustering. In Proc. 16th

Int. Conf. on Machine Learning, 1999, pp. 433–443.

23. Xing E.P. and Karp R.M. CLIFF: clustering of high-dimensional

microarray data via iterative feature filtering using normalized
cuts. In Proc. 9th Int. Conf. on Intelligent Systems for Molecular

Biology, 2001, pp. 306–315.

24. YousefM., Jung S., Showe L.C., and ShoweM.K. Recursive Cluster

Elimination (RCE) for classification and feature selection from

gene expression data. BMC Bioinformatics, 8:144, 2009.
Feature-Based 3D Object Retrieval

BENJAMIN BUSTOS
1, TOBIAS SCHRECK

2

1Department of Computer Science, University of

Chile, Santiago, Chile
2Darmstadt University of Technology, Darmstadt,

Germany

Synonyms
Three-Dimensional similarity search; Shape descriptors

Definition
3D objects are an important type of data with many

applications in domains such as engineering and com-

puter aided design, science, simulation, visualization,

cultural heritage, and entertainment. Technological

progress in acquisition,modeling, processing, and dis-

semination of 3D geometry leads to the accumulation

of large repositories of 3D objects. Consequently, there

is a strong need to research and develop technology

to support the effective retrieval of 3D object data

from 3D repositories.

The feature-based approach is a prominent tech-

nique to implement content-based retrieval function-

ality for 3D object databases. It relies on extracting

characteristic numerical attributes (so-called features)

from a 3D object, usually forming high-dimensional

vectors which represent the 3D object, or parts of it.

The 3D feature vectors in turn are used to estimate

object similarity for content-based retrieval, and can

also be used for multidimensional indexing of 3D

database content. There exist several degrees of free-

dom in obtaining 3D features. Important specifica-

tions to be made include the type of 3D characteristics

or its level of detail considered, or invariance proper-

ties required, among others. Finding efficient and

effective features for a given 3D repository is usually

addressed by benchmarking.

Historical Background
The development of 3D object retrieval methods can

be regarded as part of the larger multimedia retrieval

1126F Feature-Based 3D Object Retrieval
research area. The availability of increasing volumes of

multimedia data such as digital images, digital video, or

digital audio induced the need to develop content-

based retrieval methods supporting these data types.

Image retrieval has roots in image processing and data-

base research of the 1980s, and was joined in the 1990s

by similar efforts in the video and audio domains.

Roughly, beginning by 2000, 3D objects increasingly

came into focus of multimedia retrieval research.

Driving motivation in the research and development

of 3D retrieval methods are the increasing use of 3D

object data in a range of application areas.

While retrieval of 3D objects is a prominent topic in

multimedia database research, the definition of similari-

ty notions for 3D data is also considered in related

disciplines. In geometry processing, the registration or

alignment of geometry is of interest, using certain defi-

nitions of geometric similarity. Computer vision is

concerned with the recognition of objects in images

takenby a cameraorother scanner device, requiring app-

ropriate segmentation and description methods for the

objects in the scene under concern. In shape analysis,

shapes and scenes areoften analyzed for certain structural

features, supporting e.g., classification and compression.

From the multimedia database research perspec-

tive, the focus of 3D retrieval implementations not

only concerns the effectiveness of the retrieval, but

also, their efficiency, demanding for real-time query

processing on large repositories. The feature vector

approach is therefore especially suited, as it allows the

efficient evaluation of object similarity, usually by cal-

culating a Minkowski distance between feature vectors

representing underlying 3D objects.

Foundations
To represent 3D object data as points in feature vector

space, it is necessary to find characteristics that de-

scribe the objects in a meaningful, discriminating

way. A suitable feature extraction function calculates
Feature-Based 3D Object Retrieval. Figure 1. Feature extra
characteristic features from the 3D objects, thereby

mapping them into d-dimensional feature vector

space. With these feature vector representations, a

similarity query in the original 3D object space is

reduced to a search for close points in d-dimensional

feature vector space.

Common Requirements of 3D Feature Extraction

For 3D object data, based on the given retrieval appli-

cation, certain properties of the features extracted can

be deemed desirable. The features may be required to

be invariant with respect to changes in rotation, trans-

lation, and scale of the 3D models in their reference

coordinate frame. Ideally, an arbitrary combination of

translation, rotation and scale applied to one object

should not affect its similarity measure with respect to

another object. Another desirable property is robust-

ness with respect to variation of the level-of-detail in

which the 3D objects are given, and to small geometry

and topology variations of the models. These invari-

ance and robustness properties are especially impor-

tant if the retrieval is expected to support 3D objects

from heterogeneous data sources. This is because in

such cases, the reference frames or levels-of-detail in

which the models are represented may differ, and it

cannot be assumed that respective meta data is avail-

able from all possible object sources.

3D Feature Extraction Process Model

A process model of 3D feature extraction is depicted

in Fig. 1 and can be described as follows. Firstly, if

required by the application, a preprocessing step nor-

malizes the 3D object to approximate invariance to

rotation, translation, scaling, and reflection [11]. A

second step abstracts the 3D object according to a

selected shape characteristic. For example, one can

abstract a 3D object as a volume, or as an infinitely

thin surface with precisely defined properties of differ-

entiability, or as a set of 2D images formed by
ction process for 3D objects.

Feature-Based 3D Object Retrieval F 1127

F

projections from different perspectives. The third step

captures the main features of the 3D object under the

selected abstraction by means of a numeric transfor-

mation. As a result of this step, a numerical represen-

tation of the original 3D object is obtained. The last

step of the feature extraction process model produces

the final descriptor of the object from the numerical

description. Generally, the descriptor may be a vector

of numerical features, but it may also be a histogram of

the measured characteristics, or a graph-based repre-

sentation of the analyzed 3D object. Feature-based

methods for 3D model retrieval usually are efficient,

robust, and easy to implement. This does not imply,

however, that statistical or graph-based methods

should be disregarded. In fact, most of those methods

have their particular strengths and may well be the

ideal candidate for a specific application.

3D Feature Types

As surveys indicate [2,7,10], there is a wealth of differ-

ent features that so far have been used to build 3D

retrieval systems. The situation is comparable to con-

tent-based image retrieval (CBIR), where also, many

different features have been proposed over the recent

years. It can be stated that many of the 3D features

proposed were heuristically introduced, motivated by

techniques and practices from computer graphics (e.g.,

projection-based features), geometry processing (e.g.,

features based on surface curvature statistics), or

Signal Processing (e.g., features obtained by represent-

ing object samples in the frequency domain). Some

of the most effective 3D feature vector extractors

proposed to date rely on features extracted from 2D

projections of 3D objects.

Usually, it is a priori unclear which of the poten-

tially many different features should be preferred for

addressing the 3D retrieval problem. Each of the many

possible descriptors captures specific model informa-

tion, and their suitability for effective retrieval in a

given application domain needs to be experimentally

evaluated. In practice, it often shows that the effective-

ness of 3D retrieval systems can benefit from using not

a single, but several different types of features in

combination.

Efficient 3D Object Retrieval

Similarity queries in 3D object databases may be

answered by performing a sequential scan on the data-

base, comparing the query object with all 3D objects
stored in the database. This naive method might be too

slow for real-world applications. In feature-based 3D

object retrieval, the search system may use an index

structure (e.g., spatial access methods or metric access

methods) for efficient retrieval if the distance function

used to compute the (dis)similarity of two 3D objects

holds the properties of a metric (strict positiveness,

symmetry, and the triangle inequality).

Spatial access methods [1] (also known as multidi-

mensional indices) are index structures especially

designed for vector spaces which, together with the

metric properties of the distance function, use geomet-

ric information to discard points from the search

space. Usually, these indices are hierarchical data struc-

tures that use a balanced tree to index the database.

Metric access methods [4] (also known as metric

indices) are index structures that use the metric prop-

erties of the distance function (especially the triangle

inequality) to filter out certain zones of the space, thus

avoiding the sequential scan.

Key Applications
Content-based 3D retrieval methods are potentially

useful in all applications involving 3D object reposi-

tories, from which elements need to be retrieved based

on geometric similarity. Several exemplary applica-

tions are detailed in the following, more exist.

Industrial Applications

Engineering and industrial design, the animation, and

the entertainment industry heavily rely on digitized

models of products or parts thereof. Computer-aided

design allows the digital modeling of 3D content.

Given effective retrieval capabilities, the re-usage of

content from existing repositories can be supported

for more efficient production processes [5].

Medicine

In medical imaging applications, often 3D volume data

is generated, e.g., using MRI scans. A possible applica-

tion lies in automatic diagnosis support by analysis of

organ deformations, by matching actual images with

medical database of known deformations.

Molecular Biology

Structural classification is a basic task in molecular

biology. This classification can be supported by geo-

metric similarity search, where proteins and molecules

are modeled as 3D objects, which can be compared

1128F Federated Database
against bio-molecular reference databases using geo-

metric similarity measures.

Future Directions
Feature-based 3D retrieval research is still in a rather

early stage. Current approaches mostly consider fea-

tures describing the geometry of whole models, that is,

they support global similarity between objects. Recent-

ly, approaches also considering local features based

on identification of salient object regions have been

proposed. These are expected to support not only

the retrieval of complete models, but also, be suited

for retrieval based on local similarity. Future work

will address 3D retrieval under additional similarity

models, including similarity models invariant with

regard to non-rigid and structural object deforma-

tions. It is also expected that application specific,

specialized similarity notions will become increasingly

important.

Experimental Results
The effectiveness of 3D features for retrieval is usually

determined experimentally based on reference bench-

marks, and measured by information retrieval metrics

[3]. Well-known 3D retrieval benchmarks include the

Princeton Shape Benchmark [9] and the Purdue Engi-

neering Shape Benchmark [8]. The SHREC contest [6]

is an International shape retrieval contest held regu-

larly that involves different 3D retrieval challenges.

Cross-references
▶ Feature Extraction for Content-Based Image Re-

trieval

▶ Index Structures for Biological Sequences

▶ Information Retrieval

▶Multimedia Information Retrieval Model

▶Multimedia Retrieval Evaluation

Recommended Reading
1. Böhm C., Berchtold S., and Keim D. Searching in high-

dimensional spaces: index structures for improving the

performance of multimedia databases. ACM Comput. Surv.,

33(3):322–373, 2001.

2. Bustos B., Keim D., Saupe D., Schreck T., and Vranić D. Feature-

based similarity search in 3D object databases. ACM Comput.

Surv., 37(4):345–387, 2005.

3. Bustos B., Keim D., Saupe D., Schreck T., and Vranić D. An

experimental effectiveness comparison of methods for 3D simi-

larity search. Int. J. Digit. Lib., Special issue on Multimedia

Contents and Management in Digital Libraries, 6(1):39–54,

2006.
4. Chávez E., Navarro G., Baeza-Yates R., and Marroquı́n J. Search-

ing in metric spaces. ACM Comput. Surv., 33(3):273–321, 2001.

5. Funkhouser T., Kazhdan M., Shilane P., Min P., Kiefer W., Tal A.,

Rusinkiewicz S., and Dobkin D. Modeling by example. ACM

Trans. on Graphics, 23(3):652–663.

6. http://www.aimatshape.net/event/SHREC S.I.S.R.C.

7. Iyer N., Jayanti S., Lou K., Kalyanaraman Y., and Ramani K.

Three Dimensional Shape Searching: State-of-the-art Review and

Future Trends. Comput. Aided Design, 37(5):509–530, 2005.

8. Jayanti S., Kalyanaraman Y., Iyer N., and Ramani K. Developing

an engineering shape benchmark for CAD models. Comput.

Aided Design, 38(9):939–953, 2006.

9. Shilane P., Min P., Kazhdan M., and Funkhouser T. The Prince-

ton Shape Benchmark. In Proc. Int. Conf. on Shape Modeling

and Applications, 2004, pp. 167–178.

10. Tangelder J. and Veltkamp R. A survey of content based 3D

shape retrieval methods. In Proc. Int. Conf. on Shape Modeling

and Applications, 2004, pp. 145–156.

11. Vranić D., Saupe D., and Richter J. Tools for 3D-Object Retriev-

al: Karhunen-Loeve Transform and Spherical Harmonics. In

Proc. IEEE 4th Workshop on Multimedia Signal Processing,

2001, pp. 293–298.
Federated Database

▶Distributed Architecture
Federated Database Systems

▶Distributed Database Systems
Federated Search

▶ Searching Digital Libraries
Federated Search Engine

▶Metasearch Engines
Feedback Systems

▶Reputation and Trust

▶Trust and Reputation in Peer-to-Peer Systems

Field-Based Information Retrieval Models F 1129

F

Field-Based Information Retrieval
Models

VASSILIS PLACHOURAS

Yahoo Reasearch Barcelona, Barcelona, Spain

Definition
A document D consists of a set of n document fields,

and it is represented by a set of n vectors, where each

vector corresponds to a document field. A field-based

Information Retrieval (IR) model assigns a score or

Retrieval Status Value (RSV) to a document D and a

query Q by distinguishing the occurrences of query

terms in the different field vectors, and by weighting

the contribution of each field appropriately.
Historical Background
Textual documents, whether they are news wire items,

scientific publications, or Web pages, are rich in struc-

ture. For example, depending on its length, a text can

be organized in chapters, sections, paragraphs, and

each of those can have a concise description in the

form of a title. Shorter texts, such as emails, also

consist of free text and formatted text. In information

retrieval (IR), however, documents are usually repre-

sented as a single vector, the dimensions of which

correspond to terms occurring in the document. Such

a representation ignores the structure within a docu-

ment because it does not distinguish between the oc-

currence of terms in different parts of a document,

such as the document title, or the document abstract.

Field-based IR models overcome this limitation of

representing the document as one vector, or as a bag-

of-words, by incorporating in the document weighting

process the fact that a term may appear in different

document fields, and assigning different importance to

the occurrences in each field. Information retrieval

with document fields has a long history. Switzer [14]

described a model where each index term is a vector

image of the basic index terms. A document is repre-

sented by a title image, an author image, and citation

images, constructed from bibliographic references. In

such a representation, the title image is the average of

vector images of the index terms appearing in the title.

Fox [2] extended the boolean model and the vector

space model with multiple concept types or fields.

In the extended vector space model, a document is

represented as a vector of subvectors. The ranking of
documents in the extended vector space model is per-

formed according to the weighted sum of the simila-

rities between each of the subvectors and the queries.

Fox also investigated the characteristics of several con-

cept types related to bibliographic citations, as well

as the weighting of the contribution of each of the

subvectors [3]. Wilkinson studied the contribution

of different fields, or document representations to

retrieval effectiveness and found that improvements

in early precision were obtained by using both the

whole documents and their fields [16].

Foundations
There have been several proposed models to combine

information from different document fields. One

approach involves the use of structured document

retrieval models, which allow for contained elements.

Myaeng et al. [10] proposed a model in which docu-

ments and their elements or fields are represented as

nodes in a network. Then, elements are ranked accord-

ing to their support for the query, considering the

contained elements as well. Lalmas [6] introduced a

model where a document is represented as a tree. The

leaf nodes of the tree correspond to the elements or

fields of the document and the non-leaf nodes corre-

spond to aggregates of its child nodes.

One other approach involves performing retrieval

independently from each field and then, merging the

ranked lists of results [1]. In this case, the combination

of document fields takes place by merging the ranked

lists of documents corresponding to each document

field. This approach can be used to combine any source

of evidence since it is based on the ranks of the re-

trieved documents, and not on their scores.

In the context of language modeling, the combina-

tion of fields, or different document representations, can

be achieved with a linear combination of language mod-

els computed for each of the fields or document repre-

sentations [11]. Similarly to the extended vector space

model introduced by Fox [2], the combination of the

different fields is also performed by computing a score or

RSV for each of the document fields independently, and

thenperforming aweighted sumof the computed scores.

The integration of information from the different

fields in a retrieval model is not straightforward, be-

cause each document field may have different charac-

teristics and the term frequency distribution can be

different [5]. Thus, performing normalization and

weighting independently for the various fields allows

1130F Field-Based Information Retrieval Models
to take into account the different characteristics of the

fields, and to achieve their most effective combination.

Robertson et al. [13] suggested that it is more

appropriate to weight and combine the frequencies of

terms from different fields in a pseudo-frequency, before

applying a term weighting model. They argue that it is

more intuitive to combine term frequencies rather

than scores or RSVs assigned by scoring functions,

which are not necessarily linear with respect to the

term frequencies. Indeed, the linear combination of

scores computed for each of the fields independently

can lead to an overestimation of the importance of a

term in a document. Then, Robertson et al. [13] pro-

posed extending the BM25 weighting model to per-

form a weighted combination of document fields. The

BM25 weighting model is given as follows:

wðD;QÞ ¼
X

t2D\Q

ðk1 þ 1Þtf
ðk1ð1� bÞ þ bðl=lÞÞ þ tf

	 logN � nt þ 0:5

nt þ 0:5

ð1Þ

where k1, k3, and b are free parameters, tf is the

frequency of term t in D, l is the length of D, l is

the average document length in the collection of docu-

ments, N and n are the number of documents and the

document frequency of t in the collection. In the above

equation, the frequency of terms in the query Q is not

included. The proposed extension replaces tf in the

above equation with a weighted sum of the term fre-

quencies from each of the n document fields:
Field-Based Information Retrieval Models. Figure 1. An illu

frequency normalization component(top) and in the probabil
tf ¼
Xn
i¼1

wi 	 tfi ð2Þ

where tfi is the frequency of term t in the i-th field and

wi is the weight of the i-th field. The described exten-

sion gives only a partial solution because it does

address the combination of fields, but the term fre-

quency normalization component is applied after

computing the weighted sum of the term frequencies.

Zaragoza et al. [17] proposed BM25F, an extension

of BM25 where length normalization is applied on a

per-field basis. The formula of BM25F is given below:

wðD;QÞ ¼
X
t2Q

tfn

k1 þ tfn
	 logN � nt þ 0:5

nt þ 0:5

where tfn ¼
Xn
i¼1

wi 	
tfi

ð1þ biðli=liÞÞ

ð3Þ

In the above equation, bf is a field-dependent normali-

zation parameter, similar to the parameter b of BM25,

k1 is a parameter that controls the saturation of tfn,

similar to the parameter k1 of BM25; li is the average

length of the i-th field in the document collection; and

li is the length of the i-th field in D. The parameter wi is

the weight of the i-th field.

The Divergence From Randomness (DFR) frame-

work has also been extended to handle multiple docu-

ment fields, and to apply per-field term frequency

normalization and weighting. DFR is a framework for

generating families of probabilistic retrieval models

consisting of three components. The weighting
stration of combination of document fields in the term

istic retrieval model (bottom).

Field-Based Information Retrieval Models F 1131

F

models of the Divergence From Randomness frame-

work are based on combinations of three components:

a randomness modelRM; an information gain model

GM; and a term frequency normalization model.

Given a collection C of documents, the randomness

model RM estimates the probability PRMðt 2 DjCÞ
of having tf occurrences of a term t in D. The informa-

tion gain model GM estimates the informative content

1 � Prisk of the probability Prisk that a term t is a good

descriptor for a document. The third component of

the DFR framework is the term frequency normaliza-

tion model, which adjusts the frequency tf of the term

t in d, given the length l of d and the average document

length l in D.

There have been two ways proposed to extend the

DFR weighting models with document fields. The first

way to incorporate fields is by extending the term

frequency normalization component of the DFR

framework [12]. The frequency tfi of term t in the i-th

field is normalized and weighted independently of the

other fields. Then, the normalized and weighted term

frequencies are combined into one pseudo-frequency.

When combining the term frequencies in the length

normalization component, as it happens in BM25F and

in normalization 2F, it is implied that the term frequen-

cies are drawn from the same distribution, even though

the nature of each fieldmay be different. The second way

to incorporate fields in the DFR framework is by using

multinomial randomness models [12]. Using the multi-

nomial distribution, the probability that a term occurs tfi
times in the i-th field of D is given as follows:

PMðt 2 DjCÞ ¼
TF

tf1 tf 2 	 	 	 tfn tf 0

� �

p
tf1
1 ptf2

2
	 	 	 ptfnn p0tf

0

ð4Þ

In the above equation, TF is the frequency of t in the

collection, pi ¼ 1
n	N is the prior probability that a term

occurs in a particular field of D, and N is the number

of documents in the collection C. The frequency

t 0 ¼ TF �
P

n
i¼1 tfi corresponds to the number of

occurrences of t in documents other than D. The

probability p0 ¼ 1� n 1
n	N ¼ N�1

N
corresponds to the

probability that t does not appear in any of the field-

s of D. The use of the multinomial distribution as a ran-

domness model requires the computation of several

factorials, which canbe expensive and alsomay introduce

approximation errors. To overcome the need to compute

these factorials, Plachouras and Ounis [12] also used an
information theoretic approximation of the multinomial

distribution.

The models described above require additional in-

formation from the index to compute efficiently scores

of documents. In both the cases of BM25F and the

DFR field-based weighting models, the index must

contain the frequency of a term in each of the docu-

ment fields, rather than just the frequency of the term

in the whole document. For each document, it is also

required to have the length of each field to perform

length normalization on a per-field basis.

Key Applications
There is a wide range of applications for which field-

based IR models enhances the retrieval effectiveness.

One of the most important and widely used ones is

Web search, where useful fields are the title of Web

documents as well as the anchor text of incoming

hyperlinks. A different application in which retrieval

effectiveness increases by using document fields is

email search [17] where the email from, to and date,

as well as the quoted text, can be considered as a

different field. In general, field-based IR models can

be readily applied to search tasks in which documents

have metadata elements associated or in which parts of

the documents are annotated.

Future Directions
The introduction of fields increases the complexity of

the retrieval models by introducing parameters related

to the weighting of each field, but also to other factors

such as the length normalization of each field. As an

example, BM25F [17] requires the tunning of 2n + 1

parameters when using n different document fields.

Similarly, PL2F [8] introduces 2n parameters when

using n different fields. Since the fields are not neces-

sarily independent, setting the parameters for one field

depends also on the parameter setting for the other

ones. As the number of fields and the number of

parameters increases, performing an exhaustive search

becomes prohibitive. The application of an extension

of gradient descent has been proposed to set the docu-

ment field parameters among other parameters [15].

Developing parameter-free field-based IR models,

however, is still an open problem.

Data Sets
There are several available data sets that allow experimen-

tation with field-based IR models. The most commonly

1132F Field-Based Spatial Modeling
used ones are the standard TREC Web test collections

WT10g, .GOV and .GOV2, which have been used for a

range of search tasks, such as ad-hoc retrieval, named

page and home page finding, as well as topic distillation.

All these tasks have been evaluated in the context of Web

track of Text REtrieval Conference (TREC) [4]. Another

standard test collection that has been used for expert

search finding and email search in mailing lists is

the W3C collection, a crawl of the World Wide Web

Consortium Web site available from TREC as well.

The INitiative for the Evaluation of XML Retrieval

(INEX) [9], has also developed collections using XML.

The first one consists of articles marked up in XML

from a number of the IEEE Computer Society’s pub-

lications. Other collections correspond to the contents

of Wikipedia and to the contents of travel guides,

marked up in XML.
Cross-references
▶BM25

▶Content-and-Structure-Query

▶Divergence from Randomness Models

▶Document Length Normalization

▶ Information Retrieval Model

▶Vector Space Model
Recommended Reading
1. Fagin R., Kumar R., McCurley K.S., Novak J., Sivakumar D.,

Tomlin J.A., and Williamson D.P. Searching the workplace web.

In Proc. 12th Int. World Wide Web Conference. 2003,

pp. 366–375.

2. Fox E.A. Extending the Boolean and Vector Space Models of

Information Retrieval with P-Norm Queries and Multiple Con-

cept Types. Ph.D dissertation, Cornell University, 1983.

3. Fox E.A. Coefficients of combining concept classes in a collec-

tion. In Proc. 11th Annual Int. ACM SIGIR Conf. on Research

and Development in Information Retrieval, 1988, pp. 291–307.

4. Hawking D. and Craswell N. The very large collection and Web

tracks. In TREC: Experiment and Evaluation in Information

Retrieval, E. Voorhees, D. Harman (eds.). MIT, Cambridge,

MA, USA, 2005, pp. 199–232.

5. Hawking D., Upstill T., and Craswell N. Toward better weighting

of anchors. In Proc. 30th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2004,

pp. 512–513.

6. Lalmas M. Uniform representation of content and structure for

structured document retrieval. Technical report, Queen Mary

University of London, 2000.

7. Macdonald C. and Ounis I. Combining fields in known-item

email search. In Proc. 32nd Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2006, pp.

675–676.
8. Macdonald C., Plachouras V., He B., Lioma C., and Ounis I.

University of Glasgow at WebCLEF 2005: experiments in per-

field normalisation and language specific stemming. In Acces-

sing Multilingual Information Repositories, Sixth Workshop of

the Cross-Language Evaluation Forum, 2005, pp. 898–907.

9. Malik S., Trotman A., LalmasM., and Fuhr N. Overview of INEX

2006. In Comparative Evaluation of XML Information Retrieval

Systems. LNCS 4518, Springer, Berlin, 2007, pp. 1–11.

10. Myaeng S.H., Jang D.H., Kim M.S., and Zhoo Z.C. A flexible

model for retrieval of SGML documents. In Proc. 21st Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 1998, pp. 138–145.

11. Ogilvie P. and Callan J. Combining document representations

for known-item search. In Proc. 26th Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

2003, pp. 143–150.

12. Plachouras V. and Ounis I. Multinomial randomness models

for retrieval with document fields. In Proc. 29th European

Conf. on IR Research, 2007, pp. 28–39.

13. Robertson S., Zaragoza H., and Taylor M. Simple BM25 exten-

sion to multiple weighted fields. In Proc. Int. Conf. on Informa-

tion and Knowledge Management, 2004, pp. 42–49.

14. Switzer P. Vector images in information retrieval. In Proc. Symp.

on Statistical Association Methods for Mechanical Documenta-

tion,1965, pp. 163–171.

15. Taylor M., Zaragoza H., Craswell N., Robertson S., and

Burges C. Optimisation methods for ranking functions with

multiple parameters. In Proc. Int. Conf. on Information and

Knowledge Management, 2006, pp. 585–593.

16. Wilkinson R. Effective retrieval of structured documents. In

Proc. 17th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval. 1994, pp. 311–317.

17. Zaragoza H., Craswell N., Taylor M., Saria S., and Robertson S.

Microsoft Cambridge at TREC-13: Web and HARD tracks. In

Proc. 13th Text Retrieval Conf., 2004.
Field-Based Spatial Modeling

MICHAEL F. GOODCHILD

University of California-Santa Barbara, Santa Barbara,

CA, USA

Definition
A field (or continuous field) is defined as a mapping

from location x to a function f. In modeling geographic

phenomena the domain of x is most often the two

dimensions of geographic space, but may include the

third spatial dimension for applications that extend

above or below the Earth’s surface, and may include

time for dynamic phenomena. Fields can also be defined

on one-dimensional networks embedded in two- or

three-dimensional space. Moreover, most applications

are limited to a specified sub-domain of geographic

Field-Based Spatial Modeling F 1133

F

space, such as the limits of a country or county, or of a

map sheet or arbitrarily defined study area. The domain

of f includes scalar measurements on interval and ratio

scales, nominal and ordinal classifications, and vectors

describing such directional phenomena as wind or

topographic gradient. Field-based spatial modeling

can in principle be employed in the representation of

any space, including the spaces of the human brain, the

surfaces of other planets, or complex buildings.

Fields are one of two ways of conceptualizing the

geographic world. By contrast, the discrete-object con-

ceptualization imagines a world that is empty except

where it is occupied by discrete, countable objects that

maintain identity and geometric form through time.

This conceptualization is more often adopted in the

representation of biological organisms, manufactured

objects, and man-made structures, whereas the contin-

uous-field conceptualization is more appropriate for

variables that can be defined at every location in space,

such as air temperature, terrain height, soil moisture

content, or wind speed.

Historical Background
The field/object distinction has ancient roots. Its sig-

nificance for geographic information science was first

recognized in the late 1980s and early 1990s [1,3], and

it has come to be acknowledged as the most important

distinction underpinning the entire field of geographic

data modeling [5,7]. Consider, for example, the section

of the US county boundary map shown in Fig. 1. If

counties are regarded as discrete objects then one

should be able to move them around as pieces of a

jigsaw, possibly overlapping and modifying the coast-

line of the US, as shown on the left. On the other hand

if the variable county is regarded as a single-valued

function of location x, defined everywhere inside the

boundary of the US, then the boundaries merely indi-

cate where the value of county changes. Edits that move

common boundaries are feasible, but not edits that

move the coastline, or edits such as that shown, which

attempts to move vertices of the boundary outside the

coastline. Conceptualizing the phenomenon as a field

clearly results in a more consistent representation that

is more appropriate to the nature of the phenomenon.

Figure 2 shows an area-class map, depicting the

variation in vegetation cover class across a geographic

domain. If such a map were conceptualized as a collec-

tion of discrete objects, then the issue of accuracy

would come down to such questions as ‘‘Is the number
of areas correct?,’’ ‘‘Are the boundaries in the correct

places?,’’ and ‘‘Are the classes assigned to each area

correct?’’ However uncertainty would be addressed

very differently under a field conceptualization; one

could ask only one form of question, ‘‘Is the value

recorded at x correct?’’ It turns out that this second

conceptualization is far more productive and tractable

than the first [8].

Strong associations have been recognized between

the two alternative conceptualizations and patterns

of human thought. Many would argue that the

discrete-object view is more compatible with human

cognition – that human brains are in effect hard-wired

to segment any visual image into a collection of discrete

objects, and to track their movements through time. On

the other hand the continuous-field view underliesmany

of the most significant advances in science, including

electro-magnetism (the Maxwell equations), hydrody-

namics (the Navier-Stokes equation), and quantumme-

chanics (the Schrödinger equation). Some of the most

challenging problems in science are described in partial

differential equations defined on fields, and solved using

a variety of computational methods. The distinction is

strongly linked to concepts of scale, as for example when

the behavior of a group of ants is modeled at very

detailed scale as interactions between discrete objects,

or at a coarser scale as modifications to a continuous

field of ant density. Very crudely, continuous-field

conceptualizations tend to be more common in the

natural and physical sciences, while discrete-object

conceptualizations are more often found with reference

to social phenomena.

Foundations
Computers are fundamentally discrete machines,

founded on the representation of information in a

two-valued alphabet, and as a result discrete-object

conceptualizations are more readily implemented in

spatial databases. There is little ambiguity, for example,

in the representation of the current location of every

aircraft in an airline’s fleet as a point in space. However

other phenomena are inherently continuous across

space, including terrain, rivers, roads, and the tracks

of moving objects, and their representation necessarily

involves some form of discretization. A river, for ex-

ample, may be broken into reaches, either at junctions

or at points where the direction of the river changes

significantly. Each reach will be represented using a

simple mathematical function, most often a straight

Field-Based Spatial Modeling. Figure 1. Counties conceptualized as (a) discrete objects and (b) a continuous field. As a

discrete object, any county is free to move independently of its neighbors and the coastline. As a continuous field,

however, only the common boundaries where county values change can be moved, and not so far as to intersect the

coastline (the edit shown would not be accepted).

1134F Field-Based Spatial Modeling
line but sometimes as an arc of a circle or a spline

function. Roads in a road network may be broken into

segments at intersections, or at other points where dir-

ection changes. These stages necessarily modify the

phenomena they are used to represent, since the discre-

tized object will in most cases differ geometrically from

the original, and discretization is essential if a geometric

shape that is potentially infinitely complex is to be

represented in a digital store of finite capacity. Thus in
almost all cases the representation of real-world geome-

try requires the loss of some degree of detail.

This stage of discretization is necessary whenever

an arbitrarily shaped geographic feature must be repre-

sented in digital form. But a further stage is needed

when the characteristics of the phenomenon also vary

continuously over space, in other words in the repre-

sentation of phenomena conceptualized as continuous

fields. Figure 3 shows the six methods most commonly

Field-Based Spatial Modeling. Figure 2. A map of vegetation cover class conceptualized as a nominal field,

superimposed on the Santa Barbara area. Each area denotes a particular type of vegetation.

Field-Based Spatial Modeling F 1135

F

employed in spatial databases and geographic informa-

tion systems. Two are based on a raster, in other words

the discretization of space into a regular array with

finite spacing, while the remaining four use vector

methods, specifying the position of each element of

the discretization as coordinates and representing

volumes as collections of polygonal faces, areas as poly-

gons, and lines as polylines.

Figure 3a shows one of the raster options, the

representation of a spatially continuous phenomenon

as a collection of sample values regularly spaced over a

rectangular array. This is the method most commonly

employed in the representation of terrain, in what

are known as digital elevation models (DEMs). The

spacing of sample heights implies a well-defined level

of spatial resolution. Note, however, that since it is

impossible to lay a rectangular grid over a curved

surface, it is similarly impossible to construct a DEM

of a significant part of the Earth’s surface with a pre-

cisely constant spatial resolution.

Figure 3d shows the other raster option. Here the

study area has been divided into rectangular cells,

and a single measurement provided in each cell.

This is often the mean value in the case of measure-

ments on interval and ratio scales, but in other

cases may be a modal value or some more complex

function of the values of the field within the cell. Again
spatial resolution is constant and well defined. This

approach is most commonly encountered in the

discretization of images, such as those obtained from

satellites.

Figure 3b shows a vector option. In this case the

field has been sampled at a set of irregularly spaced

locations, and the value of f reported. Sample locations

may be selected using some specified rule, or may be a

historic artifact, as they are in the case of weather data,

when the points correspond to weather-observation

stations. Nothing is known about the values of f be-

tween sample locations, though a wide range of tech-

niques exist for making intelligent guesses under the

rubric of spatial interpolation.

Figure 3c shows another vector option involving

irregularly spaced sample points, though in this case a

set of triangles have been created by connecting them.

The field variable is assumed to vary linearly between

points, ensuring continuity of value across triangle

edges. In essence this option, which is generally known

as a triangulated irregular network (TIN) or triangular

mesh, adds a specific method of spatial interpolation

to Option 3b. It is commonly used as a method for

representing terrain, where it is particularly efficient

for terrains characterized by long uniform slopes and

sharp ridges; and as an internal representation in con-

touring algorithms.

Field-Based Spatial Modeling. Figure 3. The six common methods of discretizing a field. See text for explanation.

1136F Field-Based Spatial Modeling
Figure 3e shows the discretization of a field as a

collection of space-exhausting, non-overlapping areas,

that will themselves be discretized geometrically as

polygons. The field variable is assumed uniform within

each area. This is the most common discretization

when the field variable is nominal or ordinal, as it is

for maps of soil class and land cover class for example.

It is also commonly used to represent data collected by

statistical agencies and aggregated by reporting zones

such as counties or census tracts. In such cases, the

number of variables recorded for each reporting zone

may be very large. For some of these variables, termed

spatially intensive, the value reported will represent the

mean within the zone of a variable such as average

income, or a proportion such as percent black, or a

density per unit area. In other cases the reported value

will be a total, such as total population or total income,

corresponding to the integration of a density over the

reporting zone’s area; this type of value is termed

spatially extensive.

Finally, Fig. 3f shows the last example, in which the

field is represented as a collection of digitized isolines.

This method is commonly used to capture the con-

tours shown on topographic maps. While it is effective
for visual purposes, its value from an analytic perspec-

tive is far less than the DEM or TIN because of the very

uneven sampling that is achieved.

Key Applications
Many examples of phenomena conceptualized as fields

have already been cited; this section addresses the

functions that are commonly applied to field represen-

tations, and the software that implements them. The

functions described in this section are commonly

found in GIS packages, and they and many others are

reviewed by De Smith, Goodchild, and Longley [2].

A variety of functions are available to manipulate

representations of topography. Most use the DEM

option (3a) though very powerful algorithms have

been described for similar operations on TINs. Visual-

ization is a common requirement, and functions have

been developed to compute surface gradient and hence

simulated illumination; to compute and plot isolines;

and to compute solar insolation as a key variable in

understanding vegetation patterns on rugged topogra-

phy. Another class of algorithms concern visibility, and

can be used to compute the area visible by an observer

positioned a given height above the terrain. Algorithms

Field-Based Spatial Modeling F 1137

F

have been described for computing the most exposed

and most concealed points on a landscape, as well as

most exposed and most concealed routes; and to posi-

tion a minimal number of observers such that the

entire landscape can be observed.

Another important collection of algorithms con-

cerns drainage. Starting with a DEM, it is possible to

compute drainage directions as a vector field, and

to integrate these into catchments and stream channels.

DEMs are used to predict and manage flooding, and

to plan modifications to the landscape such as the

construction of levees.

Reference was made earlier to methods of spatial

interpolation, which address the task of predicting the

value of a field at locations where it has not been

measured. Most often these methods are applied to

the representations illustrated in Fig. 3a and 3b, but a

related technique known as areal interpolation has

been devised for the task of predicting the values asso-

ciated with areas that do not match (cut across the

boundaries of) the reported areas of 3d and 3e.

Of particular interest are algorithms that produce

representations of fields from collections of discrete

objects. They include density estimation, which pro-

duces a field of feature density, most often of points;

and calculation of the distance from any point in the

plane to the nearest of a collection of discrete objects.

The most powerful collections of field-based manip-

ulation functions clearly exist for raster data, because of

the possibility that a collection of fields can be repre-

sented using a set of co-registered rasters. This is the

principle of raster GIS, most clearly illustrated by

packages with firm roots in raster-based discretizations,

such as Idrisi andGRASS.Most have adopted a common

language for expressing instructions known asmap alge-

bra [6]. A powerful alternative geared particularly to

simulation is PCRaster (http://pcraster.geo.uu.nl), de-

veloped at the University of Utrecht and having its own

manipulation language that is considerably more suc-

cinct and powerful than map algebra.

Future Directions
The comparative importance of continuous fields and

discrete objects is a matter of continual debate. On the

one hand, the majority of GIS applications occur in

worlds where the objects of interest are well-defined

and often man-made. On the other hand, many phe-

nomena in the natural world are essentially continu-

ous, and representing them as collections of discrete
objects invites error and misuse. Cognitive scientists

would argue that humans are hard-wired to see the

world as a collection of discrete objects, while environ-

mental scientists might argue that continuous fields are

one of the most significant breakthroughs in the histo-

ry of science, lying at the root of such developments as

the calculus and hydrodynamics. Many of the forms of

analysis commonly used in the environmental sciences

are based on fields; while most of those commonly

used in the social sciences are based on discrete objects.

GIS software today embraces both conceptualiza-

tions. But it does so in a somewhat unsatisfactory

manner, in which representations of continuous fields

must be reduced to collections of discrete objects,

without any record of that process of reduction. Thus

it is impossible for the user of a GIS database to

enquire whether a collection of points in the database

represents a set of points sampling a field, or a set of

isolated point-like objects in an otherwise empty space.

Unfortunately this means that inappropriate opera-

tions can easily be performed. Nothing prevents the

GIS user from applying spatial interpolation to points

conceptualized as discrete objects, or from computing

a density field of sample points; the former is of course

more disastrous than the latter. Similarly nothing pre-

vents a GIS user from moving an isoline so that it

crosses another, or from making two polygons in a

Fig. 3e representation overlap.

Several interesting and potentially powerful re-

search directions have been pursued in the hope of

eventually improving this situation. One approach

has been to argue that the user should be able to

interact with the concept of a field directly, rather

than with the elements of one of the six representations

of Fig. 3 as at present. Another has been to search for a

visual paradigm for handling fields that matches and

has similar power to the visual representation of sets of

discrete objects that is found in UML (Unified Model-

ing Language) and related methods. Now that GIS

technology includes the capability to design databases

in UML and to create and populate the necessary tables

automatically, it would make good sense to develop

parallel methods for handling fields. Finally, much

recent effort has gone into finding ways of reconciling

and bridging the field/object dichotomy [4].

Cross-references
▶Digital Elevation Models

▶Geographic Information System

1138F File Compression
▶Raster Data Management and Multi-Dimensional

Arrays

▶ Spatial Data Analysis

▶Triangulated Irregular Network

▶Unified Modeling Language
Recommended Reading
1. Couclelis H. People manipulate objects (but cultivate fields):

beyond the raster-vector debate in GIS. In Theories and Meth-

ods of Spatio-Temporal Reasoning in Geographic Space, A.U.

Frank, I. Campari, U. Formentini (eds.). Springer, Berlin, 1992,

pp. 65–77.

2. De Smith M.J., Goodchild M.F., and Longley P.A. Geospatial

Analysis: A Comprehensive Guide to Principles. Techniques and

Software Tools. Winchelsea Press, UK, 2007.

3. Goodchild M.F. Modeling error in objects and fields. In

Accuracy of Spatial Databases, M.F. Goodchild, S. Gopal (eds.).

Taylor and Francis, Bristol/London, 1989, pp. 107–114.

4. Goodchild M.F., Yuan M., and Cova T.J. Towards a general

theory of geographic representation in GIS. Int. J. Geogr. Inf.

Sci., 21(3):239–260, 2007.

5. Longley P.A., Goodchild M.F., Maguire D.J., and Rhind D.W.

Geographic Information Systems and Science, Wiley, West

Sussex, 2005.

6. Tomlin C.D. Geographic Information Systems and Cartographic

Modeling. Prentice Hall, Englewoods, NJ, 1990.

7. Worboys M.F. and Duckham M. GIS: A Computing Perspective,

CRC Press, Boca Raton, FL, 2004.

8. Zhang J.X. and Goodchild M.F. Uncertainty in Geographical

Information. Taylor and Francis, London/New York, 2002.
File Compression

▶Text Index Compression
File Format

▶ Image Representation
Filter/Refinement Query Processing

▶Multi-Step Query Processing
Finding of Observation

▶Clinical Observation
Finiteness

▶ Safety and Domain Independence
First-Order Logic: Semantics

VAL TANNEN

University of Pennsylvania, Philadelphia, PA, USA

Synonyms
Predicate calculus; Predicate logic

FOL

Definition
This entry should be read in conjunction with the

companion entry First-Order Logic: Syntax where the

terms vocabulary, variable, formula, etc. are defined.

To give semantics to first-order sentences, first-

order structures (a.k.a. models or interpretations),

and the ‘‘holds true’’ (a.k.a. satisfaction or validity)

relationship is used between sentences and structures.

Both are detailed below. This allows the definition of

logical consequence (a.k.a. logical implication), G ⊨ j,
whose meaning is that the sentence j holds true in any

structure in which the sentences in the set G hold true.

Proof systems for first-order logic should be assessed

against logical consequence whether sound and/or

complete. The semantic of FOL is also used for defin-

ability, a concept that helps understanding the limita-

tions of formalisms based on FOL.

As introduced by E. F. Codd into database technol-

ogy, the relational model is based on finite first-order

structures for a vocabulary that has only relational

symbols.

Key Points
Fix a first-order vocabulary. A structure A for this

vocabulary consists of a non-empty set A (sometimes

called the ‘‘universe (of discourse)’’ of the structure)

together with a mapping that assigns to every symbol

s in the vocabulary a corresponding meaning sA

over A. For constants c, cA is just an element of A, for

n-ary relation symbols R, RA is an n-ary relation over

A (i.e., a subset of An), and for n-ary function symbols f

one has a function f A : An ! A.

Next, the goal is to define when a sentence j holds

true in a structure A, written A
 ’. To do this, one

should use assignments, which are partial functions

from the set of all variables to the universe A of A. It

First-Order Logic: Syntax F 1139

F
suffices to consider assignments of finite domain (de-

fined only on finitely many variables). By extending

assignments m :Vars!A to �m :Terms ! A, define

A; m
 ’ where j is a formula and such that m is

defined on (at least) all the free variables of j:
where m[x := a] is the same as m except that m[x := a]

(x) = a. The definition above is uncomfortably ‘‘circu-

lar’’ if one thinks of FOL or other logical formalisms as

part of a foundation for mathematics. But this defini-

tion of truth is part of a more useful point of view, due

to Hilbert and Tarski, in which logic is a mathematical

symbol ‘‘game’’ and one can use ordinary math to study

it (this use of math is called ‘‘metamathematics’’).

If ’ is a sentence it is possible to define when it

holds in a structureA:A
 ’meansA; ;
 ’ where ;
is the assignment defined nowhere (empty domain).

A sentence is valid if it holds in all structures. At first

validity seems computationally absurd (there isn’t even

a ‘‘set of all structures’’, because Russell’s Paradox

would be lurking in the fold). However, a very impor-

tant result in metamathematics, Gödel’s Completeness

Theorem [2], shows that validity is equivalent to pro-

vability in one of the many equivalent proof systems

for FOL. It follows that the set of all valid sentences is

in fact recursively enumerable (r.e.), a reasonable foun-

dation for attempting automated theorem-proving for

FOL. However, Church and Turing have shown that

validity is undecidable [2], an important inherent lim-

itation that also affects applications to databases.

In fact, Gödel’s Completeness Theorem shows

more. If G is a set of sentences and j a sentence, one

defines logical consequence by

G
 ’ iff for all A; if A
 c for each

c 2 G then A
 ’

Fix a proof system with provability relation ‘. The
proof system is sound if G ‘ ’ implies G ⊨ ’ and is

complete if G⊨ ’ implies G ‘ ’. Gödel’s Completeness

Theorem shows that any of the equivalent proof sys-

tems for FOL is sound and complete.
A sentence is finitely valid if it holds in all finite

structures. Finite validity is co-r.e. (just enume-

rate finite structures up to isomorphism). However,

Trakhtenbrot’s Theorem [3] shows that it is undecid-

able, hence it cannot be r.e. (in fact, it shows that it

is co-r.e.-complete). Therefore, one cannot hope to

find a sound and complete proof system for just the

finitely valid sentences.

Finally, consider a structure A and an n-ary rela-

tion D � An. Say that D is first-order definable

in A if there exists an FOL formula ’ with exactly

n distinct free variables x1,...,xn such that

for all a1;:::; an 2 A; ða1;:::;anÞ 2 D iff

A; ½x1 :¼ a1;:::;xn :¼ an�
 ’

Definability in a given structure is trivial if the struc-

ture is finite. For finite structures look at the defin-

ability of queries.
Cross-references
▶ First-Order Logic

▶ First-Order Logic: Syntax

▶Relational Calculus
Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases:

The Logical Level. Addison Wesley, Reading, MA, 1994.

2. Enderton H.B. A Mathematical Introduction to Logic, 2nd edn.

Academic, New York, 2000.

3. Libkin L. Elements of Finite Model Theory. Springer, 2004.
First-Order Logic: Syntax

VAL TANNEN

University of Pennsylvania, Philadelphia, PA, USA

Synonyms
Predicate calculus; Predicate logic; FOL

1140F First-Order Logic: Syntax
Definition
First-order logic (FOL) is a formalization of the most

common kind of mathematical reasoning. It is char-

acterized by the quantification of variables that range

over a ‘‘universe of discourse’’ (a set of values). Less

complex reasoning is captured by propositional (a.k.a.

Boolean or sentential) logic. More complex reasoning

is captured by second-order or even higher-order logic.

The syntactic aspects of FOL comprise a vocabulary

(a.k.a. language or signature), formulae and, in partic-

ular, sentences (a.k.a. assertions), and a proof system

(one of many equivalent ones!), structures (a.k.a. mod-

els or interpretations), and the satisfaction (a.k.a. truth

or validity or ‘‘holds in’’) relationship between sen-

tences and structures. All are detailed below.

FOL is the source of the relational paradigm that

was introduced by E. F. Codd in 1970 and has been

dominating database technology for 30+ years.
Key Points
A first-order vocabulary consists of a set of constant

symbols, for each integer n � 0 a set of n-ary relation

(a.k.a. predicate) symbols, for each integer n � 1 a set of

n-ary function symbols. For some authors the constants

are the 0-ary function symbols. The 0-ary relation sym-

bols are called ‘‘propositional constants’’ (although, in

propositional logic they are called ‘‘variables’’!). In addi-

tion, first-order vocabularies are often assumed to con-

tain the equality symbol—adistinguished binary relation

symbol – as well as true and false as distinguished

propositional constants. For applications in Computer

Science, these sets of symbols are usually finite.

Next, a vocabulary and an infinite set of variables

are fixed. First-order terms are defined by the grammar

t ::¼ c j x j f ðt1;:::;tnÞ

where c ranges over constants, x over variables, f over

n-ary function symbols, and t, 1,...,tn over terms, for

each integer n � 1. First-order formulae (sometimes

called well-formed formulae of wff ’s are defined by the

grammar

’ ::¼ Rðt1;:::;tnÞ j t1 ¼ t2 j true j false j

ð’1 _ ’2Þ j ð’1 ^ ’2Þ j ð:’Þ j

ð’1 ! ’2Þ j ð9x’Þ j ð8x’Þ

where R ranges over n-ary relation symbols, t1, t2,...,tn
over terms (for each integer n � 0), x over variables,

and ’, ’1, ’2 over formulae. Formulae of the form
R(t1,...,tn), t1 = t2, true or false are called atoms (a.k.a

atomic formulae). The logical connectives for disjunc-

tion, conjunction, negation, and implication are as in

propositional logic. Characteristic of first-order logic is

existential (∃) and universal (8) quantification with

variables x ranging over a ‘‘universe of discourse’’.

The parentheses are typically omitted based on simple

precedence and associativity rules.

Next, one defines when a variable x is free (a.k.a.

‘‘occurs free’’) in a formula ’ (inductively on the

syntax of ’): (i) if a is an atom, then x is free in it

iff it is used to build one of the terms that make up a;
(ii) x is free in (’1 ∨ ’2) or in (’1 ∧ ’2) or in (’1 !
’2) iff it is free in ’1 or in ’2; (iii) x is free in (’) iff it is

free in ’; (iv) x is free in (∃y ’) or (8y, ’) iff it is free
in’and x 6¼ y. Every formula has a finite set of variables

that occur syntactically in it. Some of these are free, as

defined above. The others are called bound because they

must appear in some quantified subformula: (∃y c) or
(8y c), in which case it is said that c is the scope of the

(bound) quantified variable y. For clarity, it is good prac-

tice to use fresh variables for each quantification. How-

ever, this is not required by the definition, for example

9x Eða; xÞ ^ ð9y Eðx; yÞ ^ ð9x Eðy; xÞ
^ ð9y Eðx; yÞ ^ Eðy; bÞÞÞÞ

says that there exists a path of length five from vertex a

to vertex b in a directed graph with edge relation E, and

it does so with only two bound variables although

there are four intermediate vertices. Bound variable

‘‘reusing’’ can be exploited, see finite variable logics [3].

A formula without free variables is called a sentence.

Sentences are logical assertions that may or may not be

true by themselves. However, to give them meaning,

one needs to give meaning more generally to formulae.

Still part of the syntax of FOL are the proof systems

which describe effective procedures for deriving sen-

tences from other sentences. A common style of proof

system, due toHilbert, uses sentences that are asserted as

axioms, such as tautologies from propositional logic

(eg., De Morgan’s Laws) or the substitution axioms

(8x’ ! ’[x := t] where ’[x := t] is the result of

substituting every free occurrence of x in ’ with the

term t) and inference rules such as modus ponens (from

’ and ’! c infer c). In such a system, a proof is a list of

sentences such that each of them is either an axiom or is

inferred by some rule from previously listed sentences.

The proof is for the last sentence in the list. The sentences

proved in a proof system are called theorems. More

Flash F 1141

F

generally, a proof system defines a provability (a.k.a.

inference or derivability) relationship between sen-

tences ’ and sets G of sentences: G ‘ ’ iff there exists

a proof of ’ that can use sentences in G as additional

axioms (in particular, ’ is a theorem iff ; ‘ ’.

Quite a few styles of proof systems have been pro-

posed, for FOL and for other logics, moreover the choice

of axioms/rules often varies within each style. Of course,

all the proof systems for FOL have been shown to be

equivalent, that is, they define the same provability rela-

tionship, in particular the same theorems. More impor-

tantly, all proof systems are characterized by the

following; (i) proofs are finite objects; (ii) it is decidable

whether a proof is correctly formed; (iii) the proved

sentence is totally computable from the proof. It follows

that the theorems of FOL form a recursively enumerable

set (although, by the result of Church and Turing, not

a decidable one).

Cross-references
▶ First-Order Logic

▶ Semantics

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of databases:

the logical level. Addison Wesley, Reading, MA, USA, 1994.

2. Enderton H.B. 1A Mathematical Introduction to Logic, Academ-

ic, London, 2000.

3. Libkin L. Elements of Finite Model Theory. Springer, Berlin,

2004.

First-Order Query

▶Relational Calculus
Fisheye Views

▶Distortion Techniques
Fixed Time Span

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Constant span
Definition
A time span is fixed if it possesses the special property

that its duration is independent of the assumed context.

Key Points
As an example of a fixed span, ‘‘one hour’’ always,

assuming a setting without leap seconds, has a dura-

tion of 60 minutes. To see that not all spans are fixed,

consider ‘‘one month,’’ which is a prime example of a

variable span in the Gregorian calendar. The duration

of this span may be any of 28, 29, 30, and 31 days,

depending on the context, i.e., the specific month.

Cross-references
▶Calendar

▶Temporal Database

▶Time Interval

▶Time Span

▶Variable Time Span

Recommended Reading
1. Bettini C., Dyreson C.E., Evans W.S., Snodgrass R.T., and Wang

X.S. A glossary of time granularity concepts. In Temporal Data-

bases: Research and Practice, O. Etzion, S. Jajodia, S. Sripada

(eds.). LNCS 1399, Springer, Berlin Heidelberg New York, 1998.

pp. 406–413.

2. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Tempo-

ral Databases: Research and Practice, O. Etzion, S. Jajodia,

S. Sripada (eds.). LNCS 1399, Springer, Berlin Heidelberg New

York, 1998, pp. 367–405.
Flajolet-Martin Algorithm

▶ FM Synopsis
Flajolet-Martin Sketch

▶ FM Synopsis
Flake

▶ Snippet
Flash

▶ Storage Devices

1142F Flex Transactions
Flex Transactions

AIDONG ZHANG
1, BHARAT BHARGAVA

2

1State University of New York at Buffalo, Buffalo, NY,

USA
2Purdue University, West Lafayette, IN, USA

Synonyms
Flexible transactions; S-transactions; ConTracts

Definition
In database systems, a transaction is a sequence of

actions performed on data items in a database. In a

distributed database environment, a global transaction

is a set of subtransactions, where each subtransaction

is a transaction accessing the data items at a single

local site. The flex transaction model supports flexible

execution control flow by specifying two types of depen-

dencies among the subtransactions of a global tran-

saction: (i) execution ordering dependencies between

two subtransactions, and (ii) alternative dependencies

between two subsets of subtransactions.

Key Points
Flexible transaction models, such as ConTracts, Flex

Transactions, S-transactions, and others [1–3], increase

the failure resilience of global transactions by allowing

alternate subtransactions to be executed when a

local database site fails or a subtransaction aborts. In a

non-flexible transaction, a global subtransaction abort is

followed either by a global transaction abort decision

or by a retry of the global subtransaction. With the

flexible transaction model, there is an additional option

of switching to an alternate global transaction execution.

The alternative global transaction execution is achieved

by executing alternative or contingency transactions.

Flexibility allows a flexible transaction to adhere

to a weaker form of atomicity, termed semi-atomicity,

while still maintaining its correct execution in the dis-

tributed database environment. Semi-atomicity allows

a flexible transaction to commit as long as a subset of

its subtransactions that can represents the execution

of the entire flexible transaction commit. Flexible tran-

sactions, S-tractions, and ConTracts are instances of

Open-nested TransactionModel. The following example

is illustrative:

A client at bank b1 wishes to withdraw $50 from

her savings account a1 and deposit it in her friend’s

checking account a2 in bank b2. If this is not possible,
she will deposit the $50 in her own checking account a3
in bank b3. With flexible transactions, this is repre-

sented by the following set of subtransactions:

t1: Withdraw $50 from savings account a1 in bank b1
t2: Deposit $50 in checking account a2 in bank b2
t3: Deposit $50 in checking account a3 in bank b3

In this global transaction, either {t1,t2} or {t1,t3} is

acceptable, with t3 being a contingency of t2 but

{t1,t2} preferred. If t2 fails, t3 may replace t2. The entire

global transaction thus may not have to be aborted

even if t2 fails.

Cross-references
▶Atomicity

▶Concurrency Control Manager

▶ConTract

▶Distributed transaction management

Recommended Reading
1. Wächter H. and Reuter A. The ConTract model. In Data-

base Transaction Models for Advanced Applications, A.K.

Elmagarmid (ed.). Morgan Kaufmann, Los Altos, CA, 1992.

2. Zhang A., Nodine M., and Bhargava B. Global scheduling

for flexible transactions in heterogeneous distributed database

systems. IEEE Trans. Knowl. Data Eng., 13(3):439–450, 2001.

3. Zhang A., Nodine M., Bhargava B., and Bukhres O. Ensuring

relaxed atomicity for flexible transactions in multidatabase

systems. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1994, pp. 67–78.
Flexible Metric Computation

▶ Learning Distance Measures
Flexible Transactions

▶ Flex Transactions
Flowcharts

▶Activity Diagrams
FM Sketch

▶ FM Synopsis

FM Synopsis F 1143

F

FM Synopsis

PHILLIP B. GIBBONS

Intel Labs Pittsburgh, Pittsburgh, PA, USA

Synonyms
FM sketch; Flajolet-Martin sketch; Flajolet-Martin

algorithm

Definition
Given a multi-set S of values from a domain D, the

distinct-values estimation problem is to estimate the

number of distinct values in S, using only one pass

over S and only small working space. The FM Synopsis

algorithm, developed by Flajolet and Martin in the

mid-1980s [7], provides provably accurate distinct-

values estimation using only OðlogðjDjÞÞ space. The

basic technique makes use of a hash function h() that

maps each value in D to one of m
 logðjDjÞ
bit positions, according to a geometric distribution.

Specifically, h() maps half the values in D to position

0, one-quarter of the values in D to position 1,

one-eighth of the values in to position 2, and so on.

The steps of the FM Synopsis algorithm are:

1. Initialize a bit vector M of m bits to all 0s.

2. For each item in S do: Set M[h(v)] to 1, where

v 2 D is the value of the item.

3. Estimate the number of distinct values as 2Z∕.77351,
where Z is the position of the least significant unset

bit in M.

To reduce the variance in this estimator, Flajolet and

Martin take the average over tens of applications of this

procedure, with different random hash functions h().

Historical Background
Distinct-values estimation was one of the first non-

trivial data stream problems studied. A decade before

data stream synopsis structures and their desirata were

defined and popularized, the FM Synopsis met the

desirata for a data stream synopsis structure: (i) it

needs only one pass through the data, (ii) it yields

highly accurate answers regardless of the data
FM Synopsis. Figure 1. Two example data sets of n = 24 ite
distribution, (iii) it takes only logarithmic space, and

(iv) it requires only constant per-item processing time

and only constant time to produce an estimate given

the synopsis structure.

Prior to the popularization of the FM Synopsis algo-

rithm, a common approach for estimating the number of

distinct values in a multi-set S was to collect a random

sample of S and then apply sophisticated estimators

based on the distribution of the values in the sample

[2]. However, all known sampling-based estimators

provide unsatisfactory results on some data sets of

interest, and moreover, estimating the number of dis-

tinct values within a small constant factor (with prob-

ability > 1
2
) requires (in the worst case) that nearly all

of S be sampled [3]. Thus, streaming approaches, such

as the FM Synopsis algorithm, are preferred over

sampling-based approaches, whenever feasible.

Recent work has built upon the FM Synopsis ap-

proach, improving the accuracy guarantees on the

estimation, proving lower bounds, and considering

other settings such as sliding windows and distributed

streams.

Foundations
Figure 1 depicts two data sets, S1 and S2, where the

number of distinct values, also called the zeroth fre-

quency moment F0, is 15 for S1 and 6 for S2. These data

sets can help illustrate the challenges of sampling-

based estimators for F0. Consider the following 33%

sample of a data set of 24 items:

A; T; A; R; E; T; P; H

Given this 33% sample (with its 6 distinct values), does

the entire data set have 6 distinct values, 18 distinct

values (i.e., the 33% sample has 33% of the distinct

values), or something in between? Note that this par-

ticular sample can be obtained by taking every third

item of either S1 (where F0 = 15) or S2 (where F0 = 6)

from Fig. 1. Thus, despite sampling a large (33%)

percentage of the data, estimating F0 remains challeng-

ing, because the sample can be viewed as fairly repre-

sentative of either S1 or S2 – two data sets with very

different F0s.
ms from a domain D = {A, B,..., Z}.

1144F FM Synopsis
Now consider the FM Synopsis algorithm outlined

above. Using a hash function ensures that all items

with the same value will select the same bit position;

thus the final bit vector M is independent of any dupli-

cations among the item values. Flajolet and Martin’s

analysis assumes an idealized random hash function

that maps each value v 2 D to a bit position

b 2[0..m � 1] such that b = i 2[0..m � 2] with

probability 2�(i+1) and b = m � 1 with probability

2�(m�1). Accordingly, M[i] is expected to be set

if there are at least 2i+1 distinct values. Because bit

Z � 1 is set but not bit Z, there are likely greater than

2Z but fewer than 2Z+1 distinct values. Flajolet and

Martin’s analysis shows that E[Z]
 log2(.77351 	 F0),
so that 2Z∕.77351 is a good choice in that range.

To reduce the variance in the estimator, Flajolet and

Martin take the average over tens of applications of this

procedure (with different hash functions). Specifically,

they take the average, �Z , of the Z’s for different hash

functions and then compute b2�Z=:77351c. An example

is given in Fig. 2.

The error guarantee, space bound, and time bound

are summarized in Theorem 1. The space bound does

not include the space for representing the hash func-

tions, and the time bound assumes that computing

h(v) is a constant time operation.

Theorem 1 [7] Consider a multi-set S of n items

with values from a domain D. The FM Synopsis algo-

rithm with k (idealized) hash functions produces a

distinct-values estimator with standard error Oð1=
ffiffiffi
k

p
Þ,

using k 	 m memory bits for the bit vectors, for any

m > log2ðminðn; jDjÞÞ þ 4. For each item, the
FM Synopsis. Figure 2. Example run of the FM Synopsis algo

Each bit vector M[] is m = 6 bits long, with M[0] being the rig

matches the number of distinct values in the first 8 items of S
algorithm performs O(k) operations on memory words

of at most maxðm; log2ðjDjÞÞ bits.
Optimizations

The space needed for the k bit vectors, M1[], M2[],...,
Mk[], can be significantly reduced, using the following

simple compression technique [4,7,10]. Note that at

any point during the processing of the data set, each bit

vector Mj[] consists of three parts, where the first part
is all 0s, the second part (the fringe) is a mix of 0s and

1s, and the third part is all 1s (as in Fig. 2). Moreover,

the bit vectors are likely to share many bits in common,

because each Mj[] is constructed using the same algo-

rithm on the same data. The technique is to interleave

the bits, as follows:

M1½m� 1�;M2½m� 1�;:::;Mk½m� 1�;
M1½m� 2�;:::;Mk½m� 2�;:::;M1½0�;:::;Mk½0�;

and then run-length encode the resulting bit vector’s

prefix of all 0s and suffix of all 1s. Specifically, a simple

encoding scheme is used that ignores the all 0s prefix

and consists of (i) the interleaved bits between the all 0s

prefix and the all 1s suffix and (ii) a count of the length

of the all 1s suffix. An example is given in Fig. 3. Note

that the interleaved fringe starts with the maximum bit

set among the k fringes and ends with their minimum

unset bit. Each fringe is likely to be tightly centered

around the current log2(F0), e.g., for a given hash func-

tion and c> 0, the probability that no bit than log2(F0)

+ c or larger is set is ð1� 2�ðlog2ðF0ÞþcÞÞF0
 e�1=2c . At

any point in the processing of the data set, a similar
rithm on the first 8 items of S1, using k = 3 hash functions.

htmost bit (the least significant bit). The estimate, 6,

1.

FM Synopsis F 1145

F

argument shows that the interleaved fringe is expected

to be fewer than O(k log k) bits. Also, the count of

the all 1s suffix is at most k 	 m. Thus, the encoding is

expected to use fewer than log2 m þ Oðk log kÞ bits.
The number of operations per data item can be

reduced from O(k) to O(1), using a variant of the FM

Synopsis algorithm called Probabilistic Counting with

Stochastic Averaging (PCSA) [7]. In the PCSA algo-

rithm (see Fig. 4), k bit vectors are used (for k a

power of 2) but only a single hash function g(). The

(idealized) random hash function g() is assumed to

map each value v 2 D to a uniformly random value in

D. For each data item with value v, the log2 k least

significant bits of g(v) are used to select a bit vector.

Then the remaining m � log2 k bits of g(v) are used to

select a position within that bit vector, according to a

geometric distribution (as in the basic FM Synopsis

algorithm). To compute an estimate, PCSA averages

over the positions of the least significant 0-bits, com-

putes 2 to the power of that average, and divides by the

bias factor .77351. To compensate for the fact that each

bit vector has seen only 1∕kth of the distinct items on

average, the estimate is multiplied by k.

The error guarantee, space bound, and time bound

are summarized in the following theorem. The space

bound does not include the space for representing the

hash function. The time bound assumes that comput-

ing g and b are constant time operations. Although

some of the operations use only m-bit words, the word

size is dominated by the log2 n bits for the item value v.

The analysis assumes that the bit vectors are com-

pressed using the optimization in Fig. 3.
FM Synopsis. Figure 3. Example FM Synopsis compression,

FM Synopsis. Figure 4. The PCSA algorithm [7].
Theorem 2 Consider a multi-set S of n items with

values from a domainD. The PCSA algorithm with k bit

vectors and an (idealized) hash function produces a

distinct-values estimator with standard error 0:78=
ffiffiffi
k

p
,

using an expected log2 m + O(k log k) memory bits for

the bit vectors, for any m> log2ðminðn; jDjÞ=kÞ þ 4. For

each item, the algorithm performs O(1) operations on

memory words of at most maxðm; log2ðjDjÞÞ bits.

Extensions

There has been considerable follow-on work since the

introduction of the FM Synopsis algorithm. Some

highlights are provided below; further details can be

found in [8].

Alon, Matias and Szegedy [1] showed how a variant

of the FM Synopsis algorithm could obtain guaranteed

accuracy without the assumption of idealized hash

functions. Specifically, they consider standard linear

hash functions of the form g(v) = a 	 v + b, where a

and b are chosen uniformly and independently at ran-

dom from a suitable range and all arithmetic is computed

modulo that range. Their variant estimates F0 as 2R,

where R is the position of the most significant bit that is

set to 1.Moreover, it directly keeps track of themaximum

position set to 1, instead of maintaining a bit vector.

Durand and Flajolet [5] presented a variant that

uses only
 k log 2 log2ðminðn; jDjÞ=kÞ bits for its

synopses and provides a standard error of 1:05=
ffiffiffi
k

p
,

assuming idealized hash functions.

The FM Synopsis approach can be readily extended

to handle item deletions by replacing each bit in M[]
with a running counter that is incremented on
for k = 6 and m = 8.

1146F FM Synopsis
insertions and decremented on deletions. This

increases the synopsis space by a logarithmic factor.

Similarly, the FM Synopsis approach can be extended

to handle sliding windows, where the problem is to

estimate the number of distinct values over a sliding

window of the w most recent items, for some fixed w.

The idea is to keep track of the sequence number of the

most recent item that set each FM bit. Then, when

estimating the number of distinct values within the

current sliding window, only those FM bits whose

associated sequence numbers are within the window

are considered to be set. This too increases the synopsis

space by a logarithmic factor. See [8] for an overview of

algorithms that improve upon these basic schemes for

deletions and sliding windows.

Finally, note that the FM Synopsis approach can be

readily adapted to a distributed setting in which a set of

observers each processes the portion of the multi-set S

that it sees. The goal is to estimate the number of

distinct values in S by (i) having each observer compute

a small synopsis for the values it sees, and then

(ii) combining the synopses to output a highly accurate

estimate. The FM Synopsis algorithm is perfectly suited

for this task. It can be applied to each data set portion

independently, using the exact same hash function at all

observers, to generate a bit vector M[] for each por-

tion. Because the same hash function is used by all

observers, the bit-wise OR of their bit vectors yields

the exact bit vector that would have been produced by

running the FM Synopsis algorithm on any interleav-

ing of the data portions. Thus, estimating F0 from this

bit-wise OR provides the same error guarantees as in

the original algorithm. Moreover, the per-observer

space bound and the per-item time bound also match

the space and time bounds in Theorems 1 and 2.

Key Applications
Estimating the number of distinct values in a data set is

a well-studied problem with many applications. The

statistics literature refers to this as the problem of esti-

mating the number of species or classes in a population.

The problem has been extensively studied in the data-

base literature, as a tool for summarizing the diversity

of data values in a data set, both to help guide query

optimization and to provide fast approximate answers

to distinct-value queries (e.g., a select count(distinct)

query in SQL). Distributed distinct-values estimators

are useful for network resource monitoring, in order

to estimate the number of distinct destination IP
addresses, source-destination pairs, requested urls,

etc. In network security monitoring, determining

sources that send to many distinct destinations can

help detect fast-spreading worms.

Distinct-values estimation can also be used as a

general tool for duplicate-insensitive counting: Each

item to be counted views its unique id as its ‘‘value,’’

so that the number of distinct values equals the

number of items to be counted. Duplicate-insensitive

counting can be used to avoid double-counting items

that are counted while in motion, to compute the

number of distinct neighbors at a given hop-count

in a network, and to compute the size of the

transitive closure of a graph. In a sensor network,

duplicate-insensitive counting together with multi-

path in-network aggregation enables robust and

energy-efficient answers to count queries [9]. More-

over, duplicate-insensitive counting is a building block

for duplicate-insensitive computation of other aggre-

gates, such as sum and average.

Experimental Results
The number of bit vectors, k, in the FM Synopsis

algorithm is a tunable parameter trading off space for

accuracy. The relative error as a function of k has

been studied empirically in [4,7,9,10] and elsewhere,

with < 15% relative error reported for k = 20 and

<10% relative error reported for k = 64, on a variety

of data sets. These studies show a strong diminishing

return for increases in k. Theorems 1 and 2 show that

the standard error is Oð1=
ffiffiffi
k

p
Þ. Thus, reducing the

standard error from 10% to 1% requires increasing k

by a factor of 100! In general, to obtain a standard

error at most e it is required that k = Y(1∕e2). Estan,
Varghese and Fisk [6] present a number of techniques

for further improving the constants in the space versus

error trade-off, including using multi-resolution and

adaptive bit vectors.

Cross-references
▶Approximation and Data Reduction Techniques

▶ Stream Mining

▶ Synopsis Structure

Recommended Reading
1. Alon N., Matias Y., and Szegedy M. The space complexity of

approximating the frequency moments. J. Comput. Syst. Sci.,

58:137–147, 1999.

2. Bunge J. and Fitzpatrick M. Estimating the number of species: a

review. J. Am. Stat. Assoc., 88:364–373, 1993.

Focused Web Crawling F 1147

F

3. Charikar M., Chaudhuri S., Motwani R., and Narasayya V.

Towards estimation error guarantees for distinct values. In

Proc. 19th ACM SIGACT-SIGMOD-SIGART Symp. Principles

of Database Systems, 2000, pp. 268–279.

4. Considine J., Li F., Kollios G., and Byers J. Approximate

aggregation techniques for sensor databases. In Proc. 20th Int.

Conf. on Data Engineering, 2004, pp. 449–460.

5. Durand M. and Flajolet P. Loglog counting of large cardinalities.

In Proc. 11th European Symposium on Algorithms. 2003,

604–617.

6. Estan C., Varghese G., and Fisk M. Bitmap algorithms for count-

ing active flows on high speed links. In Proc. 3rd ACMSIGCOMM

Conf. on Internet Measurement. October, 2003, pp. 153–166.

7. Flajolet P. andMartin G.N. Probabilistic counting algorithms for

data base applications. J. Comput. Syst. Sci., 31:182–209, 1985.

8. Gibbons P.B. 1Distinct-values estimation over data streams. In

Data Stream Management: Processing High-Speed Data

Streams, M. Garofalakis, J. Gehrke, R. Rastogi (eds.). Springer,

Secaucus, NJ, USA, 2009.

9. Nath S., Gibbons P.B., Seshan S., and Anderson Z. Synopsis

diffusion for robust aggregation in sensor networks. ACM

Trans. on Sensor Networks, 4(2), 2008.

10. Palmer C.R., Gibbons P.B., and Faloutsos C. ANF: a fast and

scalable tool for data mining in massive graphs. In Proc. 8th

ACM SIGKDD Int. Conf. on Knowledge Discovery and Data

Mining, 2002, pp. 81–90.
F-Measure

ETHAN ZHANG
1,2, YI ZHANG

1

1University of California-Santa Cruz, Santa Cruz,

CA, USA
2Yahoo! Inc., Santa Clara, CA, USA

Synonyms
Harmonic mean of recall and precision

Definition
Assume an information retrieval (IR) system has recall R

and precision P on a test document collection and an

information need. The F-measure of the system is de-

fined as theweighted harmonicmeanof its precision and

recall, that is, F ¼ 1
a1
P
þð1�aÞ1

R

, where the weight a 2 [0,1].

The balanced F-measure, commonly denoted as F1 or

just F, equally weighs precision and recall, which means

a = 1∕2. The F1 measure can be written as F1 ¼ 2PR
PþR

.

Key Points
The F-measure can be viewed as a compromise be-

tween recall and precision. It is high only when both
recall and precision are high. It is equivalent to recall

when a = 0 and precision when a = 1. The F-measure

assumes values in the interval [0,1]. It is 0 when no

relevant documents have been retrieved, and is 1 if all

retrieved documents are relevant and all relevant docu-

ments have been retrieved.
Cross-references
▶ Precision

▶Recall

▶ Standard Effectiveness Measures
Focused Retrieval

▶XML Retrieval

▶ Structured Document Retrieval
Focused Web Crawling

SOUMEN CHAKRABARTI

Indian Institute of Technology of Bombay, Mumbai,

India

Synonyms
Web resource discovery; Topic-directed Web crawling

Definition
The world-wide Web can be modeled as a very large

graph with nodes representing pages and edges repre-

senting hyperlinks. Thanks to dynamically generated

content, the Web graph is infinitely large. Page content

and hyperlinks change continually. Any centralized

Web search service must first fetch a large number of

Web pages over the Internet using a Web crawler, and

then subject the local copies to indexing and other

analysis. At any time during its execution, a Web

crawler has a set of pages that have been fetched, and

a frontier of unexplored hyperlinks encountered on

fetched pages. Given finite network resources, it is

critical for the crawler to choose carefully the subset

of frontier hyperlinks it should fetch next. Depending

on the application and user group, it may be beneficial

1148F Focused Web Crawling
to preferentially acquire pages that are highly linked,

pages that pertain to specific topics, pages that are

likely to mention specific structured information,

pages that score highly with respect to queries submit-

ted frequently to the search engine, pages that change

frequently, and so on. Focused Web crawling is a

generic term for employing hyperlink and text mining

techniques to prioritize the crawl frontier to maximize

the harvest of qualified or preferred pages, while mini-

mizing communication and computation effort on

other pages. The network resources thus saved may

be used, for example, to monitor crawled pages more

aggressively for changes. FocusedWeb crawling is com-

monly used to build vertical search services catering to

one or few topical interests.

Historical Background
Despite giant leaps in communication, storage and

computing power during the last decade, crawlers have

always struggled to keep upwithWeb content generation

and modification. The Web graph is actually infinite,

owing to dynamically generated hyperlinks and pages.

A crawler begins with URL references to a fraction of

nodes in the Web graph. Many of these URLs are stale

because the pages they referred to are inaccessible. The

number of pages collected by the crawler makes little

sense in this context, compared to which specific pages

are collected.

Around 1997, researchers began to propose objec-

tives that a crawler may seek to optimize, and several

forms of crawl prioritization. Some objectives [8,14]

were related to the Web graph structure. Others were

determined by textual content of pages [4,12]. The

term ‘‘focused crawling’’ is generally used for the latter

class, although later generations of focused crawlers

use all available features and clues [7,10,17,] to guide

themselves, including workloads collected from query

logs [15]. As of late 2007, work on prioritizing crawls

and crawl refreshing continues apace, with increased

stress on balancing resources between monitoring

crawled pages for changes and discovering new sites

and pages.

The success of focused Web crawling depends on

benign patterns and regularities in the Web graph,

which started to get seriously investigated as social net-

work phenomena around 1999. TheWeb as a whole and

many major communities have a strongly connected

core of authoritative and popular pages [2,11]. Well-

connected subgraphs of the Web are also likely to
be topically coherent [6,9]. Without these helpful prop-

erties, focused crawlers cannot succeed.

Foundations

Setting Crawl Priorities Using Web Graph Properties

Initial work on focused Web crawling set reasonable

fixed policies and evaluated their effect on various

measures of crawl quality [8]. To characterize crawl

quality, each page u is assigned an importance I(u).

For simplicity, one can initially assume that the crawler

starts from just one URL u0, and stops when K pages

have been fetched. The perfect crawler collects K of the

N pages reachable from u0 by following hyperlinks

with the largest possible importance. Let these ‘‘hot

pages’’ have importance scores I(u1) � ... � I(uK). An

imperfect crawler will also fetch K pages, but onlyM of

those will have importance at least I(uk). Then the

figure of merit of the crawler will beM∕K. As a baseline,
if a ‘‘random’’ crawler could somehow collect K ran-

dom samples from the N reachable pages without

following links, the expected number of hot pages in

the sample would beMK∕N leading to a figure of merit

equal to K ∕N.
Suppose I(u) is the indegree of u in the ‘‘whole’’

Web graph (suppose some arbitrary subset of the infi-

nite graph is fixed a-priori as the ‘‘universe’’). In this

case, I(u) can be known only after crawling the uni-

verse. Another global property is PageRank [16]. At

any time, a real crawler only has access to the subgraph

crawled thus far. It may use the indegree and PageRank

computed on the crawled subgraph as approximations

to the true indegree and PageRank.

Figure 1 [8] shows M ∕ K as a percent plotted

against K ∕N also plotted as a percent. The random

crawler is understandably the worst, and all the other

crawlers fare better. Somewhat surprisingly, the best

crawler is the one that is guided not by indegree but

PageRank computed with respect to the currently

crawled subgraph. A later breadth-first crawl [14]

starting from http://www.yahoo.com, covering 7 mil-

lion hosts and 328 million pages, confirmed that pages

with large true PageRank are acquired very quickly

using the breadth-first policy (see Fig. 2).

Cho et al. [8] also considered page importance

defined by the occurrence of query words on the

page, and showed that favoring URLs v that were

frequently referred from pages u with query words in

or near the anchor text of the (u, v) link resulted in

Focused Web Crawling. Figure 1. Comparison of harvest rates of large indegree pages using various frontier

prioritization policies [8].

Focused Web Crawling. Figure 2. Page fetched early on in a breadth-first crawl from well-known seed URLs tend to

have high PageRank [14].

Focused Web Crawling F 1149

F

improved acquisition rate for relevant pages. Similar

results were reported by Hersovici et al. [12].

Basic Topic-Focused Crawler

During 1997–1998, document classification witnessed

renewed interest and enhancements from the use of

hyperlinks [5]. Rather than use occurrence of a few

query words as an indicator of payoff during a crawl,

Chakrabarti et al. [4] coupled a pre-trained text classi-

fier with a crawler as shown in Fig. 3. The classifier may

be trained on a topic taxonomy such as the one pub-

lished by Yahoo! or the Open Directory Dmoz, and a
few topics (nodes) c∗ in the taxonomy (and all their

descendants, by inheritance) flagged as positive or

rewarding for the crawler.

This organization depends on the (verified [9,6])

premise that pages within a short link distance of

each other are topically similar or related. In particular,

if Pr(c∗ju) is large and hyperlink (u, v) exists, then the

hypothesis is that Pr(c∗jv) is also likely to be large quite
often. For reasonably broad topics about which there are

sufficiently dense link communities on the Web, this

hypothesis holds up well and leads to reliable rates of

page collection. Some sample results are shown in Fig. 4.

Focused Web Crawling. Figure 3. Basic topic-focused crawler [3].

Focused Web Crawling. Figure 4. (a) The basic focused crawler manages to keep up a reasonable ‘‘harvest rate’’ of

collecting relevant pages. (b) Started from different seed URLs, the focused crawler navigates to the dominant

communities on the focus topic and visits largely overlapping sites and pages [4].

1150F Focused Web Crawling
Focused Crawling Using Context Graphs

The next enhancement to focused crawling was the use

of context graphs [10]. The first generation of topic-

focused crawlers was myopic: the relevance of page

u was used as a surrogate for the benefits of crawling

outlink (u, v), and this prediction was limited to only

one hop. In Reinforcement Learning [18], an area of

Machine Learning, techniques have been evolved to

anticipate more distant payoffs. In focused crawling

with context graphs, during the training phase, the

trainer presents to the system paths u1,...,ug of various
lengths (up to some modest limit, say, four hops)

leading to goal nodes. The goal node ug is a node on

the topic/s of focus. The system includes a supervised

learning module that then learns to predict, given a

node u, the (minimum) distance to a goal node. When

the trained crawler is deployed, after fetching page/

node u, it estimates the shortest link distance from u

to a goal node, and uses this as the priority for expand-

ing outlinks of u; see Fig. 5.

Figure 6 shows the benefits from going beyond a

greedy one-hop prediction paradigm. A similar technique

Focused Web Crawling. Figure 5. Focused crawling using context graph [10].

Focused Web Crawling F 1151

F

has been implemented by McCallum et al. [17]. More

recently, Baberia et al. [1] have cast the problem of

estimating the distance to a goal node as an ordinal

regression, and given scalable and effective algorithms.
Training a Focused Crawler Online

The focused crawlers discussed thus far are all trained

once, off-line, and then start harvesting the Web. The

next generation of focused crawlers [7] ‘‘learn on

1152F Focused Web Crawling
the job.’’ Compare Fig. 7 with the basic focused crawler

shown in Fig. 3. In the new edition, once a page u is

approved by the baseline topic classifier for getting its

outlinks visited, each outlink (u, v) is submitted to an

apprentice. Initially, the apprentice is inexperienced,

and might assign the same priority to each outlink

(u, v) that the baseline learner does. As pages continue

to be fetched, the baseline classifier classifies each of them,

and the apprentice ‘‘watches.’’ The baseline classifier acts
Focused Web Crawling. Figure 6. Context graphs

increase harvest of relevant pages [10].

Focused Web Crawling. Figure 7. Topic-focused crawler tha
as a critic, pointing out where the apprentice was right

and wrong. The apprentice uses features not only from

the whole of u, but also features specific to the outlink

(u,v), exploiting the DOM tree of u.

Gradually, the apprentice learns to predict, over

and above the critic’s relevance judgment of u, the

expected profit from traversing link (u,v). Continually

training the apprentice is much easier than training the

baseline classifier. The apprentice can be a simple re-

gression algorithm, whereas the baseline classifier has

to handle much more data and many topics. As the

apprentice is switched into the decision process, the

number of fetched pages that must be discarded be-

cause they are off-topic, also called the ‘‘loss rate,’’

drops dramatically. This is shown in Fig. 8a. Overall,

as Fig. 8b shows, a focused crawler that learns online

can significantly reduce the loss rate and thus boost

the harvest rate.

Reinforcement Learning Using Markov Models

The next step in improving the ability of focused

crawlers to spot distant rewards was taken by learning

a more detailed representation of the path from the

current node to a goal node, rather than just the

estimated distance [19]. This is expected to be effective

especially for crawling tasks where paths leading into

goal nodes have some regularity. For example, paths

leading from the root page of a Computer Science
t learns online during a crawl [7].

Focused Web Crawling F 1153

F

Department to research papers about computer vision,

or paths leading from the root page of a company to a

set of profiles of its top officers, are fairly regular. In

fact, one can even give informal but crisp descriptions

of the intermediate pages. In the first example, the

intermediate pages will most likely be a roster of facul-

ty members with research interests, followed by a fac-

ulty homepage, which either has links to PDF files, or

links to a page listing publications, which then links to

PDF files. In the second example, a surfer is most likely

to navigate through an ‘‘about us’’ page, which may list

the top office-bearers, each with a link to a profile page,

or the profiles may be inlined. An example state tran-

sition diagram is given in Fig. 9.
Focused Web Crawling. Figure 8. A focused crawler that ‘‘le

Focused Web Crawling. Figure 9. Example state transitions

papers [19].
A hidden Markov model (HMM) is ideal for cap-

turing this form of regularity. For label prediction in

HMMs, Conditional Random Fields (CRFs) [13] are

the best-known technique. Training the CRF involves

slightly more work than in the case of context graphs:

here, intermediate nodes must be assigned labels. Once

this is done, the problem of learning a transition model

is very similar to other sequence-labeling applications,

like part-of-speech tagging (nodes are words, labels are

parts of speech) and named-entity recognition (nodes

are words, labels are named entity types like person or

location). Over and above the general framework,

smart state and feature design are a must for good

accuracy. Also, during crawling, the crawl path up to
arns on the job’’ improves harvest rate significantly [7].

modeling paths from a department homepage to research

Focused Web Crawling. Figure 10. Using a CRF to predict the expected reward continuing from the current path leads

to significantly improved harvest [8].

1154F Focused Web Crawling
the current node is assigned various label sequences

with various probabilities, and these must contribute

to a distance-discounted reward function as in rein-

forcement learning [18]. For crawling tasks with path

regularities, this form of reward prediction is more

accurate than the standard topic-focused crawler, lead-

ing to substantially improved page harvest rates; see

Fig. 10.

Key Applications
Focused crawling, broadly interpreted as goal-directed

crawl prioritization with resource constraints, is of

interest to almost anyone that has to run a crawler of

any substantial scale. All crawlers include a module for

frontier prioritization, but only some degree of ma-

chine learning usually qualifies it to be explicitly called

a ‘‘focused crawler.’’ Focused crawling is especially

beneficial in applications where content pertaining to

a limited topic area must be collected from a much

larger Web collection, possibly the whole Web, and

subjected to topic-specific post-processing, such as

information extraction specific to particular people,

regions, languages, or products and services.

Future Directions
Focused crawlers are now available in the public do-

main (see http://ivia.ucr.edu/ and http://combine.it.

lth.se/). Many companies in the vertical Web search

space implement focused crawlers. While many of the

technical issues around focused crawling are now
reasonably solved, the operational details of starting,

monitoring, and maintaining a focused crawler remain

relatively unknown in the public domain.

URL to Code
A public domain focused crawler implementation is

available from http://ivia.ucr.edu/ under the Limited

Gnu Public License. Another public domain version is

available from the ALVIS project, see http://combine.it.

lth.se/. Also see the Wikipedia page on Focused Crawl-

ing at http://en.wikipedia.org/wiki/Focused_crawler.

Cross-references
▶Classification

▶Digital Libraries

▶Document Databases

▶Document Links and Hyperlinks

▶Graph Database

▶ Incremental

▶ Indexing the Web

▶ Information Retrieval

▶ Personalized Web Search

▶Relevance Feedback

▶ Social Networks

▶Text Categorization

▶Text Mining

▶Web Characteristics and Evolution

▶Web Crawler Architecture

▶Web Crawler

▶Web Harvesting

FOL Modeling of Integrity Constraints (Dependencies) F 1155

F

Recommended Reading
1. Babaria R., Saketha Nath J., Krishnan S., Sivaramakrishnan K.R.,

Bhattacharyya C., and Murty M.N. Focused crawling with

scalable ordinal regression solvers. In Proc. 24th Int. Conf. on

Machine Learning, 2007, pp. 57–64.

2. Broder A. et al. Graph structure in the Web: experiments

and models. In Proc. 9th Int. World Wide Web Conference,

2000, pp. 309–320.

3. Chakrabarti S. Mining the Web: Discovering Knowledge

from Hypertext Data, Morgan-Kauffman, 2002.

4. Chakrabarti S., van den Berg M., and Dom B. Focused

crawling: a new approach to topic-specific Web resource discov-

ery. Comput. Netw., 31:1623–1640, 1999.

5. Chakrabarti S., Dom B., and Indyk P. Enhanced hypertext

categorization using hyperlinks. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1998, pp. 307–318.

6. Chakrabarti S., Joshi M.M., Punera K., and Pennock D.M.

The structure of broad topics on the Web. In Proc. 11th Int.

World Wide Web Conference, 2002, pp. 251–262.

7. Chakrabarti S., Punera K., and Subramanyam M. Accelerated

focused crawling through online relevance feedback. In Proc.

11th Int. World Wide Web Conference, 2002, pp. 148–159.

8. Cho J., Garcia-Molina H., and Page L. Efficient crawling through

URL ordering. In Proc. 7th Int. World Wide Web Conference,

1998, pp. 161–172.

9. Davison B.D. Topical locality in the Web. In Proc. 23rd Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 2000, pp. 272–279.

10. Diligenti M., Coetzee F., Lawrence S., Giles C.L., and Gori M.

Focused crawling using context graphs. In Proc. 26th Int. Conf.

on Very Large Data Bases, 2000, pp. 527–534.

11. Dill S., Ravi Kumar S., McCurley K.S., Rajagopalan S.,

Sivakumar D., and Tomkins A. Self-similarity in the Web. In

Proc. 27th Int. Conf. on Very Large Data Bases, 2001, pp. 69–78.

12. Herseovici M., Jacovi M., Maarek Y.S., Pelleg D., Shtalhaim M.,

and Ur S. The shark-search algorithm – an application: tailored

Web site mapping. In Proc. 7th Int. World Wide Web Confer-

ence, 1998, pp. 317–326.

13. Lafferty J.,McCallumA., and Pereira F. Conditional randomfields:

Probabilisticmodels for segmenting and labeling sequence data. In

Proc. 18th Int. Conf. on Machine Learning, 2001, pp. 282–289.

14. Najork M. and Weiner J. Breadth-first search crawling yields

high-quality pages. In Proc. 10th Int. World Wide Web Confer-

ence, 2001, pp. 114–118.

15. Pandey S. and Olston C. User-centric Web crawling. In Proc.

14th Int. World Wide Web Conference, 2005, pp. 401–411.

16. Page L., Brin S., Motwani R., and Winograd T. The

PageRank citation ranking: bringing order to the Web.

Manuscript, Stanford University, 1998.

17. Rennie J. and McCallum A. Using reinforcement learning to

spider the web efficiently. In Proc. 16th Int. Conf. on Machine

Learning, 1999, pp. 335–343.

18. Sutton R.S. and Barto A.G. Reinforcement Learning: An

Introduction. MIT, March 1998.

19. Vinod Vydiswaran V.G. and Sarawagi S. Learning to extract

information from large Websites using sequential models. In

Proc. 11th Int. Conf. on Management of Data, 2005, pp. 3–14.
Focus-Plus-Context

▶Distortion Techniques
FOL

▶ First-Order Logic: Semantics

▶ First-Order Logic: Syntax
FOL Modeling of Integrity
Constraints (Dependencies)

ALIN DEUTSCH

University of California-San Diego, La Jolla, CA, USA

Synonyms
Relational integrity constraints; Dependencies

Definition
Integrity constraints (also known as dependencies in the

relational model) are domain-specific declarations

which indicate the intended meaning of the data stored

in a database. They complement the description of the

structure of the data (e.g., in the relational model

the structure is given by listing the names of tables

and the names and types of their attributes). Integrity

constraints express properties that must be satisfied by

all instances of a database schema that can arise in the

intended application domain (e.g., ‘‘no two distinct

employees may have the same ssn value’’, ‘‘departments

have a single manager’’, etc.).

Historical Background
The reference textbook [1] provides a comprehensive,

unifying overview of the many special classes of rela-

tional dependencies, their modeling in first-order logic

(FOL), and the key problems in the study of depen-

dencies. This entry is a condensed form of Chap.10 in

[1] (excluding the material on reasoning about depen-

dencies). For more detail on the motivation and histo-

ry of relational dependency theory, see the excellent

survey papers [10,14,22].

Historically, functional dependencies were the first

class to be introduced (byCodd [3]).Multi-valued depen-

dencies were discovered independently in [5,9,24]. These

were followed by a proliferation of dependency classes,

typically expressed using ad hoc syntax. These include

1156F FOL Modeling of Integrity Constraints (Dependencies)
join dependencies, and inclusion dependencies (a.k.a.

referential integrity constraints) [4]. Fagin [9] first intro-

duced embedded multi-valued dependencies (MVDs

that hold in the projection of a relation), while [15]

introduced the distinct class of projected JDs.

Other classes include subset dependencies [20], mutual

dependencies [17], generalized mutual dependencies

[16], transitive dependencies [18], extended transitive

dependencies [19], and implied dependencies [12].

The movement towards ever-refined classifications

of dependencies was prompted mainly by research on

automatic reasoning about dependencies, in particular

their axiomatization. This movement was soon coun-

tered by the drive to unify the treatment of the various

classes by finding a formalism that subsumes all of

them. Nicolas [17] is credited with first observing

that FDs, MVDs and others have a natural representa-

tion in first-order logic. In parallel, Beeri and Vardi [2]

introduced tuple-generating and equality-generating

dependencies expressed in a tableaux-based notation,

shown to be equivalent in expressive power to Fagin’s

typed embedded dependencies [8], which were expressed

in first-order logic. The class DED 6¼ was introduced in

[7] as an extension of embedded dependencies with

disjunction and non-equalities (see also [13] for a

particular case of DED 6¼s). Deutsch et al. [6] further

extends the DED 6¼ class to allow negated relational

atoms. Research on using arbitrary first-order logic

sentences to specify constraints includes [11,17,21].

In contrast, algebraic dependencies are an alterna-

tive unifying framework developed by Yannakakis

and Papadimitriou [23]. Algebraic dependencies are

statements of containment between queries written in

relational algebra, and have the same expressive power

as first-order logic.

Foundations
This section lists a few fundamental classes of relation-

al dependencies, subsequently showing how they can

be expressed in first-order logic. In the following, R(U)

denotes the schema of a relation with name R and set

of attributes U.

Functional Dependencies

A functional dependency (FD) on relations of schema

R(U) is an expression of the form

R : X ! Y ; ð1Þ

where X � U and Y � U are subsets of R’s attributes.

Instance r of schema R(U) is said to satisfy FD fd,
denoted r ⊨ fd, if whenever tuples t1 2 r and t2 2 r

agree on all attributes in X, they also agree on all

attributes in Y :

r
 fd , for every t1; t2 2 r if pXðt1Þ
¼ pXðt2Þ then pY ðt1Þ ¼ pY ðt2Þ:

Here, pX(t) denotes the projection of tuple t on the

attributes in X.

For instance, consider a relation of schema

review(paper, reviewer, track)

listing a conference track a paper was submitted to, and

a reviewer it was assigned to. The fact that every paper

can be submitted to a single track is stated by the

functional dependency

review : paper ! track:

Key Dependencies

In the particular case when Y = U, a functional depen-

dency of form (1) is called a key dependency, and the set

of attributes X is a called a key for R.
Join Dependencies

A join dependency (JD) on relations of schema R(U) is

an expression of the form

R : ffl ½X1;X2;:::;Xn�; ð2Þ

where for each 1 � i � n, Xi � U, and
S

1�i�n Xi = U.

Instance r of schema R(U) satisfies JD jd, denoted

r ⊨ jd, if the n-way natural join of the projections of

r on each of the attribute sets Xi yields r:

r
 jd , r ¼ PX1
ðrÞ ffl PX2

ðrÞ ffl ::: ffl PXn
ðrÞ:

Here,PX(r) denotes the projection of relation r on the

attributes in X.

In the example, assume that a paper may be

submitted for consideration by various tracks (e.g.,

poster or full paper), and that reviewers are not tied

to the tracks. It makes sense to expect that for any given

paper p, any track information listed with a reviewer of

p is also listed with all other reviewers of p, since track

and reviewer information are not correlated. This is

expressed by requiring that the join of the projection of

review on paper, track and of the projection on paper,

reviewer yields the review table:

review : ffl ½fpaper; trackg; fpaper; reviewerg�:

FOL Modeling of Integrity Constraints (Dependencies) F 1157

F

Multi-Valued Dependencies

In the particular case when n = 2, a join dependency of

form (2) is called a multi-valued dependency (MVD).

Because MVDs were historically introduced and stud-

ied before JDs, they have their own notation: an MVD

R : ⋈ [X1, X2] is denoted

R : X !! Y ; ð3Þ

where X = X1 \ X2 and Y = X1 ∖ X2.

In the running example, the join dependency turns

out to be a multi-valued dependency, which can be

expressed using the following MVD-specific syntax:

review : paper !! track:

Inclusion Dependencies

Functional and join dependencies and their special-case

subclasses each pertain to single relations. The following

class of dependencies can express connections between

relations. An inclusion dependency (IND) on pairs of

relations of schemas R(U) and S(V) (with R and S not

necessarily distinct) is an expression of the form

R½X � � S½Y �; ð4Þ

where X � U and Y � V . Inclusion dependencies are

also known as referential constraints. Relations r and

s of schemas R(U), respectively S(V) satisfy inclusion

dependency id, denoted r, s ⊨ id, if the projection of r

on X is included in the projection of s on Y :

r; s
 id , PXðrÞ � PY ðsÞ:

When R and S refer to the same relation name, then

r = s in the above definition of satisfaction.

In the running example, assume that the database

contains also a relation of schema

PCðmember; affiliationÞ

listing the affiliation of every program committee

member. Then one can require that papers be reviewed

only by PC members (no external reviews allowed)

using the following IND:

review½reviewer� � PC½member�:

Foreign Key Dependencies

In the particular case when Y is a key for relations of

schema S (S : Y ! V), INDs of form (4) are called

foreign key dependencies. Intuitively, in this case the
projection on X of every tuple t in r contains the key

of a tuple from the ‘‘foreign’’ table s.

In the running example, assuming that every PC

member is listed with only one primary affiliation,mem-

ber is a key for PC, so the IND above is really a foreign

key dependency.
Expressing Dependencies in First-Order Logic

Embedded Dependencies Despite their independent

introduction and widely different syntax, it turns out

that all classes of dependencies illustrated above (and

many more, including the ones mentioned in the his-

torical background section) can be expressed using a

fragment of the language of first-order logic. This

fragment is known as the class of embedded dependen-

cies, which are formulas of the form

8x1:::8xn ’ðx1;:::; xnÞ !
9z1:::9zk cðy1;:::; ymÞ;

ð5Þ

where {z1,...,zk} = {y1,...,ym}∖{x1,...,xn}, and ’ is a pos-

sibly empty and c is a non-empty conjunction

of relational and equality atoms. A relational atom

has form R(w1,...,wl), and an equality atom has form

w = w 0, where each of w,w 0,w1,...,wl are variables or

constants. The particular case when all atoms in c are

equalities yields the class known as equality-generating

dependencies (EGD), while the case when only relation-

al atoms occur in c defines the class of tuple-generating

dependencies (TGD).

The power of embedded dependencies is illustrated

next by expressing the classes of dependencies de-

scribed above.
Functional Dependencies

Assume without loss of generality that in (1), jXj = k,

jY j = l, and jU ∖ (X [Y)j = m, and that the ordering

of attributes in U is U = X, Y, Z. Then any functional

dependency of form (1) is expressible as the embedded

dependency (actually an EGD):

8x1:::8xk 8y1:::8yl 8y 01:::8y 0l 8z1:::8zm
8z 01:::8z 0m
Rðx1;:::; xk; y1;:::; yl ; z1;:::; zmÞ ^

Rðx1;:::; xk; y 01;:::; y 0l ; z 01;:::; z 0mÞ !
y1 ¼ y 01 ^ ::: ^ yl ¼ y 0l

1158F FOL Modeling of Integrity Constraints (Dependencies)
In the particular casewhenX is a key,m = 0 and there are

no zi, zi
0 variables in the above embedded dependency.

The functional dependency review : paper ! track

in the running example, can be expressed as the fol-

lowing embedded dependency:

8p8r8t8r 08t 0 reviewðp; r; tÞ ^ reviewðp; r 0; t 0Þ ! t ¼ t 0:

Join Dependencies

Join dependencies of form (2), are expressed by ob-

serving that for every relation r of schema R(U), the

inclusion

r � PX1
ðrÞ ffl PX2

ðrÞ ffl ::: ffl PXn
ðrÞ

holds trivially. Therefore only the opposite inclusion

needs to be expressed,

PX1
ðrÞ ffl PX2

ðrÞ ffl ::: ffl PXn
ðrÞ � r:

This end requires the following notation. Recalling

that the set of attributes U in the schema of R is

ordered, let pos(A) denote the position of an attribute

A 2 X in the ordered set U. For a set of attributes

X � U, pos(X) denotes the set {pos(A)jA 2 X}. In the

following, given a tuple of variables �u, �u[k] denotes

the kth variable in �u.

1. Let {�ui}1�i�n be a family of tuples of jUj variables
each, such that for every 1 � i < j � n and every

1 � k �jUj, �ui[k] = �uj[k] if and only if k 2
pos(Xi \ Xj).

2. Let �w be a tuple of jUj variables, such that for every

1 � k �jUj and every 1 � i � n, if k 2 pos(Xi) then

�w[k] = �ui[k]. It is easy to check that �w is well-

defined: indeed, since
S

i Xi = U, for each k there

is at least one i with k 2 pos(Xi). Moreover, by

definition of the family {�ui}i, �ui[k] = �uj[k] when-

ever k 2 pos(Xi) and k 2 pos(Xj).

3. Finally, let V ¼ v1;:::vmf g ¼
Sn

i¼1 �ui (with each

tuple �ui viewed as a set of variables). Notice that

variables occurring in several �ui tuples appear just

once among V.

Then the join dependency of form (2) is given by the

embedded dependency (a TGD, really):

8v1:::8vm Rð�u1Þ ^ ::: ^ Rð�unÞ ! Rð�wÞ:

Join dependency review : ⋈[{paper, track}, {paper,

reviewer}] is expressed as the following embedded

dependency:
8p8r18t18r28t2 reviewðp; r1; t1Þ^
reviewðp; r2; t2Þ ! reviewðp; r2; t1Þ:

Inclusion Dependencies

To express inclusion dependencies, assume without

loss of generality that in (4) R(U) = R(Z, X) and S(V)

= S(Y, W). Then the inclusion dependency (4) is cap-

tured by the following embedded dependency (TGD):

8z1:::8z jZ j 8x1:::8xjXj Rðz1;:::; z jZ j; x1;:::; xjX jÞ
! 9w1:::9w jW j Sðx1;:::; xjXj;w1;:::;w jW jÞ:

In the running example, the inclusion dependency

review[reviewer] � PC[member] is expressible as the

embedded dependency

8p8r8t reviewðp; r; tÞ ! 9a PCðr; aÞ:

Other Classes of Dependencies

Embedded dependencies turn out to be sufficiently

expressive to capture virtually all other classes of

dependencies studied in the literature.

Other Constraints

By employing more expressive sub-languages of first-

order logic, one can capture additional, naturally occur-

ring constraints. For instance, extending embedded

dependencies with disjunction, one obtains the language

of disjunctive embedded dependencies (DED) of form

8�x ’ð�xÞ !
_l

i¼1
9�zi cið�yiÞ; ð6Þ

where �x is a tuple of variables, and so are �zi , �yi for every

1 � i � l. Analogously to (5), �zi = �yi ∖�x. ’ and each ci

are conjunctions of relational and equality atoms as

in (5). If in addition one allows non-equality atoms

of the form w 6¼ w 0, one obtains the class of DEDs

with non-equality, DED 6¼, which is in turn a fragment

of first-order logic.

Cardinality Constraints

The language DED 6¼ can express cardinality con-

straints. In the running example, d1 2 DED 6¼ states

that every paper has at least two reviews:

ðd1Þ 8p8r18t reviewðp; r1; tÞ !
9r2 reviewðp; r2; tÞ ^ r1 6¼ r2:

d2 below states that every paper receives at most two

reviews:

FOL Modeling of Integrity Constraints (Dependencies) F 1159

F

ðd2Þ 8p8r18r28r38t reviewðp; r1; tÞ^
reviewðp; r2; tÞ ^ reviewðp; r3; tÞ ^ r1 6¼ r2 !
r3 ¼ r1 _ r3 ¼ r2:

Note that the conjunction of d1 and d2 requires each
paper to receive precisely two reviews.

Domain Constraints

The language DED6¼ can be employed to restrict the

domain of an attribute. Such restrictions are common-

ly known as domain constraints. For instance, in

the running example, this is how to specify that the

conference has only three kinds of tracks: ‘‘research’’,

‘‘industrial’’ and ‘‘demo’’:

d3ð Þ 8p8r8t review p; r; tð Þ ! t ¼
}research} _ t ¼ }industrial} _ t ¼ }demo}:

Representational Constraints

Many application are based on data models that are

richer than the relational model (e.g., object-oriented,

object-relational, XML, RDF models). However, they

often leverage the mature relational technology by sup-

porting the storage of their data in a relational database.

The resulting relations satisfy certain constraints that

stem from the original data model. This entry refers to

them as representational constraints. In order to main-

tain the relational storage and to efficiently process

queries over it, it is imperative to exploit these repre-

sentational constraints. An obstacle to doing so is the

fact that, depending on the original model they encode

relationally, representational constraints tend to not fit

neatly into any of the classes of relational integrity

constraints devised for native relational data. Again,

first-order logic comes to the rescue.

Representational constraints for the relational rep-

resentation of XML are illustrated next. While there are

many possible representations, they are all equivalent

to the following simple one [7] which captures the fact

that in the XML data model, elements are the tagged

nodes of a tree. The tree is represented using the

following relations (among others):

elemðnode; tagÞ
childðsource; targetÞ
descðsource; targetÞ

where the elem relation lists for every element e, the

identifier of the tree node modeling e, and the tag of e;
the child table is the edge relation of the XML tree,

according to which source is the identifier of the

parent node and target the identifier of the child

node; desc is the descendant relation in the tree,

whose target node is a descendant of the source node.

Any instance storing an actual XML tree in these tables

must satisfy, among others, the following constraints, all

expressible in DED6¼: every element has at most one

tag (expressed in (7) below); every element has at most

one parent (8); children of a node are also descendants of

this node (9); the descendant relation is transitive (10);

if two elements have a common descendant, then

they either coincide or one is the descendant of the

other (11).

8n8t18t2 elemðn; t1Þ ^ elemðn; t2Þ ! t1 ¼ t2; ð7Þ

8n8p18p2 childðp1; nÞ ^ childðp2; nÞ ! p1 ¼ p2; ð8Þ

8s8t childðs; tÞ ! descðs; tÞ; ð9Þ

8s8u8t descðs; uÞ ^ descðu; tÞ;! descðs; tÞ; ð10Þ

8n18n28d descðn1; dÞ ^ descðn2; dÞ;!
n1 ¼ n2 _ descðn1; n2Þ _ descðn2; n1Þ: ð11Þ

Key Applications
The role of integrity constraints is to incorporate more

semantics into the data model. This in turn enables an

improved schema design, as well as the delegation to

the database management system (DBMS) of the task

of enforcing and exploiting this semantics.

Schema Design

Integrity constraints are useful for selecting the

most appropriate schema for a particular database ap-

plication domain. It turns out that the same informa-

tion can be stored in tables in many ways, some more

efficient than others with respect to avoiding redundant

storage of data, improved update and query perfor-

mance, and better readability. While in the early days

of database application development, appropriate sche-

ma selection started out as an art, it quickly evolved

into a science enabling automatic schema design tools

(also known as ‘‘wizards’’). Such tools are based on

database theory research that proposes schema design

methodology starting from a single, ‘‘universal rela-

tion’’, which is then decomposed into new relations

that satisfy desirable normal forms that take advantage

of the known integrity constraints [1]. For instance, in

1160F FOL Modeling of Integrity Constraints (Dependencies)
the running example, both the FD review : paper !
track and the MVD review : paper !! track suggest

decomposing relation review into two tables, one asso-

ciating papers with their track, and one associating

papers with their reviewers, to avoid the redundant

listing of track information with every reviewer.

Automatic Integrity Enforcement

For the purpose of integrity enforcement, the DBMS

automatically checks every update operation for compli-

ance with the declared integrity constraints, automati-

cally rejecting non-compliant updates. The database

administrator can therefore rest assured that the integri-

ty of her data will be preserved despite any bugs in the

applications accessing the database. This guarantee is all

themore important when considering that several appli-

cations are usually running against the same database.

These applications are not always under the control of

the database administrator, and are often developed by

third parties, which renders their code unavailable for

verification. Evenwith full access to the application code,

verification (like all software verification) is technically

challenging and does not scale well with increasing

number of applications or modifications to their code.

Query Optimization

The query optimizer can exploit its constraint-derived

understanding of the data to automatically rewrite

queries for more efficient execution. Delegating this

task to the DBMS ensures that queries are efficiently

executed even when they are issued by applications

whose developers write the queries in sub-optimal

forms due to insufficient insight into the integrity con-

straints. More importantly, automatic optimization in-

side the DBMS handles the queries generated by tools

rather than human developers. These queries are usu-

ally quite far from optimal. This problem is especially

prevalent when queries over a rich data model M are

translated to relational queries over the relational rep-

resentation of M (e.g., XQuery queries over relational

storage of XML). The chase is a very powerful tool for

reasoning about (and exploiting in optimization)

dependencies specified in first-order logic (see [1] for

references to the papers that independently discovered

the chase, for various classes of dependencies).

A Unified View of Dependencies

Given the plethora of classes of dependencies formulated

and studied independently in the literature, the task of
specifying the meaning of an application domain via

integrity constraints would be daunting if the developer

had to fit them into these classes. In addition, tailoring

the tasks of schema design, optimization and integrity

enforcement to every class of dependencies (and every

combination of such classes) is impractical. First-order

logic provides a formalism for the simple specification of

integrity constraints, with well-understood semantics

and sufficient expressive power to capture all common

classes of dependencies, and beyond. The insight that

virtually all dependency classes are expressible in the

same formalism set the foundation for their uniform

treatment in research and applications.

Cross-references
▶Chase

▶ Equality-Generating Dependencies

▶Tuple-Generating Dependencies

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of databases.

Addison-Wesley, Reading, MA, 1995.

2. Beeri C. and Vardi M.Y. The implication problem for data

dependencies. In Proc. Int. Conf. on Algorithms, Languages

and Programming, 1981, pp. 73–85.

3. Codd E.F. Relational completeness of database sublanguages.

In Courant Computer Science Symposium 6: Data Base Systems.

R. Rustin (ed.). Prentice-Hall, Englewood Cliffs, NJ, 1972, pp.

65–98.

4. Date C.J. Referential integrity. In Proc. 7th Int. Conf. on Very

Data Bases, 1981, pp. 2–12.

5. Delobel C. Normalization and hierarchical dependencies in the

relational data model. ACM Trans. Database Syst., 3(3):201–222,

1978.

6. Deutsch A., Ludäscher B., and Nash A. Rewriting queries using

views with access patterns under integrity constraints. Theor.

Comput. Sci., 371(3):200–226, 2007.

7. Deutsch A. and Tannen V. XML queries and constraints, con-

tainment and reformulation. Theor. Comput. Sci., 336

(1):57–87, 2005.

8. Fagin R. Horn clauses and database dependencies. J ACM,

29(4):952–985, 1982.

9. Fagin R. Multivalued dependencies and a new normal form for

relational databases. ACM Trans. Database Syst., 2(3):262–278,

1977.

10. Fagin R. and Vardi M.Y. The theory of data dependencies: A

survey. In Mathematics of Information Processing: Proceedings

of Symposia in Applied Mathematics, vol. 34, M. Anshel and

W. Gewirtz (eds.). American Mathematical Society, Providence,

RI, 1986, pp. 19–27.

11. Gallaire H. and Minker J. Logic and databases. Plenum Press,

New York, 1978.

12. Ginsburg S. and Zaiddan S.M. Properties of functional depen-

dency families. JACM, 29(4):678–698, 1982.

Form F 1161

F

13. Grahne G. and Mendelzon A.O. Tableau techniques for querying

information sources through global schemas. In Proc. 7th Int.

Conf. on Database Theory, 1999, pp. 332–347.

14. Kannellakis P.C. Elements of relational database theory. In

Handbook of Theoretical Computer Science. J. Van Leeuwen

(ed.). Elsevier, Amsterdam, 1991, pp. 1074–1156.

15. Maier D., Ullman J.D., and Vardi M.Y. On the foundations

of the universal relation model. ACM Trans. Database Syst.,

9(2):283–308, 1984.

16. Mendelzon A.O. andMaier D. Generalized mutual dependencies

and the decomposition of database relations. In Proc. 5th Int.

Conf. on Very Data Bases, 1979, pp. 75–82.

17. Nicolas J.-M. First order logic formalization for functional, multi-

valued, andmutual dependencies. Acta Inf., 18(3):227–253, 1982.

18. Paredaens J. Transitive dependencies in a database scheme.

Technical Report R387, MBLE, Brussels, 1979.

19. Parker D.S. and Parsaye-Ghomi K. Inference involving embed-

ded multivalued dependencies and transitive dependencies.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

1980, pp. 52–57.

20. Sagiv Y. and Walecka S.F. Subset dependencies and a complete-

ness result for a subclass of embedded multivalued dependen-

cies. J ACM, 29(1):103–117, 1982.

21. Vardi M.Y. On decomposition of relational databases. In Proc.

23rd Annual Symp. on Foundations of Computer Science, pp.

176–185, 1982.

22. Vardi M.Y. Trends in theoretical computer science. In Funda-

mentals of dependency theory. E. Borger Computer Science

Press, Rockville, MD, 1987, pp. 171–224.

23. Yannakakis M. and Papadimitriou C. Algebraic dependencies.

J Comput. Syst. Sci., 25(2):3–41, 1982.

24. Zaniolo C. Analysis and Design of Relational Schemata for

Database Systems. PhD Thesis, University of California, Los

Angeles, 1976. Technical Report UCLA-Eng-7669, Department

of Computer Science.
Forever

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Infinity; Positive infinity

Definition
The distinguished value forever is a special valid-time

instant, namely the one following the largest granule in

the valid-time domain. Forever is specific to valid time

and has no transaction-time semantics.

Key Points
The value forever is often used as the valid end time for

currently-valid facts. However, this practice is
semanticallys incorrect, as such an end time implies

that the facts are true during all future times. This

usage occurs because database management systems

do not offer means of storing the ever-changing cur-

rent time, now, as an attribute value. To fix the incor-

rect semantics, the applications that manipulate and

query the facts may interpret the semantics specially.

However, the better solution is to extend the database

management system to support the use of the variable

now as an attribute value.

Concerning the synonyms, ‘‘infinity’’ and ‘‘positive

infinity’’ both appear to be more straightforward, but

have conflicting mathematical meanings. In addition,

the time domain used for valid time may be finite,

making the use of ‘‘infinity’’ inappropriate. Further-

more, the term positive infinity is longer and would

imply the use of ‘‘negative infinity’’ for its opposite.

Forever is intuitive and does not have conflicting

meanings.

Cross-references
▶Now in Temporal Databases

▶Temporal Database

▶Time Instant

▶Until Changed

▶Valid Time

Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Tempo-

ral Databases: Research and Practice, O. Etzion, S. Jajodia, S.

Sripada (eds.). LNCS 1399, Springer, Berlin Heidelberg

New York, 1998, pp. 367–405.

2. Torp K., Jensen C.S., and Snodgrass R.T. Effective timestamping

in databases. VLDB J., 8(3–4):267–288, February 2000.
Form

JESSIE KENNEDY, ALAN CANNON

Napier University, Edinburgh, UK

Synonyms
Forms-based interfaces

Definition
Paper-based forms are structured documents with

empty slots that can be filled in by a user. In database

systems, a form is an interface containing interaction

1162F Form
elements that allow a user to input, update or query

data in a database. Forms may also contain static dis-

plays of data taken from the database. Documents

containing only structured query results and no inter-

action elements are generally referred to as reports

rather than forms. Database interfaces comprising of

a series of on-screen forms are referred to as forms-

based interfaces.

Commonly a single form corresponds with one

table in relational databases and one form instance cor-

responds with one record. More complex forms may

contain or update data from multiple tables. Forms are

also used to interact with other databases such as object-

oriented or XML databases.

Forms can be designed and created using various

visual programming tools such as: Forms specification

languages; GUI Builders; Automatic GUI Generation

Systems; or by using third and fourth generation

programming languages directly. Such tools may be

included in the DBMS itself, in a related suite of

proprietary programs or be independent applications.

Historical Background
With the advent of more general-purpose commercial

database systems in the mid-1960s, the provision of

forms-based interfaces for business applications

became an issue for developers. Early applications

were however still being custom built using various

programming languages which was a very time inten-

sive development effort. By the late 1970s/early 1980s a

number of tools were becoming available to alleviate

the load on the developer, for example, the Forms

Application Development System (FADS) developed

at U.C. Berkeley between 1979 and 1982. Later the

ideas from FADS would develop into the widely used

and more sophisticated Application-By-Forms (ABF)

tool developed by Ingres Corporation between 1983

and 1986 [11]. Equally, the Oracle database system also

introduced a tool for developing forms called Fast

Forms (later called SQL*Forms) in 1984 [8]. Other

examples include Control Center Forms module in

dBASE IV, Forms EXPRESS in R:BASE, Paradox 3.0,

Formanager, NFQL [3]. These forms were designed to

be used with the alphanumerical terminals then in

common usage and accordingly, the forms were char-

acter-based with some menus. These forms also tended

to be relatively simple, conforming to the underlying

database structure with one form usually representing

one table and one record per screen.
As Graphical User Interfaces (GUIs) became avail-

able and popular for business applications in the late

1980s/1990s, forms took advantage of the new medi-

um. Standard GUI techniques such as multiple win-

dows, checkboxes and point and click selection were

employed (e.g., Figure1). Both DBMS and stand alone

tools continued to provide support, with updated visual

programming tools for GUI based forms (e.g., Oracle-

Forms, Ingres’s W4GL, Microsoft Access’s Form Tool/

Wizard). The more powerful DBMS independent devel-

opment tools had facilities for supporting skilled

designers to build forms-based interfaces. While this

sped development and empowered designers, it did not

support inexperienced designers in avoiding bad designs

and still required substantial developer resources. The

trend of including forms generation as part of a DBMS

or a related application suite that aimed to empower

the end-user in customizing their own relatively simple

forms has thus continued to date. DBMS provided tools,

while increasing in sophistication, are however still re-

stricted to either relatively simple applications or require

an expert application developer. Attempts to reduce the

reliance on developers by making greater use of auto-

matic GUI creators (including the DBMS tools) have

not been generally successful in generating complex

forms-based interfaces.

In the last decade, the emphasis has shifted from a

traditional client-server delivery method for forms, to

a web-based one. Web forms are now prevalent across

the internet (e.g., Figure 2). These web forms use

HTML with various types of scripting or more recent

alternatives such as XForms, XQForms [9].
Foundations

Form Composition

In database systems, a form is an interface containing

interaction elements that allow a user to input, update

or query data in a database. Each form instance nor-

mally equates with a single database record, although

exceptions exist and one database record may be

spread over multiple forms.

Forms can be character-based, GUI-based (Fig. 1)

or web-based (Fig. 2), but all basically comprise of four

main elements that are tied together within logical

containers such as a windows or frames:

1. Data entry interaction objects

2. Static labels

Form. Figure 1. Example of a GUI form for data entry [8].

Form F 1163

F

3. Displayed data

4. Control elements

The data entry interaction objects are the slots into

which data can be entered or altered by users. These

elements are each bound to an associated attribute of a

database table (or equivalent in non-relational data-

bases). These comprise of such elements as text boxes,

checkboxes, calendar objects, or any other of the interac-

tion widgets that can be used to enter data. They may be

initially blank or contain data, either taken from the

existing record in the database (i.e., the current values

of the bound attribute), from another section of the

database (e.g., a range of possible values from a related

table), from default attribute values specified in the

database or from default values programmed into the

form. The entered data can be used to fill a new record,

update an existing one or query the database according

to the underlying application logic. Each of the data
entry interaction objects is usually associated with a

static label specifying to the form user what data should

be inserted. These are not usually bound to an attribute

of the database. Other static data displayed in a form

include existing data from the database of relevance to

the form (e.g., other identifying data from the record

being edited) or the results of user queries. This datamay

be a direct representation or it may be data manipulated

by calculations programmed into the form. The last

main elements of a form are control elements such as

menus or buttons. These provide the form user with

navigational and other controls over form operations.

Themost obvious examples of these are submit controls,

that commit changes to the database.

Underlying business logic is programmed into a

form to provide relevant database interaction, naviga-

tion controls, error checking and data validation. SQL or

other query language code is normally embedded into

Form. Figure 2. Example of a two web-based forms for querying Napier University Library Catalog and for uploading a

document to an on-line document repository.

1164F Form
form fields to support data updates or queries. A form

can also contain hidden fields that are also sent to a

database along with any other update or query (e.g.,

user id). This coding may be implemented directly by a

developer using a third or fourth generation program-

ming language or semi-automatically by development

tools based on user interaction or totally automatically

by forms generation tools directly from database

schema.

Generating Forms

Forms-based interfaces include sets of forms and the

application logic that ties them together. Traditionally

their generation has been a task for an expert applica-

tion developer. To decrease that reliance, there have

been attempts to allow end-users to develop their own

forms-based interfaces. The main methods of genera-

tion are similar to any other user interface.

Traditional programming with languages that sup-

port database calls remain a commonmethod for gener-

ation by application developers, particularly with fourth

Generation languages and their associated Interface

Development Environments. They permit powerful cus-

tomized applications to be built.
Other visual development tools are also used both

by application developers and more causal users. These

can be stand-alone tools or linked to proprietary

DBMS. The latter option is increasingly common,

providing specific support for forms-based database

interfaces. These all generally work on similar princi-

ples where the forms are designed visually with tools

that allow fields, labels and other elements to be placed

on the screen, using a WISYWIG system. The underly-

ing application logic is then either selected with menus

(often point and select) or by adding code in a database

query language, programming or scripting language.

Web based development for a forms-based interface is

similar in nature (e.g., Macromedia’s ColdFusion,

Adobe’s Dreamweaver).

Some DBMS visual development tools (e.g., MS

Access, OracleForms, Paradox) have support for auto-

matically generating forms from the database schema

(Fig. 3), though the resulting interfaces are certainly at

the simpler end of the forms and applications, being

tied to a simple view of the database schema (such as in

Figure 3), with only basic validation by data type for

example being possible (for example by dragging the

table attributes to XHTML form controls [10]).

Form. Figure 3. Example of a simple form created using Microsoft Access Form Wizard.

Form F 1165

F

Other non-DBMS tools support automatic genera-

tion of the forms from various abstractions, where a

presentation model controls the selection and layout of

user interfaces, based on the modeled tasks and/or

domain. These are known as model based approaches.

The various approaches use different models, but usu-

ally focus on a task or domain/data model. Some

approaches support completely automatic interface

generation (e.g., MECANO, JANUS) and others pro-

vide support and guidance to designers to finalize an

interface (e.g., MASTERMIND). Most of the

approaches claim to connect to relational databases

and one, Teallach, claims to connect to any object-

orientated database [1]. These approaches have not,

however, been widely adopted despite a strong research

base [12], partly since they are generic systems and it is

difficult to get good abstract domain and presentation

models for specific applications. A related ontology

based approach exists where an end-user edits a light-

weight ontology to define the data model for a parti-

cular application. The system can then produce a

forms-based data entry interface for that data model,

based on a domain specific presentation model deter-

mined by the application developer [2].

Key Applications

Business Database Applications

The primary use for forms-based interfaces remains

business applications, although as database technology

continues to become more accessible, an increasing

number of other casual users are utilizing databases
and attendant forms-based interfaces for hobby and

other leisure uses.

End-User Programming and Domain Specific

Application Development

Empowering domain users to take over some of the

application developer workload in creating forms for

their own applications promises gains in development

efficiency by reducing the need for a developer to learn

about a domain and potentially in the applicability of

the resulting forms. Improving the usability and utility

of the various Integrated Development Environments

for end-users is one way that database researchers can

achieve this.

Ubiquitous Computing

A variety of new interface challenges must be met on

different types of displays such as PDAs, mobile

phones, and wall screens. It seems likely that the

forms metaphor will continue to be used on these

new devices and means of effectively tailoring forms

to the requirements of the various displays and inter-

action methods must be found.

Data Quality

The phrase ‘Garbage-In, Garbage-Out’ remains as true

today as at the dawn of computing. With forms being

used constantly for data entry and updates, the control

of entered data remains an important consideration.

The design and data validation constraints placed on

forms will continue to affect the quality of the data

entered by users.

1166F Forms-based Interfaces
Meta-Data Capture

Forms-based interfaces are the norm for many systems

such as data repositories and content management sys-

tems, which require to capture meta-data. The design

and applicability of the forms used in these applications

are vital to encourage users to enter meta-data, a task

they are generally reluctant to undertake.
Knowledge Bases

Forms-based interfaces are also used by various onto-

logical systems to populate knowledge bases (e.g.,

Protégé Frames). Existing ontology based approaches

for data entry are, however, generally still limited to

using automatically generated forms-based data entry

interfaces unless manual editing is used. A form tends

to be generated for each class instance with the choice

of interaction widgets derived from the slot data types.

Links between forms are based on class subsumption

relationships.
Cross-references
▶Database Management System

▶Data Visualization

▶DBMS Interface

▶Direct Manipulation

▶GUIs for Web Data Extraction

▶ Interface

▶Multimodal Interfaces

▶Ontology-Based Data Models

▶Query language

▶Table

▶Views

▶Visual Interfaces

▶Web Services

▶XML
Recommended Reading
1. Barclay P., Griffiths T., McKirdy J., Kennedy J., Cooper R.,

Paton N., and Gray P. Teallach – a flexible user-interface devel-

opment environment for object database applications. J. Vis.

Lang. Comput., 14(1):47–77, 2003.

2. Cannon A., Kennedy J., Paterson T., and Watson M. Ontology-

driven automated generation of data entry interfaces. In Key

Technologies for Data Management: 21st British National Conf.

on Databases, 2004, pp. 150–164.

3. Embley D.W. NFQL: the natural forms query language. ACM

Trans. Database Syst., 14(2):168–211, 1989.

4. Fry J.P and Sibley E.H. Evolution of data-base management

systems. ACM Comput. Surv., 8(1):7–42, 1976.
5. Jagadish H.V., Chapman A., Elkiss A., Jayapandian M., Li Y.,

Nandi A., and Yu C. Making database systems usable. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2007, pp.

13–24.

6. Molina P.A. Review to model-based user interface development

technology. In Proc. 1st Int. Workshop on Making Model-

Based User Interface Design Practical: Usable and Open Meth-

ods and Tools. CEUR Workshop Proceedings 103 CEUR-WS.

org, 2004.

7. Myers B., Hudson S.E., Pausch R. Past, present, and future

of user interface software tools. ACM Trans. Comput. Hum.

Interact., 7:(1)3–28, 2000.

8. Oracle Corporation. Oracle Forms. 2008. Available at: http://

www.oracle.com/technology/products/forms/index.html

9. Petropoulos M., Vassalos V., and Papakonstantinou Y. XML

query forms (XQForms): declarative specification of XML

query interfaces. In Proc. 10th Int. World Wide Web Confer-

ence, 2001, pp. 642–651.

10. Raggett D., Le Hors A., and Jacobs I. XHTML HTML 4.01

Specification W3C Recommendation, 1999. Available at: URL:

http://www.w3.org/TR/html4/

11. Rowe L.A. A retrospective on database application development

frameworks. ACM SIGMOD Rec., 21(1):5–10, 1992.

12. Trætteberg H., Molina P.J., and Nunes N.J. Making model-based

UI design practical: usable and open methods and tools.

In Proc. 9th Int. Conf. on Intelligent User interface, 2004,

pp. 376–377.
Forms-based Interfaces

▶ Form

Fourth Normal Form

MARCELO ARENAS

Pontifical Catholic University of Chile, Santiago, Chile

Synonyms
4NF

Definition
Let R(A1,...,An) be a relation schema and S a set

of unctional and multivalued dependencies over

R(A1,...,An). Then (R, S) is said to be in Fourth Normal

Form (4NF) if for every nontrivial multivalued depen-

dency X↠ Y implied by S, it holds that X is a superkey

for R.
Key Points
In order to avoid update anomalies in database

schemas containing functional and multivalued

FQL F 1167

F

dependencies, 4NF was introduced by Fagin in [2]. As

for the case of BCNF, this normal form is defined in

terms of the notion of superkey as shown above. For

example, given a relation schema R(A, B, C) and a set

of functional dependencies S ={A ! B}, it does not

hold that (R (A, B, C), S) is in 4NF since A ↠ B is a

nontrivial multivalued dependency implied byS and A

is not a superkey for R. Similarly, relation schema S (A,

B, C) and set of multivalued dependencies S ={A↠ C}

is not in 4NF since A is not a superkey for S. On the

other hand, relation schema T(A,B,C) and set of func-

tional and multivalued dependencies S ={AB ! C,

AC ! B,A ↠ B} is in 4NF since AB, AC and A are all

superkeys for T.

It should be noticed that relation schema S (A, B, C)

above is in BCNF if S ={A ↠ C} since no nontrivial

functional dependency can be inferred from S. In

fact, 4NF is strictly stronger than BCNF; every schema

in 4NF is in BCNF, but there exist schemas (as the one

shown above) that are in BCNF but not in 4NF.

For every normal form two problems have to be

addressed: How to decide whether a schema is in that

normal form, and how to transform a schema into an

equivalent one in that normal form. As for the case of

BCNF, it can be tested efficiently whether a relation

schema is in 4NF. A relation schema (R, S) is in 4NF if

and only if for every nontrivial functional dependency

X ! Y 2 S, it holds that X is a superkey, and for every

nontrivial multivalued dependency X↠ Y 2 S, it holds
that X is a superkey. Thus, it is possible to check

efficiently whether (R, S) is in 4NF by using a polyno-

mial time algorithm for functional and multivalued

dependency implication [1]. On the negative side,

given a relation schema S, it is not always possible

to find a database schema S0 such that S0 is in 4NF

and S0 is a lossless and dependency preserving decom-

position of S.
Cross-references
▶Boyce-Codd Normal Form

▶Normal Forms and Normalization

▶ Second Normal Form (2NF)

▶Third Normal Form
Recommended Reading
1. Beeri C. On the membership problem for functional and multi-

valued dependencies in relational databases. ACM Trans. Data-

base Syst., 5(3):241–259, 1980.
2. Fagin R. Multivalued dependencies and a new normal form for

relational databases. ACM Trans. Database Syst., 2(3):262 –278,

1977.
FQL

PETER M.D. GRAY

University of Aberdeen, Aberdeen, UK

Definition
At about the same time that Shipman was developing

DAPLEX, Buneman and Frankel proposed the highly

influential FQL functional query language [1], based

on Backus’s FP functional programming paradigm. A

major motivation for this work was that it is in princi-

ple possible to combine arbitrary computable functions

with stored database functions into a functional query

language which is not limited to a predefined set of

operators.

FQL was intended for implementation over existing

DBMSs and an abstract implementation based on the

lazy evaluation of stream data was described. In later

publications [2,3], FQL was extended with features

from the functional programming language ML. In this

version, function definition is simpler than in the vari-

able-free FP-like syntax and new higher-order functions

can be defined in addition to the built-in ones. Also a set

of built-in metalevel functions is provided, as in EFDM.

Thus, object-level querying and meta level querying

can be carried out in the same functional syntax.

Key Points
FP includes a built-in set of functionals, like higher-

order functions, including function composition, ∘ ,

and sequence construction. In addition to these, FQL

provides the functionals !, * and ∧.

Given an abstract entity type A, !A is a 0-argument

function which returns a stream of all entities of type

A. For example, given the abstract entity type

COURSE, !COURSE returns a stream of all the entities

of type COURSE.

Given any type A, *A is the type consisting of

streams of entities of type A. For example, given the

abstract entity types STUDENT and COURSE, the

function ATTENDS : STUDENT -> *COURSE takes a

STUDENT and returns a stream of the COURSEs

attended by the STUDENT.

1168F Fractal
Given a function f: A! B, *f is the function of type

*A ! *B which takes as an argument a stream of

entities of type A, a1, a2,... say, and returns the stream

f(a1), f(a2),.... For example, given the function CNAME :

COURSE -> STRING the query COURSE o *CNAME

returns the name of every COURSE.

Given a function f: A! B or f: A! *B, the function
∧f: B ! *A is the inverse (or converse) of f. In a later

version of FQL [2], the functionals ! and ∧ are dropped.
Cross-references
▶ Functional Query Language
Recommended Reading
1. Buneman P. and Frankel R.E. FQL – A Functional Query

Language. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1979, pp. 52–58.

2. Nikhil R. An incremental, strongly-typed database language.

Technical Report PhD Thesis, University of Pennsylvania, 1984.

3. Nikhil R. Practical polymorphism. In Proceedings of Functional

Programming and Computer Architecture’85, LNCS 201. 1985,

pp. 319–333.
Fractal

KE DENG

University of Queensland, Brisbane, OLD, Australia

Synonyms
Koch snowflake; Space-filling curve

Definition
A fractal is ‘‘a rough or fragmented geometric shape

that can be subdivided in parts, each of which is (at

least approximately) a reduced-size copy of the whole’’

[2]. This term is introduced by French mathematician

Benoit Mandelbrot (born 1924) in 1975 and was

derived from the Latin fractus meaning ‘‘broken’’ or

‘‘fractured’’. A simple fractal example is Koch
Fractal. Figure 1. Recursively replace each line segment with
snowflake. The method of creating this shape is to

recursively replace each line segment with 4 line seg-

ments in a finer scale as shown in Fig. 1.
Key Points
Fractals are self-similar structures (at least approximately

or stochastically) which are appropriate for representing

the geometry in nature. Some examples include clouds,

snow flakes, coastlines, crystals, cauliflower or broccoli,

and mountain ranges. In fractal geometry, the fractal

dimension, D, is a statistical quantity that gives an

indication of how completely a fractal appears to fill

space, as one zooms down to finer and finer scales.

Among several choices, Hausdorff dimension (also

known as the Hausdorff-Besicovitch dimension) is a

popular definition of fractal dimension and it is:

D ¼ lim
e!0

logNðeÞ
logð1=eÞ :

Where NðeÞ is the number of balls of radius at most

e to cover the fractal. The Hausdorff dimension of

Koch snowflake is:

D ¼ log 4n

log 3n
¼ log 4

log 3
¼ 1:2618:::

Another case of fractals is the space-filling curves

which is first described by Giuseppe Peano (1858–

1932) and has Hausdroff dimension D = 2. Space-

filling curve is useful in computer science in two

general situations, managing multi-dimensional

points and storing k-dimensional array on the disk

[1]. This attributes to two features. (i) Space-filling

curve is a continuous curve capable of mapping from

d-dimensional space to 1-dimensional space. Using

this mapping, a point in the cube can be described by

its spatial coordinates, or by the length along the curve,

measured from one its ends. Any one dimensional data

structure can be used such as binary search trees,

B-trees or Hash tables. (ii) Space-filling curve has

good locality preserving behaviour such that points
4 line segments in a finer scale in Koch snowflake.

Fractal. Figure 2. Two space filling curves.

Frequency Moments F 1169

F

are close together in the 1-dimensional space are

mapped from points that are close together in the

d-dimensional space. The reverse property is not

true, i.e., not all adjacent cells in the d-dimensional

space are adjacent or even close on the curve. A group

of contiguous cells in d-dimensional space will typi-

cally be mapped to a collection of segments on the

space-filling curve. There segments are called clusters.

Z-order curve and Hilbert curve are space-filling

curves as shown in Fig. 2a,b.
Cross-references
▶ Space-Filling Curve
Recommended Reading
1. Faloutsos C., and Roseman S., Fractals for secondary key retrie-

val. In Proc. 8th ACM SIGACT-SIGMOD-SIGART Symp. on

Principles of Database Systems, 1989, pp. 247–252.

2. Mandelbrot B. B., Fractal Geometry of Nature, W. H. Freeman,

San Francisco, CA,1977.
Frequency Moments

DAVID WOODRUFF

IBM Almaden Research Center, San Jose, CA, USA

Synonyms
Lp norms; Lp distances

Definition
Consider a stream (i.e., an ordered list) S ¼ a1; a2;:::; an
of elements ai 2 [m] ¼def {1,2,...,m}. For i 2 [m], its

frequency fi is the number of times it occurs in S.
The k th frequency moment Fk of S, for real k > 0, is

defined to be FkðSÞ ¼
P

i2½m�f
k
i . Interpreting 00 as 0,
one can also define F0 this way, so that it equals

the number of distinct elements in S. Observe that

F1 = n is the length of S. In the database commu-

nity, F2 is known as the repeat rate or Gini’s index

of homogeneity. It is also natural to define F1 =

max1�i�m fi.

It is usually assumed that n is very large and that

algorithms which compute the frequency moments do

not have enough storage to keep the entire stream in

memory. It is also common to assume that they are only

given a constant (usually one) number of passes over the

data. It is further assumed that the stream is presented in

an arbitrary, possibly worst-case order. This necessitates

the use of extremely efficient randomized approxima-

tion algorithms. An algorithm A (E; d)-approximates

the k th frequency moment Fk if for any input stream

S, Pr½jAðSÞ � FkðSÞj � EFkðSÞ� � 1� d; where the

probability is over the coin tosses of A. Here, AðSÞ
means that A is presented items in S one-by-one.

Efficiency is measured in terms of the amount of

memory and update time of the algorithm.

Key Points
The frequency moments were introduced by Alon,

Matias, and Szegedy [1] in their seminal paper in

1996, and are important statistics for massive data-

bases. Indeed, efficient algorithms for estimating F0
can be used by query optimizers for finding the num-

ber of unique values of an attribute without having to

perform an expensive sort on the entire column. Effi-

cient algorithms for F2 are useful for determining the

output size of self-joins and for error estimation in the

context of query result sizes and access plan costs.

Moreover, Fk for k � 2 can indicate the amount of

skew of a data stream, and this can determine which

algorithms to use for data partitioning. These values

can also be used to detect denial-of-service attacks. In

general, Fk for large k can be used to approximate the

1170F Frequent Concepts
most frequent value, potentially more efficiently than

computing this value directly.

There is a large body of work on bounding the

memory required of Fk-approximation algorithms. In

their original work, Alon, Matias, and Szegedy surpris-

ingly showed that F2 can be (E; d)-approximated using

only Oðlg 1=dE2 ðlg nþ lgmÞÞ bits of memory. It is now

known that Fk for k � 2 can be (E; d)-approximated

in 1-pass using Oðlg 1=dE2 Þ bits of space, up to a polylog

nm factor, and there is an almost matching O(1/E2)
lower bound for 1-pass algorithms. For k > 2, a

sequence of work showed that Fk can be approximated

in O(m1�2∕klog1∕d) space, up to a poly (lognm,1∕E)
factor, and there is an almost matching O(m1�2∕k)

bound. The memory required for approximating F1
is Y(m). Note that for k > 2 the memory required

depends polynomially on m, whereas for k � 2 the

dependence is logarithmic. The known algorithms use

a clever combination of hashing (with limited inde-

pendence), sketching, and bucketing ideas. The

corresponding lower bounds come from reductions

from problems in communication complexity, and

draw from tools in extremal combinatorics and infor-

mation theory.

There are several natural questions about the com-

putational complexity of frequency moments which

remain unanswered. For instance, for constant d, it is
unknown if Fk for 0� k� 2 can be approximated more

efficiently if more than one pass (but still a constant

number) is allowed. Also, it is unknown how efficiently

Fk can be approximated if the stream elements arrive in

a random order.

Cross-references
▶Data Mining

▶Data Stream

▶ Stream Mining

▶ Stream Processing

▶ Stream Sampling

▶ Streaming Applications
Recommended Reading
1. Alon N., Matias Y., and Szegedy M. The space complexity of

approximating the frequency moments, J. Comput. Syst. Sci.,

58:137–147, 1999.

2. Bar-Yossef Z., Jayram T., Kumar R., and Sivakumar D. An

information statistics approach to data stream and communi-

cation complexity. In Proc. 43rd Annual Symp. on Foundations

of Computer Science, 2002, pp. 209–218.
3. Indyk P. and Woodruff D. Optimal approximations of the

frequency moments of data streams. In Proc. 37th Annual

ACM Symp. on Theory of Computing, 2005, pp. 202–208.
Frequent Concepts

▶Closed Itemset Mining and Nonredundant Associa-

tion Rule Mining
Frequent Elements

▶ Frequent Items on Streams
Frequent Graph Patterns

JUN HUAN

University of Kansas, Lawrence, KS, USA

Synonyms
Graph database mining

Definition
There are three key concepts in mining graph data-

bases: (i) labeled graph, (ii) subgraph isomorphism,

and (iii) graph support value. Based on the concepts,

the problem of frequent subgraph mining could be

defined in the following discussion.
Definition 1. A labeled graph G is a quadruple G = (V,

E, S, l) where V is a set of vertices or nodes and E� V�
V is a set of undirected edges. S is a set of (disjoint) vertex

and edge labels, and l: V [E ! S is a function that

assigns labels to vertices and edges. Typically a total

ordering is defined on the labels in S.
With the previous definition, a graph database is a

set of labeled graphs.

Definition 2. A graph G0 = (V 0, E0, S0, l0) is subgraph
isomorphic to G = (V, E, S, l), denoted by G0� G, if

there exists a 1-1 mapping f : V 0! V such that

� 8v 2 V 0, l0(v) = l(f(v))
� 8(u,v) 2 E0, (f(u),f(v)) 2 E, and

Frequent Graph Patterns F 1171

F

� 8(u,v) 2 E0, l0(u,v) = l(f(u), f(v)).

The function f is a subgraph isomorphism from graph

G0 to graph G. For simplicity, G0 occurs in G if G0� G.

Given a subgraph isomorphism f, the image of the

domain V 0 (f (V 0)) is an embedding of G0 in G.

Example 1. Figure 1 shows a graph database of three

labeled graphs. The mapping (isomorphism) q1 ! p3,

q2 ! p1, and q3 ! p2 demonstrates that graph Q is

isomorphic to P and so Q occurs in P. Set {p1, p2, p3} is an

embedding of Q in P. Similarly, graph S occurs in graph

P but not Q.
Definition 3. Given a graph database G, the support of
a graph C, denoted by sup(C), is the fraction of graphs in

G in which C occurs.

Problem Statement: Given a graph database G and a

support threshold 0 < s � 1, the frequent subgraph

mining problem is to identify all graphs whose support

value is at least s.
There are several possible extensions to the problem

of frequent subgraph mining. For example, the node

may contain multiple label rather than one [2] and the

identified patterns may contain node with or without

labels [6]. Special cases for frequent subgraph mining

include frequent tree mining, frequent path mining,

and frequent cycle mining from graphs. The current

introduction emphasizes the fundamental problem fre-

quent subgraph mining and covers little about the

mentioned extensions.

Historical Background
Graph database mining is an active research field. Recent

graph mining algorithms can be roughly divided into

three categories. The first category uses a level-wise search

strategy, including AGM [6] and FSG [7]. The second
Frequent Graph Patterns. Figure 1. A database of three lab
category takes a depth-first search strategy, including

gSpan [11] and FFSM [4]. The third category works by

first mining frequent trees and then construct cyclic

graphs based on tree pattern. This category includes

SPIN [5] and GASTON [8]. See [1] for a recent survey.

The following description of frequent subgraph

mining is mainly based on the algorithms FFSM and

SPIN. Both algorithms are built on top of a data struc-

ture termed CAM tree (graph Canonical Adjacency Ma-

trix tree), which is a compact representation of a space

of graphs. Using CAM tree, FFSM (Fast Frequent Sub-

graph Mining, [4] supports an incremental subgraph

isomorphism check and hence is scalable for large

graphs. SPIN (SPanning tree basedmINing, [5]) reduces

the total number of mined patterns by identifying only

the maximal ones, i.e., the set of frequent subgraphs

such that none of their supergraphs is frequent.
Foundations
Three topics are important for designing efficient sub-

graph mining algorithms:

1. Graph Canonical Form.

2. Candidate Graph Proposing.

3. Candidate Support Value Computation.

In the following, the three topics are discussed in

details.

Canonical Adjacency Matrix

For labeled graph, a natural way to present a graph is

using an modified adjacency matrix. In this represen-

tation, every diagonal entry of the modified adjacency

matrix is filled with the label of the corresponding

node and every off-diagonal entry is filled with the

label of the corresponding edge, or zero if there is no
eled graphs.

1172F Frequent Graph Patterns
edge. This is slightly different from the widely used

adjacency matrix representation for unlabeled graphs.

One of the critical problems in graph mining is the

graph isomorphic problem: given two graphs P and Q,

determine whether P is isomorphic to Q. This problem

may be solved following a common theme such that a

graph is first transformed to a unique presentation

(referred to as the canonical form of the graph) and

secondly, two graphs are compared using the trans-

formed presentations. A graph canonical form is spe-

cially designed such that if two graphs are isomorphic

to each other, their canonical forms are the same and

vice versa.

Following convention, in the following a capital

letter is used to denote an adjacency matrix and the

corresponding lower case letter (augmented with

subscripts) is used to denote an individual entry of

the adjacency matrix. For instance, mi,j denotes the

entry on the ith row and jth column of an n � n

adjacency matrix M, 0 < j � i � n. Note that the

adjacency matrix is not unique for a given graph: a

permutation of the set of vertices in a graph may

generate a different adjacency matrix. There is a total

of n! different permutations for a graph vertex set with

size n, there may be up to n! adjacency matrices for the

graph. Figure 2 (top) shows three adjacency matrices

for the labeled graph P in Fig. 1 (Only the lower

triangular part of an adjacency matrix is drawn since

the upper half is a mirror of the lower half.). In order to

enable a unique representation for each graph, the code

of adjacency matrices is defined below. Graph code

helps in defining a total order among all adjacency

matrices.
Frequent Graph Patterns. Figure 2. Top: three adjacency m

maximal proper submatrices.
Definition 4. Given an n � n adjacency matrix M of a

graph G with n vertices, the code of M, denoted by code

(M), is the sequence formed by concatenating lower

triangular entries of M (including diagonal entries) in

the order: m1,1m2,1m2,2...mn,1mn,2...mn,n�1mn,n (0 < j �
i � n).

For an adjacency matrix M, each diagonal entry of

M is a node entry and each off-diagonal none-zero

entry in the lower triangular part of M is an edge

entry. Edge entries are ordered according to their rela-

tive positions in the code of the matrix. For example

the first edge entry of M is m2,1 and the last edge entry

is the one appears rightmost in code(M).

Example 2. Figure 2 shows codes and edge entries for

the labeled graph P showing in Fig. 1. For example for

adjacency matrix M1, the edge entry set is {m2,1, m3,1,

m3,2, m4,2, m4,3} where m2,1, m4,3, and m4,2 are the first,

last, second-to-last edge entries of M, respectively. After

applying the total ordering, the relationships are: code

(M1) = ‘‘axbxyb0yyb’’ � code(M2) = ‘‘axb0ybxyyb’’ �
code(M3) = ‘‘bybyyb0xxa.’’ Submatrices of CAM are

shown at the bottom. Matrix 3.a is the proper maximal

submatrix of matrix 3.b, which itself is the proper maxi-

mal submatrix of 3.c and so on so forth.

Standard lexicographic order on sequences is usu-

ally used to define a total order of two arbitrary codes

p and q. Given a graph G, its canonical form, denoted

by ’(G), is the maximal code among all its possible

codes. The adjacency matrix M that produces the

canonical form is the G ’s canonical adjacency matrix

(CAM). For example, the adjacency matrix M1 shown

in Fig. 2 is the CAM of the graph P in Fig. 1, and

code(M1) is the canonical form of the graph.
atrices for the graph P in Fig. 1. Bottom: examples of

Frequent Graph Patterns F 1173

F

CAM Tree

Efficient frequent subgraph mining algorithm relies on

efficient data structure. Below a widely data structure

called CAM tree is discussed. CAM tree utilizes a key

property of the previous canonical form, i.e., a ‘‘prefix’’

of the canonical form is also maximal, which is stated

in the following theorem.

Definition 5. Given an n � n matrix N and a m � m

matrix M, let ml,k be the last edge entry of M, a matrix N

is the maximal proper submatrix of M if N is obtained

by removing ml,k from M

Several examples of the maximal proper subma-

trices are given at the bottom of Fig. 2.

Corollary 1 Given a CAMM of a connected graph G

and a submatrix N of M, N represents a connected

subgraph of G.
Frequent Graph Patterns. Figure 3. The CAM Tree of the gr

specified by a label starting with c. and then the type of the

obtained by an extension operation is labeled with e.
Proof 1 Since N must represent a subgraph of G, it is

sufficient to show that the subgraph N represents is

connected. To prove this, it is sufficient to show that in

N there is no such row i (with the exception of the first

row) that i doesn’t contains any edge entry. The rest of the

proof is trivial and could be found in [6].

Corollary 2 Given a connected graph G with CAM

M, a submatrix N of M, and a graph H which N

represents, N is the CAM of H.

Proof 2 For simplicity,M is assumed to have only one

edge entry in the last row. It is trivial to show that code

(N) is a prefix of code(M). This suggests that code(N) �
code(CAM(H)), where CAM(H) stands for the canoni-

cal adjacency matrix of graph H. Therefore N must be the

CAM of the graph H.

For a CAM with at least two edge entries in the last

row, a similar proof could be used.
aph P in Fig. 1. Every matrix obtained by a join operation is

join operation e.g., c. 3a stands for join case3a. A CAM

1174F Frequent Graph Patterns
Usually an empty matrix is considered as the maxi-

mal proper submatrix of any matrix with size 1. With

this assumption, all the CAMs of connected subgraphs of

a graph Gmay be organized as a rooted tree as follows:

� The root of the tree is an empty matrix;

� Each node in the tree is a distinct connected sub-

graph of G, represented by its CAM;

� For a given none-root node (with CAM M), its

parent is the graph represented by M ’s maximal

proper submatrix;

The tree obtained in this fashion is denoted as the

CAM tree of the graph G. Figure 3 shows the CAM

tree of the graph P from Fig. 1.
Frequent Subgraph Mining of a Graph Database

With the CAM tree data structure, the space of sub-

graphs could be organized in a single CAM tree. If such

a tree is built in advance (regardless of the required

space and computational capacity), any traversal of the

tree (depth-first, level-wise, random) reveals the set of

distinct subgraphs of the graph database. For each of

such subgraph, its support value may be determined by

a linear scan of the graph database and finally frequent

ones can be reported. This method clearly suffers from

the huge number of available subgraphs in a graph

database and hence has poor scalability to large

databases.

In the following pseudo code, an algorithm which

takes advantage of the following simple fact is presented:

if a subgraph G is infrequent (support of G is less than

a user posted threshold), none of its supergraphs are

frequent. This suggests that an algorithm can stop

building a branch of the tree as early as its finds out

that the current node has insufficient support.

In the pseudo code below, symbol CAM(G)

denotes the CAM of the graph G. is CAM is a function

computes whether the matrix X is the CAM of the

graph it represents or not.

FFSM

input: a graph database GD and a support threshold

f (0 < f � 1)

output: set S of all G’s connected subgraphs.

1: C ← {the CAMs of the frequent edges}

2: F ← {the CAMs of the frequent nodes and edges}

3: FFSM-Explore (C,F);
FFSM-Explore

input: C, a suboptimal CAM list and F, a set of fre-

quent connected subgraphs’ CAMs

output: set F contains CAMs of all frequent subgraphs

searched so far.

1: for X 2 C do

2: if (isCAM(X)) then

3: F ← F [{X}

4: C 0 ← ;
5: for Y 2 C do

6: C 0← C 0[FFSM-Join(X,Y)

7: end for

8: C 0← C 0 [FFSM-Extension (X)

9: remove CAM(s) from C 0 that is either

infrequent or not suboptimial

10: FFSM-Explore(C 0,F)

11: end if

12: end for

Key Applications
Frequent subgraph mining has many applications.

Below two applications in the emergent area of bioin-

formatics and cheminformatics are reviewed. Other

applications of frequent subgraph mining could be

found in recent reviews.

Pattern Discovery from Chemical Structures

Several investigators have applied the idea of frequent

subgraph mining in cheminformatics. In these appli-

cations, a graph is used to model a chemical structure

where a node represents an atom and an edge repre-

sents a chemical bond in the chemical structure. Fre-

quent subgraph mining is then utilized to discover

task-relevant and problem-specific features (descriptors

as usually called in cheminformatics literature) in the

chemical structures. Finally the features are utilized to

build a predictive model to map chemical structures to

their target properties [9].

Pattern Discovery from Protein Structures

Huan et al. have applied data mining algorithms to

analyze 3D structures of biomoelcules including proteins

and chemicals. Their approach adopted geometric graph

representations of protein 3D structure using a geometric

technique called Delaunay Tessellation and its recent

extension to almost-Delaunay. These techniques produce

sparser but information-preserving graph representa-

tions than conventional distance-based methods. With

Frequent Items on Streams F 1175
the graph database mining techniques, they have identi-

fied structure patterns that occur frequently in a family of

proteins but rarely in other families, or protein family-

specific fingerprints. It has been demonstrated that pat-

terns obtained from comparing multiple structures have

clear linkages to known functional features such as the

catalytic sites in enzymes [3].
F

Cross-references
▶Data Mining

▶Graph Database

▶ Semi-Structured Data
Recommended Reading
1. Han J., Cheng H., Xin D., and Yan X. Frequent pattern mining:

current status and future directions. Data Min. Knowl. Discov.,

14, 2007.

2. Huan J., Prins J., Wang W., Carter C., and Dokholyan N.V.

Coordinated evolution of protein sequences and structures

with structure entropy. Tech. Rep. Computer Science Depart-

ment, 2006.

3. Huan J., Wang W., Bandyopadhyay D., Snoeyink J., Prins J., and

Tropsha A. Mining protein family specific residue packing pat-

terns from protein structure graphs. In Proc. 8th Annual Int.

Conf. on Research in Computational Molecular Biology, 2004,

pp. 308–315.

4. Huan J., Wang W., and Prins J. Efficient mining of frequent

subgraph in the presence of isomorphism. In Proc. 2003 IEEE

Int. Conf. on Data Mining, 2003, pp. 549–552.

5. Huan J., Wang W., Prins J., and Yang J. SPIN: mining maximal

frequent subgraphs from graph databases. In Proc. 10th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,

2004, pp. 581–586.

6. Inokuchi A., Washio T., and Motoda H. An apriori-based algo-

rithm for mining frequent substructures from graph data.

In Principles of Data Mining and Knowledge Discovery, 4th

European Conf., 2000, pp. 13–23.

7. Kuramochi M. and Karypis G. Frequent subgraph discovery.

In Proc. 2001 IEEE Int. Conf. on Data Mining, 2001, pp.

313–320.

8. Nijssen S. and Kok J. A quickstart in frequent structure

mining can make a difference. In Proc. 10th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2004,

pp. 647–652.

9. Smalter A., Huan J., and Lushington G. Structure-based pattern

mining for chemical compound classification. In Proc. 6th Asia

Pacific Bioinformatics Conf, 2008, pp. 39–48.

10. Vanetik N. and Gudes E. Mining frequent labeled and partially

labeled graph patterns. In Proc. 20th Int. Conf. on Data Engi-

neering, 2004, pp. 91–102.

11. Yan X. and Han J. gSpan: graph-based substructure pattern

mining. In Proc. 2002 IEEE Int. Conf. on Data Mining, 2002,

pp. 721–724.
Frequent Items on Streams

AHMED METWALLY

Google Inc., Mountain View, CA, USA

Synonyms
Frequent elements; Heavy hitters; Hot items

Definition
Frequent items are the items that mostly represent the

stream, since these are the items that occur more than a

given user threshold. Formally, given a stream, S, of size

N from an alphabet, A, a frequent item, Ei 2 A, is an

item whose frequency, or number of occurrences, Fi
exceeds a specific user support fN, where 0 � f � 1.

There cannot be more than b1fc � 1 such items.

Finding the frequent items exactly in one pass requires

O(min(A,N)) in-memory space [6]. Frequent items

can be defined on the entire stream or on a sliding

window of fixed or variable size (see Stream Models).

Similarly, frequent items can be defined on append-

only streams as well as streams with item deletions

(see Stream Mining).
Historical Background
Even before the stream processing model was pro-

posed, the early work in [3], and [9] searches for a

majority item that occur more than N
2

times. This

work was extended in [15] to search for b1fc � 1

items, each occurring more than fN times.

Foundations
Due to the high cost of the exact solution of the frequent

items problem, researchers proposed approximate prob-

lem definitions. This section discusses the problem

approximations and their proposed algorithms.
Problem Approximations

The approximate problem definition in [3,9,15] is to

report b1fc � 1 items regardless of the number of items

that really satisfy the frequency constraint. However,

all the really frequent items should be among the

reported set of items. This introduces false positives,

which are reported items whose frequencies do not

really exceed fN.
The hot items problem [6], is to report the frequent

items with high probability. This raises the issue of

1176F Frequent Items on Streams
having both false positives and false negatives, where a

false negative is a frequent item that is not reported.

Finding the e-deficient frequent items was proposed

byManku andMotwani [13] to report all the items with

frequencies exceeding dfNe. In addition, no reported

item can have a frequency less than d(f � e)Ne, where
e 2 [0, f] is a user-defined error. The estimated fre-

quencies of the reported items also have to be reported.
Proposed Algorithms

Several algorithms [6,7,8,10,11,13,14] were proposed

to solve the approximate frequent items problems. In

[14], these algorithms are classified into Counter-based

and Sketch-based algorithms.
Counter-Based Techniques

Counter-based algorithms monitor the frequency of a

subset of A. Theykeepacounter foreachmonitoreditem.

Thecounterofamonitoreditem,Ei, is updated whenever

Ei is observed in the stream. The algorithms mainly

differ in how they handle non-monitored items.

The Sticky Sampling algorithm [13] solves the

e-deficient frequent items probabilistically. It slices S

into rounds of exponentially increasing length. The

probability an item is sampled, i.e., starts to be moni-

tored, at any round, r, is 1
r
. At rounds’ boundaries, for

every monitored item, a coin is tossed until a success

occurs. The counter is decremented for every unsuc-

cessful toss, and is deleted if it reaches 0. Since decre-

menting counters follow a geometric distribution,

the probability of sampling an item is constant

throughout S. Sticky Sampling has a space bound of

Oð2E lnðf
�1d�1ÞÞ, where d is the failure probability.

The Lossy Counting algorithm [13] solves the

e-deficient frequent items with success probability of 1,

though with a space bound greater than that of Sticky

Sampling. S is broken up into rounds of equal length,
1
E . Throughout every round r, non-monitored items are

added to the monitored set. When a new item is added

in round r, it is given the benefit of doubt. Its initial

count is set to r � 1, and the maximum possible over-

estimation, r � 1, is recorded for the new item. Thus,

Lossy Counting guarantees that monitored items can

have their frequencies overestimated by no more than

eN, and never underestimated. At the end of each ound,

r, every item, Ei, whose estimated frequency s less than

r is evicted in order to reduce the space footprint. Lossy

Counting [13] has a space bound of Oð1E lnðENÞÞ.
The Frequent algorithm [7] solves the problem of

[15], which asks for a maximum of b1fc � 1 items, each

of which has frequency exceeding fN. Frequent, a re-

discovery of the algorithm proposed by [15], outputs a

list of exactly 1
f � 1 items with no guarantee on which

items, if any, have frequency more than fN. This

algorithm extends the early work done in [3,9] for

finding a majority item using only one counter. The

algorithm in [3,9] monitors the first item in the

stream. For each observation, the counter is incremen-

ted if the observed item is the monitored one, and is

decremented otherwise. If the counter reaches 0, it

is assigned the next observed item, and the algorithm

is then repeated. When the algorithm terminates, the

monitored item is the candidate majority item. Fre-

quent [7] keeps 1
f � 1 counters to monitor items. If a

monitored item is observed, its counter is incremen-

ted, else all counters are decremented in an O(1) oper-

ation, using a lightweight data structure. In case any

counter reaches 0, it is assigned the next observed item.

The discussion assumes hashing takes constant time. If

the data structure is not used, decrementing all coun-

ters has an O(1) amortized cost. The algorithm uses

only 1
f � 1 counters, but reports back all the moni-

tored items, which could yield a high ratio of false

positives. The same algorithm and data structure

were proposed independently in [11].

The Space-Saving algorithm [14] solves the

e-deficient frequent items with success probability of

1 with a space bound of 1
E , and gives the same guaran-

tees on overestimation error of Lossy Counting. More-

over, the guaranteed error rate, e, provably decreases

with the increase in data skew. If the observed item, x,

is monitored, its counter is incremented. If x is not

monitored, i.e., no counter is assigned to x, then the

item that currently has the least estimated hits, min, is

evicted and the counter is assigned to x. The intuition

behind replacing the item with the least hits is to

sacrifice the least amount of information about the

stream history. Since the actual hits of x can be any

number between 1 and min + 1, Space-Saving assumes

x has been observed min + 1 times, since it gives items

the benefit of doubt not to underestimate frequencies.

Like Lossy Counting, for each monitored item the

algorithm keeps track of its maximum possible

over-estimation resulting from the initialization of its

counter when starting monitoring it. To guarantee

constant processing time per observation, the item

with the least estimated hits has to be identified in

Frequent Items on Streams F 1177

F

O(1) time. To do that, Space-Saving uses a data struc-

ture similar to that in [7] in order to keep the counters

always sorted by their estimated hits. However, not

using the data structure still guarantees an amortized

constant time per stream observation.

In general, counter-based techniques have fast per-

item processing since counters can be stored in hash

tables.

Sketch-Based Techniques

Sketch-based techniques do not monitor a subset of

items, but rather provide, with less stringent guarantees,

frequency estimation for all items by using arrays of

counters. Usually, each countermonitors the frequencies

of a subset of the item domains. Similarly, each item is

hashed into the space of counters using a family of hash

functions, and the hashed-to counters are updated for

every hit of this item. These ‘‘representative’’ counters

are then queried for the item frequency.

The GroupTest algorithm [6] solves the hot items

problem, with a probability of failure of d. The Find-

Majority algorithm was first devised to detect the ma-

jority item, by keeping a system of a global counter and

dlog(jAj)e counters. Assuming that items’ IDs are in

the range 1...jAj. A hit to item E is handled by updating

the global counter, and all counters whose index cor-

responds to a 1 in the binary representation of E. At

any time, counters whose value are more than half the

global counter correspond to the 1s in the binary

representation of the candidate majority item, if it

exists. GroupTest is a simple generalization of FindMa-

jority, which keeps only O(
1
f�1

d logð1f � 1Þ) of such sys-

tems, and uses a family of universal hash functions to

map each item to O(
logð1f�1Þ

d) FindMajority systems

that monitor the occurrences of the item. When que-

ried, the algorithm discards systems with more than

one, or with no hot items. Also proposed is an elegant

scheme for suppressing false positives by checking that

all the systems a hot item belongs to report this item as

being hot. GroupTest is generally accurate and can

handle streams with both item insertions and dele-

tions. However, it offers no information about items’

frequencies or order.

The Multistage Filters approach, proposed by [8],

which was also independently proposed by [10], is

similar to GroupTest. The Multistage Filters algorithm

hashes every item to a number of counters that are

updated every time the item is observed in the stream.

The item is considered to be frequent if the smallest of
its representative counters satisfies the user required

support. The algorithm by [8] judges an item to be

frequent or not while updating its counters. If a counter

is estimated to be frequent, it is added to a specialized

set of counters for monitoring frequent items, the flow

memory. To decrease the false positives, [8] proposed

some techniques to reduce the over-estimation errors

in counters. First, once an item is added to the flow

memory, its counters are not monitored anymore by

theMultistage Filters. Second, the algorithm increments

only the counter(s) of the minimum value. Without the

second error-reduction technique, the algorithm can be

used for streams of both item insertions and deletions.

The hCount algorithm [10], does not employ the

error reduction techniques employed by [8]. However,

it keeps a number of imaginary items, which have no

hits. At the end of the stream, all the items in the alphabet

are checked for being frequent, and the over-estimation

error for each of the items is estimated to be the average

number of hits for the imaginary items. Both the hCount

algorithm [10], and the Multistage Filters [8] require a

number of counters bounded by e
E � ln

�jAj
ln d

� �
.

In general, sketch-based techniques are not affected

by the ordering of items in the stream, and are usually

capable of handling streams with item insertions and

deletions. On the other hand, they are probabilistic,

and an item observation or a query about its frequency

entails calculations across several counters.

Generalization for Sliding Windows

In [1], generalizations of the algorithm in [15], and

Sticky Sampling were proposed for sliding windows

of fixed and variable sizes (see StreamModels). Limiting

the discussion to the deterministic [15] algorithm and

the fixed size sliding window, the generalization

monitors the stream at several levels of exponentially

increasing granularities. That is, the finest granularity

level, level-0, keeps copies of the algorithm that

tracks the frequent items in sub-windows of size

f(W, e), whereW is the fixed size of the sliding window.

These sub-windows are non-overlapping and contigu-

ous such that their union is equivalent to the whole

sliding window, modulo the oldest sub-window that

contains expired items. The second finest granularity,

level-1, keeps copies of the algorithm that tracks the

frequent items in sub-windows of size 2 � f(W, e), and
so forth. A boundary of a sub-window at any level

has to cooccur with a boundary at the next finer

level. Due to keeping several levels, and keeping several

1178F Frequent Items on Streams
algorithm copies at each level, the space requirement

is Oð1E ðlogðENÞÞ2Þ.
The case for variable size sliding window was

handled essentially by forming new levels of coarser

granularity from existing levels when the window

size multiplies by a factor of 2. The requirement here is

to be able tomerge two copies of the algorithm, each has

observed n items, to form a copy of the algorithm that

is equivalent to observing the entire 2 � n items. If the

window shrinks to be a smaller size than the granularity

of the coarsest level, the coarsest level is dropped.

At query time, the results of the algorithm copies at

all levels are combined together to discover the fre-

quent items in the entire sliding window. This requires

the ability to combine the output of several algorithm

copies while maintaining the error guarantees of the

algorithm. The combining process does not include

algorithm copies monitoring sub-windows containing

expired items, does not include algorithm copies mon-

itoring items that are already combined, and favors

copies of the algorithm at the coarser levels.

The generalization of [15] to sliding windows at

[12] does not keep several copies of the algorithm.

Instead, the counters are incremented in a way that

expires occurrences of the item that are older than the

sliding window boundary. The space requirement is

stillOð1EÞ, thought the time for processing each element

is also Oð1EÞ. The case for variable size sliding window

was handled essentially by adding new levels when the

window size multiplies by a factor of 2. The require-

ment here is to be able to from a copy of a sliding

window algorithm with error 2 � en from another

copy with error en, where n is the number of items

observed by the original copy. Like [1], if the window

shrinks to be a smaller size than the granularity of the

coarsest level, the coarsest level is dropped. The work

done by Lee and Ting [12] was recently improved

further in [16] to require O(1) for processing each

stream element using a doubly circularly-linked list

to link the occurrences of the items sorted by their

expiration time. Hence, the algorithm can expire

occurrences of the items more efficiently.

Key Applications
Current motivation of the stream frequent items

problem include network traffic analysis which is

important for caching, routing, accounting, detecting

network-level attacks, and maintenance [7,8]. In [14],

the problem was applied for the application of
increasing the revenue of Internet advertising net-

works. Motivated by these networks applications, [2]

implemented Space-Saving and Lossy Counting on net-

work processing units (NPUs), a special networking

architecture with associative memories. In addition,

[13] considered using frequent items queries to allevi-

ate finding frequent itemsets (see Association rules), as

well as iceberg queries and iceberg cubes. In specific,

[5] generalized the problem to the case of multi-

dimensional items in the presence of domain hierar-

chies (see Hierarchical heavy hitter mining on streams).

Experimental Results
Recently, Cormode and Hadjieleftheriou [4] con-

ducted experiments comparing the most promising

algorithms on both real and synthetic data, and no-

ticed the competitive benefits of Space-Saving when

processing append-only streams. In the case of streams

with deletions, different sketch-based algorithms had

different advantages.

In [13], the two proposed algorithms, Lossy Count-

ing and Sticky Sampling, were compared on synthetic

Zipfian data. Lossy Counting perform bettered even

though the theoretical space bound of Sticky Sampling

is better. However, the experiments were run with

relatively small alphabets.

In [6], the algorithms GroupTest, Lossy Counting,

and Frequent were compared on both real telephone

connection and synthetic data. The data had both item

insertions and deletions. Both Lossy Counting and Fre-

quent were made to handle item deletions by decre-

menting the counters of the deleted items if such

counters exist. Under these conditions, on synthetic

data GroupTest performed best, followed by Frequent,

and then Lossy Counting had the least precision and

recall (the highest false positives and negatives). How-

ever, GroupTest used approximately 3� the space used

by Lossy Counting, and 6� the space used by Frequent.

On real data, Lossy Counting performed better than

Frequent, but GroupTest was more accurate than both.

In [8], the proposed techniques were compared

against commercial sampling-basedalgorithmsfor traffic

measurement on real Internet backbone traffic traces.

The results favored theMultistage Filters technique.

In [14], the algorithms Space-Saving, GroupTest,

and Frequent were compared on real Internet advertis-

ing traffic as well as synthetic data, both with large

alphabets. Throughout the experiments, Frequent

attained a precision of less than 0.2. Space-Saving was

Frequent Itemset Mining with Constraints F 1179

F

the only algorithm that neither reported false positives

nor reported false negatives, even though it consumed

roughly the same space of Frequent. On real data, Space-

Saving consumed approximately one fifth of the space

used by GroupTest, and on synthetic data, Space-Saving

consumed at most one eighth of the space used by

GroupTest.

Nagender Bandi et al. [2] compared how the hard-

ware and software implementations of Space-Saving

and Lossy Counting perform. The results of Lossy

Counting conformed with those in [13]. Lossy Counting

can use space much smaller than its bounds under

small alphabets. Lossy Counting used less space than

Space-Saving when the data was skewed and the skew

was not estimated. However, Space-Saving used

less space when the data skew was estimated since it

monitored less items. The hardware implementation

of Space-Saving ran significantly faster than Lossy

Counting, while the software implementation ran only

slightly faster.
Cross-references
▶Hierarchical Heavy Hitter Mining on Streams

▶Histograms on Streams

▶Quantiles on Streams

▶ Stream Mining

▶ Stream Models

▶ Stream Sampling
Recommended Reading
1. Arasu A. and Manku G. Approximate counts and quantiles over

sliding windows. In Proc. 23rd ACMSIGACT-SIGMOD-SIGART

Symp. Principles of Database Systems, 2004, pp. 286–296.

2. Bandi N., Metwally A., Agrawal D., and Abbadi A.E. Fast data

stream algorithms using associative memories. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2007, pp. 247–256.

3. Boyer R. and Moore J. A Fast Majority Vote Algorithm. Tech.

Rep. 1981-32, Institute for Computing Science, University of

Texas, Austin, 1981.

4. Cormode G. and Hadjieleftherion M. Finding Frequent Items in

Data Streams. Proc. VLDB, 1(2):1530–1541, 2008.

5. Cormode G., Korn F., Muthukrishnan S., and Srivastava D.

Diamond in the rough: finding hierarchical heavy hitters

in multi-dimensional data. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 2004, pp. 155–166.

6. Cormode G. and Muthukrishnan S. What’s Hot and What’s

Not: Tracking Most Frequent Items Dynamically. In Proc.

22nd ACM SIGACT-SIGMOD-SIGART Symp. Principles of

Database Systems, 2003, pp. 296–306, an extended version

appeared in ACM Trans. on Comput. Syst., 30(1):249–278, 2005.
7. Demaine E., López-Ortiz A., and Munro J. Frequency estimation

of internet packet streams with limited space. In Proc. 10th ESA

European Symposium on Algorithms, 2002, pp. 348–360.

8. Estan C. and Varghese G. New Directions in Traffic Measure-

ment and Accounting: Focusing on the Elephants, Ignoring the

Mice. ACM Trans. Comput. Syst., 21(3):270–313, 2003.

9. Fischer M. and Salzberg S. Finding a Majority Among N Votes:

Solution to Problem 81-5. J. Algorithms, 3:376–379, 1982.

10. Jin C., Qian W., Sha C., Yu J., and Zhou A. Dynamically main-

taining frequent items over a data stream. In Proc. Int. Conf. on

Information and Knowledge Management, 2003, pp. 287–294.

11. Karp R., Shenker S., and Papadimitriou C. A Simple Algorithm

for Finding Frequent Elements in Streams and Bags. ACM

Trans. Database Syst., 28(1):51–55, 2003.

12. Lee L. and Ting H. A simpler and more efficient deterministic

scheme for finding frequent items over sliding windows. In Proc.

25th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2006, pp. 290–297.

13. Manku G. and Motwani R. Approximate frequency counts over

data streams. In Proc. 28th Int. Conf. on Very Large Data Bases,

2002, pp. 346–357.

14. Metwally A., Agrawal D., and El Abbadi A. Efficient computation

of frequent and top-k elements in data streams. In Proc. 10th Int.

Conf. on Database Theory, 2005, pp. 398–412, an extended

version appeared in ACM Trans Database Syst., 31(3):1095–

1133, 2006.

15. Misra J. and Gries D. Finding repeated elements. Sci. Comput.

Program., 2:143–152, 1982.

16. Zhang L. and Guan Y. Frequency estimation over sliding

windows. In Proc. 24th Int. Conf. on Data Engineering, 2008,

pp. 1385–1387.
Frequent Itemset Mining with
Constraints

CARSON KAI-SANG LEUNG

University of Manitoba, Winnipeg, MB, Canada

Synonyms
Constrained frequent itemset mining; Frequent pat-

tern mining with constraints; Frequent set mining

with constraints

Definition
Let Item ={ item1,item2,...,itemm} be a set of domain

items, where each item represents an object in a specif-

ic domain. Each object is associated with some attri-

butes or auxiliary information about the object.

A transaction ti =htID, Iii is a tuple, where tID is a

unique identifier and Ii �Item is a set of items. A set
of items is also known as an itemset. A transaction

database TDB is a collection of transactions. An item-

set S is contained in a transaction ti =htID, Iii if S � Ii.

1180F Frequent Itemset Mining with Constraints
The support (or frequency) of an itemset S in a database

TDB is the number (or percentage) of transactions in

TDB containing S. An itemset is frequent if its support

exceeds or equals a user-specified support threshold

minsup. A user-specified constraint C is a predicate on

the powerset of Item (i.e., C: 2Item↦ {true, false}). An

itemset S satisfies a constraint C if C(S) evaluates to

true. Hence, given (i) a transaction database TDB, (ii) a

user-specified support thresholdminsup and (iii) user-

specified constraints C, the problem of frequent itemset

mining with constraints is to find from TDB a set of

frequent itemsets that satisfy C.

Historical Background
The research problem of frequent itemset mining was

first introduced by Agrawal et al. [1] for market basket

analysis in the context of association rule mining.

Specifically, frequent itemset mining, which aims to

find frequent itemsets from a transaction database, is

an important first step of association rule mining.

Once the frequent itemsets are found, they are used

in the second step to generate association rules. The

rules reveal the buying patterns in consumer behavior.

For instance, they tell how the presence of some itemsets

is associated with the presence of some other itemsets in

the shopping baskets of consumers. This information

is useful in making decisions in applications such as

customer targeting, shelving, and sales promotion.

Besides the mining of association rules, frequent

itemset mining also plays an essential role in many

important data mining tasks – such as the mining of

maximal itemsets, closed itemsets, correlation, causali-

ty, and sequential patterns. This explains why frequent

itemset mining has been the subject of numerous stud-

ies since its introduction. Most of these studies focused

either on improving efficiency of frequent itemset

mining (e.g., the Apriori frequent itemset mining

framework [2] and its tree-based counterpart [7]) or

on extending the initial notion of frequent itemsets to

other patterns such as maximal itemsets, closed item-

sets, and correlated itemsets. Regardless whether they

focused on these performance or functionality issues,

these studies basically considered the data mining

exercise in isolation. They relied on a computational

model in which the computer does almost everything

and the user is not engaged in the mining process. In

other words, this model does not explore how data

mining can interact with the human user. Consequently,

the model provides little or no support for user focus.
However, in many applications, it is not un-

common for the user to have certain broad phe-

nomena in mind, on which to focus mining.

Without user focus, the mining process is treated

as an impenetrable black-box – only allowing the

user to set the support threshold minsup at the

beginning and to get all the frequent itemsets at the

end. The user does not have the opportunity to specify

his interest via the use of constraints. As a result, the

user often needs to wait for a long period of time for

numerous frequent itemsets, out of which only a tiny

fraction may be interesting to the user. This motivates

the introduction of the research problem of frequent

itemset mining with constraints, which gives the user

opportunities to express his focus in mining by means

of a rich set of constraints that captures application

semantics.
Foundations
When compared with its traditional unconstrained

counterpart, frequent itemset mining with constraints

provides user focus in the sense that the user has

opportunities to express his interest – via the use of

constraints. By using the constraints, mining can be

focused and computation can be saved. Over the past

decade, several studies on frequent itemset mining

with constraints have been proposed. For example,

Ng, Lakshmanan and their colleagues [8,9,11] pro-

posed a framework and algorithms for mining frequent

itemsets with constraints. Within their framework, the

user can use a rich set of constraints – which captures

the semantics of itemsets – to guide the mining process

for finding only those frequent itemsets that satisfy the

constraints. These constraints include SQL-style aggre-

gate constraints as well as domain constraints. The SQL-

style aggregate constraints are of the following form:

aggðS:attributeÞ y constant ;

where agg is an SQL-style aggregate function (e.g.,min,

max,sum,avg) and y is a Boolean comparison operator

(e.g., =,6¼,<,�,�,>). For example, by specifying the

aggregate constraint min(S.Price) � $20, the user

expresses his interest in finding every itemset S such

that the minimum price of all items in S is at least $20.

Other examples of aggregate constraints include avg

(S.Temperature) < �18∘C (which expresses that the

average temperature of items in S is below�18∘C) and

max(S.Qty) > 15 (which expresses that the maximum

quantity of items in S is more than 15). Domain

Frequent Itemset Mining with Constraints F 1181

F

constraints, which are non-aggregate constraints, can

be of the following forms:

1. S.attribute y constant, where y is a Boolean com-

parison operator (e.g., =, 6¼,<,�,�,>);

2. constant 2S.attribute;
3. constant =2 S.attribute; or

4. S.attribute ’ set of constants, where ’ is a set com-

parison operator (e.g., �, 6�,�,6�,=, 6¼,�,6�,�,6�).

Examples of domain constraints include S.Manu-

factureYear 6¼ 2008 (which expresses that each item in S

is not manufactured in 2008), 2kg 2S.Weight (which

expresses that a 2kg-item must be in S) and S.Type �
{snack, soda} (which expresses that S must contain

some snacks and soda). These aggregate constraints

and domain constraints can be categorized into several

overlapping classes – such as anti-monotone con-

straints, succinct constraints, monotone constraints, and

convertible constraints – based on properties of con-

straints. Figure 1 shows the characterization of some

commonly used constraints.

To find frequent itemsets that satisfy the aforemen-

tioned constraints, Ng, Lakshmanan and their colleagues

proposedalgorithms–calledCAP (Constrained Apriori)

[11] and DCF (Dynamic Constrained Frequent-set

computation) [8] – that exploit properties of these

constraints. By doing so, both CAP and DCF ensure

that the computational effort in mining frequent item-

sets satisfying the constraints is proportional to the
Frequent Itemset Mining with Constraints. Figure 1. Chara

frequency constraints.
selectivity of the constraints. For instance, both CAP

and DCF algorithms exploit a nice property of anti-

monotone constraints: For an anti-monotone constraint

Cam (e.g., min(S.Price) � $20, S.ManufactureYear 6¼
2008), if an itemset S does not satisfy Cam then super-

sets of S are guaranteed not to satisfy Cam. Hence,

whenever S does not satisfy Cam, both CAP and

DCF do not need to generate any superset of S as a

candidate and thus do not need to count its support

(or frequency). Consequently, by pushing Cam into

the mining process, the mining algorithms save

computation.

Note that many algorithms for mining frequent

itemsets with or without constraints (e.g., Apriori

[2], CAP [11] and DCF [8]) have also been exploiting

a special anti-monotone constraint – namely, the fre-

quency constraint support(S) �minsup, which states

that the support (or frequency) of a frequent itemset

S should equal or exceed the user-specified support

threshold minsup. If S is infrequent, then the mining

algorithms do not consider supersets of S because they

are guaranteed to be infrequent. This property is com-

monly known as the Apriori property.

In addition to anti-monotone constraints, both

CAP and DCF algorithms also exploit succinct con-

straints (e.g., min(S.Price) � $20, 2kg 2 S.Weight).

For frequent itemset mining without constraint, it

is well known that mining algorithms based on the

Frequent-Pattern tree (FP-tree) [7] outperform their
cterization of commonly used domain, aggregate and

1182F Frequent Itemset Mining with Constraints
Apriori-based counterparts. As both CAP and DCF are

Apriori-based, Leung et al. [10] proposed an FP-tree

based algorithm – called FPS (FP-tree based mining of

Succinct constraints) – for mining frequent itemsets

that satisfy succinct constraints. By pushing the suc-

cinct constraint Csuc into the mining process, all three

algorithms (CAP, DCF and FPS) directly generate pre-

cisely all and only those itemsets that satisfy Csuc by

using a precise ‘‘formula’’ called a member generating

function (MGF). As a result, there is no need to gener-

ate and then exclude itemsets not satisfying Csuc. For

example, itemsets satisfying the succinct constraint

min(S.Price) � $20 can be generated by first selecting

items with price at least $20 from the domain Item
and then combining these selected items:

fX jX � sPrice�$20ðItemÞ; X 6¼ ;g:

As another example, itemsets satisfying the succinct

constraint 2kg 2S.Weight can be generated by combin-

ing at least one 2kg-item (i.e., at least one mandatory

item) with some optional items of any weight:

fY [Z jY � sWeight¼2kgðItemÞ;
Y 6¼ ;; Z � sWeight 6¼2kgðItemÞg:

As the third example, itemsets satisfying the succinct

constraint S.Type �{snack, soda} can be generated by

combining some snacks and some soda (which are

mandatory items) with some optional items of other

types:

fX [Y [Z jX � sType¼snackðItemÞ; X 6¼ ;;
Y � sType¼sodaðItemÞ; Y 6¼ ;;
Z � sType 6¼snackLType 6¼sodaðItemÞg:

Among the succinct constraints in these three exam-

ples, the first one is also anti-monotone but the last

two are not. In general, itemsets satisfying a succinct

and anti-monotone constraint can be generated using

only mandatory items (e.g., those with price � $20),

whereas itemsets satisfying succinct but not anti-

monotone constraints require both mandatory items

and optional items.

Besides anti-monotone constraints and succinct

constraints, there have been studies that handle other

classes of constraints. For instance, Grahne et al. [6]

exploitedmonotone constraints when finding correlated

frequent itemsets. Since supersets of any itemset S
satisfying a monotone constraint Cm (e.g., 2kg 2
S. Weight) are guaranteed to satisfy Cm, Grahne et al.

pushed Cm into the mining process so that they do

not need to perform further constraint checking

on any superset of S once S satisfies Cm. Hence, com-

putation is saved. Bucila et al. [4] proposed a dual

mining algorithm – called DualMiner – that exploits

both anti-monotone constraints and monotone

constraints simultaneously to find itemsets satisfying

the constraints.

Knowing that some constraints such as avg(S.

Temperature) < �18∘C are not anti-monotone or

monotone in general, Pei and his colleagues [12,13]

converted these ‘‘tough’’ constraints into anti-mono-

tone constraints or monotone constraints by sorting

items in each transaction in some order. They pro-

posed the FIC algorithms (mining Frequent Itemsets

with Convertible constraints) to handle these convert-

ible constraints. Specifically, the FICA algorithm deals

with convertible anti-monotone constraints, and the

FICM algorithm deals with convertible monotone

constraints. For example, by arranging items in non-

descending order of temperature, FICA does not need

to consider an itemset S if its prefix does not satisfy a

convertible anti-monotone constraint Ccam. This is

because S is guaranteed not to satisfy Ccam whenever

the prefix of S does not. Similarly, by arranging items

in non-ascending order of temperature, FICM does

not need to perform further constraint checking on an

itemset S0 if its prefix satisfies a convertible monotone

constraint Ccm. This is because S0 is guaranteed to

satisfy Ccm whenever the prefix of S0 does. Along this

research direction, Bonchi and Lucchese [3] exploited

‘‘tough’’ constraints involving the aggregate functions

variance and standard deviation.

Besides the aforementioned domain and aggregate

constraints, the user can also express his interest by

specifying other constraints. For example, Srikant et al.

[14] considered item constraints that allow the user to

impose a Boolean expression over the presence or

absence of items in the itemset. Gade et al. [5] mined

closed frequent itemsets that satisfy block constraints,

which determine the significance of an itemset S by

considering the dense blocks formed by items within S

and by transactions associating with S. Yun and Leggett

[15] proposed an algorithm for mining weighted

frequent itemsets with length decreasing support

constraints.

Frequent Itemset Mining with Constraints F 1183

F

Key Applications
Frequent itemset mining – with or without constraints –

plays an essential role in the mining of various patterns

and relationships, which include maximal itemsets,

closed itemsets, association rules, correlation, causality,

sequential patterns, episodes, partial periodicity,

emerging patterns, as well as frequent structures and

trends. Moreover, frequent itemset mining is also useful

in many data mining tasks such as associative classifica-

tion, outlier detection, iceberg-cube computation, and

streammining. The knowledge discovered from frequent

itemset mining can reveal important information in

many real-life applications. Examples of these applica-

tions include market basket analysis (e.g., modeling of

customer purchase behaviors, customer targeting, shelv-

ing, sales promotion), bioinformatics (e.g., order-

preserving clustering of microarray data), Web mining

(e.g., mining of Web contents, Web structures, or Web

usages), mining for software reliability (e.g., software

bug mining), as well as network management and intru-

sion detection (e.g., finding frequent routing paths,

detecting signatures for intrusions).
Data Sets
Data sets commonly used for experimental evaluation

for frequent itemset mining with constraints are simi-

lar to those used for frequent itemset mining without

constraints. These data sets include the following:

1. IBM synthetic data generated by a data generator

program developed at the IBM Almaden Center [2]

(www.almaden.ibm.com/cs/projects/iis/hdb/Pro-

jects/data_mining/datasets/syndata.html)

2. Data from the UCI Machine Learning Repository

(archive.ics.uci.edu/ml/)

3. Data from the Frequent Itemset Mining Dataset

Repository (fimi.cs.helsinki.fi/data/)

4. Real-world data sets from the KDD Cup 2000,

where the data sets contain purchase data from a

real online retailer (www.sigkdd.org/kddcup/index.

php?section=2000&method=task).
Cross-references
▶Approximation of Frequent Itemsets

▶Association Rule Mining on Streams

▶Classification by Association Rule Analysis

▶Closed Itemset Mining and Non-redundant Associ-

ation Rule Mining
▶Data Mining

▶ Frequent Itemsets and Association Rules

▶ Sequential Patterns

▶ Stream Mining
Recommended Reading
1. Agrawal R., Imielinski T., and Swami A. Mining association rules

between sets of items in large databases. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2003, pp. 207–216.

2. Agrawal R. and Srikant R. Fast algorithms for mining association

rules. In Proc. 20th Int. Conf. on Very Large Data Bases, 1994,

pp. 487–499.

3. Bonchi F. and Lucchese C. Pushing tougher constraints in fre-

quent pattern mining. In Advances in Knowledge Discovery and

Data Mining, 9th Pacific-Asia Conf., 2005, pp. 114–124.

4. Bucila C., Gehrke J., Kifer D., and White W. DualMiner: a dual-

pruning algorithm for itemsets with constraints. In Proc. 8th

ACM SIGKDD Int. Conf. on Knowledge Discovery and Data

Mining, 2002, pp. 42–51.

5. Gade K., Wang J., and Karypis G. Efficient closed pattern mining

in the presence of tough block constraints. In Proc. 10th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,

2004, pp. 138–147.

6. Grahne G., Lakshmanan L.V.S., and Wang X. Efficient mining of

constrained correlated sets. In Proc. 16th Int. Conf. on Data

Engineering, 2000, pp. 512–521.

7. Han J., Pei J., and Yin Y. Mining frequent patterns without

candidate generation. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2000, pp. 1–12.

8. Lakshmanan L.V.S., Leung C.K.-S., and Ng R.T. Efficient dy-

namic mining of constrained frequent sets. ACM Trans. Data-

base Syst., 28(4):337–389, 2003.

9. Lakshmanan L.V.S., Ng R., Han J., and Pang A. Optimization of

constrained frequent set queries with 2-variable constraints. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1999,

pp. 157–168.

10. Leung C.K.-S., Lakshmanan L.V.S., and Ng R.T. Exploiting suc-

cinct constraints using FP-trees. ACM SIGKDD Explor.,

4(1):40–49, 2002.

11. Ng R.T., Lakshmanan L.V.S., Han J., and Pang A. Exploratory

mining and pruning optimizations of constrained associations

rules. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1998, pp. 13–24.

12. Pei J. and Han J. Can we push more constraints into frequent

pattern mining? In Proc. 6th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, 2000, pp. 350–354.

13. Pei J., Han J., and Lakshmanan L.V.S. Mining frequent item sets

with convertible constraints. In Proc. 17th Int. Conf. on Data

Engineering, 2001, pp. 433–442.

14. Srikant R., Vu Q., and Agrawal R. Mining association rules with

item constraints. In Proc. 3rd Int. Conf. on Knowledge Discov-

ery and Data Mining, 1997, pp. 67–73.

15. Yun U. and Leggett J. WLPMiner: weighted frequent pattern

mining with length-decreasing support constraints. In Advances

in Knowledge Discovery and Data Mining, 9th Pacific-Asia

Conf., 2005, pp. 555–567.

1184F Frequent Itemsets and Association Rules
Frequent Itemsets and Association
Rules

HONG CHENG, JIAWEI HAN

University of Illinois at Urbana-Champaign, Urbana,

IL, USA

Synonyms
Frequent Patterns; Large Itemsets

Definition
Let I ={ i1,i2,...,in} be a set of items, and DB ={ T1,T2,...,

Tm} be a transaction database, where Ti (i 2 [1...m]) is

a transaction containing a set of items in I. The support

(or occurrence frequency) of an itemset A, where A is a

set of items from I, is the number of transactions

containing A in DB. An itemset A is frequent if A’s

support is no less than a user-specified minimum

support threshold y. An itemset A which contains k

items is called a k-itemset.
Historical Background
Frequent itemset mining was first proposed by Agrawal

et al. [2] for market basket analysis in the context of

association rule mining. It analyzes customer buying

habits by finding associations between the different

items that customers place in their ‘‘shopping baskets.’’

For instance, if customers are buying milk, how likely

are they going to also buy cereal (and what kind of

cereal) on the same trip to the supermarket? Such

information can lead to increased sales and maximize

the profit by helping retailers do selective marketing

and arrange their shelf space.

Since there are usually a large number of distinct

single items in a typical transaction database, and their

combinations may form a very huge number of item-

sets, it is challenging to develop scalable methods for

mining frequent itemsets in a large transaction data-

base. The first frequent itemset mining algorithm was

Apriori, proposed by Agrawal and Srikant [3]. An

interesting downward closure property, called Apriori

property, was observed: A k-itemset is frequent only if

all of its sub-itemsets are frequent. This implies that

frequent itemsets can be mined by first scanning the

database to find the frequent 1-itemsets, then using the

frequent 1-itemsets to generate candidate frequent

2-itemsets, and check against the database to obtain

the frequent 2-itemsets. This process iterates until no
more frequent k-itemsets can be generated for some k.

This is the essence of the Apriori algorithm.

Scientific Fundamentals
In many cases, the Apriori algorithm significantly

reduces the size of candidate sets using the Apriori

principle. However, it can suffer from two nontrivial

costs: (i) generating a huge number of candidate sets,

and (ii) repeatedly scanning the database and checking

the candidates by pattern matching.

Han et al. [10] devised an FP-growth method that

mines the complete set of frequent itemsets without

candidate generation. FP-growth works in a divide-

and-conquer way. The first scan of the database derives

a list of frequent items in which items are ordered in

frequency-descending order. According to the frequency-

descending list, the database is compressed into a

frequent-pattern tree, or FP-tree, which retains the

itemset association information.

An example database from [10] is shown in Table 1

and the corresponding FP-tree is shown in Fig. 1. In

this way, the problem of mining frequent patterns in

databases is transformed to that of mining the FP-tree.

The FP-tree is mined by starting from each frequent

length-1 pattern (as an initial suffix pattern), con-

structing its conditional pattern base (a ‘‘subdatabase,’’

which consists of the set of prefix paths in the FP-tree

co-occurring with the suffix pattern), then constructing

its conditional FP-tree, and performing mining recur-

sively on such a tree. The pattern growth is achieved by

the concatenation of the suffix pattern with the frequent

patterns generated from a conditional FP-tree. Continue

with the example in [10], Fig. 2 shows the recursive

mining process on the conditional FP-tree of itemm. It

derives three frequent patterns (am : 3), (cm : 3) and

(fm : 3). Recursive calls of the FP-growth algorithm

construct the conditional FP-trees of am, cm and fm

(the conditional FP-tree of fm is empty in this exam-

ple) respectively. The recursive mining process on

these conditional FP-trees is shown in Fig. 2.

The FP-growth algorithm transforms the problem

of finding long frequent patterns to searching for

shorter ones recursively and then concatenating the

suffix. It uses the least frequent items as a suffix, offer-

ing good selectivity. Performance studies demonstrate

that the method substantially reduces search time.

Both the Apriori and FP-growth methods mine

frequent patterns from a set of transactions in horizon-

tal data format (i.e., {TID: itemset}), where TID is a

Frequent Itemsets and Association Rules F 1185
transaction-id and itemset is the set of items bought in

the transaction TID. Alternatively, mining can also be

performed with data presented in vertical data format

(i.e., {item: TID_set}).

Zaki [20] proposed Eclat (Equivalence CLASS

Transformation) algorithm by exploring the vertical
Frequent Itemsets and Association Rules. Table 1.

Example transaction database D, y = 3

TID Items bought (Ordered) frequent items

100 f,a,c,d,g,i,m,p f,c,a,m,p

200 a,b,c,f,l,m,o f,c,a,b,m

300 b,f,h,j,o f,b

400 b,c,k,s,p c,b,p

500 a,f,c,e,l,p,m,n f,c,a,m,p

Frequent Itemsets and Association Rules. Figure 1.

The FP-tree for database in Table 1.

Frequent Itemsets and Association Rules. Figure 2. Mining

F

data format. The first scan of the database builds the

TID_set of each single item. Starting with a single item

(k = 1), the frequent (k + 1)-itemsets grown from a

previous k-itemset can be generated according to the

Apriori property, with a depth-first computation order

similar to FP-growth [10]. The computation is done by

intersection of the TID_sets of the frequent k-itemsets

to compute the TID_sets of the corresponding (k + 1)-

itemsets. This process repeats, until no frequent item-

sets or no candidate itemsets can be found.

Besides taking advantage of the Apriori property in

the generation of candidate (k + 1)-itemset from fre-

quent k-itemsets, another merit of this method is that

there is no need to scan the database to find the

support of (k + 1)-itemsets (for k � 1). This is because

the TID_set of each k-itemset carries the complete

information required for counting such support.

There are many alternatives and extensions on fre-

quent itemset mining, e.g., hashing technique [14],

partitioning technique [16], sampling approach [18],

dynamic itemset counting [4], and so on. A FIMI

(Frequent Itemset Mining Implementation) workshop

dedicated to the implementation methods of frequent

itemset mining was reported by Goethals and Zaki [9].

Key Applications

Association and Correlation Analysis

Frequent itemset mining naturally leads to the discov-

ery of associations and correlations among items in

large transaction data sets. The concept of association

rule was introduced together with that of frequent

itemset [2]. An association rule r takes the form of

a → b, where a and b are itemsets, and a \ b = f.
support and confidence are two measures of rule
the conditional FP-tree for item m.

1186F Frequent Itemsets and Association Rules
interestingness, where support(r) = support(a [b) and
confidenceðrÞ ¼ supportða[bÞ

supportðaÞ for a rule r.

Sometimes, an association rule may not be inter-

esting, especially when mining at a low support thresh-

old or mining for long patterns. To mine interesting

rules, a correlation measure has been used to augment

the support-confidence framework of association

rules. This leads to the correlation rules of the form

a) b[support,confidence,correlation]. There are vari-

ous correlation measures including lift, w2, cosine and
all_confidence.

Frequent Pattern-based Classification and Clustering

Frequent itemsets have been demonstrated to be useful

for classification, where association rules are generated

and analyzed for use in classification [6,11,13]. The

general idea is that strong associations between fre-

quent patterns and class labels can be discovered.

Then the association rules are used for prediction. In

many studies, associative classification has been found

to be more accurate than some traditional classifica-

tion methods, such as C4.5.

Cluster analysis in high-dimensional space is a

challenging problem. Since it is easy to compute fre-

quent patterns in subsets of high dimensions, it pro-

vides a promising direction for high-dimensional

subspace clustering. Two algorithms CLIQUE [1] and

ENCLUS [5] were proposed, both of which used the

Apriori property to mine interesting subspaces.

Biological Data Analysis

An important experimental application of frequent

itemsets is the exploration of gene expression data,

where the joint discovery of both the set of conditions

that significantly affect gene regulation and the set of

co-regulated genes is of great interest. Wang et al.

proposed pCluster [15], a pattern similarity-based

clustering method for microarray data analysis, and

demonstrated its effectiveness and efficiency for

finding subspace clusters in high-dimensional space.

Cong et al. [7] proposed to discover top-k covering

rule groups for each row of gene expression profiles. It

uses a row enumeration technique and introduces sev-

eral pruning strategies to make the rule mining process

very efficient. A classifier is constructed from the top-k

covering rule groups.

Web Mining and Software Bug Mining

Frequent itemset mining can also be applied to other

application domains like Web and software debugging.
Association rules discovered for pages that are often

visited together can reveal user groups [8] and cluster

web pages. Web access patterns via association rule

mining in web logs were proposed in [15,17].

Frequent pattern mining has started playing an

important role in software bug detection and analysis.

PR-Miner [12] uses frequent itemset mining to extract

application-specific programming rules from source

code. A violation of these rules might indicate a poten-

tial software bug.

Future Directions
First, the set of frequent itemsets derived by most of

the current mining methods is too huge for effective

usage. The bottleneck of frequent itemset mining is

not on whether users can derive the complete set of

frequent patterns under certain constraints efficiently

but on whether they can derive a compact but high

quality set of patterns that are most useful in applica-

tions. There are proposals on reduction of such a

huge set, including closed patterns, maximal patterns,

approximate patterns, condensed pattern bases, rep-

resentative patterns, etc. However, it is still not clear

what kind of patterns will give satisfactory pattern

sets in both compactness and representative quality

for a particular application. Much research is still

needed to substantially reduce the size of derived

pattern sets and enhance the quality of retained

patterns.

Second, although there are efficient methods for

mining precise and complete set of frequent itemsets,

approximate frequent patterns could be the best choice

to handle noise or variations in many applications

such as bioinformatics. How to define the approximate

constraint and design efficient mining algorithms is an

open question. Much research is still needed to make

such mining effective and efficient.

Third, to make frequent itemset mining an essen-

tial task in data mining, much research is needed to

further develop pattern-based mining methods. For

example, classification is an essential task in datamining.

How to construct a better classification model using

frequent patterns than most other classification meth-

ods? What kind of frequent patterns are more effective

and discriminative than other patterns? How to mine

such patterns directly from data? These questions need

to be answered before frequent patterns can play an

essential role in several major data mining tasks, such

as classification.

Frequent Partial Orders F 1187

F

Experimental Results
In general, for every proposed method, there is

an accompanying experimental evaluation in the

corresponding reference. In addition, [9] in FIMI

workshop provided a detailed and comprehensive ex-

perimental evaluation of many mining methods on a

large set of benchmark data.

Data Sets
An IBM Quest synthetic data generator is avail-

able at http://www.almaden.ibm.com/cs/projects/iis/

hdb/Projects/data_mining/datasets/syndata.html.

A large collection of real datasets can be found at

http://fimi.cs.helsinki.fi/data/.
URL to Code
FIMI workshop website (http://fimi.cs.helsinki.fi/src/)

contains the code for many different frequent itemset

mining methods.
Cross-references
▶Approximation of Frequent Itemsets

▶Association Rule Mining on Streams

▶Closed Itemset Mining and Non-redundant Associ-

ation Rule Mining

▶ Frequent Graph Patterns

▶Mase-pattern Mining

▶ Sequential Patterns
Recommended Reading
1. AgrawalR., Gehrke J., Gunopulos D., and Raghavan P. Automatic

subspace clustering of high dimensional data for datamining appli-

cations. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1998, pp. 94–105.

2. Agrawal R., Imielinski T., and Swami A. Mining association rules

between sets of items in large databases. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1993, pp. 207–216.

3. Agrawal R. and Srikant R. Fast algorithms for mining association

rules. In Proc. 20th Int. Conf. on Very Large Data Bases, 1994,

pp. 487–499.

4. Brin S., Motwani R., Ullman J.D., and Tsur S. Dynamic itemset

counting and implication rules for market basket analysis. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1997,

pp. 255–264.

5. Cheng C.-H., Fu A.W., and Zhang Y. Entropy-based subspace

clustering for mining numerical data. In Proc. 5th ACM SIG-

KOD Int. Conf. on Knowledge Discovery and Data Mining,

1999, pp. 84–93.

6. Cheng H., Yan X., Han J., and Hsu C. Discriminative frequent

pattern analysis for effective classification. In Proc. 23rd Int.

Conf. on Data Engineering, 2007, pp. 716–725.
7. Cong G., Tan K.-L., Tung A.K.H., and Xu X. Mining top-k

covering rule groups for gene expression data. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2005,

pp. 670–681.

8. Eirinaki M. and Vazirgiannis M. Web mining for web persona-

lization ACM Trans. Int. Tech., 3:1–27, 2003.

9. Goethals B. and Zaki M. An introduction to workshop on

frequent itemset mining implementations. In Proc. ICDM’03

International Workshop on Frequent Itemset Mining Imple-

mentations, 2003, pp. 1–13.

10. Han J., Pei J., and Yin Y. Mining frequent patterns without

candidate generation. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2000, pp. 1–12.

11. Li W., Han J., and Pei J. CMAR: Accurate and efficient classifica-

tion based on multiple class-association rules. In Proc. 2001

IEEE Int. Conf. on Data Mining, 2001, pp. 369–376.

12. Li Z. and Zhou Y. PR-Miner: automatically extracting implicit

programming rules and detecting violations in large software

code. In Proc. ACM SIGSOFT Symp. on Foundations Software

Eng., 2005, pp. 306–315.

13. Liu B., Hsu W., and Ma Y. Integrating classification and associa-

tion rule mining. In Proc. 4th Int. Conf. on Knowledge Discov-

ery and Data Mining, 1998, pp. 80–86.

14. Park J.S., Chen M.S., and Yu P.S. An effective hash-based algo-

rithm for mining association rules. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1995, pp. 175–186.

15. Pei J., Han J., Mortazavi B.-A., and Zhu H. Mining access

patterns efficiently from web logs. In Advances in Knowledge

Discovery and Data Mining, 4th Pacific-Asia Conf., 2000,

pp. 396–407.

16. Savasere A., Omiecinski E., and Navathe S. An efficient algo-

rithm for mining association rules in large databases. In Proc.

21st Int. Conf. on Very Large Data Bases, 1995, pp. 432–443.

17. Srivastava J., Cooley R., Deshpande M., and Tan P. Web usage

mining: discovery and applications of usage patterns from web

data. SIGKDD Explor., 1:12–23, 2000.

18. Toivonen H. Sampling large databases for association rules. In

Proc. 22nd Int. Conf. on Very Large Data Bases, 1996, pp.

134–145.

19. Wang H., Wang W., Yang J., and Yu P.S. Clustering by

pattern similarity in large data sets. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2002, pp. 418–427.

20. Zaki M.J. Scalable algorithms for association mining. IEEE

Trans. Knowl. Data Eng., 12:372–390, 2000.
Frequent Partial Orders

ANTTI UKKONEN

Helsinki University of Technology, Helsinki, Finland

Definition
Given a set D of n partial orders on S, and a threshold

s� n, a partial order P is a frequent partial order (FPO)

1188F Frequent Partial Orders
if it is compatible with more than s partial in

D. Typically D contains total orders either on S or

arbitrary subsets of S.

Historical Background
A natural extension of association rule mining is

to make use of temporal information. This was first

done in [1], where the authors present algorithms for

mining frequently occurring sequences of sets of items in

a database of transactions. Each of such sequences can

be seen as a partial order on the complete set of items.

For more recent work on the same topic please see

[13,812]. The slightly different problem of mining fre-

quent episodes from a sequence of events is presented in

[7]. In this case an episode is a partial order over the set

of all possible events. The problem differs from the one

of [1] by considering a stream of events (for example

notifications and alerts generated by devices in a tele-

communications network) instead of a stationary set

of transactions. The same problem is also discussed

e.g., in [4,5].

Common for the references above is that they do

not explicitly call the mined patterns partial orders.

One of the first papers to do so is [6], where the

authors discuss the problem of finding a number of

partial orders that are a good compact description for a

set of input sequences. The approach taken differs

from the traditional setting of frequent pattern mining,

however. A similar problem is addressed recently in

[3], albeit in a more theoretical setting.

The problem of finding frequent partial orders as

defined in this article was first addressed in [9,10]. The

authors present an efficient algorithm for finding fre-

quent closed partial orders (The term closed appears in

the same meaning as in the context of frequent closed

itemsets.) in a database of strings with the restriction

that each symbol of the alphabet may occur only once

or not at all in a string.

Foundations
The basic idea of frequent pattern mining can be

formalized as follows: given a database D, a pattern

class P and a threshold s, find all instances of P that

are supported by more than s rows of D. The precise

definition of a support depends on the contents of D

and the pattern class P. In case of frequent partial

orders the pattern class is the set of all partial orders

on some fixed set S, and the database can contain

either total or partial orders on S. All orders in D that
are compatible with the partial order P form the sup-

port of P, denoted s(P). Given D and a threshold s, the
problem is to find all partial orders P so that js(P)j� s.

A pattern is closed if it can not be augmented

without decreasing the size of its support. According

to this definition the partial order P is closed in the

database D if js(P [(u, v))j < js(P)j for all u, v 2 S. It

can be argued that finding only the frequent closed

patterns is of interest, as the non-closed ones contain

less information but can be considered only equally

‘‘reliable,’’ as they have the same support as a closed

pattern. In the remainder of this section two methods

for finding frequent closed partial orders are discussed.

The first one is based on using existing algorithms for

mining frequent closed itemsets, while the second one is

a dedicated method for finding frequent partial orders.

Finding Frequent Closed Partial Orders Using Frequent

Itemset Mining Algorithms

Since its original development in the early 1990s, asso-

ciation rule mining and especially the discovery of

frequent itemsets has been a widely studied topic. As

a result, there currently exist a myriad of efficient

algorithms for mining frequent closed itemsets. Turns

out that any of these can be used to find frequent

closed partial orders if the input is in a suitable format.

Let D contain total orders on S. Usually each total

order T 2 D is given as a list of symbols. For example,

let T = ha, b, c, d, ei, meaning that a comes first in T, b

comes second, and so on. This is the list representation

of T, which is a compact and intuitive way of repre-

senting total orders, but can not as such be used with

frequent itemset mining algorithms, because they only

consider the occurrence of a symbol and not their

position relative to the other symbols in the list.

Any order relation can also be expressed as a set

of ordered pairs (u, v). The pair (u, v) belongs to T

when u appears before v in the list representation of T.

Returning to the example, the set representation of T is

T ¼ fða; bÞ; ða; cÞ; ða; dÞ; ða; eÞ; ðb; cÞ; ðb; dÞ; ðb; eÞ;
ðc; dÞ; ðc; eÞ; ðd; eÞg:

This differs from the list representation by having pairs

of symbols instead of single symbols as ‘‘items.’’ Thus,

if two total orders have the same pair (u, v), they must

agree on the order between u and v.

Given a database D of total orders in the list repre-

sentation, each member of D is converted to the set

Frequent Partial Orders F 1189

F

representation. The resulting database is denoted D̂.

Each row of D̂ is a set of (u, v) pairs that form a total

order T 2 D. This representation of the input has the

consequence that every closed itemset (set of (u, v)

pairs) that is frequent in D̂ given the threshold s can

in fact be interpreted as a frequent closed partial order.

An itemset I is closed if no more items can be added

to I without decreasing the size of its support.

Note that it is important to find the frequent closed

itemsets, as a frequent itemset might not correspond

to a partial order. The closedness guarantees that the

resulting sets of (u, v) pairs form a transitive relation,

which is required of a partial order.

Using the set representation for finding frequent

partial orders works, but it has some drawbacks.

First of all, the storage requirements for D̂ are much

larger than for D, as each total order with a list repre-

sentation of l symbols must be replaced with a set

containing 1
2
lðl � 1Þ elements. In addition, D̂ might

not be sparse, meaning the number of items in each

row (total order) is not necessarily small when com-

pared to the total number of items. This in turn may

lead to poor performance of the frequent itemset

mining algorithms.

The most important problem with the above ap-

proach is, however, that in general a complete partial

order P is not required. Very often it is sufficient to

find its transitive reduction tr(p). All of the ordering

information contained in P is retained in tr(p), which

is better suited for analysis purposes. For example,

when visualizing partial orders as directed acyclic

graphs, it is in general better to use tr(p). Obviously

the transitive reduction can be computed afterwards

given the frequent itemsets, but this is another compu-

tationally intensive step. Also, frequent partial orders

can be found more efficiently when the transitive

reduction is mined directly.

Finding Transitive Reductions of Frequent Closed Partial

Orders Directly

Details of the approach are given in [10], this is only

a summarization of the key ideas. This algorithm

(called Frecpo in [10]) operates directly on the list

representations in D and returns the set of the transi-

tive reductions of all closed partial orders that are

frequent in D given the threshold s.
The basic framework is based on enumerating

all representations of transitive reductions of partial

orders in a depth-first fashion using a recursive
algorithm. All closed partial orders that can not be

frequent are pruned as soon as possible. The pruning

is based on the observation that the frequency of the

partial order P [(u, v) is upper bounded by the

frequency of P. In general this is called antimonotonicity

of a pattern.

When entering a recursive call the algorithm has

already constructed a frequent partial order P in the

previous steps. This is called the current pattern,

which is initially Ø. The algorithm first computes a list

L of pairs that are added to P one after the other to

create a new frequent partial order. For a pair (u, v) to be

included in this list it must (i) belong to a transitive

reduction and (ii) the frequency of the pattern P [(u, v)

must be above the threshold s. When computing this

list the algorithm only considers total orders that be-

long to the support of the current pattern P, denote this

with DP. Initially DP = D.

To construct the list L, the algorithm computes

a table called the detection matrix. In this matrix for

each pair (u, v) is stored the number of times u pre-

cedes v in DP , and the set of items that appear between

u and v in every total order where u precedes v.

These items are called anchors. The frequency informa-

tion can be used to prune infrequent pairs. If the

frequency of the pair (u, v) is below s in DP, the partial

order P [(u, v) can not be frequent either. However, if

the frequency of (u, v) is above s in DP, then P [(u, v)

must be a frequent partial order as well.

The set of anchors is used to identify forbidden

pairs. A pair is forbidden if it’s set of anchors is not

empty. This is because a pair (u, v) can not belong to

the transitive reduction if an item (the anchor) occurs

between u and v in every total order where u and v

occur. All pairs that are not infrequent or forbidden are

added to the list L.

For details of the algorithm the reader is referred

to [10], where it is also shown experimentally that

Frecpo outperforms the algorithm based on frequent

itemset mining by a considerable margin.

Key Applications
Frequent partial orders can be of interest in any appli-

cation where the data can be viewed as a set of orders

(or rankings) of some finite set.

For example, in certain voting systems the voters

do not only place a single vote on one candidate, but

are expected to rank the alternatives (or a subset there-

of) according to their preferences. This voting

1190F Frequent Pattern Mining with Constraints
mechanism is employed for instance in the general

election of Ireland. Finding FPOs of the candidates

from this data can give more insight to the behavior

of voters than traditional opinion polls. Preference

data in general is a natural application for FPOs.

Such data can be based on questionnaires, but also

other sources.

A related application is clickstream analysis. Based

on server log files it is possible to reconstruct the

sequence in which a user visited different pages of a

website. Finding FPOs from these sequences can give

information about user preferences (if the pages corre-

spond to different products, for example) or potential

usability problems associated with navigation on the

website in question.

Another promising application is in bioinformatics

in the context of gene expression analysis. A gene

expression data set usually contains expression levels

of several genes in a number of conditions or tissues.

Instead of looking at the actual expression value, which

can be very noisy, the conditions or tissues can be

ranked in decreasing order of expression and use the

resulting rankings for further analysis. In this case the

FPOs can be seen as a generalization of the order

preserving submatrices, originally proposed in [2].
Cross-references
▶ Frequent Itemsets and Association Rules

▶ Sequential Patterns
Recommended Reading
1. Agrawal R. and Srikant R. Mining sequential patterns. In Proc.

11th Int. Conf. on Data Engineering, 1995, pp. 3–14.

2. Ben-Dor A., Chor B., Karp R., and Yakhini Z. Discovering

Local Structure in Gene-Expression Data: The Order Preserving

Submatrix Problem. In Proc. 6th Annual Int. Conf. on Compu-

tational Biology, 2002, pp. 49–57.

3. Fernandez P.L., Heath L.S., Ramakrishnan N., and Vergara J.P.

Reconstructing Partial Orders from Linear Extensions. In Proc.

4th SIGKDD Workshop on Temporal Data Mining: Network

Reconstruction from Dynamic Data, 2006.

4. Gwadera R., Atallah M.J., and Szpankowski W. Reliable

Detection of Episodes in Event Sequences. In Proc. 2003 IEEE

Int. Conf. on Data Mining, 2003, pp. 67–74.

5. Laxman S., Sastry P.S., and Unnikrishnan K.P. A fast algorithm

for finding frequent episodes in event streams. In Proc. 13th

ACM SIGKDD Int. Conf. on Knowledge Discovery and Data

Mining, 2007, pp. 410–419.

6. Mannila H. and Meek C. Global Partial Orders from Sequential

Data. In Proc. 6th ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining, 2000, pp. 161–168.
7. Mannila H., Toivonen H., and Verkamo I. Discovering frequent

episodes in sequences. In Proc. 1st Int. Conf. on Knowledge

Discovery and Data Mining, 1995, pp. 210–215.

8. Pei J., Han J., Mortazavi-Asl B., Pinto H., Chen Q., Dayal U.,

and Hsu M.-C. PrefixSpan: Mining Sequential Patterns Effi-

ciently by Prefix-Projected Pattern Growth. In Proc. 17th Int.

Conf. on Data Engineering, 2001, pp. 215–224.

9. Pei J., Liu J., Wang H., Wang K., Yu P.S., and Wang J. Efficiently

Mining Frequent Closed Partial Orders. In Proc. 2005 IEEE Int.

Conf. on Data Mining, 2005, pp. 753–756.

10. Pei J., Wang H., Liu J., Wang K., Wang J., and Yu P.S. Discovering

frequent closed partial orders from strings. IEEE Trans. Knowl.

Data Eng., 18(11):1467–1481, 2006.

11. Wang J. and Han J. BIDE: Efficient Mining of Frequent Closed

Sequences. In Proc. 19th Int. Conf. on Data Engineering, 2003,

pp. 79–90.

12. Yan X., Han J., and Afshar R. CloSpan: Mining Closed Sequential

Patterns in Large Datasets. In Proc. SIAM International Confer-

ence on Data Mining, 2003, pp. 166–177.

13. Zaki M. SPADE: an efficient algorithm for mining frequent

sequences. Mach. Learn. J., 42(1/2):31–60, 2000.
Frequent Pattern Mining with
Constraints

▶ Frequent Itemset Mining with Constraints
Frequent Patterns

▶ Frequent Itemsets and Association Rules
Frequent Set Mining with
Constraints

▶ Frequent Itemset Mining with Constraints
Frequent Subsequences

▶ Sequential Patterns
Freshness Control

▶Replica Freshness

Fully-Automatic Web Data Extraction F 1191
Full Text Inverted Index

▶ Inverted Files
F

Fully-Automatic Web Data
Extraction

CAI-NICOLAS ZIEGLER

Siemens AG, Munich, Germany

Synonyms
Web content extraction; Automatic wrapper induc-

tion; Web information extraction

Definition
Web documents contain abundant hypertext markup

information, both for indicating structure as well as for

giving page rendering hints, next to informative textual

content. Fully-automatic Web data extraction is geared

towards extracting all relevant textual information

from HTML documents, without requiring human

intervention throughout the process. Commonly, two

types of automatic Web extraction paradigms are dis-

tinguished in this vein. First, the extraction of one

single block of informative content, e.g., in case of

news pages, which is also referred to as page cleaning

[4]. Second, the extraction of recurring patterns across

multiple blocks, typically the case for the extraction of

search engine results. In the latter case, the extraction

system will commonly also assign labels to the single

atoms of each identified recurring block, such as the

search result record’s title, snippet, and URL.
Historical Background
Systems for extracting information from Web pages

date back to the late mid-nineties. First approaches,

coined wrapper induction systems [6], extracted

structured information from HTML documents in a

semi-automated fashion, see, e.g., [1] and [9]. A wrap-

per hereby refers to a set of learned rules that extract

structured information records from HTML pages of

like style, i.e., dynamically generated pages for which

the same template has been used. One may think of

two product pages from Amazon.com as an example.

The rules have been learned inductively, by means of

humans labeling a sufficient number of pages.
While these wrapper induction systems have been

continuously improved to require less human inter-

vention and less time for designing wrappers, they still

do not scale to efforts that require the extraction of

massive amounts of information from diverse types

of Web document sources: Even with an effort of

only five minutes per site template, coping with several

thousands of those requires too many human resources

for most project budgets.

Two areas have been identified where extraction

works in a fully-automated fashion, the first referring

to the extraction of results from any type of search

engine, such as Web search engines like Google and

Yahoo, product finders as they are found on Amazon

and friends, and so forth. These systems are able to

automatically generate wrappers as they exploit the

fact that search result pages commonly feature large

numbers of recurring patterns. Moreover, these

automated search engine result wrappers also assign

labels to the components of each entry found, such as

the title of the search result snippet, the URL, and

body text.

A second breed of automated page wrappers has

evolved at the end of the nineties. Theses wrappers aim

at extracting the purely informative content from Web

pages, particularly news Web pages. As opposed to the

automated search engine result wrappers, no labels are

assigned to the different blocks of information. Hence,

the generated output is commonly one single plain text

document which contains the informative textual con-

tent only. Extractors of informative textual content

have also been referred to as ‘‘page cleaners’’ [1].

Foundations
For the extraction of informative content from Web

pages, also referred to as Web page cleaning [1], a

broad range of diverse techniques has been investi-

gated. Some systems use simple heuristics (see, e.g.,

[1] and [5]) and obtain accuracy scores that are rea-

sonably good. For example, such heuristics comprise

of rules that take into account the number of charac-

ters and text tokens which occur in one cohesive tex-

tual block [1]. Other approaches compute a set of

features for each text block and implement a decision

function which tells whether to discard or keep the

block at hand. Such approaches are depicted in

[1,6,7]. The respective decision functions are learned

by means of non-linear optimization methods or com-

mon classifier training [7].

Fully-Automatic Web Data Extraction. Figure 1. The

approach of Kovacevic et al. [5] segments an HTML page’s

visual representation into five regions.

Fully-Automatic Web Data Extraction. Figure 2. Sample

search result entry (a) and its abstract shape (b), as used

in ViNTS [13].

1192F Fully-Automatic Web Data Extraction
Next to approaches that operate either on the

text level or logical structure of a Web page, e.g., its

DOM tree, the exploitation of visual cues has been

likewise researched: The location-based segmentation

approach described in [8] constructs an M-tree to rep-

resent the HTML document’s physical representation

as seen in the browser window. To this end, the browsers

screen coordinates of block segments are taken into

account. The screen is divided into five areas: header,

left and right menu, footer, and the center of the

page (see Fig. 1). Heuristics are used to assign HTML

blocks to the defined areas, the informative content is

assumed to reside in the center of the page.

For extracting recurring information blocks from

Web pages, in particular Web search engine results,

state-of-the-art wrapper generators also exploit visual

cues by analyzing an HTML page’s graphical represen-

tation as rendered by a Web browser engine [9,10].

ViNTs [10] automatically generates search result re-

cord extraction rules using visual context features and

tag structure information. To this end, ViNTS first

analyzes the graphical representation without consid-

ering the tag structure to identify content regularities

by means of so-called content lines (see Fig. 2 for a
content line typical of search results on Amazon).

Next, structural regularities among HTML blocks are

combined with these visual features to generate wrap-

pers. To weight the relevance of different extraction

rules, visual and non-visual features are considered.

The ViPER system [9] builds on similar techniques

as ViNTS, but extends its capabilities by not only allow-

ing to identify recurring blocks that are aligned vertically,

but also those aligned in a horizontal fashion. Horizon-

tally aligned search results are becoming increasingly

popular among online retailers, such as Overstock

(http://www.overstock.com). Next to the exploitation

of visual cues, ViPER used multiple sequence alignment

techniques, known from bio-informatics, to identify

structure and patterns in HTML tag sequences.

Key Applications
The extraction and automatic labeling of search results

sees its application in various domains, primarily

product-related data integration. For instance, price

robots access large numbers of online retail shops and

need to interpret search results for product searches

so as to digest and incorporate the found informa-

tion into their own databases. Moreover, meta search

engines also have an increasing demand for the auto-

mated extraction of search results, as their operation is

based on the merging of search results from several

hundreds of search engines, for which themanual design

of extraction wrappers is enormously time-consuming.

Moreover, manually crafted wrappers may break easily,

when the structural template of presented results

changes. Automatically generated search engine wrap-

pers are less prone to these deficiencies.

The extraction of informative content from arbi-

trary HTML documents serves many purposes. Clearly,

when used as processing step for Web search engines, it

can help to improve the precision of search results

dramatically, as only an HTML document’s informa-

tive content is considered for inclusion in the search

Functional Data Model F 1193

F

index. Pages where the search terms only occur in

non-informative content, such as an advertisement or

as part of a link list, are not considered as hits anymore.

Next to general-purpose search engines, the extrac-

tion of informative page content is likewise essential for

special-purpose applications based on retrieval, such as

reputation monitoring platforms [3,11]: These systems

record the number of mentions of monitored keywords,

such as company, brand, or product names, in order

to allow for timeline-based trend analysis. Citation

count numbers hence become more reliable, for the

same reasons as those stated for Web search engines.

Automated Web content extraction for page clean-

ing is also at the heart of the CLEANEVAL competition

(See http://cleaneval.sigwac.org.uk/ for details.), which

has become part of the ‘‘Web as Corpus’’ initiative

(WAC) as of May 2007. The objective of WAC is to

collect massive textual information from the Web in

order to use it for natural language processing (NLP)

and linguistic research, forming representative back-

ground corpora and language models.

Data Sets
For the CLEANEVAL competition, a dataset containing

both unlabeled documents (for testing purposes) and

labeled documents (for classifier training) can be

downloaded from the indicated URL. The relatively

new dataset is expected to serve as publicly accepted

benchmark in the future.

For automatic extraction of search engine results,

several smaller datasets are available, among those the

Omini dataset (Available from Sourceforge via http://

sourceforge.net/projects/omini/.) and MDR collection

[8]. None of them may count as standard dataset,

though.

Cross-references
▶GUIs for Web Data Extraction

▶ Information Extraction

▶ Information Filtering

▶Wrapper Induction
Recommended Reading
1. Crescenzi V., Mecca G., and Merialdo P. RoadRunner: towards

automatic data extraction from large web sites. In Proc. 27th Int.

Conf. on Very Large Data Bases, 2001, pp. 109–118.

2. Debnath S., Mitra P., and Giles C.L. Automatic extraction of

informative blocks from webpages. In Proc. ACM Symp. on

Applied Computing, 2005, pp. 1722–1726.
3. Glance N., Hurst M., Nigam K., Siegler M., Stockton R., and

Tomokiyo T. Deriving marketing intelligence from online dis-

cussion. In Proc. 11th ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining, 2005, pp. 419–428.

4. Hofmann K. and Weerkamp W. Web corpus cleaning using

content and structure. In Building and Exploring Web Corpora,

C. Fairon, H. Naerts, A. Kilgarrif, and G. de Schryver (eds.).

vol. 4, UCL, 2007, pp. 145–154.

5. Kovacevic M., Dilligenti M., Gori M., and Milutinovic V.

Recognition of common areas in a web page using a visualization

approach. In Proc. 10th Int. Conf. on Artificial Intelligence:

Methodology, Systems, and Applications, 2002, pp. 203–212.

6. Kushmerick N., Weld D., and Doorenbos R. Wrapper induction

for information extraction. In Proc. 15th Int. Joint Conf. on AI,

1997, pp. 119–128.

7. Lin S.H. and Ho J.M. Discovering informative content blocks

from web documents. In Proc. 8th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, 2002, pp. 588–593.

8. Liu B., Grossman R., and Zhai Y. Mining data records in web

pages. In Proc. 9th ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining, 2003, pp. 601–606.

9. Muslea I., Minton S., and Knoblock C. Hierarchical wrapper

induction for semistructured information sources. Auton.

Agent. Multi Agent Syst., 4(1–2):93–114, 2001.

10. Simon K. and Lausen G. ViPER: augmenting automatic infor-

mation extraction with visual perceptions. In Proc. Int. Conf. on

Information and Knowledge Management, 2005, pp. 381–388.

11. Ziegler C.N. and Skubacz M. Towards automated reputation and

brand monitoring on the web. In Proc. IEEE/WIC/ACM Int.

Conf. on Web Intelligence, 2006, pp. 1066–1070.

12. Ziegler C.N. and Skubacz M. Content extraction from news

pages using particle swarm optimization on an linguistic and

structural features. In Proc. IEEE/WIC/ACM Int. Conf. on Web

Intelligence, 2007, pp. 242–249.

13. Zhao H., Meng W., Wu Z., Raghavan V., and Yu C. Fully

automatic wrapper generation for search engines. In Proc. 14th

Int. World Wide Web Conference, 2005, pp. 66–75.
Fully Temporal Relation

▶Bitemporal Relation
Functional Data Model

PETER M. D. GRAY

University of Aberdeen, Aberdeen, UK

Definition
Functional Data Models are a form of Semantic Data

Model which appeared early in database history. They

use the mathematical formalism of function application

IS-EMPLOYEE HAS-SALARY

salaryemp-id name emp-id

Paul ‘‘Paul’’ Paul 19,000

Mary ‘‘Mary’’ Mary 22,000

John ‘‘John’’ John 19,000

...

1194F Functional Data Model
to represent and follow associations between data items.

Functions are usually applied to variables whose values

may be object identifiers or record instances. Thus

if P represents an entity instance of type Person, then

forename(P) would return a string (e.g., ‘‘Peter’’).

(Note however that different systems may write this

in a LISP style as (forename P) or in JAVA style as P.

forename.) The function town(P) could be used to

represent an association by returning the identifier for

Peter’s home town. This allows function composition so

that name(town(P)) = P.town.name = ‘‘Aberdeen’’.

Using functions gives several obvious advantages.

Firstly the syntax is universally understood, and pro-

vides a means of expressing schemas, queries and con-

straints independently of any supplier-dependent

language. This is very handy for integrating data held

in heterogeneous databases – one of the earliest appli-

cations [11]. Secondly, functional expressions follow

the rule of Referential transparency – expressions of

equal value can be substituted for variables without

altering the sense or value of the expression. This

avoids the problems of side-effects in nested procedure

calls found in programming languages. In conse-

quence, optimizing functional expressions is much

easier, as is parallel evaluation. In particular, the

whole mathematical theory of Comprehensions worked

out for functional programming can be applied to

Functional Query Languages.

Historical Background
Functions provided an underlying formalism for data

models from as early as Abrial’s access functions for

representing binary relationships between entities [1]

and Florentin’s property functions for representing the

attributes of entities [4].

Kerschberg and Pacheco’s Functional Model of Data

[8] integrated these two uses for functions, modeling

the universe of discourse by means of entity sets and

total functions. Entity sets are represented by labeled

nodes and functions by labeled arcs in a directed graph.

The main motivation for the Functional Model of

Data was ease of conceptual modeling, and [8] showed

how functional data models can be automatically

transformed into relational and CODASYL data mod-

els for implementation within a DBMS.

The Functional Model of Data was further devel-

oped by Sibley and Kerschberg in [14]. In this devel-

opment, the universe of discourse is again represented
by labeled nodes and arcs. The arcs are again total

functions, but the nodes are either entity sets or value

sets (as opposed to a single set of character strings, C).

A major motivation for this work was to derive a

general, unifying conceptual data model which could

then be specialized into either relational or CODASYL

data models.
At about the same time, Hammer and McLeod

proposed the Semantic Data Model [7], as a higher-

level model better suited to conceptual modelling of an

application domain. A key innovation of the Semantic

Data Model was the recognition of the importance of

entity attributes based on derived information. Ship-

man used functions to implement a Semantic Data

Model representing both data and derived information

in the very influential DAPLEX language [13]. It was

used to integrate a heterogeneous database network

MULTIBASE [11].

Following this came fore-runners ofObject-Oriented

Databases. The GENESIS query language [2] sup-

ported a functional data model and was intended as a

front end for DBMSs supporting either a relational or

nested relational data model. The PROBE database

system [3] supported the representation and manipu-

lation of arbitrarily complex objects by means of a

functional data model.

Foundations
The earliest functional data models were based on

binary relational data, where every relational table had

only two columns. The name of the table, considered as

a verb relating the two columns, became the function

name. One column was chosen to be the argument

and the other to be the result. Where possible, this is

done to make the function single-valued, as usual.

Consider two such tables representing facts such as

Paul is-employee ‘‘Paul’’

Mary is-employee ‘‘Mary’’

Functional Data Model F 1195

F

...

Paul has-salary 19000

Mary has-salary 22000

where each row refers to an individual employee and

the right-hand column entries for that employee give

their name and current salary respectively. Note that

Paul and Mary are surrogates for object-identifiers, in

order to make the example more readable.

A functional view could specify this information as

the functions

is-employee :: emp-id -> name

has-salary :: emp-id -> salary

Where the relationship is one-to-many, as for ex-

ample with

Paul has-child Jane

Paul has-child Sue

Paul has-child Norman

Mary has-child James

Then the function must return a set of emp-id.

Thus children(Paul) = {Jane,Sue,Norman} and chil-

dren(Mary) = {James}. Some values will be empty sets

e.g., children(John) ={}. Historically, only garbage-

collected languages (such as LISP and FP and Prolog)

could deal with such variable-length lists, and they did

not suit analysts used to the conventions of fixed-length

tables in Codd’s normal form! It was only gradually that

people realized that it was perfectly straightforward to

hold data in relational tables and to use the Functional

DataModel as a high-levelView on the same data. With

the coming of Java, one did not even have to use a

special purpose list processing language in order to

handle or print such values. Likewise, although some

implementations stored facts in a specially designed

triple store [9], it was not essential to do so. Interest-

ingly, such storage techniques are becoming favored

again for storing RDF triples of web data (see below).

Note that the functional approach is specifying in-

formation in smaller units, that is with a finer semantic

granularity than with a single n-ary table. Thus further

information can readily be added, such as the function:

line-manager :: emp-id -> emp-id

A powerful argument for the functional approach,

in addition to its greater flexibility, is that it facilitates

the incremental development of systems where the

schema evolves as more data is collected. Note also

the convenience with which one can ask who is the
line manager of a particular employee’s line manager,

by contrast with the SQL approach:

line-manager (line-manager(Paul))

instead of

SELECT L2.line-manager FROM line-manager

L1 L2

WHERE L1.emp-id = Paul AND L2.emp-id = L1.

line-manager

In the DAPLEX language, new abstract entities are

created by means of the directive A NEWand values of

base functions are assigned by means of the directive

LET. For example, to create a new Student of name

‘‘Fred Jones’’ who attends the Biology and Biochemis-

try courses:

FOR A NEW Student
BEGIN

LET Name(Student) = "Fred Jones"
LET Attends(Student) =

{THE CourseOfName("Biology"),
THE CourseOfName("Biochemistry")}
END

Note here the use of CourseOfName(Biology) in-

stead of just ‘‘Biology’’ as in a relational database. This

is because variables in DAPLEX can denote actual

object identifiers (as in Java, for example) whereas the

analogous values in relational database columns will be

foreign key values in order to identify the object. This is

a big difference from the relational model and is com-

mon to most functional data models.
Semantic Web Vision and RDFS

The semantic web vision is to enable rich machine

processing of web information sources. RDF stands

for Resource Description FrameWork Model, which

was first accepted by W3C as a Data Model described

in RDF Schema in February 1999. (http://www.w3.org/

TR/REC-rdf-syntax) A data interchange format is de-

fined using XML syntax with tags starting < rdf : to

encode subject–predicate–object triples. The predicate is

just a function name, for example has-salary.

Thus, RDF is not unlike the Entity-Relational data

model in its use of Entity identifiers as subject, and

Property or Relationship names as predicate in RDF

triples. However, it also includes features of object data

models in its use of object identifiers and subclasses.

This makes it very similar to the Functional DataModel.

1196F Functional Data Model
The comparison below is illuminating and shows how

schemas can be mapped between the two models.

Mapping a Functional Model to RDFS

The RDFS Data Model abstracts over relational stor-

age, flat files and object-oriented storage, following the

principle of data independence. Thus, it shares with

the Functional Data Model the advantage of not tieing

one to any particular storage system. This is a great

advantage to the programmer. The mapping to a par-

ticular knowledge source or data source can then take

place separately through a wrapper. This makes it very

much easier to integrate data from different sources, as

is often required over the Web.

Consider the following example [5], where the

functional data model schema of Fig. 1 is used to

describe the pc and os classes and their relationship

has_os in an application domain where components

are put together to configure a workable PC.

The Functional Data Model is, of course, an ex-

tended ER model and it can be automatically mapped

into an RDFS specification. A mapping program
Functional Data Model. Figure 2. RDFS (RDF Schema) repre

Functional Data Model. Figure 1. This functional schema sh

pc may have only one os installed. A double arrow means th
reads metadata from the database and generates the

corresponding RDFS, as in Fig. 2, making this knowl-

edge web-accessible. Related work by Risch [12] also

shows how RDFS resources can be integrated and

accessed by a functional query language. The basic

rules used when mapping the schema declarations to

RDFS are as follows:

� A class c defined as an entity (declared as c ->>

entity) maps to an RDF resource of type rdfs:

Class (where rdfs is the namespace prefix for the

RDFS descriptions).

� A class c declared to be a subtype of another class

s (declared as c ->>s) maps to an RDF resource of

type rdfs:Class, with an rdfs:subClassOf

property the value of which is the class named s.

� A function f declared on entities of class c, with

result type r (declared as f(c) ->r) maps to an RDF

resource of type rdf:Property with an rdfs:

domain of c and an rdfs:range of r.

Mapping a functional schema into RDFS has the

advantage of making the domain model available to
sentation of schema of Fig. 1.

ows three entity classes. The single arrow means that each

at a pc can have multiple hard-disk.

Functional Data Model F 1197

F

RDFS-ready software. Some semantic information is

lost, because the cardinality of each attribute is not

expressed in RDFS. Also information on the key of

each entity class is omitted. However, this information

could be represented by an extra metadata class

declared in RDFS.

Constraints

Integrity Constraints are a very important part of data

modelling. Sometimes this is just considered as part of

type checking or range checks on values, but in a

Semantic Data Model one can express constraints that

represent semantics applying to data in a particular

domain, that may not be obvious from a casual inspec-

tion of tables, or even from applying Data Mining

techniques. For example, in DAPLEX one can enforce

that all Students attend at least four courses:

DEFINE CONSTRAINT Number_of_courses

(Student) =>

COUNT(Attends(Student)) > 3

Comprehensions in P/FDM are also used to describe

the semantics of Integrity Constraints, representing

invariants that must be held true under updates. For

this purpose the nested loop syntax used in queries is

adapted, similarly to constraints in EFDM [10]:

constrain each t in seniortutor

eachs inadvisees(t) tohavegrade(s)>60;

This constrains each person in the class senior-

tutor to have only advisees with grades over 60. Both

universal(each) and existential(some) quantifiers are

allowed, in any combination. Such integrity con-

straints are particularly important in Functional Data

Models, since they provide a way to extend the data

model with rich semantics defined with the full power

of a Comprehension (like range-restricted FOL). By

contrast, SQL and relational languages are often re-

stricted to just providing range checks on data items.

Updating Functional Data

In DAPLEX, the value of a multi-valued function for a

particular argument can be modified by using the

built-in operators INCLUDE and EXCLUDE. For ex-

ample, to modify one of the courses attended by Fred

Jones from BioChemistry to Physiology:

FOR THE Student SUCH THAT Name
(Student) = "Fred Jones"
BEGIN
EXCLUDE Attends(Student) = THE

CourseOfName("BioChemistry")
INCLUDE Attends(Student) = THE

CourseOfName("Physiology")
END

It is immediately clear that the updating of functions

defining a functional database contradicts the basic

assumption of referential transparency. In a functional

database, the essence of a function is conveyed by its

name and its type, with which is associated its real-

world semantics, and not by its current mapping,

which will change as a result of database updates. The

function has-salary specifying a person’s salary as

used earlier is a case in point.

The partial loss of referential transparency due to

updates does not, however, alter the other considerable

advantages of functional programs: that they represent a

high-level, non-procedural but executable specification

of what is required, and enable programs to be created in

a top-down fashionwith local detail encapsulated within

the specification of the functions to which these details

relate. Moreover a functional program that does not

involve updates but accesses a database in read-only

modewill be referentially transparent. Evenwith updates

there is what might be termed local referential transpar-

ency between such updates; thus some advantages can

nonetheless be gained [15].

Key Applications
The integration of data held in heterogeneous data-

bases continues to be a very challenging problem. At

one time people thought that all data could be forced

into relational storage through the dominance of SQL.

However, the emergence of semi-structured data,

much of it held on the Web, has changed all that.

Future Directions
Functional data models have the right abstractions for

dealing with heterogeneous data, but they need to be

packaged for more convenient use with Web data.

Interestingly, functional languages such as Python

and Jython have a secure following among scientific

users and others wanting to advance beyond Visual

Basic. Once again, if they could be combined with a

functional data modelling package that provides a view

over data stored in different kinds of databases then the

idea could very likely catch on.

1198F Functional Dependencies for Semi-Structured Data
URL to Code
http://www.csd.abdn.ac.uk/�pgray/FDMdownload.html

http://user.it.uuse/�udbl/amos/download.html http://

www.dcs.bbk.ac.uk/�ap/pfl/html

Cross-references
▶Comprehensions (IN Functional Query Languages)

▶ Functional Query Languages

▶ Introductory article of [6], from where much of this

is taken

Recommended Reading
1. Abrial J.R. Data Semantics. In Data Base Management. Klimbie.

J.W. and K.L. Koffeman (eds.). North Holland, 1974.

2. Batory D.S., Leung T.Y., and Wise T.E. Implementation concepts

for an extensible data model and data language. ACM Trans.

Database Syst., 13(3):231–262, 1988.

3. Dayal U. et al. Simplifying complex objects: the PROBE ap-

proach to modelling and querying them. In Proc. Workshop

on the Theory and Applications of Nested Relations and Com-

plex Objects, 1987, pp. 17–37.

4. Florentin J.J. Consistency auditing of databases. Computer J., 17

(1):52–28, 1974.

5. Gray P.M.D., Embury S.M., Hui K.Y., and Kemp G.J.L.

The evolving role of constraints in the functional data model.

J. Intell. Inf. Syst., 12:113–137, 1999.

6. Gray P.M.D., Kerschberg L., King P.J.H., and Poulovassilis A.,

(eds.). The Functional Approach to DataManagement. Springer,

Berlin Heidelberg New York, 2004.

7. Hammer M.M. and McLeod D.J. The Semantic Data Model: a

modelling mechanism for database applications. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1978, pp. 26–35.

8. Kerschberg L. and Pacheco J.E.S. A Functional Data Base Model.

Technical Report 2/76, Departmento de Informatica, Pontificia

Universidade de Sao Vincente, Rio de Janeiro, 1976.

9. King P.J.H., Derakhshan M., Poulovassilis A., and Small C.

TriStarp – an investigation into the Implementation and Exploi-

tation of Binary Relational Storage Structures. In Proc. British

National Conf. on Databases, 1990, pp. 64–84.

10. Kulkarni K.G. and Atkinson M.P. EFDM: Extended Functional

Data Model. Computer J., 29(1):38–46, 1986.

11. Landers T. and Rosenberg R.L. An overview of Multibase.

Distributed Databases, H.-J. Schneider (ed.). North Holland,

1982, pp. 153–184.

12. Risch T. Functional queries to wrapped educational

semantic Web meta-data. In The Functional Approach to Data

Management, Chap. 19. P.M.D. Gray, L. Kerschberg, P.J.H. King,

and A. Poulovassilis, (eds.). Springer, 2004.

13. Shipman D.W. The functional data model and the data language

DAPLEX. ACM Trans. Database Syst., 6(1):140–173, 1981.

14. Sibley E.H. and Kerschberg L. Data architecture and data model

considerations. In Proc. AFIPS National Computer Con., 1977,

pp. 85–96.

15. Sutton D.R. and Small C. Extending functional database lan-

guages to update completeness. In Proc. British National Conf.

on Databases, 1995, pp. 47–63.
Functional Dependencies for
Semi-Structured Data

GILLIAN DOBBIE
1, TOK WANG LING

2

1University of Auckland, New Zealand
2National University of Singapore, Sigapore, Singapore

Synonyms

Path functional dependencies; Extended functional

dependencies
Definition
Functional dependencies are used in relational data-

base design to show that the value of a set of attributes

depends on the value of another set of attributes.

Theory has been developed to manipulate a set of

functional dependencies to describe equivalences of

sets of functional dependencies. Semi-structured data

differs from relational data in two important ways:

semi-structured data is hierarchical and the structure

of the data is less consistent. Traditional functional

dependencies do not capture these differences so new

functional dependencies with associated theory has

been defined for semi-structured data.

Key Points
Functional dependencies for semi-structured data have

been defined in the three recommended readings.

While the syntax of functional dependencies defined

over semi-structured data varies, the semantics is sim-

ilar. In this article the syntax of Arenas and Libkin [1]

is used but the notation differs a little since there is no

distinction between attributes and subelements. There

is a notion of an XML tree and a path in an XML tree.

Consider the XML document in Fig.1a, and the XML

tree for that document in Fig.1b. The internal nodes of

an XML tree are labelled with tag-name:node-ID,

e.g., the node label student:v5 means this node repre-

sents an element student with node ID v5.

A path through this XML tree is something like

department.course.code. A tree tuple is a subtree con-

taining at most one occurence of each path. Note that

there are two occurences of paths such as department.

course.student in Fig.1a, so there are two tree tuples,

one including the paths for the student with student

number 123456 and the other including the paths for

the student with student number 234567. The tree

Functional Dependencies for Semi-Structured Data F 1199

F

tuples will be called t1 and t2 respectively. Below it is

shown how the tree tuples t1 and t2 assign values to the

paths in the XML tree in Fig.1b:

The symbol, S, is a reserved symbol, and for a path

p.S, if t(p)¼v then t(p.S) is the value of the element or

attribute at v. A functional dependency is an expres-

sion of the form X!Y where both X and Y are sets of

paths. An XML tree satisfies a functional dependency

X!Y if for any two tree tuples t1 and t2 in the tree

t1(X)¼t2(X) then t1(Y)¼t2(Y). Note that t1(X)¼t2(X)

means that t1(p)¼t2(p) for all p2X. Using functional

dependencies, key constraints, dependencies among

attributes, and dependencies among object classes can

be expressed.

The key constraint, that no two course elements

will have the same code, is expressed as:

department.course.code.S!department.course

If there were another course in the document

shown in Fig.1a with code “CS101’’, then this function-

al dependency would no longer hold.
Functional Dependencies for Semi-Structured Data. Figure
A functional dependency is used to show that there

is only one record of a student taking a course. The

functional dependency represents that two student

subelements of the same course cannot have the same

student number. This constraint is represented as:

{department.course,department.course.student.

stuNo.S}!department.course.student

In contrast, the following functional dependency

expresses that no two student elements will have the

same student number:

{department.course.student.stuNo.S}!depart-

ment.course.student

The constraint, that two student elements with the

same value for stuNo must have the same value for

stuName, is written:

department.course.student.stuNo.S!department.

course.student.stuName.S

Note that this definition of functional dependen-

cies combines node and value equality. This allows

functional dependencies to be used to express not
1. XML document and its corresponding XML tree.

Movies

Title Director Actor Year

The Godfather Francis F. Coppola Marlon
Brando

1972

The Godfather Francis F. Coppola Al Pacino 1972

The Godfather Francis F. Coppola James Caan 1972

The Shining Stanley Kubrick Jack
Nicholson

1980

The Shining Stanley Kubrick Shelley
Duvall

1980

1200F Functional Dependency
only what the keys are but also to differentiate between

absolute and relative constraints. That is, all students

in a document have a unique student number can be

expressed using an absolute constraint, and all students

in a course have a unique student number can be

expressed using a relative constraint. Note that the

relative constraint is relative to another element or

object class, in this case course, while the absolute

constraint applies to the whole document. However,

the richness of expressibility also means that func-

tional dependencies in the semi-structured setting are

more complicated than functional dependencies in

the relational setting.

Cross-references
▶ Semi-structured Database Design

Recommended Reading
1. Arenas M. and Libkin L. A normal form for XML documents.

ACM Trans. Database Syst., 29(1):195–232, 2004.

2. Lee M.L., Ling T.W., and Low W.L. Designing functional depen-

dencies for XML. In Advances in Database Technology, Proc. 8th

Int. Conf. on Extending Database Technology, 2002, pp.

124–141.

3. Wu X., Ling T.W., Lee S.Y., Lee M.L., and Dobbie G. NF-SS: a

normal form for semistructured schema. In Proceedings of ER

Workshops LNCS, Vol. 2465/2002. 2001, pp. 292–305.
Functional Dependency

SOLMAZ KOLAHI

University of British Columbia, Vancouver, BC,

Canada

Synonyms
FD

Definition
Given a relation schema R[U], a functional dependency

(FD) is an expression of the form X! Y , where X,Y�
U. An instance I of R[U] satisfies X ! Y , denoted by

I⊨X! Y , if for every two tuples t1,t2 in I, t1[X] = t2[X]

implies t1[Y] = t2[Y]. That is, whenever two tuples

contain the same values for attributes in X, they must

have the same values for attributes in Y. A functional

dependency X ! Y is called trivial if Y � X.

A key dependency is a functional dependency of the

form X! U. Then X is called a superkey for relation R.
If there is no proper subset Y of X such that Y is a

superkey, then X is called a key.
Key Points
Functional dependencies form an important class of

integrity constraints that play a critical role in main-

taining the integrity of data, query optimization and

indexing, and especially schema design. The focus of

the normalization technique in schema design is on

avoiding redundancies caused by functional and

other types of dependencies in relational databases.

An example of such redundancies can be seen in the

year column of the following table, where the function-

al dependency title !year holds.

In database design theory, there are normal forms

that put restrictive conditions on data dependencies to

control this kind of redundancy. Well-known normal

forms that deal with FDs are second normal form

(2NF), third normal form (3NF), and Boyce-Codd

Normal Form (BCNF).

The implication problem for FDs can be solved in

linear time. That is, given a set S of FDs, it is possible

to check whether an FD X ! Y is logically implied by

S, denoted by S⊨X ! Y , in the time that is linear in

the size of S and X! Y . A key concept for solving the

implication problem is the closure of a set of attributes

X, which is the set of attributes A 2U, denoted by X+,

such that S⊨X! A. There are efficient algorithms for

finding the closure of a set of attributes [1].

The implication problem of functional dependen-

cies can also be axiomatized. That is, there is a finite

sound and complete set of inference rules, called Arm-

strong axioms, that can be used to solve the implication

problem:

Reflexivity: If Y � X, then X ! Y .

Augmentation: If X ! Y , then XZ ! YZ.

Transitivity: If X ! Y and Y ! Z, then X ! Z.

Functional Query Language F 1201
Cross-references
▶Boyce-Codd Normal Form (BCNF)

▶Key

▶Normal Forms and Normalization

▶ Second Normal Form (2NF)

▶Third Normal Form (3NF)

Recommended Reading
1. Abiteboul S., Hull R., Vianu V. Foundations of Databases.

Addison-Wesley, Reading, MA, USA, 1995.
F

Functional Query Language

PETER M. D. GRAY

University of Aberdeen, Aberdeen, UK

Definition
Functional Query Languages came from two lines of

development:

1. From new functional programming languages

such as FP that showed the value of referential trans-

parency; this ensures that complex nested functional

expressions can be evaluated inside-out (bottom-up)

or top-down or even split up and done in parallel, with

the same result. For optimization purposes this is

vastly better than state-altering algorithms used in

early CODASYL systems, or even code used today

with embedded SQL (as in ODBC).

2. From requirements to provide a single query

language and a single integrated schema over multiple

autonomous, heterogeneous, distributed databases.

This happened in theMULTIBASE project and resulted

in the DAPLEX language [10]. It was the first functional

query language to compute over instances of a Func-

tional Data Model, for the purpose of abstracting away

details of different storage schemas in a distributed DB.
Historical Background
No full implementation of DAPLEX was undertaken.

However, later systems Adaplex, EFDM and P/FDM

implemented large parts of the language. These showed

how to integrate base functions (from the data model),

derived functions, views, and integrity constraints into

a single functional framework. The main drawback of

DAPLEX was that for general computation it required

either calling out to foreign functions, or embedding in

a host programming language.
ADAPLEXwas an embedding of a subset ofDAPLEX

into the programming language ADA. The data types of

DAPLEX are reconciled with those of ADA by associat-

ing base functions with abstract entity types when these

are declared. Also, derived functions are defined proce-

durally in ADA rather than in DAPLEX (this is an

example of calling out to foreign functions).

EFDM [8] extended DAPLEX with procedural com-

putation, recursive functions over abstract types and

scalar types, built-in metalevel functions for interrogat-

ing themeta data, and a construct which can store EFDM

statements in the database (like stored SQL procedures).

The underlying database used persistent object storage

techniques, similar to commercial object-oriented data-

bases. The facilities for semantic integrity constraints

considerably extend those of DAPLEX.

Following FQL, The functional database languages

FDL [9] and PFL concentrated on a more general,

computationally complete, functional language based

on the lambda calculus.

This work was followed by the development of sev-

eral functional languages, such as FAD [1] and FUGUE,

for complex object and object-oriented databases. These

capitalized on the fact that DAPLEX already had a

built-in notion of object identifier for entity instances

in its data model, but without committing to any par-

ticular implementation. This also inspired the Iris

object-oriented database system, which used a LISP-

like functional syntax. Iris in turned influenced the

development of the original AMOSQL language used

in active mediation of distributed data sources [5].

The OSQL query language [2] was intended for use

with object-oriented databases. It unified functional

and relational modeling by extending SQL to include

entities and functions. It included primitives for crea-

tion of entities, for assignment of base function values,

and for updating multi-valued base functions. Derived

functions were defined by means of a SELECT clause

and queries had an SQL-like syntax.

Foundations
One common thread running through almost all Func-

tional Query Languages is the use of the functional

programming concept of a Comprehension (q.v.)

which deserves to be much more widely known. Bune-

man et al. [3] have generalized it for database use to

include set and bag comprehensions. Fegaras [6] has

related it to the algebraic structure of monoids which

underlies OQL. This section makes general use of the

1202F Functional Query Language
notion of a Comprehension, because it describes precise-

ly almost all the computations done in functional query

languages, despite their very different surface syntax!

The comprehension crosses the borders between

the lambda calculus and the predicate calculus since

functions, just like predicates, can be used either as

generators or as filters in collecting up sets of values.

However, what matters is the mathematical theory

worked out in connection with functional program-

ming, which can be used, for example, to develop and

prove correct new analysis and optimization techni-

ques for queries. Generators may just be based on finite

sets (or subranges) of integers, and filters can also do

calculations. For example, suppose one wants the set of

all right-angled triangles with whole-number sides less

than 50. The comprehension for this neatly expresses

the mathematical requirements:

[(x,y,z) | x <- [1..50]; y <- [1..50];

z <- isqrt(x*x + y*y); z*z = x*x + y*y;

z <50]

Here for each value of x between 1 and 50, one must

explore all y values between 1 and 50, generate a value

for the longest side z using a function to calculate the

integer part of the square root, and then test that z is

less than 50. The results are returned in the form of

triples, such as (3,4,5). This is a typical use of func-

tions in numerical calculation. It also introduces the

subject of nested loops. Notice that where one generator

appears to the right of another, then its values have to

be considered in combination with all values from the

previous one, which is just like using nested loops in an

ordinary programming language.

Now consider a query involving nested generators,

which corresponds to the use of joins in SQL, but

which appears in the OQL object database query lan-

guage [4] as:

select x.name

from x in students, y in x.takes, z in y.

taught_by

where z.rank = "full prof"

This gives the names of students who take courses

taught by full professors. The equivalent comprehen-

sion is

[name(x) | x<- students; y<- takes(x);

z <- taught_by(y);rank(z) = "full

prof"]
In a programming language supporting assignment

and for loops, one would write the computation

using nested loops, which show more clearly the role

of the generators:

result := [];

for x in students()

for y in takes(x)

for z in taught_by(y)

if rank(z) = "full prof"

then result := result ++ [name(x)];

Note that the variables are now treated as holding object

identifiers.More significantly, each variable is only intro-

duced oncewith an arrow, and thismust comebefore it is

used in a predicate or as a parameter of another genera-

tor. Apart from this, generators and predicates can be

reordered without altering the value of the comprehen-

sion, since it behaves like a conjunction of booleans.

This reordering is made easier by using converse

functions of the form f_inv (equivalent to Conv f

used in Functional Programming); just like an inverted

index, this may enable one to move selections nearer to

generators, so as to gain efficiency. For example, the

following comprehension produces the same result

more quickly by applying the filter on full professor

much earlier:

[name(x) | z <- lecturers; rank(z) =

"full prof";

y <- taught_by_inv(z); x <- takes_inv

(y)]

This technique is widely used. Note that it is not

necessary for the end users themselves to use f_inv;

this need only happen within the query optimizer

module of the DBMS.

In order to show that list comprehensions can be

more complex, consider another query which returns

the codes of all courses that have some section taught

by a senior lecturer:

[code(c) | c <- course;

some([t | s <- sections(c); t <-

lecturer(s);

p <- position(t); p="SL"])]

Here, the inner comprehension depends on the vari-

able c representing a course, which is bound by the

outer comprehension. The function some is a predi-

cate that tests whether its parameter (the inner com-

prehension) returns a non-empty list. It corresponds

Functional Query Language F 1203

F

to the EXISTS predicate in SQL. In fact, the whole

query can be translated into SQL automatically.

The following subsections show how comprehen-

sions are used in a number of different query lan-

guages. Despite variations in syntax and in emphasis,

all these systems make use of the same mathematical

theory for their transformation and optimization.

Comprehensions in P/FDM and Constraints

P/FDM, like the examples in AMOSQL [5], uses list

comprehensions internally but provides an equivalent

query language syntax which suits regular programmers.

In P/FDM the above comprehension is rendered as

for each c in course such that

some t in lecturer(sections(c)) has

position(t)="SL"

print(code(c));

This syntax is very close to Shipman’s original

DAPLEX language.

Comprehensions in P/FDM are also used to de-

scribe the semantics of integrity constraints, represent-

ing invariants that must be held true under updates.

For this purpose the nested loop syntax used in queries

is adapted, similarly to constraints in EFDM:

constrain each t in seniortutor

each s in advisees(t)

to have grade(s) > 60;

This constrains each person in the class seniortutor

to have only advisees with grades over 60. It requires

that the following list comprehension always computes

an empty list:

[t | t <- seniortutor; s <- advisees

(t); not (grade(s) > 60)]

The constraint is equivalent to the following formula

in predicate logic, which shows the correspondence

between the generators and the nested quantifiers and

also the similarity in use of conjunctions. This demon-

strates a fascinating connection between comprehen-

sions and the predicate calculus:

(8t) seniortutor(t)) ((8s,g) advisee

(t,s) ∧ grade(s,g)) g >60)

Comprehensions in Kleisli – Records, Lists and Mixed

Types

In Kleisli [11], comprehensions are written with a

comma as separator for conjunctions in place of a
semicolon. Also, the first time that a variable iterates

over a set of values (in some generator), its name needs

to be prefixed with a backslash. Subsequent uses of the

unprefixed variable, either in filters or in generators,

make use of these bindings. Lastly, record field names

are prefixed by a #. Thus, the initial example would

read:

{p.#surname | \p <- person, \f <- p.

#forename, f = "Jim"}

If one wishes to create a list comprehension or bag

comprehension, one simply encloses the above expres-

sion in different brackets [... | ...] or {| ... |

...|} respectively.

Thus the end user basically works with compre-

hensions, while the full power of functional program-

ming is reserved for the implementers, working in

Standard ML. This is an elegant use of functional

programming but note that it is not essential to use a

functional language for optimising comprehensions;

for example, P/FDM uses Prolog while AMOS uses

a version of LISP. Any good list processing language

will do but functional languages are, of course, better

at type checking.

Comprehensions in FDL and PFL

The functional database languages FDL [9] and PFL

incorporate list comprehensions as part of a more

general, computationally complete, functional lan-

guage based on the lambda calculus. In such languages,

comprehensions can be formalised as successive appli-

cations of a higher order function flatmap. Thus, for

example, the following comprehension from earlier in

this section:

[surname(p) | p<- person; f <- forename

(p); f = "Jim"]

would translate into the following expression:

flatmap (lambda p.

flatmap (lambda f.if f = "Jim"

then [surname(p)]

else [])

forename(p))

person

flatmap is also an example of a parametric polymor-

phism, in that its type can be inferred to be (a->

[b])->[a]->[b], where a and b are type variables

each of which can be replaced by any type. For

1204F Fuzzy Information Retrieval
example, the first occurrence of flatmap above has type

(Person->[String])->[Person]->[String]

while the second occurrence has type (String->

[String])->[String]->[String].

PFL has a similar type system to FDL, but uses

a class of functions called selectors which allow

storage, querying and update of sets of values of the

same type.

Key Applications
The fundamental advantage of list comprehensions as

a database abstraction is that they preserve Data Inde-

pendence in a very clean and simple way. They do it by

working entirely in terms of sets and functional rela-

tionships, regardless of how they are stored. This will

seem strange to programmers who are used to carefully

choosing between arrays of records or parallel arrays or

linked lists or B-trees etc.

Database people know that large collections of data

may exist in different forms on different computers, and

may need to change form by restructuring on a single

computer. Thus it is necessary to do the translation from

a list comprehension expressed against a conceptual

schema into a specific storage schema at compile time

(often close to run time). Likewise it may be necessary to

send part of a query to a remote server, since data is

increasingly distributed in different forms. Thus the list

comprehension is a good choice for passing a complex

computational request between computers, free from

assumptions about data storage or whether functions

are computed or based on stored values.

Future Directions
About a decade ago, Stonebraker was predicting that

SQLwould become Galactic Dataspeak. With the wide-

spread adoption of JDBC and PHP to access MySQL or

much bigger commercial SQL databases, this would

appear to be so. However, on the Internet there is

increasing pressure to provide functionality as Web

Services which can work on various encapsulated

forms of structured and semi-structured data. Func-

tional Query languages may well find a niche as conve-

nient scripting languages for implementing such Web

services. They allow a much richer variety of computa-

tion and can easily evolve to cope with new storage

schemas, because they adhere to the Principle of Data

Independence. As such, they should prove much easier

to maintain in the fast-changing world of the Web. The

functional language Python and its JAVA version Jython
are increasingly popular, and have an explicit syntax

for Comprehensions.

URL to Code
http://www.csd.abdn.ac.uk/˜pgray/FDMDownload.html

http://user.it.uu.se/˜udbl/amos/download.html

http://www.dcs.bbk.ac.uk/˜ap/pfl.html

Cross-references
▶AMOSQL

▶ FQL

▶ Functional Data Model

▶OQL

▶ P/FDM

For a general overview on the Functional Approach

to modeling, integrating,querying and analyzing data

see [7] from where much of this section is taken.

Recommended Reading
1. Bancilhon F., Briggs T., Khoshafian S., and Valduriez P. FAD, a

powerful and simple database language. In Proc. 13th Int. Conf.

on Very Large Data Bases, 1987, pp. 97–105.

2. Beech D. A foundation of evolution from relational to object

databases. In Advances in Database Technology, Proc. 1st Int.

Conf. on Extending Database Technology, 1988, pp. 251–270.

3. Buneman P., Libkin L., Suciu D., Tannen V., and Wong L.

Comprehension syntax. ACM SIGMOD Rec., 23(1):87–96,1994.

4. Cattell R.G.G. (ed). The Object Data Standard: ODMG 3.0.

Morgan Kaufmann, Los Altos, CA, 2000.

5. Fahl G., Risch T., and Sköld M. AMOS – an architecture for

active mediators. In Proc. Workshop on Next Generation Infor-

mation Technologies and Systems, 1993, pp. 47–53.

6. Fegaras L. and Maier D. Towards an effective calculus for Object

Query Languages. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1995, pp. 47–58.

7. Gray P.M.D., Kerschberg L., King P.J.H., and Poulovassilis A.

The Functional Approach to Data Management. Springer,

Berlin, 2004.

8. Kulkarni K.G. and Atkinson M.P. EFDM : Extended Functional

Data Model. Comput. J., 29(1):38–46, 1986.

9. Poulovassilis A. and King P.J.H. Extending the functional data

model to computational completeness. In Advances in Database

Technology, Proc. 2nd Int. Conf. on Extending Database Tech-

nology, 1990, pp. 75–91.

10. Shipman D.W. The functional data model and the data language

DAPLEX. ACM Trans. Database Syst., 6(1):140 –173, 1981.

11. Wong L. Kleisli, a functional query system. J. Funct. Program.,

10:19–56, 2000.
Fuzzy Information Retrieval

▶ Fuzzy Models

Fuzzy Models F 1205
Fuzzy MCDM

▶ Fuzzy Set Approach
F

Fuzzy Models

GABRIELLA PASI

University of Milano-Bicocca, Milan, Italy

Synonyms
Fuzzy information retrieval

Definition
The application of Fuzzy Set Theory to Information

Retrieval is aimed to the definition of retrieval tech-

niques capable of modeling, at least to some extent,

the subjectivity, vagueness and imprecision that is in-

trinsic to the process of locating information relevant

to some user’s needs. In particular, Fuzzy Set Theory

has been applied in the context of IR to the following

main aims:

� To define generalizations of the Boolean retrieval

model

� To deal with the imprecision and subjectivity that

characterize the document indexing process

� To manage the user’s vagueness in query formulation

� To soften the associative mechanisms, such as the-

sauri and documents’ clustering algorithms, which

are often employed to extend the functionalities of

the basic IR scheme

� To define flexible aggregation strategies in meta

search engines and to define flexible approaches

to distributed IR

� To represent and inquiry semi-structured informa-

tion (XML documents)

Historical Background
In 1979 one of the first proposals of application of

Fuzzy Set Theory to IR was presented by Tadeusz

Radecki [7]. His seminal paper, titled ‘‘Fuzzy set theo-

retical approach to document retrieval’’ constituted a

first generalization of the Boolean retrieval model,

followed by several subsequent proposals.

Fuzzy Set Theory was defined as a generalization of

classical Set Theory, on which the Boolean information

retrieval model is based [8]. A fuzzy set is a class of

elements with unsharp boundaries suitable to
represent vague concepts. Formally, a fuzzy subset A

of a universe of discourse U is defined through a

membership function mA: U ! [0,1]; the value 1 indi-

cates full membership of an element of U to A, the

value 0 no membership, and a value between 0 and 1

partial membership. A finite fuzzy subset A of a set U is

denoted by A = {mA(u)/u} with u2U, in which the

notation mA(u)/u indicates that with each element u

of the universe U a membership degree mA(u) (in [0,1])
is associated, which denotes the membership of u to

the subset.

The main aim of fuzzy generalizations of the

Boolean IR model was to overcome its limitations,

and to model relevance as a gradual property of docu-

ments with respect to a user’s query, with the conse-

quence of making an Information Retrieval System

able to produce a document ranking [1,4,6]. In a

fuzzy IR model a document is formally represented as

a fuzzy subset of index terms (the membership value

associated with a term represents its index term

weight), and the Boolean query language can be ex-

tended by allowing the association of weights with

query terms. In a generalized Boolean query, each

term weight is interpreted as a specification of term

importance, and it is formally defined as a flexible

constraint (that is a constraint satisfied up to a partial

extent) on the document representation. For example,

a query term weight may be interpreted as a threshold,

i.e., as a constraint satisfied by the documents having

the indexing weight higher than the specified query

term weight [1,4]. The exact matching of the Boolean

model is in this way relaxed to a partial matching in

fuzzy IR models, where the matching degree of a doc-

ument to a query (the so called Retrieval Status Value

of a document) is computed on the basis of an evalua-

tion of the satisfaction of the flexible constraints spe-

cified in the query (by weighted terms).

Since Radecki’s seminal paper, several new applica-

tions of Fuzzy Set Theory to IR have been proposed;

some of them are described in the following section.

Foundations
In this section a more extensive explanation of Fuzzy

IR models is presented, related in particular to the

definition of flexible query languages (the key point

of the above mentioned fuzzy generalizations of the

Boolean model). Some other key applications of

Fuzzy Set Theory to IR are also presented in distinct

subsections.

1206F Fuzzy Models
Definition of Generalizations of the Boolean Query

Language

By means of Fuzzy Set Theory two main generaliza-

tions of the Boolean query language have been pro-

posed: the introduction of query term weights, and a

generalization of the aggregation operators (the con-

nectives AND and OR in the Boolean query language).

The first fuzzy models proposed in the literature

introduced query term weights, by allowing the associ-

ation of a weight with each query term. In this way

the basic constraint specified in a query is a weighted

term, identified by a pair<term, weight>. Query term

weights express the ‘‘importance’’ of query terms as

descriptors of users’ needs, and are interpreted as flex-

ible constraints on the index terms weights in each

document representation. By such an extension, the

structure of a Boolean query is maintained, by allowing

weighted query terms to be aggregated by the AND,

OR connectives and negated by the NOT operator. In

the first fuzzy models query term weights were defined

as numeric values in the range [0,1]. A numeric query

term weight identifies a flexible constraint on the

weighted document representations; such a constraint

depends on the semantics of the query weight. Distinct

semantics have been proposed for query weights,

corresponding to distinct fuzzy generalizations of the

Boolean model (distinct fuzzy IR models) [1,4,6].

The three main semantics for query term weights

are: the relative importance semantics (query weights

express the relative importance of pairs of terms in a

query), the threshold semantics (a query weight

expresses a threshold on index term weights), and the

ideal index term weight semantics (a query weight

expresses the ‘‘perfect’’ index term weight).

The choice of one out of the three proposed query

weight semantics implies a distinct definition of the

partial matching function which evaluates a weighted

query term. A flexible constraint imposed by a weight-

ed query term <t, weight> is formally defined as a

fuzzy subset of the set [0,1] of the index term weights.

For a given document d, the membership value

mweight(F(d,t)) is interpreted as the degree of satisfac-

tion of the flexible constraint imposed by the weight

associated with query term t by the index term weight

of t in document d (the value F(d,t)). This means that

the partial evaluation function is the membership

function of the fuzzy subset identified by the query

term weight (i.e., the function mweight). The result of

the evaluation of a weighted query term is a fuzzy set:

{mweight(F(d,t))/d)}, in which the membership degree
of a document is interpreted as the degree of relevance

of the document to the query (the Retrieval Status

Value), and is used to rank the documents.

In structured Boolean queries, the evaluation of the

AND and OR connectives is applied to the fuzzy sub-

sets returned by the weighted query terms evaluations.

In the context of Fuzzy Set Theory the connectives

AND and OR are defined as aggregation operators

belonging to the class of T-norms and T-conorms

respectively. Usually, the AND is defined as the min

(minimum) aggregation operator, and the OR as the

max (maximum) aggregation operator. A Boolean ex-

pression on weighted query terms is usually evaluated

by a bottom-up evaluation procedure (except in the case

of relative importance semantics): first, each atomic

selection condition (flexible constraint. i.e., each

weighted term) in the query is evaluated for a given

document, and then the aggregation operators are ap-

plied to the obtained values starting from the inmost

operator in the query to the outermost operator.

As the association of a numeric value forces the

user to quantify the qualitative concept of importance

of query terms, some late models proposed in the

literature have formalized linguistic extensions of the

Boolean query language, based on the concept of lin-

guistic variable [1,4]. The values of a linguistic variable

are linguistic terms formally defined as fuzzy subsets of

a given reference domain; for example in the case one

wants to define age as a linguistic variable, some possi-

ble linguistic values can be young, old, formally defined

as fuzzy subsets of the set [0,130] of the possible

numeric values for the age of a human being. By

using linguistic query weights, query terms can then

be labeled by the words ‘‘important,’’ ‘‘very important’’

or ‘‘fairly important.’’ Similarly to the evaluation of

numeric query term weights, a pair <t, important>

expresses a flexible constraint evaluated by the func-

tion mimportant on the index term weights (the F(d,t)

values). The evaluation of the relevance of a given

document d to a query consisting of the pair

<t, important> is then computed by applying the

function mimportant to the value F(d,t). Also in this

case the membership function of the fuzzy set associated

with a linguistic weight depends on the weight

semantics.

A second kind of generalization of the Boolean

query language has concerned the definition of aggre-

gation operators (AND and OR in the Boolean query

language) [1,4,6]. When employing the Boolean re-

trieval model, if the AND is used for aggregating M

Fuzzy Models F 1207

F

keywords in a user query, a document indexed by all

keywords but one is not retrieved, thus causing the

possible rejection of useful items. The opposite behav-

ior characterizes the aggregation by OR. To express

more flexible aggregations, the use of linguistic quan-

tifiers (formally defined within Fuzzy Set Theory) has

been proposed. Linguistic quantifiers, such as at least

2 and most, specify more flexible document selection

strategies. Linguistic quantifiers have been formally

defined as averaging aggregation operators, the behav-

ior of which lies between the behavior of the AND and

the OR connectives, which correspond to the all and

the at least one linguistic quantifiers.

Another recent research direction is aimed at the

definition of flexible query languages to inquire XML

documents. Fuzzy set theory is being applied to define

extensions of XML query languages so as to make

possible the expression of flexible selection conditions

on both the documents’ structure and contents.

Flexible Indexing of Semi-Structured Documents

The diffusion of semi-structured documents has en-

couraged the definition of indexing models which take

into account the information conveyed by the ‘‘struc-

ture’’ of the documents.

The usual tf *idf indexing schema adopted by IRSs

does not take into account the distinct informative role

that a term occurrence may have in distinct document

sections. For example, considering the structure of a

scientific paper, usually organized in sections such

as title, authors, abstract, introduction, references, an

occurrence of a term in the title has a distinct informa-

tive role than its occurrence in the references section.

Moreover the usual indexing functions produce the

same document representation to all users; this enhances

the system’s efficiency but implies a loss of effectiveness.
Fuzzy Models. Figure 1. Sketch of the flexible indexing mod
In fact, when examining a structured document, users

have their personal views of the document’s information

content. Users would naturally privilege the search in

some subparts of the documents’ structure, depending

on their preferences. This observation has supported the

idea of flexible and personalized indexing, first proposed

in 1995 [2]. Such an indexing model is constituted by a

static component and by an adaptive query-evaluation

component; the static component provides an a priori

computation of an index term weight for each logical

section of the document.

The adaptive component may be activated by a user

interaction during query formulation and provides an

aggregation strategy of the n index term weights

(where n is the number of sections) into an overall

index term weight. The user is allowed to express

preferences on the document sections, outlining those

that the system shouldmore heavily take into account in

computing the overall index term weight. This user

preference on the document structure is exploited to

enhance the computation of index term weights: the

importance of index terms is strictly related to the

importance to the user of the logical sections in which

they appear. The user may also decide which kind of

aggregation to apply for producing the overall signifi-

cance degree (see Fig. 1). This can be done by the

specification of a linguistic quantifier such as at least

k (with k an integer number) and most.

By adopting such an indexing model a same query

may produce different document rankings if formu-

lated by distinct users expressing distinct preferences

on the documents sections.

More recently, an increasing number of approaches

have proposed IR models which are based on concepts

rather than keywords, thus modeling document repre-

sentations at a higher level of granularity, trying to
el.

1208F Fuzzy Models
describe the topical content and structure of docu-

ments. These efforts gave raise to the so called con-

cept-based Information Retrieval, which aims at

retrieving relevant documents on the basis of their

meaning rather than their keywords. In this context

some fuzzy set approaches to concept-based Informa-

tion Retrieval have been proposed.

Fuzzy Associative Mechanisms

Associative retrieval mechanisms are defined to en-

hance the retrieval capability of traditional IRSs. They

work by retrieving additional documents not directly

indexed by the terms in a given query but indexed by

terms associated to those specified in the query. The

most common type of associative retrieval mechanism

is based on the use of a thesaurus to associate entry

terms with related terms. In traditional associative

retrieval the associations are crisp.

The fuzzy associative retrieval mechanisms (first

proposed in 1976) are based on the concept of fuzzy

association [1,4,5]. A fuzzy association between two

sets X = {x1,...,xm} and Y = {y1,...,yn} is formally de-

fined as a fuzzy relation f: X � Y! [0,1]: the value f(x,

y) represents the degree of strength of the association

existing between the values x2X and y2Y.
In Information Retrieval, different kinds of fuzzy

associations can be modeled depending on the seman-

tics of the sets X and Y. Fuzzy associative mecha-

nisms are represented by fuzzy thesauri, fuzzy

pseudo-thesauri, and fuzzy clustering techniques.

Some authors have proposed the definition of fuzzy

thesauri, where the links between terms are weighted to

indicate strength of association. Moreover, this notion

includes generalizations such as fuzzy pseudo-thesauri,

and fuzzy associations based on a citation index [5].

Fuzzy associative mechanisms based on thesauri or

clustering techniques have been defined in order to

cope with the incompleteness characterizing either

the representation of documents or the users’ queries.

Fuzzy thesauri and pseudo-thesauri can be used to

expand the set of index terms of documents with new

terms by taking into account their varying significance

in representing the topics dealt with in the documents;

the degree of significance of the associated terms

depends on the strength of the associations with the

documents’ descriptors. An alternative use of fuzzy

thesauri and pseudo-thesauri is to expand each of the

search terms in the query with associated terms, by

taking into account their distinct importance in
representing the concepts of interest; the varying im-

portance is dependent on the associations’ strength

with the search terms.
Fuzzy Approaches to Distributed Information Retrieval

In distributed information retrieval, there are two

main models. In the first model, the information is

considered as belonging to a unique, huge, centralized

database which is distributed but centrally indexed for

retrieval purposes. A second model is based on the

distribution of the information on distinct reposi-

tories, independently indexed, and thus constituting

distinct information sources. In this second case, the

repositories reside on distinct servers, each of which

can be provided with its own search engine (IRS).

The multi-source information retrieval paradigm is

more complex than the centralized model. This para-

digm presents additional problems, such as the selec-

tion of an appropriate information source for a given

information need. This task of distributing retrieval is

affected by uncertainty, since a decision must be taken

based on an incomplete description of the information

source. Furthermore, a common problem in both

models is the list fusion task.

Some fuzzy methods have been defined to address

the above mentioned problems of source selection and

ranked list fusion [3]. In particular, a meta-search

model has been recently proposed where the fusion

of overlapping ordered lists into an overall ordered

list is regarded as a group decision making activity

in which the search engines play the role of the experts,

the documents are the alternatives that are evaluated

based on a set of criteria expressed in a user query,

and the decision function is a soft aggregation

operator which allows to take into account the lists

priority, allowing to model a specific user retrieval

attitude [3].

Key Applications
The main applications of Fuzzy Models in IR are aimed

at defining new Information Retrieval Systems, to en-

hance query languages, to define new indexing algo-

rithms, and to define associative mechanisms.
Cross-references
▶Digital Libraries

▶Text Indexing Techniques

▶Text Retrieval

Fuzzy Set F 1209

F

Recommended Reading
1. Bordogna G. and Pasi G. Modelling vagueness in information

retrieval. In Lectures in Information Retrieval, M. Agosti, F.

Crestani, G. Pasi (eds.). Springer, Berlin, 2001.

2. Bordogna G. and Pasi G. Personalized indexing and retrieval of

heterogeneous structured documents. Inf. Retrieval, 8

(2):301–318, 2005.

3. Bordogna G., Pasi G., and Yager R.R. Soft approaches to

distributed information retrieval. Int. J. Approx. Reasoning, 34

(2–3):105–120, 2003.

4. Kraft D.H., Bordogna G., and Pasi G. Fuzzy set techniques in

information retrieval. In Fuzzy Sets in Approximate Reasoning

and Information Systems, Series: The Handbooks of Fuzzy Sets

Series. J.C. Bezdek, D. Dubois, H. Prade (eds.). Kluwer Academ-

ic, Norwell, MA, 1999, pp. 469–510.

5. Miyamoto S. Fuzzy Sets in Information Retrieval and Cluster

Analysis. Kluwer Academic, Dordrecht, 1990.

6. Pasi G. Fuzzy Sets in Information Retrieval: State of the Art and

Research trends. In Fuzzy Sets and Their Extensions: Represen-

tation, Aggregation and Models. Intelligent Systems from Deci-

sion Making to Data Mining, Web Intelligence and Computer

Vision, Series: Studies in Fuzziness and Soft Computing.

H. Bustince, F. Herrera, and J. Montero (eds.). Springer, Berlin,

2008, pp. 517–535.

7. Radecki T. Fuzzy set theoretical approach to document retrieval.

Inf. Process. Manag., 15(5):247–260, 1979.

8. Zadeh L. Fuzzy Sets. Inf. Control, 8:338–353, 1965.
Fuzzy Multicriteria Decision Making

▶ Fuzzy Set Approach
Fuzzy Relation

VILÉM NOVÁK

University of Ostrava, Ostrava, Czech Republic

Definition
An n-ary fuzzy relation R is a fuzzy set (see FUZZY

SET) in the universe U1 � ... � Un, i.e., R ��U1 � ... �
Un. A special case is a binary fuzzy relation in the

universe U � V , i.e., R ��U � V .

Key Points
Mathematically, an n-ary fuzzy relation is a function

R: U1 � ... � Un!L where L is a residuated lattice.

Let R ��U � V and S ��V �W be two binary fuzzy

relations. The composition of R and S is a fuzzy rela-

tion R∘S determined by the membership function
ðR � SÞðx; zÞ ¼
_
y2V

ðRðx; yÞ ^ Sðy; zÞÞ;

x 2 U ; z 2 W :

ð1Þ

The operation∧ in ((1)) can be replaced by arbitrary

t-norm.

Cross-references
▶ Fuzzy Set

▶Residuated Lattice

▶Triangular Norms

▶ t-Norm

Recommended Reading
1. Klement E.P., Mesiar R., and Pap E. Triangular Norms. Kluwer,

Dordrecht, 2000.

2. Klir G.J. and Yuan B. Fuzzy Sets and Fuzzy Logic: Theory and

Applications. Prentice-Hall, New York, 1995.

3. Novák V. Fuzzy Sets and Their Applications. Adam Hilger,

Bristol, 1989.

4. Novák V., Perfilieva I., and Močkoř J. Mathematical Principles of

Fuzzy Logic. Kluwer, Boston/Dordrecht, 1999.
Fuzzy Set

VILÉM NOVÁK

University of Ostrava, Ostrava, Czech Republic

Definition
A fuzzy set is a function A : U ! L where U is

an ordinary set of elements called universe and L

is a scale which is usually supposed to have the struc-

ture of a residuated lattice (see RESIDUATED LAT-

TICE). The function A is at the same time called also

membership function, i.e., fuzzy set is identified with its

membership function.

If x 2 U is an element then A(x)2L is amembership

degree of x in the fuzzy set A. It can also be interpreted

as a degree of truth of the fact that the element x belongs

to the fuzzy set A. If U is a universe and A a fuzzy set

then it is convenient to write A ��U.

Key Points
Fuzzy sets can be explicitly written in the form

a
	
u

j a 2 L; u 2 U

�
where a 2 L is a membership degree of an element

u 2 U.

1210F Fuzzy Set Approach
Given a residuated lattice (see RESIDUATED

LATTICE) as the structure of truth values, the basic

operations with fuzzy sets can be defined as follows:

ðunionÞ ðA [BÞðxÞ ¼ AðxÞ _ BðxÞ;
ðintersectionÞ ðA \ BÞðxÞ ¼ AðxÞ ^ BðxÞ;
ðcomplementÞ AðxÞ ¼ :AðxÞ

for all x 2U where : is a negation in residuated lattice.

If the latter is a standard Łukasiewicz MV-algebra then

AðxÞ ¼ 1� AðxÞ:

Many other possible operations with fuzzy sets can be

defined on the basis of operations in residuated lattice.

In case that L¼ [0,1], the union can be more generally

defined using a t-conorm and the intersection using a

t-norm.

Note that h{0,1},∨ ,∧ ,∧ ,! ,0,1i is also a residu-

ated lattice because in this case �¼∧ is the ordinary

conjunction and! is the classical boolean (material)

implication. Therefore, the above operations naturally

generalize classical set operations.

The support of a fuzzy set A �� U is a classical set

Supp(A) ¼ {x j A(x)>0}. The kernel of a fuzzy set is

a set Ker(A) ¼ {x j A(x) ¼ 1}. A fuzzy set A is normal

if Ker(A) 6¼ ;:
A fuzzy set A � R is called a fuzzy number if it has

one element kernel Ker(A) ¼ {x0}, bounded support,

and A(x) � A(y)∧A(z) holds for all y � x � z. Such a

fuzzy set can thus be taken as interpretation of the

expression ‘‘approximately x0.’’

The above notions can be illustrated on a simple

example. Let the universe be a finite setU¼ {a, b, c, d,e}

and let L be the standard Łukasiewicz MV-algebra h[0,
1],max, min, � , ! , 0, 1i. (see RESIDUATED LAT-

TICE) Let

A ¼ 0:1
	
a;1

	
b;0:8

	
c

 �
;

B ¼ 0:7
	
b;0:3

	
c;0:9

	
d;0:2

	
e

 �
(The omitted elements have membership degree equal

to 0.). Then

A \ B ¼ 0:7
	
b;0:3

	
c

 �
;

A \ B ¼ 0:1
	
a;1

	
b;0:8

	
c;0:9

	
d;0:2

	
e

 �
;

AðxÞ ¼ 0:9
	
a;0:2

	
c;1

	
d;1

	
e

 �
;

SuppðAÞ ¼ a; b; cf g;
KerðAÞ ¼ bf g:

Example of other operation can be bold intersection
A \� B ¼ 0:7
	
b;0:1

	
c

 �
using a Łukasiewicz product (this is also a t-norm)

where, e.g., ðA \� BÞðcÞ ¼ max{0,0.8þ0.3�1}¼ 0.1.

Cross-references
▶ Fuzzy Relation

▶Residuation

▶Residuated Lattice

▶Triangular Norms

Recommended Reading
1. Klir G.J. and Yuan B. Fuzzy Sets and Fuzzy Logic: Theory and

Applications. Prentice-Hall, New York, 1995.

2. Novák V. Fuzzy Sets and Their Applications. Adam Hilger,

Bristol, 1989.

3. Novák V., Perfilieva I., and Močkoř J. Mathematical Principles of

Fuzzy Logic. Kluwer, Boston/Dordrecht, 1999.
Fuzzy Set Approach

VILÉM NOVÁK

University of Ostrava, Ostrava, Czech Republic

Synonyms
Fuzzy MCDM; Fuzzy multicriteria decision making
Definition
The classical multicriteria decision making theory is

based on the assumption that all the criteria can be

characterized precisely so that it is possible to decide

unambiguously, whether each alternative fulfils the

given criterion or not. However, this is rarely the case

in practice and so, the fuzzy set approach has been

proposed which makes it possible to assume that the

criteria can be evaluated imprecisely, for example

‘‘high quality, low reliability, very low weight,’’ etc.

Unlike classical approach which first dissolves impre-

cision and then constructs a decision model, the fuzzy

set approach dissolves imprecision only at the very

end, if necessary.

The basic concepts of fuzzy decision making are the

following:

1. Decision based on the imprecisely defined set of

alternatives, i.e., a fuzzy set of alternatives. This is

called decision in a fuzzy environment.

Fuzzy Set Approach F 1211

F

2. Decision based on aggregation of imprecisely de-

fined (fuzzy) preferences among alternatives.

3. Decision based on evaluation of alternatives using

linguistic description of the decision situation.

The linguistic description in Case 3 consists of a set of

fuzzy/linguistic IF-THEN rules, i.e., special expressions

of the form

IF X is A THEN Y is B

where X,Y are criteria and A;B are imprecise charac-

terizations (for example, evaluative expressions of nat-

ural language) of how well the given alternative meets

the criteria. The linguistic expressions are often inter-

preted using fuzzy sets in various ways. The most

advanced possibility takes fuzzy IF-THEN rules as

conditional sentences of natural language.

A problem related to decision making is classifica-

tion. The main task is to assign the given alternative to

one of several classes. In practice, this may be quite

difficult since the classes themselves can also be imprecise.

For example, shoe numbers represent imprecise classes of

foot sizes. The most advanced fuzzy classification meth-

ods are based on application of fuzzy IF-THEN rules.
Historical Background
The first paper on fuzzy multicriteria decision making

has been written by Bellman and Zadeh in 1970 [1].

Their idea was very simple but at the same time quite

powerful and it gave inspiration to many authors of the

subsequent papers on fuzzy decision making. The paper

started research leading to various kinds of approaches

that improved the proposed method on one side and

brought a lot of other new ideas and methods on the

other side. After period of spontaneous development

that lasted until mid of 1980s, the first systematic

works appeared, namely the books [4,8].

A significant step forwards is the book by J. Fodor

and M. Roubens [6] which is the first sound introduc-

tion to valued preference modeling using systematic

use of fuzzy set theory and functional equations. Since

then, many other papers and books have been pub-

lished, e.g., [3,13]. Notable is the book by T. J. Saaty

[11] which describes the, so called, Analytic Hierarchy

Process that now belongs to one of the most widely

used decision methods in practice.

The number of works on fuzzy multicriteria deci-

sion making now counts to thousands. There is also a
working group EUROFUSE which regularly organizes

various kinds of meetings or co-organizes conferences.
Foundations
Decision making in a fuzzy environment is realized as

follows: Let a finite set of alternatives A = {a1,...,an} be

given. The goal is to choose the best alternative accord-

ing to m criteria that, however, may be delineated only

imprecisely, for example reasonable price, nice view,

great reliability, high safety, etc.

The criteria are specified by means of defining a

fuzzy set of alternatives that fulfil the given criterion in

various degrees. Hence, each criterion Gj, j = 1,...,m is

identified with a fuzzy set Gj ��A of alternatives fulfill-

ing it. The membership degree Gj(ai) expresses the

degree, in which the given alternative ai 2 A fulfils

the criterion Gj.

At the same time also constraints must be specified

with respect to each criterion, for example affordable

price, view to the forest, acceptable reliability, acceptable

safety, etc. Similarly as the criteria, the constraints

are also specified as fuzzy sets of alternatives. This

means that each constraint Cj is defined as a fuzzy

set Cj �� A of alternatives fulfilling Cj in various

degrees. Consequently, for each j, j = 1,...,m, two

fuzzy sets of alternatives are specified: a fuzzy set Gj

representing criterion and a fuzzy set Cj representing

constraint.

For example, the criterion Gj can be reasonable price

while the constraint Cj can be affordable price. The

latter means that not each reasonable price can be for

the decision-maker at the same time also affordable. If

ai is a certain house that a decision-maker wants to buy

then the membership degree Gj(ai) represents the

degree in which the price of ai is reasonable (e.g.,

Gj(ai) = 0.8 means that it is in 80% true that the

price of ai is reasonable). Quite analogously, the mem-

bership degree Cj(ai) is a degree in which the price of

ai is affordable for the decision-maker. For example,

the set A of houses (alternatives) may contain also a

castle ak at a very reasonable price – several millions of

dollars – but this price can be completely non-affordable

for the decision-maker because he/she has, say, less than

one million at disposal. In this case, set Cj(ak) = 0.

The final decision is a fuzzy set of alternatives

obtained by composition

D ¼ ðG1aC1Þb:::bðGmaCmÞ ð1Þ

1212F Fuzzy Set Approach
where a, b are suitable fuzzy set operations. The best

alternative is an alternative ak 2 A with the highest

membership degree D(ak).

Setting a = b = \ (intersection) leads to pessimistic

decision. With respect to the above example, Gj(aj) ∧
Cj(aj) is a minimum of the degrees in which the house

aj has a reasonable and affordable price, i.e., the worse

of both. Hence, for the castle ak it is immediately

obtained that Gj(ak) ∧ Cj(ak) = 0 and so D(ak) = 0

which means that the castle is surely not chosen as

the best alternative.

Setting b = [(union) leads to optimistic decision.

The best, however, seems compensatory decision

which combines both intersection as well as union in

various degrees. More details can be found in [19,14].

It is also possible to omit constraints from (1) and

to consider the criteria G1,...,Gm only. Then,

the problem is raised how all the membership

degrees Gj(ai) should be aggregated to obtain the glob-

al satisfaction degree D(ai) of the given alternative ai.

This requires the use of a specific aggregation operator

Hm so that

DðaiÞ ¼ HmðG1ðaiÞ;:::;GmðaiÞÞ:

The symbol Hm denotes actual number of arguments

of H (their number can vary).

Basic properties of aggregation operators are the

following:

H1ðaÞ ¼ a;

Hmð0;:::;0Þ ¼ 0 and Hmð1;:::;1Þ ¼ 1;

ifða1;:::;amÞ � ðb1;:::;bmÞ then
Hmða1;:::;amÞ � Hmðb1;:::;bmÞ:

Many other conditions can be imposed on aggregation

operators, for example continuity, symmetry, associa-

tivity, idempotency, compensation, etc. The possible

operators are classified as conjunctive operators (e.g.,

t-norms), disjunctive operators (e.g., t-conorms), mean

operators (e.g., arithmetic mean), or more specific

ones, such as compensative operators or order weighted

averaging operators (OWA operators). Many details

can be found in [2,7,13].

The criteria, however, are usually not equally

important. Their relative importance is expressed

using weights that can be numbers assigned to

each criterion or/and constraint. The most popular

method for weights assignment is Analytical Hierarchy

Process (AHP) that itself can be used as a specific fuzzy
decision method. It involves structuring multiple

choice criteria into a hierarchy, assessing the relative

importance of these criteria, comparing alternatives

for each criterion, and determining an overall ranking

of the alternatives. Thus, it can be divided into four

phases:

1. Decomposing, i.e., the problem is structured into

humanly-manageable sub-problems.

2. Weighing, i.e., a relative weight is assigned to each

criterion, based on its importance within the node

to which it belongs. A global priority is computed

that quantifies the relative importance of a criterion

within the overall decision model.

3. Evaluating, i.e., alternatives are scored and com-

pared each one to others.

4. Selecting, i.e., an alternative fitting best the require-

ments is selected.

For the details about AHP, see [11].

Imprecisely defined preference is mathematically

modeled using a binary fuzzy preference relation

R �� A � A. This is determined by triple of binary

fuzzy relations hP, I, Ji where P �� A � A is a strict

fuzzy preference, I ��A � A is a fuzzy indifference, and

J ��A � A is a fuzzy incomparability. This means, that

P(ai, aj) is a degree, in which the alternative ai is strictly

preferred to aj. Similarly, I(ai, aj) is the degree in which

ai is indifferent to aj, and J(ai, aj) is the degree in

which ai is incomparable with aj. In other words, the

given relation need not hold in full but only partially.

This corresponds well with the real situations in which it

needs not be fully convincing that, for example, ‘‘high

building’’ is strictly nicer than ‘‘low’’ one, etc.

The definition of P, I, J and their further properties

depend on the choice of the structure of truth values

which is a specific residuated lattice. The solution is not

unique and depends on other conditions that can be

imposed on these relations. One possible solution is to

assume that truth values form the standard Łukasiewicz

MV-algebra and to put

Pðai; ajÞ ¼ Rðai; ajÞ ^ :Rðaj ; aiÞ; ð2Þ

Iðai; ajÞ ¼ Rðai; ajÞ � Rðaj ; aiÞ; ð3Þ

Jðai; ajÞ ¼ :Rðai; ajÞ � :Rðaj ; aiÞ ð4Þ

where
N

is the Łukasiewicz conjunction a
N

b = 0 ∨
(a + b� 1). The detailed analysis and justification can be

found in [6,13].

Fuzzy Set Approach F 1213

F

A very powerful general technique suitable also for

applications in decision making as well as in classifica-

tion are fuzzy/linguistic IF-THEN rules. The given

decision situation is described using linguistic descrip-

tion and then, each alternative is judged using it on the

basis of the measured characteristics for each criterion.

The linguistic form of fuzzy/linguistic IF-THEN rules

makes it possible to distinguish sufficiently subtly and,

at the same time, aptly, various degrees of fulfilment of

the respective criteria, their various importance and,

moreover, it may also overcome possible discrepan-

cies. Hence, the problem of assignment of weights to

the criteria disappears. This makes fuzzy/linguistic

IF-THEN rules very attractive for decision-making

because the problem of weights assignment belongs

to the most controversial problem in its applications.

Another advantage is the possibility to include also

information that can be quantified with great difficul-

ties. For example ‘‘aesthetic quality,’’ ‘‘overall impres-

sion,’’ etc. are criteria which people can evaluate using

expressions of natural language such as ‘‘very high,

quite low, great, medium,’’ etc. Such expressions

(they are called evaluative linguistic expressions),

however, can be used in fuzzy/linguistic IF-THEN

rules without problems.

The procedure for decision support using fuzzy/lin-

guistic IF-THEN rules is analogous to the AHP proce-

dure mentioned above with the exception that the

weighing phase is omitted. The first phase consists in

decomposition of the decision problem into subpro-

blems, each of which being characterized by a specific

linguistic description. Hence, the decision situation is

described using a hierarchical system of linguistic

descriptions which, at the same time, renders evaluation:

R1k : IF Gk1 is A11 AND :::

AND GknðkÞ is A1nðkÞ THEN Hk is B1

:::

R1pðkÞ : IF Gk1 is ApðkÞ1 AND :::

AND GknðkÞ is ApðkÞnðkÞ THEN Hk is BpðkÞ

k = 1,...,r and

R1 : IF H1 is A11 AND :::

AND Hr is A1r THEN H is B1

:::

Rs : IF H1 is As1 AND :::

AND Hr is Asr THEN H is Bs
where H1,...,Hr are local evaluations, H is a global

evaluation and A’s and B’s are evaluative linguistic

expressions. The final decision is made on the basis of

the values of the global evaluation H (usually, the

higher, the better). A typical example of the above rules

is, for example, ‘‘IF price is small AND maintenance

is more or less medium THEN economical conditions

are good,’’ or ‘‘IF house is stylish AND place is very

nice THEN aesthetic quality is significantly high,’’ etc.

On the basis of initial information about each alternative

for all aspects, the inference proceeds. The most con-

venient inference method at this step is perception-based

logical deduction. Note that other methods can be used

as well but one must be careful about defining the

shapes of fuzzy sets and so, the advantage of using

natural language is limited. The best alternative is

selected on the basis of the highest (or, possibly, the

lowest) value of the global evaluation H.

A specific task belonging also to the realm of

decision making is classification. In general this is a

procedure that assigns an element from a finite set

O = {o1,...,oc} to a vector x 2 S, S � R of numbers.

The set S is a feature space and O is a set of classes that

can be, e.g., pieces of a figure, psychological categories,

shoe numbers, diseases, etc. The need for fuzzy classi-

fication is raised in the moment when there is not a

sufficient or precise information available or the char-

acter of classes is imprecise so that membership in

them can be unclear and only some degree can be

provided, etc. Such situations are very usual in the

real life.

A specific case are fuzzy IF-THEN classifiers that

are linguistic descriptions with clearly distinguished

consequences. The latter can be either crisp or fuzzy

numbers. Further elaboration is the same as above.

Key Applications
There are several thousands of real applications of fuzzy

multicriteria decision making. One of the earliest of

them was evaluation of the credit-worthiness of credit

applicants developed in Germany (see [14]).

Other essential application is Yamaichi Fuzzy Fund

which handles 65 industries and a majority of the

stocks listed on Nikkei Dow. It is based on the applica-

tion of fuzzy IF-THEN rules which are determined

monthly by a group of experts and modified by senior

business analysts when necessary. The system was test-

ed for 2 years, and its performance in terms of the

return and growth exceeds the Nikkei Avarage by

1214F Fuzzy Time
over 20%. For comparison, the system recommended

‘‘sell’’ 18 days before the Black Monday in 1987. The

system went to commercial operations in 1988.

Some other ones are, evaluation of weapon sys-

tems, technology transfer strategy selection in bio-

technology, aggregation of market research data and

thousands others. Evaluation of weapon systems has

been provided using the Analytical Hierarchy Process

(AHP) based on fuzzy scales.

Typical features of the weapon system evaluation

were the following: the objectives of the evaluations are

generally multiple and generally in conflict, and the

descriptions of the weapon systems are usually linguis-

tic and vague. The details are in [5]. It should be stressed

that such features are typical for most practical decision

problems and this is the main reason for using fuzzy set

theory. In case of linguistically provided information,

especially fuzzy IF-THEN rules taken as conditional

statements of natural language are convenient tool

since theymake possible to include also non-quantifiable

information. Such application was described in [10].

Cross-references
▶Classification

▶Classification by Association Rule Analysis

▶Clustering

▶Decision Tree Classification

▶Decision Trees

▶ Fuzzy Models

▶Hierarchial Clustering

▶Rule-Based Classification

Recommended Reading
1. Bellman R. and Zadeh L.A. Decision making in a fuzzy environ-

ment. Manage. Sci., 17:140–164, 1970.

2. Calvo T., Mayor G., and Mesiar R. (eds.). Aggregation Opera-

tors: New Trends and Applications, Physica-Verlag, Heidelberg

2002.

3. Carlsson C. and Fuller R. Fuzzy Reasoning in Decision Making

and Optimization. Springer, Berlin, 2002.

4. Chen S.J. and Hwang C.L. Fuzzy multiple attribute decision-

making, methods and applications. Lecture Notes in Economics

and Mathematical Systems, Springer, Heildelberg, 1993.

5. Cheng C.H. and Mon D.-L. Evaluating weapon system by anali-

tical hierarchy process based on fuzzy scales. Fuzzy Sets Syst.,

63:1–10, 1994.

6. Fodor J. and Roubens M. Fuzzy Preference Modelling andMulti-

criteria Decision Support. Kluwer Academic, Dordrecht, 1994.

7. Grabisch M., Nguyen H., and Walker E. Fundamentals of

Uncertainty Calculi, with Applications to Fuzzy Inference.

Kluwer Academic, Dordrecht, 1995.
8. Kacprzyk J. and Yager R.R. Management Decision Support

Systems Using Fuzzy Sets and Possibility Theory. Springer,

Berlin, 1985.

9. Novák V. Fuzzy Sets and Their Applications. Adam Hilger,

Bristol, 1989.

10. Novák V. Soft computing methods in managerial decision

making. In Proc. 7th Czech-Japanese Seminar on Data Analysis

and Decision Making under Uncertainty, 2004, pp. 63–68.

11. Saaty T.J. Fundamentals of DecisionMaking and Priority Theory

With the Analytic Hierarchy Process. RWS Publications, 2000.

12. Sakawa M. Fuzzy Sets and Interactive Multiobjective Optimiza-

tion, Applied Information Technology. Plenum, New York, 1993.

13. Slowinski R. (ed.). Fuzzy Sets in Decision Analysis, Operations

Research and Statistics. Handbook of Fuzzy Sets Series. Kluwer

Academic, Dordrecht, 1998.

14. Zimmermann H.-J. Fuzzy Set Theory and Its Applications. Dor-

drecht, Boston, 1985.

15. Zopounidis C., Pardalos P.M., and Baourakis G. Fuzzy

Sets in Management, Economics and Marketing. World Scien-

tific, 2001.

Fuzzy Time

▶Temporal Indeterminacy
Fuzzy/Linguistic IF-THEN Rules and
Linguistic Descriptions

VILÉM NOVÁK

University of Ostrava, Ostrava, Czech, Republic

Definition

Fuzzy/linguistic IF-THEN rules are structured expres-

sions of natural language having the form

R : IFX is ATHEN Y is B ð1Þ

where X,Y are variables and A;B are expressions such

as small, very small, medium, roughly medium, more or

less big, big, etc. The latter are called evaluative linguis-

tic expressions. Modeling their meaning in fuzzy set

theory makes it possible to model the meaning of the

whole rule. The part before THEN is called antecedent,

the part after it is called consequent.

A linguistic description is a finite set of fuzzy/linguistic

IF-THEN rules

R1 : IF X is A1 THEN Y is B1

::
Rm : IF X is Am THEN Y is Bm:

ð2Þ

Fuzzy/Linguistic IF-THEN Rules and Linguistic Descriptions F 1215

F

Linguistic description can be taken as a special

structured text in natural language which describes

some situation.

Key Points
There are two possible ways how fuzzy/linguistic IF-

THEN rules can be interpreted in fuzzy set theory:

(a) IF-THEN rule is assigned a fuzzy relation,

(b) IF-THEN rule is assigned a function from the

set of contexts to the set of fuzzy relations.

Case (b) is more complicated but more realistic as a

model of the meaning of linguistic expressions since

(1) can be taken in this case as a conditional expression

of natural language.

In case (a), the whole linguistic description (2) is

assigned a fuzzy relation constructed using one of two

possible formulas: let each of the expressions of the

form ‘‘X is Ai’’ be assigned a fuzzy set Ai �� U and

‘‘Y is Bi,’’ i ¼1,...m a fuzzy set Bi �� V . Two possible

fuzzy relations can be considered:

RA x; yð Þ ¼
_m
i¼1

Ai xð Þ � Bi yð Þð Þ; ð3Þ

RI x; yð Þ ¼
m̂

i¼1

Ai xð Þ ! Bi yð Þð Þ; ð4Þ

where� is a t-norm and! is a residuation. Then (3) is

called disjunctive normal form in which each IF-THEN

rule is interpreted as conjunction; (4) is called conjunc-

tive normal form in which each IF-THEN rule is

interpreted as implication. Both forms (3) and (4)
are two possible interpretations of the linguistic

description (2).

The second interpretation of (2) is a set of func-

tions IðRiÞ assigned to the rules Ri in (2), i ¼1,...,m.

Each function has the form

IðRiÞ : CX � CY ! LU�V ð5Þ

where CX,CY are sets of contexts for the variable X and

Y, respectively. Each context wX 2 CX and wY 2 CY

is a certain interval of elements inU and V, respectively.

The couple of contexts hwX, wYi is assigned via (5) a

fuzzy relation of the form Ai(x)!Bi(y), x 2 U, y 2V .

This approach leads to a mathematical model of the

meaning of the text (2). Human understanding to such

expressions and deriving conclusions on the basis of

them can be mimicked. The details can be found in [2].
Cross-references
▶Approximate Reasoning

▶ Fuzzy Relation

▶ Fuzzy Set
Recommended Reading
1. Klir G.J. and Yuan B. Fuzzy Sets and Fuzzy Logic: Theory and

Applications. Prentice-Hall, New York, 1995.

2. Novák V. and Lehmke S. Logical structure of fuzzy IF-THEN

rules. Fuzzy Sets Syst., 157:2003–2029, 2006.

3. Novák V. and Perfilieva I. On the semantics of perception-

based fuzzy logic deduction. Int. J. Intell. Syst., 19:1007–1031,

2004.

4. Novák V., Perfilieva I., and Močkoř J. Mathematical Principles

of Fuzzy Logic. Kluwer, Boston/Dordrecht, 1999.

G

Gaifman-Locality

▶ Locality of Queries
Gazetteers

LINDA L. HILL

University of California-Santa Barbara, Santa Barbara,

CA, USA

Synonyms
Place names; Toponyms; Knowledge organization sys-

tems; Ontologies
Definition
A simple definition is that gazetteers are dictionaries of

placenames. The digital gazetteer as a component of

georeferenced information systems, however, is more

formally modeled. A gazetteer is defined as a collec-

tion of gazetteer entries, each of which contains,

at a minimum, the tuple N, F, T where N is a place

name, F is a formal expression of geographic location –

a footprint, and T is a place type expressed with a term

(or code) from a typing scheme. Applications often

require, in addition, relationships between gazetteer

entries, documentation of time frames, and additional

information (as described below). The gazetteer model

is a type of knowledge organization system (KOS) – or

ontology – which can be modified to represent other

classes of spatial-temporal information, such as named

time periods and named events [3].

Key Points
Gazetteers support bidirectional translation between

informal georeferencing using names (e.g., Las Vegas)

and formal georeferencing using coordinates (e.g.,
2009 Springer ScienceþBusiness Media, LLC
36�1003000N, 115�0801100W) or similar mathematical

reference within a geospatial framework. The need

for such translation is common, For example, to calculate

routes and distances and to support information retrieval

by either place names or coordinates. A common use for

gazetteers is to answer the ‘‘where is’’ question: ‘‘where is

Baltimore?’’ can be answered by a map display showing

the locations of places called ‘‘Baltimore’’ in the world.

In addition to place names and geospatial location,

a third basic component of a gazetteer entry is a classi-

fication according to a typing scheme; that is, assigning

a type term to a place to indicate that it is a populated

place, a river, an island, a country, a bank, etc. There is

no single typing scheme for named places. Instead,

there are multiple typing schemes, usually unique for

a particular application.

All of the descriptive data associated with named

places have time dimensions. To deal with these tem-

poral dimensions adequately, a gazetteer data structure

must incorporate time ranges for places as well as for

most of the elements of description.

Since different names can be used for the same

place (e.g., in multiple languages), gazetteers must

support multiple names and, ideally, document the

source and time frame of each name. Supporting mul-

tiple footprints and information about a place from

multiple sources is also needed for some applications.

A gazetteer is a collection of gazetteer entries [5].

Inherent spatial relationships exist between gazetteer

entries. It can be determined which places are located

within the footprint of another place – at least, theoret-

ically. Actually, the ability to do this adequately depends

on the quality of the footprints. Explicit relationships

between gazetteer entries can also be added to the

descriptive information. It can be documented, for

example, that Chicago is part of Illinois and that Illinois

is part of the US or that Topeka is capital of Kansas.

The International Organization for Standard-

ization (ISO), the Open Geospatial Consortium, and

the Alexandria Digital Library at the University of

1218G Gene Expression Arrays
California, Santa Barbara, have published gazetteer stan-

dards, protocols, and place typing schemes; see refer-

ences [2,4–6].
Cross-references
▶Browsing in Digital Libraries

▶Georeferencing

▶GIS

▶ Searching Digital Libraries
Recommended Reading
1. Alexandria Digital Library. Guide to the ADL Gazetteer Content

Standard. University of California, Santa Barbara, CA, 2004.

2. Hill L.L. Feature Type Thesaurus. Alexandria Digital Library,

2002.

3. Hill L.L. Georeferencing: The Geographic Associations of Infor-

mation. MIT Press, Cambridge, MA, 2006.

4. International Organization for Standardization (ISO) – Techni-

cal Committee 211. Geographic Information – Spatial Ref-

erencing by Geographic Identifiers (ISO 19112:2003), 2003.

5. Janée G. and Hill L.L. ADL Gazetteer Protocol, Version 1.2.

Alexandria Digital Library, University of California, Santa

Barbara, CA, 2003.

6. Open Geospatial Consortium Inc. Gazetteer Service Profile

of the Web Feature Service Implementation Specification.

OGC 05–035rl, version 0.9.1, 2006.
Gene Expression Arrays

MEHMET M. DALKILIÇ

Indiana University, Bloomington, IN, USA

Definition
A gene expression array (or DNA microarray) is a

miniature, massively parallel, and semi-automated

process that measures levels of gene products (or

mRNA or transcripts). The DNA of an organism (cell

or cells) is a set of instructions used to direct its

existence. A genetic message is transcribed from DNA

into mRNA (messenger RNA), then typically translat-

ed into protein. By measuring the levels of mRNA,

an indirect glimpse can be taken into the functioning

of a cell. The relative and absolute levels of the

transcripts are called expressions, and this instanta-

neous set of expressions is called the expression pro-

file. Profiles can be used, for example, to indicate a

disease state.
Historical Background
DNA and RNA are bio-molecules that hybridize bond-

ing due to complementary structure. Hybridization

has been used for several decades as means of identify-

ing DNA and RNA present in an organism (cell or

cells). Until microarray technology was invented, uti-

lizing hybridization was slow and could only be per-

fomed on a relatively small scale. The microarry

process is often associated with the Pat Brown labora-

tory in 1995 [6] and by Affemetrix [5].

Foundations
The fundamental purpose of gene expression arrays

(or DNA microarrays) is to understand how an

organism functions through measuring levels of

proteins – molecules that perform a vast array of func-

tions necessary for the life of the organism. Together

with its genome (the DNA of an organism), DNA

microarrays provide a global perspective into how

regulation takes place, in other words, how the organ-

ism makes use of its DNA. The measurements are not

directly made on the protein levels themselves, but

intermediaries between the DNA and protein called

RNA. Specifically, messenger RNA (mRNA) is first

transcribed from the DNA, then translated into pro-

tein. The basic mechanism underlying microarray

technology is hybridization – the chemical pairing of

complementary molecules. DNA can hybridize to itself

and to RNA, and this property has been used for

decades in Southern and Northern blotting that mea-

sures amounts of hybridized DNA and RNA, respec-

tively, typically tagged through radioactive labeling.

The weakness of these two techniques is scale and

time: only a small number of proteins can be measured

requiring the period of a day or so. These blotting

techniques have been miniaturized, made massively

parallel, and semi-automated, so that O(105) to

O(106) experiments can be conducted at a time. In

DNA microarrays single stranded fragments of DNA

are affixed to a substrate (called probes) in a grid and

washed with a solution containing fluorescently tagged

fragments of DNA (called targets). The concentration

of DNA labeled fragments affects the likelihood of

hybridizing to the probes. The intensities of each

point on the grid are measured and result in a table

of floating point numbers. It is from the intensity of

labels that the levels of proteins are to be inferred. There

are essentially two kinds of DNA microarrays: cDNA

(spotted arrays) and high-density oligonucleotide arrays

Gene Expression Arrays G 1219

G

(oligos). In the former, fragments of a genome are used

as probes. Oligos are synthesized sequences of nucleo-

tides. cDNA arrays allow for matching against the ge-

nome, and Oligos for particular sequences of interest.

Because the company Affemetrix developed the oligos,

these are often referred to as Affy chips (or Affy arrays).

The data produced from arrays is a very large set of

intensities of electromagnetic radiation. Each intensity

is associated with a two-dimensional location on the

chip is called a spot. Microarrays are noisy, low resolu-

tion, and inconsistent; however, as the technology

matures, there have been marked improvements. The

data must be heavily pre-processed before analysis. This

includes correcting for experimental design, biological

factors, and specific mechanical idiosyncrasies them-

selves. One of the most significant pre-processing steps

is called ‘‘normalization’’ which is an attempt to make

different microarray data comparable. Currently, a con-

sensus on how to achieve normalization does not exist,

and a number of approaches can be taken. Extensive

libraries exist in R (http://www.r-project.org) a feely

available computing environment for statistical analy-

sis; in particular, the OLIN [2] and Bioconductor

packages [4] include normalization and dye correc-

tion. The main objective in microarray anaylsis is dis-

covery patterns and outliers. Patterns are, crudely, sets

of gene products that possess some discernable func-

tional relationship. Typically, the relationship is be-

tween two expressions and linearity is examined. In

particular, Pearson’s correlation is often used to gauge

the linearity of genes. Pearson’s correction denoted

r(�,�) is a real-valued measurement on the interval

[�1,1] over two sets of data, X,Y . The score jr(X,
Y)j� 1 if there is either a positive or negative unity if

a strong linear relationship exists, tending toward zero

otherwise. A zero value for Pearson’s only indicates

that linearity does not exist. Database practitioners

should realize the microarray is significant when it

can be thoroughly studied with extensive biological

annotations – it is much more than a table of spots.

Key Applications
There are key applications for both bioinformatics and

database. To give some indication of the amount of

interest in the area, the number of publications found

in PubMed (http://www.pubmed.gov) by searching

with terms ‘‘microarray’’ and ‘‘2007’’ yields well

over 10,000 entries (executed 01/20/2008). For bioin-

formatics, microarrays promise to yield cell states that
can help determine function, disease states (as men-

tioned previously), guide areas of discovery (e.g.,

drugs). From a database perspective, there is an incredi-

ble wealth of data that needs to be managed. However,

the empirical and complex nature of the processes un-

derlying the microarray belie its apparent simplicity –

usually rendered pictorially as an attractive rectangle

grid of colored circular sports that range from green to

yellow to red. Although no ANSI standard exists for

microarrays, like much of bioinformatics there are dif-

ferent popular standards vying for dominance. Of these,

the most well-known is MIAME (the minimum infor-

mation about a microarray experiment) that specifies

elements of experiments. Since this specification is at

least recognized in name, it will briefly highlight its

components: (i) Array information including platform

(spotted, etc.), size and number of spots, protocols;

(ii) Reporter information (sequences on the slide itself);

(iii) Gene information; (iv) Information about control

array control elements. Often cluster analysis is done on

microarrays, rows are gene products and columns are

experiment conditions. The clustering results in a tree

(dendogram) that depicts the most similar genes on the

set of conditions. A formal language for accessing, man-

aging, creating these large data sets does not exist.

Queries associated with arrays vary with the intent

of the user. This is significant because a good number

of these queries rely on data completely external to the

system. For example, a typical query might be, ‘‘What

are the sequence annotations of gene g1, g2, g3?’’ For

this query, the system must link to sequence annota-

tion databases to retrieve the information. The chal-

lenge is that there are (again) no official standards and

that the data, contained in flat files or even XML, must

be parsed to extract the meaningful information de-

sired. To answer the growing needs to understand

a group was formed near 2000 called the Microarray

and Gene Expression Database (http://www.mged.

org). The Microarray and Gene Expression Data

(MGED) Society is a global consortium of scientists

who are striving to provide some coherence in how to

make data exchange easier. The scope ofMGED includes

other genome-wide data and so, provides additional

information particular to data like binding. Although

the MGED is working to establish standards for man-

agement and so forth, it is unclear how widespread the

recognition and adoption is. As mentioned with the

example query, one unusual aspect of managing gene

expression data is associating it with other data housed

NAME URL

ArrayExpress http://www.ebi.ac.uk/
microarray-as/aer/

GEO http://www.ncbi.nlm.nih.gov/
geo/

Stanford Microarray
Database

http://genome-www5.
stanford.edu/

1220G Gene Expression Arrays
and managed in other systems. The MGED provides

a few standards: MIAME, MAGE-TAB, MAGE-ML,

MGED, Ontology; it also provides information about

the current status of these representations.

One of the most significant elements of database

design for array databases is the ability to exchange and

retrieve ‘‘foreign’’ data – data housed in different forms

in different repositories likely due to the nature of the

biological questions being asked. To this end, MAGE

and MAGE-ML, are means of facilitating data ex-

change, the latter XML in spirit. MAGE is more popu-

lar and does associate with the MIAME standard, but

the associations are not one-to-one. One significant

difference between MIAME and MAGE is the latter

provides elements of provenance and security, while

MIAME has no mechanism at all.

ArrayExpress, a public European repository for

array data, is housed at the European Bioinformatics

Institute (EBI) and seems to be aiming more toward

a data warehousing approach, archiving data, but allow-

ing limited keyword searches, etc. accession number

or author.

A significant challenge to management of array data

is the dynamic nature of information. Since array

data maps back to genomes, as genome drafts are

updated, array data must reflect these changes. There

is genomic draft versioning to help remap gene products

to the updated genomic locations. To give an idea of the

complexity, often drafts result in genes being split, coa-

lesced, removed, or changed in length. This directly

affects the interpretation of the results of array.

Semantics of terms in array database are, as

described above, often imprecise. One approach that

biologists have begun adopting is the use of ontologies.

The most well known example in biology is the Gene

Ontology [3] (GO) (http://www.geneontology.org/). By

fixing a common vocabulary and set of relationships

GO has become a common tool in analysis.

Future Directions
Microarrays are only one of many so-called high-

throughput technologies that produce enormous

amounts of data – these can easily range in size to tera-

bytes. Many problems biologists have been able to effec-

tively solve on small scales, do not scale with the data.

There is much work to be done in how to analyze such a

large and growing corpus of data. Another aspect is how

to integrate the different types of high-throughput.

Systems biology is a recent discipline that attempts
to semantically merge disparate types of data to form

global perspectives that no one piece of data would con-

tain.One of the standard structures used inmicroarrays is

the directed graph. Again, polynomial complexity algo-

rithms become infeasible with such a large amount of

data. Bayesian Belief Nets have recently become popular

in analyzing these large graphs (or networks).
Data Sets
There are public data sets available through the inter-

net. Some of the better known include:
Cross-references
▶Annotation

▶Approximate XML Querying

▶Biological Networks

▶Biological Sequence

▶Data Mining

▶Data Provenance

▶Data Structures and Models for Biological Data

Management

▶Data Visualization

▶Graph Database

▶Graph Management in the Life Sciences

▶ Information Integration

▶Ontologies

▶Ontologies and Life Science Data Management

▶Ontologies in Scientific Data Integration

▶Ontology

▶ Semantic Data Integration for Life Science Entities

▶Text Mining of Biological Resources

▶Uncertainty and Data Quality Management

▶Visual Data Mining

▶XML
Recommended Reading
1. Drăghici S. Data Analysis Tools for DNA Microarrays.

Chapman & Hall/CRC, London, 2003.

Generalization of ACID Properties G 1221

G

2. Futschik M.E. and Crompton T. OLIN: optimized normaliza-

tion, visualization and quality testing of two-channel microarray

data. Bioinformatics, 21(8):1724–1726, 2005.

3. Gene Ontology Consortium. Creating the gene ontology resource:

Design and implementation. Genome Res., 11:1425–1433, 2001.

4. Gentleman R., Carey V., Bates D., Bolstad B., Dettling M.,

Dudoit S., Gautier L., Ge Y., Gentry J., Hornik K., Hothorn T.,

Huber W., Iacus S., Irizarry R., Leisch F., Li C., Maechler M.,

Rossini A., Sawitzki G., Smith C., Smyth G., Tierney L., Yang J.,

and Zhang J. Bioconductor: open software development for

computational biology and bioinformatics. Genome Biol.,

5(10):R80,2004.

5. Lockhart D.J., Dong H., Byrne M.C., Follettie M.T., Gallo M.V.,

Chee M.S., Mittmann M., Wang C., Kobayashi M., Horton H.,

and Brown E.L. Expression monitoring by hybridization to

high-density oligonucleotide arrays. Nat. Biotechnol.,

14:1675–1680, 1996.

6. Schena M., Shalon D., Davis R.W., and Brown P.O. Quantitative

monitoring of gene expression patterns with complementary

DNA microarray. Science, 270:467–460, 1995.
Generalisation

▶Abstraction
Generalization of ACID Properties

BRAHIM MEDJAHED
1, MOURAD OUZZANI

2,

AHMED K. ELMAGARMID
2

1The University of Michigan–Dearborn, Dearborn,

MI, USA
2Purdue University, West Lafayette, IN, USA

Synonyms
Advanced transaction models; Extended transaction

models

Definition
ACID (Atomicity, Consistency, Isolation, and Durability)

is a set of properties that guarantee the reliability of

database transactions [2]. ACID properties were initially

developed with traditional, business-oriented app-

lications (e.g., banking) in mind. Hence, they do not

fully support the functional and performance require-

ments of advanced database applications such as

computer-aided design, computer-aided manufacturing,

office automation, networkmanagement,multidatabases,

and mobile databases. For instance, transactions in
computer-aided design applications are generally of long

duration and preserving the traditional ACID properties

in such transactions would require locking resources for

long periods of time. This has lead to the generalization of

ACID properties as Recovery, Consistency, Visibility, and

Permanence. The aim of such generalization is to relax

some of the constraints and restrictions imposed by the

ACID properties. For example, visibility relaxes the isola-

tion property by enabling the sharing of partial results and

therefore promoting cooperation among concurrent

transactions. Hence, the more generalized ACID proper-

ties are, the more flexible the corresponding transaction

model will be.

Key Points
ACID is an important concept of database theory. It

defines four properties that traditional database trans-

actions must display: Atomicity, Consistency, Isola-

tion, and Durability. Atomicity states that transactions

must follow an ‘‘all or nothing’’ rule. Either all of the

changes made by a transaction occur, or none of them

do. The two-phase commit protocol (2PC) is generally

used in distributed databases to ensure that each par-

ticipant in a transaction agrees on whether or not the

transaction should be committed. Consistency means

that transactions always operate on a consistent view of

the database and leave the database in a consistent

state. A database is said to be consistent as long as it

conforms to a set of invariants, called integrity con-

straints. Isolation gives the illusion that each transac-

tion is executed alone. It ensures that the effects of a

transaction are invisible to other concurrent transac-

tions until that transaction is committed. Concurrency

control protocol are generally implemented in data-

base systems to preserve this property. Durability states

that once a transaction is committed, its effects are

guaranteed to persist even in the event of subsequent

failures. This is usually achieved using database back-

ups and transaction logs.

The limitations inherent to the original ACID

properties and the peculiarities of advanced database

applications has lead to the generalization of ACID

properties Recovery, Consistency, Visibility and Per-

manence. Recovery refers to the ability to take the

database to a state that is considered correct in case

of failure. Consistency refers to the correctness of the

state of the database that a committed transaction

produces. Visibility refers to the ability of one transac-

tion to see the results of another running transaction.

1222G Generalized Search Tree
Permanence refers to the ability of a transaction to

record its results in the database. The flexibility of a

transaction model depends on the way ACID properties

are generalized. An extensive coverage of advanced

transaction models is presented in [1]. Sagas, Nested

Transactions, and Flex are representative examples of

models that generalize ACID properties while ACTA is

an example of a formal framework to express these

models and reason about them.

A Saga is a chain of transactions that is itself atomic.

Isolation is relaxed at the level of a Saga and visibility is

permitted at the component transaction boundaries. A

saga itself is atomic but because of the relaxed visibility,

it supports semantic consistency. That is, each transac-

tion in the chain is assumed to have a semantic inverse,

or compensation, transaction associated with it. If one

of the transactions in the saga fails, the transactions are

rolled back in the reverse order of their execution.

Committed transactions are rolled back by executing

their corresponding compensation transactions.

Nesting allows concurrency within a transaction

and provides fine-grained and hierarchical control for

failure handling. The original nested transaction

model, which supports only closed sub-transactions,

was extended to include open sub-transactions. Closed

sub-transactions may not support consistency and

durability. A closed sub-transaction commits its results

to its parent. These partial results are externalized only

after the top (root) transaction commits, thus ensuring

atomicity and isolation of the whole transaction.

Because of its relaxed visibility, open sub-transactions

directly externalize their results and expose them to

other transactions.

The Flex Transaction Model has been proposed to

generalize ACID properties in multidatabase systems. It

relaxes the atomicity and isolation properties of nested

transactions to provide users increased flexibility in

specifying their transactions. A Flex transaction may

proceed and commit even if some of its sub-transactions

fail. It also allows the specification of dependencies on

sub-transactions as internal or external dependencies.

Internal dependencies define the execution order of

sub-transactions, while external dependencies define

the dependency of a sub-transaction execution on

events (such as the start/end execution times) that do

not belong to the transaction. The Flex model also

enables users to control the isolation granularity of a

transaction through the use of compensating sub-

transactions.
ACTA is a framework that facilitates the formal

description of properties of extended transaction mod-

els. It defines constructs that facilitate the synthesis of

extended transaction models by tailoring/combining

existing models or starting from first principles. Dif-

ferent notions are introduced in ACTA to enable the

generalization of ACID properties from different per-

spectives. For instance, the notion of delegation allows

transactions to selectively abort some of the operations

it has performed and yet commit.
Cross-references
▶ACID Properties

▶Concurrency Control

▶Distributed

▶ Extended Transaction Models

▶ Extended Transaction Models and the ACTA

Framework

▶ Parallel and Networked Databases

▶ Serializability

▶ System Recovery

▶Transaction Management

▶Two-Phase Commit
Recommended Reading
1. Elmagarmid A.K. (ed.). Database Transaction Models for Ad-

vanced Applications. Morgan Kaufmann, Los Altos, CA, 1992.

2. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, Los Altos, CA, 1993.
Generalized Search Tree

JOSEPH M. HELLERSTEIN

University of California-Berkeley, Berkeley, CA, USA

Synonyms
GiST; GIST
Definition
The Generalized Search Tree (GiST) is an extensible,

disk-based index structure for large data sets, enabling

the easy design and implementation of domain-specific

index structures. The GiST provides a general-purpose

implementation of many of the difficult systems issues

inherent in indexing (data storage and access, search,

Generalized Search Tree G 1223

G

concurrency and recovery), with a compact extensibility

interface sufficient for the specification of the domain-

specific, algorithmic aspects of indexing (clustering of

data into pages, labeling of subtrees, and prioritization

of the search frontier).

Historical Background
A key research challenge in database systems in the

1980s and 1990s was to support an extensible set of

abstract data types, beyond the alphanumeric types

typically used in business data processing. One critical

component of database extensibility is the ability to

easily add new access methods customized to specific

data types and query operators. Ideally, extensibility

interfaces should enable the programmer extending

the DBMS to focus on their domain expertise (e.g.,

geographic information, bioinformatics, etc.), and

not have to reason about database systems issues like

storage, buffering, query optimization, concurrency

or recovery.

The Postgres system provided one of the first truly

extensible access method interfaces, which allows new

access methods to be registered with a query planner

and executor. However, this interface leaves the imple-

mentation of data storage, concurrency and recovery

in the hands of the extension programmer, which

makes the task of writing a new access method extre-

mely difficult, and results in inelegant software that

replicates complex functionality across different index

implementations.

The GiST design was intended to take care of as

many generic database systems issues as possible, while

still enabling a wide range of indexes to be easily

written within its framework. At heart, the GiST is a

generalization of the B+-tree, and one of its contribu-

tions is to demonstrate the degree to which many

subsequent index inventions are specific variations of

the basic B+-tree ideas.

In principle, the GiST can be used for any indexing

workload, as defined by a family of query predicates

over a particular data domain. This raises theoretical

questions of both lower and upper bounds: which

workloads are efficiently indexable, and how close to

optimal is the performance of a particular index design

on a given workload? The first of these questions

inspired the Theory of Indexability; the latter led to

a set of empirical performance metrics, which have

been embodied in the Access Method DeBugger

(amdb) toolkit.
Foundations
Like the B+-tree, the GiST is a height-balanced tree of

variable fan out, with data stored at the leaves, and

search keys associated with pointers in the internal

nodes. The GiST search keys are the center of its exten-

sibility API: a new index is implemented via a new

search key class and associated methods. Search keys

are parameterized by four user-defined methods:

1. The consistent method of a search key k takes a

query predicate p, and returns false if it is not

possible for k and p to describe the same data

items. The index search algorithm only traverses a

subtree if the consistent method returns true for the

search keys above it.

2. The unionmethod takes a set of search keys from a

child node, and produces a single search key to be

placed in the parent. This is used to update search

keys whenever the contents of the tree change.

3. The penalty method of a search key takes a new

data item to be inserted, and returns a cost for the

insertion of that item into the subtree labeled by

that search key. This guides the index insertion

algorithm’s descent to a leaf, affecting the clustering

of data in the tree.

4. The pickSplit method takes a set of search keys,

and partitions them into two subsets; this is used

for choosing how to split an overflowing page dur-

ing insertion into the tree. This method also affects

the clustering of data in the tree.

In its original conception, the GiST was designed

to support selection predicates, via search keys forming

a set-containment hierarchy. Subsequently, it was

observed that the GiST can naturally support richer

queries, including near-neighbor search, as well as

statistical methods for approximate query answering

that treat the search keys as a multi-resolution synopsis

of the data.

Key Applications
GiST has been implemented in a number of database

systems and projects, most notably in the Informix

Universal Server, and the open-source PostgreSQL

system, both of which implement the full GiST con-

currency and recovery algorithms.

Currently, GiST serves as the default framework for

spatial and text indexing in PostgreSQL, via extensions

corresponding to R-trees for spatial data, and Russian-

Doll (RD) Trees for text data. The open-source

1224G Generative Models
PostGIS Geographic Information System relies upon

the PostgreSQL GiST implementation for its spatial

indexing.

In addition to their widespread use for spatial and

text workloads, GiST-based indexes have been used for

applications in image retrieval, astronomy data, and

genomic data.
URL to Code
1. http://www.postgresql.org

2. http://gist.cs.berkeley.edu
Cross-references
▶B-Tree

▶B+-Tree

▶Rtree

▶M-Tree

▶ Extensional Relational Database (ERDB)

▶ Postgres

▶ PostgreSQL

▶Geographic Information System

▶ Spatial Indexing Techniques

▶ Informix Indexability Theory

▶ Index Concurrency

▶ Index Recovery
Recommended Reading
1. Aoki P.M. Generalizing ‘search’ in generalized search trees.

In Proc. 14th Int. Conf. on Data Engineering, 1998.

2. Aoki P.M. How to avoid building dataBlades that know the

value of everything and the cost of nothing. In Proc. 11th Int.

Conf. on Scientific and Statistical Database Management, 1999,

pp. 122–133.

3. Aref W.G., Ilyas I.F. SP-GiST: an extensible database index

for supporting space partitioning trees. J. Intell. Inf. Syst.,

17(2/3):215–240, 2001.

4. Hellerstein J.M., Koutsoupias E., Miranker D., Papadimitriou C.,

and Samoladas V. On a model of indexability and its bounds

for range queries. J. ACM, 49(1):35–55, 2002.

5. Hellerstein J.M., Naughton J.F., and Pfeffer A. Generalized

search trees for database systems. In Proc. 21st Int. Conf. on

Very Large Data Bases, 1995, pp. 562–573.

6. Hellerstein J.M. and Pfeffer A. The RD-Tree: An Index Structure

for Sets. University of Wisconsin Technical Report #1252,

October 1994.

7. Kornacker M. High-performance generalized search trees. In

Proc. 25th Int. Conf. on Very Large Data Bases, 1999.

8. Kornacker M., Mohan C., and Hellerstein J.M. Concurrency

and recovery in generalized search trees. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1997, pp. 62–72.
9. Kornacker M., Shah M.A., and Hellerstein J.M. Amdb: a design

tool for access methods. Data Eng. Bull., 26(2):3–11, June 2003.

10. Thomas M.C. and Hellerstein J.M. Boolean bounding predicates

for spatial access methods. In Proc. Int. Conf. on Database and

Expert Systems Applications, 2002, pp. 925–934.

11. Stonebraker M. Inclusion of new types in relational data base

systems. In Proc. 2nd Int. Conf. on Data Engineering, 1986.
Generative Models

▶ Language Models
Genetic Algorithms

COLIN R. REEVES

Coventry University, Coventry, UK

Synonyms
Evolutionary algorithms; Evolutionary computation

Definition
A genetic algorithm (GA) is one of a number of

heuristic techniques that attempt to find high-quality

solutions to large and complex optimization problems.

The term evolutionary algorithm is sometimes used

synonymously, but is generally used to denote a rather

wider class of heuristics. All such algorithms use

the notion of a sequence of cycles that employ muta-

tion of, and subsequent selection from, a population

of candidate solutions. While these features are also

found in a GA, its most distinctive characteristic is

the use of recombination (or crossover) to generate

new candidate solutions. A secondary idea found

in many, but not all GAs, is the existence of an encod-

ing function that maps the original optimization prob-

lem into a space that is hoped to be more congenial

to the application of the GA operators.

Historical Background
The term genetic algorithm was first used by John

Holland, whose book [8], first published in 1975, was

instrumental in creating what is now a flourishing field

of research and application that goes much wider than

the original GA. The area covers topics such as evolu-

tion strategies (ES), evolutionary programming (EP),

artificial life (AL), classifier systems (CS), genetic

Genetic Algorithms G 1225

G

programming (GP), and now the concept of evolvable

hardware. These related fields of research are often

grouped under the heading of evolutionary computa-

tion or evolutionary algorithms (EAs).

While Holland’s influence in the development of the

topic has been immense, from an historical perspective

it is clear that several other scientists with different

backgrounds were also involved in proposing and

implementing similar ideas. In the 1960s in Germany,

Rechenberg and Schwefel developed the idea of the

Evolutionsstrategie (in English, evolution strategy),

while – also in the 1960s – Lawrence Fogel and others

in the USA implemented a similar idea that they called

evolutionary programming. What these proposals had in

common was their use of the ideas of mutation and

selection that lie at the center of the neo-Darwinian

theory of evolution. Relatively little attention was given

to the use of recombination – the idea later placed at the

heart of GAs by Holland. However, although some

promising results were obtained, as an area of research

the topic of evolutionary computing did not really catch

fire. There may be many reasons for this, but the most

obvious one is that the techniques tended to be com-

putationally expensive – unless the applications were

trivial – and far beyond the capabilities of the compu-

ters of the day. Nevertheless, the work of these early

explorers is fascinating to read in the light of our current

knowledge. David Fogel (son of one of these pioneers)

has tracked down and collected some of this work [6].

The last 30 years has seen an explosion of interest in

GAs and their applications, and there is now enormous

literature on variations of the basic algorithm and

developments in application areas. De Jong [4] – an-

other early pioneer, particularly in relation to the GA’s

utility as an optimizer – has recently surveyed the most

important developments from a unified perspective.

Theoretical analysis of GAs, and of EAs in general,

has lagged far behind the development of novel practical

applications. Holland’s original work gave an account

based on his idea of a schema that raised hopes that the

GA’s power was significantly greater than that of other

heuristics. Sadly, these hopes have not been realized,

and the rise of ‘No-Free-Lunch’ arguments [13] has

put paid to the idea of some universal optimization

algorithm that outperforms all others. In the case of

GAs, Holland’s schema-based theory has proved much

less relevant than early accounts suggested. Several

other theoretical approaches have been tried, with

some success in accounting for large-scale GA
behaviour, but something truly comprehensive is still

awaited. Reeves and Rowe [10] provide the most recent

description of the state of GA theory.

Foundations
Optimization problems arise in many forms, but the

most obvious dichotomy is between continuous and

discrete (or combinatorial) optimization. While GAs

have been used successfully for continuous problems,

the evolution strategy approach – although employing

similar principles – is on the whole better suited to

continuous problems. What is usually in mind for the

application of a GA is the following:

Given a discrete search space V, and a function

g : V 7! IR;

find

arg min
n2V

g :

From a mathematical perspective, the decision vari-

ables of this problem are encoded as strings or vectors

where each component is a symbol from an alphabet

A. These strings are then concatenated to provide a

chromosome. That is, the vector v is represented by a

string x of symbols drawn from A, using a mapping

c : A‘ 7! V:

where ‘, the length of the string, depends on the

dimensions of both V and A. The elements of the

string correspond to ‘‘genes’’, and the values those

genes can take to ‘‘alleles’’. The position of a gene in

the string is its ‘‘locus’’. The encoding function c is

often designated as the genotype–phenotype mapping.

The spaceA‘ – or, quite often, some subspace X of it –

is known as the genotype space, while the space V,
representing the original definition of the problem, is

the phenotype space.

Thus the optimization problem becomes one of

finding

min
x2X

gðxÞ;

where (with a slight abuse of notation)

gðxÞ ¼ gðcðxÞÞ:

In practice the distinction between genotype and pheno-

type is often blurred, and g(v) or g(x) is used according

to context. Finally, a monotonic transformation of g

1226G Genetic Algorithms
is often used to provide what is usually termed a fitness

function, which can be regarded as

f : X 7! IRþ;

so that fitness is always a positive value. It should also

be noted that the genotype search space X � A‘,

which implies that some strings may represent invalid

solutions to the original problem. This can be a source

of difficulty for GAs, since GA operators may generate

new strings in A‘ that are not in X . The choice of

encoding is usually dictated by the type of problem that

is being investigated. Examples and further details on

such matters can be found in standard references such

as [4] or [10].

With this background in mind, a basic version of a

GA can now be presented as in Fig. 1.

Initial populations are usually generated randomly,

although there are many variations that incorporate

some aspects of problem-specific knowledge. Given a

population, the next step is to choose parent chromo-

somes for reproduction. This is generally carried out by

somemeans of fitness-proportional selection. Implemen-

tations of this idea vary widely: roulette-wheel, rank-

based and tournament selection schemes are all popular

and have associated advantages and disadvantages.

Reproduction takes place using crossover and mu-

tation. Having selected parents in some way, they must

be recombined – the process called crossover. This is
Genetic Algorithms. Figure 1. A genetic algorithm

template. This is a fairly general formulation,

accommodating many different forms of selection,

crossover and mutation. It assumes user-specified

conditions under which crossover and mutation are

performed, a new population is created, and whereby the

whole process is terminated.
simply a matter of replacing some of the alleles in one

parent by alleles of the corresponding genes of the

other. Suppose there are two strings a and b, consisting

of seven symbols, i.e.,

ða1;a2;a3;a4;a5;a6;a7Þ and ðb1;b2;b3;b4;b5;b6;b7Þ;

each representing a possible solution to a problem. To

implement one-point crossover a crossover point is cho-

sen at random from the numbers 1,...,6, and a new

solution produced by combining the pieces of the

original ‘‘parents’’. For instance, if the crossover point

was 2, then the ‘‘offspring’’ solutions would be

ða1;a2;b3;b4;b5;b6;b7Þ and ðb1;b2;a3;a4;a5;a6;a7Þ:

Many other forms of crossover have been invented,

with varying degrees of success.

The concept of mutation is even simpler than cross-

over: a gene (or subset of genes) is chosen randomly and

the allele value of the chosen genes is changed. This can

easily be represented as a bit-string mask such as

0100010

generated using a Bernoulli distribution – i.e., at each

locus there is a small probability m of a mutation

occurring (indicated in the mask by a 1). The above

example would thus imply that the second and sixth

genes are assigned new allele values.

Finally, a new population has to be selected from the

joint set of old and newly generated members. Again

there are many ways of carrying this out. At the

extremes, there are the generational and steady-state

approaches. In the first of these, the old population is

completely replaced by the new. In the second, a single

new candidate is generated, and some member of the

old population (often the least fit one) is displaced by it.

Again, many other techniques have been tried.

This is an extremely condensed overview of the

possibilities available for implementing a GA. A more

comprehensive picture of some of the most popular

ideas, and a discussion of their effects on GA perfor-

mance, can be found in [4] or [10].
Key Applications
The number of NP-hard combinatorial optimization

problems continues to grow, and heuristic methods

offer the only realistic route to high-quality solutions.

The use of GAs is thus motivated by the existence of

computational complexity in many aspects of

Geographical Information Retrieval G 1227

G

technological development. In the area of database sys-

tems, there were early applications to problems of data-

base design [3] and query optimization [11]. Other areas

of interest include data clustering methods [7] and data

partitioning [2,1]. Genetic algorithms have also been

used for rule discovery in data mining applications,

seminal work in this area being reported in [5]. Data

reduction by means of instance selection using GAs for

other techniques such as decision trees, neural nets or

nearest neighbour methods has also been reported [9].

Also, several companies claim – without revealing very

many details – to use GAs in spam detection software.

A recent published example of such work is [12].

Experimental Results
Given the lack of authoritative theoretical models of

GAs, assessment of their performance in any individual

case is necessarily experimental. Standard methods of

evaluation include the best-so-far curve – a time series

plot of the fitness of the best solution found so far

(y-axis) against the number of generations or the num-

ber of individuals generated. This is sometimes called

the offline performance measure, in contrast to the

online performance measure, which is a time series

plot of current (average) population fitness.

Another aspect of experimental evaluation is assess-

ment of convergence – or equivalently, of population

diversity. This can be assessed simply by plotting a time

series of the coefficient of variation of the current popu-

lation fitnesses, or more expensively, by means of a locus-

wise count of allele percentages in successive populations.

Since GAs are stochastic algorithms, it is obvious

that results will differ from one run of the algorithm to

the next. In any experimental work it is essential to

apply the algorithm several times in order to have

some confidence that the results obtained are not

freakishly good (or bad).

Cross-references
▶Data Clustering

▶Database Design

▶Data Mining

▶Query Optimization

▶ Spam Detection
Recommended Reading
1. Acar A.C. and Motro A. Intensional encapsulations of database

subsets via genetic programming. In database and expert sys-

tems applications, K.V. Andersen, J. Debenham and R. Wagner
(eds.). Lecture notes in computer science 3588. Springer, Berlin,

2005, pp. 365–374.

2. Cheng C.H., LeeW.K., andWong K.F. A genetic algorithm-based

clustering approach for database partitioning. IEEE Trans. Syst.

Man Cybernet., 32:215–230, 2002.

3. Corcoran A.L. and Hale J. A genetic algorithm for fragment

allocation in a distributed database system. In Proc. 1994 ACM

Symp. on Applied Computing, 1994, pp. 247–250.

4. De Jong K.A. Evolutionary Computation: A unified approach.

MIT Press, Cambridge, MA, 2006.

5. Flockhart I.W. and Radcliffe N.J. A genetic algorithm-based

approach to data mining. In Proc. 2nd Int. Conf. on Knowledge

Discovery and Data Mining, 1996, pp. 299–302.

6. Fogel D.B. Evolutionary Computation: The Fossil Record. IEEE

Press, New York, 1998.

7. Hall L.O., Özyurt I.B., and Bezdek J.C. Clustering with a geneti-

cally optimized approach. IEEE Trans. Evol. Comput.,

3:103–112, 1999.

8. Holland J.H. Adaptation in Natural and Artificial Systems, 2nd

edn. MIT Press, Cambridge, MA, 1992.

9. Reeves C.R. and Bush D.R. Using genetic algorithms for training

set selection in RBF networks. In Instance selection and con-

struction for data mining. H. Liu and H. Motoda (eds.) Kluwer,

Dordecht, 2001, pp. 339–356.

10. Reeves C.R. and Rowe J.E. Genetic Algorithms: Principles and

Perspectives. Kluwer, Dordecht, 2002.

11. Wang J.C., Horng J.T., and Liu B.J. A genetic algorithm for set

query optimization in distributed database systems. IEEE Conf.

Syst. Man Cybernet., 3:1977–1982, 1996.

12. Wang H.B., Yu Y., and Liu Z. SVM classifier incorporating

feature selection using GA for spam detection. In Proc.

Int. Conf. embedded and ubiquitous computing, 2005,

pp. 1147–1154.

13. Wolpert D.H. and Macready W.G. No free lunch theorems for

optimization. IEEE Trans. Evol. Comput., 1:67–82, 1997.
Geographical Information Retrieval

CHRISTOPHER B. JONES
1, ROSS S. PURVES

2

1Cardiff University, Cardiff, UK
2University of Zurich, Zurich, Switzerland

Definition
The provision of facilities to retrieve and relevance

rank documents or other resources from an unstruc-

tured or partially structured collection on the basis of

queries specifying both theme and geographic scope.

Historical Background
Geographical information associates things and events

with locations. Since everything one does and everything

1228G Geographical Information Retrieval
that happens on Earth happens somewhere, there is a

vast amount of information that can be regarded as

geographical in some sense. This information is repre-

sented within a variety of media, including digital and

analogue versions of text documents, images, videos

and maps, as well as the structured spatial databases

that are employed within most geographical informa-

tion systems (GIS). In text documents the association

with location is often qualitative with place names

and natural language terminology (such as in, at,

and near) that provide spatial context. This is in

contrast to the use in GIS of, for example, digital

topographic datasets in which location is described

quantitatively with numerical coordinates. Over the

past few decades, information technology for acces-

sing geographical information has focused on the

latter, quantitative representation of geographic

space that characterizes GIS. It is only in recent

years that much attention has been paid to the

development of computer systems to retrieve geo-

graphically-specific information from the relatively

unstructured but immense resource of digital docu-

ments, many of which can be found on the world-

wide web (e.g., [7,9,11]).

Because of the importance of geographical context,

it is not surprising that requirements for information

on the web often have a geographical focus (it has

been estimated that between 13–15% of web queries

submitted to traditional search engines contain a place

name) [6,12]. It is this need for public access to geo-

graphical information on the web that has been a

major motivation for the growth of the academic

field of geographical information retrieval (GIR).

Much current research in GIR can be regarded as

an extension of the field of information retrieval

(IR). The products of work in IR have provided the

foundation for current search engine technology,

with its focus on access to primarily textual docu-

ments that are relevant to user queries taking the

form of a phrase or set of key words. This latter

type of query is in contrast to the more formal ap-

proach common in spatial databases, where geo-

referenced data objects are retrieved from structured

tables in response to queries that can stipulate precise

spatial constraints. IR methods usually identify

documents that contain query terms and rank the

retrieved documents using statistical methods that

are intended to highlight the most relevant to the

user’s needs. For some forms of geographical search,

particularly when looking for common resources
within relatively large geographic extents (e.g., hotels

in London), this approach can work well but it is

fraught with limitations.

From the user’s perspective these limitations can be

manifested in a failure to distinguish between different

instances of the same place name, a lack of ability to deal

with spatial qualifiers such as near or north, a lack of

methods to rank and explore results with respect to their

spatial relevance and the non-retrieval of resources

which are spatially relevant but use a place name differ-

ent from that specified in the query. GIR is therefore

concerned with improving the quality of geographically-

specific information retrieval with a focus on access to

unstructured documents such as those found on the

web. There are several types of functionality that are

distinctive to GIR and which constitute significant chal-

lenges. These include:

� Detecting geographical references in the form of

place names and associated spatial natural language

qualifiers within text documents and in user queries.

� Disambiguating place names to determine which

particular instance of a name is intended.

� Geometric interpretation of the meaning of vague

place names, such as the ‘‘Midlands,’’ and of

vague spatial language such as ‘‘near’’.

� Indexing documents with respect to their geograph-

ic context as well as their non-spatial thematic

content.

� Ranking the relevance of documents with respect

to geography as well as theme.

� Developing effective user interfaces that help users

to formulate effective queries and identify relevant

results.

� Developing methods to evaluate the success of GIR.

The following sections elaborate upon these issues.

Foundations

Detecting Geographic References

Place names (or toponyms) can be used to refer to

places on Earth, but they also occur frequently within

the names of organizations and as part of people’s

names. It is also the case that place names may be

used metonymically, for example to refer to adminis-

trative entities as in ‘‘talks with Washington.’’ The

process of geo-parsing is concerned with analyzing text

to identify the presence of place names and other spatial

language and distinguish the genuine geographical

occurrences of place name usage from those where they

Geographical Information Retrieval G 1229

G

are being used to refer to some other entity. This process

is often treated as an extension of Named Entity Recog-

nition that is a standard part of linguistic analysis in

natural language processing (NLP). Various techniques

can be employed to identify a place name, including the

use of rule-based approaches and machine learning. In

order to recognize that a word is a potential place name,

it is common practice to employ a list of known place

names as is found in a gazetteer. Within gazetteers, each

name is usually accompanied by at least one parent

region, a classification for the place and a coordinate-

based footprint providing a quantitative location.

Disambiguating Place Names

Once it has been established that a place name is being

used in a geographic sense, the problem remains of

uniquely determining the place to which the name

refers. Note that the combination of detecting place

names and disambiguating them is referred to as geo-

parsing. There are many names that are shared between

different places. For example there are over 70 ‘‘Spring-

fields’’ in the US.When humans read a document with a

place name in it, they will tend to resolve ambiguity

using knowledge gained from contextual clues within

the document. Automatic resolution of geographic

scope, and hence disambiguation of place names,

attempts to mimic the methods humans use, for exam-

ple by considering together all of the place names in the

document. If a place name occurs in association with a

set of other place names, several of which refer to neigh-

boring places or are instances of places within the same

parent region, then that provides evidence to distinguish

which meaning is implied. Equally if the text mentions a

parent or child region of an instance of a particular

name, then that can help to determine the sense that is

intended [14].

Vague Geographic Terminology

Many of the place names that users employ when search-

ing on the web are of an informal or vernacular nature,

often without precise boundaries. Examples include the

Pennines and the Borders in the UK, the south of France,

the Swiss Mittelland and the midwest in the US. Existing

geographical search facilities make use of gazetteers

that are based largely on the administrative names of

places and which do not, in general, include any repre-

sentations of vernacular names. There have been a few

studies of methods of determining what may be a fuzzy

extent for such places (e.g., [8]) but there is still much to

be done. Recently, web mining methods have been used
to determine associations between a vernacular place

name and the names of other places within it or in the

vicinity [4]. Spatial extent can then be modeled using,

for example density surfaces, or Delaunay triangulation

based methods [2].

The spatial language (such as near, close, between

and north of) that accompanies place name terminology

can be as vague as some of the place names. Being able to

interpret such terms will help in analyzing the geograph-

ic context of documents and in interpreting user queries

that employ vague spatial language. There have been

previous studies of the meaning of natural lan-

guage qualitative spatial relations, while [13] show how

nearness can be interpreted quantitatively by analyzing

the use of phrases such as ‘‘walking distance’’ in combi-

nation with knowledge of the coordinates of the places

that are referred to.

Spatial and Textual Indexing

When web documents have been categorized according

to their geographical context they must be indexed in a

way that enables them to be found quickly in response to

user queries. Techniques for indexing documents

according to the words that they contain are well estab-

lished. Typically an inverted file of documents is created

in which each word is associated with a list of the docu-

ments that contain the word. This text index can be

combined with a spatial index that records which docu-

ments relate to particular regions of space. Building a

spatial index of documents can be done if each docu-

ment has one or more document footprints that repre-

sent the regions of geographic space to which the

document refers. Each document footprint may corre-

spond to the spatial extent of a geographic reference that

occurs in the document. If there are many such refer-

ences an effort may be made to establish the main geo-

graphic foci of the document as represented by a smaller

number of footprints [1,14]. These footprints can then

be indexed in the same way that any other piece of

geometry would be indexed in a conventional GIS. A

challenge remains, however, to find efficient ways to

combine text and spatial indexes (see [15] for a summary

of some approaches to spatio-textual indexing).

Retrieval of relevant documents requires matching

the query specification to the characteristics of the

indexed documents. As mentioned above, in conven-

tional web search engines this starts by finding those

documents that contain the query terms, before ranking

the resulting documents. For geographical search, there

is a need to match the geographical component of

1230G Geographical Information Retrieval
the query with the geographical context of the docu-

ments as represented by the document footprints. GIR

queries can be characterized as a triplet of <theme>

<relationship> <location> composed of a topic of

interest in combination with a place name qualified by

a spatial preposition such as near, in, or north of. The

combination of place name (after disambiguation) and

spatial preposition can be used to generate a query

footprint representing, for example, the interpretation

of an expression such as ‘‘near Bristol.’’ This query

footprint can then be used to access the relevant part

of the spatial index and hence find document footprints

that intersect the query footprint. The retrieved docu-

ments will then be the members of this latter set of

geographically relevant documents that also contain

the thematic (text) query terms in the query.

Geographical Relevance Ranking

Having found a set of potentially relevant documents

they should then be ranked by some measures of their

estimated degree of relevance to the query. Relevance

with respect to the thematic part of the query and the

retrieved documents can be represented by a score that

takes into account factors such as the frequency of

occurrence of query terms within retrieved documents

as a function of the overall frequency of query terms

within the whole collection. The spatial score can be

some measure of the geometric match between the

query footprint and the document footprints. These

two scores can then be combined to find an overall

relevance. [16] has described some methods for doing

this in which the text and spatial scores are normalized

to values between 0 and 1 before calculating their

distance from an ideal combined score in the two-

dimensional space of text and spatial scores.

User Interfaces

Retrieval of documents using GIR also provides a varie-

ty of research challenges in the development of user

interfaces. Query formulation generally requires, as

indicated above, specification of a triplet of <theme>

<spatial relationship> <location>. This can easily be

facilitated by a simple structured interface, but this

assumes sufficient geographic knowledge to specify rel-

evant place names. Other approaches to query formula-

tion allow users to sketch a region of interest on a map,

and enter a related concept within a textbox [11]. This

approach presupposes that users are interested in a

spatial relationship representing containment, but to

date very little progress has been made in developing
map-based interfaces that allow users the option of

graphically specifying other spatial relationships.

The results of a query to a GIR system can be

treated in an identical manner to those of a traditional

search engine, and simply displayed as a ranked list.

In practice, the nature of geographic search and the

pervasiveness of map-based web services means that

the overlaying of results on a map has become a natural

and expected visualization mechanism. Several chal-

lenges exist in displaying the results of GIR searches

through a map interface. Many relevant documents

may have the same geographic footprint, and techniques

are required to allow the aggregation of these relevant

documents, while summarizing or filtering duplicate

content. Equally, document footprints often have scopes

which are not sensibly represented at all scales as a point

(e.g., London) and methods are required to allow users

to explore documents with extensive geographic scopes

in meaningful ways. Finally, there is much room for

techniques from the Geovisualization community to

be applied in exploring the typically large sets of docu-

ments that are returned by GIR.

User Studies and Evaluation

In developing GIR techniques, it is very important

to take cognizance of user needs and to develop tech-

niques to evaluate the quality of approaches to GIR.

With respect to user needs, work is required to analyze

where gaps exist in current approaches and to ana-

lyze query logs, firstly to identify the types of geo-

graphic search users undertake, and secondly to assess

where users fail or have difficulty in search [6,12].

Evaluation is a key part of IR. In general, evaluation

strategies within IR either take the form of system-

focused or user-centered studies [5]. The former are

based around the use of test collections, the measuring

of the relevance of documents to specific queries and the

calculation of standard IRmeasures such as precision and

recall for a variety of systems and settings. Such methods

require substantial resources to implement, particularly

since relevance judgments must be performed manually

and the numbers of judgments required are large.Within

IR, the long-running TREC experiments have provided a

mechanism for the pooling of resources to the mutual

benefit of the research community. In GIR, GeoCLEF [3]

has gone some way towards addressing this need by

mounting a campaign to compare performance of a

range of approaches to GIR across a set of multilingual

queries performed on document collections based on

newspaper articles. However, there is much room for

Geographic Information System G 1231
further research on relevance judgment andmeasures for

GIR. Current techniques are based on a single dimension

of relevance using standard IRmeasures, which in general

do not take account of the G (geography) in GIR [10].

To date, very little user-centered evaluation has been

performed in GIR.
G

Key Applications
Geographical information retrieval is applicable in all

areas where there is a need to specify geographical

constraints when searching for information in docu-

ment collections such as those found in digital libraries

and on the World Wide Web. This applies in particular

to spatially-aware (or geographical) search engines.

" This Chapter derives from the following article which was

originally published in the International Journal of Geo-

graphical Information Science vol 22, 2008, pp 219–228.

" The article ‘‘Geographical Information Retrieval’’ and

journal International Journal of Geographical Informa-

tion Science are copyright of Taylor & Francis.
Cross-references
▶Gazetteers

▶Geographic Information System

▶Georeferencing

▶Human-Computer Interaction

▶ Information Retrieval

▶ Inverted Files

▶ Spatial Indexing Techniques
Recommended Reading
1. Amitay E., Har’el N., Sivan R., and Soffer A. Web-a-where:

geotagging web content. In Proc. of the 27th Int. Conf. on

Research and Development in Information Retrieval, 2004,

pp. 273–280.

2. Arampatzis A., van Kreveld M., Reinbacher I., Jones C.B.,

Vaid S., Clough P., Joho H., and Sanderson M. Web-based

delineation of imprecise regions. Comput. Environ. Urban

Syst., 30:436–459, 2006.

3. Gey F.C., Larson R.R., Sanderson M., Bischoff K., Mandl T.,

Womser-Hacker C., Santos D., Rocha P., Di Nunzio G.M.,

and Ferro N. GeoCLEF 2006: the CLEF 2006 Cross-language

geographic information retrieval track overview. In Proc. Work-

shop on the Cross Language Evaluation Forum, 2007, pp. 852–

876.

4. Jones C.B., Purves R.S., Clough P.D., and Joho H. Modelling

vague places with knowledge from the web. Int. J. Geogr. Inf.

Sci., 22:1045–1065, 2008.

5. Jones K.S. and Willett P. (eds.). Readings in Information

Retrieval. Morgan Kaufmann, San Francisco, CA, 1997.
6. Jones R., Zhang W.V., Rey B., Jhala P., and Stipp E. Geographic

intention and modification in web search. Int. J. Geogr. Inf. Sci.,

22(3):229–246, 2008.

7. Larson R. Geographic information retrieval and spatial

browsing. In GIS and Libraries: Patrons, Maps and Spatial

Information, L. Smith, M. Gluck (eds.). University of Illinois,

Urbana-Champaign, 1996, pp. 81–124.

8. Montello D., Goodchild M., Gottsegen J., and Fohl P. Where’s

Downtown?: Behavioral methods for determining referents of

vague spatial queries. Spatial Cogn. Comput., 3:185–204, 2003.

9. McCurley S.K. Geospatial mapping and navigation of the web.

In Proc. 10th Int. World Wide Web Conference, 2001,

pp. 221–229.

10. Purves R.S. and Clough P. Judging spatial relevance and docu-

ment location for geographic information retrieval, extended

abstract. In Proc. 4th Int. Conf. on Geographic Information

Science, 2006, pp. 159–164.

11. Purves R.S., Clough P., Jones C.B., Arampatzis A., Bucher B.,

Finch D., Fu G., Joho H., Syed A.K., Vaid S., and Yang B. The

design and implementation of SPIRIT: a spatially aware search

engine for information retrieval on the internet. Int. J. Geogr.

Inf. Sci., 21:717–745, 2007.

12. Sanderson M. and Kohler J. Analyzing geographic queries. In

Proc. of the ACM SIGIR 2004 Workshop on Geographic Infor-

mation Retrieval, 2004.

13. Schockaert S., De Cock M., and Kerre E.E. Location approxima-

tion for local search services using natural language hints. Int.

J. Geogr. Inf. Sci., 22(3):315–336, 2008.

14. Silva M., Martins B., Chaves M., Cardoso N., and Afonso A.P.

Adding geographic scopes to web resources. Comput. Environ.

Urban Syst., 30:378–399, 2006.

15. Vaid S., Jones C.B., Joho H., and Sanderson M. Spatio-textual

indexing for geographical search on the web. In Proc. 9th Int.

Symp. Spatial and Temporal Databases. 2005, pp. 218–235.

16. van Kreveld M., Reinbacher I., Arampatzis A., and van Zwol R.

Multi-dimensional scattered ranking methods for geographic

information retrieval. Geoinformatica, 9:61–84.
Geographic Information Services

▶ Location-Based Services (LBS)
Geographic Information System

MICHAEL F. GOODCHILD

University of California-Santa Barbara, Santa Barbara,

CA, USA

Synonyms
Geospatial information system; Spatial information

system

1232G Geographic Information System
Definition
A geographic information system (GIS) is a computer

application designed to perform a wide range of opera-

tions on geographic information. Geographic informa-

tion is defined as information about locations on or

near the surface of the Earth, and may be organized

in a variety of ways. Thus a GIS includes functions

to input, store, visualize, export, and analyze such

information. Commercial off-the-shelf GIS software

is today capable of virtually any conceivable operation

on geographic information, and capable of recognizing

hundreds of different formats. GISs are used in a wide

range of applications, from the management of the

distributed assets of utility companies to emergency

response. Their scientific applications are found in any

discipline that deals with phenomena distributed over

the surface of the Earth, from ecology to criminology.

Increasingly GIS technology is encountered by ordi-

nary citizens, in the form of map-making sites based

on Google Maps, wayfinding sites such as MapQuest,

and hotel-finding sites such as Expedia.

A wide range of introductory textbooks on GIS

are available with various levels of sophistication, cov-

ering the fundamentals of representation, analysis, and

application. Clarke [2] provides a general introduc-

tion; Longley et al. [4] give a somewhat more advanced

and comprehensive perspective; and Worboys and

Duckham [6] provide a computational viewpoint.

Historical Background
GIS has several roots, and today’s technology repre-

sents a convergence among several independent devel-

opments. In the mid 1960s, the Government of Canada

developed the Canada Geographic Information System

(CGIS), the first to use the term GIS, as a means of

generating products from the Canada Land Inventory.

CGIS implemented a very small set of functions, in-

cluding map overlay and area calculation, and in its

initial form included no capabilities for map output,

yet it solved many fundamental problems. Another set

of developments centered around the desire to auto-

mate the process of making paper maps, and yet an-

other was stimulated by the need to manage complex

sets of data in support of transportation planning and

census data collection. By the late 1970s, the common-

alities in these various threads had been recognized,

and the first commercial software products began to

emerge. Foresman [3] provides a comprehensive his-

tory of GIS.
The early efforts to develop GIS were based on

idiosyncratic data models and formats. By the late

1970s, the value of relational databases had been recog-

nized, and GIS developers had begun to represent

complex geographic features as interrelated collections

of elements. A map of counties and their attributes, for

example, could be represented as tables of nodes,

edges, and faces; and the same approach could be

used to represent a road network or a map of land

cover types. Nevertheless, early relational database

software was not easily adapted to the storage of the

variable numbers of vertices needed to represent each

edge, and so a hybrid approach had to be adopted in

which some information was stored in a relational

database and the remainder in a unique, proprietary

structure. By the late 1980s, major problems of lack of

interoperability began to impact the industry and led

to the formation of the Open Geospatial Consortium.

By the 1990s, GIS designers had begun to adopt

object-oriented database principles [1], and database

technology and computing power had advanced to the

point where hybrid architectures were no longer nec-

essary. Greater flexibility in data modeling had opened

the possibility of applying GIS tools to phenomena

that were never traditionally associated with maps,

such as events, transactions, movements and flows,

and dynamic phenomena in general. GIS is no longer

seen as a container of maps, but as an engine for the

representation and analysis of spatio-temporal phe-

nomena. The only limitation is that the information

they contain be tied to specified locations on or near

the surface of the Earth.

Figure 1 shows a screen shot of a typical application

of a contemporary GIS, in this case ESRI’s ArcMap.

Foundations
Two fundamentally distinct ways of conceptualizing

spatial variation are recognized in GIS. In the discrete-

object view, the Earth’s surface is analogous to an empty

table-top, on which are distributed a countable collec-

tion of features. The features may overlap, but between

them is emptiness. The features might be represented as

points, lines, or areas; and in some cases the third spatial

dimension will be important and features may be repre-

sented as volumes. In the continuous-field view varia-

tion over the Earth’s surface is described by a series of

functions f of location x, where f may be a measure, as

in the case of elevation or temperature, or a class or

name, as in the case of maps of soils or counties.

Geographic Information System. Figure 1. Screen shot of ESRI’s ArcMap GIS. Three layers are displayed, as listed in

the upper left: the county boundaries of the US (black), the railroads (blue), and the interstate highway network (green).

Pull-down menus and toolbars provide access to a wide array of manipulation and analysis functions, and many more are

available as third-party extensions. The display uses the Lambert Conformal Conic projection.

Geographic Information System G 1233

G

Location x may have two or three spatial dimensions,

and may also include time in the case of dynamic

phenomena. Phenomena distributed over networks,

such as vehicle densities or pavement quality, can

be conceptualized as fields distributed over a

one-dimensional space that is in turn embedded in

two- or three-dimensional space.

These conceptualizations can be implemented in

GIS in two ways, as raster or vector structures. In a

raster structure the set of possible locations is finite,

being defined by a grid that is normally rectangular

(though more complex grid geometries are needed

when the Earth’s curvature is important). In a vector

structure, every feature is located using an appropriate

number of coordinates. Areas and lines are normally

represented as ordered sets of coordinates connected

by straight lines, and known as polygons and polylines,

respectively. These methods are straightforward in the

case of discrete objects, but the representation of con-

tinuous fields requires another step of discretization,

with six commonly used alternatives in the case of two-

dimensional variation: (i) a set of irregularly spaced

sample points, as used for example in capturing and
representing weather observations; (ii) a set of regular-

ly spaced sample points, as used in representing ter-

rain; (iii) representation of the isolines of the field, as

used in contour maps; (iv) a triangular mesh, with

linear variation within the triangles and continuity

of value across triangle edges; (v) a set of rectangular

raster cells, as used in capturing and represen-

ting images; and (vi) a set of irregularly shaped, non-

overlapping, and space-exhausting areas represented as

polygons, as used in mapping land cover types or

aggregated census data.

Whether raster or vector, any GIS data set must be

referenced to the Earth’s surface using some form of

coordinate system. In the case of raster data this is

usually achieved by registering the corner points of

the raster; while in the case of vector data every feature

is independently positioned in the coordinate system.

Many alternative coordinate systems exist, including

latitude and longitude plus numerous systems based

on projections of the Earth’s curved surface onto a

plane. Some have been officially adopted by countries,

such as the UK’s National Grid, while others have been

adopted by international agreement through agencies

1234G Geographic Information System
such as NATO, or by individual states in the case of the

US State Plane Coordinate system. Unfortunately this

leads to complexity and lack of interoperability, and

any GIS must offer a comprehensive set of functions

for managing coordinate systems. Moreover, the defi-

nitions of latitude and longitude are not entirely

standard, being dependent on the mathematical figure

adopted to represent the shape of the Earth, other-

wise known as the datum, which adds another dimen-

sion of complexity. One approach to dealing with

interoperability has been through the development of

metadata standards, or standardized descriptions of

data sets that include specification of such properties

as coordinate systems. Metadata are now widely used

by portals, libraries, and warehouses of geographic

data that offer massive information resources to users

over the Internet.

A GIS database is normally conceptualized as a

collection of layers, each registered to the Earth’s sur-

face. A layer may contain the representation of a field,

such as a map of land cover type, or it may contain

a collection of discrete objects, such as buildings.

This layer-based view of the world is often used as an

icon, since it is so fundamental to GIS, and has

appeared on the cover of more than one textbook.

Raster-based layers will likely describe the geographic

variation of only a single property, such as county

name or land cover type, and because this property

will exist for every cell and will have only a single

recorded value per cell there is clearly a natural affinity

between raster layers and continuous-field conceptua-

lizations. Vector-based layers on the other hand may

represent either collections of discrete objects with any

number of associated attributes, or the variation of a

single property conceptualized as a continuous field.

Unfortunately today’s GIS designs do not recognize the

field/object distinction, with the result that no auto-

matic procedures exist to avoid violating the con-

straints that apply in the field case. For example, a

GIS will treat a set of digitized isolines representing a

field as if they were discrete, independent polyline

objects, and will not object if a user attempts to edit

them in such a way as to make two isolines cross.

Many GIS applications employ some form of tiling,

in which the geographic area covered by the database is

divided into smaller units, often in the interests of

computational efficiency. Tiles correspond to the map

sheets of cartography, and are often defined on a rect-

angular basis. In some cases they may be evident to the
user, who must develop explicit strategies for handling

queries or analyses that involve multiple tiles; in other

cases the tiling scheme may be transparent. In addi-

tion, a GIS will employ one or more systems of

indexing, again in the interests of computational effi-

ciency. Van Oosterom [5] provides a comprehensive

survey of spatial database indexing options.

GIS implementations vary from the stand-alone

desktop system designed to support the work of a

single user, to departmental solutions that integrate

the work of several people around a common database,

to enterprise-wide solutions that organize the entire

operation of a company or agency around its GIS.

Increasingly, GIS functions are available on-line from

servers, either based on data held at the server, or on

data supplied by the user. For example, many Web sites

now offer the GIS function of geocoding, which takes a

list of postal addresses as input and returns their

corresponding geographic coordinates.

A wide range of GIS software products are avail-

able to match these various implementation strategies,

ranging from versions for hand-held devices through

desktop systems to server-side GIS. The use of compo-

nent-based software architectures has allowed vendors

to build different products from the same collection of

discrete elements. The trend in recent years has been

away from the single-user desktop to integrated client-

server architectures, and increasing reliance on data

downloaded from Internet portals. Open-source GIS

is growing steadily in popularity, and a number of low-

cost options have recently appeared to challenge the

marketplace dominance of the industry leaders, ESRI

and Intergraph. Idrisi, originating from Clark Univer-

sity, continues to provide a software option with very

strong support for decision making. Niche products

also exist, particularly in transportation where the

products of Caliper offer some powerful capabilities,

and products from developing countries, particularly

China, are increasingly competitive.

Key Applications
As noted above, the earliest applications of GIS

were in isolated domains: land resource management;

automated cartography; and transportation. By the

late 1970s a broader vision of GIS had emerged as a

general-purpose software application that could be

used to solve a vast range of problems, all dealing in

one way or another with the surface and near-surface

of the Earth. Nevertheless, the first software products

Geographic Information System G 1235

G

that emerged in the early 1980s found their most

important applications in resource management, and

were heavily adopted by forest-management compa-

nies and agencies, where they were used for compiling

inventories, planning harvesting, and management of

road access.

This viewpoint largely ignores the role of the mili-

tary in GIS development, however. By the late 1950s

the U.S. was heavily engaged in classified programs

aimed at acquiring imagery from space, and in devel-

oping the systems needed to assemble, interpret, and

analyze their products. Civilian satellites were first

deployed in the early 1970s, and led quickly to a gen-

eration of GIS software, largely raster-based, that

found useful applications in agriculture. Today the

military and intelligence agencies are among the hea-

viest users of GIS, and many weapons systems and war-

fighting strategies depend on ready access to current,

digital geographic information.

One of the most successful areas of GIS applica-

tion has been in facilities management, and more

generally in the management of distributed assets.

Public and private utilities, planning departments of

governments, transportation agencies, and managers

of complex facilities such as university campuses will

all use GIS routinely to inventory assets, manage and

schedule maintenance, and address problems. Invest-

ments by individual companies may run to the

millions of dollars, and involve hundreds of GIS

workstations.

Of rapidly growing importance are GIS applica-

tions that impact the daily lives of the general public.

These include route guidance, provided perhaps by an

in-vehicle navigation system or by a Web service, and

map-based services such as Zillow that provide current

information on property values. The general public is

increasingly familiar with GIS data sources, including

remote sensing, and with concepts such as geo-tagging

that permit information in sources such as Wikipedia

to be georeferenced and thus linked to maps. The term

neogeography is being used to describe such novel

applications of GIS.

Future Directions
The days when GIS was an exotic computer application

familiar only to a small elite, and accessible only after

extensive training, are long gone; today virtually every-

one with access to the Internet is familiar with at

least some of its capabilities. The meaning of the
term itself has become confused: some would reserve

it exclusively for the single-user desktop application,

while others would extend it to cover what is now a

vast array of activities, for which the adjective geospa-

tial has emerged recently as an alternative umbrella

term. In discussing future directions, then, it is possi-

ble to take either the first, somewhat narrow perspec-

tive, or the second broader one.

From the narrow perspective, GIS software will

continue to evolve, particularly in the direction of

greater support for dynamics. Some application areas

are currently in their infancy, and will likely grow in

importance in the next few years. They include human

health, the understanding of disease transmission and

diffusion, and the assessment of health service out-

comes; and business, whose mantra ‘‘location, loca-

tion, location’’ feeds directly into GIS applications.

Related areas of logistics, real estate, and insurance

are also ripe for greater use of GIS.

A rich research agenda has evolved over the past

decade, and will likely produce results that will in

turn impact future generations of GIS software. The

University Consortium for Geographic Information

Science has taken the lead in this context, with short-

and long-term agendas that address topics ranging

from spatial cognition (How can GIS interfaces be

made easier to use?) to the social impacts of GIS

technology (Who gains, who loses?). The topic of

uncertainty remains a thorny issue, with much useful

research completed on the sources and management of

uncertainty in GIS but little adoption in mainstream

software. As a result, the user is left with little choice

but to accept the results of GIS analysis at face value,

while knowing that the data on which they were based

is inevitably imperfect and uncertain.

From the broader perspective, GIS functions will

continue to become more available in Web services. In

the past year a very interesting series of developments

have occurred that are enabling citizens to create their

own geographic information, and to integrate and pub-

lish it on the Internet. Sites such as OpenStreetMap are

enabling communities to create their own maps; Wiki-

mapia is collecting descriptions of features on the

Earth’s surface from vast numbers of volunteers; and

Flickr is assembling a vast collection of geo-referenced

photographs. This process of volunteering geographic

information is having a profound impact on citizens’

knowledge of the planet, and on their engagement with

geography and GIS.

1236G Geographic Information
Cross-references
▶Data Models

▶ Field-Based Spatial Modeling

▶ Spatial Indexing Techniques

▶ Spatial Network Databases

▶ Spatial Data Analysis

Recommended Reading
1. Arctur D. and Zeiler M. Designing Geodatabases: Case Studies in

GIS Data Modeling. ESRI Press, Redlands, CA, 2004.

2. Clarke K.C. Getting Started with Geographic Information Sys-

tems. Prentice Hall, Upper Saddle River, NJ, 2003.

3. Foresman T.W., ed. The History of Geographic Information

Systems: Perspectives from the Pioneers. Prentice Hall, Upper

Saddle River, NJ, 1998.

4. Longley P.A., Goodchild M.F., Maguire D.J., and Rhind D.W.

Geographic Information Systems and Science. Wiley, Chichester,

UK, 2005.

5. van Oosterom P. Spatial access methods. In Geographical

Information Systems, vol. 1, P.A. Longley, M.F. Goodchild,

D.J. Maguire, and D.W. Rhind (eds.). Wiley, New York, NY,

1999, pp. 385–400.

6. Worboys M.F. and Duckham M. GIS: A Computing Perspective.

CRC Press, Boca Raton, FL, 2004.
Geographic Information

▶Geography Markup Language
Geographic Web Search

▶Geo-Targeted Web Search
Geographical Analysis

▶ Spatial Data Analysis
Geographical Data Analysis

▶ Spatial Data Analysis
Geographical Databases

▶ Semantic Modeling for Geographic Information

Systems
Geographical Metadata

▶Geospatial Meta Data
Geography Markup Language

JAYANT SHARMA, JOHN HERRING

Oracle Corporation, Nashua, NH, USA

Synonyms
ISO 19136; Geographic information; Geography mark-

up language
Definition
Geography Markup Language (GML) (http://www.

opengis.net/gml/) is an XML vocabulary that can be

used as the basis for the modeling, transfer, communica-

tion, or storage of geographic feature information. It is

defined and maintained by members of the Open Geos-

patial Consortium (OGC), a voluntary consensus stan-

dards organization that develops standards for geospatial

information handling and location based services. It has

been accepted as one of and harmonized with the stan-

dards of ISO TC 211: Geographic information (http://

www.isotc211.org/). The official copies of all versions of

the GML specification and related OGC standards can be

found at http://www.opengeospatial.org/standards/. The

most recent version of GML, version 3.2.1, is identical

with ISO 19136 (http://www.isotc211.org/Outreach/

Overview/Factsheet_19136.pdf).

The primary purpose and rationale for GML, as

described by the OGC, is to provide an open, vendor-

neutral format for the definition of geographical enti-

ties used by applications, in various domains, for

geospatial information processing and exchange. The

enhanced ability of organizations to, efficiently and

effectively, re-use, share, integrate, and consequently

Geography Markup Language G 1237
extract more value from, their extremely valuable geos-

patial information across operational units and pro-

cesses is one immediate benefit of using GML.
G

Historical Background
GML (version 1.0) was first submitted to the OpenGIS

Consortium, nowOpenGeospatial Consortium in 1999,

as a ‘‘request for comment’’ (RFC) by authors from

CubeWerx, Compusult, Galdos Systems, MapInfo, and

Oracle. It was accepted by OGC and published in May

2000. GML 2, the first widely accepted version, was

published in February 2001. GML 2.1 is still commonly

used today.

GML 3.1 was published by OGC in February 2004,

and submitted to ISO TC 211: Geographic Informa-

tion, for consideration as an ISO standard. This would

make it acceptable under the laws of some countries as

the basis for national standards. It has since been

accepted and ISO 19136 (GML, version 3.2.1), became

an International Standard in 2007.
Foundations
GML is based on a feature and property model. Any

complete GML file contains a collection of features, and

each feature contains a collection of properties, and each

property contains its value, which may either be direct

(lexically contained within the property as an XML sub

element) or indirect (pointed to by the property using

an xlink).

Features represent real-world entities, such as roads

or parks. Some real-world entities are composed of

other entities and hence are represented as collections

of features. For example, a city may be represented as a

collection of roads, parks, land parcels etc.

Features have properties that have a name and type.

For example, a road has a name (i.e., a property called

‘‘name’’) and its value is of type ‘‘String.’’ Features

may also have named geometry-valued properties.

For example, a road might have a geometry property

named ‘‘centerLineOf ’’ that is of type ‘‘Linestring.’’

GML implements a subset of the ISO 19107 stan-

dard geometry model that defines the primitive geom-

etry types and their hierarchy. GML 2 was concerned

with simple features that only have a simple two-

dimensional geometry property. GML 3 addresses

requirements of applications that need to model more

complex geographic phenomena that are dynamic (e.g.,
coverages or sensors), and have non-linear (e.g., circular

or parametric arcs) or 3-D (cubes, prisms) geometry,

2-D topology, or temporal properties. To be useful,

such feature models must include spatial and temporal

reference systems, units of measure, metadata, and

default styling (or portrayal) information.
Base and Application Schema

In order to enable an open, interoperable, vendor-neu-

tral means of modeling and exchanging geographic in-

formation, GML includes types for features, geometry,

topology, coordinate reference systems, grids, measures,

observations, and temporal reference system/values.

Feature types form the basic logical construct and

all other types are used to express property values for

features. Geometry types are used to describe the basic

spatial attributes of a feature. Topology types can be

used to describe the spatial relations between those

geometries. Coordinate and coordinate reference sys-

tems describe the manner in which point locations are

described for geometry (and related purposes). Grids

are commonly used for ‘‘image-like’’ raster structures

for distributing measurements across space. Measure

and observation types are used for describing measur-

able attributes and their units. Temporal values and

their reference systems are used for expression of time.

Applications define and describe a ‘‘feature sche-

ma’’ as defined in ISO 19109: Rules for application

schema. These schemata control the types of features

that can actually be stored in a GML file. Each schema

uses the basic GML structure as defined above and

created ‘‘feature types’’ which determine the name of

the feature types and which properties a particular

feature type must (mandatory) or may (optional) con-

tain, and with what cardinality (maximum and mini-

mum occurrence). Because these application schemata

are restricted by ISO 19109 and by the syntax of XML

schema, they are single classification objects as is com-

mon in most programming languages.
Profiles

GML is quite comprehensive and consequently com-

plex, even its early versions. To compensate for this for

particular information communities (informal groups

of users with similar data content needs), ‘‘profiles’’ are

often defined as subset of the full base schema for use

within their applications.

1238G Geography Markup Language
One profile is the ‘‘point profile’’ which simply

describes the way geographic point location can be

expressed. It is used as the basis for geographic exten-

sion of other standards that only require a geographic

point as a location reference and hence do not use, or

require, the GML feature and geometry model.

The most common profile is the one used for an-

other OGC standard, Simple Feature Access that

includes a data architecture volume (http://www.open-

geospatial.org/standards/sfa). It was defined first in

1999, and became an ISO standard soon thereafter.

The GML simple features profile was developed to sup-

port another OGC specification, namely, the OpenGIS

Web Feature Service (WFS) Implementation Specifica-

tion. The primary purpose is to define a useful subset of

GML that (i) ‘‘lowered the implementation bar,’’ and (ii)

supported the Simple Features for SQL (SF-SQL) geom-

etry model and hence the WFS specification. So this

profile ‘‘prescribes the encoding of GML application

schemas in sufficient detail that client applications do

not need to deal with the entire scope of XML-Schema

and GML but only need to understand a restricted

subset of both specifications in order to be able to

interpret schema documents generated or referenced

by servers offering data encoded in GML.’’ As a conse-

quence, this document is just 49 pages long compared to

over 800-page length of the full GML specification.

Other relevant profiles are the common CRS, and

common dictionary profiles. These define encodings of

commonly used coordinate reference systems and con-

versions, and simple dictionaries respectively.
Key Applications
The WFS (Web Feature Service) implementation

specification defines an interface for retrieving or updat-

ing, geographical features encoded inGML, usingHTTP.

RSS (real simple syndication, http://www.rssboard.

org/rss-specification) is a news feed mechanism for

the web and GeoRSS (http://www.rssboard.org/rss-

specification) uses the geometry of the simple feature

profile to geographically locate the information in

the news. See http://www.georss.org/gml.html for

some examples of GML usage in GeoRSS.

JPEG2000 (http://www.jpeg.org/jpeg2000/) is a

digital image format that allows ‘‘XML’’ data to be

stored with the image data. GML is the preferred

format for geographic information and the combina-

tion of image and geographic information allows
JPEG2000 to be used for geographically referencible

images such as satellite and aerial imagery.

CityGML (http://www.citygml.org/) is an applica-

tion schema for GML that integrates building informa-

tion, at various levels of detail, into 3-D city and

landscape models. The basic concept is to create a full

3-D model capable of supporting a wide variety of

applications associated to such fields as environment,

telecommunications, security, navigation and others

requiring highly accurate and detailed building and

landscape models. Some examples of GML as used in

CityGML are at http://www.citygmlwiki.org/index.

php/Examples_and_WFSs. A free viewer for CityGML

can be found at http://www.3dgeo.de/citygml.aspx.

The IETF (Internet Engineering Task Force –

http://www.ietf.org/) has several ‘‘rfc’’ specifications

that use GML for location information. In particular,

IETF RFC 4119 – A Presence-based GEOPRIV Location

Object Format and IETF RFC 3863 – Presence Informa-

tion Data Format (PIDF). Each uses a profile of GML

for location information.
Schemas for GML

All versions of GML have their schemas posted for

public use in some subdirectory of http://schemas.

opengis.net/gml/. For example http://schemas.

opengis.net/gml/3.2.1/contains the schema for the lat-

est version of GML version 3.2.1 [5], which is the same

as ISO 19136.
Examples

Some fairly simple examples of GML can be found in

the Wikipedia article located at http://en.wikipedia.

org/wiki/Geography_Markup_Language.
Cross-references
▶Abstraction

▶Data Models with Nested Collections and Classes

▶Document Databases

▶Geographical Information Retrieval

▶Geographic Information System

▶Georeferencing

▶Geospatial Metadata

▶Object Data Models

▶Resource Description Framework (RDF) Schema

(RDFS)

▶ Spatial and Spatio-Temporal Data Models and

Languages

Geometric Stream Mining G 1239
▶ Spatial Data Types

▶ Spatio-Temporal Data Warehouses

▶Unified Modeling Language

▶W3C

▶XML

▶XML Metadata Interchange

▶XML Parsing, SAX/DOM

▶XML Programming

▶XML Schema

▶Xpath/Xquery

▶XSL/XSLT
G

Recommended Reading
1. Alberto B., Negri M., and Pelagatti G. An ISO TC 211 confor-

mant approach to model spatial integrity constraints in the

conceptual design of geographical databases. In Advances in

Conceptual Modeling – Theory and Practice, 2006, pp. 100–109.

2. Bacharach S. The GML simple features profile and you, direc-

tions magazine.

3. Lake R., Burggraf D., Trininic M., and Rae L. Geography Markup

Language: Foundation for the Geoweb, Wiley, New York, 2004.

4. Lu C., Santos R.F. Jr., Sripada L.N., and Kou Y. Advances in GML

for geospatial applications. GeoInformatica., 11(1):131–157,

2007.

5. Portele C. (ed.). OpenGIS Geography Markup Language (GML)

Encoding Specification 3.2.1, OGC Document #07–036.

6. Vretanos P. A. (ed.). OpenGIS Simple Features Profile (1.0.0),

OGC Document #06–049r1.

7. Warnill C. and Bae H. A specification of a moving object query

language over GML for location-based services. In Proc. 6th

Asia-Pacific Web Conference on Advanced Web Technologies

and Applications, 2004, pp. 788–793.

8. Zhong-Ren P. and Zhang C. The roles of geography markup

language (GML), scalable vector graphics (SVG), and web fea-

ture service (WFS) specifications in the development of internet

geographic information systems (GIS). J. Geogr. Syst., 6(2):

95–116, 2004.
Geometric Data Types

▶ Spatial Data Types
Geometric Mean Average Precision

▶GMAP
Geometric Stream Mining

CECILIA M. PROCOPIUC

AT&T Labs, Florham Park, NJ, USA

Definition
Let P ={p1, p2,...} be a stream of points in the metric

space (X, Lq). Usually, X = Rd or X = {1,...,U}d

(discrete case), and Lq = L2 is the Euclidean distance.

The set P is called a spatial data stream. Geometric

stream mining algorithms compute the (approximate)

answer to a geometric question over the subset of P

seen so far. For example, the diameter problem asks

to maintain the pair of points that are farthest away

in the current stream. A more comprehensive list of

problems is presented later.

Historical Background
Geometric algorithms in the offline setting have been

extensively studied over the past decades. Their applica-

tions encompass many fields, such as image processing,

robotics, data mining, or VLSI design. For an introduc-

tion to computational geometry, refer to the book [8].

On the other hand, research on spatial data streams is a

recent development. Shortly after the first results on

numeric data streams appeared, a slew of papers argued

that in many applications numeric streams exist in met-

ric spaces, and that the capabilities of such systems can

be expanded by taking into account the underlying

metric, and by supporting geometric queries. Queries

can be similar to offline databases (e.g., range queries),

but they can also be about the shape and extent of the

stream (e.g., diameter).Most examples of spatial streams

come from sensor networks, traffic monitoring, and

satellite data, all of which have location information.

Foundations

Stream Models

Online algorithms come in two flavors. In the first

model, points can only be inserted in the stream.

In the second, both insertions and deletions are per-

mitted. The latter case is usually referred to as the

turnstile or dynamic model. Allowing deletions intro-

duces distinct challenges. Frahling et al. [5] proved that

certain computations over a dynamic stream from

{1,...,U }d require O(Ud) space in any deterministic

approach, but only O(d log U) space if randomization

1240G Geometric Stream Mining
is allowed. This contrasts with the insertions-only case,

for which there are deterministic space-efficient methods.

Further classification of stream models depends on

whether the metric space X is continuous or discrete.

In the following, data stream refers to insertions-only

streams from a continuous metric space, unless stated

otherwise.

Classes of Problems

Some geometric stream problems are closely related,

i.e., they can be solved by the same methods. Such a

classification is presented below. The details of the

techniques are deferred to the next subsection.

Range Counting and Robust Statistics Range counting

asks for the number of points that lie inside an arbi-

trary axis-parallel hyper-rectangle. The query hyper-

rectangle is not known a priori. The Tukey depth of a

point p is the minimum proportion of points among

all the half-spaces that contain p (the larger the depth,

the more ‘‘central’’ the point). The simplicial depth of

p is the proportion of simplices that contain p, among

all simplices that are convex hulls of d þ 1 data points.

These problems can be approximated using a so-called

e-approximation of the data.

Extent Measures The diameter of a point set is the

maximum distance between two points in the set.

The convex hull is the smallest convex region that con-

tains the set. The width is the minimum distance be-

tween two parallel hyper-planes so that the set lies

between them. Theminimum enclosing cylinder, respec-

tively sphere is the cylinder, respectively sphere, of

minimum radius containing the points. The minimum

cylindrical, respectively spherical, shell is the region of

minimum width between two concentric cylinders,

respectively spheres, that contains the points. These

problems can be approximated by computing appro-

priate e-kernels. More efficient methods exist for the

diameter and convex hull, but they do not extend to

the other problems.

Geometric Graphs Many graph problems have a natu-

ral equivalent when the graph is embedded in a metric

space, and the distance between points is given by

thatmetric. Such problems include theminimum weight

spanning tree, minimum match, and TSP. In the online

version, the solution cannot be stored explicitly, so only

the cost is computed. A general technique is to reduce
the problems to vector computations over streams,

and use existing algorithms from that area. Another

approach is to maintain appropriate e-coresets.

Nearest Neighbor and Skyline The classical nearest

neighbor problem asks for the data point closest to a

query point. This cannot be computed in sub-linear

space, as any data point can be the answer to some

query. Thus, several modifications have been proposed

for streams. Korn et al. [7] studied reverse nearest

neighbors, in which the data set is known a priori, and

the stream consists of query points. However, some data

points may be inactive at times, and the query is only

with respect to active points. An indexing structure is

pre-computed on the data points (in one dimension,

this involves sorting the points and putting a geometric

grid between each pair of consecutive points). A differ-

ent framework is studied by Böhm et al. Queries and

points have time spans in which they are active, and the

k-nearest neighbors are computed from among the

active data points during the query’s entire span. This

can be reduced to the skyline problem, defined as

follows. The skyline of a dataset with respect to a

fixed quadrant contains those points pi for which the

quadrant translated with the origin in pi has no other

points. For example, for the lower right quadrant, pi is

in the skyline if all points whose x-coordinate is larger

than pi also have larger y-coordinate. For nearest

neighbors, the data stream is transformed into new

coordinates, with the x-axis being expiration time,

and the y-axis being the distance to the query. Then

the nearest neighbors are the points on the skyline. The

skyline can be maintained exactly, but may have O(n)
complexity. The authors propose heuristics for main-

taining approximate skylines in that case.

General Techniques

Most geometric problems cannot be solved exactly in

sublinear space, so approximate solutions are sought.

Three techniques for designing approximation algo-

rithms for spatial data streams are presented below.

1. Merge and Reduce A popular approach in geometric

algorithms is to compute a ‘‘sketch’’ of the dataset, so

that the optimal solution can be approximated by

a computation over the sketch. The sketch is a small

subset of the input, whose size usually depends only on

the approximation error. Given its space efficiency, this

approach is a good candidate for stream algorithms. To

Geometric Stream Mining G 1241

G

maintain a sketch online, the stream is divided into sub-

streams, and a sketch is independently computed for each

substream. As more points arrive, the algorithm merges

older sketches and replaces them by a smaller sketch.

Figure 1 illustrates this process when the stream

is divided based on the logarithmic method: Let n

denote the number of points seen so far. Let 0 � i1 <

i2 < ...ik � log n be the 1-bits in the binary repre-

sentation of n, i.e., n ¼ 2ik þ :::þ 2i2 þ 2i1 . Divide

the stream into disjoint substreams of consecutive

points Pik ;:::; Pi1 , such that Pij arrives before Pij�1
for

all 2 � j � k, and jPij j ¼ 2ij . When a new point arrives,

assign it to P0. If jP0j ¼ 1, i.e., P0 was empty before,

return. Otherwise, jP0j ¼ 2 violates the cardinality

condition. Merge P0 into P1, and set P0 ¼ ;. Continue
the process until all sets have the correct cardinality (if

necessary, create a new set Pikþ1
).

Since Pij cannot be stored exactly, its sketch Sij is

stored instead. Merging two substreams is simulated by

merging their sketches – this is the merge step. \To

maintain the space bound, a sketch of the merged

sketches is computed – the reduce step. Finally, a sketch

S of the whole stream is computed as a sketch of all Sij ,

and the original optimization problem is solved over S.

To guarantee correctness, sketches must observe two

key properties:

1. If S1, S2 are sketches of P1, P2, then S1 [S2 is a

sketch for P1 [P2 (correctness of merge step).

2. If S is a sketch of P and T is a sketch of S, then T

is also a sketch of P, possibly with larger error

(correctness of reduce step).

Let s be the size of one sketch; s is independent of n,

but depends on e. Then the overall space is O(s log n).
Geometric Stream Mining. Figure 1. Merge and reduce via

(circled points) is stored for each Pi. When p20 arrives, the sket

of P0,P1.
However, errors usually increase during the reduce

step. To guarantee that the final sketch has error at

most e, a smaller error ei is used for each Si. This

increases the space by logarithmic factors. A recent

result replaces the logarithmic method by a geometric

strategy, eliminating all log n factors.

Two types of sketches apply to a wide range

of problems. The first, called e-approximations, was

defined by Vapnik and Chervonenkis, in the context of

set systems with finite VC dimension. For an introduc-

tion to this theory see, e.g., the book. Some classes of set

systems to which the theory applies are specified below.

The second type of sketches, called e-coresets, were first
introduced by Agarwal et al. and have emerged as a

powerful tool in geometric approximation [1].

e-approximations: A subset S � P is an e-approxi-
mation of P if for any range R from a fixed family of

ranges of bounded VC-dimension

jR \ Sj
jSj ¼ jR \ Pj

jPj 	 e:

Examples of families of ranges of bounded VC-

dimension include the set of all hyper-rectangles, and

the set of half-spaces. Thus, a range counting query can

be answered as follows. Let Q be the query hyper-

rectangle and S be the current e-approximation of the

stream P. Then the number of points inside Q is

approximated by jQ \ Sj � jPjjSj , and the error is 	 ejPj.
Any set system of bounded VC-dimension admits

an e-approximation of size O(e�2log(e�1)). Matousek

designed a deterministic offline algorithm for comput-

ing such an e-approximation. The algorithm was ex-

tended to the online setting by Bagchi et al. [5] using

the logarithmic method as above.
logarithmic method: A sketch of size at most two

ch of P2 is computed from p20 and the previous sketches

1242G Geometric Stream Mining
e-coresets and e-kernels: Let m : 2X!R+ [{0} be the
measure to be optimized. For example, m(P) can be the

width, or the cost of the minimumweight spanning tree

of P. Assume that m is monotone, i.e., for any P1 � P2,

m(P1) � m(P2). A subset S � P is an e-coreset of P if

ð1� eÞmðPÞ � mðSÞ:

Many geometric problems have e-coresets of small size,

i.e., jSj = 1∕eO(1).
The related notion of e-kernels provides a

blueprint for computing coresets for several measures.

For any unit vector v 2 Rd, let mn(P) denote

the directional width of P along v. Formally,

mv(P) = maxp2Php, ui � minp2Php, ui, where h�,�i is

the inner product. See Fig. 2a. A subset S � P is an

e-kernel of P if it simultaneously e-approximates all

directional widths, i.e., for all unit vectors v,

ð1� eÞmuðPÞ � muðSÞ:

Figure 2b illustrates the offline algorithm by

Agarwal et al. [1] for computing an e-kernel in two

dimensions. The algorithm assumes that all points of P

lie inside the unit disk centered at the origin Dðo; 1Þ. It
also assumes that P is ‘‘fat,’’ i.e., there exists a constant

0 < a < 1 such that mu(P)
 adiam (P) for any

direction v. Both conditions are enforced by applying

an affine transform. The algorithm pre-defines a set of

directions ox1
�!;:::; oxr

�! and computes the extremal

points in each direction. Let S � P be the set of at

most 2r extremal points. The authors show that one

can choose r ¼ Oð1=
ffiffi
e

p
Þ directions, so that S is an

e-kernel. For the d-dimensional case, r = O(e�(d�1) ∕ 2).

Maintaining extremal points along a fixed set of

directions extends to the online setting. However,
Geometric Stream Mining. Figure 2. Computing an e-kerne
directional width for all directions u; (b) offline algorithm: kerne

online algorithm: xi�1, xi start epochs i � 1, resp. i, where d(o,

epoch i, where d(yj, oxi) > 2d(yj�1, oxi).
computing the affine transform that insures that P is

fat requires first scanning the whole set. Thus, the loga-

rithmic method is used for the online version. Different

affine transforms are applied to different substreams.

A significant improvement is due to Chan [3], who

eliminates the logn factors from the space bound. He

partitions the data stream based on significant changes

in the ‘‘shape’’ of the current substream, rather than its

number of points. As before, a different affine trans-

form applies to each substream, but the transform can

be computed from the first three substream points.

In two dimensions, he uses the following affine

transform. For any set P, let o 2 P be a fixed point,

and let x, y 2 P such that opj jj j � 2 oxj jj j and d(p, ox)�
2d(y, ox) for all p 2 P. Translate P to make o the origin.

Rotate and scale P so that x = (1 ∕ 2,0). Map each (a,b)

2 P to (a, b ∕ 2d(y, ox)). Let t be the resulting transform.

Then t(P) is fat and tðPÞ � Dðo; 1Þ.
Let o be the first point in the stream; see Fig. 2c. Then

o is assigned to all substreams (which are no longer

disjoint). Divide the stream into sequences called epochs.

An epoch Ei starts with a stream point xi, and contains

any subsequent point p so that opj jj j � 2 oxij jj j. Once a

point q arrives so that oqj jj j > 2 oxij jj j, epoch Ei+1
starts with xi+1 = q. Each epoch Ei is further divided

into subepochs as follows. The j th subepoch Ei,j which

started with point yj 2 Ei contains all subsequent

points p 2 Ei for which d(p, oxi) � 2d(yj, oxi). When

a point q arrives so that d(q, oxi) > 2d(yj, oxi), and q

does not start a new epoch, then subepoch Ei,j+1 starts

with yj+1 = q. A substream is a subepoch Ei,j, plus o and

the point xi that starts epoch Ei. An affine transform as

above is computed at the beginning of each Ei,j, using

points o, xi and yj.
l: (a) an e-kernel S (circled points) approximates the

l = extreme points along fixed directions (circled points); (c)

xi) > 2d(o, xi�1); yj�1, yj start subepochs j � 1, resp. j, inside

Geometric Stream Mining G 1243

G

The number of subepochs can be O(n). However,

Chan proves that it is sufficient to maintain kernels

only for the most recent log(1∕e) epochs. Older epochs

are so close to o that they can be represented by only

two points. A similar argument applies to sub-epochs.

The overall space is Oðð1=
ffiffi
e

p
Þ log2ð1=eÞÞ, which was

recently improved to Oð1=
ffiffi
e

p
Þ. In higher dimensions,

a slightly different algorithm requires O([(1∕e)log
(1∕e)]d�1) space.

2. Reduction to Vector Problems This technique has

been applied to dynamic spatial streams, as the previous

approach cannot handle deletions. The method was

introduced by Indyk [6] and was used to approximate

several geometric graph problems. It assumes a discrete

space {1,...,U}d and imposes a hierarchical decomposi-

tion on it. Statistics on the number of points in each

cell is maintained under both insertion and deletion,

using previous results from numerical data streams.

Figure 3 illustrates the method in two dimensions.

The space decomposition consists of k = logU nested

square grids G0,...,Gk with side lengths 20,...,2k, ran-

domly shifted along each axis. This decomposition

induces a tree structure, where a cell of Gi has at most

four children corresponding to the non-empty cells of

Gi�1 contained in it. Data points are stored in leaves.

The edge between a cell of Gi and its child from Gi�1

has weight 2i�1. Conceptually, the graph problem is

solved on this tree, where the distance function is the

shortest path. Indyk proves that, for randomly shifted

grids, the expected cost of the tree solution is within

O(logU) from the cost of the optimal solution. An

O(1) approximation of the tree solution can be com-

puted by only maintaining statistics on the number of

points in each non-empty cell. For the minimum
Geometric Stream Mining. Figure 3. Cell count statistics (e.

Points can be inserted and deleted multiple times.
spanning tree problem, the optimal solution on the in-

duced tree is the tree itself, whose weight is
P

k�1
i¼0 2

ini ,

where ni is the number of non-empty cells of Gi. Thus,

for each i, it is sufficient to estimate the 0-norm of the

vector defined over the cells of Gi under increment and

decrement operations (i.e., when p 2 P is inserted, the

counter of the cell containing p in Gi is increased by 1,

and when p is deleted, the counter is decreased by 1).

Thus, the original problem is reduced to a vector

problem over data streams, which has already been

studied. Other geometric graph problems can similarly

be reduced to estimating vector norms of streams.

3. Random Sampling Several offline algorithms have a

single-pass flavor and could work online, except that

they need to select random samples from the data. If one

can maintain random samples over a stream, then the

algorithms extend online. When the stream is inser-

tions-only, a random sample can be maintained via

the reservoir sampling technique by Vitter [9]: Select

the ith stream point pi with probability r∕i, where r is
the size of the sample. If pi is selected, it replaces a

previous sample point, chosen uniformly at random.

For dynamic discrete streams, Cormode et al. [4]

proposed a more general technique (a similar ap-

proach was independently designed by Frahling et al.

[5]). The stream points are hashed to levels, such that

the likelihood of being hashed to level l decreases

exponentially in l. More exactly, if h is a universal

hash function and x 2 {1,...,U} is the stream point,

then x is assigned to the level l for which 2C l+1U� h(x)

< 2ClU (0 < C < 1 is a constant). Hence, there are

O(logU) levels. Each level l has two counters sum[l]

and count[l], initialized to zero, as well as a collision

detection structure. If x is assigned to level l, then
g., how many are non-zero) lead to approximate solution.

1244G GEO-RBAC Model
for each insertion of x, sum[l]← sum[l] þ x and count

[l] ← count[l] þ 1; and for each deletion of x, sum[l]

← sum[l] � x and count[l] ← count[l] � 1. If count[l]

> 0 and there is only one point assigned to level l (as

determined by the collision detection structure), then

sum[l] ∕count[l] is chosen in the random sample (note

that sum[l] ∕count[l] = x, where x is the point assigned

to l). The authors prove that there is a constant proba-

bility of finding such a level l, and that each point

present in the stream has equal probability of being

assigned to l. (A point is present in the stream if it has

been inserted more times than it has been deleted.) To

choose a random sample of size r, O(r) independent

copies of this structure are maintained.

Since a random sample of size O(1∕e2log(1∕e)) is an
e-approximation with high probability, this provides a

different method for maintaining e-approximations.

Frahling et al. [5] used the technique for the minimum

spanning tree problem, improving the O(logU)-

approximation to (1 + e)-approximation.
Key Applications
Most streaming applications whose data are embedded

in a metric space require some analysis of the ‘‘geome-

try’’ of the stream. Three main areas, to which the

above algorithms apply, are mentioned below.

Sensor networks Basic analysis of such systems com-

putes information about the shape and extent of some

sensor-covered area. For example, a system of sensors

that monitor air quality can track the spread of a

chemical spill, by maintaining the convex hull of the

sensors that signal. In other applications, such as herd

monitoring, the sensors are mobile, and the applica-

tion tracks the distribution and density of the herd. In

this case, it is useful to answer range counting and

statistics queries.

Fixed wireless telephony This is an application of

reverse nearest neighbor searching. Fixed wireless base

stations are installed so that residential customers con-

nect to the closest one that can handle the traffic. To

optimize the performance, stations may be turned on

or off depending on the stream of calls. To insure

service quality, the system monitors station loads, as

well as the maximum distance between a customer and

the nearest station.

Mobile networks Such networks have a dynamic

topology, in which connections between nodes appear

and disappear based on their relative location. In this
case, maintaining information on the network topolo-

gy requires solving geometric graph problems.
Cross-references
▶Approximate Query Processing

▶Clustering on Streams

▶Clustering Overview and Applications

▶ Sensor Networks

▶ Spatial Data Mining

▶ Stream Mining

▶ Stream Models

▶ Stream Sampling
Recommended Reading
1. Agarwal P.K., Har-Peled S., and Varadarajan K.R. Approximat-

ing extent measures of points. J. ACM, 51(4):606–633, 2004.

2. Bagchi A., Chaudhary A., Eppstein D., and Goodrich M.T.

Deterministic sampling and range counting in geometric

data streams. In Proc. 20th Annual Symposium on Computa-

tional Geometry, 2004, pp. 144–151.

3. Chan T.M. Faster core-set constructions and data-stream algo-

rithms in fixed dimensions. Comput. Geom., 35(1–2):20–35,

2006.

4. Cormode G., Muthukrishnan S., and Rozenbaum I. Summariz-

ing andmining inverse distributions on data streams via dynamic

inverse sampling. In Proc. 31st Int. Conf. on Very Large Data

Bases, 2005, pp. 25–36.

5. Frahling G., Indyk P., and Sohler C. Sampling in dynamic

data streams and applications. In Proc. 21st Annual Symposium

on Computational Geometry, 2005, 142–149.

6. Indyk P. Algorithms for dynamic geometric problems over

data streams. In Proc. 41st Annual ACM Symp. on Theory of

Computing, 2004, pp. 373–380.

7. Korn F., Muthukrishnan S., and Srivastava D. Reverse nearest

neighbor aggregates over data streams. In Proc. 28th Int. Conf.

on Very Large Data Bases, 2002, 814–825.

8. Preparata F.P. and Shamos M.I. Computational Geometry:

An Introduction, 3rd edn. Springer, Berlin Hiedelberg

New York, Oct. 1990.

9. Vitter J.S. Random sampling with a reservoir. ACM Trans. Math.

Software, 11(1)37–57, 1985.
GEO-RBAC Model

YUE ZHANG, JAMES B. D. JOSHI

University of Pittsburgh, Pittsburgh, PA, USA

Synonyms
LoT-RBAC

GEO-RBAC Model G 1245

G

Definition
The central idea of the GEO-RBAC model is the role

schema, and instances of roles, as defined below [1]:

� Role Schema: A Role Schema is a tuple <r, ext, loc,

mloc>, where r is the name of the role, ext is the

feature type of the role extent, loc is the feature type

of the logical positions and mloc is the mapping

function that maps a real position into a logical

position of type loc.

� Role Instance: Given a role schema rs, an instance ri
of rs is a pair of <r, e> where r = rs.r and e2F, such
that FT_Type (e) = rs.ext.

The notion of permissions, users, sessions,

permission-role assignment and user-role assignment

in the GEO-RBAC are similar to those in the RBAC

model. The role enabling status in GEO-RBAC depends

on whether the user’s physical location maps the logical

location specified in the role schema, as defined below:

� Enabled Roles: Enabled session roles are defi-

ned as the function: EnabledSessionRoles:

SES � RPOS!2RI such that EnabledSessionRoles

(s, rp) = {<r, e>2RI | <r, e>2SessionRoles
(s), lpos = SchemaOf(<r, e>).mloc(rp), Contrains

(LocObj(e), LocObj (lpos)) = TRUE}

Finally, the control of the authorization in GEO-

RBAC is defined as follows [1]:

� Authorization control function: An access request

is a tuple ar =<s, rp, p, o>, where s is the session of

the user, rp is the real positions of the user, p is

permission requested, and o is the object of the

permission. ar can be satisfied at position rp if

ðp;oÞ2 [
y2EnabledSessionRolesðS;rpÞ

I PrmsAssignment�ðyÞ

where I_PrmsAssignment* (y) represents those permis-

sions that are directly assigned to role instance y or

assigned to the role schema corresponding to y.

Key Points
The widespread deployment of location-based services

and mobile applications, as well as the increased con-

cerns for the management and sharing of geographical

information in strategic applications like environmen-

tal protection and homeland security have resulted in a

strong demand for fine-grained location based access

control models and mechanisms. Efforts have been
expended to extend existing RBAC models to develop

fine-grained specification and enforcement framework

for location based access control requirements.

The GEO-RBAC model, proposed by Bertino et al.

[1], supports location constraints to address such lo-

cation based access control needs. GEO_RBAC is based

on the notion of spatial role that is a geographically

bounded organizational function. The boundary of a

role is defined as a geographical feature, such as a road,

city, or hospital, and specifies the spatial extent in

which the user has to be located in order to use the

role. The location constraints and the authorization are

integrated through enabled roles. If the user is located

inside the spatial boundary of the role that has been

selected (activated) during the session, the role is said

to be enabled. The user can acquire all the permissions

that are assigned to the enabled roles from all the roles

available in his/her sessions.

As RBAC, GEO-RBAC encompasses a family of

models. Core GEO-RBAC includes the basic concepts

of the model, thus the notion of spatial role, role

schema, real/logical position, and activated/enabled

role. Hierarchical GEO-RBAC extends the conventional

hierarchical RBAC model by introducing two distinct

hierarchies – one over role schemas and one over role

instances. Constrained GEO-RBAC supports the specifi-

cation of separation of duty (SoD) constraints for spatial

roles and role schemas. Since exclusive role constraints

are important to support the definition and mainte-

nance of access control policies in mobile contexts,

SoD constraints are extended to account for different

granularities (schema/instance level), dimension (spa-

tial/non-spatial), and different verification time (static,

dynamic at activation time, dynamic at enabling time).

Another model that addresses location based access

in conjunction with temporal constraint is the Loca-

tion and time-based RBAC (LoT-RBAC) model.
Cross-references
▶General Based Role Based Access Control

▶ LoT-RBAC

▶Role Based Access Control

▶Temporal Access Control
Recommended Reading
1. Bertino E., Catania B., Damiani M.L., and Perlasca P. GEO-

RBAC: a spatially aware RBAC. In Proc. 10th ACM Symp. on

Access Control Models and Technologies, 2005, pp. 29–37.

1246G Georeferencing
Georeferencing

JORDAN T. HASTINGS, LINDA L. HILL

Department of Geography, University of California-

Santa Barbara, Santa Barbara, CA, USA

Synonyms
Geospatial referencing; Spatial referencing

Definition
Georeferencing is the name given to the process of

geospatially referencing data and information objects –

datasets, text documents, maps, photographs and

imagery, etc. – to their proper locations on Earth. The

vast majority of such objects derive from measurements

and observations phenomena that are inherently geore-

ferenceable, because humans are largely confined in their

activities to the near-surface of the Earth and ‘‘Almost

everything that happens, happens somewhere’’ [3].

Georeferencing can be accomplished in two main

ways [2]: formally, by assigning geospatial coordinates

directly to data and information objects; and informally,

by relating such objects to one ormore pre-existing ones

for which georeferences have already been established. In

everyday life, the latter approach predominates, using

the mechanism of place. A geographic place is a real-

world location, perhaps vague, with a recognizable

name and type, and optionally other attributes, e.g.,

‘‘Northern California,’’ Golden Gate Park. A gazetteer is

a dictionary of such places, which is essential for trans-

lating back and forth between informal and formal

georeferences.

Numerous problems and subtleties attend the for-

mal, or direct, georeferencing process. The Earth is not

a sphere, in fact, but a lumpy body that is cannot

be exactly described geometrically. Indeed, multiple

definitions exist for the fundamental geospatial coor-

dinates – longitude, latitude, and surface elevation – all

of which depend on a definition of the Earth’s center.

Map projections further confound matters. No pro-

jection of the globe onto a flat sheet, to create a map,

can simultaneously preserve both area and shape, even

locally; thus, all projections introduce distortions,

which can be severe. In addition, most projections

involve transcendental mathematical functions, which

are only approximated by computers.

Other problems apply to informal georeferencing

using named places, e.g., ‘‘Fisherman’s Wharf’’ or
‘‘5 miles south of San Francisco.’’ Except for officially

designated and defined administrative regions, geograph-

ic places are inherently subjective, based in geospatial

cognition and mediated by linguistic, historical, and

social conventions. Places are therefore approximate in

location, shape and size, and further subject to various

typing schemes. What are the distinctions among ‘‘me-

tropolis,’’ ‘‘city,’’ and ‘‘town,’’ for example; or between

‘‘lake’’ and ‘‘pond’’? A single name may apply to many

places – for example, there are many Lake Genevas in

addition to the famous water body in Switzerland; some

are lakes, in fact, others are cities. Also, a single place can

have multiple names and types – for example, New York

City is colloquially known as ‘‘The Big Apple.’’

Historical Background
Geospatial referencing originated in marine navigation,

where it is essentially a 2-D exercise, using knowledge of

celestial mechanics and time. Latitude can be determined

from a sighting of the sun at local noon, knowing the day

of the year. Determining longitude requires a reliable

shipboard time-of-day clock [5] as well. Positional

accuracies on the order of kilometers, i.e., within range

of sight, are typical.

On land, longitude and latitude are relatively un-

important in people’s everyday affairs, supplanted by

linear measurements of distance and direction along

constrained routes, e.g., riverways and roadways. Even

these measurements are subordinate in many cases

to the observation of salient places, also known as

landmarks, along the routes: topographic features,

human settlements, water bodies, etc. Again, relatively

low-technology tools suffice: a wheel to measure dis-

tance, a compass to indicate direction, and optionally a

barometer to estimate elevation. Positional accuracies

on the order of
100 m are suitable for most purposes.

In space, the position of every satellite must be

meticulously tracked. A constellation of
30 satellites

has been deployed specifically as a global positioning

system (GPS). Several of these satellites are visible from

most points on Earth at all times, although the partic-

ular satellites come and go throughout the day. GPS

satellites continuously broadcast their positions on

special radio frequencies. A companion GPS receiver

on Earth that picks up the signal from three or more of

these satellites can back-calculate its own horizontal

position by trilateralization (a variant of triangula-

tion); with four or more satellites, vertical position

can be determined as well. From multiple ‘‘fixes’’ on

Georeferencing G 1247

G

position over time, the GPS receiver also can work out

its speed and direction of movement, if any. Overall,

this system provides positional accuracies of
5 m

horizontally and
20 m vertically, which is more

than sufficient for most georeferencing purposes.

Foundations

Technical Background

The Earth is a globe, but only approximately spherical,

with an equatorial radius of 6,378,137.0 m and a polar

radius of 6,356,752.3m, by modern measurement

(WGS84). This ellipsoidal description is also approxi-

mate, as the Northern hemisphere is squatter than the

Southern hemisphere; in addition, both hemispheres

are incised by oceans and elevated by continents. The

exact 3-D ‘‘figure’’ of the Earth defies analytic mathe-

matical description, in fact. For precise geodetic work,

affecting rocket and satellite trajectories among other

things, a gridded model of the Earth’s shape is used.

However, for most mapping applications, an ellipsoi-

dal approximation is satisfactory [1].

A datum is a set of parameters that define an approx-

imate figure for the Earth, typically as an ellipsoid. The

horizontal datum defines longitude and latitude with

regard to this figure, and the vertical datum defines

elevation in relation to an average sea level on it. Until

the satellite era, the Clarke 1866 datum was sufficient

and stable; since then a progression of datums (Table 1)

have been adopted. A map projection depicts the glob-

ular figure of the Earth on a flat sheet of paper. In the

projection process, lines of longitude and latitude (cir-

cles on the Earth) become other shapes on paper;

inevitably, distortions are introduced. For example,

the well known Mercator projection (Figure 1) depicts
Georeferencing. Table 1. Selected world datums

Name
Semi-major
axis (m)

Semi-minor
axis (m)

Flattening
ratio

Clarke 1866
(NAD27)

6378206.4 6356583.8 294.979

GCS 80
(NAD83)

6378137.0 6356752.3 298.257

WGS 84a 6378137.0 6356752.3 298.257

GCS 87
(Europe)

6378388.0 6356911.9 297.000

aDiffers imperceptibly from GCS80, for most purposes
both longitudes and latitudes as straight lines, resulting

in extreme distortion at the poles. No projection pre-

serves both shape and area throughout the map, and

many projections preserve neither (but still are useful).

Digital geospatial data representations are nume-

rous. Three well established categories of such rep-

resentation are: vectors, discrete shapes, applying to

object-like phenomena; rasters, regular grids, best suit-

ed to field-like phenomena; and TINs (triangulated

irregular networks), for 2½-D surfaces. Vector data

further subdivides into points, lines, and polygons.

With the exception of points and the simplest polygons –

triangles and rectangles – none of these representations

fits easily into a single relational database table; rather,

table(s) containing open-ended ‘‘blob’’ (binary large

object) structures, or a group of tables, are frequently

used. A wide variety of proprietary structures exist for

geospatial data transcribed to files. The Geographic

Markup Language (GML) [4] is an application of

XML designed to remedy this complexity by encoding
Georeferencing. Figure 1. Mercator projection of the

world, with 30-degree graticule.

1248G Georeferencing
both vectors and rasters (but not TINs), including their

associated attributes, in a portable text format.

Georeferencing Techniques

Georeferencing spans a variety of techniques, deter-

mined in part by the content and format of the underly-

ing data and information objects. Some objects must be

formally georeferencedwith longitude and latitude coor-

dinates. Aerial photographs and satellite imagery, for

example, are usually located and oriented geospatially

by the coordinates of their center and/or corner points.

By contrast, text documents are typically georeferenced

either by assigned geographic subject headings or by

place names (in titles, indexes, and the text itself). Sub-

sequently, using a gazetteer, these informal place refer-

ences can be translated to coordinates. Hardcopy maps

usually can be georeferenced in both ways, because

they are drawn in a coordinate framework and also

have place names embedded in titles, marginalia, map

features, etc. Tabular materials represent another special

case, because they can contain both place names and

coordinates explicitly. Photographs, works of art, bio-

logical specimens, and other such objects are most

often georeferenced informally in accompanying notes,

although some digital cameras are now equipped with

GPS and capable of recording formal coordinates

directly with the image.

Following is a synopsis of common georeferencing

techniques.

Datasets Scientific and technical data are frequently

presented in tables, recorded in spreadsheets or data-

bases. Such tables may include georeferences as coordi-

nates, place names, or both. For statistical data, place

codes may appear in lieu of place names for administra-

tive or other formally defined areas, such as census tracts

or postal zips. Data in tables may be georeferenced

formally, informally using gazetteers, or both.

Documents Textual materials commonly contain

geospatial references as place names, which may serve

to locate the subject matter more or less precisely, viz.

‘‘Washington Mall’’ versus ‘‘apex of Washington Mon-

ument’’. Place names also may appear adjectively

(‘‘Washington Redskins’ stadium’’), prepositionally

(‘‘suburbs of Washington’’), or they may be the subject

itself (‘‘Washington, DC’’). A single text document

may contain many place names, some relevant to the

subject matter, some not, viz. ‘‘unlike its neighboring
states of Maryland and Virginia, Washington, DC

is a federal district’’. A technique called geoparsing

is used to recognize salient place references in text

documents and to associate coordinates with them

via gazetteers.

Maps Maps are, by definition, depictions of geospa-

tial phenomena in a coordinate framework, i.e., graph-

ical displays of geospatial data. A significant portion of

the geography curriculum at all levels concerns locat-

ing coordinate pairs on maps and conversely extracting

the coordinate locations of mapped points. Linear and

areal features are typically represented by sequences of

points, which can be intricate. A GIS (below) is, to first

approximation, a map in digital form. Map content is

inherently georeferenced, but the maps themselves

often require external, informal georeferencing.

Photographs It is useful to distinguish between photo-

graphs taken in the environment – ‘‘snapshots’’ – and

photographs taken of the environment, typically from

an aerial platform such as an airplane. The former may

be georeferenced, either formally or informally, as

objects at mapped points; the later cover a quasi-rect-

angular area on a map, indicated by a sequence of

points. With aerial photographs, comes the additional

issue of othro-rectification: removing the dilation or

‘‘bloom’’ in portions of the photograph except at the

single point (if any) focused straight down.

Imagery Satellite imagery is an electronic rather than

film product – so-called ‘‘digital numbers’’ (DNs),

representing the brightness of a scene in a gridded

pattern of picture elements (pixels). Images are taken

from sufficient distance above the Earth that dilation

issues are small, but not negligible. The satellite’s orbit

coupled with the Earth’s rotation typically results in an

image swath that tracks diagonally across the land

surface, producing trapezoidal pixels. For ease of use,

the trapezoids are usually interpolated back to square

pixels during post-processing of the satellite data, in

conjunction with ortho-rectification. Georeferencing

then proceeds as for aerial photographs.

Key Applications
Georeferencing makes data and information objects

more useful for many purposes. In a geographic infor-

mation system (GIS), for example, vector objects,

Geospatial Metadata G 1249

G

raster fields and imagery are presented in layers. When

such layers are georegistered to a common standard,

their content appears superimposed – as on an elec-

tronic light table. Users are frequently surprised by

even slight mis-registrations of the layers. Hence, the

intrinsic accuracy of geospatial measurements relating

to the layers also must be considered.

Geographic information retrieval (GIR) is an

extension of textual information retrieval (IR) that

compares coordinate-based queries to georeferenced

data and information objects to find the best matches.

In a geospatially-enabled digital library, for example,

the query ‘‘find information about Washington, DC’’

can be translated into coordinates for the area, from

which a wide variety of materials can be retrieved,

including satellite images, maps, and books. The spa-

tial matching operations usually include containment,

overlap, and proximity within a specified distance. As

with GIS, issues of georeferencing accuracy as well as

intrinsic errors must be considered.

A third, hybrid application, is geospatial modeling

and analysis, in which GIS layers, are manipulated

numerically to yield additional insights and results.

When the physical laws governing the behavior of

environmental phenomena are known, or hypothe-

sized, these also can be integrated with the GIS layers

to produce diagnostic and forecast models of environ-

mental behavior. The purpose of such models, beyond

scientific curiosity, is usually to inform political policy

and decision-making.
Cross-references
▶Gazetteers

▶Geographic Information Retrieval

▶Geographic Information Systems

▶ Spatial Operations and Map Operations
Recommended Reading
1. Clarke K.C. Getting Started with GIS, 4th edn. Prentice-Hall,

Upper Saddle River, NJ, 2004.

2. Hill L.L. Georeferencing: The Geographic Associations of

Information. MIT Press, Cambridge, MA, 2006.

3. Longley P.A., Goodchild M.F., Maguire D.J., and Rhind D.W.

Geographical Information Systems and Science, 2nd edn. Wiley,

New York, 2005.

4. Open Geospatial Consortium (OGC). Geography Markup Lan-

guage (version 3.1.1).

5. Sobel D. Longitude: The True Story of a Lone Genius Who

Solved the Greatest Scientific Problem of his Time. Penguin,

New York, NY, 1992.
Geoscientific Information System

▶Three-Dimensional GIS and Geological

Applications
Geospatial Information System

▶Geographic Information System
Geospatial Metadata

BUGRA GEDIK

IBM T.J. Watson Research Center, Hawthorne, NY, USA

Synonyms
Geographical metadata

Definition
Geospatial metadata are a type of metadata used to

describe geospatial data. Data described by geospatial

metadata relates to objects that have an explicit or

implicit geographic extent or position on the surface

of the Globe. Geospatial metadata can be used to create

metadata catalogues or directories that describe geo-

graphic features of data stored in any environment,

ranging from data stored in geographic information

systems (GIS) to simple documents, datasets, images,

or even services. Geospatial metadata captures the

basic characteristics of geospatial data and represents

the what, the when, the where, and the who of the

geospatial data. A typical geospatial metadata record

includes catalog elements such as title, abstract, and

publication data; geographic elements such as geo-

graphic extent and projection information; and data-

base elements such as attribute label definitions and

attribute domain values.

Historical Background
The interest in geospatial metadata grew steadily over

the 1980s and 1990s, and as a result several national

and international organizations, as well as commu-

nities of practice, started to develop their own formats

and conventions for collecting and organizing geospa-

tial metadata. For instance, United States National

1250G Geospatial Metadata
Aeronautics and Space Administration’s (NASA) Di-

rectory Interchange Format (DIF) [2] was developed in

1987, and formally approved for adoption in 1988.

A similar geospatial metadata development effort was

undertaken by the United States Federal Geographic

Data Committee (FGDC) throughout 1992 to 1994

[5], which led to FGDC’s release of Content Standard

for Digital Geospatial Metadata (CSDGM) standard in

1998 [3]. Similarly, in 1996 Australia and New Zealand

Land Information Council (ANZLIC) released its

metadata guidelines [1]. The emerging need for con-

solidating various formats and standards developed by

different communities of practice was addressed by

ISO/TC 211 over the years 1999 to 2002. Consequently,

ISO 19115 standard was released in 2003 under the title

‘‘Geographic Information – Metadata.’’ Following the

release of the ISO 19115 standard, national and inter-

national organizations, as well as communities of prac-

tice have started the process of fitting their previously

adopted metadata standards as profiles or recom-

mended subsets of the ISO 19115 standard, via formal

extensions to it. The increasing popularity and adop-

tion of the Extensible Markup Language (XML) for

sharing data across different information systems over

the Internet led to the development of mechanisms for

exchanging geographic metadata on the Web during

the 1990s. Consequently, the Geography Markup Lan-

guage (GML), an XML grammar for expressing geos-

patial features and metadata, was released in 2004 by

the Open Geospatial Consortium (OGC). With the

growth of the Semantic Web in the 2000s, several orga-

nizations have started to develop ontologies for repre-

senting semantic geospatial metadata. Some examples

include the Hydrology and Administrative Geography

ontologies [4] developed by the Ordnance Survey in

the United Kingdom.

Foundations
Digital geospatial data are often used to create a model of

the real world geographical objects for use in computer

analysis and digital display of geospatial information.

Hence, it is an abstraction of the real world geographical

objects that are being described. This abstraction often

involves various approximations, simplifications, and

exclusions. Given that this digital representation is sel-

dom perfect or complete, the assumptions and limita-

tions affecting its accuracy must be fully documented to

ensure that such data are not misused. Geospatial meta-

data allows a data producer to describe a geospatial
dataset fully, so that the users can understand the

assumptions and limitations associated with the dataset

and evaluate its applicability for their intended use. In

summary, geospatial metadata provides data producers

with appropriate information to characterize their geos-

patial data, facilitates the organization and management

of geospatial data, enables users to apply geospatial data

in the most efficient way by knowing its basic character-

istics, facilitates data discovery, retrieval and reuse, and

enables users to determine whether geospatial data at

hand will be of use to them.

Geospatial metadata consists of a schema required

for describing geographic information and services. It

provides information about the identification, quali-

ty, spatial and temporal extent, spatial reference, and

distribution of geospatial data. The set of geospatial

metadata elements is often large and typically only a

subset of the full number of elements is used. For

instance, ISO 19115 standard includes a list of core

metadata elements – a minimum set of basic elements

required to identify a dataset for cataloging purposes.

These core metadata elements answer the following

questions:

� Does a dataset on a specific topic exist? (‘‘what’’

aspect)

� For a specific place? (‘‘where’’ aspect)

� For a specific date or period? (‘‘when’’ aspect)

� With a point of contact to learn more about the

dataset? (‘‘who’’ aspect)

GML: The Geography Markup Language

The Geography Markup Language (GML) is an XML

grammar used to express geospatial features. GML

serves as a modeling language for geographic systems

as well as an open interchange format for geographic

transactions on the Internet. Originally developed by

the Open Geospatial Consortium (OGC), it is later

adopted as ISO 19136 standard in 2007.
Geospatial Metadata Catalog

Ageospatial metadata catalog is a collection of geospatial

metadata entries that are managed together. A geo-

spatial metadata catalog is often accompanied by a cata-

log service, which responds to requests for metadata

in the catalog and help browse or search geospatial

data described by the collection of geospatial metadata

managed in the catalog. In summary, the main goal

of a geospatial catalog is to support a wide range of

Geo-Targeted Web Search G 1251

G

users in discovering relevant geospatial information

from heterogeneous and distributed repositories of

geospatial data.

Cross-references
▶Geographic Information System

▶Meta Data Management System

Recommended Reading
1. ANZLICMetadataWorkingGroup.ANZLICMetadataGuidelines:

Core metadata elements for geographic data in Australia and New

Zealand, Version 2. http://www.anzlic.org.au/get/2358011755.

2. Major G. and Olsen L. A short history of the DIF. On

GCMD website, http://gcmd.nasa.gov/User/difguide/.

3. Metadata Ad Hoc Working Group Federal Geographic Data

Committee. FGDC website, http://www.fgdc.gov/metadata/

csdgm/.

4. Ordnance – National Mapping Agency of Great Britain.

Ordnance Survey Ontologies. Ordnance Website, http://

www.ordnancesurvey.co.uk/oswebsite/ontology/.

5. Wolfe R. MIT Libraries website, http://libraries.mit.edu/guides/

subjects/metadata/standards/fgdc.html.
Geospatial Referencing

▶Georeferencing
Geo-Targeted Web Search

TORSTEN SUEL

Yahoo! Research, Sunnyvale, CA, USA

Synonyms
Geographic web search; Local web search

Definition
Geo-Targeted Web Search (Geo Search) describes a set

of techniques used in web search engines that aim to

return more relevant results to users by exploiting

geographic knowledge. Most commonly, a Geo Search

Engine (a search engine using Geo Search) tries to infer

a geographic area of interest for a user query by con-

sidering the query itself, the current location of the

user, or the search history of the user. The Geo Search

Engine then tries to return documents that are relevant

to the query search terms and that also match the

geographic area of interest of the query, as determined
through analysis of the web page itself, any geographic

meta tags (geo tags), link or site structure, or other

data. As an example, a Geo Search Engine may return

to a mobile user a list of restaurants close to the user’s

current location given a query ‘‘restaurants.’’ Or a user

may explicitly ask for information about tourism

attractions in Florida, by adding a keyword such as

‘‘florida’’ or pointing to a map. Geo Search techniques

can be integrated into standard broad-based or

specialized search engines, or deployed as separate

search facilities with special interfaces that allow

more convenient query input or result display.

Historical Background
Geo Search developed over the last decade as a re-

sponse to several challenges faced by search engines.

First, given the size of the web, there are often too

many potentially relevant results, and geography can

provide a natural way of filtering such results for

those the user really wants. Second, much of com-

merce is still local in nature, and Geo Web Search can

provide a platform for supporting local advertising

models on the web. Third, it was found that treating

geographic terms in queries just as normal terms does

not give the best possible results, and that some

amount of geographic domain knowledge should be

added to engines to improve results. For example, by

simply matching on the term ‘‘manhattan’’ in a query,

one might miss out on results referring to New York

in general or to a particular neighborhood in

Manhattan, or results about Brooklyn that are close

enough to be of interest. As a result, there have been

significant efforts by major search engine companies

and start-ups to develop Geo Search Engines, and

there has also been increasing interest in the academic

community.

Even before the emergence of the web, researchers in

Information Retrieval studied how to exploit geographic

information embedded in text documents for better text

search and analysis; see Larson [10] for earlier work and

Jones and Purves [8] for a recent overview of the slightly

more general area of Geographic Information Retrieval

(GIR). This article focuses on geographic web search

technology, which currently dominates the area of GIR

in terms of number of users and total economic invest-

ments, but there are of course important applications

outside the web domain. Initial work on Geo Search on

the web appears in [5,6,13], and in recent years a

significant amount of research has addressed this new

1252G Geo-Targeted Web Search
challenge. A lot of the work has studied the problem of

reliably identifying geographic references in docu-

ments in the presence of noise and ambiguity [1,11–

13]; for example, many common place names (e.g.,

Washington) can also refer to persons, hotels, or

other entities, while others can refer to several different

places (e.g., Paris, Texas vs. Paris, France). Recent work

has also focused on indexing and query processing

techniques for Geo Search [2,15,17], and on analyzing

and studying user queries in order to better under-

stand the types of geographic search needs that real

users have [7,9,14,16].

Foundations
This discussion begins with an outline of the main

tasks in Geo Search. As in conventional web search

engines, these tasks can be divided into four groups:

(i) data acquisition (i.e., web crawling), (ii) prepro-

cessing and data analysis, (iii) index building, and

(iv) processing of user queries using these index

structures. Geo Search engines that are limited to a

particular geographic area need to be able to effi-

ciently crawl sites and documents related to this

area; this problem is called geo crawling. In the pre-

processing phase, the collection has to be analyzed to

extract geographic information that can be used for

indexing. This can include, e.g., complete addresses,

phone numbers, town names, or informal references

(such as ‘‘big apple’’ for New York). The output of this

phase may be either sets of geographic terms, or sets of

points, polygons, or other geometric objects. During

index building, additional index structures may have

to be built, e.g., spatial index structures for the geo-

metric objects obtained from the previous phase.

Finally, during query processing, queries and their

contexts are analyzed to determine if the user might

be interested in a particular geographic area, and

then the index structures is used to find relevant

documents.

Geo Parsing and Geo Coding

A significant amount of work has focused on (ii), the

analysis of documents for geographic information

[1,11–13]. In particular, geo parsing is the process of

identifying likely geographic references (such as town

names, addresses, etc.) in the document text or meta

data. Most commonly, this is performed by matching

terms in the documents with databases of geographic

names (gazetteers) obtained from outside sources, such
as the GNIS database made available by the US Geolog-

ical Survey for the US. If databases of business listings

(yellow pages) are available, these can also be used to

extract additional geographic references. In addition,

techniques for named entity recognition can be applied.

When databases of geographic names are available, the

problem may appear simple but is in fact not so. Con-

sider the many ways in which city or state names may

appear as part of names of persons, businesses, foods, or

many other items. Moreover, Washington can be a city

or a state, LA can refer to Los Angeles or Louisiana, and

there are dozens of towns named Lexington. These

problems are referred to as geo/non-geo ambiguity

and geo/geo ambiguity, respectively. In addition, it can

be desirable to also detect informal place names (e.g.,

‘‘big apple’’ for New York).

An alternative proposal is to introduce geo tags that

allow authors to attach appropriate geographic terms

or coordinates to pages [3] or other objects such as

images or business listings or reviews, or allow commu-

nities of users to supply tags. This avoids many of the

challenges of automatic extraction, but potential pro-

blems are lack of participation and possible

manipulation.

Once the geographic terms have been extracted,

there are two main approaches for further processing.

One approach performs geo coding to map the geo-

graphic references into longitude-latitude coordinates,

and then uses spatial or geometric algorithms and data

structures for further processing. Alternatively, the

geographic terms can be kept in textual form and

related to a geographic ontology, in the simplest case

just a hierarchical grouping of geographic terms repre-

senting simple spatial facts (e.g., that San Jose is in

Santa Clara County which is in California), that is used

for subsequent processing.

The geo coding approach is now discussed in more

detail. In this step, the goal is to infer for each document

its geographic focus [13], which is the area that the

document relates to. The estimate of this area will be

stored as a spatial data structure called the document’s

footprint. To compute the footprint of a document, any

references to countries, cities, counties, or maybe busi-

nesses in the document are first translated into coordi-

nates, using coordinate data available as part of many

gazetteers. The output is a set of points, rectangles, poly-

gons, or other spatial objects, possibly with appropriate

weights or amplitudes. For example, a business may be

mapped to a precise coordinate, while a city could be

Geo-Targeted Web Search G 1253

G

modeled by a circle or rectangle with some diameter, or a

polygon approximating city boundaries. Weights might

model the importance of a geographic term in the docu-

ment or the extraction confidence for this term. In

general, the geographic footprint of a document might

assign an amplitude to every location on a map, with a

value of zero for areas that are not relevant to the docu-

ment, and very high values for areas that are referenced

multiple times in the document. Efficient processing will

usually require approximation of this data by a small

number of polygons or bounding rectangles.

Note that both geo parsing and geo coding could

potentially be improved by using site and link structure

[12,13], such that pages with ambiguous or missing

geographic references are analyzed using information

on neighboring pages. It may also be useful to assign

footprints on a per-site basis. Finally, note that the geo-

graphic focus of a page is related but not identical to the

geographic scope introduced in [5], which is the geo-

graphic area of the readership addressed by a page. For

example, a page about travel to Paris in a local news-

paper or site in Seattle might have a geographic focus

around Paris, but a geographic scope around Seattle.

Indexing and Query Execution

After analyzing the documents for geographic refer-

ences, it is necessary to build appropriate index struc-

tures that allow efficient query processing. Recall that

in the analysis phase there were two main approaches,

one that keeps extracted geographic references as terms

that can be related to some spatial ontology or other

knowledge base, and one that translates the extracted

geographic terms into a spatial footprint structure

based on polygons or rectangles. The former approach

then uses textual index structures and techniques such

as query expansion on the geographic terms in the

user’s query [4] in order to find the best results.

Lot of recent work, e.g., [2,15,17], follows the latter

approach, which is now discussed in more detail. As-

sume that a query to a geo search engine consists of

two parts, a set of terms as in a standard engine, and a

query footprint in the same basic format as the docu-

ment footprints. Such a query footprint could be

obtained from the user in a number of ways, e.g., by

having the user input a geographic term or point and

click in a map, or by using the user’s current location

or past queries to derive a likely area of interest. Then a

possible definition of query processing in geo search

engines is as follows:
Definition: Given a collection of documents, each

consisting of a document footprint and a set of terms,

and a query consisting of a query footprint and a set of

terms, the top-k query processing problem in geograph-

ic search engines is to return k documents such that:

� The footprint of each returned document has a

nonempty intersection with the query footprint,

i.e., there exists a location where both footprints

are non-zero.

� Each returned document contains all terms in

the query, or alternatively satisfies some weaker

Boolean filter on the query terms (e.g., an OR).

� The returned documents are the k highest scoring

documents according to a ranking function of the

form h(st,sg) where st is a term-based score com-

puted on the query and document terms, sg is a

geographic score obtained from the query and doc-

ument footprints, and h is a monotone function for

aggregating the two scores.

Some of the above assumptions can be relaxed, for

example by allowing st to also contain scores based on

link analysis or page visit frequency. One interesting

choice for sg is a dot product over all locations of the

two footprints (or a corresponding integral in the

continuous case). As shown in Fig. 1, by properly pre-

processing the footprints it is possible to achieve objec-

tives such as scoring documents higher if they are closer

to the center of the query footprint or if they overlap with

locations that are of particular interest to the user.

Thus, for fast query processing, it is necessary to have

index structures that support execution of the spatial

and textual filtering conditions, and an efficient way to

score the remaining documents. In typical web collec-

tions, the textual data to be indexed is larger than the

extracted spatial data, and thus efficient text index struc-

tures, such as inverted lists, are crucial. The size of the

spatial data depends on the format used for the foot-

prints. If the average footprint consists only of a few

bounding rectangles, then this data may be only a few

percent of the text data and thus may fit in main memo-

ry. If a footprint contains a more precise representation

involving polygons or amplitudes, then the spatial data

may only be moderately smaller than the text data.

In any case, to perform query processing, both

textual and spatial index structures are required, and

the challenge is to integrate these efficiently. A num-

ber of algorithms for this problem were first proposed

in [15]. Two recent optimized approaches [2,17]

Geo-Targeted Web Search. Figure 1. [12] An illustration

of query and document footprints in a single spatial

dimension. The top shows a query footprint with a

distance threshold (left), and a footprint for a query that

gives a lower score for documents that are farther away

from the center (right). The bottom shows an intersection

between the query footprint and a document footprint.

1254G Geo-Targeted Web Search
address this issue by combining inverted indexes with

spatial structures such as R*-trees and space-filling

curves. The approach in [17] assumes that each foot-

print is a set of rectangles; this results in a fairly small

amount of spatial data and very fast query processing

as most spatial data will be in memory. Work in [2]

assumes that footprints are approximated by a set of

bounding rectangles that is used during the filtering

phase, but that a more precise representation of the

footprints is also stored and must be fetched in order

to compute precise values for sg. The precise foot-

prints are treated as binary objects (BLOBs) whose

detailed structure is not important as long as a score

can be computed from them; they might for example

contain amplitudes or additional context about the

geographic terms that were parsed from the docu-

ments. Compared to [17], this approach results in

more spatial data that needs to be accessed, and thus

more disk transfers, but it is more general in terms of

the types of ranking functions that can be supported.

However, it is not clear to what degree this generality is

actually needed, and the approach in [17] may suffice

in many practical scenarios.

Geographic Search Queries

In order to provide useful geographic search services, it is

necessary to study how users search on the web. Several

recent studies have looked at how to automatically
identify queries that have a geographic intent and

could thus benefit from geographic search technology

[7,9,16]. Automatic identification allows a proper query

footprint to be assigned to such queries. It may also

allow better processing of queries that have no explicit

geographic terms. For example, when searching from

mobile devices or sometimes also from desktops, users

may prefer results close to their current location without

explicitly specifying so. Other researchers have studied

the basic properties of such queries [14]. It is estimated

that about 10% to 15% of queries submitted to standard

search engines contain geographic terms. Work in [9]

looks at how users modify the geographic terms in query

sessions in order to get better results.

Key Applications
All the major search engine companies have developed

and deployed geographic search technology as part of

their offerings. In particular, these engines provide local

search options that allow users to search for businesses

and organizations using keywords, geographic terms,

and map-based interfaces. In addition, geographic

search technology is also used in their standard web

search engines to provide better results for queries that

are likely to have a geographic intent. Closely related

and of particular commercial interest to the search

engines are techniques for local advertising on the web.

Other applications on the web are in the automatic

compilation of local information for city or neighbor-

hood portals, and in providing better interfaces and

search for real estate, car trading, or classified sites

where users tend to search in a certain geographic area.

Finally, although this discussion has focused on the case

of the web, Geographic Information Retrieval has many

applications on other textual collections where geo-

graphic search, browsing, and analysis are useful.

Future Directions
There is continuing research on many aspects of geo-

graphic web search, which is still in its infancy. This

includes work on better extraction of geographic terms

from documents and queries using techniques from

Natural Language Processing and Information Retriev-

al. Ideally, techniques should be general enough to be

applicable across languages, and it would be desirable

to also identify implicit geographic intent in queries

and informal place names.

Further studies of search logs and user behavior are

needed to better understand user intentions and search

Glyphs G 1255

G

strategies, particularly for queries that go beyond the

types of searches for local businesses that are already

handled fairly well by current local search services.

Growing interest in technologies for local advertising

on the web is also expected.

An intriguing future direction in geographic search

involves online virtual worlds, such as Second Life as

well as models of the real world such as Google Earth.

As such models become more popular and users be-

come more comfortable in navigating them, significant

textual content is expected to migrate to or be mapped

into these spaces, resulting in yet unexplored research

problems related to geographic web search.

Cross-references
▶Geographic Information System

▶ Information Retrieval

▶ Inverted Index

▶Named Entity Extraction

▶Rtree

▶ Search Log Analysis

▶ Space-Filling Curves

▶ Spatial Network Databases

▶Web Search Engines

Recommended Reading
1. Amitay E., Har’El N., Sivan R., and Soffer A. Web-a-where:

geotagging web content. In Proc. 27th ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2004, pp.

273–280.

2. Chen Y., Suel T., and Markowetz A. Efficient query processing in

geographic web search engines. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2006, pp. 277–288.

3. Daviel A. Geographic registration of HTML documents,

Apr 2001.

4. Delboni T., Borges K., and Laender A. Geographic Web search

based on positioning expressions. In Proc. Workshop on Geo-

graphic Information Retrieval, 2005, pp. 61–64.

5. Ding J., Gravano L., and Shivakumar N. Computing geo-

graphical scopes of web resources. In Proc. 28th Int. Conf. on

Very Large Data Bases, 2000, pp. 545–556.

6. Egenhofer M. Toward the semantic geospatial web. In Proc. 10th

ACM Int. Conf. on Advances in Geographic Information Sys-

tems, 2002, pp. 1–4.

7. Gravano L., Hatzivassiloglou V., and Lichtenstein R. Categoriz-

ing web queries according to geographical locality. In Proc. 12th

ACM International Conference on Information and Knowledge

Management, 2003, pp. 325–333.

8. Jones C. and Purves R. Geographic information retrieval. Int.

J. Geo-Graph. Inform. Sci., 22(3):219–228, March 2008.

9. Jones R., Zhang V., Rey B., Jhala P., and Stipp E. Geographic

intention and modification in web search. Int. J. Geograph.

Inform. Sci., 22(3):229–246, 2008.
10. Larson R. Geographic information retrieval and spatial brows-

ing. In GIS and Libraries: Patrons, Maps and Spatial Informa-

tion. Linda Smith and Myke Gluck (eds.), 1996, pp. 81–124.

11. Leidner J. Toponym resolution in text: Which Sheffield is it? In

Proc. 27th ACM SIGIR Int. Conf. on Research and Development

in Information Retrieval, 2004, pp. 602–602.

12. Markowetz A., Chen Y., Suel T., Long X., and Seeger B. Design

and implementation of a geographic search engine. In Proc. 8th

Int. Workshop on the Web and Databases, 2005.

13. McCurley K. Geospatial mapping and navigation of the web. In

Proc. 10th Int. WorldWideWeb Conference, 2001, pp. 221–229.

14. Sanderson T. and Kohler J. Analyzing geographic queries. In Proc.

of the Workshop on Geographic Information Retrieval, 2005.

15. Vaid S., Jones C., Joho H., and Sanderson M. Spatio-textual

indexing for geographical search on the web. In Proc. Nineth

Int. Symp. on Spatial and Temporal Databases, 2005.

16. Wang L., Wang C., Xie X., Forman J., Lu Y., Ma W., and Li Y.

Detecting dominant locations from search queries. In Proc. 28th

ACM SIGIR Int. Conf. on Research and Development in Infor-

mation Retrieval, 2005.

17. Zhou Y., Xie X., Wang C., Gong Y., and Ma W. Hybrid index

structures for location-based web search. In Proc. Int. Conf. on

Information and Knowledge Management, 2005, pp. 155–162.
GIS

▶ Semantic Modeling for Geographic Information

Systems
GIST

▶Generalized Search Tree (GiST)
GiST

▶Generalized Search Tree (GiST)
Global Query Optimization

▶Multi-Query Optimization
Glyphs

▶ Iconic Displays

Topic
#1

Topic
#2

Topic
#3

Topic
#4

Topic
#5

Run 1 AP 0.05 0.10 0.50 0.50 0.75

Run 2 AP 0.10 0.30 0.45 0.45 0.60

1256G GMAP
GMAP

STEVEN M. BEITZEL
1, ERIC C. JENSEN

2,

OPHIR FRIEDER
3

1Telcordia Technologies, Piscataway, NJ, USA
2Twitter, Inc., San Fransisco, CA, USA
3Georgetown University, Washington, DC, USA

Synonyms
Geometric mean average precision
Definition
The Geometric Mean Average Precision (GMAP) is

the geometric mean of the average precision values

for an information retrieval system over a set of n

query topics. GMAP is expressed as follows (from [1]):

GMAP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
n

APnn

r

where AP represents the Average Precision value for a

given topic from the evaluation set of n topics. Please

refer to the entry on Average Precision for the complete

definition of AP. An alternate calculation method

expresses GMAP as an arithmetic mean of logs (also

from [1]):

GMAP ¼ exp
1

n

X
n

logAPn

Key Points
The Geometric Mean Average Precision evaluation

metric was first introduced in the Robust track at the

2004 NIST Text Retrieval Conference (TREC). A stated

goal of the robust track was to examine and evaluate

information retrieval systems with a view towards

achieving consistently good performance over all

query topics in the evaluation set. The geometric

mean was considered for this purpose because it

tends to better illustrate large relative improvements

in the scores of poorly performing topics between a set

of runs while suppressing the effect of minor fluctua-

tions in the scores for topics that achieve good perfor-

mance. By contrast, the traditional Mean Average

Precision metric, which uses the arithmetic mean of

average precision scores, gives equal weight to absolute

changes in per-topic scores, regardless of the relative

size of the change.
As an example, consider a run with five topics, each

having the following Average Precision Scores:
In this example, Run 1 and Run 2 have the same

Mean Average Precision (0.38), whereas Run 1 has a

GMAP of
0.25 and Run 2 has a GMAP of
0.33. If

the evaluator is interested in a measure of consistency

and collective performance across all topics, GMAP is a

good choice for the evaluation metric.
Cross-references
▶Average Precision

▶ Effectiveness Involving Multiple Queries

▶Mean Average Precision
Recommended Reading
1. National Institute of Standards and Technology. TREC-2004

common evaluation measures.
Google Bombing

▶Web Spam Detection
Grammar Induction

▶Grammar Inference
Grammar Inference

MATTHEW YOUNG-LAI

Sybase iAnywhere, Waterloo, ON, Canada

Synonyms
Automata induction; Grammatical inference; Gram-

matical induction; Grammar induction; Automatic in-

duction; Automatic language induction

Grammar Inference G 1257

G

Definition
Grammar inference is the task of learning grammars or

languages from training data. It is a type of inductive

inference, the name given to learning techniques that

try to guess general rules from examples.

The basic problem is to find a grammar consistent

with a training set of positive examples. Usually, the

target language is infinite, while the training set is

finite. Some work assumes that both positive and neg-

ative examples are available, but this is not true in most

real applications. Sometimes probability information

is attached to each example. In this case, it is possible

to learn a probability distribution for the strings in the

language in addition to the grammar. This is some-

times called stochastic grammar inference.

A grammar inference algorithmmust target a partic-

ular grammar representation. More expressive represen-

tations are more difficult and expensive to learn. For

example, context-free grammars are more expressive

than regular languages, but much harder to learn. The

target representation for stochastic grammar inference

can be viewed as separate structure and probability

components. The structure component is a standard

grammar. The probability component defines the prob-

abilities associated with individual strings. One way to

define this association is to assign a probability to every

production of the grammar, or for regular grammars, to

every transition of the finite automaton. The probability

of a string is then the product of the production or

transition probabilities used in its generation.

As with all learning problems, a solution is not

necessarily acceptable just because it is consistent with

the training set. Infinitely many grammars are consis-

tent with any finite sample. Inference must construct

a possible grammar, and also choose from among

the possibilities. Usually the grammar must generalize

outside the available examples in some useful way.

What is useful varies with the application. Some appli-

cations require a result that a human can interpret.

Others require a grammar that assigns accurate proba-

bility predictions to strings.

Historical Background
Grammar inference has been studied by researchers

in many fields including information theory, formal

languages, automata theory, language acquisition, com-

putational linguistics,machine learning,pattern recogni-

tion, computational learning theory, neural networks,

anddatacompression.Severalconferencesandworkshops
focus specificallyon the subject.One example is the Inter-

national Colloquium on Grammatical Inference (ICGI)

which has been held in 1993, 1994, 1996, and every

2 years through 2006 so far. There have also been asso-

ciated language learning competitions such as the

Abbadingocompetitionwhich focusedonlearningdeter-

ministic finite automata and the Omphalos competition

that focusedon learning context free languages.

The first studies of grammar inference date back to

the 1960s. One formalization is called language identi-

fication in the limit [7]. This assumes two sets of

strings: R+ is the set of positive examples, and R� is

the set of negative examples. A language is said to be

identifiable in the limit if it can be learned by some

method for sufficiently large R+ and R�. Put another

way, adding new examples to R+ and R� must only

produce a finite number of changes to the hypothe-

sized model.

There are two decidability results in this formaliza-

tion. The first is negative and says that no infinite

language can be identified in the limit from only posi-

tive examples. This is intuitively a consequence of

over-generalization since adding more positive exam-

ples can never imply that a string mistakenly included

in the model should subsequently be removed. In fact,

a consistent generalization of any set of positive exam-

ples is a language containing all finite strings con-

structed from the alphabet.

The second decidability result is positive and states

that any member of an enumerable class of recursive

languages (context-sensitive and below) is identifiable

in the limit given both positive and negative data. How-

ever, this result says nothing about how large a sample is

needed and therefore has limited application. Even if

negative examples are available, which is often not the

case, the learning problemmay be intractable. For exam-

ple, finding the smallest finite automaton compatible

with given positive and negative example sets is NP-

hard [3,8]. A polynomial time algorithm can construct

a non-minimal solution to this problem in the limit

[11]. However, the problem remains that there is no

bound on the size of the required training data.

Within the standard Chomsky hierarchy from auto-

mata theory [10], grammar inference research has

focused mainly on regular and context free grammars.

Restricted grammars, referred to as characterizable sub-

classes, are also commonly targeted. For example,

k-reversible languages [4], generalize from 0-reversible

languages which are those generated by finite automata

Grammar Inference. Figure 1. A de-facto grammar.

Grammar Inference. Figure 2. A de-facto stochastic finite

automaton.

1258G Grammar Inference
that remain deterministic if all of their arcs are re-

versed. The main justification for using restricted lan-

guage classes is to reduce the time complexity of the

inference process. The defining restrictions are not

themselves relevant to real applications.

Much work has been done on stochastic grammar

inference because of its applicability to real applications.

Early work in information theory used probability infor-

mation to discover rules. Shannon proposed that lan-

guage learning can be seen as a problem of estimating

probabilities of sequences of n-grams as n approaches

infinity. Well known techniques such as the Baum-

Welch algorithm [5] for learning hidden Markov mod-

els can be considered stochastic grammar inference

since hidden Markov models are equivalent to stochas-

tic finite automata. Many learning algorithms for data

compression and neural networks perform stochastic

grammar inference, although not always using repre-

sentations that map to standard grammars.

Foundations
A common grammar inference paradigm starts with a

model constructed to accept the finite language com-

posed of exactly the strings in the training set. The

inference process then transforms this de-facto model

by applying generalization operations. This is analo-

gous to a natural learning process that starts with a

complete memory of specific examples and then com-

bines groups of similar examples into general rules.

The form of the de-facto model depends on the

target representation. The training set {abb, bb, aabb,

abba}, for example, can be represented by the de-facto

grammar in Fig. 1, the de-facto stochastic finite au-

tomaton in Fig. 2, or by appropriately chosen models

in other representations.

Generalization operations can usually be viewed as

merging sub-components of the model. Finite auto-

mata, for example, are generalized by merging states,

thus creating new loops or paths. Grammars are

generalized by merging productions. This expands

the language so that it includes new strings with char-

acteristics similar to existing strings. Operations that

arbitrarily expand the language (e.g., by adding sym-

bols to the alphabet or adding strings that have nothing

in common with any of the training examples) are also

possible, but not generally useful.

While the paradigm of moving from specific to

more general models is common, the opposite strategy

is also possible. This involves starting with a completely

general model and then modifying it to describe specific
rules or patterns. This is done in the previous example by

starting with the finite automaton having a single state

and transitions back to that state on input of a and b.

If it is then observed that bs always occur in pairs, then

a new state can be split off to express this rule.

Generalization from a specific model and speciali-

zation from a general model are two paradigms for

moving through the infinite space of all languages

consistent with a given training set. Also needed is a

specific control strategy that defines the order of gen-

eralization or specialization operations and when the

process terminates. If a metric is available for evaluat-

ing intermediate results, then the task can be seen as a

search problem, and many well known control strate-

gies such as greedy search are applicable. However,

many grammar inference algorithms are not explicitly

formulated in this way. Instead, they choose the control

strategy, the movement operations, or the represen-

tation in some way that is computationally convenient.

The use of characterizable subclasses mentioned above

is one example of this.

Stochastic grammar inference works with training

data that can be viewed as a statistical sample of an

unknown distribution. This means that candidate mod-

els can be evaluated in a relatively objective manner

using either statistical tests or metrics based on informa-

tion theory. In particular, it is possible to evaluate strings

that are generated by the model but are not present in

the training data. Probability information thus makes

up for the lack of negative examples. Such unseen strings

must be assigned low enough probability to fit the

Grammar Inference G 1259

G

assumption that the training set is a random sample of

the language generated by the model. Consider the

training set T = {(a, 20), (aa, 10), (aaa, 5)} consisting

of three (string, frequency) pairs for a total frequency of

35. One possible model is {anjp(an) = 0.5n} which

assigns a total probability of 0.125 to strings of four

or more as even though no such strings are present in

the sample. A simple statistical test can verify that since

T contains only 35 strings it could in fact have realisti-

cally been generated by the model. For example, a

w2 test shows that the chance of getting T or any less

likely sample from the model is somewhere between

0.20 and 0.50 – probably not unlikely enough to con-

clude that the model is a bad one. For the set T 0 ={(a,

200), (aa, 100), (aaa, 50)}, on the other hand, the

probability is less than one in a thousand. The reason

is that a random sample of 350 strings from the model

should have included at least a few longer strings such

as aaaa or aaaaa. Alternative evaluation criteria can be

based on things other than strict probability of occur-

rence. Other approaches include Bayesian comparison

to prior probability distributions [14] and divergence

comparisons based on information theory [12].

Key Applications
The traditional application domain of grammar infer-

ence has been syntactic pattern recognition. This

assumes that pattern classes can be represented by

grammar models, and it is useful to learn these models

automatically. Other application areas include speech

and natural language processing, optical character rec-

ognition, information retrieval, gene analysis, sequence

prediction, and cryptography.

In the database context, most recent work on selec-

tivity estimation for query optimization in XML data-

bases can be classified as stochastic grammar inference.

Grammar inference also applies to data mining and

knowledge discovery. Stochastic grammar inference is a

key part of many compression techniques where better

models directly correspond to better compression ratios.

For structured document collections, grammars

are a natural representation to use as a database

schema. This is also true of semi-structured and

XML databases. Grammar inference is applicable to

such data if it has no explicitly-created schema and

there has been some work on grammar inference

in this context. Fankhauser and Xu [6] describe a

system that learns a grammar for use in automatic

markup. Shafer [13] describes a C++ library, the

GB (Grammar Builder) Engine which produces a
grammar by generalizing examples marked up in

an SGML-style. Work by Ahonen et al. [1,2] uses a

more classical grammatical inference approach based

on a characterizable subclass of regular languages

that they call (k�h) contextual languages. Goldman

and Widom [9] describe the use of automatically con-

structed DataGuides for browsing database structure

and formulating queries. Young-Lai and Tompa [15]

look at applying stochastic grammar inference to the

problem.
Cross-references
▶Hidden Markov Models

▶ Inductive Inference

▶ Information Theory

▶Machine Learning

▶Markov Models

▶ Schema

▶XML Selectivity Estimation

▶XML Database
Recommended Reading
1. Ahonen H., Mannila H., and Nikunen E. Generating grammars

for SGML tagged texts lacking DTD. In Proc. of the Workshop

on Principles of Document Processing, 1994.

2. Ahonen H., Mannila H., and Nikunen E. Forming grammars for

structured documents: an application of grammatical inference.

In Lecture Notes in Computer Science, 862. R. Carrasco, J.

Oncina (eds.), 1994, pp. 153–167.

3. Angluin D. On the complexity of minimum inference of regular

sets. Inf. Control, 39:337–350, 1978.

4. Angluin D. Inference of reversible languages. J. ACM,

29:741–785, 1982.

5. Baum L.E., Petrie T., Soules G., and Weiss N. A maximization

technique occurring in the statistical analysis of probabilistic

functions of markov chains. Ann. Math. Statist., 41(1):164–171,

1970.

6. Fankhauser P. and Xu Y. MarkItUp! An incremental approach to

document structure recognition. Electron. Publ. Orig. Dissem.

Des., 6(4):447–456, December 1993.

7. Gold E.M. Language identification in the limit. Inf. Control,

10:447–474, 1967.

8. Gold E.M. Complexity of automaton identification from finite

data. Inf. Control, 37:302–320, 1978.

9. Goldman R. and Widom J. DataGuides: enabling query formu-

lation and optimization in semi-structured databases. In Proc.

23th Int. Conf. on Very Large Data Bases, 1997, pp. 436–445.

10. Hopcroft J.E. and Ullman J.D. Introduction to Automata

Theory, Languages and Computation. Addison-Wesley, Reading,

MA, 1979.

11. Oncina J. and Garcı́a P. Inferring regular languages in polyno-

mial updated time. In Pattern Recognition and Image Analysis.

N.P de la Blanca, A. Sanfeliu, E. Vidal (eds.). World Scientific,

Singapore, 1992, pp. 49–61.

1260G Grammatical Induction
12. Sánchez J.A. and Benedı́ J.M. Statistical inductive learning of

regular formal languages. In Lecture Notes in Computer Science,

862. R. Carrasco, J. Oncina (eds.), 1994, pp. 130–138.

13. Shafer K. Creating DTDs via the GB-engine and Fred, 1995.

14. Stolcke A. and Omohundro S. Inducing probabilistic grammars

by Bayesian model merging. In Lecture Notes in Computer

Science, 862. R. Carrasco, J. Oncina (eds.), 1994, pp. 106–118.

15. Young-Lai M. and Tompa F.W. Stochastic grammatical inference

of text database structure. Mach. Learn., 40(2):111–137, 2000.
Grammatical Induction

▶Grammar Inference
Grammatical Inference

▶Grammar Inference
Graph

HANS HINTERBERGER

ETH Zurich, Zurich, Switzerland

Synonyms
Graph; Chart; Plot

Definition
Graph theory: A set of nodes (also called points or

vertices) connected by links called lines or edges or

arcs. In an undirected graph, a line from point A

to point B is considered to be the same thing as a

line from point B to point A. In a directed graph,

the two directions are counted as being distinct arcs

or directed edges.

Mathematics: A diagram exhibiting a relationship,

often functional, between two or more sets of numbers

as a set of points having coordinates determined by the

relationship. Also called a plot.

Computer science: A data structure representing

relationships or connections in lists, trees, and networks.

Data visualization: Any pictorial device such as a point

graph, surface graph or symbol graph used to display

numerical relationships. Also called a chart because

graphs constitute one of the major categories of charts.

Graphs combine two or more straight or circular axes,
utilizing one or more quantitative scales. Straight axes are

typically drawn perpendicular to each other, sharing a

common origin. The most notable exceptions are trian-

gular graphs, nomographs, and parallel coordinates.

Triangular (Trilinear) Graphs place the axes either

along the sides or the along the angle bisectors of an

equilateral triangle.

Nomographs (Nomograms) arrange the axes in such

a way that a straight index line connecting known values

on two axes passes through the solution value on an-

other axis. The most common nomographs consist of

three parallel axes, some place the axes at an angle to

each other, others employ one or more curved axes.

Circular axes are based on polar coordinates, using

angle or radius or both to represent values.
Key Points
Because graphs can be powerful tools to reveal the

structure of data they are the preferred method to

visualize data in science and technology, particularly

as a tool for exploratory data analysis.

The use of graphical images to show data has

evolved during the past 250 years, reaching unprece-

dented popularity with computer supported methods.

The basic ideas behind good graphical design, however,

transcend technology as they follow principles dictated

by the human visual system.

W.S. Cleveland [1] has studied methods and basic

principles that must be observed if a data analyst wants

to realize a graph’s potential for visualization. A classic

on issues of graphical practice, including a theoretical

approach to data graphics has been published by E.R.

Tufte [3]. R.L. Harris [2] has assembled a comprehen-

sive overview of different graphs by organizing them

categorically according to their type of configuration

(e.g., line graph, contour graph), area of application

(e.g., technical, business), type of data plotted (e.g.,

original data, derived data), number of axes, and by

purpose (e.g., analysis, monitoring, presentation).

Graphs are not only used to visualize data, they also

serve as a tool for data acquisition and storage carried

out by mechanical plotting devices or, in the form of

nomograms, function as calculating devices, usually

designed to perform a specific calculation.
Cross-references
▶Chart

▶Data Visualization

Graph Data Management in Scientific Applications G 1261
▶ Exploratory Data Analysis

▶ Parallel Coordinates
Recommended Reading
1. Cleveland W.S. The Elements of Graphing Data (revised edn.).

Hobart Press, Summit, NJ, 1994.

2. Harris R.L. Information Graphics: A Comprehensive Illustrated

Reference, Oxford University Press, Oxford, 1999.

3. Tufte E.R. The Visual Display of Quantitative Information.

Graphics Press, Cheshire, CT, 1983.
G

Graph

▶Chart

▶Diagram
Graph Data Management in
Scientific Applications

AMARNATH GUPTA

University of California-San Diego, La Jolla, CA, USA

Synonyms
Graph theory; Graph data structure; Graph database

Definition
In mathematics and computer science, graphs are

mathematical structures used to model pairwise rela-

tions between objects from a certain collection. As a

data structure, a ‘‘graph’’ is a set of vertices or ‘‘nodes’’

and a set of edges that connect pairs of vertices.

Historical Background
Graph data management has been studied for nearly

two decades. A recent survey [1] states ‘‘Graph db-

models are applied in areas where information about

data interconnectivity or topology is more important,

or as important, as the data itself. In these applications,

the data and relations among the data, are usually at the

same level... . It allows for a more natural modeling of

data’’ and ‘‘Queries can refer directly to this graph

structure. Associated with graphs are specific graph

operations in the query language algebra, such as

finding shortest paths, determining certain subgraphs,

and so forth.’’ One of the earliest applications of graph
data models in science was the study of road networks

[9]. While the development of medical terminologies

started in the 1980s, the need to study the problem of

medical terminology as a graph database came about in

the early 1990s. Ellis [4] was one of the early attempts to

model nomenclature such as SNOMED and the Unified

Medical Language System (UMLS) as graphs.

Foundations

Graphs in Science

Many scientific disciplines deal with data that are

structured like graphs. In chemistry, molecules can be

considered as graphs whose nodes are atoms and edges

are atomic bonds. In ecosystem studies, food webs are

graphs where the nodes represent organisms and the

edges are directed, representing predatory relationship.

In infectious disease epidemiology, the contact network

is an undirected graph, where the nodes are people

affected by the disease, and an edge is created between

pairs of people who came in contact with each other, and

possibly caused the infection. In each application the

properties of the graph are a little different. The nodes

and edges may have additional attributes. The edges may

have weights on them. The graph may be acyclic or have

cycles. The graph may have a regular structure or may be

more random in nature. Despite these difference, in all

of these cases, the scientific pursuit involves some kind of

network (i.e., graph-based) analysis. In the ecosystem

example above, scientists analyze the structure of the

graph (e.g., strongly connected components, weighted

path lengths) as well as the values of node attributes (e.g.,

estimates of nutrients) [5].

Graph data management becomes important for

science when (i) the problem domain has a very large

graph and complex structural properties of this graph

need to be extracted or computed by searching for struc-

tural patterns over the graph, or (ii) the problem domain

has a large collection of graphs, each of which is not

necessarily large. The fist situation occurs in the case of

large protein networks in biology, where queries may

correspond to extracting neighborhoods around nodes

that satisfy properties given by the conditions of the

query. The second situation occurs in the case of a library

of chemical structures, fromwhich onemay want to find

frequently occurring subgraphs from among a set of

graphs that satisfy some query conditions. The data

management needs and solutions for these two cate-

gories of problems are generally different.

1262G Graph Data Management in Scientific Applications
Data Management for Large Graphs

Perhaps the most significant development in graph data

management for the large graph case has been done in

the context of biological networks, which are graphs

where the nodes represent different kinds of biological

molecules and edges represent observed or computed

relationships between molecule pairs. In some cases, the

graphs also include ontologies, which are graphs of

standard terms and inter-term relationships. The sim-

plest graph database represents a graphwhere nodes and

edges have labels, and is implemented in a relational

database system, and has a node table and an edge table

over which graph operations are performed. There are

three broad classes of operations that are performed in

most common science applications.

1. Relational Queries on the attributes of Nodes and

Edges: In general, the nodes and edges for the

graphs are ‘‘thick,’’ that is, they have attributes

that are spread into one or more relational tables

that can be joined with the basic node and edge

tables. A typical query against the graph will have

two kinds of conditions – those that are on the

connectivity structure of the graph, and those that

are standard relational queries on the attributes of

the nodes and edges.

2. Substructure Exploration, Extraction and Transfor-

mation: These operations probe into the connectiv-

ity structure of the graph. A basic operation is to

extract the k-neighborhood of a node, where the

node is selected by some other query condition.

Another basic operation is to find the shortest

path(s) between two nodes. The query becomes

much more complex if all paths between two

nodes are desired – for a heavily interconnected

graph (i.e., a graph with a small diameter) it may

return the entire graph. Even if the graph is not

heavily interconnected, the number of paths be-

tween two nodes is exponential in the number of

edges. In practice, many scientific graph manage-

ment systems do not allow an all-paths operation.

A more complex operation seeks to extract a sub-

graph that satisfies certain conditions. The PQL

system [10] allows queries of the form:

SELECT A[�2], A[�*]B

FROM A, B

WHERE A[�< 5]B AND A ISA

‘enzyme’ AND

B.name = ‘Propane-1,2-diol’
The query returns a 2-neighborhood of a graph

around node A and all (denoted by �*) the paths

between A and B, where A and B are nodes that

satisfy the graph pattern specified by WHERE con-

dition. The WHERE condition looks for all B’s

having a specific name, and all A’s that are within

five edges away from the B’s, and at the same time

have an edge labeled ISA with the term ‘‘enzyme.’’

In the industry, the Life Sciences Division of IBM

has created a graph extension of DB2, which allows

similar operations, and further allows construction

and merging of new graphs. Eckman and Brown

[3] provides a detailed overview of the system as

applied to the life science domain. The graph trans-

formation operation is used in applications like the

food web [5], where a graph like a binary food web

graph is converted into an aggregate graph called

the trophic food web, where nodes having similar

properties are collapsed into aggregate nodes and

edges between individual nodes are also aggregated

into composite edges between the corresponding

aggregate nodes.
3. Computation of Structural Properties: A different

class of operations focuses on computing aggregate

graph properties like the number of cliques or

strong components in the graph, as well as node

properties like betweenness centrality (see http://

en.wikipedia.org/wiki/Centrality for a definition

and other similar measures). Epidemiological stud-

ies like [2] first compute the largest connected com-

ponent and then determine nodes having the highest

centrality values. Applications like molecular struc-

ture analysis [6] identify operations like maximal

clique operations over Cartesian products of graphs.

While graph matching and searching techniques

have started using structural properties of graphs,

relatively little work has been done in using

data management techniques to facilitate these

computations.

Data Management for Large Collections of Graphs

In the case where a science application uses a large

collection of graphs, most of the data management

issues center around finding common substructures,

structurally similar graphs and ways to index graph

collections to improve retrieval efficiency. A specific

class of techniques focuses on mining graph collec-

tions to find frequently occurring substructures for

chemical data.

Graph Database G 1263

G

Some Data Management Techniques

� A class of techniques called descriptor spaces use the

idea of keyword-based text retrieval and adapt it for

graphs. If the graph is conceived as a document,

a keyword is a characteristic substructure of the

graph. Chains of a certain length, cycles up to a

certain size and number, tree-like branching frag-

ments etc. are commonly used as descriptors. Wale

and Karypis [12] computes acyclic portions of the

graph as descriptors for chemical compounds.

Once these descriptors are collected, graphs are

represented in a vector space where the dimensions

of the space are formed by these extracted graph

fragments. Given a query graph, a suitable simi-

larity function is used to find a ranked list of similar

graphs. A common similarity function is the radial

basis function (see http://en.wikipedia.org/wiki/

Radial_basis_function for a definition).

� A class of techniques has also been developed to rank

matching graphs that are returned from any graph

query. One basis of ranking graphs is by the frequen-

cy of their occurrence in a collection. A different way,

often valued more in biological sciences, is by assign-

ing a statistical significance to each returned graph,

and ranking results on the significance value. In

systems biology, such techniques have been devel-

oped for path ranking [8] and graph ranking [11].

However, the algorithms are not very efficient espe-

cially for large graphs. Amore efficient graph ranking

technique based on statistical significance has been

developed for the frequent subgraph problem in [7].
Key Applications
Road networks, biological pathways, social networks,

transportation and communication networks.
Cross‐references
▶Graph Management in the Life Sciences
Recommended Reading
1. Angles R. and Gutierrez C. Survey of graph database models.

ACM Comput. Surv., 40:1–39, 2008.

2. De P., Singh A.E., Wong T., Yacoub W., and Jolly A.M. Sexual

network analysis of a gonorrhoea outbreak. Sex. Transm. Infect.,

80(4):280–285, 2004.

3. Eckman B.A. and Brown P.G. Graph data management for

molecular and cell biology. IBM J. Res. Dev., 50(6):545–560,

2006.
4. Ellis G. Managing large databases of complex medical knowledge

using conceptual graphs. In Proc. of the National Health Infor-

matics Conference, 1993, pp. 4–13.

5. Gaedke U. A comparison of whole-community and ecosystem

approaches (biomass size distributions, food web analysis, net-

work analysis, simulation models) to study the structure, func-

tion and regulation of pelagic food webs. J. Plankton Res.,

17(6):1273–1305, 1995.

6. Hattori M., Okuno Y., Goto S., and Kanehisa M. Development of

a chemical structure comparison method for integrated analysis

of chemical and genomic information in the metabolic path-

ways. J. Am. Chem. Soc., 125:11853–11865, 2003.

7. He H. and Singh A.K. GraphRank: statistical modeling and

mining of significant subgraphs in the feature space. In Proc.

22nd Int. Conf. on Data Mining, 2006, pp. 885–890.

8. Kelley B.P, Yuan B., Lewitter F., Sharan R. Stockwell B.R., and

Ideker T. PathBLAST: a tool for alignment of protein interaction

networks. Nucleic Acids Res., 32(web server issue):W83–88, 2004.

9. Kunii H.S. DBMS with graph data model for knowledge

handling. In Proc. Fall Joint Computer Conf. on Exploring

Technology: Today and Tomorrow, 1987, pp. 138–142.

10. Leser U. A query language for biological networks. Bioinformat-

ics, 21(Suppl 2):ii33–ii39, 2005.

11. Sharan R., Suthram S., Kelley R.M., Kuhn T., McCuine S., Uetz

P., Sittler T., Karp R.M., and Ideker T. Conserved patterns of

protein interaction in multiple species. In Proc. Natl. Acad. Sci.

USA, 102:1974–1979, 2005.

12. Wale N. and Karypis G. Acyclic Subgraph-based Descriptor

Spaces for Chemical Compound Retrieval and Classification.

UMN CSE Technical Report #06–008, 2006.
Graph Data Structure

▶Graph Data Management in Scientific Applications

▶ Information Integration Techniques for Scientific

Data
Graph Database

PETER T. WOOD

Birkbeck, University of London, London, UK

Synonyms
Network database; Link database; Semi-structured

database

Definition
A graph database is a database whose data model

conforms to some form of graph (or network or link)

1264G Graph Database
structure. The graph data model usually consists of

nodes (or vertices) and (directed) edges (or arcs or

links), where the nodes represent concepts (or objects)

and the edges represent relationships (or connections)

between these concepts (objects). Therefore the nodes

are typically labeled with the names of concepts or

objects, while the edges are labeled with types of rela-

tionships. More elaborate labeling might involve sets of

attribute-value pairs being associated with nodes and/

or edges. In addition, more complex structures, such as

nested graphs or hypergraphs, may also be permitted.

On the other hand, the graph model may be restricted

to allow only certain types of graph structures, for

example, only acyclic graphs or those that have a dis-

tinguished root node.

Similar to relational databases, users can query the

graph database with a high-level query language. How-

ever, such query languages are usually designed in such

a way as to make it easy to ask about paths through

the graph (or routes through the network) of unspeci-

fied length.
Historical Background
Connections between graph structures and databases

existed from the earliest data models developed in the

1960s and 1970s. For example, the hierarchical data

model viewed data as comprising tree structures, while

the network data model viewed data as consisting of

linked structures. The entity-relationship model also

defines what is essentially a graph-based structure.

However, none of these would really be considered as

a graph database.

The notion of a graph database evolved from the

recognition that, in a number of applications, a single

relationship type connecting instances of a single con-

cept may itself form a graph structure. Examples in-

clude the link structure in hypertext documents, road

connections in geographical databases, and, more rec-

ently, various pathways in biological databases. In all of

these applications, useful queries need to be able to ask

about paths through the database, where the length of

the required paths is not necessarily predetermined or

known beforehand by the user. Such capabilities were

not available in the data models mentioned above, nor

in the relational model as originally defined.

A further requirement of most data models is that

data conforms strictly to the structural requirements

of the model. Applications in heterogenous data
integration and data on the web needed more flexibili-

ty, giving rise to the notion of semi-structured data [1]

which also conformed to a graph model. Appropriate

data models and query languages for graph databases

and their applications were investigated mostly in the

1980s and 1990s, with interest having been renewed

recently in the context of the semantic web and social

networks.

Foundations
A graph database typically comprises a set of graphs. Each

graph in the database consists of a set of nodes N and a

set of edges E, with each edge in E connecting a pair of

nodes in N. The edges may be directed or undirected.

In the case of the former, an edge is an ordered pair of

nodes; in the case of the latter, it is an unordered pair of

nodes. Both nodes and edges may have labels asso-

ciated with them. This is usually done by two func-

tions, one mapping nodes to labels and the other

mapping edges to labels. The labels may be simple

values, tuples of values, sets of values, and so on.

A very simple example of a directed graph is shown

in Fig. 1. Here the node labels denote names of people

and the edge labels denote relationships between peo-

ple, so this graph could represent a tiny fragment of

a simple social network. Note that the graph is cyclic;

for example, Dave knows Chris who is a colleague of

Alice who knows Dave.

Given a graph of data like that in Fig. 1, various

queries about the data may be relevant. These might

be conventional queries such as to find the pairs of

people who know each other (Alice knows Dave, and

Dave knows Chris), or to find the people who are

sisters of friends of Chris (Alice). However, ‘‘schema-

level’’queries may also be needed, for example to find

the relationships in which Alice is involved, or to

find in what way(s) Alice and Chris are related. Users

might also be interested in nodes in the graph that

are connected by paths whose lengths are not known

a-priori, such as people connected by any sequence

of ‘‘knows’’ relationships or any sequence of either

‘‘knows’’ or ‘‘friend-of ’’ relationships. In general,

users may want to specify a pattern that should be

matched by the sequence of edge labels on paths in

which they are interested. One way of specifying such a

pattern is by using regular expressions over the alphabet

of edge labels [9]. So for example, the regular expres-

sion (knowjfriend-of)+ specifies sequences of one or

more occurrences of edges labeled with either ‘‘knows’’

Graph Database. Figure 1. A simple example of a graph.

Graph Database G 1265

G

or ‘‘friend-of.’’ The use of regular expressions for que-

rying path information has been studied extensively in

the area of semi-structured data [1]. XPath, a language

for selecting nodes from XML documents, provides a

limited form of path pattern specification for querying

XML documents, which are essentially trees rather

than graphs.

Depending of the application area for which a

graph database is being used, there are many other

forms of query that may be useful. Examples include

shortest path queries (e.g., find the shortest or quickest

route from one node to another), subgraph isomor-

phism queries (the query is viewed as a subgraph

whose matches against a graph in the database are to

be found), approximate graph matching (where the

query may not match a subgraph exactly), finding

complete subgraphs (where every node is connected

to every other node), queries involving counting the

indegree and outdegree of nodes (the number of in-

coming and outgoing edges, respectively, perhaps to

see how ‘‘well-connected’’ a node is), finding the larg-

est common subgraph among a number of graphs, or

locating the least common ancestor of two or more

nodes (usually in trees).

Unlike in a conventional database, the data in Fig. 1

does not have an explicit schema describing it. This

lack of explicit schema is one of the characteristics of

what has been termed semi-structured data [1]. In fact,

some schema information is given by the edge labels,

so the data are in some sense self-describing. However,

there is no requirement that the data conform to a

set of constraints as usually defined in a schema.

Such constraints might assign types to nodes, state

what edge labels are permitted, and limit the types of

nodes that are permitted to participate in each rela-

tionship. Another graph-based model that does not

require a schema is RDF (Resource Description Frame-

work), one of the languages proposed for the semantic

web. Nevertheless, researchers have defined various

forms of schemas for graph databases [3], and RDF

does have an associated schema language, although
this is used for inference of derived information rather

than for validation of RDF graphs.

As in conventional databases, one of the principal

concerns in a graph database system is the efficient

evaluation of queries. This gives rise to the study of

query optimization [5,6] and appropriate index struc-

tures for graph data [10,15]. Both of these topics have

been studied more extensively in the context of tree-

structured XML data.

Some applications require graph structures that

are more elaborate than the simple version of nodes

and edges described above. For example, hypergraphs,

where edges comprise sets of nodes rather than pairs

of nodes, have been used to model hypertext [14].

Alternatively, the hypernode model [12] considers

nodes that can themselves comprise graphs, thereby

providing a useful abstraction mechanism. A different

approach to abstraction is provided by so-called blobs

that can appear in the hygraphs of the Hy+ system [4].

These blobs comprise sets of nodes and share some

similarities with the blobs defined in higraphs [8].

Graphs have also been used as models for object-

oriented databases [7].

Key Applications
There are a large number of potential application

areas for graph databases. These include hypertext [14]

and the Web, discovery of semantic associations in

national security (or criminal investigation) applications

[13] (also called link analysis), chemical structure

modeling, geographic information systems, biblio-

graphic citation analysis, taxonomy and partonomy rep-

resentation, data provenance graphs, and the semantic

web, e.g., RDF [2]. In biology alone [11], there are

numerous applications including metabolic pathways,

signaling pathways, gene regulatory networks, gene clus-

terings, and protein interaction networks.

Cross-references
▶Biological Networks

▶Data Integration

1266G Graph Database Mining
▶Graph Management in the Life Sciences

▶Graph

▶Graph Data Management in Scientific Applications

▶ Indexing Semi-Structured Data

▶ Information Integration

▶ Information Integration Techniques for Scientific

Data

▶Network Data Model

▶Object Data Models

▶ Semi-Structured Data Model

▶ Social Networks

▶Resource Description Framework

▶ Path Query

▶Query Language
Recommended Reading
1. Abiteboul S., Buneman P., and Suciu D. Data on the Web: From

Relations to Semi-structured Data and XML. Morgan Kauf-

mann, San Francisco, CA, 2000.

2. Angles R. and Gutierrez C. Querying RDF data from a graph

database perspective. In Proc. 2nd European Semantic Web

Conference, 2005, pp. 346–360.

3. Buneman P., Davidson S., Fernandez M., and Suciu D. Adding

structure to unstructured data. In Proc. 6th Int. Conf. on Data-

base Theory, 1997, pp. 336–350.

4. Consens M.P. and Mendelzon A.O. Hy+: a hygraph-based

query and visualization system. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1993, pp. 511–516.

5. Fernandez M. and Suciu D. Optimizing regular path expressions

using graph schemas. In Proc. 14th Int. Conf. on Data Engineer-

ing, 1998, pp. 14–23.

6. Goldman R. and Widom J. DataGuides: enabling query for-

mulation and optimization in semi-structured databases. In

Proc. 23th Int. Conf. on Very Large Data Bases, 1997,

pp. 436–445.

7. Gyssens M., Paredaens J., den Bussche J.V., and Gucht D.V.

A graph-oriented object database model. IEEE Trans. Knowl.

Data Eng., 6(4):572–586, August 1994.

8. Harel D. On visual formalisms. Commun. ACM, 31(5):514–530,

May 1988.

9. Mendelzon A.O. and Wood P.T. Finding regular simple paths

in graph databases. SIAM J. Comput., 24(6):1235–1258,

December 1995.

10. Milo T. and Suciu D. Index structures for path expres-

sions. In Proc. 7th Int. Conf. on Database Theory, 1999, pp.

277–295.

11. Olken F. Graph data management for molecular biology.

OMICS: A Journal of Integrative Biology, 7(1):75–78, 2003.

12. Poulovassilis A. and Levene M. A nested-graph model for the

representation and manipulation of complex objects. ACM

Trans. Inf. Syst., 12(1):35–68, 1994.

13. Sheth A., Aleman-Meza1 B., Arpinar I.B., Bertram C., Warke Y.,

Ramakrishnan C., Halaschek C., Anyanwu K., Avant D., Arpinar

F.S., and Kochut K. Semantic association identification
and knowledge discovery for national security applications.

J. Database Manag., 16(1):33–53, 2005.

14. Tompa F. W. A data model for flexible hypertext database sys-

tems. ACM Trans. Database Syst., 7(1):85–100, 1989.

15. Yan X., Yu P.S., and Han J. Graph indexing: a frequent structure-

based approach. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2004, pp. 335–346.
Graph Database Mining

▶ Frequent Graph Patterns
Graph Drawing

▶Visualizing Network Data
Graph Embedding

▶Dimension Reduction Techniques for Clustering
Graph Layout

▶Visualizing Network Data
Graph Management in the Life
Sciences

ULF LESER, SILKE TRIbL

Humboldt University of Berlin, Berlin, Germany

Definition
Graphs play an increasingly important role in many

research areas in the life sciences. Especially in systems

biology, graphs are used to model the complex tempo-

ral and spatial relationships between entities within an

organism. For example, graphs are used to model

Graph Management in the Life Sciences G 1267

G

signaling pathways, where nodes are proteins and edges

represent the flow of information between proteins.

The flow represents physical modifications of the par-

ticipating proteins, such as the addition or removal

of certain chemical groups. Since proteins are often

involved in various signaling pathways, one can model

the complete signaling management inside a cell as a

graph consisting of tens of thousands of nodes and

many more edges. However, graphs are also used in

less obvious areas. Biological ontologies are cycle-free

graphs of biological concepts connected by specializa-

tion relationships; they are called thesauri in informa-

tion retrieval. Phylogenetic networks are formed by

species and their evolutionary relationships.

Biological graphs are the subject of various types of

analyses. Graph querying searches for all occurrences of

a given (sub-) graph pattern inside a large graph, for

instance to find common motifs of gene regulation.

Graph mining aims at detecting significant patterns

inside one or more graphs, for instance finding all

graph patterns that are more frequent than expected

by chance. Graph clustering tries to find dense sub-

graphs, which potentially can be associated with stable

multi-protein complexes.

Formally, a graph G is composed of nodes V and

edges E with E � V�V. Nodes usually represent

biological or chemical entities, and edges represent

specific types of relationships between those entities.

Depending on the application, edges may be directed

or undirected, labeled or unlabeled, and weighted or

unweighted.
Historical Background
For a long time, graphs have been used in the life sciences

only for describing the two- or three-dimensional struc-

ture of complexmolecules, especially of proteins. In such

graphs, nodes represent atoms and edges represent

bonds between atoms. However, with the recent massive

increase in data production on all levels (including DNA

sequences, protein structures, gene expression levels

etc.), many more applications of graphs have been sug-

gested. The most prominent types of graphs that

emerged are: (i) networks of interacting proteins,

(ii) networks of gene regulation, (iii) networks of signal

transduction, and (iv) metabolic networks.

The study of such networks has flourished with the

advent of high-throughput techniques to detect the

different ‘‘types’’ of edges. The most important ones
are the Yeast 2-Hybrid technique for detecting physical

interactions between proteins and the co-immunopre-

cipitation technique for detecting regulation events.

The study of the complex interplay of all components

inside a cell and across cell boundaries is one of the

main goals of modern systems biology. Today, the

largest graphs available based on experimental evi-

dence contain in the order of
15,000 proteins and

100,000 edges. When predicted information is taken

into account, the resulting graphs are much larger,

with up to one million nodes and five million edges.

Systems for storing biological networks and their

experimental evidence were first developed around

2000, with the notable exception of the KEGG database

(first published in 1997) and the EcoCyc system (first

published in 1994). With more and more networks

being available, various approaches emerged to analyze

the information contained in those graphs, for ins-

tance to predict further edges based on graphs from

evolutionary closely related species, or to predict the

function of a protein from its neighbors in a protein-

protein interaction network. Only very recently, there

have been proposals for developing specific data man-

agement solutions that take into account the intrinsic

nature of biological graphs.

Foundations

Types and Models of Graphs

The most prominent types of graphs in the life sciences

are (i) Networks of physically interacting proteins:

Here, nodes represent proteins and edges represent a

physical interaction between two proteins. Edges are

directed or undirected and may be labeled with the

type of the interaction and the evidence for the

biological truth of the interaction; (ii) Networks of

gene regulation: Nodes represent genes or transcrip-

tion factors (TF), and edges represent the influence of

transcription factors on gene expression. Since tran-

scription factors are also produced by gene expression,

TFs also influence the regulation of other TFs. Edges

are directed and labeled to reflect a positive or a nega-

tive influence; (iii) Signal transduction: Nodes repre-

sent proteins or other molecules and edges model the

flow of information. Edges are directed and may be

labeled; (iv) Metabolic networks (see Fig. 1): Nodes

represent arbitrary molecules and edges represent a

chemical reaction between the connected molecules

catalyzed by enzymes. Edges are labeled and directed

Graph Management in the Life Sciences. Figure 1. Fraction of the Pyruvate Metabolism as represented in the KEGG

Database.

1268G Graph Management in the Life Sciences
or, as many reactions are reversible, bidirectional. In

any real system, nodes usually have a wealth of infor-

mation attached, such name(s), sequences, structures,

functions, or experimental values, e.g., values from

microarray experiments.

Properties of Biological Networks

A human cell is estimated to contain approximately

20,000 genes that are translated in up to 150,000 dif-

ferent proteins. The same number can also be esti-

mated for other mammals, such as mouse, rat, or

chimp. Metabolic networks currently contain up to

20,000 nodes and 40,000 edges, depending on the

organism (for bacteria, the networks are much smal-

ler). In contrast, cross-species protein-protein interac-

tion networks currently contain up to 1,000,000 nodes

and, depending on the method used to infer the inter-

actions, many more edges.

Biological networks exhibit a specific structure,

which is shared by other complex systems, such as

the Internet or social networks. Biological networks

are scale-free, i.e., the degree distribution follows a

power-law. In scale-free graphs many nodes have only

few edges. These nodes are connected by some nodes

that have many edges, called hubs. Scale-free networks

can be grown in computer simulations using the

so-called preferential attachment, which reflects the
evolution of existing biological networks. Preferential

attachment means that graphs are grown incrementally.

One starts with a small number of nodes and incremen-

tally adds newnodes, which are attached to existing ones,

preferably tonodes that are alreadywell connected [1].

Graph Databases

Graph databases in the life sciences can be divided into

different categories. First, there are databases about

metabolic pathways. The best known sources are

KEGG, aMAZE, Reactome, and BioCyc, which contain

information added manually by biological experts. For

example the reference pathway in KEGG currently (as of

2007) contains 20,000 nodes and 40,000 edges. Second-

ly, there exist various protein-protein interaction data-

bases, e.g., DIP, MINT, STRING, or PubGene. While the

first two databases only accept entries for which strong

evidence has been published, STRING also accept

entries from less reliable high-throughput experiments.

STRING and PubGene also automatically mine the

scientific literature for interactions and include those

into the database. Therefore the size of the data sets as

well as the data quality varies to a great degree.

To exchange data between different databases sev-

eral standards were established. The ‘‘Systems Biology

Markup Language’’ (SBML) and the ‘‘BioPAX Data

Exchange format’’ were both designed for the exchange

Graph Management in the Life Sciences G 1269

G

of data in systems biology and especially for biological

networks. The ‘‘Proteomics Standards Initiative Mo-

lecular Interaction XML format’’ (PSI MI) targets only

protein-protein interaction data. For a comparison of

the different format standards see [11].

Graph Query Languages

Query languages for graphs are based on the descrip-

tion of properties of subgraphs. Evaluating a graph

query on a graph means to find all subgraphs having

the specified properties. Numerous different properties

may be used, which require the existence of nodes with

certain attributes, edges with specific labels, or the

existence of paths of various shapes connecting nodes.

The specific difficulty in developing graph query

languages is the required support for path queries, i.e.,

queries over sequences of connected nodes. An exem-

plary query posed on a biological network might be

‘‘Give me all enzymes that affect a compound called

glucose in less than five steps and which are also

associated with the enzyme 1.6.3.1 in an arbitrary

number of steps.’’ Such queries can be solved by either

traversing the graph at query time, or by using special

graph indexing structures, such as the 2-Hop-Cover. In

general, indexing graphs is much harder than indexing

trees. Even when graph queries contain no transitive

predicates their evaluation is equivalent to solving the

subgraph isomorphism problem, which is NP-complete.

However, as nodes in biological graphs usually have

unique labels, evaluation of queries in real applications

is often much less complex.

Examples of graph query languages in biology are

the pathway query language [5] and the language de-

scribed in [2]. Both approaches are implemented on

top of a relational database management system.

Graph Mining

The need to analyze graph data has lead to the develop-

ment of various tools and algorithms that solve specific

problems on graphs, of which three are particularly

important. (i) Finding cliques or densely connected

clusters (quasi-cliques) in a graph of protein-protein

interactions is important to identify molecular com-

plexes, which are groups of proteins that together per-

form a biological function. Jeong and colleagues present

different algorithms, for instance based on supermag-

netic clustering or a Monto Carlo optimization algo-

rithm [10]; (ii) Subgraphs that are present in the PPI

networks of various species (conserved subgraphs) are
important evidence towards the evolutionary impor-

tance of subnetworks. Algorithms either find perfectly

conserved subgraphs or allow insertions and deletions

of nodes or edges. One approach based on path align-

ment is presented in [8]; (iii) Frequent subgraphs in

biological networks are believed to hint ‘‘building

blocks’’ of the molecular machinery of a cell. A subgraph

of a graph is called frequent when it appears more often

than expected. An efficient algorithm based on random

sampling of isomorphic subgraphs is presented in [14].

Key Applications

Graph-Based Function Prediction

The computer-driven prediction of the biological

function of a given protein is a long-standing goal of

bioinformatics research, which, until recently, was

mostly based on finding similarities between the

sequences of different genes or proteins. The possibility

to analyze the proteins with which a protein interacts in

a cell has added a powerful new source of evidence for

function prediction. It has, for instance, been shown

that proteins in densely connected regions of a protein-

protein-interaction network very often share the same

biological function. Furthermore, the fact that two

proteins interact with the same other proteins increases

the likelihood that these two proteins share a biological

function. This interaction can happen within a species,

or can be transferred from orthologous (i.e., highly

similar) proteins in other species. A survey on those

methods has appeared in [8].

Managing Biological Ontologies

Biological ontologies are structured sets of concepts.

Usually, concepts have a name, a textual description,

and are related to each other through ISA (generaliza-

tion/specialization) or PART-OF relationships. Promi-

nent examples are the Gene Ontology (for describing

the function and location of genes) and the Mammali-

an Phenotype Ontology (for describing phenotypes of

mammalians). Naturally, an ontology may be seen as

a graph, where the concepts are nodes and the rela-

tionships are edges. Ontologies form trees or directed

acyclic graphs. Therefore, many approaches to the

management, analysis, and visualization of ontologies

use a graph-based framework. For instance, the seman-

tic similarity between two concepts is often computed

by finding the least common ancestor of the two con-

cepts in the ontology [6]. In the same spirit, the

1270G Graph Management in the Life Sciences
semantic similarity between two genes based on all

their assigned concepts may be computed by compar-

ing the two subgraphs formed by the concepts of the

genes and their ancestors in the ontology. Such techni-

ques are often used to score the functional coherence of

groups of genes, for instance, whose gene expression

react in a similar way under external stimulus.
Management of Phylogenetic Trees

Phylogenetic trees are used to describe the relationship

between different species. The treesmay be rooted or not

and usually are unweighted. Leaf nodes represent differ-

ent species and inner nodes stand for common, often

unknown ancestors. Phylogenetic trees are constructed

using one or more common features from the species,

usually a gene whose genetic sequence varies slightly in

different species. Since there are various algorithms for

constructing phylogenetic trees using different features,

very often contradicting trees emerge. Recently, tree

banks have been proposed as special applications for

managing and searching phylogenetic trees. A particular

problem is to find for a given query tree those trees in a

database of phylogenetic trees that are most similar to

the query. This requires a tree distance measure and a

search procedure (see for instance, [13]).

It is more and more acknowledged that trees are

inappropriate for modeling certain effects in evolution,

such as plant hybridization or horizontal gene transfer.

This results in efforts to develop algorithms for the

inference of phylogenetic networks, i.e., graphs where

one species can have two or more ancestors. An inter-

esting method based on a Maximum Parsymony ap-

proach to network reconstruction is presented in [3].
Visualization of Biological Networks

Visualization tools for biological networks must ad-

dress several issues. First of all, they must be able to

display the graph using suitable layout algorithms. In

addition, these tools must provide visualization of

attached information, e.g., name of a node, its cellular

location, or results of high-throughput experiments.

Several tools were specifically developed for this pur-

pose. A well known tool is Cytoscape, a Java-based

open source tool that can display large networks and

can be extended using plug-ins. Further tools are Path-

way Tools, Pathway Studio, or Ospey, which both also

allow various kinds of network analysis. For a review

on visualization tools for biological networks see [12].
Future Directions
Systems biology will be a major research area in the life

sciences in the coming years. Since it focuses on the

interplay of chemical entities in cells, it builds on

graphs in a very fundamental manner. Therefore, the

importance of graphs in the life sciences is expected to

grow further in the near future. This will also bring a

steep increase in the size of graphs under study, as

more and more experimental data become available.

Since, for many applications also the inclusion of pre-

dicted edges perfectly makes sense, already now graphs

may contain up to several hundreds of thousands of

edges. It is therefore foreseeable that studies that ad-

dress interaction data from many species will have to

cope with millions of objects in the near future.

Technically, relational databases nowadays build the

backbone of most graph management systems. However,

a graphmay also be modeled using the Resource Descrip-

tion Framework (RDF), an underlying technology of

the Semantic Web. Therefore, query languages for RDF

might be a natural choice for also analyzing biological

graphs. However, the current proposals lack the ad-

vanced graph search features required in the life sciences.

The development of new graph query languages, possi-

bly including certain types of simple graph analysis pre-

dicates, will remain an important topic.
URL to Code
A few pathway databases

– ‘‘Pathguide: the pathway resource list’’: http://www.

pathguide.org/

– ‘‘KEGG:KyotoEncyclopediaofGenesandGenomes’’:

http://www.genome.ad.jp/kegg/

– ‘‘Reactome’’: http://www.reactome.org/

– ‘‘BioCyc Home’’: http://biocyc.org/

– ‘‘DIP:Home’’: http://dip.doe-mbi.ucla.edu/

– ‘‘MINT database’’: http://mint.bio.uniroma2.it/

mint/Welcome.do

– ‘‘STRING; functional protein association networks’’:

http://string.embl.de/

A few visualization tools

– ‘‘Cytoscape: Analyzing and Visualizing Network

Data’’: http://www.cytoscape.org/

– ‘‘Ariadne Genomics: Pathway Studio’’: http://www.

ariadnegenomics.com/products/pathway-studio/

– ‘‘OSPREY: Network Visualization System’’: http://

biodata.mshri.on.ca/osprey/servlet/Index

Graph Mining on Streams G 1271

G

A few pathway management systems

– ‘‘PathCase: Metabolic Pathways Database System’’:

http://nashua.cwru.edu/pathways

– ‘‘Pathway Tools Information Site’’: http://brg.ai.sri.

com/ptools/

– ‘‘PatikaWeb’’: http://www.cs.bilkent.edu.tr/

~patikaweb/

Cross-references
▶Biomedical Data/content Acquisition, Curation

▶Biological Networks

▶ Frequent Graph patterns

▶Grpah Database

▶Graph Data Management in Scientific Applications

▶Ontologies and Life Science Data Management

▶Query Languages for the life Sciences

▶Tree-based Indexing
Recommended Reading
1. Barabàsi A.-L. and Oltvai Z.N. Network biology: understanding

the cell’s functional organization. Nat. Rev. Genet., 5:101–113,

2004.

2. Eckman B.A. and Brown P.G. Graph data management for

molecular and cell biology. IBM J. Res and Dev., 50:545–560,

2006.

3. Jin G., Nakhleh L., Snir S. and Tuller T. Efficient parsimony-

based methods for phylogenetic network reconstruction. Bioin-

formatics, 23:123–2128, 2006.

4. Karp P.D., Paley S., and Romero P. The pathway tools software.

Bioinformatics, 18(Suppl. 1):S225–S232, 2002.

5. Leser U. A query language for biological networks. Bioinformat-

ics, 21(Suppl. 2):ii33–ii39, 2005.

6. Lord P.W., Stevens R.D., Brass A., and Goble C.A. Investigating

semantic similarity measures across the Gene Ontology: the

relationship between sequence and annotation. Bioinformatics,

19(10):1275–1283, 2003.

7. Schaefer C.F. Pathway databases. Ann NYAcad Sci., 1020:77 –91,

2004.

8. Sharan R. and Ideker T. Modelling cellular machinery through

biological network comparison. Nat. Biotechnol. 24(4):427–433,

2006.

9. Sharan R., Suthram S., Kelley R.M., Kuhn T., McCuine S.,

Uetz P., Sittler T., Karp R.M., and Ideker T. Conserved patterns

of protein interaction in multiple species. In Proc. Natl. Acad.

Sci. USA., 102(6):1974–1979, 2005.

10. Spirin V. and Mirny L.A. Protein complexes and functional

modules in molecular networks. In Proc. Natl. Acad. Sci. USA.,

100(21):12123–12128, 2003.

11. Strömbäck L. and Lambrix P. Representations of molecular

pathways: an evaluation of SBML, PSI MI and BioPAX. Bioin-

formatics, 21(24):4401–4407, 2005.

12. Suderman M. and Hallett M. Tools for visually exploring

biological networks. Bioinformatics, 23(20):2651–2659, 2007.
13. Wang J.T.L., Shan H., Shasha D., and Piel W.H. Fast structural

search in phylogenetic databases. Evol. Bioinform. Online,

1:37–46, 2005.

14. Wernicke S. Efficient detection of network motifs. IEEE/ACM

Trans. Comput. Biol. Bioinformatics., 3(4):347–359, 2006.
Graph Mining on Streams

ANDREW MCGREGOR

Microsoft Research, Silicon Valley, Mountain View,

CA, USA

Synonyms
Graph streams; Semi-streaming model

Definition
Consider a data stream A =ha1, a2,...,ami where each

data item ak 2 [n] � [n]. Such a stream naturally

defines an undirected, unweighted graph G = (V, E)

where

V ¼ fv1;:::;vngand
E ¼ fðvi; vjÞ : ak ¼ ði; jÞ for some k 2 ½m�g:

Graph mining on streams is concerned with estimating

properties of G, or finding patterns within G, given

the usual constraints of the data-stream model, i.e.,

sequential access to A and limited memory. However,

there are the following common variants.

Multi-Pass Models: It is common in graph mining

to consider algorithms that may take more than one

pass over the stream. There has also been work in the

W-Stream model in which the algorithm is allowed to

write to the stream during each pass [9]. These anno-

tations can then be utilized by the algorithm during

successive passes and it can be shown that this gives

sufficient power to the model for PRAM algorithms to

be simulated [8]. The Stream-Sortmodel goes one step

further and allows sorting passes in which the data

stream is sorted according to a key encoded by the

annotations [1].

Weighted, Dynamic, or Directed Graphs: For

many problems it is implicitly assumed that the ele-

ments ak are distinct. When the data items are not

distinct, the stream naturally defines a multi-graph,

i.e., an edge (vi, vj) has multiplicity equal to j{k : ak =

(i, j)}j. In such a model it would be natural to consider

the deletion of edges but this has not been explored

k Passes Time (per-edge) Ref.

1,2,3 1 O (a(n)) [12]

4 1 O (logn) [12]

k 1 O (k2n) [18]

k k þ 1 O (k + a(n)) [18]

1272G Graph Mining on Streams
thoroughly. Finally, the definition can be generalized to

define weighted graphs where a third component of

the data item, ak 2 [n] � [n] � R+, would indicate a

weight w(u,v) associated with the edge (u,v), or directed

graphs.

Adjacency and Incidence Orderings: In some

applications it is reasonable to assume that all edges

incident on the same node arrive consecutively. This

assumption defines the incidence model. In the adja-

cency model no such assumption is made.

Historical Background
Graph problems were considered by Henzinger et al.

[15] in one of the earliest papers on the data-stream

model. Their work considered a variety of problems

including pointer jumping problems based on the

degrees of various nodes in a directed layered graph.

Unfortunately, many of the results showed that a large

amount of space is required for these types of pro-

blems. Subsequent early work considered counting the

number of triangles in a graph [2] and estimating

common neighborhoods [3]. Again, a large compo-

nent of these results were negative. It seemed that more

‘‘complicated’’ computation was not possible in this

model using only a small amount of space.

It seems that most graph algorithms need to access

the data in a very adaptive fashion. Since the entire

graph can not be stored, emulating a traditional algo-

rithm may necessitate an excessive number of passes

over the data. This has motivated various specific stream

models tailored to processing graphs, including the

Semi-Streaming, W-Stream, and Sort-Stream models.

The semi-streaming model is characterized by an O(n

polylog n) space restriction, i.e., space proportional to

the number of nodes rather than the number of edges.

For dense graphs this represents considerably less space

than that required to store the entire graph. This re-

striction was identified as an apparent ‘‘sweet-spot’’ for

graph streaming in a survey article by Muthukrishnan

[17] and was first explored by Feigenbaum et al. [13].

The W-Stream and Stream-Sort models, described ear-

lier, were introduced by Demetrescu et al. [9] and

Aggarwal et al. [1] respectively.

Foundations
This section discusses the main upper and lower bounds

known for solving graph problems in the data-stream

model. The focus is on results for the standard data-

stream model (including the Semi-Streaming space
restriction) but note that some of the below problems,

including testing connectivity, computing shortest

paths, and constructing minimum spanning trees, have

been considered in the W-Stream and Stream-Sort

models [1,9].

Connectivity and Minimum Spanning Trees:

Determining whether a graph is connected is a funda-

mental problem. It can be solved in the semi-streaming

model and it can be shown that any one-pass algorithm

requires O(n) space [15]. More generally, connectivity

is a balanced property where a graph property P is

balanced if there exists a constant c > 0 such that for

all sufficiently large n, there exists a graph G = (V, E)

with jV j = n and u 2 V such that:

minfjfv : ðV ; E [fðu; vÞgÞ has Pgj;
jfv : ðV ; E [fðu; vÞgÞ has:Pgjg
 cn:

It was shown that all balanced properties require O(n)
space [12]. This was part of the justification for the

semi-streaming space restriction. However, many pro-

blems become feasible with O(n polylog n) space such

as testing planarity and determining whether a graph is

bipartite. Testing higher degrees of vertex-connectivity

has also been considered in the semi-streaming model.

The below table summarizes the start of the art results

for determining if a graph is k-connected, i.e., whether

k vertices need to be removed in order to disconnect the

graph:
where a(n) is the inverse Ackermann function.

Lower bounds have also been investigated for

k-edge and k-vertex connectivity [15]. Other related

results include a semi-streaming, one-pass algorithm

for constructing the minimum spanning tree with

O(log n) processing-time per edge.

Distances and Spanners: An undirected graph

G = (V, E) naturally defines a distance function dG :

V� V!R where dG (u, v) is the length of the shortest

path in G between u and v. The diameter of G is the

length of the longest shortest path, i.e.,

Model Space

Adjacency O (e�2(1 + T1 ∕ T3 + T2 ∕ T3) logd
�1)

Incidence O (e�2(1 + T2 ∕ T3) logd
�1log n)

Graph Mining on Streams G 1273

G

DiamðGÞ ¼ max
u;v2V

dGðu; vÞ;

and the girth of G is the length of the shortest cycle in

G, i.e.,

GirthðGÞ ¼ min
ðu;vÞ2E

½wðu;vÞ þ dGnðu;vÞðu; vÞ�:

To date, most of the algorithms for approximating

quantities related to distance are based on construct-

ing sparse spanners, where a subgraph H = (V, E0) is an

(a, b)-spanner of G = (V, E) if, for any vertices x, y 2 V ,

dGðx; yÞ � dHðx; yÞ � a � dGðx; yÞ þ b:

Note that constructing an (a, 0)-spanner H for an

unweighted graph also gives an indication of the

girth of the original graph. In particular, if H 6¼ G

then Girth(G) � a + 1 because there exists (u, v) 2 E

(G)∖E(H) and this must satisfy dG∖(u,v)(u,v) � a if H is

an (a, 0)-spanner.
The first spanner constructions in the data-stream

model were presented in [12,13]. The state of the art

construction is due to Elkin [10] who presented a

randomized, single-pass algorithm that constructs

a (2t � 1,0)-spanner for an unweighted graph in

O((t log n)1�1 ∕ tn1+1 ∕ t) space (with probability 1 �
1 ∕nO(1)). The algorithm processes each edge (u, v) in

O(1) expected time and O(log du,v ∕ log log du,v) worst-
case time where du,v is the sum of the degrees of u and

v. The algorithm can be generalized to weighted graphs

by rounding edge weights to powers of (1 + e), con-
structing spanners for each edge set with the same

weight, and taking the union of these spanners. This

adds a factor of O(e�1log o) (where o is the ratio

between the biggest and smallest weights) in the space

and time complexity and adds a factor of (1 + e) in

the approximation factor of a distance. Elkin and

Zhang [11] present various algorithms for construct-

ing (a, b)-spanners.
If only a specific distance, dG (u, v), needs to be

approximated then it may appear that constructing a

spanner for the entire graph is excessive. However,

this is not the case. In particular, it can be shown that

any single-pass algorithm that approximates the

(weighted) graph distance between two given nodes

up to a factor t with probability at least 3 ∕ 4 requires

O(n1+1 ∕ t) space [13]. Furthermore, this bound also

applies even with the promise dG(u,v) = Diam(G).

Consequently approximation via spanners is at most

a factor 2 from optimal.
Counting Triangles: As was noted earlier, approx-

imating the number of triangles in an undirected graph

was one of the earliest problems considered in the

data-stream model [2]. The number of triangles is

related to the clustering and transitivity coefficients

of the graph. The state of the art [4] are one-pass,

randomized algorithms that estimate the number of

triangles up to a multiplicative factor or (1 + e) with
probability at least 1 � d using space:
where Ti is the number of node triples upon which

the induced sub-graph has exactly i edges. While both of

these space bounds can be large (e.g., for dense graphs

with few triangles) this compares favorably to the

OðE�2ð1þ T 0=T 3 þ T 1=T 3 þ T 2=T 3Þ log d�1Þ

space required by the naive algorithm that randomly

samples node-triples and computes the fraction that

are triangles. It can also be shown that any p-pass

algorithm determining if the number of triangles is

non-zero requires O(p�1n2) space [2]. There has also

been work on estimating the count of larger cycles or

cliques. However, it can be shown using results in

extremal graph theory and a reduction from the set-

disjointness communication problem that any p-pass

algorithm that determines if Girth(G)
 g requires

O (p�1(n ∕g)1+4 ∕ (3g�4)) space [13].

A related problem is that of estimating path aggre-

gates. Define Pk to be the number of pairs of vertices

that are joined by a simple path of length k. For a graph

with r connected components, it is possible to approx-

imate P2 in one pass and O(e�2m(m � r)�1 ∕ 4logd�1)

space even if edges may be deleted [14]. A space lower

bound of Oð ffiffiffiffi
m

p Þ is also known.

BFS trees: A common subroutine in many tradi-

tional graph algorithms is that of constructing a

breadth-first-search (BFS) tree. Unfortunately it can

be shown that computing the first l layers of a

breadth-first-tree from a prescribed node requires

either d(l � 1) ∕ 2 e passes or O(n1+1 ∕ l) of space [13].
Matchings: Given a graph G = (V, E), the Maxi-

mum Cardinality Matching (MCM) problem is to find

the largest set of edges such that no two adjacent edges

1274G Graph Mining on Streams
are selected. More generally, for an edge-weighted

graph, the Maximum Weighted Matching (MWM)

problem is to find the set of edges whose total weight

is maximized subject to the condition that no two

adjacent edges are selected. The following semi-

streaming algorithms are known for these problems:
Weighted Passes Approximation Ratio Ref.

No 1 0.5 [13]

No Oe(1) 1 � e [16]

Yes 1 0.179 [19]

Yes Oe(1) 0.5 � e [16]
The first of the above algorithms is based on a

simple greedy approach, i.e., the algorithm always

maintains a matching and adds the latest edge if it is

not adjacent to a currently stored edge. The third and

fourth algorithms are variants on this basic idea. The

second algorithm is based on finding augmenting

paths for a currently stored matching, i.e., odd length

paths with every second edge in the currently stored

matching. For each augmenting path found it is possi-

ble to increase the size of the currently stored matching

by one. It can be shown that if there are only a relatively

small number of O(e�1)-length augmenting paths then

the current matching is already a good approximation.

Alternatively, if there are many short augmenting paths

then it is possible to find a constant fraction using a

randomized approach.

Degree Distributions and Random Walks: Given

a stream of edges with possible duplicates, a natural

question that arises is to estimate properties of the

underlying graph. Work has been done on estimating

the frequency moments, heavy hitter, and range sums

of the degrees of this underlying graph [6]. For exam-

ple, if dv is the degree of v in the underlying graph then

it is possible to approximate M2 := ∑vdv
2 in one pass

and OðE�4
ffiffiffi
n

p
log nÞ space. Note that many of these

problem are solvable using standard techniques if there

are no duplicates in the stream of edges. A related prob-

lem is to estimate the entropy of a random walk on an

undirected, unweighted graph. Here the graph stream is

an observation of a randomwalk whose states are nodes

of the graph. There exists a single-pass O(e�4 log2n

log2d�1) space algorithm that estimates the entropy

of the walk [5]. These algorithms use a combination

of algorithms for counting distinct items and the AMS
sampling technique. The problem of actually con-

structing random walks has also been considered [7].

This has applications to estimating the page-rank vec-

tor, mixing time and conductance of graphs.

Key Applications
Massive graphs arise naturally in many real world

scenarios. Two examples are the call-graph and the

web-graph. In the call-graph, nodes represent tele-

phone numbers and edges correspond to calls placed

during some time interval. In the web-graph, nodes

represent web pages, and the edges correspond to

hyper-links between pages. When processing these

graphs it is often appropriate to use the data-stream

model. For example, the graph may be revealed by a

web-crawler or the graph may be stored on external

memory devices and being able to process the edges in

an arbitrary order improves I/O efficiency. One of the

major drawbacks of traditional graph algorithms,

when applied to massive graphs such as the web, is

their need to have random access to the edge set.

Massive graphs also arise in structured data mining,

where the relationships among the data items in the

data set are represented as graphs, and social networks.

Future Directions
There are numerous specific open problems that arise

from the existing work on graph streams. For example,

one could attempt to improve the approximation fac-

tors of the known approximate matching algorithms

or the space required to approximateM2. Another idea

is to explore distance approximation in multiple

passes. While computing exact distance may require

many passes this does not preclude the possibility of

better approximation with a few additional passes.

Other more general ideas include investigating

graph problems in the probabilistic data-stream model

or the random-order data-stream model. In the proba-

bilistic data-stream model, a probability pe would be

assigned to each edge e. The goal of an algorithm

would be to estimate the probability that the random

graph generated has a certain property given that each

edge is present independently with probability pe. In

the random-order data-stream model the assumption,

as the name suggests, is that the edges arrive in random

order. The goal is to design algorithms that estimate

some property with high probability where the proba-

bility is defined over both the coin flips of the algo-

rithm and the ordering of the stream.

Graphic Representation of Data G 1275
Cross-references
▶One-Pass Algorithm

▶ Stream Models

▶ Synopsis Structure
G

Recommended Reading
1. Aggarwal G., Datar M., Rajagopalan S., and Ruhl M. On the

streaming model augmented with a sorting primitive. IEEE

Symposium on Foundations of Computer Science, 2004, pp.

540–549.

2. Bar-Yossef Z., Kumar R., and Sivakumar D. Reductions in

streaming algorithms, with an application to counting triangles

in graphs. In ACM-SIAM Symp. on Discrete Algorithms, 2002,

pp. 623–632.

3. Buchsbaum A.L., Giancarlo R., and Westbrook J. On finding

common neighborhoods in massive graphs. Theor. Comput.

Sci., 1–3(299):707–718, 2003.

4. Buriol L.S., Frahling G., Leonardi S., Marchetti-Spaccamela A.,

and Sohler C. Counting triangles in data streams. In Proc. 25th

ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Data-

base Systems, 2006, pp. 253–262.

5. Chakrabarti A., Cormode G., and McGregor A. A near-optimal

algorithm for computing the entropy of a stream. In ACM-SIAM

Symposium on Discrete Algorithms, 2007, pp. 328–335.

6. Cormode G. and Muthukrishnan S. Space efficient mining of

multigraph streams. In Proc. 24th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2005,

pp. 271–282.

7. Das Sarma A., Gollapudi S., and Panigrahy R. Estimating PageRank

on graph streams. In Proc. 27th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 2008, pp. 69–78.

8. Demetrescu C., Escoffier B., Moruz G., and Ribichini A. Adapt-

ing parallel algorithms to the w-stream model, with applications

to graph problems. In Mathematical Foundations of Computer

Science, 2007, pp. 194–205.

9. Demetrescu C., Finocchi I., and Ribichini A. Trading off space

for passes in graph streaming problems. In ACM-SIAM Sympo-

sium on Discrete Algorithms, 2006, pp. 714–723.

10. Elkin M. Streaming and fully dynamic centralized algorithms for

constructing and maintaining sparse spanners. In Int. Colloqui-

um on Automata, Languages and Programming, 2007, pp. 716–

727.

11. Elkin M. and Zhang J. Efficient algorithms for constructing

(1 + e, b)-spanners in the distributed and streaming models.

Distrib. Comput., 18(5):375–385, 2006.

12. Feigenbaum J., Kannan S., McGregor A., Suri S., and Zhang J.

Graph distances in the data-stream model. SIAM J. Comput.,

38(5):1708–1727, 2008.

13. Feigenbaum J., Kannan S., McGregor A., Suri S., and Zhang J.

On graph problems in a semi-streaming model. Theor. Comput.

Sci., 348(2–3):207–216, 2005.

14. Ganguly S. and Saha B. On estimating path aggregates over

streaming graphs. In Int. Symp. on Algorithms and Computa-

tion, 2006, pp. 163–172.

15. HenzingerM.R., Raghavan P., and Rajagopalan S. Computing on

data streams. External memory algorithms, 1999, pp. 107–118.
16. McGregor A. Finding graph matchings in data streams. In

APPROX-RANDOM, 2005, pp. 170–181.

17. Muthukrishnan S. Data Streams: Algorithms and Applications.

Foundations and Trends in Theoretical Computer Science, 1(2),

2005.

18. Zelke M. k-connectivity in the semi-streaming model. CoRR,

cs/0608066, 2006.

19. Zelke M. Weighted matching in the semi-streaming model. In

Proc. Symp. on Theoretical Aspects of Computer Science, 2008.
Graph Streams

▶Graph Mining on Streams
Graph Theory

▶Graph Data Management in Scientific Applications

▶ Information Integration Techniques for Scientific

Data
Graph-based Clustering

▶ Spectral Clustering
Graphic

▶Diagram
Graphic Design

▶Visual Interaction
Graphic Representation of Data

▶Data Visualization

1276G Graphical Displays of Many Variables
Graphical Displays of Many
Variables

▶Multivariate Visualization Methods
Graphical Interaction

▶Direct Manipulation
Graphical Representation

▶Visual Representation
Graphical User Interfaces

▶Visual Interfaces
Graphics

▶ Image
Graphics for Continuous Data

▶Visualizing Quantitative Data
Graphics for Discrete Data

▶Visualizing Categorical Data
Grid and Workflows

JINJUN CHEN, YUN YANG

Swinburne University of Technology, Melbourne,

VIC, Australia

Synonyms
Workflow on grid
Definition
Built on Internet and World Wide Web, the Grid is a

new class of infrastructure which supports coordinated

resource sharing and problem solving in dynamic,

multi-institutional virtual organizations [6,7]. In a

grid architecture, a grid workflow management system

is a type of user-level grid middleware. It aims to

support large-scale sophisticated scientific and busi-

ness processes in a variety of complex e-science and

e-business applications [7,10,12,15]. Such sophisticat-

ed processes are modeled or redesigned as grid work-

flow specifications at build-time stage by some

modeling languages such as Grid Workflow Execution

Language (GWEL), Abstract Grid Workflow Language

(AGWL), and Martlet [4,5,9]. The specifications nor-

mally contain a large number of computation, data

and/or transaction intensive activities [1,2,12]. Then,

at run-time instantiation stage, grid workflow

instances are created [4]. Finally, at run-time execution

stage, grid workflow instances are executed by facilitat-

ing the super computing and data sharing capability of

underlying grid infrastructure to complete the compu-

tation, data and/or transaction intensive activities

[8,11].

Historical Background
Workflow research can be traced back to mid

1980s. In 1993, the WfMC (Workflow Management

Coalition) was founded to promote the research and

development of workflow technologies such as work-

flow reference model [13]. WfMC mainly focuses on

business workflows, i.e., workflows in business appli-

cations. According to WfMC, workflow is defined as

the computerized facilitation or automation of a busi-

ness process, in whole or part [13].

Grid research can be traced back to mid 1990s. It

aims to support the sharing of large-scale distributed

and heterogeneous resources in a full and negotiable

fashion. Resource providers and consumers can dyna-

mically negotiate the sharing mode and extent. For

example, they can share resources in client/server

mode at one time, but then change to peer-to-peer

fashion at another time [7].

With intensive research poured into grid, around

the year 2000 the term grid workflow came into picture.

Its basic idea is to execute large-scale complex work-

flows on grid by facilitating the grid’s powerful com-

puting and resource sharing capability. The main

motivation for grid workflow is that many grid

Grid and Workflows. Figure 1. Overall architecture of a

grid workflow management system.

Grid and Workflows G 1277

G

applications such as climate modeling and disaster

recovery simulation often require the creation of a

collaborative workflow management system as part of

their sophisticated problem solving processes so that

scientists and business people who lack the low-level

expertise can still utilize the current generation of grid

toolkits, such as GT4 (Globus Toolkits), Gridbus, and

SwinGrid [7,14,15].

Foundations
Traditionally in the business workflow domain, a busi-

ness workflow is more about logic between activities

rather than computation, data or transaction intensive.

As a result, there is a very modest level data transfer

between activities. However, a grid workflow is often

computation, data or transaction intensive. Hence, the

key scientific fundamentals in grid workflow area

are how to accommodate huge amount of data trans-

fer, computation and transaction processing, and

how to schedule and map to the computation capable

resources in the underlying grid infrastructure [4,14].

Research and development are ongoing to tackle the

key fundamentals [10,11,14,15].

Key Applications
Grid workflow aims to support large-scale sophisticated

scientific and business processes in a variety of com-

plex e-science and e-business applications. Typically,

such e-science applications are data and computation

intensive such as climate modeling, disaster recovery

simulation, earth observation data processing, and

high energy physics. Such e-business applications are

often transaction intensive such as bank, stock model-

ing, and insurance processing [7,10,12,14,15].

Future Directions
Since in a business workflow, there is a very modest

level data transfer between activities, the interaction

between activities is normally performed via a centra-

lized workflow engine. However, a grid workflow is

normally computation, data and/or transaction inten-

sive. There is often huge amount of data transfer and

processing between activities. Therefore, it is inefficient

or even congests the centralized workflow engine if the

interaction between activities is performed via the cen-

tralized engine. As such, the interaction with data

transfer should be decentralized. Peer-to-peer proces-

sing becomes an ideal alternative. At the same time,

the centralized monitoring and management are still
necessary. Thus, in overall terms, a promising future

direction can be peer-to-peer based interaction with

huge amount of data transfer between activities plus

centralized monitoring and management with modest

information interaction between activities and the cen-

tralized engine [4,14]. In this direction, many issues

need to be investigated such as global monitoring of

distributed peers, workflow scheduling and modeling

in support of data, computation and/or transaction

intensity.

Experimental Results
The overall architecture of a grid workflow manage-

ment system can be depicted in Fig. 1. Currently,

many grid workflowmanagement systems such as Swin-

DeW-G, Kepler, Taverna, Triana, Gridbus Workflow,

and Pegasus have been developed to experimentally

perform the execution of grid workflows [10,11,14,15].

Among them, SwinDeW-G (Swinburne Decentralised

Workflow for Grid) as depicted in Fig. 2 is a peer-to-

peer based grid workflow management system which

naturally matches to the feature of computation, data

and/or transaction intensity [3,14]. In SwinDeW-G,

Grid and Workflows. Figure 2. SwinDeW-G system.

1278G Grid and Workflows
a grid workflow is executed by different peers that are

distributed in the underlying grid infrastructure. Dif-

ferent peers communicate with each other directly in a

peer-to-peer fashion. Kepler supports fault tolerance

and p2p or centralised data transfer [10]. Taverna uses

centralised approach to support data transfer and retry

for fault tolerance [11]. Triana uses p2p for data trans-

fer [15]. Gridbus Workflow also uses a centralised

approach for data transfer. Pegasus supports the

mapping from abstract workflow specification to spe-

cific grid resources for workflow execution [15]. There

are more grid workflow management systems which

can be referred to [15]. In general, many experimental

practices and implementations of grid workflow man-

agement are being widely conducted.

Cross-references
▶Activities

▶Adaptive Workflow/Process Management

▶Grid File

▶Grid Storage

▶ Scheduler

▶ Scientific Workflows

▶Workflow Management and Workflow Management

System

▶Workflow Management Coalition

▶Workflow Model

▶Workflow Schema
Recommended Reading
1. Abramson D., Kommineni J., McGregor J.L., and Katzfey J. An

atmospheric sciences workflow and its implementation with web

services. Future Generation Comput. Syst., 21(1):69–78, 2005.

2. Aloisio G., Cafaro M., Carteni G., Epicoco I., Quarta G., and

Raolil A. GridFlow for earth observation data processing. In

Proc. 2005 Int. Conf. on Grid Computing and Applications,

2005, pp. 168–176.

3. Chen J. and Yang Y. Adaptive selection of necessary and suffi-

cient checkpoints for dynamic verification of temporal con-

straints in grid workflow systems. ACM Trans. Auton. Adapt.

Syst., 2(2):Article 6, 2007.

4. Cybok D. A Grid Workflow Infrastructure. Concurrency com-

put. Pract. Experience (Special Issue on Workflow in Grid Sys-

tems), 18(10):1243–1254, 2006.

5. Fahringer T., Pllana S., and Villazon A. A-GWL: Abstract grid

workflow language. In Proc. 4th Int. Conf. on Computational

Science, LNCS 3038, 2004, pp. 42–49.

6. Foster I., Kesselman C., and Tuecke S. The anatomy of the grid:

enabling scalable virtual organizations. Int. J. Supercomput.

Appl., 15(3):200–222, 2002.

7. Foster I., Kesselman C., Nick J., and Tuecke S. The physiology

of the grid: an open grid services architecture for distributed

systems integration. In Proc. 5th Global Grid Forum Workshop,

2002.

8. Fox G.C. and Gannon D. Concurrency Comput. Pract. Exp.

(Special Issue: Workflow in Grid Systems). 18(10):1009–1019,

2006.

9. Goodman D. Introduction and evaluation of Martlet, a scientific

workflow language for abstracted parallelisation. In Proc. 16th

Int. World Wide Web Conference, 2007, pp. 983–992.

10. Ludäscher B., Altintas I., Berkley C., Higgins D., Jaeger-Frank E.,

Jones M., Lee E., Tao J., and Zhao Y. Scientific workflow

Grid File (and Family) G 1279

G

management and the Kepler system. Concurrency Comput.

Pract. Exp., 18(10):1039–1065, 2006.

11. Oinn T., Greenwood M., Addis M., Alpdemir M.N., Ferris J.,

Glover K., Goble C., Goderis A., Hull D., Marvin D., Li P., Lord

P., Pocock M.R., Senger M., Stevens R., Wipat A., and Wroe C.

Taverna: Lessons in creating a workflow environment for the life

sciences. Concurrency Comput. Pract. Exp., 18(10):1067–1100,

2006.

12. Simpson D.R., Kelly N., Jithesh P.V., Donachy P., Harmer T.J.,

Perrott R.H., Johnston J., Kerr P., McCurley M., and McKee S.

GeneGrid: a practical workflow implementation for a

grid based virtual bioinformatics laboratory. In Proc. of the

UK e-cience All Hands Meeting, 2004, pp. 547–554.

13. Workflow Management Coalition: The Workflow Reference

Model. TC00–1003, 1995, http://www.wfmc.org.

14. Yang Y., Liu K., Chen J., Lignier J., and Jin H. Peer-to-peer

based grid workflow runtime environment of SwinDeW-G,

In Proc. 3rd IEEE Int. Conf. on e-Science and Grid Computing,

2007, pp. 51–58.

15. Yu J. and Buyya R. A taxonomy of workflowmanagement systems

for grid computing. J. Grid Comput., 3(3):171–200, 2005.
Grid File

▶Hash-based Indexing
Grid File (and Family)

APOSTOLOS N. PAPADOPOULOS
1,

YANNIS MANOLOPOULOS
1, YANNIS THEODORIDIS

2,

VASSILIS TSOTRAS
3

1Aristotle University of Thessaloniki, Thessaloniki,

Greece
2University of Piraeus, Piraeus, Greece
3University of California at Riverside, Riverside,

CA, USA

Definition
The Grid File is a multidimensional indexing scheme

capable to efficiently index database records in a sym-

metrical manner, i.e., by avoiding the distinction be-

tween primary and secondary keys. The structure is

dynamic and adapts gracefully to its contents under

insertions and deletions. A single record retrieval costs

two disk accesses at most (upper bound), whereas

range queries and partial match queries are also exe-

cuted efficiently. The Grid File can be thought of as a
generalization of dynamic hashing (e.g., extendible

hashing) in multiple dimensions.

Historical Background
Until the 1980s many file structures for the processing

of single attribute queries have been proposed, i.e.,

queries on the primary key or any secondary key for

which a corresponding index has been built. Multi-

attribute queries are the ones where the user seeks

objects that satisfy constraints (such as equality or

range) on several attributes. Such queries can be exe-

cuted by accessing all the corresponding indices (if they

exist) and combine the partial results, or resort to

sequential scanning.

To speed up the processing of multiple attribute

queries, a better solution is to create an index that leads

the search directly to the objects of interest. Such an

index can be designed if a data record with k attributes

is envisioned as a point in a k-dimensional space.

A multi-attribute range query would then be a hyper-

rectangle in this k-dimensional space and the answer to

it would be all points inside this rectangle. Access

methods that can handle multidimensional points are

called Point Access Methods (PAMs). In 1975, Bentley

proposed such a basic PAM, which is called the

k-dimensional tree or k-d tree [2]. The Grid File is yet

another structure designed to handle similar cases,

proposed by Nievergelt, Hinterberger, and Sevcik in

1984 [10]. Since then, several variations have been

proposed in the literature in an effort to optimize its

space and time performance behavior.

Foundations
The Grid File can be viewed as an access method

comprising of two separate parts: (i) the directory,

and (ii) the linear scales. To illustrate this, assume

that an index is to be constructed on the Employee

file using two attributes, say salary and dept (extension

to more dimensions is straightforward). The Grid File

imposes a grid on the two-dimensional attribute space.

Each cell in this grid corresponds to one data page. The

data points that ‘‘fall’’ inside a given cell are stored in

the cell’s corresponding page. Each cell must thus store

a pointer to its corresponding page. This information

is stored in the Grid File’s directory. However, cells that

are empty do not use a page. Rather, two or more cells

can share a page (i.e., point to the same page). The grid

adapts to the data density by introducing more divi-

sions in areas where there are more points.

1280G Grid File (and Family)
The information of how each dimension is divided

(and thus how data values are assigned to cells) is

kept through linear scales. There is one linear scale per

dimension (indexed attribute). Each linear scale is a one-

dimensional array that divides the values on a particular

dimension in such a way that records (points) are uni-

formly distributed across cells. An example of a Grid File

on the ‘‘Dept’’ and ‘‘Salary’’ attributes appears in Fig. 1.

Searching for a record with given attribute values

involves two operations: (i) the Grid File’s directory is

searched to locate the cell that the record is hosted in,

(ii) the cell’s pointer is followed to access the

corresponding data page (say A), and (iii) the record

is searched only in data page A. If the record is found in

A then the search terminates successfully, otherwise the

search for the specific record is unsuccessful (i.e., the

record does not exist). The Grid File can also address

multi-dimensional range queries by selecting the ap-

propriate cells from each dimension’s linear scale. For

example, such a query may ask for all employee records

with the salary attribute ranging between 10K and 40K

and the dept attribute ranging between 2 and 6. Again,

the first step examines the directory and determines

the cells that are intersected by the query range in both

attributes, then the corresponding pointers to data

pages are collected and finally the data pages are exam-

ined for relevant records. The accessed cells may also

contain some records outside the query range. These

records are eliminated from further consideration and

they are not returned as part of the query answer.

Inserting a new record in this method is straightfor-

ward. First, the two linear scales are searched so as to map

the record’s salary and dept attribute values in each di-

mension. This mapping provides a cell in the directory.

This cell is then accessed and using its pointer, the appro-

priate page, say A, for the new record is found. If this
Grid File (and Family). Figure 1. A Grid File.
page has enough space to accommodate the new re-

cord, the insertion process is complete. Otherwise, a

new page B is allocated. If page A was pointed to by

more than one cell, the pointers of these cells are rear-

ranged such that some will point to page A and some

to page B (and the records of page A are redistributed

accordingly between A and B). If page Awas pointed by

a single cell and overflows, a reorganization of the Grid

File is needed. This reorganization will expand the

directory and the scales by introducing a new column

(or row) of cells.

In the sequel, the insertion process is illustrated by an

example given in Fig. 2White dots correspond to existing

records, whereas black dots are used to indicate new

records being inserted to the Grid File. Assume that

each data page can host at most three records. Practically,

this number is larger in real applications and depends on

the size of the data page and the number of attributes.

Assume that initially the Grid File is empty (does not

contain any records). The first three records can be easily

accommodated in the single data page Apointed by the

single cell of the directory (corresponding to the whole

data space), as illustrated in Fig. 2(a). The next inserted

record is d. However, the new record cannot be hosted

by data page A because its capacity is exceeded. There-

fore, another data page B is allocated and records are

distributed to the two data pages as it is shown in Fig. 2

(b). The next two insertions for records e and f do not

cause any reorganization since the new records can be

easily accommodated in the corresponding data pages

pointed by the cells, as illustrated in Fig. 2(c). Finally,

the insertion of record g causes an overflow in data

page A. The corresponding cell is split again using the

other attribute and one more data page is allocated and

records are distributed accordingly. The final shape of the

Grid File is given in Fig. 2(d).

Grid File (and Family) G 1281

G

Deletions are also supported, but they are handled

differently. Initially, the deleted record is located using the

directory and the corresponding data page is determined.

If the record is found, it is deleted from the data page.

Instead of overflowing, data page deletions may cause the

underutilization effect, which means that several data

pages may contain too few records. Therefore, appropri-

ate merging operations are required to maintain the

storage utilization of the Grid File at an acceptable level.

For a detailed description of the methods used for merg-

ing as well as for splitting, the reader is directed to [10].

The Grid File has a set of nice properties: (i) it is

based on simple mechanisms for insertion, deletion,

and search; (ii) it guarantees only two disk accesses for

exact match queries (one for the directory and one for

the data page); and, (iii) it treats all indexed attributes

symmetrically which leads to simple directory manage-

ment policies. However, it has a set of serious disadvan-

tages such as: (i) it introduces a space overhead for the

directory, which can be large for high-dimensional

spaces, (ii) it has an extra update overhead, since reor-

ganization affects many cells and not only the cell with

the overflowing page; and, (iii) it suffers from perfor-

mance degradation if the attributes are correlated, since

the uniform scheme for performing splits is not ade-

quate to guarantee performance efficiency.

Toward improving the behavior of the Grid File

several research efforts have been performed. Some of

these efforts are highlighted in the following lines. One

of the first variations, the BANG File, has been pro-

posed by Freeston [4]. The BANG File is based on a

self-balanced tree-based directory, which better reflects

changes of the data distribution. To achieve better

storage utilization the Twin Grid File has been pro-

posed by Hulflesz, Six, and Widmayer in [5]. The new

scheme is as efficient as the original Grid File during

range query processing but shows significant improve-

ments regarding storage utilization. Blanken et al. pro-

posed the Generalized Grid File [3], which offers fast
Grid File (and Family). Figure 2. Insertions in the Grid File.
access for single attribute queries. The Multilevel Grid

File [12] is another research effort to improve the

performance of the original structure for exact-

match, partial-match, and range queries. This new

scheme uses multiple grid levels and succeeds in better

directory management and more efficient query pro-

cessing than the original structure.

In addition to the variations proposed in the litera-

ture, there are efforts to use the Grid File in a parallel

environment, toward more efficient data management.

In [13] the authors study the problem of partitioning

a Grid File to multiple disk devices toward more efficient

search. When a data page split is performed, the new data

page is carefully allocated to a disk. Since disks can be

accessed in parallel, several data pages can be read simul-

taneously during range query processing, offering signifi-

cant performance improvements in comparison to a

single-disk system. More complex queries on Grid Files,

like spatial joins, have been also parallelized [6] toward

reduced query response times. A different approach

has been followed by [7]. The authors have proposed

a method to load a Grid File in parallel. The data file is

initially partitioned to the available processors using

dynamic programing and sampling, and then each

processor builds its own part of the Grid File.

Key Applications

Spatial Databases

In Spatial Databases it is commonly required to join

spatial data sets or perform nearest neighbor searches.

Several algorithms have been proposed for such opera-

tions by adopting the Grid File as the underlying access

method [1].

Data Mining

The Grid File can also be used for clustering data sets

to identify correlation characteristics of the underlying

value space. This stems from its ability to group

1282G Grid Workflow
patterns into blocks and cluster them with respect

to the blocks by a topological neighbor search

algorithm [11].

Data Warehouses

The Grid File can be used for efficient data cube stor-

age in warehouses [9].
Future Directions
The Grid File has eventually emerged as a popular

theoretical access method. However, although it has

been widely honored in theory, in practice it has not

been used by the database industry.
Experimental Results
Adetailed performance evaluation of theGrid File can be

found in [10], where the authors offer a detailed experi-

mental section studying the properties of the structure

regarding capacity of data pages, directory size, and

evaluation of splitting and merging policies. Moreover,

interesting experimental results can be found in [5,3],

which compare the original Grid File with the corres-

ponding variation proposed in each work.

Cross-references
▶ Extendible Hashing

▶K-D trees

▶Multidimensional Indexing

▶Range Query

▶ Spatial Join

Recommended Reading
1. Becker L., Hinrichs K., and Finke U. A new algorithm for

computing joins with grid files. In Proc. 9th Int. Conf. on Data

Engineering, 1993, pp. 190–197.

2. Bentley J.L. Multidimensional binary search trees used for asso-

ciative searching. Commun. ACM, 18(9):509–517, 1975.

3. Blanken H.M., Ijbema A., Meek P., and van den Akker B. The

generalized grid file: description and performance aspects. In

Proc. 14th Int. Conf. on Data Engineering, 1990, pp. 380–388.

4. Freeston M. The BANG file: a new kind of grid file. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1987, pp. 260–269.

5. Hutflesz A., Six H.-W., and Widmayer P. Twin grid files: space

optimizing access schemes. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1988, pp. 183–190.

6. Kim J.-D. and Hong B.-H. Parallel spatial join algorithms using

grid files. In Proc. 6th Int. Conf. on Database Systems for

Advanced Applications, 1999, pp. 226–234.

7. Li J., Rotem D., and Srivastava J. Algorithms for loading parallel

grid files. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1993, pp. 347–356.
8. Lim Y. and Kim M. A Bitmap Index for Multidimensional Data

Cubes. In Proc. 15th Int. Conf. Database and Expert Syst. Appl.,

2004, pp. 349–358.

9. Luo C., Hou W.C., Wang C.F., Wang H., and Yu X. Grid File for

Efficient Data Cube Storage. Computers and their Applications,

conference paper CATA, pp. 424–429, 2006.

10. Nievergelt J., Hinterberger H., and Sevcik K.K. The grid file: an

adaptable, symmetric multikey file structure. ACM Trans. Data-

base Syst., 9(1):38–71, 1984.

11. Schikuta E. and Erhart M. The BANG-clustering system: grid-

based data analysis, In Adv. in Intelligent Data Analysis, 2nd Int.

Symp., 1997, pp. 513–524.

12. Whang K.-Y. and Krishnamurthy R. The multilevel grid file – a

dynamic hierarchical multidimensional file structure. In Proc.

2nd Int. Conf. on Database Systems for Advanced Applications,

1991, pp. 449–459.

13. Zhou Y., Shekhar S., and Coyle M. Disk allocation methods for

parallelizing grid files. In Proc. 10th Int. Conf. on Data Engi-

neering, 1994, pp 243–252.
Grid Workflow

▶ Scientific Workflows
Group Difference

▶ Emerging Patterns
Grouping

▶Abstraction
GUID

▶Resource Identifier
GUIs for Web Data Extraction

CAI-NICOLAS ZIEGLER

Siemens AG, Munich, Germany

Synonyms
Visual web data extraction; Wrapper generator GUIs;

Visual web information extraction

GUIs for Web Data Extraction G 1283

G

Definition
While content management systems (CMS) are geared

towards adding presentational information to rela-

tional and structured data from database systems,

thus dynamically generating HTML documents, the

goal of GUIs for Web data extraction is diametrically

opposed: The commonly semi-automatic Web data

extraction tools intend to remove all presentational

information from Web pages, so that only pure

structured content remains. The extraction process

itself does not address single documents, but template

types, such as the product page of an online retailer or

the news page template of an online journal. That is,

for each template type, one set of extraction rules is

generated. These extraction rules are defined in a

graphical manner, by selecting the pieces of informa-

tion that are relevant and by assigning labels to them.

To this end, GUIs are used that largely resemble Web

browsers, extended by user actions for highlighting

and assigning appropriate labels. For instance, for a

book seller’s product page, such labels were ‘‘author,’’

‘‘publisher,’’ ‘‘price,’’ or ‘‘number of pages.’’

The learned extraction rules for one document

template, called ‘‘wrapper’’ [5], are then applied to

those documents that have been generated based on

the template type at hand. Referring to the book seller’s

example, one could now extract structured relational

information for each book published on the online

retailer’s website (see Fig. 1).
GUIs for Web Data Extraction. Figure 1. Web data wrapper

store the labeled results into data structures, such as XML do
Historical Background
GUIs for Web data extraction are advanced variants of

wrapper induction systems [5]. Being graphics-oriented,

these follow-ups add to the state of art by making the

extraction process more user-friendly and easier to man-

age, saving time and makingWeb data extraction accessi-

ble to a broad range of non-experts as well.

Early Web data extraction systems have been im-

plemented by writing small programs in scripting

languages like PERL. These programs, termed screen

scrapers, contained manually defined extraction rules

that focused on structural communalities of infor-

mation types to be extracted from the documents,

e.g., price, title, and publisher. The huge disadvantage

was that people had to look at the very HTML code

of documents, comparing several instances of the

document template used and trying to figure out

which sequences of HTML documents and/or

textual content remained static and which appeared

dynamic.

The tedious nature of screen scraping favored the

naissance of wrapper induction systems. These appli-

cations did not require the human to manually write

extraction rules, but to label a number of documents

and have machines inductively learn the extraction

rules. Early seminal systems include Kushmerick’s

wrapper generator [5], STALKER [6,7], and ROADRUNNER

[4]. The latter system takes HTML documents that

have been generated using the same template as input
s extract relevant information from Web documents and

cuments.

1284G GUIs for Web Data Extraction
and infers a most specific grammar that subsumes the

variety of all of them.

At the same time, early GUI-based extraction sys-

tems have begun to evolve. NODOSE [1] extracts infor-

mation from plain string sources and provides a user

interface for instance labeling. Kushmerick proposed

WIEN [1], a visual support tool, as an extension to his

early wrapper system. WIEN receives a set of training

pages where the user can label relevant information

and learn a wrapper.

The shift from research towards commercial tools

became manifest with the advent of LIXTO [2], which

started off as an academic project and transformed

into a commercial product soon after. (See http://

www.lixto.com for details). The early LIXTO system

allowed the user to mark relevant, information-bearing

passages in a browser-like window, assign labels to

these passages, e.g., ‘‘price,’’ ‘‘manufacturer,’’ etc., test

the wrappers on unseen data, and modify the learned

extraction rules. LIXTO incorporated a system for in-

ductive extraction rule learning based on the ELOG [3]

language, which bears traits of both PROLOG and

XPATH (see Fig. 2). The extracted and labeled result

was written to an XML document.

Complex enterprise-scale commercial solutions

have evolved since then, boasting graphical user inter-

faces that allow for recording HTML form inputs and

interaction events in a macro-like fashion, handling

dynamic and AJAX-enhanced documents, and creating

complex processing and wrapping workflows.

Foundations
With the advent of graphical user interfaces for Web

data extraction, the focus of supervised wrapper gen-

eration has greatly changed from one relying on induc-

tive machine learning techniques to one that intends to

offer the non-expert user a broad range of easy-to-use
GUIs for Web Data Extraction. Figure 2. Generated ELOG ru

number, description, price, and bids, from EBAY (http://www.eb
actions that allow him to specify what he intends to

extract in a comfortable and 100%WYSIWYG fashion.

The goal is not so much the use of intelligent techni-

ques for the generalization and conjunction of extrac-

tion patterns as much more to cover the full content

extraction and publication process, by means of an

end-to-end lifecycle approach. This includes the easy

interfacing to databases for the parameterization of

wrapper input data and output storage, the availability

of APIs and Web service interfaces in order to embed

the extraction process as yet another component or

service of a larger Web application infrastructure, as

well as the ability to design wrappers that can be re-

used as subordinate components in other wrappers.

At the time of this writing, the major vendors of

commercial state-of-the-art GUIs for Web data extrac-

tion are KAPOW (http://www.kapow.com), LIXTO (http://

www.lixto.com), DENODO (http://www.denodo.com), and

TWINSOFT (http://www.twinsoft.fr). All products offered

exhibit a similar look and feel, with an HTML browser

window being the central component that all other

dialogues and tool frames are clustered around

(see Fig. 3).

Typically, the user can indicate regions that contain

relevant information by highlighting the respective

region with his mouse. Moreover, most GUIs offer

the possibility to navigate, in another window, the

DOM tree of the HTML document at hand and select

the nodes that match the demanded criteria. Next, the

user can assign labels to these selected information

regions and thus generate extraction rules based on

path expressions. Some tools, such as LIXTO VISUAL

DEVELOPER, attempt to generalize the matching extrac-

tion paths in an intelligent fashion, assuming wild-

cards for appropriate location steps so as to avoid

over-fitting [3]. In order to handle Dynamic HTML

and cascading stylesheets (CSS), most graphical
les for extracting relevant information, such as item

ay.com).

GUIs for Web Data Extraction. Figure 3. Screenshots of two state-of-the-art commercial GUIs for Web data extraction,

(a) LIXTO VISUAL DEVELOPER and (b) KAPOW MASHUP SERVER.

GUIs for Web Data Extraction G 1285

G

extraction systems have a built-in JavaScript interpre-

tation engine. Debugging capabilities are also state-of-

the-art, allowing the user to step through the entire

extraction process, from the wrapper’s entering of

the website to the eventual extraction and storage.
Commercial products for Web data extraction

have matured over the years and have become user-

friendly and extremely powerful tools. From a scientif-

ic perspective, though, there is little new technology to

discover.

1286G GUIs for Web Data Extraction
Key Applications
The number of applications for wrapper generation

GUIs is rife and extends to all areas where information

extraction on the Web is put to use. Integration of Web

data is surely the most important application scenario

and heavily advertised by solution vendors. However,

instead of referring to ‘‘integration,’’ the synonymous

term ‘‘mashup’’ is used, which hints at the deliberate

placement of such tools into the Web 2.0 universe. For

instance, the GUIs could be used to create extraction

wrappers for news articles from various sources, which

are then presented in one page. Another mashup

application scenario is the creation of value-added

services that exploit heterogeneous information

sources: For instance, the implementation of a travel

service that acts as meta search engine for other travel

search engines, integrates their results into a single list,

and enriches each entry by resorting to another wrap-

per which obtains information for the destination

country at hand from encyclopedic websites such as

Wikipedia (http://www.wikipedia.com).
Cross-references
▶ Fully-Automatic Web Data Extraction

▶ Information Extraction
▶ Information Filtering

▶Wrapper Induction
Recommended Reading
1. Adelberg B. NoDoSE: A tool for semi-automatically extracting

structured and semi-structured data from text documents. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1998,

pp. 283–294.

2. Baumgartner R., Flesca S., and Gottlob G. Visual web informa-

tion extraction with lixto. In Proc. 27th Int. Conf. on Very Large

Data Bases, 2001, pp. 119–128.

3. Baumgartner R., Flesca S., and Gottlob G. The ELOG web

extraction language. In Proc. Artificial Intelligence on Logic for

Programming, 2001, pp. 548–560.

4. Crescenzi V., Mecca G., and Merialdo P. RoadRunner: towards

automatic data extraction from large web sites. In Proc. 27th Int.

Conf. on Very Large Data Bases, 2001, pp. 109–118.

5. Kushmerick N., Weld D., and Doorenbos R. Wrapper induction

for information extraction. In Proc. 15th International Joint

Conference on Artificial Intelligence, 1997, pp. 119–128.

6. Muslea I., Minton S., and Knoblock C. Stalker: learning extrac-

tion rules for semistructured, web-based information sources. In

Proc. of the AAAIWorkshop on AI and Information Integration,

1998.

7. Muslea I., Minton S., and Knoblock C. Hierarchical wrapper

induction for semistructured information sources. Auton.

Agent. Multi Agent Syst., 4(1–2):93–114, 2001.

H

Handhelds Interfaces

▶Mobile Interfaces
Handwritten Text

▶ Electronic Ink Indexing
Hanf-Locality

▶ Locality of Queries
Hard Disk

▶Disk
Hardware-Conscious Database
System

▶Architecture-Conscious Database System
Harmonic Mean of Recall and
Precision

▶ F-Measure
Hash File

▶Hash-based Indexing
2009 Springer ScienceþBusiness Media, LLC
Hash Filter

▶Bloom Filters
Hash Filter Join

▶ Semijoin
Hash Functions

MARINA BLANTON

University of Notre Dame, Notre Dame, IN, USA

Synonyms
Cryptographic hash functions; One-way hash functions

Definition
A hash function is a well-defined deterministic algo-

rithm that takes as input data of arbitrary length and

produces a short fixed-length digital representation of

the data, or a digest, as its output. The output of a hash

function can serve the role of a digital ‘‘fingerprint’’ of

the input data, as an important design property of hash

functions is that of collision resilience: two hashes

produced on different inputs are very unlikely to result

in the same value. Furthermore, given a hash function

output, it is normally infeasible to find a (previously

unseen) input that matches that output (this property

is called preimage resistance).

Key Points
Hash functions have many uses, and in cryptography

they are widely used because of their collusion resis-

tance and preimage resistance properties. In particular,

hash functions are used to verify integrity of messages

and can be used to construct message authentication

codes. They are also used in many cryptographic

protocols and to construct cryptographic primitives

1288H Hash Join
(e.g., to construct symmetric encryption schemes and

in digital signatures) [4].

The two most commonly used hash functions are

MD5 [3] and SHA-1 [1], but a variety of other algo-

rithms is also available. Both MD5 and SHA-1, howev-

er, should be used with caution because a recent

development of attacks indicate that MD5 is too weak

to meet the necessary cryptographic properties and it

may become possible to also attack SHA-1 in the near

future. SHA-2 [2] is a collection of new hash functions

from the SHA family (such as SHA-256, SHA-224,

SHA-384, and SHA-512) which were designed by the

National Security Agency (NSA) to be a new standard.

Cross-references
▶Digital Signatures

▶Merkle Hash Trees

▶Message Authentication Codes

Recommended Reading
1. Eastlake D. and Jones P. US Secure Hash Algorithm 1 (SHA1).

IETF RFC 3174, 2001. http://www.ietf.org/rfc/rfc3174.txt.

2. National Institute of Standards and Technology (NIST). FIPS

180-2: Secure Hash Standard (SHS), Current version of the

Secure Hash Standard (SHA-1, SHA-224, SHA-256, SHA-384,

and SHA-512), 2004.

3. Rivest R. The MD5 message-digest algorithm. IETF RFC 1321,

1992. http://www.ietf.org/rfc/rfc1321.txt.

4. Schneier B. Applied Cryptography: Protocols, Algorithms, and

Source Code (2nd edn.). Wiley, New York, NY, 1996.
Algorithm 1: Grace Hash Join: R ⋈ r=s S
// partition R into k partitions
foreach R 2 R do
read R and add it to buffer page h1 (R);
flush the page to disk if full;

end
// partition S into k partitions
foreach S 2 S do
read S and add it to buffer page h1 (S);
flush the page to disk if full;

end
// ‘‘build’’ and ‘‘probe’’ phases
for i ← 1 to k do
foreach R 2 partition Ri do
read R and insert into the hash table using h2 (R);

end
foreach S 2 partition Si do
read S and probe the hash table using h2(S);
for matching R tuples, add {R,S} to result;

end
clear the hash table and release the memory;

end
Hash Join

JINGREN ZHOU

Microsoft Research, Redmond, WA, USA

Synonyms
Hash join

Definition
The hash join is a common join algorithm in database

systems using hashing. The join predicate needs to be an

equality join predicate. The classic algorithm consists of

two phases: the ‘‘build’’ phase and the ‘‘probe’’ phase. In

the ‘‘build’’ phase, the algorithm builds a hash table on

the smaller relation, say R, by applying a hash function

to the join attribute of each tuple. In the ‘‘probe’’

phase, the algorithm probes the hash table using tuples

of the larger relation, say S, to find matches.
Key Points
The classic algorithm is simple, but it requires that the

smaller join relation fits into memory. If there is no

enough memory to hold all the tuples in R, an addi-

tional ‘‘partition’’ phase is required. There are several

variants of the classic hash join algorithm. They differ

in terms of utilizing memory and handling overflow.

Grace Hash Join The idea behind grace hash join is to

hash partition both relations on the join attribute, using

the same hash function. As the result, each relation is

hashed into k partitions, and these partitions are written

to disk. The key observation is that R tuples in partition

i can join only with S tuples in the same partition i. If

any given partition of R can be hold in memory, the

algorithm can read in and build a hash table on the

partition of R, and then probe the hash table using

tuples of the corresponding partition of S for matches.

If one or more of the partitions still does not fit into

the available memory (for instance, due to data skew-

ness), the algorithm is recursively applied. An additional

orthogonal hash function is chosen to hash the large

partition into sub-partitions, which are then processed

as before.

Hybrid Hash Join The hybrid hash join algorithm is

a refinement of the grace hash join algorithm which

takes advantage of more available memory. To parti-

tion R (S) into k partitions, the grace hash join uses one

input buffer for reading in the relation and k output

buffers, one for each partitions.

Hash-based Indexing H 1289

H

Suppose there are enough extra memory to hold an

in-memory hash table for one partition, say the first

partition, of R, the hybrid hash join does not write the

partition to disk. Instead, it builds an in-memory hash

table for the first partition of R during the ‘‘partition’’

phase. Similarly, when partitioning S, for the tuples

in the first partition of S, the algorithm directly probes

the in-memory hash table and writes out the results.

At the end of the ‘‘partition’’ phase, the algorithm

completes the join between the first partitions of R

and S while partitioning the two relations. The algo-

rithm then joins the remaining partitions as the grace

hash join algorithm does.

Compared with the grace hash join algorithm, the

hybrid hash join algorithm avoids writing the first

partitions of R and S to disk during the ‘‘partition’’

phase and reading them in again during the ‘‘build’’

and the ‘‘probe’’ phases.

Cross-references
▶Hashing

▶ Parallel Join Algorithms

▶ Evaluation of Relational Operators

Recommended Reading
1. Mishra P. and Eich M.H. Join processing in relational databases.

ACM Comput. Surv., 24(1):63–113, 1992.
Hash Trees

▶Merkle Trees
Hash-based Indexing

MIRELLA M. MORO
1, DONGHUI ZHANG

2,

VASSILIS J. TSOTRAS
3

1Federal University of Minas Gerais, Belo Horizonte,

Brazil
2Northeastern University, Boston, MA, USA
3University of California, Riverside, CA, USA

Synonyms
Hash file; External hashing; Extensible hashing; Linear

hashing; Grid file
Definition
Consider a relation R with some attribute A taking

values over domain D. A membership (or equality)

query retrieves all tuples in R with A = x (x 2 D). To

enable fast processing of such equality selection queries,

an access method that can group records by their value

on attribute A is needed. A hash-based schememaps the

search-key values on a collection of buckets. The bucket

to which a value is assigned (mapped) is determined

by a function, called the hashing function.

Key Points
A major performance goal of a database management

system is to minimize the number of I/O’s (i.e., blocks

or pages transferred) between the disk and main mem-

ory when answering a query. To achieve such fast

access, additional data structures called access methods

(or indices) are designed per database file. There are

two fundamental access methods, namely tree-based

and hash-based indexing. They differ on the kind of

queries that they can efficiently address.

Hash-based indexing does not maintain any order-

ing among the indexed values; rather it is based on

mapping the search-key values on a collection of

buckets. Therefore it can only address equality

(or membership) queries. Tree-based indices maintain

order and can thus also address range queries.

In database management systems hashing is imple-

mented on disk-resident data (also termed as external

hashing). Here instead of a slot the scheme uses a

bucket which is typically the size of a page (or a fixed

number of pages) and can thus hold many records.

Consider a hashing scheme usingM buckets. Assume a

page can store B values. A hashing function h is a

function that maps D to M (one example of such

function is h(x) = x modM). To insert a record with

search-key x (x 2 D), the hashing function h(x) is

computed which gives the bucket to store that record.

In static external hashing, if this bucket has space the

record is simply added. If B values have already been

hashed on this bucket, an overflow occurs. An extra

page is added (and chained to this bucket) and the new

record is stored there.

Given that the number of possible values in domain

D is typically much larger than M, different values can

be hashed on the same bucket. Nevertheless, a given

hashing function will always hash a given value on the

same bucket. Searching for record(s) with a given

search-key y (also called hash-key) is simple. The

1290H Hater’s Model
hashing function is computed on the y and h(y) will be

the bucket accessed. The record(s) with the requested

value will either be found on this bucket or there is no

such record in the file. No other buckets need to be

searched. Note that searching a hash-based scheme

avoids the tree navigation that a tree-index implies.

Rather, a hashing function is computed (in main

memory) and the only I/O is for bringing in main

memory the page(s) of a given bucket.

In static external hashing, the number of buckets is

pre-allocated and does not change whether the file

is small or large. In contrast, dynamic hashing schemes

(like extensible and linear hashing) use a number of

buckets that increases/decreases as the size of the

indexed file changes by record insertions/deletions.

The cost for updating and querying a hash-based

hashing scheme is constant in the expected case (but

can be linear in the worst case, for example when most

records are mapped to one bucket creating a long

overflow chain of pages); its space requirements are

linear to the size of the indexed file.

Another hashing related scheme is the Bloom filter,

a space-efficient probabilistic data-structure that dras-

tically reducing space by allowing false positives (but

not false negatives). For multi-attribute search, the

Grid-File has been proposed, which can be considered

as an extension of hashing into many dimensions.

Cross-references
▶Access Methods

▶ Extendible Hashing

▶Grid File

▶ Indexing

▶ Linear Hashing
Recommended Reading
1. Manolopoulos Y., Theodoridis Y., and Tsotras V.J. Advanced

Database Indexing. Kluwer, Dordrecht, 1999.

2. Elmasri R. and Navathe S.B. Fundamentals of Database Systems,

5th edn. Addisson-Wesley, Reading, MA, 2007.

3. Ramakrishnan R. and Gehrke J. Database Management Systems,

3rd edn. McGraw-Hill, New York, 2003.
Hater’s Model

▶Two-Poisson model
HCC

▶Human-centered Computing: Application to

Multimedia
HCI

▶Human-Computer Interaction
HCM

▶Human-centered Computing: Application to

Multimedia
Health Informatics

▶Taxonomy: Biomedical Health Informatics
Healthcare Informatics

▶Taxonomy: Biomedical Health Informatics
Heat Map

▶Visualizing Clustering Results
Heavy Hitters

▶ Frequent Items on Streams
Heterogeneous Distributed
Database Systems

▶Distributed Database Systems

Hierarchial Clustering H 1291
Heterogeneously Distributed Data

▶Vertically Partitioned Data
HHH

▶Hierarchical Heavy Hitter Mining on Streams
H

Hidden-Web Search

▶Deep-Web Search
Hierarchial Clustering

MARIA HALKIDI

University of Piraeus, Piraeus, Greece

Definition
A hierarchical clustering method generates a sequence

of partitions of data objects. It proceeds successively by

either merging smaller clusters into larger ones, or by

splitting larger clusters. The result of the algorithm is a

tree of clusters, called dendrogram (see Fig. 1), which

shows how the clusters are related. By cutting the

dendrogram at a desired level, a clustering of the data

items into disjointed groups is obtained.
Hierarchial Clustering. Figure 1. Dendogram.
Historical Background
Hierarchical clustering is one of the main methods used

in data mining to partition a data collection. A number

of hierarchical clustering algorithms [3] have been

developed to deal with various types of data and appli-

cation requirements. According to the method that the

algorithms produce clusters, can be classified into the

following categories:

1. Agglomerative hierarchical clustering. The algo-

rithms of this category follow a bottom-up strategy

and they produce sequence of data clusterings by

decreasing number of clusters at each step (result-

ing in a different tree level). The algorithm starts by

considering each data object as a separate cluster.

Then, at each step it selects to merge the pair of two

closest clusters defining thus a new clustering. To

find the similarity of two clusters, one of the fol-

lowing criteria is typically used: the minimum, the

maximum, or the average distance between objects

of the two clusters. The merging procedure pro-

ceeds iteratively until all objects are in a single

cluster or a termination condition is satisfied.

2. Divisive hierarchical clustering. These algorithms

produce a sequence of clusterings increasing the

number of clusters at each step. Contrary to the

agglomerative, the divisive algorithms produce at

each step a clustering from the previous one by

splitting a cluster into two. The algorithm starts

with all objects in a single cluster. Then it iteratively

subdivides the clusters into smaller ones, until each

object forms a separate cluster or a cetrain termi-

nation condition is satisfied.

1292H Hierarchial Clustering
One of the drawbacks of pure hierarchical clustering

methods is their inability to perform adjustment when

a merge or split decision has been executed. Once a

group (cluster) of data is merged or split, the clustering

process at the next step will operate on the newly

generated clusters. Thus the quality of hierarchical

clustering depends on the selection of merge or split

point. To tackle this problem the recent studies have

focused on the integration of hierarchical agglomera-

tive with multiple phase clustering techniques and

relocation methods.

Foundations
This section provides an overview of the main algo-

rithms that are representatives of hierarchical cluster-

ing method.

BIRCH [6] uses a hierarchical data structure called

CF-tree for partitioning the incoming data objects in

an incremental and dynamic way. CF-tree is a height-

balanced tree, which stores the clustering features. A

clustering feature (CF) is a structure that summarizes

statistics for the given sub-clusters. Considering a

set X = {X1,...,XN} of d-dimensional data objects

assigned into a sub-cluster Ci, the CF of Ci is defined

as CF = {N, LS, SS}, where LS =
PN

i¼1 Xi is the linear

sum on N objects and SS =
PN

i¼1 X
2
i is the square sum

of data objects.

The BIRCH algorithm is based on two para-

meters: branching factor B and threshold T, which

refer to the diameter of a cluster (the diameter (or

radius) of each cluster must be less than T). It consists

of two phases:

1. Scan of the data collection to build an initial in-

memory CF tree. It can be viewed as a multilevel

compression of data that tries to preserve the in-

herent clustering structure of the data.

2. Application of a clustering algorithm to cluster the

leaf nodes of the CF tree.

BIRCH adopts an incremental clustering method since

the CF tree is built dynamically as new objects are

inserted. It can typically find a good clustering with a

single scan of the data and improve the quality further

with a few additional scans. Thus using a multi-phase

clustering BIRCH tries to produce the best clusters

with the available resources. However, BIRCH does

not always correspond to a natural cluster (as a user

may consider it), since each node in CF-tree can hold a

limited number of entries due to its size. Also it uses
the notion of radius or diameter to control the bound-

aries of a cluster and thus it tends to favor spherical

clusters. Moreover, it is order-sensitive as it may gen-

erate different clusters for different orders of the same

input data. The computational complexity of BIRCH

to cluster a set of n objects is O(n).

CURE [1] is a hierarchical clustering algorithm that

combines centroid-based and representative object

based approaches. CURE represents each cluster by a

certain number of objects that are generated by select-

ing well-scattered points and then shrinking them to-

ward the cluster center by a specified fraction a. These
representative points try to capture the natural schema

and the geometry of a cluster. Additionally, moving the

dispersed points toward the cluster center by a certain

factor (further reffered to as a) the algorithm aims

to remove the noise and eliminate the influence of

outliers. Significant movements of outliers will elimi-

nate the possibility of merging inappropriate clusters.

A high value of a shrinks the representatives closer to

the cluster center and thus it favors more compact

clusters. On the other hand, a small value of a shrinks

more slowly the representatives favoring elongated

clusters. Thus CURE efficiently achieves to identify

arbitrarily shaped clusters (i.e., non spherical) and it

is robust to the presence of outliers.

CURE scales for large databases using a combina-

tion of random sampling and partition clustering. The

data that are used as input to the algorithm, can be a

sample randomly selected from the original data set.

The selected data sample is partitioned into a certain

number of partitions and then each of the defined

partitions is partially clustered. A clustering step fol-

lows that aims to generate a hierarchy of partial clus-

ters. The clustering starts considering each data object

of input (partial clusters) as a separate cluster and

then it iteratively merges the nearest pairs of clusters.

The distance between two clusters is defined as the

distance between their closest representatives. Thus

only the representative points of clusters are used to

measure the distance between them. Then the repre-

sentative points falling in each of the newly defined

clusters are moved toward the center of clusters by a

shrinking factor a.
The time complexity of CURE isO(n2 log n) (where

n is the number of data objects to be clustered), while it

reduces to O(n2) in case of low-dimensional data.

ROCK [2], is a robust hierarchical clustering algo-

rithm for Boolean and categorical data. It introduces

Hierarchial Clustering H 1293

H

two new concepts: (i) the neighbors of a point and

(ii) links. The clustering algorithm is based on these

concepts to measure the similarity/proximity between

a pair of data points. Given a user-defined threshold

y 2 [0,1], a pair of points pi, pj are defined to be

neighbors if sim(pi, pj) � y. Also the term link(pi, pj)

is defined to be the number of common neighbors

between pi and pj. The ROCK algorithm exploits the

concept of links to make decisions about the clusters

that will be merged at each step. The similarity between

a pair of clusters (Ci, Cj) is measured based on the

number of points from Ci and Cj that have neighbors

in common. For a pair of clusters Ci and Cj, the

algorithm measure the number of cross links between

the clusters, that is,
P

pk2Ci and pl2Cj
links(pk, pl). Then

the goodness measure for merging clusters Ci, Cj is

defined as follows:

goodnessðCi;CjÞ¼
linkðCi;CjÞ

ðniþnjÞ1þ2f ðyÞ �n
1þ2f ðyÞ
i �n

1þ2f ðyÞ
j

Then, at a given step, the algorithm selects to merge

the pair of clusters for which the goodness measure is

maximum.

CHAMELEON [4] is a clustering algorithm that

explores characteristics of dynamic modeling in hier-

archical clustering. It is an agglomerative hierarchical

algorithm that measures the similarity of two clusters

based on a dynamic model. Specifically, it defines the

clusters in the data set by using a two-phase algorithm.

During the first phase, CHAMELEON uses a graph-

clustering algorithm to partition a data set into a large

number of relatively small sub-clusters. During the

second phase, it uses an agglomerative hierarchical

clustering algorithm to find the clusters by repeatedly

combining together these sub-clusters. The similarity

between clusters is determined by looking at their

relative inter-connectivity and relative closeness. The

representation of the data objects is based on the widely

used k-nearest neighbor graph approach. The vertices

of the graph represents data objects, and there is an edge

between two vertices if data object corresponding to

one of the nodes is among the k-most similar data

objects of the other node. Then the algorithm finds

the initial sub-clusters using a graph-partitioning algo-

rithm in order to partition the k-nearest neighbor

graph of the considered data set into a large number

of partitions. During the next phase CHAMELEON

switches to an agglomerative hierarchical clustering
that combines together these small sub-clusters. It mea-

sures the similarity between each pair of considered

clusters based on their relative inter-connectivity and

closeness of the sub-clusters:

1. The relative interconnectivity between a pair of

clusters Ci and Cj is their absolute interconnectivity

normalized with respect to their internal intercon-

nectivities. It is given by

RIðCi;CjÞ ¼
EC Ci ;Cjf g
��� ���

1
2
ð ECCi
j j þ ECCi

j jÞ
where EC Ci ;Cjf g is defined as the sum of weights of

the edges that connect vertices in Ci to vertices in

Cj and ECCi
is defined as the weighted sum of the

edges that partition the graph into two roughly

equal parts.
2. The relative closeness between a pair of clusters Ci

and Cj is the absolute closeness normalized with

respect to the internal closeness of the two clusters:

RCðCi;CjÞ ¼
SEC

Ci ;Cjf g
jCi j

jCi jþjCj j SECCi
þ jCj j

jCi jþjCj j SECCj
where SEC
Ci ;Cjf g is defined as the average weight of

the edges that connect vertices in Ci to vertices in

Cj, and SECCi
is the average weight of edges that

partition the graph into two roughly equal parts.
According to the above definition CHAMELEON

makes merging decisions. Those pairs of clusters

whose relative inter-connectivity and closeness are

above some user-specified threshold are merged.

CHAMELEON has been proved to be more power-

ful at discovering arbitrarily shaped clusters than

CURE. However, the processing cost for high dimen-

sional data may require quadratic time to the number

of processed objects (O(n2)).

The most recent clustering algorithm that com-

bines characteristics of hierarchical clustering and

graph-theory is C 2P [5]. It exploits index structures,

and the processing of the Closest-Pair queries in spatial

databases. The algorithm considers that the data points

can be organized in an R-tree data structure to facili-

tate the searching of the nearest representative point.

Then the Closest-Pair Query (CPQ) is used to find the

closest pair of points from two datasets indexed with

two R-tree data structures.

1294H Hierarchical Data Model
The C2P algorithm consists of two main phases.

The first phase (Phase I) organizes a set of objects into

a number of sub-clusters, which are an effective rep-

resentation of the final clusters. The Self Semi-Closest-

Pair Query (Self-Semi-CPQ) is used to find pairs of

objects (p, p0) that belong to a data set S such as dist(p,

p0) = min8x2S{dist(p, x)}. The algorithm uses a graph

representation that organizes the proximity information

computed by the CPQ. Using the Depth-First Search the

algorithm can efficiently find the c connected compo-

nents of the graph, which also comprises the sub-

clusters of the data set. All objects that belong to the

same connected component can be considered as a

sub-cluster. When the number of defined sub-clusters,

is equal to the required number of sub-clusters the

Phase I terminates. Otherwise, the algorithm finds

the center of each sub-cluster to represent it. Then

the previously described procedure is iteratively ap-

plied to the set of c cluster centers until the required

number of sub-clusters is defined. The second phase is

a specialization of the first phase using a different

cluster representation so as to produce the finer final

clustering. The second phase (Phase II) has as input the

centers of sub-clusters defined in Phase I. At each

iteration of Phase II, Self-CPQ finds the closest pair

of clusters by finding the closest pair among their

representatives. Then these two clusters are merged

and the r data objects, among all the objects of the

merged clusters, that are closest to the cluster center

are selected as representatives of the new cluster. Using

multi-representatives instead of the center, C 2P can

effectively capture the shape and size of the clusters.

The procedure terminates when the required number

of clusters is reached. The above description shows

that Phase II operates in a fashion analogous to a

hierarchical agglomerative clustering algorithm.

The C 2P algorithm is shown to scale well to large

databases. Its time complexity for a dataset with n

objects is O(n log n).
Key Applications
Hierarchical clustering has applications in various

fields of real world. In biology, it can be used to

define taxonomies, categorize genes with similar

functionality and gain insights into structures inher-

ent in populations. Clustering may help to automate

the process of analyzing and understanding spatial

data. It is used to identify and extract interesting
characteristics and patterns that may exist in large

spatial databases. Also hierarchical clustering is used

to discover significant groups of documents on the

Web’s huge collection of semi-structured documents.

This classification of Web documents assists in infor-

mation discovery.
Cross-references
▶Balanced Trees

▶Clustering Methods

▶Graph Clustering

▶ Indexing

▶ k-Nearest Neighbors

▶R-Tree

Recommended Reading
1. Guha S., Rastogi R., and Shim K. CURE: an efficient clustering

algorithm for large databases. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1998, pp. 73–84.

2. Guha S., Rastogi R., and Shim K. ROCK: a robust clustering

algorithm for categorical attributes. In Proc. 15th Int. Conf. on

Data Engineering, 1999, pp. 512–521.

3. Han J. and Kamber M. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2001.

4. Karypis G., Han E.-H., and Kumar V. CHAMELEON: a hierar-

chical clustering algorithm using dynamic modeling. IEEE Com-

put., 32(8):68–75, 1999.

5. Nanopoulos A., Theodoridis Y., and Manolopoulos Y. C2P: clus-

tering based on closest pairs. In Proc. 27th Int. Conf. on Very

Large Daa Bases, 2001, pp. 331–340.

6. Zhang T., Ramakrishnman R., and Livny M. BIRCH: an efficient

method for very large databases. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1996, pp. 103–114.
Hierarchical Data Model

JEAN-LUC HAINAUT

University of Namur, Namur, Belgium

Synonyms
IMS data model

Definition
The hierarchical data model is based on a view of the

application domain (i.e., the world) as a hierarchical

arrangement of concepts where some concepts exist on

their own while the others depend on the former.

According to this conceptual model, data are organized

into records that are recursively composed of other

Hierarchical Data Model H 1295

H

records. Though this paradigm is fairly common in data

structures, the term hierarchical model most generally

refers to the IMS model, a proprietary DBMS developed

by IBM from the sixties that is still widely used.

The IMS model organizes data in tree structures of

records augmented with additional links that compen-

sate for the weaknesses of this base model. Data pro-

cessing itself is hierarchical, starting from the root of

a record tree then parsing the dependent records in

depth-first, left-to-right, traversal order.

Historical Background
In 1966, IBM started the development of ICS (Infor-

mation Control System), a data management software

for, and with the collaboration of, American Rockwell,

then in charge of building the Apollo spacecraft which

was to send men on the moon. IBM commercialized

ICS in 1969 under the name IMS (Information Man-

agement System) [1].

The first version offered storage and processing

facilities for data records organized in trees and linear-

ized according to the depth-first traversal order. The

data could be stored on tapes and on disks and were

processed sequentially. Thanks to the addressability

of magnetic discs, IMS was later given direct access

(through hashing and B-tree techniques) to root

records and therefore was able to support transaction

processing.

At that time, tree structures were strictly indepen-

dent and not connected, a fact that led to much redun-

dancy (a record cannot be stored in two different trees

without duplication). IBM then introduced logical

relationship types which explicitly linked records

from different tree structures. A record could then be

shared by several trees.

Later on, IMS was added secondary indexes that

provided direct access to non-root records. IMS is now

a complex and powerful data management and data

communication environment mostly used by data-

intensive batch and On-Line Transaction Processing

(OLTP) applications.

Though System 2000 (SAS Institute), XML docu-

ment structures (DTD and XML Schema) and stan-

dard file structures can legitimately claim to belong to

the hierarchical family, the presentation will focus on

the IMS model. Data description and manipulation

languages, API and implementation techniques will

not be addressed in this chapter. They can be found

in references [2, 4–6].
Foundations
Due to historical reasons, in particular the incremental

development of IMS, the description of its data struc-

tures is generally intricate. In this entry, they will

be described by way of a simpler approach based on

graph theory. Of course, some very specific details will

be ignored.
Graphs and Hierarchies

This section relates database schemas with various

kinds of graphs. Due to the limited scope of this

chapter, only an intuitive view of the equivalence prin-

ciples will be developed. Is-a hierarchies, in particular,

will be ignored.
Preliminary Definitions

A database schema can be seen as a multigraph, whose

nodes denote entity types and whose labeled edges

represent binary relationship types (rel-types for

short). This applies to any Entity-relationship schema,

provided n-ary rel-types have been replaced by relation-

ship entity types through some kind of reification trans-

formation (such as T1 in Fig. 1). In this graph, edges are

given a pictorial representation that specifies the func-

tional dependencies that hold in the rel-type according

to the usual arrow convention. A single arrow denotes a

N:1 rel-type, a double arrow a 1:1 rel-type and a plain

edge a N:N rel-type. N:1 and 1:1 rel-types are called

functional as well as the edges that represent them.

A hierarchical graph is a binary graph such that (i)

the edges are functional and (ii) the edges define a

partial order on the nodes. In practical words, there

is no chain of successive N:1 edges the starting and

arrival nodes of which are the same node (in short, no

circuit). Considering a directed edge drawn from B (the

many side) to A (the one side), A is called a parent of

B while B is a child of A. A is called a k-node if it is

the child of k parents. A graph is a n-hierarchy if

none of its nodes has more than n parents. A 0-node

is a root of its hierarchy. A hierarchy comprises at least

one root. A node that is not a parent is a leaf node.

A 1-hierarchy is a set of trees, that is, a forest.

Properties of Hierarchies

1. Any multigraph can be losslessly transformed into a

hierarchy. Three patterns can prevent an arbitrary

schema from defining a hierarchy, namely complex

rel-types (n-ary, with attributes), N:N rel-types

1296H Hierarchical Data Model
and rel-types that form a circuit. N-ary and N:N rel-

types can be processed by transformations T1 and T2

respectively (Fig. 1). Any functional rel-type of a

circuit transformed through T3 or T4 (Fig. 1)

destroys this circuit. All these entity-generating

transformations have been proved to preserve the

semantics of the schema [3]. A large number of

hierarchies can be derived from a definite

multigraph.

2. Any hierarchy can be losslessly transformed into a

2-hierarchy. Transformation T3 shows that B,

which is the child of A in the source schema looses

its parent (which becomes its ‘‘spouse’’) in the target

schema. A similar transformation exists for 1:1 rel-

types (T4). Iteratively applying this transformation

produces an equivalent 2-hierarchy from an arbitrary

hierarchy (Fig. 2). This process is not unique, so

that many 2-hierarchies can be derived from a

given hierarchy.

3. Any 2-hierarchy can be built by superimposing two

forests on the same set of nodes. For each child node

of a 2-hierarchy H with two parents, one of the

parental edges is colored in black and the other one
Hierarchical Data Model. Figure 1. Transforming arbitrary re

Hierarchical Data Model. Figure 2. Reduction of a n-hierarc
in gray. Each of the remaining edges is arbitrarily

colored in black or in gray. The set of nodes togeth-

er with black (resp. gray) edges form the black

(resp. gray) subgraph(s). Each of them is a forest

and their union is H. There are many ways to color

the edges of a given 2-hierarchy (Fig. 3).

4. Any arbitrary Entity-relationship schema is equiva-

lent to the superimposition of two forests. Properties 1

and 2 show that any Entity-relationship schema is

equivalent to a 2-hierarchy, which in turn can be

decomposed into two forests.

IMS Data Structures

IMS is by far the most popular DBMS based on the

hierarchical data model. This section describes its main

data structures.

The IMS Global Schema

The global schema of an IMS database can be modeled

by a 2-hierarchy formed by two distinct forests. The

nodes represent segment types (the IMS name for

record types) and the edges N:1 parent-child rel-types.

The black rel-types are called physical rel-types and the
lationship types into functional relationship types.

hy to a n-1-hierarchy by application of transformation T3.

Hierarchical Data Model H 1297

H

gray ones logical rel-types (this naming is purely histor-

ical and bears little meaning at this level). According to

the color of the rel-type that links them, two segment

types will be called respectively physical/logical child

and physical/logical parent. A rel-type bears no name.

If two rel-types link the same pair of segment types,

one of them is physical and the other one is logical.

IMS schemas use graphical conventions that are close

to those of Figs. 1–3 but their edges have no arrow

heads (Fig. 4).

IMS imposes additional constraints of this double

tree structure:

1. a logical child must be a physical child; therefore a

root segment type cannot be a logical child;

2. a logical child cannot be a logical parent;

3. a logical child cannot have a physical child that is

also a logical child.

As a consequence, many logical children are leaf physi-

cal segment types (Fig. 3 – right).

A segment type has a name and a length. It is made

up of fields. A field is an untyped byte string with
Hierarchical Data Model. Figure 3. Any multigraph is equiv

Hierarchical Data Model. Figure 4. Two examples of logical
which a name, a starting position and a length are

associated. Some parts of the segment type may be

left undefined, while some fields may overlap, which

is a way of describing compound fields. In summary, a

segment type comprises single-valued mandatory

fields that can be atomic or compound.

Now only the physical (black) rel-types are consid-

ered. Each 0-node denotes a physical root segment type.

Each physical root segment type, together with all the

segment types to which it is directly or transitively

connected through a physical rel-type, form a physical

database. A root segment followed by all its direct and

indirect child segments, in the depth-first order tra-

versal (or preorder), is a physical record of this data-

base. A physical database contains a sequence of

physical records. One of the fields of the root segment

type is the sequence field or key. No two records can

have the same key value and the records are sorted on

this key. Direct access is allowed to a record based

on its key value. A field of a dependent segment type

can also be declared a key. In this case, and unless

otherwise stated, the children segments of a definite
alent to the superimposition of two forests.

database schemas.

1298H Hierarchical Data Model
parent have distinct values of their key. The key value

of a segment prefixed by the concatenated key of its

parent forms its concatenated key. The latter identifies

this segment in the physical database. The implicit goal

of a physical database is twofold:

� historically, a physical record collects all the data

that are needed by an application program (process-

oriented approach);

� according to the modern way of perceiving a data-

base, a physical record collects the proper data

of a major entity of the application domain,

independent of the programs that will use it (do-

main-oriented approach).

An IMS database comprises one or several physical

databases together with all their logical rel-types. Logi-

cal rel-types can be defined between two segment types

pertaining to one or two physical databases.
The IMS Logical Database

A logical database is a virtual tree data structure derived

from an IMS global database schema and tailored to the

specific needs of an application program. Its role

is similar to that of CODASYL subschemas and of rela-

tional views. Themain derivation rules are the following:

1. the logical database schema L comprises a

connected subset of the physical database schema

PH;

2. the root of L is the root of PH (secondary indexes

allow more flexible structures);

3. the logical parent P of a logical child C of L can

be concatenated with C, giving fictitious segment

type CP;

4. all or some of the direct and transitive physical

children of P can be attached to CP;

5. all or some of the direct and transitive physical

parents of P can be attached to CP as fictitious

children.

Fig. 4 shows some examples of logical database

schemas derived from the same IMS database.
Hierarchical Data Model. Figure 5. Normalization of a

relationship segment type according to the IMS model.
Additional Constructs

Several other concepts are part of the IMS model and

are devoted large sections in usual IMS presentations.

They have not been included in the preceding sections

inasmuch as they do not contribute to the understand-

ing of the data model but rather appear, according to
today’s conceptual standards, as minor idiosyncrasies.

Two of them are briefly described, namely segment

pairing and secondary indexes.

Segment pairing. Consider the hierarchical schema

fragment of Fig. 5 (left), in which relationship segment

type R materializes a N:N link between A and B.

Though this pattern is intuitive from the conceptual

and physical points of view, it violates the spirit of tree

structures that underlies the hierarchical model of

IMS: for bidirectional access, both A and B must have

a normal (physical) child of their own. So, each of

them is given a physical child, namely RA and RB,

and it is linked to the other parent through a logical

(gray) rel-type. However, since RA and RB are just

clones of each other, they are declared paired (Fig. 5 –

right). Physically, this pattern can be implemented

according to two techniques: with a single child seg-

ment type (virtual pairing) or with two redundant

child segment types whose contents are synchronized

automatically (physical pairing).

Secondary indexes. Physical (or logical) records can

be directly accessed through indexing techniques

applied to the root sequence field. A secondary index

allows additional access based on other fields of the root

segment type or access to non root segment types. It is

implemented as a special-purpose physical database,

the index database, made up of one segment type (the

pointer segment type), that collects all the values of the

key fields together with the addresses of the segments

that include these values. In fact, this technique is based

on two segment types in the indexed database. The

indexed values are extracted from the source segment

type while the access is performed on the target segment

type. These segment types are generally the same but

the former can be the child of the latter. For instance, a

secondary index can allow access to CUSTOMER seg-

ments that have at least one ORDER child segment

with a given date of order. In addition, a logical data-

base can be built on an index database in such a way

Hierarchical Data Model. Figure 6. Partial translation of a representative Entity-relationship schema (left) into a

hierarchical schema (right).

Hierarchical Data Model H 1299

H

that its logical root segment type is any, possibly non-

root, segment type of the indexed database.

Entity-Relationship to Hierarchical Mapping

As shown above, an Entity-relationship schema can

always be translated into an equivalent 2-hierarchy,

a structure that is close to the IMS data model.

The translation is mostly based on a unique technique,

that is, the transformation of a rel-type into a relation-

ship entity type together with two or several functional

rel-types. The procedure of deriving an IMS database

schema from an Entity-relationship schema can be

sketched as follows.

1. Each entity type is represented by a segment type,

each attribute by a field and each functional rel-

type by a parent-child rel-type (still uncolored).

2. A non functional rel-type is transformed into a

segment type by techniques T1 and T2.

3. Is-a hierarchies are best transformed through the

one segment type per entity type technique; subtypes

are represented by physical children of their super-

type segment type.

4. A circuit is opened by the transformation of one of

its links by technique T3 and T4.

5. 1:1 rel-types are implemented as standard 1:N rel-

types and controlled by the application programs.

6. The schema is then transformed into a 2-hierarchy

by the technique illustrated in Fig. 3. When a seg-

ment type has two parents, two techniques can be

used. The first one consists in marking one rel-type

as logical. The second one applies transformations

T3 or T4. The latter will be preferred when IMS

structural rules concerning logical rel-types are
violated or to make the schema more balanced

(rel-type RA of the schema of Fig. 3 could be

processed in the same way as RB).

Figure 6 illustrates some of these principles. The IMS

global schema comprises three physical databases and

three logical relationship types. For readability, seg-

ment pairing, according to which each logical child is

duplicated as a dependent of its respective logical par-

ent, is not shown.
Key Applications
IMS is a major legacy technology in which many large

corporate databases are still implemented. It is mainly

used for stable, slowly evolving, batch and OLTP appli-

cations, notably in banking companies. The complexi-

ty of the hierarchical model and its lack of flexibility in

evolving domains make IMS technology less attractive

for decisional applications, such as data warehouses.
Cross-references
▶Database Management System

▶ Entity-Relationship Model

▶Network Data Model

▶Relational Model
Recommended Reading
1. Blackman K. IMS celebrates thirty years as an IBM product. IBM

Syst. J., 37(4):596–603, 1998.

2. Elmasri R. and Navathe S. Fundamentals of Database Systems

(3rd edn.). Addison-Wesley, 2000. (The appendix on the hierar-

chical data model has been removed from later editions but is

now available on the authors’ site.)

1300H Hierarchical Data Organization
3. Hainaut J-L. The transformational approach to database engi-

neering. In Generative and Transformational Techniques in Soft-

ware Engineering, R. Lämmel, J. Saraiva, J. Visser (eds.).

Springer, New York, NY, 2006, pp. 89–138.

4. Long R., Harrington M., Hain R., and Nicholls G. IMS Primer –

IBM Redbooks, 2000.

5. Meltz D., Long R., Harrington M., Hain R., and Nichols G. An

Introduction to IMS. IBM Press, Armonk, NY, 2005.

6. Tsichritzis D. and Lochovsky F. Hierarchical data-base manage-

ment: a survey. ACM Comput. Surv.(Special Issue: Data-Base

Management Systems), 8(1):105–124, 1976.
Hierarchical Data Organization

▶ Indexing and Similarity Search
Hierarchical Data Summarization

EGEMEN TANIN

University of Melbourne, Melbourne, VIC, Australia

Synonyms
Hierarchical data summarization

Definition
Given a set of records data summaries on different

attributes are frequently produced in data management

systems. Commonly used examples are the number of

records that fall into a set of ranges of an attribute or the

minimum values in these ranges. To improve the effi-

ciency in accessing summaries at different resolutions

or due to a direct need for investigating a hierarchy that

is inherent to the data type, such as dates, hierarchical

versions of data summaries can be used. A data stru-

cture or algorithm is labelled as hierarchical if that

structure or algorithm uses the concept of subcompo-

nents to systematically obtain conceptually larger com-

ponents. The method of obtaining a larger component

is regularly induced by the user’s understanding of the

domain, such as dates in a year, as well as the fact that

hierarchies can also be created automatically by a set of

rules embedded into the system. Thus, rules used in a

data structure’s creation, e.g., B+-trees, are also consid-

ered as a means for hierarchical data summarization. In

fact, different variants of popular data structures are

used in hierarchical data summarization. Various
algorithms for data reduction and aggregation have

also adopted hierarchical processing techniques.

Historical Background
From a data structures point of view, foundations of

hierarchical data summarization (HDS) techniques

can be found in indexing literature for databases.

Although many of the indexing techniques, e.g.,

B+-trees, are used for efficiently selecting records

stored on a disk, they can also be considered as hierar-

chical summaries on large amounts of data. For multi-

dimensional and spatial data, indices such as R-trees

and quadtrees can be used for HDS.

Today, many versions of popular indexing techni-

ques that directly target retrieval of summary informa-

tion exist. Some indices are also used in query

optimization due to their HDS capabilities, e.g., using a

space decomposition one can guess the number of

records in a certain region of data before a join opera-

tion can take place. More recently, spatial indexing

techniques, for example quadtrees, were developed for

distributed settings such as sensor networks for HDS.

Historically, histograms are the most basic struc-

tures that could be used for data summarization. They

are frequently utilized in query optimization decisions.

They are also used in data warehousing. Hierarchical

versions of histograms were recently built and are of

interest for HDS.

From an algorithmic point of view, techniques such

as wavelet transformations, sketches, and data cluster-

ing with aggregation, when run in a hierarchical fash-

ion, can be considered as HDS techniques. These

techniques are extensively deployed in data manage-

ment as well as in other fields of computer science over

many years.

In recent years, for distributed data processing,

variants of known algorithms have become popular

in HDS. For example, researchers have introduced

data aggregation techniques on sensor networks that

can be considered as HDS techniques that rely

on sketches. In this context, random-tree-based data

aggregation algorithms in sensor networks can also

be considered as basic HDS techniques. All of these

different roots and aspects of hierarchical data summa-

rization are visited in this article.

Foundations
B+-trees are frequently used in databases. A B+-tree is

given in Fig. 1 (only some parts of the tree are shown to

Hierarchical Data Summarization H 1301

H

simplify the presentation). B+-trees are hierarchical

structures where internal nodes store keys and the

leaf nodes contain the records attached to these keys.

Due to their high fanout they are commonly shallow as

well as balanced, i.e., in comparison to binary trees.

They are used for efficient selection of a range of

records from disks. The lowest level contains links

between neighboring nodes to allow for sequential

access to consecutive data items.

The B+-tree and related data structures can be

considered as basic means of keeping hierarchical sum-

mary information. Given a fanout for a B+-tree, upper

levels of the tree can be easily used for approximate

HDS. One can refer to these levels to find the approxi-

mate number of items in a range. To make this HDS

method more accurate, extra information should be

maintained within the tree structure. For example,

counts can be kept with each link in this hierarchy

[10]. This requires extra space and maintenance costs

as each count needs to be stored and updated with

insertion and deletion operations. This can cause pro-

blems if many levels and nodes need to be maintained
Hierarchical Data Summarization. Figure 2. An example qu

Hierarchical Data Summarization. Figure 1. An example B+
per update operation and if updates occur frequently

for a given tree. If small errors in counters are tolerated

then these overheads can be significantly reduced [3].

Counts form only one form of data summaries. Thus,

the idea of counts is extended to other types of data

summaries in [4,9].

For a set of queries and objects in space, such as

range queries and a set of waterways in a country,

spatial data structures can be used to efficiently store

the data and answer queries on this data. For example,

quadtrees are well-known, space-partitioning based

structures. They are used with many different types of

spatial data and thus many quadtree variants can be

found in the literature. For example, a PR quadtree is

given in Fig. 2. In this example, the space is recursively

divided into four quadrants until a single data item is

left in each quadrant. In Fig. 2, the space partitioning is

shown (on the left) with its mapping tree structure (on

the right). The positions of all the data items are also

stored in the structure (not shown in the figure).

Another related space partitioning method is the k-d

tree. For k-d trees different dimensions of the
adtree with point objects.

-tree.

1302H Hierarchical Data Summarization
underlying space is partitioned in turns at different

levels of the tree. (Note that some of these methods

are better named as tries, however, due to historical

reasons, they are referred to as trees.)

If spatial objects are grouped together using bound-

ing boxes and then a hierarchy of these bounding boxes

are created, one can obtain an index called the R-tree.

R-trees also have many variants. In comparison to

quadtrees, they are commonly more balanced indexing

schemes. However, many variants suffer from the fact

that multiple bounding boxes, defining the tree nodes,

can overlap in space. This nature of R-trees can reduce

the pruning capability of this structure as a query may

have to investigate multiple branches for the same space.

Although disjoint-bounding-box based versions of R-

trees exist, these variants could partition the data items

intomultiple boxes. There aremany other spatial indices

that are not presented in this article for the brevity of the

presentation. The techniques mentioned are used to

present HDS methods based on spatial indexing.

Similar to the case in B+-trees, spatial indices can

also be viewed as HDS techniques. Moreover, data sum-

maries can be explicitly maintained with these spatial

data structures. This information can then be used for

query processing, e.g., aggregate queries. Recently, spa-

tial indexing is used in distributed settings for data

summarization. For example, [7] introduces fractional

cascading in sensor networks. In this approach, each

sensor maintains detailed readings that it has obtained

as well as data from its nearby neighbors. Information

regarding other sensors are not kept as accurately. The

space of sensors is partitioned using a distributed quad-

tree that is overlayed onto the sensor network. The

partitioning is done in a similar manner to the PR

quadtree example in Fig. 2. With increasing distance to

the rest of the sensors in the network (i.e., to faraway

quadrants) the amount of data collected from them

drops with a function, e.g., a logarithmic function. This

paradigm utilized the fact that data and queries in sensor

networks are spatially and temporally correlated. Thus,

this structure can be used to efficiently serve routing

requests using locally summarized data as well as to

answer queries. The distributed structure can be seen as

a multi-rooted HDS technique as each sensor uses the

same summarization scheme independently.

Similar to fractional cascading, [6] introduces the

DIMENSIONS system that uses a pyramid-based space

decomposition to aggregate and summarize data in a

sensor network. Each quadrant finds a ‘‘local’’ leader
node for building a distributed pyramid of nodes with

their data. Other similar systems are DIM and DIFS

systems [8,11] that use spatial indices on sensor net-

works for processing selection queries as well as resort-

ing to summaries for user interest elimination. In [8] a

k-d tree based structure is introduced while [11] intro-

duces a multi-rooted quadtree type for avoiding bot-

tlenecks from having a single root node.

Indices such as quadtrees and R-trees are also uti-

lized in query optimization (e.g., [1]). As they repre-

sent summary information about the space they cover,

they can easily be used in estimating the runtime costs

of a query before it is executed.

In comparison to sophisticated indexing methods,

a simple technique for summarizing data is the histo-

gram. Histograms have long been employed in query

optimization as they are compact and easy to maintain.

With the emergence of data warehousing and On-line

Analytical Processing (OLAP) technologies, they have

also become crucial components from a new angle in

data management. For data sets that explicitly contain

hierarchies, e.g., years-months-weeks, histograms can

easily be used.

From a processing cost estimation and query opti-

mization point of view, Bruno et al. [5] introduced the

concept of nested buckets with histograms. This can be

seen as the first form of HDS using histograms. Later,

Reiss et al. [14] built on this concept for distributed

settings for bandwidth usage reduction. Reiss et al.

present hierarchical histograms for aggregate query

processing on identification data, i.e., RFIDs.

From an algorithmic point of view many methods

that have long been used in approximating and summar-

izing data can be considered as hierarchical approaches

to summarization. For example, wavelet transforma-

tions are well-established techniques in signal processing

that can be used and considered as HDS methods. The

following considers wavelets in the context of spatial

data to give a simple example.

A three dimensional (3D) object in space can be

approximated using a triangular mesh. One can use

different sets of triangles, i.e., small or large, to give a

more or less detailed approximation of the surface of

the 3D object. Thus, an object can be represented in

different resolutions using different meshes. If these

meshes are related to each other geometrically, one

can easily progressively update the details for this

object on demand. Therefore, if MI denotes a triangu-

lar mesh at resolution I, one can then represent an

Hierarchical Data Summarization H 1303

H

object as a series of meshes,M0,M1,...,MJ, where,M0 is

the base mesh andMJ is the final mesh. Figure 3a shows

a triangular mesh with one triangle, M0, (1,2,3), for a

2D object. The triangle is the coarse approximation for

the surface of the given circle.

Consider a simple transformation. To obtain a

higher resolution approximation of the given surface

in the figure, the triangle (1,2,3) is divided into four

sub-faces by introducing new vertices (40,50,60), Fig. 3b.

The new set of vertices are now displaced to make the

mesh better fit to the surface of the circle. The new,

finer resolution mesh M1, is shown in Fig. 3c. This

operation can be done recursively and can be repre-

sented with a simple transformation function. The

coefficients that represent the difference between

M0 and M1 are d4
0, d5

0, and d6
0. In this simple wavelet

transformation, for example, the wavelet coefficient

d4
0 is obtained by v14 �

v01þv02
2

¼ v14 � v140. Thus, the

wavelet-based decomposition of a mesh MJ produces

a base mesh M0 and the sets, {W0,W1,...,WJ�1}, of

coefficients. From an HDS point of view, the recursive

execution of the above mentioned method can be seen

as a hierarchical summarization of a detailed polygonal

representation of a complex data set. Various further

HDS methods can be derived using the base concept of

wavelets. For example, recently, [2] uses wavelets with

R-trees to progressively retrieve and refine spatial data

from a remote database.

With the emergence of distributed systems such

as sensor networks, aggregate query processing itself

can now also be considered as a HDS technique. For

example, to process an aggregate query in sensor net-

works, [12] uses a random-tree with in-network aggre-

gation. Each node in this tree can compute an aggregate

from its sub-trees, such as a minimum, and then pass

this information to the higher-levels of the tree along

the data collection path. The base-station, root, can

then present a summary of the sensor data to the user.
Hierarchical Data Summarization. Figure 3. A wavelet-base
Random-trees, however, are not robust. A single

failure can cause significant problems (especially when

a node that is close to the root fails). To address these

problems, researchers have been working on multi-path

data aggregation methods. In this scheme, multiple

reports, due to the wireless coverage advantage in sensor

networks, can be sent through different routes for in-

creasing the robustness of the data collection method.

However, this can cause deviations in certain aggre-

gation operations, e.g., counts, as the same data is

incorporated to the result multiple times. In [13], Nath

et al. introduce a sketch theory-based HDS method

to address this issue. They map aggregate functions,

e.g., counts, to a set of order and duplicate insensitive

synopsis generation and fusion functions.

Data clustering forms another area of research that,

when applied using data aggregates and hierarchies,

can be considered as a source of HDS techniques. For

example, [15] introduces the STING systemwhich uses

a hierarchy of cells that contain aggregate information

about the individual data items. Thus, for many query

types, they can resort to these cells, rather than items,

to answer queries efficiently. For queries that cannot be

answered using summary data, individual data items

can still be used as a backup strategy.

Key Applications
Key applications of HDS techniques are aggregate query

processing and query optimization. If many queries are

interested in retrieving summary data, e.g., aggregate

queries, then maintaining a hierarchical summary

would be efficient. For example, for data warehousing

applications with hierarchical data, the benefits for

maintaining a hierarchical summary could be signifi-

cant. Data summaries have also long been used in

query optimization. For example, an optimizer can

use HDS techniques for selectivity estimation on

attributes.
d approximation.

1304H Hierarchical Entity-Relationship Model
Future Directions
There is a significant amount of activity in using

data summaries in distributed settings and especially in

sensor networks. In addition, with the emerging research

directions in location-based services and VANETs, read-

ers may expect to see the use of spatial HDS techniques

more frequently. In distributed settings, bandwidth

savings on the communication optimization front

using HDS could be significant.

Url to Code
Demos for many of the spatial indices that are

mentioned in this article can be found at http://www.

cs.umd.edu/�hjs/quadtree/index.html.

Cross-references
▶Aggregate Queries in P2P Systems

▶B+-Tree

▶Histogram

▶ Indexing

▶Quadtrees (and Family)

▶Query Processing and Optimization in Object Rela-

tional Databases

▶Rtree

▶ Sensor Networks

▶ Sketch

▶ Spatial Network Databases

▶Wavelets on Streams

Recommended Reading
1. Aboulnaga A. and Aref W.G. Window query processing in linear

quadtrees. Distrib. Parallel Dat., 10(10):111–126, 2001.

2. Ali M.E., Zhang R., Tanin E., and Kulik L. A motion-aware

approach to continuous retrieval of 3D objects. In Proc. 24th

Int. Conf. on Data Engineering, 2008, pp. 843–852.

3. Antoshenkov G. Query processing in DEC RDB: major issues

and future challenges. IEEE Data Eng. Bull., 16(4):42–45, 1993.

4. Aoki P.M. Generalizing ‘‘search’’ in generalized search trees. In

Proc. 14th Int. Conf. on Data Engineering, 1998, pp. 380–389.

5. Bruno N., Chaudhuri S., and Gravano L. STHoles: a multidi-

mensional workload-aware histogram. ACM SIGMOD Rec., 30

(2):211–222, 2001.

6. Ganesan D., Estrin D., and Heidemann J. DIMENSIONS: why do

we need a new data handling architecture for sensor networks? In

Proc. ACM Workshop on Hot Topics in Networks, 2002.

7. Gao J., Guibas L.J., Hershberger J., and Zhang L. Fractionally

cascaded information in a sensor network. In Proc. 3rd Int.

Symp. Inf. Proc. in Sensor Networks, 2004, pp. 311–319.

8. Greenstein B., Estrin D., Govindan R., Ratnasamy S., and

Shenker S. DIFS: a distributed index for features in sensor net-

works. In Proc. IEEE Int. Workshop on Sensor Network Proto-

cols and Applications, 2003, pp. 163–173.
9. Hellerstein J.M., Naughton J.F., and Pfeffer A. Generalized

search trees for database systems. In Proc. 21th Int. Conf. on

Very Large Data Bases, 1995, pp. 562–573.

10. Knuth D.E. Sorting and Searching, The Art of Computer

Programming, vol. 3. Addison Wesley, Redwood City, CA, 1973.

11. Li X., Kim Y.J., Govindan R., and Hong W. Multi-dimensional

range queries in sensor networks. In Proc. 1st Int. Conf. on

Embedded Networked Sensor Systems, 2003, pp. 5–7.

12. Madden S.R., Franklin M.J., Hellerstein J.M., and Hong W.

TinyDB: an acquisitional query processing system for sensor

networks. ACM Trans. Database Syst., 30(1):122–173, 2005.

13. Nath S., Gibbons P.B., Seshan S., and Anderson Z.R. Synopsis

diffusion for robust aggregation in sensor networks. In Proc. 2nd

Int. Conf. on Embedded Networked Sensor Systems, 2004,

pp. 250–262.

14. Reiss F., Garofalakis M., and Hellerstein J.M. Compact

histograms for hierarchical identifiers. In Proc. 32nd Int. Conf.

on Very Large Data Bases, 2006, pp. 870–881.

15. WangW., Yang J., and Muntz R. STING: a statistical information

grid approach to spatial data mining. In Proc. 23rd Int. Conf. on

Very Large Data Bases, 1997, pp. 186–195.
Hierarchical Entity-Relationship
Model

▶ Extended Entity-Relationship Model
Hierarchical Faceted Metadata

▶ Faceted Search
Hierarchical Graph Layout

▶Visualizing Hierarchical Data
Hierarchical Heavy Hitter Mining on
Streams

FLIP R. KORN

AT&T Labs–Research, Florham Park, NJ, USA

Synonyms
HHH

Hierarchical Heavy Hitter Mining on Streams H 1305

H

Definition
Given a multiset S of N elements from a hierarchical

domain D and a count thres hold f 2 (0,1), Hierarchi-

cal Heavy Hitters (HHH) summarize the distribution

of S projected along the hierarchy of D as a set of

prefixes P � D, and are defined inductively as the

nodes in the hierarchy such that their ‘‘HHH count’’

exceeds ’N, where the HHH count is the sum of all

descendant nodes having no HHH ancestors. The ap-

proximate HHH problem over a data stream of ele-

ments e is defined with an additional error parameter

e 2 (0,f), where a set of prefixes P � D and estimates

of their associated frequencies, with accuracy bounds

on the frequency of each p 2 P, fmin and fmax, is output

with fmin(p) � f∗(p) � fmax(p) such that f∗(p) is the

true frequency of p in S (i.e., f∗(p) = ∑ e�pf(e))

and fmax(p) � fmin(p) � eN. Additionally, there is a

coverage guarantee that, for all prefixes q =2 P, fN> ∑ f

(e) : (e � q) ∧ (e 6� P), with � denoting prefix

containment and (e � P) denoting (∃p 2 P : e � p).

Algorithms for maintaining HHHs on data streams

aim to minimize space usage as well as update time

and possibly query reporting time, while maintaining

these accuracy and coverage guarantees.

Historical Background
The Hierarchical Heavy Hitters problemwas defined in

[2] for one-dimensional hierarchical domains, and

algorithms for finding online HHHs were given. The

multi-dimensional version of the problem was defined

and studied in [3,5]. HHHs extend the concept of

Heavy Hitters (frequent items), which are all items

with frequency at least fN, to hierarchical domains;

the problem of finding Heavy Hitters on data streams

was studied in [6,10,11].

Foundations
Figure 1 shows an example distribution of N = 100

items over a simple hierarchy in one dimension, with
Hierarchical Heavy Hitter Mining on Streams. Figure 1. Illu
the counts for each internal node representing the total

number of items at leaves of the corresponding sub-

tree. Figure 1a shows that setting f = 0.1 yields two

heavy hitters, that is, items with frequency above 10.

However, this does not adequately cover the full distri-

bution, and so one seeks a definition which also con-

siders heavy hitters at points in the hierarchy other

than the leaves. A natural approach is to apply the

heavy hitters definition at each level of generalization:

at the leaves, but also for each internal node. The effect

of this definition is shown in Fig. 1b. But this fails to

convey the complexity of the distribution: is a node

marked as significant merely because it contains a

child which is significant, or because the aggregation

of its children makes it significant? This leads to the

definition of HHHs given a fractionf: find nodes in the
hierarchy such that their HHH count exceeds fN,
where the HHH count is the sum of all descendant

nodes which have no HHH ancestors. This is best seen

through an example, as shown in Fig. 1c. Observe that

the node with total count 25 is not an HHH, since its

HHH count is only 5 (less than the threshold of 10): the

child node with count 20 is an HHH, and so does not

contribute. But the node with total count 60 is an HHH,

since its HHH count is 15. Thus the set of HHHs forms

a superset of the heavy hitters consisting of only data

stream elements, but a subset of the heavy hitters over

all prefixes of all elements in the data stream.

One approach to computing HHHs extends the

LossyCounting algorithm for frequency estimates
on streams proposed in [10], which involves maintain-
ing a set of samples from the input stream and associat-
ing a small amount of auxiliary information with each
sampled item e used for determining the lower- and

upper-bounds on the frequency of e. The space usage

of LossyCounting is Oð1E logðENÞÞ, where N is the

length of the stream (Better asymptotic space bounds

for the heavy hitter problem were obtained in [12], but

it was reported in [10] that LossyCounting often
stration of HHH concept (N = 100, f = 0.1).

1306H Hierarchical Heavy Hitter Mining on Streams
uses less space in practice). Online algorithms for finding
HHHs similarly sample the input stream, but maintain a
trie data structure T consisting of a set of tuples which

correspond to samples from the input stream and their

prefix relationships. There are two classes of these

algorithms, which are described as follows.

Using the ‘‘Full Ancestry’’ strategy for finding

HHHs, the data structure tracks information about a

set of nodes that vary over time, but which always form

a subtree of the full hierarchy. It enforces the property

that if information about a node in the hierarchy is

stored, then all of its ancestors are also stored. When a

new node is inserted, information stored by its ances-

tors is used to give more accurate information about

the possible frequency count of the node. This has the

twin benefits of yielding more accurate answers and

keeping fewer nodes in the data structure (since one

can more quickly determine if a node cannot be fre-

quent and so does not need to be stored). Thus, it can

be shown that the algorithm requirements are no

worse than that required for find heavy hitters at all

prefix lengths of maximum length h, which is

OðhE logðENÞÞ based on LossyCounting.
Observe that the previous strategy can be wasteful

of space, since it retains all ancestors of the fringe

nodes, even when these have low (even zero) count.

In the ‘‘Partial Ancestry’’ strategy, such low count

nodes can be removed from the data structure, thus

potentially using less space. Thus, it is no longer the

case that every prefix that is stored has all its ancestors

stored as well. Frequency bounds are obtained from the

closest existing ancestor of the newly inserted element.

While this strategy does not come with space and time

guarantees, its performance can be superior to the Full

Ancestry strategy in practice [2].

The Multi-Dimensional Hierarchical Heavy Hitters

problem is to find all items whose count exceeds a
Hierarchical Heavy Hitter Mining on Streams. Figure 2. Illu
given fraction, f, of the total count of all items, after

discounting the appropriate descendants that are

themselves HHHs. This still needs further refinement,

since in this setting nodes can have multiple parents

(i.e., the prefix containment forms a lattice rather

than a tree), so it is not immediately clear how to com-

pute the count of items at various nodes. In the one-

dimensional HHH problem, the semantics of what to

do with the count of a single element when it was rolled

up was clear: simply add the count of the rolled up

element to that of its (unique) parent. In the d-dimen-

sional case, adding the count of the rolled up element

to all its d parents runs the risk of overcounting. This

can be rectified via careful bookkeeping, as illustrated

in the example in Fig. 2. Consider a two-dimensional

domain, where the first attribute can take on values

a and b, and the second 1 and 2. Figure 2a shows a

distribution where (a, 1) has count 6, (a, 2) has count

3, (b, 1) has count 2, and (b, 2) has count 2. Moving up

the hierarchy on one or other of the dimensions yields

internal nodes: (a, ∗) covers both (a, 1) and (a, 2) and

has count 9; (∗, 2) covers both (a, 2) and (b, 2),

and has count 5. Setting f = 0.35 means that a count

of 5 or higher suffices, thus there is only one

Heavy Hitter over the leaves of the domain, as shown

in Fig. 2b. In the multi-dimensional case, since

one input item may contribute to multiple ancestors

becoming HHHs, each node therefore counts the con-

tributions of all its non-HHH descendants. Figure 2c

shows the result on the example: the node (∗, 2)

becomes an HHH, since it covers a count of 5. (∗, 1)

is not an HHH, because the count of its non-HHH

descendants is only 2. Note that the root node is not a

HHH since, after subtracting off the contributions

from (a, 1) and (∗, 2), its remaining count is only 2.

Online algorithms for finding multi-dimensional

HHHs in data streams were first proposed and
stration of HHH in two dimensions.

Hierarchical Memory System H 1307

H

analyzed in [3]; a complete analyis of space and time

requirements can be found in [5].

Note that the bounds on the frequency estimates

given by online HHH algorithms are for the total fre-

quencies, not the (discounted) HHH counts. By appro-

priate rescaling of e, one could find the discounted

counts accurately; however, this comes at a high price

for the required space, multiplying by a factor propor-

tional to the largest possible number of HHH descen-

dants. It is shown in [9] that such a factor is essentially

unavoidable: any approximation guarantee on dis-

counted counts of f-HHHs requires O(1∕fd+1) space.

Hence, only guarantees on the total frequencies, not

HHH counts, are provided by online algorithms.

Related follow-up work considered the problem of

HHH detection without compensating for the count of

HHH descendants [13]. The problem therefore sim-

plifies to finding all nodes in the lattice whose count is

above the threshold, that is, the heavy hitters over all

prefixes. In [1], a sketch-based approach was consid-

ered for finding one-dimensional HHHs requiring

OðhE lnð1=dÞÞ space and O(hln(1∕d)) time per update.
Key Applications
Hierarchical heavy hitters were implicitly studied in

[7,8], to find patterns of traffic (offline) over a multi-

dimensional hierarchy of source and destination ports

and addresses in what the authors call ‘‘compressed

traffic clusters.’’ Online HHHs were used for real-

time anomaly detection on IP data streams, again

based on source and destination ports and addresses

in [13]. A DDos detection system based on HHHs was

proposed in [12].
Experimental Results
Experiments reported in [5], based on an implementa-

tion of HHHs as a User Defined Aggregate Function

(UDAF) in the Gigascope data stream system (See [4]

for a description of Gigascope UDAFs), show that the

proposed online algorithms yielded outputs that were

very similar to their offline counterparts and signifi-

cantly better than that of heavy hitters on all prefixes.

The algorithms also require an order of magnitude less

space usage while giving competitive performance

compared with the heavy hitters approach. The Partial

Ancestry strategy is better when space usage is of

importance whereas the Full Ancestry strategy is better

when update time and output size is more crucial.
Cross-references
▶Heavy Hitters

▶Quantiles on Streams
Recommended Reading
1. Cheung-Mon-Chan P. and Clerot F. Finding hierarchical heavy

hitters with the count min sketch. In Proc. Int. Workshop on

Internet Rent, Simulation, Monitoring, Measurement, 2006.

2. Cormode G., Korn F., Muthukrishnan S., and Srivastava D.

Finding hierarchical heavy hitters in data streams. In Proc.

29th Int. Conf. on Very Large Data Bases, 2003, pp. 464–475.

3. Cormode G., Korn F., Muthukrishnan S., and Srivastava D.

Diamond in the rough: finding hierarchical heavy hitters in

multi-dimensional data. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2004, pp. 155–166.

4. Cormode G., Korn F., Muthukrishnan S., Johnson T.,

Spatscheck O., and Srivastava D. Holistic UDAFs at streaming

speeds. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2004, pp. 35–46.

5. Cormode G., Korn F., Muthukrishnan S., and Srivastava D.

Finding hierarchical heavy hitters in streaming data. ACM

Trans. Knowl. Discov. Data, 1(4), 2008.

6. Demaine E., López-Ortiz A., and Munro J.I. Frequency estima-

tion of internet packet streams with limited space. In Proc.

European Symp. on Algorithms, 2002, pp. 348–360.

7. Estan C., Savage S., and Varghese G. Automatically inferring pat-

terns of resource consumption in network traffic. In Proc. ACM

Int. Conf. of the on Data Communication, 2003, pp. 137–148.

8. Estan C. and Magin G. Interactive traffic analysis and visualiza-

tion with Wisconsin netpy. In Proc. Int. Conf. on Large Installa-

tion System Administration, 2005, pp. 177–184.

9. Hershberger J., Shrivastava N., Suri S., and Toth C. Space com-

plexity of hierarchical heavy hitters in multi-dimensional data

streams. In Proc. ACM SIGACT-SIGMOD Symp. on Principles

of Database Systems, 2005, pp. 338–347.

10. Manku G.S. and Motwani R. Approximate frequency counts

over data streams. In Proc. 28th Int. Conf. on Very Large Data

Bases, 2002, pp. 346–357.

11. Misra J. and Gries D. Finding repeated elements. Sci. Comput.

Program., 2:143–152, 1982.

12. Sekar V., Duffield N., Spatscheck O., van der Merwe J., and

Zhang H. LADS: large-scale automated DDoS detection system.

In Proc. USENIX Annual Technical Conf., General Track, 2006,

pp. 171–184.

13. Zhang Y., Singh S., Sen S., Duffield N., and Lund C. Online

identification of hieararchical heavy hitters: algorithms, evalua-

tion and applications. In Proc. Internet Measurement Confer-

ence. Taormina, 2004, pp. 135–148.
Hierarchical Memory System

▶Memory Hierarchy

1308H Hierarchical Regular-Decomposition Structures
Hierarchical Regular-Decomposition
Structures

▶Quadtrees (and Family)
Hierarchical Spatial Indexes

▶Quadtrees (and Family)
Hierarchical Storage Management

▶ Storage of Large Scale Multidimensional Data
Hierarchical Visualization

▶Visualizing Hierarchical Data
Hierarchies

▶ Specialization and Generalization
Hierarchy

TORBEN BACH PEDERSEN

Aalborg University, Aalborg, Denmark

Definition
A hierarchy is a structure specifying the containment

relationships of a number of values (or nodes or ele-

ments). A hierarchy has a single root (or top or ALL)

value. A value in a hierarchy may be linked to one or

more children and a non-top value is linked to one or

more parents. The links between values thus specify

the containment structure. Hierarchies are essential

for specifying dimensions in multidimensional cubes.

Key Points
The notion of a dimension is an essential and distin-

guishing concept for multidimensional cubes. Dimen-

sions are used for two purposes: the selection of data

and the grouping of data at a desired level of detail. As
an example, a three-dimensional cube for capturing

product sales may have a Product dimension, a Time

dimension, and a Store dimension. The Product di-

mension captures information about the product sold,

such as textual description, color, weight, etc., as well

as groupings of products (product groups, product

families, departments, etc.). The root value, represent-

ing ‘‘All products’’ then has store departments such

as ‘‘Food’’ and ‘‘Electronics’’ as children, ‘‘Food’’ has

product families such as ‘‘Dairy,’’ ‘‘Meat,’’ etc., as

children and so on.

A hierarchy is typically organized into a number

of levels, each of which represents a level of detail that is

of interest to the analyses to be performed. In the

example above, the levels could be ALL Products,

Departments, Product Families, Product Groups and

Products. The instances of the dimension, e.g., ‘‘Food’’

are typically called dimension values. Each such value

then belongs to a particular level. The hierarchy is

used intensively, e.g., when performing On-Line

Analytical Processing (OLAP). Here, data is explored

by either moving up in the hierarchy to get a better

overview (rollup) or moving down in the hierarchy

to get more details (drilldown).

In some cases, it is advantageous for a dimension

to have multiple hierarchies defined on it. For example,

a Time dimension may have hierarchies for both

Fiscal Year and Calendar Year defined on it. Multiple

hierarchies share one or more common lowest level(s),

e.g., Day and Month, and then group these into mul-

tiple levels higher up, e.g., Fiscal Quarter and Calendar

Quarter to allow for easy reference to several ways

of grouping. Most multidimensional models allow

multiple hierarchies. A dimension hierarchy is defined

in the metadata of the cube, or the metadata of

the multidimensional database, if dimensions can

be shared.

Most models require dimension hierarchies to form

balanced trees. This means that the dimension hierar-

chy must have uniform height everywhere, e.g., all

departments, even small ones, must be subdivided

into Product families (and so on, all the way down to

Products). If the hierarchy is not balanced like this, it is

referred to as a non-onto or unbalanced hierarchy [2,3].

Additionally, direct links between dimension values can

only go between immediate parent-child levels, and not

jump two or more levels. For example, all cities are first

grouped into states and then into countries, so cities

cannot be grouped directly under countries (as is the

High Dimensional Indexing H 1309

H

case in Denmark which has no states). If such non-

immediate links occur in the hierarchy, it is called a

non-covering or ragged hierarchy [2,3], Finally, each

non-top value has precisely one parent, e.g., a product

must belong to exactly one product group. This may

not always be desirable, e.g., it would be natural to

put skimmed milk into both the ‘‘Diet’’ and ‘‘Dairy’’

product groups. If the hierarchies do not form bal-

anced trees, this affects the so-called summarizability of

the data, which means that special care must be taken

to obtain correct aggregation results [1].

Cross-references
▶Dimension

▶Multidimensional Modeling

▶On-Line Analytical Processing

▶ Summarizability

Recommended Reading
1. Lenz H. and Shoshani A. Summarizability in OLAP and

statistical data bases. In Proc. 9th Int. Conf. on Scientific and

Statistical Database Management, 1997, pp. 39–48.

2. Pedersen T.B., Jensen C.S., and Dyreson C.E. A foundation

for capturing and querying complex multidimensional data.

Inf. Syst., 26(5):383–423, 2001.

3. Thomsen E. OLAP Solutions: Building Multidimensional

Information Systems. Wiley, New York, NY, 1997.
High Dimensional Indexing

CHRISTIAN BÖHM, CLAUDIA PLANT

University of Munich, Munich, Germany

Synonyms
Indexing for similarity search

Definition
The term High Dimensional Indexing [6,9] subsumes

all techniques for indexing vector spaces addressing pro-

blems which are specific in the context of high dimen-

sional data spaces, and all optimization techniques to

improve index structures, and the algorithms for various

variants of similarity search (nearest neighbor, reverse

nearest neighbor queries, range queries, similarity joins

etc.) for high dimensional spaces. The well-knownCurse

of Dimensionality leads to a worsening of the index

selectivity with increasing dimensionality of the data

space, an effect which already starts at dimensions of
10–15, also depending on the size of the database

and the data distribution (clustering, attribute depen-

dencies). During query processing, large parts of con-

ventional hierarchical indexes (e.g., R-tree) need to be

randomly accessed, which is by a factor of up to 20 more

expensive than sequential reading operations. Therefore,

specialized indexing techniques for high dimensional

spaces include e.g., ideas to scale up sequential scans,

hybrid approaches combining elements of hierarchical

and scan-based indexes, dimensionality reduction and

data compression.

Historical Background
One of the first indexing techniques which is nowadays

wide spread in commercial databases is the B-tree. One

dimensional data items, so-called keys, are stored in a

hierarchical balanced search tree. Since the height of a

B-tree is bounded above by O(logN), the index pro-

vides retrieval in logarithmic time complexity.

Approaches to extend the B-tree to higher dimensions

include the R-tree [12], which has been originally

designed for two dimensional spatial objects (poly-

gons). The R-tree consists of two types of nodes: direc-

tory and data pages. The directory pages contain

rectangles (or hyper-rectangles for higher dimensional

data) which are the minimum bounding rectangles

(MBR) for the underlaying sub-trees, all the way

down to the data pages at the leaves. The hyper-rec-

tangles may overlap, and also the directory does not

need to cover the whole data space. This implies that

the search is not guaranteed to be restricted to one

single path from the root to a leave as in the B-tree.

However, since the R-tree is a balanced search tree and

algorithms for tree construction and restructuring are

designed to minimize overlap, search operations on

low dimensional data can be performed in almost

logarithmic time. Various variants of the R-tree, such

as the R*-tree have been proposed.

Foundations
The central problem of similarity search in high

dimensional spaces is the deterioration of the index

selectivity with increasing dimensionality of the data

space, an effect which is essentially inherent to any kind

of index structure. Conventional hierarchical index

structures achieve impressive performance gains over

sequential scan on low to medium dimensional data

by excluding large parts of the data contained in sub-

trees which do not need to be visited. Special properties

1310H High Dimensional Indexing
of high dimensional spaces, often subsumed by the term

Curse of Dimensionality cause that conventional hierar-

chical indexes break down in performance on high

dimensional data. With increasing dimensionality,

more points are situated at the boundaries of the data

space and the distances between points assimilate.

During retrieval, large parts of the index have to be

accessed. In the extreme case of very high dimensionality

(d ! 1) it is therefore obvious that no indexing

technique is able to outperform the simplest proces-

sing technique for similarity queries, the sequential

scan. This fact has been discussed in the context of

cost models and of various indexing methods [3,7,19]

and has also solicited a scientific discussion of the

usefulness of similarity queries per se [6]. However,

when, and to which extent the dimensionality curse

occurs, depends on the size of the database and various

other parameters such as the statistical distribution of

the data, correlations between the single attributes (i.e.,

whether the complete data space is covered or the data

reside in an arbitrarily complex subspace), and cluster-

ing (i.e., if there are clearly distinguishable groups of

similar objects in the database). Many indexing meth-

ods can be successfully applied in moderately high

dimensions, and many dedicated indexing methods are

able to index data spaces of a dimensionality which is

considerably higher than expected. In order to achieve

the goal of efficiently indexing (moderately) high di-

mensional spaces, the well-known proposals to high-

dimensional indexing all apply a combination of tricks

which can be categorized into the following classes:

1. Dimensionality reduction

2. Data compression

3. Optimized i/o schedules (page size optimization

and fast index scan)

4. Hierarchy flattening

5. Optimizing of the shape of page regions

6. Clustering

In the following, the most relevant approaches to High

Dimensional Indexing are described in chronological

order.

TV-Tree

High dimensional real data often exhibits a much

lower intrinsic dimensionality. In this case, principal

component analysis leads to a few highly loaded com-

ponents almost totally covering the variance in the

data. The TV-tree [16] exploits the fact that those top
ranked components are highly selective dimensions

for similarity search, whereas the remaining dimen-

sions are of minor importance. Therefore, only the

most selective components are used for pruning during

query processing. Since irrelevant sub-trees should

be excluded as early as possible, these components,

called active dimensions are placed at the topmost

levels of the index. A region of the TV-tree is described

by a sphere in the active dimensions. The remaining

dimensions may be active at lower levels of the index or

not selective enough for query processing. The authors

report a good speed-up in comparison with the R*-tree

if the data can be effectively reduced by PCA, Fourier

transform etc. On uniform or other real data not

amenable to PCA, the X-tree outperforms the TV-tree.

The main contribution to High Dimensional

Indexing is the implicit dimensionality reduction.

Depending on the depth of the tree, only the first few

dimensions are considered in the directory structure.

Further, in these considered dimensions, the pages are

approximated by bounding spheres which are more

suitable for Euclidean queries.

SS-Tree

The SS-tree [20] also uses spheres instead of bounding

rectangles as page regions. For efficiency, the spheres

are not minimum bounding spheres. Rather, the cen-

troid of the stored points is used as center for the

sphere and the radius is chosen such that all objects

are included. The region description consists of the

centroid and the radius and thus allows efficient prun-

ing. The SS-tree is suitable for all kinds of data dis-

tributions and outperforms the R⋆-tree by a factor of

2, which is mainly due to the fact that spherical page

regions are, as mentioned, more suitable to support

Euclidean queries. In addition, the algorithms for tree

construction and maintenance are highly efficient and

also very effective for low to medium dimensional

data. On high dimensional data, the SS-tree encounters

similar problems as the R-tree family. Compared to

the minimum bounding rectangles (MBR) of R-trees,

spherical page regions are even more difficult to split

in an overlap-free way. This problem is tackled by the

SR-tree [15] which uses a combination of a rectangle

and a sphere as page region.

X-Tree

In contrast to the TV-tree and the SS-tree, the X-tree

[5] is a high-dimensional index structure which is

High Dimensional Indexing H 1311

H

more closely related to the R-tree, and, in particular, to

the R*-tree. It is the first technique which introduces

the ideas of flattening the hierarchies of the directory

and of enlarging the sizes of directory pages, but in

contrast to the techniques described in the next sec-

tion, this idea was not inspired by a cost analysis but

simply from the observation that it can be difficult

to split directory nodes (particularly of the higher

directory levels) in an overlap-free way. The regions

of the child nodes of such directory nodes are axis-

parallel rectangles, which have, themselves, been creat-

ed in a recursive process of splitting. Typically, only the

first split in the split history of the child nodes is a good

split decision for the parent node. Therefore, each

directory node stores this split history of its children

and, thus, tries to imitate the splits of its children. If

this imitation would result in an unbalanced tree, the

split is avoided and, instead, a so-called supernode is

created, i.e., a node with an enlarged size and capacity.

Cost Model Based Optimization Techniques

In [3,7], a cost model for vector space index structures

with particular emphasis on high dimensional spaces

was proposed. The main idea is to estimate the average

size of a page region and of a query and to form the

Minkowski sum of these two geometric objetcs which

has been shown to be a measure of the probability of a

page access. To take effects in high-dimensional spaces

into account, two concepts were additionally included

into the cost model, the boundary effect and the fractal

dimension. The boundary effect means that for high-

dimensional spaces typically large parts of a query sphere

and of the Minkowski sum are outside the covered data

space. The fractal dimension covers the sparsity of the

data space. Typically, a high dimensional space is not

uniformly and independently in all dimensions covered

by data objects. Rather, some of the attributes are depen-

dent on each other, and, therefore, only subspaces of

lower dimensionality (not necessarily linear subspaces)

are populated. The intrinsic dimensionality of the data

can be formalized by the fractal dimension.

It is important to optimize various parameters of

an index using a cost model in order to make it com-

petitive. For instance, in [8], it was proposed to opti-

mize the page size of data pages of the index according

to the cost model. To do this automatically is particu-

larly important because data sets with a large intrinsic

dimensionality cause scanning of large parts of the

index. If small page sizes (such as 4 KB) are used in
this case, the random accesses cause a large I/O load,

and an unoptimized index is much slower than

sequential data processing. In contrast, if the intrinsic

dimensionality is small, then large page sizes lead

to unnecessarily large reading operations. Carefully

optimized page sizes outperform sequential scanning

and non-optimized indexes for most of the data sets

and tie with the competitors in the worst case. The

dynamic page size optimization allows the automatic

adaptation of the page size even if the data distribution

of the data set changes over time. Moreover, it is

possible to use different page sizes for different parts

of the index structure, if the index stores groups of data

with different characteristics.

Another example of the successful application of a

cost model is tree striping [4], where the data objects

are vertically decomposed into sub-vectors which are

stored in separate search trees. The dimensionality of

the sub-vectors (and, inversely, the number of index

structures to store them) is an optimization task which

is important, because the unnecessary decomposition

in too many, small sub-vectors causes a large overhead

in the final merging of the results, whereas no decom-

position or an insufficient decomposition the query

processing inside a single index is too expensive due

to the curse of dimensionality. Again, a cost model can

decide an optimal dimensionality.

Pyramid Technique

The Pyramid Technique [1] is a one-dimensional

embedding technique, that means, it transforms the

high-dimensional objects into a single-dimensional

space which can be efficiently indexed using B-trees,

for instance. In contrast to most previous embedding

techniques which are based on space-filling curves, the

Pyramid Technique does not rely on a recursive schema

of space partitioning. In contrast, the data space

is partitioned into 2 	 d hyper-pyramids which share

the origin of the data space (which can be chosen as

the center point of the data set) as top point and have

each an individual (d � 1)-dimensional basis area

(cf. the four pyramids in Fig. 1 p = 0..3). The pyramids

are systematically numbered which forms the first part

of the embedding key (a natural number p). The sec-

ond part is the distance (with respect to the maximum

metric) from the origin (a positive real number r). The

embedding key can be formed as an ordered pair

k = (p, r), or, equivalently, if the maximum of all

r-values (rmax) is known, one single embedding key

1312H High Dimensional Indexing
k0 = rmax 	 p + r can be formed. In both cases, a

d-dimensional range query can be translated into a

set of search intervals on the search keys. The number

of intervals is at most 2 	 d because the query object

can at most have one intersection with each of the

pyramids. Since nearest neighbor queries can be

transformed into range queries (which requires a set

of at most two one-dimensional ranking processes per

pyramid) it is also possible to evaluate nearest neigh-

bor queries. The Pyramid Technique is in general not

limited to a particular metric, but the schema of space

partitioning makes it particularly suited for queries

using the maximum metric. The Pyramid Technique

has inspired a number of other techniques such as the

Onion Technique [10] or Concentric Hyperspaces [11]

and many others which focus on different metrics

including the Euclidean metric.
High Dimensional Indexing. Figure 1. Pyramid

technique.

High Dimensional Indexing. Figure 2. Schematic view of ve
VA-File

As an alternative to tree based indexing techniques,

the VA-file (Vector Approximation File [6]) has been

designed to speed up the linear scan. The basic idea is

to store compact approximations of the high dimen-

sional feature vectors in the so-called approximation

file which is small enough to enable a fast linear scan

during query processing. The approximations are

derived by dividing each dimension of the data space

into equally populated intervals. Thus, the data space is

divided into hyper-rectangular cells. Each cell is allo-

cated by a bit string composed of a fixed number of bits

per dimension. As approximation for all contained

points, this bit string is stored in the approximation

file. The principle of vector quantization is visualized

in Fig. 2a. In this example, two bits are assigned to each

dimension. While the approximation file is scanned,

upper and lower bounds on the distances from the

query to the approximations dapx are derived and

refined. As a result, only very few approximations

have to be further checked for answer candidates,

which requires random accesses. Extensions to the

VA-file e.g., include the parallel VA-file [18] originally

designed for parallel nearest neighbor search in large

image collections and the kernel-VA-file [13] for com-

plex, kernel supported distance metrics. Due to global

quantization, the VA-file is especially suitable for uni-

formly distributed data. For clustered data, hierarchi-

cal techniques show superior performance.

IQ-Tree

With the IQ-tree [2], the idea of quantizing the data

using a grid has been integrated into a hierarchical

indexing method. In the IQ-tree, every data page has

two versions, one which contains the data points in

a compressed way, and one which contains the exact
ctor quantization.

High Dimensional Indexing H 1313

H

information. In contrast to the VA-file, each page is

quantized independently, and this independent quan-

tization gives the structure its name. The quantiza-

tion grid is not based on quantiles but is a regular

grid partition of the rectangular page region. In the

IQ-tree, it was shown that quantiles are not necessary

because the page regions already serve a sufficient

adaptation to the actual data distribution, and storing

individual quantiles for each page would result in

a prohibitive storage overhead. In contrast to the

VA-file, the resolution of the grid is not determined

experimentally but dynamically optimized using a cost

model. In the IQ-tree, the actual directory is non-

hierarchic and contains only one level. Taken together,

the IQ-tree consists of three levels, the directory level,

the compressed data level and the uncompressed data

level. The vector quantization principle is illustrated

in Fig. 2b. When considering a query object q and an

arbitrary database object, there are two lower bound-

ing approximations of the exact distance dexact, the

distance to the minimum bounding rectangle dmbr

which can be determined from the directory and the

distance to the grid cell (dapx) which can be derived

from the compressed data level.

Apart from the idea of independent quantization,

the IQ tree contains the idea of the Fast Index Scan

(FIS). After scanning of the directory, it can be decided

for every page, whether it is certainly needed, certainly

excluded, or has some probability to be needed for

a given nearest neighbor query. The probability can

again be estimated using a cost model. From this

probability, a query processing algorithm can derive

optimal schedules of pages, i.e., pages which have

neighboring disk addresses, can be called in together

in a single I/O operation if they have both high prob-

abilities. Depending on data and query characteristics,

the pages of the compressed data level can either be

accessed by random accesses or in a more sequential

style. Another related approach, also designed to allow

a flexible adaptation of the height of the directory

to the current data distribution is the A-tree [17].

iDistance

iDistance [21] combines a one-dimensional embed-

ding technique with clustering. The embedding is

obtained by expressing the similarity ratios in high

dimensional space in terms of distances to reference

points which can be stored in a single dimensional

index. More precisely, the data space is first split into
partitions. As a second step, a reference point is select-

ed for each partition. For all data objects the distances

to their reference points are stored in a B+-tree. The

performance of the index strongly depends on an ap-

propriate partitioning and on the strategy how to select

the reference points. In the original paper, the authors

proposed two variants of partitioning: The straightfor-

ward approach of equal data space partitioning is

especially suitable for uniformly distributed data. For

clustered data the partitions can be determined by an

arbitrary clustering algorithm, a simple sampling based

method is proposed in the paper. Often it is favorable

to select the centroid of a partition as reference point,

however selecting an edge point may help to reduce

overlap.

The most important strategies to cope with the

problems of high dimensional spaces can be subsumed

by clustering and mapping to one dimensional space.

During query processing, the maximum distance be-

tween the query point and the points contained in each

partition is used for pruning. The single dimensional

space of distances can be very efficiently searched sup-

ported by the B+-tree. However, in high dimensional

data, the distances to reference points are often not

selective and there are no clusters in the full dimen-

sional space such that large parts of the index need to

be accessed. But many real world data sets exhibit more

selective subspaces. Therefore in [14] a subspace clus-

tering step to identify local correlations in the data is

applied before indexing.
Key Applications
High dimensional indexing is important for similarity

search systems in various application areas such as mul-

timedia, CAD, systems biology, medical image analysis,

time sequence analysis and many others. Complex

objects are typically transformed into vectors of a high-

dimensional space (feature vectors), and the similarity

search thereby translates into a range or nearest neighbor

query on the feature vectors. High-dimensional feature

vectors are also required formore advanced data analysis

tasks such as cluster analysis or classification.
Cross-references
▶Curse of Dimensionality

▶Dimensionality Reduction

▶ Indexing Metric Spaces

▶Nearest Neighbor Query

1314H High-Dimensional Clustering
Recommended Reading
1. Berchtold S., Böhm C., and Kriegel H.-P. The pyramid-

technique: towards breaking the curse of dimensionality. In

Proc. ACM SIGMOD Int. Conf. on Management of Data,

1998, pp. 142–153.

2. Berchtold S., Böhm C., Jagadish H.V., Kriegel H.-P., and Sander

J. Independent quantization: an index compression technique

for high-dimensional data spaces. In Proc. 16th Int. Conf. on

Data Engineering, 2000, pp. 577–588.

3. Berchtold S., Böhm C., Keim D.A., and Kriegel H.-P. A cost

model for nearest neighbor search in high-dimensional data

space. In Proc. 16th ACM SIGACT-SIGMOD-SIGART Symp.

on Principles of Database Systems, 1997, pp. 78–86.

4. Berchtold S., Böhm C., Keim D.A., Kriegel H.-P., and Xu X.

Optimal multidimensional query processing using tree striping.

In Proc. 2nd Int. Conf. Data Warehousing and Knowledge

Discovery, 2000, pp. 244–257.

5. Berchtold S., Keim D.A., and Kriegel H.-P. The x-tree : an index

structure for high-dimensional data. In Proc. 22nd Int. Conf. on

Very Large Data Bases, 1996, pp. 28–39.

6. Beyer K.S., Goldstein J., Ramakrishnan R., and Shaft U. When

is ‘‘nearest neighbor’’ meaningful? In Proc. 7th Int. Conf. on

Database Theory, 1999, pp. 217–235.

7. Böhm C. A cost model for query processing in high dimensional

data spaces. ACM Trans. Database Syst., 25(2):129–178, 2000.

8. Böhm C. and Kriegel H.-P. Dynamically optimizing high-

dimensional index structures. In Advances in Database Technol-

ogy, Proc. 7th Int Conf on Extending Database Technology,

2000, pp. 36–50.

9. Böhm C., Berchtold S., and Keim D.A. Searching in high-

dimensional spaces: Index structures for improving the per-

formance of multimedia databases. ACM Comput. Surv.,

33(3):322–373, 2001.

10. Chang Y.-C., Bergman L.D., Castelli V., Li C.-S., Lo M.-L.,

and Smith J.R. The onion technique: indexing for linear optimi-

zation queries. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2000, pp. 391–402.

11. Ferhatosmanoglu H., Agrawal D., and Abbadi A.E. Concentric

hyperspaces and disk allocation for fast parallel range searching.

In Proc. 15th Int. Conf. on Data Engineering, 1999, pp. 608–615.

12. Guttman A. R-trees: a dynamic index structure for spatial

searching. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1984, pp. 47–57.

13. Heisterkamp D.R. and Peng J. Kernel vector approximation files

for relevance feedback retrieval in large image databases. Multi-

med. Tools Appl., 26(2):175–189, 2005.

14. Jin H., Ooi B.C., Shen H.T., Yu C., and Zhou A. An adaptive

and efficient dimensionality reduction algorithm for high-

dimensional indexing. In Proc. 19th Int. Conf. on Data Engi-

neering, 2003, pp. 87–98.

15. KatayamaN. and Satoh S. The SR-tree: an index structure for high-

dimensional nearest neighbor queries. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1997, pp. 369–380.

16. Lin K.-I., Jagadish H.V., and Faloutsos C. The tv-tree: an index

structure for high-dimensional data. VLDB J., 3(4):517–542, 1994.

17. Sakurai Y., Yoshikawa M., Uemura S., and Kojima H. The A-tree:

an index structure for high-dimensional spaces using relative
approximation. In Proc. 26th Int. Conf. on Very Large Data

Bases, 2000, pp. 516–526.

18. Weber R., Böhm K., and Schek H.-J. Interactive-time similarity

search for large image collections using parallel VA-files. In Proc.

4th European Conf. Research and Advanced Tech. for Digital

Libraries. Springer, 2000, pp. 83–92.

19. Weber R., Schek H.-J., and Blott S. A quantitative analysis

and performance study for similarity-search methods in high-

dimensional spaces. In Proc. 24th Int. Conf. on Very Large Data

Bases, 1998, pp. 194–205.

20. White D.A. and Jain R. Similarity indexing with the ss-tree. In

Proc. 12th Int. Conf. on Data Engineering, 1996, pp. 516–523.

21. Yu C., Ooi B.C., Tan K.-L., and Jagadish H.V. Indexing the

distance: an efficient method to KNN processing. In Proc. 27th

Int. Conf. on Very Large Data Bases, 2001, pp. 421–430.
High-Dimensional Clustering

▶Document Clustering
Higher-Order Entity-Relationship
Model

▶ Extended Entity-Relationship Model
Histogram

QING ZHANG

CSIRO ICT Centre, Herston, QLD, Australia

Definition
Given a relation R and an attribute X of R, the domain

D of X is the set of all possible values of X, and a finite

set V ð� DÞ denotes the distinct values of X in an

instance r of R. Let V be ordered, that is:

V ¼ fvi : 1 � i � ng, where vi < vj if i < j. The in-

stance r of R restricted to X is denoted by T, and can be

represented as: T ¼ fðv1; f1Þ; 	 	 	 ðvn; fnÞg. In T, each vi
is distinct and is called a value of T; and fi is the

occurrence of vi in T and is called the frequency of vi,

T is called the data distribution. A histogram on data

distribution T is constructed by the following two steps.

1. Partitioning the values of T into bð� 1Þ disjoint

intervals (called buckets) – fBi : 1 � i � bg, such
that each value in Bi is smaller than that in Bi if

i < j.

Histograms on Streams H 1315

H

2. Approximately representing the frequencies and

values in each bucket.

Key Points
Histogram, as a summarization of the data distribu-

tion, has been successfully used by the query optimizer

in RDBMS for the past few decades. Due to its sim-

plicity and straightforwardness, it is also the most

popular data reduction technique for approximately

processing range aggregates. However, to find a good

histogram, which occupies a reasonable small storage

space yet can provide accurate approximations, is not

an easy work. The key issues in constructing a histo-

gram are: (i) how to partition the original data into

buckets, and (ii) how to approximate the original data

in each bucket.

Since a histogram only occupies limited storage space

in the system catalog, partition methods study how to

effectively partition the original data distribution, under

a fixed bucket number, to construct a histogram with

good performance. Different partition strategies can

greatly influence the histogram’s performance. Four

basic partition methods, based on different partition

goals, are: Equi-width, Equi-sum, Maxdiff, V-optimal

[3]. Empirical results indicate that in most applica-

tions, Maxdiff and V-optimal outperform Equi-width

and Equi-sum. V-optimal usually leads to more

accurate approximation than Maxdiff does. However,

the time complexity on constructing a V-optimal his-

togram seriously impedes its further application.

Techniques on approximately representing the val-

ues and frequencies in each histogram bucket usually

adopt the uniform spread and average frequency

assumptions. That is distinct values in a same bucket

are assumed to evenly span the bucket and every value

has a same frequency, the average frequency of the

bucket. More accurate approximation techniques on

the values and frequencies have also been proposed

in recent years, such as curve-fitting histogram [2] and

4-level tree index [1].

There exist other types of histograms in the literature,

such as spatio-temporal histogram, multi-dimensional

histogram, etc.

Cross-references
▶Approximate Query Processing

▶Data Reduction

▶Hierarchical Data Summarization

▶Quantiles on Streams
Recommended Reading
1. Buccafurri F., Rosaci D., Doutieri L., and Sacca D. Improving

range query estimation on histograms. In Proc. 18th Int. Conf. on

Data Engineering, 2002, pp 628–638.

2. Konig A.C. and Weikum G. Combining histograms and

parametric curve fitting for feedback-driven query result-size

estimation. In Proc. 25th Int. Conf. on Very Large Data Bases,

1999.

3. Poosala V., Ioannidis Y.E., Haas P.J., and Shekita E.J. Improved

histograms for selectivity estimation of range predicates. In

Proc. ACM SIGMOD Int. Conf. on Management of Data.

1996, pp. 294–305.
Histograms on Streams

MARTIN J. STRAUSS

University of Michigan, Ann Arbor, MI, USA

Synonyms
Piecewise-constant approximations

Definition
A B-bucket histogram of length N is a partition of the

set [0,N) of N integers into intervals [b0,b1) [[b1,b2)

[...[[bB�1,bB), where b0 = 0 and bB = N, together with

a collection of B heights hj, for 0 � j < B, one for each

bucket. On point query i, the histogram answer is hj,

where j is the index of the interval (or ‘‘bucket’’) con-

taining i; that is, the unique j with bj � i < bj+1. In

vector notation, wS is the vector that is 1 on the set S

and zero elsewhere and the answer vector of a histo-

gram is ~H ¼
P

0�j<B hjw bj ;bjþ1Þ½ .

A histogram, ~H , is often used to approximate

some other function, ~A, on [0,N). In building a

B-bucket histogram, it is desirable to choose B � 1

boundaries bj and B heights hj that tend to minimize

some distance, e.g., the sum square error
~A� ~H

�� ��2¼ P
i j ~A½i
 � ~H ½i
 j2.

The function~Amay be presented in a stream in one

of several ways. In many of these cases, it is infeasible to

produce a best histogram; instead, algorithms trade off

the representational accuracy of the histogram, the

time to process stream items, and the space used.

Historical Background
Fix a universe [0,N) = {0,1,2,...,N � 1} of N item

types, e.g., salaries. The goal is to summarize a vector
~A ¼ ~A 0½
;~A 1½
;:::;~A N � 1½

� �
over [0,N), in which~A½i

represents, e.g., the number of employees earning

1316H Histograms on Streams
salary i. To summarize ~A by a histogram, partition the

interval of indices (salaries) into B subintervals and

represent~A on interval j as a single number, hj, accord-

ing to some specification. For example, hj might be the

total number ~A[bj,bj+1) of items in the range (the total

number of employees whose salary i falls in the range

[bj,bj+1)). Alternatively, hj might be the normalized

expression
~A½bj ;bjþ1Þ
bjþ1�bj

(the average height of ~A), which

conveys the same information but is more natural below

to analyze, because the average height is the optimal

value of hj from the perspective of sum-square-error;

it will be the focus of this article. See Fig. 1.

Classical histograms include equi-width histo-

grams, in which the jth boundary bj, for 0 � j � B,

is fixed to be (the integer nearest to) jN ∕B. In many

circumstances, average height of all buckets can be

found efficiently and straightforwardly when the

bucket boundaries are fixed in advance.

Letting the bucket boundaries vary, however, can

lead to more accurate histograms. This generalization

can be handled [5] by dynamic programming when

time and space polynomial in N is allowed; i.e., for

non-streaming data. For each j � N and each k � B,

find the best k-bucket histogram on [0,j); this clearly

suffices to find the best B-bucket histogram on [0,N).

Observe that the best k-bucket histogram on [0,j)

consists of a (k � 1)-bucket histogram on [0,i) for

some i < j followed by a single bucket [i,j) with height
~A½i;jÞ
j�i

; this naturally leads to an algorithm that uses time

O(N2B), assuming one can find~A[i,j) in constant time.

The latter task may be accomplished by computing, in

time and space O(N) during preprocessing, the prefix
Histograms on Streams. Figure 1. A histogram of three

buckets for a frequency vector of data (jagged polygon).

Often the goal is to minimize the sum of square

between the data vector and histogram by choosing the

bucket boundaries and heights for the histogram.
array~P for~A defined by~P[0] = 0 and~P[j] =~P[j� 1] +
~A[j � 1] for j > 0. Thus~P[j] = ~A[0,j) = ~A[0] + ~A[1] +

...+ ~A[j � 1] so that ~A[i,j) = ~P[j] �~P[i] can be

computed in constant time.

Many variations of histograms are possible, includ-

ing equi-depth histograms, also known as quantile

summaries, in which bucket boundaries are fixed so

that the total number of items in each bucket is equal.

For example, a 4-bucket equi-depth histogram has

boundaries at the 25th, 50th, and 75th percentiles.

Neither quantiles nor other variations will be discussed

further in this article.

A fuller history of histogram research is available [4].

Foundations
There are several ways in which a data vector ~A can be

presented in a stream; this article discusses two. In the

ordered aggregate (or time-series) presentation, the al-

gorithm receives ~A[0],~A[1],~A[2],..., in order. In the

turnstile (or dynamic) presentation, ~A is implicit and

initially zero. The algorithm receives update commands

of the form (i, u), whose semantics is ‘‘add u to~A[i].’’ In

general, the update u may be negative or positive. More

efficient algorithms are possible if it is known that the

updates are positive (or merely that each ~A[i] is never

negative); that will not be discussed further here.

A class of algorithms for building near-optimal

histograms relies on the theory of Haar wavelets. As-

sume N is a power of 2 (which can be achieved, with-

out loss of generality, by padding ~A implicitly with

trailing zeros). A Haar wavelet is either the constant

vector f = N�1∕2w[0,N) or a vector of the form

cj;kðiÞ ¼

�
ffiffiffiffiffiffiffiffiffiffi
2j=N

p
; kN2�ðjþ1Þ �

i < ðk þ 1ÞN2�ðjþ1Þ;

þ
ffiffiffiffiffiffiffiffiffiffi
2j=N

p
; ðk þ 1ÞN2�ðjþ1Þ �

i < ðk þ 2ÞN2�ðjþ1Þ;

8>>>><
>>>>:

where 0� j< log2(N) and 0� k< 2j are integers. That

is, for some scale j, divide [0,N) into 2j subintervals of

length N2�j. Then cj,k takes the value �
ffiffiffiffiffiffiffiffiffiffi
2j=N

p
on

the left half of the kth interval and takes the value

þ
ffiffiffiffiffiffiffiffiffiffi
2j=N

p
on the right half. See Fig. 2.

One also writes c‘ to index all the cj,k and f by a

single index. A partial Haar wavelet representation is

S‘2L ~Ac‘

��
c‘, where :; :ih denotes the dot product and

L is a subset of [0, N).

In many streaming situations, it is not possible to

find the best B-bucket histogram ~Hopt for ~A. Instead,

Histograms on Streams. Figure 2. The four coarsest Haar

wavelets f,c0,0,c1,0, and c0,1 with normalization

modified for visibility.

Histograms on Streams H 1317

H

the goal will be to find a near-best histogram,
~H �~A

���� � 1þ eð Þ ~Hopt �~A
�� ��, where e is a user-

supplied accuracy parameter.

A class of algorithms for building near-optimal

histograms efficiently from streaming data proceeds

as follows.

1. Find the largest B1 Haar wavelet terms, where B1 �
(Blog(N) ∕ e)O(1). Let ~R be the resulting vector. That

is, let L1 be a set of size B1 consisting of the ‘’s that

maximize ~A;c‘

�� ���� and let~R be
P

‘2L1
c‘c‘, where c‘

is ~A;c‘

��
or a close enough approximation. How to

find ~R depends on the way that ~A is presented. The

representation ~R must be constructible with little

space and little per-item time, so that its construc-

tion fits within the constraints of a streaming algo-

rithm. Furthermore, a description of ~R has size j~Rj
that is small enough so that polynomial time in j~Rj is
also within the constraints of a streaming algorithm

for the overall problem.

2. Let ~Hrob ¼
P

‘2L2
c‘c‘, where L2 is a subset of L1,

chosen so that either ~R � ~Hrob

���� cannot be signifi-

cantly improved by enlarging L2 within L1 by Y(B

log(N)) wavelet terms (if there is such a set L2) or

L2 = L1 (otherwise). This is done greedily. Let L2 be

initially empty. Let L∗ be the set of Y(B log(N))

indices ‘ 2 L2 ∖ L1 with maximal jc‘j; if

S‘2L2[L�c‘c‘ �~R
���� is significantly less thanP

‘2L2
c‘c‘ �~R

�� ��, then put L2 ← L2 [L∗ and

repeat; otherwise, halt and return the current L2.

3. Let ~H be the best B-bucket histogram representation

for ~Hrob. This can be done efficiently using dynamic

programming, as above, noting that the boundaries

of ~H will be among the boundaries of ~Hrob. Output
~H as a near-best B-bucket histogram for ~A.
In the case of time-series data, the wavelet coefficients

can be found efficiently using a structure based on a

binary tree in which each leaf corresponds to an input

item ~A[i] and each internal node receives inputs

denoted x and y from its children, outputs y � x as a

wavelet coefficient (up to normalization) and passes

x + y as an input to the node’s parent. Note that, while

reading ~A[i], the algorithm only needs to instantiate

nodes on the path from the ith leaf to the root, for a

total of O(log(N)) space. Each of O(N) nodes performs

O(1) work, for a total ofO(N) time. The top B1 wavelet

coefficients can be collected from the tree’s output

stream in time O(N). It follows that the above algo-

rithm, on time-series data, takes total time

c1N þ ðB logðNÞ=EÞc2 and space ðB logðNÞ=EÞc3 , for

constants c1,c2, and c3. Using suitable buffering (with-

out significantly increasing the space requirements),

the per-item time is O(1).

In the case of dynamic data, updates to ~A positions

are transformed into updates to wavelet coefficients

of ~A and the large wavelet coefficients are tracked

using a sketch-based structure. An update (i,u), with

semantics ‘‘add u to ~A[i],’’ is regarded for analysis as

the vector udi that takes the value u at position i and

zero elsewhere. Using the tree structure of wavelets, it

can be shown that, for all i, di ¼
P

‘2Li
di;c‘h ic‘,

where Li has size O(log(N)) and can be constructed

quickly from i. Given update (u,i) to ~A, the algorithm

quickly forms updates u di;c‘i; ‘hð Þ to the vector ~̂A of

wavelet coefficients for each ‘ 2 Li. This algorithm

uses a synopsis data structure, called an ‘‘L2 count

sketch,’’ parametrized by N and Z, that efficiently

supports the following operations on an unordered

set S of size N:

1. UPDATES of the form ‘‘add x to a count C[i] for

item i 2 S.’’

2. Unparametrized ‘‘FIND’’ queries. The answer is a list

containing all j where C j½
2� �SiC i½
2.
3. ‘‘COUNT’’ queries about item i, for which the an-

swer is ~C i½
 such that ~C i½
 � C i½

��2� � Ckk 2

��� .

There are randomized implementations of L2 count

sketches [1,2] that need space (log(N) ∕Z)O(1) and time

(log(N) ∕Z)O(1) for either query. Such an L2 count

sketch with appropriate Z at least (Blog(N) ∕e)�O(1)

suffices to track the large wavelet terms needed for our

algorithm.With appropriate implementations, the algo-

rithmwill take space and per-item time (Blog(N) ∕e)O(1),
including time to build the histogram completely after

1318H Historical Algebras
each update. (The algorithm depends on a randomized

data structure. There is also a cost factor of O(log

(1 ∕d)) to achieve success probability 1 � d.)
Correctness of the algorithm depends on which of

the two conditions is in force when constructing ~Hrob.

If ~Hrob = ~R, then one can show that the wavelet coeffi-

cient magnitudes of~A decay essentially exponentially.

It follows that ~Hrob is a very good approximation to
~A, say, ~Hrob � A

�� �� � E
2

~Hopt � A
�� ��, where ~Hopt is the

optimal B-bucket histogram for ~A. In that case, since
~H is the optimal B-bucket histogram for ~Hrob,

~H �~A
�� �� � ~H � ~Hrob

�� ��þ ~Hrob �~A
�� ��

� ~Hopt � ~Hrob

�� ��þ ~Hrob �~A
�� ��

� ~Hopt �~A
�� ��þ 2 ~Hrob �~A

�� ��
� ð1þ EÞ ~Hopt �~A

�� ��:
Otherwise, if ~Hrob 6¼ ~R, it follows that ~Hrob can not be

much improved as an approximation to ~R whence it

cannot be much improved as an approximation to ~A

by refinements of B � 1 more bucket boundaries and

bucket heights that are optimal or close enough to

optimal so that the effect of approximation of bucket

heights can be ignored. In particular, the best linear

combination of ~Hrob and any B-bucket histogram is a

refinement of ~Hrob by at most B� 1 boundaries and so

is not much of an improvement over ~Hrob. Thus, as

in Fig. 3, there are two (near-) right angles at ~Hrob and

so ~H �~A
���� is (nearly) no worse than ~Hopt �~A

���� , i.e.,
~H �~A

���� � 1þ 2ð Þ ~Hopt �~A
���� , as desired.
Histograms on Streams. Figure 3. Illustration of

histograms in correctness discussion. On the left,
~~Hrob is

the best histogram for ~A in the linear span of ~Hrob and ~H;
there is a right angle as indicated. On the right, since
~Hrob � ~~Hrob, there are two near right angles at~Hrob. Since~H
is no farther from ~Hrob than ~Hopt is, it follows that ~H is
almost as close to ~A as ~Hopt is. (Because the angles at ~Hrob

are not quite right angles, it does not follow that
~A�~H

���� � ~A�~Hopt

�� ��, only that
~A�~H

���� � 1þ 2ð Þ ~A�~Hopt

�� ��.)
Key Applications
Histograms on streaming data can be used for select-

ivity estimation as part of query execution optimiza-

tion. They can also be used at the user level, e.g., for

visualization of data. Many of the techniques devel-

oped for stream processing also support the processing

of distributed databases.
Cross-references
▶Heavy Hitters

▶ Sketch

▶Wavelets on Streams
Recommended Reading
1. Cormode G. and Muthukrishnan S. An improved data stream

summary: the count-min sketch and its applications. In Proc. 6th

Latin American Symp. Theoretical Informatics, 2004, pp. 29–38.

2. Gilbert A., Guha S., Indyk P., Kotidis Y., Muthukrishnan S., and

Strauss M. Fast, small-space algorithms for approximate histo-

grammaintenance. In Proc. 34th Annual ACM Symp. on Theory

of Computing, 2002, pp. 389–398.

3. Guha S., Koudas N., and Shim K. Approximation and streaming

algorithms for histogram construction problems. ACM Trans.

Database Sys., 31(1):396–438, March 2006.

4. Ioannidis Y. The history of histograms (abridged). In Proc. 29th

Int. Conf. on Very Large Data Bases, 2003, pp. 19–30.

5. Jagadish H., Koudas N., Muthukrishnan S., Poosala V., Sevcik K.,

and Suel T. Optimal histograms with quality guarantees. In Proc.

24th Int. Conf. on Very Large Data Bases, 1998, pp. 275–286.

6. Muthukrishnan S. and Strauss M. Approximate histogram

and wavelet summaries of streaming data. In Data-Stream

Management – Processing High-Speed Data Streams. Springer,

New York (Data-Centric Systems and Applications Series), 2009.
Historical Algebras

▶Temporal Algebras
Historical Data Model

▶Temporal Data Models
Historical Data Models

▶Temporal Logical Models

History in Temporal Databases H 1319
Historical Database

▶Temporal Database
Historical Query Languages

▶Abstract Versus Concrete Temporal Query Lan-

guages

▶Temporal Query Languages
H

Historical Spatio-Temporal Access
Methods

▶ Indexing Historical Spatio-Temporal Data
History

▶ Provenance

▶ Provenance in Scientific Databases
History in Temporal Databases

CHRISTIAN S. JENSEN
1, RICHARD SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Time sequence; Time series; Temporal value; Temporal

evolution

Definition
The history of an ‘‘object’’ of the real world or of a

database is the temporal representation of that object.

Depending on the specific object, one can have attri-

bute histories, entity histories, relationship histories,

schema histories, transaction histories, etc.

Key Points
‘‘History’’ is a general concept, intended in the sense of

‘‘train of events connected with a person or thing.’’

In the realm of temporal databases, the concept of

history is intended to includemultiple time dimensions
as well as multiple data models. Thus one can have, e.g.,

valid-time histories, transaction-time histories, and

bitemporal histories. Also multi-dimensional histories

can be defined from mono-dimensional ones (e.g., a

bitemporal history can be seen as the transaction-time

history of a valid-time history).

The term ‘‘history,’’ defined formally or informally,

has been used in many temporal database papers, also

to explain other terms. For instance, salary history,

object history, and transaction history are all expres-

sions used in this respect.

Although ‘‘history’’ usually has to do with past

events, its use for the future—as introduced by, e.g.,

prophecies, science fiction, and scientific forecasts—

does not seem to present comprehension difficulties

(The adjective ‘‘historical’’ seems more problematic

for some). Talking about future history requires the

same extension of meaning as required by talking

about future data.

The synonym ‘‘temporal value’’ appears less general

than ‘‘history,’’ since it applies when ‘‘history’’ specia-

lizes into attribute history (value history), and it sug-

gests a single value rather than a succession of values

across time. The concept of a history is a slightly more

general than the concept of a time sequence. Therefore

the definition of ‘‘history’’ does not prevent defining

‘‘time sequence.’’

Since ‘‘history’’ in itself implies the idea of time,

the use of ‘‘history’’ does not require further qualifica-

tions as is needed in the case of ‘‘sequence’’ or ‘‘series.’’

In particular, ‘‘history’’ lends itself well to be used

as modifier, even though ‘‘time sequence’’ is an alter-

native consolidated term.

Cross-references
▶Bitemporal Relation

▶ Event

▶Temporal Database

▶Temporal Data Models

▶Temporal Element

▶Transaction Time

▶User-Defined Time

▶Valid Time
Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Temporal

Databases: Research and Practice, O. Etzion, S. Jajodia, S. Sripada

(eds.). LNCS 1399, Springer, 1998, pp. 367–405.

1320H Homogeneous Distributed Database Systems
Homogeneous Distributed Database
Systems

▶Distributed Database Systems
Homogeneously Distributed Data

▶Horizontally Partitioned Data
Homomorphic Encryption

NINGHUI LI

Purdue University, West Lafayette, IN, USA

Definition
Homomorphic encryption is a form of public-key

encryption where one can perform a specific algebraic

operation on the plaintext by performing a (possibly

different) algebraic operation on the ciphertext. For

example, knowing only C1 = e(x) and C2 = e(y), but
not x, y, one may be able to get e(x + y) by calculating

C1
 C2. A homomorphic encryption scheme allows a

third party to operate on encrypted values without

knowing the plaintext.

Key Points
Depending on the intended application, the homo-

morphic property can be seen as a positive or negative

attribute of the cryptosystem. Homomorphic encryp-

tion schemes are malleable by design. On the other

hand, homomorphic encryption algorithms have

found applications in a number of cryptographic pro-

blems, e.g., for secure voting and private information

retrieval. Some encryption schemes that have the

homomorphic property are given below.

RSA

If the public key is n, e, then the encryption of

a message x is given by eðxÞ ¼ xe mod n. The homo-

morphic property is property is as follows.

eðx1Þ 	 eðx2Þ ¼ xe1x
e
2 mod n

¼ ðx1x2Þe mod n

¼ eðx1 	 x2 mod nÞ
El Gamal

If the public key is p, g, h = ga, and a is the secret

key, then the encryption of a message x is

eðxÞ ¼ ðgr ; x 	 hrÞ. The homomorphic property is

property is as follows.

eðx1Þ 	 eðx2Þ ¼ ðgr1 ; x1 	 hr1Þðgr2 ; x2 	 hr2Þ
¼ ðgr1þr2 ; ðx1 	 x2Þhr1þr2Þ
¼ eðx1 	 x2 mod pÞ

Goldwasser-Micali

If the public key is the modulus n, and x is a quadratic

non-residue modulo n, then the encryption of a bit b is

eðbÞ ¼ r2xb mod n. The homomorphic property is

property is as follows.

eðb1Þ 	 eðb2Þ ¼ r21x
b1r22x

b2 ¼ ðr1r2Þ2xb1þb2

¼ eðb1 � b2Þ

where
L

denotes additionmodulo 2 (i.e., exclusive-or).
Paillier

If the public key is the modulus n and the base g, then

the encryption of a message x is eðxÞ ¼ gxrn mod n2.

The homomorphic property is property is as follows.

eðx1Þ 	 eðx2Þ ¼ ðgx1rn1Þðgx2rn2Þ ¼ gx1þx2ðr1r2Þn

¼ eðx1 þ x2 mod nÞ

Cross-references
▶Asymmetric Encryption

▶Data Encryption
Recommended Reading
1. Paillier P. Public-key cryptosystems based on composite

degree residuosity classes. In Advances in Cryptology: EURO-

CRYPT ’99. LNCS vol.1592, Springer, 1999, pp. 223–238.
Horizontal Fragmentation

▶Distributed Database Design

Horizontally Partitioned Data H 1321
Horizontally Partitioned Data

MURAT KANTARCIOGLU

University of Texas at Dallas, Dallas, TX, USA

Synonyms
Homogeneously distributed data
H

Definition
Data is said to be horizontally partitioned when several

organizations own the same set of attributes for differ-

ent sets of entities. More formally, horizontal parti-

tioning of data can be defined as follows: given a

dataset DB = (E, I) (e.g., hospital discharge data for

state of Texas) where E is the set of entities about

whom the information is collected (e.g., the set of

patients) and I is the set of attributes that is collected

about entities (e.g., set of features collected about

patients), DB is said to be horizontally partitioned

among k sites where each site owns DBi = (Ei, Ii),

1 � i � k if E = E1 [E2...[Ek, Ei \ Ej = ;, 1 � i 6¼ j

� k and I = I1 = I2...= In. In relational terms, with

horizontal partitioning, the relation to be mined is the

union of the relations at the sites.
Historical Background
Cheap data storage and abundant network capacity

have revolutionized data collection and data dissemi-

nation. At the same time, advances in data mining have

made it possible to learn previously unknown and

interesting knowledge from the collected data [4].

These developments have caused serious concerns

related to privacy implications of data mining. Espe-

cially, privacy issues related to sharing data for data

mining raised significant concerns [2]. To address

these privacy issues for the horizontally partitioned

data case, two different solution ideas were initially

proposed. In [1], perturbation-based techniques were

proposed to build decision trees in a privacy preserving

way. In perturbation based techniques data noise is

added to the data before it is revealed to the data

miner to protect individual values. In [10], the secure

multi-party computation based approach was pro-

posed to build decision trees. The definition of privacy

followed in this line of research is conceptually simple:

anything learned during the data mining process must
be derivable given one’s own data and the final result.

Following these initial works, many different privacy-

preserving data mining algorithms have been proposed

including association rule mining [10], naive bayes

classification [6], k-NN Classification [7], support vec-

tor machine classification [11], and k-means and EM

clustering [5,9].

Foundations
Most of the work in privacy preserving data mining on

horizontally partitioned data deals with the privacy

issues that arise in data collection and data sharing

for data mining. Due to privacy concerns, individuals

and organizations may not be willing to share their

data. For example, individuals may not be willing to

tell their incomes or companies may not be willing to

reveal statistics related to their core businesses. Fortu-

nately, in many cases, the information aggregated over

many individuals may not be considered a privacy

problem, and it can be assumed that the data mining

result itself is not a privacy violation. Therefore the

main goal is to learn the data mining results by disclos-

ing as little as possible about the data sources. Two

different solution ideas have been suggested for addres-

sing this privacy challenge. One idea is to apply data

perturbation techniques to privacy-sensitive data be-

fore data mining (e.g., [1]). The other solution idea is

to use cryptographic techniques to learn only the final

data mining result without revealing anything under

some cryptographic assumptions (e.g., [10]).

Key Applications
Since the horizontally partitioned data model assumes

that different sites collect the same set of information

about different entities, the solution techniques devel-

oped could be applied for any application that satisfies

this assumption. For example, it could be applied for

building fraud detection models using the data that is

collected by different credit card companies related to the

credit card transactions of different individuals.

The health-care industry provides one of the key

application areas for the methods developed for hori-

zontally partitioned data. For example, suppose the Cen-

ters for Disease Control (CDC), a public agency, would

like to mine health records to try to find ways to reduce

the proliferation of antibiotic resistant bacteria. Insur-

ance companies have data on patient diseases and pre-

scriptions. CDCmay try to mine association rules of the

1322H Horn Clause Query
form X) Y such that the Pr(X&Y) and Pr(Y jX) are
above thresholds. Mining this data for association rules

would allow the discovery of rules such as Augmen-

tin&Summer) Infection&Fall, i.e., people taking Aug-

mentin in the summer seem to have recurring infections.

The problem is that insurance companies will be

concerned about sharing this data. Not only must the

privacy of patient records be maintained, but insurers

will be unwilling to release rules pertaining only to

them. Imagine a rule indicating a high rate of compli-

cations with a particular medical procedure. If this

rule doesn’t hold globally, the insurer would like to

know this; they can then try to pinpoint the problem

with their policies and improve patient care. If the

fact that the insurer’s data supports this rule is

revealed (say, under a Freedom of Information Act

request to the CDC), the insurer could be exposed to

significant public relations or liability problems. This

potential risk could exceed their own perception of the

benefit of participating in the CDC study. In many

such cases, privacy preserving distributed data mining

techniques could be used to learn the final data min-

ing result without revealing anything other than the

result itself.
Future Directions
Although the provably secure distributed data mining

protocols that reveal nothing but the resulting data

mining model. This work still leaves a privacy question

open: Do the resulting data mining models inherently

violate privacy? This question is important because

the full impact of privacy-preserving data mining will

only be realized when there are guarantees that the

resulting models do not violate privacy as well. The

long list of possible privacy violations due to data

mining results given in [8] indicates that care must

be taken in revealing data mining results. Recently,

in [3], the authors gave a new decision tree learning

algorithm which guarantees that the data mining result

does not violate the k-anonymity of the individuals

represented in the training data. Although current

work in this area has made valuable contributions,

more research is needed to understand the privacy

implications of data mining results.
Cross-references
▶ Privacy-Preserving Data Mining

▶Vertically Partitioned Data
Recommended Reading
1. Agrawal R. and Srikant R. Privacy-preserving data mining.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2000, pp. 439–450.

2. Clifton C. and Marks D. Security and privacy implications of

data mining. In Proc. Workshop on Data Mining and Knowl-

edge Discovery, 1996, pp. 15–19.

3. Friedman A., Wolff R., and Schuster A. Providing k-anonymity

in data mining. VLDB J., 17(4):789–804, 2008.

4. Han J. and Kamber M. Data Mining: Concepts and Techniques.

Morgan Kaufmann, San Francisco, California, April 2000.

5. Jagannathan G. and Wright R.N. Privacy-preserving distributed

k-means clustering over arbitrarily partitioned data. In Proc.

11th ACM SIGKDD Int. Conf. on Knowledge Discovery and

Data Mining, 2005, pp. 593–599.

6. Kantarcioglu M. and Vaidya J. Privacy preserving naive bayes

classifier for horizontally partitioned data. In Proc. Workshop

on Privacy Preserving Data Mining, 2003.

7. Kantarcıoğlu M. and Clifton C. Privately computing a

distributed k-nn classifier. In Principles of Data Mining and

Knowledge Discovery, 8th European Conf, 2004, pp. 279–290.

8. Kantarcıoğlu M., Jin J., and Clifton C. When do data mining

results violate privacy? In Proc. 10th ACM SIGKDD Int. Conf.

on Knowledge Discovery and Data Mining, 2004, pp. 599–604.

9. Lin X., Clifton C., and ZhuM. Privacy preserving clustering with

distributed EM mixture modeling. Knowl. Inform. Syst.,

8(1):68–81, July 2005.

10. Lindell Y. and Pinkas B. Privacy preserving data mining.

In Advances in cryptology – CRYPTO 2000. Springer, Berlin,

2000, pp. 36–54.

11. Yu H., Jiang X., and Vaidya J. Privacy-preserving svm using

nonlinear kernels on horizontally partitioned data. In Proc.

2006 ACM Symp. on Applied Computing, 2006, pp. 603–610.
Horn Clause Query

▶Conjunctive Query
Hot Items

▶ Frequent Items on Streams
Hotspots

▶ Spatial Data Mining
HSM

▶ Storage of Large Scale Multidimensional Data

Human-centered Computing: Application to Multimedia H 1323
HTML Fragment

▶Web Views
Human Centered 38 H Human-
Computer Interaction Computing

▶Human-Computer Interaction
H
Human Factors

▶Human-Computer Interaction
Human Interface

▶Human-Computer Interaction
Human-centered Computing:
Application to Multimedia

NICU SEBE1,2, ALEJANDRO JAIMES
3

1University of Amsterdam, The Netherlands
2University of Trento, Trento, Italy
3Telefonica R&D, Madrid, Spain

Synonyms
HCC; Human-centered multimedia; HCM

Definition
Human-centered computing (HCC) is an emerging,

interdisciplinary academic field broadly concerned

with computing and computational artifacts as they

relate to the human condition.

HCC consists of a set of methodologies for design-

ing, implementing, and deploying computing in any

field that uses computing in any form. The definition

of HCC is purposely broad, and this reflects the

view that computing plays an active and crucial role

in a huge number of human activities.

One important area of HCC is concerned with the

design, implementation, and deployment of computing
systems or devices in everyday environments. In such

cases, it is desirable for HCC approaches to:

� Integrate input from different types of sensors and

communicate through a combination of media as

output.

� Act according to relevant social and cultural

contexts.

� Be useful to diverse individuals.

In general, HCC methodologies guide the design of

effective computer systems taking into account per-

sonal, social, and cultural aspects. The field of study,

therefore, includes topics such as information design,

human-information interaction, human-computer

interaction, and human-human interaction. Additional-

ly, it includes topics that are not directly related to inter-

action (algorithms, data collection and analysis, system

design, etc.). Of particular interest in HCC is a critical

analysis of the relationships between computing technol-

ogy, society, and culture – so works in fields such as new

media art also form part of HCC.

The distinction between computing and multi-

media computing is blurry but in spite of this, the

main human-centered activities in multimedia can be

identified as follows [6]: media production, annota-

tion, organization, archival, retrieval, sharing, analysis,

and communication. The above activities can in turn

be clustered into three large activity areas: production,

analysis, and interaction.

Historical Background
Discussions about HCC have taken place over several

years [5,7,16,20]. HCC draws from concepts and re-

search in the humanities and social sciences (cognitive

psychology, sociology, anthropology, philosophy, in-

formation sciences, and several others), as well as

from established and emerging technical and interdis-

ciplinary fields (HCI, computer-supported cooperative

work (CSCW), user-centered design (UCD) [11], ubiq-

uitous computing, artificial intelligence, new media

art, etc.).

Although it is difficult to quantify the contribu-

tions of various fields to HCC, it is generally acknowl-

edged that researchers and practitioners in HCI, UCD,

and CSCW have made many important contributions

to HCC.

User-centered design can be characterized as a

multistage problem-solving process that requires

designers not only to analyze and foresee how users

1324H Human-centered Computing: Application to Multimedia
are likely to use an interface but also to test the validity

of their assumptions with regard to user behavior in

the real world [15]. CSCW, on the other hand, com-

bines the understanding of the way people work in

groups with the enabling technologies of computer

networking and associated hardware, software, ser-

vices, and techniques [4].

While many of the topics covered by UCD

and CSCW are relevant to HCC, the scope of

Human-centered computing is much broader, cover-

ing more than the traditional areas of usability engi-

neering, HCI, and human factors, which are primarily

concerned with user interfaces or user interaction [8].

Compared to HCI, HCC has a twofold perspective

[20]:

� HCC is ‘‘conceived as a theme that is important

for all computer-related research, not as a field that

overlaps or is a subdiscipline of computer science.’’

� HCC acknowledges that ‘‘computing connotes

both concrete technologies (that facilitate various

tasks) and a major social and economic force.’’

HCC is not to be confused with human-based

computation [3], a technique also known as interactive

evolutionary computation first developed in the early

1990s which puts the human at the center, but in a

different way. In traditional computation, a human

provides a formalized problem description to a com-

puter and receives a solution to interpret. In human

computation, the roles are reversed: the computer asks

a person or a large number of people to solve a prob-

lem, then collects, interprets, and integrates their solu-

tions. In other words, the computer ‘‘asks’’ the human

to do the work it cannot do. This is done as a way to

overcome technical difficulties: instead of trying to get

computers to solve problems that are too complex, use

human beings. In human computation the human

helps the computer solve difficult problems. In HCC,

the goal is to consider human abilities in creating,

developing, and deploying systems or devices that use

computing.

Although HCC and human-based computation

approach computing from two different perspectives,

they both try to maximize the synergy between human

abilities and computing resources. Work in human

computation can therefore be of significant impor-

tance to HCC. On one hand, data collected through

human computation systems can be valuable for
developing machine-learning models. On the other

hand, it can help in better understanding of human

behavior and abilities, again of direct use in HCC

algorithm development and system design.
Foundations
A human-centered approach to multimedia starts with

a deep understanding of human abilities and behavior

in particular socio-cultural contexts. When human

interaction is part of the computing process, HCM

methodologies must consider how human beings

understand and interpret multimedia signals at the

perceptual, cognitive, and affective levels, and how

they interact naturally – embedding the cultural and

social contexts as well as personal factors such as emo-

tion, attitude, and attention. The human-centered

systems that humans directly interact with should

be multimodal, processing inputs and outputs in a

naturally rich communication channel; be proactive –

understanding cultural and social contexts and res-

ponding accordingly; and be easily accessible outside

the desktop to a wide range of users [6]. Because of

this, HCM must consider work in fields such as neu-

roscience, psychology, cognitive science, and others.

One of the key challenges, therefore, is incorporating

what is known in those fields within computational

frameworks that integrate different media.

Research on machine learning integrated with

domain knowledge, data mining, sensor fusion, and

multimodal interaction will play a key role [18]. Fur-

ther research into quantifying human-related knowl-

edge is necessary, which means developing new

theories and mathematical models of multimedia inte-

gration at multiple levels.

Although many disciplines contribute to HCM

(and implicitly HCC), the field is at an early stage so

a research agenda will involve a non-exhaustive list of

goals including the following:

� New human-centered methodologies for the design

of models and algorithms and the development of

diverse human-centered systems

� Focused research on the integration of multiple

sensors, media, and human sciences that have peo-

ple as the central point

� New interdisciplinary academic and industrial

programs, initiatives, and meeting opportunities

Human-centered Computing: Application to Multimedia H 1325

H

� Discussions on the impact of computing techno-

logy that include the social, economic, and cultural

contexts in which such technology is or might be

deployed

� Research data that reflects human-centered app-

roaches – for example, rich data collected from

real multisensorial and culturally diverse social

situations

� Common computing resources – for example,

software tools and platforms

� Evaluation metrics for theories, design processes,

implementations, and systems from a human-

centered perspective

� Methodologies for privacy protection and the

consideration of ethical and cultural issues

Clearly, an HCM and HCC research agenda should

include a broad understanding and a multidisciplinary

approach. This is of particular importance when con-

sidering computing in the context of developing

regions [2].
Key Applications
The span of HCM application areas is very broad and as

computing becomes more ubiquitous, practically every

aspect of interaction with objects, and the environment,

as well as human-human interaction (e.g., remote col-

laboration, etc.) will make use of HCM techniques.

Several key application area descriptions follow:
Ambient Intelligence and Personal Spaces

Computing is being integrated with everyday objects in a

variety of domains. This implies that the model of ‘‘user’’

in which a person sits in front of a ‘‘computer’’ is no

longer the only model. Therefore, the actions or events to

be recognized by the ‘‘interface’’ are not necessarily explic-

it commands and must respond to personal context in

homes, offices, and other spaces, making ambient intelli-

gence [1] a very important application area of HCM.

Public information kiosk applications [10] present

many technical challenges in the design and imple-

mentation of natural multimodal interaction: kiosks

are often intended to be used by a wide audience, thus

there may be few assumptions about the types of users

of the system. Thus, they present interesting opportu-

nities for HCM approaches and must integrate context

and socio-cultural considerations.
HCM also plays an important role in personal spaces

(e.g., cars, office spaces, etc.). On one hand HCM techni-

ques emphasize personalization, and on the other hand

they emphasize natural interaction. Computing in vehi-

cles, forexample, canbeused tomonitor thedriver [9] and

to adjust conditions according to personal preferences.

In addition, since the driver must focus on the driving

task, traditional interfaces (e.g., GUIs) are not suitable,

creating the need for natural, non-disruptive interaction

techniques focused on maximizing human abilities while

answering human needs in specific situations.

Ubiquitous Computing

One of the major challenges in ubiquitous computing is

that while devices such as PDAs and mobile phones

have become smaller and more powerful, there has

been little progress in developing effective interfaces to

access the increased computational and media resources

they posses. Computing in ubiquitous devices constitute

a very important area of opportunity for research in

HCM: they create challenges in interaction for creation

and access to content, as well as opportunities for

contextual data collection and personalization.

Data Analysis and Data Interaction

HCM approaches can be used to process, analyze, and

visualize various types of human-related data. The

range of personal information collected in digital for-

mat is very wide, and can be used to support many

human activities. Social networks, for example, have

gained significant popularity and are based largely on

connections of data about different individuals. HCM

approaches to analyze and interact with data and in-

formation are crucial in such types of applications.

Web search and recommender systems are two addi-

tional areas in which HCM techniques play a signifi-

cant role because they can strongly impact not only

the interaction aspects, but how the information is

organized, indexed, and searched. Systems for analyz-

ing, processing, and visualizing customer data for

user modeling, profiling, and market segmentation

can clearly have positive impacts in fields that use

computing (e.g., marketing, advertising) to determine

how and where products or services are provided.

Virtual Environments

Virtual and augmented reality have been very active

research areas at the crossroads of computer graphics,

1326H Human-centered Computing: Application to Multimedia
computer vision, and human-computer interaction.

One of the major difficulties of VR systems is the inter-

action component, and many researchers are currently

exploring the use of interaction analysis techniques to

enhance the user experience. One reason this is very

attractive in VR environments is that it helps disambig-

uate communication between users and machines (in

some cases virtual characters, the virtual environment,

or even other users represented by virtual characters

[14]). HCM techniques can be applied, however, to

many aspects of VR environments: from the visual rep-

resentation of characters and the environment, to the

‘‘physical’’ behavior of objects and how events and

actions are perceived by human ‘‘users’’ of such systems.

Art

Perhaps one of the most exciting application areas of

HCM is art, from interactive installation and interac-

tive architecture to performance and audience partici-

pation. Multiple modalities (video, audio, pressure

sensors) can be used to allow audience participation

and influence a performance [19]. Mouth gestures can

be interpreted [13] by a wearable camera pointing

at the wearer’s mouth to generate MIDI sounds (so a

musician can play other instruments while generating

sounds by moving his mouth). HCM technologies

can also be used in museums to augment exhibitions

[17] and in many other contexts.

Persons with Disabilities

Persons with disabilities can benefit greatly from

HCM techniques [12] because the goal is specifically

to enhance or complement person’s abilities. Solutions

for smart wheel-chair systems, for example, integrate

different types of sensors and consider different kinds

of interaction such as using only eye blinks and eye-

brow movements for navigation.

Other Applications

Other applications include education, medicine, remote

collaboration, entertainment, robotics, surveillance, or

biometrics. HCM also plays an important role in safety-

critical applications (e.g., medicine, military, etc.) and in

situations in which a lot of information from multiple

sources has to be viewed in short periods of time (e.g.,

crisis management).

Cross-references
▶Human-Computer Interaction

▶Multimedia Data
▶Multimodal Interfaces

▶ Personalized Web Search

▶ Social Networks
Recommended Reading
1. Arts E. Ambient intelligence: a multimedia perspective. IEEE

Multimedia, 11(1):12–19, 2004.

2. Brewer E. et al. The case for technology in developing regions.

Computer, 25–38, June 2005.

3. Gentry C., Ramzan Z., and Stubblebine S. Secure distributed

human computation. In Proc. 6th ACM Conf. on Electronic

Commerce, 2005, pp. 155–164.

4. Grudin J. Computer-supported cooperative work: Its history

and participation. Computer, 27:19–26, 1994.

5. http://www.human-centered-computing.org/

6. Jaimes A. Human-centered multimedia: culture, deployment,

and access. IEEE Multimedia, 13(1):12–19, 2006.

7. Jaimes A., Gatica-Perez D., Sebe N., and Huang T.S. Human-

centered computing: toward a human revolution. Computer,

30–34, May 2007.

8. Jaimes A., Sebe N., and Gatica-Perez D. Human-centered

computing: a multimedia perspective. In Proc. 14th ACM Int.

Conf. on Multimedia, 2006, pp. 855–864.

9. Ji Q. and Yang X. Real-time eye, gaze, and face pose tracking for

monitoring driver vigilance. Real-Time Imaging, 8:357–377, 2002.

10. Johnston M. and Bangalore S. Multimodal Applications from

Mobile to Kiosk. In Proc. W3CWorkshop on Multimodal Inter-

action, 2004.

11. Karat J. and Karat C.M. The evolution of User-centered focus in

the Human-computer interaction field. IBM Syst. J., 42

(4):532–541, 2003.

12. Kuno Y., Shimada N., and Shirai Y. Look where you’re going: a

robotic wheelchair based on the integration of human and

environmental observations. IEEE Robotics and Automation,

10(1):26–34, 2003.

13. Lyons M.J., Haehnel M., and Tetsutani N. Designing, playing,

and performing, with a vision-based mouth Interface. In Proc.

Conf. on New Interfaces for Musical Expression, 2003.

14. Nijholt A. and Heylen D. Multimodal communication in

inhabited virtual environments. Int. J. of Speech Technol.,

5:343–354, 2002.

15. Norman D.A. and Draper S.W. User-centered system design:

New perspectives on Human-computer interaction. Lawrence

Erlbaum, Hillsdale, NJ, 1986.

16. NSF Workshop On Human-Centered Systems: Information,

Interactivity, and Intelligence (HCS) February 17–19, 1997

(http://www.ifp.uiuc.edu/nsfhcs/)

17. Paradiso J. and Sparacino F. Optical tracking for music and

dance performance. In Proc. 4th Conf. on Optical 3-D Measure-

ment Techniques IV, 1997, pp. 11–18.

18. Pentland A. Socially aware computation and communication.

Computer, 38(3):33–40, 2005.

19. Wassermann K.C., Eng K., Verschure P.F.M.J., and Manzolli J.

Live soundscape composition based on synthetic emotions.

IEEE Multimedia Mag., 10(4), 2003.

20. www.cs.berkeley.edu/~jfc/hcc

Human-Computer Interaction H 1327
Human-Centered Multimedia

▶Human-centered Computing: Application to

Multimedia
H

Human-Computer Interaction

ALAN DIX

Lancaster University, Lancaster, UK

Synonyms
HCI; Computer human interaction (CHI); Human

interface; Interaction design; Human centered com-

puting; User-centred design; Human factors; Man-

machine interaction (obsolete)
Definition
Human–Computer Interaction (HCI) is the study of the

way in which computer technology influences human

work and activities. The term ‘‘computer technology’’

now-a-days includes most technology from obvious

computers with screens and keyboards to mobile

phones, household appliances, in-car navigation sys-

tems and even embedded sensors and actuators such

as automatic lighting. HCI has an associated design

discipline, sometimes called Interaction Design or User-

Centered Design, focused on how to design computer

technology so that it is as easy and pleasant to use as

possible. A key aspect of the design discipline is the

notion of ‘‘usability,’’ which is often defined in terms

of efficiency, effectiveness and satisfaction. However,

equally or more important in systems designed for per-

sonal use, such as internet shopping, is the idea of user

experience – the way people feel about the system as

they use it.
Historical Background
The roots of HCI can be traced back to the innovative

work of Douglas Englebart at the Augmented Research

Center at Stanford in the early 1960s [4] and more

pragmatic work of Brain Shackel in the late 1950s [8].

However, it was with the rise of personal computing

in the early 1980s that the discipline took shape and

got its name(s). Notable was the founding of IFIP

Technical Committee 13 on Human-Computer Inter-

action in 1981 and the first international INTERACT
Conference in 1984. Several major national confer-

ences started around the same period ACM CHI

in the US, the British HCI conference and Vienna

HCI. At this stage the main academic roots were in

psychology, computing and ergonomics with much

of the early work founded on strong experimental

methods.

As in so many areas of computing XEROX

PARC played a key role in HCI, developing the

WIMP (window-icon-menu-pointer) interface style

that was eventually popularized in the Macintosh in

1984. In the second half of the 1980s a number of

books were published that shaped the development

of the field. In particular the User-Centered System

Design collection in 1986 [6] set the ground for what

would be the dominant view of HCI for many years

with a strong focus on cognitive modeling and theo-

retical accounts of direct manipulation. As a contrast to

this, Suchman’s Plans and Situated Actions [12] drew

on anthropological traditions and in particular ethnog-

raphy and was formative in the fledgling area of

Computer Supported Collaborative Work (CSCW).

Towards the end of the 1980s and early 1990s

technological advances as much as methodological

and theoretical factors had a large impact on HCI.

The introduction of computer networks both within

and between offices was one of the factors that fue-

led the growth of CSCW as it became possible to

develop systems that enabled remote groups of workers

to collaborate electronically. Increased graphics and

computational capabilities also meant that for the

first time it was possible to have high-quality interac-

tive visualization of large data sets.

The importance of HCI as a discipline has grown

gradually over the years as industry became aware

of the importance of the usability of its products in

a competitive environment. This has intensified

since the late 1990s due to the world-wide web and

consumer electronics such as mobile phones. As indi-

vidual consumer choice took over from corporate IT

decisions not only usability but also user experience

have become key selling points.

With this growth the field has also spawned sub-

fields such as web usability and mobile HCI, which can

be confusing to someone new to the area. HCI has also

drawn in fresh theoretical input, for example Activity

Theory (see [1], chapter 11), as well as developing its

own methods, for example ways of studying users in

real-world contexts.

1328H Human-Computer Interaction
Foundations
As noted, HCI is both an academic discipline studying

the way technology impacts human activity and also

a design discipline aimed at designing that technology

for maximum effectiveness. It draws on many results

from other disciplines such as psychology and sociolo-

gy, but also has its own methods and techniques.

Usability

Usability is one of the core issues in HCI. There are

various definitions, most notably in ISO 9241–11 it is

defined as: ‘‘The extent to which a product can be used

by specified users to achieve specified goals with effec-

tiveness, efficiency and satisfaction in a specified con-

text of use.’’

The key terms in this definition are:

Effectiveness–Can the user achieve their goals with

accuracy?

Efficiency –Can this be achieved with minimal

resources: time, physical, and mental effort?

Satisfaction–Do users feel comfortable or happy in

doing this?

For many years satisfaction has been largely

ignored, but more recently affective issues such as

motivation, trust, enjoyment, and engagement have

become increasingly important.

The concept of usability is quite broad. At the

lowest level there is the visual layout of information

and controls on a screen or on a physical appliance and

their immediate behavior. At a higher level one also has

to take into account the whole social and organization-

al context: the people who will use the system being

designed, their beliefs and values, the purpose and

constraints of the design.

Observation and Empirical Data

Various techniques are used to observe or evaluate

technology in use (see also [3] chapter 9 and [9]

chapters 12–14). These techniques may be used purely

for research, early in the design cycle in order to

understand a situation, or later when an artifact has

been reduced and one desires to evaluate it and identify

any usability problems.

These evaluation or observation methods fall into

two main types:

1. Laboratory experiments – where users perform a

task or interact with an application under some

level of controlled conditions
2. Field studies – where users are ‘‘in the wild’’; that is

in their workplace, outside, in their homes: wher-

ever they would normally interact with the technol-

ogy being studied or evaluated

Laboratory studies are often criticized for lack of

ecological validity, that is that they are too far from

the real context of use. To counter this laboratory

studies are often performed in semi-realistic situations

and a usability laboratory may include features

such as a one-way mirror to enable unobtrusive

observation.

Field studies may include a level of control, for

example, giving two groups of people different ver-

sions of an interface, or may be more open, simply

observing people doing their day-to-day work or

activities.

Both types of empirical study can be performed

with a closed agenda to evaluate or improve a pro-

posed or existing design, but can also be used in a more

open or exploratory way to explore a design idea or

attempt to learn unexpected things about an area.
Design and Methodology

It often requires too much time or skill to apply fun-

damental knowledge to a new design. Instead good

practice is often captured in design guidelines, princi-

ples or heuristics, for example providing immediate

feedback for user actions. There are many collections

of detailed guidelines for example the US Department

of Health and Human Services Research-Based Web

Design and Usability Guidelines runs to 18 chapters

[13], but also there are shorter lists of more generic

rules such as Ben Shneiderman’s Eight Golden Rules of

Interface Design [10]:

� Strive for consistency

� Enable frequent users to use shortcuts

� Offer informative feedback

� Design dialog to yield closure

� Offer simple error handling

� Permit easy reversal of actions

� Support internal locus of control

� Reduce short-term memory load

As important as design guidance are the design meth-

ods and processes. User-centered design refers to a

number of practices that put the user first in thinking

about the design of an application or product;

this will typically involve some direct observation,

Human-Computer Interaction H 1329

H

interviewing of users or otherwise getting to know

them. More radical are participatory design appro-

aches where users are brought more deeply into the

process acting as co-designers of the end product

(see [7] Part VII).

Typically user-interface design processes are itera-

tive involving some form of prototype or storyboard

that enables users to see or experience early designs.

This reflects the complexity of designing for real people

and also the difficulty of even understanding what is

wanted. Some level of iterative re-design is always

required. However, this iterative design process typi-

cally needs a good start point so that more predictive

and more iterative methods work together.

Representation and Analysis

Given the focus on users, HCI uses various forms of

representation of users and their behavior. These may

be informal such as personae or scenarios. A persona is

a rich description of a real or fictitious user that can be

used as a surrogate user in design. A scenario is a form

of story describing a context in which a device or

application is used and the way it gets used. These are

both conveyed in text and pictures. More formal repre-

sentations can also be used, for example, hierarchical

task analysis (HTA, see [3] chapter 15) focuses on the

decomposition of higher-level tasks (such as ‘‘take a

bus ride’’ in Fig. 1) into lower evel tasks (such as ‘‘buy

ticket’’).

Various forms of representations are also used

to describe the behavior of interactive systems them-

selves; that is how the system responds to user inputs,

the responses it produces, and the internal states inso-

far as they may affect future user interaction. This is

often called a dialogue specification. These sometimes

take the form of fairly informal diagrams, for example

showing a collection of web pages and their
Human-Computer Interaction. Figure 1. Example of an

hierarchical task analysis (HTA).
interconnections. However, more formal representa-

tions may be used, for example, using state-transition

networks or Petri nets. The more formal representa-

tions can be analyzed to look for potential usability

problems or even verified using forms of model check-

ing to verify various forms of usability property. More

commonly however, these are used to understand or

communicate designs, or to specify them clearly for

implementation.

Implementation and User Interface Architecture

For the users of a system all that matters is its external

behavior. However, in order to effectively construct

such systems the internal structure or software archi-

tecture has to be in some way consonant with the

external design (see also [3] chapter 8). The view that

the user has of a system frequently cuts across what

would be regarded as different functional areas, some-

times conflicting with what would otherwise be

regarded as a suitable decomposition. It is also often

desirable that more surface features of a user interface

can be changed without a complete redesign of the

entire system. Because of this, specific architectures

have been developed that separate the parts that are

closer to the user (e.g., choice of menu names or font

color) from those about the underlying functionality.

The most influential of these at a conceptual level and

one of the earliest was the Seeheim model, which

divided the system into presentation, dialogue and

functionality (with some form of wrapper) (Fig. 2).

At a practical level the Model-View-Control (MVC)

model has been most widely adopted (for example in

the Java Swing toolkit). This operates on the level of

components or widgets (for example, the tree-view

of a file system).

Key Applications
HCI is an issue whenever people use systems so the

applications are very wide. Traditionally a substantial

focus has been on office work where the desktop PC

was the main computing device, although there has

always been a strand focused on industrial interfaces

and command and control situations (e.g., aircraft

cockpits). As noted previously, domestic appliances

and devices and systems for leisure and entertainment

have become increasingly important.

Two of the biggest application areas over recent

years have been in the web [2] and mobile computing

[5]. However, these are really platforms and the range

Human-Computer Interaction. Figure 2. Seeheim model of user interface architecture.

1330H Human-Computer Interaction
applications supported on these have ranged from

eCommerce to text messaging.

There has been some work focused specifically on

user interfaces for databases to aid in areas such as

query formulation or schema visualization. Related to

this has been more recent work on usability issues for

web search and user interfaces for various forms of

ontologies and other semantic web structures. Appli-

cations in information visualization are also important

allowing users to view structures including simple

point data, hierarchies, trees, or geographic data [11].

Future Directions
The web will clearly be an important driver for some

time to come. Whilst traditional web page usability has

been well studied, the implications ofWeb2.0 both as a

social and a technological phenomenon are only just

beginning to be understood. For example, users are

increasingly making their own ‘‘mashups’’ and custo-

mizing shared web content, so that effectively they are

taking on the role that used to be in the hands of

developers – it is important that this does not become

as confusing as cooking in someone else’s kitchen!

Developments in HCI aspects of mobile applications

will continue to be important, especially as it is

expected that mobile access to the Internet will out-

strip desktop access in the next few years.

Looking slightly longer term, human aspects of

ubiquitous computing are still only partially under-

stood, but will be critical as homes, offices and public

spaces become filled with sensors, points of interaction

and numerous small and large screens. As these in-

creasingly become wirelessly networked they will need

to be designed in way that make their effects compre-

hensible and trustworthy.

In work environments technology is more stable

and usability of desktop applications well understood.

However, increasing availability of data and commu-

nications (e.g., email, instant messaging) is creating
demands to manage large volumes of data. This may

change the traditional desktop itself and is likely to

involve more ‘‘intelligent’’ and often proactive applica-

tions, that will in turn need to be understood and

controlled by their users.

Mobile and web applications are creating demands

to re-target applications to multiple devices, and to

share and mash-up data. For cost-effective construc-

tion and ease of maintenance it is likely that studies of

user interface architecture, marginalized for a number

of years, will become more important.

Web-based applications are leading to service-based

solutions replacing many traditionally product-based

ones. Greater choice and ease of movement bet-

ween applications will demand changes in design

practice away from ‘‘one size fits all’’ designs to more

individual designs. This trend reflects similar diversifi-

cation and shorter more dynamic product runs in tra-

ditional manufactured devices, which themselves are

more likely to involve computation. This will clearly

impact both design research and design practice.

Finally the demographics of computer and technol-

ogy use is moving out from the relatively young and

prosperous to include the increasingly older popula-

tions of developed countries, socially-deprived groups,

and the growing markets of the developing world.

While much of the understanding of human-computer

interaction is universal, still many cultural and other

assumptions are embedded in design practice and this

will be an important issue for some years to come.

Cross-references
▶Data Visualization

▶Direct Manipulation

▶GUIs for Web Data Extraction

▶Human-Centered Computing: Application to

Multimedia

▶ Icon

▶ Interface

Hypertexts H 1331
▶Mobile Interfaces

▶Natural Interaction

▶Usability

▶Visual Interaction

▶Visual Interfaces

▶Visual Perception

▶WIMP Interfaces
H

Recommended Reading
1. Carroll J. HCI Models, Theories, and Frameworks: Toward a

Multidisciplinary Science. Morgan Kaufmann, San Francisco,

CA, 2003.

2. Dix A. Human-computer interaction and web design, Chapter 3.

In Handbook of Human Factors in Web Design, R.W,

Proctor K.L. Vu (eds.). Lawrence Erlbaum, Mahwah, NJ, 2005,

pp. 28–47.

3. Dix A., Finlay J., Abowd G., and Beale R. Human-Computer

Interaction, 3rd edn. Prentice Hall, Upper Saddle River, NJ,

2004.

4. Engelbart D. Augmenting human intellect: a conceptual frame-

work. Summary Report AFOSR-3223 under Contract AF 49

(638)-1024, SRI Project 3578 for Air Force Office of Scientific

Research. Stanford Research Institute, Menlo Park, CA, 1962.

Available online at: http://www.bootstrap.org/.

5. Jones M. and Marsden G. Mobile Interaction Design. Wiley,

Chichester, UK, 2005.

6. Norman D.A. and Draper S.W. (eds.). User Centered System

Design: New Perspectives on Human-Computer Interaction.

Lawrence Erlbaum, Mahwah, NJ, 1986.

7. Sears A. and Jacko J. 1(eds). The Human-Computer Interaction

Handbook: Fundamentals, Evolving Technologies, and Emerging

Applications, 2nd edn. CRC Press, West Palm Beach, FL, 2007.

8. Shackel B. Ergonomics for a Computer. Design, 120:36–39,

1959.

9. Sharp H., Rogers Y., and Preece J. Interaction Design: Beyond

Human-Computer Interaction, 2nd edn. Wiley, Chichester, UK,

2007.

10. Shneiderman B. and Plaisant C. Designing the User Interface:

Strategies for Effective Human-Computer Interaction, 4th edn.

Addison-Wesley, Boston, MA, 2005.

11. Spence R. Information Visualization: Design for Interaction,

2nd edn. Prentice Hall, Uppersaddle River, NJ, 2007.

12. Suchman L. Plans and Situated Actions: The Problem of

Human-Machine Communication. Cambridge University

Press, New York, NY, 1987.

13. US Department of Health and Human Services. Research-Based

Web Design and Usability Guidelines. Available online at: http://

www.usability.gov/pdfs/guidelines.html (accessed on November

12, 2007).
Hypercube

▶Cube
Hypermedia

▶Hypertexts
Hypermedia Metadata

▶Multimedia Metadata
Hypertexts

FRANK WM. TOMPA

University of Waterloo, Waterloo, ON, Canada

Synonyms
Hypermedia

Definition
A hypertext is a collection of interconnected docu-

ments or document fragments. The idea of comput-

er-based hypertexts is rooted in Vannevar Bush’s

vision, as described in his 1945 Atlantic Monthly article

‘‘As We May Think,’’ of a personal document collection

with ‘‘a provision whereby any item may be caused at

will to select immediately and automatically another.’’

Authors who wish to emphasize the multimedia nature

of constituent documents and fragments prefer to use

the term hypermedia when describing hypertexts.
Key Points
The term hypertext was introduced in the early 1960s by

Ted Nelson, who advocated the power of non-linearity

in organizing thoughts and discourses. Simulta-

neously, Doug Englebart demonstrated a system for

‘‘augmenting human intellect’’ that included a facility

to expose inline fragments of text in response to users’

request for finer detail. These early ideas have evolved

to form the basis of HTML (the Hypertext Markup

Language) and the World Wide Web.

Hypertexts have been used extensively as features of

reference texts, collaborative design documents, and

bibliographic systems, and as a structure for creative

writing. Links between document fragments are used

to represent various rhetorical relationships (support,

rebuttal, elaboration, motivation, consequence, etc.).

1332H Hypothesis Generation and Exploration from Biological Resources
Systems to support hypertexts include editors, brow-

sers, and visualizers.

Cross-references
▶Document Databases

▶Digital Libraries

▶Web Characteristics and Evolution

Recommended Reading
1. Ashman H. and Simpson R.M. Computing surveys’ electronic

symposium on hypertext and hypermedia: editorial. ACM Com-

put. Surv., 31(4):325–334, 1999.
2. Simpson R., Renear A., Mylonas E., and van Dam A. 50 years

after ‘‘As we may think’’: the Brown/MIT Vannevar Bush sym-

posium. Interactions, 3(2):47–67, 1996.
Hypothesis Generation and
Exploration from Biological
Resources

▶Text Mining of Biological Resources

I

I/O cache

▶Buffer Pool
I/O Model of Computation

DONGHUI ZHANG
1, VASSILIS J. TSOTRAS

2

1Northeastern University, Boston, MA, USA
2University of California-Riverside, Riverside, CA,

USA

Synonyms
Disk-based model

Definition
The I/O model of computation measures the efficiency

of an algorithm by counting how many disk reads and

writes it needs. It is widely applicable to the database

environment, since most data is stored on disks and

disk access typically dominates CPU time.

Key Points
For many computing-intensive applications, the ap-

propriate model of computation is to measure CPU

time. Yet in data-intensive applications, such as data-

bases, it is more relevant to measure the number of

disk I/Os [1]. This is termed the ‘‘I/O model of com-

putation,’’ or disk-based model. Nowadays, most hard

drives use the seek-rotate-transfer protocol [2]. In

order to transfer some data from disk to memory (so

as the data can be processed by the CPU), or to transfer

data back to disk, the hard drive needs first to spend

some ‘‘seek time’’ to move the read/write head to the

cylinder where the data is located at. Then the ‘‘rota-

tional delay’’ is spent until the sector containing the

data rotates to a position under the read/write head.

Finally, time is spent to actually transfer the data

from/to the CPU. Typically, seek time is longer than
2009 Springer ScienceþBusiness Media, LLC
rotational delay, which is in turn longer than transfer

time. Therefore reading a few bytes of data takes

roughly as long as reading thousands of bytes. Due to

this reason, data is stored on disks in units called

blocks or pages. Every disk I/O corresponds to reading

or writing one such page. Moreover, a random disk I/O

costs more than a sequential access. This is because the

access of multiple sequential pages on the disk does not

involve major seek and rotational times (since in se-

quential access, a page is accessed after its neighbor

page). Hence a more accurate I/O model should ac-

count for the difference between random and sequen-

tial I/O.

There are three ways to minimize the disk accesses

in a database environment: (i) by buffering in main

memory pages that have already been accessed (and thus

future accesses can be served by a buffer access and not a

disk access), (ii) by transferring a number of consecutive

pages at once, called bucket, anticipating the next

requests due to data locality, and, (iii) by using structures

(indices) that organize the data into pages so as searching

for a particular record takes few page accesses.

To exemplify the importance of the I/O computa-

tion in data structures, consider the following scenario.

Assume an application (query) requests a record from

a database file. If a balanced binary search tree is

directly implemented on top of this file, to search for

a record would need O(log2 n) I/Os, where n is the

number of records in the tree. For example, if n is a

million records, this means about 20 I/Os. If instead, a

disk optimized structure is used (like the Bþ-tree) the
same search is much more efficient (in number of

page I/Os). The Bþ-tree extends the binary tree, by

expanding a node size. Every tree node corresponds to

one disk page. If for simplicity, every index node as well

as leaf node in the Bþ-tree contains 100 entries, a

million records fits into a three-level Bþ-tree. Then to

search for any record in the file, only three I/Os are

needed, which is much faster than the 20 I/Os. Disk

resident data structures are called paginated or disk-

based or external.

1334 I Icon
Before a new page read is executed, the buffer man-

ager is first examined for whether it already contains the

requested page. For instance, if a page is read 100 times,

only the first read triggers an actual disk read, while

subsequence reads are serviced by returning the in-

buffer page (and thus avoiding the cost of a page I/O).

Of course the buffer has limited capacity and issues like

page replacement policies play an important role.

Cross-references
▶Access Methods

▶Buffer Management

▶ Indexing

Recommended Reading
1. Aggarwal A. and Vitter J.S. The input/output complexity

of sorting and related problems. Commun. ACM, 31

(9):1116–1127, 1988.

2. Ramakrishnan R. and Gehrke J. Database Management Systems

(3rd edn.). McGraw-Hill, New York, NY, 2003.
Icon

STEFANO LEVIALDI

Sapienza University of Rome, Rome, Italy

Synonyms
Picture; Image; Representation

Definition
Originally, the Greek word eikon stood for an image,

carrying some meaning as in typical portraits of sacred

persons within the Orthodox Church. An operational

definition of icon was given by Peirce [1] as anything

that stands for something else, to somebody, in some

respect or capacity. Being so general, it covers most

customary practices, typically linking linguistic, picto-

rial (or even auditory) expressions to a meaning that

needs to be interpreted by a human. In general dis-

course, an icon may imply an idol (as a pop star) or a

symbol (the Rotary wheel worn on coat lapels) that

represents a group of persons or a life style (the Nike

symbol for sports). Within Human-Computer Inter-

action, the common understanding of an icon is to

consider it as a visual metaphor representing a

file, a directory, a window, an option or a program.

Whenever a number of icons are presented together,
this group is referred to as an icon bar, generally at the

top of the page in most web browsers.
Key Points
The study of signs, a scientific discipline under the

name of Semiotics, started from the work of two

contemporary researchers: Ferdinand de Saussure

(a linguist) [2] and Charles Sanders Peirce (a philoso-

pher) [1]. De Saussure showed that language may be

considered as a collection of signs, each one formed by a

pair (a twofold nature) named signifier/signified, and

only if both were present, the sign could be a valid

indication of a meaning, otherwise the sign only repre-

sents itself. Peirce made a well known triangular classi-

fication (a threefold nature), where the sign stands in

the center and the three vertices correspond to (i) the

representation, (ii) the object (referent) and (iii) the

interpretant (meaning) [3]. The main issue here is that

the interpretation is subjective and dynamic, there is

no unique meaning corresponding to a class of signs:

the icons. Following Peirce’s sign taxonomy, he indi-

cated three possible sign classes: the icon (where a

mental process is required to understand it), the

index (having a causal relationship to its signified,

like smoke for fire) and the symbol (having a totally

arbitrary relationship, like a red cross for the

corresponding, well known, international medical or-

ganization). The icon is wrongly considered to be

similar to its signified; typically by looking at the icon

one should infer information about its signified, yet

this is not always the case, since different meanings

may be attributed to the icon, depending on the ob-

server. This fact provides a possible approach to ambi-

guity management in human-computer interfaces, by

restricting the user model to a given class of users. The

design of effective icons should be performed after an

accurate study of the cultural background, age, and

motivation of the potential users.
Cross-references
▶ Symbolic representation

▶Visual metaphor

▶Visual representation
Recommended Reading
1. Charles Sanders Peirce. Collected Papers of Charles Peirce,

vol. 1–8, C. Hartshorne and P. Weiss (eds.). Harvard University

Press, Cambridge, MA, 1931–1958.

Iconic Displays I 1335
2. de Saussure F. Introduction to the 2nd Course on General

Linguistics (1908–1909), collected by Robert Godel, Raffaele

Simone (ed.). Italian Edition, Ubaldini, Rome, 1970.

3. de Souza C. S. The Semiotic Engineering Approach to Human-

Computer Interaction. The MIT Press, Cambridge, MA, 2005.
I

Iconic Displays

GEORGES GRINSTEIN, DAMON ANDREW BERRY

University of Massachusetts, Lowell, MA, USA

Synonyms
Icons; Glyphs; Iconographics

Definition
Iconic displays are visualizations that generalize tra-

ditional displays (especially scatterplots) where each

record, instead of being drawn as a point, is represented

by amore general primitive called an icon or glyph. The

goals are to harness human perception, especially tex-

ture, and to display many more parameters. Whereas a

pixel is driven by three data values from some color

model (typically red, green, and blue) an icon is a

geometric object driven by potentially many values,

with some icons displaying over 30. Some icons are

drawn using lines, some using colored areas, some

move and vibrate, and some even have sound output.

Some iconic displays drop the Cartesian base of the

underlying display and use alternative layout techni-

ques. However, in all of these, the key defining factor is

the representation of a record in a visualization by a

very general, most often geometric, primitive, with the

goal of producing more perceptually-based displays.

Historical Background
The analysis of complex images is still performed largely

by human visual means which is most highly effective in

situations where the patterns of potential interest are

directly visible. The most widely used technique for

displaying multivariate data or multiparameter imagery

is based on the representation of different parameters as

points with two or three position coordinates and color

based on a color model such as RGB (Red, Green, Blue)

or HLS (Hue, Lightness, Saturation).

Such scatterplots employ simple graphic represen-

tations with attributes (retinal variables) characterized

by Bertin [2] and Healy et al. [8]. The number of
variables or parameters that can be displayed with

such a two dimensional scatterplot is easily five using

five degrees of freedom (x, y, shape, size, and color)

and seven if one thinks of color as three separate

variables (e.g., RGB).

But what if one wishes to go beyond five or seven

variables? This was the motivation for the development

of icons. By increasing the number of variables encoded

with more complex representations, an arbitrary num-

ber of variables can be encoded. Examples include

Chernoff faces [4], asymmetrical faces [5], star glyphs

[3], the stick figure icons of Pickett et al. [1,7,13], color

icons [11], moving icons [15], and moxels [19].

In addition to the different icons, there are a number

of different algorithms for placing them on a two-

dimensional plane. Ward presents an overview and tax-

onomy of such icon or glyph placement strategies [17].

Foundations

Perceptual Foundations

Gibson [6] developed an ecologically-based approach

to perception, quite different from the then conven-

tional approach. The human visual system is an ecolo-

gically evolved system still guiding the behavior of

animals. Humans discriminate textures very effectively

and use variations in visual texture as important

sources of information in the detection and recogni-

tion of objects. Pickett [13] suggested that modern

displays (visualizations) should be developed using

this ecological spatiotemporal pattern recognition sys-

tem of the human optical system. Further, experiments

developed by Julesz, demonstrated that differences in

textons (characteristic features of the surface) or their

densities can be preattentively detected by the human

visual system [9]. The work developed by Julesz shows

that texture is a statistical property of textons. The

perception and discrimination of textures seems to be

based on the density (first order statistics) of textons.

In 1967, Jacques Bertin [2] in Sémiologie Graphi-

que presented the fundamentals of information encod-

ing via graphic representations as a semiology, a

science dealing with sign-systems. His first key point

is the strict separation of content (the information to

encode) from the container (the properties of the

graphic system). Bertin defined a graphical vocabulary

consisting of three elements: marks, positional vari-

ables, and retinal variables. Marks are artifacts like

points, lines, and areas. Positional variables are (usually)

Iconic Displays. Figure 1. Family of stick figure icons.

1336 I Iconic Displays
two planar dimensions. Retinal variables are encoded

entities such as size, color, shape, orientation, texture,

and value. These were extended by others to include

temporal aspects with animation and work in three

dimensions. Additional parameters such as shading, con-

nectivity, labels, visibility, and tabularity were added.

Extensions to the non-visual have also appeared such as

the use of sound as a perceptual variable [16] as well

as touch and smell.

In all of the above the goal is to develop percep-

tually salient displays.

Iconographics

Iconographics initially developed at the University of

Massachusetts Lowell, harnesses texture perception to

increase the dimensionality of the represented data visi-

ble in an image [13]. Each datum is represented by an

icon whose visual features are controlled by the data.

Two of the data variables control the position of each

icon on the display surface. When icons are used to

represent imagery data, the icon position simply corre-

sponds to the pixel position. With sufficient density, the

icons form a surface texture display, and structures in the

data are revealed as streaks, gradients, or islands of con-

trasting texture.

Humans discriminate textures very effectively and

use variations in visual texture as important sources

of information in the detection and recognition of

objects. Based on the early work of Pickett, Pickett

and Grinstein [13] developed data representation tech-

niques that engaged and harnessed the mechanisms of

texture perception. Later, Levkowitz et al. [14] came

back to color as a basis for integrating multiparameter

images, but with a more sophisticated approach based

textural representations.

The iconographic technique extends the classic

visualization approaches by representing each record

of a multidimensional database as an icon whose fea-

tures (such as color, geometry, and sound) are under

the control of the various fields of the record. This

technique allows the information content of the

objects represented to have high dimensionality and

allows for the fusion of multiple data sets (usually

images) into a single integrated multi-modal display.

This is done through an icon which is anm� n box

of screen pixels. A single pixel can be thought of as a

1 � 1 icon. Because an icon is a box of pixels, it can

represent many more attributes (data parameters)

than a single screen pixel. The increased per-element
information content comes at the price of decreased

screen resolution, a tradeoff that must be considered in

the design of any iconographic display.

Stick Figure Icons

Figure 1 shows a typical stick-figure icon. The line

segments are called the ‘‘limbs’’ of the icon. Each icon

has a special limb, called the ‘‘body,’’ which serves as a

reference for the various geometric transformations

that an icon can undergo. The first complete family

of stick-figure icons had twelve members, each of

which has up to five limbs connected in a unique

configuration. The five-limbed icon [1] was designed

to display multiparameter images on a single display in

a way that would engage the vision system’s ability

to perceive textures.

Each limb has at least three parameters that can

be bound to data attributes: the angle, intensity, and

length. The manner in which limbs are attached to the

body or to each other defines the family of stick figure

icons. Figure 2 shows one member of the family of

stick figure icons. The figure shows the icon in its base

Iconic Displays I 1337
configuration with no data mapped to any limb para-

meters and also a sample icon with data mapped to the

limbs’ parameters. The value of any variable is normal-

ized into the unit interval [0,1]. The variable is mapped

to a limb with the limb’s reference angle or rotation

angle determined from the normalized value (0 = 0�;

0.5 = 90�; 1.0 = 180�).

The general character of displays made with this

icon can be seen in Fig. 3, one of Grinstein and Pickett’s

earliest displays, where they merged four grayscale
Iconic Displays. Figure 2. One member of the stick-figure ic

Iconic Displays. Figure 3. Satellite image of the Great Lakes
images. The merged images are satellite images of a

portion of the Great Lakes region (readers familiar

with this area will immediately recognize Lakes Erie,

Ontario, and Huron, as well as Georgian Bay and Lake

Simcoe). Two of the images are from the infrared

spectrum and two are from the visible spectrum. The

goal is to show in one picture both the fine detail from

the visible images and the heat signatures of the infra-

red images (here, the lakes are colder than the sur-

rounding land). The mappings chosen produced an
on family.

– line icon.

I

1338 I Iconic Displays
integrated display that shows the lakes as flat, concave

features in relation to the rougher and predominantly

convex land features. These three-dimensional effects

are striking and highly effective.

Figure 4 shows a scatterplot of a subset of the PUMS

US Census data of engineers and technicians in New

England, using the stick figure icon developed by Pick-

ett and Grinstein in 1989. This icon encodes four

variables (sex, education, occupation, and marital sta-

tus). Each variable is mapped to a limb whose angles

are determined by the value of the variable. Placing

the icon on the scatterplot encodes two more variab-

les (income and age). The result is an iconic display

that encodes six variables.

Figure 5 represents some of the possible geometric

layouts of icon number 4 from the stick figure family in

Fig. 1 for various values of the variables. There are 16

possible configurations of the stick figure icon (Fig. 5),

each corresponding to a particular geometric organi-

zation of the icon’s limbs. Of particular interest are
Iconic Displays. Figure 4. PUMS US Census data using a Pick
females with a high level of education since the icon

forms a triangle, a highly perceptual object. For this

data set (engineers and technicians in New England)

almost all individuals have a high level of education.

Since there are few women engineers and technicians

with a low level of education one can state that all icons

in Figure 3 having a triangle can be interpreted as

female.

It is thus possible to get some insight into this

subset. For example one can see the boundary between

females and males; one can see that most female’s

salaries fall within the first third of the salary scale.

Once can also quickly see outliers and trends in Fig. 4.

Color Icons

Applying the concepts learned with the stick-figure

icon to color, Levkowitz developed a color icon [11].

In the color technique, a pixel in the input data is

represented by an arbitrarily-sized m x n box of screen

pixels. In the most frequently used version of the color
et icon.

Iconic Displays I 1339
icon, each of up to 12 data parameters is mapped to a

color channel of the four corners of the icon box. Each

data value determines the intensity of that color chan-

nel. The colors of the remaining pixels in the box are

obtained by interpolation. The color icon is indepen-

dent of color models and was tested with four color

models: GLHS (Generalized Lightness, Hue, Satura-

tion), RGB (Red, Green, Blue), Munsell Book of

Color, or CIELUV (Commission on Illumination 1976

L*, u*, v*). The design of this icon is shown in Fig. 6.

Figure 7 shows the color icon used to display several
Iconic Displays. Figure 5. The stick figure icon’s possible rep

from the Census data.

Iconic Displays. Figure 6. Design of color icon.
parameters of the FBI (Federal Bureau of Investiga-

tion) homicide database.

In Fig. 8, standout regions (which are common

with other similar color icon displays of the same data

set) can easily be identified. The first (labeled A), high-

lights very young victims with different attributes. The

greenish color shows offenders whose homicides were

family related. The second (labeled B) is the tail in the

display which highlights spouses involved in the homi-

cide. The final obvious pattern (labeled C) is that of

zero-aged offenders, clearly produced by missing data.
resentation for various values of the parameters of a record

I

Iconic Displays. Figure 7. FBI homicide data using a color icon.

Iconic Displays. Figure 8. The same figure as in 7, but with three regions of interest.

1340 I Iconic Displays

Iconic Displays I 1341

I

Kinetic Displays and Moxels

Kinetic displays are extensions of the above icon dis-

plays in which motions of the graphical icon’s limbs are

used to represent attributes of the data, so the elements

are in constant motion independent of user interac-

tions. Example motions of data driven graphics in-

clude translations and rotations that produce visual

vibrations and oscillations. Such kinetic displays are

designed to capitalize on the human preattentive

ability to perceive and understand motion.

The term ‘‘pixel’’ stands for ‘‘picture element;’’ sim-

ilarly the term ‘‘moxel’’ stands for ‘‘moving element.’’

Moxels are an extension of standard iconographic dis-

plays into three dimensional displays that incorporate

motion coding of data dimensions.

The first such display was produced by Pinkney

[15] with several interactions a ‘‘magnet’’ interaction;

a ‘‘vibrating’’ interaction; a ‘‘comb’’ interaction; a

‘‘zoom’’ interaction; and a ‘‘pinwheel’’ interaction. In

all of these interactions the mouse is used for specify-

ing a region of interest. Interaction acts over all icons

within the selected region. Users can select either a

constant value or a variable (data attribute) to drive

the interaction. Icons within the selected region are

transformed in some way (depending on which inter-

action) that is proportional to the value driving the

interaction. For example in the ‘‘magnet’’ interaction

the mouse acts as a magnet repelling or attracting

icons. Users can select if the magnet will affect the

angle of the icons, the position of the icons, or both.

The value associated with the interaction is used to

determine the angular and positional response of the

icon to the magnet, in the case of magnet interaction,

lower values imply greater effect.
Iconic Displays. Figure 9. Moxel visualizations of the AVIRIS

(right).
Yang et. al. [19] presented an information visuali-

zation system that links both static and kinetic visua-

lizations. The images in Fig. 9 show a zoomed out view

(left) and a zoomed in view (right) of a moxel visuali-

zation of the AVARIS (Airborne Visible/Infrared Imag-

ing Spectrometer) dataset. These static images do not

really do justice to the actual moving visualizations,

where independent regions are clearly visible not only

due to common textures, but due to coordinated

movements as well.

Key Applications
Iconographic displays have become part of many dif-

ferent visualization efforts and environments. They

have been used for both information visualization as

well as scientific visualization in areas such as GIS

(Geographic Information System) [20], physics [18],

medicine [10], and computer network security [12].

Data Sets
The PUMS US Census data used in Fig. 1 was from the

1980 census. Comparable data fro the last conducted

US census may be found at: http://www.census.gov/

main/www/pums.html.

The Great Lakes satellite image in Fig. 2 is based

on data from the National Oceanic and Atmospheric

Administration (NOAA) and is available from the

National Geophysical Data Center (NGDC) at: http://

www.ngdc.noaa.gov/dmsp/download.html.

The AVIRIS data used for the moxel visualizations

in Fig. 9 is available at: http://aviris.jpl.nasa.gov/html/

data.html.

The FBI Homicide Data visualized in Figs. 6 and 7

is available at: http://www.fbi.gov/ucr/ucr.htm.
dataset: a zoomed out image (left) and a zoomed in image

1342 I Iconographics
Cross-references
▶Applied Perception

▶Glyphs

▶ Iconographics

▶ Icons

▶ Perceptual Displays

▶Visual Perception

▶Visualization

Recommended Reading
1. Bergeron R.D. and Grinstein G.G. A reference model for

scientific visualization. In Proc. Eurographics ‘89’, 1989,

pp. 393–399.

2. Bertin J. Semiology of Graphics. The University of Wisconsin

Press, Madison, WI, 1983.

3. Chambers J.M., Cleveland W.S., Kleiner B., and Tukey P.A.

Graphical Methods for Data Analysis. Wadsworth, Belmont,

CA, 1983.

4. Chernoff H. The use of faces to represent points in k-dimensional

space graphically. J. Am. Stat. Assoc., 68:361–368, 1973.

5. Flury B. and Riedwyl H. Graphical representation of multivari-

ate data by means of asymmetrical faces. J. Am. Stat. Assoc.,

76:757–765, 1981.

6. Gibson J.J. The Ecological Approach to Visual Perception.

Houghton-Mifflin, Boston, 1979.

7. Grinstein G., Pickett R., and Williams M.G. EXVIS: an explor-

atory visualization environment. In Proc. Graphics Interface ’89,

1989.

8. Healey C.G., Booth K.S., and Enns J.T. Visualizing real-time

multivariate data using preattentive processing. ACM Trans.

Model. Comput. Simul., 5(3):190–221, 1995.

9. Julesz B. Textons, the elements of texture perception, and their

interactions. Nature, 290:91–97, March 1981.

10. Kindlmann G., Weinstein D., Lee A., Toga A., and Thompson P.

Visualization of anatomic covariance tensor fields. In Proc. 26th

Annual Int. Conf. of the IEEEEngineering inMedicine and Biology

Society 2004, pp. 1842–1845.

11. Levkowitz H. Color icons: merging color and texture percept-

ion for integrated visualization of multiple parameters. In Proc.

IEEE Conf. on Visualization, 1991, pp. 164–170.

12. Perlman J. Visualizing network security events using compound

glyphs from a service-oriented perspective. Available at: http://

www.csee.umbc.edu/gavl/theses/jpearlman.pdf, 2007.

13. Pickett R.M. and Grinstein G.G. Iconographic displays for visua-

lizing multidimensional data. In Proc. 1988 IEEE Conf. on

Systems, Man and Cybernetics, 1988, pp. 514–518.

14. Pickett R.M., Grinstein G., Levkowitz H., and Smith S.

Harnessing preattentive perceptual processes in visuali-

zation. Perceptual Issues in Visualization, Springer, NY, 1995,

pp. 33–45.

15. Pinkney D. Intelligent Iconic Visualization. Ph.D thesis,

University of Massachusetts, Lowell, 1997.

16. Smith S., Bergeron R., and Grinstein G. Stereophonic and

Surface Sound Generation for Exploratory Data Analysis. In

Proc. SIGCHI Conf. on Human Factors in Computing Systems,

1990.
17. Ward M. A taxonomy of glyph placement strategies for multidi-

mensional data visualization. Inf. Vis., 1:194–210, 2002.

18. Wittenbrink C., Pang A., and Lodha S. Glyphs for visualizing

uncertainty in vector fields. Trans. Vis. Comput. Graph., 2

(3):266–279, 1996.

19. Yang F., Goodell H., Pickett R., Bobrow R., Baumann A., Gee A.,

and Grinstein G.G. Data exploration combining kinetic

and static visualization displays. In Proc. 4th Int. Conf. on

Coordinated & Multiple Views in Exploratory Visualization,

2006, pp. 21–30.

20. Zhang X. and Pazner M. The icon imagemap technique

for multivariate geospatial data visualization: approach and

software. Cartogr. Geogr. Inf. Sci., 31(1):29–41, 2004.
Iconographics

▶ Iconic Displays
Icons

▶ Iconic Displays
Identity Disclosure

▶Disclosure Risk
Identity-based Access Control

▶Discretionary Access Control
IDF

▶ Inverse Document Frequency
IF

▶ Information Filtering

Image I 1343
ILM

▶ Information Lifecycle Management (ILM)
I

Image

VALERIE GOUET-BRUNET

CNAM Paris, Paris, France

Synonyms
Multimedia; Digital image; Picture; Photograph; Syn-

thetic image; Graphics

Definition
Image comes from Imago in Latin and designates fu-

neral masks. Philosophically, an image represents the
Image. Figure 1. Different representations of digital images:

printer with special type faces from a coded record (from Mc

camera (c) Axial fMRI slice of a human brain (d) Synthetic ima

(e) Synthetic image created by G. Tran with POV-Ray 3.6 usin

are vector graphics (g) Panorama stitched from 6 images with
static and eternal double of a volatile or ephemeral

reality. More commonly, it is a two-dimensional arti-

fact that either records the visual appearance of physical

objects, like photographs, or provides a visual repre-

sentation of concepts or artificial data, like graphics or

synthetic images. Digital images were born in the early

1920s, as a representation of a two-dimensional image

using ones and zeros (binary) obtained by digital cam-

eras, scanners or dedicated materials and softwares.

They exist in different forms, as illustrated in Fig. 1.

Nowadays, digital images are everywhere. They are

involved in a large number of leading applications

and cover various domains from medicine to video

games, including architecture or robotics.

Historical Background
The first use of digital images dates back to the beginn-

ing of the twentieth century with the technological
(a) Early digital image reproduced in 1921 by a telegraph

Farlane’s article, 1972) (b) Photograph taken with a digital

ge ‘‘Julia set,’’ a fractal related to the Mandelbrot set

g Radiosity (f) Zoom on a PDF document where images

image mosaicing technique.

1344 I Image
development of facsimile transmission for the news-

paper industry. Among several systems developed for

reducing picture transportation time, the Bartlane

cable transmission system, invented in 1920 in Great

Britain, was the first system that translated pictures

into a digital code (Baudot code) for efficient picture

transmission [7]; in Fig. 1, image (a) represents an

image transmitted with the Bartlane system and repro-

duced by a telegraph printer. Scanners can be consid-

ered as the successors of telephotography input

devices. The first digital image made on a computer

came from a drum scanner associated with photomul-

tiplier tubes built in 1957 by Russell Kirsch at NIST

(US National Institute of Standards and Technology).

But drum scanning declined and now relates to

specialized applications, due to the development of

low-cost flatbed and film scanners.

The advent of digital image technology is also

closely tied to the development of computers as well

as remote sensing applications. The first computers

powerful enough to carry out meaningful image pro-

cessing tasks appeared in the early 1960s, at the same

time as development of space programs. With the aim

of improving back transmission of images from space

exploration on moon surface mapping, work using

computer techniques for converting analog to digital

signals began at the NASA Jet Propulsion Laboratory in

Pasadena in 1964. Computer technology was advanced

and pictures transmitted were processed to correct var-

ious types of image distortion inherent in the on-board

television camera.

In the early 1970s, the invention of computerized

axial tomography (CAT) was another important event

in the development of digital imaging, in this case for

medical diagnosis. From rings of sensors around the

object and X-ray source, tomography consists of algo-

rithms that construct an image that represents a slice of

the object. Sir Godfrey N. Hounsfield and Prof. Allan

M. Cormack shared the 1979 Nobel Prize in Medicine

for this invention.

Medical research, government programs for space

exploration and espionage with spy satellites clearly

helped advance the science of digital imaging. However,

the private sector in parallel also made significant

contributions in the development of digital cameras.

It first became possible to build these cameras with

the availability of the CCD image sensor, invented by

Willard S. Boyle and George E. Smith at Bell Labs in the

early 1970s. In 1981, Sony released the Mavica, first
commercial electronic still camera, followed by Canon

with the RC-701 camera. Since the mid-1970s, Kodak

has invented several solid-state image sensors for profes-

sional and home consumer use. In 1986, Kodak scientists

invented the world’s first CCD mega-pixel sensor, capa-

ble of recording 1.4 million pixels. In 1987, they released

seven products for recording, storing, manipulating,

transmitting, and printing still and video digital images.

Since then, a large palette of digital cameras for the

consumer-level market has been developed. Current

research on digital cameras focuses mainly on sensors

and aims at developing sensors with higher resolution,

while increasing their sensitivity.
Foundations
Today, the continuing drop in prices of computers and

storage, the democratization of digital images (multi-

media PCs, digital cameras, cell phones, digital cam-

corders, etc) and the expansion of networking and

communication bandwidth via the Internet or the

HDTV (High-definition television) greatly contribute

to the production and dissemination of larger and

larger volumes of digital images. Digital images are

now involved in a large number of leading applications

that require the use and development of techniques

belonging to several disciplines of computer science.

These disciplines are presented below, after a brief

introduction to the bases of digital image acquisition

and representation.
Image Acquisition

Digital imaging refers to the technical process of digital

image acquisition. A 2D digital image may be created

directly from a physical scene by a digital camera or

similar devices, as illustrated in Fig. 1 with image (b).

Alternatively, it may be obtained by a scanner from a

document in an analog medium, such as photographs,

photographic films or printed papers. Most of these

equipments have in common the digital sensors that

capture light rays and convert them into electrical

signals. At present, the most popular image sensors

fall either in the category of charge-coupled devices

(CCD) or active-pixel sensors (CMOS for Comple-

mentary Metal-Oxide-Semiconductor) for the most

recent technology [6].

Unlike human vision, sensors that capture images

are not limited to the visual band of the electromag-

netic spectrum. Digital images can cover almost the

Image I 1345
entire spectrum, ranging from gamma to radio waves.

Many other specific equipments exist to capture 2D

or 3D digital images, mainly for medical, military,

astronomy or satellite domains: X-radiographs, MRI

scanners (Magnetic Resonance Imaging, see image

(c) in Fig. 1), PETscanners (Positron Emission Tomog-

raphy), SLAR radars (Side-Looking Airborne Radars),

radio telescopes, etc.

Finally, a digital image can also be computed

from a geometric model or mathematical formula. In

this case, it refers to 2D or 3D computer graphics

discipline, as illustrated with images (d), (e), and (f)

in Fig. 1.
I

Image Representation

Digital images can be represented either as vector

graphics or bitmapped representation (also called

raster representation). Vector images are geometrical

2D objects created with drawing software or CAD

(computer-aided design) systems. They are repre-

sented with geometrical primitives such as points,

lines, curves, and shapes or polygons, which are all

based upon mathematical equations.

A bitmapped digital image is composed of a set of

dots or squares, called pixels (for picture elements),

arranged in a matrix of columns and rows. Each pixel

has a specific color or shade of gray, and in combina-

tion with neighboring pixels it creates the illusion of a

continuous tone image. Managing bitmapped images

requires the manipulation of several parameters such

as color model, dynamic range, and resolution.
Image Processing and Analysis

Because an image can be seen as a two-dimensional

signal, image processing is a sub-field of signal proces-

sing. A lot of image processing techniques involve treat-

ing the image as a two-dimensional signal and applying

standard signal processing techniques to it, while other

techniques are specific to images. In the digital image

community, there is not an unified definition of the

tasks associated with image processing. Traditionally

for some people, image processing techniques refer to

image manipulation or filtering and then take an image

as input and provides another image as output. For

others, the output can also be a set of characteristics

related to the input image, for instance either low-level

features obtained by detection or extraction processes

(contours, regions, etc), or high-level features obtained
by analysis (face recognition, behavior interpretation,

etc). According to [4], image processing gathers the

three following computerized processing levels:

� Low-level process: This level involves preprocessing

operations such as image geometrical transforma-

tions (sub-sampling, rotation), image compression,

image enhancement (noise reduction, contrast en-

hancement, image sharpening, etc). Both the inputs

and outputs are images.

� Mid-level process: The input is an image processed

at previous level and generally the outputs are

visual attributes extracted from this image. Mid-

level processing on images involves tasks such as

automatic extraction of meaningful features (con-

tours, key points, regions, objects). This step is then

followed by the visual description of these features

to be able to make the distinction between them,

and more generally to reduce them to a form suit-

able for higher-level computer processing.

� High-level process: This ultimate level tries to arti-

ficially perform the cognitive function usually asso-

ciated with human vision. Associated with previous

level, it refers to image analysis and interpretation

in literature. From the features extracted at previ-

ous level, plus potential external information such

as prior knowledge furnished by the application/

domain or training data, the algorithms try to form

a decision.
Computer Vision

As the name implies, computer vision is the science and

technology that allow computers to see. Computer

vision is concerned with the theory for building artifi-

cial systems that interpret images, with ultimate goal

of reaching performances similar to human vision.

This discipline shares many formalisms and techniques

with the image processing and analysis one previously

described. But in literature, image processing and anal-

ysis tends to be interested in the interpretation of

2D images, while computer vision rather focuses on

the interpretation of 3D scene from its projection onto

one or several images to analyze, e.g., how to recon-

struct structure about the 3D scene or other geometri-

cal information (like location of cameras or 3D

trajectories of objects) from images. To achieve these

tasks, one fundamental aspect of computer vision tech-

niques is geometry and more precisely the manipula-

tion of geometrical models [5], such as the camera

1346 I Image
model (classically pinhole model) and the stereovision

model (epipolar geometry).

The problems addressed by 3D computer vision are

various [3], for example: camera calibration, i.e., the

automatic determination of the characteristics of the

camera from one image and a 3D pattern; auto-

calibration from several images; 3D reconstruction of

the scene structure from several images; determination

of 3D motion/trajectory of objects in video sequences.

Image Synthesis

While scanners or digital cameras allow building digi-

tal images from physical objects, image synthesis fo-

cuses on the capability to create novel images

representing realistic or artificial scenes. The traditi-

onal approaches of computer graphics have been to

create synthesis images from a given geometric model

in 3D by projecting it onto a two-dimensional image.

Conversely, image-based rendering starts from one or

several two-dimensional images in order to directly

generate novel two-dimensional images, skipping the

manual 3D modeling stage. Applications such as video

games, motion picture, audiovisual, architecture, com-

puter simulation, tourism (virtual travels) and e-com-

merce stand to benefit from these technologies. The

most known associated exhibition is the SIGGRAPH

annual conference (Special Interest Group on GRA-

PHics and Interactive Techniques) convened by the

ACM SIGGRAPH organization since 1974 [12].

Computer Graphics Computer graphics is concerned

with the creation and the manipulation of digital images

[10]. The term can refer to 2D computer graphics, where

artificial images are diagrams, logos or textures that may

be generated by using vector graphics modelers (see

example (f) in Fig. 1), mathematical models such as

fractals (see example (d) in Fig. 1), or by processing

existing images. Most of the time, computer graphics

implicitly means 3D computer graphics, that renders

images from the three-dimensional representation

of geometric data. 3D computer graphics moves on

several techniques stemmed from Computer-Aided

Design (CAD):

� 3D modeling is the process of developing a mathe-

matical representation of any three-dimensional

object that describes its appearance in terms of

shape, colors, and potential textures. 3D models
are often created with special softwares called

3D modelers, by an artist, a specialist or engineer

or scanned into a computer from real-world

objects.

� The object layout and its interactions with other

objects must also be described. If the object moves

or deforms, animation refers to its temporal de-

scription. Popular methods include inverse kine-

matics and motion capture; this last involves the

recording of human actors actions, to animate dig-

ital character models.

� Rendering converts the 3D object into a image by

projecting it onto a 2D image with a perspective

projection model, while simulating light transport

according to illumination models. The basic opera-

tions are transport (models for light movement)

and scattering (models for light reflection on the

object’s surface). Different methods are better suit-

ed for either photo-realistic rendering, or real-time

rendering. When the goal is photo-realism, the

most famous global methods for rendering are

ray tracing and radiosity. These techniques success-

fully address the problems of occlusion, transpa-

rency, shadows and take the interactions between

objects into account, as illustrated with the image

of Fig. 1e.

Image-Based Rendering Unlike traditional computer

graphics approaches previously described in which 3D

geometry of the scene is known, the aim of image-

based rendering techniques is to render novel views

directly from input 2D images, in a realistic way with-

out full 3D model reconstruction [11]. Previous work

on image-based rendering reveals a continuum of

image-based representations based on the tradeoff be-

tween how many input images are needed and how

much is known about the scene geometry; such tech-

niques directly refer to geometric and algorithmic

models of computer vision. The most popular applica-

tions of image-based rendering are view morphing and

image mosaicing. The first one aims at generating in-

termediate views between two reference images, by

interpolating parts of images in correspondence. In

the 1990s, they were very popular in the audiovisual

industry and motion pictures, while producing aes-

thetic and spectacular special effects at low cost, such

as one face turning into another. The novel views

rendered with such techniques do not respect the

Image I 1347

I

geometry scene, in the sense that the objects may be

distorted in the produced images. Image mosaicing pro-

duces panoramic images by registering or stitching mul-

tiple regular images that partially share a view of the

scene; see example (g) of Fig. 1. The produced image

can be projected to a cylindrical or a spherical map for

visualization and virtual navigation with the feeling of

immersion into the 3D world. The first and most popu-

lar application of mosaicing is QuickTimeVR [1].

Image Indexing and Retrieval

The huge volume of digital images now available

on the Internet or simply on personal computers

makes for images that cannot be easily located. Image

indexing techniques aim at developing search engines

that manage collections of images and in particular

that facilitate their fast and accurate retrieval. But

retrieval of images, more generally of multimedia data,

is different from retrieval of structured data such as

classical databases. It is necessary to exhibit a descrip-

tion of the images, often called descriptor, that repre-

sents the essence of the image for a given topic and that

will be indexed to allow efficient retrieval among the

many descriptors associated to the available images.

The most usual descriptors associated to images are

textual, making tools of linguistics required to define

them. Most of the time, this information is structured

in keywords that can either be related to a controlled

vocabulary (potentially connected to dedicated ontol-

ogies or semantic lexicons) or be freely assigned [13].

Keywords can be determined by analyzing the meta-

data associated with the image, the filename of the

image, by parsing text adjacent to the image as Google

Image Search does on the Internet, or by using more

sophisticated methods such as text extraction from

images content. Otherwise, keywords are designed

manually by experts of the application domain. A

popular new form of free-text keywords on the Inter-

net is folksonomy where tags are assigned to images by

non-experts or consumers collaboratively. Once the

images are described with keywords, evaluating a

search query to quickly locate images characterized

with given words among a collection of images is

done by exploiting an index data structure; inverted

files are a popular technique for indexing text data [9].

Text-based indexing has several shortcomings

such as ambiguities, subjectivity, language or context-

dependence. Indexing the visual content of images
is a recent alternative that may help to reduce these

drawbacks by giving additional insight into the collec-

tions of images. When the number of images makes

manual annotation unachievable, it is the only solu-

tion. Born in early 1990s, Content-Based Image Index-

ing (CBIR) is a discipline that exploits techniques

of image processing/analysis in addition to databases

tools [2]. Indexing an image by its content begins

by extracting visual structures that describe the visual

content relevantly for the considered application. Such

structures are considered as the index of the image,

which is digitally represented with one or several mul-

tidimensional vectors called signature of the image.

Here, multidimensional index structures are required

to perform retrieval efficiently in terms of processing

time and disk access [9].
Key Applications
A classical problem in image processing, image

analysis, computer vision and CBIR is the ability to

determine whether or not an image contains some

specific objects. This task, referred to object recognition,

can normally be solved robustly and without effort

by a human, but is still not satisfactorily solved by

computers for the general case of arbitrary objects in

arbitrary situations. The existing methods can at best

solve it only for specific objects such as print or hand-

written characters, human faces or vehicles and in

specific situations, typically described in terms of

well-defined illumination, background, and pose of

the objects relative to the camera. Thus, while object

recognition has been an active research area for 40

years [8], it is still challenging for several applications.

Nevertheless, some patented approaches for specific

object recognition have already proved their efficiency,

they are offered as a service by consumer-oriented

companies or are well established in several organiza-

tions and apply to a large palette of domains. For

instance:

� Surveillance of road traffic: Automatic recognition

of license plates is a mass surveillance method

that uses character recognition on images to read

plate numbers on vehicles. Many governments, po-

lice, and town councils have adopted this technol-

ogy to automatically detect vehicles in driving

offence, to supervise areas such as parking areas,

or to control traffic in order to help monitor the

1348 I Image Classification
movements and flows of vehicles around a road

network.

� Authentication: Biometrics technologies provide

methods for uniquely identifying humans based

upon one or more intrinsic physical or behavioral

traits. Systems based on visual appearance analysis

are based on particular methods of image analysis

dedicated to specific images representing faces,

retinas, hands, veins or fingerprints. For example,

several banks in Japan have adopted palm vein au-

thentication technology on their ATMs (technology

developed by Fujitsu in 2003 and called PalmSecure).

Among several governments, Israel has also adopted

this technology to control the border crossing points

between Israel and the Gaza Strip: an ID card, with

stored biometrics of fingerprints, facial geometry and

hand geometry, is required to go across.

� E-commerce: Since few years, several companies

provide to their clients the ability to link their pro-

ducts and services directly to specific web pages on

the mobile internet by the way of bi-dimensional

barcodes called ‘‘smart codes.’’ With their mobile

phone’s camera, consumers can scan the code placed

near or on the product, then the code is recognized

by image analysis, making it possible the connection

to the associated service (product purchasing, time-

tables consultation, prices comparison, etc).
Cross-references
▶Annotation-Based Image Retrieval

▶ Feature Extraction for Content-Based Image

Retrieval

▶ Icon

▶ Image Content

▶ Image Content Modeling

▶ Image Database

▶ Image Querying

▶ Image Representation

▶ Image Retrieval

▶ Indexing and Similarity Search

▶Multimedia Data

▶Multimedia Databases

▶Object Detection and Recognition

▶Object Recognition

▶Video

▶Video Representation

▶Visual Content Analysis

▶Visual Representation
Recommended Reading
1. Chen S.E. QuickTimeVR: an image-based approach to virtual

environment navigation. In Proc. Int. Conf. on Computer Gra-

phics and Interactive Techniques, 1995, pp. 29–38.

2. Datta R., Joshi D., Li J., and Wang J. Z. Image retrieval: Ideas,

influences, and trends of the new age. ACM Comput. Surv.

40(2), 2008, paper 5.

3. Forsyth D. and Ponce J. Computer Vision - A modern approach.

Prentice Hall, 2002.

4. Gonzalez R. and Woods R. Digital Image Processing. Prentice

Hall, 3rd edition, 2008.

5. Hartley R.I. and Zisserman A. Multiple view Geometry in

Computer Vision. Cambridge University Press, 2nd edition, 2004.

6. Litwiller D. CCD vs. CMOS: Facts and Fiction. Photonics Spec-

tra, January 2001.

7. McFarlane M.D. Digital pictures fifty years ago. Proc. IEEE, 60

(7):768–770, July 1972.

8. Ponce J., Hebert M., Schmid C., and Zisserman A. Toward

Category-level Object Recognition, LNCS, vol. 4170. Springer,

2007.

9. Samet H. Foundations of Multidimensional and Metric

Data Structures. Morgan Kaufmann 2006.

10. Shirley P., Ashikhmin M., Gleicher M., Marschner S.,

Reinhard E., Sung K., Thompson W., and Willemsen P. Funda-

mentals of Computer Graphics. A.K. Peters, Ltd., 2nd edition,

July 2005.

11. Shum H. Y., Chan S. C., and Kang S. B. Image-Based Rendering.

Springer, 2006.

12. ACM SIGGRAPH. http://www.siggraph.org/.

13. Yu L. Introduction to the Semantic Web and Semantic

Web Services. Chapman & Hall/CRC, 2007.
Image Classification

▶Automatic Image Annotation
Image Compression

▶ Image Representation
Image Content

▶ Image Representation

Image Content Modeling I 1349

I

Image Content Modeling

HARALD KOSCH, MARIO DÖLLER

University of Passau, Passau, Germany

Synonyms
Image data model; Image meta-data; Conceptual

image data model

Definition
Image Content Modeling deals with the issue of repre-

senting the content of image data; that is, designing the

high- and low-level abstraction model of the raw image

objects and their correlations to facilitate various opera-

tions. These operations may include media object selec-

tion, insertion, editing, indexing, browsing, querying,

retrieval, and exchange. The image content model relies,

therefore, on the extraction of feature vectors and their

respective representations obtained during the annota-

tion process. Several standards for representing the con-

tent of an image are known. The most prominent ones

are MPEG-7 including low- and high-level abstractions

or the EXIF data description vocabulary for the descrip-

tion of very specific technical attributes of an image.

Historical Background
Manymodels for describing the content of an image have

been created in the past. Most of them rely on standards.

Many standards are actually in use, mainly due to differ-

ent national and organizational interests of service

providers, standardization bodies, and usage groups.

Whereas each standard works well in its dedicated ap-

plication domain, problems arise in frequently occurring

cross-domain working environments. The following is a

non-exhaustive list of important standards:

� The Exchangeable Image File (EXIF) (http://www.

exif.org/) format is an international specification

that allows imaging companies to encode meta data

information into the headers or application seg-

ments of a JPEG file. This meta data information

includes shutter speed, aperture, date and time of

the captured image. Current digital cameras store

images using EXIF compressed files. It is a wide-

spread standard, with a simple attribute/value spec-

ification. EXIF was last revised in April 2002.

� The DIG35 Initiative Group of the I3A (Interna-

tional Imaging Industry Association) has also

defined a meta data standard for digital images
(http://www.i3a.org/i_dig35.html). The DIG35

Specification includes technical meta data on

media, simple semantic meta data on persons, loca-

tions, events and intellectual property and rights

management related meta data. The focus of DIG35

is on retrieval, categorizing and browsing of large

image archives. The latest version stems from

March 2000.

� The SMPTE (http://www.smpte-ra.org/mdd/) is a

standardization organization that has created the

Metadata Dictionary (MDD). Most meta data con-

sists of media-specific attributes, such as timing

information as well as some basic semantic descrip-

tions (interpretation, administration and relation-

ships among descriptions). The MDD definition

was reviewed in 2004. The SMPTE Material eX-

change Format (MXF) allows users to take advan-

tage of non-real-time transfers, and to package

together essence and metadata for effective inter-

change between servers and between businesses.

� The P/Meta EBU P/Meta Project (http://www.ebu.

ch/metadata/pmeta/v0100/html/start_frame.html)

has created the P_META Scheme, a set of defini-

tions that provides a semantic framework for infor-

mation which is typically exchanged along with

audio-visual material. It includes the identification

of concepts referenced by other elements. The

P_META Scheme has been created for the use in a

business-to-business scenario where the participat-

ing organizations may retain their internal data

structures, workflows, and concepts. Version 1.0

appeared in 2002.

� The MPEG-7 (http://www.chiariglione.org/mpeg/

standards/mpeg-7/mpeg-7.htm) is the MPEG stan-

dard for description and search of audio and visual

content and is the first standard fromMPEG which

considers multimedia content models. From the

point-of-view of the expressiveness of the proposed

metadata descriptions it is the richest set, as it

enables the user to describe structural, as well as

semantic content of an image [3]. It supplies like-

wise means for the description of creation, usage

and management of images. MPEG-7 version 1 was

released as international standard in 2002. An im-

proved version was published in 2006.
MPEG-7 visual description tools cover color,

texture, shape and face recognition descriptors for

images. They mainly use a histogram-based ap-

proach of representation; that is, they compute a

1350 I Image Content Modeling
vector of elements each representing the number of

pixels (regions) in a given image, which have simi-

lar characteristics. For instance, the color structure

descriptor computes a histogram obtained by ac-

counting all colors in a structuring element which

slides over the images and takes therefore the spa-

tial layout better into consideration, or the color

layout descriptor which uses a discrete cosine

transformation to represent more compactly

the histogram. MPEG-7 high-level descriptions

mainly represent the structure and semantics of

an image. The media decomposition tools allow

the recursive sub-division of an image into regions

of interest. A decomposition tree describes the

image source and the spatial structure of the

image regions and can be used to create a table of

content. Each region can be associated with its

shape information and low-level visual descrip-

tions, then information on creation, rights and

usage, simple text annotation (what, where, when,

why, how), and semantic descriptions. Semantic

descriptions represent a narrative world as a set of

semantic entities and semantic relations among se-

mantic entities, and segments. Possible semantic

entities are objects, agent objects, events, places,

and time. MPEG-7 has been employed in many

retrieval and database systems. Westermann et al.

gives an overview of MPEG-7 based database solu-

tions [11] and provides a persistent DOM (Docu-

ment Object Model) model that can be used for

MPEG-7 systems solutions. A full-fledged database

system, MPEG-7 MMDB is described in [1].

The general goal of achieving image content data inter-

operability is affirmed by many researchers. It is

expressed by panels and tutorials held at various inter-

national conferences, such as ACM Multimedia 2002

and 2004 (See, http://mm02.eurecom.fr/panel.html

and http://www.mm2004.org/acm_mm04_call4tutor-

ials.htm) or by input contributions to standardization

(e.g., recently proposed to W3C as Semantic Web

Image Annotation Interoperability (http://www.w3.

org/2001/sw/BestPractices/MM/interop.html)). It has

been clearly recognized that missing interoperability is

still a major burden for an effective use of image content

data in industrial media engineering.
Foundations
Keywords are by far the predominant features used to

describe the content of image data. An indexer using
keywords or a textual abstract describes the content

of the image [6]. Another method, content-based

indexing, refers to the actual content of the image

data. Intensive research has focused on content-based

indexing in recent years, with the goal of indexing the

image data using certain features derived directly from

the data [10]. These features are also referred to as low-

level features. Examples of low-level visual features for

images are color, shape, texture, spatial information,

and symbolic strings. The extraction of such features

may be done by an automatic analysis of the image

data. Indexing high-level features (e.g., objects, events,

etc.) of image data is an active research area [5]. Dif-

ferent detection mechanisms have been proposed for

segmenting the image materials into regions of interest

and for attributing semantic meaningful annotation to

each region and (their semantic) relationships. In

addition to this, and related to the previous issues,

ongoing research concentrates on image classification.

For example, is this image showing a sport event? And

more specifically, is this sport image about basketball?

The recognition of an image as basketball facilitates

the semantic annotation process, as one knows what

kind of objects and persons might appear.

Image Content Modeling refers now to the design of

a high- and low-level abstraction model of the raw

image objects and their correlations to facilitate vari-

ous operations, such as media object selection, inser-

tion, editing, indexing, browsing, querying, retrieval,

and exchange. Several abstract models have been pro-

posed in the literature [3]. Most of them deal with

special low- and high-level features. At least two mod-

els introduce a general framework to cover the whole

spectrum of available features, the DISIMA model [7]

and the indexing pyramid [2]. The later one served as

conceptual model for the semantic part of the MPEG-7

standard.

The DISIMA model relies on two main concepts,

namely the image and salient objects (logical and

physical) and operators to manipulate them [7]. Prin-

cipally, the image type defines the content of an image as

a set of physical salient objects that are regions of the

image. The semantic meaning of a physical salient object

is represented by a logical salient object. Oria et al. define

several properties of physical salient objects, such as

color, texture, and shape. The logical salient object

gives semantics to a physical salient object; proposed

examples are objects, persons and so on. Predicates for

comparing objects (e.g., different similarity operators,

spatial operator) and a special contain operator which

Image Content Modeling I 1351

I

computes if an object is contained in an image, are

proposed. As an image can be composed of more than

one physical object, logical objects can be found several

times. The model can be queried by Visual MOQL, an

image query language based on OQL, proposed in a

previous paper of [7].

Jörgensen et al. [2] introduced a representation

model based on the indexing pyramid for classifying

levels of indexing. The pyramid, as shown in Fig. 1,

distinguishes between syntactic (first four levels) and

semantic levels (next six levels). The syntactic levels

hold attributes that describe the way in which the

content is organized, but not their meanings. This

corresponds to the definition of low-level features.

In images, level 1 (type technique) could be ‘‘color

image.’’ Global distribution holds attributes that are

global to the image (e.g., color histogram), whereas

local structure deals with local components (e.g.,

lines and circles), and global composition relates to

the way in which those local components are arranged

in the image (e.g., symmetry). The semantic levels deal

with the meaning of the elements. This corresponds to

the definition of high-level features. With each level,

more knowledge is required to represent the objects.

They can be described at three levels:

1. Generic: every day objects (e.g., person)

2. Specific: individually named objects (e.g., Roger

Moore)

3. Abstract: representing the highest semantic

abstraction (e.g., power)
Image Content Modeling. Figure 1. Indexing Pyramid as ba
In a similar way, a scene (composition of elements) can

be described at these three levels.

Note that the authors of the indexing pyramid also

propose a retrieval system that allows a search specific

to the levels of the pyramid. For instance, if a user

enters ‘‘soccer’’ for image search at the syntactical

level, one retrieves images with a description contain-

ing the keyword soccer (which does not yet mean that a

soccer game is shown in the image). This is the same

mechanism as the retrieval engine that Google uses

(http://images.google.com). If a user enters soccer at

the semantic level, only those images are retained in

which the event, ‘‘soccer,’’ took place. An online demo

is available at http://www.ee.columbia.edu/�ana/
mpeg-7/.

Image Content Modeling is dominated by the use of

standards, as already mentioned in the historical con-

siderations before. Two types of standards have to be

considered. First those which intend to specify a stan-

dard way of describing the content of image data

mainly for information search and exchange. Second

those which aim to be used for image storage, manip-

ulation and query. In the first category, MPEG-7 is an

important representative [3]. MPEG-7 is introduced in

the historical background, and is detailed in the multi-

media/image metadata entries. An example MPEG-7

document is given in Fig. 2. In the second category,

SQL/MM, recently been integrated into Oracle Multi-

media for instance, is representative [8]. SQL/MM will

be detailed in the next paragraphs.
se for MPEG-7.

1352 I Image Content Modeling
SQL/MM as Conceptual Image Data Model for Databases

ISO/IEC developed the SQL/MM Multimedia ex-

tensions to SQL to deal with image data in a database

management system [8]. SQL/MM has been recently

introduced to several commercial systems. It introduces

new object data types, in the center are the SI_StillIma-

geType and related feature vector representations. Prin-

cipally, one color histogram (SI_ColorHistogram), and

two non histogram color features are proposed, an

average color (SI_AverageColor) and an array of
Image Content Modeling. Figure 2. MPEG-7 Example Docum
dominant colors (SI_PositionalColor). The texture fea-

ture (SI_Texture) contains values that represent the

image texture characteristics. The standard defines in

addition a composite feature (SI_FeatureList) contain-

ing up to four different basic features and associated

feature weights. A weight value specifies the impor-

tance attributed to a particular feature during image

matching. The weight value varies from 0.0 to 1.0. A

feature weight value of 0.0 indicates that the feature is

not considered for image matching.
ent.

Image Database I 1353

I

It can be clearly seen that the SQL/MM data model

covers only parts of the syntactical levels of the

indexing pyramid proposed in [2]. For instance no

means for describing the decomposition of an image

into region of interests is given.

For instance, a photo book can be described by the

following table definition:

CREATE TABLE PHOTOBOOK(

PHOTO_ID NUMBER(6), // id for identification

PHOTO SI_StillImage, // the image itself

AVERAGE_COLOR SI_AverageColor, // here

comes the list of

COLOR_HISTOGRAM SI_ColorHistogram, // fea-

tures for querying

FEATURE_LIST SI_FeatureList,

POSITIONAL_COLOR SI_PositionalColor,

TEXTURE SI_Texture,

COMMIT;

Key Applications
Key applications for image content modeling are image

databases and retrieval systems. SQL/MM is the stan-

dard for the use in commercial database management

systems. Its simple conceptual model does not allow

the use of complex low-level representations, nor high-

level descriptions. Instead, a recent research issue is

on image meta data databases, which for instances

expresses in the search for a good mapping of an

image content model into database schemes (see e.g.,

MPEG-7 databases in [1,11]).

Cross-references
▶ Image Database

▶Multimedia Metadata

Recommended Reading
1. Döller M. and Kosch H. The MPEG-7 Multimedia database

system (MPEG-7 MMDB). J. Syst. Software, 81(9):1559–1580,

2008.

2. Jörgensen C., Jaimes A., Benitez A.B., and Chang S.-F. A concep-

tual framework and empirical research for classifying visual

descriptors. J. Am. Soc. Inf. Sci. Technol., 52(11):938–947, 2001.

3. Kosch H. Distributed Multimedia Database Technologies

supported by MPEG-7 and MPEG-21. CRC Press, Boca Raton,

FL, 2004.

4. Kosch H., Böszörményi L., Döller M., Kofler A., Schojer P., and

Libsie M. The life cycle of multimedia meta-data. IEEE Multi-

media, 12(1):80–86, 2005.

5. Liu Y., Zhang D., Lu G., and Ma W.Y. A survey of content-based

image retrieval with high-level semantics. Pattern Recognition,

40(1):262–282, 2007.
6. Lu G. Multimedia Database Management Systems. Artech

House, London, UK, 1999.

7. Oria V., Özsu M.T., and Iglinski P.J. Foundation of the

DISIMA image query languages. Multimedia Tools Appl. J.,

23:185–201, 2004.

8. Stolze K. Still image extensions in database systems – A product

overview. Datenbank-Spektrum, 2:40–47, 2002.

9. Tseng B.L., Lin C.-Y., and Smith J.R. Using MPEG-7 and MPEG-

21 for personalizing video. IEEE Multimedia, 11(1):42–52, 2004.

10. Veltkamp R.C. and Mirela Tanase. Content-Based Image

Retrieval Systems: A Survey. Technical Report, Utrecht Univer-

sity, The Netherlands, 2000.

11. Westermann U. and Klas W. An analysis of XML database solu-

tions for the management of MPEG-7 media descriptions. ACM

Computing Surv., 35(4):331–373, 2003.
Image Data Model

▶ Image Content Modeling
Image Database

MARIO DÖLLER
1, HARALD KOSCH

1, PAUL MAIER
2

1University of Passau, Passau, Germany
2Technical University of Munich, Munich, Germany

Synonyms
Image retrieval; Image retrieval system; Content-based

image retrieval (CBIR)

Definition
Given a collection of images, a full-fledged image data-

base provides means and technologies that support an

efficient and rich modeling, storing, indexing, retrieval,

and manipulation of images and its meta-data. The

modeling of images can range depending on the used

meta-data format (e.g., MPEG-7) from simple technical

annotations such as file size, creator, etc. tomore sophis-

ticated annotations such as low level features (e.g., color)

or even high level features (e.g., objects, events, etc.). The

storing component is responsible for mapping the used

meta-data format to an adequate database schema.

Indexing facilities should support efficient retrieval and

need to provide means (depending on the used meta-

data) for indexing text, multidimensional feature vectors

and high level representations. The retrieval and query

specification should support some or all of the following

1354 I Image Database
concepts: query by example, query by sketch, query by

textual information (e.g., creator), query by category

browsing, query by concept. Finally, manipulation of

images should allow operations such as rotating, shrink-

ing, format conversion, thumbnail creation, feature

extraction, etc.

Historical Background
Activities in storing and retrieving images within data-

bases can be traced back to the late 1970s, where first

conference (e.g., Data Base Techniques for Pictorial

Applications, 1979) contributions introduced the use

of relational databases for images [2]. In general, these

early works focused on the annotation and retrieval of

images by textual information. For this purpose, the

images were described by keywords or textual descrip-

tions and common relational database technologies

and their text-based retrieval approaches were used

for searching within the pool of annotated images. A

substantial survey for text-based image retrieval can be

found in [11]. The main drawbacks of these early-

approaches concern the annotation of images by text.

In general, manual annotation of images and its con-

tent is very time consuming and for large image sets

infeasible. Furthermore, the assignment of descriptions

or keywords to images is not based on the use of a

controlled and universally valid vocabulary or classifi-

cation scheme, and is highly affected by cultural,

subjective and domain specific influences. First discus-

sions on this topic were raised by Shatford [9] which

indirectly resulted in various thesaurus catalogues

(e.g., thesaurus for graphical material, Art and

Architecture Thesaurus (AAT), etc.).

Based on the identified drawbacks of text-based

image retrieval, researches tended to move in the late

1990s to investigate the retrieval of images by content.

It is often referred in the literature as content-based

image retrieval (CBIR) and concentrated on technolo-

gies for the extraction, indexing, comparison and

query of images by their low level features. These low

level features include representations for color, texture

and shape which can be extracted automatically.

In general, a typical CBIR system covers the follow-

ing main steps. First, the low level features of all

searchable images are extracted and stored as high-

dimensional feature vectors in a database. Then, in

order to improve retrieval efficiency, the feature vectors

are indexed by specific access methods which are tuned

for that kind of data (see [3] for a survey of existing
access methods). Finally, during the query process, an

example image (represented by its features) is provided

by the client. Based on this, the similarity/distance in

relation to the stored features is calculated. The size of

the result set depends on the chosen query type (range

query or nearest neighbor) and contains the most simi-

lar (in terms of the low level features) images according

to the given one.

Examples of early successful systems and applica-

tions focusing on CBIR were, for instance, the IBM

QBIC system (which stands for Query by Image Con-

text), Blobworld or CalPhotos. The CalPhotos image

retrieval system had its roots in a 1993–1994 research

project called Chabot, at the University of Berkeley.

R. C. Veltkamp and M.Tanase compared (updated in

2004) 43 available products [12]. Smeulders et al. sur-

veyed the early years of CBIR systems in [10] with 200

references.

Foundations
As already outlined in the historical background sec-

tion, the search within image collections has a long

tradition in the field of database management systems.

In the following, the main components of an image

database are introduced in order to support the stor-

age, indexing, and retrieval of images.

Image Database Schema

First approaches transferred meta-data of raw media

data into database relations in an ad-hoc way. These

simple models only support certain types of queries

and operations and were mostly limited to keyword

retrieval. The nature of multimedia data, consisting of

alphanumeric, graphical, image, video, and audio

objects, differs in many ways to simple alphanumeric

data that relational database management system are

able to handle. One of the first models proposed for

visual information that considers semantic queries, was

called the Visual Information Management System

(VIMSYS) [4] from Virage. The creators recognized

within their model that image and video information is

preferred to be retrieved by content rather than by key-

words or additional textual descriptions. During the past

years, research concentrated on the development of data

models for images (e.g., [1]) and content-based retrieval.

In most cases, these systems concentrate on the retrieval

based on low-level features. Recently, data models for

image information that support high-level features have

been introduced. The data models of these systems are

Image Database I 1355

I

often specialized to one type of genre, e.g., retrieval on

the basis of soccer games (e.g., [5]).

Index Structures

Besides the necessity of developing semantically rich

image data models and database schemas, an efficient

indexing and search of images is essential. During the

last decade, image based retrieval concentrated on the

use of low-level features and their feature vector

representations.

In order to improve search efficiency, different

access methods have been established for indexing

multidimensional feature vectors, for instance (to

mention just a few) LPC-File, X-tree, Pyramid Tech-

nique, R-tree and its variants, SR-tree, M-tree, etc.

An excellent survey and overview paper of index struc-

tures is given by e.g., Gaede et al. [3]. An evaluation of

different quantization techniques, such as A-tree versus

IQ-tree is given by Garcia-Arellano (University of

Toronto) in his master thesis. A complete generali-

zed framework, called GiST, has been established

by J. Hellerstein and his group at the University of

California, Berkeley. It consists of a set of pre-

implemented index structures and generalized access

interfaces. Support is given by sophisticated graphical

tools providing access statistics. The framework has

been used for various image retrieval applications

(e.g., Blobworld) and the development of new index

structures. In addition, the framework has been

integrated within research projects in the Informix

database and Oracle database.

One problem in processing feature vectors is their

high dimensionality. The quality of results of a similar-

ity search depends on a high degree on the underlying

data set (feature vectors). For instance, the more

colors a color histogram represents the merrier the

similarity search will work. This correlates with a

higher dimensionality of the resulting feature vector.

This is also the case, when multiple features are com-

bined, such as for images the color, the shape and the

texture. Unfortunately, query performance of access

methods decreases, if dimensionality of the underlying

data set becomes high. This phenomenon is known as

curse of dimensionality [3]. One possibility of avoiding

this problem is the development of specific index

structures that are specialized for high-dimensional

data (e.g., see [3] for a survey). Another possibility is

the reduction of the vector dimension. The main goal

of reducing the dimension is to find a low-dimensional
representation of the vector that preserves (most of)

the information of the original data. The reduction can

be realized by two different approaches: Feature selec-

tion and Feature extraction. Feature selection stands for

choosing a subset of all the features that represent most

of the desired information. Feature extraction describes

the creation of new features by combining the exis-

ting ones. Wu et al. [13] introduced a dimensionality

reduction for image retrieval called weighted multi-

dimensional scaling. Another commonly used technol-

ogy is the singular value decomposition (SVD).

Query Optimization

A general architecture of a query optimizer has com-

monly the following form [1]: A query is forwarded

to a query parser which checks the syntactical correct-

ness and transforms the query into an internal repre-

sentation (mostly an algebraic expression). In the

following step, the query optimizer evaluates the most

effective algebraic expressions which represents the

given query and chooses the cheapest one. The code

generator transforms the resulting query plan into calls

to the query processor, which does the actual query

execution. The main task of a query optimizer is to

examine all possible alternatives to a given query so

that the best alternative can be chosen and the query

cost is minimized.

In image databases, queries often contain simila-

rity operations, such as Range or Nearest Neighbor

(NN)-operation for low-level features (e.g., color

histogram), especially if the system supports

content-based retrieval. This can be associated with a

similarity-based selection operation in an image data-

base management system. In general, a query optimizer

should use three approaches: selectivity, cost model, or

operator ordering. Most approaches concentrate on

the cost-model and the selectivity, based on the fact

that modern database systems, such as Oracle, only

provide means for their enhancement.

The cost of a selection operation is in general com-

posed of two different cost factors. The selectivity of an

operation defines the amount of tuples returned by the

selection operation. Whereas, the cost of an operation

is counted as the amount of data pages which has to be

accessed for fulfilling the given task and as the number

of necessary CPU cycles. In the image environment, the

cost (selectivity, and amount of data pages) of Range-

and k-NN-queries in high-dimensional spaces is im-

portant. An efficient processing of such kind of queries

1356 I Image Database
is guaranteed by a multidimensional index. Therefore,

the calculation of the amount of accessed pages (fur-

ther simply called cost) needs an evaluation of the used

index structure. This evaluation can be simple in one

case, for instance the selectivity of a k-NN query is

determined through k, or difficult, if the selectivity

for a Range query is considered which needs an

approximation. The cost of a Range query can be easily

calculated, based on the known radius which results in

an intersection operation of the hypersphere and the

minimum bounding rectangles (MBRs) of the index

structure. The cost for a k-NN query depends largely

on the density around the query location.

In the literature, several cost models exist that

concentrate on calculating the amount of page access

for Range- and k-NN-queries (e.g., [6]). Selectivity

estimation for Range queries is often limited to either

the assumption of uniformity and independence of

data sets or to the 2- or 3- dimensional data spaces in

geographic information systems. The uniformity as-

sumption does not hold for real data sets. In [6], the

authors present an efficient cost model for predicting

the performance of the k-NN-query independently of

the used index tree. The model is accurate for low- and

mid-dimensional data with non-uniform distribu-

tions. For this purpose, the authors introduce two

new concepts: the regional average volume and the

density function. The regional average volume is used

for calculating the average radius of the hyper-sphere

which contains the k-NNs. As indicated before, the

average radius is not adequate for highly skewed

non-uniform distributions. To overcome this limita-

tion, the authors introduced a density function that

estimates the regional radius depending on the loca-

tion in the data space.

Database Extensions to Support Images

In the last decades, traditional (Object-) Relational

Database Management Systems ((O)RDBMS) have

been very effective and efficient in managing alphanu-

merical data. They basically offer services such as

indexing, query optimization, buffer management,

recovery or concurrency control, which are well in-

vestigated and optimized. Unfortunately, commonOR-

DBMS and their techniques have several drawbacks in

handling image data. The most important drawback

concerns the concept of matching. In traditional data-

bases, the concept of matching relies on a filtering oper-

ation which decides for every tuple whether it fits the
requirements or not. Basically, the main retrieval para-

digm in image data repositories is similarity search.

Therefore, extensions to ORDBMS mainly concern the

implementation of this search type and for ranking the

results, as well as for supporting index structures and

query optimization. In the following subparts, various

topics for image extensions are addressed.

Query Extension for Multimedia: SQL/MM Traditional

query languages, such as SQL, do not provide means

for handling multimedia types and their appropriate

operations to satisfy the requirements in retrieving

multimedia data. Therefore, several query languages

(e.g., MOQL, MMDOC-QL, etc.) have been intro-

duced by researchers in order to overcome these lim-

itations. One standard which has been developed

explicitly for image data is SQL/MM.

The SQL/MM [8] standard (MM forMultiMedia) is

an extension of SQL for supporting any kind of multi-

media data. SQL/MM is a multi-part standard and was

developed by an ISO subcommittee, namely JTC1/SC32.

The various parts of SQL/MMare independent fromone

another; e.g., Part I (framework) contains definitions of

common concepts that are used through out the other

parts or Still Image (Part V) is all about image data. The

SQL/MM Still Image part provides structured user

defined types that allow the storage of images within

databases and specifies methods for modifying them in

various ways and retrieving them efficiently. Images

in SQL/MM are represented by the SI_StillImage

structured data type. The SI_StillImage type can store

images of several formats depending on what the un-

derlying system supports. Furthermore, it extracts in-

formation about each image, such as format, height

and width in pixels, color space, etc. In addition, the

type provides several methods e.g., for scaling, for

rotating or for creating thumbnails of the original

image. Moreover, there exist various additional data

types for describing several features of images. For

instance, the SI_AverageColor type represents the aver-

age color of a given image. The SI_ColorHistogram type

provides information about the distribution of colors

within the image. The SI_PositionalColor type repre-

sents the location of specific colors in an image. The

SQL/MM Still Image part provides CBIR functionality

by combining these types and methods with accurate

index structures. For instance, the SI_PositionalColor

type supports queries like ‘‘Give me all images with a

color representation of red or orange above dark blue.’’

Image Database I 1357

I

This query would lead to images that in most cases

show sunsets at sea.

Multimedia Extensions in Products

Oracle Multimedia The extensibility service pro-

vided by Oracle is called Data Cartridge. Oracle

databases are built as a modular architecture which

provides several extensible services. The common way

for using Oracle’s Extensibility Services is to imple-

ment a Data Cartridge that extends the extensibility

interface.

Currently, several Data Cartridges have been devel-

oped to support multimedia data. Oracle itself provides

among others, Cartridges for spatial data and for multi-

media data such as image, audio and video. Cartridges

of other vendors are for instance, the Viisage Cartridge

from Virage which provides face recognition on behalf

of images. This company provides several face recogni-

tion tools for controlling access to restricted areas e.g.,

Berlin Airport or identifying criminals in a crowd

of people.

IBM DB2 The IBM DB2 database provides Extenders

for enhancing their database management system to

meet new requirements, e.g., the storage and retrieval

of multimedia data. DB2 Extenders generally specify

UDT‘s (user-defined types) for extending the core

database types. At present, there exist a large number

of available extenders from different vendors. For in-

stance, IBM itself provides the AIV extender for audio,

image and video data. Extenders of other vendors

in this area are for instance, the Spatial Data Extender

from Environmental Systems Research Institute (ESRI)

for GIS and geo-spatial data or the SpatialWare

Extender from MapInfo for spatial data. SQLSummit

provides an accurate list of Extenders.

IBM Informix The IBM Informix database manage-

ment system deploys the feature of DataBlade Modules

to extend their functionality for new requirements.

This DBMS provides three different tools for develo-

ping DataBlade modules, namely BladeSmith for

creating DataBlade modules, BladePack for packaging

them, and BladeManager for making them available in

the database. Up to now, several DataBlade modules

exist such as Spatial DataBlade module for managing

spatial data inside the database, Excalibur Image Data-

Blade module for storing and querying images and

special vendor products, like DataBlades for MPEG-1.
Image Retrieval Systems from Scratch In contrast to

database extensions such as Oracle’s Multimedia for

managing multimedia data, several image retrieval sys-

tems have been developed from scratch (e.g., DISIMA

which is an image database management system devel-

oped at the University of Alberta). R. C. Veltkamp and

M. Tanase compared (updated in 2004) 43 available

products [5]. A survey of CBIR systems supporting

high level semantics can be found in [7]. In the follow-

ing, two currently active systems are introduced:

� DISIMA is a pure image database that considers

images as a set of salient objects (regions of inter-

est). Salient objects are classified according to a

user defined type hierarchy. Other currently active

systems are for instance:

� Behold is a large scale image retrieval system and

has been developed at the Imperial College in Lon-

don. It provides means for text-based search and

NN-search based on a parameterized similarity

metric.
Key Applications

Surveillance Systems

The detection of criminals, wanted persons and known

terrorists on airports or border stations bases on face

detection algorithms and large scale image (showing

persons and/or faces) databases that support the

retrieval among millions of data entries.
Medical Diagnosis Supporting Systems

Recent research concentrates on applying image data-

base in the medical domain. Every hospital has a large

set of x-rays showing a diversity of diseases. These

image collections are used for supporting doctors in

completing their diagnosis. For instance, in case of a

cancer patient, the doctor can query the image data-

base for similar x-rays based on the patient’s.
Web Search

Finding meaningful and high quality images on the web

is a goal which appeals to many different people, private

and professional alike. The amount of images available

on the web is vast, so efficient retrieval mechanisms like

CBIR are essential. Research efforts in this direction are

for example the before mentioned system Behold (see

section, Image Retrieval Systems from scratch).

1358 I Image Distance
Cross-references
▶ Image Content Modeling

▶Nearest Neighbor Query

Recommended Reading
1. Besufekad S.A. Modélisation et traitement de requêtes images

complexes. PhD Thesis, L’Institut National des Sciences

Appliquées de Lyon, 2003.

2. Chang N.S. and Fu K.S. Query by pictorial example. IEEE

Trans. Softw. Eng., 6(6):519–524, 1980.

3. Gaede V. and Günther O. Multidimensional access methods.

ACM Comput. Surv., 30(2):170–231, 1998.

4. Gupta A., Weymouth T., and Jain R. Semantic queries with

picture: the VIMSYS model. In Proc. 17th Int. Conf. on Very

Large Data Bases, 1991, pp. 69–79.

5. Kosch H., Böszörmenyi L., Bachlechner A., Hanin C.,

Hofbauer C., Lang M., Riedler C., and Tusch R. SMOOTH - a

distributed multimedia database system. In Proc. 27th Int. Conf.

on Very Large Data Bases, 2001, pp. 713–714.

6. Lee J.-H., Cha G.-H., and Chung C.-W. A model for k-nearest

neighbor query processing cost in multidimensional data spaces.

Inf. Process. Lett., 69(2):69–76, 1999.

7. Liu Y., Zhang D., Lu G., and Ma W.Y. A survey of content-based

image retrieval with high-level semantics. Pattern Recognit.,

40(1):262–282, 2007.

8. Melton J. and Eisenberg A. SQL multimedia application

packages (SQL/MM). ACM SIGMOD Rec., 30(4):97–102, 2001.

9. Shatford S. Analyzing the subject of a picture: a theo-

retical approach. Cataloging and Classification Quarterly,

6(3):39–62, 1986.

10. Smeulders A.W.M., Worring M., Santini S., Gupta A., and

Jain R. Content-based image retrieval at the end of

the early years. IEEE Trans. Pattern Anal. Mach. Intell.,

22(12):1349–1380, 2000.

11. Tamura H. and Yokoya N. Image database systems: a survey.

Pattern Recognit., 17(1):29–43, 1984.

12. Veltkamp R.C. and Tanase M. Content-Based Image Retrieval

Systems: a Survey. Technical Report, Utrecht University,

The Netherlands, 2000.

13. Wu P., Manjunath B.S., and Shin H.D. Dimensionality reduction

for image retrieval. In Proc. Int. Conf. Image Processing, 2000,

pp. 726–729.
Image Distance

▶ Image Retrieval
Image Indexing

▶ Feature Extraction for Content-Based Image Re-

trieval

▶Visual Content Analysis
Image Management for Biological
Data

ARNAB BHATTACHARYA
1, VEBJORN LJOSA

2

1Indian Institute of Technology, Kanpur, India
2Broad Institute of MIT and Harvard, Cambridge,

MA, USA

Synonyms
Image management for life sciences; Databases for

biomedical images

Definition
Image management for biological data refers to the

organization of biological images and their associated

metadata and annotations in a computer in such a way

that they can be searched and shared.

Historical Background
The need to manage digital micrographs stored in a

computer arose in the early 1990s, when digital cameras

started to replace film cameras. Rapid improvement

in microscopy technology coupled with steady decline

in prices led to an unprecedented increase in the collec-

tion of digital biomedical images, and the need for

systems to organize, search and share the images became

clear. At the same time, the successes of large scale

acquisition and analysis of genomic and gene expression

data have prompted an increased interest in large-scale

image analysis and the use of statistical methods to find

patterns in large image sets. The ability of images to

capture spatial and temporal relationships not immedi-

ately available from other data sources make them vital

in understanding the underlying processes in biology

that produce them. Database systems for these images

promise important benefits, ranging from ease of orga-

nization and maintenance to the ability to share, search,

explore, summarize, and analyze the data.

Foundations

Content-Based Similarity Search

Similarity search by semantic content may be per-

formed at the level of whole images (content-based

image retrieval, CBIR) or regions (region-based

image retrieval, RBIR). Datta et al. provide an excellent

survey [3]. Some important image retrieval systems are

SIMPLIcity,WALRUS, Virage, QBIC,NeTra, Photobook,

Image Management for Biological Data I 1359

I

VisualSEEk, and Keyblock. The two important compo-

nents of such image comparison systems are the image

features and the distance metrics. Examples of general

image features are the MPEG-7 standard features, color

histograms, texture, wavelets, and shape descriptors. In

addition, there are domain-specific feature sets, e.g., for

cultured cells or for whole organisms of the Caenorhab-

ditis elegans nematode. The most commonly used

distance functions are the L2 (Euclidean) and L1 (Man-

hattan) distances. The earth mover’s distance (EMD)

[6] has also been shown to be useful due to its ability

to capture the spatial relationships among the objects

and features inside the images. Relevance feedback

methods [15] can improve the feature selection and

the distance function by capturing the human notion

of image similarity.

In biomedical images, particularly in fluorescence

micrographs, large portions of the images consist of

background that contains little or no information.

Therefore, for RBIR purposes, it is imperative to distin-

guish the foreground image patterns from the irrelevant

background. Segmentation and tiling are common tech-

niques for this. Scoring-based mechanisms that model

the background content have also been proposed.

Summarization

To explore an image dataset, it is useful to discover

latent concepts, found in the literature under different

names such as ‘‘visual vocabulary,’’ ‘‘eigenfaces,’’ ‘‘blobs,’’

‘‘visterms,’’ and ‘‘visual keywords.’’ Such key patterns can

be thought of as analogous to keywords extracted from

text, and have been useful for object detection and

retrieval, as well as image classification and captioning.

Key Applications

Electronic Notebook

Computer-controlled microscopes and digital cameras

have made it possible to acquire images faster than

before, but the image collections are in many ways

less organized than in the days of photographic films. It

is common for images to be spread across personal

computers, portable hard drives, and recordable com-

pact disks. Metadata – the data about data, essentially,

the description of what was imaged, how, when, and

by whom – are kept in handwritten notebooks or in

spreadsheets. Besides being cumbersome, this method

of organization is also error prone. Images must be

converted from a format specific to the vendor of the
microscope to a format that is palatable to other pro-

grams. Further, contrast enhancement and other image

processing is often necessary to visually inspect the

images. Through these transformations, the connection

between image and metadata is easily lost, and images

can be lost accidentally in the process of file format

conversion and image processing.

Electronic-notebook–style image databases store

the original image files on a server. Derived files for

visualization and image processing can be extracted,

but the originals are kept pristine. Metadata are also

stored on the server, persistently linked to the respective

images. Queries to the electronic notebook are simple,

and mostly onmetadata only. Mainly, users want to find

an experiment or an image based on keywords, dates,

and other metadata. In particular, they already know

what they are looking for, and do not expect to search

by image content. They also want to browse experiments

and projects by investigator or by lab, explore the images

within an experiment, and download a set of images

from an experiment.

It is important that the electronic notebook be flexi-

ble in regard to the metadata that can be stored. Some

fields (such as the configuration of the microscope) are

always useful, but others (such as the details of sample

preparation and labeling) vary greatly between labs, and

even between experiments. The metadata schema must

be easily adaptable to the changing needs of the research-

ers, or the system is unlikely to be adopted.

MetaXpress (http://www.moleculardevices.

com/pages/software/metaxpress.html), Bio-

Image [2], Global Image Database (GID) [5], and

Cell-Centered Database (CCDB) [9] are examples of

electronic-notebook-style image databases. GID pro-

vides minimal set of annotations in a fixed format that

caters to many image types and are useful for sharing.

In CCDB, a backbone schema is provided which can be

enhanced by specialized tables. There is additional

provision for storing the results of image analyses as

pre-defined object types. The open microscopy envi-

ronment (OME) [13] and Bisque systems (http://

www.bioimage.ucsb.edu/) also serve as electronic

notebooks, although they provide more advanced

functionality, described in later sections. Further,

Bisque allows the user to modify the metadata schema.

Sharing and Exploration

Sharing images beyond the investigator’s immediate

colleagues leads to two new requirements for the

1360 I Image Management for Biological Data
image database: integration of metadata and image-

content–based search. The flexibility of modifying the

schema that is so valuable in an electronic notebook

impedes sharing because the system will need to know

which fields in one schema corresponds (perfectly or

partially) to which fields in another. Schema matching

techniques have been developed that unify the schemas

based on both structure and contents [1]. A related

problem pertains to the contents of the fields. For

instance, the same antibody can be known under dif-

ferent names. As a second example, one researcher may

describe a cell as a ‘‘photoreceptor’’ whereas another

scientist may be more specific and call it a ‘‘cone.’’

Whereas the Gene Ontology (GO, http://www.gene-

ontology.org/) is a start, it will need to be combined

with other ontologies or controlled vocabularies.

For in vivo images, the location in the tissue or

organism that was imaged is another important piece

of metadata. To understand and explore such informa-

tion, registration and mosaicking techniques have been

developed to align the image to an atlas [4].

So far, in addition to the images themselves, only

metadata, i.e., information about the images, have

been considered. A second kind of image-associated

data are annotations. Annotations are data derived from

the images. They can, for instance, indicate specific

objects of interest (e.g., crescent-shaped nuclei, neurite

branching points) or summarize measurements (e.g.,

cell counts, neurite length distributions). Image fea-

tures can also be considered annotations. Annotations

can be stored in an electronic notebook, just like meta-

data. Annotations are, however, more important for

sharing and exploration, for they allow the user to find

interesting images even if they were acquired

for a completely different purpose. For instance, a

researcher may want to find all perturbations (drug

treatments, gene knockdowns, etc.) that led to a high

rate of crescent-shaped nuclei.

Although metadata and annotations have many

similarities, the latter are much more challenging for

the database designer. Each metadata field has one true

value which is provided by the original investigator,

typically at the time the image is uploaded to the

database (and perhaps updated or corrected later). In

contrast, because annotations are interpreted from the

image, more than one user or tool may add different

values for the same annotation. Two researchers may

disagree on what kind of cell a certain object is, and

two cell counting tools will produce different results.
The database must therefore be able to store uncertain

information and track the provenance of the annota-

tions. Handling uncertain information in databases is

an active research area [7,11].

Another open question is how to control access to

annotations. When sharing sets of images between labs,

issues such as who owns the data, who are allowed to

access them, who can run analysis tools on them, who

can update the database with new results, etc., are criti-

cal. Another important factor is ensuring the quality of

data, including the validation, accuracy, completeness,

and integrity of the images being processed or uploaded,

as well as the annotations produced by analysis tools.

Similar issues are discussed by Toga et al. [14].

Although search by metadata and annotations

is important and useful, it has an obvious limitation:

one can only find what others have annotated. For

effective exploration, one must be able to search

the images by content (see Content-Based Similarity

Search and Summarization in the Scientific Funda-

mentals section).

Analysis

The third principal application of image databases to

biomedical images is as a platform for numerical and

statistical analysis of the annotations derived from the

images.

Combinations of analysis steps can be viewed as

networks, where the results of one analysis feeds into

another. For example, ridges can be extracted directly

from the image, and can, therefore, be considered as

low-level annotations. Next, the ridges are filtered and

linked into neurites, which are then combined with cell

bodies (detected by some other method) into whole

neurons. Note that neurites and neurons are objects

that have biological meaning. Finally, one may mea-

sure the amount of a certain protein within the cell.

The Open Microscopy Environment (OME) [13] pro-

vides a module system for tracking the provenance of

the resulting data. Each module execution is recorded,

relating the module and its parameters to the input

and output data.

Analysis of annotations frequently involves classifi-

cation. The reason is that clustering and other unsu-

pervised methods often pick up cell-cycle–dependent

variations and other differences that are real and pro-

found, but irrelevant to the question of interests. This

can be avoided by classifying perturbed samples from

controls [8].

Image Management for Life Sciences I 1361

I

Future Directions
Whereas the size of the images is a problem for image

databases, managing the analyzed data is an even big-

ger problem because the analyses can be numerous and

the annotations produced by such analyses can be

queried in complex ways. As an example, a single

experiment can comprise of 350GB of images, and

over 600 features are extracted from each cell for a

total of over 20GB of annotations [10]. Future experi-

ments are expected to reach 20 times this size. There-

fore, efficient index structures and database access

methods will be needed.

Queries posed to databases as part of an analysis

process generally involve a large number of records.

For instance, a classification task may need to look at

the records of all the cells perturbed in a certain way.

However, due to feature selection, only part of the

record may need to be examined – say, 50 of the 600

features. Column-oriented DBMSs [12] have the

potential to improve the performance dramatically

for such queries. Another very general approach to

speeding up queries is to approximate the result

based on only part of the data. Techniques that give

statistical guarantees about the quality of approxima-

tion have been proposed for many query types, but are

so far only available in specialized applications and in

research prototypes of database systems.
Cross-references
▶Biological Metadata Management

▶Biostatistics and Data Analysis

▶ Image Database

▶Machine Learning in Computational Biology

▶Ontologies and Life Science Data Management
Recommended Reading
1. An Y., Borgida A., Miller R.J., and Mylopoulos J. A

semantic approach to discovering schema mapping

expressions. In Proc. 23rd Int. Conf. on Data Engineering,

2007, pp. 206–215.

2. Carazo J.M., Stelzer E.H., Engel A., Fita I., Henn C., Machtynger

J., McNeil P., Shotton D.M., Chagoyen M., de Alarcón P.A.,

Fritsch R., Heymann J.B., Kalko S., Pittet J.J., Rodriguez-Tomé

P., and Boudier T. Organising multi-dimensional biological

image information: the BioImage database. Nucleic Acids Re-

search, 27(1):280–283, 1999.

3. Datta R., Li J., and Wang J.Z. Content-based image retrieval:

approaches and trends of the New Age. In Proc. 7th ACM

SIGMM Int. Workshop on Multimedia Information Retrieval,

2005, pp. 253–262.
4. Fowlkes C.C., Hendriks C.L.L., Keränen S.V.E., Biggin M.D.,

Knowles D.W., Sudar D., and Malik J. Registering Drosophila

embryos at cellular resolution to build a quantitative 3D

atlas of gene expression patterns and morphology. In Proc.

Int. Workshop on Bioimage Data Mining and Infor-

matics, IEEE Computational Systems Bioinformatics Confer-

ence, 2005.

5. Gonzalez-Couto E., Hayes B., and Danckaert A. The life sciences

global image database (GID). Nucleic Acids Research,

29(1):336–339, 2001.

6. Ljosa V., Bhattacharya A., and Singh A.K. Indexing

spatially sensitive distance measures using multi-resolution

lower bounds. In Advances in Database Technology, Proc.

10th Int. Conf. on Extending Database Technology, 2006,

pp. 865–883.

7. Ljosa V. and Singh A.K. APLA: indexing arbitrary probability

distributions. In Proc. 23rd Int. Conf. on Data Engineering,

2007, pp. 946–955.

8. Loo L.-H., Wu L.F., and Altschuler S.J. Image-based multivariate

profiling of drug responses from single cells. Nature Methods,

4(5):445–453, 2007.

9. Martone M.E., Zhang S., Gupta A., Qian X., He H., Price D.L.,

Wong M., Santini S., and Ellisman M.H. The cell-centered data-

base: a database for multiscale structural and protein localization

data from light and electron microscopy. Neuroinformatics,

1(4):379–395, 2003.

10. Moffat J., Grueneberg D.A., Yang X., Kim S.Y., Kloepfer A.M.,

Hinkle G., Piqani B., Eisenhaure T.M., Luo B., Grenier J.K.,

Carpenter A.E., Foo S.Y., Stewart S.A., Stockwell B.R.,

Hacohen N., Hahn W.C., Lander E.S., Sabatini D.M., and Root

D.E. A lentiviral RNAi library for human and mouse genes

applied to an arrayed viral high-content screen. Cell,

124:1283–1298, 2006.

11. Sarma A.D., Benjelloun O., Halevy A., and Widom J. Working

models for uncertain data. In Proc. 22nd Int. Conf. on Data

Engineering, 2006.

12. Stonebraker M., Abadi D.J., Batkin A., Chen X., Cherniack M.,

Ferreira M., Lau E., Lin A., Madden S., O’Neil E., O’Neil P.,

Rasin A., Tran N., and Zdonik S. C-store: A Column-Oriented

DBMS. In Proc. 31st Int. Conf. on Very Large Data Bases, 2005,

pp. 553–564.

13. Swedlow J.R., Goldberg I., Brauner E., and Sorger P.K. Informat-

ics and quantitative analysis in biological imaging, Science,

300(5616):100–102, 2003.

14. Toga A.W. Neuroimage Databases: The Good, the Bad

and the Ugly. Nature Reviews Neuroscience, 3(4):302–309, 2002.

15. Zhou X.S. and Huang T.S. Relevance Feedback in Image

Retrieval: A Comprehensive Review. Multimedia Systems,

8(6):536–544, 2003.
Image Management for Life Sciences

▶ Image Management for Biological Data

1362 I Image Metadata
Image Metadata

FRANK NACK

University of Amsterdam, Amsterdam,

The Netherlands

Synonyms
Pictorial metadata; Picture metadata; Image

representation

Definition
A digital image is a representation of a two- or three-

dimensional image, where the representation can be of

vector or raster type.

Metadata is data about data of any sort in any

media, describing an individual datum, content item,

or a collection of data including multiple content

items. In that way, metadata facilitates the understand-

ing, characteristics, use and management of data.

Image metadata is structured, encoded data that

describes content and representation characteristics of

information-baring image entities to facilitate the auto-

matic or semiautomatic identification, discovery, assess-

ment, and management of the described entities, as well

as their generation, manipulation, and distribution.

Historical Background
Many of the techniques of digital image processing

were developed in the 1960s at, among others, the

MIT, Bell Labs, and the University of Maryland.

These works tried to automatically generate content

representations that could support research on satellite

imagery, wire-photo standards conversion, medical

imaging, character recognition, and photo enhance-

ment. In the 1970s, digital image processing improved

mainly because cheaper computers and dedicated

hardware that allowed real-time image processing [2]

became available. The next 20 years not only saw a

further improvement on automatic feature extraction

for domains, such as scientific, industrial, medical, and

environmental research, but also a steady infiltration of

those technologies in everyday media environments,

such as image editing tools (Photoshop (http://en.

wikipedia.org/wiki/Adobe_Photoshop), Illustrator

(http://en.wikipedia.org/wiki/Adobe_Illustrator_CS2),

GIMP (http://en.wikipedia.org/wiki/GTK%2B), or

Maya (http://en.wikipedia.org/wiki/Maya_%28soft-

ware%29)), new media authoring tools (Director/
Shockwave (http://www.adobe.com/products/director),

or Flash (http://www.adobe.com/products/flash)), and,

more importantly, in the development of digital cameras.

Images turned into a common information item that

people could handle as easily as text.

The real push for the digital image came with

the emergence of the world wide web (web) and the

improvements of sensor technology, especially in digi-

tal photography. These swift developments in image

distribution and generation in combination with easy

to use web presentation technology (e.g., Dreamweaver

(http://en.wikipedia.org/wiki/Dreamweaver), Front-

page (http://en.wikipedia.org/wiki/Microsoft_Front-

Page), HTML (http://www.w3.org/MarkUp), and

SMIL (http://www.w3.org/AudioVideo)) deeply

changed the social way of exchanging information,

increasing the available amount of images

dramatically.

The answer to the resulting media-based infor-

mation flood was research that focused again on auto-

matic ways to index the available images in a timely

and meaningful way. The goal was now to make use

of image processing based on features required for

interactive image understanding. Machine-generated

metadata, however, turned out to be problematic

as it is exclusively organized around the sensory sur-

face structures of media, i.e., the physical features

of an image, resulting in the sensory and semantic

gap [14].

By the beginning of the twenty-first century this

need for semantic-aware metadata schemata forced

research to explore new ways of content representa-

tion. A large number of initiatives developed metadata

standards to allow machines as well as humans to

access the semantics of media items, such as Dublin

Core (http://www.dublincore.org/), the Art and Archi-

tecture Thesaurus (AAT) by the J. Paul Getty Trust

(http://www.getty.edu/research/conducting_research/

vocabularies/aat/), the semantic web activity of

the W3C (http://www.w3c.org/2001/sw/), and ISO’s

MPEG-4, MPEG-7 and MPEG-21 (http://www.chiar-

iglione.org/mpeg/).

The interesting aspect of particularly the ISO and

related standards had been that they tried to merge the

high-level conceptual aspects of their content descrip-

tion with low-level structures of feature representation

as used in signal processing, to allow the processing of

audio-visual information over several semantic levels.

Image Metadata I 1363

I

The common foundation for this fusion applies XML-

based description languages.

A drawback of these approaches, namely regarding

the process of attributing metadata to a media item as a

terminated process, resulted in research that intro-

duced new mechanisms to overcome the static struc-

ture of annotations, where flexibility is achieved by

agreeing upon the collection of semantic-based and

machine-processable metadata during established

media workflow practices [5,6,9].

Around 2003, the web saw the growth of massive

image databases, such as Flickr (http://www.flickr.com),

that are mainly build on user generated content. In such

environments people do not agree beforehand on an

annotation taxonomy or ontology. As a result, research

developed folksonomy tagging (also known

as collaborative tagging, social classification, social

indexing, and social tagging), a method of collaborative-

ly creating andmanaging tags to annotate and categorize

content. In folksonomy tagging metadata is not only

generated by experts but mainly by creators and consu-

mers of the content, where a tag is a keyword or term

associated with or assigned to a piece of information (a

picture, a map, etc.), which enables keyword-based clas-

sification and search. The advantage of tagging is its ease

of use - creating a vocabulary based on freely chosen

keywords instead of a controlled set of terms and struc-

tures. This approach, though highly popular, carries

serious problems. Typically there is no information

about the semantics of a tag, no matter if it is a single

tag or a bag of tags. Additionally, different people may

use drastically different terms to describe the same con-

cept. This lack of semantic distinction can lead to inap-

propriate connections.

Foundations
When a person looks at an image, they first perceive

the image on an optical level where they try to identify

as many objects as possible in the available time of

perception. Each object is mentally transformed into

an iconic sign, which processes some properties of the

object represented. The signification of iconic signs

is based on socially determined small semantic systems

(codes) and rules for their combination. Some of the

code systems are: recognition, tonal, iconic, icono-

graphic, rhetoric, and stylistic [7].

The iconic code is by far the most valuable code,

because it defines the articulation potential of visual

material. The creation of meaning in visual material is
based on a triple articulation of figure, sign and semes

and receives its expression by convention. The three

elements are described as such:

1. A figure forms conditions for perception, such as

relationships between object and background, or

contrast in light.

2. A sign denotes, using conventionalized graphical

methods, units of understanding (nose, sky), ab-

stract models, or idealized diagrams of the object

(the sun as a circle with thread-shaped beams).

3. Semes are complex iconic phrases, such as ‘‘this is a

man standing in profile.’’ They are the most simply

catalogued, since the iconic code works most often

on their level only.

The fact of a conventionalized triple articulation

is important since it describes the essential difference

from natural language, which has two articulations

(phonemes and morphemes). Thus, comparing an ob-

ject in an image with the corresponding word, the

visual object always exceeds the concept of the word,

as the image will portray specific qualities about

the object for which the word is simply inadequate

(see the tag problem mentioned above).

The organization of signs in an image is provided

by two types of structures:

1. Syntagmatic, which represents a sequence of signs

in which the relation of parts determines their

meaning.

2. Paradigmatic, which represents potential substitu-

tions in which a range of potential candidates

can take the place of a sign in a syntagmatic

structure.

The main application of image metadata is the retrieval

of an image, where content features play an essential

role. Search based low-level features functions on an

iconic level, as most of the low-level feature based

description methods. The key methods of how users

search for an image are:

� Search by specification: aims for searching the

identical replicate of the image the user has in

mind or the identical object the user needs. Essen-

tial is the provision of optional variants (prosodic

features) that form the conditions for perception

and thus support identification [4].

� Search by categorization: aims for retrieving an

arbitrary image representative of a specific class.

1364 I Image Metadata
Categories may be derived from labels or emerge

from the database [19]. This type of search usually

requires a domain specific definition of similarity.

Here, ontologies might become applicable.

� Search by association: aimed at browsing through

a large set of images from unspecified sources. Asso-

ciation-based search usually implies iterative refine-

ment of the query, whichmainly asks for establishing

similarities between images. Important in such

search applications is the provision of relevance feed-

back [8] or the provision of additional sources [16].

Supporting these types of search methods are needed

and allow the description of content so that amachine or

a human user can access the images. Some of them can

be applied in an automatic fashion, those are image

feature based, and some provide high-semantic descrip-

tions, which are often based on manual annotation.

The latter are required, because, as described above,

there is additional context that specifies the need of

a query, e.g., the esthetics’ the picture has to provide.

Content Description Based on Invariant Features

The purpose of image processing is to enhance aspects

in the image data relevant to the user query. This can

be achieved through the description of invariant fea-

tures, such as, color, shape and texture. Invariant

features tend to be object-specific information as they

are insensitive to the accidental conditions of the sens-

ing. It is important to note that it is the user who has to

specify the minimal set of invariant features as it is part

of his or hers intention [3].

� Color: The two general problems addressed in work

on color are variances in color and differences in

human perception. Color representation techni-

ques, among others, are:
– RGB color representation describes the image

in its literal color properties, namely the Red,

Green and Blue properties of each pixel in an

image, where two-dimensional images are

recorded in frontal view under standard

conditions.

– Opponent color representations, which uses the

opponent color axes that isolate the brightness

information on the third axis.

– Lab-space approach, which exploits the Euclid-

ean distance between two color representations

to model human perception of color

differences.
– The HSV-representation exploits the hue,

which is invariant under the orientation of the

object with respect to the illumination and

camera direction.

– Hidden Markov models [11]

– Clusters in a color histogram, where the RGB

space is searched to identify which pixels in the

image originate from one uniformly colored

object.
� Shape: Shape is considered as the collected properties

that capture differential geometrical details in the

image [15]. Methods to represent shape are scale-

based theory, conspicuous shape geometric invar-

iants, or differential geometric invariants.

� Texture: Texture covers every aspect of an image

that is not described through color and shape.

The essential texture analysis techniques are: the

Markovian analysis, multiscale autoregressive

MRSAR-models, or wavelets.

Content Description Based on Semantic Features

The invariant features serve as a preprocessing step

within the usual approach in content-based image

retrieval, which divides the image first into parts and

then computes the features for those parts. The essen-

tial segmentation methods are strong and weak

segmentation.

� Strong segmentation divides the data into regions

in such a way that a region contains the pixels of the

silhouette of an object in the real world and noth-

ing else. The problem is that this approach usually

only succeeds sophisticated techniques in very nar-

row domains, such as trademark validation.

� Weak segmentation aims to support broad domains

of general images by grouping image data into incon-

spicuous regions that are internally homogeneous

according to some criterion. Weak segmentation is

used inmany retrieval systems, either as a purpose of

its own or as a preprocessing stage for data-driven

model-based object segmentation.

Both approaches end up in a preferred set of fea-

tures [14], which can be classified as follows:

� Accumulating features aggregate the spatial infor-

mation of a partitioning irrespective of the image

data. The histogram [17] is the common method

applied, such as the color histogram. Alternatives

are the correlogram, or the autocorrelogram. An

Image Metadata I 1365

I

example of accumulative features might be those

calculated from the top part of a picture, which

effectively identify an image as indoor or outdoor

space. The danger of accumulative features is the

inability to discriminate among different entities

and semantic meanings in the image.

� Salient features are a typical example of weak seg-

mentation. The idea here is that grouping of the

data is performed resulting in homogeneous

regions. From the merged regions, a selection is

made on their salience, where saliency is under-

stood as those special points that survive longest

while gradually blurring the image in scale space.

� Shape and object features, which focus on segmenting

the object in the image. The problem is the automatic

segmentation in broad domains. Yet, often it is not

necessary to know exactly where an object is located

but rather that its presence can be identified. Techni-

ques for that are elastic matching and multi-resolu-

tion representation of shapes, multi-scale models of

contours, the description of the object boundaries, or

the description of global shape invariants.

� Combined entities of features, where calculations

for different entities in the image and relationships

between them are available. Such a structural fea-

ture set may contain feature values and spatial

relationships, a hierarchically ordered set of feature

values, relationships between point sets or object

sets, or a graph of relations between blobs.
Interpretation of Features

In general there are two ways to make use of computed

feature sets for the interpretation of an image.

� Deriving an unilateral interpretation from the fea-

ture set. This approach encodes an approximate

subset of possible interpretations of an image rele-

vant for a particular application. In that way the

subset describes the semantics associated to fea-

tures for the application [13].

� Comparing the feature set with the elements in a

given data set based on similarity.

Similarity is an interpretation of the image based on

the difference with another image. For each of the

earlier described feature types, a different similarity

measure is needed:

� Similarity of objects can be established through

shape comparison based on transforms, moments,
deformation matching, scale space matching, and

dissimilarity measurement.

� Similarity of structure can be established based on

a Bayesian framework, topological arrangements

of relevant domain parts, spatial relationships

between objects, or tree or graph representations.

� Similarity of salient features can be achieved by

means of the distance between the feature vector

composed of, e.g., the color, texture, position, and

direction of the two ellipses, derived from the fea-

ture values measured of the blobs resulting from

weak segmentation of the two images.

Under normal circumstances similarity comparison is

not performed on a 1:1 image basis but rather on a 1:n

image basis. For the latter cases, as in large image

databases, gained experiences during the comparison

of images can be exploited for better results. In that

way similarity detection is understood as a classifica-

tion problem to be solved based on statistical pattern

recognition. Additional learning methods are the use

of transduction (e.g., for partially labeled data), prob-

abilistic constellations of features (e.g., for unlabeled

data sets), or latent semantic indexing.
Image Interpretation Based on High-Level Semantic

Metadata

As pointed out earlier, the representation of an image

based on low-level features might be useful for

narrow domains, such as the validation of trademarks.

Every information that is based on higher-level codes

than the iconic, e.g., the name of the image creator

or the image’s contribution to the technique of paint-

ing or photography, can not be extracted in that

manner.

For those codes the annotation is based on con-

cepts. The most basic form of such an annotation is a

tag. The most fundamental set of tags for the annota-

tion of images is certainly the Dublin Core set. The

most complex description framework so far are those

developed by MPEG-7 and the W3C’s Multimedia

Incubator Group (see also the Media Annotation

Working Group: http://www.w3.org/2008/01/media-

annotations-wg.html). The metadata falling in this

category often require manual annotation [1], where

the available structures are organized either in hierar-

chical or graph structures (the syntagmas) and use

thesaurus or ontolological formats (class, subclass

and their properties as well as relations between

1366 I Image Metadata
them) to allow for paradigmatic methods of choice to

support advanced search (query extension) [10], or

interpretation and generation.

Dublin Core [18]

The Dublin Core Metadata Element Set is a vocabulary

of fifteen properties for use in resource description.

The fifteen properties are: contributor, creator, date,

description, format, language, publisher, relation,

rights, source, subject, title, type.

Since January 2008, Dublin Core includes formal

domains and ranges in the definitions of its properties.

For supporting conformance of existing implementa-

tions of ‘‘simple Dublin Core’’ in RDF, domains and

ranges have not been specified for the fifteen properties

of the dc: namespace (http://purl.org/dc/elements/1.1/).

Instead, the Dublin Core Metadata Initiative has

opted for creating fifteen new properties with

‘‘names’’ identical to those of the Dublin Core

Metadata Element Set Version 1.1 in the dcterms:

namespace (http://purl.org/dc/terms/). These fifteen

new properties have been defined as subproperties of

the corresponding properties of DCMESVersion 1.1 and

assigned domains and ranges as specified in the more

comprehensive document ‘‘DCMI Metadata Terms.’’
Image Metadata. Figure 1. The main MPEG-7 elements. Con

specific content descriptions.
MPEG-7 [12]

MPEG-7 standardizes descriptions of AV data content

in multimedia environments. It provides descriptions

of multimedia content on varying complexity levels to

let users search, browse, filter, or interpret content

using search engines, filter agents, or any other pro-

gram. MPEG-7 offers a set of AV description tools in

the form of descriptors (Ds) and description schemata

(DS) a valid MPEG-7 description should adhere to.

Descriptors usually bind a feature to a set of values.

Description schemata specify the structure and seman-

tics of the relationships between the components of

descriptors and between other description schemata.

These structures let users create application-specific

content descriptions (see Fig. 1 as an example).

The standard has eight parts, each responsible for

one aspect of the functionality, of which 3 are relevant

for visual data:

� Part 2 - the DDL specifies the language for defi-

ning the standard set of description tools (descrip-

tion schemata, descriptors, and data types), new

tools, and the main parser requirements. The

DDL is based on XML-Schema, developed by

the W3C.
tent authors can use these structures to create application-

Image Metadata I 1367

I

� Part 3 - Visual consists of schemata and descriptors

covering basic visual features such as color, texture,

shape, and face recognition. It provides the descrip-

tor syntax and description schemata in normative

DDL specifications and the corresponding binary

representations.

� Part 5 - Multimedia Description Schemes (MDS)

specifies generic description tools pertaining to

multimedia, including audio and visual content.

MDS covers the basic elements for building a de-

scription, the tools for describing content and re-

lating the description to the data, and the tools for

describing content on organization, navigation,

and interaction levels. The MDS alone forms

more than half of the complete standard and has

its own internal structure, shown in Fig. 2.

As the standard is rather large, MPEG has begun to

establish media profiles (MPEG-A to MPEG-E) that

integrate multiple MPEG technologies. The relevant

visual profile is MPEG-C.

The W3c’s Incubator Group [20]

The work of this group has explored the advantages of

using Semantic Web languages and technologies

for the creation, storage, manipulation, interchange

and processing of image metadata. In addition, it
Image Metadata. Figure 2. Overall organization of MPEG-7
provided guidelines for Semantic Web-based image

annotation, illustrated by use cases. In its publica-

tions the relevant RDF and OWL vocabularies are

discussed, along with a short overview of publicly

available tools.

Key Applications
Image metadata is useful for the creation, manipula-

tion, retrieval and distribution of 2D or 3D digital

image sources within domains, such as

� The creative industries (e.g., fine arts, entertain-

ment, journalism, etc.),

� Education (e.g., in computer based training

courses, military or industrial training),

� Environmental research (e.g., Interpretation of sat-

ellite images),

� Medicine (e.g., Identification of cancer cells in a

lung scan etc.).

Future Directions
Research has still to address how the merge

between high-level semantic descriptions and low-

level feature-based descriptions can be achieved. In

this context, solutions need to be found that merge

the results of folksonomy tagging and defined des-

cription vocabularies into a suitable description
multimedia description schemes.

1368 I Image Query Processing
framework. Finally, it is important that easy to use

annotation tools will be developed.
Cross-references
▶ Image Content Modeling

▶ Image Representation

▶Multimedia Metadata

▶Video Metadata
Recommended Reading
1. Ahern S., Davis M., Eckles D., King S., Naaman M., Nair R.,

Spasojevic M., and Hui-I Yang J. ZoneTag: designing context-

aware mobile media capture to increase participation. In Proc.

Pervasive Image Capture and Sharing: New Social Practices and

Implications for Technology Workshop, 2006.

2. Blasser A. (ed.) Database Techniques for Pictorial Applications.

Lecture Notes in Computer Science, Springer, London,

UK, 1979.

3. Burkhardt H. and Siggelkow S. Invariant features for discrimi-

nating between equivalence classes. Nonlinear Model-Based

Image Video Processing and Analysis. Wiley, NY, 2001,

pp. 269–307.

4. Cox I.J., Miller M.L., Minka T.P., and Papathomas T.V. The

Bayesian image retrieval system, picHunter: theory, implemen-

tation, and pychophysical experiments. IEEE Trans. Image Pro-

cess., 9(1):20–37, 2000.

5. Davis M. Active capture: integrating human-computer interac-

tion and computer vision/audition to automate media capture.

In Proc. IEEE Int. Conf. on Multimedia and Expo, 2003,

pp. 185–188.

6. Dorai C. and Venkatesh S. Bridging the semantic gap in content

management systems – computational media aesthetics.

In Media Computing Computational Media Aesthetics,

C. Dorai, S. Venkatesh (eds.). Kluwer, Boston, MA, 2002.

7. Eco U. Articulations of the cinematic code. In Movies

and Methods, B. Nichols (ed.). University of California Press,

Berkeley, 1976, pp. 590–607.

8. Frederix G., Caenen G., and Pauwels E.J. PARISS: Pano-

ramic, Adaptive and Reconfigurable Interface for Similarity

Search. In Proc. Int. Conf. Image Processing, 2000 vol. 3,

pp. 222–225.

9. Hardman L., Obrenovic Z., Nack F., Kerherve B., and Piersol K.

Canonical processes of semantically annotated media produc-

tion. Multimedia Systems, 14(6):327–340, 2008.

10. Hollink L. Semantic Annotation for Retrieval of Visual

Resaources. Ph.D thesis, Vrije Universiteit, Amsterdam.

11. Lin H.C., Wang L.L., and Yang S.N. Color image retrieval

based on hidden Markov models. IEEE Trans. Image Process.,

6(2):332–339, 1997.

13. Nack F., Windhouwer M., Hardman L., Pauwels E., and

Huijberts M. The role of highlevel and lowlevel features

in style-based retrieval and generation of multimedia presen-

tations. New Rev. Hypermedia Multimedia, 7(1):7–37, 2001.

14. Smeulders A.W.M., Worring M., Santini S., Gupta A., and

Jain R. Content-based image retrieval: the end of the
early years. IEEE Trans. Pattern Anal. Mach. Intell., 22

(12):1349–1380, December 2000.

15. Smith S.M. and Brady J.M. SUSANÐA new approach to low

level image processing. Int. J. Comput. Vis., 23(1):45–78, 1997.

16. Swain M.J. Searching for multimedia on the World Wide Web,

icms. In Proc. Int. Conf. on Multimedia Computing and

Systems, 1999, pp. 32–37.

17. SwainM.J. and Ballard B.H. Color indexing. Int. J. Comput. Vis.,

7(1):11–32, 1991.

18. The Dublin core metadata initiative. Available at: http://www.

dublincore.org/. Access date: October 12th 2008.

19. Weber M., Welling M., and Perona P. Towards automatic discov-

ery of object categories. In Proc. IEEE Int. Conf. on Computer

Vision and Pattern Recognition, 2000, pp. 2101–2108.

20. W3C multimedia incubator group. Available at: http//www.w3.

org/2005/incubator/mmsem/. Access date: October 12th 2008.
Image Query Processing

▶ Image Querying
Image Querying

ILARIA BARTOLINI

University of Bologna, Bologna, Italy

Synonyms
Image query processing

Definition
Image querying refers to the problem of finding objects

that are relevant to a user query within image databases

(Image DBs). The classical solutions to deal with such

problem include the semantic-based approach, where

an image is represented through metadata (e.g., key-

words), and the content-based solution, commonly

called content-based image retrieval (CBIR), where the

image content is represented by means of low-level

features (e.g., color and texture). While with the se-

mantic-based approach the image querying problem is

transformed into an information retrieval problem, for

CBIR more sophisticated query evaluation techniques

are required. The usual approach to deal with this is

illustrated in Fig. 1: By means of a graphical user

interface (GUI), the user provides a query image, by

Image Querying I 1369

I

sketching it using graphical tools, by uploading an

image she/he has, or by selecting an image supplied

by the system. Low-level features are extracted for such

image (possibly dividing it into regions, see below);

such features are then used by the query processor to

retrieve the DB images having similar characteristics.

How the set of relevant DB images is determined

depends on which low-level features are used to char-

acterize image content, on the criterion used to

compare image features, on how DB objects are ranked

with respect to the query (based on either a quantita-

tive measure of similarity or qualitative preferences),

and, finally, on whether the user is interested in the

whole query image or only in a part of it. All these

aspects strongly influence the query evaluation process.

Historical Background
In spite of the many efforts spent so far, the problem of

retrieving relevant objects within image databases

(Image DBs) is still a complex task. Following the

semantic-based approach, images are described by

means of metadata such as keywords, captions, or

descriptions and the retrieval is performed over such

words using annotation-based image retrieval techni-

ques. In this direction, several solutions have been

recently proposed, such as image extensions to public
Image Querying. Figure 1. The image querying scenario for
search engines like Google (http://images.google.com/)

and Yahoo (http://images.search.yahoo.com/). Such

systems consider the contextual information of a

crawled image (like the image filename, its title, the

surrounding text, etc.) to infer the relevance of the

image to the query. In a similar way, some systems,

like flickr (http://flickr.com/), assess the relevance of

an image to the query by taking into account the char-

acterization of the image provided by the user. Howev-

er, such a manual image annotation process is

expensive and time-consuming. In order to overcome

such limitations, there has been a large amount of

research done on (semi-)automatic image annotation

with the aim to assign meaningful keywords to images

by exploiting the information of a pre-annotated set of

objects.

With respect to the content-based image retrieval

(CBIR) solution, the aim is to avoid the use of textual

descriptions. This is usually done by using visual simi-

larity to retrieve images, for example, asking for images

that are similar to a user-supplied query image, i.e.,

following the query by example (QBE) paradigm fist

adopted in the IBM’s query by image content (QBIC)

system [5]. In particular, each image is characterized

using global low-level features, such as color and tex-

ture, and the result of a query consists in the set of DB
CBIR.

1370 I Image Querying
objects that better match the visual characteristics of

the target image, according to a predefined similarity

criterion, which is in turn based on low-level fea-

tures [8]. Although CBIR represents a completely

automatic solution for the image querying problem,

the accuracy of its results is not always completely

satisfactory for the user, especially for high-level con-

cept queries, for which low-level features are hardly

exploitable due to their low discriminative power.

This is largely due to the so-called semantic gap exist-

ing between the concept of similarity as percept by

the human brain and the one implemented by the

system. The effectiveness of this approach still calls

for improvement: The use of relevance feedback techni-

ques could be of help, but it is still not enough to reach

acceptable levels of accuracy.

More recently, the region-based image retrieval

(RBIR) approach has been proposed, which has lead

to promising results. With respect to the case in which

images are represented by means of global descriptors,

RBIR is able to characterize the image content in a

more precise way by segmenting each image into a set

of homogeneous regions from which a set of low-level

features are extracted. As a consequence, most of

the modern image database systems adopts the RBIR

paradigm in order to improve the retrieval accuracy

[9,1,3,4,6,10]. Almost all such systems treats each re-

gion as a separate query and somehow aggregate the

so-obtained partial results in order to derive the final

answer. This property introduces a number of new

interesting query processing problems with respect to

the case in which the segmentation is not considered.
Image Querying. Figure 2. The similarity between the query

the similarity between matched regions.
Among these, which constraints must be satisfied by

the aggregation rule in order to provide the query

result and which criterion has to be followed to order

the DB images with respect to the query. Finally, with

RBIR, new query types, such as partial queries, are

supported.
Foundations
The general approach followed by RBIR systems is to

divide an image I into a set of homogeneous regions,

i.e., set of pixels that share similar visual characteris-

tics, and to represent each of them by means of a set of

low-level features, such as color and texture. Thus, any

image I is seen as a complex object. Regions compari-

son is obtained by defining a region similarity function,

sR, able to produce a scoring value which quantifies

their visual similarity. Given a query image Iq, the set of

relevant DB images to Iq is computed starting from the

similarities between the query regions and the regions

of DB images. This requires first to somehow match

regions of the query to regions of DB images, by using

the proper aggregation of region similarities, and then

to rank DB images so as to produce the query result

(see Fig. 2).

Formally, the image querying problem can be con-

cisely formulated as follows:

Problem

Given a query image Iq composed of regions, an image

database IDB, where each image I 2 IDB is composed

of regions, and a region similarity function, sR(Ri, Rj),

that for each pair of regions, (Ri, Rj), returns their
image and a DB image is assessed by taking into account

Image Querying I 1371
similarity score, determine the set of relevant images in

IDB wrt Iq.

Instantiating the general problem can be done in dif-

ferent ways, since different coordinates are involved in

the definition of what ‘‘relevant’’ actually means.

Among these coordinates, the rules according to

which a region of the query can be coupled to regions

of a DB image (conventionally called matching type)

and the aggregation modality applied to the region

similarity scores in order to assess the query result

(i.e., the ranking model).
I

Matching Type

The matching type defines which set of constraints

applies when the component regions of the query

image Iq = {R1
q,...,Rn

q} have to be matched to the

component regions of a DB image I = {R1,...,Rm}.

Two relevant cases for matching types are the one–

to–one (1� 1) and themany–to–many (n�m) match-

ing types. In the 1 � 1 case, each region of image Iq is

associated to at most one region of I, and vice versa.

In particular, each matching has to be complete, i.e.,

if n > m (respectively, n < m) then only n � m (resp.,

m � n) regions of Iq (resp., I) have to remain un-

matched (refer to Fig. 3 for an example).

With the n � m matching type, each region of Iq

can be associated to many regions of I, and vice versa.

This, however, could lead to undesired (pathological)

results. For example, a single region of the query could

be matched to all regions of a DB image. This has been

termed ‘‘the two tigers problem’’ in [11] since it arises

when a single region (a tiger) of the query image is very

similar to multiple regions of a DB image (e.g., con-

taining two tigers).

A special case of n � m matching that avoids this

problem is the Earth Mover Distance (EMD) matching

[7], where variable-sized pieces of regions are allowed

to be matched (the size of each region defines the

maximum amount for its matching). This contrasts

with the 1 � 1 matching, where elements of fixed size

(i.e., regions) are matched individually.

Ranking Model

Two generic models of ranking are possible: k-Nearest

Neighbors (k-NN) and Best Matches Only (BMO) [2].

The k-NN ranking model (also known as Top-k selec-

tion) requires to define the image similarity of a DB
image I with respect to a query image Iq, sI(I
q,I), by

means of a numerical scoring function (sf), such as the

average, which aggregates the region similarity scores

into a global similarity value. In particular, among all

valid matchings that satisfy the constraints of the specif-

ic matching type, the rationale is to select the one that

maximizes the aggregated score. This can be modeled as

an optimization problem whose solution depends on

the particular choice of the scoring function. For the

most commonly used functions efficient algorithms

exist: For example, when using the average function

with the 1 � 1 matching type, the problem takes the

form of the well-known assignment problem, while with

the n � m (EMD) matching type (see above), this

corresponds to the transportation problem. For both

such problems the optimal solution can be efficiently

found without performing an exhaustive search; how-

ever, in the general case, the optimal matching can not

be easily found. Figure 3 shows an example of match-

ing for a query image Iq with three regions and a DB

image Iwith four regions under the assumption of 1�
1 matching type and the average scoring function.

Similarities between regions of Iq and regions of I are

arranged in a matrix. Circled cells are those involved in

the matching. Note that, since n < m, in valid match-

ings 4 � 3 = 1 region of I remains unmatched.

Finally, given the query image Iq and two DB images

I1 and I2, image I1 will be considered more similar

than I2 to Iq iff sI(I
q,I1) > sI(I

q,I2) holds. In such a

way it is possible to linearly order DB images and

return to the user only the k highest scored ones.

The main limitation of the k-NN ranking model

is that the choice of a particular scoring function

clearly influences the final result, i.e., different scoring

functions will likely yield different results. This can

lead to missing relevant images, because the choice of

the scoring function is a difficult task for the user.

Moreover, the use of scoring functions limits the ex-

pressive power of queries that can be submitted to the

system, since all of them will always define a simple

linear order on objects. This might prevent their appli-

cability to modern multimedia systems asking for

more flexibility in querying [2]. In the BMO model,

the result of the query depends on a specific preference

relation �p, where �p is only required to define a strict

partial order over images. Image I1 2 IDB is in the

query result if and only if no other image I2 2 IDB is

better than (or dominates) I1 according to �p. Clearly,

1372 I Image Querying
preference relation �p is based on regions similarity

scores (see Fig. 3).

Thus, even if region scores are numerical (by defi-

nition), the BMO ranking model does not need to

aggregate them using a scoring function. Actually, the

result of a BMO query with image Iq is the set of

undominated images in IDB, i.e., all and only those

images for which no better image (with respect to Iq

and to �p) can be found in the database.

When considering together the matching type and

ranking model coordinates, different scenarios are

derived. In the following, algorithms for k-NN and

BMO queries are provided by considering the simplest

way to solve the image querying problem, i.e., when

using a sequential scan of the DB. Note that the efficien-

cy of such solutions is clearly quite limited. It is possible

to derive efficient algorithms [3,11,2] by exploiting

index structures, such as multi-dimensional or metric

indices (built either on regions of the DB images or on

the DB images themselves).

The steps described in Algorithm 1 show the logic

of the sequential algorithm for k-NN queries, named
Image Querying. Figure 3. Example of similarity assessment

type and the average scoring function: not valid matching (le

optimal matching (right). If an alternative matching type (e.g.

matching could become valid (and optimal).
k-NNSeq, to determine the k nearest neighbors of the

image query Iq: Given the image query Iq, the scoring

function sf, and the cardinality of the result k, the

algorithm correctly returns the k images that are

most similar to Iq according to sf. This algorithm

covers both cases of 1 � 1 and n � m matchings.

Algorithm 2, named BMOSeq, describes the main

steps for the sequential evaluation of BMO queries,

with the assumption of 1 � 1 matching: Given the

image query Iq and the preference relation �p, the

algorithm correctly returns set of undominated images

with respect to the query Iq.

It is also important to consider the type of images the

user is interested in. The above description deals with full

image search, i.e., when the user is interested in all regions

of the query, but other possibilities exist that introduce

minor modifications in the query evaluation process.

For example, part-of queries request DB images

whose regions are all matched to some query region

(the presence of unmatched query regions is not pena-

lized). Two other query types are introduced when the

user is given the possibility to select, possibly exploiting a
between images Iq and I when adopting the 1–1 matching

ft), valid not optimal matching (center), and valid and

, the general n � m matching) is considered, the left

Image Querying I 1373

I

suitable graphical interface, only a subset of query

regions: In partial match queries the user is looking for

DB images containing selected regions of the query (the

presence of other regions in the DB image should not be

penalized); on the other hand, with a contains query DB

images are requested to contain selected query regions

only (other existing regions reduce the image similari-

ty, differently from the case of part-of queries).

Key Applications
Image querying is an important tool for many modern

multimedia applications, such as digital libraries,

e-commerce (where electronic catalogues have to be

browsed and/or searched), edu-tainment (for example,

to search in clipart repositories, or to search and orga-

nize personal photo albums inmobile phones or PDAs).

Another interesting application area is the one related

to (semi-)automatic image annotation techniques, which

can be based on assigning to an unlabeled image I the

keywords associated to the DB images most similar to

I. Finally, image querying techniques have been also

profitably used in image classification, for example, to

search for similar logo images, for copyright infringement

issues, and for the detection of pornography images.

Cross-references
▶Annotation-based Image Retrieval

▶ Feature Extraction for Content-Based Image Re-

trieval

▶ Image Database

▶ Image Retrieval and Relevance Feedback

▶ Image Segmentation
▶ Indexing and Similarity Search

▶Top-K Selection Queries on Multimedia Datasets

▶Video Querying

Recommended Reading
1. Ardizzoni S., Bartolini I., and Patella M. Windsurf: region-based

image retrieval using wavelets. In Proc. 1st Int. Workshop on

Similarity Search, 1999, pp. 167–173.

2. Bartolini I., Ciaccia P., Oria V., and Özsu T. Flexible integration

of multimedia sub-queries with qualitative preferences. Multi-

media Tools Applicat., 33(3):275–300, June 2007.

3. Bartolini I., Ciaccia P., and Patella M. A sound algorithm

for region-based image retrieval using an index. In Proc. 4th

Int. Workshop on Query Processing and Multimedia Issues in

Distributed Systems, 2000, pp. 930–934.

4. Carson C., Thomas M., Belongie S., Hellerstein J.M., and

Malik J. Blobworld: a system for region-based image indexing

and retrieval. In Proc. 3rd Int Conf. on Visual Information

Systems, 1999, pp. 509–516.

5. Flickner M., Sawhney H.S., Ashley J., Huang Q., Dom B.,

Gorkani M., Hafner J., Petkovic D., Steele D., and Yanker P.

Query by image and video content: The QBIC system. IEEE

Computer, 28(9):23–32, September 1995.

6. Natsev A., Rastogi R., and Shim K. WALRUS: a similarity re-

trieval algorithm for image databases. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1999, pp. 396–405.

7. Rubner Y. and Tomasi C. Perceptual Metrics for Image Database

Navigation. Kluwer Academic, Boston, MA, December 2000.

8. Smeulders A.W.M., WorringM., Santini S., Gupta A., and Jain R.

Content-based image retrieval at the end of the early years.

IEEE Trans. Pattern Analy. Machine Intell., 22(12):1349–1380,

December 2000.

9. Smith J.R. and Chang S.-F. VisualSEEk: A fully automated

content-based image query system. In Proc. 4th ACM Int.

Conf. on Multimedia, 1996, pp. 87–98.

10. Wang J.Z., Li J., and Wiederhold G. SIMPLIcity: semantics-

sensitive integrated matching for picture libraries. IEEE

1374 I Image Representation
Trans. Pattern Anal. Machine Intell., 23(9):947–963, September

2001.

11. Weber R. andMlivoncic M. Efficient region-based image retrieval.

In Proc. Int. Conf. on Information and Knowledge Manage-

ment, 2003, pp. 69–76.
Image Representation

VALERIE GOUET-BRUNET

CNAM Paris, Paris, France

Synonyms
multimedia; File format; Image compression; Image

metadata; Image content; Image standards

Definition
In computer science, the representation of an image can

take many forms. Most of the time, it refers to the way

that the conveyed information, such as color, is coded

digitally and how the image is stored, i.e., how is

structured an image file. Several open or patented stan-

dards were proposed to create, manipulate store and

exchange digital images. They describe the format of

image files, the algorithms of image encoding such as

compression as well as the format of additional informa-

tion often called metadata. Differently, the visual content

of the image can also take part in its representation. This

more recent concept has provided new approaches of

representation and new standards, gathered together

into the discipline named content-based image indexing.

Historical Background
The first use of digital images began in the early

1920s with the technological development of facsimile

transmission, and in particular with the Bartlane cable

transmission system that was the first system that trans-

lated pictures into a digital code for efficient picture

transmission. Later, in the 1960s and 1970s, the advent

of digital image technology is closely tied to the develop-

ment of government programs for space exploration and

espionage and also to medical research with the inven-

tion of computerized axial tomography. With the avail-

ability of the CCD image sensors (charge-coupled

device), the private sector also began to make significant

contributions in the development of digital cameras.

Dissemination of digital images quickly required the

proposal of common frameworks for representing
images as an improvement of proprietary formats most

of the time under license and not easily exchangeable.

In the mid-1980s, image format TIFF was created by

the company Aldus with the aim of agreeing on a com-

mon file format for bitmapped images issued from

scanners. In parallel, researchers at Xerox PARC had

developed the first laser printer and had recognized

the need for a standard means of defining page images.

After several fruitless attempts, Adobe Systems proposed

the PostScript language in 1982, quickly adapted for

driving laser printers. Since then, other file formats dedi-

cated to digital images were also proposed, such as GIF

(1987), JPEG (1992), PDF (1993), PNG (1995) and SVG

(1998). Today, a great effort is done to propose standard

formats able to preserve data integrity for archiving pur-

poses, tomigrate easily to future technologies as well as to

provide efficient compression for access and dissemina-

tion. In 2000, the standard JPEG 2000 was proposed to

deal with these objectives for a large range of application

domains. Moreover Ambitious programs, MPEG-7 and

MPEG-21, started in the late 1990s, are focusing on the

harmonization of methods for representing, storing,

sharing and accessing multimedia contents (text, audio,

image and video) in an unified framework.

Foundations

Basics of Image Representation

Digital images can be classified into two main categories:

vector graphics and bitmapped images (also called raster

images).Vector images are geometrical 2Dobjects created

with drawing software or CAD (computer-aided design)

systems.They are representedwith geometrical primitives

such as points, lines, curves, and shapes or polygons,

which are all based uponmathematical equations. Unlike

bitmaps that are resolution-dependent, vector images are

scalable, which means that the scale at which they

are shown will not affect their appearance. Such images

are dedicated to the representation of images with simple

content, such as diagrams, icons or logos.

A bitmapped image is composed of a set of dots or

squares, called pixels (for picture elements), arranged in

a matrix of columns and rows. Each pixel has a specific

color or shade of gray, and in combination with neigh-

boring pixels it creates the illusion of a continuous tone

image. Unlike human vision, sensors that capture

images are not limited to the visual band of the electro-

magnetic spectrum. Digital images can cover almost the

entire spectrum, ranging from gamma to radio waves.

Image Representation I 1375

I

Managing bitmapped images requires the choice and

manipulation of several parameters such as:

� Color model. A color model is an abstract mathe-

matical model describing the way human color

vision can be represented as tuples of numbers.

From this model, the combination of dedicated

primary colors provide all the colors possible, that

are embedded in the corresponding color space.

RGB, CMYK, CIELAB and CIELUV are the most

known color models and spaces.

� Dynamic range. The dynamic range of a digital

image, also called color depth, determines the max-

imum range of gray level or color values carried by

each pixel. The number of bits used to represent

each pixel determines how many colors can appear

in the image. Photographic-quality images are usu-

ally associated with 24-bit dynamic range, such as

in the JPEG format.

� Resolution. Resolution expresses the density of ele-

ments, pixels for instance, within a specific area.

This term does not have any sense when dealing

with digital images as files, but it applies when

associating a digital image with a physical support,

such as display on a screen, printing on a printer or

capture with a scanner. Resolution is classically

represented in terms of dpi (dots per inch) unit,

which was originally the unit adopted for printing.

Appearance of bitmapped images, which are made

up of a fixed grid of pixels, clearly depends on the

resolution chosen, unlike vector images that are

scalable and then have the same appearance what-

ever the dimensions chosen for visualization.

Image Compression

Image compression is the process of shrinking the size of

digital image files. Methods have in common the pro-

cesses of finding and storing redundant data (e.g., pixels

with similar color information) more efficiently or of

eliminating information that is difficult for the human

eye to see [8]. Compression algorithms are especially

characterized by two factors: compression ratio and

generational integrity. Compression ratio is the ratio of

compressed image size to uncompressed size and gener-

ational integrity refers to the ability for a compression

scheme to prevent or mitigate loss of data, and therefore

image quality, through multiple cycles of compression

and decompression. Lossless compression ensures that

the image data is retained, as with Run-length encoding,

Huffman coding and LZW coding. On the other hand,
lossy compression schemes involve intentionally sacrifi-

cing the quality of stored images by selectively discarding

pieces of data. Most of them have a compression ratio

that can be parameterized by the user, to optimize the

results for each situation, such as the standards JPEG and

JPEG 2000.

Run-Length Encoding Run-length encoding (RLE) is

probably the most simple form of lossless data

compression: sequences in which the same data value

occurs in many consecutive data elements are stored as

a single data value and count. Image data is normally

run-length encoded in a sequential process that treats

the image data as a 1D stream, line by line, column by

column or diagonally in a zigzag fashion. Also used

in fax machines, common digital image formats for

run-length encoded data include TGA, PCX and is

possible with BMP, TIFF and JPEG.

Huffman Coding Created in 1951 by David A. Huff-

man, the Huffman coding is an entropy encoding

algorithm used for lossless data compression. The

basic idea of this algorithm is to code with few digits

the most common input symbols of a document. Each

symbol is encoded by using a variable-length code

table, where the codes are defined according to the

estimated probability of occurrence for each possible

symbol. The technique works by creating a binary tree

of nodes that contain symbols with their probability

for leaf nodes and cumulated probabilities for internal

nodes. Traversing this binary tree from the root to the

leaves, with the convention ‘0’ when following the left

child and ‘1’ when following the right one, allows

associating a bit string with each symbol. The result

is a prefix-free code: the bit string representing some

particular symbol is never a prefix of the bit string

representing any other symbol. Today, Huffman coding

is often used during the final process of some other

compression methods such as JPEG and MP3.

LZW Coding Lempel-Ziv-Welch (LZW) is a lossless

data compression algorithm created by Abraham

Lempel, Jacob Ziv, and Terry Welch. It was published

in 1984 as an improved version of the LZ77 and LZ78

algorithms published by Lempel and Ziv in 1977 and

1978. The technique was patented by IBM and Unisys

Corporation in 1983 and the patents expired in 2003.

The compression algorithm build a string translation

table that is based on fixed-length codes (usually

1376 I Image Representation
12-bit). As the system character-serially examines the

document, if the string read is not stored in the table, a

new code is created in the table and associated with this

string, otherwise the current string is encoded with an

existing code. This algorithm became very widely used

after it became part of the GIF image format in 1987.

In contrast to other compression techniques such as

JPEG, it allows preserving very sharp edges, suitable

with line art images often stored in GIF format.
JPEG Compression JPEG is the most common image

format used for compressing and storing digital cam-

eras and other photographic image capture devices.

‘‘JPEG’’ stands for Joint Photographic Experts Group,

the name of the committee that created the standard.

The group was organized in 1986, issuing a standard in

1992, which was approved in 1994 as ISO 10918-1

standard. The associated algorithm, described in

Fig. 1, is a lossy compression technique suited for

photographs and paintings of realistic scenes, but not

for line drawings and other textual or graphics, where

the compression cause noticeable artifacts on sharp

contrasts between adjacent pixels. This algorithm

stands on the representation of the image in the fre-

quency domain by using a two-dimensional DCT (Dis-

crete Cosine Transform), that describes the variability

of the signal in terms of low-level and high-level fre-

quencies. The human eye notices small differences in

brightness over a relatively large area, but does not

distinguish the exact strength of a high frequency

brightness variation very well. Consequently, the

amount of information in the high frequency compo-

nents of the DCT can be neglected without drastically

affecting perceptual image quality: the DCT compo-

nents are divided by factors of a quantization matrix
Image Representation. Figure 1. Main steps of the JPEG alg
that increase with the spatial frequency, and then

rounded to the nearest integer. This is the main lossy

operation in the whole process. Typically, many of the

higher frequency components are rounded to zero and

the other components become small numbers, which

take many fewer bits to store [10].

File Formats

There are a lot of image formats for vector graphics

as well as for bitmapped images [3,6]). Most of them

are open standards and patent expired for the others.

Vector image formats contain a geometric description

of the objects which can be rendered smoothly at

any desired size. Among the most common formats,

there are:

� SVG (Scalable Vector Graphics) is an open XML-

based standard created in 1998 and developed

by the World Wide Web Consortium to address

the need for a versatile, scriptable and all-purpose

vector format for the web and otherwise.

� EPS (Encapsulated PostScript) is a standard file

format created by Adobe Systems in the mid-

1980s. It follows DSC (Document Structuring Con-

ventions) rules that are a set of standards for

PostScript.

File formats abound for bitmapped images, but many

digital imaging projects have settled on the formula of

TIFF, JPEG, GIF and also PNG files:

� TIFF, for Tagged Image File Format, is a file format

for storing images such as photographs as well as

graphics. It was originally created by the company

Aldus, was then under the control of Adobe Sys-

tems and is now in the public domain. TIFF sup-

ports several lossless and lossy techniques of image
orithm for compression and uncompression.

Image Representation I 1377

I

compression, such as LZW, Huffman coding

and JPEG. The ability to store image data in a

lossless format makes TIFF files a useful method

for archiving images and preservation purposes.

However, there are so many different implementa-

tions of TIFF that many applications can read

certain types of TIFF images but not others.

� JPEG, for Joint Photographers Experts Group, is a

file format that was developed specifically for high-

quality compression of photographic images in a

24-bit RGB color model. It is generally employed

for online presentation and dissemination; the

associated lossy algorithm for compression makes

it unappropriated for archiving purposes. The file

format associated is JFIF (JPEG File Interchange

Format, 1992), a public domain storage format

for JPEG compressed images. Unlike TIFF, JFIF

does not allow for the storage of associated meta-

data, a failing that has led to the development of

SPIFF (Still Picture Interchange File Format),

which is now the international standard.

� GIF, for Graphics Interchange Format, is an 8-bit

image format for indexed colors, that was intro-

duced by CompuServe in 1987 and has since come

into widespread usage for art images such as dia-

grams or logos with a limited numbers of colors.

The original version was called 87a; in 1989, Com-

puServe developed an enhanced version, called 89a,

that supports animations. Due to infringement of

Unisys’ patent on the LZW compression technique

used with GIF, in 1995 CompuServe proposed

the PNG format (Portable Network Graphics) as a

replacement for the GIF format without patent

license. PNG offers a better and lossless compres-

sion technique called DEFLATE (that combines

LZ77 with Huffman coding). Since 2003, it is an

international standard.

Today, the status of TIFF as the de facto standard format

for archival digital image files is challenged by other

formats such as PNG and JPEG 2000, that are able to

preserve data integrity as well as to provide efficient

compression ratios for access and dissemination.
Metadata Representation

Metadata are commonly defined as ‘‘data about data.’’

They constitute the documentation or a structured

description associated with a document. Image files

automatically include a certain amount of metadata
that are stored in an area of the file defined by the file

format and called the header, but information may also

be stored externally.

In the widely used TIFF format, the term ‘‘Tagged’’

indicates that developers can define and apply dedicated

tags to enable them to include their own proprietary

information (called ‘‘ private tags’’) inside a TIFF file

without causing problems of compatibility. More re-

cently, Exif format (Exchangeable image file format)

was created by the Japan Electronic Industries Develop-

ment Association. The latest version was published in

2002 and while the specification is not currently main-

tained by any industry or standards organization, its use

by camera manufacturers is nearly universal. Exif fields

are generated at the creation of the image and should

not be modified after with the aim of including addi-

tional information like title or keywords. To do this,

other formats are recommended, such as XMP (eXten-

sible Metadata Platform). This last is an XML-based

standard for creating, processing and storing standar-

dized, extensible and proprietary metadata, created by

Adobe Systems in 2001 [1]. XMP metadata can be

embedded into a significant number of popular file

formats: it is used in PDF and other image formats

such as JPEG, JPEG 2000, GIF, PNG, TIFF and EPS.

In parallel to generic standards, standards dedi-

cated to specific image applications also exist, such as

DICOM (Digital Imaging and Communications in

Medicine). This is a standard created in 1992 and

widely adopted by hospitals, for handling, storing,

printing and transmitting information in medical im-

aging [7]. It includes a file format definition and a

network communications protocol.

Metadata constitute the documentation of all aspects

of digital files essential to their persistence, usefulness

and access. Images without appropriate metadata may

become hard to view, migrate to new technology, or to

access among large volumes of images.When annotation

is unappropriate or is missing, the representation of the

visual content of images by image analysis may be an

interesting alternative, as described in the following.

Image Content Representation

Born in early 1990s, Content-Based Image Indexing

(CBIR) is a discipline that exploits techniques of

image analysis and databases [2]. Indexing an image

by its content consists of automatically extracting

structures that describe the visual content relevantly

for the considered application. These structures can

1378 I Image Representation
describe the visual content of an image globally or

locally by characterizing its distribution of color,

shape and texture, or parts or objects of the image.

The visual structures exhibited are considered as the

index of the image, they are digitally represented with

one or several multidimensional vectors called signa-

ture of the image. According to this description,

searching for a particular image in a database of images

consists of searching in multidimensional spaces.

Key Applications
JPEG 2000 is a standard that gathers an image file

format and an algorithm of image compression, created

by the Joint Photographic Experts Group committee in

2000 [9]. The name refers to all of the eleven parts of the

standard, some of them are now published as an Inter-

national Standard, while others are under development.

The coding algorithm of JPEG 2000 is similar to the

JPEG one, it mainly differs in the use of wavelets

instead of a DCT. Wavelets provide a decomposition

of the image into a pyramid of sub-images which store

different levels of resolution of the image. They can be

of two types, according to the objective: (1) a Daube-

chies wavelet transform, that requires quantization

to reduce the amount of bits representing data, as

JPEG does, and then imposes lossy compression;

(2) a rounded version of Le Gall wavelet transform,

that uses only integer coefficients and then does not

require quantization, providing lossless coding.

On average, JPEG 2000 gains up to about 20% lossy

compression performance for medium compression

rates in comparison to the first JPEG standard. More-

over, the edges remain sharper and more contrasting

than with JPEG where blocky artifacts can also appear.

The aim of this standard is not only improving

compression performance but also adding features,

among which transmission error resilience and region

of interest (ROI). This last offers the opportunity

of storing parts of the same picture using different

quality. Some parts of particular interest such as

faces, can be stored with higher quality, to the detri-

ment of other ones where low quality/high compres-

sion can be tolerated. JPEG 2000 also allows delivering

these parts before other parts of the image.

The JPEG 2000 standard defines two file formats that

support embedded XML metadata: JP2, which supports

simple XML, and JPX, which has a more robust XML

system based on an embedded metadata initiative of the

International Imaging Industry Association (the DIG35
specification). However, as of this writing, commercial

implementations for JPEG 2000 are just beginning to

appear. The democratization of JPEG 2000 is presently

less important than the JPEG standard: It is supported in

several web browsers, but is not generally used on the

World Wide Web. Nevertheless, this standard will take

more place in a near future, because it has been developed

to efficiently deal with many applications and markets

such multimedia consumers applications, military/sur-

veillance, medical imagery, editing and storage, etc.

Future Directions
The continuing drop in prices of computers and stor-

age, the ocean of image/video/audio data produced and

the expansion of networking and communication band-

width via the Internet or the HDTV (High-definition

television) greatly contribute to the production and

dissemination of larger volumes of multimedia content.

Many techniques of different disciplines of computer

science have been studied and developed for managing

text, image, video and audio. But today, there is a need

in the development of an unified framework for the

creation, representation, storage, access, delivery, man-

agement and protection of multimedia contents. Stan-

dardization goes in this direction by proposing new

standards for managing these contents jointly, such

as the international standards MPEG-21 and MPEG-7.

MPEG-21 is a standard started in 1999 by MPEG

(Moving Picture Experts Group) and now normalized

as ISO/IEC 21000. Its main objectives are to define

an open framework for multimedia applications and

more precisely to provide a standardized structure

for various media contents and to facilitate their access,

delivery, management and protection [4]. MPEG-7

is another ISO/IEC standard started by MPEG in 1998

and formally called Multimedia Content Description

Interface. It aims at specifying a standard set of descrip-

tors and description schemes dedicated to various types

of multimedia information. One of its main objectives

is to provide unified and efficient searching, filtering

and content identificationmethods for thesemedia [5].

Cross-references
▶ Feature Extraction for Content-Based Image

Retrieval

▶ Image

▶ Image Content Modeling

▶ Image Metadata

▶ Image Salient Points and Features

Image Similarity I 1379

I

▶ Image Segmentation

▶ Image Segmentation and Features

▶Metadata

▶Multimedia Data

▶Multimedia Data Storage

▶Multimedia Databases

▶Multimedia Metadata

▶Video

▶Video Representation

▶Visual Content Analysis

▶Visual Representation

Recommended Reading
1. Adobe XMP main page: http://www.adobe.com/products/xmp/

index.html. 5

2. Datta R. Joshi D. Li J. and Wang J. Z. Image retrieval: Ideas,

influences, and trends of the new age. ACM Comput. Surv. 40

(2), 2008.

3. Fileformat.info. http://www.fileformat.info/format/could.htm. 3

4. Ian S., Burnett, Pereira F., Van de Walle R., and Koenen R. The

MPEG-21 Book. Wiley, 2006.

5. Manjunath B.S., Salembier P., and Sikora T. Introduction to

MPEG-7: Multimedia Content Description Interface. Wiley &

Sons, 2002.

6. Murray J. D. and vanRyper W. Encyclopedia of Graphics File

Formats. 2nd ed. O’Reilly, 1996.

7. Oleg S., Pianykh. Digital Imaging and Communications in

Medicine (DICOM): A Practical Introduction and Survival

Guide. Springer, 2008.

8. Salomon D., Motta G., and Bryant D. Data Compression: The

Complete Reference. Springer, 4th edition, 2006.

9. Taubman D. S. and Marcellin M. W. JPEG 2000: Image Com-

pression Fundamentals, Standards and Practice. Kluwer Inter-

national Series in Engineering and Computer Science, Secs 642,

52001.

10. Wallace G. K. The JPEG still picture compressin standard. Com-

mun. ACM, 34(4):30–44, 3 April 1991.
Image Similarity

TAO MEI
1, YONG RUI

2

1Microsoft Research Asia, Beijing, China
2Microsoft China R&D Group, Redmond, WA, USA

Synonyms
Image Distance; Visual Similarity; Similarity Measure

Definition
Given a pair of images each described by a feature set,

image similarity is defined by comparing the feature
set on the basis of a similarity function. In a typical

Visual Information Retrieval system, while searching

for a query image among the elements of the data set of

images, knowledge of the domain will be expressed by

formulating a similarity measure between the query

and data set based on some visual features. Therefore,

measuring meaningful image similarity consists of

two intrinsic elements: finding a set of features for

adequately describing the image content and finding

a suitable metric for assessing the similarity on the

basis of feature space. The feature set can be computed

globally for the entire image or locally for a small

group of pixels such as regions or objects. The similar-

ity measure can be different depending on the types

of features. Typically, the feature space is assumed

to be Euclidean. The algorithm for image similarity

aims to essentially reduce the semantic gap between

low-level features and high level semantics as much as

possible.

Historical Background
Comparing two images is the fundamental operation

for many Visual Information Retrieval systems, in

which the user selects a query image and image simi-

larity to the query according to the given criteria are

retrieved and presented [11]. Figure 1 shows the role of

image similarity in the context of multimedia informa-

tion retrieval. A set of visual features is first computed

for each image or video frame in the database and for

the query. Then, given a query image, image similarity

is computed for each pair of query and image based on

the feature space and some distance metric, and may be

further tuned in an interactive way according to user

feedback. The images which are visually, semantically,

or perceptually similar to the query are finally pre-

sented to the user.

Awide variety of methods for image similarity have

been devised with research expanding in content-based

multimedia retrieval in the last decade. In earlier work,

image content is usually described by a set of global

features such as color, texture, shape, and so on [8].

The advantage of global features is the high speed for

both feature extraction and similarity computation. The

features are then transformed and represented by a set of

vectors. Image similarity is computed based on different

distance metrics on these feature vectors. For example,

color histogram serves as an effective representation of

the distribution of colors in an image. A color histogram

is created by plotting the number of pixels in the image

Image Similarity. Figure 1. Image similarity in the context of multimedia information retrieval.

1380 I Image Similarity
with a particular range of quantized color value in some

color space. TheMinkowski-formdistance orHistogram

intersection can be used to compute the similarity be-

tween two histograms [5]. However, using an individual

type of feature cannot well characterize image content.

The multimodal methods combine the similarities from

different types of features. The simplest way for combi-

nation yielding a scalar is to compute the weighted sum

of these similarities based on the assumption that

the features are not of the same importance. The weig-

hts can be decided manually or by relevance feedback

mechanism [9].

As global features are often too rigid to represent

an image, there has been a paradigm shift from global

feature representation to local descriptors. Local features

are computed based on a subset of the image usually in

neighborhood of a salient point or a region. It is deemed

that local features are closer to the perception of human

visual system, as they often correspond to meaningful

image components such as salient points, rigid objects,

and homogenous regions [2]. The similarity is then

computed based on user selected points/objects/regions

or weighted sum of all of them. For example, an image

is represented by a set of regions where each region

is assigned a feature set and a weight indicating the

importance of the corresponding region [4]. The

image-to-image similarity is measured by the Earth

Mover’s Distance (EMD) [7] or an Integrated Region

Matching method (IRM) [2]. The recent work in com-

puter vision treated image as a set of salient points and

extracted Scale Invariant Feature Transform (SIFT)

features for each point [6]. Image matching is per-

formed based on the Euclidean distances between pairs

of salient points or the histogram comparison built

upon a codebook.
Foundations
By the nature of the task of image retrieval, image simi-

larity boils down to two intrinsic problems: (i) how to

describe an image using a set of visual features, and (ii)

how to assess the similarity between two images based on

these features. Figure 2 shows the paradigms of image

similarities, including three types of features for describ-

ing image content, formulation of the features, distance

metrics for computing the similarities, and techniques

used for computing the distance. The distance metrics

used for image similarity depend on the selection of

features and their corresponding formulations.

Image Descriptors

The preliminary step for image similarity is the descrip-

tion of image content. Research has proceeded toward

effectively characterizing image content by a variety of

visual features (or referred to as signatures). These

features can be categorized into three types according

to the pixels used, i.e., global, regional, and local fea-

tures. The global features are extracted over the entire

image or sub-image based on grid partition, the re-

gional features are computed based on the results of

image segmentation which attempts to segment the

image into different homogenous regions or objects,

while the local features aim at robust descriptors

invariant to scale and orientation based on local

maxima.

In global features, the most typical ones are color,

texture, and shape which are widely used in many

retrieval systems [5]. Color histogram is an effective

and easy-to-compute representation of the color dis-

tribution in an image. It is also robust to the transla-

tion and rotation about the view axis, as well as slight

occlusion. A color histogram is created by counting the

Image Similarity. Figure 2. Paradigms of image similarities, including the corresponding features, formulations, and

distance metrics, and techniques. This figure is designed similar to the figure used in [5].

Image Similarity I 1381

I

pixels falling into a quantized bin in a specific color

space, such as RGB, HSV, and LUV spaces. In addition,

color moments are also popular color features. Usually

the first three order (i.e.,mean, variance, and skewness)

colormoments are suitable enough to represent the color

distribution of image. An alternative way to compute

color histogram and moments is to divide an image into

non-overlappingblocks, computehistogramormoments

for each block, and concatenate all the features into one

vector. To dealwith large-scale image database, a compact

descriptor is proposed in [12] where each image is con-

verted to a K-bit (K is no more than 32) hash code

according to its content. Other color features include

color coherence, color correlogram, and so on. Texture

features are intended to capture the granularity and

repetitive visual patterns in an image. The basic texture

features include Tamura, multi-resolution simultaneous

auto-regressive model (MRSAR), Gabor filter, wavelet

transform, andWold features [11,5]. In contrast to color

and texture features, shape features are usually com-

puted after images being segmented into regions. The

shape features capture the local geometrical properties.

Typical shape features include normalized inertia [1],

moment invariants, Fourier descriptors [5], and so on.

Using global features, an image can be represented by a

single vector corresponding to a uni-modaltiy or a set of

vectors and weights corresponding to multi-modal fea-

tures and their importances.

The regional features are similar with global fea-

tures, except that they are computed over a local region

with homogeneous texture rather than the whole

image. The most widely used features for describing a

region include color moment [1], color correlogram

[8], wavelet transform texture, and normalized inertia

[1]. As a result, an image is represented by a set of

vectors and weights each corresponding to a region.
Local invariants such as salient points from which

descriptors are derived, traditionally used for stereo

matching andobject recognition, are being used in image

similarity. For example, the algorithm proposed by Lowe

[6] constructs a scale space pyramid usingDifference-of-

Gaussian(DoG)filtersandfindsthelocal3Dmaxima(i.e.,

salient point) on the pyramid. A robust Scale Invariant

FeatureTransform(SIFT)descriptoriscomputedforeach

point. An image is thus represented by a set of salient

points and 128 dimensional SIFT features, or a histo-

gramof codewordsbuilt upona large visual vocabulary.
Similarity Measures

The similarity measures are based on comparisons

between the features associated with images. As

shown in Fig. 2, since each type of feature can have

its own mathematic formulation, the distance metrics

and the corresponding techniques for computing the

distances are different.

Considering that an image I is represented by a

single vector f ¼ (f(1),...,f (M)) (e.g., histogram or

some distribution) in which each dimension is inde-

pendent of each other and has equal importance, the

most widely adopted similarity is computed based on

Minkowski-form distance, defined as

DLpðI0; I1Þ ¼
XM
i¼1
jf 0ðiÞ � f 1ðiÞjp

()1=p

ð1Þ

where f 0(i) and f 1(i) denote i-th feature of image I0

and I1, respectively. For p ¼ 2, this yields the Euclidean

distance. The histogram intersection is a special case of

L1 distance, defined as

DHI ðI0; I1Þ ¼
PM

i¼1 minðf 0ðiÞ; f 1ðiÞÞPM
i¼1f

1ðiÞ
ð2Þ

1382 I Image Similarity
It has been shown that histogram intersection is fairly

sensitive to the changes of image resolution, occlusion,

and viewing point [5]. A distance robust to noise is

Jeffery distance (JD) which is based on the Kullback-

Leibler divergence (KL) given by

DKLðI0; I1Þ ¼
XM
i¼1

f 0ðiÞ log f
0ðiÞ
f 1ðiÞ

ð3Þ

Although it is often intuited as a distance metric, the

KL divergence is not a true metric since it is not

symmetric. The JD distance is defined as

DJDðI0; I1Þ ¼
XM
i¼1
ff 0ðiÞ log f

0ðiÞ
mi

þ f 1ðiÞ log f
1ðiÞ
mi

g
ð4Þ

where mi ¼ f 0ðiÞþf 1ðiÞ
2

. In contrast to KL divergence, JD

distance is symmetric and numerically stable when

comparing two empirical distributions. Hausdorff

distance [2] is another matching method which is

symmetrized by computing additionally the distance

with image I0 and I1 reversed and choosing the larger

one of the two distances

DH ðI0; I1Þ ¼ max ðmax
i

min
j

dðf 0ðiÞ; f 1ðiÞÞ;

max
J

min
i

dðf 0ðiÞ; f 1ðiÞÞÞ ð5Þ

where d(,) can be any form of distance such as L1 and

L2 distances. The Mahalanobis distance metric deals

with the case that each dimension of vector is depen-

dent and has different importance, given by

DM ðI0; I1Þ ¼
ffi
ðf0 � f1ÞTC�1ðf0 � f1Þ

q
ð6Þ

where C is the covariance matrix of the feature vectors.

The above distance measures are all derived from a linear

feature space which has been noted as the difficulty

in measuring perceptual or semantic image distance.

Manifold ranking replaces traditional Euclidean distance

by the geodesic distance in a non-linear manifold [13].

The similarity is often estimated based on a distance

measure d(,) and a positive radius parameter s along

a manifold

DMRðI0; I1Þ ¼ exp � dðI0; I1Þ
s

� �
ð7Þ

where L1 distance is usually selected for d(,).
In amore general situation, an image I is represented

by a set of vectors and weights {(fi,oi)}(i=1, 2,...,M),

whereM is the number of modalities (e.g., color, texture,

or shape). Each vector (also referred to as distribution)

corresponds to a specific region or modality and the

weight indicates the significance of associating this

vector to the others. Note that the weight oi can have

the same dimension to fi indicating that each dimen-

sion of the features in a single vector has the same

importance to each other, or just a real value indicating

the importance of the entire vector. The simplest way to

compute the similarity from different modalities is the

weighted sum of the similarity from each single vector.

The Earth Mover’s Distance (EMD) represents a soft

matching scheme for features in the form of set of

vectors [7]. The EMD ‘‘lifts’’ the distance from individ-

ual features to full distributions. The EMD distance is

given by

DEMDðI0; I1Þ ¼
PM0

i¼1
PM1

j¼1 sijdðf
0
i ; f

1
j ÞPM0

i¼1
PM1

j¼1 sij
ð8Þ

where d(,) is the ground distance between two vectors

which can be defined in diverse ways depending on the

system, sij minimizes the value of (8) subject to the

following constraints:

sij � 0; 1 	 i 	 M0; 1 	 j 	 M1

XM0

j¼1
sij 	 o0

i ; 1 	 i 	 M0

XM1

i¼1
sij 	 o0

j ; 1 	 j 	 M1

XM0

i¼1

XM1

j¼1
sij ¼ min

XM0

i¼1
o0

i ;
XM1

j¼1
o1

j

 !

when oi
0 and oj

1 are probabilities, EMD is equivalent to

the Mallows distance [2]. Another matching-based

distance is the Integrated Region Matching (IRM) dis-

tance [2]. The IRM distance uses the most similar

highest priority (MSHP) principle to match different

modalities or regions. The weights sij are subject to the

same constraints as in the Mallows distance, except

that d(,) is not computed by minimization. Another

way to the adjustment of weights oi in image similarity

is relevance feedback which captures the user’s precise

needs through iterative feedback and query refine-

ment. The goal of relevance feedback is to find the

Image Similarity I 1383

I

appropriate weights to model the user’s information

need [9]. The weights are classified into intra- and

inter- weights. The intra-weights represent the differ-

ent contributions of the components within a single

vector (i.e., region or modality), while the inter-

weights represent the contributions of different vec-

tors. Intuitively, the intra-weights are decided based on

the variance of the same vector components in the

relevant feedback examples, while the inter-weights

are directly updated according to user’s feedback in

terms of the similarity based on each vector. For the

comparison among these distance metrics, please refer

to [2] for more details.

In the context of image being represented by a set of

salient points and their corresponding local descriptors,

image similarity is computed based on the Euclidean

distance between each pair of salient points [6]. An

alternative way is to represent each image by a bag of

codewords which are obtained by unsupervised learning

of local appearance [3]. A large vocabulary of codewords

is built by clustering a large amount of local features, and

then the distribution of these codewords is obtained by

counting all the points or patches within an image. Since

the image is described by a set of distributions, histo-

gram intersection and EMD defined in (2) and (8) can

be employed to compute the similarity.

Key Applications

Content-based Multimedia Information

Retrieval/Multimedia Database

The computation of image similarity is the fundamen-

tal operation in content-based multimedia informa-

tion retrieval systems and multimedia database.

Given a query image or video, the images or videos

reasonably similar to the query are returned based on

the given features and distance metric.

Object Recognition

Object Recognition aims to identify an object in a

database of images. Typically an object is represented

by a set of overlapping regions each represented by a

vector computed from the region’s appearance. Recog-

nition of a particular object proceeds by matching the

descriptor vectors based on image similarity.

Medical/Satellite/Surveillance Applications

In the applications such as medical, satellite image,

and surveillance, image similarity is usually used for
managing the database and querying or recognizing a

particular object. For example, image similarity can be

employed to detect the regions with abnormal charac-

teristics in medical diagnose. Moreover, image similar-

ity can support content-based queries on large

database of remote sensing images.

Future Directions
As pointed out in [2], the problem of image similarity

is the reliance on visual similarity for judging semantic

similarity. As directly applying distance metrics to

image similarity cannot well model human similarity

perception, automatic learning of image similarity

with the help of contextual and human information

has been explored. For example, when an image is

conceived as a bag of instances which correspond

to regions, multiple-instance learning (MIL) can be

used for learning semantic similarity [1]. Another in-

teresting problem concerns image similarity in human

perception system [10]. The mathematical or compu-

tational models are needed to accurately assess percep-

tual similarity by resembling human’s perception.
Cross-references
▶ Image Database

▶ Image Retrieval

▶ Similarity in Video

▶Video Retrieval
Recommended Reading
1. Chen Y. and Wang J.Z. Image categorization by learning and

reasoning with regions. J. Machine Learn. Res., 5:913–939, 2004.

2. Datta R., Joshi D., Li J., and Wang J.Z. Image retrieval: ideas,

influences, and trends of the new age. ACM Comput. Surv.,

40(65), 2008.

3. Fei-Fei L. and Perona P. A bayesian hierarchical model for

learning natural scene categories. In Proc. IEEE Int. Conf. on

Computer Vision and Pattern Recognition, 2005, pp. 524–531.

4. Jing F., Li M., Zhang H.-J., and Zhang B. An efficient and

effective region-based image retrieval framework. IEEE Trans.

Image Process., 13(5):699–709, May 2004.

5. Long F., Zhang H.-J., and Feng D.D. Fundamentals of Content-

based Image Retrieval. Chapter in: Multimedia Information

Retrieval and Management – Technological Fundamentals and

Applications. D.D. Feng, W.C. Siu, H.-J. Zhang (ed.). Springer,

Berlin Heidelberg New York, January 2003.

6. Lowe D.G. Distinctive image features from scale-invariant key-

points. Int. J. Computer Vis., 60(2):91–110, 2004.

7. Rubner Y., Tomasi C., and Guibas L.J. The earth mover’s distance

as a metric for image retrieval. Int. J. Computer Vis., 40

(2):99–121, 2000.

1384 I Image Retrieval
8. Rui Y., Huang T.S., and Chang S.-F. Image retrieval: current

techniques, promising directions and open issues. J. Vis. Com-

mun. Image Rep., 13(10):39–62, 1999.

9. Rui Y., Huang T.S., Ortega M., and Mehrotra S. Relevance

feedback: a power tool for interactive content-based image re-

trieval. IEEE Trans. Circ. Video Tech., 8(5):644–655, September

1998.

10. Santini S. and Jain R. Similarity measures. IEEE Trans. Patt.

Analy. Machine Intell., 21(9):871–883, September 1999.

11. SmeuldersA.W.M., Worring M., Santini S., Gupta A., and Jain R.

Content-based image retrieval at the end of the early years. IEEE

Trans. Patt. Anal. Machine Intell., 22(12):1349–1380, 2000.

12. Wang B., Li Z., Li M., and Ma W.-Y. Large-scale duplicate

detection for web image search. In Proc. IEEE Int. Conf. on

Multimedia and Expo, 2006, pp. 353–356.

13. ZhouD., BousquetO., Lal T.,Weston J., and Scholkopf B. Learning

with local and global consistency. In Proc. Advances in Neural

Information Processing System, 2003, pp. 321–328.
Image Retrieval

▶ Image Database
Image Retrieval and Relevance
Feedback

MICHEL CRUCIANU

National Conservatory of Arts and Crafts, Paris, France

Definition
Relevance feedback is a means of refining a query in an

information retrieval system by asking the user to

specify how relevant each result of the query is. An

image retrieval session relying on relevance feedback is

interactive and iterative. The session is divided into

several consecutive rounds. At every round, the user

provides feedback regarding the current retrieval

results, usually by qualifying the returned images as

either ‘‘relevant’’ or ‘‘irrelevant’’; from this feedback,

the system attempts to better identify the target of the

user and to return improved results. A relevance feed-

back mechanism must maximize the relevance of the

results while minimizing the amount of interaction

between the user and the system.

Historical Background
In the early years of content-based image retrieval

(CBIR), query by visual example (QBVE) was a
prevailing paradigm. To support QBVE, an image re-

trieval system must first extract, during an off-line

phase, a description in terms of low-level features (e.g.,

distribution of colors, textures, etc.) from every image

in the supplied database. Then, when a query image is

provided, the system returns the images whose descrip-

tions are the most similar to the description of this

query. However, QBVE encountered important difficul-

ties: (i) there is a semantic gap between the high-level

concept defining what a user is searching for and the

existing low-level descriptions, and (ii) a relevant

image is seldom available to serve as initial query

(‘‘page zero’’ problem). The introduction of relevance

feedback in CBIR was motivated by both difficulties.

User feedback provided during consecutive rounds can

allow the system to progressively learn a correspon-

dence between the target concept and low-level

descriptions, thus bridging the semantic gap. Also,

since the user can amend the results at every round,

the initial query is less important; many different start-

ing images may allow to identify the target concept.

Relevance feedback is not specific to image retrieval.

For other types of content, such as text, music or video,

a gap can also be found between automatically

extracted descriptions of the content and search criteria

that users consider meaningful. Actually, relevance

feedback was first introduced for the retrieval of text

documents in the seminal work of Salton and van

Rijsbergen. These initial proposals inspired the early

feedback methods put forward for image retrieval.

However, since a user can evaluate the relevance of an

image faster than the relevance of a text or of a stream-

ing media item, the appeal of relevance feedback was

stronger for image retrieval.
Foundations
Understanding the specific goal of an image retrieval

session is important both for defining an appropriate

feedback mechanism and for identifying adequate

evaluation methods. The earliest and most frequent

goal involving relevance feedback consists of finding

images that illustrate a target concept the user has in

mind [6,10]. The concept can correspond to a percep-

tive characteristic, but in general has higher-level se-

mantics. The system must solve a ranking problem: the

images must be ordered and returned to the user by

decreasing relevance. Nevertheless it is accepted that a

precise ranking of the relevant images is not required,

Image Retrieval and Relevance Feedback I 1385

I

mainly because the user herself may be unable to define

an optimal ranking; the system should simply rank

most of the relevant images before the irrelevant ones.

Recently, relevance feedback was also suggested as a

way to delineate the class of images illustrating a con-

cept the user has in mind. The aim is to extend textual

annotations of some images in the class to the others

[7] or to help librarians perform ‘‘mass annotation’’ of

the images [3]. To make this procedure efficient, much

less effort should be required for defining the target

class than for individually annotating all the images in

the class. In this case, the system has to solve a classifi-

cation problem: the boundary between the images

belonging to the target class (the relevant images)

and the others (irrelevant images) must be reliably

identified. The rate of false positives (i.e., images that

do not belong to the class but are assigned to it and,

consequently, receive a wrong annotation) is consid-

ered to be more important than the overall error rate.

However, the boundary does not have to be crisp and a

degree of confidence can be associated to the resulting

annotation.

Image retrieval with relevance feedback can only be

effective if some important assumptions are verified.

First, discrimination between relevant and irrelevant

images must be possible with the available image

descriptors; the ‘‘numerical gap,’’ due to the use of

inappropriate descriptors, should be avoided. Second,

the target concept of the user must be consistent dur-

ing the consecutive feedback rounds of a retrieval

session. Third, since the amount of feedback a user

can provide is very limited, the target concept that

needs to be identified must have a relatively simple

representation in the description space of the images.
Image Retrieval and Relevance Feedback. Figure 1. Simpli

similarity-based retrieval (leftmost image) returns the four nea

(+), relying on the default metric defined in the image descrip

relevant (+) or irrelevant (�), during consecutive rounds, the

class. At every round, the dotted boundary shows the curren
Relevance Feedback Methods

To support relevance feedback, an image retrieval sys-

tem should include two components: a learner and a

selector. At every feedback round, the user marks (or

labels) images returned by the system as either relevant

or irrelevant. The learner makes use of this informa-

tion to reestimate the target of the user (see Fig. 1).

Given the current estimation of the target, the selector

chooses other images for which the user is asked to

provide feedback during the next round. The recent

evolution of the learners and of the selection criteria is

briefly presented in the following.

Learners

To estimate the target of the user, the learner can rely

on the training data, consisting of the images marked

by the user during consecutive feedback rounds, and

on prior knowledge when it is available. The task of the

learner is particularly difficult in the context of rele-

vance feedback for several reasons (see also [16]). First,

since the interaction with the user during a feedback

session is limited, the amount of training data is small,

sometimes much smaller than the dimension of the

image description space. This highlights the impor-

tance of prior knowledge. Then, the target class may

have a rather complex shape in the description space

and even several disconnected modes; since training

data is scarce, this can severely limit the generalization

expected from the learner. Another difficulty comes

from the strong imbalance in the training data: there

are usually fewer positive examples (images considered

relevant by the user) than negative examples

(irrelevant images). The learner should have a low

sensitivity to this imbalance or some remedy must be
fied view of some relevance feedback rounds. An initial

rest neighbors (points inside the dotted circle) of the query

tion space. By marking the images returned as either

user allows the system to progressively identify the target

t estimation of the target.

1386 I Image Retrieval and Relevance Feedback
found. Last but not least, to preserve interactivity, both

learning from the training data and the evaluation

of the remaining images according to the selection

criterion should be fast.

Early work on relevance feedback for CBIR directly

followed from QBVE, by assuming the existence of an

ideal query point and feature weighting that, if found,

would allow QBVE to provide the appropriate answer

to the user. This motivated the ‘‘query point move-

ment’’ (QPM) approach, for which the task of the

learner consists in identifying, at every round, a better

query point together with a re-weighting of the indi-

vidual dimensions of the image description space.

Learning sometimes used only the positive examples

[14], but usually employed both the positive and the

negative examples [12]. These early proposals make

the strong assumption that the target class corresponds

to a multidimensional Gaussian distribution and some

further consider that the covariance matrix of the

target class is diagonal. Learning consists then in esti-

mating the parameters of this distribution. This re-

strictive assumption was removed in [8,11], as a first

departure from QPM. In the query expansion scheme

put forward in [11], an online clustering of the exam-

ples is performed first, then all the other images are

evaluated using a nearest-neighbor decision with re-

spect to these clusters. The densities of the positive and

of the negative examples are estimated with a Parzen

window method in [8]; the images returned to the user

are ranked according to the difference between the two

densities.

For a large part of the recent work on relevance

feedback, the learners employed are kernel methods

and especially support vector machines (SVM [13]).

With these kernel methods, the data in input space is

first mapped to a higher-dimensional feature space

using a non-linear transform associated to a reprodu-

cing kernel; linear methods in this feature space pro-

vide nonlinear solutions in the input space. Learning is

usually based on constrained quadratic optimization

and the sparsity of the solution is encouraged by vari-

ous means. Two-class SVM maximize the margin be-

tween the discrimination boundary and the training

data belonging to each class, so the resulting boundary

is only defined by those examples that are closest to the

boundary (the support vectors). One-class SVM model

the support of the distribution of data in input space

by finding the smallest sphere surrounding the data in

feature space (according to one formulation); this
sphere is only determined by the outermost examples.

Since it is defined in the feature space, a kernel method

can be easily applied to different types of data (e.g.,

vectors, sets, graphs) if an appropriate kernel is found.

An SVM has some other properties that make it an

interesting choice as a learner for relevance feedback.

First, the decision function of an SVM allows both the

definition of a boundary and of a ranking. Second,

learning with few examples is very fast and, given the

sparsity of the solution, computing the value of the

decision function for the unmarked images can also be

relatively fast. Finally, by relying only on support vec-

tors, two-class SVM are usually less sensitive than

density-based learners to the imbalance between posi-

tive and negative examples in the training data.

Among kernel methods, recent relevance feedback

proposals often make use of two-class SVM to dis-

criminate relevant and irrelevant images (see e.g.,

[15]). But one-class SVM were also used to model

the distribution of the relevant images alone (see

[1]). Other kernel methods, such as kernel biased dis-

criminant analysis, Bayes point machines and rele-

vance vector machines, were successfully employed in

CBIR with relevance feedback.

Given the small amount of labeled data provided to

the learner by user feedback, semi-supervised learning

received significant attention in this context. Semi-

supervised learning attempts to make use of both

labeled and unlabeled data in order to find a better

model (such as a discrimination boundary or a ranking

function). It relies on the assumption that the distri-

bution of unlabeled data does provide valuable infor-

mation regarding the sought model (e.g., the density of

data is lower near the boundary between classes than

inside each class). When applied to relevance feedback,

this approach has to face two important difficulties.

First, the underlying assumption is not necessarily true

for a particular image database and target class, and

cannot be verified a priori. Second, taking unlabeled

data into account frequently produces an increase in

the computational complexity, which may not be com-

patible with interactive search.

Selection Criteria

After the learner reestimates the target of the user from

the feedback received the selector must provide the

user with a new set of images. The ultimate goal of a

retrieval session is to present the user with as many

relevant images as possible. Accordingly, the earliest

Image Retrieval and Relevance Feedback I 1387

I

and most frequently employed selection criterion

returns those unmarked images that are considered to

be the most relevant given the current estimation of

user’s target. The short description for this criterion is

that it returns the ‘‘most positive’’ (MP) images. It has

the advantage that the user can receive quite early

during the retrieval session several relevant images.

However, to reach optimal results with a minimal

amount of interaction, the system should elicit from

the user at every round as much information as possi-

ble regarding the distinction between relevant and

irrelevant images. Existing results concerning active

learning point out that this is achieved when the exam-

ples shown to the user are those expected to remove a

maximal amount of uncertainty regarding the target.

This selection criterion can be briefly described as

returning the ‘‘most informative’’ images (MI). It trans-

lates into two complementary conditions for the images

being selected: each of them should be ambiguous (given

the current estimation of the target class) and any two

images should be as dissimilar as possible. A selection

criterion based on active learning was first proposed for

image retrieval with relevance feedback in [2], for a

learner using density estimation. The ambiguousness

condition was considered in [15] for SVM learners: the

most ambiguous images (MA) are those that are nearest

to the current boundary between relevant and irrelevant

images. The dissimilarity (or low redundancy) condition

was added later (see e.g., [3]).
Temporal Structure of the Session

The MI selection criterion was shown to minimize the

number of feedback rounds required for defining

the target class of the user. But since MI returns ambig-

uous images, it is inappropriate for presenting the user a

maximum of relevant images. A first solution to this

problemwas to useMI during several rounds in order to

define the class and then switch to MP in order to show

the most relevant images; it is nevertheless difficult to

know when exactly to replace MI by MP. Another solu-

tion is to combine the results of both MI and MP in the

images shown to the user at every feedback round; this

alternative is better adapted to nonprofessional users,

who expect more immediate reward.

The initialization of search can also have an impact

on the temporal structure of a retrieval session. In some

cases, a relevant starting image can be provided by the

user (external query) or found with the help of a visual
summary of the image database. If an appropriate start-

ing image is not available, then feedback should be used

both for finding a truly relevant image (exploration

stage) and then for retrieving further relevant images

(exploitation stage). The session begins with some ran-

dom selection of images. During the exploration stage,

the systemmust be able so show the user images that are

increasingly relevant. The user may not see any truly

relevant image during several rounds, so she is expected

to indicate which among the images returned by the

system are more relevant than the others. Support for

such an exploration stage also helps when the target

class has several distinct modes. While the exploratory

behavior was addressed by [2] and, to some extent, by a

few QPM proposals, later work mainly focused on the

exploitation stage. A competitive method for the explo-

ration stage was recently proposed in [4].
Evaluation of Relevance Feedback in Image Retrieval

User satisfaction is the ultimate measure of the success

of image retrieval with relevance feedback. Reliable

evaluations or comparisons between alternative rele-

vance feedback methods require large groups of users

and real world image retrieval problems. Given the

difficulty of setting up large scale experiments with

real users, most evaluations are actually performed on

specific ground truth databases, by emulating the user.

A ground truth usually corresponds to the definition of

a set of mutually exclusive image classes, covering an

entire database. The emulated user knows the ground

truth and is assumed to have a stoic and error free

behavior: at every feedback round the emulated user

correctly marks as either relevant or irrelevant each of

the images returned by the selector. To obtain a reliable

evaluation, it is very important to employ several

ground truth databases having dissimilar characteris-

tics. It was also argued that more diverse and realistic

behaviors should be assigned to the emulated user.

When the aim is to rank the relevant images before

the irrelevant ones, the quality of retrieval is usually

given by the proportion of relevant images in the top N

returned by an MP selector; N is the number of images

in the target class of the ground truth database.When the

aim is to delineate the target class, the quality of discrim-

ination is 1� e, where e is either the overall classification
error or the rate of false positives. Usually, a ‘‘right’’

number of feedback rounds can not be fixed a priori.

To evaluate the performance of a relevance feedback

1388 I Image Retrieval and Relevance Feedback
method, the appropriate quality measure should be

recorded during several consecutive feedback rounds.

Key Applications
Interactive multimedia search engines are the original

motivation for content-based image retrieval in general

and for the introduction of relevance feedback in par-

ticular. Such search engines are of high interest both

for the general public and for professional users. Scal-

ability and user-friendliness are fundamental require-

ments in this context.

Assistance in the annotation of content can be an

important application mainly directed to professional

users. Relevance feedback can support such users in

delineating large classes of images in order to anno-

tate at once all the images belonging to a class (mass

annotation). In this case, the ability to reach a low

classification error or a low rate of false positives is the

major concern.

Future Directions
Since the amount of feedback provided during a re-

trieval session is very small, the system should make

the most of all the information sources potentially

available. These sources concern the users (e.g., past

sessions of other users, user profiles), the images (e.g.,

structured or unstructured metadata) and the context

of retrieval. The system should be able to evaluate and

integrate all these sources with the feedback directly

provided by the current user.

An important issue that was not extensively studied

is the scalability of relevance feedback to very large

databases. Scalability is a challenge both for the learner

(especially when semi-supervised methods are

employed) and for the selector. To avoid evaluating the

decision function for all the unmarked images in the

database, an index structure is needed. But existing

multidimensional or metric index structures and asso-

ciated kNN retrieval methods can not be directly ap-

plied, mainly because the queries that have to be

processed are not classical point queries. A good exam-

ple is the use of the MA (or MI) selection criterion

with an SVM learner: in this case the images that are

nearest to the discrimination boundary (defined by a

hyperplane in feature space) should be returned. This

scalability issue is addressed by some recent proposals

(see [5,9]).

The interaction between users and current systems

is rather limited; typically, a user can only mark as
relevant or irrelevant each of the shown images.

A more advanced interface should bring in more flexi-

bility, by allowing every user to group together or to

separate images, to place them in a visual summary,

to mix several image retrieval paradigms, to interact

online with other users, etc.
Cross-references
▶ Feature Extraction for Content-Based Image Re-

trieval

▶ Image Retrieval

▶Relevance Feedback
Recommended Reading
1. Chen Y., Zhou X.S., and Huang T.S. One-class SVM for learning

in image retrieval. In Proc. Int. Conf. Image Processing, 2001,

pp. 34–37.

2. Cox I.J., Miller M.L., Omohundro S.M., and Yianilos P.N. An

optimized interaction strategy for Bayesian relevance feedback.

In Proc. IEEE Int. Conf. on Computer Vision and Pattern Recog-

nition, 1998, pp. 553–558.

3. Ferecatu M., Crucianu M., and Boujemaa N. Retrieval of diffi-

cult image classes using SVM-based relevance feedback. In Proc.

6th ACM SIGMM International Workshop on Multimedia

Information Retrieval, 2004, pp. 23–30.

4. Ferecatu M. and Geman D. Interactive search for image cate-

gories by mental matching. In Proc. 11th IEEE Conf. Computer

Vision, 2007, pp. 1–8.

5. Heisterkamp D.R. and Peng J. Kernel VA-files for relevance

feedback retrieval. In Proc. 1st ACM Int. Workshop on Multi-

media Databases, 2003, pp. 48–54.

6. Kurita T. and Kato T. Learning of personal visual impression for

image database systems. In Proc. 2nd Int. Conf. Document

Analysis and Recognition, 1993, pp. 547–552.

7. Lu Y., Hu C., Zhu X., Zhang H.-J., and Yang Q. A unified

framework for semantics and feature based relevance feedback

in image retrieval systems. In Proc. 8th ACM Int. Conf. on

Multimedia, 2000, pp. 31–37.

8. Meilhac C. and Nastar C. Relevance feedback and category

search in image databases. In Proc. Int. Conf. on Multimedia

Computing and Systems, 1999, pp. 512–517.

9. Panda N., Goh K.-S., and Chang E.Y. Active learning in very large

databases. Multimedia Tools Applicat., 31(3):249–267, 2006.

10. Picard R.W., Minka T.P., and Szummer M. Modeling user sub-

jectivity in image libraries. In Proc. Int. Conf. Image Processing,

1996, pp. 777–780.

11. Porkaew K. and Chakrabarti K. Query refinement for multime-

dia similarity retrieval in MARS. In Proc. 7th ACM Int. Conf. on

Multimedia (Part 1), 1999, pp. 235–238.

12. Rui Y., Huang T.S., Ortega M., and Mehrotra S. Relevance feed-

back: a power tool in interactive content-based image retrieval.

IEEE Trans. Circuits Syst. Video Tech., 8(5):644–655, 1998.

13. Schölkopf B. and Smola A. Learning with Kernels. MIT, Cam-

bridge, MA, 2002.

Image Segmentation I 1389
14. Sclaroff S., Taycher L., and Cascia M.L. Image Rover: a content-

based image browser for theworldwideweb. In Proc.Workshop on

Content-Based Access of Image and Video Libraries, 1997, pp. 2–9.

15. Tong S. and Chang E. 1Supportvectormachineactive learningfor

image retrieval. In Proc. 9th ACM Int. Conf. onMultimedia, 2001,

pp. 107–118.

16. Zhou X.S. and Huang T.S. Relevance feedback for image retrieval:

a comprehensive review. Multimedia Syst., 8(6):536–544, 2003.
Image Retrieval System

▶ Image Database
I

Image Segmentation

FRANK Y. SHIH

New Jersey Institute of Technology, Newark, NJ, USA

Synonyms
Region segmentation; Pixel classification; Edge detec-

tion; Thresholding

Definition
The rapid rate of image analysis field has grown enor-

mously in the past few decades. Image analysis intends

to construct explicit, meaningful descriptions of phys-

ical objects in images. It can be divided into two

parts: low-level image analysis and high-level image

analysis. Low-level tasks focus on region-based seg-

mentation, whereas high-level tasks are related to

object-oriented representation. Image segmentation, a

process of pixel classification, aims to extract or seg-

ment objects or regions from the background. Intrinsic

images can be generated at the low-level processing,

revealing physical properties of the imaged scene. This

can often be implemented with parallel computation.

Historical Background
Image segmentation is a critical step to the success of

object recognition [12], image compression [2], image

visualization [7], and image retrieval [3]. Pal and Pal

[13] provided a review on various segmentation tech-

niques. It should be noted that there is no single

standard approach to segmentation. Many different

types of scene parts can serve as the segments on

which descriptions are based, and there are many
different ways in which one can attempt to extract

these parts from the image. Selection of an appropriate

segmentation technique depends on the type of images

and applications.

The level of segmentation or subdivision relies on

the problem domain being dealt with. For example, in

the optical character recognition (OCR), the text is

separated from the document image, and further par-

titioned into columns, lines, words, and connected

components. In building character subimages, one is

often confronted with touching or broken characters

that occur in degraded documents (such as fax, scan,

photocopy, etc.). It is still challenging to develop tech-

niques for properly segmenting words into their

characters.

There are primarily four types of segmentation

techniques: thresholding, boundary-based, region-

based, and hybrid techniques. Thresholding is based

on the assumption that clusters in the histogram cor-

respond to either background or objects of interest that

can be extracted by separating these histogram clusters.

In addition to thresholding, many image segmentation

algorithms are based on two basic properties of the

pixel intensities in relation to their local neighborhood:

discontinuity and similarity. Methods based on pixel

discontinuity are called boundary-based or edge ex-

traction methods, whereas methods based on pixel

similarity are called region-based methods. Boundary-

based methods assume that the pixel properties, such

as intensity, color, and texture, should change abruptly

between different regions. Region-based methods

assume that neighboring pixels within the same region

should have similar values (e.g., intensity, color,

texture).

It is well known that such segmentation techniques –

based on boundary or region information alone – often

fail to produce accurate segmentation results. Hence,

there has been a tendency towards hybrid segmentation

algorithms which take advantage of the complementary

nature of such information. Hybrid methods combine

boundary detection and region growing together to

achieve better segmentation [5,6,14]. Note that both

results should achieve the foreground and background

segmentation coherently.
Foundations
A number of image segmentation techniques, includ-

ing thresholding, component labeling, locating object

1390 I Image Segmentation
contours by the snake model, and automatic seeded

region growing, are described below.

Thresholding

Thresholding provides an easy and convenient way to

perform image segmentation based on the different

intensities or colors in the foreground and back-

ground regions of an image. Not all images can be

segmented successfully into foreground and back-

ground using simple thresholding. Its validity relies

on the distribution of the intensity histogram. If the

intensity distribution of foreground objects is quite

distinct from the intensity distribution of back-

ground, it will be clear to apply thresholding for

image segmentation. In this case, one expects to see

distinct peaks in the histogram corresponding to fore-

ground objects, such that threshold values can be

picked to isolate those peaks accordingly. If such a

peak does not exist, it is unlikely that simple thresh-

olding can achieve a good segmentation.

There are several methods of choosing the thresh-

old value l. For example, the universal thresholding by

Donoho et al. [4] sets

l ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log n

p
ffiffiffi
n
p ð1Þ

where s is the standard deviation of the wavelet coeffi-

cients and n is the total size of samples. Other possibil-

ity is quantile thresholding where l is statistically set to
replace a percentage of the coefficients with the smal-

lest magnitude to zero. Another adaptive method of

automatically choosing the best threshold l consists of
four steps: (i) Choose an initial estimate l ; (ii) Calcu-
late the two mean values m1 and m2 within the two

groups of pixels after thresholding at l; (iii) Calculate
the new threshold value l ¼ 1=2ð Þ m1 þ m2ð Þ; (iv) If the
new threshold value has a little change (i.e., smaller

than a predefined constant), then the threshold selec-

tion is done; otherwise, go back to step 2.

Object (Component) Labeling

It is very possible to have more than one object in a

scene. All the objects must be individually extracted for

the purpose of establishing the object model base. The

object-labeling technique is used, so that the array

representation of these objects is a multivalued picture,

in which the points of each component all have a

unique nonzero label and the points of background
are all zeros. This technique only requires two raster

scans. To label 4-connected components, only the

upper and left neighbors are checked. If the 8-connect-

edness is used, the upper two diagonal neighbors are

also included.

Let the value of object points be “1” and of

background points be “0.” Assume that the

8-connectedness is adopted. Therefore, if all the

above four neighbors (i.e., previously scanned neigh-

bors) of the point P are zeros, then P is assigned a

new label. If one of four neighbors is 1, then P gets the

same label as that neighbor. If two or more of them are

1’s, then P gets any one of their labels, and the equiva-

lence table is established by marking the different labels

together for later adjustment. Equivalence processing

consists in merging the equivalent pair into the same

class; i.e., a unique label is assigned to each class. Finally,

a second scan is performed to replace each label by the

representative of its class. Each component has now

been uniquely labeled. After these processes, each indi-

vidual model object can be fetched by its label.

Locating Object Contours by the Snake Model

In the original snake formulation of Kass et al. [9], the

best snake position was defined as the solution of a

variational problem requiring the minimization of the

sum of internal and external energies integrated along

the length of the snake. The corresponding Euler equa-

tions, which give the necessary conditions for this

minimizer, comprise a force balance equation. The

snake model has provided a number of applications

in object segmentation, stereo matching, motion

tracking, etc. In image processing, the snake model

defines a snake as an energy-minimizing spline guided

by external constraint forces and influenced by such

forces that pull it toward image features such as lines

and edges. It is a kind of the active contour model in

the way that it locks on nearby edges, localizing them

accurately.

There are two parts in the energy function of the

snake model. The first part reflects geometric proper-

ties of the contour, and the second part utilizes the

external force field to drive the snake. The first part

serves to impose a piecewise smoothness constraint,

and the second part is responsible for putting the snake

near the local minimum of energy. The traditional

snakes suffer from a great disadvantage that when an

object resides in a complex background, the strong

edges may not be the object edges of interest.

Image Segmentation I 1391
Therefore, researchers have proposed statistical and

variational methods to enrich the energy function

and extend its flexibility. They calculated the difference

between the target object and the background using

statistical analysis, but these limitations come from the

priori knowledge requirements, such as independent

probability models and template models. Unfortunate-

ly, such priori knowledge is usually unavailable unless

the captured images are under very constrained set-

tings. A problem with the snake model is that a user

needs to place the initial snake points sufficiently close

to the feature of interest.
I

The Traditional Snake Model A snake is a controlled

continuity spline that moves and localizes onto a spe-

cified contour under the influence of the objective

function. Let a snake be a parametric curve:

vðsÞ ¼ ½xðsÞ; yðsÞ
; where parameter s 2 ½0; 1
. It

moves around the image spatial domain to minimize

the objective energy function as defined by

EsnakeðvÞ ¼
Xn
i¼1
½a� Econt ðviÞ þ b� EcurvðviÞ

þg� EimageðviÞ
; ð2Þ

where a, b and g are weighting coefficients that control
the snake’s tension, rigidity, and attraction, respec-

tively. The first and second terms are correspondingly

the first- and second-order continuity constraints. The

third term measures the edge strength (i.e., the image

force).

The continuity force Econt encouraging even

spacing of points can be calculated as

Econt ½vi
 ¼
d � vi � vi�1j j
�� ��

maxj d � viðjÞ � vi�1j j
�� ��� � ; ð3Þ

where viðjÞjj ¼ 1; 2; :::;mf g denotes the snake point

vi’s m neighbors, and d denotes the average length of

all the pairs of adjacent points on the snake contour as

given by

d ¼

Pn
i¼1

vi � vi�1j j

n
; ð4Þ

where v0 ¼ vn. This term tends to keep the distances

between each pair of adjacent vertices equal.

The energy of the second-order continuity Ecurv is

represented by
Ecurv ½vi
 ¼
vi�1 � 2vi þ viþ1j j

max f vi�1 � 2vi þ viþ1j jg : ð5Þ

The numerator can be rearranged as

vi�1 � 2vi þ viþ1 ¼ ðviþ1 � viÞ � ðvi � vi�1Þ: ð6Þ

If the ith vertex is pushed toward the midpoint of two

adjacent vertices, Eimage is minimized; i.e., the shape of

the contour will remain �2 continuity.

The third term, image energy Eimage, is derived from

the image so that it takes on its smaller values at the

features of interest, such as boundaries. It considers

the gradient (denoted as grad) magnitude, leading the

active contour toward step edges. It is normalized to

measure the relative magnitude as

Eimage ½vi
 ¼
minf gradj jg � gradvij j

maxf gradj jg �minf gradj jg ; ð7Þ

where min and max denote the minimum and maxi-

mum gradients in the vi’s local m-neighborhood, re-

spectively. Note that because the numerator in eq. (7)

is always negative, Eimage can be minimized for locating

the largest gradient, which is the edge. In general, the

traditional snake model can locate object contours in a

simple background. If the background becomes com-

plex, it will fail since the complex background will

generate noisy edges to compete with the object edges

for attracting the snake.

The Improved Snake Model The following two issues

are observed when the snake model fails to locate object

contours in complex backgrounds. One is the gray-level

sensitivity; i.e., the more abrupt change the gray levels

have (e.g., noises), the larger impact on the energy func-

tion the snake makes. The other is that the snakemistak-

enly locates the edges belonging to the background

details due to their closeness to the snake point. Figure 1

shows a disk object in a complex background. If the

snake points are initialized outside the disk, the snake

cannot locate the disk contour accurately due to the

disturbances from the background grids. The idea is to

push the mean intensity of the polygon enclosed by

the snake contour to be as close as to the mean inten-

sity of the target object. The smaller intensity differ-

ence between the polygon and the object, the closer

the snake approaches the object contour. Therefore, a

new energy term, called the Regional Similarity Energy

(RSE), is established for calculating the gray-level

differences to be added into the overall energy [16].

Image Segmentation. Figure 1. A disk object resides in a

complex background.

1392 I Image Segmentation
The Gravitation External Force Field and the Greedy

Algorithm In this section, the gravitation external

force field is introduced and the greedy algorithm [8]

is used for the active contour. The concept of gravita-

tion external force field is taken from physics. Two

objects attract each other by a force, which is propor-

tional to their mass product and inversely proportional

to the distance between their mass centers. Based on

this concept, an external energy field, called the Gravi-

tation Energy Field (GEF), is developed as given by

Egravitation ¼
ð
gð~rÞ
~rk k~rd~r; ð8Þ

where ~r is a position vector and gð~rÞ is a first-order

derivative. Note that the edge pixels have the local

maxima in the first-order derivative. The attractive

force enables the snake points to move toward the

object. With the gravitation energy field, the active con-

tour can be dragged toward the object even if the

snake points are far away. Therefore, the total energy

function becomes

Esnake ¼ aEcont ½vðsÞ
 þ bEcurv ½vðsÞ
 þ gEimage½vðsÞ

þmEgravitation½vðsÞ
 þ dERSE ½vðsÞ
: ð9Þ

These weighting coefficients can be adjusted accord-

ing to the user’s application. For simplicity,

a ¼ b ¼ g ¼ m ¼ d ¼ 1.
Experimental Results Both the improved and the tra-

ditional snake models are applied on the added salt-

and-pepper noise of Fig. 1. The results are shown in

Fig. 2. It is observed that the improved model can

locate the disk contour, but the traditional model

fails. The improved model is suitable for random

noise or fixed pattern noise. The banding noise is

highly camera-dependent, and is the one which is

introduced by the camera when it reads data from the

digital sensor. The improved model may not perform

well in an image with such noise.
Automatic Seeded Region Growing

Seeded Region Growing (SRG) is one of hybrid meth-

ods proposed by Adams and Bischof [1]. It starts with

assigned seeds, and grow regions by merging a pixel

into its nearest neighboring seed region. Mehnert and

Jackway [10] pointed out that SRG has two inherent

pixel order dependencies that cause different resulting

segments. The first order dependency occurs whenever

several pixels have the same difference measure to their

neighboring regions. The second order dependency

occurs when one pixel has the same difference measure

to several regions. They used parallel processing

and re-examination to eliminate the order dependen-

cies. Fan et al. [5] presented an automatic color

image segmentation algorithm by integrating color-

edge extraction and seeded region growing on the

YUV color space. Edges in Y, U, and V are detected

by an isotropic edge detector, and the three compone-

nts are combined to obtain edges. The centroids

between adjacent edge regions are taken as the initial

seeds. The disadvantage is that their seeds are over-

generated.
Overview of the Improved Seeded Region Growing

Algorithm

Figure 3 presents the overview of the improved seeded

region growing algorithm [15]. Firstly, the color image

is converted from RGB to YCbCr color space. Secondly,

automatic seed selection is applied to obtain initial

seeds. Thirdly, the seeded region growing algorithm is

used to segment the image into regions, where a region

corresponds to a seed. Fourthly, the region-merging

algorithm is applied to merge similar regions, and

small regions are merged into their nearest neighbor-

ing regions.

Image Segmentation. Figure 3. Outline of the proposed

algorithm.

Image Segmentation. Figure 2. (a) The initial snake points, (b) the result by the traditional snake model, (c) the result by

the improved snake model.

Image Segmentation I 1393

I

The Method for Automatic Seed Selection

For automatic seed selection, the following three

criteria must be satisfied. First, the seed pixel must

have high similarity to its neighbors. Second, for an

expected region, at least one seed must be generated in

order to produce this region. Third, seeds for different

regions must be disconnected.

The similarity of a pixel to its neighbors can

be computed as follows. Considering a 3 � 3 neigh-

borhood, the standard deviations of Y, Cb and Cr

components are calculated using

sx ¼

ffi
1

9

X9
i¼1
ðxi � �xÞ2

vuut ; ð10Þ
where x can be Y ;Cb; or Cr , and the mean value

�x ¼ 1
9

P9
i¼1

xi. The total standard deviation is

s ¼ sY þ sCb
þ sCr

: ð11Þ

The standard deviation is normalized to [0,1] by

sN ¼ s=smax; ð12Þ

where smax is the maximum of the standard deviation

in the image. The similarity of a pixel to its neighbors

is defined as

H ¼ 1� sN : ð13Þ

From the similarity, the first condition for the seed

pixel candidate is defined as follows:

Condition 1: A seed pixel must have the similarity

higher than a threshold value.

Secondly, the relative Euclidean distances (in terms

of YCbCr) of a pixel to its 8 neighbors is calculated as

di ¼

ffi
ðY � YiÞ2 þ ðCb � CbiÞ

2 þ ðCr � CriÞ
2

q
ffi
Y 2 þ C2

b þ C2
r

p
i ¼ 1; 2; � � � ; 8: ð14Þ

From experiments, the performance of using relative

Euclidean distance is better than using normal Euclid-

ean distance. For each pixel, the maximum distance to

its neighbors is calculated as

dmax ¼ max
8

i¼1
dið Þ: ð15Þ

From the maximum distance, the second condition for

the seed pixel candidate is defined below.

1394 I Image Segmentation
Condition 2: A seed pixel must have the maximum

relative Euclidean distance to its eight neighbors which

is less than a threshold value.

A pixel is classified as a seed pixel if it satisfies the

above two conditions. In order to choose the threshold

automatically in condition 1, Otsu’s method [11] is used.

The threshold is determined by choosing the value that

maximizes the discrimination criterion s2B=s
2
w , where s

2
B

is the between-class variance and s2W is the within-class

variance. In condition 2, the value 0.05 is selected as

the threshold based on these experiments.

Each connected component of seed pixels is taken

as one seed. Therefore, the seeds generated can be one

pixel or one region with several pixels. Condition 1

checks whether the seed pixel has high similarity to its

neighbors. Condition 2 makes sure that the seed pixel

is not on the boundary of two regions. It is possible

that for one desired region, several seeds are detected

to split it into several regions. The over-segmented

regions can be merged later in the region-merging

step. Figure 4(a) shows a color image, and (B) shows

the detected seeds marked in red color. Note that the

connected seed pixels are considered as one seed.
Image Segmentation. Figure 4. (a) Original color image, (b)

region growing result, (d) the result of merging adjacent regi

result of merging small regions with size less than 1/150 of th
The Segmentation Algorithm

Let A1;A2;:::;Ai denote initial seeds and Si denote the

region corresponding to Ai. The mean of all seed pixels

in Si in terms of Y, Cb and Cr components is denoted as
�Y ; �Cb; �Crð Þ. The segmentation algorithm is described

as follows:

1. Perform automatic seed selection.

2. Assign a label to each seed region.

3. Record neighbors of all regions in a sorted list T in a

decreasing order of distances.

4. While T is not empty, remove the first point p and

check its 4-neighbors. If all labeled neighbors of

p have a same label, set p to this label. If the labeled

neighbors of p have different labels, calculate the

distances between p and all neighboring regions

and classify p to the nearest region. Then, update

the mean of this region and add 4-neighbors of p,

which are neither classified yet nor in T, to T in a

decreasing order of distances.

5. Perform region merging.

Note that in step 3, T denotes the set of pixels that are

unclassified and are neighbors of at least one of the
the detected seeds are shown in red color, (c) seeded

ons with relative Euclidean distance less than 0.1, (e) the

e image, and (f) final segmented result.

Implementation Abstraction I 1395

I

region. The relative Euclidean distance di between the

pixel i and its adjacent region is calculate by

di ¼

ffi
ðYi � Y Þ2 þ ðCbi � CbÞ2 þ ðCri � CrÞ2

q
ffi
Y 2
i þ C2

bi
þ C2

ri

q ; ð16Þ

where �Y ; �Cb; �Crð Þ are the mean values of Y, Cb, and Cr

components in that region. In step 4, the pixel p with

the minimum distance value is extracted. If several

pixels have the same minimum value, the pixel

corresponding to the neighboring region having the

largest size is chosen. If p has the same distance to

several neighboring regions, it is classified to the largest

region. Figure 4(c) shows the result of the proposed

algorithm, where boundaries of regions are marked in

white color.

Key Applications
Object Recognition, Image Compression, Image Visu-

alization, and Image Retrieval.

Cross-references
▶Computer Vision

▶ Image Segmentation

▶ Pattern Recognition

▶ Scene Analysis

Recommended Reading
1. Adams R. and Bischof L. Seeded region growing. IEEE Trans.

Pattern Anal. Mach. Intell., 16(6):641–647, 1994.

2. Belloulata K. and Konrad J. Fractal image compression with

region-based functionality. IEEE Trans. Image Process., 11

(4):351–362, 2002.

3. Chen Y. and Wang J.Z. A region-based fuzzy feature matching

approach to content-based image retrieval. IEEE Trans. Pattern

Anal. Mach. Intell., 24(9):1252–1267, 2002.

4. Donoho D., Johnstone I., Kerkyacharian G., and Picard D.

Density estimation by wavelet thresholding. Ann. Statist.,

24:508–539, 1996.

5. Fan J., Yau D.K., Elmagarmid A.K., and Aref W.G. Automatic

image segmentation by integrating color-edge extraction and

seeded region growing. IEEE Trans. Image Process., 10(10):

1454–1466, 2001.

6. Haris K., Efstratiadis S.N., Maglaveras N., and Katsaggelos A.K.

Hybrid image segmentation using watersheds and fast region

merging. IEEE Trans. Image Process., 7(12):1684–1699, 1998.

7. Hartmann S.L. and Galloway R.L. Depth-buffer targeting for

spatially accurate 3-D visualization of medical images. IEEE

Trans. Med. Imaging 19(10):1024–1031, 2000.

8. Ji L. and Yan H. Attractable snakes based on the greedy algo-

rithm for contour extraction. Pattern Recognit., 35(4):791–806,

2002.
9. Kass M., Witkin A., and Terzopoulos D. Snakes: active contour

models. Int. J. Comput. Vis., 1(4):321–331, 1987.

10. Mehnert A. and Jackway P. An improved seeded region growing

algorithm. Pattern Recognit. Lett., 18(10):1065–1071, 1997.

11. Otsu N. A threshold selection method from gray-level histo-

gram. IEEE Trans. Syst., Man, Cybern., 9(1):62–66, 1979.

12. Pachowicz P.W. Semi-autonomous evolution of object models

for adaptive object recognition. IEEE Trans. Syst. Man Cybern.,

24(8):1191–1207, 1994.

13. Pal N.R. and Pal S.K. A review on image segmentation techni-

ques. Pattern Recognit., 26(9):1277–1294, 1993.

14. Pavlidis T. and Liow Y.T. Integrating region growing and

edge detection. IEEE Trans. Pattern Anal. Mach. Intell., 12(3):

225–233, 1990.

15. Shih F.Y. and Cheng S. Automatic seeded region growing

for color image segmentation. Image Vis. Comput., 23(10):

877–886, 2005.

16. Shih F.Y. and Zhang K. Efficient contour detection based on

improved snake model. Pattern Recognit. Artif. Intell., 18(2):

197–209, 2004.
Image Standards

▶ Image Representation
Image/Video/Music Search

▶ Semantic Modeling and Knowledge Representation

for Multimedia Data
Immersive Data Mining

▶Visual Data Mining
Implementation Abstraction

▶Visual Data Mining

1396 I Implication of Constraints
Implication of Constraints

WENFEI FAN

University of Edinburgh, Edinburgh, UK

Definition
The implication problem is to decide whether or not a

given set of constraints logically implies another con-

straint. With any constraint (dependency) language L
there are two implication problems associated, which

do not coincide in general.

In the traditional logic framework, an instance of a

schema R is a logical structure that is either finite or

infinite, referred to as an unrestricted instance of R.

A set S of constraints over R implies without restriction

a constraint ’, denoted by S ⊨unr’, if for each unre-

stricted instance I of R that satisfies S, I also satisfies ’.
The unrestricted implication problem for L is to deter-

mine, given a set S of constraints in L and another

constraint ’ in L, whether or not S ⊨unr’.

In the context of databases, only finite instances are

considered and implication analysis lies within finite

model theory. A set S of constraints over R finitely

implies a constraint ’, denoted by S ⊨fin’, if for each

finite instance I of R that satisfies S, I also satisfies ’.

The finite implication problem for L is to determine,

given any set S of constraints in L and another con-

straint ’ in L, whether or not S ⊨fin’.

In the context of semi-structured data or XML,

implication analysis is also conducted in the absence

of schema. For XML, a set S of constraints implies

another constraint ’ in the absence of schema if all

XML documents that satisfy S also satisfy ’; similarly

for semi-structured data.

Historical Background
Logical implication is one of the key issues in depen-

dency theory. It has been studied for, and has proved

valuable in, schema normalization, data integrity

maintenance and query optimization, among other

things. Recently there has also been renewed interest

in this line of work, for XML data management, data

exchange and data cleaning.

After functional dependencies were introduced by

Codd in 1972, the relevance of implication to database

theory was first observed by [8]. Since then the prob-

lem of logical implication has been extensively studied

for a large variety of dependencies, mostly focusing on
the following aspects. (i) The complexity of implica-

tion analyses (e.g., [3,6,7,9,10,11,15]). In particular, the

separation of finite and unrestricted implication was

originally investigated in [7,10], and the chase, a pow-

erful decision procedure for implication, was based on

the idea of [3] and articulated in [7,15]. (ii) Axiomati-

zation for characterizing logical implication, first stud-

ied by Armstrong [5] for functional dependencies,

followed by a flurry of research (see, e.g., [12] for a

survey). (iii) View dependencies for propagating

dependencies from databases to their views, originally

studied in [14]. (iv) The impact of interaction between

schema (types) and constraints on implication analy-

sis, first studied by [2] for semi-structured data, and

then for XML in the presence and in the absence of

schema [13]. See [1,12] for comprehensive surveys.
Foundations
The remainder of this entry discusses various aspects

of implication: dependencies, unrestricted and finite

implication, implication and satisfiability analyses,

finite axiomatization, complexity bounds, and view

dependencies.
Constraints (Data Dependencies)

Implication analysis has been studied for a variety of

integrity constraints (in this entry, integrity constraints

and data dependencies are used interchangeably).

Most constraints studied for relational databases can

be expressed as first-order logic sentences of the fol-

lowing form, referred to as embedded dependencies:

8x1:::xm ðfðx1;:::; xmÞ ! 9y1:::yn cðz1;:::; zkÞÞ;

where (i) {y1,...,yn} = { z1,...,zk} �{ x1,...,xm}; (ii) f is a

conjunction of (at least one) relation atoms of the form

R(w1,...,wl), using all of the variables in {x1,...,xm},

where wi is a variable for each i 2 [1,l]; (iii) c is a

conjunction of either relation atoms or equality atoms

w = w 0, using all of the variables in {z1,...,zk}, where w,

w 0 are variables; and (iv) there exist no equality atoms

in c using existentially quantified variables.

Embedded dependencies are often classified as

follows.

1. Full dependencies are embedded dependencies that

have no existential quantifiers, i.e., dependencies of

the form 8x1...xm (j(x1,...,xm) ! c(z1,...,zk)),
where {z1,...,zk} is a subset of {x1,...,xm}. Full

Implication of Constraints I 1397

I

dependencies include functional dependencies

(FDs), multivalued dependencies (MVDs) and

join dependencies (JDs) (see [1,12] for the defini-

tions of FDs, MVDs, JDs and inclusion

dependencies).

2. Tuple generating dependencies (TGDs) are embed-

ded dependencies in which the right-hand side c is

a relation atom. ATGD says that if a certain pattern

of entries appears then another pattern must ap-

pear. Inclusion dependencies (INDs), MVDs and

JDs are examples of TGDs.

3. Equality generating dependencies (EGDs) are em-

bedded dependencies in which the right-hand side

c is an equality atom. An EGD says that if a certain

pattern of entries appears then a certain equality

must hold. The best known equality generating

dependencies are FDs.

4. Typed dependencies are embedded dependencies

for which there exists an assignment of variables

to column positions such that (i) variables in rela-

tion atoms occur only in their assigned position,

and (ii) each equality atom involves a pair of vari-

ables assigned to the same position. Typed depen-

dencies include FDs, MVDs and JDs.

Implication analysis has also been studied for integrity

constraints on semi-structured data andXML. This entry

focuses on relational dependencies only, and refer the

interested reader to [4] for a survey on XML constraints.

Unrestricted Implication Versus Finite Implication

Given a set S of constraints and another constraint ’,

if S ⊨unr’, i.e., S implies ’ without restriction, then

obviously S ⊨fin’, i.e., S finitely implies ’. However,

the converse does not necessarily hold. It is possible

that S ⊨fin’ whereas S ⊭unr’. That is, the implication

problem and finite implication problem may have to

be treated separately as different decision problems.

Below are two examples.

1. When S is a set of FDs and INDs, and ’ is either an

FD or an IND [9].
Consider a binary relation R(A,B) with attri-

butes A,B. Let S = {A! B, R[A]
 R[B]}, and ’ be

R[B]
 R[A]. Then from S it follows that for any

finite instance I of R that satisfies S, jpA(I)j�jpB(I)j
(by the FD in S) and jpA(I)j	jpB(I)j (by the

IND in S), where p is the projection operator

in the relational algebra, and jSj denotes the num-

ber of distinct tuples in a relation S. Therefore,
jpA(I)j = jpB(I)j. Since I is finite and pA(I)

pB(I), it follows that pB(I)
 pA(I) and I satisfies

’. Conversely, an infinite instance {(i + 1,i)ji � 0}

of R satisfies S but does not satisfy ’; thus S⊭unr’.

Similarly, let ’ be R[B] ! R[A] then one can

verify that S ⊨fin’ but S ⊭unr’.
2. When S is a set of TGDs and ’ is a TGD (see [7] for

a proof).
A useful technique for proving the decidability

of the implication problem for a constraint lan-

guage L is to show that the implication and finite

implication problems coincide for L, i.e., for any
set S in L and another constraint ’ in L, S ⊨unr’

if and only if S ⊨fin’. Indeed, all relational con-

straints considered so far are definable in first-

order logic. For these constraints implication is

r.e. (recursively enumerable) and finite implication

is co-r.e.. As a result, if implication and finite im-

plication coincide, then both are recursive, i.e.,

decidable. For full dependencies, for example, the

implication and finite implication problems coin-

cide, and are both decidable.
Implication Versus Satisfiability

Consider S and ’ defined over a relational schema R.

Obviously, S ⊨unr’ (resp. S ⊨fin’) if and only if the

sentence ∧ S ∧¬’ is (resp. finitely) satisfiable, i.e.,

there exists a (resp. finite) instance of R that satisfies

the sentence. This tells us that there is close connection

between (resp. finite) implication and (resp. finite)

satisfiability, problems studied in (resp. finite) model

theory. For a constraint language L that is closed under

negation (i.e., if ’ 2 L then so is ¬’), the (resp. finite)
implication problem is just a special case of the (resp.

finite) satisfiability problem.

Embedded dependencies are not closed under ne-

gation, and their (finite) implication analyses are quite

different from their (finite) satisfiability counterparts.

For any set S of embedded dependencies defined over

a relational schema R, the empty instance If of R, i.e.,

an empty database with no tuples, satisfies S. For the
analysis of (finite) satisfiability, embedded dependen-

cies have the domain independence property: when

considering whether a database I satisfies S, it suffices
to consider the tuples in I without worrying about the

underlying domains of the attributes in R. In contrast,

to verify S ⊨unr’ (resp. S ⊨fin’) one may have to

consider all (resp. finite) instances of R, possibly

1398 I Implication of Constraints
ranging over all the values in the underlying domains

of the attributes in R.

Despite this, when studying (finite) implication

analyses for certain subclasses of embedded dependen-

cies, it is still possible to capitalize on results on their

(finite) satisfiability problems. For example, when S
and ’ are full dependencies, ∧ S ∧¬’ is an ∃∗8∗
sentence (with equality or not), in a fragment of first-

order logic known as the Bernays-Schőnfinkel-Ramsey

class. It is known that for the Bernays-Schőnfinkel-

Ramsey class, the satisfiability and finite satisfiability

problems coincide and are decidable in NEXPTIME

(non-deterministic exponential time; it is in fact

NEXPTIME-complete in the absence of functions).

This yields an upper bound on the implication and

finite implication problems for full dependencies.

It is worth mentioning that when it comes to XML,

the interaction between schemas (types) and integrity

constraints becomes more intriguing than their rela-

tional counterparts, and as a result, the finite satisfia-

bility problem becomes much harder. Indeed, for a

class L0 of unary keys and foreign keys for XML, it is

undecidable to decide, given a set S of constraints in

L0 and a DTD D0 (document type definition), whether

or not there exists a finite XML document that satisfies

both S and D0. There are, however, interesting con-

nections between finite satisfiability and finite implica-

tion analyses for XML constraints (see [4,13] for

detailed discussions).

Finite Axiomatizability

Another important approach to studying (finite) im-

plication of constraints is based on finite axiomatiza-

tion. A finite axiom system A for a class L of

constraints consists of finitely many axiom schemes

and inference rules. A proof of a constraint ’ in L
from a set S of constraints in L using A is a finite

sequence j1,...,jn such that jn is ’, and for each i 2 [1,
n], (i) ji 2 S, or (ii) ji is an instance of an axiom

scheme in A, or (iii) ji follows from preceding con-

straints in the sequence by one of the inference rules

in A. If there exists such a proof, then ’ is said to be

provable from S using A, denoted by S ‘A’.
For (resp. finite) implication of L, the axiom sys-

tem A is sound if S ‘A’ entails S ⊨unr’ (resp. S
⊨fin’); it is complete if S ⊨unr’ (resp. S ⊨fin’) entails

S‘A’. IfA is both sound and complete then it is called

a finite axiomatization of (finite) implication of L,
which characterizes (finite) implication of L.
The best known example of finite axiomatizations

is Armstrong’s axioms for functional dependencies

(FDs). Recall that an FD is of the form X ! Y, where

X and Y are sets of attributes. Armstrong’s axiom

system consists of:

Reflexivity axiom: X! X.

Augmentation: If X! Y then XZ! Y Z, where XZ

denotes X [Z.

Transitivity: If X! Y and Y! Z then X! Z.

Relative to a set U of attributes, an instance of

the reflexivity axiom X ! X is V ! V when V is a

subset of U. An FD ji follows from preceding con-

straints in a proof j1,...,jn if there exist a reference rule

(either augmentation or transitivity) r and a

substitution s from the variables in r to subsets of U,

such that for each FD in the antecedent of r, the
corresponding FD obtained via s is jj for some j < i.

For example, one can easily verify that ’ = A ! C is

provable from S ={A! B, B! C} using Armstrong’s

axioms, i.e., S ‘ ’.

For finite implication of L, the existence of a finite
axiomatization is a stronger property than the exis-

tence of a testing algorithm. Indeed, from the existence

of a finite axiomatization for finite implication of L
follows the decidability of the finite implication prob-

lem for L (because the finite implication becomes r.e.,

and it is co-r.e. for first-order logic). On the other

hand, there are dependencies (e.g., join dependencies

JDs), such that for their finite implication there is no

finite axiomatization, but there is a testing algorithm

(via the chase [3,15]).

Finite axiomatizations have been developed for im-

plication and finite implication of a variety of dependen-

cies, including FDs, INDs, MVDs, FDs andMVDs taken

together, and for full typed dependencies. There is also a

sound and complete axiom system for implication (not

finite implication) of typed TGDs and EGDs. On the

other hand, it is known that there exist no finite sound

and complete axiom systems for FDs and INDs taken

together.

Complexity of Implication Analyses

A number of complexity results have been established

on the implication and finite implication problems for

a variety of constraint languages. As remarked earlier,

for full dependencies, the implication and finite impli-

cation problems coincide and are both decidable. For

the following classes of full dependencies, the implica-

tion and finite implication have the complexity bounds

Implication of Constraints I 1399

I

given below, in which n is the length of the input

constraints S and ’:

(i) in O(n)-time for FDs [6];

(ii) in O(n logn)-time for MVDs;

(iii) in O(n2)-time for deciding whether an MVD or

an FD is implied by a set of typed full

dependencies;

(iv) in O(n2 log2n)-time for deciding whether a JD is

implied by a set of FDs.

In contrast to the NEXPTIME upper bound on the

Bernays-Schőnfinkel-Ramsey class given earlier, there

exists an efficient decision procedure for these frag-

ments of full dependencies. On the other hand, several

intractability results have also been established:

(v) It is NP-hard to decide whether a set of MVDs

implies a JD, and it is NP-complete to decide

whether a JD and an FD imply a JD.

(vi) The implication problem for full dependencies

is EXPTIME-complete, typed or untyped.

Beyond full dependencies, fewer positive results are

known.

(vii) The implication and finite implication problems

for INDs coincide and are PSPACE-complete [9].

Awell-known undecidability result is the following,

proved independently by Chandra, Vardi [11] and by

Mitchell:

(viii) For FDs and INDs put together, the implication

and finite implication problems differ, and are

undecidable.

When it comes to TGDs, the analysis of implication is

also beyond reach in practice:

(ix) For TGDs, the implication and finite implication

problems are undecidable, even when only typed

TGDs are considered.

One of the most powerful tools for testing implication

is the chase [3,15]. To determine whether or not S
implies ’, the basic idea of the chase is to represent ’

as a tableau T, and repeatedly apply constraints in S to

T. This yields a sequence of tableaux, referred to as a

chasing sequence of T by S, and as a terminal sequence

if it is finite and no constraint in S can be further

applied to it. If a chasing sequence reaches a tableau

satisfying a certain condition (depending on what type

of ’ is), then one can conclude that ’ is implied by S.
When S is a set of full dependencies and ’ is a

typed dependency, it is known that chasing terminates

and has the Church-Rosser property, i.e., different

terminal chasing sequences yield the same unique re-

sult. Based on this an EXPTIME algorithm can be

developed for testing whether S ⊨unr’ and S ⊨fin’,

for full dependencies.

When S is a set of embedded dependencies, how-

ever, the chase may not terminate. Nevertheless, a

decision procedure based on the chase can be devel-

oped such that it will give a positive answer if S⊨unr’,

and will not terminate if S ⊭unr’. See [1] for detailed

discussions.
View Dependencies

An important application of logical implication and

the chase is the analysis of constraint propagation from

databases to their views. Let R be a database schema, S
a set of constraints over R, V a view definition on R,

and ’ a constraint defined over the view. Then R: S
implies V : ’, denoted by R: S⊨V : ’, if V (I) satisfies ’

for each instance I of R that satisfies S. The constraint
propagation problem (a.k.a. the view dependency in-

ference problem) is to determine, given R, S, V and ’,

whether or not R: S ⊨V : ’. The analysis of constraint

propagation is useful in, among other things, data

exchange, data integration and data cleaning.

For example, when R consists of a relation

schema R with attributes (A, B, C, D), S consists of

an FD A, B! C, V is the query pA, B, C(sA=1R) in the

relational algebra, and ’ is B! C, one can see that R:

S ⊨V : ’.

The constraint propagation problem has been stud-

ied for full dependencies and for views defined in the

relational algebra, based on an extension of the chase

technique. The following complexity bounds are known.

(i) It is undecidable when views V are defined in the

relational algebra and the constraints S and ’

are FDs.

(ii) When S [{’} is a set of FDs andMVDs, and views

are SPCU queries (selection, projection, Cartesian

product and union), the constraint propagation

problem is decidable in polynomial time.

(iii) WhenS is a set of FDs and JDs,’ is a JD, and views

are SPCU queries, the problem is NP-complete.

(iv) When S [{’} is a set of full dependencies and

views are SPCU queries, the problem is

EXPTIME-complete.

1400 I Implications of Genomics for Clinical Informatics
Constraint propagation has also been studied in the

context of XML shredding, i.e., for mapping XML data

to relations, from XML keys to relational FDs.
Key Applications
Traditional applications of the analysis of constraint

implication include schema normalization, data integ-

rity maintenance, storage implementation, and query

optimization (see [1]). The prevalent use of the Web

has motivated the development of new constraint lan-

guages for specifying the semantics of semi-structured

data and XML, as well as for capturing the consistency

of data. Logical implication has found new applica-

tions in XML query optimization, data integration,

data exchange and data cleaning.
Future Directions
Several problems remain open for implication analysis

of constraints developed for specifying XML semantics

and for data cleaning. For example, the exact complex-

ity bounds on the implication problems for certain

XML functional dependencies in the presence and

in the absence of DTDs are not yet settled. Another

topic is the development of efficient algorithms for

testing implication of constraints. For a variety of

constraint languages the (finite) implication problem

is intractable or even undecidable, e.g., for functional

and inclusion dependencies taken together. It is im-

portant and practical to find effective heuristic algo-

rithms for their implication analyses, ideally with

certain performance guarantees. This issue deserves a

full treatment.
Cross-references
▶Constraint-Drive Database Repair

▶Data Exchange

▶Database Dependencies

▶ Logical Structure

▶Normal Forms and Normalization

▶XML Integrity Constraints

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of databases.

Addison-Wesley, Reading, MA, USA, 1995.

2. Abiteboul S. and Vianu V. Regular path queries with constraints.

J. Comput. Syst. Sci., 58(3):428–452, 1999.

3. Aho A.V., Beeri C., and Ullman J.D. The theory of joins in

relational databases. ACM Trans. Database Syst., 4(3):297–314,

1979.
4. Arenas M., Fan W., and Libkin L. Consistency of XML specifica-

tions. In Inconsistency Tolerance. Springer, Berlin, 2005,

pp. 15–41.

5. Armstrong W.W. Dependency structures of data base relation-

ships. In Proc. IFIP Congress, 1974, pp. 580–583.

6. Beeri C. and Bernstein P.A. Computational problems related to

the design of normal form relational schemas. ACM Trans.

Database Syst., 4(1):30–59, 1979.

7. Beeri C. and Vardi M.Y. The implication problem for data

dependencies. In Proc. 8th Int. Colloquium on Automata,

Languages, and Programming, 1981, pp. 73–85.

8. Bernstein P.A. Synthesizing third normal form relations

from functional dependencies. ACM Trans. Database Syst.,

1(4):277–298, 1976.

9. Casanova M.A., Fagin R., and Papadimitriou C.H. Inclusion

dependencies and their interaction with functional dependen-

cies. In Proc. 1st ACM SIGACT-SIGMOD Symp. on Principles

of Database Systems, 1982, pp. 171–176.

10. Chandra A.K., Lewis H.R., and Makowsky J.A. Embedded impli-

cational dependencies and their inference problem. In Proc.

13th Annual ACM Symp. on Theory of Computing, 1981,

pp. 342–354.

11. Chandra A.K. and Vardi M.Y. The implication problem for

functional and inclusion dependencies is undecidable. SIAM J.

Comput., 14(3):671–677, 1985.

12. Fagin R. and Vardi M.Y. The theory of data dependencies –

an overview. In Proc. 11th Int. Colloquium on Automata,

Languages, and Programming, 1984, pp. 1–22.

13. Fan W. and Libkin L. On XML integrity constraints in the

presence of DTDs. J. ACM, 49(3):368–406, 2002.

14. Klug A.C. Calculating constraints on relational expressions.

ACM Trans. Database Syst., 5(3):260–290, 1980.

15. Maier D., Mendelzon A.O., and Sagiv Y. Testing implications

of data dependencies. ACM Trans. Database Syst., 4(4):455–469,

1979.
Implications of Genomics for Clinical
Informatics

MOLLIE ULLMAN-CULLERE, EUGENE CLARK,

SAMUEL ARONSON

Harvard Medical School – Partners Healthcare Center

for Genetics and Genomics, Boston, MA, USA

Synonyms
Biomedical informatics; Bioinformatics; Clinical

genetics; Clinical genomics; Medical genetics

Definition
Integration of genetic test results, generated in the clini-

cal laboratory, into the electronic medical record, in

a fully structured format enabling enhanced security,

Implications of Genomics for Clinical Informatics I 1401

I

contextual views, clinical decision support, pharma-

covigilance, disease management, outcomes and quality

assessment.

Historical Background
Clinical genetics got its start in 1948 with the founding

of the American Society of Human Genetics, which

formalized a scientific approach to the study of

human genetics [11]. Traditionally clinical genetics

requires practitioners to function as data integrators.

Like traditional healthcare, tests are ordered and results

returned as interpretive reports delivered in paper

form. Understanding the composite picture of the phe-

notype and genotype of the patient requires transcribing

key signs, symptoms, test values and their clinical

interpretation into yet another document, contribut-

ing more paper to the aggregate patient record. This

process will be repeated numerous times over the

course of the patient’s lifetime, as new health problems

are assessed.

Correcting this problem is similar to overcoming the

historical barriers to the electronic health record (EHR)

[8]. Data standards need to be created and adopted,

testing laboratory infrastructure built to structure genet-

ic test results, interfaces developed to send and receive

these data, and EHR’s and associated clinical decision

support tools and knowledgebases also must be en-

hanced to accept genetic data and inform clinicians of

implications in the context of patient care. This intro-

duces new challenges for the underlying database tech-

nologies used in the clinical IT infrastructure.

Foundations
Every person inherits 3 billion base pairs of DNA from

each of their parents. Contained in this DNA are

regions representing an estimated 22,000 genes. Each

of these genes can create RNA that then goes on to

create one or more proteins. These proteins participate

in complex pathways that perform most of the func-

tions within the body – everything from cell division

and food metabolism, to muscle contraction and light

perception, just to name a few. When an individual’s

genomic DNA sequence was compared to the National

Center for Biotechnology Information reference nucle-

otide sequence assembly more than 4.1 million differ-

ences were found [6]. Some of these differences, called

‘‘DNA variants’’ are benign in nature, resulting in no

measurable phenotypic change. Others result in non-

deleterious change, for example, difference in blood
type, eye and hair color. While others negatively alter

the way protein pathways functionwithin an individual

and thereby impact their health. DNA variants, either

individually or in combination, are a significant factor,

and often an outright cause, of most human disease.

The scope and complexity of this biological geno-

mic infrastructure creates significant knowledge and

data management challenges, perhaps the most signif-

icant ever encountered. A wide variety of data types

such as those associated with DNA, RNA and protein

sequences and identified variations have been created.

Biological entities such as genes, variants/mutations

and proteins will need to be annotated in a manner

that provides linkage to public databases for clinical

genetic and bioinformatic information, as well as clin-

ical phenotype in the EHR.

Integrating Genetic Data into the Clinical Record

Clinicians andmolecular geneticists access genetic infor-

mation in different ways and for different purposes. This

creates new challenges on underlying technologies for

supporting new functional requirements. Some key use

case scenarios include: establishing the patient context;

ensuring data integrity, with patient linkage, throughout

the testing process; managing laboratory workflows

(often iterative in nature); integrating with instruments;

supporting both manual and automated data review;

managing quality control and quality assessment; sup-

porting a reporting mechanism; providing decision sup-

port for the clinician. In order to meet this challenge a

genetic testing laboratory requires: (i) a Laboratory In-

formation Management System (LIMS), to support col-

lection and analysis of raw data, (ii) an interpretation

and reporting tool, to assist the geneticist in translating

results into clinical implications and report these results

in structured form, (iii) a genetic knowledgebase, uti-

lized by the interpretation and reporting tools, to appro-

priately interpret and structure the results, and (iv) a

electronic medical record enhanced to accept and lever-

age genetic data (see Fig. 1).

Data models, ontologies, and message structure

also present a challenge. Properly structuring and

annotating genetic data in the EHR is key to effectively

displaying, integrating into clinical workflows, and

using this data in context of clinical decision support.

With this goal in mind, Healthcare Information Tech-

nology (HIT) standards are used to create the message

between LIMS and EHR’s and provide ontological link-

age to phenotypic data, while clinical genetic and

Implications of Genomics for Clinical Informatics. Figure 1. IT Infrastructure required for reporting of structured

genetic test results into the electronic medical record.

1402 I Implications of Genomics for Clinical Informatics
bioinformatic standards are leveraged for structuring of

genetic specific data.

Key Applications

Laboratory Information Management Systems for

Genetic Laboratories

Raw data files from instruments used in genetic testing

contain highly structured data. It is in the process of

summarizing, interpreting and translating these results

that the geneticist creates a narrative report, commu-

nicating these results to the clinician. Structuring ge-

netic data in the EHR first requires LIMS to manage

genetic data during the testing process, even as the data

is iteratively collected.

Laboratory Information Management Systems sup-

port process flows for individual laboratories. At times it

is important to support process flows that span labora-

tories in which case an umbrella LIMS application,

an enterprise LIMS superstructure, is required. An

enterprise LIMS superstructure, called the Gateway for

Integrated Genomics-Proteomics Applications and Data

(GIGPAD) [14], was constructed in a collaboration

between Harvard Medical School – Partners HealthCare

Center for Genetics and Genomics (HPCGG), Partners

HealthCare Information Systems department and Hew-

lett Packard [5]. GIGPAD is responsible for overall pro-

cess coordination. It also manages all electronic contact
between laboratories and external systems and users.

GIGPAD supports multiple laboratories. In some cases,

the decision was made to support laboratories by pur-

chasing vendor LIMS and integrating them under the

GIGPADumbrella. In other cases, the decisionwasmade

to add support for laboratories by constructing custom

LIMS within GIGPAD.

GIGPAD leverages a J2EE architecture backed by an

Oracle database. The J2EE platform in general, and EJB

in particular, is a good match for this use. GIGPAD

needs to support a large number of different types of

processes. However, these processes often have com-

mon elements. The J2EE platform has enabled the

construction of object models that facilitate reuse.

Security is a very important consideration for a LIMS

or enterprise LIMS superstructure that handles confiden-

tial data. J2EE is a good platform for constructing and

enforcing object based security although the platform’s

generic capabilities need considerable enhancement.

Knowledgebases and Reporting Systems for Genetic

Laboratories

The field of clinical genetics maintains knowledgebases

called Locus Specific Databases (LSDB), in which DNA

variants and associated phenotypes are cataloged [1].

However, LSDB’s require manual look-up and synthe-

sis to understand the clinical meaning of a variant and

do not utilize HIT standards to code phenotype. The

Implications of Genomics for Clinical Informatics I 1403

I

field of bioinformatics utilizes NCBI’s dbGaP database

to catalog DNA variants and associated phenotype

[15]; however, this database contains research data

and is not appropriate for clinical care.

In an effort to fill a necessary gap, HPCGG and

Partners Healthcare created GeneInsight, a knowledge

database that associates genetic variations with clinical

annotations using newly extended HIT standards

(LOINC, SNOMED, and RxNORM). The variants en-

tered into GeneInsight are validated to ensure that

they adhere to the clinical genetics standards for naming

variants, using HGVS nomenclature and are valid when

compared with locally defined reference sequences.

The data stored for each variant includes the DNA

change, amino acid change (if applicable), classification

(e.g., Pathogenic), source classification (e.g., somatic or

germline), and references to other databases including

PubMed and dbSNP. In addition, GeneInsight is capable

of programmatically deriving the DNA and amino acid

change types and flanking sequences.

In addition to variants, GeneInsight also contains

records for genes and diseases or conditions. The gene

records include references to other databases including

NCBI’s Gene and PubMed. Reference sequences for the

genes are also recorded in GeneInsight and linked to

the NCBI’s Nucleotide database. Diseases or condi-

tions can represent either a typical disease, such as

cystic fibrosis, or a pharmacogenetic condition, such

as warfarin metabolism. Medically significant variants

are then linked to one or more diseases and/or condi-

tions to establish their clinical context or phenotype.

In order to create the narrative, human readable

report (for the clinician) and the machine readable,

structured genetic results (for the EHR), a geneticists

uses a genetics interpretation and reporting tool which

leverages data in a genetic knowledgebase, to create

draft reports. Within HPCGG’s Laboratory for Molec-

ular Medicine, the Genomic Variant Interpretation En-

gine (GVIE) is used during the process of reporting

genetic test results and co-creates both the narrative

report and the structured genetic data for the EHR.

GVIE contains definitions of the tests that are run by

the HPCGG including the coverage of the test and also

defines a series of templates for each disease or condi-

tion. The templates are dynamic to allow the automatic

insertion of case specific information and can be asso-

ciated with rules that govern to which cases they are

applied. The rules can take into account the specific test

that was run, the overall result, the number of
variations detected, the classification of those varia-

tions, and other information. In addition, the overall

result (e.g., Positive) is generated by a separate set of

rules that change very infrequently and are driven by

the disease’s inheritance and the identified variation

classification and allele state.

Cerner Corporation has also developed a LIMS and

reporting tools for sending structured genetic data into

an electronic medical record. Here Cerner uses the

Clinical Bioinformatics Ontology (CBO), in lieu of

the larger genetic knowledgebase, to report structured

genetic variants aligned with NCBI reference sequences

[4]. This is a streamlined solution focusing on report-

ing variants identified during testing.

Integrated Clinical and Genetic Medical Record

A genetically aware clinical medical record effectively

integrates highly structured genetic testing results with

other laboratory and clinical data, utilizing accepted

healthcare informatics standards. These standards in-

clude Health Level Seven (HL7) [3] for messaging,

Logical Observations Identifiers, Names, Codes

(LOINC) [7] as a coding system, and Systematized

Nomenclature of Medicine-Clinical Terms (SNOMED

CT) [12] and RxNORM [10] as disease and medica-

tion terminologies. By using these standards, genetics

can be integrated into existing electronic health record

databases, leveraging models for storage, retrieval and

indexing. Most importantly, these standards aid in the

mapping of a patient’s genetic information with other

clinical data on the patient. As clinical genomics is an

emerging field, healthcare informatics standards orga-

nizations (including HL7, LOINC, and SNOMED) are

in the process of extending their models to meet

these needs; therefore, the most up-to-date informa-

tion can be found on standards organization websites

(see Recommended Reading).

Clinical Decision Support

Genomic clinical decision support (CDS) will model

existing CDS based on laboratory data. Genetic tests

which provide pharmacogenomic information will de-

termine how an individual will respond to medication.

CDS rules, leveraging this data, would take the form of

drug dosage assistance, contraindications, and recom-

mended alternative therapy. Genetic tests which pro-

vide diagnostic information will feed into problem lists

(that can then leverage pre-existing CDS). Genetic

tests which identify a patient as being at increased risk

1404 I Implicit Event
for disease will feed into other clinical data used to

identify high-risk populations and CDS focused on

disease management. The precise instantiation models

for genomic CDS are based on preexisting models

and remain to be thoroughly tested for identification

of gaps.

Cross-references
▶Clinical Data Acquisition, Storage and Management

▶Clinical Data and Information Models

▶Clinical Decision Support

▶ Electronic Health Record

▶ Storage Management

Recommended Reading
1. Fokkema I.F., den Dunnen J.T., and Taschner P.E. LOVD: easy

creation of a locus-specific sequence variation database using an

‘‘LSDB-in-a-box’’ approach. Hum. Mutat., 26(2):63–68, 2005.

2. GeneTests – medical genetics information resource including

gene reviews, genetic testing laboratory and clinical directories,

as well as educational materials. Available online at: http://www.

genetests.org.

3. Health Level Seven (HL7) – focusing on messaging, HL7 is an

American National Standards Institute (ANSI) accredited. Avail-

able online at: http://www.HL7.org/

4. Hoffman M.A. The genome-enabled electronic medical record.

J. Biomed. Inform., 40(1):44–46, 2007.

5. HP Supports ‘‘Individualized Medicine’’ Initiative at Partners,

Sept. 30, 2003, Available online at: http://www.hp.com/hpinfo/

newsroom/press/2003/030930a.html (retrieved on October 5,

2007).

6. Levy S., Sutton G., Ng P.C., Feuk L., Halpern A.L., Walenz B.P.,

Axelrod N., Huang J., Kirkness E.F., Denisov G., Lin Y., MacDo-

nald J.R., Pang A.W., Shago M., Stockwell T.B., Tsiamouri A.,

Bafna V., Bansal V., Kravitz S.A., Busam D.A., Beeson K.Y.,

McIntosh T.C., Remington K.A., Abril J.F., Gill J., Borman J.,

Rogers Y.H., Frazier M.E., Scherer S.W., Strausberg R.L., and

Venter J.C. The diploid genome sequence of an individual

human. PLoS Biol., 5(10):2113–2144, 2007.

7. Logical Observation Identifiers Names and Codes (LOINC) –

focusing on the pooling of laboratory results and observations,

LOINC is ANSI accredited. Available online at: http://www.

regenstrief.org/medinformatics/loinc/

8. McDonald C.J. The barriers to electronic medical record sys-

tems and how to overcome them. J. Am. Med. Inform. Assoc., 4

(3):213–221, 1997.

9. Online Mendelian Inheritance in Man (OMIM) – a catalog of

human genes and genetic disorders. Available online at: http://

www.ncbi.nlm.nih.gov/sites/entrez?db=omim.

10. Parrish F., Do N., Bouhaddou O., and Warnekar P. Implementa-

tion of RxNorm as a terminology mediation standard for ex-

changing pharmacy medication between federal agencies. AMIA

Annu Symp Proc., 2006:1057, 2006.

11. Rimoin D.L. and Hirschhorn K. History of medical genetics in

pediatrics. Pediatr. Res., 56(1):150–9, 2004.
12. Systematized Nomenclature of Medicine-Clinical Terms

(SNOMED CT) focusing on clinical terminology, SNOMED is

ANSI accredited. Available online at: http://www.ihtsdo.org/

13. The Database of Genotype and Phenotype (dbGaP) – serves as

an archive for distribution of clinical study results containing

both genotype and phenotype data. Available online at: http://

www.ncbi.nlm.nih.gov/sites/entrez?db=gap

14. The Harvard Medical School-Partners HealthCare Center for

Genetics and Genomics (HPCGG). Response to the Department

of Health and Human Services Request for Information (RFI):

Improving Health and Accelerating Personalized Health

Care through Health Information Technology and Genomic

Information in Population- and Community-based Health Care

Delivery Systems. Available online at: http://www.hpcgg.org/

News/HPCGG_RFI_Response_1_0.pdf (retrieved on August 14,

2007).

15. Wheeler D.L., Barrett T., Benson D.A., Bryant S.H., Canese K.,

Chetvernin V., Church D.M., Dicuccio M., Edgar R., Federhen

S., Feolo M., Geer L.Y., Helmberg W., Kapustin Y., Khovayko O.,

Landsman D., Lipman D.J., Madden T.L., Maglott D.R.,

Miller V., Ostell J., Pruitt K.D., Schuler G.D., Shumway M.,

Sequeira E., Sherry S.T., Sirotkin K., Souvorov A.,

Starchenko G., Tatusov R.L., Tatusova T.A., Wagner L., and

Yaschenko E. Database resources of the National Center

for Biotechnology Information. Nucleic Acids Res., 36:

D13–D21, 2008.
Implicit Event

JONAS MELLIN, MIKAEL BERNDTSSON

University of Skövde, Skövde, Sweden

Definition
In active databases, an implicit event is an event that is

implied by an ECA rule definition.

Key Points
ECA rules were developed as an optimization of con-

dition action rules. The performance of rule evaluation

was improved by allowing, or even requiring, explicit

definition of when rules should be triggered in the

form of events. However, it turns out that it is possible

to derive events from the condition in a meaningful

way in some cases and, thus, there are events that can

be implied by the ECA rule definition. For example, if

the condition is a logical expression A = 5∧ B = 3, then

a disjunction of the events representing update to the

variables can trigger the rule. That is, with implicit

events (IF A = 5 ∧ B = 3 DO action) is equivalent to

(ONupdateA or updateB IF A = 5 ∧ B = 3 DO action)

with explicit events.

Incomplete Information I 1405
Cross-references
▶Atomic Event

▶Composite Event

▶ ECA Rules

▶ Event

▶ Event Detection

▶ Event Specification

▶ Explicit Event
Imprecise Data

▶Data Uncertainty Management in Sensor Networks
I

Imprecise Spatial Queries

▶ Probabilistic Spatial Queries
Imprecise Time

▶Temporal Indeterminacy
Imputed Data

▶ Synthetic Microdata
Employee Department Home Town Phone no.

Jerry Sales New York ⊥

Elaine Accounting ⊥ 123

George Services New York 456
IMS Data Model

▶Hierarchical Data Model
In Silico Experiment

▶ Scientific Workflows
Incoherency Bounds

▶Replica Freshness
Incomplete Information

GÖSTA GRAHNE

Concordia University, Montreal, QC, Canada

Synonyms
Uncertain information; Null values; Indefinite

information

Definition
Incomplete information arises in relational databases,

when a fact (tuple) has to be inserted in a relation, and

values for some required columns are missing. For

instance, in an employee database, the phone number

of one employee might be missing, as might the ad-

dress of another employee. There are numerous rea-

sons for such missing information, e.g., the insertion

was done through a view, or the incomplete tuple

originated from another database that does not record

these fields. In information integration and data ex-

change systems incomplete information is rampant.

Note that here the null values only represent unknown,

existing values. The other main case, namely the one

that the column heading is not applicable to the tuple

in question, is not covered here, for a treatment,

see e.g., [17].

It is easy to store missing or incomplete informa-

tion, by simply using a symbol, say ⊥, different from

the symbols of the domain of the database. As an

illustration, consider the following employee database:
In the table above, Jerry’s phone number is un-

known as is Elaine’s home address. The third tuple

has complete information. So far the picture is quite

uncomplicated. The difficulties arise when queries are

applied to an incomplete database. For instance, sup-

pose the query asks for all employees living in New

York. Should Elaine be included in the answer, as it is

not ruled out that she lives in New York? Her unknown

hometown could very well be New York. It seems that

Elaine might be in the answer.

1406 I Incomplete Information
For another example, suppose the relation is decom-

posed into R(Employee, Department, Home Town)

and S(Home Town, Phone no.) Now, joining back

R and S, at least the original relation should be recov-

ered. However, it is not clear how to join the R-tuple

(Elaine, Accounting, ⊥) with the S-tuple (⊥, 123).

Nevertheless, whatever Elaine’s home address is, the

null-value in the R-tuple must clearly be the same as

the null-value in the S-tuple, as they both represent

Elaine’s unknown home town. Therefore, the tuple

(Elaine, Accounting, ⊥, 123) should surely be in the

result of the join.

Historical Background
The enormously successful relational model emerged

out of algebra and logic, starting with Codd’s funda-

mental 1970’s papers. By the end of the decade, the

problem of null values was noted and resulted in some

early efforts not covered here, see e.g., [17,16]. Around

this time Ray Reiter also promulgated the idea of

‘‘Proof theoretical’’ vs. ‘‘Model Theoretical’’ inter-

pretation of the relational model (see references in

[12]). Roughly, one could say that in proof theory

the database is a set of ground facts in First Order

Logic, and the query (also a logical formula) answers

are something to deduce from the theory by proof-

theoretic means. In ‘‘Model Theory’’ on the other

hand, the database is a finite structure, and the queries

are algebraic operators applied to the database. Indeed,

Reiter proposed a first order interpretation of the

null value: Since a regular tuple (a, b) 2 r is interpreted

as a ground fact R(a, b), it is plausible to interpret (a, x)

2 r, where x is a null value, as the logical sentence ∃x : R
(a, x). Reiter then developed query answering

algorithms for his (existentially) extended relational

theories [12].

At the same time, relational theory started devel-

oping, creating its own apparatus, containing lossless

joins, tableaux and the chase, in addition to many

other useful tools and concepts, such as the ‘‘crown

jewel’’ relational algebra. Working along these lines,

T. Imielinski and W. Lipski came out in 1981 with a

VLDB conference abstract of their landmark paper

Incomplete Information in Relational Databases, pub-

lished in J. ACM in 1984 [8].

First, Imielinski and Lipski call a relation contain-

ing null values a table (as opposed to a relation).

One assumes two disjoint countably infinite sets
of constants, denoted a, b, c, Jerry, Elaine,...,and of

variables, denoted x, y, z,.... The table in the introduc-

tion, could be written (concisely) as {(Jerry, Sales, New

York, x),(Elaine, Accounting, y, 123), (George, Services,

New York, 456)}

Second, [8] adopts the possible worlds interpreta-

tion of incomplete databases: an incomplete database is

a set of complete databases, one of which is or corre-

sponds to the real world. In other words, the knowl-

edge about the real world, that the incomplete database

has is exactly this set. In the sequel (usually infinite)

incomplete databases (sets of complete databases) are

denoted by x;y;::::

Tables represent incomplete databases through

valuations, that instantiate the null values to ordinary,

known values. Formally, a valuation is a mapping from

the variables to the constants, that is identity on the

constants. Valuations are extended to tuples and tables

in the obvious homeomorphic way. Now a database r

represents one of the possible worlds of table T, if there

is a valuation v, such that r = v(T). For instance, let T =

{(a,x), (b, y)}. Pretend for a moment that domain of

constants is finite and only includes a and b. Then

T represents x, where x ¼ ffða; bÞ; ðb; bÞg; fða; aÞ;
ðb; bÞg; fða; bÞ; ðb; aÞg; fða; aÞ; ðb; aÞgg. Thus Rep(T),
the incomplete database x, represented by a table

T, is defined as

RepðTÞ ¼ fr : r � vðTÞ; for some valuation vg: ð1Þ

Note that the open world assumption is made, when

requiring only r � v(T). It means that any fact not

recorded in all possible databases is considered un-

known. Note further that under an open world as-

sumption, a complete database r actually represents all

supersets of r. Since nothing is surely false, it is clear

that querying under the open world assumption can-

not include negation. In a closed world interpretation,

on the other hand, any fact not recorded in the data-

base, or not instantiable from a tuple in a table

is considered false. For tables T, the closed world inter-

pretation of the possible databases it represents is

defined as Repcwa(T) = {r : r = v(T), for some valuat-

ion v}. This means that a tuple that does not belong

to any r 2 Repcwa(T) is considered false.

The main insight when processing a query q on

an incomplete database is as follows: since the ‘‘real’’

database r is one within a set x, the ‘‘real’’ answer

Incomplete Information I 1407
should ideally be q(r). However, given only x,

what can be captured with query q is the set

qðxÞ ¼ fqðrÞ : r 2 xg. In particular, if x is repre-

sented by a table T, it would be desirable to find a

table, denote it q̂ðTÞ, such that

Repðq̂ðTÞÞ ¼ qðRepðTÞÞ: ð2Þ

This is where the technical development can begin.
I

Foundations
First, note that the open world assumption itself is

causing a subtle difficulty when trying to satisfy the

commutativity requirement (2). Consider the table T

containing a single tuple (a, b). After applying a selec-

tion sA=a on T one would (correctly) expect that the

tuple (a, b), and nothing else, is in the resulting table

dsA¼a(T). However, (2) is not satisfied, since for in-

stance (c, d) occurs in some r 2 Rep(dsA¼a(T)), whereas
(c, d) =2 r, for all r 2 sA=a(Rep(T)), as such tuples have

been dropped by the selection. Unless the closed world

assumption is adopted – in which case clearly

Repcwa(dsA¼a(T)) = sA=a(Repcwa(T)) – condition (2)

has to be relaxed.

The key concept for achieving this purpose is the

notion of certain answer. Let q be a query and x an

incomplete database. The certain answer to q on x
consists of those tuples that are in q(r), for every

possible database r 2 x, that is, the certain answer

is \r2xqðrÞ ¼ \ðqðxÞÞ.
Given a fixed query language, two incomplete data-

bases are not distinguishable if they give the same certain

answer to every query in the language. Formally, letQ be

a query language (the set of all queries expressible in

the language). Then incomplete databasesx andy are

said to be Q-equivalent, if \ ðqðxÞÞ ¼ \ðqðyÞÞ, for
all q 2 Q. This Q-equivalence is denoted x � Qy.

There is another equivalence relation on incomplete

databases called coinitiality. Nowx is coinitial withy,

in symbolsx � y, ifx andy have the same minimal

(with regard to subset) elements. Let QP be the set of

all queries expressible in positive relational algebra (no

negation, no inequalities in selection conditions), and

let QRA be the set of all queries expressible in the full

relational algebra. It turns out that provably x�QP
y

iff x � y, and x � QRA
y iff x ¼ y [8,4].

Therefore, if the open world assumption if fol-

lowed, the best approximation of (2) is to weaken it to
Repðq̂ðTÞÞ � Q qðRepðTÞÞ ð3Þ

for some query language Q. This led [8] to the notion

of representation system. Let T be a class of tables, Rep

the interpretation function, and Q a query language.

Then the triple ðT ;Rep;QÞ is a representation system

if for all T 2 T, and all q 2 Q, there is a q̂ðTÞ 2 T,

such that (3) is satisfied. Then the certain answer

\ (q(Rep(T))) is clearly equal to \ ðRepðq̂ðTÞÞÞ. This
means that the certain answer can be extracted from

q̂ðTÞ, in some cases efficiently, as will be seen below.

The original paper [8] considers the classes consist-

ing of Codd Tables, Naive Tables, and Conditio-

nal Tables. Other classes of tables can be found in

[2,4,9,14]. Here, the attention is restricted to the origi-

nal three table classes.

A Codd table is a table where each occurrence of a

null value is represented by the same symbol (as for

example in the table in the first section of this entry).

Let for instance the symbol ⊥ denote a null value.

Evaluating a query q (i.e., computation of q̂ðTÞ in
(3)) proceeds as in regular relational algebra, with the

additional evaluation rules saying that ⊥ 6¼ ⊥, and

⊥ 6¼ a, for all constants a, as long as the selection

conditions are atomic, i.e., of the form sA=a or sA 6¼a.

This is in fact the solution proposed by Codd, and

currently implemented in most commercial database

management systems. However, the largest query lan-

guage that Codd tables can support consists of queries

expressible in relational algebra using only projection

and selection, where, notably, inequalities are allowed

in selections. Using any more operators from the rela-

tional algebra makes it impossible to satisfy (3), that is,

for some such queries q there is no Codd table q̂ðTÞ
satisfying (3). The same holds under the closed world

assumption. In addition to this, selections can have

arbitrary Boolean combinations of atomic selection

conditions, but then testing whether a tuple satisfies

such a condition becomes coNP-complete. This is due

to the fact that any propositional formula can be

encoded as a compound selection formula. Note how-

ever, that the coNP-completeness depends on the fact

that the query is part of the input (expression com-

plexity). For data complexity, the evaluation can be

carried out in time polynomial in the size of the table.

A Naive table is a table using distinguishable nulls,

denoted by variables x,y,.... Query evaluation uses the

rules x 6¼ a, x 6¼ y, x = x, for all variables x, y and

1408 I Incomplete Information
constants a. Thus the tuple (Elaine, Accounting,⊥)

would indeed join with the tuple (⊥,123), resulting

in tuple (Elaine, Accounting,⊥,123). These tuples

would of course be represented as (Elaine, Account-

ing,y), and (y,123). It turns out that if QP is chosen as

query language, then ðTN ;Rep;QPÞ, where TN is the

class of all Naive tables, indeed forms a representation

system. It has also been shown that Naive tables can

handle recursion, i.o.w. one can add any positive data-

log program as a query, and still be able to �-represent
the result [4]. More generally, one can note that query

evaluation, i.e., computation of q̂ðTÞ, proceeds by

treating the null-values as constants, pairwise distinct,

and distinct from all the ‘‘real’’ constants. Thus query

evaluation in Naive tables has the same computational

complexity as in the regular case. A similar result was

also independently proved in [15].

Much has been written about certain answers in the

database literature, but not always with complete

transparency. Recall that the certain answer to a query

q on x, are those tuples that are in the answer to q for

every possible database r 2 x. In other words, the

certain answer to q on x is \ ðqðxÞÞ. Note that

q̂ðTÞ is a Naive table that satisfies (3), for all positive

datalog programs, or algebraic expressions in QP .

Conveniently, the certain answer can be obtained by

retaining all variable-free tuples in q̂ðTÞ, as it is easily
seen that x � y implies \x ¼ \y. The certain an-

swer however looses some information from q̂ðTÞ. For
a simple example, similar to the one in the introduc-

tion, let T = {(a, x, c)} with schema (A, B, C). The

certain answer to both pA,B(Rep(T)) and pB,C(Rep(T))
is empty. On the other hand, the certain answer to

pA,C(pA,B(Rep(T))⋈pB,C(Rep(T))) = {(a, c)}. Here

dpA;B(T) = {(a, x)}, dpB;C(T) = {(x, c)} and {(a, x) bffl
{(x, c)} = {(a, c)}. Note how variables can be shared

over several tables, above the x the left-hand side of

the join is the same as the x on the right-hand side

of the join. (On the other hand, for instance {(a, x) bffl
{(y, c)} = ;.) Thus, if the query answer is to be used as

a view for further querying, the answer should consist

of all of q̂ðTÞ, not just the variable-free tuples. This

aspect has been emphasized in [5]. Furthermore, as

Lipski has shown in an all but forgotten paper [11], if

query evaluation is to be uniformly recursive (such as the

one for Naive tables), all tuples in q̂ðTÞ need to be stored

in the view.

Conditional tables. Naive tables form a representa-

tion system for the positive fragment of relational
algebra (and for positive recursion). However, allowing

set difference or inequalities in selection conditions in

the queries might produce results not expressible as

Naive tables. Consider for instance sA 6¼a(Rep(T)),

where T = {(a, b),(c, d),(x, e)}. A moments reflection

will reveal the fact that sA 6¼a(Rep(T)) = {{(c, d)},{(c, d),

(b, e)},{(c, d),(d, e)},...}. It is easy to see that there

is no Naive table that can represent this set. The prob-

lem is that the minimal elements in this set either has

one tuple (when x = a), or two tuples (when x 6¼ a).

The minimal elements in Rep(T), for any (non-

redundant) Naive table T, each have the same number

of tuples. This problem can be overcome by using

a stronger class of tables, albeit on the expense of

tractability of query evaluation. This stronger class is

called Conditional tables, here denoted TC. A Condi-

tional table is like a Naive Table, with the addition that

each tuple has an associated condition, formed by a

Boolean combination of atoms of the form x = y, x 6¼ y,

x = a,x 6¼ a, a = b, a 6¼ b, for constants a,b and variables

x, y. Note that for two distinct constants a and b,

condition a = b is tautologically false, and condition

a 6¼ b is tautologically true. In our previous example,

sA 6¼a(Rep(T)) can be represented by the Condi-

tional table U ={(c, d);c 6¼ a,(x, e);x 6¼ a)}. The incom-

plete database represented by a conditional table T is

defined as

RepðTÞ ¼fr � vðTÞ : v is a valuation; vðTÞ ¼
fvðtÞ : t 2 T and vmakes the condition

in t truegg ð4Þ

For example, if v is the valuation x 7!a, and v 0 the

valuation x7!b, then, for U as above, v(U) = {(c, d)}

as the condition of the second tuple (x, d); x 6¼ a

becomes false. On the other hand, v 0(U) = {(c, d),

(b, e)}, since v 0(x 6¼ a) becomes b 6¼ a, which is true.

Set difference is treated in a similar manner, for in-

stance, subtracting {(c, b),(e, b)} from {(x, b)} results in

the conditional table {(x, b);x 6¼ c∧ x 6¼ e}. All in all, it

holds that ðTC ;Rep;QP 6¼ Þ, is a representation system.

Here QP 6¼ denotes the query language obtained from

QP , by allowing inequalities in selection conditions. If

set difference is to be incorporated, the closed world

assumption has to be adopted. In this case it holds that

ðTC ;Repcwa;QRAÞ, is a representation system, actually

satisfying the stronger condition (2). Positive datalog

recursion can also be added both under the open and

the closed world assumption.

Incomplete Information I 1409

I

For the computational complexity of query evalua-

tion, recall that query evaluation in the system

ðTN ;Rep;QPÞ is polynomial in the number of tuples

in T. Conditional tables are more complex. For all

q 2 QRA and conditional tables T, the conditional

table q̂ðTÞ can be computed in polynomial time.

However, the conditions in table q̂ðTÞ can have a

convoluted structure. Thus testing whether a tuple

t is in the certain answer, i.e., if t 2 \ðRepðq̂ðTÞÞÞ is a
coNP-complete problem. This result holds even if T is

a Codd table, in which case a query q 2 QRA is needed

to get the lower bound (here the fact that q̂ðTÞ is not a
Codd table is ignored). On the other hand, for an

arbitrary table T 2 TC, the query can be identity. In

other words, the set \ (Rep(T)) has a coNP-complete

membership test. These, and further complexity results

can be found in [2].

The theory of representation systems has also been

extended to incorporate dependencies, see [8,4]. Letx
be an incomplete database, and S a set of equality

and weakly acyclic tuple generating dependencies.

Denote by SðxÞ the set of all minimal relations s,

such that s � r, for some r 2 x, and s satisfies all

dependencies in S. It has been shown that for all

Naive tables T, there is a Naive table S(T), such that

Rep(S(T))� S(Rep(T)). If conditional tables are used,
the coinitiality can be replaced by equality.

The relationship between tables and constraint

databases is explored in [13]. The relationship between

tables and probabilistic databases, and between tables

and data provenance is elegantly captured in the semir-

ing framework of [7].

Key Applications
Three important applications of incomplete informa-

tion will be discussed here. The first one is the problem

of view updates. In this scenario, a view is defined by a

query q, but the view is virtual, and only the database is

materialized. As queries almost never are one-to-one

functions, when a tuple t is inserted through a virtual

view q(r), it has to be translated to an insertion of a

tuple, say t̂, into r, s.t. qðr [ft̂gÞ ¼ qðrÞ [ftg. There
is also a further requirement, that essentially guar-

antees the ‘‘minimality’’ of the change caused be

the insertion of t̂ . Since there in general are several,

sometimes infinitely many, insertions t̂ that qualify,

there actually is a set of possible databases

fr [ft̂g : t̂ qualifiesg. For example, for q = R ⋈ S,

where R(A, B) and S(B, C), the deletion of a tuple
(a, b, c) from a view q(r, s), can be accomplished by

either deleting the tuple (a, b) from r, or deleting

the tuple (b, c) from s. This can easily be achieved if

the database is stored as a conditional table, by simply

replacing the tuples (a, b) in r, and (b, c) in s, with the

conditional tuples (a, b); x = 1, and (b, c); x 6¼ 1, where

x is an arbitrary fresh variable.

The views in the view update scenario are virtual.

If views are materialized, they can be used to speed

up query processing. The case where all views are mate-

rialized, and the database virtual is the classic informa-

tion integration scenario. The views represent data

sources, and the database schema represents the

integrated schema that queries are formulated over.

Intuitively, one can imagine that the integrated database

exists, the view-defining queries are executed, and the

views are accordingly populated. After this, the inte-

grated database disappears. It is easy to see that a set of

materialized views represent a set of possible databases,

each satisfying the requirement that the current content

of the views can be derived from it. Note that there is an

open world assumption, as the requirement is that the

view tuples are a subset (not necessarily proper) of q(r),

for all view definitions q and possible databases r. The

closed world assumption would require equality, not

just subset. For query answers, the certain answer is

usually desired. The certain answer means in this con-

text the set of tuples that are in the query result, for

every possible database. To answer queries over the

integrated schema, one can either rewrite the query

in terms of the view-schemas, or reconstruct a repre-

sentation of all the possible databases, and evaluate

the original query on this representation. It perhaps

speaks for the robustness of the concept of conditional

tables, that they can do the job of representing the set

of possible databases, whenever the views are queries in

QP 6¼ , or in QRA if the closed world assumption is

adopted [1,6].

The last application is that of data exchange. The

setting is a peer-to-peer system, where each peer has a

relational database and wants to exchange tuples with

other peers. The schemas of any two peers, say p1 and

p2 are usually different from each other, so the data has

to be converted when exchanged. This is achieved by

defining a mapping from p1 to p2. This mapping could

for instance be expressed as an equation q1(p1)

q2(p2). When we export data from p1 to p2, we evaluate

q1 on p1, and make sure that the resulting tuples are in

q2(p2). Since the tuples have to be inserted into p2, it is

1410 I Inconsistent Databases
easy to see that this is similar to the familiar problem of

view updates, and thereby also incomplete informa-

tion. For a very simple example, suppose the schema of

p1 is R(A, B), and the schema of p2 is S(A, C). Consider

then the equation pA(R)
 pA(S). If r contains a tuple
(a, b), it is clear, that in order to satisfy the equation, a

tuple (a, x) has to be in s. It has for example been

shown [10], that if q1 2 QP and q2 only uses projec-

tion, then given null-free instances of p1 and p2, there is

a naive table p2
0, containing p2, representing all mini-

mal solutions to the equation, that is q1(p1)
 q2(r), for

all r 2 Rep(p02), and the equation is not satisfied by any

proper subsets of these r’s.
Future Directions
It is clear that new applications, new data models, and

new query languages will encounter the problem of

incomplete information. In order to not ‘‘re-invent

the wheel,’’ any solution should build on the founda-

tion laid in [8]. A step in this direction has for instance

been taken in [3].
Recommended Reading
1. Abiteboul S. and Duschka O.M. Complexity of answering

queries using materialized views. In Proc. 17th ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems,

1998, pp. 254–263.

2. Abiteboul S., KanellakisP.C., and Grahne G. On the representation

and querying of sets of possible worlds. Theor. Comput. Sci.,

78(1):158–187, 1991.

3. Abiteboul S., Segoufin L., and Vianu V. Representing and query-

ing XML with incomplete information. ACM Trans. Database

Syst., 31(1):208–254, 2006.

4. Grahne G. The Problem of Incomplete Information in

Relational Databases. Springer, 1991.

5. Grahne G. and Kiricenko V. Towards an algebraic theory of

information integration. Inf. Comput., 194(2):79–100, 2004.

6. Grahne G. and Mendelzon A.O. Tableau Techniques for Query-

ing Information Sources through Global Schemas. In Proc. 7th

Int. Conf. on Database Theory, 1999, pp. 332–347.

7. Green T.J., Karvounarakis G., and Tannen V. Provenance semir-

ings. In Proc. 26th ACM SIGACT-SIGMOD-SIGART Symp. on

Principles of Database Systems, 2007, pp. 31–40.

8. Imielinski T. and Lipski W. Incomplete information in relational

databases. J. ACM, 31(4):761–791, 1984.

9. Imielinski T. and Vadaparty K.V. Complexity of query proces-

sing in databases with OR-objects. In Proc. 8th ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems,

1989, pp. 51–65.

10. Libkin L. Data exchange and incomplete information. In Proc.

25th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2006, pp. 60–69.
11. Lipski W. Jr. On relational algebra with marked nulls. In Proc.

3rd ACM SIGACT-SIGMOD Symp. on Principles of Database

Systems, 1984, pp. 201–203.

12. Reiter R. A sound and sometimes complete query evaluation

algorithm for relational databases with null values. J. ACM.

33(2):349–370, 1986.

13. Revesz P.Z. Introduction to Constraint Databases. Springer, 2002.

14. Sarma A.D., Benjelloun O., Halevy A.Y., and Widom J. Working

models for uncertain data. In Proc. 22nd Int. Conf. on Data

Engineering, 2006, p. 7.

15. Vardi M.Y. Querying logical databases. J. Comput. Syst. Sci. 33

(2):142–160, 1986.

16. Vassiliou Y. Null values in data base management: a denotational

semantics approach. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1979, pp. 162–169.

17. Zaniolo C. Database relations with null values. In Proc. 1st ACM

SIGACT-SIGMOD Symp. on Principles of Database Systems,

1982, pp. 27–33.
Inconsistent Databases

LEOPOLDO BERTOSSI

Carleton University, Ottawa, ON, Canada

Definition
An inconsistent database is a database instance that

does not satisfy those integrity constraints that have

been declared together with the schema of the database.
Historical Background
Already in the classical and seminal paper by E. F.

Codd [5] on the relational data model it is possible

to find the notions of integrity constraint and consis-

tency of a database. The idea of consistent query an-

swering, consisting in characterizing and computing

semantically correct answers to queries in inconsistent

databases, was explicitly introduced in [1].
Foundations
A database can be seen as a model, i.e., as a simplified,

abstract description, of an external reality. In the case

of relational databases, one starts by choosing certain

predicates of a prescribed arity. The schema of the data-

base consists of this set of predicates, possibly attri-

butes, which can be seen as names for the arguments

of the predicates, together with an indication of the

domains where the attributes can take their values.

Having chosen the schema, the representation of the

Inconsistent Databases I 1411

I

external reality is given in terms of relations, which are

extensions for the predicates in the schema. This set of

relations is called an instance of the schema.

For example, relational database for representing in-

formationaboutstudentsofauniversitymightbebasedon

the schema consisting of the predicates Students(StNum,

StName) and Enrollment(StName,Course). The attri-

bute StNum is expected to take numerical values;

StName, character string values; and Course, alphanu-

meric string values. In Fig. 1 there is a possible instance

for this schema.

In order to make the database a more accurate

model of the university domain (or to be in a more

accurate correspondence with it), certain conditions

are imposed on the possible instances of the database.

Those conditions are intended to capture more mean-

ing from the outside application domain. In conse-

quence, these conditions are called semantic constraints

or integrity constraints (ICs). For example, a condition

could be that, in every instance, the student name

functionally depends upon the student number, i.e., a

student number is assigned to at most one student

name. This condition, called a functional dependency

(FD), is denoted with StuNumber ! StuName, or

Students : StuNumber ! StuName, to indicate that

this dependency should hold for attributes of relation

Students. Actually, in this case, since all the attributes

in the relation functionally depend on StuNum, the FD

is called a key constraint.

Integrity constraints can be declared together

with the schema, indicating that the instances for the

schema should all satisfy the integrity constraints.
Inconsistent Databases. Figure 1. A database instance.

Inconsistent Databases. Figure 2. Another instance.
For example, if the functional dependency Students :

StuNumber ! StuName is added to the schema, the

instance in Fig. 1 is consistent, because it satisfies

the FD. However, the instance in Fig. 2 is inconsistent.

This is because this instance does not satisfy, or,

what is the same, violates the functional dependency

(the student number 101 is assigned to two different

student names.

Functional dependencies are particular cases of

integrity constraints. It is also possible to consider

with the schema a referential integrity constraint that

requires that every student (number) in the relation

Enrollment appears, associated with a student name,

in relation Students, the official ‘‘table’’ of students.

This is denoted with Enrollement[StNum]��Students
[StNum]. If this IC is considered in the schema, the

instance in Fig. 1 is inconsistent, because student 105

does not appear in relation Students. However, if only

the referential constraint were in the schema, the

instance in Fig. 2 would be consistent.

In can be seen that the notion of consistency is

relative to a set of integrity constraints. When a database

is said to be inconsistent, it is meant that the particular

instance of the database at hand is inconsistent.

The two particular kinds of integrity constraints

presented above and also other forms of ICs can

be easily expressed in the language of predicate logic.

For example, the FD above can be expressed by the

symbolic sentence

8x8y8zððStudentsðx; yÞ ^ Studentsðx; zÞÞ ! y ¼ zÞ;
ð1Þ

1412 I Inconsistent Databases
whereas the referential constraint above can be

expressed by

8x8yðEnrollmentðx; yÞ ! 9zStudentsðx; zÞÞ: ð2Þ

Notice that this language of predicate logic is deter-

mined by the database schema, whose predicates are

now being used to write down logical formulas. We

may also use ‘‘built-in’’ predicates, like the equality

predicate. Thus, ICs can be seen as forming a set S of

sentences written in a language of predicate logic.

A database instance can be seen as an interpretation

structure D for the language of predicate logic that is

used to express ICs. This is because an instance has

an underlying domain and (finite) extensions for the

predicates in the schema. Having the database instance

as an interpretation structure and the set of ICs as a set

of symbolic sentences is crucial, and makes it possible

to simply apply the notion of satisfaction of a formula

by a structure of first-order predicate logic [6]. In this

way, the notion of satisfaction of an integrity constraint

by a database instance is a precisely defined notion.

The database instance D is consistent if and only if it

satisfies S, which is commonly denoted with D ⊨ S.
Since it is usually assumed that the set of ICs is

consistent as a set of logical sentences, in databases

the notion of consistency becomes a condition on the

database instance. Thus, this use of the term ‘‘consis-

tency’’ differs from its use in logic, where consistency

characterizes a set of formulas.

Inconsistency is an undesirable property for a da-

tabase. In consequence, one attempts to keep it consis-

tent as it is subject to updates. There are a few ways

to achieve this goal. One of them consists in declaring

the ICs together with the schema, and the database

management system (DBMS) will take care of the

database maintenance, i.e., of keeping it consistent.

This is done by rejecting transactions that may lead

to a violation of the ICs. For example, the DBMS

should reject the insertion of the tuple (101, sue

jones) into the instance in Fig. 1 if the FD (1) was

declared with the schema (as a key constraint). Unfor-

tunately, commercial DBMSs offer limited support for

this kind of database maintenance.

An alternative way of keeping consistency is based

on the use of triggers (or active rules) that are stored in

the database. The reaction to a potential violation is

programmed as the action of the trigger: if a violation

is about to be produced or is produced, the trigger
automatically reacts, and its action may reject the violat-

ing transaction or compensate it with additional

updates, to make sure that at the end, consistency

is reestablished. Consistency can also be enforced

through the application programs that interact with

the DBMS. However, the correctness of triggers or appli-

cation programs with respect to (with regard to) ensur-

ing database consistency is not guaranteed by the DBMS.

It is the case that, for whatever reasons, databases

may become inconsistent, i.e., they may violate certain

ICs that are considered to be relevant to maintain for a

certain application domain. This can be due to several

reasons, e.g., poorly designed or implemented appli-

cations that fail to maintain the consistency of the

database, or ICs for which a DBMS does not offer any

kind of support, or ICs that are not enforced for better

performance of application programs or DBMSs, or

ICs that are just assumed to be satisfied based on

knowledge about the application domain and the

kind of updates on the database. It is also possible to

have a legacy database on which semantic constraints

have to be imposed; or more generally, a database on

which imposing new constrains depending on specific

needs, e.g., user constraints, becomes necessary.

In the area of data integration the satisfaction of

desirable ICs by a database is much more difficult to

achieve. One can have different autonomous databases

that are separately consistent with regard to their own,

local ICs. However, when their data is integrated into a

single database, either material or virtual, certain de-

sirable global ICs may not be satisfied. For example,

two university databases may use the same numbers

for students. If their data is put together into an

integrated database, a student number might be

assigned to two different students.

When trying to use an inconsistent database,

the application of some data cleaning techniques

may be attempted, to cleanse the database from data that

participates in the violation of the ICs. This is done

sometimes. However, data cleaning is a complex and

non-deterministic process; and it may also lead to the

loss of information thatmight be useful. Furthermore, in

certain cases like virtual data integration, where the

data stays at the autonomous data sources, there is no

way to change thedatawithoutownershipof the sources.

One might try to live with inconsistent databases.

Actually, most likely one will be forced to keep using

it, because there is still useful information in it. It is

also likely that most of the information in it is

Inconsistent Databases. Figure 3. Two repairs.

Inconsistent Databases I 1413

I

somehow consistent. Thus, the challenge consists in

retrieving from the database only information that is

consistent. For example, one could pose queries to the

database at hand, but expecting to obtain only answers

that are semantically correct, i.e., that are consistent

with the ICs. This is the problem of consistent query

answering (CQA).

The notion of consistency of a database is a holistic

notion, that applies to the entire database, and not to

portions of it. In consequence, in order to pursue this

idea of retrieving consistent query answers, it becomes

necessary to characterize the consistent data in an

inconsistent database first. The idea that was proposed

in [1] is as follows: the consistent data in an inconsis-

tent data is the one that is invariant under all possible

way of restoring the consistency by performing mini-

mal changes on the initial database. That is, no matter

what minimal consistency restoration process is ap-

plied to the database, the consistent data stays in the

database. Each of the consistent versions of the original

instance obtained by minimal changes is called a mini-

mal repair, or simply, a repair.

It becomes necessary to be more precise about the

meaning of minimal change. In between, a few notions

have been proposed and studied (cf. [2–4] for surveys of

CQA). Which notion to use may depend on the appli-

cation. The notion of minimal change can be illustrated

using the definition of repair given in [1]. First of all, a

database instanceD can be seen as a finite set of ground

atoms (or database tuples) of the form P(�c), where P is

a predicate in the schema, and �c is a finite sequence

of constants in the database domain. For example,

Students(101, john bell) is an atom in the database.

Next, it is possible to compare the original database

instance D with any other database instance D 0 (of the

same schema) through their symmetric difference

DDD 0 = {A j A 2 (D \ D 0) [(D 0 \ D)}.

Now, a repair of an instance D with regard to a set

of ICs S is defined as an instance D 0 that is consistent,

i.e., D 0 ⊨ S, and for which there is no other consistent

instanceD 00 that is closer toD than D 0, i.e., for which it

holds DDD 00 �6¼ DDD 0. For example, the database in

Fig. 2 has two repairs with regard to the FD (1). They
are shown in Fig. 3 and are obtained each by deleting

one of the two conflicting tuples in relation Students

(relation Enrollment does not change).

Having defined the notion of repair, a consistent

answer from an instance D to a query Q(�x) with regard

to a set S of ICs is defined as an answer �c to Q that

is obtained from every possible repair of D with regard

to S. That is, if the query Q is posed to each of the

repairs, �c will be returned as a usual answer to Q from

each of them.

For example, if the query Q1(x, y) : Students(x, y),

asking for the tuples in relation Students, is posed to

the instance in Fig. 2, then (104, claire stevens) and

(107, pat norton) should be the only consistent answers

wrt the FD (1). Those are the tuples that are shared by

the extensions of Students in the two repairs. Now, for

the query Q2(x) : ∃yStudents(x, y), i.e., the projection
on the first attribute of relation Students, the consistent

answers are (101), (104) and (107).

There might be a large number of repairs for an

inconsistent database. In consequence, it is desirable to

come up with computational methodologies to retrieve

consistent answers that use only the original database, in

spite of its inconsistency. Such amethodology thatworks

for particular syntactic classes of queries and ICs, was

proposed in [1]. The idea is to take the original query Q

that expects consistent answers, and syntactically

transform it into a new query Q 0, such that the rewrit-

ten query Q 0, when posed to the original database,

obtains as usual answers the consistent answers to

query Q. The essential question is, depending on the

language in which Q is expressed, what kind of lan-

guage is necessary for expressing the rewriting Q0. The

answer to this question should also depend on the kind

of ICs being considered.

The idea behind the rewriting approach presented

in [1] can be illustrated by means of an example. The

consistent answers to the queryQ1(x, y) : Students(x, y)

above with regard to the FD (1) can be obtained by

posing the query Q 0(x, y) : Students(x, y) ∧ :∃z
(Students(x, z) ∧ z 6¼ y) to the database. The new

query collects as normal answers those tuples where

the value of the first attribute is not associated to two

1414 I Incremental Computation of Queries
different values of the second attribute in the relation.

It can be seen that the answer set for the new query can

be computed in polynomial time in the size of the

database.

In this example, a query expressed in first-order

predicate logic was rewritten into a new query ex-

pressed in the same language. It has been established

in the literature that, for complexity-theoretic reasons,

a more expressive language to do the rewriting of a

first-order query may be necessary. For example, it may

be necessary to do the rewritings as queries written in

expressive extensions of Datalog [2–4].

If a database is inconsistent wrt referential ICs, like

the instance in Fig. 1 and the constraint in (2), it is

natural to restore consistency by deleting tuples or

inserting tuples containing null values for the existen-

tially quantified variables in the ICs. For example, the

tuple (105, comp120) could be deleted from Enrollment

or the tuple (105, null) could be inserted in relation

Students. This requires a modification of the notion of

repair and a precise semantics for satisfaction of ICs in

the presence of null values [2,4].
Key Applications
Key applications of consistent query answering (CQA)

are still missing. Applications to virtual data integration

look promising, and also applications to data cleaning.
Future Directions
There are many open problems and research direc-

tions, among them, and most prominently, the devel-

opment of key applications of CQA. A more precise

characterization of the languages that are needed for

doing CQA using query rewriting is also missing. It

also becomes necessary to shed more light on the right

kind of repair semantics to use depending on the

application. CQA in a dynamic setting, when the data-

bases is subject to updates, has not been investigated

much. Integrity constraints and consistency issues for

the relational model of data have been investigated for

many years. However, there are other data models, e.g.,

spatial databases, for which much research of this kind

is still necessary.
Cross-references
▶Active Databases

▶Data Cleaning

▶ Logical Data Integration
▶ Logics and Databases

▶Null Values

▶Relational Theory
Recommended Reading
1. Arenas M., Bertossi L. and Chomicki J. Consistent query

answers in inconsistent databases. In Proc. 18th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1999, pp. 68–79.

2. Bertossi L. Consistent query answering in databases. ACM

SIGMOD Rec., 35(2):68–76, 2006.

3. Bertossi L. and Chomicki J. Query answering in inconsistent

databases. In Logics for Emerging Applications of Databases.

Springer, Berlin, 2003, pp. 43–83.

4. Chomicki J. Consistent query answering: five easy pieces.

In Proc. 11th Int. Conf. on Database Theory, 2007, pp. 1–17.

5. Codd E.F. A relational model of data for large shared data

banks. Commun. ACM, 13(6):377–387, 1970.

6. Enderton H. A Mathematical Introduction to Logic, 2nd edn.

Academic Press, New York, NY, USA, 2001.
Incremental Computation of Queries

GUOZHU DONG
1, JIANWEN SU2

1Wright State University, Dayton, OH, USA
2University of California-Santa Barbara, Santa

Barbara, CA, USA

Synonyms
Incremental view maintenance

Definition
A view on a database is defined by a query over the

database. When the database is updated, the value of

the view (namely the answer to the query) will likely

change. The computation of the new answer to the

query using the old answer is called incremental query

computation or incremental view maintenance. Incre-

mental computation is typically performed by identify-

ing the part in the old answer that need to be removed,

and the part in the new answer that need to be added.

Incremental computation is desirable when it is much

more efficient than a re-computation of the query.

Efficiency can be measured by computation time, stor-

age space, or query language desirability/availability,

etc. Incremental computation algorithms could use

auxiliary relations (in addition to the query answer),

which also need to be incrementally computed.

Incremental Computation of Queries I 1415
Two query languages can be involved for the incre-

mental query computation problem. One is used for

defining the view to be maintained, and the other

for describing the incremental computation algorithm.

For relational databases, the two languages can be rela-

tional algebra, SQL, nested relational algebra, Datalog,

SQL embedded in a host programming language, etc.
I

Historical Background
Reference [14] was an early paper on incremental

query computation of relational algebra queries. Ref-

erence [8] improved the query rewriting algorithm of

[14] to ensure minimality of the changes to a query

result in response to updates to base relations. Other

articles in the literature (see [9]) considered the incre-

mental computation of queries involving SQL aggre-

gation, duplicates, etc.

Reference [7] was an early paper on incremental

query computation of recursive (Datalog, including tran-

sitive closure) queries using relational calculus (or equiv-

alently relational algebra) queries. Reference [3] provided

relational-calculus queries for maintaining the transitive

closure of acyclic graph (binary relation) after an edge

insertion or deletion. Reference [6] discussed how to

incrementally compute Datalog queries after tuple inser-

tion. References [4,13] provided relation-calculus queries

formaintaining the transitive closure of undirected graph

after edge insertion or deletion. Reference [1] rewrote the

maintenance queries in SQL. Reference [12] provided

relational-calculus queries for maintaining the shortest

paths in undirected graphs after edge insertion/deletion.

Reference [11] studied the power of incremental query

computation using SQL asmaintenance queries. A num-

ber of theoretical results on the power of the arity of the

auxiliary relations have been reported. Reference [5] gave

a survey of results on the incremental computation of

recursive queries up to the year 2000.

Reference [9] contains a collection of papers on

incremental query computation/view maintenance.
Foundations
For brevity and concreteness, the discussion below will

be restricted to relational databases, although incre-

mental query computation also applies to other kind

of databases. Moreover, the discussion is divided into

two parts, one part for the incremental computation of

relational-algebra queries, and the other part for the

recursive queries (including Datalog and transitive
closure). Algorithms for incrementally computing

other kinds of queries are not covered in this entry.

Incremental query computation is not merely a

means to avoid expensive re-computation. Sometimes,

incremental computation is a way to do things that

could not be done otherwise. For example, the transi-

tive closure query cannot be directly expressed in rela-

tional algebra but it can be expressed in relational

algebra in the incremental setting.

Some notations are now defined. Let R1,...,Rm be

the base relations of a relational database D. An update

to the database consists of 2m sets of tuples: for each

relation Ri it contains two disjoint sets, Ri
+ and Ri

�, of

tuples, where Ri
+ is the set of tuples to be added to Ri

and Ri
� is the set of tuples to be deleted from Ri. Let

Dold denote the old database and Ri
old denote the old

instance of Ri before the update, and D new denote the

new database and Ri
new denote the new instance of Ri

after the update. It is assumed that the update is

minimal in the sense that Ri
+ \ Rold ¼ ; and that

Ri
�
 Rold.

The same notation will be used to denote the ‘‘up-

date to the query.’’ LetQ be a query. ThenQ� is used to

denote the set of tuples to be deleted from the old

answer, and Q+ is used to denote the set of tuples to

be added to the old answer, in order to get the new

answer; in formula: Q(Dnew) ¼ (Q(Dold) � Q�) [Q+.

Incremental Computation of Relational-Algebra Queries

The relational algebra queries are expressions built

from relation names using the following operations:

selection (sp), projection (PA), Cartesian product

(�), union ([), intersection (\), difference (�), and
join (⋈). Here p is a predicate or condition, and A is a

set of attributes. A relational-algebra query over the

database is a relational algebra expression.

The 16 rules [8] in Table 1 can be used to generate

the queries for computing Q+ and Q�. These rules also

ensure that the ‘‘update to the query’’ is minimal in the

sense that Q+ \ Qold = ; and Q�
 Qold.

Observe that one also needs to store the answer to

all intermediate queries in order to use the rules; these

are auxiliary relations that also need to be maintained.

Incremental Computation of Recursive Queries

The framework used in the incremental computation

of recursive queries is quite similar to the one for

relational algebra queries as discussed above. However,

there are two notable differences. One is that the

Incremental Computation of Queries. Table 1. Rules for incremental computation of relational algebra queries

Query Q Rewriting Rule for Getting Q� Query Q Rewriting Rule for Getting Q+

Ri Ri
� Ri Ri

+

sp(S) sp(S
�) sp(S) sp(S

+)

PA(S) PA(S
�) � PA(S

new) PA(S) PA(S
+) � PA(S

old)

S � T (S�� Told) [(Sold � T�) S � T (S+ � Tnew) [(Snew � T+)

S [T (S�� Tnew) [(T�� Snew) S [T (S+ � Told) [(T+ � Sold)

S \ T (S�\ Told) [(Sold \ T�) S \ T (S+ \ Tnew) [(Snew \ T+)

S � T (S�� Told) [(Sold \ T+) S � T (S+ � Tnew) [((Sold � S�) \ T�)

S⋈T (S�⋈Told) [(Sold⋈T�) S⋈T (S+⋈Tnew) [(Snew⋈T+)

1416 I Incremental Computation of Queries
query definition and the incremental computation

may use different query languages, and the other is

that the incremental computation may use auxiliary

relations that are not explicitly involved in the original

query.

Maintenance algorithms can be specified in differ-

ent (maintenance) languages such as relational calcu-

lus, SQL, nested relational algebra, Datalog, or even a

host programming language. The choice of a mainte-

nance language can be influenced by the practical

constraints imposed by real systems, and it can also

be influenced by efficiency issues, as some languages

are more efficient or more optimizing than others. For

example, it is desirable to maintain the transitive clo-

sure query using relational algebra (or equivalently,

first-order logic) queries, since the latter are available

in all relational database systems and they are more

efficient to evaluate. Another desirable language for

maintaining recursive queries is SQL.

With the help of auxiliary relations, one can main-

tain queries that cannot be maintained otherwise.

Moreover, the arity of the auxiliary relations bounds

the amount of information to be kept and makes a

difference on what can be maintained.

Sometimes the incremental computation algo-

rithms can deal with certain special types of updates.

Example types of updates include single-tuple inser-

tions, single-tuple deletions, insertions/deletions of sets

satisfying certain conditions, or combinations of these.

The following describes the relational algebra (or

first-order logic) queries for maintaining the transitive

closure of acyclic graphs [2,3]. The incremental queries

can handle both tuple insertions and tuple deletions,

and they do not use auxiliary relations.

Let G represent the input graph (directed) and TC

the transitive closure of G. So a tuple (x,y) is in the
relation G if and only if there is a directed edge from

the node x to the node y in the input graph, and a tuple

(x,y) is in the relation TC if and only if there is a

directed path from the node x to the node y in the

input graph. An edge insertion is allowed only if this

insertion does not lead to cycles in the new graph.

Suppose an edge (a,b) is inserted. Then TC is main-

tained as follows. Essentially, the new transitive closure

is obtained by adding to the old transitive closure the

following: (i) all new paths constructed by adding the

new edge (a,b) to the back of existing paths ending at a,

(ii) all new paths constructed by adding the new edge

(a,b) to the front of existing paths starting at b, (iii) all

new paths constructed by inserting the new edge (a,b)

between an existing path ending at a and an existing

path starting at b, and (iv) the new edge itself.

New paths added by rules (1), (2), and (3) correspond

to paths of type x ! a, b ! y, and x ! y, respec-

tively. These rules cover all new paths because only

one occurrence of the new edge is necessary in every

new path.

Suppose an existing edge (a,b) is deleted. TC can be

maintained as follows. Let Sab ={ (x,y)jTCold(x,a) ∧
TCold(b,y)} be the set of all paths (x,y) in the old TC

which go through (a,b). The letter S is for suspicious –

it is doubtful whether these paths should belong to the

new TC. Let Gnew = Gold �{ (a,b)} and Tab = (TC old �
Sab) [G new. Each pair in Tab is definitely in the new

TC. (The letter T is for trusty.) Surprisingly, the new

TC can be completely reconstructed from Tab using

several joins and projections given by the following

formula:

Tab [ðTab � TabÞ [ðTab � Tab � TabÞ

where R1 ∘ R2 is defined as {(x,y)j∃u(R1(x,u) ∧
R2(u,y)} and R1 and R2 are binary relations.

Incremental Crawling I 1417

I

So the new transitive closure contains (i) all trusty

paths, (ii) all paths constructed by concatenating two

consecutive trusty paths, and (iii) all paths constructed

by concatenating three consecutive trusty paths.

To maintain the transitive closure of undirected

graphs in relational calculus after edge deletion, one

also needs to maintain some auxiliary queries. The

auxiliary relations include a total order on the nodes of

the graph, a spanning forest of the graph, and a ternary

relation indicating whether a node is on a path between

two other nodes in the spanning forest. The details can

be found in [4,5], which also discuss other queries.

While the maintenance queries for the transitive

closure of undirected graphs and acyclic graphs do

not need to use arithmetic operations, the mainte-

nance queries for shortest paths [12] need to use

both + and < on numbers.

Key Applications
Incremental query computation is useful for (i) main-

taining materialized views, (ii) efficient checking and

monitoring of integrity constraints, and (iii) the efficient

management of triggers in active databases. Incremental

query computation is also related to dynamic descriptive

complexity theory [10]. Incremental computation of

transitive closure has also been used in formal

verification.

Future Directions
It is still open whether the transitive closure of

arbitrary directed graphs can be maintained using

relational calculus queries after edge deletions.

Cross-references
▶Active Databases

▶Database Trigger

▶ FOL modeling of integrity constraints (depen-

dencies)

▶ Incremental View Maintenance
Recommended Reading
1. Dong G., Libkin L., Su J., and Wong L. Maintaining transitive

closure of graphs in SQL. Int. J. Inf. Technol., 5(1):46–78, 1999.

2. Dong G. and Pang C. Maintaining transitive closure in first-

order after node-set and edge-set deletions. Inf. Process. Lett., 62

(3):193–199, 1997.

3. Dong G. and Su J. Incremental and decremental evaluation

of transitive closure by first-order queries. Inf. Comput.,

120(1):101–106, July 1995.
4. Dong G. and Su. J. Arity bounds in first-order incremental

evaluation and definition of polynomial time database queries.

J. Comput. Syst. Sci., 57(3):289–308, December 1998.

5. Dong G. and Su J. Incremental maintenance of recursive

views using relational calculus/SQL. ACM SIGMOD Rec., 29

(1):44–51, 2000.

6. Dong G., Su J., and Topor R. Nonrecursive incremental evalua-

tion of datalog queries. Annals Math. Artif. Intell., 14:187–223,

1995.

7. Dong G. and Topor. R. Incremental evaluation of datalog

queries. In Proc. 4th Int. Conf. on Database Theory, 1992,

pp. 282–296.

8. Griffin T., Libkin L., and Trickey H. An improved algorithm for

the incremental recomputation of active relational expressions.

IEEE Trans. Knowl. Data Eng., 9(3):508–511, 1997.

9. Gupta A. and Mumick I.S. (eds.). Materialized views: techni-

ques, implementations, and applications. MIT, MA, USA, 1999.

10. Immerman N. Descriptive Complexity. Springer, New York, NY,

USA, December 1998.

11. Libkin L. and Wong L. On the power of incremental evaluation

in SQL-like languages. In Proc. 7th Int. Workshop on Database

Programming Languages, 1999, pp. 17–30. See also: SQL can

maintain polynomial-hierarchy queries. Technical report, Insti-

tute of Systems Science Singapore, 1997.

12. Pang C., Dong G., and Kotagiri R. Incremental maintenance of

shortest distance and transitive closure in first-order logic and

SQL. ACM Trans. Database Syst., 30(3):698–721, 2005.

13. Patnaik S. and Immerman N. Dyn-FO: a parallel dynamic com-

plexity class. J. Comput. Syst. Sci., 55(2):199–209, Oct 1997.

14. Qian X. and Wiederhold G. Incremental recomputation of

active relational expressions IEEE Trans. Knowl. Data Eng.,

3(3):337–341, 1991.
Incremental Crawling

KEVIN S. MCCURLEY

Google Research, Mountain View, CA, USA

Synonyms
Spidering; Crawler
Definition
Part of the success of the World Wide Web arises from

its lack of central control, because it allows every owner

of a computer to contribute to a universally shared

information space. The size and lack of central control

presents a challenge for any global calculations that

operate on the web as a distributed database. The scal-

ability issue is typically handled by creating a central

repository of web pages that is optimized for large-scale

calculations. The process of creating this repository

1418 I Incremental Crawling
consists of maintaining a data structure of URLs to

fetch, from which URLs are selected, the content is

fetched, and the repository is updated. This process

is called crawling or spidering.

Unfortunately, maintaining a consistent shadow

repository is complicated by the dynamic and uncoordi-

nated nature of the web. URLs are constantly being

created or destroyed, and contents of URLs may change

without notice. As a result, there will always be URLs for

which the content is not present in the repository, as well

as URLs whose content is different from the copy in the

repository. Many new URLs can only be discovered by

recrawling old URLs whose content has now changed to

include links to new URLs. In order to minimize the

impact of these inconsistencies, URLs should periodical-

ly be prioritized and revisited. The process of prioritizing

and revisiting URLs is usually referred to as incremental

crawling. The primary issues in incremental crawling

center around defining metrics for performance, both

for the quality of the repository and the resources

required to build and maintain the repository.
Historical Background
In the early days of the world wide web, it quickly

became apparent that documents could be treated as

living objects that could be changed at will. Thus the

notion of a URLwas born as a ‘‘resource locator’’ rather

than a document ID. Early attempts to build search

engines largely ignored this problem, assuming that if

a document was worth retrieving later, then it would

remain relatively stable at its URL. Thus early attempts

to crawl and index the web simply started with a set of

seed URLs, and iteratively crawled pages and extracted

new URLs to be crawled. After a period of time, this

repository would be used as a ‘‘snapshot’’ of the web to

build a keyword index. If a reasonable seed set is used

and URLs are appropriately prioritized, the resulting

snapshot was useful for constructing a search engine or

performing aggregate analysis.

The snapshot approach works well for web pages

that are created and remain unchanged, but web usage

has evolved quite a bit since the early days.Web authors

learned that fresh content would bring repeat readers,

and readers have increasingly migrated toward enter-

tainment and news, for which freshness is increasingly

important. Thus in some sense the more dynamic parts

of the web are those that have the highest readership

and therefore the greatest social impact. As a result,
incremental crawling strategy has become increasingly

important.

Foundations
In order to address the issues surrounding incremental

crawling, it is important to first define the goals of the

shadow repository. The primary application that has

been implemented thus far have been search engines

that allows users to find pages that match simply

expressed information needs. A prerequisite for success

of a search engine is that it reference the best content

that is of interest to a majority of users at any given

time. For this, the repository should be as complete as

possible and as fresh as possible, since pointing users

at pages that don’t fulfill their information need will

result in a bad user experience.

Another application that canuse a shadow repository

is the discovery of plagarism or copyright-protected

content on the web. A third application might seek

to track historical evolution of the web, for historical

studies. In this case the repository should not only

contain the most recent content for a URL, but all

versions as they evolve over time. It is easy to see that

performance metrics for these applications will vary

somewhat. Moreover, these applications will differ in

the the degree of cooperation that can be expected from

contributors to theweb.

Metrics for Incremental Crawling

There is no uniformly accepted notion of how to

measure the inconsistency between the repository and

the actual web. Moreover, even if there was universal

agreement on the proper metric for consistency, it may

be difficult to measure, and any such measure would be

time-dependent since the web is constantly changing.

Three possible metrics that are most obvious are:

Coverage: count the number of pages that exist on the

web but are not present in the respository at any given

time.

Freshness: count the number of documents that are

present in the repository, but whose content was

changed after insertion into the repository. Alterna-

tively, the metric may incorporate a measure of the size

of the change for individual pages.

Age: the average age of documents in the repository

(e.g., time since they were last updated).

For any particular application, these metrics may all be

adjusted to incorporate weights of individual pages to

Incremental Crawling I 1419

I

reflect their relative importance for the application.

Thus for a search engine, documents that are dominated

by thousands of other documents for every possible

query should probably should be weighted lower than

documents that are often found by users of the search

engine. The quality of an incremental crawling strategy

must also be evaluated on the basis of resources that it

consumes in order to maintain a given level of metric.

Incentives and Cooperation

It should be noted that a crawler consumes resources

both of the party maintaining the repository as well

as the creators of content on the web. If a crawler

becomes too aggressive in tracking the changes to

URLs, it could quickly overwhelm small sites and de-

grade the value of the web site to the users of the web.

At the same time, it is relatively simple to create a

web site that issues dynamic content in response to

any request by a crawler, essentially creating an excess

of URLs that could theoretically be fetched, archived,

and indexed by the crawler. Web sites may also

engage in other forms of mischief, such as accepting

connections and either responding slowly or with non-

comformant content.

Thus both content providers and repository main-

tainers are threatened by potentially unconstrained

resource requirements. As the web has evolved, a num-

ber of standards and standard practices have emerged

that mitigate these threats, and a form of economic

equilibrium has emerged to allow repositories to be

maintained.

The situation is complicated by the fact that the goals

of content producers and crawlers are sometimes not

aligned to each other. Content providers are generally

motivated by the desire to shape public opinion through

their information, or their desire to drive traffic for

commerce. In a competitive market, multiple content

providers may find themselves in competition with each

other, competing for the attention of humans. As such,

they can be expected to engage in a variety of practices

that will improve their share of readership.

By contrast, consider the goals of a commercial

search engine. Search engines make money from ad-

vertising, and in order to maintain the traffic, they

need to serve the aggregated needs of users. Even if

the search engine had a completely accurate copy of the

web, there is still the task of deciding which results to

show, and this is where the goals of individual content

providers may conflict with those of the search engine
(and users). Content providers generally want their

content to be indexed, but they also want their content

to be shown to users ahead of their competitors. They

can be expected to act in their own self interest.

One of the activities that some sites engage in is to

create link farms, which are designed to enhance the

ranking of pages in search engines. In order for this to

be effective, the pages of link farms must be crawled

and incorporated into the ranking of the search engine.

This is an extreme example of the more general phe-

nomenon that content providers and search engines

may disagree on what should be crawled and indexed.

Cache Consistency

Inconsistency of a web shadow repository is similar

to any other cache consistency problem, and has been

studied extensively in the literature. Traditional app-

roaches to cache consistency include time-to-live

(TTL), client polling, and invalidation protocols. Most

of the literature on caching has neglected the issue of

discovery, which is a critical feature of crawling and one

reasonwhy pages need to be revisited (to find new links).

Due to the uncoordinated nature of the web, most of the

effort has gone into client polling approaches, although

elements of the other approaches have also been experi-

mented with. The HTTP protocol [5, section 13] con-

tains a variety of optional features that can help with

TTL approaches if they are properly implemented.

Examples include the Cache-Control, Expires,

Last-Modified, If-Modified-Since, If-Unmodi-

fied-Since, and Vary header fields. The cache-

consistency protocol of the HTTP protocol is designed

to facilitate human interactive browsing, and is not

designed for batch processing. Moreover, relatively

few web sites have taken the care to implement the

existing protocols correctly.

In 2005 Google published an improved mechanism

for conveying TTL cache consistency messages, known

as sitemaps [7]. This followed an earlier effort called

Open Archives Initiative Protocol for Metadata Har-

vesting (OAI-PMH), and was released under a creative

commons license. The purpose of the sitemaps initia-

tive was to provide a more efficient polling mechanism,

where web sites could provide information in an XML

format to specify a list of valid URLs for crawling, along

with optional last-modified dates, change frequencies,

and priorities. Theoretically this scales up to sites with

fifty million URLs, but has only weak consistency guar-

antees incorporated into it. In addition to conveying

1420 I Incremental Crawling
information about expiration and priority, the protocol

also specifies a way for sites to notify individual search

engines of the existence of their sitemap, either through

placement in a robots.txt file or through a ping noti-

fication message [7]. Sitemaps can also be useful in

eliminating intra-site duplicates, which consume

resources of search engines and degrade the quality of

indexing of sites.

In theory, sitemaps can greatly improve the effi-

ciency of maintaining a shadow repository, but they

have their own problems due to previously mentinoed

misalignment of incentives between content providers

and search engines. Sitemaps are subject to various

kinds of abuse, and cannot be completely trusted by

the crawler to give an accurate view of a web site.

Resource Management

The resources consumed by incremental crawling can be

significant. In one study in 2002 [9], it was estimated

that 40% of Internet traffic is due to web crawlers

retrieving pages. Similar figures have been observed

by others, though the impact is probably higher for

low-traffic sites than it is for high-traffic sites. From

the point of view of the crawler, it is not obvious how

to optimally design a crawl strategy in order to achieve a

given level of one of a metrics such as freshness.

One tempting strategy is to adjust the crawl fre-

quency for a page in proportion to the rate of change

for the page. Thus if a page changes freqently and

substantially, it would receive a higher level of crawling.

It is perhaps counterintuitive that this may not be

optimal. In the extreme case, a page may in fact change

every time it is accessed, which means that no matter

how often you access it, you will never have the ‘‘up to

date copy.’’ Accessing a page too frequently would also

violate the standard ‘‘politeness’’ policy of web crawlers.

Another potential policy would be to revisit pages

with the same frequency, ignoring the change rate of

individual pages. This is evidently wasteful of resources,

but Cho and Garcia-Molina [1] showed both experi-

mentally and theoretically that this outperforms the

proportional approach. The optimal strategy inter-

polates between the two, with a visitation schedule

that increases monotonically with the change rate,

but penalizes pages that change too often.

Theoretical results of this type depend upon an un-

derlying mathematical model of how the web changes,

and should be carefully examined when applying it to a

restricted subset of the web, and should be re-evaluated
in the future should the social forces that shape the web

somehow change. Such models should reflect the rate at

which new information is produced, the distribution

of such production among individual websites, and the

rate at which information decays or is revised. Such

models are essential for deciding how to balance the

resources dedicated to discovery of new content vs.

the confirmation that existing content has not changed.

Key Applications
To date, the primary application that has made use of

crawling is search engines. The details of their incre-

mental crawling strategies remain unpublished, as

they are based on the perceived economic value of

the repository. As the web has grown, search engines

have become increasingly important for users, allow-

ing them to express an information need in fairly

precise terms, and quickly navigate directly to docu-

ments on the topic of interest. From the point of view

of a search engine, the dynamic nature of the web

presents special problems, since a search engine will

typically depend upon deep analysis of documents and

links between documents. Documents whose content

changes on a regular basis present a challenge for

indexing, since the freshness of a search engine is a

critical measure of utility for users.

Search engines are not the only applications that

can make use of incremental crawling. Others include

systems for prefetching proxies, notifications and

alerts, mirroring and archiving, and business and po-

litical intelligence.

Future Directions
Most of the current strategies for incremental crawling

are heavily dependent upon polling, and are therefore

fairly inefficient. An approach built around notification

and invalidation would clearly be more efficient, but

there appears to be little economic incentive to imple-

ment them. Existing mathematical models for the

growth and change rates of the web are fairly simplistic,

treating all web pages as equal and failing to recognize

the inherent organizational structure of web sites

and the different purposes for which pages are created.

Finally, as new applications emerge for web shadow

repositories, it is natural to expect new requirements

to emerge.

Experimental Results
See [1].

Incremental Maintenance of Views with Aggregates I 1421

I

Cross-references
▶Caching

▶Data Broadcasting, Caching and Replication in

Mobile Computing

▶ Focused Web Crawling

▶Replication

▶Web Crawler Architecture

Recommended Reading
1. Cho J. and Garcia-Molina H. Effective page refresh policies

for web crawlers. ACM Trans. Database Syst., 28(4):390–426,

2003.

2. Coffman E.G., Liu Z., and Weber R.R. Optimal robot scheduling

for Web search engines. J. Schedul., 1:15–29, 1998.

3. Dikaiakos M.D., Stassopoulou A., and Papageorgiou L. An

investigation of web crawler behavior: characterization and

metrics. Comput. Commun., 28:880–897, 2005.

4. Edwards J., McCurley K.S., and Tomlin J. An adaptive model

for optimizing performance of an incremental web crawler. In

Proc. 10th Int. World Wide Web Conference, 2001, pp. 106–113.

5. Fielding R., Gettys J., Mogul J., Frystyk H., Mastinter L., Leach P.,

and Berners-Lee T. Hypertext Transfer Protocol – HTTP/1.1, RFC

2616 http://www.w3.org/Protocols/rfc2616/rfc2616.html.

6. Podlipnig S. and Böszörmenyi L. A survey of Web cache replace-

ment strategies, ACM Comput. Surveys, 35(4): 374–398, 2003.

7. Sitemap protocol specification. http://www.sitemaps.org/

protocol.php.

8. Wang J. A survey of web caching schemes for the Internet. ACM

SIGCOMM Comput. Commun. Rev., 29(5): 36–46, 1999.

9. Yuan X., MacGregor M.H., and Harms J. An efficient scheme to

remove crawler traffic from the Internet. In Proc. 11th Int. Conf.

on Computer Communications and Networks, 2002, pp. 90–95.
Incremental Maintenance of Views
with Aggregates

HIMANSHU GUPTA

Stony Brook University, Stony Brook, NY, USA

Definition
Views are SQL or relational expressions over the given

data sources. In a data warehouse, view expression

generally involve the aggregate operator. In order to

keep materialized (precomputed and stored) views

up to date, it is necessary to maintain the views in

response to the changes at the sources. Incremental

maintenance of a view involves propagating the

changes at the source onto the view so that the view

reflects the changes. Incrementally maintaining a

view can be significantly cheaper than recomputing

the view from scratch.
Historical Background
Incrementally maintaining a view can be significantly

cheaper than recomputing the view from scratch,

especially if the size of the view is large compared to

the size of the changes [1,2,9]. The problem of incre-

mental maintenance of views has been studied exten-

sively, and several algorithms have been proposed over

the years [3,4,6–12]. Most works (except for [7,12])

either handled view expressions without aggregate

operators [3,4,11], or aggregate views (view expressions

with the aggregate operator as the last operator)

[8,9,10]. Quass in [12] attempts to maintain general

view expressions involving aggregate operators, but the

expressions obtained are inefficient and very compli-

cated. Recently, Gupta and Mumick [7] developed the

change-table technique for incremental maintenance

of general view expressions involving aggregate and

outerjoin operators. Change table of a particular view

is applied to the view using a special refresh operator.

The change-table technique can be looked upon as

a generalization of the technique of summary tables

developed by [9] for maintenance of aggregate views.

In contrast to the most other techniques which propa-

gate data in terms of insertions and deletions through a

view expression, the change-table technique propa-

gates data (in terms of change-tables) as well as action

(in terms of parameters of the refresh operation)

through the given view expression.
Foundations
The first step is to explain the framework developed in

[3,11] for deriving incremental view maintenance expres-

sions and relate it to the change-table technique. Let a

database contain a set of relations R = {R1, R2,...,Rn}.

A change transaction t is defined to contain the expres-

sion Ri ðRi _� rRiÞ
U

DRi; for each relation

Ri, where rRi are the deletions from Ri, and DRi

are the insertions into Ri. Let V be a bag-algebra

expression defined on a subset of the relations in R.
The refresh-expression New(V, t) ([3] uses the notation

pre(t,V) instead) is used to compute the new value

of V. Griffin and Libkin in [3] define the expression

New(V, t) to be:

NewðV ; tÞ ¼ ðV _� rðV ; tÞÞ
]

DðV ; tÞ:

So, the goal in deriving view maintenance expressions

for a view V is to derive two functions r(V, t) and

D(V, t) such that for any transaction t, the view V can

1422 I Incremental Maintenance of Views with Aggregates
be maintained by evaluating (V _� r(V,t))
U

D (V, t).

In order to derive r(V, t) and D(V, t), [3] gives change
propagation equations that show how deletions and

insertions are propagated up through each of the rela-

tional operators. The work of [3] was extended to

include aggregate operators by Quass in [12].

The change-table technique can be thought of

as introducing a new definition for New(V, t). The

expression New(V, t) is defined for general view

expressions as

New(V, t) = (V REFRESH □(V, t)),

where□(V, t) is the ‘‘change-table’’ for the transac-

tion ṫ and REFRESH is the ‘‘refresh’’ operator used to

apply the changes in the change table to its view. The

above new definition of New(V, t) is motivated from

the following observation. In the case of general

view expressions involving aggregate operators, it is

usually more efficient to propagate the change tables

beyond an aggregate operator, instead of propagating

insertions and deletions. Propagation of a change

table is particularly efficient when the change table

depends only on the changes to the base relation

(self-maintainability [5]), while the insertions and

deletions depend on the old value of the view. As

shown in the example below, if the aggregate node is

not materialized, the computation of insertions and

deletions could be very expensive. The above new

definition of New(V, t) also means that in order to

obtain a complete technique it is necessary to define

a general refresh operator, show how to generate a

change table, and how to propagate a change table

through various operators. The reader is referred

to [7] for the above details.
Illustrative Example. Consider the classic example

of a warehouse containing information about stores,

items, and day-to-day sales. The warehouse stores the

information in three base relations viz. stores,

items, and sales having the following schemas.

stores (storeID, city, state)

items (itemID, category)

sales (storeID, itemID, date, price)

For each store location, the relation stores con-

tains the storeID, the city, and the state in which the

store is located. For each item, the relation items

contains its itemID and its category. An item can

belong to multiple categories. The relation sales con-

tains detailed information about sales transactions. For

each item sold, the relation sales contains a tuple

storing the storeID of the selling store, itemID of the

item sold, date of sale, and the sale price.

Views. Consider the views SISales, CitySales,

and CategorySales defined over the base relations

as shown in Fig. 1a. The view SISales computes for

each storeID and itemID the total price of items sold

after 1/1/95. The view SISales is an intermediate

view used to define the views CitySales and Cate-

gorySales. The view CitySales stores, for each

city, the total number and dollar value of sales of all

the stores in the city. The view CategorySales stores

the total sale for each category of items. All the above

described views consider only those sales that occur

after 1/1/95. The views CitySales and Category-

Sales are stored (materialized) at the data ware-

house and this is represented below by the keyword

‘‘MATERIALIZED’’ (The keyword ‘‘MATERIALIZED’’

Incremental Maintenance of Views with Aggregates I 1423

I

is not supported by SQL, but has been introduced in

this article) in the SQL definitions of the views. It is

desirable to maintain these materialized views in re-

sponse to insertions to the base relation sales for the

instance shown in Fig. 1b.

CREATE VIEW SISales AS

SELECT storeID, itemID, sum(price) AS

SumSISales, count(∗) AS NumSISales

FROM sales

WHERE date>1 ∕1 ∕95
GROUP BY storeID, itemID;

CREATE MATERIALIZED VIEW CitySales AS

SELECT city, sum(SumSISales) AS SumCi-

Sales, sum(NumSISales) AS NumCiSales

FROM SISales, stores

WHERE SISales.storeID = stores.storeID

GROUP BY city;

CREATE MATERIALIZED VIEW CategorySales

AS

SELECT category, sum(SumSISales) AS

SumCaSales, sum(NumSISales) AS

NumCaSales

FROM SISales, items

WHERE SISales.itemID = items.itemID

GROUP BY category;

Insertion-Deletion Technique. Griffin and Libkin in [3]

update view expressions by recursively computing

insertions and deletions for each of the subexpressions

in the view expression in response to changes at
Incremental Maintenance of Views with Aggregates. Figur

change-table approach [8].
the base relations. Quass in [12] extends the techniques

in [3] by including aggregate operators. Of the main-

tenance approaches that propagate insertions and

deletions, only [12] provides techniques to maintain

general view expressions involving aggregate operat-

ors. In the example, the insertions to sales,

Dsales, result in insertions (DSISales) and

deletions (rSISales) to the view SISales, which

is an aggregate view over the base relation sales. The

expressions that compute DSISales and rSISales,

as derived in [12], are quite complex (see [7]). As

SISales is not materialized, the maintenance expres-

sions for SISales essentially recompute the aggre-

gate values of the affected tuples in SISales from

the base relation sales. Using the propagation

equations from [12], one can propagate DSISales
and rSISales upwards to obtain expressions for

r CitySales, DCitySales,rCategorySales,

and DCategorySales. Figure 2a illustrates the [12]

technique for updating CategorySales in response

to insertions into sales. As emphasized in the figure,

the computation of DSISales and rSISales

require querying the base relation sales, because

the intermediate view SISales is not materialized.

Change-Table Technique. The change-table tech-

nique proposed in [7] is as follows. Instead of comput-

ing and propagating insertions and deletions beyond

an aggregate node SISales, a change table is com-

puted and propagated for SISales. (A change table is

a general form of summary-delta tables introduced in
e 2. (a) Insertion-deletion approach ([12]), and (b) The

1424 I Incremental Maintenance of Views with Aggregates
[9]). Propagation of change tables yields very efficient

and simple maintenance expressions for general view

expressions. The change table cannot be simply

inserted into or deleted from the materialized view.

Rather, the change table must be applied to the mate-

rialized view using a special ‘‘refresh’’ operator. Denote

the change table of a view V by □V , and a refresh

operator by REFRESH. In practice, there are certain

parameters passed with the REFRESH operator, but for

simplicity ignore the parameters here.

For our example, start with computing the change

table □SISales that summarizes the net changes to

SISales. For this first level of aggregates, the expres-

sion that computes □SISales is similar to that

derived in [9]. The change table □SISales is com-

puted from the insertions and deletions into sales by

using the same generalized projection (aggregation) as

that used for defining SISales. More precisely,

□SISales = p storeID,itemID,SumSISales=sum

(price),NumSISales=sum

(_count)(P storeID,itemID,price,

_count=1(sp(△sales))
U

PstoreID,

itemID, price= -price,_count= -1

(sp(▽sales))), where p is (date >

1/1/95)

Figure 2b presents an instance of the base relation

sales and the table Dsales, which is the set of

insertions into sales. For the given tables, Figure 2b

also shows the computed table□SISales. Next prop-

agate the change table □SISales upwards to derive

expressions for the change tables □CitySales and

□CategorySales.

□CitySales = pCity, SumCiSales=sum

(SumSISales),NumCiSales=sum

(NumSISales)(□SISales ⋈ stores)

□CategorySales = pcategory, SumcaSales=

(SumSISales), NumcaSales=

sum(NumSISales)(□SISales

⋈ items)

Figure 2b shows the change table □CategorySales

for the instance of the base table items in Fig. 1b.

The change table □CitySales can be similarly com-

puted. The new propagated change tables are then

used to refresh their respective materialized views

CitySales and CategorySales using the refresh

equations below. The details of the refresh equations

are in [7].
CitySales = CitySales REFRESH □City-

Sales, and

CitySales = CategorySales REFRESH

□CategorySales

As SISales is not materialized, it does not need to be

refreshed. Also, as emphasized in Fig. 2b, it is not

necessary to query the base relation sales for updat-

ing CitySales or CategorySales, which results in

huge savings. The refresh operation is illustrated by

showing how the CategorySales view is refreshed.

Figure 2b shows the materialized table Category-

Sales for the given instance of base tables. For

each tuple □v in □CategorySales, one looks for

a matching tuple in CategorySales using the

join condition CategorySales.category = □Cate-

gorySales.category (specified in one of the para-

meters of REFRESH). For example, the tuple <

C1,170,3> in □CategorySales matches with the

tuple v ¼ <C1,690,4>of CategorySales. The tuple

<C1,170,3> in □CategorySales means that three

more sales totaling $170 have occurred for C1 category.

The total number of sales for C1 is now 7 for a total

amount of $860. To reflect the change, the tuple v

is updated to <C1,860,7> by adding together the

corresponding aggregated attributes (specified in

another parameter of REFRESH).

Cost Comparison. It is shown in [7] that for typical

sizes of base tables and changes to the base tables, the

number of tuple accesses (reads and writes) incurred

by the change-table technique is an order or magni-

tude less than that by the insertion-deletion propaga-

tion technique.

Cross-references
▶Data Warehouse

▶View Maintenance

▶Views

Recommended Reading
1. Blakeley J.A. and Martin N.L. Join index, materialized view,

and hybrid hash join: A performance analysis. In Proc. 6th Int.

Conf. on Data Engineering, 1990, pp. 256–263.

2. Colby L., Kawaguchi A., Lieuwen D., Mumick I., and Ross K.

Supporting multiple view maintenance policies. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1997, pp. 405–416.

3. Griffin T. and Libkin L. Incremental maintenance of views with

duplicates. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1995, pp. 316–327.

4. Griffin T., Libkin L., and Trickey H. A correction to ‘‘incremental

recomputation of active relational expressions’’ by Qian and

Index Creation and File Structures I 1425

I

Wiederhold. Technical report, AT&T Bell Laboratories, Murray

Hill, NJ, 1994.

5. Gupta A., Jagadish H., and Mumick I.S. Data integration using

self-maintainable views. In Advances in Database Technology,

Proc. 5th Int. Conf. on Extending Database Technology, 1996,

pp. 140–144.

6. Gupta A., Jagadish H.V., and Mumick I.S. Maintenance and

self-maintenance of outerjoin views. In Proc. 3rd Workshops

on Next Generational Inf. Tech. and Syst., 1997.

7. Gupta H. and Mumick I.S. Incremental maintenance of aggre-

gate and outerjoin expressions. Inform. Syst., 31(6), 2006.

8. Gupta A., Mumick I., and Subrahmanian V. Maintaining views

incrementally. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1993, pp. 157–166.

9. Mumick I., Quass D., and Mumick B. Maintenance of data cubes

and summary tables in a warehouse. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1997, pp. 100–111.

10. Palpanas T., Sidle R., Cochrane R., and Pirahesh H. Incremental

maintenance for non-distributive aggregate functions. In Proc.

28th Int. Conf. on Very Large Data Bases, 2002, pp. 802–813.

11. Qian X. andWiederhold G. Incremental recomputation of active

relational expressions. IEEE Trans. Knowl. Data Eng., 337–341,

1991.

12. Quass D. Materialized Views in Data Warehouses. PhD thesis,

Stanford University, Department of Computer Science, 1997.

Chapter 4. Preliminary version appears as Maintenance Expres-

sions for Views with Aggregation in the ACM Workshop on

Materialized Views, 1996.
Incremental k-Distance Join

▶Closest-Pair Query
Incremental Maintenance of
Recursive Views

▶Maintenance of Recursive Views
Incremental View Maintenance

▶ Incremental Computation of Queries
Indefinite Information

▶ Incomplete Information
Index Creation and File Structures

STEVEN M. BEITZEL
1, ERIC C. JENSEN

2, OPHIR FRIEDER
3

1Telcordia Technologies Piscataway, NJ, USA
2Twitter Inc., San Fransisco, CA, USA
3Georgetown University, Washington, DC, USA

Synonyms
Indexing; Inverted indexes

Definition
A core element of modern information retrieval sys-

tems is the document index. The index is a set of data

structures that are constructed from a source docu-

ment collection with the goal of allowing an informa-

tion retrieval system to provide timely, efficient

response to search queries. The process of index crea-

tion typically involves reading and processing the

source document collection, parsing the text in each

individual document and extracting the necessary

features to allow for retrieving and ranking that

document in response to a user query. Additionally,

indexing systems often use dimension reduction, com-

pression, and other related techniques to drastically

reduce the storage footprint of the source collection

in its indexed form. Document indexes are frequently

stored in a set of file structures that are conducive to

rapid retrieval and ranking by an information retrieval

system in response to a query.

Historical Background
As document collections have grown in size, the need to

search them in an efficient and effective fashion has

grown accordingly. At the time of this writing, modern,

moderately-sized document collections measure in the

hundreds of gigabytes, with search engines indexing tens

of billions of pages [2]. Given the sheer scale of the search

problem, researchers have invested a considerable

amount of effort in recent years on developing efficient

file structures for indexing and storing large document

collections on disk. With the advent of the web (and the

subsequent rapid explosion of searchable digital docu-

ments) during a time inwhich disk space and processing

power were substantially more expensive than they are

now, indexing approaches typically focused on advanced

techniques for data compression to reduce the storage

footprint for an index (thoroughly discussed in [3]), and

on aggressive dimension reduction, such as the removal

1426 I Index Creation and File Structures
of very frequent terms (‘‘stopwords’’), or very short

documents, with the goal of reducing the total number

of objects of interest tracked by the index created over

the collection. As processing speeds have increased and

persistent storage has gotten cheaper, indexing systems

have focused on more complex algorithms intended to

capture a richer set of information about the documents

in the collection.

In addition to extracting key features (terms, fre-

quencies) from the source documents and construct-

ing data structures for storage and retrieval, indexing

systems often tailor their file structures to accommo-

date the specific needs of the information retrieval

system. For example, this may involve special exten-

sions to allow for high-performance updates to the

index, distributed indexing techniques for very large

collections or high-performance indexing, or the col-

lection of special metadata that are specific to the

search tasks at hand (i.e., localized search, news search,

expert search, etc). Many recent research efforts have

focused on these extensions to core indexing strategies.

An excellent survey can be found in [4].

Foundations
At a high level, indexing a collection of documents

involves three main steps. First, the document collec-

tion must be parsed. This involves reading in each

document in the collection and converting the source

text of each document into a single unified form that

is readable by other components in the indexing pro-

cess. This step typically resolves the formatting differ-

ences between different types of source documents

(i.e., HTMLweb pages, Microsoft Word™ documents,

PDF™ files, E-Mail messages, raw text, etc). For effi-

ciency purposes, it is often possible and desirable to

perform the document parsing step in a massively

parallel fashion since most documents can be parsed

in a completely independent fashion.

The second major step in the indexing process

involves extracting key features from the source text

of each document that will be used in the retrieval

process. In practice, the precise set of features is depen-

dant on the retrieval strategy of the overall system, but

distinct terms and their associated frequencies in each

document are almost always included.

The final step involves sorting any intermediate

representations and compiling them into a unified set

of final data structures for storing on the disk. A

common type of index structure that is frequently
referenced in the literature is the inverted index [1],

which represents a reasonably static document collec-

tion as a posting list, where each element in the list

maps a distinct term in the collection to a set of docu-

ments containing that term. Furthermore, this list can

be sorted in various ways depending on the optimiza-

tion strategies imposed by the underlying search en-

gine (sorting by descending term frequency is a

common approach, but there are many others). Each

node in the posting list entry (which represents a

document containing the term at the head of the

posting list entry) may contain extra information

about that term as it pertains to the document in

question. A common example of this is the term’s

position within the document, which is valuable for

proximity search, as well as presenting results with

keyword-in-context, meaning that result summaries

will display query terms highlighted with surrounding

text to give the user an idea of how their keywords are

used in the result document.

In many systems, the posting list is supported by a

secondary data structure known as a lexicon, which

contains an entry for each distinct term in the collec-

tion along with a set of metadata that help the retrieval

algorithms score target documents for relevance, in-

cluding statistics like the inverse document frequency

(IDF) of the term and the size of that term’s posting

list. Additionally, for efficiency purposes, the lexicon

may include offset addresses into the inverted file,

which is often stored as a random access file on the

disk. Other efficiency gains may be observed if the

lexicon is sufficiently small to fit in main memory,

which eliminates the need for extra disk-bound I/O.

For an example of inverted index construction, con-

sider a small collection with three documents. Docu-

ment one contains the text ‘‘This is document one.’’

Document two reads ‘‘This is document two, times

two’’ and document three reads ‘‘This is document

three, times three.’’ The indexing system must read and

parse these three documents, extract their terms, and

build the posting list and lexicon. Asmentioned above, a

common technique used to reduce the size of the index is

to remove very frequent terms that add little overall

information to a document’s content (typically called

‘‘stopwords’’). For this example, assume that the terms

‘‘this’’ and ‘‘is’’ are considered stopwords and removed

accordingly. Thus, at the end of the parsing process, five

distinct terms in this example collection remain: ‘‘docu-

ment’’, ‘‘times’’, ‘‘one’’, ‘‘two’’, and ‘‘three’’. Each distinct

Index Creation and File Structures. Figure 1. Example inverted index with Lexicon.

Index Join I 1427

I

term is represented as an entry in the posting list with the

associated lexicon, as shown in Fig. 1.

As discussed above, each element in the posting list

represents a distinct term in the collection, and each

term references a list of documents containing that

term along with the term frequency (TF) of that term

in the document. The Lexicon contains a listing of all

distinct terms alongwith their position in the posting list,

the total number of posting list nodes for the term, and

the inverse document frequency (IDF) of that term in the

collection, which is defined as the log of the ratio of total

documents to the number of documents containing the

term [1]. It is easy to see how the retrieval process could

operate using this data structure, simply looking up each

query term in the lexicon, using the position information

there to retrieve the posting list entry for that term, and

using the term frequency, IDF, and any other available

statistics to rank each document for inclusion in the final

results presented to the user.

Key Applications
Indexing processes and index file structures are re-

quired for virtually all modern Information Retrieval

systems, given the size and complexity of modern

document collections. In addition to indexing large,

relatively static collections of documents, there is also

research that addresses the construction and mainte-

nance of dynamic and distributed indexes, which rep-

resent a significant area of focus as the amount of

searchable data continues to grow and the need to

search becomes more and more pervasive and

decentralized.

Cross-references
▶ Lexical Analysis of Textual Data

▶ Stoplists

▶Text Index Compression
Recommended Reading
1. Grossman D. and Frieder O. Information retrieval: algorithms

and heuristics. 2nd Edn. Springer, 2004.

2. The size of the World Wide Web: www.worldwidewebsize.com –

Retrieved March, 2008.

3. Witten I.H., Moffat A., and Bell T.C. Managing gigabytes: com-

pressing and indexing documents and images. 2nd Edn. Morgan

Kaufmann, 1999.

4. Zobel J. and Moffat A. Inverted files for text search engines.

ACM Comput. Surv., 38:(2), 2007.
Index Join

JINGREN ZHOU

Microsoft Research, Redmond, WA, USA

Synonyms
Index join; Index loop join; Index nested loop join

Definition
The index join is a variant of the nested loop join in

database systems using index. The join predicate can

be either an equality predicate or a range predicate.

The algorithm starts with reading the outer relation R.

For each tuple R 2 R, instead of scanning the entire

inner relation S, an index on S is used to find matching

tuples and add them to the result.

Key Points
An index on S is applicable for an index join if one join

attribute is the leading indexed key of the index. If the

join predicate is an equality predicate, an index lookup is

performed for each outer tuple. If the join predicate is a

range predicate, for each outer tuple, an index seek is

performed to locate the first matching tuple, followed by

an index scan for the rest matching tuples. Compared

1428 I Index Loop Join
with the nested loop join, the index join saves disk I/Os

for reading the entire inner relation S multiple times.

Cross-references
▶ Evaluation of Relational Operators

▶ Parallel Join Algorithms

Recommended Reading
1. Mishra P. and Eich M.H. Join processing in relational databases.

ACM Comput. Surv., 24(1):63–113, 1992.
Index Loop Join

▶ Index Join
Index Nested Loop Join

▶ Index Join
Index Sequential Access Method
(ISAM)

▶Tree-based Indexing
Index Structures for Biological
Sequences

TAMER KAHVECI

University of Florida, Gainesville, FL, USA

Definition
Biological sequence databases are mainly composed of

DNA, RNA, and protein sequences. DNA and RNA

sequences are polymers of nucleotides, whereas proteins

are polymers of amino acids. A database of biological

sequences contains a set of biological sequences of

the same type. The length of each sequence varies from

less than a hundred to several hundred million bases.

An index structure on a database of biological seq-

uences helps in identifying sequences in that database
that are similar to a given query sequence quickly. The

definition of similarity depends on two orthogonal

parameters; similarity function and the length of the

similarity of interest.

The simplest similarity function is the edit dis-

tance, which measures the number of substitutions,

insertions, and deletions needed to transform one se-

quence to the other. More complex functions involve

variable gap penalties and substitution scores based on

how frequent substitutions are observed in nature. The

length of the similarity can be either the entire se-

quence (global alignment) or a subsequence of the

database and the query sequence (local alignment).

Depending on how the similarity is defined using

these parameters, the similarity may or may not be

metric. The index structure used for the biological

sequence database needs to be suitable to accommo-

date the underlying similarity measure.

Historical Background
Levene identified the nucleotide bases in 1919. He

found that the nucleotides can form a chain as the

phosphate in a nucleotide can create bond with other

nucleotide. Watson and Crick discovered the structure

of the DNA in 1953 using X-ray diffraction. The efforts

to create a database of DNA sequences, named Gen-

Bank, has started in 1979. By 1983, there were around

2,000 sequences in GenBank. Since then, the size of

genome databases is increasing exponentially [2]. Sta-

tistics show that the size of GenBank has doubled every

15 months. In August 2005, GenBank contained over

100 billion bases. This rapid growth in the size of the

biological sequence databases coupled with the costly

distance measures made the use of index structures

essential for this data type.

One of the earliest index structures used for

biological sequences is the hash table [10]. Hash tables

are often used to index k-grams (subsequences of

length k) of the sequences in the database. This index

structure is used to find exact matches between the

k-grams of a given query sequence and that of the

database sequences. Popular biological database search

tools such as FASTA [10] and BLAST [1] employed hash

tables to index k-grams. These tools created one

hash table entry for each unique k-gram. Thus, the

number of hash table entries is exponential in k. This

limits the value of k to a small number. Another draw-

back of the hash table is that the value of k has to

be predetermined at the time of index construction.

Index Structures for Biological Sequences. Figure 1.

A DNA sequence and the hash table constructed on it

when k = 2. The numbers in parenthesis show the binary

code of the corresponding sequence.

Index Structures for Biological Sequences I 1429

I

Therefore, the same sized k-grams need to be used for

all the queries. Pol and Kahveci incorporated ran-

domization to enable variable k value for hash table

construction [11].

Suffix trees and suffix arrays constitute another set

of commonly used index structures for biological

sequences. Suffix trees were first proposed by Weiner

[14] under the name position tree. Unlike the hash

table, this structure index all the suffixes of all the

sequences in the database. McCreight proposed a

space efficient technique for the construction of the

suffix trees [9]. Later, Ukkonen developed an on-line

construction method [12]. A variety of other suffix

tree implementations have also been proposed such

as implicit suffix tree [12], string B-tree [4] and suffix

array [8]. AVID [3] use the suffix tree structure to

query biological sequences.

Hash tables and suffix trees can identify exact

matches. The tools that use them perform additional

processing to identify approximate matches. Reference-

based index structures enable approximate searches.

The VP-tree (Vantage Point tree) [15] indexes the data

in general metric space with the help of references.

Omni method [5] proposed to select the references

near the convex hull of the database, far away from

each other. Venkateswaran et al, later showed that mul-

tiple references should be used to index a database

sequence, and the references should be a combination

of similar and distant sequences [13].

The Sequence Search Tree (SST) [6] maps each

sequence to a set of vectors in a high dimensional

integer space. It then builds an index on these vectors.

The Multi Resolution String (MRS) index structure [7]

also maps the subsequences into a high dimensional

integer space. Unlike SST, the mapping of the MRS

index structure allows computation of a lower bound

to the distance. This way MRS avoids false dismissals.

Foundations

Hash Tables

One of the most widely used index for sequence search

is the hash table (also called the lookup table). Hash

table enables quick lookup for a set of pre-specified

sequences. Usually, in the bioinformatics literature, the

hash table is built on the k-grams, where k is

predefined.

The hash table of a sequence is built using two

parameters: alphabet and k. Assume that the alphabet
contains s letters. The hash table encodes the ith letter

in the alphabet as the binary representation of i � 1

using dlog2se bits. For example, the letters in the DNA

alphabet {A, C, G, T} are encoded as A = 00, C = 01,

G = 10, and T = 11. The hash key of a k-gram is the

concatenation of the binary representations of the

letters that constitute that sequence. For example,

the DNA sequence GGCA is represented as 10100100.

Figure 1 shows the hash table built on a DNA sequence

for k = 2. In this example, the hash table contains 42

entries since s = 4. The total number of pointers to

database is the N � k + 1, where N is the number of

letters of the sequence indexed.

Suffix Trees

Suffix tree is a tree structure where each path from the

root to a leaf node denotes a suffix of the sequence that

it indexes. Thus, there is a bijection between the leaf

nodes and the suffixes. In order to be able to create this

bijection unambiguously, suffix tree increases the

length of each of the database sequences by one letter

by appending a unique ‘‘stop’’ character at the end

of the sequence. This character is not contained in

the alphabet that constitutes the database sequences.

Figure 2 shows the suffix tree built on sequence

CAGCATAG. The letter, $, marks the end of the se-

quence. Every path from the root node to a leaf node

through the solid arrows defines a suffixof this sequence.

The labels on the edges of each such path show the

Index Structures for Biological Sequences. Figure 2. Suffix tree built on the sequence CAGCATAG. The dashed arrow is

a suffix link. The letter, $, marks the end of the sequence.

Index Structures for Biological Sequences. Figure 3.

Suffix array built on the sequence CAGCATAG and the

corresponding suffixes indexed by the entries of this index.

1430 I Index Structures for Biological Sequences
contents on that suffix. The numbers at the leaf nodes

show the starting position of the suffix denoted by that

leaf. The dashed arrows in the figure are the suffix links.

There is a suffix link from an internal node u to another

internal node v if u and v are labeled with suffixes ca
and a respectively for a given letter c. Suffix links

enable faster construction of suffix trees.

Suffix trees are notorious for their excessive mem-

ory usage. Although the space complexity is O(n), the

constant in the big-Oh may be large. The size of the

suffix tree depends on the alphabet and the distribu-

tion of the letters in the database sequence. The litera-

ture reports the size of the suffix tree as 10–70 bytes per

letter in the database.

Suffix Arrays

Suffix arrays reduces the space consumption of suffix

trees to five bytes per letter at the expense of increased

search time complexity. The suffix array of a sequence

is an array of integers that shows the alphabetical

order of all suffixes of that sequence. Figure 3 shows

the suffixes of CAGCATAG and the suffix array con-

structed on it.

Reference-Based Indexing

Reference-based index structures work when the dis-

tance measure is metric. The distance measure is met-

ric when the distance function is metric and the entire

sequences are aligned. An example to metric distance
functions is the edit distance. Reference-based index

structures select a small number of sequences, referred

to as the set of reference sequences. Often, these refer-

ences are selected from the database sequences for

simplicity. However, it is possible select sequences

that are not in the database as references. The structure

pre-computes the distances between the references and

the database sequences. For a given a query sequence,

the query algorithm first computes the distance from

each of the references to the query sequence. It then

computes upper and lower bounds to the distance

between the query sequence and the database seq-

uences with the help of the pre-computed distances

Index Structures for Biological Sequences. Figure 4.

Reference based indexing. The small circles represent

database, reference and query sequences. Each database

sequence is indexed by two references. The solid lines

denote which references are used for each database

sequence. The distances between the sequences

connected by solid line are precomputed. The dashed lines

denote the distance between the query and the

references. These distances are computed on the fly as the

query arrives.

Index Structures for Biological Sequences. Figure 5.

Two dimensional illustration of reference-based indexing.

Here ref1 and ref2 are references. The query region is given

by its center q and radius r. qdist1 and qdist2 are query-to-

reference distances. rdist1 and rdist2 are distances from the

reference to the data p. bound1 and bound2 are the bounds

obtained using references.

Index Structures for Biological Sequences I 1431

I

in the index quickly. Thus, without any further com-

parisons, sequences that are too close to or too far away

from a reference may be removed from the candidate

set with the help of the triangle inequality. Figure 4

shows a reference based index where each database

sequence is indexed using two references.

Figure 5 illustrates reference-based indexing in a

hypothetical two-dimensional, space. Here, the data-

base sequences are represented by points. The distance

between two points in this space corresponds to the

underlying distance between the two sequences (e.g., if

the points denote sequences, rdist1 between the points

ref1 and p corresponds to the edit distance between the

sequences represented by them). In reference-based

indexing, the distances between the sequence p and

references ref1 and ref2 are pre-computed. Let rdist1
and rdist2 be the two pre-computed distances, respec-

tively. Given a query q with range r, the first step is to

compute reference-to-query distances qdist1 and qdist2.

A lower bound for the distance between sequences q

and p with reference ref1 is computed as bound1 =

jqdist1 � rdist1j using the triangle inequality. Similarly,

bound2 gives a lower bound for the distance between
q and p with reference ref2. Since bound1 > r with ref1
as the reference, sequence p can be pruned from the

candidate set of q.
Vector Space Indexing

This set of index structures first map the sequences to a

vector space (typically in a multi-dimensional integer

space) and build index structure on this space. An

example to this is the MRS (Multiple Resolution

String) index.

Let s be a sequence from the alphabet S =

{a1, a2,...,as}. Let ni be the number of occurrences of

the character ai in s for 1 	 i 	 s. The vector space

mapping of s is computed as f(s) = [n1, n2,...,ns]. The

vector, f(s) is called the frequency vector, of s. For

example, let s = AGCTTTTCATTCTGAC be a DNA

sequence. The frequency vector of s is f(s) = [3,4,2,7]

([#As,#Cs,#Gs,#Ts]), since the DNA alphabet contains

the letters A, C, G, and T.

The MRS index structure stores a sequence of Mini-

mum Bounding Rectangles (MBRs) at different resolu-

tion levels in the index structure. Resolutions are

represented using window size, which are powers of two.

In order to obtain the MBRs of a sequence at resolu-

tion 2i, a window of length w = 2i is placed at the

leftmost point of that sequence. Later, this window is

slid by one letter until it reaches to the end of that

sequence. Each placement of this window produces a

subsequence. The frequency vectors of all those win-

dows are computed. First, the minimum box, called

1432 I Index Structures for Biological Sequences
Minimum Bounding Rectangle (MBR), that covers the

frequency vector of the first subsequence is computed.

This box is later extended to cover more frequency

vectors until the box capacity is reached. Box capacity

is an integer that denotes the maximum number of

frequency vectors that an MBR can contain. Typically,

this number is set to 1,000 to achieve good performance

result. Once the box capacity is reached, a new MBR

is created to cover the next subsequences. This process

continues until all subsequences are transformed.

Note that only the lower and higher end points of the

MBRs along with the starting locations of the first

subsequence contained in that MBR are stored for

each MBR.
Key Applications
The ability to query large biological sequence databases

is needed in nearly all areas of molecular biology,

pharmacology, plant sciences and horticulture. Two

example applications are as follows.

Repeat identification. DNA sequences contain large

amounts of repeating patterns. Identifying these pat-

terns is essential for many purposes. For example,

repeat copy numbers can help in determining ancestral

relationship, which is often needed to identify victims,

criminals, parenthood, whether a race horse is pure

breed, etc. Furthermore, identifying these repeats is

needed for more accurate sequence assembly and for

high quality primer production. Identifying repeats

require comparing the sequences in a repeat library

and the target sequence (library-based repeat identifi-

cation) as well as a self comparison of the target se-

quence (de-novo repeat identification). The size of the

target sequence and the repeat library often necessi-

tates the use of an index structure.

Shotgun sequencing. One of the commonly used

technologies to identify the letters in large chromo-

somes is called shotgun sequencing. This technology

first produces multiple copies of a given long DNA

sequence. It then chops these sequences into short

fragments from (almost) random locations using re-

striction enzymes. It then identifies the sequences that

have less than 1,000 letters using high throughput

sequencing machines. This process produces a bag of

short subsequences of the target DNA sequences. The

challenge is then to reassemble the original long DNA

sequence from these short fragments. This problem

requires an all-to-all sequence comparison for repeat
and overlap detection. The massive size of the database

makes it essential to use an index structure.
Data Sets
GenBank http://www.ncbi.nlm.nih.gov/Genbank/

PDB http://www.rcsb.org/pdb/

SwissProt http://ca.expasy.org/sprot/
Cross-references
▶Biological Sequence

▶Query Languages and Evaluation Techniques for

Biological Sequence Data
Recommended Reading
1. Altschul S., Gish W., Miller W., Meyers E.W., and Lipman D.J.,

Basic Local Alignment Search Tool. J. Mole. Biol., 215

(3):403–410, 1990.

2. Benson D., Karsch-Mizrachi I., Lipman D., Ostell J., Rapp B.,

andWheeler D. GenBank. Nucleic Acids Res., 28(1):15–18, 2000.

3. Bray N., Dubchak I., and Pachter L. AVID: a global alignment

program. Genome Res., 13(1):97–102, 2003.

4. Ferragina P. and Grossi R. The string B-tree: a new data structure

for string search in external memory and its applications.

J. ACM, 46(2):236–280, 1999.

5. Filho R.F.S., Traina A.J.M., Caetano Traina J., and Faloutsos C.

Similarity search without tears: The OMNI family of all-purpose

access methods. In Proc. 17th Int. Conf. on Data Engineering,

2001, pp. 623–630.

6. Giladi E., Walker M., Wang J., and Volkmuth W. SST: an algo-

rithm for finding near-exact sequence matches in time propor-

tional to the logarithm of the database size. Bioinformatics, 18

(6):873–877, 2002.

7. Kahveci T. and Singh A. An efficient index structure for string

databases. In Proc. 27th Int. Conf. on Very Large Data Bases,

2001, pp. 351–360.

8. Manber U. and Myers E. Suffix arrays: a new method for on-line

string searches. SIAM J. Comput., 22(5):935–948, 1993.

9. McCreight E. A space-economical suffix tree construction algo-

rithm. J. ACM, 23(2):262–272, 1976.

10. PearsonW. and Lipman D. Improved tools for biological sequence

comparison. In Proc. Natl. Acad. Sci., 85:2444–2448, 1988.

11. Pol A. and Kahveci T. Highly scalable and accurate seeds for

subsequence alignment. In Proc. IEEE Int. Conf. on Bioinfor-

matics and Bioengineering, 2005.

12. Ukkonen E. On-line Construction of Suffix-trees. Algorithmica,

14:249–260, 1995.

13. Venkateswaran J., Lachwani D., Kahveci T., and Jermaine C.

Reference-based indexing for metric spaces with costly distance

measures. VLDB J. 17(5):1231–1251, 2008.

14. Weiner P. Linear pattern matching algorithms. In Proc. IEEE

Symposium on Switching and Automata Theory, 1973, pp. 1–11.

15. Yianilos P. Data structures and algorithms for nearest neighbor

search in general metric spaces. In Proc. 4th Annual ACM -

SIAM Symp. on Discrete Algorithms, 1993, pp. 311–321.

Index Tuning I 1433

I

Index Tuning

PHILIPPE BONNET
1, DENNIS SHASHA

2

1University of Copenhagen, Copenhagen, Denmark
2New York University, New York, NY, USA

Definition
Index Tuning is concerned with when and how to

construct an index.

Historical Background
When relational models were first introduced, custo-

mers complained that vendors had introduced them to

slowed down customer applications in order to make

the customers buy more hardware. Vendors and

researchers responded to the performance challenge

by incorporating existing data structures (notably B-

trees and hash structures) and improving many new

ones (notably bit vectors and multi-dimensional in-

dexes). The decision of which data structures to create

was left to the user. This entry concerns that decision.

Foundations
An index is a data structure plus a method of arranging

the data tuples in the table (or other kind of collection

object) being indexed. The syntax for constructing

indexes is discussed elsewhere. This entry presents the

tuning considerations.

Two data structures are most often used in practice

for indexes: B+-trees and Hash structures. Of these,

B+-trees are used the most often. The folk wisdom

holds that if one doesn’t know which kind of indexes

to put on a column or set of columns and scanning

is too slow, then one should use a B+-tree. When

performing accesses based on equality, however, hash

structures perform better.

The main tuning consideration for B+-trees is

to avoid having too many levels. Because an access to

disk secondary memory costs a few milliseconds if it

requires a seek (as index accesses will) and even an

access to flash memory may require switching blocks

(a relatively expensive operation), the performance of a

B+-tree depends critically on the number of nodes in

the average path from root to leaf – the number of

levels (the root will tend to be in RAM, but the other

levels may or not be, and the farther down the tree the

search goes, the less likely it is for the nodes to be in

RAM). One technique that database management
systems use to minimize the number of levels is to

make each interior node have as many children as

possible (1,000 or more for many B+-tree implemen-

tations). The maximum number of children a node can

have is called its fan-out. Because a B+-tree node con-

sists of key-pointer pairs, the larger the key is, the lower

the fan-out.

For example, a B+-tree with a million records and a

fan-out of 1,000 requires three levels (including the

level where the records are kept). A B+-tree with a

million records and a fan-out of 10 requires seven

levels. If one increases the number of records to a

billion, the numbers of levels increase to four and ten

respectively. This is why accessing data through indexes

on large keys is slower than accessing data through

small keys on most systems (the exceptions are those

few systems that offer good compression).

Hash structures, by contrast, store key–value pairs

based on a pseudorandomizing function called a hash

function. The hash function can be thought of as the

root of the structure. Given a key of any size, the hash

function returns a location that contains either a page

address (usually on disk) or a directory location that

holds a set of page addresses. That page either contains

the key and associated record or is the first page of

a linked list of pages, known as an overflow chain

leading to the record(s) containing the key. (One can

keep overflow chaining to a minimum by allocating

enough hash buckets such that the space in the hash

buckets is at least twice the space required to hold the

data.) In the absence of overflow chains, hash struc-

tures can answer equality queries (e.g., find the em-

ployee with a certain Social Security number) in one

disk access, making them the best data structures for

that purpose.

The data structure portion of an index has pointers

at its leaves to either data pages or data records. If there

is at most one pointer from the data structure to each

data page, then the index is said to be sparse. If there is

one pointer to each record in the table, then the index

is said to be dense.

If records are small compared to pages, then there

will be many records per data page and the data struc-

ture supporting a sparse index will usually have one

fewer level than the data structure supporting a dense

index. This means one less disk (or flash block) access

if the table is large. By contrast, if records are almost as

large as pages, then a sparse index will rarely have

better disk access properties than a dense index.

1434 I Index Tuning
The main virtue of dense indexes is that they can

support certain read queries within the data structure

itself in which case they are said to cover the query.

For example, if there is a dense index on the keywords

of a document retrieval system, a query can determine

the number of records containing some term, e.g.,

‘‘derivatives scandals,’’ without accessing the records

themselves (Count information is useful for that ap-

plication, because queriers frequently reformulate a

query when they discover that it would retrieve too

many documents). A secondary virtue is that a query

that makes use of several dense indexes can identify all

relevant tuples before accessing the data records. In-

stead, one can form intersections and unions of poin-

ters to data records or of record identifiers.

A clustering index on an attribute (or set of attri-

butes) X is an index that puts records close to one

another if their X-values are near one another. What

‘‘near’’means depends on the data structure. On B-trees,

two X-values are near if they are close in their sort

order. For example, they are close numerically or

alphabetically. In hash structures, two X-values are

near only if they are identical. Index-organized tables

are clustering indexes where X is the primary key.

Sparse indexes must be clustering, but clustering

indexes need not be sparse. In fact, clustering indexes

are sparse in some systems (e.g., SQL Server, ORACLE

hash structures) and dense in others (e.g., ORACLE

B-trees, DB2). Because a clustering index implies a

certain table organization and the table can be organized

in only one way at a time, if there is a clustering index on

the sequence of attributes Y, then any other clustering

index on attributes Xmust have the property that X is a

prefix of Y or Y is a prefix of X.

A nonclustering index (sometimes called a secondary

index) is an index on an attribute (or sequence of attri-

butes) Y that puts no constraint on the table organiza-

tion. The table can be clustered according to some

other attribute X or can be organized as a heap, as

discussed below. A nonclustering index must be dense,

so there is one leaf pointer per record. There can be

many nonclustering indexes per table.

A heap is the simplest table organization of all. In

the basic implementations, records are ordered accord-

ing to their time of entry. That is, new insertions are

added to the last page of the data structure. In this case,

inserting a record requires a single page access.

Nonclustering indexes are very useful if they cover a

query but can also be useful if the query retrieves
significantly fewer records than there are pages in the

file. The word ‘‘significant’’ needs explanation: a table

scan can often save time by reading many pages at

a time, provided the table is stored on contiguous

tracks. Therefore, if a query requires most records

in a table, a scan may be 2–10 times faster than an

index read.

Decision support applications often entail query-

ing on several, perhaps individually unselective, attri-

butes. For example, ‘‘Find people in a certain income

range who are male, live in California, buy boating

equipment, fish, drive a sports car, and work in the

computer industry.’’ Each of these constraints is unse-

lective in itself, but together form a relatively small

result. The best all-around data structure for such a

situation is the bitmap. A bitmap is a collection of

vectors of bits. The length of each vector equals the

length of the table being indexed and has a 1 in posi-

tion i if the ith record of the table has some property.

For example a bitmap on state in the United States

would consist of 50 vectors, one for each state. The

vector for California would have a 1 in its ith position

if record i pertains to a person from California.
Key Applications
Indexes are necessary in any application that handles

large amounts of data. Which indexes to choose can

have an enormous impact on performance. An index

may reduce the time to execute a query from hours to a

few seconds in one application, yet increase batch

load time by a factor of 80 in another application.

Add them with care.
Experimental Results

Covering Experiment

This experiment illustrates two of the issues discussed

above: (i) the potential benefit of covering index, and

(ii) the trade-off between scans and non-clustered in-

dexes. This experiment considers the table ACCOUNT

with 25 attributes, and the following query:

select home_street, last_name from ACCOUNT

where first_name=‘first_name12’;

The ACCOUNT table has three different indexes:

(i) a covering index on first_name, home_street and

last_name, (ii) another covering index on home_street,

first_name and last_name, and (iii) a non-clustered

index on first_name. The experiment runs the same

Index Tuning. Figure 1. Covering experiment.

Indexed Sequential Access Method I 1435

I

query using these three different indexes as well as with

no index. The experiment runs those queries on

MySQL 6.0 with a cold buffer (i.e., the database cache

is empty and IO are required to complete the query).

Figure 1 traces the results.

First, the covering index provides the best perfor-

mance. The reason is that the query can be answered

using the index. There is no need to dereference the

index leaf pointers to access the underlying table. Sec-

ond, the order of attributes in the covering index is

crucial. In this query, the attribute first_name is used

in the WHERE clause. A covering index has the most

beneficial effect when the prefix attributes in the index

key are those attributes that appear in the where clause.

Third, scan sometimes wins over a non clustered

index. The reason is that the few random IOs that are

necessary to complete the query (the data is generated

so that first_name has a 1% selectivity) take more time

than the sequential IOs required to scan the whole

table.
URL to Code and Data Sets
Index experiments: http://www.databasetuning.org/?

sec=index
Cross-references
▶B+-Tree

▶Bitmap Index

▶Hash-based Indexing
Recommended Reading
1. Celko J. Joe Celko’s SQL for Smarties: Advanced SQL Program-

ming (3rd edn.). Morgan Kaufmann, San Fransisco, CA, 2005.

2. Kimball R. and Ross M. The Data Warehouse Toolkit: The

Complete Guide to Dimensional Modeling (2nd edn.). Wiley,

New York, NY, 2002.

3. Shasha D. and Bonnet P. Database Tuning: Principles, Experi-

ments and Troubleshooting Techniques. Morgan Kaufmann, San

Fransisco, CA, 2002.

4. Tow D. SQLTuning. OReilly, Sebastopol, CA, 2003.
Indexed Sequential Access Method

ALEX DELIS
1, VASSILIS J. TSOTRAS

2

1University of Athens, Athens, Greece
2University of California-Riverside, Riverside, CA, USA

Synonyms
Indexed sequential file; ISAM file; ISAM

Definition
An indexed sequential access method is a static, hierar-

chical, disk-based index structure that enables both

(single-dimensional) range and membership queries

on an ordered data file. The records of the data file

are stored in sequential order according to some data

attribute(s). Since ISAM is static, it does not change its

structure if records are added or deleted from the data

1436 I Indexed Sequential Access Method
file. Should new records be inserted into the data file,

they are stored in an overflow area. Deleted records are

removed from the file (leaving empty space).
Historical Background
Although transparent for the user of a DBMS, access

methods play a key role in database performance. A

major performance goal of a DBMS is to minimize the

number of I/Os (i.e., blocks or pages transferred) be-

tween the disk and main memory. One way to achieve

this goal is to minimize the number of I/Os when

answering queries. Note that many queries reference

only a small portion of the records in a database table.

For example the query: ‘‘find the employees who reside

in Santa Monica, CA’’ references only a fraction of the

records in the Employee relation. It would be rather

inefficient to have the database system sequentially

read all the pages of the Employee file and check the

residence field of each employee record for the name

‘Santa Monica’. Instead the system should be able to

locate the pages with ‘Santa Monica’ employee records

directly. To allow such fast access, additional disk-

resident structures called indices (or access methods)

are designed per database relation. One of the first

such methods developed was the index sequential access

method (ISAM). ISAM was developed at IBM in late

1960s [3] and it is essentially the predecessor to

the widely used B+-tree index. A major difference

between ISAM and the B+-tree [1] is that instead

of overflowing pages, the B+-tree introduces page

splitting. The ISAM was later replaced by IBMs virtual

storage access method (VSAM) [4] which introduced

the notion of splitting (data or index pages) when there

is not enough space for inserting a new record.
Foundations
The ISAM structure contains three separate storage

areas: the data file, the index file and the overflow

area. For simplicity, assume that the data file is an

Employee relation, ordered according to the social

security number or ssn attribute. Moreover, assume

that this relation is stored sequentially on the disk,

following the logical order of the ssn attribute. If the

Employee file has n records and one page can hold B

Employee records, the total number of pages in this file

is O(n ∕B). Note that each file page is full of Employee

records except possibly the last page. Moreover, given

the sequential storage of the file, each page can easily
access the next page of the file in ssn order (it is simply

the next physical page on the disk).

A straightforward way to build an index on the

Employee file is to create a new (much smaller) file

that contains one representative record from each Em-

ployee file page. The records in this new file are of the

form: <search_value, ptr> where ptr is a pointer to an

Employee file page (a page-id number uniquely identi-

fying the page on the disk) and search_value is the

smaller ssn recorded in that page. Since these records

are smaller in size than the Employee file records, each

page of the new file will contain many of them. If the

Employee file is large, the new file will spread over a

number of pages (this number is clearly bounded by

O(n ∕B2)). However, since the new file is also an ordered

file (it has two attributes and is ordered according to

the search_value attribute) it can be indexed by another

(even smaller) level of index pages, and so on. This

process continues until the creation of an index layer

that consists of a single page. As a result a multi-way,

tree-structured index is created whose nodes corre-

spond to pages (see Fig. 1). It is worth pointing out

that all index pages from possibly multiple index levels

are resident in the index file area of the ISAM.

The ISAM organization is a single-dimensional (as

opposed to multi-dimensional) index. It supports

searches on the attribute (or collection of attributes)

on which the data file is ordered. For example, searching

the indexed sequential access method for a given ssn K

(i.e., a membership query) is simple. The search starts

from the root page where the record with the largest

search_value that is less or equal to K is located. The

search then continues to the page in the next index

level, pointed by this record, until a page of the

Employee file is reached. If K is found among the ssn

values of that Employee page, the appropriate record is

returned as answer to the query. If K is not found the

answer is empty. It is easy to see that this search takesO

(logB(n ∕B)) page accesses (I/Os) as this is the height (in

pages) of the tree. The reader should note that the

logarithm is base B, the size of the page, since this is a

multi-way tree where each node has O(B) fan-out.

Range queries (as in: find the Employee records with

ssn in the range [25, 100]) are addressed similarly. A

search is first performed for the ssn defining the lower

part of the range (in the above query example this

would be ssn = 25). This look-up will lead to an

appropriate Employee record located in some file

page. Records with higher ssn values within this page

Indexed Sequential Access Method. Figure 1. An indexed sequential access method.

Indexed Sequential Access Method I 1437

I

are accessed until a record with ssn larger than the

upper limit of the query range is found. If the upper

limit of the query range is higher than the highest ssn

in this page, the next page of the file is accessed and so

on (recall that the file is stored sequentially). The

search stops when an Employee page is found that

contains a record with ssn larger than the query range.

If a denotes the answer size to a range query (num-

ber of Employee records satisfying the query range

predicate), ISAM answers a range query in O(logB(n ∕
B)þa ∕B) I/Os. Note that the logarithmic part is spent

to find the Employee page with the first record that

satisfies the query predicate (if any) and the O(a ∕B)
part corresponds to accessing the rest of the Employee

pages that contain answer.

While the use of the index greatly facilitates query

time, there is of course a space overhead, since the

access method itself uses pages to store its records.

However, this overhead is minimal. The number of

pages used by the index structure is still bounded

by O(n ∕B). This is because the first level uses at most

O(n ∕B2) pages, the second at most O(n ∕B3) and so on.

An interesting observation is that an indexed se-

quential access method imitates binary search on a

disk-based environment. However, given that at each

node of the index a whole page is accessed, there are

O(B) choices (instead of just 2 in the binary search) at

each node.

The main advantages of the ISAM organization

are its simplicity, small space overhead and fast query

time. The structure however is static. If new records

are added in the Employee file they are handled in
an overflow file. Since there is no empty space in the

data file, overflow pages are created to store the new

records. Such pages are typically chained to the page

where a record should have been stored (see Fig. 2).

Various proposals exist on how to handle the overflow

file [2,4,5,6]. Nevertheless, the structure of the index

does not change as the size of the data file changes. This

eventually affects query time. The overflow file can be

merged periodically with the main Employee file, at

which time the index needs to be recreated. Similarly,

if records are deleted in the original Employee file,

pages may be left containing very few records which

affects both storage and query time. These pro-

blems are solved by the B+-tree, which is a dynamic

indexing scheme [1].

There are two main differences between ISAM and

B+-tree: firstly, when a new page is created in the B+-

tree, space is left to accommodate future insertions. In

practice, a newly created page starts half empty so

that it can store many new records before a structural

re-organization is needed. If the page becomes full of

records and a new record is directed to it, the page is

split into two pages (that are half full). Secondly, a page

in the B+-tree is not allowed to become scarce of

records (unless it is the tree’s root page). As a result,

when a page is accessed, it is guaranteed to contain

a minimum number of records. If due to deletions a

pages record occupancy falls below the threshold (half

the page size) the page is merged with another page so

that the combination has enough records. Note that

leaving pages half empty imposes additional space

overhead for the B+-tree than the ISAM; however it

Indexed Sequential Access Method. Figure 2. The indexed sequential access method with overflows.

1438 I Indexed Sequential File
results into a very effective dynamic height-balanced

indexing scheme.

Finally, ISAM can be considered as the tree-based

index alternative to the static external hashing. Both

schemes are static and overflow areas are used for addi-

tional records. Their major difference is that ISAM can

perform both range and membership queries, while

static external hashing is designed only for membership

queries.

Key Applications
ISAM has been used in early database management

systems as an index method to provide fast access to

range and membership queries. It was later replaced

by the VSAM structure [4] which introduced the notion

of page splitting. Finally, the B+-tree was proposed as

a dynamic indexing structure [1] and is now the standard

access method in most relational database systems.

Cross-references
▶B+-Tree

▶ Indexing

▶Membership Query

▶Range Query

Recommended Reading
1. Bayer R. and McCreight E. Organization and maintenance of

large ordered indexes. Acta Inf., 1(3):173–183, 1972.

2. Behymer J.A., Ogilive R.A., and Merten A.G. Analysis of indexed

sequential and direct access file organizations. In Proc. 1974

ACM SIGFIDET (SIGMOD) Workshop on Data Description,

Access and Control, 1974, pp. 186–212.

3. IBM Corporation. IBM System/360 Operating System Data

Management Services, February 1972. Second Edition, C26-

3746-1.
4. Keehn D.G. and Lacy S.O. VSAM Data set design parameters.

IBM Syst. J. 13(3):186–212, 1974.

5. Larson P. Analysis of index-sequential files with overflow chain-

ing. ACM Trans. Database Syst., 6(4):671–680, 1981.

6. Mullin J.K. An improved index sequential access method using

hashed overflow. Commun. ACM, 15(5):301–307, May 1972.

7. Wong K.F. and Strauss J.G. An analysis of ISAM performance

improvement options. Manag. Datamat. J., 4(3):95–107, 1975.
Indexed Sequential File

▶ Index Sequential Access Method
Indexing

▶Biomedical Scientific Textual Data Types and Pro-

cessing

▶ Index Creation and File Structures

▶ Physical Database Design for Relational Databases
Indexing and Similarity Search

MICHAIL VLACHOS

IBM T.J. Watson Research Center, Hawthorne,

New York, USA

Synonyms
Data organization; Hierarchical data organization;

Space segmentation; Space partitioning

Indexing and Similarity Search I 1439
Definition
Indexing refers to the process of efficient data organi-

zation. It is closely related to similarity search because

it allows such costly operations over a large dataset of

objects to be efficiently sped up. Indices (or indexes)

are hierarchical structures that direct the search to the

most promising part of the database, hence eliminating

from examination a large portion of objects. One can

make the analogy with phone books, where all entries

are recorded in sorted alphabetical order; therefore

search involves only the lookup at the relevant portion

of the book.
I

Historical Background
Traditional indexing structures include the B-trees.

However, B-trees organize the data based on a single

attribute/feature. Many of todays multimedia data

contain hundreds or thousands of features. As an

example, a small B&W image of 50 � 50 pixels con-

tains 2,500 points/features. In order to accommodate

objects that contain more attributes, extensions to the

indexing schemes have been presented. Such indexes

include kd-trees [3], grid files [9], as well as R-trees [7]

and its variants [2], and the various incarnations of

metric trees (VP-trees [12], M-trees [6]). The ultimate

goal of a successful index is to divide object space into

areas with approximately equal density using a set of

heuristics.

Indexes work on simplified representations of the

original data, since they do not perform well for raw

data with high dimensionalities. This phenonenon is

known as the ‘‘curse of dimensionality’’, which means

that for higher dimensionalities, the pruning power of

the indices diminishes exponentially, and all sequences

are eventually retrieved from the disk. Therefore, when

an index is utilized, it is necessary to perform some

data compression, also called dimensionality reduc-

tion, because this data compaction will boost the

index performance.

After the raw data are compacted from the original

dimensionality n to some lower dimensionality d, the

compressed d-dimensional objects/points are stored in

the index structure in order to expedite the search

process.
Foundations
An index can facilitate the fast similarity search over

the database of objects. Therefore, a user is posing a
query object q against a database and is seeking the

most similar (or kmost similar) objects to the query q,

for a given similarity measure that assesses the affinity

between a pair of objects.

Index structures attribute their search efficiency to

two factors:

1. Effective space partitioning. Similar objects are

grouped at the same portion of the index, such

that for a given query large parts of the database

can be eliminated from examination.

2. Usage of simplified versions of the data objects. This

shrinks significantly the index size, compared to the

storage requirements of the original database. There-

fore, search operations on the index are much

faster than on the original uncompressed data.

Consider a large database of objects, over which fast

search needs to be enabled. If objects are high-dimen-

sional, they will first be simplified in order to be stored

in an index. Techniques like PCA, Fourier or Wavelet

transform, etc., can be utilized at this step. For this

example, in order to enhance visualization, the data-

base objects correspond to images. The images can be

simplified and represented using two features: the

‘‘number of red pixels’’ and the ‘‘number of blue pix-

els’’. Using these features, each image will be repre-

sented as a point on a two-dimensional space. Given

these projected dimensions, two sets of images depict-

ing underwater and wildlife images will be clustered as

shown in Fig. 1. The way this new space is partitioned

and searched, depends on the specifics of the utilized

index.
Key Applications
The following sections explain in more detail the

inner-workings of widely used instances of index struc-

tures, such as the R-trees (space partitioning index)

and the VP-trees (metric index).
R-Trees

The R-tree structure represents an extension of the

B-tree for multiple dimensions. It has been proposed

in 1984 by Antonin Guttman [7] and since then it has

been utilized extensively in the database and data-

mining fields.

A d-dimensional R-tree is a hierarchical structure

of rectangles, with leaves and intermediate nodes.

The leaves store d-dimensional hyper-rectangles

Indexing and Similarity Search. Figure 1. Left: Database of images and a potential two-dimensional representation.

Right: The corresponding R-tree is a hierarchical structure of rectangles.

1440 I Indexing and Similarity Search
(or d-dimensional points) and a pointer to the

object they describe. The intermediate nodes store a

hyper-rectangle that completely contains the rectan-

gles of their child-nodes, as well as pointers to the

child-nodes.

In Fig. 1 a potential R-tree structure is depicted,

based on the previously discussed example. Suppose

now, that a query q is posed against the database

of images. The query is mapped into a new point in

the projected space (shown as a triangle in Fig. 1). For

a range search one needs to find the overlapping

rectangles within the requested search radius. for a

k-NN search [10,11] one can define a MINDIST opera-

tor between a point and a rectangle and start traversing

the tree according to the most promising path, while

recording the remaining paths in a priority queue.

The tree traversal can be either depth-first or

breadth-first.

For example, if the user is seeking the 3-NN of the

query q, then rectangle C will be pushed into the

priority queue (see Fig. 1). It will be popped out and

its children (A and B) will be pushed in and sorted

according to their minimum distance to q. Subse-

quently, rectangle B will be examined first, because

it is the closest one to the query. Its objects will

be retrieved and their true distance to q shall be calcu-

lated. The search will end here, because the third clos-

est neighbor found so far, has distance smaller than
MINDIST (q, Rectangle(A)). Therefore, none of the

objects of rectangle A need to be retrieved from disk.

Figure 2 demonstrates another example of the hier-

archical structure of an R-tree.

VP-Trees

According to the relevant bibliography, the prun-

ing power of space partitioning indexing structures

like R-trees, and its variants, degrades for data dimen-

sionalities larger than 5–8. This means that at high

dimensionalities the index will retrieve the majority

of objects from the disk.

Metric trees exhibit better performance at larger

dimensionalities (e.g., up to 20–25 dimensions).

Metric trees utilize the distances between objects in

order to create the tree and direct the search process.

A popular instance of metric-trees are the VP-trees

[4,5,12]. VP-trees partition the space based on dis-

tances to selected vantage points of the dataset.

A tree containing the objects is constructed by recur-

sively partitioning the dataset points into two distinct

sets based on the median distance m to the vantage

point/object; the points that are closest to the van-

tage point (S<) are stored on the left subtree, and

those that are further away from the median distance

(S>) are directed on the right subtree. The process

is repeated recursively and a different vantage point is

selected for each of the remaining subsets. Figure 3

Indexing and Similarity Search. Figure 2. Bottom-up hierarchical construction of the two-dimensional R-tree.

Indexing and Similarity Search. Figure 3. Illustration of the creation of a VP-tree.

Indexing and Similarity Search I 1441

I

1442 I Indexing Compressed Text
illustrates this process on two-dimensions for clarity

(each point essentially represents one object).

After the tree is constructed and a query is posed,

one only has to examine the proper subset based on the

position of the query. Only if the query lies close

to the median distance, both subsets need to be exam-

ined, otherwise one of them is discarded from

examination.

Cross-references
▶Curse of Dimensionality

▶Data Partitioning

▶Dimensionality Reduction

▶Multimedia Data Indexing

Recommended Reading
1. Agrawal R., Faloutsos C., and Swami A. Efficient Similarity

Search in Sequence Databases. In Proc. 4th Int. Conf. on

Foundations of Data Organization and Algorithms, 1993,

pp. 69–84.

2. Beckmann N., Kriegel H.-P., Schneider R., and Seeger B. The

r*-tree: An efficient and robust access method for points and

rectangles. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1990, pp. 322–331.

3. Bentley J. Multidimensional divide and conquer. Commun.

ACM, 23(4):214–219, 1980.

4. Bozkaya T. and Özsoyoglu M. Distance-based indexing for high-

dimensional metric spaces. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1997, pp. 357–368.

5. Chee Fu A.W., Chan P.M., Cheung Y.L., and Moon Y. Dynamic

VP-tree indexing for N-nearest neighbor search given pair-wise

distances. VLDB J., 9(2): 154–173, 2000.

6. Ciaccia P., Patella M., and Zezula P. M-tree: An efficient access

method for similarity search in metric spaces. In Proc. 23th Int.

Conf. on Very Large Data Bases, 1997, pp. 426–435.

7. Guttman A. R-trees: A dynamic index structure for spatial

searching. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1984, pp. 47–57.

8. Keogh E., Chakrabarti K., Pazzani M., and Mehrotra S. Locally

adaptive dimensionality reduction for indexing large time series

databases. In Proc. ACM SIGMOD Int. Conf. onManagement of

Data, 2001, pp. 151–162.

9. Nievergelt J., Hinterberger H., and Sevcik K.C. The grid file: An

adaptable, symmetric multikey file structure. ACM Trans. Data-

base Syst., 9(1):38–71, 1984.

10. Roussopoulos N., Kelley S., and Vincent F. Nearest neighbor

queries. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1995, pp. 71–79.

11. Seidl T. and Kriegel H.-P. Optimal multi-step k-nearest neighbor

search. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1998, pp. 154–165.

12. Yianilos P. Data structures and algorithms for nearest neighbor

search in general metric spaces. In Proc. 4th Annual ACM -

SIAM Symp. on Discrete Algorithms, 1993, pp. 311–321
Indexing Compressed Text

PAOLO FERRAGINA, ROSSANO VENTURINI

University of Pisa, Pisa, Italy

Synonyms
Compressed full-text indexing; Compressed suffix

array; Compressed suffix tree; Compressed and search-

able data format

Definition
Given a text T[1,n], the Compressed Text Indexing

problem requires to building an indexing data struc-

ture over T that takes space close to the empirical

entropy of the input text and answers queries on

the occurrences of an arbitrary pattern P[1,p] in T

without any significant slowdown with respect to

uncompressed indexes. There are three main queries:

count(P), that returns the number of pattern occur-

rences in T, locate(P), that returns the starting

positions of all pattern occurrences in T, and

extract(i, j), that retrieves the substring T[i, j].
Historical Background
String processing and searching tasks are at the core of

modern web search, information retrieval (IR), data

base and data mining applications. Most of text

manipulations required by these applications involve,

sooner or later, searching those (long) texts for (short)

patterns or accessing portions of those texts for

subsequent processing/mining tasks. Despite the in-

crease in processing speed of current CPUs and mem-

ories/disks, sequential text searching long ago ceased

to be a viable approach, and indexed text searching

has become mandatory.

A (full-)text index is a data structure built over a

text T[1,n], drawn from an alphabet S of size s, which
significantly speeds up sequential searches for arbitrary

pattern strings, at the cost of some additional space.

Suffix trees and suffix arrays are the most well-known

full-text indexes [5]. The suffix tree of a text T is a trie

(or digital tree) built on all the n text suffixes T[i, n],

where unary paths are compacted to ensure O(n) over-

all size. The suffix tree has n leaves, one per text suffix,

and each internal node corresponds to a unique sub-

string of T that occurs more than once. The suffix tree

can count the occ occurrences of any pattern P[1,p] in

Indexing Compressed Text I 1443

I

time O(p) by descending in the suffix tree according to

the symbols of P, and it can locate these occurrences in

optimal O(occ) time by traversing the subtree of the

node reached by counting. The suffix tree, however,

uses much more space than the text itself because

it requires Y(n log n) bits, whereas the text needs

ndlog se bits (logarithms are in base 2). In practice,

a suffix tree requires from 10 to 20 times the text size,

if carefully engineered [5].

The suffix array is a compact version of the suffix

tree, obtained by storing in SA[1,n] the starting posi-

tions of the suffixes of T listed in lexicographical order.

This data structure still requires Y(n log n) bits in the

worst case, but the constant hidden in the big-Oh

notation is small in practice, namely it is no more

than 4. SA can be obtained by traversing the leaves of

the suffix tree, or it can be built directly in optimal

linear time via ad-hoc sorting methods [5]. Since any

substring of T is the prefix of a text suffix, finding all

pattern occurrences boils down to finding all text suf-

fixes that start with P. These suffixes form a lexico-

graphic interval in SA that can be binary searched in

O(p log n) time, as each comparison in the binary

search requires examining up to p symbols of the

pattern and of a text suffix. The time complexity can

be improved to O(p þ log n) by using an auxiliary data

structure that doubles the space requirement of the suffix

array, or it can be further reduced to O(p þ log s) by a
proper sampling of the indexed suffixes (cfr. Suffix

Trays). Once the interval SA[sp,ep] containing all text

suffixes starting with P has been identified, count(P)

is answered by returning the value occ = ep � sp þ 1,

and locate(P) is answered by retrieving the entries

SA[sp], SA[sp þ 1],...,SA[ep].

The use of full-text indexes is not limited to (full-)

text searching over one single text. It can be easily

extended to multiple texts, and can also be used to

support (prefix, suffix, or substring) queries over a

dictionary D of strings having variable length.

This problem is called Dictionary Indexing and occurs

frequently in the implementation of IR and data

mining applications. It can be solved via a (com-

pressed) index built on a string SD which is obtained

by concatenating all dictionary strings, separated with

a special symbol #. A prefix search for P in D can

be implemented by counting/locating the query pat-

tern #P in SD; a suffix search can be implemented by

searching for P# in SD; substring searches are directly

executed on SD.
Foundations
The large space occupancy of full-text indexes has

driven programmers to resort to inverted indexes to

solve their searching operations on large textual data-

sets, and some researchers have actually concluded

that the increased query power of full-text indexes

has to be paid by additional storage space. Fortuna-

tely, a recent body of research showed that compressed

full-text indexes can be designed by deploying algo-

rithmic techniques and mathematical tools which lie

at the crossing point of three distinct fields – data

compression, algorithmics and databases (see e.g.,

[9,13,14]). Most of these indexes can be classified

into two families – FM-indexes (FMI) and Compressed

Suffix Arrays (CSA) – and achieve efficient query times

and space close to the one achievable by the best

known compressors, like gzip or bzip2. In theory,

these indexes require O(nHk(T)) þ o(n log s) bits of

space, where Hk(T) is the kth order empirical entropy

of T (see Table 1). This bound is appealing because it

can be sublinear in n, for highly compressible texts,

and nHk(T) is the classic Information-Theoretic lower

bound to the storage complexity of T by means of any

kth order compressor, like gzip and bzip2 (recall that

extract(1,n) = T).

The FM-Index Family

These compressed indexes were introduced by

Ferragina and Manzini in [9], who devised a way to

orchestrate in efficient time and space the relation

that exists between the suffix array data structure and

the Burrows-Wheeler Transform (shortly, BWT [4]). The

BWT is a reversible transformation that permutes the

symbols of the input string T into a new string bwt(T)

which is easier to compress, and can be computed in

three steps (see Fig.1):

1. Append at the end of T a special symbol $ smaller

than any other symbol of S;
2. Form a conceptual matrix MðTÞ whose rows are

the cyclic rotations of string T$ in lexicographic

order;

3. Set string bwt(T) to the last column L of the sorted

matrixMðTÞ.

Every column of MðTÞ, hence also the transformed

string L, is a permutation of T$. In particular the first

column ofMðTÞ, call it F, is obtained by lexicograph-

ically sorting the symbols of T$ (or, equivalently, the

symbols of L). Note that the sorting of the rows of

Indexing Compressed Text. Figure 1. Example of

Burrows-Wheeler transform for T = mississippi.

The matrix on the right has the rows sorted in

lexicographic order. The output of the BWT is the column

L = ipssm$pissii.

Indexing Compressed Text. Table 1. Best known complexities for the time (in big-Oh) and space (in bits) required by

the main families of compressed full-text indexes

Index Count Locate Extract Space References

FMI p occ�polylog(n) ‘ þ polylog(n) nHk(T) þ o(n) [8]

CSA p/logs n þ polylog(n) occ�polylog(n) ‘∕ logs n þ polylog(n) g�1nHk(T) þ o(n) [11]

LZ-INDEX p2 log p þ p log n þ occ occ�log n ‘(1 þ E�1∕ logs‘) (2 þ E)nHk(T) þ o(n log s) [1]

Here E > 0 and 0 < g < 1
3
are constants fixed in advance before the data structures are built; ‘ is the number of text symbols to

be retrieved by extract; Hk(T) is the k-th order empirical entropy of text T [14]. The reported complexities are worst-case and hold for

s = O(polylog(n)) assuming that k 	 alogs n with 0 < a < 1 except for LZ-INDEX in which k = o(logsn). For more precise bounds (e.g.,

coefficients in polylog(n) terms and the case s = O(polylog(n)) and for a thoughtful comparison of these indexes and their

numerous variants, the reader is referred to [14].

1444 I Indexing Compressed Text
MðTÞ is essentially equal to the sorting of the suffixes

of T, because of the presence of the special symbol $.

This shows that: (i) symbols preceding the same sub-

string (context) in T are grouped together in L, and

thus give raise to clusters of nearly identical symbols;

(ii) there is an obvious relation betweenMðTÞ and SA.
Property (1) is the key for devising modern data com-

pressors, Property (2) is crucial for designing com-

pressed indexes and, additionally, suggests a way to

compute the BWT through the construction of the

suffix array of T: L[0] = T[n] and, for any 1 	 i 	 n,

set L[i] = T[SA[i] � 1].

Burrows and Wheeler [4] devised two properties

for the invertibility of the BWT:

1. Since the rows inMðTÞ are cyclically rotated, L[i]
precedes F[i] in the original string T.

2. For any c 2 S, the ‘th occurrence of c in F and the

‘th occurrence of c in L correspond to the same

symbol of the string T.

As a result, the original text T can be obtained back-

wards from L by resorting to a function LF that maps

row indexes to row indexes, and is defined as follows: if

the BWT maps T[j � 1] to L[i 0] and T[j] to L[i], then

LF(i) = i 0 (so LF implements a sort of backward step

over T) [9]. Now, since the first row ofMðTÞ is $T, it
can be stated that T[n] = L[0] and, in general, T[n� i]

= L[LFi(0)], for i = 1,...,n � 1.

Starting from these basic properties, Ferragina and

Manzini [9] proposed a way to combine the compress-

ibility of the BWTwith the indexing power of the suffix

array. In particular, they have shown that searching

operations on T can be reduced to counting queries

of single symbols in L, now called rank operations. For

any symbol c 2 S and position i in L, the query
rankc(L, i) returns how many times the symbol c

appears in L[1,i]. An FM-index then consists of three

key tools: a compressed representation of bwt(T) that

supports efficient rank queries, a small array C[c]

which tells how many symbols smaller than c appear

in T (this takes O(s log n) bits), and the so called

backward search algorithm which carefully orchestrates

the former two data structures in order to implement

efficiently the count query. More precisely, FMI

searches the pattern P[1,p] backwards in p steps,

which eventually identify the interval of text suffixes

that are prefixed by P or, equivalently, the interval of

rows ofMðTÞ that are prefixed by P. This is done by

maintaining, inductively for i = p, p � 1,...,1, the

interval SA[spi, epi] that stores all text suffixes that

are prefixed by the pattern suffix P[i, p]. At the begin-

ning it is i = p, and so SA[spp, epp] corresponds to all

Indexing Compressed Text I 1445

I

suffixes which are prefixed by the last symbol P[p]:

hence, it is enough to set spp = C[P[p]] þ 1 and epp
= C[P[p] þ 1]. At any other step, the algorithm has

inductively computed SA[spiþ1, epiþ1], and thus it can

derive the next interval of suffixes prefixed by P[i, m]

by setting spi = C[P[i]] þ rankP[i](L, spiþ1 � 1) þ 1

and epi = C[P[i]] þ rankP[i](L, epiþ1). These two

computations are actually mapping (via LF) the first

and last occurrences (if any) of symbol P[i] in the

substring L[spiþ1, epiþ1] to their corresponding occur-

rences in F. (Indeed, [9] showed that any LF computa-

tion boils down to a rank query on L.) As a result, the

backward-search algorithm requires to solve 2p rank

queries on L = bwt(T) in order to find out the (possi-

bly empty) range SA[sp, ep] of text suffixes prefixed

by P. count(P) can be then solved by returning the

value occ = ep1 � sp1 þ 1.

Conversely, locate and extract need some

extra information about the underlying suffix array,

this impacts onto the space occupancy of the FMI.

Recall that locate(P) requires to return, for any i 2
[sp, ep], the position pos(i) = SA[i]. For space reasons

SA cannot be stored explicitly so that, for a fixed

parameter m = dlog1þ2ne, FMI samples the rows of

MðTÞ which correspond to text suffixes that start at

positions of the form 1 þ j � m. Each such pair hrow,
positioni is stored explicitly in a data structure S that

supports membership queries in constant time (on the

row-component). Now, given a row index i, the value

pos(i) can be derived immediately from S, if i is a

sampled row; otherwise, the algorithm computes j =

LFt(i), for t = 1,2,..., until j is a sampled row. In this

case, pos(i) = pos(j) þ t. The sampling strategy ensures

that a row in S is found in at most m iterations, and

thus the occ occurrences of the pattern P can be located

via O(m � occ) rank queries. The algorithm for ex-

tract(i,i 0) requires a similar approach and takes no

more than (i 0� i þ m þ 1) rank queries.

The net result is that the space and time complex-

ities of FMI depend on the value m and on the perfor-

mance guaranteed by the data structure used to

compute rank queries on the BWT-string. The extra

space required by the data structures added to support

locate and extract is bounded by O((n log n) ∕m)
bits, which is o(n) whenever 2 > 0. The real challenge

thus consists of representing bwt(T) in a compressed

form and answering efficiently rank queries over it.

Actually, all implementations of FMI differentiate

themselves by the strategy used to solve this problem,
as the alphabet size grows. Today, the literature offers

many solutions, the most efficient ones are summar-

ized below.

Lemma 1 Let T[1,n] be a string over an alphabet of

size s, and let L = bwt(T).

1. For s = O(polylog(n)), there exists a data struc-

ture which supports rank queries on L in O(1) time

using nHk(T) þ o(n) bits of space, for any k 	 a
logsn and 0 < a < 1, and retrieves any symbol of L

in the same time bound [10, Theorem 5].

2. For general S, there exists a data structure which

supports rank queries on L in O(log log s) time,

using nHk(T) þ n o(log s) bits of space, for any

k	 a logsn and 0< a< 1, and retrieves any symbol

of L in the same time bound [2, Theorem 4.2].

By plugging this Lemma into the FMI data structure,

one derives a compressed full-text index that sup-

ports efficiently the three full-text queries – namely,

count, locate, extract– and occupies space

approaching the kth order empirical entropy of T

(see Table 1).

In practice, there are various implementations of

FMI, whose engineering choices mainly refer to the way

the rank-data structure built on bwt(T) is compressed

and scales with the alphabet size of the indexed text.

The site Pizza&Chili (see below) reports several imple-

mentations for FMI that mainly boil down to the fol-

lowing trick: bwt(T) is split into blocks (of equal or

variable length) and values of rankc are precomputed

for all block beginnings and all symbols c 2 S. A query

rankc(L, i) is answered by summing up the answer

available for the beginning of the block that contains

L[i] plus the rest of the occurrences of c in that block –

they are obtained either by sequentially decompressing

the block or by using a proper compressed data struc-

ture built on it (e.g., the Wavelet Tree of [12]). The

former approach favors compression, the latter favors

query speed.

The CSA family. These compressed indexes were

introduced by Grossi and Vitter [13], who showed

how to compactly represent the suffix array SA in

O(n log s) bits and still be able to access any of its

entries in efficient time. Their solution is based on a

function C, which is the inverse of the function LF

introduced for BWT:

CðiÞ ¼
i 0such that SA½i 0
 ¼ SA½i
 þ 1 ðif SA½i
 > nÞ
i 0such that SA½i 0
 ¼ 1 ðif SA½i
 ¼ nÞ

�

1446 I Indexing Compressed Text
In other words, C(i) refers to the position in the suffix

array of the text suffix that follows SA[i] in T, namely,

the text suffix which is one-symbol shorter. The com-

pact storage of SA proposed by Grossi and Vitter is

based on a hierarchical decomposition that deploysC.

To represent SA0 = SA they use three vectors: B0,

C0 and SA1. The binary vector B0[1,n] marks the

entries of SA0 which are even (suffixes). The vector

C0[1,dn ∕2e] stores the values C(i) for which SA[i] is

odd (hence B0[i] = 0). The vector SA1[1,dn ∕ 2c] is a

‘‘halved’’ version of SA0, in that it contains the even

elements of SA0 divided by 2. Surprisingly enough,

these three vectors suffice to retrieve any entry SA[i].

Of course, it is easy to determine whether SA[i] is even

or odd by simply looking at B0[i]. If SA[i] is odd, the

following suffix SA[i] þ 1 = SA[C(i)] is even, and its

suffix-array position can be determined as C(i) =

C0(rank0(B0,i)). If SA[i] is even, it is enough to look

at its halved value stored at SA1[rank1(B0,i)]. The

three vectors C0, B0 and SA1 form the first level of

the hierarchical decomposition of SA. This idea is

applied recursively on SA1 which is replaced by three

other vectors: C1, B1 and SA2. This goes on until SAh

can be represented within O(n) bits, namely when

h = dlog log ne. Accessing SA[i] takes h time. By storing

the text T, in additional ndlog se bits, one can search

for a pattern P via the classic binary-search, now on the

compacted SA. Grossi and Vitter proposed to store

vectors B in compressed form via proper rank-data

structures (see [14] and references therein), and

deployed the piecewise increasing property for C –

namely, if T[SA[i]] = T[SA[i þ 1]], then C(i) <

C(i þ 1) – to store each level of C within 1
2
n log s

bits, still preserving constant time lookup to any level

of C. Other time/space tradeoffs are possible by using

different numbers of levels. Essentially, not all the levels

are represented and the function C is used to jump

from one represented level to the next represented one.

Recently, CSA has been the subject of two main

improvements. The first one, due to Sadakane [16],

showed that the original text T can be replaced with a

binary vector F such that F[i] = 1 iff the first symbol of

the suffixes SA[i � 1] and SA[i] differs. Since the

suffixes in SA are lexicographically sorted, one can

determine the first symbol of any suffix in constant

time by just executing a rank1 query on F. This fact,

combined with the retrieval of C ’s values in constant

time, allows comparing any suffix with the searched

pattern P[1,p] in timeO(p). Sadakane also provided an
improved representation for C achieving nH0(T) bits.

Theoretically, the best variant of CSA is due to Grossi,

Gupta and Vitter [12] who devised some further struc-

tural properties of C that allow to come close to

nHk(T) bits, still preserving the previous time com-

plexities for all full-text queries (see Table 1). Practi-

cally, the best implementation of the CSA is the one

proposed by Sadakane that actually does not use the

hierarchical decomposition above, but orchestrates a

compact representation of the function C together

with the backward search and the sampling strategy

of the FMI family. This hybrid index is among the fastest

compressed indexes to count and locate pattern occur-

rences over highly-compressible data.

Other Compressed Indexes

Previous families of compressed indexes based their

search on the implicit or explicit availability of the

suffix array data structure. Recent years have seen the

design of several other approaches, the two most nota-

ble ones are the LZ-index, proposed by Navarro, and

the Compressed Suffix Tree, devised by Sadakane and

then improved by many other authors. The former

index bases its design on the parsing of the text T via

the LZ78-compression scheme, and then enriches its

output by additional data structures that support effi-

cient searches over the parsed phrases. By properly

orchestrating LZ78-parsing with compressed dictio-

nary data structures, [1] achieved interesting search

and entropy-based space bounds which are not com-

petitive theoretically with the ones obtained by FMI and

CSA indexes (see Table 1) but are, nonetheless, fast in

practice. As far as the compressed suffix-tree is

concerned, it is worth noticing that the compression

of this data structure is obtained by properly orches-

trating succinct tree and succinct array encodings [15].

The total space is the one required by the CSA built

on T plus no more than 6n þ o(n) bits; all known

suffix-tree operations are supported with a maxi-

mum slowdown of O(log n) time with respect to the

uncompressed suffix tree.

Key Applications
Compressed full-text indexes might be used at the core

of modern web search, IR, data base and data mining

applications because, as Knuth observed in the Art of

Computer Programming (vol. 3): ‘‘space optimization

is closely related to time optimization in a disk memory’’.

Data compression can not only squeeze the space

Indexing Compressed Text I 1447
overhead of an index, but also improve its speed, as

remarked earlier. Several authors [3,5,11,17,18] have

recently addressed these issues in various settings but,

nonetheless, there is much more room for theoretical

and practical improvements.
I

Future Directions
An open challenge concerning compressed indexes is to

fasten their locate queries in order to achieve the

optimal O(occ) time bound. The best known result is

due to Ferragina and Manzini [9]: each occurrence is

located in constant time, and the index takes O(nHk(S)

log2n) þ o(n log s log2n) bits, where 2 is any positive

constant. This bound has the extra log-factor in front

of the entropy term! Therefore, it is natural to ask: Is

there a full-text index achieving O(p þ occ) query time

and O(nHk(S))þ o(n log s) bits of space occupancy in
the worst case? This result would be provably better

than any known uncompressed full-text index.

Another interesting open problem consists of de-

signing a compressed full-text index which is disk-

aware or, better, memory-oblivious in that it scales

optimally over all memory levels available in a modern

PC. The above data structures are compressed, but

their overall size may span many memory levels so

that issues pertaining to proper arrangement of data

and properly structured algorithmic computations come

into play. The most attractive disk-aware index is the

String B-tree [7]; whereas the best cache-oblivious

index is the COSB-tree [3,8]. Unfortunately the

former is uncompressed, whereas the latter uses a

compression heuristic which does not guarantee

entropy-bounds in the worst case. It would be there-

fore valuable, also in practice, to devise a compressed

index that combines the I/O-efficiency of the (cache

oblivious) String B-tree with the space efficiency of the

compressed full-text indexes discussed in this entry.

Some preliminary results have been devised in [8],

but the ultimate goal has yet to be achieved.
Experimental Results
Site PIZZA&CHILI [6] provides a full experimental com-

parison among the major implementations of com-

pressed indexes. The experiments mainly show that

these indexes can compress a text within 40–80% of

its original size, and support searches for 20,000–

50,000 patterns of 20 chars each within a second, locate

about 100,000 pattern occurrences per second, and
decompress text symbols at a rate of about 1MB/s.

The compressed indexes are from one (count) to

three (locate) orders of magnitudes slower than

what one can achieve with a plain suffix array, at the

benefit of using up to 18 times less space. This slow-

down is due to the fact that search operations in

compressed indexes access the memory in a non-local

way thus eliciting many cache/IO misses, with a conse-

quent degradation of the overall time performance.

Nonetheless compressed indexes achieve a (search/

extract) throughput which is significant and may

match the efficiency specifications of most software

tools running on commodity PCs. Recently, Ferragina

and Venturini [11] provided a comparison among

classic and compressed indexes for the Dictionary

Indexing Problem showing that, in this case,

compressed indexes may be faster than classic IR

approaches.
Data Sets
Calgary Corpus (http://links.uwaterloo.ca/calgary.

corpus.html)

CanterburyCorpus (http://corpus.canterbury.ac.nz)

Pizza&Chili Corpus (http://pizzachili.di.unipi.it or

http://pizzachili.dcc.uchile.cl) see also[18]
URL to Code
Site Pizza&Chili (http://pizzachili.di.unipi.it or http://

pizzachili.dcc.uchile.cl) collects implementations of

the major compressed text indexes, and various tools

and datasets to test them.
Cross-references
▶Managing Compressed Structured Text

▶ Suffix Trees

▶Text Compression

▶Text Index Compression

▶Text Indexing & Retrieval

▶Text Indexing Techniques

▶Text Representation

▶XML Compression

Recommended Reading
1. Arroyuelo D., Navarro G., and Sadakane K. Reducing the space

requirement of LZ-index. In Proc. 17th Annual Symposium on

Combinatorial Pattern Matching, 2006, pp. 319–330.

2. Barbay J., He M., Munro J.I., and Srinivasa Rao S. Succinct

indexes for string, binary relations and multi-labeled trees. In

1448 I Indexing for Online Function Approximation
Proc. 18th Annual ACM -SIAM Symp. on Discrete Algorithms,

2007, pp. 680–689.

3. Bender M.A., Farach-ColtonM., and Kuszmaul B.C. Cache-obliv-

ious string B-trees. In Proc. 25th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2006,

pp. 233–242.

4. Burrows M. and Wheeler D. A block sorting lossless data com-

pression algorithm. Technical Report 124, Digital Equipment

Corporation, 1994.

5. Ferragina P. String Search in External Memory: Data Structures

and Algorithms, In Handbook of Computational Molecular

Biology, Chapman & Hall, London, 2005.

6. Ferragina P., González R., Navarro G., and Venturini R. Com-

pressed Text Indexes: From Theory to Practice, J. Exp. Algorith-

mics, 13:1.12–1.31, 2009.

7. Ferragina P. and Grossi R. The String B-tree: A new data struc-

ture for string search in external memory and its applications.

J. ACM, 46(2):236–280, 1999.

8. Ferragina P., Grossi R., Gupta A., Shah R., and Vitter J.S. On

searching compressed string collections cache-obliviously. In

Proc. 27th ACM SIGACT-SIGMOD-SIGART Symp. on Princi-

ples of Database Systems, 2008, pp. 181–190.

9. Ferragina P. and Manzini G. Indexing compressed text. J. ACM,

52(4):552–581, 2005.

10. Ferragina P., Manzini G., Mäkinen V., and Navarro G. Com-

pressed representations of sequences and full-text indexes. ACM

Trans. Algorithms, 3(2), 2007.

11. Ferragina P. and Venturini R. Compressed permuterm index.

In Proc. 33rd Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2007, pp. 535–542.

12. Grossi R., Gupta A., and Vitter J.S. High-order entropy-

compressed text indexes. In Proc. 14th Annual ACM-SIAM

Symp. on Discrete Algorithms, 2003, pp. 841–850.

13. Grossi R. and Vitter J.S. Compressed suffix arrays and suffix

trees with applications to text indexing and string matching.

SIAM J. Comput., 35(2):378–407, 2005.

14. Navarro G. and Mäkinen V. Compressed full-text indexes. ACM

Comput. Surv., 39(1), 2007.

15. Sadakane K. Compressed suffix trees with full functionality.

Theory Comput. Syst., 41(4):589–607, 2007.

16. Sadakane K. New text indexing functionalities of the compressed

suffix arrays. J. Algorithms, 48(2):294–413, 2007.

17. Sadakane K. Succinct data structures for flexible text retrieval

systems. J. Discrete Algorithms, 5(1):12–22, 2007.

18. Tam S.L., Wong C.K., Lam T.W., Sung W.K., and Yiu S.M.

Compressed indexing and local alignment of DNA. Bioinfor-

matics, 24(6):791–797, 2008.
Indexing for Online Function
Approximation

▶Database Techniques to Improve Scientific

Simulations
Indexing for Similarity Search

▶High Dimensional Indexing
Indexing Granularity

▶ Indexing Units
Indexing Historical Spatio-Temporal
Data

MOHAMED F. MOKBEL
1, WALID G. AREF

2

1University of Minnesota, Minneapolis, MN, USA
2Purdue University, West Lafayette, IN, USA

Synonyms
Indexing the past; Historical spatio-temporal access

methods; Trajectory indexing

Definition
Consider an object O that reports to a database server

two consecutive locations P0 = (x0,y0) and P1 = (x1,y1)

at times t0 and t1, respectively. The database server has

no idea about the exact locations of object O between

t0 and t1. To be able to answer queries regarding the

user location at any time, the database server interpo-

lates the two accurate locations through a trajectory

that connects P0 and P1 through a straight line. While

object O keeps sending location samples, the database

server keeps accumulating set of consecutive trajec-

tory lines that represent the historical movement of

object O. Indexing historical spatio-temporal data

includes dealing with such large numbers of trajec-

tories. The main idea is to organize past trajectories

in a way that supports historical spatial, temporal,

and spatio-temporal queries.

Historical Background
The rapid increase in spatio-temporal applications

calls for new auxiliary indexing structures. A typical

spatio-temporal application is one that tracks the be-

havior of moving objects through location-aware

devices (e.g., GPS). Through the last two decades,

many spatio-temporal access methods were developed.

Indexing Historical Spatio-Temporal Data I 1449
Spatio-temporal access methods focus on two orthog-

onal directions: (i) Indexing the past i.e., historical

location data, (ii) Indexing the current and predicted

future positions. This entry focuses on the former

direction. A first approach to support spatio-temporal

data is to extend existing spatial data (e.g., R-tree [4])

to support the temporal dimension. However, as the

temporal dimension has distinct properties from other

spatial dimensions, these approaches are later modified

to give special attention to the temporal dimension.
I

Foundations
The main challenge in indexing historical spatio-

temporal data is that the size of the history is continu-

ously increasing over time. Consider moving objects

that continuously send their positions. Keeping track

of all updates is almost infeasible. Two approaches are

used to minimize the history size: (i) Sampling. The

stream of data is sampled at certain time positions.

Linear interpolation may be used between sample

points to form trajectory lines. (ii) Update on change

only. Moving objects send information only when

their data is changed (e.g., change in speed or direc-

tion). In general, spatio-temporal indexing methods

for historical data can be categorized into the following

three categories:

1. Three-Dimensional Structures

This category augments existing spatial access methods

(e.g., the R-tree [4]) to support the newly introduced

temporal dimension. Examples of this category

include:

� RT-tree [15]: The RT-tree combines the foundation

of the R-tree as a spatial access method and the

TSB-tree [7] as a temporal access method. In the

RT-tree, a new entry is added to the regular R-tree

that indicates the start and end times of the current

object. An RT-tree entry has the form (id, MBR, ts,

te), where id is the object identifier, MBR is the

objects minimum bounding rectangle, and ts and

te give the time interval in which this object is valid.

The RT-tree supports spatial queries as efficient as

the regular R-tree. However time slice queries and

interval queries may span the whole tree.

� 3D R-tree [13]: The 3D R-tree treats time as yet

another dimension in addition to the spatial dimen-

sions. The main idea is to avoid discrimination bet-

ween spatial and temporal queries. The 3D R-Tree
supports both the temporal and spatial queries,

although with performance drawbacks. A main

drawback is that timeslice queries are no longer

dependent on the live entries at the query time, but

on the total number of entries in the history.

� STR-tree [9]: The STR-Tree is an extension of the

R-Tree, with a different insert/split algorithm.

Leaf nodes has the form (id, tid, MBR, o) where tid
is the trajectory identifier and o is the orientation

of this trajectory in the MBR. The main idea is

to keep spatial closeness and partial trajectory pres-

ervation by trying to keep line segments belonging

to the same trajectory together while keeping spa-

tial closeness as the R-Tree. A parameter p is intro-

duced to balance between spatial properties and

trajectory preservation. p indicates the number of

levels reserved for trajectory preservation. When

inserting a new line segment the goal is to insert it

as close as possible to its predecessor in the trajec-

tory within p levels. A smaller p decreases the tra-

jectory preservation, while increasing the spatial

closeness.
2. Overlapping Two-Dimensional Structures

This category separates between the spatial and tem-

poral dimensions. The main idea is to use a separate

spatial index for each time instance. Then, a temporal

index is used to index the spatial indexes. To reduce the

storage overhead, consecutive spatial indexes may

overlap to avoid storing multiple instances of objects

that are not frequently changed over time. Examples of

this category include:

� MR-tree [15]: The MR-tree employs the idea of

overlapping B-trees [2] in the context of the R-

tree. The main idea is to avoid the storage overhead

of having separate R-trees for each timestamp. The

saving in storage is achieved by not storing the

common objects among consecutive R-trees. In-

stead, links from different roots point to the same

nodes where all the node entries keep their values

over the different timestamps. This idea is perfect

in the case of a time slice query. The search is

directed to the appropriate root, and then a spatial

search is performed using the R-tree. However,

the performance of time window queries is not

efficient. Also, one major drawback is that many

entries can be replicated. Consider the case that

only one node entry is changed over two

1450 I Indexing Historical Spatio-Temporal Data
consecutive timestamps, then all other node entries

need to be replicated in two consecutive R-trees.

� HR-tree [8]: The Historical R-tree (HR-tree) is very

similar to the MR-tree. The HR-tree has a concrete

algorithm and implementation details of using the

overlapping B-tree [2] in the context of the R-tree.

The same idea of overlapping trees is applied in

the context of quadtrees, where it results in over-

lapping quadtrees [14].

� HR+-tree [11]: The HR+-tree is designed mainly to

avoid the replication of some entries in the HR-tree.

The main reason for having duplicate entries in the

HR-tree is that the HR-tree has a condition that any

node can contain only entries that belong to the

same root, i.e., ones that have the same timestamp.

The HR+-tree relaxes this condition by allowing

entries from different timestamps to reside in the

same node. However, the parent of this node in each

R-tree has only access to the entries that belong to

the parent’s timestamp. In other words, a node may

have multiple parents, where each parent has access

only to a different part of the node.

� MV3R-tree [12]: The MV3R-tree is based mainly

on the multi-version B-tree (MVB-tree) [11]. The

main idea is to build two trees, an MVR-tree to

process timestamp queries, and a 3D R-tree to pro-

cess long interval queries. Short interval queries

are optimized to check which tree is to be used

based on a threshold value.
3. Trajectory Indexing

This category is radically different from other categories

where themain concern is to support trajectory-oriented

queries. On the other side, spatial queries are not well

supported. Examples of this category include:

� TB-tree [9]: The Trajectory-bundle tree (TB-tree) is

an R-tree-like structure that strictly preserves tra-

jectories. A leaf node can only contain segments

belonging to the same trajectory. As a drawback,

line segments of different trajectories that lie spati-

ally close will be stored in different nodes. The TB-

tree grows from left to right. The left-most leaf node

is the first inserted node and the right-most leaf

node is the last inserted one. The TB-tree is an

extension of the STR-tree to handle only trajectories.

� SETI [3]: The Scalable and Efficient Trajectory

Index (SETI) partitions the spatial dimension

into static, non-overlapping partitions. The main
observation is that the change of the spatial dimen-

sion is limited while the temporal dimension is

continuously evolving. Thus, the spatial dimen-

sions are partitioned statically. Within each parti-

tion the trajectory segments are indexed using an

R-tree. Using a good partitioning function results

in having line segments of the same trajectory

stored in the same partition. Thus, trajectory pres-

ervation is achieved by minimizing the effect of the

spatial dimensions in the R-tree. A segment that

crosses the boundary of two spatial partitions is

clipped and is stored twice in both partitions.

This may lead to duplicates in the query result.

� The SEB-tree [10]: The Start/End timestamp B-tree

(SEB-tree) has an idea similar to SETI, where the

space is partitioned into zones that may be over-

lapped. Each zone is indexed using the SEB-tree

that considers only the start and end timestamps of

the moving objects. Each moving object is hashed to

its zone. A key difference over SETI is that there are

no trajectories. Instead only two-dimensional points

are indexed. By having the spatial zoning partition-

ing, two-dimensional points that belong to similar

trajectories are kept together.

Key Applications

Moving Object Databases

The wide spread of location-detection devices (e.g.,

GPS-like devices and cellular phones) along with the

recent advances in mobile computing enable the so-

called location-based environments. In such environ-

ments, a large number of moving objects continuously

send their location information to a location-based

database server. Storing and indexing past location

information enable new types of queries that include:

‘‘What are the vehicles near my shop yesterday between

7:00 and 8:00 A.M. yesterday’’ and ‘‘At what time yester-

day, my car was within one mile of a fast food restau-

rant.’’ Indexing historical spatio-temporal data is a

major module for efficient query retrieval for moving

object databases.
Recommended Reading
1. Becker B., Gschwind S., Ohler T., Seeger B., and Widmayer P.

An asymptotically optimal multiversion B-tree. VLDB J.

5(4):264–275, 1996.

2. Burton F.W., Kollias J.G., Matsakis D.G., and Kollias V.G.

Implementation of overlapping B-trees for time and space

Indexing Metric Spaces I 1451

I

efficient representation of collections of similar files. The

Computer Journal, 33(3):279–280, 1990.

3. Chakka V.P., Everspaugh A., and Patel J.M. Indexing large

trajectory data sets with SETI. In Proc. 1st Biennial Conf. on

Innovative Data Systems Research, 2003.

4. Guttman A. R-Trees: A dynamic index structure for spatial

searching. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1984, pp. 47–57.

5. Hadjieleftheriou M., Kollios G., Tsotras V.J., and Gunopulos D.

Efficient indexing of spatiotemporal objects. In Advances in

Database Technology, Proc. 8th Int. Conf. on Extending Data-

base Technology, 2002, pp. 251–268.

6. Kollios G., Tsotras V.J., Gunopulos D., Delis A., and

Hadjieleftheriou M. Indexing animated objects using spatio-

temporal access methods. IEEE Trans. Knowledge and Data

Eng., 13(5):758–777, 2001.

7. Lomet D.B. and Salzberg B. Access methods for multiversion

data. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1989, pp. 315–324.

8. Nascimento M.A. and Silva J.R.O. Towards historical R-trees.

In Proc. 1998 ACM Symp. on Applied Computing, 1998,

pp. 235–240.

9. Pfoser D., Jensen C.S., and Theodoridis Y. Novel approaches in

query processing for moving object trajectories. In Proc. 26th

Int. Conf. on Very Large Data Bases, 2000, pp. 395–406.

10. Song Z. and Roussopoulos N. SEB-tree: an approach to index

continuously moving objects. In Proc. 4th Int. Conf. on Mobile

Data Management, 2003, pp. 340–344.

11. Tao Y. and Papadias D. Efficient historical R-trees. In Proc. 13th

Int. Conf. on Scientific and Statistical Database Management,

2001, pp. 223–232.

12. Tao Y. and Papadias D. MV3R-Tree: a spatio-temporal access

method for timestamp and interval queries. In Proc. 27th Int.

Conf. on Very Large Data Bases, 2001, pp. 431–440.

13. Theodoridis Y., Vazirgiannis M., and Sellis T. Spatio-

temporal indexing for large multimedia applications. In Proc.

Int. Conf. on Multimedia Computing and Systems, 1996,

pp. 441–448.

14. Tzouramanis T., Vassilakopoulos M., and Manolopoulos Y.

Overlapping linear quadtrees: a spatio-temporal access method.

In Proc. 6th Int. Symp. on Advances in Geographic Inf. Syst.,

1998, pp. 1–7.

15. Xu X., Han J., and Lu W. RT-Tree: An improved R-tree indexing

structure for temporal spatial databases. In Proc. Int. Symp. on

Spatial Data Handling, 1990, pp. 1040–1049.
Indexing Metric Spaces

PAVEL ZEZULA, MICHAL BATKO, VLASTISLAV DOHNAL

Masaryk University, Brno, Czech Republic

Synonyms
Distance indexing
Definition
Metric space indexing is closely related to the recent

digitization revolution where almost everything that

one can see, hear, read, write or measure is available

in digital form. Unlike traditional attribute-like data

types such as numbers and strings of sortable domains,

instances of these new data types are complex, and the

only measure of comparison to apply is a sort of

similarity. Such a situation implies an application of

the query-by-example search paradigm where the data-

base is searched for objects that are near the example

object, also called the query object. A useful abstraction

of this similarity is to see it as mathematical metric

space [7]. The problem of organizing and searching

large datasets of complex objects can then be consid-

ered from the perspective of generic or arbitrary metric

spaces, sometimes labeled distance spaces. In general,

the search problem can be described as follows:

" Let D be a domain, d a distance measure on D, and (D,d)

a metric space. Given a set X
 D of n elements, prepro-

cess or structure the data so that similarity queries are

answered efficiently.

From a practical point of view, X can be seen as a file

(a dataset or a collection) of objects that takes values

from domain D, with d as the proximity measure, i.e.,

the distance function defined for an arbitrary pair of

objects from D. Though several types of similarity

queries exist and others are expected to appear in the

future, the basic types are known as the similarity range

query whose results are constrained by a maximum

distance expressed as the query radius, and the nearest

neighbor(s) query bounding the query response size by

the maximal number of closest objects k 	 n.

The metric space indexing approach significantly

extends the scope of traditional search approaches. It

supports the execution of similarity queries without

obviating the traditional attribute-like searching. The

distance-searching approach to indexing is thereby

highly extensible.

Historical Background
The need for similarity searching in collections of

metric objects was recognized quite early and the his-

tory documented by numerous citations is nicely sum-

marized in recent surveys such as [2, 6, 8, 10]. The first

known proposal was the Burhard-Keller tree from 1973,

which was later extended into the Fixed queries tree and

the Fixed queries array techniques, all of which

1452 I Indexing Metric Spaces
specialize in discrete distance functions only. By recur-

sive applications of the basic ball and generalized-

hyperplane partitioning principles, the Vantage point

tree and the Generalized-hyperplane tree were defined.

The advantage of exploiting pre-computed distances to

speed up retrieval was first recognized in the 1980’s and

formalized as the Approximating and Eliminating

Search Algorithm, AESA. However, all of these early

attempts were only considering small data collections

stored in the main memory.

The importance of processing large datasets stored

on disk memory was reflected for the first time in the

M-tree [3]. It is a balancedmetric tree supporting a disk-

oriented storage, trying to optimize the I/O as well as the

CPU costs of query processing by means of a synergistic

combination of several elementary strategies. It can

be considered as a generalization of the R-tree and the

B-tree. The M-tree’s success has been demonstrated by

numerous modifications and extensions concerning

mainly insertion algorithms, mechanisms of splitting,

and strategies for query execution. The most significant

extension is the Slim-Tree [9]. As an orthogonal ap-

proach to tree partitioning, the D-index [4] is con-

structed as a multi-tier hashing structure consisting of

search-separable sets of objects on each tier organized in

directly-accessible buckets. The structure supports easy

insertion and its search costs are bounded because no

more than one bucket needs to be accessed at each level

for range queries up to a pre-defined value of the search

radius. Other important hybrid approaches are known

as the Multi vantage point tree, the Geometric near-

neighbor access tree, and the Spatial approximation tree.

The similarity search in metric spaces is generally

expensive and state-of-the-art access methods designed

for a single computer do not provide sufficient perfor-

mance for highly interactive applications that access

large collections of data. The approximate similarity

search techniques offer greatly improved efficiency vis

à vis precise similarity searching at the expense of some

imprecision in the results. The use of the approximate

similarity search is mainly justified by the following

two observations: (i) the similarity between objects is

often subjective, thus very difficult to express as a

unique rigorous function; (ii) similarity search pro-

cesses are intrinsically iterative – users typically issue

several similarity queries to the search system, possibly

reusing the previous query results to express new ones.

Practical experiments with approximate similarity

search techniques register performance improvements
up to two orders of magnitude compared to the precise

evaluation of the same queries. Other techniques over-

come the scalability problem by distributing partitions

of data and by executing similarity queries in parallel

using structured peer-to-peer networks. Four such

peer-to-peer techniques are compared in [1].

Foundations
In the last decade, metric space indexing for similarity

search has prompted major research efforts resulting in

a number of specific theories, techniques, implementa-

tion paradigms and analytic tools aimed at making the

distance-based approach viable. There are basically two

ways to solve the indexing problem: (i) to transform the

metric space so that a working solution from another

domain can be applied; or (ii) exploit the general prop-

erties of metric functions directly. This entry focuses on

native indexing.

Due to the lack of a global ordering or a fixed

position as in coordinate spaces, elementary partition-

ing in generic metric spaces is defined with respect to

either one or two fixed reference objects taken from D.

The first principle, known as the ball partitioning, uses

one given object as a center and a specific radius as a

boundary to form a sphere (ball). The set of data is

then divided into two disjoint subsets: objects inside

the ball and those outside the ball. The other principle

partitions the space using two given reference objects

where the distance establishes the borderline of the

generalized hyperplane partitioning – objects that are

closer to the first reference object than to the second

form one partition, while the rest of the objects belong

to the second partition.

In addition to the partitioning principles, strategies

for query execution play another important role in

search structures because they can significantly influ-

ence the efficiency of answering queries. Efficient

search algorithms for similarity range and nearest

neighbor queries have been defined for metric indexes,

based on the branch and bound strategy in principle.

There are even algorithms for evaluating incremental

nearest neighbor queries, as well as similarity joins.

Approximate similarity searches have also been studied

thoroughly in order to improve performance. The

general idea of approximation algorithms is to relax

some constraints of the ‘‘precise’’ similarity search to

reduce search costs, as measured in disk accesses and/

or the number of distance computations. This inevita-

bly means that false hits or false dismissals may occur.

Indexing Metric Spaces I 1453

I

Since the computational complexity of some met-

ric distance functions can be quite high, it is very

important for metric indexes to limit the number of

distance computations as much as possible. The ratio-

nale behind such strategies is to exploit already-

evaluated distances between some objects while

properly applying the metric space postulates – namely

the triangle inequality, symmetry, and non-negativity –

to determine bounds on distances between other

objects. The most elementary case can be explained

on three objects a,b, and c 2 D. Provided the distances

d(a, b) and d(b, c) are known, it is clear that the

distance between a and c cannot be longer than their

sum, i.e., d(a, c)	 d(a, b) + d(b, c). Alternatively, if the

known distances are d(a, c) and d(b, c), the distance d

(a,b) must be at least as long as their difference, that is

d(a, b) �jd(a, c) � d(b, c)j. Several bounding strategies
originally proposed in [5] are summarized in [6].

These techniques represent the foundations of the

general pruning rules that are employed, in a specific

form, in practically all index structures for metric

spaces. They can be considered as the basic formal

background of metric indexes.

Key Applications
Treating data collections as metric objects is advanta-

geous in thatmany data classes and information-seeking

strategies conform to the metric view. Accordingly, a

single metric indexing technique can be applied to

many specific search problems quite different in nature.

In this way, the important extensibility property of

indexing structures is satisfied by default. An indexing

scheme that allows various forms of queries, or which

can be modified to provide additional functionality,

is of more value than an indexing scheme otherwise

equivalent in power or even better in certain respects,

but which cannot be extended.

Distance functions of metric spaces represent a

way of quantifying the closeness of objects in a given

domain. The distance functions are often tailored to

specific applications or a class of possible applications.

In practice, the distance functions are specified by

domain experts, however, no distance function restricts

the range of query types that can be asked with this

metric. The distance functions can be discrete or contin-

uous. Another classification is possible according to the

type of domain of compared objects. For example, the

Minkowski distance functions form a whole family of

metric functions, designated as the Lp metrics, because
the individual cases depend on the numeric parameter

p. These functions are defined on n-dimensional vec-

tors, where the L1 metric is known as the Manhattan

distance (also the City-Block distance), the L2 distance

denotes the well-known Euclidean distance, and the L1
is called the maximum distance, the infinite distance

or the chessboard distance. The closeness of sequences

of symbols (strings) can be effectively measured by the

edit distance, also called the Levenshtein distance. In

order to identify common molecular subsequences,

the Smith-Waterman algorithm has been proposed.

In case the processed objects are sets, the Jaccard’s

coefficient or the Hausdorff distance can be applied.

More details about metric functions can be found in

[5], but the set of metric distance functions is still

growing, as evidenced by the recent Earth Mover’s

Distance, for example.

Experiments show that metric indexing techniques

are very competitive even in specific data domains

traditionally supported by specialized index structures,

the R-tree for multi-dimensional data and the B-tree

for one-dimensional attribute-like data being two

such examples. The number and variety of metric

distance functions determine the range of applications

which can apply the metric indexing approach. It has

proved usefulformultimedia data features since most of

the standard MPEG7 image descriptors are metrics.

But the application of metric indexing involves a lot

of diverse fields such as spatial databases, computer

graphics and vision, game programming, geographic in-

formation systems, computational geometry, computer-

aided design, robotics, computational biology and

many others.

Future Directions
The biggest challenge of a perspective search paradigm

is to find self-organized solutions that evolve in time

and still scale into the expected data volumes. In gen-

eral, the self-organizing systems build and maintain an

internal knowledgebase in response to the flow of data

and queries. Such initiative must be based on solid

theoretical backgrounds to avoid possible quick but

ad-hoc solutions which will sooner or later fail due to

the absence of rigorous definitions and unpredictable

behavior. The research needs to go beyond the capabil-

ities of traditional computer science and should try

to find an inspiration in other scientific areas. The

social sciences offer a promising alternative, especially

advances in online social networking.

1454 I Indexing of Data Warehouses
Experimental Results
Experimental results demonstrate the extensibility of

the metric space approach since most of the proposed

indexing tools work for any metric distance function.

The performance is primarily influenced by the dis-

tribution of distances, the smaller the variation of

distances, the more expensive the search becomes. At

thesametime,thescalabilityofexpensivequeries ispracti-

cally linear [8]. In order to deal with the huge volumes

of data required by current applications, distributed

architectures with P2P navigation [9] seem to offer a

solution. Given enough resources, P2P networks main-

tain almost constant response-time while scaling to data

volumes larger by several orders ofmagnitude.
Data Sets
Several influential research groups are currently col-

lecting large repositories to test the scalability of their

indexing tools. One of the most significant and pub-

licly available web pages is the UCI Machine Learning

Repository http://mlearn.ics.uci.edu/MLRepository.

html with nearly 200 various datasets.
URL To Code

http://www-db.deis.unibo.it/research/Mtree/
the code of the original M-tree and many refer-

ences to the related literature

http://lsd.fi.muni.cz/trac/mtree/
an improved version of the M-tree
http://gbdi.icmc.usp.br/arboretum/
several implementations of metric indexing

structures

http://lsd.fi.muni.cz/trac/messif
the Metric Similarity Implementation Framework,

MESSIF, can be used to implement centralized and

distributed similarity search indexing structure

prototypes.
Cross-references
▶Approximate Query Processing

▶Closest-Pair Query

▶Data Cleaning

▶Digital Libraries

▶ Indexing and Similarity Search

▶Metric Space

▶Multimedia Data Indexing

▶Multimedia Data Querying

▶Nearest Neighbor Query
▶ Peer-to-Peer System

▶ Spatial Indexing Techniques

▶Text Indexing Techniques

Recommended Reading
1. Batko M., Novak D., Falchi F., and Zezula P. On Scalability of

the Similarity Search in the World of Peers. In Proc. 1st Int.

Conf. Scalable Information Systems, 2006, pp. 1–12.

2. Chávez E., Navarro G., Baeza-Yates R., and Marroquı́n J.L.

Searching in metric spaces. ACM Comput. Surv., 33

(3):273–321, 2001.

3. Ciaccia P., Patella M., and Zezula P. M-tree: An efficient access

method for similarity search in metric spaces. In Proc. 23th Int.

Conf. on Very Large Data Bases, 1997, pp. 426–435.

4. Dohnal V., Gennaro C., Savino P., and Zezula P. D-Index: Dis-

tance searching index for metric data sets. Multimedia Tools

Appl., 21(1):9–33, 2003.

5. Hjaltason G.R. and Samet H. Incremental similarity search in

multimedia databases. Technical Report CS-TR-4199, Computer

Science Department, University of Maryland, College Park.,

November 2000.

6. Hjaltason G.R. and Samet H. Index-driven similarity search in

metric spaces. ACM Trans. Database Syst., 28(4):517–580, 2003.

7. Kelly J.L. General Topology. D. Van Nostrand, New York, 1955.

8. Samet H. Foundations of Multidimensional and Metric Data

Structures. Morgan Kaufmann, San Francisco, CA, USA, 2005.

9. Traina Jr. Traina A.J.M., Seeger B., and Faloutsos C. Slim-Trees:

High Performance Metric Trees Minimizing Overlap between

Nodes. In Advances in Database Technology, Proc. 7th Int. Conf.

on Extending Database Technology, 2000, pp. 51–65.

10. Zezula P., Amato G., Dohnal V., and Batko M. Similarity Search:

The Metric Space Approach, Springer, Berlin Heidelberg,

New York, 2006.
Indexing of Data Warehouses

THEODORE JOHNSON

AT&T Labs Research, Florham Park, NJ, USA

Synonyms
Data warehouse indexing

Definition
Indices are data structures especially designed to allow

rapid access to data in large databases. Data ware-

houses are typically used to perform intensive analyses

of very large data sets. Several indices, such as projec-

tion indices, bitmap indices, bitslice indices, and sum-

mary indices, have been developed to address the

special needs of data warehousing, and are presented

in this entry.

Indexing of Data Warehouses I 1455

I

Historical Background
Data warehouses were developed to capture operation-

al information, store it over a long period, and provide

support for intensive analysis of historical data. The

special needs of data warehouses – very large data sets,

high dimensional data, and the extensive use of cate-

gorical data – has led to the development of specialized

indices intended for use in data warehouses. The use of

these indices was pioneered in such systems as Model

204 and Sybase IQ.

Foundations
Indices, such as B-trees, R-trees, quad-trees, hash tables,

and inverted indices, are integral parts of any database

system. Query processing in data warehouses place

special demands on the indices: very large data sets,

high dimensional data, large materialized aggregate

views, and categorical data. Several special techniques

have been developed in response.

Projection Indices: Data warehouses are often

used to store one or more high dimensional fact tables,

which contain historical records of past events.

For example, a SALES fact table might have fields

which describe the customer (CustomerID, FirstName,

LastName), the product sold (ProductLine, Brand,

Size, Color), the method of sale (Store, Referrer, Sales-

Person), and values (i.e., measures) which quantify the

sale (Price, Discount, Quantity).

The large number of dimensions, especially those

involving categorical values with a small to moderate

range (e.g., Store), or with redundant information (e.g.,

CustomerID determines FirstName and LastName) can

cause an unnormalized fact table to require an excessive

amount of storage. Star schemas and snowflake schemas

are common techniques to reduce fact table storage

costs. Another useful technique is vertical partitioning.

Groups of columns, or even individual columns, are

stored independently but related via their record ID, or

rid. Columns with a low cardinality and/or many null

values can use special encoding schemes. Sybase IQ

made prominent use of this technique.

An advantage of vertical partitioning is that many

queries reference only a few of the fields of the fact

table. For example, a query might be, ‘‘What is the

volume of sales which involve a Discount larger than

50%, broken down by Store.’’ If SALES is vertically

partitioned, an efficient query plan is to scan the Dis-

count and Store fields. Whenever the Discount field is

50% or larger, retrieve the linked Store field and incre-

ment a corresponding counter.
In the above example, the Discount field acts as a

projection index [9]. Access to the field is fast because of

the compact vertically partitioned storage. The set of

records which satisfy the ‘‘Discount � 50%’’ might be

dense (more than 1 in 100), making random access

indices inefficient. Furthermore, complex predicates in-

volving several fields can be processed in the same way,

providing highly efficient multi-dimensional indices.

Bitmap Indices: Bitmap indices are a logical exten-

sion of projection indices [9]. Suppose that the predi-

cate of the query is, ‘‘Store = ‘Foo’ and Brand = ‘Bar’’’.

Suppose that both individual predicates is true for

about 1 in 100 records – dense enough that linear

scanning is effective. However their conjunct is likely

to be true for about 1 in 10,000 records – sparse enough

that random access is preferable. Therefore an efficient

query plan is to:

� Scan the Store vertical partition for values of Foo,

and record the corresponding rids

� Scan the Brand vertical partition for values of Bar,

and record the corresponding rids

� Compute the intersection of the two rid lists, and

fetch the corresponding records

An efficient way to store the rids and then compute

their intersection is to use a bitmap. Each bit corre-

sponds to a record – the bit at position 0 refers to

record 0, the bit at position 1215 refers to record

1215, and so on. A bitmap can be stored as a packed

array of bits, e.g., 64 bits per word. Given two bitmaps,

Boolean functions can be computed by taking the

corresponding Boolean function of the corresponding

packed bit array, which are typically very fast CPU

register operations.

Store ¼ ‘Foo Brand ¼ ‘Bar0

1

0

0

1

1

0

0

0

0

0

1

1

0

1

AND

1

0

1

0

1

1

1

0

1

0

0

1

0

0

¼

1

0

0

0

1

0

0

0

0

0

0

1

0

0

1456 I Indexing of Data Warehouses
Given a set of bitmaps, complex Boolean predicates

can be evaluated very efficiently. Therefore, a natural

extension of projection indices are bitmap indices: for

each value of a field, create and store a bitmap. When a

predicate is to be evaluated, the bitmaps can be fetched

directly, bypassing the cost of computing them. Bitmap

indices are very effective for fields with low cardinality,

or for representing pre-computed predicates. However,

bitmap indices require a large amount of storage if the

field has more than a few distinct values.

Compressed Bitmap Indices: If a field has a large

number of distinct values, the bitmaps for most of

the values must be sparse, and therefore compressible.

A variety of techniques based on run-length encoding

were developed in the context of image compression,

but are also usable for bitmap index compression.

While the RLE-based techniques can achieve near-

optimal compression, the compression and decom-

pression can be slow because compression is achieved

by compressing run length codes and packing them

into a bit array.

A bitmap compression technique better suited for

compressing bitmap indices are the Byte-aligned

Bitmap Codes, or BBC codes [1]. Each code word

consists of one or mote bytes, eliminating the need

for bit extraction. Furthermore, Boolean operations

can be performed on the BBC codes directly, creating

BBC code output. However, modern processors oper-

ate on multi-byte words, and data elements such as

integers must be word-aligned before they can be

operated upon. Word-aligned codes [11] extend the

BBC code idea, and achieve even greater performance

by avoiding word alignment costs.

The penalty for using byte-aligned or word-aligned

compression codes is that they are less space efficient

than the best RLE codes. A bitmap indexmight therefore

be stored using a variety of codecs, depending on the

individual bitmap properties. Furthermore, evaluating a

complex predicate requires an evaluation plan, and there

are a very large number of evaluation plans for a large

and complex predicate. Fortunately, there is a linear-

time dynamic programming optimization algorithm

for choosing an optimal evaluation plan. By using BBC

codes, word-aligned codes, and optimized evaluation, a

bitmap index can be stored in space similar to that of a

conventional index, and yet evaluate complex predicates,

including large range queries, very efficiently [1,11].

Hybrid B-tree/Bitmap Indices: If a bitmap index is

used for a high cardinality field, the field will have a
large number of bitmap indices, and finding the cor-

rect bitmaps to use in evaluating a predicate becomes a

search problem. Conversely, a B-tree index for a non-

key field will in general need to store a set of records for

each indexed value. A natural solution to both issues is

to record the rid set of a value using a compressed

bitmap. Oracle uses this technique, with BBC codes

used to compress the bitmap [9].

Bitslice Indices: If the indexed field has a very high

cardinality (e.g., ranges over the integers), bitmap

indices lose their value. However, one can still make

use of bitmap indices by using bitmaps to index value

ranges. For example, one can partition the range of an

integer or floating point field into, say, 1,000 ranges,

then create a bitmap for each range. Range queries are

likely to be efficient, but point queries might not be as

selective as desired. By a judicious choice of overlap-

ping value ranges, one can obtain more value from

each bitmap. For example, a bitslice index [8] applied

on an integer value creates a bitmap for each bit posi-

tion of the value. So, for example, the value 13 has set

bits in the bit-0, bit-2, and bit-3 bitmaps, reset bits in

the bit-1, bit-4, bit-5, etc. bitmaps. Point queries are

efficiently supported with a bitslice index; but perhaps

surprisingly, one can write range queries into compact

predicates on bitslice indices (see below an example of

bitslice indices on an integer field).

ð193Þ 1 1 0 0 0 0 0 0

ð87Þ 0 1 0 1 0 0 0 0

ð225Þ 1 1 1 0 0 0 0 1

ð7Þ 0 0 0 0 0 1 1 1

Aggregate-Storing Indices: Data warehouses very

often support aggregation queries to summarize the

mass of data in the fact tables. A common type of query

is to ask for the value of an aggregate within a particu-

lar range of field value(s). A hierarchical index struc-

ture, such as a B-tree, summarizes the data at every

level of its hierarchy. For example, a B-tree node has a

field value range, and points (directly or indirectly) to

the collection of records which have a value in that

range for the indexed field.

One can change the definition of ‘‘summarize’’ to

mean storing an aggregate value. In a leaf node entry

for a value v, instead of pointing to the records which

have value v for the indexed field, the entry contains an

aggregate value, e.g., the sum of a measure field, over

all records with value v in their indexed field. An entry

in an interior node (above the leaf level) contains the

Indexing of Data Warehouses I 1457

I

sum of the aggregates in the child, as well as a pointer

to the child and its indexed value range. Finding the

aggregate value of the range can be done by walking the

tree, once down to the minimum value of the range,

and once to its maximum value.

The principle of the aggregate-summarizing B-tree

can be extended to handle more useful situati-

ons, including aggregate-summarization of multiple

dimensions [4,6], and summarization of intervals

(useful for temporal database systems) [5].

Summary Indices: A common technique for

managing a very large data warehouse is horizontal

partitioning – partitioning records by one or more pre-

dicates. A data warehouse often receives regular updates

of new data into its fact table(s), and stores a window

(e.g., 1 year) of the most recent data. Fact tables may

also be partitioned by other attributes, to narrow search

spaces, help ensure that partitions are dense, etc.

If a fact table is sliced into a large number of vertical

partitions, the partition predicates act as another type

of index. This idea can be extended to recording prop-

erties of the data in a partition. For example, a sum-

mary index might record aggregates of the data, such

as minimum and maximum timestamps [7]. Alterna-

tively, a summary index can record whether or not

particular field values exist in the partition [3]. For

example, the index can record a list of all customer IDs

that appear in a partition (or conversely in which

partitions a customer identifier appears). If the average

customer ID appears in only a few partition, this type

of index minimized the number of partition indices to

be searched.
Join and Star Indices

A join index is a collection of pairs {(r,s)} such that the

record in table R with record ID (RID) r joins with the

record in table S with RID s, according to the join

predicate which defines the index. A join index accel-

erates the processing of joins, a common activity in a

data warehouse with a star or snowflake schema. A star

index is a join index between a fact table and each of its

dimension tables.
Key Applications
The most commonly implemented of these indices is

the bitmap index, which has been implemented in

most of the major commercial databases used for

data warehousing. Bitmap indices are also commonly
used in scientific database applications, such as High

Energy Physics. In HEP applications, bitmaps indices

are often used to record ‘‘interest sets’’ – collections of

events found to satisfy some complex property – to

accelerate their retrieval for later processing [10].
Cross-references
▶Bitmap-based Index Structures

▶Bitmap Index

▶Bitslice Signature Files

▶B+-Tree

▶ Inverted Index

▶ Join Index

▶Measure

▶Quadtrees (and Family)

▶R-Tree (and family)

▶ Snowflake Schema

▶ Star Schema
Recommended Reading
1. Amer-Yahia S. and Johnson T. Optimizing queries on compressed

bitmaps. In Proc. 26th Int. Conf. on Very Large Data Bases, 2000,

pp. 329–338.

2. Apaydin T., Canahuate G., Ferhatosmanoglu H., and Tosun A.

Approximate encoding for direct access and query processing

over compressed bitmaps. In Proc. 32nd Int. Conf. on Very Large

Data Bases, 2006, pp. 846–857.

3. Johnson T. Coarse indices for a tape-based data warehouse. In

Proc. 14th Int. Conf. on Data Engineering, 1998, pp. 231–240.

4. Johnson T. and Shasha D. Some approaches to index design for

cube forest. IEEE Data Eng. Bull., 20(1):27–35, 1997.

5. Kline N. and Snodgrass R. Computing temporal aggregates. In

Proc. 11th Int. Conf. on Data Engineering, 1995, pp. 222–231.

6. Kotidis Y. and Roussopoulos N. An alternative storage organiza-

tion for ROLAP aggregate views based on cubetrees. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1998,

pp. 249–258.

7. Moerkotte G. Small materialized aggregates: a light weight index

structure for data warehousing. In Proc. 24th Int. Conf. on Very

Large Data Bases, 1998, pp. 476–487.

8. O’Neil P. and Quass D. Improved query performance with

variant indices. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1997, pp. 38–49.

9. Rdb7: Performance enhancements for 32 and 64 bit systems.

Available online at: http://www.oracle.com/products/servers/

rdb/html/fsvlm.html.

10. Wu K., Koegler W.S., Chen J., and Shoshani A. Using bitmap

index for interactive exploration of large datasets. In Proc. 15th

Int. Conf. on Scientific and Statistical Database Management,

2003, pp. 65–74.

11. Wu K., Otoo E.J., and Shoshani A. Compressing bitmap indexes

for faster search operations. In Proc. 14th Int. Conf. on Scientific

and Statistical Database Management, 2002, pp. 99–108.

1458 I Indexing of the Current and Near-Future Positions of Moving Objects
Indexing of the Current and
Near-Future Positions of Moving
Objects

SIMONAS ŠALTENIS, CHRISTIAN S. JENSEN

Aalborg University, Aalborg, Denmark

Definition
A scenario is assumed where a large population of

objects capable of reporting positional data to a central

server exists. Specifically, an object may report its current

position, but may also report its current velocity vector.

A key challenge is to be able to accommodate

the very frequent updates inherent to this scenario.

Another important challenge is to contend with, and

indeed exploit, all the available positional data so that

better query results to near-future queries are enabled.

To address these challenges, the position of an object

is typically modeled as a linear function from time to

space (typically the two- or three-dimensional Euclide-

an spaces are assumed). Such functions are readily

available, and the positions they return get outdated

less frequently than do constant functions, thus reduc-

ing the update rate. Further, they enable the computa-

tion of more accurate results for near-future queries.

The fundamental types of queries to be supported

by an index include ones that retrieve the objects with a
Indexing of the Current and Near-Future Positions of Movin

data [12].
position within a specified, rectangular spatial region:

timeslice and window queries consider a stationary

region for a single time point or a time interval; and

so-called moving queries attach a rectangle to a moving

object and consider a time interval. The times sup-

ported range from the current time to some near-

future time.

Figure 1 shows a set of trajectories in (x, t)-space of

objects and illustrates the three types of queries: Q0

and Q1 are timeslice queries, Q2 is a window query,

and Q3 is a moving query.

Other types of queries such as nearest neighbor

queries or reverse nearest neighbor queries may also

be supported. In addition, an index should also sup-

port updates, i.e., insertions and deletions.

For its illustration of key concepts, this entry uses

primarily R-tree-based techniques; specifically, the

TPR-tree [12] is covered in some detail, as it is the

ancestor of a sizable family of indices.
Historical Background
The first proposal for the indexing of moving object

positions as linear functions is due to Tayeb et al. [14]

who propose to use PMR-quadtrees for indexing the

future linear trajectories of one-dimensional moving

point objects as line segments in (x, t)-space. Kollios

et al. [6] also focus mostly on one-dimensional data
g Objects. Figure 1. Query examples for one-dimensional

Indexing of the Current and Near-Future Positions of Moving Objects I 1459

I

and employ the so-called duality data transformation

where a line x = x(tref) + v(t�tref) is transformed to the

point (x(tref),v), enabling the use of regular spatial

indices.

Later research focuses on two-dimensional and, in

some cases, three-dimensional data. In general, the

proposed indexing methods can be classified according

to the space that they index, i.e., what view is taken

on the indexed data. Assume the objects move in

d-dimensional space (d = 1,2,3). The first approach is

to index future trajectories as lines in (d + 1)-dimen-

sional space. This is the approach taken by Tayeb et al.

[14], but the approach is difficult to extend to

higher dimensions, and the index has to be rebuilt

periodically.

The second approach is to transform the trajectories

to points in a higher-dimensional space which are then

indexed. Queries are then also transformed to counter

the data transformation. The transformation of Kollios

et al. [6] maps linear functions in d-dimensional space

into static points in 2d-dimensional space.

In STRIPES [8], PR quadtrees are used to index

these 2d-dimensional points. Yiu et al. [15] instead

propose to use space filling curves to further transform

2d-dimensional points into one-dimensional points

that are then indexed by the B+-tree. Agarwal et al. [1]

combine the duality transformation with kinetic data

structures [2]. The main idea of kinetic data struc-

tures is to schedule future events that update a data

structure so that necessary invariants hold.
Indexing of the Current and Near-Future Positions of Movi

research.
The third approach, sometimes referred to as

indexing in the primal space, is to index the data in

their native, d-dimensional space, which is possible by

parameterizing the index structure using velocity vec-

tors and thus enabling the index to be ‘‘viewed’’ as of

any future time. This absence of transformations yields

quite intuitive indexing techniques.

The Time-Parameterized R-tree (TPR-tree) [12]

exemplifies this approach. Proposed by Šaltenis et al.

in 2000, the TPR-tree gave rise to a number of other

access methods, as illustrated in Fig. 2. For example, the

REXP-tree [11] extends the TPR-tree to index data with

expiration times, so that the positions of the objects that

do not update their positions are automatically

removed from the index. The TPR∗-tree [13] intro-

duces new heuristics with the objective of improving

the query performance of the TPR-tree and to opti-

mize it for workloads of queries that differ slightly

from those targeted by the TPR-tree. The STAR-tree

[10] modifies the TPR-tree by introducing more com-

plex time-parameterized bounding rectangles and

making the index self-adjustable. The Velocity Con-

strained Indexing (VCI) [9] technique uses the regular

R-tree with an additional field of vmax in each node.

The vmax is used to expand the bounding rectangles of

the R-tree when future queries are processed.

The fourth approach is to index the objects’ posi-

tions as of some specific time points, so-called label

timestamps, and to extend the spatial extents of

queries according to the maximum speeds of objects
ng Objects. Figure 2. TPR-tree origins and follow-up

1460 I Indexing of the Current and Near-Future Positions of Moving Objects
and the difference between the time specified in the

query and the label timestamps. The Bx-tree [4,5] uses

a combination of space-filling curves and B+-trees to

index the (static) positions of objects as of label

timestamps.
Indexing of the Current and Near-Future Positions of

Moving Objects. Figure 3. Example time-parameterized

bounding rectangle [3].
Foundations

Data and Queries

For an object moving in d-dimensional space, the

object’s position at some time t is given by

�xðtÞ ¼ ðx1ðtÞ; x2ðtÞ;:::; xdðtÞÞ, where it is assumed

that the times t are not before the current time. This

position is modeled as a linear function of time, which

is specified by two parameters. The first is a position

for the object at some specified time tref, �xðt ref Þ, which
is called the reference position. The second parameter

is a velocity vector for the object, �v ¼ ðv1; v2;:::; vdÞ.
Thus, �xðtÞ ¼ �xðt ref Þ þ �vðt � t ref Þ.

Then, as shown in Fig. 1, a timeslice query,Q = (R, t),

retrieves points that will be inside the d-dimensional

hyper-rectangle R at time t. A window query, Q = (R,

t‘,ta), retrieves points that will be inside the hyper-

rectangle R sometime during time-interval [t‘, ta]. A

moving query, Q = (R1, R2, t
‘, ta), retrieves points with

trajectories in ð�x; tÞ-space crossing the (d + 1)-dimen-

sional trapezoid obtained by connecting R1 at time

t‘ to R2 at time ta.
The Structure of the TPR-Tree

A large number of indices utilize the structure of the

TPR-tree, which indexes moving points in one, two, or

three dimensions. It employs the basic structure of the

R-tree, which stores data in the leaves of a balanced

index tree, and each non-leaf index entry contains a

minimum bounding rectangle (MBR) of all the data in

the subtree pointed to by the entry. In contrast to the

R-tree, the indexed points as well as the bounding

rectangles are augmented with velocity vectors. This

way, bounding rectangles are time parameterized –

they can be computed for different time points. Velo-

cities are associated with the edges of bounding

rectangles so that the enclosed moving objects (points

or other rectangles) remain inside the bounding rec-

tangles at all times in the future. More specifically, if a

number of points pi are bounded at time t, the spatial

and velocity extents of a bounding rectangle along the

x axis are computed as follows:
x‘ðtÞ ¼ minifpi:xðtÞg; xaðtÞ ¼ maxifpi:xðtÞg;
v‘x ¼ minifpi:vxg; vax ¼ maxifpi:vxg:

Figure 3 shows an example of the evolution of a

bounding rectangle in the TPR-tree computed at

t = 0. Note that, in contrast to R-trees, bounding

rectangles in the TPR-tree are not minimum at all

times. In most cases, they are minimum only at the

time when they are computed. A process called tight-

ening, performed whenever an index node is modified

during an insertion or a deletion, recomputes a node’s

time-parameterized bounding rectangle, rendering it

minimum at that time.

Querying the TPR-Tree

The TPR-tree can be interpreted as an R-tree for any

specific time, tq. This suggests that algorithms that

are based on the R-tree are easily ‘‘portable’’ to the

TPR-tree. For example, answering a timeslice query

proceeds as for the R-tree, the only difference being

that all bounding rectangles are computed for the time

tq specified in the query before intersection is checked.

To answer window queries and moving queries, the

algorithm has to check if, in ð�x; tÞ-space, the trapezoid
of a query intersects with the trapezoid formed by the

part of the trajectory of a bounding rectangle that is

between the start and end times of the query. This can

be checked using a simple algorithm [12]. Figure 4

illustrates the intersection between a one-dimensional

time-parameterized bounding rectangle (interval) and

a moving query.

Updating the TPR-Tree

An update of the moving object’s position is modeled

as a deletion of the old position followed by an

Indexing of the Current and Near-Future Positions of Moving Objects I 1461

I

insertion of the new position. The TPR-tree’s update

algorithms are based on the update algorithms of

the R∗-tree, which is an R-tree with improved update

algorithms. The update algorithms of the TPR-

tree differ from the corresponding algorithms of

the R∗-tree only in the heuristics that are used. The

R∗-tree uses heuristics that minimize certain func-

tions, including the area of a bounding rectangle, the

intersection of two bounding rectangles, the margin

of a bounding rectangle, and the distance between

the centers of two bounding rectangles. As the TPR-

tree employs time-parameterized bounding rectangles,

the above-mentioned functions are time dependent,

and their evolution in time should be considered.

Specifically, given an objective function A(t), the fol-

lowing integral should be minimized:

Z t cþH

tc

Aðt Þdt ;

where tc is the time when the heuristics is being applied

and H is a so-called time horizon parameter, the value

of which reflects how far into the future queries are

expected to ‘‘see’’ the effects of the application of this

heuristics. If A(t) is area (in d-dimensional space), the

integral computes the area of the trapezoid that repre-

sents part of the trajectory of a bounding rectangle

in (�x; t)-space (a d+1-dimensional volume, see

also Fig. 4).
Indexing of the Current and Near-Future Positions of

Moving Objects. Figure 4. Intersection of a

bounding interval and a query [12].
Duality-Transformation Approach

The general approach of indexing moving points in

their native space using a time-parameterized index

structure such as the TPR-tree is closely related to the

duality transformation approach [6, 8, 15].

Considering one-dimensional data, the duality

transformation transforms the linear trajectory of a

moving point x = x(tref) + v(t �tref) in (x, t)-space

into a point (x(tref), v), where tref is a chosen reference

time. Queries, then, are also transformed.

Bounding points (x(tref), v) in the dual space with a

minimum bounding rectangle is equivalent to bound-

ing them (as moving points) with a time-parameter-

ized bounding interval computed at tref. Figure 5

shows the same bounding rectangle and query in

(x(tref), v)-space and in (x, t)-space.

In spite of the equivalence among the bounding

rectangles used in the two approaches, the algorithms

used in different indexes may vary substantially. A

duality-transformation index may not even explicitly

use minimum bounding rectangles [15]. Furthermore,

while the heuristics of time-parameterized indexes con-

sider the objects’ positions at the time the heuristics

are applied, the algorithms of duality-transformation

approaches always use a pre-chosen constant tref. For

this reason, duality-transformation approaches usually

use two (or more) indexes, such that updates are

placed into the latest index; and when the earliest

index becomes empty, a new index is created [6].

A sufficiently high update rate is crucial in order for

both the time-parameterized indexes, such as the TPR-

tree, and the indexes using the duality transformation

to offer good query performance. The reasons for this

are most obvious in the TPR-tree, where query perfor-

mance degrades due to the uninterrupted expansion of

time-parameterized bounding rectangles, which results

in more queries intersecting with a given bounding

rectangle.

Key Applications

Online, Position-Aware People, Vehicles, and

Other Objects

The rapid and continued advances in positioning sys-

tems, e.g., GPS, wireless communication technologies,

and electronics in general render it increasingly feasible

to track and record the changing positions of objects

capable of continuous movement. Indexing of such

positions is necessary in some Location-Based Services

Indexing of the Current and Near-Future Positions of Moving Objects. Figure 5. Timeslice query (dashed) and

bounding interval (solid) in dual (x(tref), v)-space and (x, t)-space.

1462 I Indexing of the Current and Near-Future Positions of Moving Objects
(LBS), such as location-based games, tourist-related

services, safety-related services, and transport-related

services (e.g., fleet tracking).

Process Monitoring

Applications such as process monitoring do not de-

pend on positioning technologies. In these, the posi-

tion of a ‘‘moving point’’ could for example be a pair of

temperature and pressure values at a specific sensor.

A timeslice query then would retrieve all sensors with

current measurements of temperature and pressure in

given ranges.

Future Directions
Tracking continuous real-world phenomena inevitably

involves high rates of updates that have to be processed

by the index. Very recent research provides a number of

interesting ideas for speeding up the processing of index

updates. Further research is needed to fully explore

trade-offs among update performance, query perfor-

mance, and query accuracy. Finally, main-memory

indexing of such data could be explored to dramatically

boost the performance of index updates.

How to handle the always-present uncertainty

about the positions of objects has not been sufficiently

explored in connection with indexing and warrants

further study.

URL to Code
The source code of the TPR-tree can be found at:

http://www.cs.aau.dk/�simas/

The source code of the TPR∗-tree can be found at:

http://www.rtreeportal.org/
Cross-references
▶ Indexing Historical Spatio-Temporal Data

▶R-Tree (and family)

▶ Spatial Indexing Techniques

▶ Spatio-Temporal Trajectories
Recommended Reading
1. Agarwal P.K., Arge L., and Erickson J. Indexing Moving Points.

In Proc. 19th ACM SIGACT-SIGMOD-SIGART Symp. on Prin-

ciples of Database Systems, 2000, pp. 175–186.

2. Basch J., Guibas L.J., and Hershberger J. Data Structures for

Mobile Data. In Proc. 8th Annual ACM -SIAM Symp. on Dis-

crete Algorithms, 1997, pp. 747–756.

3. Benetis R., Jensen C.S., Karčiauskas G., and Šaltenis S. Nearest

and Reverse Nearest Neighbor Queries for Moving Objects.

VLDB J., 15(3):229–249, 2006.

4. Jensen C.S., Lin D., and Ooi B.C. Query and Update Efficient B+-

Tree Based Indexing of Moving Objects. In Proc. 30th Int. Conf.

on Very Large Data Bases, 2004, pp. 768–779.

5. Jensen C.S., Tiešytė D., and Tradišauskas N. Robust B+-Tree-

Based Indexing of Moving Objects. In Proc. 7th Int. Conf. on

Mobile Data Management, 2006, p. 12.

6. Kollios G., Gunopulos D., and Tsotras V.J. On Indexing Mobile

Objects. In Proc. 18th ACM SIGACT-SIGMOD-SIGART Symp,

Principles of Database Systems, 1999, pp. 261–272.

7. Mokbel M. F., Ghanem T.M., and Aref W.G. Spatio-Temporal

Access Methods. IEEE Data Eng. Bull., 26(2):40–49, 2003.

8. Patel J.M., Chen Y., and Chakka V.P. STRIPES: An Efficient

Index for Predicted Trajectories. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2004, pp. 637–646.

9. Prabhakar S., Xia Y., Kalashnikov D.V., Aref W.G., and

Hambrusch S.E. Query Indexing and Velocity Constrained

Indexing: Scalable Techniques for Continuous Queries onMoving

Objects. IEEE Trans. Computers, 51(10):1124–1140, 2002.

10. Procopiuc C.M., Agarwal P.K., and Har-Peled S. STAR-Tree: An

Efficient Self-Adjusting Index for Moving Objects. In Proc. of

ALENEX Workshop, 2002, pp. 178–193.

Indexing the Web I 1463
11. Šaltenis S. and Jensen C.S. Indexing of Moving Objects

for Location-Based Services. In Proc. 18th Int. Conf. on Data

Engineering, 2002, pp. 463–472.

12. Šaltenis S., Jensen C.S., Leutenegger S.T., and Lopez M.A.

Indexing the Positions of Continuously Moving Objects.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2000, pp. 331–342.

13. Tao Y., Papadias D., and Sun J. The TPR*-Tree: An Optimized

Spatio-Temporal Access Method for Predictive Queries. In

Proc. 29th Int. Conf. on Very Large Data Bases, 2003,

pp. 790–801.

14. Tayeb J., Ulusoy Ö., and Wolfson O. A quadtree based dynamic

attribute indexing method. Computer J., 41(3):185–200, 1998.

15. Yiu M.L., Tao Y., and Mamoulis N. The Bdual-Tree: indexing

moving objects by space filling curves in the dual space. VLDB

J., 17(3):379–400, 200.
I

Indexing the Past

▶ Indexing Historical Spatio-Temporal Data
Indexing the Web

EDLENO SILVA DE MOURA
1, MARCO ANTONIO CRISTO

2

1Federal University of Amazonas, Manaus, Brazil
2FUCAPI, Manaus, Brazil

Synonyms
Web indexing

Definition
The process of collecting, parsing, and storing data to

provide fast and accurate retrieval of content available

on the web. The result of this process is a structure

called index that maps the collected data (for instance,

words, phrases, concepts, or sound fragments) to the

web location where it is possible to find content asso-

ciated with the data (for instance, pages containing

these words, phrases, concepts, or music with the

sound fragments). Depending on the data collected,

several indices may be created. The process can be

manual or automatic. Manually generated indices in-

clude web directories, back-of-book-style indices, and

metadata. Automatically generated indices are normally

associated with the infra-structure of search engines.
Historical Background
One of the first efforts to index the web content was

developed by a MIT student, Matthew Grey, who cre-

ated a program to estimate the size of the Web. This

program, called Word Wide Web Wanderer, was able

to recursively traverse the web’s hypertext structure,

retrieving all the referenced documents [11,12,15]. It

was the first crawler (also known as robot, bot, or

spider). The URLs collected by this program formed

the first database of web sites, the Wandex. It also

caused quite a controversy due to the large amount

of bandwidth it used. In response to this in October

1993, Martijn Koster created a program called ALI-

WEB (Archie-like Indexing of the Web). To avoid

using crawlers, Koster asked webmasters to post their

own index information for each page they wanted

listed. ALIWEB, however, never reached a size large

enough to compete with crawler-based indexers.

After its controversy start, crawlers became a stan-

dard component in most search engine indexers. By

the end of 1993, search services such as JumpStation,

World Wide Web Worm, the Repository-based Soft-

ware Engineering (RBSE), and Excite used crawlers to

gather information of Web pages. In general, these

services indexed words extracted from URL, title, and

text fragments of the pages.

The indices used by search engines were not

designed towards human navigation. Thus, unlike

book indices or yellow pages, they did not allow users

to freely explore web contents by narrowing the field of

interest. This observation motivated the University of

Texas to create Elnet Galaxy in January 1994, the oldest

web directory. In this index, contents were manually

reviewed and organized into hierarchical categories. As

in ALIWEB, only pages submitted to the service were

listed. In April 1994, two students from Stanford Uni-

versity, David Filo and Jerry Yang, expanded a personal

list of pages into a searchable directory, Yahoo!. Unlike

Galaxy, Yahoo! automated aspects of the gathering and

categorization process, blurring the distinction be-

tween search engine and directory.

Still in 1994, a student of the University of Washing-

ton, Brian Pinkerton, started another crawler-based

search engine, the WebCrawler. It was the first one to

index the full text of the pages. Soon after, in July, a

project from Carnegie-Mellon University, headed by

Michael Mauldin, Lycos, provided indices supporting

prefix matching, word proximity, and a multimillion

page catalog. In 1995, Altavista started indexing text

1464 I Indexing the Web
associated with images, music, and videos. In the fol-

lowing years, several other services were stated, such as

Inktomi (1996), Google (1997), and MSN Search

(1998), improving image and video indexing, addres-

sing spam issues related to indexing, targeting other

document and media formats as well as other web

elements. For instance, the increasing adoption of link

analysis in ranking algorithms motivated the mainte-

nance of citation indices. Also in 1998, the Open Direc-

tory was started to create a human-reviewed directory

constructed and maintained by a community of

volunteers.

Foundations

Introduction

The web is a space for mass publication at an unprece-

dented scale. The earliest strategies to make all the

information in this space discoverable by the users

consisted of applying traditional information retrieval

techniques to the new content [8,10]. As a conse-

quence, the first search engines adopted approaches

based on manually or automatically built indices.

When performing manual indexing, experts de-

scribe the web content by selecting terms which indicate

what the content is about. These terms are normally

selected from controlled vocabularies and are organized

as flat or hierarchical lists. It is also common that the

authors of the contents select keywords and metadata to

describe them. The resulting indices may be oriented

towards direct navigation by humans or to be retrieved

by other programs.

An example of index oriented towards human nav-

igation is the web directory. In such an index, links to

sites are organized into hierarchical categories, accord-

ing to the sites’ contents. In web directories, normally

the tasks of collecting and categorizing pages are car-

ried out under supervision of human editors.

An example of index not oriented to humans is

a hidden list of metadata. Metadata are data about

data. As a mean of assisting a search engine to

locate content or an information entity, they can be

used to describe that content or entity. While not

visible to humans, this information can provide con-

textual clues to automatic algorithms used by search

engines.

Manual indexing presents two problems. First, it

does not scale with the size of the web. This is an even

more daunting problem considering the dynamic
nature of web, where many documents have no persis-

tent state and would require frequent revisions. Sec-

ond, to be effective as a search tool, experts and users

have to agree with respect to the taxonomy employed

for classification, which is hard when using large taxo-

nomies [8]. These problems contributed for the domi-

nance of strategies based on automatic indexing.

In automatic indexing, a program (i.e., a web

crawler) scans the web, collecting pages to extract

data useful to describe them. The contents of the

pages (text, media, links, etc.) are parsed, and decom-

posed into their components (tokens). Each token

constitutes an atomic search criterion. For instance,

in the case of textual content, the tokens are normally

words and the most simple search query is composed

of at least one word. They are normally converted to a

standard form through some transformations and

inserted into one or more data structures. These struc-

tures are the base for one or more indices.

The resulting indices are used by search engines to

allow several search strategies, such as full-text search,

and support different ranking algorithms, central com-

ponents of systems with automatic indexing. Such

algorithms increase the likelihood that the system will

automatically order results according to their relevance

to the users. Typically, the indexing is performed at a

predetermined time interval due to the required time

and processing costs.

While manually created indexes are commonly

associated with natural language text, automatic

indexers are likely to support additional kinds of

media, such as images, sounds, and video. It is also

common that indexers expand the textual content of a

web page pwith additional evidence such as the anchor

text found in pages that link to p. The anchor text is the

text highlighted by web browsers to indicate the pres-

ence of a link. Normally, it provides a useful descrip-

tion of the target page. Thus, pages with many

incoming links can accumulate several descriptions

emphasizing what the page is about. In fact, the use

of different evidence is a common way to assist ranking

algorithms to order results.

Data Structures to Support Automatic Indexing A typ-

ical data structure used to map tokens to their asso-

ciated contents is the inverted file or inverted index

[2,10]. The inverted file stores a list of occurrences of

each token, normally in the form of a hash table or

binary tree. In larger indices it normally assumes a

Indexing the Web I 1465

I

form of a distributed hash table. The list associated

with each token is called an inverted list.

By using an inverted file, the search engine can find

content (for instance, a document) through direct

access. In its simplest design, this structure can only

determine if a token exists in a document, since the

inverted lists store only occurrence information. Fur-

ther, they can only determine which documents match

a query. They do not rank them.

In real indexers, however, the inverted list stores

additional information to support searching and rank-

ing. Further, the list can be sorted in such way that

some documents are more likely to be retrieved than

others, which enables several ranking speedup

optimizations.

Additional information typically stored in inverted

lists include the frequency and position of a token. In

the case of textual content, the frequency information

can be used to assist ranking algorithms to judge the

relevance of a document to a search query whereas the

position information enables search algorithms to sup-

port word proximity and phrase search.

To ensure that more promising documents will

be retrieved earlier, the inverted list is normally

sorted according to a query-independent document

score. This score is calculated by combining query-

independent factors associated with the document,

such as the frequency that users click on it, its link

popularity, URL size, and spam score.

Other data structures are used to support auto-

matic web indexing. They are generally adopted to

speedup retrieval or provide additional information

for ranking algorithms. For instance, by using only

the previously described inverted file, a search engine

can correctly answer phrase queries. For this, it has to

retrieve the inverted lists for all words in the phrase and

intersect them. In practice, this is a very slow process

and other strategies are employed. A simple alternative

strategy is to extend the inverted file to support phrases

along with words, as tokens. In such a case, only

common phrases are included in the data structure.

Another strategy consists in using a structure that

facilitates the processing of pairs of words. For in-

stance, the inverted list associated with a word w can

be divided into sublists, according to the words that

follow w. For instance, for retrieving the list associated

with the phrase ‘‘web indexing’’, one can retrieve the

inverted list of ‘‘web’’ and then the inverted sublist of

‘‘indexing.’’
Additional data structures used to support auto-

matic web indexing are citation indices, n-gram

indices, term document matrices, and tries, to cite a

few. A citation index stores hyperlinks between docu-

ments to assist citation analysis, a set of bibliometric

techniques used by ranking algorithms. N-gram

indices store sequences of length of data to support

some types of retrieval, such as phrase retrieval. Term

document matrices are sparse matrices that store the

occurrence of the words in the documents, needed

for a technique called latent semantic analysis [4].

Tries are ordered tree data structures used to store an

associative array where the keys are usually strings. A

particular kind of trie is a suffix tree, used to store

the suffixes of data strings in order to carry out fast full

text searches.

Challenges and Design Factors in Automatic Indexing

By using automatic methods, search engines are able to

index a significant part of the web while sustaining

very low response times, when compared to manual

indexing. Given the huge size and diversity of the web,

many challenges were faced to reach such a

performance.

From an engineering point of view, it was necessary

to deal with several design factors, such as the amount

of computer storage necessary to support the index,

how the index should be filtered, compressed, and

distributed [14]. Other key design factors are the up-

date policy, reliability, and required electric power.

Regarding distribution, for instance, indices are

normally partitioned by documents, that is, each

node contains the index for a subset of all documents

[8]. To answer a query, such query has to be submitted

to each subset of documents and the results merged

before being shown to the user.

A strategy to reduce the use of disk, network, and

memory resources is to compress the key data struc-

tures. These compressed structures enable fewer disk

and network accesses leading to faster processing, in

spite of the processing costs associated with compres-

sion and decompression algorithms.

From a computer science point of view, it was

necessary to find properly data structures to support

the desired search and ranking operations in the re-

quired time and space. Examples of aspects considered

included the processing of strings and n-grams, the

possibility of approximated searching, document posi-

tion, and the type of media to be indexed.

1466 I Indexing the Web
It was also necessary to deal with several algorith-

mic challenges. For instance, the adoption of

distributed architectures required parallel algorithms

for building the indices and synchronize the crawlers.

Space, time, and accuracy requirements motivated

researches on data selection with minimum impact

on ranking, compression, subject categorization, and

clustering. Robustness and completeness requirements

motivated research on format analysis in order to

design methods able to handle malformed documents,

documents whose content is dynamically generated,

proprietary formats, and multiple character sets.

Given the importance of ranking results for search

engines, indices include much evidence which require

the development of new ranking algorithms to take

advantage of them. For instance, by storing hyperlinks

between pages it is possible to infer the importance of

the pages. A page pointed to by many other pages,

specially by important ones, is probably an important

page. This is the central idea of a very popular ranking

strategy called PageRank [3]. This idea can be refined

by characterizing the importance of a page according

to its role, in particular, as a hub or an authority. The

hubness of a page is the quality associated with its

capability to point to other interesting pages in the

web, whereas its authority is related to how good is

considered its own informative content. HITS is a very

well known ranking algorithm that infers page impor-

tance by taking into consideration these roles [6]. In

particular, HITS explores a recursive definition of hub

and authority pages, that is, a good hub is the page that

points to many good authorities and a good authority

is the page that is pointed to by many good hubs.

From a linguistic point of view, it was necessary to

deal with the complexity inherent to the processing of

natural language [13]. This is particularly difficult due

to the necessity to handle multiple languages [8]. In a

multilingual indexer, even apparently simple tasks as

recognizing the word boundaries represent a challenge,

since words are not clearly separated by white spaces in

some languages such as Chinese, Japanese, and Arabic.

Further, to deal with issues such as ambiguity, com-

pression, and properly match of sentences, many

search engines use additional information such as the

lexical category of the words and their roots. All

of this information requires language-dependent tech-

niques and, by extent, automated language recogni-

tion, a subject of ongoing research in natural language

processing.
Key Applications
Web indexing is essential for making the wealth of

information in the web discoverable by the users.

Future Directions
The web continues growing uncoordinatedly, at large

scale and with great diversity of interests [8]. These

aspects of the web raise several problems that affect

indexing, motivating many studies to address them.

For instance, since the number of pages in the web

grows beyond the capabilities of search engines collect-

ing them, research has been and will likely continue to

be focused on improving the ability of recognizing as

early as possible not so useful pages in order to avoid

indexing them [1].

On the other hand, most of the information in

the web is stored in databases and is only available

through systems that generate pages dynamically in

response to user interactions. These dynamic pages

comprise which is called the hidden web (also referred

to as deep web). As a consequence, much digital con-

tent is inaccessible to typical crawlers. Research is

under way to make it possible to index the hidden

web, for instance, by exploring search query syntax,

standard formats of online resources, and application

programming interfaces [9].

There is an increasingly interest on indexing rich

media formats. Current indexing approaches for such

media take advantage of text clues such as image

legends, video subtitles or music lyrics. New research

has focused on describing them by means of their

content [7] in order to make possible, for instance,

the retrieval of an image by its description or of

music by a sound fragment. The main challenge regar-

ding media indexing is how to represent it such that it

can be efficiently stored, retrieved, and compared. For

instance, a music retrieval system should be able to

map pitches to notes by analyzing waveforms, to store

these notes into an index structure, and to match note

strings allowing a certain amount of noise [9].

Another research focus is fighting spam [5]. The

diversity of interests in the Web along with a growing

audience led to the adoption of several strategies to

ensure top positions on search engine results lists.

Many of these strategies consisted of manipulating

the content of the pages to deceive the indexer by

using misleading terms or abusing of metatags. In

response, movements to standardize metatag content

has emerged. Also, research has lead to the design of

Indexing Units I 1467
robust crawling algorithms able to deal with several

spam traps and new methods to infer content quality

and reliability.
Cross-references
▶ Information Retrieval

▶ Inverted Files

▶ Suffix Tree

▶Text indexing Techniques

▶Trie
I

Recommended Reading
1. Baeza-Yates R., Castillo C., Marin M., and Rodriguez A. Crawl-

ing a country: better strategies than breadth-first for web page

ordering. In Proc. 14th Int. World Wide Web Conference, 2005.

pp. 864–872.

2. Baeza-Yates R.A. and Ribeiro-Neto B. Modern information

retrieval. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1999.

3. Brin S. and Page L. The anatomy of a large-scale hypertex-

tual web search engine. Comput. Netw. ISDN Syst., 30

(1–7):107–117, 1998.

4. Deerwester S., Dumais S.T., Landauer T.K., Furnas G.W., and

Harshman R.A. Indexing by latent semantic analysis. J. Soc. Inf.

Sci., 41(6):391–407, 1990.

5. Heymann P., Koutrika G., and Garcia-Molina H. Fighting spam

on social web sites: A survey of approaches and future chal-

lenges. IEEE Internet Comput., 11(6):36–45, 2007.

6. Kleinberg J.M. Authoritative sources in a hyperlinked environ-

ment. J. ACM, 46(5):604–632, 1999.

7. Liu Y., Zhang D., Lu G., and Ma W.Y. A survey of content-based

image retrieval with high-level semantics. Pattern Recognit., 40

(1):262–282, 2007.

8. Manning C.D., Raghavan P., and Schütze H. Introduction to

Information Retrieval, Ch. 18, 19, 20 (optional). Cambridge

University Press, Cambridge, 2008.

9. Mostafa J. Seeking better web searches. Sci. Am. Mag., February

2005.

10. Salton G. Automatic Text Processing: the Transformation, Anal-

ysis, and Retrieval of Information by Computer. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1989.

11. Sonnenreich W. A History of Search Engines, 1997. Available at

http://www.wiley.com/legacy/compbooks/sonnenreich/history.

html.

12. Underwood L. A Brief History of Search Engines. Available at

http://www.webreference.com/authoring/search_history.

13. Voorhees E.M. Natural language processing and information

retrieval. In Information Extraction: Towards Scalable, Adapt-

able Systems, M.T. Pazienza (ed.), 1999, pp. 32–48.

14. Witten I.H., Moffat A., and Bell T.C. Managing Gigabytes: Com-

pressing and Indexing Documents and Images, 2nd edn. Morgan

Kaufmann, Los Altos, CA, 1999.

15. Zakon R.H. Hobbes’ Internet Timeline. Available at http://

zakon.org/robert/internet/timeline/.
Indexing Units

JAAP KAMPS

University of Amsterdam, Amsterdam, The Netherlands

Synonyms
Indexing granularity

Definition
Indexing units refers to the granularity of information

in the retrieval system’s index, which can be in prin-

ciple any document part of a structured text, and

as a consequence determines the possible units of

retrieval. There are three basic approaches. The first

approach is to index every potentially retrievable unit

as a whole – the so-called element-based approach

[13]. The second approach is to index disjoint nodes –

and relying on aggregation or score propagation meth-

ods for scoring higher-level nodes [e.g., 1,12]. The third

approach is to index only selected elements, for example

by indexing particular element types in separate indexes

[10]. Various mixtures of these approaches have also

been applied.

All approaches make implicit or explicit assump-

tions on the (most likely) unit of retrieval. Although

there may be no designated retrieval unit (such as the

document or root node of the structured document),

this also does not mean that every document part

(such as a sub-tree of the structured document) is an

equally desirable retrieval unit. Such assumptions may

be relatively generic (such as paragraphs and sections

being more informative than very short excerpts in

bold or italics) or may depend on the query at hand

(such as a structured query requesting elements with a

particular tag). In all cases these assumptions depend on

the sort of structured documents (which may range

from strict XML databases to loosely structured textual

documents with mark-up), and on the sort of informa-

tion need (which may range from a strict database query

with well defined semantics to a vague information

retrieval topic of request). Structured text retrieval typi-

cally deals with loosely structured textual documents

and vague information retrieval queries.

Historical Background
Structured text retrieval has a long pre-history in text

retrieval. The first test collections consisted of short

document surrogates such as bibliographic

1468 I Indexing Units
descriptions (in various forms) or abstracts. Since the

1990s, test collections consisted predominantly of full

text newspaper and newswire data. Interestingly, the

bibliographic descriptions were highly structured cata-

logue records, and the newspaper data were typically

structured in SGML, yet no particular use was made of

the internal document structure. In fact, the use of the

internal structure was usually explicitly outlawed, the

main motivation for this being the desire to develop

retrieval techniques that would work on all (flat) texts.

The use of document structure derived from SGML

mark-up was pioneered by Wilkinson [15], studying ad

hoc SGML element retrieval, and by Myaeng et al. [11],

exploring structured queries that contain references to

the SGML document structure. Similar early work on

HTML is in [4]. There are also many similarities with

the early work on multimedia retrieval, such as the

DOLORES system [5] and the FERMI model [3],

which are addressing the problem of retrieving informa-

tion from structured documents. Ad hoc XML element

retrieval and best entry point retrieval was studied in the

Focus project [9]. In recent years, the main thrust of

research in structured text retrieval is the annual initia-

tive for the evaluation of XML retrieval [7].

Foundations
Structured text retrieval typically deals with loos-

ely structured textual documents and vague informa-

tion retrieval queries, and the discussion is focused

exclusively on this case. Indexing structured texts pre-

sents a number of challenges since such documents can

be decomposed according to their internal structure.

XML documents have a hierarchical structure of nested

elements (or subtrees). That is, for example, an entire

article consisting of front matter, body, and back matter.

The body, in turn, consists of sections. The sections,

again, consist of subsections. The subsections of para-

graphs, and so on. Since there is no fixed unit of retrieval

it is an open question what should be put in the index.

A prototypical structured text retrieval task is XML

element retrieval. In text retrieval, evaluation is based on

a ‘‘frozen’’ set of search requests (or ‘‘topics’’) with a set of

known relevant results – XML elements regarded as

relevant by the topic author. In XML retrieval, topics

consist of a short keyword (or content-only) title; a

structured (or content-and-structure) query in NEXI

[14]; a single sentence description; and a long narrative

statementof the search request.The retrieval system takes
as input the standard keyword query, or the structured

NEXI query. To give a concrete example, the htitlei
field of the INEX 2004 topic number 104 is

" Toy Story

The requested output is a ranked list of document

components (in this case XML elements in the INEX

IEEE collection containing full-text articles). There is

no fixed unit of retrieval: if a whole article is relevant,

return the harticlei element, but if only a section is

relevant, return the hseci element. Retrieval systems

will, of course, rank the XML elements based on the

occurrences of query terms (or possibly phrases, stems,

or synonyms based on these terms). However, whether

a result is indeed relevant for the query is determined

by a human judgment on whether the information in

the element satisfies the topic author’s information

need. For the above mentioned INEX 2004 topic 104,

the hnarrativei field reads

" To be relevant, a document/component must discuss

some detail of the techniques or computer infrastructure

used in the creation of the first entirely computer-

animated feature-length movie, ‘‘Toy Story.’’

A human judge (usually the topic author) will

assess the relevance of the retrieved results, where rele-

vant means that the element is both exhaustive (it

provides useful information on the topic of request)

and specific (there is a minimal amount of off-topic

material) (There have been different measures devel-

oped over the years).

Although, in principle, any document part or XML

element can be retrieved, some document parts tend

to be more likely to be relevant. Table 1 shows the

distribution of relevant elements over tag-names

(Here relevant is according to the strict quantization

function). In this case, most frequently paragraphs

(hpi), sections (hseci), and subsections (hss1i,
hss2i) are judged relevant, but also entire articles

(harticlei). The precise tags are a direct result of

the particular mark-up structure of the IEEE collec-

tion, which is mostly based on the logical structure of

the articles. Generalizing over the particular tag-

names, there is also a suggestion on the granularity of

information that is most likely to be a relevant result.

The following two observations present themselves.

First, the most frequent elements such as paragraphs

and (sub)sections are of relatively short-length.

Indexing Units. Table 1. Distribution of relevant elements over tag names (reproduced from [8])

2002 assessments 2003 assessments

Tag-name Frequency % Tag-name Frequency %

hpi 383 27.47% hseci 303 20.89%

harticlei 309 22.16% hpi 303 20.89%

hseci 291 20.87% harticlei 172 11.86%

hss1i 115 8.24% hbdyi 167 11.51%

hbdyi 90 6.45% hss1i 146 10.06%

hip1i 61 4.37% hip1i 69 4.75%

hss2i 25 1.79% hss2i 36 2.48%

habsi 22 1.57% hfigi 32 2.20%

hfmi 13 0.93% happi 20 1.37%

hsti 11 0.78% hbbi 19 1.31%

hitemi 8 0.57% harti 18 1.24%

happi 7 0.50% hbmi 17 1.17%

Indexing Units. Table 2. Example Document and Indexing Units

Example Document Indexing subtrees Indexing disjoint nodes

harticlei
htitleiXXXh/titlei
habstractiYYYh/abstracti
hbodyi
hseciZZZh/seci
hseciVVVh/seci

h/bodyi
h/articlei

1. harticlei XXX YYY ZZZ VVVh/
articlei

1. htitleiXXXh/titlei

2. htitleiXXXh/titlei 2. habstractiYYYh/abstracti
3. habstractiYYYh/abstracti 3. hseciZZZh/seci
4. hbodyiZZZ VVVhbodyi 4. hseciVVVh/seci
5. hseciZZZh/seci
6. hseciVVVh/seci

Indexing Units I 1469

I

Second, there is great variety of elements regarded as

relevant. Even for a single topic there is a very similar

variety of elements, making clear that relevancy is both

depending on the topic of request, and on the precise

structure of the document at hand.

Recall the question of what to put in the index.

The most obvious approach is to index all information

in the structured text. But already here different

options present themselves, as is illustrated in

Table 2. On the left-hand side of Table 2 is a very

simple example document, an article with title,

abstract and two sections. The first approach, shown

in the middle of Table 2, is to index every retrievable

unit, in this case every XML element. In a ‘‘bag of

words’’ approach all six XML elements of the docu-

ment are indexed separately, but each with all the
content or text contained inside the element. That is,

an element is indexed with both the text nodes directly

contained in it, and all text nodes of its descendants.

The indexing of subtrees of the XML hierarchy is

known as the element-based approach [13]. Indexing

subtrees is closest to traditional information retrieval

since each XML node is a bag of words of itself and its

descendants, and can be scored as ordinary plain text

document. This directly relates structured text retrieval

to the more general and well-understood problem of

document retrieval. The indexing scheme is only

using the structure to decompose the document into

all retrievable units, and hence is applicable to any

structured text. The main disadvantage is that it leads

to a highly redundant index: text occurring at depth n

of the XML tree is indexed n times.

1470 I Indexing Units
On the right-hand side of Table 2, an alternative

approach is shown, in which the text is only indexed

once at the node where it occurs. The harticlei and
hbodyi elements are missing since they have no

textual content. Since there are only four elements

with content, the index is much smaller, and there is

no redundancy of information. But the main advan-

tage of indexing disjoint nodes is also creating a new

problem of scoring higher level nodes. For example, as

shown above, the whole article is a reasonably attrac-

tive XML element type, but it may not even occur in

the index. This creates both a practical and a funda-

mental problem. The practical problem is that articles

may contain thousands of XML elements, and hence

may require considerable propagation of scores

over the navigational axis. The fundamental problem

is that it is not evident how to aggregate scores to

ancestor elements, and various approaches exist in

the literature. One of the earliest proposals is the aug-

mentation approach of Abolhassini et al. [1], a

straightforward propagation of scores to ancestor ele-

ments. The following simplified example illustrates the

main idea behind augmentation. Assume the following

document.

hbodyi
hsecicat. . .h/seci
hsecidog. . .h/seci
h/bodyi

and a query consisting of the two terms ‘‘cat dog.’’

Furthermore assume that: /body/sec[1] scores 0.7

for cat; /body/sec[2] scores 0.4 for dog; and the

rest 0 (that is, dog does not occur in the first section,

and cat not in the second section). The problem is

to determine the score of the body, which is not

indexed itself. The augmentation approach propagates

scores up with a certain weight (the augmentation

factor) which is set to 0.3 based on experiments. The

motivation for the augmentation factor is to avoid

larger elements accumulating scores, and thus (almost)

always get higher rankings than elements deep in the

hierarchy. So in this case, the /body[1] will score

0.3 ∗ 0.7 = 0.21 for cat; and 0.3 ∗ 0.4 = 0.12 for

dog. So the element /body[1], although not in the

index, will be returned. In fact, it will be the highest

ranked result for ‘‘andish’’ query evaluation where only

results containing all query terms are returned. A very

similar approach is taken by the GPX model and its

decay factor [6]. The element specific language models

of Ogilvie and Callan [12] provide an elegant
alternative approach within the language modeling

framework. Here, every XML element forms a particu-

lar language model, and the ancestor elements are

modeled as mixture language models of their direct

children. A final alternative is to just propagate term

frequencies and effective reconstructing the element-

based index discussed above, e.g., using the region

models of Burkowski [2].

A third indexing approach is to index only selected

elements in their entirety. This is essentially the ap-

proach taken in the FERMI model of Chiaramella [3].

The selection is tailored to the collection at hand,

usually based on the human interpretation of the tags

in the collection. An example of this approach is to

index particular types of elements separately [10].

Mass and Mandelbrod [10] create separate indexes

for articles (harticlei, abstracts habsi, sections

hseci, subsections hss1i, sub-subsections hss2i, and
paragraphs hpi and hip1i). Each index provides statis-

tics tailored to particular components, which may be

an advantage if language statistics deviate significantly

between element types. This is essentially a distributed

approach where queries are issued to all indexes, and

the results of each of the indexes are combined after

score normalization. The selective indexing approach

turned out to be effective for the IEEE collection used

at INEX. The requirement to select particular element-

types makes it strongly collection-dependent, and it is

less straightforward to apply this indexing approach to

arbitrary structured text.

Three prototypical indexing approaches for

structured text have been discussed above. Some obser-

vations present themselves. First, there is a trade-off

between exploiting the document structure, and being

generically applicable to all structured text. The ele-

ment-based approach uses the document structure for

decomposing documents by focusing on the hierarchi-

cal structure only. This ignores (potentially) useful

structure like the tag-names, their attributes, the sche-

ma or DTD, etc. However, to phrase it positively, since

it is completely schema-ignorant the approach can

handle data with any type of tag-structure, even

mixed-schema XML. The selective indexing approach

is on the opposite side of the spectrum. Here, the

specific tags and their semantics and importance have

to be taken into account when selecting the element

types to index. In cases where it is known what the

more important elements are, this gives powerful han-

dles to exploit this information. The downside is, of

Individually Identifiable Data I 1471

I

course, that the particular choice of element to index,

and thereby the effectiveness of the approach, is

completely dependent on the collection at hand. Sec-

ond, there is a trade-off between indexing and query

time complexity. The element based approach seems

unattractive since its index is highly redundant: text

appearing in a given element, will also appear in all the

index entry for all the ancestors of this element. This

may not be as undesirable as it may appear at first

glance, since it can be viewed as a trade-off between

query time and storage space complexity. The redun-

dant index has essentially ‘‘precomputed’’ term fre-

quencies per element, that otherwise need to be

computed at query run time, and hence has relatively

low query time complexity. The indexing complexity

of the disjoint nodes approach requires much less

storage space. However, an article may contain

thousands of XML elements, and hence will require

considerable propagation of scores over the naviga-

tional axes of the document at query time. Third, the

indexing methods and retrieval models are standard

information retrieval approaches or straightforward

extensions of them.
Cross-references
▶Aggregation-based Structured Text Retrieval

▶ Evaluation metrics for structured text retrieval

▶ INitiative for the Evaluation of XML Retrieval

▶ Propagation-based structured text retrieval

▶XML retrieval
Recommended Reading
1. Abolhassani M., Fuhr N., and Malik S. HyREX at INEX 2003.

In N. Fuhr, M. Lalmas, and S. Malik, editors, Proc. 2nd Int.

Workshop of the Initiative for the Evaluation of XML Retrieval,

2004, pp. 27–32.

2. Burkowski F.J. Retrieval activities in a database consisting

of heterogeneous collections of structured text. In Proc. 15th

Annual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 1992, pp. 112–125.

3. Chiaramella Y. Browsing and querying: Two complementary

approaches for multimedia information retrieval. In Hypertext -

Information Retrieval - Multimedia, 1997, pp. 9–26.

4. Cutler M., Shih Y., and Meng W. Using the structure of

HTML documents to improve retrieval. In Proc. 1st USENIX

Symp. on Internet Tech. and Syst., 1997.

5. Fuhr N., Gövert N., and Rölleke T. DOLORES: A system

for logic-based retrieval of multimedia objects. In Proc. 19th

Annual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 1996, pp. 257–265.
6. Geva S. GPX – Gardens Point XML IR at INEX 2004. In Proc.

3rd Int. Workshop of the Initiative for the Evaluation of XML

Retrieval, 2005, pp. 211–223.

7. INEX. INitiative for the Evaluation of XML Retrieval, 2007.

http://inex.is.informatik.uni-duisburg.de/.

8. Kamps J., de Rijke M., and Sigurbjörnsson B. Length normaliza-

tion in XML retrieval. In Proc. 30th Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

2004, pp. 80–87.

9. Kazai G., Lalmas M., and Reid M. Construction of a test collec-

tion for the focussed retrieval of structured documents. In Proc.

25th European Conf. on IR Research, 2003, pp. 88–103.

10. Mass Y., and Mandelbrod M. Retrieving the most relevant XML

components. In Proc. 2nd Int. Workshop of the Initiative for the

Evaluation of XML Retrieval, 2004, pp. 53–58.

11. Myaeng S.H., Jang D.H., Kim M.S., and Zhoo Z.C. A flexible

model for retrieval of SGML documents. In Proc. 21st Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 1998, pp. 138–145.

12. Ogilvie P., and Callan J. Using language models for flat text

queries in XML retrieval. In Proc. 2nd Int. Workshop of the

Initiative for the Evaluation of XML Retrieval, 2004, pp. 12–18.

13. Sigurbjörnsson B., Kamps J., and de Rijke M. An Element-Based

Approch to XML Retrieval. In Proc. 2nd Int. Workshop of the

Initiative for the Evaluation of XML Retrieval, 2004, pp. 19–26.

14. Trotman A. and Sigurbjörnsson B. Narrowed Extended XPath I

(NEXI). In Proc. 3rd Int. Workshop of the Initiative for the

Evaluation of XML Retrieval, 2005, pp. 16–40.

15. Wilkinson R. Effective retrieval of structured documents.

In Proc. 17th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 1994, pp. 311–317.
Individual Data

▶Micro Data
Individually Identifiable Data

CHRIS CLIFTON

Purdue University, West Lafayette, IN, USA

Synonyms
Personally identifiable data; Personal data

Definition
Individually Identifiable Data is data that identifies

the person that the data is about, or that can be used

to identify that individual. This generally refers to

data that contains either an identification number, or

1472 I INEX
factors relating to physical, mental, economic, cultural,

or social identity that could be used to link the data to

an individual. Regulatory requirements for privacy

generally apply (only) to individually identifiable data.

Key Points
Individually Identifiable Data is a legal term (e.g.,

personal data in the EU Privacy Directive [1], or Indi-

vidually identifiable health information in U.S. Health-

care Laws [2]); in general privacy laws only protect

individually identifiable data. Unfortunately, it is not

clearly defined in technical terms. Anonymous data is

presumably not individually identifiable, but what about

k-anonymous data? (Presumably data is individually

identifiable if K = 1, but at what level of K is

data no longer individually identifiable?) This leads

to considerable difficulty in developing data manage-

ment technology that balances privacy with the utility

of disclosing anonymous data.

Regulatory frameworks do give some guidance;

for example the U.S. Healthcare Privacy rules allow

data to be considered not individually identifiable if

names, geographic units of less than 20,000 people,

dates of finer granularity than a year (or that can

indicate age for those over 89), biometric identifiers

(fingerprint, full-face images), or any identifying num-

bers (telephone, account, vehicle license, IP address,

etc.) other than numbers generated specifically for the

particular dataset.

Cross-references
▶Anonymity

▶K-Anonymity

▶ Privacy Metrics

Recommended Reading
1. Directive 95/46/EC of the European Parliament and of the Coun-

cil of 24 October 1995. The protection of individuals with regard

to the processing of personal data and on the free movement of

such data. Off. J. Eur. Communities, 1(281):31–50, 1995.

2. U.S. Department of Health and Human Services Office for Civil

Rights. Standard for privacy of individually identifiable health

information. Technical report, August 2003.
INEX

▶ INitiative for the Evaluation of XML retrieval

(INEX)
Inference Control in Statistical
Databases

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona, Catalonia

Synonyms
Statistical disclosure control (SDC); Statistical disclo-

sure limitation (SDL)

Definition
Inference control in databases, also known as Statistical

Disclosure Control (SDC), is a discipline that seeks to

protect data so they can be published without revealing

confidential information that can be linked to specific

individuals among those to which the data correspond.

SDC is applied to protect respondent privacy in areas

such as official statistics, health statistics, e-commerce

(sharing of consumer data), etc. Since data protection

ultimately means data modification, the challenge for

SDC is to achieve protection with minimum loss of the

accuracy sought by database users.
Historical Background
The literature on inference control started in the 1970s,

with the seminal contribution by Dalenius [4] in the

statistical community and the works by Schlörer [12]

and others in the database community. The 1980s saw

moderate activity in this field. An excellent survey of

the state of the art at the end of the 1980s is [1]. In the

1990s, there was renewed interest in the statistical

community and the discipline was further developed

under the names of statistical disclosure control in

Europe and statistical disclosure limitation in America.

Subsequent evolution has resulted in at least three

clearly differentiated subdisciplines:

� Tabular data protection. This is the oldest and best

established part of SDC, because tabular data have

been the traditional output of national statistical

offices. The goal here is to publish static aggregate

information, i.e., tables, in such a way that no

confidential information on specific individuals

among those to which the table refers can be in-

ferred. See [13] for a conceptual survey and [7] for

a software survey.

� Queryable databases. The scenario here is a database

to which the user can submit statistical queries

Inference Control in Statistical Databases I 1473

I

(sums, averages, etc.). The aggregate information

obtained by a user as a result of successive queries

should not allow him to infer information on specific

individuals. Since the 1980s, this has been known

to be a difficult problem, subject to the tracker at-

tack [11]. SDC strategies here include perturbation,

query restriction and camouflage (providing interval

answers rather than exact answers).

� Microdata protection. This subdiscipline is about

protecting static individual data, also called micro-

data. It is only recently that data collectors (statis-

tical agencies and the like) have been persuaded to

publish microdata. Therefore, microdata protec-

tion is the youngest subdiscipline and is experien-

cing continuous evolution in the last years.

Good general works on SDC are [13,9].

Foundations
Statistical disclosure control will be first reviewed for

tabular data, then for queryable databases and finally

for microdata.

In spite of tables displaying aggregate information,

there is risk of disclosure in tabular data release. Several

attacks are conceivable:

� External attack. For example, let a frequency table

‘‘Job’’ � ‘‘Town’’ be released where there is a single

respondent for job Ji and town Tj. Then if a magni-

tude table is released with the average salary for

each job type and each town, the exact salary of the

only respondent with job Ji working in town Tj is

publicly disclosed.

� Internal attack. Even if there are two respondents

for job Ji and town Tj, the salary of each of them is

disclosed to each other.

� Dominance attack. If one (or a few) respondents

dominate in the contribution to a cell of a magni-

tude table, the dominant respondent(s) can upper-

bound the contributions of the rest (e.g., if the table

displays the total salary for each job type and town

and one individual contributes 90% of that salary,

he knows that his colleagues in the town are not

doing very well).

SDC methods for tables fall into two classes: non-

perturbative and perturbative. Non-perturbativemeth-

ods do not modify the values in the tables; the best

known method in this class is cell suppression (CS).

Perturbative methods output a table with some
modified values; well-known methods in this class

include controlled rounding (CR) and the recent con-

trolled tabular adjustment (CTA).

The idea of CS is to suppress those cells (primary

suppressions) that are identified as sensitive by the so-

called sensitivity rules. The two most common sensi-

tivity rules are:

� Dominance rule (n, k). The cell is deemed sensitive

if n or less respondents contribute at least k% of

the cell value.

� p%-rule. The cell is deemed sensitive if some res-

pondent can estimate the contribution by another

respondent within p% accuracy.

After primary suppressions, additional suppressions

(secondary suppressions) are performed to prevent pri-

mary suppressions from being computed or even in-

ferred within a prescribed protection interval using the

row and column constraints (marginal row and column

totals). Usually, one attempts to minimize either the

number of secondary suppressions or their pooled mag-

nitude, which results in complexoptimization problems.

Most optimization methods used are heuristic, based on

mixed integer linear programming or network flows

(e.g., [6]), most of them implemented in the t-Argus
free software package [10]. CR rounds values in the table

to multiples of a rounding base. This may entail round-

ing the marginal totals as well. On its side, CTAmodifies

the values in the table to prevent the inference of values

of sensitive cells within a prescribed protection interval.

The idea of CTA is to find the closest table to the original

one that ensures such a protection for all sensitive cells.

This requires optimization methods, which are typi-

cally based on mixed linear integer programming.

Usually CTA causes less information loss than CS.

Regarding SDC of queryable databases, there are

three main approaches to protect a confidential vector

of numerical data from disclosure through answers to

user queries:

� Data perturbation. Perturbing the data is a simple

and effective approach whenever the users do not

require deterministically correct answers to queries

that are functions of the confidential vector. Pertur-

bation can be applied to the records on which

queries are computed (input perturbation) or to

the query result after computing it on the original

data (output perturbation). An example of pertur-

bation methods can be found in [5].

1474 I Inference Control in Statistical Databases
� Query restriction. This is the right approach if the

user does require deterministically correct answers

and these answers have to be exact (i.e., a number).

Since exact answers to queries provide the user

with a very powerful information, it may become

necessary to refuse to answer certain queries at some

stage to avoid disclosure of a confidential datum.

There are several criteria to decide whether a query

can be answered; one of them is query set size

control, that is, to refuse answers to queries which

affect a set of records which is too small. An exam-

ples of the query restriction approach can be found

in [3].

� Camouflage. If deterministically correct non-exact

answers (i.e., small interval answers) suffice, confi-

dentiality via camouflage (CVC [8]) is a good op-

tion. With this approach, unlimited answers to any

conceivable query types are allowed. The idea of

CVC is to ‘‘camouflage’’ the confidential vector a by

making it part of the relative interior of a compact

set P of vectors. Then each query q = f(a) is

answered with an inverval [q�, q+] containing

[f �,f +], where f � and f + are, respectively, the

minimum and the maximum of f over P.

Regarding microdata SDC, given an original microdata

set V , its goal is to release a protected microdata set V 0

in such a way that:

1. Disclosure risk (i.e., the risk that a user or an

intruder can use V0 to determine confidential attri-

butes on a specific individual among those in V)

is low.

2. User analyses (regressions, means, etc.) on V0 and

on V yield the same or at least similar results.

Microdata protection methods can generate the pro-

tected microdata set V0 either by

� Masking original data, i.e., generating V0 a modified

version of the original microdata set V or

� Generating synthetic data V0 that preserve some

statistical properties of the original data V.

Masking methods can in turn be divided in two

categories depending on their effect on the original

data [13]:

� Perturbative. The microdata set is distorted before

publication. In this way, unique combinations of

scores in the original dataset may disappear and

new unique combinations may appear in the
perturbed dataset; such confusion is beneficial for

preserving statistical confidentiality. The perturba-

tion method used should be such that statistics

computed on the perturbed dataset do not differ

significantly from the statistics that would be

obtained on the original dataset. Noise addition,

microaggregation, data/rank swapping, microdata

rounding and PRAM are examples of perturbative

masking methods.

� Non-perturbative. Non-perturbative masking meth-

ods do not alter data; rather, they produce partial

suppressions or reductions of detail in the original

dataset. Sampling, global recoding, top and bottom

coding and local suppression are examples of non-

perturbative masking methods.

Microdata SDC faces an inherent trade-off between

loss of information (i.e., analytical utility) and disclo-

sure risk. Given a particular dataset, the microdata

SDC method optimizing that trade-off is the best

choice. Approaches to modeling such a trade-off

include SDC scores, k-anonymity and R-U maps (plots

of disclosure risk against data utility for a certain

parameterization of an SDC method).

Key Applications
There are several areas of application of SDC techni-

ques, which include but are not limited to the

following:

� Official statistics. Most countries have legislation

which compels national statistical agencies to guar-

antee statistical confidentiality when they release

data collected from citizens or companies. This

justifies the research on SDC undertaken by several

countries, among them the European Union (e.g.,

the CASC project [2]) and the United States.

� Health information. This is one of the most sensi-

tive areas regarding privacy. For example, in the

U.S., the Privacy Rule of the Health Insurance Por-

tability and Accountability Act (HIPAA) requires

the strict regulation of protected health informa-

tion for use in medical research. In most western

countries, the situation is similar.

� E-commerce. Electronic commerce results in the

automated collection of large amounts of consumer

data. This wealth of information is very useful to

companies, which are often interested in sharing it

with their subsidiaries or partners. Such consumer

information transfer should not result in public

Inference Control in Statistical Databases I 1475

I

profiling of individuals and is subject to strict regula-

tion, especially in the EuropeanUnion and the United

States.

Future Directions
There are many open issues in SDC, some of which can

be hopefully solved with further research and some

which are likely to stay open due to the inherent nature

of SDC. First some of the issues that probably could

and should be settled in the near future are listed:

� Identifying a comprehensive listing of data uses

(e.g., regression models, association rules, etc.)

that would allow the definition of data use-specific

information loss measures broadly accepted by the

community; those new measures could comple-

ment and/or replace the generic measures currently

used. Work in this line has been started in Europe

in 2006 under the CENEX SDC project sponsored

by Eurostat.

� Devising disclosure risk assessment procedures

which are as universally applicable as record linkage

while being less greedy in computational terms.

� Identifying, for each domain of application, which

are the external data sources that intruders can typi-

cally access in order to attempt re-identification. This

would help data protectors figuring out in more

realistic terms which are the disclosure scenarios

they should protect data against.

� Creating one or several benchmarks to assess the

performance of SDC methods. Benchmark creation

is currently hampered by the confidentiality of the

original datasets to be protected. Data protectors

should agree on a collection of non-confidential

original-looking data sets (financial datasets, popu-

lation datasets, etc.) which can be used by anybody

to compare the performance of SDC methods. The

benchmark should also incorporate state-of-the-art

disclosure risk assessment methods, which requires

continuous update and maintenance.

There are other issues whose solution seems less likely

in the near future, due to the very nature of SDC

methods. If an intruder knows the SDC algorithm

used to create a protected data set, he can mount

algorithm-specific re-identification attacks which can

disclose more confidential information than conven-

tional data mining attacks. Keeping the SDC algorithm

secret used would seem a solution, but in many cases

the protected dataset itself gives some clues on the SDC
algorithm used to produce it. Such is the case for a

rounded, microaggregated or partially suppressed

microdata set. Thus, it is unclear to what extent the

SDC algorithm used can be kept secret.
Cross-references
▶Data Rank/Swapping

▶Disclosure Risk

▶ Information Loss Measures

▶ k-Anonymity

▶Microaggregation

▶Microdata

▶Microdata Rounding

▶Noise Addition

▶Non-Perturbative Masking Methods

▶ PRAM

▶Record matching

▶ SDC Score

▶ Synthetic Microdata

▶Tabular Data

Recommended Reading
1. Adam N.R. and Wortmann. J.C. Security-control for statis-

tical databases: a comparative study. ACM Comput. Surv.,

21(4):515–556, 1989.

2. CASC. Computational aspects of statistical confidentiality, 2004.

European project IST-2000-25069 CASC, Fifth FP, 2001–2004,

http://neon.vb.cbs.nl/casc.

3. Chin F.Y. and Ozsoyoglu G. Auditing and inference control in

statistical databases. IEEE Trans. Software Eng., SE-8:574–582,

1982.

4. Dalenius T. The invasion of privacy problem and statistics

production. An overview. Statistik Tidskrift, 12:213–225, 1974.

5. Duncan G.T. and Mukherjee S. Optimal disclosure limitation

strategy in statistical databases: deterring tracker attacks through

additive noise. J. Am. Stat. Assoc., 45:720–729, 2000.

6. Fischetti M. and Salazar J.-J. Solving the cell suppression prob-

lem on tabular data with linear constraints. Manag. Sci., 47(7):4,

2001.

7. Giessing S. Survey on methods for tabular data protection in

argus. In J. Domingo-Ferrer and V. Torra (eds.)., Privacy in

Statistical Databases, LNCS. vol. 3050. Springer, 2004, pp. 1–13.

8. Gopal R., Garfinkel R., and Goes P. Confidentiality via camou-

flage: the CVC approach to disclosure limitation when answer-

ing queries to databases. Operat. Res., 50:501–516, 2002.

9. Hundepool A., Domingo-Ferrer J., Franconi L., Giessing S.,

Lenz R., Longhurst J., Schulte-Nordholt E., Seri G., and

DeWolf P.-P. Handbook on Statistical Disclosure Control

(version 1.0). Eurostat (CENEX SDC Project Deliverable), 2006.

10. Hundepool A., van deWetering A., RamaswamyR., deWolf P.-P.,

Giessing S., FischettiM., Salazar J.-J., Castro J., and Lowthian P t-
ARGUS v. 3.2 Software and User’s Manual, CENEX SDC Project

Deliverable, February 2007. http://neon.vb.cbs.nl/casc/TAU.html

1476 I Infinity
11. Schlörer J. Disclosure from statistical databases: quantitative

aspects of trackers. ACM Trans. Database Syst., 5:467–492, 1980.

12. Schlörer J. Identification and retrieval of personal records from a

statistical data bank. Methods Inform. Med., 14(1):7–13, 1975.

13. Willenborg L. and DeWaal T. Elements of Statistical Disclosure

Control. Springer, Berlin Heidelberg New York, 2001.
Infinity

▶ Forever
Information

▶ Information Quality Assessment
Information Browsing

▶ Information Navigation
Information Displays

▶Dense Pixel Displays
Information Extraction. Table 1. Event extraction

example

Trigger Quit

Person Barry Diller Media tycoon

Organization Vivendi
universal
entertainment

The entertainment unit of
french giant vivendi
universal

Position Chief

Time-within Wednesday
Information Extraction

HENG JI

New York University, New York, NY, USA

Definition
Information Extraction (IE) is a task of extracting pre-

specified types of facts from written texts or speech

transcripts, and converting them into structured repre-

sentations (e.g., databases).

IE terminologies are explained via an example as

follows.

� Input Sentence:

Media tycoon Barry Diller on Wednesday quit as chief

of Vivendi Universal Entertainment, the entertainment
unit of French giant Vivendi Universal whose future

appears up for grabs.

� IE output:
– Entities:

Person Entity: {Media tycoon, Barry Diller}

Organization Entity: {Vivendi Universal Enter-

tainment, the entertainment unit}

Organization Entity: {French giant, Vivendi

Universal}

– ‘‘Part-Whole’’ relation:

{Vivendi Universal Entertainment, the enter-

tainment unit} is part of {French giant, Vivendi

Universal}.

– ‘‘End-Position’’ event.

The above sentence includes a ‘‘Personnel_End-Position’’

event mention, with the trigger word which most clearly

expresses the event occurrence, the position, the person

who quit the position, the organization, and the time

during which the event happened (Table 1).

Historical Background
The earliest IE system was directed by Naomi Sager of

the Linguistic String Project group [11] in the medical

domain. However, the specific task of information

extraction was formally evaluated through the

U.S. Defense Advanced Research Projects Agency

(DARPA) sponsored Message Understanding Confer-

ences (MUC) program from 1987 to 1998 [4].

There were four specific evaluations: Named entity,

coreference and template element reflected in the eval-

uation tasks introduced for MUC-6, and template re-

lation introduced in MUC-7.

The MUC tasks have been inherited by the U.S.

National Institute of Standards and Technology

(NIST) Automatic Content Extraction (ACE) program

(The ACE task description can be found at http://www.

nist.gov/speech/tests/ace/and the ACE guidelines at

Information Extraction. Table 2. Examples of the ACE

relation types

Relation Type Example

Agent-Artifact (User-Owner-
Inventor-Manufacturer)

Rubin Military Design, the
makers of the Kursk

ORG-Affliation (Employment) Mr. Smith, the CEO of
Microsoft

Gen-Affiliation (Citizen-
Resident-Religion-Ethnicity)

Salzburg Red Cross
officials

Physical (Near) A town some 50 miles
south of Salzburg

Information Extraction. Table 3. Examples of the ACE

event types

Event Type Example

Movement
(Transport)

Homeless people have been moved
to schools

Business
(Start-ORG)

Schweitzer founded a hospital in 1913

Conflict (Attack) The attack on Gaza killed 13 people

Personnel
(Start-Position)

Cornell Medical Center recruited 12
nursing students

Justice (Arrest) Zawahiri was arrested in Iran

Information Extraction I 1477

I

http://www.ldc.upenn.edu/Projects/ACE/), with more

general types of entities/relations/events defined. ACE

includes the following tasks.

Entity Detection and Recognition

ACE defines the following terminologies for the entity

detection and recognition task:

entity: an object or a set of objects in one of the

semantic categories of interest

mention: a reference to an entity (typically, a noun

phrase)

name mention: a reference by name to an entity

nominal mention: a reference by a common noun

or noun phrase to an entity

Seven types of entities were defined: PER (persons),

ORG (organizations), GPE (‘‘geo-political entities’’ –

locations which are also political units, such as countries,

counties, and cities), LOC (other locations without

governments, such as bodies of water and mountains),

FAC (facility), WEA (Weapon) and VEH (Vehicle) men-

tioned in an input document. This task was proposed in

2000 and evaluated in English, and then expanded to

include Chinese and Arabic in 2003, Spanish in 2007.

Relation Detection and Recognition

The relation detection task was proposed in 2002,

aiming to find specified types of semantic relations

between pairs of entities. ACE 2007 had 7 types of

relations, with 19 subtypes. The following table lists

some examples (Table 2).

Event Detection and Recognition

ACE defined 8 types of events, with 33 subtypes. Some

examples are presented in Table 3.

Entity Translation

Entity Translation is a cross-lingual IE track at ACE

2007 to take in a document in a foreign language (e.g.,

Chinese or Arabic) and extract the English catalog of

the entities.

Foundations
There are two main approaches to develop IE systems,

described separately as follows.

Pattern Matching Based IE

Many IE systems during MUC evaluation use high-ac-

curacy rules, dictionaries and patterns for each specific
domain. For example, for the end-position event in

Table 1, an IE system generates patterns such as

� [Person] quit as [Position] of [Organization]

Manually writing and editing patterns requires some

skill and considerable time. So some systems have

moved on to learning these patterns automatically

based on an annotated corpus pre-processed by syn-

tactic and semantic analyzers. A more comprehensive

survey of pattern matching based IE approaches can

be found in [8].

The above pattern acquisition is still quite costly

because for particular domain a separate annotated

corpus is needed. Therefore some systems have used

unsupervised learning approach [10,12,13]. The gen-

eral idea is to obtain a pattern if a pair of arguments

(mostly names) (Arg1, Arg2) and their context C12

appear frequently in other instances of the event.

The idea of using bootstrapping to obtain patterns

was first proposed by Riloff [10]. Riloff [10] manually

pre-classified the documents into relevant and irrele-

vant, then collect and score patterns around each noun

Information Extraction. Figure 1. A minimal machine

learning based IE system pipeline.

1478 I Information Extraction
phrase. Yangarber et al. [13] used seed patterns to

address the limitation of manual document classifica-

tion. They started with a few initial seed patterns, and

then applied an incremental discovery procedure to

identify new set of patterns. Both of [10,13] are based

on predicate-argument or subject-verb-object structures.

Sudo et al. [12] presented a new Subtree model based on

dependency parsing, and proved the Subtree model can

obtain higher recall while preserve high precision.

Machine Learning Based IE

The IE systems relying entirely on pattern matching

have attempted some success in MUC domains. How-

ever these patterns cannot be easily adapted into new

domains. Therefore, IE research has grown by splitting

the task into several components and then applying

machine learning methods to address each component

separately.

Machine learning based IE systems typically include

name identification and classification, parsing (or partial

parsing), semantic classification of nominal mentions,

coreference resolution, relation extraction and event ex-

traction. A typical IE system pipeline is presented in

Fig. 1. For instance, state-of-the-art IE systems such

as BBN system [2], IBM system [3] and NYU system

[5] were developed in this pipeline style. This ‘‘pipe-

line’’ design provides great opportunity to applying a

wide range of learning models and incorporating di-

verse levels of linguistic features to improve each com-

ponent. Large progress has been achieved on some of

these components. In the following some typical learning

methods are described for the important components.

Trainable Name Tagging

The problem of name recognition and classification

has been intensively studied since 1995, when it was

introduced as part of the MUC-6 Evaluation. A wide

variety of unified learning algorithms have been ap-

plied to the name tagging task, including Hidden

Markov Models (HMMs), Maximum Entropy Models,

Decision Trees, Conditional Random Fields and Sup-

port Vector Machines.

The most well-known BBN’s Nymble name tagger

[1] used several methods to improve performance over a

simple HMM. Within each of the name class states, a

statistical bigrammodel is employed, with the usual one-

word-per-state emission. The various probabilities in-

volve word co-occurrence, word features, and class prob-

abilities. Since these probabilities are estimated based on
observations seen in a corpus, several levels of ‘‘back-off

models’’ are used to reflect the strength of support for

a given statistic, including a back-off from words to

word features.

Trainable Coreference Resolution

Coreference Resolution is the task of determining

whether two mentions refer to the same entity. For

example in the sentence in Table 1, the name mention

‘‘Barry Diller’’ and the nominal mention ‘‘media ty-

coon’’ refer to the same person entity.

In a corpus-trained system, coreference resolution is

usually converted into a supervised binary classification

problem of determining whether a candidate mention is

referring to an antecedent or not. Here an ‘‘antecedent’’

can be another single mention, or a cluster of men-

tions which the system has generated. Each pair is

assigned probability value by a supervised learning

based classifier. If the sampling is constructed on each

mention pair, then a separate clustering algorithm is

applied to group coreferring mentions.

Most coreference resolution systems use represen-

tations built out of the lexical and syntactic attributes

Information Extraction I 1479

I

of the mentions for which reference is to be established

[9]. A typical feature set includes:

1. Representing agreement of various kinds between

mentions (number, gender)

2. Degree of string similarity

3. Synonymy between mention heads

4. Measures of distance between mentions (such as

the Hobbs distance)

5. The presence or absence of determiners or quantifiers

Though gains have been made with such methods, there

are clearly cases where this sort of local information

will not be sufficient to resolve coreference correctly.

Coreference is by definition a semantic relationship,

therefore a successful coreference system should exploit

world knowledge, inference, and other forms of seman-

tic relations in order to resolve hard cases. Since 2005,

researchers have returned to the once-popular semantic-

knowledge-rich approach, investigating a variety of

semantic knowledge sources. For example, [7] incorp-

orated the feedback from semantic relation detection to

infer and correct coreference analysis. If, for example,

two library mentions which are located in two different

cities, then these mentions are less likely to corefer.

Trainable Relation Detection

For ACE-type relations, various machine learning

methods have been used such as K-Nearest-Neighbor

[9] and Support Vector Machines [14]. The typical

features used to classify relations include:

1. The heads of the mentions and their context words

2. Entity andmention type of the heads of thementions

3. The sequence of the heads of the constituents,

chunks between the two mentions

4. The syntactic relation path between the two mentions

5. Dependent words of the mentions

Trainable Event Detection

A typical event extraction pipeline includes three

main steps:

1. Trigger Identification
Identify the trigger word in a given sentence and

assign event type using the probability computed

from the training corpora.
2. Argument Identification
For a given trigger and a mention, determine

whether the mention is an argument of the trigger

or not.
3. Argument Classification
For an identified argument, classify the argument

as a specific event role.
Event detection heavily relies high-quality deep

parsing [2,5] have further shown that the predicate-

argument structures can provide deeper linguistic

analysis and therefore effectively enhance the perfor-

mance of event detection.

Key Applications
An enormous amount of information is now available

through the Web. Much of this information is encoded

in natural language, which makes it accessible to some

people (those who can read the particular language),

but much less amenable to computer processing (be-

yond simple keyword search). If computers can be

enabled to extract and utilize the knowledge embedded

in these texts, a powerful knowledge resource for many

fields will be unleashed. Some typical applications of IE

are presented as follows.

1. IE for Daily News
IE can be applied to identify the events in the daily

news articles. If an informative database can be

returned based on the facts extracted by IE from

multiple sources of news, it can be a very valuable

result and save the time a user has to spend in

browsing. For example, for the news articles about

Olympic sport games, an IE engine can automatical-

ly provide a table of the player’s person names, the

team names they come from and the game results.
2. IE for Financial Reports
Every year the U.S. government releases the annual

reports from millions of industrial agencies. The

financial analysis companies then gather all these

reports and analyze the most up-to-date informa-

tion such as the company start-up and merge

events, the competition and cooperation relations

among banks or companies. It will be very helpful

if an automatic IE system is applied to compress

these articles into data bases. Recently such IE

systems are widely applied in the financial domain

to assist human analysts.
3. IE for Biology Literatures
In the biology domain, thousands of new papers

and data sets are published in natural language on a

daily basis. It has become impractical for scientists

to manually track all these new results and observa-

tions, and manually mine the data sets to construct

1480 I Information Extraction
a knowledge base. IE can play a significant role by

automatically generating an accurate summary of

facts (e.g., gene named entities) and predicting new

results (e.g., Bio-nano structures of different pep-

tide sequences), and thus assist scientists in deci-

sion making.
4. IE for Medical Reports
Since the early work by Sager et al. [11], IE has

obtained successful applications in processing the

narrative clinical documents including patient dis-

charge summaries and radiology reports. Some of

these systems have shown positive impact on

providing information to assist clinical decision,

result analysis, error detection, etc.
Future Directions
For each IE component there are different aspects to

improve. This section proposes some high-level direc-

tions in which IE can be further explored.

1. Cross-document Information Extraction
One of the initial goals for IE was to create a

database of relations and events from the entire

input corpus, and allow further logical reasoning

on the database. The artificial constraint that ex-

traction should be done independently for each

document was introduced in part to simplify the

task and its evaluation.

However, almost all the current event extraction

systems focus on processing single documents and,

except for coreference resolution, operate a sen-

tence at a time. Therefore, one interesting area

worth exploring would be to gather together IE

results from a set of related documents, and then

apply inference and constraints to propagate cor-

rect results and fix the wrong information gener-

ated from the within-document IE system [6].
2. IE for Noisy Input
Recently there has been rapid progress in applying

text processing techniques on ‘‘noisy’’ texts such as

the output of automatic speech recognition (ASR)

and machine translation (MT). The potential ASR

transcription and machine translation errors, in

particular name recognition errors, make IE more

difficult. However, it is possible to optimize the

parameters in the ASR or MT systems for IE pur-

pose. Another interesting direction would be using

IE results to provide feedback to ASR and MT in a

joint inference framework.
3. Cross-lingual IE
A shrinking fraction of the world’s web pages are

written in a language different from the user’s own,

and so the ability to access information from for-

eign languages is becoming increasingly important.

This need can be addressed in part by the research

on cross-lingual IE (CLIE).
4. Active Learning for Domain Adaptation
Since about one decade ago in MUC program, the

‘‘portability’’ problem has become a noticeable bot-

tleneck for IE techniques. Until today this problem

has not yet been solved. There is an urgent need to

develop effective adaptation algorithms to apply IE

systems to a new domain with low cost. Active

learning and semi-supervised learning techniques,

which have achieved success on name tagging, may

be worth expanding to all stages in the IE pipeline.
Experimental Results
The state-of-the-art IE results can refer to the ACE

evaluation results on NIST website (http://www.nist.

gov/speech/tests/ace/). All IE results are given in terms

of the entity/relation/event value scores, as produced by

the official ACE scorer. These value scores include

weighted penalties for missing extractions, spurious

extractions, and for type errors in corresponding extrac-

tions (Scoring details can be found in the ACE07 evalu-

ation plan: http://www.nist.gov/speech/tests/ace/ace07/

doc/ace07-evalplan.v1.3a.pdf). The top systems

obtained mention values in the range of 70–85, entity

values in the range of 60–70, relation values in the

range of 35–45, event values in the range of 15–30.
Data Sets
� ACE IE: http://projects.ldc.upenn.edu/ace/data/
IE training data for English/Chinese/Arabic/

Spanish

� CONLL 2002: http://www.cnts.ua.ac.be/conll2002/

ner.tgz
Name tagging training data for Dutch and Spanish
� CONLL 2003: http://www.cnts.ua.ac.be/conll2003/

ner.tgz
Name tagging training data for English and

German

URL to Code
� UIMA: http://incubator.apache.org/uima/svn.html
IBM NLP platform

Information Filtering I 1481
� Jet: http://www.cs.nyu.edu/cs/faculty/grishman/jet/

license.html
NYU IE toolkit
� Gate: http://gate.ac.uk/download/index.html
University of Sheffield IE toolkit
� Mallet: http://mallet.cs.umass.edu/index.php/

Main_Page
University of Massachusetts NLP toolkit
� MinorThird: http://minorthird.sourceforge.net/
Carnegie Mellon University NLP toolkit
I

Cross-references
▶Column Segmentation

▶Cross-Language Mining and Retrieval

▶ Languages for Web Data Extraction

▶ Structured and Semi-Structured Document

Databases

▶Text Indexing and Retrieval

▶Text Summarization

▶Topic Detection and Tracking

▶Web Information Extraction

▶Wrapper Induction

Recommended Reading
1. Bikel D.M., Miller S., Schwartz R., and Weischedel R. Nymble: a

high-performance learning name-finder. In Proc. 5th Conf. on

Applied Natural Language Processing, 1997, pp. 194–201.

2. Boschee E., Weischedel R. and Zamanian A. Automatic evidence

extraction. In Proc Int. Conf. on Intelligence Analysis, McLean,

VA, 2005.

3. Florian R., Jing H., Kambhatla N. and Zitouni I. Factorizing

complex models: a case study in mention detection. In Proc.

26th Int. Conf. Computational Linguistics, 2006, pp. 473–480.

4. Grishman R. and Sundheim B. Message understanding confer-

ence – 6: a brief history. In Proc. 16th Int. Conf. on Computa-

tional Linguistics, 1996, pp. 466–471.

5. Grishman R., Westbrook D. and Meyers A. NYU’s English ACE

2005 system description. In Proc. ACE 2005 Evaluation/PI

Workshop, 2005.

6. Ji H. and Grishman R. Refining Event Extraction Through unsu-

pervised cross-document inference. In Proc. 46th Annual Meeting

Assoc. for Computational Linguistics, 2008, pp. 254–262.

7. Ji H., Westbrook D., and Grishman R. Using semantic relations

to refine coreference decisions. Proc. Conf. Human Language

Tech. and Empirical Methods in Natural Language Proc. 2005,

pp. 17–24.

8. Muslea I. Extraction patterns for information extraction tasks: a

survey. In Proc. National Conf. on Artificial Intelligence (AAAI-

99) Workshop onMachine Learning for Information Extraction,

1999.

9. Ng V. and Cardie C. Improving machine learning approaches to

coreference resolution. In Proc. 40th Annual Meeting of the

Assoc. for Computational Linguistics, 2002, pp. 104–111.
10. Riloff E. Automatically generating extraction patterns from un-

tagged text. In Proc. 10th National Conf. on AI, 1996,

pp. 1044–1049.

11. Sager N. Natural Language Information Processing: A Computer

Grammar of English and its Applications. Addison Wesley,

Reading, MA, 1981.

12. Sudo K., Sekine S. and Grishman R. An improved extraction

pattern representation model for automatic IE pattern acquisi-

tion. In Proc. 41st Annual Meeting of the Assoc. for Computa-

tional Linguistics, 2003, pp. 224–231.

13. Yangarber R., Grishman R., Tapanainen P. and Huttunen S.

Automatic acquisition of domain knowledge for information

extraction. In Proc. 20th Int. Conf. Computational Linguistics,

2000, pp. 940–946.

14. Zhou G., Su J., Zhang J. and Zhang M. Exploring various

knowledge in relation extraction. In Proc. 43rd Annual Meeting

of the Assoc. for Computational Linguistics, 2005, pp. 427–434.
Information Filtering

CHRISTIAN FLUHR

CEA LIST, Fontenay-aux, Roses, France

Synonyms
SDI, Selective dissemination of information; push

transactions; IF

Definition
Information retrieval (IR) and information filtering

(IF) are strongly related [3,5]. Information retrieval

indexes a large set of documents and when a user asks

a query, answers are extracted out of this set. Informa-

tion filtering processes a stream of documents and for

each document arriving in the system a comparison is

made with one or more filtering profiles provided by

users and in case of a match the document is sent to the

user who created the profile. Applications of informa-

tion filtering are found in competitive intelligence or

technology watch. Another way of filtering is to send

the document to the user only if the match is negative.

This is useful for applications such as child protection or

anti-spam.

Another difference is that IR queries are short, for

immediate use, with answers expected as if in a con-

versational mode (in less than few seconds). For Infor-

mation filtering, queries are permanent, can be

elaborated using a long process, are often quite lengthy

sometimes including relevant example documents and

must be refined using feedback over time.

1482 I Information Filtering
Historical Background
The first systems of information filtering, then called

selective dissemination of information (SDI), appeared

in the early 1960s [4]. For a long time they were used

principally by librarians to route journal articles, using

fixed profiles, to users interested in a particular do-

main. Because of the time lag then existing between

publication, manual indexing, and bibliographic data-

base updating, this kind of service gave delayed access

to sometimes stale information.

Newswires about current events was then and

remains a good source of fresh information. Compa-

nies, eager for information about their competitors,

and financiers, interested in having early information

about interesting companies, are large consumers of

newswire.

The internet has enlarged the use of information

filtering because both the number of users and the

quantity of information has increased as more infor-

mation becomes accessible. News filtering remains a

major activity, but new activities (such as the filtering

of spam and child protection in accessing internet

sites) have appeared.

Another new filtering activity brought by the inter-

net is the possibility to advertise new product availabil-

ity according to user interest, even if this interest is

only implicitly observed on by their browsing behavior

or search engine queries. This is called push advertising.

Foundations

Organization of a filtering system

A filtering system (Fig. 1) processes a stream of docu-

ments. Each entering document is compared to a

stored expression of user need constructed using key

words, possibly limited to relevant structural parts of

the input documents. If the document is considered

relevant for this profile, the document is sent to the

user. The following figure illustrates this process:

One might say that Information Retrieval com-

pares a unique query with several documents whereas

Information Filtering compares a unique document to

several queries.

In Information Retrieval, a user generates a spon-

taneous, simple query and desires a rapid response. On

the contrary, in Information Filtering, because the

subject of the search is permanent, the user has time

to elaborate and refine the query, called rather a profile

here. The search process is continuous. It is not a
conversational process though the user still wants to

be notified as early as possible about relevant incoming

information.

In practice, search engines providers propose a

filtering service which is not based on a real filtering

system but they use their search engine by periodically

submitting the profile query to the database limiting

the answers to documents that have arrived since the

last run. Of course this is a simulation that does not

guarantee the fastest access time to information but

this is sufficient for many users.

Profile building and evolution

For Boolean systems, a profile can be a very long and

complex equation of keywords that can have hundreds

of keywords and logical operators. Generally the elab-

oration of such queries is performed by professional

librarians.

The best way to define a profile is to give a list

of keywords along with some document passages relev-

ant for the profile. Such profiles must be processed by

systems that can compute a semantic proximity between

the profile and the incoming document to decide

relevance.

Even if the user’s long term information need is

stable, the profile expressing this need varies over time.

At first, the initial description of user need is often

incomplete. Verifying the filtering behavior of an initial

set of filtered documents, the user can fine-tune, adding

additional keywords, and try to refine ambiguities

that he had not foreseen. This process can be simplified

for the user by supervised relevance feedback. In this

setup, the user need only provide positive or negative

reactions to a limited number of proposed documents.

According to this positive or negative judgment, the

profile can be adjusted by addition or deletion of

words, or by modification of their weights in the

comparison.

A second reason for profile evolution over time is

due to a clearer understanding of the problem on the

part of the user, after viewing of retrieved documents.

This learning on the part of the user can lead him to

rebuild a modified profile.

Comparison procedure

Most filtering systems use the standard information

retrieval approach of comparing the vector represent-

ing the document with the vector representing

the profile. Because the filtering result must be a

Information Filtering. Figure 1. Organization of a filtering system

Information Filtering I 1483

I

yes-or-no choice, it is necessary to create a threshold of

relevance. A first difficulty is choosing a good thresh-

old. In a filtering system, there is no database as docu-

ments arrive in a stream, so document frequency for a

term is not known. This can be overcome by comput-

ing document frequencies on the fly without produc-

ing a database.

The process of attribution of a document to a

profile can also be assimilated to a categorization pro-

cess which assigns documents to one of a set of classes.

Key words and document samples car be considered

as representative of a category, addition of new rele-

vant documents increase data that can be used to learn

the difference between the two classes ‘‘good for this

profile’’ and ‘‘bad for this profile’’. Popular categoriza-

tion methods like Rocchio [6], KNN (K Nearest Neigh-

bors) [9] and SVM (Support Vector Machine) [2] can

be used to perform this learning.

As users are interested in a precise domain, the

document as an information unit can be too large as

a response. Technologies for passage retrieval can be

usefully applied to solve this problem. Documents are

then cut into parts that are semantically homogeneous.

These separate parts are compared to profiles instead

of the full document.

Relevance feedback

Because at the beginning for filtering, little informa-

tion is provided for the profile, it is necessary to im-

prove the profile through relevance feedback. The

reaction of the user accepting or rejecting proposed
documents gives implicit information about positive

or negative influence of the words contained in these

documents (Weights of terms in the original query are

adjusted and new words are also added to provide a

new vector representing the adjusted profile) [1].

Named entities in filtering

Named entities are proper nouns representing names

of persons, of organizations, of places, of products, or

numerical information like dates, measures, and per-

centages. They are particularly important for filtering,

especially in the case of competitive intelligence.

Thematic filtering versus event filtering

According to the user need, some profiles are more

domain oriented and comparison between words vec-

tors are a good solution. Other needs are more event-

oriented and necessitate more language processing to

identify events that are characterized by a particular

action with a particular class of actors. Examples of

such event-oriented filtering can be nomination or

resigning of company managers, terrorist acts, pur-

chase of a company by another, etc.

Evaluation of filtering systems

Since the beginning of the TREC (Text REtrieval Con-

ference) in 1992, Information Filtering was considered

for evaluation. A training corpus was given to partici-

pants with queries to train their system. Afterward a

new corpus was given to participants and the previ-

ously supplied queries were then applied on this new

1484 I Information Filtering
corpus. Participants had to give an ordered list of

relevant documents (1000) according to the computed

relevance between documents and each query.

This was far from real usage of filtering systems. For

this reason, from 1998 to 2002, a new evaluation para-

digm was established to evaluate filtering systems [7].

The first difference was that only very few documents

are used for training. The participants then had to

make a binary decision (document relevant or not)

rather than perform a ranking. In addition, documents

had to be treated one after the other and for each

document proposed as relevant a simulated feedback

could be performed. This simulated feedback enabled

the tested system to increase their effectiveness. Such

process is called adaptive filtering.

Since then, new measures have been established.

These measures attempt to take into consideration

the different types of users. Some users are interested

in having only relevant documents even if they miss

many other relevant ones. Other users want to be sure

to get all relevant documents but will also accept noise

in the form of non relevant documents.

Because of the binary decision about relevance, it is

not possible to apply measures developed for answers

consisting of ranked list of ordered documents accord-

ing a level of relevance such as used in the ad hoc track

of TREC.

Linear utility: This measure assigns a positive or

negative cost to elements in the following contingency

table.
Relevant Not relevant

Retrieved R+/A N+/B

Not retrieved R–/C N–/D
R+, R�, N+, N� are the number of document in

each category

A, B, C, D give the relative cost for each category.

For example, in TREC 11, the linear utility measure

uses the following values A = 2, B = �1, C = 0, D = 0

F-beta: This is a modification of the classical

F-measure [8]. It combines recall and precision with

a parameter beta b which gives a relative weighting

between recall and precision.

0<= b <= 1

F-measure = ((1 + b) * precision * recall)/

((b * precision) + recall)
b = 1 is neutral, in TREC 2001 b = 0,50 which is

an advantage given to precision
Key Applications
Information Filtering is a tool which is used for

technology watch and competitive intelligence. It is

used both in the security domain and in the civil

economy. Companies need to know as early as possible

what the activity of their competitors and their poten-

tial partners is, in order to decide their future on

the technical level and also on the commercial and

strategic level.

The other growing need for Information Filtering is

the elimination of unsolicited information by filtering

spam in the incoming mails. It is also applied to

prevent access to some sites (pornographic, pedophile,

racist; . . .) for child users of internet.
Cross-references
▶Categorization

▶Relevance Feedback
Recommended Reading
1. Allan J. Incremental relevance feedback for information filtering.

In Proc. 19th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 1996, pp. 18–22.

2. Alsaffar A.H., Deogun J., and Sever H. 1Optimal queries in

information filtering, In Proc. 12th Int. Symp. Foundations Intelli-

gent Syst., 2000, pp. 435–443.

3. Belkin N.J. and Croft W.B. Information filtering and informa-

tion retrieval: two sides of the same coin? Commun. ACM, 35

(12):29–38, December 1992.

4. Brandenberg W., Fallon H.C., Hensley C.B., Savage T.R.,

and Sowarby A.J. The SDI-2 system. IBM advance system Devel-

opment Division report, 17–031, Yorktown-Heights, NY, April

1961.

5. Hanani U., Shapira B., and Shoval P. Information filtering: over-

view of issues, research and systems. User Model. User-adapt.

Interact. 11:203–259, 2001.

6. Rocchio J.J. 1The SMART retrieval system: experiments in auto-

matic document processing, Chapter XIV. Relevance feedback in

information retrieval, G. Salton (ed.). Prentice-Hall, NJ, 1971,

pp. 313–323.

7. Soboroff I. Robertson S. Building a filtering test collection for

TREC 2002, In Proc. 26th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2003,

pp. 243–250.

8. Van Rijsbergen K. Information retrieval, (2nd ed.). Butterwor-

worths, London, 1979.

9. Yang Y., An evaluation of statistical approach to text categoriza-

tion, report CMU-CS-97-127, Carnegie Mellon University,

1997.

Information Foraging I 1485
Information Foraging

PETER PIROLLI

Palo Alto Research Center, Palo Alto, CA, USA

Synonyms
Information seeking; Browsing
I

Definition
Information foraging theory [9] provides scientific

predictions and explanations of information-seeking

behavior in human-computer interaction (HCI). It

also provides engineering models for designing and

evaluating information systems and their user inter-

faces. Information foraging theory assumes that people

adapt their information-seeking behavior to maximize

their rate of gaining useful information to meet their

ongoing goals. Specific models of human-information

interaction are developed through (i) rational analysis

of the structure and constraints of the task environment

and information environment that constitute the ulti-

mate forces driving information-seeking behavior and

(ii) specification of cognitive models (user knowledge

and cognitive processes) that constitute the psychologi-

cal machinery behind the observed information-seeking

behavior of users. Rational analysis draws upon theories

and mathematical approaches developed to address ra-

tional choice under uncertainty, and specifically draws

upon many models developed to address food-foraging

strategies in optimal foraging theory (a branch of

behavioral ecology in biology). Cognitive models are

developed as programs in computational cognitive

architectures that simulate human perception, action,

thinking,memory, and other aspects of human informa-

tion processing.
Historical Background
Information Foraging Theory arose during the 1990s,

coinciding with an explosion in the amount of infor-

mation that became available to the average computer

user, and with the development of new technologies

for accessing and interacting with information. The

late 1980s witnessed several strands of HCI research

that were devoted to ameliorating problems of explor-

ing and finding electronically stored information. The

confluence of increased computing power, storage,

networking, and information access and hypermedia
research in the late 1980s set the stage for the wide-

spread deployment of hypermedia in the form of the

WorldWideWeb in 1993. The emergence of theWeb in

the 1990s provided new challenges and opportunities

for HCI. The increased wealth of accessible content,

and the use of the Web as a place to do business,

exacerbated the need to improve the user experience

on theWeb and other large-scale collections of content.

Models of information foraging were initially de-

veloped by analogy to optimal foraging theory. A typi-

cal optimal foraging model characterizes an agent’s

interaction with the environment as an optimal solu-

tion to the tradeoff of costs of finding, choosing, and

consuming food against the energetic benefit gained

from that food. Information foraging theory, however,

assumes that costs of interaction are weighed against

the benefits gained from gathering information and

knowledge. These models attempt to understand the

design of an agent’s behavior by assuming that it is

well engineered (adapted) for the problems posed by

the environment. The two optimal foraging models

that were initially applied to information seeking and

browsing were the diet model (prediction of the food

types that an animal selects to eat or not) and the patch

model (prediction of when an animal chooses to give

up food seeking in a food patch to go to another). The

information diet model was applied to the prediction

of how users would select some information collec-

tions and ignore others in order to maximize the

benefits gained in information browsing. The informa-

tion patch model was used to predict when users

would give up on search in an information collection

(e.g., a Web site). The first detailed application of

the information diet and patch models was used to

evaluate a novel document clustering browser called

Scatter/Gather [10,11]. Detailed predictions of individual

user behavior with Scatter/Gather were derived from

computer simulations (cognitivemodels) of user percep-

tions, cognition, and action. A novel cognitive modeling

technique introduced by information foraging theory

predicted how users assessed cues from the user interface

to make information seeking and browsing choices. In-

formation scent refers to these user interface cues that

guide users to the information they seek. Information

foraging theory has been used to develop models of

information-seeking on the Web, and interaction with

information visualizations. It has also been used as a

foundation for design guidelines, novel user interfaces,

and automated usability evaluation tools.

1486 I Information Foraging
Foundations
It is assumed that a user’s fitness is improved to the

extent that the user can gain valuable information to

solve problems faced in everyday life. Increasing the

rate at which people can find, make sense of, and use

valuable information improves the human capacity to

behave intelligently. It is assumed that adaptive infor-

mation systems evolve towards states that maximize

gains of valuable information per unit cost.

Users engaged in information foraging will exhibit

such adaptive tendencies, and they will prefer tech-

nologies that tend to maximize the value (utility) of

knowledge gained per unit cost of interaction.

Information Foraging Theory has adopted the ra-

tional analysis program [1]. Rational analysis addresses

the questions: (i) what environmental problem is

solved, (ii) why is a given behavioral strategy a good

solution to the problem, and (iii) how is that solution

realized by cognitive mechanism. The products of this

approach include (i) characterizations of the relevant

goals and environment, (ii) mathematical rational choice

models (e.g., optimizationmodels) of idealized behavior-

al strategies for achieving those goals in that environ-

ment, and (iii) computational cognitivemodels. Rational

analysis in information foraging theory focuses on the

task environment that is the aim of performance,

the information environment that structures access to

valuable knowledge, and the adaptive fit of the human-

information interaction system to the demands of these

environments. The following recipe has been proposed

for rational analysis [1].

1. Precisely specify the goals of the agent.

2. Develop a formal model of the environment to

which the agents is adapted.

3. Make minimal assumptions about the computa-

tional costs.

4. Derive the optimal behavior of the agent consider-

ing (1–3).

5. Test the optimality predictions against data.

6. Iterate.

The recipe focuses on optimal behavior under given

goals and environmental constraints with minimal

assumptions about the mechanisms that might pro-

duce such behavior.

To illustrate, rational analyses of information for-

aging on the Web have focused on the (i) the choice of

the most cost-effective and useful browsing actions to

take based on the relation of a user’s information need
to the perceived cues (information scent) associated

with Web links and (ii) the decision of whether to

continue at a Web site or leave based on ongoing

assessments of the site’s potential usefulness and

costs. The rational analysis of information scent

assumes that the goal of the information forager is to

use perceived information scent cues (e.g., a Web link)

to predict the utility of desired sources of content (i.e.,

a Web page that provides a needed answer), and to

choose to navigate the links having the maximum

expected utility. It is minimally assumed that the

user’s cognitive system represents information scent

cues and information goals in cognitive structures

called chunks. A Bayesian analysis leads to a specifica-

tion of strengths of association, Sji, among chunks that

reflects the log likelihood odds of an information

source associated with information cue j being relevant

to a goal chunk i:

Sji ¼ log
PrðijjÞ
PrðiÞ

� 	
; ð1Þ

where Pr(ijj) is the probability (based on past experi-

ence) that chunk i has occurred when chunk j has

occurred in the environment, and Pr(i) is the base

rate probability of chunk i occurring in the environ-

ment. Equation (1) is also known as Pointwise Mutual

Information. Each chunk i in the user’s goal is assumed

to receive activation. Ai, from all associated information

scent chunks j,

Ai ¼
X
j

Sji; ð2Þ

and the total amount of activation received by all goal

chunks is,

V ¼
X
i

Ai: ð3Þ

It is assumed that the utility of choosing a particular

link is just the sum of activation it receives plus ran-

dom noise drawn from independently and identically

distributed (IID) Gumbel distributions. The probabil-

ity that a user will choose link L, having a summed

activation VL, from a set of links C on a Web page,

given an information goal, G is,

PrðLjG;CÞ ¼ emVLP
k2C

emVk
: ð4Þ

Information Foraging I 1487

I

where m is a scaling parameter. Another choice facing a

Web user is whether to continue navigating a particular

Web site or leave. The rational analysis of this problem

employs amodified patchmodel from optimal foraging

theory. It is assumed that the user employs learning

mechanisms to develop an assessment of the potential

yield of a Web site, based on the user’s current experi-

ential state x. This potential function h(x) is

hðxÞ ¼ UðxÞ � CðtÞ: ð5Þ

where U(x) is the utility of continued foraging in the

current Web site and C(t) is the opportunity cost of

foraging for the t amount of time that is expected to

be spent in the information patch. So long as the

potential of the Web site is positive (the utility of

continuing is greater than the opportunity cost) then

the user will continue foraging.

Individual information foraging behavior can be

related to the behavior of aggregates of users. For

instance, the Law of Surf ing [6] relates the rational

analysis of individual Web surfing to aggregate Web

user behavior. Such aggregate distributions are of prac-

tical interest because content providers on the Web

often want to know how long people will remain at

their Web sites. The Law of Surfing characterizes the

distribution of the length, L, of sequences of page visits

by Web users. Figure 1 presents a typical empirical
Information Foraging. Figure 1. The Law of Surfing: The pro

prior to leaving a web site are approximated by an inverse G
distribution of the length of paths taken by visitors to

a Web site. The distribution is skewed with the bulk of

path lengths being short, and a long positive tail. The

skewness of the distribution, and the long positive tail,

imply that the mean of the distribution will typically be

larger than the mode.

The Law of Surfing assumes that the expected utility

from continuing on to the next state,Xt, is stochastically

related to the expected utility of the current state Xt-1,

UðXtÞ ¼ UðXt�1Þ þ et ; ð6Þ

where the et are IID Gaussian distributions with mean

m and variance s2. This is known as a Wiener process

(a Brownian motion process) with a random drift

parameter m and noise s2. It is assumed that the pro-

cess continues until a threshold expected utility is

reached. That is, from an initial starting page in a

Web foraging episode, the expectation is that users

continue browsing (surfing) according to the Wiener

process specified in (6) until some threshold y is

reached. It is assumed that an individual will continue

to surf until the expected cost of continuing is per-

ceived to be larger than the discounted expected value

of the information to be found in the future. In the

limit, this analysis of Web surfing is the same as the

analysis of first passage times in Brownian motion. First

passage times are distributed as an Inverse Gaussian
bability distribution of the length of paths surfed by users

aussian distribution.

1488 I Information Foraging
distribution: the probability density function of L, the

length of sequences of Web page visits, is distributed is

f ðLÞ ¼
ffi
l
2p

L�3=2e
l

2v2L
ðL�vÞ2

r
; L > 0; ð7Þ

where the parameter n is the expected value, and l is

related to the expected value and variance as

l ¼ n3

Var½L
 :

Computational cognitive models developed in infor-

mation foraging theory simulate the psychological

mechanisms that yield adaptive behavior. Typically,

these are implemented in a simulation system that

embodies a theory of cognitive architecture developed

in psychology [2]. Theories of cognitive architecture

attempt to provide a deeper account of the mechan-

isms underlying cognition, learning, and performance.

The ACT family of production system theories has the

longest history (since 1976) of these kinds of cognitive

architectures.

Figure 2 presents the ACT-Scent cognitive architec-

ture developed in the ACT family. It includes a module

that computes information scent. The architecture

includes a declarative memory containing declarative

knowledge represented as chunks, which correspond to

things that the user’s mind is aware it knows and that

can be easily described to others, such as the content of

Web links, or the functionality of browser buttons, and

the current user’s goal (e.g., evaluating a link, choosing
Information Foraging. Figure 2. The ACT-Scent cognitive ar
a link, etc.). The architecture also includes a procedural

memory. Procedural knowledge is represented as pro-

duction rules. For instance, the following is an English

gloss of a production rule, Click-link, that is used to

simulate the choice of a Web link,

Click-link:

IF the goal is to process a link

& there is a information-seeking task

& there is a browser

& there is a link that has been read

& the link has a link description

THEN

Click on the link

If selected, the rule will execute the action of clicking

on the link. Aproduction rule has a condition side and an

action side. When the all the conditions on the condi-

tion side (the ‘‘IF’’ portion) are matched to goal infor-

mation and declarative memory, the production may

be fired and when it does, the actions (the ‘‘THEN’’

portion) of the production will be executed to possibly

update goals and memory, or initiate behavior. At any

point in time, only a single production can fire. When

there is more than one match, the matching pro-

ductions form a conflict set. One production is then

selected from the conflict set based on its utility based

on information scent. The goal memory contains repre-

sentations of intentions driving behavior. The infor-

mation scent module computes the utility of actions.

Information perceived from the external world is

encoded into chunks in declarative memory. Goals
chitecture used in simulating web foraging.

Information Foraging. Figure 3. The scatter plot for the observed and theoretically predicted frequency that users

select links at the Yahoo! web site assessed over eight information-seeking tasks. Predictions were generated by Monte

Carlo simulations using an ACT-Scent model.

Information Foraging I 1489

I

and subgoals controlling the flow of cognitive behavior

are stored in goal memory. The system matches pro-

duction rules in production memory against goals and

activated information in declarative memory and those

that match form a conflict set. The matched rule

instantiations in the conflict set are evaluated by utility

computations in the information scent module. Based

on the utility evaluation, a single production rule in-

stantiation is executed, updates are made to goal mem-

ory and declarative memory, if necessary, and the cycle

begins again. Simulations models generate predicted

user behavior. Figure 3 presents the predicted frequen-

cies for links being chosen at a popular Web site gen-

erated by Monte Carlo simulations of users working

on pre-specified tasks.

Key Applications

Engineering Models of Browser Use

Graph-based algorithms based on information foraging

models have been used to predict the flow of user at a

Web site and identify Web site navigation problems, and

this was implemented in a automated usability analysis

tools available through a Web interface [5]. Dynamic

programming models based on information foraging

theory have been used to identify trade-offs in the design

of the Scatter/Gather document cluster browser that

varied over task conditions. The CogTool-Explorer [8]

tool supports the rapid prototyping of user interfaces

and then automatically simulates user interaction with

specified designs tomake performance time predictions.
Novel Search and Browsing Interfaces

Novel user interface techniques have been developed to

automatically render improved information scent cues

that yield more efficient user browser [7,14].
Usability Guidelines

Concepts and metaphors from information foraging

theory have been influential in the development of

Web usability guidelines. The concept of information

scent has been used to develop Web page design guide-

lines aimed at producing efficient matches between user

goals and Web link cues [13].
Future Directions
Information foraging theory has been extended to

predictions of user interaction with highly interactive

information visualizations [12,4], programming envir-

onments, and skimming and reading time allocation

under varying deadline conditions. Recent work is

also extending the research to social information forag-

ing (information seeking and production by collections

of users) in systems such as social bookmarking

sites [9,4].
Cross-references
▶Browsing

▶Browsing in Digital Libraries

▶ Information Navigation

▶ Information Retrieval

1490 I Information Graphic
▶Navigation

▶ Searching Digital Libraries

▶Usability
Recommended Reading
1. Anderson J.R. The Adaptive Character of Thought. Lawrence

Erlbaum, Hillsdale, NJ, 1990.

2. Anderson J.R., Bothell D., Byrne M.D., Douglass S., Lebiere C.,

and Qin Y. An integrated theory of mind. Psychol. Rev., 11

(4):1036–1060, 2004.

3. Budiu R., Pirolli P., Fleetwood M., and Heiser J. Navigation

in degree of interest trees. In Proc. Working Conf. on Advanced

Visual Interfaces, 2006, pp. 457–462.

4. Chi E.H., Pirolli P., and Lam S.K. Aspects of augmented social

cognition: social information foraging and social search. In

Human Computer Interaction International, D. Schuler (ed.).

Springer, 2007, pp. 60–69.

5. Chi E.H., Rosien A., Suppattanasiri G., Williams A., Royer C.,

Chow C., Robles E., Dalal B., Chen J., and Cousins S. The

bloodhound project: automating discovery of web usability

issues using the InfoScent simulator. In Proc. SIGCHI Conf.

on Human Factors in Computing Systems, 2003, pp. 505–512.

6. Huberman B.A., Pirolli P., Pitkow J., and Lukose R.J. Strong

regularities in World Wide Web surfing. Science, 280

(5360):95–97, 1998.

7. Olston C. and Chi E.H. ScentTrails: integrating browsing and

searching on the Web. ACM Trans. Comput. Hum. Interact.,

10(3):177–197, 2003.

8. Pirolli P. Exploring browser design trade-offs using a dynamical

model of optimal information foraging. In Proc. SIGCHI Conf.

on Human Factors in Computing Systems., 1998, pp. 33–40.

9. Pirolli P. Information Foraging: A Theory of Adaptive Inter-

action with Information. Oxford University Press, New York,

NY, 2007.

10. Pirolli P. and Card S.K. Information foraging in information

access environments. In Proc. SIGCHI Conf. on Human Factors

in Computing Systems., 1995, pp. 51–58.

11. Pirolli P. and Card S.K. Information foraging. Psychol. Rev.,

106:643–675, 1999.

12. Pirolli P., Card S.K., and Van Der Wege M.M. The effects of

information scent on visual search in the Hyperbolic Tree Browser.

ACM Trans. Comput. Hum. Interact., 10(1):20–53, 2003.

13. Spool J.M., Perfetti C., and Brittan D. Designing for the Scent of

Information. User Interface Engineering, Middleton, MA, 2004.

14. Woodruff A., Rosenholtz R., Morrison J.B., Faulring A., and

Pirolli P. A comparison of the use of text summaries, plain

thumbnails, and enhanced thumbnails for web search tasks.

J. Am. Soc. Inf. Sci. Technol., 53:172–185, 2002.
Information Graphic

▶Chart
Information Hiding

▶ Steganography
Information Integration

ALON HALEVY

Google Inc., Mountain View, CA, USA

Synonyms
Data integration; Enterprise information integration

Definition
Information integration systems offer uniform access

to a set of autonomous and heterogeneous data sources.

Sources can range from database systems and legacy

systems to forms on the Web, web services and flat

files. The data in the sources need not be completely

structured as in relational databases. The number of

sources in an information integration application can

range from a handful to thousands.

Historical Background
Database applications are typically heavily designed

and tuned for a specific context. But as data manage-

ment needs in enterprises change and the information

economy evolves, the need to combine information

from multiple sources arises frequently. Examples of

such scenarios include mergers and acquisitions, inter-

nal restructuring, the need to interoperate with third

parties and to expose data on the web. Since the early

1980s the need to combine multiple heterogeneous

data sources has become a research topic for the data-

base research community. In the 1990s, as the web

emerged and the many data sources came on line, the

need to integrate data and for companies to work with

third-parties grew, and these trends fueled the infor-

mation integration research and industry.

Foundations
Information integration is a challenging problem for

three different classes of reasons: systems-level, logical-

level and social challenges.

The systems challenges arise fundamentally because

enterprises need to enable multiple systems to talk

seamlessly to each other. This is hard even when they

Information Integration I 1491

I

are all running ODBC/JDBC compliant databases,

let alone radically different systems. For example,

while SQL is a standard query language for relational

databases, there are some differences in the way differ-

ent vendors implement it. Executing queries efficiently

over multiple systems is even more challenging. In

addition to the difficulties that arise in distributed

databases, information integration systems cannot

assume that data is A priori distributed to the different

nodes by one entity and in an organized and known

fashion. Furthermore, the query processing capabilities

of each source can be very different. For example, while

one source may be a full SQL engine and therefore

may be able to accept very complex queries, another

source may be a web-form and therefore only accepts a

very small number of query templates.

The second set of challenges has to do with the way

data is logically organized in the data sources. At the

core, the problem is that when schemas are designed by

different people and for different applications, there

will be significant differences between them, even when

they model the same domain. Differences include

(i) naming of tables and attributes, (ii) tabular organiza-

tion of the data (or hierarchical structure in XML),

(iii) domain coverage and level of detail modeled, and

(iv) differences in data-level representation of objects.

The social challenges in building an information

integration application, while not technical, are often
Information Integration. Figure 1. Logical components of a
very significant in practice. The first challenge may be

to find a particular set of data. It may be hard to find a

particular piece of data within a large enterprise, and in

some cases, the data needed is not captured in the

proper form. Even when the location of the data is

known, owners of the data may not want to cooperate

with an integration effort. In some cases this may

happen for competitive reasons, and in others it may

be because systems are carefully tuned for performance

and the owners are afraid that participating in an

information integration effort may adversely affect

their system. Of course, privacy and security concerns

are rampant.

For all these reasons, the goal of information inte-

gration is to build tools that make it easier to build

integration applications, rather than completely auto-

mating the process.

Information Integration Architecture

Figure 1 shows a prototypical architecture of an infor-

mation integration system, often referred to as virtual

information integration. The data sources are shown on

the bottom of the figure. As explained earlier, data

sources can vary on many dimensions, such as the

data model underlying them, their schema, and their

ability to process queries.

The wrappers are (hopefully small) programs

whose role is to send queries to a data source, receive
virtual information integration system.

Information Integration. Figure 2.

Information Integration. Figure 3.

Information Integration. Figure 4.

1492 I Information Integration
answers and possibly apply some basic transformations

on the answer. For example, a wrapper to a web form

source would accept a query and translate into the

appropriate HTTP request with a URL that poses the

query on the source. When the answer comes back in

the form of an HTML file, the wrapper would extract

the tuples from the HTML file. There are two main

approaches to creating wrappers. The first approach is

to explicitly write a set of rules for extracting the

structure from the answer returned from the source.

The second approach is to train the wrapper on a set of

examples, and use Machine Learning techniques to

learn the rules.

The top of the figure depicts the mediated schema.

This is the schema in which users (or applications)

pose queries. The mediated schema is built for the

information integration application and contains only

the aspects of the domain that are relevant to the

application. Therefore, it does not necessarily contain

all the attributes present in the sources, but only a

subset of them. The mediated schema is not meant to

store any data, but is purely a logical schema.

The key to building an information integration

application are the source descriptions. These descrip-

tions specify the properties of the sources that the

system needs to know in order to use their data. The

main component of source descriptions are the seman-

tic mappings, that relate the schemata of the data

sources to the mediated schema. The semantic map-

pings specify how attributes in the sources correspond

to attributes in the mediated schema (when such cor-

respondences exist), and how the different groupings

of attributes into tables are resolved. In addition, the

semantic mappings specify how to resolve differences

in how data values are specified in different sources.

It is important to emphasize that the virtual informa-

tion integration architecture only requires specifying

mappings between the data sources and the mediated

schema and not between every pair of data sources.

Hence, the number of mappings that need to be spe-

cified is the same as the number of sources and not the

square of that number.

Schema Mediation Languages

There has been quite a bit of research on developing

appropriate languages for specifying schema map-

pings. The common theme to these languages is that

they use query expressions for the mappings, and they

differ in how they use these expressions.
The Global-as-View (GAV) language describes

the mediated schema as a set of view definitions over

the source relations. In contrast, the Local-as-View

language (LAV) describes the data sources as views

over the mediated schema. The GLAV language com-

bines the expressive power of GAV and LAV. The

following example illustrates these differences.

Example: Consider a mediated schema with the

following three relations: Movie(title, director,

year, genre), Actors(title, name) Plays

(movie, location, startTime)and the sources

shown in Figure 2.

The mappings shown in Figure 3 are GAV schema

mappings. Note how Movie is defined to be the union of

two conjunctive queries.

The
 symbol in the mapping denotes the open-

world assumption: that is, the data sources may not

contain all the data in the domain.

The mappings shown in Figure 4 are LAV schema

mappings. The first description states that S5 contains a

subset of the projection on a relation in the mediated

Information Integration I 1493

I

schema, and the second description states that S4 is a

subset of the join of two relations in the mediated schema.

Neither of these sources can be described in GAV.

As shown, the main advantage of GAV is that query

processing is conceptually easier. The main benefit of

LAVover GAV is that describing a data source does not

require knowing which other data sources exist in the

system. Hence, it is easier to add more sources to the

system. Furthermore, since the source descriptions in

LAV can leverage the expressive power of the view

definition language, it was easier to describe precise

constraints on the contents of the sources and describe

sources that have different relational structures than the

mediated schema. Describing such constraints is cru-

cial because it enables the system to select a minimal

number of data sources relevant to a particular query.

User queries are posed in terms of the relations in

the mediated schema. Hence, the first step the system

must do is reformulate the query into queries that refer

to the schemas of the data sources. To do so, the system

uses the source descriptions. The result of the reformu-

lation is a set of queries that refer to the schemata of

the data sources and whose combination will yield the

answer to the original query. The result of reformula-

tion is referred to as a logical query plan.

Hence, an important aspect of schema mapping

languages is developing algorithms for (and understand-

ing the complexity of) query reformulation. For GAV,

since the mediated schema is defined as a set of views

over the sources, query reformulation amounts to query

unfolding. In the case of LAV, since sources are described

as views, query reformulation amounts to rewriting

queries using views. While, in general, the complexity

of answering queries using views is exponential, there are

several algorithms that work efficiently in practice.

Query reformulation in GLAV is a combination of

answering queries using views followed by a query

unfolding step.

In addition to schemamappings, source descriptions

also need to consider (i) access-pattern limitations to

sources: for example, a database served behind a web

form or web service typically requires a set of inputs to

serve tuples, and (ii) completeness (or partial complete-

ness) of data sources: when a data source is known to

be complete on a particular slice of the domain, the

system can eliminate the need to access other data

sources. The differences between complete and incom-

plete sources are formulated in terms of the open-world

(closed-world) assumption.
Generating Schema Mappings

A major bottleneck in setting up an information inte-

gration application is the effort requires to create

the source descriptions, and more specifically, writing

the semantic mappings between the sources and the

mediated schema. Writing such mappings (and main-

taining them) required database expertise (to express

them in a formal language) and business knowledge

(to understand the meaning of the schemas being

mapped).

To address this problem, several techniques for

semi-automatic schema mapping have been developed

with the goal of reducing the time it takes a human to

create mappings. These techniques rely on several prin-

ciples. First, the techniques explore methods to map

between schemas based on clues that can be obtained

from the schemas themselves, such as linguistic simila-

rities between schema elements and overlaps in data

values or data types of columns. Second, based on

the observation that none of the above techniques is

foolproof, the next development involved systems that

combined a set of individual techniques to create map-

pings. Finally, based on the observation that schema

mapping tasks are often repetitive, novel schema map-

ping methods incorporate Machine Learning techni-

ques that enable the system to leverage past work. It

should also be noted that the process of generating

schema mappings is typically divided into two steps.

In the first step, referred to as schema matching, the

system generate correspondences between attributes (or

other schema elements) in the two schemas. In the

second step, the system builds on the correspondences

and creates expressions in the mapping language.

In addition to the schema level, an information inte-

gration system also needs to reconcile references at the

data level. There are often cases where the same object

in the world is referenced in different ways in data sets

(e.g., people, addresses, company names, genes). The

problem of reference reconciliation is to automatically

detect references to the same object and to collapse them.

Unlike reconciling schema heterogeneity, the amounts

of data are typically much bigger, and therefore these

techniques need to put more emphasis on being mostly

automatic. These techniques typically rely on some

sophisticated forms of string matching, augmented by

looking at neighboring values in the same row of a table

to gather additional match clues.

Information integration is one of several contexts

in which mappings between data sources need to be

1494 I Information Integration
created, manipulated, composed and inverted. The

area of Model Management was developed to provide

a formal framework for supporting generic operations

on schemas and mappings between them. Knowledge

Representation languages, and in particular, Descrip-

tion Logics, have also been shown to offer benefits in

modeling data sources in a flexible fashion. In a sense,

Description Logics offer a schema and query language

that can also express very rich constraints, but still

support effective reasoning. More generally, informa-

tion integration has been an active topic also in the

field of Artificial Intelligence, leveraging techniques

from Knowledge Representation, Machine Learning

and Automated Planning.

Query Processing

Given a logical query plan, it needs to be optimized and

executed by the system (see Fig. 5). Herein lies the

second main difference between database systems and

information integration systems. Unlike the conven-

tional database setting, an information integration

system cannot neatly divide its processing into a

query optimization step followed by a query execution

step. The contexts in which an information integration

system operate are very dynamic and the optimizer has

much less information (e.g., statistics) than the tradi-

tional setting. As a result, two things happen: (i) the

optimizer may not have enough information to decide
Information Integration. Figure 5. Components of an inform
on a good plan, and (ii) a plan that looks good at

optimization time may be arbitrarily bad if the sources

do not respond exactly as expected. To address these

challenges, researchers developed techniques for adap-

tive query processing. (Adaptive query processing was

already investigated in traditional database systems

because even there, the estimates of the optimizer

may be wrong, leading to bad plans).

The key idea of adaptive query processing is that the

engine may decide to change the query plan during

execution. The variations on the techniques developed

have to do with how and when the plan can be changed.

For example, one strategy may consider changing the

plan only at materialization points, or the system may

put conditionals into the plan that examine the inter-

mediate results and decide what to do next. More agg-

ressive techniques consider a different plan for every

single tuple, while others continuously monitor the

execution and change plans when it appears as if there

is a better global plan. One of the challenges that each of

these techniques needs to keep in mind is to minimize

wasted computation (i.e., intermediate results that are

computed and then discarded).

Related Data Management Architectures

Virtual information integration is one of several archi-

tectures for sharing and integrating data. Before the

development of virtual information integration, data
ation integration system.

Information Integration I 1495

I

warehousing was the common method for integrating

data from multiple sources. However, data warehous-

ing suffered from the fact that the data is loaded only

periodically into the warehouse and therefore may be

stale. Furthermore, data warehousing requires a single

physical store thereby limiting the range of contexts in

which data can be shared.

The emergence of peer-to-peer file sharing systems

inspired the data management research community

to consider P2P architectures for data sharing. The

advantage of peer-data management systems is that it

is no longer necessary to create a single mediated

schema in cases where such a schema is hard to build

or agree upon.

Finally, data exchange refers to an architecture that

includes source and target databases, and the semantic

mappings specify how to populate the target from data

in the source. Many of the same issues encountered

with GLAV mappings also occur here.

The Information Integration Industry

Beginning in the middle 1990s, information integra-

tion moved from the lab into the commercial arena.

Today, this industry is known as Enterprise Informa-

tion Integration (EII). The vision underlying this in-

dustry is to provide tools for integrating data from

multiple sources without having to first load all the

data into a central warehouse as required by previous

solutions. Broadly speaking, the architectures underly-

ing the products were based on the principles investi-

gated in the research arena.

Some of the first applications inwhich these systems

were fielded successfully were customer-relationship

management, where the challenge was to provide the

customer-facing worker a global view of a customer

whose data is residing in multiple sources, and digital

dashboards that required tracking information from

multiple sources in real time. Of the many challenges

faced by the industry, perhaps the greatest one was

the business question of whether to build a horizontal

platform that can be used in any application or to

build special tools for a particular vertical. The argument

for the vertical approach was that customers care

about solving their entire problem, rather than paying

for yet another piece of the solution and having to

worry about how it integrates with other pieces. In

addition, there are challenges in integrating with other

middleware tools, such as Enterprise Application Inte-

gration tools.
In addition to the enterprise market, information

integration has also played an important role in inter-

net search. For example, the vertical search market

focuses on creating specialized search engines that

integrate data from multiple deep web sources in spe-

cific domains (e.g., travel, jobs). These engines also

embed complex source descriptions.

Finally, information integration has also been a

significant focus in the life sciences, where diverse

data is being produced at increasing rates, and progress

depends on researchers’ ability to synthesize data from

multiple sources. Personal InformationManagement is

also an application where information integration is

taking a significant role.
Key Applications
Some of the key applications of information integra-

tion are:

1. Enterprise data management, querying across sev-

eral enterprise data repositories,

2. Accessing multiple data sources on the web (and in

particular, the deep web),

3. Large scientific projects where multiple scientists

are independently producing data sets,

4. Coordination accross mulitple government

agencies.
Future Directions
With all the progress to date, the set-up time for

information integration systems is still too long.

To set up an information integration application, one

still needs to create a mediated schema, and create

semantic mappings to obtain any visibility into the

data sources. An important research challenge is to

provide as many services as possible with as little set

up time as possible. The management of dataspaces

emphasizes the idea of pay-as-you-go data manage-

ment: offer some services immediately without any

setup time, and improve the services as more invest-

ment is made into creating semantic relationships.

To support pay-as-you-go data management, the

information integration system needs to model and

reason about uncertainty. Uncertainty can appear in

several forms: in the underlying data, the imprecise

nature of semantic mappings and vaguely specified

queries (i.e., keyword queries). Hence, incorporating

uncertainty into data management and in particular,

1496 I Information Integration Techniques for Scientific Data
to information integration systems, is an important

challenge going forward.

Cross-references
▶Adaptive Query Processing

▶Model Management

▶Query Rewriting Using Views

▶Query Translation

▶View-Based Data Integration

▶XML Information Integration

Recommended Reading
1. Deshpande A., Ives Z., and Raman V. Adaptive query processing.

Foundations and Trends in Databases. Now Publishers, 2007.

http://www.nowpublishers.com/dbs.

2. Franklin M., Halevy A., and Maier D. Dataspaces: a new

abstraction for data management. ACM SIGMOD Rec.

34(4):27–33, December, 2005.

3. Haas L. Beauty and the beast: The theory and practice of

information integration. In Proc. 11th Int. Conf. on Database

Theory, 2007, pp. 28–43.

4. Halevy A.Y. Answering queries using views: a survey. VLDB J.,

10(4), 2001.

5. Halevy A.Y., Ashish N., Bitton D., Carey M.J., Draper D., Pollock

J., Rosenthal A., and Sikka V. Enterprise information integration:

successes, challenges and controversies. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2005, pp. 778–787.

6. Lenzerini M. Data integration: a theoretical perspective. In Proc.

21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2002, pp. 233–246.

7. Rahm E. and Bernstein P.A. A survey of approaches to automatic

schema matching. VLDB J., 10(4):334–350, 2001.
Information Integration Techniques
for Scientific Data

AMARNATH GUPTA

University of California San Diego, La Jolla, CA, USA

Synonyms
Graph theory; Graph data structure; Graph database

Definition
Information integration refers to the field of study of

techniques attempting to combine information from

disparate sources despite differing conceptual, contex-

tual and lexical representations. One goal of information

integration, commonly held by the data management

community, is to combine the information in such away

that the user gets a unified view of the data. In other
words, the user should see and query the data as though

it is present in a common, unified schema.

In the domain of scientific applications, the pro-

blems and expectations are different. In this domain

the semantics of data play a very strong role in data

integration, and semantic compatibility need to be

ensured as part of the data integration process. Further,

straightforward view-based data integration, which

works well for commercial applications, does not

always suit the needs of the scientific users. Finally,

scientists need to ensure that the result of any query

on integrated data is scientifically valid.

Historical Background
Database applications are typically heavily designed

and tuned for a specific context. But as data manage-

ment needs in enterprises change and the information

economy evolves, the need to combine information

from multiple sources arises frequently. Examples of

such scenarios include mergers and acquisitions, inter-

nal restructuring, the need to interoperate with third

parties and to expose data on the web. Hence, from the

early 1980s the need to combine multiple heteroge-

neous data sources has become a research topic for the

database research community. In the 1990s, as the web

emerged and the many data sources came on line, the

need to integrate data and for companies to work with

third-parties grew, and these trends fueled the infor-

mation integration research and industry.
Foundations
There are several technical challenges in information

integration in science.
Semantic Heterogeneity

Semantic heterogeneity [6] refers to a problem that

occurs in both scientific and commercial applications

and arises when the data to be integrated have been

developed by different groups for different purposes.

An aspect of semantic heterogeneity is schema hetero-

geneity (one schema uses two attributes ‘‘firstName’’

and ‘‘lastName,’’ and another uses a single attribute

‘‘fullName’’); another aspect is data heterogeneity

(‘‘IBM’’ in one database versus ‘‘International Business

Machines’’ in another). A more complex kind of se-

mantic heterogeneity involves generalization, where

one database has a value like ‘‘thoracic surgeon’’ and

another has a value ‘‘surgeon.’’ This difference can be

Information Integration Techniques for Scientific Data I 1497

I

reconciled if the system uses the additional knowledge

that a ‘‘thoracic surgeon is a surgeon,’’ and have an

integration rule that a narrower term can be mapped

to the more general term. In scientific databases, the

reconciliation between schema and data heterogene-

ities becomes more complex. The term ‘‘Purkinje cell’’

can be mapped to the more general term ‘‘neuron’’ if

the anatomical location of the Purkinje cell is known to

be the brain, it should map to ‘‘muscle cell’’ if the

location is known to be the heart, otherwise it will

map to the even more general term ‘‘cell.’’ Similar

mapping rules can be defined at the schema level.

Thus, one needs a more extensive, yet easily comput-

able, mapping logic, and an integration framework

that uses this extra mapping layer. Hakimpour and

Geppert [5] and Ludäscher et al. [7] make use of

ontologies or other semantic structures to specify

these semantic mappings.
Role of Metadata in Managing Semantic Heterogeneity

Metadata refers to additional information about data

that cover the scope, the creation, the coverage and so

forth that is not directly represented in the data. In

science, the norm is to call the experimental output as

the ‘‘data’’ and other related information like the exper-

imental protocol, the people conducting the experiment

and recording the data etc. as metadata. Metadata can

play a partial role in resolving some forms of semantic

heterogeneity in both commercial and scientific applica-

tions. Suppose there are two tables in two sources where

each contains a variable called ‘‘oxygen-saturation.’’ Is

it possible to create integrated views that would perform

unions of the tables, or a join operation with ‘‘oxygen-

saturation’’ as the joining column? Since they both have

the same data types and notionally represent the same

physical quantity, it might seem that combining the

relations using this variable is a valid operation. How-

ever, if it is known that one database has a daily value of

this variable, while the other database has monthly

averages, then the answer does not remain so obvious

any more. One role of metadata is to capture this kind of

information such that the information integration rules

can use additional guard conditions based on metadata.
Functional Relationships

Functions play a significant role in scientific applica-

tions. The data exposed to a user is often the result of

a computation. For example, in many geospatial
applications, the value of a variable at a specific loca-

tion is not directly stored and needs to be provided

through interpolation. This is one of the many typical

cases where the user can get access to the data only

through functions [2]. In an integration scenario, the

mapping between two data elements coming from two

different data sources may also be established through

functions. Suppose there are two sources S1 and S2,

and both provide a variable Y when a parameter X is

supplied to them. When an integration system accesses

S1, it has to use the function f1, and for S2 it has to use

the function f2. Suppose, the integration system takes a

value x1 and sends it to both sources by executing

f1(x1) and f2(x1), and gets back values y1 and y2

respectively. The relationship between y1 and y2 may

need to be determined by mapping functions g1 and g2

to be applied to the two sources respectively. Thus if

the values returned are equivalent then g1(f1(x1)) will

be equivalent to g2(f2(x1)). If the sources need to be

integrated through a view that requires a semijoin,

transformation functions are needed to convert the

output of one source to input of another source. In

actual scientific applications that involve wider variety

of data types, these functions can be complicated and

specialized and need a separate service. While informa-

tion integration products like DB2 DiscoveryLink from

IBM allow sources to export functions, optimized

techniques for data integration with functions is still

an area of research.

Non-schematic Integration

Not all scientific data integration can be done by sche-

ma integration, or even schema integration extended

by semantic mapping structures. This is especially true

if the task of the ‘‘integration’’ is to compute a cascade

of functions whose parameters come from different

sources. This form of information integration is cov-

ered in detail in the entry Scientific Workflow Manage-

ment. A different class of non-schematic information

integration occurs through statistical tools. Critchlow

et al. [3] reviews a number of ‘‘data integration’’

tools in the domain of drug discovery. All these two

use multiple data sources from domain specific data

types like microarrays and protein interaction graphs,

and use statistical structures like decision trees and

Bayesian networks to achieve data combination.

How data management techniques can be effectively

used for this class of data integration remains an

open issue.

1498 I Information Integration Techniques for Scientific Data
New Issues

Interactive Information Integration The ability to

visualize information is common to many scientific

disciplines. Scientists often find the fully automated

schema mapping and integration techniques devel-

oped by computer scientists to be less useful because

they would like the data integration process to be more

interactive and exploratory. In this mode of integra-

tion, the user needs a system’s guidance to discover

sources that may potentially be integrated, would use

exploratory tools to investigate which subset of data

from different sources might scientifically qualify for

integration, and provide additional semantic input at

query time to ensure compatibility of data that need to

match each other. Research projects are currently un-

derway to explore how interactivity can be introduced

in information integration and querying.

Quality of Integration

A common goal in any science task is to develop a

better understanding of a phenomenon by observing,

modeling and computation. In the case of information

integration, the desired goal is to ensure that when two

previously unconnected pieces of information are

combined, the resulting product of integration will

provide a better or more accurate or novel understand-

ing that the unconnected data pieces could not have

provided by themselves. A real impediment in achiev-

ing this is that scientific data often has uncertainties

and suffers from obsolescence due to the progressive

nature of scientific information. Further, data from

different sources can be contradictory or incompatible

and combining them may need additional techniques

that a data integration system needs to support. A

formal framework is therefore needed to assess the

‘‘goodness’’ of the integration. Qi et al. [8] has taken

an initial step for integrating conflicting data in an

archeological application.

Key Applications
A number of scientific information integration systems

have developed over the last decade. A few of them are

listed below.

BIRN

The Biomedical Informatics Research Network (http://

www.nbirn.net) has developed a semantic information

integration system for Neuroscience applications. It
uses a relational Global-As-View Mediator [4] extend-

ed with a semantic network of inter-term relationships

to achieve scientific information integration.

Data Foundry

The Data Foundry system (https://computation.llnl.

gov/casc/datafoundry) [3] uses a mediator based sys-

tem for integration of Bioinformatics data. The system

contains a modeling language to represent metadata

which is used to generate a specific mediator for an

information integration task.

GEON

In the domain of geological sciences, the Geosciences

Network (http://www.geongrid.org/) [1] uses all informa-

tion resources including maps and spatial information to

be explicitly registered to an OWL (Web Ontology Lan-

guage – see http://www.w3.org/TR/owl-features/) ontol-

ogy. The ontology-registered data sources are then

queried using an SQL called SOQL.

Cross-references
▶Ontologies and Life Science Data Management

▶ Scientific Workflows

Recommended Reading
1. Bowers S., Lin K., and Ludaescher B. On integrating scientific

resources through semantic registration. In Proc. 16th Int. Conf.

on Scientific and Statistical Database Management, 2004, p. 349.

2. Cluet S., Delobel C., Siméon J., and Smaga K. Your mediators

need data conversion! In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1998, pp. 177–188.

3. Critchlow T., Fidelis K., Ganesh M., Musick R., and Slezak T.

Datafoundry: information management for scientific data. IEEE

Trans. Inf. Technol. Biomed., 4(1):52–57, 2000.

4. Gupta A., Ludäscher B., Martone M.E., Rajasekar A., Ross E.,

Qian X., Santini S., He H., Zaslavsky I. BIRN-M: a semantic

mediator for solving real-world neuroscience problems. In Proc.

ACM SIGMOD Int. Conf. onManagement of Data, 2003, p. 678.

5. Hakimpour F. and Geppert A. Resolving semantic heterogeneity

in schema integration. In Proc. Int. Conf. on Formal Ontology

in Information System, 2001, pp. 297–308.

6. Halevy A. Why your data won’t mix. ACM Queue, 3(8):50–58,

2003.

7. Ludäscher B., Gupta A., and Martone M.E. Model-based media-

tion with domain maps. In Proc. 17th Int. Conf. on Data

Engineering, 2001, pp. 81–90.

8. Qi Y., Candan K.S., Sapino M.L., and Kintigh K.W. Integrating

and querying taxonomies with quest in the presence of conflicts.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2007, pp. 1153–1155.

9. Searls D.B. Data integration: challenges for drug discovery.

Nature Rev. Drug Discov., 4:45–58, 2005.

Information Loss Measures I 1499

I

Information Lifecycle Management

HIROSHI YOSHIDA

Fujitsu Limited, Yokohama, Japan

Synonyms
ILM

Definition
Information lifecycle management is the activity of

storing data in the most appropriate storage infrastruc-

ture, according to the business value of that data as it

changes over time. The Storage Networking Industry

Association (SNIA) defines Information Lifecycle

management as follows:

The policies, processes, practices, services and tools

used to align the business value of information with the

most appropriate and cost-effective infrastructure from

the time when information is created through its final

disposition. Information is aligned with business

requirements through management policies and service

levels associated with applications, metadata and data.

Key Points
The business value of information varies during its life-

cycle, e.g., from the time when information is created

through to its final disposition. Considering the varying

business value of information, it is necessary to provide

cost-effective storage infrastructure which meets the

requirements corresponding to the business value. For

example, information related to current transactions is

most valuable from the viewpoint of current business

operations and is usually stored in online disk arrays

with high performance and high availability. Informa-

tion on transactions during the past year has value as

statistics and is stored in less expensive hard disk drives.

Finally, information on transactions over several years

has value only in meeting regulatory compliance and is

stored in offline tape libraries.

Information lifecycle management is the generali-

zation of such practices. In a typical example of ILM

process, information is classified based on business

values first, referring to its metadata or content. Then

appropriate service level requirements are defined for

information based on its classification. On the other

hand, storage infrastructure resources are also classi-

fied based on service level attributes such as perfor-

mance and availability. Finally the most cost-effective
storage infrastructure resources, which meet the classi-

fied information requirements, are chosen. When in-

formation value changes, the information is migrated

between multiple storage infrastructure classes accord-

ing to predefined policies.

A simple example of information lifecycle manage-

ment is hierarchical storage management (HSM).

In HSM, files are migrated between multiple storage

tiers such as high performance disk arrays, low perfor-

mance hard disks, and tape libraries based on access

frequency or latest access date. Instead of such simplis-

tic policies, supporting policies which reflect the

change of business value of information is the key to

implementing ILM.

Cross-references
▶DAS

▶ SAN

▶ SRM

▶ Storage Consolidation

▶ Storage Network Architectures

▶ Storage Networking Industry Association

▶ Storage Protocols

▶ Storage Virtualization

Recommended Reading
1. Storage Network Industry Association. Information Lifecycle

Management Initiative, 2007. Available at: http://www.snia.org/

forums/dmf/programs/ilmi

2. Storage Network Industry Association. Storage Network Indus-

try Association tutorials, 2007. Available at: http://www.snia.org/

education/tutorials/
Information Loss Measures

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona, Catalonia

Synonyms
Data utility measures
Definition
Defining what a generic information loss measure is

can be a tricky issue. Roughly speaking, it should

capture the amount of information loss for a reason-

able range of data uses. It will be said that there is little

1500 I Information Loss Measures
information loss if the protected dataset is analytically

valid and interesting according to the following defini-

tions by Winkler [4]:

A protected microdata set is analytically valid if it

approximately preserves the following with respect to

the original data (some conditions apply only to con-

tinuous attributes):

1. Means and covariances on a small set of subdo-

mains (subsets of records and/or attributes)

2. Marginal values for a few tabulations of the data

3. At least one distributional characteristic

A microdata set is analytically interesting if six

attributes on important subdomains are provided

that can be validly analyzed.

More precise conditions of analytical validity and

analytical interest cannot be stated without taking spe-

cific data uses into account. As imprecise as they may be,

the above definitions suggest some possible measures:

� Compare raw records in the original and the pro-

tected dataset. The more similar the SDC method to

the identity function, the less the impact (but the

higher the disclosure risk!). This requires pairing

records in the original dataset and records in the

protected dataset. Formaskingmethods, each record

in the protected dataset is naturally paired to the

record in the original dataset it originates from. For

synthetic protected datasets, pairing is less obvious.

� Compare some statistics computed on the original

and the protected datasets. The above definitions

list some statistics which should be preserved as

much as possible by an SDC method.

Key Points
A strict evaluation of information loss must be based

on the data uses to be supported by the protected

data. The greater the differences between the results

obtained on original and protected data for those uses,

the higher the loss of information. However, very often

microdata protection cannot be performed in a data

use specific manner, for the following reasons:

� Potential data uses are very diverse and it may be

even hard to identify them all at the moment of

data release by the data protector.

� Even if all data uses could be identified, releasing

several versions of the same original dataset so that

the i-th version has an information loss optimized

for the i-th data use may result in unexpected

disclosure.
Since datasets must often be protected with no

specific data use in mind, generic information loss

measures are desirable to guide the data protector in

assessing how much harm is being inflicted to the data

by a particular SDC technique.

Information loss measures for numerical data.

Assume a microdata set with n individuals (records)

I1, I2,...,In and p continuous attributes Z1, Z2,...,Zp. Let

X be the matrix representing the original microdata set

(rows are records and columns are attributes). Let X’

be the matrix representing the protected microdata set.

The following tools are useful to characterize the in-

formation contained in the dataset:

� Covariance matrices V (on X) and V’ (on X’).

� Correlation matrices R and R’.

� Correlation matrices RF and RF’ between the

p attributes and the p factors PC1,...,PCp obtained

through principal components analysis.

� Communality between each of the p attributes and

the first principal component PC1 (or other princi-

pal components PCi ’s). Communality is the per-

centage of each attribute that is explained by PC1

(or PCi). Let C be the vector of communalities for

X and C’ the corresponding vector for X.

� Factor score coefficient matrices F and F’. Matrix F

contains the factors that should multiply each

attribute in X to obtain its projection on each

principal component. F’ is the corresponding

matrix for X’.

There does not seem to be a single quantitative

measure which completely reflects those structural dif-

ferences. Therefore, it was proposed in Domingo-

Ferrer, Mateo-Sanz and Torra [1] and Domingo-Ferrer

and Torra [2] to measure information loss through the

discrepancies between matrices X, V, R, RF, C and F

obtained on the original data and the corresponding

X’, V’, R’, RF’, C’ and F’ obtained on the protected

dataset. In particular, discrepancy between correlations

is related to the information loss for data uses such as

regressions and cross tabulations.

Matrix discrepancy can be measured in at least

three ways:

� Mean square error. Sum of squared component wise

differences between pairs of matrices, divided by

the number of cells in either matrix.

� Mean absolute error. Sum of absolute component

wise differences between pairs of matrices, divided

by the number of cells in either matrix.

Information Navigation I 1501
� Mean variation. Sum of absolute percent variation

of components in the matrix computed on pro-

tected data with respect to components in the ma-

trix computed on original data, divided by the

number of cells in either matrix. This approach

has the advantage of not being affected by scale

changes of attributes.

For alternative [0,1]-bounded information loss

measures for numerical data, see Mateo-Sanz et al. [3].

Information loss measures for categorical data. These

can be based on direct comparison of categorical

values, comparison of contingency tables, on Shan-

non’s entropy. See Domingo-Ferrer and Torra [2] for

more details.
I

Cross-references
▶Disclosure Risk

▶ Inference Control in Statistical Databases

▶Microdata

▶ SDC Score
Recommended Reading
1. Domingo-Ferrer J., Mateo-Sanz J.M., and Torra V. Comparing

SDCmethods for microdata on the basis of information loss and

disclosure risk. In Pre-proceedings of ETK-NTTS’2001, vol. 2,

2001, pp. 807–826.

2. Domingo-Ferrer J. and Torra V. Disclosure protection methods

and information loss for microdata. In Confidentiality, Disclo-

sure and Data Access: Theory and Practical Applications for

Statistical Agencies, P. Doyle J.I. Lane J.J.M. Theeuwes L. Zayatz

(eds.). Elsevier, Amsterdam, 2001, pp. 91–110.

3. Mateo-Sanz J.M., Domingo-Ferrer J. and Sebé F. Probabilistic

information loss measures in confidentiality protection of con-

tinuous microdata. Data Mining Knowl. Discov., 11(2):181–193,

2005.

4. Winkler W.E. Re-identification methods for evaluating the con-

fidentiality of analytically valid microdata. Res. Off. Stat.,

1(2):50–69, 1998.
Information Navigation

THOMAS RIST

University of Applied Sciences, Augsburg, Germany

Synonyms
Information foraging; Information browsing; Inter-

active information exploration
Definition
The word ‘‘navigate’’ has its roots in the two Latin

words ‘‘navis’’ (ship) and ‘‘agere’’ (to ‘‘move’’/‘‘direct’’)

and has been used for centuries in the domain of

nautics for activities necessary to find one’s way, and

to control the movement of a vessel while traveling

from one location to another. Different scientific dis-

coveries, technical inventions, and cultural back-

grounds, have brought about a wide variety of

navigation techniques and navigation devices, all of

them have in common that they assume a certain

structuring of the underlying geographical space.

With the advent of electronically stored volumes of

information, and electronically networked information

sources in particular, the concept of geographical navi-

gation has been generalized and adopted as a metaphor

for accessing chunks of digitalized information in a

goal-directed way. In this metaphorical view perceivable

presentations of meaningful information chunks of an

overall information space with form the counterparts of

physical locations in a geographical space, and informa-

tion navigation capitalizes on the fact that structural

relations between physical locations, such as neighbor-

hood, proximity, distance, connectedness, reachability,

or crossway can be mapped onto meaningful relations

between information chunks as well. Depending on

nature of an application, a user is confronted with

different navigation tasks. A typical task in a database

application is to find the shortest access path from an

entry point to a certain data record, in an e-Learning

system, the navigation task may manifest itself in

accessing the learning units in a didactically meaning-

ful sequential order, while in an online bookstore, a

user may navigate through the assortment of books

following the traces of other customers with a similar

interest profile. In any case, goal-directedness and ex-

ploration of structure distinguishes navigation activ-

ities from arbitrary, disoriented movements, be it in a

geographical space, an information space or a combi-

nation of both in which an information space is super-

imposed on a geographical space.

Key Points
With the increasing amount of accessible electronic

data, information navigation has become a central

issue in many application domains and a challenge

for architects and developers of user interfaces as aids

to assist users in accomplishing various navigation

tasks. Navigation tasks are often described relative to

an navigation space that is characterized by the set of

1502 I Information Quality: Managing Information as a Product
potentially accessible information units, and the struc-

tural relationships that hold between these units. The

structure of an navigation space determines in which

order information units can be accessed and thus the

effort it takes to navigate from an entry point to a

particular unit. The spectrum of commonly used prin-

ciples includes linear, hierarchical/tree-like, radial, and

graph-like structuring of navigation spaces. The struc-

turing of a navigation space should, however, comply

with a reasonable, semantically-motivated structuring

of the information units of the application domain.

An effective navigation aide supports a user in at

least two basic navigation tasks: orientation – ‘‘where

am I,’’ and path continuation – ‘‘where to go from here

to get (closer) to the target?’’ Techniques to support

keeping orientation include: sitemaps and distorted

views – such as ‘‘fisheye views’’ – both designed to

show a user’s location in a broader context, or naviga-

tion histories, such as ‘‘bread-crump navigation’’ as

today used by many web-sites to show a user her trail

from a chosen entry-point to her current location.

Supporting users in the decision making of how to

continue a navigation path from a current location/

information unit comprises the disclosure of available

and relevant options, as well as de-emphasizing or even

hiding of options that should not be taken with regard

of achieving the underlying navigation objective.

Among the supporting techniques are techniques

that aim to provide environmental cues about where to

find further interesting information – the ‘‘information

scent’’ approach is an exemplar of such a technique.

Also, the concept of ‘‘adaptive menus’’ falls into this

category of techniques. It has been introduced with the

aim to facilitate a user’s navigation through a menu-

based interface by hiding options which are regarded

less relevant in a certain context. In practice, however,

it is often too hard a task for a computer system to

make appropriate assumptions about the user’s current

tasks and aims and therefore inadequate suggestions

for the continuation of a navigation may be given.

Also, accessibility, comprehensibility and effectiveness

of navigation structures of web-sites have become

major criteria in most web-usability evaluations.

Earlier work on information navigation has mainly

focused on graphical user interfaces (GUIs) and hyper-

media-style information access with view-based navi-

gation aids, assuming a user navigates through an

information space by traversing interlinked visual

presentations. Research includes the development of
visual navigation aids as well as the understanding of

the cognitive processes involved in conducting naviga-

tion tasks (e.g., [1]).

More recently, navigation issues are being resear-

ched in other areas too, including voice-dialogue

systems, virtual reality applications, and computer

games. In the emerging fields of ubiquitous and mobile

computing the mutual interplay of geo-spatial naviga-

tion with information navigation provides interesting

potential for new services that benefit mobile users.

The advent of large-scale internet shops and forums

has shed light on yet another aspect of navigation –

social navigation, a term that has been coined for

a model of navigation support that capitalizes on

observed navigation patterns of others [2].

Cross-references
▶Hypermedia

▶Visual Data Exploration
Recommended Reading
1. Furnas G.W. Effective view navigation. In Proc. SIGCHI Conf.

on Human Factors in Computing Systems., 1997, pp. 367–374.

2. Höök K., Munro A., and Benyon D. Designing Information

Spaces: The Social Navigation Approach. Springer, Berlin, 2002.
Information Quality: Managing
Information as a Product

DIANE M. STRONG

Worcester Polytechnic Institute, Worcester, MA, USA

Definition
Traditionally, information has been viewed as a by-

product of a computer system or an event. From this

viewpoint, the focus is on designing and delivering

computer systems, rather than designing and deliver-

ing information. To increase the quality of information

available to information consumers, organizations

need to treat information as a product being intention-

ally produced for those who will use that information.

This means actively managing information and its

quality. Such an information product (IP) approach

focuses attention on information quality, i.e., deliver-

ing high-quality information that is fit for use by

information consumers, rather than solely on data

Information Quality: Managing Information as a

Product. Table 1. Information quality categories and

dimensions

IQ category IQ dimensions

Intrinsic IQ Free-of-error, Objectivity,
Believability, Reputation

Accessibility IQ Accessibility, Ease of Manipulation,
Security

Contextual IQ Relevancy, Value-Added, Timeliness,
Completeness, Amount of
information

Representational
IQ

Interpretability, Ease of
understanding, Concise
representation, Consistent
representation

Information Quality: Managing Information as a Product I 1503

I

quality, i.e., maintaining the quality of the data stored

in databases or data warehouses. While the terms

‘‘data’’ and ‘‘information’’ are often used interchange-

ably in the information and data quality literature, the

term information quality is more often used in studies

that take an IP approach and explicitly acknowledge

the needs of information consumers, whereas data

quality is more often used when the quality of data is

assessed separately from the needs of users.

Historical Background
While there are some early seminal papers, informa-

tion quality (IQ) only emerged as a recognized field of

information technology (IT) research in the mid-

1990s. For example, the first International Conference

on Information Quality was held in 1996 at MIT [8].

In 1998, Wang et al. [14] published ‘‘Manage your

Information as a Product’’, which argued for the con-

cept of treating information as a product that is inten-

tionally managed and produced for consumers who

have expectations about its quality. This concept

provided researchers with a useful lens for framing

their information quality research ideas and led to

many studies developing methods, measures, techni-

ques, and recommendations for managing informa-

tion as a product. Together, these methods, measures,

techniques, and recommendations for managing infor-

mation as a product are referred to as the information

product (IP) approach.

Foundations
Managing information as a product, i.e., taking an

information product (IP) approach, means actively

managing organizational information in order to de-

liver high-quality information that is fit for use by

information consumers [14]. The IP approach involves

four principles for managing information as a product,

with four corresponding areas of information quality

research. These four areas of research, which are de-

scribed below, are (i) the needs of information con-

sumers, (ii) processes for producing high-quality

information products, (iii) the life cycle of information

products, and (iv) organizational governance struc-

tures and recommendations for actively managing in-

formation as a product.

The Needs of Information Consumers

Like other products, the quality of information is

judged by those who purchase and use information
products, referred to as information consumers.

Thus, information is of high-quality to the extent

that it is fit for use by information consumers. This

means that information quality includes both objective

dimensions (those dimensions that can be defined

independently of a user or a task), such as accuracy,

and subjective or contextual dimensions (those dimen-

sions that are defined relative to the context of a user

performing some task that requires that information),

such as timeliness. For example, whether information

is sufficiently timely depends on the task being per-

formed, e.g., stock prices for a historical analysis or for

day trading. Even those dimensions that can be objec-

tively defined may still have a subjective or contextual

aspect, e.g., whether the information is sufficiently

accurate for the task versus whether it is completely

accurate.

Research on the needs of information consumers

has used marketing research techniques to under-

stand the dimensions or characteristics of informa-

tion products that consumers assess when considering

an IP for their use. The result is sixteen dimensions

that information consumers consider when assessing

the quality of information, which are grouped into

four categories, see Table 1 [15]. The intrinsic dimen-

sions are those that capture the quality of the informa-

tion itself. The contextual dimensions are those that

capture quality in the context of the task and the users.

The accessibility dimensions capture the quality of

the process of obtaining and manipulating the infor-

mation. The representational dimensions capture

quality related to how the information is represented

1504 I Information Quality: Managing Information as a Product
to users. These dimensions have been verified in orga-

nizational contexts [11,12] and by numerous studies

that have used these dimensions or some subset of

them in IQ studies.

The Information Quality Assessment (IQA) ques-

tionnaire measures information quality along these

sixteen IQ dimensions [6]. Each dimension is repre-

sented by several questions for which questionnaire

respondents rate the quality of their information

on a scale of zero (not at all) to ten (completely).

For example, two questions for the free-of-error di-

mension are ‘‘This information is correct’’ and ‘‘This

information is accurate.’’ This questionnaire has

demonstrated reliability and validity and has been

used in research studies and in organizations seeking

to improve their IQ. One interesting result from base-

line IQ measures at several companies is that IT pro-

fessionals responsible for storing and maintaining the

information consistently assess information quality

higher than do the information consumers who use

that information.

While the IQA provides a comprehensive IQ as-

sessment instrument, it is not the only method for

assessing IQ [7]. For some dimensions, it is possible

to develop objective measures that do not require

data and time from information consumers for as-

sessment. The typical approach is to define a metric

on a 0–1 scale such as the following metric for time-

liness [1]:
Information Quality: Managing Information as a Product. T

Conforms to specifications

Product quality Sound Information

Dimensions of Sound Information:

� Free-of-Error

� Concise Representation

� Completeness

� Consistent Representation

Service quality Dependable Information

Dimensions of Dependable Information:

� Timeliness

� Security
Timeliness ¼ Max
1� currency

shelf-life

� 	
; 0

 �� �s

The parameter s adjusts the sensitivity of the timeliness

measure to the ratio of the currency of the information

relative to the shelf-life or volatility of that informa-

tion. When such metrics can be defined, IQ can be

assessed independently of users.

The Product and Service Performance Model for

Information Quality (PSP/IQ model) groups the six-

teen IQ dimensions into four IQ quadrants, sound,

dependable, useful, and usable, as shown in Table 2

[3]. These quadrants are derived from the total quality

management literature. Specifically, on one dimension,

the PSP/IQ model captures aspects of IQ that are

related to product quality and those related to service

quality. On the other dimension, it distinguishes be-

tween conforming to specifications and meeting or

exceeding information consumer expectations. These

quadrants serve as a better foundation for analyzing

and improving quality than the original four categories

of IQ in Table 1. Several studies have used the PSP/IQ

model, in combination with the IQA instrument, to

consolidate the 16 dimensional measures into four

overall measures, e.g., [6].

The PSP/IQ model and the IQA instrument are

useful tools for benchmarking and analyzing IQ. The

resulting measures of IQ provide the foundation for

gap analyses [6]. One gap is the difference between an
able 2. The PSP/IQ model

Meets or exceeds consumer expectations

Useful Information

Dimensions of Useful Information:

� Appropriate Amount

� Relevancy

� Understandability

� Interpretability

� Objectivity

Usable Information

Dimensions of Usable Information:

� Believability

� Accessibility

� Ease of Manipulation

� Reputation

� Value-added

Information Quality: Managing Information as a Product I 1505

I

organization and a benchmark organization, which

indicates the possibilities for improvement in that or-

ganization. Another gap is the difference between the

assessments of IT professionals responsible for the

information and the users of that information. When

IT professionals rate IQ much higher, there are oppor-

tunities for better communication about IQ between

information consumers and IT professionals.

The needs of information consumers, the first area

of research in the IP approach to IQ, address the

principle that the needs of information consumers

are the primary purpose of improving information

quality. Research in this first area addresses the infor-

mation product itself and its quality as assessed by

those who use the product.

Processes for Producing High-Quality Information

Like physical products, information products are pro-

duced by production/manufacturing processes. Like

manufacturing processes for physical products, infor-

mation manufacturing processes will only produce

high-quality information if they are designed to do so.

Thus, research on processes for producing high-quality

information products, the second area of IP research,

draws on parallels with manufacturing processes for

physical products.

This area of research introduces two IQ roles be-

yond the information consumer described in the last

section. Information collectors (also called informa-

tion suppliers or providers) collect and provide the

raw data for the information manufacturing process.

The second role consists of those who perform the

tasks of manufacturing the IP, which has been referred

to as information custodians (also called information

manufacturers or IT professionals).

One useful parallel with manufacturing is to apply

the Total Quality Management (TQM) recommenda-

tions from quality gurus such as Deming, Crosby, and

Juran that have resulted in major improvements in the

quality of the products produced from manufacturing

processes. For information processes, an IQ improve-

ment cycle, similar to Deming’s cycle, has been proposed.

Called the Total Data Quality Management (TDQM)

cycle, it involves the continuous and repeated application

of four steps, define, measure, analyze, and improve IQ

[13]. The previous section discussed research results that

defined the dimensions of IQ, developed measures for

them, and analyzed the gaps between an organization’s

IQ and benchmark IQ measures.
To improve the quality of information products, the

processes that produce those information products

must be defined, measured, analyzed, and improved.

Research efforts in this area have focused on modeling

information manufacturing processes in a way that

permits analysis of process design alternatives and

measurement of the IQ of the information products

produced. One such research effort is the Information

Manufacturing System (IMS), which is a method for

developing a network model of information flow [1].

The model consists of five types of components that

capture the steps in an information manufacturing

system. These five are (i) the data vendor block repre-

sents a source of data, (ii) the processing block

represents a step that adds value to the information,

(iii) the data storage block represents a database, (iv)

the quality block represents a step that enhances the

quality of the information for information consumers,

and (v) the customer block represents the delivery of

an information product to an information consumer.

At each step in the network of components, various

dimensions of IQ are computed given the quality of

data from the data vendor block and the quality effects

of each of the processing and quality blocks.

Modeling information manufacturing processes in

a way that captures the details needed to compute IQ

metrics and to analyze process design alternatives is an

active area of current research. One extension to the

IMS modeling approach adds new modeling compo-

nents, e.g., an information system boundary block and

an organizational boundary block which capture

handoff points at which the quality of information

may be affected [10]. It also elaborates, and more

formally defines, the data needed to specify each

block so that IQ metrics can be computed. A variety

of other extensions are also under development, e.g.,

[9], including software tools that assist with the mod-

eling and metric computation tasks.

The Life Cycle of Information Products

The third principle of managing information as a

product is to explicitly manage the life cycle of the IP,

similar to how the life cycle of a physical product is

managed. For physical products, the product is contin-

ually improved and extended, so that the product

gradually becomes more useful to customers, more

reliable, and less costly to produce, which in turn

extends the life of the product. Few organizations

treat their information as though it had a life cycle.

1506 I Information Quality: Managing Information as a Product
Instead they view information as a by-product of a

computer system or event, and assume the life cycle

of the information is the same as the life-cycle of that

computer system or event. Information typically is

upgraded or its characteristics changed as information

consumers make requests, rather than the proactive

management of upgrades typical for physical products.

While IQ researchers and practitioners acknowl-

edge the need for managing an IP’s life-cycle, there is

only a little research addressing this issue. For example,

there is some research addressing the optimal or

recommended frequency for updating data. The lack

of research on managing the life cycle of an IP may be

related to the state of research on the governance

structures needed for actively managing information

as a product.

Governance Structures for Managing Information

as a Product

The fourth area of research for managing information

as a product focuses on the appropriate management

and governance structures needed to support the

IP approach. Wang et al.’s paper on managing infor-

mation as a product [14] recommended appointing

an Information Product Manager (IPM), a position

similar to the Brand Manager role that organizations

employ to manage products across the multiple func-

tional areas of product development, manufacturing,

marketing, and service that must all be coordinated to

deliver high-quality products and manage their life

cycle. Similarly an IPM would manage one or more

IPs across information suppliers, information manu-

facturers, and information consumers. Thus, this is

introducing a fourth information role, that of an in-

formation product manager. This role differs from that

of a CIO, who typically is only responsible for the

information manufacturing role and does not have

responsibilities for information suppliers or informa-

tion consumers. The CIO also must typically focus

more on the hardware and software architecture and

infrastructure than on the architecture and infrastruc-

ture of information. Thus, there is a need for a role that

provides the cross-functional management structure

needed to deliver high-quality information to infor-

mation consumers.

The IPM role, however, is only one piece of the

broader research area of information governance,

management structures and best practices needed to

adequately provide an IP approach in organizations.
Such best practices also need to include the financial

side of the IP approach [4], e.g., cost/benefit analysis of

IQ improvements, the value and pricing of informa-

tion, and the auditing of information manufacturing

processes. There are still many opportunities for re-

search and the exploration of best practices in the area

of IQ governance.

Key Applications
Organizations are at varying stages of attempting to

apply an IP approach to managing their information.

Examples from several organizations including both

for-profit and not-for-profit organizations illustrate

the value of the four principles of the IP approach.

Principle 1: Understand the IP Needs of Information

Consumers

As an investment bank examined the needs of its in-

formation consumers, it realized that it had both ex-

ternal customers who needed information as well as

internal information consumers. For its external cus-

tomers, it was providing adequate information for

single requests, but was failing to consider that these

customers interacted with multiple divisions, and thus

it was failing to provide coordinated and aggregate

information. For internal information consumers, it

was treating their information needs as by-products

of its events with external customers, and largely failed

to consider or meet their needs.

A retail chain that sells eyewear had not examined

the information needs of its grinders and thus was not

treating the information sent from its opticians in

retail outlets to the centralized lens grinders as an

information product. Its investigation into the infor-

mation needs of grinders revealed that many of its

external customers’ complaints about the quality of

their eye products were not due to poor quality grind-

ing but to the quality of the information products sent

from the opticians to the grinders. When the opticians

understood the grinders’ needs as an information

product, many of the problems with the quality of

the eye products were eliminated.

A company that resells data to retailers worked to

understand the information needs of its customers and

then developed internal information production pro-

cesses that could tailor its IPs to individual customers.

By its attention to its internal and external information

customers, it was able to deliver superior information

products. A hospital tailored the IQA instrument to its

Information Quality: Managing Information as a Product I 1507

I

needs and used it to better understand when it was

meeting or failing to meet its information consumers’

needs.

Principle 2: Manage Information as a Product of

a Well-Defined Production Process

To provide information about customers’ accounts

across their activities with several divisions, the invest-

ment bank maintains a centralized customer account

database. The production process for this information,

however, was flawed, so that the IP’s produced did not

meet the needs of information consumers. As a result,

information consumers in the various divisions creat-

ed their own customer account databases with infor-

mation production processes tailored to their needs.

While these individual databases met local needs, the

global needs for account information across divisions

were not being met. The investment bank redesigned its

information production processes to produce higher

quality information and information tailored to the

divisions, so that local needs were better met using

information from the global customer account database.

The hospital that used the IQA instrument has also

attended to improving its information production pro-

cesses. It has used a modified version of the IMS mod-

eling technique to model its information processes [2].

Principle 3: Manage Information as a Product with

a Life Cycle

A petrochemical company produced a material safety

data sheet (MSDS), an IP, for each of its chemicals.

While the process for producing the initial MSDS

was excellent, it was not managed as an IP with its

own life cycle, but rather was updated as a by-product

of making changes to the chemical. New hazards,

however, were discovered as the chemical was used,

and the company was exposed to legal risks when it

did not issue a revised MSDS for newly discovered

hazards. Because it treated the MSDS as a by-product

of chemical development, it did not have an informa-

tion production process for tracking new hazards and

revising the MSDS. To address this problem, it started

to treat the MSDS as an IP with its own life cycle,

production process, and governance structure. The

investment bank was required to maintain risk profiles

for its customers. Like the petrochemical company, it

did not treat these risk profiles as an IP, and thus did

not have a well-defined process for updating them,

exposing it to legal risks.
Principle 4: Develop a Governance Structure to Manage

Information Production Processes and the Resulting

Information Products

Although it is nearly 10 years since the publication of

‘‘Manage Your Information as a Product’’ [14], orga-

nizations are still struggling with finding governance

structures appropriate for ensuring that information

consumers receive information that is fit for their use.

Individuals have been assigned roles similar to an IPM,

but comprehensive governance structures are not yet

common. For example, the petrochemical company

appointed someone to develop and manage a process

for keeping each MSDS up-to-date with emerging

information about hazards. At the company that

resells data, the CIO’s role was changed to focus more

on information processes and products. The hospital

mentioned in principles 1 and 2 not only uses the

IQA instrument and develops models of its informa-

tion production processes, but also has an IQ group

whose responsibility is to monitor IQ and develop

solutions to IQ problems including developing gover-

nance structures. At another hospital, there is an

information quality analyst role whose responsibilities

include uncovering and investigating IQ problems.

Future Directions
The four research areas and principles of the IP ap-

proach were presented in approximate order of re-

search maturity. The needs of information consumers

in terms of the dimensions of information quality are

well-defined; reliable measures of these dimensions

have been developed; and methods for analyzing and

improving information quality along these dimensions

are available. These dimensions continue to be used in

research studies and organizational practices. They

provide a complete set from which most information

quality research studies and practical IQ improvement

projects select a subset that is most relevant for the

particular IQ effort being undertaken.

Methods for modeling and improving information

manufacturing processes are currently an active area of

research. These studies borrow heavily from the

manufacturing and TQM literature, but also tailor

the application of manufacturing research results to

address the different characteristics of information as

a product. While this is an active area of current

research, there is still much to be done to provide

methods and techniques that can easily be used in

organizations to improve the quality of IP as delivered

1508 I Information Quality and Decision Making
to information consumers by improving the informa-

tion production processes producing those IP.

Both the IP life cycle and the governance of IQ are

areas with limited current research, but much potential

for research. While organizations know how to manage

the development and improvement of physical pro-

ducts, the same is not yet true for information products.

More research is also needed that integrates across

two or more of these four research areas. For example,

more research is needed that integrates the well-defined

IQ measures of the IQ dimensions into studies of

information production process improvements, e.g.,

see [5] as an early example of integrating process mea-

sures with the IQ outcome measures. Similarly, IP life

cycles should be integrated into information produc-

tion process models. IQ governance studies are needed

that includes regular outcome measures to be used to

direct efforts at process analysis and improvement.

Governance studies are also needed that will develop

methods for costing and justifying investments in IQ

improvements. The purpose of these research efforts is

to develop theories, methods, tools, and recommenda-

tions that will help organizations actively manage their

information and thus ensure the delivery of high qua-

lity information to information consumers.

Cross-references
▶Data Quality

▶ Information Quality

▶ Information Quality Assessment

▶ Information Quality Decision and Making

▶ Information Quality Policy and Strategy

▶ Information Quality Problem Solving

Recommended Reading
1. Ballou D.P., Wang R.Y., Pazer H., and Tayi G.K. Modeling infor-

mation manufacturing systems to determine information prod-

uct quality. Manage. Sci., 44(4):462–484, 1998.

2. Davidson B., Lee Y.W., and Wang R.Y. Developing data produc-

tion maps: meeting patient discharge data submission require-

ments. Int. J. Healthc. Technol. Manag., 6(2):223–240, 2004.

3. Kahn B.K., Strong D.M., and Wang R.Y. Information quality

benchmarks: product and service performance. Commun.

ACM, 45(4ve):184–192, 2002.

4. Lee Y.W., Pipino L., Funk J., and Wang R.Y. Journey to informa-

tion quality. MIT Press, Cambridge, MA, 2006.

5. Lee Y.W. and Strong D.M. Knowing-why about data processes

and data quality. J. Manage. Inf. Syst., 20(3):13–39, 2004.

6. Lee Y.W., Strong D.M., Kahn B.K., and Wang R.Y. AIMQ: a

methodology for information quality assessment. Inf. Manage.,

40(2):133–146, 2002.
7. Pipino L.L., Lee Y.W., and Wang R.Y. Data quality assessment.

Commun. ACM, 45(4ve):38–46, 2002.

8. Proceedings of the International Conference on Information

Quality (ICIQ). (1996 and yearly since then), available at:

http://mitiq.mit.edu and at http://mitiq.mit.edu/ICIQ.

9. Scannapieco M., Pernici B., and Pierce E. IP-UML: towards a

methodology for quality improvement based on the ip-map

framework. In Proc. Int. Conf. on Information Systems, 2002,

pp. 279–291.

10. Shankaranarayan G., Ziad M., and Wang R.Y. Managing data

quality in dynamic decision environment: an information prod-

uct approach. J. Database Manage., 14(4):14–32, 2003.

11. Strong D.M., Lee Y.W., and Wang R.Y. Data quality in context.

Commun. ACM, 40(5):103–110, 1997.

12. Strong D.M., Lee Y.W., and Wang R.Y. Ten potholes in the road

to information quality. IEEE Comput., 30(8):38–46, 1997.

13. Wang R.Y. A product perspective on total data quality manage-

ment. Commun. ACM, 41(2):58–65, 1998.

14. Wang R.Y., Lee Y.W., Pipino L.L., and Strong D.M. Manage

your information as a product. Sloan Manage. Rev., 39(4):

95–105, 1998.

15. Wang R.Y. and Strong D.M. Beyond accuracy: what data

quality means to data consumers. J. Manage. Inf. Syst.,

12(4):5–34.
Information Quality and Decision
Making

INDUSHOBHA N. CHENGALUR-SMITH

University at Albany – SUNY, Albany, NY, USA

Synonyms
Data Quality

Definition
Decision-making is an inexact science, and one of the

reasons is the utilization of data of imperfect quality in

the decision process. If the user is aware of the caliber

of the data and incorporates this information in the

decision process, the effectiveness of the process is

expected to increase.

Historical Background
A decision can be thought of as a set of actions related

to and including the choice of one alternative rather

than another. A rational model of decision-making is

one in which decision-makers consider all aspects of all

alternatives before making a decision. However actual

decision-making often falls short of this ideal model

because knowledge and experience of the consequence

Information Quality and Decision Making I 1509

I

is incomplete, there is limited amount of time to explore

all alternatives, and humans do not calculate perfectly.

Hansson [8] stated that all decisions are made under

uncertainty and he presented four components of great

uncertainty: uncertainty of options, uncertainty of the

consequences of the options, uncertainty of reliability

of information and uncertainty of values. The third

category, uncertainty of reliability of information, is the

focus of this entry.

The decision process is sensitive to task complexity,

time pressure and other contextual factors. Task com-

plexity itself is a function of several variables such as

the number of alternatives, the number of attributes,

and time pressure. If humans have a processing limit

of 7�2 items, as believed, the decision process quickly

runs into information overload, even without the ad-

dition of data quality information. However, increases in

decision complexity are often compensated for by a

selective use of information or by shifting to more sim-

plistic strategies. Exactly how this plays out, given the

additional data quality information that needs to be

evaluated, has not yet been conclusively determined.

Thus, there could be plausible arguments for and against

the use of data quality information in decision making.

Payne et al. [12] proposed that people adopt a deci-

sion strategy on the basis of a cost benefit framework, i.e.,

individuals compromise between making the best possi-

ble decision and minimizing their cognitive effort in

making that decision. Decision making strategies could

be (1) alternative-based or attribute-based, (2) compen-

satory or non-compensatory, and (3) consistent or

selective. Consider, for instance, a satisficing strategy,

where alternatives are considered one at a time, in the

order in which they are presented. Each attribute is

compared to a pre-determined cut-off level and the first

alternative whose attributes all meet the cutoffs is selected

and the process is stopped. Such a strategy is alternative-

based (multiple attributes about an alternative are

considered before the next alternative is processed),

non-compensatory (no trade-offs are made among alter-

natives), selective (all the alternatives are not evaluated

using the same amount of information). On the other

hand, consider a ‘‘weighted additive’’ strategy that assigns

relative importances (or weights) to each attribute and

evaluates every alternative by multiplying the value of the

attribute by its weight and summing up these weighted

values for all attributes. Although it is another alternative

based strategy, this is a compensatory strategy because

tradeoffs are made among alternatives. It is also a
consistent strategy because all the alternatives are evalu-

ated using the same amount of information and the

alternative with the highest overall evaluation is chosen.

It has been hypothesized that providing informa-

tion about the quality of the data attributes used by

the decision maker could be beneficial. It could also

be argued that such data simply creates an additional

burden, both on the data provider and the decision

maker, without significant payback in improved deci-

sion making. The current research in this arena is

focused on trying to determine the conditions under

which providing data quality information may be use-

ful to decision makers.

Foundations
Data quality is widely considered to be multi dimen-

sional. Wang and Strong [15] identified 15 dimensions

of data quality that they factored into 4 distinct groups:

intrinsic, contextual, usability and accessibility and

determined that accuracy (used interchangeably with

reliability) was the most important attribute. It is

expected that not only the type of data quality attribute

provided but also the format in which the data quality

information is recorded and presented would play a

role in the decision process.

Data regarding the quality of stored data can be

thought of as one type of metadata. In fact, some

database systems already do this indirectly through

the inclusion of a date field. The record of the time

when the data was collected reflects one component of

the quality of the data, namely currency. It is also

possible to have information regarding data quality

(e.g., accuracy) at the level of the individual data

item. In certain situations this is warranted and can

be achieved via the use of data tags [14]. Although this

would be complex and costly, it may be necessary if the

processes generating the data items were erratic and

highly volatile. At the other extreme one could have

data regarding the quality of an entire file or relational

table. This approach would be most appropriate where

the entire file was generated by a single, rather stable,

process. An intermediate approach would be to record

data quality information at the level of each data field.

This approach is most appropriate where the data

being utilized originated from a number of processes

which may have substantially different data quality

capabilities. Such an approach is neither as storage-

intensive as item-level data nor as generic as file-level

data. If it is assumed that the quality of data items in a

1510 I Information Quality and Decision Making
particular domain is the same, although different

domains may have different quality, creating such

metadata may not be very labor intensive. Although

at this time typical databases do not include the kind of

data quality information envisioned, since data about

data quality are metadata, it would be logical to

include such information in the data dictionary.

Even though the inclusion of data quality informa-

tion has become technologically feasible, the collection

of such information is still a challenging undertaking.

Quality characteristics of data may be declared through

qualitative means such as a ‘‘data source’’ field or

through a quantitative system such as a reliability

rating. Clearly, providing data quality information on

a two-point ordinal scale is more manageable than

providing it on a 100-point continuum. But if the

latter option leads to more effective decision-making,

then the considerable effort required may be worth it.

Thus the availability of information is not enough.

It needs to be presented in a form that will promote

effective decision making. The type of information

regarding the data’s quality that would be most helpful

to users may depend on the sophistication of the users,

but is more likely to be a function of the decision

process or strategy.

Empirical evidence on the effective use of informa-

tion during the decisionmaking process has beenmixed.

Ben Zur and Breznitz [1] found that people under time

pressure place more emphasis on negative information

about alternatives. The way information is displayed

(i.e., on a verbal or numerical scale) has also been

found to affect decision behavior [13]. Even within a

numerical format, decision making is sensitive to differ-

ent displays [9]. Thus both content and style of the

metadata could have an impact on the decision process.

In the public policy arena, Grether et al. [7] found that

consumers ignore less relevant information in complex

information environments. On the other hand, Gaeth

and Shanteau [6] indicated that expert decisions were

adversely affected by irrelevant factors, although this

could be overcome by training. Several other studies, in-

cluding[10],foundthatincreasingtheamountofattribute

information about alternatives increases subjects’ confi-

dence intheirdecisionsbutalsoincreases thevariabilityof

responses. Anecdotal evidence showed that higher infor-

mation loads lead to simpler processing strategies and

hencemore consistent decisions.

Having unequivocal measures of the effectiveness

of the decision making process is imperative because of
the difficulty of identifying what constitutes a good

decision. Ideally a decision aid (such as the inclusion

of data quality information) should lead to more

accurate results. When there are no correct answers,

consistency is a desirable outcome of the decision

process. MacGregor et al. [11] define two forms of

consistency. One is the tendency to produce the same

results when applied by the same user under identical

circumstances, and the other is the tendency to pro-

duce similar results in the hands of different users.

MacGregor et al. [11] found that the more structured

the decision aid, the greater the improvement in accu-

racy and consistency of the resulting decision.

Chengalur-Smith et al. [4] expanded on this con-

cept to measure the impact of providing data quality

information on decision processes and defined three

key measures of the outcome of the decision:

1. Decision Complacency: Complacency refers to the

degree to which data quality information is ig-

nored. If the decision-maker does not change the

originally preferred alternative after viewing data

quality information, he/she has exhibited decision

complacency. Complacency can be regarded as a

measure of futility, for it implies that providing

data quality information has not impacted the

final decision. Obviously low levels of decision

complacency are the most desirable outcome.

2. Decision Consensus: Consensus examines the de-

gree to which decision-makers can converge on a

decision in the presence of data quality informa-

tion. Often a number of decision-makers will be

involved in the same decision process. Consensus

explores the impact of data quality information

upon the ability of such groups to maintain the

prior degree of agreement concerning the preferred

course of action. It is a measure of group response

to this new incremental information.

3. Decision Consistency: Consistency is designed to

capture agreement across all alternatives, when data

quality information is provided. Note that the pre-

vious two measures, complacency and consensus,

focused on only the top-ranked or preferred alter-

native. In a sense, consistency is an extension of

complacency to the entire set of alternatives. Once

again a high value for this measure would indicate

that major re-orderings in the ranks did not occur.

Note that complacency (not changing the originally

preferred alternative in the presence of data quality

Information Quality and Decision Making I 1511

I

information) and consensus (ability to converge on an

alternative using data quality) deal only with the issue

of the top-ranked alternative. Although decision-makers

would most often be interested in the top ranked alter-

native, there are numerous decision contexts where the

interest is in the ranking of all alternatives (e.g., the

allocation of merit raises across an entire department).

In general, complacency and consensus should be con-

sidered hierarchically, i.e., consensus should only be

evaluated after non-complacency is established.

Key Applications
The widespread use of data warehouses has highlighted

the necessity of data hygiene. However, it is infeasible

to thoroughly cleanse the data, particularly when the

ways in which the data may be used is in flux. A viable

alternative may be to tag the fields in the warehouse

with data quality information. Some of the issues that

need to be considered when designing such a ware-

house have been discussed earlier. The results from

preliminary experimental studies described below indi-

cate that it would be beneficial to include data quality

tags when the data warehouse is used by managers on

an ad hoc basis.

Future Directions
Although some experimental research has established

that data quality information is used by decision

makers, more work is required to determine exactly

how such information is used. This would help in

identifying the best format in which data quality infor-

mation should be presented to users. The results of

such investigations would also provide guidelines for

designers of data warehouses and those that implement

warehouse applications.

Experimental Results
Several experiments have been conducted to provide

insight into the type of data quality information that

would be most effective to support decision processes.

A preliminary question that needed to be addressed was

the proposition that the type of data quality informa-

tion that is appropriate may be a function of individual

preferences. If individuals processed data quality infor-

mation in substantially different ways, incorporating

data quality information may be counter-productive.

A study that used learning styles as a surrogate for

individual differences in the mindsets of professionals

in an organization found no significant differences that

were attributable to learning styles using the three key
measures outlined above [4]. This makes for simpler

implementation since this implies that the data quality

information for a database does not necessarily have to

be tailored to individuals.

A series of controlled experiments [2–4] investigat-

ing the impact of providing data quality information to

decision makers found that the impact depended on

factors such as the complexity of the task, the decision

strategy and the format in which the information was

provided. Preliminary results suggested that when deci-

sion makers are confronted with clearly differentiated

alternatives, the inclusion of data quality information

impacted the selection of a preferred alternative while

maintaining group consensus. A follow-up study exam-

ined these factors while also taking experience and time

pressure into account [5]. The findings suggested that

managers with little to no domain-specific experience

were more likely to use the data quality information

provided. In addition, the results indicated that those

who felt time pressure during the decision making pro-

cess were more likely to use the data quality information

provided. Finally, older decisionmakers weremore likely

to use data quality information than younger ones.

However the level of consensus among the decision

makers declined, indicating that improvements gained

in individual decision processes through the inclusion of

data quality information may be at the expense of group

consensus.

Cross-references
▶Data Cleaning

▶Data Quality Assessment

▶Data Quality Dimensions

▶Data Warehouse

▶Data Warehouse Life-cycle and Design

▶Data Warehouse MetaData

▶Data Warehousing Systems: Foundations and

Architectures

▶ Information Quality Assessment

▶ Information Quality Policy and Strategy

▶ Information Quality: Managing Information as a

Product

▶Meta Data

▶Metadata Repository

▶Quality of Data Warehouses

Recommended Reading
1. Ben Zur H. and Breznitz S.J. The effects of time pressure on risky

choice behavior. Acta Psychologica. 47:89–104, 1981.

1512 I Information Quality Assessment
2. Chengalur-Smith I., Ballou D.P., and Pazer H. The impact of

data quality tagging on decision complacency. In Proc. 2nd

Conf. on Information Quality, 1997, pp. 209–221.

3. Chengalur-Smith I., Ballou D.P., and Pazer H. The impact of data

quality information on decision making: an exploratory analysis.

IEEE Trans. Knowledge and Data Eng, 1999, pp. 853–864.

4. Chengalur-Smith I. and Pazer H. Decision complacency, consen-

sus and consistency in the presence of data quality information.

In Proc. 3rd Conf. on Information Quality, 1998, pp. 88–101.

5. Fisher C.W., Chengalur-Smith I.N., and Ballou D.P. The impact

of experience and time on the use of data quality information in

decision making. Inform. Syst. Res., 14(2):170–188, 2003.

6. Gaeth G.J. and Shanteau J. Reducing the influence of irrelevant

information on experienced decision makers Organ. Behav.

Hum. Perform., 33:263–282, 1984.

7. Grether D.M., Schwartz A., and Wilde L.L. The irrelevance of

information overload: An analysis of search and disclosure.

Southern California Law Rev., 59:277–303, 1986.

8. Hansson S.O. Decision making under great uncertainty. Philos

Social Sci., 26(3):369–386, 1996.

9. Johnson E.J., Payne J.W., and Bettman J.R. Information displays

and preference reversals. Organ. Behav. Hum.Decision Process.,

42:1–21, 1988.

10. Keller K.L. and Staelin R. Effects of quality and quantity of

information on decision effectiveness. J. Consum. Res.

14:200–213, 1987.

11. MacGregor D., Lichtenstein S., and Slovic P. Structuring knowl-

edge retrieval: An analysis of decomposed quantitative judg-

ments. Organ. Behav. Hum. Decision Process., 42:303–323,

1988.

12. Payne J.W., Bettman J.R., and Johnson E.J. The adaptive decision

maker. Cambridge University Press, 1993.

13. Stone D.N. and Schkade D.A. Numeric and linguistic informa-

tion representation in multivariate choice. Organ. Behav. Hum.

Decision Process., 49:42–59, 1991.

14. Wang R.Y. and Madnick S.E. A polygon model for heteroge-

neous database systems: The source tagging perspective. In Proc.

16th Int. Conf. on Very Large Data Bases, 1990, pp. 519–538.

15. Wang R. and Strong D. Beyond Accuracy: What Data Quality

Means to Data Consumers. J. Manage. Inform. Syst., 4:5–34,

1996.
Information Quality Assessment

LEO L. PIPINO

University of Massachusetts, Lowell, MA, USA

Synonyms
Information; Data

Definition
This entry uses the terms data and information inter-

changeably. The classical distinction is that data are raw
facts whereas information is data in context or data that

have been processed. Nevertheless, other than at an

abstract level, it is a distinction that is often not made

and one finds that the terms are used interchangeably. It

is important to note that one individual’s information

can be data to another individual. This entry will also

use the terms information quality dimension and in-

formation quality variable interchangeably.

Further, this chapter defines information of quality

as information that is fit for use (or data of quality as

data that is fit for use). This means that context and use

plays an important role in evaluating information

quality. For example, the instantaneous changes in a

stock’s price may be of importance to the stock trader

who may trade stocks on a minute by minute basis.

This instantaneous information, however, will be of

minor importance to a long term investor whose strat-

egy is ‘‘buy and hold’’ in which long term price trends

are of more interest and use.

The process ofmeasuring data quality must confront

two major questions: (i) Exactly what should be

measured? and (ii) What is the metric that will be used

to measure the variable? Often, answering the first ques-

tion is much more difficult than answering the second.

This entry does not address the area of software

quality or the quality of information systems. The

former has been examined extensively in the Compu-

ter Science literature and the latter has received a great

deal of attention in the Management Information

Systems literature.

Historical Background
Historically, prescriptions for the measurement of

information quality have focused on specific variables.

The often cited variables of accuracy, timeliness, com-

pleteness, and consistency are examples. Indeed, what

dimensions to measure and the definition of what

metrics to use are still debated today. This entry will

not present a detailed recapitulation of the history and

literature of information quality measurement. Rather,

it will present one approach – broader in scope than

simply measuring specific variables – that can be an

effective way to measure data and information quality.

Foundations
As alluded to in the above paragraph, the typical

approach to measurement is to measure specific vari-

ables or dimensions of information quality. This chap-

ter advocates a broader approach that views the

Information Quality Assessment I 1513

I

assessment of information quality in an organization

to include assessment of the management of the pro-

cess of insuring information quality. Within this

framework, the chapter also widens the scope of what

is to be measured.

An assessment of management involvement and

management practices is essential. These would in-

clude, but are not limited to, examining whether policy

and procedures are in place, if learning is proactively

fostered in the organization, if proper configuration

and control is in place, and whether or not audits are

periodically conducted.

Measurement of the information product includes

evaluations of fitness for use, such as the existence and

maintenance of metadata, whether or not data integrity

constraints are in place, and assessments of many of the

traditional quality dimensions. These evaluations would

be more qualitative than quantitative in nature. An

example of an instrument that has been used by a

major healthcare facility to help in performing this

assessment is the Data Quality Practice & Product As-

sessment Instrument described in [8].

One must, however, also measure the quality of

information along specific dimensions at amore detailed

level than described above. Again, the approach sug-

gested here to measure specific information quality

dimensions has a wider perspective than is typical.

It is based on previous work [8,9]. A variant of this

approach, for example, has been used in practice by a

major teaching hospital.

The basic approach is to assess (i) subjective percep-

tions of information quality, that is, the perceived quality

of information along some specific quality dimensions

and (ii) objective quantitative measures of the same

dimensions, when measurable.

The subjective assessments measure the perception

of different stakeholders. Specifically three stake-

holders are identified:

1. The collector – the individual (or group) that

obtains and/or enters the data.

2. The custodian – the individual (or group) that is

responsible for storing, retrieving, and providing

the data.

3. The consumer – the user of the data.

Each may (and most likely) will have different percep-

tions of the quality of specific data and information.

These subjective measures can provide comparisons

across stakeholders and, as a consequence, provide
valuable information regarding the disconnects among

the different stakeholders with respect to specific data.

For many variables, these perceptions can also be

compared to quantitative measures of the same vari-

able. Here, the comparison may show, for example,

that stakeholders think data is of good quality along a

certain dimension when, in fact, the data is actually

poor. Of course, the comparison can also show agree-

ment between the quantitative measure and the sub-

jective perception.

What should be measured? As mentioned earlier,

what to measure can be more difficult to decide than

how to measure it. The decision will be context depen-

dent and must be determined by the organization and

what variables (data quality dimensions) are important

to it and its goals, objectives, and environment. The

variables accuracy, timeliness, and completeness rank

high among those mentioned often. Exactly how these

are defined is important and the granularity of the defi-

nition and, consequently the measurement, must be

carefully considered. For example, accuracy is always

mentioned in the same breadth as data quality. Exactly

how can one define accuracy. Assume that the unit of

measurement is the record. Further assume that records

havemissing values, that is, they are incomplete.Will the

record be considered inaccurate or will this type of

problem be defined as incompleteness and accuracy

defined more as ‘‘free from error,’’ that is that fields in

the record with values (those that are not missing) are

correct. This chapter will not answer this question. These

are questions that the organization and its analysts must

answer in the specific context of the organization. Dif-

ferent organizations will answer the question somewhat

differently. This simple example points out the issue and

helps focus on the importance of the definitions in

determining what is to be measured.

The metric itself may be easier to define. For illus-

tration purposes, if the incompleteness definition

given above is used, then a simple ratio of complete

to total records can be used. Assuming that in most

databases the number of complete records far out-

weigh the records with missing data, the formulation

of one minus the above ratio could be used.

Although not an exhaustive nor a completely inde-

pendent set, a comprehensive set of dimensions from

which one can choose has been provided in [13]. The list

is not meant to exclude other possible variables. A subset

from this list or other variants can be used. The impor-

tant point is to clearly define what is to be measure.

1514 I Information Quality Assessment
The subjective perceptions can be measured using

questionnaires whose questions are rated numerically

using a Likert type scale. One example that has been

used in practice is the Information Quality Assessment

instrument (IQA) [8] or a subset of the IQA. For

example, such statements as shown below are evalu-

ated in the context of a specific organization and data

set or database:

1. The information is incomplete.

2. The information is believable.

3. The information is correct.

In the case of the IQA, the respondent (any of the

stakeholders) would provide an evaluation on a scale

from 0 to 10 with 0 representing complete disagree-

ment with the statement and 10 representing complete

agreement. Of course, one could use a different

numerical range for the evaluations. It is important

to reemphasize that with the IQA the respondents

are subjectively assessing the pool of information or

database(s) which the organizations has chosen to

evaluate. It is not an evaluation of one item or piece

of solitary information.

For those variables that can be quantified, metrics

can be defined and quantitative measurements can be

performed. For example, one might physically measure

the number of incomplete records and use a metric

similar to the following:

Degree of Completeness = 1 – Number of Incom-

plete Records/Total Number of Records

For other dimensions, such as the believability of

information, it may be decided that only the subjective

perceptions will be used. Alternatively, if a reasonable

definition of, for example, believability can be specified

as a function of other quantitatively measured variable,

and this is a big if, then some type of aggregation

function can be used. An example might be a weighted

average of the numerical values of the quantitative

variables where the weights indicate relative impor-

tance, range from zero to one, and sum to one. Such

aggregation, if done at all, must be performed with care

since one must always be attentive to inappropriately

combining scales of different types (ratio, interval,

ordinal, and nominal [7]). This can lead to inappro-

priate use. Accepting the resulting precise numerical

values as ratio or interval data could lead to poor

decisions on the part of the decision maker.

In sum, at the detailed measurement level, the

approach recommended here is a comparative
approach wherein after what to be measured has been

determined:

1. Subjective perceptions are measured.

2. Objective/quantitative measurements are performed.

This would then lead to:

3. Comparison of results.

4. The taking of action where necessary to improve

the data quality.

Of course, either step (1) or (2) can be used indepen-

dently, that is, as the sole measure.

Recent work merits mention in a chapter on the

measurement of data quality. It has been suggested [5]

that the construct of utility be incorporated into the

information quality measurement. Here utilities would

indicate the relative value or importance of certain

records within the set. These would be taken into

account in generating quantitative assessments for a

specific dimension. Note that, as modeled in [5] utility

is not a measure of the relative importance or value of

different variables (dimensions) but rather the relative

importance of the records within a set measured along

one dimension. This is ongoing research but can easily

be incorporated into the metrics used in step 2 above.

Key Applications
The key application is the assessment of the quality of

information that an organization uses.

Cross-references
▶Data Deduplication

▶Data Quality Assessment

▶Data Quality Dimensions

▶ Information Quality Policy and Strategy

Recommended Reading
1. Ballou D. and Pazer H. Modeling data and process quality

in multi-input, multi-output information systems. Manage.

Sci., 31(2):150–162, 1985.

2. Ballou D., Wang R., Pazer H., and Tayi G. Modeling information

manufacturing systems to determine information product

quality. Manage. Sci., 44(4):462–484, 1998.

3. Batini C. and Scannapieco M. Data Quality: Concepts,

Methodologies and Techniques. Springer, New York, 2006.

4. Codd E. The Relational Model for Database Management:

Version 2. Addison-Wesley, Reading, MA, 1990.

5. Eden A. and Shankaranarayanan G. Understanding impartial

versus utility-driven quality assessment in large datasets.

In Proc. 12th Conf. on Information Quality, 2007, pp. 265–279.

6. Huang K., Lee. Y., and Wang R. Quality Information and

Knowledge. Prentice-Hall, Englewood Cliffs, NJ, 1999.

Information Quality Policy and Strategy I 1515
7. Krantz D., Luce R., Suppes P., and Tversky A. Foundations

of Measurement: Additive and Polynomial Representation.

Academic Press, New York, 1971.

8. Lee Y.W., Pipino L.L., Funk J.D., and Wang R.Y. Journey to Data

Quality. MIT Press, Cambridge, MA, 2006.

9. Pipino L., Lee Y., and Wang R. Data quality assessment.

Commun. ACM., 45(4):211–218, 2002.

10. Redman T. Data Quality: The Field Guide. Digital Press, Belford,

MA, 2001.

11. Strong D., Lee Y., and Wang R. Data quality in context.

Commun. ACM., 40(5):103–110, 1997.

12. Wang R., Lee Y., Pipino L., and Strong D. Manage your infor-

mation as a product. Sloan Manage. Rev., 39(4):95–105, 1998.

13. Wang R. and Strong D. Beyond accuracy: what data quality

means to data consumers. J. Manage. Inf. Syst., 12(4):5–34, 1996.
I

Information Quality Policy and
Strategy

YANG W. LEE

Northeastern University, Boston, MA, USA

Synonyms
Data Quality

Definition
Information quality policy and strategy is an emerging

area of study and practice. Information quality policy

and strategy involve managing both information prod-

uct and information practice. A recent piece of literature

structured information quality policy around ten key

guidelines and provided a questionnaire on four key

areas of information product: source data, metadata,

system-based data integrity, and data quality, all of

which were assessed by all stakeholders. The question-

naire also included the assessment of strategic, manage-

rial, and operational level of information practice [3].

Conventionally, managing information quality

means ensuring data integrity of stored data in a database

and managing authoritative access and security. Increas-

ingly, organizations manage and use heterogamous

databases in dispersed strategic business units. With

globalization trends, mergers and acquisitions, and

virtual collaboration, managing information entails

much more beyond managing data in a stored database

within a single organization. Managing information in

today’s organization, therefore, means managing the

comprehensive information process: data collection,

storage and utilization processes [3]. High-quality
information is used to compete in the market place and

is a new strategically competitive asset [5]. To improve

the quality of information available to information con-

sumers, organizations need to manage information with

an established policy and strategy.

Historical Background
While there are some early seminal papers, information

quality (IQ) only emerged as a recognized field of infor-

mation technology (IT) research in the mid-1990s. For

example, the first International Conference on Informa-

tion Quality was held in 1996 at MIT. In 1998, Wang

et al. [6] published ‘‘Manage Your Information as a

Product,’’ which argued for the concept of treating in-

formation as a product which is intentionally managed

and produced for consumers who have expectations of

its quality. In 2006, Lee et al. [3] published ‘‘Journey to

Data Quality,’’ which included the first set of generic

information quality policies, arguing for the principles

of managing informationwith an institutionalized set of

policies that structures decisions on information.

Foundations
This section provides ten policy guidelines that should

form the basis of an organizational data quality policy

and strategy [3].

Treat Information as a Product, Not By-Product

Treating information as a product, not by-product, is the

overarching principle that informs the other guidelines

[6]. This principle must be continually communicated

throughout the organization. It must be a part of the

organization’s ethos. More details on the approach are

available in Wang et al. [6].

Establish and Maintain Information Quality as a Part

of the Business Agenda

An effective policy requires that an organization main-

tain information quality as part of its business agenda.

The organization must understand and document the

role of data in its business strategy and operations. This

requires recognition of the data needed by the firm’s

business functions to complete its operational, tactical,

and strategic tasks. It should be clearly understood that

this data is fundamental to the competitive positions

of the firm.

The responsibility for ensuring that data quality is

an integral part of the business agenda falls on senior

1516 I Information Quality Policy and Strategy
executives. Senior executives should understand their

leadership is critical to success and that they must be

proactive in fulfilling the leadership role. They must

take an active part in ensuring data quality in the

organization so as to utilize quality information as a

strategically competitive advantage.
Ensure that Information Quality Policy and Procedures

are Aligned with Business Strategy, Business Policy, and

Business Processes

The primary function of data is to support the business.

To do so, a data quality policy must be in place and

consistent with an organization’s business policy. This

implies that a broad view of what constitutes data policy

is necessary. An integrated, cross-functional viewpoint is

a prerequisite to achieving an aligned data quality data

quality policy. Proper alignment will also foster the

seamless institutionalization of data quality policy and

procedures into the fabric of the organization’s business

processes.

Improper alignment or too narrow of a focus can

cause data quality problems and prove disruptive to

the organization. It can lead to conflict which could

otherwise be avoided. For example, a view that restricts

data quality policy to technical details of data storage

and ignores the uses of the data at different levels of

decision making would result in misalignment and

subsequent problems. In short, data quality policy

should reflect and support business policy. It should

not be independent or isolated from business activities.
Establish Clearly Defined Information Quality Roles and

Responsibilities as Part of Organizational Structure

Clear roles and responsibilities for data quality must be

established. There should be specific data quality posi-

tions within the organization, not ad hoc assignments

to functional areas in times of crisis. Additionally, one

of the fundamental goals of data quality function

should be to identify data collectors, data custodians,

and data consumers as well as make these members of

the organization aware of which of these roles that they

and others play.

Roles and responsibilities specific to the data

quality function range from the senior executive level

to the analyst and programmer level. Current examples

of titles in practice include chief Data Officer, Senior

VP of Information Quality, Data Quality Manager, and

Data Quality Analyst.
Ensure Data Architecture is Aligned with Enterprise

Architecture

The organization should develop an overall data archi-

tecture that is aligned with and supports its enterprise

architecture. Enterprise architecture means the blue-

print of the organization-wide information and work

infrastructure. The data architecture helps promote a

view of the information product which is consistent

across the enterprise. This promotes accessibility of

information across the organization.

The data architecture reflects how the organization

defines each data item, how data items are related, and

how the organization represents this data in its sys-

tems. It also establishes rules and constraints for popu-

lating individual data items. All of theses are essential

elements of any product – a definition of the item,

statements indicating how it is related to other entities

in the business, and what constraints exist for populat-

ing it in various databases.

To ensure that the data architecture is and remains

aligned with the enterprise architecture entails a num-

ber of specific and detailed tasks. For example, estab-

lishing a data repository is critical to the development

and maintenance of viable data architecture. The orga-

nization should generate a set of metadata that clearly

defines data elements and provides a common under-

standing of the data. This enables efficient data sharing

across the organization.

Be Proactive in Managing Changing Data Needs

The data needs of consumers change over time. The

term consumers means any individuals and enterprises

internal or external to the organization who use the

data of their organization. To maintain a high degree

of data quality, the organization must be sensitive to

ever-evolving environments and changing needs. This

entails continual scanning of the external environment

and markets along with the changing needs of internal

data consumers.

It is also critical to the maintenance of high data

quality that the rationale for changes in policy and

procedures is clearly and promptly communicated

throughout the organization. Steering committees and

forums can play a crucial role in the dissemination of

this information.

The organization must also be cognizant of local

variances as they relate to global data needs. In today’s

multinational and global firms, long-standing local

culture and customs exist. These local differences

Information Quality Policy and Strategy I 1517

I

must be clearly identified and policy adapted to incor-

porate these local variances accordingly.

Have Practical Data Standards in Place

It is easy to get people to agree that standards should

be in place. It is much more difficult to reach agree-

ment on what should be standardized and the prescrip-

tion of the standard. At times, it is difficult to obtain

agreement on the definitions of the most basic data

elements. Data standards entail many areas of data

practice. Addressing the following questions will help

inform the process for instituting practical data stan-

dards internally. If external standards are to be used,

which ones should be chosen? Does the standard apply

locally or globally? In either case, how and when will

it be deployed? What processes are appropriate to

monitor and adopt changing standards over time?

How should they be documented and communicated?

The process an organization uses to determine

whether to choose external or internal standards, and

under what conditions, should be continually devel-

oped. The preferred solution would be to use a stan-

dard which has been created and maintained by an

organization other than the organization using the

standard. If this is possible and acceptable, then exist-

ing standards to adopt must be determined. This may

be a choice between international, national, or indus-

try standards or between two national standards. For

example, the International Standards Organization

(ISO) has a standard set of country codes. One’s first

choice would be to choose the international standard.

Other things being equal, this provides the greatest

degree of flexibility and lowest costs to the firm.

Plan for and Implement Pragmatic Methods to Identify

and Solve Data Quality Problems, and Have in Place a

Means to Periodically Review Data Quality Practice and

the Data Product

Pragmatic methods based on diagnostic methods and

measures should be promoted as standards across the

organization. Example methods include system-based

data integrity, data quality assessment, and data prod-

uct and practice assessment methods.

Periodic reviews of the data quality environment

and the overall data quality of the organization is a

must. One method to achieve this is to assess the

data quality practice and the firm’s data quality using

a standard assessment survey. Multiple assessments

over time with a standard survey will provide a series
of assessments against which the firm can measure its

progress. Further, if an evaluation of an exemplary

organization is available, the firm can use this exem-

plar’s results as a benchmark and evaluate its perfor-

mance against it.

A practice related to the auditing task involves

certification of data. Data of both transaction systems

and data warehouses must be included in the certifica-

tion process. A robust process of data certification will

ensure that data practice and data product will be of

high quality. As a consequence, a data certification

policy must be put in place. The policy should stipulate

that sources for the information be clearly identified;

including definitions, valid values, and any special

considerations about the data.

Foster an Environment Conducive to Learning and

Innovating with Respect to Data Quality Activities

Initiatives that contribute to a learning culture would

include the use of a high-level data quality steering

committee, the installation of forums across the orga-

nization, the stress on continuous education and train-

ing. All should be strongly supported and conveyed by

senior management.

The organization should put in place a policy of

rewards, and if necessary, sanctions, that are consistent

with achieving a high level of data quality and maintain-

ing this high level. What should not be discouraged is

the identification and reporting of data quality pro-

blems, even if these prove embarrassing tomanagement.

Employees should feel free and safe to report data quality

problems openly. A formal mechanism for reporting

such problems can help in this regard. Establishing a

forum for data collectors, data custodians, and data

consumers to voice and share data quality problems

and discuss data quality issues will be of great value.

This will also aid in the dissemination of the experiences

of the collectors, custodians, and consumers and foster

an appreciation for each other’s perspectives and roles.

It is especially important for data collectors to un-

derstand why and how consumers use the data. Data

collectors also must adhere to the data quality principles

as they enter data even though they are not the prime

beneficiaries of such activity and do not usually get

measured on this portion of the data entry task. Data

consumers are critical to providing appropriate feedback

on the quality of the data they receive, including whether

it is needed data. The function would include apprising

the data collectors of changes in data needs. Data

1518 I Information Quality Policy and Strategy
custodians must recognize that although they are not

directly responsible for the data, they must understand

its purpose and use. As with data collectors, data custo-

dians should be aware of how and why data consumers

use the data.

Establish a Mechanism to Resolve Disputes and Conflicts

Among Different Stakeholders

Data policy and jurisdictional disputes, data definition

disagreements, and data use debates will occur. An

organizationmust have in place amechanism to resolve

theses differences and conflicts. These could be a set of

hierarchically related mechanisms corresponding to

different levels of the firm. Their form is not as impor-

tant as their existence and that they have a clear charter

specifying their responsibilities and authority.

Any of a number of conflict resolution techniques

and mechanisms can be used. The specifics must be

consistent with an organization’s business strategy and

culture. Examples are the use of steering committees,

data quality boards, data quality work groups, and data

quality councils. The scope of responsibilities, the de-

gree of authority, and clearly defined lines of reporting

and communications must be specified. Ambiguity in

the specifications will render theses resolution mecha-

nism ineffective.

It is most important that a historical record main-

tains disputes and their resolutions. This institutional

memory will serve the organization well as it adapts to

changing future environments.

Key Applications
Early adaptors are applying information policy and

strategy in their organizations to great avail. Public

sector agencies are advanced in their adoption of

the policy and strategy since most public agencies

approach information quality policy for their planning

and implementation of information management that

is guided by the mandated Information Quality Act.

The public agencies such as the Intelligence Commu-

nity, Environmental Protection Agency, Department

of the Interior, and Department of Housing and

Urban Development also align information quality

policy with their Enterprise Architecture and Gover-

nance policy. In the private sector, most organizations

approach information quality policy initially from

their data warehouse or customer data management

point of view that they need a policy to share the

information at the enterprise level. Software vendors
align some of the pragmatic policy issues as the under-

lying methodology which frames their tools; such as

data integration, business intelligence, data migration,

ETL, and data profiling tools.

Future Directions
The importance of data quality polices and strategies,

good data practices and principles, effective data qual-

ity training, and communication within the organiza-

tion cannot be overemphasized. This often overlooked

aspect of data quality practice can mean the difference

between those that are successful in this ‘‘journey to

data quality’’ and those that are not [3].

The ten policy guidelines presented can serve as

potential areas for future research. The needs of infor-

mation consumers are well-defined; reliable measures

of data quality assessment have been developed; and

methods for analyzing, diagnosing, and improving

information quality are readily available. The data pro-

ducts are studied and used in organizational practices.

However, the data practice area including policy and

strategy is in an early stage and will mature in the future

asmore firms demand policy and strategy for improving

and aligning their information quality agenda with

their business agenda.

More research is also needed to integrate the

perspective of data product and data practice. To inte-

grate both perspectives effectively, researchers will need

to apply multi-disciplinary methods and theories.

For example, ‘‘context-reflective data quality prob-

lem-solving’’ [2] uses various disciplinary areas and

integrates data product and data practice. Another

example [4] is seen with ‘‘process-embedded data in-

tegrity’’ which integrates data product and data prac-

tice. Studies focused on IQ policy and strategy studies

are also needed which include organizational outcome

measures to be used for directing efforts at policy

analysis and strategy forming level. Strategy studies

are also needed to develop methods for costing and

justifying investments in IQ improvements and asses-

sing competition in the market. The purpose of these

research efforts is to develop theories, methods, tools,

and policies to help organizations proactively manage

their information. Thus, ensuring the delivery of qual-

ity information to information consumers and the

provision of quality information as a strategic asset;

not only to its own organization, but to partner orga-

nizations and the extended enterprise of the globalized

economy as well.

Information Retrieval I 1519

I

Cross-references
▶ Information Quality Assessment

▶ Information Quality and Decision Making

▶ Information Quality: Managing Information as a

Product

Recommended Reading
1. Ballou D.P., Wang R.Y., Pazer H., and Tayi G.K. Modeling infor-

mation manufacturing systems to determine information prod-

uct quality. Manage. Sci., 44(4):462–484, 1998.

2. Lee Y.W. Crafting rules: context-reflective data quality problem-

solving. J. Manage. Inf. Syst., 20(3):93–119, 2004.

3. Lee Y.W., Pipino L., Funk J., and Wang R.Y. Journey to Informa-

tion Quality. MIT Press, Cambridge, MA, 2006.

4. Lee Y.W., Pipino L.L., Strong D.M., and Wang R.Y.

Process-embedded data integrity. J. Database Manage,

15(1):87–103, 2004.

5. Matsumura A. and Shouraboura N. Competing with quality

information. In Proc. 1st Conf. on Information Quality, 1996,

pp. 72–86.

6. Wang R.Y., Lee Y.W., Pipino L.L., and Strong D.M. Manage

your information as a product. Sloan Manage. Rev.,

39(4):95–105, 1998.

7. Weil P. and Broadbent M. Leveraging the New Infrastructure:

How Market Leaders Capitalize on IT. Harvard Business

School Press, Cambridge, MA, 1998.
Information Repository

▶Data Warehouse
Information Retrieval

GIAMBATTISTA AMATI

Ugo Bordoni Foundation, Rome, Italy

Synonyms
Document retrieval; Text retrieval

Definition
Information Retrieval (IR) deals with the construction of

automatic systems that allow users to inquire about tex-

tual data of any kind through natural language queries.

The retrieved information of IR systemsmay vary from a

ranked list of relevant textual items of any kind, such as

full documents or their excerpts, or can be distilled into

more elaborated forms, such as document summaries or

answers to questions. Information Retrieval is an
empirical science studying the representation, storage

and access to information, and covers a large number of

interdisciplinary topics of theoretical computer science

including information theory, machine learning, coding

theory, probability theory, programming theory, compu-

tational semantics, natural language processing, logics

and algebra. From a practical perspective research inves-

tigation in IR includes: data representation, storage and

retrieval, such as indexing, data encoding and text

compression, document and term classification and

clustering, systems architecture, distributed systems,

document-query matching functions (IR models); user-

oriented studies and aspects of behavioral science, such as

data visualization, browsing, user interfaces, system eval-

uation, user relevance feedback and automatic query-

expansion. With the advent and diffusion of the Web

and the dramatic increase of public available information

sources IR research also focuses on efficiency in terms of

query response time and storage space of indexes in

a distributed setting, as well as on personalized search

where results can be filtered and adapted to user’s area of

interest taking into account, for example, geographical

knowledge and user’s historical data.

Historical Background
Information Retrieval has its origins in the 1950s to

support the librarians activities of indexing and acces-

sing textual collections. Hans Peter Luhn is one of the

pioneers of IR [5] with his studies on automatic

indexing, which concerns the assignment of significant

keywords to documents. In the early stage of IR due

to the limitations of computer capabilities document

retrieval was restricted to satisfy the boolean exact

match between the query-terms and document surro-

gates (title, subject headings or abstract). Luhn thought

that the automation of indexing and abstracting was

less prone to errors than human indexers. Before Luhn’s

original ideas, Shanny, the founder of the mathematical

theory of communication, was the first to consider text

generation as a ‘‘sequence of words’’ and processed as a

discrete information source by a stochastic process (a

discrete Markov process) [10]. Following Shanny’s

idea, Mandelbrot derived theoretically the empirical

model by Eustop on word distribution and further

studied by Zipf [14]. Mandelbrot showed that text

generation is finding the least costly method of coding

as obtained in the classical problem in communication

theory [6]. The law of Estoup-Zipf-Mandelbrot estab-

lishes that the logarithm of rank of words by decreasing

1520 I Information Retrieval
frequency is in linear relation with this frequency.

An important milestone in the history of Information

Retrieval is the introduction of evaluation measures

for IR by Cleverdon. in 1953 Cleverdon led a project of

Librarian of Cranfield College of Aeronautics to assess

retrieval with a ‘‘document source – question’’ method,

that consists in collecting questions and their relevance

judgments from individuals; the Cranfield test collection

is still publicly available for experimentation in IR [3]. In

1960 Maron and Kuhns used the term ‘‘probabilistic

indexing’’ in the theory of IR to model the concept of

relevance explicated in terms of the theory of probability

[7]. Nevertheless, it was the vector space model, a model

not based on probability theory, that influenced most of

the research for some decades. The SMART project,

dedicated to the realization of one of the first IR systems,

the SMART system, was initiated at Harvard University

in 1961 by Gerard Salton, but actually most of the

research was conducted at the Cornell University [9].

The SMARTsystem used the cosine of the index vectors

derived from documents and search requests to obtain

for each document a coefficient of similarity with each

search request. After Maron and Kuhns, a probabilistic

model of relevance was introduced by Stephen Robert-

son and Karen Spärck Jones [8] that has led to the

development of the OKAPI system. The probabilistic

model is based on Spärck Jones’ observation that the

significance of a term in a document is due to its rareness

in the collection, and it can be measured by the loga-

rithm of the inverse of the relative frequency of the term

in the collection (document frequency) [11]. In the early

1970s the ‘‘cluster hypothesis’’ was stated by Jardine and

van Rijsbergen [4]. According to the cluster hypothesis

both efficiency and effectiveness of search could benefit

from clustering similar documents because such clusters

are easily retrieved by the same search requests, while

Salton thought that clustering would have reduced effec-

tiveness in favor of a better response time.

The first main international conference on IR,

ACM SIGIR, was held in 1978 [1]. The first commer-

cial search engines appeared in the 1980s, while the

1990s saw the birth of the first web search engines.

Since the beginning of the TREC (Text REtrieval Con-

ference) conference series in 1992, a conference

organized by the US government’s National Institute

of Standards and Technology and dedicated to large-

scale evaluation of text retrieval methodologies, very

large test collections of full-text documents and stan-

dards for retrieval evaluation are available. Evaluation
is an important issue in IR, therefore TREC has

a significant impact in research because provides an

objective evaluation of fresh techniques and approaches,

and because promotes new specialized retrieval tasks,

as well as, the transfer of emerging new ideas into com-

mercial systems and Web search engines.

Foundations
Information Retrieval systems have four main compo-

nents: query representation and document indexing,

term and document retrieval, query-document match-

ing, relevance feedback processing (see Figure 1). Typi-

cally, a user submits a query made up of a few words

and phrases, or several sentences. The internal repre-

sentation of the original query and the text extracted

from a document are both processed by the same

tokenizer: a parser extracts the words taking into ac-

count specific properties of the language, then most

frequent words and other words that have a functional

role in the text (stop-words) are removed, and finally

the constituents of the lexicon of the system (tokens)

are created by removing linguistic suffixes or prefixes

(stemmer), their multiplicity of occurrence in the text

is recorded. The text of each document is indexed into

two files: the inverted and the direct file. Both files

contain the set of pointers of the collection, also

knows as postings, that is the matrix containing all

possible term-document pairs of the collection. With

the inverted file one can access the set of pointers, e.g.,

(term, document, frequency), and thus the set of docu-

ments containing a given term together with some extra

information about these pointers, that is the frequency

of that term in these documents and possibly the posi-

tions occupied by that given term in each document.

With the direct file, one can instead access the set

pointers, e.g., (document, term, frequency), that is the

set of terms contained in a given document together

with the frequency of each term in that document.

Positions of terms within documents are used to restrict

searchwith the use of proximity operators. For example,

one can submit the query ‘‘information retrieval’’ wish-

ing to find and rank by relevance all and only all docu-

ments containing the word ‘‘information’’ followed by

the word ‘‘retrieval.’’ While information AND retrieval is

the query to find and rank all and only all relevant

documents containing both the words ‘‘information’’

and ‘‘retrieval’’ irrespective of the positions occupied

by these words in the text. Frequencies are instead

essential to obtain a ranked list of documents.

Information Retrieval. Figure 1. A conceptual architecture for an Information Retrieval system.

Information Retrieval I 1521

I

The direct file is used to perform other post-

processing activities, such as automatic query expan-

sion, or to cluster the retrieved documents into homo-

geneous or similar classes of documents, or to present

results in different output formats (e.g., into an

XML form).

Both inverted and direct file are stored in a com-

pressed form, and it is possible to achieve a very good

rate of compression with respect to the size of the

original textual data. For example the inverted file of

the TREC corpus WT10g containing 1,692,096 docu-

ments of 10 GB of text and 280,571,311 pointers, can be

compressed in about 385.5 MB, each pointer (term-

document, term frequency) requiring an average of
11.5 bits of information only. In general, the most

frequent words are declared in a special list of words,

the stoplist, and are not indexed because they require

the storage of too many pointers (the size of the col-

lection in the worst case). A comprehensive study of

compression algorithms for text retrieval can be found

in the book Managing Gigabytes [13].

The kernel of an information retrieval system is

the query-document matching model, producing the

document-scores for the given query, also known as

the retrieval status value (RSV) of the documents for

that query. The matching model is the theoretical com-

ponent responsible of the effectiveness and the quality

of the retrieval.

1522 I Information Retrieval
Similarly to any other empirical science, Information

Retrieval makes inferences by analysis of the empirical

data consisting of three phases: model specification,

parameter estimation and model evaluation. However,

unlike other empirical sciences, IR has two types of

data: the postings, that is the elements of the term-

document matrix, and the user relevance data set, that

are in general provided by a set of document-query

relevance assessment pairs. The relevance data set can

be used to accomplish two different tasks: query

re-formulation for improving document retrieval or

the evaluation of system performance.

Due to the existence of relevance feedback data, IR

has two different kinds of models: the query-language

model and the term-document model. The query mod-

els aim at providing the weights of the query terms

irrespective of the observed document. The term-

document model instead compares and weights the

frequency of the term within a document with respect

to its frequency in the collection.

For example, the query ‘‘What is a prime factor?’’,

which is transformed into the query ‘‘prime factor’’ after

stop-words removal and stemming, can be simply repre-

sented as the vector (prime = 1, factor = 1). After a

first pass retrieval in absence of user’s feedback, one may

deem thefirst retrieveddocuments as relevant and assume

that the terms contained in this small portion of retrieved

documents as a sample of the term population relative to

the topic ‘‘prime factor.’’ Then, the query-languagemodel

will assign new weights to the original query-terms and

add new terms to the query. For example, retrieving just

the first three documents the new query might be (prime

= 1.3581, factor = 1.2327, integ = 0.2154, number =

0.1778, primal = 0.0941,. . .). The term-document

weights assigned by the term-document model will be

resized according to query-term weights, that is as the

inner product of these two weight vectors.

A theory on evaluation of IR systems is mainly devel-

oped in van Rijsbergen’s book [12]. The effectiveness

of an IR system is evaluated by two standard mea

sures: recall and precision, that are defined as follows:

Recall ¼ mðRel \ RetÞ
mðRelÞ

Precision ¼ mðRel \ RetÞ
mðRetÞ

where Ret ¼ {djd is retrieved} and Rel ¼ {djd is rele-

vant}, and m ¼ j � j is the counting measure. Then,
j Rel \ Ret j is the number of relevant and retrieved

documents, j Ret j is the number of retrieved docu-

ments, and j Rel j is the number of relevant documents.
Key Applications
Main applications of Information Retrieval concern

the construction of search engines either for specific

domains, like biomedicine and genomics, law, web,

blogs, or adapted to particular types of document struc-

ture (e.g., XML or hypertext documents) search engines,

or dedicated to multimedia and digital libraries.
Future Directions
Notwithstanding the increase of computer processing

power, most of IR applications deal with very large

collections that cannot be in general processed by

only one server. Both efficient implementation and

distributed versions of IR systems are required. The

design of efficient partitions of very large indexes that

need to be distributed over a cluster of machines is an

important research topic. Also, large community of

users may wish to share their information and knowl-

edge, but not local indexes, and therefore merging local

search results to obtain one effective global document

ranking is a challenging research issue (data fusion).

Most of the new technology for information retrieval is

becoming more and more an asset of the most popular

web search engines, and therefore it is mainly the

market that influences new academic research direc-

tions. Although social network analysis has achieved

a quite mature technology based on variations of

Markov chain models with stationary probability dis-

tributions, a new social phenomenon is now emerging

in the web, the social tagging; systems also provide

collaborative tools to Internet users to store and search

structured comments of web pages. Query search on

movies, music or books will be in the very next future

conditioned, for example, by opinions or by recom-

mendation. More generally, search will be more and

more personalized and tailored to one’s own profile

or to all other profiles similar one’s own. The major

techniques to discover statistical relationships for

hypertext documents and hyperlinks can be found in

Chakrabarti’s book [2].
Data Sets
Most of data sets and test collections can be found at

the TREC (NIST) web site http://trec.nist.gov/data.

Information Retrieval Models I 1523
html. There are several types of test collections

concerning different range of IR applications. To cite

few of them, there are the ad hoc collections, that are

dedicated to the standard document retrieval based on

a primitive notion of user’s relevance, web test collec-

tions, that are dedicated to web retrieval, Blog Track

test collections, that contains a large collection of per-

malinks from the blogosphere.
I

URL to Code
There are several open source IR systems on the web. In

the following there is a list of the most popular and

advanced academic IR research systems.

1. Indri and Lemur search engines developed by the

Carnegie Mellon University and the University of

Massachusetts, Amherst, United States: http://

www.lemurproject.org/

2. Terrier developed by University of Glasgow, United

Kingdom: http://ir.dcs.gla.ac.uk/terrier/.

3. Wumpus developed by University of Waterloo,

Canada: http://www.wumpus-search.org/

4. Zettair by the RMIT Univerisity of Melbourne in

Australia: http://www.seg.rmit.edu.au/zettair/

Other IR systems are the open source Apache Lucene

(http://lucene.apache.org/) and the SMART system

(ftp://ftp.cs.cornell.edu/pub/smart/).
Cross-references
▶Biomedical Scientific Textual Data Types and Pro-

cessing

▶Clustering

▶Digital Libraries

▶ Information Retrieval Evaluation Measures

▶ Information Retrieval Models

▶ Information Retrieval Operations

▶Query Expansion Models

▶Relevance Feedback

▶Text Indexing Techniques
Recommended Reading
1. Annual International SIGIR Conference, Proceedings of the

ACM Special Interest Group on Information Retrieval Confer-

ence. http://www.sigir.org/.

2. Chakrabarti S. Mining the Web: Discovering Knowledge from

Hypertext Data. Morgan-Kauffman, 2002.

3. Cleverdon C. The cranfield test on index language devices. Aslib

Proc., 19:173–192, 1967.
4. Jardine N. and van Rijsbergen C.J. The use of hierarchic cluster-

ing in information retrieval. Inform. Storage Retr., 7

(5):217–240, 1971.

5. Luhn H. A statistical approach to mechanized encoding and

searching of literary information. IBM Journal of Research and

Development, 1:309–317, 1957.

6. Mandelbrot B. An informational theory of the statistical struc-

ture of language. In Communication Theory, the Second

London Symposium. W. Jackson (ed.). Butterworth, London,

1953, pp. 486–504.

7. MaronM.E. and Kuhns J.L. OnRelevance, Probabilistic Indexing

and Information Retrieval. J. ACM 7(3):216–244, 1960.

8. Robertson S.E. and Sparck-Jones K. Relevance weighting of

search terms. J. Am. Soc. Inform. Sci., 27:129–146, 1976.

9. Salton G. and Lesk M.E. The SMART automatic document

retrieval systems – an illustration. Commun. ACM, 8

(6):391–398, 1965.

10. Shanny C. A mathematical theory of communication. Bell Syst.

Tech. J., 27:379–423 and 623–656, 1948.

11. Sparck J. K. A statistical interpretation of term specificity and its

application in retrieval. J. Doc., 28(1):11–21, 1972.

12. Van Rijsbergen C. Information Retrieval, 2nd edn. Butterworths,

London, 1979.

13. Witten I.H., Moffat A., and Bell T.C. Managing Gigabytes.

2nd edn. San Francisco, California, 1999.

14. Zipf G. Human behavior and the principle of least effort.

Addison-Wesley, Reading, Massachusetts, 1949.
Information Retrieval Models

GIAMBATTISTA AMATI

Ugo Bordoni Foundation, Rome, Italy

Synonyms
Document term weighting; Ad hoc retrieval models;

Term-document matching function

Definition
An Information Retrieval (IR) model selects or ranks

the set of documents with respect to a user query. Text

in documents and queries is represented in the same

way, so that document selection and ranking can be

formalized by a matching function that returns a Re-

trieval Status Value (RSV) for each document of the

collection. Most IR systems represent document con-

tents by a set of descriptors, called terms, belonging to

a vocabulary V.

Main IR models define the query-document

matching function that weights the query terms

occurring in a document according to four main

approaches:

1524 I Information Retrieval Models
� The estimation of the probability of user’s relevance

rel for each document d and query q with respect to

a set Rq of training documents

Probðreljd; q;RqÞ

� The computation of a similarity function between

queries and documents in a vector space

SIMðd; qÞ

� The estimation of the probability of generating the

document d given a query q,

pðdjqÞ

� The information carried by the query terms in

the document, that is that is the number of bits

necessary to code Xi occurrences of the query terms

ti 2 q in the document:

� log2ProbðdjX1;:::;XqÞ

Historical Background
The history of Information Retrieval goes in parallel

to the development of IR models. In general, an

IR system is mainly identified with retrieval function

employed to rank documents, because it is the retr-

ieval effectiveness that matters in IR systems. In the

early days, research focused on methods for automatic

indexing in contraposition to themanual activitiesmade

by librarians. Early works concerned the construction of

effective methods for keywords selection to represent

succinctly the documents, and document-query match-

ing thus was performed by Boolean search of the query

terms in the index of such surrogates of the documents.

A full exploitation of a probabilistic model was achieved

in the 1990s with the birth of the BM25 ranking formula

[7]. Before BM25, most of the theoretical investigation

was devoted to the vector space model, the first parame-

ter free model for ranking documents [8]. It was only in

the late 1990s that other new models appeared on the

scene, such as the language models [6] and the informa-

tion theoretic models that include the Divergence From

Randomnessmodels [1]. Booleanmodel remains attrac-

tive because it requires less computational cost both in

terms of size of the indices and response time, and quite a

fewmodels tried to extend the Booleanmodel with fuzzy

or logical operators, yet the potentialities of such alge-

braic and logical models have not been fully exploited.
Foundations
IR models can be classified into four types: probabilis-

tic models, algebraic and logical models, information

theoretic models and Bayesian models.

Probabilistic models require a training set of data

consisting of set of documents which are assessed rele-

vant to a set of queries by users. Algebraic models

assume that both queries and terms are represented

by vectors, and that the similarity between queries and

documents is obtained through a specific normaliza-

tion of the inner product of these two vectors. In

logical models queries and terms are represented by

propositions, and the dependency between queries and

documents is given by an entailment operator. Infor-

mation theoretic models are based on the notion of

coding cost of terms in the documents, the most infor-

mative documents being those generated by the least

probable configurations of terms. Bayesian models

process two sources of evidence for terms, the term

frequencies in the document and in the collection, that

are combined to produce an estimate of the probability

of the term in the document.

Binary independence model (BIR) and BM25

are probabilistic models. Vector space, Boolean, fuzzy

and logical models belong to the algebraic and logical

models. The 2-Poisson model [5], and Divergence

From Randomness models (DFR) belong to the class

of information theoretic models. Language models are

instead derived by Bayesian methods.

Probabilistic Indexing

As first IR models, it is interesting to consider the

automatic indexing techniques used in the origins of

IR. In statistics, observations of empirical data are

predicted by stochastic models, that is a probabilistic

model which takes into account the presence of some

randomness in its variables. In particular, the IR model

predicts a probability distribution of possible estimates

for term frequencies. An hypothesis that describes

the distribution of frequencies is formulated, and the

values of inherent parameters of the distribution are

estimated by fitting the empirical data to the specified

model. Finally, the hypothesis on the distribution form

(e.g., Poisson, gaussian, etc.) is accepted or rejected

according to an error associated to the fit.

A stochastic model of Information Retrieval models

aims topredict a frequency tf of a term t in a document

d, that is

Information Retrieval Models I 1525

I

pðX t ¼ tf ; y1;:::;ykÞ

where p is the distribution in the parameters y1,...,yk.
Both the distribution form and the parameters

depend on the observed word.

Once the probability of the frequency tf of a term

t in a document d is obtained, then it is also possible

to obtain the probability of relevance of a document d

given the term frequency Xt :

pðdjX t ¼ tf ; y1;:::;ykÞ

For example, the Two-Poisson assumes that the distri-

bution of a significant word is a mixture of two Poisson

models with mean frequencies lt � mt, and the esti-

mate of the probability of the document given the term

frequency tf is:

pðdjX t ¼ tf ; bt; lt; mtÞ ¼
1

1þ bt � emt�lt lt
mt

�
tf ð1Þ

with lt � mt, and where the values of the parameters

bt, lt and mt are learned from data and depend on the

observed term t.

Information Theoretic Models

The probability estimated by information theoretic

models is based on the generation of a document as

an unordered partition of terms. Each term ti of a

vocabulary V has a prior probability pi of occurrence

in an arbitrary document of the collection, and a

document d of length k is conceived as a partition

satisfying the constraint tf1þ ...þtfV ¼ k over V cells,

where tfi is the term frequency in the document.

Similarly to the Two-Poisson model the probability

of generating a document satisfy the condition

X
tf i�0

pðX1 ¼ tf1;:::;XV ¼ tfVÞ ¼ 1

The connection with Shannon’s theory of information

is obtained by regarding a document as a message to

transmit. Shannon explains the notion of information

in terms of cost of transmission of a message, which

is � log2p (X1¼ tf1,...,XV ¼ tfV), that is inversely

related to the number of choices one has to generate

the message with respect to the universe of possible

messages: the larger the uncertainty, the larger the

information.

If the term independence is assumed, according

to which only term frequency counts and positions
of terms in documents are irrelevant, a document is

treated as an ensemble and is said to be a bag of words.

In such a case, the probability of generating a docu-

ment d is given by the multinomial distribution:

pðX1 ¼ tf1;:::;XV ¼ tfVÞ ¼
k

tf1tf2:::tfV

� 	
ptf11 ptf22 ::: ptfVV

It can be shown that

lim
k!1

� log2pðX1¼ tf1;:::;XV¼ tfVÞ
k

¼ DðpMLjjpÞ

ð2Þ

where piML ¼ tf i
k
and DðpMLjjpÞ ¼

P
ti2V p

i
ML log2

piML

pi
is

the Kullback-Leibler divergence.

Exploiting the additivity of the divergence, one can

computes the contribution of the query terms to the

document:

� log2 pðX1¼ tf1;:::;XV¼ tfVjqÞ¼
X
ti2q

tf i log2
tf i

k �pi
ð3Þ

Similarly to TF-IDF used in the vector space model,

also (3) can be used for retrieval.

Different ways to compute the probability� log2 p

(X1 ¼ tf1, ...,XV ¼ tfV jq) and normalize this informa-

tionwith respect the length of the documents is provided

by the Divergence From Randomness models.

Vector Space Models

In the vector space model terms and documents are

treated as vectors and relevance document scores are

obtained by the similarity function

SIMð q!; d
!Þ ¼ q!� d!

jj q!jj � jj d!jj

which is the cosine function of the angle between the

query-document vectors, where the numerator is the

inner product of the two vectors and jj x!jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP

i x
2
i

p
is the norm of a vector. Any term-document weighting

model can be employed in the vector space model,

differences depend on the ways queries and documents

are represented. The vector space model thus is a way

to normalize the term-document weight with respect

to the length of the document and this normalization

is achieved by the cosine function, that is by dividing

the inner product by the norms of the vectors.

1526 I Information Retrieval Models
Assuming each term weight wi is the number of the

bits necessary to encode the tfi occurrences of the term

in the document, that is wi¼� log2 p(Xi ¼ tfi), it is

easy to show that the inner product can be rewritten as

inversely related to the probability of occurrence of the

query-terms in the document. According to the term

independence assumption, the inner product is inversely

related to the product of the probabilities of occur-

rence of each query-term in the document:

X
i

qi � wi ¼ � log2

Y
i

pðXi ¼ tf iÞqi

If li ¼ ni
N
is the relative document frequency of a term,

that is the ratio of the number nt of documents in

which the term occurs and the number N of docu-

ments of the collection, then the probability p(Xi¼ tfi)

can be given by the geometric distribution:

pðXi ¼ tf iÞ ¼
li

li þ 1

� 	tf i

that leads to the representation of a document

provided by the the first IR vector space model:

d
!¼ tf1� log2 1þ N

nt1

� 	
;:::;tfn� log2 1þ N

ntn

� 	� 	

The TF-IDF model weighting of the vector space

model is probabilistic, or information theoretic, in its

nature, and the term independence is an implicit as-

sumption of the model. An estimate of the value of the

document relevance is then obtained by dividing the

information by the norms of the two vectors d
!

and q!.

The drawback of this model is the cost of comput-

ing document norms. If norms are computed in batch,

then a dedicated index must be maintained and

updated when documents are added or deleted. On

the other hand, if norms are computed online, then

one needs to access the direct file to retrieve all the

term frequencies tf of the document.

Bayesian Models

The application of Bayes’ theorem to IR concerns the

combination of two term frequencies coming from two

sources of evidence: the relative term frequency pC in

the collection, that is regarded as an estimate of the

prior probability of occurrence of the term in an arbi-

trary document of the collection, and term frequency

pML ¼ tf
lðdÞ in the document, that is the maximum like-

lihood estimate of the term in the document.
Bayesian models estimate the probability yi of a
term t in a document d, considering the yi as para-
meters of the posterior probability

Probðy1;:::;ynjdÞ ¼
Lðdjy1;:::;ynÞ � pðy1;:::;ynÞ

ProbðdÞ

where L(d jy1,...,yn) is the likelihood, p(y1,...,yn) is a

prior distribution for the parameters yi and Prob(d) ¼R
0
1...
R
0
1L(d jy1,...,yn) � p(y1,...,yn)dy1...yn.

If a document is regarded as a set of words, so that

permutations of sequences of terms from the vocabu-

lary V have the same probability distribution (ex-

changeable sequences), then the posterior probability

has the form of the product of the multinomial distri-

bution and of a unique prior distribution p:

Probdðy1;:::;ynjdÞ ¼
lðdÞ

tf1tf2:::tfn

� 	
ytf11 ytf22 ::: ytfnn � pðy1;:::;ynÞ

ProbðdÞ

In Bayesian methodology, the prior is chosen in order to

have both prior and posterior distributionwith the same

functional form (conjugate prior). The conjugate form

to the multinomial distribution is given by the Dirich-

let’s distribution, that is the posterior probability is:

Probdðy1;:::;ynjdÞ
/ ytf1þA1�1

1 ytf2þA2�1
2 ::: ytfnþAn�1

n

ð4Þ

where ∑i Ai ¼ A are the parameters. The expectations

ŷi of variables yi comes to be:

ŷi ¼
tf i þ AiP
iðtf i þ AiÞ

¼ tf i þ Ai

lðdÞ þ A

The Bayesian method constitutes the bulk of the lan-

guage modeling approach to IR [2,4] (see language

modeling). However, the values for the parameters Ai

need to be learned. The parameters Ai can be further

reduced to a single parameter m by setting the values of

Ai to the expected term frequency of ti in a document

of a fixed length m, that is Ai ¼ m� pi, where pi is TF
TFC

is

the frequency in the collection (and thus m ¼ ∑i Ai).

The expectation of (4) thus smoothes the maximum

likelihood estimate (MLE) pML ¼ tf
lðdÞ with the term

frequency in the collection, pi, that is:

ŷi ¼
tf i þ m � pi
lðdÞ þ m

Information Retrieval Models I 1527

I

The value of the parameter m depends on several fac-

tors, but mainly on the collection and the query length.

Another way of smoothing the raw MLE pML ¼ tf
lðdÞ of

the likelihood is the Mercer-Jelinek smoothing tech-

nique for IR, that mixes linearly the two frequencies

pML and pi:

l � pML þ ð1� lÞ � pi
with 0 	 l 	 1.

Probabilistic and Binary Retrieval Models

The independence binary retrieval model (BIR) is

based on the assumption that relevance is an event rel

of the probabilistic space and that relevance can be

learned directly from user’s feedback. The data con-

taining relevance information are initially gathered by

sampling or by assessment on a first pass retrieval, then

relevance information is processed to set the values of

certain parameters associated with the BIR matching

function. The BM25 model also derives from the BIR

model.

The BIR model is built upon four probabilities

pq(t ¼ a jrel ¼ b), where the subscript q denotes that

relevance depends on a specific query, and a,b 2 {0,1}

are the boolean values false and true for the variables

t (the term occurs in the documents or not) and for

the variable relevance (the document is relevant or not)

respectively. For the estimation of probability of docu-

ment relevance BIR uses Bayes’ Theorem, which relates

the posterior probability of relevance (pq(rel ¼ b j
t¼ a)) to the prior probability of relevance (pq(rel¼ b))

and the likelihood of relevance after observing a docu-

ment (pq(t ¼ a jrel ¼ b)).

Logical and Algebraic Models

Other approaches to IR modeling include those based

on logics, fuzzysets, Bayesian inference networks and

the Dempster-Shafer theory of evidence. All these

models share the view that (stochastic and/or logical)

dependency between sets of words can be captured by a

probability defined on top of a (graphical or logical)

link between boolean propositional sentences.

A Bayesian inference network is a directed, acyclic

dependency graph (DAG) in which nodes represent

propositions andedges represent dependence relations

between these propositions [10].

Fuzzy models are based on fuzzy-set theory,

whichdefines partial membership of elements to a set.

Fuzzy models extend logical operators with partial set
membership, and processes user queries in a similar

way to the conventional Booleanmodel.

A common generalization of both Boolean and fuzzy

model is Salton, Fox and Wu’s Extended Boolean Infor-

mation Retrieval Model [9], where the query-document

similarity is defined in the Lp-spaces (p-norms).

The logical approach to IR is motivated by model-

ling retrieval as an inference process. The foundational

assumption of logical models is that the semantics of

the content of a document is related to a query through

a conditional connective, which consists of a type of

logical implication set out by Van Rijsbergen in 1986

[11]. One of the IR models based on probabilities on

conditionals is obtained by a probability revision

method called imaging [3].

Key Applications
IR models are applied to a wide range of fields and

domains: digital libraries, biomedicine, web search

engines, enterprise search, desktop search, search

engines for blogs, for legal and other vertical domains,

recommendation systems for content providers, infor-

mation filtering and routing for the selective delivery

of news or for detecting spamming and junk mails.

Future Directions
With the dramatic growth of document sources infor-

mation needs to be retrieved in a distilled manner.

The most popular search algorithms for WEB, like

PageRank or HITS, clearly indicate that document

quality and authoritative content depend on social

and collaborative aspects of the community of the

users. Users will more and more cite their favorite

information sources, express and share their opinions

with other in the same network of interests or for

entertainment reasons.

Information Retrieval Models will thus naturally

evolve along to dynamic search dimensions such as

analysis of the social networks, time and context. Con-

texts include background knowledge about the domain,

group of interests, relevant information sources and

specific ontologies, as well as profiles with users back-

ground, interests, and preferences.

One of the most important research direction is

the development of systems that integrates database

and IR technology. Such an integration requires new

query language, new indexing techniques but more

importantly models that combines exact matching,

proper of the database systems processing queries for

1528 I Information Retrieval Models/Metrics/Operations
structured information, with partial matching, proper

of the IR systems.

Experimental Results
The performance measures of the IR models are based

on precision and recall. Significance tests on a set of

queries must be conducted to assess the relative per-

formance of models.

Data Sets
Most of data sets and test collections can be found

from the TREC (NIST) web site (http://trec.nist.gov/

data.html).

Cross-references
▶Digital Libraries

▶ Indexing

▶ Information Retrieval Evaluation Measures

▶Text Indexing Techniques

▶Text Mining

▶Web Search and Crawling

Recommended Reading
1. Amati G. and Van Rijsbergen C.J. Probabilistic models of infor-

mation retrieval based on measuring the divergence from ran-

domness. ACM Trans. Inform. Syst., 20(4):357–389, 2002.

2. Berger A. and Lafferty J. Information retrieval as statistical

translation. In Proc. 22nd Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1999,

pp. 222–229.

3. Crestani F. and Van Rijsbergen C.J. Probability kinematics in

information retrieval. In Proc. 18th Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1995, pp. 291–299.

4. Croft W.B. and Lafferty J. (eds.). Language Modeling for Infor-

mation Retrieval. Kluwer Academic, 2003.

5. Harter S.P. A probabilistic approach to automatic keyword

indexing. part I: On the distribution of specialty words in a

technical literature J. ASIS, 26:197–216, 1975.

6. Ponte J. and Croft B. A language modeling approach in

information retrieval. In Proc. 21st ACM SIGIR Conference

on Research and Development in Information Retrieval,

B. Croft, A. Moffat, and C.J. Van Rijsbergen (eds.). ACM,

Melbourne, Australia, 1998, pp. 275–281.

7. Robertson S.E. and Walker S. Some simple approximations to

the 2-Poisson model for probabilistic weighted retrieval. In Proc.

17th Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval. Springer, Dublin, Ireland, June

1994, pp. 232–241.

8. Salton G. and McGill M.J. Introduction to Modern Information

Retrieval. McGraw–Hill, New York, 1983.

9. Salton G., Fox E.A., and Wu H. Extended boolean information

retrieval. Commun. ACM, 26(11):1022–1036, 1983.
10. Turtle H. and Bruce Croft W. Evaluation of an inference

network-based retrieval model. ACM Trans. Inform. Syst.,

9(3):187–222, 1991.

11. Van Rijsbergen C.J. A new theorethical framework for informa-

tion retrieval. In Proc. 9th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1986,

pp. 194–200.
Information Retrieval Models/
Metrics/Operations

▶Biomedical Scientific Textual Data Types and

Processing
Information Retrieval Operations

EDIE RASMUSSEN

University of British Columbia, Vancouver, BC,

Canada

Synonyms
Information retrieval processing

Definition
An information retrieval system for collections of un-

structured text can be viewed as a set of processing

modules, beginning with lexical analysis of documents

and leading ultimately to a retrieval process in which

user queries are matched against documents. The pro-

cesses which make up an information retrieval system

are referred to as information retrieval operations. In

some cases, the end goal is not the retrieval of matching

documents from a collection but an auxiliary applica-

tion, such as document categorization, summarization,

or filtering of information from an information stream.

While the basic operations in information retrieval sys-

tems are similar, there can be considerable variability in

the model or details of implementation, making evalua-

tion of information retrieval system effectiveness an

important step.

Historical Background
Early work in information retrieval began in the 1950s

with the recognition that words in documents could

be used as indicators of the content or meaning of

the document. Hans Peter Luhn, in early work on

Information Retrieval Operations I 1529

I

automatic abstracting and Keyword-in-Context

indexing, recognized that words had differential value

in representing the document’s meaning [4,5], a concept

that is fundamental to modern information retrieval

systems. In the 1960s, Salton [7] and his research group

developed the SMART system based on the vector space

model, combining the basic operations for information

retrieval in an information retrieval system. This allowed

them to experiment with a variety of information retriev-

al operations, including stemming, term weighting, sim-

ilarity functions, and relevance feedback.

Subsequent research has developed and refined in-

formation retrieval operations, and there has been

increased emphasis on modular implementations

which allow specific operations to be isolated. In

1992, Frakes and Baeza-Yates edited Information

Retrieval: Data Structures and Algorithms [3], with

the goal of making information retrieval more widely

known, and making available pseudo-code and code

for the basic information retrieval operations. More

recently, open-source software such as the Lemur

Toolkit has provided easy access to information re-

trieval systems which allow the isolation and modifi-

cation of information retrieval operations [1].

Foundations
The basic operations in the building of an information

retrieval system are the pre-processing of text, creation

of index files, and processing of queries to provide a

(usually) ranked list of potentially relevant documents.

Pre-processing of text involves parsing the text to

create a list of index terms (lexicon) which will be stored

for retrieval. In identifying the index terms, some words

may be identified as Stopwords, i.e., common words

that are not considered meaningful, and which are not

indexed. Words with common suffixes may be identified

through an operation called Stemming, and concate-

nated under a single index entry. While it is possible to

select a subset of the words in a text as index terms,

usually all words (except words identified as stopwords)

in the text are used, so that this is sometimes referred to

as a ‘‘bag of words’’ approach.

Early research demonstrated the value of using

differential weights for the index terms associated

with a document, and testing different models for

assigning term weights continues to be an active re-

search area. A long-standing approach was the tf*idf,

or term frequency-inverse document frequency

weighting scheme, in which every term in a document
was assigned a weight proportional to its frequency in

that document, and inversely proportional to its fre-

quency in the collection as a whole. More recent

weighting schemes include BM25 and weights derived

from language models [6].

The resultant document-term matrix is sparse and

it is not efficient for storage and processing, so the next

set of operations involves building the index to store

the terms and associated term weights. The inverted

index, in which a postings list of document numbers

and associated weights is given for each term, is com-

monly used. For large data collections, some form of

index compression may also be applied [6,10].

Finally, a set of operations on the query results in

delivery of the output to the user of the system. A query

is presented to the system through a user interface, and

it undergoes the same processing as the document col-

lection to identify the index terms which it contains. The

order in which query terms are processed may be con-

sidered to achieve efficiencies in processing. The query is

matched against the documents in the collection using

some similarity function, and the documents are ranked

in order of similarity. A variety of similarity functions

have been proposed and tested; the choice may depend

on the underlying information retrieval model. For ex-

ample, in the vector space model, the similarity function

was usually the cosine function which measures the

angle between the document and query vector.

Further operations may be carried out on the query

in an attempt to improve it. In relevance feedback,

information about documents in the ranked list which

are either known to be relevant (from user input) or

assumed to be relevant, is used to reweight the query

terms and potentially offers performance improvement.

In query expansion, terms are added to the query,

automatically or with the assistance of the searcher, in

an attempt to improve retrieval performance.

The retrieval process described above performs

what is sometimes referred to as the ad hoc retrieval

task, in which the query is matched against a relatively

static collection of documents. In some situations it is

the query which is (relatively) static, and the docu-

ments which are changing. Matching a query against a

document stream is referred to as information filter-

ing, and is useful in situations where information

which is continually being created must be monitored

(for example, from a newswire).

In some instances the end goal is not to produce

documents in response to a query, but to perform

1530 I Information Retrieval Operations
some other task through specialized processing of the

indexed document collection, often in support of in-

formation retrieval. An example is document categori-

zation, whereby documents being added to a collection

are automatically assigned to what is predicted to be

the most appropriate category for them, based on

characteristics which have been observed for that cate-

gory (such as patterns of term occurrence). In docu-

ment clustering, document-document similarity based

on term occurrence and term weights is used to divide

a document collection into clusters or groupings of like

objects. (Clustering differs from categorization in that

the clusters are not a priori known.) Clusters may be

created from retrieval output, in order to provide the

user with documents which are organized by topic.

Similarly, in document summarization, information

about the document is used to identify the most im-

portant words, sentences or concepts it contains in

order to build a summary of it, for instance, to use as

a document surrogate to present to the searcher. An-

other post-retrieval operation is information visualiza-

tion [11], in which a visual display is generated rather

than, or in addition to, a ranked list. In some cases the

visual display can be manipulated to provide further

interpretation of the retrieval results.

Experimental Results
Almost as soon as computerized information retrieval

systems were conceived, evaluation was seen as an

important component. The best known of the early

tests were the Cranfield experiments [8], so-called be-

cause they were conducted by Cyril Cleverdon and a

group of researchers at the Cranfield College of Aero-

nautics, primarily as a test of indexing techniques. The

first set of experiments, conducted in 1958–1962,

provided controversial results, and in response to crit-

icism of the methodology, a second set of experiments

was devised by Cleverdon, with emphasis on rigor and

a laboratory model. These second experiments, known

as Cranfield II, led to the basic model for information

retrieval experimentation in common use today: a

document collection, a set of queries and associated

relevance judgments, and measurement based on pre-

cision and recall. In terms of findings, the Cranfield

experiments and a series of experiments on the

SMART system [8] showed that the interest of the

time in complex indexing systems was misguided,

and that in general simpler indexing systems worked

as well as more complex techniques. The laboratory
model as exemplified by the Cranfield experiments

made it possible to isolate individual information re-

trieval operations and evaluate performance with, for

instance, different values or functions.

Through the 1970s and 1980s, the laboratory for

information retrieval research expanded, with new test

collections, query sets and relevance judgments. The

collections grew steadily larger, though still falling

far short of those found in operational systems. After

30 years of IR experimentation in the Cranfield model,

there was confidence within the IR community that the

basic information retrieval operations had been refined

to achieve real performance improvements, although

the transfer of the technology to the commercial sec-

tion was extremely limited.

One of the strongest arguments for the lack of

commercial success was skepticism about the scalabil-

ity of performance improvements from the laboratory

to large scale systems. Partly in response to this criti-

cism, in 1992 the National Institute of Standards and

Technology (NIST) hosted the first Text REtrieval

Conference (TREC) [9]. TREC provided the infra-

structure for large-scale IR evaluation, and resulted

in the improvement and dissemination of many in-

formation retrieval operations, notably term weight-

ing, as reports of the success of the BM25 model for

term weighting were widely disseminated. TREC also

supported the development of standard routines to

analyze the results of query runs, minimizing the

variance in analysis of data that existed, and making

it easier to compare variations in information retri-

eval operations.
Cross-references
▶Clustering for Post Hoc Information Retrieval

▶ Index Creation and File Structures

▶ Lexical Analysis of Textual Data

▶Query Expansion for Information Retrieval

▶Relevance Feedback

▶ Similarity and Ranking Operations

▶ Stemming

▶ Stopwords

▶ Summarization

▶Visualization for Information Retrieval

Recommended Reading
1. Eckard E. and Chappelier J.-C. Free software for research in

information retrieval and textual clustering, 2007. Available at:

infoscience.epfl.ch/record/115460/files/Free_sofware_for_IR.pdf

INitiative for the Evaluation of XML Retrieval I 1531

I

2. Frakes W.B. and Baeza-Yates R. Information Retrieval: Data

Structures and Algorithms. Englewood Cliffs, Prentice Hall, NJ,

1992.

3. Korfhage R.R. Information Storage and Retrieval. Wiley, New

York, 1997.

4. Luhn H.P. The automatic creation of literature abstracts. IBM

J. Res. Dev., 2:157–165, 1958. Available at: http://www.research.

ibm.com/journal/rd/022/luhn.pdf

5. Luhn H.P. Keyword-in-context index for technical literature.

Am. Documentation, 11(4):288 (8p), 1960.

6. Manning C.D., Raghavan P., and Schütze H. Introduction to

Information Retrieval. Cambridge University Press, Cambridge,

UK, 2008.

7. Salton G. The SMART Retrieval System: Experiments in Auto-

matic Document Processing. Prentice-Hall, Englewood Cliffs,

NJ, 1971.

8. Sparck Jones K. Retrieval system tests 1958–1978, In: Informa-

tion Retrieval Experiment, K. Sparck Jones, (ed.). Butterworths,

London, 1981. pp. 213–255.

9. Voorhees E.M. and Harman D.K. (eds.). TREC: Experiment and

evaluation in Information Retrieval. MIT Press, Cambridge,

MA, 2005.

10. Witten I.H., Moffat A., and Bell T.C. Managing Gigabytes:

Compressing and Indexing Documents and Images (2nd edn.).

Morgan Kaufmann, San Francisco, CA, 1999.

11. Zhang J. Visualization for Information Retrieval. Springer, New

York, 2008.
Information Retrieval Processing

▶ Information Retrieval Operations
Information Seeking

▶ Information Foraging
Information Visualization

▶Data Visualization
Information visualization on
hierarchies

▶Visualizing Hierarchical Data
Information Visualization on
Networks

▶Visualizing Network Data
INitiative for the Evaluation of XML
Retrieval

GABRIELLA KAZAI

Microsoft Research Cambridge, Cambridge, UK

Synonyms
INEX; XML information retrieval; Evaluation forum

Definition
The INitiative for the Evaluation of XML retrieval

(INEX), launched in 2002, is an established evaluation

forum for XML Information Retrieval (IR) with over

90 participating organizations worldwide. The initia-

tive is sponsored by the DELOS Network of Excellence

for Digital Libraries and supported by the IEEE

Computer Society.

INEX encourages research in XML IR by providing

an infrastructure to evaluate the effectiveness of XML

IR systems. The infrastructure takes the form of a large

XML test collection, appropriate scoring methods, and

a forum for participating organizations to compare

their results. The construction of the test collection is

a collaborative effort, where participating organiza-

tions contribute by providing test queries and relevance

judgments on the collection of XML documents. The

constructed test collection provides participants a

means for comparative and quantitative experiments.

Historical Background
The motivation for INEX stems from the increasingly

important role of XML IR in many information access

systems (e.g., in digital libraries and on the Web) where

content is a mixture of text, multimedia, and metadata,

formatted according to the adopted W3C standard of

the eXtensible Markup Language (XML).

XML offers the opportunity to exploit the internal

structure of documents in order to allow for more

precise access, providing more focused answers to

users’ requests. XML IR thus breaks away from the

traditional retrieval unit of a document as a single

1532 I INitiative for the Evaluation of XML Retrieval
large (text) block and aims to implement more focused

retrieval strategies that return document components,

i.e., XML elements, instead of whole documents in

response to a user query. This focused retrieval ap-

proach is seen of particular benefit for information

repositories containing long documents, or documents

covering a wide variety of topics (e.g., books, user

manuals, legal documents), where the user’s effort to

locate relevant content can be reduced by directing

them to the most relevant parts of the documents.

Providing effective access to XML based content is

therefore a key issue for the success of these systems.

INEX aims to provide the means necessary for the

evaluation of XML IR systems. It follows the predomi-

nant approach in IR of evaluating retrieval effective-

ness using a test collection constructed specifically

for that purpose.

A test collection usually consists of a set of docu-

ments, user requests (topics), and relevance assess-

ments which specify the set of ‘‘right answers’’ for the

requests.

In the field of IR, there have been several large-scale

evaluation projects, including the Text REtrieval Confer-

ence (TREC) (http://trec.nist.gov/), the Cross-Language

Evaluation Forum (CLEF) (http://www.clef-campaign.

org/), and the National Institute of Informatics Test

Collection for IR Systems (NTCIR) (http://research.nii.

ac.jp/ntcir/), which resulted in established test collec-

tions and evaluation methodologies. These traditional

IR test collections andmethodology, however, cannot be

directly applied to the evaluation of content-oriented

XML retrieval as they do not consider structural aspects

and, for example, provide relevance judgments only at

the unit of the document. Furthermore, the evaluation is

based on assumptions that do not hold in XML IR.

For example, the evaluation of IR systems treats

documents as independent andwell-distinguishable sep-

arate units of approximately equal size. XML IR, howev-

er, allows for varying sized document components to be

retrieved. It is also possible that multiple elements from

the same document are retrieved, which cannot be

viewed as independent units.

The evaluation of XML retrieval systems thus

makes it necessary to build test collections and develop

appropriate metrics where the evaluation paradigms

are provided according to criteria that take into

account the imposed structural aspects. INEX aims

to address these goals.
Foundations
Since its launch in 2002, INEX has grown both in terms

of number of participants and with respect to its cov-

erage of the investigated retrieval tasks. Throughout

the years, INEX faced a range of challenges regard-

ing the evaluation of XML IR approaches. These

include the question of suitable relevance criteria, fea-

sible assessment procedures, and appropriate evalua-

tion measures. Different theories and methods for the

evaluation of XML IR were developed and tested at

INEX, leading to a now stable evaluation setup and

a rich history of learned lessons.

In 2002, INEX started with 36 active participating

organizations and a small collection of XML docu-

ments donated by the IEEE Computer Society, totaling

494 MB in size and containing over eight million XML

elements [3, pp. 1–17]. INEX 2002 run a single track,

investigating ad hoc retrieval applied to XML docu-

ments based on the focused retrieval approach. In IR

literature, ad hoc retrieval is described as a simulation

of how a library might be used, and it involves the

searching of a static set of documents using a new set

of topics [15]. While the principle is the same, the

difference for INEX is that the library consists of XML

documents, the queries may contain both content and

structural conditions and, in response to a query, arbi-

trary XML elements may be retrieved from the library.

Two subtasks were defined within the Ad hoc track

based on the query types of Content-Only (CO) and

Content-And-Structure (CAS). In the CO task, it was

left entirely to the retrieval system to identify the most

appropriate relevant XML elements to return to the

user, while in the CAS task, systems could make use of

the structural clues specified by the user in the query.

The queries were created by the participating

groups, contributing 30 CO and 30 CAS topics to the

test collection. For each topic, a title, a description

and a narrative were specified, where the syntax of

the title allowed the definition of target elements and

so-called containment conditions (content word and

containment element pairs).

The relevance criteria was defined along two

dimensions, each with four possible grades for asses-

sors to choose from. Assessors were asked to assign

scores for both dimensions to all XML elements of the

collection that contained relevant information.

Based on the collected relevance judgments, effec-

tiveness scores were calculated by adopting Raghavan’s

INitiative for the Evaluation of XML Retrieval I 1533

I

Precall measure [3, pp. 1–17]. Table 1 shows summary

information on INEX 2002.

In 2003, the CAS subtask was separated into the

Strict CAS (SCAS) and the Vague CAS (VCAS) strands

so that the effect of interpreting a query’s structural

clues strictly or vaguely could be studied. The CO

subtask remained unchanged, and so did the docu-

ment collection.

The syntax of the topic title was modified based on

the XPath standard (http://www.w3.org/TR/xpath),

where a new about() function was introduced [4, pp.

192–199].

Due to the fact that the coverage dimension of the

relevance criterion was found to be susceptible to mis-

interpretation, INEX 2003 renamed and redefined the

relevance dimensions to Exhaustivity and Specificity.

A new measure, inex_eval_ng [10], was also intro-

duced, allowing to take into account the possible over-

lap (e.g., paragraph and its container section) and the

varying size of the XML elements. Table 2 shows sum-

mary information on INEX 2003.

By 2004, INEX had 43 active participating groups

and four additional tracks: Relevance feedback, Het-

erogeneous collection, Natural language processing

(NLP) and Interactive tracks. The ad hoc track ran
INitiative for the Evaluation of XML Retrieval. Table 1.

Summary information on INEX 2002

INEX 2002

Organizers: N. Fuhr, N. Gövert, G. Kazai, M. Lalmas

Participants: 36 active (49 from 21 countries signed up)

Tracks: Ad hoc retrieval with two subtasks

Ad hoc
tasks:

Ad hoc retrieval based on CO (content-
only) and CAS (content-and-structure)
topics

Document
corpus:

12,107 articles from IEEE Computer
Society, 1995–2002

Totaling 494 MB and over eight million
XML elements

Topics: 30 CO and 30 CAS topics

Relevance: Topical relevance (Irrelevant, Marginal,
Fairly, Highly relevant),

Component coverage (No coverage, Tool
large, Too small, Exact)

Metrics: Precall (inex_eval) [3, pp. 1–17]

Proceedings: [6]
only two of the subtasks defined in 2003: CO and

VCAS. The format of a topic’s title field was formally

defined using the Narrowed Extended XPath I (NEXI)

language. The purpose of the Relevance feedback track

was to explore issues related to the use of relevance

feedback in a structured environment [1]. The Hetero-

geneous track aimed to address challenges where col-

lections of XML documents from different sources and

with different DTDs or Schemas were to be searched.

The NLP track investigated whether it was practical to

use a natural language query in place of the formal

NEXI topic title used in the Ad hoc track [9]. The

Interactive track focused on studying the behavior of

searchers when presented with components of XML

documents that have a high probability of being rele-

vant (as estimated by an XML IR system) [12].

Both the document collection and the relevance

dimensions remained unchanged from 2003. The mea-

sure of Precall was used as in previous years to report

the retrieval effectiveness scores of the participating

search systems. Table 3 shows summary information

on INEX 2004.

The ad hoc track at INEX 2005 continued studying

the role of structure in user queries, and defined four

separate strands of the VCAS subtask based on the strict
INitiative for the Evaluation of XML Retrieval. Table 2.

Summary information on INEX 2003

INEX 2003

Organizers: N. Fuhr, M. Lalmas

Participants: 30 active (40 from 18 countries signed up)

Tracks: Ad hoc retrieval with three subtasks

Ad hoc
tasks:

CO (content-only), SCAS (strict content-
and-structure) and VCAS (vague content-
and-structure)

Document
corpus:

Same as in 2002

Topics: 36 CO and 30 CAS topics

Relevance: Exhaustivity (Not, Marginally, Fairly, Highly
exhaustive),

Specificity (Not, Marginally, Fairly, Highly
specific)

Metrics: Precall (inex_eval) [3, pp. 1–17], and
inex_eval_ng [10]

Proceedings: [4]

INitiative for the Evaluation of XML Retrieval. Table 3.

Summary information on INEX 2004

INEX 2004

Organizers: Overall: N. Fuhr, M. Lalmas

Topic format: B. Sigurbjörnsson,
A. Trotman

Relevance assessment tool: B. Piwowarski

Metrics: G. Kazai, A.P. de Vries

Participants: 43 active (55 from 20 countries signed up)

Tracks: Ad hoc retrieval with two subtasks

Relevance feedback track (C. Crouch,
M. Lalmas)

Heterogeneous collection track
(T. Rölleke, Z. Szlávik)

Natural language processing track
(S. Geva, T. Sahama)

Interactive track (A. Tombros, B. Larsen,
S. Malik)

Ad hoc
tasks:

CO (content-only) and VCAS (vague
content-and-structure)

Document
corpus:

Same as in 2002 and 2003

Topics: 40 CO and 35 CAS topics

Relevance: Same as in 2003

Metrics: Precall (inex_eval) [3, pp. 1–17]

Proceedings: [6]

1534 I INitiative for the Evaluation of XML Retrieval
or vague interpretations of the structural conditions of

a query [13]. The CO subtask has also diversified into

six strands based on a combination of three subtasks

(Focused, Thorough and FetchBrowse) and the use of

the CO or CO+S (CO+Structure) type topics. The latter

type expands the CO topic format with an additional

CAS title field, where structural hints for the CO title can

be expressed. The Focused task asked systems to return a

ranked list of the most focused (specific and exhaustive)

document parts, without returning overlapping ele-

ments. The Thorough task required systems to estimate

the relevance of all XML elements in the searched collec-

tion and return a ranked list of the top 1,500 eleme-

nts. The FetchBrowse task asked systems to return to the

user the most focused, relevant XML elements clustered

by the unit of the document containing the elements.

Put another way, the task was to return documents with

the most focused relevant elements highlighted within

them.

All additional tracks started in 2004 run again in

2005, together with the new Document mining and
Multimedia tracks. The Document mining track fo-

cused on the tasks of classification and clustering by

developing methods that are able to exploit the XML

markup for this purpose [2]. TheMultimedia track was

set up aiming at the evaluation of structured document

retrieval approaches which are able to combine the

relevance of the different media types into a single

(meaningful) ranking that is presented to the user [14].

INEX 2005 obtained additional resources in the

form of additional XML articles from the IEEE Com-

puter Society, increasing the total size of the collection

to 764 MB. In addition, the Multimedia track made

use of an XML version of the Lonely Planet collection.

Other changes to the evaluation framework included

new assessment procedures and newmetrics. The assess-

ment process was simplified to asking assessors to first

highlight relevant passages and then assess the elements

overlapping these passages. As a consequence, the Speci-

ficity dimension could be automatically measured on a

continuous scale [0,1] by calculating the ratio (in char-

acters) of the highlighted text (i.e., relevant information)

and the total length of the element.

To report effectiveness scores, INEX 2005 adopted

the eXtended Cumulated Gain (XCG) measures [5, pp.

16–29], which were developed specifically for graded

(non-binary) relevance values and with the aim to

allow XML IR systems to be credited according to the

retrieved elements’ degree of relevance. Table 4 shows

summary information on INEX 2005.

In 2006, INEX finished with 50 active participating

organizations and expanded to a total of nine tracks:

Ad hoc, Relevance feedback, Heterogeneous collection,

Natural language processing, Interactive, Multimedia,

Document mining, Use case, and Entity ranking

tracks. The Ad hoc track consisted of four subtasks:

Focused, Thorough, Relevant in Context (FetchBrowse

in 2005), and Best in Context tasks. The new Best in

Context task asked systems to return a single best entry

point (BEP) to the user per relevant document. Rather

than dealing with information access to XML elements,

the new Entity ranking track set as its task the retrieval

of a list of entities of specific types (e.g., people, pro-

ducts, artifacts). The Use case track attempted to iden-

tify examples of how XML IR systems can be exploited

by end-users for various purposes [11].

A major change in 2006 was the departure from the

use of the IEEE document collection, which has been

replaced by a collection of XML articles from the

Wikipedia project.

INitiative for the Evaluation of XML Retrieval I 1535
INEX 2006 has also further simplified the assess-

ment procedure by dropping the exhaustivity dimen-

sion of the relevance criteria.
INitiative for the Evaluation of XML Retrieval. Table 4.

Summary information on INEX 2005

INEX 2005

Organizers: Overall: N. Fuhr, M. Lalmas

Topic format: B. Sigurbjörnsson,
A. Trotman

Relevance assessment tool: B. Piwowarski

Metrics: G. Kazai, A.P. de Vries, P. Ogilvie,
B. Piwowarski

Participants: 41 active (47 signed up)

Tracks: Ad hoc retrieval with ten subtasks

Relevance feedback track (Y. Mass,
C. Crouch)

Heterogeneous collection track (R. Larson)

Natural language processing track
(S. Geva, T. Sahama)

Interactive track (B. Larsen, A. Tombros,
S. Malik)

Multimedia track (R. van Zwol, G. Kazai,
M. Lalmas)

Document mining track (L. Denoyer,
A-M. Vercoustre, P. Gallinari)

Ad hoc
tasks:

CO.Focused, CO.Thorough, CO.
FetchBrowse,

COS.Focused, COS.Thorough, and
COS.FetchBrowse,

VVCAS (vague target and vague
containment CAS),

SVCAS (strict target and vague
containment CAS),

VSCAS (vague target and strict
containment CAS), and

SSCAS (strict target and strict
containment CAS)

Document
corpus:

16,819 articles from IEEE Computer
Society, 1995–2004

Totaling 764 MB, and over 11 million XML
elements

Includes an additional 4,712 new articles

Topics: 40 CO+S and 47 CAS topics

Relevance: Exhaustivity (Not, Somewhat, Highly exh.,
Too small),

Specificity (Continuous scale)

Metrics: XCG metrics [6, pp. 16–29]

Proceedings: [6]
A new passage-based recall and precisionwas adopted

to report effectiveness scores for the Relevant in Context

task, while XCGwas employed for the Focused and Thor-

ough tasks [7, pp. 20–34]. Two further measures, BEP-

distance and EPRUM [7, pp. 20–34], provided the perfor-

mance results for the Best in Context task. Table 5 shows

summary information on INEX 2006.
INitiative for the Evaluation of XML Retrieval. Table 5.

Summary information on INEX 2006

INEX 2006

Organizers: Overall: N. Fuhr, M. Lalmas

Wikipedia collection: L. Denoyer,
M. Theobald

Topic format: A. Trotman, B.Larsen

Task description: J. Kamps, C. Clarke

Relevance assessment tool: B. Piwowarski

Metrics: G. Kazai, S. Robertson, P. Ogilvie

Participants: 50 active (68 signed up)

Tracks: Ad hoc retrieval with four subtasks

Relevance feedback track (Y. Mass,
R. Schenkel)

Heterogeneous collection track
(I. Frommholz, R. Larson)

Natural language processing track
(S. Geva, X. Tannier)

Interactive track (B. Larsen, A. Tombros,
S. Malik)

Multimedia track (R. van Zwol,
T. Westerveld)

Document mining track (L. Denoyer,
A-M. Vercoustre, P. Gallinari)

Use case track (A. Trotman, N. Pharo)

Entity ranking track (A.P. de Vries,
N. Craswell)

Ad hoc
tasks:

Focused, Thorough, Relevant in Context,
and

Best in Context

Document
corpus:

659,388 articles of the Wikipedia project,
covering a hierarchy of 113,483
categories, totaling over 60 GB (4.6 GB
without images) and 30 million XML
elements

Topics: 125 CO+S topics

Relevance: Specificity (Continuous scale)

Metrics: XCG metrics [6, pp. 16–29], passage-based
recall and precision,

BEP-distance and EPRUM [7, pp. 20–34]

Proceedings: [7]

I

INitiative for the Evaluation of XML Retrieval. Table 6.

Summary information on INEX 2007

INEX 2007

Organizers: Overall: N. Fuhr, A. Trotman, M. Lalmas

Wikipedia collection: L. Denoyer

Collection exploration: R. Schenkel,
M. Theobald

Topic format: B.Larsen, A. Trotman

Task description: J. Kamps, C. Clarke

Relevance assessment tool: B. Piwowarski

Metrics: G. Kazai, B. Piwowarski, J. Kamps,
J. Pehcevski, S. Robertson, P. Ogilvie

Participants: 100 signed up

Tracks: Ad hoc retrieval with six subtasks

Document mining track (L. Denoyer,
P. Gallinari)

Multimedia track (T. Westerveld,
T. Tsikrika)

Entity ranking track (A.P. de Vries,
N. Craswell, M. Lalmas, J.A. Thom,
A-M. Vercoustre)

Link the Wiki track (S. Geva, A.Trotman)

Book search track (G. Kazai, A. Doucet)

Ad hoc
tasks:

Focused, Relevant in Context, and Best in
Context using either XML element
retrieval or passage retrieval approaches

Document
corpus:

Same as in 2006

Topics: 130 CO+S topics

Relevance: Same as in 2006

Metrics: Passage-based recall and precision,
generalized precision and recall, and
BEP-distance [8, INEX 2007 Evaluation
Measures]

Proceedings: [8]

1536 I INitiative for the Evaluation of XML Retrieval
For INEX 2007, 100 groups registered to partici-

pate. A total of six track were run in 2007: The Ad hoc,

Document mining, Multimedia, and Entity ranking

tracks were continued, and two new tracks were

started: Link the Wiki, and Book search. The Ad hoc

track pitted XML element retrieval approaches against

passage retrieval methods on three tasks: Focused,

Relevant in Context and Best in Context. The Link

the Wiki track aims at evaluating the state of the art

in automated discovery of document hyperlinks. The

Book search track builds on a collection of over 40,000

digitized books, marked up in XML. It aims to investi-

gate book-specific relevance ranking strategies, user

interface issues and user behavior, exploiting special

features, such as back of book indexes provided by

authors, and linking to associated metadata like cata-

logue information from libraries.

There were no changes in the document collection,

which remained theWikipediaXMLcorpus, and the rele-

vance assessment criteria and procedures. The metrics

from 2006 have been refined to allow for the evaluation

of arbitrary passages as retrieval results and a new mea-

sure generalized precision and recall has also been intro-

duced to measure retrieval effectiveness for the Relevant

in Context task [8, INEX 2007 Evaluation Measures].

Table 6 shows summary information on INEX 2007.

INEX 2008 is to set to start in the Spring of 2008.

Key Applications
Evaluation is a key component of any system develop-

ment as it allows to quantify improvement in per-

formance. INEX provides an important resource to

facilitate the evaluation of XML IR systems.

XML IR is a form of semi-structured text retrieval,

which aims to exploit the inherent structure of docu-

ments to improve their retrieval, where the structure is

given by the XML markup.

Some of the issues and proposed solutions within

INEX are applicable to other areas of IR, such as

passage, video and Web retrieval, where there is no

fixed unit of retrieval and where the evaluation needs

to handle overlapping fragments and users’ post query

browsing behavior.

Data Sets
Until 2004, the document collection consisted of

12,107 articles, marked-up in XML, from 12 magazines

and 6 transactions of the IEEE Computer Society’s

publications, covering the period of 1995–2002, and
totaling 494 MB in size, consisting of over eight million

XML elements. On average, an article contains 1,532

XML nodes, where the average depth of the node is 6.9.

In 2005, the collection was extended with further

publications from the IEEE Computer Society. A total

of 4,712 new articles from the period of 2002–2004

were added, giving a total of 16,819 articles, and total-

ing 764 MB in size and over 11 million XML elements.

The overall structure of a typical article in the IEEE

collection consists of a front matter, a body, and a back

matter. The front matter contains an article’s metadata,

such as title, author, publication information, and

Initiator I 1537

I

abstract. The article’s body contains the actual content

of the article. The body is structured into sections, sub-

sections, and sub-subsections. These logical units start

with a section title, followed by a number of para-

graphs. In addition, the content has markup for refer-

ences (citations, tables, figures), item lists, and layout

(such as emphasized and bold faced text), etc. The back

matter contains a bibliography and further informa-

tion about the authors.

INEX 2006 and 2007 switched to a different docu-

ment collection, consisting of 659,388 English articles,

marked-up in XML, from the Wikipedia (http://en.

wikipedia.org) project, totaling over 60 GB (4.6 GB

without images) and 30 million XML elements. The

collection’s structure is similar to that of the IEEE

collection’s. On average, a Wikipedia article contains

161.35 XML nodes, where the average depth of an

element is 6.72.

In addition to these, the different tracks worked

with additional document collections. For example,

the Multimedia track in 2005 made use of an XML

version of the Lonely Planet collection and the Book

Search track in 2007 provided a collection of 42,000

digitized books marked up in XML.

URL to Code
http://inex.is.informatik.uni-duisburg.de/

Cross-references
▶Content-and-Structure Query

▶Content-Only Query

▶ Evaluation Metrics for Structured Text Retrieval

▶Narrowed Extended XPath I

▶ Presenting Structured Text Retrieval Results

▶ Processing Overlaps

▶Relevance

▶ Specificity

▶XML

Recommended Reading
1. Crouch C. Relevance feedback at the INEX 2004 workshop.

SIGIR Forum 39(1):41–42, June 2005.

2. Denoyer L. and Gallinari P. Report on the XML mining track

at INEX 2005 and INEX 2006: categorization and clustering

of XML documents. SIGIR Forum 41(1):79–90, June 2007.

3. Fuhr N., Gövert N., Kazai G., and Lalmas M. (eds.). In Proc. 1st

Workshop of the INitiative for the Evaluation of XML Retrieval,

2002.

4. Fuhr N., Lalmas M., and Malik S. (eds.). Proc 2nd Workshop of

the INitiative for the Evaluation of XML Retrieval, 2003.
5. Fuhr N., Lalmas M., Malik S., and Kazai G. (eds.). Advances in

XML Information Retrieval and Evaluation. In Proc. 4th Int.

Workshop of the Initiative for the Evaluation of XML Retrieval,

2005.

6. Fuhr N., Lalmas M., Malik S., and Szlávik Z. (eds.). Advances in

XML Information Retrieval. In Proc. 3rd Int. Workshop of the

Initiative for the Evaluation of XML Retrieval, 2004.

7. Fuhr N., Lalmas M., and Trotman A. (eds.). Comparative Eval-

uation of XML Information Retrieval Systems, In Proc. 5th Int.

Workshop of the Initiative for the Evaluation of XML Retrieval,

2006.

8. Fuhr N., Lalmas M., Trotman A., and Kamps J. (eds.). Focused

access to XML documents. In Proc. 6th Int. Workshop of the

Initiative for the Evaluation of XML Retrieval, 2007.

9. Geva S. and Sahama T. The NLP task at INEX 2004. SIGIR

Forum 39(1):50–53. June 2005.

10. Gövert N., Fuhr N., Lalmas M., and Kazai G. Evaluating

the effectiveness of content-oriented XML retrieval methods.

Inform. Retri., 9(6):699–722, 2006.

11. Pharo N. and Trotman A. The use case track at INEX 2006.

SIGIR Forum 41(1):64–66, June 2007.

12. Tombros A., Malik S., and Larsen B. Report on the INEX 2004

interactive track. SIGIR Forum 39(1):43–49, June 2005.

13. Trotman A. and Lalmas M. The interpretation of CAS. In Proc.

4th Int. Workshop of the Initiative for the Evaluation of XML

Retrieval, 2006, pp. 58–71.

14. van Zwol R., Kazai G., and Lalmas M. The Multimedia Track at

INEX 2005: Overview, Advances in XML Information Retrieval

and Evaluation. In Proc. 4th Int. Workshop of the Initiative for

the Evaluation of XML Retrieval, 2005.

15. Voorhees E.M. and Harman D.K. TREC: Experiment and Evalu-

ation in Information Retrieval (Digital Libraries and Electronic),

MIT, Cambridge, MA.
Initiator

KALADHAR VORUGANTI

Network Appliance, Sunnyvale, CA, USA

Synonym
SCSI initiator

Definition
In SCSI protocol, the client which requests data is

known as the initiator. The initiator typically resides

on the host server that is accessing the storage. Initia-

tors can also reside in storage virtualization boxes

which can act as both initiators and targets.

Key Points
The SCSI initiator can reside in software or in a hard-

ware adapter card. SCSI protocol provides commands

1538 I In-Memory DBMS
that allow initiators to reserve LUNs and prevent them

from being accessed by other initiators. SCSI initiators

communicate with SCSI targets using SCSI block level

protocol. The block level protocol data is transported

via other transport protocols such as parallel SCSI,

Fiber Channel, Serial SCSI or Infiniband.

Cross-references
▶ Storage Protocols

▶Target
In-Memory DBMS

▶Main Memory DBMS
In-Network Aggregation

▶Query Optimization in Sensor Networks
In-Network Query Processing

SAMUEL MADDEN

Massachussetts Institute of Technology, Cambridge,

MA, USA

Synonyms
Tiny aggregation (TAG); TinyDB

Definition
In-Network query processing refers to the complete or

partial evaluation of database queries at the edges

of a network, rather than in a centralized database

server. Though this phrase may also apply to the

general process of distributed or parallel query eval-

uation, it is most commonly applied to environments

like sensor networks, where the network edges consist

of small, wireless devices with power and CPU con-

straints. Typically these devices produce the data to

be processed via local sensors, so processing in the

edges of the network can be beneficial because it can

reduce bandwidth usage, which in turn can conserve

energy.
Historical Background
Sensor networks are collections of small, inexpensive

battery-powered, wirelessly networked devices equipped

with sensors (microphones, temperature sensors, etc.)

that offer the potential to monitor the world with

unprecedented fidelity. To capture data from these net-

works, researchers have proposed several sensor network

database systems, including TinyDB [11], Cougar [15],

and SwissQM [12] have been proposed. These systems

provide a high level SQL-like query language that allows

users to specify what data they would like to capture

from the network.

The canonical sensor network platform is the

Berkeley Mote hardware running the TinyOS opera-

ting system [8]. Initial versions of the motes used

Atmel 8-bit microprocessors and 40 kbit/s radios;

newer generations, developed by companies like Cross-

bow Technologies (http://www.xbow.com) and Moteiv

Technologies (http://www.moteiv.com) use Zigbee

(802.15.4) radios running at 250 kbits/s and Atmel or

Texas Instruments 8 or 16 bit microprocessors running

at 4–8 MHz. Nodes typically are very memory con-

strained (with 4–10 KB of RAM and 48–128 KB of

non-volatile flash-based program memory.) Most vari-

eties can be interfaced to sensors that can capture a

variety of readings, including light, temperature, hu-

midity, vibration, acceleration, sounds, or images. The

limited processing power and radio bandwidth of these

devices constrains sample rates to at most a few kilo-

samples per second. The dominant power cost of

operating these nodes is often cited as network trans-

missions [9,10]. Table 1 summarizes the major opera-

tions in a sensor network, and illustrates the reason

why communication costs are considered dominant:

the time spent sending messages is huge compared

to the time spent computing or sampling. Therefore,

the total energy consumption is dominated by message

transmissions (in this example, communication cost is

50 times the combined cost to sample a sensor and

evaluate a predicate).

Given these high per-message energy costs, one

primary goal of sensor network database systems is

to reduce message transmissions; in network proces-

sing is key to do this, as explained in the next section.

Foundations
Before describing the various in-network processing

techniques that have been proposed, it is important

In-Network Query Processing. Table 1. Major activities

in a data collection network, with time, power, and energy

for each. Computation is assumed to be one sample, one

message transmission, and one predicate evaluation per

second (with no reception.) The sensor is assumed to be

attached directly to the on-chip ADC. The sensor node is a

MicaZ-class [4] mote with Atmel Atmega 128L

microprocessor at 4 MHz and a TI/ChipCon CC 2420 250

kbps ZigBee radio running at 0 dBm. Predicate evaluation

is assumed to take 400 cycles; sensor sampling is assumed

to take 40 cycles

Activity Time per action Power Energy

Send a message 3 ms 60 mW 180 mJ

Sample a sensor 10 ms 24 mW 0.24 mJ

Evaluate a predicate 100 ms 24 mW 2.4 mJ

Idle 899 ms 45 mW 40 mJ

In-Network Query Processing I 1539

I

to understand the basics of sensor network query lan-

guages and the usage model for the systems.

Network Formation and Communication

Typically, a user deploys one of these systems by plac-

ing a collection of static sensor nodes around an area to

be monitored. These nodes contain a pre-compiled

binary image of the sensor network database, but are

not yet running any queries. When powered up, the

nodes immediately begin to organize themselves into

an ad-hoc network which typically takes the form a

spanning tree rooted at a root node connected to a

basestation. The basestation is usually a more powerful

machine, such as a laptop PC, which issues queries to

nodes and collects, processes, and visualizes query

results.

Tree formation is accomplished by have the base-

station periodically broadcast a beaconmessage. Nodes

that hear this beacon re-broadcast it, indicating that

they are one hop from the basestation. Nodes that

hear those messages in turn re-broadcast them, indi-

cating that they are two hops from the basestation,

and so on. This process of (re)broadcasting beacons

occurs continuously, such that (as long as the network

is connected) all nodes will eventually hear a beacon

message. When a node hears a beacon message, it

chooses a node from which it heard the message to

be its parent, sending messages through that parent

when it needs to transmit data to the basestation. (In
general, parent selection is quite complicated, as a

node may hear beacons from several candidate parents.

Early papers by Woo et al. [14] and DeCouto et al. [5]

provide details.)

Users interact with the system by issuing queries at

the basestation, which in turn broadcasts queries out

into the network. Queries are typically disseminated

via flooding down the routing tree. As nodes receive

the query, they begin processing it. The basic program-

ming model is data-parallel: each node runs the same

query over data that it locally produces or receives

from its neighbors. As nodes produce query results,

they apply in-network processing to reduce query

results, and then send those reduced result up the

routing tree, towards the basestation, which receives

the results and possibly merges them together to form

a final query answer.

Query Language and Data Model

Most sensor network databases systems provide a SQL-

like query interface. For example, the a TinySQL query

(used in TinyDB) that requests the temperature from

every node in a sensor network whose value is greater

than 25∘C once per second would look like:

SELECT nodeid, temperature
FROM sensors
WHERE temperature > 25∘C

SAMPLE PERIOD 1s

This query is essentially standard SQL, with a few small

additions. First, the SAMPLE PERIOD clause requests
that a data reading be produced once every second.
This means that each query produces a continuous
stream of results rather than a single result set. Second,
the nodeid attribute is a unique identifier assigned
to each sensor node and available in every query.
Third, the table sensors is virtual table of sensor

readings. Here, virtual means that it conceptually con-

tains one row for every sensor type (light, temperature,

etc.) from every sensor node at every possible instant,

but all of those rows and columns are not actually

materialized. Instead, only the sensor readings needed

to answer a particular query are actually generated.

Note also that although this table appears to be

a single logical table its rows are actually produced

by different, physically disjoint sensors. This is the key

to in-network processing: when a sensor receives a

query, it begins sampling its sensors at the appropriate

1540 I In-Network Query Processing
rate, applying predicates and aggregating data locally

and forwarding on only those readings that will even-

tually be a part of the final query answer.

It should be clear that selection predicates over a

single attribute of the sensors table can always be eval-

uated locally, inside of the network, before any network

transmission is done. The remainded of this section

discusses techniques that have been developed for

in-network processing for aggregate and join queries.

In-Network Processing of Aggregates

Aggregate queries are particularly common in sensor

networks, since users are often more interested in what

is happening in general geographic regions rather than

at a specific sensor. A common environmental moni-

toring query might ask for the temperature in a build-

ing grouped by room number:

SELECT roomNo, AVG(temp)
FROM sensors
GROUP BY roomNo
SAMPLE PERIOD 1 s

A naive implementation of sensor network aggregation

would be to use a centralized, server-based approach

where all sensor readings are sent to the base station,

which then computes the aggregates. In the TAG sys-

tem [10], however, the authors proposed computing

aggregates in-network, and showed that this approach

requires fewer message transmissions, is lower latency,

and uses less power than the server-based approach.

Consider first the case of an aggregation query

without group. Once the query has been disseminated

into the network, the TAG data processing phase

begins. In this phase, aggregate values are continually

routed up from children to parents. The goal of the

TAG algorithm is to produce a single aggregate value

(or a single value per group) that combines the readings

of all devices in the network once per sample period.

The basic insight of the TAG protocol is that it is

possible to partially aggregate sensor values together at

intermediate points inside the network. TAG accom-

plishes this by having each parent node collect readings

from its children before doing its own transmission.

Rather than simply forwarding all of the raw data, each

parent node combines its data with data from its chil-

dren to produce a compact partial state record (PSR).

For example, suppose the user wants to compute the

average temperature in the network. In TAG, the PSR

representation for an average is a <sum, count> pair.
Each node transmits exactly one PSR per sample peri-

od. Suppose a node receives a set P of n PSRs from its

children, such that P = p1,...,pn. If the node has the local

sensor value v; then it can compute its own partial state

record as:

sum ¼ v þ
Xn
i¼1

pi � sum

count ¼ nþ 1

By this definition, if a node has no children, it trans-

mits the PSR <v, 1>. Finally, at the root of the net-

work, the final average can be computed from

the root’s PSR as PSR.sum ∕PSR.count. To support the

addition of new aggregation functions to the system,

TAG includes a facility that allows programmers to

define functions that initialize, merge, and compute

the final value of partial state records for different

aggregation functions.

Clearly, this technique reduces both the number of

messages and total number of bytes that must be sent in

networks of even modest size, as a parent with k nodes

below it must transmit k readings without the TAG

technique but only two values with the TAG approach.

For tag TAG-like protocols to work, nodes must

nodes wait to receive readings from children. TAG

does this by sub-dividing each sample period up into

a series of time intervals corresponding to transmission

slots, and assign nodes deeper in the routing tree to an

earlier interval. This approach will work as long as

sample periods are relatively long (on the order of half

a second or so for Mica motes) and as long as it is

possible to time synchronize nodes (using a technique

like RBS [6]). The TinyDB system demonstrated a

proof-of-concept implementation of this technique.

Figure 1 illustrates this in-network aggregation

scheme for a simple COUNT query that reports the
number of nodes in the network. In the figure, time
advances from left to right, and different nodes in the
communication topology are shown along the Y axis.
Nodes transmit during the interval corresponding to
their depth in the tree, so H, I, and J transmit first,
during interval 4, because they are at level 4. Transmis-
sions are indicated by arrows from sender to receiver,
and the numbers in circles on the arrows represent
COUNTs contained within each partial state record
(which consists simply of a running count.) Readings
from these three sensors are combined, by summing the
running counts in the PSRs, at nodes G and F, both of

In-Network Query Processing. Figure 1. Partial state records flowing up the tree during and interval-based aggregation

approach.

In-Network Query Processing I 1541

I

which transmit new partial state records during interval
3. Readings flow up the tree in this manner until they
reach node A, which then computes the final count of
10. Notice that motes are idle for a significant portion of
each sample period, during which time they can enter a
low power sleeping state.

Supporting grouping in this setting can be done

simply by tagging each partial state record with a group

number (which can be derived by local evaluation of the

groupingpredicate ateachsensor), andthentreatingeach

groupasa separateaggregationoperationthat is indepen-

dentlymerged and forwarded through thenetwork.

For queries involving a HAVING clause, the

TAG system proposes several optimizations for early

in-network rejection of aggregates that do not satisfy

the clause. The main observation is that in MIN/MAX

queries it may be possible to determine that a
particular group will definitely not satisfy the HAVING

clause before the group reaches the root of the

network.

Classes of Aggregates

One observation is that some aggregates will show

more or less benefit from the TAG in-network proces-

sing techniques. In particular, if the partial state record

is very compact (as in a COUNTor AVERAGE) query,

there is a tremendous win to in-network aggregation.

However, for aggregate functions that require access to

all or most of the sensor readings before that final

aggregate can be computed, the benefit is much less.

For example, computing the exact median of a collec-

tion of readings requires all of the readings to be

present. Hence, the TAG implementation of median

offers no reduction in data transmission over a naive,

1542 I In-Network Query Processing
centralized approach. (Greenwald and Khanna [7]

propose techniques for approximate and efficient com-

putation of order statistics like medians in sensor

networks.)

There are other important semantic properties of

aggregates. One that is of particular interest relates to

the sensitivity of the aggregation function to dupli-

cates. Some functions, like MAX and MIN, are insen-

sitive to duplicates: even if a particular reading is

merged together with a partial state record many

times, the final value of the aggregate will not be

affected. Other aggregates, like SUM, COUNT, and

AVERAGE are obviously sensitive to duplicates. The

TAG system exploits this property by using a directed

acyclic graph that terminates at the network root rath-

er than a simple spanning tree when computing dupli-

cate insensitive aggregates. This substantially improves

the reliability of the algorithms (using little additional

energy since radios generally operate in a broadcast

mode that allows multiple receivers to hear a message

at no additional cost). Several researchers [3,13] have

proposed methods that accurately approximate the

value of duplicate sensitive aggregates using a dupli-

cate insensitive synopsis data structure, allowing the

same DAG-based network topologies to be used with a

broader range of aggregates.

In-Network Processing of Joins

There have been several join algorithms proposed for

specific classes of join queries in sensor networks.

Bonfils and Bonnet [2] view joins as a way to

correlate or compare data between several sensors in

a network. They propose a setting in which two sensors

each produce a data stream, and the user wishes to

apply a temporal join operation over these streams that

combines readings from approximately the same time

together when a predicate is satisfied. Clearly, such an

operation can be done at the root of the network. They

observe, however, that it can also be done at the root of

any subtree in the network that has both producer

nodes as a subchild. If the join is data-reducing (e.g.,

it filters out some readings or produces tuples that are

smaller than the combined size of the tuples from both

producers) then this should result in an overall reduc-

tion in network bandwidth. Rather than trying to

compute the best location for such operators centrally

(using global network topology information), they

propose a distributed algorithm where the join opera-

tor slowly moves towards the nodes, tending to move
closer to the node that is producing a larger fraction of

the join data, since that will result in the greatest

overall reduction in network bandwidth.

Abadi and Madden [1] propose a method called

REED for in-network execution of joins that involve a

static table of data from outside of the sensor network

with a stream of sensor data. Such situations arise, for

example, where there is a table of thresholds that

dictate what data should be sent out of the network

at different times of the day. The observation here is

that if the table is static and the join is cardinality

reducing, then paying the cost of disseminating the

table once will save energy in the long run. When

there is sufficient memory on each of the nodes to

store the complete table, such joins can be evaluated

purely locally at each node. The REED system proposes

several techniques that can be used to execute queries

in-network when the static table exceeds the memory

available on any one node. The most effective techni-

ques involve sending just a portion of the table to each

node (e.g., the thresholds for 8 A.M. to 8 P.M.) and then

sending the raw data out of the network when the

needed portion is unavailable (e.g., when it is between

8 P.M. and 8 A.M.)
Key Applications
In-network processing of queries can be used in any

setting where declarative queries over sensor networks

are needed. In network processing techniques make

selection, join, and aggregation queries substantially

cheaper to run – often saving an order of magnitude

in totally energy cost to process a given query. These

savings mean that sensor network deployments can last

longer, or provide higher sample rates for the same

longevity when compared to solutions that do not use

in-network processing.
Cross-references
▶Database Languages for Sensor Networks

▶Distributed Query Processing

▶ Partial Pre-aggregation

Recommended Reading
1. Abadi D. and Madden S. Reed: Robust, Efficient Filtering and

Event Detection in Sensor Networks. In Proc. 31st Int. Conf. on

Very Large Data Bases, 2005, pp. 769–780.

2. Bonfils B. and Bonnet P. Adaptive and Decentralized Operator

Placement for In-network Query Processing. In Proc. 2nd Int.

Workshop Inf. Proc. in Sensor Networks, 2003, pp. 47–62.

Integrated DB&IR Semi-Structured Text Retrieval I 1543

I

3. Considine J., Li F., Kollios G., and Byers J. Approximate

Aggregation Techniques for Sensor Databases. In Proc. 20th

Int. Conf. on Data Engineering, 2004, pp. 449–460.

4. Crossbow, Inc.Micaz wireless sensor node data sheet. http://www.

xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Da

tasheet.pdf.

5. De Couto D.S.J., Aguayo D., Bicket J., and Morris R. A High-

Throughput Path Metric for Multi-hop Wireless Routing. In

Proc. 9th Annual Int. Conf. on Mobile Computing and Net-

working, 2003, pp. 134–146.

6. Elson J. and Estrin D. Time Synchronization for Wireless Sensor

Networks. In Proc. 15th Int. Parallel & Distributed Processing

Symp., 2001, pp. 1965–1970.

7. Greenwald M.B. and Khanna S. Power-Conserving Computa-

tion of Order-Statistics Over Sensor Networks. In Proc. 23rd

ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Data-

base Systems, 2004, pp. 275–285.

8. Hill J., Szewczyk R., Woo A., Hollar S., Culler D., and Pister K.

System Architecture Directions for Networked Sensors. In Proc.

9th Int. Conf. on Architectural Support for Programming Lan-

guages and Operating Systems, 2000, pp. 93–104.

9. Madden S. The Design and Evaluation of a Query

Processing Architecture for Sensor Networks. PhD thesis, UC

Berkeley, 2003.

10. Madden S., Franklin M.J., Hellerstein J.M., and Hong W. TAG:

A Tiny AGgregation Service for Ad-Hoc Sensor Networks. In

Proc. 5th USENIX Symp. on Operating System Design and

Implementation, 2002.

11. Madden S., Hong W., Hellerstein J.M., and Franklin M. TinyDB

web page. http://telegraph.cs.berkeley.edu/tinydb.

12. Müller R., Alonso G., and Kossmann D. SwissQM: Next Gener-

ation Data Processing in Sensor Networks. In Proc. 3rd Biennial

Conf. on Innovative Data Systems Research, 2007, pp. 1–9.

13. Nath S. and Gibbons P.B. Synopsis Diffusion for Robust

Aggregation in Sensor Networks. In Proc. 2nd Int. Conf. on

Embedded Networked Sensor Systems, 2004, pp. 250–262.

14. Woo A., Tong T., and Culler D. Taming the Underlying

Challenges of Reliable Multihop Routing in Sensor Networks.

In Proc. 1st Int. Conf. on Embedded Networked Sensor Systems,

2003, pp. 14–27.

15. Yao Y. and Gehrke J. Query Processing in Sensor Networks. In

Proc. 1st Biennial Conf. on Innovative Data Systems Research,

2003.
Instance Identification

▶Record Matching
Instance-Completeness

▶BP-Completeness
Instant

▶Chronon
Instant Relation

▶ Event in Temporal Databases
Instruction Cache

▶ Processor Cache
Integrated DB&IR Semi-Structured
Text Retrieval

RALF SCHENKEL
1, MARTIN THEOBALD

2

1Max-Planck Institute for Informatics, Saarbrücken,

Germany
2Stanford University, Stanford, CA, USA

Synonyms
Using efficient database technology (DB) for effective

information retrieval (IR) of semi-structured text
Definition
Integrated DB&IR semi-structured text retrieval com-

bines IR-style scoring and ranking methods for effec-

tive search with indexing techniques and processing

algorithms from the database world for efficient

query evaluation.
Historical Background
Database research has traditionally focused on semi-

structured documents that represent structured data

with a well-defined schema and only little unstruc-

tured, textual content (aka. ‘‘data-centric’’ XML). Typ-

ical examples for such documents are invoices,

purchase orders, or even complete bibliographies.

Early work in the field concentrated on ‘‘classical’’

data management problems for XML: storing XML

data in relational or native XML systems, defining

1544 I Integrated DB&IR Semi-Structured Text Retrieval
query languages that integrate conditions on the struc-

ture and the content of results (like SQL for relational

data), efficiently processing these queries on huge col-

lections of documents, and auxiliary structures (like

structural summaries and path indexes) to support

processing. The focus of this work was on space and

runtime efficiency.
Foundations
When semi-structured data formats, especially XML,

became popular for storing and exchanging information

throughout the 1990s, an abundance of different

schemas for such data was developed independently.

This created a challenge for existing database query

languages like the Structured Query Language (SQL),

focusing on exactly matching conditions on the content

and structure of results. Now, similar structured and

textual information was present in different, heteroge-

neous formats and schemas, which was often the case

when information from different sources was integrated

in a single application. In reaction to this, the strict, SQL-

style querying paradigm prevalent at that time evolved

towards amore relaxed IR-style vague searchwith partial

and imprecise answers. This created threemain scientific

problems at the intersection of the DB and IR fields: (i)

the definition of query languages to specify vague con-

straints on the structure and/or the content of results,

(ii) the definition of relevance scores to rank results by

their degree of matching with the query, and (iii) effi-

cient algorithms and auxiliary structures to quickly com-

pute the best results to a vague query, according to the

relevance score. Solutions to these problems were devel-

oped mainly with data-centric documents in mind, and

with a strong focus on query languages and algorithms

(thus addressing problems i and iii).

One of the first systems to retrieve semi-structured

data using a relaxed query language was the Lore [1]

system developed at Stanford University. Its object-ori-

ented,OQL-style, query language, coinedLorel, provided

regular path expressions and tag wildcards to express

structural vagueness, as well as keyword conditions over

the content of subtrees matching the path condition.

However, it was still more of a database query language

as it did not yet foresee any ranking for the results.
Querying Semi-Structured Data with IR Support

A large body of proposals have been made for query

languages over semi-structured data that support
IR-style vague conditions on structure and content.

The simplest of them merely aim to extend keyword

search as known from text retrieval to semi-structured

data by enhancing the keyword conditions with tag

names of elements that should be matched (like in

the query ‘‘author:widom’’ which restricts occur-

rences of the keyword ‘‘widom’’ to elements with tag

name ‘‘author’’). Matches to such a query are subtrees

of the document that contain matches to all (for con-

junctive evaluation) or at least one (for disjunctive

evaluation) keyword. An important aspect here is the

selection of subtrees of the right granularity, as large

subtrees (such as the complete document) would often

not be specific enough. The proposed solutions usually

consider some variant of lowest common ancestor

(LCA) search to identify suitable root nodes of the result

trees, sometimes allowing for additional path conditions

from elements containing the keywords towards the

root element. Hardly any of the early proposed systems

consider ranking of results; instead, they focus on effi-

cient methods to retrieve all possible matches. Note

that these techniques were primarily developed for

data-centric XML (such as bibliographies) and cannot

easily be applied for true full-text search over semi-

structured documents.

Among the most prominent approaches for

keyword-based ranked retrieval of XML data is

XRank [7]. It generalizes traditional link analysis algo-

rithms such as PageRank for authority ranking of

linked XML collections and conceptually treats each

XML element as an interlinked node in a large element

graph. Then the element rank of an XML element

corresponds to the PageRank value computed over a

mixture of containment edges, obtained from the XML

tree structure, and hyperlink edges, obtained from the

inter-document link structure.

Full-fledged XML query languages with rich IR

models for ranked retrieval were proposed by [6,13].

XIRQL [6], a pioneer in the area of ranked XML

retrieval, presents a path algebra based on XQL, an

early ancestor of W3C’s XQuery, for processing and

optimizing structured queries. It combines Boolean

query operators with probabilistically derived weights

for ranked result output, thus transferring the proba-

bilistic IR paradigm to the XML case. It defines data-

type-specific vague predicates for similarity search over

differently typed XML elements such as person names

or numbers, and it introduces a notion of index objects

that serve as anchors from which the probabilistic

Integrated DB&IR Semi-Structured Text Retrieval I 1545

I

weights are derived (in the classic IR notion of a

document). Using index objects follows the idea that

only nodes of specific type and granularity in the

document hierarchy should be presented as results to

the end-user. Defining these index objects, however,

may be strongly schema-dependent and assumes sub-

stantial knowledge about the general document struc-

ture and user intent, which typically requires their

manual pre-selection from a – preferably compact –

document type definition (DTD).

The XXL search engine [13] specifies a full-fledged,

SQL-oriented query language for ranked XML IR with

a high semantic expressiveness that made it stand way

apart from the predominant XQL and XPath language

standards at its time. For ranked result output, XXL

leverages both a standard IR vector space model and an

ontology-oriented similarity search for the dynamic

relaxation of structure and term conditions. The prin-

cipal structure of the query, however, is evaluated in a

strictly Boolean manner.

More recently, various groups from both the DB

and IR fields have started adding IR-style keyword

conditions and full-text search to existing XML query

languages. The NEXI (for Narrowed Extended XPath I)

query language used in the INEX (INitiative for the

Evaluation of XML Retrieval (INEX), see http://inex.is.

informatik.uni-duisburg.de) benchmark series aims at

a simplified and easy-to-comprehend subset of XPath,

the W3C standard language for path matches within a

document, with extended IR functionality. Here the

about operator already anticipates the role of the

ftcontains operator in the later W3C Full-Text

extensions of XPath 2.0 and XQuery 1.0. TeXQuery

[2], on the other hand, has been the foundation

for the W3C’s official Full-Text extension to XPath

and XQuery, which extends these languages with the

option to express actual full-text queries over XML

documents. It provides many retrieval options known

from text retrieval, such as phrases, weighting terms,

and expanding terms using ontologies, but leaves

details of the scoring model used to rank results up

to the implementation.

Pioneering work in the area of vague structural

matches was done by [3,11] (and refined later by

[4]), who proposed relaxing queries with structural

constraints to find matches in structurally similar, but

not exactly matching documents. The FlexPath [4]

algorithm integrates structure and keyword queries

and regards the query structure as templates for the
context of a full-text keyword search. The query struc-

ture (as well as the content conditions) can be dyna-

mically relaxed for ranked result output according to

predefined tree editing operations when matched

against the structure of the XML input documents.

Query Processing for Semi-Structured Text Retrieval

Efficient evaluation and ranking of conditions on con-

tent and structure of semi-structured data has been a

very fruitful and popular research area in recent years.

The majority of the proposed algorithms for efficient

query evaluation combine some form of precomputed

auxiliary indexes (like inverted files) with top-k aware

processing algorithms, most notably Fagin’s family of

threshold algorithms (TA), which provide threshold-

based candidate pruning and early termination.

XRank uses inverted lists containing – for each

term – the elements that contain the term, sorted in

descending order of element rank, along with a thresh-

old algorithm for pruning the search space. The Flex-

Path query processor uses separate index structures for

storing and retrieving the structure- and content-

related conditions of a path query. The Whirlpool

system introduced by Marian et al. [10] provides a

flexible architecture for processing top-k queries on

XML documents adaptively. Whirlpool allows partial

matches to the same query to follow different execu-

tion plans, and takes advantage of the top-k query

model to make dynamic choices during query proces-

sing. The key features of Whirlpool are: (i) a partial

match that is highly likely to end up in the top-k set is

processed in a prioritized manner, and (ii) a partial

match unlikely to be in the top-k set follows the cheap-

est plan that enables its early pruning. Whirlpool pro-

vides several adaptivity policies and also supports

parallel evaluations.

TopX [12], the actual successor of XXL, focuses on

a small, XPath-like subset of the XXL query language

which allows for a radically different query processing

architecture that outperforms XXL in terms of effici-

ency by a large margin. As a native top-k engine for

XML, TopX also uses sorted index lists, but keeps a

candidate queue in-memory and therefore is able to

focus on sequential disk access and on minimizing

random disk access through sophisticated index struc-

tures and judiciously scheduled index access decisions.

A large effort has been made on mapping XML to

relational schemas with highly specialized index struc-

tures for efficient support of approximate query

1546 I Integration of Rules and Ontologies
processing, including support for IR-style retrieval

functionality. PF/Tijah [8], which is now a part of

MonetDB/XQuery, is an example for such an XQuery

engine.

Support for XML-IR in Commercial Database Systems

Meanwhile, all commercially available databases with

XML support, relational or native, provide some sup-

port for IR-style content search in combination to

structural queries. As the full-text extensions of

XPath and XQuery have not yet been finalized, systems

typically come with their own extensions of their query

language that are incompatible with – and sometimes

less powerful than – the W3C proposals. Frequently,

existing text search components are extended for XML

support and provide the standard text search features

(like phrase search, proximity conditions, stemming,

etc.) for searching XML elements, usually with some

scoring function to rank results.

Key Applications
The techniques presented before can be applied for

efficiently retrieving information from large, possibly

heterogeneous collections of semi-structured data. This

includes more data-centric collections like bibliogra-

phies, collections of textual documents (like abstracts

or full-text of publications or books), heterogeneous

data exported from different sources, and eventually

documents on the Web.
Cross-references
▶XML Data Management:XML prototypes/systems

▶XML Indexing

▶Top-k XML Query Processing

▶XQuery Full-Text
Recommended Reading
1. Abiteboul S., Quass D., McHugh J., Widom J., and Wiener J.L.

The Lorel Query Language for Semistructured Data. Int.

J. Digital Libraries, 1(1):68–88, 1997.

2. Amer-Yahia S., Botev C., and Shanmugasundaram J. TeXQuery:

a full-text search extension to XQuery. In Proc. 12th Int. World

Wide Web Conference, 2004, pp. 583–594.

3. Amer-Yahia S., Cho S., and Srivastava D. Tree Pattern Relaxa-

tion. In Advances in Database Technology, Proc. 8th Int. Conf.

on Extending Database Technology, 2002, pp. 496–513.

4. Amer-Yahia S., Lakshmanan L.V.S., and Pandit S. FleXPath:

Flexible Structure and Full-Text Querying for XML. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2004,

pp. 83–94.
5. Cohen S., Mamou J., Kanza Y., and Sagiv Y. XSEarch: A Semantic

Search Engine for XML. In Proc. 29th Int. Conf. on Very Large

Data Bases, 2003, pp. 45–56.

6. Fuhr N. and Großjohann K. XIRQL: A Query Language for

Information Retrieval in XML Documents. In Proc. 24th Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 2001, pp. 172–180.

7. Guo L., Shao F., Botev C., and Shanmugasundaram J. XRANK:

Ranked Keyword Search over XML Documents. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2003, pp. 16–27.

8. Hiemstra D., Rode H., Van Os R., and Flokstra J. PF/Tijah: text

search in an XML database system. In Proc. 2nd International

Workshop on Open Source Information Retrieval, 2006.

9. Hristidis V., Papakonstantinou Y., and Balmin A. Keyword

Proximity Search on XML Graphs. In Proc. 19th Int. Conf. on

Data Engineering, 2003, pp. 367–378.

10. Marian A., Amer-Yahia S., Koudas N., and Srivastava D. Adap-

tive Processing of Top-kQueries in XML. In Proc. 21st Int. Conf.

on Data Engineering, 2005, pp. 162–173.

11. Schlieder T. and Meuss H. Querying and ranking XML docu-

ments. J. American. Soc. for Inf. Sci. & Tech. 53(6):489–503,

2002.

12. Theobald M., Bast H., Majumdar D., Schenkel R., and Weikum

G. TopX: efficient and versatile top-k query processing for

semistructured data. VLDB J., 17(1):81–115, 2008.

13. Theobald A. andWeikum G. Adding Relevance to XML. In Proc.

3rd Int. Workshop on theWorldWideWeb and Databases, 2000,

pp. 105–124.

14. Xu Y. and Papakonstantinou Y. Efficient Keyword Search for

Smallest LCAs in XML Databases, In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2005, pp. 537–538.
Integration of Rules and Ontologies

JAN MAŁUSZYŃSKI

Linköping University, Linköping, Sweden

Definition
The layered structure of the Semantic Web (see http://

www.w3.org/2007/03/layerCake.png) adopted by the

World Wide Web Consortium W3C includes, among

others, the Ontology layer with the web ontology lan-

guage OWL and the rule layer with the emerging Rule

Interchange Format (RIF) http://www.w3.org/TR/rif-

fld/ which allows rules to be translated between rule

languages. The integration of rules and ontologies aims

at developing techniques for interoperability between

rules and ontologies in the Semantic Web. This is neces-

sary for rule-based applications to access existing do-

main ontologies. In most of the proposals the

integration is achieved by defining and implementing a

Integration of Rules and Ontologies I 1547

I

new language which is a common extension of a given

rule language and a given ontology language, enhancing

the expressive power of each of the components. Alter-

natively, the integration of rules and ontologies may be

achieved by designing from scratch one language suffi-

ciently expressive to define both rules and ontologies as

well as their combinations.

Historical Background
In the initial phase of the Semantic Web research a

significant effort was devoted to defining a language

for ontology modeling. In 2004, it resulted in OWL, a

family of three ontology languages OWL Lite, OWL DL,

and OWL Full, based on Description Logics(DL). Each

of them is a subset of the next one. The first two

are syntactic variants of expressive description logics

with semantics given by translation to formulae of

first-order logic with equality. OWL DL (hence also its

subsets) is supported by several reasoners. The original

intention was to define OWL as a layer on top of RDF

Schema which itself can be seen as ontology language.

OWL Full, designed to achieve this goal, has a non-

standard semantics and is difficult to implement. On

the other hand, OWL DL includes a substantial subset

of RDF Schema, which is extensively used in ontology

definitions.

The importance of rules for web applications is

reflected by the rule layer in the Semantic Web archi-

tecture. The rules formalisms considered for this layer

offer modeling primitives not expressible in OWL.

Their integration with OWL would thus enhance the

expressive power of the latter.

In contrast to the ontology layer, no standard has

been proposed yet for the rule layer. The rule languages

proposed for the Semantic Web originate mainly from

logic programming (see e.g., [18]). In contrast to OWL

DL, they usually adopt the closed world assumption.

This means that if a fact cannot be derived from a

knowledge base it is concluded to be false. In logic

programming, the closed world assumption is imple-

mented by the negation-as-failure rule which returns

¬p on failure to prove a fact p. This is an example of

non-monotonic reasoning, not allowed in FOL.

Designing rules languages for the Semantic Web is

among the objectives of the RuleML initiative (http://

www.ruleml.org/). The W3C RIF Working Group

is developing a core rule language as a basis for rule

interchange (for more details see http://www.w3.org/

2005/rules/wiki/RIF_Working_Group).
Foundations

Shortcomings of OWL

The following examples show why OWL is not sufficient

for some applications and motivate its extensions.

OWL Ontologies include classes (e.g., Person, Woman,

Man) which are unary predicates and properties (e.g.,

ParentOf, SisterOf) which are binary predicates, but

predicates of arity larger than two are not allowed.

In OWL it is not possible to formalize the statement

‘‘an aunt of a person is a sister of a parent of that

person.’’ Also, the semantics of OWL does not allow

to conclude that Mary is not a sister of John if the

assertion SisterOf(john,mary) is not a logical conse-

quence of the ontology. This kind of reasoning based

on closed world assumption is useful in some applica-

tions. Most of the rule languages proposed for the

Semantic Web do not share these shortcomings.

Rule Languages for Integration

The rule languages considered in integration proposals

are usually extensions of Datalog. Generally rules have

a form of ‘‘if ’’ statements, where the predecessor, called

the body of the rule, is a Boolean condition and the

successor, called the head, specifies a conclusion to be

drawn if the condition is satisfied.

In Datalog the condition of a rule is a conjunction of

zero or more atomic formulae of the form p(t1,...,tn)

where p is an n-ary predicate symbol and t1,...,tn are

constant symbols or variables. Hence they are a restrict-

ed kind of FOL terms (see First order logic: syntax).

The head of a rule is an atomic formula (atom). For

example, the rule

auntOf ðX ;Y Þ parentOf ðZ ;Y Þ; sisterOf ðX ;ZÞ

states that X is an aunt of Y if Z is a parent of Yand X is

this parent’s sister. The semantics of Datalog associates

with every set of rules (rulebase) its least Herbrand

model (see e.g., [18]), where each ground (i.e., vari-

able-free) atom is associated with a truth value true

or false. The least Herbrand model is represented as the

set of all atoms assigned to true. These are all the

ground atoms which follow from the rules interpreted

as implications in FOL. For example, the least

Herbrand model of the rulebase consisting of the

rule above and of the facts parentOf (tom, john), sister

Of (mary, tom) includes the formula auntOf (mary,

john). On the other hand, auntOf (mary, tom) does

not follow in this rulebase. Hence the closed world

1548 I Integration of Rules and Ontologies
assumption, used in Datalog, will result in the conclu-

sion ¬auntOf(mary, tom). Datalog rulebases constitute

a subclass of logic programs. The latter use FOL terms,

not necessarily restricted to constants and variables.

Proposals for the integration of rules and ontologies

are mostly based on the following extensions of Data-

log (which apply also to logic programs):

� Datalog with negation, where the body may addi-

tionally include negation-as-failure (NAF) literals of

the form not awhere a is an atom. Intuitively a NAF

literal not a is considered true if it does not follow

from the program that a is true. For example,

happy(john) can be concluded from the rulebase:
happy(X) ← healthy(X), not hungry(X)

healthy(john) ←

Two commonly accepted formalizations of this

intuition are: the well-founded semantics and the

stable model semantics (see the survey [2]). The

well-founded semantics [22] associates with a rule-

base a unique (three-valued)Herbrandmodel, where

each ground atom is assigned one of three logical

values true, false or unknown. The stable model

semantics [9] (called also the answer set semantics)

associates with each rulebase some (possibly zero)

two-valued Herbrand models. For a large class of

programs relevant in practice (so called stratified

programs, see e.g., [2]) both semantics coincide.

� Extended Datalog. This extension (see e.g., extended

logic programs in [2]) makes it possible to state

explicitly negative knowledge. This is achieved by

allowing negative literals of the form ¬p, where ¬ is

called the strong negation connective, in the heads of

rules as well as in the bodies. For example, the rule
¬healthy (X) ← hasFever(X)

allows to draw an explicit negative conclusion. In

addition, NAF literals are also allowed in the

bodies.

� Rulebases with priorities. Datalog rulebases employ-

ing strong negation may be inconsistent, i.e., may

allow to draw contradictory conclusions. For exam-

ple, the rules
fly(X) ← bird (X)

bird(Y) ← penguin(Y)

⌐fly(X) ← penguin(X)

penguin(tweety) ←
allow to conclude fly(tweety) and ⌐fly(tweety). In
Defeasible Logic [19] and in Courteous Logic Pro-

grams [10] a priority relation on rules can be spe-

cified for a rulebase. The contradictions in the

derived conclusions are then resolved by means of

the defined priorities.

� Disjunctive Datalog [5] (see also disjunctive logic

programs in [2]) admits disjunction of atoms in

the rule heads, and conjunction of atoms and

NAF literals in the bodies, e.g.,
male(X) ∨ female(X) ← person(X).

A commonly used semantics of Disjunctive Data-

log rulebases is an extension of the answer set

semantics.

The rule languages are supported by implemen-

tations which make it possible to query and/or to

construct the models of rulebases.

Approaches to Integration

The integration of a given rule language with a given

ontology language is usually achieved by defining a

common extension of both, to be called the integrated

language. Alternatively, one can adopt an existing

knowledge representation language expressive enough

to represent rules and ontologies. As OWL is a stan-

dard ontology language the ontology languages con-

sidered in integration proposals are usually its subsets.

The approaches can be classified by the degree of the

integration of rules and ontologies achieved in the

integrated language.

� Homogeneous Integration. The integrated language

makes no distinction between the rule predicates

and the ontology predicates. It includes the original

rule language and the original ontology language

as sublanguages. The integration is to be faithful

in the sense that the sublanguages should have

the same semantics as the respective original lan-

guages. The homogeneous integration is difficult to

achieve since ontology languages are usually based

on FOL and rule languages have different kind of

semantics. Examples of the homogeneous integra-

tion include:
– DLP (Description Logic Programs) [12], which

is a language obtained by intersection of a

Description Logic with Datalog rules inter-

preted as FOL implications. DLP has a limited

Integration of Rules and Ontologies I 1549

I

expressive power, but a DLP ontology can be

compiled into rules and easily integrated into

a rulebase of a more expressive rule language.

For example Sweet Rules http://sweetrules.

projects.semwebcentral.org/ combine DLP and

Datalog with strong negation and priorities.

The technique of compiling ontologies to rules

is also used in DR-Prolog [1] based on Defeasi-

ble Logic.

– F-logic, extending classical predicate calculus

with the concepts of objects, classes, and types.

It is expressive enough to represent ontologies,

rules and their combinations [13].

– SWRL (SemanticWeb Rule Language) http://www.

w3.org/Submission/SWRL/, extending OWL DL

with rules interpreted as FOL implications. Thus,

SWRL is based on FOL and does not offer non-

monotonic features, such as negation-as-failure.

A so-called DL-safe subset [17] of SWRL is

supported by KAON2 system http://kaon2.

semanticweb.org which also offers a support for

a restricted subset of F-logic.

– Hybrid MKNF Knowledge Bases [16], taking a

modal logic as a basis of faithful integration

of Description Logic with Disjunctive Datalog

under the answer set semantics. A variant of

this approach considering nondisjunctive hybrid

MKNF knowledge bases under well-founded

semantics is presented in [14].

– Quantified Equilibrium Logic, considered in [3]

as a unified framework which embraces classical

logic as well as disjunctive logic programs, thus

providing a foundation for the integration of

rules and ontologies.
� Heterogeneous Integration. In this approach, the

distinction between the rule predicates and the

ontology predicates is preserved in the integrated

language. The integration of rules and ontologies is

achieved by allowing the ontology predicates in the

rules of the integrated language. Assume, for exam-

ple, that an ontology classifies courses as project

courses and lecture courses.

Project t Lecture ¼ Course

It also includes assertions like Lecture(cs05), Project

(cs21) or Course(cs32) (e.g., for courses including lec-

tures and projects). The assertions indicate offered

courses. A person is considered a student if he/she is
enrolled in an offered lecture or project. This can be

expressed by the following rules, using the ontology

predicates

student(X) ← enrolled(X,Y), Lecture(Y)

student(X) ← enrolled(X,Y), Project(Y)

In addition the rulebase includes enrollment facts, e.g.,

enrolled(joe, cs32). The extended language allows thus

to define ontologies using the constructs of the onto-

logy language and the rulebases with rules referring

to the ontologies. An extended rulebase together with

an ontology is called a hybrid knowledge base. In

the heterogeneous approaches implementations are

often based on hybrid reasoning principle, where a rea-

soner of the ontology language is interfaced with a

reasoner of the rule language to reason in the integrated

language.

Two kinds of heterogeneous approaches can be

distinguished:

1. Loose coupling. In this approach the semantics of

hybrid knowledge bases is based on a transformation

which eliminates ontology queries from ground ex-

tended rules by querying the underlying ontology. A

ground set of extended rules is thus reduced to a set

of rules without ontology predicates in the following

way. If the answer to a ground ontology query in a

rule body is positive, the query is removed from the

rule, otherwise the rule is removed from the set. The

loose coupling approach applied to the example

above does not allow to conclude that Joe is a stu-

dent. This is because neither Lecture(cs32) nor Pro-

ject (cs32) can be derived from the ontology.

Examples of loose coupling include:

– dl-programs [6], combining (disjunctive) Data-

log with negation under the answer set semantics

with OWL DL. So called DL-queries, querying

the ontology, are allowed in rule bodies. They

may also refer to a variant of the ontology,

where the set of its assertions is modified by the

DL-query. This enables bi-directional flow of in-

formation between rules and ontologies. A vari-

ant of the language based on the well-founded

semantics is presented in [7].

– TRIPLE [21], a rule language with the syntax

inspired by F-logic. It admits queries to the

ontology in rule bodies.

– SWI Prolog http://www.swi-prolog.org/, a logic

programming systemwith a SemanticWeb library

1550 I Integration of Rules and Ontologies
which makes it possible to invoke RDF Schema

and OWL reasoners from Prolog programs.

2. Tight integration. In this approach the semantics

of hybrid knowledge bases is defined by combin-

ing the model-theoretic semantics of the original

rule language with the FOL semantics of the on-

tology language. For example, tight integration

of Datalog (without negation) with a Description

Logic can be achieved within FOL by interpreting

Datalog rules as FOL implications. In this seman-

tics student(joe) is a logical consequence of the

example hybrid knowledge base. As Course(cs32)

is an assertion of the ontology, it follows by the

axiom Project t Lecture = Course that in any FOL

model of the ontology Project(cs32) or Lecture(cs32)

is true. As enrolled(joe, cs32) is true in every

model, so the premises of at least one of the

implications
student(joe)← enrolled(joe, cs32), Lecture (cs32)

student(joe) ← enrolled(joe, cs32), Project(cs32)

must be true in any model. Hence student (joe) is

concluded. Examples of tight integration include:

– CARIN [15], a classical work on integrating

Datalog with a family of Description Logics

under the FOL semantics.

– DLþ log [20], integrating Disjunctive Datalog

under the answer set semantics with OWL DL.

For each FOL model of the ontology the rules of

the knowledge base are reduced to rules of Dis-

junctive Datalog, with stable models defined by

the answer set semantics.

– Hybrid Rules [4], integrating logic programs

under well-founded semantics with OWL. For

each FOL model of the ontology the rules of the

knowledge base are reduced to a logic program

with the model defined by the well-founded

semantics.

The theoretical foundations developed by studying

integration of ontologies with variants of Datalog pro-

vide a basis for further extensions. This includes deal-

ing with uncertain and inconsistent knowledge, and

using integrated Datalog-based languages as condition

languages for ECA-Rules.

Key Applications
The integration of rules and ontologies is a relatively new

research topic, focused so far on developing tools and
prototypes. Key applications include semantic data inte-

gration, ontology-based web search and semantic recom-

mendation systems. Industrial applications of this kind

are discussed in the video lecture [8]. The Ontobroker

system referred therein is based on F-logic. Another field

of potential key applications is e-business as discussed

in the tutorial video [11], with focus on Sweet Rules.
URL to Code
The following systems integrating rules and ontologies

can be downloaded:

� KAON2 from http://kaon2.semanticweb.org,

� Sweet Rules from http://sweetrules.projects.sem-

webcentral.org/,

� SWI Prolog from http://www.swi-prolog.org/,

� TRIPLE from http://triple.semanticweb.org/.

A prototype implementation of dl-programs (NLP-DL)

can be accessed at http://con.fusion.at/nlpdl/.
Cross-references
▶Datalog

▶Description Logics

▶ ECA Rules

▶ First-Order Logic: Syntax

▶ First-Order Logic: Semantics

▶Ontology

▶OWL: Web Ontology Language

▶Resource Description Framework (RDF) Schema

(RDFS)

▶ Semantic Web

▶W3C
Recommended Reading
1. Antoniou G. and Bikakis A. DR-Prolog: a system for defeasible

reasoning with rules and ontologies on the semantic Web. IEEE

Trans. Knowl. Data Eng., 19(2):233–245, 2007.

2. Baral C. and Gelfond M. Logic programming and knowledge

representation. J. Logic Program., 19/20:73–148, 1994.

3. de Bruijn J., Pearce D., Polleres A., and Valverde A. Quantified

equilibrium logic and hybrid rules. In Proc. 1st Int. Conf. on

Web Reasoning and Rule Systems, 2007, pp. 58–72.

4. Drabent W. and Małuszyński J. Well-founded semantics for

hybrid rules. In Proc. 1st Int. Conf. on Web Reasoning and

Rule Systems, 2007, pp. 1–15.

5. Eiter T., Gottlob G., and Mannila H. Disjunctive datalog. ACM

Trans. Database Syst., 22(3):364–418, 1997.

6. Eiter T., Lukasiewicz T., Schindlauer R., and Tompits H. Com-

bining answer set programming with description logics for the

Intelligent Storage Systems I 1551

I

semantic web. In Proc. 9th Int. Conf. Principles of Knowledge

Representation and Reasoning, 2004, pp. 141–151.

7. Eiter T., Lukasiewicz T., Schindlauer R., and Tompits H. Well-

founded semantics for description logic programs in the seman-

tic web. In Proc. 3rd Int. Workshop on Rules and Rule Markup

Languages for the Semantic Web, 2004, pp. 81–97.

8. Erdmann M. Semantic web applications. 2007, first Asian

Autumn School on Semantic Web, Tutorial video at: http://

rease.semanticweb.org/ubp/.

9. Gelfond M. and Lifschitz V. The stable model semantics for logic

programming. In Proc. 5th Int. Conf. Logic Programming, 1988,

pp. 1070–1080.

10. Grosof B.N. Prioritized conflict handling for logic programs. In

Proc. 14th Int. Conf. Logic Programming, 1997, pp. 197–211.

11. Grosof B. Semantic web rules with ontologies, and their

e-Services applications. 2006, iSWC06 tutorial video at: http://

videolectures.net/iswc06_grosof_swrot/.

12. Grosof B., Horrocks I., Volz R., and Decker S. Description logic

programs: combining logic programs with description logic. In

Proc. 12th Int. World Wide Web Conference, 2003, pp. 48–57.

13. Kifer M. Rules and ontologies in F-logic. In Reasoning Web,

N. Eisinger and J. Małuszyński (eds.). LCNS, vol. 3564, 2005,

pp. 22–34.

14. Knorr M., Alferes J.J., and Hitzler P. A well-founded semantics

for hybrid MKNF knowledge bases. In Proc. 20th Int. Workshop

on Description Logics, 2007, pp. 347–354.

15. Levy A. and Rousset M.C. CARIN: a representation language

combining horn rules and description logics. Artif. Intell., 104

(1–2):165–209, 1998.

16. Motik B. and Rosati R. A faithful integration of description

logics with logic programming. In Proc. 20th Int. Joint Conf.

on AI, 2007, pp. 477–482.

17. Motik B., Sattler U., and Studer R. Query answering for OWL-

DL with rules. J. Web Sem., 3(1):41–60, 2005.

18. Nilsson U. and Małuszyński J. Logic, Programming and Prolog,

2nd edn. Wiley, NY, 1995, now available free of charge at: http://

www.ida.liu.se/ ulfni/lpp/.

19. Nute D. Defeasible logic. In Handbook of Logic in Artificial

Intelligence and Logic Programming, Vol. 3. Oxford University

Press, Oxford, 1994, pp. 353–395.

20. Rosati R. DL+log: tight integration of description logics and

disjunctive datalog. In Proc. 10th Int. Conf. Principles of Knowl-

edge Representation and Reasoning, 2006, pp. 68–78.

21. Sintek M. and Decker S. TRIPLE – a query, inference, and trans-

formation language for the semantic web. In 2002, pp. 364–378

22. van Gelder A., Ross K.A., and Schlipf J.S. Unfounded sets and

well-founded semantics for general logic programs. In Proc. 7th

ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 1988, pp. 221–230.
Intellectual Property

▶Copyright Issues in Databases

▶ European Law in Databases
Intelligent Disks

▶Active Storage
Intelligent Storage

▶ Intelligent Storage Systems
Intelligent Storage Systems

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Synonyms
Intelligent Storage

Definition
The term Intelligent Storage System is a general term

used to describe a storage system which has the capa-

bility of fully or partially realizing functions that used

to be or are usually implemented on host computers.

Historical Background
The idea behind Intelligent Storage Systems may have

its origin in the early researches on database machines.

Similar ideas have continued to be studied in the

academic communities to date, and they have recently

been partially applied in commercial storage systems.

Foundations
The basic ideas of implementing full or partial appli-

cation code on controller processors of disk drives may

be traced back to the database machines which were

actively studied in the 1970s and 1980s. The database

machine was an approach of special hardware solu-

tions. The early researchers focused on the develop-

ment of filter processors, which could do selection

operations closely to disk drives so as to obtain strong

performance benefits. Several prototypes such as

CASSM (University of Florida) [11] and RAP (Ohio

University) [7] were implemented in the 1970s. Filter

processors were at times coupled with a front-end

database server. Such ideas called backend processors

[3] were attempted in the industry. When it came to

1552 I Intelligent Storage Systems
the 1980s, with new algorithms such as hash-based

joins, researchers proposed new database machines

that pursued intensive parallel processing such as

GRACE (The University of Tokyo) [6] and GAMMA

(University of Wisconsin) [4]. Parallel machines that

were specially designed for database processing were

released and then resulted in commercial success.

However, the solution of utilizing dedicated hardware

lost its unique advantage by the 1990s, since powerful

general-purpose machines became easily available.

Major database vendors shifted to software-level solu-

tions which used generic hardware instead.

Intelligent Storage Systems were again brought

under the spotlight in the late 1990s. Storage network

technologies such as Fibre Channel launched in the

market. Then enterprise systems began to deploy the

storage-centric system architecture, where storage sys-

tems could be designed and managed independently

from host computers at the infrastructure level. Natu-

rally, sophisticated new functions such as virtualiza-

tion were being incorporated into storage processors

and such solutions were widely accepted. Around the

same time, Active Storage [8], Intelligent Disks [5] and

Active Disks [1] were published in the academia in

1998. These were trying to exploit the capability of

disk processors for data intensive applications such as

ad-hoc query processing and image processing. The

attempt of active storage looked similar to the database

machine, but they carefully discussed software frame-

works for running application code on disk processors.

After the twenty-first century began, storage net-

working has been practiced in many systems and stor-

age resources are being consolidated more. A variety of

new functions are being implemented in commercial

storage systems. Functions that used to be run on host

computers such as volume copy, remote replication

and snapshot generation are usually executed in

storage processors. Although only limited types of

low-level applications are currently implemented in

storage systems, the application domain is gradually

being widened by the active research and development.

The motivation behind database machines and

active storage was mainly in significant performance

improvement. By processing data more closely to disk

platters, they tried to efficiently exploit the limited

bandwidth betweenmainmemory and storage systems.

This ‘‘storage wall’’ is seen even in recent enterprise

systems and thus such solutions are still beneficial. At

the same time, in the light of the complexity of recent
enterprise systems, Intelligent Storage Systems may

have another substantial benefit. That is, storage-level

implementation could improve the function-level iso-

lation between components. This would be very helpful

for system administrators to design and manage the

complicated system.

Discussion on interface standards is a crucial point

for realizing Intelligent Storage Systems. OSD (Object

Storage Device) [2] has evolved out of the NASD

(Network-Attached Secure Disk) project which started

in Carnegie Mellon University in 1995. In contrast to

traditional storage devices, where the storage space is

represented as an array of fixed-size blocks, OSD works

as a container of objects, their attributes and their

metadata. Specifically, OSD can be seen as a storage

device in which lower layers of file systems are imple-

mented. The interface protocol of OSD, designed as an

extension of SCSI, has been standardized as ANSI T10

SCSI OSD. Several NAS products and distributed files

systems have already supported OSDs as backend stor-

age devices. SNIA, a leading industry association of

storage networks, has also promoted standardization.

SMI-S (Storage Management Initiative-Specification)

[9] is the standard protocol for storage management,

which improves the interoperability between different

storage devices, switches and management applica-

tions of different manufacturers. SNIA has developed

and maintained SMI-S and has provided vendors with

certification programs. XAM(eXtensible AccessMethod)

[10] is another task operated by SNIA. XAM, a new suite

of APIs, would provide an abstraction layer between

storage devices which store fixed contents and manage-

ment applications which access those contents.
Key Applications
Recent commercial storage systems have deployed stor-

age-side implementation of simple functions such as

data conversion betweenmain frames and open systems,

third-party copy, remote replication and snapshot gen-

eration. These were so far implemented only in top-end

storage systems, but they are also being implemented

in mid-range products and sometimes even in entry-

level products.
Cross-references
▶Active Storage

▶Database Machine

▶Network-Attached Secure Device

Interface I 1553

I

▶ Storage Network Architecture

▶ Storage Management

Recommended Reading
1. Acharya A., Uysal M., and Saltz J.H. Active disks: programming

model, algorithms and evaluation. In Proc. 8th Int. Conf.

on Architectural Support for Programming Languages and

Operating Systems, 1998, pp. 81–91.

2. ANSI. Information Technology - SCSI Object-Based Storage

Device Commands (OSD). Standard ANSI/INCITS 400–2004.

2004.

3. Canaday R.H., Harrison R.D., Ivie E.L., Ryder J.L., andWehr L.A.

A back-end computer for data base management. Commun.

ACM, 17(10):575–582, 1974.

4. DeWitt D.J., Gerber R.H., Graefe G., Heytens M.L., Kumar K.B.,

and Muralikrishna M. GAMMA – a high performance dataflow

database machine. In Proc. 12th Int. Conf. on Very Large Data

Bases, 1986, pp. 228–237.

5. Keeton K., Patterson D.A., and Hellerstein J.M. A case for intel-

ligent disks (IDISKs). ACM SIGMOD Rec., 27(3):42–52, 1998.

6. Kitsuregawa M., Tanaka Hi., Moto-Oka T. Application of hash

to data base machine and its architecture. New Generation

Comput, 1(1):63–74, 1983.

7. Ozkarahan E.A., Schuster S.A., and Smith K.C. RAP - An asso-

ciative processor for database management. In Proc. National

Computer Conf., 1975, pp. 379–387.

8. Riedel E., Gibson G.A., and Faloutsos C. Active storage for large-

scale data mining and multimedia. In Proc. 24th Int. Conf. on

Very Large Data Bases, 1998, pp. 62–73.

9. SNIA Storage Management Initiative. Storage Management Tech-

nical Specification, Overview Version 1.2.0, Revision 6. 2007.

10. SNIA XAM Initiative. XAM Initiative Overview, 2007.

11. Su S.Y.W. and Lipovski G.J. CASSM: a cellular system for very

large data bases. In Proc. 1st Int. Conf. on Very Data Bases, 1975,

pp. 456–472.
Interaction Design

▶Human-Computer Interaction
Interactive Capture

▶Visual Interfaces for Geographic Data
Interactive Information Exploration

▶ Information Navigation
Interactive Layout

▶Visual Interfaces for Geographic Data
Interactive Visual Exploration of
Multidimensional Data

▶Visual On-line Analytical Processing (OLAP)
Interface

PATRICK EUGSTER

Purdue University, West Lafayette, IN, USA

Definition
An interface describes the functionalities exported by

an entity such as a software module. These function-

alities typically consist in named operations with sig-

natures describing potential arguments and return

values, but interfaces may also include the definitions

of data types, constants, exceptions, or even describe

semantics.

Interfaces shield the internals of corresponding

software modules from the outside, providing several

benefits. Interfaces provide abstraction, in the sense

that the internals of modules may evolve while other

modules can still rely on the same functionalities (en-

capsulation). Safety and security are promoted by

interfaces as these define single access points to respec-

tive software modules.

In object-oriented programming, software modules

often coincide with classes, which also describe data

types implicitly. In the case of such a class, an interface

is thus roughly made up of themethods exported by the

class. Mostly, interfaces are then defined implicitly by

the classes as such sets of exported methods, but lan-

guages such as Java provide programmers the possibili-

ty of declaring interfaces as first class citizens which are

then explicitly implemented by classes.

When objects are physically distributed, they can

offer specific remote interfaces facilitating invocations

potentially coming from remote hosts. Remote inter-

faces span typically only a subset of all the methods

exported by objects.

1554 I Interface
A set of interfaces which describe an entire software

component or framework is more commonly referred

to as an application programming interface (API).

Historical Background
The concept of interface has partly evolved out of

the header files used with the C programming lan-

guage. In contrast to several more recent programming

languages providing notions of interfaces integrated

with the language semantics, those header files served

mainly as preprocessing feature.

Interfaces were greatly popularized by program-

ming languages based on modules, such as Pascal,

Modula-2, or Ada. A first step towards a more rigorous

underpinning of modules and measures for a good

decomposition of software into such modules was

provided by Parnas [8]. Parnas’ work primarily aimed

at achieving a clean separation of duties in software

components and an effective decomposition into mod-

ules. As a dual of this problem, the design process for

interfaces to modules has also been strongly guided by

Parnas’ seminal work, coining the term ‘‘well-defined

interfaces.’’ The main driving force behind the quest

for clear-cut interfaces are safety/security concerns

aiming at providing well-defined entry points to

given modules in the form of interfaces.

The term interface itself thus emerged from the soft-

ware engineering community. Ever since, programming

languages have been strongly influenced by this notion,

in particular because there is a strong overlapping be-

tween the notions of interface and type (data type). This

culminates in object-oriented programming, where

data types and modules are largely unified through

classes representing the units for both data abstraction

and behavior, and thus a type defines the interface to

its instances, even if only implicitly (cf. [2]).

More recently, modeling languages such as the Uni-

fied Modeling Language (UML) have also introduced

interfaces aside classes as purely descriptive means of

capturing functionalities of objects.

Foundations
Interfaces describe the functionalities exported by an

entity such as a software module. These functionalities

typically consist in named operations with signatures

describing potential arguments and return values,

but interfaces may also include the definitions of

data types, constants, exceptions, or even more

information.
Interfaces and Classes

Most object-oriented programming languages are

class-based, meaning that classes present the main

unit of decomposition and as such can be viewed as

modules. Interfaces of such classes encompass the

functionalities exported by these classes – typically a

set of methods which are accessible to other classes. In

many integrated development environments (IDEs),

there is the possibility to automatically ‘‘extract’’ such

an interface view from a class, by only summarizing the

names and signatures of its exported features.

Interfaces can be in that sense seen as abstract

types, as opposed to classes which may implicitly de-

scribe interfaces, but primarily describe the implemen-

tation of those. Current programming languages such

as Java provide interfaces as a first class construct aside

classes. Declaring an interface leads to defining an

abstract type. In this case, an object can provide several

interfaces if its class implements several instances; the

conceptual interface of the instance(s) is then made up

of the union of these interfaces.

When collapsed with types, interfaces reap the ben-

efits of the Liskov substitution principle [6], which

states rules under which a type T1 can be considered

to be compliant with another type T2. Instances of T1

can then be used whenever entities of type T2 are

expected. Transposed to interfaces this means in short

that the interface of the latter type subsumes the inter-

face of the former type: any module that builds on the

former interface can be presented with an instance of

the latter interface.

Protection

Conceptual interfaces are sometimes decomposed

according to potential beholders of references to the

corresponding entities. More precisely, different objects,

or more generally different modules, can have access to

the same entities through individual interfaces. By sup-

porting different visibility rules (e.g., private, pub-

lic, protected), possibly at the method level,

programming languages provide the ability to restrict

interfaces (or parts of such interfaces) to families of

classes for example based on containment criteria (e.g.,

packages). In C++ for instance, a class C1 can

be explicitly declared to be a friend of another

class C2, providing instances of C1 access to certain

methods of class C2 which are otherwise unreachable.

Introducing varied levels of protection yields different

(accessible) interfaces for different parties.

Interface I 1555

I

For languages with weaker inherent support for

interfaces and protection levels, design patterns can

be used to enforce constraints. The read-only interface

pattern for instance is used to explicitly define an

interface through which entities can be manipulated

without modifications to their state.

Remote Interfaces

In remote method invocations, remote interfaces are

used to explicitly offer methods for invocation from

remote hosts. Remote interfaces usually span only a

subset of the methods provided by a class. The remain-

ing methods however are limited to invocations within

the same address space. In that sense, remote interfaces

introduce a specific level of protection.

Remote interfaces commonly enjoy descriptions in

a dedicated specification language, when interopera-

bility is desired. Such specification languages allow

the description of remote interfaces in an interopera-

ble format, and subsequent generation of language-

specific versions with corresponding compilers based

on well-defined mappings to target languages. Exam-

ples are the interface definition language (IDL) used

in the Common Object Request Broker Architecture

(CORBA), or more recently the web service description

language (WSDL). An earlier incarnation is the exter-

nal data representation (XDR) introduced with the

remote procedure call (RPC) protocol. Compilation

of such interfaces commonly goes hand in hand with

the generation of proxes or stubs which take care of

transforming method invocation arguments and re-

turn values to and from an interoperable format such

as XDR.

Contents

Besides methods, interfaces can also include constants,

exceptions, and sometimes even fields, though export-

ing fields is sometimes viewed as going against the

principle of encapsulation underlying object-oriented

programming. In the Eiffel programming language,

methods are unified with field (accesses), implicitly

yielding access methods for fields. Eiffel is also the

most popular language with further semantic descrip-

tions in the interfaces, consisting in contracts in the

form of pre- and postconditions for methods, as well as

invariants at the class level. These were introduced as

part of the original definition of abstract data type [6],

and have given rise to a design paradigm called design

by contract (DbC) [7].
In the case of Eiffel, its IDE also allows the pro-

grammer to view the interface of a given class, in this

case including contracts. Contracts have a descriptive

flavor in the sense that they augment interfaces and

thus represent a specification feature, but also have

an implementation flavor since they may refer to fields,

and can be monitored at runtime as in Eiffel. Spec#

follows the Eiffel approach by providing first class

support, while the Java Modeling Language (JML)

promotes annotations, which can be viewed as option-

al semantic interface descriptions, to which program-

mers only must adhere when making use of specific

tools (e.g., for compilation).

Besides contracts, other types of information have

been considered for augmenting interfaces. Typestates

[9] capture abstract states associated with instances

of a given type and their relationship with exported

methods, thus adding state information to interfaces.

Interface automata [4] focus directly on the order in

which functionalities exposed by a given interface can

be triggered. Such sequences are sometimes also collo-

quially referred to as protocols. Resource interfaces [3]

are another example of augmented interfaces, describ-

ing namely the physical resources necessary for a given

module to be able to function properly.
Components

In software engineering, in particular in the component

view, interfaces may similarly contain far more infor-

mation than types. A component usually refers to a

subsystem of its own consisting in several modules,

whose individual interfaces make up the conceptual

interface. The interface of a component can for in-

stance also define what kind of interface the compo-

nent itself relies upon (while this is usually somewhat

embedded in object-oriented code).

When several interfaces are bundled either in the

context of a component, or a framework, the term

application programming interface (API) is commonly

employed. The different levels of technical protection

for functionalities offered at the programming lan-

guage level are in the case of APIs often complemented

by simply limiting the disclosure of APIs to selected

corporate players only.
Key Applications
There are various reasons for further studying the

domain of interfaces:

1556 I Interface
� Complexity. With the increasing complexity of

computer systems, the problem of ‘‘efficiently’’

decomposing/composing software is given more

and more attention. Abstraction and encapsulation

are key desired properties. In software engineering

terms, one attempts to achieve decoupling and in-

crease modularity (For a precise definition of mod-

ularity see [8]). The art of decomposing software

is also partly captured by the study of software

architectures. There is a clear dependency between

the decomposition of software into modules and

the discipline of designing interfaces between mod-

ules/components to respect modularity and achieve

low coupling.

� Reuse and maintainability. These are also desired

features of any software package. With good de-

sign and modularity reflected in rich interfaces,

code namely also becomes easier to reuse and

maintain.

� Safety. Safety has become a major driving force for

programming language and software engineering

research. Ensuring that interaction between (sub-)

modules takes place in a safe manner helps avoid-

ing runtime errors, and is supported by clear-cut

and precise interfaces. In the predominant settings

with static typing, the goal is to ensure that once

successfully compiled, a module contains no calls

violating interfaces.

� Security. Access rights and confinement can be

expressed in interfaces as mentioned above. This

becomes particularly visible in distributed settings,

i.e., for achieving clean interfaces between entities

running on distinct physical hosts.

� Interoperability. Not all software is written in the

same programming language. With interfaces being

described in ‘‘neutral’’ generic languages interoper-

ability can be achieved. Examples are clearly

provided by interface definition languages (IDLs)

for second class distributed object packages such

as DCE, CORBA, or DCOM. The idea of interop-

erability has more recently flown into service-

oriented architectures (SOA) in general and Web

Services in particular.

Future Directions
Motivated by the above, there is quite some incentive

to further investigate interfaces. Various aspects offer

themselves for additional efforts:
� Evolution. Low coupling and modularity definitely

support evolution of components, but as mentio-

ned above, only in terms of the internals of com-

ponents. Evolution of components sometimes also

necessitates evolution of their interfaces, which can

however break any existing code relying on these.

Evolution of interfaces is thus an important area

to investigate. In programming language terms, this

leads to the problem of extending and changing

types, which can be partly addressed by introducing

versioning, and by assisting the programmer in

the adaptation of code after changes to interfaces

it relies upon.

� Information. Interfaces describe contracts between

modules, i.e., functionalities provided by a module

and sometimes also requirements for providing

these functionalities. So far, interfaces are mostly

described through functional aspects of the mod-

ules which in programming language terms boils

down to syntactic and typing information. Design

by contract (DbC) augments these interfaces with

semantics, but further information might be of

relevance, which is not even directly materialized

in the implementation of modules, as illustrated by

resource interfaces [3].

� Discovery. Interfaces and extended interfaces can also

be obtained by mining existing modules, e.g., [1].

This is particularly appealing when dealing with

legacy code, which might have been described in a

programming language with weak inherent support

for interface descriptions. Discovery of interfaces has

also gained more interest recently in the realm of

aspect-oriented programming (AOP), whenever

aspects advise code obliviously, i.e., without knowl-

edge or consent from the main code. In the AOP

philosophy aspects attempt to achieve a separation

of duty by implementing crosscutting concerns in

aspects alike modules, separately from the base

code. Without clean interfaces for the interaction

between base code and aspects however, reasoning

about an entire software becomes hard (cf. [5]).
Discovery can also be understood in the sense

of discovering services at runtime. Especially SOAs

provide strong support for finding services based

on their functionalities, often described as some

abstract interfaces. UDDI is an example of a lookup

service that supports queries based on a specific

notion of interface.

Interface Engines in Healthcare I 1557

I

Cross-references
▶Discovery

▶Request Broker

▶ Service Oriented Architecture

▶Web Services

Recommended Reading
1. Beyer D., Henzinger T.A., and Singh V. Algorithms for interface

synthesis. In Proc. 19th Int. Conf. on Computer Aided Verifica-

tion, 2007, pp. 4–19.

2. Canning P.S., Cook W.R., Hill W.L., and Olthoff W.G. Interfaces

for strongly-typed object-oriented programming. ACM SIG-

PLAN Not., 24(10):457–467, 1989.

3. Chakrabarti A., de Alfaro L., Henzinger T.A., and Stoelinga M.

Resource interfaces. In Proc. 3rd Int. Conf. on Embedded Soft-

ware, 2003, pp. 117–133.

4. de Alfaro L. and Henzinger T.A. Interface automata. In Proc. 9th

ACM SIGSOFT Int. Symp. on Foundations of Software Eng.,

2001, pp. 109–120.

5. Griswold W.G., Sullivan K.J., Song W., Shonle M., Tewari N.,

Cai Y., and Rajan H. Modular software design with crosscutting

interfaces. IEEE Softw., 23(1):51–60, 2006.

6. Liskov B.H. and Wing J.M. A behavioral notion of subtyping.

ACM Trans. Program. Lang. Syst., 16(6):1811–1841, November

1994.

7. Meyer B. Applying design by contract. IEEE Comput., 25

(10):40–51, October 1992.

8. Parnas D.L. On the criteria to be used in decomposing systems

into modules. Commun. ACM, 15(12):1053–1058, 1972.

9. Strom R.E. and Yemini S. Typestate: a programming language

concept for enhancing software reliability. IEEE Trans. Softw.

Eng., 12(1):157–171, 1986.
Interface Engines in Healthcare

DAN RUSSLER

Oracle Corporation, Redwood Shores, CA, USA

Synonyms
Transformation engines; Mapping engines; Messaging

engines; Service buses

Definition
A computer application that supports the transforma-

tion of the syntactic and semantic structures in com-

munication content during transmission from a

sending system to receiving system(s), ensuring reli-

able delivery of the communication and minimizing

information loss and semantic shift during the

communication.
Historical Background
Before the invention of application programming

interfaces (API) and CORBA Interface Definition

Language (IDL) files, ‘‘interface’’ was the term used

to describe the electronic communication of informa-

tion between two computers [1]. Today, the term ‘‘in-

terface’’ also refers to communications between layers

of software and even between software objects within

a software layer. A modern example of an interface is a

Web Service Definition Language (WSDL) file in XML

format (www.w3.org).

Within early interfaces, the syntax of the commu-

nication content, i.e., linear arrangement of characters

in the communication exported by the sending system,

often could NOT be imported directly by the receiving

system. Consequently, transformation procedures were

employed to rearrange the characters in the communi-

cation into a linear structure that COULD be imported

by the receiving system. In the same manner, if terms

used by the sending systems could not be imported

into the receiving system, a substitution of terms that

could be imported by the receiving system was also

applied to the communication content.

In order to reduce the burden of computing these

transformations on the slower computers of the past, the

execution of these transformation procedures was trans-

ferred to a separate computer thatwas placed in-between

the sending and receiving computers. As time passed,

the ability of these ‘‘interface systems’’ to support better

and easier transformation authoring and high ‘‘transac-

tion’’ or messaging volumes, these systems became

known in the 1990s as ‘‘interface engines,’’ a new kind

of software application in themselves [4,5].

As the language of the industry evolved, the com-

munications between computers became known as

‘‘messages’’; the transformation of the syntactic and

semantic content became known as ‘‘mapping’’ from

sender to receiver; and techniques for ensuring reliable

receipt of communications between a sending and

receiving computer became known as ‘‘reliable delivery

protocols’’ or ‘‘reliable messaging protocols.’’

However, despite the increasing sophistication of the

transformation tools, the industry soon discovered that

there was a limited ability to ensure that all the informa-

tion sent by the sending system could be imported by the

receiving system [7]. Information loss and shift inmean-

ing of the communication content was observed when

evaluating the information content of the sending and

1558 I Interface Engines in Healthcare
receiving systems after the communication occurred.

In many ways, the result was similar to the garbling of

sentences that occurs in the children’s games that test the

ability of children sitting in a ring to sequentially whisper

a sentence into the ear of the next child. The child who

initiates the sentence rarely gets the same sentence whis-

pered back by the last child.

As a consequence, organizations that developed stan-

dards in support of many other industries began to

support standardized messaging structures for the com-

puter industry, including message standards in the

healthcare industry. These standards included both

the arrangement of ‘‘fields’’ and special characters in the

messages and the sets of terms used to populate these

fields. In healthcare, the messages most widely used

internationally by the year 2000 were authored by a

specialized healthcare standards organization, the

Health Level 7 (HL7) standards development organiza-

tion (www.hl7.org), which focused on ISO Level 7

transaction protocols [1].

These messaging standards reduced the cost of each

messaging ‘‘interface’’ between computers by as much

as tenfold from the 1980s to the turn of the century.

However, the implementation cost of these messaging

interfaces (HL7 version 2.x messages) continued to

retail at over $20,000 per interface (in addition to

the cost of the interface engine), and many hospitals

required over one hundred messaging interfaces.

By the early 1990s, planners in HL7 began explor-

ing model-based development methods and new mes-

sage authoring techniques that would both improve

the quality and reduce the cost of communications

between computer systems in healthcare. The im-

provement in quality of communication refers to the

preservation of information content and semantic

meaning of the communication or what is known as

‘‘semantic interoperability.’’ The reduction in cost

comes from decreasing the number of choices allowed

to developers who ‘‘interpret’’ the standards into actual

application code. The result of this planning effort was

the publication of the HL7 Reference Information

Model (RIM) [6] and RIM-derived messages, electro-

nic documents [2], and web services.

Parallel efforts in other industries as well as the

growth of Internet communications between compu-

ter systems have caused rapid evolution in both the

kinds of communications the healthcare industry

wishes to utilize and the techniques for electronically

communicating between computer systems.
As the result of many initiatives across industries,

there have been great strides in communication meth-

ods that no longer utilize the traditional, preconfigured

point-to-point HL7 interface engines. The concept of a

‘‘bus’’ was borrowed from the internal computer bus

that supports the physical ‘‘plug & play’’ communica-

tion of multiple physical components (such as hard

drives) within a computer. This concept of a ‘‘bus’’ was

abstracted to a ‘‘service bus’’ located within a data

center that allows dynamic selection of multiple web

services in a service-oriented architecture. As a result,

interface communication in a data center no longer

needs to rely on a ‘‘point-to-point’’ pre-configured

solution. Rather, in a service bus, a ‘‘service directory’’

may be used to dynamically select the method of

communication and the endpoint(s) of communica-

tion desired. Increasingly, these new kinds of ‘‘messag-

ing engines’’ or ‘‘enterprise service buses’’ are being

utilized in healthcare data centers. Finally, ‘‘healthcare

service bus’’ is a term used to describe a ‘‘virtual service

bus’’ or a system of ‘‘federated enterprise service buses’’

where dynamic web services are supported betw-

een individual enterprises and enable healthcare com-

munications across the wider community (www.

openhealthtools.org).

Although many people believe that legacy computer

systems and traditional, preconfigured point-to-point

messaging methods will continue to be used for many

years in healthcare, the consequence of new communi-

cation techniques used by many other industries is that

communication methods in healthcare will also evolve.

The role of the traditional data-center-based, HL7 2.x

interface engine will gradually be reduced in favor of

web-service-based communications that support trans-

formation and routing across healthcare communities.

Foundations
The scientific study of messaging concepts begins with

narrow, reductionist models, e.g., the physics of elec-

trons and gravitational bonds communicating between

atoms and within molecules. These concepts are studied

within incrementally more complex systems in chemis-

try labs, organic chemistry labs, genetic and hormonal

communications, electronic systems and neural com-

munications, human communication, and finally, in

computer systems that support human communication.

The study of messaging was enhanced by the devel-

opment of communication models, many of which

include the concept of state machines. Communication

Interface Engines in Healthcare I 1559

I

may be defined as ‘‘transferring awareness of a change of

state in the model of the sending system to the receiving

system(s).’’ This communication may be as simple as

informing the receiver of the increase in the state of

ionic attraction that occurs when an atom has gained

or lost an electron or as complex as informing a second

organization that the state of a hospital now includes a

patient ready for placement in a nursing home.

The concept of a ‘‘state machine’’ was introduced in

the mathematical modeling and electronics literature.

A ‘‘state machine’’ was a systems model developed in

the 1950s and 1960s to describe state transitions in

sequential circuits [3]. Generally, finite state machines

describe a model wherein a ‘‘state’’ describes the static

‘‘snapshot’’ or configuration of elements within a mod-

eled system. The visual image generated by the use of

the term ‘‘machine’’ is that of a machine moving while

an observer takes sequential snapshots, each of which

illustrates the machine in different configurations or

states. A ‘‘process’’ is the change in configuration or

transformation of elements in the state machine, i.e.,

‘‘state transition.’’ ‘‘Event-driven state machines’’ high-

light the trigger events used in event driven pro-

gramming and messaging models; one visualizes an

operator pushing buttons on the machine. And com-

munication can then be described as the transferring of

awareness between two or more systems, specifically,

the awareness of the state transition of the sending

system. One visualizes sending a picture of the new

state of the machine, or perhaps a picture of the

new state and a picture of the former state, as soon

as the operator pushes the button on the machine.

A trigger event in healthcare is often a clinical

observation result on a patient, a clinical order, or

other clinical event. Observation results by clinicians

characterize the clinical state of a patient during a

specific time period. Changes in the clinical state of

the patient are tracked by obtaining sequential obser-

vation results. When a transition occurs in the clinical

state of a patient, the change may trigger a message

alerting a physician. A new clinical order by the physi-

cian may trigger a message to the lab requesting a

new lab test.

In the same manner, changes in the clinical state of

the patient may be recorded in an electronic medical

record system. The resulting state transition in the

electronic medical record system may trigger a message

to another electronic system. As illustrated, state tran-

sitions in electronic medical record systems are closely
related to the clinical state changes in the patient and

the awareness of care providers about the clinical state

of the patient.

Finally, the study of the science of state changes, the

communication of state changes, and the relationship

of state changes to electronic communications in

healthcare has been applied to more sophisticated

techniques for dynamically orchestrating these com-

munications into optimized process flows. Web service

orchestrators have evolved as components of data in-

tegration engines such as service buses in healthcare.

And optimized patient care processes are increasingly

implemented with web service orchestrated electronic

health record activities (www.infoway-inforoute.ca).

Key Applications
The most common first step in the installation of

Hospital Information Systems (HIS) is to establish an

identity system for enrolling patients as they enter the

hospital, commonly referred to as a ‘‘registration sys-

tem.’’ When the registration system records a new

patient identity or updates an older patient’s demo-

graphic information, data about the patient is com-

municated via messages to other systems, such as order

management systems, laboratory systems, and billing

systems. This data includes a patient identifier and at

least the first name, last name, date-of-birth, gender,

and address. Traditionally, point-to-point interfaces

are pre-configured within an interface engine from

the registration system to the other systems, allowing

broadcast of the identity of the new patient or updated

demographic information to the other systems. If

needed by any of the receiving systems, transforma-

tions may be applied to the syntax and semantics of the

message that is outbound from the interface engine to

each specific receiving system:

Later, if a clinical order is generated within the

Order Management System for a patient, a subset of

the fields in the Patient Identity message will be in-

cluded in the clinical order and sent to the laboratory

system and billing system via the interface engine.

Again, transformations of the message may occur if

needed by the receiving systems:

What is illustrated in the two figures above is that

in a traditional interface engine scenario, the Registra-

tion System is never queried for additional Patient

Identity information. Therefore, Patient Identity infor-

mation is redundantly stored within the other systems.

However, as populations managed by systems grow,

1560 I Internet Transactions
the inefficiency of redundantly storing Patient Identity

information grows as well. As a consequence, larger

healthcare systems, such as regional or community-

sized systems, are evolving towards a ‘‘just in time’’

communication of Patient Identity. A ‘‘service bus’’

replaces the Interface Engine, and the Registration

System is dynamically queried as needed for additional

Patient Identity information:
Cross-references
▶Clinical Event

▶Clinical Observation

▶Clinical Order

Recommended Reading
1. Collen M. A History of Medical Informatics in the United States,

1950 to 1990. American Medical Informatics Association,

Bethesda, MD, 1995.

2. Dolin R. et al. HL7 clinical document architecture, release 2.

J. Am. Med. Inform. Assoc., 13(1):30–39, 2006.

3. Gill A. Introduction to the Theory of Finite-state Machines.

McGraw-Hill, New York, 1962.

4. Lenz R. et al. A practical approach to process support in

health information systems. J. Am. Med. Inform. Assoc.,

9(6):571–585, 2002.
5. McDonald C. The barriers to electronic medical record

systems and how to overcome them. J. Am. Med. Inform.

Assoc., 4(3):213–221, 1997.

6. Russler D. et al. Influences of the unified service action model on

the HL7 reference information model. In Proc. Symp. on Com-

puter Applications in Medical Care, 1999, pp. 930–934.

7. White T. et al. Extending the LOINC conceptual schema

to support standardized assessment instruments. J. Am. Med.

Inform. Assoc., 9(6):586–599, 2002.
Internet Transactions

▶Web Transactions
Interoperability in Data Warehouses

RICCARDO TORLONE

University of Rome, Rome, Italy

Synonyms
Data warehouse integration

Interoperability in Data Warehouses I 1561

I

Definition
The term refers to the ability of combining the content

of two or more heterogeneous data warehouses, for the

purpose of cross-analysis. This need emerges in a vari-

ety of practical situations. For instance, when different

designers of a large company develop their data marts

independently, or when different organizations in-

volved in the same project need to integrate their

data warehouses.

Data Warehouse interoperability is a special case of

the general problem of database integration, but it can be

tackled in amore systematic way because datawarehouses

are structured in a rather uniform way, along the widely

accepted concepts of dimension and fact. As it happens in

the general case, different degrees of interoperability can

be pursued by adopting standards and/or by applying

reconciliation techniques, likely specific for this context.

The problem is becoming increasingly relevant

with the spreading of federated architectures. Never-

theless, it has been the focus of a few systematic works

and numerous open problems remain to be solved.

Historical Background
In spite of its relevance, the problem of data warehouse

integration has received little attention so far. Con-

versely, the general problem of databases integration

has been studied in the literature extensively and sev-

eral aspects, both at scheme and instance level, have

been deeply investigated, such as the automatic match-

ing of terms and the resolution of structural conflicts

(see [8,12] for surveys on these topics).

In the specific context of data warehouses, Kimball

[7] has identified the problem for the first time: he has

investigated the integration of heterogeneous dimensions

in a scenario of data warehouse design and has intro-

duced the informal notions of dimension conformity.

Intuitively, two dimensions are conformed if their

share some information in a consistent way. This is

an important requirement in drill-across queries, which

are basically joins of different facts over common

dimensions. The notion of conformity has been for-

malized and extended by Cabibbo and Torlone in the

context of data mart integration [4] under the name

of dimension compatibility: they have demonstrated

that this property gives the ability to perform correct

drill-across queries over heterogeneous data marts.

An issue related to the integration of data ware-

houses, which has been studied in the context of statis-

tical databases, is the derivability of summary data.
This notion has been defined by Sato [14] as the

problem of deciding whether a summary data (which

is, in a statistical database, the counterpart of a fact

table) can be inferred from another summary data

aggregated in a different way. The concept has been

extended by Malvestuto [9], by considering the case in

which the source is composed by several heterogeneous

data sets: he proposes an algebraic approach to this

problem and provides some necessary and sufficient

conditions of derivability. Unfortunately, statistical

databases have some similarity with multidimensional

databases, but also some important diversities: this

makes the application of these approaches to data

warehouses not easy.

Some related work has been done on the problem of

integrating a data warehouse with external data stored

in XML [6] and in object-oriented [11] format, but just

a few works have been devoted to the specific problem of

the interoperability between heterogeneous data ware-

houses. They will be discussed in the following section.

While current commercial tools do not provide a

complete support for data warehouse interoperability,

they offer facilities that can be very useful in this

framework, such as metadata import/export (using

XML) and standardized ways to represent data (using

a multidimensional model).

Foundations
Since data warehouse interoperability can be considered

a special case of the problem of database integration,

general data reconciliation techniques can be often used.

For instance, methods for the automatic matching of

terms or for the resolution of structural conflicts. In

addition, it is possible to take advantage on the fact that,

in this context, the data sources always have a multidi-

mensional structure. Therefore, the problem can be

addressed by focusing on the reconciliation of heteroge-

neous dimensions and facts. Following this observation,

the section discusses: standards that can be adopted to

support data warehouse interoperability, conflicts that

can arise in this context, and methodologies that can be

used to perform the integration.

Standards

An important support for interoperability can be

provided by the adoption of standards. Initially, two

industry standards have been proposed by multi-vendor

organizations for data warehouses: the Open Informa-

tion Model (OIM) developed by the Meta Data

1562 I Interoperability in Data Warehouses
Coalition (MDC), and the Common Warehouse Meta-

model (CWM) developed by the Object Management

Group (OMG) [16]. Later, MDC and OMG joined their

efforts and proposed a new version of the CWM as the

standard metadata model. The Common Warehouse

Metamodel is a platform-independent specification for

exchanging multidimensional data between different

platforms and tools. It is based on the standards UML,

XMI, and MOF, and provides a set of generic, external

representations of metadata, called metamodels, that

provide a comprehensive framework for data ex-

change. These metamodels can be used to describe

the various components of the data warehouse archi-

tecture: data sources, ETL processes, multidimensional

cubes, relational tables, and so on. However, it has been

observed that their expressivity is not sufficient to

capture all the complex semantics of conceptual mul-

tidimensional models, so they hardly can be used for

effective integration of different data warehouses [13].

Conflicts

In the integration of different multidimensional data

sources, a number of conflicts can arise, both at the

schema and at the instance level.

� Dimension conflicts:
– Schema: conflicts can arise on entity names

(e.g., different names for the same dimensions

and/or different names for similar levels of two

dimensions) and on dimension hierarchies

(similar dimensions organized over different

levels of aggregation and/or inconsistencies on

the roll-up relationships between levels).

– Instance: conflicts can arise on member names

(different names for the same members of dif-

ferent dimensions) and on the members of

dimensions (similar dimensions populated by

different members).
� Fact conflicts:
– Schema: still, conflicts can arise on names (dif-

ferent names for the same measures) and on

dimensions that differ in number and/or in

the levels of aggregation.

– Instance: conflicts can arise on measures (in-

consistent values for the same measures and/or

differences in scales).
As mentioned in the previous section, Cabibbo and

Torlone [4] have identified a fundamental property

that should be enforced while solving conflicts between
heterogeneous data warehouses: dimension and fact

compatibility. Two different dimensions d1 and d2 are

compatible when their common information is consis-

tent, that is, when aggregations computed over d1 and

d2 and aggregations computed over the dimension

obtained by merging d1 and d2 produce the same

results. Having compatible dimensions and facts is

important because it gives the ability to look consis-

tently at data across data marts and to combine and

correlate such data by means of drill across queries.

Building on this notion, they have also identified a

number of desirable properties that a matching be-

tween dimensions (that is, a correspondence between

their levels) should satisfy: (i) the coherence of the

hierarchies on levels, (ii) the soundness of the levels in

correspondence, according to the members associated

with them, and (iii) the consistency of the roll-up

functions that relate members of different levels within

the matched dimensions.

Integration Techniques

Two heterogeneous data warehouses can be combined if

they share one or more dimensions and can be actually

integrated if their facts can be joined, in a consistent way,

over such common dimensions. It follows that a general

methodology for achieving interoperability in data

warehouses includes the following steps:

1. Identification of the facts that can be integrated and

the dimensions of these facts that can be combined

to perform the integration

2. Resolution of conflicts between common

dimensions

3. Resolution of conflicts between facts to be

integrated

4. Reconciliation and integration of dimensions and

facts according to the desired level of interoperability

While this process can be supported by general

reconciliation techniques based, for instance, on do-

main ontologies, it is possible to rely on specific tech-

niques that take into account the rather standard

structure of dimensions and facts. As usual, the level

of interoperability can range from a scenario of loosely

coupled integration, in which there is just the need to

identify the common information between sources

while preserving their autonomy, to a scenario of tightly

coupled integration, in which the goal is rather merg-

ing the sources. In the former approach, queries are

performed over a virtual view defined on the original

Interoperability in Data Warehouses I 1563

I

sources, in the latter, queries are performed against a

materialized view built from the sources.

Banek et al. [1] have addressed the problem of

matching schema structures specific to data ware-

houses, the initial step of the above methodology.

Their approach consists of two basic tasks. First, simi-

larity matches between multidimensional structures

are identified by comparing their names, data types

and substructures (e.g., matches cannot violate the

partial order in hierarchies). Then, heuristic rules,

based on graph similarity, are used to choose the actual

mappings, among the possible matches.

A methodology for the resolution of conflicts that

guides the designers through the combination of inde-

pendent data cubes has been proposed by Berger and

Schrefl [2]. They also propose a specific language called

SQL-MDi (SQL for multi-dimensional integration),

supporting the methodology. In their approach, the

goal is the generation of a tightly coupled architecture

that combine heterogeneous multidimensional data

sources into a materialized warehouse.

Cabibbo and Torlone [5] have proposed two practical

approaches to the integration of autonomous data

warehouses that try to enforce matchings satisfying

the properties discussed in the previous section and

refer to the scenarios of loosely and tightly coupled inte-

gration, respectively. As a preliminary tool, they intro-

duce a powerful technique, the chase of dimensions, that

can be used in both approaches to test for consistency

and combine the content of the dimensions to inte-

grate. This technique operates over a tableau populated

by the members of the dimensions to be integrated,

and makes use of the roll-up functions defined over

such dimensions. Two integration algorithms are then

proposed. The first algorithm provides the operations,

expressed in an abstract algebra, that applied to the

original dimensions, allow the specification of correct

drill-across joins between the heterogeneous sources.

The second algorithm generates new dimensions and

facts, obtained by merging the original data sources,

that constitute the reconciled data warehouse.

From a practical point of view, a general federated

architecture supporting the interoperability of dis-

tributed and autonomous data warehouses has been

proposed by Mangisengi et al. [10]. Tseng and Chen

[15] have proposed a framework in which, after a

resolution of conflicts, autonomous data cubes are

first transformed into XML documents, then conflicts

are solved by means of XQuery operations, and finally
the access to integrated data is achieved through

queries posed over an XML global view.

Key Applications
A common practice for building a data warehouse is to

implement a series of data marts, each of which pro-

vides a dimensional view of a single business process

[7]. These data marts should be based on common

dimensions but what happens in practice is that, very

often, different departments of the same company

develop their data marts independently. It turns out

that methods and tools for data warehouse reconcilia-

tion are very useful in such common situation.

Indeed, the need for combining autonomous data

warehouse arises in other common scenarios. For in-

stance, when different companies merge or get

involved in a federated project or when there is the

need to combine a proprietary data warehouse with

data available elsewhere, for instance, in external and

likely heterogeneous information sources, or in multi-

dimensional data wrapped from the Web.

Furthermore, methods supporting data warehouse

interoperability can be useful when there is the need

to migrate a data mart from one implementation plat-

form to another.

Future Directions
The area of data warehouse interoperability is largely

unexplored and there is still a compelling need of system-

atic studies and effective tools. From a conceptual point

of view, the problem needs a deeper investigation that

takes into account, for instance, cases in which the struc-

ture of the data warehouses to be combined is non

standard (e.g., for the presence of non-strict hierarchies

or many-to-many relationships between facts and

dimensions). In particular, the presence of irregular hier-

archies makes the problem of dimension compatibility

much harder since it requires complex tests at instance

level. From a practical point of view, there is still a lack of

effective tools specifically supporting the integration of

autonomous and heterogeneous data warehouses.

Experimental Results
A preliminary tool supporting the interoperability of

data warehouses has been recently proposed [3].

Cross-references
▶Common Warehouse Metamodel

▶Data Mart

1564 I Interoperation of NLP-based Systems with Clinical Databases
▶Data Warehouse

▶Data Warehousing Systems: Foundations and Archi-

tectures

▶Data Integration

▶Multidimensional Modeling
Recommended Reading
1. Banek M., Vrdoljak B., Min Tjoa A., and Skocir Z. Automating

the schema matching process for heterogeneous data ware-

houses. In Proc. 9th Int. Conf. Data Warehousing and Knowl-

edge Discovery, 2007, pp. 45–54.

2. Berger S. and Schrefl M. Analysing multi-dimensional data

across autonomous data warehouses. In Proc. 8th Int. Conf.

DataWarehousing and Knowledge Discovery, 2006, pp. 120–133.

3. Cabibbo L., Panella I., and Torlone R. DaWaII: a tool for the

integration of autonomous data marts. In Proc. 22nd Int. Conf.

on Data Engineering, Demo session, 2006.

4. Cabibbo L. and Torlone R. On the Integration of Autonomous

Data Marts. In Proc. 16th Int. Conf. on Scientific and Statistical

Database Management, 2004, pp. 223–234.

5. Cabibbo L. and Torlone R. Integrating heterogeneous multidi-

mensional databases. In Proc. 17th Int. Conf. on Scientific and

Statistical Database Management, 2005, pp. 205–214.

6. Jensen M.R., Møller T.M., and Pedersen T.B. Specifying OLAP

Cubes on XML Data. J. Intell. Inf. Syst., 17(2–3):255–280, 2001.

7. Kimball R. and Ross M. The Data Warehouse Toolkit: The

Complete Guide to Dimensional Modeling, Wiley, 2nd edn.,

2002.

8. Lenzerini M. Data integration: a theoretical perspective. In Proc.

21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2002, pp. 233–246.

9. Malvestuto F.M. The Classification Problem with Semantically

Heterogeneous Data. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1988, pp. 157–176.

10. Mangisengi O., Huber J., Hawel C., and EßmayrW. A framework

for supporting interoperability of data warehouse islands using

XML. In Proc. 3rd Int. Conf. Data Warehousing and Knowledge

Discovery, 2001, pp. 328–338.

11. Pedersen T.B., Shoshani A., Gu J., and Jensen C.S. Extending

OLAP querying to external object databases. In Proc. Int. Conf.

on Information and Knowledge Management, 2000, pp. 405–413.

12. Rahm E. and Bernstein P.A. A survey of approaches to automatic

schema matching. VLDB J., 10(4):334–350, 2001.

13. Rizzi S., Abelló A., Lechtenbörger J., and Trujillo J. Research in

data warehouse modeling and design: dead or alive? In Proc.

ACM 9th Int. Workshop on Data Warehousing and OLAP, 2006,

pp. 3–10.

14. Sato H. Handling Summary Information in a Database: Deriva-

bility. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1981, pp. 98–107.

15. Tseng F.S.C. and Chen C.W. Integrating heterogeneous

data warehouses using XML technologies J. Inf. Sci.,

31(3):209–229, 2005.

16. Vetterli T., Vaduva A., and Staudt M. Metadata standards for

data warehousing: open information model vs. common ware-

house metamodel. ACM SIGMOD Rec., 29(3):68–75, 2000.
Interoperation of NLP-based
Systems with Clinical Databases

YVES A. LUSSIER, MATTHEW G. CROWSON

University of Chicago, Chicago, IL, USA

Synonyms
Semantic web

Definition
Natural language processing (NLP) is the automation

of processes to interpret and understand meaning in

human communications. In the life sciences, NLP

assists in wide-scale storage and retrieval of specific

‘‘bundles’’ of clinical data embedded in patient charts

which are commonly ‘‘free text’’. Both expert-system

and statistical based NLPs have been in use in biomed-

icine for over three decades and some have shown an

expert-like level of accuracy [1,3,6]. With the advent of

electronic medical records, the sheer amount of data

necessitates automated means for proper analysis to

aid in patient care and research purposes.

Key Points
NLP commonly relies on indexing/tokenization, which

is a process of breaking down text strings into data

bundles. These bundles then need to be understood,

which can be accomplished by mapping to clinical

ontology. These clinical ontologies provide a means of

disambiguating and organizing the mapped concepts

to permit more efficient computation. See Fig. 1 below.

Once the tokenization process occurs, the data can

be stored in a variety of methods. Fig. 2a demonstrates

how a relational database requires an ‘‘unbundling

process’’ to fit into its simplified, tabular storage struc-

ture. Although this is an efficient process for both

storage and retrieval, data loss occurs as simplifying

assumptions are made. As a consequence, during

retrieval, queries can only be directed at the level of

complexity that is stored. In contrast, Fig. 2b, post-

tokenization, the data is not forced into a fixed struc-

ture, but rather is stored whole, i.e., in XML databases.

XML format databases and ontology-anchoring [5] are

important components of modern high-performance

NLP systems. The retention of data complexity permits

more nuanced and complex queries as the tokenized

data can be retrieved in its entirety. This more rigorous

model is more computationally intensive. However,

Interoperation of NLP-based Systems with Clinical Databas

Interoperation of NLP-based Systems with Clinical

Databases. Figure 1. NLP system.

Interoperation of NLP-based Systems with Clinical Databases I 1565
recent advancements in processing power have made

these arguments moot. The main upside of this model

over the ‘‘lossy relational databasemodel’’ is that it facili-

tates better storage and utilization of high-throughput

generated biomedical data as researchers cannot always

anticipate the clinical question posed a priori.
I

Cross-references
▶Clinical Data Acquisition, Storage and Management

▶Clinical Ontologies

▶ Electronic Health Record

▶Ontologies and life Science Data Management

▶ Storage Management

▶XML Storage

Recommended Reading
1. Chapman WW. Dowling JN. Wagner MM. Classification of

emergency department chief complaints into 7 syndromes: a

retrospective analysis of 527,228 patients. Ann. Emerg. Med.,

46(5):445–455, 2005.
es. Figure 2. Two models of NLP-directed output.

1566 I Inter-Operator Parallelism
2. Chen ES., Hripcsak G., and Friedman C. Disseminating natural

language processed clinical narratives. AMIA Annu Symp Proc.,

2006:126–30.

3. Collier N., Nazarenko A., Baud R., and Ruch P. Recent advances

in natural language processing for biomedical applications. Int.

J. Med. Inform, 75(6):413–417, 2006.

4. Friedman C., Hripcsak G., Shagina L., and Liu H. Representing

information in patient reports using natural language processing

and the extensible markup language. J. Am. Med. Inform.

Assoc., 6(1):76–87, 1999.

5. Friedman C., Shagina L., Lussier Y., and Hripcsak G. Auomated

encoding of clinical documents based on natural language pro-

cessing. J. Am. Med. Inform. Assoc., 11(5):392–402, 2004.

6. Hripcsak G., Friedman C., Alderson PO., DuMouchel W.,

Johnson SB., and Clayton PD. Unlocking clinical data from

narrative reports: a study of natural language processing. Ann.

Intern. Med., 122(9):681–688, 1995.

7. Johnson SB., Campbell DA., Krauthammer M., Tulipano PK.,

Medonca EA., Friedman C., and Hripcsak G. A native XML

database design for clinical document research. AMIA Annu

Symp Proc., 2003:883.
Inter-Operator Parallelism

ESTHER PACITTI

INRIA and LINA, University of Nantes, Nantes, France

Synonyms
Pipelined and independent parallelism

Definition
Inter-operator parallelism enables different operators

of the query to be executed in parallel, i.e., by different

nodes. Given an operator tree for a query, there are

two forms of inter-query parallelism: pipelined and

independent parallelism. With pipelined parallelism,

an operator that consumes data produced by another

operator can proceed in parallel to that operator, as

soon as it receives some data. With independent paral-

lelism, two operators with no data dependency can

proceed in parallel.
Key Points
Inter-operator parallelism is very attractive when

the query is complex, i.e., has many operators on

different relations. Thus, the more complex the

query, the more opportunities there are for inter-oper-

ator parallelism. With pipeline parallelism, operators

with a producer-consumer dependency can be
executed in parallel. For instance, a select operator can

be executed in parallel with the subsequent join opera-

tor. The advantage of such execution is that the inter-

mediate select result is not materialized, thus saving

memory and disk accesses. Pipeline parallelism puts

constraints on the way the data at the consuming oper-

ator node is stored, i.e., it should fit in main memory.

Independent parallelism is easier since it applies when

there is no dependency between the operators that are

executed in parallel. For instance, the two select opera-

tors on two different relations can be executed in paral-

lel. This form of parallelism is very attractive because

there is no interference between the nodes.

Cross-references
▶Operator-Level Parallelism

▶ Parallel Data Placement

▶ Parallel Query Execution Algorithms
Inter-Query Parallelism

NIKOS HARDAVELLAS, IPPOKRATIS PANDIS

Carnegie Mellon University, Pittsburgh, PA, USA

Synonyms
User-level parallelism

Definition
Inter-query parallelism is a form of parallelism in the

evaluation of database queries, in which several differ-

ent queries execute concurrently on multiple proces-

sors to improve the overall throughput of the system.

Key Points
When multiple non-conflicting requests are submitted

to a database management system, then the system

can execute them in parallel to improve the overall

throughput [1]. This form of parallelism is called

inter-query parallelism. Inter-query parallelism is a

consequence of the concurrency of user requests. It is

orthogonal to intra-query parallelism, in which several

processors cooperate for the faster execution of a single

query [2]. Both forms of parallelism can co-exist in a

database management system. Inter-query parallelism

is common in on-line transaction processing (OLTP),

where multiple concurrent users submit requests to the

system. It is a challenge for the database management

Intra-Query Parallelism I 1567

I

system to achieve high performance and maintain the

ACID properties in the presence of multiple concur-

rently executing requests or transactions.

Cross-references
▶ACID properties

▶ Intra-Operator Parallelism

▶ Intra-Query Parallelism

▶Operator-Level Parallelism

Recommended Reading
1. DeWitt D.J. and Gray J. Parallel database systems: the future

of high-performance database computing. Commun. ACM,

35(6):85–98, 1992.

2. Graefe G. Encapsulation of Parallelism in the Volcano

Query Processing System. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1990, pp. 102–111.
Interval-based Temporal Models

▶ Period-Stamped Temporal Models
Intra-operator Parallelism

ESTHER PACITTI

INRIA and LINA, University of Nantes, Nantes, France

Synonyms
Single instruction multiple data (SIMD) parallelism

Definition
Intra-operator parallelism enables an operator which

accesses some data to be executed by multiple nodes,

each working on a different partition of the data.

With intra-operator parallelism, the same operator is

applied to multiple partitions, thereby dividing the

response time by the number of nodes. Intra-operator

parallelism exploits the various forms of data place-

ment and dynamic partitioning using specific algo-

rithms for the different relational operators.

Key Points
Intra-operator parallelism is based on the decomposi-

tion of a relational operator into a set of independent

operator instances, each processing a different relation

partition. This decomposition is done using static or
dynamic partitioning of the relations. Static partition-

ing corresponds to the initial data placement and is

typically exploited by the select or scan operators.

Dynamic partitioning, i.e., repartitioning a relation a

different way, is useful for binary operators that are

costly. One main repartitioning solution is hashing on

some important attribute, e.g., join attribute. Intra-

operator parallelism is easier for unary operators

such as scan or select and more difficult for binary

operators such as join, in which case, more complex

parallel execution algorithms are necessary.

Cross-references
▶ Parallel Data Placement

▶ Parallel Query Execution Algorithms
Intra-Query Parallelism

NIKOS HARDAVELLAS, IPPOKRATIS PANDIS

Carnegie Mellon University, Pittsburgh, PA, USA

Synonyms
Query parallelism

Definition
Intra-query parallelism is a form of parallelism in the

evaluation of database queries, in which a single query

is decomposed into smaller tasks that execute concur-

rently on multiple processors.

Key Points
Intra-query parallelism is achieved when several pro-

cessors cooperate in the execution of a single query to

improve the query’s response time. Intra-query paral-

lelism is orthogonal to inter-query parallelism, in

which multiple independent requests execute concur-

rently on several processors to improve the overall

system throughput.

There exist two forms of intra-query parallelism:

operator-level parallelism and intra-operator parallel-

ism. Operator-level parallelism is obtained by executing

concurrently several operators of the same query. For

example, consider a simple query that consists of a scan

operator and an aggregation. The scan operator uses a

selection condition to filter tuples. The aggregation

calculates some statistics over all qualifying tuples.

Operator-level parallelism is obtained by executing

1568 I Intrinsic Time
concurrently the scan operation as a single task and the

aggregation as another, pipelining tuples from the scan

to the aggregation as soon as they are produced. To

realize this form of parallelism, all participating opera-

tors must be pipelineable. Non-pipelineable operators

cannot participate because they need their entire input

before executing, thereby halting the pipeline.

Intra-operator parallelism is obtained by executing

concurrently multiple instances of an operator, with

each instance working on a subset of the data. Intra-

operator parallelism is based primarily on partitioning

the input relation into non-overlapping data segments.

In the example above, intra-operator parallelism is

achieved by dividing the input relation into non-

overlapping data segments and executing the scan and

the aggregation of the segments in parallel, followed by

a final merge of the results. The interested reader is

referred to [1] and [2] asmore comprehensive readings.

Cross-references
▶Data Partitioning

▶ Inter-Query Parallelism

▶ Intra-Operator Parallelism

▶Operator-Level Parallelism

▶ Stop-&-Go Operator

Recommended Reading
1. DeWitt D.J. and Gray J. Parallel database systems: the future

of high-performance database computing. Commun. ACM,

35(6):85–98, 1992.

2. Graefe G. Encapsulation of parallelism in the volcano

query processing system. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1990, pp. 102–111.
Intrinsic Time

▶Valid Time
Intrusion Detection Technology

TYRONE GRANDISON, EVIMARIA TERZI

IBM Almaden Research Center, San Jose, CA, USA

Definition
Intrusion Detection (ID) is the process of monitoring

events occurring in a system and signalling responsible

parties when interesting (suspicious) activity occurs.
Intrusion Detection Systems (IDSs) consist of (i)

an agent that collects the information on the stream of

monitored events, (ii) an analysis engine that detects

signs of intrusion, and (iii) a response module that

generates responses based on the outcome from the

analysis engine.

Historical Background
The concept of ID has existed for decades in the

domains of personal home security, defense and early-

warning systems. However, automated IDSs emerged in

the public domain in 1980 [2] and sought to identify

possible violations of the system’s security policy by a

user or a set of users.

One of the basic elements of an IDS is the audit log

that captures the system activity. The initial IDSs ex-

posed to the academic community stored operating

system actions, i.e., addressed the operating system

layer. Over time, other IDSs have emerged that store

different artifacts, and try to identify intrusive beha-

viors at different layers of operation. The following

layers of operation can be easily identified:

Operating System: The logs in this layer contain

information from the kernel and other operating sys-

tem components and help determine if an attacker is

trying to compromise the OS.

Network: At the network layer, communication

data is analyzed to determine if an attacker is trying

to access one’s network.

Application: Application level IDSs examine the

operations executed in an application to ascertain if

the application is being manipulated to extract behav-

ior that is prohibited. Database-specific IDSs form an

important group of application-level IDSs. Examples

of such systems include Discovery [14] and RIPPER

[10]. Due to the sensitive information stored in data-

base systems, issues related to database-specific IDSs

were among the first to be addressed [3,9,15].

The above categorization is historical and mostly

depends on the type of log data the IDS uses in order to

identify abnormal patterns. Irrespective of the opera-

tional layer, the very basic detection techniques used by

different IDSs have some common basis, which are

described in the next section.

Foundations
A high-level categorization of IDSs is given along with

an abstract idea of how they work. For a more com-

plete discussion on IDSs see [1,8,13].

Intrusion Detection Technology I 1569

I

Traditionally, there are two basic approaches to

intrusion detection; anomaly detection and misuse de-

tection. In anomaly detection the goal is to define and

characterize legitimate behaviors of the users, and then

detect anomalous behaviors by quantifying deviations

from the former. However, identifying the distance

between anomalous and legitimate behaviors is a rather

difficult notion to quantify.

Anomaly detection can be static or dynamic. A static

anomaly detection system is based on the assumption

that there is a static portion of the system being moni-

tored. Static portions of the system can be represented as

a binary string or a set of binary strings (like files). If the

static portion of the system ever deviates from its original

form, either an error has occurred or an intruder has

altered the static portion of the system.

Dynamic anomaly detectors are harder to build

since building them requires a definition of behavior,

which is often defined as a sequence (or partially

ordered sequence) of distinct events. Differentiating

between normal and anomalous activity in dynamic

anomaly detection systems is much harder than the

problem of distinguishing changes in static elements.

Dynamic anomaly detection systems usually create a

base profile to characterize normal, acceptable behav-

ior. A profile usually consists of a set of observed

measures of behavior for a selected set of dimensions.

After initializing the base profile the dynamic anomaly

detection systems are similar to the static ones; they

monitor the behavior by comparing the current behav-

ior with that implied by the base profile. Typically,

there is a wide variation of acceptable behaviors and

statistical methods are employed to measure deviation

from the base profile. The main challenge in dynamic

anomaly detection systems is that they must build

accurate base profiles and then recognize behaviors

that significantly deviate from the profile.

The main advantage of dynamic anomaly detection

systems is that they do not require any configuration

since they automatically learn the behavior of large

number of subjects. Lacking prior knowledge of how

an intrusion would manifest itself anomaly detection

systems are capable of identifying novel intrusions or

variations of known intrusions. However, building base

profiles and defining measures of deviations from them

is not an easy computational task. For that reason it has

been an active area of research, in which several ma-

chine learning, time-series analysis and other data-

analysis techniques have been employed [3,4–7,11,12].
Misuse detection is concerned with identifying

intruders who are attempting to break into a system

using some known technique. If a system security

administrator was aware of all the known vulner-

abilities then a misuse detection system would be

able to identify their occurrences and eliminate

them. A fairly precisely known kind of intrusion is

known as intrusion scenario. A misuse detection system

compares current system activity to a set of intrusion

scenarios in an attempt to identify a scenario in

progress.

The differentiating factor between the variousmisuse

detection techniques is the model used for describing

bad behaviors that constitute intrusions. Rules have

been primarily used tomodel the system-administrator’s

knowledge about the system. Rule-based systems accu-

mulate large numbers of rules which usually prove

difficult to interpret and modify. In order to overcome

these problems model-based rule organizations and

state-transition representations were proposed. These

modeling approaches are more intuitive particularly

in misuse detection systems where users need to express

and understand scenarios.

The main advantage of a misuse detection systems

is that the system knows for a fact how normal behav-

ior should manifest itself. This leads to a simple and

efficient processing of the audit data. The obvious

disadvantage of such systems is that the specification

of the signatures to be detected is a time-consuming

task that requires lots of domain knowledge. At the

same time, misuse detection systems lack the ability to

identify novel intrusion profiles.
Key Applications
A generic classification of the types of attacks that ID

systems have traditionally tried to cope with are de-

scribed below. The classification is mainly inspired by

the one provided in [1].

� External break ins: When an unauthorized user tries

to gain access to a computer system.

� Masquerander (internal) attacks: When an authorized

user makes an attempt to assume the identity of

another user. These attacks are called also internal

because they are caused by already authorized users.

� Penetration attack: In this attack, a user attempts to

directly violate the system’s security policy.

� Leakage: Moving potentially sensitive data from the

system.

1570 I Inverse Document Frequency
� Denial of Service: Denying other users the use of

system resources, by making these resources un-

available to other users.

� Malicious use: Miscellaneous attacks such as file

deletion, viruses, resource hogging etc.
Future Directions
One of the major concerns associated with IDSs and

their utility is their run-time efficiency. More often

than not, IDSs consume too many system resources in

order to be effective. Developing resource-aware IDSs

systems raises some interesting challenges. One possible

way of addressing this concern is via building Mega

Intrusion Detection Systems. These would be systems

that simultaneously monitor all operational layers.

That is, the system administrator will not have to run

a different ID software for operating system and appli-

cation specific attacks, but just a single system that will

simultaneously be able to detect intrusions in all the

desired operational layers. Such systems are expected to

be less resource demanding, however their develop-

ment will certainly create several new design challenges.

This entry has mainly focused on IDSs and de-

scribed them as mechanisms that guarantee other sys-

tems’ security. However, IDSs are themselves systems

and as such they have their own security risks. There-

fore, they also require some protection to prevent an

intruder from manipulating the intrusion detection

system itself.
Recommended Reading
1. Axelsson S. Research in intrusion detection systems: a survey. In

Technical Report 98-17 (revised in 1999). Chalmers University

of Technology, 1999.

2. Bace R.G. Intrusion Detection. Macmillan Technical, New York,

2000.

3. Bertino E., Kamra A., Terzi E., and Vakali A. Intrusion detection

in rbac-administered databases. In Proc. Asia-Pacific Comp.

Syst. Arch. Conf., 2005, pp. 170–182.

4. Bertino E., Leggieri T., and Terzi E. Securing DBMS: characterizing

and detecting query floods. In Proc. 7th Int. Conf. on Informa-

tion Security, 2004, pp. 195–206.

5. Huang Y., Fan W., Lee W., and Yu P. Cross-feature analysis for

detecting ad-hoc routing anomalies. In Proc. 23rd Int. Conf. on

Distributed Computing Systems, 2003, pp. 478.

6. Kruegel C., Mutz D., Robertson W., and Valeur F. Bayesian event

classification for intrusion detection. In Proc. Asia-Pacific

Comp. Syst. Arch. Conf., 2003.

7. Lane T. and Brodley C.E. Temporal sequence learning and data

reduction for anomaly detection. ACM Trans. Inf. Syst. Secur.,

2(3):295–331, 1999.
8. Lee W. and Fan W. Mining system audit data: opportunities and

challenges. ACM SIGMOD Rec., 30(4):35–44, 2001.

9. Lee V.C.S., Stankovic J.A., and Son S.H. Intrusion detection

in real-time database systems via time signatures. In Proc.

IEEE Real Time Technology and Applications Symposium,

2000, pp. 124–133.

10. Lee W., Stolfo S.J., and Mok K.W. A data mining framework for

building intrusion detection models. In Proc. IEEE Symp. on

Security and Privacy, 1999, pp. 120–132.

11. Lee W. and Xiang D. Information-theoretic measures for anom-

aly detection. In IEEE Symp. on Security and Privacy, 2001,

pp. 130–143.

12. Ramadas M., Ostermann S., and Tjaden B.C. Detecting anoma-

lous network traffic with self-organizing maps. In Proc. 6th Int.

Symp. Recent Advances in Intrusion Detection, 2003, pp. 36–54.

13. Stolfo S.J., Lee W., Chan P.K., FanW., and Eskin E. Data mining-

based intrusion detectors: an overview of the columbia ids

project. ACM SIGMOD Rec., 30(4):5–14, 2001.

14. Tener W.T. Discovery: an expert system in the commercial data

security environment. In Proc. 4th IFIP TCII Int. Conf. on

Security, 1986, pp. 261–268.

15. Wenhui S. and Tan D. A novel intrusion detection system

model for securing web-based database systems. In Proc. 25th

Annual Int. Computer Software Applications Conf., 2001,

pp. 249–.
Inverse Document Frequency

IADH OUNIS

University of Glasgow, Glasgow, UK

Synonyms
IDF
Definition
The inverse document frequency (IDF) is a statistical

weight used for measuring the importance of a term in

a text document collection. The document frequency

DF of a term is defined by the number of documents in

which a term appears.
Key Points
Karen Sparck-Jones first proposed that terms with low

document frequency are more valuable than terms

with high document frequency during retrieval [2].

In other words, the underlying idea of IDF is that the

more frequently the term appears in the collection, the

less informative the term is.

Inverted Files I 1571

I

In its simplest form, the IDF weight of a term is

assigned as follows [3]:

IDF ¼ log2
N

DF
ð1Þ

where N is the number of documents in the collection,

and DF is the document frequency of the term, i.e., the

number of documents in which the term appears.

There have been different variations of the IDF

weight in the literature. For example, Robertson and

Walker proposed the following formula [1]:

IDF ¼ log
N � DF þ 0:5

DF þ 0:5
ð2Þ

where 0.5 is added to avoid having infinite values

brought by zero DF values.

Cross-references
▶ Probabilistic Ranking Principle

Recommended Reading
1. Robertson S.E. and Walker S. On relevance weights with little

relevance information. In Proc. 20th Annual International ACM

SIGIR Conference on Research and Development in Informa-

tion Retrieval, pp 16–24, 1997.

2. Sparck-Jones K. A statistical interpretation of term specificity

and its application in retrieval. J. Doc., 28(1):11–20, 1972.

3. Sparck-Jones K. Index term weighting. Inform. Storage Retr.,

9(11):619–633, 1973.
Inverse Element Frequency

▶Term Statistics for Structured Text Retrieval
Inverted Files

EDLENO SILVA DE MOURA
1, MARCO ANTONIO CRISTO

2

1Federal University of Amazonas, Manaus, Brazil
2FUCAPI, Manaus, Brazil

Synonyms
Inverted index; Full text inverted index; Postings file

Definition
An Inverted file is an index data structure that maps

content to its location within a database file, in a
document or in a set of documents. It is normally

composed of: (i) a vocabulary that contains all the

distinct words found in a text and (ii), for each word

t of the vocabulary, a list that contains statistics about

the occurrences of t in the text. Such list is known as

the inverted list of t. The inverted file is the most

popular data structure used in document retrieval sys-

tems to support full text search.

Historical Background
Efforts for indexing electronic texts are found in litera-

ture since the beginning of the computational systems.

For example, descriptions of Electronic Information

Search Systems that are able to index and search text

can be found in the early 1950s [4].

In a seminal work, Gerard Salton wrote a book in

1968, containing the basis for the modern information

retrieval systems [6], including a description of a model

largely adopted up to now for indexing texts, known as

Vector SpaceModel. The inverted file was adopted as the

index structure for implementing the Vector Space

Model. It has beenwidely applied and studied since then.

Foundations
Inverted files allow fast search for statistics related to

the distinct words found in a text. They are projected

for using words as the search unit, which restricts their

use in applications where words are not clearly defined

or in applications where the system does not use words

as the search unit.

The statistics stored in an inverted file may vary

according to the target application. Two alternatives

usually found in literature are to record the position of

all word occurrences in given text and to record general

statistics about the word occurrences across text units.

Indexing all the word occurrences is useful in applica-

tions where positional information should be taken

into account, such as when it is necessary to allow

search for phrases or proximity queries. Inverted files

that store word statistics are usually deployed in sys-

tems that adopt information retrieval models, such as

the Vector Space Model. In this particular case the text

is divided into units of information, usually docu-

ments. For instance, in web search engines, these

units are the pages crawled from the web, while the

whole set of pages compose the indexed text.

Querying a word in an inverted index consists in

first locating the word in the vocabulary and getting

the position of its inverted list. This operation can be

1572 I Inverted Files
performed in O(1) by using a hash algorithm. The

inverted list of the word is then accessed in order to

provide the search results. The vocabulary usually

requires a sub-linear space when compared to the size

of the inverted list, which makes it usually far smaller

than these lists.

Word occurrences are stored in inverted files for

applications where positional information should be

taken into account, such as when it is desirable to

provide support to phrase search or proximity queries.

To search for a phrase or proximity pattern (where the

words must appear consecutively or close to each

other, respectively), each word is searched separately.

Then, the resulting lists of occurrences are intersected

considering the consecutiveness or closeness of the

word positions in the text. The cost to perform such

type of queries can be reduced by adopting an auxiliary

data structure, known as next word index, which

includes information about the next word in the posi-

tional inverted list entries. This alternative can signifi-

cantly reduce the query processing times for phrase

queries. Another choice could be to index pairs of

consecutive words, but then the vocabulary would be

much larger, which would make this option unfeasible.

Building an Inverted File

The texts indexed nowadays by search systems are

usually too large for allowing the creation of inverted

files completely in main memory. Disk-based algo-

rithms for generating compressed inverted files have

been extensively studied in the literature. An example

is the multiway merging algorithm described in [7].
Inverted Files. Figure 1. A disk-based algorithm for building
An implementation of this algorithm can be per-

formed in three phases a, b, and c. In phase a, all

documents are sequentially read from disk and parsed

into index terms. This allows creating a perfect hashed

vocabulary and also allows the application of filtering

algorithms to remove undesired words from the index.

For instance, search systems usually remove frequent

words included in a pre-computed list, known as stop

words. Heuristics for removing typos can also be

adopted in this phase by analyzing the frequency of

occurrences of each word in the text. In phase b, all

documents are again sequentially read from disk and

again parsed into index terms. Triplets composed of an

index term number ki, a document number dj, and a

frequency fi,j are then formed and inserted into a buffer

B in main memory. Whenever this buffer fills (i.e.,

whenever a run is completed), the partial inverted

lists are sorted in decreasing order of the frequencies

fi,j (or another desired order according to the applica-

tion), and stored in a temporary file F. In phase c, a

disk-based multiway merge is done to combine the

partial inverted lists into final lists. The details are

shown in Fig. 1. Note that this example considers

that the index stores the frequency of each word in

each document. However, the algorithm can easily be

adapted to create an index to store word occurrence

positions or other type of statistics about the text,

according to the target application.

The sequential algorithm shown above uses two

passes for reading and parsing of the documents in the

collection. This allows building a perfect hashed vocab-

ulary which provides for direct access to any inverted
inverted files.

Inverted Files I 1573

I

list with no need to lookup at a vocabulary entry. Thus,

once the perfect hash has been built, it is no longer

necessary to keep the vocabulary in memory (all signifi-

cant memory consumption is now represented by the

buffer B which stores the inverted lists).

In cases where the text is too large, as it happ-

ens in search engines that try to index the whole

web, distributed algorithms should be adopted for

building inverted files. The current best alternative

for building distributed inverted files is also the

simplest solution. It partitions the text into small

sub-collections, each of them fitting in a single ma-

chine. A local index is built for each sub-collection;

when queries arrive, they are submitted to every sub-

collection and evaluated against every local index.

A final step merges the answers produced by each

individual machine yielding a single ranking of results

to the final users.

Compression

A technique to reduce the space requirements of

inverted files is to compress the index. The key idea

to reduce the size of inverted files is that the inverted

list entries related to each word can be sorted in

increasing order, and therefore the gaps between con-

secutive positions can be stored instead of the absolute

values. Then, compression techniques for small inte-

gers can be used. As the gaps are smaller for longer lists,

longer lists can be compressed better. Previous work

has shown that inverted files can be reduced up to 10%

of their original size without degrading the perfor-

mance, and even the performance may improve be-

cause of reduced I/O [7].

Another alternative for reducing the space require-

ments of an inverted file and the query processing

regarding the access to the index is to minimize the

number of indexed entries by applying static pruning

methods. Pruning methods try to avoid processing

index entries without cause loss of quality in the final

results produced by the search system. They can be

classified as dynamic and static. Dynamic methods

maintain the index completely stored on disk and use

heuristics to avoid reading unnecessary information

at query processing time. In this case, the amount

of pruning performed varies according to the user

queries, which represents an advantage, since the

methods can be better adapted to each specific query.

In contrast, static methods try to predict, at index

construction time, the entries which will not be useful
at query processing time. These entries are then

removed from the index. For this reason, static meth-

ods can be seen as lossy compression methods. Static

methods offer the advantage of both reducing the disk

storage costs and time to process each query. A system

that uses both static and dynamic methods can also be

implemented to take advantage of the two types of

pruning options [5].

Updating Operations

In applications where the indexed text changes over the

time, with portions being removed, added or changed

in the text, it is necessary to reflect such changes in the

inverted file. The simplest approach is to rebuild

the whole index, which may be acceptable if the

index can be updated offline and the indexing time

is small. However, if such conditions do not apply,

more sophisticated strategies should be adopted. Sev-

eral index maintenance strategies can be found in

literature [8]. They can be divided into three cate-

gories, with the index rebuilding being the first obvi-

ous choice. The second category is the intermittent

merge, where small indexes to register updates are

stored in main memory, making the update inexpen-

sive. In this case, the temporary main memory index

and the disk index should be merged at query proces-

sing time. A real update should be periodically per-

formed to avoid a memory overflow in the temporary

index. The third category is the incremental update. It

updates the main index term by term using a process

similar to the mechanisms used for maintaining

variable-length records in conventional database man-

agement systems.

Query Processing

The query processing over inverted files can be per-

formed in two distinct forms, being based on a term

order or on a document order basis [2]. In the term

order basis, each inverted list is processed one at a

time. The partial list of results obtained after proces-

sing each list is stored in memory, which means this

method may require additional memory. The second

form of processing queries is the document order

processing, where whenever a document information

is found in one of the lists, all information about this

document is automatically read from the remaining

inverted lists of terms present in the query. The docu-

ment ordering method requires the inverted lists to be

stored sorted by document number, or by occurrence

1574 I Inverted Index
when the index store all term occurrences. Previous

work indicate the term ordering method results in

faster query evaluation. However, for small queries,

which are common on many search applications, this

difference becomes smaller. A combination of docu-

ment order and term order may also be implemented,

by processing the inverted lists in blocks.

A final comment about query processing is that it

can be sped up by using cache strategies. At least three

distinct cache layers have been proposed in literature.

First, the system can adopt a cache of inverted lists to

keep the most frequent portions of the lists in memory.

Second, it can also be used a cache of results, which

takes the final results provided to the users in a cache.

Finally, a projection cache containing frequent inter-

sections of lists can also be adopted. Previous work in

literature conclude that these cache techniques can

significantly increase the maximum capacity of systems

for query processing [3].
Key Applications
Inverted files are by far the most applied indexing struc-

tures in text search systems. Such indexes are used, for

instance, in the popular large scale web search engines.
Cross-references
▶Compressed Inverted Files

▶ Information Retrieval Models

▶ Lossless Data Compression

▶Text Retrieval

▶Web Search and Crawling
Recommended Reading
1. Baeza-Yates R. and Ribeiro-Neto B. Modern Information

Retrieval. Addison Wesley, Reading, MA, 1999.

2. Kaszkiel M. and Zobel J. Term-ordered query evaluation

versus document-ordered query evaluation for large document

databases. In Proc. 21st Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1998,

pp. 343–344.

3. Long X. and Suel T. Three-level caching for efficient query

processing in large Web search engines. In Proc. 14th Int.

World Wide Web Conference, 2005, pp. 257–266.

4. Luhn H.P. A statistical approach to mechanized encoding and

searching of literary information. IBM J. Res. and Dev., 309–317,

October 1957.

5. de Moura E.S., dos Santos C.F., Fernandes D.R., Silva A.S.,

Calado P., and Nascimento M.A. Improving web search efficiency

via a locality based static pruning method. In Proc. 14th Int.

World Wide Web Conference, 2005, pp. 235–244.
6. Salton G. Automatic Information Organization and Retrieval.

McGraw-Hill, New York, NY, 1968.

7. Witten I., Moffat A., and Bell T. Managing Gigabytes, 2nd edn.

Morgan Kaufmann, Los Altos, CA, 1999.

8. Zobel J. and Moffat A. Inverted Files for Text Search Engines.

ACM Comput. Surv., 38(2):1–56, July 2006.
Inverted Index

▶ Inverted Files

▶Text Index Compression
Inverted Indexes

▶ Index Creation and File Structures
IP Storage

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Definition
IP Storage is a storage device which has the capability

of communicating over an IP network. The term IP

Storage is usually identified with a storage device

which provides block-level I/O services rather than

file access services. Derived from the original meaning,

the term IP Storage is sometimes used to refer to an IP

SAN.

Key Points
The benefit of utilizing IP technology is its cost effi-

ciency. Having been used for several decades, IP tech-

nology is highly mature. IP family protocols have been

standardized and cheap hardware products have wide

interoperability. The market has a number of excellent

administration tools and educated administration per-

sonnel for IP technology. Designing and operating

SANs on top of IP technology is much cheaper and

easier than with Fiber Channel technology. Thus IP

technology is sometimes considered to be replacement

of Fiber Channel technology in entry-level SANs.

Internet SCSI (iSCSI), Internet Fiber Channel Pro-

tocol (iFCP) and Fiber Channel over Internet Protocol

Iterator I 1575

I

(FCIP) are three major network protocols used for IP

Storage. iSCSI transmits the SCSI protocol over IP

networks by encapsulating SCSI data in TCP/IP pack-

ets. That is, the idea of iSCSI is to replace classical SCSI

bus cables with IP networks. iSCSI is used mainly for

transferring data between servers and storage devices

and among storage devices. A storage device which

communicates over the iSCSI protocol is often called

an iSCSI target, whereas a server which accesses such

an iSCSI device is called an iSCSI initiator. In contrast,

iFCP and FCIP can encapsulate Fiber Channel frames

in TCP/IP packets. These protocols are usually imple-

mented in network devices such as Fiber Channel

switches and routers, thus enabling bridging two or

more Fiber Channel SANs by the use of IP networks.

Although iSCSI and iFCP/FCIP are both IP storage

techniques, they are used in real systems in different

ways. That is, iSCSI is mainly used for constructing a

local SAN at low cost, whereas iFCP and FCIP are

utilized for integrating remote Fiber Channel SANs

(often called SAN islands.)

Cross-references
▶ Storage Network Architectures

Recommended Reading
1. Clark T. IP SANS: A Guide to iSCSI, iFCP, and FCIP Protocols

for Storage Area Networks. Addison-Wesley Professional,

Reading, MA, 2001.

2. Troppens U., Erkens R., and Müller W. Storage Networks

Explained. Wiley, New York, 2004.
ISAM File

▶ Index Sequential Access Method (ISAM)
iSCSI

▶ Storage Protocols
ISO 19136

▶Geography Markup Language
Isolation

▶ACID Properties

▶Two-Phase Locking
Iteration

▶ Loop
Iterator

EVAGGELIA PITOURA

University of Ioannina, Ioannina, Greece

Synonyms
Iterator; Cursor; Synchronous pipelines

Definition
In general terms, a physical operator is an implemen-

tation of a relational operator. For a relational opera-

tor, there are many alternative physical operators that

implement it, for instance, sort-merge and hash-join

provide alternative algorithms for implementing join.

The query execution engine provides generic imple-

mentations of all physical operators. Typically, each

physical operator supports a uniform iterator interface

that hides any internal implementation details and

allows operators to be combined together. The iterator

interface includes the functions: (i) open() that pre-

pares an operator to produce data, (ii) next() that

produces an output tuple, and (iii) close() that per-

forms the final bookkeeping.

Key Points
During query processing, an input query is trans-

formed to a plan to be executed by the query execution

engine. An execution plan can be thought of as a data-

flow graph where the nodes correspond to the physical

operators and the edges represent the data flow among

the physical operators. Generally speaking, a physical

operator is an implementation of a relational operator,

for instance, sort-merge and hash-join are physical

operators providing alternative algorithms for the

1576 I Iterator
implementation of join. The query execution engine

provides generic implementations of all physical

operators. A plan is executed by calling its physical

operators in some (possibly interleaved) order. In

most modern database systems, each physical operator

supports a uniform iterator interface that allows an

operator in the plan to get results from its input

operators one tuple at a time, hiding the internal

implementation details of each operator.

The iterator interface for an operator includes the

functions open(), next(), and close(). The open() func-

tion initializes the state of the operator by allocating

the appropriate input and output buffers and passing

any related arguments. The code for the next() func-

tion calls the next() function recursively on each input

operator until an output tuple is generated. The state

of the operator keeps track of how much input has

been consumed. Finally, when all output tuples have

been produced, through repeated calls of the next()

function, the close() function deallocates the state in-

formation and performs any other final bookkeeping.

By providing a common interface to all physical

operators, any two physical operators can be plugged
together. Furthermore, the iterator interface supports a

pipeline model for the execution of the plan.

The iterator interface is also employed to encapsu-

late access methods such as the various kinds of indexes

that the database system supports. In this case, open()

can be used to pass the corresponding selection condi-

tion. Finally, parallelism and network communications

can be encapsulated within special exchange iterators.
Cross-references
▶Access Path

▶ Evaluation of Relational Operators

▶ Pipelining

▶Query Plan
Recommended Reading
1. Graefe G. Query evaluation techniques for large databases. ACM

Comput. Surv., 25(2): 73–170, 1993.

2. Hellerstein J.M., Stonebraker M., and Hamilton J. Architecture

of a database system. Found. Trends Databases, 1(2):141–259,

2007.

3. Ramakrishnan R. and Gehrke J. Database Management Systems.

McGraw-Hill, New York, 2003.

J

J2EE

▶ Java Enterprise Edition (JEE)
Java Annotations

▶ Java Metadata Facility
Java Application Server

▶Application Server
Java Database Connectivity

CHANGQING LI

Duke University, Durham, NC, USA

Synonyms
JDBC

Definition
Java Database Connectivity (JDBC) [1] is an Applica-

tion Programming Interface (API) for the Java pro-

gramming language that enables Java programs to

execute Structured Query Language (SQL) statements

and defines how an application accesses a database.

JDBC provides methods to query and update data in

a database. Different from ODBC (Open Database

Connectivity), JDBC is oriented towards relational

databases only.
Key Points
JDBC (pronounced as separate letters) is similar to

ODBC, but it is designed specifically for Java programs,
2009 Springer ScienceþBusiness Media, LLC
whereas ODBC is language-independent. The Java Stan-

dard Edition includes the JDBC API as well as an ODBC

implementation of the API enabling connections to any

relational database that supports ODBC [1].

JavaSoft, a subsidiary of Sun Microsystems, devel-

oped JDBC. Since the release of Java Development Kit

(JDK) 1.1, JDBC has been part of the Java Standard

Edition. JDBC has been developed under the Java

Community Process since version 3.0. JDBC 3.0 (includ-

ed in Java 2 Standard Edition (J2SE) 1.4) is specified

by Java Specification Request (JSR) 54, the JDBCRowset

additions are specified by JSR 114, and JDBC 4.0

(included in Java Standard Edition 6) is specified by

JSR 221.

Multiple implementations of JDBC can exist and

can be used by the same application. A mechanism is

provided by the API to dynamically load the correct

Java packages and register them with the JDBC Driver

Manager, a connection factory for creating JDBC

connections.

Creating and executing statements are supported

by JDBC connections. These statements may either be

update statements such as SQL CREATE, INSERT,

UPDATE and DELETE or be query statements using

the SELECT statement. In addition, a statement may

invoke a stored procedure.

Because Java itself runs on most platforms, and

since nearly all relational database management sys-

tems (DBMSs) support SQL, JDBC makes it possible

to write a single database application that can run

across different DBMSs on different platforms.

Cross-references
▶Data Integration

▶Database Adapter and Connector

▶ Interface

▶ .NET Remoting

▶Open Database Connectivity

▶Web 2.0/3.0

▶Web Services

1578J Java EE
Recommended Reading
1. Hamilton G., Cattell R., and Fisher M. JDBC Database Access

with Java: A Tutorial and Annotated Reference. Addison Wesley,

Boston, MA, USA, 1997.
Java EE

▶ Java Enterprise Edition (JEE)
Java Enterprise Edition

RICARDO JIMENEZ-PERIS, MARTA PATIeNO-MARTINEZ

Universidad Politecnica de Madrid, Madrid, Spain

Synonyms
J2EE; Java EE; JEE

Definition
Java EE (JEE) is a Java Community Process (JCP) speci-

fication for Java application servers. JEE consists of a set

of related specifications and APIs that shapes an ecosys-

tem for building Java distributed applications over a

multi-tier architecture, including web, business logic,

and storage tiers. JEE provides components specific for

each tier. JEE provides servlets and Java Server Pages

(JSPs) for the web tier, Enterprise Java Beans (EJBs) for

the business logic tier, and a data driver (JDBC) and an

object-relationalmapping (via entity beans) for the stor-

age tier. Components can be distributed at different sites

and interact with each other. The interaction among
Java Enterprise Edition. Figure 1. JEE multi-tier architecture
distributed JEE components is achieved via RMI

(Remote Method Invocation), the JEE specification for

remote procedure calls. In its latest editions, JEE has

been smoothly integrated with XML processing and

web services. It is possible to program web services

using EJBs and a large set of APIs enable a standard

way to effectively manipulate XML. JEE covers all im-

portant non-functional aspects such as transactions,

security, etc. Transactions are core to JEE and are con-

sidered across all tiers in a consistent fashion through

the Java Transaction Service and API (JTS/JTA). A num-

ber of specifications address various security issues

such as authentication (JAAS, Java Authentication and

Authorization Service), encryption, and so on.

Key Points
The JEE project originated back in 1998 when the

JPE (the original name) initiative was announced by

Sun Microsystems. J2EE 1.2 was released in Dec. 1999.

The following versions have been released almost every

two years, J2EE 1.3 in Sept. 2001 (1.3 was the first

version to be developed as a JCP specification), J2EE

1.4 in Nov. 2003, JEE 1.5 (with version 1.5 J2EE was

renamed as JEE) in May 2006, and JEE 1.6 is expected

to be released sometime in 2008.

JEE is a multi-tier middleware framework to pro-

gram all kinds of applications based on the Java lan-

guage. Multi-tier architectures have become widely

used since they allow an adequate separation of con-

cerns. Each tier has a specific container with a compo-

nent model tailored to the specific mission of the tier.

Some of the most common tiers are: web tier, business

logic tier, and persistent storage tier.
.

Java Enterprise Edition J 1579

J

Figure 1 depicts a typical JEEmulti-tier architecture.

Clients interact with the system via the web server tier.

The web server tier then delegates the business logic to

the application server tier. The JEE application server tier

can consist of multiple servers, that is, be distributed.

Then, the persistent data are kept in the database

tier. The data can be kept in multiple distributed data-

bases. The database instances can be shared across appli-

cation servers. Transactions are used to enforce data

consistency across the entire system despite concurrent

accesses to the data. Transactions also protect data

against server failures providing failure atomicity.

For the web tier, JEE provides a component model

for generating dynamic web content. This component

model is based on Java Server Pages (JSPs) and servlets.

JSPs provide a high level abstraction for dynamic con-

tent, whilst servlets provide a lower level view. In fact,

JSPs are translated into servlets. Servlet containers are

specialized web servers that support servlet execution.

Typically servlets deal with the presentation aspects of

an application and they are specialized to render dy-

namic web contents to users. Servlets delegate the

business logic to the application server tier, that is,

to the JEE application server.

The JEE application server provides a component

model for writing general applications. The compo-

nents in the JEE component model are termed Enter-

prise Java Beans (EJBs). Two different kinds of EJBs are

distinguished: session beans and entity beans. Session

beans enable to encapsulate the interaction with users.

There are two flavors: stateless and stateful session

beans. Stateless session beans provide support for

non-conversational interactions, whilst stateful session

beans support conversational interactions. Stateless

session beans are instantiated per client invocation

and their state is discarded after processing the client

request that triggered their instantiation. On the other

hand, stateful session beans are created upon the first

client invocation and then, they are kept during all the

client conversation. Their state enables to tracking of

the status of the interaction across invocations (e.g., a

shopping cart). From JEE 1.5, it is also possible to

persist POJOs (Plain Old Java Object, that is, a Java

Object) using JPA (Java Persistent API) without the

need of a JEE application server.

JEE provides twomodels of interactionwith the data-

base: explicit and implicit. In the explicit model of inter-

action the EJBs access the database directly via a JDBC

driver. The JDBC driver abstracts the database specifics of
the underlying implementation providing a uniformven-

dor-independent interface. However, the object oriented

paradigm has a different style than the relational model

(thewell-known object-relational impedancemismatch)

that forces programmers to write a lot of repetitive code

prone to errors to create queries and to transform query

results into objects. The object-relational mapping

(ORM) approach addresses this impedance mismatch

by offering the programmer a view of an object oriented

database, eliminating the need to write code.

The database tier access can be explicit via JDBC

commands or implicit by using the object-relation

mapping (ORM) of JEE. Explicit access implies issuing

JDBCcommandswith SQL statements anddealing direct-

ly with the results sets returned by JDBC. Implicit access

via ORM enables access to the persistent state using the

object-oriented paradigm. Tuples are modeled as special

kind of JEE components, entity beans, that are accessed as

regular objects. Entity beans provide an object-oriented

cache of the database. The JEE system takes care of updat-

ing the database and implementing the necessary concur-

rency control to provide transactional serializability.

JEE also provides support for the publish-subscribe

paradigm. For that purpose it provides a specific

component model and the associated container, Java

Message Service (JMS). JMS provides message-driven

beans that are components that are activated upon the

reception of a particular kind of message. Message-

driven beans can be invoked by client applications and

EJBs and they can also invoke other EJBs. JMS provides

an asynchronous interaction model that complements

the synchronous one provided by EJBs and RMI.

In the last few years, a number of initiatives have

tried to simplify JEE development. One of the initia-

tives with highest impact has been the Spring frame-

work [2]. Spring provides a lightweight approach to

JEE simplifying the development of JEE applications.

Spring is based heavily on programming interfaces (as

opposed to programming objects) and the use of as-

pect oriented programming. Spring has inspired some

of the major changes in JEE 1.5 and 1.6.

Cross-references
▶Replication in Multi-Tier Architectures

Recommended Reading
1. JSR 316: JavaTM Platform, Enterprise Edition 6 (Java EE 6)

Specification. http://jcp.org/en/jsr/detail?id=316

2. Spring Framework. http://springframework.org/

1580J Java Metadata Facility
Java Metadata Facility

DAVID BUTTLER

Lawrence Livermore National Laboratory, Livermore,

CA, USA

Synonyms
Java metadata facility; JSR 175; Java annotations

Definition
The Java Metadata Facility is introduced by Java Spec-

ification Request (JSR) 175 [1], and incorporated into

the Java language specification [2] in version 1.5 of

the language. The specification allows annotations on

Java program elements: classes, interfaces, methods,

and fields. Annotations give programmers a uniform

way to add metadata to program elements that can be

used by code checkers, code generators, or other com-

pile-time or runtime components.

Annotations are defined by annotation types. These

are defined the same way as interfaces, but with the

symbol ‘‘@’’ preceding the ‘‘interface’’ keyword. There

are additional restrictions on defining annotation types:

1. They cannot be generic.

2. They cannot extend other annotation types or

interfaces.

3. Methods cannot have any parameters.

4. Methods cannot have type parameters.

5. Methods cannot throw exceptions.

6. The return type of methods of an annotation type

must be a primitive, a String, a Class, an annotation

type, or an array, where the type of the array is

restricted to one of the four allowed types.

See [2] for additional restrictions and syntax.

The methods of an annotation type define the

elements that may be used to parameterize the anno-

tation in code. Annotation types may have default

values for any of its elements. For example, an annota-

tion that specifies a defect report could initialize an

element defining the defect outcome to ‘‘submitted.’’

Annotations may also have zero elements. This could

be used to indicate serializability for a class (as op-

posed to the current Serializability interface).
Key Points
There are several annotation types that are predefined

in the Java 1.5 programming language: ‘‘@Override,’’
‘‘@Deprecated,’’ and ‘‘@SuppressWarnings’’ are the

most common ones.

‘‘@Override’’ indicates that a method in a subclass

overrides a method from its superclass, as opposed to

overloading it. This is an example of an annotation

with zero elements. A common, yet difficult to identify,

error in writing Java classes occurs when a programmer

overloads the equalsmethod, rather than overriding

it. This leads to errors that are difficult to track down.

‘‘@Deprecated’’ indicates that a class or method has

been deprecated and that programmers should use an

alternative. This replaces the javadoc ‘‘@deprecated’’

tag that served the same purpose.

‘‘@SuppressWarnings’’ indicates that a compiler

should not report warnings of a particular type. This

particular annotation requires an element, such as

‘‘@SupressWarnings(‘unchecked’),’’ defining the type

of warning to ignore for the annotated compilation

unit. Warning types are defined by the compiler and

are not specified in the Java language specification.

Cross-references
▶Metadata

Recommended Reading
1. Coward D. JSR 175: A Metadata Facility for the Java™ Program-

ming Language, 2004. http://jcp.org/en/jsr/detail?id=175

2. Gosling J., Joy B., Steele G., and Bracha G. The Java™ Language

Specification. Prentice Hall, NJ, USA, 2005.
JD

▶ Join Dependency
JDBC

▶ Java Database Connectivity
Join

CRISTINA SIRANGELO

University of Edinburgh, Edinburgh, Scotland, UK

Definition
The join is a binary operator of the relational algebra

that combines tuples of different relations based on a

Join Dependency J 1581

J

relationship between values of their attributes. The

primitive version of the join operator is called natural

join. Given two relation instances R1, over set of attri-

butes U1, and R2 over set of attributes U2, the natural

join R1 ⋈ R2 returns a new relation, over set of attri-

butes U1 [U2, consisting of tuples {t jt(U1) 2 R1 and

t(U2) 2 R2}. Here t(U) denotes the restriction of the

tuple t to attributes in the set U.

A derivable version of the join operator is obtained

by composing the natural join with the selection

operator s: the theta-join R1 ⋈y R2 is defined as

sy(R1 ⋈ R2), where y is an arbitrary condition allowed

in a generalized selection over set of attributes U1 [U2.

In the case that y is a conjunction of equality atoms of

the form A = B, where A is an attribute in U1 and B an

attribute in U2, the theta-join is called equijoin.

Another derivable join operator is the semijoin,

denoted by R1 ⋉ R2; it is defined as pU1
R1 ffl R2ð Þ,

where pU 1
denotes the projection on attributes U1.

Key Points
In the natural join R1⋈R2, tuples of R1 and R2 having

the same values of common attributes are combined. If

the sets of attributes of R1 and R2 are disjoint, R1 ⋈ R2

coincides with the cartesian product.

The natural join is often used to combine tuples

based on attributes correlated by a foreign key-

constraint: consider a relation Students over attributes

(student-number, student-name), containing tuples

{(1001, Black), (1002, White)}, and a relation Exams

over attributes (course-number, student-number,

grade), containing tuples {(EH1, 1001, A), (EH1,

1002, A), (GH5, 1001, C)}. Then the natural join Stu-

dents ⋈ Exams is a relation over attributes (student-

number, student-name, course-number, grade) with

tuples {(1001, Black, EH1, A), (1001, Black, GH5, C),

(1002, White, EH1, A)}.

In the absence of attribute names the only primitive

notion of join is the cartesian product. In this case

operators of theta-join and equijoin can be derived

by composing selection and cartesian product. More

precisely, if y is a boolean combination of atoms of the

form j a k with j � arity(R1) and k � arity(R2) and

a 2{=, 6¼,<,>,�,�}, then the theta-join R1 ⋈y R2 in

the unnamed algebra is defined as sy0(R1 � R2), where

y0 is obtained from y by replacing each atom j a k with

ja(arity(R1) + k).

In each of the join operators described above (ex-

cept the semijoin) there can be tuples of the input
relations which do not occur in the output, because

they satisfy the join conditionwith no tuple of the other

relation. The left (right) outer join adds to the join of R1

and R2 all tuples of R1 (R2) not occurring in the join,

completed with nulls on attributes of R2 (R1). The full

outer join adds both tuples of R1 and R2 to the join.

Cross-references
▶Cartesian Product

▶ Foreign Key

▶ Projection

▶Relation

▶Relational Algebra

▶ Selection
Join Dependency

SOLMAZ KOLAHI

University of British Columbia, Vancouver, BC,

Canada

Synonyms
JD

Definition
A join dependency (JD) over a relation schema R[U]

is an expression of the form ⋈ [X1,...,Xn], where

X1 [. . . [Xn = U. An instance I of R[U] satisfies ⋈
[X1,...,Xn] if I ¼ pX1

ðIÞ ffl :::ffl pXn
ðIÞ. In other words,

an instance satisfies the join dependency if it is equal

to the join of its projections on the sets of attributes

X1,...,Xn. A multivalued dependency X !! Y is

a special case of a join dependency on two sets, and

can be expressed as ⋈ [XY, X(U � XY)], where XY

represents X [Y .

Key Points
Join dependencies are particularly important in con-

nection with the decomposition technique for schema

design and normalization. The main goal of the

decomposition technique is to avoid redundancies

due to data dependencies by decomposing a relation

into smaller parts. A good decomposition should have

the lossless join property, meaning that no information

should be lost after the decomposition. In other words,

the original database instance should be retrievable by

joining the smaller relations, and this can be expressed

1582J Join Index
by a JD. The following figure shows an instance of the

relation schema R[A, B, C, D] that satisfies the join

dependency ⋈ [BC, AB, AD]:
Join dependencies are usually considered together

with functional and multivalued dependencies (FDs

and MVDs) in normalization. The implication prob-

lem of a JD from a set of JDs, MVDs, and FDs is

known to be NP-hard. In addition, the implication

problem of JDs cannot be axiomatized. That is, there

is no sound and complete set of rules that can be used

to check whether a dependency is implied by a set of

JDs. However, there is a powerful tool, called chase,

that could be used to reason about these dependencies

in exponential time and space [1].

Cross-references
▶ Functional Dependency

▶ Join

▶Multivalued Dependency

▶Normal Forms and Normalization

▶ Projection

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases.

Addison-Wesley, Reading, MA, 1995.
Join Index

THEODORE JOHNSON

AT&T Labs – Research, Florham Park, NJ, USA

Definition
A join index is a collection of pairs {(r, s)} such that the

record in table R with record ID (RID) r joins with

the record in table S with RID s, according to the join

predicate which defines the index.

Key Points
The purpose of a join index is to accelerate common

joins, even equijoins. One of the advantages of join

indices is that they can be represented in a very
compact way, allowing for highly efficient access. For

example, suppose that the DBMS is to evaluate a query,

‘‘Select R.a from R,S where R.a = S.b.’’ A conventional

join would use a nested loop algorithm, with an

indexed scan in the inner loop. With a join index, the

join can be computed by scanning the join index, thus

minimizing random I/O.

There are a variety of ways of implementing a join

index. One can list pairs (clustered on R or clustered

on S), or in the case of an equijoin, associate R and S

RIDs with attribute values. The example below shows

the join index for R.a = S.b, organized as a list of pairs.

R:a S:b Join Index

0

1

2

3

4

5

6

7

12

8

14

7

8

12

1

14

0

1

2

3

4

5

6

7

8

9

8

2

3

8

14

9

5

12

11

14

ð0; 7Þ
ð1; 0Þ
ð1; 3Þ
ð2; 4Þ
ð2; 9Þ
ð2; 9Þ
ð4; 0Þ
ð4; 3Þ
ð5; 7Þ
ð7; 4Þ
ð7; 9Þ

Cross-references
▶ Join

▶ Star Index

Recommended Reading
1. Li Z. and Ross K.A. Fast joins using join indices. VLDB J.,

8(1):1–24, 1999.

2. Valduriez P. Join indices. ACM Trans. Database Syst.,

12(2):218–246, 1987.
Join Indices

▶ Star Index
Join Order

JINGREN ZHOU

Microsoft Research, Redmond, WA, USA

Synonyms
Join order; Join sequence

JSR 175 J 1583

J

Definition
A database query typically contains multiple joins.

When joins (for example, inner joins) are commutative

and/or associative, there can more than one evalua-

tion order for joins. The join order has an enor-

mous impact on the query cost. One of the main

responsibilities of the query optimizer is to determine

the optimal join order for query evaluation.

Key Points
Choosing a good join order is very important to

achieve a good query performance. One important

consideration for choosing an join order is to reduce

the size of intermediate results as much as possible. For

example, it is beneficial to first evaluate a join that

returns the least result. Other considerations include

join methods, data properties, and access methods, etc.

Depending on the choice of join orders, query

plans can be of different shapes.

� Left-Deep query plans use a base table as the inner

table for each join.

� Right-Deep query plans use a base table as the outer

table for each join.

� Bushy query plans use the intermediate result from

other joins as join inputs.

Query optimizers typically use dynamic programming

and heuristics to determine join orders.
Cross-references
▶ Parallel Join Algorithms

▶Query Optimization

▶ Evaluation of Relational Operators
Recommended Reading
1. Mishra P. and Eich M.H. Join processing in relational databases.

ACM Comput. Surv., 24(1):63–113, 1992.

2. Selinger P.G., Astrahan M.M., Chamberlin D.D., Lorie R.A.,

and Price T.G. Access path selection in a Relational Database

Management System. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1979, pp. 23–34.
Join Processing

▶Distributed Join
Join Sequence

▶ Join Order
JSR 175

▶ Java Metadata Facility

K

k-Anonymity

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona,

Catalonia

Synonyms
p-Sensitive k-Anonymity

Definition
A protected dataset is said to satisfy k-anonymity for

k > 1 if, for each combination of key attribute values

(e.g., address, age, gender, etc.), at least k records exist

in the dataset sharing that combination [2,3].

Key Points
If, for a given k, k-anonymity is assumed to be suffi-

cient protection, one can concentrate on minimi-

zing information loss with the only constraint that

k-anonymity should be satisfied. This is a clean way

of solving the tension between data protection and

data utility. Since k-anonymity is usually achieved via

generalization (equivalent to global recoding, as said

above) and local suppression, minimizing information

loss usually translates to reducing the number and/or

the magnitude of suppressions.

k-Anonymity bears some resemblance to the under-

lying principle of microaggregation and is a useful con-

cept because quasi-identifiers are usually categorical or

can be categorized, i.e., they take values in a finite (and

ideally reduced) range. However, re-identification is not

necessarily based on categorical key attributes: some-

times, numerical outcome attributes (which are contin-

uous and often cannot be categorized) give enough clues

for re-identification. Microaggregation was suggested as

a possible way to achieve k-anonymity for numerical,

ordinal and nominal attributes [1].
2009 Springer ScienceþBusiness Media, LLC
p-Sensitive k-anonymity is a stronger property

whereby it is required that a dataset is k-anonymous

and additionally that there are at least p distinct values

for each confidential attribute within a group of

records sharing a combination of key attributes [4].
Cross-references
▶Global Recoding

▶ Inference Control in Statistical Databases

▶ Local Suppression

▶Microaggregation

▶Microdata
Recommended Reading
1. Domingo-Ferrer J. and Torra V. Ordinal, continuous and het-

erogenerous k-anonymity through microaggregation. Data

Mining Knowl. Discov., 11(2):195–212, 2005.

2. Samarati P. Protecting respondents’ identities in microdata re-

lease. IEEE Trans. Knowl. Data Eng., 13(6):1010–1027, 2001.

3. Samarati P. and Sweeney L. Protecting privacy when disclosing

information: k-anonymity and its enforcement through gener-

alization and suppression. Technical report, SRI International,

1998.

4. Truta T.M. and Vinay B. Privacy protection: p-sensitive

k-anonymity property. In Proc. 2nd Int. Workshop on Privacy

Data Management, 2006, p. 94.
k-Closest Pair Join

▶Closest-Pair Query
k-Closest Pair Query

▶Closest-Pair Query

1586K KDD Pipeline
KDD Pipeline

HANS-PETER KRIEGEL, MATTHIAS SCHUBERT

Ludwig-Maximilians-University, Munich, Germany

Synonyms
KDD process; Data mining process; Data mining

pipeline

Definition
The KDD pipeline describes the complete process of

knowledge discovery in databases (KDD), i.e., the pro-

cess of deriving useful, valid and non-trivial patterns

from a large amount of data. The pipeline consists of

five consecutive steps:

Selection

The selection step identifies the goal of the current

application and selects a data set that is likely to con-

tain relevant patterns.

Preprocessing

The preprocessing step increases the quality of the data

set by supplementing missing attributes, removing

duplicate instances and resolving data inconsistencies.

Transformation

The transformation step deletes correlated and irrele-

vant attributes and derives new more meaningful attri-

butes from the current data description.

Data Mining

This step selects a data mining algorithm with respect

to the goal which was identified in the selection step

and derives patterns or learns functions that are valid

for the current data set.
KDD Pipeline. Figure 1. Schema of the KDD pipeline.
Evaluation and Interpretation

In the last step, the found patterns are checked with

respect to their validity. Furthermore, the user exam-

ines the usefulness of the found knowledge for the

given application.

The quality of the found patterns depends on the

methods being employed in each of these steps. Thus,

the pipeline is usually repeated after adjusting the

parametrization or even exchanging the methods in

any of these steps until the quality of the results is

sufficient. Figure 1 illustrates the complete KDD

pipeline.
Key Points
The KDD pipeline was originally introduced as

KDD process [1–3]. It describes a unifying framework

containing all necessary and optional steps when

deriving patterns using data mining algorithms. An

important aspect of this view is that data mining

is just one step in the complete KDD process, which

emphasizes the importance of a meaningful and con-

sistent data representation. The KDD pipeline is

considered to be an interactive and adjustable frame-

work rather than a strict work flow. The necessity for

this flexibility arises from the large variety of methods

and parameter selections that can be applied in each

step. In the majority of cases, it is necessary to adjust

parameters or even exchange the applied method in

one of the steps if the final patterns do not display

satisfactory quality in the evaluation step. Further-

more, the borders of each step cannot be outlined in

a strict manner because the quality of results strongly

depends on a well selected combination of the methods

applied in each step. Additionally, there exist methods

fulfilling the tasks of two consecutive steps, e.g., trans-

formation and data mining.

Key K 1587
Cross-references
▶Data Mining

▶Knowledge Discovery

▶OLAP

Recommended Reading
1. Brachman R. and Anand T. The process of knowledge discovery

in databases: a human centered approach. In Proc. 10th National

Conf. on AI, 1996, pp. 37–38.

2. Fayyad U., Piatetsky-Shapiro G., and Smyth P. From data

mining to knowledge discovery in databases. In Proc. 10th

National Conf. on AI, 1996, pp. 1–30.

3. Fayyad U., Piatetsky-Shapiro G., and Smyth P. Knowledge

discovery and data mining: towards a unifying framework.

In Proc. 2nd Int. Conf. on Knowledge Discovery and Data

Mining, 1996, pp. 82–88.
K

KDD Process

▶KDD Pipeline
k-Distance Join

▶Closest-Pair Query
Key

DAVID W. EMBLEY

Brigham Young University, Provo, UT, USA

Synonyms
Uniqueness constraint

Definition
In the relational model, a key for a relational schema

is a set of attributes whose value(s) uniquely identify

a tuple in a valid instance of the relation. Said another

way, key value(s) appear at most once in a relation.

Often the set of attributes constituting a key is a

set with a single attribute. For example, in the relation

Customer
ðCustomerID Name AddressÞ
11111 Pat 12 Maple

22222 Tracy 44 Elm
the singleton set consisting of just CustomerID is a key

and so is the set consisting of the pair of attributes

(Name, Address). The values of CustomerID (here,

11111 and 22222) each uniquely identify a tuple. In

any valid instance for this relation, no CustomerID-

value may appear twice. Similarly, the pair (Name,

Address) is a key. Pairs of (Name, Address) values

(e.g., <Pat, 12 Maple >) uniquely identify a tuple,

and no value pair may appear twice.

Designating a set of attributes as a key is a pro-

perty of a relational schema, not a property of a rela-

tion instance. It may just happen that for some valid

relation instances a value uniquely identifies a tuple,

but a key must always uniquely identify a tuple for all

valid relations. In this example, Pat and Tracy uniquely

identify tuples, but it would also be valid for another

Tracy, say, one living at 905 Lincoln Ave., to be a

customer. Although Name uniquely identifies tuples

in this Customer table instance, Name does not

uniquely identify tuples in all valid Customer table

instances and thus is not a key for the Customer

relational schema.
Key Points
The term key is often ambiguous and may mean mini-

mal key, superkey, primary key, or candidate key. A

minimal key is a key that does not have superfluous

attributes. Clearly, in the sample relational schema

above, CustomerID together with Name uniquely iden-

tify a customer because CustomerID alone is enough.

Name is superfluous, and thus the set consisting of

the pair of attributes (CustomerID, Name) is not a

minimal key. The set consisting of the pair of attributes

(Name, Address), however, is a minimal key. Both are

necessary – in the table above, for example, both

<Tracy, 905 Lincoln Ave. > and <Lynn, 12 Maple >

could appear so that neither Name alone nor Address

alone would uniquely identify a tuple. Usually only min-

imal keys are of interest. Keys that may not be minimal

are called superkeys. A superkey is any set of attributes,

minimal or not, that uniquely identifies a tuple in any

valid relation instance. A relational schema may

have several minimal keys. The sample Customer rela-

tional schema above, for example, has two minimal

keys – CustomerID and the pair (Name, Address).

When there are several minimal keys, one is chosen

as a primary key. When there is only one, it is also

called a primary key. Because there can be a choice

1588K Key Range Locking
among minimal keys, they are often each referred to as

candidate keys.

Keys and functional dependencies are strongly

related. Indeed, keys can be defined in terms of func-

tional dependencies. LetU be a set of attributes, and let

F be a set of functional dependencies over U. Let R, a

subset of U, be a relational schema. A subset K of R is

a superkey of R if K! R 2 F+, where F+ includes F and

any functional dependency implied by F. A subset K of

R is a candidate key of R (also called aminimal key of R)

if K is a superkey and there does not exist a proper

subset K 0 of K such that K0! R 2 F+.

Database normalization is largely about aligning

keys and functional dependencies. A relational schema

R is in Boyce-Codd Normal Form (BCNF) if for every

non-trivial functional dependency X ! Y (given or

implied) that applies to R (satisfies XY � R), X is a

superkey of R. More informally, the idea of aligning

keys and functional dependencies to yield BCNF is

intuitively captured by making every attribute in the

relational schema depend functionally on a minimal

key, the whole minimal key, and nothing but the

whole minimal key.
Cross-references
▶ Functional Dependency

▶Normal Forms and Normalization

▶Relational Model
Key Range Locking

▶B-Tree Locking
Key Value Locking

▶B-Tree Locking
KL-ONE Style Languages

▶Description Logics
K-Means and K-Medoids

XUE LI

The University of Queensland, Brisbane, QLD,

Australia

Synonyms
K-means partition; PAM (Partitioning Around

Medoids); CLARA (Clustering LARge Applications);

CLARANS (Clustering large applications based upon

randomized search)

Definitions

K-means

Given an integer k and a set of objects S = {p1, p2,...,pn}

in Euclidian space, the problem of k-means clustering

is to find a set of centre points (means) P = {c1, c2,...,

ck}, |P| = k in the space, such that S can be partitioned

into k corresponding clusters C1, C2,...,Ck, by assigning

each object in S to the closest centre ci. The sum

of square error criterion (SEC) measure, defined as
Pk

i¼1

P

p2Ci

jp � cij2, is minimized.

K-medoids

Given an integer k and a set of objects S = {p1, p2,..., pn}

in Euclidian space, the problem of k-medoids clustering

is to find a set of objects as medoids P = {o1, o2,...,ok},

|P| = k in the space, such that S can be partitioned into

k corresponding clusters C1, C2,..., Ck, by assigning

each object in S to the closest medoid oi. The sum

of square error criterion (SEC) measure, defined as
Pk

i¼1

P

p2Cj

jp � oj j2, is minimized.
Key Points

K-means

The k-means algorithm starts with a random selection

of k objects as the centres or the means of k clusters.

The challenge is to place these centres in a clever way

because each different location of centres may result in

different clustering. Hence, a reasonable initial choice

is to locate them as far away from each other as

possible. Then an iteration process is used to assign

remaining objects to their nearest centres. After the

membership of all clusters is considered according

K-Means and K-Medoids K 1589

K

to the given initial centres, the cluster centres will all be

reconsidered. Hence the new cluster centres are calcu-

lated a set of k means P = {c1, c2,...,ck}. For example,

for the mean of a set of single-valued objects in cluster

i with m points is defined as mi:

mi ¼
1

m

X

m

j¼1

pi; j

The means of high-dimensional objects are calculated

in a same by using this formula for each of the dimen-

sions. When cluster centres are updated, the member-

ship computations will be executed again to reallocate

the objects to the nearest centers. The main idea of

updating the cluster centres and the memberships is

based on the computation of Euclidian distances such

that the objects in a cluster have the minimum dis-

tances and the objects between clusters have the maxi-

mum distances. The process will continue until there

are no more updates that could reallocate the centres

and the memberships of clusters. Even though it is easy

to prove that the procedure always terminates, the

k-means algorithm does not necessarily find the global

optimal solutions, corresponding to the global mini-

mum of the objective function. Also, it is easy to

demonstrate that this algorithm is significantly sensi-

tive to the initial randomly selected centres. To miti-

gate this situation the k-means algorithm can be

executed multiple times in order to identify a better

global solution. The complexity of the algorithm is

O(nkt), for n objects, k clusters and t iterations.

The k-means algorithm is only applicable to the

objects with mean defined. The user must specify an

initial value k. The k-means approach is only suitable

for finding convex shapes with all clusters having simi-

lar sizes. Moreover, when there is noise and outliers

in the dataset, the means of clusters may appear at

locations where the majority objects are far away.

K-medoids

K-medoids algorithm avoids calculating means of

clusters in which extremely large values may affect the

membership computations substantially. K-medoids

can handle outliers well by selecting the most centrally

located object in a cluster as a reference point, namely,

medoid. Thedifference between k-means and k-medoids

is analogous to the difference between mean and

median: where mean indicates the average value of

all data items collected, while median indicates the value
around that which all data items are evenly distributed

around it. The basic idea of k-medoids is that it first

arbitrarily finds k objects amongst n objects in the

dataset as the initial medoids. Then the remaining

objects are partitioned into k clusters by computing

the minimum Euclidian distances that can be main-

tained for the members in each of the clusters.

An iterative process then starts to consider objects

pi, i = 1,...,n, if a medoid oj , j = 1,...,k, can be

replaced by a candidate object oc , c = 1,...,n, c 6¼ i.

There are four situations to be considered in this pro-

cess: (i) Shift-out membership: an object pi may need

to be shifted from currently considered cluster of oj
to another cluster; (ii) Update the current medoid:

a new medoid oc is found to replace the current

medoid oj ; (iii) No change : objects in the current

cluster result have the same or even smaller SEC for

all the possible redistributions considered; (iv) Shift-in

membership: an outside object pi is assigned to the

current cluster with the new (replaced) medoid oc.

K-medoids algorithm needs to test if any existing

medoids can be replaced by any other objects. By

looking at all of these possible replacements, if the

overall SEC is improved then the given medoid will

be replaced. The computational cost of k-medoid is

much higher than the k-means. For each iteration,

computational cost is k(n-k)2 for k(n-k) pairs of

objects to be considered with each (n-k) evaluations

of the SEC. K-meoids algorithm then is considered

with a sampling method for the improvement on the

computational complexity. In this way, several samples

are taken from the dataset, and then the k-medoids

algorithm is applied to each of the samples. The con-

vergence of medoids is achieved by choosing the

sample that performs the best.

Cross-references
▶Density Based Clustering

▶Hierarchical Clustering

Recommended Reading
1. Kaufman L. and Rousseeuw P.J. Finding Groups in Data: An

Introduction to Cluster Analysis. John Wiley, NY, 1990.

2. MacQueen J. Some methods for classification and analysis

of multivariate observations. In Proc. 5th Berkeley Symposium

on Mathematics, Statistics and Probabilities, vol. 1, 1967, pp.

281–297.

3. Ng R.T. and Han J. Efficient and effective clustering methods

for spatial data mining. In Proc. 20th Int. Conf. on Very Large

Data Bases, 1994, pp. 144–155.

1590K K-Means Partition
K-Means Partition

▶K-Means and K-Medoids
k-Nearest Neighbor Classification

▶Nearest Neighbor Classification
k-NN Classification

▶Nearest Neighbor Classification
kNN Query

▶Nearest Neighbor Query
Knowledge Creation

▶Ontology Elicitation
Knowledge Discovery from
Biological Resources

▶Text Mining of Biological Resources
Knowledge Discovery from Data

▶Data Mining
Knowledge Discovery in Streams

▶Classification on Streams
Knowledge Discovery in Text (KDT)

▶Text Mining
Knowledge Management

▶Ontologies and Life Science Data Management
Knowledge Organization Systems

▶Gazetteers
Knowledge-based Systems

▶ Executable Knowledge
Koch Snowflake

▶ Fractal

L

L1 Cache

▶ Processor Cache
L2 Cache

▶ Processor Cache
L3 Cache

▶ Processor Cache
Language Models

DJOERD HIEMSTRA

University of Twente, Enschede, The Netherlands

Synonyms
Generative models

Definition
A language model assigns a probability to a piece of

unseen text, based on some training data. For example,

a language model based on a big English newspaper

archive is expected to assign a higher probability to ‘‘a

bit of text’’ than to ‘‘aw pit tov tags,’’ because the words

in the former phrase (or word pairs or word triples if

so-called N-Gram Models are used) occur more fre-

quently in the data than the words in the latter phrase.

For information retrieval, typical usage is to build a

language model for each document. At search time, the

top ranked document is the one whose language model

assigns the highest probability to the query.

Historical Background
The term language models originates from probabilistic

models of language generation developed for automa-

tic speech recognition systems in the early 1980s [9].
2009 Springer ScienceþBusiness Media, LLC
Speech recognition systems use a language model to

complement the results of the acoustic model which

models the relation between words (or parts of words

called phonemes) and the acoustic signal. The history

of language models, however, goes back to the begin-

ning of the twentieth century when Andrei Markov

used language models (Markov models) to model

letter sequences in works of Russian literature [3].

Another famous application of language models

are Claude Shannon’s models of letter sequences

and word sequences, which he used to illustrate the

implications of coding and information theory [17]. In

the 1990s, language models were applied as a general

tool for several natural language processing applica-

tions, such as part-of-speech tagging, machine transla-

tion, and optical character recognition. Language

models were applied to information retrieval by a

number of research groups in the late 1990s

[4,7,14,15]. They became rapidly popular in informa-

tion retrieval research. By 2001, the ACM SIGIR con-

ference had two separate sessions on language models

containing five papers in total [12]. In 2003, a group of

leading information retrieval researchers published a

research roadmap ‘‘challenges in information retrieval

and language modeling’’ [1], indicating that the future

of information retrieval and the future of language

modeling can not be seen separate from each other.
Foundations
Language models are generative models, i.e., models

that define a probability mechanism for generating

language. Such generative models might be explained

by the following probability mechanism: Imagine pick-

ing a term T at random from this page by pointing

at the page with closed eyes. This mechanism defines

a probability P(TjD), which could be defined as the

relative frequency of the occurrence of the event, i.e., by

the number of occurrences of a term on the page divided

by the total number of terms on the page. Suppose the

process is repeated n times, picking one at a time the

terms T1, T2,...,Tn. Then, assuming independence

1592L Language Models
between the successive events, the probability of the

terms given the document D is defined as follows:

PðT1;T2;:::;TnjDÞ ¼
Yn
i¼1

PðTijDÞ ð1Þ

A simple language modeling approach would compute

(1) for each document in the collection, and rank

the documents accordingly. A potential problem

might be the following: The equation will assign zero

probability to a sequence of terms unless all terms

occur in the document. So, a language modeling sys-

tem that uses (1) will not retrieve a document unless it

contains all query terms. This might be reasonable for

a web search engine that typically processes small

queries to search a vast amount of data, but for

many other information retrieval applications, this

behavior is a problem. A standard solution is to use

linear interpolation smoothing of the document model

P(TjD) with a collection model P(TjC), which is de-

fined as follows:

PðT1;T2; :::;TnjDÞ ¼
Yn
i¼1

�
lPðTijDÞþ ð1�lÞPðTijCÞ

�

ð2Þ

This way, a term that does not occur in the document

will not be assigned zero probability but instead a

probability proportional to its number of occurrences

in the entire collection C. Here, l is an unknown

probability that should be tuned to optimize retrieval

effectiveness. Linear interpolation smoothing was used

in several early language modeling approaches [7,14].
Implementation

Although the language modeling equations above sug-

gest the need to compute probabilities for all documents

in the collection, this is unnecessary in practice. In fact,

most language modeling approaches can be implemen-

ted efficiently by the use of standard inverted index

search systems. This can be seen by the equation below

which can be derived from (2) by two basic transforma-

tions: First, dividing it by the probability of the collec-

tion model; and second, taking the logarithm.

PðT1;T2;:::;TnjDÞ /
Xn
i¼1

log 1þ lPðTijDÞ
ð1� lÞPðTijCÞ

� �

ð3Þ
Equation (3) no longer produces probabilities, but it

ranks the documents in the exact same order as (2),

because the collection model does not depend on the

document, and the logarithm is a strictly monotonic

function. Taking the logarithm prevents the imple-

mentation from running out of the precision of its

(floating point) representation of probabilities, which

can become very small because the probabilities are

multiplied for every query term. Similar to for instance

vector space models in information retrieval, ranking

is defined by a simple sum of term weights, for which

terms that do not match a document get a zero weight.

Interestingly, the resulting ‘‘term weight’’ can be seen

as a variant of tf.idf weights, which are often used in

vector space models.

Document Priors

The equations above define the probability of a query

given a document, but obviously, the system should

rank by the probability of the documents given the

query. These two probabilities are related by Bayes’

rule as follows.

PðDjT1;T2;:::;TnÞ ¼
PðT1;T2;:::;TnjDÞPðDÞ

PðT1;T2;:::;TnÞ
ð4Þ

The left-hand side of (4) cannot be used directly

because the independence assumption presented

above assumes term independence given the docu-

ment. So, in order to compute the probability of the

documentD given the query, (2) needs to be multiplied

by P(D) and divided by P(T1,...,Tn). Again, as stated

earlier, the probabilities themselves are of no interest,

but the ranking of the document by the probabilities is.

And since P(T1,...,Tn) does not depend on the docu-

ment, ranking the documents by the numerator of the

right-hand side of (4) will rank them by the probability

given the query. This shows the importance of P(D):

The marginal probability, or prior probability of

the document, i.e., it is the probability that the docu-

ment is relevant if the query is ignored. For instance,

it might be assumed that long documents are more

likely to be useful than short documents [5,6]. In web

search, such a so-called static ranking (a ranking that is

independent of the query) is commonly used. For

instance, documents with many links pointing to

them are more likely to be relevant, or documents

with short URLs are more likely to be relevant. The

prior probability of a document is a powerful way to

Language Models L 1593

L

incorporate static ranking in the language modeling

approach [10].

Document Generation Models

An implicit assumption of the language models pre-

sented is that there is more information available about

the documents than about the query. In some applica-

tions, however, the situation is reversed. For instance in

topic tracking, a system has the task of tracking a stream

of chronologically ordered stories. For each story in the

stream, the system has to decide whether it is on topic.

The target topic is usually based on a number of exam-

ple stories on a certain topic, there is more information

available about the topic than about a single story.

Unlike query generation models, document generation

models need some form of normalization because docu-

ments will have different lengths. The probability of

generating a document tends to be smaller for long

documents than for short documents. Therefore, several

normalization techniques might be applied, such as

normalization by document length and additional

Gaussian normalization [10,18]. Relevance feedback (i.e,

the user marked some documents as relevant) is

another situation in which there is more knowledge

available about the query than about each single docu-

ment. If some relevant documents are known, or if the

top ranked documents are assumed to be relevant, then

those documents might be used to generate a new,

improved query [20]. As an example, consider the

following so-called relevance models approach [13]

PðQjT1;:::;TnÞ /
X
d

PðD ¼ dÞPðQjD ¼ dÞ
Yn
i¼1

PðTi ¼ tijD ¼ dÞ
 !

ð5Þ

Here, the formula defines the probability of a new

word Q, given the original query T1,...,Tn by margin-

alizing over all documents. In practice, only the top

ranked documents for the query T1,...,Tn are used.

Interestingly, the relevance model might be used to

infer other information from the top ranked docu-

ments, for instance the person that is most often men-

tioned for a certain query, so-called expert search [2].

Translation Models

Language models for information retrieval are generative

models, and therefore easily combined with other gener-

ative models. To add a model of term translation, the
following probability mechanism applies: Imagine pick-

ing an English term T at random from this page by

pointing at the page with closed eyes (which defines a

probability P(TjD)), and then translate the term T by

picking from the term’s entry in a English–Dutch dictio-

nary at random a Dutch term S (with probability

P(SjT)). The model might be used in a cross-language

retrieval system to rank English documents given a Dutch

query S1,...,Sn by the following probability [4,6,13,19]:

PðS1; S2;:::;SnjDÞ ¼
Yn
i¼1

X
t

�
PðSi ¼ sijTi ¼ tÞ

ðlPðTi ¼ t jDÞ þ ð1� lÞPðTi ¼ t jCÞÞ
�

ð6Þ

Here, Dutch is the source language and English the

target language. The formula uses linear interpolation

smoothing of the document model with the target

language background model P(TjC) (English in the

example) at the right-hand side of the formula. In

some formulations, the translation model is smoothed

with the source language background model P(SjC)
which a estimated on auxiliary data. The two back-

ground models are related as follows: P(SjC) =

∑tP(SjT = t)P(T = tjC). The translation probabilities

are often estimated from parallel corpora, i.e., from

texts in the target language and its translations in the

source language [6,19]. Translation models might also

be used in a monolingual setting to account for syno-

nyms and other related words [4].

Aspect Models

In aspect models, also called probabilistic latent semantic

indexing models, documents are modeled as mixtures

of aspect language models. In terms of a generative

model it can be defined in the following way [8]:

(i) select a document D with probability P(D), (ii)

pick a latent aspect Z with probability P(ZjD), (iii)
generate a term Twith probability P(TjZ) independent
of the document, (iv) repeat Step 2 and Step 3 until the

desired number of terms is reached. This leads to (7).

PðT1;T2;:::;TnjDÞ/
Yn
i¼1

X
z

ðPðTijZ¼zÞPðZ¼zjDÞÞ
 !

ð7Þ

The aspects might correspond with the topics

or categories of documents in the collection such

as ‘‘health’’, ‘‘family’’, ‘‘Hollywood’’, etc. The aspect Z

1594L Language Models
is a hidden, unobserved variable, so probabilities

concerning Z cannot be estimated from direct observa-

tions. Instead, the expectation maximization (EM)

algorithm can be applied [9]. The algorithm starts

out with a random initialization of the probabilities,

and then iteratively re-estimates the probability of

arriving at a local maximum of the likelihood function.

It has been shown that the EM algorithm is sensitive

to the initialization, and an unlucky initialization

results in a non-optimal local maximum. As a solu-

tion, clustering of documents has been proposed to

initialize the models [16]. Another alternative is latent

semantic Dirichlet allocation [15] which has less free

parameters, and therefore is less sensitive to the

initialization.
Key Applications
This entry focuses on the application of language

models to information retrieval. The applications

presented include newswire and newspaper search

[4,5,15], web search [11], cross-language search

[6,19], topic detection and tracking [10,18], and

expert search [2]. However, language models have

been used in virtually every application that needs

processing of natural language texts, including auto-

matic speech recognition, part-of-speech tagging, ma-

chine translation, and optical character recognition.
Cross-references
▶N-Gram Models

▶ Probability Smoothing
Recommended Reading
1. Allan J., Aslam J., Belkin N., Buckley C., Callan J., Croft B.,

Dumais S., Fuhr N., Harman D., Harper D.J., Hiemstra D.,

Hofmann T., Hovy E., Kraaij W., Lafferty J., Lavrenko V., Lewis

D., Liddy L., Manmatha R., McCallum A., Ponte J., Prager J.,

Radev D., Resnik P., Robertson S., Rosenfeld R, Roukos S.,

Sanderson M., Schwartz R., Singhal A., Smeaton A., Turtle H.,

Voorhees E., Weischedel E., Xu J., and Zhai C.X. (eds.). Chal-

lenges in information retrieval and language modeling. SIGIR

Forum 37(1), 2003.

2. Balog K., Azzopardi L., and Rijke M. Formal models for expert

finding in enterprise corpora. In Proc. 29th Annu. Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2006, pp. 43–50.

3. Basharin G.P., Langville A.N., and Naumov V.A. The life and

work of A.A. Markov. linear Algebra and its Applications,

386:3–26, 2004.
4. Berger A. and Lafferty J. Information retrieval as statistical

translation. In Proc. 22nd ACM Conf. on Research and

Development in Information Retrieval, 1999, pp. 222–229.

5. Blei D.M., Ng A.Y., and Jordan M.I. Latent Dirichlet allocation.

J. Machine Learn. Res. 3(5):993–1022, 2003.

6. Hiemstra D. and Jong F. Disambiguation strategies for cross-

language information retrieval. Lecture Notes in Computer Sci-

ence, Volume 1696: In Proceedings of the European Conference

on Digital Libraries, Springe-Verlag, Berlin Heidelberg New

York, 1999, pp. 274–293.

7. Hiemstra D. and Kraaij W. Twenty-One at TREC-7: Ad-hoc

and cross-language track. In Proc. 7th Text Retrieval Con-

ference TREC-7. NIST Special Publication 500-242, 1998,

pp. 227–238.

8. Hofmann T. Probabilistic latent semantic indexing. In Proc.

22nd Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 1999, pp. 50–57.

9. Jelinek F. Statistical Methods for Speech Recognition. MIT Press,

Cambridge, MA, 1997.

10. Jin H., Schwartz R., Sista S., and Walls F. Topic tracking for

radio, TV broadcast and newswire. In Proc. DARPA Broadcast

News Workshop, 1999.

11. Kraaij W., Westerveld T., and Hiemstra D. The importance of

prior probabilities for entry page search. In Proc. 25th ACM

Conf. on Research and Development in Information Retrieval

(SIGIR’02), 2002, pp. 27–34.

12. Kraft D.H., Bruce CroftW., Harper D.J., and Zobel J. (eds.). In Proc.

24th ACM Conf. on Research and Development in Information

Retrieval. Association for Computing Machinery, 2001.

13. Lavrenko V. and Croft W.B. Relevance models in information

retrieval. In Language Modeling for Information Retrieval,

W. Bruce Croft and John Lafferty (eds.). Kluwer, Dordecht,

2003, pp. 11–56.

14. Miller D.R.H., Leek T., and Schwartz R.M. A hidden Markov

model information retrieval system. In Proc. 22nd ACM Conf.

Research and Development in Information Retrieval, 1999,

pp. 214–221.

15. Ponte J.M. and Bruce C. W. A language modeling approach to

information retrieval. In Proc. 21st ACM Conf. Research and

Development in Information Retrieval, 1998, pp. 275–281.

16. Schwartz R.M., Sista S., and Leek T. Unsupervised topic discov-

ery. In Proc. Language Models for Information Retrieval Work-

shop, 2001.

17. Shannon C.E. A mathematical theory of communication. Bell

Syst. Tech. J., 27:379–423, 623–656, 1948.

18. Spitters M. and Kraaij W. Language models for topic

tracking. In Language Modeling for Information Retrieval, W.

Bruce Croft and J. Lafferty (eds.). Kluwer, Dordecht, 2003,

pp. 95–124.

19. Xu J. and Weischedel R. A probabilistic approach to term trans-

lation for cross-lingual retrieval. In Language Modeling for

Information Retrieval, W. Bruce Croft and John Lafferty (eds.).

Kluwer, Dordecht, 2003, pp. 125–140.

20. Zhai C. and Lafferty J. Model-based feedback in the language

modeling approach to information retrieval. In Proc. ACM Int.

Conf. on Information and Knowledge Management, 2001,

pp. 403–410.

Languages for Web Data Extraction L 1595
Languages for Web Data Extraction

NICHOLAS KUSHMERICK

Decho Corporation, Seattle, WA, USA

Synonyms
Web scraping; Screen scraping; Web site wrappers;

Web mining; Information extraction
L

Definition
Web data extraction is the process of automatically

converting Web resources into a specific structured

format. For example, if a collection of HTML web

pages describes details about various companies

(name, headquarters, etc) then web data extraction

would involve converting this native HTML format

into computer-processable data structures, such as

entries in relational database tables. The purpose of

web data extraction is to make web data available for

subsequent manipulation or integration steps. In the

previous example, the goal may be summarizing the

results as some form of analytical report.

There are several approaches to Web data extrac-

tion. The most common approach is to specify the

conversion process using a special-purpose program-

ming Language for Web Data Extraction. Web data

extraction then becomes a matter of executing a well-

defined computer program.

Web data extraction languages are generally not

intended to be general-purpose programming languages

(although some are formally Turing complete). Rather,

these special-purpose languages are intended to simplify

various actions that are needed to navigate to and re-

trieve web documents, extract and clean their data, and

populate the data into appropriate data structures for

output. For example, most languages for web data ex-

traction provide mechanisms for crawling hypertext

links, submitting HTML forms, parsing HTML docu-

ments, decomposing a document into components

using regular expressions, etc. Some languages also

offer features such as natural language processing, web-,

text- or data-mining algorithms, or access to structured

data (e.g., ODBC sources or third-party applications).

This entry focuses primarily on the features of

web data extraction languages. However, note that a

key strength of some commercial Web data extraction

products, and an active area of academic research,

is graphical user interface for visually specifying the
conversion process (see for example [2]). Similarly,

there have been numerous attempts to automatically

generate web data extraction programs using machine

learning techniques (see for example [3,5,6,9]).

Note also that web data extraction is related to

but distinct from web search technologies. Search

engines crawl and index large numbers of web docu-

ments to facilitate subsequent ad-hoc keyword-based

querying. In contrast, web data extractors retrieve a

relatively small number of relevant documents (often

in a specific sequence as the web sources perform

various transactions), and then isolate specific docu-

ment fragments in order to answer various predefined

structured queries on their contents.

Historical Background
As the Web proliferated in the 1990s, computer science

researchers from diverse backgrounds (databases,

systems, artificial intelligence, information retrieval,

etc) realized that the ability to integrate data across

heterogeneous sources would give rise to a wide variety

of compelling applications, such as shopping assistants

that compare products across multiple retail sites. Many

researchers who had been investigating traditional for-

mulations of the data integration problem, turned their

attention to integrating Web data. This attention

revealed many new challenges. Data extraction quickly

became prominent among these new challenges.

Researchers simply could not demonstrate their Web

data integration algorithms in a compelling manner

until they developed systematic ways to automatically

access large numbers ofWeb documents and then extract

structured data from these documents’ native formats.

The first approach to Web data extraction was

simply to code up the necessary URL retrieval and

data extraction in conventional programming lan-

guages. Indeed, many Web data integration applica-

tions continue to use this approach today. However,

Web data extraction programs implemented in this

manner tend to be relatively large, making it difficult

to design, debug, re-use and maintain them.

Based on this experience, researchers quickly

observed that web data extraction programs written

in conventional programs exhibit many common soft-

ware patterns. This observation led to efforts to encap-

sulate these patterns either as reusable libraries for

existing languages, or as primitives in specialized web

data extraction languages (see for example

[1,4,7,8,10,11]). For instance, many web data

1596L Languages for Web Data Extraction
extraction programs perform crawling behavior such

as ‘‘parse an HTML document to find all its hyperlinks;

then retrieve all newly discovered URLs, and repeat,’’ or

‘‘submit a Web form several times, each time binding

one of its input parameters to one of several values.’’

To make it easier to build Web crawlers, this behavior

could be encoded as a set of functions/classes in a

library, or as primitives in a specialized Web data

extraction language.
Foundations
From a theoretical perspective, it is meaningless to for-

mally differentiate between Web data extraction lan-

guages and ‘‘regular’’ programming languages. Nearly

every programming language has features of some aspect

of web data extraction, such as retrieving URLs or ap-

plying regular expressions. Therefore, nearly any pro-

gramming language can be used for web data

extraction, and so every programming language is a

web data extraction language. At the same time, some

specialized web data extraction languages are Turing

complete, so they can be used to implement arbitrary

algorithms that have nothing in particular to do with

Web data. Nevertheless, from a practical perspective, it

can be much simpler to implement Web data extractors

in some languages compared toothers. This entry focuses

on these practical issues, rather than formal distinctions.

Web data extraction comprises four distinct

capabilities:

1. Access: Authenticating to web sites as needed, and

fetching particular URLs

2. Extract: Populating data structures from retrieved

documents

3. Process: Performing ancillary computations on

extracted data

4. Output: Converting data to desired format and

delivering to destination

Web data extraction languages vary in the sophisti-

cation with which they support these capabilities. All

languages support some form of access and extraction,

but some provide only limited support for data proces-

sing or output.

This entry explains these capabilities by examining

one particular Web data extraction language, WebQL.

WebQL is a product of QL2 Software Inc (www.QL2.

com). While other languages offer a similar range of

capabilities, WebQL is a good example for tutorial
purposes because it has a familiar SQL-like syntax,

and numerous features that address the four capabil-

ities listed above.

WebQL programs consist of one ormore select state-

ments, which are similar to SQL select statements.

When an SQL select statement retrieves values from

database tables, a WebQL select statement retrieves

data from a Web source. As in SQL, complete WebQL

programs comprise a set of select statements that

are combined using join, union and other data-flow

operations.

Access

The simplest form of Web data access is fetching a

single URL. The WebQL program

select

source_content

from

http://example.com/recipes.html

populates a table with one column, and one row,

containing the HTML source for the given URL.

As discussed above, it is certainly true that URLs can

be easily fetched in every modern programming lan-

guage. However, web data retrieval languages usually

offer a more compact syntax for performing actions

that would be much more cumbersome in other lan-

guages. For example, the WebQL program

select

source_content

from

crawl of http://example.com/

recipes.html

to depth 3

following if url matching ‘potato’

implements a spider in WebQL that follows links that

satisfy the stated criteria. This compact syntax takes care

of numerous low-level details such as timing out, HTTP

redirects, HTML parsing, broken links, etc. As a practi-

cal matter, this compact syntax generally leads to data

extractors that are simpler to design, code, debug, main-

tain, and reuse. Just as it is formally possible but practi-

cally much more difficult to implement complex

algorithms in low-level machine-level languages com-

pared to high-level programming languages, web data

extractors implemented in special-purpose program-

ming languages are generally simpler to write and easier

to extend and maintain.

Ginger and honey pudding by Nick Nairn Serves 2

Ingredients:

Amount Unit Description

8 cm fresh ginger

2 eggs

110 g butter

110 g plain flour

110 g caster sugar

30 g honey

1 tsp ground mixed spice

Method:

1. Grate the ginger into a square of muslin
(. . .)

Languages for Web Data Extraction L 1597

L

Another aspect of data access is submitting HTML

forms. For example, the WebQL statement

select

source_content

from

http://example.com/recipe_search

submitting values [‘potato’, ‘car-

rot’] for ‘ingredient’

parses the specified URL to detect HTML forms, and

then submits each such form twice, each time binding

the input parameter ingredient to one of the specified

values. Again, the web data extraction language hides

from the programmer details such as binding hidden

form parameters.

Extract

After some specific web content has been accessed,

web data extractors typically isolate particular frag-

ments or properties of the document. Web program-

ming languages offer numerous capabilities for data

extraction. The simplest approach is to use the low-

level string operations or regular expression match-

ing capabilities that most programming languages

provide. For example, the following WebQL segment

extracts two text fragments from a particular URL

using low-level operations:

select

‐‐ extract first paragraph, with low-

level string functions

substr(instr

(source_content,‘<p>’)+3,instr

(html,’</p>’)

as firstpara,

‐‐ extract first bold text, with regu-

lar expression

extract_pattern

(source_content,‘(.*)’)

as firstbold

from

http://example.com/recipes.html

While these techniques suffice for many simple

forms of extraction, most web data extraction lan-

guages provide extraction techniques that operate at a

higher-level of abstraction. For example, an extractor

may need to extract all images and the dimensions

from a HTML document. One could do so using a

regular expression such as:
<img src="([^"]*)" height="([^"]*)"

width="([^"]*)"

This is a very brittle approach. It assumes that the

attributes are double-quoted, that none are missing,

that they occur in the order listed, etc. This regular

expression could be refined to accommodate these

difficulties, but the resulting very long regular expres-

sion would need to be copied each time it is needed.

As an alternative, most web data extraction lan-

guages offer a suite of high-level extraction capabilities.

For example, one can extract images from HTML

documents using WebQL as follows:

select

url,

height,

width

from

images

within

http://example.com/recipes.html

The ‘‘from images within’’ portion of this select

statement is an example of a high-level extraction capa-

bility. WebQL and other web data extraction languages

generally offer a range of such capabilities, including

robustly parsing HTML forms, rendering HTML docu-

ments into plain text, invoking XPath queries on XML

data, using linguistic rules to segment text into para-

graphs, sentences, phrases, entities, words, etc, and

extracting rows and/or columns from HTML tables.

As an example of the last capability, suppose that

http://example.com/recipes.html con-

tains tables embedded with text, such as the following:

1598L Languages for Web Data Extraction
The following WebQL select statement identifies

the tables in this document and then retrieves the

values of three specific columns by that are identified

by name:

select

amount,

unit,

description

from

table values (amount, unit,

description)

within

http://example.com/recipes.html

While the details of these extraction techniques

vary widely, and while low-level string or regular ex-

pression operations could be used to extract this data

in any modern programming language, the general

point holds: by providing abstract high-level data ex-

traction operations, web data extraction languages

make it much easier to implement extractors that are

concise, correct, maintainable, and reusable.
Process

So far, this entry has focused on the advanced access

and extraction functionality of web data extraction lan-

guages,comparedtotraditionalprogramming languages.

However, real web data extractors usually need to do

more than simply access documents and extract their

data; they also need to process this data in someway.

Web data extraction languages generally have a rich

set of traditional programming language operators and

control structures for manipulating and transforming

data. For example, WebQL offers most of the data-

flow operations in SQL dialects, such as joins, unions,

grouping, sorting, and removing duplicates. WebQL

also has a wide variety of functions for performing

many kinds of operations. To illustrate these capabil-

ities, consider the following query:

select as ExistingMeat

ingredient as existing_ingredient,

text_to_datetime("best before",

‘dd-mm-yy’)

as best_before_date

from

table values (ingredient, catego-

ry, "best before")
within

http://www.example.com/current_fridge_

contents.html

where

category = ‘meat’

join to ExistingMeat

select as RequiredIngredient

description as

required_ingredient,

existing_ingredient

from

table values (description)

within

http://example.com/recipe_search

submitting values existing_ingre-

dient for ‘ingredient’

join to ExistingMeat,

RequiredIngredient

where ExistingMeat.existing_in-

gredient =

RequiredIngredient.

existing_ingredient

select

required_ingredient,

best_before_date < now() + 24*60*60

as urgent

sort by

best_before_date desc

For the sake of this entry, there is no need to

explain this program in detail. At a high level, it first

extracts a list of ingredients currently in the refrigera-

tor along with their category (meat, vegetables, etc)

and expiration date; then requests recipes containing

each meat that is in stock, and records which other

ingredients are needed to make those recipe. And fi-

nally the program sorts the required ingredients by the

expiration date of their meat, and also outputs a Bool-

ean value that is true if the meat will soon expire. This

example illustrates the ability to join intermediate

tables, sort data, perform numerical and logical opera-

tions, and transform textual date/time values into a

native numerical representation.
Output

After accessing, extracting and processing the required

data, web data extractors must deliver the data to

some destination in the appropriate format. Web data

extraction languages vary in the range of output

Languages for Web Data Extraction L 1599

L

formats and delivery mechanisms that they support.

To illustrate some of these capabilities, consider the

following WebQL program:

select

url,

content

from

links

within

http://www.example.com/recipes.

html

into

‐‐ write XML to local file

file:links.xml,

‐‐ send CSV to an FTP site

ftp://jsmith@mysecret:ftp.exam-

ple.com/links.csv,

‐‐ write data as new rows in a database

table

‘links’@docdb

The ‘‘into’’ clause causes the data to be encoded in

specific formats and sent to specific destinations.

This example program extracts the links from a web

page, and then delivers them in various formats

(comma-separated text file, XML) to both a local file

and an FTP site, and also inserts the data directly into

database table via ODBC.

Key Applications
Web data extraction languages are widely used in

numerous commercial applications across a wide vari-

ety of industries The most common scenario is that an

enterprise wants to extract data from external Web

sources for which public Web Services or other pro-

grammatic APIs are not available. While numerous

(often ‘‘Web 2.0’’-oriented) data sources offer public

APIs or structured data feeds such as RSS, many more

sources do not. This is particularly true for high-value

data extraction applications such as the gathering of

real-time competitive market intelligence. For exam-

ple, most large retailers, manufacturers and distribu-

tors employ some form of Web data extraction

to monitor their competitor’s prices. In most cases,

the only way to harvest such data is by extracting it

from public Web sources such as on-line retail catalogs

or shopping sites.

Web data extraction is also used as a form of

lightweight data integration for interconnecting legacy
applications within an enterprise. Many companies are

not in a position to modify critical business systems

used for inventory management, pricing, customer

management, etc., yet they want to integrate these

systems. Web data extraction tools are frequently

used to facilitate such integration by working with

existing Web-based interfaces, rather than forcing the

enterprise to modify their legacy systems.

A third important application area is so-called

‘‘mashups,’’ applications that combine data from mul-

tiple sources into unified service. Web data extraction

languages are clearly an appropriate technology with

which to develop mashups. To many proponents, a key

aspect of the mashup philosophy is the ability of ordi-

nary users to generate their own applications. There-

fore, most mashup technologies focus on visual

interfaces that allows non-technical users to develop

web data extraction programs.

While this entry focuses largely on technical issues,

it is important to point out that the use of automated

web data extractors may give rise to two sorts of legal

issues. First, the terms of use of many Web sites explic-

itly prohibit automated content extraction. Second,

republication of the extracted data may violate the

original source’s copyright on the data.
Future Directions
The core theoretical and scientific issues regarding

web data extraction are well understood. While nu-

merous companies are competing in the web data

extraction/integration space, they compete primarily

on the basis of the value-added services they deliver

on top of the extracted data, rather than on the basis

of their extraction technology. Nevertheless, as web

technologies change, web data extraction languages

will be enhanced to accommodate formats such as

Flash/AMF in which more and more web data is

embedded.

More significantly, some ‘‘web’’ data extraction lan-

guages provide access to a wide range of non-web

sources (such as email, FTP sites, execution of external

programs, etc) and formats (such as office documents

and spreadsheets, archived and compressed data, etc).

As these capabilities expand, these languages will not

remain focused exclusively on web data, but rather

they will evolve into powerful general-purpose tools

for manipulating and integrating arbitrary structured

and unstructured digital content.

1600L Large Itemsets
URL to Code
There are several open-source Web data extraction

tools, usually in the form of a library for a full-fledged

programming language. Examples include:

1. Perl: WWW::Mechanize (search.cpan.org/dist/

WWW-Mechanize)

2. PHP: Curl (www.php.net/curl)

3. Java: Web-Harvest (web-harvest.sourceforge.net)

Many companies compete in the Web data extraction

market. These companies generally offer standalone

data-extraction products, as well as on-demand ser-

vices based on these technologies that are tailored to

specific vertical industries. Examples include:

1. QL2 (www.ql2.com)

2. Fetch (www.fetch.com)

3. Kapow (www.kapowtech.com)

4. Lixto (www.lixto.com)

5. Connotate (www.connotate.com)
Cross-references
▶Content-and-Structure Query

▶Data Cleaning

▶Data Integration

▶Data Integration in Web Data Extraction Systems

▶Database Reverse Engineering

▶ Focused Web Crawling

▶ Fully Automatic Web Data Extraction

▶Hidden-Web Search

▶ Incremental Web Crawling

▶ Indexing Semi-Structured Data

▶ Indexing the ‘‘Web’’

▶ Information Extraction

▶ Information Integration

▶ Logical Foundations for Web Data Extraction

▶Metasearch Engines

▶Query Language

▶ Screen Scraper

▶ Semantic Web

▶ Semi-Structured Data

▶ Semi-Structured Query Language

▶ Semi-Structured Text

▶ Structured Document Retrieval

▶Text Mining

▶Text Normalization

▶Web Crawler Architecture

▶Web Data Extraction System

▶Web Harvesting
▶Web Information Extraction

▶Wrapper Induction

▶Wrapper Maintenance

▶Wrapper Stability

▶XML Information Integration

▶Xpath/XQuery
Recommended Reading
1. Arasu A. and Garcia-Molina H. Extracting structured data from

Web pages. In Proc. 2003 ACM SIGMOD Int. Conf. on Manage-

ment of data, 2003, pp. 337–348.

2. Baumgartner R., Flesca S., and Gottlob G. Visual Web infor-

mation extraction with Lixto. In Proc. 27th Int. Conf. on Very

Large Data Bases, 2001, pp. 119–128.

3. Crescenzi V., Mecca G., and Merialdo P. RoadRunner: towards

automatic data extraction from large web sites. In Proc. 27th Int.

Conf. on Very Large Data Bases, 2001.

4. Kistler T. and Marais H. WebL – a programming language

for the Web. Comput. Netw. ISDN Syst., 30(1–7):259–270, 1998.

5. Knoblock CA., Lerman K., Minton S., and Muslea I. Accurately

and reliably extracting data from the web: A machine learn-

ing approach. In Intelligent Exploration of the Web, Piotr S.

Szczepaniak, Javier Segovia, Janusz Kacprzyk and Lotfi A. Zadeh

(eds.). Physica-Verlag Heidelberg, Heidelberg, pp. 275–287,

2003.

6. Kushmerick N. Wrapper induction: efficiency and expressive-

ness. Artif. Intell., 118(1–2):15–68, 2000.

7. Laender A.H.F., Ribeiro-Neto B.A., da Silva A.S., and Teixeira J.S.

A brief survey of web data extraction tools. ACM SIGMOD

Record, 31(2):84–93, 2002.

8. Liu L., Pu C., and Han W. XWRAP: an XML-enabled

Wrapper Construction System for Web Information Sources.

In Proc. 16th Int. Conf. on Data Engineering, 2000.

9. Muslea I., Minton S., and Knoblock C.A. Hierarchical wrapper

induction for semistructured information sources. J. Auton.

Agents Multi-Agent Syst., 4(1–2):93–114, 2001.

10. Sahuguet A. and Azavant F. Building intelligent web applications

using lightweight wrappers. Data and Knowledge Engineering,

36(3):283–316, 2000.

11. Spertus E. and Andrea Stein L. Squeal: structured queries on

the Web. In Proc. 9th Int. World-Wide Web Conference, 2000.
Large Itemsets

▶ Frequent Itemsets and Association Rules
Latch Coupling

▶B-Tree Locking

Learning Distance Measures L 1601
Latching

▶B-Tree Locking
Latent Semantic Indexing

▶ Singular Value Decomposition
Layer Algebra

▶ Spatial Operations and Map Operations
Layered Architecture

▶Temporal Strata
L

Layered Transactions

▶Multilevel Transactions and Object-Model

Transactions
Lazy Replication

▶Optimistic Replication and Resolution
LBS

▶ Location-based Services
Lévy Skew a-Stable Distribution

▶ Stable Distributions
Learning Distance Measures

CARLOTTA DOMENICONI

George Mason University, Fairfax, VA, USA

Synonyms
Flexible metric computation; Adaptive metric

techniques
Definition
Many problems in data mining (e.g., classification,

clustering, information retrieval) are concerned with

the discovery of homogeneous groups of data accord-

ing to a certain similarity (or distance) measure. The

distance measure in use strongly affects the nature of

the patterns (clusters, classes, or retrieved images)

emerging from the given data. Typically, any chosen

fixed distance measure, such as Euclidean or Manhat-

tan distance, does not capture the underlying structure

of the data, and fails to find meaningful patterns which

correspond to the user’s preferences. To address this

issue, techniques have been developed that learn from

the data how to compute dissimilarities between pairs

of objects. Since objects are commonly represented as

vectors of measurements in a given feature space, dis-

tances between two objects are computed in terms of

the dissimilarity between their corresponding feature

components. In this setting, learning a (local) distance

measure for a query object q 2 ℜn (to be classified)

and an arbitrary object x 2 ℜn means to learn a

weighted p-norm distance metric on the Euclidean

space of the input measurement variables (or features):

Dpðq; xÞ ¼ f
Xn
i¼1
j½W ðqÞðq� xÞ�ijpg

1=p
;

where p > 0 and W(q) 2 ℜn�n is a matrix of weights

reflecting the relevance or importance of features

at the query q. If W(q) depends on the query

point q, the resulting distance measure is local; other-

wise, if W is invariant to the query, a global distance

measure is obtained.

Historical Background
The problem of learning distance measures from data

has attracted considerable interest recently in the data

mining and machine learning communities. Different

methodologies have been developed for supervised,

unsupervised, and semi-supervised problems. One of

the earliest work that discusses the problem of clus-

tering simultaneously both points and features is

Hartigan, 1972 [9]. A model based on direct clustering

of the data matrix and a distance-based model are

introduced, both leading to similar results.

Foundations
The ability to classify patterns is certainly one of the

key features of intelligent behavior, whether it is

1602L Learning Distance Measures
humans’ or animals’. This ability emerged with the

biogenetic evolution for survival purposes, not only

of individuals but also of entire species. An individual

receives sensory information that must be processed to

perceive, and ultimately act, possibly for orientation in

the environment, distinction between edible and poi-

sonous food, or detection of dangerous enemies.

Machine perception and classification as features

of artificial systems serve similar but more con-

strained purposes. Machine classification aims to

provide artificial systems with the ability to react to

situations and signals that come from the environ-

ment to perform specific tasks. As such, pattern clas-

sification is a fundamental building block of any

cognitive automata.

Recent developments in data mining have posed

new challenges to pattern classification. Data mining is

a knowledge discovery process whose aim is to discover

unknown relationships and/or patterns from a large

set of data that make it is possible to predict future

outcomes. As such, pattern classification becomes one

of the key steps in attempting to uncover the hidden

knowledge within the data. The primary goal is usually

predictive accuracy, with secondary goals being speed,

ease of use, and interpretability of the resulting predic-

tive model.

The term pattern is a common word and means

something exhibiting some form of regularity, able to

serve as a model representing a concept of what was

observed. As a consequence, a pattern is never an

isolated observation, but rather a collection of obser-

vations connected in time or space (or both). A pattern

exhibits, as a whole, a certain structure indicative of

the underlying concept. The pattern classification task

can then be seen as the task of inferring concepts

from observations. Thus, designing a pattern classifier

means defining a mapping from a measurement space

into the space of possible meanings, that are viewed

as finite and discrete target points.

From this perspective, it makes no difference what

kind of observations are considered and to what kind

of meanings they may be linked. The same approach

can be used to recognize written text, spoken language,

objects, or any other multidimensional signals as well.

The selection of meaningful observations from a spe-

cific domain is a feature extraction process. From a

theoretical viewpoint, the distinction between feature

extraction and classification is arbitrary, but never-

theless useful. In general, the problem of feature
extraction is much more domain dependent than the

problem of classification.

Statistical Approach

Acharacteristic of patterns in the context of classification

is that every concept (or class) may have multiple repre-

sentative points in the measurement space. For example,

for the task of character recognition from their images,

there exists a potentially unlimited plurality of ways to

design character images that correspond to the same

character. Therefore, the very core of pattern classifica-

tion is to cope with variability. The difficulty of the

task depends on the degree to which the representa-

tives of a class are allowed to vary and how they are

distributed in the measurement space. This observation

brings together two intrinsic components of the pattern

classification task: the statistical component and the

principle of learning from examples.

The problem of classification can be seen as one of

partitioning the feature space into regions, one region

for each category. Ideally, one would like to arrange this

partitioning so that no decisions is ever wrong. This

objective may not be achievable for two reasons. The

distributions of points of different classes in the mea-

surement space overlap; thus, it is not possible to reli-

ably separate one class from the other. Moreover, even if

a rule that does a good job of separating the examples

can be found, one has no guarantee that it will perform

as well on new points. In other words, that rule may not

generalize well on data never seen before. It would

certainly be safer to consider more points, and check

how many of those are correctly classified by the rule.

This suggests that one should look for a classification

procedure that aims at minimizing the probability of

error. The problem of classification then becomes a

problem in statistical decision theory.

Challenges

While pattern classification has shown promise in

many areas of practical significance, it faces difficult

challenges from real world problems, of which the

most pronounced is Bellman’s curse of dimensionality

[1]. It states the fact that the sample size required to

perform accurate prediction in problems with high

dimensionality is beyond feasibility. This is because in

high dimensional spaces, data become extremely sparse

and are apart from each other. As a result, severe bias

that affects any estimation process can be introduced in

a high dimensional feature space with finite samples.

Learning Distance Measures. Figure 1. Feature

relevance varies with query locations.

Learning Distance Measures L 1603

L

Consider, for example, the rule that classifies a new

data point with the label of its closest training point in

the measurement space (1-Nearest Neighbor rule). Sup-

pose each instance is described by 20 attributes, but only

three of them are relevant to classifying a given instance.

In this case, two points that have identical values for the

three relevant attributes may nevertheless be distant

from one another in the 20-dimensional input space.

As a result, the similaritymetric that uses all 20 attributes

will be misleading, since the distance between neigh-

bors will be dominated by the large number of irrele-

vant features. This shows the effect of the curse of

dimensionality phenomenon, that is, in high dimen-

sional spaces distances between points within the same

class or between different classesmay be similar. This fact

leads to highly biased estimates. Nearest neighbor

approaches are especially sensitive to this problem.

In many practical applications things are often fur-

ther complicated. In the previous example, the three

relevant attributes for the classification task at hand

may be dependent on the location of the query point,

i.e., the point to be classified, in the feature space.

Some features may be relevant within a specific region,

while other features may be more relevant in a different

region.

These observations have two important implications.

Distance computation does not vary with equal strength

or in the same proportion in all directions in the feature

space emanating from the input query. Moreover, the

value of such strength for a specific feature may vary

from location to location in the feature space. Figure 1

illustrates a case in point, where class boundaries

are parallel to the coordinate axes. For query a, dimen-

sion X is more relevant, because a slight move

along the X axis may change the class label, while for

query b, dimension Y is more relevant. For query c,

however, both dimensions are equally relevant. Captur-

ing such information, therefore, is of great importance

to any classification procedure in high dimensional

settings.

It is important to emphasize that the curse of di-

mensionality is not confined to classification. It affects

any estimation process in a high dimensional feature

space with finite examples. Thus, clustering equally suf-

fers from the same problem. The clustering problem

concerns the discovery of homogeneous groups of data

according to a certain similarity measure. It is not mean-

ingful to look for clusters in high dimensional spaces as

the average density of points anywhere in input space is
likely to be low. As a consequence, distance functions

that equally use all input features may not be effective.

Adaptive Metric Techniques

This section presents an overview of relevant work in

the literature on flexible metric computation for clas-

sification and clustering problems.

Adaptive Metric Nearest Neighbor Classification

In a classification problem, one is given l observations

x 2 ℜn, each coupled with the corresponding class

label y, with y = 1,...,J. It is assumed that there exists

an unknown probability distribution P(x, y) from

which data are drawn. To predict the class label of

a given query q, the class posterior probabilities

fPðjjqÞgJj¼1 need to be estimated.

K nearest neighbor methods are based on the as-

sumption of smoothness of the target functions, which

translates to locally constant class posterior probabilities

P(jjq), that is: P(jj(q + dq)) ’ P(jjq), for kdqk small

enough. Then, PðjjqÞ ’
P

x2NðqÞPðjjxÞ
jNðqÞj , where N(q) is a

neighborhood of q that contains points x that are

‘‘close’’ to q, and jN(q)j denotes the number of points

in N(q). This motivates the estimates

P̂ðjjqÞ ¼
Pl

i¼11ðxi 2 NðqÞÞ1ðyi ¼ jÞPl
i¼11ðxi 2 NðqÞÞ

;

where 1() is an indicator function such that it returns 1

when its argument is true, and 0 otherwise.

1604L Learning Distance Measures
The assumption of smoothness, however, becomes

invalid for any fixed distance metric when the input

observation approaches class boundaries. The objec-

tive of locally adaptive metric techniques for nearest

neighbor classification is then to produce a modified

local neighborhood in which the posterior probabil-

ities are approximately constant.

The techniques proposed in the literature [5,6,10]

are based on different principles and assumptions for

the purpose of estimating feature relevance locally at

query points, and therefore weighting accordingly dis-

tances in input space. The idea common to these

techniques is that the weight assigned to a feature,

locally at a given query point q, reflects its estimated

relevance to predict the class label of q: larger weights

correspond to larger capabilities in predicting class

posterior probabilities. As a result, neighborhoods get

constricted along the most relevant dimensions and

elongated along the less important ones. The class

conditional probabilities tend to be constant in the

resulting neighborhoods, whereby better classification

performance can be obtained.

Large Margin Nearest Neighbor Classifiers

The previously discussed techniques have been proposed

to try to minimize bias in high dimensions by using

locally adaptive mechanisms. The ‘‘lazy learning’’ ap-

proach used by these methods, while appealing in

many ways, requires a considerable amount of on-line

computation, which makes it difficult for such techni-

ques to scale up to large data sets. Recently, a method

(called LaMaNNA) has been proposed which, although

still founded on a query based weighting mechanism,

computes off-line the information relevant to define

local weights [3].

The technique uses support vector machines

(SVMs) as a guidance for the process of defining a

local flexible metric. SVMs have been successfully used

as a classification tool in a variety of areas [13], and the

maximum margin boundary they provide has been

proved to be optimal in a structural risk minimization

sense. The decision function constructed by SVMs is

used in LaMaNNA to determine the most discriminant

direction in a neighborhood around the query. Such

direction provides a local feature weighting scheme.

This process produces highly stretched neighborhoods

along boundary directions when the query is close to the

boundary. As a result, the class conditional probabilities

tend to be constant in the modified neighborhood,
whereby better classification performance can be

achieved. The amount of elongation-constriction decays

as the query moves farther from the vicinity of the

decision boundary. This phenomenon is exemplified

in Fig. 1 by queries a, a
0
and a

0 0
.

Adaptive Metrics for Clustering and Semi-Supervised

Clustering

Adaptive metric techniques for data without labels

(unsupervised) have also been developed. Typically,

these methods perform clustering and feature weight-

ing simultaneously in an unsupervised manner

[2,4,7,8,12]. Weights are assigned to features either

globally or locally.

The problem of feature weighting in K-means [11]

clustering has been addressed in [12]. Each data point

is represented as a collection of vectors, with ‘‘homo-

geneous’’ features within each measurement space.

The objective is to determine one (global) weight

value for each feature space. The optimality criterion

pursued is the minimization of the (Fisher) ratio

between the average within-cluster distortion and the

average between-cluster distortion.

COSA (Clustering On Subsets of Attributes) [7] is

an iterative algorithm that assigns a weight vector

(with a component for each dimension) to each data

point. COSA starts by assigning equal weight values to

each dimension and to all points. It then considers the

k nearest neighbors of each point, and uses the result-

ing neighborhoods to compute the dimension weights.

Larger weights are credited to those dimensions that

have a smaller dispersion within the neighborhood.

These weights are then used to compute dimension

weights for each pair of points, which in turn are

utilized to update the distances for the computation

of the k nearest neighbors. The process is iterated until

the weight values become stable. At each iteration,

the neighborhood of each point becomes increasingly

populated with data from the same cluster. The final

output is a pairwise distance matrix based on a weight-

ed inverse exponential distance that can be used as

input to any distance-based clustering method (e.g.,

hierarchical clustering).

LAC (Locally Adaptive Clustering) [4] develops an

exponential weighting scheme, and assigns a weight

vector to each cluster, rather than to each data point.

The weights reflect local correlations of data within

each discovered cluster, and reshape each cluster as a

dense spherical cloud. The directional local reshaping

Lexical Affinities L 1605

L

of distances better separates clusters, and allows for the

discovery of different patterns in different subspaces of

the original input space.

Recently, to aid the process of clustering data

according to the user’s preferences, a semi-supervised

framework has been introduced. In this scenario, the

user provides examples of similar and dissimilar

points, and a distance metric is learned over the

input space that satisfies the constraints provided by

the user [14].

Key Applications
Almost all problems of practical interest are high di-

mensional. Thus, techniques that learn distance mea-

sures have significant impact in fields and applications

as diverse as bioinformatics, security and intrusion

detection, document and image retrieval. An excellent

example, driven by recent technology trends, is the

analysis of microarray data. Here one has to face

the problem of dealing with more dimensions (genes)

than data points (samples). Biologists want to find

‘‘marker genes’’ that are differentially expressed in a

particular set of conditions. Thus, methods that simul-

taneously cluster genes and samples are required to

find distinctive ‘‘checkerboard’’ patterns in matrices

of gene expression data. In cancer data, these checker-

boards correspond to genes that are up- or downregu-

lated in patients with particular types of tumors.

Cross-references
▶Classification

▶Cluster and Distance Measure

▶Clustering with Constraints

▶Curse of Dimensionality

▶Data Mining

▶ Feature Selection for Clustering

▶Nearest Neighbor Classification

Recommended Reading
1. Bellman R. Adaptive Control Processes. Princeton University

Press, 1961.

2. Blansch A., Ganarski P., and Korczak J. Maclaw: a modular

approach for clustering with local attribute weighting. Pattern

Recognit. Lett., 27(11):1299–1306, 2006.

3. Domeniconi C., Gunopulos D., and Peng J. Large margin nearest

neighbor classifiers. IEEE Trans. Neural Netw., 16:899–909, 2005.

4. Domeniconi C., Gunopulos D., Yan S., Ma B., Al-Razgan M.,

and Papadopoulos D. Locally adaptive metrics for clustering

high dimensional data. Data Mining Knowl. Discov. J.,

14:63–97, 2007.
5. Domeniconi C., Peng J., and Gunopulos D. Locally adaptive

metric nearest neighbor classification. IEEE Trans. Pattern

Anal. Mach. Intell., 24:1281–1285, 2002.

6. Friedman J. Flexible metric nearest neighbor classification. In

Tech. Report, Dept. of Statistics, Stanford University, 1994.

7. Friedman J. and Meulman J. Clustering Objects On Subsets of

Attributes. Technical Report, Stanford University, 2002.

8. Frigui H. and Nasraoui O. Unsupervised learning of prototypes

and attribute weights. Pattern Recognit., 37(3):943–952, 2004.

9. Hartigan J.A. Direct clustering of a data matrix. J. Am. Stat.

Assoc., 67(337):123–129, 1972.

10. Hastie T. and Tibshirani R. Discriminant adaptive nearest neigh-

bor classification. IEEE Trans. Pattern Anal. Machine Intell.,

18:607–615, 1996.

11. Jain A., Mutty M., and Flyn P. Data clustering: a review. ACM

Comput. Surv., 31(3), 1999.

12. Modha D. and Spangler S. Feature weighting in K-means clus-

tering. Mach. Learn., 52(3):217–237, 2003.

13. Shawe-Taylor J. and Fiege N. Pietzuch P. Kernel Methods for

Pattern Analysis. Cambridge University Press, London, 2004.

14. Xing E., Ng A., Jordan M., and Russell S. Distance metric

learning, with application to clustering with side-information.

Advances in NIPS, vol. 15, 2003.
Learning in Streams

▶Classification on Streams
Length Normalization

▶Document Length Normalization
Level-of-Detail (LOD) Terrain
Modeling

▶Multi-Resolution Terrain Modeling
Levelwise Search

▶Apriori Property and Breadth-First Search

Algorithms
Lexical Affinities

▶Term Proximity

1606L Lexical Analysis of Textual Data
Lexical Analysis of Textual Data

CHRIS D. PAICE

Lancaster University, Lancaster, UK

Synonyms
Lexical processing; Term processing

Definitions
Lexical analysis refers to the association of meaning

with explicitly specified textual strings, referred to

here as lexical terms. These lexical terms are typically

obtained from texts (whether natural or artificial) by a

process called term extraction. The association of mean-

ing with lexical terms involves a data structure known

generically as a lexicon. The characteristic operation in

using a lexicon is a lookup, where the input is a lexical

term, and the output is a representation of one or more

associated meanings. A lexicon consists of a collection of

entries, each of which comprises an entry term and a

meaning structure. Lookup entails finding any entries

whose entry term matches the lexical term in question.

Here, the term lexical analysis is used to refer only

to operations performed on complete words or word

groups. Operations on the characters within words is

the concern of morphology.

The use of text corpora for obtaining data on the

properties of words may also be regarded as a branch of

lexical analysis. A text corpus provides a large repre-

sentative sample of a language or sublanguage, and

may be used for generating data-sets such as lexicons

(see later), for providing statistical information, and

for identifying examples of particular language con-

structs for researchers. Operations on corpora include

annotating words or word groups with grammatical or

other information. [9,11]
Historical Background
The need for automatic lexical analysis dates back to

the 1950s, when the need arose for programing lan-

guage compilers to recognize variable names and re-

served words, and assign an appropriate role to each

one. As soon as computers started being used for

processing natural language texts, lexical processing

was required for extracting, recognizing, organizing,

and correlating words and phrases. At first, lexicons

for term recognition were compiled by hand, or

adapted from existing dictionaries and lists, but later,
automatic tools were developed, either for generating

lexicons outright, or for reducing the amount of

human effort involved in constructing them.

Foundations
A natural language word is a sign whose meaning

cannot be inferred (except in special cases such as

onomatopoeic words) from its phonological or mor-

phological structure. Lexical analysis is a process by

which meanings are associated with specific words or

other textual strings. These strings, which can be re-

ferred to as lexical terms, or just terms, are typically

extracted during the scanning of some document.

Lexical termsmay be individualwords belonging to a

natural or artificial language, but they may also include

abbreviations such as ‘‘IBM’’ and ‘‘USAAF’’, ‘pseudo-

words’ such as ‘‘PL/1’’ and ‘‘B12’’, and even multiword

expressions (MWEs) such as ‘‘winter wheat’’ or ‘‘Boeing

747.’’ The key point is that the term must represent a

known concept which is, or may be, relevant to some

current need. The function of lexical analysis is to return

information enabling that need to be satisfied.

A data structure or data collection which associates

a set of lexical terms with their meanings is known as a

lexicon. The meaning associated with a specified lexical

term may be referred to as an output of the lexicon. The

structure of the lexicon and the nature of the output

vary according to what kind of information is required

for the task at hand. Some applications may require

access to two or more different lexicons, covering dif-

ferent (or partly different) sets of terms, and yielding

different kinds of output.

Although the detailed arrangements can vary, a

lexicon consists essentially of a set of entries, each of

which maps a term to a meaning. In some lexicons, a

given term can yield a number of alternative meanings.

In such a case, the application program must choose

the most appropriate meaning or (depending on the

task at hand) make use of them all.

The archetypal lexicon is a traditional dictionary, in

which each natural language word is accompanied by

a definition of each distinct meaning of the word,

together with indicators for pronunciation, syntax,

etymology, etc. [11]

In a lexicon, the key operation is the lookup, which

takes a term and returns an output representing the

required meaning or meanings. In cases where the term

is not present in the lexicon, a ‘‘null’’ or ‘‘false’’ output

is returned.

Lexical Analysis of Textual Data L 1607

L

In applications where the range of terms and mean-

ings are very small, lexical analysis may be performed

by encoding (or ‘‘hard wiring’’) the relevant terms as

literals in decision structures in a computer program.

Lexical Analysis in Text Processing

1. Lexical extraction Reference to a lexicon is fre-

quently required by an application program designed

to process textual data, whether this consists of text in

a natural language, or in an artificial language such as a

programming language. In extracting terms from

a text, the first step is normally to tokenize the text –

that is, to divide the stream of characters into coherent

groups called tokens, as appropriate for the task at

hand. In a natural text, the tokens may include

words, numbers, punctuation symbols, brackets, etc.

As noted earlier, lexical analysis typically involves

the lookup of significant items such as words and

phrases. Tokenization therefore usually involves, or is

immediately followed by, a filtering process which

recognizes and discards irrelevant items such as punc-

tuation marks. In fact, in a language like English, ex-

traction of single words can be achieved by regarding all

characters except letters, and perhaps digits, as token

delimiters. There remain only certain specific issues,

such as the handling of hyphens and apostrophes,

where the extracted terms need to conform to the

practice used in the lexicon. [6,8]

If the lexicon includes terms which are multiword

expressions (MWEs), there is a problem in that MWEs

are not explicitly flagged in a text, and so cannot be

extracted directly. The only exception is the names of

places, people and organizations, such as ‘‘Department

for Transport’’ or ‘‘United Arab Emirates,’’ where the

main component words are capitalized.

Lexical terms are almost always represented by

grammatical noun phrases (NPs). Hence, one ap-

proach to the extraction of MWEs is to parse the text

and then extract the NPs as potential terms. Parsing is

however a slow process, and only likely to be worth-

while if the output of the parser is to be used for other

purposes as well. Fortunately, NPs can also be identi-

fied by a more limited syntactic process based on

recognizing patterns of grammatical tags, which can

be done reasonably quickly. [11]

A more simple-minded approach to term extrac-

tion involves generating all sequences of successive

tokens up to a specified length, and checking each
against the lexicon in decreasing order of length.

With a four-token limit, this would seem to involve

checking four potential terms per token, but in fact this

is an overestimate. Firstly, sequences starting or finish-

ing with a trivial word like ‘‘of ’’ or ‘‘for’’, or containing

a punctuation symbol, might be discarded at once

(though this begs the question of how efficiently

these cases can be recognized). Secondly, if the first

word of a long sequence fails to match, the shorter

sequences starting with that word need not be tested.

All in all, with its avoidance of syntactic processing,

this can be quite an effective approach.

A different method is to only extract single tokens.

but if the current token happens to match the first

word of a multiword term, the succeeding tokens of

the text are checked against the remainder of that entry

(and also against any other entries starting with the

same word).

If it is known that the terms of interest will only

occur in certain specific contexts, rules can be used for

defining those contexts. For instance, a rule may be

devised for extracting surnames from personal names,

covering examples such as ‘‘Mrs Robinson,’’ ‘‘John

F. Ratley, Jr,’’ and ‘‘Revd Ben Wiles’’. Alternatively,

data may need to be extracted from semiformatted

texts such as clinical reports. Rules of this kind may

consist of, or be based on, regular expressions – see

URL below, and reference [4].

As noted later, extracted terms are sometimes com-

piled into an index before further processing, but for

the present it is assumed that each term is immediately

passed on for lookup.

Besides terms extracted from a text, lexical proces-

sing may need to be applied to terms retrieved from a

database or knowledge base, extracted from a user

query, or entered into a text box in a user interface. In

some cases, the lexical terms might be artificial values,

such as employee numbers assigned by a company

or internal identifiers assigned by a database system.

2. Lookup For a lexicon of any size, the efficiency of

the lookup is of major importance. The techniques

here are well known, including simple binary searching

in arrays, the use of access trees, and hashing techni-

ques. For fixed sets of terms, hashing is potentially the

fastest of all methods, but if terms are likely to be

added or deleted frequently access trees are probably

better. Further details about these methods can be

found in any good book on data structures.

1608L Lexical Analysis of Textual Data
Of course, in the case of a lexicon designed for use

by human beings, alphabetical ordering is the almost

invariable rule.

3. Use of the Output The output of a lexicon, unless it

is simply to be displayed on a user’s workstation, will

be subjected to further processing by the application

program. As noted earlier, the output of each lexicon is

designed according to its intended uses.

Each entry in a lexicon consists of an entry term

and an output structure. Besides the outputs explicitly

defined in the lexicon, there is normally a default

output which is returned in cases where the lexical

term is not included among the entry terms.

The simplest form of lexicon is one in which the

explicit outputs are all void; in other words, the lexicon

is simply a list of terms. In effect, the lookup process

returns the value ‘‘true’’ or ‘‘false,’’ depending on wheth-

er or not the termwas found. Such a lexicon defines a set

of terms, and the lookup is a test for set membership.

The simplest form of nonvoid lexicon is a simple

association list, in which each output is a single value.

In general, however, the outputs can have an arbitrarily

complicated structure, as defined by two factors: mul-

tiplicity and complexity.

Multiplicity of output refers to the fact that, in many

lexicons, a given entry term may be associated with a

number of different outputs (or equivalently, there may

be a number of separate entries which have the same

entry term). In many natural language tasks, multiplici-

ty of output equates to ambiguity (as in the various

distinct meanings of the English word ‘‘dock’’), which

represent a problem to be resolved. In other cases (e.g.,

when the outputs enumerate the members of a set)

the multiplicity is not a problem; for example, in an

inverted file (see below) multiple outputs are the norm.

Complexity of output. In many lexicons each output

consists of several differentiated data items. The output

may for example be structured as a record or tuple, or it

may have a deeper structure, as in some examples below.

Types of Lexicon

Word lists and Stoplists As noted above, the simplest

form of lexicon is a simple term list representing a set

of terms which share some common property.

Membership of such a set can result in the acceptance

of a term for further processing by the application, or
alternatively can cause its rejection. An example of the

latter case is a stoplist, which is routinely used in infor-

mation retrieval systems to eliminate trivial words

(‘‘stopwords’’) which can serve no purpose for retriev-

al. These are mainly syntactic function words (‘‘closed

class words’’) such as the English words ‘‘the,’’ ‘‘of,’’

‘‘and,’’ ‘‘for,’’ ‘‘over,’’ ‘‘because,’’ etc.

Indexes and Inverted files An index is a secondary

structure which is provided to facilitate access to the

items held in some primary body of information.

A back-of-book index provides a familiar everyday

example, but computer-based indexes can be generated

automatically for any kind of information object which

includes lexical data. An important example is the use

of inverted files for assisting the retrieval of records in

databases. Given a database in which each record con-

tains a set of terms summarizing the properties of a

particular entity, inspecting all of the records individual-

ly will likely be a slow process. Instead, an inverted file is

generated in which each distinct term is associated with

an entry listing the identifiers of the specific records

which contain that term. Searching can then be per-

formed quickly by accessing and comparing only those

few entries which relate to the specified search terms [6].

Machine Readable Dictionaries The outputs of tradi-

tional dictionaries and glossaries were designed for pe-

rusal by human beings. However, with their generally

predictable structure, they proved to be a valuable lexical

resource for natural language processing applications [2].

Their great advantage was that they provided a ready-

made summary of the whole of the language, apart from

specialized technical terms. Their disadvantage was that

their presentation of information was often inconsistent

and incomplete. Experience of such problems soon led to

the development of electronic dictionaries with more

formally defined structures; perhaps the best-known

example is the Longman Dictionary of Contemporary

English (LDOCE), which is now available on CD-ROM.

Thesauruses A thesaurus is a structure which records

and classifies relationships between distinct lexical

terms. Probably its best-known use is for detection of

synonyms, to enable distinct but equivalent terms to

be merged or conflated. In information retrieval, a the-

saurus may be used for expanding a set of query terms,

thus improving the recall performance of a query. Some

Lexical Analysis of Textual Data L 1609

L

of the most detailed thesauruses provide information

about the terminology of a technical domain, such as

medicine or agriculture.

In fact, a well-developed thesaurus provides infor-

mation about a range of distinct interterm relation-

ships, and may support two distinct types of operation:

(i) vocabulary control, and (ii) classification of rela-

tionships. Vocabulary control consists of mapping each

lexical term onto a preferred term, denoting some spe-

cific concept in the domain, thus effectively conflating

different (synonymous) mentions of that concept.

Such a thesaurus also includes information about se-

mantic relationships between distinct concepts, in-

cluding antonymy and various hierarchical relations.

The latter almost always include genus/type relations

(e.g., plant/tree/oak), and often also whole/part rela-

tions (e.g., tree/branch/twig) and others. [11]

The WordNet is an online thesaurus developed

at Princeton University in the early 1990s [5,10]. In

WordNet, groups of synonymous words are organized

into ‘‘synsets’’ (but no preferred terms are designated).

Words which are polysemous (i.e., possess more than

one meaning) will occur in two or more synsets – for

example, (board, plank) and (board, committee). This

means that the entry term ‘‘board’’ returns two distinct

outputs. WordNet also allows five further relations to

be recorded between synsets – antonymy, genus/type,

whole/part, manner, and logical entailment.

AlthoughWordNet is an attractive and useful tool, it

is really quite ‘‘weak’’ in terms of completeness and con-

sistency. Thus, its use for supplementing search terms in

information retrieval systems has led to disappointing

results [13]. It may be more useful for providing sugges-

tions or asking questions in an online context.

The EDR dictionary, now administered by the Japa-

nese National Institute of Information and Communi-

cations Technology, provides an impressive range of

lexical resources [14]. One of its main purposes is to

support the development of robust and effective ma-

chine translation tools. Primary lexical access is via

word dictionaries in Japanese and English, and these

include links to a ‘‘concept dictionary’’ containing se-

mantic information and hierarchical links to related

concepts. Other components include co-occurrence dic-

tionaries and a Japanese/English bilingual dictionary.

A thesaurus or online dictionary provides a kind of

sketchy model of the world (or partial world), and the

language used to describe it. The most fully developed
systems of this kind are ontologies which, besides the

features outlined above, may include definitions of

processes, interactions, constraints, and temporal rela-

tionships [11].

Construction of Lexicons

Any body of text can be converted automatically into

an index of words (or, with a little more trouble, of

phrases) by extracting the words/phrases as discussed

earlier and organizing them into an alphabetical list.

An index thus produced is of course a kind of lexicon –

one inwhich the outputs are restricted, e.g., to positional

information or frequency. Many language processing

applications start off by generating an index of extracted

terms, which can then be inspected or manipulated at a

later stage. Note that an inverted file is a form of index.

The compilation of more complex forms of lexi-

con can only be automated to a limited extent. Statis-

tical analysis of text corpora can provide useful lexical

resources, or at least resources which can be used to

facilitate the construction of practically useful

lexicons [9]. A key activity is looking for associations

(collocations) between words in a text corpus [3].

This involves taking the corpus, dividing it into suit-

able segments (e.g., paragraphs, sentences, or fixed-

size windows) and then measuring the extent to which

different terms tend to occur together using, e.g., the

mutual information measure. One application of this

approach is in the construction of a statistical thesau-

rus, by which strongly associated terms may be used for

expanding sets of query terms in information retrieval

systems [1].

In a statistical thesaurus, the associations between

terms are undifferentiated ‘‘tending-to-occur-together’’

relationships. More detailed analysis of patterns of

word association may be used, tentatively, to differen-

tiate between relationships of various types. One note-

worthy example of this approach is the work of

Greffenstette [7], while some further efforts in this

direction have been reviewed by Matsumoto [11] and

Srinivasan [6].

Key Applications
As has already been noted, some kind of lexical analysis

is performed by almost every program which operates

on textual data, including systems for text retrieval,

question-answering, summarization, information ex-

traction, data mining, and machine translation.

1610L Lexical Processing
Data Sets
The URLs given below provide datasets as well as

lexical analysis tools.
URL to Code
EDR Electronic Dictionary: http://www2.nict.go.jp/r/

r312/EDR/index.html

Longman’s Dictionary (LDOCE): http://www.ldoce

online.com/

Regular expressions: http://www.regular-expressions.

info/

WordNet: http://wordnet.princeton.edu/
Cross-references
▶ Index Creation and File Structures

▶ Stemming

▶ Stoplists

▶Query Expansion for Information Retrieval
Recommended Reading
1. Chen H., Schatz B., Yim T., and Fye D. Automatic thesaurus

generation for an electronic community system. J. Amer. Society

for Inform. Science, 46(3):175–193, 1995.

2. Chodorow M., Byrd R., and Heidorn, G. Extracting semantic

hierarchies from a large on-line dictionary. In Proc. 23rd Annu.

Meeting of the Association for Computation Linguistics, Illinois,

USA, 1985, pp. 299–304.

3. Church K. and Hanks P. Word association norms: mutual

information and lexicography. Computational Linguistics, 16(1):

22–29, 1990.

4. Clarke C.L.A. and Cormack G.V. On the use of regular expres-

sions for searching text. ACM Transactions on Programming

Languages and Systems, 19(3):413–426,1997.

5. Fellbaum C. (ed.). WordNet: An Electronic Lexical Database,

MIT Press, Cambridge, MA, 1998.

6. Frakes W.B. and Baeza-Yates R. Information Retrieval: Data

Structures & Algorithms, Chapters III, VII, and IX. Prentice-

Hall, 1992.

7. Greffenstette G. Explorations in Automatic Thesaurus Discov-

ery, Boston: Kluwer, 1994.

8. Greffenstette G. Tokenization, in H. van Halteren (ed.). Syntactic

Wordclass Tagging, Kluwer, The Netherlands, 1999, pp. 117–133.

9. McEnery T. and Wilson A. Corpus Linguistics. Edinburgh

University Press, UK, 2001.

10. Miller G.A., Beckwith R., Fellbaum C., Gross, D., and Miller K.J.

Introduction to WordNet: an on-line lexical database. Int. J.

Lexicography, 3:235–244, 1990.

11. The Oxford Handbook of Computational Linguistics. 1Chapters

III, XXI, XXIV, XXV, and XXXIII. Mitkov R. (ed.). Oxford

University Press, UK, 2003.

12. Schneider J.W. and Borland P. Introduction to bibliometrics for

construction and maintenance of thesauri: methodical consid-

erations. J. Doc. 60(5):524–549, 2004.
13. Voorhees E.M. Using WordNet to disambiguate word senses

for text retrieval. In Proc. 16th Annual Int. ACM SIGIR Conf.

on Research and Development in Information Retrieval, 1993,

pp. 171–180.

14. Yokoi T. The EDR electronic dictionary. Commun. ACM, 38(11):

42–44, 1995.
Lexical Processing

▶ Lexical Analysis of Textual Data
Lexical Relations

▶Term Proximity
Library of Congress METS

▶ LOC Mets
License

▶Copyright Issues in Databases

▶ European Law in Databases

▶ Licensing and Contracting Issues in Databases
Licensing and Contracting Issues
in Databases

MICHAEL W. CARROLL

Villanova University School of Law, Villanova,

PA, USA

Synonyms
License

Definition
A contract is a legally binding agreement between two or

more parties usually formed when each party promises

to do some action not otherwise required or to refrain

from taking some action not otherwise required. In this

context, a license is a grant of rights or permission by

the owner of rights under copyright in a database. The

key differences between a copyright license and a con-

tractual database license are who is subject to the license

Licensing and Contracting Issues in Databases L 1611

L

and the consequences of breaching the license. A breach

of a copyright license usually exposes the breaching

party to liability for copyright infringement, which can

include remedies such as injunctions, statutory damages,

and disgorgement of profits. In contrast, a breach of

contract exposes the breaching party to liability for the

database owner’s actual damages, which must be proven

with reasonable certainty. Oftentimes, legal agreements

styled as ‘‘terms of use’’ or as licenses in relation to

databases are technically only partially copyright licenses

and are otherwise merely contracts. This is because

such agreements often contain terms governing the use

of copyrightable elements of a database – such as its

structure – and non-copyrightable data, such as numer-

ical or other factual information. One who copies an

entire database without permission would likely face

liability for copyright infringement; whereas, one who

copies factual data only without permission would be

liable only for breach of contract.

Historical Background
Contract law has ancient roots, but it evolved into

a general field relatively recently. In ‘‘common law’’

countries, such as the United States, the United

Kingdom, Canada, and Australia, the law of contract

is defined and applied by the courts. In ‘‘civil law’’

countries, which comprise the large majority of

nations, the principles of contract are codified by

the legislature and applied by the courts. Under both

systems of law, a contract is enforceable if there has

been an offer, an acceptance, and an exchange or ‘‘con-

sideration,’’ which means that each party has agreed to

give the other something of value or has promised to

for bear from taking action that would otherwise

be lawful.

Foundations
To fill perceived gaps in copyright law, some database

owners also have come to require agreement to con-

tracts or license agreements in exchange for access to

their databases. Three sets of legal issues arise with

respect to these licenses: (i) what are the requirements

to make them enforceable; (ii) are they enforceable

if they control uses of non-copyrightable data; and

(iii) what law applies if there are disputes about inter-

pretation or enforcement of the license.

In the United States, a contract is enforceable if

there is an offer, an acceptance, and consideration,

which means that the parties have entered into a
bargained-for-exchange. If the terms of a license are

that the database owner agrees to make the database

accessible and usable in exchange for the user’s promises

to pay for access or to refrain from making certain uses

of the data – such as redistributing or copying data, the

contract will be enforceable.

Outside of the United States, the requirement of

exchange is supplemented by other methods of enforce-

ment such that database licenses will generally be held

enforceable under the applicable law of contract or

obligations.

The key differences between a copyright license and

a contractual database license are who is subject to the

license and the consequences of breaching the license.

Copyright is a right against the public, and a copyright

owner may therefore grant the public a license to use

the copyrighted elements of a database subject to

a public license, such as a Creative Commons license.

Most copyright licenses are drafted to say that if the

user breaches, the copyright license terminates and any

further use of the copyrighted elements becomes copy-

right infringement. The remedies for copyright in-

fringement are more severe than for breach of contract.

A contractual database license is enforceable only

against one who is a party to the agreement. If the

license is from party A to party B, and party C obtains

the database or data from party B, party A cannot

enforce the contract against party C. To avoid this

result, owners of digital databases often include terms

in the database to the effect that any person who uses

the database becomes a party to the license agreement.

There is some doubt about whether this approach

comports with traditional requirements for enforce-

able contracts. Nonetheless, with respect to ‘‘terms of

use’’ on web sites housing electronic databases courts

have relaxed the requirement of exchange and have

held that users accept such terms through the act of

visiting or using the site.

With respect to whether a database owner may

control uses of non-copyrightable data or databases

by a contractual license when copyright law permits

such uses, the question is one of preemption. Does

contract law, which is a matter of state law in the

United States, conflict with federal copyright law? If

there is a conflict, federal law prevails. However, the

few courts that have addressed this issue have reasoned

that such licenses are not in conflict with copyright

because the license applies only to the other party

whereas copyright applies to the whole world.

1612L Lifespan
Finally, the issue of which law governs the inter-

pretation and enforcement of a contractual database

license is an example of a choice-of-law issue. Often

the license will specify what law applies, and courts

will generally accept this term as long as the jurisdic-

tion chosen has a nexus with the parties. Otherwise,

the question of choice of law is determined through

fact-specific balancing of the location of the parties,

the place where the contract was formed, and, in the

case of a digital library, the location of the server(s).
Key Applications
After the United States Supreme Court held in 1991

that a white pages telephone directory was not copy-

rightable, a case arose in which a database of more than

3,000 white pages directories had been compiled and

released on CD-ROM with a license agreement that

restricted those who purchased it to non-commercial

uses. The defendant copied the data and resold it through

his web site. The question presented was whether the

non-commercial use restriction in the license agree-

ment was enforceable even though the data was not

protected by copyright. The court of appeals held that

the agreement was enforceable. The court held that

there was no conflict between the contract’s restriction

on copying the data and copyright law’s position that

the data could be freely copied because the contract

only restricted those who agreed to its terms. The court

reached this result only with respect to a particular

section of the Copyright Act and did not address the

argument that the constitution also preempted en-

forcement of the license agreement.

Other courts have largely followed this approach of

enforcing similar agreements referred to as ‘‘shrink-

wraps,’’ when the license terms are inside a shrinkwrap-

ped box of software; ‘‘clickwraps,’’ where a user clicks an

‘‘I Agree’’ button to signal agreement to license terms;

and, more controversially, to ‘‘browsewraps,’’ in which

the issue is whether a user of a web site has agreed to

its terms of use merely by browsing the site. In this

last category, the courts reach different results depen-

ding upon whether the user had adequate notice of

the terms of use and whether those terms of use

were reasonable.
Cross-references
▶Copyright Issues in Databases

▶ European Law in Databases
Recommended Reading
1. Association of Research Libraries, Principles for Licensing Elec-

tronic Resources at http://www.arl.org/sc/licensing/licprinciples.

shtml.

2. Bowers V. Baystate Techs., 320:F.3d 1317, 1320, Fed. Cir. 2003.

3. Greater Western Library Alliance Guidelines for Licensing Elec-

tronic Information Resources at http://www.gwla.org/reports/

licensing.html.

4. Mark A. Lemley. Terms of use. Univ. of Minnesota Law Rev.,

91:459–483, 2006.

5. ProCD V. Zeidenberg, 86:F.3d 1447, 7th Cir. 1996.
Lifespan

CHRISTIAN S. JENSEN

Aalborg University, Aalborg, Denmark

Synonyms
Existence time; Temporal domain
Definition
The lifespan of a database object is the time during

which the corresponding real-world object exists in the

modeled reality.
Key Points
Some temporal data models, e.g., conceptual models,

provide built-in support for the capture of lifespans,

while other models do not. It may be observed that

lifespans can be reduced to valid times, in the sense

that the lifespan of an object o is the valid time of the

fact ‘‘o exists.’’

In the general case, the lifespan of an object is an

arbitrary subset of the time domain and is naturally

captured by a temporal element timestamp.

The synonym ‘‘existence time’’ is also used for this

concept.
Cross-references
▶Temporal Conceptual Models

▶Temporal Database

▶Temporal Element

▶Time Domain

▶Time in Philosophical Logic

▶Valid Time

Lightweight Ontologies L 1613
Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.), Böhlen M., Clifford J.,

Elmasri R., Gadia S. K., Grandi F., Hayes P., Jajodia S., Käfer W.,

Kline N., Lorentzos N., Mitsopoulos Y., Montanari A., Nonen D.,

Peressi E., Pernici B., Roddick J.F., Sarda N.L., Scalas M.R.,

Segev A., Snodgrass R.T., Soo M.D., Tansel A., Tiberio R., and

Wiederhold G., A consensus glossary of temporal database

concepts – February 1998 Version, in Temporal Databases:

Research and Practice, O. Etzion, S. Jajodia, and S. Sripada

(eds.). LNCS 1399, Springer-Verlag, Berlin Heidelberg New

York, 1998, pp. 367–405.
Life-span (in Part)

▶Context
L

Lightweight Ontologies

FAUSTO GIUNCHIGLIA, ILYA ZAIHRAYEU

University of Trento, Trento, Italy

Synonyms
Controlled vocabularies; Taxonomies; Thesauri; Busi-

ness catalogues; Faceted classifications; Web directo-

ries; Topic hierarchies; User classifications
Definition
Ontologies are explicit specifications of conceptualiza-

tions [7]. They are often thought of as directed graphs

whose nodes represent concepts and whose edges rep-

resent relations between concepts. The notion of a

concept is understood as defined in Knowledge Repre-

sentation, i.e., as a set of objects or individuals [2]. This

set is called the concept extension or the concept inter-

pretation. Concepts are often lexically defined, i.e., they

have natural language names which are used to de-

scribe the concept extensions (e.g., concept mother

denotes the set of all female parents). Therefore,

when ontologies are visualized, their nodes are often

shown with corresponding natural language concept

names. The backbone structure of the ontology graph

is a taxonomy in which the relations are ‘‘is-a,’’ whereas

the remaining structure of the graph supplies auxiliary

information about the modeled domain and may in-

clude relations like ‘‘part-of,’’ ‘‘located-in,’’ ‘‘is-parent-

of,’’ and many others [8].
In their simplest version, one can think of light-

weight ontologies as ontologies consisting of back-

bone taxonomies only. In this entry, the ‘‘is-a’’

relationship is generalized to concept subsumption

which still allows it to respect the intrinsic properties

of backbone taxonomies: namely, in a lightweight on-

tology, the extension of the concept of a child node is a

subset of the extension of the concept of the parent

node. Formally, the notion of lightweight ontology

is defined as:

A (formal) lightweight ontology is a triple O =hN,E,
Ci, whereN is a finite set of nodes, E is a set of edges on

N, such that h N,Ei is a rooted tree, and C is a finite set

of concepts expressed in a formal language F, such that

for any node ni 2 N, there is one and only one concept

ci 2 C, and, if ni is the parent node for nj , then cj v ci.

The formal language F, used to encode concepts in

C, belongs to the family of Description Logic (DL)

languages [2] and it may differ in its expressive

power and reasoning capability. However, the less ex-

pressive one with still useful reasoning capability has

shown to be the propositional DL language, i.e., a DL

language without roles (see [6,3,5] for examples of

practical applications of formal lightweight ontologies

based on the propositional DL language).

Taxonomies (e.g., NCBI (See http://www.ncbi.nlm.

nih.gov/taxonomy)), thesauri (e.g., GLIN (See http://

www.loc.gov/lexico/servlet/lexico.)), business catalogues

(e.g., UNSPSC (See http://www.unspsc.org.)), faceted

classifications (e.g., Flamenco (See http://flamenco.

berkeley.edu.)), web directories (e.g., Yahoo! (See

http://www.yahoo.com.)), and user classifications

are examples of informal prototypes of formal light-

weight ontologies. Hereinafter, they are referred to

as (informal) lightweight ontologies. Note that light-

weight ontologies are easier to understand and con-

struct. In fact, as shown in [15], formal lightweight

ontologies can be automatically constructed from user

classifications as a by-product of a normal computer use,

whereas designing a full-fledged ontology (expressed, for

example, in OWL-DL (See http://www.w3.org/TR/owl-

features.)) is a difficult and error-prone task even for

experienced users [13].

Historical Background
The notion of ontology was borrowed from philoso-

phy and adopted in Computer Science under multiple

definitions, where, probably, the first credible and most

commonly quoted one is ‘‘an explicit specification of a

1614L Lightweight Ontologies
conceptualization’’ [7]. As ontology research evolved,

new definitions and examples of what can be consid-

ered to be an ontology started to appear. It is typical to

characterize ontologies based on the degree of formal-

ity and expressivity of the language used to describe

them. This characteristic form a continuum of ontolo-

gy types (see Fig. 1), starting from terms and web

directories, and continuing to rigorously formalized

logical theories [14]. However, most specifications

agree that an ontology should be defined in a formal

language, which, in practice, usually means a logic-

based language suitable for automating reasoning.

For a long time, lightweight ontologies were not

formally defined but were referred to by examples. For

instance, they were referred to as terms, as controlled

vocabularies, as thesauri, and as web directories like

Yahoo! [14]. As observed, informal lightweight ontol-

ogies largely cover the spectrum of informal ontology

types shown in Fig. 1. In some other approaches,

lightweight ontologies are formal ontologies which

use a computationally inexpensive logic language

(e.g., see [3,10,11]). In practice, these ontologies

often encode a hierarchy of classes which can be

(automatically or semi-automatically) derived from

web directories like Yahoo! (as in [3,11]) or from

more strictly defined but still informal structures

such as thesauri and taxonomies (as in [10]).

The first attempt to formally define the notion of

lightweight ontology as a type of formal ontology was

made in [3]. Here, the definition was restricted to

formal web directories, whereas in the present docu-

ment it has been generalized to provide a formal model

for a larger spectrum of informal lightweight
Lightweight Ontologies. Figure 1. Types of ontologies. Ado
ontologies, such as controlled vocabularies, taxo-

nomies, thesauri, business catalogues, faceted classifi-

cations, web directories, and user classifications.

Foundations
This section discusses the main types of lightweight

ontologies and their properties and proposes how for-

mal lightweight ontologies can be generated from their

informal prototypes.

Types of Lightweight Ontologies

Lightweight ontologies fall into two main types based

on their usage: descriptive and classification lightweight

ontologies. Descriptive lightweight ontologies are pri-

marily used for defining the meaning of terms as well

as the nature and structure of a domain [9]. Classifica-

tion lightweight ontologies are primarily used for de-

scribing, classifying, and accessing (large) collections

of documents or, more generally, data items [9,3]. Due

to this difference, formal classification lightweight

ontologies have a different domain of interpretation

for their concepts. Namely, the extension of a concept

in a formal classification lightweight ontology is the set

of documents about the objects or individuals referred

to by the (lexically defined) concept. For example, the

extension of concept mother is the set of documents

about female parents.

Any descriptive lightweight ontology can be used

as a classification lightweight ontology, but not vice

versa. The two types differ in some principal proper-

ties, which are summarized in Table 1 and discussed

as follows. Classification lightweight ontologies are

usually more complex than descriptive ones, whereas
pted from [14].

Lightweight Ontologies. Table 1. A classification of lightweight ontologies

Descriptive lightweight ontologies Classification lightweight ontologies

Informal

Primary
use

Defining the meaning of terms as well as the
nature and structure of a domain

Describing, classifying, and accessing (large) collections of
documents or, more generally, data items

Labels Single nouns or simple noun phrases denoting
atomic concepts as the most typical case

Often, compound noun phrases denoting complex
concepts

Edge
relations

‘‘is-a’’ relation ‘‘is-a,’’ ‘‘part-of,’’ or, more generally, ‘‘intersection’’ relation

Examples Taxonomies (e.g., NCBI), thesauri (e.g., GLIN) Business catalogues (e.g., UNSPSC), faceted classifications
(e.g., Flamenco), web directories (e.g., Yahoo!), user
classifications

Formal

Concept
extension

Set of objects or individuals belonging to the
class denoted by the concept

Set of documents about the objects or individuals
belonging to the class denoted by the concept

Node
concepts

Atomic concepts Atomic and complex concepts

Lightweight Ontologies. Figure 2. Types of labels and

edges in lightweight ontologies.

Lightweight Ontologies L 1615

L

the complexity is defined along two dimensions: label

complexity (atomic vs. complex labels) and edge com-

plexity (‘‘is-a’’ vs. ‘‘intersection’’ edges). The dimen-

sions of complexity are illustrated in Fig. 2 and

discussed in the following.

Category A: atomic labels and “is-a’’ edges.Ontology

labels in this category usually represent single atomic

concepts (e.g., ‘‘theft,’’ ‘‘cellular organisms’’) and rela-

tions between labels are usually ‘‘is-a’’ relations

(e.g., ‘‘pens’’ is a child of ‘‘writing materials’’). Typical

examples of this category are (biological) taxonomies

such as NCBI. Ontologies in this category are mainly

descriptive.

Category B: complex labels and “is-a’’ edges. Ontol-

ogy labels in this category can be compound noun

phrases which represent complex concepts (e.g.,

‘‘Open Source and Linux in Education,’’ ‘‘Pressure

groups representation or participation services’’) and

relations between labels are usually ‘‘is-a’’ relations.

Typical examples of this category are thesauri such

as GLIN and business catalogues such as UNSPSC.

A higher complexity of labels (with regard to category

A) in these domains is conditioned by the need for

richer descriptions of indexing terms in thesauri and of

e-commerce items in business catalogues. Most ontol-

ogies in this category are descriptive but some can be

classification as well. For instance, the business cata-

logue UNSPSC can be used as a descriptive ontology or

as a classification ontology in which e-commerce items

are classified. Note that even if the labels can be
complex, they are still mapped to atomic concepts in

formal descriptive lightweight ontologies. In classifica-

tion lightweight ontologies, complex labels represent a

dimension of power of classification as one label can

describe one complex concept that identifies a (very)

specific set of documents. Moreover, complex labels

can be mapped into complex concepts in formal

classification ontologies, which allows for higher mod-

ularity in concept definitions. For instance, concept

baby_pictures can be defined as the intersection

1616L Lightweight Ontologies
of two concepts, baby and picture, whereas the

interpretation of the former concept is the set of docu-

ments about babies (including pictures of babies as a

kind of documents) and the interpretation of the latter

concept is the set of pictures (including baby pictures).

Note that in formal descriptive lightweight ontologies,

the extension of concept baby_pictures (the set of

baby pictures in the world) cannot be expressed as a

function of the extension of concept baby (the set of

babies in the world) and the extension of concept

picture (the set of pictures in the world).

Category C: atomic labels and “intersection’’ edges.

Ontology labels in this category usually represent sin-

gle atomic concepts, and relations between labels are

usually ‘‘intersection’’ relations, which means that the

label of a parent node specifies the meaning of the label

of its child node. For example, parent node ‘‘Italy’’ spe-

cifies the meaning of its child node ‘‘Vacation’’ to the

meaning ‘‘Vacation in Italy.’’ A typical example of this

category is a faceted classification such as Flamenco,

in which child nodes represent aspects or facets of

their parent nodes along atomic orthogonal dimensions

(e.g., time, space, function, material, etc). All ontologies

in this category are classification ontologies, for which

the ‘‘intersection’’ relation creates an additional dimen-

sion of power of classification by allowing it to describe

a specific set of documents by means of a set of categories

in the ontology. Note that the interpretation domain of

formal classification ontologies allows it to treat edges

as the intersection of parent and child concepts and,

therefore, compute concepts of nodes given their posi-

tion in the ontology tree. For example, the intersection

of root concept italy with its child concept vacation

results in a concept whose extension is the set

of documents about vacations in Italy, which is the actual

meaning of the child node, given its position in the tree.

Category D: complex labels and “intersection’’ edges.

Ontology labels in this category usually represent com-

plex concepts, and relations between labels are usually

‘‘intersection’’ relations. All ontologies in this category

are classification ontologies for which the combination

of complex labels and ‘‘intersection’’ edges creates the

maximum classification power. Labels in this category

can represent names of individuals. These labels are

mapped to concepts whose extension is the set of docu-

ments about the individuals (e.g., the extension of

concept moscow is the set of documents about the city

Moscow). Typical examples of this category are web

directories like Yahoo! (inwhichweb pages are classified)
and user classifications (in which email messages,

favorites, and files are classified). Note that user classifi-

cations may have more complex labels and more ‘‘inter-

section’’ relations than web directories due to the fact

that there are basically no rules and restrictions for user

classifications that are commonly followed in web

directories.

Note that the propositional DL is sufficient for

representing formal descriptive lightweight ontologies

in categories A and B, as the only thing that needs to be

encoded is the subsumption hierarchy of atomic clas-

ses. It is also sufficient for representing formal classifi-

cation lightweight ontologies in categories A and C,

since the only relations that need to be represented are

subsumption and intersection of atomic classes. The

propositional DL is capable of capturing the semantics

of labels in classification lightweight ontologies in cate-

gories B and D to a significant extent, while approx-

imating the meaning of labels in some cases, as it is

discussed in the following section.

From Informal to Formal Lightweight Ontologies

Formal descriptive lightweight ontologies can be

generated from informal ones by transforming their

organizational structure into a rooted tree (where nec-

essary) and by converting their term labels, expressed

in natural language, into concepts in the formal lan-

guage F. The generation of formal classification light-

weight ontologies requires an extra step where node

concepts are computed as the intersection of the con-

cepts corresponding to the term labels on the path to

the root node [3]. Note that the rooted tree structure of

formal lightweight ontologies allows it to capture the

backbone organization of many informal prototypes.

In fact, taxonomies, business catalogues, faceted classi-

fications, web directories, and user classifications use

rooted trees to organize their categories. In the simplest

case, the hierarchy of thesaurus terms, built based

on the Broader Term relation, is a rooted tree; and, a

controlled vocabulary can be seen as one level rooted

tree, where the root node represents the Top concept

and its child nodes are the controlled vocabulary terms.

The principal steps of the process of converting term

labels into concepts in F for classification lightweight

ontologies are described below. The conversion of

labels of descriptive lightweight ontologies follows the

same principles even if it is an easier case due to the

relative simplicity of their labels. In the following, it is

assumed that F is the Propositional DL language.

Lightweight Ontologies L 1617

L

WordNet [12] senses of adjectives and common

nouns in the label become atomic concepts in F. The

extension of a common noun concept is the set of

documents about objects of the class, denoted by the

noun; and, the extension of an adjective concept is

the set of documents about objects, which possess the

qualities, denoted by the adjective. Proper names be-

come atomic concepts as well, whose extension is the

set of documents about the individual referenced by

the proper name. Notationally, adjective and common

noun atomic concepts are represented in the following

syntax: lemma-pos-sn, where lemma is the lemma of

the word, pos is its part of speech, and sn is the sense

number in WordNet [12]. Proper name atomic con-

cepts are tagged with NNP .

Syntactic relations between words in the label are

translated into logical connectives of F in order to

build complex concepts from atomic concepts. For

example, a set of adjectives followed by a noun group

is translated into the logical conjunction (u) of the

concepts corresponding to the adjectives and to the

nouns; prepositions like ‘‘of ’’ and ‘‘in’’ are translated

into the conjunction; coordinating conjunctions ‘‘and’’

and ‘‘or’’ are translated into the logical disjunction (t).
The final formula for the label is built following these

rules and taking into account how words are coordi-

nated in the label.

Consider a relatively complex label: ‘‘Bank and

personal details of George Bush.’’ Its correct translation

to F produces the following concept:

" (bank-noun-1 t personal-adj-1) u detail-

noun-1 u george_bush NNP

The extension of the concept above is the intersec-

tion of three sets of documents: (1) documents about

the President George W. Bush, (2) documents contain-

ing isolated facts about something (i.e., details), and

(3) the union of documents about bank institutions

and documents concerning a particular person or his/

her private life. Note that the extension comprises (all

and only) documents one would classify under the

above mentioned label.

Despite its seeming simplicity, the translation pro-

cess is subject to various mistakes originating from

incorrect natural language processing (NLP). (How

the NLP problems, described in this paragraph, can

be solved is beyond the scope of this document. Inter-

ested readers are referred to [15] for a first account.)

For instance, due to a mistake in part-of-speech
tagging, the word personal might be recognized as a

noun, which has only one sense in WordNet defined as

‘‘a short newspaper article about a particular person or

group.’’ Due to a mistake in word sense disambigua-

tion, the sense of the word bank might be identified as

‘‘sloping land (especially the slope beside a body of

water).’’ Due to a mistake in named entity detection,

the proper name George Bush might not be detected

and might then be considered as two distinct nouns,

where the noun bush means ‘‘a low woody perennial

plant usually having several major branches.’’ Finally,

due to a mistake in (syntax) parsing, the input label

might be erroneously translated into:

" bank-noun-1 t personal-adj-1 u detail-

noun-1 u george_bush NP

a concept, whose extension is the union of docu-

ments about bank institutions and documents discuss-

ing personal details of the President George W. Bush.

Note that the propositional DL can capture the

semantics of complex labels to a significant extent

only when these labels are built from noun phrases

possibly connected through coordinating conjunctions

such as ‘‘and’’ and ‘‘or’’ (e.g., ‘‘Big city life and civil

protection’’). It approximates the meaning of some

other types of labels, e.g., labels with prepositions.

For instance, labels ‘‘life in war’’ and ‘‘life after war’’

will collapse into the same formula, which approxi-

mates the meaning of both labels.

Key Applications
Formal (descriptive and classification) lightweight

ontologies can be used in various domains, such as

document classification (e.g., see [6]), semantic search

(e.g., see [3]), and data integration (e.g., see [5]). In the

following subsections these three application domains

are briefly discussed.

Document Classification

Document classification is the problem of assigning

a document to one or more categories based on the

document contents. In the context of lightweight

ontologies, document classification refers to assigning

a document to: (1) controlled vocabulary terms; (2)

categories in taxonomies, business catalogues, faceted

classifications, web directories, or user classifications.

The approach reported in [6] presents fully automatic

classification of documents into web directories based

on the get-specific document classification algorithm.

1618L Lightweight Ontologies
The underlying idea is that a web directory is converted

into a formal lightweight ontology, that a document is

assigned a concept, and that the document classifica-

tion problem is then reduced to reasoning about sub-

sumption on the formal lightweight ontology. Note

that this classification approach does not require the

creation of a training dataset which would normally be

required in machine learning approaches [6].

Semantic Search

In the context of lightweight ontologies, semantic

search is the problem of finding categories and/or

documents (when applicable) classified in categories

of (informal) lightweight ontologies, such that the

found objects semantically correspond to a provided

natural language query. Loosely speaking, semantic

correspondence of an object to a query indicates that

the meaning associated with the object is more specific

or equivalent to the meaning given to the query under

common sense interpretation. For instance, document

about Ethiopian villages semantically corresponds to a

query about African settlements. The approach

reported in [3] formalizes the above informal descrip-

tion and introduces a semantic search algorithm for

lightweight classification ontologies populated with

documents. The underlying idea is that the user query

is converted to a concept in the way presented earlier in

this document and that the answer to the query is

computed as the set of documents whose concepts are

more specific or equivalent to the concept of the query.

In order to reduce the computation complexity, the

query is first run on the structure of the corresponding

formal lightweight ontology in order to identify the

scope of relevant nodes and then it is run on the docu-

ments populated in some of the nodes from the scope.

Data Integration

Data integration is the process of combining data

residing at different sources and providing the user

with a unified view of these data. Often, a data source

can be represented in the form of a rooted tree, whose

nodes are assigned natural language labels, and, in this

case, data integration can be facilitated by discovering

semantic relations which exist between nodes of the

source trees [5]. A semantic relation between two

nodes can be more/less general, equivalent, or disjoint.

In the domain of lightweight ontologies, semantic rela-

tions can be found between elements of controlled voca-

bularies, taxonomies, thesauri, business catalogues,
faceted classifications, web directories, and user classifi-

cations. Such relations can then be used for enabling

integration or inter-operation of web directories, for

merging business catalogues, and so on.

Future Directions
There are two major problems related to formal light-

weight ontologies which drive future directions of re-

search in this area. The problems are:

� Natural language processing. Since formal light-

weight ontologies are supposed to be often gener-

ated from their informal prototypes, the quality of

these ontologies strongly depends of the correct-

ness and completeness of NLP procedures involved

in the conversion process. Note that NLP for infor-

mal lightweight ontologies is a potentially new do-

main in the NLP research due to the particular

characteristics of term labels (e.g., they are usually

short noun phrases with little context) [15];

� Lack of background knowledge. Reasoning on formal

lightweight ontologies, which is used, for example,

in document classification, in semantic search, and

in data integration as discussed above, strongly

depends on the set of axioms which must be

known a priori [3]. These axioms are extracted

from a knowledge base such as WordNet [12]. It

was shown that lack of background knowledge is the

main source of a relatively low recall in reasoning-

based tasks on formal lightweight ontologies [4].

Experimental Results
First evaluation studies of document classification

show that re-classification of 1217 HTML pages into

a part of the DMoz hierarchy, (See http://www.dmoz.

org.) that has 157 nodes distributed in a tree of depth

6, allows it to reach 41% in the micro-averaged F1

measure [6]. Document concepts in the conducted

experiments were built by computing the conjunction

of the formulas corresponding to the first ten most

frequent words appearing in the documents (excluding

stop words).

The performance of S-Match, a tool that, among

other things, facilitates the integration of lightweight

ontologies, reaches up to 65% in recall in some

data sets [1].

Data Sets
Some informal lightweight ontologies are available for

download in the form of data files. These include the

Linear Hashing L 1619
DMoz web directory, (See http://rdf.dmoz.org.) busi-

ness catalogues UNSPSC and eCl@ss, (See http://www.

eclassdownload.com.) NCBI taxonomy, and many

others.
Cross-references
▶ I(a) – Database Fundamentals: Data Models (in-

cluding semantic data models)

▶Data Integration
L

Recommended Reading
1. Avesani P., Giunchiglia F., and Yatskevich M. A Large Scale

Taxonomy Mapping Evaluation. In Proc. 4th Int. Semantic

Web Conference, 2005, pp. 67–81.

2. Baader F., Calvanese D., McGuinness D., Nardi D., and

Patel-Schneider P. The Description Logic Handbook: Theory,

Implementation and Applications. Cambridge University Press,

2003.

3. Giunchiglia F.M.M. and Zaihrayeu I. Encoding classifications

into lightweight ontologies. J. Data Semant., VIII:57–81, 2007.

4. Giunchiglia F., Shvaiko P., and Yatskevich M. Discovering

Missing Background Knowledge in Ontology Matching. In

Proc. 17th European Conf. on Artificial Intelligence, 2006,

pp. 382–386.

5. Giunchiglia F., Yatskevich M., and Shvaiko P. Semantic Match-

ing: Algorithms and Implementation. J. Data Semant., IX, 2007.

6. Giunchiglia F., Zaihrayeu I., and Kharkevich U. Formalizing the

Get-Specific Document Classification Algorithm. In 11th Euro-

pean Conf. on Research and Advanced Technology for Digital

Libraries, 2007.

7. Gruber T.R. A translation approach to portable ontology speci-

fications. Knowl. Acquis., 5(2):199–220, 1993.

8. Guarino N. Some Ontological Principles for Designing Upper

Level Lexical Resources. In Proc. 1st Int. Conf. Lexical Resources

and Evaluation. vol. 2830, 1998.

9. Guarino N. Helping People (and Machines) Understanding

Each Other: The Role of Formal Ontology. In Proc. CoopIS/

DOA/ODBASE, 2004, p. 599.

10. Hepp M. and de Bruijn J. GenTax: A Generic Methodology for

Deriving OWL and RDF-S Ontologies from Hierarchical Classi-

fications, Thesauri, and Inconsistent Taxonomies. In Proc. 4th

European Semantic Web Conference, 2007, pp. 129–144.

11. Magnini B., Serafini L., and Speranza M. Making Explicit the

Hidden Semantics of Hierarchical Classifications. In Proc. 8th

Congress of the Italian Association for Artificial Intelligence,

2003, pp. 436–448.

12. Miller G. Wordnet: An electronic Lexical Database. MIT Press,

Cambridege, 1998.

13. Rector A.L., Drummond N., Horridge M., Rogers J.,

Knublauch H., Stevens R., Wang H., and Wroe C. OWL Pizzas:

Practical Experience of Teaching OWL-DL: Common Errors &

Common Patterns. In Proc. 4th Int. Conf. Knowledge Eng. and

Knowledge Management: Ontologies and the Semantic Web,

2004, pp. 63–81.
14. Uschold M. and Gruninger M. Ontologies and semantics for

seamless connectivity. ACM SIGMOD Rec., 33(4):58–64, 2004.

15. Zaihrayeu I., Sun L., Giunchiglia F., Pan W., Ju Q., Chi M., and

Huang X. From Web Directories to Ontologies: Natural

Language Processing Challenges. In Proc. 6th International

Semantic Web Conference, 2007.
Lineage

▶ Provenance

▶ Provenance in Scientific Databases
Linear Hashing

DONGHUI ZHANG
1, YANNIS MANOLOPOULOS

2,

YANNIS THEODORIDIS
3, VASSILIS J. TSOTRAS

4

1Northeastern University, Boston, MA, USA
2Aristotle University, Thessaloniki, Greece
3University of Piraeus, Piraeus, Greece
4University of California – Riverside, Riverside,

CA, USA

Definition
Linear Hashing is a dynamically updateable disk-based

index structure which implements a hashing scheme

and which grows or shrinks one bucket at a time. The

index is used to support exact match queries, i.e.,

find the record with a given key. Compared with the

B+-tree index which also supports exact match queries

(in logarithmic number of I/Os), Linear Hashing has

better expected query cost O(1) I/O. Compared with

Extendible Hashing, Linear Hashing does not use a

bucket directory, and when an overflow occurs, it is

not always the overflown bucket that is split. The

name Linear Hashing is used because the number of

buckets grows or shrinks in a linear fashion. Overflows

are handled by creating a chain of pages under the

overflown bucket. The hashing function changes dyna-

mically and at any given instant there can be at most

two hashing functions used by the scheme.
Historical Background
A hash table is an in-memory data structure that

associates keys with values. The primary operation it

supports efficiently is a lookup: given a key, find the

1620L Linear Hashing
corresponding value. It works by transforming the key

using a hash function into a hash, a number that is

used as an index in an array to locate the desired

location where the values should be. Multiple keys

may be hashed to the same bucket, and all keys in a

bucket should be searched upon a query. Hash tables

are often used to implement associative arrays, sets and

caches. Like arrays, hash tables have O(1) lookup cost

on average.
Foundations
The Linear Hashing scheme was introduced by [2].

Initial Layout

The Linear Hashing scheme has m initial buckets

labeled 0 through m � 1, and an initial hashing func-

tion h0(k) = f(k) % m that is used to map any key k

into one of the m buckets (for simplicity assume h0(k)

= k %m), and a pointer pwhich points to the bucket to

be split next whenever an overflow page is generated

(initially p = 0). An example is shown in Fig. 1.
Bucket Split

When the first overflow occurs (it can occur in any

bucket), bucket 0, which is pointed by p, is split

(rehashed) into two buckets: the original bucket 0 and

a new bucket m. A new empty page is also added in

the overflown bucket to accommodate the overflow.

The search values originally mapped into bucket

0 (using function h0) are now distributed between

buckets 0 and m using a new hashing function h1.

As an example, Fig. 2 shows the layout of the Linear

Hashing of Fig. 1 after inserting a new record with key

11. The circled records are the existing records that

are moved to the new bucket. In more detail, the
Linear Hashing. Figure 1. An initial Linear Hashing.

Here m = 4, p = 0, h0(k) = k % 4.
record is inserted into bucket 11%4 = 3. The bucket

overflows and an overflow page is introduced to ac-

commodate the new record. Bucket 0 is split and the

records originally in bucket 0 are distributed between

bucket 0 and bucket 4, using a new hash function

h1(k) = k % 8.

The next bucket overflow, such as triggered by

inserting two records in bucket 2 or four records in

bucket 3 in Fig. 2, will cause a new split that will attach

a new bucketm + 1 and the contents of bucket 1 will be

distributed using h1 between buckets 1 and m + 1.

A crucial property of h1 is that search values that

were originally mapped by h0 to some bucket j must

be remapped either to bucket j or bucket j + m. This is

a necessary property for Linear Hashing to work. An

example of such hashing function is: h1(k) = k % 2m.

Further bucket overflows will cause additional bucket

splits in a linear bucket-number order (increasing p by

one for every split).
Round and Hash Function Advancement

After enough overflows, all original m buckets will be

split. This marks the end of splitting-round 0. During

round 0, p went subsequently from bucket 0 to bucket

m � 1. At the end of round 0 the Linear Hashing

scheme has a total of 2m buckets. Hashing function

h0 is no longer needed as all 2m buckets can be

addressed by hashing function h1. Variable p is reset

to 0 and a new round, namely splitting-round 1, starts.

A new hash function h2 will start to be used.

In general, the Linear Hashing scheme involves a

family of hash functions h0, h1, h2, and so on. Let the
Linear Hashing. Figure 2. The Linear Hashing

after inserting 11 into Fig. 1. Here p = 1, h0(k) = k % 4,

h1(k) = k % 8.

Linear Hashing. Figure 3. The Linear Hashing at the end

of round 0. Here p = 3, h0(k) = k % m, h1(k) = k % 21m.

Linear Hashing. Figure 4. The Linear Hashing at

the beginning of round 1. Here p = 0, h1(k) = k % 21m,

h2(k) = k % 22m.

Linear Hashing L 1621

L

initial function be h0(k) = f(k)%m, then any later hash

function hi(k) = f(k) % 2im. This way, it is guaranteed

that if hi hashes a key to bucket j 2 [0..2im � 1], hi+1
will hash the same key to either bucket j or bucket

j + 2im. At any time, two hash functions hi and hi+1
are used.

Figures 3 and 4 illustrates the cases at the end of

splitting-round 0 and at the beginning of splitting-

round 1. In general, in splitting round i, the hash

functions hi and hi+1 are used. At the beginning

of round i, p = 0 and there are 2im buckets. When all

of these buckets are split, splitting round i + 1

starts. p goes back to 0. The number of buckets

becomes 2i+1m. And hash functions hi+1 and hi+2 will

start to be used.

Component Summary and Search Scheme

In summary, at any time a Linear Hashing scheme has

the following components:

� A value i which indicates the current splitting

round.

� A variable p 2 [0..2im � 1] which indicates the

bucket to be split next.

� A total of 2im + p buckets, each of which consists of

a primary page and possibly some overflow pages.

� Two hash functions hi and hi+1.

A search scheme is needed to map a key k to a bucket,

either when searching for an existing record or when

inserting a new record. The search scheme works as

follows:

(a) If hi(k) � p, choose bucket hi(k) since the bucket

has not been split yet in the current round.

(b) If hi(k) < p, choose bucket hi+1(k), which can be

either hi(k) or its spit image hi(k) + 2im.

For example, in Fig. 2, p = 1. To search for record 5,

since h0(5) = 1 � p, one directly goes to bucket to

find the record. But to search for record 4, since

h0(4) = 0 < p, one needs to use h1 to decide the actual

bucket. In this case, the record should be searched in

bucket h1(4) = 4.

Variations

A split performed whenever a bucket overflow occurs

is an uncontrolled split. Let l denote the Linear Hash-

ing scheme’s load factor, i.e., l = S ∕b where S is the total
number of records and b is the number of buckets used.

The load factor achieved by uncontrolled splits is usually

between 50–70%, depending on the page size and
the search value distribution [2]. In practice, higher stor-

age utilization is achieved if a split is triggered not by

an overflow, but when the load factor l becomes greater

than some upper threshold. This is called a control-

led split and can typically achieve 95% utilization.

Other controlled schemes exist where a split is delayed

1622L Linear Regression
until both the threshold condition holds and an over-

flow occurs.

Deletions will cause the hashing scheme to shrink.

Buckets that have been split can be recombined if the

load factor falls below some lower threshold. Then two

buckets are merged together; this operation is the

reverse of splitting and occurs in reverse linear order.

Practical values for the lower and upper thresholds are

0.7 and 0.9 respectively.

Linear Hashing has been further investigated in

an effort to design more efficient variations. In [3] a

performance comparison study of four Linear Hashing

variations is reported.

Key Applications
Linear Hashing has been implemented into commercial

database systems. It is used in applications where exact

match query is the most important query such as hash

join [4]. It has been adopted in the Icon language [1].

Cross-references
▶ Extendible Hashing

▶Hashing

▶Hash-based Indexing

Recommended Reading
1. Griswold W.G. and Townsend G.M. The design and implemen-

tation of Dynamic Hashing for sets and tables in icon. Software

Pract. Ex., 23(4):351–367, 1993.

2. Litwin W. Linear Hashing: a new tool for file and table addres-

sing. In Proc. of the Sixth International Conference on Very

Large Databases, 1980, pp. 212–223.

3. Manolopoulos Y. and Lorentzos N. Performance of Linear Hash-

ing schemes for primary key retrieval. Inf. Syst., 19(5):433–446,

1994.

4. Schneider D.A. and DeWitt D.J. Tradeoffs in processing

complex join queries via hashing in multiprocessor database

machines. In Proc. 16th Int. Conf. on Very Large Databases,

1990, pp. 469–480.
Linear Regression

JIALIE SHEN

Singapore Management University, Singapore,

Singapore

Definition
Linear regression is a classical statistical tool that models

relationship between a dependent variable or regress and
Y, explanatory variable or regressor X ¼ fx1;:::;xIg and
a random term e by fitting a linear function,

Y ¼ a0 þ a1x1 þ a2x2 þ::::þ aI xI þ e

where a0 is the constant term, the ais are the respective
parameters of independent variable, and I is the number

of parameters to be estimated in the linear regression.

Key Points
Linear regression analysis is an important component

for several tasks such as clustering, time series analysis,

and information retrieval. For instance, it is a very

powerful forecasting method for time series data. It

helps identify the long-term movement of a certain

data set based on given information and explore the

dependent variable as function of time.

To solve the linear regression problem, there are

various kinds of approaches available to determine suit-

able regression coefficients [1,2]. They include: (i) least-

squares analysis, (ii) assessing the least-squares model,

(iii) modifications of least-squares analysis, and (iiii)

polynomial fitting. The primary objective is to select a

straight line which minimizes the error between the real

data and the line estimated to provide a best fit.

Cross-references
▶ Least Squares

▶Numeric Prediction

▶Regression

Recommended Reading
1. Draper, N.R., Smith, H. Applied Regression Analysis Wiley

Series in Probability and Statistics, 1998.

2. Gross, J. Linear Regression, Springer, Berlin, 2003.
Linearization

▶ Space Filling Curves

▶ Space-Filling Curves for Query Processing
Link Analysis

▶Web Page Quality Metrics
Link Database

▶Graph Database

Linking and Brushing L 1623
Linked Brushing

▶ Linking and Brushing
Linked Views

▶ Linking and Brushing
L

Linking and Brushing

MATTHEW O. WARD

Worcester Polytechnic Institute, Worcester, MA, USA

Synonyms
Linked brushing; Linked views

Definition
Within the context of visual data exploration, Linking

refers to the process in which user interactions in one

display of a multi-display system are applied to some

or all other displays. In this same context, brushing

consists of the interactive selection of a subset of the

displayed data by either dragging the mouse over

the data of interest or using a bounding shape to isolate

this subset. Together, linked brushing is one of the

most powerful interactive tools for doing exploratory

data analysis using visualization.

Historical Background
Perhaps the earliest reference to linked brushing was by

McDonald [10] as a mechanism for cross-referencing

between multiple plots. The term brushing was intro-

duced in 1978 by Newton [11], who defined it as an

interactive method for painting a group of points with

a square, circular, or polygonal brush. Since then,

researchers have expanded on these concepts, as de-

scribed in the next section.

Foundations
Many operations within the process of visual data

analysis begin with the process of Selection, in which

a subset of the data being analyzed is isolated. Once

isolated, the subset may be highlighted, deleted,

masked, aggregated, or otherwise subjected to some

operation. Many methods for performing interactive
selection have been developed, including clicking on

items in a list, specifying a range query for one or more

data variables, typing a set of constraints, and sam-

pling. These methods are sometimes referred to as

indirect, as their specification is most often done sepa-

rate from the data visualization. Indeed, most, if not

all, can be performed without even viewing the data.

Brushing is a selection method that is specified in a

direct fashion, i.e., by indicating elements or con-

straints on the data visualization itself. Many variations

on brushing have been proposed over the years, each

with its own strengths and weaknesses in terms of ease

of use and degree of control a user has on the consti-

tution of the result set. Brushing techniques usually

consist of combinations of mouse/cursor motions and

button clicks, though more unusual methods, such as

using eye/head tracking or gestures in virtual reality

environments, have also been proposed.

One key aspect that differentiates many brushing

techniques is the space in which the interaction is

specified. Early brushing implementations, e.g., [1],

used screen-space as a constraint. Thus data that

mapped to a particular range of pixels in the display

were considered selected. Later, brushing was expanded

to data-space [9], in which a selection from a multivar-

iate data visualization consisted of a bounding box

whose dimensionality matched the number of vari-

ables in the data (see Fig. 1). These N-dimensional

brushes could be generated either by painting over

a subsection of the display or directly manipulat-

ing a visual depiction of the boundaries of the

N-dimensional hyperbox enveloping the selection.

A third space that has been proposed for brushing is

structure-space [6], where the structure of a data set,

e.g., an ordering, hierarchy, or other organization,

is used as a mechanism for data selection. In this

case, a visual representation of the structure is

provided to the user, and he or she brushes over parts

of the structure. Data falling into this part are then

considered as selected (see Fig. 2). This type of selec-

tion could conceivably be considered both direct and

indirect, as the operation is performed on a visualiza-

tion, but not on the data display itself. Similar to

structure-based brushing, other attributes of a data

set, such as the uncertainty or quality of the data

[13], could be used as a focus for brushing.

Brushing techniques also differ in the manner in

which data is isolated. Common methods include

bounding boxes, bounding circles, lassos, and arbitrary

Linking and Brushing. Figure 1. Example of linked brushing in data space. Cluster isolated in parallel coordinates, with

linked selection in scatterplot matrix. Selected data is dark, brush extents are shown as light bands or rectangles.

1624L Linking and Brushing
polygons for specifying a boundary around the selec-

tion and painting over specific data points. One can

even specialize the behavior of a brush based on a

specific type of visualization. Hauser et al. [7], for

example, use an angled brush on parallel coordinates

displays to select only data points whose representation

on the display form lines with angles similar to that

specified in the brush. In this way, data points that

are well correlated with each other between a given pair

of dimensions can be readily isolated.

Many approaches have been proposed to increase

the richness of the types of selections that are possible.

Martin and Ward [9] allow the user to not only control

up to four separate brushes, but also allowed selections

to be formed by logical combinations of brushes, in-

cluding unions, intersections, negations, and exclusive

or’s. Wills [12] expanded on this idea by developing

what might be called incremental brushes, where by a

composite brush could be formed by augmenting an

existing selection with additional data and/or con-

straints. This can result, for example, in selections

with nearly arbitrary shapes, including holes.

Thus far, the assumption has been that the result of

brushing is that every data point in the set is either in

the brush or outside the brush. However, some

researchers [5,9] have experimented with what might

be called fuzzy brushes, in which data can have a degree

of membership in a brush. Using linear or non-linear

functions emanating either from the brush center or
from the edge of a plateau, the user can distinguish

between points that are entirely covered by a brush

versus those near the edge of the brush versus those a

significant distance from the brush. This is a crucial

functionality in multivariate data brushing, as the con-

cept of distance is distributed across all the dimensions

and thus difficult to estimate visually.

A frequent use for brushing is linking operations

in one view to generate corresponding actions in

other views. While other forms of linking between

subwindows of an application exist, such as when

opening a new data file, linked brushing, especially

to highlight corresponding data from several views, is

probably the most common form of linking found in

modern visualization tools. Its popularity stems in a

large part from the fact that each view of one’s data

can reveal interesting features, and by highlighting

such a feature in one view, it is possible to build a

more complete mental model of the entity by seeing

how it appears in other views. This can also help

reveal relationships between this entity and others in

the data set. For example, when examining multivari-

ate spatial data, it is often useful to jump between the

spatially referenced view and the dependent variable

view, which often does not preserve the spatial attri-

butes (see Fig. 3).

Another strength of linked brushing is in specifying

complex constraints on one’s selection. Each type of

view is optimized for both conveying certain types

Linking and Brushing. Figure 2. Example of structure-based brushing. Hierarchy view on right shows shape of cluster

tree. Area of interest and its level of detail is isolated in red. Corresponding data highlighted in parallel coordinates

view on left, with unselected cluster centers shown at a higher level of the hierarchy.

Linking and Brushing. Figure 3. Example of linking spatial and non-spatial views. Diagonal plots are spatial views of

remote sensing data, while non-diagonal plots are parameter views. Characteristics of selected region of spatial views are

highlighted in other views.

Linking and Brushing L 1625

L

1626L List
of information as well as specifying conditions on

particular types and with a particular degree of accu-

racy. Thus, for example, one might specify a temporal

constraint using a visualization containing a timeline, a

constraint on a name field using a sorted list view, and

a geographic constraint using a map. While each is

effective as a tool for accurate and intuitive specifica-

tion of a part of a query, none could be used for the

complete query.

In some situations the user may want to unlink

some visualizations in order to maintain a given view

while exploring a different area of the data or different

data set. Some systems allow the user to indicate for

each window whether it is transmitting information to

other views and from which other windows it will

receive input. A user may also want to constrain the

type of information being communicated, as well as its

direction. Some types of interaction may be local to a

particular window, e.g., zooming in and out, while

others are meant to be shared, such as reordering

dimensions. Also, in some situations, such as with

hierarchically related windows, it may make more

sense for the information to move from parent to

child, but not the other way. Thus a fairly rich set

of connection and communication options may be

needed to maximize flexibility.

Key Applications
Linked brushing had its roots in the field of statistics,

but is now commonly employed in any field in which

visual data analysis is used, including earth and space

science, engineering, homeland security, economics,

and bioinformatics.
URL to Code
Many commercial and freeware visualization systems

support linked brushing. Two such freeware systems

are GGobi (http://www.ggobi.org) and XmdvTool

(http://davis.wpi.edu/�xmdv).
Cross-references
▶Comparative Visualization

▶Data Visualization

▶Multidimensional Visualization

▶Multivariate Visualization Methods

▶ Scientific Visualization

▶Text Visualization

▶Visual Data Mining
▶Visual Interfaces

▶Visualizing Hierarchical Data

▶Visualizing Quantitative Data
Recommended Reading
1. Becker R.A. and Cleveland W.S. Brushing scatterplots. Techno-

metrics, 29(2):127–142, 1987.

2. Becker R.A., ClevelandW.S., and Wilks A.R. The use of brushing

and rotation for data analysis. In Dynamic Graphics for Statis-

tics, W.S. Cleveland, M.E. McGill (eds.). Wadsworth, Pacific

Grove, CA, USA, 1988, pp. 1–50.

3. Chen H. Compound brushing. In Proc. IEEE Symp. Information

Visualization, 2003, pp. 181–188.

4. Cook D. and Swayne D.F. Interactive and Dynamic Graphics for

Data Analysis with R and GGobi. Springer, New York, 2008.

5. Doleisch H. and Hauser H. Smooth brushing for focus+context

visualization of simulation data in 3D. J. WSCG, 10(1):147–155,

2002.

6. Fua Y.-H., Ward M.O., and Rundensteiner E.A. Structure-based

brushes: a mechanism for navigating hierarchically organized

data and information spaces. IEEE Trans. Vis. Comput.

Graph., 6(2):150–159, 2000.

7. Hauser H., Ledermann F., and Doleisch H. Angular brushing

of extended parallel coordinates. In Proc. Information Visuali-

zation, 2002, pp. 127–130.

8. Henze C. Feature detection in linked derived spaces. In Proc.

Conf. Visualization, 1998, pp. 87–94.

9. Martin A.R. and Ward M.O. High dimensional brushing for

interactive exploration of multivariate data. In Proc. IEEE

Conf. Visualization ’95, 1995, pp. 271–278.

10. McDonald J.A. Orion I: interactive graphics for data analysis.

Technical report, Stanford University, 1983.

11. Newton C. Graphica: from alpha to omega in data analysis. In

Graphical Representation of Multivariate Data, P. Wang (ed.).

Academic, New York, 1978, pp. 59–92.

12. Wills G.J. 524,288 ways to say ‘‘this is interesting.’’ In Proc.

Information Visualization, 1996, pp. 54–60.

13. Xie Z., Ward M.O., Rundensteiner E.A., and Huang S. Integrat-

ing data and quality space interactions in exploratory visualiza-

tions. In Proc. Int. Conf. on Coordinated and Multiple Views in

Exploratory Visualization, 2007, pp. 47–60.
List

▶Table

▶Text Index Compression
List Comprehension

▶Comprehensions

Load Balancing in Peer-to-Peer Overlay Networks L 1627
Literature-based Discovery from
Biological Resources

▶Text Mining of Biological Resources
Load Balancing

▶Database Middleware
L

Load Balancing in Peer-to-Peer
Overlay Networks

ANWITAMAN DATTA

Nanyang Technological University, Singapore,

Singapore

Definition
Load balancing in peer-to-peer (P2P) overlay networks

is a mechanism to spread various kinds of loads like

storage, access and message forwarding among parti-

cipating peers in order to achieve a fair or optimal

utilization of contributed resources such as storage

and bandwidth.

Historical Background
Load balancing is a general and critical requirement

in distributed and parallel processing systems in order

to make efficient and fair use of available resources. In

the context of P2P systems, the early works on load-

balancing heavily relied on consistent hashing [11],

which was proposed in 1997 to originally deal with

load-balancing in web caches with minimal movement

of data even if new caches are added or if existing ones

crash. Consistent hashing was used to achieve storage

load-balancing in many early distributed hash table

(DHT) P2P networks proposed around 2001.

When a new object is stored, uniform hashing (as

used in consistent hashing) helps choosing a peer uni-

formly from the set of all peers. But the storage load

distribution still has high variation as observed in the

balls into bins phenomenon [14]. The imbalance caused

by such variation can be mitigated using an uncoordi-

nated randomized approach called ‘‘power of two

choices’’ [13], (More generally, multiple choices.) and

was employed for P2P overlays [5] in 2003.
Using uniform hashing leads to loss of existing order

relationships such as lexicographic ordering. Objects can

be located only based on exact queries. For data-oriented

applications involving complex queries like approximate

or range queries, uniform hashing is unsuitable. Retain-

ing the ordering relationships however means skewed

distribution of the corresponding keys over the key-

space of the overlay network. Several new mechanisms

and alternate data-structures to dynamically and adap-

tively partition the key-space based on local load [1,3] and

using adaptive reassignment of peers to a different part to

the key-space [8] were proposed around 2004–2005 in

order to deal with the skewed storage load distribution.

Besides workload heterogeneity, the peers themselves

have heterogeneous capacities, and assigning proportion-

ally more load to a computer with more resources is

another commonly employed approach [4,9] since

2005. Timeline of load-balancing mechanisms developed

for P2P overlays is shown in Fig.1.

While there is an extensive body of work related to

storage load-balancing in P2P overlays, it has often

been assumed that access load can be dealt with merely

by caching. But if each cache is uniformly randomly

chosen to answer query for a hot key, it nevertheless

suffers from high load imbalance caused by variance,

just like the balls into bins problem of uniform hashing.

Furthermore, structured overlay routing algorithms do

not account for balancing the traffic through each peer,

which if unbalanced, may lead to systematic congestion

that network level congestion control mechanisms can

not deal with. Use of redundant overlay routes to dyna-

mically route requests (e.g., queries) based on load at

peers has been proposed in 2007 to deal with traffic and

access load balancing [7].

While there have thus been several approaches deal-

ing specifically with diverse kind of load-imbalances,

research on a holistic approach (dealing with potentially

arbitrary workload skews in terms of storage load,

request distribution as well asmessage forwarding traffic

load in the network on one hand, and the capacity of

heterogeneous peers particularly in terms of the storage

space and bandwidth they have and are willing to

contribute) is in an early stage [9].

Foundations
Load in a P2P overlay network is typically either

because peers need to store an object, or for answering

requests (such as queries) by forwarding them to rele-

vant peers, which may in turn reply back with the

Load Balancing in Peer-to-Peer Overlay Networks. Figure 1. Evolution of load-balancing techniques for P2P overlays

over time.

1628L Load Balancing in Peer-to-Peer Overlay Networks
appropriate stored objects. A request may originate at

any peer, and the routing algorithm of the overlay is

used to forward the request to peers which can respond

to it. Thus a request in turn creates both request for-

warding and answering loads.

Each of these loads – storage and access load (which

in turn leads to request forwarding and answering

requests) – have different characteristics, both in

terms of the resources they need, as well as the temporal

characteristics. Storage load is permanent in that a

object need to be stored persistently unless it is removed

(deleted) based on application logic. Furthermore, even

though storage load distribution changes over time, in

general it is expected to change gradually. In contrast,

access load is typically temporary, however the load-

distribution may change abruptly (e.g., flash crowds).

These distinct characteristics provide different oppor-

tunities and limitations in load-balancing.

Note that various load-balancing issues may also

arise in unstructured and super-peer based overlay net-

works. These are dealt with heuristically. For instance,

super-peers take into account the heterogeneity of peers’

resources while designating some peers as super-

peers. So the discussion here is primarily restricted to

structured overlays.
Approaches for Balancing Storage Load

There have been various approaches to balance storage

load among peers. Historically, uniform hashing has

been used in many structured overlays as the first step

to balance storage load. These are generally called

distributed hash tables (DHTs). Subsequent networks

overcome the limitations of using uniform hashing. An

overlay to store range partitioned data has additional

challenges in achieving load-balance. (The term ‘‘range-

partitioned data’’ was introduced in 2004 [8] to distin-

guish structured overlays preserving ordering informa-

tion from those using uniform hashing (DHTs). The

same nomenclature is used here. Though structured

overlays supporting range partitioned data came to

mainstream focus in 2004–2005 with several new devel-

opments [1,3,8], P-Grid [1] supports range-partitioned

data but was originally proposed in 2001, making it

contemporary to the early DHT proposals.). Next is the

discussion of load-balancing issues and mechanisms in

both these categories of structured overlays.

Distributed Hash Tables (DHTs)

Hashing. Several pioneering structured overlays used

uniform hashing as the primary means to balance

storage load. The idea was to hash the object descriptor

Load Balancing in Peer-to-Peer Overlay Networks L 1629

L

to generate a key uniformly (e.g., using cryptographic

hashing like SHA) distributed over the key-space.

Assignment of the peers to a partition of the key-

space was also done uniformly at random, generally

using hashing again. This category of structured overlay

networks are commonly called distributed hash tables

(DHTs). The rationale of the original DHT approach

was that if peers were delegated sub-portions of

the key-space uniformly randomly, and the keys were

distributed uniformly randomly over the key-space,

then the peers will have uniform load.

This intuition fails in practice because of what is

known as the ‘‘balls into bins’’ effect. If m balls are put

in n bins by choosing the bins independently and

uniformly randomly for each of the balls, the variation

of the number of balls per bin is high [14], and is of the

order of m ∕n where m >> n. Since there are usually

many more objects than the number of peers (i.e., high

m ∕n), uniform hashing is inadequate to achieve good

load-balance. There has been several approaches to

reducing the effect of such statistical noise to improve

storage load-balancing in DHTs.

Virtual servers (peers). One potential approach to

reduce the variance is to have more peers. This can be

achieved by creating multiple mutually independent

virtual peers per physical computer [6]. Instantiating

multiple virtual peers have several down-sides, includ-

ing the fact that system states (e.g., routing table

entries) need to be maintained for each of these virtual

peers. Allocating independent key space partitions to

more logical (virtual) peers also lead to inefficient

search as more overlay level query forwarding are

required.

Power of two (multiple) choices. The variance

observed in the ‘‘balls into bins’’ process can be reduced

without global coordination or knowledge by using

an uncoordinated randomized algorithm. Instead of

choosing one bin randomly uniformly, several (say

two) distinct bins are chosen randomly uniformly as

potential destination for a ball. Then the bin with fewer

balls is actually chosen to put the current ball in. This

mechanism significantly reduces load-imbalance for

little extra overhead of choosing multiple (but con-

stant) bins for each ball, instead of picking one [13].

In the context of DHTs, this can be realized by having

multiple hash functions to generate multiple possible

keys for the same object. The object is actually stored

corresponding to that key which belongs to the key-

space partition which is stored by the less loaded peer.
In order to query an object, all the potential keys

for that object need to be queried, thus significantly

increasing the query overhead. An alternative is to store

pointers at all the other keys to the actual location of the

object. This however leads to higher storage and main-

tenance cost of these pointers.

Virtual peers for heterogeneous physical peers. Use of

multiple but equal number of virtual peers was origi-

nally proposed to deal with the load-imbalance caused

by the balls into bins effect for homogeneous peers [6].

The same idea of virtual peers has also been extended

to deal with peer heterogeneity. Proportionally more

virtual peers can be created corresponding to a physical

node with more resources [10]. To deal with the draw-

backs of virtual peers as mentioned earlier, allocation

of contiguous partition of the key-space to virtual

peers corresponding to the same physical node has

been proposed subsequently [4]. Having contiguous

key-space allocated to a physical peer has several

advantages. There are fewer routing table links to

maintain. Also fewer stored objects need to be moved

among physically different peers. Note that using such

contiguous partitions of the key-space among virtual

peers of the same physical node means that there is

actually no need of the ‘‘virtual peers’’ abstraction. It is

a special case of partitioning the key-space adapted to

the granularity of the load and the capacity of the peers

as has been used in several other approaches dealing

with range partitioned data [3,8,9].

Beyond DHTs

Using uniform hashing to generate keys lead to loss of

ordering relationships such as lexicographic ordering,

thus uniform hashing based DHTs are ill suited to deal

with any queries other than exact queries. DHTs are not

suitable for even simple crucial data-oriented queries

like approximate queries or range queries. On the other

hand, using an order preserving hashing to generate

keys leads to potentially arbitrarily skewed and dynam-

ic distribution of keys over the key-space, calling for

different load-balancing mechanisms in structured

overlays supporting range partitioned data. Several

overlays exist to support range-partitioned data.

While using slightly different data structures, each of

these proposals deal with two critical impacts of

skewed distributions of keys over the key-space –

namely (i) partitioning the key space among peers

in a granularity adaptive to the load distribution,

and (ii) establishing a data-structure to keep routing

1630L Load Balancing in Peer-to-Peer Overlay Networks
and searching efficient despite non-uniform parti-

tioning of the key-space.

Load-balancing (despite skewed load distribution)

leads to allocation of key-space partitions to peers in

an uneven manner. This is achieved by re-partitioning

key-space of overloaded peers with newly joining

peers, or by migrating peers from an under-loaded

region. Migration and repartitioning are relatively

drastic and need some (partial) global information.

The advantage is that it can use any under-loaded

peer to alleviate load imbalance for any other peer. In

contrast, a localized strategy of readjustment of the

key-space partitions with immediate neighbors in the

key-space complements the above strategies. By shrink-

ing or expanding the partitions, peers shed (or steal)

load by transferring keys to (from) a neighboring peer

in the key-space. These strategies are shown in Fig.2.

In each of these strategies, in absence of global

knowledge or coordination, peers need to make auton-

omous decision about whether it is over-loaded or

underloaded with respect to other peers. The load

information is obtained by sampling. Often peers ex-

ploit their routing topology for sampling a small nev-

ertheless representative subset of the peers. Depending

on their local view of the global state, overloaded peers

may then request underloaded peers to share load (e.g.,

as in Mercury [3]), or some underloaded peers may

spontaneously decide to relieve overloaded peers (e.g.,

as in P-Grid [2]). The sampling based load estimate is

approximate, moreover the sampling is neither instan-

taneous nor concurrent over the network, and even

if peers had perfect global knowledge, in the absence

of coordination, peers make autonomous decisions

for load-balancing. All this leads to the risk of oscilla-

tory behavior, which is undesirable. Load-balancing

mechanisms do not come free – all of them need

transfer of objects, moreover migration also leads to

inconsistent routing states at other peers which in turn

causes route maintenance overheads. So it is desirable

to dampen the load-balancing mechanism somewhat

in order to avoid oscillatory effects [2].

Consequence of load-balancing in overlays support-

ing range partitioned data. An immediate consequence

of load-balancing in structured overlays supporting

range partitioned data is that the key-space is partitioned

unevenly, and newmechanisms thanwhat is traditionally

used in DHTs are required to decide efficient routing

table entries and corresponding routing algorithms.
Randomized choice of routing tables ensure efficient

average routing latency in P-Grid [1] even if the routing

tables abstract a (potentially highly) unbalanced trie,

while Mercury [3] and Oscar [9] uses randomized rout-

ing in a slightly different way, extending the idea of small-

world routing [12] over skewed key-space partitions.

Approaches for Balancing Requests Related Load

Relative popularity of different objects vary, and also

change over time. As a consequence, even if storage-

load is balanced, peers storing popular objects or

services are prone to be overloaded. Replication or

caching is the intuitive remedy to deal with hot-spots

and dissipate load. If, however, one considers that

there are n copies of an object (or service), and there

are m >> n requests for the same object, and each

request is catered by any one of the copies randomly

uniformly, again one encounters a ‘‘balls into bins’’

scenario with high variation in load distribution. Like-

wise, the load of forwarding messages at different peers

have high variation if the routing algorithm of the

corresponding overlays are used in a load-agnostic

manner. This may in turn lead to congestion caused

by the overlay layer, even when there is underutilized

resources at other peers. Both these request related

load imbalances can be mitigated with the use of sim-

ple heuristics exploiting the redundancy of routing

choices (which is anyway necessary for fault-tolerance)

to the least loaded of the peers that satisfy the routing

criterion of the routing algorithm [7]. It has also been

shown in the work that either caching or load aware

routing is inadequate as stand-alone solutions, but

complement each other, and hence need to be used

together in order to balance request related loads.

Key Applications
Load-balancing is a critical and desirable property in

distributed systems, and is necessary to achieve good

performance andmake fair and judicious use of available

resources. Structured overlays provide indexing mecha-

nism to locate objects distributed over the network with

a guaranteed recall based on either exact or range

queries, and also support other queries like approximate

queries. The basic index can in turn be used to support

diverse applications including cooperative file systems,

P2P information retrieval, peer data management sys-

tems (PDMS) and collaborative work-spaces. For good

performance (e.g., response time, fewer failures, etc.) at

Load Balancing in Peer-to-Peer Overlay Networks. Figure 2. Mechanisms for re-balancing load. Note that a minimal

redundancy (replication) is always necessary for fault-tolerance, but details of redundancy for fault-tolerance has been

omitted for the sake of simplicity. (a) Underloaded peers migrate (new peers joins) to repartition or replicate key-space.

(b) Readjust key-space partitions among adjacent peers.

Load Balancing in Peer-to-Peer Overlay Networks L 1631

L

1632L Load Shedding
application level, it is imperative that the underlying

overlay has good load-balancing.

Future Directions
Peer-to-peer systems have dynamic and skewed work-

loads, and participating peers have heterogeneous capa-

cities. Consequently, rather than distributing load

equally among peers, which is what most current litera-

ture aims at, a more pragmatic approach is to look at

how to distribute the whole load without violating the

autonomous peers’ contribution, desirably with mini-

mal wastage of resources. Complementing this, it is also

important to find incentive or punishment mechanisms

which ensure that peers do contribute resources and do

not participate in the system as parasites or free-riders. A

holistic design, looking into mechanisms to ensure that

autonomous peers contribute sufficient resources, and

then allocating these heterogeneous resources to effi-

ciently and effectively cater to dynamic and skewed

workloads is the fundamental open problem in the con-

text of load-balancing in peer-to-peer overlays.

Cross-references
▶ Peer Data Management System

▶ Peer to Peer Overlay Networks: Structure, Routing

and Maintenance

▶Routing and Maintenance

▶ Structure

Recommended Reading
1. Aberer K., Datta A., Hauswirth M., and Schmidt R.

Indexing data-oriented overlay networks. In Proc. 31st Int.

Conf. on Very Large Data Bases, 2005.

2. Aberer K., Datta A., and Hauswirth M. Multifaceted simulta-

neous load balancing in DHT-based P2P systems: a new game

with old balls and bins. In Self-Properties in Complex Informa-

tion Systems, Springer, Berlin, 2005.

3. Bharambe A., Agrawal M., and Seshan S. Mercury:

supporting scalable multi-attribute range queries. In Symp. on

Communications Architectures and Protocols, 2004.

4. Brighten Godfrey P. and Stoica I. Heterogeneity and Load Balance

in Distributed Hash Tables. In Proc. 24th Annual Joint Conf. of

the IEEE Computer and Communications Societies, 2005.

5. Byers J., Considine J., and Mitzenmacher M. Simple load

balancing for distributed hash tables. In Proc. 2nd Int. Work-

shop on Peer-to-Peer Systems, 2003.

6. Dabek F., Kaashoek F., Karger D., Morris R., and Stoica I.

Wide-area cooperative storage with CFS. In Proc. ACM Symp.

on Operating Systems Principles, 2001.

7. Datta A., Schmidt R., and Aberer K. Query-load balancing in

structured overlays. In Proc. IEEE Int. Symp. on Cluster Com-

puting and the Grid, 2007.
8. Ganesan P., Bawa M., and Garcia-Molina H. Online balancing

of range-partitioned data with applications to peer-to-peer

systems. In Proc. 30th Int. Conf. on Very Large Data Bases, 2004.

9. Girdzijauskas S., Datta A., and Aberer K. Oscar: Small-

world overlay for realistic key distributions. In Proc. Int. Work-

shop on Databases, Information Systems and Peer-to-Peer

Computing, 2006.

10. Godfrey B., Lakshminarayanan K., Surana S., Karp R., and

Stoica I. Load Balancing in Dynamic Structured P2P Systems.

In Proc. 23rd Annual Joint Conf. of the IEEE Computer and

Communications Societies, 2004.

11. Karger D., Lehman E., Leighton T., Levine M., Lewin D., and

Panigrahy R. Consistent hashing and random trees: tools for

relieving hot spots on the World Wide Web. In Proc. ACM

Symposium on Theory of Computing, 1997.

12. Kleinberg J. The small-world phenomenon: an algorithmic

perspective. In Proc. ACM Symp. on Theory of Computing, 2000.

13. Mitzenmacher M. The power of two choices in randomized

load balancing. IEEE Trans. Parall. Distrib. Syst., 12

(10):1094–1104, 2001.

14. Raab M. and Steger A. Balls into bins – a simple and tight

analysis. In Proc. Int. Workshop on Randomization and

Approximation Techniques in Computer Science, 1998.

15. Steinmetz R. and Wehrle K. (eds.). Peer-to-Peer Systems

and Applications. Springer Lecture Notes in Computer Science,

vol. 3485, 2005. Chapters 9 & 10.
Load Shedding

NESIME TATBUL

ETH Zurich, Zurich, Switzerland

Definition
Data stream management systems may be subject to

higher input rates than they can immediately process

with their available system resources (e.g., CPU, mem-

ory). When input rates exceed the resource capacity,

the system becomes overloaded and the query answers

are delayed. Load shedding is a technique to remove

excess load from the system in order to keep query

processing up with the input arrival rates. As a result of

load shedding, the system delivers approximate query

answers with reduced latency.

Historical Background
Load shedding is a term that originally comes from

electric power management, where it refers to the

process of intentionally cutting off the electric current

on certain lines when the demand for electricity

exceeds the available supply, in order to save the elec-

tric grid from collapsing. The same term has also been

Load Shedding L 1633

L

used in computer networking to refer to a certain form

of congestion control approach, where a network rout-

er drops packets when its buffers fill up. More recently,

load shedding has been proposed as a way to deal with

overload in data stream processing systems [4].

Foundations
The goal of load shedding is to make sure that limited

system resources operate below their capacity levels in

case of unpredictable bursts in data arrival rates. This is

achieved by selectively discarding some of the data items,

thereby reducing the load at the expense of producing an

approximate query answer. The main challenge in this

problem is to minimize the loss in answer accuracy.

Assume a set of continuous queries Q, represented

as a query plan of operators, where some of these

operators may be shared among multiple queries. A

set of inputs I feed these queries with streaming data,

exerting a total load of Load(Q(I)) on a particular

system resource with capacity C. A load shedding

scheme must address the following key questions:

1. When to shed load? Conceptually, load needs to be

shed whenever Load(Q(I)) > C.

2. Where to shed load? Load can be discarded at any

point in the query plan. Dropping load at earlier

points avoids wasting work; however, because of

shared operators in the query plan, an early drop

might adversely affect the accuracy of too many

query answers.

3. Howmuch load to shed? Just enoughof the load at the

chosen point(s) in the query planmust be shed so that

the total resource demand gets below the available

capacity with minimal total loss in accuracy.

4. Which data items must be discarded? The data

items to be discarded should be chosen based on

the approximation model and the properties of the

operators in the query plan.

Furthermore, any load shedding scheme must have

low run-time overhead in order not to further stress

the limited system resources.

Various approaches have been proposed as solutions

to the above listed issues. These approaches differ in

their assumptions along several dimensions, including:

1. The limited resource under consideration (e.g.,

CPU, memory, communication bandwidth),

2. The way to reduce load (e.g., drop data, create

summaries),
3. The approximation model/objective (e.g., maxi-

mum subset, minimum relative error, maximum

throughput),

4. The query operator(s) under consideration (e.g.,

sliding window aggregates, windowed joins),

5. The data arrival model (e.g., stochastic models,

temporal models),

6. The control loop (open vs. closed)

7. The system architecture (centralized vs. distributed).

Within the scope of the Aurora Project, Tatbul et al.

have proposed a solution framework for load shedding

which focuses on CPU as the main scarce resource, and

discarding tuples by inserting special drop operators

into the running query plan as the load reduction

method [14]. The goal in this work is to minimize

utility loss in query answers in terms of two alternative

QoS (Quality of Service) dimensions: (i) percent tuple

delivery, using a random drop, or (ii) output values

delivered, using a semantic drop. A random drop dis-

cards tuples based on a drop probability, whereas a

semantic drop does so based on a predicate on the

tuple content. The earlier the load is reduced in a

query plan, the larger is the saving in processing

resources. However, shedding load early in a shared

query plan may hurt the accuracy for multiple queries.

To address this conflict, it is shown that load reduction

should be applied either on the input streams, or on

streams that immediately follow a shared operator in

the query plan. Furthermore, these potential drop

locations are ranked in terms of a metric, called loss/

gain ratio. The drop location that causes the smallest

QoS utility loss for the corresponding CPU processing

power gained in return per unit drop of data, is pre-

ferred over the other drop locations with larger ratios.

This way, the overall loss in QoS utility is minimized.

For low run-time overhead, this work has proposed to

pre-compute a set of load shedding plans based on

system statistics, and insatiate these plans at run time

based on the observed input rates. The proposed

framework has also been extended to handle load

shedding on windowed aggregation queries [15]. The

key idea is to use a third type of drop operator, called a

window drop, which semi-probabilistically discards load

in units of windows instead of on a per-tuple basis. This

way, window integrity can be preserved throughput a

query plan, and query answers are guaranteed to be

subsets of the original answers. An alternative to the

window drop approachwas earlier proposed by Babcock

1634L Load Shedding
et al. [3]. This work also targets load shedding on

aggregation queries under CPU constraints, but uses a

different approximation model where the goal is to

minimize the maximum relative error across all queries.

Drops are applied on a per-tuple basis, leading to query

answers with errors in their values. Window statistics

and well-known statistical bounds such as the Hoeffding

inequality are used to control these errors for a certain

set of aggregate functions, including sum, count,

and average. A close alternate to dropping tuples under

CPU limitations is the selective processing approach

proposed by Gedik et al. [8]. This work selectively

processes tuples in the stream windows for join opera-

tors, in order to maximize the output rate or semantic

utility of the query results, in the presence of variations

in input rates as well as time correlations between

two join inputs.

Load shedding can also be used to deal with mem-

ory limitations. Das et al. have focused on this problem

for stream joins, where the maximum subset measure

is used as the approximation metric [7]. This work

assumes a frequency-based data arrival model and

proposes two practical heuristics: (i) PROB, which

drops tuples from an input stream which had the

smallest frequency of occurrence on the opposite

stream in the past (assuming that those tuples are the

least likely to produce join results also in the future);

(ii) LIFE, which drops tuples from an input stream

whose product of frequency of occurrence on the op-

posite stream and remaining window lifetime is the

smallest (i.e., the goal is to avoid investing on soon to

be expired tuples). Within the scope of the STREAM

Project, Srivastava and Widom have proposed an alter-

native load shedding approach for windowed stream

joins in memory-limited environments [12]. This

work is based on an age-based data arrival model,

where it is assumed that the rate at which a tuple

produces join results is solely determined by its age,

specified as an age curve. To deal with memory short-

age, tuples of a certain age are selectively discarded

from the join window to make room for others,

which have higher expectation of producing matches.

The goal here is again to maximize the size of the join

result set. A secondary concern in this work is to be

able to produce a random sample from the join in case

that the join is followed by an aggregate. In this case,

the final output will not be a subset of the exact answer,

and the overall goal is then to minimize the relative

error, in line with the work of Babcock et al. [3].
Jain et al. have proposed a load shedding approach

to reduce the network bandwidth usage [9]. This

approach is based on Kalman Filters which can be

used to model data streams as processes with states

that evolve over time. As new tuples arrive at a source

site, it is checked if the current model installed at the

remote server site can still answer the query within

given precision bounds. If so, there is no need to

send the new tuple to the server, i.e., it can be dis-

carded. Otherwise, the server model has to be updated,

hence the new tuple is transmitted. Adaptivity is

achieved by adjusting model parameters to changing

load characteristics.

Stream load can also be reduced based on creating

summaries of data instead of discarding data. This

idea was pursued by two different lines of work within

the scope of the TelegraphCQ Project: (i) Reiss and

Hellerstein have proposed a load shedding technique

called data triage, where excess data is not dropped, but

stored in synopsis data structures [11]. At the end of a

well-defined query window, the stored synopses are

processed through a shadow query plan to compute

an approximate result on the summarized portion of

the data. Finally, exact and approximate results are

merged into one composite result for that query win-

dow. This works using an error model based on Min-

kowski distance. (ii) Chandrasekaran and Franklin

have focused on hybrid queries that process live data

streams in correlation with historical data archived on

disk [5]. In this case, disk becomes the bottleneck

resource. To keep processing of disk data up with

processing of live data, disk data is organized into

multiple resolutions of reduced summaries. Depend-

ing on the live data rates, the system picks the right

resolution summary to use in query processing. This is

a form of load shedding that tries to cut down from

disk access cost using data summaries.

The NiagaraCQ Project has taken an integrated

approach where load shedding is seen as an extension

to continuous query optimization. Kang et al. use a

unit-time-based cost model where total cost of join

processing is broken into two components, one for

each join direction [10]. The optimal index and join

algorithm combination for each direction is deter-

mined so as to maximize query throughput. Under

CPU and memory limitations, the optimizer deter-

mines the ideal rate for each input and accordingly

places a random drop to control the input rates. Ayad

and Naughton use a similar analytical cost model, but

Load Shedding L 1635

L

extend it to plans with multiple joins [2]. It is shown

that if computational resources are enough, then all

join plans have the same throughput, however, they

may substantially differ in their resource utilization.

If all of these plans are infeasible (i.e., lead to CPU

overload), then load must be shed via random drops.

The focus is on picking the right join plan, the loca-

tions on the plan to insert the drops, and the amount

of drops. An interesting result shown in this work is

that the optimal join plan (i.e., with the lowest utiliza-

tion) when resources are sufficient is not necessarily

the optimal plan (i.e., with the highest throughput)

when resources are insufficient.

All of the above described approaches assume that

stream processing is performed on a single server. The

overload problem can also arise in distributed stream

processing systems where queries are distributed onto

multiple servers. In a distributed environment, there is

load dependency among the nodes that are assigned to

run pieces of the same query. As a result, shedding load

at an upstream node affects the load levels at its down-

stream nodes, and the load shedding actions at all

nodes along a query plan will collectively determine

the quality degradation at the query end-points. With-

in the scope of the Borealis Project, Tatbul et al. have

modeled this problem as a linear optimization prob-

lem, and proposed two alternative solutions: (i) a cen-

tralized approach, where a coordinator node produces

globally optimal plans with the help of an LP solver,

and the rest of the nodes adopt their share of these

global plans; (ii) a distributed approach, where nodes

exchange metadata information (represented in the

form of a feasible input table (FIT) which shows

input rate combinations that are feasible for a given

node) with their neighbors, and each node produces its

own plan based on the available metadata [13]. Both of

these solutions are based on the idea of pre-computing

the load shedding plans in advance and storing them

in a quadtree-based plan index. It is shown that the

FIT-based plan generation is more efficient than its

solver-based counterpart. Furthermore, the distributed

solution is expected to be more responsive in dynamic

environments due to its ability to incrementally update

previously computed load shedding plans, reducing the

amount of run-time communication needed among

the nodes.

These approaches are all open-loop solutions in that

the system load is periodically monitored and the load

shedding algorithms are triggered as necessary. There
has also been recent work that applies control-theoretic

concepts to finer-grained adaptive load shedding on

data streams [1,16]. These approaches are based on

constructing a feedback loop that continually monitors

the high-frequency variations in system parameters and

makes the necessary adjustments in the load controllers

accordingly. Such closed-loop approaches are shown to

be more adaptive for input workloads with higher fre-

quency fluctuations in stream data rates.

Load shedding finds use also in resource-intensive

data streammining applications. As argued by Chi et al.

[6], in common data mining tasks such as classification

and clustering of multiple data streams, the impact of

load shedding on performance is not known a priori as

the mining quality often depends on specific feature

values observed in the stream in a non-monotonic way.

This requires feature value prediction and adaptation.

The Loadstar scheme uses a Markov model to predict

the distribution of future feature values whose para-

meters are adaptively updated in time in order to max-

imize the classification quality under CPU constraints

[6]. The high-level idea in this work is to allocate more

resources to data streams that carry more uncertainty

while shedding the ones whose class labels are more

certain for the upcoming time window.

Key Applications
Load shedding can be used in all data-intensive streaming

applications for which low latency answers can be more

critical than full answer accuracy. These include sensor-

based monitoring (e.g., habitat monitoring, bio-medical

monitoring, weather monitoring, road traffic monitor-

ing), RFID-based asset tracking, GPS-based location

tracking, video-based security monitoring, and network

traffic monitoring.

Future Directions
Load shedding in data stream management systems

is currently an active area of research. A significant

body of research results has been produced in this

area since circa 2002. The future directions include

development of new load shedding schemes for other

sets of assumptions along the dimensions listed above.

There is also a need to integrate the complementary

and alternative solution schemes under a single frame-

work, which could automatically select the right set of

techniques for a broad range of system resources, based

on the characteristics of the received workload as well

as the application-specific quality of service criteria.

1636L LOC METS
Cross-references
▶Adaptive Stream Processing

▶Approximate Query Processing

▶Data Stream Management Architectures and

Prototypes

▶Continuous Query

▶Data Sampling

▶Data Sketch/Synopsis

▶Data Stream

▶Data Quality Dimensions

▶Data Quality Models

▶Data Reduction

▶ Stream Mining

▶ Stream-Oriented Query Languages and Operators

▶ Stream Processing

▶ Stream Sampling

▶Wavelets on Streams

▶Window-Based Query Processing

▶Windows

Recommended Reading
1. Amini L., Jain N., Sehgal A., Silber J., and Verscheure O. Adap-

tive Control of Extreme-scale Stream Processing Systems. In

Proc. 23rd Int. Conf. on Distributed Computing Systems, 2006.

2. Ayad A. and Naughton J.F. Static Optimization of Conjunctive

Queries with Sliding Windows Over Infinite Streams. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2004.

3. Babcock B., Datar M., and Motwani R. Load Shedding for

Aggregation Queries over Data Streams. In Proc. 20th Int.

Conf. on Data Engineering, 2004.

4. Carney D., Çetintemel U., Cherniack M., Convey C., Lee S.,

Seidman G., Stonebraker M., Tatbul N., and Zdonik S. Monitor-

ing Streams - A New Class of Data Management Applications. In

Proc. 28th Int. Conf. on Very Large Data Bases, 2002.

5. Chandrasekaran S. and Franklin M.J. Remembrance of Streams

Past: Overload-Sensitive Management of Archived Streams. In

Proc. 30th Int. Conf. on Very Large Data Bases, 2004.

6. Chi Y., Yu P.S., Wang H., and Muntz R.R. Loadstar: A Load

Shedding Scheme for Classifying Data Streams. In Proc. SIAM

International Conference on Data Mining, 2005.

7. Das A., Gehrke J., and Riedewald M. Approximate Join Proces-

sing Over Data Streams. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2003.

8. Gedik B., Wu K., Yu P.S., and Liu L. CPU Load Shedding for

Binary Stream Joins. Knowl. and Inf. Syst., 13(3):271–303, 2006.

9. Jain A., Chang E.Y., and Wang Y. Adaptive Stream Resource

Management using Kalman Filters. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2004.

10. Kang J., Naughton J.F., and Viglas S. Evaluating Window Joins

over Unbounded Streams. In Proc. 19th Int. Conf. on Data

Engineering, 2003.

11. Reiss F. and Hellerstein J.M. Data Triage: An Adaptive Architec-

ture for Load Shedding In TelegraphCQ. In Proc. 19th Int. Conf.

on Data Engineering, 2005.
12. Srivastava U. and Widom J. Memory Limited Execution of

Windowed Stream Joins. In Proc. 30th Int. Conf. on Very

Large Data Bases, 2004.

13. Tatbul N., Çetintemel U., and Zdonik S. Staying FIT: Efficient

Load Shedding Techniques for Distributed Stream Processing. In

Proc. 33rd Int. Conf. on Very Large Data Bases, 2007.

14. Tatbul N., Çetintemel U., Zdonik S., Cherniack M., and

Stonebraker M. Load Shedding in a Data Stream Manager. In

Proc. 29th Int. Conf. on Very Large Data Bases, 2003.

15. Tatbul N. and Zdonik S. Window-aware Load Shedding for

Aggregation Queries over Data Streams. In Proc. 32nd Int.

Conf. on Very Large Data Bases, 2006.

16. Tu Y., Liu S., Prabhakar S., and Yao B. Load Shedding in Stream

Databases: A Control-Based Approach. In Proc. 32nd Int. Conf.

on Very Large Data Bases, 2006.
LOC METS

PRASENJIT MITRA

The Pennsylvania State University, University Park,

PA, USA

Synonyms
Metadata encoding and transmission standard; Library

of congress METS

Definition
The Library of Congress (LOC) Metadata Encod-

ing and Transmission Standard (METS) is an XML

(Extensible Markup Language) based format used for

encoding metadata. The metadata is used to markup

digital library objects in a repository or for exchange

across repositories. METS is a Digital Library Federa-

tion initiative that is a successor to the Making of

America II project (MOA2).
Key Points
The MOA2 project attempted to provide encoding for-

mats for descriptive, administrative, and structural

metadata for text and image-based documents. (http://

www.loc.gov/standards/mets/METSOverview.v2.html)

The Digital Library Federation (DLF) sponsored the

project and the National Endowment for the Huma-

nities funded it. MOA2 involved discussions led by

the University of California, Berkeley with participa-

nts from New York Public Library and the libraries

of Cornell, Penn State, and Stanford universities.

The project produced a Document Type Definition

Locality of Queries L 1637

L

(DTD) that specifies a vocabulary and syntax for encod-

ing digital objects. (http://www.lib.berkeley.edu/digi-

coll/bestpractices/mets_history.html) The library

community realized that the MOA2 DTD was too re-

strictive, because, MOA2 did not provide some basic

functionality required for multimedia objects like video

and audio. METS arose from efforts to address these

problems in MOA2.

Digital objects and the metadata needed to describe

them are different from the metadata required for

documents. Digital objects require structural meta-

data that indicates how the components of the object

are glued together and technical metadata that specifies

how the digital object was produced. For example, if

a digital object contains image and text files, the struc-

tural metadata indicates the hierarchical structure

of these objects and files. Furthermore, without these

metadata, the authenticity of a digital object could

be in doubt. METs allows specifications of the struc-

tural technical metadata, as well as metadata required

for internal management and administration.

A METS document consists of seven sections:

� METS header: describes the document itself and

publishes information about the creator, editor, etc.

� Descriptive metadata: both external, i.e., residing

outside the document and internal.

� Administrative metadata: describes how the object

was created and stored, specifies intellectual pro-

perty rights, etc. Like the descriptive metadata,

administrative metadata can also be both external

or internal.

� File Section: lists all files that comprise the digital

object. Groups of files can be specified using

<fileGrp> with individual file elements specified

using <file>.

� Structural Map: specifies the hierarchical structure

of the digital object.

� Structural Links: allows creators to link different

nodes in the hierarchy using hyperlinks.

� Behavioral: associates executable behaviors with

content in the METS object.

METS is specified as an XML Schema and can be

used in the role of a Submission Information Package

(SIP), Archival Information Package (AIP) or Dissem-

ination Information Package (DIP) within the

Open Archival Information System (OAIS) Reference

Model (http://ssdoo.gsfc.nasa.gov/nost/isoas/ref_model.

html) [1–3].
Cross-references
▶Digital Libraries

Recommended Reading
1. Gartner R. METS: Metadata Encoding and Transmission Stan-

dard. JISC Techwatch Report, 2002.

2. Guenther R. and McCallum S. New Metadata Standards for

Digital Resources: MODS and METS. Bulletin of the American

Society for Information Science and Technology, 2003.

3. Cundiff M.V. An introduction to the Metadata Encoding and

Transmission Standard (METS). Library Hi Tech, 2004.
Local Web Search

▶Geo-Targeted Web Search
Localization Abstraction

▶Abstraction
Locality

▶ Locality of Queries
Locality of Queries

PABLO BARCELÓ

University of Chile, Santiago, Chile

Synonyms
Locality; Hanf-locality; Gaifman-locality

Definition
Let s be a relational signature without constant sym-

bols. Given a s-structure A, its Gaifman graph,

denoted by GðAÞ, has A (the domain of A) as the set
of nodes. There is an edge (a1, a2) in GðAÞ iff there is
a relation symbol R in s such that for some tuple

t in the interpretation of this relation in A, both a1,

a2 occur in t. The distance d(a1, a2) is the distance in

the Gaifman graph, with d(a, a) = 0. If �a and �b are

tuples of elements, then d(�a, �b) stands for the mini-

mum of d(a, b), where a 2 �a and b 2 �b.

1638L Locality of Reference
Let A be a s-structure, and �a = (a1,...,am)

2 Am. The radius r ball around �a is the set

BAr ð�aÞ ¼ fb 2 A j dð�a; bÞ � rg. The r-neighborhood
of �a in A is the structure NAr ð�aÞ over signature s
expanded withm constant symbols, where the universe

is BAr ð�aÞ, the s-relations are restrictions of the

s-relations in A to BAr ð�aÞ, and the m additional

constants are interpreted as a1,...,am. Notice that

any isomorphism h between NAr ða1; :::;amÞ and

Nr
ℬ(b1,...,bm) imposes that h(ai) = bi, 1 � i � m.

Let A;B be s-structures, �a 2 Am and �b 2 Bm. Then

ðA; �aÞ >r ðB; �bÞ if there exists a bijection f : A ! B

such that NAr ð�acÞffiNBr ð�bf ðcÞÞ, for every c 2 A.

Hanf-locality. An m-ary query Q on s-structures
is Hanf-local, if there exists r � 0 such that for every

s-structures A and ℬ, and every �a 2 Am and �b 2 Bm, if

ðA; �aÞ>rðB; �bÞ then ð�a 2 QðAÞ () �b 2 QðBÞÞ.
Gaifman-locality. An m-ary query Q, m > 0, on

s-structures, is Gaifman-local if there exists r � 0 such

that for every s-structure A, and every �a,�b 2 Am, if

NAr ð�aÞffiNAr ð�bÞ then ð�a 2 QðAÞ () �b 2 QðAÞÞ.

Key Points
Locality is a property of queries that finds its origins

in the work by Hanf [1] and Gaifman [2], and that

has shown to be very useful in the contexts of finite

model theory and relational database theory. In very

rough terms, a query is local if its truth value only

depends on a small neighborhood of the input around

its free variables. Locality is primarily used to prove

inexpressibility results over finite structures, but it can

also be used for establishing normal forms for logical

formulae. It is a particularly helpful tool for finding

easy winning strategies for the duplicator in the Ehren-

feucht-Fraı̈ssé game, avoiding complicated combinato-

rial arguments.

The abstract study of the concepts behind the

locality theorems of Hanf and Gaifman was initiated

in [3]. It is shown there that the two notions of locality

presented above are related: Every m-ary query (with

m > 0) that is Hanf-local is also Gaifman-local, but

the converse does not hold. The most paradigmatic

example of a query that is neither Hanf- nor

Gaifman-local is the one that computes the transitive

closure of a graph.

A typical application of locality to prove the in-

expressibility of query Q over logic L is done in

two steps. First, show that Q is not local, and second,

prove that every query defined by a formula in L
is local. It follows from [3,4] that first-order logic, as

well as many of its extensions with counting and

generalized quantifiers, only define queries that are

both Hanf- and Gaifman-local. This gives a simple

proof of the fact that none of these logics can compute

the transitive closure of a graph.

Cross-references
▶ Ehrenfeucht-Fraı̈ssé Games

Recommended Reading
1. Hanf W. Model-theoretic methods in the study of elementary

logic. In J.W. Addison et al. (eds.). The Theory of Models. North

Holland, Amsterdam, 1965, pp. 132–145.

2. Gaifman H. On local and non-local properties. In Proc. of the

Herbrand Symp., Logic Colloquium ’81, North Holland,

Amsterdam, 1982.

3. Libkin L. On the forms of locality over finite models. In Proc.

12th Annu. IEEE Symp. on Logic in Computer Science, 1997,

pp. 204–215.

4. Libkin L. On counting logics and local properties. ACM Trans.

Computat. Logic 1(1):33–59, 2000.
Locality of Reference

▶Memory Locality
Locality Principle

▶Memory Locality
Locality-Preserving Mapping

▶ Space Filling Curves

▶ Space-Filling Curves for Query Processing
Location Prediction

▶ Spatial Data Mining
Location Services

▶ Location-Based Services

Location-Based Services L 1639

L

Location-Based Services

SCOTT A. BRIDWELL, HARVEY J. MILLER

University of Utah, Salt Lake City, UT, USA

Synonyms
Location services; Geographic information services;

Mobile map services; LBS

Definition
Location-based services (LBS) provide targeted infor-

mation to individuals based on their geographic loca-

tion in real or near-real time, typically through wireless

communication networks and clients such as portable

computers, personal digital assistants, mobile phones,

and in-vehicle navigation systems.

Historical Background
LBS have emerged from the convergence of three major

technological trends: (i) geospatial technologies, includ-

ing location-aware technologies, geographic informa-

tion systems (GIS) and spatial databases; (ii) the

Internet, and; (iii) information and communication

technologies, in particular, personal computing devices

and mobile communication. Some of these technolo-

gies date to the late 1960s and early 1970s. For exam-

ple, the first GIS was developed in the mid-1960s, while

the global positioning system, the Integrated Services

Digital Network (ISDN), mobile telephony and TCP/

IP as a dominant network protocol emerged in the

1970s. The personal computer was introduced in

early 1980s, an era that also experienced the deregula-

tion of the telecommunications industry in the USA

and Europe. Through the 1990s and early twenty-first

century, these technologies matured, diffused and con-

verged sufficiently such that LBS in the contemporary

sense is possible [4,8].

Foundations

Location-Aware Technologies

Location-aware technologies (LATs) are devices that

can report their geographic location in real or near-

real time. Technologies for determining geographic

location include the global positioning system, radi-

olocation methods and interpolation [2]. These can be

used in combination.

The global positioning system (GPS) exploits time

differences of signals arriving from subset of a satellite
constellation in Earth orbit. The GPS is traditionally the

most common LAT due to its high accuracy and low

cost. GPS receivers are becoming small and light enough

to embed in many other mobile technologies. However,

the GPS requires line-of-sight with orbital satellites; this

can be a problem in places with dense foliage or tall

buildings, as well as inside built structures.

Radiolocation methods exploit wireless communica-

tion systems and determine location usingmethods such

as those based on the time, time difference or angle of

the signals’ arrivals at base stations from mobile clients.

The configuration of the network determines the preci-

sion of this method, with greater precision for areas

with higher population densities and larger numbers of

base stations. Radiolocation methods are less accurate

in rural areas and have caused difficulties for wireless

carriers attempting to achieve the E911 standards.

Other radiolocation methods include Bluetooth,

WiFi, and Radio Frequency Identification (RFID) tags.

These methods utilize a fixed network of sensory objects

that sense objects in close proximity, interact with other

sensors to triangulate the locations of an object based on

some measure of signal strength, or utilize training in-

formation containing combinations of spatial coordi-

nates and signal strengths. However, these methods are

expensive and only cover small coverage areas. Their

integration with positioning mechanisms outside of the

building may also prove difficult.

Interpolation methods use distances and directions

along a route from a known location to determine the

current location.

Locational and Spatial Data Management

Since LBS users are likely to be mobile, a fundamental

issue concerns the process whereby user locations are

communicated to the central database and location serv-

er that supports LBS queries. At the time of the query the

location service must have an accurate estimate of the

user’s location. The strategies used to communicate this

information vary depending on the capabilities of the

mobile device, the required accuracy for a particular

query and the costs levied against the application server.

This is essentially a question of how often the location of

a moving object should be updated in the database.

Simple update strategies update a user’s location

whenever their location changes. This assumes there is

no uncertainty in the tracking process and places high

communication burdens on the servers. Temporal up-

date strategies provide periodic updates of a user’s

1640L Location-Based Services
location based on a recurring time interval. In the

interval between updates, a user’s location must be

estimated according to an interpolation function. The

accuracy of this estimate is based on the duration of

the temporal recurrence interval, the distance the user

travels between samples and assumed maximum travel

speed. Distance or spatial update strategies provide

updates when the user has moved a specified distance.

This has the advantage of being more sensitive to the

behavior of the user than temporal strategies. Dead-

reckoning strategies integrate the temporal and dis-

tance approaches by comparing an estimated location

with a measured location; this usually occurs on the

client device. Updates to the database or location serv-

er occur when the difference between the estimated

and measured location exceeds a given threshold.

Additional spatial data management issues include

representations of geographic space and georeferenced

content of real-world services such as restaurants

and shops. While the former often includes physical

features such as mountains, coastlines, and so forth,

of critical importance is the transportation network.

Transportation networks are important since they

serve as the basis for navigation as well as the basis for

georeferencing through street addresses. Required are

multiple and integrated network representations that

can support both navigation and locational referen-

cing. The latter includes both the user’s position

provided by the LATas well as linear referencing within

the network [3].

Middleware, Open Standards and Interoperability

LBSmiddleware provides standardmechanisms for con-

necting the software components necessary for a given

service. These components may be entirely present with-

in a single device or distributed across a network of

location, data and application servers. The primary ob-

jective ofmiddleware is to support the interoperability of

applications across devices and mobile service networks

with different locational positioning methods and pro-

tocols. Middleware also provides a generic interface for

querying geographic information stored in different for-

mats and database systems.

The Java ME Location API is an example of device-

oriented middleware. The API provides an interface

defining methods for querying the location of the user

with information corresponding to the confidence or

uncertainty of the estimated location. This application

resides on the device.
The Open Location Services (OpenLS) initiative is

an example of set of standards to support network-

oriented middleware. The OpenLS defines a set of core

services and functions that are expected to satisfy most

LBS applications. These services are similar database

query languages in that they define an explicit structure

for asking questions and interpreting the answers.

Queries and results are structured using the eXtensible

Markup Language (XML). Gateway services provide the

mechanisms for querying the location of the user or

other users required for the given application (e.g.,

friend finding); applications utilizing this service may

exist on the device or be accessed through the network.

Locational utility services provide the means for trans-

lating street addresses to geographical coordinates and

vice versa. Directory services allow for querying points of

interest (POI) such as restaurants. Route services provide

a route, between two locations according to the prefer-

ences of the user. Presentation services allow for display-

ing querying results on a graphical map. Each of these

services may exist on different providers. Using this

framework, an LBS application developer could chain

these services together in a similar manner to importing

a software library or querying a relational database [7].

Locational Privacy

Detailed movement patterns in space and time are

a signature that reveals much about an individual.

Locational privacy is an emerging concept that suggests

individuals have rights to their signature in space and

time and can determine when, how and to what extent

location information is communicated to others. Strate-

gies for protecting locational privacy include regulation,

privacy policies, anonymity and obfuscation. Regulation

and privacy policies are trust-based mechanisms for

defining unacceptable uses of location information.

However, trust can be broken, making these strategies

vulnerable to unintentional and intentional disclosure.

Anonymity detaches locational information from an

individual’s identity. However, GIS can integrate loca-

tional information with other data such as remotely

sensed imagery, geo-referenced social, economic and

cadastral data, point-of-sale data, credit card transac-

tions, traffic monitoring and video surveillance imagery,

and other geosensor network data, allowing identity to

be inferred. Obfuscation techniques deliberately degrade

locational information, using error and uncertainty to

protect privacy. Obfuscation techniques include geo-

graphic masking for static and mobile data (see [1]).

Location-Based Services. Table 1. Common LBS

applications

� News � Emergency response

� Navigation � Person finding (friends, children)

� Traffic information � Pet tracking
� Points of interest � Electronic toll collection
� Advertising � Car tracking
� Gaming � Fleet management

� Weather forecasts � Asset management

Locking Granularity and Lock Types L 1641

L

Key Applications
Key LBS applications span a large spectrum from

convenient, ‘‘concierge’’ services to critical emergency

response. Table 1 lists common LBS applications [9].

Two possible dimensions for classifying LBS app-

lications are person versus device-oriented and push

versus pull services [9]. Person-oriented LBS encom-

passes applications that are user-based. The user typi-

cally has control of the service: these intend to locate the

person and/or use that location to enhance a service.

These applications include news, navigation, points of

interest, traffic, emergency response, and so on. Device-

oriented LBS are not controlled by a person. Rather, the

intent is to track an object or a set of objects. Applica-

tions include asset and fleet management.

Push services are LBS where a person receives infor-

mation as a result of his or her location without

actively requesting it. This information could be sent

to the user based on prior consent (e.g., weather or

traffic warnings) or without consent (e.g., advertising).

Pull services are those where the user activity requests

the information (e.g., points of interest, navigation,

weather forecasts, traffic information).

Cross-references
▶Mobile Objects Databases

Recommended Reading
1. Duckham M., Kulik L., and Birtley A. A spatio-temporal

model of strategies and counter-strategies for locational privacy

protection. In Geographic Information Science – Proc. 4th

International Conference, 2006, pp. 47–64.

2. Grejner-Brzezinska D. Positioning and tracking approaches

and technologies. In Telegeoinformatics: Location-based Com-

puting and Services, H.A. Karimi, A. Hammad (eds.). CRC

Press, Boca-Raton, FL, 2004, pp. 69–110.

3. Jensen C. Database aspects of location-based services. In

Location-Based Services, J. Schiller, A. Voisard (eds.). Morgan

Kaufmann, New York, 2002, pp. 115–145.
4. Jiang B. and Yao X. Location-based services and GIS

in perspective. Comput. Environ. Urban. Syst., 30:712–725,

2006.

5. Kolodziej K.W. and Hjelm J. Local Positioning Systems:

LBS Applications and Services. Taylor and Francis, London,

2006.

6. Küpper A. Location-Based Services: Fundamentals and Opera-

tion. Wiley, Hoboken, NJ, 2005.

7. Lopez X.R. Location-based services. In 1Telegeoinformatics:

Location-based Computing and Services, H.A. Karimi,

A. Hammad (eds.). CRC Press, Boca Raton, FL, 2004,

pp. 171–188.

8. Shiode N., Li C., Batty M., Longley P., and Maguire D.

The impact and penetration of location-based services. In

Telegeoinformatics: Location-based Computing and Services,

H.A., Karimi A. Hammad (eds.). CRC Press, Boca Raton, FL,

2004, pp. 349–366.

9. Spiekermann S. General aspects of location-based services. In

Location-Based Services, J. Schiller, A. Voisard (eds.). Morgan

Kaufmann, New York, 2004, pp. 9–26.
Lock Coupling

▶B-Tree Locking
Lock Manager

▶Concurrency Control Manager
Lock Tuning

▶Tuning Concurrency Control
Locking Granularity and Lock Types

RALF SCHENKEL

Max-Planck Institute for Informatics, Saarbrücken,

Germany

Synonyms
Locking granularity and lock types

Definition
Databases are usually organized hierarchically, with

tablespaces containing tables, which in turn contain

Locking Granularity and Lock Types. Table 1.

Compatibility matrix of lock types

S X IS IX SIX

S + � + � �
X � � � � �
IS + � + + +

IX � � + + �
SIX � � + � �

1642L Locking Granularity and Lock Types
records. In multigranularity locking, this organization

is exploited for a more efficient lock management by

allowing transactions to lock objects of different gran-

ularities like tables or records. Thus, instead of locking

each record of a table separately, a transaction can lock

the complete table. To ensure a correct execution when

transactions use different granularities for locking,

additional lock modes are introduced to avoid non-

serializable executions.

Key Points
Transactions that acquire many locks on small items like

records or pages incur a non-negligible performance

and memory overhead for managing these locks. Such

transactions can benefit from acquiring locks on coarser

granules like tables or complete tablespaces, avoiding

many fine-grained locks. However, concurrency may

be lower due to an increased number of conflicts with

coarser locks. On the other hand, for transactions that

access only a few records, locking these records directly

will usually be the best solution.

Concurrent transactions that use different granula-

rities for locking cannot easily coexist if any guarantees

on the serializability of the execution should be pro-

vided, as locks of different granularities do not conflict

with each other and hence cannot prevent any nonser-

ializable executions. In such a multi-granularity locking

scheme, transactions wanting to acquire a lock on a

smaller granule must first acquire locks on all larger

granules. While it would be sufficient if the locks on

the coarser granules were acquired in the same mode as

the lock on the smaller granule, this would lead to many

unnecessary blockings due to conflicts on the coarser

granules. As an example, consider two concurrent trans-

actions that want to modify different records of the

same table and hence need to acquire an exclusive lock

on these records. As they modify different records, they

do not conflict with each other. However, they would

additionally have to acquire an exclusive lock on the

table, too, which would make the second transaction

wait until the first released the lock again.

Such performance penalties can be circumvented

with additional lock types for coarser granules that

express the intended lock type the transaction wants

to acquire on the smaller granule: The lock modes IS

(intentional shared) and IX (intentional exclusive) on

the coarse granules correspond to S (shared) and X

(exclusive) on the smaller granule. These lock types

coexist with the standard shared and exclusive lock
types on the coarse granule (that are used to get shared

or exclusive access to all items of the smaller granule).

The additional lock type SIX (shared intentional

exclusive) combines an S and an IX lock. It is used

when the transaction plans to read most of the items

within the granule and additionally modify some of

them. In this situation, an X lock would be too restric-

tive as it would lock out any other transaction from

reading items in that table.

To ensure serializability in a system with multi-

granularity locking, a transaction wanting to acquire

a lock on any granule (for example, on a record of a

table) must first acquire warning locks with the

corresponding intentional lock type on all coarser

granules. Table 1 shows the compatibility matrix for

the different lock types.

The best locking granularity for a transaction may

change throughout its execution. For example, if the

transaction initially plans to access only a few records,

it may be best to lock only records; if the access pattern

changes later and it turns out that it is necessary to

access all or almost all records of the table, it may be

better to escalate the record-level locks to a single lock

on the table. To do this, the transaction must first

convert the warning lock (of type IS or IX) on the

table to a ‘‘real’’ lock (of type S or X), for which it

may have to wait until other transactions have released

incompatible locks. It can release any record-level locks

subsumed by the new lock on the table without

compromising serializability.
Cross-references
▶B-Tree Locking

▶ Locking Granularity and Lock Types

▶ Serializability

▶ SQL Isolation Levels

▶Two-Phase Locking

Logging and Recovery L 1643
Recommended Reading
1. Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, and Irving

L. Traiger. Granularity of locks in a large shared data base.

In Proc. 1st Int. Conf. on Very Large Data Bases, 1975,

pp. 428–451.

2. Gerhard Weikum, and Gottfried Vossen. Transactional Informa-

tion Systems. Morgan Kaufman, San Francisco, CA, 2002.
Locking Protocol

▶Two-Phase Locking
Log Component

▶ Logging/Recovery Subsystem
L

Log Manager

▶ Logging/Recovery Subsystem
Logging and Recovery

ERHARD RAHM

University of Leipzig, Leipzig, Germany

Synonyms
Failure handling; Rollback; Undo; Redo; Checkpoint;

Backup; Dump

Definition
Logging and recovery ensure that failures are masked

to the users of transaction-based data management

systems by providing automatic treatment for different

kinds of failures, such as transaction failures, system

failures, media failures and disasters. The main goal is

to guarantee the atomicity (A) and durability (D)

properties of ACID transactions by providing undo

recovery for failed transactions and redo recovery for

committed transactions. Logging is the task of collect-

ing redundant data needed for recovery.

Key Points
The ACID concept requires that no data changes of

failed transactions remain in the database. Failed
transactions thus have to be rolled back by undoing

all their changes (undo recovery). On the other hand,

data changes of successfully ended (committed) trans-

actions must not be lost but have to survive possible

failures. Failure treatment thus implies a redo recovery

for committed transactions. Recovery support is typi-

cally provided for transaction failures during normal

processing (transaction recovery), for system failures

(system recovery), and media failures (media recov-

ery). System and media recovery are also known as two

kinds of ‘‘crash recovery.’’ In addition, disaster recovery

can deal with the complete destruction of a computer

center, e.g., due to an earthquake or terror attack.

Recovery is typically based on logging, i.e., the collec-

tion of protocol data recording which transactions

have been executed and which changes have been per-

formed by them.

Figure 1 shows components of a central database

management system (DBMS) involved in logging and

recovery. The database objects (e.g., tables, records) are

persistently stored in the permanent database, typically

on one or several disks. All database operations includ-

ing updates are performed in main memory. For this

reason, pages of the database are cached in a main

memory buffer (database buffer). Log records are per-

sistently stored in a sequential log file on dedicated

disks. Log records are written for the start, rollback

and commit of transactions as well for every database

change. For performance reasons log records are first

collected in a log buffer in main memory, which is

written to the log file when it becomes full or when a

transaction commits. A transaction is committed when

its commit record is logged on the log file.

Numerous approaches have been proposed and

current database management systems provide effi-

cient implementations for logging and recovery. The

major tasks to be solved for dealing with the men-

tioned types of failures are:

� Transaction recovery (rollback) is performed when a

transaction fails during normal processing, e.g.,

due to a program error or invalid input data. The

log records in the log buffer and in the log file are

used to undo the changes of the failed transaction

in reverse order.

� System (crash) recovery is needed when the whole

database (transaction) system fails, e.g., due to a

hardware or software error. All transactions which

were active and not yet committed at crash time

Logging and Recovery. Figure 1. DBMS components involved in logging and recovery.

1644L Logging/Recovery Subsystem
have failed so that their changes must be undone.

The changes for transactions that have committed

before the crash must survive. A redo recovery is

needed for all changes of committed transactions

that have been lost by the crash because the

changed pages resided only in main memory but

were not yet written out to the permanent data-

base. Periodically writing out modified pages, e.g.,

within so-called checkpoints, help to reduce the

amount of redo work during crash recovery. Fur-

thermore, the number of relevant log records and

thus the size of the log file can be reduced by

checkpoints.

� Media (crash) recovery deals with failures of the

storage media holding the permanent database, in

particular disk failures. The traditional database

approach for media recovery uses archive copies

(dumps) of the database as well as archive logs

(see Fig. 1). Archive copies represent snapshots of

the database and are periodically taken. The archive

log contains the log records for all committed

changes which are not yet reflected in the archive

copy. In the event of a media failure, the current

database can be reconstructed by using the latest

archive copy and redoing all changes in chronolog-

ical order from the archive log. A faster recovery

from disk failures is supported by disk organiza-

tions like RAID (redundant arrays of independent

disks) which store data redundantly on several

disks. However, they do not eliminate the need for

archive-based media recovery since they cannot

completely rule out the possibility of data loss,

e.g., when multiple disks fail.

� Disaster recovery can be achieved by maintaining

a backup copy of the database at a geographically

remote location. By continuously transferring log

data from the primary database to the backup and
applying the changes there, the backup can be kept

(almost) up-to-date.
Cross-references
▶ACID Properties

▶Application Recovery

▶Backup and Restore

▶Buffer Management

▶Crash Recovery

▶Database Repair

▶Multi-Level Recovery and the ARIES Algorithm

▶RAID

Recommended Reading
1. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1983.

2. Haerder T. and Reuter A. Principles of transaction-oriented

database recovery. ACM Comput. Surv., 15(4):287–317, 1983.
Logging/Recovery Subsystem

ANDREAS REUTER
1,2

1EML Research gGmbH Villa Bosch, Heidelberg,

Germany
2Technical University Kaiserslautern, Kaiserslantern,

Germany

Synonyms
Audit trail; Log component; Log manager; Recovery

manager

Definition
The logging/recovery subsystem (LRS) of a DBMS is

responsible for implementing the fault tolerance

mechanisms needed to support database transactions.

Logical Database Design: from Conceptual to Logical Schema L 1645

L

The log component stores the information needed to

undo the updates performed by a transaction in case it

has to be rolled back, either to an internal save point or

to the beginning. It also stores information needed to re-

apply the updates of committed transactions to the

database in case they are (partially) lost due to a system

crash or after a storagemedia failure. In addition, the log

component keeps track of all relevant state transitions

such as begin-transaction, prepare, commit, abort,

checkpoint, etc. The log is the first resource that is

activated when restarting the database after a crash [1].

The recovery component orchestrates the activities

needed to repair the database, depending on the situa-

tion. For example, after a crash, it first locates the last log

record written and then reads the log backward, initiat-

ing undo for the operations of all transactions for which

no ‘‘prepare’’ or ‘‘commit’’ entry has been found. Going

backward, it looks for two specific records: The ‘‘begin’’

record of the oldest incomplete transaction – this is

where undo stops, and the youngest checkpoint record.

From that record, the recovery will read the log in for-

ward direction and initiate a redo for the operations of

all transactions that were completed before the crash.

The log also plays a crucial role in implementing the two-

phase commit protocol, and it can be used to detect

security breaches.

Key Points
The log is the starting point of any recovery activity, so

it has to be very reliable; therefore, the log devices are

stored on devices that will retain their data in case of a

power failure – typically disks, with current technology.

Since all update operations, some read operations and

a number of other activities create records to the log, it

has to be very fast in order not to create a bottleneck.

For that reason, the log is divided in to two portions:

an online log containing all information that would be

needed to support crash recovery, and an archive log

that contains all information needed to recover from

the loss of storage media. Data no longer needed in the

online log is continuously moved to the archive by a

background process that does not affect the overall

system performance.

The recovery manager uses the log component for

implementing some variation of the ‘‘write ahead log’’

protocol [2]. It basically states that before any update is

applied to the database that may need to be rolled

back, the data supporting the undo must be written

to the log. Before a transaction is committed, all data
needed to repeat the updates must be written to the

log. Neither the log manager nor the recovery manager

‘‘understand’’ the structure of the log records. They are

created and used by the resource managers that imple-

ment the objects (e.g., tuples, B-trees, queues). The log

manager writes log records on behalf of those resource

managers, and the recovery managers feeds them back

to the resource managers when they are needed for

undo and/or redo.

Cross-references
▶Buffer Manager

▶ I/O-Subsystem

▶ Storage Resource Management

▶Transaction Manager

Recommended Reading
1. Gray J. and Reuter A. Transaction Processing – Concepts and

Techniques. Morgan Kaufmann, San Mateo, CA, 1993.

2. Härder T. and Reuter A. Principles of transaction oriented

database recovery - a taxonomy. ACM Comput. Surv., 15

(4):287–317, 1983.
Logic of Time

▶Time in Philosophical Logic
Logical Database Design: from
Conceptual to Logical Schema

ALEXANDER BORGIDA
1, MARCO A. CASANOVA

2,

ALBERTO H. F. LAENDER
3

1Rutgers University, Piscataway, NJ, USA
2Pontifical Catholic University of Rio de Janeiro, Rio

de Janeiro, Brazil
3Federal University of Minas Gerais, Belo Horizonte,

Brazil

Synonyms
Logical schema design; Data model mapping
Definition
Logical database design is the process of transform-

ing (or mapping) a conceptual schema of the applica-

tion domain into a schema for the data model

underlying a particular DBMS, such as the relational

1646L Logical Database Design: from Conceptual to Logical Schema
or object-oriented data model. This mapping can be

understood as the result of trying to achieve two dis-

tinct sets of goals: (i) representation goal: preserving

the ability to capture and distinguish all valid states of

the conceptual schema; (ii) data management goals:

addressing issues related to the ease and cost of query-

ing the logical schema, as well as costs of storage and

constraint maintenance. This entry focuses mostly on

the mapping of (Extended) Entity-Relationship (EER)

diagrams to relational databases.

Historical Background
In the beginning, database schema design was driven

by analysis of the prior paper or file systems in place in

the enterprise. The use of a conceptual schema, in

particular Entity Relationship diagrams, as a prelimi-

nary step to logical database design was proposed by

Chen in 1975 [2,3], and the seminal paper on the

mapping of EER diagrams to relational databases was

presented by Teorey et al. in 1986 [7]. Major milestones

in the deeper understanding of this mapping include

[1,6], which separate the steps of the process, and pay

particular attention to issues such as naming and

proofs of correctness. Among others, the correct

mapping of subclass hierarchies requires a careful defi-

nition of table keys [5], and the maintenance of opti-

mized relational representations of ER schemas is

discussed in [4].

Foundations
The mapping from an Extended Entity Relationship

schema to a relational (logical) schema handles the

issue of representing the different states of the concep-

tual schema through a function that provides for every

‘‘object set’’O (entity set or relationship set) in the EER

schema a relational table T_O. The data management-

related issues are handled by merging, partitioning or

otherwise reorganizing the tables obtained in the pre-

vious step, while making sure that there is no loss of

information.

To begin with, some notation and assumptions

concerning the conceptual schema expressed in EER

notation are required. A unique set of identifying attri-

butes id(E) is assumed to be available for every strong

entity set E (i.e., one that is not a weak entity or a

subclass). Each object set O participating in a relation-

ship set R can be marked as being: total, indicating that

each instance of O must participate in at least one

relationship instance of R; functional, indicating that
an instance of O can participate in at most one rela-

tionship instance of R; and as playing a particular role

in the relationship, if O (or its sub/super-class) can

participate in other relationships or as different argu-

ments of R. For every relationship set R, id(R) is

assumed to return a subset of participants that unique-

ly determine each relationship instance. This is needed

in examples such as ‘‘Exactly one faculty advises each

student for each major area,’’ where id(advises)=

{Student,Major}, because students can major in

several areas. Of course, if the relationship set R has

one functional participant O, then id(R) returns O;

when there are multiple functional participants, id(R)

is assumed to return one that is total, if available.

Entities can be organized in a ISA/subclass hierarchy,

with the ability to declare subclasses as disjoint, and/or

covering the superclass.

In a relational schema, for each table T, one must

specify its attributes/columns, its primary key, any

foreign key referential constraints, and non-null con-

straints on columns. The notation T ½KY � is used to

refer to a table named T, with columns KYand primary

key K; key(T) returns K.

The Basic E2R Mapping

The initial mapping from entity and relationship sets

in the conceptual schema to relational tables (referred

to as the E2R mapping) is defined recursively as fol-

lows: For a strong entity set E, the attributes of E

form the columns of table T_E, and its key is set to

id(E). For example, for entity set Student, with attri-

butes sid, name and age, and id(Student)=sid,

the E2R mapping will generate a table T_Student

[sid,name,age].

To preserve first-normal form T_E does not include

multi-valued attributes of E. For any such attribute

M of E, one adds a separate table T_EM, whose attri-

butes are those in id(E) plus a new attribute M̂ that

holds the individual values that occur inM; the full set

of columns forms the key of this table, and a foreign

key constraint is added from column id(E) of T_EM to

T_E. Thus, if the entity set Student has a multi-

valued attribute phone, then the E2R mapping will

generate a table T_StudentPhone[sid,phone],

with sid being a foreign key with respect to

T_Student.

If E is a subclass of some class F, then the columns

of T_E consist of the attributes of E together with

those in key(T_F) – the key ‘‘inherited’’ from T_F.

Logical Database Design: from Conceptual to Logical Schema L 1647

L

Therefore key(T_F) is the key of T_E, and a foreign key

reference to T_F is needed to ensure that every subclass

instance is in the super-class. For example, supposing

that GradStudent is given as a subclass of Student,

then T_GradStudent will have, among others, a col-

umn sid, which will also be its key and a foreign key

referencing T_Student. In case subclasses are disjoint

or cover the super-class, appropriate SQL assertions

need to be added to check these constraints.

For a relationship set R, T_R has as attributes all

the attributes of R, as well as the union of the sets

of attributes XO=key(T_O) of all object sets O partici-

pating in R; for each such set of attributes XO , a foreign

key constraint from T_R to T_O is added, in order

to avoid dangling references. Moreover, a NOT NULL

constraint is added to the corresponding columns of

XO. The keys of the tables generated from the object

sets in id(R) jointly become the key of T_R. For exam-

ple, suppose that admits is defined as a relation-

ship set with participating entity sets Professor

and Student, plus attribute Year. Assuming that id

(Professor)=pid, then the relational representation

of admits would be T_admits[pid,sid,year],

with pid and sid being foreign keys that reference

T_Professor and T_Student, respectively. Addi-

tional constraints found in some EER schemas, such

as numeric lower and upper bounds on relation-

ship participation (e.g., a child has between 2 and

2 parents), can only be enforced using general SQL

assertions.

For a weak entity setW, T_W includes the attributes

of W, any attributes of the identifying relationship

set of W, and the identifying attributes key(T_E) of

the entity set E that ‘‘owns’’ W. The key of T_W is the

union of the local identifier id(W) of W with the key

attributes key(T_E) of E. A foreign key constraint from

T_W to T_Emust also be added. For example, suppose

that Section is specified as a weak entity set with

respect to Course, with local identifier sectionNr

and identifying relationship set sectionOf; further-

more, assume that key(T_Course)=courseNr. Then,

the relational representation of Section would be

T_Section[courseNr,sectionNr], with courseNr

as a foreign key referencing T_Course.

Refinements

In the creation of tables for relationship sets and for

weak entity sets, special attention needs to be paid

when duplicate column names arise (because the
same object can be involved in a relation in multiple

ways). In this case, role names need to be used

to disambiguate the columns. For example, if id(Pro-

fessor)=id(Student)=ssn (because both are sub-

classes of Person say), then T_admits should have

columns named prof_ssn and student_ssn, or

admitter_ssn and admitted_ssn.

The treatment of subclass hierarchies which are not

trees and where subclasses may inherit different iden-

tifiers from different parents also requires special care,

and is discussed in [5].

The previous constructions provide a relational sche-

ma that allows every instance of the conceptual schema

to be captured precisely. Relational schema restructuring

by relation merging and sometimes partitioning is then

undertaken for a number of reasons. The cardinal rule of

all techniques is the need to be able to recover precisely

the original relation instances from the merged instance

(viz. lossless join). An additional rule observed in the

techniques here is to avoid duplicating information in

ways that lead to ‘‘update anomalies.’’

Table Merging

The most familiar technique replaces tables by their

outer join, with the goal of making it easier to express

and evaluate queries by avoiding the join. For example,

one can merge table student[sid,name,age]

with minorsIn[sid,minor], to obtain student2

[sid,name,age,minor]. Conceptually, such a

change usually merges a functional relationship with

the entity it is about, or a sub-class with its super-class.

The main disadvantage of this change is the need to

store null values as part of the outer join (in the above

example, for students who do not have a minor).

The rule being applied in this case can be stated as:

Rule 1: Tables T ½KX � and R½K̂Y �, where K̂ is a

foreign key referencing T, can be replaced by table

TR½KXY �, whose intended use is as the left outer join

of T and R.

Applying the above transformation, one must be

mindful of a number of potential problems. First, iden-

tical column names occurring in X and Y cause con-

flicts, which must be avoided by renaming. Second,

this merge may prevent making previously possible

distinctions when there is no guarantee that for every

tuple in table T there is a corresponding tuple in R

referencing it. For example, in the original schema one

can distinguish the case of a student who has a minor

that is not known (represented by a tuple with NULL in

1648L Logical Database Design: from Conceptual to Logical Schema
column minor of table minorsIn) from the case of a

student without a minor (represented by the absence

of a the student’s sid in minorsIn); but in student2

both cases have NULL in the minor column. To capture

such distinctions one can add a Boolean attribute

isInMinorsIn? to table student2. This technique

becomes essential when merging the table of a subclass

(e.g., T_GradStudent) into that of the superclass

(e.g., T_Student) in case all the additional attributes

of the subclass (e.g., advisor) may have null values,

and therefore cannot be used to detect membership in

the subclass.

Third, previously easy-to-state constraints may

now become more convoluted. For example, if gradu-

ate students must have both an advisor and

a department attribute (hence these columns have

NOT NULL constraints in T_GradStudent), then

since nulls must be allowed into these columns

of T_Student after the merge, one must ensure

(using an SQL check constraint) that nulls in the two

columns correlate. Moreover, foreign key references

to table T_GradStudent now become references to

T_Student, and must be supplemented by SQL asser-

tions verifying that some attribute associated with

graduate students has a non-null value.

Table Partitioning

Tables can also be reorganized by so called ‘‘horizontal

splitting’’ as stated by the following rule:

Rule 2: Table T ½KX � can be replaced by tables

T1½KX �, T2½KX �,...,with the intended use of T1,T2,...

being as a partition of the tuples in T.

In logical (as opposed to physical) schema design,

the partition tables usually have semantic inter-

pretation as subclasses of relationship sets (e.g.,

T_admitted replaced by T_currentlyAdmitted

and T_previouslyAdmitted) or of entitie sets

(e.g., T_Student[sid,name,age] replaced by grad-

Student0[sid,name,age], undergradStudent0

[sid,name,age], and student0[sid,name,

age] – the latter with students that are neither under-

graduate nor graduate). Note that after such a split,

one can merge gradStudent0[sid,name,age]

with gradStudent[sid,office] to get another vari-

ant of mapping subclass hierarchies to tables; this one is

particularly good for cases when the subclasses cover

the superclass.

Table partitioning can be seen as encoding into

each table selection criteria, which therefore once
again facilitates query statement and evaluation. The

down side is that once again built-in constraints, such

as foreign keys, now need to be stated as more complex

SQL inter-table assertions.

Mapping from Non-ER Conceptual Schemas

UML class diagrams are increasingly popular for the

specification of conceptual schemas. The correspon-

dences ‘‘class’’ ⇌ ‘‘entity set,’’ ‘‘association’’ ⇌ ‘‘rela-

tionship set’’ make it easy to reformulate the E2R

mapping as a UML-to-Relational (U2R) mapping.

Higher arity relationships (such as assignedTo

(Professor,Course,Semester)) need to be

reified in UML (i.e., represented as classes of objects

Assignment related by functional associations f1, f2
and f3 to Professor, Course and Semester respec-

tively), but these end up producing a similar relational

schema as E2R because tables T_fi are merged into

T_Assignment; the artificial key id(Assignment)

should however be removed.

As in the above example, the main difficulty in U2R

is dealing with identifying (‘‘key’’) attributes for enti-

ties, which are not mandated by the UML data model,

since it assumes objects have intrinsically unique

identity.

Key Applications

Database Design

The mapping of the conceptual schema into a logical

schema is the central step of the database design pro-

cess. A carefully crafted mapping will guarantee that

the logical schema correctly represents the application

domain that the conceptual schema models.

Future Directions
The publication of the SQL:2003 language standard

provides additional mapping opportunities, exploiting

some of the object-oriented features of the language.

As a simple example, SQL:2003 introduces the

MULTISET data type, which can be used to avoid

defining a separate table to accommodate multi-valued

attributes of entity or relationship sets.

More importantly, SQL:2003 supports the declara-

tion of an ‘‘identity attribute’’ for a table (designated

with the special keyword IDENTITY). The value of an

identity attribute is unique and automatically gener-

ated whenever a new row is inserted into the table. This

construct is useful to the E2R and, especially, to the

Logical Foundations of Web Data Extraction L 1649

L

U2R mapping process since it avoids the creation of an

artificial key for entity E by adding an identity attribute

for table T_E.

URL to Code
DBDesigner (http://fabforce.net/dbdesigner4/) is an

open-source database design system, available from

fabFORCE.net, which integrates EER modeling with

the derivation and maintenance of a relational schema

for mySQL.

Cross-references
▶ Extended Entity-Relationship Model

▶ Functional Dependency

▶ Information Capacity

Recommended Reading
1. Casanova M.A., Tucherman L., and Laender A.H.F. On the

design and maintenance of optimized relational representations

of entity-relationship schemas. Data Knowl. Eng., 11(1):1–20,

1993.

2. Chen P.P. The entity-relationship model: toward a unified view

of data. In Proc. 1st Int. Conf. on Very Large Data Bases, 1975.

3. Chen P.P. The entity-relationship model – toward a unified view

of data. ACM Trans. Database Syst., 1(1):9–36, 1976.

4. da Silva A.S., Laender A.H.F., and Casanova M.A. An approach

to maintaining optimized relational representations of entity-

relationship schemas. In Proc. 15th Int. Conf. on Conceptual

Modeling, 1996, pp. 292–308.

5. da Silva A.S., Laender A.H.F., and Casanova M.A. On the

relational representation of complex specialization structures.

Inf. Syst., 25(6–7):399–415, 2000.

6. Markowitz V.M. and Shoshani A. Representing extended

entity-relationship structures in relational databases: a modular

approach. ACM Trans. Database Syst., 17(3):423–464, 1992.

7. Teorey T.J., Yang D., and Fry J.P. A logical design methodology

for relational databases using the extended entity-relationship

model. ACM Comput. Surv., 18(2):197–222, 1986.
Logical Foundations of Web Data
Extraction

CHRISTOPH KOCH

Cornell University, Ithaca, NY, USA

Definition
Several wrapper programming languages for extracting

information fromWeb pages have been based on logic,

specifically on fragments of datalog. This entry shows

how logical languages can be used for Web information
extraction, and surveys expressiveness and complexity

aspects of a foundational logical wrapping language,

monadic datalog.

Historical Background
A substantial amount of research has studied the prob-

lem of learning wrapper programs from examples (see

Wrapper Induction). Unfortunately, it is now known

that the expressive power of learnable wrappers is fun-

damentally limited. This has motivated further work on

visual wrapper programming languages, which simplify

and speed up wrapper definition. Visual wrapping

is now supported by several implemented systems

(cf. XWrap [3] and W4F [4]; Lixto [1], a commercial

product). The Lixto project was the first to emphasize

and study expressiveness of visual wrapper languages.

Its approach is based on a datalog-like language, ELog,

whose core was shown to be expressively equivalent to

monadic second-order logic over finite node-labeled

trees, a natural yardstick for such languages. The datalog

approach to wrapping has since then be adopted by

other researchers; for instance, the recent XLog wrapper

language [5] is closely related to ELog.

Foundations

Information Extraction Functions and Wrappers

The core notion on which logic-based wrapping is

based is that of an information extraction function,

which takes a labeled unranked tree (representing a

Web document) and returns a subset of its nodes. In

other words, an information extraction function is a

unary query. A wrapper is a program which imple-

ments one or several such functions, and thereby

assigns unary predicates to document tree nodes.

Based on these predicate assignments and the structure

of the input document viewed as a tree, a new tree can

be computed as the result of the information extrac-

tion process in a natural way, along the paths of the

input tree but using the new labels and omitting nodes

that have not been assigned a new label. (see Fig. 1 for

an example of such a transformation.) That way, the

nodes of a document tree can be re-labeled, and some

can be dropped as irrelevant, but it is not possible to

significantly transform the original tree structure. This

coincides with the intuition that a wrapper may change

the presentation of relevant information, its packaging

or data model (which does not apply in the case ofWeb

wrapping), but should not handle substantial data

Logical Foundations of Web Data Extraction. Figure 1.

Tree annotated with predicates P, Q, and R defined by

information extraction functions (a), and wrapping result

(b). (Original node labels of the input tree are not shown.)

Logical Foundations of Web Data Extraction. Figure 2.

(a) An unranked tree and (b) its representation using the

binary relations ‘‘firstchild’’ (↙) and ‘‘nextsibling’’ (↘).

1650L Logical Foundations of Web Data Extraction
transformation tasks. There is wide agreement that

wrapping should exclude operations such as joins

which are not necessary for information extraction

but may be part of data transformation and integration

tasks that may follow extraction.

A main goal is thus to find a language for specifying

expressive unary queries over trees which nevertheless

can be efficiently computed.
Tree Structures

Unranked finite ordered trees with node labels from a

finite set of symbols S correspond closely to parsed

HTML or XML documents. In an unranked tree, each

node may have an arbitrary number of children. An

unranked ordered tree can be considered as a structure

of relational schema

tur ¼ hdom; root; leaf ; ðlabelaÞa2S;
firstchild; nextsibling; lastsiblingi

where ‘‘dom’’ is the set of nodes in the tree, ‘‘root’’,

‘‘leaf ’’, ‘‘lastsibling’’, and the ‘‘labela’’ relations are unary,

and ‘‘firstchild’’ and ‘‘nextsibling’’ are binary. All rela-

tions are defined according to their intuitive meanings.

‘‘root’’ contains exactly one node, the root node. ‘‘leaf ’’

consists of the set of all leaves. ‘‘firstchild(n1, n2)’’ is true

if n2 is the leftmost child of n1; ‘‘nextsibling(n1, n2)’’ is

true if, for some i, n1 and n2 are the ith and (i + 1)th

children of a common parent node, respectively,

counting from the left (see also Fig. 2). labela(n) is

true if n is labeled a in the tree. Finally, ‘‘lastsibling’’

contains the set of rightmost children of nodes.
Monadic Datalog

Monadic datalog is obtained from full datalog (see

Datalog) by requiring all intensional predicates to be
unary. A unary query is a function that assigns a

predicate to some elements of dom (or, in other

words, selects a subset of dom). For monadic datalog,

one obtains a unary query by distinguishing one inten-

sional predicate as the query predicate. In the remain-

der of this entry, a monadic datalog query will always

be understood to be a unary query specified as a

monadic datalog program with a distinguished query

predicate. Of course, monadic datalog allows for the

the definition of multiple unary queries within a single

program; thus a set of information extraction func-

tions that defines a wrapper can be given through a

single monadic datalog program.

Monadic second-order logic (MSO) is obtained

from second-order logic by requiring all second-order

quantifiers to range over sets (i.e., unary relations). A

unary MSO query is defined by an MSO formula ’

with one free first-order variable. Given a tree t, it

evaluates to the set of nodes {x 2 dom j t ⊨ ’(x)}.

It has been argued in [2] that unary queries in

monadic second-order logic (MSO) over trees are

an appropriate expressiveness yardstick for infor-

mation extraction functions. MSO over trees is well-

understood theory-wise and quite expressive. It has

also been used as an expressiveness yardstick for

node-selecting XML query languages.

By restricting the structures considered to trees,

monadic datalog acquires a number of nice properties.

First, the query evaluation complexity is linear in the

size of the data and of the program:

Theorem 1 ([2]). Over tur, monadic datalog has

OðjPj
jdomjÞ combined complexity (where jPj is the

size of the program and jdomj the size of the tree).
This is is stark contrast to full datalog, which is

EXPTIME-complete w.r.t. combined complexity over

Logical Foundations of Web Data Extraction L 1651
arbitrary finite structures and NP-complete over trees.

Monadic datalog has some other nice properties which

have been studied; in particular, the containment and

boundedness properties – which are both considered

relevant to query optimization – for monadic datalog

are decidable, while they are undecidable for full datalog.

A unary query over trees is MSO-definable exactly

if it is definable in monadic datalog.
L

Theorem 2 ([2]). A unary query over tur unranked

ordered finite trees is MSO-definable if and only if it is

definable in monadic datalog.

Theorem 2 asserts that monadic datalog programs

can define ‘‘universal’’ properties over trees, such as that

a certain fact holds everywhere or nowhere in a tree.

This may seem somewhat unintuitive because monadic

datalog does not feature negation. Still, it follows from

the fact that the relations defining the tree in tur allow us

to traverse the tree (starting from its ‘‘ends’’ such as the

leaves or the root) using a recursive program and to

compute universal properties along the way.

Example 1. Consider the problem of selecting all

those nodes from an HTML tree which do not contain

an HTML ‘‘table’’ in their subtrees. A monadic datalog

program for this (with query predicate Q) can be

defined as follows.

NoTableBelowðxÞ leaf ðxÞ:
NoTableBelowðxÞ firstchildðx; yÞ;NoTableðyÞ:
NoTableRightðxÞ lastsiblingðxÞ:
NoTableRightðxÞ nextsiblingðx; yÞ;NoTableðyÞ:

NoTableðxÞ labeltableðxÞ;NoTableBelowðxÞ;
NoTableRightðxÞ:

QðxÞ labeltableðxÞ;NoTableBelowðxÞ:

Here it may either be assumed that there is a predicate

labeltable true for those nodes not labeled ‘‘table’’ (this

predicate then needs to be added to tur) or labeltable can
be defined in monadic datalog by the rules

flabeltableðxÞ labellðxÞ: j l 2 S; l 6¼ }table}g.
Note that both labeltable and NoTableBelow are true

for a node if it does not contain a ‘‘table’’ in its subtree,

while NoTable is true for a node if the same holds (i.e.,

it does not contain a ‘‘table’’ in its subtree) in the

binary-tree model of Fig. 2b.

Each monadic datalog program over trees can be

efficiently rewritten into an equivalent program using
only very restricted syntax. This motivates a normal

form for monadic datalog over trees.
Definition 1. A monadic datalog program P over tur
is in Tree-Marking Normal Form (TMNF) if each rule

of P is of one of the following four forms:

ð1Þ pðxÞ p0ðxÞ:
ð2Þ pðxÞ p0ðx0Þ;Rðx0; xÞ:
ð3Þ pðxÞ p0ðx0Þ; Rðx; x0Þ:
ð4Þ pðxÞ p0ðxÞ; p1ðxÞ:

where the unary predicates p0 and p1 are either

intensional or from tur and R is a binary predicate

from tur.
In the next result, the schema for unranked trees may

extend tur to include the natural child relation – likely

to be the most common form of navigation in trees.
Theorem 3 ([2]). For each monadic datalog program

P over tur [{child}, there is an equivalent TMNF

program over tur which can be computed in time OðjPjÞ.
Syntax as simple as that of TMNF is important

for visual wrapping. A single rule in monadic datalog

may still consist of an arbitrary number of joins in-

volving the binary relations of tur. TMNF is much

simpler and a visual rule definition process is not

hard to define (cf. [1]). Nevertheless, TMNF has the

full power of MSO and admits efficient evaluation.

TMNF is the core of the ELog language of the Lixto

system [1].

Key Application
Web Information Extraction; XML Query Languages.

Cross-references
▶Datalog

▶Wrapper

▶Wrapper Generator

▶Wrapper Induction

Recommended Reading
1. Baumgartner R., Flesca S., and Gottlob G. Visual web infor-

mation extraction with Lixto. In Proc. 27th Int. Conf. on Very

Large Data Bases, 2001.

2. Gottlob G. and Koch C. Monadic datalog and the expressive

power of web information extraction languages. J. ACM,

51(1):74–113, 2004.

1652L Logical Models of Information Retrieval
3. Liu L., Pu C., and Han W. XWRAP: An XML-enabled wrapper

construction system for web information sources. In Proc. 16th

IEEE Int. Conf. on Data Engineering, 2000, pp. 611–621.

4. Sahuguet A. and Azavant F. Building intelligent web appli-

cations using lightweight wrappers. Data Knowl. Eng.,

36(3):283–316, 2001.

5. Shen W., Doan A., Naughton J.F., and Ramakrishnan R.

Declarative information extraction using datalog with embed-

ded extraction predicates. In Proc. 33rd Int. Conf. on Very Large

Data Bases, 2007, pp. 1033–1044.
Logical Models of Information
Retrieval

FABIO CRESTANI

University of Lugano, Lugano, Switzerland

Definition
Logical models of Information Retrieval (IR) are

defined as those that follow a logical definition of rele-

vance. For Cooper logical relevance is defined as ‘‘logical

consequence.’’ To make this possible both queries and

documents need to be represented by sets of declarative

sentences. The query is represented by two formal state-

ments called ‘‘component statements’’ of the form p and

¬p. A subset of the set of stored sentences is called

‘‘premiss set’’ if and only if the component statement is

a logical consequence of that subset. A ‘‘minimal pre-

miss set’’ for a component statement is one that is as

small as possible. Logical relevance is therefore defined

as a two-place relation between stored sentences and

the query represented as component statements:

" ‘‘A stored sentence is logically relevant to (a represen-

tation of) an information need if and only if it is a

member of some minimal premiss set of stored sen-

tences for some component statement of that need.’’

This definition of relevance is essentially just a proof-

theoretic notion that has been later generalized to be

applicable to information needs involving more than

one component statement.

An early common belief was that the logical impli-

cation needed to capture relevance was not the classical

material implication. The reasons why the use of the

classical material implication is not appropriate for

IR is in the definition of material implication itself

(see the historical background section). The idea that

a non-classical form of logical implication was needed

for defining relevance was proposed by Van Rijsbergen
in the form of the logical uncertainty principle, which is

defined as follows:

" ‘‘Given any two sentences x and y; a measure of the

uncertainty of y ! x related to a given data set is

determined by the minimal extent to which we have

to add information to the data set, to establish the

truth of y! x.’’

This principle made an explicit connection between

non-classical logics and IR uncertainty modelling.

However, when proposing the above principle, Van Rijs-

bergen was not specific about which logic and which

uncertainty theory to use. As a consequence, various

logics and uncertainty theories have been proposed and

investigated. The choice of the appropriate logic and

uncertainty mechanisms has been central to logical IR

modeling, leading to a number of different approaches

(see the Foundations section).

Historical Background
Relevance is one of the most important, if not ‘‘the

fundamental,’’ concept in the theory of IR. The concept

arises from the consideration that if a user of an IR

system has an information need, then some informa-

tion stored in some documents in a document collec-

tion may be ‘‘relevant’’ to this need.

A logical definition of relevance was considered

for the first time in the context of IR by Cooper in

1971 [4]. For Cooper, logical relevance was another

name for topic-appropriateness, and he addressed the

problem of giving a definition of logical relevance for

IR by analogy with the same problem in question-

answering systems. The analogy goes only as far as

having questions with a yes-no (true-false) type of

answer, and while Cooper’s work started by analyzing

question-answering systems, later he abandoned the

analogy. Relevance is defined by Cooper as ‘‘logical

consequence.’’ To make this possible both queries and

documents need to be represented by sets of declara-

tive sentences. In the case of a yes-no query, the query

is represented by two formal statements of the form

p and ¬p. The two statements representing the query

are called ‘‘component statements.’’ A subset of the set

of stored sentences is called ‘‘premiss set’’ if and only if

the component statement is a logical consequence of

that subset. A ‘‘minimal premiss set’’ for a component

statement is one that is as small as possible in the sense

that if any of its members were deleted, the component

statement would no longer be a logical consequence of

the set. Logical relevance is defined as a two-place

Logical Models of Information Retrieval L 1653

L

relation between stored sentences and the query repre-

sented as component statements (see definitions

section).

This definition of relevance is essentially just a

proof-theoretic notion that has been generalised to be

applicable to information needs involving more than

one component statement. Although logical relevance

was initially defined only for sentences, it can be easily

extended to apply to stored documents: a document

is relevant to an information need if and only if it

contains at least one sentence which is relevant to

that need.

Cooper also attempted to tackle a generalization

of such a definition to natural language queries and

documents. However, without a formalized language,

no precise definition of the logical consequence rela-

tion is at hand, and thus one loses a precise definition

of relevance. The problems of ambiguity and vagueness

of natural language deny the possibility of extending

the previous logical notion of relevance, despite the fact

that the general idea of implication in natural language

is a reasonably clear one. The definition of relevance,

so far as natural language in concerned, is only a

definition-in-principle – a conceptual definition – but

not yet defined on a mathematical level.

Finally, Cooper also tried to tackle the problem

of having ‘‘degrees of relevance,’’ or as he wrote:

‘‘shades of grey instead of black and white.’’ The idea

was to extend the system of deductive reasoning used

to access logical relevance to a system of plausible

reasoning. Cooper argued that plausible or probabi-

listic inference was not as well defined as deductive

inference, even for formalized languages. However, he

added that when such tools are formalized enough

then this development would become a ‘‘sensible and

indeed inescapable idea,’’ because it would enable the

ranking of documents according to an estimated prob-

ability of relevance. What he proposed was to assign a

higher probability of relevance to a sentence or a doc-

ument that has greater probability of belonging to a

residual minimal premiss set.

Cooper was the first to associate the topic-

appropriateness sense of relevance with logical impli-

cation and recognized the importance of evaluating the

uncertainty of such implication to rank documents in

relation to their estimated measure of relevance. Many

other researchers followed this idea proposing the use

of different logics to capture relevance. In fact, the

use of logic to build IR models enables one to obtain

models that are more general than earlier well known
IR models. Indeed, some logical models are able to

represent within a uniform framework various features

of IR systems, such as hypermedia links, multimedia

content, users knowledge, cross-lingual, and structured

documents. It also provides a common approach to the

integration of IR systems with logical database systems.

Finally, logic makes it possible to reason about an

IR model and its properties. This latter possibility is

becoming increasingly important since conventional

evaluation methods, although good indicators of the

effectiveness of IR systems, often give results which

cannot be predicted, or satisfactorily explained.

An early common belief was that the logical impli-

cation needed to capture relevance was not the classical

material implication. The reasons why the use of the

classical material implication d � q is not appropriate

for IR is in the definition of material implication itself,

and there are many ways of explaining why material

implication is not suitable for IR. For reasons of brevity,

these arguments will not be repeated here. It suffices to

say that the material implication is acceptable only for

the Boolean model of IR , where it expresses the

‘‘modus ponens.’’ In the Boolean model if one observes

d (that is if d is true) and if d! q is true (that is if all

the query terms are all in the documents) then q is also

true and thus one retrieves d. Only in this case if d! q

is equivalent to d � q. In all other cases this would not

hold ant it would necessary to find a way to define a

suitable notion of implication that measures the extent

in which the implication holds.

More recently, the thought that logic by itself could

not fully model IR started to find a number of fol-

lowers. In fact, in determining the relevance of a docu-

ment to a query, the success or failure of an implication

relating the two is not enough. It is necessary to take

into account the uncertainty inherent in such an impli-

cation. The introduction of uncertainty can also be

motivated from the consideration that a collection of

documents cannot be regarded as a consistent and a

complete set of statements. In fact, documents in the

collection could and often do contradict each other in

any particular logic, and not all the necessary knowl-

edge is available. To cope with uncertainty a logic for

uncertain inference was introduced. In fact, if d ! q

is uncertain, then one can measure its degree of uncer-

tainty by P(d! q).

In 1986, Van Rijsbergen proposed the use of a non-

classical conditional logic for IR [16]. This would

enable the evaluation of P(d ! q) using the logical

uncertainty principle (see definitions). This principle

1654L Logical Models of Information Retrieval
was the first attempt to make an explicit connection

between non-classical logics and IR uncertainty

modelling. However, when proposing the above prin-

ciple, Van Rijsbergen was not specific about which

logic and which uncertainty theory to use. As a con-

sequence, various logics and uncertainty theories

have been proposed and investigated. This lead to a

number of different approaches being proposed over

the years.
Foundations
In the following, a brief overview of the most impor-

tant logical models of IR is provided. It divides them

into three classes: local models, local-uncertainty mod-

els, and meta-models.
Logical Models

The best known class of logical models of IR is that of

the Boolean models, but their inability to capture the

uncertainty inherent in the IR process (except by some

extension of these models) has always confined them

to the margins of modern IR.

Some logical models are able to capture the uncer-

tainty of IR process, mainly in two ways: qualitatively

by the logic itself (for example, via default rules, non-

monotonicity, or background conditions), or quanti-

tatively by adding an uncertainty theory to the logic

(for example, fuzzy logic). A first example of this class

of models is represented by models based on Modal

Logic and Conceptual Graphs. Modal Logic adopts the

notion of possible worlds that correspond to the inter-

pretations in classical logic, but which are connected

to each other via an accessibility relation. The evalua-

tion of the truth of a proposition is with respect to a

possible world, and may involve the evaluation of the

truth of the proposition in connected worlds. Modal

Logic was first used to develop a logical model for IR by

Nie [12]. Documents are worlds, and queries are for-

mulae. A document represented by a world d is rele-

vant to a query represented by a formula q if q is ‘‘true’’

in d, or if it is true in a world d0 accessible from d.

The accessibility relation captures the transformation

of documents; the fact that the world d is connected to

the world d0 is interpreted as d being transformed into

d0. The accessibility relationship can have different

properties. For example, transitivity, meaning that if

a world d is related to a world d0, which is itself related

to a world d00, then the world d is also related to the

world d00. Consider the example of a hypertext system.
Using Modal Logic, worlds can represent texts (nodes)

and the accessibility relation can represent the links

between the texts. The model also allows the transfor-

mation of both the query and the data set. One

query can be transformed into another one using,

for example, thesaural information. Query transfor-

mation is not a new approach in IR (e.g., query expan-

sion). The novelty is that the transformation process

can be formally represented, and hence reasoned upon.

Transforming a data set can capture the modeling of

a user’s state in the retrieval process. The data set

can be transformed until it reaches one that reflects

the user’s state.

Another set of logical models belonging are based

on Situation Theory and the related Channel Theory.

Situation Theory is a theory of information that pro-

vides an analysis of the concept of information and the

manner in which cognitive agents handle and respond

to the information picked up from their environment.

The theory defines the nature of information flow and

the mechanisms that give rise to such a flow. A docu-

ment is a situation s and the query is a type f. The
document is relevant to the query if there exists a flow

of information from a situation s to a situation s 0 such

that s 0 ⊨ f. The nature of the flow depends on the so-

called ‘‘constraints’’ which capture semantic relation-

ships. Flows of information do not always materialize

because of the unpredictable nature of situations,

thus flows are often uncertain. In Situation Theory,

an uncertain flow is modeled by a conditional con-

straint of the form f! cjB, which highlights the fact

that f ! c holds if some background conditions

captured within B are met. If the background condi-

tions are satisfied, the corresponding flow arises. How-

ever, it is often the case that two situations are

systematically related to each other, by way of a flow

of information. Therefore, in addition to constraints,

there are relationships that link situations. The concept

of a channel is introduced to express the relationships,

by way of an information flow, between two situations.

Channel theory defines formally channels, together

with the mathematical properties that support the

flow of information. The use of Situation and Channel

theory to model IR has been investigated in [17],

where the connection between IR, logic, probability

and information containment was made. It was indi-

cated that the use of channels present many poten-

tials for theoretical IR modelling because they can

apply to various IR processes present in advanced IR

systems.

Logical Models of Information Retrieval L 1655

L

A successful class of logical models is based on

Terminological logics. This family of logics come from

the area of artificial intelligence, in particular, knowl-

edge representation. Terminological logics derive from

a large group of knowledge representation language

(such as, for example, KL-ONE) based on semantic

networks and inspired by the notion of frames. They

provide object-oriented flavored representations. The

use of terminological logic for IR was proposed in [11].

There, documents are represented by individual con-

stants, whereas a class of documents is represented as a

concept. Queries are described as concepts. Given a

query represented by a concept Q, the retrieval task is

to find all those documents d such that Q[d] holds.

The evaluation of Q[d] uses the set of assertions de-

scribing documents, that is, one is not evaluating

whether d ! q, but rather whether individual d is an

instance of the class concept Q.

An important class of logical models is based

on Belief Revision. Belief Revision provides a way to

formalize changes done to a knowledge base after the

arrival of new information. The use of belief revision in

IR was attempted in [10] as a way to compute the

similarity of a document to a query for retrieval pur-

pose. The Dalal’s revision operator was chosen for

implementing the belief revision process, since it pro-

vides an order among proposition interpretations,

where propositions model index terms. The ordering

is used to formulate a similarity measure between

a document and a query (expressed as formulae)

based on the number of revisions necessary for the

document to ‘‘reach’’ the query. It should be noted

that both documents and queries can have, each,

several interpretations, so normalization becomes

necessary.

Finally, there is the class of models based on Fuzzy

logic. This is a formal framework that is well suited to

model vagueness and imprecision. In IR it has been

successfully employed at several levels in particular for

the definition of a superstructure of the Boolean

model, with the appealing consequence that existing

Boolean IR systems can be improved without redesign-

ing them completely [2]. Through these extensions the

gradual nature of relevance of documents to user

queries can be modeled.

Logical-Uncertainty Models

Logical-uncertainty models are based on an uncertainty

theory (for instance, probability theory, semantic theory,

imaging) that is defined on a logical basis. They enable
a more complex definition of relevance than other IR

models (than probabilistic relevancemodel, for instance,

which are based mainly upon statistical estimations of

the probability of relevance). With logical-uncertainty

models, information not present in the query formula-

tion may be included in the evaluation of the relevance

of a document. Such information might be domain

knowledge, knowledge about the user, user’s relevance

feedback, or other.

The main example of logical-uncertainty models

of IR is represented by models based on Probability

Theory. In IR, probabilistic modeling refers to the

use of a model that ranks documents in decreasing

order of their evaluated probability of relevance to a

user’s information need. Past and present research

has made use of formal theories of probability and of

statistics in order to evaluate, or at least estimate, those

probabilities of relevance. These attempts are to be

distinguished from looser ones like, for example, the

vector space model in which documents are ranked

according to a measure of similarity with the query.

A measure of similarity cannot be directly interpreted

as a probability. In addition, similarity based models

generally lack the theoretical soundness of probabilistic

models. A treatment of models based on Probability

Theory is beyond the scope of this entry and is

reported in the relevant entries; the models presented

in this section are based on the idea that IR is a process

of uncertain inference.

A probabilistic formalism for describing inference

relations with uncertainty is provided by Bayesian in-

ference networks. Turtle and Croft [15] applied such

networks to IR. Nodes represent IR entities such as

documents, index terms, concepts, queries, and infor-

mation needs. One can choose the number and kind of

nodes one wishes to use according to how complex one

wants the representation of the document collection or

the information needs to be. Arcs represent probabi-

listic dependencies between entities and represent con-

ditional probabilities, that is, the probability of an

entity being true given the probabilities of its parents

being true.

In a Bayesian inference network, the truth value of a

node depends only upon the truth values of its parents.

To evaluate the strength of an inference chain going

from one document to the query the document node di
is set to ‘‘true’’ and P(qk = true j di = true) is evaluated.

This gives an estimate of P(di ! qk). It is possible to

implement various traditional IR models on this net-

work by introducing nodes representing Boolean

1656L Logical Models of Information Retrieval
operators or by setting appropriate conditional proba-

bility evaluation functions within nodes.

Another important set of examples of logical-

uncertainty models is represented by models based

on Probabilistic Datalog. Datalog is a predicate logic

that has been developed in the database field, and

makes the link between the relational model and

rule-based systems. Probabilistic Datalog is the proba-

bilistic extension of Datalog. Probabilistic Datalog is

not itself a logical IR framework, but more a platform

in which logical probabilistic IR models, as well as

other IR models can be expressed. One of the major

assets of Probabilistic Datalog is that, since it is a

generalization of the Datalog model, it can be used as

standard query language for both database and IR.

It can then deal with both structured data (as in data-

base) and unstructured data (as in IR) within the

same system. It also allows the uniform representation,

retrieval and querying of content, fact and structural

knowledge [8]. The work has been further extended

via the development, implementation and evalua-

tion of the POOL (Probabilistic Object-Oriented

Logic) model, which allows the representation of

inconsistency (using then a four-valued logic), the

modeling of the document and query representation

using the object-oriented paradigm.

A very interesting example of logical-uncertainty

models and certainly the one that more reflects

Van Rijsbergen’s Logical Uncertainty Principle is that

of models based on Logical Imaging. Logical imaging is

an approach that defines the probability of conditional

P(d ! q) based on the notion of possible-worlds.

In this approach the possible worlds (e.g., retrieval

situation, document representation) are spanned by

an accessibility relation defined in terms of similarity.

The truth value of the implication p ! q in a world

w depends on two cases. If p is true in w, then p ! q

is true (false) in that world if q is also true (false) in that

world. However, if p is not true in w, then the implica-

tion is evaluated in the worlds that differ minimally

from w and in which p is true. The worlds in which

p is true are referred to as p-worlds. The set of worlds

comes with a probability distribution P, reflecting

the probability of each world. The probability of a

proposition p is the summation of the probability of

those worlds in which p is true. The computation of the

probability of p! q involves a shift of probability (the

imaging process) from non-p � worlds to their closest

p-worlds. It can be proved that: P(p ! q) = Pp(q),
where Pp is a new probability distribution, a ‘‘posterior

probability,’’ derived from P by imaging on p. There-

fore, conditioning by imaging causes a revision of

the prior probability on the possible worlds w in such

a way that the posterior probability is obtained by

shifting the original probabilities from non-p-worlds

to p-worlds. Each non-p-world moves its probability

to its closest p-world (or set of p-worlds in the case of

general imaging). Bayesian conditioning, on the other

hand, is obtained by cutting off all non-p-worlds and

then proportionally magnifying the probabilities of

the p-worlds so that the posterior probabilities still

add up to one, as required by Probability Theory.

The magnification is done in the same way for every

p-world, thus keeping constant the ratios between the

probabilities assigned to these worlds. It is therefore

clear that imaging and Bayesian conditionalization

yield, in general, different results. Since the transfer of

probabilities is directed towards the closest p-worlds,

this technique is just what it is needed to implement

Van Rijsbergen’s logical uncertainty principle.

Two logical-probabilistic IR models have been

developed on the concept of imaging. In the first

one [7], worlds model terms, and propositions

model documents and queries. A term t ‘‘makes a

document true’’ if that term belongs to that document.

Imaging with respect to d gives the closest term to

t that is contained in d. Of course, this is t itself if t is

contained in the document. Imaging consists then of

shifting the probabilities from term not contained in d

to the terms contained in d (i.e., the terms that make d

true). The evaluation of the relevance takes into account

the semantics between terms by shifting probabilities to

those (semantically) closer terms contained in the doc-

ument. A second model based on imaging includes

user’s knowledge in the evaluation of the relevance of

a document to a query [13]. In this model both docu-

ments and queries are propositions. Possible worlds

represent different states of the data set, for example

possible states of knowledge that can be held by users. A

document d is true in a world w if the document

is ‘‘consistent’’ (the term is used here in a broad

sense) with the state of knowledge associated with

that world. Worlds differ because they represent differ-

ent states of knowledge and, given a metric on the

world space, one can identify the closest world to

w for which d is true.

Other logical-probabilistic models are based on

Semantic Information Theory. The work on Semantic

Logical Models of Information Retrieval L 1657
Information Theory in IR concerns two research direc-

tions: the axiomatization of the logical principles for

assigning probabilities or similar weighting functions

to logical sentences and the relationship between in-

formation content of a sentence and its probability [1].
L

Meta-Models

Meta-models are a completely different class of models

from those presented earlier. Meta-models attempts

to formally study the properties and the characteristics

of IR systems within a uniform logical framework.

The advantage is that they make it possible to compare

IR systems not only with respect to their effectiveness,

but also with respect to formal properties of the un-

derlying models.

The use of logic to formally conduct proofs for

IR purposes was thoroughly investigated in [3], where

a framework was proposed in which different models of

IR could be theoretically expressed, formally studied

and compared. The framework was developed within a

logic, thus allowing formal proofs to be conducted. The

framework defines the aboutness relationship, denoted

⊨, which aims at capturing the notion of information

containment primary to IR. Given two objects a and b,

a ⊨ b means that object a is about object b. Axioms

are defined that represent possible properties of IR

systems. Examples of simple axioms include reflexivity,

symmetry, and transitivity, but more complex ones

have also been identified, like for example weakening

and monotonicity, borrowed from non-monotonic

reasoning. This research has led to the theoretical

comparison of IR models. The IR models are mapped

down into a logic-based framework and they are com-

pared by looking at the particular aboutness properties

they each embody. Through this research, IR has

gained a clearer understanding of what aboutness is,

and what properties are desirable and not desirable.

Due to space limitations this entry cannot even

briefly report here on other logical models of IR. A

good survey of a number of these models can be found

in [5]. An analysis of the strengths and limitations

of logical modelling of IR can be found in [9,14].

Finally, many of the models briefly introduced here

are described in details in [6].
Key Applications
The main application area of the models presented in

this section is Information Retrieval.
Future Directions
This entry reviewed a number of approaches to logical

modelling of IR. So far, no consensus has been reached

regarding what the best approach is due to the small

number of operational systems based on these

approaches. It is hoped that further investigations

into various logic-based frameworks accompanied by

more evaluation might lead to a unified information-

based model theory for expressing the semantics of

information retrieval. Such a theory will enable to

predict the behavior of IR systems, compare them

and prove properties about them. This would be a

major strength of logical models of IR.
Cross-references
▶ Fuzzy Logic

▶ Probability Theory

▶Relevance
Recommended Reading
1. Amati G. and van Rijsbergen C.J. Semantic information retriev-

al. In Information Retrieval: Uncertainty and Logics, F. Crestani,

M. Lalmas, C.J. van Rijsbergen (eds.). Kluwer, Norwell, MA,

USA, 1998, pp. 189–220.

2. Bordogna G. and Pasi G. A fuzzy linguistic approach general-

izing boolean information retrieval: a model and its evaluation.

J. Am. Soc. Inf. Sci., 44(2):70–82, 1993.

3. Bruza P.D. and Huibers T.W.C. Investigating aboutness

axioms using information fields. In Proc. ACM SIGIR Conf.

on Research and Development in Information Retrieval, 1994,

pp. 112–121.

4. Cooper W.S. A definition of relevance for information retrieval.

Inf. Storage Retr., 7:19–37, 1971.

5. Crestani F. and Lalmas M. Logic and uncertainty in

information retrieval. In Lectures on Information Retrieval, M.

Agosti, F. Crestani, G. Pasi (eds.). LNCS, vol. 1980. Springer,

Heidelberg, Germany, 2001, pp. 182–210.

6. Crestani F., Lalmas M., and van Rijsbergen C.J. (eds.). Informa-

tion Retrieval, Uncertainty and Logics: Advanced Models for

the Representation and Retrieval of Information. Kluwer,

MA, USA, 1998.

7. Crestani F. and van Rijsbergen C.J. A study of probability

kinematics in information retrieval. ACM Trans. Inf. Syst.,

16(3):225–255, 1998.

8. Fuhr N. Probabilistic datalog – a logic for powerful retrieval

methods. In Proc. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 1995, pp. 282–290.

9. Lalmas M. Logical models in information retrieval:

introduction and overview. Inf. Process. Manage., 34(1):19–33,

1998.

10. Losada D.E. and Barreiro A. Using a belief revision operator

for document ranking in extended boolean model. In Proc.

1658L Logical Query Processing and Optimization
ACM SIGIR Conf. on Research and Development in Informa-

tion Retrieval, 1999, pp. 66–73.

11. Meghini C., Sebastiani F., Straccia U., and Thanos C. A

model of information retrieval based on a terminological logic.

In Proc. ACM SIGIR Conf. on Research and Development

in Information Retrieval, 1993, pp. 298–307.

12. Nie J.Y. An information retrieval model based on modal logic.

Inf. Process. Manage., 25(5):477–491, 1989.

13. Nie J.Y. Lepage F., and Brisebois M. Information retrieval

as counterfactuals. Comput. J., 38(8):643–657, 1995.

14. Sebastiani F. Trends in . . . a critical review: on the role of

logic in information retrieval. Inf. Process. Manage., 34

(1):1–18, 1998.

15. Turtle H.R. and Croft W.B. Evaluation of an inference network-

based retrieval model. ACM Trans. Inf. Syst., 9(3):187–222, July

1991.

16. van Rijsbergen C.J. A new theoretical framework for infor-

mation retrieval. In Proc. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 1986, pp. 194–200.

17. van Rijsbergen C.J. and Lalmas M. An information calculus for

information retrieval. J. Am. Soc. Inf. Sci., 47(5):385–398, 1996.
Logical Query Processing and
Optimization

▶Query Processing in Deductive Databases
Logical Schema Design

▶ Logical Database Design: From Conceptual to Logi-

cal Schema
Logical Story Unit Segmentation

▶Video Segmentation
Logical Structure

THIJS WESTERVELD

Teezir Search Solutions, Ede, The Netherlands

Definition
Logical structure refers to the way information in a

document is organized; it defines the hierarchy of
information and the relation between different parts

of the document. Logical structure indicates how a

document is built, as opposed to what a document

contains.
Key Points
Logical structure is mainly used in the context of XML

document to distinguish the logical organization of the

content from its physical organization, to distinguish

the flow of content from the documents layout and

from the presentation of the document. In XML docu-

ments, text, images and metadata can be organized in a

meaningful, logical manner independently of the

document’s layout when presented to a user. This

contrasts with HTML documents in which logical or-

ganization and layout necessarily are the same. The

logical structure of a document is of particular interest

in structured document retrieval, where it may provide

knowledge regarding the organization of information

which may lead to better identification of relevant

document parts given a user’s request.
Cross-references
▶ Processing Structural Constraints

▶ Structured Text Models

▶XML Retrieval
Logical Time

▶Valid Time
Logical Unit Number

KALADHAR VORUGANTI

Network Appliance, Sunnyvale, CA, USA

Synonyms
LUN; Volume

Definition
LUN is a SCSI protocol term that refers to a logically

contiguous piece of storage. This usually corresponds

to a volume in a storage array or an individual disk

drive on a parallel SCSI bus. The storage volume

Logical Volume Manager L 1659
identifier gets mapped to a LUN by the host operating

system and they are usually different.
Key Points
A volume on a storage controller can be assigned

different LUN numbers on different hosts. A volume

on a storage controller can be partitioned into multiple

volumes, and thus, LUNs by storage virtualization

software. The storage virtualization software can reside

on hosts or network virtualization boxes.
Cross-references
▶ LUN Mapping

▶Volume
L

Logical Unit Number Mapping

KALADHAR VORUGANTI

Network Appliance, Sunnyvale, CA, USA

Synonyms
LUN mapping

Definition
This is the process by which the host operating system

assigns a LUN value to a particular storage volume.

LUN Mapping is typically used in cases where the

higher level applications require specific LUN numbers

for specific storage devices. When there are multiple

paths between a SCSI initiator and SCSI target, multi-

pathing software is used to properly map target

volumes via both the paths. Storage controllers provide

access control mechanisms (LUN Masking) that can

control how initiators access target storage volumes.
Key Points
At host, LUNmapping is performed by operating system

software. If one wants to properly manage multiple

paths to a storage volume from a host, then one needs

to install a multi-pathing driver on the host. LUN

mapping is also performed by virtualization software

that is present in network virtualization boxes. These

boxes perform mapping between virtual volumes that

are exported to hosts and the physical volumes residing

on the storage controllers.
Cross-references
▶ LUN

▶Multi-Pathing

▶Volume
Logical Volume

▶Volume
Logical Volume Manager

KENICHI WADA

Hitachi Limited, Tokyo, Japan

Synonyms
Virtual disk manager; Volume set manager; LVM

Definition
Logical Volume Manager (LVM) is a kind of storage

virtualization. LVM collects one or more disk drives or

partitions, creating a storage pool in a host. Further-

more, LVM provides applications with logical volumes

consisting of multiple chunks of disk drives or partitions.

Key Points
Figure 1 shows volume manager implementation. LVM

implementations often start with physical volume

(PVs), which can be disk drives or partitions. PVs are

spilt into chunks called physical extents (PEs). Some

LVM implementations have PEs of a uniform size;

others have variable-sized PEs that can be split and

merged at will.

A logical extent (LE) consists of one or more

PEs. For example, users can create an LE which is

simply mapped to an PE, or create a striped LE

which consists of multiple PEs with a conventional

RAID technique. LEs are pooled into a volume

group (VG).

A logical volume (LV) consists of one or more

LEs in a VG. Users also can create an LV which is

simply mapped to an LE, or create a striped LV

which consists of multiple LEs with a conventional

RAID technique.

In some implementations, LVs can be grown or

shrunken by concentrating more LEs from, or return-

ing them to, a VG. Some volume managers allow LVs

Logical Volume Manager. Figure 1. Implementation Architecture.

1660L Logical Window
to be resized in either direction while online. These

features help users to create flexible system configura-

tions easily.
Cross-references
▶Disk

▶Redundant Arrays of Independent Disks

▶ Storage Management
Logical Window

▶Windows
Log-Linear Regression

JIALIE SHEN

Singapore Management University, Singapore,

Singapore

Definition
In statistic, log-linear regression is a powerful reg-

ression technique that models relationship between

a dependent variable or regressand Y, explanatory
variable or regressor X ¼ fx1;:::;xIg and a random

term ε by fitting a log-linear model,

lnY ¼ a0 þ a1 ln x1 þ a2 ln x2 þ::::þ aI ln xI þ e

where α0 is the constant term, the αi s are the respective
parameters of independent variables, and I is the num-

ber of parameters to be estimated in the log-linear

regression.

Key Points
The goal of log-linear regression is to explore effect a

set of covariance X ¼ fx1;:::;xIg on the expected

rate [1]. It assumes that a linear relationship exists

between the log of the regressand Y and the regressor

X ¼ fx1;:::;xIg. The log-linear regression is appropri-

ate for categorical variables.

When applied to continuous variables, discretiza-

tion is an essential step for preprocessing. There are

two basic steps to using log-linear regression: (i) deter-

mining how many factors to be considered and sets of

attributes related to each factor and (ii) estimating the

numerical values of the parameters.

Cross-references
▶Data Reduction

▶Generalized Linear Models

▶ Linear Regression

Loose Coupling L 1661
Recommended Reading
1. McCullagh P., Nelder J. 1Generalized Linear Models, CHAP-

MAN & HALL/CRC, London, 1989.
Long Running Queries

▶Continuous Queries in Sensor Networks
Longitudinal Health Record

▶ Electronic Health Records (EHR)
Looking Over/Through

▶Browsing in Digital Libraries
L

Loop

NATHANIEL PALMER

Workflow Management Coalition, Hingham,

MA, USA

Synonyms
Iteration; Workflow loop; While loop

Definition
A workflow activity cycle involving the repetitive exe-

cution of one (or more) workflow activity(s) until a

condition is met.

Key Points
A Loop is a control flow statement that allows an

activity or activity block to be executed repeatedly,

rather than proceeding to the next activity, until a

specific condition has been met. Following the execu-

tion of the activity (or last activity in the block) the

condition of the loop is evaluated.
Cross-references
▶Activity

▶ Process Life Cycle

▶Workflow Management and Workflow Management

System
Loop Join

▶Nested Loop Join
Loose Coupling

SERGUEI MANKOVSKII

CA Labs, CA, Inc., Thornhill, ON, Canada

Synonyms
Weak coupling; Low coupling
Definition
Word coupling refers to a notion of interdependence

between components of software systems. Word loose

refers to a mode of coupling where components

possess significant degree of autonomy.
Key Points
Term loose coupling consists of two opposite notions

of dependency and autonomy. It initially emerged out

of study of educational organizations. Organizational

scientist Karl Weick noticed that some organizations

can be mechanistic (coupled) and organic (loose) at

the same time. Loosely coupled organizations are

under influence of forces or conditions that hold

them together, but at the same time they are acting

with the high degree of independence.

In software engineering, loose coupling has similar

notion to organizational theory. A loosely coupled sys-

tem usually consists of a framework or architecture

linking together otherwise independent components.

The components are usually highly cohesive and have

well defined responsibilities. Cohesive components

allow for creation of stable interfaces exposing less im-

plementation details through the component interface.

Loosely coupled system uses stable interfaces of the

components to hold the system together.

1662L Lossless Data Compression
As a design, goal loose coupling is desirable when

system components need to be developed or used inde-

pendently of each other and when they need to change

over time. This goal can be achieved by deliberate de-

coupling of system components. De-coupling leads to a

more reliable system design and reduces maintenance

costs over the life time of system and its components.

Software components developed for loose coupling

can be readily re-purposed for use in a broad class of

systems leading to higher re-use. They can also be used

at the same time by a broad class of systems through

standards-based interfaces. In this case they are often

called services. Service Oriented Architecture is a spe-

cial case of software systems built around of loosely

coupled services.
Cross-references
▶Cohesion

▶Coupling and De-Coupling

▶ Interface

▶Re-Use

▶ Service Oriented Architecture
Recommended Reading
1. Wieck K.E. Educational organisations as loosely coupled

systems. Adm. Sci. Q., 21:1–19, 1976.
Lossless Data Compression

▶Text Compression
LoT-RBAC

▶GEO-RBAC Model/ExternalRef>
Low Coupling

▶ Loose Coupling
Lp Distances

▶ Frequency Moments
Lp Norms

▶ Frequency Moments
LSID

▶ Semantic Data Integration for Life Science Entities
LUN

▶ Logical Unit Number (LUN)
LUN Mapping

▶ Logical Unit Number Mapping
LUN Masking

▶ Storage Security
LVM

▶ Logical Volume Manager

M

MAC

▶Message Authentication Codes
Machine Learning in Bioinformatics

▶Machine Learning in Computational Biology
Machine Learning in Computational
Biology

CORNELIA CARAGEA, VASANT HONAVAR

Iowa State University, Ames, IA, USA

Synonyms
Data mining in computational biology; Data mining in

bioinformatics; Machine learning in bioinformatics;

Machine learning in systems biology; Data mining in

systems biology

Definition
Advances in high throughput sequencing and ‘‘omics’’

technologies and the resulting exponential growth in

the amount of macromolecular sequence, structure,

gene expression measurements, have unleashed a trans-

formation of biology from a data-poor science into an

increasingly data-rich science. Despite these advances,

biology today, much like physics was before Newton

and Leibnitz, has remained a largely descriptive science.

Machine learning [6] currently offers some of the

most cost-effective tools for building predictive models

from biological data, e.g., for annotating new genomic

sequences, for predicting macromolecular function, for

identifying functionally important sites in proteins, for

identifying genetic markers of diseases, and for discover-

ing the networks of genetic interactions that orchestrate

important biological processes [3]. Advances inmachine
2009 Springer ScienceþBusiness Media, LLC
learning e.g., improved methods for learning from high-

ly unbalanced datasets, for learning complex structures

of class labels (e.g., labels linked by directed acyclic

graphs as opposed to one of several mutually exclusive

labels) from richly structured data such as macromolec-

ular sequences, three-dimensional molecular structures,

and reliable methods for assessing the performance of

the resulting models, are critical to the transformation

of biology from a descriptive science into a predictive

science.

Historical Background
Large scale genome sequencing efforts have resulted

in the availability of hundreds of complete genome

sequences. More importantly, the GenBank repository

of nucleic acid sequences is doubling in size every

18 months [4]. Similarly, structural genomics efforts

have led to a corresponding increase in the number of

macromolecular (e.g., protein) structures [5]. At pres-

ent, there are over a thousand databases of interest to

biologists [16]. The emergence of high-throughput

‘‘omics’’ techniques, e.g., for measuring the expression

of thousands of genes under different perturbations, has

made possible system-wide measurements of biological

variables [8]. Consequently, discoveries in biological

sciences are increasingly enabled by machine learning.

Some representative applications of machine lea-

rning in computational and systems biology include:

identifying the protein-coding genes (including gene

boundaries, intron-exon structure) from genomic

DNA sequences; predicting the function(s) of a prot-

ein from its primary (amino acid) sequence (and

when available, structure and its interacting partners);

identifying functionally important sites (e.g., protein-

protein, protein-DNA, protein-RNA binding sites, post-

translational modification sites) from the protein’s

amino acid sequence and, when available, from the

protein’s structure; classifying protein sequences (and

structures) into structural classes; Identifying functional

modules (subsets of genes that function together) and

genetic networks from gene expression data.

1664M Machine Learning in Computational Biology
These applications collectively span the entire

spectrum of machine learning problems including

supervised learning, unsupervised learning (or cluster

analysis), and system identification. For example, pro-

tein function prediction can be formulated as a super-

vised learning problem: given a dataset of protein

sequences with experimentally determined function

labels, induce a classifier that correctly labels a novel

protein sequence. The problem of identifying func-

tional modules from gene expression data can be for-

mulated as an unsupervised learning problem: given

expression measurements of a set of genes under dif-

ferent conditions (e.g., perturbations, time points),

and a distance metric for measuring the similarity or

distance between expression profiles of a pair of genes,

identify clusters of genes that are co-expressed (and

hence are likely to be co-regulated). The problem of

constructing gene networks from gene expression data

can be formulated as a system identification problem:

given expression measurements of a set of genes under

different conditions (e.g., perturbations, time points),

and available background knowledge or assumptions,

construct a model (e.g., a boolean network, a bayesian

network) that explains the observed gene expression

measurements and predicts the effects of experimental

perturbations (e.g., gene knockouts).

Foundations
Challenges presented by computational and systems

biology applications have driven, and in turn benefited

from, advances in machine learning. Some of these

developments are described below.

Multi-Label Classification: In the traditional clas-

sification problem, an instance xi, i = 1,...,n, is asso-

ciated with a single class label yj from a finite, disjoint

set of class labels Y , j = 1,...,k, k = jYj (single-label
classification problem). If the set Y has only two ele-

ments, then the problem is referred to as the binary

classification problem. Otherwise, if Y has more than

two elements, then it is referred to as multi-class classi-

fication problem. However, in many biological applica-

tions, an instance xi is associated with a subset of, not

necessarily disjoint, class labels in Y (multi-label classi-

fication problem). For example, many genes and pro-

teins are multi-functional. Most of the existing

algorithms cannot simultaneously label a gene or pro-

tein with several, not necessarily mutually exclusive

functions. Each instance is then assigned to a subset

of nodes in the hierarchy, yielding a hierarchical
multi-label classification problem or a structured output

classification problem. The most common approach to

dealing with multi-label classification problem [7] is to

transform the problem into k binary classification pro-

blems, one for each different label yj 2 Y , j = 1,...,k.

The transformation consists of constructing k datasets,

Dj, each containing all instances of the original dataset,

such that an instance in Dj, j = 1,...,k, is labeled with 1

if it has label yj in the original dataset, and 0 otherwise.

During classification, for a new unlabeled instance

xtest, each individual classifier Cj,j = 1,...,k, returns a

prediction that xtest belongs to the class label yj or not.

However, the transformed datasets that result from this

approach are highly unbalanced, typically, with the

number of positively labeled instances being signifi-

cantly smaller than the number of negatively labeled

instances, requiring the use of methods that can cope

with unbalanced data. Alternative evaluation metrics

need to be developed for assessing the performance of

multi-label classifiers. This task is complicated by cor-

relations among the class labels.

Learning from Unbalanced Data: Many of the

macromolecular sequence classification problems pres-

ent the problem of learning from highly unbalanced

data. For example, only a small fraction of amino

acids in an RNA-binding protein binds to RNAs.

Classifiers that are trained to optimize accuracy gener-

ally perform rather poorly on the minority class.

Hence, if accurate classification of instances from the

minority class is important (or equivalently, the false

positives and false negatives have unequal costs or

risks associated with them), it is necessary to change

the distribution of positive and negative instances dur-

ing training by randomly selecting a subset of the

training data for the majority class, or alternatively,

assigning different weights to positive and negative

samples (and learn from the resulting weighted sam-

ples). More recently, ensemble classifiers [11] have been

shown to improve the performance of sequence classi-

fiers on unbalanced datasets. Unbalanced datasets also

complicate both the training and the assessment of the

predictive performance of classifiers. Accuracy is not a

useful performance measure in such scenarios. Indeed,

no single performance measure provides a complete

picture of the classifier’s performance. Hence, it is

much more useful to examine ROC (Receiver Opera-

ting Characteristic) or precision-recall curves [3].

Of particular interest are methods that can directly

optimize alternative performance measures that take

Machine Learning in Computational Biology M 1665

M

into account the unbalanced nature of the dataset and

user-specified tradeoff between false positive and false

negative rates.

Data Representation: Many computational and

systems biology applications of machine learning pres-

ent challenges in data representation. Consider for

example, the problem of identifying functionally im-

portant sites (e.g., RNA-binding residues) from amino

acid sequences. In this case, given an amino acid se-

quence, the classifier needs to assign a binary label

(1 for an RNA-binding residue and 0 for a non RNA-

binding residue) to each letter of the sequence. To solve

this problem using standard machine learning algo-

rithms that work with a fixed number of input features,

it is fairly common to use a sliding window approach

[12] to generate a collection of fixed length windows,

where each window corresponds to the target amino

acid and an equal number of its sequence neighbors on

each side. The classifier is trained to label the target

residue. Similarly, identifying binding sites from a

three-dimensional structure of the protein requires

transforming the problem into one that can be handled

by a traditional machine learning method. Such trans-

formations, while they allow the use of existing ma-

chine learning methods on macromolecular sequence

and structure labeling problems, complicate the task of

assessing the performance of the resulting classifier (see

below).

Performance Assessment: Standard approaches

to assessing the performance of classifiers rely on

k-fold cross-validation wherein a dataset is partitioned

into k disjoint subsets (folds). The performance mea-

sure of interest is estimated by averaging the measured

performance of the classifier on k runs of a cross-

validation experiment, each using a different choice

of the k � 1 subsets for training and the remaining

subset for testing the classifier. The fixed length

window representation described above complicates

this procedure on macromolecular sequence labeling

problems. The training and test sets obtained by

random partitioning of the dataset of labeled windows

can contain windows that originate from the same

sequence, thereby violating a critical requirement for

cross-validation, namely, that the training and test data

be disjoint. The resulting overlap between training and

test data can yield overly optimistic estimates of per-

formance of the classifier. A better alternative is to

perform sequence-based (as opposed to window-

based) cross-validation by partitioning the set of
sequences (instead of windows) into disjoint folds.

This procedure guarantees that training and test

sets are indeed disjoint [9]. Obtaining realistic esti-

mates of performance in sequence classification and

sequence labeling problems also requires the use of

non-redundant datasets [13].

Learning from Sparse Datasets: In gene expres-

sion datasets, the number of genes is typically in

the hundreds or thousands, whereas the number of

measurements (conditions, perturbations) is typically

fewer than ten. This presents significant challenges in

inferring genetic network models from gene expression

data because the number of variables (genes) far

exceeds the number of observations or data samples.

Approaches to dealing with this challenge require

reducing the effective number of variables via variable

selection [17] or abstraction i.e., by grouping variables

into clusters that behave similarly under the observed

conditions. Another approach to dealing with sparsity

of data in such settings is to incorporate information

from multiple datasets [18].

Key Applications
Protein Function Prediction: Proteins are the principal

catalytic agents, structural elements, signal transmitters,

transporters and molecular machines in cells. Under-

standing protein function is critical to understanding

diseases and ultimately in designing new drugs. Until

recently, the primary source of information about pro-

tein function has come from biochemical, structural, or

genetic experiments on individual proteins. However,

with the rapid increase in number of genome sequences,

and the corresponding growth in the number of protein

sequences, the numbers of experimentally determined

structures and functional annotations has significantly

lagged the number of protein sequences. With the avail-

ability of datasets of protein sequences with experi-

mentally determined functions, there is increasing use

of sequence or structural homology-based transfer of

annotation from already annotated sequences to new

protein sequences. However, the effectiveness of such

homology-based methods drops dramatically when

the sequence similarity between the target sequence

and the reference sequence falls below 30%. In many

instances, the function of a protein is determined by

conserved local sequence motifs. However, approaches

that assign function to a protein based on the presence

of a single motif (the so-called characteristic motif)

fail to take advantage of multiple sequence motifs that

1666M Machine Learning in Computational Biology
are correlated with critical structural features (e.g., bind-

ing pockets) that play a critical role in protein function.

Against this background, machine learning methods

offer an attractive approach to training classifiers to

assign putative functions to protein sequences. Machine

learning methods have been applied, with varying

degrees of success, to the problem of protein function

prediction. Several studies have demonstrated that

machine learning methods, used in conjunction with

traditional sequence or structural homology based tech-

niques and sequence motif-based methods outperform

the latter in terms of accuracy of function prediction

(based on cross-validation experiments). However, the

efficacy of alternative approaches in genome-wide pre-

diction of functions of protein-coding sequences from

newly sequenced genomes remains to be established.

There is also significant room for improving current

methods for protein function prediction.

Identification of Potential Functional Annotation

Errors in Genes and Proteins: As noted above, to close

the sequence-function gap, there is an increasing reli-

ance on automated methods in large-scale genome-

wide annotation efforts. Such efforts often rely on

transfer of annotations from previously annotated pro-

teins, based on sequence or structural similarity. Con-

sequently, they are susceptible to several sources of

error including errors in the original annotations

from which new annotations are inferred, errors in

the algorithms, bugs in the software used to process

the data, and clerical errors on the part of human

curators. The effect of such errors can be magnified

because they can propagate from one set of annotated

sequences to another. Because of the increasing reli-

ance of biologists on reliable functional annotations

for formulation of hypotheses, design of experiments,

and interpretation of results, incorrect annotations

can lead to wasted effort and erroneous conclusions.

Hence, there is an urgent need for computational

methods for checking consistency of such annotations

against independent sources of evidence and detect-

ing potential annotation errors. A recent study has

demonstrated the usefulness of machine learning

methods to identify and correct potential annotation

errors [1].

Identification of Functionally Important Sites in

Proteins: Protein-protein, protein-DNA, and protein-

RNA interactions play a pivotal role in protein function.

Reliable identification of such interaction sites from

protein sequences has broad applications ranging from
rational drug design to the analysis of metabolic and

signal transduction networks. Experimental detection

of interaction sites must come from determination of

the structure of protein-protein, protein-DNA and pro-

tein-RNA complexes. However, experimental determi-

nation of such complexes lags far behind the number of

known protein sequences. Hence, there is a need for

development of reliable computational methods for

identifying functionally important sites from a protein

sequence (and when available, its structure, but not the

complex). This problem can be formulated as a sequence

(or structure) labeling problem. Several groups have

developed and applied, with varying degrees of success,

machine learning methods for identification of func-

tionally important sites in proteins (see [21,14,22] for

some examples). However, there is significant room for

improving such methods.

Discovery and Analysis of Gene and Protein Net-

works: Understanding how the parts of biological sys-

tems (e.g., genes, proteins, metabolites) work together

to form dynamic functional units, e.g., how genetic

interactions and environmental factors orchestrate de-

velopment, aging, and response to disease, is one of the

major foci of the rapidly emerging field of systems

biology [8]. Some of the key challenges include the

following: uncovering the biophysical basis and essen-

tial macromolecular sequence and structural features

of macromolecular interactions; comprehending how

temporal and spatial clusters of genes, proteins, and

signaling agents correspond to genetic, developmental

and regulatory networks [10]; discovering topological

and other characteristics of these networks [19]; and

explaining the emergence of systems-level properties of

networks from the interactions among their parts.

Machine learning methods have been developed and

applied, with varying degrees of success, in learning

predictive models including boolean networks [20]

and bayesian networks [15] from gene expression

data. However, there is significant room for improving

the accuracy and robustness of such algorithms by

taking advantage of multiple types of data and by

using active learning.

Future Directions
Although many machine learning algorithms have had

significant success in computational biology, several

challenges remain. These include the development of:

efficient algorithms for learning predictive models

from distributed data; cumulative learning algorithms

Macro M 1667
that can efficiently update a learned model to accom-

modate changes in the underlying data used to train

the model; effective methods for learning from sparse,

noisy, high-dimensional data; and effective approac-

hes to make use of the large amounts of unlabeled

or partially labeled data; algorithms for learning pre-

dictive models from disparate types of data: macromo-

lecular sequence, structure, expression, interaction,

and dynamics; and algorithms that leverage optimal

experiment design with active learning in settings

where data is expensive to obtain.
Cross-references
▶Biological Networks

▶Biostatistics and Data Analysis

▶Classification

▶Clustering

▶Data Mining

▶Graph Database Mining
M

Recommended Reading
1. Andorf C., Dobbs D., and Honavar V. Exploring inconsistencies

in genome-wide protein function annotations: a machine

learning approach. BMC Bioinform., 8:284, 2007.

2. Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H.,

Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T.,

Harris M.A., Hill D.P., Issel-Tarver L., Kasarskis A., Lewis S.,

Matese J.C., Richardson J.E., Ringwald M., Rubin G.M., and

Sherlock G. Gene ontology: tool for the unification of biology.

Nat. Gene., 25:25–29, 2000.

3. Baldi P. and Brunak S. Bioinformatics: the machine learning

approach. MIT, Cambridge, MA, 2001.

4. Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J.,

and Wheeler D.L. Genbank. Nucleic Acids Res., 35D (Database

issue):21–D25, 2007.

5. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N.,

Weissig H., Shindyalov I.N., and Bourne P.E. The protein data

bank. Nucleic Acids Res., 28:235–242, 2000.

6. Bishop C.M. Pattern Recognition and Machine Learning.

Springer, Berlin, 2006.

7. Boutell M.R., Luo J., Shen X., and Brown C.M. Learning

multi-label scene classification. Pattern Recogn., 37:1757–1771,

2004.

8. Bruggeman F.J. and Westerhoff H.V. The nature of systems

biology. Trends Microbiol., 15:15–50, 2007.

9. Caragea C., Sinapov J., Dobbs D., and Honavar V. Assessing the

performance of macromolecular sequence classifiers. In Proc.

IEEE 7th Int. Symp. on Bioinformatics and Bioengineering,

2007, pp. 320–326.

10. de Jong H. Modeling and simulation of genetic

regulatory systems: a literature review. J. Comput. Biol.,

9:67–103, 2002.
11. Diettrich T.G. Ensemble methods in machine learning. Springer,

Berlin, In Proc. 1st Int. Workshop on Multiple Classifier Sys-

tems, 2000, pp. 1–15.

12. Diettrich T.G. Machine learning for sequential data: a

review. In Proc. Joint IAPR International Workshop on

Structural, Syntactic, and Statistical Pattern Recognition, 2002,

pp. 15–30.

13. El-Manzalawy Y., Dobbs D., and Honavar V. On evaluating

MHC-II binding peptide prediction methods, PLoS One, 3(9):

e3268, 2008.

14. El-Manzalawy Y., Dobbs D., and Honavar V. Predicting linear

B-cell epitopes using string kernels. J. Mole. Recogn., 21243–255,

2008.

15. Friedman N., Linial M., Nachman I., and Pe’er D. Using bayesian

networks to analyze expression data. J. Comput. Biol.,

7:601–620, 2000.

16. Galperin M.Y. The molecular biology database collection: 2008

update. Nucleic Acids Res., 36:D2–D4, 2008.

17. Guyon I. and Elisseeff A. An introduction to variable and feature

selection. J. Mach. Learn. Res., 3:1157–1182, 2003.

18. Hecker L., Alcon T., Honavar V., and Greenlee H. Querying

multiple large-scale gene expression datasets from the develop-

ing retina using a seed network to prioritize experimental tar-

gets. Bioinform. Biol. Insights, 2:91–102, 2008.

19. Jeong H., Tombor B., Albert R., Oltvai Z.N., and Barabasi A.-L.

The large-scale organization of metabolic networks. Nature,

407:651–654, 1987.

20. Lahdesmaki H., Shmulevich I., and Yli-Harja O. On learning

gene regulatory networks under the boolean network model.

Mach. Learn., 52:147–167, 2007.

21. Terribilini M., Lee J.-H., Yan C., Jernigan R.L., Honavar V,

and Dobbs D. Predicting RNA-binding sites from amino acid

sequence. RNA J., 12:1450–1462, 2006.

22. Yan C., Terribilini M., Wu F., Jernigan R.L., Dobbs D., and

Honavar V. Identifying amino acid residues involved in pro-

tein-DNA interactions from sequence. BMC Bioinform., 7:262,

2006.
Machine Learning in Systems
Biology

▶Machine Learning in Computational Biology
Machine-Readable Dictionary (MRD)

▶ Electronic Dictionary
Macro

▶ Snippet

1668M Magnetic Disk
Magnetic Disk

▶Disk
Maid

▶Massive Array of Idle Disks
Main Memory

PETER BONCZ

CWI, Amsterdam, The Netherlands

Synonyms
Primary memory; Random access memory (RAM)

Definition
Primary storage, presently known as main memory, is

the largest memory directly accessible to the CPU in

the prevalent Von Neumann model and stores both

data and instructions (program code). The CPU con-

tinuously reads instructions stored there and executes

them. Also called Random Access Memory (RAM), to

indicate that load/store instructions can access data at

any location at the same cost, it is usually implemented

using DRAM chips, which are connected to the CPU

and other peripherals (disk drive, network) via a bus.

Key Points
The earliest computers used tubes, then transistors

and since the 1970s in integrated circuits. RAM chips

generally store a bit of data in either the state of a flip-

flop, as in SRAM (static RAM), or as a charge in a

capacitor (or transistor gate), as in DRAM (dynamic

RAM). Some types have circuitry to detect and/or

correct random faults called memory errors in the

stored data, using parity bits or error correction

codes (ECC). RAM of the read-only type, ROM, in-

stead uses a metal mask to permanently enable/disable

selected transistors, instead of storing a charge in them.

The main memory available to a program in most

operating systems, while primarily relying on RAM, can

be increased by diskmemory. That is, thememory access

instructions supported by a CPU work on so-called

virtual memory, where an abstract virtual memory
space is divided into pages. At any time, a page either

resides in a swap-file on disk or in RAM, where it

must be in order for the CPU to access it.Whenmemory

is accessed, the Memory Management Unit (MMU) of

the CPU transparently translates the virtual address

into its current physical address. If the memory page

is not in RAM, it generates a page fault, to be a handled

by the OS which then has to perform I/O to the swap

file. If a high percentage of the memory access generates

a page fault, this is called thrashing, and severely lowers

performance.

Over the past decades, the density of RAM chips

has increased, following a planned evolution of finer

chip production process sizes, popularly known as

‘‘Moore’s Law.’’ This has led to an increase in RAM

capacity as well as bandwidth. Access latency has also

decreased, however, the physical distance on the moth-

erboard between DRAM chips and CPU results in a

minimum access latency of around 50ns (real RAM

latencies are often higher). In current multi-GHz CPUs

this means that a memory access instruction takes

hundreds of cycles to execute. Typically, a high per-

centage of instructions in a program can be memory

access instructions (up to 33%) and the RAM latency

can seriously impact performance. This problem is

known as the ‘‘memory wall.’’

To counter the performance problems of the mem-

ory wall, modern computer architecture now features a

memory hierarchy that besides DRAM also includes

SRAM cache memories, typically located on the CPU

chip. Memory access instructions transfer memory in

units of cache-lines, typically 64 bytes at a time (this

cache line size is also related to the width of the

memory bus). Memory access instruction first checks

whether the accessed cache line is in the highest (fast-

est/smallest) L1 cache. This takes just a few CPU cycles.

If a cache miss occurs, the memory access instruction

checks the next cache level. Only if no cache contains

the cache line, memory access is performed. Therefore,

like virtual memory page thrashing, the CPU cache hit

ratio achieved by a program now materially affects

performance.

While in the past access to the DRAM chips over the

bus was typically performed by a chipset, in between

CPU and memory, some modern CPU architectures

have moved the memory controller logic onto the

CPU chip itself, which tends to reduce access latency.

Also, to better serve the memory bandwidth require-

ment multi-CPU systems, modern architectures often

Main Memory DBMS M 1669
have a dedicated memory bus between the CPU and

DRAM. In a Symmetric Multi-Processing (SMP) this

leads to a so-called Non-Uniform Memory Access

architecture (NUMA), where access to the memory

directly connected to a CPU is faster than access to the

memory connected to another CPU.

While database systems traditionally focus on

the disk access pattern (i.e., I/O), modern database

systems, as well as main-memory database systems

(that do not rely on I/O in the first place) now must

carefully plan the in-memory data storage format used

as well as the memory access patterns caused by query

processing algorithms, in order to optimize the use of

the CPU caches and avoid high cache miss ratios.

The increased RAM sizes as well as the increased im-

pact of I/O latency also leads to a trend to rely more

on main memory as the preferred storage medium in

database processing.

Cross-references
▶Cache Memory

▶CPU

▶Disk
M

Main Memory DBMS

PETER BONCZ

CWI, Amsterdam, The Netherlands

Synonyms
In-memory DBMS; MMDBMS
Definition
A main memory database system is a DBMS that

primarily relies on main memory for computer data

storage. In contrast, conventional database management

systems typically employ hard disk based persistent

storage.

Key Points
The main advantage of MMDBMS over normal DBMS

technology is superior performance, as I/O cost is no

more a performance cost factor. With I/O as main

optimization focus eliminated, the architecture of

main memory database systems typically aims at opti-

mizing CPU cost and CPU cache usage, leading to dif-

ferent data layout strategies (avoiding complex tuple
representations) as well as indexing structures (e.g.,

B-trees with lower-fan-outs with nodes of one or a few

CPU cache lines).

While built on top of volatile storage, most MMDB

products offer ACID properties, via the following

mechanisms: (i) Transaction Logging, which records

changes to the database in a journal file and facilitates

automatic recovery of an in-memory database, (ii) Non-

volatile RAM, usually in the form of static RAM backed

up with battery power (battery RAM), or an electrically

erasable programmable ROM (EEPROM). With this

storage, the MMDB system can recover the data store

from its last consistent state upon reboot, (iii) High

availability implementations that rely on database repli-

cation, with automatic failover to an identical standby

database in the event of primary database failure.

Main-memory database systems were originally

popular in real-time systems (used in e.g., telecom-

munications) for their fast and more predictable per-

formance, and this continues to be the case. However,

with increasing RAM sizes allowing more problems

to be addressed using a MMDBMS, this technology

is proliferating into many other areas, such as on-line

transaction systems, and recently in decision support.

Main memory database systems are also deployed as

drop-in systems that intercept read-only queries on

cached data from an existing disk-based DBMS, thus

reducing its workload and providing fast answers to a

large percentage of the workload.

Examples of main-memory database systems are

MonetDB, SolidDB, TimesTen and DataBlitz. MySQL

offers a main-memory backend based on Heap tables.

The MySQL Cluster product is a parallel main memory

system that offers ACID properties through high

availability.

Cross-references
▶Disk

▶Main Memory

▶ Processor Cache

Recommended Reading
1. Bohannon P., Lieuwen D.F., Rastogi R., Silberschatz A.,

Seshadri S., and Sudarshan S. The architecture of the dalı́ main-

memorystoragemanager.Multimedia Tools Appl., 4(2):115–151,

1997.

2. Boncz P.A. and Kersten M.L. MIL primitives for querying a

fragmented world. VLDB J., 8(2):101–119, 1999.

3. DeWitt D.J., Katz R.H., Olken F., Shapiro L.D., Stonebraker M.,

and Wood D.A. Implementation techniques for main memory

1670M Maintenance of Materialized Views with Outer-Joins
database systems. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1984, pp. 1–8.

4. Hvasshovd S-O., Torbjørnsen Ø., Bratsberg S.E., and Holager P.

The ClustRa telecom database: high availability, high

throughput, and real-time response. In Proc. 21th Int. Conf.

on Very Large Data Bases, 1995, pp. 469–477.
Maintenance of Materialized Views
with Outer-Joins

PER-ÅKE LARSON

Microsoft Corporation, Redmond, WA, USA

Definition
An materialized outer-join view is a materialized view

whose defining expression contains at least one outer

join. View maintenance refers to the process of bring-

ing the view up to date after one or more of the

underlying base tables has been updated. View main-

tenance can always be done by recomputing the result,

known as a full refresh, but this is usually prohibitively

expensive. Incremental view maintenance, that is, only

applying the minimal changes required to bring the

view up to date, is normally more efficient.
Historical Background
Full outer join (called generalized join) was proposed

by Lacroix and Pirotte in 1976 [4]. During the 1980’s,

there was considerable discussion in the research

literature about the use and power of outer joins.

Commercial systems began supporting outer joins in

the late 1980’s and at the time of writing (2007) all

major commercial systems do. Optimization of outer-

join queries was an active research area during the

1990’s. Outer join was first included in the 1992

SQL standard. The first view matching algorithm for

outer-join views was published by Larson and Zhou

[5] in 2005.

In 1998 Griffin and Kumar [2] published the first

paper covering incremental maintenance ofmaterialized

outer-join views. A paper 2006 by Gupta and Mumick

[3] described a more efficient procedure but, unfortu-

nately, it does not always produce the correct result. In

2007, Larson and Zhou [6] introduced an method for

efficient incremental maintenance of outer-join views.

At the time of writing, onlyOracle allows (a limited form

of) materialized outer-join views.
Foundations
Larson and Zhou [6] showed that incremental mainte-

nance of an outer-join view can be divided into two

steps: computing and applying a primary delta and a

secondary delta. The first step is very similar to main-

taining an inner-join view while the second step is a

‘‘clean-up’’ step.

This entry describes Larson’s and Zhou’s mainte-

nance procedure for a view without aggregation when

the update consists of insertions into one of its base

tables. The reader is referred to the original paper [6]

for a more complete description of how to handle

deletions, views with aggregation, and how to exploit

foreign-key constraints to simplify maintenance.

Examples illustrating the procedure use a database con-

sisting of the following three tables. Primary keys are

underlined.

O(Okey, Odate, Ocustomer),

L(okey, pkey, Qty, Price),

P(Pkey, Pname).

The following materialized view consisting of two

full outer joins will be used as a running example.

MV ¼ L ffl fo

p l;pð Þ P
� �

ffl fo

p l;oð Þ O

where the join predicates are defined as p(l, p) �
(l.pkey = p.pkey) and p(l, o) � (l.okey = o.okey).

Join-Disjunctive Normal Form

The view maintenance procedure builds on the join-

disjunctive normal form for outer-join expressions

introduced by Galindo-Legaria [6]. The normal form

is described in this section by an example; more details

can be found in [6,1].

Let T1 and T2 be tables with schemas S1 and

S2, respectively. The outer union, denoted by T1 ⊎ T2,

first null-extends (pads with nulls) the tuples of

each operand to schema S1 [S2 and then takes the

union of the results (without duplicate elimination).

Let t1 and t2 be tuples with the same schema. Tuple

t1 is said to subsume tuple t2 if t1 agrees with t2 on all

columns where they both are non-null and t1 contains

fewer null values than t2. The operator removal of

subsumed tuples of T, denoted by T↓, returns the tuples

of T that are not subsumed by any other tuple in T.

The minimum union of tables T1 and T2 is defined

as T1 � T2 = (T1 ⊎ T1)↓. Minimum union is both

commutative and associative.

Maintenance of Materialized Views with Outer-Joins.

Figure 1. Subsumption graph and maintenance

graph for view MV.

Maintenance of Materialized Views with Outer-Joins M 1671

M

Left outer join can be rewritten as T1 ffllo
p T2 = T1

⋈ pT2 � T1 and right outer join as T1 fflro
p T2 =

T1 ⋈ pT2 � T2. Full outer join can be rewritten as

T1 ffl fo
p T2 = T1 ⋈ pT2 � T1 � T2.

The example view was defined as

MV ¼ L ffl fo

p l;pð Þ P
� �

ffl fo

p l;pð Þ O:

Conversion to normal form is done bottom up by

applying the rewrite rules above. First rewrite the join

between L and P in terms of inner joins and minimum

union, which yields

MV ¼ ðspðl;pÞðL � PÞ � L � PÞ ffl fo

pðl;oÞ O:

Then apply the same rewrite to the second outer join,

which produces

MV ¼ ððspðl;pÞðL � PÞ � L � PÞ fflðl;oÞ OÞ
� ðspðl;pÞðL � PÞ � L � PÞ � O:

Inner join distributes over minimum union in the

same way as over regular union. Applying this trans-

formation to the join with O produces

MV ¼ spðl;pÞ^pðl;oÞðO � L � PÞ
� spðl;oÞðO � LÞ � spðl;oÞðO � PÞ
� spðl;pÞðL � PÞ � L � P � O:

The view expression is now in join-disjunctive form

but it can be further simplified. The term sp(l,o)(O �
P) can be eliminated because the join predicate will

never be satisfied.

MV ¼ sPðl;pÞ^Pðl;oÞðO � L � PÞ � spðl;oÞðO � LÞ
� spðl;pÞðL � PÞ � L � P � O:

The normal form shows what form of tuples are found

inMV . For example, it ‘‘contains’’ all tuples in the join

of O and L. Most such tuples are represented implicitly

by being included in a wider tuple composed of tuples

from O, L and P; only the non-subsumed tuples are

stored explicitly in the view.

As illustrated by this example, an outer-join expres-

sion E over a set of tables U can be converted to a

normal form consisting of the minimum union of

terms composed from selections and inner joins (but

no outer joins). More formally, the join-disjunctive

normal form of E equals

E ¼ E1 � E2 � � � � � En
where each term Ei is of the form Ei = spi
(Ti1�Ti2�...�Tim). T i = {Ti1, Ti2...Tim} is a (unique)

subset of the tables in U . Predicate pi is the conjunction
of a subset of the selection and join predicates found in

the original form of the query.

The Subsumption Graph

Every term in the normal form of the view has a

unique set of source tables drawn from U and is null-

extended on all other tables in the view. The set

of source tables of term Ei is denoted by T i and

the set of tables on which it is is null-extended by

Si;Si ¼ U � T i.
A tuple produced by a term with source tables T i

can only be subsumed by tuples produced by terms

whose source set is a superset of T i . The subsumption

relationships among terms can be modeled by a DAG

called the subsumption graph.

The subsumption graph of E contains a node ni for

each term Ei in the normal form and the node is

labeled with the source table set T i of Ei. There is an

edge from a node ni to a node nj, if T i is a minimal

superset of T j . T i is a minimal superset of T j if there

does not exist a node nk in the graph such that

T j � T k � T i .

The subsumption graph for view MV is shown to

the left in Fig. 1. The importance of the subsumption

graph lies in the following observation: when checking

whether a tuple of a term is subsumed, it is sufficient to

check against tuples in the term’s immediate parent

terms. For example, to determine whether a P tuple p1
is subsumed, all that is needed is to check whether it

joins with an L tuple. If it does, the resulting tuple,

which subsumes p1, is included in the LP term.

The result of an outer-join expression is repre-

sented in a minimal form. Only the non-subsumed

Maintenance of Materialized Views with Outer-Joins.

Figure 2. Constructing primary-delta expression for

insertions into table P.

1672M Maintenance of Materialized Views with Outer-Joins
tuples produced by a term Ei in the normal form

are explicitly represented. A subsumed tuple is repre-

sented implicitly by being included in a subsuming

tuple. The net contribution of a term, denoted by Di,

is the set of non-subsumed tuples of term Ei in

the normal form of expression E. Then E can then

be written in the form

E ¼ D1] D2] � � �] Dn:

Consider a view V and suppose one of the its base

tables T is modified. This may affect the net contribu-

tion of a term Di in one of three ways:

1. Directly, which occurs if T is among the tables

in T i ;

2. Indirectly, which occurs if T is not among the tables

in T i but it is among the source tables of at least

one of its parent nodes;

3. No effect, otherwise.

Based on this classification of how terms are affected,

a view maintenance graph is created as follows.

1. Eliminate from the subsumption graph all nodes

that are unaffected by the update of T.

2. Mark the remaining nodes by D or I depending

on whether the node is affected directly or

indirectly.

The maintenance graph for view when updating P

is shown to the right in Fig. 1. The maintenance

graph is used primarily to identify which terms of a

view are indirectly affected and thus may require

maintenance.

Maintenance Procedure

Suppose table T has been updated. If so, any view V

that references T needs to be maintained. The first step

is to compute the view’s maintenance graph and clas-

sify the terms as directly affected, indirectly affected,

and unaffected. Without loss of generality, assume that

the view has n terms, of which terms 1, 2,...,k are

directly affected, terms k þ 1, k þ 2,...,kþ m

are indirectly affected, and terms k þ m þ 1, k þ m

þ 2,...,n are not affected. The view expression can then

be rewritten in the form

V ¼ VD] VI] VUwhere

VD ¼]k
i¼1Di; VI ¼]kþm

i¼kþ1Di;

VU ¼]n
i¼kþmþ1Di:
From this form of the expression, one can see that to

update the view, two delta expressions must be evalu-

ated and applied to the view

DVD ¼]k
i¼1DDi; DVI ¼]kþm

i¼kþ1DDi:

DVD is called the primary delta and DVI the secondary

delta. In summary, maintenance of a view V after

insertions into one of its underlying base tables can

be performed in two steps.

1. Compute the primary delta DVD and insert the

resulting tuples into the view.

2. If there are indirectly affected terms, compute the

secondary delta DVI and delete the resulting tuples

from the view.

Computing the Primary Delta

An expression that computes the primary delta, DVD,

can be constructed by the following simple algorithm.

1. Traverse the operator tree for Valong the path from

T to the root. On any join operator encountered,

apply commutativity rules to ensure that the input

referencing T is on the left.

2. Traverse the path from T to the root of V . Convert

any full outer join operator encountered to a left

outer join and any right outer join operator to an

inner join.

3. Substitute T by DT.

Step 1 is a normal rewrite of the view expression and

does not change the result. Step 2 modifies the expres-

sion so that it computes only VD. After Step 2, the

operators on the path from T to the root consists

only of selects, inner joins, and left outer joins and

the delta expression is always the left input.

Figure 2 illustrates the transformation process for

the example view MV when table P is updated. The

resulting expression for computing the primary delta is

DMVD ¼ DP ffllo
p l;pð Þ L

� �
ffllo

p l;oð Þ O

Maintenance of Materialized Views with Outer-Joins M 1673

M

Computing the Secondary Delta

The secondary delta can be computed efficiently from

the primary delta and either the view or base tables.

Only the case when using the view is described here.

Recall that the base tables have already been updated

and the primary delta has been applied to the view.

The primary delta DVD contains the union of the

deltas for all directly affected terms. However, deltas

for individual terms are needed to compute the sec-

ondary delta. Each term is defined over a unique set of

tables and null extended on all others so tuples from

a particular term are easily identified and can be

extracted from DVD by simple selection predicates.

Let null(T) denote a predicate that evaluates to

true if a tuple is null-extended on table T. null(T)

can be implemented in SQL as ‘‘T.c is null’’ where c

is any column of T that does not contain nulls,

for example, a column of a key. When applying

null and ¬null to a set of tables T = {T1, T2...,Tn}, the

shorthand notations nðT Þ ¼
V

Ti2T nullðTiÞ and

nnðT Þ ¼
V

Ti2T :nullðTiÞ are used.
For the example view, MV , the primary delta con-

tains deltas of three directly affected terms, see Fig. 1.

Non-subsumed tuples from, for example, the LP-term

are uniquely identified by the fact that they are com-

posed of a real tuple from L and from P but are null

extended on O. Hence, DDLP can be extracted from

DVD as follows:

DDLP ¼ pðLPÞ:	snnðLPÞ^nðoÞDMVD

where nn(LP) = ¬null(L) ∧¬null(P) and n(O) =

null(O).

DDLP contains only the delta of the net contribu-

tion of the term. DELP contains the complete delta of

the term, including both subsumed and non-subsumed

tuples. Tuples inDELP are composed of real tuples from

L, and from P, and may or may not be null extended on

O. Hence, DELP can be extracted from DVD as follows:

DELP ¼ dpðLPoÞ:	snnðLPÞDMVD:

The duplicate elimination (d) is necessary because an

LP tuple may have joined with multiple O tuples.

Continuing with the running example, the second-

ary delta consists of DDOL and DDL. DDOL is null

extended on P and the OLP-term is its only parent so

it can be computed as:

DDOL ¼ snnðOLÞ^nðPÞðMV þ DMVDÞ
ffl ls

eq OLð ÞsnnðOLPÞDMVD:
This expression makes sense intuitively. The first part

selects from the view all orphaned (non-subsumed)

tuples of term EOL contained in the view after the

primary delta has been applied. The second part

extracts from the primary delta all tuples added to

the parent term EOLP. The join is a left semijoin and

outputs every tuple from the left operand that joins

with one or more tuples in the right operand. The

complete expression thus amounts to finding all cur-

rently orphaned tuples of the term and retaining those

that cease to be orphans because of the insert. Those

tuples should be deleted from the view.

DL is null extended on O, and P and has one

directly affected parent, the LP-term. DDL can be com-

puted as:

DDL ¼ snnðLÞ^nðOPÞðMV þ DMVDÞ

fflls
eq Lð ÞsnnðLPÞDMVD:

Summary

In summary, after insertion into table P of a set of

tuples DP, the example view MV can be brought up

to date as follows. First compute the primary delta

DMVD ¼ ðDP ffl lo
p l;pð Þ LÞ ffl lo

p l;oð Þ O

and insert the resulting tuples into the view, resulting

in MVþDMVD. Then compute the secondary delta

DMVI ¼ DDOL] DDL

¼ snnðOLÞ^nðPÞðMV þ DMVDÞ

fflls
eq OLð Þ snnðOLPÞ DMVD]

snnðLÞ^nðOPÞðMV þ DMVDÞ

fflls
eq Lð Þ snnðLPÞ DMVD

and delete the resulting tuples from the view.

Key Applications
Queries containing outer joins are often used in analy-

sis queries over large tables in data warehouses. Mate-

rialized outer-join views, especially when aggregated,

can be very beneficial in such scenarios.

Cross-references
▶Materialized Views

▶Maintenance of Materialized Views with Outer-Joins

▶Views

1674M Maintenance of Recursive Views
Recommended Reading
1. Galindo-Legaria C. Outerjoins as disjunctions. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1994,

pp. 348–358.

2. Griffin T. and Kumar B. Algebraic change propagation for semi-

join and outerjoin queries. ACM SIGMOD Rec., 27(3):22–27,

1998.

3. Gupta A. and Mumick I.S. Incremental maintenance of aggre-

gate and outerjoin expressions. Inf. Syst., 31(6):435–464, 2006.

4. Lacroix M. and Pirotte A. Generalized joins. ACM SIGMOD

Rec., 8(3):14–15, 1976.

5. Larson P. and Zhou J. View matching for outer-join views.

In Proc. 31st Int. Conf. on Very Large Data Bases, 2005,

pp. 445–456.

6. Larson P. and Zhou J. Efficient maintenance of materialized

outer-join views. In Proc. 23rd Int. Conf. on Data Engineering,

2007, pp. 56–65.
Maintenance of Recursive Views

SUZANNE W. DIETRICH

Arizona State University, Phoenix, AZ, USA

Synonyms
Incremental maintenance of recursive views; Recursive

view maintenance

Definition
A view is a derived or virtual table that is typically

defined by a query, providing an abstraction or an

alternate perspective of the data that allows for more

intuitive query specifications using these views. Each

reference to the view name results in the retrieval of

the view definition and the recomputation of the view

to answer the query in which the view was referenced.

When views are materialized, the tuples of the com-

puted view are stored in the database with appropriate

index structures so that subsequent access to the

view can efficiently retrieve tuples to avoid the cost

of recomputing the entire view on subsequent refer-

ences to the view. However, the materialized view must

be updated if any relation that it depends on has

changed. Rather than recomputing the entire view on

a change, an incremental view maintenance algorithm

uses the change to incrementally compute updates to

the materialized view in response to that change.

A recursive view is a virtual table definition that

depends on itself. A canonical example of a recursive

view is the transitive closure of a relationship stored in

the database that can be modeled as directed edges in
a graph. The transitive closure essentially determines

the reachability relationship between the nodes in the

graph. Typical examples of transitive closure include

common hierarchies such as employee-supervisor,

bill-of-materials (parts-subparts), ancestor, and course

prerequisites. The incremental view maintenance algo-

rithms for the maintenance of recursive views have

additional challenges posed by the recursive nature of

the view definition.

Historical Background
Aview definition relates a view name to a query defined

in the query language of the database. Initially, incre-

mental view maintenance algorithms were explored in

the context of non-recursive view definitions involving

select, project, and join query expressions, known as

SPJ expressions in the literature. The power of recur-

sive views was first introduced in the Datalog query

language, which is a declarative logic programming

language established as the database query language

for deductive databases in the 1980s. Deductive data-

bases assume the theoretical foundations of relational

data but use Datalog as the query language. Since

its relational foundations assume first normal form,

Datalog looks like a subset of the Prolog programming

language without function symbols. However, Data-

log does not assume Prolog’s top-down left-to-right

programming language evaluation strategy. The evalua-

tion of Datalog needed to be founded on the funda-

mentals of database query optimization. In a database

system, a user need only specify a correct declarative

query, and it is the responsibility of the database system

to efficiently execute that specification. The evaluation

of Datalog was further complicated by the fact that

Datalog allows for relational views that include union

and recursion in the presence of negation. Therefore, the

view definitions in Datalog were more expressive than

the traditional select-project-join views available in rela-

tional databases at that time. Therefore, the incremental

view maintenance algorithms for recursive views in the

early 1990s are typically formulated in the context of the

evaluation of Datalog. The power to define a recursive

union in SQL was added in the SQL:1999 standard.

Historically, it is important to note that the incre-

mental maintenance of recursive views is related to the

areas of integrity constraint checking and condition

monitoring in active databases. These three areas

were being explored in the research literature at around

the same time. In integrity constraint checking, the

Maintenance of Recursive Views M 1675

M

database is assumed to be in a consistent state and

when a change occurs in the database, it needs to

incrementally determine whether the database is still

in a consistent state. In active databases, the database is

responsible for actively checking whether a condition

that it is responsible for monitoring is now satisfied

by incrementally evaluating condition specifications

affected by changes to the database. Although closely

related, there are differences in the underlying assump-

tions for these problems.

Foundations

Recursive View Definition

A canonical example of a recursive view definition

is the reachability of nodes in a directed graph. In

Datalog, the reach view consists of two rules. The first

non-recursive rule serves as the base or seed case, and

indicates that if the stored or base table edge defines a

directed edge from the source node to the destination

node, then the destination can be reached from the

source. The second rule is recursive. If the source

node can reach some intermediate node and there is

an edge from that intermediate node to a destination

node, then the source can reach the destination.

reach(Source, Destination):-

edge(Source, Destination).

reach(Source, Destination):-

reach(Source, Intermediate),

edge(Intermediate, Destination).

Intuitively, one can think of the recursive rule as an

unfolding of the joins required to compute the reach-

ability of paths of length two, then paths of length

three, and so on until the data of the underlying

graph is exhausted.

In SQL, this recursive view is defined with the

following recursive query expression:

with recursive reach(source, destina-

tion) as

(select E.source, E.destination

from edge E)

union

(select S.source, D.destination

from reach S, edge D

where S.destination = D.source)

SQL limits recursive queries to linear recursions, which

means that there is at most one direct invocation of a
recursive item. The specification of the reach view

above is an example of a linear recursion. There is

another linear recursive specification of reach where

the direct recursive call appears on the right side of the

join versus the left side of the join:

reach(Source, Destination):-

edge(Source, Intermediate),

reach(Intermediate, Destination).

However, there is a logically equivalent specification of

reach that is non-linear:

reach(Source, Destination):-

reach(Source, Intermediate),

reach(Intermediate, Destination).

The goal of Datalog evaluation is to allow the user to

specify the recursive view declaratively in a logically

correct way, and it is the system’s responsibility to

optimize the evaluation of the query.

SQL also restricts recursions to those defined in

deductive databases as stratified Datalog with negation.

Without negation, a recursive Datalog program has a

unique solution that corresponds to the theoretical

fixpoint semantics or meaning of the logical specifica-

tion. In the computation of the reach view, each unfold-

ing of the recursion joins the current instance of the

recursive view with the edge relation until no new tuples

can be added. The view instance has reached a fixed

point and will not change. When negation is intro-

duced, the interaction of recursion and negation must

be considered. The concept of stratified negation means

that there can be no negation through a recursive com-

putation, i.e., a view cannot be defined in terms of its

own negation. Recursive views can contain negation but

the negation must be in the context of relations that are

either stored or completely computed before the appli-

cation of the negation. This imposed level of evaluation

with respect to negation and recursion are called strata.

For stratified Datalog with negation, there also exists a

theoretical fixpoint that represents the intuitive mean-

ing of the program.

Consider an example of a view defining a peer as

two employees that are not related in the employee-

supervisor hierarchy:

peer(A, B):- employee(A,...), employee(B,...),

not (supervisor(A,B)), not(supervisor(B,A)).

supervisor(Emp, Sup):-

immediateSupervisor(Emp,Sup).

1676M Maintenance of Recursive Views
supervisor(Emp, Sup):-

supervisor(Emp, S),

immediateSupervisor(S, Sup).

Since peer depends on having supervisor materialized

for the negation, peer is in a higher stratum than

supervisor. Therefore, the strata provide the levels in

which the database system needs to compute views to

answer a query.
Evaluation of Recursive Queries

Initial research in the area emphasized the efficient and

complete evaluation of recursive queries. The intuitive

evaluation of the recursive view that unions the join of

the current view instance with the base data at each

unfolding is known as a naı̈ve bottom-up algorithm.

In a bottom-up approach to evaluating a rule, the

known collection of facts is used to satisfy the subgoals

on the right-hand side of the rule, generating new

facts for the relation on the left-hand side of the rule.

To improve the efficiency of the naı̈ve algorithm, a

semi-naı̈ve approach can be taken that only uses the

new tuples for the recursive view from the last join to

use in the join at the next iteration. A disadvantage

of this bottom-up approach for evaluating a query is

that the entire view is computed even when a query

may be asking for a small subset of the data. This eager

approach is not an issue in the context of materializing

an entire view.

Another recursive query evaluation approach con-

sidered a top-down strategy as in Prolog’s evaluation.

In a top-down approach to evaluation, the evaluation

starts with the query and works toward the collection

of facts in the database. In the context of the reach

recursive view, the reach query is unified with the left-

hand side of the non-recursive rule and rewritten as a

query involving edge. The edge facts are then matched

to provide answers. The second recursive rule is then

used to rewrite the reach query with the query consist-

ing of the goals on the right-hand side of the rule.

This evaluation process continues, satisfying the goals

with facts or rewriting the goals using the rules. The

unification of a goal with the left-hand side of a rule

naturally filters the evaluation by binding variables in

the rule to constants that appear in the query. How-

ever, the evaluation of a left-recursive query using

Prolog’s evaluation strategy enters an infinite loop on

cyclic data by attempting to prove the same query over

and over again. A logic programmer would not write a
logic program that enters an infinite loop, but the

deductive database community was interested in the

evaluation of truly declarative query specifications.

The resulting evaluation approaches combine the

best of top-down filtering with bottom-up material-

ization. The magic sets technique added top-down

filtering by cleverly rewriting the original rules so

that a bottom-up evaluation would take advantage of

constants appearing in the query [1]. Memoing was

added to a top-down evaluation strategy to achieve

the duplicate elimination feature that is inherent in a

bottom-up evaluation of sets of tuples [3]. This dupli-

cate elimination feature avoids the infinite loops on

cyclic data. Top-down memoing is complete for sub-

sets of Datalog on certain types of queries [4]. For

stratified Datalog with negation, top-down memoing

still requires iteration to guarantee complete evalua-

tion. Further research explored additional optimiza-

tions as well as implementations of deductive database

systems [12] and led to research in active databases and

materialized view maintenance.

Incremental Evaluation of Recursive Views

A view maintenance algorithm uses the change to

incrementally determine updates to the view. Consider

a change in the underlying graph for the transitive

closure example. If a new edge is inserted, this edge

may result in a change to the materialized reach view

by adding a connection between two nodes that did

not exist before. However, another possibility is that

the new edge added another path between two nodes

that were already in the materialized view. A similar

situation applies on the removal of an edge. The

deletion could result in a change in the reachability

between nodes or it could result in the removal of a

path but the nodes are still connected via another

route. In addition, in the general case, a view may

depend on many relations including other (recursive)

views in the presence of negation. Therefore, the

approaches for the incremental maintenance of recur-

sive views typically involve a propagation or derivation

phase that determines an approximation or overesti-

mate of the changes, and a filtering or rederivation

phase that checks whether the potential change repre-

sents a change to the view. There are differences in the

underlying details of how these phases are performed.

The two incremental view maintenance algorithms

that will be presented by example are the DRed algo-

rithm [7] and the PF Algorithm [8]. Both the DRed

Maintenance of Recursive Views M 1677

M

and PF algorithms handle recursive stratified Datalog

programs with negation. There are other algorithms

developed for special cases of Datalog programs and

queries, such as the counting technique for nonrecur-

sive programs, but this exposition will explore these

more general approaches for incremental view mainte-

nance. Historically, the PF algorithm was developed in

the context of top-down memoing whereas DRed

assumes a bottom-up semi-naı̈ve evaluation. To assist

with the comparison of the approaches, the notation

introduced for the DRed algorithm [7] will be used to

present both algorithms in the context of the transitive

closure motivational example.

Figure 1 provides a graphical representation of

an edge relation. Assume that the view for reach is

materialized, and the edge (e,f) is deleted from the

graph. The potential deletions or overestimates for

reach, denoted by d�(reach), are computed by creating

D� rules for each rule computing reach. Each reach

rule has k D� rules where k corresponds to the number

of subgoals in the body of the rule. The ith D� rule uses

the current estimate of deleted tuples (d�) for the

ith subgoal. For the nonrecursive rule, there is only

one subgoal. Therefore, there is only one D� rule

indicating that potential edge deletions generate po-

tential deletions to the reach view.

D�(r1): d�(reach(S, D)):- d�(edge(S, D)).
Maintenance of Recursive Views. Figure 1. Sample

Graph.
Since the recursive rule has two subgoals, there are two

D� rules:

D�(r21): d�(reach(S, D)):- d�(reach(S, I)), edge(I, D).
D�(r22): d�(reach(S, D)):- reach(S, I), d�(edge(I, D)).

Potential deletions to the reach view as well as the edge

relation can generate potential deletions to the view.

These potential deletions need to be filtered by

determining whether there exist alternative derivations

or paths between the nodes computed in the potential

deletion. There is a Dr rule defined for each reach

rule that determines the rederivation of the potential

deletions, which is denoted by d+ (reach):

Dr(r1): d+ (reach(S, D)):- d�(reach(S, D)), edgev(S, D).
Dr(r2): d+ (reach(S, D)):- d�(reach(S, D)), reachv(S, I),

edgev(I, D).

The superscript v on the subgoals in the rule indicates

the use of the current instance of the relation

corresponding to the subgoal. If the potential deletion

is still reachable in the new database instance, then

there exists another route between the source and

destination, and it should not be removed from

the materialized view. The actual removals to reach,

indicated by D�(reach), is the set of potential deletions

minus the set of alternative derivations:

D�(reach) = d�(reach) – d+ (reach)

Table 1 illustrates the evaluation of the DRed algorithm

for incrementally maintaining the reach view on the

deletion of edge(e,f) from Fig. 1. The DRed algorithm

uses a bottom-up evaluation of the given rules, starting

with the deletion d�(edge(e, f)). In the first step, the

D� rules compute the overestimate of the deletions

to reach. The result of the D� rules are shown in the

right column, which indicates the potential deletions

to reach as d�(reach). The second step uses the Dr

rules to filter the potential deletions. The right column

illustrates the source destination pairs that are still

reachable after the deletion of edge(e,f) as d+ (reach).

The tuples that must be removed from the materia-

lized view are indicated by D�(reach): {(e,f) (e,h)

(b,f) (b,h)}.

The PF (Propagate Filter) algorithm on the same

example is shown in Table 2. PF starts by propagating

the edge deletion using the nonrecursive rule, which

generates a potential deletion of reach(e,f). This

approximation is immediately filtered to determine

whether there exists another path between e and f.

Maintenance of Recursive Views. Table 2. PF algorithm on deletion of edge (e,f) on materialized reach view

PF algorithm

Propagate Filter
Rule d�(reach) d+ (reach) D�(reach)

d�(edge):{(e, f)} D�(r1) (e,f) {} (e,f)

D�(reach): {(e,f)} D�(r21) (e,g) (e,h) (e,g) (e,h)

D�(reach): {(e,h)} D�(r21) {} {}

d�(edge): {(e, f)} D�(r22) (a,f) (b,f) (a,f) (b,f)

D�(reach): {(b,f)} D�(r21) (b,g) (b,h) (b,g) (b,h)

D�(reach): {(b,h)} D�(r21) {} {}

Maintenance of Recursive Views. Table 1. DRed algorithm on deletion of edge (e,f) on materialized reach view

DRed algorithm

Step 1 Compute overestimate of potential deletions d�(reach)

D�(r1): d�(reach(S, D)):- d�(edge(S, D)). (e,f)

D�(r21): d�(reach(S, D)):- d�(reach(S, I)), edge(I, D). (e,g) (e,h)

D�(r22): d�(reach(S, D)):- reach(S, I), d�(edge(I, D)). (a,f) (b,f)

Repeat until no change: No new tuples for D�(r1) and D�(r22)

D�(r21): d�(reach(S, D)):- d�(reach(S, I)), edge(I, D). (a,g) (a,h) (b,g) (b,h)

Last iteration does not generate any new tuples

Step 2 Find alternative derivations to remove potential deletions d+ (reach)

Dr(r1): d+ (reach(S, D)):- d�(reach(S, D)), edge(S, D).

Dr(r2): d+ (reach(S, D)):- d�(reach(S, D)), reachv(S, I), edgev(I, D). (e,g) (a,f) (a,g) (a,h) (b,g)

Step 3 Compute actual changes to reach D�(reach)

D�(reach) = d�(reach) – d+ (reach) (e, f) (e,h) (b,f) (b,h)

1678M Maintenance of Recursive Views
Since there is no alternate route, the tuple (e,f) is

identified as an actual change, and is then propagated.

The propagation of D�(reach): {(e,f)} identifies (e,g)

and (e,h) as potential deletions. However, the filtering

phase identifies that there is still a path from e to g, so

(e, h) is identified as a removal to reach. The propaga-

tion of (e,h) does not identify any potential deletions.

The propagation of the initial edge deletion d�(edge):
{(e, f)} must be propagated through the recursive rule

for reach using D�(r22). The potential deletions are

immediately filtered, and only actual changes are pro-

pagated. The PF algorithm also identifies the tuples

{(e,f) (e,h) (b,f) (b,h)} to be removed from the

materialized view.

As shown in the above deletion example, the DRed

and PF algorithms both compute overestimates or

approximations of tuples to be deleted from the recur-

sive materialized view. The PF algorithm eagerly filters
the potential deletions before propagating them.

The DRed algorithm propagates the potential deletions

within a stratum but filters the overestimates before

propagating them to the next stratum. There are sce-

narios in which the DRed algorithm outperforms the

PF algorithm and others in which the PF algorithm

outperforms the DRed algorithm.

For the case of insertions, the PF algorithm oper-

ates in a manner similar to deletions, by approximating

the tuples to be added and filtering the potential addi-

tions by determining whether the tuple was provable in

the old database state. However, the DRed algorithm

uses the bottom-up semi-naı̈ve algorithm for Datalog

evaluation to provide an inherent mechanism for de-

termining insertions to the materialized view. In semi-

naı̈ve evaluation, the original rules are executed once

to provide the seed or base answers. Then incremental

versions of the rules are executed until a fixpoint is

Managing Compressed Structured Text M 1679
reached. The incremental rules are formed by creating

k rules associated with a rule where k corresponds to

the number of subgoals in the right-hand side of the

rule. The ith incremental rule uses only the new tuples

from the last iteration for the ith subgoal. However,

when the ith subgoal is a stored relation, then the

corresponding incremental rules are removed since

they will not contribute to the incremental evaluation.

For the motivational example, the incremental rule

for reach is

Dreach(S,I), edge(I, D)

where Dreach represents the new reach tuples com-

puted on the previous iteration. Since a set of tuples

is being computed, duplicate proofs are automatically

filtered and are not considered new tuples. This is the

inherent memoing in bottom-up evaluation that han-

dles cycles in the underlying data.
Key Applications
Query Optimization; Condition Monitoring; Integ-

rity Constraint Checking; Data Warehousing; Data

Mining; Network Management; Mobile Systems.
 M
Cross-references
▶Datalog

▶ Incremental Maintenance of Views with Aggregates

▶View Maintenance

▶Maintenance of Materialized Views with Outer-

Joins
Recommended Reading
1. Bancilhon F., Maier D., Sagiv Y., and Ullman J. Magic sets

and other strange ways to implement logic programs. In Proc.

5th ACM SIGACT-SIGMOD Symp. on Principles of Database

Systems, 1986, pp. 1–15.

2. Ceri S. and Widom J. Deriving production rules for incremental

view maintenance. In Proc. 17th Int. Conf. on Very Large Data

Bases, 1991, pp. 577–589.

3. Dietrich S.W. Extension tables: memo relations in logic

programming. In 14th Int. Colloquium on Automata, Lan-

guages, and Programming, 1987, pp. 264–272.

4. Dietrich S.W. and Fan C. On the completeness of naive memo-

ing in prolog. New Generation Comput., 15:141–162, 1997.

5. Dong G. and Su J. Incremental maintenance of recursive views

using relational calculus/SQL. ACM SIGMOD Rec., 29

(1):44–51, 2000.

6. Gupta A. and Mumick I.S. (eds.). Materialized Views: Techni-

ques, Implementations, and Applications, The MIT Press,

Cambridge, MA, 1999.
7. Gupta A., Mumick I.S., and Subrahmanian V.S. Maintaining

views incrementally. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1993, pp. 157–166.

8. Harrison J.V. and Dietrich S.W. Maintenance of materialized

views in a deductive database: an update propagation approach.

In Proc. Workshop on Deductive Databases, 1992, pp. 56–65.

9. Küchenhoff V. On the efficient computation of the

difference between consecutive database states. In Proc.

2nd Int. Conf. on Deductive and Object-Oriented Databases,

1991, pp. 478–502.

10. Martinenghi D. and Christiansen H. Efficient integrity

constraint checking for databases with recursive views. In Proc.

9th East European Conf. Advances in Databases and Informa-

tion Systems, 2005, pp. 109–124.

11. Ramakrishnan R. (ed.). Applications of Logic Databases.

Kluwer, Norwell, MA, 1995.

12. Ramakrishnan R. and Ullman D. A survey of deductive database

systems. J. Logic Programming, 23(2):125–149, 1995.

13. Ullman J. Principles of Database and Knowledge Base Systems,

Computer Science Press, Rockville, MD, 1989.

14. Urpı́ T. and Olivé A. A method for change computation

in deductive databases. In Proc. 18th Int. Conf. on Very Large

Data Bases, 1992, pp. 225–237.
Managing Compressed
Structured Text

GONZALO NAVARRO

University of Chile, Santiago, Chile

Synonyms
Searching compressed XML; Compressing XML

Definition
Compressing semi-structured text is the problem of

creating a reduced-space representation from which

the original data can be re-created exactly. Compared

to plain text compression, the goal is to take advantage

of the structural properties of the data. A more ambi-

tious goal is being able to manipulate this text in

compressed form, without decompressing it. This

entry focuses on compressing, navigating, and search-

ing semi-structured text, as those are the areas where

more advances have been made.

Historical Background
Modeling data using semi-structured text has been a

topic of interest at least since the 1980’s, with a signifi-

cant burst of activity in the 1990’s [2]. Since then, the

widespread adoption of XML (appearing in 1998, see

the current version at http://www.w3.org/TR/xml) as

1680M Managing Compressed Structured Text
the standard to represent semi-structured data has uni-

fied the efforts of the community around this particular

format. Very early, however, the same features that made

XML particularly appealing for both human and ma-

chine processing were pointed out as significant sources

of redundancy and wasting of storage space and band-

width. This was especially relevant for wireless transmis-

sion and triggered the proposal of theWAP Binary XML

Content Format as early as 1999 (see http://www.w3.org/

TR/wbxml), where simple techniques to compress XML

prior to its transmission were devised.

In parallel, there has been a growing interest in not

only compressing the data for storage or transmission,

but in manipulating it in compressed form. The reason

is the long-standing tradeoff between faster/smaller/

more expensive and slower/larger/cheaper memories.

A more compact data representation has the potential

of fitting in a faster memory, where manipulating it

can be orders of magnitudes faster, even if it requires

more operations, than a naive representation fitting

only in a slower memory.

Foundations
For concreteness, this entry will focus on the de-facto

standard XML, where the structure is a tree or a forest

marked with beginning and ending tags in the text. In

fact this encompasses many other semi-structured text

proposals, hence most of the material of the entry

applies to semi-structured text in general, with mini-

mal changes. In XML, the tags can have attributes and

associated values, and there might be available a gram-

mar giving the permissible context-free syntax of the

semi-structured document.

Compression of Semi-Structured Text

An obvious approach to compressing semi-structured

text is to regard it as plain text and use any of the well-

known text compression methods [5]. Yet, considering

the structure might yield improved compression per-

formance compared to ignoring it. Many compressors

have been proposed trying to exploit structure in dif-

ferent ways. Rather than describing them individually,

the main principles behind them will be presented.

1. The data is a mix of structure and content. The

structure can be regarded as a labeled tree, where

the labels are the tag names, and the content as free

text, which can appear between every consecutive

pair of tree nodes, and within tree leaves. Attribute
information can be handled as text as well, or as

special data attached to tree nodes.

2. The structure and the content can be compressed

separately, which has proved to give good results.

Later, encoded tags and contents can be stored in

the file in their original order, so that the document

can be handled as a plain uncompressed document.

Alternatively, structure and content can be stored

separately with some pointer information to recon-

struct the tree, in which case the structure pointers

may help to point out relevant content to scan in

the querying process.

3. The text content can be compressed using any text

compression method. Semi-static compressors

permit accessing the content at random without

decompressing all from the beginning, whereas

adaptive compressors tend to achieve better com-

pression ratios. Splitting the text into blocks that

are compressed adaptively permits trading ran-

dom access time for compression ratio.

4. The structure can be compressed in several ways,

which can range from a simple scheme of assigning

numbers to the different tag names, to sophisticated

grammar-based compression methods. The latter

may take advantage of the explicit grammar when

it is available.

5. Structure can be used, in addition, to boost com-

pression. If the text contents are grouped according

to the structural path towards the root, and each

group is compressed separately, compression ratios

improve noticeably. This can be as simple as group-

ing texts that are under the same tag (that is,

considering only the deepest tree node containing

the text) or as sophisticated as considering the full

path towards the root.

A sample of different open-source systems that com-

press XML based on diverse combinations of these

principles is

XMill [13],

Millau [10],

XMLPPM [6],

XGrind [15],

XCQ [12],

XPress [14], and

SCM [1].

See http://pages.cpsc.ucalgary.ca/
gleighto/research/

xml-comp.html for a more exhaustive reference.

Managing Compressed Structured Text M 1681

M

Navigating and Searching in Compressed Form

The most popular retrieval operations on semi-

structured text are related to navigating the tree and

to searching it. Navigating means moving from a node

to its children, parent, and siblings. Searching means

various path matching operations such as finding

all the paths where a node labeled A is the parent

of another labeled B and that one is the ancestor of

another labeled C, which in turn contains text where

word W appears. A popular language combining navi-

gation and searching operations is XPath (see http://

www.w3.org/TR/xpath20).

Several of the schemes above permit accessing and

decompressing any part of the text at random posi-

tions. This is because they retain the original order of

the components of the document and compress using

a semi-static model. Those compression methods are

transparent, in the sense that the classical techniques to

navigate and search XML data, sequentially or using

indexes, can be used almost directly over this com-

pressed representation.

Other techniques, such as SCM (Huffman variant)

or XCQ, allow random access under a slightly more

complex scheme, because some work is needed in

order to start decompression at a specific point. Finally,

techniques based on adaptive compression (such as

XMLPPM or the PPM variant of SCM) usually achieve

better compression ratios but need to decompress the

whole data before they can operate on it.

Some of these techniques, on the other hand, take

some advantage of the separation between structure

and content in order to run queries faster than scan-

ning all the data. This is the case of XCQ, where the

table that points from each different tree path to all

the contents compressed under the corresponding

model, is useful to avoid traversing those contents if

the path does not match a path matching query. An-

other example is XPress, which encodes paths in a way

that the codes themselves permit checking contain-

ment between two paths. A concept that deviates

from the ideas presented is that of using a tree repre-

sentation that permits sharing repeated subtrees.

A good exponent is [5], which permits running a

large subset of XPath directly over this compressed

representation. The structure can be navigated almost

transparently, and path matching operations can be

sped up by factoring out the work done on repeated

substructures.
Succinct Encodings for Labeled Trees

Succinct representations of labeled trees are an algo-

rithmic development that finds applications in navi-

gating semi-structured text in compressed form. In its

simplest form, a general labeled tree of n nodes can be

represented using a sequence P of 2n balanced parenth-

eses and a sequence L of n labels (which correspond to

tag names and will be regarded as atomic for

simplicity).

This is obtained by traversing the tree in preorder

(that is, first the current node and then recursively each

of its children). As the tree is traversed, an opening

parenthesis is added to P each time one goes down to a

child, and a closing parenthesis when going up back to

the parent. In L, the labels are added in preorder.

Figure 1 (left) shows an example representation of a

labeled tree as a sequence of parentheses and labels in

preorder. It is not hard to rebuild the tree from this

representation. However, what is really challenging is to

navigate the tree directly in this representation (where a

node is represented by the position of its opening

parenthesis). For this sake, only sublinear extra space

on top of the plain representation is needed [9].

An essential operation to achieve efficient navigation

in compressed form is the rank operation on bitmaps:

rank(P, i) is the number of 1s (here representing open-

ing parentheses) in P[1, i]. One immediate application

of rank is to obtain the label of a given node i, as L[rank

(P, i)]. For example, consider the second child of the

root in Fig. 1. It is represented by the opening paren-

thesis at position 8 in the sequence. Its label is therefore

L[rank(‘‘((()())(())(()()))’’, 8)] = L[5] = ‘‘C’’. Another

application of rank, is to compute the depth of a

node i. This is the number of opening minus closing

parenthesis in P[1, i], that is, rank(P, i) � (i � rank

(P, i)) = 2 � rank(P, i)� i. For example, the depth of the

second child of the root is 2 � rank(‘‘((()())(())(()()))’’,
8) � 8 = 2 � 5 � 8 = 2.

It is not possible to fully explain, in a short entry,

the constant-time solutions to rank and other more

complex operations needed to navigate the compressed

tree. To have a flavor of how those solutions operate,

consider the case of supporting rank in constant time

and o(n) extra bits. Absolute rank values are stored at

every sth position of P (for some parameter s), and also

relative (to the beginning of the last absolute sample)

rank values at every bth position of P (for some

parameter b < s). Note that each relative rank value

Managing Compressed Structured Text. Figure 1. An example labeled tree and two compression techniques. On the

left (bottom), as a parentheses plus labels sequence in preorder. On the right, its xbw transform. The dashed boxes

highlight the upward paths. The grayed box is the xbw transform of the tree.

1682M Managing Compressed Structured Text
needs only log s bits to be stored. Then, two table

accesses (absolute plus relative rank) give the partial

rank answer up to the b-bit chunk where position i

belongs. To complete the query in constant time, a

universal table is precomputed, which gives the num-

ber of 1-bits in every possible chunk of b bits. Some bit

masking and a final access to this table suffice to count

the remaining 1s within the chunk. By properly choos-

ing s and b one achieves o(n) extra bits overall, and still

answers rank(P, i) with three table accesses.

Other basic queries can be computed with similar

mechanisms (coarse sampling to store absolute values,

finer sampling to store relative values, and universal

tables to process short chunks). For example, one

can compute select(P, i), the position of the ith open-

ing parenthesis in P, so as to find the tree node

corresponding to the ith label in L. Other essential

operations for the navigation are close(i), the position

of the parenthesis that closes i (that is, the next paren-

thesis with the same depth of i); and enclose(i), the

lowest parenthesis that contains i (that is, the preced-

ing parenthesis with depth smaller than that of i).

With these two operations one can navigate the tree

as follows. The next sibling of i is close(i) + 1 (unless it

is a closing parenthesis, in which case i is the last child

of its parent). The first child of i is i + 1 unless P[i + 1]

is a closing parenthesis, in which case i is a leaf and

hence has no children. The parent of i is enclose(i). The

size of the subtree rooted at i is (close(i)� i + 1) ∕ 2. For
example, consider the first child of the root in Fig. 1,

such that i = 2. It finishes at close(i) = 7. Its next sibling

is close(i) + 1 = 8, the node of the previous examples.

Its first child is i + 1 = 3, the leftmost tree leaf. Its
parent is enclose(i) = 1, the root. The size of its subtree

is (close(i) � i + 1) ∕ 2 = (7 � 2 + 1) ∕ 2 = 3.

In order to enrich the navigation using the labels,

sequence L[1, n] is also processed for symbol rank and

select operations, where rankc(L, i) is the number of

occurrences of c in L[1, i] and selectc(L, j) is the posi-

tion of the jth occurrence of c in L. For example, the

following procedure finds all the descendants of node i

which are labeled c: (i) Find the position j = rank(P, i)

of node i in the sequence of labels. (ii) Compute k =

rankc(L, j� 1), the number of occurrences of c prior to j.

(iii) Find the positions pr = selectc(L, k + r) of c from

j onwards, for successive r values until select(P, pr) >

close(i), that is, until the answers are not anymore

descendants of i. For example, consider again the first

child of the root in Fig. 1, where i = 2 and close(i) = 7,

and find its descendants labeled ‘‘D’’. The first step is to

compute j = rank(P, 2) = 2, the position of its label in L.

Now, k = rank‘‘D’’(L, 1) = 0 tells that there are zero

occurrences of ‘‘D’’ before L[2]. Now the next occur-

rences of ‘‘D’’ in L are found as select‘‘D’’(L, 1) = 4,

select‘‘D’’(L, 2) = 6, ... The first such occurrence is

mapped to the tree node select(P, 4) = 5 (the second

tree leaf), which is within the subtree of i because

i � 5 � close(i). The second occurrence of ‘‘D’’ is

already outside the tree because select(P, 6) = 9 exceeds

close(i) = 7.

Many other powerful navigational operations can

be supported, although a more sophisticated parenth-

eses representation and much more technical develop-

ments are necessary. A good example can be seen in

[4]. Empirical results have been given for the basic

preorder parentheses represenation [9].

Managing Compressed Structured Text M 1683

M

Integrating Indexing and Compression

In recent work [7,8], by means of introducing a so-

called xbw transform, indexing and compression are

made part of a single integrated process, so that the

compressed data represents at the same time the

structured text and an index built on it. This is is a

very original idea which is likely to have practical

impact in the next years.

A brief description of the transform follows. Imag-

ine one takes all the upward paths in the labeled tree.

There is one such path per tree node: given a node, its

path starts from its parent and finishes in the root.

Regard the upward paths as a sequence of labels, and

assume for simplicity that labels are atomic symbols

that can be sorted. If the tree has n nodes, the resulting

n sequences of labels are collected in depth-first order

and then stably sorted in lexicographical order. Finally,

one forms a sequence with the nodes that originated

each of the upward paths, once they are sorted. The

xbw transform of a labeled tree is the sequence obtained

plus a bitmap telling which of those nodes are the last

child of their parent.

For example, take the tree of Fig. 1. The upward

path from the root is the empty string. The up-

ward path from the three root children are all ‘‘A’’,

and so on. The list of all the upward paths found in a

depth-first traversal is shown in the middle of the

figure, and on the right one can see the paths after a

stable lexicographical sorting. Now, collecting the

nodes that originated those paths in order one gets

the labels in the grayed area, S = ‘‘ABCAECCDD’’

(the other element is the bitmap marking the last

children of their parents, last = ‘‘100101011’’). Se-

quence S is essentially a permutation of the tree labels.

As the sorting is stable, all the nodes originating the

same path (e.g., ‘‘A’’) stay in depth-first order. In par-

ticular, sibling nodes are contiguous.

It turns out that it is possible to compute the xbw

transform in linear time and space, and moreover to

recover the original tree from these two sequences in

linear time and space. Furthermore, it is possible to

efficiently navigate the tree in xbw-transformed form,

with operations such as moving to the parent of the

current node, ith child, next sibling, ith child labeled X,

and so on. Those operations also build on the rank and

select operations described. For example, the third

child of the root is represented by the upward path

‘‘AA’’. Its position after the xbw sorting is i = 4, which

acts as the identifier for the node in this representation,

note S[4] = ‘‘A’’ is its label. The process to find its
children is as follows: (i) Find how many ‘‘A’’s are

there before in S, j = rank‘‘A’’ (S, i � 1) = 1. (ii) Find

the beginning of the range of the upward paths starting

with S[i] = ‘‘A’’ in the dashed box, k = 2 (this is

precomputed in a table storing such value for each

different label). (iii) Find the number of 1s in last

before that range, l = rank(last, k � 1) = 1. (iv). Find

the area corresponding to the children of i, select(last,

l + j) + 1 = 5 to select(last, l + j + 1) = 6.

The key operation that makes the xbw transform

unique compared to other tree representations its its

path searching ability: It can identify all the nodes in

the tree that descend from a given path sequence in

time proportional to the length of the sequence and

independent of the collection size (the nodes can then

be retrieved one by one). That is, the xbw-transformed

sequence acts not only as a navigable representation of

the tree but also as a powerful index to carry out some

path searching operations very efficiently.

Apart from saving all the pointer information, the

xbw-transformed sequence groups together the node

labels that descend from the same paths. Therefore, if

root-to-node paths are good predictors of the contents

of nodes (this is the property that most sophisticated

techniques like XMLPPM exploit), the transformed

sequence will contain long regions with similar con-

tents. Those are easily compressible by block-wise

encoding methods.

In [8] they showed how to apply this conceptual

method to real XML data, mixing location path opera-

tions with queries on the text content. They present

a practical implementation and empirical results

showing that it is competitive with the best XML

compressors, which do not offer simultaneous in-

dexing capabilities.

Key Applications
Any application managing semi-structured text, par-

ticularly if it has to transmit it over slow channels or

operate within limited fast memory, even if there is an

unlimited supply of slower memory, benefits from

these techniques.

Future Directions
Several problems remain open. A fundamental one is

the definition of an adequate notion of entropy for

semi-structured data, that is, a compressibility limit.

While there is reasonable consensus on the entropy of

plain text without structure (by taking it as a sequence

in general), there is no agreement even on how to

1684M Mandatory Access Control
measure the entropy of a tree, which is a key part of the

entropy of semi-structured text. The fact that this issue

is open implies that it is hard to determine how good,

in absolute terms, is a compression scheme.

The future of the area is likely to be in manipulat-

ing XML in compressed form, and in this aspect the

xbw transform is a promising direction. Yet, the area is

far from offering a competitive and complete path

search engine over compressed XML, for example. Sim-

ilarly, the state of the art in permitting manipulating

compressed XML, for example updating a semi-

structured text collection, is very preliminary (see

[11] for a recent, still theoretical, work on dynamizing

the xbw transform).

Experimental Results
Experiments can be found in the papers cited. In

particular, for the xbw transform, see [8].

URL to Code
Several public XML compressors are available, for

example

XMill (http://sourceforge.net/projects/xmill),

XMLPPM (http://sourceforge.net/projects/xmlppm),

SCMPPM

(http://www.infor.uva.es/
jadiego/download.php),

and

XGrind (http://cvs.sourceforge.net/viewcvs.py/

xmill/xmill/XGrind).

Cross-references
▶Compression

▶ Semi-Structured Data

▶XML

▶XPath/XQuery

Recommended Reading
1. Adiego J., Navarro G., and de la Fuente P. Using Structural

Contexts to Compress Semistructured Text Collections. Inf.

Proc. & Man., 43:769–790, 2007.

2. Baeza-Yates R. and Navarro G. Integrating contents and struc-

ture in text retrieval. ACM SIGMOD Rec., 25(1):67–79, 1996.

3. Barbay J., Golynski A., Munro I., and Rao S. Adaptive searching

in succinctly encoded binary relations and tree-structured

documents. In Proc. 17th Annual Symp. on Combinatorial

Pattern Matching, 2006, pp. 24–35.

4. Bell T., Cleary J., and Witten I. Text Compression. Prentice Hall,

Englewood Cliffs, NJ, 1990.

5. Buneman, P., Grohe, M., and Koch, C. Path Queries on Com-

pressed XML. In Proc. 29th Very Large Databases Conference,

2003, pp. 141–152.
6. Cheney J. Compressing XMLwith multiplexed hierarchical PPM

models. In Proc. 11th IEEE Data Compression Conf., 2001,

pp. 163–172.

7. Ferragina P., Luccio F., Manzini G., and Muthukrishnan S.

Structuring labeled trees for optimal succinctness, and beyond.

In Proc. 46th Annu. Symp. on Foundations of Computer Sci-

ence, 2005, pp. 184–196.

8. Ferragina P., Luccio F., Manzini G., and Muthukrishnan S.

Compressing and searching XML data via two zips. In Proc.

15th Int. World Wide Web Conf., 2006.

9. Geary R., Rahman N., Raman R., and Raman V. A simple

optimal representation of balanced parentheses. Theoretical

Computer Science, 368(3):231–246, 2006.

10. Girardot M. and Sundaresan N. Millau: An encoding format

for efficient representation and exchange of XML documents

over the WWW. In Proc. 9th Int. World Wide Web Conference,

2000, pp. 747–765.

11. Gupta A., Hon W.K., Shah R., and Vitter J. A framework

for dynamizing succinct data structures. In Proc. 34th Int.

Colloquium on Automata, Languages, and Programming,

2007, pp. 521–532.

12. Levene M. and Wood P. XML structure compression. In Proc.

2nd Int. Workshop on Web Dynamics, 2002.

13. Liefke H. and Suciu D. XMill: an efficient compressor for XML

data. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2000, pp. 153–164.

14. Min J.K., Park M.J., and Chung C.W. XPress: a querieable

compression for XML data. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 2003, pp. 122–133.

15. Tolani P. and Haritsa J. XGRIND: A query-friendly XML com-

pressor. In Proc. 18th Int. Conf. on Data Engineering, 2002,

pp. 225–234.
Mandatory Access Control

BHAVANI THURAISINGHAM

The University of Texas at Dallas, Richardson, TX,

USA

Synonyms
Multilevel security

Definition
As stated in [1], ‘‘in computer security, ‘mandatory

access control (MAC)’ refers to a kind of access control

defined by the National Computer Security Center’s

Trusted Computer System Evaluation Criteria (TCSEC)

as a means of restricting access to objects based on the

sensitivity (as represented by a label) of the information

contained in the objects and the formal authorization

(i.e., clearance) of subjects to access information of such

MANET Databases M 1685

M

sensitivity.’’ With operating systems, the subjects are

processes and objects are files. The goal is to ensure

that when a subject accesses a file, no unauthorized

information is leaked.

Key Point
MACModels:MACmodels were developed initially for

secure operating systems mainly in the 1970s and early

1980s, and started with the Bell and La Padula security

model. This model has two properties: the simple

security property and the *-property (pronounced

the star property). The simple security property states

that a subject has read access to an object if the

subject’s security level dominated the level of the

object. The *-property states that a subject has write

access to an object if the subject’s security level is

dominated by that of the object [2]. Since then, varia-

tions of this model as well as a popular model called

the noninterferencemodel [3] have been proposed. The

noninterference model is essentially about higher-level

processes not interfering with lower level processes.

Note that with the Bell and La Padula model, a higher

level process can covertly send information to a lower

level process by manipulating the file locks, even

though there can be no write down due to the star

property. The noninterference model prevents such

covert communication.

MAC for Database Systems: While Database Man-

agement Systems (DBMS) must deal with many of the

same security concerns as operating systems (identifi-

cation and authentication, access control, auditing),

there are characteristics of DBMSs that introduce

additional security challenges. For example, objects in

DBMSs tend to be of varying sizes and can be of fine

granularity such as relations, attributes and elements.

This contrasts with operating systems where the gran-

ularity tends to be coarse such as files or segments.

Because of the fine granularity in database systems the

objects on which MAC is performed may differ. In

operating systems MAC is usually performed on the

same object such as a file whereas in DBMSs it could be

on relations and attributes. The simple security and

* property are both applicable for database systems.

However many of the database systems have modified,

the *-property to read as follows: A subject has write

access to an object if the subject’s level is that of the

object. This means a subject can modify relations at

its level. Various commercial secure DBMS products

have emerged. These products have been evaluated
using the Trusted Database Interpretation which inter-

prets the TCSEC for database systems.

MAC for Networks: For applications in defense and

intelligence multilevel secure networks are essential.

The idea here is for the network protocols such as

a TCP/IP (Transmission Control Protocol/Internet

Protocol) protocols operate at multiple security levels.

The Bell and La Padula model has been extended for

networks. Furthermore, the commercial multilevel

networks have been evaluated using the Trusted Net-

work Interpretation that interprets the TCSEC for

networks.

Cross-references
▶Multilevel Secure Database Management System

Recommended Reading
1. http://en.wikipedia.org/wiki/Mandatory_access_control

2. Bell D. and LaPadula L. ‘‘Secure Computer Systems: Mathemati-

cal Foundations and Model,’’ M74–244. The MITRE Corpora-

tion, Bedford, MA, 1973.

3. Goguen J. and Meseguer J. Security policies and security models.

In Proc. IEEE Symp. on Security and Privacy, 1982, pp. 11–20.
MANET Databases

YAN LUO, OURI WOLFSON

University of Illinois at Chicago, Chicago, IL, USA

Synonyms
Mobile ad hoc network databases

Definition
A mobile ad hoc network (MANET) database is

a database that is stored in the peers of a MANET.

The network is composed by a finite set of mobile peers

that communicate with each other via short range

wireless protocols, such as IEEE 802.11, Bluetooth,

Zigbee, or Ultra Wide Band (UWB). These protocols

provide broadband (typically tens of Mbps) but short-

range (typically 10–100 m) wireless communication.

On each mobile peer there is a local database that

stores and manages a collection of data items, or

reports. A report is a set of values sensed or entered

by the user at a particular time, or otherwise obtained

by a mobile peer. Often a report describes a physical

resource such as an available parking slot. All the local

databases maintained by the mobile peers form the

1686M MANET Databases
MANET database. The peers communicate reports and

queries to neighbors directly, and the reports and

queries propagate by transitive multi-hop transmis-

sions. Figure 1 below illustrates the definition.

MANET databases enable matchmaking or resource

discovery services in many application domains, includ-

ing social networks, transportation, mobile electronic

commerce, emergency response, and homeland security.

Communication is often restricted by bandwidth

and power constraints on the mobile peers. Further-

more, reports need to be stored and later forwarded,

thus memory constraints on the mobile devices consti-

tute a problem as well. Thus, careful and efficient utili-

zation of scarce peer resources (specifically bandwidth,

power, and memory) are an important challenge for

MANET databases.

Historical Background
Consider mobile users that search for local resources.

Assuming that the information about the existence

and location of such a resource resides on a server, a

communication infrastructure is necessary to access

the server. Such an infrastructure may not be available

in military/combat situations, disaster recovery, in a

commercial flight, etc. Even if the infrastructure and a

server are both available, a user may not be willing to

pay the dollar-cost that is usually involved in accessing

the server through the cellular infrastructure. Further-

more, cellular bandwidth is limited (e.g., 130 character

text messages). In other words, a client-server app-

roach may have accessibility problems.

Currently, Google and local.com provide static local

information (e.g., the location of a restaurant, pharmacy,

etc.), but not dynamic information such as the location
MANET Databases. Figure 1. A MANET database.
of a taxi cab, a nearby person of interest, or an available

parking slot. These dynamic resources are temporary in

nature, and thus require timely, real-time update rates.

Such rates are unlikely to be provided for the country or

the world by a centralized server farm, e.g., Google.

Thus, dynamic local resources may require local servers,

each dedicated to a limited geographic area. However,

for many areas such a local server may not exist due to

lack of a profitable business model, and if it exists it may

be unavailable (such servers are unlikely to have the

reliability of global sites such as Google). Furthermore,

the data on the server may be unavailable due to propa-

gation delays (think of sudden-brake information that

needs to be propagated to a server and from there to the

trailing vehicles), or due to device limitations (e.g., a cab

customer’s cell-phone may have Bluetooth but not in-

ternet access to update the server), or due to the fact that

updates frommobile devices may involve a communica-

tion cost that nobody is willing to pay, or due to the fact

that the local server (e.g., of Starbucks) may accept only

updates from certain users or certain applications but

not others. In short, a client-(local)-server may have

both accessibility and availability problems.

Thus, a MANET database can substitute or aug-

ment the client-(local)-server approach. Communica-

tion in the MANET is free since it uses the unlicensed

spectrum, and larger in bandwidth than the cellular

infrastructure, thus can provide media rich informa-

tion, such as maps, menus, and even video. A mobile

user may search the MANET database only, or com-

bine it with a client-server search.

Currently, there are quite a few experimental projects

in MANET databases. These can be roughly classified

into pedestrians and vehicular projects. Vehicular

MANET Databases M 1687
projects deal with high mobility and high communica-

tion topology change-rates, whereas pedestrians projects

have a strong concern with power issues. The following

are several active experimental MANET database pro-

jects for pedestrians and vehicles:

Pedestrians Projects

� 7DS – Columbia University
– http://www.cs.unc.edu/~maria/7ds/

– Focuses on accessing web pages in environ-

ments where only some peers have access to

the fixed infrastructure.
� iClouds – Darmstadt University
– http://iclouds.tk.informatik.tu-darmstadt.de/

– Focuses on the provision of incentives to bro-

kers (intermediaries) to participate in MANET

databases.
� MoGATU – University of Maryland, Baltimore

County
– http://mogatu.umbc.edu/

– Focuses on the processing of complex data

management operations, such as joins, in a

collaborative fashion.

M
� PeopleNet – National University of Singapore
– http://www.ece.nus.edu.sg/research/projects/

abstract.asp?Prj=101

– Proposes the concept of information Bazaars,

each of which specializes in a particular type of

information; reports and queries are propa-

gated to the appropriate bazaar by the fixed

infrastructure.
� MoB – University of Wisconsin and Cambridge

University
– http://www.cs.wisc.edu/~suman/projects/agora/

– Focuses on incentives and the sharing among

peers of virtual information resources such as

bandwidth.
� Mobi-Dik – University of Illinois at Chicago
– http://www.cs.uic.edu/~wolfson/html/p2p.html

– Focuses on information representing physical

resources, and proposes stateless algorithms

for query processing, with particular concerns

for power, bandwidth, and memory constraints.
Vehicular Projects

� CarTALK 2000 – A European project
– http://www.cartalk2000.net/

– Develops a co-operative driver assistance sys-

tem based upon inter-vehicle communication
and MANET databases via self-organizing ve-

hicular ad hoc networks.
� FleetNet – Internet on the Road Project
– http://www.ccrle.nec.de/Projects/fleetnet.htm

– Develops a wireless multi-hop ad hoc network

for intervehicle communication to improve the

driver’s and passenger’s safety and comfort. A

data dissemination method called ‘‘contention-

based forwarding’’ (CBF) is proposed in which

the next hop in the forwarding process is select-

ed through a distributed contention mechanism

based on the current positions of neighbors.
� VII – Vehicle Infrastructure Integration, a US DOT

project
– http://www.its.dot.gov/vii/

– The objective of the project is to deploy advanced

vehicle-to-vehicle and vehicle-to-infrastructure

communications that could keep vehicles from

leaving the road and enhance their safe move-

ment through intersections.
� Grassroots, Trafficview – Rutgers University

TrafficInfo – University of Illinois at Chicago

– http://paul.rutgers.edu/~gsamir/dataspace/grassroots.

html

– http://discolab.rutgers.edu/traffic/veh_apps.htm

– http://cts.cs.uic.edu/

– These projects develop an environment in which

each vehicle contributes a small piece of traffic infor-

mation (its current speed and location) to the net-

work, using the P2P paradigm, and each vehicle

aggregates the pieces into a useful picture of the

local traffic.

Foundations
There are twomain paradigms for answering queries in

MANET databases, one is report pulling and the other

one is report pushing.

Report pulling means that a mobile peer issues a

query which is flooded in the whole network, and the

answer-reports will be pulled from the mobile peers

that have them (see e.g., [2]). Report pulling is widely

used in resource discovery, such as route discovery in

mobile ad hoc networks and file discovery by query

flooding in wired P2P networks like Gnutella. Flooding

in a wireless network is in fact relatively efficient as

compared to wired networks because of the wireless

broadcast advantage, but there are also disadvantages

which will be explained below.

1688M MANET Databases
Another possible approach for data dissemination

is report pushing. Report pushing is the dual problem

of report pulling; reports are flooded, and consumed

by peers whose query is answered by received reports.

So far there exist mechanisms to broadcast informa-

tion in the complete network, or in a specific geo-

graphic area (geocast), apart from to any one specific

mobile node (unicast/mobile ad hoc routing) or any

one arbitrary node (anycast). Report pushing para-

digm can be further divided into stateful methods

and stateless methods. Most stateful methods are

topology-based, i.e., they impose a structure of links

in the network, and maintain states of data dissemina-

tion. PStree [4], which organizes the peers as a tree,

is an example of topology based methods.

Another group of stateful methods is cluster- or

hierarchy-based method, such as [14], in which

moving peers are grouped into some clusters or hier-

archies and the cluster heads are randomly selected.

Reports are disseminated through the network in a

cluster or hierarchy manner, which means that reports

are first disseminated to every cluster head, and each

cluster head then broadcasts the reports to the member

peers in its group. Although cluster- or hierarchy-

based methods can minimize the energy dissipation

in moving peers, these methods will fail or cost more

energy in highly mobile environments since they

have to maintain a hierarchy structure and frequently

reselect cluster heads.

Another stateful paradigm consists of location-

based methods (see [9]). In location-based methods,

each moving peer knows the location of itself and

its neighbors through some localization techniques,

such as GPS or Atomic Multilateration (see [9]).

The simplest location-based data dissemination

is Greedy Forwarding, in which each moving peer trans-

mits a report to a neighbor that is closer to the destina-

tion than itself. However, Greedy Forwarding can fail

in some cases, such as when a report is stuck in local

minima, which means that the report stays in a mobile

peer whose neighbors are all further from the destina-

tion. Therefore, some recovery strategies are proposed,

such as GPSR (Greedy Perimeter Stateless Routing [6]).

Other location-based methods, such as GAF (Geographic

Adaptive Fidelity [17]) and GEAR (Geographical and

Energy Aware Routing [18]), take advantage of knowl-

edge about both location and energy to disseminate

information and resources more efficiently.
In stateless methods, the most basic and simp-

lest one is flooding-based method, such as [11]. In

flooding-based methods, mobile peers simply propa-

gate received reports to all neighboring mobile

peers until the destination or maximum hop is

reached. Each report is propagated as soon as it is

received. Flooding-based methods have many advan-

tages, such as no state maintenance, no route discovery,

and easy deployment. However, they inherently cannot

overcome several problems, such as implosion, overlap,

and resource blindness. Implosion refers to the waste of

resources taking place when a node forwards a message

to a neighbor although the latter may have already

received it from another source. Overlap occurs when

two nodes read the same report, and thus push into the

network the same information. Resource blindness

denotes the inability of the protocol to adapt the

node’s behavior to its current availability of resources,

mainly power [12]. Therefore, other stateless methods

are proposed, such as gossiping-based methods and

negotiation-based methods.

Gossiping-based methods, such as [3], improve

flooding by transmitting received reports to a subset

of randomly selected neighbors; another option is

to have some neighbors simply drop the report. For

example, the neighbors that are not themselves inter-

ested in the report drop it. The advantages of gossip-

ing-based methods include reducing the implosion

and lowering the system overhead. However, dissemi-

nation, and thus performance, is reduced compared

to pure flooding.

Negotiation-based methods solve the implosion

and overlap problem by transmitting first the id’s of

reports; the reports themselves are transmitted only

when requested (see [7]). Thus, some extra data trans-

mission is involved, which costs more memory, band-

width, and energy. In addition, in negotiation-based

methods, moving peers have to generate meta-data or

a signature for every report so that negotiation can be

carried out, which will increase the system overhead

and decrease the efficiency.

Another important stateless paradigm for data dis-

semination in MANET databases is store-and-forward.

In contrast to flooding, store-and-forward does not

propagate reports as soon as they are received; rather

they are stored and rebroadcast later. This obviously

introduces storage and bandwidth problems, if too

many reports need to be saved and rebroadcast at the

MANET Databases M 1689

M

same time. To address these,methods such as [5] rank all

the reports in a peer’s database in terms of their relevance

(or expected utility), and then the reports are commu-

nicated and saved in the order of their relevance. Or, the

reports requested and communicated are the ones with

the relevance above a certain threshold. The notion of

relevance quantifies the importance or the expected util-

ity of a report to a peer at a particular time and at a

particular location. Other store-and-forward methods

include PeopleNet [10] and 7DS [13].

In summary, the paradigms for data dissemination

in MANET databases are summarized in Fig. 2 below.

Key Applications
MANET databases provide mobile users a search

engine for transient and highly dynamic information

in a local geospatial environment. MANET databases

employ a unified model for both the cellular infra-

structure and the mobile ad hoc environments. When

the infrastructure is available, it can be augmented by

the MANET database approach.

Consider a MANET database platform, i.e., a set of

software services for data management in a MANET

environment; it is similar to a regular Database

Management System, but geared to mobile P2P inter-

actions. Such a platform will enable quick building

of matchmaking or resource discovery services in

many application domains, including social networks,
MANET Databases. Figure 2. Query answering methods in M
emergency response and homeland security, the

military, airport applications, mobile e-commerce,

and transportation.

Social Networks

In a large professional, political, or social gathering,

MANET databases are useful to automatically facili-

tate a face-to-face meeting based on matching profiles.

For example, in a professional gathering, MANET

databases enable attendees to specify queries (interest

profiles) and resource descriptions (expertise) to facil-

itate face-to-face meetings, when mutual interest is

detected. Thus, the individual’s profile that is stored

in MANET databases will serve as a ‘‘wearable web-site.’’

Similarly, MANET databases can facilitate face-to-face

meetings for singles matchmaking.

Emergency Response, Homeland Security, and the

Military

MANET databases offer the capability to extend deci-

sion-making and coordination capability. Consider

workers in disaster areas, soldiers and military person-

nel operating in environments where the wireless

fixed infrastructure is significantly degraded or non-

existent. As mobile users involved in an emergency

response naturally cluster around the location of

interest, a self-forming, high-bandwidth network that

allows database search without the need of potentially
ANET databases.

1690M MANET Databases
compromised infrastructure could be of great benefit.

For instance, the search could specify a picture of a

wanted person.

Airport Applications

A potential opportunity that will benefit both the

consumer and the airport operations is the dissemina-

tion and querying of real-time information regarding

flight changes, delays, queue length, parking informa-

tion, special security alerts and procedures, and bag-

gage information. This can augment the present audio

announcements that often cannot be heard in nearby

restaurants, stores, or restrooms, and augment the

limited number of displays.

Mobile E-commerce

Consider short-range wireless broadcast and mobile

P2P dissemination of a merchant’s sale and inventory

information. It will enable a customer (whose cell

phone is query-capable) who enters a mall to locate a

desired product at the best price. When a significant

percentage of people have mobile devices that can

query retail data, merchants will be motivated to

provide inventory/sale/coupons information electron-

ically to nearby potential customers. The information

will be disseminated and queried in a P2P fashion (in,

say, a mall or airport) by the MANET database.

Transportation Safety and Efficiency

MANET databases can improve safety and mobility by

enabling travelers to cooperate intelligently and auto-

matically. A vehicle will be able to automatically and

transitively communicate to trailing vehicles its ‘‘slow

speed’’ message when it encounters an accident, con-

gestion, or dangerous road surface conditions. This

will allow other drivers to make decisions such as

finding alternative roads. Also, early warning messages

may allow a following vehicle to anticipate sudden

braking, or a malfunctioning brake light, and thus

prevent pile-ups in some situations. Similarly, other

resource information, such as ridesharing opportu-

nities, transfer protection (transfer bus requested to

wait for passengers), will be propagated transitively,

improving the efficiency of the transportation system.

Future Directions
Further work is necessary on data models for mobile

P2P search applications. Work on sensor databases
(e.g., Tinydb [8]) addresses data-models and languages

for sensors, but considers query processing in an envi-

ronment of static peers (see e.g., POS [1]). Cartel [5]

addresses the translation of these abstractions to an

environment in which cars transfer collected data to a

central database via fixed access points. Work on

MANET protocols deals mainly with routing and mul-

ticasting. In this landscape there is a gap, namely gen-

eral query-processing in MANET’s; such processing

needs to be cognizant of many issues related to peer-

mobility. For example, existing mobile P2P query

processing methods deal with simple queries, e.g.,

selections; each query is satisfied by one or more

reports. However, in many application classes one

may be interested in more sophisticated queries, e.g.,

aggregation. For instance, in mobile electronic com-

merce a user may be interested in the minimum gas

price within the next 30 miles on the highway. Proces-

sing of such P2P queries may present interesting opti-

mization opportunities.

After information about a mobile resource is

found, localization is often critical for finding the

physical resource. However, existing (self)-localization

techniques are insufficient. For example, GPS is not

available indoors and the accuracy of GPS is not reli-

able. Thus, furthering the state of the art on localiza-

tion is important for mobile P2P search.

As discussed above, MANET databases do not

guarantee answer completeness. In this sense, the inte-

gration with an available infrastructure such as the

internet or a cellular network may improve perfor-

mance significantly. This integration has two aspects.

First, using the communication infrastructure in order

to process queries more efficiently; and second, using

data on the fixed network in order to provide better

and more answers to a query. The seamless integration

of MANET databases and infrastructure databases

introduces important research challenges.

Other important research directions include:

incentives for broker participation in query processing

(see [16]), and transactions/atomicity/recovery issues

in databases distributed over mobile peers (virtual

currency must be transferred from one peer to another

in an atomic fashion, otherwise may be lost).

Of course, work on efficient resource utilization in

mobile peers, and coping with sparse networks and

dynamic topologies is still very important for mobile

P2P search.

MAP M 1691

M

Cross-references
▶Mobile Ad hoc Network Databases

▶ Peer-to-peer Database

▶ Peer-to-peer Network

Recommended Reading
1. Cox L., Castro M., and Rowstron A. POS: Practical Order

Statistics for wireless sensor networks. In Proc. 23rd Int. Conf.

on Distributed Computing Systems, 2006, pp. 52.

2. Das S.M., Pucha H., and Hu Y.C. Ekta: An efficient DHT

substrate for distributed applications in Mobile Ad hoc

Networks. In Proc. Sixth IEEEWorkshop on Mobile Computing

Systems and Applications, 2004, pp. 163–173.

3. Datta A., Quarteroni S., and Aberer K. Autonomous gossiping: a

self-organizing epidemic algorithm for selective information

dissemination in wireless Mobile Ad-Hoc Networks. In Proc.

Int. Conf. Semantics of a Networked World, 2004, pp. 126–143.

4. Huang Y. and Molina H.G. Publish/subscribe in a mobile

environment. In Proc. 2nd ACM Int. Workshop on Data Eng.

for Wireless and Mobile Access, 2001, pp. 27–34

5. Hull B. et al. CarTel: a distributed mobile sensor computing

system. In Proc. 4th Int. Conf. on Embedded Networked Sensor

Systems, 2006, pp. 125–138.

6. Karp B. and Kung H.T. GPSR: Greedy Perimeter Stateless

Routing for wireless sensor networks. In Proc. 6th Annual

Int. Conf. on Mobile Computing and Networking, 2000,

pp. 243–254.

7. Kulik J., Heinzelman W., and Balakrishnan H. Negotiation-

based protocols for disseminating information in wireless

sensor networks. Wireless Netw., 8:169–185, 2002.

8. Madden S.R., Franklin M.J., Hellerstein J.M., and Hong W.

Tiny DB: an acquisitional query processing system for sensor

networks. ACM Trans. Database Syst., 30(1):122–173, 2005.

9. Mauve M., Widmer A., and Hartenstein H. A survey on

position-based routing in Mobile Ad-Hoc Networks. IEEE

Netw., 15(6):30–39, 2001.

10. Motani M., Srinivasan V., and Nuggehalli P. PeopleNet:

engineering a wireless virtual social network. In Proc. 11th

Annual Int. Conf. on Mobile Computing and Networking,

2005, pp. 243–257.

11. Oliveira R., Bernardo L., and Pinto P. Flooding techniques

for resource discovery on high mobility MANETs. In Proc. Int.

Workshop on Wireless Ad-hoc Networks, 2005.

12. Papadopoulos A.A., and McCann J.A. Towards the design of an

energy-efficient, location-aware routing protocol for mobile,

Ad-hoc Sensor Networks. In Proc. of the 15th Int. Workshop

on Database and Expert Systems Applications, 2004, pp.

705–709.

13. Papadopouli M. and Schulzrinne H. Design and implementation

of a P2P Data dissemination and prefetching tool for mobile

users. In Proc. 1st New York Metro Area Networking Workshop,

IBM TJ Watson Research Center. Hawthorne, NY, 2001.

14. Visvanathan A., Youn J.H., and Deogun J. Hierarchical Data

Dissemination Scheme for Large Scale Sensor Networks. In

Proc. IEEE Int. Conf. on Communications, 2005, pp. 3030–

3036.
15. Wolfson O., Xu B., Yin H.B., and Cao H. Search-and-discover

in Mobile P2P Network Databases. In Proc. 23rd Int. Conf. on

Distributed Computing Systems, 2006, pp. 65.

16. Xu B., Wolfson O., and Rishe N. Benefit and pricing of

spatio-temporal information in Mobile Peer-to-Peer Networks.

In Proc. 39th Annual Hawaii Conf. on System Sciences, vol. 9,

2006, pp. 2236.

17. Xu Y., Heidemann J., and Estrin D. Geography-informed

energy conservation for Ad hoc Routing. In Proc. 7th

Annual Int. Conf. on Mobile Computing and Networking,

2001, pp. 70–84.

18. Yu Y., Govindan R., and Estrin D. Geographical and Energy

Aware Routing: a Recursive Data Dissemination Protocol

for Wireless Sensor Networks. Technical Report UCLA/CSD-

TR-01-0023, UCLA, May 2001.
Manmachine Interaction (Obsolete)

▶Human-Computer Interaction
Many Sorted Algebra

▶Data Types in Scientific Data Management
MAP

STEVEN M. BEITZEL
1, ERIC C. JENSEN

2, OPHIR FRIEDER
3

1Telcordia Technologies, Piscataway, NJ, USA
2Twitter, Inc., San Fransisco, CA, USA
3Georgetown University, Washington, DC, USA

Synonyms
Mean average precision

Definition
The Mean Average Precision (MAP) is the arithmetic

mean of the average precision values for an informa-

tion retrieval system over a set of n query topics. It can

be expressed as follows:

MAP ¼ 1

n

X
n

APn

where AP represents the Average Precision value for a

given topic from the evaluation set of n topics.

1692M Map Algebra
Key Points
The Mean Average Precision evaluation metric has

long been used as the de facto ‘‘gold standard’’ for

information retrieval system evaluation at the NIST

Text Retrieval Conference (TREC) [1]. Many TREC

tracks over the years have evaluated run submissions

using the trec_eval program, which calculates Mean

Average Precision, along with several other evaluation

metrics. Much of the published research in the infor-

mation retrieval field over the last 25 years relies on

observed difference in MAP to draw conclusions

about the effectiveness of a studied technique or sys-

tem relative to a baseline.

Recently, the explosive growth of the World Wide

Web and the corresponding difficulty of creating test

collections that are representative, robust, and of appro-

priate scale has created new challenges for the research

community. One such challenge is how to best evaluate

systems in cases of incomplete relevance information.

It has been shown that ranking systems by their MAP

scores when relevance information is incomplete does

not correlate highly with their rankings with complete

judgments. This is a key weakness of MAP as a metric.

In response to this problem, new metrics (such as

BPref, for example) have been proposed that attempt

to compensate for often incomplete relevance informa-

tion [2].
Cross-references
▶Average Precision

▶BPref

▶Chart

▶ Effectiveness Involving Multiple Queries

▶Geometric Mean Average Precision
Recommended Reading
1. National Institute of Standards and Technology. TREC-

2004 common evaluation measures. Available online at:

http://trec.nist.gov/pubs/trec14/appendices/CE.MEASURES05.pdf

(retrieved on August 27, 2007).

2. Sakai T. Alternatives to BPref. In Proc. 33rd Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2007, pp. 71–78.
Map Algebra

▶ Spatial Operations and Map Operations
Map Matching

CHRISTIAN S. JENSEN, NERIUS TRADIŠAUSKAS

1Aalborg University, Aalborg, Denmark

Synonyms
Position snapping
Definition
Map matching denotes a procedure that assigns geo-

graphical objects to locations on a digital map. The

most typical geographical objects are point positions

obtained from a positioning system, often a GPS receiver.

In typical uses, the GPS positions derive from a receiver

located in a vehicle or other moving object traveling in a

road network, and the digitalmapmodels the embedding

into geographical space of the roads by means of poly-

lines that approximate the center lines of the roads. The

GPS positions generally do not intersect with the poly-

lines, due to inaccuracies. The aim of map matching is

then to place the GPS positions at their ‘‘right’’ locations

on the polylines in the map.

Map matching is useful for a number of purposes.

Map matching is used when a navigation system dis-

plays the vehicle’s location on a map. In many applica-

tions, information such as speed limits are assigned to

the representations of roads in a digital map–map

matching offers a means of relating such information

to moving objects. Map matching may also be used for

the representation of a route of a vehicle by means of

the (sub-) polylines in the digital map.

Two general types of map matching exist, namely

on-line map matching and off-line map matching.

With on-line map matching, the map location of an

object’s current position needs to be determined in real

time. Only past, but not future, positions are available.

Vehicle navigation systems exemplify this type of map

matching. In off-line map matching, a static data set

of positions is given, meaning that all future positions

are available when map matching a position. Thus

better map matching may result when compared to

on-line map matching. For example, off-line map

matching may be used for billing in pay-per-use sce-

narios (insurance, road pricing).

Historical Background
One of the earliest map matching algorithms found

in the literature dates back to 1971 and is due to R.L.

Map Matching. Figure 1. Map and vehicle location

example.

Map Matching M 1693

M

French (see the overview in reference [1]). A 1996

paper by Berstein and Kornhauser [2] offers a brief

introduction to the map matching problem and its

variations.

The scientific literature contains a range of papers

that address different aspects of themapmatching prob-

lem. White et al. [3] study techniques that pay special

attention to intersection areas, where map matching can

be particularly challenging. Taylor et al. [4] propose a

map matching technique that uses differential correc-

tions and height, which leads to improved performance.

Quddus et al. [5] provide a summary of different on-line

and off-line map matching algorithms and describe

advantages and disadvantages of these. Quddus et al.

[6] have most recently proposed a map matching algo-

rithm that utilizes techniques from fuzzy logic. This

technique shows improved accuracy of polyline identifi-

cation and the positioning on polylines. A complex off-

line map matching algorithm was recently developed by

Bratkatsoulas et al. [7] that uses the Fréchet distance to

map match GPS position samples recorded only every

30 seconds. (While GPS receivers typically output a

position every second, it may be that only some of

these are saved for use in subsequent off-line map

matching).

Foundations
Basics. The most common use of map matching

occurs in transportation where the GPS positions

obtained from a GPS receiver in a vehicle are map

matched to a digital representation of a road network.

An example of GPS positions from a vehicle (dots) and

a digital road network are shown in Fig. 1. The vehicle’s

trip started on road #2 and continued along road #1. In

Fig. 2a the start of the trip is enlarged. The dots

represent the vehicle’s GPS locations, and the triangles

represent the corresponding positions map matched

onto the road network. The road network locations

are typically expressed by using linear referencing,

which is a standard means of indicating such locations.

With linear referencing, a tuple (#2,5.2,+1) captures

the road that the vehicle is driving on (#2), a position

on that road measured as a distance from the begin-

ning of the road (5.2 distance units). The third element

captures a perpendicular distance from the road loca-

tion given by the first two elements. In the tuple, the

displacement is one distance unit to the left. Because a

GPS position is typically mapped to the closest loca-

tion in the road digital network (i.e., a perpendicular
projection is used), the third element is capable of

capturing the GPS position that was map matched to

the road network location. Linear referencing is sup-

ported by, e.g., the Oracle DBMS [6].

In Fig. 2b, a place where map matching is challeng-

ing is enlarged. The crosses represent two instance of

wrong map matching to the nearest road, and the

triangles represent the correct map matching.

Categorization of Map Matching Algorithms.

Map matching can be divided into on-line and off-

line map matching. On-line map matching occurs in

real-time. Here, the map matching algorithm tries to

identify the network location of a GPS position every

time a new position is received. The algorithm has

available the current position as well as information

about the map matching of previous positions.

This contrasts off-line map matching, which occurs

after a trip is over and all the positions from the start to

the end are known. Off-line map matching is more

accurate than on-line map matching, as more infor-

mation (i.e., future positions) is available. An off-line

algorithm does not provide a map matching result

until the entire trip has been map matched.

On-line map matching is mostly used in vehicle

navigation, tracking, and other applications that need

the most recent network location of a vehicle. Off-line

map matching is mostly used to determine as accurate-

ly as possible which route a vehicle was driving. Off-

line map matching may also be used in scenarios where

Map Matching. Figure 2. Map matching example.

1694M Map Matching
GPS data are received in batches from content provi-

ders and where the purpose is to build speed maps that

capture the expected travel speeds for different road

segments and time intervals. Network locations of

vehicles are essential in road load analysis, road pric-

ing, and similar applications.

Map matching algorithms can also be divided

into point-to-point, point-to-polyline, and polyline-

to-polyline approaches. In point-to-point map match-

ing, a point out of a point set is identified as a match

for the given position. In point-to-polyline matching,

a polyline in a polyline set is identified, and a point on

the polyline is identified that represents the given point

as a polyline-set location. In the typical scenario, the

polyline set represents a road network, and the posi-

tion is a GPS position. Finally, in polyline-to-polyline

map matching, polylines are identified from the poly-

lines in a road network that best match a given polyline

that is usually constructed from point positions.

Map Matching Principles. This section follows the

explanation of the basic principles of map matching by

considering in some detail the commonly used point-

to-polyline map matching for the on-line case.

Map matching algorithms often consist of two

overall steps (some algorithms skip the first of these

two steps or include an extra step).

In the start-up step, the polyline in the digital road

network on which the vehicle is initially located is

found. Specifically, map matching is done for the first

GPS position received. The correct outcome of this

step is very important, as the map matching algo-

rithms use the connections between roads, or the

road network topology, to determine the ensuing poly-

lines of the vehicle’s movement path. Therefore, algo-

rithms often perform special operations to determine a

reliable match for the first GPS position.

In the steady-state step, the subsequent polylines

in the digital road network are identified to form
the route along which the vehicle is moving. This

subsequent map matching follows a standard pattern:

1. Extract the relevant information from the record

received from the GPS receiver.

2. Select candidate polylines from the digital road

network.

3. Use algorithm-specific heuristics to determine the

most suitable polyline among the candidate

polylines.

4. Determine the vehicle position on the selected

polyline.

First, information such as latitude, longitude, speed,

and heading is extracted from the record obtained

from the positioning unit and is converted into an

appropriate format (a unified coordinate and metric

system consistent with the digital road network).

Second, the candidate polylines are selected. Usual-

ly the polylines that are within a certain threshold

distance of the GPS position are selected. An alterna-

tive approach is to select the n polylines nearest to the

GPS position. The polylines found make up the candi-

date polyline set.

Third, specific heuristics are used to select the best

polyline among the candidates. A common approach is

to assign weights to the candidate polylines according

to different criteria. The polyline with the highest sum

of weights is then chosen. Some algorithms reduce the

set of candidate polylines prior to assigning weights.

For example, polylines that are perpendicular to the

vehicle’s heading may be disregarded, as may polylines

that are not connected with the polyline currently

being considered.

Fourth, the vehicle position on the selected polyline

is found. The usual approach is to select the location

on the polyline that is closest to the vehicle’s position.

This is a point-to-polyline projection. The projection

of the position may be an end point of a line segment

Map Matching M 1695

M

in the polyline, or it may be in the interior of a line

segment. Quddus et al. [5] propose a more sophisti-

cated approach that uses both the distance traveled

since the last map matching and the ‘‘raw’’ projection

of the GPS position onto the polyline.

Dead Reckoning. In certain regions, the signals

emitted by the GPS satellites may be very weak due

to obstacles. This in turn degrades the accuracies of

the positions produced by GPS receivers in those

regions, and in some cases no GPS position may

be produced. In such cases, both on-line and off-line

map matching algorithms may utilize dead reckoning

to estimate the movement of a vehicle in the road

network. The use of dead reckoning is particularly

attractive when the average speed of the vehicle is

known (preferably every second) and when the road

on which the vehicle is driving neither splits nor has

intersections. This occurs when the road is inside

a tunnel with no exits.

Heuristics for the Selection of a Polyline. Differ-

ent algorithms use different heuristics and weights

when attempting to identify the best polyline among

the candidate polylines. Each candidate polyline is as-

signed a weight for each criterion considered, and

the polyline with the highest sum of weights is then

selected. Common weighting criteria include the

following:

� Weight for the proximity of a polyline. A polyline is

assigned a weight according to its proximity to the

GPS position being map matched. It is natural to

assume that the closer a polyline is to the position,

the better a candidate the polyline is.

� Weight for the continuity of a polyline. This weight

is assigned to each polyline for being a continua-

tion of the previously map matched polyline. This

weight represents the reasoning that vehicles tend

to drive on the same road most of the time.

� Weight for direction similarity. Polylines whose

bearing is similar to the vehicle’s heading are

assigned higher values.

� Weight for topology. Higher weights are added to

polylines that are connected to the polyline cur-

rently being map matched to.

Algorithms may also include weights for speed limit

changes, shortest distance, road category, one-way

streets, etc. Off-line map matching algorithms may

use fewer, but more robust weights that are not suitable

for the on-line map matching algorithms.
Execution Time Constraints and Accuracy. In

on-line map matching, the algorithms must keep up

with the GPS device that usually emits one position per

second. With current on-board computing units, it is

usually not a problem for on-line map matching algo-

rithms map match a GPS position within 1 second.

For off-line map matching, there are no real-time

constraints.

Key Applications
Map matching is essential for applications that rely on

the positioning of a user within a road network.

This occurs in vehicle navigation where the user’s

position is to be displayed so that it coincides with the

road network. When GPS data is used for the construc-

tion of speed maps, map matching is used. Such speed

maps may be used for travel time prediction, route

construction, and capacity planning. In metered ser-

vices such as insurance and road pricing, map match-

ing is also used.

Further, map matching is used in location-based

services where the content to be retrieved is positioned

within the road network. Services that offer network-

context awareness utilize map matching. These includ-

ing current network location context awareness [9],

and route context awareness [10].

Tracking also plays a key role in intelligent speed

adaptation [11] where drivers are alerted when they

exceed the current speed limit. The speed limits are

attached to the digital road network, so map matching

is needed to identify the current speed limit. Finally,

map matching is important for a range of other appli-

cation within intelligent transportation systems.

Future Directions
In the near future, digital road networks will have

accurate lane information embedded, and positioning

technologies will be accurate enough to enable lane-

level positioning. This will necessitate the exten-

sion of map matching techniques to function at the

lane level.

Cross-references
▶Compression of Mobile Location Data

▶ Location Prediction

▶ Location-Based Services

▶Mobile Database

▶Mobile Sensor Network Data Management

▶Road Networks

1696M Mapping
▶ Spatial Network Databases

▶ Spatial Operations and Map Operations

▶ Spatio-Temporal Trajectories

▶ Spatiotemporal Interpolation Algorithms

Recommended Reading
1. Bernstein D. and Kornhauser A. An introduction to map

matching for personal navigation assistants. New Jersey TIDE

Center, 1996. http://www.njtide.org/reports/mapmatchintro.

pdf.

2. Brakatsoulas S., Pfoser D., Salas R., and Wenk C. On map-

matching vehicle tracking data. In Proc. 31st Int. Conf. on

Very Large Data Bases, 2005, pp. 853–864.

3. Brilingaitė A. and Jensen C.S. Enabling routes of road network

constrained movements as mobile service context. Geoinforma-

tica, 11(1):55–102, 2007.

4. Civilis A., Jensen C.S., and Pakalnis S. Techniques for efficient

road-network-based tracking of moving objects. IEEE Trans.

Knowl. Data Eng., 17(5):698–712, 2005.

5. French R.L. Historical overview of automobile navigation

technology. In Proc. 36th IEEE Vehicular Technology Conf.,

1986, pp. 350–358.

6. Oracle Corporation. Oracle Spatial and Oracle Locator. http://

www.oracle.com/technology/products/spatial/index.html.

7. Quddus M., Ochieng W., Zhao L., and Noland R. A general

map matching algorithm for transport telematics applications.

GPS Solut. J., 7(3):157–167, 2003.

8. Quddus M.A., Noland R.B., and Ochieng W.Y. A high

accuracy fuzzy logic based map matching algorithm for

road transport. J. Intell. Transport. Syst., 10(3), 2006,

pp. 103–115.

9. Taylor G., Blewitt G., Steup D., Corbett S., and Car A. Road

reduction filtering for GPS-GIS navigation. Transactions in GIS,

5(3):193–207, 2001.

10. Tradisauskas N., Juhl J., Lahrmann H., and Jensen C.S.

Map matching for intelligent speed adaptation. In Proc. 6th

European Congress on Intelligent Transport Systems and

Services, 2007.

11. White C.E., Bernstein D., and Kornhauser A.L. Some map

matching algorithms for personal navigation assistants. Trans-

port. Res. C, 8:91–108, 2000.
Mapping

▶Mediation

▶ Schema Mapping
Mapping Composition

▶ Schema Mapping Composition
Mapping Engines

▶Digital Rights Management
Markup Language

ETHAN V. MUNSON

University of Wisconsin-Milwaukee, Milwaukee, WI,

USA

Definition
A markup language is specification language that

annotates content through the insertion of marks into

the content itself. Markup languages differ from pro-

gramming languages in that they treat data, rather than

commands or declarations, as the primary element in

the language.

Key Points
Markup languages were initially developed for text

document formatting systems, though they are not

limited to text. In fact, the term markup was taken

directly from the jargon of the publishing business,

where editors and typographers would ‘‘mark up’’

draft documents to indicate corrections or printing

effects. Markup languages are generally quite declara-

tive and have little, if any, computational semantics.

The marks inserted into the content are often called

‘‘tags’’ because that term is used by XML.

Cross-references
▶Document

▶Document Representations (Inclusive Native and

Relational)
MashUp

ALEX WUN

University of Toronto, Toronto, ON, Canada

Definition
A MashUp is a web application that combines data

from multiple sources, creating a new hybrid web

application with functionality unavailable in the origi-

nal individual applications that sourced the data.

Massive Array of Idle Disks M 1697

M

Key Points
An emerging trend in web applications is to provide

public APIs for accessing data that has traditionally

been used only internally by those applications. The

main purpose of providing access to traditionally pri-

vate web application data is to encourage user-driven

development. In other words, consumers are expected

to take that public data and build custom applications

for other consumers – thereby adding value to the

original data sources. MashUps are web applications

that take advantage of these publicly accessible data

sources by correlating the data obtained from different

sources and deriving some novel functionality. A sim-

ple and common example is correlating a data source

that has location information (such as wireless hotspot

locations) with cartographic data (from Google or

Yahoo maps for example) to produce a graphical map

of wireless hotspots.

MashUps are conceptually related to portals, which

also collect data from multiple sources for presenta-

tion. However, portals perform server-side aggregation

whereas MashUps can also perform this aggregation on

the client-side (i.e., correlation can occur in the scripts

of a web page). Additionally, portals present data

collected from disparate sources together but without

interaction between data sets. In contrast, MashUps

focus heavily on merging disparate data sets into one

unified representation. For example, a news portal

would simply present a set of interesting articles gath-

ered from various sources on a single page while a news

MashUp would correlate textual news with related

images and multimedia as well as automatically linking

related articles in a single view.

While similar to MashUps, service composition is a

more generic concept that focuses on orchestrating

web service calls as part of some higher level applica-

tion logic. The coordination of web service calls in a

service composition are often more process-centric

rather than data-centric. For example, a flight-booking

composite service would query the flight reservation

services of different airlines to book a flight based

on customer requirements, while a flight-booking

MashUp would gather flight data from various airlines

and present the data to customers in a single unified

view – likely correlated with other useful data such as

weather.

There is currently no standardization of tech-

nologies or tools used to develop MashUps. In fact,

many industry leaders such as Google, Microsoft, and
Yahoo are pushing their own MashUp development

tools. In particular, many of these tools are targeting

non-programmers in hopes of expanding the base

of users capable of contributing to and developing

MashUps.

Cross-references
▶AJAX

▶ Service

▶Web 2.0/3.0
Massive Array of Idle Disks

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Synonyms
MAID
Definition
The term Massive Array of Idle Disks refers to an

energy-efficient disk array which has the capability of

changing its disk drives into a low-power mode when

the disk drives are not busy. Disk drives of the array

may be controlled individually or in a group. The term

Massive Array of Idle Disks is often abbreviated to

MAID. A MAID disk array may have additional func-

tions such as data migration/replication and access

prediction to improve the energy saving.
Key Points
The basic idea of MAID is to save energy by exploiting

storage access locality. That is, some disk drives which

are installed in a disk array are frequently accessed

whereas the others are rarely busy. MAID tries to spin

down or power off such ‘‘low-temperature’’ disk drives

to decrease the total energy consumption. The ori-

ginal papers [1,2] which introduced MAID in 2002

studied different design choices and configurations.

MAID disk arrays are mainly used for archival storage

(replacing conventional tape libraries) or near-line

storage (which falls between online storage and archi-

val storage).

Cross-references
▶ Storage Power Management

1698M Matching
Recommended Reading
1. Colarelli D., and Grunwald D. Massive Arrays of Idle Disks for

Storage Archives. In Proc. 2002 ACM/IEEE conf. on Supercom-

puting, 2002, pp. 1–11.

2. Colarelli D., Grunwald D., and Neufeld M. The Case for

Massive Arrays of Idle Disks (MAID). In Proc. 1st USENIX

Conf. on File and Storage Technologies, Work-in Progress

Reports, 2002.

3. Storage Network Industry Association. The Dictionary of

Storage Networking Terminology. Also available at http://www.

snia.org/.
Matching

▶ Similarity and Ranking Operations
Materialized Query Tables

▶ Physical Database Design for Relational Databases
Materialized View Maintenance

▶View Maintenance
Materialized View Redefinition

▶View Adaptation
Materialized Views

▶ Physical Database Design for Relational Databases
Matrix

▶Table
Matrix Masking

STEPHEN E. FIENBERG, JIASHUN JIN

Carnegie Mellon University, Pittsburgh, PA, USA

Synonyms
Adding noise; Data perturbation; Recodings; Samp-

ling; Synthetic data

Definition
Matrix Masking refers to a class of statistical disclosure

limitation (SDL) methods used to protect confidenti-

ality of statistical data, transforming an n � p (cases

by variables) data matrix Z through pre- and post-

multiplication and the possible addition of noise.

Key Points
Duncan and Pearson [3] and many others subse-

quently categorize the methodology used for SDL in

terms of transformations of an n � p (cases by vari-

ables) data matrix Z of the form

Z ! AZB þ C; ð1Þ

where A is a matrix that operates on the n cases, B is

a matrix that operates on the p variables, and C is a

matrix that adds perturbations or noise.

Matrix masking includes a wide variety of standard

approaches to SDL: (i) adding noise, i.e., theC in matrix

masking transformation of equation [1]; (ii) releasing

a subset of observations (delete rows from Z), i.e.,

sampling; (iii) cell suppression for cross-classifications;

(iv) including simulated data (add rows to Z); (v) re-

leasing a subset of variables (delete columns from Z);

(vi) switching selected column values for pairs of rows

(data swapping). Even when one has applied a mask to

a data set, the possibilities of both identity and attri-

bute disclosure remain, although the risks may be

substantially diminished.

Cross-references
▶ Individually Identifiable Data

▶ Inference Control in Statistical Databases

▶ Privacy

▶Randomization Methods to Ensure Data Privacy

▶ Statistical Disclosure Limitation for Data Access

Recommended Reading
1. Doyle P., Lane J.I., Theeuwes J.J.M., and Zayatz L. (eds.). Confi-

dentiality, Disclosure and Data Access: Theory and Practical

Application for Statistical Agencies. Elsevier, New York, 2001.

Max-Pattern Mining M 1699
2. Duncan G.T., Jabine T.B., and De Wolf V.A. (eds.). Private Lives

and Public Policies. Report of the Committee on National Sta-

tistics’ Panel on Confidentiality and Data Access. National Acad-

emy Press, WA, USA, 1993.

3. Duncan G.T. and Pearson R.B. Enhancing access to microdata

while protecting confidentiality: prospects for the future (with

discussion). Stat. Sci., 6:219–239, 1991.

4. Federal Committee on Statistical Methodology. Report on sta-

tistical disclosure limitation methodology. Statistical Policy

Working Paper 22. U.S. Office of Management and Budget,

WA, USA, 1994.
Maximal Itemset Mining

▶Max-Pattern Mining
M

Max-Pattern Mining

GUIMEI LIU

National University of Singapore, Singapore,

Singapore

Synonyms
Maximal itemset mining

Definition
Let I = {i1, i2...,in} be a set of items and D = {t1, t2...,tN}

be a transaction database, where ti(i 2 [1,N]) is a

transaction and ti
 I. Every subset of I is called an

itemset. If an itemset contains k items, then it is called a

k-itemset. The support of an itemset X in D is defined

as the percentage of transactions in D containing X,

that is, sup(X) = j{tjt 2 D ∧ X
 t}j ∕ jDj. If the support
of an itemset exceeds a user-specified minimum sup-

port threshold, then the itemset is called a frequent

itemset or a frequent pattern. If an itemset is frequent

but none of its supersets is frequent, then the itemset is

called a maximal pattern. The task of maximal pattern

mining is given a minimum support threshold, to

enumerate all the maximal patterns from a given trans-

action database.

The concept of maximal patterns can be and has

already been extended to more complex patterns, such

as sequential patterns, frequent subtrees and frequent

subgraphs. For each type of pattern, a pattern is maxi-

mal if it satisfies the given constraints but none of its

super-patterns satisfies the given constraints.
Historical Background
If a k-itemset is frequent, then all of its subsets are

frequent and the number of them is 2k � 1. Datasets

collected from some domains can be very dense and

contain very long patterns. Any algorithm which pro-

duces the complete set of frequent itemsets suffers

from generating numerous short patterns on these

datasets, and most of the short patterns may be useless.

Some researchers have noticed the long pattern prob-

lem and suggested mining only maximal frequent pat-

terns [1,3,8]. The set of maximal patterns provides a

concise view of the frequent patterns, and it can be

orders of magnitude smaller than the complete set of

frequent patterns. The complete set of frequent pat-

terns can be derived from the set of maximal patterns,

but the support information is lost.

A different concept called closed itemset or closed

pattern has also been proposed to reduce result size. A

pattern is closed if none of its supersets has the same

support as it does. Closed patterns retain the support

information of frequent patterns. The complete set of

frequent patterns can be derived from the set of fre-

quent closed patterns without information loss. A

maximal pattern must be a closed pattern, but not

vice versa.

Given a set of items I, the search space of the

frequent itemset mining problem is the power set of I,

and it can be represented as a set-enumeration tree

given a specific order of I [9]. Figure 1 shows the search

space tree for I = {a, b, c, d, e}, and the items are sorted

lexicographically. Every node in the search space tree

represents an itemset. For every itemset X in the tree,

only the items after the last item of X can be appended

to X to form a longer itemset. These items are called

candidate extensions of X, denoted as cand_ext(X). For

example, items d and e are candidate extensions of ac,

while item b is not a candidate extension of ac because

b is before c in lexicographic order. Mining maximal

patterns can be viewed as finding a border through

the search space tree such that all the nodes below

the border are infrequent and all the nodes above the

border are frequent. As shown in Fig. 1, the dotted

line represents the border. All the nodes above the

dotted line are frequent and all the nodes below

the dotted line are infrequent. Among all the nodes

above the border, only leaf nodes can be maximal, but

not all the leaf nodes are maximal; every internal node

has at least one frequent child (superset) thus cannot

be maximal. The goal of maximal pattern mining is

to find the border by counting support for as less as

Max-Pattern Mining. Figure 1. Search space tree for I = {a, b, c, d, e}.

1700M Max-Pattern Mining
possible itemsets. Most, if not all, existing maximal

pattern mining algorithms try to find some frequent

long patterns first, and then use these long patterns to

prune non-maximal patterns.

The first attempt at mining maximal patterns is

made by Gunopoulos et al. [6], and an algorithm called

dualize and advance is proposed. The algorithm is

based on the observation that given a set of maximal

patterns, any other maximal pattern not in the set must

contain at least one common item with the comple-

ment of every maximal pattern in the set, where the

complement of an itemset X is defined as I � X. The

algorithm works as follows. It first uses a greedy search

to generate some maximal patterns, denoted asH, and

then finds the minimal patterns that contain at least

one common item with the complement of every max-

imal pattern inH. Here a pattern is minimal if none of

its subsets satisfies the condition. These minimal pat-

terns are called minimal transversals of H. If all the

minimal transversals of H are infrequent, it means that

all the maximal patterns are all in H already. Other-

wise, there exists some minimal transversal X of H
such that X is frequent, the algorithm then finds a

maximal superset of X, denoted as Y , and Y must be

a maximal pattern. The algorithm puts Y in H, and

then generates the minimal transversals of the updated

H. This process is repeated until no frequent minimal

transversals of H exists. The upper bound for the time

complexity of this algorithm is sub-exponential to the

output size.

Pincer-search [7] combines the bottom-up and

top-down search strategy, and approaches the border

from both directions. The bottom-up search is similar
to the A priori algorithm [2], and the top-down search

is implemented by maintaining a set called maximum-

frequent-candidate-set (MFCS). MFCS is a minimum

cardinality set of itemsets such that the union of all the

subsets of its elements contains all the frequent item-

sets that have been discovered so far but does not

contain any itemsets that have been determined to be

infrequent. Pincer-search uses MFCS to prune those

candidate itemsets that have a frequent superset in

MFCS to reduce the database scan times and the sup-

port counting cost.

Both the dualize and advance algorithm and the

Pincer-search algorithm maintain the set of candidate

maximal patterns during the mining process and use

them to prune short non-maximal patterns. The main

difference between the two algorithms is that Pincer-

Search considers large sets that may be frequent first,

and then shrinks them to find the real maximal pat-

terns, while the dualize and advance algorithm starts

from some seed maximal patterns and uses them to

find other maximal patterns. Both algorithms can

prune non-maximal patterns effectively, but maintain-

ing and manipulating the set of candidate maximal

patterns can be very costly.

Zaki et al. propose two maximal pattern mining

algorithms MaxClique and MaxEclat [13]. Both algo-

rithms rely on a preprocessing step to cluster itemsets,

and then use a hybrid bottom-up and top-down ap-

proach to find maximal patterns from each cluster

with a vertical data representation. The two algorithms

differ in how the itemsets are clustered. The purpose of

the clustering step is to find some potential maximal

patterns, and the two algorithms use these potential

Max-Pattern Mining M 1701

M

maximal patterns to restrict the search space. However,

the cost of the clustering step can be very high.

Max-Miner [3] is the first successful and practical

algorithm for mining maximal patterns. It uses the

bottom-up search strategy to traverse the search

space as the A priori algorithm [2], but it always

attempts to look ahead in order to quickly identify

long patterns. By identifying a long pattern first,

Max-Miner can prune all its subsets from consider-

ation. Two pruning techniques are proposed in the

Max-Miner algorithm: pruning based on superset fre-

quency and the dynamic reordering technique. These

two pruning techniques are very effective in removing

non-maximal patterns, and have been adopted by all

later maximal pattern mining algorithms.

1. Superset frequency pruning. This technique is also

called the lookahead technique. It is based on the

observation that the itemsets in the sub search

space tree rooted at X are subsets of X [cand_ext

(X). Therefore, if X [cand_ext(X) is frequent, then

none of the itemsets in the subtree rooted at X can

be maximal and the whole branch can be pruned.

There are two ways to check whether X [cand_ext

(X) is frequent. One way is to check whether X [
cand_ext(X) is a subset of some maximal pattern

that has already been discovered. The other way is

to look at the support of X [cand_ext(X) in the

database, which can be done when counting the

support of X’s immediate supersets.

2. Dynamic item reordering. At every node X, Max-

Miner sorts the items in cand_ext(X) in ascending

frequency order. The candidate extensions of an

item include all the items that are after it in the

ascending frequency order. Let i1 and i2 be

two items in cand_ext(X). Item i1 is before i2
in the ordering if sup(X [{i1}) is smaller than

sup(X [{i2}), and item i2 is a candidate extension

of X [{i1}. The motivation behind dynamic

item reordering is to increase the effectiveness of

the superset frequency pruning technique. The

superset frequency pruning can be applied when X

[cand_ext(X) is frequent. It is therefore desirable

to make many Xs satisfy this condition. A good

heuristic for accomplishing this is to force the

most frequent items to be the candidate extensions

of all other items because items with high fre-

quency are more likely to be part of long frequent

itemsets.
Besides the above two pruning techniques, Max-Miner

also uses a technique that can often determine when a

new candidate itemset is frequent before accessing

the database. The idea is to use information gathered

during previous database passes to compute a good

lower-bound on the number of transactions that con-

tain the itemset.

The Max-Miner algorithm uses the breadth-first

search order to explore the search space, which makes

it not very efficient on dense datasets. DepthProject

[1], MAFIA [4], GenMax [5] and AFOPT-Max [8] use

the depth-first search strategy to traverse the search

space. The depth-first search strategy is capable of

finding long patterns first, which makes the superset

frequency pruning technique more effective. These

algorithms differ mainly in their support counting

technique. Both DepthProject and MAFIA assume

that the dataset fits in the main memory. At any

point in the search, DepthProject maintains the pro-

jected transaction sets for some of the nodes on the

path from the root to the node currently being pro-

cessed, where a projected transaction of a node con-

tains only the candidate extensions of the node. It is

possible that a projected transaction is empty, in this

case, the projected transaction is discarded. Since the

projected database is substantially smaller than

the original database both in terms of the number

of transactions and the number of items, the process

of finding the support counts is speeded up substan-

tially. DepthProject also uses a bucketing technique to

speed up the support counting. MAFIA and GenMax

use the vertical mining technique, that is, each itemset

is associated with a tid (transaction id) bitmap, and

support counting is performed by tid bitmap join.

MAFIA uses another pruning technique called parent

equivalence pruning (PEP), which is essentially to re-

move frequent non-closed itemsets. GenMax[5] pro-

poses a progressive focusing technique to improve the

efficiency of superset searching. AFOPT-Max uses a

prefix-tree structure to store projected transactions,

which can make the lookahead pruning technique be

performed more efficiently.

Foundations
In practice, mining maximal patterns is much cheaper

than mining the complete set of frequent itemsets.

However, the worst-case time complexity of maximal

pattern mining is the same as mining all frequent

patterns. Yang [11] studies the complexity of the

1702M Maybe Answer
maximal pattern mining problem and proves that the

problem of counting the number of distinct maximal

frequent itemsets in a transaction database, given an

arbitrary support threshold, is #P-complete, thereby

providing strong theoretical evidence that the problem

of mining maximal frequent itemsets is NP-hard.

The concept of maximal patterns has been extend-

ed to other similar data mining problems dealing with

complex data structures. Yang et al. [12] devise an

algorithm that combines statistical sampling and a

technique called border collapsing to discover long

sequential patterns with sufficiently high confidence

in a noisy environment. Xiao et al. [10] propose an

algorithm to mine maximal frequent subtrees from a

database of unordered labeled trees.

Key Applications
Maximal pattern mining is applicable to dense

domains where extracting all frequent patterns is not

feasible. It can also be used as a preprocessing step to

improve the efficiency of frequent pattern mining and

to decide appropriate thresholds for frequent pattern

mining and association rule mining.

Experimental Results
Each introduced method has an accompanying experi-

mental evaluation in the corresponding reference. A

comprehensive comparison of different algorithms can

be found at http://fimi.cs.helsinki.fi/experiments/.

Data Sets
A collection of datasets commonly used for experi-

ments can be found at http://fimi.cs.helsinki.fi/data/.

URL to Code
http://fimi.cs.helsinki.fi/src/.

Cross-references
▶Closed Itemset Mining and Non-Redundant Associ-

ation Rule Mining

▶ Frequent Itemsets and Association Rules

Recommended Reading
1. Agarwal R.C., Aggarwal C.C., and Prasad V.V.V. Depth first

generation of long patterns. In Proc. 6th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2000,

pp. 108–118.

2. Agrawal R. and Srikant R. Fast algorithms for mining association

rules in large databases. In Proc. 20th Int. Conf. on Very Large

Data Bases, 1994, pp. 487–499.
3. Bayardo R.J. Jr. Efficiently mining long patterns from databases.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

1998, pp. 85–93.

4. Burdick D., Calimlim M., and Gehrke J. Mafia: A maximal

frequent itemset algorithm for transactional databases. In Proc.

17th Int. Conf. on Data Engineering, 2001, pp. 443–452.

5. Gouda K. and Zaki M.J. GenMax: Efficiently mining maximal

frequent itemsets. In Proc. 2001 IEEE Int. Conf. on DataMining,

2001, pp. 163–170.

6. Gunopulos D., Mannila H., and Saluja S. Discovering all most

specific sentences by randomized algorithms. In Proc. 6th Int.

Conf. on Database Theory, 1997, pp. 215–229.

7. Lin D.I., and Kedem Z.M. Pincer search: A new algorithm

for discovering the maximum frequent set. In Advances in

Database Technology, Proc. 1st Int. Conf. on Extending Data-

base Technology, 1998, pp. 105–119.

8. Liu G., Lu H., Lou W., Xu Y., and Yu J.X. Efficient mining of

frequent patterns using ascending frequency ordered prefix-tree.

Data Mining Knowledge Discovery, 9(3):249–274, 2004.

9. Rymon R. Search through systematic set enumeration. In Proc.

Int. Conf. on Principles of Knowledge Representation and

Reasoning, 1992, pp. 268–275.

10. Xiao Y., Yao J.F., Li Z., and Dunham M.H. Efficient data mining

for maximal frequent subtrees. In Proc. 2003 IEEE Int. Conf. on

Data Mining, 2003, pp. 379–386.

11. Yang G. The complexity of mining maximal frequent itemsets

and maximal frequent patterns. In Proc. 10th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2004,

pp. 344–353.

12. Yang J., Wang W., Yu P.S., and Han J. Mining long sequen-

tial patterns in a noisy environment. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2002, pp. 406–417.

13. Zaki M.J., Parthasarathy S., Ogihara M., and Li W. New

algorithms for fast discovery of association rules. In Proc. 3rd

Int. Conf. on Knowledge Discovery and Data Mining, 1997,

pp. 283–286.
Maybe Answer

▶ Possible Answers
MDIS

▶Meta Data Interchange Specification
MDR

▶Metadata Registry, ISO/IEC 11179

Measure M 1703
MDS

▶Multidimensional Scaling
Mean Average Precision

▶MAP
M

Mean Reciprocal Rank

NICK CRASWELL

Microsoft Research Cambridge, Cambridge, UK

Synonyms
MRR; Mean Reciprocal Rank of the First Relevant

Document; MRR1

Definition
The Reciprocal Rank (RR) information retrieval mea-

sure calculates the reciprocal of the rank at which the

first relevant document was retrieved. RR is 1 if a

relevant document was retrieved at rank 1, if not it is

0.5 if a relevant document was retrieved at rank 2 and

so on. When averaged across queries, the measure is

called the Mean Reciprocal Rank (MRR).

Key Points
Mean Reciprocal Rank is associated with a user model

where the user only wishes to see one relevant docu-

ment. Assuming that the user will look down the

ranking until a relevant document is found, and that

document is at rank n, then the precision of the set

they view is 1/n, which is also the reciprocal rank

measure. For this reason, MRR is equivalent to Mean

Average Precision in cases where each query has pre-

cisely one relevant document. MRR is not a shallow

measure, in that its value changes whenever the re-

quired document is moved, although the change is

much larger when moving from rank 1 to rank

2 (change is 0.5) compared to moving from rank 100

to 1,000 (change of 0.009).

MRR is an appropriate measure for known item

search, where the user is trying to find a document that

he either has seen before or knows to exist. This is

called navigational search in the case of web search. In

a case where there are multiple copies of the required
document, or otherwise a set of relevant documents

that are substitutes, MRR can still be applied based on

the first copy.

Cross-references
▶Mean Average Precision

▶ Precision-Oriented Effectiveness Measures
Mean Reciprocal Rank of the First
Relevant Document

▶MRR (Mean Reciprocal Rank)
Measure

TORBEN BACH PEDERSEN

Aalborg University, Aalborg, Denmark

Synonyms
Numerical fact

Definition
A measure is a numerical property of a multidimen-

sional cube, e.g., sales price, coupled with an aggre-

gation formula, e.g., SUM. It captures numerical

information to be used for aggregate computations.

Key Points
As an example, a three-dimensional cube for capturing

sales may have a Product dimension P, a Time dimen-

sion T, and a Store dimension S, capturing the product

sold, the time of sale, and the store it was sold in, for

each sale, respectively. The cube has two measures:

DollarSales and ItemSales, capturing the sales price

and the number of items sold, respectively. ItemSales

can be viewed as a function: ItemSales:Dom(P)�Dom

(T)�Dom(S)↦ℕ0 that given a certain combination of

dimension values returns the total number of items

sold for that combination. If a dimension value corre-

sponds to a higher level in the dimension hierarchy,

e.g., a product group or even all products, the result is

an aggregation of several lower-level measure values.

In a multidimensional database, measures generally

represent the properties of the chosen facts that the

users want to study, e.g., with the purpose of optimizing

them. Measures then take on different values for

1704M Media Recovery
different combinations of dimension values. The prop-

erty and formula are chosen such that the value of a

measure is meaningful for all combinations of aggrega-

tion levels. The formula is defined in the metadata and

thus not stored redundantly with the data. Although

most multidimensional data models have measures,

some do not. In these, dimension values are also used

for computations, thus obviating the need for measures,

but at the expense of some user-friendliness [2].

It is important to distinguish three classes of mea-

sures, namely additive, semi-additive, and non-additive

measures, as these behave quite differently in compu-

tations. Additive measure values can be combined

meaningfully along any dimension. For example, it

makes sense to add the total sales over Product,

Store, and Time, as this causes no overlap among the

real-world phenomena that caused the individual

values. Semi-additive measure values cannot be com-

bined along one or more of the dimensions, most often

the Time dimension. Semi-additive measures generally

occur for so-called ‘‘snapshot’’ facts. For example, it

does not make sense to sum inventory levels across

time, as the same inventory item, e.g., a specific prod-

uct item, may be counted several times, but it is

meaningful to sum inventory levels across products

and stores. Non-additive measure values cannot be

combined along any dimension, usually because of

the chosen formula. For example, this occurs when

averages for lower-level values cannot be combined

into averages for higher-level values. The additivity of

measures is related to the so-called ‘‘type’’ of the

measure (Flow, Stock or Value-Per-Unit).

Cross-references
▶Cube

▶Dimension

▶Hierarchy

▶Multidimensional Modeling

▶On-Line Analytical Processing

▶ Summarizability

Recommended Reading
1. Kimball R., Reeves L., Ross M., and Thornthwaite W. The

Data Warehouse Lifecycle Toolkit. Wiley Computer Publishing,

New York, 1998.

2. Pedersen T.B., Jensen C.S., and Dyreson C.E. A foundation for

capturing and querying complex multidimensional data. Inf.

Syst., 26(5):383–423, 2001.

3. Thomsen E. OLAP Solutions: Building Multidimensional

Information Systems. Wiley, New York, 1997.
Media Recovery

▶Crash Recovery
Media Semantics

▶Computational Media Aesthetics
Median

▶Quantiles on Streams
Mediation

CESARE PAUTASSO

University of Lugano, Lugano, Switzerland

Synonyms
Transformation; Adaptation; Bridging; Mapping

Definition
Mediation is the process of reconciling differences

to reach an agreement between different parties. In

databases, the goal of mediation is to compute a

common view over multiple, distinct, and heteroge-

neous sources of data. In software architecture, a

component plays the role of mediator if it achieves

interoperability by decoupling heterogeneous compo-

nent having mismatching interfaces. Protocol media-

tion enables the exchange of information between

autonomous endpoints that use incompatible commu-

nication protocols.

Mediation middleware helps applications deal with

heterogeneity. By hiding the multiplicity and the com-

plexity of the underlying systems, it transforms a one-

to-many interaction (the application communicating

with multiple data sources) into a simpler, one-to-one

interaction (the application communicates with the

mediator) and shifts the complexity of handling the

communication with multiple, heterogeneous parties

into a reusable component: the mediator.

Mediation M 1705

M

Historical Background
In the context of information systems, the concept of

mediation has been introduced by Gio Wiederhold in

1992 as the organizing principle for the interoperation

of heterogeneous software components and data

sources [8]. Mediation is performed by a layer of intel-

ligent middleware services in information systems, link-

ing data resources and application programs [9].

Programs need to consume information of multiple

data resources and mediators offer them a solution to

deal with representation and abstraction problems and

exchange objects across multiple, heterogeneous infor-

mation sources [5]. In the original vision, mediators

were seen as independently developed, reusable soft-

ware modules exploiting expert knowledge about the

data to create aggregated information for application

programs found at a higher level of abstraction.

As shown in Fig.1, queries from applications are trans-

lated by mediators into sub-queries sent out to the

different data sources. The various sub-answers are

then collected, integrated and returned by the media-

tor as a single answer to the application.

Foundations
Mediation techniques help to deal with the integration

of heterogeneous and incompatible systems. A good

understanding of the nature of the problem of dealing

with heterogeneity helps to determine when and how

mediation should be applied [6]. Conflicts requiring

mediation may be found at the level of specific data

elements (or messages) to be exchanged or at the level

of schema (or interface metadata) definitions. Data
Mediation. Figure 1. Mediation architecture.
valuesmay be stored withmultiple representations (syn-

tactic mismatches) or the same representation may be

interpreted in different ways (semantic mismatches).

Data units (e.g., centimeters versus inches) are also a

significant source of conflicts and potential bugs if they

are not correctly accounted for when performing data

fusion. Identification mismatches are due to the use of

locally unique key identifiers that need to be reconciled

when tuples from different databases are joined. At the

schema level, conflicts involvemismatches in the naming

of corresponding elements (‘‘Customer’’ versus ‘‘Client’’

table); conflicts in the structure (‘‘Street, Number, Zip,

City’’ versus ‘‘Address’’) and granularity (‘‘Purchase

Order’’ versus ‘‘Order Line Item’’) of corresponding

data types.

It is important to address such mismatches and

conflicts at both data and schema levels. To do so,

typical mediation middleware tools provide support

for operations such as:

1. Selection, filtering, and aggregation of data

2. Data type, encoding and format conversion

3. Join, comparison, and fusion of data originating

from multiple data sources

4. Resolution of conflicts between inconsistent

sources

5. Multiplexing and demultiplexing over different

channels

6. Lookup-based data translation

7. View materialization and caching of intermediate

results

Mediator components can be developed using both im-

perative and declarative programming languages. Auto-

matic schema matching techniques and algorithms

that can be applied to support the development of

mediators [7].

Mediation can be provided according to two styles:

� Standard-Based Mediation. The mediator trans-

forms each of the incompatible interfaces to com-

ply with a standardized interface that features the

least common denominator between all representa-

tions. In order for two parties to communicate, this

style requires performing two back-to-back trans-

formations (to the standard representation and

from the standard representation), thus introduces

a larger performance overhead. However, in terms

of development cost and maintainability of the

mediator, providing support for a new interface

1706M Mediation and Adaptation
only requires introducing one additional transfor-

mation in the mediator (assuming that the new

interface can be funneled through the standard

one).

� Point-to-Point Mediation. The mediator directly

maps each pair of incompatible interfaces. This

way, the performance overhead is minimized as

only one transformation is required as data is ex-

changed between two parties. Also, there is no need

to define a standardized representation, which may

be a difficult task in some cases. However, this style

should be applied to mediate between a limited

(and fixed) set of interfaces only. The complexity

of maintaining this kind of mediator does not scale:

adding support for a new interface requires to

introduce n additional mappings in the mediator

(one for each existing interface).

Key Applications
Mediation plays a prominent role in applications that

require integrating data and functionality originally

provided by separate systems (especially in database

federation and data integration [10]). For example, a

mediator performing currency conversion makes it

possible to compare prices of products on sale in

different markets. Likewise, mediation is needed to

build a country-wide census database out of local

databases maintained by different cities, if these have

been created independently based on different data

models and schemas.

In the context of Service-Oriented Architectures,

the role of mediator is associated with the communi-

cation bus (or Enterprise Service Bus). Through the

bus, services exchange messages without being aware

that messages may be transformed while in transit to

reconcile differences between service interfaces. Such

transformations may be based on context and seman-

tics metadata [4]. Mediation is one of the main fea-

tures of the Web Services Modeling Framework [1],

which applies it to address heterogeneity going beyond

traditional data mappings. Also mediators for Business

Logic (to compensate between different message or-

dering constraints found in the public processes of

service) and Message Exchange Protocols (for transla-

tion between different transport protocols, e.g., to pro-

vide reliable and secure message delivery) are

introduced in the framework.

In object-oriented design, the mediator behavioral

pattern has been applied to decouple multiple
collaborating objects [3, p. 273]. Instead of having

the objects depend on each other and partitioning

the interaction logic among them, a mediator object

is introduced. It contains and centralizes some poten-

tially complex interaction logic. All objects only refer

to the mediator and interact through it. This pattern

has also been named mapper in the context of enter-

prise application architecture [2]. Similar to the other

applications of mediation, also in this case the inter-

faces and the overall interactions are simplified thanks

to the mediator. However, the price of employing an

additional layer of indirection between the elements of

a system must be paid.

Cross-references
▶ Enterprise Service Bus

▶ Event Transformation

▶ Schema Mapping

▶View Adaptation

Recommended Reading
1. Fensel D. and Bussler C. The web service modeling framework

WSMF. Electron. Comm. Res. Appl., 1(1):113–137, 2002.

2. Fowler M. Patterns of Enterprise Application Architecture.

Addison-Wesley, Reading, MA, November 2002.

3. Gamma E., Helm R., Johnson R., and Vlissides J. Design Pat-

terns: Elements of Reusable Software. Addison-Wesley, Reading,

MA, 1995.

4. Mrissa M., Ghedira C., Benslimane D., Maamar Z., Rosenberg F.,

and Dustdar S. A context-based mediation approach to compose

semantic web services. ACM Trans. Internet Technol., 8(1):4,

2007.

5. Papakonstantinou Y., Garcia-Molina H., and Widom J. Object

exchange across heterogeneous information sources. In Proc.

11th Int. Conf. on Data Engineering, 1995, pp. 251–260.

6. Park J. and Ram S. Information systems interoperability: What

lies beneath? ACM Trans. Inf. Syst., 22(4):595–632, 2004.

7. Rahm E. and Bernstein P.A. A survey of approaches to auto-

matic schema matching. Int. VLDB J., 10(4):334–350, December

2001.

8. Wiederhold G. Mediators in the architecture of future informa-

tion systems. Computer, 25(4):38–49, 1992.

9. Wiederhold G. and Genesereth M.R. The conceptual basis for

mediation services. IEEE Expert, 12(5):38–47, 1997.

10. Ziegler P. Data Integration Project World-Wide, 2008. http://

www.ifi.unizh.ch/~pziegler/IntegrationProjects.html.
Mediation and Adaptation

▶Database Middleware

Memory Hierarchy M 1707
Medical Genetics

▶ Implications of Genomics for Clinical Informatics
MEDLINE/ PubMed

▶Biomedical Scientific Textual Data Types and

Processing
M

Membership Query

MIRELLA M. MORO

The Federal University of Rio Grande do Sol,

Porte Alegre, Brazil

Synonyms
Equality query; Equality selection

Definition
Consider a relation R whose schema contains some

attribute A taking values over a domain D. A member-

ship query retrieves all tuples in R with A = x (x ∈ D).

Key Points
A membership query effectively checks membership in

a set (relation). As such, it can be implemented using

either a hash-based index (built on the attribute(s)

involved in the query) or a B+-tree. If a hashing

scheme is used, each indexed value is placed on an

appropriate hash bucket. Then all records that satis-

fy A = x are located on the bucket responsible for

value x. If A is a numeric attribute (and can thus be

indexed using an order-preserving access method like

a B+-tree) the membership query is a special case of a

range query where the range interval [low, high] is

reduced to a single value (low = high = x).

Cross-references
▶Access Methods

▶B+-Tree

▶Hashing
Memory Consistency

▶Consistency Models For Replicated Data
Memory Hierarchy

STEFAN MANEGOLD

CWI, Amsterdam, The Netherlands

Synonyms
Hierarchical memory system

Definition
A Hierarchical Memory System – or Memory Hierar-

chy for short – is an economical solution to provide

computer programs with (virtually) unlimited fast

memory, taking advantage of locality and cost-

performance of memory technology. Computer stor-

age and memory hardware – from disk drives to

DRAM main memory to SRAM CPU caches – shares

the limitation that as they became faster, they become

more expensive (per capacity), and thus smaller. Con-

sequently, memory hierarchies are organized into sev-

eral levels, starting from huge and inexpensive but slow

disk systems to DRAMmain memory and SRAM CPU

caches (both off and on chip) to registers in the CPU

core. Each level closer to the CPU is faster but smaller

than the next level one step down in the hierarchy.

Memory hierarchies exploit the principle of locality,

i.e., the property that computer programs do not ac-

cess all their code and data uniformly, but rather focus

on referencing only small fractions for given periods of

time. Consequently, during each period of time, only

the fraction currently referenced – also called hot-set,

locality-set, or working-set – needs to be present in the

fastest memory level, while the remaining data and

code can stay in slower levels. In general, all data in

one level is also found in all (slower but larger) mem-

ory levels below it.
Historical Background
A three-level memory hierarchy, consisting of (i) the

CPU’s registers, (ii) DRAM main-memory as primary

storage and (iii) secondary storage, has been in use

since the introduction of drums and then disk drives

as secondary storage. In this memory hierarchy, the

decision of which data are loaded into a higher level at

what time (and written back in case it is modified) is

completely under software control. Application pro-

grams determine when to load data from secondary to

primary memory, and compilers determine when to

load data from main memory into CPU registers.

1708M Memory Hierarchy
With the introduction of virtual memory around

1960 [10] application software – and in particular their

programmers – are provided with uniformly addressable

memory larger than physical memory. The operating

system takes care of loading the references portion of

data into main memory, automating page transfers, and

hence relieving programmers from this task. In the late

1960s, the discovery of the locality principle [7] led to the

invention ofworking sets [6] that exploit locality proper-

ties to predict data references, and enabled the design

of page replacement algorithms that make virtual mem-

ory work efficiently and reliably in multiprogramming

environments. Since then, virtual memory has become

an inherent feature of operating systems. In contrast to

many other application programs, a database manage-

ment system usually does not rely on the operating

system’s generic virtual memory management, only.

Instead, it implements its own buffer pool, exploiting

domain specific knowledge to implement application-

specific replacement algorithms.

Until the 1980s, the three-level memory hierarchy

has been the state-of-the art, mainly because main

memory is considered fast enough to serve the CPU –

or better, the CPU were ‘‘slow enough.’’ Since then,

a continuously growing performance gap develops

between CPU and main memory. With the chip inte-

gration technology following Moore’s Law [12], i.e.,

doubling the number of transistors per chip area rough-

ly every 1.5 years, the performance has grown expo-

nentially, due to increasing clock-speeds, increasing

inherent parallelism, or both. Advanced manufacturing

techniques has grown the capacity and – thanks to even

wider and faster system buses – their data transfer

bandwidth of main memory similarly. Memory access

latency, however, has lagged behind, demonstrating at

most a slight linear improvement.

To bridge this performance gap, in the 1980’s hard-

ware designers started to extend the memory hierarchy

by adding small (and expensive) but fast SRAM cache

memories between the CPU and main memory. Initi-

ally, a single cache level is added, either located on

the system board between CPU and main memory,

or integrated on the CPU chip. With advancing inte-

gration and manufacturing techniques, more levels

are added. Nowadays, two to three cache levels int-

egrated on the CPU chip represent the most common

configuration.

The main difference between cache memories and

the original three levels of the memory hierarchy is that
their contents are completely controlled by hardware

logic. Relying on the locality principle, carefully turned

replacement algorithms (usually variations of LRU),

decide when data are loaded into or evicted from

which cache level. While ensuring transparent use

and easy portability, this approach leaves programs

virtually without means to explicitly control the con-

tent of CPU caches. In modern systems, software pre-

fetching commands have been introduced to provide

programs with limited control to (pre-)load data into

caches without actually accessing it.

The scientific computing and algorithm commu-

nities – both usually focusing on compute-intensive

tasks on memory-based data sets – quickly realized

that they have to make the algorithms and data struc-

tures cache-conscious to exploit the performance poten-

tials of ever faster CPU and CPU caches effectively and

efficiently.

The database world initially ignored the new hard-

ware developments, assuming that optimizing disk

access (I/O) is still the key to high performance execu-

tion of data-intensive tasks on large disk-based data

sets. First proposals of cache-conscious database algo-

rithms occurred in the mid 1990s [14]. It was not until

the end of the 20th century that the database commu-

nity realized that memory access has become a severe

bottleneck also for database query processing perfor-

mance, taking up to 90% of the execution time [4,5].

In the last decade, the development of hardware-aware

database technology from system architectures over

data structures to query processing algorithms

has become a very active and recognized research area

[1–3,13].

Foundations

Memory- and Cache-Architectures

Modern computer architectures have a hierarchical

memory system, as depicted in Fig. 1. The main mem-

ory on the system board consists of DRAM (Dynamic

Random Access Memory) chips. While CPU speeds are

increasing rapidly, DRAM access latency has hardly

progressed over time. To narrow the exponentially

growing performance gap between CPU speed and

memory latency (cf., Fig. 2), cache memories have

been introduced, consisting of fast but expensive

SRAM (Static Random Access Memory) chips. SRAM

cells are usually made-up of six transistors per memory

bit, and hence, they consume a rather large area on the

Memory Hierarchy M 1709
chips. DRAM cells require a single transistor and a

small capacitor to store a single bit. Thus, DRAMs

can store much more data than SRAMs of equal (phys-

ical) size. But due to some current leakage, the capaci-

tor in DRAMs get discharged over time, and have to be

recharged (refreshed) periodically to keep their infor-

mation. These refreshes slow down access.

The fundamental principle of all cache architec-

tures is ‘‘reference locality,’’ i.e., the assumption that at

any time the CPU, thus the program, repeatedly

accesses only a limited amount of data (i.e., memory)
Memory Hierarchy. Figure 1. Hierarchical memory

architecture.

Memory Hierarchy. Figure 2. Trends in CPU and DRAM spe

M

that fits in the cache. Only the first access is ‘‘slow,’’ as

the data have to be loaded from main memory. This is

called a compulsory cache miss (see below). Subsequent

accesses (to the same data or memory addresses) are

then ‘‘fast’’, as the data are then available in the cache.

This is called a cache hit. The fraction of memory

accesses that can be fulfilled from the cache is called

cache hit rate; analogously, the fraction of memory

accesses that cannot be fulfilled from the cache is called

cache miss rate.

Cache memories are often organized in multiple

cascading levels between the main memory and the

CPU. As they become faster, but smaller, the closer

they are to the CPU. Originally, there was one level

(typically 64 KB to 512 KB) of cache memory located

on the system board. As the chip manufacturing pro-

cesses improved, a small cache of about 4 KB to 16 KB

was integrated on the CPU’s die itself, allowing much

faster access. The on-board cache is typically not

replaced by the on-chip cache, but rather both make

up a cache hierarchy, with the one on chip called first

level (L1) cache and the one on board called second

level (L2) cache. Over time, the L2 cache has also been

integrated on the CPU’s die (e.g., with Intel’s Pentium

III ‘‘Coppermine,’’ or AMD’s Athlon ‘‘Thunderbird’’).

On PC systems, the on-board cache has since disappea-

red, keeping two cache levels. On other platforms, e.g.,

workstations based on Compaq’s (formerly DEC’s)
ed.

1710M Memory Hierarchy
Alpha CPU, the on-board cache is kept as third level

(L3) cache, next to the two levels on the die. Most

recent multi-core CPUs usually have a private L1

cache of 16 KB to 64 KB per core. The L2 cache is

also integrated on the CPU’s die. L2 configuration vary

between one private L2 per core to one single L2 that is

shared among all cores. On Intel’s Core 2 Quad, for

instance, each of the two L2 caches is shared by two of

the four cores. Typical L2 sizes are in the order of 1 MB

to 8 MB.

To simplify presentation, the remainder of this entry

assumes a typical system with two cache levels (L1 and

L2). However, the discussion can easily be generalized to

an arbitrary number of cascading cache levels in a

straightforward way.

In practice, caches memories do not only cache the

data used by an application, but also the program itself,

more accurately, the instructions that are currently

being executed. With respect to caching, there is one

major difference between data and program. Usually, a

program must not be modified while it is running, i.e.,

the caches may be read-only. Data, however, requires

caches that also allow modification of the cached data.

Therefore, almost all systems nowadays implement two

separate L1 caches, a read-only one for instructions

and a read-write one for data. The L2 cache, however,

is usually a single ‘‘unified’’ read-write cache used for

both instructions and data.

Caches are characterized by three major parameters:

Capacity (C), Line Size (Z), and Associativity (A):
Capacity (C) A cache’s capacity defines its total size

in bytes. Typical cache sizes range from8KB to 8MB.

Line Size (Z) Caches are organized in cache lines,

which represent the smallest unit of transfer be-

tween adjacent cache levels. Whenever a cache miss

occurs, a complete cache line (i.e., multiple consec-

utive words) is loaded from the next cache level or

from main memory, transferring all bits in the

cache line in parallel over a wide bus. This exploits

spatial locality, increasing the chances of cache hits

for future references to data that are ‘‘close to’’ the

reference that caused a cache miss. Typical cache

line sizes range from 16 bytes to 256 bytes. Divid-

ing the cache capacity by the cache line size

yields the number of available cache lines in the

cache: # = C∕Z.
Associativity (A) To which cache line the memory

is loaded depends on the memory address and on
the cache’s associativity. An A-way set associative

cache allows loading a line in A different positions.

If A > 1, some cache replacement policy chooses

one from among the A candidates. Least Recently

Used (LRU) is the most common replacement al-

gorithm. In case A = 1, the cache is called directly-

mapped. This organization causes the least (virtu-

ally no) overhead in determining the cache line

candidate. However, it also offers the least flexibili-

ty and may cause a lot of conflict misses (see below).

The other extreme case is a fully associative cache.

Here, each memory address can be loaded to any

line in the cache (A = #). This avoids conflict

misses, and only capacity misses (see below) occur

as the cache capacity is exceeded. However, deter-

mining the cache line candidate in this strategy

causes a relatively high overhead that increases

with the cache size. Hence, it is feasible for only

smaller caches. Current PCs and workstations typi-

cally implement two-way to eight-way set associa-

tive caches.
With multiple cache levels, two types are distinguished:

inclusive and exclusive caches. With inclusive caches, all

data stored in L1 is also stored in L2. As data are loaded

from memory, they are stored in all cache levels.

Whenever a cache line needs to be replaced in L1

(because a mapping conflict occurs or as the capacity

is exceeded), its original content can simply be dis-

carded as another copy of that data still remains in the

(usually larger) L2. The new content is then loaded

from where it is found (either L2 or main memory).

The total capacity of an inclusive cache hierarchy is

hence determined by the largest level. With exclusive

caches, all cached data are stored in exactly one cache

level. As data are loaded from memory, they get stored

only in the L1 cache. When a cache lines needs to be

replaced in L1, its original content is first written back

to L2. If the new content is then found in L2, it is

moved from L2 to L1, otherwise, it is copied from

main memory to L1. Compared to inclusive cache

hierarchies, exclusive cache hierarchies virtually extend

the cache size, as the total capacity becomes the sum of

all levels. However, the ‘‘swap’’ of cache lines between

adjacent cache levels in case of a cache miss also causes

more ‘‘traffic’’ on the bus and hence increases the cache

miss latency.

Cache misses can be classified into the following dis-

joint types [9]:

Memory Hierarchy M 1711

M

Compulsory The very first reference to a cache line

always causes a cache miss, which is hence classified

as a compulsory miss, i.e., an unavoidable miss

(even) in an infinite cache. The number of compul-

sory misses obviously depends only on the data

volume and the cache line size.

Capacity A reference that misses in a fully associa-

tive cache is classified as a capacity miss because the

finite sized cache is unable to hold all the referenced

data. Capacity misses can be minimized by increas-

ing the temporal and spatial locality of references in

the algorithm. Increasing cache size also reduces

the capacity misses because it captures more

locality.

Conflict A reference that hits in a fully associative

cache but misses in an A-way set associative cache is

classified as a conflict miss. This is because even

though the cache is large enough to hold all the

recently accessed data, its associativity constraints

force some of the required data out of the cache

prematurely. For instance, alternately accessing

just two memory addresses that ‘‘happen to be’’

mapped to the same cache line will cause a conflict

cache miss with each access. Conflict misses are the

hardest to remove because they occur due to address

conflicts in the data structure layout and are specific

to a cache size and associativity. Data structures

would, in general, have to be remapped to minimize

conflicting addresses. Increasing the associativity of a

cache will decrease the conflict misses.

Coherence Only in case of multi-processor or

multi-core systems with private per processor/core

high-level caches but shared lower-level caches and/

or main memory, the following can occur. If two or

more cores access the same data item, it will be

loaded in each private cache. If one core than modi-

fies this data item in its private cache, the other

copies are invalidated and cannot server futures

references. Instead, to ensure cache coherence, a

cache miss occurs, and the modified data item has

to be loaded from the cache that holds the most up-

to-date copy.
Memory Access Costs

In general, memory access costs are characterized by

the following three aspects:

Latency Latency is the time span that passes after

issuing a data access request until the requested data
is available in the CPU. In hierarchical memory sys-

tems, the latency increases with the distance from the

CPU. Accessing data that are already available in the L1

cache causes L1 access latency (lL1), which is typically

rather small (one or two CPU cycles). In case the

requested data are not found in L1, an L1 miss occurs,

additionally delaying the data access by L2 access laten-

cy (lL2) for accessing the L2 cache. Analogously, if

the data are not yet available in L2, an L2 miss occurs,

further delaying the access by memory access latency

(lMem) to finally load the data from main memory.

Hence, the total latency to access data that are in

neither cache is lMem + lL2 + lL1. As L1 accesses

cannot be avoided, L1 access latency is often assumed

to be included in the pure CPU costs, leaving only

memory access latency and L2 access latency as explicit

memory access costs. As mentioned above, all current

hardware actually transfers multiple consecutive words,

i.e., a complete cache line, during this time.

When a CPU requests data from a certain memory

address, modern DRAM chips supply not only the

requested data, but also the data from subsequent

addresses. The data are then available without addi-

tional address request. This feature is called Extended

Data Output (EDO). Anticipating sequential memory

access, EDO reduces the effective latency. Hence, two

types of latency for memory access need to be distin-

guished. Sequential access latency (ls) occurs with se-

quential memory access, exploiting the EDO feature.

With random memory access, EDO does not speed up

memory access. Thus, random access latency (lr) is

usually higher than sequential access latency.

Bandwidth Bandwidth is a metric for the data volume

(in megabytes) that can be transferred between CPU

and main memory per second. Bandwidth usually

decreases with the distance from the CPU, i.e., between

L1 and L2 more data can be transferred per time than

between L2 and main memory. The different band-

widths are referred to as L2 access bandwidth (bL2)
and memory access bandwidth (bMem), respectively. In

conventional hardware, the memory bandwidth used

to be simply the cache line size divided by the memory

latency. Modern multiprocessor systems typically pro-

vide excess bandwidth capacity b0� b. To exploit this,

caches need to be non-blocking, i.e., they need to allow

more than one outstanding memory load at a time,

and the CPU has to be able to issue subsequent

load requests while waiting for the first one(s) to be

Memory Hierarchy. Table 1. Characteristic parameters

per cache level (i 2 {1,..., N})2

Description Unit Symbol

Cache name (level) – Li

Cache capacity [bytes] Ci

Cache block size [bytes] Zi

Number of cache lines – #i = Ci ∕Zi
Cache associativity – Ai

Sequential access

Access bandwidth [bytes/ns] bSiþ1

Access latency [ns] lsi+1 = Zi=b
S
iþ1

Miss latency [ns] li
s = lSiþ1

Miss bandwidth [bytes/ns] bi
s = bSiþ1

Random access

Access latency [ns] lri+1
Access bandwidth [bytes/ns] bri+1 = Zi ∕l

r
iþ1

Miss bandwidth [bytes/ns] bi
r = briþ1

Miss latency [ns] li
r = lriþ1

1712M Memory Hierarchy
resolved. Further, the access pattern needs to be se-

quential, in order to exploit the EDO feature as

described above.

Indicating its dependency on sequential access, the

excess bandwidth is referred to as sequential access

bandwidth (bs = b0). The respective sequential access

latency is defined as ls = Z ∕bs. For random access la-

tency as described above, the respective random access

bandwidth is defined as br = Z ∕lr.

On some architectures, there is a difference be-

tween read and write bandwidth, but this difference

tends to be small.

Address Translation For data access, logical virtual

memory addresses used by application code have to

be translated to physical page addresses in the main

memory of the computer. In modern CPUs, a Transla-

tion Lookaside Buffer (TLB) is used as a cache for

physical page addresses, holding the translation for

the most recently used pages (typically 64). If a logical

address is found in the TLB, the translation has no

additional costs. Otherwise, a TLB miss occurs. The

more pages an application uses (which also depends on

the often configurable size of the memory pages), the

higher the probability of TLB misses.

The actual TLB miss latency (lTLB) depends on

whether a system handles a TLB miss in hardware or

in software. With software-handled TLB, TLB miss

latency can be up to an order of magnitude larger

than with hardware-handled TLB. Hardware-handled

TLB fetches the translation from a fixed memory struc-

ture that is just filled by the operating system. Soft-

ware-handled TLB leaves the translation method

entirely to the operating system, but requires trapping

to a routine in the operating system kernel on each

TLB miss. Depending on the implementation and

hardware architecture, TLB misses can therefore be

more costly than a main-memory access. Moreover,

as address translation often requires accessing some

memory structure, this can in turn trigger additional

memory cache misses.

TLBs can be treated similar to memory caches, using

the memory page size as their cache line size, and calcu-

lating their (virtual) capacity as number_of _entries �
page_size. TLBs are usually fully associative. Like

caches, TLBs can be organized in multiple cascading

levels.

For TLBs, there is no difference between sequential

and random access latency. Further, bandwidth is
irrelevant for TLBs, because a TLB miss does not

cause any data transfer.

Unified Hardware Model

Summarizing the above discussion, one can describe a

computer’s memory hardware as a cascading hierarchy

of N levels of caches (including TLBs) [11]. An index

i 2 {1,...,N} added to the parameters described above

identifies to the respective value of a specific level. The

relation between access latency and access bandwidth

then becomes li+1 = Zi ∕bi+1. Exploiting the dualism

that an access to level i + 1 is caused a miss on level i

allows some simplification of the notation. Introdu-

cing the miss latency li = li+1 and the respective miss

bandwidth bi = bi+1 yields li = Zi ∕bi. Each cache level is

characterized by the parameters given in Table 1. Costs

for L1 cache accesses are assumed to be included in the

CPU costs, i.e., l1 and b1 are not used and hence

undefined.

Manegold developed a system independent C pro-

gram called Calibrator to measure these parameters on

any computer hardware.

Key Applications
In the last decade, the database community has done

much research on modifying existing and developing

new database technology (system architecture, data

Memory Locality M 1713

M

structures, query processing algorithms) to exploit the

characteristics of the extended memory hierarchy effi-

ciently and effectively, improving query evaluation

performance up to orders of magnitude.

URL to Code
Manegold’s cache-memory and TLB calibration tool

Calibrator is available at http://homepages.cwi.nl/

~manegold/Calibrator/calibrator.shtml

Cross-references
▶Buffer Management

▶Buffer Manager

▶Buffer Pool

▶Cache-Conscious Query Processing

▶ Locality

▶Main Memory

▶Main Memory DBMS

▶ Processor Cache

▶ Secondary Memory

Recommended Reading
1. Ailamaki A., Boncz P.A., and Manegold S. (eds.). Proc. Work-

shop on Data Management on New Hardware, 2005.

2. Ailamaki A., Boncz P.A., and Manegold S. (eds.). Proc. Work-

shop on Data Management on New Hardware, 2006.

3. Ailamaki A. and Luo Q. (eds.) Proc. Workshop on Data

Management on New Hardware, 2007.

4. Ailamaki A.G., DeWitt D.J., Hill M.D., and Wood D.A. DBMSs

on a Modern Processor: Where does time go? In Proc. 25th Int.

Conf. on Very Large Data Bases, 1999, pp. 266–277.

5. Boncz P.A., Manegold S., and Kersten M.L. Database Architec-

ture Optimized for the New Bottleneck: memory access. In Proc.

25th Int. Conf. on Very Large Data Bases, 1999, pp. 54–65.

6. Denning P.J. The working set model for program behaviour.

Commun. ACM, 11(5):323–333, 1968.

7. Denning P.J. The locality principle. Commun. ACM, 48

(7):19–24, 2005.

8. Hennessy J.L. and Patterson D.A. Computer Architecture – A

Quantitative Approach, 3rd edn. Morgan Kaufmann, San

Mateo, CA, USA, 2003.

9. Hill M.D. and Smith A.J. Evaluating associativity in CPU caches.

IEEE Trans. Comput., 38(12):1612–1630, December 1989.

10. Kilburn T., Edwards D.B.C., Lanigan M.I., and Sumner F.H.

One-level storage system. IRE Trans. Electronic Comput.,

2(11):223–235, April 1962.

11. Manegold S. Understanding, Modeling, and Improving Main-

Memory Database Performance. PhD thesis, Universiteit van

Amsterdam, Amsterdam, The Netherlands, December 2002.

12. Moore G.E. Cramming more components onto integrated cir-

cuits. Electronics, 38(8):114–117, April 1965.

13. Ross K. and Luo Q. (eds.). In Proc. Workshop on Data Manage-

ment on New Hardware, 2007.
14. Shatdal A., Kant C., and Naughton J. Cache conscious algo-

rithms for relational query processing. In Proc. 20th Int. Conf.

on Very Large Data Bases, 1994, pp. 510–512.
Memory Locality

STEFAN MANEGOLD

CWI, Amsterdam, The Netherlands

Synonyms
Principle of locality; Locality principle; Locality of

reference

Definition
Locality refers to the phenomenon that computer

programs — or computational processes in general —

do not access all of their data items uniformly and

independently, but rather in a clustered and/or depen-

dent/correlated manner. Some data items are accessed

more often than others, repeated accesses to the same

data item occur in bursts, and related items are usually

accessed together, concurrently or within a short time

interval.

There are two types of locality:

1. Temporal locality means that accesses to the

same data item are grouped in time, i.e., multiple

accesses to the same data item occur in rather short

time intervals compared to rather long time peri-

ods where the same data item is not accessed.

Hence, temporal locality is the concept that a data

item that is referenced by a program at one point in

time will be referenced again sometime in the near

future.

2. Spatial locality means that data items that are

stored physically close to each other tend to be

accessed together. Hence spatial locality is the con-

cept that likelihood of referencing a data item by a

program is higher if a data item near it has been

referenced recently.

Locality belongs to the most fundamental principles of

computer science.

Key Point
The discovery of the locality principle dates back to the

1960s. Denning’s pioneering work on working-set

memory management exploits the locality principle

to avoid thrashing of virtual memory systems high

levels of multiprogramming [2,3]. Today, this is the

1714M Merge Join
key to making virtual memory systems work reliably

and efficiently.

In particular, with modern hierarchical memory

architectures, exploiting and increasing locality in

algorithms and data structures is the key to achieving

high performance.

Increased temporal locality ensures that once a data

item is referenced, and hence loaded into a fast high-

level memory (e.g., cache), all subsequent references

occur in short succession while the data item is still

available in the cache. Ideally, this data item will not be

required, again, once it is evicted from the fast high-

level memory.

Data transfer between adjacent levels of hierarchi-

cal memory systems does not happen per byte but with

larger granularities, e.g., pages of multiple KB or even

MB at a time between disk and main memory, cache

lines of tens to hundreds of bytes between main mem-

ory and CPU cache. Increased spatial locality ensures

that all data bytes/items that are loaded with each

transfer are indeed useful for the program.

Database system architecture exploits and increases

locality in numerous ways. Key examples for increased

temporal locality are, for instance partitioned join

algorithms, where iterating over small partition of the

outer relation increases temporal locality of repeated

access to the inner relation [5,4]. In fact, smaller parti-

tions of the inner relation also increased spatial loca-

lity. Examples of spatial locality range from clustered

indices over tuned page layouts such as PAX [1] to

the decision between column-stores and row-stores

to optimal support of column-major (OLAP) of row-

major (OLTP) workloads.

Cross-references
▶Buffer Management

▶Buffer Manager

▶Buffer Pool

▶Cache-Conscious Query Processing

▶Main Memory

▶Main Memory DBMS

▶Memory Hierarchy

▶ Processor Cache

▶ Secondary Memory

Recommended Reading
1. Ailamaki A.G., DeWitt D.J., Hill M.D., and Skounakis M. Weav-

ing relations for cache performance. In Proc. 27th Int. Conf. on

Very Large Data Bases, 2001, pp. 169–180.
2. Denning P.J. The working set model for program behaviour.

Commun. ACM, 11(5):323–333, 1968.

3. Denning P.J. The locality principle. Commun. ACM,

48(7):19–24, 2005.

4. Manegold S., Boncz P.A., and Kersten M.L. Optimizing main-

memory join on modern hardware. IEEE Trans. Knowl. Data

Eng., 14(4):709–730, July 2002.

5. Shatdal A., Kant C., and Naughton J. Cache conscious algo-

rithms for relational query processing. In Proc. 20th Int. Conf.

on Very Large Data Bases, 1994, pp. 510–512.
Merge Join

▶ Sort-Merge Join
Merge-purge

▶Deduplication in Data Cleaning

▶Record Matching
Merkle Hash Trees

▶Merkle Trees
Merkle Trees

BARBARA CARMINATI

University of Insubria, Varese, Italy

Synonyms
Merkle hash trees; Hash trees; Authentication trees

Definition
Merkle trees are data structures devised to authenti-

cate, with a unique signature, a set of messages, by at

the same time making an intended verifier able to

verify authenticity of a single message without the

disclosure of the other messages. In particular, given

a set of messages M = {m1,...,mn}, the Merkle tree

created with them is a binary tree whose leaves contain

Message Authentication Codes M 1715

M

the hash value of each message m in M, whereas inter-

nal nodes contain the concatenation of the hash values

corresponding to its children.

Key Point
A Merkle tree is a data structure introduced by Merkle

in 1979 [1] to improve the Lamport-Diffie one-time

signature scheme [2]. In this digital signature scheme,

keys can be used to sign, at most, one message. This

implies that for each signed message a new public key

has to be generated and published. As consequence,

Lamport-Diffie one-time digital signature scheme

requires publishing a large amount of data. To over-

come this drawback, in [1] Merkle proposed a tree-

structure, called authentication tree, with the aim of

authenticating a large number of public keys to be used

in one-time signature scheme.

In general, Merkle trees can be exploited to authen-

ticate with a unique signature a set of messages by, at

the same, time making an intended verifier able to

authenticate a single message without the disclos-

ure of the other messages. Given a set of messages

M = {m1,...,mn}, the corresponding Merkle tree is

computed by means of the following bottom-up recur-

sive computation: at the beginning, for each different

message m 2 M, a different leaf containing the hash

value of m is inserted into the tree; then, for each

internal node, the value associated with it is equal to

h(hljjhr), where hljjhr denotes the concatenation of the

hash values corresponding to the left and right children

nodes, and h() is an hash function. The root node of

the resulting binary hash tree is the digest of all the

messages, and thus it can be digitally signed by using a

standard signature technique. The main benefit of this

method is that a user is able to validate the signature by

having a subset of messages, providing him/her with a

set of additional hash values corresponding to missing

messages. Indeed, these additional hash values, togeth-

er with the provided set of original messages, make a

user able to locally re-build the binary tree and, there-

fore, to validate the signature generated on its root.

Consider, for instance, the following set of messa-

ges M = {m1, m2, m3, m4}. The Merkle tree created

with them is a complete binary tree with height of

two. More precisely, according to the recursive compu-

tation, the root value of the Merkle tree is equal to

h(hrljjhrr), where hrl is its left children with value

h(h(m1)jjh(m2)), whereas hrr is its right children

with value h(h(m3)jjh(m4)). Assume, now, that a user
receives only messages m1 and m2. To make him/her

able to validate the signature, he/she must be provided

also with hash value hrr. Indeed, by having m1 and m2

messages, the user is able to calculate hrl. Then, using

hrr and hrl he/she can compute the hash value of the

root, and thus verify the signature.

Cross-references
▶Digital Signatures

▶ Secure Data Outsourcing

Recommended Reading
1. Merkle R. Secrecy, authentication, and public key systems.

Electrical Engineering, PhD Thesis, Stanford University, 1979.

2. Lamport L. Constructing digital signatures from a one-way

function. Technical Report CSL-98, SRI International, Palo

Alto, 1979.
Message Authentication Codes

MARINA BLANTON

University of Notre Dame, Notre Dame, IN, USA

Synonyms
MAC; Message integrity codes

Definition
A message authentication code (MAC) is a short fixed-

length value which is used to authenticate a message. A

MAC algorithm can be viewed as a hash function that

takes as input two functionally distinct values: a secret

key and a message. The output of a MAC algorithm is a

short string computed in such a way that it is infeasible

to produce the same output on the message without

the knowledge of the key. Thus, the MAC value pro-

tects both the integrity and authenticity of a message by

allowing the entity in possession of the secret key to

detect any changes to the message content.

Key Points
While MAC functions can be viewed as keyed crypto-

graphic hash functions, they have specific security

requirements for authentication purposes. More pre-

cisely, an attacker who does not have access to the

secret key and has not seen the MAC value for a specific

message before should not be able to compute that

value. MAC functions use symmetric techniques (i.e.,

the same key is used to create and verify a MAC) and

1716M Message Integrity Codes
thus are different from digital signatures where the

signing and verification keys differ. Practical MAC

algorithms can be constructed from cryptographic

hash functions (for example, HMAC) or from block

ciphers (for example, CBC-MAC and others).
Cross-references
▶Authentication

▶Digital Signatures

▶Hash Functions

▶ Symmetric Encryption
Recommented Reading
1. Krawczyk H., Bellare M., and Canetti R. HMAC: Keyed-hashing

for message authentication, RFC 2104. Internet Engineering

Task Force (IETF), 1997.

2. Stallings W. Cryptography and Network Security: Principles

and Practices (4th edn.). Pearson-Prentice Hall, Upper Saddle

River, NJ, 2006.
Message Integrity Codes

▶Message Authentication Codes (MAC)
Message Queuing Systems

SARA BOUCHENAK
1, NOËL DE PALMA

2

1University of Grenoble I — INRIA, Grenoble, France
2INPG — INRIA, Grenoble, France

Synonyms
Message-oriented middleware (MOM); Message-

oriented systems; Messaging systems; Queuing systems
Definition
Amessage is an information sent by a sender process to

a receiver process. A message queue is a mechanism

that allows a sender process and a receiver process to

exchange messages. The sender posts a message in the

queue, and the receiver retrieves the message from

the queue. A message queuing system provides a

means to build distributed systems, where distributed
processes communicate through messages exchanged

via queues.

Key Points
A message queuing system provides several facilities,

such as creating messages, creating queues, initializing

sender and receiver processes, and providing a means

to send and receive messages.

First of all, a message queuing system provides a

facility to build a message and fill it with data. Proper-

ties may be associated with a message, such as the

message size, the message expiration time and the

message priority.

A message queuing system also provides facilities to

create a queue and, optionally, to associate parameters

with a queue, such as the queue length (i.e., the maxi-

mum number of messages a queue may hold), the

queue topics (i.e., the types of messages the queues

may contain), etc.

The senders and receivers of messages may com-

municate in a synchronous way or in an asynchronous

way. With a synchronous communication protocol,

a receiver waits for a message from a sender, i.e., it

blocks until the message arrives. Whereas with an

asynchronous communication protocol, the receiver

continues executing and is notified of the reception

of a message when this one arrives.

Furthermore, the destination of a message may

be specified either explicitly or implicitly. In the explic-

it mode, the sender specifies the queue to which the

message is sent. While in the implicit mode, the sender

specifies a topic to which a message is sent, and the

message queuing system is responsible of automatically

finding the queues that correspond to that topic before

sending the message to these queues.

Several message queuing systems are proposed,

some are proprietary and others are open source. Ora-

cle proposes Advanced Queuing for Oracle databases

[3], Skype has Skytools PgQ for PostgreSQL databases

[5], IBM provides WebSphere MQ, Microsoft has

MSMQ [1], and Sun Microsystems defines Java Mes-

sage Service (JMS) as a specification of a Java standard

for message queuing systems [6]. Open source message

queuing systems include ActiveMQ [7], JBoss Messag-

ing [2], and JORAM [4].

Cross-reference
▶Adaptive Middleware for Message Queuing Systems

Metadata Interchange Specification M 1717
Recommended Reading
1. IBM.WebSphereMQ, 2008. http://www-306.ibm.com/software/

integration/wmq/.

2. JBoss. JBoss Messaging, 2008. http://labs.jboss.com/jbossmessa

ging/.

3. Oracle. Oracle9i Application Developer’s Guide – AdvancedQueu-

ing, 2008. http://download.oracle.com/docs/cd/B10500_01/app-

dev.920/a96587/toc.htm.

4. ScalAgent. JORAM: Java Open Reliable Asynchronous Messag-

ing, 2008. http://joram.objectweb.org/.

5. Skype. SkyTools PgQ, 2008. https://developer.skype.com/Skype

Garage/DbProjects/SkyTools.

6. Sun Microsystems. Java Message Service (JMS), 2008. http://

java.sun.com/products/jms/.

7. The Apache Software Foundation. Apache ActiveMQ, 2008.

http://activemq.apache.org/.
Message-Oriented Middleware
(MOM)

▶Message Queuing Systems

▶ Publish/Subscribe Over Streams
M

Message-oriented Systems

▶Message Queuing Systems
Messaging Engines

▶ Interface Engines in Healthcare
Messaging Systems

▶Message Queuing Systems
Meta Data Base

▶Meta Data Repository
Metadata Interchange Specification

WEI TANG

Teradata Corporation, El Segundo, CA, USA

Synonyms
MDIS

Definition
Metadata Interchange Specification (MDIS) is a stan-

dard proposed by the Metadata Coalition (MDC) for

defining metadata.

Key Points
Metadata Coalition (MDC) was an organization

of database and data warehouse venders founded in

October 1995. Its aim was to define a tactical set of

standard specifications for the access and interchange

of meta-data between software tools.

In July 1996, Metadata Interchange Specification

(MDIS) 1.0 was officially ratified by MDC.

The MDIS Version 1.0 specification represents Co-

alition member input and recommendations collected

and synthesized by the Coalition’s technical subcom-

mittee which included representatives from Business

Objects, ETI, IBM, Platinum Technology, Price Water-

house, Prism Solutions, R&O and SAS Institute. The

latest version of MDIS is 1.1, which was published in

August 1997.

The Metadata Interchange Specification draws a

distinction between:

� The Application Metamodel – the tables, etc., used

to ‘‘hold’’ the metadata for schemas, etc., for a

particular application; for example, the set of tables

used to store metadata in Composer may differ

significantly from those used by the Bachman

Data Analyst.

� The Metadata Metamodel – the set of objects that

the MDIS can be used to describe. These represent

the information that is common (i.e., represented)

by one or more classes of tools, such as data dis-

covery tools, data extraction tools, replication

tools, user query tools, database servers, etc. The

metadata metamodel should be:
– Independent of any application metamodel.

– Character-based so as to be hardware/platform-

independent.

1718M Meta Data Management System
– Fully qualified so that the definition of each

object is uniquely identified.
There are two basic aspects of the specification:

1. Those that pertain to the semantics and syntax used

to represent the metadata to be exchanged. These

items are those that are typically found in a speci-

fications document.

2. Those that pertain to some framework in which the

specification will be used. This second set of items

is two file-based semaphores that are used by the

specification’s import and export functions to help

the user of the specification control consistency.

MDIS consists of a metamodel, which defines the

syntax and semantics of the metadata to be exchanged,

as well as the specification of a framework for support-

ing an actual MDIS implementation. The MDIS Meta-

model is a hierarchically structured, semantic database

model that’s defined by a tag language. The metamodel

consists of a number of generic, semantic constructs,

such as Element, Record, View, Dimension, Level, and

Subschema, plus a Relationship entity that can be used

in the specification of associations between arbitrary

source and target constructs. The MDIS metamodel

may be extended through the use of named properties

that are understood to be tool-specific and not defined

within MDIS. Interchange is accomplished via an

ASCII file representation of an instance of this meta-

model. Although support for an API is mentioned in

the specification, no API definition is provided.

The MDIS Access Framework specifies several

fairly general mechanisms that support the inter-

change of metamodel instances. The Tool and Con-

figuration Profiles define semaphores that ensure

consistent, bidirectional metadata exchange between

tools. The MDIS Profile defines a number of system

parameters (environment variables) that would be

necessary in the definition of an MDIS deployment.

Finally, Import and Export functions are exposed by

the framework as the primary file interchange

mechanisms for use by tools.

MDIS 1.1 was planned to be incorporated with

Microsoft’s Open Information Model (OIM) when

Microsoft joined the MDC in December 1998. MDC

decided later that MDIS be superseded by OIM. In

2000, the Metadata Coalition merged with the Object

Management Group (OMG). OMG has worked on

integrating OIM into its Common Warehouse Model
(CWM) in order to provide a single standard for

modeling meta-data in data warehouses. MDC,

MDIS, and OIM are no longer in existence today (as

independent entities).

Cross-references
▶Common Warehouse Metamodel (CWM)

▶Metadata Coalition (MDC)

▶Open Information Model (OIM)

Recommented Reading
1. Metadata Interchange Specification (MDIS) Version 1.1. Avail-

able at: http://www.eda.org/rassp/documents/atl/MDIS-11.pdf
Meta Data Management System

▶Meta Data Repository
Meta Data Manager

▶Meta Data Repository
Meta Data Registry

▶Meta Data Repository
Meta Data Repository

CHRISTOPH QUIX

RWTH Aachen University, Aachen, Germany

Synonyms
Meta data base; Meta data manager; Meta data

management system; Meta data registry

Definition
A meta data repository (MDR) is a component which

manages meta data. In the context of database systems,

one example of meta data is information about the

database schema, i.e., a description of the data. In

addition, MDRs can manage information about the

processes which create, use, or update the data, the

hardware components that host these processes or

Meta Data Repository M 1719

M

the database system, or other (human) resources which

make use of the data [6]. As meta data is also data,

meta data repositories offer the same functionality for

meta data as database management systems (DBMS)

for data, e.g., queries, updates, transactions, access

control.

Moreover, as meta data is semantically rich data,

MDRs often employ object-oriented data models as

the basis for the definition of meta data. MDRs should

also offer predefined meta models for different types of

meta data, so that the user is able to store meta data

directly, without defining a meta model in advance.

Another task for a meta data repository is the

integration of meta data from various sources into a

comprehensive meta data model.

Historical Background
The first components that managed meta data in the

context of database systems were dictionary systems

which were integrated into the database management

systems (DBMS) [12]. These dictionaries were already

part of early DBMS products, such as IDMS or IBM

IMS. For example, the integrated data dictionary

(IDD) of IDMS was a separate database inside the

IDMS which was used to maintain meta data of pro-

ducts in the IDMS family [11]. It could be extended

also to maintain other types of meta data.

The relational database systems developed in the

1980s also had integrated dictionary systems (also

known as system catalogs) to maintain definitions

about tables, views, columns, etc. These dictionaries

were mainly used by the DBMS itself, but they could be

also queried by users and other applications to retrieve

information about the contents of a database.

In the 1980s, ANSI started to develop a standard

for Information Resource Dictionary Systems (IRDS)

which was later adopted by ISO [6]. The standard

defined the content, structure, and functionality of an

IRDS. The main requirements stated by the IRDS

standard are the availability of data modeling facilities,

extensibility (i.e., the possibility to add new data

types), and the provision of standard DBMS function-

ality such as query and reporting facilities, integrity

and constraint management, and access control.

With the growing need for integrated information

systems, stand-alone meta data repository systems

became more popular in the 1990s. In contrast to the

integrated repositories in DBMS products, a stand-

alone MDR was able to manage meta data from
different systems. The requirement for meta data inte-

gration was especially important for data warehouses,

where data that was managed by independent, hetero-

geneous systems should be integrated into a common

data store with a uniformed data model. The availabil-

ity of meta data of the data sources was a prerequisite

for data integration. In this context, some companies

tried to build enterprise wide meta data repositories

which were supposed to manage all meta data that is

available in the enterprise. Such an ambitious goal was

hard to achieve, and often, the return-of-investment of

such a system was not as high as expected [5]. There-

fore, the MDR market was significantly reduced at the

end of the 1990s.

Since 2000, two trends for meta data repositories

gained importance: community-focused repositories

and federated repositories [5]. Communicty-focused

repositories are employed in communities (within a

company), which share a common interest, such as

data warehousing or enterprise application integra-

tion. In these communities, the main problem of inter-

operability of meta data tools could be solved by

dedicated bridging technologies, because of the limited

scope of the meta data. With the rising importance of

service oriented architecture (SOA), MDR needed

again to address a broader scope of meta data. There-

fore, federated solutions for MDRs are considered to

be a solution for the meta data integration problem. In

a federated MDR, there are still several MDRs for

different communities but federated queries across

several MDRs are enabled [5].
Foundations

Requirements

Requirements for MDRs were stated in the IRDS stan-

dard [6], in [2], and in [1]:

1. Dynamic extensibility. The MDR should provide

easy functionalities for the extension of the built-

in data models.

2. Management of objects and relationships. Objects

and relationships between objects should be man-

aged by the MDR.

3. Notification. An operation on a specific object in

the MDR might trigger other operations on the

same or different objects. Therefore, the MDR

must be able to notify applications which are inter-

ested in certain events. In addition, the invocation

1720M Meta Data Repository
of methods inside the MDR (based on other

events) should be also possible.

4. Version management. Versioning of meta data is

required to track the evolution of a meta data

object. It is also important to know which versions

of two objects were active at a specific time. It

might be also necessary to maintain relationships

between older and newer versions of an object.

5. Configuration management. A configuration is a set

of meta data objects which belong together in re-

spect of content, e.g., they all describe the state of

one component. The MDR should be able to man-

age a configuration as one group. Configurations

can be also versioned.

6. Integrity constraints. The MDR must provide a lan-

guage for the definition of integrity constraints on

meta data, and enforce the compliance of the meta

data with these constraints.

7. Query and reporting functionality. To retrieve meta

data from the repository, the MDR needs to offer a

query language. In addition, user-configurable

reports should be also supported.

8. User access. If the MDR can be accessed directly

by end-users or administrators, the MDR needs

to support: a browsing facility for meta data, so that

users can navigate through the metadata; an access

control, so that users see or update only meta data

which they are allowed to; a sophisticated user inter-

face if the users are also allowed to update the meta

data, so that the integrity of the MDR is maintained.

9. Interoperability. To enable interoperability with

other tools and repositories, the MDR should sup-

port standards for meta data exchange (such as

XMI) and offer an API (application program

interface).
Architecture

There are several MDRs already available (see ‘‘Sys-

tems’’ section below), each having its own unique

architecture. However, by abstracting from these con-

crete architectures, several components which are

common for all MDRs can be identified:

1. Repository. The repository component is the inter-

nal data store of the MDR and therefore the core

of the MDR. As MDRs have to provide similar

functionality for meta data as DBMS for data,

the repository is often implemented on top of a

DBMS.
2. Meta data manager. The meta data manager acts as

the controller of the repository. As all accesses to

the repository should go through the meta data

manager, it provides an interface for external appli-

cations. Using this interface, applications can store,

update, and query meta data.

3. Models. A MDR needs to come with already prede-

fined meta models (or information models) which

can be directly employed by the users of the MDR

to store meta data. If the user has to define its own

meta models, the effort to get the MDR running

might be too high for the application. Nevertheless,

it should be possible to extend the existing models

for the specific requirements of the applications that

use the MDR.

4. User interface. As described above, a MDR can be

also accessed by users, which are either end-users

using the data or processes described in the MDR,

or administrators controlling the system of which

the MDR is a part. The user interface can consist

of a query facility, a meta data browser, an admin-

istrator interface, and an interface to update the

meta data.

As mentioned above, a current trend for MDRs is the

idea of a federated MDR. This changes the standard

architecture described before: the repository compo-

nent in a federated MDR is not one single data store,

the meta data can be distributed across several inde-

pendent and heterogeneous components. In a feder-

ated MDR architecture, the meta data could be stored

in files, databases, or managed by specific applications.

This increases the complexity of the meta data manag-

er significantly, as meta data queries have to be trans-

formed into queries of the individual systems holding

the meta data.
Systems

There are several MDRs available in the market. They

can be classified as stand-alone MDRs, repositories

integrated into larger software platforms, open source

systems and research prototypes.

The market for stand-alone MDRs is changing

frequently as companies specialized on MDRs are

being acquired by other companies. The current pro-

ducts for separate meta data management solutions

are, for example, ASG Rochade, Adaptive Metadata

Manager, and Advantage Repository. These products

came mainly from the data management area

Meta Data Repository M 1721

M

(especially used as MDRs in data warehouse systems),

but are now also addressing other areas such as enter-

prise application integration and service-oriented

architectures. Other systems, such as Logidex from

LogicLibrary or BEA AquaLogic Registry Repository,

have been originally developed as meta data systems

for service-oriented architectures.

As mentioned above, large software companies are

also addressing the meta data challenges in their soft-

ware or technology platforms. For example, IBM has

an integrated MDR in their information integration

framework.

There are also a fewopen source systemswhich canbe

used asMDR. Two examples are Repository in a Box and

XMDR. In the research community, ConceptBase [9]

is a MDR which has been used in several research pro-

jects. ConceptBase provides a very flexible data model

which can be used for any kind of meta data structure.

Key Applications
There are various application areas for MDRs, basically

in all areas in which the management of meta data is

necessary. The most important applications for MDRs

are situations in which meta data from different sources

has to be integrated in one repository. This goes usually

beyond the capabilities of builtinMDRs, i.e., repositories

which are integrated with other software components.

Data integration in general is an application area in

which MDRs play a central role. If data has to be

integrated from heterogeneous systems, the descrip-

tion of this data is required to enable the integration.

Data warehouse systems [8] are an example for an

architecture of integrated data management in which

the role of MDRs has been defined explicitely.

In the context of data warehouse systems, also the

problem of data quality has been discussed [10,7].

Meta data is often the basis for data quality measure-

ments, e.g., meta data describes the provenance, the

age, the semantics of data. Therefore, MDRs are im-

portant components for data quality projects.

A MDR can also be used as a resource for

structured documentation about IT systems. In addi-

tion to the ‘‘usual’’ meta data artefacts such as models

and mappings for data integration, also a documenta-

tion of the employed systems and their architecture in

an organization is useful.

As discussed before, service-oriented architecture

(SOA) are becoming an important concept for soft-

ware development. As a system based on a SOA
is a distributed and often heterogeneous system,

the management of meta data in a SOA is also impor-

tant. Therefore, a MDR is often also a component

in a SOA.

Another application area for MDRs might the

management of meta data on the web, such as RDF

or OWL ontologies. However, the web is build on the

idea of decentralized data management which is in

conflict with the concept of a central, integrated repos-

itory for all kind of meta data. Nevertheless, MDRs can

be useful to manage the meta data at a specific site, e.g.,

the ontologies which are offered by that site and their

mappings to other ontologies.
Future Directions
The integration of meta data will remain to be a chal-

lenge, however the meta data will be integrated, either

materialized in a repository, federated with a virtual

integration system, or some combination of these.

With the rising importance of web applications, ser-

vice-oriented architectures and similar concepts, it can

be expected that more loosely coupled MDRs with a

federated integration become more successful. Existing

or upcoming meta data standards, such as such as

CWM (common warehouse metamodel) and XMI

(XML metadata interchange), might simplify the

task, but the integration of meta data will remain a

problem. Another trend is the integration of MDR into

larger software platforms as it is done (or planned) by

the major software vendors.

Meta data integration and new architectures for

MDRs are also interesting questions for the research

community: How can such systems be built, that enable

the integrated querying of various meta data sources?

Which lessons can be applied for meta data that have

already been learned at the data level? Other research

questions for MDRs and meta data management are

addressed in model management [3,4] which investi-

gates formal methods for working with data models.

The challenge for MDRs here is to provide generic

structures for the representation of models and

mappings.
Cross-references
▶Data Warehouse Metadata

▶Meta Data Registry

▶Meta Model

▶Meta Object Facility

1722M Meta Model
Recommended Reading
1. Bauer A. and Günzel H. (eds.) Data-Warehouse-Systeme: Archi-

tektur, Entwicklung, Anwendung. dpunkt-Verlag, Heidelberg,

2001.

2. Bernstein P.A. Repositories and Object Oriented Databases.

ACM SIGMOD Rec., 27(1):88–96, 1998.

3. Bernstein P.A., Halevy A.Y., and Pottinger R. AVision for Man-

agement of Complex Models. ACM SIGMOD Rec., 29(4):55–63,

2000.

4. Bernstein P.A. and Melnik S. Model Management 2.0: Manip-

ulating Richer Mappings. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2007, pp. 1-12.

5. Blechar M., IT Metadata Repository Magic Quadrant Update

2002. Gartner, Inc., 2002.

6. ISO/IEC Information technology – Information Resource Dic-

tionary System (IRDS) Framework. International Standard ISO/

IEC 10027:1990, DIN Deutsches Institut für Normung, e.V.,

1990.

7. Jarke M., Lenzerini M., Vassiliou Y., and Vassiliadis P. (eds.)

Fundamentals of Data Warehouses. Springer-Verlag, 2000.

8. Jarke M. and Vassiliou Y. Foundations of Data Warehouse

Quality - a Review of the DWQ Project. In Proc. 2nd Int.

Conf. Information Quality, 1997, pp. 299–313.

9. Jeusfeld M.A., Jarke M., Nissen H.W., and Staudt M. Concept-

Base – Managing Conceptual Models about Information

Systems. In Handbook on Architectures of Information Systems,

P. Bernus, K. Mertins, and G. Schmidt (eds.). Springer-Verlag,

1998, pp. 265–285.

10. Tayi G.K. and Ballou D.P. Examining Data Quality. Commun.

ACM, 41(2):54–57, 1998.

11. Wikipedia – The Free Encyclopedia IDMS (Integrated Database

Management System). Article in the encyclopedia, 2008, URL

http://en.wikipedia.org/wiki/IDMS.

12. Wikipedia – The Free Encyclopedia. Metadata. Article in the

encyclopedia, 2008, URL http://en.wikipedia.org/wiki/

Metadata.
Meta Model

▶Metamodel
Meta Object Facility. Table 1. OMG’s Metadata

Architecture

Meta-level MOF terms Examples

M3 Meta-metamodel The ‘‘MOF Model’’

M2 Metamodel,
meta-metadata

UML Metamodel,
CWM Metamodel

M1 Model, metadata UML models, CWM
metadata

M0 Object, data Modeled systems,
Warehouse data
Meta Object Facility

WEI TANG

Teradata Corporation, El Segundo, CA, USA

Synonyms
MOF

Definition
The Meta Object Facility (MOF) is an OMG metamo-

deling and metadata repository standard. It is an exten-

sible model driven integration framework for defining,
manipulating and integrating metadata and data in a

platform independent manner. MOF-based standards

are in use for integrating tools, applications and data [1].

Key Points
MOF was developed as a response to a request

for proposal (RFP), issued by the OMG Analysis and

Design Task Force, for Metadata repository facility

(http://www.omg.org/cgi-bin/doc?cf/96-05-02). The

purpose of the facility was to support the creation,

manipulation, and interchange of meta models.

MOF provides a metadata management frame-

work, and a set of metadata services to enable the

development and interoperability of model and meta-

data driven systems. The MOF metadata framework is

typically depicted as a four-layer architecture as shown

in Table 1:

The MOF specification has three core parts:

1. The specification of the MOF Model

a. The MOF’s built-in meta-metamodel, the ‘‘ab-

stract language’’ for defining MOF metamodels

2. The MOF IDL Mapping

a. A standard set of templates that map an MOF

metamodel onto a corresponding set of CORBA

IDL interfaces

3. The MOF’s interfaces

a. The set of IDL interfaces for the CORBA objects

that represent an MOF metamodel

The OMG adopted the MOF version 1.0 in November

1997. The most recent revision of MOF, 2.0, was

adopted in January 2006 and based on the following

OMG specifications:

� MOF 1.4 Specification – MOF 2.0 is a major revi-

sion of the MOF 1.4 Specification. MOF 2.0

addresses issues deferred to MOF 2.0 by the MOF

1.4 RTF.

Metadata M 1723

M

� UML 2.0 Infrastructure Convenience Document:

ptc/04-10-14 – MOF 2.0 reuses a subset of the

UML 2.0 Infrastructure Library packages.

� MOF 2.0 XMI Convenience document: ptc/04-06-

11 – Defines the XML mapping requirements for

MOF 2.0 and UML 2.0.

The MOF 2 Model is made up of two main packages,

Essential MOF (EMOF) and Complete MOF (CMOF).

1. The EMOF Model merges the Basic package from

UML2 and merges the Reflection, Identifiers, and

Extension capability packages to provide services

for discovering, manipulating, identifying, and

extending metadata.

2. The CMOFModel is the metamodel used to specify

other metamodels such as UML2. It is built from

EMOF and the Core:Constructs of UML 2. The

Model package does not define any classes of

its own. Rather, it merges packages with its exten-

sions that together define basic metamodeling

capabilities.

Examples of metadata driven systems that use MOF

include modeling and development tools, data ware-

house systems, metadata repositories etc. A number of

technologies standardized by OMG, including UML,

MOF, CWM, SPEM, XMI, and various UML profiles,

use MOF and MOF derived technologies (specifically

XMI and more recently JMI which are mappings of

MOF to XML and Java respectively) for metadata-

driven interchange and metadata manipulation. MOF

mappings from MOF to W3C XML and XSD are

specified in the XMI (ISO/IEC 19503) specification.

Mappings from MOF to Java are in the JMI (Java

Metadata Interchange) specification defined by the

Java Community Process.

Note that MOF 2.0 is closely related to UML 2.0.

MOF 2.0 specification integrates and reuses the com-

plementary UML 2.0 Infrastructure submission to pro-

vide a more consistent modeling and metadata

framework for OMG’s Model Driven Architecture.

UML 2.0 provides the modeling framework and nota-

tion, MOF 2.0 provides the metadata management

framework and metadata services.

MOF was also incorporated into an ISO/IEC (the

International Organization for Standardization/the

International Electrotechnical Commission) standard

(19502:2005) in November 2005. The standard defines

a metamodel (defined using the MOF), a set of inter-

faces (defined using ODP IDL – ITU-T
Recommendation X.920 (1997) | ISO/IEC 14750:1999),

that can be used to define and manipulate a set of

interoperable metamodels and their corresponding

models (including the Unified Modeling Language

metamodel – ISO/IEC 19501:2005, the MOF meta-

metamodel, as well as future standard technologies that

will be specified using metamodels). It also defines the

mapping from MOF to ODP IDL (ITU rec X920|ISO

14750).

In conclusion, the MOF provides the infrastructure

for implementing design and reuse repositories, appli-

cation development tool frameworks, etc. The MOF

specifies precise mapping rules that enable the CORBA

interfaces for metamodels to be generated automati-

cally, thus encouraging consistency in manipulating

metadata in all phases of the distributed application

development cycle.

Cross-references
▶Meta Object Facility

▶Metadata

▶Metamodel

▶Model-Driven Architecture

▶Unified Modeling Language

▶XMI

Recommended Reading
1. Common warehouse metamodel (CWM). Available at

http://www.omg.org/technology/documents/formal/cwm.htm

(accessed on September 22, 2008).

2. ISO/IEC standard 19502:2005 (Information Technology – Meta

Object Facility). Available at http://www.iso.org/iso/iso_catalo

gue/catalogue_tc/catalogue_detail.htm?csnumber=32621

3. MOF Query/Views/Transformations. Available at http://www.

omg.org/spec/QVT/ (current version 1.0)

4. MOF 2.0 versioning and development lifecycle. Available

at http://www.omg.org/technology/documents/formal/MOF_

version.htm

5. OMG’s meta object facility. Available at http://www.omg.org/

mof/ (current version 2.0)
Metadata

MANFRED A. JEUSFELD

Tilburg University, Tilburg, The Netherlands

Definition
Metadata is data linked to some data item, i.e., meta-

data is data about data. The metadata of a data item

1724M Metadata Encoding and Transmission Standard
specifies how the data item was created, in which con-

text it can be used, how its was transformed, or how it

can be interpreted or processed. The earliest use of

metadata are bibliographic records about books, such

as the author of the book. In principle, any type of data

item can have metadata attached to it. The type of the

data item itself can be metadata and determines which

other metadata fields may be attached to the data item.

Key Points
The purpose of metadata is to provide contextual

information for a data item. It may be used hy humans

to determine the usability of a data item. Likewise,

computer programs can read the metadata in order

to guide the processing of a data item. Metadata can be

included in the data item (e.g., the date and location of

a photography) or it may be stored apart of the data

item. In the latter case, the data item requires being

identifiable. In databases, metadata fields can be repre-

sented next to data fields, virtually blurring the distinc-

tion between metadata and data.

Metadata is mostly used in domains where the

structure of the data item is rather complex. Metadata

typically has a simple structure such as name/value

pairs. Applications domains are word processing,

multi-media processing, system design, data ware-

houses, data quality management, and others. The

common characteristic of these domains is the pres-

ence of many data items of the same type, which need

to be managed according to some criteria. Metadata

allows providing the necessary information to check

these criteria. In the semantic web, metadata can be

represented in RDF and related formalisms such as the

Dublin Core.

There is no limitation on the size of metadata

attached to data items. It can be that the size of meta-

data exceeds the size of the data item itself. For exam-

ple, the complete change history of a document is

metadata of the document.

The schema of a database can be interpreted as

metadata about the database. It specifies the type of

the data items stored in the database. Likewise, a

metamodel can be interpreted as metadata about

schemas (or models).

Cross-references
▶Database Schema

▶Dublin Core
▶Metamodel

▶RDF

Recommented Reading
1. Duval E., Hodgins W., Sutton S.A., and Weibel S. Metadata

principles and practicalities. D-Lib Magazine, 8(4), April 2002.
Metadata Encoding and
Transmission Standard

▶ LOC Mets
Metadata Registry, ISO/IEC 11179

RAYMOND K. PON
1, DAVID J. BUTTLER

2

1University of California, Los Angeles, Los Angeles,

CA, USA
2Lawrence Livermore National Laboratory, Livermore,

CA, USA

Synonyms
Metadata repository; MDR
Definition
ISO/IEC-11179 [10] is an international standard that

documents the standardization and registration of

metadata to make data understandable and shareable.

This standardization and registration allows for easier

locating, retrieving, and transmitting data from dispa-

rate databases. The standard defines the how metadata

are conceptually modeled and how they are shared

among parties, but does not define how data is physi-

cally represented as bits and bytes. The standard con-

sists of six parts. Part 1 [5] provides a high-level

overview of the standard and defines the basic element

of a metadata registry – a data element. Part 2 [7]

defines the procedures for registering classification

schemes and classifying administered items in a meta-

data registry (MDR). Part 3 [4] specifies the struc-

ture of an MDR. Part 4 [6] specifies requirements

and recommendations for constructing definitions

for data and metadata. Part 5 [8] defines how adminis-

tered items are named and identified. Part 6 [9] defines

Metadata Registry, ISO/IEC 11179 M 1725
how administered items are registered and assigned an

identifier.
Historical Background
The first edition of the standard was published by the

Technical Committee ISO/IEC JTC1, Information

Technology Subcommittee 32, Data Management and

Interchange, starting in 1994 and completed in 2000.

The second edition was started in 2004 and was com-

pleted in 2005. The second edition cancels and replaces

the first edition of the standard.
M

Foundations
Metadata is data that describes other data. A metadata

registry is a database of metadata. The database allows

for the registration of metadata, which enables the

identification, provenance tracking, and quality moni-

toring of metadata. Identification is accomplished by

assigning a unique identifier to each object registered

in the registry. Provenance details the source of the

metadata and the object described. Monitoring quality

ensures that the metadata accomplishes its designed

task. An MDR also manages the semantics of data, so

that data can be re-used and interchanged. An MDR is

organized so that application designers can determine

whether a suitable object described in the MDR already

exists so that it may be reused instead of developing a

new object.
Part 1: Framework

Part 1 introduces the building blocks of the MDR stan-

dard: data elements, value domains, data element con-

cepts, conceptual domains, and classification schemes.

An MDR is organized as a collection of concepts, which

are mental constructs created by a unique combination

of characteristics. A concept system is a set of concepts

with relations among them. One such concept system

that classifies objects is a classification scheme. A classi-

fication scheme is organized with some specified struc-

ture and is designed for assigning objects to concepts

defined within it.

The basic construct in a metadata registry is the

data element. A data element consists of a data element

concept and a representation. A data element concept

(DEC) is a concept that can be represented as a data

element described independently of any particular

representation. The representation of a data element
consists of a value domain, a data-type, units of mea-

sure, and a representation class. A data element con-

cept may consist of an object class, which is a set of

abstractions in the real world that can be identified

with explicit boundaries, and a property, which is a

characteristic common to all members of an object

class. A value domain is a set of permissible values.

Each value domain is a member of the extension of a

concept known as the conceptual domain. A conceptual

domain is a set of value meanings, which are the asso-

ciated meanings to values.

An MDR contains metadata describing data con-

structs. Registering a metadata item makes it a registry

item. If the registry item is subject to administration, it

is called an administered item. An ISO/IEC 11179

MDR consists of two levels: the conceptual level and

the representational level. The conceptual level con-

tains the classes for the data element concept and

conceptual domain. The representational level con-

tains classes for data element and value domain.

Part 2: Classification

Part 2 provides a conceptual model for managing

concept systems used as classification schemes. Asso-

ciating an object with a concept from a classification

scheme provides additional understanding of the ob-

ject, comparative information across similar objects,

an understanding of an object within the context of a

subject matter field, and the ability to identify differ-

ences of meaning between similar objects.

Classification schemes are registered in an MDR

by recording their attributes, such as those regarding

its designation, definition, classification scheme, admi-

nistration record, reference document, submission,

stewardship, registration authority, and registrar.

Part 2 also defines the mechanism for classifying an

administered item, which is the assignment of a con-

cept to an object. Objects can also be linked together by

relationships linking concepts in the concept system.

Part 3: Registry Metamodel and Basic Attributes

Part 3 describes the basic attributes that are required to

describe metadata items and the structure for a meta-

data registry. The standard uses a metamodel to de-

scribe the structure of an MDR. A metamodel is a

model that describes other models. The registry meta-

model is specified as a conceptual data model, which

describes how relevant information is structured in the

1726M Metadata Registry, ISO/IEC 11179
real world, and is expressed in the Unified Modeling

Language [13].

The registry model is divided into six regions:

� The administration and identification region:

supports the administrative aspects of administered

items in the MDR. This region manages the identi-

fication and registration of items submitted to the

registry, organizations that have submitted and/or

are responsible for items in the registry, supporting

documentation, and relationships among adminis-

tered items. An administered item can be a classifi-

cation scheme, a conceptual domain, context for an

administered item, a data element, a data element

concept, an object class, a property, a representa-

tion class, and a value domain. An administered

item is associated with an administration record,

which records administrative information about

the administered item in the registry.

� The naming and definition region: manages the

names and definitions of administered items and

the contexts for names. Each administered item is

named and defined within one or more contexts. A

context defines the scope within which the data has

meaning, such as a business domain, a subject area,

an information system, a data model, or standards

document.

� The classification region:manages the registration

and administration of classification schemes and

their constituent classification scheme items. It is

also used to classify administered items.

� The data element concepts region: maintains in-

formation on the concepts upon which the data

elements are developed, primarily focusing on

semantics.

� The conceptual and value domain region: admin-

istrates the conceptual domains and value domains.

� The data element region: administrates data ele-

ments, which provide the formal representations

for some information (e.g., a fact, observation,

etc.) about an object. Data elements are reusable

and shareable representations of data element

concepts.
Part 4: Formulation of Data Definitions

Part 4 specifies the requirements and recommenda-

tions for constructing data and metadata definitions.

A data definition must be stated in the singular. It

also must be a descriptive phrase, containing only
commonly understood abbreviations, that state what

the concept is (as opposed to what the concept is not).

A data definition must also be expressed without

embedding definitions of other data. The standard

also recommends that a data definition should be

concise, precise, and unambiguous when stating the

essential meaning of the concept. Additionally, a data

definition should be self-contained and be expressed

without embedding rationale, functional usage, or

procedural information, circular reasoning. Terminol-

ogy and consistent logical structure for related defini-

tions should also be used.

Part 5: Naming and Identification Principles

Part 5 defines the naming and identification of the data

element concept, the conceptual domain, data ele-

ment, and value domain. Each administered item has

a unique data identifier within the register of a Regis-

tration Authority (RA), which is the organization

responsible for an MDR. The international registration

data identifier (IRDI) uniquely identifies an adminis-

tered item globally and consists of a registration

authority identifier (RAI), data identifier (DI), and

version identifier (VI).

Each administered item has at least one name

within a registry of an RA. Each name for an adminis-

tered item is specified within a context. A naming

convention can be used for formulating names. A

naming convention may address the scope of the nam-

ing convention and the authority that establishes the

name. A naming convention may additionally address

semantic, syntactic, lexical, and uniqueness rules. Se-

mantic rules govern the existence of the source and

content of the terms in a name. Syntactic rules govern

the required term order. Lexical rules govern term lists,

name length, character set, and language. Uniqueness

rules determine whether or not names must be unique.

Part 6: Registration

Part 6 specifies how administered items are registered

and assigned an IRDI. Metadata in the MDR is also

associated with a registration status, which is a desig-

nation of the level of registration or quality of the

administered item. There are two types of status cate-

gories: lifecycle and documentation. The lifecycle reg-

istration status categories address the development and

progression of the metadata and the preferences of

usage of the administered item. The documentation

registration status categories are used when there is no

Metamodel M 1727

M

further development in the quality of metadata or use

of the administered item.

Each RA establishes its own procedures for the

necessary activities of its MDR. Some activities include

the submission, progression, harmonization, modifi-

cation, retirement, and administration of administered

items.

Key Applications
The standardization that ISO/IEC 11179 provides

enables for the easy sharing of data. For example,

many organizations exchange data between computer

systems using data integration technologies. In data

warehousing schemes, completed transactions must

be regularly transferred to separate data warehouses.

Exchanges of data can be accomplished more easily if

data is defined precisely so that automatic methods can

be employed. By having a repository of metadata that

describes data, application designers can reuse and

share data between computer systems, making the

sharing of data easier. ISO/IEC 11179 also simplifies

data manipulation by software by enabling the manip-

ulation of data based on characteristics described by

the metadata in the registry. This also allows for the

development of a data representation model for CASE

tools and repositories [3].

There are several organizations that have developed

MDRs that comply with ISO/IEC 11179, such as the

Australian Institute of Health and Welfare [1], the US

Department of Justice [14], the US Environmental

Protection Agency [15], the Minnesota Department

of Education [11], and the Minnesota Department of

Revenue [12]. Currently, there is also an MDR avail-

able developed by Data Foundations [2].

Cross-references
▶Metadata

Recommended Reading
1. Australian Institute of Health and Welfare. Metadata Online

Registry (METeOR). http://meteor.aihw.gov.au/, 2007.

2. Data Foundations. Metadata Registry. http://www.datafoundations.

com/solutions/data_registries.shtml,2007.

3. ISO/IEC JTC1 SC32. Part 1: Framework for the specification and

standardization of data elements. Information Technology –

Metadata registries (MDR), 1st edn., 1999.

4. ISO/IEC JTC1 SC32. Part 3: Registry metamodel and basic

attributes. Information Technology – Metadata registries

(MDR), 2nd edn., 2003.

5. ISO/IEC JTC1 SC32. Part 1: Framework. Information Tech-

nology – Metadata registries (MDR), 2nd edn., 2004.
6. ISO/IEC JTC1 SC32. Part 4: Formulation of data defini-

tions. Information Technology – Metadata registries (MDR),

2nd edn., 2004.

7. ISO/IEC JTC1 SC32. Part 2: Classification. Information Tech-

nology – Metadata registries (MDR), 2nd edn., 2005.

8. ISO/IEC JTC1 SC32. Part 5: Naming and identification princi-

ples. Information Technology – Metadata registries (MDR), 2nd

edn., 2005.

9. ISO/IEC JTC1 SC32. Part 6: Registration. Information Technol-

ogy – Metadata registries (MDR), 2nd edn., 2005.

10. ISO/IEC JTC1 SC32. ISO/IEC 11179, Information Technology –

Metadata registries (MDR), 2007.

11. Minnesota Department of Education. Metadata Registry (K-12

Data). 2007. http://education.state.mn.us/mde-dd.

12. Minnesota Department of Revenue. Property Taxation (Real Es-

tate Transactions). 2007. http://proptax.mdor.state.mn.us/mdr.

13. Object Management Group. Unified Modeling Language. 2007.

http://www.uml.org/.

14. US Department of Justice. Global Justice XML Data Model

(GJXDM). 2007. http://justicexml.gtri.gatech.edu/.

15. US Environmental Protection Agency. Environmental Health

Registry. 2007. http://www.epa.gov/edr/.
Metadata Repository

▶Data Dictionary

▶Metadata Registry, ISO/IEC 11179
Meta-Knowledge

▶Multimedia Metadata
Metamodel

MANFRED A. JEUSFELD

Tilburg University, Tilburg, The Netherlands

Synonyms
Meta model

Definition
A metamodel is a model that consists of statements

about models. Hence, a metamodel is also a model but

its universe of discourse is a set of models, namely

those models that are of interest to the creator of

1728M Metamodel
the metamodel. In the context of information sys-

tems, a metamodel contains statements about the con-

structs used in models about information systems.

The statements in a metamodel can define the con-

structs or can express true and desired properties

of the constructs. Like models are abstractions of

some reality, metamodels are abstractions of models.

The continuation of the abstraction leads to meta

metamodels, being models of metamodels containing

statements about metamodels. Metamodeling is the

activity of designing metamodels (and metameta-

models). Metamodeling is applied to design new mod-

eling languages and to extend existing modeling

languages.

A second sense of the term metamodel is the speci-

fication of the generation of mathematical models, in

particular sets of mathematical equations that describe

some reality.

Historical Background
One of the earliest metamodels is the definition of the

binary data model of Abrial [1]. Abrial distinguished

three abstraction levels: the data level of a database, the

schema of the database (model), and the category level

(metamodel).

The metamodel defining the binary data model

consists of the construct Category and the construct

relation. Abrial interpreted the abstraction between

the levels as classification. For example, Jane is
Metamodel. Figure 1. Abrial’s definition of the binary data m
classified to Person and Person is classified to Cat-

egory. A similar classification holds for the relations.

In the 1980s, the use of metamodels became so

widespread that an ISO standard, the Information

Resource Dictionary Standard [2], was defined. It ex-

tended Abrial’s view by a fourth level, i.e., by metame-

tamodels. In the late 1990s, the Object Management

Group (OMG) [5] consolidated and standardized the

terminology of metamodels. They distinguished the

levels M0 (information), M1 (model), M2 (metamo-

del), and M3 (metametamodel). The M3 level is under

control of OMG. It defined four basic constructs (clas-

ses, associations, data types, and packages). The M2

level is used to define modeling languages such as

UML, IDL, and so forth.

Besides the standardization efforts, there were sev-

eral metamodeling languages developed from the

1990s onwards that mostly adopted the four-level

approach. Examples is the Telos language and the

GOPPR language of MetaEdit+ [9].

Foundations
Meta models in computer science and related domains

are mainly used to facilitate conceptual modeling,

to define constructs of the conceptual modeling lan-

guages, to specify constraints on the use of constructs,

and to encode the similarities of different models

(and metamodels). As conceptual modeling is about

representing concepts, an element of a metamodel is
odel.

Metamodel M 1729

M

also a concept saymeta concept, being interpreted by all

entities that are defined or constrained by the meta

concept. For example, the meta concept EntityType

is a construct of the Entity-Relationship Diagramming

language. It is interpreted by all possible entity types of

all possible entity relationship diagrams. Essentially,

EntityType is the name of a set that has all possible

entity types as elements. A problem with this set-view

is that it immediately introduces sets of sets (=concepts

in metamodels) and sets of sets of sets (concepts of

metametamodels). To overcome this complexity, meta-

models were originally only investigated as level-pairs:

(metametamodel vs. metamodel), (metamodel vs.

model), (model vs. data). First a metametamodel is

developed. Then, a metamodel or several metamodels

are expressed as instances of the metametamodel,

then models are expressed in terms of the metamodels.

The lowest level (M0 in MOF) is typically not expressed

in conceptual modeling since it is about data or actual

activities of some application domain. The pair-wise

approach allows to keep the set-oriented semantics or

other forms of semantics specification relying on dis-

tinguishing a concept from its instances.

The set-oriented semantics is mirrored by a logical

interpretation, in which concepts are represented by

unary predicates and relations and attributes are repre-

sented by binary predicates. For example, EntityType

(Employee) is the fact expressing that Employee

(model level) is classified to EntityType (metamodel

level). A fact Employee(Jane) would then express

that Jane (data level) is an instance of Employee. If

one restricts to just two consecutive levels, predicate

symbols can be distinguished from constant symbols.

In other words, the underlying logic is a first order

logic. Scaling the semantics to more than two levels

would move the logic to higher order.

One can avoid higher order semantics by introdu-

cing a binary predicate In(x,c) where x is some

concept of some modeling level Mi and c is a concept

of the next higher modeling levelMi+1. This framework

allows to represent the facts In(Employee,Entity-

Type) and In(Jane,EntityType) without leaving

first order logic.

The specific choice of the underlying semantics for

metamodels determines to which degree a metamodel

can express the intended meaning of the concepts

included in a metamodel. In UML, the semantics of

the UML constructs are defined in a metamodel using

OCL (object constraint language [6]). Current meta-

modeling tools dominantly use cardinality constraints
as means to constrain the semantics of metamodel

concepts. Constraints exceeding cardinalities have to

be expressed in OCL or script languages.

The second sense of metamodels, the generation

of mathematical equations to describe some reality,

is for example used by Bailey and Basili [3] to develop

a formal framework for understanding real world phe-

nomena in the domain of software engineering.
Key Applications
Meta models became a popular technique at the end of

the 1990s. The current specification of UML is sup-

porting metamodeling in order to extend the capabil-

ities of the language and to adapt it to specific

modeling domains. Tools supporting metamodeling

are among others MetaEdit+ [9], ConceptBase [4]

and Aris [7]. The MetaEdit+ tool claims to accelerate

system development by orders of magnitude since the

concepts of a metamodel can be linked to parameter-

ized program code.
Future Directions
An open problem of metamodels is their utility. If a

metamodel is represented as a UML class diagram,

then it does list the allowed constructs but it does

not explain how to use it in a meaningful way, i.e.,

to represent models in terms of the metamodel. Con-

ceptual modeling textbooks motivate constructs by

examples and discuss scenarios in which certain con-

structs are usable. This pragmatic level is neglected

by metamodels.

Meta models should be seen as part of the larger

model-driven architecture framework. That framework

(also defined by OMG) is based on the assumption that

system development is essentially a series ofmodel trans-

formations. The design of system development methods

is then the combination of metamodeling and the speci-

fication of suitable model transformations.

The relationship between metamodels (or metame-

tamodel) with ontologies is not yet well understood.

Ontologies rely on two levels of abstraction: the con-

cepts defined in the ontology and the real world objects

being the interpretations of the concepts. Apparently,

an ontology makes no difference between a model level

concept like Employee and a metamodel level concept

like EntityType. See also [8] for a discussion.
Cross-references
▶Telos

1730M Metaphor
Recommended Reading
1. Abrial J.R. Data semantics. In Database Management.

In Proc. IFIP Working Conf. on Database Management, 1974,

pp. 1–60.

2. American National Standard Institute. American National

Standard X3.138-1988, Information Resource Dictionary Sys-

tem (IRDS). American National Standard Institute, 1989.

3. Bailey J.W. and Basili V.R. A Meta-model for software develop-

ment resource expenditures. In Proc. 5th Int. Conf. on Software

Eng., 1981, pp. 107–116.

4. Jeusfeld M.A., Jarke M., Nissen H.W., and Staudt M. Managing

conceptual models about information systems. In Handbook on

Architectures of Information Systems, 2nd edn., P. Bernus,

K. Mertins, G. Schmidt (eds.). Springer, Berlin Heidelberg

New York, 2006, pp. 273–294.

5. Object Management Group. Meta Object Facility (MOF) Speci-

fication, Version 1.4. April 2002. Available at: http://www.omg.

org/technology/documents/formal/mof.htm.

6. Object Management Group. Object Constraint Language, OMG

Available Specification Version 2.0. May 2006. Available at:

http://www.omg.org/cgi-bin/doc?formal/2006-05-01.

7. Scheer A.-W. and Schneider K. ARIS – Architecture of

integrated information systems. In Handbook on Architectures

of Information Systems, 2nd edn., P. Bernus, K. Mertins, G.

Schmidt (eds.).Springer, Berlin Heidelberg New York, 2006,

pp. 605–623.

8. Terrasse M.-N., Savonnet M., Leclercq E., Grison T., and Becker

G. Do we need metamodels and ontologies for engineering

platforms? In Proc. 2006 Int. Workshop on Global Integrated

Model Management, 2006, pp. 21–28.

9. Tolvanen J.-P. MetaEdit+: integrated modeling and metamodel-

ing environment for domain-specific languages. In Proc. 21st

ACM SIGPLAN Conf. on Object-Oriented Programming Sys-

tems, Languages & Applications, 2006, pp. 690–691.
Metaphor

▶Visual Metaphor
Metasearch Engines

WEIYI MENG

State University of New York at Binghamton,

Binghamton, NY, USA

Synonyms
Federated search engine
Definition
Metasearch is to utilize multiple other search systems

(called component search systems) to perform simulta-

neous search. A metasearch engine is a search system

that enables metasearch. To perform a basic meta-

search, a user query is sent to multiple existing search

engines by the metasearch engine; when the search

results returned from the search engines are received

by the metasearch engine, they are merged into a single

ranked list and the merged list is presented to the user.

Key issues include how to pass user queries to other

search engines, how to identify correct search results

from the result pages returned from search engines,

and how to merge the results from different search

sources. More sophisticated metasearch engines also

perform search engine selection (also referred to as

database selection), i.e., identify the search engines

that are most appropriate for a query and send the

query to only these search engines. To identify appro-

priate search engines to use for a query requires estimat-

ing the usefulness of each search engine with respect to

the query based on some usefulness measure.

Historical Background
The earliest Web-based metasearch engine is probably

the MetaCrawler system [12] that became operational

in June 1995. (The MetaCrawler’s website (www.meta-

crawler.com) says the system was first devel-

oped in 1994.) Motivations for metasearch include

(i) increased search coverage because a metasearch

engine effectively combines the coverage of all compo-

nent search engines, (ii) improved convenience for

users because a metasearch engine allows users to get

information from multiple sources with one query sub-

mission and the metasearch engine hides the differences

in query formats of different search engines from the

users, and (iii) better retrieval effectiveness because the

result merging component can naturally incorporate

the voting mechanism, i.e., results that are highly ranked

by multiple search engines are more likely to be rele-

vant than those that are returned by only one of them.

Over the last thirteen years, many metasearch engines

have been developed and deployed on the Web. Most of

them are built on top of a small number of popular

general-purpose search engines but there are also meta-

search engines that are connected to more specialized

search engines (e.g., medical/health search engines) and

some are connected to over one thousand search

engines.

Metasearch Engines. Figure 1. Metasearch engine

component architecture.

Metasearch Engines M 1731

M

Even the earliest metasearch engines tackled the

issues of search result extraction and result merging.

Result merging is one of the most fundamental com-

ponents in metasearch, and as a result, it has received a

lot of attention in the metasearch and distributed

information retrieval (DIR) communities and a wide

range of solutions has been proposed to achieve effec-

tive result merging. Since different search engines may

index a different set of web pages and some search

engines are better than others for queries in different

subject areas, it is important to identify the appropri-

ate search engines for each user query. The importance

of search engine selection was realized early in meta-

search research and many approaches have been pro-

posed to address this issue. A survey on some earlier

result merging and search engine selection techniques

can be found in [11].

Most metasearch engines are built on top of other

search engines without explicit cooperation from these

search engines. As a result, creating these metasearch

engines requires a connection program and an extrac-

tion program (wrapper) for each component search

engine. The former is needed to pass the query from

the metasearch engine to the search engine and receive

search results returned from the search engine, and the

latter is used to extract the search result records from

the result pages returned from the search engine. While

the programs may not be difficult to produce by an

experienced programmer, maintaining their validity

can be a serious problem as they can become obsolete

when the used search engines change their connection

parameters and/or result display format. In addition,

for applications that need to connect to hundreds or

thousands of search engines, it can be very expensive

and time-consuming to produce and maintain these

programs. As a result, in recent years, automatic wrap-

per generation techniques have received much atten-

tion. Figure 1 shows a basic architecture of a typical

metasearch engine.

Foundations

Result Merging

Result merging is to combine the search results

returned from multiple search engines into a single

ranked list. Early search engines often associated a

numerical matching score (similarity score) to each

retrieved search result and the result merging algo-

rithms at that time were designed to ‘‘normalize’’ the
scores returned from different search engines into

values within a common range with the goal to make

themmore comparable. Normalized scores will then be

used to re-rank all the search results. When matching

scores are not available, the ranks of the search results

from component search engines can be aggregated

using voting-based techniques (e.g., Borda Count

[1]). Score normalization and rank aggregation may

also take into consideration the estimated usefulness of

each selected search engine with respect to the query,

which is obtained during the search engine selection

step. For example, the normalized score of a result can

be weighted by the usefulness score of the search en-

gine that returned the result. This increases the chance

for the results from more useful search engines to be

ranked higher.

Another result merging technique is to download

all returned documents from their local servers and

compute their matching scores using a common simi-

larity function employed by the metasearch engine.

The results will then be ranked based on these scores.

For example, the Inquirus metasearch engine employs

this approach [7]. The advantage of this approach is

that it provides a uniform way to compute ranking

scores so the resulted ranking makes more sense. Its

main drawback is the longer response time due to the

delay caused by downloading the documents and ana-

lyzing them on the fly. Most modern search engines

display the title of each retrieved result together with a

short summary called snippet. The title and snippet of a

result can often provide good clues on whether or not

the result is relevant to a query. As a result, result

merging algorithms that rely on titles and snippets

1732M Metasearch Engines
have been proposed recently (e.g., [9]). When titles

and snippets are used to perform the merging, a mat-

ching score of each result with the query can be com-

puted based on several factors such as the number of

unique query terms that appear in the title/snippet and

the proximity of the query terms in the title/snippet.

It is possible that the same result is retrieved from

multiple search engines. Such results are more likely to

be relevant to the query based on the observation that

different ranking algorithms tend to retrieve the same

set of relevant results but different sets of irrelevant

results [8]. To help rank these results higher in the

merged list, the ranking scores of these results from

different search engines can be added up to produce

the final score for the result. The search results are then

ranked in descending order of the final scores.

Search Engine Selection

To enable search engine selection, some information

that can represent the contents of the documents of

each component search engine needs to be collected

first. Such information for a search engine is called the

representative of the search engine. The representatives

of all search engines used by the metasearch engine are

collected in advance and are stored with the meta-

search engine. During search engine selection for a

given query, search engines are ranked based on how

well their representatives match with the query. Dif-

ferent search engine selection techniques have been

proposed and they often use different types of repre-

sentatives. A simple representative of a search engine

may contain only a few selected key words or a short

description. This type of representative is usually pro-

duced manually by someone familiar with the contents

of the search engine but it can also be automatically

generated. As this type of representatives provides only

a general description of the contents of search engines,

the accuracy of using such representatives for search

engine selection is usually low. More elaborate repre-

sentatives consist of detailed statistical information for

each term in each search engine. In [14], the document

frequency of each term in each search engine is used to

compute the cue validity variance of each query term,

which measures the skew of the distribution of the

query term across all component search engines, to

help rank search engines for each query. In [3], the

document frequency and collection frequency of each

term (the latter is the number of component search

engines that contain the term) are used to represent
each search engine. In [10], the adjusted maximum

normalized weight of each term across all documents

in a search engine is used to represent a search engine.

For a given term t and a search engine S, the adjusted

maximum normalized weight of t is computed as

follows: compute the normalized weight of t in every

document (i.e., the term frequency weight of t divided

by the length of the document) in S, find the maximum

value among these weights, and multiply this maxi-

mum weight by the global idf weight of t across all

component search engines. In [13], the notion of opti-

mal search engine ranking is proposed based on the

objective of retrieving the m most similar (relevant)

documents with respect to a given query Q from across

all component search engines: n search engines are said

to be optimally ranked with order [S1, S2,...,Sn] if for

any integer m, an integer k can be found such that the

m most similar documents are contained in [S1,...,Sk]

and each of these k search engines contain at least one

of the m most similar documents. It is shown in [13]

that a necessary and sufficient condition for the compo-

nent search engines to be optimally ranked is to order

the search engines in descending order of the similarity

of the most similar document with respect to Q in each

search engine. Different techniques have been pro-

posed to estimate the similarity of the most similar

document with respect to a given query and a given

search engine [10,13]. Since it is impractical to find

out all the terms that appear in some pages in a

search engine, an approximate vocabulary of terms

for a search engine can be used. Such an approximate

vocabulary can be obtained from pages retrieved from

the search engine using probe queries [2].

There are also techniques that create search engine

representatives by learning from the search results of

past queries. Essentially such type of representatives is

the knowledge indicating the past performance of a

search engine with respect to different queries. In the

Savvy Search metasearch engine [4], for each compo-

nent search engine S, a weight is maintained for every

term that has appeared in previous queries. After each

query Q is evaluated, the weight of each term in the

representative that appears in Q is increased or de-

creased depending on whether or not S returns useful

results. Over time, if a term for S has a large positive

(negative) weight, then S is considered to have

responded well (poorly) to the term in the past. For a

new query received by the metasearch engine, the

weights of the query terms in the representatives of

Metasearch Engines M 1733

M

different search engines are aggregated to rank the

search engines. In the ProFusion metasearch engine

[5], training queries are used to find out how well

each search engine responds to queries in different

categories. The knowledge learned about each search

engine from training queries is used to select search

engines for each user query and the knowledge is

continuously updated based on the user’s reaction to

the search result, i.e., whether or not a particular re-

trieved result is clicked by the user.

Automatic Search Engine Connection

The search interfaces of most search engines are imple-

mented using the HTML form tag with a query text-

box. In most cases, the form tag of a search engine

contains all information needed to make the connec-

tion to the search engine, i.e., sending queries and

receiving search results, via a program. Such informa-

tion includes the name and the location of the program

(i.e., the search engine server) that evaluates user

queries, the network connection method (i.e., the

HTTP request method, usually GET or POST), and

the name associated with the query textbox that is

used to save the query string. The form tag of each

search engine interface is usually pre-processed to ex-

tract the information needed for program connection

and the extracted information is saved at the meta-

search engine. The existence of Javascript in the form

tag usually makes extracting the connection informa-

tion more difficult. After the metasearch engine

receives a query and a particular search engine,

among possibly other search engines, is selected to

evaluate this query, the query is assigned to the name

of the query textbox of the search engine and sent to

the server of the search engine using the HTTP request

method supported by the search engine. After the

query is evaluated by the search engine, one or more

result pages containing the search results are returned

to the metasearch engine for further processing.

Automatic Search Result Extraction

A result page returned by a search engine is a dynami-

cally generated HTML page. In addition to the search

result records for a query, a result page usually also

contains some unwanted information/links such as

advertisements and sponsored links. It is important

to correctly extract the search result records on each

result page. A typical search result record corresponds

to a retrieved document and it usually contains the
URL and the title of the page as well as a short summary

(snippet) of the document. Since different search

engines produce result pages in different format, a sepa-

rate result extraction program (also called extraction

wrapper) needs to be generated for each search engine.

Automatic wrapper generation for search engines has

received a lot of attention in recent years and different

techniques have been proposed. Most of them analyze

the source HTML files of the result pages as text strings

or tag trees (DOM trees) to find the repeating patterns

of the search record records. A survey that contains

some of the earlier extraction techniques can be found

in [6]. Some more recent works also utilize certain

visual information on result pages to help identify

result patterns (e.g., [15]).

Key Applications
The main application of metasearch is to support

search. It can be an effective mechanism to search

both surface web and deep web data sources. By

providing a common search interface over multiple

search engines, metasearch eliminates users’ burden to

search multiple sources separately. When a metasearch

engine employs certain special component search

engines, it can support interesting special applications.

For example, for a large organization with many

branches (e.g., a university system may have many

campuses), if each branch has its own search engine,

then a metasearch engine connecting to all branch

search engines becomes an organization-wide search

engine. As another example, if a metasearch engine is

created over multiple e-commerce search engines sell-

ing the same type of product, then a comparison-

shopping system can be created. Of course, for

comparison-shopping applications, a different type of

result merging is needed, such as listing different

search results that correspond to the same product in

non-descending order of the prices.

Future Directions
Component search engines employed by a metasearch

engine may change their connection parameters and

result display format anytime. These changes can make

the affected search engines un-usable in the metasearch

engine unless the corresponding connection programs

and result extraction wrappers are changed according-

ly. How to monitor the changes of search engines and

make the corresponding changes in the metasearch

engine automatically and timely is an area that needs

1734M Metric Space
urgent attention from metasearch engine researchers

and developers.

Most of today’s metasearch engines employ only a

small number of general-purpose search engines.

Building large-scale metasearch engines using numer-

ous specialized search engines is another area that

deserves more attention. The current largest meta-

search engine is a news metasearch engine called

AllInOneNews (www.allinonenews.com). This meta-

search engine currently connects to about 1,800 news

search engines. Challenges arising from building very

large-scale metasearch engines include automatic gen-

eration and maintenance of high quality search engine

representatives needed for efficient and effective search

engine selection, and highly automated techniques

to add search engines into metasearch engines and to

adapt to changes of search engines.

Cross-references
▶Deep-Web Search

▶Document Length Normalization

▶Hidden-Web Search

▶ Information Extraction

▶ Information Retrieval

▶ Inverse Document Frequency

▶Query Routing

▶Result Integration

▶ Snippet

▶Term Weighting

▶Web Data Extraction

▶Web Data Extraction System

▶Web Information Retrieval Models

▶Web Search Engines

▶Wrapper

▶Wrapper Generation

▶Wrapper Induction

▶Wrapper Maintenance

▶Wrapper Stability

Recommended Reading
1. Aslam J. and Montague M. Models for metasearch. In Proc. 24th

Annual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 2001, pp. 276–284.

2. Callan J., Connell M., and Du A. Automatic discovery of

language models for text databases. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1999, pp. 479–490.

3. Callan J., Lu Z., and Croft W.B. Searching distributed collections

with inference networks. In Proc. 18th Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1995, pp. 21–28.
4. Dreilinger D. and Howe A. Experiences with selecting

search engines using metasearch. ACM Trans. Inf. Syst., 15

(3):195–222, 1997.

5. Fan Y. and Gauch S. Adaptive agents for information

gathering from multiple, distributed information sources.

In Proc. AAAI Symp. on Intelligent Agents in Cyberspace,

1999, pp. 40–46.

6. Laender A.A., Ribeiro-Neto B., da Silva A., and Teixeira J. A brief

survey of web data extraction tools. ACM SIGMOD Rec., 31

(2):84–93, 2002.

7. Lawrence S. and Lee Giles C. Inquirus, the NECi meta search

engine. In Proc. 7th Int. World Wide Web Conference, 1998,

pp. 95–105.

8. Lee J-H. Combining multiple evidence from different properties

of weighting schemes. In Proc. 18th Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1995, pp. 180–188.

9. Lu Y., Meng W., Shu L., Yu C., and Liu K. Evaluation of result

merging strategies for metasearch engines. In Proc. 6th Int.

Conf. on Web Information Systems Eng., 2005, pp. 53–66.

10. Meng W., Wu Z., Yu C., and Li Z. A highly scalable and

effective method for metasearch. ACM Trans. Information

Syst., 19(3):310–335, 2001.

11. Meng W., Yu C., and Liu K. Building efficient and effective

metasearch engines. ACM Comput. Surv., 34(1):48–89, 2002.

12. Selberg E. and Etzioni O. The MetaCrawler archite-

cture for resource aggregation on the web. IEEE Expert,

12(1):11–14, 1997.

13. Yu C., Liu K., Meng W., Wu Z., and Rishe N. A methodology to

retrieve text documents from multiple databases. IEEE Trans.

Knowledge and Data Eng., 14(6):1347–1361, 2002.

14. Yuwono B. and Lee D. Server ranking for distributed

text resource systems on the internet. In Proc. 5th Int.

Conf. on Database Systems for Advanced Applications, 1997,

pp. 391–400.

15. Zhao H., Meng W., Wu Z., Raghavan V., and Yu C. Fully

automatic wrapper generation for search engines. In Proc. 14th

Int. World Wide Web Conf., 2005, pp. 66–75.
Metric Space

PAVEL ZEZULA, MICHAL BATKO, VLASTISLAV DOHNAL

Masaryk University, Brno, Czech Republic

Synonyms
Distance space

Definition
In mathematics, a metric space is a pair M = (D, d),

where D is a domain of objects (or objects’ keys or

indexed descriptors) and d is a total (distance) function.

The properties of the function d : D � D 7!R,

Microdata M 1735
sometimes called the metric space postulates, are typi-

cally characterized as:
(p1)
(p2)
(p3)
(p4)
(p5)

8x, y 2 D, d(x, y) � 0
8x, y 2 D, d(x, y) = d(y, x)
8x 2 D, d(x, x) = 0
8x, y 2 D, x6¼y) d(x, y) > 0
8x, y, z 2 D, d(x, z) � d(x, y) +
d(y, z)

non-negativity,
symmetry,
reflexivity,
positiveness,
triangle inequality.
M

Key Points
Modifying or even abandoning some of the metric

function properties leads to interesting concepts that

can better suit the reality in many situations. A pseudo-

metric function does not satisfy the positiveness prop-

erty (p4), i.e., there can be pairs of different objects

that have zero distance. However, these functions can

be transformed to the standard metric by regarding

any pair of objects with zero distance as a single object.

If the symmetry property (p2) does not hold, the

function is called a quasi-metric. For example, a car-

driving distance in a city where one-way streets exist

is a quasi-metric. The following equation allows to

transform a quasi-metric into a standard metric:

dsym(x, y) = dasym(x, y) + dasym(y, x). By tightening

the triangle inequality property (p5) to 8x, y, z 2 D, d

(x, z)�max{d(x, y),d(y, z)}, an ultra-metric also called

super-metric is obtained. The geometric characteriza-

tion of the ultra-metric requires every triangle to have

at least two sides of equal length, i.e., to be isosceles. A

metric space M is bounded if there exists a number r,

such that d(x, y) � r for any x, y 2 D. More details

about metric functions can be found in [3].
Cross-references
▶Closest-Pair Query

▶ Indexing Metric Spaces

▶ Information Retrieval

▶Nearest Neighbor Query

▶ Spatial Indexing Techniques
Recommended Reading
1. Burago D., Burago Y.D., and Ivanov S. A Course in Metric

Geometry. American Mathematical Society, Providence, Rhode

Island, USA, 2001.

2. Bryant V. Metric Spaces: Iteration and Application. Cambridge

University Press, New York, USA, 1985.

3. Zezula P., Amato G., Dohnal V., and Batko M. Similarity Search:

The Metric Space Approach, Springer-Verlag, Berlin, 2006.
Microdata

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona, Catalonia

Synonyms
Individual data
Definition
Amicrodata file V with s respondents and t attributes is

an s � t matrix where Vij is the value of attribute j for

respondent i. Attributes can be numerical (e.g., age,

salary) or categorical (e.g., gender, job).
Key Points
The attributes in a microdata set can be classified

in four categories which are not necessarily disjoint

[1,2]:

1. Identifiers. These are attributes that unambiguously

identify the respondent. Examples are the passport

number, social security number, name-surname, etc.

2. Quasi-identifiers or key attributes. These are attri-

butes which identify the respondent with some

degree of ambiguity. (Nonetheless, a combination

of quasi-identifiers may provide unambiguous

identification.) Examples are address, gender, age,

telephone number, etc.

3. Confidential outcome attributes. These are attributes

which contain sensitive information on the respon-

dent. Examples are salary, religion, political affilia-

tion, health condition, etc.

4. Non-confidential outcome attributes. Those attri-

butes which do not fall in any of the categories

above.
Cross-references
▶ k-Anonymity

▶Data Rank/Swapping

▶ Inference Control in Statistical Databases

▶Microdata Rounding

▶Noise Addition

▶Non-Perturbative Masking Methods

▶ PRAM

▶ SDC Score

▶Tabular Data

1736M Microaggregation
Recommended Reading
1. Dalenius T. The invasion of privacy problem and statistics pro-

duction: an overview. Statistik Tidskrift, 12:213–225, 1974.

2. Samarati P. Protecting respondents’ identities in microdata

release. IEEE Trans. on Knowl. and Data Eng., 13(6):1010–

1027, 2001.
Microaggregation

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona, Catalonia

Definition
Microaggregation is a family of masking methods

for statistical disclosure control of numerical micro-

data (although variants for categorical data exist).

The rationale behind microaggregation is that confi-

dentiality rules in use allow publication of micro-

data sets if records correspond to groups of k or

more individuals, where no individual dominates

(i.e., contributes too much to) the group and k is a

threshold value. Strict application of such confiden-

tiality rules leads to replacing individual values with

values computed on small aggregates (microaggre-

gates) prior to publication. This is the basic principle

of microaggregation.

To obtain microaggregates in a microdata set

with n records, these are combined to form g groups

of size at least k. For each attribute, the average value

over each group is computed and is used to replace

each of the original averaged values. Groups are

formed using a criterion of maximal similarity. Once

the procedure has been completed, the resulting (mod-

ified) records can be published.

The optimal k-partition (from the information loss

point of view) is defined to be the one that maximizes

within-group homogeneity. The higher the within-

group homogeneity, the lower the information loss,

since microaggregation replaces values in a group by

the group centroid. The sum of squares criterion is

common to measure homogeneity in clustering. The

within-groups sum of squares SSE is defined as

SSE ¼
Xg
i¼1

Xni
j¼1

ðxij � �xiÞ0ðxij � �xiÞ

The lower SSE, the higher the within-group homoge-

neity. Thus, in terms of sums of squares, the optimal

k-partition is the one that minimizes SSE.
Key Points
For a microdata set consisting of p attributes, these can

be microaggregated together or partitioned into several

groups of attributes. Also the way to form groups may

vary. Several taxonomies are possible to classify the

microaggregation algorithms in the literature: (i) fixed

group size vs. variable group size; (ii) exact optimal (only

for the univariate case vs. heuristic microaggregation;

(iii) continuous vs. categorical microaggregation.

To illustrate, a heuristic algorithm called MDAV

(maximum distance to average vector, by Domingo-

Ferrer, Mateo-Sanz and Torra) is next given for multivar-

iate fixed group size microaggregation on unprojected

continuous data. MDAV has been implemented in the

m-Argus package:

1. Compute the average record �x of all records in the

dataset. Consider the most distant record xr to the

average record �x (using the squared Euclidean

distance).

2. Find the most distant record xs from the record xr
considered in the previous step.

3. Form two groups around xr and xs, respectively.

One group contains xr and the k� 1 records closest

to xr. The other group contains xs and the k � 1

records closest to xs.

4. If there are at least 3k records which do not belong

to any of the two groups formed in Step 3, go to

Step 1 taking as new dataset the previous dataset

minus the groups formed in the last instance of

Step 3.

5. If there are between 3k � 1 and 2k records which

do not belong to any of the two groups formed in

Step 3: (i) compute the average record �x of the

remaining records; (ii) find the most distant record

xr from �x; (iii) form a group containing xr and the

k � 1 records closest to xr; (iv) form another group

containing the rest of records. Exit the Algorithm.

6. If there are less than 2k records which do not belong

to the groups formed in Step 3, form a new group

with those records and exit the Algorithm.

The above algorithm can be applied independently to

each group of attributes resulting from partitioning the

set of attributes in the dataset. Microaggregation can

be used to achieve k-anonymity.
Cross-references
▶ Inference Control in Statistical Databases

▶ k-Anonymity

Microdata Rounding M 1737
▶Microdata

▶ SDC Score
Recommended Reading
1. Domingo-Ferrer J. and Mateo-Sanz J. M. Practical data-oriented

microaggregation for statistical disclosure control. IEEE Trans.

Knowl. Data Eng., 14(1):189–201, 2002.

2. Domingo-Ferrer J., Sebé F., and Solanas A. A polynomial-time

approximation to optimal multivariate microaggregation. Com-

put. Math. Appl. 55(4):714–732, 2008.

3. Domingo-Ferrer J. and Torra V. Ordinal, continuous and het-

erogenerous k-anonymity through microaggregation. Data

Mining Knowl. Dis., 11(2):195–212, 2005.

4. Hundepool A., Van de Wetering A., Ramaswamy R., Franconi L.,

Capobianchi A., DeWolf P.-P., Domingo-Ferrer J., Torra V.,

Brand R., and Giessing S. m-ARGUS Version 4.0 Software and

User’s Manual. Statistics Netherlands, Voorburg NL, May 2005.

http://neon.vb.cbs.nl/casc.
M

Microbenchmark

DENILSON BARBOSA
1, IOANA MANOLESCU

2,

JEFFREY XU YU
3

1University of Alberta, Edmonton, AB, Canada
2INRIA Saday, Orsay, Cedex, France
3The Chinese University of Hong Kong, Hong Kong,

China

Definition
A micro-benchmark is an experimental tool that stud-

ies a given aspect (e.g., performance, resource con-

sumption) of XML processing tool. The studied

aspect is called the target of the micro-benchmark. A

micro-benchmark includes a parametric measure and

guidelines, explaining which data and/or operation

parameters may impact the target, and suggesting

value ranges for these parameters.
Key Points
Micro-benchmarks help capture the behavior of an

XML processing system on a given operation, as a

result of varying one given parameter. In other

words, the goal of a micro-benchmark is to study the

precise effect of a given system feature or aspect in

isolation.

Micro-benchmarks were first introduced for

object-oriented databases [2]. An XML benchmark
sharing some micro-benchmark features is the

Michigan benchmark [3]. The MemBeR project [1],

developed jointly by researchers at INRIA Futurs,

the University of Amsterdam, and University of

Antwerpen provides a comprehensive repository of

micro-benchmarks for XML.

Unlike application benchmarks, micro-benchmarks

do not directly help determining which XML pro-

cessing system is most appropriate for a given task.

Rather, they are helpful in assessing particular mod-

ules, algorithms and techniques present inside an XML

processing tool. Micro-benchmarks are therefore typi-

cally very useful to system developers.
Cross-references
▶Application Benchmark

▶XML Benchmarks
Recommended Reading
1. Afanasiev L., Manolescu I., and Michiels P. MemBeR: a micro-

benchmark repository for XQuery. In Proc. Database and

XML Technologies, 3rd Int. XML Database Symp., 2005,

pp. 144–161.

2. Carey M.J., DeWitt D.J., and Naughton J.F. The OO7 Bench-

mark. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1993, pp. 12–21.

3. Runapongsa K., Patel J.M., Jagadish H.V., Chen Y., and

Al-Khalifa S. The Michigan benchmark: towards XML query

performance diagnostics. Inf. Syst., 31(2):73–97, 2006.
Microdata Rounding

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona, Catalonia

Synonyms
Rounding
Definition
Microdata rounding is a family of masking methods

for statistical disclosure control of numericalmicrodata;

a similar principle can be used to protect tabular data.

Rounding replaces original values of attributes with

rounded values. For a given attributeXi, rounded values

are chosen among a set of rounding points defining a

rounding set (often the multiples of a given base value).

1738M Middleware Support for Database Replication and Caching
Key Points
In a multivariate original dataset, rounding is usually

performed one attribute at a time (univariate round-

ing); however, multivariate rounding is also possible

[1,2]. The operating principle of rounding makes it

suitable for continuous data.
Cross-references
▶ Inference Control in Statistical Databases

▶Microdata

▶ SDC Score
Recommended Reading
1. Cox L.H. and Kim J.J. Effects of rounding on the quality and

confidentiality of statistical data. In J. Domingo-Ferrer and L.

Franconi (eds.). Privacy in Statistical Databases-, LNCS,

vol. 4302, 2006, pp. 48–56.

2. Willenborg L. and DeWaal T. Elements of Statistical Disclosure

Control. Springer-Verlag, New York, 2001.
Middleware Support for Database
Replication and Caching

EMMANUEL CECCHET

EPFL, Lausanne, Switzerland

Definition
Database replication is a technique that aims at pro-

viding higher availability and performance than a single

RDBMS. A database replication middleware imple-

ments a number of replication algorithms on top of

existing RDBMS. Features provided by the replication

middleware include load balancing, caching, and fault

tolerance.
Historical Background
Database replication is a well-known mechanism for

performance scaling and availability of databases across

a wide range of requirements. Limitations of 2-phase

commit and synchronous replication have been pointed

out early on by Gray et al. [7]. Since then, research on

middleware-based replication addresses these issues

and tries to provide solutions for better performance

and availability while maintaining consistency guaran-

tees for applications.
Foundations
Database replication is a wide area of research that en-

compasses multiple architectures and possible designs.

This entry does not address in-core database replication,

where the replication algorithms are implemented inside

the database engine. Instead, it focuses on middleware-

based replication, where the replication logic is imple-

mented in a set of middleware components, outside the

database engine.
Shared Disk Versus Shared Nothing

Two main architecture designs can be chosen for data-

base replication. Shared disk replication is mostly used

by in-core implementations, where replicas share the

data storage, such as, a SAN (Storage Area Network).

Middleware-based replication usually uses a shared

nothing architecture, where each replica has its own

local storage. This allows disk IOs to be distributed

among replicas and prevents the storage from being a

Single Point of Failure (SPOF).
Master/Slave Versus Multi-Master

Database replication is often used as a way to scale up

performance. Such efforts are typically targeted at in-

creasing read performance or at increasing write per-

formance; increasing both simultaneously is difficult.

Master-slave replication, depicted in Fig. 1, is pop-

ular because it improves read performance. This setup

is frequently used in e-commerce applications, with

slave databases dedicated to product catalog browsing,

while the master performs all catalog updates.

In this scenario, read-only content is accessed on

the slave nodes and updates are sent to the master. If

the application can tolerate loose consistency, any data

can be read at any time from the slaves given a fresh-

ness guarantee. As long as the master node can handle

all updates, the system can scale linearly simply by

adding slave nodes.

Multi-master replication, as shown on Fig. 2, allows

each replica that owns a full copy of the database to

serve both read and write requests. The replicated

system then behaves as a centralized database which

theoretically does not require any application modifi-

cations. However, replicas need to synchronize to

agree on a serializable execution order of transactions

so that each replica executes update transactions in the

same order. Also, concurrent transactions might

Middleware Support for Database Replication and

Caching. Figure 1. Master/slave scale-out scenario.

Middleware Support for Database Replication and

Caching. Figure 2. Multi-Master database replication.

Middleware Support for Database Replication and

Caching. Figure 3. Query interception at the

DBMS protocol level.

Middleware Support for Database Replication and

Caching. Figure 4. Query interception in JDBC-based

replication.

Middleware Support for Database Replication and Caching M 1739

M

conflict leading to aborts and limiting the system scal-

ability [7]. Even though real applications generally

avoid conflicting transactions, significant efforts are

spent to optimize for this problem in middleware

replication research. However, the volume of update

transactions remains the limiting performance factor

for such systems.

Middleware Design

The replication middleware has to intercept client

requests to process them and run them through the

replication algorithm. A first technique consists of

keeping existing database drivers and to intercept

queries at the database protocol level as show on

Fig. 3. This has the significant advantage to not have

to re-implement database drivers but the database

protocol specification must be available, which is not

always the case for commercial databases. Moreover,

this design requires multi-protocol implementations

and bridges to support heterogeneous clusters.
Another technique provides the application with a

replacement driver that can communicate with the

replication middleware and that is API compatible

with the original driver so that application changes

are not required. Figure 4 shows an example of a

middleware that intercepts queries at the JDBC level.

The client application uses the middleware JDBC

driver, and the middleware uses the database native

JDBC driver to access the replicas. The middleware

driver typically adds functionality such as load

balancing and failover that is usually not present in

standalone database drivers. This is a popular app-

roach introduced by C-JDBC [3] (now Sequoia [9])

and used in other prototypes like Tashkent [5] and

Ganymed [8].

1740M Middleware Support for Database Replication and Caching
Concurrency Control

In replicated database systems, each replica runs Snap-

shot Isolation (SI) as its local concurrency control and

the replicated system provides Generalized Snapshot

Isolation (GSI) to the clients.

Snapshot isolation (SI) is a multi-version database

concurrency control algorithm for centralized data-

bases. In snapshot isolation, when a transaction begins

it receives a logical copy, called snapshot, of the data-

base for the duration of the transaction. This snapshot

is the most recent version of the committed state of the

database. Once assigned, the snapshot is unaffected by

(i.e., isolated from) concurrently running transactions.

When an update transaction commits, it produces a

new version of the database.

Many database vendors use SI, e.g., PostgreSQL,

Oracle and Microsoft SQL Server. SI is weaker than

serializability but in practice many applications run

serializably under SI including the widely used data-

base benchmarks TPC-C and TPC-W. SI has attractive

performance properties. Most notably, read-only tran-

sactions do not block or abort-they do not need read-

locks, and they do not cause update transactions to

block or abort.

Generalized Snapshot Isolation (GSI) extends SI

to replicated databases such that the performance

properties of SI in a centralized setting are maintained

in a replicated setting. In addition, workloads that are

serializable under SI are also serializable under GSI.

Informally, a replica using GSI works as follows.

When a transaction starts, the replica assigns its latest

snapshot to the transaction. All read and write opera-

tions of a transaction, e.g., the SELECT, UPDATE,

INSERT and DELETE SQL statements, are executed

locally on the replica. At commit, the replica extracts

the transaction writeset. If the writeset is empty (i.e., it

is a read-only transaction), the transaction commits

immediately. Otherwise, certification is performed to

detect write-write conflicts among update transactions

in the system. If no conflict is found, then the transac-

tion commits, otherwise it aborts.

Certification results in total order on the commits of

update transactions. Since committing an update trans-

action creates a new version (snapshot) of the database,

the total order defines the sequence of snapshots the

database goes through. Therefore, processing update

transactions proceeds as follows: When a replica receives

update transaction T, it executes T against a snapshot.

At commit, the certification service receives the writeset
of T and the version of the assigned snapshot. If certifi-

cation is successful, the replica applies writesets of

concurrent update transactions that committed before

T in the order determined during certification and

then commits T. Certification is a stateful service

because it maintains recent committed writesets and

their versions.

Statement Replication Versus Transaction Replication

Multi-master replication can be implemented either

by multicasting every update statement (statement

replication) or by capturing transaction writesets (the

set of data W updated by a transaction T, such that

applying W onto a replica is equivalent to executing

T on it) and propagating them after certification

(transaction replication). Both approaches have differ-

ent performance/availability tradeoffs.

Statement-based replication requires that the execu-

tion of an update statement produces the same result

on each replica. However, many SQL statements may

produce different results on every replica if they are not

processed before execution. This requires macros related

to timing or random numbers to be preprocessed for a

deterministic execution cluster-wide. Moreover, stored

procedures or user-defined functions must have a deter-

ministic behavior to prevent replicas from diverging

in content. The advantage of statement-based replica-

tion is that it can replicate any kind of SQL statement

including DDL (Data Definition Language) queries that

alters the database schema or requests that modify

non-persistent objects such as environment variables,

sequences or temporary tables.

Transaction replication relies on writeset extraction

that is usually implemented using triggers. This requires

declaring additional triggers on every database table.

This can become complex if the database already

uses triggers, materialized views or temporary tables.

Writeset extraction does not capture changes such as

auto-incremented keys, sequence values or environment

variable updates. Queries altering such database struc-

tures change the replica they execute on and can result

in cluster divergence. Moreover, most of these data

structures cannot be rolled back (for instance, an auto-

incremented key or sequence number incremented in

a transaction is not decremented at rollback time).

With statement replication, all replicas execute

write transactions simultaneously in the same serial-

izable order, whereas transaction replication executes

update transaction at only one replica and propagates

Middleware Support for Database Replication and Caching M 1741

M

the transaction writeset to other replicas only after

certification at commit time. Therefore, transaction

replication usually offers better performance over

statement replication as long as the writeset extraction

and certification mechanisms are efficient. Statement

replication offers a better infrastructure for failover

during a transaction since each replica has a copy of

every transactional context. With transaction replica-

tion, the failure of the replica executing the transaction

will systematically abort the transaction and force the

transaction to retry.

High Availability

High availability is often synonymous with little down-

time. Such downtime can be either planned or un-

planned, depending on whether it occurs under the

control of the administrator or not. Planned downtime

is incurred during most software and hardware main-

tenance operations, while unplanned downtime can

strike at any time and is caused by foreseeable and

unforeseeable failures (hardware failures, software

bugs, human error, etc.).

A system’s availability is the ratio of its uptime to

total time. In practice, it is computed as the ratio bet-

ween the expected time of continuous operation

between failures to total time, or

Availability ¼ MTTF

MTTF þMTTR
) Unavailability

¼ MTTR

MTTF þMTTR
� MTTR

MTTF

where MTTF is Mean Time To Failure and MTTR is

Mean Time To Repair. Since MTTF >> MTTR, one

can approximate unavailability (ratio of downtime to

total time) as MTTR/MTTF.

The goal of replication together with failover/fail-

back is to reduce MTTR, and thus reduce unavailabili-

ty. Failover is the ability for users of a database node to

be switched over to another database node containing

a replica of the data whenever the node they were

connected to has failed. Failback happens when the

original replica comes back from its failure and users

are re-allocated to that replica.

A replicated database built for availability must

eliminate any single point of failure (SPOF). This

means that the middleware components (load balanc-

er, certifier. . .) must also be replicated. Group com-

munication libraries are used to synchronize the state

of the different components. Total order is usually
required by replication protocols to ensure a serial-

izable execution order.

Several database drivers or connection pools offer

automatic reconnection when a failure is detected. This

technique only offers session failover but not failover

of the transactional context. Sequoia [9] (the continu-

ation of the C-JDBC project) provides transparent fail-

over without losing transactional context. Failover

code is available in the middleware to handle a data-

base failure and additional code is available in the

middleware driver running in the application to han-

dle a middleware failure. A fully transparent failover

requires consistently replicated state kept at all com-

ponents, and is more easily achieved using statement-

based rather than transaction-based replication. In the

latter case, the transaction is only played at a single

replica; if the replica fails, the entire transaction has to

be replayed at another replica, which cannot succeed

without the cooperation of the application.

Load Balancing

Load balancing aims at dispatching user requests or

transactions to the replica that can provide consistent

data with the lowest latency. Load balancer design is

tightly coupled with the replication strategy implemen-

ted. Static strategies such as round-robin or even

weighted-round-robin are usually not well adapted to

the dynamic nature of transactional workloads. Algo-

rithms taking into account replica resource usage such

as LPRF (Least Pending Request First) perform much

better. With additional information on transaction

working set, it is also possible to optimize load balanc-

ing to improve in-memory request execution such as

MALB (Memory-Aware Load Balancing) used in

Tashkent+ [6]. More information on load balancing

can be found in [1].

Caching

To reduce request execution time, the middleware can

provide multiple caches. C-JDBC [3] provides three

different caches. The parsing cache stores the results of

query parsing so that a query that is executed several

times is parsed only once. The metadata cache records

all ResultSet metadata such as column names and types

associated with a query result.

These caches work with query skeletons found in

PreparedStatements used by application servers. A

query skeleton is a query where all variable fields are

replaced with question marks and filled at runtime

1742M Middleware Support for Database Replication and Caching
with a specific API. An example of a query skeleton is

‘‘SELECT * FROM t WHERE x=?’’. In this example,

a parsing or metadata cache hit will occur for any

value of x.

The query result cache is used to store the ResultSet

associated with each query. The query result cache

reduces the request response time as well as the load

on the database replicas. By default, the cache provides

strong consistency. In other words, C-JDBC invalidates

cache entries that may contain stale data as a result of

an update query. Cache consistency may be relaxed

using user-defined rules. The results of queries that

can accept stale data can be kept in the cache for

a time specified by a staleness limit, even though

subsequent update queries may have rendered the

cached entry inconsistent.

Different cache invalidation granularities are avail-

able ranging from database-wide invalidation to

table-based or column-based invalidation. An extra

optimization concerns queries that select a unique

row based on a primary key. These queries are often

issued by application servers using JDO (Java Data

Objects) or EJB (Enterprise Java Beans) technologies.

These entries are never invalidated on inserts since a

newly inserted row will always have a different primary

key value and therefore will not affect this kind of

cache entries. Moreover, update or delete operations

on these entries can be easily performed in the cache.

Key Applications
Middleware-based database replication is currently used

in many e-Commerce production environments that

require both high availability and performance scalabili-

ty. Many open problems remain on the integration of

databases with replication middleware, failure detection

and transparent failover/failback, autonomic manage-

ment and software upgrades.

Future Directions
Current research trends explore autonomic behavior

for replicated databases [4] to automate all manage-

ment operations such as provisioning, tuning, failure

repair and recovery. Heterogeneous clustering is also

used in the context of satellites databases [8] to scale

legacy databases with open source databases. Partial

replication is studied in conjunction with WAN (Wide

Area Network) replication for global applications span-

ning over multiple datacenters distributed on different

continents. A summary of the remaining gaps between
the theory and practice of middleware-based replication

can be found in [2].
URL to Code
The Sequoia source code is available from http://

sequoia.continuent.org
Cross-references
▶Autonomous Replication

▶Caching and Replication

▶Consistency Models for Replicated Data

▶ 1-Copy-Serializability

▶Data Broadcasting

▶Data Partitioning

▶Data Replication

▶Database Clusters

▶Database Middleware

▶Distributed Database Design

▶Distributed Database Systems

▶Distributed DBMS

▶Distributed Deadlock Management

▶Distributed Query Processing

▶Distributed Recovery

▶ Extraction

▶ Inter-Query Parallelism

▶Middleware Support for Precise Failure Semantics

▶ Partial Replication

▶Replica Control

▶Replica Freshness

▶Replicated Database Concurrency Control

▶Replication

▶Replication Based on Group Communication

▶Replication for High Availability

▶Replication for Scalability

▶Replication in Multi-Tier Architectures Regular

▶ Shared-Disk Architecture

▶ Shared-Nothing Architecture

▶ Snapshot Isolation

▶ Strong Consistency Models for Replicated Data

▶Transactional Middleware

▶Transformation and Loading

▶Weak Consistency Models for Replicated Data
Recommended Reading
1. Amza C., Cox A., and Zwaenepoel W. A comparative

evaluation of transparent scaling techniques for dynamic

content servers. In Proc. 21st Int. Conf. on Data Engineering,

2005, pp. 230–241.

Middleware Support for Precise Failure Semantics M 1743
2. Cecchet E., Candea G., and Ailamaki A. Middleware-based

database replication: the gaps between theory and practice.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2008, pp. 739–752.

3. Cecchet E., Marguerite J., and Zwaenepoel W. C-JDBC: flexible

database clustering middleware. In Proc. USENIX Annual Tech-

nical Conf., 2004.

4. Chen J., Soundararajan G., and Amza C. Autonomic provision-

ing of backend databases in dynamic content web servers.

In Proc. IEEE Int. Conf. Autonomic Computing, 2006,

pp. 231–242.

5. Elnikety S., Dropsho S., and Pedone F. Tashkent: uniting

durability with transaction ordering for high-performance

scalable database replication. In Proc. 1st ACM SIGOPS/EuroSys

European Conf. on Comp. Syst., 2006, pp. 117–130.

6. Elnikety S., Dropsho S., and Zwaenepoel W. Tashkent+:

memory-aware load balancing and update filtering in replicated

databases. In Proc. 2nd ACM SIGOPS/EuroSys European Conf.

on Comp. Syst., 2007, pp. 399–412.

7. Gray J.N., Helland P., O’Neil P., and Shasha D. The dangers of

replication and a solution. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1996, pp. 173–182.

8. Plattner C., Alonso G., Özsu M.T. Extending DBMSs with satel-

lite databases. VLDB J., 17(4):657–682, 2008.

9. Sequoia project. Available at: http://sequoia.continuent.org
M

Middleware Support for Precise
Failure Semantics

VIVIEN QUÉMA

CNRS, INRIA, Saint-Ismier Cedex, France

Definition
Providing support for precise failure semantics requires

defining an appropriate correctness criterion for repli-

cated action execution of a replication algorithm. Such

a correctness criterion allows formally verifying that a

sequence of actions is executed correctly. In the context

of replication, a sequence of actions executed is correctly

if their side-effect appears to have happened exactly-

once.

Historical Background
Reasoning about the behavior of concurrent programs

has been an active research area during the past dec-

ades. Of particular interest in this area are the works on

linearizability, a consistency criterion for concurrent

objects [4], and on serializability, a consistency criteri-

on for concurrent transactions [5]. These two criteria

facilitate certain kinds of formal reasoning by
transforming assertions about complex concurrent

behavior into assertions about simpler sequential be-

havior. Moreover, these consistency criteria are local

properties: the correctness of individual objects or

services is used to reason about system-level correctness.

Recently, Frølund and Guerraoui introduced x-ability

[2] (exactly-once ability), a correctness criterion for

replicated services. X-ability is independent of partic-

ular replication algorithms. Although they facilitate

reasoning in similar ways, there are fundamental dif-

ferences between x-ability on one hand and serializ-

ability [5] and linearizability [4] on the other. X-ability

has safety as well as liveness aspects to it whereas serial-

izability and linearizability are safety conditions only.

X-ability is a theory of distribution and partial failures

where serializability and linearizability are theories of

concurrency. X-ability does not specify correctness for

concurrent invocations of a replicated service. More

precisely, x-ability states constraints about the concur-

rency among replicas in the context of a given request

(intra-request concurrency), but ignores the concurren-

cy that originates from different requests (inter-request

concurrency). This entry gives a precise description of

the x-ability theory.

Foundations
Frølund and Guerraoui proposed x-ability [2] (exactly-

once ability), a correctness criterion for replicated ser-

vices. X-ability is independent of particular replication

algorithms. Themain idea behind x-ability is to consider

a replicated service correct if it provides the illusion of a

single, fault-tolerant entity. More precisely, an x-able

service must satisfy a contract with its clients as well as

a contract with third-party entities. In terms of clients, a

service must provide idempotent, non-blocking request

processing. Moreover, it must deliver replies that are

consistent with its invocation history. The side-effect of

a service, on third-party entities, must obey exactly-once

semantics. X-ability is a local property: replicated ser-

vices can be specified and implemented independently,

and later composed in the implementation of more

complex replicated services.

To model side-effects, x-ability is based on the

notion of action execution. Actions are executed cor-

rectly (i.e., are x-able) if their side-effect appears to

have happened exactly-once. The side-effect of actions

can be the modification of a shared state or the invo-

cation of another (replicated or non-replicated) service.

X-ability represents the execution of actions as event

1744M Middleware Support for Precise Failure Semantics
histories and defines the notion of ‘‘appears to have

happened exactly-once’’ in terms of history equiva-

lence: an event history h is x-able if it is equivalent to

a history h0 obtained under failure-free conditions.

Being defined relative to failure-free executions, x-abil-

ity encompasses both safety and liveness. It is a safety

property because it states that certain partial histories

must not occur. It is also a liveness property since it

enforces guarantees about what must occur. History

equivalence is defined relatively to the execution of

two particular kinds of actions, namely idempotent

and undoable actions:

� The side-effect of a history with n incarnations

of an idempotent action is equivalent to a history

with a single incarnation. For example, writing a

particular value to a data object is an idempotent

action.

� An undoable action is similar to a transaction: its

side-effect can be cancelled up to a certain point

(the commit point), after which the side-effect is

permanent. Thus, the side-effect of a history with a

cancelled action is equivalent to the side-effect of a

history with no action at all.
Middleware Support for Precise Failure Semantics.

Figure 1. Abstract syntax for history patterns.
System Model

The replicated service is implemented by a set of repli-

cas. The functionality of the service is captured by a

state machine. Each replica has its own copy of the state

machine. A state machine exports a number of actions.

An action takes an input value and produces an output

value. In addition, an action may modify the internal

state of its state machine and it may communicate with

external entities. A client can invoke a replica’s state

machine by sending a request to the replica. A request

contains the name of an action and an input value for

the action. When it receives a request, a replica invokes

its state machine based on the values in the request. If

no failures occur, the replica returns the action’s out-

put value to the client. The execution of an action

may fail or the replica executing the action may fail.

If the action fails, it returns an exception (or error)

value as the execution result. Formally speaking, action

names are modeled as elements of a set Action (re-

ferred to using the letter a). The set Value contains

the input and output values associated with actions.

Furthermore, two sets, Request and Result, are

defined as follows: Request¼(Action � Value)

and Result¼Value. This signifies that a request is
simply a pair that contains an action name and an input

value (noted ‘‘(a,v)’’ for a request with action name a

and value v).

The actions performed by state machines are repre-

sented by events. More precisely, the x-ability theory

considers two kinds of events: start events to represent

the invocation of a state-machine action by a process,

and completion events to represent the successful com-

pletion of a state-machine action: a process receives

a non-exception value back from the state machine.

The causal and temporal relationship between action

execution and event observation is subject to the fol-

lowing axioms: (i) an action’s start event cannot be

observed unless the action is invoked, (ii) an action’s

completion event cannot be observed before its start

event, and (iii) if an action returns successfully, then its

start and completion events have been observed.

Events are modeled as elements of the set Event.

Events are structured values with the following

structure: e : :¼ S(a, iv) j C(a, ov). The event S(a,

iv) captures the start of executing the action awith iv as

argument. The event C(a,ov) captures the completion

of executing the action a, and ov is the output value

produced by the action.

A sequence of events form a history. The notion of

a sequence captures the total order in which events are

observed. Histories are modeled as elements of the set

History. Histories are structured values as definedby the

following syntax: h : :¼ L j e1...en j h1 �...� hn.
The symbol L denotes the empty history – a history

with no events. The history e1...en contains the events

e1 through en. The history h1 �...� hn is the concatena-
tion of histories h1 through hn. The semantics of con-

catenating histories is to concatenate the corresponding

event sequences. An action a appears with input value iv

in a history h (noted (a, iv) 2 h) if h contains a start event

produced by the execution of a on iv.

To capture structural properties of histories, the

x-ability theory defines the notion of history patterns.

Formally speaking, patterns are elements of the set

Pattern (referred to using the letter p). The abstract

syntax for patterns is depicted in Fig.1. A simple pat-

tern sp matches single-action histories. The pattern

Middleware Support for Precise Failure Semantics M 1745

M

[a, iv,ov] matches a history that contains the events

from a failure-free execution of an action a. The

value iv is the input to a and ov is the output from a.

The pattern ?[a, iv,ov] matches a history in which a

may have failed. A matching history may be the empty

history, it may contain a start event only, or it may

contain both the start and completion event of a. The

pattern sp1 k h sp2 matches a history h0 that contains

an interleaving of three sub-histories h1, h2, and h, where

h1 matches sp1, h2 matches sp2, and h is an arbitrary

history. The interleaving is constrained as follows: the

first event in h1 must also be the first event in h0 and the

last event in h2 must also be the last event in h0.

X-ability defines pattern matching as a relation⊲
between elements of the set History and elements of

the set Pattern. In other words,⊲ is a subset of

History�Pattern (the set of all pairs from Histo-

ry and Pattern). Pattern matching rules are shown

in Fig.2. A history that matches a simple pattern con-

tains at most two events. X-ability defines two opera-

tors on such histories: first and second (see Fig.3).

The first operator returns the first element in a histo-

ry, if any, and L otherwise. The second operator

returns the second element in a history of length two,
Middleware Support for Precise Failure Semantics. Figure

Middleware Support for Precise Failure Semantics. Figure
the only element in a history of length one, and the

empty history otherwise.

X-Able Histories

To be fault-tolerant, a replicated service must be

prepared to invoke the same action multiple times

until the action executes successfully. To provide repli-

cation transparency, the service must have exactly-once

semantics relative to its environment – the service

must maintain the illusion that the action was executed

once only. In short, an x-able history is a history that

maintains the illusion of exactly-once but possibly

contains multiple incarnations of the same action.

The rest of this section describes how the x-ability

theory defines the notion of x-able history.

The x-ability theory defines a history reduction

relation,) , on histories as follows: if h)h0, then

the execution that produced h has the same side-effect

as an execution that produced h0. Essentially, a his-

tory is x-able if it can be reduced, under), to a

history that could arise from a system that does not

fail. Two particular types of actions are considered:

idempotent and undoable. The corresponding

sets are called Idempotent and Undoable. The set
2. Pattern matching rules.

3. The definition of first and second.

1746M Middleware Support for Precise Failure Semantics
Idempotent contains the names of idempotent

actions. The notation ai indicates that the action a is

idempotent. The set Undoable contains names of

undoable actions. The notation au indicates that an

action a is undoable. An undoable action, au, has two

associated actions: a cancellation action, a�1, and a

commit action, ac. The commit and cancellation

actions for an action au take the same arguments as

au, and they return the value nil. Moreover, cancella-

tion and commit actions are idempotent.

Figure 4 defines the)operator in terms of idem-

potent and undoable actions. The first inference rule

(13) defines) as a transitive relation. The second rule

(14) captures the semantics of idempotent actions. If

a history contains a successfully executed idempotent

action ai, then the events from a previous attempt

to execute ai can be removed. The third rule (15) is

concerned with cancellation of undoable actions. Intu-

itively, if an undoable action is successfully cancelled,

then its side-effect can be removed. The fourth rule

(16) states that commit actions are idempotent.

The x-ability theory defines a failure-free history as

a history that could have been produced by a failure-

free execution of a single state-machine action. To

define the notion of failure-free history, the x-ability

theory relies on the definition of a function, called

eventsof, which returns the failure-free history asso-

ciated with an action and its values.

eventsofðau; iv; ovÞ ¼ Sðau; ivÞCðau; ovÞ
Sðac ; ivÞCðac ; nilÞ

ð17Þ

eventsofðaiÞ ¼ Sðai; ivÞCðai; ovÞ ð18Þ

Due to non-determinism, there are multiple failure-

free histories which are possible for a given action a
Middleware Support for Precise Failure Semantics. Figure
and a given input value iv. The set of all possible

histories, FailureFree(a,iv), is defined as follows:

FailureFreeða;ivÞ ¼ fh 2 History j9 ov 2
Result : h ¼ eventsof

ða; iv; ovÞg
ð19Þ

An x-able history is defined as a history that can

be reduced to a failure-free history. Formally speaking,

an x-able history is one that satisfies the predicate

x-able on histories:

X-4ableða;ivÞðhÞ ¼
true if 9h0 2 FailureFreeða; ivÞ : h) h0

false otherwise

(

ð20Þ

This definition of x-able histories applies to single-action

histories, that is, a history that arises from a particular

request. This reflects the fact that x-ability only specifies

correctness relative to distribution and failures, it does

not specify correctness for the concurrent processing of

multiple requests from different clients.

Client-Service Consistency

The x-ability theory formalizes the relationship be-

tween clients and services. More precisely, the reply

value given to a client in response to a request must

be the value returned from the server-side state ma-

chine when the service processes the request. More-

over, the service is not allowed to invent requests. The

server-side history is used to define the constraints for

requests and replies. This history contains a request

value as part of start events and reply values as part of
4. Definition of history reduction.

Middleware Support for Precise Failure Semantics M 1747

M

completion events. The x-ability theory introduces

the notion of history signature, which captures the

client-side information (request and result) that is

legal relative to a given server-side history. Because of

non-determinism and server-side retry, a history can

have multiple signatures. The set of signatures is de-

fined by the following inference rules:

h) S au; ivð ÞC au; ovð ÞS ac ; ivð ÞC ac ; nilð Þ
a; iv; ovð Þ 2 signature hð Þ ð21Þ

h) S ai; iv
� �

C ai; ov
� �

a; iv; ovð Þ 2 signature hð Þ ð22Þ

If a client submits a sequence of requests, one after the

other, later requests should be processed in the context

of earlier requests. To prevent a service from forgetting

the effect of previous requests, the x-ability theory

assumes the existence of a set PossibleReply that

contains the possible reply values for a given request.

To capture the history-sensitive nature of the set of

possible replies, PossibleReply is defined in the context

of a request sequence R1...Rn. The interpretation of

PossibleReply in the context of a sequence is the

set of possible replies to request Rn after the state

machine has executed the requests R1...Rn�1 one after

the other. Thus, the set is written as follows:

PossibleReplyðR1...RnÞ.
X-Able Services

The x-ability theory provides a formal specification of

replication that is independent of a particular replica-

tion protocol. Formally speaking, a replicated service

consists of a server-side state machine S and a client-

side action submit. The state machine captures the

functionality of the service. It is executed by a set of

server processes s1...sn that each have a copy of S. The

action submit can be used by any process p to invoke

the service. The action takes a value in the domain

Request and, when executed, produces a value in

the domain Result. Correctness is specified relative

to a single client C. Thus, the considered system con-

sists of the processes s1...sn and C only. The client

submits one request at a time, and the service is x-

able if the following conditions hold:

� R1. The action submit is idempotent.

� R2. The client C will eventually be able to execute

submit successfully.
� R3. If the client submits a request (a, iv), then the

server-side history for (a, iv) is either empty or it

satisfies x-able(a, iv).

� R4. If the client receives a reply ov in response to a

request (a, iv), and if the server-side history for

executing this request is h, then (a, iv,ov) 2signa-

ture(h).

� R5. If the client successfully submits a sequence

of requests, R1...Rn, and receives the

reply R0 in response to Rn, then R0 is in

PossibleReplyðR1:::RnÞ.

The first two requirements (R1 and R2) are concerned

with the contract between a service and its clients.

Clients use the action submit to invoke the service.

Because submit is idempotent, clients can repeatedly

invoke the service without concern for duplicating

side-effects. The second requirement (R2) is a liveness

property. The action submit is not allowed to fail an

infinite number of times. The requirement also makes

a service non-blocking in the sense that submit is

guaranteed to eventually return a value. The third

requirement (R3) deals with the server-side side-effect

of executing a request. The resulting server-side history

must be x-able, that is, it must be equivalent (under

history reduction) to a failure-free history. The fourth

requirement (R4) forces an algorithm to preserve con-

sistency between the client-side view (request and

reply) and the server-side view (the side-effect). This

requirement, prevents the submit action from invent-

ing reply values. It also prevents the service from

inventing request values. The fifth requirement (R5)

forces the service to correctly maintain S’s state, if any.

The server-side history must be equivalent to a failure-

free execution of the sequence R1...Rn. But since R1 may

result in a transformation of S’s state, the actions

executed for R2 may depend on this state transforma-

tion. So, a replication algorithm must ensure that the

state resulting from R1 is used as a context for execut-

ing R2. The replication algorithm cannot assume that

R1 did not update the state of S, or that the state update

is immaterial to the processing of R2.
Key Applications
A key application of the x-ability theory is the design

transactions protocols for three-tier applications. Such

applications encompass three layers: human users in-

teract with front-end clients (e.g., browsers), middle-

tier application servers (e.g., Web servers) contain

1748M Mini
the business logic of the application, and perform

transactions against back-end databases. Three-tier

applications usually rely on replication and transac-

tion-processing techniques. It has been defined in [1,3]

the notion of the Exactly-Once Transaction (e-Trans-

action) abstraction: an abstraction that encompasses

both safety and liveness properties in three-tier envir-

onments and ensures end-to-end reliability.

Recommended Reading
1. Frølund S. and Guerraoui R. Implementing e-transactions with

asynchronous replication. IEEE Trans. Parallel Distrib. Syst., 12

(2):133–146, 2001.

2. Frølund S. and Guerraoui R. X-ability: a theory of replication.

Distrib. Comput., 14(4):231–249, 2001.

3. Frølund S. and Guerraoui R. e-Transactions: end-to-end

reliability for three-tier architectures. IEEE Trans. Software

Eng., 28(4):378–395, 2002.

4. Herlihy M. and Wing J.M. Linearizability: a correctness con-

dition for concurrent objects. ACM Trans. Program. Lang. Syst.,

12(3):463–492, 1990.

5. Papadimitriou C.H. The serializability of concurrent database

updates. J. ACM, 26(4):631–653, 1979.
Mini

▶ Snippet
Minimal-change Integrity
Maintenance

▶Constraint-Driven Database Repair
Mining of Chemical Data

XIFENG YAN

IBM T. J. Watson Research Center, Hawthorne,

NY, USA

Definition
Given a set of chemical compounds, chemical data

mining is to characterize the compounds present in

the data set and apply a variety of mining methods to

discover relationships between the compounds and

their biological and chemical activities.
Historical Background
In 1969, Hansch [6] introduced quantitative structure-

activity relationship (QSAR) analysis which attempts to

correlate physicochemical or structural properties of

compounds with biological and chemical activities.

These physicochemical and structural properties are

determined empirically or by computational methods.

QSAR prefers vectorial mappings of compounds, which

are usually coded by existing physicochemical and struc-

tural fingerprints. Dehaspe et al. [3] applied inductive

logic programming to predict chemical carcinogenicity

by mining frequent substructures in chemical datasets,

which identifies new structural fingerprints so that

QSAR could build comprehensive analytical models.

Foundations
Chemical compounds are unstructured data with

no explicit vector representation. For chemical com-

pounds, various similarity measures are defined, which

could be classified into three categories: (i) physico-

chemical property-based, e.g., toxicity and weight;

(ii) structure-based; and (iii) feature-based. The struc-

ture-based similarity measure directly compares the

topology of two chemical compounds, e.g., maximum

common subgraph, graph edit distance, and graph

kernel. As for the feature-based similarity measure,

each graph is represented as a feature vector, x ¼ [x1,

x2,...,xn], where xi is the value of feature fi. A feature

could be physicochemical or structural. The similarity

between two graphs is measured by the similarity be-

tween their feature vectors. Bunke and Shearer [1] used

maximum common subgraph to measure structure

similarity. Given two graphs G and G 0, if P is the

maximum common subgraph of G and G 0, then the

structure similarity between G and G 0 is defined by

2jEðPÞj
jEðGÞj þ jEðG0Þj ;

where E(G) is the edge set of G.

Kashima et al. [7] introduced marginalized kernels

between labeled graphs,

K ðG;G0Þ ¼
X
h

X
h0

Kzðz; z 0ÞpðhjGÞpðh0jG0Þ;

where z = [G,h] and Kz(z,z
0) is the joint kernel over z.

The hidden variable h is a path generated by random

walks and the joint kernel Kz is defined as a kernel

between these paths. Other sophisticated graph kernels

are also available. For example, Fröhlich et al. [5]

Mining of Chemical Data M 1749

M

proposed optimal assignment kernels for attributed

molecular graphs, which compute an optimal assign-

ment from the atoms of one molecule to those of

another one, including local structures and neighbor-

hood information.

The structure-based similarity measure can serve

general chemical data mining such as chemical struc-

ture classification and clustering. The implicit defini-

tion of feature space makes it hard to interpret, and

hard to adapt to many powerful data management

and analytical tools such as R-tree and support vector

machine. An alternative approach is to mine the most

interesting features from chemical data directly, such as

patterns that are discriminative between compounds

with different chemical activities. Figure 1 depicts the

pipeline of this approach built on features discovered

by a mining process.

The feature-based mining framework includes

three steps: (i) mine patterns/features from chemical

data, (ii) select discriminative or significant features,

and (iii) perform advanced mining. The first step is the

process of finding and extracting useful features from

raw datasets. One kind of features used in data mining is

frequent substructures, the common structures that

occur in many compounds. Formally, given a graph

dataset D ¼ {G1,G2,...,Gn} and a minimum frequency

threshold y, frequent substructures are subgraphs that
are contained by at least yjDj graphs in D. A set of

graph pattern mining algorithms are available for

mining frequent substructures, including SUBDUE,

Warmr, AGM, gSpan, FSG,MoFa/MoSS, FFSM, Gaston,

and so on. Generally, for mining graph patterns

measured by an objective function F, there are two

related mining tasks: (i) enumeration task, find all of

subgraphs g such that F(g) is no less than a threshold;

and (ii) optimization task, find a subgraph g∗ such that

g 	 ¼ argmaxgFðgÞ:

The enumeration task might encounter the exponen-

tial number of patterns as the traditional frequent
Mining of Chemical Data. Figure 1. Feature-based mining f
substructure mining does. To resolve this issue, one

may rank patterns according to their objective score

and select patterns with the highest value. The feature-

based mining framework finds many key applications

in chemical data mining including, but not limited to,

chemical graph search, classification and clustering.

Chemical graph search aims to find graphs that

contain a specific query structure. It is inefficient to

scan the whole database and check each graph. Yan

et al. [9] applied the feature-based mining framework

to support fast search using frequent substructures

selected by the following criterion. Let substructures

f1,f2,...,fn be selected features. Given a new substructure

x, the selectivity power of x can be measured by

1� Prðxjf ’1
;:::; f ’m

Þ; f ’i

 x; 1 � ’i � n:

which shows the absence probability of x given the

presence of f ’1
;:::; f ’m

in a graph. When the selectivity

is high, substructure x is a good candidate to index.

In addition to molecule search, chemical data clas-

sification and clustering could also benefit from graph

patterns. A typical setting of molecule classification is

to induce a mapping hðgÞ : G ! f�1g from the train-

ing samples D ¼ {gi,yi}
n
i=1, where gi 2 G is a labeled

graph and yi 2 {�1} is the class label. Feature-based

classification models were proposed in [8,4]. In these

models, graphs are first transformed to vectors using

discriminative substructures, which are then processed

by standard classification methods.
Key Applications
Chemical Structure Search

Chemical Classification

Chemical Clustering

Quantitative Structure-Activity Relationship Analysis
Experimental Results
PubChem (see dataset URL) provides information on

the biological activities of small molecules, containing
ramework.

1750M Mixed Evidence
the bioassay records for anti-cancer screen tests with

different cancer cell lines. Each dataset belongs to a

certain type of cancer screen with the outcome active

or inactive. These bioassays are experimented to iden-

tify the chemical compounds that display the desired

and reproducible behavior against cancers. Chemical

compound classification is to computationally predict

the activity of untested compounds given the bioassay

data. This process can replace or supplement the phys-

ical assay techniques. Furthermore, it could also iden-

tify substructures that are critical to specific biological

or chemical activities.

The following experiment demonstrates the effec-

tiveness of graph kernel method [7,5] (optimal assign-

ment kernel, OA) and pattern-based classification [8,4]

(PA), both of which show good accuracy. From the

PubChem screen tests, 11 bioassay datasets are dis-

played. Since the active class is very rare (around 5%)

in these datasets, 500 active compounds and 2,000

inactive compounds are randomly sampled from each

dataset for performance evaluation. The classification

accuracy is evaluated with 5-fold cross validation. For

both methods, the same implementation of support

vector machine, LIBSVM [2], with parameter C select-

ed from [2�5,25], is used. Table 1 shows AUC by OA

and PA. The area under the ROC curve (AUC) is

a measure of the model accuracy, in the range of

[0,1]. A perfect model will have an area of one. As

shown in Table 1, PA achieves comparable results

with OA. A detailed examination shows that PA
Mining of Chemical Data. Table 1. Chemical compound

classification

Dataset OA PA

MCF-7: Breast 0.68 � 0.12 0.67 � 0.10

MOLT-4: Leukemia 0.65 � 0.06 0.66 � 0.06

NCI-H23: Non-Small Cell Lung 0.79 � 0.08 0.76 � 0.09

OVCAR-8: Ovarian 0.67 � 0.04 0.72 � 0.06

P388: Leukemia 0.79 � 0.07 0.82 � 0.04

PC-3: Prostate 0.66 � 0.09 0.69 � 0.09

SF-295: Central Nerv Sys 0.75 � 0.11 0.72 � 0.12

SN12C: Renal 0.75 � 0.08 0.75 � 0.06

SW-620: Colon 0.70 � 0.02 0.74 � 0.06

UACC257: Melanoma 0.65 � 0.05 0.64 � 0.05

Yeast: Yeast anticancer 0.64 � 0.04 0.71 � 0.05

Average 0.70 � 0.07 0.72 � 0.07
is able to discover substructures that determine the

activity of compounds, without domain knowledge.
Data Sets
PubChem provides bioassay records for anti-cancer

screen tests with different cancer cell lines, available

at http://pubchem.ncbi.nlm.nih.gov
Cross-references
▶ Frequent Graph Patterns

▶Graph Classification

▶Graph-based Clustering

▶Graph Database

▶Graph Database Mining

▶Graph Kernel

▶Graph Search
Recommended Reading
1. Bunke H. and Shearer K. A graph distance metric based on the

maximal common subgraph. Pattern Recogn. Lett., 19:255–259,

1998.

2. Chang C.-C. and Lin C.-J. LIBSVM: a library for support vector

machines, 2001. Software available at http://www.csie.ntu.edu.

tw/~cjlin/libsvm

3. Dehaspe L., Toivonen H., and King R. Finding frequent sub-

structures in chemical compounds. In Proc. 4th Int. Conf. on

Knowledge Discovery and Data Mining, 1998, pp. 30–36.

4. Deshpande M., Kuramochi M., Wale N., and Karypis G.

Frequent substructure-based approaches for classifying

chemical compounds. IEEE Trans. Knowl. Data Eng.,

17:1036–1050, 2005.

5. Fröhlich H., Wegner J., Sieker F., and Zell A. Optimal assignment

kernels for attributed molecular graphs. In Proc. 22nd Int. Conf.

on Machine Learning, 2005, pp. 225–232.

6. Hansch C. A quantitative approach to biochemical structure-

activity relationships. Acct. Chem. Res., 2:232–239, 1969.

7. Kashima H., Tsuda K., and Inokuchi A. Marginalized kernels

between labeled graphs. In Proc. 20th Int. Conf. on Machine

Learning, 2003, pp. 321–328.

8. Kramer S., Raedt L., and Helma C. Molecular feature mining in

HIV data. In Proc. 7th ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining, 2001, pp. 136–143.

9. Yan X., Yu P.S., and Han J. Graph indexing: A frequent structure-

based approach. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2004, pp. 335–346.
Mixed Evidence

▶Contextualization

Mobile Interfaces M 1751
Mixed-Media

▶Multimedia Metadata
MM Indexing

▶Multimedia Data Indexing
MMDBMS

▶Main Memory DBMS
Mobile Ad hoc Network Databases

▶MANET Databases
M
Mobile Database

OURI WOLFSON

University of Illinois at Chicago, Chicago, IL, USA

Definition
A mobile database is a database that resides on a

mobile device such as a PDA, a smart phone, or a

laptop. Such devices are often limited in resources

such as memory, computing power, and battery power.

Key Points
Due to device limitations, a mobile database is often

much smaller than its counterpart residing on servers

and mainframes. A mobile database is managed by a

Database Management System (DBMS). Again, due to

resource constraints, such a system often has limited

functionality compared to a full blown databasemanage-

ment system. For example, mobile databases are single

user systems, and therefore a concurrency control mech-

anism is not required. Other DBMS components such as

query processing and recovery may also be limited.

Queries to the mobile database are usually posed by

the user of the mobile device. Updates of the database

may originate from the user, or from a central server,

or directly from other mobile devices. Updates from
the server are communicated wirelessly. Such commu-

nication takes place either via a point-to-point con-

nection between the mobile device (the client) and the

server, or via broadcasting by the server [Acharya S.,

Franklin M., and Zdonik S, 1995, Dissemination-based

Data Delivery Using Broadcast Disks, Personal Com-

munications]. Direct updates from other mobile

devices may use short-range wireless communication

protocols such as Bluetooth or Wifi [1].

Cross-references
▶Mobile Ad hoc Network Databases

Recommended Reading
1. Cao H., Wolfson O., Xu B., and Yin H., ‘‘MOBI-DIC: MOBIle

DIscovery of loCal Resources in Peer-to-Peer Wireless Network’’.

Bull Comput Soc Tech Committee Data Eng, 28(3):11–18, 2005

(Special Issue on Database Issues for Location Data

Management).
Mobile Interfaces

GIUSEPPE SANTUCCI

University of Rome, Roma, Italy

Synonyms
Handhelds interfaces; Navigation system interfaces

Definition
Mobile interfaces are interfaces specifically designed

for little portable electronic devices (handhelds), like

cellular phones, personal digital assistants (PDAs), and

pagers. Mobile interfaces provide means to execute

complex activities on highly constrained devices, char-

acterized by small screens, low computing power, and

limited input/output (I/O) capabilities. While this

term is mainly used to refer to interfaces for classical

Web applications, like email and Web browsing it

should be intended in a broader sense, encompassing

all Web and non-Web applications that run on little

mobile equipments (e.g., GPS navigation systems).

Historical Background
Mobile interfaces came up with the proliferation of

cellular phones through the 1980s. At that time, the

notion of mobile interface was very primitive and

the offered services were very simple: handling lists of

contacts, usually limited to <name, phone-number>

Mobile Interfaces. Figure 1. A screenshot from Apple

Newton.

1752M Mobile Interfaces
pairs, starting/answering a phone call, writing short

text, setting phone preferences (volume, light, ring

tone, etc.). Even in this restricted scenario, the vendors

had to deal with challenging issues, posed by the very

limited early cellular phones capabilities, in terms of

screen dimension and resolution, limited computing

power, and I/O capabilities. No standards were around

and different, unrelated solutions were adopted. The

most used interaction strategy was to mimic the typical

hierarchical computer menus with very poor results:

the user was (and still is) forced to access functions

and services through a series of boring menus. The

main reason of failure is that while PCs can present to

the user a complete list of all possible choices mobile

phones can show a small number of options at time

(usually one), forcing the user to remember the paths to

the commands. That results in a very large number of

key presses, errors, and mental overwhelming: many of

the advantages of the conventional menus are lost [12].

For about ten years the unique available portable

devices were mainly cellular phones; from 1993 to 1998

Apple Computer (now Apple Inc.) marketed the ‘‘Apple

Newton,’’ the first line of PDAs, personal digital assis-

tants, a term introduced on January 7, 1992 by John

Sculley at the Consumer Electronics Show in Las Vegas,

Nevada, referring to the Apple Newton. The Apple’s

official name for the PDAwas ‘‘MessagePad’’ and it was

based on the ARM 610 RISC processor using a dedica-

ted operating system (Newton OS, an allusion to Isaac

Newton’s apple); however, the word Newton was popu-

larly used to refer to the device and its software. The new

device was characterized by a wider touchable mono-

chromatic screen (366 � 240) with retro illumination

(only for the top version). The increased computational

power and the larger screen allowed for very innovative

interaction techniques (for a portable device): icons,

simulated touchable QWERTY keyboard, and handwrit-

ing recognition (called Calligrapher). Moreover, the user

was allowed to turn the screen horizontally (‘‘land-

scape’’) as well as vertically (‘‘portrait’’) preserving the

handwriting recognition functionality (see Fig. 1).

Even the data management was quite innovative:

programs were able to convert and share data (e.g., the

calendar was able to refer to names in the address book

or to convert a note into an appointment). Finally all

the devices were equipped with a built in infrared

and an expansion port for connecting to a modem

or Ethernet. Disregarding the color absence and the
limited device connectivity, the Palm Newton func-

tionalities were quite similar to the ones of modern

PDAs!

In spite of the innovative interface and capabilities,

the product was not a successful one. The main reasons

were the poor handwriting recognition accuracy, the

high price, and the non comfortable size (it did not fit

in a regular pocket). Still, the pioneering Apple ideas

were captured by other vendors and many similar

devices were around in the next years. Among them,

the Palm series with the PalmOS operative system and

the Graffiti handwriting recognition system conquered

(in 1999) about 80% of the world market, mostly for

the effective handwriting system and for the availabili-

ty of a huge amount of third part software. On Febru-

ary 2000 Palm marketed the PalmIIIc, the first color

PDA. Concerning the interface it is worth noting the

different Graffiti philosophy: instead of allowing the

user to write in his/her own style it forced the user to

learn a set of pen strokes for each character (see Fig. 2).

This narrowed the possibility for erroneous input,

although memorization of the stroke patterns did in-

crease the learning curve for the user. Some studies

demonstrated that even if the error rate with Graffiti

was higher than using the virtual keyboard (19.3 vs.

4.1%), users prefer Graffiti, because its usage is more

natural.

Mobile Interfaces. Figure 2. The PalmOS Graffiti.

Mobile Interfaces M 1753

M

As soon as the hardware made it possible a deeper

integration between PDA and cellular phones started:

phones were equipped with larger screen and complex

applications (smartphones), while PDA included

phone hardware. Moreover, the so called pager devices,

mainly intended for on the way email, came up. In 2004,

smartphones were outselling PDAs for the first time.

Nowadays, the difference between these three categories

in term of capabilities and interface is very little. The

main consequence of this integration is that all these

devices allow for Internet access (through GPRS or

WI-FI) and it is very likely that in the next future there

will be more people accessing the Internet via mobile

devices (phones, PDA, etc) than via conventional PCs.

According to this issuemany researchers are now dealing

with the problem of designing friendly interface for

accessing Internet through portable devices.
Foundations
The research effort concerning mobile interfaces fol-

lowed twomain paths: designing interface for a specific

application running on a specific device (e.g., the

agenda interface of a specific cellular phone) or design-

ing web based applications that can be deployed on

multiple devices (e.g., a web browser working on dif-

ferent PDAs and cellular phones).

Mobile Interface for Specific Devices

The problem of dealing with little screen is not new.

Much literature from the 1980s and early 1990s, written

even before the Web, deals with user interfaces on small

screens. At that time the focus was on first generation

cash dispensing ATMs, electronic typewriters and

photocopiers. All of these systems could display only a

limited number of text lines to communicate with the

user. Research looked into the impact of reduced screen

size on comprehension [3], reading rate [4], and inter-

action [12]. This research is still valid and has new

relevance to mobile Web devices [8].

The availability of graphic display and the diffusion

of navigation system raised the issue of interacting with

graphics and maps [6]. Moreover, the increasing usage

of such systems while driving a car posed several new

issues concerning distracting factors and security [1].

Multi Target Applications

In this case, research deals with techniques able to sup-

port the design of applications that run on several

devices that present different interaction capabilities

(e.g., small/large screens, keyboard/keypad input, etc.).

In order to address this issue, researchers have adopted

two main approaches:

1. Designing applications in order to let them run on

different platforms

2. Adapting existing systems in order to render them

usable on platform that were not originally includ-

ed as service provider (e.g., standard web sites)

In the first approach the solution is offered at design

time, that is, the designer explicitly knows that the

system will run on multiple devices. Some research

exists that follows this approach and the key issues

consist in giving models, methods, and tools to sup-

port the designer in the creation of multi-device appli-

cations and in offering techniques and algorithms to

generate the final interface at run time for the specific

1754M Mobile Interfaces
device utilized. In [10], a tool for support is presented

together with a well defined development life cycle: the

designer starts from abstract tasks definition and upon

it designs the interface in abstract. The final interfaces

are statically generated at design time by following

suggestions offered by the system and further refined

in order to accommodate specific details. Puerta et al.

in [5] propose a similar framework, defining a model

to design user interfaces in abstract as well, but their

work envisions also adaptive techniques to produce the

final user interface. A central mediator agent is respon-

sible for translating the abstract specification of the

user interface, according to a description of device’s

characteristics, into the final interface. Fundamental

questions arising from this kind of research are what

kind of models should be employed to specify abstract

interaction elements and what strategies/techniques

can permit an effective translation of abstract models

into real interfaces.

The second approach is the one that attempts to

bring existing systems, typically web sites, to small screen

devices by means of some sort of adaptation/filtering.

Among them, the WAP forum (www.wapforum.org)

defined a protocol that enables Web-like services on

little, portable devices. The interface uses a card meta-

phor and the designers claim that it is highly appropriate

and usable. However, Nielson [11] raised doubts about

its effectiveness. A similar proposal is i-mode, developed

by the dominant Japanese carrier NTT DoCoMo, and

widely used in Japan. Moreover, the World Wide Web

Consortium (W3C) is also developing a framework that

will enableWeb content to be accessed on a diverse range

of devices [13]. This frameworkwill allow a document to

exist in multiple variants, each variant specifying the

type of support needed by the browser to display its

contents. Device capabilities and user preferences will

also be captured. The information about documents,

devices and users will be used to automatically adapt a

Web page to best suit the device and user.

Key Applications
Users of mobile interfaces are growing at high speed.

According to IDC’s Worldwide Quarterly Mobile Phone

Tracker (www.idc.com), worldwide mobile phone ship-

ments rose 19.1% year over year and increased sequen-

tially 8.8% in 2005 to reach 208.3 million units. While

unconnected PDA’s are a declining segment, the emer-

ging navigator market is still increasing about 10 million

cars guided by navigation systems, 43 million
dedicated portable navigators, and 16 millions smart

phones based navigators forecasted for 2010 (www.

strategyanalytics.net).

These figures make clear the importance of mobile

interfaces in the coming years.

Future Directions
There are some emerging issues that will likely affect

the behavior and structure of mobile interfaces:

� Search versus menu browsing. Several proposals

relies on the idea that, in order to start an action, it

is better to search it (i.e., towrite down the command

name) instead of browsing boring menus [9,7].

� Multimodal interaction. When the hardware allows

it, mobile interfaces can exploit multimodal input/

output (e.g., voice commands, likely together with

the aforementioned search strategy).

� Context and user modeling. Some proposal describe

interfaces that can adapt themselves according to the

user preferences and the context [2], e.g., an interface

for browsing tourist information presents a user with

list of vegetarian restaurants at walking distance,

according to the user location, discovered through

the integrated GPS device, knowing that the user is

vegetarian and that s/he is currently walking.

These research issues could greatly improve the mobile

interfaces in the next years.

Cross-references
▶Multimodal Interfaces

▶Visual Interfaces

▶WIMP Interfaces

Recommended Reading
1. Commission of the European Communities. Commission rec-

ommendation of 22 December 2006 on safe and efficient in-

vehicle information and communication systems: Update of the

European Statement of Principles on Human Machine Interface,

2006.

2. Coutaz J., Crowley J., Dobson S., and Garlan D. Context is key.

Commn. ACM, 48(3):49–53, 2005.

3. Dillon A., Richardson J., and McKnight. The effect of display

size and text splitting on reading lengthy text from the screen,

Behav. Inf. Technol., 9(3):215–227, 1990.

4. Duchnicky R.L. and Kolers P.A. Readability of text scrolled on

visual display terminals as a function of window size. Hum.

Factors, 25(6):683–692, 1983.

5. Eisenstein J., Vanderdonckt J., and Puerta A. Applying model-

based techniques to the development of UIs for mobile

Mobile Sensor Network Data Management M 1755

M

computers. In Proc. Sixth Int. Conf. on Intelligent User Inter-

faces, 2001, pp. 69–76.

6. Frey P.R., Rouse W.B., and Garris R.D. Big graphics and little

screens: designing graphical displays for maintenance tasks.

IEEE Trans. Syst. Man Cybernetics, 22(1): 10–20, 1992.

7. Graf S., Spiessl W., Schmidt A., Winter A., and Rigoll G. In-car

interaction using search based user interfaces. In Proc. 26th

Annual SIGCHI Conf. on Human factors in Computing Sys-

tems. 2008, pp. 1685–1688.

8. Jones M., Marsden G., Mohd-Nasir N., Boone K., and Buchanan

G. Improving web interaction on small displays. In Proc. W8

Conf., Toronto, 1999 Also reprinted in Int. J. Comput. Tele-

commn. Netw., 31(11–16):1129–1137, 1999.

9. Marsden G., Gillary P., Jones M. and Thimbleby H. Successful

user interface design from efficient computer algorithms. In

Proc. ACM CHI 2000 Conf. on Human Factors in Computing

Systems, 2000, pp. 181–182.

10. Mori G., Paternò F., and Santoro C. Tool support for designing

nomadic applications. In Proc. 2003 Int. Conf. on Intelligent

User Interfaces, 2003, pp. 141–148.

11. Nielson J. Graceful degradation of scalable internet services.

Available online at:http://www.useit.com/alertbox/991031.html,

1999.

12. Swierenga S.J. Menuing and scrolling as alternative information

access techniques for computer systems: interfacing with the

user. In Proc. 34th Annual Meeting of Human Factors Society,

1990, pp. 356–359.

13. W3C Mobile Activity Statement. Available online at: http://

www.w3.org/Mobile/Activity.
Mobile Map Services

▶ Location-Based Services (LBS)
Mobile Sensor Network Data
Management

DEMETRIOS ZEINALIPOUR-YAZTI
1

PANOS K. CHRYSANTHIS
2

1University of Cyprus, Nicosia, Cyprus
2University of Pittsburgh, Pittsburgh, PA, USA

Synonyms
MSN data management; Mobile wireless sensor

network data management

Definition
Mobile Sensor Network (MSN) Data Management

refers to a collection of centralized and distributed

algorithms, architectures and systems to handle (store,
process and analyze) the immense amount of spatio-

temporal data that is cooperatively generated by collec-

tions of sensing devices that move in space over time.

Formally, given a set of n homogenous or hetero-

geneous mobile sensors {s1, s2,...,sn} that are capable

of acquiring m physical attributes {a1, a2,...,am}

from their environment at every discrete time

instance t (i.e., datahas a temporal dimension),

an implicit or explicit mechanism that enables each

si (i � n) to move in some multi-dimensional Euclide-

an space (i.e., data has one or more spatial dimen-

sions), MSN Data Management provides the

foundation to handle spatio-temporal data in the

form (si, t, x, [y, z,]a1[,...,am]), where x, y, z defines

three possible spatial dimensions and the bracket expres-

sion ‘‘[]’’ denotes the optional arguments in the tuple

definition. In a more general perspective, MSN Data

Management deals with algorithms, architectures and

systems for in-network and out-of-network query pro-

cessing, access methods, storage, data modeling, data

warehousing, data movement and data mining.

Historical Background
The improvements in hardware design along with the

wide availability of economically viable embedded sen-

sor systems have enabled scientists to acquire environ-

mental conditions at extremely high resolutions. Early

approaches to monitor the physical world were pri-

marily composed of passive sensing devices, such as

those utilized in wired weather monitoring infrastruc-

tures, that could transmit their readings to more pow-

erful processing units for storage and analysis. The

evolution of passive sensing devices has been suc-

ceeded by the development of Stationary Wireless

Sensor Networks (Stationary WSNs). These are com-

posed of many tiny computers, often no bigger than

a coin or a credit card, that feature a low frequency

processor, some flash memory for storage, a radio for

short-range wireless communication, on-chip sensors

and an energy source such as AA batteries or solar

panels. Applications of stationary WSNs have emerged

in many domains ranging from environmental moni-

toring [15] to seismic and structural monitoring as

well as industry manufacturing.

The transfer of information in such networks is

conducted without electrical conductors (i.e., wires)

using technologies such as radio frequency (RF), infra-

red light, acoustic energy and others, as the mobility

aspect inherently hinders the deployment of any

1756M Mobile Sensor Network Data Management
technology that physically connects nodes with wires.

Since communication is the most energy demanding

factor in such networks, data management researchers

have primarily focused on the development of energy-

conscious algorithms and techniques.

In particular, declarative approaches such as

TinyDB [9] and Cougar [16] perform a combination

of in-network aggregation and filtering in order to

reduce the energy consumption while conveying data

to the querying node (sink). Additionally, approaches

such as TiNA [13] and MINT Views [17] take into

account intelligent in-network data reduction techni-

ques to further reduce the consumption of energy.

Data Centric Routing approaches, such as directed dif-

fusion [8], establish low-latency paths between the sink

and the sensors in order to reduce the cost of commu-

nication. Data Centric Storage [14] schemes organize

data with the same attribute (e.g., humidity readings)

on the same node in the network in order to offer

efficient location and retrieval of sensor data.

The evolution of stationary WSNs in conjunction

with the advances made by the distributed robotics

and low power embedded systems communities have

led to a new class of Mobile (and Wireless) Sensor Net-

works (MSNs) that can be utilized for land [3,5,10],

ocean exploration [11], air monitoring [1], automo-

bile applications [7,6], Habitant Monitoring [12] and a

wide range of other scenarios. MSNs have a similar

architecture to their stationary counterparts, thus are

governed by the same energy and processing limita-

tions, but are supplemented with implicit or explicit

mechanisms that enable these devices to move in space

(e.g., motor or sea/air current) over time. Additionally,

MSN devices might derive their coordinates through

absolute (e.g., dedicated Geographic Positioning Sys-

tem hardware) or relative means (e.g., localization

techniques, which enable sensing devices to derive

their coordinates using the signal strength, time differ-

ence of arrival or angle of arrival). There are several

classes of MSNs which can coarsely be structured into

the following classes: (i) highly mobile, which contains

scenarios in which devices move at high velocities

such as cars, human with cell phones, airplanes, and

others; (ii) mostly static, which contains scenarios in

which devices move at low velocities such as moni-

toring sensors in a shop floor with moving robots;

and (iii) hybrid, which contains both classes such as

an airplane that has sensors installed on inside and

outside.
Foundations
The unique characteristics of MSNs create novel data

management opportunities and challenges that have

not been addressed in other contexts including those

of mobile databases and stationary WSNs. In order to

realize the advantages of such networks, researchers

have to re-examine existing data management and

data processing approaches in order to consider sensor

and user mobility; develop new approaches that con-

sider the impact of mobility and capture its trade-offs.

Finally, MSN data management researchers are

challenged with structuring these networks as huge

distributed databases whose edges consist of numerous

‘‘receptors’’ (e.g., RFID readers or sensor networks)

and internal nodes form a pyramid scheme for

(in-network) aggregation and (pipelined) data stream

processing.

There are numerous advantages of MSNs over their

stationary counterparts. In particular, MSNs offer:

(i) dynamic network coverage, by reaching areas that

have not been adequately sampled; (ii) data routing

repair, by replacing failed routing nodes and by cali-

brating the operation of the network; (iii) data muling,

by collecting and disseminating data/readings from

stationary nodes out of range; (iv) staged data stream

processing, by conducting in-network processing of

continuous and ad-hoc queries; and (v) user access

points, by enabling connection to handheld and other

mobile devices that are out of range from the commu-

nication infrastructure.

These advantages enable a wide range of new appli-

cations whose data management requirements go be-

yond those of stationary WSNs. In particular, MSN

system software is required to handle: (i) the past, by

recording and providing access to history data; (ii) the

present, by providing access to current readings of

sensor data; (iii) the future, by generating predictions;

(iv) distributed spatio-temporal data, by providing

new means of distributed data storage, indexing and

querying of spatio-temporal data repositories; (v) data

uncertainty, by providing new means of handling

real world signals that are inherently uncertain; (vi)

self-configurability, by withstanding ‘‘harsh’’ real-life

environments; and (vii) data and service mash-ups, by

enabling other innovative applications that build on

top of existing data and services.

In light of the above characteristics, the most

predominant data management challenges that have

prevailed in the context of MSNs include:

Mobile Sensor Network Data Management M 1757

M

In-Network Storage: The absence of a stationary

network structure in MSNs makes continuous data

acquisition to some sink point a non-intuitive task

(e.g., mobile nodes might be out of communication

range from the sink). In particular, the absence of an

always accessible sink mandates that acquisition has to

be succeeded by in-network storage of the acquired

events so that these events can later be retrieved by

the user. Mobile devices usually utilize flash memory

as opposed to magnetic disks, which are not shock-

resistant and thus are not appropriate for a mobile

setting. Consequently, a major challenge in MSNs is

to extend local storage structures and access methods

in order to provide efficient access to the data stored

on the local flash media of a sensor device while tradi-

tional database research has mainly focused on issues

related to magnetic disks.

Flexible and Expressive Query Types: In a traditional

database management system, there is a single correct

answer to a given query on a given database instance.

When querying MSNs the situation is notably different

as there are many more degrees of freedom and the

underlying querying engine needs to be guided regard-

ing which alternative execution strategy is the right

one, typically on the basis of target answer quality

and resource availability. In this context, there are

additional relevant parameters that include: (i) Resolu-

tion: physical sensor data can be observed at multiple

resolutions along space and time dimensions; (ii) Con-

fidence: more often than not, correctness of query

results can be specified only in probabilistic terms

due to the inherent uncertainty in the sensor hardware

and the modeling process; (iii) Alternative models: in

some cases, several alternative models apply to a single

scenario. Each alternative typically represents a differ-

ent point in the efficiency (resource consumption) and

effectiveness (result quality) spectrum, thereby allow-

ing a tradeoff between these two metrics on the basis of

application-level expectations. The prime challenge is

to define new declarative query languages that make

use of these new parameters while allowing a highly

flexible and optimizable implementation. Additionally,

approximate query processing with controlled result

accuracy becomes vital for dynamic mobile environ-

ments with varying node velocities, changing data traf-

fic patterns, information redundancy, uncertainty, and

inevitable flexible load shedding techniques. Finally, in

order to have an efficient and optimized implementation

of query types, MSNs will need to consider cross-layer
optimization since all layers of the data stack are involved

in query execution.

Efficient Query Routing Trees: Query routing and

resolution in stationary WSNs is typically founded on

some type of query routing tree that provides each

sensor with a path over which answers can be trans-

mitted to the sink. In a MSN, such a query routing tree

can neither be constructed in an efficient manner nor

be maintained efficiently as the network topology is

transient. The dynamic nature of the underlying phys-

ical network tremendously complicates the inter-

change of information between nodes during the

resolution of a query. In particular, it is known that

sensing devices tend to power-down their transceiver

(transmitter-receiver) during periods of inactivity in

order to conserve energy [2]. While stationary WSNs

define transceiver scheduling approaches, such as those

defined in TAG [9], Cougar [16] and MicroPulse [1],

in order to enable accurate transceiver allocation

schemes, such approaches are not suitable for mobile

settings in which a sensor is not aware of its designated

parent node in the query tree hierarchy. Consequently,

nodes are not able to agree on rendezvous time-points

on which data interchange can occur.

Purpose-Driven Data Reduction: The amount of

data generated fromMSNs can be overwhelming. Con-

sequently, a main challenge is to provide data reduc-

tion techniques which will be tuned to the semantics

of the target application. Furthermore, data reduct-

ion must take into account the entire spectrum of

uses, ranging from real-time to off-line, supporting

both snapshot and continuous queries that take advan-

tage of designated optimization opportunities (e.g.,

multi-query) especially targeted for mobile environ-

ments. Finally, it must also consider the inherently

dynamic aspects of these environments and the possi-

bility of in-network data reduction (e.g., in-network

aggregation).

Perimeter Construction and Swarm-Like Behavior:

In many types of MSNs, new events are more prevalent

at the periphery of the network (e.g., water detection

and contamination detection) rather than uniformly

throughout the network (which is more typically for

applications like fire detection). This creates the neces-

sity to construct the perimeter of a MSN in an online

and distributed manner. Additionally, many types of

MSNs are expected to feature a swarm-like behavior

(The term Swarm (or Flock) refers to a group of objects

that exhibit a polarized, non-colliding and aggregate

1758M Mobile Sensor Network Data Management
motion.). For instance, consider a MSN design that

consists of several rovers that are deployed as a swarm

in order to detect events of interest (e.g., the presence

of water) [18]. The swarm might collaboratively collect

spatio-temporal events of interest and store them in

the swarm until an operator requests them. In order to

increase the availability of the detected answers, in the

presence of unpredictable failures, individual rovers

can perform replication of detected events to neigh-

boring nodes. That creates challenges in data aggrega-

tion, data fusion and data storage that have not yet

been addressed.

Enforcement of Security, Privacy and Trust: Frequent

node migrations and disconnections in MSNs, as well

as resource constraints raise severe concerns with re-

spect to security, privacy and trust. Additionally, the cost

of traditional secure data dissemination approaches

(e.g., using encryption) may be prohibitively high in

volatile mobile environments. As such, research on

encryption-free data dissemination strategies becomes

very relevant here. This includes strategies to deliver

separate and under-defined data shares, secure multi-

party computation and advanced information recovery

techniques.

Context-Awareness and Self-Everything: Providing a

useful level of situational awareness in an unobtrusive

way is crucial to the success of any application utilizing

MSNs as this can be used to improve functionality by

including preferences from the users but can also be

used to improve performance (e.g., better network

routing decisions if the exact topology is known).

Note that context is often obvious in stationary WSN

deployments (i.e., a specific sensor is always in the

same location) but in the context of a MSN additional

data management measures need to be taken into

account in order to enable this parameter. Additional-

ly, it is crucial for them to be ‘‘plug-and-play’’ and self-

everything (i.e., self-configurable and self-adaptive) as

application deployment of sensors in the field is fa-

mously hard, even without the mobility aspect which is

introducing additional challenges. Finally, a crucial

parameter is that of being adaptive both in how to

deal with the system issues (i.e., how to adapt from

failures in network connectivity) and also with user-

interface/application issues (i.e., how to adapt the ap-

plication when the context changes).

Key Applications
MSN Data Management algorithms, architectures and

systems will play a significant role in the development
of future applications in a wide range of disciplines

including the following:

Environmental and Habitant Monitoring: A large

class of MSN applications have already emerged in

the context of environmental and habitant monitoring

systems. Consider an ocean monitoring environment

that consists of n independent surface drifters floating

on the sea surface and equipped with either acoustic or

radio communication capabilities. The operator of

such a MSN might seek to answer queries of the type:

‘‘Has the MSN identified an area of contamination and

where exactly?’’. The MSN architecture circumvents

the peculiarities of individual sensors, is less prone

to failures and is potentially much cheaper. Similar

applications have also emerged with MSNs of car

robots, such as CotsBots [3], Robomotes [5] or

Millibots [10], and MSNs of Unmanned Aerial Vehi-

cles (UAVs), such as SensorFlock [1], in which devices

can fly autonomously based on complex interactions

with their peers. One final challenging application in

this class is that of detecting a phenomenon that itself

is mobile, for example a brush fire which is being

carried around by high winds.

Intelligent Transportation Systems: Sensing systems

have been utilized over the years in order to better

manage traffic with the ultimate goal of reducing acci-

dents and minimizing the time and the energy (gaso-

line) wasted while staying idle in traffic. Since cars are

already equipped with a wide range of sensors, the

generated information can be shared in a vehicle-to-

vehicle network. For example the ABS system can

detect when the road is slippery or when the driver is

hitting the brakes thus this information can be broad-

casted to the surrounding cars but also to the many

cars back and forth, as needed, in order to make sure

that everybody can safely stop with current weather

conditions and car speeds.

Medical Applications: This class includes applica-

tions that monitor humans in order to improve living

conditions and in order to define early warning sys-

tems that identify when human life is at risk. For

instance, Nike+ is an example for monitoring the

health of a group of runners that have simple sensing

devices embedded in their running shoes. Such an

application would require embedded storage and re-

trieval techniques in order to administer the local

amounts of data. Applications in support of the elderly

and those needing constant supervision (e.g., due

to chronic diseases like diabetes, allergies, etc.) are

another example in which MSN data management

Mobile Wireless Sensor Network Data Management M 1759

M

techniques will play an important role. Wellness appli-

cations could also be envisioned, where a health ‘‘dose’’

of exercise is administered according to ones needs and

capabilities. Another area are systems to protect sol-

diers on the battlefield. SPARTNET has recently devel-

oped wearable physiological sensor systems that

collect, organize and interpret data on the health status

of soldiers in order to improve situational and medical

awareness during field trainings. Such systems could

be augmented with functionality of detecting and re-

porting threats that are either derived from individual

signals (e.g., when a soldiers personal health monitor

shows erratic life-signals) and from correlated signals

that are derived frommultiple sensors/soldiers (e.g., by

recognizing when a small group of soldiers is deviating

away from the expected formation). Finally, disaster

and emergency management are another prime area

where MSN data management techniques will play a

major impact.

Location-Based Services and the Sensor Web: The

last group of challenging motivating applications is

that of real-time location-based services, for example

a service that can report whether there are any available

parking spaces or a service that can keep track of buses

moving and report how delayed a certain bus is. Many

of these services become more powerful with the inte-

gration of data from the Sensor Web (i.e., live sensor

data) with theWeb (i.e., static content available online)

and the Deep-web (i.e., data that is stored in a database,

but are accessible through a web page or a web service).

Cross-references
▶Mobile and Ubiquitous Data Management

▶ Sensor Networks

▶ Spatial Network Databases

▶ Stream Data Analysis

Recommended Reading
1. Allred J., Hasan A.B., Panichsakul S., Pisano B., Gray P.,

Huang J-H., Han R., Lawrence D., and Mohseni K. SensorFlock:

an airborne wireless sensor network of micro-air vehicles. In

Proc. 5th Int. Conf. on Embedded Networked Sensor Systems,

2007, pp. 117–129.

2. Andreou P., Zeinalipour-Yazti D., Chrysanthis P.K., and

Samaras G. Workload-aware optimization of query routing

trees in wireless sensor networks In Proc. 9th Int. Conf. on

Mobile Data Management, 2008, pp. 189–196.

3. Bergbreiter S. and Pister K.S.J. CotsBots: an off-the-shelf plat-

form for distributed robotics. In Proc. IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems, 2003, pp. 1632–1637.

4. Chintalapudi K. and Govindan R. Localized Edge Detection in

Sensor Fields. Ad-hoc Networks, 1(2–3):273–291, 2003.
5. Dantu K., Rahimi M.H., Shah H., Babel S., Dhariwal A., and

Sukhatme G.S. Robomote: enabling mobility in sensor net-

works. In Proc. 4th Int. Symp. on Information Processing in

Sensor Networks, 2005, pp.

6. Eriksson J., Girod L., Hull B., Newton R., Madden S., and

Balakrishnan H. The Pothole Patrol: using a mobile sensor

network for road surface monitoring. In Proc. 6th Int. Conf.

Mobile Systems, Applications and Services, 2008, pp. 29–39.

7. Hull B., Bychkovsky V., Chen K., Goraczko M., Miu A., Shih E.,

Zhang Y., Balakrishnan H., and Madden S. CarTel: a distributed

mobile sensor computing system. In Proc. 4th Int. Conf. on

Embedded Networked Sensor Systems, 2006, pp. 125–138.

8. Intanagonwiwat C., Govindan R., and Estrin D. Directed diffu-

sion: a scalable and robust communication paradigm for sensor

networks. In Proc. 6th Annual Int. Conf. on Mobile Computing

and Networking, 2000, pp. 56–67.

9. Madden S.R., Franklin M.J., Hellerstein J.M., and Hong W. The

design of an acquisitional query processor for sensor networks. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2003.

10. Navarro-Serment L.E., Grabowski R., Paredis C.J.J., and

Khosla P.K. Millibots: the development of a framework and

algorithms for a distributed heterogeneous robot team. IEEE

Robot. Autom. Mag., 9(4), December 2002.

11. Nittel S., Trigoni N., Ferentinos K., Neville F., Nural A., and

Pettigrew N. A drift-tolerant model for data management in

ocean sensor networks. In Proc. 6th ACM Int. Workshop on

Data Eng. for Wireless and Mobile Access, 2007, pp. 49–58.

12. Sadler C., Zhang P., Martonosi M., and Lyon S. Hardware design

experiences in ZebraNet. In Proc. 2nd Int. Conf. on Embedded

Networked Sensor Systems, 2004, pp. 227–238.

13. Sharaf M., Beaver J., Labrinidis A., and Chrysantrhis P.K.

Balancing energy efficiency and quality of aggregate data in

sensor networks. VLDB J., 13(4):384–403, 2004.

14. Shenker S., Ratnasamy S., Karp B., Govindan R., and Estrin D.

Data-centric storage in sensornets. SIGCOMM Comput. Com-

mun. Rev., 33(1):137–142, 2003.

15. Szewczyk R., Mainwaring A., Polastre J., Anderson J., and

Culler D. An analysis of a large scale habitat monitoring

application. In Proc. 2nd Int. Conf. on Embedded Networked

Sensor Systems, 2004, pp. 214–226.

16. Yao Y. and Gehrke J.E. The cougar approach to in-network query

processing in sensor networks. ACM SIGMOD Rec., 32(3):9–18,

2002.

17. Zeinalipour-Yazti D., Andreou P., Chrysanthis P., and

Samaras G. MINT views: materialized in-network top-k

views in sensor networks. In Proc. Int. Conf. on Mobile Data

Management, 2007, pp. 182–189.

18. Zeinalipour-Yazti D., Andreou P., Chrysanthis P., and Samaras G.

SenseSwarm: a perimeter-based data acquisition framework for

mobile sensor networks. In Proc. VLDB Workshop on Data

Management for Sensor Networks, 2007, pp. 13–18.
Mobile Wireless Sensor Network
Data Management

▶Mobile Sensor Network Data Management

1760M Model Management
Model Management

CHRISTOPH QUIX

RWTH Aachen University, Aachen, Germany

Definition

Model management comprises technologies and mec-

hanisms to support the integration, transformation,

evolution, and matching of models. It aims at support-

ing metadata-intensive applications such as database

design, data integration, and data warehousing. To

achieve this goal, a model management system has to

provide definitions for models (i.e., schemas repre-

sented in some metamodel), mappings (i.e., relation-

ships between different models), and operators (i.e.,

operations that manipulate models and mappings).

Model management has become more and more im-

portant, since the interoperability and/or integration

of heterogeneous information systems is a frequent

requirement of organizations. Some important opera-

tions in model management are Merge (integration of

two models), Match (creating a mapping between two

models), and ModelGen (transforming a model given

in one modeling language into a corresponding model

in a different modeling language).

The current understanding of model management

has been defined in [4] and focuses mainly on (but is

not limited to) the management of data models. Most

of the problems mentioned before have been already

addressed separately and for specific applications. The

goal now is to build a model management system

(MMS) which unifies the previous approaches by

providing a set of generic structures representing mod-

els and mappings, and the definition of generic opera-

tions on these structures. Such a system could then be

used by an application to solve model management

tasks.
Historical Background
Model management, as it is understood today, has

been defined by Bernstein et al. [4]. In the 1980s, the

term ‘‘model management’’ was used in the context of

decision support systems, but this refered mainly to

mathematical models. Dolk [7] stated first the require-

ment for a theory for models similar to the relational

database theory. Such a theory should include formal

definitions of models and operations on models and

could be used as a basis for the implementation of a
model management system. This work was based on

a draft of the Information Resource Dictionary System

(IRDS) standard (ISO/IEC 10027:1990) which was

accepted in 1990. The IRDS standard clarified the

terminology of modeling systems and defined a frame-

work structure for such systems as a four-level hier-

archy: at the lowest level reside data instances which

are described by a model (or schema) on the next

higher level. This model is expressed in some modeling

language (or metamodel) which is located at the third

level. The highest level contains a metametamodel

which can be used to define metamodels.

The new definition of model management in 2000

[4] integrated the research efforts of several previously

loosely coupled areas. Therefore, research in model

management did not start from scratch, rather it

could build already on many results such as schema

integration [3], or model transformation [1]. The main

contribution of [4] was the definition of operations

(such asMatch,Merge, Compose) which amodel man-

agement system should offer. Furthermore, it was re-

quired thatmodels andmappings are considered as first

class objects and that operations should address them

as a whole and not only one model element at a time.

Since the vision of model management has been

stated, research diverted into the areas of schema

matching [14], model transformation [1], generic

metamodels [10], schema integration [3], and the defi-

nition and composition of mappings [8]. Each of these

areas will be summarized briefly in the next section.

Recently, research on model management has been

summarized in [5]. It was also emphasized that more

expressive mapping languages are required than pro-

posed in the original vision of model management.

Model management systems should also include a

component in which the mappings can be executed.

Foundations

Schema Matching

Schema matching is the task of identifying a set of

correspondences (also called a morphism or a mapp-

ing) between schema elements. Many aspects have to

be considered during the process of matching, such as

data values, element names, constraint information,

structure information, domain knowledge, cardinality

relationships, and so on. All this information is useful

in understanding the semantics of a schema, but it can

be a very time consuming problem to collect this

Model Management M 1761

M

information. Therefore, automatic methods are re-

quired for schema matching.

A multitude of methods have been proposed for

schema matching [14] using different types of infor-

mation to identify similar elements. The following

categories of schema matchers are frequently used:

� Element-Level Matchers take only the information

of one schema element separately into account.

These can either use linguistic information (name

of the element) or constraint information (data

type, key constraints).

� Structure-Level Matchers use graph matching

approaches to measure the similarity of the struc-

tures implied the schema.

� Instance-Level Matchers use also data instances to

match schema elements. If the instance sets of two

elements are similar, or have a similar value distri-

bution, this might indicate a similarity of the sche-

ma elements.

� Machine-Learning Matchers use either instance

data or previously identified matches as training

data for a machine-learning system. Based on this

training data, the system should then detect similar

matches in new schema matching problems.

It has been agreed that no single method can solve the

schema matching problem in general. Therefore,

matching frameworks have been developed which are

able to combine multiple individual matching meth-

ods to achieve a better result.

Model Transformation

Model transformation (also called ModelGen) is the

task of transforming a given model M in some partic-

ular modeling language into a corresponding model

M 0 in some other modeling language. A classical ex-

ample for such a transformation is the transformation

of an entity-relationship model into a relational data-

base schema. In general, the transformation cannot

guarantee that all semantic information of M is still

present in the resulting model M0 as the target model-

ing language might have limited expressivity.

Whereas transformation of models between differ-

ent modeling languages is a frequent task, it has up to

now mainly been adressed in specialized settings which

map from one particular metamodel to another fixed

metamodel. Recent approaches for generic model

transformations are based on generic model represen-

tations and use a rule-based system to transform a
generic representation of the original model into a

different model in the generic metamodel. As a side

effect, these approaches generate also instance-level

mappings which are able to transform data conform-

ing to the original model into data of the generated

model.

Another important application area of model

transformation is MDA (Model Driven Architecture).

The MDA concept is based on the transformation of

abstract, conceptual models into more concrete imple-

mentation-oriented models.

Generic Metamodel

A generic representation of models is a prerequisite

for building a model management system. Without a

generic representation, model operations would have

to be implemented for each modeling language that

should be supported by the system. Especially for the

task of model transformation, a generic representation

of models is advantageous as the necessary transforma-

tions have just to be implemented for the generic

representation.

Such a generic representation is called a generic

metamodel. A generic metamodel should be able to

represent models originally represented in different

metamodels (or modeling languages) in a generic

way without loosing detailed information about the

semantics of the model.

First implementations of model management sys-

tems used rather simple graph representations of mod-

els, e.g., Rondo [13]. Although the graph-based

approach might allow an efficient implementation

of operations which do not rely on a detailed represen-

tation of the models (such as schema matching), it

is more difficult to implement more complex opera-

tions (such as model transformation or schema

integration).

Schema integration approaches used rather ab-

stract generic metamodels. More detailed generic

metamodels have been used for model transformation.

In [1], the authors describe a metamodel consisting of

‘‘superclasses’’ of the modeling constructs in the native

metamodels. The transition between this internal rep-

resentation and a native metamodel is described as a

set of patterns. This induces the concept of a super-

model which is the union of patterns defined for any

supported native metamodel.

A detailed generic metamodel called GeRoMe

(Generic Role based Metamodel) is proposed in [10].

1762M Model Management
GeRoMe employs the role based modeling approach in

which an object is regarded as playing roles in colla-

borations with other objects. This allows to describe

the properties of model elements as accurately as pos-

sible while using only metaclasses and roles from a

relatively small set. Therefore, GeRoMe provides a ge-

neric, yet detailed representation of data models origi-

nally represented in different metamodels.

Schema Integration

In model management, the Merge operator addresses

the problem of schema integration, i.e., generating a

merged model given two input models and a mapping

between them. The merged model should contain

all the information contained in the input models

and the mapping. In this context, a mapping is not

just a simple set of correspondences between model

elements; it might have itself a complex structure and

is therefore often regarded also as a mapping model. A

mapping model is necessary because the models to be

merged also have complex structures, which usually do

not correspond to each other; the mapping model then

acts as a ‘‘bridge’’ to connect these heterogeneous

structures.

These structural heterogeneities are one class of

conflicts which have to be solved in schema integration.

Other types of conflicts are semantic conflicts (model

elementsdescribeoverlapping setsofobjects), descriptive

conflicts (the same elements are described by different

sets of properties; this includes also name conflicts),

and heterogeneity conflicts (models are described in

different modeling languages) [15]. The resolution of

these conflicts is themainprobleminschema integration.

The problem of schema integration has been ad-

dressed for various metamodels, such as variants of the

ER metamodel [15] or generic metamodels.

Mappings

Depending on the application area, such as data trans-

lation, query translation or model merging, schema

mappings come in different flavors. One can distinguish

between correspondences, also calledmorphisms, exten-

sional and intensional mappings. Correspondences

usually do not have a formal semantics but only state

informally that the respective model elements are simi-

lar. Morphisms are often – as the result of a schema

matching operation [14] – the starting point for specify-

ing more formal mappings. Intensional mappings are

usually used for schema integration (see above) and
are based on the possible instances of a schema. In

contrast to intensional mappings, extensional map-

pings refer to the actual instances of a schema.

Extensional mappings are defined as local-as-view

(LAV), global-as-view (GAV), source-to-target tuple

generating dependencies (s-t tgds), [12], second order

tuple generating dependencies (SO tgds) [8], or similar

formalisms. Each of these classes has certain advan-

tages and disadvantages when it comes to properties

such as composability, invertibility or execution of the

mappings.

Composition is an important sub-problem when

dealing with extensional mappings. In general, the

problem of composing mappings has the following

definition: given a mappingM12 from model S1 to mo-

del S2, and a mappingM23 from model S2 to model S3,

derive a mapping M13 from model S1 to model S3 that

is equivalent to the successive application of M12 and

M23 [8].

Fagin et al. [8] explored the properties of the com-

position of schema mappings specified by a finite set of

s-t tgds. They proved that the language of s-t tgds is not

closed under composition. To ameliorate the problem,

they introduced the class of SO tgds which are closed

under composition.

Model Management Systems

In the recent years, several prototype systems related to

model management have been developed. Many of

them focus only on some particular aspects of model

management whereas only a few try to address a

broader range of model management operators. The

systems Rondo [13] and GeRoMeSuite [11] aim at

providing a complete set of model management opera-

tors and are not restricted to particular modeling lan-

guages. Clio [9] focuses especially on mappings

between XML and relational databases, the generation,

and composition of these mappings. COMA++ [2]

provides schema matching functionality.

Key Applications
Model management can be applied in scenarios, in

which the management of complex data models is

necessary. For example, data warehouses (DWs) are

one application area for model management systems

[6]. For integrating a new data source into the DW, a

Match operator could be used to identify the simila-

rities between the source schema and the DW schema.

If the DW schema has not yet been created, a Merge

Model Management M 1763

M

operator can be used to generate it from several source

schemas. The composition of mappings can be used

after a source schema S has been evolved to a new

version S0: if a mapping from S0 to S is known (either

given by the schema evolution operation, or computed

by a Match operator), one can compose this mapping

with the original mapping between the source schema

S and the integrated schema T to get a mapping from

the new version of the source schema S0 to the

integrated schema T.

Such applications of model management operators

are also possible for other integrated information sys-

tems. For example, web services or e-business systems

often have to take a message in XML format and store

it in some relational data store for further processing.

To implement this data transformation, a mapp-

ing between the XML schema and the schema of the

relational database has to be defined. Such tasks are

already supported by commercial products (e.g., Micro-

soft BizTalk, Altova MapForce). These products already

use some model management operators (e.g., simple

Match operators to simplify the task of mapping defi-

nition), but could further benefit from more powerful

techniques for mapping generation. Clio started as a

research prototype for mapping generation between

XML and relational schemas, results have now been

integrated into the IBM Information Integration

platform.

Another application area for model management is

the design and development of software applications.

Model transformation is an inherent problem in soft-

ware development, models have to be transformed into

new metamodels, and then interoperability between

the original model and the transformed model has to

be implemented. A classical example is the transforma-

tion of an object-oriented data model of an application

to a relational database schema, for which data access

objects later have to be implemented to enable the

synchronization between the data in the database and

in the application. Such tasks are supported by frame-

works (e.g., ADO.NET Entity Framework or the Entity

Beans in Java 2 Enterprise Edition).

Future Directions
Mappings will become more and more important for

MMS in the future [5]. The initial vision of model

management, which considered mappings as rather

simple correspondences attached with some complex

expressions which contain the semantics of the
mapping, was too limited. Mappings are in practice

very complex and therefore, a rich mapping language is

required in a MMS. The MMS must also be able to

reason about the mappings. Furthermore, the MMS

should not only enable the definition of a mapping,

but support also its application; for example, using it

for the integration of two schemas or for data transfor-

mation between two data stores. In addition, complex

processes involving mappings (such as ETL process in

data warehouses) have also to be considered.

Cross-references
▶Data Integration

▶Meta Data Repository

▶Meta Model

▶ Schema Matching

▶ Schema Mapping

▶ Schema Mapping Composition

Recommended Reading
1. Atzeni P. and Torlone R. Management of Multiple Models in

an Extensible Database Design Tool. In Advances in Database

Technology, Proc. 5th Int. Conf. on Extending Database Tech-

nology, 1996, pp. 79–95.

2. Aumueller D., Do H.H., Massmann S., and Rahm E. Schema

and ontology matching with COMAþþ. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2005, pp. 906–908.

3. Batini C., Lenzerini M., and Navathe S.B. A comparative analysis

of methodologies for database schema integration. ACM Com-

put. Surv., 18(4):323–364, 1986.

4. Bernstein P.A., Halevy A.Y., and Pottinger R. AVision for Man-

agement of Complex Models. ACM SIGMOD Rec., 29(4):55–63,

2000.

5. Bernstein P.A. and Melnik S. Model Management 2.0: Manip-

ulating Richer Mappings. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2007, pp. 1–12.

6. Bernstein P.A. and Rahm E. Data Warehousing Scenarios for

Model Management. In Proc. 19th Int. Conf. on Conceptual

Modeling, 2000, pp. 1–15.

7. D.R. Dolk Model Management and Structured Modeling: The

Role of an Information Resource Dictionary System. Commun.

ACM, 31(6), 1988.

8. Fagin R., Kolaitis P.G., Popa L., and Tan W.C. Composing

schema mappings: Second-order dependencies to the rescue.

ACM Trans. Database Syst., 30(4):994–1055, 2005.

9. Hernández M.A., Miller R.J., and Haas L.M. Clio: A Semi-

Automatic Tool for Schema Mapping. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2001, pp. 607.

10. Kensche D., Quix C., Chatti M.A., and Jarke M. GeRoMe: A

Generic Role Based Metamodel for Model Management. J. Data

Semant., VIII:82–117, 2007.

11. Kensche D., Quix C., Li X., and Li Y. GeRoMeSuite: A System for

Holistic Generic Model Management. In Proc. 33rd Int. Conf.

on Very Large Data Bases, 2007, pp. 1322–1325.

1764M Model-based Querying in Sensor Networks
12. Lenzerini M. Data Integration: A Theoretical Perspective. In

Proc. 21st ACM SIGACT-SIGMOD-SIGART Symp. on Princi-

ples of Database Systems, 2002, pp. 233–246.

13. Melnik S., Rahm E., and Bernstein P.A. Rondo: A Programming

Platform for Generic Model Management. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2003, pp. 193–204.

14. Rahm E. and Bernstein P.A. A Survey of Approaches to Auto-

matic Schema Matching. VLDB J., 10(4):334–350, 2001.

15. Spaccapietra S. and Parent C. View Integration: A Step Forward

in Solving Structural Conflicts. IEEE Trans. Knowl. Data Eng.,

6(2):258–274, 1994.
Model-based Querying in Sensor
Networks

AMOL DESHPANDE
1, CARLOS GUESTRIN

2, SAM MADDEN
3

1University of Maryland, College Park, MD, USA
2Carnegie Mellon University, Pittsburgh, PA, USA
3Massachussetts Institute of Technology, Cambridge,

MA, USA

Synonyms
Approximate querying; Model-driven data acquisition

Definition
The data generated by sensor networks or other

distributed measurement infrastructures is typically

incomplete, imprecise, and often erroneous, such that

it is not an accurate representation of physical reality.

To map raw sensor readings onto physical reality, a

mathematical description, a model, of the underlying

system or process is required to complement the sensor

data. Models can help provide more robust interpreta-

tions of sensor readings: by accounting for spatial or

temporal biases in the observed data, by identifying

sensors that are providing faulty data, by extrapolating

the values of missing sensor data, or by inferring

hidden variables that may not be directly observable.

Models also offer a principled approach to predict

future states of a system. Finally, since models incor-

porate spatio-temporal correlations in the environ-

ment (which tend to be very strong in many

monitoring applications), they lead to significantly

more energy-efficient query execution – by exploiting

such attribute correlations, it is often possible to use a

small set of observations to provide approximations of

the values of a large number of attributes.

Model-based querying over a sensor network con-

sists of two components: (i) identifying and/or
building a model for a given sensor network, and

(ii) executing declarative queries against a sensor net-

work that has been augmented with such a model

(these steps may happen serially or concurrently).

The queries may be on future or hidden states of the

system, and are posed in a declarative SQL-like lan-

guage. Since the cost of acquiring sensor readings

from the sensor nodes is the dominant cost in these

scenarios, the optimization goal typically is to mini-

mize the total data acquisition cost.
Historical Background
Statistical and probabilistic models have been a main-

stay in the scientific and engineering communities for

a long time, and are commonly used for a variety of

reasons, from simple pre-processing tasks for removing

noise (e.g., using Kalman Filters) to complex analysis

tasks for prediction purposes (e.g., to predict weather or

traffic flow). Standard books on machine learning and

statistics should be consulted for more details (e.g.,

Cowell [3], Russell and Norvig [14]).

The first work to combine models, declarative

SQL-like queries and live data acquisition in sensor

networks was the BBQ System [7,6]. The authors pro-

posed a general architecture for model-based querying,

and posed the optimization problem of selecting the

best sensor readings to acquire to satisfy a user query

(which can be seen as a generalization of the value of

information problem [14]). The authors proposed sev-

eral algorithms for solving this optimization problem;

they also evaluated the approach on a several real-

world sensor network datasets, and demonstrated

that model-based querying can provide high-fidelity

representation of the real phenomena and leads to

significant performance gains versus traditional data

acquisition techniques. Several works since then have

considerably expanded upon the basic idea, including

development of sophisticated algorithms for data ac-

quisition [12,13], more complex query types [15], and

integration into a relational database system [8,11].

The querying aspect of this problem has many

similarities to the problem of approximate query

processing in database systems, which often uses

model-like synopses. For example, the AQUA project

[1] proposed a number of sampling-based synopses

that can provide approximate answers to a variety of

queries using a fraction of the total data in a database.

As with BBQ, such answers typically include tight

Model-based Querying in Sensor Networks M 1765

M

bounds on the correctness of answers. AQUA, however,

is designed to work in an environment where it is

possible to generate an independent random sample

of data (something that is quite tricky to do in sensor

networks, as losses are correlated and communicating

random samples may require the participation of a

large part of the network). AQUA also does not exploit

correlations, which means that it lacks the predictive

power of representations based on probabilistic mod-

els. Deshpande et al. [4] and Getoor et al. [9] proposed

exploiting data correlations through use of graphical

modeling techniques for approximate query proces-

sing, but, unlike BBQ, neither provide any guarantees

on the answers returned. Furthermore, the optimiza-

tion goal of approximate query processing is typically

not to minimize the data acquisition cost, rather it is

minimizing the size of the synopsis, while maintaining

reasonable accuracy.

Foundations
Figure 1 shows the most common architecture of

a model-based querying system (adapted from the

architecture of the BBQ system). The model itself

is located at a centralized, Internet-connected basesta-

tion, which also interacts with the user. The user may

issue either continuous or ad hoc queries against the

sensor network, using a declarative SQL-like language.

The key module in this architecture is the query plan-

ner and model updater, which is in charge of maintain-

ing the model and answering the user queries (possibly

by acquiring more data from the underlying sensor

network). The following sections elaborate on the var-

ious components of such a system.
Model-based Querying in Sensor Networks. Figure 1. Arch

BBQ [7,6]).
Model

Amodel is essentially a simplified representation of the

underlying system or the process, and describes how

various attributes of the system interact with each

other, and how they evolve over time. Hence, the

exact form of the model is heavily dependent on the

system being modeled, and an astounding range of

models have been developed over the years for differ-

ent environments. For ease of exposition, the rest of

this entry focuses on a dynamic model similar to the

one used in the BBQ system.

Let X1,...,Xn denote the (n) attributes of interest in

the sensor network. Further, let Xi
t denote the value of

Xi at time t (assuming that time is discrete). At any

time t, a subset of these attributes may be observed and

communicated to the basestation; here, the observa-

tions at time t are denoted by ot (note that hidden

variables can never be observed). The attributes typi-

cally correspond to the properties being monitored

by the sensor nodes (e.g., temperature on sensor

number 5, voltage on sensor number 8). However,

more generally, they may be hidden variables that

are of interest, but cannot be directly observed. For

example, it may be useful to model and query a hidden

boolean variable that denotes whether a sensor is faulty

[11] – the value of this variable can be inferred using

the model and the actual observations from the sensor.

The model encodes the spatial and temporal rela-

tionships between these attributes of interest. At any

time t, the model provides us with a posterior proba-

bility density function (pdf), pðXt
1;:::;X

t
njo1...ðt�1ÞÞ,

assigning a probability for each possible assignment

to the attributes at time t given the observations
itecture of a model-based querying system (adapted from

1766M Model-based Querying in Sensor Networks
made so far. Such a joint distribution can capture all

the spatial correlations between the attributes; more

compact representations like Bayesian networks can be

used instead as well.

To model the temporal correlations, it is common

to make a Markov assumption; given the values of all

attributes at time t, one assumes that the values of

the attributes at time t + 1 are independent of those

for any time earlier than t. This assumption leads to a

simple model for a dynamic system where the dynam-

ics are summarized by a conditional density called

the transition model, pðXtþ1
1 ;:::;Xtþ1

n jXt
1;:::;X

t
nÞ.

Using a transition model, one can compute

pðXtþ1
1 ;:::;Xtþ1

n jo1:::t Þ from pðXt
1;:::;X

t
njo1...t Þ using

standard probabilistic procedures. Different transition

models may be used for different time periods (e.g.,

hour of day, day of week, season, etc.) to model the

differences in the way the attributes evolve at different

times.

Learning the model. Typically in probabilistic mod-

eling, a class of models is chosen (usually with input

from a domain expert), and learning techniques are

then used to pick the best model in the class. Model

parameters are typically learned from training data,

but can also be directly inferred if the behavior of the

underlying physical process is well-understood. In

BBQ, the model was learned from historical data,

which consisted of readings from all of the monitored

attributes over some period of time.

Updating the model. Given the formulation above,

model updates are fairly straightforward. When a new

setofobservationsarrives(sayot), it can be incorporated

into the model by conditioning on the observa-

tions to compute new distributions (i.e., by computing

pðXt
1;:::;X

t
njo1...t Þ from pðXt

1;:::;X
t
njo1...ðt�1Þ. Similarly,

as time advances, the transition model is used

to compute the new distribution for time t + 1

(i.e., pðXtþ1
1 ;:::;Xtþ1

n jo1...tÞ is computed from

pðXt
1;:::;X

t
njo1...t Þ and pðXtþ1

1 ;:::;Xtþ1
n jXt

1:::X
t
nÞ).

Query Planning and Execution

User queries are typically posed in a declarative SQL-

like language that may be augmented with constructs

that allow users to specify the approximation that the

user is willing to tolerate, and the desired confidence in

the answer. For example, the user may ask the system

to report the temperature readings at all sensors within

� 0.5, with confidence 95%. For many applications
(e.g., building temperature control), such approximate

answers may be more than sufficient. Tolerance for

such approximations along with the correlations

encoded by the model can lead to significant energy

savings in answering such queries.

Answering queries probabilistically based on a pdf

over the query attributes is conceptually straightfor-

ward; to illustrate this process, consider two types of

queries (here, assume that all queries are posed over

attributes Xt
1;:::;X

t
n, and the corresponding pdf is given

by PðXt
1;:::;X

t
nÞÞ:

Value query. A value query [6] computes an ap-

proximation of the values of the attributes to within

� e of the true value, with confidence at least 1 � d.
Answering such a query involves computing the

expected value of each of the attribute, mi
t, using stan-

dard probability theory. These mi
t ’s will be the reported

values. The pdf can then be used again to compute the

probability that Xi
t is within e from the mean, P(Xi

t 2
[mi

t � e, mi
t + e]). If all of these probabilities meet or

exceed user specified confidence threshold, then the

requested readings can be directly reported as the

means mi
t. If the model’s confidence is too low, addi-

tional readings must be acquired before answering the

query (see below).

Max query. Consider an entity version of this query

[2] where the user wants to know the identity of the

sensor reporting the maximum value. A naive ap-

proach to answering this query is to compute, for

each sensor, the probability that its value is the maxi-

mum. If the maximum of these probabilities is above

1 � d, then an answer can be returned immediately;

otherwise, more readings must be acquired. Although

conceptually simple, computing the probability that

a given sensor is reporting the maximum value is

non-trivial, and requires complex integration that

may be computationally infeasible [15].

If the model is not able to provide sufficient con-

fidence in the answer, the system must acquire more

readings from the sensor network, to bring the

model’s confidence up to the user specified threshold.

Suppose the system observes a set of attributes

O � fX1;:::;Xng. After incorporating these observations
into the model and recomputing the answer, typically

the confidence in the (new) answer will be higher (this

is not always true). The new confidence will typically

depend on the actual observed values. Let RðOÞ denote
the expected confidence in the answer after observing

Model-based Querying in Sensor Networks M 1767

M

O. Then, the optimization problem of deciding

which attributes to observe can be stated as follows:

minimizeO
 1;...;nf g CðOÞ;
such that RðOÞ � 1� d:

ð1Þ

where CðOÞ denotes the data acquisition cost of

observing the values of attributes in O.

This optimization problem combines three pro-

blems that are known to be intractable, making it

very hard to solve it in general:

1. Answering queries using a pdf: as mentioned above,

this can involve complex numerical integration

even for simple queries such as max.

2. hoosing the minimum set of sensor readings to

acquire to satisfy the query (this is similar to the

classic value of information problem [14,12,15,10]).

3. Finding the optimal way to collect a required set of

sensor readings from the sensor network that mini-

mizes the total communication cost. Meliou et al.

[13] present several approximation algorithms for

this NP-Hard problem.

Example

Figure 2 illustrates the query answering process using a

simple example, where the model takes the form of

time-varying bivariate Gaussian (normal) distribution

over two attributes, X1 and X2. This was the basicmodel

used in the BBQ system. A bivariate Gaussian is the

natural extension of the familiar unidimensional normal

probability density function (pdf), known as the ‘‘bell

curve’’. Just as with its one-dimensional counterpart, a

bivariate Gaussian can be expressed as a function of two

parameters: a length-2 vector of means, m, and a 2 � 2
Model-based Querying in Sensor Networks. Figure 2. Exam

covariance; (b) the resulting Gaussian after a particular value

noise, there might still be some uncertainty about the true va

time advances to t0.
matrix of covariances, S. Figure 2a shows a three-

dimensional rendering of a Gaussian over the two

attributes at time t ;Xt
1 and Xt

2 the z axis represents

the joint density that Xt
2 ¼ x and Xt

1 ¼ yÞ.
Now, consider a value query over this model, posed

at time t, which asks for the values of X1
t and X2

t, within

� E, with confidence 1 � d. The reported values in this

case would be the means (m), and the confidence can be
computed easily using S (details can be found in [6]).

Considering the high initial covariance, it is unlikely

that the Gaussian in Figure 2a can achieve the required

confidence. Suppose the system decides to observe X1
t.

Figure 2b shows the result of incorporating this obser-

vation into the model. Note that not only does the

spread of X1
t reduces to near zero, because of the

high correlation between X1
t and X2

t, the variance of

X2
t also reduces dramatically, allowing the system to

answer the query with required confidence.

Then, after some time has passed, the belief about

the values of X1 and X2 (at time t 0 > t) will be ‘‘spread

out’’, again providing a high-variance Gaussian over

two attributes, although both the mean and variance

may have shifted from their initial values, as shown

in Fig. 2c.

Key Applications
Model-based querying systems like BBQ, that exploit

statistical modeling techniques and optimize the utili-

zation of a network of resource constrained devices

could have significant impact in a number of applica-

tion domains, ranging from control and automation in

buildings [16] to highway traffic monitoring. Integrat-

ing a model into the data acquisition process can

significantly improve data quality and reduce data
ple of Gaussians: (a) 3D plot of a 2D Gaussian with high

of X1
t has been observed (because of measurement

lue of X1
t); (c) the uncertainty about X1 and X2 increases as

1768M Model-based Querying in Sensor Networks
uncertainty. The ability to query over missing, future

or hidden states of the system will prove essential in

many applications where sensor failures are common

(e.g., highway traffic monitoring) or where direct ob-

servation of the variables of interest is not feasible.

Finally, model-based querying has the potential to

significantly reduce the cost of data acquisition, and

thus can improve the life of a resource-constrained

measurement infrastructure (e.g., battery-powered

wireless sensor networks) manyfold.

Future Directions
Model-based querying is a new and exciting research

area with many open challenges that are bound to

become more important with the increasingly wide-

spread use of models for managing sensor data. The

two most important challenges are dealing with a wide

variety of models that may be used in practice, and

designing algorithms for query processing and data

acquisition; these are discussed briefly below:

Model selection and training. The choice of model

affects many aspects of model-based querying, most

importantly the accuracy of the answers and the confi-

dence bounds that can be provided with them. The

problem of selecting the right model class has been

widely studied [3,14] but can be difficult in some appli-

cations. Furthermore, developing a new system for each

differentmodel is not feasible. Ideally, using a newmodel

should involve little to no effort on the part of user.

Given a large variety of models that may be applicable

in various different scenarios, this may turn out to be a

tremendous challenge.

Algorithms for query answering and data acquisition.

Irrespective of the model selected, when and how to

acquire data in response to a user query raises many

hard research challenges. As discussed above, this

problem combines three very hard problems, and de-

signing general-purpose algorithms that can work

across the spectrum of different possible model

remains an open problem.

See Deshpande et al. [5] for a more elaborate dis-

cussion of the challenges in model-based querying.

Cross-references
▶Ad-Hoc Queries in Sensor Networks

▶Approximate Query Processing

▶Continuous Queries in Sensor Networks

▶Data Acquisition and Dissemination in Sensor Net-

works
▶Data Uncertainty Management in Sensor Networks

▶Models

Recommended Reading
1. Acharya S., Gibbons P.B., Poosala V., and Ramaswamy S. Join

synopses for approximate query answering. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1999, pp. 275–286.

2. Cheng R., Kalashnikov D.V., and Prabhakar S. Evaluating prob-

abilistic queries over imprecise data. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2003, pp. 551–562.

3. Cowell R., Dawid P., Lauritzen S., and Spiegelhalter D. Probabi-

listic Networks and Expert Systems. Spinger, New York, 1999.

4. Deshpande A., Garofalakis M., and Rastogi R. Independence

is good: dependency-based histogram synopses for high-

dimensional data. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 2001, pp. 199–210.

5. Deshpande A., Guestrin C., and Madden S. Using Probabilistic

Models for Data Management in Acquisitional Environments. In

Proc. 2nd Biennial Conf. on Innovative Data Systems Research,

2005, pp. 317–328.

6. Deshpande A., Guestrin C., Madden S., Hellerstein J., and

Hong W. Model-Driven Approximate Querying in Sensor Net-

works. VLDB J., 14(4):417–443, 2005.

7. Deshpande A., Guestrin C., Madden S., Hellerstein J.M., and

Hong W. Model-driven Data Acquisition in Sensor Networks.

In Proc. 30th Int. Conf. on Very Large Data Bases, 2004,

pp. 588–599.

8. Deshpande A. and Madden S. MauveDB: supporting model-

based user views in database systems. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2006, pp. 73–84.

9. Getoor L., Taskar B., and Koller D. Selectivity estimation using

probabilistic models. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2001, pp. 461–472.

10. Goel A., Guha S., and Munagala K. Asking the right questions:

model-driven optimization using probes. In Proc. 25th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2006, pp. 203–212.

11. Kanagal B. and Deshpande A. Online Filtering, Smoothing and

Probabilistic Modeling of Streaming data. In Proc. 24th Int.

Conf. on Data Engineering, 2008, pp. 1160–1169.

12. Krause A., Guestrin C., Gupta A., and Kleinberg J. Near-optimal

sensor placements: maximizing information while minimizing

communication cost. In Proc. 5th Int. Symp. Inf. Proc. in Sensor

Networks, 2006, pp. 2–10.

13. Meliou A., Chu D., Hellerstein J., Guestrin C., and HongW. Data

gathering tours in sensor networks. In Proc. 5th Int. Symp. Inf.

Proc. in Sensor Networks, 2006, pp. 43–50.

14. Russell S. and Norvig P. Artificial Intelligence: A Modern

Approach. Prentice Hall, 1994.

15. Silberstein A., Braynard R., Ellis C., Munagala K., and Yang J.

A Sampling-Based approach to Optimizing Top-k Queries in

Sensor networks. In Proc. 22nd Int. Conf. on Data Engineering,

2006, p. 68.

16. Singhvi V., Krause A., Guestrin C., Garrett Jr J., and Matthews H.

Intelligent light control using sensor networks. In Proc. 3rd

Int. Conf. on Embedded Networked Sensor Systems, 2005,

pp. 218–229.

Monotonic Constraints M 1769
Model-driven Data Acquisition

▶Model-Based Querying in Sensor Networks
Module

▶ Snippet
MOF

▶Meta Object Facility
Molecular Interaction Graphs

▶Biological Networks
M
Moment

▶Chronon

▶Time Instant
Monitoring

▶Auditing and Forensic Analysis
Monitoring of Real-Time Logic
Expressions

▶ Event Detection
Monotone Constraints

CARSON KAI-SANG LEUNG

University of Manitoba, Winnipeg, MB, Canada

Synonyms
Monotonic constraints
Definition
A constraint C ismonotone if and only if for all itemsets

S and S 0:

if S � S0 and S violatesC; then S0 violatesC:

Key Points
Monotone constraints [1–3] possess the following prop-

erty. If an itemset S violates a monotone constraint C,

then any of its subsets also violates C. Equivalently, all

supersets of an itemset satisfying a monotone con-

straint C also satisfy C (i.e., C is upward closed). By

exploiting this property, monotone constraints can be

used for reducing computation in frequent itemset

mining with constraints. As frequent itemset mining

with constraints aims to find frequent itemsets that

satisfy the constraints, if an itemset S satisfies a mono-

tone constraint C, no further constraint checking

needs to be applied to any superset of S because all

supersets of S are guaranteed to satisfy C. Examples

of monotone constraints include min(S.Price)�$30,

which expresses that the minimum price of all items

in an itemset S is at most $30. Note that, if the mini-

mum price of all items in S is at most $30, adding

more items to S would not increase its minimum price

(i.e., supersets of S would also satisfy such a monotone

constraint).
Cross-references
▶ Frequent Itemset Mining with Constraints
Recommended Reading
1. Brin S., Motwani R., and Silverstein C. Beyond market

baskets: generalizing association rules to correlations. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1997,

pp. 265–276.

2. Grahne G., Lakshmanan L.V.S., and Wang X. Efficient mining of

constrained correlated sets. In Proc. 16th Int. Conf. on Data

Engineering, 2000, pp. 512–521.

3. Pei J. and Han J. Can we push more constraints into

frequent pattern mining? In Proc. 6th ACM SIGKDD Int.

Conf. on Knowledge Discovery and Data Mining, 2000,

pp. 350–354.
Monotonic Constraints

▶Monotone Constraints

1770M Monotonicity Property
Monotonicity Property

▶Apriori Property and Breadth-First Search

Algorithms
Motion Graphics

▶Dynamic Graphics
Moving Object

RALF HARTMUT GÜTING

University of Hagen, Hagen, Germany

Synonyms
Time dependent geometry

Definition
A moving object is essentially a time dependent geom-

etry. Moving objects are the entities represented and

queried in moving objects databases.

Key Points
The term emphasizes the fact that geometries may

change continuously (whereas earlier work on spatio-

temporal databases allowed only discrete changes, e.g.,

of land parcels). One can distinguish between moving

objects for which only the time dependent position is

of interest and those for which also shape and extent

are relevant and may change over time. The first can be

characterized as moving points, the second as moving

regions. For example, moving points could represent

people, vehicles (such as cars, trucks, ships or air

planes), or animals. Moving regions could be hurri-

canes, forest fires, spread of epidemic diseases etc.

Moving point data may be captured by GPS devices

or RFID tags; moving region data may result from

processing sequences of satellite images, for example.

Moving points and moving regions can be made avail-

able as data types in suitable type systems; such a

design can be found in [1]. Such an environment

may have further ‘‘moving’’ data types (e.g., moving

lines).

Cross-references
▶Moving Objects Databases and Tracking
Recommended Reading
1. Güting R.H., Böhlen M.H., Erwig M., Jensen C.S., Lorentzos

N.A., Schneider M., and Vazirgiannis M. A foundation for

representing and querying moving objects in databases. ACM

Trans. Database Syst., 25:1–42, 2000.
Moving Object Trajectories

▶ Spatio-Temporal Trajectories
Moving Objects Databases and
Tracking

RALF HARTMUT GÜTING

University of Hagen, Hagen, Germany

Synonyms
Spatio-temporal databases; trajectory databases

Definition
Moving objects database systems provide concepts in

their data model and data structures in the implemen-

tation to represent moving objects, i.e., continuously

changing geometries. Two important abstractions are

moving point, representing an entity for which only

the time dependent position is of interest, and moving

region, representing an entity for which also the

time dependent shape and extent is relevant. Examples

of moving points are cars, trucks, air planes, ships,

mobile phone users, RFID equipped goods, or polar

bears; examples of moving regions are forest fires,

deforestation of the Amazon rain forest, oil spills

in the sea, armies, epidemic diseases, hurricanes, and

so forth.

There are two flavors of such databases. The first

represents information about a set of currently moving

objects. Basically one is interested in efficiently main-

taining their location information and asking queries

about the current and expected near future positions

and relationships between objects. In this case, no

information about histories of movement is kept.

This is sometimes also called a tracking database.

The second represents complete histories of move-

ments. The goal in the design of query languages for

moving objects is to be able to ask any kind of ques-

tions about such movements, perform analyses, derive

Moving Objects Databases and Tracking M 1771

M

information, in a way as simple and elegant as possible.

The underlying system must support efficient execu-

tion of such analyses. This view is associated with the

term moving objects database, sometimes also called

trajectory database.

Historical Background
The field of moving objects databases came into being

in the late 1990s mainly by two parallel developments.

First, a model was developed [11,16,17] that allows one

to keep track in a database of a set of time dependent

locations, e.g., to represent vehicles. The authors ob-

served that one should store in a database not the

locations directly, which would require high update

rates, but rather a motion vector, representing an

object’s expected position over time. An update to

the database is needed only when the deviation be-

tween the expected position and the real position

exceeds some threshold. At the same time this concept

introduces an inherent, but bounded uncertainty

about an object’s real location. The model was forma-

lized introducing the concept of a dynamic attribute.

This is an attribute of a normal data type which

changes implicitly over time. This implies that results

of queries over such attributes also change implicitly

over time. A related query language FTL (future tem-

poral logic) was introduced that allows one to specify

time dependent relationships between expected posi-

tions of moving objects.

Second, the European project CHOROCHRONOS

set out to integrate concepts from spatial and temporal

databases. In this case, one represents in a database time-

dependent geometries of various kinds such as points,

lines, or regions. Earlier work on spatio-temporal data-

bases had generally admitted only discrete changes. This

restrictionwas dropped and continuously changing geo-

metries were considered. A model was developed based

on the idea of spatio-temporal data types to represent

histories of continuously changing geometries [2,4–6].

The model offers data types such as moving point or

moving region together with a comprehensive set of

operations. For example, there are operations to com-

pute the projection of a moving point into the plane,

yielding a line value, or to compute the distance between

a moving point and a moving region, returning a time

dependent real number, or moving real, for short. Such

data types can be embedded into a DBMS data model as

attribute types and can be implemented as an extension

package.
A second approach to data modeling for moving

object histories was pursued in CHOROCHRONOS.

Here the constraint model was applied to the represen-

tation of moving objects [10] and a prototype called

Dedale was implemented. Constraint databases can

represent geometries in n-dimensional spaces; since

moving objects exist in 3D (2D + time) or 4D

(3D + time) spaces, they can be handled by this

approach. Several researchers outside CHOROCHRO-

NOS also contributed to the development of constraint-

based models for moving objects.

Foundations

Modeling and Querying Current Movement (Tracking)

Consider first moving objects databases for current

and near future movement, or tracking databases.

Sets of moving entities might be taxi-cabs in a city,

trucks of a logistics company, or military vehicles in a

military application. Possible queries might be:

� Retrieve the three free cabs closest to Cottle Road

52 (a passenger request position).

� Which trucks are within 10 km of truck T70 (which

needs assistance)?

� Retrieve the friendly helicopters that will arrive in

the valley within the next 15 min and then stay

in the valley for at least 10 min.

Statically, the positions of a fleet of taxi-cabs, for

example, could be easily represented in a relation

taxi-cabs(id: int, pos: point)

Unfortunately this representation needs frequent

updates to keep the deviation between real position

and position in the database small. This is not feasible

for large sets of moving objects.

The MOST (moving objects spatio-temporal) data

model [11,16], discussed in this section, stores instead

of absolute positions a motion vector which represents

a position as a linear function of time. This defines an

expected position for a moving object. The distance

between the expected position and the real position is

called the deviation. Furthermore, a distance threshold

is introduced and a kind of contract between a moving

object and the database server managing its position is

assumed. The contract requires that the moving object

observes the deviation and sends an update to the

server when it exceeds the threshold. Hence the thresh-

old establishes a bound on the uncertainty about an

object’s real position.

1772M Moving Objects Databases and Tracking
A fundamental new concept in the MOSTmodel is

that of a dynamic attribute. Each attribute of an object

class is classified to be either static or dynamic. A

dynamic attribute is of a standard data type (e.g., int,

real) within the DBMS conceptual model, but changes

its value automatically over time. This means that

queries involving such attributes also have time depen-

dent results, even if time is not mentioned in the query

and no updates to the database occur.

The MOST model assumes that time advances in

discrete steps, so-called clock ticks. Hence time can be

represented by integer values. For a data type to be

eligible for use in a dynamic attribute, it is necessary

that the type has a value 0 and an addition operation.

This holds for numeric types but can be extended to

types like point. A dynamic attribute A of type T is then

internally represented by three subattributes A.value,

A.updatetime, and A.function, where A.value is of type

T, A.updatetime is a time value, and A.function is a

function f : int ! T such that at time t = 0, f(t) = 0.

The semantics of this representation is called the value

of A at time t and defined as

valueðA; tÞ ¼ A:valueþ

A:functionðt � A:updatetimeÞ

for t � A:updatetime

When attribute A is mentioned in a query, its dynamic

value value(A, t) is meant.

With dynamic attributes, for each clock tick one

obtains a new state of the database, evenwithout explicit

updates. Such a sequence of states is called a database

history. With each explicit update, all subsequent states

change so that one obtains a new database history. One

can now define different types of queries:

� An instantaneous query issued at a time t0 is eval-

uated once on the database history starting at

time t0.
� A continuous query issued at time t0 is (conceptually)

reevaluated for each clock tick. Hence it is evaluated

once on the database history starting at time t0, then

on the history starting at t1, then on. . . t2, and

so forth.

Of course, reevaluating a continuous query on each

clock tick is not feasible. Instead, the evaluation algo-

rithm for such queries is executed only once and
returns a time dependent result, in the form of a set

of tuples with associated time stamps. A reevaluation is

only necessary when explicit updates occur.

The query language associated with the MOST

model is called FTL (future temporal logic). Here are

a few example queries formulated in FTL.

1. Which trucks are within 10 km of truck T70?
RETRIEVE t

FROM trucks t, trucks s

WHERE s.id = ’T70’ ∧ dist(s, t) <= 10

Here nothing special happens, yet, the result is time

dependent.
2. Retrieve the helicopters that will arrive in the valley

within the next 15 min and then stay in the valley

for at least 10 min.
RETRIEVE h

FROM helicopters h

WHERE eventually_within_15

(inside(h, Valley) ∧

always_for_10 (inside(h, Valley)))

Here Valley is a polygon object.
The general form of a query in FTL is

RETRIEVE <target-list> FROM <object

classes> WHERE <FTL-formula>

FTL formulas may contain special time dependent

constructs, in particular:

� If f and g are formulas, then f until g and nexttime

f are formulas

Informally, the meaning is that for a given database

state s, f until g holds if there exists a future state s0 on

the database history such that g holds in state s0 and for

all states from s up to s0, f holds. Similarly, nexttime f

holds in state si+1 if f holds in state si. Based on such

temporal operators one can define bounded temporal

operators like eventually_within_c g or always_for_c g

as they occur in the second example query.

Modeling and Querying History of Movement

Now consider the problem of representing complete

histories of movement in a database. The scope is also

extended from point objects to more complex geomet-

rical shapes.

The idea of the approach [4] presented in the follow-

ing is to introduce spatio-temporal data types that en-

capsulate time dependent geometries with suitable

operations. Formoving objects, point and region appear

Moving Objects Databases and Tracking M 1773

M

to be most relevant, leading to data types moving point

and moving region, respectively. The moving point type

(mpoint for short) can represent entities such as vehi-

cles, people, or animals moving around whereas the

moving region type (mregion) can represent hurricanes,

forest fires, armies, or flocks of animals, for example.

Geometrically, values of spatio-temporal data types

are embedded into a 3D space (2D + time) if objects

move in the 2D plane, or in a 4D space if movement in

the 3D space is modeled. Hence, a moving point and a

moving region can be visualized as shown in Fig. 1

Data types may be embedded in the role of attri-

bute types into a DBMS data model. For example, in a

relational setting, there may be relations to represent

the movements of air planes or storms:

flight (id: string, from: string, to:

string, route: mpoint)

weather (id: string, kind: string,

area: mregion)

The data types include suitable operations such as:

intersection: mpoint � mregion ! mpoint

trajectory: mpoint ! line

deftime: mpoint ! periods

length: line ! real

One discovers quickly that in addition to the main

types of interest, mpoint and mregion, related spatial

and temporal as well as other time-dependent types are

needed. The operations above have the following

meaning: Intersection returns the part of a moving

point whenever it lies inside a moving region, which

is a moving point (mpoint) again. Trajectory projects

a moving point into the plane, yielding a line value

(a curve in the 2D space). Deftime returns the set

of time intervals when a moving point is defined, of

a data type called periods. Length returns the length of

a line value.
Moving Objects Databases and Tracking. Figure 1. A

moving point and a moving region.
Given such operations, one may formulate queries:

‘‘Find all flights from Düsseldorf that are longer

than 5,000 km.’’

select id

from flights

where from = ’DUS’ and length

(trajectory (route)) > 5000

‘‘At what times was flight BA488 within the snow storm

with id S16?’’

select deftime(intersection

(f.route, w.area))

from flights as f, weather as w

where f.id = ’BA488’ and w.id = ’S16’

Reference [4] develops the basic idea, discusses the

distinction between abstract models (using infinite

sets, and describing e.g., a moving region as a function

from time into region values) and discrete models

(selecting a suitable finite representation, e.g., describ-

ing a moving region as a polyhedron in the 3D space),

and clarifies several fundamental questions related

to this approach. A system of related data types and

operations for moving objects is carefully defined in

[6], emphasizing genericity, closure, and consistency.

The semantics of these types is defined at the abstract

level.
Implementation is based on the discrete model

proposed in [5] using algorithms for the operations

studied in [2]. The discrete model uses the so-called

sliced representation as illustrated in Fig. 2. A temporal

function value is represented as a time-ordered se-

quence of units where each unit has an associated

time interval, and time intervals of different units are

disjoint. Each unit is capable of representing a piece of

the moving object by a ‘‘simple’’ function. Simple

functions are linear functions for moving points or

regions, and quadratic polynomials (or square roots

of such) for moving reals, for example.

Within a database system, an extension module

(data blade, cartridge, extender, etc.) can be provided

offering implementations of such types and opera-

tions. The sliced representation is basically stored in

an array of units. (It is a bit more complicated in case

of variable size units as for a moving region, for exam-

ple.) Because values of moving object types can be

large and complex, the DBMS must provide suitable

storage techniques for managing large objects. A large

Moving Objects Databases and Tracking. Figure 2. Sliced representation of a moving(real) and a moving(points) value.

Moving Objects Databases and Tracking. Figure 3.

Geometry of an uncertain trajectory.

1774M Moving Objects Databases and Tracking
part of this design has been implemented prototypical-

ly in the SECONDO extensible DBMS [1] which is avail-

able for download (see URL below).

Related Issues

In this short closing section some issues related to

moving objects databases are briefly discussed.

Uncertainty Locations of moving objects are most

often captured using GPS devices at certain instants of

time. This introduces an inherent uncertainty already for

the sampled positions (due to some inaccuracy of the

GPS device) and in particular for the periods of time

between measurements [9]. Bounded uncertainty is also

introduced due to a contract between location server and

moving object, as discussed above. The MOST model

includes concepts to deal with this uncertainty in query-

ing [16,17]. For history of movement, one can consider

uncertain trajectories based on an uncertainty threshold,

resulting in a shape of a kind of slanted cylinder (Fig. 3).

It is only known that the real position is somewhere

inside this volume. Based on this model, Trajcevski

et al. [15] have defined a set of predicates between a

trajectory and a region in space taking uncertainty and

aggregation over time into account.

Movement in Networks Whereas the basic case is free

movement in the Euclidean plane, it is obvious that

vehicles usually move on transport networks. There is a

branch of research on network-constrained movement

(e.g., [7,13]); there is also work on indexing network

based movements. For network based movement, cap-

tured GPS positions have to be mapped to the trans-

portation network; this is called map matching.

Spatio-Temporal Indexing A lot of research exists on

indexing movement, both for expected near future

movement and for history movement.

Query Processing for Continuous/Location Based

Queries Continuous queries for moving objects have
been studied in depth, for example, maintaining the

result of nearest neighbor or range queries both for

moving query and moving data objects (e.g., [12,14],

see continuous monitoring of spatial queries).

Spatiotemporal Aggregation and Selectivity Estima-

tion Another subfield of research in moving objects

databases considers the problem of computing precisely

or estimating the numbers of moving objects within

certain areas in space and time – hence, of computing

aggregates. For example, various index structures have

been proposed to compute efficiently such aggregates.

This is also related to the problem of performing selec-

tivity estimation for spatio-temporal query processing.

Key Applications
Databases for querying current and near future move-

ment like the MOSTmodel described, are the founda-

tion for location-based services. Service providers can

keep track of the positions of mobile users and notify

them of upcoming service offers even some time ahead.

For example, gas stations, hotels, shopping centres,

sightseeing spots, or hospitals in case of an emergency

might be interesting services for car travelers.

Several applications need to keep track of the cur-

rent positions of a large collection of moving objects,

for example, logistics companies, parcel delivery ser-

vices, taxi fleet management, public transport systems,

air traffic control. Marine mammals or other animals

Moving Objects Databases and Tracking M 1775

M

are traced in biological applications. Obviously, the

military is also interested in keeping track of fighting

units in battlefield management.

Database systems for querying history of move-

ment are needed for more complex analyses of

recorded movements. For example, in air traffic con-

trol one may go back in time to any particular instant

or period to analyze dangerous situations or even

accidents. Logistics companies may analyze the paths

taken by their delivery vehicles to determine whether

optimizations are possible. Public transport systems in

a city may be analyzed to understand reachability of

any place in the city at different periods of the day.

Movements of animals may be analyzed in biological

studies. Historical modeling may represent movements

of people or tribes and actually animate and query

such movements over the centuries.

The data model of such systems offers not only

moving point entities but also moving regions.

Hence also developments of areas on the surface of

the earth may be modeled and analyzed like the defor-

estation of the Amazon rain forest, the Ozone hole,

development of forest fires or oil spills over time, and

so forth.

Future Directions
Recent research in databases has often addressed spe-

cific query types like continuous range queries or

nearest neighbor queries, and then focused on design-

ing efficient algorithms for them. An integration of the

many specific query types into complete language

designs as presented in this entry is still lacking.

Uncertainty may be treated more completely also in

the approaches for querying history of movement.

A seemless query language for querying past, present,

and near future would also be desirable.

A text book covering the topics presented in this

article in more detail is [8].

Experimental Results
Running times for queries of the BerlinMOD bench-

mark (see below), evaluated in the SECONDO system,

can be found in [3].

Data Sets
A collection of links to data sets with real spatio-

temporal data, partially assembled within the CHO-

ROCHRONOSprojectmentioned above can be found at

http://dke.cti.gr/people/pfoser/data.html
Recently a benchmark data set is available, the so-

called BerlinMOD benchmark [3]. It is based on a

simulation of the movements of 2,000 people’s vehicles

in the city of Berlin, observed over 1 month (at scale

factor 1). The benchmark contains a number of test

queries. Test data are generated by the SECONDO system.

The benchmark can be found and the relevant

resources downloaded at

http://dna.fernuni-hagen.de/secondo/Berlin

MOD/Berlin MOD.html

See also real and synthetic test data sets; this entry

should include links to further test data generators.
URL to Code
SECONDO as a prototypical moving objects database

system (for histories of movement, or trajectories) is

available for download at

http://dna.fernuni-hagen.de/Secondo.html/
Cross-references
▶Constraint Query Languages

▶Continuous Monitoring of Spatial Queries

▶ Indexing Historical Spatio-Temporal Data

▶ Indexing of the Current and Near-Future Positions

of Moving Objects

▶ Location-based Services

▶Map Matching

▶Real and Synthetic Test Datasets

▶ Spatial and Spatio-temporal Data Models and Lan-

guages

▶ Spatio-Temporal Data Mining

▶ Spatio-temporal Data Types

▶ Spatio-temporal Data Warehouses

▶ Spatio-temporal Trajectories
Recommended Reading
1. Almeida V.T., Güting R.H., and Behr T. Querying moving

objects in SECONDO. In Proc. 7th Int. Conf. on Mobile Data

Management, 2006, pp. 47–51.

2. Cotelo Lema J.A., Forlizzi L., Güting R.H., Nardelli E., and

Schneider M. Algorithms for moving object databases. The

Comput. J., 46(6):680–712, 2003.

3. DüntgenC., BehrT., andGütingR.H.BerlinMOD: a benchmark for

moving object databases. Informatik-Report 340, Fernuniversität

Hagen, 2007. Available at: http://dna.fernuni-hagen.de/secondo/

BerlinMOD/BerlinMOD.pdf

4. Erwig M., Güting R.H., Schneider M., and Vazirgiannis M.

Spatio-temporal data types: an approach to modeling and

querying moving objects in databases. GeoInformatica,

(3):265–291, 1999.

1776M Moving Objects Interpolation
5. Forlizzi L., Güting R.H., Nardelli E., and Schneider M. A data

model and data structures for moving objects databases. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2000,

pp. 319–330.

6. Güting R.H., Böhlen M.H., Erwig M., Jensen C.S., Lorentzos

N.A., Schneider M., and Vazirgiannis M. A foundation for

representing and querying moving objects in databases. ACM

Trans. Database Syst., 25:1–42, 2000.

7. Güting R.H., de Almeida V.T., and Ding Z. Modeling and que-

rying moving objects in networks. VLDB J., 15(2):165–190,

2006.

8. Güting R.H., and Schneider M. Moving Objects Data-

bases. Morgan Kaufmann Publishers, San Fransisco, CA, USA,

2005.

9. Pfoser D., and Jensen C.S. Capturing the uncertainty of moving-

object representations. In Proc. 6th Int. Symp. Advances in

Spatial Databases, 1999, pp. 111–131.

10. Rigaux P., Scholl M., Segoufin L., and Grumbach S. Building a

constraint-based spatial database system: model, languages, and

implementation. Inf. Syst., 28(6):563–595, 2003.

11. Sistla A.P., Wolfson O., Chamberlain S., and Dao S. Modeling

and querying moving objects. In Proc. 13th Int. Conf. on Data

Engineering, 1997, 422–432.

12. Song Z., and Roussopoulos N. K-nearest neighbor search for

moving query point. In Proc. 7th Int. Symp. Advances in Spatial

and Temporal Databases, 2001, pp. 79–96.

13. Speicys L., Jensen C.S., and Kligys A. Computational data mod-

eling for network-constrained moving objects. In Proc. 11th

ACM Int. Symp. on Advances in Geographic Inf. Syst., 2003,

pp. 118–125.

14. Tao Y., and Papadias D. Spatial queries in dynamic environ-

ments. ACM Trans. Database Syst., 28(2):101–139, 2003.

15. Trajcevski G., Wolfson O., Hinrichs K., and Chamberlain S.

Managing uncertainty in moving objects databases. ACM

Trans. Database Syst., 29(3):463–507, 2004.

16. Wolfson O., Chamberlain S., Dao S., Jiang L., and Mendez G.

Cost and imprecision in modeling the position of moving

objects. In Proc. 14th Int. Conf. on Data Engineering, 1998,

pp. 588–596.

17. Wolfson O., Sistla A.P., Chamberlain S., and Yesha Y. Updating

and querying databases that track mobile units. Distrib. Parallel

Databases, 7:257–387, 1999.
Moving Objects Interpolation

▶ Spatiotemporal Interpolation Algorithms
Moving Span

▶Variable Time Span
MRR

▶MRR (Mean Reciprocal Rank)
MRR1

▶MRR (Mean Reciprocal Rank)
MSN Data Management

▶Mobile Sensor Network Data Management
Multi-Database

▶Distributed Architecture
Multidatabases

▶Distributed Database Systems
Multidimensional Clustering

▶ Physical Database Design for Relational Databases
Multidimensional Data Formats

AMARNATH GUPTA

University of California San Diego, La Jolla, CA, USA

Definition
The term ‘‘multidimensional data’’ is used in two dif-

ferent ways in data management. In the first sense, it

refers to data aggregates created by different groupings

of relational data for on-line analytical processing. In

the second sense, the term refers to data that can be

described as arrays over heterogeneous data types to-

gether with metadata to describe them.

Multidimensional Modeling M 1777

M

Example: HDF (Hierarchical Data Format) and

NetCDF (network CommonData Form) are well known

multidimensional data formats used in scientific

applications.

Key Points
The goal of a multidimensional data format is to enable

random access to very large, very complex, heteroge-

neous data, such that the data is self describing, sharable,

compact, extendible, and archivable. For example, a

composite of 900 files from a seismic simulation has

been organized in HDF5 format to create a terabyte-

sized dataset. One can mix tables, images, small meta-

data, streams of data from instruments, and structured

grids all in the same HDF file. While multidimensional

file formats are very flexible, they present the challenge of

storing such large datasets and providing concurrent,

random access to any part of the data required by user

queries. Design of novel index structures over these for-

mats is an area of active research.

Cross-references
▶Bitmap-based Index Structures

▶Query Evaluation Techniques for Multidimensional

Data

▶ Storage of Large Scale Multidimensional Data
Recommended Reading
1. Home page of the HDF group. Available at: http://hdf.ncsa.uiuc.

edu/

2. Home page of the NetCDF group. Available at: http://www.

unidata.ucar.edu/software/netcdf/

3. Wu K., Otoo E.J., and Shoshani A. ‘‘An efficient compression

scheme for bitmap indices’’. Technical Report LBNL-49626,

Lawrence Berkeley National Laboratory, Berkeley, CA, 2002.
Multidimensional Database
Management System

▶ Storage of Large Scale Multidimensional Data
Multi-dimensional Mapping

▶ Space Filling Curves

▶ Space-Filling Curves for Query Processing
Multidimensional Modeling

TORBEN BACH PEDERSEN

Aalborg University, Aalborg, Denmark

Synonyms
Dimensional modeling; Star schema modeling

Definition
Multidimensional modeling is the process of modeling

the data in a universe of discourse using the model-

ing constructs provided by a multidimensional data

model. Briefly, multidimensional models categorize

data as being either facts with associated numerical

measures, or as being dimensions that characterize the

facts and are mostly textual. For example, in a retail

business, products are sold to customers at certain times

in certain amounts and at certain prices. A typical fact

would be a purchase. Typical measures would be the

amount and price of the purchase. Typical dimensions

would be the location of the purchase, the type of

product being purchased, and the time of the purchase.

Queries then aggregate measure values over ranges of

dimension values to produce results such as the total

sales per month and product type.
Historical Background
Multidimensional databases do not have their origin in

database technology, but stem from multidimensional

matrix algebra, which has been used for (manual) data

analyses since the late nineteenth century. During the

late 1960s, two companies, IRI and Comshare, inde-

pendently began the development of systems that later

turned into multidimensional database systems. The

IRI Express tool became very popular in the marketing

analysis area in the late 1970s and early 1980s; it later

turned into a market-leading OLAP tool and was

acquired by Oracle. Concurrently, the Comshare sys-

tem developed into System W, which was heavily used

for financial planning, analysis, and reporting during

the 1980s.

A concurrent development started in the early

1980s in the area of so-called statistical data manage-

ment which focused on modeling and managing statis-

tical data [1], initially within social science contexts

such as census data. Many important concepts of

multidimensional modeling such as summarizability

(ensuring correct aggregate query results for complex

Multidimensional Modeling. Figure 1. Sales data cube.

1778M Multidimensional Modeling
data) have their roots in this area. An overview is

found in [14].

In 1991, Arbor was formed with the specific pur-

pose of creating ‘‘a multiuser, multidimensional data-

base server,’’ which resulted in the Essbase system.

Arbor, now Hyperion, later licensed a basic version of

Essbase to IBM for integration into DB2. It was Arbor

and Codd who in 1993 coined the term OLAP [2].

Another significant development in the early 1990s

was the advent of large data warehouses [6] for storing

and analyzing massive amounts of enterprise data.

Data warehouses are typically based on relational star

schemas or snowflake schemas, an approach to imple-

menting multidimensional databases using relational

database technology. The 1996 version of [6] popular-

ized the use of star schema modeling for data

warehouses.

From the mid 1990s and beyond, the introduction

of the ‘‘data cube’’ operator [4] sparked a considerable

research interest in the field of modeling multidimen-

sional databases for use in data warehouses and on-line

analytical processing (OLAP).

In 1998, Microsoft shipped its MS OLAP Server,

the first multidimensional system aimed at the mass

market. This has lead to the current situation where

multidimensional systems are increasingly becoming

commodity products that are shipped at no extra cost

together with leading relational database systems.

A more in-depth coverage of the history of multi-

dimensional databases is available in the literature

[16]. Surveys of multidimensional data models can

also be found in the literature [12,17].

Foundations
First, an overview of the concept of a multidimensional

cube is given, then dimensions, facts, and measures are

covered in turn.

Data Cubes

Data cubes provide true multidimensionality. They

generalize spreadsheets to any number of dimensions.

In addition, hierarchies in dimensions and formulas

are first-class, built-in concepts, meaning that these are

supported without duplicating their definitions. A col-

lection of related cubes is commonly referred to as a

multidimensional database or a multidimensional data

warehouse.

A dimensional cube for, e.g., CD sales can be

obtained by including additional dimensions apart
from just the album and the city where the album

was sold. The most pertinent example of an additional

dimension is a time dimension, but it is also possible to

include other dimensions, e.g., an artist dimension

that describes the artists associated with albums. In a

cube, the combinations of a dimension value from

each dimension define the cells of the cube. The actual

sales counts are stored in the corresponding cells.

In a cube, dimensions are first-class concepts with

associated domains, meaning that the addition of new

dimension values is easily handled. Although the term

‘‘cube’’ implies three dimensions, a cube can have any

number of dimensions. It turns out thatmost real-world

cubes have 4–12 dimensions [6,16]. Although there is no

theoretical limit to the number of dimensions, current

tools often experience performance problems when the

number of dimensions is more than 10–15. To better

suggest the high number of dimensions, the term ‘‘hy-

percube’’ is often used instead of ‘‘cube.’’

Figure 1 illustrates a three-dimensional cube based

on the number of CD sales of two particular albums in

Aalborg, Denmark, and New York, USA, for 2006 and

2007. The cube then contains sales counts for two

cities, two albums, and two years. Depending on the

specific application, a highly varying percentage of the

cells in a cube are non-empty, meaning that cubes

range from sparse to dense. Cubes tend to become

increasingly sparse with increasing dimensionality

and with increasingly finer granularities of the dimen-

sion values.

Multidimensional Modeling M 1779

M

A non-empty cell is called a fact. The example has a

fact for each combination of time, album, and city

where at least one sale was made. A fact has associated

with it a number of measures. These are numerical

values that ‘‘live’’ within the cells. In our case, there is

only one measure, the sales count.

Generally, only two or three dimensions may be

viewed at the same time, although for low-cardinality

dimensions, up to four dimensions can be shown by

nesting one dimension within another on the axes.

Thus, the dimensionality of a cube is reduced at

query time by projecting it down to two or three dimen-

sions via aggregation of the measure values across

the projected-out dimensions. For example, if the

user wants to view just sales by City and Time, she

aggregates over the entire dimension that characterizes

the sales by Album for each combination of City

and Time.

An important goal of multidimensional modeling

is to ‘‘provide as much context as possible for the facts’’

[6]. The concept of dimension is the central means of

providing this context. One consequence of this is a

different view on data redundancy than in relational

databases. In multidimensional databases, controlled

redundancy is generally considered appropriate, as

long as it considerably increases the information

value of the data. One reason to allow redundancy is

that multidimensional data is often derived from other

data sources, e.g., data from a transactional relational

system, rather than being ‘‘born’’ as multidimensional

data, meaning that updates can more easily be handled

[6]. However, there is usually no redundancy in the

facts, only in the dimensions.

Having introduced the cube, its principal elements,

dimensions, facts, and measures, are now described in

more detail.

Dimensions

The notion of a dimension is an essential and distin-

guishing concept for multidimensional databases.

Dimensions are used for two purposes: the selection
Multidimensional Modeling. Figure 2. Schema and instance
of data and the grouping of data at a desired level of

detail.

A dimension is organized into a containment-like

hierarchy composed of a number of levels, each of

which represents a level of detail that is of interest to

the analyses to be performed. The instances of the

dimension are typically called dimension values. Each

such value belongs to a particular level.

In some cases, it is advantageous for a dimension to

have multiple hierarchies defined on it. For example, a

Time dimension may have hierarchies for both Fiscal

Year and Calendar Year defined on it. Multiple hierar-

chies share one or more common lowest level(s), e.g.,

Day and Month, and then group these into multiple

levels higher up, e.g., Fiscal Quarter and Calendar

Quarter to allow for easy reference to several ways of

grouping. Most multidimensional models allow multi-

ple hierarchies. A dimension hierarchy is defined in the

metadata of the cube, or the metadata of the multidi-

mensional database, if dimensions can be shared.

In Fig. 2, the schema and instances of a sample

Location dimension capturing the cities where CDs

are sold are shown. The Location dimension has

three levels, the City level being the lowest. City level

values are grouped into Country level values, i.e.,

countries. For example, Aalborg is in Denmark. The

⊤ (‘‘top’’) level represents all of the dimension, i.e.,

every dimension value is part of the ⊤ (‘‘top’’) value.

In some multidimensional models, a level may have

associated with it a number of level properties that are

used to hold simple, non-hierarchical information. For

example, the duration of an album can be a level

property in the Album level of the Music dimension.

This information could also be captured using an extra

Duration dimension. Using the level property has

the effect of not increasing the dimensionality of

the cube.

Unlike the linear spaces used in matrix algebra,

there is typically no ordering and/or distance metric

on the dimension values in multidimensional models.

Rather, the only ordering is the containment of
for the location dimension.

1780M Multidimensional Modeling
lower-level values in higher-level values. However, for

some dimensions, e.g., the Time dimension, an order-

ing of the dimension values is available and is used for

calculating cumulative information such as ‘‘total sales

in year to date.’’

Most models require dimension hierarchies to

form balanced trees. This means that the dimension

hierarchy must have uniform height everywhere, e.g.,

all departments, even small ones, must be subdivided

into project groups. Additionally, direct links between

dimension values can only go between immediate

parent-child levels, and not jump two or more levels.

For example, all cities are first grouped into states and

then into countries, cities cannot be grouped directly

under countries (as is the case in Denmark which has

no states). Finally, each non-top value has precisely

one parent, e.g., a product must belong to exactly one

product group. Below, the relaxation of these con-

straints is discussed.

Facts

Facts are the objects that represent the subject of the

desired analyses, i.e., the interesting ‘‘thing,’’ or event

or process, that is to be analyzed to better understand

its behavior.

Inmost multidimensional datamodels, the facts are

implicitly defined by their combination of dimension

values. If a non-empty cell exists for a particular com-

bination, a fact exists; otherwise, no fact exists. (Some

other models treat facts as first-class objects with a

separate identity [12].) Next, most multidimensional

models require that each fact be mapped to precisely

one dimension value at the lowest level in each dimen-

sion. Other models relax this requirement [12].

A fact has a certain granularity, determined by the

levels from which its combination of dimension values

are drawn. For example, the fact granularity in our

example cube is ‘‘Year by Album by City.’’ Granularities

consisting of higher-level or lower-level dimension

levels than a given granularity, e.g., ‘‘Year by Album

Genre by City’’ or ‘‘Day by Album by City’’ for our

example, are said to be coarser or finer than the given

granularity, respectively.

It is commonplace to distinguish among three

kinds of facts: event facts, state facts, and cumulative

snapshot facts [6]. Event facts (at least at the finest

granularity) typically model events in the real world,

meaning that a unique instance, e.g., a particular sale

of a given (particular physical instance of a) product in
a given store at a given time, of the overall real-world

process that is captured, e.g., sales for a supermarket

chain, is represented by one fact. Examples of event

facts include sales, clicks on web pages, and movement

of goods in and out of (real) warehouses (flow).

A snapshot fact models the state of a given process

at a given point in time. Typical examples of snapshot

facts include the inventory levels in stores and ware-

houses, and the number of users using a web site. For

snapshot facts, the same physical object, e.g., a specific

physical instance of a can of beans on a shelf, with

which the captured real-world process, e.g., inventory

management, is concerned, may be ‘‘measured’’ at

several time points, meaning that data related to that

particular physical object will occur in several facts at

different time points. This is unlike event facts, where a

specific physical object such as a particular instance of

a can of beans can only be sold once, and will thus only

occur in one fact.

Cumulative snapshot facts are used to handle infor-

mation about a process up to a certain point in time. For

example, the total sales in the year to date may be

considered as a fact. Then the total sales up to and

including the current month this year can be easily com-

pared to the figure for the correspondingmonth last year.

Often, all three types of facts can be found in a

given data warehouse, as they support complementary

classes of analyses. Indeed, the same base data, e.g., the

movement of goods in a (real) warehouse, may often

find its way into three cubes of different types, e.g.,

warehouse flow, warehouse inventory, and warehouse

flow in year-to-date.

Measures

A measure has two components: a numerical property

of a fact, e.g., the sales price or profit, and a formula

(most often a simple aggregation function such as

SUM) that can be used to combine several measure

values into one. In a multidimensional database, mea-

sures generally represent the properties of the chosen

facts that the users want to study, e.g., with the purpose

of optimizing them.

Measures then take on different values for different

combinations of dimension values. The property and

formula are chosen such that the value of a measure

is meaningful for all combinations of aggregation

levels. The formula is defined in the metadata and

thus not replicated as in the spreadsheet example. Most

multidimensional data models provide the built-in

Multidimensional Modeling M 1781

M

concept of measures, but a few models do not. In these

models, dimension values are used for computations

instead [12].

It is important to distinguish among three classes

of measures, namely additive, semi-additive, and non-

additive measures, as these behave quite differently in

computations.

Additive measure values can be summed meaning-

fully along any dimension. For example, it makes sense

to add the total sales over Album, Location, and Time,

as this causes no overlap among the real-world phe-

nomena that caused the individual values. Additive

measures occur for any kind of fact.

Semi-additive measure values cannot be summed

along one or more of the dimensions, most often the

Time dimension. Semi-additive measures generally

occur when the fact is of type snapshot or cumulative

snapshot. For example, it does not make sense to sum

inventory levels across time, as the same inventory

item, e.g., a specific physical instance of an album,

may be counted several times, but it is meaningful to

sum inventory levels across albums and stores.

Non-additive measure values cannot be summed

along any dimension, usually because of the chosen

formula. For example, this occurs when averages for

lower-level values cannot be summed into averages

for higher-level values. Non-additive measures can

occur for any kind of fact.
The Modeling Process

Now, the process to be carried out when doing multi-

dimensional modeling is covered. One difference from

‘‘ordinary’’ data modeling is that the multidimensional

modeler should not try to include all the available data

and all their relationships in the model, but only those

parts which are essential ‘‘drivers’’ of the business.

Another difference is that redundancy may be ok (in

a few, well-chosen places) if introducing redundancy

makes the model more intuitive for the user. For ex-

ample, time-related information may be stored in both

a Calendar time dimension and a Fiscal Year time

dimension, or specific customer info may be present

both in a person-oriented Customer dimension or a

group-oriented Demographics dimension.

Kimball [6,5] advocates a four-step process when

doing multidimensional modeling.

1. Choose the business process(es) to model

2. Choose the grain of the business process
3. Choose the dimensions

4. Choose the measures

Step 1 refers to the facts that not all business processes

may be equally important for the business. For example,

in a supermarket, there are business processes for sales

and purchases, but the sales process is probably the

one with the largest potential for increasing profits,

and should thus be prioritized. Step 2 says that data

should be captured at the right grain, or granularity,

compared to the analysis needs. For example, ‘‘individ-

ual sales items’’ may be captured, or perhaps (slightly

aggregated) ‘‘total sales per product per store per day’’

may be precise enough, enabling performance and

storage gains. Step 3 then goes on to refine the schema

of each part of the grain into a complete dimension

with levels and attributes. For the example above, a

Store, a Product, and a Time dimension are specified.

Finally, Step 4 chooses the numerical measures to cap-

ture for each combination of dimension values, for

example dollar sales, unit sales, dollar cost, profit, etc.

When doing multidimensional modeling ‘‘in

the large’’ for many types of data (many cubes) and

several user groups, the most important task is to

ensure that analysis results are comparable across

cubes, i.e., that the cubes are somehow ‘‘compatible.’’

This is ensured by (as far as possible) picking dimen-

sions and measures from a set of common so-called

‘‘conformed’’ dimensions and measures [6,5] rather

than ‘‘re-definining’’ the same concept, e.g., product,

each time it occurs in a new context. New cubes can

then be put onto the common ‘‘DW bus’’ [5] and used

together. This sounds easier than it is, since it often

requires quite a struggle with different parts of

an organisation to define for example a common Prod-

uct dimension that can be used by everyone.
Complex Multidimensional Modeling

Multidimensional data modeling is not always as sim-

ple as described above. A complexity that is almost

always present is that of handling change in the dimen-

sion values. Kimball [6,5] calls this the problem of

slowly changing dimensions. For example, customer

addresses, product category names, and the way pro-

ducts are categorized may change over time. This must

be handled to ensure correct results both for current

and historical data. Kimball advises three types of

slowly changing dimensions: Type 1 (overwrite previ-

ous value with current value), Type 2 (keep versions of

1782M Multidimensional Modeling
dimension rows), and Type 3 (keep previous and cur-

rent value in different columns). Finally, the concept of

minidimensions [6] advocates the separation of rela-

tively static information (customer name, etc.) and

dynamic information (income, number of kids, etc.)

into separate dimensions.

The traditional multidimensional data models and

implementation techniques assume that the data being

modeled is quite regular. Specifically, it is typically

assumed that all facts map (directly) to dimension

values at the lowest levels of the dimensions and only

to one value in each dimension. Further, it is assumed

that the dimension hierarchies are simply balanced

trees. In many cases, this is adequate to support the

desired applications satisfactorily. However, situations

occur where these assumptions fail.

In such situations, the support offered by ‘‘stan-

dard’’ multidimensional models and systems is inade-

quate, and more advanced concepts and techniques are

called for. Now, the impact of irregular hierarchies on

the performance enhancing technique known as par-

tial, or practical, pre-computation, is reviewed.

Complex multidimensional data are problematic

as they are not summarizable. Intuitively, data is sum-

marizable if the results of higher-level aggregates can

be derived from the results of lower-level aggregates.

Without summarizability, users will either get wrong

query results, if they base them on lower-level results, or

the system cannot use pre-computed lower-level results

to compute higher-level results. When it is no longer

possible to pre-compute, store, and subsequently reuse

lower-level results for the computation of higher-level

results, aggregates must instead be calculated directly

from base data, which leads to considerable increases

in computational costs.

It has been shown that summarizability requires

that aggregate functions be distributive and that the

ordering of dimension values be strict, onto, and
Multidimensional Modeling. Figure 3. Irregular dimensions
covering [12, 7]. Informally, a dimension hierarchy is

strict if no dimension value has more than one (direct)

parent, onto if the hierarchy is balanced, and covering if

no containment path skips a level. Intuitively, this

means that dimension hierarchies must be balanced

trees. If this is not the case, some lower-level values will

be either double-counted or not counted when reusing

intermediate query results.

Figure 3 contains two dimension hierarchies: a

Location hierarchy including a State level, and the hier-

archy for the Organization dimension for some com-

pany. The hierarchy to the left is non-covering, as

Denmark has no states. If aggregates at the State level

are pre-computed, there will be no values for Aalborg

and Copenhagen, meaning that facts mapped to these

cities will not be counted when computing country

totals.

To the right in figure 3, the hierarchy is non-onto

because the Research department has no further sub-

division. If aggregates are materialized at the lowest

level, facts mapping directly to the Research depart-

ment will not be counted. The hierarchy is also non-

strict as the TestCenter is shared between Finance and

Logistics. If aggregates are materialized at the middle

level, data for TestCenter will be counted twice, for

both Finance and Logistics, which is, in fact, what is

desired at this level. However, this means that data will

be double-counted if these aggregates are then com-

bined into the grand total.

Several design solutions exist that aims to solve the

problems associated with irregular hierarchies by alter-

ing the dimension schemas or hierarchies [8,11].

Key Applications
Multidimensional data models have three important

application areas within data analysis. First, multi-

dimensional models are used in data warehousing.

Briefly, a data warehouse is a large repository of
.

Multidimensional Modeling M 1783

M

integrated data obtained from several sources in an

enterprise for the specific purpose of data analysis.

Typically, this data is modeled as being multidimen-

sional, as this offers good support for data analyses.

Second, multidimensional models lie at the core

of on-line analytical processing (OLAP) systems. Such

systems provide fast answers to queries that aggregate

large amounts of so-called detail data to find overall

trends, and they present the results in amultidimension-

al fashion. Consequently, a multidimensional data orga-

nization has proven to be particularly well suited for

OLAP. The widely acknowledged ‘‘OLAP Report’’ com-

pany [15] provides an ‘‘acid test’’ for OLAP by defining

OLAP as ‘‘fast analysis of shared multidimensional in-

formation’’ (FASMI). In this definition, ‘‘Fast’’ refers to

the expectation of response times that are within a few

seconds, ‘‘Analysis’’ refers to the need for easy-to-use

support for business logic and statistical analyses,

‘‘Shared’’ suggests a need for security mechanisms and

concurrency control for multiple users, ‘‘Multidimen-

sional’’ refers to the expectation that a data model with

hierarchical dimensions is used, and ‘‘Information’’ sug-

gests that the system must be able to manage all the

required data and derived information.

Third, multidimensional data are increasingly be-

coming the basis for data mining, where the aim is to

(semi-) automatically discover unknown knowledge in

large databases. Indeed, it turns out that multidimen-

sionally organized data are also particularly well suited

for the queries posed by data mining tools.

Future Directions
A pressing need for multidimensional modeling is the

aspect of standardization, i.e., agreeing on a common

data model, a graphical notation for it, and support by

tools. Also, better integration between ordinary ‘‘oper-

ational modeling’’ and multidimensional modeling is

needed. Another future research line is the modeling of

important system aspects such as security, quality,

requirements, evolution, and interoperability [13].

This will be extended to also cover the modeling of

business intelligence applications such as data mining,

patterns, extraction-transformation-loading (ETL),

what-if analysis, and business process modeling [13].

Finally, an important line of research will cover the

modeling of more (complex) types of data, including

integrating multidimensional data with text data, semi-

structured/XML/web data and spatial/spatio-temporal/

mobile data [9].
Cross-references
▶Business Intelligence

▶Cube

▶Data Warehouse

▶Data Warehouse Maintenance, Evolution and

Versioning

▶Data Warehousing Systems: Foundations and Archi-

tectures

▶Dimension

▶Hierarchy

▶Measure

▶On-Line Analytical Processing

▶ Statistical Data Management

▶ Summarizability

▶What-If Analysis
Recommended Reading
1. Chan P. and Shoshani A. SUBJECT: A directory driven system

for organizing and accessing large statistical databases. In Proc.

9th Int. Conf. on Very Data Bases, 1983, pp. 553–563.

2. Codd E.F. Providing OLAP (On-line Analytical Processing) to

User-Analysts: An IT Mandate. E.F. Codd and Assoc., 1993.

3. Dyreson C.E., Pedersen T.B., and Jensen C.S. Incomplete

information in multidimensional databases, M. Rafanelli (ed.).

Multidimensional Databases: Problems and Solutions. Idea

Group Publishing, 2003.

4. Gray J., Chaudhuri S., Bosworth A., Layman A., Venkatrao M.,

Reichart D., Pellow F., Pirahesh H. Data cube: A relational

aggregation operator generalizing group-by, cross-tab and sub-

totals. Data Mining Knowl. Dis., 1(1):29–54, 1997.

5. Kimball R. et al. The Data Warehouse Lifecycle Toolkit. Wiley,

New York, 1998.

6. Kimball R. and Ross M. The Data Warehouse Toolkit, 2nd ed.

Wiley, New York, 2002.

7. Lenz H. and Shoshani A. Summarizability in OLAP and statisti-

cal data bases. In Proc. 9th Int. Conf. on Scientific and Statistical

Database Management, 1997, pp. 39–48.

8. Niemi T., Nummenmaa J., and Thanisch P. Logical multidimen-

sional database design for ragged and unbalanced aggregation.

In Proc. 3rd Int. Workshop on Design and Man of Data Ware-

houses, CEURWorkshop Proc. 39, 2001, Paper 7.

9. Pedersen T.B. Warehousing the world: a few remaining chal-

lenges. In Proc. ACM 10th Int. Workshop on Data Warehousing

and OLAP, 2007, pp. 101–102.

10. Pedersen T.B. and Jensen C.S. Multidimensional database

technology. IEEE Comput., 34(12):40–46, 2001.

11. Pedersen T.B., Jensen C.S., and Dyreson C.E. Extending practical

pre-aggregation in on-line analytical processing. In Proc. 25th

Int. Conf. on Very Large Data Bases, 1999, pp. 663–674.

12. Pedersen T.B., Jensen C.S., and Dyreson C.E. A foundation for

capturing and querying complex multidimensional data. Inf.

Syst., 26(5):383–423, 2001.

13. Rizzi S., Abello A., Lechtenbrger J., and Trujillo J. Research in

data warehouse modeling and design: dead or alive? In Proc.

1784M Multidimensional Scaling
ACM 9th Int. Workshop on Data Warehousing and OLAP, 2006,

pp. 3–10.

14. Shoshani A. OLAP and statistical databases: similarities and

differences. In Proc. 16th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 1997, pp. 185–196.

15. The OLAP Report web page. http://www.olapreport.com. Cur-

rent as of November 22, 2007.

16. Thomsen E. OLAP Solutions: Building Multidimensional Infor-

mation Systems. Wiley, New York, 1997.

17. Vassiliadis P. and Sellis T.K. A survey of logical models for OLAP

databases. ACM SIGMOD Rec., 28(4):64–69, 1999.
Multidimensional Scaling

HENG TAO SHEN

The University of Queensland, Brisbane,

QLD, Australia

Synonyms
MDS

Definition
Multidimensional scaling (MDS) is a mathematical

dimension reduction technique that best preserves the

inter-point distances by analyzing gram matrix. Given

any two points pi and pj in a dataset P, MSD aims to

minimize the following objective function:

Error ¼
X

½dðpi; pjÞ � d0ðpi; pjÞ�2

Where dðpi; pjÞ and d0ðpi; pjÞrepresent the distance

between points pi and pj in original space and the

lower dimensional subspace respectively.

Key Points
Multidimensional scaling (MDS) is a set of related

statistical techniques often used in data visualisation

and analysis for exploring similarities or dissimilarities

in data. An MDS algorithm starts with a matrix of

point-point (dis)similarities, then assigns a location

of each point in a low-dimensional space. The points

are arranged in this subspace so that the distances

between pairs of points have their original distance

maximally retained. MDS is a generic term that

includes many different specific types. These types

can be classified according to whether the data are

qualitative (called nonmetric MDS) or quantitative

(metric MDS). The number of (dis)similarity matrices

and the nature of the MDS model can also classify

MDS types. This classification yields classical MDS

(one matrix, unweighted model), replicated MDS
(several matrices, unweighted model), and weighted

MDS (several matrices, weighted model) [1,2].

MDS applications include scientific visualisation

and data mining in fields such as cognitive science,

information science, psychophysics, psychometrics,

marketing and ecology [2].

Cross-references
▶Dimensionality Reduction

▶Discrete Fourier Transform

▶Discrete Wavelet Transform and Wavelet Synopses

▶ Independent Component Analysis

▶ Isometric Feature Mapping

▶ Latent Semantic Indexing

▶ Locality-Preserving Mapping

▶ Locally Linear Embedding (Lle) Laplacian Eigenmaps

▶Principal Component Analysis

▶ Semantic Subspace Projection

Recommended Reading
1. Cox M.F. and Cox M.A.A. Multidimensional Scaling. Chapman

and Hall, 2001.

2. Young F.W. and Hamer R.M. Multidimensional Scaling: History,

Theory and Applications. Erlbaum, New York, 1987.
Multidimensional Visualization

▶ Parallel Coordinates
Multi-Granularity Modeling

▶Multiple Representation Modeling
Multi-Layered Architecture

▶Multi-Tier Architecture
Multi-Level Recovery and the ARIES
Algorithm

GERHARD WEIKUM

Max-Planck Institute for Informatics, Saarbrücken,

Germany

Definition
In contrast to basic database recovery with page-level

logging and redo/undo passes, multi-level recovery is

Multi-Level Recovery and the ARIES Algorithm M 1785

M

needed whenever the database system uses fine-grained

concurrency control, such as index-key locking or

operation-based ‘‘semantic’’ conflict testing, or when

log records describe composite operations that are not

guaranteed to be atomic by single page writes (as a

consequence of concurrency control or for other rea-

sons). Advanced methods perform logging and recov-

ery at multiple levels like pages and data objects

(records, index entries, etc.). Page-level recovery is

needed to ensure the atomicity and applicability

of higher-level operations, and also for efficient redo.

Higher-level recovery is needed to perform correct

undo for composite operations of loser transactions.

In addition, logged actions at all levels must be testable

at recovery-time, by embedding extra information in

database pages, typically using log sequence numbers

(LSNs), and appropriate logging of recovery steps.

A highly optimized instantiation of these principles is

the ARIES algorithm (Algorithms for Recovery and

Isolation Exploiting Semantics) [8,7], the de facto

standard solution for industrial-strength database sys-

tems. Its salient features are: very fast, potentially par-

allelizable or selective, redo for high availability; use of

LSNs and compensation log records (CLRs) for track-

ing recovery progress; full-fledged support for crash

and media recovery; suitability for all kinds of seman-

tic concurrency control methods.

Historical Background
Crash recovery for composite operations on database

records and indexes has first been addressed by [3], but

that solution required heavy-weight check pointing

(based on shadow storage) and was fairly inefficient.

Some commercial engines developed various techni-

ques to overcome these problems while supporting

fine-grained concurrency control, but there is very

little public literature on such system internals

[1,2,4]. The ARIES algorithm was the first comprehen-

sive solution [8] and has become the state-of-the-art

method for industrial-strength recovery [7]. In parallel

to and independently of the ARIES papers, research on

multi-level recovery developed general principles and a

systematic framework [9,10,6]. The textbook [11] dis-

cusses both the general framework and the ARIES

algorithm in great detail. A correctness proof for the

ARIES algorithm is given in [5].

Foundations
Basic database recovery methods log page modifications

during normal operation. During the restart after a
system crash (i.e., soft failure of the server with all disks

intact), a three-phase recovery procedure is performed

with an analysis pass, a redo pass, and an undo pass

over the log file. This is appropriate when the database

system uses page locking or some other page-granularity

concurrency control. Such locking guarantees that all

updates of loser transactions (i.e., uncommitted transac-

tions that require undo) that are in conflict with updates

of winner transactions (i.e., committed transactions that

may require redo) follow the winners’ updates in the log

file. However, with fine-grained locking or some form

of semantic concurrency control (e.g., exploiting com-

mutative operations on hot-spot objects), this invariant

does no longer hold and thus necessitates more ad-

vanced recovery algorithms.

As an example, consider the following execution

history of two transactions t1 and t2 that insert various

database records, with time proceeding from left to

right and c2 denoting a successful commit of t2:

insert1ðxÞ insert1ðyÞ crash insert2ðzÞ c2

The insertions may appear to be single operations,

but they are not atomic from the system viewpoint.

In fact, each of them may require multiple page writes

to maintain indexes and other storage structures. For

example, the following history of page writes may

result from the above execution:

w1ðpÞ w1ðqÞ w1ðsÞ w1ðrÞw1ðpÞ w1ðqÞ crash
w2ðpÞw2ðsÞ c2

Here, p would be a data page into which all three

records x, y, z are inserted, and q and s may be leaf pages

of the same B þ -tree index. For simplicity, the history

does not show any read accesses like accesses for des-

cending the tree. It may happen that the index update on

behalf of record x triggers a leaf split of page q with a

newly allocated page s and a corresponding update to the

parent page r. The subsequent record operations may

then access the new pages or the old page q, depending

on where their corresponding keys now reside. This is a

very normal situation for a database system, and it is

perfectly admissible from a concurrency control view-

point, because there are no (high-level) conflicts be-

tween the three insert operations. The system may have

to use additional short-term locks or latches on pages to

implement a multi-level concurrency control method,

but this is very normal as well.

If the standard page-level recovery were applied

to this situation, it would first redo (if necessary) all

1786M Multi-Level Recovery and the ARIES Algorithm
page writes of winner transaction t2 and then undo

all page writes of loser transaction t1, using before-

images of pages or byte-range-oriented log records.

This would lead to two kinds of problems:

� Redoing the page write w2(s) may be logically

flawed and lead to an inconsistent index state if

the effects of the preceding leaf split are not prop-

erly reflected in page s. But it is indeed possible that

the loser updates w1(q) and w1(s) were not written

to disk before the crash, and no redo would be

performed for them.

� If all index updates were fully recovered and correctly

captured in the database by the time the undo recov-

ery for t1 takes place, undoing the write w1(s) of

page s would restore the page as of the time before

t1 started, thus accidentally – and incorrectly –

eliminating also the index update of the winner

transaction t2.

If, on the other hand, the logging and recovery

procedures were changed so that only record- and

index-level operations are captured and redone or

undone, one would run into a third problem:

� If the system crashed in the middle of a high-level

operation, say in between the w1(q) and the w1(s)

steps, the database may be left in an inconsistent

state with partial effects of an operation. Such a

database would not be recoverable as all logged

operations could face a state that they cannot prop-

erly interpret.

These problems show the need for multi-level recov-

ery; the solution must meet the following requirements:

� Operation atomicity: High-level operations that

comprise multiple page writes must be guaranteed

to appear atomic (i.e., have an all-or-nothing

impact on the database).

� High-level undo: Operations of loser transactions

must, in full generality, be undone by means of

inverse operations at the same level of abstraction.

For example, the insertion of an index key must be

undone by performing a delete operation on that

key, not by restoring the before-images of the un-

derlying pages (and neither by corresponding byte-

range modifications).

� Testable operations: Before invoking a high-level

operation for undoing or redoing the effect of a

prior operation, it must be tested whether the
effects of the prior operation are indeed present

(as they may have been lost by the crash or already

undone/redone in a recovery procedure that was

interrupted by another crash). This testability is

crucial for handling non-idempotent operations.

� Efficient redo: As the restart time and thus the

unavailability of the system is usually dominated

by the redo pass, it is crucial that the redo actions

are performed as efficiently as possible. This strong-

ly suggests performing redo in terms of page writes

rather than re-executing high-level operations.

Multi-level recovery methods address these require-

ments in the following way:

� For proper undo, both page-level writes and higher-

level operations are logged. The page-level log

records guarantee that high-level operations can

always be made to appear atomic. The high-level

log records guarantee that undo can be performed

by means of inverse operations. During the undo of

a high-level operation, page-level logging is again

enabled. This way, the first two requirements are

satisfied.

� For testable operations, when the recovery proce-

dure undoes a (high-level) operation, both the

resulting page writes and a marker for the inverse

operation itself are logged. The latter kind of log

record is referred to as a compensation log record

(CLR). In addition, the standard technique of

maintaining log sequence numbers (LSNs) in the

headers of modified pages, as a form of virtual time

stamping, is used to be able to compare a log record

to the state of a page and decide whether the logged

action should be undone/redone or disregarded.

� For efficient redo, although redoing high-level

operations may add to the repertoire of recovery

actions, it is much more desirable to perform all

redo steps in terms of page writes. This can leverage

all kinds of acceleration techniques that have been

developed for more conventional, page-level recov-

ery like asynchronous check pointing and dirty-

pages bookkeeping, smart scheduling of page

reads from the database disk, parallelized per-page

redo, and selective redo for pages with very high

availability demands.

� Further considerations on the redo pass lead to the

repeating-history principle [8]: rather than aiming

to redo only winner updates or at least as few loser

updates as possible, it is much simpler to redo all

Multi-Level Recovery and the ARIES Algorithm M 1787

M

logged page writes regardless of their transaction

status, thus effectively reconstructing the database

as of the time of the crash.

All these principles together result in the following

algorithmic template for multi-level recovery:

� Analysis pass for determining loser transactions.

� Redo pass by repeating history in terms of logged

page writes.

� Undo pass for loser transactions, with page-level

undo for incomplete high-level operations and

high-level undo for complete (and possibly just

redone) high-level operations. Logging at both

levels is enabled during the undo pass, thus creating

new log records: page-write log records during the

operation’s execution, and undo information for

the entire operation at the very end, thus also

marking the completion of the operation.

For all steps, idempotence is ensured by two means:

for page writes the standard comparison of page-

header LSN versus log-record LSN is performed; for

high-level operations, only undo idempotence is a

potential issue, and this is guaranteed by the fact that

the preceding redo pass always repeats history so that

all completely repeated operations need subsequently

be undone by definition.

The ARIES algorithm is an integrated and highly

optimized instantiation of these principles, with

various additional features. Its recovery procedure

performs three passes over the log: analysis, repeat-

ing-history redo, and undo. The analysis pass mostly

follows standard recovery methods; the redo pass has

been discussed above; the undo pass uses additional

techniques based on the use of compensation log records

(CLRs). The following undo-relevant log records are

produced by ARIES:

� During normal operation, page writes are logged in

a way that they can be redone or undone (which-

ever is needed later), and each high-level operation

is logged for undo purposes following all page-

write log records that were produced during the

operation’s execution. The high-level log records

have a backward pointer that points to the preceding

high-level action of the same transaction, thus allow-

ing the recovery manager to skip the operation’s

logged page writes.

� During the undo pass, when undoing a page write,

a CLR is written with a backward pointer to the log
record that precedes the undo page write within

the same transaction. When undoing a high-level

operation, normal page-write log records are writ-

ten during the execution of the inverse operation,

and a CLR for the entire high-level operation is

written at the end. That CLR again has a backward

pointer to its preceding high-level action, skipping

its own page writes.

With these preparations, the undo procedure itself

is rather straightforward. For each loser transaction, it

locates the most recent log record and then follows the

backward chain of log records. Whenever a CLR is

encountered, this tells the recovery manager that the

undo of the corresponding action is already completed

(either already during normal operation or by the

preceding redo pass) and the log record should thus

be disregarded. Page-write log records are relevant for

incomplete high-level operations; otherwise high-level

log records determine the undo logic.

This undo procedure of the ARIES algorithm has a

number of great benefits:

� It handles high-level undo in a correct and efficient

way, thus allowing fine-grained and semantic con-

currency control.

� It handles nested rollbacks in a correct and efficient

way. These are situations where a transaction roll-

back is interrupted by a crash and later considered

for undo or when the undo pass after a server

crash is interrupted by a second crash. In all these

situations, it is guaranteed that the amount of

recovery work stays bounded, regardless of how

many ‘‘nested’’ crashes might occur during recov-

ery. This is important for high availability.

� Formedia recovery, restoring the database after disk

failures, an analogous but even more severe situa-

tion arises. As media recovery always starts with a

backup copy of the database and then repeats the

history of a potentially very long archive log, roll-

backs or undo steps for (soft) system crashes that

happened long ago would interfere with log trun-

cation and become performance showstoppers with

pre-ARIES recovery methods. The way ARIES gen-

erates redo log records for undo actions and CLRs

for progress tracking, media recovery is as fast as

possible, which is crucial for availability.

For the example scenario given above, ARIES

would create the following log records during normal

1788M Multi-Level Recovery and the ARIES Algorithm
operation, denoted in the form LSN:action. Note that

log records 5 and 8 will only be used for undo purposes

(if necessary). Further note that the example happens

to show page-level log records for the second insert

operation of t1 but no high-level log record. This may

occur because of the crash happening before the high-

level log record was flushed to the log disk.

1 : w1ðpÞ 2 : w1ðqÞ 3 : w1ðsÞ 4 : w1ðrÞ
5 : insert1ðxÞ 6 : w2ðpÞ 7 : w2ðsÞ 8 : insert2ðzÞ
9 : w1ðpÞ 10 : w1ðqÞ 11 : c2

During recovery, the redo pass processes log

records 1, 2, 3, 4, 6, 7, 9, and 10. Subsequently the

undo pass processes log records 10, 9, and 5 (in this –

chronologically reverse – order). As it does so, it will

create the following new log records, with CLRs

denoted in the form LSN:action!UndoNextLSN with

UndoNextLSN being the LSN of the log record to

which the CLR has a backward pointer.

12 : w1ðqÞ ! 9 13 : w1ðpÞ ! 5 14 : w1ðsÞ
15 : w1ðpÞ 16 : delete1ðxÞ ! 0

If the system crashed again immediately after the

completion of the delete1(x) undo step, the redo pass

would repeat the page writes with LSNs 12, 13, 14, and

15 (in addition to all writes with LSNs 1 through 11

that may need redo again). This means that all effects

of t1 have been properly removed. The subsequent

undo pass would then encounter the CLR 16, but its

backward pointer immediately tells the recovery man-

ager that it can skip all log records of transaction t1

as t1 had already been completely undone before the

second crash.

If the system crashed again after the action with

LSN 14 (a page write issued on behalf of the high-level

undo of insert1(x)), the redo pass would repeat the

page writes with LSNs 12, 13, and 14, thus effectively

removing all effects of insert1(y) but only some partial

effects of insert1(x). The subsequent undo pass would

start with LSN 14, undo it and create a new CLR, and

then encounter LSN 13, which points to LSN 5 which

in turn is the next logged action to undo.

In general, ARIES can be implemented with very

low overhead, and it is compatible with other optimi-

zations in the storage engine of a database system:

flexible free space management, flexible buffer man-

agement, acceleration techniques for the redo pass,
and many more. For high availability, the redo pass of

both crash and media recovery can be parallelized or

performed selectively for most important page sets;

media recovery efficiently works also with fuzzy back-

ups without ever quiescing the system. For index man-

agement, extensions of ARIES have been developed

that optimize the locking, logging, and recovery of

index keys in B + -trees. Finally, there are also exten-

sions of ARIES for the special requirements of shared-

disk clusters with automated fail-over procedures and

very high availability.
Future Directions
The ARIES algorithm is a mature and comprehensive

solution that can be readily adopted for most data

management systems. A salient property of the multi-

level recovery framework is that it can be generalized to

arbitrary kinds of composite operations (with deeper

and flexible nestings). All the ARIES techniques for

efficient repeating-history redo are directly applicable,

and the undo procedures need to be extended to

handle a conceptual stack of undo log records and

corresponding CLRs – with the stack actually being

embedded in the linear log. This generalization is of

potential interest for modern applications like com-

posite Web services or enterprise-level middleware

with integrated recovery.
Cross-references
▶Atomicity

▶ Logging

▶ Persistence

▶ System Recovery

▶Transaction
Recommended Reading
1. Borr A.J. Robustness to crash in a distributed database:

a non shared-memory multi-processor approach. In Proc. 10th

Int. Conf. on Very Large Data Bases, 1984, pp. 445–453.

2. Crus R.A. Data recovery in IBM database 2. IBM Syst. J.,

23(2):178–188, 1984.

3. Gray J., McJones P.R., Blasgen M.W., Lindsay B.G., Lorie R.A.,

Price T.G., Putzolu G.R., and Traiger I.L. The recovery manager

of the system R database manager. ACM Comput. Surv.,

13(2):223–243, 1981.

4. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1993.

5. Kuo D. Model and verification of a data manager based on

ARIES. ACM Trans. Database Syst., 21(4):427–479, 1996.

Multilevel Secure Database Management System M 1789
6. Lomet D.B. MLR: a recovery method for multi-level systems. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1992,

pp. 185–194.

7. Mohan C. Repeating history beyond ARIES. In Proc. 25th Int.

Conf. on Very Large Data Bases, 1999, pp. 1–17.

8. Mohan C., Haderle D.J., Lindsay B.G., Pirahesh H., and

Schwarz P.M. ARIES: a transaction recovery method supporting

fine-granularity locking and partial rollbacks using write-ahead

logging. ACM Trans. Database Syst., 17(1):94–162, 1992.

9. Moss J.E.B., Griffeth N.D., and Graham M.H. Abstraction in

recovery management. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1986, pp. 72–83.

10. Weikum G., Hasse C., Brössler P., and Muth P. Multi-level

recovery. In Proc. 9th ACM SIGACT-SIGMOD-SIGART Symp.

on Principles of Database Systems, 1990, pp. 109–123.

11. Weikum G. and Vossen G. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, San Francisco, CA, 2001.
M

Multilevel Secure Database
Management System

BHAVANI THURAISINGHAM

University of Texas at Dallas, Richardson, TX, USA

Synonyms
Secure database systems; Trusted database systems

Definition
Many of the developments in the 1980s and 1990s in

database security were on multi-level secure database

management systems (MLS/DBMS). These systems

were also called trusted database management systems

(TDBMS). In a MLS/DBMS, users are cleared at dif-

ferent clearance levels such as Unclassified, Confiden-

tial, Secret and TopSecret. Data is assigned different

sensitivity levels such as Unclassified, Confidential,

Secret, and TopSecret. It is generally assumed that

these security levels form a partially ordered lattice.

For example, Unclassified < Confidential < Secret <

TopSecret. Partial ordering comes from having differ-

ent compartments. For example, Secret Compartment

A may be incomparable to Secret Compartment B.

Historical Background
MLS/DBMSs have evolved from the developments in

multilevel secure operating systems such as MULTICS

and SCOMP (see for example [4]) and the develop-

ments in database systems. Few developments were

reported in the late 1970s on MLS/DBMSs. However,
during this time there were many developments in

discretionary security, such as access control for Sys-

tem R and INGRES as well as many efforts on statistical

database security. Then there was a major initiative by

the Air Force and a summer study was convened. This

summer study marks a significant milestone in the

development of MLS/DBMSs [2].

The early developments in MLS/DBMSs influenced

the Air Force Summer Study a great deal. Notable

among these efforts are the Hinke-Schaefer approach

to operating system providing mandatory security, the

Ph.D. Thesis of Deborah Downs at UCLA (University of

California at Los Angeles), the IP Sharp Model devel-

oped in Canada and the Naval Surveillance Model de-

veloped at the MITRE Corporation. The Hinke Schaefer

approach [3] essentially developed a way to host MLS/

DBMSs on top of the MULTICS MLS operating system.

The system was based on the relational system and the

idea was to partition the relation based on attributes and

store the attributes in different files at different levels.

The operating system would then control access to

the files. The early efforts showed a lot of promise to

designing and developing MLS/DBMSs. As a result, the

Air Force started a major initiative, which resulted in the

summer study of 1982

Since the summer study, several efforts were

reported throughout the 1980s. Many of the efforts

were based on the relational data model. At the end of

that decade, the National Computer Security Center

started a major effort to interpret the Trusted Computer

Systems Evaluation Criteria for database systems [7].

This interpretation was called the Trusted Database

Interpretation [8]. In the 1990s research focused on

non-relational systems including MLS object database

systems and deductive database systems. Work was

also carried out on multilevel secure distributed data-

base systems. Challenging research problems such as

multilevel data models, inference problem and secure

transaction processing were being investigated. Several

commercial products began to emerge. Since the

late 1990s, while the interest in MLS/DBMSs began to

decline a little, efforts are still under way to examine

multilevel security for emerging data management tech-

nologies. A detailed discussion of many of the develop-

ments with significant references are given in [5].

Foundations
Many of the developments were based on the relational

model. The early systems were based on the Integrity

1790M Multilevel Secure Database Management System
Lock approach developed at the MITRE Corporation.

Two prototypes were designed and developed. One

used the MISTRESS relational database system and

the other used the INGRES relational database system.

Around 1985 TRW designed and developed a MLS/

DBMS called ASD and this system was designed to be

hosted on ASOS (the Army Secure Operating System).

The approaches were based on the Trusted Subject

based architecture. Later on TRW developed some

extensions to ASD and the system was called ASD

Views where access was granted on views (GARV88).

Two of the notable systems designed in the late 1980s

were the SeaView system by SRI International and

LOCK Data Views system by Honeywell. These two

efforts were funded by the then Rome Air Develop-

ment Center and the goal was to focus on the longer

term approaches proposed by the Summer Study. Both

efforts influenced the commercial developments a

great deal. Three other efforts worth mentioning are

the SINTRA system developed by the Naval Research

Laboratory, the SWORD system developed by the then

Defense Research Agency and funded by the Ministry

of Defense in the United Kingdom and the SDDBMS

effort by Unisys. The SINTRA system was based on the

distributed architecture proposed by the Air Force

Summer Study. The SWORD system proposed some

alternatives to the SeaView and LOCK Data Views data

models. While the initial planning for these systems

began in the late 1980s, the designs were actually de-

veloped in the early 1990s. The SDDBMS effort was

funded by the Air Force Rome Laboratory and inves-

tigated both the partitioned and replicated approaches

to designing an MLS/DBMS.

Around l987, the Rome Air Development Center

(now known as Air Force Research Laboratory in

Rome) funded an effort to design an MLS/DBMS

based on the Entity Relationship (ER) model. The ER

model was initially developed in 1976 by Peter Chen

and since then it has been used extensively to model

applications. The goal of the security effort carried out

by Gajnak and his colleagues was to explore security

properties for the ER model as well as to explore the

use of secure ER models to design DBMSs. The effort

produced MLS ER models that have since been used to

model secure applications. Furthermore variations of

this model have been used to explore the inference

problem by Burns, Thuraisingham and Smith. However,

there does not appear to have been any efforts under-

taken ondesigningMLS/DBMSs based on the ERmodel.
In summary, the ER approach has contributed exten-

sively toward designing MLS applications.

During the late 1980s, efforts began on design-

ing MLS/DBMSs based on object models. Notable

among these efforts is the one by Keefe, Tsai and

Thuraisingham who designed the SODA model by

Keefe and his colleagues. Later Thuraisingham

designed the SORION and SO2 models. These models

extended models such as ORION and O2 with security

properties. Around 1990 Millen and Lunt produced

an object model for secure knowledge base systems.

Jajodia and Kogan developed a message-passing model

in 1990. Finally MITRE designed a model called UFOS.

Designs of MLS/DBMSs were also produced based on

the various models. The designs essentially followed

the designs proposed for MLS/DBMSs based on the

relational model. However with the object model,

one had to secure complex objects as well as handle

secure method execution. While research progressed

on designing MLS/DBMSs based on objects, there were

also efforts on using object models for designing secure

applications. Notable efforts were those by Sell and

Thuraisingham. Today with the development of UML

(Unified Modeling Language) there are efforts to

design secure applications based on UML.

Around 1989 work began at MITRE on the design

and development of multilevel secure distributed data-

base systems (MLS/DDBMS). Prototypes connecting

MLS/DBMSs at different sites were also developed.

Work was then directed toward designing and devel-

oping MLS heterogeneous distributed database sys-

tems. These efforts focused on connecting multiple

MLS/DBMSs, which are heterogeneous in nature. Re-

search was also carried out on MLS federated databases

by Thuraisingham and Rubinovitz.

In the late 1970 and throughout the 1980s there were

many efforts on designing and developing logic-based

database systems. These systems were called deductive

databases. While investigating the inference problem,

multilevel secure deductive database systems were

designed. These systems were based on a logic called

NTML (Non monotonic Typed Multilevel Logic)

designed by Thuraisingham at MITRE. NTML essen-

tially provides the reasoning capability across security

levels, which are non-monotonic in nature. Essentially,

it incorporates constructs to reason about the applica-

tions at different security levels. A Prolog language

based on NTML, which is called NTML-Prolog, was

also designed. Both reasoning with the Closed World

Multilevel Secure Database Management System M 1791

M

Assumption as well as with the Open World Assump-

tion were investigated. Due to the fact that there was

limited success with logic programming and the Japa-

nese Fifth Generation Project, deductive systems are

being used only for a few applications. If such applica-

tions are to be multilevel secure, then systems such as

those based on NTMLwill be needed. Nevertheless there

is use for NTML on handling problems such as the

inference problem. Note that presently the integration

of NTML-like logic with descriptive logics for secure

semantic webs is being explored.

Researchers have identified several hard problems.

The most notable hard problem is the Inference prob-

lem. Inference problem is the process of posing queries

and deducing sensitive information form the legiti-

mate responses received. Many efforts have been dis-

cussed in the literature to handle the inference problem

First of all, Thuraisingham proved that the general

inference problem was unsolvable [6] and this effort

was stated by Dr. John Campbell of the National Secu-

rity Agency as one of the significant developments in

database security in [1]. Then Thuraisingham explored

the use of security constraints and conceptual struc-

tures to handle various types of inferences. Note that

the aggregation problem is a special case of the infer-

ence problem where collections of data elements are

sensitive while the individual data elements are Un-

classified. Another hard problem is secure transaction

processing. Many efforts have been reported on reduc-

ing covert channels when processing transactions in

MLS/DBMSs including the work of Jajodia, Bertino

and Atluri among others. A third challenging problem

is developing a multilevel secure relational data model.

Various proposals have been developed including those

by Jajodia and Sandhu, the Sea View model by Den-

ning and her colleagues and the LOCK Data Views

model by Honeywell. SWORD developed by Wiseman

also proposed its own model. The problem is due to

the fact that different users have different views of the

same element. If multiple values are used to represent

the same entity then the integrity of databases is vio-

lated. However, if what is called polyinstantiation is

not enforced, then there is a potential for signaling

channels. This is still an open problem.

Key Applications
The department of defense was the major funding

agency for multilevel secure database management

systems. The applications are mainly in the defense
and intelligence area. However many of the concepts

can be used to design systems that have multiple labels,

privacy levels or roles. Therefore these systems can also

be used to a limited extent for non-defense applica-

tions including healthcare and financial applications.

Future Directions
As technologies emerge, one can examine multilevel

security issues for these emerging technologies. For

example, as object database systems emerged in the

1980s, multilevel security for object databases began to

be explored. Today there are many new technologies

including data warehousing, e-commerce systems, mul-

timedia systems, real-time systems and the web and

digital libraries. Only a limited number of efforts have

been reported on investigating multilevel security for

the emerging data management systems. This is partly

due to the fact the even for relational systems, there are

hard problems to solve with respect to multilevel secu-

rity. As the system becomes more complex, developing

high assurance multilevel systems becomes an enor-

mous challenge. For example, how can one develop

usable multilevel secure systems say for digital libraries

and e-commerce systems? How can one get acceptable

performance? How does one verify huge systems such as

the WorldWide Web? At present, there is still a lot to do

with respect to discretionary security for such emerging

systems. As progress is made with assurance technolo-

gies and if there is a need for multilevel security for such

emerging technologies, then research initiatives will

commence for these areas.

Cross-references
▶Database Security

▶ Inference Problem

▶Mandatory Access Control

▶Role Based Access Control

Recommended Reading
1. Campbell J. A year of progress in database security. In Proc.

National Computer Security Conf., 1990.

2. Committee on Multilevel Data Management Security, Air Force

Studies Board. Multilevel Data Management Security. National

Academy Press, Washington, DC, 1983.

3. Hinke T. and Schaefer M. Secure data management system.

System Development Corp., Technical Report RADC-TR-75-

266, November 1975.

4. IEEE Computer Magazine, Volume 16, #7, 1983.

5. Thuraisingham B. Database and Applications Security: Integrat-

ing Data Management and Information Security. CRC Press,

Boca Raton, FL, 2005.

1792M Multilevel Security
6. Thuraisingham B. Recursion theoretic properties of the infer-

ence problem. Presented at the IEEE Computer Security Foun-

dations Workshop, Franconia, NH, June 1990 (also available as

MITRE technical Paper MTP291, June 1990).

7. Trusted Computer Systems Evaluation Criteria, National Com-

puter Security Center, MD, 1985.

8. Trusted Database Interpretation. National Computer Security

Center, MD, 1991.
Multilevel Security

▶Mandatory Access Control
Multilevel Transactions and
Object-Model Transactions

GERHARD WEIKUM

Max-Planck Institute for Informatics, Saarbrücken,

Germany

Synonyms
Layered transactions; Open nested transactions

Definition
Multilevel transactions are a variant of nested transac-

tions where nodes in a transaction tree correspond to

executions of operations at particular levels of abstrac-

tion in a layered system architecture. The edges in a

tree represent the implementation of an operation by a

sequence (or partial ordering) or operations at the

next lower level. An example instantiation of this

model are transactions with record and index-key

accesses as high-level operations which are in turn

implemented by reads and writes of database pages

as low-level operations. The model allows reasoning

about the correctness of concurrent executions at dif-

ferent levels, aiming for serializability at the top level:

equivalence to a sequential execution of the transaction

roots. This way, semantic properties of operations,

like different forms of commutativity, can be exploited

for higher concurrency, and correctness proofs for

the corresponding protocols can be derived. Likewise,

multilevel transactions provide a framework for struc-

turing recovery methods and reasoning about their

correctness.

Multilevel transactions have wide applications

outside of database engines as well. For example,
transactional properties can be provided by middle-

ware application servers, layered on top of a database

system. A generalization of this approach is the notion

of object-model transactions, also known as open

nested transactions (trees where the nodes correspond

to arbitrary method invocations). In contrast to mul-

tilevel transactions, there is no layering constraint any-

more, and arbitrary caller-callee relations among

objects of abstract data types can be expressed. This

provides a model for reasoning about transactional

guarantees in composite web services, and for struc-

turing the design and run-time architecture of web-

service-based applications.

Historical Background
Object-model transactions have been around for thirty

years, going back to the work of Bjork and Davies on

‘‘spheres of control’’ [2]. The first work that made these

concepts explicit and gave formal definitions is by

Beeri et al. [1]. Parallel work on the important special

case of multilevel transactions has been done by Moss

et al. [7] and Weikum et al. [13,11]. The textbook [14]

gives a detailed account of both conceptual and practi-

cal aspects. A broader perspective of extended transac-

tion models is given by [9]. More recently, the concept

of object-model transactions has received consider-

able attention also for long-running workflows (e.g.,

[10,15]) and transactional memory (e.g., [8]).

On the system side, multilevel transaction proto-

cols have been employed for concurrency control and

recovery in various products and prototypes [3,5,6,12].

Typically, the layered structure of the protocols is only

implicit; a suite of additional smart implementation

techniques is used for integrated, highly efficient code.

An example for concurrency control is transaction-

duration locking for index-manager operations com-

bined with operation-duration latching. Examples for

recovery are the ARIES family of algorithms by Mohan

et al. [6] and the MLR algorithm by Lomet [5].

Foundations
Multilevel and object-model transactions are best un-

derstood in an object model where operations are

invoked on arbitrary objects. This allows exploiting

‘‘semantic’’ properties of the invoked operations for

the sake of improved performance. This model also

captures situations where an operation on an object

invokes other operations on the same or other objects.

Often the implementation of an object and its

Multilevel Transactions and Object-Model Transactions M 1793

M

operations requires calling operations of some lower-

level types of objects.

For example, operations at the access layer of a data-

base system, such as index searches, need to invoke page

oriented operations at the storage layer underneath.

Similar invocation hierarchies may exist among a collec-

tion of business objects that are made available as ab-

stract data type (ADT) instances within a data server or

an application server, e.g., a ‘‘shopping cart’’ or a ‘‘bank

account’’ object type along with operations like deposit,

withdraw, get_balance, get_history, compute_interests,

etc. The following figure depicts an example of a trans-

action execution against an object model scenario that

refers to the internal layers of a database system.

The figure shows a transaction, labeled t1, which

performs, during its execution, (i) an SQL Select

command to retrieve all records from a database that

satisfy a certain attribute-value condition, and, after

inspecting the result set, (ii) an SQL command to insert

a record for a new record with this attribute value. Since

SQL commands are translated into query execution

plans already at compile time, the operations invoked

at run time refer to an internal level of index and record

accesses. The Select command is executed by first issuing

a Search operation with some key k on an index that
Multilevel Transactions and Object-Model Transactions. Fig

Multilevel Transactions and Object-Model Transactions. Fig
returns the RIDs (i.e., addresses) of the result records.

Next, these records, referred to as x and y in the figure,

are fetched by dereferencing their RIDs. The Search

operation in turn invokes operations at the underlying

storage layer: read and write operations on pages. First

the root of a B+ tree is read, labeled as page r in the

figure, which points to a leaf page, labeled l, that contains

the relevant RID list for key k. The subsequent Fetch

operations to access the two result records x and y by

their RIDs, require only one page access each to pages

p and q, respectively. Finally, the SQL Insert command is

executed as a Store operation, storing the new record and

also maintaining the index. This involves first reading a

metadata page, labeled f that holds free space informa-

tion in order to find a page pwith sufficient empty space.

Then that page is read and subsequently written after the

new record z has been placed in the page. Finally, the RID

of the new record z is added to the RID list of the key k

in the index. This requires reading the B+ tree root

page r, reading the proper leaf page l, and finally writing

page l after the addition of the new RID.

This entire execution is represented in a graphical,

compact form, by connecting the calling operation and

the called operation with an arc when operations in-

voke other operations. As a convention, the caller is
ure 2. Example of a multilevel schedule.

ure 1. Example of a multilevel transaction.

Multilevel Transactions and Object-Model Transactions. Figure 3. Concurrent execution of multilevel schedules with a

multilevel locking protocol.

1794M Multilevel Transactions and Object-Model Transactions
always placed closer to the top of the picture than the

callee. Furthermore, the order in which operations are

invoked is represented by placing them in ‘‘chronolog-

ical’’ order from left to right, which suffices for illus-

tration purposes.

More formally, a multilevel transaction tree is

defined as a partially ordered labeled tree with node

labels being operation invocations and the leaf nodes

denoting elementary (i.e., indivisible) read and write

operations. Moreover, the tree must be perfectly bal-

anced with all leaves having the same distance from the

root; this constraint is dropped for the more general

case of object-model transactions (open nested trans-

actions). Finally, a constraint is imposed on conflicting

leaf nodes to be totally ordered so that no concurrent

write-write or read-write pair of operations is possible

on the same elementary object; for all other cases

partial orders are allowed. It is important to note that

transaction trees model executions and not programs.

Thus, node labels are method names along with con-

crete input parameter values (and possibly even output

parameter values if these are exploited in the reasoning

about concurrency); edges denote the dynamic calling

structure and not a static hierarchy.

A concurrent execution of several transaction

trees, referred to as a multilevel schedule, is essentially

an interleaved forest of the individual transaction trees.

This is illustrated in the figure below, for two transac-

tions with record-level and page-level operations, in
the same spirit as the previous example but with some

simplifications. Like before, the ordering of operations

is indicated by drawing the leaf nodes in their execu-

tion order from left to right (assuming total ordering

of leaves for simplicity). As the caller-callee relation-

ship in transaction trees is captured by vertical or

diagonal arcs, the crossing of such arcs indicates that

two (non-leaf) operations are concurrent. In the figure

the two transactions t1 and t2 are concurrent, and also

the store and fetch operations execute concurrently

and the same holds for the last two modify operations.

To reason about the correctness of such interleav-

ings, it is first necessary to define the ordering of non-

leaf operations: node o1 precedes o2 in the execution,

o1 < o2, if all leaf-level descendants of o1 precede all

leaf-level descendants of o2. The forest of labeled trees

and this execution order < define a multilevel sched-

ule, more generally, a schedule of transaction trees.

Following the standard argumentation about seri-

alizability for conventional, ‘‘flat’’ transactions, the

goal for a correct schedule is to show that the execution

is equivalent to a sequential one based on a notion of

conflicting versus non-conflicting operations. Usually,

commutativity properties of operations are the basis

for defining conflict relations. In the example, this

suggests that store and fetch operations on different

objects as well as pairs of modify operations on

different objects are non-conflicting (even if their

implementations write the same page). Thus, their

Multilevel Transactions and Object-Model Transactions M 1795

M

observed execution order could be changed, by

swapping adjacent operations, without changing the

overall effect of the schedule. But applying this princi-

ple to, for example, the store and fetch operations

in the above schedule does not work because these

two nodes are composite operations (i.e., non-leaf

nodes) and executed concurrently among themselves.

To disentangle the concurrency between these opera-

tions, one needs to reason about the execution order-

ing of their children, and in an actual system,

one would need a lower-level concurrency control

mechanism that treats the two operations as subtran-

sactions. The goal of this disentangling, the counter-

part to serial schedules in conventional concurrency

control theory, are isolated subtrees for the two opera-

tions. A subtree rooted at node o is isolated if there is

a total ordering among all its leaf-level descendants

and o either precedes or follows all other operations

o’ that are not among its descendants (o < o’ or

o’ < o). Once a subtree is isolated, the fact that its

root is a composite operation is no longer important,

and it is possible, for reasoning about equivalent

executions, to reduce an isolated subtree to its root

alone. This argument abstracts from the lower-level

executions, as they are now (shown to be equivalent

to) sequential.

Putting everything together, the above considera-

tions lead to three rules for transforming a multilevel

schedule into equivalent and abstracted executions,

ideally leading to a sequential execution of the transac-

tion roots:

� Commutativity rule: The order of two ordered leaf

operations p and q with, say, the order p < q, can

be reversed provided that
� both are isolated, adjacent in that there is no

other operation r with p < r < q, and

commutative,

� the operations belong to different transactions,

and

� the operations p and q do not have ancestors,

say p’ and q’, respectively, which are non-com-

mutative and totally ordered (in the order

p’ < q’).
� Ordering rule: Two unordered leaf operations p and

q can be (arbitrarily) ordered, i.e., assuming either

p < q or q < p, if they are commutative.

� Tree pruning rule: An isolated subtree can be

pruned and replaced by its root.
A schedule that, by applying the above rules, can be

transformed into a sequential execution of the transac-

tion roots is called tree-reducible or multilevel serial-

izable. Note that this notion of multilevel serializability

is much more liberal than the conventional notion

of read-write-oriented serializability. The example

schedule shown above is not serializable at the leaf

level of read and write operations (i.e., if one ignored

the level of search, fetch, store, and modify operations

and simply connected all leaves directly to the roots),

but these seemingly non-serializable effects on the low-

level storage structures are irrelevant as long as they

are properly handled within the scope of their parent

operations and new transactions access the data

through the higher-level operations like search, fetch,

store, and modify.

The example schedule depicted above is multilevel

serializable. It can be reduced as follows. First the two

reads of the fetch(x) operation are commuted with

their left-hand neighbors so that fetch(x) completely

precedes store(z); analogously the r(t) step of modify

(y) is commuted with its right-hand neighbors, the

children of modify(w), so that modify(w) completely

precedes modify(y). This establishes a serial order of

the record-level operations, all of them now being

isolated subtrees. This enables the application of the

pruning rule to remove all page-level operations. Next,

the fetch(x) operation of t2 is commuted with t1’s

store(z), modify(y), and modify(w) operations all the

way to the right, producing an order where all of t1’s

operations precede all of t2’s operations. This turns t1

and t2 into isolated subtrees. Finally, pruning the

operations of t1 and t2 produces the sequential order

of the transaction roots: t1 < t2.

The transformation rules do not directly lead to an

efficient concurrency control protocol. Rather their

purpose is to prove the correctness of protocols. But

for the case of a layered system, the way the example

was handled points towards a practically viable proto-

col. The key is to consider pairs of adjacent levels and

apply the transformation rules in a bottom-up man-

ner. So first, the commutativity and ordering rules are

used to establish a sequential execution of the parent

nodes of the leaf-level nodes, then these isolated par-

ents are reduced. Then, with the lowest level removed,

this procedure is iterated through the levels until

the roots of the entire transaction trees are isolated.

This proof strategy can be directly turned into a pro-

tocol by enforcing conventional order-preserving

1796M Multilevel Transactions and Object-Model Transactions
conflict-serializability (OPCSR) for each pair of adja-

cent levels. Any protocol for OPCSR can be used, and

even different protocols for different level pairs are

possible. The most widely used protocol, two-phase

locking, is often a natural choice, and then forms the

following multilevel locking protocol:

� Lock acquisition rule: When an operation f(x) is

issued, an f-mode lock on x needs to be acquired

before the operation can start its execution.

� Lock release rule: Once a lock originally acquired by

an operation f(x) with parent o (an operation at the

next higher level) is released, no other descendant

of o is allowed to acquire any locks.

� Subtransaction rule: At the termination of an oper-

ation o, all locks that have been acquired for des-

cendants of o are released, thus treating o as a

committed subtransaction. Note that the o-lock

for o itself is still kept – until the parent of o

terminates. The releasing of lower-level locks at

the end of a subtransaction is the origin of the

name ‘‘open nested transaction’’.

A possible execution of the example schedule under

this multilevel locking protocol is shown in the figure

below (with levels L1 and L0 referring to the record

and page layer in a database engine, and tij denoting

the jth subtransaction of transaction ti).

The example shows that, despite many page-level

conflicts, high concurrency is possible by exploiting the

finer granularity and richer semantics of record-level

operations. These benefits are even more pronounced

for index-key operations. For this case, highly opti-

mized special-purpose protocols like ARIES Key-

Value Locking have been developed. One important

optimization for both record and index operations is

that the subtransactions may use light-weight latching

instead of full-fledged locks.

Another use case with wide applicability are opera-

tions on counters, such as increment and decrement or

conditional variants on lower-bounded or upper-

bounded counters. Such objects and operations are

common in reservation systems, inventory control,

financial trading, and so on. The relaxed (but not

universal) commutativity properties of the operations

can be leveraged for very high concurrency even if

operations access the same object. Again, special im-

plementation techniques like escrow locking have been

developed for these settings. When counter operations

have a composite nature, e.g., by automatically
triggering updates on other objects, then the special

commutativity techniques need to be embedded in a

multilevel transaction framework.

A complication that arises from all these high-con-

currency settings is that undo recovery (for transaction

abort and to wipe out effects of incomplete transactions

after a crash) can no longer be implemented merely

by restoring prior page versions. Instead, adequately

implemented forms of inverse operations need to

be executed. Together with the composite nature of

operations, this necessitates a form of multilevel

recovery.

Most of the outlined principles and algorithms apply

to the general case of object-model transactions as well.

However, the absence of a layering does incur some extra

difficulties, which are beyond the scope of this entry. The

algorithms for fully general object-model transactions

are explained in detail in the textbook [14].

Future Directions
Multilevel transactions have originally been developed

in the database system context, but their usage and

potential benefits are by no means limited to database

management. So not surprisingly, object-model trans-

actions and related concepts are being explored in the

operating systems and programming languages com-

munity. Recent trends include, for example, enhancing

the Java language with a notion of atomic blocks that

can be defined for methods of arbitrary classes. This

could largely simplify the management of concurrent

threads with shared objects, and potentially also the

handling of failures and other exceptions. The run-

time environment could be based on an extended

form of software transactional memory [8].

Another important trend is to enhance compo-

site web services with transactional properties.

Again, object-model transactions is a particularly

intriguing paradigm because of its flexibility in

allowing application-specific methods for providing

atomicity, isolation, and persistence. Adapting and

extending transactional concepts for web services and

combining them with other aspects of service-oriented

computing is the subject of ongoing research [15].

Cross-references
▶Atomicity

▶Concurrency Control

▶ Escrow Transactions

▶Key Value Locking

Multimedia Data M 1797

M

▶ Locking

▶Multi-Level Recovery and the ARIES Algorithm

▶Nested Transaction Models

▶ System Recovery

▶Transaction

▶Transaction Management

Recommended Reading
1. Beeri C., Bernstein P.A., and Goodman N. A model for concur-

rency in nested transactions systems. J. ACM, 36(2):230–269,

1989.

2. Davies C.T. and Davies C.T. Jr. Data processing spheres of

control. IBM Syst. J., 17(2):179–198, 1978.

3. Gray J. and Reuter A. Transaction processing: concepts and

techniques. Morgan Kaufmann, Los Altos, CA, 1993.

4. Greenfield P., Fekete A., Jang J., Kuo D., and Nepal S. Isolation

support for service-based applications: A position paper. In

Proc. 3rd Biennial Conf. on Innovative Data Systems Research,

2007, pp. 314–323.

5. Lomet D.B. MLR: a recovery method for multi-level systems. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1992,

pp. 185–194.

6. Mohan C., Haderle D.J., Lindsay B.G., Pirahesh H., and

Schwarz P.M. ARIES: a transaction recovery method supporting

fine-granularity locking and partial rollbacks using write-ahead

logging. ACM Trans. Database Syst., 17(1):94–162, 1992.

7. Moss J.E.B., Griffeth N.D., and Graham M.H. Abstraction in

recovery management. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1986, pp. 72–83.

8. NiY.,MenonV., Adl-TabatabaiA.-R.,HoskingA.L.,HudsonR.L.,

Moss J.E.B., Saha B., and Shpeisman T. Open nesting in

software transactional memory. In Proc. 12th ACM SIGPLAN

Symp. on Principles and Practice of Parallel Programming, 2007,

pp. 68–78.

9. Ramamritham K. and Chrysanthis P.K. A taxonomy of correct-

ness criteria in database applications. VLDB J., 5(1):85–97, 1996.

10. Schuldt H., Alonso G., Beeri C., and Schek H.-J. Atomicity and

isolation for transactional processes. ACM Trans. Database Syst.,

27(1):63–116, 2002.

11. Weikum G. Principles and realization strategies of multi-

level transaction management. ACM Trans. Database Syst.,

16(1):132–180, 1991.

12. Weikum G. and Hasse C. Multi-level transaction management

for complex objects: implementation, performance, parallelism.

VLDB J., 2(4):407–453, 1993.

13. Weikum G. and Schek H.-J. Architectural Issues of Transaction

Management in Multi-Layered Systems. In Proc. 10th Int. Conf.

on Very Large Data Bases, 1984, pp. 454–465.

14. Weikum G. and Vossen G. Transactional Information

Systems: Theory, Algorithms, and the Practice of Con-

currency Control and Recovery. Morgan Kaufmann, Los Altos,

CA, 2001.

15. Zimmermann O., Grundler J., Tai S., and Leymann F. Architec-

tural Decisions and Patterns for Transactional Workflows in

SOA. In Proc. 5th Int. Conf. Service-Oriented Computing,

Germany, 2007, pp. 81–93
Multi-Level Visualization

▶Visualizing Hierarchical Data
Multilingual Information Retrieval

▶Cross-Language Mining and Retrieval
Multi-Master System

▶Optimistic Replication and Resolution
Multimedia

▶ Image

▶ Image Representation

▶Video
Multimedia Content Enrichment

▶Automatic Image Annotation
Multimedia Data

RAMESH JAIN

University of California-Irvine, Irvine, CA, USA

Synonyms
Multimodal data

Definition
Multimedia in principle means data of more than one

medium. It usually refers to data representing multiple

types of medium to capture information and experi-

ences related to objects and events. Commonly used

forms of data are numbers, alphanumeric, text, images,

audio, and video. In common usage, people refer a

data set as multimedia only when time-dependent

data such as audio and video are involved.

1798M Multimedia Data
Historical Background
In early stages of computing, themajor applicationswere

scientific computations. In these applications, compu-

ters dealt with numbers and were programmed to carry

out a sequence of calculations to solve a scientific prob-

lem. As people realized power of computing, new appli-

cations started emerging. Alphanumeric data was the

next type of data to be used in different applications. In

early days, these applications were mostly related to

businesses. These applications were mostly to store

large volumes of data to find desired information from

this data set. These applications were the motivation of

the development of current database technology.

Text is a special case of alphanumeric data. In text,

there is a large string of alphanumeric data that humans

associate with written language. Text has been the basis

of written human communication and has become one

of themost common data form.Most of the information

and communication among humans takes place in text.

Next data type to start appearing on computers was

images. Images started in many applications where

they needed to be analyzed as well as in applications

where computers were used to create and display

images. Image processing and computer vision emer-

ged as fields dealing with image analysis and under-

standing while computer graphics emerged as a field

dealing with creation and display of images. Images

were initially represented in two ways: a list of lines

(called vectors) and a 2-dimensional array of intensity

values. The second method has now become the most

common method of representing images. Images rep-

resent a more complex data type because people per-

ceive not the data, which is really a large collection of

intensity values, but what the data represents. In com-

puter generated images, the semantics of the pixels is

determined and is known at the creation time. In all

other images, the semantics must be determined.

Computer vision researchers have been developing

tools to automatically determine this semantics and

have made progress. However, segmenting an image

to determine objects in it has been a difficult problem

and in general remains an unsolved problem.

Audio data represents variation of a signal over

time. Signal processing deals with many types of sig-

nals, but due to its closeness to human perception,

audio became an important signal type. Unlike regular

numerical, alphanumerical, and image data, audio is

time-varying or time dependent data. Like images, the

numbers have semantics only when they are rendered,
in this case using a speaker, to a human. Both images

and audio are a collection of numbers that have strong

semantics associated with them. This semantics can be

associated only by segmenting the data and identifying

each segment. Video is next in this sequence of seman-

tic richness. Video is a time-dependent sequence of

images synchronized with audio. This means that it

brings with it enormous volume of data and richness

of semantics.

In late 1980s, people started using the term multi-

media to denote combination of text, audio, and video.

This gained popularity because the technology had

advanced enough to combine these media to articulate

thoughts, messages, and stories using appropriate com-

bination of these components and present them easily

on computers, save them on CDs, and transmit and

receive them using compression/decompression and

streaming technologies. By the year 2000, multimedia

had become a common data form on computers

and Internet.

Foundations
Multimedia data is fundamentally different than the

data traditional databases normally manage. Some

fundamental differences in multimedia data are dis-

cussed here by considering several aspects.

Types and Semantics

The data in early generation databases was either a

number or a string of characters. Each data item usu-

ally represented value of an attribute. These attribute

had clear and explicit semantics in the applications

that used the data.

Multimedia data may be considered to be com-

posed of numbers or strings. So an image may be

viewed as a two dimensional array of integers. In

multimedia applications, however, the semantics is

not defined and used at the level of such basic types

as in traditional applications. An image is usually con-

sidered an image that contains certain objects that are

characterized by regions in the image. The relation-

ships among these regions should also be captured.

Depending on the context and an application, the

semantics associated with an image may change and

may need to be represented differently. Similarly an

audio file may be viewed as a collection of phonemes

rather than just integer values at a time instant repre-

senting sound energy. Video is a synchronized combi-

nation of audio and images. But if a video is considered

Multimedia Data M 1799

M

just a combination of separate sound energy and

images, then the semantics of video is lost. The seman-

tics of video is due to synchronized combination of its

components rather than individual elements.

Multimedia types cannot be considered simply

by considering its atomic components. One must con-

sider whole data. The data types and the semantics of

multimedia data are the result of the ‘‘multi’’ and are

not present in single (mono) medium that may be part

of the whole data.

Gestalt philosophy is in action in multimedia data:

the whole is bigger than the sum of its parts.

Sequence and Order

Many components of multimedia data are measure-

ments using some sensors. These sensors measure

some attribute of physical world. These measurements

represent the attribute at a point in space at a particu-

lar time. The semantics of the data is intimately tied to

the space and time underlying the data. The data is

usually organized in the time sequence as it is acquired

over some predefined spatial ordering of its acquisition

using multiple sensors covering the space of interest.

Multimedia data could be archived data or live

data. Archived data is the one that was acquired and

stored and hence comes from a server. Live data is

presented as it is being acquired. Live data is increas-

ingly being used in many applications.

Size

Multimedia data is voluminous. Audio, Images, and

video are much larger in size than alphanumeric data

and text. Usually the size of traditional data can be

measured in bytes to Kilobytes. Images usually, even

the regular amateur photographs run into Megabytes

and video easily runs into Gigabytes to Terabytes. Due

to the size of the multimedia data, it is usually stored

and transmitted in compressed form. For analysis and

use of the data, it must be usually decompressed.

Meta data plays a significant role in the analysis of

multimedia data and is commonly stored as part of the

dataset. Metadata can be of two types: about context or

about content. Contextual metadata is about the situ-

ation of the real world and the parameters of devices

used in acquiring the data. Content related metadata is

obtained either thru analysis of the data or by human

annotation or interpretation of data.

Many different standards have evolved for com-

pression of multimedia data and association and
storage of metadata. Usually these standards related

to the medium and are developed by international

standards body. Some commonly used standards are

JPEG for images, MP3 for audio, and MPEG for video.

Accessing Multimedia Data

Each multimedia data is usually large and represents

measurements acquired using a sensor over space and

time. Even an image is acquired at a location at a

particular time and also contains measurements per-

formed in space using an array of pixel. Each pixel

represents measurements related to a particular point

in three-dimensional space. Each image or audio video

is usually represented as a separate file. This file may

contain raw measurements in original form or in com-

pressed form and may also contain associated meta-

data such as in EXIF data for photos acquired using

digital cameras.

Multimedia data representing a measurement is

usually represented as one file. In databases such data

is usually represented as a pointer to the file, as a

BLOB, or the name of the file.

In most current applications, multimedia data is

accessed based on the metadata. All queries are formed

based on metadata and then the correct file is retrieved

and presented. The granularity at which multimedia

data is accessed is at the level of file. Text search became

so useful when it was applied to documents by analyz-

ing and indexing all areas of a document. This content

analysis and indexing based on content within a file

will be very useful in multimedia data also. Research in

content analysis of multimedia documents for content-

based retrieval is an active research area currently.

Presentation

Multimedia data must be presented to a user by send-

ing it to appropriate devices. Audio must be sent to

speakers and images and video should also be dis-

played using special display programs. Displaying raw

data in a file is not useful to users. In most cases, before

displaying the data, it must be decompressed.

Considering large files and copyright issues, many

times multimedia data is not transferred to users for

storage, users are allowed to see or listen it only once

each time a display request is made. Such playback of

data is commonly called streaming of data and is

commonly used with video. In streaming, the data

from server is sent to a client only for displaying it

once. This is also used in the context of live data also.

1800M Multimedia Data Buffering
Key Applications
Computing at one time was mostly numeric, then it

became alphanumeric. Now it is multimedia. Almost

all applications in computing now deal with multime-

dia data. In a sense, the term multimedia was a good

term to use in the last decade, but now it is a redundant

term. In early days of computing there were two types

of computing: analog and digital. Slowly all computing

became digital. Now no body normally uses the term

digital computing because all computing is digital.

In the same way all computing ranging from scientific

to entertainment will use multimedia data and hence

the term multimedia data or multimedia computing

will shed ‘‘multimedia’’ and simply become data and

computing.

Future Directions
Multimedia data has already become ubiquitous. With

the increasing popularity of mobile phones with cam-

era, digital cameras, and falling prices of sensors of

different kinds multimedia data is becoming as wide-

spread as alphanumeric data. Considering the current

trend and human dependence on sensory data, it is

likely that soon multimedia data will become more

common than the traditional alphanumeric data. In

terms of volume, multimedia data already may be

far ahead of alphanumeric data.

Most of the current techniques which deal with

multimedia data have two major limitations: first

they mostly rely on metadata for access and they treat

each type, such as images, audio, and video, as a

separate type and hence create silos. What is required

is dealing with all data, alphanumeric as well as differ-

ent types of multimedia, as the data related to some

physical objects or situations. This unified approach

will treat all data in a unified manner and will not

distinguish between media. Each media will be consid-

ered only as a source helping understand an object or

a situation.

Cross-references
▶Multimedia Databases

Recommended Reading
1. Jain R. Experiential computing. Commn. ACM, 46(7):48–55,

2003.

2. Kankanhalli M.S., Wang J., and Jain R. Experiential sampling in

multimedia systems. IEEE Trans. Multimed., 8(5):937–946,

2006.
3. Rowe L. and Jain R. ACM SIGMM retreat report on

future directions in multimedia research. ACM Trans. Multime-

dia Comp., Comm., and Appl., 1(1):3–13, 2005.

4. Steinmetz R. and Nahrstedt K. Multimedia Fundamentals:

Media Coding and Content Processing (IMSC Press Multimedia

series). Prentice Hall, 2002.
Multimedia Data Buffering

JEFFREY XU YU

Chinese University of Hong Kong, Hong Kong, China

Definition
Multimedia data are large in size and reside on disks.

When users retrieve large multimedia data, in-memory

buffers are used to reduce the number of disk I/Os,

since memory is significantly faster than disk. The

problem to be studied is to efficiently make use of

buffers in the multimedia system to reduce the number

of I/Os in order to get a better performance when

multiple users are retrieving multiple multimedia

data simultaneously. Existing works on multimedia

data buffering focus on either the replacement algo-

rithms to lower the number of cache misses or the

buffer sharing algorithms when many simultaneous

clients reference the same data item in memory.
Historical Background
Early works on multimedia data buffering focus on

replacement algorithms to reduce the number of

cache misses. Although in the traditional database

systems, a number of different buffer replacement algo-

rithms, such as the least recently used (LRU) and most

recently used (MRU) algorithms are used to approxi-

mate the performance behavior of the optimal buffer

replacement algorithm [1,2,6,8,15]. They do not re-

duce disk I/O significantly when they are used in a

multimedia database system. Many new buffer replace-

ment algorithms are proposed to save as much of the

reserved disk bandwidth for continuous media data as

possible. In [5], the effects of various buffer replace-

ment algorithms on the number of glitches experi-

enced by clients are studied. In [9], the authors

introduce two buffer replacement algorithms, namely,

the basic replacement algorithm (BASIC) and the

distance-based replacement algorithm (DISTANCE),

for multimedia database systems, which have a much

Multimedia Data Buffering M 1801

M

better performance in comparison with LRU and

MRU schema.

In terms of buffer sharing, a simple buffer replace-

ment strategy may miss some opportunities to share

memory buffers [14]. A straightforward use of LRU or

LRU-k [6,8] is shown to be inadequate [7]. Bridging

[3,4,10–12] as a new technique is studied to facilitate

data sharing in memory, but it can degrade the system

performance. In [13], the authors observe that an

uncontrolled buffer sharing scheme may reduce system

performance, and introduce the Controlled Buffer

Sharing (CBS), which can trade memory for disk

bandwidth in order to minimize cost per stream.

Foundations

Buffer Replacement

Assume that each buffer in the buffer space of a system

is of the same size and is tagged as either free or used.

All the free buffers are kept in a free buffer pool. In

order to meet the rate requirement for clients, the

system must pre-fetch the required data block from

disks into the buffer space, so that the required piece of

data is already in the buffer space before being read. In

each service cycle, the system first moves the buffers

containing data blocks that were already consumed in

the last service cycle to the free buffer pool, then

determines which data block need to be pre-fetched

from disk to the buffer next. If the block is not in the

buffer space, then it allocates buffers, from the set of

free buffers for the block and issues disk I/O to retrieve

the needed data block from disk into the allocated

buffers. The algorithm to decide which of the buffers

should be allocated is referred to as the buffer replace-

ment algorithm. Several general replacement algo-

rithms are listed below, which are widely used in

database management systems. (i) LRU: when a buffer

is to be allocated, the buffer containing the block that is

used least recently is selected. (ii) MRU: when a buffer

is to be allocated, the buffer containing the block that is

used most recently is selected. (iii) Optimal: when a

buffer is to be allocated, the buffer containing the

block that will not be referenced for the longest period

of time is selected. Since arrival, pause, resume and

jump time when playing an object are unknown in

advance, the optimal algorithm can only be implemen-

ted for simulation studies.

For the multimedia database systems, the com-

monly used LRU and MRU algorithms may not reduce
disk I/O significantly. Two buffer replacement algo-

rithms are proposed. They are the basic replacement

algorithm (BASIC) and the distance-based replace-

ment algorithm (DISTANCE).

The BASIC Buffer Replacement Algorithm The main

idea behind the BASIC buffer replacement algorithm

[9] is as follows. It is possible to estimate the duration

by assuming each client will remain its consumption

rate for a long period, even though it is difficult to

decide which block will not be referenced for the lon-

gest period of time. It assumes that clients continue to

consume data at the specified rate they are accessing the

blocks. When there is a new request to allocate a buffer,

the BASIC algorithm selects the buffer containing the

block that will not be accessed for the longest period of

time. If there are several such buffers, the algorithmwill

select the block with the highest offset-rate ratio (the

ratio of offset/rate) to be replaced. The BASIC algo-

rithm may reduce the miss ratio to nearly optimal, but

it requires to sort clients and free buffers in the increas-

ing order of their offset, whichmake the overhead of the

BASIC algorithm very high. The DISTANCE algorithm

is proposed to handle the overhead.

The DISTANCE Buffer Replacement Algorithm The

main idea behind the DISTANCE buffer replacement

algorithm is based on distance between clients [9].

Suppose that there are clients, c1,c2,..., accessing the

same media data, M. Assume that each client, ci, is

accessing the M at a certain position of M, denoted as

pi(M), and the data block on disk starting from pi(M)

is kept in a buffer, Bi. Let all clients that are accessing

the same media data M be sorted in order, c1,c2,....

Here, ci is accessing M ahead of cj if i < j, or in other

words, pi(M) > pj(M), because ci has already accessed

pj(M) and is now accessing pi(M). The distance be-

tween ci and its next ci+1 is denoted as disti which is

equal to pi(M) � pi+1(M). Note that the distance di is a

value associated with the client ci. Suppose all clients

c1,c2,..., are accessing their blocks in the buffers in the

current cycle. They all need to move ahead and access

the next data blocks. The question becomes which

buffer they are accessing in the current cycle needs to

be freed if the buffer is full. In brief, the buffers con-

sumed by a client, ci, will be kept longer if the next

client, ci+1, will need them shortly (small distance

disti). The buffers consumed by a client, cj, will be

freed earlier if the next client, cj+1, does not need to

1802M Multimedia Data Buffering
access the data block pj(M), that cj has just accessed,

shortly (large distance distj). The DISTANCE algo-

rithm frees buffers consumed by clients in the previous

cycle in the decreasing order of clients’ disti. In other

words, when a new buffer needs to be allocated and

there are no free buffers, a buffer consumed by a client,

which will not be accessed by its next client shortly,

based on the distance between clients, will be selected

as a victim to be freed.

The DISTANCE algorithm can be implemented by

dynamically maintaining a client list which is ordered

in the decreasing order of clients’ disti. The overhead is

lower than the BASIC algorithm.

Table 1 shows the comparison of overhead and

cache misses of different buffer replacement algo-

rithms, nB is the number of buffers used.

Buffer Sharing

Consider buffer sharing, where cached data can be

shared among all the clients. A naive approach is to

use LRU or LRU-k, which is shown to be inadequate

to efficiently share data. An example is given in Fig. 1.

There are two displays, D1 and D2, and both reference

different blocks of the same clip. With LRU as a

global buffer pool replacement policy, the blocks

accessed by D1 may be discarded before D2 needs to

access.
Multimedia Data Buffering. Table 1. Overhead and cache m

(Table 1 in [9])

nB LRU MRU

300 13:48 s/670,080 13:44 s/668,974

600 13:32 s/670,080 13:18 s/665,748

1,200 16:80 s/665,934 16:27 s/657,634

2,400 13:22 s/654,240 12:32 s/642,914

Multimedia Data Buffering. Figure 1. Two displays may com
Bridging [3,4,10–12] as a technique is to form a

bridge between the data blocks staged by two different

clients referencing the same clip, which enables them

to share memory and use one disk stream. As shown in

Fig. 2, two displays D1 and D2 are supported using a

single disk stream. The distance betweenD1 andD2 is 5.

With the bridging technique, it holds the intermediate

data pages between D1 and D2 in the buffer pool, and

does not swap these pages out from the buffer pool.

However, as analyzed in [11,12], a potential problem is

that a simple bridging may possibly exhaust the avail-

able buffer space, which will have great impacts on

the system performance.

A Controlled Buffer Sharing (CBS) technique is

proposed in [13], which increases disk bandwidth

using memory in order to achieve two objectives,

namely, minimization of cost per simultaneous stream,

and balancing memory and disk utilization. The latter

considers that unlimited memory consumption may in

fact degrade the system performance. The framework of

CBS is shown in Fig. 3. The framework consists of three

components: a configuration planner, a system gener-

ator, and a buffer management technique. The config-

uration planner determines the amount of required

buffer and disk bandwidth in support of a pre-

specified performance objective. The system generator

simply acts as a multiplier. The first two components
isses of different buffer replacement algorithms

BASIC DISTANCE # of refs

33:30 s/638,974 11:89 s/641,274 670,080

1:12min/595,416 10:96 s/599,214 670,080

3:41min/549,570 12:28 s/554,640 670,080

5:31min/480,068 8:64 s/481,364 670,080

pete for buffer frames with LRU (Fig. 1 in [13]).

Multimedia Data Buffering M 1803
are applied off-line to determine the system size. The

buffer management technique controls the memory

consumption at run time.

In the CBS framework, a distance threshold, dt, is

used to capture the cost of memory and disk band-

width and control the number of pinned buffer blocks
Multimedia Data Buffering. Figure 2. Bridging (Fig. 2 in [13

Multimedia Data Buffering. Figure 3. The CBS Scheme (Fig

Multimedia Data Buffering. Figure 4. The effectiveness of d
between two adjacent displays that access the same

clip. As shown in Fig. 4, suppose dt = 5, D1 and D2

can share one disk stream because their distance is

below the specified threshold, while D3 and D4 cannot

share one disk stream because their distance exceeds

the threshold.
]).

. 4 in [13]).

istance threshold (dt = 5) (Fig 5 in [13]).

M

1804M Multimedia Data Indexing
Key Applications
Buffering is widely used in retrieving and playing

multimedia data, especially for network continuous

media applications, where multiple users may need to

display multiple medias simultaneously.

Cross-references
▶Buffer Management

▶Buffer Manager

▶Continuous Multimedia Data Retrieval

▶ I/O Model of Computation

▶Multimedia Data Buffering

▶Multimedia Data Storage

▶Multimedia Resource Scheduling

Recommended Reading
1. Chew K.M., Reddy J., Romer T.H., and Silberschatz A. Kernel

support for recoverable-persistent virtual memory. In Proc.

USENIX MACH III Symposium, 1993, pp. 215–234.

2. Chou H.T. and DeWitt D.J. An evaluation of buffer management

strategies for relational database systems. In Proc. 11th Int. Conf.

on Very Large Data Bases, 1985, pp. 127–141.

3. Dan A., Dias D.M., Mukherjee R., Sitaram D., and Tewari R.

Buffering and caching in large-scale video servers. In Digest of

Papers - COMPCON, 1995, pp. 217–224.

4. Dan A. and Sitaram D. Buffer management policy for an on-

demand video server. IBM Research Report RC 19347.

5. Freedman C.S. and DeWitt D.J. The SPIFFI scalable video-on-

demand system. ACM SIGMOD Rec., 24(2):352–363, 1995.

6. Lee D., Choi J., Kim J.H., Noh S.H., Min S.L., Cho Y., and Kim C.S.

On the existence of a spectrum of policies that subsumes the least

recently used (LRU) and least frequently used (IFU) policies.

SIGMETRICS Perform. Eval. Rev., 27(1):134–143, 1999.

7. Martin C. Demand paging for video-on-demand servers. In

Proc. Int. Conf. on Multimedia Computing and Systems, 1995,

pp. 264–272.

8. O’Neil E.J., O’Neil P.E., and Weikum G. The LRU-K page re-

placement algorithm for database disk buffering. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1993, pp. 297–

306.

9. Özden B., Rastogi R., and Silberschatz A.Multimedia Information

Storage and Management, chap. 7: Buffer Replacement Algo-

rithms for Multimedia Storage Systems. Kluwer Academic, 1996.

10. Rotem D. and Zhao J.L. Buffer management for video database

systems. In Proc. 11th Int. Conf. on Data Engineering, 1995,

pp. 439–448.

11. Shi W. and Ghandeharizadeh S. Buffer sharing in video-on-

demand servers. SIGMETRICS Perform. Eval. Rev., 25(2):13–20,

1997.

12. Shi W. and Ghandeharizadeh S. Trading memory for disk band-

width in video-on-demand servers. In Proc. 1998 ACM Symp.

on Applied Computing, 1998, pp. 505–512.

13. Shi W. and Ghandeharizadeh S. Controlled Buffer

Sharing in Continuous Media Servers. Multimedia Tools

Appl., 23(2):131–159, 2004.
14. Christodoulakis S., Ailamaki N., Fragonikolakis Y., and Koveos

L. Leonidas K. An object oriented architecture for multimedia

information systems. Data Eng., 14(3):4–15, 1991.

15. Stonebraker M. Operating system support for database

management. Readings in database systems (3rd ed.), Morgan

Kaufmann, San Francisco, CA, USA, pp. 83–89, 1998.
Multimedia Data Indexing

PAOLO CIACCIA

University of Bologna, Bologna, Italy

Synonyms
MM indexing

Definition
Multimedia (MM) data indexing refers to the problem

of preprocessing a database of MM objects so that they

can be efficiently searched for on the basis of their

content. Due to the nature of MM data, indexing

solutions are needed to efficiently support similarity

queries, where the similarity of two objects is usually

defined by some expert of the domain and can vary

depending on the specific application. Peculiar features

of MM indexing are the intrinsic high-dimensional

nature of the data to be organized, and the complexity

of similarity criteria that are used to compare objects.

Both aspects are therefore to be considered for design-

ing efficient indexing solutions.

Historical Background
Earlier approaches to the problem of MM data

indexing date back to the beginning of 1990s, when it

became apparent the need of efficiently supporting

queries on large collections of non-standard data

types, such as images and time series. Representing

the content of such data is typically done by automati-

cally extracting some low-level features (e.g., the color

distribution of a still image), so that the problem of

finding objects similar to a given reference one is

transformed into the one of looking for similar fea-

tures. Although, at that time, many solutions from the

pattern recognition field were available for this prob-

lem, they were mainly concerned with the effectiveness

issue (which features to consider and how to compare

them), thus almost disregarding efficiency aspects.

The issue of making similarity query processing

scalable to large databases was first considered in

Multimedia Data Indexing M 1805
systems like QBIC [6] for the indexing of color images

and by more focused approaches such as the one

described by Jagadish in [8] for indexing shapes. Not

surprisingly, these solution adopted index methods

available at that time that had been developed for the

case of low-dimensional spatial databases, such as

R-trees and Grid files. The peculiarity of MM data

then originated a flourishing brand new stream of

research, which resulted in many indexes explicitly

addressing the problems of high-dimensional features

and complex similarity criteria.
M

Foundations
Figure 1 illustrates the typical scenario to be dealt with

for indexing multimedia data. The first step, feature

extraction, is concerned with the problem of highlight-

ing those relevant features, fi, of an object oi on

which content-based search wants to be performed.

In the figure, this is the shape of the image subject

(a cheetah). The second step, feature approximation, is

optional and aims to obtain a more compact represen-

tation, afi, of fi that can be inserted into a suitable index

structure (third step). It has to be remarked that, while

feature extraction is needed to define which are the

relevant aspects of objects on which the search has to

focus on, feature approximation is mainly motivated by

feasibility and efficiency reasons. This is because it might

not be possible to directly index non-approximate fea-

tures and/or indexing approximate features might result

in a better performance of the search algorithms.

Consider a collection O ¼ {o1,o2,...,on} of MM

objects with corresponding features F ¼ {f1, f2,...fn}

and approximate features AF ¼ {af1, af2,...afn}. In

order to compare features, a distance function d is

typically set up, where d(fi, fj) measures how dissimilar

are the feature values of objects oi and oj. Given a

reference object q (the query point), a range query

with radius 2, also called an 2-similarity query, will

return all the objects oi2O such that d(fi, f(q))�2,
Multimedia Data Indexing. Figure 1. The multimedia data i
whereas a k-nearest neighbor query (k-NN) will

return the k objects in O whose features are closest to

those of q.

A simple yet remarkable result due to Agrawal,

Faloutsos, and Swami [1], and now popularly known

as the lower-bounding lemma, provides the basis for

exactly solving queries by means of an index that

organizes approximate features:

The lower-bounding lemma. Let I be an index that

organizes the set of approximate features AF ¼ {af1,

af2,...afn} and that compares such features using an

approximate distance dappr . If, for any pair of objects,

it is dappr(afi, afj)�d(fi, fj), then the result of a range

query obtained from I is guaranteed to contain the

exact result, i.e., no false dismissals are present.

The result easily follows from the observation that,

since dappr lower bounds d by hypothesis, d(fi, f(q))�2
implies dappr(afi, af(q))�2. The lower-bounding

lemma guarantees that querying the index with a

search radius equal to 2 will return a result set that

contains all the objects whose non-approximate fea-

tures satisfy the query constraint.

Filter & Refine

When indexing is based on an approximate distance, a

two-step filter & refine process is therefore needed, in

which the role of the index is to filter outmany irrelevant

objects. The so-resulting candidate objects then need to

be verified by using the actual distance d. The lower-

bounding lemma is also the key for solving k-NN

queries using a multi-step query processing approach.

The effectiveness of the filter & refine approach

depends on two contrasting requirements:

1. The approximate distance function dappr should be

a tight approximation of d, inorder tominimize the

numberoffalsehits,i.e.,thoseobjectsthatdonotsatisfy

the query constraint yet the index is not able todiscard

them.Theseareexactlythoseobjectsoi for which both

dappr(afi,af(q))�2 and d(fi, f(q))>2 hold.
ndexing scenario.

1806M Multimedia Data Indexing
2. At the same time, dappr should be relatively cheap

to compute as compared to d, in order to avoid

wasting much time in the filter phase.

The literature on MM indexing abounds of examples

showing how to derive effective approximations for com-

plex distance functions. For instance, the QBIC system

compares color images using a quadratic form distance

function, d2A(fi, fj) ¼ (fi� fj)A(fi� fj)
T¼

PD
k¼1

PD
l¼1ak,

l(fi,k� fj,k)(fi, l� fj, l), where A¼(ak, l) is a color-to-

color similarity matrix and features are color histo-

grams. Evaluating dA has complexity O(D2), which

becomes too costly even for moderately large values

of D, the number of bins in the color histograms. In [6]

it is demonstrated that using as approximate features

the average RGB color of an image, which is a three-

dimensional vector, and comparing average colors

using the Euclidean distance, i.e., d2avg (afi,afj)¼∑k2{R,

G,B}(afi,k� afj,k)
2, leads to derive that d2avg�dA

2 ∕ l1,
where l1 is the smallest eigenvalue of matrix A. Then,

the lower-bounding lemma guarantees that querying

an index built on average colors with a range query of

radius E=
ffiffiffiffiffi
l1

p
will not lead to any false dismissal.

As another relevant example, consider the problem

of comparing feature vectors that represent time-varying

signals. A distance function more robust than the

Euclidean one to misalignments on the time domain is

the dynamic time warping (DTW) distance. However,

evaluating DTW has a complexity O(D2), which is un-

tenable for long time series. In [9] Keogh introduces an

effective lower-bounding function for the DTW dis-

tance. In essence, the idea is to construct an envelope,

Env(q), around the query time series q, after that an

Euclidean-like distance between Env(q) and a stored

sequence fi can be computed in O(D) time.
The Need for Approximate Features

As anticipated, there are several reasons for which

approximate features might have to be considered.

First, in many relevant cases the features of a MM

object are represented through a high-dimensional

vector, fi¼ (fi,1, fi,2,...,fi,D), with D of the order of the

hundreds or even thousands. At such high dimensions

it is known that the performance of multidimensional

indexes rapidly deteriorates, becoming either compa-

rable to, or even worse than, that of a sequential scan.

This phenomenon, known as the dimensionality curse,

inhibits any approach based on a direct indexing

of feature values. Besides ad hoc solutions, such as
those above described, one might consider using

some dimensionality reduction technique that projects

feature vectors onto a (much) lower D 0-dimensional

space, D 0�D, and then indexing the so-obtained

D 0-dimensional feature vectors. The effectiveness of

such techniques however is highly variable, being

dependent on the actual data distribution.

Another practical reason that could motivate the

use of approximate features is the mismatch between

the type of the features and the one natively supported

by the index. As a simple example, consider an

index implementation that only manages entries of

an arbitrary, but fixed, size, and that objects to be

indexed are regions of pixels described by their bound-

aries. Clearly, boundary descriptions have different

sizes, depending on the shape of the region. In this

case a possible solution would be to use a conservative

approximation of boundaries, like minimum bounding

rectangles.

Finally, it might also be the case that, although in

principle actual feature values could be stored in the

index, the distance function to be used on them cannot

be supported by the index organization. A remarkable

example is the DTW distance: since DTW is not a true

metric, in that it does not satisfy the triangle inequality,

no multidimensional index can directly process queries

with such a distance function.

Metric Indexing

When features are not vectors and/or the distance

function is not the Euclidean distance or some other

(possibly weighted) Lp norm, coordinate-based spatial

indexes cannot be used. There are many cases in which

this situation shows up. For instance, in region-based

image retrieval (RBIR), each image is first automati-

cally segmented into a set of homogeneous regions,

each of them being represented by a vector of low-

level features (usually encoding color and texture

information). Thus, each fi is a set of vectors and as

such cannot be indexed by a spatial index. As a further

example, graphs representing, say, spatially located

objects with their relationships cannot be directly sup-

ported by a coordinate-based index. In cases like these,

one could consider using a metric index, such as the

M-tree [5]. A metric index just requires the distance

function d used to compare feature values to be a

metric, i.e., a positive and symmetric function that

also satisfies the triangle inequality: d(fi, fj) � d(fi,

fk)þd(fk, fj) 8fi, fj, fk. Although there is nowadays a

Multimedia Data Indexing M 1807

M

large number of metric indexes available [14], as

demonstrated in [3] all of them are based on the

common principle of organizing the indexed features

into a set of equivalence classes and then discarding

some of these classes by exploiting the triangle inequal-

ity. For instance, in the case of the M-tree each class

corresponds to the set of feature values stored into a

same leaf of the tree. Triangle inequality can also be

applied to save some distance computations while

searching the index, which turns out to be particularly

relevant in the case of computationally demanding

distance functions (a common case with MM data).

This was first shown for the M-tree, in which distances

between each feature value and its parent in the index

tree are precomputed and stored in the tree. The idea is

quite general and effective, an obvious tradeoff existing

between the amount of extra information stored in the

tree and the benefit this has on pruning the search

space. Along this direction, Skopal and Hoksza pro-

pose the M∗-tree [12], a variant of the M-tree in which

each entry in a node also includes its NN in that node,

i.e., the NN-graph of the features in each node is

maintained.

A common objection to metric indexes is that they

are bound to use only a specific distance function,

namely the one with which the index is built. Along

the direction of increasing flexibility, Ciaccia and

Patella [4] introduce the QIC-M-tree, which is an

extension of the M-tree able to support queries with

any distance function dQ from the same ‘‘family’’ of the

distance dI used to build the tree. On the condition

that there exists a scaling factor SdI!dQ such that

dIðf i; f jÞ � SdI!dQdQðf i; f jÞ holds (i.e., dI lower

bounds dQ up to a constant factor), the lower-bound-

ing lemma applies, and the index can answer queries

based on dQ. A similar idea allows the QIC-M-tree to

use also a ‘‘cheap’’ approximate distance dC as a filter

before computing the ‘‘costly’’ dI and dQ functions.

Ad Hoc Solutions

The availability of general purpose metric indexes does

not rule out the possibility of deriving better, more

specialized solutions for the problem at hand. For

instance, the STRG-Index [10] is a specialized struc-

ture for indexing spatio-temporal graphs arising from

the modelling of video sequences. Consider a video

segment with N frames. Each frame is first segmented

into a set of homogeneous color regions, each of which

becomes a node in the region adjacency graph (RAG)
of that frame, with edges connecting spatially adjacent

regions. Node attributes (such as size, color, and loca-

tion) are then defined, and the same is done for edges

(in which case attributes such as the distance and the

orientation between the centroids of connected regions

can be used). Since a node representing a region can

spanmultiple frames, nodes in consecutive RAGs can be

connected to represent temporal aspects. The resulting

graph is called spatio-temporal region graph (STRG).

The STRG is then decomposed into a set of object

graphs (OGs) and background graphs (BGs), and clus-

ters of OGs are obtained for the purpose of indexing.

Since the distance function used for comparing OGs

(the so-called extended graph edit distance (EGED)) is

a metric, any metric index could be used. The ad hoc

STRG-Index proposed in [10] is a three-level metric

tree, where the root node contains entries for the BGs,

the intermediate level stores clusters of OGs, and indi-

vidual OGs are inserted into the leaf level.

Extensions of available indexes might be also re-

quired as a consequence of feature approximation. An

example is found in [13], where the problem of

providing rotation-invariant retrieval of shapes under

the Euclidean (L2) distance is considered. After convert-

ing a shape boundary into a time series fi ¼ (fi,1, fi,2,...,

fi,D) (this is quite a common way to represent shapes,

see e.g., [2]), a discrete fourier transform (DFT) is

applied to obtain a representation of fi in the frequency

domain. Due to Parseval’s theorem, the DFT transfor-

mation preserves the Euclidean distance [1]. To obtain

invariance to rotation, only the magnitude of DFT

coefficient is retained. The so-resulting vectors Fi are

then compressed by keeping only the k (k � D) coeffi-

cients with the highest magnitude (together with their

position in the original vector) plus an error term 2Fi
given by the square root of the sum of the squares of

dropped coefficients. This information allows a tight

lower bound to be derived on the actual rotation-

invariant Euclidean distance between fi and a query

shape q. For indexing, a variation of the VP-tree is

introduced, which allows compressed features to be

stored and searched.

Key Applications
Any application dealing with massive amounts of mul-

timedia data requires effective indexing solutions for

efficiently supporting similarity queries. This is further

motivated by the complexity of distance functions that

are of interest for multimedia data.

1808M Multimedia Data Querying
Future Directions
All the above indexing techniques and methods assume

(at least) that the distance function is a metric. An

interesting problem is to devise indexing methods for

non-metric distance functions that do not rely on the

lower-bounding lemma. The work of Skopal [11] on

semimetrics appears to be a relevant step on this direc-

tion. In the same spirit, Goial, Lifshits and Schütse [7]

study how to avoid turning the similarity search prob-

lem into a distance-based one, which in several cases

might not yield a metric. Working directly with simi-

larities is however more complex, since there is no

analogue of the triangle inequality property for simi-

larity values. Let ranky(x) be the rank of object x with

respect to object y (i.e., x is the NN of y if ranky(x)¼ 1).

Then, [7] introduces the concept of disorder constant

DC, the smallest value for which the disorder inequality

ranky(x)�DC(rankz(x)þrankz(y)) holds 8x,y,z in the

given dataset, and describes algorithms for NN search

based on this idea. Making this approach practical for

large MM databases remains an open problem.
Cross-references
▶Curse of Dimensionality

▶Dimensionality Reduction

▶High Dimensional Indexing

▶ Indexing and Similarity Search

▶ Indexing Metric Spaces

▶Multimedia Data Querying

▶ Spatial Indexing Techniques
Recommended Reading
1. Agrawal R., Faloutsos C., and Swami A. Efficient similarity

search in sequence databases. In Proc. 4th Int. Conf. on Founda-

tions of Data Organizations and Algorithms, 1993, pp. 69–84.

2. Bartolini I., Ciaccia P., and Patella M. WARP: Accurate retrieval

of shapes using phase of Fourier descriptors and time

warping distance. IEEE Trans. Pattern Anal. Machine Intell.,

27(1):142–147, 2005.

3. Chávez E., Navarro G., Baeza-Yates R., and Marroquı́n J.S. Prox-

imity searching in metric spaces. ACM Comput. Surv., 33

(3):273–321, September 2001.

4. Ciaccia P. and Patella M. Searching in metric spaces with user-

defined and approximate distances. ACM Trans. Database Syst.,

27(4):398–437, December 2002.

5. Ciaccia P., Patella M., and Zezula P. M-tree: An efficient access

method for similarity search in metric spaces. In Proc. 23th Int.

Conf. on Very Large Data Bases, 2007, pp. 426–435.

6. Faloutsos C., Barber R., Flickner M., Hafner J., Niblack W.,

Petkovic D., and Equitz W. Efficient and effective querying by

image content. J. Intell. Inf. Sys., 3(3/4):231–262, July 1994.
7. Goyal N., and Lifshits Y., and Schütse H. Disorder inequality:

A combinatorial approach to nearest neighbor search. In Proc.

1st ACM Int. Conf. on Web Search and Data Mining, 2008,

pp. 25–32.

8. Jagadish H.V. A retrieval technique for similar shapes. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1991,

pp. 208–217.

9. Keogh E. Exact indexing of dynamic time warping. In

Proc. 28th Int. Conf. on Very Large Data Bases, 2002,

pp. 406–417.

10. Lee J., Oh J.H., and Hwang S. STRG-index: Spatio-temporal

region graph indexing for large video databases. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2005,

pp. 718–729.

11. Skopal T. On fast non-metric similarity search by metric

access methods. In Advances in Database Technology, Proc.

10th Int. Conf. on Extending Database Technology, 2006,

pp. 718–736.

12. Skopal T. and Hoksza D. Improving the performance of M-tree

family by nearest-neighbor graphs. In Proc. 11th East European

Conf. Advances in Databases and Information Systems, 2007,

pp. 172–188.

13. Vlachos M., Vagena Z., Yu P.S., and Athitsos V. Rotation invari-

ant indexing of shapes and line drawings. In Proc. ACM Int.

Conf. on Information and Knowledge Management, 2005, pp.

131–138.

14. Zezula P., Amato G., Dohnal V., and Batko M. Similarity Search:

The Metric Space Approach. Springer, Berlin Heildelberg,

New York, 2005.
Multimedia Data Querying

K. SELCUK CANDAN
1, MARIA LUISA SAPINO

2

1Arizona State University, Tempe, AZ, USA
2University of Turin, Turin, Italy

Definition
One common characteristic of multimedia systems is

the uncertainty or imprecision of the data. The models

that can capture the imprecise and statistical nature of

multimedia data and query processing are fuzzy and

probabilistic in nature. Therefore multimedia data

query evaluation requires fuzzy and probabilistic data

and query models as well as appropriate query proces-

sing mechanisms. Probabilistic models rely on the

premise that the sources of imprecision in data and

query processing are inherently statistical and thus

they commit onto probabilistic evaluation. Fuzzy

models are more flexible and allow various different

semantics, each applicable under different system

requirements to be selected for query evaluation.

Multimedia Data Querying M 1809
Historical Background
Due to the possibly redundant ways to sense the envi-

ronment, the alternative ways to process, filter, and

fuse multimedia data, and the subjectivity involved in

the interpretation of data and query results, multime-

dia data quality is inherently imprecise:

� Feature extraction algorithms that form the basis

of content-based multimedia data querying are

generally imprecise. For example, high error rate is

encountered in motion capture data due to the mul-

titude of environmental factors involved, including

camera and object speed. Especially for video/ audio/

motion streams, data extracted through feature extr-

action modules are only statistically accurate and

may be based on the frame rate or the position of

the video camera related to the observed object.

� It is rare that a multimedia querying system relies on

exact object matching. Instead, in many cases, mul-

timedia databases leverage similarities between fea-

ture vectors to identify data objects that are similar

to the query. In many cases, it is also necessary to

account for semantic similarities between associated

annotations and partial matches, where objects in
Multimedia Data Querying. Figure 1. Multimedia query pro

stored in the database and how the user interprets the query

cycle. This process itself is usually statistical in nature and, co

results.
the result satisfy some of the requirements in the

query, but fail to satisfy all query conditions.

� Imprecision can also be due to the available index

structures which are imperfect. Due to the sheer size

of the data, many systems rely on clustering and

classification algorithms for pruning during query

processing.

� Query formulation methods are not able to capture

user’s subjective intention perfectly. For example, in

Query by Example (QBE), which features, feature

value ranges, feature combinations, or which simi-

larity notions are to be used for processing is left to

the system to figure out through feature signifi-

cance analysis, user preferences, relevance feedback

(Fig. 1), and/or collaborative filtering techniques,

which are largely statistical and probabilistic

in nature.

Inmany multimedia querying systems, more than one of

these reasons coexist and, consequently, the system must

take them into consideration collectively. Figure 2 pro-

vides an example query (in an SQL-like syntax used by

the SEMCOG system [10]) which brings together im-

precise and exact predicates. Processing this query
cessing usually requires the semantic gap between what is

and the data to be bridged through a relevance feedback

nsequently, introduces probabilistic imprecision in the

M

Multimedia Data Querying. Figure 2. A sample multimedia query with imprecise and exact predicates.

1810M Multimedia Data Querying
requires assessment of different sources of imprecision

and merging them into a single value. Traditional

databases are not able to deal with imprecision since

they are based on Boolean logic: predicates are treated

as propositional functions, which return either true or

false. A naive way to process queries is to transform

imprecision into true or false by mapping values

less than a cut-off to false and the remainder to true.

With this naı̈ve approach, partial results can be

quickly refuted or validated based on their relation-

ships to the cut-off. User provided cut-offs can also be

leveraged for filtering, while maintaining the impreci-

sion value of the results for further processing. In

general, however, cut-off based early pruning leads to

misses of relevant results. This leads to the need for

data models and query evaluation mechanisms, which

can take into account imprecision in the evaluation of

the query criteria. In particular, the data and query

models cannot be propositional in nature.

Foundations
Assessments of the degrees of imprecisions in multi-

media data can take different forms. For example, if

the data is generated through a sensor/operator with a

quantifiable quality rate (for instance a function of the

available sensor power), then a scalar-valued assess-

ment of imprecision may be applicable. This is similar

to the (so called type-1) fuzzy predicates, which (un-

like propositional functions which return true or false)

return a membership value to a fuzzy set. In this

simplest case, the quality assessment of a given object,

o, is modeled as a value 0 � qa(o) � 1. A more general

quality assessment model would take into account

the uncertainties in the assessments themselves. These

type of predicates, where sets have grades of membership

that are themselves fuzzy, are referred to as type-2 fuzzy

predicates. For example the assessment of a given

object o can be modeled as a normal distribution of

qualities, qa(o) = No(qo, xo), where qo is the expected
quality and xo is the variance. Although the type-2

model can be more general and use different
probability distributions, this specific model (using

the normal distribution) is a generally applicable sam-

pling-related imprecision as it relies on the well-known

central limit theorem, which states that the average

of the samples tends to be normally distributed,

even when the distribution from which the average

is computed is not normally distributed. Note that,

in general, such complex statistical assessments of

data precision can be hard to obtain. A compromise

between the above two models represents the range

of possible qualities of an object with a lower- and

an upper-bound. In this case, given an object o,

its quality assessment, qa(o) is modeled as a pair <qolow,

qohigh>, where 0 � qolow � qohigh � 1.

Fuzzy data and query models for multimedia que-

rying are based on the fuzzy set theory and fuzzy logic

introduced by Zadeh in mid 1960s [14]. A fuzzy set, F,

with domain D is defined using a membership func-

tion, F: D ! [0,1]. A fuzzy predicate, then, corre-

sponds to a fuzzy set: instead of returning true(1) or

false(0) values as in propositional functions, fuzzy pre-

dicates return the corresponding membership values

(or scores). Fuzzy clauses combine fuzzy predicates

and fuzzy logical operators into complex fuzzy state-

ments. Like the predicates, the fuzzy clauses also have

associated scores. The meaning of a fuzzy clause (i.e.,

the score it has, given the constituent predicate scores)

depends on the semantics chosen for the fuzzy logical

operators, not (¬), and (∧), and or (∨).

Table 1 shows popular min and product fuzzy se-

mantics used in multimedia querying. These two se-

mantics (along with some others) have the property

that binary conjunction and disjunction operators are

triangular-norms (t-norms) and triangular-conorms

(t-conorms). Intuitively, t-norm functions reflect

the (boundary, commutativity, monotonicity, and as-

sociativity) properties of the corresponding Boolean

operations. Although the property of capturing Bool-

ean semantics is desirable in many applications

of fuzzy logic, for multimedia querying, this is not

always the case [3]. For instance, the partial match

Multimedia Data Querying M 1811

M

requirements invalidate the boundary conditions.

Monotonicity can be too weak a condition for multi-

media query processing. In many cases, according to

real-world and artificial nearest-neighbor workloads,

the highest-scoring predicates are interesting and

the rest is not interesting. This implies that the min

semantics, which gives the highest importance on

the lowest scoring predicate, may not be suitable for

real workloads. Other fuzzy semantics used in multi-

media systems include arithmetic and geometric aver-

age semantics. Figure 3 visualizes the behavior of the

fuzzy conjunction operator under different fuzzy

semantics. It is well established that the only fuzzy

semantics which preserves logical equivalence of state-

ments (involving conjunction and disjunction) and

is also monotonic is the min semantics. This, and

the query processing efficiency it enables due to

its simplicity, make it a popular choice despite its

shortcomings.

Processing multimedia queries, like the one

depicted in Fig. 2, under a fuzzy system requires

extending query languages and query processors with

fuzzy semantics. Many commercial database manage-

ment systems include fuzzy extensions that are suitable

for multimedia applications. Relational databases can
Multimedia Data Querying. Table 1. Fuzzy min and product

the predicate Pi on x

Min semantics

mPi^Pj ðxÞ ¼ minfmiðxÞ; mjðxÞg

mPi^Pj ðxÞ ¼ maxfmiðxÞ; mjðxÞg

m:Pi ðxÞ ¼ 1� miðxÞ

Multimedia Data Querying. Figure 3. Visual representation

horizontal axes correspond to the values between 0 and 1 for

resulting scores according to the corresponding function.
be extended to capture fuzzy data in various different

ways. In tuple-level approaches, the schema of each

fuzzy relation is extended to include one or more

attributes, each representing the degrees of imprecision

of the tuples in the relation with respect to a different

interpretation of the tuples. In these systems, the rela-

tional algebra operators (such as select, project, join,

union, difference) are also extended to apply the

selected fuzzy semantics to the tuple scores. In the

attribute-level approaches, the degrees of uncertainty

are associated individually to the attribute values.

Especially when the imprecisions in the various attri-

butes of a multimedia object are due to different rea-

sons, attribute level approaches are more applicable

due to their finer granularity. Furthermore, since each

attribute can be treated as a fuzzy predicate on the

multimedia object, query evaluation within these

models can benefit more naturally from fuzzy logic

evaluation schemes.

Processing these queries, on the other hand,

requires significant extensions to the underlying data-

base engines. For example, the underlying relational

concepts, such as functional dependencies and nor-

malization, need to be extended to cope with fuzziness

in the stored data. In particular, in multimedia
semantics for logic operators: mi (x) stands for the score of

Product semantics

mPi^Pj ðxÞ ¼
miðxÞ�mj ðxÞ

maxfmiðxÞ;mj ðxÞ;ag
a 2 ½0; 1�

mPi_Pj ðxÞ ¼
miðxÞþmj ðxÞ�miðxÞ�mj ðxÞ�minfmiðxÞ;mj ðxÞ;1�ag

maxf1�miðxÞ;1�mj ðxÞ;ag

m:Pi ðxÞ ¼ 1� miðxÞ

s of various binary fuzzy conjunction semantics: The

the two input conjuncts and the vertical axis represents the

Multimedia Data Querying. Figure 4. The relative

impact of the predicates in a scoring function can vary

based on the scores of the individual predicates.

1812M Multimedia Data Querying
databases, users are usually interested in a result set

which is ranked according to a ranking criterion which

is generally user dependent (Fig. 1). Adali et al. [1]

introduces a similarity algebra which brings together

relational operators and results of multiple similarity

implementations in a uniform language. Other alge-

braic treatments of fuzzy multimedia queries, relying

on finer granularity attribute-based models, include

the FNF2 algebra [5]. When the requirement for exact

matches is removed, the result space becomes signifi-

cantly large, and thus, the query engine cannot rely

on any processing scheme which would need to touch

or enumerate all solutions. Consequently, query pro-

cessing schemes would need to generate results as

progressively (in decreasing order of relevance) as pos-

sible. Fagin [7] proposes ranked query evaluation

algorithms, which assume that individual sources can

progressively output sorted results and also enable

random access. These algorithms also assume that the

query has a monotone combined scoring function.

Candan et al. [4] presents approximate ranked query

processing techniques for cases where not all sub-

queries are able to return ordered results. In turn,

Fagin et al. [8] recognizes that there may be cases

where random accesses are impossible and presents

algorithms under monotonicity assumption to enu-

merate top-k objects without accessing all the data.

These augment monotonicity with an upper bound

principle, which enables bounding of the maximum

possible score of a partial result. Qi et al. [13] estab-

lishes an alternative, sum-max monotonicity property

and shows how to leverage this for developing a self-

punctuating, horizon-based ranked join (HR-Join)

operator for cases when the more strict monotonicity

property does not hold. Top-k querying can also be

viewed as a k-constrained optimization problem,

where the goal function includes both a Boolean con-

straint characterizing the data of interest and a quanti-

fying function which acts as the numeric optimization

target [15]. Adali et al. [2] and Li et al. [11] extend the

relational algebra to support ranking as a first-class

construct. Li et al. [11] also presents a pipelined and

incremental execution model of ranking query plans.

A particular challenge in multimedia querying is

that (as shown in Fig. 1) the underlying query proces-

sing scheme needs to adapt to the specific needs and

preferences of individual users. Due to its flexibility,

the fuzzy model enables various mechanisms of adap-

tation. First of all, if user’s feedback focuses on a
particular attribute in the query, the way the fuzzy

score of the corresponding predicate is computed can

change based on the feedback. Secondly, the semantics

of the fuzzy logic operator can be adapted based on the

feedback of the user. A third mechanism through

which user’s feedback can be taken into account is to

enrich the merge function, used for merging the fuzzy

scores, with weights that regulate the impacts of the

individual predicates. Fagin proposed a generic

weighting mechanism that can be used for any fuzzy

merge function [7]. The mechanism ensures that

(a) the result is a continuous function of the weights

(as long as the original merge function is continuous),

(b) sub-queries with zero weight can be dropped with-

out affecting the rest of the query, and (c) if all weights

are equal, then the result is equal to the original, not-

weighted merge function. Candan and Li [3], on the

other hand, argued that the relative importance of

predicates in a merge function should be measured in

terms of the overall impacts changes in the scores that

the individual predicates would have on the overall

score (Fig. 4). Consequently, the relative importance

of predicates can vary based on the scores the individ-

ual predicates take and the corresponding partial deri-

vatives. A more direct mechanism to capture the user

feedback is to modify the partial derivatives of the

scoring functions appropriately. While the generic

scheme presented by Fagin [7] would satisfy this for

some merge functions, such as the arithmetic average,

it would fail to capture this requirement for others,

such as the commonly used product semantics.

Multimedia Data Querying M 1813

M

Unlike the fuzzy models, which can capture a large

spectrum of application requirements, probabilistic

approaches to data and query modeling are applicable

only to those cases where the source of imprecision is of

statistical nature. These cases include probabilistic noise

in data collection, sampling (over time, space, or popu-

lation members) during data capture or processing,

randomized and probabilistic algorithms (such Markov

chains and Bayesian networks) used inmedia processing

and pattern detection, and probabilistic consideration

of relevance feedback. Dalvi and Suciu [6], for example,

associates a value between 0 and 1 to each tuple in a

given relation: the value expresses to probability with

which a given tuple belongs to the relation. By extending

SQL and the underlying relational algebra with proba-

bilistic semantics and a theory of belief, the authors

provide a probabilistic semantics for query processing

with uncertain matches.

A general simplifying assumption in many proba-

bilistic models is that the individual attributes (and the

corresponding predicates) are independent of each

other: consequently, the probability of a conjunction

can be computed as the product of the probabilities of

the conjuncts; i.e., under these conditions, the proba-

bilistic model corresponds to the fuzzy product seman-

tics. However, the independence assumption does not

always hold (in fact, it rarely holds). Lakshmanan et al.

[9] presents a probabilistic relational data model, an

algebra, and aggregate operators that capture various

types of interdependencies, including independence,

mutual exclusion, as well as positive, negative, and

conditional correlation.

While the simplest probabilistic models associate a

single value between 0 and 1 to each attribute or tuple,

more complete models represent the score in the form

of an interval of possible values or more generally in

terms of a probability distribution describing the possi-

ble values for the attribute or the tuple. Consequently,

these models are able to capture more realistic scenarios,

where the imprecision in data collection and processing

prevents the system to compute the exact quality of the

individual media objects, but (based on the domain

knowledge) can associate probability distributions to

them. Note that relaxing the independence assumption

or extending the model to capture non-singular prob-

ability distributions both necessitate changes in the

underlying rank evaluation algorithms.

Other non-relational probabilistic models for multi-

media querying includes Markov chains and Bayesian
networks. A stochastic process is said to be Markovian if

the conditional probability distribution of the future

states depends only on the present. A Markov chain is

a discrete-time stochastic process which is conditionally

independent of the past states. A random walk on a

graph, G(V,E), is a Markov chain whose state at any

time is described by a vertex of G and the transition

probability is distributed equally among all outgoing

edges. The transition probability distribution in the

corresponding Markov model can be represented as a

matrix, where the (i, j)’th element of this matrix, Tij,

describes the probability that, given that the current

state is i, the process will be in state j in the next time

unit; i.e., the n-step transition probabilities can be

computed as the n’th power of the transition matrix.

Markovian models are used heavily for linkage analysis

in supporting queries over web, multimedia, and social

network data with graphical representations.

A Bayesian network is another graphical probabi-

listic model used especially for representing probabi-

listic relationships between variables (e.g., objects,

properties of the objects, or beliefs about the properties

of the objects) [12]. In a Bayesian network nodes

represent variables and edges between the nodes repre-

sent the relationships between the probability distribu-

tions of the corresponding variables. Consequently,

once they are fully specified, Bayesian networks can

be used for answering probabilistic queries given cer-

tain observations. However, in many cases, both the

structure as well as the parameters of the network have

to be learned through iterative and sampling-based

heuristics, such as expectation maximization (EM),

and Markov Chain Monte Carlo (MCMC) algorithms.

Hidden Markov models (HMMs), where some of the

states are hidden (i.e., unknown), but variables that

depend on these states are observable, are Bayesian

networks used commonly in many machine-learning

based multimedia pattern recognition applications.

This involves training (i.e., given a sequence of obser-

vations, learning the parameters of the underlying

HMM) and pattern recognition (i.e., given the para-

meters of an HMM, finding the most likely sequence of

states that would produce a given output).

Key Applications
Applications of multimedia querying include perso-

nal and public photo/media collections, personal

information management systems, digital libraries,

on-line and print advertisement, digital entertainment,

1814M Multimedia Data Storage
communications, long-distance collaborative systems,

surveillance, security and alert detection, military,

environmental monitoring, ambient and ubiquitous

systems that provide real-time personalized services

to humans, improved accessibility to blind and elderly,

rehabilitation of patients through visual and haptic

feedback, and interactive performing arts.

Future Directions
While most of the existing work in this area focused on

content-based and object-based query processing, fu-

ture directions in multimedia querying will involve

understanding of how media objects affect users and

how do they fit into users experiences in the real world.

These require better understanding of underlying psy-

chological and cognitive processes in human media

processing. Ambient media-rich systems which collect

and feed in diverse media from environmentally em-

bedded sensors necessitate novel ways of continuous

and distributed media processing and fusion schemes.

Intelligent schemes to choose the right objects to pro-

cess are needed to scale query processing workflows to

the immense influx of real-time media data. In a simi-

lar manner, collaborative-filtering based query proces-

sing schemes that can help overcoming the semantic

gap between media and users’ experiences will help the

multimedia databases scale to Internet-scale media

indexing and querying.

Cross-references
▶ Fuzzy Models

▶ Probabilistic Databases

▶ Probabilistic Retrieval Models and Binary Indepen-

dence Retrieval (BIR) Model

▶ Information Retrieval

▶Multimedia Data

▶Multimedia Databases

▶Multimedia Data Indexing

▶Multimedia Information Retrieval Model

▶Multimedia Retrieval Evaluation

▶Top-K Selection Queries on Multimedia Datasets

Recommended Reading
1. Adali S., Bonatti P.A., Sapino M.L., and Subrahmanian V.S. A

multi-similarity algebra. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1998, pp. 402–413.

2. Adali S., Bufi C., and Sapino M.L. Ranked relations:

query languages and query processing methods for multimedia.

Multimed. Tools Appl., 24(3):197–214, 2004.

3. Candan K.S. and Li W.-S. On similarity measures for multime-

dia database applications. Knowl. Inf. Syst., 3(1):30–51, 2001.
4. Candan K.S., Li W.-S., and Priya M.L. Similarity-based ranking

and query processing in multimedia databases. Data Knowl.

Eng., 35(3):259–298, 2000.

5. Chianese A., Picariello A., Sansone L., and Sapino M.L.

Managing uncertainties in image databases: a fuzzy approach.

Multimed. Tools Appl., (23):237–252, 2004.

6. Dalvi N.N. and Suciu D. Efficient query evaluation on prob-

abilistic databases. In Proc. 30th Int. Conf. on Very Large Data

Bases, 2004, pp. 864–875.

7. Fagin R. Fuzzy queries in multimedia database systems. In Proc.

17th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 1998, pp. 1–10.

8. Fagin R., Lotem A., and Naor M. Optimal aggregation

algorithms for middleware. J. Comput. Syst. Sci., 66

(4):614–656, 2003.

9. Lakshmanan L.V., Leone N., Ross R., and Subrahmanian V.S.

ProbView: a flexible probabilistic database system. ACM Trans.

Database Syst., 22(3):419–469, 1997.

10. Li W.-S. and Candan K.S. SEMCOG: a hybrid object-based

image and video database system and its modelling, language,

and query processing. Theory & Practice of Object Syst., 5

(3):163–180, 1999.

11. Li C., Chang K.C.-C., Ilyas I.F., and Song S. RankSQL:

Query algebra and optimization for relational top-k queries. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2005,

pp. 131–142.

12. Pearl J. Bayesian networks: a model of self-activated memory for

evidential reasoning. In Proc. 7th Conf. of the Cognitive Science

Society, 1985, pp. 329–334.

13. Qi Y., Candan K.S., and Sapino M.L. Sum-Max monotonic

ranked joins for evaluating top-K twig queries on weighted

data graphs. In Proc. 33rd Int. Conf. on Very Large Data Bases,

2007, pp. 507–518.

14. Zadeh L.A. Fuzzy sets. Inf. Control, 8(3):338–353, 1965.

15. Zhang Z., Hwang S., Chang K.C., Wang M., Lang C.A., and

Chang Y. Boolean + Ranking: querying a database by

K-constrained optimization. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, pp. 359–370.
Multimedia Data Storage

JEFFREY XU YU

Chinese University of Hong Kong, Hong Kong, China

Definition
Data storage management, as one of the important

functions in database management systems, is to man-

age data on disk in an efficient way to support data

retrieval and data update. Multimedia data storage

management is to manage continuous media data

(audio/video) on disk. The uniqueness of multimedia

data storage management is, in a multiuser environ-

ment, how to arrange the data storage to support a

continuous retrieval of large continuous media data

Multimedia Data Storage. Figure 1. A hiccup free display

(Fig. 3 in [5]).

Multimedia Data Storage M 1815

M

from disk to be displayed on screen, at a pre-specified

rate, without any disruptions, which is also called

hiccup-free display.

Historical Background
In a multimedia environment, the continuous media

needs to be retrieved and displayed continuously. As

magnetic disks are used as the mass storage device for

multimedia data, zoning is one approach to increase

the storage capacity of magnetic disks. Here, zones of

a disk drive are different regions of the disk drive that

usually have different transfer rates. A number of stud-

ies have investigated techniques to support a hiccup-

free display of continuous media (video/audio) using

magnetic disk drives with a single zone [1,2,9,10] in the

early 1990s. These studies assume a fixed transfer rate

for a disk drive. These techniques can be possibly

adopted to design a multi-zone disk system, but such

a multi-zone disk system is then forced to use the

minimum transfer rate of the zones for the entire

disk, in order to guarantee a continuous display of

continuous media objects. Such an approach is called

Min-Z-tfr.

In the late 1990s and early 2000s, many new tech-

niques are proposed to deal with the storage of contin-

uous media in multi-zone disks [4,5]. In [4], VARB

and FIXB are proposed to place media objects on

the multi-zone disks. VARB and FIXB techniques pro-

vide the average transfer rate of zones while ensuring a

continuous display, compared with Min-Z-tfr, which

is forced to use the minimum transfer rate of zones.

VARB and FIXB increase the throughput of the system,

while they also (i) increase startup latency, (ii) waste disk

space, and (3) increase the amount of memory required

to support more simultaneous displays. A configuration

planner is proposed to decrease the drawbacks of VARB

and FIXB, in order to meet the performance require-

ments of applications [4]. As VARB and FIXB [4] take

account of a single media type only, RP, MTP, and MVP

are proposed in [5] to support multiple media types

with different bandwidth requirements. In [4,5], the

discussions focus on multimedia data placement across

disk drives to support continuous display requirement.

Foundations

Hiccup-Free Display

The size of continuous media, especially videos, can

be very large. The transmission of data must be just-in-

time. In other words, data must be retrieved from disks
and transmitted to the display in a timely manner that

prevents hiccups. A cycle-based data retrieval tech-

nique [6,12] is designed to provide continuous display

for multiple users. As shown in Fig. 1, it is a cycle-

based data retrieval technique to support hiccup-free

display [5]. Consider a constant-bit-rate (CBR) media.

In order to guarantee a continuous display of a contin-

uous media A, the system needs to retrieve the block of

Ai before its immediate previous block Ai�1 completes

its display. For each block Ai, there are two tasks,

namely, block retrieval and display initialization. This

process of block retrieval and display initialization

repeats in a cyclic manner until all A blocks have

been displayed. If the time to retrieve a block, termed

block retrieval time, Tp (as indicated in Fig. 1), is

smaller than or equal to the time period to display a

block, then the whole display process will be hiccup

free [5]. The time interval between the time a request

of A arrives and the time the display of A starts is called

startup latency.

FIXB and VARB

Modern disk drivers are produced with multiple zones

to meet the demands for a higher storage capacity [11].

A zone is a contiguous collection of disk cylinders

where the tracks in the cylinders are supposed to have

the same storage capacity. The outer zones have a

higher transfer rate in comparison with the inner

zones. Two approaches, FIXB and VARB, are proposed

in [4] to support a continuous display of continuous

media using a single disk with multi-zones. Suppose

that the disk consists of m zones, Z1, Z2,...,Zm, and

1816M Multimedia Data Storage
the transfer rate of zone Zi is Ri. Assume that each

object X is partitioned into f blocks: X1, X2,...,Xf .

With FIXB (Fixed Block Size), the blocks of an

object X are rendered equi-sized, i.e., Xi = Xj, for any

i and j. The system assigns the blocks of X to the zones

in a round-robin manner. FIXB is designed to support

a predetermined number of simultaneous displays (N).

The retrieval process of this system is to scan the disk

in one direction, for example, starting with the outer-

most zone moving inward, visiting one zone at a time

and multiplexing the bandwidth of that zone among N

block reads. A sweep is a scan of the zones. The time to

perform one such a sweep is denoted as TScan. The time

of reading N blocks from zone Zi, denoted TMUX(Zi), is

dependent on the transfer rate of zone Zi. As the

transfer rate of zones varies, the time to read blocks

from different zones also varies. To support hiccup-free

displays, the system uses buffers to compensate for the

low transfer rates of innermost zones.

VARB makes TMUX(Zi) to be identical for all zones,

using variable block sizes. The size of a block, B(Zi), is a

function of the transfer rate of the zone Zi. This results

in an identical transfer time for all the blocks, Tdisk, i.e.,

Tdisk ¼ BðZiÞ
Ri

¼ BðZjÞ
Rj

, for any i and j. Like FIXB, VARB

assigns the blocks of an object to the zones in a round-

robin manner. Unlike FIXB, with VARB, the blocks of

an object X have different sizes depending on which

zones the blocks are assigned to. Also, like FIXB, VARB

employs memory to compensate for the low band-

width of innermost zones.

With FIXB, the blocks of an object is equi-sized,

whereas VARB renders the blocks in different sizes,

which depends on the transfer rate of its assigned zone.

FIXB is easy to be implemented in comparedwithVARB.

But VARB requires a lower amount of memory and

incurs a lower latency as compared to FIXB.

RP, MTP, and MVP

Based on zoning, there are different data transfer rates

(Ri) to retrieve data from a disk. When a server is

required to support multiple media types with differ-

ent bandwidth requirements, the block reading time

varies widely depending on the block size and its

assigned zone. Suppose that there are n different

media types to be supported. The block size of

a media type i object is determined by Bi = Tp � Di

where Di is the bandwidth requirement of the media

type i, and Tp is a fixed time period which is set to

be the same for all the media types. The transfer
time (service time) to retrieve a block of a media type

i object in zone Zj is si;j ¼ Bi

Rj
. Suppose that there

are b blocks, the average service time is computed as

�s ¼
Xb
i¼1

Fi

Xn
j¼1

Pi;Bj

Xm
k¼1

Pi;Zk
Bj

Rk

where Fi is the access frequency of block i, for 1� i� b,

Pi;Bj
is the probability that the size of block i is Bj, and

Pi;Zk
is the probability that this block is assigned to

zone Zk. The variance of service time is:

s2s ¼
Xb
i¼1

Fi

Xn
j¼1

Xm
k¼1

Pi;Bj
Pi;Zk

ðsj;k � �sÞ2

Three approaches are proposed in [5]: RP, MTP,

and MVP. RP (Random Placement) assigns blocks

to the zones in a random manner. MTP (Maximizing

Throughput Placement) sorts blocks based on their

size and frequency of access (Fi � Bi). The blocks are

assigned to the zones sequentially starting with the

fastest zone, i.e., block i with the highest Fi � Bi
value is assigned to the fastest zone. With MVP (Mini-

mizing Variance Placement), a block of size Bi is placed

on the zone Zj (with Rj) which has the closest Bi

Rj
value

to the average block reading time (�TB):

�TB ¼ average block size

average transfer rate
¼

1
n

Pn
i¼1

Bi

1
m

Pm
i¼1

Ri

Performance studies in [5] demonstrate that both

MTP and MVP are superior to RP. MVP outperforms

MTP regarding the average service time and/or vari-

ance of service time. One advantage of MVP is that it

is not sensitive to the access frequency of objects.

Data Placement across Disk Drivers

The bandwidth of a single disk is insufficient for

the multimedia applications that strive to support

thousands of simultaneous displays. One approach is

to employ a multi-disk architecture. Assuming a system

with D homogeneous disks, the data is striped across

the disks in order to distribute the load of a display

evenly across the disks [2,3,8].

The striping technique is as follows (Fig. 2). First,

the disks are partitioned into k disk clusters where each

cluster consists of d disks: k ¼ dD
d
e. An object X is

partitioned into f blocks, X1, X2,..., Xf, and the blocks

Multimedia Data Storage. Figure 2. Three clusters with two logical zones per cluster (Fig. 12 in [4]).

Multimedia Databases M 1817

M

of X are assigned to the k disk clusters in a round-robin

manner, starting with an arbitrarily chosen disk cluster

and zone, for example, zone Zj in disk cluster Ci.

In a disk cluster, each block of X, Xi, is declustered

[7] into d fragments, Xi,j, where each fragment is

assigned to a different disk in the disk cluster. As

shown in Fig. 2, the X0 block is assigned to the disk

cluster C0, and its two declustered fragments, X0,0 and

X0,1 are assigned to the zone Z0. Note that the frag-

ments of a block need to be assigned to the same zone

on the d disks in the disk cluster where the block is

assigned to. In the retrieval of objects, one zone of all

disks in a disk cluster is active per time period. To

display object X of Fig. 2, it needs to access zone Z0
in disk cluster C0, when the disk cluster is idle, followed

by accessing zone Z1 in disk cluster C1. This process

repeats to retrieve/display all blocks of the object X.

Key Applications
Multimedia information systems have emerged as an

essential component inmany application domains rang-

ing from library information systems to entertainment

technology. The data storage management is the basis

to support a continuous display of multimedia objects.

Cross-references
▶Continuous Multimedia Data Retrieval

▶Multimedia Data Buffering

▶Multimedia Resource Scheduling

▶ Storage Access Model

▶ Storage Devices

▶ Storage Management

▶ Storage Manager

▶ Storage Resource Management

Recommended Reading
1. Anderson D.P. and Homsy G. A continuous media I/O server

and its synchronization Mechanism. Computer, 24(10):51–57,

1991.
2. Berson S., Ghandeharizadeh S., Muntz R., and Ju X. Staggered

striping in multimedia information systems. ACM SIGMOD

Rec., 23(2):79–90, 1994.

3. Ghandeharizadeh S. and Kim S. Striping in Multi-disk Video

Servers. In Proc. SPIE High-Density Data Recording and

Retrieval Tech. Conf., 1995.

4. Ghandeharizadeh S., Kim S., Shahabi C., and Zimmermann R.

Multimedia Information Storage and Management, chap. 2:

Placement of Continuous Media in Multi-Zone Disks. Kluwer

Academic, 1996.

5. Ghandeharizadeh S. and Kim S.H. Design of multi-user editing

servers for continuous media. Multimedia Tools Appl.,

11(1):101–127, 2000.

6. Ghandeharizadeh S., Kim S.H., Shi W., and Zimmermann R. On

minimizing startup latency in scalable continuous media servers.

In Proc. SPIE Conf. on Multimedia Computing and Network-

ing, 1997.

7. Ghandeharizadeh S., Ramos L., Asad Z., and Qureshi W. Object

placement in parallel hypermedia systems. In Proc. 17th Int.

Conf. on Very Large Data Bases, 1991, pp. 243–254.

8. Ozden B., Rastogi R., and Silberschatz A. Disk striping in

video server environments. In Proc. Int. Conf. on Multimedia

Computing and Systems, 1996, pp. 580–589.

9. Rangan P.V. and Vin H.M. Efficient storage Techniques for

Digital Continuous Multimedia. IEEE Trans. Knowl. Data Eng.,

5(4):564–573, 1993.

10. Reddy A.L.N. and Wyllie J.C. I/O issues in a multimedia system.

Computer, 27(3):69–74, 1994.

11. Ruemmler C. and Wilkes J. An introduction to disk drive

modeling. Computer, 27(3):17–28, 1994.

12. Tewari R., Mukherjee R., Dias D.M., and Vin H.M. Design

and performance tradeoffs in clustered video servers. In

Proc. Int. Conf. on Multimedia Computing and Systems, 1996,

pp. 144–150.
Multimedia Databases

RAMESH JAIN

University of California-Irvine, Irvine, CA, USA

Synonyms
Multimodal databases

1818M Multimedia Databases
Definition
Multimedia Databases are databases that contain and

allow key data management operations with multime-

dia data. Traditional databases contained alphanumeric

data and managed it for various applications. Increas-

ingly, applications now contain multimedia data that

requires defining additional types and requires develop-

ment of operations for storage, management, access,

and presentation of multimedia data. Multimedia data-

bases must increasingly deal with issues related to man-

aging multimedia data as well as the traditional data.

Commonly, databases that manage images, audio, and

video in addition to metadata related to these and other

alphanumeric information are called multimedia data-

bases. When databases contain only one of the images,

audio, or video, they are called image databases, audio

databases, and video databases, respectively. Consider-

ing the current trend, it is likely that most databases will

slowly become multimedia databases.

Historical Background
The first in multimedia databases to appear were image

databases that started appearing in late 1980s. Research-

ers in early image databases were more concerned with

using databases for maintaining results of image proces-

sing operations to analyze and understand image analy-

sis systems. Remote sensing and medical imaging

produced images that needed to be saved and analyzed

to extract information for various applications. In most

of these applications, an environment to save images and

processing results of these images were required.

The idea ofmaking images an integral component of

databases first started appearing in early 1990s. Relation-

al data model had become the most common data

model to deal with structured data and was used to

store images as binary large objects (BLOBs) in these

databases. To deal with images as first class data objects

in images, a multilayered datamodel was proposed. This

model considered image objects, and domain objects

and suggested storage of those along with changes in

relationships among objects. Some interesting develop-

ments in early systems evolved along two independent

directions. In one direction [3], a user was considered an

integral part of the query environment and feedback

from user resulted in continuous refinement of queries

leading to finding images that were required. In the

other approach, many low level features were computed

and used for finding images using query by example

approach. These two approaches adopted distinctly
different directions, the first used domain knowledge

and the second relied only on image features without

any use of domain knowledge. The image features used

commonly are different types and characteristics of

color histograms and texture measures. These appro-

aches are commonly called content-based retrieval, to

differentiate them from metadata based retrieval. Com-

mercially image database systems appeared in tradition-

al database systems in mid 1990s. IBM used its QBIC

technology in their DB2 database system and Oracle,

Sybase, and Illustra used technology developed by a

start-up company Virage. All search engines use image

retrieval mostly based on the metadata that includes

name of the file and text in the context of the image on

a webpage.

Content based video retrieval result started in ana-

lyzing video into its constituent parts. At the lowest level

is a frame, an individual image. Images are grouped into

shots, shots into scenes, and scenes into episodes. All

this data is extracted from video and stored in the

database. Speech recognition techniques are used to

prepare the transcript of the video and are also used in

the database. Such systems found early use in TV pro-

gram production and defense applications. Virage tech-

nology was used in these applications. Current search

engines usually use metadata for searching video.

Some specialized video search companies such as

Blinkx (http://www.blinkx.com/) use predominantly

text obtained using speech recognition or closed cap-

tions in television video. News videos have been one of

themajor application domains due to their applications

as well as to good quality of audio available for these.

In audio databases, the signal is analyzed to detect

characteristics that could be used in searching musical

pieces that are similar to those. Such techniques, some-

times referred to as query by humming, were thought

to be useful in finding music of interest.

Some effort has gone into analyzing CAD databases

also for retrieving drawing and objects of interest.

Though some research has started in addressing

multimedia data, rather than just one of the above

multimedia types, most research is in either images,

video, or audio. Text or metadata available in context

of multimedia data is being considered in multimedia

database research increasingly.

Foundations
The most fundamental difference in multimedia data-

bases compared to the traditional databases is in the

Multimedia Databases M 1819

M

rich semantics of the data. Multimedia data, in addi-

tion to being lot more voluminous, is very rich in

semantics. Many queries that users are interested re-

quire understanding of the semantics of the data. The

problem becomes more complex because the semantics

of multimedia is dependent not only on the data, but

also on the specific user, the context in which the query

is asked, and other sets of data available in the system.

Early approaches to multimedia databases did not

consider the nature of multimedia data and just stored

multimedia data either as BLOBs or links to files con-

taining the data. These systems could allow only limit-

ed operations on multimedia data – usually limited to

display or rendering of the data. No other operations

or queries could be performed on this data.

With increasing use of multimedia data and applica-

tions that require use of multimedia data inmany differ-

ent ways, the nature of multimedia databases started

changing. Currently, multimedia databases are still in

their early stages. Many different concepts and approa-

ches are being tried. Some of the important emerging

ideas that are being tried in multimedia databases are

discussed below. This area is currently a very active one

and is likely to receive increasing attention both from

academic and industrial research community.

A multimedia database system is considered to

have the following four clear modules that need to

work together to provide the functionality desired

from them.

Data Analysis and Feature Extraction

A MMDB contains multimedia data but just storing

the data as a BLOB does not allow any queries related

to the content of the data. To solve this problem, data is

analyzed to extract features from the data. These fea-

tures can then be used to derive the required semantics.

The features extracted depend on the nature of the type

of the data and domain of application for the MMDB.

These features could range from low-level features that

are very general and do not depend on the application

domain such as, color histograms and texture features

for images to high level features directly tied to appli-

cation domain such as shape of the tumor.

A significant amount of research related to MMDB

is in specific media related research communities such

as audio processing or computer vision. There is strong

interest in finding efficient and effective features to

interpret multimedia data in general as well as in

specific applications.
Domain Knowledge and Interpretation

Multimedia data interpretation requires use of domain

knowledge. Moreover, the knowledge required for

interpretation of this data is not only the traditional

domain knowledge represented using ontologies and

similar techniques well developed for interpretation of

text; but also media dependent models that require

sophisticated classification approaches. In audio and

video events must be detected in the data and that

requires processing time dependent features.

There is a new emerging perspective that multime-

dia data should be considered evidence for real world

events captured using such data. This requires model-

ing events and representing knowledge about domain

events. This knowledge is then used in interpretation of

multimedia data not in silos but together. Some prog-

ress is being made in representation of events.

Interaction and User Interface

Interaction environments used in traditional databases

and search engines are not satisfactory in many applica-

tions of MMDB. Using keywords or names of objects,

some limited searches can be performed, but many

applications require concepts and ideas that require

both continuous interactions and successive refinement

of queries in what is called emergent semantics environ-

ment. Query by example including query using sketches,

humming, and some other non-textual approaches

are being developed for some applications.

Presentation of results of queries also requires dif-

ferent techniques. Multimedia data is not very suited

to list or record based presentations. Also, in many

applications different media sources must be com-

bined to create multimedia presentations with which

a user can interact to refine and re-articulate their

queries in the emergent semantics environment.

Storage, Matching, and Indexing

In most applications, the size of the multimedia data

requires special attention. Commonly the video files

can not be stored even using BLOBs. It is common to

store file names of multimedia data and compute and

store features from the data in the database. In most

applications, for each file the number of features that

should be stored becomes very large from hundreds to

hundreds of thousands for each multimedia data item.

These features are used in searching for correct results.

Unlike traditional databases, where records are

searched based on exact matches, in MMDB search

1820M Multimedia Information Discovery
requires similarity matching. It is very rare to find a

result using exact matching. Search in MMDB usually

becomes finding data that has maximum similarity

based on features. The similarity techniques [] requires

comparing the features in queried data with all the data

in a MMDB for evaluating similarity.

Indexing in MMDB for similarity computation

requires representing features in a way that can allow

fast computation for potentially similar objects. Many

high dimensional techniques have been developed for

organizing this data. The dimensionality of data,

sometimes called curse of dimensionality, poses inter-

esting challenges in such organization.
Key Applications
Multimedia data is becoming ubiquitous. Ranging

from photos to videos, multimedia data is becoming

part of all applications. Most emerging applications

now have some kind of multimedia data that must

be considered integral part of the databases. More-

over, emerging applications in all applications areas,

ranging from homeland security to healthcare contain

rich multimedia data. Based on current trend, it is safe

to assume that in very near future, much of the data

managed in databases will be multimedia. Some par-

ticular application domains where multimedia is nat-

ural and will continue dominating are entertainment,

news, healthcare, and homeland security.
Future Directions
From structured data to semi-structured data and then

to unstructured data, databases are being challenged to

deal with increasingly semantic-rich environment.

MMDB offer the biggest challenge to databases in

terms of bridging the semantic gap.

Increasingly, applications are talking about situa-

tionmodeling using real life sensor data. These applica-

tions combine live sensory data with other information

to project current situation and also predict near future

for users to take appropriate actions. These databases

will require sophisticated tools to manage streaming

multimedia data. Research efforts in these areas have

already started and are likely to accelerate significantly

in the near future.
Cross-references
▶Multimedia Data
Recommended Reading
1. Bach J., Paul S., and Jain R. An interactive image management

system for face information retrieval. IEEE Trans. Knowl. Data.

Eng., Special Section on Multimedia Information Systems.,

5(4):619–628, 1993.

2. Gupta A., Weymouth T., and Jain R. Semantic Queries with

Pictures, The VIMSYS Model. In Proc. 17th Int. Conf. on Very

Large Data Bases, 1991, pp. 3–6.

3. Jain R. Out of the Box Data Engineering Events in Heteroge-

neous Data (Keynote talk). In Proc. 19th Int. Conf. on Data

Engineering, 2003.

4. Jain R. Events and experiences in human centered computing.

IEEE Comput, 41(2):42–50, 2008.

5. Katayama N. and Shin’ichi Satoh. The SR-tree: An Index Struc-

ture for High-Dimensional Nearest Neighbor Queries. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1997,

pp. 369–380.

6. Lew M., Sebe N., Djerba C., and Jain R. Content-based multi-

media information retrieval: state of the art and challenges.

ACM Trans. Multimedia Comp., Comm., and Appl., 2(1):1–19,

2006.

7. Santini S., Gupta A., and Jain R. Emergent semantics through

interaction in Image Databases. IEEE Trans. Knowl. Data.

Eng.,13(3):337–351, 2001.

8. Santini S. and Jain R. Similarity Measures. IEEE Trans. Pattern.

Anal. and Mach. Intell, 21:9, 1999.

9. Smeulders A., Worring M., Santini S., Gupta A., and Jain R.

Image Databases at the end of the early years. IEEE Trans Pattern

Anal Mach Intell, 23(1), 2001.
Multimedia Information Discovery

▶Multimedia Information Retrieval Model
Multimedia Information Retrieval

▶ Semantic Modeling and Knowledge Representation

for Multimedia Data
Multimedia Information Retrieval
Model

CARLO MEGHINI, FABRIZIO SEBASTIANI, UMBERTO

STRACCIA

The Italian National Research Council, Pisa, Italy

Synonyms
Content-based retrieval; Semantic-based retrieval;

Multimedia information discovery

Multimedia Information Retrieval Model M 1821

M

Definition
Given a collection of multimedia documents, the

goal of multimedia information retrieval (MIR) is to

find the documents that are relevant to a user infor-

mation need. A multimedia document is a complex

information object, with components of different

kinds, such as text, images, video and sound, all in

digital form.

Historical Background
The vast body of knowledge nowadays labeled as MIR,

is the product of several streams of research, which

have arisen independently of each others and pro-

ceeded largely in an autonomous way, until the begin-

ning of 2000, when the difficulty of the problem

and the lack of effective results made it evident that

success could be achieved only through integration of

methods. These streams can be grouped into three

main areas:

The first area is that of information retrieval (IR)

proper. The notion of IR attracted significant scienti-

fic interest from the late 1950s in the context of

textual document retrieval. Early characterizations

of IR simply relied on an ‘‘objective’’ notion of topic-

relatedness (of a document to a query). Later, the

essentially subjective concept of relevance gained

ground, and eventually became the cornerstone of IR.

Nowadays, IR is synonymous with ‘‘determination of

relevance’’ [9].

Around the beginning of the 1980s, the area of

multimedia documents came into existence and

demanded an IR functionality that no classical method

was able to answer, due to the medium mismatch prob-

lem (in the image database field, this is often called the

medium clash problem). This problem refers to the fact

that when documents and queries are expressed in

different media, matching is difficult, as there is an

inherent intermediate mapping process that needs to

reformulate the concepts expressed in the medium

used for queries (e.g., text) in terms of the other

medium (e.g., images). In response to this demand, a

wide range of methods for achieving IR on multimedia

documents has been produced, mostly based on tech-

niques developed in the areas of signal processing

and pattern matching, initially foreign to the IR field.

These methods are nowadays known as similarity-

based methods, due to the fact that they use as queries

an object of the same kind of the sought ones (e.g., a

piece of text or an image) [6]. Originally, the term
content-based was used to denote these methods,

where the content in question was not the content of

the multimedia object under study (e.g., the image)

but that of the file that hosts it.

The last area is that of semantic information proces-

sing (SIP) which has developed across the information

system and the artificial intelligence communities

starting in the 1960s. The basic goal of SIP was

the definition of artificial languages that could repre-

sent relevant aspects of a reality of interest (whence

the appellation semantic), and of suitable operations

on the ensuing representations that could support

knowledge-intensive activities. Since the inception

of the field, SIP methods are rooted in first-order

mathematical logic, which offers the philosophically

well-understood and computationally well-studied

notions of syntax, semantics and inference as bases

on which to build. Nowadays, SIP techniques are most-

ly employed in the context of Knowledge Organiza-

tion Systems. In MIR, SIP methods have been used to

develop sophisticate representations of the contents

(in the sense of ‘‘semantics’’) of multimedia docu-

ments, in order to support the retrieval of these

documents based on a logical model. According to

this model, user’s information needs are predicates

expressed in the same language as that used for docu-

ments representations, and a document is retrieved if

its representation logically implies the query. A wide

range of logical models for IR have been proposed,

corresponding to different ways of capturing the un-

certainty inherent in IR, of expressing document con-

tents, of achieving efficiency and effectiveness of

retrieval [4].

To a lesser extent, the database area has also con-

tributed to MIR, by providing indexing techniques

for fast access to large collections of documents.

Initially, typical structures such as inverted files and

B-trees were employed. When similarity-based retriev-

al methods started to appear, novel structures, such

as R- or M-trees were developed in order to support

efficient processing of range and k nearest neighbors

queries [15].

Foundations
MIR is a scientific discipline, endowed with many

different approaches, each stemming from a different

branch of the MIR history. All these approaches can be

understood as addressing the same problem through a

different aspect of multimedia documents.

1822M Multimedia Information Retrieval Model
Documents can be broadly divided from a user

perspective into two main categories: simple and

complex.

A document is simple if it cannot be further decom-

posed into other documents. Images and pieces of text

are typically simple documents. A simple document is

an arrangement of symbols that carry information via

meaning, thus concurring in forming what is called the

content of the document. In the case of text, the sym-

bols are words (or their semantically significant frac-

tions, such as stems, prefixes or suffixes), whereas for

images the symbols are colors and textures. Simple

documents can thus be characterized as having two

parallel dimensions: that of form (or syntax, or symbol)

and that of content (or semantics, or meaning). The

form of a simple document is dependent on the medi-

um that carries the document. On the contrary, the

meaning of a simple document is the set of states of

affairs (or ‘‘worlds’’) in which it is true, and is therefore

medium-independent. For instance, the meaning of a

piece of text is the set of (spatio-temporally deter-

mined) states of affairs in which the assertions made

are true, and the meaning of an image is the set of such

states of affairs in which the scene portrayed in the

image indeed occurs.

Complex documents (or simply documents) are

structured sets of simple documents. This leads to the

identification of structure as the third dimension of

documents. Document structure is typically a binary

relation, whose graph is a tree rooted at the document

and having the component simple documents as

leaves. More complex structures may exist, for instance

those requiring an ordering between the children of the

same parent (such as between the chapters of a book),

or those having an arity greater than 2 (such as syn-

chronization amongst different streams of an audio-

visual document).

Finally, documents, whether simple or complex,

exist as independent entities characterized by (meta-)

attributes (often called metadata in the digital libraries

literature), which describe the relevant properties of

such entities. The set of such attributes is usually called

the profile of a document, and constitutes the fourth

and last document dimension.

Corresponding to the four dimensions of docu-

ments just introduced, there can be four categories of

retrieval, each one being a projection of the general

problem of MIR onto a specific dimension. In
addition, it is possible, and in some cases desirable,

to combine different kinds of retrieval within the same

operation.

Retrieval based on document structure does not

really lead to a genuine discovery, since the user must

have already seen (or be otherwise aware of) the sought

document(s) in order to be able to state a predicate on

their structure. Retrieval based on document profile,

from a purely logical point of view, is not different

from content-based retrieval and in fact many meta-

data schema used for document description (notable,

the Dublin Core Metadata Set) include attributes of

both kinds.

Form-based Multimedia Information Retrieval

The retrieval of information based on form addresses

the syntactic properties of documents. In particular,

form-based retrieval methods automatically create the

document representations to be used in retrieval by

extracting low-level features from documents, such as

the number of occurrences of a certain word in a text,

or the energy level in a certain region of an image.

The resulting representations are abstractions which

retain that part of the information originally present

in the document that is considered sufficient to char-

acterize the document for retrieval purposes. User

queries to form-based retrieval engines may be docu-

ments themselves (this is especially true in the non-

textual case, as this allows overcoming the medium

mismatch problem), from which the system builds

abstractions analogous to those of documents. Docu-

ment and query abstractions are then compared by an

appropriate function, aiming at assessing their degree of

similarity. A document ranking results from these com-

parisons, in which the documents with the highest

scores occur first.

In the case of text, form-based retrieval includes

most of the traditional IR methods, ranging from

simple string matching (as used in popular Web

search engines) to the classical tf-idf term weighting

method, to the most sophisticated algorithms for

similarity measurement. Some of these methods

make use of information structures, such as thesauri,

for increasing retrieval effectiveness. However, what

makes them form-based retrieval methods is their

relying on a form-based document representation.

Two categories of queries addressing text can be

distinguished:

Multimedia Information Retrieval Model M 1823

M

1. Full-text queries, each consisting of a text pattern,

which denotes, in a deterministic way, a set of texts;

when used as a query, the text pattern is supposed to

retrieve any text layout belonging to its denotation.

2. Similarity queries, each consisting of a text, and

aimed at retrieving those text layouts which are

similar to the given text.

In a full-text query, the text pattern can be specified in

many different ways, e.g., by enumeration, via a regular

expression, or via ad hoc operators specific to text

structure such as proximity, positional and inclusion

operators [9].

Queries referring to the form dimension of images

are called visual queries, and can be partitioned as

follows:

1. Concrete visual queries: These consist of full-fledged

images that are submitted to the system as a way to

indicate a request to retrieve ‘‘similar’’ images; the

addressed aspect of similarity may concern color

[2,7], texture [8,14], appearance [12] or combina-

tion thereof [13].

2. Abstract visual queries: These are artificially con-

structed image elements (hence, ‘‘abstractions’’ of

image layouts) that address specific aspects of

image similarity; they can be further categorized into:

a. Color queries: specifications of color patches,

used to indicate a request to retrieve those

images in which a similar color patch occurs

[6,7].

b. Shape queries: specifications of one or more

shapes (closed simple curves in the 2D space),

used to indicate a request to retrieve those

images in which the specified shapes occur as

contours of significant objects [6,11].

c. Combinations of the above [2].

Visual queries are processed by matching a vector of

features extracted from the query image, with each of

the homologous vectors extracted from the images

candidate for retrieval. For concrete visual queries,

the features are computed on the whole image, while

for abstract visual queries only the features indicated in

the query (such as shape or color) are represented in

the vectors involved. For each of the above categories

of visual queries, a number of different techniques have

been proposed for performing image matching,

depending on the features used to capture the aspect
addressed by the category, or the method used to

compute such features, or the function used to assess

similarity.

Semantic Content-based Multimedia Information

Retrieval

On the contrary, semantic-based retrieval methods

rely on symbolic representations of the meaning of

documents, that is descriptions formulated in some

suitable knowledge representation language, spelling

out the truth conditions of the involved document.

Various languages have been employed to this end,

ranging from net-based to logical. Description Logics

[1], or their Semantic Web syntactic forms such as

OWL, are contractions of the Predicate Calculus that

are most suitable candidates for this role, thanks to

their being focused on the representation of concepts

and to their computational amenability. Typically,

meaning representations are constructed manually,

perhaps with the assistance of some automatic tool;

as a consequence, their usage on collections of remark-

able size (text collections can reach nowadays up

to millions of documents) is not viable. The social

networking on which Web 2.0 is based may overcome

this problem, as groups of up to thousands of users

may get involved in the collaborative indexing

process (flicker).

While semantic-based methods explicitly apply

when a connection in meaning between documents

and queries is sought, the status of form-based meth-

ods is, in this sense, ambiguous. On one hand, these

methods may be viewed as pattern recognition tools

that assist an information seeker by providing associa-

tive access to a collection of signals. On the other hand,

form-based methods may be viewed as an alternative

way to approach the same problem addressed by

semantic-based methods, that is deciding relevance,

in the sense of connection in meaning, between docu-

ments and queries. This latter, much more ambitious

view, can be justified only by relying on the assump-

tion that there be a systematic correlation between

‘‘sameness’’ in low-level signal features and ‘‘sameness’’

in meaning. Establishing the systematic correlation

between the expressions of a language and their mean-

ing is precisely the goal of a theory of meaning (see, e.g.,

[5]), a subject of the philosophy of language that is still

controversial, at least as far as the meaning of natural

languages is concerned. So, pushed to its extreme

1824M Multimedia Information Retrieval Model
consequences, the ambitious view of form-based re-

trieval leads to viewing a MIR system as an algorithmic

simulation of a theory of meaning, in force of the fact

that the sameness assumption is relied upon in every

circumstance, not just in the few, happy cases in which

everybody’s intuition would bet on its truth. At pres-

ent, this assumption seems more warranted in the case

of text than in the case of non-textual media, as the

representations employed by form-based textual re-

trieval methods (i.e., vectors of weighted words)

come much closer to a semantic representation than

the feature vectors employed by similarity-based image

retrieval methods. Irrespectively of the tenability of the

sameness assumption, the identification of the alleged

syntactic-semantic correlation is at the moment a re-

mote possibility, so the weaker view of form-based

retrieval seems the only reasonable option.

Mixed Multimedia Information Retrieval

Suppose a user of a digital library is interested in

retrieving all documents produced after January

2007, containing a critical review on a successful rep-

resentation of a Mozart’s opera, and with a picture

showing Kiri in a blueish dress. This need addresses

all dimensions of a document: it addresses structure

because it states conditions on several parts of the

desired documents; it addresses profile because it

places a restriction on the production date; it addresses

form- (in particular color-) and semantic-based image

retrieval on a specific region of the involved image (the

region must be blue and represent the singer Kiri) as

well as on the whole image (must be a scene of a

Mozart’s opera); it addresses from-based text retrieval

by requiring that the document contains a piece of text

of a certain type and content. This is an example of

mixed MIR, allowing the combination of different

types of MIR in the context of the same query [10].

Emerging standards in multimedia document

representation (notably, the ISO standard MPEG21)

address all of the dimensions of a document. Conse-

quently, their query languages support more and more

mixed MIR.

Key Applications
Nowadays, MIR finds its natural context in digital

libraries, a novel generation of information systems

[3], born in the middle of the 1990s as a result of the

First Digital Library Initiative. Digital Libraries are

large collections of multimedia documents which are
made on-line available on global infrastructures for

discovery and access. MIR is a core service of any DL,

addressing the discovery of multimedia documents.

Cross-references
▶ Information Retrieval

Recommended Reading
1. Baader F., Calvanese D., McGuiness D., Nardi D., and Patel-

Scheneider P. (eds.). The description logic handbook.

Cambridge University Press, Cambridge, 2003.

2. Bach J.R., Fuller C., Gupta A., Hampapur A., Horowitz B.,

Humphrey R., Jain R., and Shu C.-F. The Virage image search

engine: an open framework for image management. In Proc. 4th

SPIE Conf. on Storage and Retrieval for Still Images and Video

Databases, 1996, pp. 76–87.

3. Candela L., Castelli D., Pagano P., Thanos C. Ioannidis Y.,

Koutrika G., Ross S., Schek H.-J., and Schuldt H. Setting the

foundations of digital libraries. The DELOS manifesto. D-Lib

Magazine, 13(3/4), March/April 2007.

4. Crestani F., Lalmas M., and van Rijsbergen C.J. (eds.). Logic and

uncertainty in information retrieval: advanced models for the

representation and retrieval of information, The Kluwer Inter-

national Series On Information Retrieval, vol. 4. Kluwer

Academic, Boston, MA, October 1998.

5. Davidson D. Truth and meaning. In Inquiries into truth and

interpretation. Clarendon, Oxford, UK, 1991, pp. 17–36.

6. Del Bimbo A. Visual Information Retrieval. Morgan Kaufmann,

Los Altos, CA, 1999.

7. Faloutsos C., Barber R., Flickner M., Hafner J., and Niblack W.

Efficient and effective querying by image content. J. Intell.

Inform. Syst., 3:231–262, 1994.

8. Liu F. and Picard R.W. Periodicity, directionality, and random-

ness: Wold features for image modelling and retrieval.

IEEE Trans. Pattern Analysis Machine Intell., 18(7):722–733,

1996.

9. Manning C.D., Raghavan P., and Schütze H. An Introduction

to Information Retrieval. Cambridge University Press,

Cambridge, 2007.

10. Meghini C., Sebastiani F., and Straccia U. A model of multime-

dia information retrieval. J. ACM, 48(5):909–970, 2001.

11. Petrakis E.G. and Faloutsos C. Similarity searching in

medical image databases. IEEE Trans. Data Knowl. Eng., 9(3):

435–447, 1997.

12. Ravela S. and Manmatha R. Image retrieval by appearance. In

Proc. 20th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 1997, pp. 278–285.

13. Rui Y., Huang T.S., Ortega M., and Mehrotra S. Relevance

feedback: a power tool for interactive content-based image re-

trieval. IEEE Trans. Circuits Syst. Video Tech., 8(5):644–655,

September 1998.

14. Smith J.R. and Chang S.-F. Transform features for texture classi-

fication and discrimination in large image databases. In Proc.

Int. Conf. Image Processing, 1994, pp. 407–411.

15. Zezula P., Amato G., Dohnal V., and Batko M. Similarity Search:

The Metric Approach. Springer, Berlin, 2006.

Multimedia Metadata M 1825
Multimedia Metadata

FRANK NACK

University of Amsterdam, Amsterdam,

The Netherlands

Synonyms
New media metadata; Hypermedia metadata; Meta-

knowledge; Mixed-media
M

Definition
Multimedia is media that utilizes a combination of

different content forms. In general, a multimedia

asset includes a combination of at least two of the

following: text, audio, still images, animation, video,

and some sort of interactivity. There are two categories

of multimedia content: linear and non-linear. Linear

content progresses without any navigation control for

the viewer, such as a cinema presentation. Non-linear

content offers users interactivity to control progress.

Examples are computer games or computer based train-

ing applications. Non-linear content is also known as

hypermedia content.

Metadata is data about data of any sort in any

media, describing an individual datum, content item,

or a collection of data including multiple content

items. In that way, metadata facilitates the understand-

ing, characteristics, use and management of data.

Multimedia metadata is structured, encoded data

that describes content and representation characte-

ristics of information-bearing multimedia entities to

facilitate the automatic or semiautomatic identifica-

tion, discovery, assessment, and management of the

described entities, as well as their generation, manipu-

lation, and distribution.

Historical Background
The first appearance of the idea of mixed media was

Vannevar Bush’s ‘‘Memex’’ system (‘‘memory extend-

er’’). In his article ‘‘As we may think’’ [1], published

1945 in the ‘‘The Atlantic Monthly,’’ he proposed a

device that is electronically linked to a library, able to

display books and films from the library and auto-

matically follow cross-references from one work to an-

other. The Memex was the first simple and elegant

approach towards multimedia information access. Fur-

ther important steps toward the use of multimedia in

digital systems in the 1960s were the introduction of
‘‘hyperlinks and hypermedia’’ by Ted Nelson [2], which

allowed the generation of non-linear presentations, the

development of the mouse by Douglas Engelbart [3],

which supported the direct manipulation of objects on a

computer screen, and the invention of the GUI, devel-

oped at Xerox Parc, which introduced media into

computing.

In particular, it was the development of the web

and digital consumer electronics that allowed comput-

ing to leave the realm of research or government orga-

nizations and enter society in large. The development

of personal computers in the 1980s enabled desktop

publishing, which further enhanced in the 1990s into

adequate manipulation software for digital media,

such as Adobe’s Photoshop and Flash, or Appel’s

Final Cut Express. Yet, only the development of new

distribution platforms in the 1990s, such as CD-ROM,

DVD, and essentially the World Wide Web (Web) in

combination with the rise of media technologies, such

as the digital photo and video camera, or midi and

MP3 player, stimulated the swift growth of digital

media in mixed form. The growing amount of mixed

media available to the public, and more recently

provided by the public in form of user-generated con-

tent, requested for effective access mechanisms, which

resulted in a steady development of content descrip-

tion technologies, mainly based on metadata.

Over the years, a number of metadata standards

have been developed, which address various aspects of

multimedia data, such as

� Low-level features: usually automatically extracted

from the content.

� Semantic features: describing high-level concepts in

form of key-word, ratings and links.

� Structure and identification: describing the spatial

and temporal arrangement of one or more multi-

media assets.

� Management: describing the information gathered

during the life cycle of the multimedia asset, such as

information about reuse, archiving, and rights

management.

The major organizations who contributed to the devel-

opment of standards are: the Dublin Core Metadata

Initiative [4], theWorldWideWeb Consortium (W3C)

[5], the Society for Motion Pictures and Television

Engineering (SMPTE) [6], the Moving Picture Expert

Group (MPEG) [7], the TV-Anytime Consortium [8],

and the International Press Telecommunications

1826M Multimedia Metadata
Council (IPTC) [9]. The common definition language

between all theses languages is in one or the other way

the Extensible Markup Language (XML) [10], defined

by W3C.

The two major approaches towards open standards

for multimedia metadata, with respect to content de-

scription and distribution for multimedia assets, were

certainly provided by the W3C and MPEG, a working

group of ISO/IEC charged with the development of

video and audio encoding standards.

The W3C provided, besides the well known mark-

up languages HTML, XHTML, CSS, SVG, in particular

the Synchronized Multimedia Integration Language

(SMIL). SMIL enables simple authoring of interactive

audiovisual presentations, which integrate streaming

audio and video with images, text or any other media

type. SMIL [11] is an HTML-like language facilitating

the authoring of a SMIL application by using a simple

text-editor. SMIL 1.0 received recommendation status

in 1998, SMIL 2.0 in 2005, and SMIL 3.0 is under

development while this article is written.

Work in the Media Annotation Work has started in

September 2008. This working group (http://www.w3.

org/2008/01/media-annotations-wg.html) is chartered to

provide a simple ontology to support cross-community

data integration of information related to media

objects on the Web, as well as an API to access the

information. In addition there is the Media Fragments

Working Group (http://www.w3.org/2008/WebVideo/

Fragments/), which address temporal and spatial

media fragments in the Web using Uniform Resource

Identifiers (URI). Both groups should finish their work

by June 2010.

MPEG’s contribution to multimedia metadata are

certainly the three standards MPEG-4 [12], MPEG-7

[13] and MPEG-21 [14].

With MPEG-4 the group entered the realm of

media content, arisen due to the growing need for

content manipulation and interaction, and expanded

MPEG-1 to support video/audio ‘‘objects,’’ 3D con-

tent, low bitrate encoding and support for Digital

Rights Management. With respect to multimedia

metadata MPEG4 also provides content authors with

a textual syntax for the MPEG-4 Binary Format for

Scenes (BIFS) to exchange their content with other

authors, tools, or service providers. First, XMT is an

XML-based abstraction of the object descriptor frame-

work for BIFS animations. Moreover, it also respects

existing practice for authoring content, such as SMIL,

HTML, or Extensible 3D (X3D) by allowing the
interchange of the format between a SMIL player, a

Virtual Reality Modeling Language (VRML) player,

and an MPEG player through using the relevant lan-

guage representations such as XML Schema, MPEG-7

DDL, and VRML grammar. As such, the XMTserves as

a unifying framework for representing multimedia

content where otherwise fragmented technologies are

integrated and the interoperability of the textual for-

mat between them is facilitated.

In the mid 1990s, the need for retrieving and

manipulating digital media content form exploding

digital libraries requested new ways of describing mul-

timedia content on deeper semantic granularity, which

resulted in MPEG-7, the multimedia content descrip-

tion standard. MPEG-7 provides a large set of descrip-

tors and description schemata for video (part 3), audio

(part 4) and multimedia content, including its pre-

sentation (part 5). All schemata are described in

the Description Definition Language (DDL), which is

modeled on XML-Schema, a schemata language devel-

oped by the WC3. Since MPEG-7 tries to establish the

richest and most versatile set of audio-visual feature

description structures by embracing standards such as

SMPTE, or PTC, a 1:1 mapping to the text-oriented

XML schema language could not be achieved (see [15]

for a detailed description of existing DDL problems).

However, the goal to be a highly interoperable standard

among well-known industry standards and related

standards of other domains – such as the area of digital

libraries and ontologies using RDF or Dublin Core,

was a useful exercise.

The beginning of the 21st century established an

even faster exchange of multimedia data via the web, as

higher bandwidth as well as access to high quality data

became a commodity. The media businesses, such as

the record or film industry, feared, due to peer-to-peer

technology, for their markets and requested strict digi-

tal rights management enforcement. MPEG reacted

with MPEG-21: MPEG describes this standard as a

multimedia framework.

Both the W3C as well as MPEG provide open

standards, which are able to describe adaptive content,

represented in a single file that can be targeted to

several platforms, such as mobile, broadband or the

web. Both organizations compete with highly success-

ful but rather proprietary industry standards, such as

Adobe’s Flash standard.

The latest trend on multimedia metadata also

reflects the trend towards user-generated content,

namely social tagging. A tag is a keyword or term

Multimedia Metadata M 1827

M

associated with or assigned to a piece of information (a

picture, a map, a video clip etc), which enables key-

word-based classification and search. The advantage of

tagging is its ease of use. This approach, though highly

popular (e.g., in YouTube [16] and Flickr [17]), carries

serious problems. Typically there is no information

about the semantics of a tag, no matter if it is a single

tag or a bag of tags. Additionally, different people may

use drastically different terms to describe the same

concept. This lack of semantic distinction can lead to

inappropriate connections.

Foundations
The essential models describing the internal structures

of multimedia compositions and the related produc-

tion processes are: the Dexter Hypertext Reference

Model [18], the Amsterdam Hypermedia Model [19],

HyTime [20], the reference model for intelligent multi-

media presentation systems (IMMPSs) [21], MPEG-4,

SMIL, and the model of Canonical processes of media

production [22].

The basic five functionalities that every multimedia

system needs to address are: media content, layout,

timing, linking and adaptivity.

Media Content

Readers who are interested in the fundamentals of the

single media elements (i.e., their low-level as well as

high-level feature descriptions) are referred to the arti-

cles on audio metadata, image metadata and video

metadata in this encyclopedia.

Layout

Layout deals with the arrangement and style treatment

of media on a screen. This means that layout deter-

mines how a particular media item is presented at a

point in time and how it is rendered when activated. A

multimedia presentation layout describes ‘‘the look

and feel’’ of a composite of all of its media components.

Thus, layout adds the semantic organization that

enables a viewer to quickly and efficiently absorb the

multiple content streams in a multimedia presentation.

There are in general three approaches towards mul-

timedia layout, namely

1. Embedded Layout, where all layout decisions are

resolved at media creation time and then per-

formed by the presentation. Here the control lies

ultimately by the designer of the presentation and

there is no control, besides the required rendering,

at the side of the media player.
2. Dynamic Layout, where all layout is dynamically

determined by the user’s media player, depending

on the multimedia document structure or the

timeline of the presentation. Here, the actual visual

design is mainly in the hand of the media player

rather than the presentation’s designer.

3. Compositing Layout, which decouples media

content from media placement. Here, a presenta-

tion is understood as a composite of relatively

autonomous objects, where each uses embedded

or dynamic layout models, which are then posi-

tioned into a arrangement by a presentation

designer.

The essential classes and their attributes that de-

scribe a layout are:

� A root and several region elements, which establish

the primary connection between media objects ele-

ments and the layout structure.

� Basic layout classes, such as referencing (region

name and ID), scaling (z-index fit), positioning

(width, height, top, left, bottom, right), back-

ground (back ground color, show back ground),

and audio (sound level).

Timing

Timing deals with issues on how elements in a multi-

media presentation get scheduled. Moreover, once an

element is active, it needs to be determined how long it

will be scheduled. The aim in a multimedia presenta-

tion is to go beyond the timing concepts known from

audio and video objects.

Media timing:Media objects in multimedia presen-

tations can either be discrete (e.g., text, with no implicit

duration) or continuous (e.g., a music object, with an

explicit duration defined within its encoding).

Presentation timing : A reference list to one or

more media objects, describing timing primitives

that determine the start and end time relative to one

another.

There are basically 4 different ways of defining the

active period of an object:

1. Implicit duration, as defined when the object was

created (e.g., length of a video in sec).

2. Explicit duration, which describes the actual dura-

tion of the media object in the application (e.g., the

actual duration might be shorter or longer than the

implicit duration).

3. Active duration, which allows repetitions or other

temporal manipulations of a media object.

1828M Multimedia Metadata
4. Rendered duration, which describes the persis-

tence of a media object at the end of its active

duration.

There are various ways to describe time in values, such

as full clock value (e.g., 7:45:23.76, where the last two

items present ms), partial clock values (any sort of

short base notation), time count values (numbers

with a additional type string, e.g., 10S for ‘‘10 s’’),

and time context values, which are represented in

three parts: a date field (YYY:MM:DD), a time field,

and a time zone field.

Usually, a type of synchronization is required, as

media objects start in relation to the container they

belong to. A child element in a parallel container starts

relative to the start time of the parent, whereas child

elements in a sequential container are started relative

to the end of their predecessor.

Linking

Linking defines and activates a non-linear navigation

structure within and across documents.

The simplest form of a link is a pointer. The pointer

defines an address of a document (e.g., a URI) and,

optionally, an offset within the document. The element

that identifies that a link exists is called a source an-

chor. If the anchor points to anything other than the

beginning of a document, this anchor is called a desti-

nation anchor. The typical elements in HTML for

linking are the<a>element, to define the source

anchor and link address, and the <area> </area>

element, which is roughly the same, but it is applied

only to a part of a media object. The basic linking

attributes define the uri (href), the source and destina-

tion state (e.g., play or pause), the external or target

state (e.g., true or false, the display environment) and

the impact of link activation on the source and desti-

nation presentation (e.g., as non-negative percentage).

Both source and destination anchor need to express

temporal moments, as their activation depends on the

temporal behavior of the application. The three

key temporal moments to be addressable are: the des-

tination is already active, the destination is inactive,

and the destination is inactive and the begin time is

unresolved.

Finally, the link needs some attribute that describe

geometry, as the linking into a region of a media item is

possible. The core attributes are shape (values can be

rectangle, circle or poly). The size and position of the
anchor are defined via the origin of the coordinate

space (the 0.0 point) and the resolution of the display

device (support of rendering).

Adaptivity

The aim of multimedia presentations is usually to

adapt them to the needs of the user, which might

address either the runtime environment available to

the user, or the personalized presentation wishes by the

user.

There are four techniques to customize informa-

tion in a presentation:

1. Minimum set: The multimedia presentation

assumes a minimum set of performance, and de-

vice and user characteristics and the presentation

document is designed based on this lowest denom-

inator set (manageable solution but usually no

compelling content)

2. Multiple presentation set : Each presentation repre-

sents a quality level, which the user selects on run-

time (this one-size-fits-all approach is a dead end

for the current trend towards portable and quality

mix devices).

3. Over-specified presentation: All of the potential

media items are available and it is the media player

at the client side which makes a selection at run

time (demands too much during the making

phase).

4. Control presentation: The presentation contains

pointers to all potential alternatives and only

those used by the user would be sent from the

server to the client (the advantage is that the pre-

sentation does not need to send copies of each of

the various data streams across the network).

The essential elements a system would need to

provide any of the above techniques are:

� Switch: which establishes a collection of alternatives

for an interactive multimedia presentation;

� System control attributes, such as sys_language, sys_-

captions, sys_bitrate, sys_screensize, syt_cpu, etc.

Key Applications
Multimedia metadata is useful for the creation, manip-

ulation, retrieval and distribution of mixed media

sources within domains, such as

� The creative industries (e.g., fine arts, entertain-

ment, commercial art, journalism, games, etc)

Multimedia Presentation Databases M 1829
� The entertainment industries (e.g., special effects in

movies and animations)

� Education (e.g., in computer based training courses

and computer simulations, military or industrial

training)

� Mathematical and scientific research (e.g., model-

ing and simulation)

� Medicine (e.g., virtual surgery or simulations of

virus spread, etc)
M

Cross-references
▶Audio Metadata

▶ Image Metadata

▶Video Metadata

Recommended Reading
1. Bordegoni M., Faconti G., Maybury M.T., Rist T., Ruggieri S.,

Trahanias P., and Wilson M. A standard reference model

for intelligent multimedia presentation systems (1997). Avail-

able at http://kazan.cnuce.cnr.it/papers/abstracts/9708.IJCAI97.

Immps.html

2. Bush V. As we may think. Atl. Mon., 176(1):101–108, 1945.

3. Engelbart D. (1968). Available at http://sloan.stanford.edu/

mousesite/1968Demo.html

4. Flickr. Available at http://www.flickr.com/

5. Gronbaek K. and Trigg R.H. Design issues for a dexter-based

hypermedia system. Commun ACM., 37(2):41–49, 1994.

6. Hardman L., Bulterman D.C.A., and van Rossum G. The amster-

dam hypermedia model: adding time and context to the dexter

model. Commun. ACM., 37(2):5062, February 1994.

7. Hardman L., Obrenovic Z., Nack F., Kerherve B., and Piersol K.

Canonical processes of semantically annotated media produc-

tion. Multimedia Syst., 14(6):427–433, 2008.

8. Information processing – Hypermedia/Time-based structuring

language (HyTime) – 2nd ed., ISO/IEC 10744:1997, WG8 PROJ-

ECT: JTC1.18.15.1. Available at http://www1.y12.doe.gov/cap-

abilities/sgml/wg8/document/n1920/

9. MPEG-4: ISO/IEC JTC1/SC29/WG11 N4668 March 2002. Avail-

able at http://www.chiariglione.org/mpeg/standards/mpeg-4/

mpeg-4.htm

10. MPEG-21: ISO/IEC JTC1/SC29/WG11/N5231 Shanghai,

October 2002. Available at http://www.chiariglione.org/mpeg/

standards/mpeg-21/mpeg-21.htm

11. MPEG-7: ISO/IEC JTC1/SC29/WG11N6828 Palma de Mallorca,

October 2004. Available at http://www.chiariglione.org/mpeg/

standards/mpeg-7/mpeg-7.htm

12. Nack F., van Ossenbruggen J., and Hardman L. That obscure

object of desire: multimedia metadata on the web (Part II). IEEE

MultiMedia, 12(1):54–63, 2005.

13. Nelson T.H. A File Structure for the Complex, the Changing,

and the Intermediate. In The NewMedia Reader, NohaWardrip-

Fruin & Nick Montfort. The MIT Press, Cambridge, MA, 2003,

pp. 133–146.

14. SMIL. Available at http://www.w3.org/AudioVideo/
15. The dublin core metadata initiative. Available at http://www.

dublincore.org/

16. The extensible markup language (XML). Available at http://

www.w3.org/XML/

17. The international press telecommunications council [IPTC).

Available at http://www.iptc.org/pages/index.php

18. The moving picture expert group (MPEG). Available at http://

www.chiariglione.org/mpeg/

19. The society for motion pictures and television engineering

(SMPTE). Available at http://www.smpte.org/home/

20. The TV-anytime consortium. Available at http://www.tv-

anytime.org/

21. Youtube. Available at http://www.youtube.com/
Multimedia Presentation Databases

V. S. SUBRAHMANIAN, MARIA VANINA MARTINEZ,

DR. REFORGIATO

University of Maryland, College Park, MD, USA

Synonyms
Multimedia presentation databases

Definition
A multimedia presentation consists of a set of media

objects (such as images, text objects, video clips, and

audio streams) presented in accordance with various

temporal constraints specifying when the object should

be presented, and spatial constraints specifying where

the object should be presented on a screen. Today,

multimedia presentations range from the millions of

PowerPoint presentations users have created the world

over, to more sophisticated presentations authored

using tools such as Macromedia Director. Multi-

media presentation databases provide the mechanisms

needed to store, access, index, and query such collec-

tions of multimedia presentations.

Historical Background
Multimedia presentations have been in existence since

the 1980s, when PowerPoint emerged as a presentation

paradigm and animated computer video games started

gaining popularity. Both of these paradigms allowed a

multimedia presentation author to specify a set of

objects (collections of images, video, audio clips, and

text objects) and then specify how these objects should

be presented. These objects could be presented in

accordance with some temporal constraints that de-

scribe when and in conjunction with which other

1830M Multimedia Presentation Databases
objects a given object should be presented. As an in-

creasing number of authoring frameworks came into

being, accompanied by an increasing need to create,

collaborate on, and share presentations, the notion of

multimedia presentations as a programming paradigm

gradually came into existence.

Buchanan and Zellweger [6] were one of the first to

recognize the need to treat multimedia presentations

in a rigorous framework. They recognized that presen-

tations consisted of a set of media objects, and they

proposed presenting these objects in accordance with

some very simple precedence constraints.

Later, Candan et al. [8,7] extended the framework

of Buchanan and Zellweger by describing a multimedia

presentation as a set of media objects together with a

very rich, but polynomially computable set of spatial

and temporal constraints defining their presentation.

They also showed how to help a presentation author

identify when their presentation specifications were

inconsistent and to minimally modify the presentation

constraints so that consistency was restored. Related

work by their co-authors showed how to deliver these

presentations across a network in the presence of

spatial and temporal constraints.

Adali et al. [1] introduced a relational model of

data to support interactive multimedia presentations

and define a variant of the relational algebra that allows

users to dynamically query and create new presenta-

tions using parts of existing ones, generalizing select,

project, and join operations. Lee et al. [11] present a

graph data model for the specification of multimedia

presentations, together with two icon-based based

graphical query languages for multimedia presenta-

tions and the GCalculus (Graph Calculus), a relational

calculus-style language that formalizes the use of tem-

poral operators for querying presentation graphs that

takes the content of a presentation into account. [5,4]

propose methods to present the answer of a query to a

multimedia database as a multimedia presentation. [9]

focuses on specializations and improvements of the

above methods when querying databases consisting

solely of PowerPoint information.

[10] treats multimedia presentations like a tempo-

ral database, and supports querying and reuse of parts

of existing presentations. It considers algebraic opera-

tors such as insert, delete, and join, as well as user

interface operations such as Fast Forward/Rewind,

Skip, and links to other presentation databases, etc.
[13] focuses on indexing and retrieving complex

Flash movies. A generic framework called FLAME

(FLash Access and Management Environment) based

on a 3-layer structure is presented to address this

problem. This framework mines and understands the

contents of the movies to address the representation,

indexing and retrieval of the expressive movie ele-

ments, including heterogeneous components, dynamic

effects, and the way in which the user can interact with

the movie.

Foundations
A multimedia presentation consists of a set O of media

objects and a set of constraints on the presentation of

objects in O. A media-object o is a file such as an image

file, a video file, a text file, or an audio file. Each type of

file is assumed to have an associated player. For exam-

ple, a video file may have QuickTime or the Windows

Media players as its associated player.

The constraints associated with o fall into two

categories: temporal and spatial constaints.

On the temporal side, each object o in O has two

associated variables, st(o) and et(o) denoting, respec-

tively, the start time and end time at which media

object o is presented using its associated players. The

temporal specification associated with a presentation is

a set of constraints of the form

x � y <¼ c

where x, y are variables of the form st(oi), et(oj) and c is

some constant. For example, if o is a video file, and

there exists the constraint et(o’) – st(o) = 0, then this

means that the video object o should start playing as

soon as object o’ finishes being played out.

Likewise, on the spatial side, each object o in O has

four variables llx(o), lly(o), urx(y), ury(o) denoting the

x coordinate of the lower left corner of object o, the y

coordinate of the lower left corner of object o, and

likewise for the upper right corner’s x and y coordi-

nates. [8] presents algorithms to check the consistency

of spatial and temporal constraints, and to minimally

modify the spatial/temporal constraints when they are

inconsistent. In addition, each object o in O has an

associated set of properties that can be stored (and

queried) using any object oriented database manage-

ment system.

A multimedia presentation database M consists of a

set of multimedia objects (and their associated spatial

Multimedia Presentation Databases M 1831

M

and temporal constraints). [1] defines methods to

query such multimedia presentation databases.

Consider the simplest operation: selection. Sup-

pose the query is ‘‘Select all objects o in M such that

C[o] holds and such that st(o) > 10.’’ In this case, the

goal is to look at each multimedia presentationm inM,

and eliminate all objects o fromm such that st(o) < 10.

Also, it is necessary to eliminate all remaining objects

such that C[o] does not hold. The objects that survive

this elimination process must be presented in accor-

dance with the original set of temporal and spatial

constraints present in m. If m* denotes the modifica-

tion of m in this way, then sC(M) = {m* | m in M}.

In addition, [1] defines other operations that allow

videos to be concatenated together using various chro-

matic composition operators (such as smoothing, fad-

ing, etc.), methods to perform joins across videos, and

methods to execute other kinds of relational style

operations.

Key Applications
There are numerous possible applications for multi-

media presentation databases. A simple application is

an engine to query PowerPoint presentations, of which

millions exist in the world today. [9] proposes a Power-

Point database query algebra.

Another application is in the area of digital rights

management. Suppose a major record company wants

to identify all multimedia documents on the web that

contain a clip of their copyrighted music. This corre-

sponds to a select query on all multimedia documents

on the web. The result would be a set of multimedia

documents, some of which might infringe on the copy-

right holder’s rights. The same might apply to online

video on sources such as YouTube where it is not

uncommon to find copyrighted material. The ability

for an entertainment company to find gross violations

of their copyright by searching through YouTube

archives is critical.

Future Directions
As video games become ever more common, and as

virtual worlds such as Second Life become increasingly

popular with users, the ability to query games and

avatar based systems will become increasingly

important.

In addition, methods to index multimedia presen-

tation databases are in their very infancy. Taking into
account the graph based nature of presentation data-

bases such as those in [1,11,2], it is important to

note that methods to index graphs may have a role

to play. However, multimedia presentations are more

complex than labeled directed graphs because presen-

tation constraints can potentially be satisfied in many

different ways.

Cross-references
▶ Spatial Constraints

▶Temporal Constraints

Recommended Reading
1. Adali S., Sapino M.L., and Subrahmanian V.S. A multimedia

presentation algebra. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1999, pp. 121–132.

2. Adali S., Sapino M.L., and Subrahmanian V.S. Interactive multi-

media presentation databases, I: algebra and query equivalences.

Multimedia Syst., 8(3):212–230, 2000.

3. Bailey B., Konstan J.A., Cooley R., and Dejong M. Nsync – a

toolkit for building interactive multimedia presentations. In

Proc. 6th ACM Int. Conf. on Multimedia, 1998, pp. 257–266.

4. Baral C., Gonzalez G., and Nandigam A. SQL+D: extended

display capabilities for multimedia database queries. In Proc.

6th ACM Int. Conf. on Multimedia, 1998, pp. 109–114.

5. Baral C., Gonzalez G., and Son T.C. Design and implementation

of display specification for multimedia answers. In Proc. 14th

Int. Conf. on Data Engineering, 1998, pp. 558–565.

6. Buchanan M.C. and Zellweger P. Automatically generating con-

sistent schedules for multimedia documents. Multimedia Syst.,

1(2):55–67, 1993.

7. Candan K., Lemar E., and Subrahmanian V.S. View management

in multimedia databases. VLDB J., 9(2):131–153, 2000.

8. Candan K.S., Prabhakaran B., and Subrahmanian V.S. CHIMP:

a framework for supporting distributed multimedia document

authoring and presentation. In Proc. 4th ACM Int. Conf. on

Multimedia, 1996, pp. 329–340.

9. Fayzullin M. and Subrahmanian V.S. An algebra for powerpoint

sources. Multimedia Tools Appl. J., 24(3):273–301, 2004.

10. Jiao B. Multimedia presentation database system. In Proc. 8th

ACM Int. Conf. on Multimedia, 2000, pp. 515–516.

11. Lee T., Sheng L., Bozkaya T., Balkir N.H., Özsoyoglu Z.M.,

and Özsoyoglu G. Querying multimedia presentations based

on content. In Readings in Multimedia Computing and Net-

working, K. Jeffay, H. Zhang (eds.). Morgan Kaufmann

Publishers, San Francisco, CA, USA, 2001, pp. 413–437.

12. Wirag S. Modeling of adaptable multimedia documents. In Proc.

Interactive Distributed Multimedia Systems and Telecommuni-

cation Services, International Workshop, LNCS vol. 1309, 1997,

pp. 420–429.

13. Yang J., Li Q., Wenyin L., and Zhuang Y. Content-based

retrieval of FlashTM movies: research issues, generic frame-

work, and future directions. Multimedia Tools Appl.,

34(1):1–23, 2007.

1832M Multimedia Resource Scheduling
Multimedia Resource Scheduling

JEFFREY XU YU

Chinese University of Hong Kong, Hong Kong, China

Definition
Multimedia information systems are different from

the traditional information systems, where continu-

ous media (audio/video) requests special storage and

delivery requirements due to (i) the large transfer rate,

(ii) the storage space required, and (iii) the real-time and

continuous nature. Due to the special characteristic of

continuous media, different types of scheduling are pro-

posed, namely, the disk scheduling and stream schedul-

ing. On one hand, the disk scheduling is to tackle both

the large storage space and the corresponding large

transfer rate requirements. On the other hand, the

stream scheduling is to schedule requests from multiple

clients, in order to minimize the delay in satisfying the

requests. It attempts to support as many requests as

possible, and at the same time, keep the real-time and

continuous nature.
Multimedia Resource Scheduling. Figure 1. Round

length and delay between reads (Fig. 3 in [9]).
Historical Background
Continuous media adds additional requirements to

the traditional information systems. In order to satisfy

these new requirements, new scheduling algorithms

are proposed.

Disk scheduling is designed to achieve the low ser-

vice latency and high disk throughput requirements

[14]. Continuous media, such as audio and video, adds

additional real-time constraints to the disk scheduling

problem. There are two categories of disk schedu-

ling, namely, single disk scheduling and multiple disk

scheduling. The disk scheduling algorithms, for continu-

ous media, can possibly adapt one of the conventional

disk scheduling strategies, which include round-robin,

SCAN [14], and EDF [12]. For single disk scheduling

for continuous media, there are SCAN-EDF [13], and

sorting-set [8,16] scheduling strategies. For multiple disk

scheduling for continuous media, multiple disks can be

accessed in parallel. The increased parallelism is mainly

used to support more streams. There are two categories

of multiple disk scheduling strategies, which are stripe

data across the disks and replicate data across the disks. In

additional, there are three schema for accessing striped

data, which are called, striped retrieval, split-striped re-

trieval [15], and cyclic retrieval [2,3].
Stream scheduling (or session scheduling) is desig-

ned to effectively allocate and share server and network

resources. It aims at supporting as many clients as possi-

ble simultaneously, within the limited server and net-

work resources, by assigning multiple client requests to

a shared data stream. Three policies are proposed

to effectively select the multimedia to be shared: FCFS,

MQL, and FCFS-n [10]. In [6,7], sharing is studiedwhen

a client pauses/resumes while viewing a long video.

A two-level hierarchical scheduling policy is proposed

to deal with time-varying load, such as the load at peek

time and off-peek time, regarding the preservation of

resources for the future requests [1]. In the two-level

hierarchical scheduling, at the higher level, it focuses on

channel allocation with consideration of how many

requests will come in near future; at the lower level, it

focuses on selecting clients to be served with consider-

ation of the clients waiting time.

Foundations
There are mainly two types of resource scheduling in

a multi-stream environment: (i) disk scheduling, and

(ii) stream scheduling.

Disk Scheduling

In a multi-stream environment, multiple users are

requesting to retrieve N continuous multimedia data

streams in a similar time period. The system will serve

each of theN data streams in rounds. In other words, in

any i-th round, the system will serve all the requested

data streams N by reading enough data for all the

requests to be consumed until the next i+1-th round.

Because there are differences between the transfer rate

and the consumption rate, a scheduling strategy needs

to deal with the differences between the transfer rate

and the consumption rate.

Let rc and rt be the rate of display consumption of a

data stream and the rate of data transfer from disk,

respectively. And let pmax and dmax be the maximum

time interval in any round and the maximum time

interval between two consecutive reads for any data

stream, respectively. Figure 1 illustrates the ideas on

Multimedia Resource Scheduling M 1833

M

round-length and delay between two consecutive disk

reads. In order to have enough data to be consumed by

a display, at the consumption rate of rc, in each round

of the time interval at most pmax (to prevent starvation

until the next round), the amount of data it needs is at

least rc � pmax. The dmax shows the possible delay, called

startup delay, to start consuming a data stream, which

implies the time interval it needs to wait if it misses in

the current round.

Consider the disk scheduling for multiple data

streams on a single disk. The round-robin algorithm

retrieves data for each data stream in a fixed order in

every round. Due to the fixed order, the maximum

startup delay (dmax) is similar to pmax. The SCAN

algorithm [13] attempts to read more disk blocks

while moving the disk head over the disk, and retrieve

the requested blocks when the disk header passes

over them [14]. The main advantages of the SCAN

algorithm are: (i) it reduces the seek time to move

the disk header from one location to another in order

to read next disk block, and (ii) it maximizes the

throughput of disk accesses. But, because the order of

serving each data stream is not fixed, the startup delay

for a given data stream can be larger up to 2pmax. The

SCAN-EDF algorithm [13] processes the data stream

requests with the earliest deadline first, using the idea

discussed in EDF [12] (Earliest-Deadline-First), and

processes the requests, that be shared, using the

SCAN algorithm. Note that the SCAN-EDF algorithm

different from the other strategies, is not designed as a

round-based algorithm. The sorting-set algorithm

[8,16] is designed in a way where round-robin and

SCAN are treated as special cases of it. In brief, in the

sorting-set algorithm, each round is further divided

into several time slots. Each time slot is conceptually

considered as a sorting set (or simply set). If a round is

divided into m time slots, there are m time slots, and

therefore there are m sorting sets, namely, set1, set2,...,

and setm. All the sorting sets are served in a fixed order in

each run. When there is a request to retrieve a multime-

dia data stream, the requested data stream is assigned to

a sorting set. If the entire round is treated as a single time

slot, the sorting-set algorithm behaves like the SCAN

algorithm. If the requested data stream is assigned to a

unique sorting set, the sorting-set algorithm behaves

like the round-robin algorithm.

For multiple disks accessing in parallel, there are

two main categories of multiple disks scheduling stra-

tegies, namely, stripe data across the disks and replicate
data across the disks. There are also different schema to

retrieve the striped data: striped retrieval, split-striped

retrieval, and cyclic retrieval. In the striped retrieval,

entire stripes are retrieved in parallel. The split-stripe

retrieval [15] retrieves some consecutive units of an

entire stripe rather than the entire stripe at one time.

The cyclic retrieval [2,3] is designed to retrieve units of

stripes for more than one data stream. The main idea

behind it is to read a small portion of data for a data

stream frequently. As comparison with the other

striped approaches, cyclic retrieval does not need a

large buffer space. Unlike the stripe based algorithms,

data streams can be replicated across disks where

each disk is treated individually and independently.

If a data stream is requested frequently, it can be

replicated in multiple disks.

Stream Scheduling

Continuous data stream retrieval needs to be guaran-

teed by reserving sufficient resources. The resources are

referred to as logical channels (or simply channels).

Stream scheduling policies need to increase the server

capacity, or in other words, to increase the number of

continuous data stream requests to be served with the

limited number of channels. The stream scheduling

needs to consider several facts regarding the possibility

of sharing. There are popular videos which are viewed

by many clients most of the time during a certain time

period. Several clients may view the same video but

start viewing at different times in a short time interval.

A client may pause and then resume when viewing a

long multimedia (video) at any time. The time interval

between such pause and resume is not known, which

can be short or long. A client may also change to

another video after the pause.

Data stream sharing serves multiple clients by a

single I/O stream, which is also referred to as batching

of requests [4,6]. A batching factor indicates how many

clients can share a single I/O stream. In order to effec-

tively support continuous multimedia requests, some

requests need to be delayed, in order to be batched

with other requests. There are three batching policies:

FCFS, MQL, and FCFS-n [10]. With the FCFS (First

Come First Served) policy, it queues all requests into a

single queue. When there is a channel available, the

FCFS policy selects the video, which is requested by the

first client in the queue, to be served, in a first come

first served fashion. If there are other requests in the

queue that request the same video, they will be served

1834M Multimedia Resource Scheduling
by sharing the I/O stream. The MQL (Maximum

Queue Length) policy maintains a queue for a

requested video. If there are n videos to be requested,

there will be n queues. The MQL policy chooses the

video with the maximum queue length to be served,

when a channel becomes available. With the MQL

policy, the videos with a small number of requests

(short queue) may not be served. Therefore, unlike

FCFS which is a fair policy, the MQL policy is seen as

unfair to the videos that are not requested by many

clients. The FCFS-n policy is similar to the FCFS poli-

cy, except that the n hottest videos are assigned to

dedicated streams. A dedicated stream will be served

in a batching window in turn, and the remaining

videos, that are not assigned to a dedicated stream,

are served following the FCFS policy. With the policies,

the batching factor can be increased, but the amount

of waiting time for a client to wait may be increased

as well.

Sharing a data stream is affected by the fact that a

client may pause. A new channel may need to be allo-

cated when the client resumes. Assume that a clientmay

resume shortly after the pause, the system may main-

tain some channels (contingency channels), which can

improve resource utilization. The system needs to guar-

antee that the delay between the receipt of a resume

request from a client and playback is small in order to

assure client satisfaction [4,6]. Figure 2 illustrates the

scheduling with contingency channels for VCR control

operations (pause/resume) [6,7]. The admission con-

trol policy determines the acceptance of a new request.
Multimedia Resource Scheduling. Figure 2. Channel

states under contingency policy (Fig. 2 in [5]).
The scheduling policy determines which request to be

served on the available channel, in order to maximize

certain performance objectives [6]. When there is a

pause request from a client, the admission control

and scheduling policy determines if the client is the

only client viewing the multimedia stream. If it is, the

channel is freed and returned to either the free channel

pool or the contingency pool. A certain number of

contingency channels are maintained in the system.

When there is a resume request from a client, the

scheduling policy checks if there is another request

being served within a predetermined time window, in

order to maximize the possibility of sharing. If there is

another request being served but is beyond the prede-

termined time window, the scheduling policy tries to

use another contingency channel where possible. Oth-

erwise, it will request a free channel with higher prior-

ity when such a free channel becomes available.

The arrival rate of requests to multimedia system

may vary with the time of a day [11], peek time and

off-peek time. The scheduling policy also needs to

address the issues of time-varying load. Note: the opti-

mal policy at the current may not be the optimal when

the load changes shortly. A two-level hierarchical

scheduling policy is proposed to deal with such load

fluctuations [1]. The high-level scheduler controls

channels allocation, whereas the low-level scheduler

controls the clients selection to be served. Three high

level policies are proposed to control channel alloca-

tion rate [1]: on-demand allocation, forced-wait, and

pure rate control. The on-demand allocation allocates

channels to requests when there are channels available.

Under this policy, the waiting time for new requests

may be long, which may cause clients to change from

one video to another to view at high possibility. The

forced-wait policy, as the name implies, forces the first

request to a data stream to wait for up to a certain time

(minimum wait time). The minimum wait time is a

critical parameter, and can be difficult to be selected

in a dynamic environment where the load changes

dynamically. The pure rate control policy allocates

channels uniformly in fixed time intervals (called mea-

surement intervals) during such a time interval only a

certain number of channels are used [1].

Key Applications
In a multimedia environment, multimedia objects are

retrieved from either a digital library, or a video data-

base, or an audio database, and are delivered to a large

Multimedia Retrieval Evaluation M 1835

M

number of clients. The applications in such environ-

ments range from retrieving small multimedia objects

(shopping, medias, education, etc.) to playback of

large video objects (movie, entertainment, etc.).

Cross-references
▶Continuous Multimedia Data Retrieval

▶Multimedia Data Buffering

▶Multimedia Data Storage

▶ Scheduler

▶ Scheduling Strategies Storage ResourceManagement

Recommended Reading
1. Almeroth K.C., Dan A., Sitaram D., and Tetzlaff W.H. Long

Term Channel Allocation Strategies for Video Applications.

IBM Research Report (RC 20249), 1995.

2. Berson S., Ghandeharizadeh S., Muntz R., and Ju X. Staggered

striping in multimedia information systems. ACM SIGMOD

Rec., 23(2):79–90, 1994.

3. Chen M.S., Kandlur D.D., and Yu P.S. Storage and retrieval meth-

ods to support fully interactive playout in a disk-array-based video

server. Multimedia Syst., 3(3):126–135, 1995.

4. Dan A., Shahabuddin P., Sitaram D., and Towsley D. Channel

allocation under batching and VCR control in video-on-demand

systems. J. Parallel Distrib. Comput., 30(2):168–179, 1995.

5. Dan A. and Sitaram D. Multimedia Information Storage

and Management, chap. 11: Session Scheduling and Resource

Sharing in Multimedia Systems. Kluwer Academic, 1996.

6. Dan A., Sitaram D., and Shahabuddin P. Scheduling policies

for an on-demand video server with batching. In Proc. 2nd

ACM Int. Conf. on Multimedia, 1994, pp. 15–23.

7. Dey-Sircar J.K., Salehi J.D., Kurose J.F., and Towsley D. Providing

VCR capabilities in large-scale video servers. In Proc. 2nd ACM

Int. Conf. on Multimedia, 1994, pp. 25–32.

8. Gemmell D.J. Multimedia network file servers: multi-channel

delay sensitive data retrieval. In Proc. 1st ACM Int. Conf. on

Multimedia, 1993, pp. 243–250.

9. Gemmell D.J. Multimedia Information Storage and Manage-

ment, chap. 1: Disk Scheduling for Continuous Media. Kluwer

Academic, 1996.

10. Ghose D. and Kim H.J. Scheduling video streams in video-on-

demand systems: a survey. Multimedia Tools Appl., 11(2):

167–195, 2000.

11. Little T.D.C. and Venkatesh D. Prospects for interactive video-

on-demand. IEEE Multimedia, 1(3):14–24, 1994.

12. Liu C.L. and Layland J.W. Scheduling algorithms for multi-

programming in a hard-real-time environment. J. ACM, 20(1):

46–61, 1973.

13. Reddy A.L.N. and Wyllie J.C. I/O issues in a multimedia system.

Computer, 27(3):69–74, 1994.

14. Teorey T.J. and Pinkerton T.B. A comparative analysis of disk

scheduling policies. Commun. ACM, 15(3):177–184, 1972.

15. Tobagi F.A., Pang J., Baird R., and Gang M. Streaming RAID:

a disk array management system for video files. In Proc. 1st

ACM Int. Conf. on Multimedia, 1993, pp. 393–400.
16. Yu P.S., Chen M.S., and Kandlur D.D. Grouped sweeping

scheduling for DASD-based multimedia storage management.

Multimedia Syst., 1(3):99–109, 1993.
Multimedia Retrieval Evaluation

THIJS WESTERVELD
1,2

1Teezir Search Solutions, Ede, The Netherlands
2CWI, Amsterdam, The Netherlands

Definition
Multimedia Retrieval Evaluation is the activity of mea-

suring the effectiveness of one or more multimedia

search techniques. A common way of evaluating mul-

timedia retrieval systems is by comparing them to each

other in community wide benchmarks. In such bench-

marks participants are invited to submit their retrieval

results for a given set of topics, the relevance of the

submitted items is checked, and effectiveness measures

for each of the submissions are reported. Multimedia

retrieval evaluation measures the effectiveness of mul-

timedia retrieval systems or techniques by looking at

how well the information need as described by a topic

is satisfied by the results retrieved by the system or

technique. Efficiency of the techniques is typically not

taken into account, but may be studied separately.

Historical Background
Until the mid-1990s, no commonly used evaluation

methodology existed for multimedia retrieval. An

important reason for this is that the field has merely

been a showcase for computer vision techniques. Many

papers in the field ‘proved’ the technical merits and

usefulness of their approaches to image processing

by showing a few well-chosen, and well-performing

examples. Since 1996, the problem of systematically

evaluating multimedia retrieval techniques has gained

more and more interest. In that year, the Mira (Multi-

media Information Retrieval Applications) working

group was formed [2]. The group, consisting of peo-

ple from the fields of information retrieval, digital

libraries, and library science studied user behavior

and information needs in multimedia retrieval situa-

tions. Based on their findings, they developed per-

formance measures. Around the same time, in the

multimedia community, the discussion on proper

evaluation started, and Narasimhalu et al. [8]

proposed measures for evaluating content-based

1836M Multimedia Retrieval Evaluation
information retrieval systems. These measures are

based on comparing ranked lists of documents

returned by a system to the perfect, or ideal, ranking.

However, they do not specify how to obtain such a

perfect ranking, nor do they propose a common test

set. A year later, Smith [10] proposed to evaluate image

retrieval using measures from the text retrieval com-

munity and in particular from TREC, the Text Retriev-

al Conference [12] for image retrieval evaluation.

Again, no dataset was proposed. At the start of the

twenty-first century, the evaluation problem gained

more attention within the content-based image retriev-

al community, with the publication of three papers

discussing benchmarking in visual retrieval [3,6,7].

These three papers call for a common test collection

and evaluation methodology and a broader discussion

on the topic. The Benchathlon network (http://www.

benchathlon.net) was started to discuss the develop-

ment of a benchmark for image retrieval. Then, in

2001, TREC started a video track [9] that evolved

into the workshop now known as TRECVID.

Today, a variety of initiatives exists for evaluating

the retrieval of different types of data in a variety of

contexts, a list of these is provided below under data.

Foundations
Information retrieval is interactive. In web search, for

example, queries are often changed or refined after an

initial set of documents has been retrieved and inspected.

In multimedia retrieval, where browsing is common,

interactivity is perhaps evenmore important. Evaluation

should take interactivity into account, and measure user

satisfaction. The evaluation of a system as a whole in an

interactive setting is often called an operational test.

Such tests measure performance in a realistic situation.

Designing such an operational test is difficult and ex-

pensive. Many users are needed to free the experiment

of individual user effects, the experimental setup

should not interfere with the user’s natural behavior,

and learning effects need to be minimized. Also, be-

cause there are many free variables, it is hard to attri-

bute observations to particular causes. In contrast to

these tests in fully operational environments, laboratory

tests are defined as those tests in which possible sources

of variability are controlled. Thus, laboratory tests can

provide more specific information, even though they

are further away from a realistic setting. Also, labora-

tory tests are cheaper to set up, because the interactive

nature is ignored, and the user is removed from the
loop. Laboratory tests measure the quality of the doc-

ument ranking instead of user satisfaction. While some

studies exist to evaluate multimedia retrieval systems

in an operational setting by investigating user satisfac-

tion, most approaches are studied in laboratory tests.

Current laboratory tests are based on the Cranfield

paradigm [1]. In this paradigm, a test collection con-

sists of a fixed set of documents, a fixed set of topics,

and a fixed set of relevance judgements. Documents are

the basic elements to retrieve, topics are descriptions

of the information needs, and relevance judgements

list the set of relevant documents for each topic.

The focus in laboratory tests is on comparative

evaluation. Different approaches are tested, and their

relative performance is measured. The process is as

follows. Each approach produces a ranked lists of

documents for each topic. The quality of the ranked

lists is measured based on the positions of the relevant

documents in the list. The results are averaged across

all topics to obtain an overall quality measure.

For successful evaluation of retrieval techniques,

two components are needed in addition to a test col-

lection [4]: a measure that reflects the quality of the

search and a statistical methodology for judging

whether a measured difference between two techniques

can be considered statistically significant. The mea-

sures used in multimedia retrieval evaluation are typi-

cally based on precision and recall, the fraction of

retrieved documents that is relevant and the fraction

of relevant documents that is retrieved. To measure

recall, the complete set of relevant documents needs

to be known. For larger collections this is impractical

and a pooling method is used instead. With pooling,

the assumption is that with a diverse set of techniques

contributing runs to the evaluation, the probability

that a relevant document is retrieved at a high rank

by at least one of the approaches is high. A merged set

of top ranked documents is assumed to contain most

relevant documents and only this set of documents

is manually judged for relevance. Documents that

are not judged are assumed not relevant. In reality,

some unjudged documents may certainly still be rele-

vant, but it has been shown that this is of no influence

to the comparative evaluation of search systems

[11,13,14].

A number of aspects influence the reliability of

evaluation results. First, a sufficiently large set of topics

is needed. ?] suggest a minimum of 75. Second, the

measures should be stable. This means it should not be

Multimedia Retrieval Evaluation M 1837

M

influenced too much by chance effects. Clearly, mea-

sures based on few observations are less stable than

measures based on many observations. For example,

precision at rank 1 (is the first retrieved document

relevant) is not a very stable measure. Third, there

needs to be a reasonable difference between two

approaches before deciding one approach is better

than the other. Sparck Jones [5] suggests a 5% differ-

ence is noticeable, and a difference greater than 10% is

material. Statistical significance tests take all these

aspects into account and are useful in deciding whether

an observed difference between two approaches is

meaningful or simply due to chance.

Key Applications
Multimedia retrieval evaluation helps to better under-

stand what works and what does not in the area of

multimedia retrieval. Many practitioners in the field

benefit from the area. It gives them the opportunity to

test their ideas in a principled manner and allows them

to build upon approaches that are known to be suc-

cessful. More and more, the papers published in re-

nowned journals and conferences demonstrate the

usefulness of their techniques by a thorough evaluation

on a well-known test collection.

Data Sets
Creating a test collection for multimedia retrieval sys-

tems takes a lot of effort. Especially the generation of

ground truth data for a sufficient number of topics is

something that a small company or research institution

cannot manage on its own. Many workshops exist that

solve this problem by sharing resources in a collabora-

tive effort to create valuable and re-usable test collec-

tions. This approach was first taken in the Text

Retrieval Conferences (TREC) [12], but many others

followed. Below the main collections and evaluation

platforms in multimedia are listed.

The Corel document set is a collection of stock

photographs, which is divided into subsets each relat-

ing to a specific theme (e.g., tigers, sunsets, or English

pub signs). The collection is often used in an evaluation

setting by using the classification into themes as ground

truth. Given a query image, all images from the same

theme –and only those– are assumed relevant. Evaluation

results based on Corel are highly sensitive to the exact

themes used in the evaluation [7]. In addition, Corel

has a clear distinction between themes and an unusually

high similarity within a theme because the photos
in a theme often come from the same photographer

or even the same location. This makes the collection

more homogeneous than can be expected in a realistic

setting.

TRECVID studies video retrieval. The data collec-

tions used have been dominated by broadcast news,

but other raw and edited professional video footage is

studied as well. TRECVID defines a number of tasks

and provides test collections for each of them. In 2007,

four main tasks existed:

Shot boundary detection: identify shot boundaries

in the given video clips with their location and type

(hard or soft transition).

High level feature extraction: For each of the pre-

defined high-level features or concepts, detect the shots

that contain the feature. Features that have been stud-

ied in the past include sky, road, face, vegetation, office

and people marching.

Search: Given a textual description of an informa-

tion need and/or one or more visual examples, find

shots that satisfy this need.

Rushes summarization: Given a set of rushes, i.e.,

raw, unedited footage, provide a visual summary of

this data that in a limited number of frames shows the

key objects and events that are present in the footage.

As part of the Cross-Language Evaluation Forum

(CLEF), ImageCLEF studies cross-language image re-

trieval. ImageCLEF concentrates on two main areas:

retrieval of images from photographic collections

and retrieval of images from medical collections.

The Initiative for the Evaluation of XML retrieval

(INEX) aims to evaluate the effectiveness of XML

retrieval systems. Within this initiative, the INEX mul-

timedia track evaluates the retrieval of multimedia ele-

ments from a structured collection. The data collection

used consists of wikipedia documents and the images

contained in them. Both the retrieval of multimedia

fragments (combinations of text and images) and the

retrieval of images in isolation are studied.

ImagEVAL evaluates image processing technology

for content-based image retrieval. The assessment fo-

cuses on features relating to what collection holders

(from defence, industry and cultural sectors) expect in

terms of how images may be used. The tasks include

recognizing transformed images, combined textual

and visual search and object detection. The collections

are a heterogeneous mix of professional images includ-

ing stock photography, museum archives and industri-

al images.

1838M Multimodal Data
The Music Information Retrieval Evaluation

Exchange (MIREX) evaluates subtasks of music infor-

mation retrieval. The datasets used by MIREX are

cd-quality audio originating from (internet) record

labels that allow tracks of their artists to be published.

The tasks include genre classification,melody extraction,

onset detection, tempo extraction and key finding.
Cross-references
▶ Information Retrieval Evaluation Measures

▶Multimedia Databases

▶Multimedia Information Retrieval
Recommended Readings
1. Cleverdon C.W. The cranfield tests on index languagr devices.

Aslib Proc., 1967, pp. 173–192.

2. Draper S.W., Dunlop M.D., Ruthven I., and van Rijsbergen C.J.

(eds.). In Proc. Mira 99: Evaluating Interactive Information

Retrieval. Electronic Workshops in Computing, 1999.

3. Gunther N.J. and Beretta G. A benchmark for image retrieval

using distributed systems over the internet: BIRDS-I. Technical

Report HPL-2000-162, HP Laboratories, 2000.

4. Hull D. Using statistical testing in the evaluation of retrieval

experiments. In Proc. 16th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1993,

pp. 329–338.

5. Jones K.S. Automatic indexing. J. Doc., 30:393–432, 1974.

6. Leung C.H.C. and Ho-Shing Ip H. Benchmarking for content-

based visual information search. In Advances in Visual Infor-

mation Systems, Fourth Int. Conf., 2000, pp. 442–456.

7. Müller H., Müller W., McG. Squire D., Marchand-Maillet S., and

Pun T. Performance evaluation in content-based image retrieval:

overview and proposals. Pattern Recogn. Lett. (Special Issue

on Image and Video Indexing), 22(5):593–601, 2001.

8. Narasimhalu A.D., Kankanhalli M.S., and Wu J. Benchmarking

multimedia databases. Multimedia Tools Appl., 4(3):333–356,

1997. ISSN 1380-7501.

9. Smeaton A.F., Over P., Costello C.J., de Vries A.P., Doermann D.,

Hauptmann A., Rorvig M.E., Smith J.R., and Wu L. The TREC-

2001 video track: information retrieval on digital video infor-

mation. In Research and Advanced Technology for Digital

Libraries, Sixth European Conference, 2002, pp. 266–275.

10. Smith J.R. Image retrieval evaluation. In Proc. IEEE Workshop

on Content-based Access of Image and Video Libraries, 1998,

pp. 112–113.

11. Voorhees E.M. and Harman D.K. Overview of the eighth

text retrieval conference (TREC-8). In Proc. The 8th Text Re-

trieval Conference, 2000.

12. Voorhees E.M. and Harman D.K. TREC: Experiment and Evalu-

ation in Information Retrieval (Digital Libraries and Electronic

Publishing). MIT, Cambridge, MA, 2005. ISBN 0262220733.

13. Westerveld T. Trecvid as a re-usable test-collection for video

retrieval. In Proc. Multimedia Information Retrieval Workshop,

2005.
14. Zobel J. How reliable are the results of large-scale information

retrieval experiments? In Proc. 21st Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1998, pp. 307–314.
Multimodal Data

▶Multimedia Data
Multimodal Databases

▶Multimedia Databases
Multi-modal Information Retrieval

▶Cross-Modal Multimedia Information Retrieval
Multimodal Interfaces

MONICA SEBILLO1, GIULIANA VITIELLO
1,

MARIA DE MARSICO
2

1University of Salerno, Salerno, Italy
2Sapienza University of Rome, Rome, Italy

Definition

Multimodal interfaces are characterized by the (possibly

simultaneous) use of multiple human sensory modal-

ities and can support combined input/output modes.

The termmultimodal recurs across several domains.

Since its first use in the field of interface design, its

affinity and derivation from the terms ‘‘mode’’ and

‘‘modality’’ were discussed. According to Merriam-

Webster, one of the meanings for mode is ‘‘a possible,

customary, or preferred way of doing something,’’

whereas modality can be ‘‘one of the main avenues of

sensation (as vision).’’ In multimodal interfaces, the

former influences the way information is conveyed,

the latter refers to the exploited communication

channel. Both express peculiar aspects of a multimodal

system, which is expected to provide users with flexi-

bility and natural interaction.

Early multimodal interfaces simply combined

display, keyboard, and mouse with voice (speech

Multimodal Interfaces M 1839

M

recognition/synthesis). Later, pen-based input, hand

gestures, eye gaze, haptic input/output, head/body

movements have been progressively used. As a result,

modern multimodal interfaces aim at emulating the

natural multi-sensorial forms of human-human dia-

logue, relying on the integration of advanced interac-

tion modes. To support the described variety of modes,

the system underlying such an interface must include

hardware to acquire and render multimodal expres-

sions and must exploit recognition-based technologies

to interpret them, with response times compatible with

user’s interaction pace.

Historical Background
Bolt’s ‘‘Put That There’’ demonstration system [2] can

be considered as one of the earliest multimodal sys-

tems. The underlying technology allowed a joint use

of voice and gesture by processing speech in parallel

with manual pointing within a virtual graphical space,

where users could be made easily aware of the available

facility and its usage. Spoken input was semantically

processed, while deictic terms in the speech were

resolved by processing the spatial coordinates derived

from pointing. Since then, different proposals of mul-

timodal interfaces can be found in literature [5,4].

Many of them aim at integrating natural languages

and direct manipulation in specific application

domains, such as manufacturing environments and

interactive maps.

The CHI’90 Workshop on Multimedia and Multi-

modal Interface Design represented a turning point [1].

The growing interest by the international community

toward this research area induced the Program Com-

mittee to focus on both the integration of scientific

knowledge about this discipline and the direction of

future developments. Four main topics were identified

for discussion, with respect to which interfaces could

be designed and examined: structural principles for

composition, media appropriateness, enabling techno-

logies, and paradigms/metaphors/models/representations.

Important issues emerged, fromwhich some years later

the first remarkable set of guidelines for the design of

multimodal user interfaces stemmed [9].

Following the scientific attention to the multimodal

paradigm, a variety of systems rapidly came out. Both

hardware and software were enhanced to integrate par-

allel input streams, mostly acquired by speech and pen-

based gestures. One of the first such prototypes was

the QuickSet system developed in 1994 [3]. It was an
agent-based, collaborative, multimodal-multimedia

map system, allowing the user to issue commands

using a combination of speech and pen input. For

illustration purposes, in [8] Oviatt provides a compari-

son among five different speech and gesture systems,

which represented the most exemplifying research-level

systems developed until the late 1990s. In her evalua-

tion, the author takes into account some characteristics,

such as the type of signal fusion and the sizes of gesture

and speech vocabularies, on which integration and in-

terpretation functionalities were based.

More recently, new combinations of speech and

other modalities, such as lip movements and gaze, have

been exploited thanks to advanced input/output tech-

nologies, whose effective integration into flexible yet

reliable interfaces requires the underlying system robust-

ness and performance stability. As a result, multimodal

interfaces have pervaded new application domains,

ranging from virtual reality systems, meant to support

expert users in decision making and simulation of sce-

narios, to training systems and to person identification/

verification systems for security purposes. Such systems

may be further distinguished on the basis of their

inputmodes, which can be either intentionally exploited

by users (active input mode) such as speech and gest-

ures, or captured by the system without an explicit

request by users (passive input mode), such as facial

expressions.

Foundations
In order to clarify the different aspects involved in a

multimodal interface, the complexity of multimodal

interaction can be described in terms of the well-

known execution-evaluation cycle defined by Don

Norman in 1988 [6].

In the case of multimodal interactive cycles,

Norman’s model of interaction may be reformulated

as follows:

1. Establishing the goal.

2. Forming the intention.

3. Specifying the multimodal action sequence in terms

of human output modalities.

4. Executing the multimodal action.

5. Perceiving the system state in terms of human

input modalities.

6. Interpreting the system state.

7. Evaluating the system state with respect to the goals

and the intentions.

1840M Multimodal Interfaces
� Establishing the goal is, as usual, the stage when

the user determines what needs to be done in

the given domain, in terms of a suitable task

language.

� Forming the intention: at this stage the goal is trans-

lated into more precise user’s intention, which will

help the user determining the right sequence of

actions that should be performed to achieve the

goal

� Specifying the multimodal action sequence. The

sequence of actions performed to accomplish the

required task should be precisely stated at this

stage. Here the complexity of multimodal interac-

tion appears for the first time in the cycle. In

fact, each multimodal action can be specified

in terms of:

1. Complementary human output sensory modal-

ities (i.e., multiple utterances at once form the

action) and/or

2. Alternative human output sensory modalities

(i.e., alternative, redundant utterances for the

same action).

Examples of human output modalities include

speaking, gesturing, gazing, touching, moving, facial

expressions and some unintentional utterances such as

blood pressure, temperature, heartbeat, excretion, etc.

A user may, for instance, move an object in the inter-

action scene by speaking and pointing at (gesturing)

the new object location (complementary modalities).

Then, instead of gesturing (s)he may want to gaze

at the new location on the interface where the object

should be moved (alternative modality).

� Executing each multimodal action. At this stage,

each human modality used to specify an action is

translated into corresponding interaction modes.

Thus, each action is executed through

1. Complementary modes or

2. Alternative modes

Text, speech, Braille, mimicking, eye/motion capture,

haptics, bio-electrical sensoring are examples of modes

used to translate human output modalities into the

system input language.

When the execution of the whole sequence of mul-

timodal actions is complete, the system reaches a new

state and communicates it to the user again exploiting

(possibly multiple) interaction modes, such as speech
synthesis, display, haptic/tactile feedback, smell ren-

dering and so on.

� Perceiving the system state. At this stage, the evalua-

tion phase of the cycle begins. Depending on the

combination of system output modes, the user may

perceive the new state through multiple input sen-

sory modalities, such as visual, auditory, tactile,

and (in some revolutionary interfaces) even smell-

ing and tasting.

� Interpreting the system state. Here the user is sup-

posed to interpret the output of her/his sequence of

actions to evaluate what has happened.

� Evaluating the system state with respect to the goals

and the intentions. At the final stage, the user com-

pares the new system state with her/his expecta-

tions, to evaluate if the initial goal has been

effectively reached.

Of course a good mapping should be achieved between

the execution and the evaluation phases in order to

bridge what Norman calls the gulf of execution (i.e., the

distance between user’s specification of the action and

the actions allowed by the system) and the gulf of

evaluation (i.e., the distance between user’s perception

of the new state and her/his expectation). In multi-

modal interfaces the effective reduction of both gulfs

crucially depends on the underlying interactive tech-

nology that must move as close as possible towards

human-human forms of interaction and communica-

tion. Thus, on the execution side, human output mod-

alities should be supported by suitable computer input

devices, e.g., by mapping gaze, speech, touch, gesturing

and smelling onto cameras, microphones, keyboard,

haptic sensors and the most recent olfactory sensors,

respectively. From the evaluation perspective, comput-

er output and its perception by user should be also

tightly linked. This requires the adoption of output

devices, like display, audio and haptic/olfactory ren-

dering devices, able to quickly and effectively reach

the human input sensory system, so that the user

sees, hears, touches and, in general, feels the new sys-

tem state as it is communicated by the multimodal

interface.

As an example, the successful execution of direct

manipulation tasks within an immersive virtual reality

environment may critically depend on the abolition

of any latency time between the moment an action

is performed, e.g., by means of datagloves, and the

Multimodal Interfaces M 1841

M

moment the user recognizes the touch. In this way the

user perceives gesturing as an act that can be directly

realized at the interface. If this cannot be achieved, any

usability benefits coming from the direct manipulation

paradigm would be lost.

The ultimate advantage of multimodal interfaces is

increased usability, in terms of both flexibility and

robustness of the interaction when either redundant

or complementary information is conveyed by modes.

Higher flexibility is gained since multimodal interfaces

can accommodate a wide range of users, tasks and

environments for which each single mode may not be

sufficient. Different types of information may be con-

veyed using the most appropriate or even less error

prone modality, while alternation of different channels

may prevent from fatigue in computer use intensive

tasks. Redundancy of information through different

communication channels is especially desirable when

supporting accessibility, since users with different

impairments may benefit from information and ser-

vices otherwise difficult to obtain. As for the increased

robustness of the interaction, the weaknesses of one

modality may be offset by the strengths of another.

More semantically rich input streams can support

mutual disambiguation for the execution phase. As in

human-human communication, the correct decoding

of transmitted messages requires interpreting the mix

of audio-video signals.

An important research theme in multimodal inter-

face design is how to integrate and synchronize different

modes, taking into account that synchrony of different

‘‘tracks’’ of interaction in different modes, does not

imply their simultaneity. At present, each unimodal

technique is developed separately, with noticeable

advances produced by improvements in both software

recognition-based techniques and hardware input/

output technologies. However, as pointed out in [9],

an effective integration of the involved modal technol-

ogies requires a deep understanding of the ‘‘natural’’

integration patterns that characterize people’s combined

use of different communication modes, as widely stud-

ied by psychologists and cognitive experts. The issue of

integration may become even more complex when a

multimodal interface is designed to support collabora-

tive work, namely the work by multiple users who may

interact through the interface using several input/out-

put modes, either synchronously or asynchronously,

and either locally or remotely.
Key Applications
Recent advances in technology have been urging IT

researchers to investigate innovative multimodal inter-

faces and interaction paradigms, able to exploit the

increased technological power. The common key goal

is to reproduce in the best possible way the interaction

through different channels, typical of a human-human

dialogue. As an example, real ‘‘physical’’ manipulation

might be simulated even when the latter is not possible

due to logistical problems (e.g., remote operation) or

to dangerous settings (e.g., radioactive materials and

areas), or when it is convenient to just simulate a real

operation (e.g., for training purposes). A more natural

and familiar way of managing objects and situations

is also expected to improve global user performances

and increase applications effectiveness.

Among the most recent efforts, research on haptic

equipment deserves a mention. Related advances trig-

ger new potentialities and convey novel features to-

wards many domains, especially industrial, medical,

and biotechnological. In the industrial world, the

goal of improving competitiveness has led to the

experimentation of haptic interfaces in fields like

automotive and aerospace engineering, and texture

manufacturing. In the medical domain, education

and research activities are being increasingly improved

by the adoption of haptic environments for virtual

surgery simulation. Several new challenges are arising

in the field of Biology/Biotechnology, where the adop-

tion of visual interfaces connected to haptic devices is

recognized as a powerful and straightforward mean to

handle nano-objects, such as cells, and the possibility

of force feedback offered by certain haptic systems, is

envisioned as a considerable improvement of opera-

tor’s perception. Last but not least, several multimodal

interfaces enhanced with haptic feedback have been

conceived to address major societal needs, e.g., by

visually impaired people or wheelchair users.

In the following, a brief list of some further appli-

cation domains is presented, where multimodal inter-

faces are presently investigated.

Interaction in Mobile Environments

The problem that has to be solved in applications

designed for mobile environments is that hands, which

are the usual interaction mediator for human-computer

communication with traditional input devices, must be

devoted to different crucial activities, e.g., controlling a

1842M Multimodal Interfaces
steering wheel. In such situation, alternative modes

should rather be exploited to interact with software

applications such as a map browser. Moreover, user’s

visual attention must be focused on catching situations

such as obstacles approach, so that relevant software

events should be communicated for example through

auditory signals, so as to relieve the user from continu-

ously inspecting system state.

Geographic Information Systems

Multimodal interfaces are also being employed as a

means to support decision makers in accessing and

analyzing geospatial information in specific and criti-

cal scenarios, such as crisis management procedures

and what if analyses. Some systems have been recently

proposed, which rely on large screen displays and aug-

mented reality tools for enhanced data visualization, as

well as on collaborative advanced interfaces supporting

speech and gesture recognition.

In these systems, multimodality becomes the

way domain expert users can formulate appropriate

requests to the underlying geographic information sys-

tem and receive rapid responses, provided through

different perspectives. Rapid feedback is in fact a cru-

cial issue in situations when risk and vulnerability

must be predicted as well as during exceptional events

when recovery actions must be taken by users with

complementary expertises.

Interaction in Adverse Settings

As discussed above, it is often necessary to substitute

the human operator in adverse settings in a way that

preserves both his/her health and the effectiveness

of the interaction with environment objects. A much

simpler case is when some communication channel

might be hindered by disturbing conditions and the

presence of other modes may provide possible missing

information.

Multimodal Biometric Databases

Multimodal biometric databases are an example of

tight integration of multiple input modes to achieve

reliable person identification and verification. Finger-

prints are the most well-known biometric method.

More biometrics include hand conformation, iris scan-

ning, features from face, ears or voice or handwriting.

Despite noticeable progresses in biometrics research,

no single bodily or behavioral trait satisfies acceptabil-

ity, speed and reliability constraints of authentication

in real applications. Single biometric systems are
vulnerable to possible attacks, and may suffer from

acquisition failures, or from the possible non-univer-

sality of the biometric feature, as in the case of deaf-mute

subjects for voice recognition. The present trend is there-

fore towards multimodal systems, as flaws of an individ-

ual system can be compensated by the availability of a

higher number of alternative biometries. Integration of

single responses is a crucial point, especially when differ-

ent reliability degrees can be assigned to them due to

input quality or effectiveness of recognition algorithms.

Interaction in Impairment Conditions

Accessibility is a transversal issue relating to different

application domains. Physical impairments call for

flexible system interfaces allowing universal access to

services and information. What should be affected

when designing for accessibility is the structure of

both input and output for each application function.

Functions need parameters including both data and

events triggered by user’s actions. In both cases, it is

necessary to adapt the format manageable by a user

possibly bearing a specific disability to the one accept-

able by the functions. Such adaptation could be

provided by special pieces of software (wrappers). A

different wrapper is needed for each different disability

situation. They would be connected to suitable inter-

faces allowing the user to issue commands and data

according to his/her ability, and translating them for

function call. Information and data returned by the

system undergoes a symmetrical translation. In other

words, multimodal input/output should be dynami-

cally provided. The contribution of (disabled) accessi-

bility experts to the overall design of wrappers is

essential to obtain significant results. They can suggest

the best suited interaction mechanisms and the best

input/output modes to use.

Future Directions
The future challenge for multimodal interfaces is the

ability to better and better mimic human-like sensory

perception. Such interfaces will be able to reliably inter-

pret continuous input from more different visual, audi-

tory, and tactile sources, chosen according to the target

users’ tasks.More advanced recognition of users’ natural

communication modalities will be supported, and more

sophisticated models of multimodal interaction are

expected to replace present bimodal systems. One of

the problems to solve is to design and implement effec-

tive integration schemas among different modalities,

based on available literature on human intersensory

Multiple Query Optimization M 1843

M

perception and on natural human-human multimodal

interaction patterns. More research is required on

human inclination to multimodal communication with

applications, depending on different target tasks, and

about integration and synchronization characteristics

of multimodal input/output in different contexts and

situations.

Cross-references
▶Geographic Information System

▶Mobile and Ubiquitous Data Management

▶Visual Interfaces

Recommended Reading
1. Blattner M.M. and Dannenberg R.B. CHI’90 Workshop on

multimedia and multimodal interface design. SIGCHI Bull.,

22(2):54–58, 1990.

2. Bolt R.A. Put that there: voice and gesture at the graphics

interface. ACM Comput. Graph., 14(3):262–270, 1980.

3. Cohen P.R., Johnston M., McGee D.R., Oviatt S.L., Pittman J.,

Smith I., Chen L., and Clow J. QuickSet: multimodal interaction

for distributed applications. In Proc. 5th ACM Int. Conf. on

Multimedia, 1997, pp. 31–40.

4. European Telecommunications Standards Institute. Human

Factors (HF); Multimodal interaction, communication and

navigation guidelines ETSI EG 202 191 V1.1.1 (2003–08).

5. Jaimes A. and Sebe N. Multimodal human-computer interac-

tion: a survey. Comput. Vis. Image Underst., 108:116–134, 2007.

6. Norman D. The design of everyday things. Doubleday,

New York, 1988.

7. Oviatt S. Ten myths of multimodal interaction. Commun. ACM,

42(11):74–81, 1999.

8. Oviatt S. Multimodal interfaces. In The Human-Computer In-

teraction Handbook: Fundamentals, Evolving Technologies, and

Emerging Applications, J. Jacko, A. Sears (eds.). Lawrence

Erlbaum, NJ, 2003.

9. Reeves L.M., Lai J., Larson J.A., Oviatt S., Balaji T.S., Buisine S.,

Collings P., Cohen P., Kraal B., Martin J.C., McTear M.,

Raman T.V., Stanney K.M., Su H., and Wang Q.Y.

Guidelines formultimodal user interface design. Commun. ACM,

47(1):57–59, 2004.

10. Yuen P.C., Tang Y.Y., and Wang P.S.P. (eds.). Multimodal

Interface for Human-Machine Communication. World Scien-

tific, NJ, 2002.
Multi-Pathing

KALADHAR VORUGANTI

Network Appliance, Sunnyvale, CA, USA

Definition
There can be multiple paths between a SCSI initiator

and a SCSI target. Multiple paths between a host and a
storage device are useful to provide more fault-tolerance

as well as to improve system throughput. Multi-pathing

software ensures that the same target volume is not

seen as two separate LUNs by the host.

Key Points
The multiple paths can be configured in active-active

or active-standby modes. In the active-active mode,

both paths are actively transferring data. In the

active-standby mode, the standby path does not

actively transfer data. Some multi-pathing software

allows for dynamic load balancing of traffic between

the multiple paths. Typically, the storage controller

vendor also provides the multi-pathing driver that

runs on the host, and this software is usually limited

to only operating with the vendor’s storage devices.

Software vendors are beginning to provide multi-

pathing software that can interoperate with storage

controllers from multiple storage vendors.
Cross-references
▶ Initiator

▶ LUN

▶Target

▶Volume
Multiple Classifier System

▶ Ensemble
Multiple Imputation

▶ Synthetic Microdata
Multiple Linked Plots

▶Dynamic Graphics
Multiple Query Optimization

▶Multi-Query Optimization

1844M Multiple Representation Modeling
Multiple Representation Modeling

CHRISTINE PARENT
1, STEFANO SPACCAPIETRA2,

CHRISTELLE VANGENOT
2, ESTEBAN ZIMÁNYI

3

1University of Lausanne, Lausanne, Switzerland
2EPFL, Lausanne, Switzerland
3Free University of Brussels, Brussels, Belgium

Synonyms
Multi-scale; Multi-resolution; Multi-granularity

modeling

Definition
Geodata management systems (i.e., GIS and DBMS)

are said to support multiple representations if they have

the capability to record and manage multiple represen-

tations of the same real-world phenomena. For exam-

ple, the same building may have two representations,

one with administrative data (e.g., owner and address)

and a geometry of type point, and the other one with

technical information (e.g., material and height) and a

geometry of type surface. Multirepresentation is essen-

tial to make a data repository suitable for use by various

applications that focus on the same real world of inter-

est, while each application has a specific perception

matching its goals. Different perceptions translate into

different requirements determining what information

is kept and how it is structured, characterized, and

valued. A typically used case is map agencies that edit

a series of national maps at various scales and on

various themes.

Factors that concur in generating different repre-

sentations include the intended use of data and the

level of detail matching the applications concerns.

The former rules the choice of data structures (which

objects, relationships, and attributes are relevant) and

of value domains (e.g., whether the temperatures are

stored in Celsius or Fahrenheit). The latter rules data

resolution from coarse to precise and impacts both the

semantic and the spatial representation.

Multiple representation modeling is the activity of

designing a data repository that consistently holds

multiple representations for various perceptions of a

given set of phenomena. It relies on a multirepresenta-

tion data model, i.e., a data model with constructs and

rules to define and differentiate the various perceptions

and for each perception the representations of the

phenomena of the real world of interest.
Historical Background
Support for different requirements over the same data

set has first been provided by using multiple data files,

each one designed for a specific application. Aiming at

consistency, databases looked instead for ways to gath-

er data into a single repository, generating the need for

multiple representations. First came facilities to define

application-specific subschemas, as simple restrictions

of the database schema. Later, more flexibility was

achieved through the view mechanism. In object-

oriented terms, views are virtual representations

derived from existing data. They create either an alter-

native representation for existing objects (object pre-

serving views) or new objects composed from existing

objects (object generating views). Each view defines a

single new representation. However, views do not pro-

vide multiple perceptions, i.e., there is no possibility to

identify the collection of views that forms a consistent

whole for an application.

Similarly, the concept of is-a link was borrowed

from artificial intelligence to provide for various repre-

sentations of the same object in a classification refine-

ment hierarchy. However, the concept comes with a

population inclusion constraint: The subtype popula-

tion is included in the supertype population. This

cannot cope with situations where the populations of

two object types only overlap, i.e., the two populations

may have specific objects not represented in the other

population. Since then, the situation has not changed

much. It is only in the last decade that the need

for more flexible multirepresentation and explicit

support of various perceptions has been stressed by

researchers.

Multirepresentation research in spatial databases can

be traced back to the 1989 NCGIA program. In the early

1980’s, maps began to be stored in geographic databases,

and that opened up many new research tracks. The

specification and implementation of cartographic gen-

eralization was one of them. It relied on the idea that

cartographic generalization would allow the automatic

derivation of maps at different scales from a single

geographic database. Realizing that this full automation

was not possible increased the focus on multiple repre-

sentation databases [7,9,15]. Under the pressure of de-

livering maps at different scales, the first researches

were, in the early 1990’s, focusing on multi-scale data

structures (i.e., data structures allowing to retrieve ge-

ometry of real-world objects for any given scale) and

Multiple Representation Modeling M 1845

M

multiscale databases (i.e., databases in which the data

for maps at different scales is stored and linked togeth-

er). Later, the multiscale approach was refined and

extended into the multirepresentation approach: scale

indeed is not a concept relevant for databases and there

is nowadays more to a geographical database than pro-

ducing maps. The current scope of multirepresentation

for GIS database comprises various techniques that can

be used, within a single database, to automatically de-

rive a coarser representation from another representa-

tion at finer resolution. These techniques aim at

computing objects at coarser representations, for multi-

resolution analyses rather than for display. They include

generic cartographic generalization operations (not

driven by map display considerations) as well as opera-

tions performed on specific object types (e.g., selection

of instances based on an ad-hoc predicate, aggregation

of instances to create new objects). Some authors use

the term model generalization to denote that the use

of various techniques leads to the creation of a set of

virtual databases for different resolution levels, and

the mappings between their schemas (models in

GIS terms). The automatic derivation rules (the map-

pings) allow update propagation from finer to coarser

representations.

Currently, only a few simple multi-representation

databases exist and are used to their expected potential.

Foundations
Early research on multi-representation in GIS was

driven by cartographers’ requirements. This explains

why the ability to draw maps at different scales has

been for long the targeted objective, popularizing the

concept of multi-scale databases. However, many other

spatial applications that need to perform spatial data

analysis require storing and managing specific repre-

sentations where objects may have various geometries

(derived one from another or not) and also show

varying thematic characteristics (e.g., have different

attributes and different relationships). Thus, the

research domain evolved from multi-scale databases

to multi-representation databases. Equally important

is the capability to provide each application with a

consistent set of data that corresponds to its own

perception of the real world of interest, in short

its own database. Therefore, support of multirepresen-

tation should be complemented with support of

multiperception.
Multiscale Databases

Multiresolution databases are still referred to by the

GIS community as multiscale databases, despite the

fact that scale does not apply to data storing. Scale is

a concept related to the drawing of maps on paper or

on screen. It is the ratio between measures on a map

and the corresponding measures in the real world.

Scale only characterizes an intended use of data. In-

stead, the level of resolution of a spatial database

determines what geometries are stored. It defines a

threshold such that only geometries beyond the thresh-

old are captured and stored.

In early work by Timpf, the different map repre-

sentations of the same real-world entities are inter-

connected using a directed acyclic graph data structure.

The graph allows users to navigate among maps at

different scales by zoom-in and zoom-out operations.

This work later developed into a more general Map

Cube Model [14], supported by a theory on the struc-

ture of series of maps of the same region at different

scales. Each map is described as a composition of

four components: a set of lines representing trans-

portation and hydrology networks, the set of areas,

called containers, created by the lines of the trans-

hydro network, areas that are a refinement of the

container partition, and objects contained in these

areas. The elements stored in each of the four com-

ponents (e.g., streets, land-use areas, buildings) are

then organized into aggregation and/or generaliza-

tion hierarchies. This forms a graph for each compo-

nent, where each level of the graph corresponds to a

given scale.

Stell and Worboys have also proposed a solution to

link a series of maps [12]. Their database organization

is called a stratified map space. Each map gathers

objects of a particular region that share the same se-

mantic and spatial granularity. Maps are grouped by

map spaces, i.e., sets of maps at the same granularity,

describing various regions. The stratified map space is

the set of all maps spaces organized according to a

hierarchy based on different granularity levels. Trans-

formation functions allow users to navigate in a stra-

tified map space and propagate updates.

Multi-Representation Databases

Work on spatial multi-representation databases has

followed two main tracks: either proposing new (con-

ceptual) data models that include explicit description

1846M Multiple Representation Modeling
of multi-representation, or proposing frameworks that

organize a set of existing classic (i.e., without multi-

representation) databases into a global multirepresen-

tation repository.

Database Models for Multiple Representations Several

data models with specific concepts for multiple-repre-

sentation modeling have been proposed. They range

from simple solutions allowing users to associate vari-

ous geometries to the same objects to more sophisticat-

ed solutions. They are discussed here according to the

requirements for multiple-representation modeling.

A model for multirepresentation should allow one

to characterize the same objects using different sets of

attributes, and attributes with different values and diffe-

rent domains. This flexibility is supported by theMADS

model [8], where multiple representations of a given

phenomenon may be organized according to two stra-

tegies. In the first one, the various spatial and semantic

descriptions of the same real-world phenomenon are

merged into a single database construct. Each element

of a description is qualified by a tag (called stamp)whose

value identifies the perceptions for which it is relevant.

Object and relationship types can thus have various sets

of attributes depending on the perception. Attributes

may bear various cardinalities or value domains accord-

ing to the perception stamp; they can also contain a

value that is a function of the perception stamp.

The Vuel approach [2] also offers the possibility of

associating various semantic and spatial descriptions to

the same real-world entities. In addition, various graph-

ical representations, useful for drawing maps at differ-

ent scales, can be defined. The data model is a snowflake

model for spatial data warehousing. The fact table is

composed of a specific kind of tuples, called vuels. A

vuel fact is a particular representation of a real-world

entity. It has three components: a geometry, a graphical

description, and a semantic description. The vuel rep-

resentation may vary according to these three dimen-

sions. Moreover, the semantic dimension is a fact table

itself with four dimensions: the class, the attribute, the

domain of value, and the value dimensions. This allows

the creation of various semantic descriptions by com-

bining the dimensions (different classes, different sets of

attributes, attributes with various domains and various

values). OMT-G [3], a UML-based model, supports the

modeling of multiple representations of data through

a specific kind of relationship called conceptual gener-

alization relationship. This relationship allows the
definition of various views of the same real-world enti-

ties as subclasses of a shared super-class. The superclass

describes the thematic attributes that are common to all

the representations and it has no spatial representation.

Each subclass describes its own view by specifying its

own thematic and spatial attributes. The subclasses

inherit the common attributes from the superclass. A

presentation diagram shows graphical representations

that may be associated to a class and the operations to

obtain them. MRSL [5], another UML-based model,

supports multi-representation through the introduc-

tion of two concepts: representation objects (r-objects)

and integration objects (i-objects). All r-objects corres-

ponding to the same real-word phenomenon are

linked by a monovalued or multivalued link to a single

i-object, whose role is to ensure consistency among

them. Each r-object specifies a specific set of attributes

and values for the same real-world object.

Multiple representation modeling is not limited to

associating multiple sets of attributes or values to one

object. In particular, when changing the level of detail,

objects may disappear, whereas others may be grouped.

Thus, in addition, there is the need to put into corre-

spondence one object with several objects or two dif-

ferent sets of objects.

In the second strategy of the MADS approach,

the various descriptions of the same phenomena be-

long to separate object types. They can be linked by

inter-representation links that are either traditional

associations or multi-associations. Multi-associations

are binary relationships that, contrarily to association

relationships, do not link two objects but two groups

of objects. A multi-association is needed whenever the

real-world entities are not represented per se, but

through two different decompositions; e.g., a decom-

position of a road in segments according to the num-

ber of lanes, and one according to crossroads. The

other modeling approaches only support correspon-

dence links of kind association, and the supported

cardinality of the link varies: in MRSL, a i-object can

be linked to r-objects through 1:1 and 1:N links thus

providing support for the 1:N and N:M correspon-

dences. In Vuel, corresponding objects can also be linked

through 1:1 or 1:N inter-representation links. However,

there is no support for N:M inter-representation links.

OMT-G does not support inter-representation associa-

tions between objects.

Not only do objects need multiple representations,

but relationships also do. This is only supported by

Multiple Representation Modeling M 1847

M

MADS. In MADS, all characteristics of a relationship

may have various representations: its semantics (e.g.,

topological, aggregation, or plain), its roles, and its

cardinalities. For instance, a relationship type can be

a topological adjacency relationship in one description

and a near relationship in another one with a more

precise resolution.

In the spatial context, as data from one representa-

tion may often result from the derivation of the same

data represented at another resolution, the representa-

tions of the same real-world entity are not independent

and one may expect to be able to state constraints

between these representations. Consistency constraints

in databases are maintained through the definition of

integrity constraints. Some constraints, such as cardin-

alities, are embedded in the concepts of the model – in

particular some constraints are inherent to the multi-

ple-representation concepts – while other constraints

need to be defined in the application. MRSL is the only

model proposing specific multirepresentation con-

straints: three kinds of rules can be associated to an

i-object and its linked r-objects: consistency rules,

which can be object or value correspondences, match-

ing rules, and restoration rules. Matching rules specify

how to match objects representing the same entity.

They can be attribute comparison, spatial match

operations, or global identifiers. Restoration rules are

used to restore consistency between an i-object and its

r-objects when needed.

Finally, considering that a multirepresentation

database contains several representations of the same

real-world phenomena, it is important to associate

metadata to the representations to identify the applica-

tion(s) they are relevant for, but also in order to know

which representations together form a consistent whole

for the application. This important requirement is ful-

filled by MADS through the concept of perception

stamp. In MADS, a perception stamp is a vector of

values (e.g., a viewpoint and a resolution) that identifies

a particular perception, and all elements of the data-

base (types, properties, instances) are stamped for

defining for which perception they are relevant. In

Vuel, the designer can define views that are composi-

tions of vuels. Each view defines a particular perception,

thus providing a functionality similar to perception

stamps.

Architectures for Distributed Representations Instead

of proposing new concepts allowing users to integrate
multiple representations of the same real-world phe-

nomena into a unique multirepresentation database,

other proposals followed a less intrusive approach.

Capitalizing on the fact that there already exist many

spatial databases, these approaches create a multi-

representation framework out of a set of existing classic

(i.e., describing a unique perception and resolution)

databases. There are two main kinds of proposals:

the first one focuses on the definition of links between

objects in corresponding databases, the second one

aims at building federated database management

systems.

In the first category, the work of Kilpelainen [6] was

one of the first proposals tackling multiple representa-

tions from a database point of view. It supports bi-

directional links that allow one to propagate updates

in both directions and perform reasoning processes in

the form of generalization operators.

In federated spatial databases, users access a set

of databases through a single integrated schema,

which describes virtual multirepresentation objects.

During query processing, multirepresentation objects

are dynamically constructed by merging all the corre-

sponding monorepresentation objects that exist in the

various databases. There have been several proposals

for spatial database integration [4]. Particularly inter-

esting are those that build the integrated schema

using multirepresentation concepts, e.g., [5], based

on MRSL, and [11], based on MADS. Using MRSL,

each r-object in the integrated schema holds an UML

tag that identifies the corresponding source database.

Using MADS, perception stamps can fulfill the same

functionality.
Key Applications

Cartography

As they cannot automatically derive maps at different

scales from a single detailed database, national map

agencies have to create several databases, one per scale.

For them, multirepresentation modeling is crucial for

two main reasons:

1. To propagate updates [1]: The cost of updating

can be lowered by entering updates only once in

a database and propagating them, at least semi-

automatically, to the other databases.

2. To enforce consistency [10]: Multi-representation

databases play an important role in order to

1848M Multiple Representation Modeling
enforce consistency between the same data de-

scribed at different levels of details. In addition,

integrating existing databases to create a multi-

representation database allows one to detect incon-

sistencies between the databases.

Multi-Scale Analysis

Multirepresentation databases can benefit many appli-

cations that need to analyze data at different levels of

details or defined for different viewpoints. For exam-

ple, a fire monitoring application may need very de-

tailed data on current fires (to direct the action of fire

brigades as precisely as possible), only need medium-

level resolution data for records of past fires, and use

low-level resolution data for generic organization of

fire management activities.

Other candidate applications are those relying on

spatial data warehouses, using spatial OLAP and spatial

data cubes to perform multi-dimensional analysis. An

example is traffic accident monitoring applications,

e.g., for analysis of the number of deadly accidents

according to multilevel criteria (by road, region, de-

partment, or state). Multirepresentation storage of

spatial data is needed in order to drill-up and drill-

down the cube [2].

Future Directions
Work in progress explores the use of multirepresenta-

tion capabilities in support of modularization of

knowledge repositories. In particular, the semantic

web community is developing various approaches to

turn huge ontologies that are being built in several

knowledge domains into smaller sets of more manage-

able ontological modules. Existing approaches follow

both the integrated direction (a single ontology is

modularized) and the distributed direction (various

existing ontologies are interconnected within a global

knowledge sharing system). A forthcoming book on

Ontology Modularization [13] is due for publication

in 2008.

Cross-references
▶Database Design

▶Distributed Spatial Databases

▶ Field-Based Spatial Modeling

▶Geographic Information System

▶Multidimensional Modeling

▶ Semantic Modeling for Geographic Information

Systems
▶ Spatial and Spatio-Temporal Data Models and

Languages

▶ Spatial Data Types

▶Topological Data Models

▶Topological Relationships
Recommended Reading
1. Badard T. and Lemarié C. Propagating updates between geo-

graphic databases with different scales, chapter 10. In Innova-

tions in GIS 7: GIS and GeoComputation, P. Atkinson, D.

Martin (eds.). Taylor and Francis, London, UK, 2000,

pp. 135–146.

2. Bédard Y. and Bernier E. Supporting multiple representations

with spatial view management and the concept of VUEL. In

Proc. Joint Workshop on Multi-Scale Representations of Spatial

Data, 2002.

3. Borges K., Davis C.A., and Laender A. OMT-G: an object-

oriented data model for geographic applications. GeoInformatica,

5(3):221–260, 2001.

4. Devogele T., Parent C., and Spaccapietra S. On spatial database

integration. Int. J. Geogr. Inf. Syst., 12(4):335–352, 1998.

5. Friis-Christensen A., Jensen C.S., Nytun J.P., and Skogan D. A

conceptual schema language for the management of multiple

representations of geographic entities. Trans. GIS, 9(3):345–380,

2005.

6. Kilpelaı̈nen T. Maintenance of topographic data by multiple

representations. In Proc. Annual Conference and Exposition of

GIS/LIS, 1998, pp. 342–351.

7. Mustière S. and Van Smaalen J. Database requirements for gen-

eralisation and multiple representations. In Generalisation of

Geographical Information: Cartographic Modelling and Appli-

cations, W.A. Mackaness, A. Ruas, T. Sarjakoski (eds.). Elsevier,

Amsterdam, 2007.

8. Parent C., Spaccapietra S., and Zimányi E. Conceptual Modeling

for Traditional and Spatio-temporal Applications. The MADS

Approach. Springer, Berlin, 2006.

9. Sarjakoski L.T. Conceptual models of generalisation and multi-

ple representation. In Generalisation of Geographical Informa-

tion: Cartographic Modelling and Applications, W.A.

Mackaness, A. Ruas, T. Sarjakoski (eds.). Elsevier, Amsterdam,

2007, pp. 11–36.

10. Sheeren D., Mustière S., and Zucker J.D. How to integrate

heterogeneous spatial databases in a consistent way? In Proc.

8th East-European Conf. Advances in Databases and Informa-

tion Systems, 2004, pp. 364–378.

11. Sotnykova A., Vangenot C., Cullot N., Bennacer N., and Aufaure

M.-A. Semantic mappings in description logics for spatio-

temporal database schema integration. Journal on Data

Semantics III:143–167, 2005.

12. Stell J.G. and Worboys M.F. Stratified map spaces: a formal basis

for multi-resolution spatial databases. In Proc. 8th Int. Symp. on

Spatial Data Handling, 1998, pp. 180–189.

13. Stuckenschmidt H., Parent C., and Spaccapietra S. (Eds.). Mod-

ular Ontologies. Springer LNCS, 2009.

14. Timpf S. Map cube model: a model for multi-scale data. In Proc.

8th Int. Symp. on Spatial Data Handling, 1998, pp. 190–201.

Multi-Query Optimization M 1849
15. Weibel R. and Dutton G. Generalizing spatial data and dealing

with multiple representations. In Geographical Information Sys-

tems: Principles, Techniques, Management and Applications,

vol. 1, 2nd edn., P. Longley, M.F. Goodchild, D.J. Maguire,

D.W. Rhind (eds.). Wiley, 1999, pp. 125–155.
Multiplicity

▶ Statistical Disclosure Limitation For Data Access
Multiprocessor Data Placement

▶ Parallel Data Placement
Multiprocessor Database
Management

▶ Parallel Database Management

M

Multiprocessor Query Processing

▶ Parallel Query Processing
Multi-Query Optimization

PRASAN ROY
1, S. SUDARSHAN

2

1Aster Data Systems, Inc., Redwood City, CA, USA
2Indian Institute of Technology, Bombay, India

Synonyms
Multiple query optimization; Global query optimiza-

tion; Common subexpression elimination; Optimiza-

tion of DAG-structured query evaluation plans

Definition
Multi-query optimization is the task of generating an

optimal combined evaluation plan for a collection of

multiple queries. Unlike traditional single-query opti-

mization, multi-query optimization can exploit com-

monalities between queries, for example by computing
common sub-expressions (i.e., subexpressions that are

shared by multiple queries) once and reusing them, or

by sharing scans of relations from disk.

Historical Background
Early work on multi-query optimization includes work

by Sellis [11], Park and Segev [7] and Rosenthal and

Chakravarthy [9]. Shim et al. [12] consider heuristics

to reduce the cost of multi-query optimization. How-

ever, even with heuristics, these approaches are ex-

tremely expensive for situations where each query

may have a large number of alternative evaluation

plans.

Subramanian and Venkataraman [13] consider

sharing only among the best plans of the query; this

approach can be implemented as an efficient, post-

optimization phase in existing systems, but does not

guarantee optimality. In fact, Roy et al. [10] show that

it can be significantly suboptimal. Rao and Ross [8]

address the problem of sharing common computation

across multiple invocations of a subquery, which is a

special case of multi-query optimization,

Roy et al. [10] address the problem of extending

top-down cost-based query optimizers to support

multi-query optimization, and present greedy heuris-

tics, as well as implementation optimizations. Their

techniques were shown to be practical and to give

good results. Dalvi et al. [1] explores the possibility

of sharing intermediate results by pipelining, avoiding

unnecessary materializations. Diwan et al. [2] consider

issues of scheduling and caching in multi-query opti-

mization. Zhou et al. [14] discuss the implementation

of multi-query optimization on a commercial query

optimizer.

In addition to the motivation of optimizing a col-

lection (batch) of queries, multi-query optimization

has also been applied to other settings. For example,

Mistry et al. [6] consider the issue of multi-query

optimization in the context of view maintenance,

while Fan et al. [3] point out the importance of multi-

query processing in optimizing XPath queries.

Foundations
Multi-query optimization is more expensive than in-

dependent optimization of multiple queries, since a

globally optimal plan may involve subplans that are

sub-optimal for the individual queries.

Consider a batch consisting of two queries (A ⋈ B

⋈ C) and (B ⋈ C ⋈ D). A traditional system would

1850M Multi-Query Optimization
evaluate each of these queries independently, using the

individual best plans suggested by the query optimizer

for each of these queries. Let these best plans be as

shown in Fig. 1a. Suppose the base relations A, B, C

and D each have a scan cost of 10 units (the actual unit

of measure is not relevant to this example). Each of the

joins have a cost of 100 units, giving a total evaluation

cost of 460 units. On the other hand, in the plan shown

in Fig. 1b, the common subexpression (B ⋈ C) is first

computed and materialized on the disk at a cost of 10.

Then, it is scanned twice – the first time to join with A

in order to compute (A⋈ B⋈ C), and the second time

to join it with D in order to compute (B⋈ C⋈D) – at

a cost of 10 per scan. Each of these joins have a cost of

100 units. The total cost of this consolidated plan is

thus 370 units, which is about 20% less than the cost of

the traditional plan of Fig. 1a. Although the benefit

here is small, it could be significantly more for batches

containing more queries.

The expression (B ⋈ C) that is common between

the two queries (A ⋈ B ⋈ C) and (B ⋈ C ⋈ D) in

the above example is a common subexpression (CSE).

A relation used in multiple queries can be thought of as

a special case of a common subexpression. Although

there is no need to compute and store it, a scan of the

relation from disk can be shared by multiple queries.

A plan for a single complex query can have

common subexpressions within itself. Traditional

optimizers ignore the possibility of exploiting such a

common subexpression, but some of the techniques

for multi-query optimization, such as [10] can exploit

such common subexpressions.

Challenges

The job of a multi-query optimizer can be broken into

two parts: (i) recognize possibilities of shared compu-

tation by identifying CSEs, and (ii) find a globally

optimal evaluation plan exploiting the CSEs identified.
Multi-Query Optimization. Figure 1. Example illustrating be
Identifying CSEs Each query can have a large number

of alternative evaluation plans. Given a particular eval-

uation plan for each of a set of queries, it is straightfor-

ward to find common subexpressions amongst these

plans. However, since the number of possible combi-

nations of such plans is very large, enumerating them

is not feasible.

Subexpressions that could be shared between some

plans for two or more queries can however be identified

without enumerating all possible plan combinations.

The number of such potentially common subexpressions

is still very large, but smaller than the number of plan

combinations.

Finding the Optimal Plan in Presence of CSEs Tradi-

tional query optimizers use dynamic programming

algorithms to find the best plan for an input query.

These dynamic programming algorithms are applica-

ble because, in the absence of sharing of common

subexpressions, each subplan of the overall best plan

is also the best plan for the subexpression it computes.

In the presence of sharing, such a property does not

hold – as shown in the example above, a globally

optimal plan can consist of subplans that are not

globally optimal – and therefore a straightforward

dynamic programming approach does not work. The

problem of finding an optimal combined plan in pres-

ence of CSEs is therefore a strictly harder problem than

traditional query optimization.

Engineering an Efficient Multi-Query Optimizer

As mentioned earlier, a simple minded approach

that iterates over all possible plans for each query and

analyzes each combination of plans is very expensive,

and infeasible for non-trivial queries. And conversely,

a heuristic that only considers the individual best

plan for each query does not work well, as mentioned

earlier.
nefits of sharing computation.

Multi-Query Optimization M 1851

M

A more practical approach was presented in [10].

This approach efficiently finds the set of potentially

common subexpressions for a set of queries, and then

identifies the subset of CSEs to share, and the best

resulting consolidated plan, using an iterative greedy

heuristic.

Instead of enumerating the search space of possible

plan combinations, the idea is to store all the plans

across all the queries in a single compact data structure

called the Logical Query DAG (LQDAG). The LQDAG

is a refinement of the ‘‘memo’’ data structure used

in transformational top-down optimizers, such as

Volcano [4], to memorize the best plans of the inter-

mediate results. (Such memorization, as done in top-

down query optimizers such as Volcano, is equivalent

to dynamic programming, as used in System R and

other bottom-up query optimizers.)

Figure 2a shows a LQDAG for the query A⋈ B⋈C;

this LQDAG represents the three alternative plans for the

query: (A⋈ B)⋈ C, A⋈ (B⋈ C) and B⋈ (A⋈ C).

Each square node (equivalence node) in the LQDAG

represents a distinct intermediate result, and each

round node (operation node) below represents a dis-

tinct plan to compute the same from the underlying

intermediate results. In general, a LQDAG can represent

multiple queries in a consolidated manner, with a dis-

tinct root node for each distinct query. Figure 2b shows

a consolidated LQDAG for the two example queries

seen earlier, A ⋈ B ⋈ C, and B ⋈ C ⋈ D.

The CSEs for the given queries correspond to

equivalence nodes in the LQDAG that are shared either

within the same plan, or between plans for two distinct

queries; [10] presents an efficient algorithm that iden-

tifies the set of all CSEs in a single bottom-up traversal

of the LQDAG.
Multi-Query Optimization. Figure 2. (a) LQDAG for A ⋈ B ⋈

B ⋈ C ⋈ D.
After the CSEs are identified, the next task is to find

the best consolidated plan for the queries exploiting

these CSEs. When the number of CSEs is large, an

exhaustive search is not feasible; a natural approach is

then to use a greedy heuristic that iteratively picks the

CSE with the greatest benefit (i.e., whose use would

result in the greatest decrease in the overall evaluation

cost), terminating when no further decrease is possible.

This algorithm requires that the benefit of each candi-

date CSE be recomputed in each iteration – this involves

finding the best plan that uses the candidate CSE, in

addition to the CSEs selected in earlier iterations.

With multiple such optimization calls in each iter-

ation, a naive implementation of the greedy heuristic

would be too expensive to be practical. [10] shows how

to make this approach practical by (i) incorporating

additional heuristics to significantly reduce the number

of benefit computations, and (ii) showing how to effi-

ciently perform a benefit computation by exploiting the

LQDAG representation of the plan space. Additional

insights on the task of seamlessly incorporating multi-

query optimization into theMicrosoft SQL-Server query

optimizer are presented by Zhou et al. [14].

The above approach assumes that CSEs are materi-

alized and read back from disk when required. Dalvi

et al. [1] shows how to schedule queries such that

results can be pipelined to multiple uses, even with a

limited buffer space, thereby minimizing IO. Diwan

et al. [2] addresses the issue of caching results in

limited memory, and scheduling queries to minimize

cache usage.

Key Applications
The idea of sharing computation among different

queries to save on time and resources is ubiquitous.
C, and (b) Combined LQDAG for A ⋈ B ⋈ C and

1852M Multi-Resolution
As queries become increasingly expensive, the need for

multi-query optimization to enable such savings is

likely to increase as well. A few representative applica-

tions which motivate multi-query optimization are

listed below.

� On-Line Analytic Processing (OLAP) and Report-

ing: A typical OLAP and reporting workload con-

sists of queries with a significant amount of

overlap. This overlap can occur for several reasons.

For instance, queries might overlap in the kind

of analysis they perform, or in the subset of

data they are interested in; different queries could

compute different aggregates over a join of the

same set of tables. Alternatively, the queries could

be against a virtual view; these queries clearly

overlap at least in the computation of the result

of the virtual view. Or else, the queries could in-

volve common table expressions (specified using

the WITH clause) that could be used in multiple

places in the query; parts or whole of such com-

mon table expressions could be transiently materi-

alized and reused [14]. Finally, the queries could

involve correlated nested subqueries – invariant

parts of these nested subqueries could be compu-

ted once and shared across invocations of the

subquery [8].

� Materialized View Maintenance : Materialized

views are supported by most major database systems

today. Such materialized views must be updated

when the underlying relations are updated. The

maintenance plans for different views often share

common computation. Mistry et al. [6] show how

to exploit multi-query optimization to create an

optimal view maintenance plan.

� XML Query Processing : In systems that store XML

data in relational databases, the XPATH queries

containing regular path expressions translate into

a sequence of queries with significant overlap. Such

queries are likely to benefit significantly from

multi-query optimization [3].

� Stream Query Processing : Monitoring applications

such as financial analysis and network intrusion

detection often have to process multiple queries

over a common stream of data. Such queries are

likely to overlap significantly in the expressions

they compute, and are likely to gain from multi-

query optimization [5].
Cross-references
▶Cost-based Query Optimization

▶Query Optimization

▶Transformational Query Optimization

Recommended Reading
1. Dalvi N.N., Sanghai S.K., Roy P., and Sudarshan S. Pipelining in

multi-query optimization. J. Comput. Syst. Sci., 66(4):728–762,

2003.

2. Diwan A.A., Sudarshan S., and Thomas D. Scheduling and

Caching in Multi-Query Optimization. In Proc. 13th Int. Conf.

Management of Data, 2006.

3. Fan W., Yu J.X., Lu H., Lu J., and Rastogi R. Query translation

from XPATH to SQL in the presence of recursive DTDs. In Proc.

31st Int. Conf. on Very Large Data Bases, 2005, pp. 337–348.

4. Graefe G. and McKenna W.J. The Volcano Optimizer Generator:

Extensibility and Efficient Search. In Proc. 9th Int. Conf. on Data

Engineering, 1993, pp. 209–218.

5. Krishnamurthy S., Wu C., and Franklin M. On-the-fly sharing

for streamed aggregation. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2006, pp. 623–634.

6. Mistry H., Roy P., Sudarshan S., and Ramamritham K.

Materialized view selection and maintenance using multi-

query optimization. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2001, pp. 307–318.

7. Park J. and Segev A. Using common subexpressions to optimize

multiple queries. In Proc. 4th Int. Conf. on Data Engineering,

1988, pp. 311–319.

8. Rao J. and Ross K.A. Reusing invariants: a new strategy for

correlated queries. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1998, pp. 37–48.

9. Rosenthal A. and Chakravarthy U.S. Anatomy of a modular

multiple query optimizer. In Proc. 14th Int. Conf. on Very

Large Data Bases, 1988, pp. 230–239.

10. Roy P., Seshadri S., Sudarshan S., and Bhobe S. Efficient and

extensible algorithms for multi query optimization. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2000, pp. 249–260.

11. Sellis T.K. Multiple query optimization. ACM Trans. Database

Syst., 13(1):23–52, 1988.

12. Shim K., Sellis T., and Nau D. Improvements on a heuristic

algorithm for multiple-query optimization. Data Knowl. Eng.,

12:197–222, 1994.

13. Subramanian S.N. and Venkataraman S. Cost-based optimiza-

tion of decision support queries using transient views. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1998,

pp. 319–330.

14. Zhou J., Larson P.Å., Freytag J.C., and Lehner W. Efficient

exploitation of similar subexpressions for query processing. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2007,

pp. 533–544.
Multi-Resolution

▶Multiple Representation Modeling

Multi-Resolution Terrain Modeling M 1853

M

Multi-Resolution Terrain Modeling

ENRICO PUPPO

University of Genova, Genova, Italy

Synonyms
Level-of-detail (LOD) terrain modeling

Definition
Multi-resolution terrain models provide the capability of

using different representations of terrain at different

levels of accuracy and complexity, depending on specific

application needs. The major motivation behind multi-

resolution is improving performance in geometry

processing and visualization. Given a terrain database,

a multi-resolution model provides the mechanisms

to answer queries that combine both spatial and resolu-

tion criteria. In the simplest case, one could ask for

a representation of terrain on a given area and with a

given accuracy in elevation. More sophisticated multi-

resolution models support adaptive queries, also known

as selective refinement queries, where resolution may

vary smoothly on the extracted representation, accord-

ing to some given criterion. For instance, one could ask

for an accuracy of at least 10 m on a given range of

elevations, and smoothly degrading to say 100 m out of

that range; similarly, high resolution could be focused

in the proximity of a lineal feature (e.g., a road, a river);

in view-dependent visualization, it is useful to have

maximal resolution close to the viewpoint, and de-

grade it smoothly according to distance from it; etc.

Multi-resolution engines must be able to answer such

queries in real time even on planetary size databases.

For instance, in view-dependent visualization it may be

necessary to change representation, hence answering a

query, at each frame, i.e., 25–30 times per second.

Historical Background
The concept of multi-resolution has been known since

the mid 1970s, with seminal work by J. Clark [3]. Since

then, many different proposals appeared in the litera-

ture, both in the context of terrain modeling and, more

generally, in CAD and computer graphics (see [13]).

The design of multi-resolution terrain models is

inter-related with terrain generalization, i.e., the prob-

lem of taking a representation of a terrain and gener-

ating another, smaller representation of the same

terrain at a lower accuracy. The ideal aim of terrain
generalization is to achieve an optimal ratio between

accuracy and size of representation. This problem has

been shown to be NP-hard by Agarwal and Suri [1].

However, starting with seminal work by Fowler and

Little in the late 1970s [8], many algorithms for terrain

generalization have been proposed in the literature that

achieve good results in practice.

Early multi-resolution models belonged to two

general classes: discrete models and tree-like models.

In a discrete model, a collection of alternative repre-

sentations of the same terrain at different resolutions

is stored. Tree-like models follow a hierarchical ap-

proach: a base model provides a coarse representation

of terrain made of a small number of atomic cells; each

such cell is refined by decomposition into smaller cells

at the next level of resolution; refinement is repeated

over several levels and the model in maintained in a

tree-like data structure. A notable example is given by

restricted quadtrees, introduced first by Von Herzen

and Barr in 1987 [15] and widely developed later by

several authors. This class of models is suited to effi-

ciently manage data with a regular distribution.

Many models developed (starting in the mid 1990s)

are based on Triangulated Irregular Networks (TINs).

Such models support also the manipulation of irregu-

larly distributed data and may all be seen as instances

of a general framework introduced by Puppo in 1996

[14]. The basic elements of such a framework are local

modification operations, which change the resolution

of a representation locally, and the hierarchical organi-

zation of such modifications on a directed acyclic

graph. Such models come in many variants, they all

support selective refinement and may achieve the best

ratios between level of accuracy and number of trian-

gles used in a representation.

Foundations
The simplest way to perform terrain generalization and

implicitly obtain a multi-resolution model from a data-

base of regularly distributed data is based on sub-sam-

pling. Given a grid of elevation data at high resolution, a

coarser sub-grid is obtained by regularly sampling data

along each axis with a fixed step. In this case, the term

resolution is referred to the size of cells in the resulting

grid, or, in other terms, to the size of the step used to sub-

sample. This method maintains the regular structure of

data, but it provides no control on the loss of accuracy

and it is not adaptive. Thus, a large number of samples

1854M Multi-Resolution Terrain Modeling
may be used even to represent terrain in flat areas, while

vertical error could easily exceed the allowed tolerance on

areas that contain sudden variations of altitude.

Better results can be obtained by building gene-

ralized representations in the form of TINs. Generali-

zation algorithms, run with different thresholds on

the same dataset at high resolution, provide a discrete

model consisting of a collection of TIN representations

at different accuracies. Being adaptive, such represen-

tations may contain small triangles in areas where

terrain has large variations, and large triangles in rela-

tively flat areas. In this case, the term resolution is more

related to accuracy than to the size of atomic elements

in the representation.

Discrete models support simple queries to extract a

representation at fixed resolution. It is sufficient to

select the layer corresponding to the desired resolution,

and the region of interest within that layer. However,

discrete models have several drawbacks: they usually

provide only a small number of levels of detail; they

cannot relate different representations of the same area

at different resolutions; and they cannot combine data

at different resolutions within a single representation.

The Delaunay pyramid proposed by De Floriani in

1989 [5] is a TIN based discrete model in which
Multi-Resolution Terrain Modeling. Figure 1.

A quadtree adaptive subdivision. The corresponding

terrain surface has cracks.

Multi-Resolution Terrain Modeling. Figure 2. In a restricted

of adjacent quadrants and triangulating quadrants with suita
vertical links between triangles that overlap at succes-

sive levels of detail are also maintained. In this sense, it

comes midway between discrete and tree-like models.

Compact data structures have also been proposed to

maintain a Delaunay pyramid with many levels, and

some authors have proposed variations of this model

that can support selective refinement.

In tree-like models, each node represents exactly

the same portion of terrain covered by its children.

Having a straightforward hierarchical structure, these

models can also act as spatial indexes. Most successful

models have been developed for regularly distributed

data (for instance, the multi-resolution model adopted

in Google Earth falls in this category). The simplest

example consists of a quadtree structure built over a

regular grid of data, which directly provides an adap-

tive version of the discrete model based on sub-

sampling (see Fig. 1). Unfortunately, representations

of adjacent portions of terrain from different levels of

the quadtree cannot be combined seamlessly, as cracks

would appear on the transition between quadrants

from different levels (the resulting representation

is said to be non-conforming). Restricted quadtrees

solve this problem by triangulating the quadrants in a

quadtree according to some predefined patterns that

eliminate cracks, thus obtaining conforming represen-

tations (see Fig. 2). In practice, restricted quadtrees

may support selective refinement and generate adap-

tive TINs made of right triangles and having their

vertices at a subset of the data in the high resolution

grid. Similar results are obtained by a hierarchical

decomposition pattern based on triangle bisection

(see Fig. 3), proposed in the mid 1990s by Lindstrom

et al. [11] and later adopted in many variants by many

authors. A square universe S is initially covered by

two isosceles right triangles. The bisection rule subdi-

vides a triangle into two similar triangles by splitting

it at the midpoint v of its longest edge. A binary tree
quadtree, cracks can be eliminated by balancing the level

ble patterns.

Multi-Resolution Terrain Modeling. Figure 3. Recursive

triangle bisection generates a regular hierarchy based

on the same triangles that appear in the restricted

quadtree, but it exhibits a better flexibility.

Multi-Resolution Terrain Modeling M 1855

M

of right triangles is thus obtained. In order to extract

conforming meshes, such tree must be traversed in a

proper way. In practice, adjacent triangles that are split

by introducing a given vertex v will have to be split

together during selective refinement. This scheme can

be easily generalized to a spherical domain starting,

e.g., from an octahedron. Efficient algorithms and data

structures have been developed for this scheme, which

can support selective refinement efficiently even on

planetary size databases. A great advantage of restricted

quadtrees and triangle bisection schemes comes from

the regular distribution of data. Very compact implicit

data structures can be designed, which have a small

overhead with respect to maintaining just the single

resolution data at the highest available detail, and are

also suitable for implementation in secondary mem-

ory. Most efficient data structures, though, assume that

the collection of all data in the database forms a unique

regular grid at a given (high) resolution. In most real

cases, however, the database is rather a patchwork of

partially overlapping grids at different resolutions. In

2003, Gerstner proposed a data structure for the

scheme based on triangle bisection, which works also

in the latter case [9].

Cignoni et al. in 2003 proposed a model oriented to

terrain rendering, the BDAM, which combines triangle

bisection with adaptive schemes based on TINs [2].

The triangle bisection scheme is used as a spatial index,

to obtain a coarse decomposition of the domain. Stan-

dard algorithms traverse such an index during selective

refinement, and triangular blocks are collected from

the proper levels of the tree. A TIN consisting of
possibly a large number of triangles is associated to

each triangular block in the spatial index. In this way,

the representation resulting from selective refinement

is in fact given by the collection of TINs corresponding

to triangular blocks extracted during traversal of the

index. TINs can be maintained on efficient data struc-

tures, suitable to be used in combination with Gra-

phics Processing Units (GPUs), which may greatly

improve performance. With this mechanism, perfor-

mances in terrain visualization are excellent even on

huge (planetary size) databases.

Other tree-like models have been developed based

on TINs, which can work on arbitrary datasets. A

triangle in a TIN may be refined by inserting a variable

number of points either inside it or on its edges on the

basis of an error-driven refinement criterion. Edges

that survive across different levels of the hierarchy

permit to combine surface patches from different levels

of the tree, thus supporting selective refinement. Com-

pared to models for regularly distributed data, these

latter models can achieve a better ratio between size

and accuracy, because no constraint is imposed on the

vertex distribution, but need more complicated and

expensive data structures to be stored.

Many other models developed (starting in the mid

1990s) have been oriented to irregularly distributed

data and are all based on TINs and local modifications.

A local modification is an operation that substitutes a

small (local) portion of a TIN with another represen-

tation, formed by a different number of triangles.

Modifications can be described either explicitly, by

enumerating triangles that are eliminated and triangles

that replace them, or, more often, implicitly through

some mesh editing operations. The most famous

and widely used editing operation is edge collapse (see

Fig. 4), which is at the basis of the Progressive Meshes

(PM) introduced by Hoppe in 1996 [10], and of many

other models proposed in the literature. Edge collapse

consists of collapsing an edge e of a TIN to a point. As a

consequence, the two triangles incident at e will col-

lapse to edges and disappear, thus the number of

triangles, edges and vertices in the TIN will decrease

by two, three, and one unit, respectively. Iterative edge

collapse provides a powerful method for terrain gener-

alization. The resulting sequence of collapses, together

with their inverse operations called vertex splits, and

the base mesh obtained from generalization, constitute

a PM. Similar models can be built by using local

modifications different from edge collapse, provided

1856M Multi-Resolution Terrain Modeling
that they can be reversed. This simple structure sup-

ports the efficient extraction of terrain representations

at many different levels of detail, but do not directly

support selective refinement. In 1996, Puppo took a

more general approach in analyzing models based on

local modifications [14]. He proved that the inherent

dependency relation between local modifications in

a sequence is in fact a partial order, which can be

encoded in a directed acyclic graph having such mod-

ifications as nodes (see Fig. 5). By traversing such
Multi-Resolution Terrain Modeling. Figure 5. A sequence o

portions of a mesh with other, more refined, groups of triangle

directed acyclic graph: a modification M depends on another

that was introduced by M0.

Multi-Resolution Terrain Modeling. Figure 4. Edge collapse

edge e together with its endpoints v1 and v2 collapse to verte

collapse to edges w1v and w4v, respectively. Edge collapse is
graph in a proper order, selective refinement can be

performed efficiently. This general framework consist-

ing of a partial order of local modifications is called a

Multi-Triangulation (MT). Among the many schemes

that fit in the MT framework, the data structure pro-

posed by El-Sana and Varshney in 1999 is excellent for

compactness [7]. Their model is based on edge collapse

and just a binary tree of the vertices introduced

from collapse operations is maintained, which con-

tains in fact just a subset of the links in the graph of
f arbitrary local refinement modifications substitute

s. The corresponding Multi-Triangulation is described by a

modification M0 if and only if M eliminates some triangle

is a local modification for iterative terrain generalization:

x v; triangles adjacent to e together with their other edges

inverted by a refinement operation called vertex split.

Multiscale Interface M 1857

M

dependencies of the MT. A clever mechanism based on

enumeration of nodes in the tree allows them to re-

trieve the correct dependencies among nodes and run

selective refinement correctly and efficiently.

In the literature, also other kinds of multi-resolution

models have been proposed, which follow a functional

approach rather than a geometric one (see, e.g., [12]).

The basic idea is that a function can be decomposed

into a simpler part at low resolution, together with a

collection of perturbations called wavelet coefficients

which define its details at progressively finer levels

of resolution. Wavelets have been widely used for

multi-resolution representation and compression of sig-

nals and images, while their applications to terrain and

surfaces is more recent. The discrete computation of

wavelets requires a recursive subdivision of the domain

into regular cells like equilateral triangles or squares.

Therefore these methods are just suitable for regularly

distributed data and resulting hierarchies correspond to

either quaternary triangulations or quadtrees.

For a more detailed treatment of multi-resolution

terrain modeling see, e.g., [13,4,6] and references

therein.

Key Applications
Multi-resolution terrain modeling is essential to man-

age complexity in those applications that need to either

analyze or visualize terrain data at different scales, such

as planetary browsers, flight simulators, CAD tools

for road design, and all intensive computational tasks

related to terrain, such as drainage networks and

visibility.

Cross-references
▶Digital Elevation Models

▶Discrete Wavelet Transform and Wavelet Synopses

▶Geographic Information System

▶Quadtrees (and Family)

▶ Simplicial Complex

▶Triangulated Irregular Network

Recommended Reading
1. Agarwal P.K. and Suri S. Surface approximation and geometric

partitions. In Proc. 5th Annual ACM -SIAM Symp. on Discrete

Algorithms, 1994, pp. 24–33.

2. Cignoni P., Ganovelli F., Gobbetti E., Marton F., Ponchio F.,

and Scopigno R. Planet-sized batched dynamic adaptive meshes

(P-BDAM). In Proc. IEEE Visualization, 2003, pp. 147–155.

3. Clark J.H. Hierarchical geometric models for visible surface

algorithms. Commun. ACM, 19(10):547–554, 1976.
4. Danovaro E., De Floriani L., Magillo P., Puppo E., and Sobrero

D. Level-of-detail for data analysis and exploration: A historical

overview and some new perspectives. Comput. Graph., 30(3):

334–344, 2006.

5. De Floriani L. A pyramidal data structure for triangle-based

surface description. IEEE Comp. Graph. Appl., 9(2):67–78,

1989.

6. De Floriani L., Magillo P., and Puppo E. Geometric structures

and algorithms for geographical information systems. In Hand-

book of Computational Geometry, J.R. Sack and J. Urrita (eds.),

Elsevier Science, Amsterdam, 1999.

7. El-Sana J. and Varshney A. Generalized view-dependent simpli-

fication. Comput. Graph. Forum, 18(3):C83–C94, 1999.

8. Fowler R.J. and Little J.J. Automatic extraction of irregular

network digital terrain models. In Proc. 6th Annual Conf.

Computer Graphics and Interactive Techniques, 1979,

pp. 199–207.

9. Gerstner T. Multiresolution compression and visualization of

global topographic data. Geoinformatica, 7(1):7–32, 2003.

10. Hoppe H. Progressive meshes. In Proc. 23rd Annual

Conf. Computer Graphics and Interactive Techniques, 1996,

pp. 99–108.

11. Lindstrom P., Koller D., Ribarsky W., Hodges L.F., Faust N., and

Turner G.A. Real-time, continuous level of detail rendering of

height fields. In Proc. 23rd Annual Conf. Computer Graphics

and Interactive Techniques, 1996, pp. 109–118.

12. Lounsbery M., DeRose T.D., and Warren J. Multiresolution

analysis for surfaces of arbitrary topological type. ACM Trans.

Graph., 16(1):34–73, 1997.

13. Lübke D., Reddy M., Cohen J.D., Varshney A., Watson B., and

Hübner R. Level Of Detail for 3D Graphics. Morgan Kaufmann,

Los Altos, CA, 2002.

14. Puppo E. Variable resolution terrain surfaces. In Proc. 8th Cana-

dian Conf. on Computational Geometry, 1996, pp. 202–210.

15. Von Herzen B. and Barr A.H. Accurate triangulations of

deformed, intersecting surfaces. In Proc. 14th Annual

Conf. Computer Graphics and Interactive Techniques, 1987,

pp. 103–110.
Multi-scale

▶Multiple Representation Modeling
Multiscale Views

▶Distortion Techniques
Multiscale Interface

▶Zooming Techniques

1858M Multiset Semantics
Multiset Semantics

▶Bag Semantics
Multi-Step Query Processing

PEER KRÖGER, MATTHIAS RENZ

Ludwig Maximillian University of Munich, Munich,

Germany

Synonyms
Filter/refinement query processing

Definition
A query on a database reports those objects which

fulfill a given query predicate. A query processor has

to evaluate the query predicate for each object in the

database which is a candidate for the result set. Multi-

step query processing (filter/refinement query proces-

sing) is a technique to speed up queries specifying

query predicates that are complex and costly to evalu-

ate. The idea is to save the costs of the evaluation of the

complex query predicate by reducing the candidate set

for which the query predicate has to be evaluated

applying one or more filter steps. The aim of each filter

step is to identify as many true hits (objects that truly

fulfill the complex query predicate) and as many true

drops (objects that truly do not fulfill the query predi-

cate) as possible by applying a less costly query pre-

dicate. The remaining candidates that are not pruned

as drops or reported as hits in one of the filter steps

need to be tested in a refinement step where the exact

(costly) query predicate is evaluated. Obviously, the

less costly the filter predicates are and the smaller

the number of candidates that need to be refined, the

higher the performance gain of a multi-step query

processing is over a single-step query processing. In

addition, if any of the applied filter steps is able to

report true hits, first results can be reported to the user

significantly sooner by a multi-step query processor

compared to a single-step query processor.

Historical Background
In many database applications the management of

complex objects is required. For example, the parts of

a geographical map such as streets, lakes, forests – or

generally regions – are stored as polylines or polygons.
Queries on these complex objects usually involve com-

plex query predicates that are costly to evaluate. For

example, in order to retrieve all regions of a map that

intersect with a given query window it is required to

test the intersection of the query window and the

database polygons which is computationally rather

expensive. In such situations, the evaluation of the

query predicate (e.g., ‘‘intersects the query window’’)

becomes the bottleneck of query processing. Index

structures are designed for shrinking down the search

space of tentative hits in order to scale well for very

large databases. Principally, the aim of index structures

is the same as that of the filter-steps in multi-step

query processing. However, index structures are only

applicable for the first filter step. The reason is that

index structures are designed to organize the entire

database and cannot be applied to a reduced set of

candidates.

To cope with complex data objects and costly query

predicates, the paradigm of multi-step query proces-

sing (filter/refinement query processing) has been de-

fined originally for spatial queries such as point queries

and region queries on databases of spatial objects [6,2].

This paradigm has been applied to similarity search in

databases of complex objects performing general simi-

arity queries such as distance range queries [1,3] and k-

nearest neighbor (kNN) queries [4] using costly dis-

tance functions. The key idea is to apply one or more

filter steps each using cheaper query predicates (e.g.,

cheaper distance functions), the so-called filter predi-

cates, in order to identify as many objects as possible as

true hits or true drops. For the remaining candidates,

for which the query predicate cannot be decided using

any of the filter steps, the exact (more costly) query

predicate needs to be evaluated in a refinement step. To

ensure correct results, the filter predicates are required

to be based on conservative approximations of the

exact objects. This ensures that if any object does not

qualify for a filter predicate, it can also not qualify for

the exact query predicate. For example, if the regions of

a map are conservatively approximated by minimum

bounding rectangles (MBRs) of the corresponding poly-

gons, those regions whose corresponding MBRs do

not intersect with the query window cannot intersect

with the query window. This conservative property of

the filter predicates enables discarding true drops. On

the other hand, filter predicates that are based on pro-

gressive approximations of the exact objects can be

used to identify true hits. For example, if the regions

Multi-Step Query Processing M 1859

M

of a map are progressively approximated by an incircle

of the corresponding polygons, those regions whose

corresponding incircle intersect with the query window

do also intersect with the query window.

Foundations
Multi-step query processing is usually used in applica-

tions where the objects in the database are complex

and the queries launched on objects rely on costly

predicates that cannot be evaluated efficiently. In

such applications, the evaluation of the query predi-

cate becomes the bottleneck in query execution.

General Schema of Multi-Step Query Processing

Multi-step query processing is based on the follow-

ing idea: design one or more filter predicates that

can be evaluated much faster than the original query

predicate and that can be used to shrink down the

number of candidates for which it is unknown whether

they qualify for the query predicate or not. The query

processing starts with all database objects as candidates

and applies the designed filters sequentially on the

remaining candidates. Each filter ideally identifies

true hits that can be added to the result set and true

drops that can be pruned. The candidates that cannot

be classified as true hits or true drops after all filter

steps need to be refined by evaluating the (costly)

original query predicate. This general schema is illu-

strated in Fig. 1. The order in which the single

filter steps are applied usually depends on the cost of

each filter step and on the selectivity of each filter

step. The selectivity of a filter step determines the

fraction of objects that are identified as true hit or
Multi-Step Query Processing. Figure 1. General schema of
true drop by the corresponding filter and do not need

any further processing. In order to produce correct

results, obviously, the filter steps must not produce

false drops (i.e., drop objects that match the original

query predicate according to a filter predicate) and

false hits (i.e., report objects that do not match the

original query predicate as hits according to a filter

predicate).

In order to apply multi-step query processing, it is

important to design appropriate filter predicates for

the original query predicates of the given application.

An appropriate filter predicate can usually be designed

by designing a less complex representation that approx-

imates the complex database objects. The evaluation of

the query predicate on these less complex object

approximations should be less costly than on the orig-

inal object representation. In the following, special

instances of multi-step query processing is discussed

in more detail.

Example: Multi-Step Query Processing of Similarity

Queries

Usually, similarity between objects is expressed by

means of a pair-wise distance function dist. A high

distance between two objects denotes low similarity

of these objects whereas a low distance implies high

similarity. For example, if the database objects are

points (of any dimensionality), dist could be the Eu-

clidean distance, i.e., the vicinity of the corresponding

points in the Euclidean space. If the database objects

are sequences, dist could be the Edit distance. If the

database objects are spatial regions (e.g., of a map), dist

could be the smallest Euclidean distance between the
multi-step query processing.

1860M Multi-Step Query Processing
corresponding polygons. The two most important and

general types of similarity queries are distance range

(DR) queries and k-nearest neighbor (kNN) queries.

A distance range query is a general query type in

non-standard database systems such as spatial DBS,

temporal DBS, and multi-media DBS. Given a query

object q, a distance function dist(.,.), and a distance

threshold e, a distance range query returns all database
objects o that have a distance less or equal than e to q,

i.e., dist(q, o) � e. They can be efficiently supported

using index structures or multi-step query processing.

According to the above definition the query predi-

cate of DR queries is given as follows: all hits o must

qualify the predicate dist(q, o)� e, where q is the query
object and e is a distance threshold. The query predi-

cate of kNN queries is quite similar to DR queries: all

hits o must qualify the predicate dist(q, o) � d(q, k),

where q is the query object and d(q, k) is the k-nearest

neighbor distance. However, the big difference between

DR queries and kNN queries is that the distance

threshold e is given in advance, whereas the value of

d(q, k) is usually not known at query time.

A filter predicate for identify true drops (conserva-

tive property) can be designed as follows. First, a less

complex representations to conservatively approxi-

mate the exact objects should to be developed. Usually,

this can only be implemented for spatial objects: the

conservative approximation must completely contain

the exact object, e.g., a minimum bounding box

(MBR) is a conservative approximation of a polygon.

A second step is essential: A (cheaper) distance func-

tion on the approximation must be designed that

implements the lower bounding property. Let dist(.,.)

be the exact distance function on the exact database

objects and LB(.,.) the cheaper filter distance. The

distance function LB(.,.) lower bounds the exact dis-

tance dist(.,.), if the following holds:

LBðx; yÞ � distðx; yÞ

for all database objects x and y. Since the exact predi-

cate of a similarity query usually determines the hits as

those objects that have a distance less than a threshold

e to the query object q, all objects owith e< LB(q, o)�
dist(q, o) can be excluded from the result set without

further processing. In other words, the filter predicate

is similar to the original query predicate, but uses LB

instead of dist.

For example, if the database contains the regions of

a map, and dist(r1, r2) is the smallest Euclidean distance
between the regions (polygons) r1 and r2, an appropri-

ate filter can be designed as follows. The regions are

approximated by MBRs and LB(m1, m2) is defined as

the smallest Euclidean distance between the MBRs

m1 and m2) of r1 and r2, respectively. Obviously, eval-

uating LB on the MBRs is usually much less complex

and costly than evaluating dist on the polygons.

A filter predicate for identifying true hits can be

designed analogously. First, a less complex representa-

tion to progressively approximate the exact objects

should be developed. Again, this can usually be imple-

mented only for spatial objects: the progressive ap-

proximation must be completely contained within

the exact object, e.g., the maximal circle contained

within a polygon (incircle) is a progressive approxima-

tion of that polygon. Again, a second step is essential: A

(cheaper) distance function on the approximation

must be designed that implements the upper bounding

property. Again, let dist(.,.) be the exact distance func-

tion on the exact database objects and UB(.,.) the

cheaper filter distance. The distance function UB(.,.)

upper bounds the exact distance dist(.,.), if the follow-

ing holds:

UBðx; yÞ � distðx; yÞ

for all database objects x and y. All objects o with

e > UB(q, o) � dist(q, o) can be added to the result

set without further processing. In other words, the

filter predicate is again similar to the original query

predicate, but uses UB instead of dist.

Sometimes, an approximate representation of the

database objects allows the definition of two distance

functions, one lower bounding distance and one upper

bounding distance. Filter predicates that do not use

upper or lower distances cannot be applied to reduce

the number of candidates.

Example: Algorithms for Multi-Step Query Processing of

Similarity Queries

The algorithm for multi-step distance range queries is

rather easy. Since the distance threshold e is known in

advance, in each filter step, true hits and/or true drops

are identified as described above, depending on the

property of the distance used in the filter predicate.

On the other hand, a multi-step solution for kNN

queries is not trivial, because in order to determine the

exact value of d(q, k) that can be used to identify

objects based on any filter predicates as true hits

or true drops, at least k objects need to be refined.

Multi-Step Query Processing M 1861

M

Since the k nearest neighbors are not known in

advance, the k objects that need to be refined to deter-

mine the exact value of d(q, k) are not known. Obvi-

ously, this is a vicious circle.

The multi-step kNN query processing algorithm

proposed in [4] tries to approximate d(q, k) by refining

any k objects and take the maximum value d0(q, k) of

these exact distances. then, a multi-step DR query with

query object q and distance threshold d0(q, k) is eval-

uated. The resulting (refined) objects are ranked in

ascending exact distances to q and only the first k

objects of this ranking are reported as final result.

In [7], the authors enhance this approach with an

algorithm that minimizes the number of refinements.

The basic assumption of this algorithm is that only a

conservative filter is applied. In the case of only

one filter step, the algorithm uses a ranking query

in the filter step. Given a query object q and a distance

function dist(.,.), a ranking query returns a sequence of

the database objects in a database D sorted by ascend-

ing distances to q. A ranking query is a general query

type in non-standard database systems such as spatial

DBS, temporal DBS, and multi-media DBS and can be

efficiently supported using index structures. In the

context of multi-step query processing in the filter

step a ranking query returns a ranking of the database

objects sorted in ascending filter distances to the query

object q. Initially, the first k objects of the ranking are

refined and an approximation d0(q, k) of the true value

of d(q, k) is determined from these refined distances as

above. Then, in each iteration, the next object from

the ranking is fetched as long as the filter distance of

the next object in the ranking is greater than the

current approximation d0(q, k). As long as this is not

the case, the currently fetched object is refined and

d0(q, k) is updated. This algorithmic schema can

easily be extended to applying multiple filter steps. It

can be shown that – if only a conservative filter is

implemented – this algorithm is optimal with regard

to the number of refinements.

Finally, the algorithm in [5] further enhances the

preceding algorithms that take only a conservative

filter into account, by additionally using a progressive

filter. The algorithm is similar to that in [7] but deter-

mines d0(q, k) from the progressive filter as long as this

is possible rather than from exact distances. As a con-

sequence, the proposed algorithm reduces the number

of refinements significantly. It can be shown that – if

both a conservative filter and a progressive filter are
implemented – this algorithm is optimal with regard to

the number of refinements.

Key Applications
More and more applications suffer from the increasing

complexity of the objects and of the functions required

to evaluate query predicates on such objects, e.g., com-

plex distance functions or spatial intersections. In the

meantime, the efficient support of multi-step query

processing is essential for many application areas

such as molecular biology, medical imaging, CAD sys-

tems, and multimedia databases.

In this context, one of the most important applica-

tion where multi-step query processing is essential for

efficient query processing is similarity search in time

series databases. Time series may be very large. Typical

similarity queries in time series databases are distance

range queries and k-nearest neighbor queries. Due to

the curse of dimensionality, similarity queries cannot

efficiently be supported by indexing the time-series

based on the raw data. A common method to over-

come this problem is to reduce the dimensionality of

the object descriptions and use this lower-dimensional

feature space to index the time series. Similarity

queries are then performed using the paradigm of

multi-step query processing. In the filter step, approxi-

mated similarity distances are computed based on the

dimensionality reduced representations, while the re-

finement step applies similarity distance functions

based on the raw time series data. Usually, the filter

step is conservative, i.e., the filter distances lower

bound the exact distances.

Another important application which requires

multi-step query processing is the support of proximity

queries in spatial networks like road networks where

point objects located within the road network that is

represented by a graph are queried. Usually, the objects

are positions of buildings or individuals like persons or

cars that can have a static location or may move within

the network. Example queries could be ‘‘retrieve all cars

within the road network having a smaller distance to

the fast-food restaurant Pinky than 5.0 km’’ or ‘‘give me

the three filling stations having the smallest distance to

my actual position.’’ Since the motion of the objects is

restricted by the network, i.e., objects can only move

along a path in the network graph, the distance between

two objects is not measured using the Euclidean dis-

tance. Rather, the length of the shortest path between

two objects is used as distance measure. For each

1862M Multi-Tier Architecture
distance computation it is necessary to apply the Dijk-

stra algorithm which is too expensive to answer such

proximity queries on large databases in real time.

Therefore, distance approximations are needed, which

can be computed more efficiently and can be used in

the filter step of a multi-step query processing algo-

rithm. The simplest road-network distance approxima-

tion that fulfills the lower bound criterion is the

Euclidean distance. Anothermethod to achieve suitable

distance approximations is the pre-computation of dis-

tances based on certain landmarks (reference nodes).

The distance approximation based on landmarks has

the advantage that, in addition to the lower bounding

distance approximation, it is possible to compute a

distance approximationwhich fulfills the upper bound-

ing property.

A further important application of multi-step query

processing is the support of spatial queries in spatial

databases, i.e., databases containing objects having a

spatial extension. One of the most important query

types in such databases is the point-in-polygon test.

Given a database with two-dimensional polygon objects

and a certain query point, retrieve all polygons that

include the query point. Several filter steps can

be applied for this problem to avoid unnecessary

point-in-polygon-tests. For example, the polygons can

be conservatively approximated by minimum bounding

rectangles (MBRs). Obviously, MBRs that do not con-

tain the query point can be discarded as true drops. On

the other hand, progressive approximations of the poly-

gons can be used to identify true hits.

Cross-references
▶Closest-Pair Query

▶High Dimensional Indexing

▶ Indexing Metric Spaces

▶Nearest Neighbor Query

▶ Spatial Indexing Techniques

▶ Spatial Join

▶ Spatio-Temporal Data Mining

Recommended Reading
1. Agrawal R., Faloutsos C., and Swami A. Efficient similarity

search in sequence databases. In Proc. 4th Int. Conf. on

Foundations of Data Organization and Algorithms, 1993,

pp. 69–80.

2. Brinkhoff T., Horn H., Kriegel H.-P., and Schneider R. A storage

and access architecture for efficient query processing in spatial

database systems. In Proc. 3rd Int. Symp. Advances in Spatial

Databases, 1993, pp. 357–376.
3. Faloutsos C., Ranganathan M., and Manolopoulos Y. Fast sub-

sequence matching in time series database. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1994, pp.419.

4. Korn F., Sidiropoulos N., Faloutsos C., Siegel E., and Protopapas

Z. Fast nearest neighbor search in medical image databases.

In Proc. 22th Int. Conf. on Very Large Data Bases, 1996,

pp. 215–226.

5. Kriegel H.-P., Kröger P., Kunath P., and RenzM. Generalizing the

optimality of multi-step k-nearest neighbor query processing. In

Proc. 10th Int. Symp. Advances in Spatial and Temporal Data-

bases, 2007, pp. 75–9.

6. Orenstein J. and Manola F. Probe spatial data modelling and

query processing in an image database application. IEEE Trans.

Softw. Eng., 14(5), 1988.

7. Seidl T. and Kriegel H.-P. Optimal multi-step k-nearest neighbor

search. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1998, pp. 154–16.
Multi-Tier Architecture

HEIKO SCHULDT

University of Basel, Basel, Switzerland

Synonyms
n-tier architecture; Multi-layered architecture

Definition
A Multi-tier Architecture is a software architecture in

which different software components, organized in

tiers (layers), provide dedicated functionality. The

most common occurrence of a multi-tier architecture

is a three-tier system consisting of a data management

tier (mostly encompassing one or several database

servers), an application tier (business logic) and a

client tier (interface functionality). Novel deployments

come with additional tiers. Web information systems,

for instance, encompass a dedicated tier (web tier)

between client and application layer.

Conceptually, a multi-tier architecture results from

a repeated application of the client/server paradigm.

A component in one of the middle tiers is client to the

next lower tier and at the same time acts as server to

the next higher tier.

Historical Background
Early generation software systems have been built in a

monolithic way. This means that all the different tasks

for implementing a particular application and pre-

senting the results to a user are provided by a single

Multi-Tier Architecture M 1863

M

dedicated software component. With the advent of

client/server architectures in the 1980s, different tasks

could be separated and possibly even be distributed

across network boundaries. In a client/server architec-

ture (two tier architecture), the client is responsible for

presenting the application to the user while the server

is in charge of data management. For the provision of

business logic, two alternatives have emerged. First, in

so-called fat client/thin server architectures, the client

also provides business logic, in addition to presenta-

tion and user interfaces. This can be realized by using

SQL against the underlying database server in the

application program run by the client, either by

embedding SQL into a higher programming language

or by using the database server’s call level interface

(e.g., JDBC, ODBC). Second, in thin client/fat server

architectures, the database server also provides busi-

ness logic while the client solely focuses on presenta-

tion issues. Fat servers can be realized by using

persistent stored modules or stored procedures inside

the database server. In the case of evolving business

logic, fat client architectures, although being the most

common variant of client/server systems, impose quite

some challenges when new client releases need to be

distributed in large deployments. In addition, a fat

client architecture usually comes along with a high
Multi-Tier Architecture. Figure 1. Structure of a three tier a
network load since data is completely processed

at the client side. Fat servers, in contrast, impose a

single point of failure and a potential performance

bottleneck.

Three-tier architectures thus are the next step in the

evolution of client/server architectures where both cli-

ent and database server are freed from providing busi-

ness logic. This task is taken over by an application

layer (business tier) between client and database server.

In multi-tier architectures, additional tiers are intro-

duced, such as for instance a web tier between client

and application layer.

Foundations
Multi-tier systems follow an architectural paradigm

that is based on separation of concerns. The architec-

ture considers a vertical decomposition of functionali-

ty into a stack of dedicated software layers. Between

each pair of consecutive layers, a client/server style

of interaction is applied, i.e., the lower layer acts as

server for the next higher layer (see Fig. 1). Typical tiers

in a three-tier architecture are data management, busi-

ness and client tier. Multi-tier architectures consider

additional layers, such as a web tier which hosts servlet

containers and a web server and which is located be-

tween client tier and application tier.
rchitecture.

1864M Multi-Tier Architecture
In addition to vertical decomposition and distribu-

tion across tiers, in many cases multi-tier architectures

also leverage horizontal distribution within tiers. For

the data management tier, this means that several

distributed database servers can be used. Most com-

monly, horizontal distribution is applied at the busi-

ness tier, i.e., providing several application server

instances [7].

The main benefit of multi-tier applications is that

each tier can be deployed on different heterogeneous

and distributed platforms. Load balancing within tiers,

especially for the application tier, is supported by dis-

tributing requests across the different application serv-

er instances. This can be implemented by a dispatcher

which accepts calls from the next higher layer and

distributes them accordingly (this is done, for instance,

in TP Monitors which allow to distribute requests

among application processes at the middle tier in a

three-tier architecture).

When multi-tier architectures are used in a busi-

ness context, they have to support transactional inter-

actions. Due to the inherent distribution of software

components across layers and potentially even within

layers, distributed transactions are needed. This is usual-

ly implemented by a two-phase commit protocol (2PC)

[5] (depending on the application server and the mid-

dleware used, this can be done, for instance, via CORBA

OTS, the Java Transaction Service JTS, etc.). While 2PC

provides support for atomicity in distributed transac-

tions, it does not take into account the layered architec-

ture where transactions at one layer are implemented by

using services and operations of the next lower layer.

Multi-level transactions [11] take this structure into

account. SAP ERP [4], for instance, applies multi-level

transactions by jointly considering the application server

and data management tier. Asynchronous interactions

between components in a multi-tier architecture require

a message-oriented middleware (MOM). In this case,

transactional semantics can be supported by persistent

queues and queued transactions [1].

In order to increase the performance of multi-tier

systems and to improve response times, caching is used

at the application tier. For this, different database

technologies such as replication, materialized views,

etc. can be applied outside the DBMS [6].

Key Applications
Due to the proliferation of both commercial and open

source application servers, multi-tier architectures
can be found in a very large variety of different

domains. Applications include, but are not limited to,

distributed information systems, Web information sys-

tems, e-Commerce, etc.

Experimental Results
The Transaction Processing Performance Council

(TPC) has defined a benchmark, TPC-App, for evalu-

ating the business tier and in particular the perfor-

mance of application servers in a three- or multi-tier

architecture [10]. It includes Web Service interac-

tions, distributed transactions, and asynchronous

interactions via message-oriented middleware (reliable

messaging and persistent queues).

Cross-references
▶Application Server

▶Client/Server Architecture

▶Database Middleware

▶Distributed Transaction Management

▶ Java EE

▶Message Queuing Systems

▶Middleware Support for Database Replication and

Caching

▶Multilevel Transactions and Object-Model Transac-

tions

▶Replication in Multi-Tier Architectures

▶ Service Oriented Architecture

▶Transactional Middleware

▶Web Services

▶Web Transactions

Recommended Reading
1. Bernstein P. and Newcomer E. Principles of Transaction Proces-

sing. Morgan Kaufmann, Los Altos, CA, 1997.

2. Birman K. Reliable Distributed Systems: Technologies, Web Ser-

vices, and Applications. Springer, Berlin, 2005.

3. Britton C. IT Architectures and Middleware. Addison Wesley,

Reading, MA, USA, 2001.

4. Buck-Emden R. and Galimow J. SAP R/3 System: A Client/Ser-

ver Technology. Addison-Wesley, Reading, MA, USA, 1996.

5. Lindsay B., Selinger P., Galtieri C., Gray J., Lorie R., Price T.,

Putzolu F., and Wade B. Notes on Distributed Databases. IBM

Research Report RJ2571, San Jose, CA, USA, 1979.

6. Mohan C. Tutorial: Caching Technologies for Web

Applications. In Proc. 27th Int. Conf. on Very Large Data

Bases, 2001.

7. Mohan C. Tutorial: Application Servers and Associated Technolo-

gies. In Proc. 28th Int. Conf. on Very Large Data Bases, 2002.

8. Myerson J. The Complete Book of Middleware. Auerbach,

Philadelphia, PA, 2002.

Multivariate Data Visualization M 1865
9. Orfali R., Harkey D., and Edwards J. Client/Server Survival

Guide. Wiley, 3rd edn., 1999.

10. Transaction Processing Performance Council.TPC-App. http://

www.tpc.org/tpc_app/default.asp, 2008.

11. Weikum G. and Schek H.J. Concepts and Applications of Multi-

level Transactions and Open Nested Transactions. In Database

Transaction Models for Advanced Applications, K. Elmagarmid

(ed.), Morgan Kaufmann, Los Altos, CA, 1992, pp. 515–553.

12. Weikum G. and Vossen G. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control.

Morgan Kaufmann, Los Altos, CA, 2001.
M

Multivalued Dependency

SOLMAZ KOLAHI

University of British Columbia, Vancouver,

BC, Canada

Synonyms
MVD

Definition
Amultivalued dependency (MVD) over a relation sche-

ma R[U], is an expression of the form X↠ Y , where X,

Y
 U. An instance I of R[U] satisfies X ↠ Y , denoted

by I⊨X ↠ Y , if for every two tuples t1,t2 in I such that

t1[X] = t2[X], there is another tuple t3 in I such that

t3[X] = t1[X] = t2[X], t3[Y] = t1[Y], and t3[Z] = t2[Z],

where Z = U � XY (XY represents X [Y). In other

words, for every value of X, the value of attributes in Y

is independent of the value of attributes in Z. A multi-

valued dependency X ↠ Y is a special case of a join

dependency expressed as ⋈[XY,X(U � XY)], which

specifies that the decomposition of any instance I

satisfying ⋈ [XY,X(U � XY)] into pXY(I) and

pX(U�XY)(I) is lossless, i.e., I = pXY(I) ⋈ pX(U�XY)(I).
Movies

Title Director Actor Year

Pulp
Fiction

Quentin
Tarantino

John Travolta 1994

Pulp
Fiction

Quentin
Tarantino

Samuel L. Jackson 1994

The Matrix Andy Wachowski Keanu Reeves 1999

The Matrix Andy Wachowski Laurence
Fishburne

1999

The Matrix Larry Wachowski Keanu Reeves 1999

The Matrix Larry Wachowski Laurence
Fishburne

1999
Key Points
Multivalued dependencies, like functional dependen-

cies, can cause redundancy in relational databases.

For instance, in the following table, each director of

the movie The Matrix is recorded once per actor of the

movie, and this is because the instance satisfies the

MVD title ↠ director.

Multivalued dependencies have been considered in

the normalization techniques that try to improve the

schema of a database by disallowing redundancies. The

most common normal form that takes MVDs into

account is the Fourth Normal Form (4NF). The impli-

cation problem for MVDs can be solved in polynomial

time. That is, given a set S of MVDs, it is possible to

check whether an MVD X ↠ Y is logically implied

by S, denoted by S⊨X ↠ Y , in the time that is

polynomial in the size of S and X ↠ Y . Multivalued

dependencies are usually considered together with

functional dependencies (FDs) in the normalization

of relational data. There is a sound and complete set

of rules (axioms) that can be used to infer new depen-

dencies from a set of MVDs and FDs defined over a

relation R[U]:

MVD0 (complementation): If X↠ Y, then X↠ (U� X).

MVD1 (reflexivity): If Y
 X, then X ↠ Y .

MVD2 (augmentation): If X ↠ Y , then XZ ↠ YZ.

MVD3 (transitivity): If X ↠ Y and Y ↠ Z, then

X ↠ (Z � Y).

FMVD1 (conversion): If X ! Y , then X ↠ Y.

FMVD2 (interaction): If X ↠ Y and XY ! Z, then

X ! (Z � Y).

It is also known that the set {MVD0,...,MVD3}

is an axiomatization for MVDs considered alone.

Cross-references
▶ Fourth Normal Form

▶ Functional Dependency

▶ Join

▶ Join Dependency

▶Normal Forms and Normalization

▶ Projection

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases.

Addison-Wesley, Reading, MA, USA, 1995.
Multivariate Data Visualization

▶Dynamic Graphics

1866M Multivariate Visualization Methods
Multivariate Visualization Methods

ANTONY UNWIN

Augsburg University, Augsburg, Germany

Synonyms
Graphical displays of many variables

Definition
Multivariate datasets contain much information. One-

and two-dimensional displays can reveal some of this,

but complex pieces of information need more sophis-

ticated displays that visualize several dimensions of the

data simultaneously. Usually several displays are

needed.
Historical Background
Graphical displays have been used for presenting and

analysing data for many years. Playfair [10] produced

some fine work over 200 years ago. Minard prepared

what Tufte has called ‘‘the finest graphic ever drawn’’

in the middle of the nineteenth century, showing

Napoleon’s advance on and retreat from Moscow, in-

cluding information on the size of the army and the

temperature at the time. Neugebaur introduced many

innovative ideas in the 1920s and 1930s. Most of these

graphics are primarily one- or two-dimensional.

Techniques for displaying higher dimensional data

have mainly been suggested more recently.

Foundations
There are two quite different aims of data display:

analysis and presentation. Graphics aid analysts in

understanding data and in determining structure.

Graphics are good for identifying outliers, for picking

out local patterns, and for recognizing global features.

Graphics are also valuable for conveying that infor-

mation to others. Wilkinson’s book [13] defines a

formal structure. Unwin et al. [12] discuss graphics

for large datasets. Theus et al. [11] present interactive

graphics for exploring data. The Handbook of Data

Visualization [2] provides an overview of the current

state of play.

For displaying multivariate data, indeed for dis-

playing data in general, it is important to distinguish

between different data types. Variables may be categor-

ical, ordinal, continuous, temporal, spatial or logical
(and other specialist types could be added as well). In

data analysis the most common types are continuous

and categorical. Ordinal may sometimes be treated as

categorical (when there are only a few distinct values)

and sometimes as continuous (when there are many).

No printed graphic can display more than two

dimensions fully at once. Multivariate graphics use

projections, conditioning, and linking to capture

higher dimensional information. Some displays can

deal with very large numbers of cases (area displays

such as mosaic plots), and some can potentially handle

very many variables (parallel coordinate plots). Most

displays are limited in both dimensions. One strategy is

to use small multiples, multiple versions of the same

graphic restricted to subsets of the data. Trellis plots

[1] are the most important example of this approach.

Whether many small displays are used or a range of

large displays (which might be referred to as large

multiples), more than one display will always be nec-

essary to reveal the information in the data.

It is essential to bear in mind that to have enough

evidence to confirm complex relationships lots of data

are needed. Think of determining the effects of all the

influences on car insurance premiums or of estimating

the effects of factors in health studies (for instance

breast cancer risk). Graphical methods must be able

to deal with large datasets to be fully useful [12].

Multivariate Continuous Data

For multivariate continuous data the most popular

graphic solution is parallel coordinate plots [8]. Fur-

ther approaches include scatterplot matrices (sploms),

showing all scatterplots of two variables at a time, and

trellis plots, which display the data in subsets defined

by conditioning variables. Glyphs, individual images

for each case whose form depends on the separate

variable values, can be an interesting possibility for

smaller datasets (at most a few hundred cases). Matrix

visualizations [2] are also interesting for smaller data-

sets and display each value by a color coding, with cases

in the rows and variables in the columns. Including

options for ordering both rows and columns is essen-

tial. Microarray data are often displayed in this way.

Other alternatives, known under the common

heading of dimension reduction plots, display two-

dimensional approximations of multivariate data,

e.g., multi-dimensional scaling (MDS) and biplots.

Dynamicmethods include the grand tour and projection

Multivariate Visualization Methods. Figure 1. A parallel coordinate plot of the ratings of 46 wines by 32 judges.

The axes are common scaled and have been ordered by mean values.

Multivariate Visualization Methods. Figure 2. An MDS

display based on five variables for cars sold in Germany.

Each car is represented by a circular-based glyph.

Multivariate Visualization Methods M 1867

M

pursuit [3], both of which work by moving smoothly

through two dimensional projections of the data.

Figure 1 shows a parallel coordinate plot of 32

judges’ rankings of 46 American and French Cabernet

wines from a 1999 tasting. The axes (one for each wine)

have been given a common scale and sorted by their

mean ratings from left to right, so that the highest

ranked wine is on the far left and the lowest on the

far right. What is striking is the lack of agreement

amongst the judges. While there is a discernible

trend, it is obscured by the high variability of the

ratings. Most wines were ranked best by at least one

judge and worst by at least one other. So the main

message of this plot is that while the league table of

results and statistical tests (whether the ordering was

significantly non-random) imply a consensus ranking

of the wines, the data convey otherwise. Parallel coor-

dinate plots, like all high-dimensional plots, require

fine-tuning to reveal information. In this case, com-

mon scaling and sorting were important tools. As

parallel coordinate plots are covered in another entry,

they are not discussed in detail here. One interesting

new variant is represented by textile plots [9] in which

the axes are rescaled to make the individual lines link-

ing cases as horizontal as possible.

In MDS [4] the attempt is made to find a low-

dimensional (almost always two dimensional) approx-

imation to high dimensional data by positioning

points so that the distances between them in the low

dimensional display are close to the distances between

them in the original dimension. For a high number of

dimensions this is unlikely to be effective, but it often

produces interesting views. The MDS display depends

on the criterion used to match the distances (e.g.,

emphasising the absolute differences or the relative
differences). Since all possible pairs must be consid-

ered, it is not efficient for large datasets. MDS displays

are not unique for two reasons: an optimal solution in

terms of the criterion will not necessarily be found; any

solution is rotation invariant. Figure 2 shows an MDS

plot of five-dimensional data on 381 cars sold in

Germany. Each case is represented by a circular-based

glyph using these five dimensions and two additional

ones. The selected group at the top of the display seem

relatively well separated in this view. They are all

midsize luxury cars.

Biplots were developed by Gabriel [5]. He pointed

out that both cases and variables could be plotted on

the same approximating low dimensional plot. The

two axes are usually chosen to be the first two principal

Multivariate Visualization Methods. Figure 3. A

mosaicplot of the numbers who sailed on the Titanic with

the survivors selected. Women are to the left and men

to the right, adults are below and children above. Within

these groups the classes are ordered first, second, third,

crew.

1868M Multivariate Visualization Methods
components. Lines representing variables which are

well approximated appear longer than those which

represent variables badly approximated and the angles

between the lines reflect the correlations between the

variables in the low dimensional hyperplane. More

complex biplots are also possible [6]. Like MDS dis-

plays, biplots will not work well in general, neither for

many cases nor many variables, but often the two-

dimensional projections produced can offer insightful

views of the data.

Multivariate Categorical Data

Continuous data can always be sensibly binned and

compressed, while retaining the option of zooming in

to reveal the full level of detail. This does not hold for

categorical data, where it may not be possible to com-

bine any of the individual categories with others. While

displays of single categorical variables are simple, the

number of combinations rises exponentially with

the number of variables. One binary variable can be

displayed in a barchart of two columns. Twenty binary

variables would give rise to 220 combinations, a little

over a million, many of which are likely to be empty,

even for extremely large datasets.

Classic mosaicplots were suggested by Hartigan [7]

for displaying a small number of categorical variables

in a multivariate way. Other variations (multiple

barcharts, fluctuation diagrams, equal binsize plots,

doubledecker plots) [12] are often more useful. All

depend very much on a careful choice of the ordering

of variables and on an informative choice of size and

aspect ratio. The ordering of variables determines

which comparisons can be made, while the aspect

ratio influences how well the comparison can be made.

Figure 3 shows a mosaic plot of the Titanic data

with the order of variables, gender, age, class. The block

of four equally tall columns at the left of the display

shows the numbers of adult women in each of the three

passenger classes and the crew, with the proportion

who survived highlighted. It is obvious that survival

rates for adult women declined across the three pas-

senger classes (the number of women in the crew was

too small for any conclusion to be drawn). The next

block of four columns relates to adult males and shows

that the second class adult males had the lowest sur-

vival rate, a rather surprising result. The smaller bars at

the top of the display refer to the children on board.

The survival rates for males and females within classes

can be compared approximately in this display, but
clearly another display would be better for that, one

using the variable ordering class, age, gender. Even

in this dataset with only four variables, one plot is

not enough.

The main idea underlying all mosaicplots is that

each combination of variable values is displayed by a

rectangle whose area is proportional to the number of

cases with that combination. The layout of the combi-

nations is key in determining the interpretation, which

can be difficult at the best of times, and is eased by

providing interactive tools to query and adjust the

graphic. Multiple barcharts are for comparing distri-

butions of subsets (and are therefore related to trellis

plots). Fluctuation diagrams are best for larger num-

bers of combinations to identify which are most com-

mon. Equal binsize plots and doubledecker plots are

for comparing highlighted proportions.

Figure 4 shows a fluctuation diagram of a dataset

from the Pakistan Labour Force Survey. Five variables

are considered (the numbers of categories, including

missings, are in brackets): gender [2], relation to head

of household [9], marital status [4], literacy [3], and

urban/rural [2], making 432 possible combinations in

all. Although there are just under 140,000 cases, many of

the combinations are empty or rare (e.g., fewwomen and

few single men are heads of households). The biggest

single combination (male, son in household, never

married, literate, living in a rural area) is highlighted

and includes 9,678 cases or 7% of the dataset. Using

interactive querying and animating the construction of

the plot, one variable at a time, aids interpretation

considerably. No display of several categorical variables

Multivariate Visualization Methods. Figure 4. A

fluctuation diagram of five variables from the Pakistani

Labour Force Survey: gender, relation to head of

household, marital status, literacy, urban/rural. The biggest

single combination is highlighted.

Multivariate Visualization Methods M 1869

M

at once can either be easy to grasp immediately or

convey all the potentially available information.

Interactive Graphics and Multivariate Graphics

Although both parallel coordinate plots and mosaic-

plots can be used for static plots, they are much more

effective when used interactively. Their necessarily

complex nature (after all, they have to display multi-

variate structure) demands careful scrutiny to grasp

the information in them to the full, and the gain of

understanding can be considerably enhanced when

these graphics are empowered with interactive tools.

Interactive graphics may also be used to gain in-

sight into multivariate datasets using one- or two-

dimensional displays. Multiple linked simple displays
of the same dataset can be easier to interpret than

complex multivariate plots.

Key Applications
Descriptive statistics and Exploratory Data Analysis.

Future Directions
Many other more or less esoteric multivariate visuali-

zations have been proposed. None should be dismissed

out of hand, every visualization is probably ideal for

some particular dataset. Nevertheless any succesful

graphic should satisfy a number of criteria: it should

be based on a readily recognizable and interpretable

concept; it should be flexible and capable of being

made interactive; it should be able to handle more

than just three or four dimensions.

Displaying and interpreting even four-dimensional

data is tricky. Dominating features can usually be seen,

more subtle effects cannot. In higher dimensions the

difficulties become much greater. At the moment it is

impossible to visualize large numbers of categorical

variables and although several hundred continuous

variables can readily be displayed in parallel coordinate

plots, the chances of identifying important features are

slim. Nevertheless, graphics displays are useful for

checking results found analytically and this can be

very valuable. Visualizing multivariate data is new

and progress is to be expected.

Visualization is currently mainly used for presenta-

tion of data, rather than for exploration of data. A single

graphic can only display a limited number of aspects of a

multivariate dataset and many are needed to convey all

information available. The development of multivariate

graphics should consider the design of sets of graphics

rather than more elaborate versions of single ones. More

interactive tools will have be developed. Sorting, rescal-

ing, and querying are just some of the basics required.

Visualization is an important component of data

analysis. It provides a complementary approach to

analytic modeling and is much more suited to carrying

out exploratory data analysis. Results found by models

should be checked with graphics and ideas generated

with graphics should be investigated analytically. The

tighter integration of analytic and graphical methods

would be of great advantage.

Cross-references
▶Data Visualization

▶Dynamic Graphics

1870M Multi-Version Concurrency Control
▶ Parallel Coordinates

▶ Parallel Coordinates Plot (PCP)

▶Visual Data Mining

▶Visualizing Categorical Data

▶Visualizing Quantitative Data

Recommended Reading
1. Becker R., Cleveland W., and Shyu M.J. The Visual Design and

Control of Trellis Display. J. Computational and Graphical Sta-

tistics, 5:123–155, 1996.

2. Chen C.H., Haerdle W., and Unwin A. Handbook of Data

Visualization. Springer, Berlin, 2007.

3. Cook D. and Swayne D. Interactive and Dynamic Graphics for

Data Analysis. Springer, New York, 2007.

4. Cox M. and Cox M. Multidimensional Scaling. Chapman and

Hall, London, 2001.

5. Gabriel K. The biplot ‐ graphic display of matrices with

application to principal component analysis. Biometrika,

58:453–467, 1971.

6. Gower J. and Hand D. Biplots. Chapman & Hall, London, 1996.

7. Hartigan J.A. and Kleiner B. Mosaics for Contingency Tables. In

Proc. 13th Symposium on the Interface, 1981, pp. 268–273.

8. Inselberg A. Parallel Coordinates. Springer, New York, 2008.

9. Kumasaka N. and Shibata R. High Dimesional Data Visual-

isation: the Textile Plot. Computational Statistics and Data

Analysis, 52(7):3616–3644, 2008.

10. Playfair W. Playfair’s Commercial and Political Atlas and Statis-

tical Breviary. Cambridge University Press, London, 2005.

11. Theus M. and Urbanek S. Interactive Graphics for Data Analysis.

CRC Press, London, 2008.

12. Unwin A.R., Theus M., and Hofmann H. Graphics of Large

Datasets. Springer, New York, 2006.

13. Wilkinson L. The Grammar of Graphics. Springer, New York,

2nd edn., 2005.
Multi-Version Concurrency Control

▶Multi-version Serializability and Concurrency

Control
Multi-Version Concurrency Control
Algorithms

▶Multi-version Serializability and Concurrency

Control
Multi-Version Database

▶ Supporting Transaction Time Databases
Multi-Version Databases

▶Multi-version Serializability and Concurrency

Control
Multi-version Serializability and
Concurrency Control

WOJCIECH CELLARY

Poznan University of Economics, Poznan, Poland

Synonyms
Multi-version databases; Multi-version concurrency

control; Multi-version concurrency control algorithms

Definition
Given a multi-version database, where each data item

is a sequence of its versions. The number of versions of

a data item may be limited or not. If it is unlimited,

then each update of a data item over the limit gives rise

to its next version. If it is limited, than each update of a

data item replaces its oldest version. In case of limited

number of versions, a database is called a K-version

database. In multi-version databases any read opera-

tion of a data item, subsequent to a write operation of

this data item, may access any of its currently existing

versions. Thus, a multi-version schedule of a transac-

tion set differs form the ordinary, mono-version sched-

ule by a mapping of the data item read operations into

the data item version read operations. Multi-version

serializability plays the same role for the multi-version

databases, as serializability for the ordinary, mono-ver-

sion ones. Multi-version serializability is used to prove

correctness of a concurrent execution of a set of transac-

tions, whose read and write operations interleave, and

moreover, read operations may access one of many

available versions of a data item.

Historical Background
Multi-version serializability problem was a hot research

topic in mid eighties. First works were published by P.A.

Bernstein and N. Goodman [2,3] in 1983. Research was

continued by G. Lausen [7], next by S.Muro, T. Kameda,

and T. Minoura [8]. The next group of researchers

involved was composed of C.H. Papadimitriou,

P.C. Kanellakis, and T. Hadzilacos [6,9]. There is a lot

of work devoted to different variants of multi-version

Multi-version Serializability and Concurrency Control M 1871

M

concurrency control algorithms. A comprehensive back-

ground may be found in [5].

Foundations
Definition of a multiversion schedule. A multiversion

schedule mvs of a set of transactions t is a triple

mvsðtÞ ¼ ðTðtÞ; h;<mvsÞ, where (i) T(t) is a the set

of all database operations involved in the transactions

of the set t extended by the database operations of two

hypothetical initial and final transactions and which

respectively write the initial state of the database and

read the final state of the database; (ii) h is a function

which maps each read operation rijðxÞ 2 TðtÞ into a

write operation wklðxÞ 2 TðtÞ; and (iii) <mvs ¼ [i < Ti

is a partial order relation over T(t) such that: if

Tij < Ti
Tik then Tij < mvs Tik , and if hðrijðxÞÞ ¼ wklðxÞ

then wklðxÞ< mvs rijðxÞ. Function h defined above

maps a read operation of a data item into the

write operation of a version of this data item – more

precisely – into the write operation which creates the

version of the data item read. Relation <mvs is defined

by two conditions. The first one states that <mvs hon-

ors all orderings stipulated by transactions of the set t.
The second one states that a transaction cannot read

a version of a data item until it has been created. A

multi-version schedule is serial if no two transactions

are executed concurrently, otherwise, it is concurrent.

Multiversion schedule equivalence. Two multi-

version schedules are equivalent if they are view

and state equivalent. Two multiversion schedules

mvsðtÞ ¼ ðTðtÞ;h;<mvsÞ andmvs0ðtÞ ¼ ðTðtÞ;h0; <mvs0 Þ
of the set t are view equivalent if and only if h = h 0.

If the transactions of two multi-version schedules

mvs(t) and mvs0(t) receive an identical view of the

database, i.e., if both multiversion schedules are view

equivalent, then all the write operations issued by

transactions in both schedules are the same. Two

multiversion schedules mvsðtÞ ¼ ðTðtÞ;h;<mvsÞ and

mvs0ðtÞ ¼ ðTðtÞ;h0;<mvs0 Þ of the set of transactions t
are final-state equivalent if and only if for every initial

state of the database and any computations performed

by the transactions contained in t the final states of the
database reached as the result of schedules mvs(t) and
mvs0(t) are identical.

Standard serial multiversion schedule. A serial mul-

tiversion schedulemvsðtÞ ¼ ðTðtÞ; h;<mvsÞ is standard
if each read operation rijðxÞ 2 TðtÞ accesses the ver-

sion of a data item x created by the last write operation

wkl (x) 2 T(t) preceding rij (x). Since in a serial
schedule, for every two transactions Ti and Tk, either

all database operations of Ti precede all database

operations of Tk or vice versa, the last write operation

preceding a read operation is well defined. Note that a

standard serial multi-version schedule in multi-version

databases corresponds to a serial mono-version sched-

ule in mono-version databases. From the consistency

property of each transaction, i.e., from the assumption

that each transaction separately preserves database con-

sistency, it follows that a standard serial multi-version

schedule must also preserve database consistency.

On the basis of the above observation it is possible to

define the multi-version serializability criterion [3].

Multi-version serializability criterion. A multi-version

schedule mvs(t) is correct if it is equivalent to any

standard serial multi-version schedule of the set t.
Intuitively, the above criterion can be interpreted as

follows. A concurrent schedule of a set of transactions

in a multi-version database is correct if it is equivalent

to a serial schedule of the transactions in which data

replication over versions is transparent.
Key Applications
Multi-version serializability is used to prove correct-

ness of concurrency control algorithms devoted to

multiversion databases. As an example, consider a

multi-version two-phase locking algorithm, called

WAB [3,1,4], devoted to K-version databases. The con-

cept of multi-version two-phase locking is broader

than the concept of mono-version two-phase locking

(cf. section on two-phase locking). An algorithm is a

multi-version two-phase locking algorithm if it satisfies

the following conditions:

1. There are two phases of transaction execution: the

locking phase and the unlocking phase. During the

locking phase a transaction must obtain all locks it

requests. The moment when all locks are granted,

which is equivalent to the end of the locking phase

and the beginning of the unlocking phase, is called

the commit point of a transaction. New versions of

the data items prepared in the transaction’s private

workspace are written to the database during the

unlocking phase.

2. The execution order of a set of transactions t is

determined by the order of transaction commit

points.

3. The execution of any transactionT 2 ðtÞ does not
require locking data items that T does not access.

1872M Multi-version Serializability and Concurrency Control
The concepts of locking and unlocking phases do not

have exactly the same meaning as the similar notions

used in the mono-version two-phase locking algo-

rithm. In the WAB algorithm, the process of setting

the so called ‘‘certify lock’’ is two-phase, but not as in

the two-phase locking algorithm, the process of acces-

sing data. In the WAB algorithm, each transaction

initiated in the database and each version of a data

item is certified or uncertified. When a transaction

begins, it is uncertified. Similarly, each new version of

a data item prepared in the transaction’s workspace is

uncertified. A certify operation is introduced, denoted

by c(wij(x)), where wij (x) is a Ti’s write operation, and

a new lock mode – the certify lock denoted by CL(x).

Certify locks are mutually incompatible. The algo-

rithm requires that all certify and read operations of a

data item x be <mvs related. Similarly, all certify opera-

tions must be <mvs related. The execution order of

the certify operations determines a precedence rela-

tion �w defined on the set t. The precedence relation
�w specifies the order of transaction executions as

follows: Ti �w Tk if and only if there exist such

certify operations c(wij(x)) and c(wkl(x)) that

cðwijðxÞÞ �mvs cðwklðxÞÞ.
According to the WAB algorithm, any read opera-

tion Tij (x) concerns the last certified version of a data

item x or any uncertified version of this data item. The

version selected depends on a particular implementa-

tion of theWAB algorithm. Any write operation wij (x)

prepares a new version of a data item x in the work-

space of transaction Ti (the version prepared is uncer-

tified). At the end of transaction execution, the

transaction and the new versions of the data items

it prepared are being certified. The Ti’s certifica-

tion is a two-phase locking procedure. It consists of

certify-locking all data items that the transaction Ti
accessed to write. The Ti’s certification is completed,

when all certify locks are set and the following condi-

tions are satisfied:

1. at the moment of Ti’s certification, the versions of

all data items read by Ti are certified;

2. for each data item x that Ti wrote, all transactions

that read certified versions of x are certified.

To satisfy condition (ii), a certify token is allocated to

each data item x to forbid reading certified versions of

x other than the last one. On the other hand, all

uncertified versions of x are allowed to be read. When

the transaction Ti’s certification is completed (the
commit point), the procedure for certifying the ver-

sions of data items prepared by Ti is initiated. It was

proved in [3] that the WAB algorithm is correct in the

sense that any schedule produced by it is multi-version

serializable. The main drawback of this algorithm is a

possibility of a deadlock.

Future Directions
In database systems, multiple versions of data items are

necessary to ensure transaction atomicity and to recover

form crashes. The original idea of multiversion concur-

rency control based onmultiversion serializability was to

use those versions also to increase the degree of transac-

tion concurrency, and as a result to improve database

performance. However, such double use of versions

decreases database reliability, because of the complexity

of multiversion concurrency control. For practice, reli-

ability of databases is of ultimate importance. This is why

the concept of multiversion concurrency control was not

well accepted in practice, except some implementations

of two-version concurrency control concerning two

values of each data item: before and after write opera-

tions. The concept of multiversion concurrency control

may find attention in database systems applied in areas

where ACID properties may be relaxed.

Cross-references
▶Atomicity

▶Concurrency Control – Traditional Approaches

▶Replicated Database Concurrency Control

▶ Serializability

▶Transaction

▶Transaction Management

▶Transaction Models–the Read/Write Approach

Recommended Reading
1. Bernstein P.A. and Goodman N. A sophisticate’s introduction

to distributed database concurrency control. In Proc. 8th Int.

Conf. on Very Data Bases, 1982, pp. 62–76.

2. Bernstein P.A. and Goodman N. Concurrency Control and

Recovery for Replicated Distributed Databases. Tech. Rep. TR-

20/83, Harvard University, 1983.

3. Bernstein P.A. and Goodman N. Multiversion concurrency

control – theory and algorithms. ACM Trans. Database Syst.,

8(4):465–483, 1983.

4. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems.Addison-Wesley,

Reading, MA, 1987.

5. Cellary W., Gelenbe E., and Morzy T. Concurrency Control in

Distributed Database Systems, Elsevier Science, North-Holland,

1988.

MVD M 1873
6. Hadzilacos T. and Papadimitriou C.H. Algorithmic aspects

of multiversion concurrency control. J. Comput. Syst. Sci.,

33(2):297–310, 1986.

7. Lausen G. Formal aspects of optimistic concurrency control in a

multiple version database system. Inf. Syst., 8(4):291–301, 1983.

8. Muro S., Kameda T., and Minoura T. Multi-version concurrency

control scheme for database system. J. Comput. Syst. Sci.,

29:207–224, 1984.

9. Papadimitriou C.H. and Kanellakis P.C. On concurrency control

by multiple versions. ACM Trans. Database Syst., 9(1):89–99,

1984.
Music Metadata

▶Audio Metadata
Music Retrieval

▶Query by Humming
MVD

▶Multivalued Dependency
M

N

Naive Tables

GÖSTA GRAHNE

Concordia University, Montreal, QC, Canada

Synonyms
Relations with marked nulls; Extended relations

Definition
The simplest way to incorporate unknown values into the

relational model, is to allow variables, in addition to

constants, as entries in the columns of relations. Such

constructs are called tables, instead of relations. A table

is an incomplete database, and represents a set of com-

plete databases, each obtained by substituting all variables

with constants. Different occurrences of the same variable

(marked null) are substitutedwith the same constant. The

substitution is thus a function from the variables and

constants, to the constants, such that the function is

identity on the constants. A table T then represents the

set of relations, denoted rep(T), defined as {v(T) : v is a

valuation}. Then the certain answer to a query q on a

table T, denoted sure(q, T) is the set of tuples that occur

in every answer obtained by applying the query to

every database in rep(T). In other words, the certain

answer to q on T is sure(q, T) = \q(rep(T)).
Key Points
To illustrate the above concepts, let tables T1 and T2 be

as below, and let q be the relational expression

sA=a∨A=c(pAC(R1 ⋈ R2)). (The schema of Ti is

that of Ri, i = 1,2). Then applying q to T1,T2,

which is denoted sA=a∨A=c(pAC(T1 ⋈ T2)), yields

table q(T1, T2) below.
2009 Springer ScienceþBusiness Media, LLC
The variables/null-values are written in uppercase,

to clearly distinguish them from the (lowercase) con-

stants. Note, however, that q(T1, T2) is not (necessari-

ly) yet the certain answer. How was q(T1, T2) derived

from q and T1, T2, and how is the certain answer

sure(q,(T1, T2)) obtained from q(T1, T2)? The answer

to the second question is very simple: just drop all

tuples containing variables from q(T1, T2). The remain-

ing tuples form the certain answer. In the example,

the certain answer consists of tuple (a, c) only. The

answer to the first question is not much more compli-

cated: evaluate q on the tables, treating variables as

‘‘constants,’’ pairwise distinct, and distinct from all

‘‘real’’ constants. This is also known as the Naive eval-

uation of q on T [2,3]. In the example above, tuple

(a, X) is joined with tuple (X, c) since they have the

same value, represented by X, in the join column. This

is done even though the ‘‘actual’’ value of X is not

known, since in any valuation v the two occurrences

of X are mapped to the same value. On the other hand,

when performing the selection sA=a∨A=c the tuple

(Y, Z) is not picked, since there is at least one valuation

v, for which both v(Y) 6¼ a and v(Y) 6¼ c. A characteri-

zation of the correctness of the Naive evaluation is

given below.

Before going to the characterization, note that it is

not always ideal to only return the certain answer. Name-

ly, if the answer to q is to be materialized as a view for

further querying, essential information is lost if the

tuples with variables are dropped. For a simple exam-

ple, a evaluating pA on sure(q, (T1, T2)) gives tuple (a)

as a sure answer, whereas evaluating pA(q(T1, T2)),

puts tuples (a) and (c) in the sure answer. As a conse-

quence, query evaluation would not be compositional,

unless q(T1, T2) is stored as an ‘‘intermediate’’ answer.

This ‘‘intermediate’’ answer is called the exact answer

in [1], where the theory of query rewriting in informa-

tion integration systems is extended to use the exact

answer, instead of the certain one.

1876N Name Matching
The correctness and completeness criteria for tables

and query-evaluation is formalized using the notion of

the representation system [2]. Here an alternative,

equivalent formulation given in [3] is used: Consider

a class of tables T, and a query language Q. A triple

ðT; rep;QÞ is said to be a representation system if for

every table T 2 T, and for every applicable q 2 Q, there

exists a function (here also named) q, such that

\ rep q Tð Þð Þ ¼ \q rep Tð Þð Þ; and ð1Þ

q0 � q Tð Þ ¼ q0 q Tð Þð Þ; ð2Þ

for all applicable q0 2 Q.

Condition (1) says that the system can correctly

compute the certain answer, and condition (2) states

that the computation has to be uniformly recursive,

following the structure of q. The important result is

that, the class of Naive tables, and the class of all

negation-free relational algebra expressions, together

with Naive evaluation, form such a representation

system. And this result comes without any computa-

tional penalty.

Cross-references
▶Certain (and Possible) Answers

▶ Incomplete Information

▶Maybe Answer

▶Naive Tables

Recommended Reading
1. Grahne G. and Kiricenko V. Towards an algebraic theory of

information integration. Inf. Comput., 194(2): 79–100, 2004.

2. Imielinski T. and Lipski Jr. Incomplete information in relational

databases. J. ACM, 31(4):761–791, 1984.

3. Lipski W. Jr. On relational algebra with marked nulls. In Proc.

4th ACM SIGACT-SIGMOD Symp. on Principles of Database

Systems, 1985, pp. 201–203.
Name Matching

▶Record Matching
Narrowed Extended XPath I. Figure 1. INEX topic 05 in

the 2002 XML format.
Namelessness

▶Anonymity
Narrowed Extended XPath I

ANDREW TROTMAN

University of Otago, Dunedin, New Zealand

Synonyms
NEXI

Definition
NEXI is an information retrieval (IR) query language for

searching structured and semi-structured document col-

lections. The language was first introduced for searching

XML documents at the annual INEX [3] evaluation

forum in 2004, and it has been used ever since.

Designed as the simplest query language that could

possibly work, the language is a tiny subset of XPath [1]

with an added about() function for identifying ele-

ments about some given topic. The language has exten-

sions for question answering, multimedia searching,

and searching heterogeneous document collections.

NEXI is a language with a strict syntax defined in

YACC but it has no semantics; the interpretation of

the query is the task of the search engine.

Historical Background
A common information retrieval query language for

searching XML documents was needed for specifying

information retrieval queries at the first INEX in 2002.

There, XML markup was chosen as the method of

identifying keywords and the elements in which they

should appear. It was also chosen as the method of

identifying the preferred XML element to return to the

user (the target element). The INEX 2002 query from

topic 05 is given in Fig. 1. In this example, QBIC

should be in a bibl element, image retrieval may appear

anywhere in the document, and the user is interested in

a list of tig elements as the result of the query.

Two problems with this format were identified:

first it allowed the specification of queries that could

be resolved by a simple mechanical process; second the

Narrowed Extended XPath I N 1877

N

language was not sufficiently expressive for informa-

tion retrieval queries.

A modified XPath [1] was used at INEX 2003. In

this variant the contains() function that required an

element to contain the given content was replaced by

an about() function that required an element to be

about the content. Changing XPath in this way allowed

fuzzy IR queries to be specified using a highly expressive

language. However, an analysis of the XPath queries

showed high syntactic and semantic error rates [6].

O’Keefe and Trotman [6] proposed using the sim-

plest query language that could possibly work and a

novel syntax. The INEX Queries Working Group [7]

rejected the syntax but embraced the philosophy. It

identified the minimum requirements of an IR query

language for information retrieval queries containing

structural constraints. This language, although at the

time without syntax or semantics, was to be used at

INEX for evaluation purposes.

Trotman and Sigurbjörnsson [9] proposed the Nar-

rowed Extended XPath I (NEXI) language based on the

working group report. It was narrowed in so far as only

the descendant axis was supported, and extended in so

far as the about() function was added, all other func-

tions and axis were dropped. A formal grammar and

parser were published, and an online syntax checker

was hosted by the authors.

The decision to reduce XPath resulted in fewer

errors because it reduced the chance of making mis-

takes. NEXI has a precise mathematical formulation

which matches intuitive user profiles [4]. For both

naı̈ve users with knowledge of just the tag names, and

for more advanced users with additional knowledge

of the inter-relationships of those tags, the language

is safe and complete. That is, the user cannot make

semantic mistakes, and can express every information

need they have.
Foundations
Web queries typically contain between 2 and 3 terms per

query [8]. Formal query languages for semi-structured

data tend to be comprehensive. This mismatch became

apparent at INEX 2003 where XPath was chosen as the

preferred language for information retrieval experts to

specify relatively simple queries, but where they were

unable to write syntactically and semantically correct

queries. Just as SQL is not an end-user query language,

neither, it turned out, was XPath.
Requirements

After two years of experimentation with XML query

languages at INEX, the needs of such a language

became apparent. The INEX, Queries Working Group

[7] specified that the language should:

� Be compatible with existing syntax for specifying

content only (keyword) queries.

� Be based on XPath as that language was already well

understood, but:

� Remove all unnecessary XPath axis used for de-

scribing paths. Limit to just the descendant axis

was suggested. The child operator was considered

particularly problematic as it was open to

misinterpretation.

� Drop exact match of strings, and inequality of

numbers. XPath path filtering remained, however

all strings were expressed as aboutness.

� Support multiple data types including numeric and

string.

� Be open for extensions for new data types (includ-

ing names, locations, dates, etc.).

� Not include tag instancing (for example author[1],

the first author).

� Have vague semantics open to interpretation by the

search engine.

� Loosen the meaning of the Boolean operators AND

and OR.

� Disallow the multiple target elements. Although

not explicit in the requirement, the implication is

that the target element must be about the final

clause in the query. It is a simple mechanical pro-

cess to add non-target elements that are not about

the query to the result – such as the author, title,

source details to sections about something.

� Allow queries in which the target element was not

specified and in which the search engine identified

the ideal element.

Content Only (CO) Queries

NEXI addresses two kinds of queries on semi-

structured and structured data: Content Only (CO)

and Content And Structure (CAS) queries.

Content Only (CO) queries are the traditional

IR query containing only keywords and phrases. No

XML restrictions are seen and no mention is given

of a preferred result (target) element. For these the

NEXI syntax is derived from popular search engines:

search terms can be keywords, numbers, or phrases

Narrowed Extended XPath I. Table 1. Valid forms of

NEXI CAS queries

Form
Target
Element Meaning

//A[B] A Return A tags about B

//A[B]//C A//C Return C descendants of A
where A is about B

//A[B]//C
[D]

A//C Return C descendants of A
where A is about B and a C
descendant of A are about D

1878N Narrowed Extended XPath I
(delineated with quotes). Term restrictions can be spe-

cified using plus and minus.

Information Retrieval queries are by their very na-

ture fuzzy. A user has an information need and from

that need they express a query. There are many differ-

ent queries they might specify from the same need,

some of which might be more precise than the others.

If a document in the document collection satisfies the

user’s information need, that document is relevant

regardless of the query. That is, no query term might

appear in a relevant document, or all the query terms

might appear, either way the document is relevant.

When specifying an IR query language it is important

to avoid specifying semantics that violate this principle

of relevance. The semantics of the terms with and

without restriction in NEXI is, for example, specified

this way:

" ‘‘The ‘+’ signifies the user expects the word will appear in

a relevant element. The user will be surprised if a ‘-’ word

is found, but this will not prevent the document from

being relevant. Words without a sign are specified be-

cause the user anticipates such terms will help the search

engine to find relevant elements. As restrictions are only

hints, it is entirely possible for the most relevant element

to contain none of the query terms, or for that matter

only the ‘-’ terms.’’

Or, in other words, it is the task of the search engine

to identify relevant documents even if this involves

ignoring the query.

In INEX topic 210 the author states:

" ‘‘I’m developing a new lecture for the Master course

‘Content Design’ and want to discuss the topic ‘‘Multime-

dia document models and authoring’’. Therefore I want

to do a quick background search to collect relevant

articles in a reader. I expect to find information in

abstracts or sections of articles. Multimedia content is

an essential component of my lecture, thus for fragments

to be relevant they should address document models of

content authoring approaches for multimedia content.

I’m not interested in single media approaches or issues

that discuss storing multimedia objects.’’

The query they give is

" +multimedia ‘‘document models’’ ‘‘content authoring’’

in which ‘‘document models’’ is a phrase and

+multimedia is a term-restricted search term (is pos-

itively selected for by the user).
Content and Structure (CAS) Queries

The second kind of query addressed by NEXI is the

Content and Structure (CAS) query. These queries

contain not only keywords but also structural con-

straints know as structural hints. Just as the keywords

are hints passed to the search engine in an effort to

help with the identification of relevant documents,

so too are structural hints. CAS queries contain two

kinds of structural hints, where to look (support

elements), and what to return to the user (target

elements).

Formally, queries many take one of the forms in

Table 1:

A and C are paths and B and D are filters. Other

forms could easily be added, but since NEXI was origi-

nally designed to address the INEX query problem,

they are not formally included.

Paths (A and C in Table 1) are specified as a list of

descendants separated by the descendant axis //. For-

mally, a path is an ordered sequence of nodes //E1...//En
starting with E1 and finishing at En, and for all e2n,
Ee is a ancestor of Ee + 1. An attribute node is indicated

by the prefix @. Alternative paths are specified

(EnajEnb). The wildcard * is used as a place holder.

For example, the path:

//article//*//(secjsection)//@author

describes an author attribute beneath either a sec or

section element beneath something beneath an ar-

ticle element. The interpretation by the search en-

gine is, of course, loose.

Filters (B and D in Table 1) can be either arithmetic

or string. Arithmetic filters are specified as arithmetic

comparisons (>, <, =, >=, <=) of numbers to rela-

tive-paths, for example:.//year >= 2000. String

filters take the form about(relative-path,

Narrowed Extended XPath I N 1879

N

COquery). Filters can be combined using the Bool-

ean operators and, and or. Paths and filters are all

considered hints and there is no requirement for the

search engine to distinguish between the Boolean

operators.

The target elements for the forms given in Table 1

are specified in column 2. Target elements, like support

elements, are also hints. If, for example, the user spe-

cified paragraphs a subsection element might fulfill the

user’s information need.

An example of a valid NEXI CAS query (again from

INEX topic 230) is:

//article[about(.//bdy, “artificial in-

telligence”) and.//yr < = 2000]//bdy[about

(., chess) and about(., algorithm)]

in which the target element is //article//bdy. The

user has specified an arithmetic filter.//yr <= 2000.

Several string filters are used including about(.//

bdy, ‘‘artificial intelligence’’). A Boolean

operator is also used to separate two filters about

(., chess) and about(., algorithm).

The NEXI CAS query from INEX topic 210 is an

alternative expression of the information need given in

the previous section. That query is:

//article//(absjsec)[about(.,+multime-
dia ‘‘document models’’ ‘‘content

authoring’’)]

in which the target element is either //article//abs

or //article//sec. The same documents and

elements are relevant to both queries, as relevance is

with respect to the information need and not the

specific query.
Key Applications
Information retrieval from structured and semi-

structured document collections.
Future Directions
Although proposed as an XML query language for use

in an evaluation forum, there is evidence it may also be

an effective end-user language. Van Zwol et al. [13]

compared NEXI to a graphical query language called

Bricks. They found that a graphical query language

reduced the time needed to find information, but

that users were more satisfied with NEXI. Inherent in

text query languages is the problem that users are
required to know the structure (the DTD) of the

documents. In a heterogeneous environment this

may not be possible, especially if new and different

forms of data are constantly being added. Graphical

query languages that translate into an intermediary

text-based query language are one solution. This so-

lution is seen with graphical user interfaces to rela-

tional databases.

Woodley et al. [12] further the model of NEXI as an

intermediate language and compare NLPX (a natural

language to NEXI translator) to that of Bricks

(a graphic to NEXI translator). They show that users

prefer a natural language interface, and that the per-

formance of the two is comparable.

Ogilvie [10] examined the use of NEXI for question

answering and proposed extensions to the language for

this purpose. Dignum and van Zwol [2] proposed

extensions for heterogeneous searching. Trotman and

Sigurbjörnsson [10] unified these proposals and for-

mally extended the language to include both – however,

these extensions are not considered core to the lan-

guage (language extensions philosophically deviate

from the principle of simplest that could possibly

work). Multimedia extensions to the language have

also been used at INEX [11], again the extensions are

not considered core to the language.
Experimental Results
The analysis of XPath queries used at INEX 2003 showed

63% of queries containing either syntactic or semantic

errors [3]. An analysis of the errors in NEXI queries used

at INEX 2004 showed that only 12% contained errors

[12]. NEXI has been in use at INEX ever since.
Data Sets
NEXI queries from INEX 2004 onwards can be down-

loaded from the INEX web site: http://inex.is.informa-

tik.uni-duisburg.de/

INEX queries for 2003 and 2002 were translated

into NEXI (where possible) and can be downloaded

from the NEXI web page hosted by the University of

Otago: http://metis.otago.ac.nz/abin/nexi.cgi
URL to Code
An online syntax checker, lex and yacc scripts, and a

command line syntax checker can be downloaded from

the NEXI web page hosted by the University of Otago:

http://metis.otago.ac.nz/abin/nexi.cgi

1880N NAS
Cross-references
▶Content-and-Structure Query

▶Content-Only Query

▶ INitiative for the Evaluation of XML Retrieval

▶ Processing Structural Constraints

▶Query by Humming

▶Query Languages for the Life Sciences

▶ Semi-Structured Query Languages

▶Temporal Query Languages

▶XML

▶XPath/XQuery

▶XQuery Full-Text

▶XSL/XSLT
Recommended Reading
1. Clark J. and DeRose S. XML path language (XPath) 1.0, W3C

recommendation. The World Wide Web Consortium. Available

at: http://www.w3.org/TR/xpath 1999.

2. Dignum V. and van Zwol R. Guidelines for topic development in

heterogeneous collections. Available at: http://inex.is.informatik.

uni-duisburg.de:2004/internal/hettrack/downloads/hettopics.

pdf 2004.

3. Fuhr N., Gövert N., Kazai G., and Lalmas M. INEX: initiative

for the evaluation of XML retrieval. In Proc. ACM SIGIR 2002

Workshop on XML and Information Retrieval, 2002.

4. Kamps J., Marx M., Rijke Md., and Sigurbjörnsson B. Articulat-

ing information needs in XML query languages. Trans. Inf. Syst.,

24(4):407–436, 2006.

5. Ogilvie P. Retrieval using structure for question answering.

In Proc. 1st Twente Data Management Workshop - XML Data-

bases and Information Retrieval, 2004, pp. 15–23.

6. O’Keefe R.A. and Trotman A. The simplest query language that

could possibly work. In Proc. 2nd Workshop of the Initiative for

the Evaluation of XML Retrieval, 2003.

7. Sigurbjörnsson B. and Trotman A. Queries: INEX 2003 working

group report. In Proc. 2nd Workshop of the Initiative for the

Evaluation of XML Retrieval, 2003.

8. Spink A., Wolfram D., Jansen B.J., and Saracevic T. Searching

the web: the public and their queries. J. Am. Soc. Inf. Sci. Tech.,

53(2):226–234, 2001.

9. Trotman A. and Sigurbjörnsson B. Narrowed extended XPath I

(NEXI). In Proc. 3rd Workshop of the Initiative for the Evalua-

tion of XML Retrieval, 2004, pp. 16–40.

10. Trotman A. and Sigurbjörnsson B. NEXI, now and next. In Proc.

3rd Workshop of the Initiative for the Evaluation of XML

Retrieval, 2004, pp. 41–53.

11. Westerveld T. and van Zwol R. Multimedia retrieval at INEX

2006. SIGIR Forum, 41(1):58–63, 2007.

12. Woodley A., Geva S., and Edwards S.L. Comparing XML-IR

query formation interfaces. Aust. J. Intell. Inf. Process. Syst.,

9(2):64–71, 2007.

13. van Zwol R., Baas J., van Oostendorp H., and Wiering F. Bricks:

the building blocks to tackle query formulation in structured

document retrieval. In Proc. 28th European Conf. on IR

Research, 2006, pp. 314–325.
NAS

▶Network Attached Storage
NAS Servers

▶ Storage Devices
NASD

▶Network Attached Secure Device
Natural Human-Computer
Interaction (NHCI)

▶Natural Interaction
Natural Interaction

STEFANO BARALDI, ALBERTO DEL BIMBO, LEA

LANDUCCI, NICOLA TORPEI

University of Florence, Florence, Italy

Synonyms
Natural human-computer interaction; NHCI

Definition
The aim of Natural Human-Computer Interaction

(NHCI) research is to create new interactive frame-

works that integrate human language and behaviour

into tech applications, focusing on the way people live,

work, play and interact with each other. Such frame-

works have to be easy to use, intuitive, entertaining and

non-intrusive.

The design of natural interaction systems is focused

on recognizing innate and instinctive human expres-

sions in relation to some object, and return to the user a

corresponding feedback that has the characteristics

of being both expected and inspiring. All of the tech-

nology and the intelligence is built inside the digital

artifacts and the user is not asked to use external

devices, wear anything, or learn any commands or

procedures. An interesting challenge for NHCI is

Natural Interaction N 1881

N

therefore to make systems self-explanatory by working

on their ‘‘affordance’’ [11] and introducing simple and

intuitive interaction languages.

The human expressions that can be utilized are those

considered innate, meaning that they don’t have to be

learned. This includes vocal expressions and all the

gestures used by humans to explore the nearby space

or the immediate surroundings with their bodies, like:

touching, pointing, stepping into zones, grabbing and

manipulating objects (see Fig. 1). These direct actions

express a clear sign of interest and necessitate a sudden

reaction from the system.

The application fields range from browsing multi-

media contents to exploration of knowledge structures;

the scenarios involved can be either task-specific (in

office or research contexts) or experiences created

for casual interaction between the visitors and the

media contents (like in museum exhibits and creative

installations).

Natural interaction interfaces are very interesting

to access, and explore large data sets like the ones

contained in multimedia or geo-referenced databases.

Data mining applications, which usually ask the user to

enter complex search criteria and tweak the parameters

to obtain the wanted data, can be designed with a

visual analytic interface following these design guide-

lines. Queries are expressed visually, selecting interac-

tive objects that embody selection criteria, creating

clusters of them. Result sets provided by the database

back-end can be iteratively shaped by directly manip-

ulating the visual elements mapping the data, inclu-

ding other sets or reducing them.

Historical Background
At the beginning of the nineties, Human-Computer

Interaction [17] was completely integrated into the

Computer Science field, its quick growth led to the
Natural Interaction. Figure 1. Examples of natural interfaces
development of technologies able to go over the stan-

dard limiting user-computer communication para-

digm, approaching a kind of natural interaction.

Alex Pentland in his ‘‘The Dance of Bits and

Atoms’’ (1996, [13]) said that ‘‘There is a deep divide

between the world of bits, and the world of atoms.

Current machines are blind and deaf; they are unaware

of us or our desires unless we explicitly instruct them.

Consequently, only experts use most machines, and

even they must spend most of their time battling arcane

languages and strange, clunky interface devices.’’

The key point is that technologies must be designed

and developed adapting them to the users, not the con-

trary: this is the foundation of the ‘‘human centered

design’’ [11,12].

The goal, finally, becomes a technology at one

user’s service, suitable to the task requested and char-

acterized by the complexity naturally embedded in the

task itself [11,12].

Foundations
Interactive artifacts, augmented spaces, ambient tech-

nology and ubiquitous computing are all fields of

study in HCI, which concentrate on both the techno-

logical aspects and the modalities in which users can

perform activities. The techniques proposed are often

referred to asmulti-modal interaction, focusing on how

machines can understand commands coming from dif-

ferent channels of human communication [10]. Among

those: speech recognition, natural language understand-

ing and gesture recognition, have been applied in differ-

ent mixtures with roles ranging from active (the system

observes the user and is pro-active in interacting with

him) to passive (the system expects some kind of

command, often through a device that is worn by the

user). In the last years, studies have been following the

concept of natural interaction as a conjunction of
for accessing digital contents and structures.

1882N Natural Interaction
different technologies and design principles, with a

more radical view about the user freedom in using

interactive artifacts.

Natural interaction systems can be modelled as the

sum of different modules: the sensing subsystem, which

gathers sensor data about user expressions and beha-

viour, and the presentation module, which realizes

the dialogue with the user orchestrating the output of

different kind of actuators (graphics display, audio,

haptics).

Sensing

The initial expression of interest towards the digital

artefact is distracted from its main role: transferring

information and stimuli. For this reason, the artefact

should hide all the needs for an external controlling

device, and be able to sensewhat the user is trying to do.

From a technological point of view, sensing involves

the use of different sensors that provide data about

some physical dimension in the surroundings of the

artefact. There are a great number of electronic sensors

that have been used in many industrial fields for robot-

ics, automation and automatic inspection. Ranging

from video cameras and image processing algorithms,

to capacitive sensors for touch and pressure sensing

or accelerometers for gesture recognition and body

articulation.

Every sensor can have very different ways of pro-

viding this kind of data in terms of resolution, range,

tolerances and errors. Some of them are able to provide

discrete data with a high certainty, while others (like

video cameras) just provide a great amount of data

that has to be processed and interpreted by algorithms

in order to extract useful information.

Considering the sensing architecture as a whole, a

processing logic must be applied on top of it to abstract

all the singularities of the sensors and create a homo-

geneous model of events for the later stages of interac-

tion. Discrete events arriving from the sensors can

be considered as belonging to three different categories

of data:

� Presence: this data usually comes with a high signal-

to-noise ratio, meaning that it cannot be directly

interpreted as a human expression. Nonetheless, it

reports a general activity in a spatial area.

� Behaviour: as the certainty level of some event

increases (thanks to the combination of different

sensors data), data can be studied for a certain
period of time and provide information about the

behaviour of single users or groups.

� Activity: this kind of data are considered ‘‘certain’’

and interpreted as a clear user intention to be used for

a direct control of the interface. Instead of providing

just the bi-dimensional screen coordinates as, it hap-

pens with traditional touch-screens, advanced sensing

can interpret speed or pressure as well as distance

of the hands as they approach a surface.

Sensors can be displaced in the environment, embed-

ded in the artefact and also worn by the user but for

natural interaction systems the last option is not sug-

gested. For indoor use, the most meaningful displace-

ment of sensors is inside the artefact itself. In this way,

space can remain flexible and structures can be moved

around. Such a thing could not be done if the whole

environment was disseminated with.

Intelligence and Presentation

The intelligence substratum is what orchestrates the

signals coming from sensors and generates output for

presentation.

The devices embedded in the artefacts that manage

the output phase are called actuators and can range

from visual displays, to audio systems, surfaces with

tactile feedback, holograms and many others. In scenar-

ios like museums or art installations, even simple forms

of stimuli can be used and mixed to convey a sensation

or to catch the attention of the user. In an information

space like an office or a data-intensive environment, the

main channel of parallel communication remains the

visual one, and the actuator is the graphical display.

On traditional GUIs (Graphical User Interfaces),

what happens ‘‘inside the screen’’ can be subject to

inference and prediction. Modern interfaces gather

data about their use and are predictive in searching and

suggesting data to the user in a light and ‘‘polite’’ way.

Natural interfaces can extend this reasoning to a lotmore

data coming from the sensors, because the interactive

artefact itself tries to sense beyond the screen. Also,

unlike traditional interfaces whose informational lay-

out is totally independent from the physical place in

which the device is installed and used, digital artefacts

can consider their position in the environment and

what is happening around them.

In natural graphical interfaces, the basic assum-

ption is that digital elements are not just a representa-

tion of data, but a part of the environment, and they

Natural Interaction. Table 1. Tangible interaction

themes

Theme Features

Tangible
manipulation

Physical manipulation of tactile
qualities

Spatial interaction Movement in space

Embodied
facilitation

Configuration of objects affecting
group behavior

Expressive
representation

Focus on digital and physical
expressiveness

Natural Interaction N 1883

N

need to follow aesthetics rules too. As a first principle:

digital elements should behave like objects in physical

systems. Following this analogy the graphical display

becomes a real space, and therefore has to provide the

same affordance of a normal surface. If something

changes on the visual interface it should happen in a

smooth way, without sudden jumps, similar to what

happens with hyperlinks on web pages. The models

of movement and forces used in transitions have to

mimic those of one real world, like: gravity, accelerat-

ing forces, momentum and friction. The user has the

chance to understand what is going on without feeling

disoriented, and thanks to these visual cues he can

also expect what is going to happen.

The anticipation is more important because in

shared natural interfaces the model of control of tradi-

tional interfaces, modelled around a question to con-

firm every action, cannot be used. A popup message

box would block the interface occupying space and this

is not feasible in a shared user environment. Instead,

every action is directly executed and, in the time in

which this happens, the visual features of objects influ-

enced by the action gradually change. Another guide-

line for the visual interface design is lightness. On every

graphical display, there is a conflict between the level of

contents belonging to the domain of the application

(diversified media), and the level of widget elements

(labels, buttons, etc) that explain the interface to the

user and give hints about the options. In natural inter-

faces this is even truer. Basically, the space is for con-

tents, so any other element is stealing some attention

from the user. For this reason, the widget level is kept

to a minimal amount of symbols and there is little or

no use of ‘‘global’’ interface elements.

Handling Complexity with TUIs

A challenge in natural interaction systems is tackling

the complexity with simplicity. While the category of

exploring applications can be realized using only in-

nate gestures, in the case of complex applications (fea-

turing multiple options and actions) simple and

spontaneous hand gestures turn out to be not enough,

and methods like speech understanding do not adapt

well to noisy environments or to scenarios in which

multiple people are interacting simultaneously.

The solutions could be:

1. Enriching the interaction language by adding new

complex gestures that map to actions. This could
distort the naturalness of interaction forcing users

to learn unnatural gestures.

2. Introducing an intermediate visual level using in-

terface elements (such as menus, icons etc.). This

would reduce the interaction directness causing a

conflict between digital contents and interface ele-

ments, both sharing the same visualization area.

The result is that such solutions could increase the user

cognitive load. Tangible user interfaces (TUIs [8]) can be

an alternative solution to those mentioned. They intro-

duce physical, tangible objects that the system interprets

as embodiment [6] of the elements of the interaction

language. Users, manipulating those objects, inspired by

their physical affordance, can have a more direct access

to functions mapped to different objects [2].

There is a broad literature about TUIs which dates

back to the first experiments of Hiroshi et al at the

MIT, where a set of normal objects where ‘‘sensed’’ by a

system who could recognize and track some of their

features, like the position in space. Many other systems

have been developed using this paradigm, and today

there is a growing familiarity with taxonomies that try

to define the different styles and scenarios in which it

can be used [7]. Table 1 illustrates the main different

branches.

The physical objects, called tangibles, could address

some of the issues related to complexity. They can

become the embodiment of some aspects of the

interaction between the user and the domain of

multi-media contents handled by the application. In

particular three possible roles can be distinguished.

� The tangible as a simulacrum. The physical ob-

ject can be used as a representative of a single

digital object or a collection. This means

either a uniquely identified static element

1884N Natural Interaction
with a one-to-one mapping between the phys-

ical and the digital world, or a re-assignable

element that can be associated with different

data (like a container).

� The tangible as a manipulator. In this case the

tangible represents a function that can be applied

to a digital object. The closest metaphor is that

of a tool in order to change one of its aspects,

reveal other connected contents etc. This modality

can be also extended to global functions whose

target is the entire viewport or collection of digital

objects.

� The tangible as an avatar of the user. In this case,

every user would have a personal object that repre-

sents himself, to move across the contexts. An ava-

tar object can be used in conjunction with the

others when the application needs an authentica-

tion or when the activity proposed requires the user

to express a preference.

While the manipulator role is specific to the nature and

local interaction with the artefact (e.g., a digital table-

top), the simulacrum and avatar roles exactly provide

the abstraction that is needed in order to expand the

affordance of the environment, providing a natural

way to transport the productions across the artifacts.

In this fashion, activities can be initiated on an artefact

and continued somewhere else, like in a laboratory,

different places provide different contexts and options

for the same data.
Key Applications

Multimedia Browsing

Usually they are easy-to use systems where people can

interact simultaneously with multimedia contents

through their own bare-hand gesture.

This kind of application offers an intuitive ap-

proach to various multimedia objects, they don’t re-

quire any kind of training or instructions.

Knowledge Exploration and Building

Interactive workspace featuring vision-based gesture

recognition that allows multiple users to collaborate

[3] in order to realize face-to-face contexts, design-

ing a common workspace where users can build

knowledge (activities like brainstorming or problem

solving sessions), exploiting the useful scenario-

specific characteristics.
Interactive Museum and Cultural Exhibits

Museums and exhibitions are often just a collection of

objects, standing deaf in front of visitors. In many

cases, objects are accompanied by textual descriptions,

usually too short or long to be useful for the visitor. In

the last decade, progress in multimedia has allowed for

new, experimental forms of communication (using

computer technologies) in public spaces [1].

Interactive Music Systems

Usually built over a tabletop tangible user interface,

Interactive Music Systems allow several simultaneous

performers to share complete control over the instru-

ment by moving physical artefacts on the table surface

while constructing different audio topologies in a kind of

tangible modular synthesizer. The reacTable [9], a clear

example, is a novel multi-user electro-acoustic musical

instrument with a tabletop tangible user interface.

Cross-references
▶Human-Computer Interaction

▶Multimedia Databases

▶Multimodal Interfaces

▶Object Recognition

▶Visual Interfaces

▶Visual Perception

▶Visual Representation

Recommended Reading
1. Alisi T.M., Del Bimbo A., and Valli A. Natural interfaces to

enhance visitors’ experiences. IEEE Multimed., 12(3):80–85, 2005.

2. Baraldi S., Del Bimbo A., Landucci L., Torpei N., Cafini O.,

Farella, E., Pieracci A., and Benini L. Introducing TANGerINE:

a tangible interactive natural environment. In Proc. 5th ACM

Int. Conf. on Multimedia, 2007, pp. 831–834.

3. Baraldi S., Del Bimbo A., Landucci L., and Valli A. wikiTable:

finger driven interaction for collaborative knowledge-building

workspaces. In Proc. 2006 IEEE Int. Conf. on Computer Vision

and Pattern Recognition Workshop, 2006, p. 144.

4. Colombo C., Del Bimbo A., and Valli A. Visual capture

and understanding of hand pointing actions in a 3-D environ-

ment. IEEE Trans. Syst. Man. Cybern. B Cybern., 33(4):677–686,

2003.

5. Dietz P. and Leigh D. DiamondTouch: a multi-user touch tech-

nology. In Proc. 14th Annual ACM Symp. on User Interface

Software and Technology, 2001, pp. 219–226.

6. Fishkin K.P. A taxonomy for and analysis of tangible interfaces.

Pers. Ubiquitous Comput., 8(5):347–358, 2004.

7. Hornecker E. and Buur J. Getting a grip on tangible interaction:

a framework on physical space and social interaction. In Proc.

SIGCHI Conf. on Human Factors in Computing Systems, 2006,

pp. 437–446.

Nearest Neighbor Classification N 1885
8. Ishii H. and Ullmer B. Tangible bits: towards seamless interfaces

between people, bits and atoms. In Proc. SIGCHI Conf. on

Human Factors in Computing Systems, 1997, pp. 234–241.

9. Kaltenbrunner M., Jordà S., Geiger G., and Alonso M. The

reacTable: a collaborative musical instrument. In Proc. Work-

shop on Tangible Interaction in Collaborative Environments,

2006.

10. Marsic I., Medl A., and Flanagan J. Natural communication with

information systems. In Proc. IEEE, 88(8):1354–1366, 2000.

11. Norman D.A. The Design of Everyday Things. MIT PRESS,

Cambridge, MA, 1998.

12. Norman D.A. The Invisible Computer. MIT PRESS, Cambridge,

MA, 1999.

13. Pentland A., Smart rooms. Sci. Am., 274(4):54–62, 1996.

14. Prante T., Streitz N.A., and Tandler P. Roomware: computers

disappear and interaction evolves. IEEE Comput., 37

(12):47–54, 2004.

15. Ulmer B. and Ishii H. Emerging frameworks for tangible user

interfaces. IBM Syst. J., 39(3–4):915–931, 2000.

16. Valli A. Notes on Natural Interaction. http://naturalinteraction.

org, 2005.

17. Wania C.E., AtwoodM.E., andMcCain K.W. How do design and

evaluation interrelate in HCI research? In Proc. 6th Conf. on

Designing Interactive Systems, 2006, pp. 90–98.
N

Natural Language Generation (NLG)

▶Text Generation
Navigation System Interfaces

▶Mobile Interfaces
Near-Duplicate Video Retrieval

▶Video Querying
Nearest Neighbor Classification

THOMAS SEIDL

RWTH Aachen University, Aachen, Germany

Synonyms
NN classification; k-nearest neighbor classification;

k-NN classification
Definition
Nearest neighbor classification is a machine learning

method that aims at labeling previously unseen query

objects while distinguishing two or more destination

classes. As any classifier, in general, it requires some

training data with given labels and, thus, is an ins-

tance of supervised learning. In the simplest variant,

the query object inherits the label from the closest

sample object in the training set. Common variants

extend the decision set from the single nearest neigh-

bor within the training data to the set of k nearest

neighbors for any k > 1. The decision rule combines

the labels from these k decision objects, either by

simple majority voting or by any distance-based or

frequency-based weighting scheme, to decide the pre-

dicted label for the query object. Mean-based nearest

neighbor classifiers group the training data and work

on the means of classes rather than on the individual

training objects. As nearest neighbor classifiers only

require distance computation of objects as a basic oper-

ation, their applicability exceeds the domain of vector

spaces and attribute-based tuple data, and includes

metric data spaces even if there are no attributes or

dimensions available. Nearest neighbor classification

counts for being highly accurate but inefficient; the

latter assessment is to be invalidated by using appropri-

ate indexing structures that support fast k-nearest

neighbor retrieval. The abbreviation ‘‘NN classifica-

tion’’ tends to cause confusion with the totally different

concept of neural network classification.

Historical Background
Nearest neighbor classification is one of the earliest

classification schemata. Nevertheless, it is one of the

most highly accurate ones, whilst obeying a very broad

range of applicability. The following aspects distin-

guish it from other classification methods.

Multiple class labels. Nearest neighbor classification

is not restricted to two-class problems where classifica-

tion decisions have to distinguish two classes only.

Moreover, a high number of different classes does not

deteriorate the efficiency in contrast to many other

classifiers which create individual models for all the

classes in the training set.

Applicability to general metric data spaces. Nearest

neighbor classification is applicable to data without

any structured attribute representation, i.e., to non-

vectorial data. As distance computations are the only

required basic operation, the applicability includes

1886N Nearest Neighbor Classification
complex multimedia data, time series and measure-

ment series data, sequences and structural data to

name just a few supported domains. Among the com-

peting approaches in the field, only support vector

machines equipped with respective kernel functions

share this advantage. Other classifiers including deci-

sion trees, neural networks and Bayes density models

rely on the attribute structure of the data.

Instance-based learning. Nearest neighbor classifi-

cation derives decisions close to the individual training

instances as any other method. No model is created for

the training data and, thus, it is called lazy evaluation.

Most of the competing classification approaches follow

the eager evaluation paradigm which spends signifi-

cant training effort in the determination of models for

the training data. They produce decision tree struc-

tures, synaptic weights in neural networks, support

vector weights, or density probability functions, re-

spectively. The lazy model of nearest neighbor classifi-

cation nevertheless allows for fast class decisions when

spending (training) effort in the creation of an index

on the training data.

Training data that changes dynamically. If the clas-

sifier has to follow training data that changes over

time, without or even with respect to its statistical

characteristics, a nearest neighbor classifier is superior

to almost all of the competing classifiers. No model

parameters such as decision tree structures or density

weights have to be recomputed where the training data

has changed. The lazy evaluation strategy ensures that

the results always rely on the current training data

status. The efficiency depends on how the underlying

index structure supports the dynamic data changes.

Intuitive explanation component. Nearest neighbor

classifiers provide illustrative explanations of their deci-

sions by revealing the closest neighbors of the query

object from the training data. Moreover, the corres-

ponding similarity scores, i.e., the distances of the

training items to the query object, provide some insight

into the decision process, and the users may derive their

confidence in the final decision result. In comparison,

support vector machines analogously give illustrative

weights to individual training objects, Bayes classifiers

have a similar explanation power by providing proba-

bility values for each target class, and decision trees are

slightly more intuitive by presenting the rules that

produced the decision result. On the other hand, neural

network classifiers lack illustrative explanations of their

decisions.
Foundations

Classification Model

Nearest neighbor classifiers are a common classifica-

tion model for which several variants exist. Along with

the simple nearest neighbor model, k-nearest neighbor

classification uses a set of k neighbors and the mean-

based nearest neighbor model where individual train-

ing objects are generalized uses group representatives.

Simple nearest neighbor classification. The simplest

variant of nearest neighbor classification may be forma-

lized as follows: For any metric object space O, let

TS � O denote the set of labeled training data and

d : O � O ! <þ
0 is the chosen and thus distance func-

tion that reflects the dissimilarity of any two objects from

O. Then, for any query object q 2 O, the classifier eval-

uates the function Cpreliminary qð Þ ¼ labelðoÞj o 2 TS;f
8p 2 TS � of g: d o; qð Þ < d p; qð Þg.

Unfortunately, this formalization is not valid for

cases where several objects o 2 TS share the same min-

imal distance dðo; qÞ to the query object, i.e., when the

query hits perpendicular bisectors of these objects.

Though in practice, these ties occur very rarely, a for-

malization that is equivalent to the previous one in

other respects but in which ambiguities may be broken

simply in a nondeterministic way is preferred (Fig. 1):

CnnðqÞ ¼ flabelðoÞj o 2 TS; 8p 2 TS :

dðo; qÞ � dðp; qÞg ð1Þ

The decision model of nearest neighbor classification

allows for a particularly broad range of applications. Its

applicability covers vector data which are characterized

by numerical attributes and includes general relational

data where the tuples are represented by both numerical

and categorical data as long as some metrics are defined

on the categories. Moreover, if training and test data are

neither taken from a vector space nor carry any categor-

ical attributes but are only compared in terms of a

distance function that reflects the dissimilarity of objects,

nearest neighbor classifiers are still applicable. Examples

of such applications include sequence data or structural

data which may be compared by the edit distance, time

series and measurement series compared by dynamic

time warping, text and document data compared by

the cosine distance, or multimedia data compared by

complex similarity models.

Mean-based nearest neighbor classification. Nearest

neighbor classifiers yield high quality decisions in

Nearest Neighbor Classification. Figure 1. Ambiguity of nearest neighbors for a sample training data set with

two classes, A and B. Query object q1 has a unique nearest neighbor and will be assigned to class A. For query

object q2, two neighbors share the smallest distance but there is no ambiguity with respect to the class decision

since both neighbors are in class B. Query q3 yields a conflict as it has two nearest neighbors from different classes,

namely A and B, respectively. In practice, these ties occur very rarely at least for numerical reasons but may be

solved nondeterministically.

Nearest Neighbor Classification N 1887

N

terms of classification accuracy, and they are quite

robust even for small training sets. Nevertheless, they

tend to suffer from overfitting since the decisions are

made closer at the training data than it is the case for

any other method. As a consequence, erroneous train-

ing data, noise and outliers may badly affect the deci-

sions. In order to increase the generalization power

and to approach the overfitting problem, mean-based

nearest neighbor classifiers and k-nearest neighbor

classifiers have been developed as common variants

of the simple model.

For mean-based nearest neighbor classification, the

objects in the training data set are grouped into one or

more clusters per class. These clusters are represented

by their means, and nearest neighbors are then selected

among the means rather than among the original indi-

vidual training objects. The means inherit the class

label of their cluster members, and the decision rule

(1) from simple nearest neighbor classification is easily

adopted to the mean model just by replacing the train-

ing data set by the set of means:

Cm�nnðqÞ ¼ flabelðmÞj m 2 meansðTSÞ;
8n 2 meansðTSÞ :
dðm; qÞ � dðn; qÞg ð2Þ

Note that the computation of mean values requires the

object space O to be a vector space, since the objects of

a cluster need to be summed up followed by a scalar

multiplication by the reciprocal value of the group’s

cardinality. Thus, the mean-based model does not

apply to non-vectorial metric spaces which, in con-

trast, are supported by k-nearest neighbor classifiers.

k-nearest neighbor classification. Beside mean-based

nearest neighbor classifiers, k-nearest neighbor classifi-

cation is another quite common approach to increase
the generalization power and to decrease overfitting

effects. Instead of looking at a single object to the

query among the training data, a set of k nearest

neighbors, k > 1, is taken into account when making

the decision. One starts by defining the decision set to

be a subset of the training data TS that contains the k

objects closest to the query object q. Again, ties may be

broken by a nondeterministic choice among equidis-

tant neighbors:

NN q; kð Þ ¼ foj o 2 TS; 8p 2 TS � NNðq; kÞ :
dðo; qÞ � dðp; qÞg; NN q; kð Þj j ¼ k ð3Þ

The decision rule based on majority vote now looks as

follows (Fig. 2):

CmajorityðqÞ ¼ argmaxl2labelðNNðq; kÞÞ

fcardfo 2 NNðq; kÞj labelðoÞ ¼ lgg: ð4Þ

Weighted k-nearest neighbor classification. For k-nearest

neighbor classifiers, different weighting schemata have

been developed which introduce distances or frequen-

cies into the decision rule. Conceptually, majority vot-

ing represents a weighting schema with unit weights.

A quite common variant is to use the squared distances

of the decision objects to the query object as recipro-

cal weights. This way, the desired effect is obtained

that the closer an object is to the query, the higher

is its influence to the classification decision. The

corresponding decision rule is as follows:

Cdist qð Þ ¼ argmaxl2label NN q;kð Þð Þ
X

o2NN q;kð Þ
labelðoÞ¼l

1

d o; qð Þ2

8>><
>>:

9>>=
>>;
:

ð5Þ

Nearest Neighbor Classification. Figure 3. Dependency

of class decision on the weighting schema. In the

example, a 4-nearest neighbor set is selected for the query

object. Pure majority voting decides for class B as the

decision set includes two instances of class B. Distance

weighting decides for class C as the close neighbor from

class C dominates the farer neighbor from class A and even

the two neighbors from class B. Frequency-based

weighting yields class A since A contributes the highest

fraction of its overall occurrences in the training data to

the nearest neighbor set.

Nearest Neighbor Classification. Figure 2. Dependency of the classification decision on the number of

nearest neighbors. In the examples from left to right, the same query object is considered. A choice of k = 1 yields the

class label A. For k = 4, class B holds the majority in the nearest neighbor set, and for k = 8, again label A is assigned to the

query object.

1888N Nearest Neighbor Classification
An alternative weighting schema takes the relative fre-

quency of the classes into account. Naturally, rare classes

are represented only by a small number of instances in

the training data. If at decision time, a nearest neighbor

set contains a few of these rare instances, this occurrence

is honored by the frequency weighting schema. This

way, rare classes may outvote highly frequent classes

even if these dominate the decision set by their number.

Formally speaking, decisions are based on the fraction

of training instances a class contributes to the decision

set rather than on the absolute number of instances

among the nearest neighbors (Fig. 3).

Cfreq qð Þ ¼ argmaxl2label NN q;kð Þð Þ
cardfoj o 2 NN q; kð Þ; labelðoÞ ¼ lg

cardfoj o 2 TD; labelðoÞ ¼ lg

� �
: ð6Þ

Lazy Evaluation Model

Nearest neighbor classification follows the model of lazy

evaluation. This means that there is no computation or

estimation of model parameters at training time, but

all calculations to make decisions are deferred to query

time. Lazy evaluation is in contrast to the eager eval-

uation paradigm which requires some effort at trai-

ning time to build an appropriate model. Examples of

eager classifiers include decision trees, Bayes classifiers,

neural networks, or support vector machines for which

attribute-oriented decision flow diagrams, probability

(mixture) density models, synaptic weights, or support

vector weights are computed at training time, respec-

tively. Lazy evaluation does not build models for the

training data but derives its decisions directly from the

training objects and, therefore, is called instance-based

learning. Nearest neighbor classification is a prominent

example of lazy evaluation, and the simple 1-nn and

extended k-nn variants purely reflect the instance-

based paradigm. The mean-based variant, however,
deviates a little from this idea since means of classes

are computed at training time, and decisions are based

on the means rather than on the individual instances.

For lazy evaluation in general, questions about deci-

sion efficiency, dynamic changes of training data, and

explanations of decisions arise; these issues are dis-

cussed in the following subsections. Note that mean-

based nearest neighbor classification is not a pure

lazy variant since means of classes are computed at

training time.

Decision efficiency. By following the lazy evaluation

model, nearest neighbor classifiers defer all data

analysis to query time. So query processing tends to

be computationally more expensive than with eager

Nearest Neighbor Classification N 1889

N

classifiers. Obviously, the most complex task is to

determine the decision set, that is the set of (k) nearest

neighbors for a query object; the subsequent weighting

and voting is negligibly done in O(k). Retrieving the k

nearest neighbors in a set of n training objects depends

on the data organization. Whereas a sequential scan

requires O(n) operations, the use of multidimensional

or metric indexing structures may significantly speed-

up the retrieval of the decision set depending on the

dimensionality and on the statistical characteristics of

the data. For high-dimensional data, techniques for

reduction of dimensionality and multi-step query

processing help to keep k-nearest neighbor retrieval

efficient. As strict lazy evaluation does not waste any

training time to create a model, it is nevertheless

highly recommended to spend some effort for the

creation of an appropriate index on the training

data. In short, to train an efficient nearest neighbor

classifier means to instantiate model creation by

index creation.

Dynamically changing training data. As for lazy

evaluation, no model is created at training time, a lazy

classifier in general allows for dynamic changes

of training data particularly well. For a nearest neighbor

classifier, efficiency depends on how the underlying index

structure maintains the dynamic data set. This represents

a common requirement for indexing and is supported

well by almost all multidimensional or metric access

methods. As training data changes, new examples are

inserted into the index and outdated training instances

are removed. This way, incremental training for low

change rates and also online training with potentially

high rates of incoming training data are enabled. Nearest

neighbor classification, thus, always produces a result

that relies on the current training data status.

Decision explanation. Lazy classifiers do not create

models for the training data and, as an inherent limita-

tion, no explicit knowledge is extractedwhich reflects the

structure of the data. Though nearest neighbor classifiers

do not provide intuitive models of the data character-

istics, they nevertheless explain their individual decisions

illustratively by revealing the closest neighbors of the

query object within the labeled training data to the

user. Additional information is provided by the similari-

ty scores, i.e., the distances of the training items to the

query object, thus yielding some insight into the decision

process from which the users may derive their confi-

dence in the final decision result.
Key Applications
Key applications of nearest neighbor classification in-

clude all areas where classification problems occur.

Particularly well suited are nearest neighbor classifiers

in the following cases:

1. Many classes need to be distinguished

2. Objects are represented by general metric data

without an attribute structure

3. Classifier has to follow training data that change

dynamically

4. Users require intuitive explanations of the system’s

decisions

Real applications are found in all areas of multimedia

data exploration and cognitive systems including com-

puter vision, speech recognition, medical imaging,

robot motion planning, or sensor-based object recog-

nition in general to name just a few.
Cross-references
▶Applications

▶ Indexing Metric Spaces

▶ Indexing: R-Trees

▶Multidimensional Indexing

▶Multimedia Information Retrieval

▶Nearest Neighbor Query

▶ Spatial Indexing Techniques

▶ Spatial

▶ Spatiotemporal

▶Text Indexing Techniques
Recommended Reading
1. Ankerst M., Kastenmuller G., Kriegel H.-P., and Seidl T. Nearest

neighbor classification in 3D protein databases. In Proc. 7th Int.

Conf. on Intelligent Systems for Molecular Biology, 1999,

pp. 34–43.

2. Athistos V. Nearest neighbor retrieval and classification. Available

at: http://cs-people.bu.edu/athitsos/nearest-neighbors/, 2007.

3. Djouadi A. and Bouktache E. A fast algorithm for the nearest-

neighbor classifier. IEEE Trans. Pattern Anal. Mach. Intell., 19(3):

277–282, 1997.

4. Duda R.O., Hart P.E., and Stork D.G. Pattern Classification (2nd

ed.). Wiley, New York, 2001.

5. Efros A.A., Berg A.C., Mori G., and Malik J. Recognizing action

at a distance. In Proc. 9th IEEE Conf. Computer Vision, 2003,

pp. 726–733.

6. Ghosh A.K., Chaudhuri P., and Murthy C.A. On visualization

and aggregation of nearest neighbor classifiers. IEEE Trans.

Pattern Anal. Mach. Intell. 27(10):1592–1602, 2005.

1890N Nearest Neighbor Query
7. Han J. and Kamber M. Data Mining, Concepts and Techniques

(2nd ed.). Elsevier, Amsterdam, 2006.

8. Hastie T., Tibshirami R., and Friedman J. The Elements of

Statistical Learning: Data Mining, Inference and Prediction.

Springer Series in Statistics. Springer, New York, 2001.

9. Kriegel H.-P., Pryakhin A., and Schubert M. Multi-represented

kNN-classification for large class sets. In Proc. 10th Int. Conf. on

Database Systems for Advanced Applications, 2005, pp. 511–522.

10. Li Y., Yang J., and Han J. 1Continuous K-nearest neighbor search

for moving objects. In Proc. 16th Int. Conf. on Scientific and

Statistical Database Management, 2004, pp. 123–126.

11. Shibata T., Kato T., and Wada T. K-D. Decision tree: an acceler-

ated and memory efficient nearest neighbor classifier. In Proc.

2003 IEEE Int. Conf. on Data Mining, 2003, pp. 641–644.

12. Veenman C.J. and Reinders M.J.T. The nearest subclass classifier:

a compromise between the nearest mean and nearest neighbor

classifier. IEEE Trans. Pattern Anal. Mach. Intell., 27(9):

1417–1429, 2005.
Nearest Neighbor Query

DIMITRIS PAPADIAS

Hong Kong University of Science and Technology,

Hong Kong, China

Synonyms
NN query; kNN query

Definition
Given a dataset P and a query point q, a k nearest

neighbor (kNN) query returns the k closest data points

p1,p2,...,pk to q. For any point p2P�{p1,p2,...,pk}: dist

(pi, q)�dist(p, q) 8 1�i�k, where dist depends on the

underlying distance metric. The usual metric is the Lx
norm, or formally, given two points q, p whose coor-

dinates on the i-th dimension (1�i�m) are qi and pi
respectively, their Lx distance is:

Lxðp; qÞ ¼ ðSi¼1�m pi � qij jxÞ1=x ; for x 6¼ 1;

Lxðp; qÞ ¼ max i¼1�mð pi � qij jÞ; for x ¼1:

Most work on spatial and spatio-temporal databases

focuses on Euclidean distance (i.e., L2), but alternative

definitions have been used in various domains (e.g.,

road networks, time series).

Key Points
Nearest neighbor search constitutes an important

component for several tasks such as clustering, outlier

detection, time series analysis, and image and
document retrieval. For instance, finding the most

similar series, image, or document to a given input is

a NN query in a corresponding data space defined by

the features of interest. Unlike spatial and spatio-tem-

poral databases that usually involve 2–3 dimensions,

these applications may lead to high-dimensional

spaces. In order to avoid the high cost of distance

computations in such cases, several methods follow a

multi-step framework for processing NN queries [3]:

(i) a dimensionality reduction technique is used to

decrease the number of dimensions, (ii) the low di-

mensional data are indexed, (iii) the index is used to

efficiently retrieve a candidate NN (in low dimensional

space), (iv) the actual distance of the candidate (in the

original space) is computed, and (v) steps (iii) and (iv)

are repeated until no other candidate can lead to a

better solution than the one already discovered.

In addition to conventional NN search, several

alternative types of nearest neighbor queries have

been proposed in the database literature. Given a

multi-dimensional dataset P and a point q, a reverse

nearest neighbor query retrieves all the points p2P that

have q as their NN (The nearest neighbor relationship

is not symmetric; i.e., the fact that q is the NN of

p does not necessarily imply that p is the NN of q.)

[1]. Given a set P of data points and a set Q of query

points, an aggregate nearest neighbor query returns

the data point p with the minimum aggregate distance

[2]. The aggregate distance between a data point

p and Q = {q1,...,qn} is defined as f(dist(p,q1),...,dist(p,

qn)). If, for instance, f = sum, the corresponding query

reports the data point that minimizes the total distance

from all query points.
Cross-references
▶Nearest Neighbor Query in Spatio-temporal Data-

bases

▶Reverse Nearest Neighbor Query
Recommended Reading
1. Korn F. and Muthukrishnan S. Influence sets based on reverse

nearest neighbor queries. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2000, pp. 201–212.

2. Papadias D., Tao Y., Mouratidis K., and Hui K. Aggregate nea-

rest neighbor queries in spatial databases. ACM Trans. Database

Sys., 30(2):529–576, 2005.

3. Seidl T. and Kriegel H-P. Optimal multi-step k-nearest neighbor

search. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1998, pp 154–165.

Nearest Neighbor Query in Spatio-temporal Databases N 1891
Nearest Neighbor Query in
Spatio-temporal Databases

DIMITRIS PAPADIAS

Hong Kong University of Science and Technology,

Hong Kong, China

Synonyms
NN query; NN search

Definition
Given a set of points P in a multi-dimensional space,

the nearest neighbor (NN) of a query point q is the

point in P that is closest to q. Similarly, the k nearest

neighbor (kNN) set of q consists of the k points in

P with the smallest distances from q. In spatial and

spatio-temporal databases, the distance is usually

defined according to the Euclidean metric, and the

dataset P is disk-resident. Query algorithms aim at

minimizing the processing cost. Other optimization

criteria in the case of moving objects (or queries)

include the network latency, or the number of queries

required for keeping the results up-to-date.
N
Historical Background
Nearest neighbor (NN) search is one of the oldest

problems in computer science. Several algorithms and

theoretical performance bounds have been devised for

exact and approximate processing inmainmemory [1].

In spatial databases, existing algorithms assume that P

is indexed by a spatial access method (usually an R-tree

[2]) and utilize some pruning bounds to restrict the

search space. Figure 1 shows an R-tree for point set
Nearest Neighbor Query in Spatio-temporal Databases. Fig
P = {p1,p2,...,p12} with a capacity of three entries per

node (typically, the capacity is in the order of hundreds).

Points that are close in space (e.g., p1, p2, p3) are clus-

tered in the same leaf node (N3). Nodes are then

recursively grouped together with the same principle

until the top level, which consists of a single root.

Given a node N and a query point q, the mindist

(N,q) corresponds to the closest possible distance

between q and any point in the subtree of node N.

The first NN algorithm for R-trees [8] searches

the tree in a depth-first (DF) manner, recursively

visiting the node with the minimum mindist from q,

e.g., in Fig. 1, DF accesses the root, followed by N1 and

N4, where the first potential nearest neighbor is found

(p5). Note that p5 is not the actual NN (it is p11), and

the search continues. During backtracking to the

upper level (node N1), the algorithm prunes entries

whose mindist is equal to or larger than the distance

(best_dist) of the nearest neighbor already retrieved. In

the example of Fig. 1, after discovering p5, (i) best_dist

is set to dist(p5,q), (ii) DF backtracks to the root level

(without visiting N3), and (iii) it follows the path N2,

N6 where the actual NN p11 is found. DF can be easily

extended for the retrieval of k > 1 nearest neighbors:

the k points discovered so far with the minimum

overall distances are maintained in an ordered list of

k pairs <p, dist(p,q)> (sorted on ascending dist(p,q)

order) and best_dist equals the distance of the k-th NN.

Whenever a better neighbor is found, it is inserted in

the list, the last element is removed, and the value of

best_dist is updated.

The DF algorithm is sub-optimal, i.e., it accesses

more nodes than necessary. Specifically, an optimal

algorithm should visit only nodes intersecting the
ure 1. Example of an R-tree and a point NN query.

Nearest Neighbor Query in Spatio-temporal Databases.

Figure 2. Example of [6].

1892N Nearest Neighbor Query in Spatio-temporal Databases
search region, i.e., a circle centered at the query point q

with radius equal to the distance between q and its

nearest neighbor [4]. In Fig. 1, for instance, an optimal

algorithm should visit only the root, N1, N2, and N6,

whereas DF also visits N4. The best-first (BF) algorithm

of [5] achieves the optimal I/O performance by main-

taining a heap H with the entries visited so far, sorted

by their mindist. As with DF, BF starts from the root,

and inserts all the entries into H (together with their

mindist), e.g., in Fig. 1, H = {<N1, mindist(N1,q)>,

<N2,mindist(N2,q)>}. Then, at each step, BF visits the

node in H with the smallest mindist. Continuing the

example, the algorithm retrieves the content of N1 and

inserts all its entries in H, after which H = {<N2,

mindist(N2,q)>, <N4, mindist(N4,q)>, <N3, mindist

(N3,q)>}. The next two nodes accessed are N2 and N6

(inserted in H after visiting N2), in which p11 is discov-

ered as the current NN. At this time, the algorithm

terminates (with p11 as the final result) since the next

entry (N4) in H is farther (from q) than p11. Similarly

to DF, BF can be easily extended to kNN queries

(k > 1). In addition, BF is incremental, i.e., it can

output the nearest neighbors in ascending order of

their distance to the query without a pre-defined ter-

mination condition.

Foundations
In dynamic environments, the result of a conventional

NN query may be immediately invalidated due to the

query or data movement. Several techniques augment

the result with some additional information regarding

its validity. For instance, Zheng and Lee [14] assume an

architecture where moving clients (e.g., mobile

devices) send their queries to a server. The server pre-

computes and stores in an R-tree the Voronoi diagram

of the (static) dataset. When a NN query q arrives at

the server, the Voronoi diagram is used to efficien-

tly compute its nearest neighbor; i.e., the point (o in

Fig. 2), whose Voronoi cell covers q. In addition to the

result, the server sends back to the client its validity

time T, which is a conservative approximation assum-

ing that the query speed is below a maximum value. In

particular, T is the time that q will cross the closest

boundary of the Voronoi cell of object o (in which case

point a will become the nearest neighbor). Zhang et al.

[13] propose the concept of location-based queries that

return the validity region around the query point,

where the result remains the same. For instance,

in Fig. 2, a location-based query q will return object o
and its Voronoi cell, which is computed on-the-fly

using an R-tree on the data points.

For the same settings (moving query - static data

objects), Song and Roussopoulos [10] reduce the num-

ber of queries required to keep the result up-to-date by

introducing redundancy. In particular, when a kNN

query arrives, the server returns to the client a number

m > k of neighbors. Let dist(k) and dist(m) be the

distances of the kth and mth nearest neighbor from

the query point q. If the client re-issues the query at a

new location q0, it can be proven that the new k nearest

neighbors will be among the m objects of the first

query, provided that 2·dist(q0,q) � dist(m)-dist(k).

Figure 3 shows an example for a 2NN query at location

q, where the server returns four results o, a, b and c (the

two nearest neighbors are o and a). When the client

moves to a nearby location q0, the 2 NN are o and b. If

2·dist(q,q0) � dist(4)-dist(2), the client can determine

this by computing the new distances (with respect

to q0) of the four objects, without having to issue a

new query to the server.

Tao and Papadias [11] propose time-parameterized

(TP) queries, assuming that the clients move with

linear and known velocities. In addition to the current

result R, the output of a TP query contains its validity

period T and the next change C of the result (that will

occur at the end of the validity period). Given the

additional information (C and T), the client only

needs to issue another TP query after the expiry of

the current result. Figure 4 shows a TP NN, where the

query point q is moving east with speed 1. Point d is

the current nearest neighbor of q. The influence time

TINF(p, q) of an object p is the time that p starts to get

closer to q than the current nearest neighbor. For

Nearest Neighbor Query in Spatio-temporal Databases.

Figure 4. Example of TP NN query.

Nearest Neighbor Query in Spatio-temporal Databases.

Figure 3. Example of [8].

Nearest Neighbor Query in Spatio-temporal Databases N 1893

N

example, TINF(g,q) = 3, because at this time g will come

closer to q than d. The expiry time of the current result

is the minimum TINF(o,q) of all objects, i.e., in Fig. 4,

T = 1.5, at which point f will replace d as the NN of q.

Based on the above observations, a TP NN query is

processed in two steps: (i) a conventional algorithm

(e.g., [5,8]) retrieves the NN at the current time, and
(ii) a second pass computes the time-parameterized

component (i.e., C and T) by applying again NN search

and treating TINF(o,q) as the distance metric: the goal is

to find the objects (C) with the minimum TINF.

A continuous nearest neighbor (CNN) query [3,11]

retrieves the nearest neighbor (NN) of every point in a

line segment q = [s, e]. In particular, the result contains

a set of<R,T> tuples, where R (for result) is a point of

P, and T is the interval during which R is the NN of q.

As an example consider Fig. 5, where P = {a,b,c,d,f,g,h}.

The output of the query is {<a, [s,s1]>, <c, [s1,s2]>,

<f, [s2,s3]>, <h, [s3,e]>}, meaning that point a is the

NN for interval [s,s1]; then at s1, point c becomes the

NN etc. The points of the query segment (i.e., s1, s2, s3)

where there is a change of neighborhood are called split

points. CNN algorithms use DF or BF traversal on

R-trees to visit nodes and data points according to

their proximity to the query segment. Visited data

points introduce new split points, which are used to

prune the search space. For instance, in Fig. 5, if a, c, f

and h have already been discovered, every node and

data point (b, d, g) outside a circle defined by a split

point (center) and its NN (radius) can be eliminated

since they cannot affect the result.

A predictive NN query retrieves the expected near-

est neighbor of a (static or moving) query point

(e.g., 30 seconds from now) based on the current

motion patterns. Assuming that data points move lin-

early, they can be indexed by a TPR-tree [9]. The TPR-

tree is similar to the R-tree, but takes into account both

location and velocity in order to group data objects

into nodes. Furthermore, each node is assigned a ve-

locity vector so that its extent continuously encloses all

the objects inside (i.e., a moving node that may grow

with time). A predictive query is answered in the same

way as in the R-tree (e.g., by adaptations of [5,8]),

except that the node extends at the (future) query

time are dynamically computed (using the current

location and velocity vector of the node). The concepts

of TP and continuous queries also apply in this case.

Tao et al. [12] propose an architecture and index for

processing queries on objects moving with arbitrary

motion patterns, unknown in advance.

Key Applications

Geographic Information Systems

Nearest neighbor search is one of the most common

query types. Efficient algorithms are important for

Nearest Neighbor Query in Spatio-temporal Databases. Figure 5. Example CNN query.

1894N Nearest Neighbor Query in Spatio-temporal Databases
dealing with the large and ever increasing amount of

spatial data in several GIS applications.

Location-based Services

Advanced NN algorithms will provide the means for

enhanced location-based services based on the prox-

imity of mobile clients to potential facilities of interest.

Multi-criteria Decision Making

A number of decision support tasks can be modeled as

nearest neighbor search. For instance, newsWWW-sites

usually recommend to users the articles that are most

similar to their previous choices. Nearest neighbor algo-

rithms have also been used to process skyline queries.

Future Directions
All the above techniques take as input a single query,

and report its nearest neighbor set at the current time,

possibly with some validity information (e.g., expira-

tion time, Voronoi cell), or generate future results

based on predictive features (e.g., velocity vectors of

queries or data objects). On the other hand, continuous

monitoring of spatial queries [6] (i) involves multiple,

long-running, queries (from geographically distri-

buted clients), (ii) is concerned with both computing

and keeping the results up to date, (iii) usually assumes

main-memory processing to provide fast answers in an

on-line fashion, and (iv) attempts to minimize factors

such as the CPU or communication cost (as opposed

to I/O overhead).

Another interesting problem concerns NN search

in non-Euclidean spaces. For instance, in road net-

works the distance between two points can be defined

as the length of the shortest path connecting them, or

by the minimum time it takes to travel between them.

In either case, the problem requires different algorith-

mic solutions [7].
Experimental Results
In general, for every presented method, there is an

accompanying experimental evaluation in the corres-

ponding reference. [5] compares BF and DF traversal

for conventional NN search. [9] proposes cost models

for TP NN and CNN queries and evaluates their accu-

racy, as well as the relative performance of the two

query types for static (indexed by R-trees) and dynamic

(indexed by TPR-trees) objects.

Data Sets
A large collection of real datasets, commonly used for

experiments, can be found at:

http://www.rtreeportal.org/

URL to Code
R-tree portal (see above) contains the code for most

common spatial and spatio-temporal indexes, as well

as data generators and several useful links for research-

ers and practitioners in spatio-temporal databases.

Cross-references
▶Continuous Monitoring of Spatial Queries

▶Nearest Neighbor Query

▶Rtree

▶Voronoi Diagrams

Recommended Reading
1. Arya S., Mount D., Netanyahu N., Silverman R., and Wu A. An

optimal algorithm for approximate nearest neighbor searching.

J. ACM, 45(6):891–923, 1998.

2. Beckmann N., Kriegel H., Schneider R., and Seeger B. The

R*-tree: an efficient and robust access method for points and

rectangles. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1990, pp. 322–331.

3. Benetis R., Jensen C., Karciauskas G., and Saltenis S. Nearest

neighbor and reverse nearest neighbor queries for moving

objects. VLDB J., 15(3):229–249, 2006.

Algorithm 1: Nested Loop Join: R⋈pred(r, s)S
foreach R 2 R do

foreach S 2 S do
if pred (R.r, S.s) then

add {R, S} to result
end

end
end

Nested Loop Join N 1895

N

4. Bohm C. A cost model for query processing in high

dimensional data spaces. ACM Trans. Database Sys., 25

(2):129–178, 2000.

5. Hjaltason G. and Samet H. Distance browsing in spatial data-

bases. ACM Trans. Database Sys., 24(2):265–318, 1999.

6. Mouratidis K., Hadjieleftheriou M., and Papadias D. Conceptual

partitioning: an efficient method for continuous nearest neigh-

bor monitoring. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2005, pp. 634–645.

7. Papadias D., Zhang J., Mamoulis N., and Tao Y. Query proces-

sing in spatial network databases. In Proc. of the 29th Conf. on

Very Large Databases, 2003, pp. 790–801.

8. Roussopoulos N., Kelly S., and Vincent F. Nearest Neighbor

Queries. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1995, pp. 71–79.

9. Saltenis S., Jensen C., Leutenegger S., and Lopez M. Indexing

the positions of continuously moving objects. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2000,

pp. 331–342.

10. Song Z., and Roussopoulos N. K-nearest neighbor search for

moving query point. In Proc. 7th Int. Symp. Advances in Spatial

and Temporal Databases, 2001, pp. 79–96.

11. Tao Y. and Papadias D. Spatial queries in dynamic environments.

ACM Trans. Database Sys., 28(2):101–139, 2003.

12. Tao Y., Faloutsos C., Papadias D., and Liu B. Prediction and

indexing of moving objects with unknown motion patterns. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2004,

pp. 611–622.

13. Zhang J., Zhu M., Papadias D., Tao Y., and Lee D. Location-

based spatial queries. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2003, pp. 443–454.

14. Zheng B., and Lee D. Semantic caching in location-dependent

query processing. In Proc. 7th Int. Symp. Advances in Spatial

and Temporal Databases, 2001, pp. 97–116.
Negative Dictionary

▶ Stoplists
Nested Loop Join

JINGREN ZHOU

Microsoft Research, Redmond, WA, USA

Synonyms
Nested loop join; Loop join

Definition
The nested loop join is a common join algorithm

in database systems using two nested loops. The
algorithm starts with reading the outer relation R, and

for each tuple R 2 R, the inner relation S is checked

and matching tuples are added to the result.
Key Points
Oneadvantageof thenested loop join is that it canhandle any

kind of join predicates, unlike the sort-merge join and the

hash join which mainly deal with an equality join predicate.

An improvement over the simple nested loop join is the block

nested loop join which effectively utilizes buffer pages and

reduces disk I/Os.
Block Nested Loop Join

Suppose that the memory can hold B buffer pages. If

there is enough memory to hold the smaller relation,

say R, with at least two extra buffer pages left, the

optimal approach is to read in the smaller relation R

and to use one extra page as an input buffer to read in

the larger relation S and the other extra buffer page as

an output buffer.

If there is not enough memory to hold the smaller

relation, the best approach is to break the outer rela-

tion R into blocks of B � 2 pages each and scan the

whole inner relation S for each block of R. As described

before, one extra page is used as an input buffer and

the other as an output buffer. In this case, the outer

relation R is scanned only once while the inner relation

S is scanned multiple times.
Cross-references
▶ Parallel Join Algorithms

▶ Evaluation of Relational Operators
Recommended Reading
1. Mishra P. and Eich M.H. Join processing in relational databases.

ACM Comput. Surv., 24(1):63–113, 1992.

1896N Nested Transaction Models
Nested Transaction Models

GEORGE KARABATIS

University of Maryland, Baltimore Country (UMBC),

Baltimore, MD, USA

Definition
A nested transaction model as proposed by Moss is a

generalization of the flat transaction model that allows

nesting. A nested transaction forms a tree of transac-

tions with the root being called a top-level transaction

and all other nodes called nested transactions (subtran-

sactions). Transactions having no subtransactions are

called leaf transactions. Transactions with subtransac-

tions are called parents (ancestors) and their subtran-

sactions are called children (descendants).

A subtransaction can commit or rollback by itself.

However, the effects of the commit cannot take place

unless the parent transaction also commits. Therefore,

in order for any subtransaction to commit, the top-level

transactionmust commit. If a subtransaction aborts, all

its children subtransactions (forming a subtree) are

forced to abort even if they committed locally.

Historical Background
Nested transactions were introduced by Moss in 1981

[8] to overcome some of the limitations of the flat

transaction model, as they allow a finer level of control

in a transaction. For example, a failed operation in a

flat transaction causes the entire transaction to be

rolled back. On the contrary, a failed operation in a

part of a nested transaction may be acceptable and the

entire transaction may be allowed to commit, even if

some of its operations failed. As an example, a trip

consisting of a flight reservation, hotel accommoda-

tion and car rental can be implemented as a nested

transaction with three subtransactions. If some of its

subtransactions commit (e.g., flight and hotel), and

some fail (e.g., car rental) the outcome may still be

acceptable and allow the nested transaction to commit

with partial results.

Nested transactions are based on the underlying

concept of spheres of control developed by Bjork and

Davies in 1973 [1,3]. Davies describes the spheres of

control in more detail in [2]; however, he portrays

overall semantics of the spheres which convey a more

abstract concept than nested transactions. Moss pro-

vides implementation details of nested transactions for

a distributed environment. Prior to that, Reed in his
dissertation [9] also describes an implementation of

nested transactions in a distributed environment and

one can see similarities and differences between the

two approaches. For example, Moss uses locking

whereas Reed uses timestamps. For a detailed compar-

ison of the two approaches see [8].

Foundations

Structure of a Nested Transaction

The structure of a nested transaction is depicted by

a transaction tree: its root represents the top-level

transaction and its children represent subtransactions

each one corresponding to a transactional unit. A

subtransaction may be either a simple (leaf) transac-

tion or a nested transaction, recursively expanding

the structure to a hierarchy with multiple levels of

transactions.

Leaf transactions are very similar to traditional ACID

transactions, but they do not preserve the durability

property of ACID transactions as will be explained in

the Commit/Abort rules. Leaf transactions are the ones

that actually manipulate the data in the database and

perform the work. Intermediate level subtransactions

and the top-level transaction operate on a higher level

of abstraction: their purpose is to control when to create

a new subtransaction. This hierarchy corresponds to the

notion of nested spheres of control [3]. Figure 1 illus-

trates an example of a nested transaction and its

corresponding transaction tree. It consists of a top-

level transaction T1 with two subtransactions T2 and

T3; subtransaction T2 is itself a nested transaction

invoking subtransaction T4. In this example, subtran-

sactions T3 and T4 are leaf transactions performing the

actual work. When multiple such nested transactions

coexist their trees form a forest.

Synchronization of Nested Transactions

Subtransactions of nested transactions can execute

concurrently and for proper synchronization Moss

devised the following locking protocol: A subtransac-

tion can either hold a lock or retain a lock. When a

lock is held the transaction has exclusive rights to

the object. After a subtransaction commits, its held or

retained locks are inherited by the parent subtransac-

tion. These inherited locks are not available to other

subtransactions outside the subtree (sphere of control)

of the holder; however, subtransactions within the

subtree (descendants) can acquire a retained lock.

Nested Transaction Models. Figure 1. Structure of an example nested transaction; to the lower right is a depiction

of the corresponding nested transaction tree.

Nested Transaction Models N 1897

N

The Locking Rules of nested transactions slightly para-

phrased from Moss [8] are the following:

1. A transaction may hold a lock in write mode if

no other transaction holds the lock (in any mode)

and all retainers of the lock are ancestors of

the requester.

2. A transaction may hold a lock in read mode if no

other transaction holds the lock inwritemode and all

retainers of write locks are ancestors of the requester.

3. When a transaction commits, its parent inherits all

locks the descendants held or retained in the same

mode as the child held or retained them.

4. When a transaction aborts, all locks it holds

or retains are released. Ancestors of the aborted

transaction who were retaining the lock they con-

tinue to do so in the same mode as before the abort.

Commit/Abort of Nested Transactions

Moss describes a set of rules (state restoration algorithm

in [8]) that dictate the behavior of nested transactions at

commit/abort time. A subtransaction can unilaterally

commit or abort independently of the others preserving

atomicity, consistency and isolation from the ACID

properties. The rules reworded from [8] are:

1. All children of a subtransaction must be resolved

(committed or aborted) before it commits itself.

2. A subtransaction that unilaterally commits, first

reaches its local commit point. However, it cannot

finally commit until its parent transaction commits.
Consequently, a subtransaction will commit only if

it commits locally and all its ancestors commit

including the top-level transaction.

3. If one of the ancestors of a subtransaction aborts, then

the subtransaction itself will have to abort. In other

words, the abort of a subtransaction causes the abort

of all its children. Even if the subtransaction commits,

its actions must be undone due to the abort of an

ancestor. This is the reason that nested subtransac-

tions violate the durability of ACID properties.

A nested transaction at the top level (i.e., the entire

nested transaction as a whole) does observe durability.

Therefore, nested transactions as a whole obey the ACID

properties, despite the fact that individual nested sub-

transactions may violate the durability property.
Advantages of Nested Transactions

1. Nested transactions allow for a simple composition

of subtransactions improving modularity of the

overall structure.

2. The concurrent execution of subtransactions that

follow the prescribed rules allows for enhanced con-

currencywhile preserving consistency. This enhanced

concurrency occurs because transactions can create

subtransactions which execute concurrently.

3. The success or failure of a subtransaction is inde-

pendent of the success of its siblings. When a sub-

transaction fails, its parent may try to execute

it again, or ignore the failure, depending on the

1898N Nested Transaction Models
situation. Therefore, failures that are contained

within the scope of a subtransaction may be toler-

ated and do not necessarily cause the failure of the

entire nested transaction.

Gray and Reuter present a mechanism to emulate

nested transactions using database savepoints [6].

This approach emulates recovery as accurately as pre-

scribed in the nested transaction model; however, it

emulates locking not as flexibly as described in nested

transactions.

Key Applications
Several systems were influenced by the nested transac-

tions model, and as such they either incorporated or

adapted its concept. The implementation of nested trans-

actions by Moss, and especially the locking mechanism

was used in the Argus system inwhichMoss worked with

Liskov [7]. Camelot is another system that used nested

transactions. It is a transaction processing system devel-

oped at Carnegie Mellon University using the Avalon

programming language [5]. Camelot was a precursor to

the Encina distributed transaction processing monitor

which uses the Transactional-C language. Encina was

commercialized under the name Transarc Corporation,

which was acquired by IBM in 1994.

Nested transactions have also been implemented in

Berkeley DB – a database library with bindings for

several programming languages, which originated at

the University of California – Berkeley, distributed

by Sleepycat Software, which was acquired by Oracle

Corporation in 2006.

Several researchers have also proposed systems with

transaction processing components that are designed

for application domains such as manufacturing,

CSCW, software engineering, etc. where the ACID

properties may be considered too strict; therefore, re-

laxed or advanced transaction models have been pro-

posed to address the specific requirements that exist in

these domains. Several of these transaction models

appear in a book by Elmagarmid [4].

A notable example of an extension to the concept of

nested transactions is the multi-level transaction model

and its closely related open nested transaction model

by Weikum and Schek [10,12]. The multi-level trans-

action model is represented by a transaction tree like in

nested transactions; however, unlike nested transac-

tions the transaction tree is balanced. Multi-level con-

currency control takes advantage of the semantics of

conflicting operations in the same level of the tree,
such as commutativity, in order to enhance concur-

rency. In open nested transactions, the subtransac-

tions are not restricted to have the same depth and

are allowed to commit their results without waiting

for their ancestors to commit [11].

Cross-references
▶ACID Properties

▶Concurrency Control – Traditional Approaches

▶Data Conflicts

▶Database Management System

▶Distributed DBMS

▶Distributed Transaction Management

▶ Extended Transaction Models

▶Multilevel Transactions and Object-Model Transac-

tions

▶Open Nested Transaction Models

▶ Serializability

▶TP Monitor

▶Transaction

▶Transaction Management

▶Transaction Manager

Recommended Reading
1. Bjork L.A. Recovery scenario for a DB/DC system. In Proc. ACM

Annual Conference, 1973, pp. 142–146.

2. Davies C.T. Data processing spheres of control. IBM Syst J.,

17:179–198, 1978.

3. Davies C.T. Recovery semantics for a DB/DC system, In Proc.

ACM Annual Conference, 1973, pp. 136–141.

4. Elmagarmid A.K. Database Transaction models for advanced

applications. Morgan Kaufmann Publishers Inc., CA, 1992.

5. Eppinger J.L., Mummert L.B., and Spector A.Z. Camelot and

avalon: A Distributed Transaction Facility. Morgan Kaufmann

Publishers Inc., CA, 1991.

6. Gray J. and Reuter A. Transaction Processing: Concepts and Tech-

niques. 1st edn. Morgan Kaufmann Publishers Inc., CA, 1992.

7. Liskov B. Distributed programming in Argus. Commun ACM.,

31:300–312, 1988.

8. Moss E.B. Nested Transactions: An Approach to Reliable

Distributed Computing. Technical Report. PhD Thesis. UMI

Order Number: TR-260: Massachusetts Institute of Technology,

1981, pp. 178.

9. Reed D.P. Naming and Synchronization in a Distributed

Computer System. Technical Report. PhD Thesis, UMI Order

Number: TR-205: Massachusetts Institute of Technology, 1978,

pp. 181.

10. Weikum G. Principles and Realization Strategies of Multi-

level Transaction Management. ACM Trans Database Sys.,

16:132–180, 1991.

11. Weikum G. and Schek H.-J. Concepts and Applications of

Multilevel Transactions and Open Nested Transactions. In Data-

base Transaction Models for Advanced Applications. Morgan

Kaufmann Publishers Inc., 1992, pp. 515–553.

Network Attached Secure Device N 1899
12. Weikum G. and Schek H.-J. Multi-level Transactions and open

nested transactions. Q. Bull. IEEE TC on Data Engineering,

14:60–66, 1991.
N

.NET Remoting

ANIRUDDHA GOKHALE

Vanderbilt University, Nashville, TN, USA

Synonyms
Subsumed by windows communication framework

Definition
.NET Remoting [1,2] is a Microsoft technology com-

prising a set of application programming interfaces

(APIs) for interprocess communication available with-

in the .NET Framework. .NET Remoting serves as the

distribution middleware layer, which enables commu-

nication between distributed applications that can

choose their own transport protocol, serialization for-

mat, an application model and different schemes to

manage object lifetimes.

Key Points
Central to the .NET Remoting architecture is the no-

tion of a remotable object and a brokering capability

that enables communication between application

domains. An application domain in the .NET frame-

work provides a type-safe and secure unit of execution

and isolation. .NET Remoting makes it feasible for

multiple application domains to communicate with

each other without concern for whether they are

hosted within the same operating system process,

or across multiple different processes within the same

node or across a network.

A remotable object is an object which is declared to

be serializable remotable objects can cross application

domain boundaries. Remotable Objects are published

via an Activation URL. Client applications invoking

services of a remotable object do so via proxies.

An important feature of .NET Remoting is its abil-

ity to allow applications to define their own serializa-

tion format, the choice of transport protocol used, and

application model used by the communicating entities.

By virtue of using the Common Language Runtime

(CLR), .NET Remoting can provide interoperability

across multiple managed languages. But its portability

is restricted to Microsoft platforms only.
Cross-references
▶Client-server architecture

▶CORBA

▶DCE

▶DCOM

▶ J2EE Middleware

▶ Java RMI

▶Request Broker

▶ SOAP

Recommended Reading
1. .NETFrameworkRemotingArchitecture, http://msdn2.microsoft.

com/en-us/library/2e7z38xb.aspx.

2. Microsoft Technologies, .NET Remoting: Core Protocol Specifi-

cation, [MS-NRTP] v20080207, February 2008.
Network Attached Secure Device

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Synonyms
NASD; Object-based Storage Device; OSD

Definition
A Network Attached Secure Device (often abbreviated

to NASD) is a networked storage device which offers

object-level storage accesses. NASD was first explored

in a research project of the same name, which started at

Carnegie Mellon University in 1995. NASD is now

more often called Object based Storage Device (short-

ened to OSD).

Key Points
NASD is an approach of decoupling only low-level

functions of file systems from NAS devices. A NASD

manages only stored objects, each of which is identified

with a unique file descriptor, and their additional

information such as metadata and attributes, whereas

a central policy server manages higher-level informa-

tion which is used for name space management and

authorization. A bunch of NASDs, with the assistance

of the central policy server, can together work as a file

store. This may look similar to NAS at a glance, but the

difference is that most commands and data are directly

transferred between clients and NASDs. Conventional

storage subsystems have a number of storage devices

under a storage controller, which is thus likely to

1900N Network Attached Storage
become a performance bottleneck. NASD has benefits

of scaling aggregate bandwidth by spreading partial

functions over a number of disk processors.

Object-level storage abstraction, introduced by

NASD, is recognized to be the third alternative in

addition to block-level storage abstraction typically

seen in SAN storage environments and file-level

storage abstraction in NAS storage environments.

Content-Addressable Storage is another example

which offers object-level storage accesses and is now

widely deployed in enterprise systems.

The idea of NASD has been standardized as ANSI

T10 SCSI OSD, which specifies an extension of the

SCSI protocol for clients and devices to exchange

objects and their related information. Thus, OSD is

sometimes seen as a promising infrastructure of intel-

ligent storage devices in which more intelligence will

be incorporated.

Cross-references
▶Active Disks

▶ Intelligent Storage Systems

Recommended Reading
1. ANSI. Information Technology - SCSI Object-Based Storage

Device Commands (OSD). Standard ANSI/INCITS 400–2004.

2004.

2. Gibson G.A. and Van Meter R. Network attached storage archi-

tecture. Commun. ACM, 43(11):37–45, 2000.

3. Gibson G.A., Nagle D.F., Amiri K., Chang F.W., Feinberg E.M.,

Gobioff H., Chen Lee, Ozceri B., Riedel E., Rochberg D., and

Zelenka J. File server scaling with network-attached secure disks.

In Proc. 1997 ACM SIGMETRICS Int. Conf. on Measurement

and Modeling of Comp. Syst., 1997, pp. 272–284.
Network Attached Storage

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Synonyms
NAS

Definition
Network attached storage is a storage device which is

connected to a network and provides file access services.

Network attached storage is often abbreviated to NAS.

Although the term NAS refers originally to such a stor-

age device, when the term is used in the context of
explaining and comparing storage network architectures

it sometimes refers to a storage network architecture in

which NAS devices are mainly implemented.

Key Points
A NAS device is basically comprised of disk drives

which store files and controllers which export access

services to the files. A file sever which runs network file

system (NFS) and/or common internet file system

(CIFS) to export file sharing services is a type of NAS

implementation, but recent NAS products are some-

times implemented using dedicated hardware and soft-

ware to increase reliability and performance. A diskless

NAS device which contains only controllers is some-

times referred to as a NAS gateway or a NAS head.

A NAS gateway/head has two types of network ports:

one is connected to disk storage devices over a SAN

and the other is to NAS clients over IP networks. The

clients are thus provided with access services towards

files stored in the storage devices. That is, a NAS gate-

way/head can be seen as a service bridge between SAN

and NAS systems.

Cross-references
▶Direct Attached Storage

▶ Storage Area Network

▶ Storage Network Architectures

Recommended Reading
1. Storage Network Industry Association. The Dictionary of Stor-

age Networking Terminology. Available at: http://www.snia.org/.

2. Troppens U., Erkens R., and Müller W. Storage Networks

Explained. Wiley, New York, 2004.
Network Data Model

JEAN-LUC HAINAUT

University of Namur, Namur, Belgium

Synonyms
CODASYL data model; DBTG data model

Definition
A database management system complies with the

network data model when the data it manages are

organized as data records connected through binary

relationships. Data processing is based on navigational

primitives according to which records are accessed and

Network Data Model N 1901

N

updated one at a time, as opposed to the set orienta-

tion of the relational query languages. Its most popular

variant is the CODASYL DBTG data model that was

first defined in the 1971 report from the CODASYL

group, and that has been implemented into several

major DBMSs. They were widely used in the seventies

and eighties, but most of them are still active at

the present time.

Historical Background
In 1962, C. Bachman of General Electric, New-York,

started the development of a data management system

according to which data records were interconnected

via a network of relationships that could be navigated

through [2]. Called Integrated Data Store (IDS), this

disk-based system quickly became popular to support

the storage, the management and the exploitation of

corporate data.

IDSwas the main basis of the work of the CODASYL

Data Base Task Group (DBTG) that published its

first major report in 1971 [3,6], followed by a revision

in 1973 [3,9]. This report described a general architecture

for DBMSs, where the respective roles of the operating

system, theDBMS and application programswere clearly

identified. It also provided a precise specification of

languages for data structure definition (DataDescription

Language or Schema DDL), for data extraction and

update (Data Manipulation Language or DML) and

for defining interfaces for application programs through

language-dependent views of data (Sub-schema DDL).

The 1978 report [7,9] clarified the model. In partic-

ular physical specifications such as indexing structures

and storage were removed from the DDL and collected

into the Data Storage Description Language (DSDL),

devoted to the physical schema description. In 1985,

the X3H2 ANSI Database Standard committee issued

standards for network database management systems,

called NDL and based on the 1978 CODASYL report.

However, due to the increasing dominance of the

relational model these proposals have never been imple-

mented nor updated afterwards.

Some of the most important implementations were

Bull IDS/II (an upgrade of IDS), NCR DBS, Siemens

UDS-1 and UDS-2, Digital DBMS-11, DBMS-10 and

DBMS-20 (now distributed by Oracle Corp.), Data

General DG/DBMS, Philips Phollas, Prime DBMS, Uni-

vac DMS 90 and DMS 1100 and Culliname IDMS, a

machine-independent rewriting of IDS (now distributed

by Computer Associates). Other DBMSs have been
developed, that followmore or less strictly the CODADYL

specifications. Examples include Norsk-Data SYBAS,

Burroughs DMS-2, CDC IMF, NCR IDM-9000, Cincom

TOTAL and its clone HP IMAGE (which were said to

define the shallow data model), and MDBS and Raima

DbVista that both first appeared on MS-DOS PCs.

In the seventies, IBM IMS was the main competitor

of CODASYL systems [11]. From the early eighties, they

both had to face the increasing influence of relational

DBMSs such as Oracle (from 1979) and IBM SQL/DS

(from 1982 [8]). Nowadays, most CODASYL DBMSs

provide an SQL interface, sometimes through an ODBC

API. Though the use of CODASYL DBMSs is slowly

decreasing,many large corporate databases are still man-

aged by network DBMSs. This state of affairs will most

probably last for the next decade. Network databases, as

well as hierarchical databases, are most often qualified

legacy, inasmuch as they are often expected to be

replaced, sooner or later, by modern database engines.
Foundations
The presentation of the network model is based on the

specifications published in the 1971 and 1973 reports,

with which most CODASYL DBMSs comply.

The Languages

The data structures and the contents of a database can

be created, updated and processed by means of four

languages, namely the Schema DDL and Sub-schema

DDL, through which the global schema and the sub-

schemas of the database are declared, the Data Storage

Description Language or DSDL (often named DMCL)

that allows physical structures to be defined and tuned,

and the DML through which application programs

access and update the contents of the database.
Gross Architecture of a CODASYL DBMS

The CODASYL reports define the interactions between

client application programs and the database. The

resulting architecture actually laid down the principles

of modern DBMSs. The DBMS includes (at least) three

components, namely the DDL compiler, the DML

compiler and the database control system (DBCS, or

simply system). The DDL compiler translates the data

description code into internal tables that are stored

in the database, so that they can be exploited by the

DML compiler at program compile time and by the

DBCS at program run time. Either the DML compiler

1902N Network Data Model
is integrated into the host language compiler (typically

COBOL) or it acts as a precompiler. It parses applica-

tions programs and replaces DML statements with calls

to DBMS procedures. The DBCS receives orders from

the application programs and executes them. Each

program includes a user working area (UWA) in which

data to and from the database are stored. The UWA also

comprises registers that inform the program on the status

of the last operations, and in particular references to the

last records accessed/updated in each record type, each

area, each set type and globally for the current process.

These references, called currency indicators, represent

static predefined cursors that form the basis for the

navigational facilities across the data.

The Data Structures

The pictorial representation of a schema, orData Struc-

ture Diagram [1], looks like a graph, where the nodes

are the database record types and the edges are set types,

that is, binary 1:N relationship types between record

types, conventionally directed from the one side to the

many side. Both record types and set types are named

(Fig. 1). In this popular representation, record fields

as well as various characteristics of the data structures

are ignored.

Records and Record Types A record is the data unit

exchanged between the database and the application

program. A program reads one record at a time from

the database and stores one record at a time in the
Network Data Model. Figure 1. Diagram representation

of the schema of a sample database.
database. Records are classified into record types that

define their common structure and default behavior.

The intended goal of a record type is to represent a real

world entity type. A database key, which is a database-

wide system-controlled identifier, is associated with

each record, acting as an object-id.

Each database includes the SYSTEM record type,

with one occurrence only, that can be used to define

access paths across user record types through SYSTEM-

owned singular set types.

The schema specifies, via the record type location

mode, how a record is stored and how it is retrieved

when storing a dependent record. This feature is both

very powerful and, when used at its full power, fairly

complex. Two main variants are proposed:

– location mode calc using field-list: the record is

stored according to a hashing technique (or later

through B-tree techniques) applied to the record

key, composed of one or several fields of the record

type (field-list); at run time, the default way to

access a record will be through this record key;

– location mode via set type S: the record is physically

stored as close as possible to the current record of

set type S; later on, the default way to access a

record will be through an occurrence of S identified

by its set selection mode.

Record Fields A record type is composed of fields,

the occurrences of which are values. Not surprisingly

(CODASYL was also responsible for the COBOL spe-

cifications), their structure closely follow the record

declaration of COBOL. The DDL offers the following

field structures:

– data item: elementary piece of data of a certain type

(arithmetic, string, implementor defined);

– vector: array of values of the same type; its size can

be fixed or variable;

– repeating group: a somewhat misleading name for a

possibly repeating aggregate of fields of any kind.

The fields of a record type can be atomic or com-

pound, single-valued or multi-valued, mandatory or op-

tional (through the null value); these three dimensions

allow complex, multi-level field structures to be defined.

Sets and Set Types Basically, a CODASYL set is a list of

records made up of a head record (the owner of the set)

followed by zero or more other records (the members

of the set). A set type S is a schema construct defined by

Network Data Model N 1903

N

its name and comprising one owner record type and

one or more member record type(s). Considering set

type S with owner type A and member type B, any A

record is the owner of one and only one occurrence of S

and no B record can be a member of more than one

occurrence of S. In other words, a set type materializes a

1:N relationship type. The owner and the members of

a set type are distinct. This limitation has been dropped

in the 1978 specifications, but has been kept in most

implementations (exceptions: SYBAS and MDBS).

Cyclic structures are allowed provided they include at

least two record types. It must be noted that a set type

can include more than one member record type.

The member records of S can be ordered (first, last,

sorted, application-defined). This characteristic is stat-

ic and cannot be changed at run-time as in SQL. The

insertion of a member record in an occurrence of S can

be performed at creation time (automatic insertion

mode) or later by the application program (manual

insertion mode). Once a record is a member of an

occurrence of S, its status is governed by the retention

mode; it can be removed at will (optional), it cannot be

changed (fixed) or it can be moved from an occurrence

to another but cannot be removed (mandatory).

The set [occurrence] selection of S defines the default

way an occurrence of S is determined in certain DML

operations such as storing records with automatic in-

sertion mode.
Network Data Model. Figure 2. Fragment of the DDL code
Areas An area is a named logical repository of records

of one or several types. The records of a definite type

can be distributed in more than one area. The intended

goal is to offer a way to partition the set of the database

records according to real world dimensions, such as geo-

graphic, organizational or temporal. However, since areas

are mapped to physical devices, they are sometimes used

to partition the data physically, e.g., across disk drives.

Schema and Sub-schemas The data structures of each

database are described by a schema expressed in the

DDL. Though DDL is host language independent, its

syntax is reminiscent of COBOL. Views are defined by

sub-schemas. Basically, a subschema is a host language

dependent description of a subset of the data struc-

tures of a schema. Some slight variations are allowed,

but they are less powerful than relational database

capabilities. Figure 2 shows a fragment of the schema

declaring the data structures of Fig. 1.

Data Manipulation

The DML allows application programs to ask the

DBCS data retrieval and update services. The program

accesses the data through a sub-schema that identifies

the schema objects the instances of which can be re-

trieved and updated as well as their properties, such as

the data type of each field. Exchange between the host

language and the DBCS is performed via the UWA, a
defining the schema of Fig. 1.

1904N Network Data Model
shared set of variables included in each running pro-

gram. This set includes the currency indicators, the

process status (e.g., the error indicators) and record

variables in which the data to and from the database

are temporarily stored. Many DML statements use the

currency indicators as implicit arguments. Such is the

case for set traversal and for record storing. Based on

the currency indicators, on the location mode of record

types and on the set selection option of set types,

sophisticated positioning policies can be defined, lead-

ing to tight application code.

Data Retrieval The primary aim of the find statement

is to retrieve a definite record on the basis of its posi-

tion in a specified collection and to make it the current

of all the communities which it belongs to, that is, its

database, its area, its record type and each of its set

types. For instance, if an ORDER record is successfully

retrieved, it becomes the current of the database for the

running program (the current of run unit), the current

of the DOMESTIC area, the current of the ORDER

record type and the current of the FROM andWITHIN

set types. The variants of the find statement allow the

program to scan the records of an area, of a record type

and of the members and the owner of a set. They also

provide selective access among the members of a set.

The get statement transfers field values from a

current record in the UWA, from which they can

then be processed by the program.

Data Update

A record r is inserted in the database as follows: first,

field values of r are stored in the UWA, then the current
Network Data Model. Figure 3. Two examples of data mani
of each set in which r will be inserted is retrieved and

finally a store instruction is issued. The delete instruc-

tion applies to the current record. For this operation,

the DBCS enforces a cascade policy: if the record to be

deleted is the owner of sets whose members have a

mandatory or fixed retention mode, those members

are deleted as well. The modify statement transfers in

the current of a record type the new values that have

been stored in the UWA. Insertion and removal of the

current of a record type is performed by insert and

remove instructions. Transferring a mandatory mem-

ber from a set to another cannot be carried out by

merely removing then inserting the record. A special

case of the modify statement makes such a transfer

possible. Later specifications as well as some imple-

mentations propose a specific statement for this

operation.

Figure 3 shows, in an arbitrary procedural pseudo-

code, a fragment that processes the orders of customer

C400 and another fragment that creates an ORDER

record for the same customer.

Entity-relationship to Network Mapping

Among the many DBMS data models that have been

proposed since the late sixties, the network model is

probably the closest to the Entity-Relationship model

[5]. As a consequence, network database schemas tend

to be more readable than those expressed in any other

DBMS data model, at least for simple schemas. Each

entity type is represented by a record type, each attri-

bute by a field and each simple relationship type by a

set type. Considering modern conceptual formalisms,

the network model suffers from several deficiencies,
pulation code.

Network Data Model. Figure 4. Partial translation of a representative Entity-relationship schema (left) into a network

schema (right).

Network Data Model N 1905

N

notably the lack of generalization-specialization (is-a)

hierarchies and the fact that relationship types are

limited to the 1:N category. Translating an Entity-rela-

tionship schema into the network model requires the

transformation of these missing constructs into stan-

dard structures.

Is-a hierarchies. Three popular transformations can

be applied to express this construct in standard data

management systems, namely one record type per en-

tity type, one record type per supertype and one record

type per subtype. Representing each entity type by a

distinct record type and forming a set type S with each

super-type (as owner of S) and all its direct subtypes

(as members of S) is an appropriate implementation of

the first variant.

1:1 relationship type. This category is a special case

of 1:N and can be expressed by a mere set type, togeth-

er with dynamic restriction on the number of members

in each set. However, merging both record types when

one of them depends on the other one (e.g., as an

automatic, mandatory member) is also a common

option.

Complex relationship type. In most implementa-

tions, n-ary and N:N relationship types as well as

those with attributes must be reduced to constructs

based on 1:N relationship types only through standard

transformations. A complex relationship type R is

represented by a relationship record type RT and by

as many set types as R has roles. The attributes of R are

translated into fields of RT. Cyclic relationship types, if

necessary, will be translated in the same way.

Figure 4 illustrates some of these principles.
Discussion

The network model offers a simple view of data that is

close to semantic networks, a quality that accounts for

much if its past success. The specifications published in

the 1971 and 1973 reports exhibited a confusion be-

tween abstraction levels that it shared with most pro-

posals of the seventies and that was clarified in later

recommendations, notably the 1978 report and X3H2

NDL. In particular, the DDL includes aspects that

pertain to logical, physical and procedural layers.

Though they were not implemented in most com-

mercial DBMSs, the CODASYL recommendations in-

cluded advanced features that are now usual in

database technologies such as database procedures,

derived fields, check and some kind of triggers.

Key Applications
CODASYL DBMSs have been widely used to manage

large corporate databases submitted to both batch and

OLTP (On-line Transaction Processing) applications.

Compared with hierarchical and relational DBMS,

their simple and intuitive though powerful model

and languages made them very popular for the devel-

opment of large and complex applications. However,

their intrinsic lack of flexibility in rapidly evolving

contexts and the absence of user-oriented interface

made them less attractive for decisional applications,

such as data warehouses.

Cross-references
▶Hierarchical Data Model

▶Relational Model

1906N Network Database
▶Database Management System

▶Entity-Relationship Model

Recommended Reading
1. Bachman C. Data structure diagrams. ACM SIGMIS Database,

1(2):4–9, 1969.

2. Bachman C. The programmer as navigator. Commun. ACM,

16(11):635–658, 1973.

3. DBTG C. CODASYL data base task group, April 1971 report,

ACM, New York, 1971.

4. DDLC C. CODASYL data description language committee,

CODASYL DDL Journal of Development (June 1973), NBS

Handbook 113 (Jan. 1974), 1973.

5. Elmasri R. and Navathe S. Fundamentals of Database Systems

(3rd edn.). Addison-Wesley, 2000. (The appendix on the net-

work data model has been removed from later editions but is

now available on the authors’ site.)

6. Engels R.W. An analysis of the April 1971 DBTG report. In Proc.

ACM SIGFIDET Workshop on Data Description, Access, and

Control, 1971, pp. 69–91.

7. Jones J.L. Report on the CODASYL data description language

committee. Inf. Syst., 3(4):247–320, 1978.

8. Michaels A., Mittman B., and Carlson C.A. Comparison of

relational and CODASYL approaches to data-base management.

ACM Comput. Surv., 8(1):125–151, 1976.

9. Olle W. The CODASYL Approach to Data Base Management,

Wiley, New York, NY, 1978.

10. Taylor R. and Frank R. CODASYL data-base management sys-

tems. ACM Comput. Surv., 8(1):67–103, 1976.

11. Tsichritzis D. and Lochovsky F. Data Base Management Systems,

Academic Press, New York, NY, 1977.
Network Database

▶Graph Database
Network Topology

▶Visualizing Network Data
Neural Networks

PANG-NING TAN

Michigan State University, East Lansing, MI, USA

Synonyms
Connectionist model

Parallel distributed processing
Definition
An artificial neural network (ANN) is an abstract

computational model designed to solve a variety of

supervised and unsupervised learning tasks. While the

discussion in this chapter focuses only on supervised

classification, readers who are interested in unsuper-

vised learning using ANNmay refer to the literature on

vector quantization [6] and self organizing maps [11].

An ANN consists of an assembly of simple processing

units called neurons connected by a set of weighted

edges (or synapses), as shown in Fig. 1. The neurons

are often configured into a feed-forward multi-layered

topology, with outputs from one layer being fed into

the next layer. The first layer, which is known as the

input layer, encodes the attributes of the input data,

while the last layer, known as the output layer, encodes

the neural network’s output. Hidden layers are the

intermediary layers of neurons between the input

and output layers. A feed-forward ANN without any

hidden layer is called a perceptron [16]. Another com-

mon ANN architecture is the recurrent network, which

allows a neuron to feed its output back into the inputs

of other preceding neurons in the network. Such a

network topology is useful for modeling temporal

and sequential relationships in dynamical systems.

Historical Background
The design of an ANN was inspired by the desire to

emulate how a human brain works. Interest in this

field began to emerge following the seminal work of

McCulloch and Pitts [13], who attempted to under-

stand how complex patterns can be modeled in the

brain using a large number of inter-connected neu-

rons. They presented a simplified model of a neuron

and showed how a collection of these neurons could be

used to represent logical propositions. Nevertheless,

they did not provide an algorithm to estimate the

weights of the network.

A major step forward in the study of ANN occurred

when Hebb [7] formulated a postulate relating the

cerebral activities of the brain to the synaptic connec-

tions between neurons. Hebb theorized that the pro-

cess of learning takes place when a pair of neurons is

activated repeatedly, thus making their synaptic con-

nection stronger. By strengthening the connection, this

enables the network to recognize the appropriate

response when the same stimulus is re-applied.

This idea forms the basis for what is now known as

Hebbian learning.

Neural Networks. Figure 1. Architecture of artificial neural network.

Neural Networks. Figure 2. Structure of an artificial

neuron.

Neural Networks N 1907

N

The invention of the perceptron by Rosenblatt [16]

marked another major development of the field. Rosen-

blatt demonstrated that a simple perceptron can be

trained to recognize visual patterns by modifying its

weights using an iterative error correcting algorithm.

A theoremwas subsequently proposed to show the guar-

anteed convergence of the perceptron training rule in

finite time – a result that subsequently triggered a wave

of interest in the field. During this period, new percep-

tron training algorithms began to emerge, such as the

Widrow-Hoff [18] and stochastic gradient descent [2]

algorithms. Such interest, however, began to wane as

Minsky and Papert [14] showed the practical limitations

of perceptrons, particularly in terms of solving non-

linearly separable problems such as the exclusive-or

(XOR) function. Though multi-layer neural networks

may overcome these limitations, there has yet to be

any feasible learning algorithms that can automatically

adjust the weights of the neurons in the hidden layer.

Interest in ANN was finally rekindled in the 1980s,

fueled by the successful development of the Boltzmann

machine [1] and the re-discovery of the backpropaga-

tion algorithm [17], both of which demonstrated the

feasibility of training multi-layer neural networks. Fur-

thermore, as computers become cheaper, this permits

more researchers to participate in the field and experi-

ment with the capabilities of neural networks, unlike

the situation in the 1960s. Research in ANN continued

to flourish with the development of more complex

networks such as radial basis function networks [15],

Hopfield networks [8], Jordan networks [10], and

Elman networks [4].
Foundations
Neurons are the elementary processing units of an ANN.

The structure of a neuron is shown in Fig. 2. Each neuron

consists of a set of weighted edges {w1,w2, ,wd}, a

threshold w0 (known as the bias), an adder S that

computes the weighted sum of its input, and an acti-

vation function j that transforms the weighted sum

into its output value. The computation performed by a

neuron can be expressed in the following form:

yj ¼ ’

�Xd
i¼1

wixij þ w0

�
	 ’ðzjÞ ð1Þ

The output of a neuron can be discrete or continuous,

depending on the choice of activation function. For

example, the Heaviside function can be used to pro-

duce a binary-valued output:

’ðzÞ ¼ 1; z
 0

0; otherwise

�

1908N Neural Networks
while the linear functionj(z) = z and sigmoid function

’ðzÞ ¼ 1

1þ exp
�
� z

�
produce a continuous-valued output.

An ANN must be trained to determine the appro-

priate set of weights for a given classification task.

Training is accomplished by processing the training

examples one at a time and comparing the predicted

class of a training example to its actual class. The error

in prediction is then used to modify the weights of the

network. This process is repeated until a stopping

criterion is satisfied.

Table 1 shows the activation functions and weight

update formula employed by several perceptron learn-

ing algorithms. Notice that the amount of weight

adjustment is proportional to the difference between

the true output yj and the predicted output j(zj) of a
neuron. Computing the error term [yj � j(zj)] in the

weight update formula is straightforward for percep-

trons, but is more challenging for multi-layer networks

because the true output of each hidden neuron is

unknown. Furthermore, it is unclear the extent to

which each of the neuron’s weight contributes to the

overall network error, an issue that is known as the

credit assignment problem. The backpropagation algo-

rithm attempts to overcome this problem by employing

a differentiable activation function (such as the sigmoid

function) so that a gradient descent strategy can be used

to derive the weight update formula. In the backpropa-

gation algorithm, the weight update step is decom-

posed into two phases. During the forward phase, the

outputs of the neurons are computed one layer at a

time, starting from neurons in the first hidden layer,

followed by those in the next layer until the neurons in

the output layer are computed. Next, during the back-

ward phase, the errors are propagated in the reverse
Neural Networks. Table 1. Perceptron training rules

Perceptron
training rule

Activation
function

Weight update
formula

Rosenblatt’s
perceptron

Heaviside
function

wi ← wi + Z[yj �
j(zj)]xij

Widrow-Hoff Linear
function

wi ← wi + Z ∑ j[yj �
j(zj)]xij

Stochastic gradient
descent

Linear
function

wi ← wi + Z[yj �
j(zj)]xij
direction, starting from neurons in the output layer,

followed by those in the preceding layer until the errors

of neurons in the first hidden layer are computed.

There are several issues thatmust be considered when

building an ANN model. First, the structure of the net-

work must be appropriately chosen to avoid model over-

fitting. To determine the structure with the right model

complexity, model selection approaches such as cross-

validation may be used. Regularization methods are also

applicable to penalize network structures that are overly

complex. Another possibility is to apply the Bayesian

approach, which provides a principled framework for

handling the model complexity problem. A review of

the Bayesian approach for neural networks can be

found in [16]. The cascade correlation algorithm [17] is

another useful approach to grow the network dynami-

cally from a structure with no hidden layers. Hidden

nodes are then added one at a time until the residual

error of the network falls within some acceptable level.

Since the error function of a multi-layer neural net-

work is not convex, convergence of the backpropagation

algorithm to a local minimum is another potential issue

to consider. One way to mitigate the problem is by

adding amomentum term to the weight update formula

to escape from the local minimum. Alternative strategies

include repeating the network simulation with different

initial weights and applying a stochastic gradient descent

method to estimate the network weights.

Instead of learning a discriminant function to dis-

tinguish instances from different classes, an ANN can

also be trained to produce posterior probabilities

of their class memberships. This is desirable because a

probabilistic framework provides a natural way to

compensate for imbalanced class distributions, to

incorporate the cost of misclassification into decision

making, and to fuse the outputs from multiple net-

works. An ANN can be designed to generate probabi-

listic outputs by training its weights to minimize the

cross-entropy error function [12] instead of the sum-

of-square error function.

As ANN encodes a sophisticated mathematical

function, the ability to explain how it makes its pre-

diction is crucial for a number of applications, partic-

ularly in the medical and legal domains. Algorithms

have been developed to extract symbolic representa-

tions or rules from a trained network [18]. Such algo-

rithms generally fall into two categories. The first

category generates rules based on features constructed

from the weights of the network connections. The

NEXI N 1909

N

second category uses the trained network to label a

data set and then applies rule extraction algorithms

on the labeled data set.

In general, multi-layer neural networks are universal

approximators, allowing them to fit any type of func-

tion. Furthermore, since it is an abstract computational

model, it is also applicable to a variety of supervised,

unsupervised, and semi-supervised learning tasks.

Key Applications
ANN has been successfully applied to various appli-

cations including pattern recognition (face, hand-

writing, and speech recognition), finance (bankruptcy

prediction, bond rating, and economic forecasting),

manufacturing (process control, tool condition moni-

toring, and robot scheduling), and computer aided

diagnosis (arrhythmia identification and tumor detec-

tion in biological tissues).

Future Directions
As ANN is an abstract computational model that is

applicable to a wide spectrum of learning tasks, much

of the future advances in this field are tied to progress

in the areas of supervised, unsupervised, and semi-

supervised learning.

Experimental Results
The experimental evaluation often depends on the

learning tasks. For supervised classification, some of

the typical evaluation criteria include model accuracy,

specificity, sensitivity, F-measure, and run-time for

model building.

Data Sets
A large collection of data sets are available at the

UCI data mining and machine learning repository.

For a more comprehensive list of data sets and other

information about neural networks, go to http://www.

neural-forecasting.com/.

Url to Code
A comprehensive set of functions for implementing

feed-forward and recurrent neural networks is avail-

able in MATLAB toolbox.

Cross-references
▶Decision Tree Classification

▶Data Clustering
Recommended Reading
1. Ackley D.H., Hinton G.E., and Sejnowski T.J. A learning algo-

rithm for Boltzmann machines. Cogn. Sci., 9(1) 147–169, 1985.

2. Amari S. A theory of adaptive pattern classifiers. IEEE Trans.

Electronic Comput., 16, 299–307, 1967.

3. Craven M. and Shavlik J.W. Learning symbolic rules using

artificial neural networks. In Proc. 10th Int. Conf. on Machine

Learning, 1993, pp. 73–80.

4. Elman J.L. Finding structure in time. Cogn. Sci., 14, 179–211,

1990.

5. Fahlman S.E. and Lebiere C. The CASCADE-CORRELATION

learning architecture. Adv. Neural Inform. Process. Syst., pp.

524–532, 1989.

6. Haykin S. Neural networks – a comprehensive foundation, 2nd

edn. Prentice-Hall, Englewood, Cliffs, NJ, 1998.

7. Hebb D. The Organization of Behaviour, Wiley, New York, 1949.

8. Hopfield J.J. Neural networks and physical systems with emer-

gent collective computational abilities. In Proc. National Acade-

my of Sciences, 79, 2554–2558, 1982.

9. Hopfield J.J. Learning algorithms and probability distributions

in feed-forward and feed-back networks. In Proc. National

Academy of Sciences, 84, 8429–8433, 1987.

10. Jordan M.I. Attractor dynamics and parallelism in a connection-

ist sequential machine. In Proc. 8th Annual Conf. of the Cogni-

tive Science Society, 1986, pp. 531–546.

11. Kohonen T. Self-Organizing Maps, Springer, Berlin. 2001.

12. Lampinen J. and Vehtari A. Bayesian approach for neural

networks – review and case studies, Neural Networks, 14(3):

7–24, 2001.

13. McCulloch W.S. and Pitts W. A logical calculus of the ideas

immanent in nervous activity. Bull. Math. Biophys., 5:115–133,

1943.

14. Minsky M. and Papert S. Perceptrons: An Introduction to

Computational Geometry. MIT, Cambridge, MA, 1969.

15. Powell M. Radial Basis Functions for Multivariable Interpola-

tion : A Review. In Algorithms for Approximation. Mason J.C.

and Cox M.G. (eds.). pp. 143–167, 1987.

16. Rosenblatt F. Principles of Neurodynamics. Spartan Books,

New York, 1959.

17. Rumelhart D.E., Hinton G.E., and Williams R.J. Learning repre-

sentations by backpropagating errors. Nature, 323, 533–536,

1986.

18. Widrow B. and Hoff M.E. Jr. Adaptive switching circuits. IRE

WESCON Convention Record. 1960, pp. 96–104.
New Media Metadata

▶Multimedia Metadata
NEXI

▶Narrowed Extended XPath I

1910N NFS
NFS

▶ Storage Protocols
NF-SS

▶Normal Form ORA-SS Schema Diagrams
N-Gram Models

DJOERD HIEMSTRA

University of Twente, AE Enschede, The Netherlands

Definition
In language modeling, n-gram models are probabilistic

models of text that use some limited amount of histo-

ry, or word dependencies, where n refers to the number

of words that participate in the dependence relation.

Key Points
In automatic speech recognition, n-grams are impor-

tant to model some of the structural usage of natural

language, i.e., the model uses word dependencies to

assign a higher probability to ‘‘how are you today’’

than to ‘‘are how today you,’’ although both phrases

contain the exact same words. If used in information

retrieval, simple unigram language models (n-gram

models with n ¼ 1), i.e., models that do not use term

dependencies, result in good quality retrieval in many

studies. The use of bigram models (n-gram models

with n ¼ 2) would allow the system to model direct

term dependencies, and treat the occurrence of

‘‘New York’’ differently from separate occurrences

of ‘‘New’’ and ‘‘York,’’ possibly improving retrieval

performance. The use of trigram models would allow

the system to find direct occurrences of ‘‘New York

metro,’’ etc. The following equations contain respec-

tively (1) a unigram model, (2) a bigram model, and

(3) a trigram model:

PðT 1;T 2; � � � TnjDÞ ¼ PðT 1jDÞPðT 2jDÞ � � � PðTnjDÞ
ð1Þ

PðT 1;T 2; � � � TnjDÞ
¼ PðT 1jDÞPðT 2jT 1;DÞ � � � PðTnjTn�1;DÞ

ð2Þ
PðT 1;T 2; � � � TnjDÞ
¼ PðT 1jDÞPðT 2jT 1;DÞPðT 3jT 1;T 2;DÞ
� � � PðTnjTn�2;Tn�1;DÞ

ð3Þ

The use of n-gram models increases the number of

parameters to be estimated exponentially with n, so

special care has to be taken to smooth the bigram or

trigram probabilities. Several studies have shown small

but significant improvements of using bigrams if

smoothing parameters are properly tuned [2,3].

Improvements of the use of n-grams and other term

dependencies seem to be bigger on large data sets [1].

Cross-references
▶ Language Models

▶ Probability Smoothing

Recommended Reading
1. Metzler D. and Bruce Croft W. A Markov random field model

for term dependencies. In Proc. 31st Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

2005, pp. 472–479.

2. Miller D.R.H., Leek T., and Schwartz R.M. A hidden Markov

model information retrieval system. In Proc. 22nd Annual Int.

ACM SIGIR Conf. on Research and Development in Informa-

tion Retrieval, 1999, pp. 214–221.

3. Song F. and Bruce Croft W. A general language model for

information retrieval. In Proc. 22nd Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1999, pp. 4–9.
NIAM

▶Object-Role Modeling
NN Classification

▶Nearest Neighbor Classification
NN Query

▶Nearest Neighbor Query

▶Nearest Neighbor Query in Spatio-temporal

Databases

Nonlinear Magnification N 1911
NN Search

▶Nearest Neighbor Query in Spatio-temporal

Databases
Node

▶Activity
N

Noise Addition

JOSEP DOMINGO-FERRER

Universitat Rouira i Virgili, Tarragona, Catalonia

Synonyms
Additive noise

Definition
Noise addition is a masking method for statistical

disclosure control of numerical microdata that consists

of adding random noise to original microdata.

Key Points
The noise addition algorithms in the literature are:

1. Masking by uncorrelated noise addition. The vector

of observations xj for the j th attribute of the origi-

nal dataset Xj is replaced by a vector

zj ¼ xj þ Ej
where Ej is a vector of normally distributed errors

drawn from a random variable ej � Nð0; s2ej Þ, such
that Cov(et, el) = 0 for all t 6¼ l. This does not

preserve variances nor correlations.
2. Masking by correlated noise addition. Correlated

noise addition also preserves means and addition-

ally allows preservation of correlation coefficients.

The difference with the previous method is that

the covariance matrix of the errors is now propor-

tional to the covariance matrix of the original

data, i.e., e � N(0, Se), where Se = aS.
3. Masking by noise addition and linear transforma-

tion. In Kim [1], a method is proposed that ensures

by additional transformations that the sample co-

variance matrix of the masked attributes is an
unbiased estimator for the covariance matrix of

the original attributes.

4. Masking by noise addition and nonlinear transfor-

mation. An algorithm combining simple additive

noise and nonlinear transformation is proposed in

Sullivan [2]. The advantages of this proposal are

that it can be applied to discrete attributes and that

univariate distributions are preserved. Unfortu-

nately, the application of this method is very

time-consuming and requires expert knowledge

on the data set and the algorithm.

See Brand [3] for more details on specific algorithms.

Cross-references
▶ Inference Control in Statistical Databases

▶Microdata

▶ SDC Score

Recommended Reading
1. Kim J. J. A method for limiting disclosure in microdata based on

random noise and transformation. In Proc. Section on Survey

Research Methods, American Statistical Association. Alexandria

VA, 1986, pp. 303–308.

2. Sullivan G.R. The Use of Added Error to Avoid Disclosure in

Microdata Releases. PhD Thesis, Iowa State University, 1989.

3. Brand R. Microdata protection through noise addition. In In-

ference Control in Statistical Databases, J. Domingo-Ferrer (ed.).

LNCS, Volume 2316. Springer, 2002, pp. 97–116.
Non-Clustering Index

▶ Secondary Index
Non-Dense Index

▶ Sparse Index
Nonidentifiability

▶Anonymity
Nonlinear Magnification

▶Distortion Techniques

1912N Non-Metric Temporal Reasoning
Non-Metric Temporal Reasoning

▶Qualitative Temporal Reasoning
Nonparametric Data Reduction
Techniques

RUI ZHANG

University of Melbourne, VIC, Australia

Definition
A nonparametric data reduction technique is a data

reduction technique that does not assume any model

for the data.
Key Points
Nonparametric data reduction (NDR) techniques is

opposite to parametric data reduction (PDR) techni-

ques. A PDR technique must assume a certain model

for the data. Parameters of the model are determined

before the data reduction is performed. A NDR tech-

nique does not assume any model and is applied to the

data directly. The data reduction effectiveness of a PDR

technique heavily depends on whether the model suits

the data well. If well-suited, good accuracy as well as

substantial data reduction can be achieved; otherwise,

both cannot be achieved at the same time. A NDR

technique yields more uniform effectiveness irrespec-

tive of the data, but it may not achieve as high data

reduction as a well-suited PDR technique.

Popular NDR techniques include histograms, clus-

tering and indexes. Histograms are used to approxi-

mate data distributions. An equidepth histogram can

adjust itself to the data distribution and always gives

good approximation of the data, no matter how the

data are distributed. Clustering techniques also find

the cluster centers automatically, irrespective of the

data distribution. Although parameters are used in

some clustering algorithms, such as the value of k in

a k-means algorithm, k is a given parameter instead of

a parameter determined by the actual data. Concep-

tually, indexes are similar to clustering and they also

adjust themselves to the data distribution. No parame-

ter needs to be determined from the data for indexes.

A summary of data reduction techniques including

NDR techniques can be found in [1].
Cross-references
▶Clustering

▶Data Deduction

▶Histogram

▶ Parametric Data Reduction Techniques

Recommended Reading
1. Barbará D., DuMouchel W., Faloutsos C., Haas P.J.,

Hellerstein J.M., Ioannidis Y.E., Jagadish H.V., Johnson T.,

Ng R.T., Poosala V., Ross K.A., and Sevcik K.C. The New Jersey

data reduction report. Q. Bull. IEEE TC on Data Engineering,

20(4):3–45, 1997.
Non-Perturbative Masking

▶Non-Perturbative Masking Methods
Non-Perturbative Masking Methods

JOSEP DOMINGO-FERRER

The Public University of Tarragona, Tarragona, Spain

Synonyms
Non-perturbative masking

Definition
Non-perturbative masking methods are SDC methods

for microdata protection which do not alter data; rather,

they produce partial suppressions or reductions of

detail in the original dataset. Sampling, global recod-

ing, top and bottom coding and local suppression are

examples of non-perturbative masking methods.

Key Points
1. Sampling is a non-perturbative masking method for

statistical disclosure control of microdata. Instead of

publishing the original microdata file, what is pub-

lished is a sample S of the original set of records.

Sampling methods are suitable for categorical micro-

data, but for continuous microdata they should prob-

ably be combined with other masking methods. The

reason is that sampling alone leaves a continuous

attribute Vi unperturbed for all records in S. Thus,

if attribute Vi is present in an external administra-

tive public file, unique matches with the published

sample are very likely: indeed, given a continuous

attribute Vi and two respondents o1 and o2, it is

Nonsequenced Semantics N 1913

N

highly unlikely that Vi will take the same value for

both o1 and o2 unless o1 = o2 (this is true even if Vi

has been truncated to represent it digitally).

2. Global recoding or generalization is a mask-

ing method for statistical disclosure control of

microdata. For a categorical attribute Vi, several

categories are combined to form new (less speci-

fic) categories, thus resulting in a new V 0
i with

jD(V 0
i)j < jD(Vi)j where j�j is the cardinality oper-

ator. For a numerical attribute, global recoding

means replacing Vi by another attribute V
0
i which

is a discretized version of Vi. In other words, a

potentially infinite range D(Vi) is mapped onto a

finite range D(V 0
i). This technique is more appro-

priate for categorical microdata, where it helps

disguise records with strange combinations of cate-

gorical attributes. Global recoding is used heavily by

statistical offices. Global recoding is implemented

in the m-Argus package. In combination with local

suppression, it can be used to achieve k-anonymity.

3. Top coding and bottom coding are special cases of

the global recoding masking method for statistical

disclosure control of microdata. Their operating

principle is that top values (those above a certain

threshold), respectively bottom values (those below

a certain threshold), are lumped together to form a

new category. Top and bottom coding can be used

on attributes that can be ranked, that is, numerical

or categorical ordinal.

4. Local suppression or blanking is a masking method

for statistical disclosure control of microdata. Cer-

tain values of individual attributes are suppressed

with the aim of increasing the set of records agree-

ing on a combination of key values. Local suppres-

sion is implemented in the m-Argus package. Ways

to combine local suppression and global recoding

are discussed in DeWaal and Willenborg (1995). In

fact, the combination of both methods can be used

to attain k-anonymity. If a numerical attribute Vi is

part of a set of key attributes, then each combina-

tion of key values is probably unique. Since it does

not make sense to systematically suppress the

values of Vi, it can be asserted that local suppres-

sion is rather oriented to categorical attributes.

Cross-references
▶ Inference Control in Statistical Databases

▶ k-Anonymity

▶Microdata
Recommended Reading
1. DeWaal A.G. andWillenborg L.C.R.J. Global recodings and local

suppressions in microdata sets. In Proc. Statistics Canada Sym-

posium’95, 1995, pp. 121–132.

2. HundepoolA.,Domingo-Ferrer J.,FranconiL.,GiessingS.,LenzR.,

Longhurst J., Schulte-Nordholt E., Seri G., and DeWolf P.-P.

Handbook on Statistical Disclosure Control (Version 1.0). Euro-

stat (CENEX SDC Project Deliverable), 2006. http://neon.vb.

cbs.nl/CENEX/

3. Hundepool A., Van de Wetering A., Ramaswamy R., Franconi F.,

Polettini S., Capobianchi A., DeWolf P.-P., Domingo-Ferrer J.,

Torra V., Brand R., and Giessing S. m-ARGUS User’s Manual

Version 4.1 February 2007. http://neon.vb.cbs.nl/CASC.

4. Willenborg L. and DeWaal T. Elements of Statistical Disclosure

Control. Springer-Verlag, New York, 2001.
Non-Pipelineable Operator

▶ Stop-&-Go Operator
Nonsequenced Semantics

MICHAEL H. BÖHLEN
1, CHRISTIAN S. JENSEN

2, RICHARD

T. SNODGRASS
3

1Free University of Bozen-Bolzano, Bozen-Bolzano,

Italy
2Aalborg University, Aalborg, Denmark
3University of Arizona, Tucson, AZ, USA

Synonyms
Nontemporal semantics

Definition
Nonsequenced semantics guarantees that query lan-

guage statements can reference and manipulate the

timestamps that capture the valid and transaction

time of data in temporal databases as regular attribute

values, with no built-in temporal semantics being

enforced by the query language.

Key Points
A temporal database generalizes a non-temporal data-

base and associates one or more timestamps with

database entities. Different authors have suggested tem-

poral query languages that provide advanced support for

formulating temporal statements. Results of these efforts

include a variety of temporal extensions of SQL,

Employee

ID Name VTIME

1 Bob 5�8

3 Pam 4�12

4 Sarah 1�5

Salary

ID Amt VTIME

1 20 4�10

3 20 6�9

4 20 6�9

Bonus

ID Amt VTIME

1 20 1�6

1 20 7�12

3 20 1�12

1914N Nonsequenced Semantics
temporal algebras, and temporal logics that simplify the

management of temporal data.

Languages with built-in temporal support are attrac-

tive because they offer convenient support for formulat-

ing a wide range of common temporal statements. The

classical example of advanced built-in temporal support

is sequenced semantics, which makes it possible to

conveniently interpret a temporal database as a seq-

uence of non-temporal databases. To achieve built-in

temporal support, the timestamps are viewed as im-

plicit attributes that are given special semantics.

Built-in temporal support, however, may also

limit the expressiveness of the language when com-

pared to the original non-temporal language where

timestamps are explicit attributes. Nonsequenced se-

mantics guarantees that statements can manipulate

timestamps as regular attribute values with no built-

in temporal semantics being enforced. This ensures

that the expressiveness of the original language is

preserved.

The availability of legacy statements with the stan-

dard non-temporal semantics is also important in the

context of migration where users can be expected to

be well-acquainted with the semantics of their non-

temporal language. Nonsequenced semantics ensures

that users are able to keep using the paradigm they are

familiar with and to incrementally adopt the new fea-

tures. Moreover, from a theoretical perspective, any

variant of temporal logic, a well-understood language

that only provides built-in temporal semantics, is

strictly less expressive than a first order logic language

with explicit references to time [1,4].

Each statement of the original language has the

potential to either be evaluated with temporal or

non-temporal semantics. For example, a count query

can count the tuples at each time instant (this would be

temporal, i.e., sequenced, semantics) or count the tuples

actually stored in a relation instance (this would be non-

temporal, i.e., nonsequenced, semantics).

To distinguish the two semantics, different ap-

proaches have been suggested. For instance, TempSQL

distinguishes between so-called current and classical

users. ATSQL and SQL/Temporal offer so-called state-

ment modifiers that enable the users to choose between

the two semantics at the granularity of statements.

Below, statement modifiers are used for illustration.

Specifically the ATSQL modifier NSEQ VT signals stan-

dard SQL semantics with full control over the time-

stamp attributes of a valid-time database.
The illustrations assume a database instance with

three relations:
and the following queries

NSEQ VT

SELECT COUNT(*) FROM Bonus;

NSEQ VT

SELECT E.ID

FROM Employee AS E, Salary AS S

WHERE VTIME(E) PRECEDES VTIME(S) AND

E.ID = S.ID;

Both queries are nonsequenced, i.e., the valid time is

treated as a regular attribute without any special pro-

cessing going on. The first query determines the num-

ber of bonuses that have been paid. It returns the

number of tuples in the Bonus relation, which is

equal to three. Note that if the sequenced modifier

was used (cf. sequenced semantics) then the time-

varying count had been computed. With the given

example, the count at each point in time would be

two. The second query joins Employee and Salary.

The join is not performed at each snapshot (cf.

sequenced semantics). Instead it requires that the valid

Normal Form ORA-SS Schema Diagrams N 1915
time of Employee precedes the valid time of Salary.

The result is a non-temporal table.

Nonsequenced statements offer no built-in tempo-

ral support, but instead offer complete control. This

is akin to programming in assembly language, where

one can do everything, but everything is hard to do.

The query language must provide a set of functions

and predicates for expressing temporal relationships

(e.g., PRECEDES [2]) and performing manipulations

and computations on timestamps (e.g., VTIME). The

resulting new query-language constructs are relatively

easy to implement because they only require changes at

the level of built-in predicates and functions. Instead of

using functions and predicates on timestamps, the use

of temporal logic with temporal connectives has also

been suggested.

Cross-references
▶Allen’s Relations

▶ Sequenced Semantics

▶ SQL-Based Temporal Query Languages

▶Temporal Database

▶Valid Time
N
Recommended Reading
1. Abiteboul S., Herr L., Van den Bussche J. Temporal versus first-

order logic to query temporal databases. In Proc. 15th ACM

SIGACT-SIGMOD-SIGART Symp. Principles of Database Sys-

tems, 1996, pp. 49–57.

2. Allen J.F. Maintaining knowledge about temporal intervals.

Commun. ACM, 16(11):832–843, 1983.

3. Böhlen M.H., Jensen C.S., and Snodgrass R.T. Temporal state-

ment modifiers. ACM Trans. Database Syst., 25(4):48, December

2000.

4. Toman D. and Niwiński D. First-order queries over temporal

databases inexpressible in temporal logic. In Advances in Data-

base Technology, Proc. 5th International Conf. on Extending

Database Technology, 1996, pp. 307–324.
Nontemporal Semantics

▶Nonsequenced Semantics
Non-Uniform Distribution

▶Data Skew
Normal Form ORA-SS Schema
Diagrams

GILLIAN DOBBIE
1, TOK WANG LING

2

1University of Auckland, New Zealand
2National University of Singapore, Singapore,

Singapore

Synonyms
NF-SS; Normalizing ORA-SS diagrams

Definition
Normal forms have been defined for data models,

such as the relational data model, the nested relational

data model, the object-oriented data model and more

recently, the semi-structured data model, to recognize

(and remove) certain kinds of redundant data. A

normal form that has been defined for semi-structured

data, based on the ORA-SS data model, is described.

Key Points
The definition of a normal form for ORA-SS (Object-

Relationship-Attribute data model for Semi-structured

data) diagrams is based on the definition of a normal

form for the nested relational datamodel as described by

Ling and Yan [1], recognizing the similarity between the

nesting relationship in the nested relational data model

and hierarchies in the semi-structured data model.

The definition for NF ORA-SS (normal form for the

ORA-SS data model) can be broken into three main

parts. The first part ensures that every object class is

normalized. The second part ensures that every relation-

ship type is normalized. The third part ensures that there

is no data that can be derived from other data in the

diagram. Examples of ORA-SS schemas that are not in

NF ORA-SS are shown below, along with schemas that

are in NF ORA-SS that capture the same information.

Figure 1a represents an object class Course. The

attributes of course are code, title, department and

faculty. This object class is not normalized since

code determines title and department, but department

determines faculty. What this means is that a depart-

ment belongs to only one faculty, and this information

needs to be stored once rather than once for every

course. Figure 1b has object classes Course, DepRef

and Department. Object class DepRef has a reference

to object class Department, so the information about

the faculty a department belongs to is stored only

once. The object classes in Fig.1b are normalized.

Normal Form ORA-SS Schema Diagrams. Figure 1. Example of object class normal form.

Normal Form ORA-SS Schema Diagrams. Figure 2. Example of relationship type normal form.

Normal Form ORA-SS Schema Diagrams. Figure 3. Example of ORA-SS normal form (NF ORA-SS).

1916N Normal Form ORA-SS Schema Diagrams
Figure 2a shows a relationship type cst, which

is a ternary relationship type among the object classes

Course, Student, and Textbook. Intuitively it makes

sense because courses have students and textbooks.

However, students and textbooks are independent of

each other. A course has a certain set of students, irre-

spective of the textbooks for the course, and a course has

a certain set of textbooks irrespective of the students

taking the course. In the schema in Fig. 2a, the text-

books for a given course are repeated for each student

taking the course. Figure 2b has two relationship types
cs and ct, between Course and Student, and Course and

Textbook, respectively. Both of these relationship types

are normalized. However, the object classes Student

and Textbook in Fig. 2b are still not normalized.

Figure 3a shows two object classes Course and

Student. Object class Course has attributes code, title

and sname. Attribute sname is a multivalued attribute

and has the names of the students taking the course.

This information is repeated in the attribute stuName

that belongs to object class Student, so the ORA-SS

schema in Fig. 3a is not in NF ORA-SS. If the student

Normal Forms and Normalization N 1917
names are stored only in the attribute stuName of

object class Student, as shown in Fig. 3b that redun-

dancy is removed. Of course the many-to-many rela-

tionship type leads to the students name being

repeated in every course the student takes. Using a

reference to represent this relationship removes this

redundancy and the resulting ORA-SS diagram in

Fig. 3c is in NF ORA-SS.

Cross-references
▶Normal Forms and Normalization

▶Object Relationship Attribute Data Model for Semi-

structured Data

▶ Semi-structured Database Design

Recommended Reading
1. Ling T.W. and Yan L.L. NF-NR: a practical normal form for

nested relations. J. Syst. Int., 4:309–340.
N

Normal Forms and Normalization

MARCELO ARENAS

Pontifical Catholic University of Chile, Santiago, Chile

Definition
A normal form defines a condition over a set of data

dependencies, or semantic constraints, that has been

specified as part of a database schema. This condition

is used to check whether the design of the database has

some desirable properties (for example, the database

does not store redundant information), and if this

is not the case, then it can also be used to convert

the poorly designed database into an equivalent well-

designed one.

Historical Background
Information is one of the most – if not the most –

valuable assets of a company. Therefore, organizations

need tools to allow them to structure, query and ana-

lyze their data, and, in particular, they need tools

providing simple and fast access to their information.

During the last 30 years, relational databases have

become the most popular computer application for

storing and analyzing information. The simplicity

and elegance of the relational model, where informa-

tion is stored just as tables, has largely contributed to

this success.
To use a relational database, a company first has to

think of its data as organized in tables. How easy it is

for a user to understand this organization and use the

database depends on the design of these relations. If

tables are not carefully selected, users can spend too

much time executing simple operations, or may not be

able to extract the desired information.

Since the beginnings of the relational model, it

was clear for the research community that the process

of designing a database is a nontrivial and time-

consuming task. Even for simple application domains,

there are many possible ways of storing the data of

interest. Soon the difficulties in designing a database

became clear for practitioners, and the design problem

was recognized as one of the fundamental problems for

the relational technology.

During the 70s and 80s, a lot of effort was put into

developing methodologies to aid in the process of

deciding how to store data in a relational database.

The most prominent approaches developed at that

time – which today are a standard part of the relational

technology – were the entity-relationship and the nor-

malization approaches. In the former approach, a dia-

gram is used to specify the objects of an application

domain and the relationships between them. The sche-

ma of the relational database, i.e., the set of tables and

column names, is then automatically generated from

the diagram. In the normalization approach, an al-

ready designed relational database is given as input,

together with some semantic information provided by

a user in the form of relationships between different

parts of the database, called data dependencies. This

semantic information is then used to check whether

the design has some desirable properties, and if this is

not the case, it can also be used to convert the poor

design into an equivalent well-designed database.

Foundations
In the relational model, a database is viewed as a

collection of relations or tables. For instance, a rela-

tional database storing information about courses in a

university is shown in Fig. 1. This relation consists of a

time-varying part, the data about courses, and a part

considered to be time independent, the schema of the

relation, which is given by the name of the relation

(Course) and the names of the attributes of this

relation.

Usually, the information contained in a database

satisfies some semantic restrictions. For example, in the

Normal Forms and Normalization. Figure. 1. Example of a relational database.

Normal Forms and Normalization. Figure. 2. Example of a normalized relational database.

1918N Normal Forms and Normalization
relation Course shown in Fig. 1, it is expected that only

one title is associated with each course number. These

restrictions are called data dependencies, and they are

expressed by using suitable languages. For example, the

previous constraint corresponds to a functional depen-

dency, which is an expression of the form X ! Y,

where X and Y are sets of attributes. A relation satisfies

X ! Y if for every pair of tuples t1,t2 in it, if t1 and t2
have the same values on X, then they have the same

values on Y . Thus, for example, the relation shown in

Fig. 1 satisfies functional dependency Number !Title

since each course has only one title.

In [2], Codd showed that a database containing

functional dependencies may exhibit some anomalies

when the information is updated. For example, consid-

er again the relational database shown in Fig. 1, which

includes functional dependency Number !Title. This

database is prone to three different types of anomalies.

First, if the name of the course with number CSC258 is

changed to Computer Organization I, then four dis-

tinct cells need to be updated. If any of them is not

updated, then the information in the database becomes

inconsistent. This anomaly was called an update anom-

aly by Codd [2], and it arises because the instance is

storing redundant information. Second, if the infor-

mation is updated because a new semester is starting,

and the course with number CSC434 is not given in

that semester, then the last tuple of the instance is

deleted and no information about CSC434 appears in

the updated instance. This has the additional effect of

deleting the title of the course, which will be the same
the next time that CSC434 is offered. This anomaly was

called a deletion anomaly by Codd [2], and it arises

because the relation is storing information that is not

directly related; the sections of a course vary from one

term to another while its title is likely not to be

changed from one semester to the next one. This can

also lead to insertion anomalies [2]; if a new course

(CSC336, Numerical Methods) is created, then it can-

not be added to the database until at least one section

and one room is assigned to the course.

To avoid updates anomalies, Codd introduced

three increasingly restrictive normal forms [2,3],

which specify some syntactic properties that the set of

functional dependencies in a database must satisfy.

The most restrictive among them is known today as

Boyce-Codd Normal Form (BCNF). Informally, a da-

tabase schema S including a set S of functional depen-

dencies is in BCNF, if there is no set of attributes X

[{A} [{B} such that A, B =2X, X ! A holds in S but

X ! B does not hold in S, that is, if there are no

attributes in S with different levels of association be-

tween them according to S (If X ! A holds in S but

X ! B does not hold in S, then for every value of X,

there exists only one value of A in the database but

possibly many values of B.). For example, the database

shown in Fig. 1 is not in BCNF since Number !Title

holds in this database, while Number !Section does

not hold.

In [2], Codd also introduced the first normalization

algorithm, that is, a procedure that takes as input

a relational schema that includes some data

Normal Forms and Normalization N 1919

N

dependencies and does not satisfy some particular

normal form, and produces a new schema that con-

forms to this normal form. For example, if S is the

relational schema Course (Number, Title, Section,

Room) and S is the set of functional dependencies

{Number !Title}, then the standard normalization

algorithm for BCNF [1] produces a new schema

where Course is split into two tables: CourseInfo(Num-

ber, Title) and CourseTerm(Number, Section, Room). In

Fig. 2, it is shown how the information in the initial

database in Fig. 1 is stored under the new schema. It

should be noticed that the new schema is not prone to

any of the anomalies mentioned at the beginning of

this section:

– If the name of the course with number CSC258 is

changed to Computer Organization I, then only

one cell needs to be updated.

– If the information is updated because a new semes-

ter is starting, and the course with number CSC434

is not given in that semester, then the last tuple of

relation CourseTerm is deleted. This does not have

the additional effect of deleting the title of the

course (this information is kept in the relation

CourseInfo).

– If a new course (CSC336, Numerical Methods) is

created, then it can be added to the database even if

no section has been created for this course (tuple

(CSC336, Numerical Methods) is included only in

the relation CourseInfo).

A normalization algorithm takes as input a relational

schema and generates a database schema in some par-

ticular normal form. It is desirable that these two are as

similar as possible, that is, they should contain the

same data and the same semantic information. These

properties have been called information losslessness and

dependency preservation in the literature, respectively.

Let S1,S2 be two database schemas. Intuitively, two

instances I1 of S1 and I2 of S2 contain the same infor-

mation if it is possible to retrieve the same information

from them, that is, for every query Q1 over I1 there

exists a query Q2 over I2 such that Q1(I1) = Q2(I2), and

vice versa. To formalize this notion, a query language has

to be chosen. If this query language is relational algebra,

then this notion is captured by the notion of calculously

dominance introduced by Hull [7]. Schema S2 domi-

nates S1 calculously if there exist relational algebra

expressions Q over S1 and Q0 over S2 satisfying the

followingproperty:Forevery instanceI of S1, there exists
an instance I0 of S2 such that Q(I) = I0 and Q0(I0) = I.

Thus, every queryQ1 over I can be transformed into an

equivalent query Q2 = Q1 ∘ Q0 over I0, since Q2(I
0) =

Q1(Q
0(I0)) = Q1(I), and, analogously, every query Q2

over I0 can be transformed into an equivalent query

Q1 = Q2 ∘ Q over I, since Q1(I) = Q2(Q(I)) = Q2(I
0).

Normalization algorithms try to achieve the goal of

information losslessness; if any of them transforms a

database schema S into a database schema S0, then S0

should dominate S calculously. The standard normali-

zation algorithm for BCNF uses only the projection

operator to transform a schema [1] and, thus, calcu-

lously dominance is defined in terms of this operator

and its inverse, the join operator. More precisely, the

normalization algorithm mentioned in this section

takes as input a relation R and a set of functional

dependencies S, and uses the projection operator to

transform it into a database schema in BCNF that is

composed by some relations R1,...,Rn. Then R1,...,Rn is

a lossless decomposition of R if for every instance I of R

there is an instance I0 of R1,...,Rn such that:

� For every i 2{1,...,n}, it holds that I 0i ¼ pUi
ðIÞ,

where I 0i is the Ri-relation of I0 and Ui is the set of

attribute of Ri, and

� I = I 01⋈I 02⋈...⋈I 0n, where each I
0
i is the Ri-relation

of I0.

That is, every instance I of S can be transformed into

an instance I0 of S0 by using the projection operator,

and I can be reconstructed from I0 by using the join

operator. For example, the relation CourseInfo in Fig. 2

can be obtained by projecting the relation Course in

Fig. 1 over the set of attributes {Number,Title}, while

the relation CourseTerm in Fig. 2 can be obtained

by projecting the relation Course in Fig. 1 over the set

of attributes {Number, Section, Room}. Moreover, the

relation Course in Fig. 1 can be obtained by joining

relations CourseInfo and CourseTerm in Fig. 2. Given

that this holds for every instance I of the initial schema

Course (Number,Title,Section,Room), the new schema

CourseInfo (Number,Title), CourseTerm (Number, Sec-

tion, Room) is said to be a lossless decomposition of the

initial one.

Normalization algorithms also try to achieve the goal

of dependency preservation; if any of them transforms a

database schema S including a set S of data dependen-

cies, into a database schema S0 including a setS0 of data

dependencies, then S should be equivalent to S0 (no

semantic information is lost). In the running example,

1920N Normalized Discounted Cumulated Gain (nDCG)
the standard normalization algorithm for BCNF pro-

duces a new schema CourseInfo(Number,Title) and

CourseTerm(Number, Section, Room), and also includes

dependency Number!Title in the relation CourseInfo.

Thus, the new schema is a dependency preserving

decomposition of the initial one.

The normalization approach was proposed in the

early 70s by Codd [2]. Since then, many researchers

have studied the normalization problem for relational

databases and other data models, and today it is possible

to find normal forms for many different types of data

dependencies: 3NF [2] and BCNF [3] for functional

dependencies, 4NF [4] for multivalued dependencies,

PJ/NF [5] and 5NFR [8] for join dependencies, and

DK/NF [6] for general constraints. These normal

forms, together with normalization algorithms for con-

verting a poorly designed database into a well-designed

database, can be found today in every database textbook.

Key Applications
Normal forms and normalization algorithms are essen-

tial to schema design, redundancy elimination, update

anomaly prevention and efficient storage.

Cross-references
▶Boyce-Codd Normal Form

▶ Fourth Normal Form

▶ Second Normal Form (2NF)

▶Third Normal Form

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases.

Addison-Wesley, Reading, MA, USA, 1995.

2. Codd E.F. Further normalization of the data base relational

model. In Data base systems. Prentice-Hall, Englewood Cliffs,

NJ, USA, 1972, pp. 33–64.

3. Codd E.F. Recent investigations in relational data base

systems. In IFIP Congress. North-Holland, Amsterdam, 1974,

pp. 1017–1021.

4. Fagin R. Multivalued dependencies and a new normal form for

relational databases. ACM Trans. Database Syst., 2(3):262–278,

1977.

5. Fagin R. Normal forms and relational database operators. In

Proc. ACM SIGMOD Int. Conf. on Management of Data,

1979, pp. 153–160.

6. Fagin R. A normal form for relational databases that is based on

domians and keys. ACM Trans. Database Syst., 6(3):387–415,

1981.

7. Hull R. Relative information capacity of simple relational data-

base schemata. SIAM J. Comput., 15(3):856–886, 1986.

8. Vincent M. A corrected 5NF definition for relational database

design. Theor. Comput. Sci., 185(2):379–391, 1997.
Normalized Discounted Cumulated
Gain (nDCG)

▶Discounted Cumulated Gain
Normalizing ORA-SS Diagrams

▶Normal Form ORA-SS Schema Diagrams
Now in Temporal Databases

CURTIS E. DYRESON
1, CHRISTIAN S. JENSEN

2, RICHARD

T. SNODGRASS
3

1Utah State University, Logan, Utah, USA
2Aalborg University, Aalborg, Denmark
3University of Arizona, Tucson, AZ, USA

Synonyms
Current time; Current date; Current timestamp; Until

changed

Definition
The word now is a noun in the English language that

means ‘‘at the present time.’’ This notion appears in

databases in three guises. The first use of now is as a

function within queries, views, assertions, etc. For in-

stance, in SQL, CURRENT_DATE within queries, etc.,

returns the current date as an SQL DATE value;

CURRENT_TIME and CURRENT_TIMESTAMP are

also available. These constructs are nullary functions.

In the context of a transaction that contains more

thanone occurrence of these functions, the issue of which

time value(s) to return when these functions are invoked

becomes important.When having these functions return

the same (or consistent) value, it becomes a challenge to

select this time and to synchronize it with the serialization

time of the transaction containing the query.

The second use is as a database variable used ex-

tensively in temporal data model proposals, primarily

as timestamp values associated with tuples or attribute

values in temporal database instances. As an example,

within transaction-time databases, the stop time of

data that has not been logically deleted and thus is

current is termed ‘‘until changed.’’ A challenging aspect

of supporting this notion of now has been to contend

Now in Temporal Databases N 1921
with instances that contain this variable when defining

the semantics of queries and modification and when

supporting queries and updates efficiently, e.g., with

the aid of indices.

The third use of now is as a database variable with a

specified offset (a ‘‘now-relative value’’) that can be stored

within an implicit timestamp or as the value of an explicit

attribute. Challenges include the specification of precise

semantics for database instances that contain these vari-

ables and the indexing of such instances.
N

Historical Background
Time variables such as now are of interest and indeed

are quite useful in databases, including databases man-

aged by a conventional DBMS, that record time-varying

information, the validity of which often depends on

the current-time value. Such databases may be found

in many application areas, such as banking, inventory

management, and medical and personnel records.

The SQL nullary functions CURRENT_DATE,

CURRENT_TIME, and CURRENT_TIMESTAMP

have been present since SQL’s precursor, SEQUEL

2 [1]. The transaction stop time of until changed has

been present since the initial definition of transaction-

time databases (e.g., in the early work of Ben-Zvi [2]).

The notion of now and the surprisingly subtle

concerns with this ostensibly simple concept permeate

the literature, and yield quite interesting solutions.

Foundations
The three notions of ‘‘now’’ in temporal databases are

explored in more detail below.

SQL Nullary Functions

The following example illustrates the uses and limita-

tions of now, specifically the SQL CURRENT_DATE,

CURRENT_TIME, and CURRENT_TIMESTAMP, in

conventional databases. Banking applications record

when account balances for customers are valid. Exam-

ine the relation AccountBalance with attributes

AccountNumber, Balance, FromDate, and

ToDate. To determine the balance of account 12345

on January 1, 2007, one could use a simple SQL query.

SELECT Balance

FROM AccountBalance

WHERE Account = 12345

AND FromDate <= DATE ‘2007-01-01’

AND DATE ‘2007-01-01’ < ToDate
To determine the balance of that account today, the

nullary function CURRENT_DATE is available.

SELECT Balance

FROM AccountBalance

WHERE Account = 12345

AND FromDate <= CURRENT_DATE

AND CURRENT_DATE < ToDate

Interestingly, in the SQL standard, the semantics of

the function are implementation-dependent, which

opens it to various interpretations: ‘‘If an SQL-statement

generally contains more than one reference to one or

more <datetime value functions>s then all such refer-

ences are effectively evaluated simultaneously. The time

of evaluation of the <datetime value function> during

the execution of the SQL-statement is implementation-

dependent.’’ (This is from the SQL:1999 standard.) So an

implementation is afforded considerable freedom in

choosing a definition of ‘‘current,’’ including perhaps

when the statement was presented to the system, or

perhaps when the database was first defined.

Transactions take time to complete. If a transaction

needs to insert or modify many tuples, it may take

minutes. However, from the point of view of the user,

the transaction is atomic (all or nothing) and serial-

izable (placed in a total ordering). Ideally ‘‘current’’

should mean ‘‘when the transaction executed,’’ that is,

the instantaneous time the transaction logically exe-

cuted, consistent with the serialization order.

Say a customer opens an account and deposits

$200. This transaction results in a tuple being inserted

into the AccountBalance table. The transaction

started on January 14 at 11:49 P.M. and committed at

12:07 A.M. (that is, starting before midnight and com-

pleting afterwards). The tuple was inserted on 11:52

P.M. Another user also created a second account with an

initial balance of $500 in a transaction that started on

January 14 at 11:51 P.M. and committed on 11:59 P.M.,

inserting a tuple into the AccountBalance relation

at 11:52 P.M. If the system uses the transaction start

time, the following two tuples will be in the relation.

According to these two tuples, the sum of balances

on January 14 is $700. But note that though both

transactions began on January 14, only the second

transaction committed by midnight (also note that

the second transaction is earlier in the serialization

order since it commits first). Hence, the actual aggre-

gate balance on January 14 was never $700: the balance

started at $0 (assuming there were initially no other

AccountNumber Balance FromDate ToDate

121345 200 2007-01-14 ...

543121 500 2007-01-14 ...

1922N Now in Temporal Databases
tuples), then changed to $500. Only on January 15 did

it increase to $700.

Suppose that instead of using the time at which the

entire transaction began, the time of the actual insert

statement (e.g., for the first transaction, January 14,

11:52 P.M.) is used; then the same problem occurs.

What is desired is for a time returned by

CURRENT_DATE to be consistent with the seriali-

zation order and with the commit time, which unfor-

tunately is not known when CURRENT_DATE is

executed. Lomet et al. [3] showed how to utilize the

lock manager to assign a commit time in such a

way that it is consistent with the serialization

order as well as with dates assigned as values to prior

CURRENT_DATE invocations. Specifically, each use of

CURRENT_DATE, etc. defines or narrows a possible

period during which the commit time of the transac-

tion must reside. For CURRENT_DATE this period is

the particular 24 hours of the day returned by this

function. Read-write conflicts with other transactions

further narrow the possible period. For example, if a

particular transaction reads values written by another

transaction, the transaction time of the reader must be

later than that of the writer. At commit time, it is attrac-

tive to assign the earliest instant in the possible period to

the transaction. Alternatively, if the possible period ever

becomes empty, the transaction must be aborted. Lomet

et al. outline important optimizations to render such

calculations efficient.

Now in End or Stop Columns

The above discussion concerned how to determine

what to store in the begin time of a tuple (e.g., in the

FromDate column for the two example tuples in

the table displayed above) and how to make this time

consistent with that returned by CURRENT_DATE. We

now consider what to store in the end time of a tuple

(e.g., in the ToDate column). The validity of a tuple

then starts when a deposit is made and extends until

the current time, assuming no update transactions are

committed. Thus, on January 16, the balance is valid

from January 14 until January 16; on January 17, the

balance is valid from January 14 until January 17; etc.

It is impractical to update the database each day (or

millisecond) to correctly reflect the valid time of the

balance. A more promising approach is to store a

variable, such as now, in the ToDate field of a tuple,

to indicate that the time when a balance is valid

depends on the current time. In the example, it
would be recorded on January 14 that the customer’s

balance of $200 is valid from January 14 through now.

The CURRENT_DATE construct used in the above

query cannot be stored in a column of an SQL table.

All major commercial DBMSs have similar constructs,

and impose this same restriction. The user is forced

instead to store a specific time, which is cumbersome

and inaccurate (Clifford et al. explain these difficulties

in great detail [4]).

The solution is to allow one or more free, current-

time variables to be stored in the database. Chief

among these current-time variables is ‘‘now’’ (e.g.,

[5]), but a variety of other symbols have been used,

including ‘‘–’’ [2], ‘‘1’’ [6], ‘‘@’’ [7], and ‘‘until-

changed’’ [8]. Such stored variables have advantages

at both the semantic and implementation levels. They

are expressive and space efficient and avoid the need

for updates at every moment in time.

As an example, consider a variable database with the

tuple hJane, Assistant, [June 1, now]i, with now being a

variable. The query ‘‘List the faculty on June 15,’’ eval-

uated on June 27, results in {hJane, Assistanti}.

Now-Relative Values

A now-relative instant generalizes and adds flexibility

to the variable now by allowing an offset from this

variable to be specified. Now-relative instants can be

used to more accurately record the knowledge of Jane’s

employment. For example, it may be that hiring

changes are recorded in the database only 3 days after

they take effect. Assuming that Jane was hired on

June 1, the definite knowledge of her employment is

accurately captured in the tuple hJane, Assistant, [June 1,
now � 3 days]i . This tuple states that Jane was an

Assistant Professor from June 1 and until three days

ago, but it contains no information about her employ-

ment as of, e.g., yesterday.

A now-relative instant thus includes a displace-

ment, which is a signed duration, also termed a span,

from now. In the example given above, the displace-

ment is minus 3 days. Now-relative variables can be

extended to be indeterminate [4], as can regular

instants and the variable now.

Now in Temporal Databases N 1923

N

The semantics of now variables has been formalized

with an extensionalization that maps from a variable

database level containing variables as values to an

extensional database level. The extensional database

exhibits three key differences when compared to the

variable database level. First, no variables are allowed –

the extensional level is fully ground. Second, timestamps

are instants rather than intervals. Third, an extensional

tuple has one additional temporal attribute, called a

reference time attribute, which may be thought of as

representing the time at which a meaning was given

to the temporal variables in the original tuple. Whereas

the variable-database level offers a convenient repre-

sentation that end-users can understand and that is

amenable to implementation, the mathematical sim-

plicity of the extensional level supports a rigorous treat-

ment of temporal databases in terms of first order logic.

When a variable database is queried, an additional

problem surfaces: what to do when a variable is encoun-

tered during query evaluation. In the course of evaluat-

ing a user-level query, e.g., written in some dialect of

SQL, it is common to transform it into an internal

algebraic form that is suitable for subsequent rule or

cost-based query optimization. As the query processor

and optimizer are among themost complex components

of a database management system, it is attractive if the

added functionality of current-time-related timestamps

necessitates only minimal changes to these components.

Perhaps the simplest approach to supporting que-

rying is that, when a timestamp that contains a variable

is used during query processing (e.g., in a test for

overlap with another timestamp), a ground version of

that timestamp is created and used instead. With this

approach, only a new component that substitutes vari-

able timestamps with ground timestamps has to be

added, while existing components remain unchanged.

Put differently, a bind operator can be added to the

set of operators already present. This operator is then

utilized when user-level queries are mapped to the

internal representation. The operator accepts any

tuple with variables. It substitutes a ground value for

each variable and thus returns a ground (but still

variable-level) tuple. Intuitively, the bind operator sets

the perspective of the observer, i.e., it sets the reference

time. Existing query languages generally assume that the

temporal perspective of an observer querying a database

is the time when the observer initiates the query.

Torp et al. has shown how to implement such

variables within a database system [9].
With now as a database variable, the temporal extent

of a tuple becomes a non-constant function of time. As

most indices assume that the extents being indexed are

constant in-between updates, the indexing of the tem-

poral extents of now-relative data poses new challenges.

For now-relative transaction-time data, one may

index all data that is not now-relative (i.e., has a fixed

end time) in one index, e.g., an R-tree, and all data that

is now-relative (i.e., the end time is now) in another

index where only the start time is indexed.

For bitemporal data, this approach can be gene-

ralized to one where tuples are distributed among four

R-trees. The idea is again to overcome the inabilities

of indices to cope with continuously evolving regions,

by applying transformations to the growing bitemporal

extents that render them stationary and thus amenable

to indexing. Growing regions come in three shapes, each

with its own transformation. These transformations are

accompanied by matching query transformations [10].

In another approach, the R-tree is extended to store

now for both valid and transaction time in the index.

The resulting index, termed the GR-tree, thus accom-

modates bitemporal regions and uses minimum

bounding regions that can be either static or growing

and either rectangles or stair shapes. This approach has

been extended to accommodate bitemporal data that

also have spatial extents [11].

Key Applications
The notion of now as a nullary function represen-

ting the current time is common in database app-

lications. For relational database management,

SQL offers CURRENT_DATE, CURRENT_TIME, and

CURRENT_TIMESTAMP functions that return an

appropriate SQL time value. In other kinds of database

management systems, such as native XML database

management systems, similar constructs can be

found. For example, XQuery has a fn:current-

time() function that returns a value of XML

Schema’s xs:time type. XQuery also has a

fn:current-date() function.

Less common in existing database applications

are the other notions of now: as a variable stored in a

database to represent the ever-changing current time or

as a time related to, but displaced from, the current time.

Future Directions
The convenience of using now variables poses chal-

lenges to the designers of database query languages.

1924N n-Tier Architecture
The user-defined time types available in SQL-92 can be

extended to store now-relative variables as values in

columns. The TSQL2, language [12] does so, and also

supports those variables for valid and transaction time.

In TSQL2, the ‘‘bind’’ operation is implicit; NOBIND

is provided to store variables in the database. However,

such variables have yet to be supported by commercial

DBMSs. It may also be expected that at least one of the

three uses of now will re-emerge as part of a temporal

extension of XQuery or a language associated with the

Semantic Web.

The impact of stored variables on database storage

structures and access methods is a relatively unexplored

area. Such stored variables may present optimization

opportunities. For example, if the optimizer knows

(through attribute statistics) that a large proportion

of tuples has a ‘‘to’’ time of now, it may then decide

that a sort-merge temporal join will be less effective.

Finally, new kinds of variables, such as here for spatial

and spatio-temporal databases, might offer an interest-

ing extension of the framework discussed here.

Cross-references
▶Bi-Temporal Indexing

▶Bitemporal interval

▶ Supporting Transaction Time Databases

▶Temporal Concepts in Philosophy

▶Temporal Query Languages

▶Temporal Strata

▶Temporal XML

▶Time Period

▶Transaction Time

▶TSQL2

▶Valid Time

Recommended Reading
1. Ben-Zvi J. The Time Relational Model. Ph.D. Dissertation, Uni-

versity of California, Los Angeles, 1982.

2. Bliujūtė R., Jensen C.S., Šaltenis S., and Slivinskas G. Light-

weight indexing of bitemporal data. In Proc. 12th Int. Conf.

on Scientific and Statistical Database Management, 2000,

pp. 125–138.

3. Chamberlin D.D., Astraham M.M., Eswaran K.P., Griffiths P.P.,

Lorie R.A., Mehl J.W., Reisner P., and Wade B.W., SEQUEL 2:

a unified approach to data definition, manipulation, and

control. IBM J. Res. Dev. 20(6):560–575, 1976.

4. Finger M. Handling database updates in two-dimensional tem-

poral logic. J. Appl. Non-Classical Logics, 2(2):201–224, 1992.

5. Clifford J., Dyreson C.E., Isakowitz T., Jensen C.S., and Snod-

grass R.T. On the semantics of ‘‘now.’’ ACM Trans. Database

Syst., 22(2):171–214, June 1997.
6. Clifford J. and Tansel A.U. On an algebra for historical relational

databases: two views. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1985, pp. 247–265.

7. Lomet D., Snodgrass R.T., and Jensen C.S. Exploiting the lock

manager for timestamping. In Proc. Int. Conf. on Database Eng.

and Applications, 2005, pp. 357–368.

8. Lorentzos N.A. and Johnson R.G. Extending relational algebra to

manipulate temporal data. Inf. Syst., 13(3):289–296, 1988.

9. Montague R. Formal Philosophy: Selected Papers of Richard

Montague. Yale University Press, New Haven, 1974.

10. Šaltenis S., and Jensen C.S. Indexing of now-relative spatio-

bitemporal data. VLDB J., 11(1):1–16, August 2002.

11. Snodgrass R.T. The temporal query language TQuel. ACM

Trans. Database Syst., 12(2):247–298, June 1988.

12. Snodgrass R.T. (ed.). The TSQL2 Temporal Query Language.

Kluwer, Norwell, MA, USA, 1995.

13. Torp K., Jensen C.S., and Snodgrass R.T. Modification semantics

in now-relative databases. Inf. Syst., 29(78):653–683, 2004.

14. Wiederhold G., Jajodia S., and Litwin W. Integrating temporal

data in a heterogeneous environment. In Temporal Databases:

Theory, Design, and Implementation, Chap. 22, A. Tansel,

J. Clifford, S.K. Gadia, S. Jajodia, A. Segev, R.T. Snodgrass

(eds.). Benjamin/Cummings, Redwood City, CA, USA, 1993,

pp. 563–579.
n-Tier Architecture

▶Multi-Tier Architecture
Null Values

LEOPOLDO BERTOSSI

Carleton University, Ottawa, ON, Canada

Definition
Null values are used to represent uncertain data values

in a database instance.

Key Points
Since the beginning of the relational data model,

null values have been investigated, with the intention

of capturing and representing data values that are

uncertain. Depending on the intuitions and cases of

uncertainty, different kinds of null values have been

proposed, e.g., they may represent information that is

withheld, inapplicable, missing, unknown, etc. Thus,

in principle, it could be possible to find in a hypothet-

ical database diverse classes of null values, and also

several null values of the same class. However, in

Nymity N 1925

N

commercial relational DBMSs and in the SQL Stan-

dard, only a single constant, NULL, is used to represent

the missing values.

Many semantic problems appear when null values

are integrated with the rest of the relational data

model, which essentially follows the semantics of pred-

icate logic. Among them, (i) the interpretation of nulls

values (for a particular intuition); (ii) the meaning of

relational operations when applied to both null values

and certain data values; and (iii) the characterization

of consistency of databases containing null values.

Different formal semantics for null values have

been proposed. A common and well-studied semantic

for incomplete databases uses null values to represent

unknown or missing values. Each null value in the

database represents a whole set of possible values

from the underlying data domain. The combination

of concrete values that null values might take generates

a class of alternative instances containing certain

values. This possible worlds semantics makes true what-

ever is true in every alternative instance. However, the

usage of null values in the SQL Standard and commer-

cial DBMS still lacks a clear and complete formal

semantic.

Cross-references
▶ Incomplete Information
Recommended Reading
1. Grahne G. The Problem of Incomplete Information in Relation-

al Databases. LNCS 554, Springer-Verlag, Secaucus, NJ, USA,

1991.

2. Levene M. and Loizou G. A Guided Tour of Relational Databases

and Beyond, Chap. 5. Springer, London, UK, 1999.

3. Van der Meyden, R. Logical approaches to incomplete informa-

tion: a survey. In Logics for Databases and Information Systems,

J. Chomicki, G. Saake (eds.). Kluwer, Boston, MA, USA, 1998,

pp. 307–356.
Numeric Association Rules

▶Quantitative Association Rules
Numerical Fact

▶Measure
Nymity

▶ Pseudonymity

O

OASIS

SERGUEI MANKOVSKII

CA Labs, CA Inc, Thornhill, ON, Canada

Synonyms
Organization for the advancement of structured

information standards

Definition
OASIS is a non-for-profit consortium aiming at col-

laborative development and approval of open interna-

tional, mainly XML-based, standards.

Key Points
OASIS was founded in 1993 under the name ‘‘SGML

Open.’’ The initial goal of the organization was to

develop guidelines for interoperability among pro-

ducts using Standard Generalized Markup Language

(SGML). In 1998 it changed name to OASIS to reflect

on changing scope of its technical work.

OASIS consists of an open group of member orga-

nizations whose representatives work in committees

developing standards, promoting standards adoption,

product interoperability and standards conformance.

In 2007 OASIS had 5,000 participants representing

600 organizations and individual members in 100

countries. OASIS is governed by a member-elected

Board in an annual election process. The boardmember-

ship is based on the personal merits of Board nominees.

OASIS process allows participants to influence stan-

dards that affect their business, contribute to standards

advancement and start new standards. The process is

designed to promote industry consensus. OASIS strategy

values creativity and consensus over conformity and

control. It relies on the market to determine the particu-

lar approach taken in the development of sometimes

overlapping standards.

OASIS maintains collaborative relationships

with the International Electrotechnical Commission

(IEC), International Organization for Standardization
2009 Springer ScienceþBusiness Media, LLC
(ISO), International Telecommunication Union (ITU)

and United Nations Electronic Commission for

Europe (UN/ECE), and National Institute of Standards

and Technology (NIST).

Among major accomplishments of the OASIS are

such influential of standards as a group of ebXML stan-

dards, SAML, XACML, WSRP, WSDM, BPEL, Open-

Document, DITA, DocBook, LegalXML and others.

Cross-references
▶BPEL

▶DITA

▶DocBook

▶ ebXML

▶ eGovernment

▶ Emergency Management

▶ LegalXML

▶ oBIX

▶Open CSA (SCA, SDO)

▶OpenDocument

▶ SAML

▶ SOA-RM

▶UDDI

▶WS-Security

▶WSDM

▶WSRP

Recommended Reading
1. OASIS. Available at: http://www.oasis-open.org
Object Constraint Language

MARTIN GOGOLLA

University of Bremen, Bremen, Germany

Synonyms
OCL

Definition
The Unified Modeling Language (UML) includes

a textual language called Object Constraint Language

1928O Object Constraint Language
(OCL). OCL allows users to navigate class diagrams,

to formulate queries, and to restrict class diagrams

with integrity constraints. From a practical perspective,

the OCL may be viewed as an object-oriented version

of the Structured Query Language (SQL) originally

developed for the relational data model. From a theo-

retical perspective, OCL may be viewed as a variant of

first-order predicate logic with quantifiers on finite

domains only. OCL has a well-defined syntax [1,3]

and semantics [2].

Key Points
The central language features in OCL are: naviga-

tion, logical connectives, collections and collection

operations.

Navigation: The navigation features in OCL allow

users to determine connected objects in the class dia-

gram by using the dot operator ‘‘.’’. Starting with an

expression expr of start class C, one can apply a

property propC of class C returning, for example, a

collection of objects of class D by using the dot opera-

tor: expr.propC. The expression expr could be a

variable or a single object, for example. The navigation

process can be repeated by writing expr.propC.

propD, if propD is a property of class D.

Logical Connectives: OCL offers the usual logical

connectives for conjunction (and), disjunction (or),

and negation (not) as well as the implication

(implies) and a binary exclusive (xor). An equality

check (=) and a conditional (if then else endif) is

provided on all types.

Collections: In OCL there are three kinds of collec-

tions: sets, bags, and sequences. A possible collection

element can appear at most once in a set, and the

insertion order in the set does not matter. An element

can appear multiple times in a bag, and the order in

the bag collection does not matter. An element can

appear multiple times in a sequence in which the

order is significant. Bags and sequences can be con-

verted to sets with ->asSet(), sets and sequences to

bags with ->asBag(), and sets and bags to sequen-

ces with ->asSequence(). The conversion to

sequences assumes an order on the elements. The

arrow notation is explained in more detail below.

Collection Operations: There is a large number of

operations on collections in OCL. A lot of convenience

and expressibility is based upon them. The most

important operations on all collection types are the

following: forAll realizes universal quantification,
exists is existential quantification, select filters

elements with a predicate, collect applies a term

to each collection element, size determines the num-

ber of collection elements, isEmpty tests for empti-

ness, includes checks whether a possible element is

included in the collection, and including builds a

new collection including a new element.

In addition to the central language features, OCL

also has special operations available only on particular

collection, e.g., the operation at on sequences for

retrieving an element by its position. All collection

operations are applied with the arrow notation men-

tioned above. Roughly speaking, the dot notation

is used when a property follows, i.e., an attribute or a

role follows, and the arrow notation is employed when

a collection operation follows.

Variables in collection operations: Most collection

operations allow variables to be declared (possibly

including a type specification), but the variable may

be dropped if it is not needed.

Retrieving all Current Instances of a Class: Another

important possibility is a feature to retrieve the finite

set of all current instances of a class by appending

.allInstances to the class name. In order to guar-

antee finite results .allInstances cannot be applied

to data types like String or Integer.

Return types in collection operations: If the collection

operations are applied to an argument of type Set/

Bag/Sequence(T), they behave as follows: forAll

and exists returns a Boolean, select yields Set/

Bag/Sequence(T), collect returns Bag/Bag/

Sequence(T’), size gives back Integer, isEmpty

yields Boolean, includes returns Boolean, and

including gives back Set/Bag/Sequence(T).

Most notably, the operation collect(...)

changes the type of a Set(T) collection to a

Bag(T’) collection. The reason for this is that term

inside the collectmay evaluate to the same result for

two different collection elements. In order to reflect

that the result is captured for each collection element,

the result appears as often as a respective collection

element exists. This convention in OCL resembles the

same approach in SQL: SQL queries with the addition-

al keyword distinct return a set; plain SQL queries

without distinct return a bag. In OCL, the conven-

tion is similar: OCL expressions using the additional

conversion asSet() as in collect(...)->asSet

() return a set; plain collect(...) expressions

without asSet() return a bag.

Object Data Models O 1929
Cross-references
▶Unified Modeling Language

Recommended Reading
1. OMG (ed.). OMG Object Constraint Language Specification.

OMG, 2007. www.omg.org.

2. Richters M. and Gogolla M. On Formalizing the UML Object

Constraint Language OCL. In Proc. 17th Int. Conf. on Concep-

tual Modeling. 1998, pp. 449–464.

3. Warmer J. and Kleppe A. The Object Constraint Language:

Getting Your Models Ready for MDA. Addison-Wesley, Reading,

MA, 2003.
O

Object Data Models

SUSAN D. URBAN
1, SUZANNE W. DIETRICH

2

1Texas Tech University, Lubbock, TX, USA
2Arizona State University, Phoenix, AZ, USA

Synonyms
ODB (object database); OODB (object-oriented data-

base); ORDB (object-relational database)

Definition
An object data model provides support for objects as

the basis for modeling in a database application. An

object is an instance of a class, which is a complex type

specification that defines both the state of its instance

fields and the behavior provided by its methods.

Object features also include a unique object identifier

that can be used to refer to the object, as well as the

organization of data into class hierarchies that support

inheritance of state and behavior. The term object data

model encompasses the data model for both object-

oriented databases (OODBs) and object-relational

databases (ORDBs). OODBs use an object-oriented

programming language as the database language and

provide inherent support for the persistence of objects

with typical database functionality. ORDBs extend

relational databases by providing additional support

for objects.

Historical Background
The relational data model was developed in the 1970’s,

providing a way to organize data into tables with rows

and columns [4]. Relationships between tables were

defined by the concept of foreign keys, where a column

(or multiple columns) in one table contained a
reference to a primary key value (unique identifier)

in another table. The simplicity of the relational data

model was complemented by its formal foundation on

set theory, thus providing powerful algebraic and cal-

culus-based techniques for querying relational data.

Initially, relational datamodeling concepts were used

in business-oriented applications, where tables provided

a natural structure for the organization of data. Users

eventually began to experiment with the use of relational

database concepts in new application domains, such as

engineering design and geographic information systems.

These new application areas required the use of complex

data types that were not supported by the relational

model. Furthermore, database designers were discover-

ing that the process of normalizing data into table form

was affecting performance for the retrieval of large, com-

plex, and hierarchically structured data, requiring nu-

merous join conditions to retrieve data from multiple

tables. Around the same time, object-oriented program-

ming languages (OOPLs) were also beginning to devel-

op, defining the concept of user-defined classes, with

instance fields, methods, and encapsulation for informa-

tion hiding [14].

The OOPL approach of defining object structure

together with object behavior eventually provided

the basis for the development of Object-Oriented

Database Systems (OODBs) in the mid-1980’s. The

Object-Oriented Database System Manifesto, written

by leading researchers in the database field, was the

first document to fully outline the characteristics of

OODB technology [1]. OODBs provided a revolution-

ary concept for data modeling, with data objects

organized as instances of user-defined classes. Classes

were organized into class hierarchies, supporting in-

heritance of attributes and behavior. OODBs differed

from relational technology through the use of internal

object identifiers, rather than foreign keys, as a means

for defining relationships between classes. OODBs also

provided a more seamless integration of database and

programming language technology, resolving the

impedance mismatch problem that existed for rela-

tional database systems. The impedance mismatch

problem refers to the disparity that exists between

set-oriented relational database access and iterative

one-record-at-a-time host language access. In the

OODB paradigm, the OOPL provides a uniform, ob-

ject-oriented view of data, with a single language for

accessing the database and implementing the database

application.

1930O Object Data Models
The relational database research community res-

ponded to the development of OODBs with the

Third Generation Database System Manifesto, defining

the manner in which relational technology can be

extended to support object-oriented capabilities [13].

Rowe and Stonebraker developed Postgres as the

first object-relational database system (ORDB), illus-

trating an evolutionary approach to integrating object-

oriented and relational concepts [10]. ORDB concepts

parallel those found in OODBs, with the notions

of user-defined data types, object tables formed from

user-defined types, hierarchies of user-defined types

and object tables, rows of object tables with internal

object identifiers, and relationships between object

tables that use object identifiers as references.

Today, several OODB products exist in the market,

and most relational database products provide some

form of ORDB support. The following section elabo-

rates on the common features of object data models

and then differentiates between OODB and ORDB

modeling concepts.

Foundations

Characteristics of Object Data Models

An object is one of the most fundamental concepts of

the object data model, where an object represents an

entity of interest in a specific application. An object has

state, describing the specific structural properties of

the object. An object also has behavior, defining the

methods that are used to manipulate the object. Each

method has a signature that includes the method name

as well as the method parameters and types. The state

and behavior of an object is expressed through an

object type definition, which provides an interface for

the object. Objects of the same interface are collected

into a class, where each object is viewed as an instance

of the class. A class definition supports the concept of

encapsulation, separating the specification of a class

from the implementation of its methods. The imple-

mentation of a method can therefore change without

affecting the class interface and the way in which the

interface is used in application code.

When an object of a class is instantiated, the object

is assigned a unique, internal object identifier, or oid

[6]. An oid is immutable, meaning that the value of the

identifier cannot be changed. The state of an object, on

the other hand, is mutable, meaning that the values of

object properties can change. In an object data model,

object identity is used as the basis for defining
relationships between classes, instead of using object

state, as in the relational model. As a result, the values

of object properties can freely change without affecting

the relationships that exist between objects. Object-

based relationships between classes are referred to as

object references.

Classes in an object model can be organized into

class hierarchies, defining superclass and subclass rela-

tionships between classes. A class hierarchy allows for

the inheritance of the state and behavior of a class,

allowing subclasses to inherit the properties and meth-

ods of its superclasses while extending the subclass

with additional properties or behavior that is specific

to the subclass. Inheritance hierarchies provide a pow-

erful mechanism to represent generalization/speciali-

zation relationships between classes, which simplify

the specification of an object schema, as well as queries

over the schema.

As an example of the above concepts, consider the

Publisher application described in Fig. 1 using a Uni-

fied Modeling Language (UML) class diagram [11]. A

Book is a class that is based on an object type that

defines the state of a book (isbn, title, and listPrice), as

well as the behavior of a book (the method calcBook-

Sales for calculating the total sales of a book based on

customer purchases). Publisher, Person, Author, and

Customer are additional classes, also having state and

behavior. Since authors and customers are specific

types of people, the Author and Customer classes are

defined to be subclasses of Person. Since personName

and address are common to authors and customers,

these attributes are defined at the Person level and

inherited by instances of the Author and Customer

classes. Furthermore, Author introduces additional

state and behavior that is specific to authors, defining

the date (authorSince) when an author first wrote a

book as well as a method (calcAuthorBookSales) for

calculating the total sales of the author’s books. The

Customer class similarly introduces state and behavior

that is specific to a customer.

Relationships are also defined between the classes

of the application:

� A book is authored by one or more authors; an

author writes many books

� A book is published by one publisher; a publisher

publishes many books

� A book is bought by many customers; a customer

buys many books, also recording the date of each

purchase

Object Data Models. Figure 1. The publisher object data model.

Object Data Models O 1931

O

For each relationship, specific instances of each

class are related based on the object identity of each

instance. For example, a book will establish a relation-

ship to the publisher of the book using the oid of the

publisher. In the relational model, the publisher name

would be used as a foreign key to establish the rela-

tionship. If the publisher name changes, then the

change in name must be propagated to the book that

references the publisher. In the object data model, such

changes in state do not affect relationships between

objects since the relationship is based on an immuta-

ble, internal object identity.

A generic object model, such as the one shown in

Fig. 1, can be mapped to either an object-oriented data

model or an object-relational data model. The follow-

ing subsections use the Publisher application in Fig. 1

to illustrate and explain OODB and ORDB approaches

to object data modeling.

Object-Oriented Data Model

An object-oriented database (OODB) is a term typi-

cally used to refer to a database that uses objects as a

building block and an object-oriented programming

language as the database language. The database sys-

tem supports the persistence of objects along with the

features of concurrency and recovery control with effi-

cient access and an ad hoc query language.

The Object Data Standard [2] developed as a stan-

dard to describe an object model, including a defini-

tion language for an object schema, and an ad-hoc
query language. The object model supports the speci-

fication of classes having attributes and relationships

between objects and the behavior of the class with

methods. The Object Definition Language (ODL) pro-

vides a standard language for the specification of an

object schema including properties and method signa-

tures. A property is either an attribute, representing an

instance field that describes the object, or a relation-

ship, representing associations between objects. In

ODL, relationships represent bidirectional associations

with the database system being responsible for main-

taining the integrity of the inverse association. An

attribute can be used to define a unidirectional associ-

ation. If needed, the association can be derived in the

other direction using a method specification. The de-

cision is based on trade-offs of storing and maintaining

the association versus deriving the inverse direction on

demand.

Fig. 2 provides an ODL specification of the Pub-

lisher application. Each class has a named extent,

which represents the set of objects of that type. The

Author and Customer classes inherit from the Person

class, extending each subclass with specialized attri-

butes. The Book class has the isbn attribute that

forms a key, being a unique value across all books.

The association between Author and Book is repre-

sented as an inverse relationship, and the cardinality

of the association is many-to-many since an author can

write many books and a book can be written by multi-

ple authors. The set collection type models multiple

Object Data Models. Figure 2. ODL schema of the publisher application.

1932O Object Data Models
books and authors. Since the Purchase association

class from Fig. 1 has an attribute describing the associ-

ation, Purchase is modeled in ODL using reification,

which is the process of transforming an abstract con-

cept, such as an association, into a class. As a result, the

Purchase class in Fig. 2 represents the many-to-many

association between Book and Customer. Each in-

stance of the Purchase class represents the purchase

of a book by a customer. The Purchase class has the

dateOfPurchase instance field, as well as two relation-

ships indicating which Book (bookPurchased) and

which Customer (purchasedBy) is involved in the pur-

chase. The inverse relationships in Book (boughtBy)

and Customer (buys) are related to instances of the

Purchase class.

This ODL specification forms the basis of the defi-

nition of the object schema within the particular

OOPL used with the OODB, such as C++, Java, and

Smalltalk. The specification of the schema and the

method implementation using a given OOPL is

known as a language binding. In some OODB pro-

ducts, the ODL specification of the properties of the
class are used to automatically generate the definition

of the schema for the OOPL being used.

The standard also includes a declarative query lan-

guage known as the Object Query Language (OQL).

The OQL is based on the familiar select-from-where

syntax of SQL. The select clause defines the structure of

the result of the query. The from clause specifies vari-

ables that range over collections within the schema,

such as a class extent or a multivalued property. The

where clause provides restrictions on the properties of

the objects that are to be included in the result. Object

references are traversed through the use of dot nota-

tion for single-valued properties and through the from

clause for multivalued properties.

Consider a simple query that finds the name of a

publisher of a book given its isbn:

select b.publishedBy.publisherName

from books b

where b.isbn = ‘‘0-13-042898-1’’;

This OQL query looks quite similar to SQL. In the

from clause, the alias b ranges over the books extent.

Object Data Models O 1933
The where clause locates the book of interest. The

select clause provides a path expression that navigates

through the publishedBy single-valued property to

return the name of the publisher.

Consider another query that finds the title and sales

for books published by Springer-Verlag:

select title: b.title, sales: b.calcBook-

Sales()

from p in publishers, b in p.booksPublished

where p.publisherName = ‘‘Springer-Verlag’’

This query illustrates the alternative syntax for the

alias in the from clause, using the syntax ‘‘variable in

collection’’. The alias p ranges over the publishers ex-

tent, whereas the alias b ranges over the multivalued

relationship booksPublished of each publisher that

satisfies the where condition. The select clause returns

the name of each field and its value, where sales returns

the results of a method call.
Object Data Models. Figure 3. ORDB schema of publisher a
Object-Relational Data Model

An object-relational database (ORDB) refers to a rela-

tional database that has evolved by extending its data

model to support user-defined types along with addi-

tional object features. An ORDB supports the tradi-

tional relational table in addition to introducing the

concept of a typed table, which is similar to a class in

an OODB. A typed table is created based on a user-

defined type (UDT), which provides a way to define

complex types with support for encapsulation. UDTs

and their corresponding typed tables can be formed into

class hierarchies with inheritance of state and behavior.

The rows (or instances) of a typed table have object

identifiers that are referred to as object references.

Object references can be used to define relationships

between tables that are based on object identity.

Figure 3 presents an ORDB schema of the Publisher

application that is defined using the object-relational

extensions to the SQL standard. The type personUdt is
pplication.

O

1934O Object Data Models
an example of specifying a UDT. The UDT defines the

structure of the type by identifying attributes together

with their type definitions. The phrase ‘‘instantiable

not final ref is system generated’’ defines three proper-

ties of the type:

1. ‘‘Instantiable’’ indicates that the type supports a

constructor function for the creation of instances

of the type. The phrase ‘‘not instantiable’’ can be

used in the case where the type has a subtype and

instances can only be created at the subtype level.

2. ‘‘Not final’’ indicates that the type can be

specialized into a subtype. The phrase ‘‘final’’ can

be used to indicate that a type cannot be further

specialized.

3. ‘‘Ref is system generated’’ indicates that the data-

base system is responsible for automatically gener-

ating an internal object identifier. The SQL

standard supports other options for the generation

of object identifiers, which include user-specified

object-identifiers as well as identifiers that are

derived from other attributes.

Definition of the personUdt type is followed by the

specification of the person typed table, which is based

on the personUdt type. The person typed table auto-

matically acquires columns for each of the attributes

defined in personUdt. In addition, the person typed

table has a column for an object identifier that is

associated with every row in the table. The phrase

‘‘ref is personID’’ defines that the name of the object

identifier column is personID. The definition of a

typed table can add constraints to the columns that

are defined in the type associated with the table. For

example, personName is defined to be a primary key in

the person typed table.

The authorUdt type is defined as a subtype of

personUdt, as indicated by the ‘‘under personUdt’’

clause. In addition to defining the structure of the

type, authorUdt also defines behavior with the defini-

tion of the calcAuthorBookSales method. Since

authorUdt is a subtype of personUdt, authorUdt will

inherit the object identifier (personID) defined in per-

sonUdt. For consistency, the author table is also de-

fined to be a subtable of the person object table. The

typed table hierarchy therefore parallels the UDT hier-

archy. In a similar manner, customerUdt is defined to

be a subtype of personUdt and the customer typed

table, based on customerUdt, is defined to be a sub-

table of the person table. UDTs and typed tables are
also defined for the Book and Publisher classes from

Fig. 1, as well as the (reified implementation of the)

Purchase association class.

Figure 3 also illustrates the use of object references

to represent identity-based relationships between

UDTs. Recall from the object data model in Fig. 1

that a book is published by one publisher; a publisher

publishes many books. In an ORDB, this relationship

is established through the use of reference types. In the

bookUdt, the publishedBy attribute has the type ref

(publisherUdt), indicating that the value of publishedBy

is a reference to the object identifier (publisherID)

of a publisher. In the inverse direction, the type of

booksPublished in the publisherUdt is an array of

ref(bookUdt), indicating that booksPublished is an

array of object references to books. Each attribute defi-

nition includes a scope clause and a ‘‘references are

checked’’ clause. Since a UDT can be used to define

multiple tables, the scope clause defines the table of

the object reference. The references clause specifies the

same options for referential integrity of object references

as originally defined for traditional relational tables.

To establish the fact that a book is published by a

specific publisher, the object identifier of publisher is

retrieved to create the relationship:

update book

set publishedBy = (select publisherID

from publisher

where publisherName =

‘‘Prentice Hall’’)

where isbn = ‘‘0-13-042898-1’’;

A similar update statement can be used to establish

the relationship in the inverse direction by adding the

book oid to the array of object references of the

publisher.

References can be traversed to query information

about relationships. For example, to return the name

of the publisher of a specific book, the following query

can be used:

select publishedBy.publisherName

from book

where isbn = ‘‘0-13-042898-1’’;

The dot notation in the select clause performs an

implicit join between the book table and the publisher

table, returning the name of the publisher. The deref()

function can also be used to retrieve the entire

structured type associated with a reference value. For

Object Identity O 1935

O

example, the following query will return the full in-

stance of the publisherUdt type, rather than just the

publisherName:

select deref(publishedBy)

from book

where isbn = ‘‘0-13-042898-1’’;

In this case, the result of the query is a value of

type publisherUdt, containing the publisher name

and the array of references to books published by the

publisher.

Key Applications
Computer-Aided Design, Geographic Information

Systems, Computer-Aided Software Engineering, Em-

bedded Systems, Real-time Control Systems.

Cross-references
▶Conceptual Schema Design

▶Database Design

▶ Extended Entity-Relationship Model

▶OQL

▶Relational Model

▶ Semantic Data Model

▶Unified Modeling Language

Recommended Reading
1. AtkinsonM., Bancilhon F., DeWitt D., Dittrich K., Maier D., and

Zdonik S. The Object-Oriented Database System Manifesto. In

Proc. 1st Int. Conf. on Deductive and Object-Oriented Data-

bases, North Holland, 1990.

2. Cattell R.G.G., Barry D.K., Berler M., Eastman J., Jordan D.,

Russell C., Schadow O., Stanienda T., and Velez F. (eds.). The

Object Data Standard: ODMG 3.0 Morgan Kaufmann,

San Mateo, CA, 2000.

3. Chaudhri A. and Zicari R. (eds.). Succeeding with Object

Databases: A Practical Look at Today’s Implementations with

Java and XML. J. Wiley, New York, 2000.

4. Codd E.F. A relational model of data for large shared data banks.

Comm. ACM, 13(6), 1970.

5. Dietrich S.W. and Urban S.D. An Advanced Course in Database

Systems: Beyond Relational Databases. Prentice Hall, Upper

Saddle River, NJ, 2005.

6. Koshafian S. and Copeland G. Object identity. ACM SIGPLAN

Not., 20(11), 1986.

7. Loomis M.E.S. and Chaudhri A. (eds.). Object Databases in

Practice: Prentice Hall, Upper Saddle River, NJ, 1997.

8. Melton J. Advanced SQL:1999: Understanding Object-Relational

and Other Advanced Features. Morgan Kaufmann, San Mateo,

CA, 2002.

9. Object Database Management Systems: The Resource Portal for

Education and Research, http://odbms.org/
10. Rowe L. and Stonebraker M. The Postgres Data Model. In Proc.

13th Int. Conf. on Very Large Data Bases. 1987.

11. Rumbaugh J., Jacobson I., and Booch G. The Unified Modeling

Language Reference Manual. Addison-Wesley, Reading, MA,

1991.

12. Stonebraker M. Object-Relational DBMSs: The Next Great

Wave. Morgan Kaufmann, San Mateo, CA, 1995.

13. Stonebraker M., Rowe L., Lindsay B., Gray J., Carey M., Brodie

M., Bernstein P., and Beech D. Third generation database system

manifesto. ACM SIGMOD Rec., 19(3), 1990.

14. Stroustrup B. The C++ Programming Language, 3rd edn.

Reading, MA. Addison-Wesley, Reading, MA, 1997.

15. Zdonik S.B. andMaier D. Readings in Object-Oriented Database

Systems. Morgan Kaufmann, San Mateo, CA, 1990.
Object Detection and Recognition

▶Automatic Image Annotation
Object Flow Diagrams

▶Activity Diagrams
Object Identification

▶Object Recognition
Object Identification

▶ Semantic Data Integration for Life Science Entities
Object Identifier

▶Object Identity
Object Identity

SUSAN D. URBAN
1, SUZANNE W. DIETRICH

2

1Texas Tech University, Lubbock, TX, USA
2Arizona State University, Phoenix, AZ, USA

Synonyms
Object identifier; Oid; Object reference

1936O Object Labeling
Definition
Object identity is a property of data that is created

in the context of an object data model, where an

object is assigned a unique internal object identifier,

or oid. The object identifier is used to define associa-

tions between objects and to support retrieval and

comparison of object-oriented data based on the inter-

nal identifier rather than the attribute values of

an object.
Key Points
In an object data model, an object is created as

an instance of a class. An object has an object identi-

fier as well as a state. An object identifier is immuta-

ble, meaning that the value of the object identifier

cannot change over the lifetime of the object. The

state, on the other hand, is mutable, representing

the attributes that describe the object and the rela-

tionships that define associations among objects.

Relationships in an object data model are defined

using object references based on internal object iden-

tifiers rather than attribute values as in a relational

data model. As a result, the attribute values of an

object can freely change without affecting identity-

based relationships.

Variables that contain object references can be

compared using either object identity or object equali-

ty. Two object references are identical if they contain

the same object identifiers. In contrast, two object

references, that possibly contain different object iden-

tifiers, are equal if the values of attributes and relation-

ships in each object state are identical. Shallow equality

is the process of comparing the immediate values of

attributes and relationships. Deep equality involves

the traversal of object references in the comparison

process. Query languages for objects must incorporate

operators to distinguish between object identity

and object equality in the specification of object

queries.
Cross-references
▶Conceptual Schema Design

▶ Extended Entity-Relationship Model

▶Object Data Models

▶Object-Role Modeling

▶ Semantic Data Model

▶Unified Modeling Language
Recommended Reading
1. Beeri C. and Thalheim B. Identification as a Primitive of

Database Models. In Proc. 7th Int. Workshop on Foundations

of Models and Languages for Data and Objects, 1999.

2. Koshafian S. and Copeland G. Object identity. ACM SIGPLAN

Not., 20(11), 1986.
Object Labeling

▶Object Recognition
Object Monitor

▶Transactional Middleware
Object Query Language

▶OQL
Object Recognition

MING-HSUAN YANG

University of California at Merced, Merced, CA, USA

Synonyms
Object identification; Object labeling

Definition
Object recognition is concerned with determining the

identity of an object being observed in the image from

a set of known labels. Oftentimes, it is assumed that the

object being observed has been detected or there is a

single object in the image.

Historical Background
As the holy grail of computer vision research is to tell a

story from a single image or a sequence of images,

object recognition has been studied for more than

four decades [9,22]. Significant efforts have been

spent to develop representation schemes and algo-

rithms aiming at recognizing generic objects in images

Object Recognition O 1937
taken under different imaging conditions (e.g., view-

point, illumination, and occlusion). Within a limited

scope of distinct objects, such as handwritten digits,

fingerprints, faces, and road signs, substantial success

has been achieved. Object recognition is also related to

content-based image retrieval and multimedia index-

ing as a number of generic objects can be recognized.

In addition, significant progress towards object catego-

rization from images has been made in the recent years

[17]. Note that object recognition has also been studied

extensively in psychology, computational neuroscience

and cognitive science [4,9].
O

Foundations
Object recognition is one of themost fascinating abilities

that humans easily possess since childhood. With a sim-

ple glance of an object, humans are able to tell its identity

or category despite of the appearance variation due to

change in pose, illumination, texture, deformation, and

under occlusion. Furthermore, humans can easily gen-

eralize from observing a set of objects to recognizing

objects that have never been seen before. For example,

kids are able to generalize the concept of ‘‘chair’’ or ‘‘cup’’

after seeing just a few examples. Nevertheless, it is a

daunting task to develop vision systems that match the

cognitive capabilities of human beings, or systems that

are able to tell the specific identity of an object being

observed. The main reasons can be attributed to the

following factors: relative pose of an object to a camera,

lighting variation, and difficulty in generalizing across

objects from a set of exemplar images. Central to object

recognition systems are how the regularities of images,

taken under different lighting and pose conditions, are

extracted and recognized. In other words, all the algo-

rithms adopt certain representations or models to cap-

ture these characteristics, thereby facilitating procedures

to tell their identities. In addition, the representations

can be either 2D or 3D geometric models. The recogni-

tion process, either generative or discriminative, is then

carried out by matching the test image against the stored

object representations or models.
Geometry-Based Approaches

Early attempts at object recognition were focused on

using geometric models of objects to account for their

appearance variation due to viewpoint and illumina-

tion change. The main idea is that the geometric
description of a 3D object allows the projected shape

to be accurately predicated in a 2D image under projec-

tive projection, thereby facilitating recognition process

using edge or boundary information (which is invari-

ant to certain illumination change). Much attention

was made to extract geometric primitives (e.g., lines,

circles, etc.) that are invariant to viewpoint change [13].

Nevertheless, it has been shown that such primitives

can only be reliably extracted under limited conditions

(controlled variation in lighting and viewpoint with

certain occlusion). Mundy provides an excellent review

on geometry-based object recognition research [12].

Appearance-Based Algorithms

In contrast to early efforts on geometry-based object

recognition, most recent efforts have been centered

on appearance-based techniques as advanced feature

descriptors and pattern recognition algorithms are

developed [8]. Most notably, the eigenface method

has attracted much attention as it is one of the first

face recognition systems that are computationally effi-

cient and relatively accurate [21]. The underlying idea

of this approach is to compute eigenvectors from a set

of vectors where each one represents one face image as

a raster scan vector of gray-scale pixel values. Each

eigenvector, dubbed an eigenface, captures certain var-

iance among all the vectors, and a small set of eigenvec-

tors captures almost all the appearance variation of face

images in the training set. Given a test image represented

as a vector of gray-scale pixel values, its identity is deter-

mined by finding the nearest neighbor of this vector after

being projected onto a subspace spanned by a set of

eigenvectors. In other words, each face image can be

represented by a linear combination of eigenfaces with

minimum error (often in the L2 sense), and this linear

combination constitutes a compact reorientation. The

eigenface approach has been adopted in recognizing

generic objects across different viewpoints [14] and

modeling illumination variation [2].

As the goal of object recognition is to tell one object

from the others, discriminative classifiers have been

used to exploit the class specific information. Classi-

fiers such as k-nearest neighbor, neural networks with

radial basis function (RBF), dynamic link architecture,

Fisher linear discriminant, support vector machines

(SVM), sparse network of Winnows (SNoW), and

boosting algorithms have been applied to recognize

3D objects from 2D images [16,6,1,18,19]. While

1938O Object Recognition
appearance-based methods have shown promising

results in object recognition under viewpoint and illu-

mination change, they are less effective in handling

occlusion. In addition, a large set of exemplars needs

to be segmented from images for generative or dis-

criminative methods to learn the appearance charac-

teristics. These problems are partially addressed with

parts-based representation schemes.

Feature-Based Algorithms

The central idea of feature-based object recognition

algorithms lies in finding interest points, often occurred

at intensity discontinuity, that are invariant to change

due to scale, illumination and affine transformation

(a brief review on interest point operators can be

found in [8]). The scale-invariant feature transform

(SIFT) descriptor is arguably one of the most widely

used feature representation schemes for vision applica-

tions [8]. The SIFTapproach uses extrema in scale space

for automatic scale selection with a pyramid of differ-

ence of Gaussian filters, and keypoints with low contrast

or poorly localized on an edge are removed. Next, a

consistent orientation is assigned to each keypoint

and its magnitude is computed based on the local

image gradient histogram, thereby achieving invariance

to image rotation. At each keypoint descriptor, the

contribution of local image gradients are sampled

and weighted by a Gaussian, and then represented by

orientation histograms. For example, the 16 � 16 sam-

ple image region and 4 � 4 array of histograms with

8 orientation bins are often used, thereby providing a

128-dimensional feature vector for each keypoint.

Objects can be indexed and recognized using the

histograms of keypoints in images. Numerous applica-

tions have been developed using the SIFT descriptors,

including object retrieval [15,20], and object category

discovery [5].

Although the SIFT approach is able to extract

features that are insensitive to certain scale and illumi-

nation changes vision applications with large base

line changes entail the need of affine invariant point

and region operators [11]. A performance evaluation

among various local descriptors can be found in [10],

and a study on affine region detectors is presented in

[11]. Finally, SIFT-based methods are expected to per-

form better for objects with rich texture information

as sufficient number of keypoints can be extracted.

On the other hand, they also require sophisticated

indexing and matching algorithms for effective object

recognition [8,17].
Key Applications
Biometric recognition, and optical character/digit/doc-

ument recognition are arguably the most widely used

applications. In particular, face recognition has been

studied extensively for decades and with large scale on-

going efforts [23]. On the other hand, biometric recog-

nition systems based on iris or fingerprint as well as as

handwritten digit have become reliable technologies

[3,7]. Other object recognition applications include sur-

veillance, industrial inspection, content-based image re-

trieval (CBIR), robotics, medical imaging, human

computer interaction, and intelligent vehicle systems,

to name a few.

Future Directions
With more reliable representation schemes and recog-

nition algorithms being developed, tremendous prog-

ress has been made in the last decade towards

recognizing objects under variation in viewpoint, illu-

mination and under partial occlusion. Nevertheless,

most working object recognition systems are still sen-

sitive to large variation in illumination and heavy

occlusion. In addition, most existing methods are de-

veloped to deal with rigid objects with limited intra-

class variation. Future research will continue searching

for robust representation schemes and recognition

algorithms for recognizing generic objects.

Data Sets
Numerous face image sets are available on the web

� FERET face data set: http://www.itl.nist.gov/iad/

humanid/feret/

� UMIST data set: http://images.ee.umist.ac.uk/

danny/database.html

� Yale data set: http://cvc.yale.edu/projects/yalefacesB/

yalefacesB.html

� AR data set: http://cobweb.ecn.purdue.edu/%

7Ealeix/aleix_face_DB.html

� CMU PIE data set: http://www.ri.cmu.edu/

projects/project_418.html

There are several large data sets for object recognition

experiments,

� COIL data set: http://www1.cs.columbia.edu/

CAVE/software/softlib/coil-100.php

� CalTech data sets: http://www.vision.caltech.edu/

html-files/archive.html

� PASCAL visual object classes: http://www.pascal-

network.org/challenges/VOC/

Object Reference O 1939

O

URL to Code
There are a few excellent short courses on object rec-

ognition in recent conferences available on the web.

� ‘‘Recognition and matching based on local invari-

ant features’’ by Schmid and Lowe in IEEE Confer-

ence on Computer Vision and Pattern Recognition

2003: http://lear.inrialpes.fr/people/schmid/cvpr-

tutorial03/

� ‘‘Learning and recognizing object categories’’ by

Fei-Fei, Fergus and Torralba in IEEE International

Conference on Computer Vision 2005:http://

people.csail.mit.edu/torralba/shortCourseRLOC/

� ‘‘Recognizing and Learning Object Categories: Year

2007’’ by Fei-Fei, Fergus and Torralba in IEEE

Conference on Computer Vision and Pattern Rec-

ognition 2005: http://people.csail.mit.edu/torralba/

shortCourseRLOC/

Sample code for face recognition and SIFT descriptors:

� Face recognition: http://www.face-rec.org/

� Lowe’s sample SIFT code: http://www.cs.ubc.ca/

~lowe/keypoints/

� MATLAB implementation of SIFT descriptors by

Vedaldi: http://vision.ucla.edu/~vedaldi/code/sift/

sift.html

� libsift by Nowozin: http://user.cs.tu-berlin.de/

~nowozin/libsift/

Grand challenge in object recognition:

� NIST face recognition grand challenge: http://www.

frvt.org/FRGC/

� NIST multiple biometric grand challenge: http://

face.nist.gov/mbgc/

� PASCAL visual object classes challenge 2007: http://

www.pascal-network.org/challenges/VOC/voc2007/

index.html
Cross-references
▶Object Detection and Recognition
Recommended Reading
1. Belhumeur P., Hespanha J., and Kriegman D. Eigenfaces vs.

fisherfaces: recognition using class specific linear projection.

IEEE Trans. Pattern Analy. Machine Intell., 19(7):711–720, 1997.

2. Belhumeur P. and Kriegman D. What is the Set of Images of an

Object under All Possible Illumination Conditions. Int. J. Com-

put. Vision, 28(3):1–16, 1998.

3. Daugman J. Probing the uniqueness and randomness of iris-

codes: Results from 200 billion iris pair comparisons. In Proc.

IEEE, 94(11):1927–1935, 2006.
4. Edelman S. Representation and recognition in vision. MIT,

Cambridge, MA, 1999.

5. Fergus R., Perona P., and Zisserman A. Object class recognition by

unsupervised scale-invariant learning. In Proc. IEEE Int. Conf. on

Computer Vision and Pattern Recognition. 2003, pp. 264–271.

6. Lades M., Vorbrüggen J.C., Buhmann J., Lange J., von der

Malsburg C., Würtz R.P., and Konen W. Distortion Invariant

Object Recognition in the Dynamic Link Architecture. IEEE

Trans. Comput., 42:300–311, 1993.

7. Lecun Y., Bottou L., Bengio Y., and Haffner P. Gradient-

based learning applied to document recognition. In Proc.

IEEE, 86(11):2278–2324, 1998.

8. Lowe D. Distinctive image features from scale-invariant key-

points. Int. J. Comput. Vision, 60(2):91–110, 2004.

9. Marr D. Vision. W.H. Freeman and Company, San Francisco,

CA, USA, 1982.

10. Mikolajczyk K. and Schmid C. A performance evaluation of local

descriptors. IEEE Trans. Pattern Analy. Machine Intell., 27

(10):1615–1630, 2005.

11. Mikolajczyk K., Tuytelaars T., Schmid C., Zisserman A., Matas J.,

Schaffalitzky F., Kadir T., and Van Gool L. A comparison of

affine region detectors. Int. J. Comput. Vision, 65(1/2):43–72,

2006.

12. Mundy J. Object recognition in the geometric era: a retrospec-

tive. In Toward category-level object recognition. J. Ponce, M.

Hebert, C. Schmid, and A. Zisserman (eds.). Springer, Berlin,

2006, pp. 3–29.

13. Mundy J. and Zisserman A. Geometric invariance in computer

vision. MIT, Cambridge, MA, 1992.

14. Murase H. and Nayar S.K. Visual learning and recognition of 3-D

objects from appearance. Int. J. Comput. Vision, 14:5–24, 1995.

15. Nister D. and Stewenius H. Scalable recognition with a vocabu-

lary tree. In Proc. IEEE Int. Conf. on Computer Vision and

Pattern Recognition. 2006, pp. 2161–2168.

16. Poggio T. and Edelman S. A Network that Learns to Recognize

3D Objects. Nature, 343:263–266, 1990.

17. Ponce J., Hebert M., Schmid C., and Zisserman A.

Toward category-level object recognition. Springer, Berlin, 2006.

18. Pontil M. and Verri A. Support Vector Machines for 3D Object

Recognition. IEEE Trans. Pattern Analy. Machine Intell.,

20(6):637–646, 1998.

19. Roth D., Yang M.-H., and Ahuja N. Learning to Recognize

Objects. Neural Comput., 14(5):1071–1104, 2002.

20. Sivic J. and Zisserman A. Video Google: a text retrieval approach

to object matching in videos. In Proc. 9th IEEE Conf. Computer

Vision. 2003, pp. 1470–1477.

21. Turk M. and Pentland A. Eigenfaces for recognition. J. Cognitive

Neurosci., 3(1):71–86, 1991.

22. Ullman S. High-level vision: Object recognition and visual

recognition. MIT, Cambridge, MA, 1996.

23. Zhao W., Chellappa R., Rosenfeld A., and Phillips J.P.

Face recognition: A literature survey. ACM Comput. Surv.,

35(4):399–458, 2003.
Object Reference

▶Object Identity

1940O Object Relationship Attribute Data Model for Semi-structured Data
Object Relationship Attribute Data
Model for Semi-structured Data

GILLIAN DOBBIE
1, TOK WANG LING

2

1University of Auckland, Auckland, New Zealand
2National University of Singapore, Singapore

Synonyms
ORA-SS data model; ORA-SS schema diagram

Definition
When a database schema is designed, a data model

is initially used to model the real world constraints that

are taken into account in the design of the schema. For

semi-structured database design, it is necessary to cap-

ture the following constraints: object classes, n-ary rela-

tionship types, attributes of object classes, attributes of

relationship types, cardinality, participation and unique-

ness constraints, ordering, irregular and heterogeneous

structures, for both data- and document-centric data.
Key Points
The ORA-SS (Object-Relationship-Attribute Data

Model for Semi-structured Data) data model was

designed [1] specifically to capture the constraints that

are necessary for designing semi-structured databases,

for normalization of schemas, and for defining views.

Figure 1 models the scenario where there is a de-

partment, with a name and many courses. A course
Object Relationship Attribute Data Model for Semi-structur
has a unique code, a title, and many students, and a

student has a unique student number, name, address,

andmany hobbies. For each course that a student takes,

they have a grade. There is a tutor for each student in

each course they take. A tutor has a unique staff number

and a name, and each student can give feedback for the

tutor they have in each course that they take.

A closer look is now taken at the notation used.

Each of the rectangles represents an object class, the

circles represent attributes and the labeled directed

edges between object classes represent relationship

types. A filled circle is an identifier, which is similar

to a key in relational databases and an identifier of an

object class. The ‘‘?’’ in the circle represents zero or

one occurences of that attribute, while a ‘‘*’’ represents

zero or more occurences. The default is one. An attri-

bute in an ORA-SS diagram could be represented as an

attribute or an element in an XML document. The

label on the edge has name, n, a:b, c:d, where name is

the name of the relationship type, n is the degree, a:b is

the participation constraint on the parent and c:d

is the participation constraint on the child. The partic-

ipation constraint a:b indicates that the parent object

participates in a minimum of a and a maximum of b

relationships. Whereas, the participation constraint c:d

indicates that the child object participates in a mini-

mum of c and a maximum of d relationships. A label

on the edge between an object class and an attribute,

name, indicates that the attribute belongs to relation-

ship type name.
ed Data. Figure 1. An ORA-SS schema diagram.

Object-Role Modeling O 1941

O

Consider the example in Fig. 1. There are object

classes Department, Course, Student and Tutor. Object

class Department has an identifier name, and is the

parent object class in the relationship type between

Department and Course. The relationship type is a

binary relationship with name dc, and the participa-

tion constraint 1:m indicates that a department has a

minimum of one course and a maximum of m courses,

where mmeans many, i.e., any number of courses. The

participation constraint 1:1 indicates that each course

must belong to one department and can belong to a

maximum of one department. Each course has an

identifier code, a required attribute title, and is the

parent object class in the relationship type, cs, between

course and student. Object class Student has an identi-

fier stuNo, a required attribute stuName, an optional

attribute address, and zero or more hobby. There is

a binary relationship type, cs, between Course and

Student, where a Course can have zero or more Stu-

dents, and a Student takes one or more Courses. The

attribute grade belongs to the relationship type, cs,

that is it represents the grade a student scored in a

particular course. There is a ternary relationship type

among object classes Course, Student and Tutor. Each

course-student pair can have zero to one tutor, and

each tutor belongs to one or more course-student

pairs. Each tutor has an identifier staffNo, a required

attribute name, and there is an attribute feedback

for each tutor from a particular student in a particular

course.

Cross-references
▶ Entity Relationship Model

▶Hierarchical Data Model

▶Object Data Models

▶ Semi-structured Data Model

▶ Semi-structured Database Design

▶XML Integrity Constraints

▶XML Schema

Recommended Reading
1. Ling T.W., Lee M.L., and Dobbie G. Semi-structured Database

Design. Springer, Berlin Heidelberg New York, 2005.
Object Request Broker

▶CORBA

▶Request Broker
Object-based Storage Device

▶Network Attached Secure Device
Object-Role Modeling

TERRY HALPIN

Neumont University, South Jordan, UT, USA

Synonyms
Fact-oriented modeling; NIAM

Definition
Object-Role Modeling (ORM), also known as fact-orient-

ed modeling, is a conceptual approach to modeling and

querying the information semantics of business

domains in terms of the underlying facts of interest,

where all facts and rules may be verbalized in language

readily understood by non-technical users of those

business domains. Unlike Entity-Relationship (ER)

modeling and Unified Modeling Language (UML)

class diagrams, ORM treats all facts as relationships

(unary, binary, ternary etc.). How facts are grouped

into structures (e.g., attribute-based entity types, clas-

ses, relation schemes, XML schemas) is considered a

design level, implementation issue that is irrelevant to

the capturing of essential business semantics.

Avoiding attributes in the base model enhances

semantic stability, populatability, and natural verbali-

zation, facilitating communication with all stakeholders.

For information modeling, fact-oriented graphical nota-

tions are typically far more expressive than those

provided by other notations. Fact-oriented textual lan-

guages are based on formal subsets of native languages, so

are easier to understand by business people than techni-

cal languages like UML’s Object Constraint Language

(OCL). Fact-oriented modeling includes procedures for

mapping to attribute-based structures, so may also be

used to front-end other approaches.

The fact-oriented modeling approach comprises

a family of closely related ‘‘dialects’’, known vari-

ously as Object-Role Modeling (ORM), Natural

Language Information Analysis Method (NIAM), and

Fully-Communication Oriented Information Model-

ing (FCO-IM). While not adopting the ORM graphical

notation, the Object-oriented Systems Model (OSM)

[4] and the Semantics of Business Vocabulary and

1942O Object-Role Modeling
business Rules (SBVR) [13] initiative within the Object

Management Group (OMG) are close relatives, with

their attribute-free philosophy.

Historical Background
In 1973, Falkenberg generalized work by Abrial and

Senko on binary relationships to n-ary relationships,

and excluded attributes at the conceptual level to

avoid ‘‘fuzzy’’ distinctions and to simplify schema evo-

lution. Later, Falkenberg proposed the fundamental

ORM framework, which he called the ‘‘object-role

model’’ [5]. This framework allowed n-ary and nested

relationships, but depicted roles with arrowed lines.

Nijssen adapted this framework by introducing a cir-

cle-box notation for objects and roles, and adding a

linguistic orientation and design procedure to provide

a modeling method called ENALIM (Evolving NAtural

Language Information Model) [12]. Nijssen’s team of

researchers at Control Data in Belgium developed the

method further, including van Assche who classified

object types into lexical object types (LOTs) and non-

lexical object types (NOLOTs). Today, LOTs are com-

monly called ‘‘entity types’’ and NOLOTs are called

‘‘value types’’. Meersman added subtyping to the

approach, and made major contributions to the RIDL

query language [11] with Falkenberg and Nijssen.

The method was renamed ‘‘aN Information Analysis

Method’’ (NIAM). Later, the acronym ‘‘NIAM’’ was

given different expansions, and is now known as

‘‘Natural language Information Analysis Method’’.

In the 1980s, Nijssen and Falkenberg worked on the

design procedure and moved to the University of

Queensland, where the method was further enhanced

by Halpin, who provided the first full formalization,

including schema equivalence proofs, and made several

refinements and extensions. In 1989, Halpin and Nijssen

co-authored a book on the approach, followed a year

later by Wintraecken’s book [16]. Today several books,

includingmajor works byHalpin [10], and Bakema et al.

[1] expound on the approach.

Many researchers contributed to the fact-oriented

approach over the years, and there is no space here to list

them all. Today various versions exist, but all adhere to

the fundamental object-role framework. Habrias devel-

oped an object-oriented version called MOON (Nor-

malized Object-Oriented Method). The Predicator Set

Model (PSM), developed mainly by ter Hofstede et al.

[7], includes complex object constructors. De Troyer

and Meersman developed a version with constructors
called Natural Object-Relationship Model (NORM).

Halpin developed an extended version simply called

ORM, and with Bloesch and others developed an asso-

ciated query language called ConQuer [2]. Bakema et al.

[1] recast all entity types as nested relationships, to

produce Fully Communication Oriented NIAM, which

they later modified to Fully Communication Oriented

Information Modeling (FCO-IM).

More recently, Meersman and others adapted ORM

for ontology modeling, using a framework called

DOGMA (Developing Ontology-Grounded Method-

ology and Applications) (http://www.starlab.vub.ac.

be/website/). Nijssen and others extended NIAM to a

version called NIAM2007. Halpin and others devel-

oped a second generation ORM (ORM 2), whose

graphical notation is used in this article.

Foundations
ORM includes graphical and textual languages for

modeling and querying information at the concep-

tual level, as well as procedures for designing conceptual

models, transformingbetweendifferentconceptual repre-

sentations, forward engineering ORM schemas to imple-

mentation schemas (e.g., relational database schemas,

object-oriented schemas, XML schemas, and external

schemas) and reverse engineering implementation

schemas to ORM schemas.

Attributes are not used as a base construct. Instead,

all fact structures are expressed as fact types (relationship

types). Thesemay be unary (e.g., Person smokes), binary

(e.g., Person was born on Date), ternary (e.g., Person

visited Country in Year), and so on. This attribute-free

nature has several advantages: semantic stability (mini-

mize the impact of change caused by the need to record

something about an attribute); natural verbalization (all

facts and rules may be easily verbalized in sentences

understandable to the domain expert); populatability

(sample fact populations may be conveniently provided

in fact tables); null avoidance (no nulls occur in popula-

tions of base fact types, which must be elementary or

existential). Although attribute-free diagrams typically

consumemore space, this apparent disadvantage is easily

overcome by using an ORM tool to automatically create

attribute-based structures (e.g., ER, UML class, or rela-

tional schemas) as views of an ORM schema.

ORM’s graphical language is far more expressive

for data modeling purposes than that of UML or

industrial versions of ER, as illustrated later. The rich

graphical notation makes it easier to detect and express

Object-Role Modeling O 1943
constraints, and to visually transform schemas into

equivalent alternatives.

ORM includes effective modeling procedures for

constructing and validating models. In step 1a of the

Conceptual Schema Design Procedure (CSDP), the

domain expert informally verbalizes facts of interest.

In step 1b, the modeler formally rephrases the facts in

natural yet unambiguous language, using standard

reference patterns to ensure that entities are well iden-

tified. Verbalized fact instances are abstracted to fact

types, which are then populated with sample instances.

The constraints on the fact types are verbalized formal-

ly, a process that may be automated [8], and these

verbalizations are checked with the domain expert,

using positive populations to illustrate satisfaction

of the constraints as well as counterexamples to illus-

trate what it means to violate a constraint. This

approach to model validation by verbalization and

population has proved extremely effective in industrial

practice, with correct models typically obtained from

the outset rather than going through unreliable itera-

tive procedures.

Figure 1 lists the main graphical symbols in the

ORM 2 notation [8], numbered for easy reference.

An entity type (e.g., Person) is depicted as a named,
Object-Role Modeling. Figure 1. Main ORM graphic symbol
soft rectangle (symbol 1), or alternatively an ellipse or

hard rectangle. Value type (e.g., Person Name) shapes

have dashed lines (symbol 2). Each entity type has a

reference scheme, indicating how each instance may

be mapped via predicates to a combination of one or

more values. Injective (1:1 into) reference schemes

mapping entities (e.g., countries) to single values

(e.g., country codes) may be abbreviated as in symbol

3 by displaying the reference mode in parentheses, e.g.,

Country (.code). The reference mode indicates how

values relate to the entities. Values are constants with

a known denotation, so require no reference scheme.

Relationships used for preferred reference are called

existential facts (e.g., there exists a country that has the

country code ‘US’). The other relationships are elemen-

tary facts (e.g., The country with country code ‘US’ has

a population of 301,000,000). The exclamation mark in

symbol 4 declares that an object type is independent

(instances may exist without participating in any ele-

mentary facts). Object types displayed in multiple

places are shadowed (symbol 5).

A fact type results from applying a logical predicate

to a sequence of one or more object types. Each predi-

cate comprises a named sequence of one or more

roles (parts played in the relationship). A predicate is
s.

O

1944O Object-Role Modeling
sentence with object holes, one for each role, with each

role depicted as a box and played by exactly one object

type. Symbol 6 shows a unary predicate (e.g., . . .

smokes), symbols 7 and 8 depict binary predicates

(e.g., . . . loves . . .), and symbol 9 shows a ternary

predicate. Predicates of higher arity (number of roles)

are allowed. Each predicate has at least one predicate

reading. ORMusesmixfix predicates, so objects may be

placed at any position in the predicate (e.g., the fact

type Person introduced Person to Person involves the

predicate ‘‘. . . introduced . . . to . . .’’). Mixfix predi-

cates allow natural verbalization of n-ary relationships,

as well as binary relationships where the verb is not in

the infix position (e.g., in Japanese, verbs come at the

end). By default, forward readings traverse the predicate

from left to right (if displayed horizontally) or top to

bottom (if displayed vertically). Other reading direc-

tions may be indicated by an arrow-tip (symbol 8).

For binary predicates, forward and inverse readings

may be separated by a slash (symbol 7). Duplicate

predicate shapes are shadowed (symbol 10).

Roles may be given role names, displayed in square

brackets (symbol 11). An asterisk indicates that the fact

type is derived from one or more other fact types

(symbol 12). If the fact type is derived and stored, a

double asterisk is used (symbol 13). Fact types that are

semi-derived are marked ‘‘+’’ (symbol 14). Internal

uniqueness constraints, depicted as bars over one or

more roles in a predicate, declare that instances for

that role (combination) in the fact type population

must be unique (e.g., symbols 15, 16). For example, a

uniqueness constraint on the first role of Person was

born in Country verbalizes as: Each person was born in

at most one Country. If the constrained roles are not

contiguous, a dotted line separates the constrained

roles (symbol 16). A predicate may have many unique-

ness constraints, at most one of which may be declared

preferred by a double-bar (symbol 17). An external

uniqueness constraint shown as a circled uniqueness

bar (symbol 18) may be applied to two or more roles

from different predicates by connecting to them with

dotted lines. This indicates that instances of the role

combination in the join of those predicates are unique.

For example, if a state is identified by combining its

state code and country, an external uniqueness con-

straint is added to the roles played by Statecode and

Country in: State has Statecode; State is in Country.

Preferred external uniqueness constraints are depicted

by a circled double-bar (symbol 19).
To talk about a relationship, one may objectify it

(i.e., make an object out of it) so that it can play roles.

Graphically, the objectified predicate (a.k.a. nested

predicate) is enclosed in a soft rectangle, with its

name in quotes (symbol 20). Roles are connected to

their players by a line segment (symbol 21). A manda-

tory role constraint declares that every instance in the

population of the role’s object type must play that role.

This is shown as a large dot placed at the object type

end (symbol 22) or the role end (symbol 23). An

inclusive-or (disjunctive mandatory) constraint applied

to two or more roles indicates that all instances of the

object type population must play at least one of those

roles. This is shown by connecting the roles by dotted

lines to a circled dot (symbol 24).

To restrict the population of an object type or role,

the relevant values may be listed in braces (symbol 25).

An ordered range may be declared separating end

values by ‘‘..’’. For continuous ranges, a square/ round

bracket indicates an end value is included/excluded.

For example, ‘‘(0..10)’’ denotes the positive real num-

bers up to 10. These constraints are called value

constraints.

Symbols 26–28 denote set comparison constraints,

which apply only between compatible role sequences.

A dotted arrow with a circled subset symbol depicts a

subset constraint, restricting the population of the first

sequence to be a subset of the second (symbol 26).

A dotted line with a circled ‘‘=’’ symbol depicts an

equality constraint, indicating the populations must

be equal (symbol 27). A circled ‘‘X’’ (symbol 28)

depicts an exclusion constraint, indicating the popula-

tions are mutually exclusive. Exclusion and equality

constraints may be applied between two or more

sequences. Combining an inclusive-or and exclusion

constraint yields an exclusive-or constraint (symbol 29).

A solid arrow (symbol 30) from one object type to

another indicates that the first is a (proper) subtype of

the other (e.g., Woman is a subtype of Person). Man-

datory (circled dot) and exclusion (circled ‘‘X’’) con-

straints may be displayed between subtypes, but are

implied by other constraints if the subtypes have for-

mal definitions. Symbol 31 shows four kinds of fre-

quency constraint. Applied to a role sequence, these

indicate that instances that play those roles must do

so exactly n times, at least n times, at most n times, or at

least n and at most m times. Symbol 32 shows four

varieties of value-comparison constraint. The arrow

shows the direction in which to apply the circled

Object-Role Modeling O 1945
operator between two instances of the same type (e.g.,

For each Employee, hiredate > birthdate).

Symbol 33 shows the main kinds of ring constraint

that may apply to a pair of compatible roles. Read left

to right and top row first, these indicate that the binary

relation formed by the role population must respec-

tively be irreflexive, asymmetric, antisymmetric, reflex-

ive, intransitive, acyclic, intransitive and acyclic, or

intransitive and asymmetric.

The previous constraints are alethic (necessary, so

can’t be violated) and are colored violet. ORM 2 also

supports deontic rules (obligatory, but can be violated).

These are colored blue, and either add an ‘‘o’’ for

obligatory, or soften lines to dashed lines. Displayed

here are the deontic symbols for uniqueness (symbol

34), mandatory (symbol 35), set-comparison (symbol

36), frequency (symbol 37) and ring (symbol 38)

constraints.

Figure 2 shows a sample ORM schema for a book

publishing domain. A detailed discussion using the

CSDP to develop this schema may be found elsewhere

[9]. Each book is identified by an International Stan-

dard Book Number (ISBN), each person is identified

by a person number, each grade is identified by a

grade number in the range 1 through 5, each gender

is identified by a code (‘M’ for male and ‘F’ for Fe-

male), and each year is identified by its common era
Object-Role Modeling. Figure 2. An ORM schema for a boo
(CE) number. Published Book is a derived subtype

determined by the subtype definition shown at the

bottom of the figure. Review Assignment objectifies

the relationship Book is assigned for review by Person,

and is independent since an instance of it may exist

without playing any other role (one can known about a

review assignment before knowing what grade will

result from that assignment).

The internal uniqueness constraints (depicted as

bars) and mandatory role constraints (solid dots) ver-

balize as follows: Each Book is translated from at most

one Book; Each Book has exactly one Book Title; Each

Book was published in at most one Year; For each

Published Book and Year, that Published Book in

that Year sold at most one NrCopies; Each Published

Book sold at most one total NrCopies; It is possible

that the same Book is authored by more than one

Person and that more than one Book is authored by

the same Person; Each Book is authored by some

Person; It is possible that the same Book is assigned

for review by more than one Person and that more

than one Book is assigned for review by the same

Person; Each Review Assignment resulted in at most

one Grade; Each Person has exactly one Person Name;

Each Person has at most one Gender; Each Person has

at most one Person Title; Each Person Title is restrict-

ed to at most one Gender.
k publishing domain.

O

1946O Object-Role Modeling
The external uniqueness constraint (circled bar)

indicates that the combination of BookTitle and Year

applies to at most one Book. The acyclic ring constraint

(circle with three dots and a bar) on the book translation

predicate indicates that no book can be a translation of

itself or any of its ancestor translation sources. The

exclusion constraint (circled cross) indicates that no

book can be assigned for review by one of its authors.

The frequency constraint (� 2) indicates that each book

that is assigned for review is assigned for review by at

least two persons. The subset constraint (circled subset

symbol)means that if a person has a title that is restricted

to some gender, then the person must be of that gender.

The first argument of this subset constraint is a person-

gender role pair projected from a join path that performs

a conceptual join on PersonTitle. The last two lines at the

bottom of the schema declare two derivation rules, one

specified in attribute-style using role names and the

other in relational style using predicate readings.

Key Applications
ORM has been used productively in industry for over

30 years, in all kinds of business domains. Commercial

tools supporting the fact-oriented approach include

Microsoft’s Visio for Enterprise Architects, and the

FCO-IM tool CaseTalk (www.casetalk.com). CogNIAM,

a tool supporting NIAM2007 is under development at

PNA Active Media (http://cogniam.com/). Free ORM

tools include VisioModeler and Infagon (www.mattic.

com). Dogma Modeler (www.starlab.vub.ac.be) and

T-Lex [15] are academicORM-based tools for specifying

ontologies. NORMA (http://sourceforge.net/projects/

orm), an open-source plug-in to Microsoft1 Visual

Studio, is under development to provide deep support

for ORM 2 [3].

Future Directions
Research in many countries is actively extending ORM

in many areas (e.g., dynamic rules, ontology exten-

sions, language extensions, process modeling). A de-

tailed overview of this research may be found in [9].

General information about ORM, and links to other

relevant sites, may be found at www.ORMFoundation.

org and www.orm.net.

Cross-references
▶Conceptual Schema Design

▶Data Model
▶ Entity Relationship Model

▶UML
Recommended Reading
1. Bakema G., Zwart J., and van der Lek H. Fully Communication

Oriented Information Modelling. Ten Hagen Stam, The

Netherlands, 2000.

2. Bloesch A. and Halpin T. Conceptual queries using ConQuer-II.

In Proc. 16th Int. Conf. on Conceptual Modeling, 1997,

pp. 113–126.

3. Curland M. and Halpin T. Model Driven Development with

NORMA. In Proc. 40th Annual Hawaii Int. Conf. on System

Sciences, 2007.

4. Embley D., Kurtz B., and Woodfield S. Object-Oriented Systems

Analysis: A Model-Driven Approach. Prentice Hall, Englewood

Cliffs, 1992.

5. Falkenberg E. Concepts for modeling information. In Proc. IFIP

Working Conference on Modelling in Data Base Management

Systems, 1976, pp. 95–109.

6. Halpin T. Comparing metamodels for ER, ORM and UML data

models. In Advanced Topics in Database Research, vol. 3, K. Siau

(ed.). Idea Publishing Group, Hershey, 2004, pp. 23–44.

7. Halpin T. Fact-oriented modeling: past, present and future. In

Conceptual Modelling in Information Systems Engineering,

J. Krogstie A. Opdahl S. Brinkkemper (eds.). Springer, Berlin

Heidelberg New York, 2007, pp. 19–38.

8. Halpin T. and Curland M. Automated verbalization for

ORM 2. In On the Move to Meaningful Internet Systems

2006: OTM 2006 Workshops, LNCS vol. 4278, 2006,

pp. 1181–1190.

9. Halpin T., Evans K., Hallock P., and MacLean W. Database

Modeling with Microsoft1 Visio for Enterprise Architects. Mor-

gan Kaufmann, San Francisco, CA, 2003.

10. Halpin T. and Morgan T. Information Modeling and Relational

Databases, 2nd Edition. Morgan Kaufmann, San Francisco,

CA, 2008.

11. Meersman R. (1982) The RIDL conceptual language, Research

report. International Centre for Information Analysis Services,

Control Data Belgium, Brussels, 1982.

12. Nijssen G.M. Current issues in conceptual schema concepts. In

Proc. IFIP Working Conference on Modelling in Data Base

Management Systems, 1977, pp. 31–66.

13. OMG 2007, Semantics of Business Vocabulary and Business

Rules (SBVR). URL: http://www.omg.org/cgi-bin/doc?dtc/

2006-08-05.

14. ter Hofstede A.H.M., Proper H.A., and Weide th.P. van der.

Formal definition of a conceptual language for the descrip-

tion and manipulation of information models. Inf. Syst.,

18(7):489–523, 1993.

15. Trog D., Vereecken J., Christiaens S., De Leenheer P., and

Meersman R. T-Lex: a role-based ontology engineering tool.

In On the Move to Meaningful Internet Systems 2006:

OTM 2006 Workshops, LNCS vol. 4278, 2006, pp. 1191–1200.

16. Wintraecken J. (1990) The NIAM Information Analysis

Method: Theory and Practice, Kluwer, Deventer, The Nether-

lands, 1990.

One-Copy-Serializability O 1947
OCL

▶Object Constraint Language
ODB (Object Database)

▶Object Data Models
ODBC

▶Open Database Connectivity
Office Automation

▶ Enterprise Content Management
Oid

▶Object Identity
O
OKAPI Retrieval Function

▶BM25
OLAP

▶On-Line Analytical Processing
On-Disk Security

▶ Storage Security
One-Copy-Serializability

BETTINA KEMME

McGill University, Montreal, QC, Canada

Synonyms
Transactional consistency in a replicated database
Definition
While transactions typically specify their read and

write operations on logical data items, a replicated

database has to execute them over the physical data

copies. When transactions run concurrently in the

system, their executions may interfere. The replicated

database system has to isolate these transactions. The

strongest, and most well-known correctness criterion

for replicated databases is one-copy-serializability.

A concurrent execution of transactions in a replicated

database is one-copy-serializable if it is equivalent to a

serial execution of these transactions over a single

logical copy of the database.

Key Points
A transaction is a sequence of read and write opera-

tions on the data items of the database. A read opera-

tion of transaction Ti on data item x is denoted as ri(x),

a write operation on x as wi(x). A transaction Ti either

ends with a commit ci (all operations succeed) or with

an abort ai (whereby all effects on the data are undone

before the termination).

A replicated database consists of a set of data-

base servers A, B, ... and each logical data item x of

the database has a set of physical copies xA, xB, ... where

the index refers to the database server on which the

copy resides. Replica Control translates each operation

oi(x),oi 2{r,w} of a transaction Ti on data item x into

operations oi(x
A),oi(x

B) on physical data copies. Given

a set of transactions T , a replicated history RH

describes the execution of these transactions in the

replicated database. For simplicity the following dis-

cussion only considers histories where all transactions

commit. A database server A executes the subset of

operations of the transactions in T performed on

copies residing on A. The local history RHA describes

the order in which these operations occur. For simplic-

ity a local history is assumed to be a total order. RH is

the union of all local histories with some additional

ordering. In particular, if a transaction Ti executes oi(x)

before oi(y), and RHA contains oi(x
A) and RHB con-

tains oi(y
B), then oi(x

A) < RH oi(y
B).

As an example, givenT1 = w1(y)w1(x) and T2 = r2(y)

w2(x), and database servers A and B, both having a

copy of both x and y, the local histories could be:

RHA : w1ðy AÞr2ðy AÞw1ðx AÞw2ðx AÞc1c2

RHB : w1ðy BÞw1ðx BÞw2ðx BÞc2c1

1948O One-Pass Algorithm
The replicated history RH is the union of these two

local histories plus the ordering of r2(y
A) < RH w2(x

B).

Using this notation, the following defines one-

copy-serializability for the case that replica control

uses ROWA (read-one-write-all-approach), i.e., where

each read operation is performed on one copy

while write operations are performed on all copies of

the data item. Failures are ignored. In this restricted

case conflict-equivalence can be exploited. Two opera-

tions oi and oj conflict, if they are from two different

transactions, access the same data copy, and at least

one is a write operation.

Definition A replicated history RH over a set of

transactions T in a replicated system with servers

A, B,...is one-copy-serializable if it is conflict-equivalent

to a serial history H over T in a single-copy system with

one logical server L. This means that if oi(x
A), oj(x

A) 2
RH and the operations conflict, then oi(x

L) <H oj(x
L) 2

H if and only if oiðxAÞ<RHA ojðxAÞ 2 RH .

Using conflict-equivalence, one can easily deter-

mine whether RH is one-copy-serializable. For each

local history RHA the serialization graph SG(RHA)

has each committed transaction as node, and contains

an edge from Ti to Tj if oiðxAÞ<RHA ojðxAÞ and the two

operations conflict. The serialization graph SG(RH) is

then the union of the local serialization graphs.

Theorem A replicated history RH over a set of trans-

actions T and database servers A, B,...following the

ROWA strategy is one-copy-serializable if and only if

its serialization graph SG(RH) is acyclic.

The example history above is one-copy-serializable

because its serialization graph contains only an edge

from T1 to T2, i.e., in all local histories, and for any

conflict between T1 and T2, T1’s operations are ordered

before T2’s operation.

As soon as node failures are considered or both

read and write operations only access a subset of

copies, conflict-equivalence is not appropriate any-

more because it might miss catching conflicts at

the logical level. For that purpose, one can define

one-copy-serializability based on view-equivalence

which observes which data versions a read operation

accesses and in which order write operations occur.

Cross-references
▶Replica Control

▶Replicated Database Concurrency Control

▶ Strong Consistency Models for Replicated Data
▶Traditional Concurrency Control for Replicated

Databases
Recommended Reading
1. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

control and recovery in database systems. Addison Wesley,

USA, 1987.
One-Pass Algorithm

NICOLE SCHWEIKARDT

Johann Wolfgang Goethe-University, Frankfurt am

Main, Frankfurt, Germany

Synonyms
One-pass algorithm; Streaming algorithm; Data

stream algorithm

Definition
A one-pass algorithm receives as input a list of data

items x1, x2, x3,.... It can read these data items only

once, from left to right, i.e., in increasing order of the

indices i = 1, 2, 3,.... Critical parameters of a one-pass

algorithm are (1) the size of the memory used by the

algorithm, and (2) the processing time per data item xi.

Typically, a one-pass algorithm is designed for answer-

ing one particular query against the input data. To this

end, the algorithm stores and maintains a suitable data

structure which, for each i, is updated when reading

data item xi.

The two parameters processing time per data item

and memory size are usually measured as functions

depending on the size N of the input (different mea-

sures of the input size are considered in the literat-

ure, among them, e.g., the number of data items

occurring in the input, as well as the total number

of bits needed for storing the entire input). The ultimate

goal when designing a one-pass algorithm is to keep the

processing time per data item and the memory size sub-

linear, preferably polylogarithmic, in N. In particular,

one typically aims at algorithms whose memory size is

far smaller than the size of the input.

Key Points
The design and study of one-pass algorithms has a long

tradition in many areas of computer science. For

On-Line Analytical Processing O 1949

O

example, they are used in the area of data stream

processing, where streams of huge amounts of data

have to be monitored on-the-fly without first storing

the entire data. A deterministic finite automaton on

words can be viewed as a (very simple) example of a

one-pass algorithm whose memory size and processing

time per data item is constant, i.e., does not depend on

the input size. For most computational problems,

however, the amount of memory necessary for solving

the problem grows with increasing input size. Lower

bounds on the memory size needed for solving a prob-

lem by a one-pass algorithm are usually obtained by

applying methods from communication complexity

(see, e.g., [1,2] for typical examples).

For many concrete problems it is even known that

the memory needed for solving the problem by a

deterministic one-pass algorithm is at least linear in

the size N of the input. For some of these problems,

however, randomized one-pass algorithms can still

compute good approximate answers while using mem-

ory of size sublinear in N (cf. [1,2,3]). Typically, such

algorithms are based on sampling, i.e., only a ‘‘repre-

sentative’’ portion of the data is taken into account,

and random projections, i.e., only a rough ‘‘sketch’’ of

the data is stored in memory (see [3] for a comprehen-

sive survey of according algorithmic techniques).

In the context of database systems these techniques

are relevant, for example, for maintaining information

needed for cost-based query optimization, e.g., esti-

mates for the number of distinct values of an attribute,

or the self-join size of a database relation. Efficient

one-pass algorithms for incrementally updating these

estimates can be found in [1].

In some application areas, rather than just a single

pass, a small number P of sequential passes over the data

may be available; the resulting algorithms are called

multi-pass algorithms (see e.g., [2] for an analysis of

the trade-off between the memory size and the number

of passes necessary for solving particular problems).

Cross-references
▶Approximate Query Processing

▶Clustering on Streams

▶Data Stream

▶Data Sketch/Synopsis

▶ Event and Pattern Detection over Streams

▶ Stream Processing

▶XML Stream Processing
Recommended Reading
1. Alon N., Matias Y., and Szegedy M. The space complexity of

approximating the frequency moments. J. Comput. Syst. Sci.,

58:137–147, 1999.

2. Henzinger M., Raghavan P., and Rajagopalan S. Computing on

data streams. In External Memory Algorithms. DIMACS Series

in Discrete Mathematics and Theoretical Computer Science 50.

American Mathematical Society, Boston, MA, USA, 1999,

pp. 107–118.

3. Muthukrishnan S. Data streams: algorithms and applications.

Found. Trends Theor. Comput. Sci., 1(2):117–236, 2005.
One-Way Hash Functions

▶Hash Functions
Online Advertising

▶Web Advertising
On-Line Analytical Processing

ALBERTO ABELLÓ, OSCAR ROMERO

Polytechnic University of Catalonia, Barcelona, Spain

Synonyms
OLAP

Definition
On-line analytical processing (OLAP) describes an

approach to decision support, which aims to extract

knowledge from a data warehouse, or more specifically,

from data marts. Its main idea is providing navigation

through data to non-expert users, so that they are able

to interactively generate ad hoc queries without the

intervention of IT professionals. This name was intro-

duced in contrast to on-line transactional processing

(OLTP), so that it reflected the different requirements

and characteristics between these classes of uses. The

concept falls in the area of business intelligence.

Historical Background
From the beginning of computerized data manage-

ment, the possibility of using computers in data analy-

sis has been evident for companies. However, early

1950O On-Line Analytical Processing
analysis tools needed the involvement of the IT depart-

ment to help decision makers to query data. They were

not interactive at all and demanded specific knowledge

in computer science. By the mid-1980s, executive

information systems appeared introducing new graph-

ical, keyboard-free interfaces (like touch screens).

However, executives were still tied to IT profession-

als for the definition of ad hoc queries, and prices

of software and hardware requirements where prohib-

itive for small companies. Eventually, cheaper and

easy-to-use spreadsheets became very popular among

decision makers, but soon it was clear that they were

not appropriate for using and sharing huge amounts of

data. Thus, it was in 1993 that Codd et al. [2], coined

the term OLAP. In that report, the authors defined 12

rules for a tool to be considered OLAP. These rules

caused heated controversy, and they did not succeed as

Codd’s earlier proposal for relational database man-

agement systems (RDBMS). Nevertheless, the name

OLAP became very popular and is broadly used.

Although the name OLAP comes from 1993 and

the idea behind them goes back to the 1980s, there is

not a formal definition for this concept, yet. As pro-

posed by Nigel Pendse [6], OLAP tools should pass the

FASMI (fast analysis of shared multidimensional infor-

mation) test. Thus, they should be fast enough to allow

interactive queries; they should help analysis task by

providing flexibility in the usage of statistical tools and

what–if studies; they should provide security (both in

the sense of confidentiality and integrity) mechanisms

to allow sharing data; they should provide a multidi-

mensional view so that the data cube metaphor can be

used by users; and, finally, they should also be able to

manage large volumes of data (gigabytes can be con-

sidered a lower bound for volumes of data in decision

support) and metadata. However, there are not mea-

sures and thresholds for all these characteristics in

order to be able to establish whether one of them is

fulfilled or not, and therefore it is always arguable that

a given tool fulfills them. Nevertheless, it is generally
On-Line Analytical Processing. Figure 1. Comparing OLTP V
agreed that in order to be considered an OLAP tool, it

must offer a multidimensional view of data.

Since their first days, OLAP tools have been losing

weight and lowering prices, while at the same time,

offering more functionality, better user interfaces and

easier administration. Thus, time has come for small

companies to use OLAP. They can afford it and they

are willing to use it in their decision processes. Part of

OLAP industry was associated into the OLAP Council

(created in January 1995), whose aim was the promo-

tion and standardization of OLAP terminology and

technology. However, some major vendors never

became members of this council, so eventually it dis-

appeared (last news date from 1999). Nowadays, there

is no standardization institution specifically devoted to

OLAP. Therefore, it seems difficult to have a standard

data model and query language in the near future,

despite the fact that it is clearly desirable.

Foundations
OLAP environments have completely different require-

ments, compared to OLTP. Figure 1 summarizes the

main differences. Firstly, their usage is different. While

OLTP systems are conceived to solve a concrete prob-

lem and are used in the daily work of companies,

OLAP systems are used in decision support. Thus, in

the first case, since the addressed problem can be

completely specified, the workload of the system is

clearly predefined. Conversely, a decision support sys-

tem aims to solve new problems every day. Therefore,

ad hoc queries are executed. OLTP systems read as well

as write data, while OLAP systems are considered read-

only, because decision makers do not directly modify

data. Nevertheless, the queries in a decision support

system are much more complex, since they usually

include big volumes of information processed by join-

ing several tables, grouping data and calculating func-

tions. Queries in OLTP systems do not usually involve

volumes of data of the same magnitude, neither as

many tables, nor groupings or calculations. The
ersus OLAP.

On-Line Analytical Processing O 1951

O

number of records in OLTP operations can be esti-

mated as tens or hundreds at most, while OLAP

queries usually involve thousands or even millions of

records. Finally, the number of users is also different in

both kinds of systems. OLTP systems can have

thousands or millions of users (like in the case of

cash machines), while OLAP systems have tens or

maybe hundreds of users.

The main characteristic of OLAP is multidimen-

sionality. The data cube metaphor is used to make

user interaction easier and closer to decision makers’

way of thinking, who would probably find SQL or any

other text-based query language hard to understand

and error prone. Thus, it is much easier for them

to think in terms of the multidimensional model,

where a Fact is a subject of analysis and its Dimensions

are the different points of view that analysts could use

to study the Fact. In this way, the instances of a Fact are

shown in an n-dimensional space usually called Cube

or Hypercube.

In order to show n-dimensional Cubes in two-

dimensional interfaces, Cross-tabs or Statistical Tables

such as the one in Fig. 2 (its data is entirely fictitious)

are used. While in relational tables it is found that fixed

columns and different instances are shown in each row,

in Cross-tabs both columns and rows are fixed and

interchangeable. In this example, you see three dimen-

sions (i.e., Product, Place, and Year) that show the

different points of view to analyze the OLAP tools

market.

Multidimensionality is based on this fact-dimension

dichotomy. A Dimension is considered to contain a

hierarchy of aggregation levels representing different

granularities (or levels of detail) to study data, and an

aggregation level to contain descriptive attributes. On

the other hand, a Fact contains quantitative attributes

that are called measures. Dimensions of analysis arrange

the multidimensional space where the Fact of study is

depicted. Each instance of data is identified (i.e., placed

in the multidimensional space) by a point in each of its
On-Line Analytical Processing. Figure 2. Example of

cross-tab or statistical table representation of a

2 � 2 � 2 data cube.
analysis dimensions. Two different instances of data

cannot be spotted in the same point of the multidimen-

sional space. Therefore, given a point in each of the

analysis dimensions they only determine one, and just

one, instance of factual data. Moreover, data summari-

zation that is performed must be correct, i.e., aggregated

categories must be a partition (complementary and dis-

joint) and the kind of measure, aggregation function,

and the dimension along which data is aggregated must

be compatible. For example, stock, sum and time are not

compatible, since stock measures cannot be added along

temporal dimensions.
Operations

Unfortunately, there is no consensus on the set of

multidimensional operations and how to name them.

However, [10] provides a comparison of algebraic pro-

posals in the academic literature, as well as a set of

operations subsuming all of them. A sequence of these

operations is known as an OLAP session. An OLAP

session allows transformation of a starting query into

a new query. Figure 3 draws the transitions generated

by each one of these operations (circles and triangles

represent different attributes for Fact instances):

1. Selection or dice. By means of a logic predicate over

the dimension attributes, this operation allows

users to choose the subset of points of interest out

of the whole n-dimensional space (Fig. 3a).

2. Roll-up. Also called ‘‘Drill-up’’, it groups cells in a

Cube based on an aggregation hierarchy. This op-

eration modifies the granularity of data by means

of a many-to-one relationship which relates

instances of two aggregation levels in the same

Dimension, corresponding to a part-whole rela-

tionship (Fig. 3b from left to right). For example,

it is possible to roll-up monthly sales into yearly

sales moving from ‘‘Month’’ to ‘‘Year’’ aggregation

level along the temporal dimension.

3. Drill-down. This is the counterpart of Roll-up. Thus,

it removes the effect of that operation by going down

through an aggregation hierarchy, and showing

more detailed data (Fig. 3b from right to left).

4. ChangeBase. This operation reallocates exactly the

same instances of a Cube into a new n-dimensional

space with exactly the same number of points

(Fig. 3c). Actually, it allows two different kinds of

changes in the space: rearranging the multidimen-

sional space by reordering the Dimensions, inter-

changing rows and columns in the Cross-tab (this

On-Line Analytical Processing. Figure 3. Schema of operations on cubes.

1952O On-Line Analytical Processing
is also known as Pivoting), or adding/removing

dimensions to/from the space.

5. Drill-across. This operation changes the subject of

analysis of the Cube, by showing measures regard-

ing a new Fact. The n-dimensional space remains

exactly the same, only the data placed in it change

so that new measures can be analyzed (Fig. 3d). For

example, if the Cube contains data about sales, this

operation can be used to analyze data regarding

production using the same Dimensions.

6. Projection. It selects a subset of measures from those

available in the Cube (Fig. 3e).

7. Set operations. These operations allow users to oper-

ate two Cubes defined over the same n-dimensional

space. Usually, Union (Fig. 3f), Difference and

Intersection are considered.

This set of algebraic operations is minimal in the sense

that none of the operations can be expressed in terms

of others, nor can any operation be dropped without

affecting functionality (some tools consider that the set

of measures of a Fact conform to an artificial analysis

dimension, as well; if so, Projection should be removed

from the set of operations in order to be considered

minimal, since it would be done by Selection over

this artificial Dimension). Thus, other operations
can be derived by sequences of these. It is the case

of Slice (which reduces the dimensionality of the

original Cube by fixing a point in a Dimension) by

means of Selection and ChangeBase operations. It is

also common that OLAP implementations use the

term Slice&Dice to refer to the selection of fact instances,

and some also introduce Drill-through to refer to direct-

ly accessing the data sources in order to lower the aggre-

gation level below that in the OLAP repository or

data mart.

Declarative Languages

There are some research proposals of declarative

query languages for OLAP. Cabibbo and Torlone [1]

propose a graphical query language, while Gyssens and -

Lakshmanan [3] propose a calculus. From the industry

point of view, MDX (standing for multidimensional

expressions) [5] is the de facto standard. It was intro-

duced in 1997, and in spite of the specification being

owned by Microsoft, it has been widely adopted. Its

syntax resembles that of SQL:

[WITH <MeasureDefinition>+]

SELECT <DimensionSpecification>+

FROM <CubeName>

[WHERE <SlicerClause>]

On-Line Analytical Processing O 1953

O

However, its semantics are completely different.

Roughly speaking, an MDX query gets the instances

of a given Cube stated in the FROM clause and places

them in the space defined by the SELECT clause.

Moreover, complex calculations can be defined in

the WITH clause, and the dimensions not used in the

SELECT clause can be sliced in the WHERE clause (if

not explicitly sliced, it is assumed that dimensions that

do not appear in the SELECT are sliced at the higher

aggregation level: All).

WITH MEMBER [Measures].[pending] AS

‘[Measures].[Units Ordered]-[Mea-

sures].[Units Shipped]’ SELECT

{[Time].[2006].children} ON COLUMNS,

{[Warehouse].[Warehouse Name].mem-

bers} ON ROWS

FROM Inventory

WHERE ([Measures].[pending],[Trade-

mark].[Acme]);

In the previous MDX query, an ad hoc measure ‘‘pend-

ing’’ is first defined as the difference between units

ordered and shipped. Then, the children of the

instance representing year 2006 (i.e., the 12 months

of that year) are placed on columns, and the different

members of the aggregation level ‘‘Warehouse Name’’

on rows. Now, this matrix is filled with the data in

‘‘Inventory’’ cube, showing the previously defined

measure ‘‘pending’’ and slicing ‘‘Acme’’ trademark.

Key Applications
Managers are usually not trained to query databases by

means of SQL. Moreover, if the query is relatively

complex (several joins and subqueries, grouping, and

functions) and the database schema is not small (with

maybe hundreds of tables), using interactive SQL

could be a nightmare even for SQL experts. Thus,

OLAP is used to ease the tasks of these managers in

extracting knowledge from the data warehouse by

means of Drag&Drop, instead of typing SQL queries

by hand.

OLAP market is estimated around US$ 6 billion in

2006, which is mainly devoted to decision making.

However, this paradigm can also be used in any

other field with non-expert users, where schemas and

queries are relatively complex. For example, its usage

is under investigation in bioinformatics [8], and the

semantic web [9].
Future Directions
OLAP is used to extract knowledge from the data

warehouse. Data mining tools can also be used for

this purpose. Until now, both research communities

have been evolving separately. The former must be

interactive, while the latter presents computational

complexity problems. However, it seems promising

to integrate both kinds of tools so that one can

benefit from the other [4]. Some tools like Microsoft

Analysis Services already integrate them in some

way. Nevertheless, there is still much work to do in

this field.

On the other hand, security is usually a flaw in data

warehousing projects. Reference [7] contains a survey

of OLAP security problems. In the past, OLAP tools

used to have just a few users and all of them had high

responsibilities in the organization, so this was not

really a concern in the sense of confidentiality. Nowa-

days, with the increase in potential users of OLAP

systems inside as well as outside the organization,

security has emerged as a priority in these projects.

Moreover, personal data (like those of customers) are

usually analyzed in almost all companies. Thus, infer-

ence control mechanisms need to be studied in data

mining as well as OLAP tools.

Other research directions in OLAP can be the

improvement of user interaction and flexibility in

the calculation of statistics, and the integration of

what–if analysis (see What–if Analysis definitional

entry).
Url to Code
Some OLAP vendors:

1. Microsoft Analysis Services: http://www.microsoft.

com/sql/technologies/analysis/default.mspx

2. Hyperion Solutions: http://www.hyperion.com

3. Cognos PowerPlay: http://www.cognos.com/pro-

ducts/business_intelligence/analysis/index.html

4. Business Objects: http://www.businessobjects.com/

products/queryanalysis/olapaccess/businessobjects.

asp

5. MicroStrategy: http://www.microstrategy.com/

Solutions/5Styles/olap_analysis.asp

Some open source OLAP tools:

1. Mondrian: http://mondrian.pentaho.org

2. Palo: http://www.palo.net

1954O Online Handwriting
Cross-references
▶Business Intelligence

▶Cube Implementations

▶Database Management System

▶Data Mart

▶Data Mining

▶Data Warehouse

▶Dimension

▶Hierarchy

▶Hierarchical Data Summarization

▶Measure

▶Multidimensional Modeling

▶ Star Schema

▶ Summarizability

▶Visual On-Line Analytical Processing (OLAP)
Recommended Reading
1. Cabibbo L. and Torlone R. From a procedural to a visual query

language for OLAP. In Proc. 10th Int. Conf. on Scientific and

Statistical Database Management. 1998, pp. 74–83.

2. Codd E.F., Codd S.B., and Salley C.T. Providing OLAP to user-

analysts: An ITmandate. Technical Report, E. F. Codd & Associ-

ates, 1993.

3. Gyssens M. and Lakshmanan L.V.S. A foundation for multi-

dimensional databases. In Proc. 23rd Int. Conf. on Very Large

Data Bases, 1997, pp. 106–115.

4. Han J. OLAP Mining: Integration of OLAP with Data Mining.

In Proc. IFIP TC2/WG2.6 Seventh Conf. Database Semantics,

1997, pp. 3–20.

5. Microsoft.Multidimensional Expressions (MDX)Reference. Avail-

able at http://msdn2.microsoft.com/en-us/library/ms145506.aspx,

2007. SQL Server books online.

6. Pendse N. The OLAP Report – What is OLAP? Available at

http://www.olapreport.com/fasmi.html, 2007. Business Applica-

tion Research Center.

7. Priebe T. and Pernul G. Towards OLAP Security Design –

Survey and Research Issues. In Proc. ACM Int. Workshop

on Data Warehousing and OLAP, 2000, pp. 33–40.

8. Rahm E., Kirsten T., and Lange J. The GeWare data warehouse

platform for the analysis of molecular-biological and clinical

data. J. Integr. Bioinformat., 1(4):47, 2007.

9. Romero O. and Abelló A. Automating Multidimensional

design from ontologies. In Proc. ACM Int. Workshop

on Data Warehousing and OLAP, 2007, pp. 1–8.

10. Romero O. and Abelló A. On the need of a reference algebra for

OLAP. In Proc. Int. Conf. on Data Warehousing and Knowledge

Discovery, 2007, pp. 99–110.
Online Handwriting

▶ Electronic Ink Indexing
Online Recovery

▶Crash Recovery
Online Recovery in Parallel Database
Systems

RICARDO JIMENEZ-PERIS

Universidad Politecnica de Madrid, Madrid, Spain

Synonyms
High availability; Continuous availability; 24x7

operation
Definition
Replication (also known as clustering) is a technique to

provide high availability in parallel and distributed

databases. High availability aims to provide continu-

ous service operation. High availability has two faces.

On one hand, it provides fault-tolerance by introdu-

cing redundancy in the form of replication, that is,

having multiple copies or replicas of the data at differ-

ent sites. On the other hand, since sites holding the

replicas may crash and/or fail, in order to keep a given

degree of availability, failed or new replicas should be

reintroduced into the system. Introducing new replicas

requires transferring to them the current state in a

consistent fashion (known as recovery). A simple solu-

tion to this problem is offline recovery, that is, in order

to obtain a quiescent state, request processing is sus-

pended, then the state is transferred from a working

replica (termed recoverer replica) to the new replica

(recovering replica) and finally, request processing is

resumed. Unfortunately, offline recovery results in a

loss of availability, which defeats the original goal of

replication, that is to provide high availability. The

alternative is online recovery, in which transaction pro-

cessing is not stopped while the recovery is performed.

The main challenge for online recovery is to attain

consistency, since the state to be transferred to the

recovering replica(s) is a moving target. While the

recovery takes place, new transactions are processed

and the state evolves during the recovery itself. Online

recovery needs to be coordinated with the replica con-

trol protocol to enforce consistency.

Online Recovery in Parallel Database Systems O 1955

O

Historical Background
Recovery is used in centralized databases to bring the

database to a consistent state after a crash [1]. The

consistency is attained by ensuring that the updates

of committed transactions are reflected in the database

and the updates of uncommitted (aborted) transac-

tions are not reflected in it. In clustered databases,

centralized recovery is used to bring a failed replica to

a local consistent state, but then, since other working

replicas may have processed transactions, centralized

recovery is not sufficient and it has to be followed by a

replica recovery [11]. During replica recovery, the

failed replica (or a fresh new one) recovers the current

state from the working replicas. What is meant by

current state the state reflecting all the updates from

transactions that will not be processed by the

recovering replica, and not reflecting any of the

updates from transactions that will be processed by

the recovering replica after recovery. A failed replica

only needs to recover the missed updates, while a new

replica needs to recover the full database.

The seminal paper on online recovery for clustered

databases is [8]. In this paper, a suite of protocols for

online recovery is proposed. One of the protocols lies

in a locking-based online recovery. The full database is

locked atomically using recovery locks, a special kind

of read lock. This guarantees a quiescent state of the

database. Then, the recovery locks are released as data

is transferred to the recovering replica. The atomic

setting of the recovery locks acts as a synchronization

point. All update requests processed before the recov-

ery lock setting should be reflected in the transferred

state. Requests submitted after the recovery locks are

set should be processed by the recovering replica after

recovery finishes. This protocol lies inbetween offline

and online recovery. In the beginning, all the data are

locked, and therefore the database is unavailable. This

situation improves as recovery progresses, since recov-

ery locks are released and the corresponding data be-

come available. Another online recovery protocol

proposed in [8] is a multi-round recovery. In this

protocol, the state to be transferred (missed updates)

to the recovering replica is sent in rounds. The first

round would contain all the updates missed until the

start of recovery. In the second round, the updates

performed during the first round are sent, and so on.

When the number of updates performed during the

last round is small enough, a last round is run. During

the last round, the recovering replica has to store all
client requests to process them after finishing recovery.

This recovery protocol if fully online and also signifi-

cantly reduces the number of transactions to be stored

during recovery, since it is only during the last round

that the recovering replica has to store incoming trans-

actions (typically only the resulting updates from them).

Another piece of work on online recovery was pre-

sented in [5]. This paper describes a log-based online

recovery protocol in which a failed replica receives the

prefix of the log corresponding to the update transac-

tions it has missed. Since the log grows as the recovery

progresses, the protocol has a special handshake proto-

col to finish recovery. The recoverer traverses the log

from the first transaction the failed replica missed until

it reaches the end of the log. At this point, the end

recovery handshake protocol is started to determine

which will be the last transaction to be sent as part of

the recovery. The recovering replica starts storing

requests that follow this transaction to process them

after recovery finishes.

Online recovery has also been used for replicated

data warehouses across the Internet [9]. In this work,

each replica is located at an autonomous organization

and exhibits an interface to execute queries. The online

recovery protocol exploits the underlying architecture

and performs recovery by issuing queries from the

recovering replica to the working replicas. It also

takes advantage of a facility for historical queries that

enables executing a read only query providing a time-

stamp T. This historical query will return the same

results as it happened at time T. The recovery protocol

has 3 phases. In the first phase, the recovering site

determines the latest time T for which it has all the

committed updates. In the second phase, the

recovering site runs historical queries at working repli-

cas (that act as recoverer replicas) with a timestamp

between the recovery point and a time closer to the

present to catch up missed updates. Historical queries

do not set read locks, and therefore do not block

updates at the recoverer sites. In the final phase, a

regular query (non-historical) is run to get the latest

updates. In this case, read locks are set to guarantee the

consistency.

Online recovery has also been studied in other

contexts, such as diverse data replication and Byzan-

tine data replication. In diverse data replication [4],

each replica runs a database from a different vendor.

This approach enables tolerating software failures since

it has been observed that bugs in one product typically

1956O Online Recovery in Parallel Database Systems
do not appear in a database from a different vendor

[4]. In diverse data replication, recovery is slightly

more complex, since it requires using a common ab-

stract representation of the data. This might need some

tuple translation during recovery in order to align

fields with slightly different types.

Byzantine data replication [17] tolerates intrusions

and provides continuous correct service despite them.

An intrusion happens at a site when it is attacked. This

site may behave arbitrarily to disrupt service provision.

Intrusions are modeled as Byzantine (also known as

arbitrary) failures. Byzantine replication typically

resorts to diverse data replication to avoid common

vulnerabilities. Typically tolerating f Byzantine failures

requires 3 � fþ1 replicas. Byzantine data replication has

a more involved recovery, since it should also mask

Byzantine recoverers. This means that a sufficient

number of recoverers is needed in order to mask

Byzantine failures during recovery [2]. An additional

issue in Byzantine fault tolerance is that once one

replica has been successfully attacked, another one

can be attacked, and so on. In order to reduce the

window of vulnerability, proactive recovery has been

proposed [2]. This approach recovers replicas proac-

tively without waiting until they are crashed or

attacked. During recovery, the recovering replica

boots from read-only media and recovers the state

from working replicas using a Byzantine recovery pro-

tocol. During recovery, the state is transferred from

multiple working replicas to be able to tolerate Byzan-

tine (attacked) recoverers. Replicas are recovered in a

round-robin fashion forced by a reboot provoked by a

hardware watchdog. In this way, even if a replica has

been attacked silently (without the system and admin-

istrator noticing it), it will become operative again,

thus, reducing the window of vulnerability of the

system.

Foundations
High availability consists of two inseparable aspects.

On one hand, it requires the ability to tolerate failures.

This is typically achieved by introducing redundancy

in the form of replication. However, in order to keep a

given degree of availability, the ability to recover failed

(or new) replicas is also necessary. Recovering failed

replicas requires obtaining a quiescent state from a

working replica (or recoverer replica) and transferring

it to the new replica (or recovering replica). This quies-

cent state can be easily obtained by stopping transaction
processing. This results in offline recovery. Although

offline recovery guarantees the consistency of recovery,

its major drawback is that it results in a loss of avail-

ability during the recovery process that defeats the

original goal of replication, which is to provide high

availability. The alternative is online recovery, that is, to

transfer the state to a recovering replica without stop-

ping transaction processing.

Replication can be used to provide scalability in

addition to providing availability. In this case, availabil-

ity results insufficient as a metrics to express the good-

ness of a recovery protocol [5]. Performability becomes

a more appropriate metrics in this context. Performabil-

ity is defined as the cumulative performance of a highly

available system over a period of time in the presence of

failures and recoveries. To understand why it is impor-

tant, an extreme situation will be illustrated. A replicated

system has a throughput of 1000 transactions per second

(tps). During online recovery the system remains avail-

able, but its throughput decreases to 1 tps. Although this

system is available, it is clearly worse than a system that

would deliver 990 tps during the online recovery (assum-

ing that online recovery takes the same amount of time in

both systems). However, when comparing the perform-

ability of both systems during online recovery, the former

system would offer a very poor performability, while the

second would offer a very high one close to the one in

which the system is not recovering any replica.

Online recovery protocols typically consist of five

phases:

1. Local Recovery brings the local state to a consistent

state by means of centralized recovery.

2. Find Last Committed Update Transaction deter-

mines the last update transaction reflected in the

local state.

3. Global Recovery Start initiates online recovery tak-

ing care of obtaining a quiescent state from one or

more working replicas to be transferred to the

recovering replica.

4. Global Recovery transfers a quiescent state from a

working replica to the recovering replica.

5. Global Recovery End is the handshake protocol to

determine the end of recovery.

The first and second phases depend on whether the

recovering replica is a failed replica or a fresh new

replica. For a failed replica, the first phase is typically

performed automatically by the underlying database

system upon recovery after a crash. For a failed replica,

Online Recovery in Parallel Database Systems O 1957

O

the second phase implies traversing the log or any

other recovery information repository to find out

which was the last committed update transaction.

In most protocols, this information does not need to

be precise. It can be enough to obtain the identifier

of a committed transaction (e.g., a timestamp, log

sequence number or transaction identifier, TID) close

to the failure instant such that all previously com-

mitted transactions are also reflected in the local

state. If some updates of latter transactions are

reflected in the state, they will be rewritten during

recovery. For a fresh new replica, the first phase is

empty and the second phase first involves obtaining a

checkpoint of the database and then performing the

same processing as a failed replica. The checkpoint of

the database also needs to be obtained in an online

fashion using techniques such as point-in-time recov-

ery [16] in order to keep the system available.

In the third phase, there is some communication

between the recovering replica and the working repli-

cas. This interaction has several purposes. First, the

working replicas become aware of the new replica

wanted to join the system. Second, the recovering

replica informs the working replicas about the last

known update. Third, a recoverer is elected to transfer

the state to the recovering replica.

The fourth phase transfers the state from the recov-

er to the recovering replica. The recovery process is

synchronized with replica control to guarantee that a

quiescent state is transferred to the recovering replica.

The fifth phase aims at finishing the recovery,

which requires splitting the sequence of transactions

into two disjoint sets (the ones whose state is reflected

in the state transfer to the recovering replica, and the

ones that should be processed by the recovering replica

after finishing the recovery).

Online recovery depends on the specific features of

the replica control protocol being used, such as eager

vs. lazy, primary-backup vs. update-everywhere, ker-

nel-based vs. middleware-based replication, etc. In

eager replication, the coordination between replica

control and online recovery is very tight to guarantee

consistency [6,7,13,14,10]. In lazy replication, the co-

ordination can be looser. For instance, in a freshness-

based approach [12,3], as far as the freshness require-

ment is satisfied the coordination can be more relaxed.

In a primary-backup approach, the recovery of back-

ups is simpler since they do not execute updates on

their own, they just apply the updates coming from
the primary [15]. In update-everywhere approaches

[6,7,13,14,10] the recovery needs to be interleaved care-

fully with replica control to guarantee consistency [8,5].

In kernel-based approaches, it is possible to use

recovery protocols that use mechanisms within the ker-

nel (such as locking) [8]. However, inmiddleware-based

approaches, the recovery can only use those mechan-

isms available at the database interface [5].

In this entry, two approaches will be examined in

detail: an online recovery for kernel-based replication

based on locking [8], and an online recovery for mid-

dleware-based replication based on logging [5].

First, a locking-based online recovery approach is

studied. This approach is based on the most basic

protocol from [8]. This basic version of the protocol

transfers the full database. The recovery is coordinated

with replica control to guarantee consistency. This

coordination is materialized through locking. In what

follows, the first generic phases of online recovery for

this particular protocol are described. The first phase,

local recovery, is orthogonal to online recovery it can

just be ignored. The second phase consists in deter-

mining the last update known by the recovering repli-

ca. Since in this approach the full database is sent, this

phase does not exist.

The third phase is recovery start. The recovering

replica notifies to the working replicas that is willing to

join the system and recover. In this protocol, in order

to guarantee the quiescence of the transferred state, the

recovery is started by initiating a transaction that sets

atomically special read locks or recovery locks over all

the tuples in the database. The quiescent state to be

transferred corresponds to the state just after the atom-

ic setting of the recovery locks. The recovery then takes

place gradually. As soon as a recovery lock is granted,

the tuple is read and sent to the recovering replica.

Then, the lock is released. It should be noted that

recovery locks are read locks and therefore do not

delay read operations, only update ones. During the

recovery, the recovering replica should store the in-

coming transactions (only those involving updates)

to process them after recovery, since the associated

updates are not incorporated in the state being trans-

ferred to it.

The end-of-recovery handshake is simple in this

protocol. It is initiated after the sending of the last

tuple, and the recovery message piggybacks is marked

to indicate this fact. After receiving this message,

the recovering replica starts to process all the stored

1958O Online Recovery in Parallel Database Systems
transactions during the recovery. Depending on the

replica control in place the recovering replica will exe-

cute the update transactions, or will receive the result-

ing updates from the other replicas (which is usually

the case). In the latter case, incoming transactions do

not need to be stored-just the update propagation

messages from the other replicas.

There are many optimizations that can be per-

formed over this basic protocol as described in [8].

Batching recovery messages limit the amount of data

transferred during recovery by recording the updates

performed during recovery, shortening the amount of

updates to be stored during online recovery by using

multiple phases, etc.

The second protocol that will be described is a log-

based protocol [5]. This protocol is combined with a

pessimistic replica control implemented as a middle-

ware layer. A pessimistic replica control freely executes

non-conflictive transactions in the replicated system,

while conflictive ones are executed in the same relative

order at all replicas. The replica control protocol over

which online recovery is built is Nodo, described in

[13]. Nodo is based on the notion of conflict classes.

A transaction might access one or more conflict

classes. Each conflict class has a master replica. Each

combination of conflict classes also has a master

replica, one of the master replicas of the individual

conflict classes. Each conflict class has an associated

transaction queue. Update transactions are sent to

all replicas in the same order. Read-only transactions

are only sent to one of the replicas. Transactions are

queued in the conflict class queues relevant to them

(the ones that they read or write). When a transaction

is at the front of all the queues it has been enqueued,

the master of the conflict class combination associ-

ated to the transaction executes it locally. If the trans-

action is read-only, then the results are returned

directly to the client and removed from all the

queues. If the transaction contains updates, the master

extracts them from the database and sends them to all

other replicas. Nodo keeps a log for each individual

conflict class that is exploited by the online recovery

protocol.

The online recovery protocol for Nodo guarantees

consistent recovery by careful coordination with the

replica control protocol of Nodo. Individual conflict

classes can be recovered independently, that is, each

individual conflict class could use a different recoverer
replica. The recovery of an individual conflict class is

detailed in what follows. The first phase, local recovery,

occurs when the replica recovers. The second phase,

determining the last update reflected in the replica

state, is done by looking at the local log. The recovering

replica traverses the log to determine the identifier of

the last transaction processed for the conflict class

being recovered. This identifier is used in the fourth

phase to initiate the recovery of the conflict class. One

of the working replicas is elected as recoverer replica

for this conflict class. In the fourth phase, the recoverer

replica traverses the log of the conflict class being

recovered. The recoverer replica continues processing

updates involving this conflict class. This means that

the log grows as is being traversed. The recovering

replica just applies all the updates corresponding to

the conflict class under recovery, but will discard them,

since it is receiving them via the recovery. The recover-

er replica will eventually reach the end of the log. At

this point the fifth phase is performed to finish recov-

ery. In the end-of-recovery handshake three different

roles are involved, namely, the recoverer and

recovering replicas, and the master replica of the con-

flict class under recovery. There is a race condition,

since the master produces updates from locally exe-

cuted transactions, while the recoverer needs to know

the last update to be forwarded to the recovering

replica and the recovering replica needs to know from

which transaction it has to start to process update

transactions. When the recoverer reaches the end of

the log, it sends a request-end-of-recovery message to

all replicas (only the master needs this message in the

failure-free case). The master will then piggyback with

the next update it forwards an end-of-recovery marker.

This marker will indicate to the recoverer that this is

the last update to be sent to the recovering replica. The

marker will tell the recovering replica which is the last

update part of the recovery, and therefore it will know

fromwhich point it has to apply updates received from

the master replica.

The online recovery for Nodo, as stated before,

allows recovering conflict classes independently. In

fact, once a conflict class is recovered, the recovering

replica could become master of that class. Additionally,

several conflict classes can be recovered in parallel

using different recoverers for each of them. The online

recovery for Nodo has been designed to be adaptive.

The goal is to obtain the highest performability.

Ontologies O 1959

O

If the replicated system has a low load, the resources

employed to recover the replica are increased

(i.e., increasing the number of recoverers). If there is

a peak load, during recovery, then the resources

devoted to recovery can be decreased (i.e., decreasing

the number of recoverers). In this way, performability

is maximized. Nodo also enables dealing with over-

lapping recoveries in parallel. If a batch of sites is

recovered in a time interval, they will start recovery at

slightly different times. The recovery protocol takes

care of recovering simultaneously conflict classes for

all recovering replicas it knows. In this way, if one

replica starts recovery after another one has recovered

two conflict classes, they will perform simultaneously

the recovery of the remaining N-2 conflict classes,

being N the number of conflict classes, and alone the

recovery of the first two conflict classes. This enables a

more efficient dissemination of the recovery messages

(e.g., exploiting multicast) and efficiently recovering

batches of replicas.

Key applications
Online recovery is a crucial technique to provide true

high availability, that is, 24�7 operation. Its main

potential users are all those organizations that pro-

vide services that should be continuously available.

Among these potential users one can find enterprise

data centers, software as a service (SaaS) platforms,

services governed by service level agreements (SLAs),

services for critical infrastructures (health-care, energy,

police, etc.).

Cross-references
▶Data Replication

▶Replica control

Recommended Reading
1. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison Wesley,

1987.

2. Castro M. and Liskov B. Practical byzantine fault tolerance and

proactive recovery. ACM Trans. Comput. Syst., 20(4):398–461,

2002.

3. Gançarski S. , Naacke H., Pacitti E., and Valduriez P. The leganet

system: Freshness-aware transaction routing in a database clus-

ter. Inform. Syst., 32(2):320–343, 2007.

4. Gashi I., Popov P., and Strigini L. Fault Tolerance via

Diversity for Off-The-Shelf Products: a Study with SQL Data-

base Servers. IEEE Trans. Depend. Secur. Comput., 4(4):280–

294, 2007.
5. Jiménez-Peris R., M. Patiño-Martı́nez, and Alonso G. Non-

Intrusive, Parallel Recovery of Replicated Data. In Proc. 21st

Symp. on Reliable Distributed Syst., 2002, pp. 150–159.

6. Kemme B. and Alonso G. Don’t be lazy, be consistent:

Postgres-R, a new way to implement database replication.

In Proc. 26th Int. Conf. on Very Large Data Bases, 2000,

pp. 134–143.

7. Kemme B. and Alonso G. A New Approach to Developing and

Implementing Eager Database Replication Protocols. ACM

Trans. Database Syst., 25(3):333–379, 2000.

8. Kemme B., Bartoli A., and Babaoglu O. Online Reconfiguration

in Replicated Databases Based on Group Communication. In

Proc. Int. Conf. on Dependable Systems and Networks, 2001, pp.

117–130.

9. Lau E. and Madden S. An Integrated Approach to Recovery and

High Availability in an Updatable, Distributed Data Warehouse.

In Proc. 32nd Int. Conf. on Very Large Data Bases. 2006,

pp. 703–714.

10. Manassiev K. and Amza C. Scaling and Continuous Availability

in Database Server Clusters through Multiversion Replication.

In Proc. Int. Conf. on Dependable Systems and Networks, 2007,

pp. 666–676.

11. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems. Prentice-Hall, 2nd ed., 1999.

12. Pacitti E. and Simon E. Update Propagation Strategies to Im-

prove Freshness in Lazy Master Replicated Databases. VLDB J., 8

(3):305–318, 2000.

13. Patiño-Martı́nez M., Jiménez-Peris R., Kemme B., and Alonso G.

Middle-R: Consistent Database Replication at the Middleware

Level. ACM Trans. Comput. Syst., 23(4):375–423, 2005.

14. Pedone F., Guerraoui R., and Schiper A. The Database State

Machine Approach. Distributed and Parallel Databases, 14(1):

71–98, 2003.

15. Plattner C. and Alonso G. Ganymed: Scalable Replication for

Transactional Web Applications. In Proc. ACM/IFIP/USENIX

Int. Middleware Conf., 2004, pp. 155–174.

16. PostgreSQL PostgreSQL Point in Time Recovery. http://www.

postgresql.org/docs/8.0/interactive/backup-online.html.

17. Vandiver B., Balakrishnan H., Liskov B., and Madden S. Tolerat-

ing Byzantine Faults in Database Systems using Commit Barrier

Scheduling. In Proc. 21st ACM Symp. on Operating System

Principles, 2007, pp. 59–72.
Ontological Engineering

▶Ontology

▶Ontology Engineering
Ontologies

▶Gazetteers

1960O Ontologies and Life Science Data Management
Ontologies and Life Science Data
Management

ROBERT STEVENS
1, PHILLIP LORD

2

1University of Manchester, Manchester, UK
2Newcastle University, Newcastle-Upon-Tyne, UK

Synonyms
Knowledge management

Definition
Biology is a knowledge-rich discipline. Much of bioin-

formatics can, therefore, be characterized as knowledge

management: organizing, storing and representing that

knowledge to enable search, reuse and computation.

Most of the knowledge of biology is categorical;

statements such as ‘‘fish gotta swim, birds gotta fly’’

cannot be easily represented as mathematical or statis-

tical relationships. These statements can, however, be

formalized using ontologies: a form of model which

represents the key concepts of a domain.

Ontologies are now widely used in bioinformatics

for a variety of tasks, enabling integration and man-

agement of multiple data or knowledge sources, and

providing a structure for new knowledge as it is

created.
Historical Background
Biological knowledge is highly complex. It is charac-

terized not by the large size of the data sets that it uses,

but by the large number of data types; from relatively

simple data such as raw nucleotide sequence, through

to anatomies, systems of interacting entities, to des-

criptions of phenotype.

In addition to its natural complexity, biology has

traditionally operated as a ‘‘small science’’ – with a large

number of individual, autonomous laboratories work-

ing independently. This has resulted in highly heteroge-

neous data; in addition to the natural complexity of the

data, knowledge is often represented in many different

ways [5]. There are, for example, at least twenty different

file formats for representing DNA sequence.

Ontologies can be used to enable the knowledge

management that overcomes these two forms of com-

plexity. First, they can be used to represent complex,

categorical knowledge of the sort common in biology.

Second, by describing the heterogeneity of the repre-

sentation of knowledge, they can provide a common,
shared understanding that can be used to overcome

this heterogeneity.

In post-genomic biology, the first of these has been

the most common usage. Here, ontologies are used to

generate a controlled vocabulary; for this, the Gene

Ontology (GO) [14] provides the paragon for biological

sciences. It represents three key aspects of genetics; the

molecular function of a gene (product), the biological

process in which the product is involved, and the cellu-

lar component in which it is located. GO has been used

to annotate many genomes and has been used for

annotations in UniProt and InterPro. Following on

from the success of GO, the Open Biomedical Ontol-

ogies (OBO) now provides controlled vocabularies for

describing many aspects of biological knowledge

(http://obo.sf.net).

The second major use has been to enable access to

or querying over multiple independent data sources.

EcoCyc [8], for example, uses an ontology to provide a

schema to integrate genome, proteome data and a

number of pathway resources, while RiboWeb [1] was

a similar style of ontology driven application for stor-

ing, managing and analyzing data from experiments

on ribosomal structure. The TAMBIS system [7] used

an ontology to mediate queries to a number of differ-

ent data sources.

Most of these examples are post-hoc additions to

existing systems; GO, for example, presents knowledge

which is already present in other, less formal, represen-

tations. More recently, however, there has been a

shift to the use of ontologies as a primary representa-

tion. The MGED Ontology (MO) [17] provides a

vocabulary for reporting microarray experiments,

while the Systems Biology Ontology (SBO) (http://

www.ebi.ac.uk/sbo/) supports the representation of

systems biology models.

Over the past decade, the use of ontologies has

now become well-entrenched as a tool for organizing

and structuring biomedical knowledge and, therefore,

has become a key part of life science knowledge

management [3].

Foundations
It was recognized early in bioinformatics that there is a

massive problem with heterogeneous representations of

data [5]. Such heterogeneities, particularly at the seman-

tic level, exist both in the meanings of the structures that

hold values (the schema) and in the meanings of the

values themselves. To query or analyze meaningfully

Ontologies and Life Science Data Management O 1961

O

across data from different sources, therefore, there is a

necessary reconciliation step to enable the data to be

understood. A database, for example, might have either

separate tables for substrate or product, or just one for

reactant; as an orthogonal issue, a chemical might be

‘‘acetic acid’’ in one or ‘‘ethanoic acid’’ in another. Both

types of mis-match need to be overcome.

This heterogeneity can occur both in descriptions

of biology and also bioinformatics: it is possible to

disagree on which genes are involved in a process,

what those genes are called and what structure is used

to hold information about those genes.

Ontologies provide a computable mechanism for

working around these problems; they describe the

entities and what is known about these entities within

the data of biology, and provide a set of labels to

describe these entities and their properties. As a result,

an ontology can be used to describe the entities within

a biological database. Terms from the Gene Ontology,

for example, are used to describe the major functional

attributes of gene products in many databases; this, in

turn, allows comparative studies of genes and their

actions across species.

Ontologies need to be represented in a language;

these are often called knowledge representation lan-

guages. They have a set of language elements for de-

scribing categories (also called classes, types, concepts

or universals) of instances (also called objects, entities,

individuals or particulars). The languages vary in their

expressivity – that is, how much is it possible to say

about what these elements mean. For example, if we

state that ArB, where A and B are classes and r is a

relationship, does this mean that every A has a B

related to it by r; that for any A with a r relation, this

r is to a B; to how many B ’s can an A have a relation-

ship; that r has an inverse relationship, and so on.

Some languages allow only trees of categories to be

made, others more complex graphs. Finally, languages

differ in their computational amenability [11].

Ontologies have found a variety of uses within

bioinformatics:

" Reference Ontology: An ontology can be used simply

as a reference, encompassing what is understood

about a domain with high-fidelity. Such an ontology

is not skewed by any application bias, except that of

correctness.

" Controlled Vocabulary: The labels on the categories

in an ontology provide a vocabulary with which
discussion of those categories can be accomplished.

By committing to use that vocabulary – controlling

the words used in communication – a controlled

vocabulary is established. This is the principal means

of overcoming a large portion of heterogeneity.

" Computational Component: An ontology can form a

component in a software application. The strict seman-

tics of its representation language can be used tomake

inferences from data described in terms of that ontolo-

gy. This can simply be retrieving all the children of

a given category (all instances of a child are also

instances of the parent) to recognizing membership

of a category based on facts known about an object.
There are many technical and social difficulties

associated with using an ontology for data manage-

ment. The choice of representation language can be

key; an ontology for use as a computational compo-

nent probably needs a more computationally amena-

ble and expressive language than an ontology

intended to provide a controlled vocabulary. It is

often hard to engage with domain experts to ensure

that the ontology reflects the domain, while maintain-

ing ontological precision. There are a number of meth-

odologies for ontology building [6], but the discipline

is still nascent. Finally, adapting and updating the

ontology when it is already in use can require rigorous,

yet flexible policies.
Key Applications
Perhaps the best known ontology in biology is the

Gene Ontology (GO) [14]. It started in 1998 with an

aim of enabling queries across multiple databases for

the key aspects or properties of the genes or proteins; it

achieves this not by schema reconciliation but enabling

the augmentation of existing knowledge; in short, it is

one of the best examples of a reference ontology.

Another domain well served by reference models is

that of anatomy. The Foundational Model of Anatomy,

for example, aims to provide a ‘‘symbolic modeling of

the structure of the human body in a computable form

that is also understandable by humans’’ [12]. The aim

is that this ontology provides a common representa-

tion into which others can be mapped.

One of the early uses for ontologies was enabling

schema and value reconciliation. The TAMBIS [7]

system was an early example. It uses an ontological

representation of entities and their properties in

biology expressed in a description logic [2]. These

1962O Ontologies and Life Science Data Management
descriptions, that could be composed to more complex

concept descriptions, were then transformed to queries

against bioinformatics analysis services capable of

retrieving instances of the concepts within the ontolo-

gy. The ontology, then, could tell that the user that

a Protein might have one or more Homologs,

while the system would understand that a BLAST

search might reveal these Homologs. A concept there-

fore also defined a query plan. More recently,

the BioPAX ontology [10] provides a schema for repre-

senting biological pathway data; the different contri-

buting databases could then release knowledge in

the format. Both of these operate on the level of sche-

ma, but reconciliation to a common model also occurs

at the level of the values held within a schema.

The Gene Ontology, for example, in providing a con-

trolled vocabulary for the functional attributes of

gene products has allowed many genome resources to

use common values within their schema.

Both BioPAX and TAMBIS enabled querying

by assigning objects to categories in the ontology. Ontol-

ogies represent the properties by which objects can be

recognized to be amember of a category. If these proper-

ties are recognizable computationally, then the ontology

can beused to classify thesemembers automatically. This

approach has been used to classify the phosphatase pro-

teins from three parasite genomes [4]. A final approach

to ontological querying is to use the ontology as a

basis for statistical analysis of individuals annotated

with these ontologies. GO has been widely used for

this purpose [9,15].

Finally, ontologies have begun to be used for the

representation of metadata about primary experimen-

tal data. The MGED society has led the way with the

MGED Ontology (MO) which has been used for de-

scribing microarray data[17]. This ontology describes

a number of aspects about an experiment including:

the biological material used; experimental design and

microarray equipment. Similar work is now underway

for describing proteomics experiments [13]. These are

coming together in the Ontology for Biomedical Inves-

tigations OBI that is providing a general framework

for describing the protocols and analyses for many

different kinds of experiment [16].

Future Directions
In the past decade ontologies have come to form a

major aspect of information management in the life

sciences. The field of ontology development in the
life sciences now faces several challenges in the short

and medium term.

� The wide scope of biology is a challenge; to describe

many parts of it, also needs descriptions of closely

related areas such as chemistry, geology and

geography.

� Ontologies are starting to get very large. It is not

clear whether current methodologies are scalable,

both in terms of building, maintaining or using

them. This has many implications for the formal

expressive structures of the knowledge representa-

tion language, the ability to support modularity of

these languages, and the social processes used to

build ontologies.

� Dealing with change both as a result of the ontolo-

gy development process and, perhaps more impor-

tantly, as a result of changes in knowledge itself.

There are many different techniques for dealing

with the former situation; there are many fewer

for dealing with the latter. If datasets gathered

over a long period of time are to be understood in

the future, it may become as important to under-

stand what was thought in the past as it is to

manage the current sate of knowledge.

� Currently many ontologies deal with a single level

of granularity or the view point of a single dis-

cipline building sophisticated, computationally

amenable ontologies necessitates crossing bound-

aries of granularity and discipline. It remains, how-

ever, unclear how to integrate these sorts of

ontology.

� Ontologies currently fulfill the luxury end of

the metadata market; they can be very expensive

to build, maintain and deploy. Lower the cost

is critical. Probably the best way to achieve this

is to make them easier for domain scientists to

build which leads to a second challenge; main-

taining usability of ontologies and representa-

tion languages, while increasing their scale and

computability.

It seems clear that ontologies will be in heavy use in the

future within the life sciences. How well these chal-

lenges are answered will determine the uses to which

they are put.

Cross-references
▶Ontology

▶Query Languages for Ontological Data

Ontology O 1963

O

Recommended Reading
1. Altman R., Bada M., Chai X. Whirl Carillo M., Chen R.,

and Abernethy N. RiboWeb: an ontology-based system for col-

laborative molecular biology. IEEE Intell. Syst., 14(5):68–76,

1999.

2. Baader F., Calvanese D., McGuinness D., Nardi D., and

Patel-Schneider P. (eds.) The Description Logic Handbook:

Theory, Implementation and Applications. Cambridge Univer-

sity Press, 2003.

3. Bodenreider O. and Stevens R. Bio-ontologies: current trends and

future directions. Brief Bioinform., 7(3):256–274, 2006.

4. Brenchley R., Tariq H., McElhinney H., Szoor B., Stevens R.,

Matthews K., and Tabernero L. The TriTryp Phosphatome anal-

ysis of the protein phosphatase catalytic domains. BMC

Genome, 8:434, 2007.

5. Davidson S., Overton C., and Buneman P. Challenges in inte-

grating biological data sources. J. Comput. Biol., 2(4):557–572,

1995.

6. Fernàndez-Lòpez M. and Gòmez-Pèrez A. Overview and analysis

of methodologies for building ontologies. Knowl. Eng. Rev., 17

(2):129–156, 2002.

7. Goble C.A., Stevens R., Ng G., Bechhofer S., Paton N.W.,

Baker P., Peim M., and Brass A. Transparent access to multiple

bioinformatics information sources. IBM Syst. J., Special issue

on deep computing for the life sciences, 40(2):532–552, 2001.

8. Karp P., Riley M., Saier M., Paulsen I., Paley S., and Pellegrini-

Toole A. The EcoCyc and metacyc databases. Nucleic Acids Res.,

28:56–59, 2000.

9. Lord P.W., Stevens R., Brass A., and Goble C.A. Investigating

semantic similarity measures across the Gene Ontology:

the relationship between sequence and annotation. Bioinformat-

ics, 19–(10):1275–1283, 2003.

10. Luciano J. PAX of mind for pathway researchers. Drug Discov.

Today, 10:937–942, 2005.

11. Ringland G. and Duce D. Approaches to Knowledge Represen-

tation: An Introduction Knowledge-Based and Expert Systems

Series. John Wiley, Chichester, 1988.

12. Rosse C. and Mejino J.L.V. A reference ontology for bioinfor-

matics: the foundational model of anatomy. J. Biomed. Inform.,

36:478–500, 2003.

13. Taylor C., Paton N., Lilley K., Binz P., Julian Jr R., Jones A.,

Zhu W., Apweiler R., Aebersold R., Deutsch E., Dunn M., Heck

A., Leitner A., Macht M., Mann M., Martens L., Neubert T.,

Patterson S., Ping P., Seymour S., Souda P., Tsugita A.,

Vandekerckhove J., Vondriska T., Whitelegge J., Wilkins M.,

Xenarios I., Yates J. (3rd) and Hermjakob H. The minimum

information about a proteomics experiment (MIAPE). Nat.

Biotech., 25:887–893, 2007.

14. The Gene Ontology Consortium Gene Ontology: Tool for the

Unification of Biology. Nat. Gene., 25:25–29, 2000.

15. Wang H., Azuaje F., Bodenreider O., and Dopazo J. Gene

expression correlation and gene ontology-based similarity: an

assessment of quantitative relationships. In Proc. IEEE Symp. on

Computational Intelligence in Bioinformatics and Computa-

tional Biology. 2004, pp. 25–31.

16. Whetzel P., Brinkman R., Causton H., Fan L., Field D., Fostel J.,

Fragaso G., Gray T., Heiskanen M., Hernandez-Boussard T.,
Morrison N., Parkinson H., Rocca-Serra P., Sansone S.A.,

Schober D., Smith B., Stevens R., Stoeckert C., Taylor C.,

White J., and Wood A. the FuGo working group development

of FuGo: An ontology for functional genomics investigations.

OMICS J. Integrat. Biol., 10:199–204, 2006.

17. Whetzel P.L., Parkinson H., Causton H.C., Fan L., Fostel J., Fra-

goso G., Game L., Heiskanen M., Morrison N., Rocca-Serra P.,

Sansone S.A., Taylor C., White J., and Stoeckert C.J. The

mged ontology: a resource for semantics-based description of

microarray experiments. Bioinformatics, 22(7):866–873, 2006.
Ontology

TOM GRUBER

RealTravel, Emerald Hills, CA, USA

Synonyms
Computational ontology; Semantic data model; Onto-

logical engineering

Definition
In the context of computer and information sciences,

an ontology defines a set of representational primitives

with which to model a domain of knowledge or dis-

course. The representational primitives are typically

classes (or sets), attributes (or properties), and rela-

tionships (or relations among class members). The

definitions of the representational primitives include

information about their meaning and constraints on

their logically consistent application. In the context of

database systems, ontology can be viewed as a level of

abstraction of data models, analogous to hierarchical

and relational models, but intended for modeling

knowledge about individuals, their attributes, and

their relationships to other individuals. Ontologies

are typically specified in languages that allow abstrac-

tion away from data structures and implementation

strategies; in practice, the languages of ontologies are

closer in expressive power to first-order logic than

languages used to model databases. For this reason,

ontologies are said to be at the ‘‘semantic’’ level, where-

as database schema are models of data at the ‘‘logical’’

or ‘‘physical’’ level. Due to their independence from

lower level data models, ontologies are used for

integrating heterogeneous databases, enabling inter-

operability among disparate systems, and specifying

interfaces to independent, knowledge-based services.

In the technology stack of the Semantic Web standards

1964O Ontology
[1], ontologies are called out as an explicit layer. There

are now standard languages and a variety of commer-

cial and open source tools for creating and working

with ontologies.

Historical Background
The term ‘‘ontology’’ comes from the field of philoso-

phy that is concerned with the study of being or exis-

tence. In philosophy, one can talk about an ontology as

a theory of the nature of existence (e.g., Aristotle’s

ontology offers primitive categories, such as substance

and quality, which were presumed to account for All

That Is). In computer and information science, ontol-

ogy is a technical term denoting an artifact that is

designed for a purpose, which is to enable the modeling

of knowledge about some domain, real or imagined.

The term had been adopted by early Artificial Intel-

ligence (AI) researchers, who recognized the applicabil-

ity of the work from mathematical logic [6] and argued

that AI researchers could create new ontologies as

computational models that enable certain kinds of auto-

mated reasoning [5]. In the 1980s the AI community

came to use the term ontology to refer to both a theory

of a modeled world (e.g., a Naı̈ve Physics [5]) and a

component of knowledge systems. Some researchers,

drawing inspiration from philosophical ontologies,

viewed computational ontology as a kind of applied

philosophy [10].

In the early 1990s, an effort to create interoperability

standards identified a technology stack that called out

the ontology layer as a standard component of knowl-

edge systems [8]. Awidely cited web page and paper [3]

associated with that effort is credited with a deliberate

definition of ontology as a technical term in computer

science. The paper defines ontology as an ‘‘explicit spec-

ification of a conceptualization,’’ which is, in turn, ‘‘the

objects, concepts, and other entities that are presumed

to exist in some area of interest and the relationships

that hold among them.’’ While the terms specification

and conceptualization have caused much debate, the

essential points of this definition of ontology are:

� An ontology defines (specifies) the concepts, rela-

tionships, and other distinctions that are relevant

for modeling a domain.

� The specification takes the form of the definitions of

representational vocabulary (classes, relations, and

so forth), which provide meanings for the vocabu-

lary and formal constraints on its coherent use.
One objection to this definition is that it is overly

broad, allowing for a range of specifications from sim-

ple glossaries to logical theories couched in predicate

calculus [9]. But this holds true for data models of any

complexity; for example, a relational database of a

single table and column is still an instance of the

relational data model. Taking a more pragmatic view,

one can say that ontology is a tool and product of

engineering and thereby defined by its use. From this

perspective, what matters is the use of ontologies to

provide the representational machinery with which to

instantiate domain models in knowledge bases, make

queries to knowledge-based services, and represent the

results of calling such services. For example, an API to

a search service might offer no more than a textual

glossary of terms with which to formulate queries, and

this would act as an ontology. On the other hand,

today’s W3C Semantic Web standard suggests a specif-

ic formalism for encoding ontologies (OWL), in sever-

al variants that vary in expressive power [7]. This

reflects the intent that an ontology is a specification

of an abstract data model (the domain conceptualiza-

tion) that is independent of its particular form.

Foundations
Ontology is discussed here in the applied context of

software and database engineering, yet it has a theoret-

ical grounding as well. An ontology specifies a vocabu-

lary with which to make assertions, which may be

inputs or outputs of knowledge agents (such as a

software program). As an interface specification, the

ontology provides a language for communicating

with the agent. An agent supporting this interface is

not required to use the terms of the ontology as an

internal encoding of its knowledge. Nonetheless, the

definitions and formal constraints of the ontology do

put restrictions on what can be meaningfully stated in

this language. In essence, committing to an ontology

(e.g., supporting an interface using the ontology’s

vocabulary) requires that statements that are asserted

on inputs and outputs be logically consistent with the

definitions and constraints of the ontology [3]. This is

analogous to the requirement that rows of a database

table (or insert statements in SQL) must be consistent

with integrity constraints, which are stated declarative-

ly and independently of internal data formats.

Similarly, while an ontology must be formulated in

some representation language, it is intended to be a

semantic level specification – that is, it is independent of

Ontology Argumentation O 1965

O

datamodeling strategy or implementation. For instance,

a conventional database model may represent the iden-

tity of individuals using a primary key that assigns a

unique identifier to each individual. However, the pri-

mary key identifier is an artifact of the modeling process

and does not denote something in the domain. Ontol-

ogies are typically formulated in languages which are

closer in expressive power to logical formalisms such as

the predicate calculus. This allows the ontology designer

to be able to state semantic constraints without forcing

a particular encoding strategy. For example, in typical

ontology formalisms one would be able to say that an

individual was a member of class or has some attribute

value without referring to any implementation patterns

such as the use of primary key identifiers. Similarly, in

an ontology one might represent constraints that hold

across relations in a simple declaration (A is a subclass

of B), which might be encoded as a join on foreign keys

in the relational model.

Ontology engineering is concerned with making

representational choices that capture the relevant dis-

tinctions of a domain at the highest level of abstraction

while still being as clear as possible about the meanings

of terms. As in other forms of data modeling, there is

knowledge and skill required. The heritage of compu-

tational ontology in philosophical ontology is a rich

body of theory about how to make ontological distinc-

tions in a systematic and coherent manner. For exam-

ple, many of the insights of ‘‘formal ontology’’

motivated by understanding ‘‘the real world’’ can be

applied when building computational ontologies for

worlds of data [4]. When ontologies are encoded in

standard formalisms, it is also possible to reuse large,

previously designed ontologies motivated by systemat-

ic accounts of human knowledge or language [11]. In

this context, ontologies embody the results of academ-

ic research, and offer an operational method to put

theory to practice in database systems.

Key Applications
Ontologies are part of the W3C standards stack for the

Semantic Web, in which they are used to specify stan-

dard conceptual vocabularies in which to exchange

data among systems, provide services for answering

queries, publish reusable knowledge bases, and offer

services to facilitate interoperability across multiple,

heterogeneous systems and databases. The key role of

ontologies with respect to database systems is to specify

a data modeling representation at a level of abstraction
above specific database designs (logical or physical), so

that data can be exported, translated, queried, and uni-

fied across independently developed systems and ser-

vices. Successful applications to date include database

interoperability, cross database search, and the integra-

tion of web services.

Cross-references
▶Data Model

▶Data Modeling

▶Knowledge Base

▶Knowledge Engineering

Recommended Reading
1. Berners-Lee T., Hendler J., and Lassila O. The semantic web.

Scientific American, May 2001.

2. Gruber T.R. A translation approach to portable ontology speci-

fications. Knowl. Acquisition, 5(2):199–220, 1993.

3. Gruber T.R. Toward principles for the design of ontologies

used for knowledge sharing. Int. J. Hum. Comput. Stud., 43

(5–6):907–928, 1995.

4. Guarino N. Formal ontology, conceptual analysis and knowledge

representation. Int. J. Hum. Comput. Stud., 43(5–6):625–640,

1995.

5. Hayes P.J. The second naive physics manifesto. In Formal

Theories of the Common-Sense World, Moore (eds.). Hobbs,

Ablex, Norwood, MA, 1985.

6. McCarthy J. Circumscription – a form of non-monotonic

reasoning. Artif. Intell., 5(13):27–39, 1980.

7. McGuinness D.L. and van Harmelen F. OWL web ontology

language. W3C Recommendation, February 10, 2004. Available

online at: http://www.w3.org/TR/owl-features/.

8. Neches R., Fikes R.E., Finin T., Gruber T.R., Patil R., Senator T.,

and Swartout W.R. Enabling technology for knowledge sharing.

AI Mag., 12(3):16–36, 1991.

9. Smith B. and Welty C. Ontology – towards a new synthesis. In

Proc. Int. Conf. on Formal Ontology in Information Systems,

2001.

10. Sowa J.F. Conceptual Structures: Information Processing in

Mind and Machine, Addison Wesley, Reading, MA, 1984.

11. Standard Upper Ontology Working Group (SUO). IEEE

P1600.1. Available online at: http://suo.ieee.org/.
Ontology Acquisition

▶Ontology Elicitation
Ontology Argumentation

▶Ontology Elicitation

1966O Ontology Elicitation
Ontology Elicitation

PIETER DE LEENHEER

Vrije Universiteit Brussel, Collibra nv, Brussels,

Belgium

Synonyms
Ontology acquisition; Ontology learning; Ontology

argumentation; Ontology negotiation; Knowledge

creation
Definition
Ontology elicitation embraces the family of methods

and techniques to explicate, negotiate, and ultimately

agree on a partial account of the structure and seman-

tics of a particular domain, as well as on the sym-

bols used to represent and apply this semantics

unambiguously.

Ontology elicitation only results in a partial ac-

count because the formal definition of an ontology

cannot completely specify the intended structure and

semantics of each concept in the domain, but at best

can approximate it. Therefore, the key for scalability is

to reach the appropriate amount of consensus on rele-

vant ontological definitions through an effective mean-

ing negotiation in an efficient manner.

Historical Background
Ontology elicitation is based on techniques of knowl-

edge acquisition, a subfield of AI that is concerned

with eliciting and representing knowledge of human
Ontology Elicitation. Figure 1. Illustration of a minimal ORM

relational table.
experts so that it can later be used in some application.

Two typical knowledge acquisition methods can be

distinguished:

1. Top-down (deductive) knowledge elicitation techni-

ques are used to acquire knowledge directly from

human domain experts. Examples include inter-

viewing, case study, and mind mapping techniques.

2. Bottom-up (inductive) machine learning techniques

use different methods to infer knowledge (e.g., con-

cepts and rules) patterns from sets of data. A well-

known example is formal concept analysis [10].

More formal methods for top-down knowledge acqui-

sition use knowledge modeling as a way of structuring

projects, acquiring and validating and storing knowl-

edge for future use. Knowledge models include: sym-

bolic character-based languages (e.g., logic, OWL),

diagrammatic representations (networks, ladders,

taxonomies, concept maps), tabular representations

(e.g., matrices), structured text (e.g., hypertext) [16],

and conceptual modeling.

Conceptual Modeling

Certain methods and techniques from the database

field for conceptual modeling (e.g., ER, UML, dataflow

diagrams) have been proven useful for ontology elici-

tation. For example, in [13], ORM/NIAM has been

adopted. Figure 1 shows an example of a minimal

ORM diagram (on top) explicating the semantics that

is implicit in the relational table schema and popula-

tion (on the bottom). For example, this ORM diagram

already reveals what the table cannot, the semantics of
diagram explicating the implicit semantics for a

Ontology Elicitation O 1967

O

the relation of attribute ‘‘person’’ to attributes ‘‘city’’

and ‘‘country,’’ and that ‘‘first name’’ and ‘‘last name’’

are both part of a ‘‘name.’’ Furthermore, ‘‘city’’ and

‘‘country’’ appear not to be related at all.

A key characteristic of NIAM/ORM is that the

analysis of information is based on natural language.

This brings the advantage that the analysis can be done

by the domain experts using their own vocabulary, and

hence avoiding invalid interpretations. Furthermore,

this attribute-free approach seen in the NIAM/ORM

approach promotes semantic stability.

Data Schema Versus Ontology

Data models, such as data or XML schemas, typically

specify the structure and integrity of data sets. Hence,

building data schemas for an enterprise usually

depends on the specific needs and tasks that have to

be performed within this enterprise. Data engineering

languages such as SQL aim to maintain the integrity of

data sets and only use a typical set of language con-

structs to that aim, e.g., foreign keys. The schema vo-

cabulary is basically to be understood intuitively (via

the terms used) by the human database designer(s).

The semantics of data schemas often constitute an

informal agreement between the developers and an

intended group of users of the data schema, and finds

its way only in application programs that use the data

schema instead of manifesting itself as an agreement

that is shared amongst the community [20]. When new

functional requirements pop up, the schema is updated

on the fly. One designated individual usually controls

this schema update process.

In (collaborative) ontology elicitation, however,

absolute meaning is essential for all practical purposes,

hence all elements in an ontology must ultimately be

the result of agreements among human agents such as

designers, domain experts, and users. In practice, cor-

rect and unambiguous reference to concepts or entities

in the schema vocabulary is a real problem; often harder

than agreeing about their properties, and obviously not

solved by assigning system-owned identifiers.

Foundations
In collaborative ontology elicitation, multiple stake-

holders have overlapping or contradicting perspec-

tives about the intended structure, semantics, and

vocabulary of the domain concepts [5]. This is princi-

pally caused by three facts: (i) no matter how expressive

ontologies might be, they are all in fact lexical
representations of concepts, relationships, and semantic

constraints; (ii) linguistically, there is no bijective

mapping between a concept and its lexical representa-

tion; and (iii) concepts can have different properties and

values in different contexts of use. Hence, humans play

an important role in the interpretation and negotiation

of meaning during the elicitation and application of

ontologies [7]. These principles can be illustrated by

considering Stamper’s semiotic ladder [21] that consists

of six views or levels on signs from the perspective of

physics, empirics, syntactics, semantics, pragmatics and

the social world, that together form a complex conceptual

structure. In this article, we only consider syntactical or

lexical level, semantic level, and pragmatic level (Fig. 2).

Ontology elicitation can be considered as a process that

gradually takes ontological elements through these levels.

Lexical Versus Semantic Level

At the start of the elicitation of an ontology, its basic

terminology for labeling concepts and relationships

are extracted from various resources such as a text

corpus [3], existing schemas [16], from so-called seri-

ous games [19] or rashly formulated by human domain

experts through, e.g., tagging [22]. Many ontology

engineering approaches focus merely on the conceptu-

al modeling task, hence the distinction between lexical

level (term for a concept) and semantic level (the

concept itself) is often weak or ignored. In order to

represent concepts and relationships lexically, they

usually are given a uniquely identifying term (or

label). However, the meaning of a concept behind a

lexical term is influenced by the elicitation context,

which is the context of the resource the term was

extracted from. When eliciting and unifying informa-

tion from multiple sources, this can easily give rise to

misunderstandings and ambiguities, therefore the

meaning of all terms used for ontology representation

purposes should be articulated appropriately.

This is illustrated in Fig. 2: the full arrows denote

the meaning articulation mappings between terms

in organizational vocabularies (cloud on the left)

and unique concept identifiers (e.g., c1, r1, etc.). The

mapping of each unique concept identifiers to a

particular explication of a meaning, i.e., a concept

definition is defined by the dashed arrows.

Lexical Variability and Reusability

Even within one conversation, it turned out that in

a less than a quarter of the cases, two individuals use

Ontology Elicitation. Figure 2. Three levels of ontology elicitation: lexical level, semantic level, and pragmatic level.

1968O Ontology Elicitation
the same symbolic reference for a concept, and hence

the freedom to use synonyms should be accommo-

dated [8]. To engender creativity, domain experts

should initially be allowed to use their own vocabul-

aries, instead of being harshly restricted by an unfamil-

iar controlled taxonomy dictated by a central

authorship. Gradually, this variability will converge

towards one or more vocabularies that are commonly

accepted.

For example, thousands of shared vocabularies or

so-called folksonomies emerge, are sold and adver-

tised, prosper or wither in a self-organizing manner

on Web 2.0, through reuse and adaptation of natural
language labels for tagging their resources. Natural

language labels for concepts and relationships bring

along their inherent ambiguity and variability in inter-

pretation. Folksonomies provide on the one hand an

unbounded reusability potential for specific reference

in a given application context, which is important for

scalable ontology elicitation. On the other hand, how-

ever, an analysis of multiple contexts is generally needed

to disambiguate successfully [1,5].

Semantic Versus Pragmatic Level

The meaning articulation mappings and the concept

definition service respectively provide unambiguous

Ontology Elicitation O 1969
reference and semantic explication of terms, indepen-

dent of the preferred vocabulary. However, the mean-

ing of these concepts should be further formalized

for appropriately serving application purposes, by

combining and linking them with other concepts,

and axiomatizing them with semantic constraints

and rules. In the section on applications, there is an

overview of typical applications, including process

logic and (legacy) information system interoperability,

web service orchestration, and competency model gap

analysis in human resources (HR).

The relevant properties and values for the concepts

to be agreed on, depend on the application require-

ments. For the sake of scalability, as in any realistic

system or knowledge engineering scenario, in ontology

elicitation, (parts of) existing semantic resources are

reused and adopted as much as possible for new app-

lication purposes. This asks for a methodological

trade-off between the reuse of relevant consensus

from existing application contexts as much as possible,

while allowing specific variations for new application

requirements at stake to be collaboratively negotiated,

based on (parts of) existing consensus.

Figure 3 illustrates this with a model for collabora-

tive ontology elicitation, as introduced by [7], and

inspired by the Delphi method (http://en.wikipedia.

org/wiki/Delphi_method.). For bootstrapping the
Ontology Elicitation. Figure 3. A model for collaborative on
elicitation of a concept, knowledge workers are given

a pattern that defines the current insights and interests

of the community for that type of concepts. The ex-

ample here concerns the elicitation of a concept ‘‘De-

liver,’’ which is a type of ‘‘Job Task.’’ Each of the

stakeholding organizations elicit the relevant proper-

ties and values of ‘‘Deliver’’ by specializing the pattern

abstracted from ‘‘Job Task.’’ If no pattern exists, it is

bootstrapped by the core domain experts overlooking

the domain.

Divergence and Conflict

Divergence is the point in collaborative ontology elici-

tation where domain experts disagree or have a conflict

about the meaning of some concept in such a way that

consequently their ontologies evolve in widely varying

directions. Although they share common goals for

doing business, divergent knowledge positions appear

as a natural consequence when people collaborate in

order to come to a unique common understanding.

Rather than considering it to be a problem, con-

flicts should be seen as an opportunity to negotiate

about the subtle differences in interpretation of the

domain, which will ultimately converge to a shared

understanding disposed of any subjectivity. However,

meaning conflicts and ambiguities should only be re-

solved when relevant. It is possible that people have
tology elicitation.

O

1970O Ontology Elicitation
alternative conceptualizations in mind for business or

knowledge they do not wish to share. Therefore, in

building the shared ontology, the individual ontolo-

gies of the various partners only need to be aligned

insofar necessary, in order to avoid wasting valuable

modeling time and effort.

Basically they only need to agree on a common

specialization of the current properties present in the

pattern. However, it could be the case that a consider-

able part of the stakeholders identifies new relevant

properties, or see other properties to be obsolescent.

This provides a feedback suggestion to revise the pat-

terns for a next version of the ontology.

Relevant techniques for collaborative ontology ne-

gotiation and argumentation include [14,17].

Convergence and Patterns

Once, a common specialization is agreed on, it is lifted

up in the upper common levels of the ontology. Grad-

ually, this would result in the emergence of increasingly

stable generally deployable ontology patterns that are

key for enabling future business interoperability needs

in a scalable manner [2,6,9,7].

Key Applications
Ontologies have become an integral part of many aca-

demic and industrial applications in various domains,

including Semantic Web services, regulatory compli-

ance, and human resources.

Semantic Web Services

Service-oriented (SOA) is an architecture that relies on

service-orientation as its fundamental design principle.

In a SOA environment, independent services can be

accessed without knowledge of their underlying plat-

form implementation. Within this paradigm, the crea-

tion of automation logic is specified in the form of

services. Service orientation is another design para-

digm that provides a means for achieving a separation

of concerns, which obviously increases the potential

for software reusability.

The Semantic Web aims to make data accessible

and understandable to intelligent machine processing.

Semantic Web services additionally aim to do the same

for services available on the Semantic Web, targeting

automation of service discovery, composition and in-

vocation. For describing Semantic Web services, it is

required to elicit the so-called ‘‘domain ontologies’’ or

that formalize the knowledge necessary for capturing

the meaning of services and exchanged data. In other
words, given a particular business goal, the domain

ontologies enable the weaving of the relevant concerns

that are separated in relevant services.

A key challenge here is to overcome the ontology-

perspicuity bottleneck [11] that constrains the use of

ontologies, by finding a compromise between top-

down imposed formal semantics expressed in expert

language and bottom-up emerging real-world seman-

tics expressed in layman user language.

For more on infrastructure, theory, business

aspects, and experiences on ontology elicitation and

management for Semantic Web applications, see [12].

Regulatory Compliance

Businesses and government must be able to show com-

pliance of their outputs, and often also of their systems

and processes, to specific regulations. Demonstrable

evidence of this compliance is increasingly an auditable

consideration and required in many instances to meet

acceptable criteria for good corporate governance.

Moreover the number and the complexity of applicable

regulations in Europe and elsewhere is increasing.

This includes mandatory compliance audits and asse-

ssments against numerous regulations and best practice

guidelines over many disciplines and against many

specific criteria. The implementation of information

communications technology also means that previous

manual business processes are now being performed

electronically and the degree of compliance to applic-

able regulations depends on how the systems have been

designed, implemented and maintained. Keeping up

with the rate of new regulations for a major corporation

and small business alike is a never ending task. What

is the answer to all of this regulatory complexity? First

one should simplify regulations where possible and

then apply automatic tools to assist.

The automated data demands of networked econo-

mies and an increasingly holistic view on regulatory

issues are driving and yet partially frustrating attempts

to simplify regulations and statutes. In an ideal world

companies and other organizations would have the

tools and online services to check and measure their

regulatory compliance; and governmental organizations

would be able to electronically monitor the results. This

requires a more systemic shared approach to regulatory

assurance assessment and compliance certification.

Lessig [15] has a simple yet profound thesis ‘‘Code

is law.’’ The application of this concept taken in con-

junction with the emergence of regulatory ontologies

opens up a new way of assessing whether burgeoning

Ontology Elicitation O 1971

O

systems are compliant with regulations they seek and

claim to embody. First specific regulations (e.g., data

privacy, digital rights management) are converted into

and expressed as ‘‘Regulatory Ontologies.’’ These ontol-

ogies are then used as the base platform for a ‘‘Trusted

Regulatory Compliance Certification Service.’’

Over time the resulting ontology describing and

managing the areas analyzed can literally replace the

regulations and compliance criteria. So much so, it is

envisaged that an eventual outcome could be that the

formal writing (codification) of future laws will start

with the derived ontologies and use intelligent agents

to help propose specific legal text which ensures that

the policy objectives are correctly coded in law. In

addition automatic generation of networked computer

applications that are perfectly compliant with the wide

variety of directives and laws in any country is one of

the ultimate goals of this type of ontology based work.

For an overview of ontology-grounded trusted reg-

ulatory compliance, see [18].

Human Resources

Competencies describe the skills and knowledge indivi-

duals should have in order to be fit for particular jobs.

Especially in the domain of vocational education, hav-

ing a central shared and commonly used competency

model is becoming crucial in order to achieve the

necessary level of interoperability and exchange of

information, and in order to integrate and align the

existing information systems of competency stake-

holders like schools or public employment agencies.

Only few organizations however, have successfully

implemented a company-wide ‘‘competency initia-

tive,’’ let alone a strategy for inter-organizational ex-

change of competency related information.

Several projects (See, e.g., the EU-funded CoDrive

project.) aim at contributing to a competency-driven

vocational education by using state-of-the-art ontolo-

gy methodology and infrastructure in order to collab-

oratively develop a conceptual, shared and formal KR

of competence domains.

For a business case study on vocational competency

ontology elicitation, see [4].

Future Directions
The ever-changing interoperability requirements be-

tween the stakeholding communication partners (See,

e.g., diverse (legacy) systems in the open extended

enterprise.) requires ontologies to continuously evolve.

Usually the domain is too large and complex to be
explicated in one single effort, and the knowledge

workers understanding of the domain is in continu-

ously changing, requiring timely renegotiation of exist-

ing consensus. Therefore, one should not merely focus

on the practice of eliciting ontologies in a project-like

context, but consider it as a real-time collaborative and

continuous process that is integrated with and in the

operational processes of the community itself. The

shared background of communication partners is con-

tinuously negotiated as are the characteristics or values

of the concepts that are agreed upon.

There are many additional complexities that should

be considered. As investigated in FP6 integrated pro-

jects (See, e.g., http://ecolead.vtt.fi/.) on collaborative

networked organizations, the different professional,

social, and cultural backgrounds among communities

and organizations can lead to misconceptions, result-

ing in costly ambiguities and misunderstandings if not

aligned properly. This is especially the case in inter-

organizational settings, where there may be many pre-

existing organizational sub-ontologies, inflexible data

schemas interfacing to legacy data, and ill-defined,

rapidly evolving collaborative requirements. Further-

more, participating stakeholders usually have strong

individual interests, inherent business rules, and work

practices. These may be tacit, or externalized in work-

flows that are strongly interdependent, hence further

complicate the conceptual alignment. Finally this also

involves ontology elicitation cost estimation. Simperl

and Sure (chapter 7, [12]) propose a parametric cost

estimation model for ontologies by identifying relevant

cost drivers having a direct impact on the effort

invested in ontology elicitation.

For an overview of future directions towards com-

munity-driven ontology elicitation and management,

see [6].

Cross-references
▶ Emergent Semantics

▶Ontology

▶Ontology Engineering

Recommended Reading
1. Bachimont B., Troncy R., and Isaac A. Semantic commitment for

designing ontologies: a proposal. In Proc. 13th Int. Conf. on

Knowledge Engineering and KnowledgeManagement. Ontologies

and the Semantic Web, 2002, pp. 114–121.

2. Blomqvist E. OntoCase – a pattern-based ontology construction

approach. In Proc. OTM Confederated International Con-

ferences CoopIS, DOA, ODBASE, GADA, and IS, 2007,

pp. 971–988.

1972O Ontology Engineering
3. Buitelaar P., Cimiano P., andMagnini B. Ontology learning from

text: methods, evaluation and applications, vol. 123 of Frontiers

in Artificial Intelligence and Applications, IOS, Amsterdam,

2005.

4. Christiaens S., De Leenheer P., and de Moor A. Robert

Meersman R. Ontologising Competencies in an Interorgani-

sational Setting. In Ontology Management. vol. 7 of Semantic

Web and Beyond Computing for Human Experience, Springer,

Berlin, 2008, pp. 265–288.

5. De Leenheer P., de Moor A., and Meersman R. Context depen-

dency management in ontology engineering: a formal approach.

J. Data Semantics, 8:26–56, 2006.

6. De Leenheer P. and Meersman R. Towards community-based

evolution of knowledge-intensive systems. In Proc. OTM Con-

federated International Conferences CoopIS, DOA, ODBASE,

GADA, and IS, 2007, pp. 989–1006.

7. de Moor A., De Leenheer P., and Meersman R. DOGMA-MESS:

a meaning evolution support system for interorganizational

ontology engineering. In Proc. 14th Int. Conf. on Conceptual

Structures, 2006, pp. 189–203.

8. Furnas G., Landauer T., and Dumais S. The vocabulary

problem in human-system communication. Commun. ACM,

30(11):964–971, 1987.

9. Gangemi A. Ontology design patterns for semantic web content.

In Proc. 4th Int. Semantic Web Conf., 2005, pp. 262–276.

10. Ganter B., Stumme G., and Wille R. (eds.), Formal concept

analysis, foundations and applications, LNCS, vol. 3626, Springer,

Berlin, 2005.

11. Hepp M. Possible ontologies: how reality constrains the devel-

opment of relevant ontologies. IEEE Internet Comput.,

11(1):90–96, 2007.

12. Hepp M., De Leenheer P., de Moor A., and Sure Y. (eds.)

Ontology management, semantic web, semantic web services,

and business applications, vol. 7 of Semantic Web and Beyond

Computing for Human Experience. Springer, Berlin, 2008.

13. Jarrar M., Demey J., and Meersman R. On reusing conceptual

data modeling for ontology engineering. J. Data Semantics,

1(1):185–207, 2003.

14. Kotis K. and Vouros G. Human-centered ontology

engineering: the Hcome methodology. Knowl. Inf. Syst.,

10:109–131, 2005.

15. Lessig L. Ontology Management, Semantic Web, Semantic Web

Services, and Business Applications. Basic Books, 1999.

16. Milton N. Knowledge Acquisition in Practice: A Step-by-Step

Guide. Springer, London, 2007.

17. Pinto H., Staab S., and Tempich C. DILIGENT: towards a fine-

grained methodology for DIstributed, Loosely-controlled and

evolvInG Engineering of oNTologies. In Proc. 16th European

Conf. on Artificial Intelligence, 2004.

18. Ryan H., Spyns P., De Leenheer P., and Leary R. Ontology-based

platform for trusted regulatory compliance services. In

OTM Workshops, LNCS, vol. 2889, Springer, Berlin, 2003,

pp. 675–689.

19. Siorpaes K. and HeppM. Games with a purpose for the semantic

web. IEEE Intell. Syst., 23(3):50–60, 2008.

20. Spyns P., Meersman R., and Jarrar M. Data modelling

versus ontology engineering. ACM SIGMOD Rec., 31(4):

12–17, 2002.
21. Stamper R. Information in Business and Administrative Sys-

tems. Wiley, NY, 1973.

22. Van Damme C., Hepp M., and Siorpaes K. Folksontology: an

integrated approach for turning folksonomies into ontologies.

In Proc. ESWC Workshop Bridging the Gap between Semantic

Web and Web 2.0, 2007.
Ontology Engineering

AVIGDOR GAL

Technion – Israel Institute of Technology,

Technion City, Haifa, Israel

Synonyms
Ontological engineering

Definition
Ontology Engineering is ‘‘the set of activities that con-

cern the ontology development process, the ontology

life cycle, and the methodologies, tools and languages

for building ontologies’’ [2]. It provides ‘‘a basis of

building models of all things in which computer sci-

ence is interested’’ [4]. Ontology engineering aims at

providing standard components for building knowl-

edge models. Ontologies play a similar role to design

rationale in mechanical design. It allows the reuse of

knowledge in a knowledge base by providing concep-

tualization, reflecting assumptions and requirements

made in the problem solving using the knowledge

base. Ontology engineering provides the means to

build and use ontologies for building models.

Key Points
Eight levels (from shallow to deep) of using ontologies

can be defined [4]. At level 1, ontologies are used as a

common vocabulary for communication. At level 2, it is

used as a conceptual schema of a relational data base. At

the third level, ontologies are used as backbone informa-

tion for using a knowledge base. The remaining five levels

are the levels where ontology engineering comes into

play. Ontologies at the fourth level are used to answer

competence questions and then they are used for stan-

dardization (of terminology or of tasks) at level 5. At level

6, ontologies are used for structural and semantic trans-

formation of schemas. Reusing knowledge is done at the

seventh level and knowledge reorganization is considered

the eighth and highest level of using ontologies.

Ontology Visual Querying O 1973

O

Ontology engineering makes use of ontologies (in

the sense of levels 4–8) to generate standard tools for

knowledge representation. This does not imply that

knowledge is standardized. Using ontology engineer-

ing, one can design knowledge for specific applica-

tions, similar to production based on engineering

tools in other engineering fields.

The use of ontology engineering is now illustrated

in two key applications, namely functional design and

schema matching. For the former, [3] describes a sev-

enth level of using ontologies in a real world applica-

tion of plant and production systems. There, an

ontology that describes two types of functional mod-

els, two types of organization of generic knowledge,

and two ontologies of functionality were put into use

in sharing functional design knowledge on production

systems. The users (engineers) of the system have indi-

cated that this framework enabled them to make im-

plicit knowledge possessed by each designer explicit,

and to share it among team members.

Ontologies are used in schema matching in many

ways. One of these, corresponding to the sixth level of

use, was presented in the OntoBuilder toolcase [1].

Special ontological constructs were identified for the

matching of Web form data. Ontologies were built

using these constructs and dedicated matching algo-

rithms were constructed to determine the amount of

certainty to assign with the matching of attribute pairs.

An example of an ontological construct, unique to

OntoBuilder, is precedence. This construct determines

the order in which attributes are presented to the user

on a Web form and generate a partial order on attri-

butes. Attribute similarity is then measured based on

their relative positioning in their own ontologies.

Cross-references
▶Ontology

▶ Semantic Matching

Recommended Reading
1. Gal A., Modica G., Jamil H., and Eyal A. Automatic ontology

matching using application semantics. AI Mag., 26(1):21–32,

2005.

2. G’omez-P’erez A., Fern’andez-L’opez M., and Corcho O. Onto-

logical Engineering. Springer, Berlin, 2003.

3. Kitamura Y., Kashiwase M., Fuse M., and Mizoguchi R. Deploy-

ment of an ontological framework of functional design knowl-

edge. Adv. Eng. Inform., 18(2):115–127, 2004.

4. Mizoguchi R. and Ikeda M. Towards Ontology Engineering.

Technical Report AI-TR-96-1, I.S.I.R., Osaka University, 1996.
5. Paslaru Bontas E. and Tempich C. Ontology Engineering:

A Reality Check. In Proc. 5th Int. Conf. on Ontologies, DataBases,

and Applications of Semantics, 2006, pp. 836–854.

6. Sure Y., Tempich C., and Vrandecic D. Ontology engineering

methodologies. In John Davies, Rudi Studir and Paul Warren

(Eds). Semantic Web Technologies: Trends and Research in

Ontology-Based Systems. Wiley, UK, 2006.
Ontology Learning

▶Ontology Elicitation
Ontology Negotiation

▶Ontology Elicitation
Ontology Query Languages

▶ Semantic Web Query Languages
Ontology Visual Querying

SEAN BECHHOFER, NORMAN W. PATON

University of Manchester, Manchester, UK

Definition
An ontology definition language provides constructs

that can be used to describe concepts and the relation-

ships in which they participate. Because such languages

define the properties concepts can exhibit, they can be

used to restrict the questions that can meaningfully be

asked about the concepts. Given a specification of the

questions that can legitimately be asked, a user inter-

face can direct query construction tasks towards mean-

ingful requests, which in turn are expected to yield

non-empty answers. Thus ontology visual querying is

the use of an ontology to direct interactive query

construction. A related topic is faceted browsing, in

which the incremental description of concepts of in-

terest is closely integrated with retrieval, thereby

providing information about the results of a request

as it is being constructed.

1974O Ontology Visual Querying
Historical Background
The history of visual query languages is almost as

long as that of textual query languages, with Query-

by-Example [14] developed in parallel with SQL.

Query-by-Example contained two features that recur

in almost all visual query languages: (i) a representa-

tion of the model over which the query is to be

expressed; and (ii) a notation for incrementally con-

structing queries from the collections, relationships

and value ranges of interest, with reference to the

representation in (i). The evolution of visual query

languages [4] has tracked the evolution of data models

and interactive paradigms, and proposals have been

made that support querying over many different data

models (relational, object-oriented, temporal, etc)

using a variety of interaction objects (forms, graphs,

icons, etc). An orthogonal aspect is the closeness of the

relationship between query construction and answer

presentation; for example, in dynamic queries the an-

swer to a request is constructed automatically and

incrementally as a query is refined [12]. This provides

immediate feedback to users on the size and nature of

the result, but may require specialised storage struc-

tures to support incremental result computation.

Ontology visual querying has been developed so

that the knowledge expressed in an ontology can be

used to direct query construction; query answers may

then be constructed from an instance store that is

closely integrated with the ontology definition lan-

guage, or by evaluating requests over external data

sources. The latter is quite common, as ontologies are

widely used to provide conceptual models for web

(e.g., [1]) or data (e.g., [3]) resources.

Foundations
As in other visual query languages, ontology visual

querying requires a visual representation of the concepts

over which a request is to be constructed. Visual query

formulation allows users to explore the domain of

interest by recognition rather than recall: that is, it

should not be necessary to remember (or even be

fully aware of) the ontology in order to express a

query over it.

Ontologies are represented visually other than for

querying; for example, ontology design tools typically

support both form and graph-based views of concepts

and their relationships (e.g., [10]). As concept defini-

tion and query formulation may have significant

common ground, representations that are useful for
ontology browsing and concept definition may also be

relevant for querying. For example, in the TAMBIS

ontology-based data integration system [2], a query

is a concept definition in a Description Logic (DL)

[8], so writing a query is essentially the same as defin-

ing a new concept.

Although expressive ontology languages may pres-

ent challenges for navigation and thus query construc-

tion, they also present certain opportunities for query

interface designers, as various forms of reasoning may

be useful for guiding query construction. For example,

an interface can prevent the submission of queries that

are unsatisfiable (i.e., that are known from the defini-

tions in the ontology to return no results) either by

making it impossible for the user to construct such

queries or by detecting when such requests have been

created (e.g., [7,5]). Such feedback can be seen as

intensional, with the constraints or knowledge in the

ontology determining the behaviour of the interface.

Feedback may also be extensional, for example, with

the number of results to be returned being shown to

the user. This is common in facted browsing systems,

and such direct result construction is generally sup-

ported in combination with closely integrated stores.

In addition to the feedback described above, sys-

tems may also provide alternative renderings of the

query being constructed – for example a natural lan-

guage description of the query. This can be of use

in helping naı̈ve or inexperienced users in forming

appropriate queries. Note that this involves the render-

ing of the query in natural language, rather than trans-

lating a query posed using natural language.

A common approach is to specify queries through

an iterative refinement process, in which the content of

the ontology and current context of the query impact

on the options presented. The principle of intensional

navigation uses the vocabulary to guide the user dur-

ing query formulation, employing constraints in the

ontology to either flag to the user that the query is in

some way violating the constraints, or preventing the

user from forming queries that would be unsatisfiable,

and thus return no results. Operations available for

query manipulation in SEWASIE [5] include the addi-

tion of a new role/property with an associated filler,

or the replacement of a filler value. In the latter case,

a classification or super/sub class taxonomy is used

to support the manipulation, with value fillers being

specialised or generalised. Although ontology lan-

guages differ in the constructors and expressivity

Ontology Visual Querying O 1975
offered, some notion of hierarchical classification is

nearly always present, and so can be exploited in visual

query interfaces. An additional operation offered

by the TAMBIS system is to refocus the query, which

takes a sub node of the query and reorganises the query

to promote that node to the root. This operation

introduces an additional requirement on the ontology

language, namely that properties or relations have

inverses.

Various of the notions discussed above are illustrated

in Figs. 1 and 2 for SQoogle, which was developed in

the SEWASIE project. Figure 1 shows the composition

phase, with the graphical depiction of the query.
Ontology Visual Querying. Figure 1. Visual query expressio

trousers that cost less than 60 euros, where the supplier is sit

Ontology Visual Querying. Figure 2. Visual query refinemen

concept supplier with a more general (e.g., agent, broker) or
In Fig. 2, the user is being offered generalisations or

specialisations of a particular node in the query.

Overall, ontology visual query systems can be char-

acterized by a number of features:

� Identification of starting points. The construction

of a query has to start from some place in the

ontology; systems may offer predetermined entry

points, user defined bookmarks, or a search mech-

anism across the concepts in the ontology.

� Query language. More expressive query languages

support more precise question answering, but may

contain constructs that require explanation for
n in SQoogle. The query is to select suppliers that sell

uated in a warehouse.

t in SQoogle. The query can be revised by replacing the

specialized (e.g., wholesaler) concept.

O

1976O Ontology Visual Querying
users or that are challenging to represent using

certain visual paradigms. Ontology visual query

languages rarely support features such as aggrega-

tion or grouping.

� Query modification operations. Query construction

involves manipulation of query expressions, for

example, to include additional relationships or to

specialise a concept named in the query.

� The ontology definition language. Richer ontology

definition languages are generally more complex

to display and navigate, but may provide more

options for generalizing and specializing query

components, and can express constraints that are

useful for directing query construction.

� Relationship between query language and ontology

language. Proposals implement different relation-

ships between the query language and the ontology

definition language. For example, in SEWASIE,

the query language and ontology language are ex-

plicitly separated. The ontology language supports

reasoning services that are used to guide the inten-

sional navigation process described above. In con-

trast, in TAMBIS, queries are concept descriptions,

thus the interface is tied more closely to the ontol-

ogy language.

� Feedback mechanisms. Feedback can inform the

user about the results of the query or the state of

the query with respect to the underlying ontology.

Feedback may be intensional (in terms of the on-

tology), or extensional (in terms of the result set).
Ontology Visual Querying. Table 1. Representative example

Proposal TAMBIS SEWAS

Reference [7] [5]

Query language Concept definition Conjunctive qu

Query
modification
operations

Property add/remove;
filler specialization or
generalization; refocus

Property add/r
filler specializa
generalization

Ontology
definition
language

Description logic Description log

Feedback
mechanism

Intensional Intensional

Query
presentation

Visual Visual plus NL
rendering

Domain
specificity

Generic Generic
� Query presentation. Queries may be presented

solely using the visual query, or may also offer, for

example, natural language renderings of the query.

� Domain specificity. Visual interfaces provide the op-

portunity to represent models or results using gen-

eral-purpose or domain-specific representations.

Most ontology visual query languages are general

purpose, but faceted browsing interfaces are often

designed to support specific applications.

Table 1 describes a collection of representative

visual query systems using a selection of the above

criteria: the TAMBIS and SEWASI visual query lan-

guages, and the Flamenco and /facet faceted browsing

systems. In all these proposals, the ontology directs

query construction, and thus the design of the onto-

logy has a significant influence on the utility of the

interface.
Key Applications
Ontology visual query systems have most commonly

been deployed in areas of science and culture where

there are rich data resources to be explored. For exam-

ple, TAMBIS provided access to multiple biological

information sources. Faceted browsing and querying

has been widely used to browse image collections and

in the cultural heritage domain, for example to sup-

port access to Finnish Museums [9] and galleries in the

Netherlands [11]. The faceted approach is also com-

mon in on-line shopping sites such as eBay.
s of ontology visual query systems

IE Flamenco facet

[13] [8]

eries Path expressions Path expressions

emove;
tion or

Property add/remove;
filler specialization or
generalization

Property add/remove;
filler specialization or
generalization

ic Hierarchical categories RDFS

Extensional Extensional

Path expression Path expression

Specific (image
repositories)

Generic

Open Database Connectivity O 1977
Future Directions
Large amounts of a data are beginning to emerge using

representation languages like OWL. Current work in

ontology languages should see standardisation of the

SPARQL query language finalised in the near future.

Query interfaces that sit on top these standardized

languages will then be required in order to support

access to this data – interfaces that support naı̈ve or

non-expert users will clearly be required.
Cross-references
▶OWL: Web Ontology Language

▶Visual Query Language
O

Recommended Reading
1. Antoniou G. and van Harmelen F. A Semantic Web Primer. MIT

Press, Cambridge, MA, 2004.

2. Baader F., Calvanese D., McGuinness D., Nardi D., and Patel-

Schneider P. (eds.). The Description Logic Handbook. Cam-

bridge University Press, Cambridge, 2003.

3. Calvanese D., De Giacomo G., Lenzerini M., Nardi D. and

Rosati, R. Data integration in data warehousing. Int. J. Cooper-

ative Inf. Syst. 10(3):237–271, 2001.

4. Catarci T., Costabile M.F., Levialdi S., and Batı́n C. Visual query

systems for databases: a survey. J. Vis. Lang. Comput. 8(2):

215–260, 1997.

5. Catarci T., Dongilli P., Di Mascio T., Franconi E., Santucci G.,

and Tessaris S. An ontology based visual tool for query formula-

tion support. In Proc. 16th European Conf. on AI, 2004,

pp. 308–312.

6. Colucci S., Noia T.D., Sciascio E.D., Donini F.M., Ragone A.,

and Rizzi R. A semantic-based fully visual application for

matchmaking and query refinement in B2C e-marketplaces.

In Proc. 8th ACM Int. Conf. on Electronic Commer. 2006,

pp. 174–184.

7. Goble C.A., Stevens R., Ng G., Bechhofer S., Paton N.W.,

Baker P.G., PeimM., and Brass A. Transparent access to multiple

bioinformatics information sources. IBM Syst. J., 40(2):532–551,

2001.

8. Hildebrand M., van Ossenbruggen J., and Hardman L. /facet: a

browser for heterogeneous semantic web repositories. In Proc.

5th Int. Semantic Web Conf., 2006, pp. 272–285.

9. Hyvyonen E., Myakelya E., Salminen M., Valo A., Viljanen K.,

Saarela S., Junnila M., and Kettula S. Museum Finland – Finnish

museums on the semantic web. J. Web Semantics 3(2):224–241,

2005.

10. Knublauch H., Fergerson R.W., Noy N.F., and Musen M.A. The

protégé OWL plugin: an open development environment for

semantic web applications. In Proc. 3rd Int. Semantic Web

Conf., 2004, pp. 229–243.

11. Schreiber G., et al. MultimediaN E-culture Demonstrator. In

Proc. 5th Int. Semantic Web Conf. 2006, pp. 951–958.

12. Shneiderman B. Dynamic queries for visual information seek-

ing. IEEE Software 11(6):70–77, 1994.
13. Yee K.-P., Swearingen K., Li K., and Hearst M.A. Faceted meta-

data for image search and browsing. In Proc. SIGCHI Conf. on

Human Factors in Computing Systems, 2003, pp. 401–408.

14. Zloof M.M. Query-by-example: the invocation and definition

of tables and forms. In Proc. 1st Int. Conf. on Very Large Data

Bases. 1975, pp. 1–24.
On-Wire Security

▶ Storage Security
OODB (Object-Oriented Database)

▶Object Data Models
Open Database Connectivity

CHANGQING LI

Duke University, Durham, NC, USA

Synonyms
ODBC

Definition
Open Database Connectivity (ODBC) [1] is an Appli-

cation Programming Interface (API) specification to

use database management systems (DBMS). The

ODBC API is a library of functions for the ODBC-

enabled applications to connect any ODBC-driver-

available database, execute Structured Query Language

(SQL) statements, and retrieve results. ODBC is inde-

pendent of programming languages, database systems

and operating systems.

Key Points
ODBC (pronounced as separate letters), is a standard

database access method developed by the SQL Access

Group in 1992. Its objective is to make any application

to access any data regardless of the database management

systems. To achieve this objective, ODBC inserts a data-

base driver as a middle layer between an application and

the DBMS, the purpose of which is to translate the

application queries to commands understood by the

DBMS. In practice, both the application and the DBMS

must be ODBC-compliant; that is, the application must

1978O Open Nested Transaction Models
be capable of issuing ODBC commands and the DBMS

must be capable of responding to them.

A procedural API is offered by the ODBC specifica-

tion for using SQL queries to access data. One or more

applications will be contained in an implementation of

ODBC, a core ODBC library, and one ormore ‘‘database

drivers.’’ Independent of the applications and DBMS,

the core library acts as an ‘‘interpreter’’ between the

applications and the database drivers, whereas the data-

base drivers contain the DBMS-specific details. Thus

applications can be written to use standard types

and features without concerning the specifics of each

DBMS that the applications may encounter. Similarly,

database driver implementors only need to know how to

attach to the core library. This makes ODBC modular.

ODBC operates with a variety of operating systems

and drivers existing for relational database as well

as non-relational data such as spreadsheets, text and

XML files.

Cross-references
▶Data Integration

▶Database Adapter and Connector

▶ Interface

▶ Java Database Connectivity

▶ .NET Remoting

▶Web 2.0/3.0

▶Web Services

Recommended Reading
1. Geiger K. Inside ODBC. Microsoft Press, 1995.
Open Nested Transaction Models

ALEJANDRO BUCHMANN

Darmstadt University of Technology, Darmstadt,

Germany

Synonyms
Extended transaction models; advanced transaction

models

Definition
Open nested transactions are hierarchically structured

transactions with relaxed ACID properties. Individual

subtransactions may commit independently before the

complete top level transaction commits. Therefore,
conventional rollback is not possible and the effects

of a commited subtransaction have to be compensated

if the top level transaction aborts. Depending on the

particular open nested transaction model, subtransac-

tions may be vital or non-vital and may have alterna-

tive or contingency subtransactions. Open nested

transaction models are characterized through relaxed

visibility rules, abort and commit dependencies.

Historical Background
Open nested transactionmodels evolved in the 1980s in

response to two major sets of requirements: the needs

of federated multidatabase systems integrating autono-

mous legacy database systems, and the demands of long

running, cooperative processes for higher levels of

concurrency while maintaining some of the main ben-

efits of transactional processes. Extended transaction

models influenced the tightly coupled transaction

model of distributed object systems and the activity

model of the OMG, as well as the transaction and

coordination models of Web Services.

Foundations
Transaction models are characterized by the structure

of its transactions, the commit and abort dependencies

and the visibility rules among transactions.

Nested transactions are hierarchically structured

transactions consisting of a top level transaction

and subtransactions that may themselves be tree-

structured. Typical of the execution model of nested

transactions is the fact that higher level transactions

do not execute while their subtransactions are active.

The order of execution of subtransactions can be either

sequential or parallel. The closed nested transaction

model proposed by Moss does not specify an execution

order and preserves the atomicity, consistency, isola-

tion and durability properties of traditional flat trans-

actions. The commit dependencies of closed nested

transactions specify that all subtransactions must com-

mit to their immediate ancestor and the top level

transaction can only commit after all the subtransac-

tions terminated. The abort dependencies specify that

the whole transaction tree must be aborted if the top

level transaction aborts while the abort of a subtran-

saction can be handled by the immediate ancestor

transaction. The visibility rules among transactions

and subtransactions specify that subtransactions may

see changes of other subtransactions only once they

are commited to the common ancestor. Changes of

Open Nested Transaction Models O 1979

O

a nested transaction become visible to the outside

world only after the top level transaction commits.

Since changes of committed subtransactions are made

visible only after the top level transaction commits,

they can be undone through conventional roll-back.

Open nested transaction models are also based

on hierarchically structured transactions. However,

depending on the particular transaction model, the sub-

transactions may be of different types. Different types of

subtransactions require different commit and/or abort

dependencies. The visibility rules are also relaxed with

respect to those of closed nested transaction models.

Open nested transactions may consist of the fol-

lowing component transactions:

� One top level transaction that has mostly a coordi-

nation function

� Vital subtransactions that must all commit for the

top level transaction to be allowed to commit

� Non-vital subtransactions of which one or more

may abort without causing the top level transaction

to fail

� Contingency transactions are alternative subtran-

sactions that often are executed by different auton-

omous systems or service providers

� Compensating transactions that must be defined to

undo the changes of subtransactions that may have

committed but must be undone

� Triggers that are executed as subtransactions and

may execute either immediately, deferred before the

commit of the triggering transaction or as detached

transactions.

Open nested transaction models were defined for long

running transactions and for transactions executing on

federated autonomous (legacy) systems. Therefore, the

degree of control of the coordinating top level transac-

tion over the execution of the subtransactions is re-

duced compared to closed nested transactions running

on a single database management system. Distributed

short lived transactions and closed nested transactions

are typically implemented through a two-phase com-

mit protocol. In a two-phase commit protocol the first

phase serves to reach agreement among the partici-

pants whether to commit or to abort, and once con-

sensus to commit has been reached, the commit is

carried out in the second phase. This protocol requires

holding all the resources required by all the subtransac-

tions through the negotiation phase until the global

commit. This approach is not feasible for long running
transactions because of performance reasons and in

federated multidatabase systems because of the auton-

omy of the participating database systems.

The coordinating top level transaction in an open

nested transaction model cannot secure the resources of

the participating systems that execute subtransactions

as autonomous individual short transactions until all

participating systems have executed their subtransac-

tions and are ready to commit. Therefore, subtran-

sactions may commit immediately upon completion

and their results are thus visible to the outside world

before the top level transaction commits. Compensating

transactions execute the semantically inverse operation

of the committed subtransaction but do not guarantee

that the exact initial state can be restored since other

transactions may have executed in the interim.

The commit dependencies of open nested transac-

tion models depend on whether they distinguish be-

tween vital and non-vital subtransactions or not. A

commit dependency exists between the top level trans-

action and all vital subtransactions, i.e., the coordinating

top level transaction may only commit if all the

vital subtransactions committed. This is the default

case if non-vital subtransactions are not provided.

The abort of a non-vital transaction does not affect

the possibility to commit the top level transaction.

The abort dependencies of open nested transaction

models are the same as for closed nested transactions:

the abort of the parent transaction causes the abort and

undo (roll-back or compensation) of the subtransac-

tion. The abort of a non-vital subtransaction is handled

by the parent transaction, the abort of a vital transac-

tion causes the abort of the parent and all siblings.

Contingency transactions represent alternative

actions. For example, if the top-level transaction repre-

sents the booking of a trip consisting of a roundtrip flight,

a hotel and a rental car booking, two different flights

on different airlines may be defined as a subtransaction

and a contingency transaction. Contingency transactions

may only commit if the primary subtransaction aborts.

Open nested transaction models that do not provide

contingency transactions must implement this function-

ality as application-specific code in the corresponding

parent transaction or the top-level transaction.

Triggers have become commonplace mechanisms

in commercial relational databases and execute as sub-

transactions according to the semantics of closed

nested transactions. The order of execution may be

immediate or deferred, meaning that the trigger

1980O Open Nested Transaction Models
executes either at the point of occurrence of the trig-

gering event or at the end of the triggering transaction,

respectively. Some extended transaction models allow

the triggering of subtransactions as detached or auton-

omous transactions, i.e., following the semantics of

open nested transactions. This, however, implies all

the problems resulting from the violation of the isola-

tion and atomicity properties and requires the defini-

tion of compensating transactions for those triggers.

The concepts developed as part of extended trans-

action models resulted in the definition of the CORBA

Activity Service Framework. The Activity Service is a

general purpose event signalling mechanism that can

be used to program activities to coordinate themselves

according to the transaction model under consider-

ation. The Activity Service has also been incorporated

in the J2EE framework but is not widely used.

Key Applications
The main application areas for open nested transaction

models are multidatabase systems in which autonomous

systems are loosely coupled.Web Services with their loose

coupling, distribution and often long running interac-

tions prompted renewed interest in extended transaction

models and open nested transactions. Applications based

on Web Services span the whole range of e-business

applications. Mobile commerce is another key applica-

tion domain for open nested transactions. Proposedmo-

bile transaction models are instances of open nested

transaction models, e.g., the model proposed by Chry-

santhis and extended in Kangaroo Transactions.

Future Directions
Several proposals for long running activities based on

Web Services have been advanced by different consortia.

The OASIS Business Transaction Protocol was proposed

in 2001 by a consortium consisting of HP, BEA, and

Oracle. Their model provides for the execution of busi-

ness logic between the two phases of a 2 phase commit

protocol. Arjuna, Oracle, Sun Microsystems, IONA

Technologies and Fujitsu in 2003 founded the OASIS

Web Services Composite Application Framework that

defines three transaction protocols, each aimed at a

specific use case. The WS-TX builds on and extends

the web Services Coordination specification and pro-

vides two kinds of transaction models. These are not

meant to cover all possible use cases and can be extended

with the semantics of other extended transactionmodels

as required by emerging applications.
Atomic Transactions are meant for short lived

transactional interactions within trusted domains and

provide full isolation (no dirty reads and repeatable

reads), atomicity (well-formedness and two-phase

commit protocol), and durability. For loosely coupled,

long running interactions Web Services Transactions

can use the Business Activity protocol, a more flexible

transaction and coordination protocol that relaxes the

ACID properties and draws heavily on previous re-

search on open nested transaction models.

Business Activities are designed for long-lived

transactions. They are based on the original Sagas

open nested transaction model. Services are treated

as Sagas and if there is the appropriate compensa-

tion behaviour defined, they can execute the undo

behaviour if so instructed by the Business Activity.

The responsibility of writing correct compensation

services to ensure consistency rests with the developer

of a service.

Business Activities consist of (possibly nested)

Saga-like service invocations. Such scopes can handle

errors, i.e., the abort of a task, through application

logic and continue processing without globally

aborting. Upon completion a child subtransaction

can either leave the scope of the Business Activity or

it can signal the parent that its work can be compen-

sated later. In any event, the visibility rules are

such that the results of child tasks can be seen by the

outside world. Business Activities must record applica-

tion state and keep a record of all sent and received

messages, all request messages must be acknowledged,

and requests and responses are decoupled. Two differ-

ent protocols exist for Business Activities: Business

Agreement With Coordinator Complete and Business

Agreement With Participant Complete. The main dif-

ference between these two protocols is that in the

former a participating task may not leave the scope of

the Business Activity unilaterally and must wait for it

to terminate. In case of abort, the subtask must com-

pensate. In the latter a task may leave the scope of the

Business Activity unilaterally.

Cross-references
▶ Extended Transaction Models and the ACTA Frame-

work

▶Compensating Transactions

▶ConTract

▶CORBA

▶Distributed Database Systems

Operator-Level Parallelism O 1981

O

▶Distributed Transaction Management

▶ Extended Transaction Models

▶ Flex transactions

▶ Loose Coupling

▶Multilevel Transactions and Object-Model Transac-

tions

▶Nested Transaction Models

▶Orchestration

▶ Sagas

▶Transaction

▶Web Transactions

▶Workflow Transactions

Recommended Reading
1. Buchmann A., Özsu M.T., Hornick M., Georgakopoulos D., and

Manola F. A transaction model for active distributed object

systems. In Database Transaction Models for Advanced Applica-

tions, A.K. Elmagarmid (ed.). Morgan Kaufmann Publishers,

Los Altos, CA, 1992.

2. Cabrera L.F., Copeland G., Feingold M. et al. Web services

atomic transaction (WS-AtomicTransaction), Version 1.0, Aug.

2005. Available at: http://download.boulder.ibm.com/ibmdl/

pub/software/dw/specs/ws-tx/WS-AtomicTransaction.pdf.

3. Cabrera L.F., Copeland, G., Feingold M. et al., Web services

business activity framework (WS-BusinessActivity), Version

1.0, Aug. 2005. Available at: http://download.boulder.ibm.com/

ibmdl/pub/software/dw/specs/ws-tx/WS-BusinessActivity.pdf.

4. Cabrera L.F., Copeland G., Feingold M. et al. Web services

coordination (WS-Coordination), Version 1.0, Aug. 2005. Avail-

able at: http://download.boulder.ibm.com/ibmdl/pub/software/

dw/specs/ws-tx/WS-Coordination.pdf.

5. Chrysanthis P.K. Transaction processing in a mobile environ-

ment. In Proc. IEEE Workshop on Advances in Parallel and

Distributed Systems. 1993, pp. 77–82.

6. Chrysantis P. and Ramamritham K. ACTA: The saga continues.

In Database Transaction Models for Advanced Applications,

A.K. Elmagarmid, (ed.). Morgan Kaufmann Publishers, Los

Altos, CA, 1992.

7. Dunham M.H., Helal A., and Balakrishnan S. A mobile transac-

tion model that captures both data and movement behavior.

MONET, 2(2):149–162, 1997.

8. Elmagarmid A.K. (ed.), Database Transaction Models for

Advanced Applications. Morgan Kaufmann Publishers, Los

Altos, CA, 1992.

9. Garcia-Molina H. and Salem K. SAGAS. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1987, pp. 249–259.

10. Houston I., Little M., Robinson I., Shrivastava S.K., andWheater

S.M. The CORBA activity service framework for supporting

extended transactions. In Proc. IFIP/ACM Int. Conf. on Dist.

Syst. Platforms, 2001, pp. 197–215.

11. Little M. A history of extended transactions. Available at: http://

www.infoq.com/articles/History-of-Extended-Transactions.

12. Moss E. Nested Transactions. MIT Press, Cambridge, MA, 1985.

13. Weikum G. and Schek H.J. Concepts and applications of

multilevel transactions and open nested transactions. In
Database Transaction Models for Advanced Applications, A.K.

Elmagarmid (ed.). Morgan Kaufmann Publishers, Los Altos, CA,

1992.
Open Nested Transactions

▶Multilevel Transactions and Object-Model

Transactions
Operating Characteristic

▶Receiver Operating Characteristic (ROC)
Operator-Level Parallelism

NIKOS HARDAVELLAS, IPPOKRATIS PANDIS

Carnegie Mellon University, Pittsburgh, PA, USA

Synonyms
Inter-operator parallelism

Definition
Operator-level parallelism (or inter-operator parallel-

ism) is a form of intra-query parallelism obtained

by executing concurrently several operators of the

same query. By contrast, intra-operator parallelism

is obtained by executing the same operator on multiple

processors, with each instance working on a different

subset of data.

Historical Background
Parallelism has been a key focus of database research

since the 1970s. For example, as early as 1978 Teradata

was building highly-parallel database systems and qui-

etly pioneered many of the ideas on parallel query

execution [5]. However, the intra-query parallelism

employed by these early systems was mostly intra-

operator or independent parallelism (see Classes of

Parallelism below). Gamma [4] was one of the first

database systems that allowed operator-level parallel-

ism through pipelining.

Foundations
Parallel processing uses multiple processors coopera-

tively to improve the performance of application

programs. With relations growing larger and queries

1982O Operator-Level Parallelism
becoming more complex, parallel processing is an

increasingly attractive option for improving the per-

formance of database management systems. The wide-

spread adoption of the relational database model has

enabled the parallel execution of relational queries,

as these queries are composed of uniform operators

applied to uniform streams of data. Each operator

produces a new relation, so the operators can be com-

posed into highly parallel dataflow graphs. At the same

time, multiprocessor systems and high-speed intercon-

nection networks have become mainstream, providing

an excellent basis for parallel execution.

Classes of Parallelism

Parallelism in the evaluation of database queries is clas-

sified into two main categories: inter-query parallelism

(see Inter-Query Parallelism), in which different queries

execute on different processors to improve the overall

throughput of the system, and intra-query parallelism,

inwhich several processors cooperate for the faster execu-

tion of a single query. Intra-query parallelism is further

classified into intra-operator and inter-operator para-

llelism. Intra-operator parallelism (see Intra-Operator

Parallelism) is obtained by executing the same operator

on multiple processors, with each instance working on a

different subset of data. Operator-level parallelism (or

inter-operator parallelism), is obtained by executing con-

currently several operators of the same query. This latter

form of parallelism is the subject of this chapter.

Operator-level parallelism is in two forms:

independent parallelism and pipelined parallelism.

Independent parallelism (or bushy parallelism) is

achieved when there is no dependency between the

operators executed in parallel. For example, consider a

simple query plan with two select operators and a join,

that it is not nested-loops. The select operators are

independent of each other and can execute concurrent-

ly, thereby exhibiting independent parallelism.

Algebraically, independent parallelism can be expressed

by a relation of the form f(g(X), h(Y)), where X and Y

are relations and f, g, and h are relational operators. In

this example, g and h exhibit independent parallelism.

Because the operators participating in bushy paral-

lelism are independent, they do not directly affect the

execution of one another. Interference is only indirect,

e.g., due to the concurrent use of shared resources like

disks, caches, or main memory bandwidth. Thus, in-

dependent parallelism is simpler to employ as it is

easier to schedule the execution of the participating
independent operators, and it has the potential to

deliver high performance improvements.

Alternatively, operator-level parallelism can take the

form of pipelined parallelism, also called dataflow paral-

lelism. Pipelined parallelism can be achieved when the

concurrent operators form producer/consumer pairs in

which the consumer can start executing without requir-

ing its entire input to be available. For example, consider

the aforementioned simple query that consists of two

select operators and a join. The select operator can

execute in parallel with the join operator. However,

they are not independent, because the intermediate

results produced by the select are consumed by the

subsequent join. Thus, the tuples output by the select

can be pipelined to the join operator to be consumed

immediately. This example illustrates a significant ad-

vantage of pipelined parallelism: intermediate results are

used immediately and are not materialized, saving mem-

ory and disk accesses. Algebraically, pipelined parallelism

can be expressed by a relation of the form f(g(X)), where

X is a relation and f and g are relational operators.

The operators that cannot produce tuples unless they

have processed their entire input are called Stop-&-Go

operators.

Effect of Query Plan Selection on Operator-Level

Parallelism

The query plan determines the execution sequence of a

query’s operators. The selection of a query plan greatly

affects the degree of attainable operator-level parallel-

ism. To illustrate this point, and without loss of gener-

ality, let’s assume a multi-way hash-join query with four

joins: A�B�C�D�E where A, B, C, D, E are relations

and � is the join operator. The query plan is typically

depicted graphically as a tree with vertices representing

relations. Because every operator in the relational model

defines a new relation, the operators in the internal

vertices denote the relation they represent. If an opera-

tor Y takes relation X as one of its inputs, then a directed

edge connects X to Y in the tree representation.

Three forms of query execution trees are explored

in the literature: left-deep trees, right-deep trees, and

bushy trees. Figure 1 shows the query execution trees

for the example multi-way join query used above.

Left-deep trees and right-deep trees represent the two

extreme strategies of query execution, while bushy

trees claim a middle ground.

To compare the trade-offs between the alternative

query plans, Fig. 2 shows the execution dependencies

Operator-Level Parallelism. Figure 1. (a) Left-deep, (b) right-deep, and (c) bushy query plans.

Operator-Level Parallelism. Figure 2. Operator dependencies for (a) left-deep, (b) right-deep, and (c) bushy plans.

Operator-Level Parallelism O 1983

O

between the operators of each execution strategy in

Fig. 1. The execution dependencies are shown using

operator dependency graphs [10]. The dotted lines

encircle the operators amenable to pipelined parallel-

ism. The bold directed arcs between subgraphs show

which sets of operators must be executed before other

sets of operators are executed, thereby determining the

maximum level of parallelism and resource require-

ments (e.g., memory) for the query. As discussed in

[10] hash joins have two distinct phases, the build
and the probe phase. Since the first phase must

completely precede the second, the hash joins in Fig.

2 can be viewed as if consisting of two operators, the

build and the probe operator.

The operator dependency graph of the left-deep

query plan shows that only a scan, the build phase of

a join, and the probe phase of a join can execute in

parallel. Thus, although the left-deep query plan has

low memory requirements (it needs enough memory

to fit the hash tables of two joins) it offers only limited

1984O Operator-Level Parallelism
pipelined parallelism and no independent paralle-

lism. In contrast, the operator dependency graph

for the right-deep query plan shows that significant

operator-level parallelism is available: all scans but one

have a producer/consumer relationship with the build

phase of the subsequent hash join, thereby exhibiting

pipelined parallelism, while the scan/build pairs are

independent of one another so they exhibit indepen-

dent parallelism. However, the high degree of parallel-

ism comes at the expense of high shared resource

pressure. The hash tables for all joins should fit in

main memory simultaneously, or risk spilling to disk.

Finally, the operator dependency graph for the

bushy query plan has characteristics that are between

the left-deep and the right-deep query plans. The

bushy plan enables independent parallelism, albeit at

a lower degree than the right-deep plan, as about half

the scans can proceed in parallel. However, the bushy

plan imposes lower pressure on shared resources than

the right-deep plan, because fewer operators execute in

parallel. Bushy query plans allow the formation of

deeper pipelines, some of which extend all the way

from a leaf to the root of the tree. Thus, bushy trees

enable pipelined parallelism as well, but it may be

harder to balance the load within their deeper pipelines

due to execution skew.

Because bushy plans achieve a balance between

pipelined parallelism, independent parallelism, and

resource utilization, researchers further investigated

their applicability in improving query execution. For

example, segmented right-deep trees [3] (bushy trees

of right-deep subtrees) have been shown to outper-

form their left-deep and right-deep counterparts.

Other Factors Limiting Operator-Level Parallelism

The selection of the query plan determines the degree of

available operator-level parallelism. This section dis-

cusses factors that limit the effectiveness of operator-

level parallelism, given a query plan. Among other

things, the discussion in this section touches on issues

of load balancing and processor allocation.

The operators participating in independent paral-

lelism interfere only indirectly through the concurrent

use of shared resources. The factors limiting the benefit

of independent parallelism are the constraints imposed

by the hardware resources. All relations that execute in

parallel produce intermediate results which increase

the data footprint of the application, resulting in
higher cache miss rates and higher memory pressure.

The larger data footprint, in turn, may oversubscribe

memory bandwidth or induce more spills to disk if the

relations do not fit in main memory.

Resource contention affects pipelined parallelism as

well, but to a lesser degree because the intermediate data

in pipelined parallelism are short lived as they are con-

sumed immediately after their production. The benefits

of pipelined parallelism are generally limited by three

factors [5]: (i) relational pipelines are rarely very long –

a chain of length ten is unusual. (ii) some relational

operators are blocking operators, i.e., they do not emit

their first output until they have consumed all their

inputs. Sort and the partitioning phase of hash join

are examples of blocking relational operators. Such

operators cannot be pipelined, and (iii) there are depen-

dencies between the operators participating in a pipe-

line. Often, the execution cost of one operator is much

greater than the others, a phenomenon referred to as

execution skew. In this case, the performance of the

pipelined execution is dominated by the slowest opera-

tor, which significantly limits parallelism.

The execution skew also gives rise to startup/tear-

down execution delays: processors assigned to opera-

tors at the end of a pipeline are idle at the beginning

of the computation, whereas processors assigned to

operators at the beginning of a pipeline are idle

towards the end of the computation. It is important

to note here that data skew may induce execution skew

in some cases. For example, in a sort-merge join with

data skew, some sort partitions may be much larger

than others, creating execution skew.

A potential solution to execution skew is to predict

the execution load for each operator and schedule

them accordingly across the parallel processors. How-

ever, the predictions may fail as the costs are estimated

in the query optimization phase using typically inac-

curate cost models and statistics.

The assignment of processors to operators and their

scheduling is an important and hard problem that

affects all forms of operator-level parallelism. It is an

optimization problem that attempts to utilize all the

available processors efficiently to minimize the execu-

tion time of a query. Sometimes operators may need

to be scheduled as a team (e.g., producer/consumer

pairs), while other times gang scheduling should be

avoided (e.g., scheduling together the first and the

last operator of a deep pipeline would leave the last

Operator Tree O 1985
operator mostly idle). Scheduling is easier when there

are no dependencies between the operators executing

in parallel, in which case load balancing is of primary

concern.

The processor allocation is based on the selection of

the query plan and estimates on the execution cost of

each operator. If the execution cost of some operators

is much higher than others, the system may be subject

to fragmentation: after a sequence of processor alloca-

tions and releases there may be a few processors left

idle and rebalancing the workload dynamically is not

always possible or beneficial. These cases may benefit

from the concurrent employment of multiple forms of

parallelism (see next section). However, the applica-

tion of multiple forms of parallelism adds an extra

dimension to the processor allocation problem,

making it harder to solve.
O

Relation to Inter-Query and Intra-Operator Parallelism

Operator-level parallelism is orthogonal to inter-query

and intra-operator parallelism and can work synergis-

tically with them to improve performance even further.

For example, if there is imbalance in the execution

times of a query’s operators and there are free proces-

sors, intra-operator parallelism can be applied to split a

long-running operator into multiple ones, each

executing on a smaller subset of data. This will allow

for faster execution of the expensive operators and may

balance the execution times of operators participating

in a pipeline, avoiding execution skew.

For a more comprehensive treatment of operator-

level parallelism, the interested reader is referred to

[5,10,11].
Key Applications
Several parallel database systems have been developed

that utilize operator-level parallelism to improve per-

formance. Systems built in academic institutions

include GAMMA [4], BUBBA [2], Volcano [6], Mon-

etDB/X100 [1], and StagedDB [7]. Commercial sys-

tems that support operator-level parallelism include

Oracle [9] and IBM DB2 [8].
Cross-references
▶Data Skew

▶ Execution Skew

▶ Intra-Operator Parallelism
▶ Inter-Query Parallelism

▶ Parallel Hash Join, Parallel Merge Join, Parallel

Nested Loops Join

▶ Parallel Query Processing

▶ Pipelining

▶Query Plan

▶ Stop-&-Go Operator

Recommended Reading
1. Boncz P., Zukowski M., and Nes N. MonetDB/X100: hyper-

pipelining query execution. In Proc. 2nd Biennial Conf. on

Innovative Data Systems Research, 2005, pp. 225–237.

2. Boral H. Prototyping bubba: a highly parallel database system.

IEEE Trans. Knowl. Data Eng., 2(1), 1990.

3. Chen M.-S., Lo M., Yu P.S., and Young H.C. Using segmented

right-deep trees for the execution of pipelined hash joins.

In Proc. 18th Int. Conf. on Very Large Data Bases, 1992,

pp. 15–26.

5. DeWitt D.J. and Gray J. Parallel database systems: the future

of high-performance database computing. Commun. ACM,

35(6):85–98, 1992.

4. DeWitt D.J., Gerber R.H., Graefe G., Heytens M.L., Kumar K.B.,

and Muralikrishna M. GAMMA – A high performance dataflow

database machine. In Proc. 12th Int. Conf. on Very Large Data

Bases, 1986, pp. 228–237.

6. Graefe G. Volcano – an extensible and parallel query evaluation

system. IEEE Trans. Knowl. Data Eng., 6(1):120–135, 1994.

7. Harizopoulos S. and Ailamaki A. Staged D.B.: designing data-

base servers for modern hardware. IEEE Data Eng. Bull., 28

(2):11–16, 2005.

8. IBM Corp. DB2 Version 9 Performance Guide. Part No.

SC10–4222–00, 2006.

9. Oracle Corp. Oracle Database Data Warehousing Guide. 10g

Release 1 (10.1). Part No. B10736–01, 2003.

10. Schneider D.A. and DeWitt D.J. Tradeoffs in processing complex

join queries via hashing in multiprocessor database machines.

In Proc. 12th Int. Conf. on Very Large Data Bases, 1986,

pp. 469–480.

11. Yu P.S., Chen M.-S., Wolf J.L., and Turek J.J. Parallel query pro-

cessing. In Advanced Database Systems, N. Adam, B. Bhargava,

(eds.). LNCS, vol. 759, Springer, Berlin, 1993, pp. 239–258.
Operator Scheduling

▶ Scheduling Strategies for Data Stream Processing
Operator Tree

▶Query Plan

1986O Opinion Mining
Opinion Mining

BING LIU

University of Illinois at Chicago, Chicago, IL, USA

Synonyms
Sentiment analysis
Definition
Given a set of evaluative text documents D that contain

opinions (or sentiments) about an object, opinion

mining aims to extract attributes and components of

the object that have been commented on in each doc-

ument d 2 D and to determine whether the comments

are positive, negative or neutral.
Historical Background
Textual information in the world can be broadly clas-

sified into two main categories, facts and opinions.

Facts are objective statements about entities and events

in the world. Opinions are subjective statements

that reflect people’s sentiments or perceptions about

the entities and events. Much of the existing research

on text information processing has been (almost ex-

clusively) focused on mining and retrieval of factual

information, e.g., information retrieval, Web search,

and many other text mining and natural language

processing tasks. Little work has been done on the

processing of opinions until only recently. Yet, opi-

nions are so important that whenever one needs to

make a decision one wants to hear others’ opinions.

This is not only true for individuals but also true for

organizations.

One of the main reasons for the lack of study on

opinions is that there was little opinionated text before

the World Wide Web. Before the Web, when an indi-

vidual needs to make a decision, he/she typically asks

for opinions from friends and families. When an orga-

nization needs to find opinions of the general public

about its products and services, it conducts surveys

and focused groups. With the Web, especially with

the explosive growth of the user generated content on

the Web, the world has changed. One can post reviews

of products at merchant sites and express views on

almost anything in Internet forums, discussion groups,

and blogs, which are collectively called the user gener-

ated content. Now if one wants to buy a product, it
is no longer necessary to ask one’s friends and famil-

ies because there are plenty of product reviews on the

Web that give the opinions of the existing users of the

product. For a company, it may no longer need to

conduct surveys, to organize focused groups or to

employ external consultants in order to find consumer

opinions or sentiments about its products and those of

its competitors.

Finding opinion sources and monitoring them on

the Web, however, can still be a formidable task be-

cause a large number of diverse sources exist on the

Web and each source also contains a huge volume of

information. In many cases, opinions are hidden in

long forum posts and blogs. It is very difficult for a

human reader to find relevant sources, extract perti-

nent sentences, read them, summarize them and orga-

nize them into usable forms. An automated opinion

mining and summarization system is thus needed.

Opinion mining, also known as sentiment analysis,

grows out of this need.

Research on opinion mining started with identify-

ing opinion (or sentiment) bearing words, e.g., great,

amazing, wonderful, bad, and poor. Many researchers

have worked on mining such words and identifying

their semantic orientations (i.e., positive or negative).

In [5], the authors identified several linguistic rules

that can be exploited to identify opinion words and

their orientations from a large corpus. This method

has been applied, extended and improved in [3,8,12].

In [6,9], a bootstrapping approach is proposed, which

uses a small set of given seed opinion words to find

their synonyms and antonyms in WordNet (http://

wordnet.princeton.edu/). The next major development

is sentiment classification of product reviews at the

document level [2,11,13]. The objective of this task

is to classify each review document as expressing a

positive or a negative sentiment about an object (e.g.,

a movie, a camera, or a car). Several researchers

also studied sentence-level sentiment classification

[9,14,15], i.e., classifying each sentence as expressing a

positive or a negative opinion. The model of feature-

based opinion mining and summarization is proposed

in [6,10]. This model gives a more complete formula-

tion of the opinion mining problem. It identifies the key

pieces of information that should be mined and

describes how a structured opinion summary can be

produced from unstructured texts. The problem of

mining opinions from comparative sentences is intro-

duced in [4,7].

Opinion Mining O 1987

O

Foundations

Model of Opinion Mining

In general, opinions can be expressed on anything, e.g.,

a product, a service, a topic, an individual, an organi-

zation, or an event. The general term object is used

to denote the entity that has been commented on. An

object has a set of components (or parts) and a set

of attributes. Each component may also have its sub-

components and its set of attributes, and so on. Thus,

the object can be hierarchically decomposed based on

the part-of relationship.

Definition (object): An object O is an entity which

can be a product, topic, person, event, or organization.

It is associated with a pair, (T, A), where T is a hierar-

chy or taxonomy of components (or parts) and sub-

components of O, and A is a set of attributes of O. Each

component has its own set of sub-components and

attributes.

In this hierarchy or tree, the root is the object itself.

Each non-root node is a component or sub-component

of the object. Each link is a part-of relationship. Each

node is associated with a set of attributes. An opinion can

be expressed on any node and any attribute of the node.

However, for an ordinary user, it is probably

too complex to use a hierarchical representation. To

simplify it, the tree is flattened. The word ‘‘features’’ is

used to represent both components and attributes.

Using features for objects (especially products) is

quite common in practice. Note that in this definition

the object itself is also a feature, which is the root of

the tree.

Let an evaluative document be d, which can be a

product review, a forum post or a blog that evaluates a

particular object O. In the most general case, d consists

of a sequence of sentences d = hs1, s2,...,smi.
Definition (opinion passage on a feature): The

opinion passage on a feature f of the object O evaluated

in d is a group of consecutive sentences in d that

expresses a positive or negative opinion on f.

This means that it is possible that a sequence of

sentences (at least one) together expresses an opinion

on an object or a feature of the object. It is also possible

that a single sentence expresses opinions on more than

one feature, e.g., ‘‘The picture quality of this camera is

good, but the battery life is short.’’

Definition (opinion holder): The holder of a par-

ticular opinion is a person or an organization that

holds the opinion.
In the case of product reviews, forum postings and

blogs, opinion holders are usually the authors of the

posts. Opinion holders are important in news articles

because they often explicitly state the person or orga-

nization that holds a particular opinion [9]. For exam-

ple, the opinion holder in the sentence ‘‘John expressed

his disagreement on the treaty’’ is ‘‘John.’’

Definition (semantic orientation of an opinion):

The semantic orientation of an opinion on a feature f

states whether the opinion is positive, negative or

neutral.

Putting things together, a model for an object and

a set of opinions on the features of the object can be

defined, which is called the feature-based opinion

mining model.

Model of Feature-Based Opinion Mining: An

object O is represented with a finite set of features,

F = {f1, f2,...,fn}, which includes the object itself. Each

feature fi 2 F can be expressed with a finite set of words

or phrases Wi, which are synonyms. That is, there is a

set of corresponding synonym sets W = {W1, W2,...,

Wn} for the n features. In an evaluative document d

which evaluates object O, an opinion holder j com-

ments on a subset of the features Sj � F. For each

feature fk 2 Sj that opinion holder j comments on,

he/she chooses a word or phrase from Wk to describe

the feature, and then expresses a positive, negative or

neutral opinion on fk. The opinion mining task is to

discover all these hidden pieces of information from a

given evaluative document d.

Mining output: Given an evaluative document d,

the mining result is a set of quadruples. Each quadru-

ple is denoted by (H, O, f, SO), where H is the opinion

holder, O is the object, f is a feature of the object and

SO is the semantic orientation of the opinion expressed

on feature f in a sentence of d. Neutral opinions are

ignored in the output as they are not usually useful.

Given a collection of evaluative documents D con-

taining opinions on an object, three main technical

problems can be identified (clearly there are more):

Problem 1: Extracting object features that have been

commented on in each document d 2 D.

Problem 2: Determining whether the opinions on

the features are positive, negative or neutral.

Problem 3: Grouping synonyms of features (as dif-

ferent opinion holders may use different words or

phrase to express the same feature).

Opinion Summary: There are many ways to use

the mining results. One simple way is to produce a

1988O Opinion Mining
feature-based summary of opinions on the object [6].

An example is used to illustrate what that means.

Figure 1 summarizes the opinions in a set of revi-

ews of a particular digital camera, digital_camera_1.

The opinion holders are omitted. In the figure, ‘‘CAM-

ERA’’ represents the camera itself (the root node of the

object hierarchy). One hundred and twenty-five reviews

expressed positive opinions on the camera and seven
Opinion Mining. Figure 1. An example of a feature-

based summary of opinions.

Opinion Mining. Figure 2. Visualization of feature-based op
reviews expressed negative opinions on the camera. ‘‘pic-

ture quality’’ and ‘‘size’’ are two product features. One

hundred and twenty-three reviews expressed positive

opinions on the picture quality, and only 6 reviews

expressed negative opinions. The hindividual review

sentencesi points to the specific sentences and/or the

whole reviews that give the positive or negative com-

ments about the feature. With such a summary, the user

can easily see how existing customers feel about the

digital camera. If he/she is very interested in a partic-

ular feature, he/she can drill down by following the

hindividual review sentencesi link to see why existing

customers like it and/or dislike it.

The summary in Fig. 1 can be easily visualized using

a bar chart [10]. Figure 2(a) shows such a chart. In the

figure, each bar above the X-axis gives the number of

positive opinions on a feature (listed at the top), and

the bar below the X-axis gives the number of negative

opinions on the same feature. Obviously, other visualiza-

tions are also possible. For example, one may only

show the percentage of positive (or negative) opinions

on each feature. Comparing opinion summaries of a
inion summary and comparison.

Opinion Mining O 1989

O

few competing objects is even more interesting [10].

Figure 2(b) shows a visual comparison of consumer

opinions on two competing digital cameras. One can

clearly see how consumers view different features of

each camera.

Sentiment Classification

Sentiment classification has been widely studied in

the natural language processing (NLP) community

[e.g., 2,11,13]. It is defined as follows: Given a set of

evaluative documents D, it determines whether each

document d 2 D expresses a positive or negative opin-

ion (or sentiment) on an object. For example, given a

set of movie reviews, the system classifies them into

positive reviews and negative reviews.

This is clearly a classification learning problem. It is

similar but also different from the classic topic-based

text classification, which classifies documents into pre-

defined topic classes, e.g., politics, sciences, and sports.

In topic-based classification, topic related words are

important. However, in sentiment classification, topic-

related words are unimportant. Instead, opinion words

that indicate positive or negative opinions are impor-

tant, e.g., great, excellent, amazing, horrible, bad,

worst, etc. There are many existing techniques. Most

of them apply some forms of machine learning tech-

niques for classification (e.g., [11]). Custom-designed

algorithms specifically for sentiment classification also

exist, which exploit opinion words and phrases togeth-

er with some scoring functions [2,13].

This classification is said to be at the document level

as it treats each document as the basic information unit.

Sentiment classification thus makes the following as-

sumption: Each evaluative document (e.g., a review)

focuses on a single object O and contains opinions of a

single opinion holder. Since in the above opinion

mining model an object O itself is also a feature (the

root node of the object hierarchy), sentiment classifi-

cation basically determines the semantic orientation

of the opinion expressed on O in each evaluative

document that satisfies the above assumption.

Apart from the document-level sentiment classifi-

cation, researchers have also studied classification at

the sentence-level, i.e., classifying each sentence as a

subjective or objective sentence and/or as expressing a

positive or negative opinion [9,14,15]. Like the docu-

ment-level classification, the sentence-level sentiment

classification does not consider object features that

have been commented on in a sentence. Compound
sentences are also an issue. Such a sentence often

express more than one opinion, e.g., ‘‘The picture

quality of this camera is amazing and so is the battery

life, but the viewfinder is too small.’’
Feature-Based Opinion Mining

Classifying evaluative texts at the document level or

the sentence level does not tell what the opinion holder

likes and dislikes. A positive document on an object

does not mean that the opinion holder has positive

opinions on all aspects or features of the object. Like-

wise, a negative document does not mean that the

opinion holder dislikes everything about the object.

In an evaluative document (e.g., a product review),

the opinion holder typically writes both positive and

negative aspects of the object, although the general

sentiment on the object may be positive or negative.

To obtain such detailed aspects, going to the feature

level is needed. Based on the model presented earlier,

three key mining tasks are:

1. Identifying object features: For instance, in the

sentence ‘‘The picture quality of this camera is

amazing,’’ the object feature is ‘‘picture quality.’’ In

[10], a supervised pattern mining method is pro-

posed. In [6,12], an unsupervised method is used.

The technique basically finds frequent nouns and

noun phrases as features, which are usually genuine

features. Clearly, many information extraction tech-

niques are also applicable, e.g., conditional random

fields (CRF), hidden Markov models (HMM), and

many others.

2. Determining opinion orientations: This task deter-

mines whether the opinions on the features are

positive, negative or neutral. In the above sentence,

the opinion on the feature ‘‘picture quality’’ is

positive. Again, many approaches are possible. A

lexicon-based approach has been shown to perform

quite well in [3,6]. The lexicon-based approach

basically uses opinion words and phrases in a sen-

tence to determine the orientation of an opinion on

a feature. A relaxation labeling based approach is

given in [12]. Clearly, various types of supervised

learning are possible approaches as well.

3. Grouping synonyms: As the same object features

can be expressed with different words or phrases,

this task groups those synonyms together. Not

much research has been done on this topic. See

[1] for an attempt on this problem.

1990O Optical Storage
Mining Comparative and Superlative Sentences

Directly expressing positive or negative opinions on

an object or its features is only one form of evalua-

tion. Comparing the object with some other similar

objects is another. Comparisons are related to but

are also different from direct opinions. For example, a

typical opinion sentence is ‘‘The picture quality of

camera x is great.’’ A typical comparison sentence is

‘‘The picture quality of camera x is better than that of

camera y.’’ In general, a comparative sentence expresses

a relation based on similarities or differences of more

than one object. In English, comparisons are usually

conveyed using the comparative or the superlative

forms of adjectives or adverbs. The structure of

a comparative normally consists of the stem of an

adjective or adverb, plus the suffix -er, or the modifier

‘‘more’’ or ‘‘less’’ before the adjective or adverb. The

structure of a superlative normally consists of the

stem of an adjective or adverb, plus the suffix -est,

or the modifier ‘‘most’’ or ‘‘least’’ before the adjective

or adverb. Mining of comparative sentences basically

consists of identifying what features and objects

are compared and which objected are preferred by

their authors (opinion holders). Details can be found

in [4,7].

Key Applications
Opinions are so important that whenever one needs to

make a decision, one wants to hear others’ opinions.

This is true for both individuals and organizations.

The technology of opinion mining thus has a tremen-

dous scope for practical applications.

Individual consumers: If an individual wants to

purchase a product, it is useful to see a summary of

opinions of existing users so that he/she can make an

informed decision. This is better than reading a large

number of reviews to form a mental picture of the

strengths and weaknesses of the product. He/she can

also compare the summaries of opinions of competing

products, which is even more useful.

Organizations and businesses: Opinion mining is

equally, if not even more, important to businesses

and organizations. For example, it is critical for a

product manufacturer to know how consumers per-

ceive its products and those of its competitors. This

information is not only useful for marketing and prod-

uct benchmarking but also useful for product design

and product developments.
Cross-references
▶Text Mining

Recommended Reading
1. Carenini G., Ng R., and Zwart E. Extracting Knowledge from

Evaluative Text. In Proc. 3rd Int. Conf. on Knowledge Capture,

2005.

2. Dave D., Lawrence A., and Pennock D. Mining the peanut

gallery: opinion extraction and semantic classification of prod-

uct reviews. In Proc. 12th Int. World Wide Web Conference,

2003.

3. Ding X., Liu B., and Yu P. A holistic lexicon-based approach to

opinion mining. In Proc. 1st ACM Int. Conf. onWeb Search and

Data Mining. 2008.

4. Ganapathibhotla G. and Liu B. Identifying preferred entities in

comparative sentences. In Proc. 22nd Int. Conf. on Computa-

tional Linguistics. 2008.

5. Hatzivassiloglou V. and McKeown K. Predicting the semantic

orientation of adjectives. In Proc. 8th Conf. European Chapter of

Assoc. Comp. Linguistics. 1997.

6. Hu M. and Liu B. Mining and summarizing customer reviews.

In Proc. 10th ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining, 2004.

7. Jindal N. and Liu B. Mining comparative sentences and rela-

tions. In Proc. of National Conf. on Artificial Intelligence, 2006.

8. Kanayama H. and Nasukawa T. Fully automatic lexicon expan-

sion for domain-oriented sentiment analysis. In Proc. 2006

Conf. on Empirical Methods in Natural Language Processing,

2006.

9. Kim S. and Hovy E. Determining the sentiment of opinions. In

Proc. 20th Int. Conf. on Computational Linguistics, 2004.

10. Liu B., Hu M., and Cheng J. Opinion observer: analyzing

and comparing opinions on the web. In Proc. 14th Int. World

Wide Web Conference, 2005.

11. Pang B., Lee L., and Vaithyanathan S. Thumbs up? Sentiment

classification using machine learning techniques. In Proc. 2002

Conf. on Empirical Methods in Natural Language Processing,

2002.

12. Popescu A.-M. and Etzioni O. Extracting product features

and opinions from reviews. In Proc. 2005 Conf. on Empiri-

cal Methods in Natural Language Processing, 2005.

13. Turney P. Thumbs up or thumbs down? Semantic Orientation

Applied to Unsupervised Classification of Reviews. In Proc. 40th

Annual Mfg. of Assoc. Comp. Linguistics, 2002.

14. Wiebe J. and Riloff E. Creating subjective and objective sentence

classifiers from unannotated texts. In Proc. Int. Conf. on Intelli-

gent Text Processing and Computational Linguistics, 2005.

15. Wilson T., Wiebe J., and Hwa R. Just how mad are you?

Finding strong and weak opinion clauses. In Proc. National

Conf. on Artificial Intelligence, 2004.
Optical Storage

▶ Storage Devices

Optimistic Replication and Resolution O 1991
Optimistic Replication

▶Optimistic Replication and Resolution
O

Optimistic Replication and
Resolution

MARC SHAPIRO

INRIA Paris-Rocquencourt and LIP6, Paris, France

Synonyms
Optimistic Replication; Reconciliation-Based Data

Replication; Lazy Replication; Multi-Master System

The term ‘‘Optimistic Replication’’ is prevalent in

the distributed systems and distributed algorithms liter-

ature. The database literature prefers ‘‘Lazy Replication’’

Definition
Data replication places physical copies of a shared logical

item onto different sites. Optimistic replication (OR)

[11] allows a program at some site to read or update

the local replica at any time. An update is tentative

because it may conflict with a remote update.

Such conflicts are resolved after the fact, in the back-

ground. Replicas may diverge occasionally but are

expected to converge eventually (see entry on EVENTUAL

CONSISTENCY).

OR avoids the need for distributed concurrency

control prior to using an item. It allows a site to execute

even when remote sites have crashed, when network

connectivity is poor or expensive, or while disconnect-

ed from the network. Disconnected operation, the capa-

bility to compute while disconnected from a data

source, e.g., in mobile computing, requires OR. In

computer-supported co-operative work, OR enables a

user to temporarily insulate himself from other users.

The defining characteristic of OR is that any syn-

chronization between sites occurs in the background,

after local termination, i.e., off the critical path of

the application.

Historical Background
The first historical instance of OR is Johnson’s

and Thomas’s replicated database (1976). (The vocab-

ulary used in this history is defined in Section

‘‘Foundations.’’)
Usenet News (1979) was an important and inspira-

tional development. News supports a large-scale

ever-growing database of (read-only) items, posted by

users all over theworld. AUsenet site connects infrequent-

ly (e.g., daily) with its peers. New items are flooded to

other sites, and are received in arbitrary order. Users

occasionally observe ordering anomalies, but this is not

considered a problem. However, system administrators

must deal manually with conflicts over administrative

operations.

In 1984, Wuu and Bernstein’s replicated mutable

key-value-pair database use an operation log, trans-

mitted by an anti-entropy protocol: site A sends to

site B only the tail of A’s log that B has not yet seen

[15]. Concurrent operations either commute or have a

natural semantic order; non-concurrent operations

execute in happens-before order.

The LotusNotes system (1988) supports co-operative

work between mobile enterprise users. It replicates a

database of discrete items in a peer-to-peer manner.

Notes is state-based, and uses a Last-Writer Wins policy.

A deleted item is replaced by a tombstone.

Several file systems, designed in the early 1990s

to support disconnected work, e.g., Coda [6], are

state based and uses version vectors for conflict

detection. Conflicts over some specific object types

(e.g., directories or mailboxes) cause automatic resolv-

er programs to run. The others must be resolved

manually.

Golding (1992) [3] studies a replicated database of

mutable key-value pairs. This system purges an opera-

tion from the log when it can prove that it was deliv-

ered to all sites. Consistency is ensured by defining a

total order of operations.

Bayou (1994–1997) is an innovative general-purpose

database for mobile users [9]. Bayou is operation-based

and uses an anti-entropy protocol. Each site executes

transactions in arbitrary order; transactions remain ten-

tative. The eventual serialization order is the order of

execution at a designated primary site. Other sites roll

back their tentative state, and re-execute committed

transactions in commit order.

In 1996, Gray et al. argued that OR databases for

disconnected work cannot scale [4], because conflict

reconciliation is expensive, conflict probability rises as

the third power of the number of nodes, and the wait

probability further increases quadratically with discon-

nection time.

Optimistic Replication and Resolution. Figure 1. Three

sites with replicas of logical item x. Site 1 initiates

transaction f, Site 2 initiates g. The system propagates and

replays on remote sites. Site 3 executes in the order g;f,

whereas Site 1 replays f before g. Eventually, Site 2 will also

execute f.

1992O Optimistic Replication and Resolution
Breitbart et al. [1] describe a partially-replicated

database that uses a form of OR. Each item has a desig-

nated primary site and may be replicated at any number

of secondary sites. A read may occur at a secondary site

but a write must occur on the primary. It follows that

write transactions update a single site. If transactions are

serialisable at each site, and update propagation is re-

stricted to avoid ordering anomalies, then transactions

are serialisable despite lazy propagation.

The Computer-Supported Cooperative Work

(CSCW) community invented (1989) a form of OR

called Operational Transformation (OT). Conflicting

operations are transformed, by modifying their argu-

ments, in order to execute in arbitrary order [12].

Foundations
Figure 1 depicts a logical item x, concretely replicated

at three different sites. In OR, any site may submit or

initiate a transaction reading or writing the local repli-

ca. If the transaction succeeds locally, the system pro-

pagates it to other sites, and replays the transaction on

the remote sites, in a lazy manner, in the background.

Local execution is tentative and may be rolled back

later, because of a conflict with a concurrent remote

transaction. (The happens-before and concurrency

relations are defined formally by Lamport [7]. Trans-

action A happens-before B, if B was initiated on some

site after A executed at that site. Two transactions are

concurrent if neither happens-before the other.)

OR is opposed to pessimistic (or eager) replication,

where a local transaction terminates only when it

commits globally. Pessimistic replication establishes a

total order for committed transactions, at the latest

when each transaction terminates. In contrast, OR

generally relaxes the ordering requirements and/or

converges to a common order a posteriori. The effects

of a tentative transaction can be observed, thus OR

protocols may violate the isolation property and allow

cascading aborts and retries to occur.

Transmitting and Replaying Updates

In OR, updates are propagated lazily, in the back-

ground, after the transaction has terminated locally.

Transmission usually uses peer-to-peer epidemic or

anti-entropy techniques (see entry on PEER-TO-PEER

CONTENT DISTRIBUTION).

A site that receives a remote update replays it, i.e.,

incorporates it into the local replica. There are two

main approaches. In the state-based approach, the
initiator site transmits the after-values of the transac-

tion, and other sites assign the after-value to their local

replica. In the operation-based approach, the initiator

sends the program of the transaction itself, and other

sites re-execute the transaction.

State-based replay is guaranteed to be determin-

istic. State-based replay can be more efficient, since the

replay code is just a write. On the downside, if the

granularity is large, then state-based transmission is

expensive and replay is subject to false conflicts. Fur-

thermore, logical operations are more likely to com-

mute than writes, thus operation-based replay typically

causes fewer aborts.

Conflicts

Each transaction taken individually is assumed correct

(the C of the ACID properties), i.e., it maintains

semantic invariants. For example, ensuring that a

bank account remains positive, or that a person is not

scheduled in two different meetings at the same time.

As is clear from Fig. 1, concurrent transactions may

be delivered to different sites in different orders. (Depen-

dent transactions are assumed to execute in dependency

order; see Section ‘‘Scheduling Transactions Content

and Ordering.’’) However, consistency requires that

local schedules be equivalent. In this respect, one may

classify pairs of concurrent transactions as commuting,

non-commuting, and antagonistic. Transactions conflict

if they are mutually non-commuting or mutually

antagonistic.

The relative execution order of commuting transac-

tions is immaterial; they require no remote synchroni-

zation. Formally, two transactions T1 and T2 commute

if execution order T1;T2 returns the same results to the

Optimistic Replication and Resolution O 1993

O

user and leaves the database in the same state as the

order T2;T1. For instance, depositing €10 in a bank

account commutes with a depositing €20 into the

same account, and also commutes with withdrawing

€100 from an independent account.

If running concurrent transactions together would

violate an invariant, they are said antagonistic. Safety

requires aborting one or the other (or both). For

instance, if T1 schedules me in a meeting from 10:00

to 12:00, and T2 schedules a meeting from 11:00 to

13:00, they are antagonistic since no combination of

both T1 and T2 can be correct.

If two transactions are non-commuting and neither

is aborted, then their relative execution order must be

the same at all sites. Consider for instance T1 = ‘‘trans-

fer balance to savings’’ and T2 = ‘‘deposit €100.’’ Both

orders T1;T2 and T2;T1 make sense, but the result is

clearly different. There must be a system-wide consen-

sus on the order chosen.

Conflict Resolution and Reconciliation

Conflict resolution rewrites or aborts transactions to

remove conflicts. Conflict resolution can be either

manual or automatic. Manual conflict resolution sim-

ply allows conflicting transactions to proceed, thereby

creating conflicting versions; it is up to the user to

create a new, merged version.

Reconciliation detects and repairs conflicts, and

combines non-conflicting updates. Thus transactions

are tentative, i.e., a tentatively-successful transaction

may have to roll back for reconciliation purposes. OR

resolves conflicts a posteriori (whereas pessimistic

approaches avoid them a priori).

In many systems, data invariants are either un-

known or not communicated to the system. In this

case, the system designer conservatively assumes that,

if concurrent transactions access the same item, and

one (or both) writes the item, then they are antagonis-

tic. Then, one of them must abort, or both.

A few systems, such as Bayou [14] or IceCube [10]

support an application-specific check of invariants.

Last Writer Wins

When transactions consist only of writes, a common

approach is to ensure a global precedence order.

For instance, many replicated file systems follow the

‘‘Last Writer Wins’’ (LWW) approach. Files have time-

stamps that increase with successive versions.When the

file system encounters two concurrent versions of
the same file, it overwrites the one with the smallest

timestamp with the ‘‘younger’’ one (highest time-

stamp). The write with the smallest timestamp is lost;

this approach violates the Durability property of ACID.

Semantic Resolvers

A resolver is an application-specific conflict resolution

program that automatically merges two conflicting

versions of an item into a new one. For example, the

Amazon online book store resolves problems with a

user’s ‘‘shopping cart’’ by taking the union of any

concurrent instances. This maximizes availability

despite network outages, crashes, and the user opening

multiple sessions.

A resolver should ensure that the conflicting trans-

actions are made to commute. In a state-based ap-

proach, a resolver generally parses the item’s state

into small, independent sub-items. Then it applies a

LWW policy to updated and tombstoned sub-items,

and a union policy to newly-created sub-items.

The most elaborate example exists in Bayou. A

Bayou transaction has three components: the dependen-

cy check, the write, and the merge procedure. The for-

mer is a database query that checks for conflicts when

replaying. The write (a SQL update) executes only if the

consistency check succeeds. If it fails, the merge proce-

dure (an arbitrary but deterministic program) provides

a chance to fix the conflict. However, it is very difficult to

write merge procedures in the general case.

Operational Transformation

In Operational Transformation (OT), conflicting

operations are transformed [12]. Consider two users

editing the shared text ‘‘abc’’. User 1 initiates insert

(‘‘X’’,2) resulting in ‘‘aXbc’’ and User 2 initiates delete

(3), resulting in ‘‘ab.’’ When User 2 replays the insert,

the result is ‘‘aXb’’ as expected. However for User 1 to

observe the same result, the delete must be trans-

formed to delete(2).

In essence, the operations were specified in a

non-commuting way, but transformation makes them

commute. OT assumes that transformation is always

possible. The OT literature focuses on a simple, linear,

shared edit buffer data type, for which numerous

transformation algorithms have been proposed.

OT requires two correctness conditions, often

called TP1 and TP2. TP1 requires that, for any two

concurrent operations A and B, running ‘‘A followed

by {B transformed in the context of A}’’ yield the same

1994O Optimistic Replication and Resolution
result as ‘‘B followed by {A transformed in the context

of B}.’’ TP1 is relatively easy to satisfy, and is sufficient

if replay is somehow serialized.

TP2 requires that transformation functions them-

selves commute. TP2 is necessary if replay is in arbi-

trary order, e.g., in a peer-to-peer system. The vast

majority of published non-serialized OT algorithms

have been shown to violate TP2 [8].
Scheduling Transactions Content and Ordering

In order to capture any causal dependencies, transac-

tions execute in happens-before order. As explained

in Section ‘‘Conflicts,’’ antagonistic transactions cause

aborts, and non-commuting transactions must be mu-

tually ordered. This so-called serialization requires a

consensus.

Whereas pessimistic approaches serialize a priori,

most OR systems execute transactions tentatively in

arbitrary order and serialize a posteriori. Some execu-

tions are rolled back; cascading aborts may occur.

A prime example is the Bayou system [14]. Each

site executes transactions in the order received. Even-

tually, the transactions reach a distinguished primary

site. If a transaction fails its dependency check at the

primary, then it aborts everywhere. Transactions that

succeed commit, and are serialized in the execution

order of the primary.

The IceCube system showed that it is possible

to improve the user experience by scheduling opera-

tions intelligently [10]. IceCube is a middleware that

relieves the application programmer from many of the

complexities of reconciliation. Multiple applications

may co-exist on top of IceCube. Applications expose

semantic annotations, indicating which operation

pairs commute or not, are antagonistic, dependent, or

have an inherent semantic order. The user may create

atomic groups of operations from different applica-

tions. The IceCube scheduler performs an optimization

procedure over a batch of operations, minimizing the

number of aborted operations. The user commits any of

the alternative schedules proposed by the system.
Freshness of Replicas

Applications may benefit from freshness or quality-

of-service guarantees, e.g., that no replica diverges by

more than a known amount from the ideal, strongly-

consistent state. Such guarantees come at the expense of

decreased availability.
The Bayou system proposes qualitative ‘‘session

guarantees’’ on the relative ordering of operations [13].

For instance, Read-Your-Writes (RYW) guarantees that

a read observes the effect of a write by the same user,

even if initiated at a different site. RYW ensures, that

immediately after changing his password, a user can

log in with the new password. Other similar guar-

antees are Monotonic-Reads, Writes-Follow-Reads, and

Monotonic-Writes.

Systems such as TACT control replica divergence

quantitatively [5]. TACT provides a time-based guar-

antee, allowing an item to remain stale for only a

bounded amount of time. TACT implements this by

pushing an update operation to remote replicas before

the time limit elapses. TACT also provides ‘‘order

bounding,’’ i.e., limiting the number of uncommitted

operations: when a site reaches a user-defined bound

on the number of uncommitted operations, it stops

accepting new ones.

Finally, TACT can bound the difference between

numeric values.

For this, each replica is allocated a quota. Each

site estimates the progress of other sites, using vector

clock techniques. The site stops initiating operations

once its cumulative modifications, or the estimated

remote updates to the item, reach the quota. At that

point the site pushes its updates and pulls remote

operations. For example a bank account might be

replicated at ten sites.

To guarantee that the balance observed is within

€50 of the truth, each site’s quota is €50/10 = €5.

Whenever the difference estimated by a site reaches

€5, it synchronises with the others.

Optimistic Replication Versus Optimistic Concurrency

Control

The word ‘‘optimistic’’ has different, but related,

meanings when used in the context of replication and

of concurrency control.

Optimistic replication (OR) means that updates

propagate lazily. There is no a priori total order of

transactions. There is no point in time where different

sites are guaranteed to have the same (or equivalent)

state. Cascading aborts are possible.

Optimistic concurrency control (OCC) means

that conflicting transactions are allowed to proceed

concurrently. However, in most OCC implementa-

tions, a transaction validates before terminating. A

transaction is serialized with respect to concurrent

Optimization and Tuning in Data Warehouses O 1995

O

transactions, at the latest when it terminates, and

cascading aborts do not occur.

Key Applications
Usenet News pioneered the OR concept, allowing to

share write-only information over a slow, but cheap

network using dial-up modems over telephone lines.

Mobile users want to be able to work as usual, even

when disconnected from the network. Thus, mobile

computing is a key driver for OR applications. Systems

designed for disconnected work that use OR include

the Coda file system [6], the Bayou shared database

[14], or the Lotus Notes collaborative suite.

Another important application area is Computer-

Supported Collaborative Work. In this domain, users

must be able to update shared artefacts in complex

ways without interfering with one another. OR allows

a user to insulate himself temporarily from other users.

A key example is the Concurrent Versioning System

(CVS), which enables collaborative authoring of com-

puter programs [2]. Bayou and Lotus Notes, just cited,

are also designed for collaborative work.

OR is used for high performance and high availabil-

ity in large-scale web sites. A recent example is Ama-

zon’s ‘‘shopping cart,’’ which is designed to be highly

available, even if the same user connects to several

instances of the Amazon store discussed earlier.

Cross-references
▶ Eventual Consistency

▶ Peer-to-Peer Content Distribution

▶ Peer-to-Peer System

▶ Strong Consistency Models for Replicated Data

▶Traditional Concurrency Control for Replicated

Databases

▶WAN Data Replication
Recommended Reading
1. Breitbart Y., Komondoor R., Rastogi R., and Seshadril S. Update

propagation protocols for replicated databases. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1999, pp. 97–108.

2. Cederqvist P. et al. Version Management with CVS. Network

Theory, Bristol, 2006.

3. Golding R.A. Weak-Consistency Group Communication and

Membership. Ph.D. thesis, University of California, Santa Cruz,

CA, USA, 1992, tech. Report no. UCSC-CRL-92-52. Available at

ftp://ftp.cse.ucsc.edu/pub/tr/ucsc-crl-92-52.ps.Z

4. Gray J., Helland P., O’Neil P., and Shasha D. The dangers of

replication and a solution. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1996, pp. 173–182.
5. Haifeng Yu and Amin Vahdat. Combining Generality and Prac-

ticality in a Conit-Based Continuous Consistency Model for

Wide-Area Replication. In Proc. 21st Int. Conf. on Distributed

Computing Systems, USA.

6. Kistler J.J. and Satyanarayanan M. Disconnected operation

in the Coda file system. ACM Trans. Comp. Syst., 10(5):3–25,

1992.

7. Lamport L. Time, clocks, and the ordering of events in a

distributed system. Commun. ACM, 21(7): 558–565, 1978.

8. Oster G., Urso P., Molli P., and Imine A. Proving correctness of

transformation functions in collaborative editing systems. Rap-

port de recherche RR-5795, LORIA – INRIA Lorraine, 2005,

Available at http://hal.inria.fr/inria-00071213/.

9. Petersen K., Spreitzer M.J., Terry D.B., Theimer M.M.,

and Demers A.J. Flexible update propagation for weakly con-

sistent replication. In Proc. 16th ACM Symp. on Operating

System Principles, 1997, pp. 288–301.

10. Preguiça N., Shapiro M., and Matheson C. Semantics-based

reconciliation for collaborative and mobile environments. In

Proc. Int. Conf. on Cooperative Inf. Syst., 2003, pp. 38–55.

11. Saito Y. and Shapiro M. Optimistic replication. ACM Comput.

Surv., 37(1):42–81, 2005.

12. Sun C. and Ellis C. Operational transformation in real-time

group editors: issues, algorithms, and achievements. In Proc.

Int. Conf. on Computer-Supported Cooperative Work, 1998,

p. 59.

13. TerryD.B.,DemersA.J.,PetersenK.,SpreitzerM.J.,TheimerM.M.,

and Welch B.B. Session guarantees for weakly consistent

replicated data. In Proc. Int. Conf. on Parallel and Distributed

InformationSystems, 1994, pp. 140–149.

14. TerryD.B., TheimerM.M., PetersenK.,DemersA.J., SpreitzerM.J.,

and Hauser C.H. Managing update conficts in Bayou, a weakly

connected replicated storage system. In Proc. 15th ACM Symp. on

Operating System Principles, 1995, pp. 172–182.

15. Wuu G.T.J. and Bernstein A.J. Efficient solutions to the

replicated log and dictionary problems. In Proc. ACM

SIGACT-SIGOPS 3rd Symp. on the Principles of Dist. Comp.,

1984, pp. 233–242.
Optimization and Tuning in Data
Warehouses

LADJEL BELLATRECHE

LISI/ENSMA–Poitiers University, Futuroscope Cedex,

France

Definition

Optimization and tuning in data warehouses are the

processes of selecting adequate optimization techniques

in order to make queries and updates run faster and to

maintain their performance by maximizing the use of

data warehouse system resources. A data warehouse is

1996O Optimization and Tuning in Data Warehouses
usually accessed by complex queries for key business

operations. They must be completed in seconds not

days. To continuously improve query performance, two

main phases are required: physical design and tuning. In

the first phase, data warehouse administrator selects

optimization techniques such as materialized views, ad-

vanced index schemes, denormalization, vertical parti-

tioning, horizontal partitioning and parallel processing.

Generally, this selection is based on most frequently

asked queries and typical updates. Physical design gen-

erates a configurationD containing a number of optimi-

zation techniques. This configuration should evolve,

since data warehouse dynamically changes during its

lifetime. These changes necessitate a tuning phase so

as to keep the performance of the warehouse from

degrading. Changes may be related to the content of

tables, sizes of optimization structures selected during

physical design (materialized views, indexes and parti-

tions), frequencies of queries/updates, addition/deletion

of queries/updates, etc. The role of the tuning phase is

to monitor and to diagnose the use of configuration

D and different resources assigned to D (like buffer,

storage space, etc.). For instance, if an optimization

technique, like an index, is not used by the whole work-

load, it will be dropped by a tuning tool and might

be replaced with another technique.

Historical Background
There has been extensive work in query optimization

since the early 1970s in traditional databases. Several

algorithms and systems have been proposed, such as

System-R project, and its ideas have been largely

incorporated in many commercial optimizers. Note

that each SQL query corresponding to a select-project-

join query in the relational algebra may be represented

by many query trees. The leaves of each query tree

represent base relations and non-leaf nodes are algebraic

operators like selections, projections, unions, joins. An

intermediate node indicates the application of the

corresponding operator on the relations generated by

its children, the result of which is then sent further up.

Thus, the edges of a tree represent data rows from

bottom to top, i.e., from the leaves which correspond

to data in the database, to the root, which is the final

operator producing the query answer. For a complicated

query, the number of all possible query treesmay be very

high due to many algebraic laws that hold for relational

algebra: commutative and associative laws of joins, laws
involving selection and projection push down along the

tree, etc.

To choose an optimal query tree, a database opti-

mizer may employ one of two optimization techni-

ques: rule-based optimization approach and cost-based

optimization approach. The rule-based optimizer is the

oldest one. It is simple since it is based on a set of rules

concerning join algorithms, the use of an index or not,

the choice of the external relation in a nested loop, and

so on. The optimizer chooses an execution plan based

on the available access paths and their ranks. For in-

stance, Oracle’s ranking of the access paths is heuristic.

If there is more than one way to execute a query, then

the rule-based optimizer always uses the operation

with the lower rank. Usually, operations of lower

rank execute faster than those associated with con-

structs of higher rank. In cost-based optimization,

the optimizer estimates the cost of each possible exe-

cution plan (Query execution plan is a set of steps used

to access data in relational databases. Figure 1 gives an

example of an execution plan, where dashed circles and

solid circles represent base tables and algebraic opera-

tions, respectively. Other execution plans might be

generated.) by applying heuristic formulas using a set

of statistics concerning database (sizes of tables, index-

es, tuple length, selectivity factors of join and selection

predicates, sizes of intermediate results, etc.) and hard-

ware (size of buffer, page size, etc.). For each execution

plan, the query optimizer performs the following tasks:

(i) it selects an order and grouping for associative-and-

commutative operations like joins, unions and inter-

section, (ii) it chooses implementation algorithms for

different algebraic operations: for example, selections

may be implemented using either a sequential scan or

an index scan; join operation may be implemented in

different ways: nested loop, sort-merge join and hash join

(see Fig. 1), (iii) it manages additional operators like

group-by, sorting, etc., and (iv) it manages the inter-

mediate results (T1 and T2 are an example of interme-

diate results of two execution plans of the same query

in Fig. 1), etc. Cost-based optimizer chooses the plan

that has the lowest cost using dynamic programming

approaches (e.g., in System R).

Cost-based optimization is more effective than

rule-based optimization, since all decisions taken on

a query execution plan are validated by a cost model.

An important point to be mentioned is that the quality

of cost-based optimization depends strongly on the

Optimization and Tuning in Data Warehouses. Figure 1. Two different query execution plans.

Optimization and Tuning in Data Warehouses O 1997

O

recency of the statistics. Determining which statistics

to create is a difficult task [6].

Due to the difficulty query optimizers have in

selecting an optimal execution plan, some commercial

database systems offer the data warehouse administra-

tor to use hints in order to force query optimizer to

choose an execution plan.

The above cited optimization techniques are

enough to optimize traditional database applications

(called, OLTP: On-Line Transaction Processing). It will

be interesting to see whether they are also sufficient for

decision support applications built around a large data

warehouse.

A data warehouse is usually modeled with a rela-

tional schema (star schema, snow flake schema). A star

schema consists of a single fact table that is related

to multiple dimension tables via foreign key joins.

Dimension tables are relatively small compared to

the fact table and rarely updated. They are typically

denormalized so as to minimize the number of join

operations required to evaluate a query. Due to the

interactive nature of decision support applications,

having a fast query response time is a critical perfor-

mance goal. The above optimization techniques are

not suitable for data warehouse applications due to

their different requirements and workload. Data ware-

house applications operate in mostly-read environ-

ments, which are dominated by large and complex

queries. The typical queries on the star schema are called

star join queries. They are characterized by: (i) a multi-

table join among a large fact table and dimension tables

and (ii) each of the dimension tables involved in the
join operation has multiple selection predicates (a se-

lection predicate has the following form: Di.Aj y value,

where Aj is an attribute of dimension table Di and y is

one of six comparison operators {=,<,>,�,�}, and

value is the predicate constant) on its descriptive attri-

butes and (iii) no join operation between dimension

tables. Unfortunately, conventional query optimiza-

tion techniques are not efficient for star-join queries

for two main reasons. First, traditional indexing tech-

niques (B-tree) are not efficient to process such a

selection predicate. This is due to the fact that dimen-

sion attributes often have low cardinality (e.g., gender)

and each selection predicate typically has a low selec-

tivity. Second, since the fact table is very large, com-

puting the multi-table joins using traditional join

algorithms (nested loop, sort-merge, hash joins) is

inefficient because it requires scanning the fact table.

Without efficient optimization techniques, such

queries may take hours or days, which is unacceptable

in most cases. As a consequence, the physical design

becomes sophisticated to cope with complex decision

support queries [6]. To speed up these queries, in

addition to the existing ones (developed for OLTP

applications), a large spectrum of optimization tech-

niques were proposed in the literature and mostly

supported by commercial database systems. These

techniques include materialized views, partitioning,

advanced indexing schemes, denormalization, parallel

processing. In the next section, all these techniques will

be described in details. For each one, its principle,

advantages, disadvantages and selection problem will

be presented.

Constraints

Objectives
Without

constraints
Maintenance

cost
Storage
cost

Query cost √ √ √

Maintenance
cost

√ ? √

Query cost &
Maintenance
Cost

√ ? √

1998O Optimization and Tuning in Data Warehouses
Foundations
The various optimization techniques selected during

the physical design process may be classified into two

main categories: redundant techniques and non-

redundant techniques.

Redundant Techniques

This category includes four main techniques: materi-

alized views, advanced indexing schemes, denormali-

zation, and vertical partitioning.

1. Materialized views. A virtual view (A view is a

derived relation defined in terms of base relations.) can

be materialized by storing its tuples in the databases.

Materialized views are used to precompute and to store

aggregated data. They can also be used to precompute

joins with or without aggregations. So, materialized

views are suitable for queries with expensive joins or

aggregations. Once materialized views are selected, all

queries will be rewritten using materialized views (this

process is known as query rewriting). A rewriting of a

query Q using views is a query expression Q 0 referen-

cing to these views. The query rewriting is done trans-

parently by the query optimizer. To generate the best

rewriting for a given query, a cost-based selection

method is used. Two major problems related to mate-

rialized views are: (i) the view selection problem and

(ii) the view maintenance problem.

Views selection problem. The database administra-

tor cannot materialize all possible views, as he/she is

constrained by some resources like, disk space, compu-

tation time, maintenance overhead and cost required

for query rewriting process. Hence, he/she needs to

select an appropriate set of views to materialize under

some resource constraint. Formally, view selection

problem (VSP) is defined as follows: given a set

of most frequently used queries Q = {Q1,Q2,...,Qn},

where each query Qi has an access frequency fi (1 � i

� n) and a resource constraint M, the view selection

problem consists of selecting a set of materialized views

that minimizes one or more objectives, possibly subject

to one or more constraints. Many variants of this

problem have been studied: (i) minimizing the query

processing cost subject to storage size constraint [5],

(ii) minimizing query cost and maintenance cost sub-

ject to storage space constraint [9], (iii) minimizing

query cost under a maintenance constraint [8], etc.

This problem is known to be an NP-hard problem

[8]. Several algorithms were proposed to deal with

this problem [8,9]. The following table summarizes
all possible formalizations of view selection problem.

Two symbols are used in this table (√ and ?), where

each one has its own interpretation: √: formalizations

and selection algorithms already exist and ?:

Inapplicable.
View maintenance problem. Note that materialized

views store data from base tables. In order to keep the

views in the data warehouse up to date, it is necessary

to maintain the materialized views in response to the

changes at the base tables. This process of updating

views is called view maintenance which has generated a

great deal of interest. Views can be either recomputed

from scratch, or incrementally maintained by propa-

gating the base data changes onto the views. As recom-

puting the views can be prohibitively expensive, the

incremental maintenance of views is of significant

value [8].

2. Indexing has been at the foundation of perfor-

mance tuning for databases for many years. A database

index is a data structure that improves the speed of

operations in a table. Indexes can be created using one

or more columns. An index can be either clustered or

non-clustered. It can be defined on one table (or view)

or many tables using a join index [10]. The traditional

indexing strategies used in database systems do not

work well in data warehousing environments since

most OLTP queries are point queries. B-trees, which

are used in most common relational database systems,

are geared towards such point queries. In the data

warehouse context, indexing refers to two different

things: (i) indexing techniques and (ii) index selection

problem.

Indexing techniques. A number of indexing strate-

gies have been suggested for data warehouses: Value-

List Index, Projection Index, Bitmap Index, Bit-Sliced

Index, Data Index, Join Index, and Star Join Index.

Bitmap index is probably the most important result

Optimization and Tuning in Data Warehouses O 1999

O

obtained in the data warehouse physical optimization

field. The bitmap index is more suitable for low cardi-

nality attributes since its size strictly depends on the

number of distinct values of the column on which it is

built. Besides disk space saving (due to their binary

representation and potential compression), such index

speeds up queries having Boolean operations (such as

AND, OR and NOT) and COUNToperations. Bitmap

join index is proposed to speed up join operations. In

its simplest form, it can be defined as a bitmap index

on a table R based on a single column of another table

S, where S commonly joins with R in a specific way.

Index selection problem. The task of index selection

is to automatically select an appropriate set of indices

for a data warehouse (having a fact table and dimen-

sion tables) and a workload under resource constraints

(storage, maintenance, etc.). It is challenging for the

following reasons [3]: the size of a relational data

warehouse schema may be large (many tables with

several columns), and indices can be defined on a set

of columns. Therefore, the search space of indices that

are relevant to a workload can be very large [2]. To deal

with this problem, most selection approaches use two

main phases: (i) generation of candidate attributes and

(ii) selection of a final configuration. The first phase

prunes the search space of index selection problem,

by eliminating non-relevant attributes. In the second

phase, the final indices are selected using greedy algo-

rithms [4], linear programming algorithms [3], etc.

The quality of the final set of indices depends essentially

on the pruning phase. To prune the search space of

index candidates, many approaches were proposed

[1–3], that can be classified into two categories: heuris-

tic enumeration-driven approaches and data mining

driven approaches.

In heuristic enumeration-driven approaches, heur-

istics are used. For instance, in [4], a greedy algorithm

is proposed that uses optimizer cost of SQL Server to

accept or reject a given configuration of indices. The

weakness of this work is that it imposes the number of

generated candidates. IBM DB2 Advisor is another

example belonging to this category [15], where the

query parser is used to pick up selection attributes

used in workload queries. The generated candidates

are obtained by a few simple combinations of selection

attributes [15].

In data mining-driven approaches, the pruning

process is done using data mining techniques, like in

[2]. In this approaches the number of index candidates
is not a priori known as in the first category. The basic

idea is to generate frequent closed itemsets represent-

ing groups of attributes that could participate in select-

ing the final configuration of bitmap join indexes. A

data mining based approach has been developed for

selecting bitmap join indexes [2].

3. Vertical partitioning can be viewed as a redun-

dant structure even if it results in little storage over-

head. The vertical partitioning of a table T splits it into

two or more tables, called, sub-tables or vertical frag-

ments, each of which contains a subset of the columns

in T. Note that the key columns are duplicated in each

vertical fragment, to allow ‘‘reconstruction’’ of an orig-

inal row in T. Since many queries access only a small

subset of the columns in a table, vertical partitioning

can reduce the amount of data that needs to be

scanned to answer the query. Unlike horizontal parti-

tioning, indexes or materialized views, in most of

today’s commercial database systems there is no native

database definition language support for defining ver-

tical partitions of a table [14].

To vertically partition a table with m non-primary

keys, the number of possible fragments is equal to

B(m), which is the mth Bell number [12]. For large

values of m, B(m) ffi mm. For example, for m = 10;

B(10) ffi 115,975. These values indicate that it is futile

to attempt to obtain optimal solutions to the vertical

partitioning problem. Many algorithms were proposed

and classified into two categories: grouping and

splitting [12]. Grouping starts by assigning each attri-

bute to one fragment, and at each step, joins some of

the fragments until some criteria is satisfied. Splitting

starts with a table and decides on beneficial partition-

ings based on the query frequencies.

In the data warehousing environment, [7] pro-

posed an approach for materializing views in vertical

fragments, each including a subset of measures possi-

bly taken from different cubes, aggregated on the same

grouping set. This approach may unify two or more

views into a single fragment.

4. Denormalization is the process of attempting to

optimize the performance of a database by adding

redundant data to save join operations. Denormaliza-

tion is usually promoted in a data warehouse

environment.

Non Redundant Techniques

In this category, two main techniques exist: horizontal

partitioning and parallel processing.

2000O Optimization and Tuning in Data Warehouses
1. Horizontal partitioning represents an important

aspect of physical database design. It allows tables,

indexes and materialized views to be partitioned into

disjoint sets of rows that are physically stored and

accessed separately [14] or in parallel. Horizontal par-

titioning may have a significant impact on perfor-

mance of queries and manageability of very large data

warehouses. Not only do data partitions reduce the

time it takes to perform database maintenance and

management tasks, by eliminating non-relevant parti-

tion(s), they also have a positive effect on the perfor-

mance of applications. Another characteristic of

horizontal partitioning is its ability to be combined

with other optimization structures like indexes, mate-

rialized views. Splitting a table, a materialized view or

an index into smaller pieces makes all operations on

individual pieces much faster. Contrary to materialized

views and indexes, data partitioning does not replicate

data, thereby reducing space requirements and mini-

mizing update overhead [13].

A native database definition language support is

available for horizontal partitioning, where several frag-

mentationmodes are available [11]: range, list and hash.

In the range partitioning, an access path (table, view, and

index) is decomposed according to a range of values of a

given set of columns. The hash mode decomposes the

data according to a hash function (provided by the

system) applied to the values of the partitioning col-

umns. The list partitioning splits a table according to

the listed values of a column. These methods can be

combined to generate composite partitioning (List-

List, Range-Range,Hash-Hash, Range-List, ...). Recently,

a new mode of horizontal partitioning became available

inOracle11g [11], called virtual column-based partition-

ing. It is defined by one of the above mentioned tech-

niques and the partitioning key is based on a virtual

column. Virtual columns are not stored on disk and

only exist as metadata.

Two versions of horizontal partitioning are avail-

able [12]: primary and derived horizontal partitioning.

Primary horizontal partitioning of a table is performed

using predicates defined on that relation. It can be per-

formed using the different fragmentation modes above

cited. Derived horizontal partitioning is the partitioning

of a table that results from predicates defined in other

table(s). The derived partitioning of a table R according

to a fragmentation schema of table S is feasible if and

only if there is a join link between R and S.
In the context of relational data warehouses,

derived horizontal partitioning is well adapted. In

other words, to partition a data warehouse, the best

way is to partition some/all dimension tables using

their predicates, and then partition the fact table based

on the fragmentation schemas of dimension tables.

This fragmentation takes into consideration require-

ments of star join queries (these queries impose res-

trictions on the dimension values that are used for

selecting specific facts; these facts are further grouped

and aggregated according to the user demands). To

illustrate this fragmentation, suppose that a relational

warehouse is modeled by a star schema with d dimen-

sion tables and a fact table F. Among these dimension

tables, g tables are fragmented (g� d). Each dimension

table Di (1 � i � g) is partitioned into mi fragments:

fDi1;Di2; :::;Dimi
g, where each fragment Dij is defined

as: Dij ¼ sclij ðDiÞ, where clij and s (1 � i � g, 1 � j �
mi) represent a conjunction of simple predicates and

the selection operator, respectively. Thus, the fragmen-

tation schema of the fact table F is defined as follows:

Fi = F ⋉ D1j ⋉ D2k ⋉ ... ⋉ Dgl, (1 � i � mi), where ⋉
represents the semijoin operation.

Derived horizontal partitioning has two main

advantages in relational data warehouses, in addition

to classical benefits of data partitioning: (i) precom-

puting joins between fact table and dimension tables

participating in the fragmentation process of the fact

table [1] and (ii) optimizing selections defined on

dimension tables. Similar advantages hold for bitmap

join indexes.

2. Parallel Processing Data partitioning is always

coupled with parallel processing. To design a parallel

data warehouse, two main issues must be addressed:

data partitioning and data placement (allocation).

Data placement is a key factor for high performance

parallel data warehouses. Determining an effective

data placement is a complex administration problem

depending on many parameters including system

architecture, database and workload characteristics,

hardware configuration, etc. The easier way to design

a parallel data warehouse is to first partition dimension

tables using the primary horizontal partitioning and

then derived partition the fact table. This partitioning

alternative generates a set of sub-star schemas. In order

to ensure a high performance of complex queries, these

sub-star schemas shall be allocated to various machines

in efficient manner.

Optimization and Tuning in Data Warehouses O 2001

O

Tuning

Before talking about tuning phase, a summarization of

physical design is required to understand the need for

tuning.

The first point concerns the different formaliza-

tions of problems of selecting optimization techniques

in physical design phase. They are mostly based on a

set of most frequently asked queries, a priori known.

However, in dynamic environments, like data ware-

housing with various ad-hoc queries, it is difficult

to identify potential useful optimization structures in

advance. The second point is about the similarities

between optimization techniques: materialized views

and indexes, bitmap join indexes and derived hori-

zontal partitioning. These similarities are not always

taken into account during physical design phase.

This situation may incur the following limitations:

(i) non-consideration of the mutual interdependencies

between optimization structures (sometimes it is

better to select more materialized views than indexes

and vice-versa or replacing bitmap join indexes by

a non redundant technique like derived horizontal

partitioning to reduce maintenance overhead) gives

sub-optimal solutions, (ii) absence of metrics for

efficient distribution of storage space between redun-

dant optimization techniques and (iii) redistribution

of space among optimization structures after update

operations.

Based on the above points, tuning tools are recom-

mended since they supervise the good use of different

optimization techniques selected during physical de-

sign phase. Tuning tools might be triggered when user

requirements evolve (new queries/updates, not consid-

ering some existing queries), query frequencies change,

sizes of tables, materialized views, indexes and parti-

tions increase, etc. To keep data warehouse applica-

tions running at high performance, several aspects of

physical design should be tuned: buffer pool, allocation

of working memory, materialized views, indexes, stor-

age space, horizontal partitioning, vertical partition-

ing, data placement, etc.

During the data warehouse life cycle, some struc-

tures may be added/dropped (e.g., materialized views

and indexes), merged (indexes and horizontal parti-

tions) or splitted (e.g., horizontal partitions). For in-

stance, some commercial database systems provide

monitoring tools observing the good utilization of

indexes. If an index is not used by a workload, it will
be dropped. Its storage space might be used for creat-

ing another optimization technique. Merging opera-

tions deal mainly with indexes and horizontal

partitions. They are crucial for data warehouse appli-

cations [5,14]. This is because optimization structures

are often either too large (for redundant structures) to

fit in the available storage, or cause updates to slow

down significantly. They are supported by most com-

mercial database systems.

Many commercial database systems offer tools for

physical design tuning: ‘‘What-If ’’ analysis tool of SQL

Server used to facilitate manual tuning. SQL Server

proposes a tuning using a relation-based approach.

The optimizer can replace a large useful index with

smaller, less useful ones. For example, operations that

required a single traversal through a complex index

may be implemented as the intersection of two traver-

sals through simple indexes. Other transformations

include index merging (implementing an index scan

of relation B as a full scan through relation A), prefix-

ing (building an index on a; b instead of a; b; c), and

the removal of structures. DB2 design advisor tool

provides integrated recommendations for indexes,

materialized views, shared-nothing partitioning and

multidimensional clustering. ORACLE 10G takes as

input a workload and a set of optimization candidates

for that workload (these candidates are generated by

Oracle Automatic Tuning Optimizer) and provides a

recommendation for the overall workload.

In academic research work, a tuning tool called

AutoPart which combines horizontal and vertical

table partitioning to reduce I/O costs for each query

by eliminating unnecessary accesses to non-relevant

data is proposed [13]. AutoPart recommends the com-

bination of partitioning with a small set of key indexes.

A similar work proposed to combine derived horizon-

tal partitioning with bitmap join indexes [1].

Key Applications
The proposed techniques within this paper can be

applied in any database applications having the same

characteristics (huge tables, complex queries with

many join operations and restriction) and require-

ments of data warehouse (response time). Scientific

and statistical database applications are a good exam-

ple. Historically, the main techniques explored in this

paper were proposed and supported in decision sup-

port applications. Materialized views and advanced

2002O Optimization and Tuning in Data Warehouses
indexing schemes could be easily applied in traditional

OLTP applications, when update operations are not

important. Horizontal partitioning can also be ap-

plied, but moderately. The choice of partitioning attri-

butes is a crucial performance issue. For example, if a

database is partitioned based on changing value attri-

butes like Age, the database will be faced with the

problem of instance migration.

Future Directions
As mentioned in the previous section, physical design

and tuning are very crucial decisions for the perfor-

mance of data warehouse applications. In this section,

some of the interesting open issues for physical design

and tuning are highlighted:

1. Multi-objective algorithms for indexes: most index

selection algorithms have one objective function

which represents the query processing cost subject

to one constraint representing the storage cost. It

will be interesting to propose multi-objective algo-

rithms for selecting indexes. Such formalizations

will reduce the query processing and maintenance

cost (which is not negligible for indexes). Since

there is a strong similarity between materialized

views and indexes, an easier way to deal with this

problem is to adapt multi-objective algorithms for

materialized views to indexes.

2. Incorporating query rewriting using materialized

views in selection process: after selection of materi-

alized views, all queries will be rewritten using

them. Choosing an optimal rewriting is a difficult

problem. It will be interesting to combine the prob-

lem of selecting materialized views and the problem

of rewriting queries. A simple combination may

involve the formalization of materialized view se-

lection subject to time requiring for query rewrite

process.

3. Pruning search space of materialized view selection

problem: selecting materialized views is an NP-hard

problem. To prune search space of this problem,

vertical and horizontal partitioning (primary and

derived) might be used, because a materialized view

may involve selection, projection, join operations.

4. Partition allocation over table spaces: assigning dif-

ferent fragments generated by horizontal partition-

ing process over various table spaces may be a

crucial issue for performance of queries. This prob-

lem does not get enough attention from data ware-

house research community. This problem is quite
similar to data placement studied in distributed

and parallel databases areas. It will be interesting

to adapt the existing algorithms. Most of these

algorithms are static. Tuning of data placement

will be recommended since partition usages

change, partition might be merged/splitted, etc.

5. Supporting derived horizontal partitioning: Today’s

commercial database systems support derived hori-

zontal partitioning, where a table is decomposed

based on the fragmentation schema of only one

table, using referential partitioning [11]. In real

data warehouse applications, a fact table may be

derived partitioned based on fragmentation schemas

of several dimension tables in order to satisfy star join

queries requirements. From an industry perspective,

this situation is quite unsatisfactory and requires

further thought.
Cross-references
▶Bitmap-Based Index Structures for Multidimensional

Data

▶Data Partitioning

▶ Index Join Physical Schema Design

▶Query Rewriting Using Views

▶ Semijoin

▶View Maintenance in Data Warehouses

▶Virtual Partitioning
Recommended Reading
1. Bellatreche L., Boukhalfa K., and Mohania M.K. Pruning search

space of physical database design. In Proc. 18th Int. Conf.

Database and Expert Syst. Appl. 2007, pp. 479–488.

2. Bellatreche L., Missaoui R., Necir H., and Drias H. Selection and

pruning algorithms for bitmap index selection problem using

data mining. In Proc. Int. Conf. on Data Warehousing and

Knowledge Discovery, 2007, pp. 221–230.

3. Chaudhuri S. Index selection for databases: a hardness study and

a principled heuristic solution. IEEE Trans. Knowl. Data Eng., 16

(11):1313–1323, 2004.

4. Chaudhuri S. and Narasayya V. An efficient cost-driven

index selection tool for microsoft sql server. In Proc. 23rd Int.

Conf. on Very Large Data Bases, 1997, pp. 146–155.

5. Chaudhuri S. and Narasayya V. Index merging. In Proc. 15th Int.

Conf. on Data Engineering. 1999, pp. 296–303.

6. Chaudhuri S. and Narasayya V. Self-tuning database systems:

a decade of progress. In Proc. 33rd Int. Conf. on Very Large Data

Bases, 2007.

7. Golfarelli M., Maniezzo V., and Rizzi S. Materialization of frag-

mented views in multidimensional databases. Data & Knowl.

Eng., 49(3):325–351, June 2004.

8. Gupta H. Selection and maintenance of views in a data ware-

house. Ph.D. Thesis, Stanford University, September 1999.

OQL O 2003
9. Lawrence M. Multiobjective genetic algorithms for materialized

view selection in OLAP data warehouses. In Proc. The Genetic

and Evolutionary Computation Conf., 2006, pp. 699–706.

10. O’Neil P. and Quass D. Improved query performance with

variant indexes. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1997, pp. 38–49.

11. Oracle Data Sheet. Oracle partitioning. White Paper: http://

www.oracle.com/technology/products/bi/db/11g/, 2007

12. Özsu M.T. and Valduriez P. Principles of distributed database

systems. Second edition. Prentice Hall, Englewood Cliffs, NJ,

1999.

13. Papadomanolakis S. and Ailamaki A. Autopart: automating sche-

ma design for large scientific databases using data partitioning.

In Proc. 16th Int. Conf. on Scientific and Statistical Database

Management, 2004, pp. 383–392.

14. Sanjay A., Narasayya V.R., and Yang B. Integrating vertical and

horizontal partitioning into automated physical database design.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2004, pp. 359–370.

15. Valentin G., Zuliani M., Zilio D.C., Lohman G.M., and Skelley A.

Db2 advisor: an optimizer smart enough to recommend its own

indexes. In Proc. 16th Int. Conf. on Data Engineering, 2000,

pp. 101–110.
Optimization of DAG-Structured
Query Evaluation Plans

▶Multi-Query Optimization
O

Optimization of Parallel Query Plans

▶ Parallel Query Optimization
OQL

PETER M.D. GRAY

University of Aberdeen, Aberdeen, UK

Synonyms
Object query language
Definition
OQLwas developed to play the role of SQL for Object-

Oriented Databases, especially those adhering to the

ODMG Standard [4] where the language is defined.

Unlike SQL, OQL is a functional language, and its
operators can be composed to an arbitrary level of

nesting within a query provided the query remains

type-correct. Fegaras and Maier [8] have shown how

OQL expressions have a direct translation into monoid

Comprehensions.

Optimisation techniques for OQL that exploit its

inherent functional nature are discussed in [5,6,8].

OQL has been influential in the development of the

SQL3 standard and also the functional core of

the XQuery language for XML. Thus optimisation

techniques developed for OQL are also applicable to

these languages.

Key Points
The fundamental modelling concept of object identi-

fiers for entity instances was accepted into the database

mainstream in the late 1980s, and the move to using

SQL-like syntax for querying such data models fol-

lowed soon after. Early influential systems were

OSQL [2] and AMOSQL (q.v.). This resulted in

query language proposals for object-oriented databases

such as the very influential O2 query language [1] and

its successor OQL, which was included in the ODMG

Standard [4]. For example, the DAPLEX query

FOR EACH S IN STUDENT

SUCH THAT name(S)="Fred Jones"

PRINT name(S), age(S);

is expressed as follows in OQL, basically by syntactic

reordering of the query clauses and using path expres-

sions rather than function application:

SELECT S.name, S.age FROM STUDENT S

WHERE S.name="Fred Jones"

When restricted to sets, monoid comprehensions are

equivalent to set monad comprehensions [3], which

capture precisely the nested relational algebra [8].

Most OQL expressions have a direct translation into

the monoid calculus. For example, the OQL query

SELECT DISTINCT HOTEL.price

FROM HOTEL IN(

SELECT h

FROM c IN CITIES, h IN c.hotels

WHERE c.name="Arlington")

WHEREEXISTrINHOTEL.rooms:r.bed_num=3

AND HOTEL.name IN (

SELECT t.name

FROM s IN STATES, t IN s.attractions

WHERE s.name = "Texas");

2004O ORA-SS Data Model
finds the prices of hotels in Arlington that have rooms

with three beds and are also are named after a tourist

attraction in Texas. This query is translated into the

following monoid comprehension [7]:

fold(Union,Empty,

[price(h) | c <- Cities; h <- hotels

(c); name(c) = ‘‘Arlington’’;

fold(Or,False,

[bednum(r)=3 | r <- rooms(h)]),

fold(Or,False,

[name(h)=name(t) | s <- States; t <-

attractions(s);name(s)=‘‘Texas’’])])

Here, as in Functional Programming

fold(Or,False,[x1,x2, ... xn]) = x1

Or x2 Or ... xn Or False

computes the logical Or of a list of boolean values,

so it is true only if some of them are true. Likewise

fold(Union,Empty,L) copies the list L into a set

without duplicates. Mathematically fold implements

monoid operations with a given merge operation

and a zero.
Cross-references
▶AMOSQL

▶Comprehensions

▶ Functional Query Language
Recommended Reading
1. Bancilhon F., Delobel C., and Kanellakis P.C. Building an Object-

Oriented Database System, The Story of O2. Morgan Kaufmann,

Los Altos, CA, 1992.

2. Beech D. A foundation of evolution from relational to

object databases. In Advances in Database Technology, In

Proc. 1st Int. Conf. on Extending Database Technology. 1988,

pp. 251–270.

3. Buneman P., Libkin L., Suciu D., Tannen V., and Wong L.

Comprehension syntax. ACM SIGMOD Rec., 23(1):87–96,

1994.

4. Cattell R.G.G. (ed.). The Object Data Standard: ODMG 3.0.

Morgan Kaufmann, Los Altos, CA, 2000.

5. Cluet S. and Delobel C. A general framework for the

optimization of object-oriented queries. In Proc. ACM

SIGMOD Int. Conf. on Management of Data. 1992,

pp. 383–392.

6. Fegaras L. Query unnesting in object-oriented databases.

In Proc. ACM SIGMOD Int. Conf. on Management of Data.

1998, pp. 49–60.

7. Fegaras L. Query Processing and Optimization in l-DB. In The

Functional Approach to Data Management, Chapter 13. P.M.D.,
Gray L., Kerschberg P.J.H., and King A. (eds.). Springer, Berlin,

2004.

8. Fegaras L. and Maier D. Towards an effective calculus for Object

Query Languages. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data. 1995, pp. 47–58.
ORA-SS Data Model

▶Object Relationship Attribute Data Model for Semi-

structured Data
ORA-SS Schema Diagram

▶Object Relationship Attribute Data Model for Semi-

structured Data
Orchestration

W. M. P. VAN DER AALST

Eindhoven University of Technology, Eindhoven,

The Netherlands

Definition
In a Service Oriented Architecture (SOA) services are

interacting by exchanging messages, i.e., by combining

services more complex services are created. Orchestra-

tion is concerned with the composition of such ser-

vices seen from the viewpoint of single service.
Key Points
The terms ‘‘orchestration’’ and ‘‘choreography’’ de-

scribe two aspects of integrating services to create busi-

ness processes [2,3]. The two terms overlap somewhat

and the distinction is subject to discussion. Orchestra-

tion and choreography can be seen as different ‘‘per-

spectives.’’ Choreography is concerned with the

exchange of messages between those services and is

often be characterized by analogy ‘‘Dancers dance fol-

lowing a global scenario without a single point of con-

trol.’’ Orchestration is concerned with the interactions

of a single service with its environment. Here an anal-

ogy can also be used. In orchestration, there is

Orchestration. Figure 1. Orchestration.

Origin O 2005

O

someone, ‘‘the conductor’’, who tells everybody in the

orchestra what to do and makes sure they all play in

sync.

Figure 1 illustrates the notion of orchestration.

Service A is interacting with other services to create a

more complex service. The dashed area shows the focal

point of orchestration, i.e., the control-flow related to

message exchanges of a single party. Languages such a

BPEL are proposed to model and enact such orches-

trations [1]. Note that languages like BPEL are very

close to traditional workflow languages, i.e., the same

types of control-flow patterns need to be supported.

Orchestration often assumes that services have a

‘‘buy side’’ and a ‘‘sell side,’’ i.e., services can be used

by other services (‘‘sell side’’) and at the same time

use services (‘‘buy side’’). Orchestration is mainly con-

cerned with the ‘‘buy side.’’ Unlike choreography, there

is a single party coordinating the process.

Cross-references
▶BPEL

▶Business Process Management

▶Orchestration

▶Web Services

▶Workflow Management

Recommended Reading
1. Alves A., Arkin A., Askary S., Barreto C., Bloch B., Curbera F.,

Ford M., Goland Y., Guzar A., Kartha N., Liu C.K., Khalaf R.,

Koenig D., Marin M., Mehta V., Thatte S., Rijn D., Yendluri P.,
and Yiu A. Web Services Business Process Execution Language

Version 2.0 (OASIS Standard). WS-BPELTC OASIS, http://docs.

oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

2. Dumas M., van der Aalst W.M.P., and ter Hofstede A.H.M.

Process-Aware Information Systems: Bridging People and Soft-

ware through Process Technology. Wiley, New York, 2005.

3. Weske M. Business Process Management: Concepts, Languages,

Architectures. Springer, Berlin, 2007.
ORDB (Object-Relational Database)

▶Object Data Models
Order Item

▶Clinical Order
Order Statistics

▶Quantiles on Streams
Ordering

▶ Similarity and Ranking Operations
Orientation Relationships

▶Cardinal Direction Relationships
Oriented Clustering

▶ Subspace Clustering Techniques
Origin

▶ Provenance

▶ Provenance in Scientific Databases

2006O OR-Join
OR-Join

NATHANIEL PALMER

Workflow Management Coalition, Hingham,

MA, USA

Synonyms
Synchronous join
Definition
The point of convergence within a workflow following

alternative, mutually exclusive paths.
Key Points
An OR-Join (Fig. 1) represents a point within a work-

flow where two or more alternative workflow branches

re-converge following an OR-Split into a single com-

mon activity as the next step within the workflow.

In contrast with an AND-Join, no parallel activity

execution has occurred at the join point, therefore no

synchronization is required. With an OR-Join a thread

of control may arrive at the specific activity via any of

several alternative preceding activities.
OR-Join. Figure 1. OR-Join.

OR-Split. Figure 1. OR-Split.
Cross-references
▶ Join

▶OR-Split

▶ Process Life Cycle

▶Workflow Management and Workflow Management

System
OR-Split

NATHANIEL PALMER

Workflow Management Coalition, Hingham,

MA, USA

Synonyms
Conditional branching; Conditional routing; Switch;

Branch

Definition
A point within the workflow where a single thread of

control makes a decision upon which branch to take

when encountered with multiple alternative workflow

branches.

Key Points
An OR-Split (Fig. 1) establishes alternative and mutu-

ally exclusive workflow branches. For example, in a

mortgage application, different paths may represent dif-

ferent branches based on conditional logic, such as credit

risk or the amount to be barrowed. As paths are mutually

exclusive, no parallel execution of activities occur and

thus no synchronization is required, so the workflow

branching converges with an OR-Join rather than an
AND-Join. An OR-Split is conditional and the (single)

specific transition to next activity is selected according

to the outcome of the Transition Condition(s).

Cross-references
▶AND-Join

▶OR-Join

OSQL O 2007
▶ Process Life Cycle

▶ Split

▶Workflow Management and Workflow Management

System
OSD

▶Network Attached Secure Device
O

OSQL

TORE RISCH

Uppsala University, Uppsala, Sweden

Definition
OSQL [1,2] is an functional query language and

data model similar to Daplex, first implemented in

the Iris DBMS [4]. The data model of OSQL is object

oriented with three kinds of system entities: objects,

types, and functions. A database consists of a set of

objects, the objects are classified into types, and func-

tions define the semantics of types. The data model

is similar to an ER model with the difference that

both entity relationships and attributes are represented

as functions and that (multiple) inheritance among

entity types is supported. OSQL provide object iden-

tifiers (OIDs) as first class objects, and, unlike Daplex,

queries can return OIDs in results. Queries are

expressed using a SELECT syntax similar to SQL.

Derived functions are also defined using select state-

ments similar to functions in SQL-2003.

Key Points
With the OSQL data model a database consists of a

set of objects. The objects are classified into subsets by

types and each type has an extent consisting of the

objects belonging to that type. Type inheritance is

supported with the type named OBJECT as most gen-

eral type. The extent of a type is a subset of the extents

of its supertype(s). For example if entity type

STUDENT is a subtype of type PERSON then the

extent of type STUDENT is also a subset of the extent
PERSON. Types are defined dynamically using a

CREATE TYPE statement, e.g.,:

CREATE TYPE STUDENT SUBTYPE OF PERSON;

Functions define relationships among entities and

properties of entities. Functions can be stored in the

databases, derived in terms of other functions, or be

defined as foreign functions implemented in some

conventional programming language. Stored functions

correspond to tables in relational databases, and

derived functions are parameterized views similar to

function definitions in SQL-2003.

Queries and derived functions are defined decla-

ratively using a SELECT statement, e.g.,:

SELECT NAME(P)

FOR EACH PERSON P

WHERE AGE(P)>20 AND SEX(P) =

‘‘Female’’;

CREATE FUNCTION GRANDPARENTS(PERSON

P)-> PERSON

AS SELECT PARENT(PARENT(P));

Queries are expressed as constraints over extents.

Functions composition allows easy traversal of rela-

tionships between entity types. As in Daplex, if a func-

tion returns a set of objects (e.g., PARENT) functions

applied on it iterate over the elements of the set. This is

a form of extended path expressions through function

composition.

OSQL was implemented in the Iris DBMS [4] and

HP’s OpenODB product. The Amos II DBMS [3] uses

a modified OSQL language, AmosQL.

Cross-references
▶AmosQL

▶Daplex

▶ Functional Data Model

Recommended Reading
1. Beech D. A foundation of evolution from relational to

object databases. In Advances in Database Technology, In Proc.

1st Int. Conf. on Extending Database Technology. 1988,

pp. 251–270.

2. Fishman D.H., Beech D., Cate H.P., Chow E.C., Connors T.,

Davis J.W., Derrett N., Hoch C.G., Kent W., Lyngbaek P.,

Mahbod B., Neimat M.A., Ryan T.A., and Shan Iris M.C. An

Object-Oriented Database Management System, ACM Trans.

Off. Inf. Syst., 5(1):48–69, 1987.

2008O Overlay Network
3. Risch T., Josifovski V., and Katchaounov T. Functional data

integration in a distributed mediator system. In Functional

Approach to Data Management – Modeling, Analyzing and

Integrating Heterogeneous Data, P. Gray, L. Kerschberg, P.

King, A. Poulovassilis (eds.). Springer, Berlin, 2003.

4. Wilkinson K., Lyngbaek P., and Hasan W. The iris architec-

ture and implementation, IEEE Trans. Knowl. Data Eng.,

2(1):63–75, 1990.
Overlay Network

WOJCIECH GALUBA, SARUNAS GIRDZIJAUSKAS

Ecole Polytechnique Fédérale de Lausanne (EPFL),

Lausanne, Switzerland

Definition
An overlay network is a communication network con-

structed on top of an another communication network.

The nodes of the overlay network are interconnected

with logical connections, which form an overlay topolo-

gy. Two overlay nodes may be connected with a logical

connection despite being several hops apart in the

underlying network. Overlay networks may define

their own overlay address space which is used for effi-

cient message routing in the overlay topology.

Key Points
When a distributed application is deployed in a com-

puter network, the individual nodes on which the

application is running need to be able to discover and

communicate with one another. A solution to this

problem is the overlay network. The overlay network

interconnects all the application nodes and provides

the basic communication primitives such as flooding,

random walks or point-to-point overlay message rout-

ing and multicast.

Overlay networks are typically deployed on top of

the Internet and by far the most common usage is in

peer-to-peer systems. For example, Gnutella, an early

peer-to-peer file sharing system connects all the

peers in an overlay network, each peer shares its files,

and files are searched for using query flooding in the

overlay network.

Overlay network topologies can be divided into two

broad classes: unstructured and structured. Unstructured

overlay networks do not construct a globally consistent

topology, instead peers choose their neighbor sets inde-

pendently and in a largely ad-hoc way. In unstructured
overlay networks nodes reach the other nodes by mes-

sage flooding or random walks. Structured overlays de-

fine an address space and each of the overlay nodes has

a unique address. The addresses are used to construct

an overlay topology that enables efficient and scalable

messages passing between the overlay nodes. In most of

the modern structured overlays the expected number

of routing hops scales as O(log N) with the network

size. Distributed Hash Tables are a specific case of

structured overlay networks. Apart from structured

and unstructured there also exist hybrid overlays.

Overlay networks are designed to be robust to churn,

i.e., arrivals and departures of the overlay network

nodes to and from the network. As overlay network

nodes loose their overlay topology connections, new

connections have to be added in their place. In

structured overlay networks the additional challenge

is to maintain the overlay topology such that the over-

lay routing remains efficient, i.e., the routing paths

are kept short.
Cross-references
▶Distributed Hash Table

▶ Peer to Peer Overlay Networks: Structure, Routing

and Maintenance

▶ Peer-to-Peer System
OWL: Web Ontology Language

SEAN BECHHOFER

University of Manchester, Manchester, UK

Synonyms
Web ontology language

Definition
The Web Ontology Language OWL is a language for

defining ontologies on the Web. An OWL Ontology

describes a domain in terms of classes, properties and

individuals and may include rich descriptions of the

characteristics of those objects. OWL ontologies can be

used to describe the properties of Web resources. Where

earlier representation languages have been used to devel-

op tools and ontologies for specific user-communities

in areas such as sciences, health and e-commerce, they

were not necessarily designed to be compatible with the

OWL: Web Ontology Language O 2009
World Wide Web, or more specifically the Semantic

Web, as is the case with OWL.

Features of OWL are a collection of expressive

operators for concept description including boolean

operators (intersection, union and complement), plus

explicit quantifiers for properties and relationships;

the ability to specify characteristics of properties,

such as transitivity or domains and ranges; a well

defined semantics facilitating the use of inference and

automated reasoning; the use of URIs for naming

concepts and ontologies; a mechanism for importing

external ontologies; and compatability with the archi-

tecture of the World Wide Web, in particular other

representation languages such as RDF and RDF

Schema.

OWL consists of a suite of World Wide Web Con-

sortium (W3C) Recommendations – six documents

published in February 2004 describe Use Cases and

Requirements, an Overview of the language, a Guide,

Reference, OWL Semantics and a collection of Test

Cases [3].
O

Key Points
Ontology languages allow the representation of

ontologies. An ontology ‘‘defines a set of representa-

tional primitives with which to model a domain

of knowledge or discourse’’ (see Ontology). The defi-

nition of an ontology can encompass a wide range

of artefacts, from simple word lists, through taxo-

nomies, thesauri and rich logic-based models and

there are a corresponding range of languages for their

representation.

Standardization of representation languages is a

cornerstone of the Semantic Web effort. A standard

representation facilitates interoperation – in particular,

well-defined, unambiguous semantics ensure that appli-

cations can agree on the meaning of expressions. OWL

is intended to provide that standard representation.

OWL builds on RDF and RDF Schema and adds

more vocabulary for describing properties and classes.

The design of the language was influenced by a number

of factors. Description Logics, Frame-based modeling

paradigms, and Web languages RDF and RDF Schema

were key inputs, as was earlier work on languages such

as OIL and DAML+OIL.

Knowledge Representation in a Web setting intro-

duces particular requirements such as the distribution

across many systems; scalability to Web size; compati-

bility with Web standards for accessibility and
internationalization; and openness and extensibility.

OWL uses URIs for naming and extends the descrip-

tion framework for the Web provided by RDF to ad-

dress some of the issues above.

OWL defines three sublanguages: OWL Lite, OWL

DL and OWL Full. OWL Full is essentially RDF ex-

tended with additional vocabulary, with no restrictions

on the way in which that vocabulary is used. OWL DL

places restrictions on the way in which the vocabulary

can be used in order to define a language for which a

number of key reasoning tasks (for example concept

satisfiability or subsumption) are decidable. OWL Lite

further restricts the expressivity allowed – for example,

explicit union or complement are disallowed in OWL

Lite. OWL DL and OWL Lite have a model theoretic

semantics that corresponds to a Description Logic

(DL) [1] and thus facilitate the use of DL reasoners

to provide reasoning support for the language [2].

The design of representation languages often

involves trade-offs, and there are limitations on what

can be expressed using OWL, in particular in OWL-

DL. These limitations have been selected primarily to

ensure that these language subsets are well-behaved

computationally, with decidable procedures for con-

cept satisfiability. For example, OWL does not provide

support for general purpose rules, which are seen as

an important paradigm in knowledge representation,

for example in expert systems or deductive databases.

Extensions to OWL are being proposed to cover,

among others, rules, query, additional expressivity,

metamodeling and fuzzy reasoning.
Cross-references
▶Description Logics

▶Ontology

▶RDF

▶RDF Schema

▶ Semantic Web
Recommended Reading
1. Baader F., Calvanese D., McGuinness D.L., Nardi D., and Patel-

Schneider P.F. (eds.). The Description Logic Handbook: Theory,

Implementation, and Applications. Cambridge University Press,

Cambridge, UK, 2003.

2. Horrocks I., Patel-Schneider P.F., and van Harmelen F. From

SHIQ and RDF to OWL: the making of a web ontology language.

J. Web Semant., 1(1):7–26, 2003.

3. WorldWideWeb Consortium. Web Ontology Language (OWL).

W3C Recommendation. Available at: http://www.w3.org/2004/

OWL/.

P

P/FDM

PETER M.D. GRAY

University of Aberdeen, Aberdeen, UK

Definition
P/FDM [5–7] integrated a functional data model

with the logic programming language Prolog for gen-

eral-purpose computation. The data model can be seen

as an Entity-Relationship diagram with sub-types,

much like a UML Class Diagram. The idea was for

the user to be able to define a computation over objects

in the diagram, instead of just using it as a schema

design aid. Later versions of P/FDM included a graphic

interface [2,4] to build queries in DAPLEX syntax by

clicking on the diagram and filling in values from

menus.

P/FDM was subsequently extended with con-

straints [3] and with alternative back-ends to remote

databases [6], in the spirit of the original MULTIBASE

system.

P/FDM is a vehicle to test a system designed on the

principle of Data Independence, whereby Functions

represent computations that are expressed in a way

that is completely independent of data storage (arrays,

lists of objects, indexed files etc.). Functions can be sent

across the internet and applied to data in a different

form, which was very useful for federated data.
Key Points
In P/FDM, the DAPLEX language was deliberately

altered from its original specification so that its seman-

tics could be defined by equivalent Comprehensions [1].

In particular, simple assignment operations, if present,

could only take place within the innermost loop. Based

on this, a very successful early optimizer was written in

Prolog by Paton, and used in several bioinformatics

applications [6,8].

In P/FDM, data independence is ensured by

using a small sparse set of built-in predicates getentity
2009 Springer ScienceþBusiness Media, LLC
(entity-type, key, instance-variable) and getfunctionval

(function-name, argument-variable, value-variable).

The first of these predicates requires that abstract enti-

ties be identifiable by unique, possibly compound,

scalar keys [7]. The keys help with object identity and

are very important when accessing or loading bulk

data. This is a feature first used in ADAPLEX and

EFDM, though P/FDM extends it to allow composed

(single-valued) functions, which aids in forming hier-

archical keys.

P/FDM queries are written in DAPLEX and trans-

lated into Prolog for evaluation. Backtracking in Pro-

log is used to give the effect of lazy evaluation in a

functional programming language, accessing tuples or

objects on demand. For example, assuming the follow-

ing P/FDM declarations:

declare student ->> entity

declare name(student) -> string

key_of student is name

declare course ->> entity

declare cname(course) -> string

key_of course is cname

declare attends(student) ->> course

to print all the courses attended by Fred Jones, the

DAPLEX query is:

for each F in student such that name

(F)="Fred Jones"
for each C in attends(F)

print(cname(C));
which generates the following Prolog:

getentity(student,‘Fred Jones’,F),

getfunctionval(attends,F,C),

getfunctionval(cname,C,N), write(N),

fail; true.

Cross-references
▶Comprehensions

▶ Federated Database

2012P P@n
▶ Functional Query Language

▶Query Languages and Evaluation Techniques for

Biological Sequence Data

Recommended Reading
1. Embury S.M. User Manual for P/FDM V.9.1. Technical report,

Dept. of Computing Science, University of Aberdeen, 1995.

2. Gil I., Gray P.M.D., and Kemp G.J.L. AVisual Interface and Navi-

gator for the P/FDM Object Database. In Proc. User Interfaces to

Data Intensive Systems, 1999, pp. 54–63.

3. Gray P.M.D., Embury S.M., Hui K.Y., and Kemp G.J.L.

The evolving role of constraints in the functional data model.

J. Intell. Inform. Syst., 12:113–137, 1999.

4. Gray P.M.D. and Kemp G.J.L. Capturing quantified constraints

in FOL, through interaction with a relationship graph. In Proc.

15th Int. Conf. Knowledge Eng. and Knowledge Management:

Ontologies and the Semantic Web, 2006, pp. 19–26.

5. Gray P.M.D., Moffat D.S., and Paton N.W. A Prolog interface to

a Functional Data Model database. In Advances in Database

Technology, Proc. 1st Int. Conf. on Extending Database Tech-

nology, 1988, pp. 34–48.

6. Kemp G.J.L., Dupont J., and Gray P.M.D. Using the functional

data model to integrate distributed biological data sources. In

Proc. 8th Int. Conf. on Scientific and Statistical Database Man-

agement, 1996, pp. 176–185.

7. Paton N.W. and Gray P.M.D. Identification of database objects

by key. In Proc. 2nd Int. Workshop on Object-Oriented Data-

base Systems. LNCS 334. Springer, 1988, pp. 280–285.

8. Paton N.W. and Gray P.M.D. Optimising and executing daplex

queries using prolog. Comput. J., 33(6):547–555, 1990.
P@n

▶ Precision at n
P2P Database

▶ Structured Data in Peer-to-Peer Systems
Page Cache

▶Buffer Pool
Page Locking

▶Concurrency Control – Traditional Approaches
Page Model

▶Transaction Models – The Read/Write Approach
Page Representations

▶Document Representations
Paging in Web Search Engines

▶Web Search Result Caching and Prefetching
PAM (Partitioning Around Medoids)

▶K-Means and K-Medoids
Parallel and Distributed Data
Warehouses

TODD EAVIS

Concordia University, Montreal, QC, Canada

Synonyms
Scalable decision support systems High performance

data warehousing

Definition
To support the burgeoning data volumes now encoun-

tered in decision support environments, parallel and

distributed data warehouses are being deployed with

greater frequency. Having evolved from haphazard

and often poorly understood repositories of operation-

al information, the data warehouse itself has become

one of the cornerstones of corporate IT architectures.

However, as the underlying operational databases grow

in size and complexity, so too do the associated data

Parallel and Distributed Data Warehouses P 2013

P

warehouses. In fact, it is not unusual for many corpo-

rate or scientific repositories to exceed a terabyte in

size, with the largest now reaching 100 TB or more.

While processing power has grown significantly during

the past decade, the sheer scale of the workload places

enormous strain on single CPU data warehousing ser-

vers. As a result, some form of data and/or query

distribution is often employed in production environ-

ments. It is important to note, however, that while

contemporary data warehouses are almost always

based upon relational DBMS platforms, the unique

characteristics and requirements of data warehouse

environments often suggest design and optimization

choices that are not often employed with general pur-

pose parallelized database systems.

Historical Background
The terms ‘‘parallel DW’’ and ‘‘distributed DW’’ are

very often used interchangeably. In practice, however,

the distinction between the two has historically

been quite significant. Distributed DWs, much like

distributed DBs, grew out of a need to place processing

logic and data in close proximity to the users who

might be utilizing them. In general, multi-location

organizations consist of a small number of distinct

sites, each typically associated with a subset of the

information contained in the global data pool. In the

data warehousing context, this has traditionally lead

to the development of some form of federated archi-

tecture. In contrast to monolithic, centralized DWs,

federated models are usually constructed as a
Parallel and Distributed Data Warehouses. Figure 1. A sim

global schema on to a series of physically independent data
cooperative coalition of departmental or process spe-

cific data marts. A simple example is illustrated in

Fig. 1. For the most part, design and implementation

issues in such environments are similar to those of

distributed operational DBMSs [11]. For example, it

is important to provide a single transparent conceptual

model for the distinct sites and to distribute data so as

to reduce the effects of network latency and bandwidth

limitations. One unique feature of the distributed data

warehouse environment is perhaps the emphasis on

integration and consolidation of distributed opera-

tional data, a process known in DW terminology as

Extract, Transform, and Load (ETL).

With respect to parallelism, research has again been

influenced by parallel DBMS projects such as Gamma

[3] that were initiated in the mid-to-late 1980s. By the

1990s, it had become clear that commodity-based

‘‘shared nothing’’ databases provided significant advan-

tages over the earlier SMP (Symmetric Multi-Processor)

architectures in terms of cost and scalability [4].

Subsequent research therefore focused on partitioning

and replication models for the tables of the parallelized

DBMS [13]. In general, researchers identified the impor-

tance of full p-way horizontal striping for large database

tables.

Data warehouse researchers have continued to

explore the issues related to table partitioning. In ad-

dition to complete p-way partitioning schemes, full or

partial replication (i.e., duplication) of fragments has

been investigated [12]. This technique has been further

extended by virtualizing partial fragments over
ple federated model illustrating the mapping of a logical

marts.

2014P Parallel and Distributed Data Warehouses
physically replicated tables [7]. Typically, recent research

in the area of table partitioning has exploited the use of

‘‘DBMS clusters.’’ Here, rather than constructing a

complete, parallel DBMS platform, the parallel system

is essentially constructed as a series of commodityDBMS

systems, ‘‘glued together’’ with a thin partition-aware

wrapper layer.

In addition to the continuation of the traditional

partitioning work, a second important theme has been

the parallelization of state-of-the-art sequential data

cube generation methods. The data cube has become

the primary abstraction for the multi-dimensional

analysis that is central to modern data warehousing

systems. Cube parallelization efforts have, in fact, taken

two forms, one based upon data that is physically

represented as array-based storage [8] and the other

based upon relational storage [9,2]. In both cases, the

complexity of the algorithm and implementation

issues has lead to the development of relatively com-

plete DBMS prototypes.

Foundations
Central to data warehousing systems is a denormalized

logical multi-dimensional model known as the Star

Schema (the normalized version is referred to as a

Snowflake). A Star Schema consists of a single, very

large fact table housing the measurement records asso-

ciated with a given organizational process. During

query processing, this fact table is joined to one or

more dimension tables, each consisting of a relatively
Parallel and Distributed Data Warehouses. Figure 2. A thre

parent-child relationships between them. Each cell would con
small number of records that define specific business

entities (e.g., customer, product, store). A complete

data warehouse typically consists of multiple such

Star Schema designs.

While the Star Schema forms the basis of the rela-

tional data warehouse, it can be extremely expensive to

query the fact table directly, given that it often consists

of tens of millions of records or more. Typically, the

basic Star Schema is augmented with compact, pre-

computed aggregates (called group-bys or cuboids)

that can be queried much more efficiently at run-

time. This collection of aggregates is known as

the data cube. Specifically, for a d-dimensional space,

{A1, A2,...,Ad}, the cube defines the aggregation of

the 2d unique dimension combinations across one

or more relevant measure attributes. In practice, the

generation and manipulation of the data cube is often

performed by a dedicated OLAP (online analytical

processing) server that runs on top of the underlying

relational data warehouse. While the OLAP server may

utilize either array-based (MOLAP) or table-based

(ROLAP) storage, both provide the same, intuitive

multi-dimensional representation for the end user.

Given the enormous size of these new data ware-

houses, some form of parallelism is often employed in

production environments. One option is a ‘‘shared

everything’’ architecture. Here, designers would likely

employ a CC-NUMA system (Cache Coherent Non

Uniform Memory Access) that supports a single global

memory pool and some form of single virtual disk
e dimensional OLAP space showing all 2d cuboids and the

tain a Total Sales aggregate value.

Parallel and Distributed Data Warehouses P 2015

P

(e.g., a disk array). Such systems have the advantage

that they are relatively easy to administer as the hard-

ware transparently performs much of the ‘‘magic.’’

That being said, shared everything designs also tend

to be quite expensive and have limited scalability in

terms of both the CPU count and the number of

available disk heads. In terabyte-scale data warehouse

environments, either or both of these constraints

might represent a serious performance limitation.

For this reason, many vendors and researchers have

turned towards distributed, ‘‘shared nothing’’ platforms

for high performance database applications. In fact, the

characteristics of DW processing environments make

such models particulary attractive. The key distinctions

between operational and DW processing include:

1. Operational systems tend to have high volume

query streams. In contrast, DW systems typically

process a much smaller number of user queries.

2. Operational queries have high selectivity, meaning

that they touch relatively few records. Conversely,

DW queries are comprehensive in scope, leading

to very low selectivity and high I/O and computa-

tional load.

Why does this bode well for the use of shared nothing

architectures? In large operational environments, high

performance can often be achieved through the exploita-

tion of what is often termed a ‘‘high throughout engine.’’

Here, improved performance is obtained via inter-query

parallelism; that is, a stream of small queries is executed

concurrently across the parallel/distributed system.How-

ever, the low volume/low selectivity combination in

DW environments generally argues against the use of

inter-query parallelism since such a division of work

would likely lead to extensive disk thrashing (i.e., re-

source conflict). Note, as well, that the use of indexes, a

staple in operational systems, is often of relatively little

value in DW environments since full table scans are

generally more cost effective for low selectivity queries.

As a consequence, the fully distributed, ‘‘shared

nothing’’ DBMS model has been particulary attractive

for high performance DW practitioners. By partition-

ing the core fact tables across a large number of inde-

pendently controlled CPU/disk combinations, shared

nothing designs are ideally suited to the exploitation of

intra-query parallelism. In this case, an individual

query q is decomposed and simultaneously executed

across the p nodes of the system, with each partial
query running against approximately 1∕p records of

the partitioned fact table (the small dimension tables

are typically replicated on each node). Figure 3b pro-

vides a simple example of this technique, contrasting it

with the non-partitioned model typically utilized on

a single node server (Fig. 3a). Though merging of

results may be necessary, it is important to note

that while the input partitions may be massive, the

output of user-directed analytical DW queries is typi-

cally quitesmall. As a result, it should be seen that

shared nothing data warehousing excels precisely

because it offers tremendous I/O performance while

simultaneously requiring only modest inter-node

communication [10].

It is against this backdrop that many recent data

warehousing partitioning projects have been set.

Essentially, there are three forms of DW partitioning.

In the first case, the fact tables are physically partitioned

in the manner just described. While the performance

with this approach can be impressive [15], it is also true

that imbalances caused by inherent data skew make

effective a priori data striping quite challenging. In

response, the virtual partition model was proposed

[1]. Here, as illustrated in Fig. 3c, the fact tables are

replicated in full across the nodes of the DBMS cluster.

Queries are then decomposed into sub-queries

(1∕p records per node) that are run against virtual parti-

tions mapped on top of the fully replicated tables. The

advantage is that sub-queries may be (i) run against any

cluster node and (ii) dynamically migrated to under-

utilized nodes. The downside is (i) the storage require-

ment associated with p copies of the primary fact table

and (ii) the fact that the commodity DBMSwill invoke a

full table scan if the partitions are too large. The third

partitioning method attempts to combine the best fea-

tures of the previous methods. In adaptive virtual par-

titioning (AVP) [7], small virtual partitions are layered

on top of larger physical partitions. The AVP algorithm

dynamically determines the maximum sub-query size

that does not invoke a table scan by iteratively probing

the commodity DBMS with successively larger queries.

The result is a set of re-locatable sub-queries that can

generally be answered efficiently without access to the

code base of the commodity DBMS systems. A simple

illustration is provided in Fig. 3d.

While partitioning is the cornerstone of contempo-

rary high performance data warehouses, it should be

clear that such methods represent a sort of ‘‘brute

Parallel and Distributed Data Warehouses. Figure 3. Fundamental DW partitioning schemes. (a) Query executed on a

single node server that houses a large fact table (T1) and two small dimension tables (T2, T3). (b) Physical partitioning,

creating fact table fragments (F1, F2). (c) Virtual partitioning on the clustering attribute P of the replicated fact table.

(d) Adaptive virtual partitioning, using fragments and multiple sub-queries.

2016P Parallel and Distributed Data Warehouses
force’’ approach to query resolution. Though the re-

sponse time may indeed represent close to linear

speedup as a function of CPU/disk count, the implicit

assumption is that full processing of the atomic, trans-

actional data is necessary. This is certainly true for

arbitrary or ad-hoc user queries since nothing is

known about the possible query format. However,

most data warehouses support user interaction

through some form of OLAP interface. At its core,

OLAP represents an analytical environment for the

intuitive manipulation of the data cube. As noted

above, there are O(2d) such views or cuboids. By

materializing some (or occasionally all) of these pre-

aggregated views, DW/OLAP systems can dramatically

improve run-time performance on common queries

without resorting to massive fact table scans. The

trade-off, of course, is that aggregates must be accu-

rately maintained (i.e., updated). In fact, this require-

ment exerts considerable pressure on the underlying

server as data volumes explode in size while, at the

same time, update windows shrink. It is important to
understand, however, that the run-time performance

benefit resulting from cube materialization is likely

to be significantly larger than the (at best) linear speed-

up achieved by a conventional parallel query engine. As

such, parallel resources may be more valuable when

utilized for the construction and ongoing maintenance

of the OLAP data structures (e.g., summaries), rather

than for brute force query execution.

Because of the extensive computational require-

ments of cube generation in large data warehouses, a

number of parallel cube construction and querying

architectures have in fact been proposed. Note the

use of the word ‘‘architectures’’ to indicate comprehen-

sive models that include computation, memory man-

agement, and physical storage. In the parallel

environment, both array-based (MOLAP) and rela-

tional (ROLAP) systems have been explored. With

respect to MOLAP parallelism, a distributed memory

framework targeting IBM’s SP2 was described in [8].

Here, cube construction begins by first equi-partition-

ing on a single attribute A1. Using sequential MOLAP

Parallel and Distributed Data Warehouses P 2017

P

techniques, all partial cuboids containing A1 (exactly
2d

2

of the total) are constructed independently on each

node. The data set is then re-partitioned on A2 and

the process is repeated. In total, d such rounds are

required. The MOLAP mechanism is attractive in the

parallel environment as it is well suited to the shared

nothing model. Moreover, the parallelized MOLAP

cuboids have the potential to provide extremely fast

run-time performance (as is generally the case with

MOLAP). Having said that, like all MOLAP systems,

the sparsity of array-based storage does necessitate

complex sparse array compression. In addition, data

skew has the potential to generate significant load

imbalance during each of the d re-partitioning phases.

Alternatively, parallelism can be exploited in purely

relational environments. The cgmCube project, for ex-

ample, also utilizes state-of-the-art sequential cube con-

structionmethods but materializes results in the form of

conventional relational tables [2]. Both shared nothing

and shared disk platforms are targeted. In this case, the

cube lattice is physically materialized by first creating a

weighted minimum cost spanning tree representation

that identifies the most cost effective means by which to

materialize all O(2d) cuboids. Parallelism is supported

by decomposing the spanning tree into psub-trees

(using a k-min-max graph partitioning algorithm),

each of which is computed in its entirety on a single

node. The advantage here is that global costing decisions

can be employed so as to significantly improve load

balancing and to eliminate communication costs (note

that the final cuboids can be re-partitioned in any

way once the construction algorithm has terminated).

Unlike array-based MOLAP systems, ROLAP does not

provide implicit indexing, a problem of some signifi-

cance given that traditional ‘‘single dimension’’ indexes

such as the b-tree do not work particularly well in

multi-dimensional spaces. cgmCube addresses this

shortcoming by adding a forest of fully parallelized,

multi-dimensionalR-treeindexes.Ultimately,cgmCube’s

algorithmic components are integrated into a fully

parallelized server prototype called Sidera that essentially

functionsasa federationofsinglenodeOLAP servers [5].

In addition to cube generation and indexing, Sidera

adds functionality for caching, selectivity estimation,

and the management of dimensionhierarchies, as well as

fully parallelized sorting and aggregation support.

A logical picture of the Sidera server is illustrated in

Fig. 3. It should be noted that due to the enormous
complexity of parallelized OLAP systems, no direct

performance comparison of the MOLAP and ROLAP

alternatives has ever been performed.

Finally, one should be aware that commercial par-

allel DW implementations are also available. Of partic-

ular interest in the current context are the dedicated

appliance style architectures. Here, an integrated, par-

allel shared nothing hardware/software bundle is tai-

lored specifically to data warehousing workloads and

query patterns. Recently, the traditional ‘‘high end’’

DW system provider, Teradata, has been joined by

new vendors such as Netezza, DATAllegro, and Green-

plum that build upon commodity hardware and open

source DBMS software. While each provides proprie-

tary mechanisms for elements such as indexing and

partitioning, the DW appliance vendors tend to rely

primarily on the aforementioned ‘‘brute force’’ style of

parallelism. At present, it does not appear that there

is a direct movement of theoretical results from the

research community to the industrial sector.
Key Applications
A quick review of the recent database literature indicates

that the majority of the current work in high perfor-

mance databases is actually associated with data ware-

housing. This should perhaps not be surprising since

data warehouses represent some of the largest databases

in existence today. In fact, with the emergence of the

Internet as a vehicle for both data collection and distri-

bution, one can only expect this trend to continue. So as

the average size of production DWs pushes past the

terabyte limit, parallelism is likely to become an in-

creasingly common theme.
Future Directions
In the short term, one would expect to see continued

interest in the exploitation of commodityDBMS systems

within loosely federated parallel DBMS clusters. This

approach makes a great deal of sense given the consider-

able maturity of such platforms. Beyond this, OLAP

query performance might be further improved by inves-

tigating the parallelization of more recent sequential

cubemethods. The tree-based Dwarf Cube is an obvious

target in this regard [14]. We can also expect to see a

greater focus on the emerging trend of real time or near

real time data warehousing, particulary for parallel

systems that target large, dynamic data environments.

2018P Parallel Axes
In the longer term, one possible area for further

investigation is the convergence of parallel/distributed

data warehouses and the new data centric Grid technol-

ogies [6]. To this point in time, the Grid framework has

primarily been associated with the concurrent proces-

sing of ‘‘flat files’’ rather than highly structured data-

bases. Nevertheless, the Grid model offers interesting

opportunities for the distributed, secure, and equitable

processing of publicly accessible data repositories.
Experimental Results
Virtually all of the research mentioned in this discus-

sion has relevant experimental evaluations within the

associated references. In general, the parallel imple-

mentations described above – both partition oriented

and OLAP-based – are capable of achieving near linear

speedup on contemporary shared nothing parallel sys-

tems of 8–32 nodes.
Cross-references
▶Cube

▶Cube Implementations

▶Cube Lattice

▶Data Warehousing Systems: Foundations and

Architectures

▶Dimension

▶Measure

▶Multidimensional Modeling

▶OLAP

▶On-Line Analytical Processing

▶Optimization and Tuning in Data Warehouses

▶Query Processing in Data Warehouses

▶ Star Schema
Recommended Reading
1. Akal F., Böhm K., and Schek H.-J. OLAP query evaluation in a

database cluster: a performance study on intra-query parallelism.

In Proc. 6th East European Conf. Advances in Database and

Information Systems, 2002, pp. 218–231.

2. Dehne F., Eavis T., and Rau-Chaplin A. The cgmCUBE project:

optimizing parallel data cube generation for ROLAP. J. Distr.

Parallel Databases, 19(1):29–62, 2006.

3. DeWitt D., Ghandeharizadeh S., Schneider D., Bricker A., Hsaio

H., and Rasmussen R. The gamma database machine project.

Trans. Knowl. Data Eng., 2(1):44–62, 1990.

4. DeWitt D. and Gray J. Parallel database systems: the future

of high performance database systems. Commun. ACM,

35(6):85–98, 1992.

5. Eavis T., Dimitrov G., Dimitrov I., Cueva D., Lopez A., and Taleb A.

Sidera: a cluster-based server for online analytical processing.
In Proc. Int. Conf. on Grid Computing, High-Performance, and

Distributed Applications, 2007.

6. Fiser B., Onan U., Elsayed I., Brezany P., and Tjoa A.M. On-line

analytical processing on large databases managed by computa-

tional grids. In Proc. 15th Int. Conf. Database and Expert Syst.

Appl., 2004, pp. 556–560.

7. Furtado C., Lima A., Pacitti E., Valduriez P., and Mattoso M.

Physical and virtual partitioning in OLAP database clusters. In

Proc. Int. Symp. on Computer Architecture and High Perfor-

mance Computing, 2005, pp. 143–150.

8. Goil S. and Choudhary A. High performance multidimensional

analysis of large datasets. In Proc. 1st ACM Int. Workshop on

Data Warehousing and OLAP, 1998, pp. 34–39.

9. Jin R., Vaidyanathan K., Yang G., and Agrawal G. Communica-

tion and memory optimal parallel data cube construction. IEEE

Trans. Parallel Distr Syst., 16(12):1105–1119, 2005.

10. Morse S. and Isaac D. Parallel Systems in the Data Warehouse.

Prentice-Hall, Englewood Cliffs, 1998.

11. Özsu M.T. and Valduriez P. Principles of distributed

database systems 2nd edn. Prentice-Hall, Englewood Cliffs, NJ,

1999.

12. Röhm U., Böhm K., and Schek H.-J. Routing and physical design

in a database cluster. In Advances in Database Technology, Proc.

7th Int. Conf. on Extending Database Technology, 2000,

pp. 254–268.

13. Scheuermann P., Weikum G., and Zabback P. Data partitioning

and load balancing in parallel disk systems. VLDB J., 7(1):48–66,

1998.

14. Sismanis Y., Deligiannakis A., Roussopoulos N., and Kotidis Y.

Dwarf: shrinking the PetaCube. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2002, pp. 464–475.

15. Stohr T., Märtens H., and Rahm E. Multi-dimensional database

allocation for parallel data warehouses. In Proc. 26th Int. Conf.

on Very Large Data Bases, 2000, pp. 273–284.
Parallel Axes

▶ Parallel Coordinates
Parallel Coordinates

ALFRED INSELBERG
1,2

1Tel Aviv University, Tel Aviv, Israel
2University of California-San Diego, La Jolla, CA, USA

Synonyms
Parallel axes; Parallel Coordinates System (PCS);

||-coords; Multidimensional visualization; Parallel

Coordinates Plot (PCP)

Parallel Coordinates P 2019

P

Definition
In the plane with xy-Cartesian coordinates N copies of

the real line labeled X̄1, X̄2,...,X̄N are placed equidistant

and perpendicular to the x-axis. They are the axes of

the multidimensional system of Parallel Coordinates all

having the same positive orientation as the y-axis. An

N-tuple, N-dimensional point, C = (c1, c2,...,cN) is

represented by the polygonal line C̄ whose N vertices

are at the ci values on each X̄i-axis as shown in Fig. 1.

In this way, a 1–1 correspondence between points in

N-dimensional space and polygonal lines with vertices

on the parallel axes is established. In principle, a large

number of axes can be placed and be seen parallel to

each other. The representation of points is deceptively

simple and much development with additional ideas is

needed to enable the visualization of multivariate rela-

tions or equivalently multidimensional objects.

A dataset with M items has 2M subsets anyone of

which may be the one wanted. With a good data

display the fantastic human pattern-recognition can

not only cut great swaths searching through this com-

binatorial explosion but also extract insights from the

visual patterns. These are the core reasons for data

visualization. With Parallel Coordinates (abbr. ||-

coords) the search for multivariate relations in high

dimensional datasets is transformed into a 2-D pattern

recognition problem. A geometric classification algo-

rithm based on ||-coords is presented and applied to a

complex dataset. It has low computational complexity

providing the classification rule explicitly and visually.

The minimal set of variables required to state the rule
Parallel Coordinates. Figure 1. The polygonal line C̄

represents the N-tuple C = (c1, c2, c3, c4, c5).
is found and ordered optimally by their predictive

value. A visual economic model of a real country is

constructed and analyzed to illustrate howmultivariate

relations can be modeled by means of hypersurfaces.

Recent results like viewing convexity in any dimension

and non-orientability (as in the Möbius strip) provide

a prelude of what is on the way.

Historical Background
Legend has it that while constructing a proof,

Archimedes was absorbed in a diagram when he was

killed by a Roman soldier. ‘‘Do not disturb my circles’’

he pleaded as he was being struck by the sword.

Visualization flourished in Geometry and Archimedes’

is the first recorded death in defense of visualization.

Visual interaction with diagrams is interwoven with

testing of conjectures and construction of proofs.

The tremendous human pattern recognition enables

interaction for the extraction of insight from images.

This essence of visualization is abstracted and adapted

into the general problem-solving process to the extent

that, a mental image of a problem is formed and at

times one says see when it is meant understand.

Is there a way to make accurate pictures of multi-

dimensional problems analogous to Descartes coordi-

nate system? What is ‘‘sacred’’ about orthogonal axes

which use up the plane very fast? After all, in Geometry

parallelism rather than orthogonality is the fundamen-

tal concept and they are not equivalent for orthogonal-

ity requires a prior concept of ‘‘angle.’’ By 1959, while

studying Mathematics at the University of Illinois,

these thoughts lead to themultidimensional coordinate

system based on Parallel Coordinates. With the encour-

agement of Professors Cairns and Bourgin (both topol-

ogists) basic properties like the point ↔ line duality

were derived. It was not until 1977 when, while teach-

ing a Linear Algebra course, the ‘‘challenge’’ was raised

to show spaces of dimension higher than 3; parallel

coordinates were recalled and their systematic devel-

opment began. There was early interest and acceptance

[6]. The comprehensive report [7] and later [9] layed

the foundations of what became the ||-coords method-

ology. Collaboration with Dimsdale, (A long-time as-

sociate of John von Neuman.) Hurwitz, Boz and

Addison ushered to five USA patents (Collision

Avoidance Algorithms for Air-Traffic Control, Data

Mining and Computer Vision) and applications to

Optimization, Process Control [4] and elsewhere.

Hurwitz, Adams and later Chomut experimented

2020P Parallel Coordinates
with multi-query interactive software written in APL

for exploratory data analysis (EDA) with ||-coords [5].

There followed [10] on the discovery of structure in

data, Gennings et al. [4] on response surfaces based on

||-coords for statistical applications, Wegman using the

aforementioned duality promoted the EDA applica-

tion, Fiorini on Robotics and Hinterberger [14] on

comparative multivariate visualization (and earlier on

data density analysis). The results of Eickemeyer [2],

Hung and Inselberg [5] and Chatterjee were seminal.

More recently the work of Ward et al. [15] (Hierachical

||-coords and more), Jones [13] (Optimization), Yang

(Association Rules – Databases), Hauser (Categorical

Variables and more) and Choi and Heejo Lee (on

Intrusion Detection), increased the versatility and

sophistication of ||-coords. This list is by no means

exhaustive, Shneiderman, Grinstein, Keim, Mihalisin,

and others have made significant contributions to data

and information visualization.

Foundations
‘‘A picture is worth a thousand words’’ – But how does

one say this with a picture?

The value of data visualization is not seeing ‘‘zil-

lions’’ of objects but rather recognizing relations

among them. Wonderful successes like Minard’s

‘‘Napoleon’s March to Moscow,’’ Snow’s ‘‘dot map’’

and others (see [3]) are ad hoc (i.e., one-of-a-kind)
Parallel Coordinates. Figure 2. Ground emissions measured

the right. The water and lake’s edge are discovered with two
and exceptional. Succinct multivariate relations are

rarely apparent from static displays. With interactivity

the visual clues in a good data display (ParallaxMDG’s

proprietary Data Mining software is used by permis-

sion.) can masterfully guide knowledge discovery. Fol-

low up on anything that catches the eyes, gaps,

regularities, holes, twists, peaks and valleys, density

contrasts like the ones which reveal the water regions

in Fig. 2. For the financial data in Fig. 3 (left) multidi-

mensional contouring is applied to the axis with SP500

index values (right) uncovering multivariate relations

like high SP500 low Gold and Interests correlate with

high Yen and more. These are examples of two queries

and they are others. With Boolean operators com-

pound queries are formed to perform complex tasks.

Classification is an important operation in data

mining. Powerful geometrical classifiers based on

||-coords [12] have been constructed. An example is

shown Fig. 3 (right). The mixing of the two categories

is seen on the left plot of the first two parameters.

The classifier found the 9 (out of 32) parameters need-

ed to state the rule with 4% error and ordered them

according to their predictive value. The two best pre-

dictors are plotted on the right showing the separation

achieved [12].

Multivariate relations can be modeled in terms of

hypersurfaces – just as a relation between two variables

can be represented by a planar region. From a dataset
by satellite on a region of Slovenia (left) are displayed on

queries.

Parallel Coordinates. Figure 3. (a) The multidimensional-contouring on financial data reveals multiple interelations.

(b) Classification – dataset with 32 parameters and two categories.

Parallel Coordinates. Figure 4. Hypersurface modeling a country’s economy. An interior point represented by a

polygonal line depicts a feasible economic policy.

Parallel Coordinates P 2021

P

2022P Parallel Coordinates
consisting of the outputs of various economic sectors

of a real country a visual model of its economy is

constructed and shown in Fig. 4 represented by the

upper and lower curves. An interior (i.e., a combina-

tion of sector outputs) point satisfies all the cons-

traints simultaneously therefore represents a feasible

economic policy for that country. Such points can

constructed by sequentially choosing variable values

within their allowable range. Once a value of the first

variable is chosen (in this case the Agricultural output)

within its range, the dimensionality of the region is

reduced by one. In fact, the upper and lower curves

between the second and third axes show the reduced
Parallel Coordinates. Figure 5. (Left) point ↔ line duality in

points – the intersections of polygonal representing points o

Parallel Coordinates. Figure 6. Convex surfaces represented

3-D centered at origin. (center) Tranlated sphere translation ↔

repeating pattern.
available range of the second variable Fishing and

similarly for the remaining variables. Hence the impact

of a decision can be seen downstream. In this way it

was found that a high value from the available range of

Fishing corresponds to very low values of the Mining

sector – seen in the right of Fig. 4 and vice versa. This

inverse correlation was investigated and found that the

two sectors compete for the same group of migrating

workers. When fishing is doing well, most of them

leave the mountains where the mines are located to

work on the fishing boats and the reverse. This is an

example of ||-coords used for Decision Support and

Trade-Off Analysis.
2-D. (Right) A N-dimensional line ‘ is represented by N � 1

f ‘.

by N � 1 hyperbola-like regions. (left)Sphere in

rotation duality (right) cube and hypercube in 5-D

Parallel Coordinates. Figure 7. Möbius strip and its representation for two orientations.

Parallel Coordinates P 2023
Key Applications
There are numerous others like GIS, Process Control,

Trading & Financial Analysis the visualization and

analysis of multivariate/multidimensional problems

in general.
P

Future Directions
Though some refer to ||-coords as a ‘‘plot’’ it is actually

a coordinate system where the goal, since its inception,

is to concentrate N-dimensional relational informa-

tion into patterns the earliest being that N-dimensional

lines are represented by N � 1 points with two indices

Fig. 5. Hyperplanes are represented by N � 1 points

with N indices, and N � 1 regions with N indices

represent a surface – i.e., the tangent planes enveloping

it. Figures 6 and 7 show recent breakthroughs where

convexity in any dimension and non-orientability can be

seen. Work is progressing on transforming multivari-

ate relations in datasets into planar patterns completely

eliminating display clutter [11].
Cross-references
▶Abstraction

▶Association Rule Mining on Streams

▶Business Intelligence

▶Classification

▶Clustering

▶Cluster Visualization

▶Comparative Visualization

▶Curse of Dimensionality

▶Data Mining

▶Data Visualization
▶Data Warehouse

▶Dimension

▶Dimension Reduction Techniques for Clustering

▶Dimensionality Reduction

▶Dynamic Graphics

▶ Event Detection

▶ Exploratory Data Analysis

▶ Feature Selection for Clustering

▶Geographic Information System

▶High Dimensional Indexing

▶ Individually Identifiable Data

▶ Information Extraction

▶ Interface

▶Machine Learning in Computational Biology

▶Mining of Chemical Data

▶Model Management

▶Multidimensional Data Formats

▶Multidimensional Modeling

▶Multidimensional Scaling

▶Multivariate Visualization Methods

▶OLAP

▶ Parallel Visualization

▶ Principal Component Analysis

▶ Process Optimization

▶Query Evaluation Techniques for Multidimensional

Data

▶Range Query

▶ Scientific Visualization

▶ Spatial Data Analysis

▶ Spatial Data Mining

▶ Spatio-Temporal Data Mining

▶Temporal Data Mining

▶Temporal Dependencies

2024P Parallel Coordinates Plot (PCP)
▶Visual Analytics

▶Visual Association Rules

▶Visual Classification

▶Visual Clustering

▶Visual Interfaces

▶Visualization Techniques for Scientific Databases

▶Visualizing Quantitative Data

▶What-if Analysis
Recommended Reading
1. Chomut T. Exploratory data analysis in parallel coordinates. M.

Sc. Thesis, Department of Computer Science, UCLA, 1987.

2. Eickemeyer J. Visualizing p-Flats in N-Space Using Parallel

Coordinates. Ph.D. Thesis, Department of Computer Science,

UCLA, 1992.

3. Friendly M. et al. Milestones in Thematic Cartography. www.

math.yorku.ca/scs/SCS/Gallery/milestones/, 2005.

4. Gennings C., Dawson K.S., Carter W.H., and Myers R.H. Inter-

preting plots of a multidimensional dose-response surface in

parallel coordinates. Biometrics, 46:719–35, 1990.

5. Hung C.K. and Inselberg A. Parallel Coordinate Representation

of Smooth Hypersurfaces. USC Tech. Report # CS-92-531,

Los Angeles, 1992.

6. Inselberg A. N-dimensional coordinates. In Proc. of IEEE Conf.

Picture Data Description, 1980.

7. Inselberg A. N-dimensional graphics, LASC Tech. Rep. G320-

2711, IBM, 1981.

8. Inselberg A. Intelligent instrumentation and process control. In

Proc. Second IEEE Conf. on AI Application, 1985, pp. 302–307.

9. Inselberg A. The plane with parallel coordinates. Visual Com-

puter, 1:69–97, 1985.

10. Inselberg A. Discovering multi-dimensional structure with par-

allel coordinates (invited paper). In Proc. ASA.– Stat. Graphics

1–16, 1989.

11. Inselberg A. Parallel Coordinates : VISUAL Multidimensional

Geometry and its Applications. Springer, 2009.

12. Inselberg A. and Avidan T. The Automated Multidimensional

Detective. In Proc. IEEE Information Visualization, 1999,

pp. 112–119.

13. Jones C. Visualization and optimization. Kluwer Academic,

Boston, 1996.

14. Schmid C. and Hinterberger H. Comparative Multivariate

Visualization Across Conceptually Different Graphic Displays,

In Proc. 6th Int. Conf. on Scientific and Statistical Database

Management, 1994.

15. Ward M.O. XmdvTool: integrating multiple methods for visua-

lizing multivariate data. In Proc. IEEE Conf. on Visualization,

1994, pp. 326–333.
Parallel Coordinates Plot (PCP)

▶ Parallel Coordinates
Parallel Coordinates System (PCS)

▶ Parallel Coordinates
Parallel Data Placement

PATRICK VALDURIEZ

INRIA, LINA, Nantes, Cedex, France

Synonyms
Multiprocessor data placement

Definition
Parallel data placement refers to the physical placement

of the data in a multiprocessor computer in order to

favor parallel data access and yield high-performance.

Most of the work on data placement has been done

in the context of the shared-nothing architecture.

Data placement in a parallel database system exhibits

similarities with data fragmentation in distributed

databases since fragmentation yields parallelism. How-

ever, there is no need to maximize local processing

(at each node) since users are not associated with par-

ticular nodes and load balancing is much more difficult

to achieve in the presence of a large number of nodes.

The main solution for parallel data placement is

a variation of horizontal fragmentation, called par-

titioning, which divides database relations into parti-

tions, each stored at a different disk node. There are

three basic partitioning strategies: round-robin, hash-

ing, and interval. Furthermore, to improve availability,

replication of partitions is needed.

Historical Background
Parallel data placement was proposed in the early

1980s for the first software-oriented parallel database

systems. Instead of proposing expensive changes to the

disk technology as in database machines with filtering

devices, the main idea was to distribute the data onto

multiple (smaller) disks and parallelize the I/O band-

width which could be better consumed by multiple

processors.

Data partitioning was first proposed for shared-

nothing architectures which are a natural evolution of

distributed database architectures. The same basic

idea has been also used (with different partitioning

Parallel Data Placement P 2025

P

strategies) for the Redundant Arrays of Inexpensive

Disks (RAID) to build powerful disks out of many

smaller ones.

Most of the work in parallel data placement

has been done in the context of the relational model

with relation partitioning as the main strategy. Exten-

sions have been proposed for object-oriented or semi-

structured (XML) data by partitioning collections of

objects or elements.

Foundations
Most of the work on data placement has been done

in the context of the shared-nothing architecture

which is the most general architecture. However, data

placement is also important in shared-memory and

shared-disk architectures since there can be multiple

disks. Thus, the data placement techniques designed

for shared-nothing can also be used, sometimes in a

simplified form, to other architectures.

Data placement in a parallel database system exhi-

bits similarities with data fragmentation in distributed

databases. An obvious similarity is that fragmentation

can be used to increase parallelism. In what follows,

the terms partitioning and partition are used instead

of horizontal fragmentation and horizontal fragment,

respectively, to contrast with the alternative approach

which clusters all data of each relation at one node.

Vertical fragmentation can also be used to increase

parallelism and load balancing much as in distributed

databases. Another similarity is that queries should be

executed as much as possible where the data reside.

However, there are two important differences with the

distributed database approach. First, there is no need

to maximize local processing (at each node) since users

are not associated with particular nodes. Second, load

balancing is much more difficult to achieve in the

presence of a large number of nodes. The main prob-

lem is to avoid resource contention, which may result

in the entire system thrashing (e.g., one node ends

up doing all the work while the others remain idle).

Since queries are executed where the data reside, data

placement is a critical performance issue.

Data placement must be done to maximize system

performance, which can be measured by combining

the total amount of work done by the system and

the response time of individual queries. Maximizing

response time (through intra-query parallelism) may

result in increased total work due to communication

overhead. For the same reason, inter-query parallelism
results in increased total work. On the other hand,

clustering all the data necessary to a query minimizes

communication and thus the total work done by

the system in executing that query. In terms of data

placement, the following trade-off exists: maximizing

response time or inter-query parallelism leads to

partitioning, whereas minimizing the total amount of

work leads to clustering. This problem is addressed

in distributed databases in a rather static manner.

The database administrator is in charge of periodically

examining fragment access frequencies, and when

necessary, moving and reorganizing fragments.

A solution to data placement is full partitioning,

whereby each relation is horizontally fragmented

across all the nodes in the system. There are three

basic strategies for data partitioning: round-robin,

hash, and range partitioning.

1. Round-robin partitioning is the simplest strategy, it

ensures uniform data distribution. With n parti-

tions, the ith tuple in insertion order is assigned to

partition (imod n). This strategy enables the sequen-

tial access to a relation to be done in parallel. How-

ever, the direct access to individual tuples, based on a

predicate, requires accessing the entire relation.

2. Hash partitioning applies a hash function to some

attribute which yields the partition number. This

strategy allows exact-match queries on the selection

attribute to be processed by exactly one node and

all other queries to be processed by all the nodes in

parallel.

3. Range partitioning distributes tuples based on

the value intervals (ranges) of some attribute. In

addition to supporting exact-match queries as

with hashing, it is well-suited for range queries.

For instance, a query with a predicate ‘‘A between

a1 and a2 may be processed by the only node(s)

containing tuples whose A value is in the range

[a1 and a2].’’ However, range partitioning can result

in high variation in partition size.

Full partitioning generally yields better performance

than clustering relations on a single (possibly very large)

disk.Although full partitioninghasobviousperformance

advantages, highly parallel executionmay cause a serious

performance overhead for complex queries involving

joins. Furthermore, full partitioning is not appropriate

for small relations that span a few disk blocks. These

drawbacks suggest that a compromise between clustering

and full partitioningneeds tobe found.

2026P Parallel Database
A solution is to do data placement by variable parti-

tioning, where the degree of partitioning, in other words,

the number of nodes over which a relation is partitioned,

is a function of the size and access frequency of the

relation. This strategy is muchmore involved than either

clustering or full partitioning because changes in data

distribution may result in reorganization. For example,

a relation initially placed across eight nodes may have its

cardinality doubled by subsequent insertions, in which

case it should be placed across 16 nodes.

In a highly parallel system with variable partition-

ing, periodic reorganizations for load balancing are

essential and should be frequent unless the workload

is fairly static and experiences only a few updates. Such

reorganizations should remain transparent to com-

piled queries that run on the database server. In partic-

ular, queries should not be recompiled because of

reorganization. Therefore, the compiled queries should

remain independent of data location, which may

change rapidly. Such independence can be achieved if

the run-time system supports associative access to

distributed data. This is different from a distributed

DBMS, where associative access is achieved at compile

time by the query processor using the data directory.

A serious problem in data placement is dealing

with skewed data distributions which may lead to

non-uniform partitioning and hurt load balancing.

Range partitioning is more sensitive to skew than

either round-robin or hash partitioning. A solution is

to treat non-uniform partitions appropriately, e.g., by

further fragmenting large partitions.

Another important function is data replication for

high availability. The simple solution is to maintain

two copies of the same data, a primary and a backup

copy, on two separate nodes. This is the mirrored disks

architecture promoted by many computer manufac-

turers. However, in case of a node failure, the load of

the node having the copy may double, thereby hurting

load balancing. To avoid this problem, an interesting

solution is Teradata’s interleaved partitioning which

partitions the backup copy on a number of nodes.

In failure mode, the load of the primary copy gets

balanced among the backup copy nodes. But if two

nodes fail, then the relation cannot be accessed thereby

hurting availability. Reconstructing the primary copy

from its separate backup copies may be costly. In

normal mode, maintaining copy consistency may also

be costly. A solution to this problem is Gamma’s

chained partitioning which stores the primary and
backup copy on two adjacent nodes. The main idea is

that the probability that two adjacent nodes fail is

much less than the probability that any two nodes

fail. In failure mode, the load of the failed node and

the backup nodes are balanced among all remaining

nodes by using both primary and backup copy nodes.

In addition, maintaining copy consistency is cheaper.

Key Applications
Parallel data placement has been primarily used

by parallel database systems on multiprocessor com-

puters. Data partitioning is also used as a basic tech-

nique for dealing with very large volumes of data in

different environments such as database clusters, data

grids, search engines, document management systems,

and P2P systems.

Cross-references
▶Distributed Databases

Recommended Reading
1. Copeland G.P., Alexander W., Boughter E.E., and Keller T.W.

Data placement in bubba. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1988, pp. 99–108.

2. DeWitt D.J. and Gray J. Parallel database systems: the future

of high performance database systems. Commun. ACM,

35(6):85–98, 1992.

3. Mehta M. and DeWitt D.J. Data placement in shared-nothing

parallel database systems. VLDB J., 6(1):53–72, 1997.

4. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems, 3rd edn. Prentice Hall, 2009.

5. Valduriez P. and Pacitti E. Parallel database systems. In

Handbook of Database Technology, J. Hammer, M. Scheider

(eds.). CRC Press, Boca Raton, FL, 2007.
Parallel Database

▶Distributed Architecture
Parallel Database Management

PATRICK VALDURIEZ

INRIA, LINA, Nantes, Cedex 3, France

Synonyms
Multiprocessor database management

Parallel Database Management P 2027

P

Definition
Parallel database management refers to the manage-

ment of data in a multiprocessor computer and is done

by a parallel database system, i.e., a full-fledge DBMS

implemented on a multiprocessor computer. The basic

principle employed by parallel DBMS is to partition

the data across multiprocessor nodes, in order to

increase performance through parallelism and avail-

ability through replication. This enables supporting

very large databases with very high query or transac-

tion loads.

Parallel database systems can exploit distributed

database techniques. In particular, database partition-

ing is somewhat similar to database fragmentation.

Essentially, the solutions for transaction management,

i.e., distributed concurrency control, reliability, atom-

icity, and replication, can be reused. However, the

critical issues for parallel database systems are data

placement, parallel query processing (including opti-

mization and execution) and load balancing. These

issues are much more difficult than in distributed

DBMS because the number of nodes may be much

higher. Furthermore, the interconnection network of

a multiprocessor system provides better opportunities

for improving performance than a general-purpose

network.

Historical Background
The performance objective of parallel database systems

was also that of the database machines in the 1980s.

The problem faced by conventional database manage-

ment on a monoprocessor computer has long been

known as ‘‘I/O bottleneck,’’ induced by high disk access

time. Database machine designers tackled this problem

through special-purpose hardware, e.g., by introducing

data filtering devices within the disk heads. However,

this approach did not succeed because of a poor cost/

performance ratio compared to the software solution

which can easily benefit from progress in standard

hardware technology (processor, RAM, disk). How-

ever, the idea of pushing database functions closer to

the disk has received renewed interest with the intro-

duction of general-purpose microprocessors in disk

controllers, thus leading to intelligent disks.

An important result of database machine research,

however, is in the general solution to the I/O bottle-

neck which can be summarized as increasing the I/O

bandwidth through parallelism. If a database is

partitioned, e.g., by horizontal fragmentation of the
relational tables, across a number d of disks, then

disk throughput can be increased by accessing the d

disks in parallel. The same principle has been applied

to Redundant Arrays of Inexpensive Disks (RAID)

which build a powerful disk with many small disks.

The main memory database solution which main-

tains the entire database in main memory to avoid

disk accesses, is complementary rather than alternative

to parallel database systems. In particular, the ‘‘memory

access bottleneck’’ induced by high memory access

time relative to processor speed can also be tackled

using parallel database techniques. In other words, a

parallel database system can use main memory database

nodes.

Foundations
Parallel database system designers strive to develop

software-oriented solutions in order to exploit the

various kinds of multiprocessor systems which are

now available. This can be achieved by extending dis-

tributed database technology, for example, by parti-

tioning the database across multiple disks so that much

inter- and intra-query parallelism can be obtained.

This can lead to significant improvements in both

response time and throughput (number of trans-

actions per time unit).

A parallel database system can be loosely defined as

a DBMS implemented on a multiprocessor computer.

This definition includes many alternatives ranging

from the porting of an existing DBMS, which may

require only rewriting the operating system interface

routines, to a sophisticated combination of parallel

processing and database system functions into a

new hardware/software architecture. Thus, there is a

trade-off between portability (to several platforms)

and efficiency. The sophisticated approach is better

able to fully exploit the opportunities offered by a

multiprocessor at the expense of portability. Interest-

ingly, this gives different advantages to computer man-

ufacturers and software vendors.

The main objectives of a parallel database system

are the following:

High-performance. This can be obtained through

several complementary solutions: data-based parallelism,

query optimization, and load balancing. Parallelism can

increase throughput, using inter-query parallelism, and

decrease transaction response times, using intra-query

parallelism. Load balancing is the ability of the system

to divide a given workload equally among all processors.

2028P Parallel Database Management
Depending on the parallel system architecture, it can

be achieved by static physical database design or dynami-

cally at run-time.

High-availability. Because a parallel database sys-

tem consists of many redundant components, it can

well increase data availability and fault-tolerance.

Replicating data at several nodes is useful to support

failover, a fault-tolerance technique which enables au-

tomatic redirection of requests from a failed node to

another node which stores a copy of the data, thereby

providing nonstop operation.

Extensibility. In a parallel system, accommodating

increasing database sizes or increasing perfor-

mance demands (e.g., throughput) should be easier.

Extensibility is the ability of smooth expansion of the

system by adding processing and storage power to

the system. Ideally, the increase in the configuration

of the parallel database system (i.e., more nodes)

should speed up existing workloads or scale up to

larger databases.

The functions supported by a parallel database

system are the same as in a typical DBMS. The differ-

ences, though, have to do with implementation of

these functions which must now deal with parallelism,

data partitioning and replication, and distributed

transactions. Depending on the architecture, a pro-

cessor node can support all (or a subset) of these

functions. In the early database machines for in-

stance, some nodes were specialized with hardware

to implement some functions, e.g., data filtering.

The way the main hardware elements, i.e., proces-

sors, main memory, and disks, are connected (through

some interconnection network) has a major impact on

the design of a parallel database system. The term

processor is used in the general sense of central proces-

sing unit (CPU). However, the processor itself can

be made of several core processors integrated in a

single chip, i.e., a multi-core processor, and perform

instruction-level multithread parallelism. But the par-

allelism being discussed here is much higher-level

(query- or operator-level) so processors (e.g., multi-

core processors) are simply considered as black-box

components accessing other resources (main memory,

disk, network). Depending on how main memory or

disk is shared, three basic architectures are obtained:

shared-memory, shared-disk and shared-nothing.

In the shared-memory architecture, any processor

has access to the entire main memory, and thus to all

the disks, through the interconnection network. The
network is typically very fast (e.g., a high-speed bus or

a cross-bar switch) and redundant to avoid any unavail-

ability. All the processors are under the control of a single

operating system. Shared-memorymakes it easy to build

a parallel database system because the operating system

deals with load balancing. It is also very efficient since

processors can communicate via the main memory.

However, the complexity and cost of the interconnection

network hurt extensibility which is limited to a few tens

of processors. Most parallel database system vendors

provide support for shared-memory.

In the shared-disk architecture, any processor has

access to any disk unit through the interconnection

network but exclusive (non-shared) access to its main

memory. Each processor-memory node is under the

control of its own copy of the operating system. An

important function that is needed is cache coherency

which allows different nodes to cache a consistent disk

page. This function is hard to support and requires

some form of distributed lock management. Shared-

disk has better extensibility than shared-memory since

the main memory is distributed. However, scalability

depends on the efficiency of the cache coherency mech-

anism. Migrating from a centralized system to shared-

disk is relatively straightforward since the data on disk

need not be reorganized. Shared-disk is the main archi-

tecture used by Oracle for its parallel database system.

The shared-nothing architecture is fully-distributed:

each node is made of processor, main memory and

disk and communicates with other nodes through the

interconnection network.

Similar to shared-disk, each processor-memory-

disk node is under the control of its own copy of

the operating system. Then, each node can be viewed

as a local site (with its own database and software) in

a distributed database system. Therefore, most solu-

tions designed for distributed databases such as data-

base fragmentation (called partitioning in parallel

databases), distributed transaction management and

distributed query processing may be reused. Using a

fast interconnection network, it is possible to accom-

modate large numbers of nodes. The major advantages

of shared-nothing over shared-memory or shared-disk

are those of distributed systems: relatively low cost,

extensibility and availability. However, it is much

more complex to manage as physical data portioning

is necessary. Shared-nothing has been adopted by the

major DBMS vendors (except Oracle) for their high-

end parallel database systems.

Parallel Hash Join, Parallel Merge Join, Parallel Nested Loops Join P 2029

P

Various possible combinations of these three basic

architectures are possible to obtain different trade-offs

between cost, performance, extensibility, availability,

etc. Hierarchical architectures typically combine the

three architectures using a shared-nothing design

where each node can be shared-memory or shared-

disk and communicates with other nodes through

the interconnection network.

Key Applications
Parallel database systems are used to support very

large databases (e.g., tens or hundreds of terabytes).

Examples of applications which deal with very large

databases are e-commerce, data warehousing, and data

mining. Very large databases are typically accessed

through high numbers of concurrent transactions

(e.g., performing on-line orders on an electronic store)

or complex queries (e.g., decision-support queries). The

first kind of access is representative of On Line Transac-

tion Processing (OLTP) applications while the second is

representative of On Line Analytical Processing (OLAP)

applications. Although both OLTP and OLAP can be

supported by the same parallel database system (on the

same multiprocessor), they are typically separated and

supported by different systems to avoid any interference

and ease database operation.

Cross-references

▶Distributed Databases

Recommended Reading
1. DeWitt D.J. and Gray J. Parallel database systems: the future

of high performance database systems. Commun. ACM, 35

(6):85–98, 1992.

2. Özsu T. and Valduriez P. Distributed and parallel database

systems – Technology and current state-of-the-art. ACM

Comput. Surv., 28(1):125–128, 1996.

3. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems, 3rd edition. Prentice Hall, 2009.

4. Valduriez P. Parallel database systems: the case for shared-

something. In Proc. 9th Int. Conf. on Data Engineering, 1993,

pp. 460–465.

5. Valduriez P. and Pacitti E. Parallel Database Systems. In

Handbook of Database Technology, J. Hammer, M. Scheider

(eds.). CRC Press, Boca Raton, FL, 2007.
Parallel Distributed Processing

▶Neural Networks
Parallel Hash Join, Parallel Merge
Join, Parallel Nested Loops Join

GOETZ GRAEFE

Hewlett-Packard Laboratories, Palo Alto, CA, USA

Synonyms
Parallel join algorithms

Definition
These join algorithms are parallel versions of the

traditional serial join algorithms. They are designed

to exploit multiple processors on a network, within a

machine, or even within a single chip.

Key Points
Parallel join algorithms are based on the traditional serial

join algorithms, namely (index) nested loops join,merge

join, and (hybrid) hash join. The goal of parallel execu-

tion is to reduce the input sizes in each processing

element, thus reducing the time for query completion

even at the expense of increasing overall query execution

effort due to data movement. Ideally, parallel join algo-

rithms exhibit linear speed-up and linear scale-up.

Parallel join algorithms are orthogonal to pipelin-

ing among join operations in a complex query execu-

tion plan. Even a query with a single join can benefit

from a parallel join algorithm. The essence of pipelin-

ing (and also of ‘‘bushy parallelism’’ in appropriate

query execution plans) is to execute different opera-

tions with different predicates concurrently, whereas

the essence of parallel join algorithms is that a single

logical operation exploits multiple processors or pro-

cessing cores. The conceptual foundations of parallel

join algorithms are that database query processing

manipulates sets of records, that sets can be divided

into disjoint subsets, and that query results based on

one record can be computed independently of results

based on other records.

Parallel join algorithms apply not only to inner

joins but also to semijoins, outer joins, and set opera-

tions such as intersection, union, and difference. Thus,

they apply to query execution techniques such as

index intersection for conjunctive predicates and the

star join techniques that are generalizations traditional

binary joins.

For a parallel join algorithm, input records are

partitioned or replicated such that each result record

2030P Parallel Join Algorithms
is produced exactly once. The usual choices are to

partition both inputs or to partition one input and to

replicate the other. For parallel joins without any

equality predicate, the processing elements can be

organized in a rectangular grid, one input partitioned

over rows of the grid and replicated within each row,

and the other join input partitioned over columns of

the grid and replicated within each column. These

choices mirror schemes in which database records

may be stored partitioned or replicated.

Partitioning schemes include range partitioning,

hash partitioning, and hybrid schemes such as range

partitioning of hash values or hashing (identifiers of)

key ranges. For intermediate query results, hash parti-

tioning is simple yet reasonably robust against skewed

key distributions.

All of the join algorithms can reduce data transfer

efforts using semijoin reduction or its heuristic app-

roximation, bit vector filtering or Bloom filters. Hash

join can benefit most obviously due to its separate

build and probe phases, with the bit vector filter popu-

lated during the build phase and exploited during the

probe phase. Merge join can exploit bit vector filtering

if the filter can be populated prior to a stop-and-go

operation such as sort, and can exploit it with the most

gain if the other input also must be processed by an

expensive operation such as a sort.

Symmetric partitioning means that both inputs are

partitioned. Ideally, the inputs are stored partitioned in

such a way that join processing does not incur any cost

or delay for partitioning. This is often called ‘‘local

indexing’’ or ‘‘table partitioning’’ when it refers to

indexes of the same table and ‘‘aligned partitioning’’

when it refers to separate tables. Aligned partitioning

often coincides with frequent join operations, foreign

key constraints, and complex objects on the concep-

tual level. The opposites are ‘‘global indexing,’’ ‘‘index

partitioning,’’ and ‘‘non-aligned partitioning.’’

If one of the join inputs is very large, and if

the degree of parallelism is only moderate, it might

be less expensive to replicate the small input than to

partition the large input. An appropriate cost calcula-

tion needs to consider record counts, record sizes,

communication costs per message or per byte, the

available memory allocation for each thread, etc.

A first approximation compares the quotient of the

two input sizes with the degree of parallelism.

Cost calculation during compile-time query opti-

mization can focus either on the average cost in each
of the parallel processing elements or on the maximal

cost. The former metric focuses on overall system

throughput in multi-user systems, whereas the latter

metric focuses on the query elapsed time as perceived

by a single user or application.

Cross-references
▶ Parallel Query Execution Algorithms

Recommended Reading
1. Graefe G. Query evaluation techniques for large databases. ACM

Comput. Surv., 25(2):73–170, 1993.

2. Mishra P. and Eich M.H. Join processing in relational databases.

ACM Comput. Surv., 24(1):63–113, 1992.
Parallel Join Algorithms

▶ Parallel Hash Join, Parallel Merge Join, Parallel

Nested Loops Join
Parallel Query Execution Algorithms

GOETZ GRAEFE

Hewlett-Packard Laboratories, Palo Alto, CA, USA

Synonyms
Partitioned query execution; Partitioning

Definition
Parallel query execution algorithms employ multiple

threads that together execute a single query execution

plan, with the goal of increased processing bandwidth

and decreased response time. Multiple forms of paral-

lelism may be employed in isolation or in combina-

tion. Most parallel query execution algorithms are

serial algorithms executed in multiple threads, usually

with no or only minor adaptations to function cor-

rectly or efficiently in the multi-threaded environment.

Historical Background
Set-oriented query languages and the relational algebra

have given rise to query optimization and parallel

database processing almost from their beginning in

the 1970s. They represented a new complexity or

Parallel Query Execution Algorithms P 2031

P

liability in database software design as non-procedural

languages and physical data independence prevent

users from specifying query processing steps and thus

require an automatic system component to provide

plans for data access and for query execution. At the

same time, they created a new opportunity as to prior

database systems and their interfaces did permit query

rewrite techniques or parallel execution.

The last 30 years have seen many successes and

many failures in parallel query execution algorithms.

Parallel versions of naı̈ve nested loops join were a

failure, because even hardware acceleration cannot

compete with well-chosen indexes, whether those are

persistent indexes supporting index nested loops join

or temporary indexes in form hash tables in hash join.

Parallel set operations, including non-indexed selec-

tion, join, grouping, and sorting, have been great suc-

cesses, because they can provide both good speed-up

and scale-up. Parallelism is sometimes associated with

specific set operations, e.g., hash join instead of all

joins, but almost all join algorithms benefit quite simi-

larly if designed and implemented with similar care.

Foundations
In principle, parallel query execution algorithms are

traditional sequential algorithms with multiple threads

executing different operations or executing the same

operation on different data. The relational algebra of

sets permits pipelining between operations, partition-

ing of stored data and of intermediate results, and

bushy execution in complex query execution plans.

Individual parallel algorithms exploit partitioning but

also overcome the issues introduced by partitioning

and parallelism.

The value and success of parallel query execution is

often expressed as speed-up and scale-up. Speed-up

compares execution times of serial and parallel execu-

tion for a constant data volume. Linear speed-up is

considered ideal; it is achieved if the ratio of execution

times is equal to the degree of parallelism. Scale-up

compares execution times for a constant ratio of data

volume and degree of parallelism. Linear scale-up is

considered ideal; it is achieved if the execution times

remain constant. There are, however, some effects that

permit super-linear speed-up. For example, adding

nodes to a parallel database machine increases not

only processing bandwidth but also available memory,

and might thus turn an external sort into an in-

memory sort at a high degree of parallelism.
Pipelining

The pipeline between a producer operation and a con-

sumer operation may pass individual records, value

packets, pages, or even runs. Value packets within a

sorted stream are defined by equal values in the sort

columns. As an example for iterators passing run in-

formation, consider a sort operation split into run

generation and merging; the pipeline between those

two components may pass entire runs at-a-time.

In addition to data, the pipeline contents may include

control records, e.g., artificially created keys design to

advance the merge logic further up in the sequence of

operations.

More importantly for multi-threaded query execu-

tion, the pipeline between threads may be demand-

driven or data-driven. Within each thread, iterators

commonly implement demand-driven dataflow, which

lend themselves well to joins and other binary opera-

tions but not to sharing intermediate results or

common sub-expressions, which occur much less fre-

quently than joins in query execution plans. Between

threads, data-driven dataflow is commonly regarded

superior.

On the other hand, if flow control is implemented,

the slower one among producer and consumer dictates

the overall pipeline flow, and it might not truly be useful

to attempt distinguishing demand- and data-driven

dataflow. The important aspect is that some ‘‘slack’’ is

created that permits the producer to get ahead of the

consumer to some reasonable amount without requir-

ing an excessive amount of buffer space. In general, the

quotient of buffer space and bandwidth is equal to the

interval that can be smoothed out, i.e., the amount of

time the producermay get ahead of the consumer or the

consumer may fall behind the producer.

Partitioning

Since pipelining with flow control often leads to con-

sumers throttling producers or the other way around,

and since pipelining alone permits only a fairly limited

degree of parallelism, it is usually combined with par-

titioning. Partitioning means that the input into a

relational algebra operation is divided into disjoint

subsets, which are processed by separate threads or

processors.

Many partitioning methods are in common use.

The basic partitioning methods are random, round-

robin, range, and hash. Both random and round-robin

partitioning permit perfect load balancing but do not

2032P Parallel Query Execution Algorithms
exploit key values and their importance in relational

algebra operations such as joins and duplicate elimi-

nation. When random partitioning or round-robin

partitioning is applied to stored data, neither queries

nor updates can be directed to a single location

and instead must be processed in all partitions. Range

partitioning assigns key ranges (of the partitioning col-

umn) to storage or processing sites. For perfect load

balancing, accurate quantile information is required.

For intermediate results, quantiles must be estimated

during query optimization or during an earlier query

execution phase. Hash partitioning applies a hash

function to determine storage or processing sites. A

suitable hash function can achieve very good load

balancing, which is why hash partitioning is sometimes

associated with linear speed-up and scale-up. On

the other hand, even hash partitioning fails if the

data distribution suffers from duplicate skew, i.e.,

the data contain many duplicate key values.

There are many ways to combine these basic parti-

tioning methods. For example, it may be desirable that

small range queries are processed at a one or two sites

with little overhead and that large range queries are

processed by many or all sites with maximum through-

put. To achieve both these effects, many small key

ranges can be hashed to storage sites. In other cases,

one columnmay be used to hash data items to sites and

another column to hash data items to storage locations

within each site. This is just one of many multi-dimen-

sional partitioning methods. Note that partitioning

among sites, partitioning within sites, and local orga-

nization are orthogonal. The possibilities are endless,

and almost each vendor claims to have found a new

and superior ‘‘secret sauce.’’ The most sophisticated

systems even offer partitioning on computed columns

or expressions.

Partitioning of stored data usually determines

where initial query operations execute, including selec-

tion and projection as well as preliminary stages of

sorting, duplicate elimination, and ‘‘group by’’ opera-

tions. Partitioning of stored data may also interact with

high availability consideration, e.g., each data item is

hashed to two sites using two hash functions, carefully

designed to ensure that no data item is hashed to the

same site by both hash functions.

For binary operations, ‘‘co-location’’ of the two

inputs permits local execution. These binary opera-

tions include inner and outer joins, semijoins includ-

ing ‘‘exists’’ nested queries, and set operations such as
intersection, union, and difference. Set operations after

scans of non-clustered indexes are common in query

execution plans for complex queries, for ad-hoc

queries, and for star joins in relational data warehouses

using a star schema. If all indexes for a table or view are

partitioned in the same way, both set operations and

fetch operations can remain local. On the other hand,

there are many situations in which it is advantageous

to partition each index on its search columns.

If co-location and local execution are not possible,

join input data need to be re-partitioned. In most

cases, both inputs are partitioned on the columns

participating in the join operation’s equality predicate.

If one input is much smaller than the other, it may be

more efficient to broadcast the small input and not

move the large input. In some case, in particular non-

equality joins, a combination can be applied. In this

technique, the processing sites can be thought of as a

rectangular matrix, with one input partitioned among

rows and broadcast within rows, and the other input

partitioned among columns and broadcast within col-

umns. The essence of all partitioning strategies for

binary operations such as joins is to ensure that each

pair of input rows that may contribute to the join

result ‘‘meets’’ at precisely one processing site.

Bushy Execution

In addition to pipelining and partitioning, a third form

of parallel query execution is enabled by bushy query

execution plans, as opposed to linear query execution

plans. In a linear query execution plan, one input of

each binary operation always is a stored table. In a

bushy query execution plan, both inputs may be inter-

mediate query results. For example, two sort opera-

tions may provide the inputs for a merge join. During

the sort operations’ input phases, the two sort opera-

tions can run in parallel. In more complex query exe-

cution plans, numerous operations and plan branches

may be active concurrently and independently.

Even the simple example with two sort operations

and a merge join suffices to demonstrate the substan-

tial difficulties, however. One problem is finding an

appropriate degree of parallelism for each operation or

branch. A harder problem is assigning appropriate

resources such as memory, disk space and bandwidth,

etc. The hardest problem is to ensure that concurrent

branches produce their results at the right time. In the

example, resources may be wasted if one sort operation

finishes before the other, because the former will likely

Parallel Query Execution Algorithms P 2033

P

hold on to resources such as memory while waiting for

the merge join to need its input and thus for the other

sort operation to finish.

Specifics of Parallel Algorithms

In order to keep parallel query execution engines mod-

ular, traditional serial query execution algorithms are

combined with mechanisms for parallel execution,

specifically pipelining and partitioning. The interface

between traditional serial query execution operations

usually takes the form of iterator. Iterator methods

support forward-only scans of intermediate results,

rewinding, binding parameters as needed for nested

iteration and general predicate evaluation, etc. Iterator

instances may recursively invoke their input iterators

to implement those methods, and by doing so can

execute a very complex query execution plan within a

single thread.

Mechanisms for parallel query execution can be

encapsulated in a special iterator. This design has been

used in a number of research prototypes and commercial

database systems. Commonly called the ‘‘exchange’’

operation but also known as ‘‘river’’ or ‘‘asynchronous

table queue,’’ this iterator encapsulates data transfer

and flow control, often provides initialization and tear-

down of threads and communication paths, and batches

records in order to reduce inter-process communication.

If parallel execution of nested iteration is desired, both

data transfer and flow control must work both from

producer to consumer for intermediate query results

and from consumer to producer for bindings of corre-

lation columns from outer to inner inputs of nested

iteration operations.

As the exchange operation or its equivalent encap-

sulate the basic mechanisms for parallel query execu-

tion, the following only indicates how specific parallel

algorithms differ from their serial equivalents.

For parallel sorting, after the input data is parti-

tioned as appropriate, the individual threads of a

parallel sort operation usually can work entirely inde-

pendently. If, however, the query optimizer relies on

the sort operation not only for the correct sequence of

records but also to avoid the Halloween problem by

means of phase separation, the individual threads must

coordinate their transition from consuming unsorted

input records to producing sorted output records. If

one of them produces output too early, it might affect

the input set of another thread still consuming input

and thus create the Halloween problem.
A similar coordination point exists in parallel hash

join. A serial hash join might choose between Grace

join, which devotes its first phase entirely to partition-

ing, and hybrid hash join, which performs some join

logic even during its first phase. Multiple threads in a

parallel hash join might choose differently, e.g., due to

different data volumes. Scheduling other operations

within the query execution plan might require, howev-

er, that all hash join threads follow the same choice.

As for parallel sorting with built-in Halloween protec-

tion, such a parallel hash join requires a very brief

communication and decision phase.

For parallel hash aggregation and duplicate elimina-

tion, a common technique is to run the operation twice,

once before and once after data partitioning, in cases in

which the input data are not yet partitioned on the

grouping columns. The goal is to reduce the number of

data records that need to be shipped between threads,

processes, and processors. Assuming uniform random

distribution of input rows prior to re-partitioning,

this goal can be achieved if the average group size,

i.e., the ratio of row counts in the input and in the

output, exceeds the degree of parallelism. A common

name for this technique is ‘‘local-global aggregation.’’

The initial, local aggregation may be opportunistic,

i.e., it performs as much aggregation as can readily

be achieved with the available memory, or it may be

complete, i.e., it will spill overflow partitions to disk if

required. If network transfer is faster than local disk

I/O, overflow partitions may be send to their final desti-

nation rather than to a local disk.

Sort-based aggregation and duplicate elimination

can benefit from the same ideas. The opportunistic

variant performs merely run generation and early du-

plicate elimination prior to data transfer. The full

variant performs complete local sort operations and

all aggregation and duplicate elimination prior to the

data transfer.

Order-preserving and merging re-partitioning

operations may experience a deadlock, assuming flow

control or bounded buffers in the data exchange oper-

ation. The essence of this deadlock is that producers

need to send data in the order produced, whereas

consumers need to consume data in the appropriate sort

order. For example, if producer 1 has data only for con-

sumer 1, and producer 2 has data only for consumer 2,

then consumer 1 waits for data from producer 2 in

order to advance its merge logic, yet producer 2 waits

for consumer 2 to release flow control, etc. There

2034P Parallel Query Execution Algorithms
are several possible solutions for this problem. A typi-

cal deadlock avoidance strategy is to let producers

send dummy records to all consumers, such that the

consumers can advance their merge logic. A typical

deadlock resolution strategy is to spill data to disk,

effectively going beyond bounded buffers and relaxing

flow control.

Parallel nested loops join, index nested loops join,

and general nested iteration add further complexity to

the data exchange operation. One issue is the number

of threads: if the nested operation should run in

4 threads (due to four on-disk partitions, for example)

yet the outer operation runs in three threads, will in

inner operation actually run in 12 threads? If not,

communication and synchronization need careful de-

sign, including avoidance or resolution of deadlocks.

Moreover, invoking the inner operation for batches of

outer correlation values rather than for individual

outer rows may reduce communication costs as well

as create optimization opportunities in the inner query

execution plan.

Another technique to reduce communication costs

in all matching operations is bit vector filtering. Some-

times thought to apply only to hash join, it also applies

to merge join and nested iteration. If the two inputs for

the matching operation are scanned or computed in

two separate phases, the first such phase can populate a

bit vector filter that the second phase can exploit to

eliminate some items without further predicate evalu-

ation and in particular without communication in

parallel query execution. The bit vector filter might

permit hash collisions or hash collisions might be pre-

vented by some means, typically involving dynamic

growth of the bit vector filter. In addition to the actual

bit vector filter, it can prove useful to retain informa-

tion about the minimal and maximal values.

In addition to expensive join and grouping opera-

tions, parallel execution and bit vector filtering can

benefit set operations such as intersecting lists of row

identifiers when exploiting multiple indexes on the

same table for a query with a conjunctive predicate.

Other index operations include union, difference, and

join. Index join sometimes refers to joining indexes of

two tables prior to fetching complete rows from either

table and sometimes refers to joining indexes from a

single table in order to obtain all columns required in a

query and to avoid fetching rows one-by-one. Both

kinds of index joins can benefit from parallel execution

and bit vector filtering.
Some operations, however, cannot exploit parallel

execution. The most notable example is a ‘‘top’’ opera-

tion, e.g., a query to find the three most productive

sales people in the organization. While the ‘‘top’’ oper-

ation permits local-global computation with poten-

tially tremendous reduction in serial computation

and in communication, the final computation cannot

benefit from multiple concurrent threads. An excep-

tion to this exception are ‘‘top’’ operations that apply

to groups of records, e.g., a query looking for the three

most productive sales people in each region.

Some algorithm implementations also exploit

local parallelism, independent of parallel execution

of the overall query execution plan. Asynchronous

I/O (sequential read-ahead, single-page prefetch, and

write-behind) are forms of local concurrent execution.

Expensive operations, e.g., sort operations, may benefit

from multiple threads, e.g., fitting records into a sort

operation’s workspace including initialization of a

pointer array, sorting and rearranging the pointer

array to represent the desired sort order, and forming

on-disk runs from pointer arrays already sorted.

Parallel Execution beyond Queries

In addition to query execution, parallelism is also

needed for large update operations and, perhaps

most importantly, in utilities that scan or modify entire

indexes, tables, or databases.

Parallel update operations are required in shared-

nothing databases, simply because updates like filters

are processed locally at each data site. Otherwise, if all

update operations are relatively small, parallel update

operations are not required for performance. However,

update operations can be large, e.g., in bulk insertion

and bulk deletion, also known as load, import, or roll-

in and as roll-out.

A parallel update algorithm can follow the parti-

tioning of stored data, it can assign disjoint key ranges

within B-tree indexes to separate update threads, or it

can assign threads to individual indexes. The latter

approach is a special form of index-by-index updates

(as opposed to row-by-row updates) as it permits the

changes for each index to be sorted like the index for

fast modification with read-ahead, etc.

Not only the actual database modifications but also

other activities associated with updates can be parallel,

including verification of integrity constraints, update

propagation to materialized and indexed views, etc. Of

course, verification of integrity constraints can be

Parallel Query Optimization P 2035

P

parallel also during definition of new constraints. Def-

inition of new materialized and indexed views creates

an opportunity for parallelism both while computing

the query defining the view and while loading the

query result into the new data structures. Refreshing

a view by re-computation is very similar.

In practice, however, the most important parallel

operation is probably index creation. High perfor-

mance index creation is particularly important if on-

line index creation is not supported, i.e., an entire table

is read-locked while the index utility scans, sorts, and

inserts data. Fortunately, parallel versions of all three of

these steps are readily available using standard

mechanisms for parallel query execution.

Key Applications
Parallel algorithms for database query execution are

used for two reasons. First, if there are more processors

than active users, the only means by which these pro-

cessors can do useful work on behalf of the users are

parallel algorithms. Pure pipelining often leads to poor

load balancing; thus, partitioning stored data and in-

termediate results, in particular using hash functions,

often permits higher and more reliable speed-up. In

the future, many-core processors may well increase the

importance of parallel algorithms in database query

execution.

Second, the hardware might require parallel algo-

rithm because the database and its data are partitioned

across multiple nodes each with its own memory,

operating system, etc. If communication is more ex-

pensive than immediate data reduction (using selec-

tion, projection, and local aggregation), parallel

algorithm are required. The future of improvements

in processing bandwidth and in communication band-

width will probably continue to be unbalanced; the

current trend towards networked storage over direct-

attached storage may reverse, in particular for database

systems that support a single-system image over many

direct-attached storage devices including management

of that storage.

Future Directions
While processor speed kept increasing, the value of

parallel query execution has been doubted at times.

With hardware development now focusing on many-

core processors rather than ever higher clock speeds,

there should be no doubt that parallel query execution

is required for relational data warehousing and
business intelligence. It may be worth noting, however,

that parallel utilities such as index creation are more

urgently needed by customers with growing data

volumes than parallel query execution. Many parallel

utilities are implemented using mechanisms shared

with parallel query execution, however, such that par-

allel query technology is needed in any case.

With the emergence of XML and semi-structured

data in database type systems, there probably will be

growing interest in parallel algorithms for relational

algebra extended for unstructured data and graph

manipulation. In addition, more data cleaning, data

mining, and scientific applications are integrated with

databases, and they, too, require parallel execution very

similar to parallel query execution. Perhaps the future

of parallel query execution is limited by advances in

extensible query optimization, such that both together

enable deep integration of those parallel algorithm into

the query processing framework.

Cross-references
▶ Partitioning

▶Query Optimization for Parallel Execution

▶Relational Algebra

▶ Storage Resource Management

▶Workload Management

Recommended Reading
1. Bratbergsengen K. Hashing methods and relational algebra

operations. In Proc. 10th Int. Conf. on Very Large Data Bases,

1984, pp. 323–333.

2. DeWitt D.J., Gerber R.H., Graefe G., Heytens M.L., Kumar K.B.,

and Muralikrishna M. GAMMA – a high performance dataflow

database machine. In Proc. 12th Int. Conf. on Very Large Data

Bases, 1986, pp. 228–237.

3. Fushimi S., Kitsuregawa M., Tanaka, H. An overview of the

system software of a parallel relational database machine

GRACE. In Proc. 12th Int. Conf. on Very Large Data Bases,

1986, pp. 209–219.

4. Graefe G. Query evaluation techniques for large databases. ACM

Comput. Surv., 25(2):73–170, 1993.
Parallel Query Optimization

HANS ZELLER, GOETZ GRAEFE

Hewlett-Packard Laboratories, Palo Alto, CA, USA

Synonyms
Optimization of parallel query plans

2036P Parallel Query Optimization
Definition
Parallel query optimization is the process of finding a

plan for database queries that employs parallel hard-

ware effectively. The details of this process depend on

the types of parallelism supported by the underlying

hardware, but the most common method is partition-

ing of the data across multiple processors.

Historical Background
Most parallel database systems today can trace part

of their heritage back to the Gamma project at the

University of Wisconsin, Madison in the 1980s – with

the exception of the Teradata system, which predates

Gamma by several years. Also influential were the

GRACE database machine, developed at the University

of Tokyo, and work at the Norwegian Institute of Tech-

nology, University of Trondheim. These projects did not

publish a description of their parallel query optimiza-

tion algorithms, however. Later projects, like XPRS

(University of California, Berkeley) and IBMDB2 Paral-

lel Edition describe that process in more detail.

A simple way of generating parallel query plans is

to take the optimal plan produced by a conventional

query optimizer and to parallelize it where possible.

This may not result in the optimal parallel plan. For

example, the chosen join order may require reparti-

tioning of the data, while a slightly different join order

might have avoided this costly step. Therefore, most of

today’s systems integrate parallelism into the optimi-

zation phase itself. Different parallel and serial plans

are compared on the basis of their estimated cost, and

the best plan is selected.

Most optimizer designers of parallel systems chose

a very natural extension of non-parallel optimizers.

This approach is described in the next section.

Foundations
Most of the parallel database systems use an operator-

based model for parallel queries: Traditional relational

operators such as join and groupby are employed in a

parallel framework, allowing individual CPUs of a paral-

lel system to work on a partition of the data. The task of

the query optimizer is to find the right partitioning and

degree of parallelism for each step.

With such an operator-based approach, optimizing

parallel queries is similar to conventional query optimiza-

tion, except that a new dimension is added – partitioning.

Extending a non-parallel optimizer to handle paral-

lelism consists of four basic steps: First, the space of
semantically correct parallel plans is defined. Second,

the optimizer’s search algorithm needs to be extended

to enumerate a good part of the search space that was

defined in the first step. Third, the cost model of the

optimizer needs to be able to cost parallel plans such that

the best one can be selected. Finally, all these extensions

will likely increase the complexity of the optimization

algorithm significantly. Heuristics are required to avoid

an explosion of the cost of the optimization itself.

The following explores each of these four steps

briefly.

Extending Query Plans to Execute in Parallel on

Partitioned Data

The optimizer is responsible for generating semantically

valid parallel plans. It therefore needs to have a good

understanding of and model for parallel operator

semantics. This is typically done by assigning a ‘‘parti-

tioning’’ property to each relational operator and by

using these properties to constrain the search space to

semantically correct query plans. The partitioning prop-

erty specifies a partitioning scheme (usually hash-

based), the partitioning key, and the number of

partitions.

In the following, the basic idea behind partitioning

properties of a few key relational operators will be

discussed.

When a file scan operator is executed in parallel,

each parallel instance simply reads a partition of the

data. On a shared-nothing system, the partitioning

property describes how the data is physically parti-

tioned. On a shared-everything architecture, another

way is to let parallel scan operators compete for each

block as it is read from disk, achieving a natural load

balancing between the parallel operators, with a parti-

tioning property that specifies only the number of

partitions, not a partitioning key.

For joins, there are basically two different para-

llelization strategies. The first is to let each parallel

instance join one partition of the first table R with a

matching (co-located) partition of the second table S.

Both R and S must have a matching partitioning prop-

erty on the equi-join columns for this case. This is

so that for a given row from a partition of R, all its

matching rows from S are found in the corresponding

partition of S.

The second parallel join algorithm is to join each

partition of R with every partition of S or vice-versa.

Such joins combine a partitioned table R with a

Parallel Query Optimization P 2037

P

replicated table S or vice versa. This type of parallel join

is applicable in nearly all cases, except for full outer joins.

Terms like ‘‘co-located nested loop join,’’ ‘‘broad-

cast hash join’’ or ‘‘repartitioned merge join’’ are used

to distinguish these different cases [13].

Semijoins and outer joins can be parallelized as

well, with the exception that only the operand requir-

ing special handling can be broadcast. Parallelizing the

UNION operator puts no special constraints on the

partitioning properties, except what is needed for dup-

licate elimination.

To increase its choices, the execution engine typi-

cally is capable to produce partitioning artificially. This

is in most systems implemented by a separate operator,

called Exchange [11], Table Queue (DB2), or River [2].

Generally, the exchange operator is the only one that

sends data through messages, all other operators pro-

cess local data and pass their results on in local memo-

ry or in a local disk file.

Extending the Search Algorithm to Include Parallel Plans

Almost all query optimizers operate under a principle

borrowed from dynamic programming that combines

optimal sub-solutions to a larger optimal solution.

Sub-solutions are optimal with respect to relevant

properties, as described first in [Selinger]. Probably

the key aspect of query optimization for parallel

queries is that this system of properties can be very

elegantly extended to include partitioning properties.

Initially only consisting of ordering, with a sort opera-

tor to create artificially sorted results, partitioning

properties and the exchange operator are now included

to create artificially partitioned results.

Extending the properties of query execution plans

with partitioning solves the key part of parallel query

optimization, namely the problem of enumerating the

parallel plans that are possible for a query. The driver

for this enumeration are the different ways the other

operators can be executed in parallel.

The exchange operator acts as the ‘‘enforcer’’ [11]

or ‘‘glue’’ [14] for partitioning.

This extension applies to classical Selinger-style

optimizers (e.g., DB2) as well as to rule-based optimi-

zers derived from the Exodus, Volcano and Cascades

approaches (e.g., Microsoft SQL Server).

Costing Parallel Query Plans

Executing queries in parallel usually increases the

amount of resources consumed, due to communication
and synchronization overhead. Parallel execution is

therefore not well-suited to minimize the resource cost

of queries. Most parallel query optimizers try to mini-

mize the time a query would take if executed in single-

user mode on the system. When costing a parallel oper-

ator, they therefore compute the cost for a single parti-

tion only (assuming that the data is equally distributed

over the partitions without skew) and add the cost for

needed synchronization. With the goal of keeping the

overall query response time low, it is usually not bene-

ficial to reduce the degree of parallelism, therefore the

optimizers consider only plans that use all the processing

nodes of the system and compare themwith a serial plan.

The explosion of choices comes with different methods

of partitioning and/or replicating data to allow for dif-

ferent types of join execution plans.
Heuristics to Reduce the Number of Parallel Plans

Considered

One heuristic, the use of ‘‘interesting orders’’ [Selinger],

can be used for partitioning as well. Optimizers with

top-down exploration achieve this filtering effect natu-

rally. Without some heuristics, the number of possible

partitioning schemes could easily explode. For example,

consider a co-located parallel merge join for the query

‘‘select * from R join S on R.a = S.a and R.b = S.b and

R.c = S.c.’’ Any ordering on a subset of columns (a,b,c),

combined with a partitioning on some or all of the

columns in this subset would constitute a valid set of

properties for the join operator – assuming it is present

for both tables R and S. Most implementations of opti-

mizers will heuristically try only a small number of

possibilities in this case.
Key Applications
Parallel computers allow database applications to scale,

and optimization of parallel queries allows users to

write applications without expending effort on paral-

lelizing database queries. Parallel databases are the

main application today where automatic paralleliza-

tion of generic requests is performed successfully.
Future Directions
Challenges for future systems include adaptive systems

that learn from poorly parallelized queries and that

avoid data skew automatically, as well as automatic

advisors and optimizers of physical designs for parallel

databases.

2038P Parallel Query Processing
Cross-references
▶ Parallel Query Execution Algorithms

▶Query Optimization
Recommended Reading
1. Ballinger C and Fryer R. Born to be parallel. why parallel origins

give teradata an enduring performance edge. IEEE Data Eng.

Bull., 20(2):3–12, 1997.

2. Barclay T., Barnes R., Gray J., Sundaresan P. Loading databases

using dataflow parallelism. ACM SIGMOD Rec. 23(4):72–83,

1994.

3. Baru C.K., Fecteau G., Goyal A., Hsiao H.-I., Jhingran A.,

Padmanabhan S., and Wilson W.G. An overview of DB2 parallel

edition. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1995, pp. 460–462.

4. Boral H., Alexander W., Clay L., Copeland G.P., Danforth S.,

Franklin M.J., Hart B.E., Smith M.G., and Valduriez P.

Prototyping Bubba, a highly parallel database system. IEEE

Trans. Knowl. Data Eng., 2(1):4–24, 1990.

5. Bratbergsengen K. Algebra operations on a parallel computer –

performance evaluation. In Proc. 5th Int. Workshop on Data

Machines, 1987, pp. 415–428.

6. Chen A., Kao Y.-F., Pong M., Shak D., Sharma S., Vaishnav J.,

Zeller H. Query processing in nonstop SQL. IEEE Data Eng.

Bull., 16(4):29–41, 1993.

7. DeWitt D.J., Gerber R.H., Graefe G., Heytens M.L., Kumar K.B.,

and Muralikrishna M. GAMMA – a high performance dataflow

database machine. In Proc. 12th Int. Conf. on Very Large Data

Bases, 1986, pp. 228–237.

8. DeWitt D.J. and Gray J. Parallel database systems: the future

of high performance database systems. Commun. ACM,

35(6):85–98, 1992.

9. DeWitt D.J., Smith M., and Boral H. A single-user performance

evaluation of the Teradata database machine. In Proc. of the 2nd

Int. Workshop on High Performance Transaction Systems, 1987.

10. Fushimi S., Kitsuregawa M., and Tanaka H. An overview of

the system software of a parallel relational database machine

GRACE. In Proc. 12th Int. Conf. on Very Large Data Bases,

1986, pp. 209–219.

11. Graefe G. Encapsulation of parallelism in the volcano query

processing system. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1990, pp. 102–111.

12. Graefe G. and Davison D.L. Encapsulation of parallelism

and architecture-independence in extensible database query

execution. IEEE Trans. Software Eng., 19(8):749–764, 1993.

13. Jhingran A., Malkemus T., and Padmanabhan S. Query opti-

mization in DB2 parallel edition. IEEE Data Eng. Bull.,

20(2):27–34, 1997.

14. Lee M.K, Freytag J.C., Lohman G.M. Implementing an

interpreter for functional rules in a query optimizer. In Proc.

14th Int. Conf. on Very Large Data Bases, 1988, pp. 218–229.

15. Mohan C. Pirahesh H., Tang W.G., and Wang Y. Parallelism

in relational database management systems. IBM Sys. J.,

33(2):349–371, 1994.

16. Neches P.M. The anatomy of a database computer system.

In Digest of Papers - COMPCON, 1985, pp. 252–254.
17. Selinger, P., Astrahan, M., Chamberlin, D., Lorie, R. and Price, T.

Access Path selection in a relational database management sys-

tem. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1979, pp. 23–34.

18. Stonebraker M., Katz R.H., Patterson D.A., Ousterhout J.K.

The design of XPRS. In Proc. 14th Int. Conf. on Very Large

Data Bases, 1988, pp. 318–330.

19. von Bueltzingsloewen G. Optimizing SQL queries for parallel

execution. In Proc. on Workshop on Database Query Optimiza-

tion, 1989.
Parallel Query Processing

ESTHER PACITTI
1,2

1University of Nantes, Nantes, Cedex, France
2INRIA, LINA, Nantes, Cedex, France

Synonyms
Multiprocessor query processing

Definition
Parallel query processing designates the transforma-

tion of high-level queries into execution plans that

can be efficiently executed in parallel, on a multipro-

cessor computer. This is achieved by exploiting the way

data is placed in parallel and the various execution

techniques offered by the parallel database system.

As in query processing, the transformation from the

query into the execution plan to be executed must be

both correct and yield efficient execution. Correctness

is obtained by using well-defined mappings in some

algebra, e.g., relational algebra, which provides a good

abstraction of the execution system. Efficient execu-

tion is crucial for high-performance, e.g., good query

response time or high query throughput. It is obtained

by exploiting efficient parallel execution techniques

and query optimization which selects the most efficient

parallel execution plan among all equivalent plans.

The main forms of parallelism which can be in-

ferred by high-level queries are inter-query parallelism

(several queries executed in parallel) and intra-query

parallelism (each query executed in parallel), and

within a query, inter- and intra-operator parallelism.

These various forms of parallelism are obtained based

on how data is placed in the parallel system, i.e.,

physically on disk or memory. Hence, the term data-

based parallelism is communally used. These forms of

parallelism can be combined and are exploited by

parallel execution techniques.

Parallel Query Processing P 2039

P

Historical Background
Parallel query processing had been initiated in the con-

text of databasemachines in the late 1970’s. At that time,

parallel processing techniques were already used success-

fully in scientific computing to improve the response

time of numerical applications. However, these techni-

ques are very complex as they typically involve paralle-

lizing compilation which must infer parallelism from

programs written in a procedural language, e.g., Fortran

or C. Since these programs may be sequential, inferring

parallelism to obtain good performance is hard.

With a high-level language like SQL, parallelism is

relatively easier to infer. SQL enables programmers

to specify what data to access (with predicates) without

any detail on how. Thus, this provides the parallel

database system much leverage to decide how to access

data.

In the context of database machines, parallel

query processing was very simple and concentrated

on select-project-join queries using brute-force algo-

rithms and special-purpose hardware. As parallel data-

base systems evolved to exploit general-purpose

multiprocessors and software-oriented solutions, paral-

lel query processing has become much more complex.

Also, the emergence of new applications such as OLAP

and data mining translated into new features in SQL

which have made parallel query processing more

complex.

Compared to distributed query processing (which

can also exploit parallelism by executing a query using

multiple sites), the main difference is that the parallel

system can have many more nodes and a very fast inter-

connection network. Thus, the execution techniques

and execution plans are fairly different.

Foundations
Parallel query processing is the major solution to

high-performance management of very large data-

bases. The basic principle is to partition the database

across multiple disks or memory nodes so that much

inter- and intra-query parallelism can be gained. This

can lead to significant improvements in both response

time (the time the query takes to be executed and return

results) and throughput (number of queries or transac-

tions per time unit). However, decreasing the response

time of a complex query through large-scale parallelism

may well increase its total time (by additional commu-

nication) and hurt throughput as a side-effect. There-

fore, it is crucial to optimize and parallelize queries in
order to minimize the overhead of parallelism, e.g., by

constraining the degree of parallelism for the query.

The performance of a parallel database system

should ideally demonstrate two advantages: linear

speedup and linear scaleup. Linear speedup refers to

a linear increase in performance for a constant data-

base size and linear increase in the number of nodes

(i.e., processing and storage power). Thus, the addition

of computing power should yield proportional increase

in performance. Linear scaleup refers to a sustained

performance for a linear increase in both database

size and workload and number of nodes. Furthermore,

extending the system should require minimal reorga-

nization of the existing database. Thus, an increase

of computing power proportional to the increase in

database size and load should yield the same perfor-

mance. These advantages are ideal since, in practice,

increasing the configuration tends to increase the

overhead of parallelism (e.g., more communications

between nodes, more interference when accessing

shared resources, etc.).

Partitioned data placement is the basis for the

parallel execution of database queries. Given a parallel

system with n nodes (each node may have one or more

processors accessing a main memory and disks), each

database table T is typically partitioned onto a number

of nodes (less or equal to n) so that each node stores a

subset of the tuples of T. This corresponds to horizon-

tal fragmentation in distributed databases and similar

techniques can be used. However, because there can be

many nodes, more scalable techniques are also often

used such as round robin or hashing on the placement

attribute(s). Furthermore, to improve availability and

performance, some partitions (typically those which

are accessed more than others) can be replicated.

Given a partitioned database, parallel query execu-

tion can exploit two forms of parallelism: inter- and

intra-query. Inter-query parallelism enables the parallel

execution of multiple queries, each at a different node,

in order to increase query throughput. This form of

parallelism, reminiscent of that used in transaction

processing systems, is quite simple since queries need

not be parallelized. Thus, incoming queries can simply

be dispatched (by a load balancer of the parallel

database system) to the nodes which store the data

corresponding to the queries. However, this can only

work if all the data accessed by a query are stored

at the node, or accessible at the node. For instance,

in the case of a shared-nothing parallel database

2040P Parallel Query Processing
system, if a query Q involves data that is partitioned at

two different nodes, then either node cannot entirely

execute the query. But in the case of a shared disk

parallel database system, since all the disks can be

accessed from each node, the same query Q could

be executed by either node.

A query can be decomposed in a tree of relational

operators, where each operator takes data as input

(either base data or temporary data) and produces

temporary data, with the root operator producing the

final result. This decomposition allows for intra-query

parallelism) which has two forms: inter-operator and

intra-operator parallelism. Inter-operator parallelism is

obtained by executing in parallel several operators of

the query on several nodes while with intra-operator

parallelism, the same operator is executed by many

nodes, each one working on a different partition of

the data. For inter-query parallelism, much attention

has been devoted to pipelined (or consumer-producer)

parallelism which enables consumer operators to start

execution as soon they get input data from pro-

ducer operators. Pipelined executions do not require

temporary relations to be materialized, i.e., a tree node

corresponding to an operator executed in pipeline is

not stored. These two forms of parallelism complement

each other well since inter-operator parallelism gets

beneficial as the query gets complex (with many opera-

tors) while intra-operator parallelism gets beneficial for

heavy operators (which access large parts of the data).

To exploit inter- and intra-query parallelism,

using database partitioning, parallel algorithms for

the execution of relational operators are necessary.

Such algorithms must yield a good trade-off between

parallelism and communication cost since increasing

parallelism involves more communication among

nodes. Parallel algorithms for unary operators (e.g.,

select) are relatively simple as they typically exploit

data placement or secondary indices to restrict access

to base data. Parallel algorithms for binary operators

such as join are much more involved since join can

incur much communication. The main algorithms

exploit the placement of one of the two relation

to reduce communication or artificially create a

good data placement using hashing. When there is

sufficient main memory to hold one of the two rela-

tions (which is a very practical case), the execution

of hash-based join can be pipelined across multiple

operator nodes, thus increasing performance. Since

the intermediate results of the operators can be
skewed, parallel algorithms must also deal with load

unbalancing, e.g., by redistributing a heavy work at

one node to multiple nodes using hashing.

Parallel query optimization is the process of select-

ing the best parallel execution plan for a query. Com-

pared to distributed query optimization, it focuses

on taking advantage of both intra-operator parallelism

and inter-operator parallelism. As any query optimizer,

a parallel query optimizer can be seen as three com-

ponents: a search space, a cost model, and a search

strategy. Parallel execution plans are abstracted by

means of operator trees, which define the order in

which the operators are executed. Operator trees are

enriched with annotations, which indicate additional

execution aspects, such as the algorithm of each oper-

ator. An important aspect to be reflected by annota-

tions is that operators are executed in pipeline. The

cost model provides the cost functions for parallel

operator algorithms.

Key Applications
Parallel query processing has been developed in the

context of parallel database systems, with a focus on

OLAP applications, where good response time is cru-

cial. Most of the work has been done in the context of

the relational model. In order to support new OLAP

applications which may access all kinds of data, includ-

ing unstructured and semi-structured (XML) data,

major extensions to parallel query processing are

necessary. In particular, techniques from parallel data-

base and information retrieval need to be combined.

Cross-references
▶Distributed Databases

▶ Parallel Data Placement

▶ Parallel Query Execution Algorithms

▶Query Optimization

Recommended Reading
1. Graefe G. Query evaluation techniques for large databases.

ACM Comput. Surv., 25(2):73–170, 1993.

2. Kossmann D. The state of the art in distributed query

processing. ACM Comput. Surv., 32(4):422–469, 2000.

3. Lanzelotte R., Valduriez P., Zait M., and Ziane M. Industrial-

strenght parallel query optimization: issues and lessons. Inf.

Sys., (19)4:311–330, 1994.

4. Özsu M.T. and Valduriez P. Principles of distributed database

systems. Prentice-Hall, 2nd edn, 1999.

5. Valduriez P. and Pacitti E. Parallel database systems. In

Handbook of Database Technology, J. Hammer, M. Scheider

(eds.). CRC, USA, 2007.

Parameterized Complexity of Queries P 2041
Parallel SCSI

▶ Storage Protocols
P

Parameterized Complexity of
Queries

CHRISTOPH KOCH

Cornell University, Ithaca, NY, USA

Definition
Parameterized complexity theory is the study of the

interaction between the fixing of parameters of input

problems and their computational complexity. A cen-

tral parameterized complexity concept is that of a

fixed-parameter tractable (FPT) problem, which cap-

tures a strong notion of well-behavedness of a problem

under the assumption that parameter values do not

grow with input sizes. There is also a solid theory of

fixed-parameter intractability, which gives strong evi-

dence that for certain parameterizations of problems,

no FPT algorithms can be found.

Historical Background
Fixed-parameter complexity theory is strongly asso-

ciated with R. Downey and M. Fellows, who did

much seminal work in the area (cf. [3,5]). The first

fixed-parameter complexity result in the context of

database query evaluation was the linear-time query

processing algorithm for acyclic conjunctive queries by

Yannakakis in 1981 [12], which preceded the develop-

ment of parameterized complexity theory (cf. also [13]).

Foundations

Fixed-Parameter Tractability

A parameterized (decision) problem is a set of pairs

(x,k), where x is called the input and k the parameter

(an integer). As a convention, n = jjxjj will be used to

denote the size of the input. A parameterized problem

is called strongly uniformly fixed-parameter tractable

(subsequently, just fixed-parameter tractable, or FPT),

if there is a computable integer function f, a constant c,

and an algorithm that, given a parameterized problem

instance (x, k), decides x in time O(f (k) � nc).
It is important to note the difference between

an algorithm that runs in time O(nk) and an FPT
algorithm. If k = 10 and c = 1, an algorithm that runs

in time O(f (10) � n) is linear (with possibly a large

constant), while an O(n10) algorithm will not even

scale to very moderately sized problem instances.

Consider the data complexity of queries [11],

i.e., the complexity of evaluating a query on a database

if only the database is considered part of the input,

while the query is fixed and part of the problem speci-

fication. It is well known that quite naive query evalu-

ation techniques can evaluate an arbitrary relational

algebra query in time O(nk), where k is the size of

the query (e.g., the number of algebra operators

involved). By fixing k, the query evaluation time

becomes polynomial, but the O(nk) time query evalua-

tion technique does not yield a fixed-parameter tracta-

bility result. Indeed, such an FPT result is considered

unlikely to exist.

For another example, consider the Set Cover prob-

lem, a well known combinatorial problem that appears

in database problems such as subspace clustering or

finding pipelined query plans in stream processors.

A set C is called a cover of a set of sets S if for each

S 2 S, S \ C 6¼ ;. The Set Cover problem is defined as

follows.

Set Cover

Input: An integer k, a finite set V, and a set S� 2Vof

subsets of V.

Question: Is there a set C with jCj � k such that C

is a cover for S?

The Set Cover problem is NP-complete. A naive

brute-force algorithm would check for each set C � V

with jCj� k whether C is a cover. This algorithm runs

in time O(jVjk � n), which is polynomial in n if k is

fixed. However, this is not an FPT algorithm with

parameter k because jVj may get arbitrarily large with

the input.

Consider the following refined algorithm for Set

Cover (cf. [5,8]).

C0 :={;};
for i = 1 to k do Ci = {C [{a}jC 2 Ci�1,a 2 S(C)};

if at least one element of Ck is a cover for S then

output true;

else output false

Here, S(C) is a function that returns, in a determin-

istic way, an element S of S such that, if this condition

can be satisfied by any element of S, S \ C 6¼ ;. One

way of defining S(C) is as

2042P Parameterized Complexity of Queries
SðCÞ ¼ min SðCÞ : : : SðCÞ 6¼ ;
min S : : : otherwise:

�

where S(C) = {S 2 S j S \ C 6¼ ;} and min returns the

smallest element of a subset of S with respect to some

arbitrary fixed order among the elements of S (e.g.,

the order in which the elements of S are stored in

memory).

Consider for example S = {{a, b},{a, c},{b, d},{c, e},

{c, f}} with the elements of S ordered as just enumer-

ated. Then, S(;) = {a, b}, C1 = {{a},{b}}, S({a}) = {b, d},

S({b}) = {a, c}, and C2 ={{a, b},{a, d},{b, c}}. Since {b, c}

is a cover, the algorithm returns true.

It is easy to check that this algorithm runs in timeO

(sk � n) where s is the maximum cardinality among the

elements of S, i.e., s = max{jSj : S 2 S}. Thus, Set Cover

with parameter k þ s (which is not the standard pa-

rameterization for Set Cover, which would be k) is FPT.

If s is small, this may be a useful algorithm.

Fixed-Parameter Intractability

For a number of parameterized versions of NP-hard

problems it can be shown that they are either provably

not FPT or not FPT unless P=NP. An example for the

former scenario would be EXPTIME Turing machine

acceptance (which is EXPTIME-complete) with a

dummy parameter that is unrelated to the input. An

example of the latter scenario is the satisfiability of

CNF formulae whose clauses have no more than k

literals, with parameter k. For k = 3, this is the 3SAT

problem, which is NP-complete. But there are also

parameterized problems for which apparently no FPT

algorithm exists and for which more subtle hardness

arguments based on special complexity classes for

parameterized problems have to be developed.

A fixed-parameter many-one reduction is a reduc-

tion that maps each instance (x, k) of a parameterized

problem to an instance (x 0, k 0) of another parame-

terized problem using an FPT algorithm (i.e., in time

O(f(k) � xc)), with the additional condition that the

size of k 0 must only depend on k but not on x, such that

(x, k) is a yes-instance of the first problem if and only if

(x 0, k 0) is a yes-instance of the second problem. Closure

under such reductions yields robust complexity classes.

The class of parameterized problems that are fixed-

parameter many-one reducible to problem P shall

be denoted by [P]fpt. A problem in [P]fpt is called

complete for [P]fpt if P is fixed-parameter many-one

reducible to it.
Let G0,d ¼ D0,d be the class of all propositional

formulae constructible from propositional variables

using negation and the binary operations conjunc-

tion ∧ and disjunction ∨ such that the maximum

expression depth, not taking into account negations,

is d. In other words, for any such formula, the maxi-

mum number of disjunctions or conjunctions occur-

ring on paths from the root of the expression tree to a

leaf is d. Now, Gt,d consists of the formulae of the form

∧ F, where F is a finite subset of Dt�1,d, and Dt,d

consists of the formulae of the form ∨ C, where C is

a finite subset of Gt�1,d.

A usual way of defining theW hierarchy is in terms

of a weighted version of the propositional satisfiability

problem. The weight of a truth assignment for the

variables of a propositional formula is the number of

variables set to true in that truth assignment. The

weighted satisfiability problem WSAT(Gt,d) for the

class of formulae Gt,d is as follows: Given a formula

f 2 Gt,d and parameter k, does f have a satisfying

assignment of weight k?

The W-hierarchy, for each t � 1, is defined as

W ½t � :¼ U
d�0

WSATðGt ;dÞ
� �fpt

withW[t] �W[t + 1] and is believed to be strict (W[t]

⊊ W[t + 1]). For a few examples, natural parameter-

ized versions of Clique and Independent Set areW[1]-

complete, while parameterized versions of Hitting Set,

Dominating Set, and Kernel are W[2]-complete (see

[5]). These results depend on the choice of parameter,

and the standard parameterization is the size of the

structure (set) whose existence is to be guessed and

verified. The question whether FPT 6¼ W[1] is the

parameterized complexity analogue of the question

whether P 6¼ NP. It remains unproven, but is strongly

suspected.

Returning to the evaluation complexity of relation-

al algebra queries with the size of queries as the

parameter,

Parameterized Query Evaluation

Input: A Boolean relational calculus query Q and a

relational database.

Parameter: The size k of a reasonable representa-

tion of Q in bits.

Question: Does Q return true on the input

database?

Parameterized Complexity of Queries P 2043

P

which is known to be W[1]-complete [9] already for

conjunctive queries (i.e., select-project-join queries)

and AW[*]-complete for full relational calculus [4].

AW[*] is a complexity class that subsumes the W[t]

classes, for all t, but may contain additional problems.

Further Positive Results on Query Evaluation

Complexity

While relational query languages such as relational

algebra, calculus, and datalog (a generalization of con-

junctive queries) are W[1]-hard and thus unlikely to

be fixed-parameter tractable, there are important frag-

ments of these languages that are FPT. Moreover, there

are other logics and query languages, specifically on

tree- and graph-structured data models, which are FPT

with the size of the query as the parameter.

The first FPTresult in the context of database query

processing was on the evaluation of acyclic conjunctive

queries by Yannakakis. Consider a Boolean conjunctive

query in datalog notation, q R1ðy
!
1Þ;:::;Rkðy

!
kÞ: The

acyclicity of queries refers to a notion of acyclicity of

associated hypergraphs, whose nodes are query vari-

ables and whose hyperedges are the sets of variables y
!
i

occurring together in an atomic formula of the query.

Acyclicity can be defined in a number of ways, such as

by a low-complexity algorithm or using guarded logic.

An exact definition is beyond the scope of this article,

but in the case that all input relations are binary and no

atom is of the form R(y, y), the hypergraph is an undi-

rected graph and hypergraph acyclicity coincides with

the standard graph-theoretic notion of acyclicity. By

exploiting the tree structure of this graph, which

describes the necessary joins, and projecting away col-

umns that will not be involved in further joins as early as

possible, it is always possible to find a query plan that can

be evaluated in timeO(f(k) � n) where k is the size of the
query – i.e., the problem is fixed-parameter linear.

A Boolean acyclic conjunctive query can be written

using just selections and semijoin operations, with a

p; operation on top. If Q1 and Q2 are select-semijoin-

queries, then Q1ðxÞ ⋉ Q2ðxÞ ¼ pschðQ1ÞðQ1ðxÞ ffl
Q2ðxÞÞ is a subset of Q1(x) and can be computed in

linear time in jQ1(x)j + jQ2(x)j, where x is the input

database. By induction it follows that overall query

evaluation is FPT.

Consider the acyclic conjunctive query p; (R ⋈ S

⋈ T ⋈ U ⋈ V) for database schema R(A,B),S(B,C),T

(C,D),U(C,E),V(A,F). The hypergraph (here, graph)

is acyclic:
The query plan p; ((R ⋉ V) ⋉ ((S ⋉ T) ⋉ U))

admits efficient evaluation.

For nonboolean conjunctive queries, the running

time is polynomial of degree c where c is the arity of the

query result (which must be considered a true constant

rather that a parameter if this is to be considered an

FPT result), and clearly, this is optimal because the

output size of a query that simply computes the prod-

uct of the input relations is O(nc).
The notion of hypergraph acyclicity has been

generalized to queries of bounded hypertree-width,

which is a measure of how tree-like the query hyper-

graph is: hypertree-width 1 coincides with hypergraph

acyclicity. It was shown in [7] that conjunctive query

evaluation with the hypertree-width of the query as the

parameter is FPT and that this generalizes in a natural

way to relational calculus queries. The fixed-parameter

tractability of queries of bounded hypertree-width > 1

(in fact, 2) has been used to explain the polynomial-

time complexity of XPath queries [1].

A classical result by Courcelle [2] shows that very

powerful queries – in monadic second-order logic, a

language that strictly subsumes relational calculus –

over databases of bounded tree-width (the exact defini-

tion is technical, but in the case that all relations are

binary, the condition is bounded tree-width of the (un-

directed) graph obtained by unioning the relations to-

gether) are fixed-parameter linear. Note that in this result

the structure of the data is restricted but the structure of

queries is not. The special case where the database is a tree

with node labels from a finite alphabet is due to Doner,

Thatcher and Wright [10]. The algorithm is based on

compiling the query into a tree automaton which, once

obtained, can be evaluated on the data tree in linear time.

Thus, the running time isO(f(k) + n), where k is the size

of the query. This is a famous case where f is much worse

than singly exponential: f is nonelementary – a tower

of twoes 22
2:2

whose height grows with k. This is appar-

ently necessarily so: Frick andGrohe [6] show that unless

P =NP, any FPTalgorithm for the problemmust have a

nonelementary f.

Key Applications
Fixed-parameter complexity results can assist de-

signers of data management algorithms in two ways.

There is now a large set of positive results for a variety

of parameterized versions of NP-hard problems, which

may surface in contexts such as query optimization

and data mining. For a particular data management

2044P Parametric Data Reduction Techniques
problem, it may be known that a particular parameter

is always bounded in the problem instances that

arise. If the problem is FPT for that parameter,

there is an efficient algorithm for solving the problem.

Furthermore, FPT results exist for fragments of

the relational query languages such as relational

algebra as well as for query languages for tree- and

graph-structured data.

Conversely, if it is known that a parameterized

problem is W[1]-hard, then it is quite hopeless to try

to develop an efficient algorithm for solving the para-

meterized problem; in that case one may look for

different acceptable parameterizations or for efficient

approximation techniques.
Cross-references
▶Complexity

▶Complexity Results

▶Tree Automata
Recommended Reading
1. Benedikt M. and Koch C. XPath Leashed. ACM Comput. Surv.,

4(1), 2008.

2. Courcelle B. Graph rewriting: an algebraic and logic approach.

In Handbook of Theoretical Computer Science, J. van Leeuwen

(ed.). vol. 2, chap. 5, Elsevier B.V., Amsterdam, The Netherlands,

1990, pp. 193–242.

3. Downey R.G. and Fellows M.R. Parameterized Complexity.

Springer, Berlin, 1999.

4. Downey R.G., Fellows M.R., and Taylor U. The parameterized

complexity of relational database queries and an improved char-

acterization of W[1]. In Proc. DMTCS ’96. Combinatorics,

Complexity, and Logic, 1996, pp. 194–213.

5. Flum J. and Grohe M. Parameterized Complexity Theory.

Springer, Berlin, 2006.

6. Frick M. and Grohe M. The complexity of first-order and mo-

nadic second-order logic revisited. In Proc. 17th Annual IEEE

Symp. on Logic in Computer Science, 2002, pp. 215–224.

7. Gottlob G., Leone N., and Scarcello F. Hypertree decomposi-

tions and tractable queries. J. Comput. Syst. Sci., 64(3):579–627,

2002.

8. Grohe M. Parameterized complexity for the database theorist.

ACM SIGMOD Rec., 31(4), 2002.

9. Papadimitriou C.H. and Yannakakis M. On the complexity of

database queries. In Proc. 16th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 1997.

10. Thatcher J. and Wright J. Generalized finite automata theory

with an application to a decision problem of second-order logic.

Math. Syst. Theory, 2(1):57–81, 1968.

11. Vardi M.Y. The complexity of relational query languages.

In Proc. 14th Annual ACM Symp. on Theory of Computing,

1982, pp. 137–146.
12. Yannakakis M. Algorithms for acyclic database schemes. In Proc.

of the Seventh Int. Conf. on Very Large Data Bases, 1981,

pp. 82–94.

13. Yannakakis M. Perspectives on database theory. In Proc. of the

36th IEEE Symp. on Foundations of Computer Science, 1995,

pp. 224–246.
Parametric Data Reduction
Techniques

RUI ZHANG

University of Melbourne, Melbourne, VIC, Australia

Definition
A parametric data reduction technique is a data reduc-

tion technique that assumes a certainmodel for the data.

The model contains some parameters and the technique

fits the data into themodel to determine the parameters.

Then data reduction can be performed.
Key Points
Parametric data reduction (PDR) techniques is opposite

to nonparametric data reduction (NDR) techniques. A

model with parameters is used in a PDR technique and

therefore some computation is required to determine

these parameters, which may be costly. However, if a

PDR technique is well-chosen, it may result in much

more data reduction than NDR techniques. A represen-

tative example is linear regression [3]. Linear regression

assumes that the data fall on a straight line, expressed by

the following formula

Y ¼ a þ bX ð1Þ

Given a set of points (Assuming two dimensions.)

{hx1, y1i, hx2,y2i,...}, parameters a and b in Equation

(1) are determined from the points using the least

squares criteria. The result is

b ¼
P
ðX � XÞðY � Y ÞP
ðX � XÞ2

a ¼ Y � bX

where X and Y are the average values of x1,x2,...and

y1,y2,..., respectively. If the data are actually distributed

on almost a line, linear regression is a very efficient

data reduction technique. Besides the values of a and b,

Partial Replication P 2045
only one dimension of every point is needed to repre-

sent the data set. The data volume is reduced by half.

However, if the data are not distributed on a line, linear

regression will result in large errors.

Other popular PDR techniques include Singular

Value Decomposition (SVD) [2] and Discrete Wavelet

Transform (DWT). SVD assumes that a matrix is

decomposed to the form of A ¼ USVt and U; S;V

need to be determined; DWT assumes that a signal is

projected to a set of orthogonal basis vectors and the

wavelet coefficients need to be determined. A summary

of data reduction techniques including PDR techni-

ques can be found in [1].
Cross-references
▶Data Deduction

▶Discrete Wavelet Transform and Wavelet Synopses

▶ Linear Regression

▶Nonparametric Data Reduction Techniques

▶ Singular Value Decomposition
P

Recommended Reading
1. BarbaráD., DuMouchelW., FaloutsosC., Haas P.J., Hellerstein J.M.,

Ioannidis Y.E., Jagadish H.V., Johnson T., Ng R.T., Poosala V.,

Ross K.A., and Sevcik K.C. The New Jersey data reduction

report. IEEE Data Eng. Bull., 20(4):3–45, 1997.

2. Jolliffe I.T. Principal Component Analysis. Springer, Berlin,

1986.

3. Wonnacott R.J. and Wonnacott T.H. Introductory Statistics.

Wiley, New York, 1985.
Partial Replication

BETTINA KEMME

McGill University, Montreal, QC, Canada

Definition
A replicated database consists of a set of nodesN (data-

base servers) and each logical data item x has a physical

copy on a subsetN x of the nodes inN . The replication

degree rx ¼ jN x j of a data item is the number of copies

it has. Using full replication, each logical data item has

a copy on each of the nodes, i.e., for each data item x of

the database, N x ¼ N . Whenever there is at least one

data item that does not have copies at all nodes, one

refers to a partial replication architecture.
Key Points
Partial Replication can be used for different purposes:

Cluster Replication

In order to achieve scalability, data can be replicated

across nodes residing in a single cluster. Read access to

data items can then be distributed across the existing

copies. Write operations, however, have to be performed

on all copies. The potential for scalability can be best

understood by a simple analytical model. It assumes

each transaction accesses one data item and has execu-

tion cost normalized to one unit. A fraction of wr are

update transactions. Communication costs and con-

currency control issues are ignored. A read-only trans-

action is executed at any node with a copy of the data

item while an update transaction is executed at all

nodes. The system consists of n nodes each having

the capacity to process C execution units per time

unit. There are m data items each having the same

replication factor r. The copies are equally distributed

across the nodes (m	r
n

copies per node). All data items

are accessed with the same frequency and requests are

equally distributed across all nodes.

If the replicated system can execute l transactions

per unit then (1 � wr) * l are read-only transactions

executed at one node and wr * l are update transactions

executed at r nodes. Thus, the total capacity of the

system is used as follows: n * C = (1 � wr) * l + r *

wr * l. The scale-out is the number of transactions l

the replicated system can handle per time divided by

the number of transactions a non-replicated system

can handle (which is C). Therefore, the scale-out of

an n-node system is n
1þðr�1Þ	wr .

Figure 1 shows the scale-out for systems up to 100

nodes with an update load of 10%, and each data item

has 2, 10, n ∕ 2 or n copies. While a constant replication

factor provides linear scalability (and the smaller the

better), a replication factor that increases with the

number of nodes leads to a scalability cealing. Once

the saturation point is reached, adding more nodes will

not increase the throughput because applying update

transactions consumes most of the available resources.

More detailed performance models are given in [2,1].

WAN Replication

Replicating data items at different geographical loca-

tions is mainly used to provide fast local access

to clients of the different regions. Having a data

item replicated at a specific location decreases

Partial Replication. Figure 1. Scale-out of partial replication.

2046P Partitioned Query Execution
communication costs for read operations but increases

communication and processing costs for update trans-

actions, and has additional storage costs. Thus, place-

ment algorithms have to decide where to put replicas

in order to find a trade-off between the different

factors [3].

Challenges

When a transaction executes at a specific node but the

node does not have a copy of a requested data item,

remote access is necessary. This poses several challenges.

First, for update transactions concurrency control

becomes more complicated. Second, a location mecha-

nism must be implemented that finds nodes with

appropriate data copies. Third, for complex

SQL queries, query execution becomes distributed po-

tentially requiring data shipping and advanced opera-

tors. Therefore, in practice, data that is often accessed

together (within a transaction or query) is co-located.

This, however, reduced the flexibility in terms of opti-

mizing load-balancing and update processing.
Cross-references
▶Replica Control

▶Replication for Scalability

▶WAN Data Replication

Recommended Reading
1. Nicola M. and Jarke M. Performance modeling of distributed

and replicated databases. IEEE Trans. Data Knowl. Eng.,

12(4):645–672, 2000.
2. Serrano D., Patiño-Martı́nez M., Jiménez-Peris R., and Kemme B.

Boosting database replication scalability through partial replica-

tion and 1-copy-snapshot-isolation. In Proc. IEEE Pacific Rim

Dependable Computing Conference, 2007.

3. Wolfson O., Jajodia S., and Huang Y. An adaptive data

replication algorithm. ACM Trans. Database Syst. 22(2):

255–314, 1997.
Partitioned Query Execution

▶ Parallel Query Execution Algorithms
Partitioning

▶ Parallel Query Execution Algorithms
Passage Retrieval

▶ Structured Document Retrieval
Path Functional Dependencies

▶ Functional Dependencies for Semi-structured Data

Path Query P 2047
Path Index

▶ Structure Indexing
Path Query

YUQING WU

Indiana University, Bloomington, IN, USA

Synonyms
Document path query

Definition
Given a semi-structured data set D, a path query iden-

tifies nodes of interest by specifying the path lead to the

nodes and the predicates associated with nodes along

the path. The path is identified by specifying the labels

of the nodes to be navigated and structural relationship

(parent-child or ancestor-descendant) among the

nodes. A predicate can be a path query itself, relative

to the node that it is associated with.
P

Historical Background
Using path information in query processing has been

studied in the object-oriented database systems, in

which most queries require the traversing from one

object to another following object identifiers, in the

mid 1990’s. The notion of path query, in which the

path and predicates along the path are specified as the

core of the query, became popular with the growth of

the information on the web and the introduction of

semi-structured data, especially XML.

Most of the popular query languages for querying

XML data, such as XPath [6] and XQuery [4], employ

path query as the approach to identify nodes of inter-

est. However, some techniques, such as schema-free

XQuery, relax the requirements of specifying the

exact path, but rely more heavily on the database

management systems to detect the least common

ancestors of the keywords specified in the query.

Algebraic research has been fruitful in studying,

comparing and characterizing fragments of path

queries [2,9], as well as methods and techniques for

optimizing and evaluating path queries.
Foundations
Semi-structured data, for example, XML, consists of

data entries and containment relationships among the

data entries. The data, usually referred to as a docu-

ment, is frequently represented by an ordered node-

labeled tree or graph, depending on whether only the

containment relationships are treated as first-class re-

lationship, or the id-reference relationships among the

data entries are also treated as first-class relationships.

The tree representation is more popular:

A document D is a 3-tuple (V, Ed, l), with V the

finite set of nodes, Ed � V
 V a set of parent-child

edges, and l: V !ℒ a node-labeling function into a

countably infinite set of labels ℒ.

In addition, even though not always substantial, the

ordering among siblings is usually an important feature

for nodes in a document. The pre-order among the data

entries is called the document order. Among others, the

pre-order is a dominant approach used to identify data

entries in a document, while the document is stored in

a database system, relational or native.

The aim of the path query is to express the precise

requirement of retrieving a set of data entries that

satisfy certain value and structural requirements.

The algebraic form of a path query consists of the

primitives of ;, e,bl(l 2 ℒ) for token matching, ↑ and ↓

for upward and downward navigation, and operations

⋄ for composition of two algebraic expression E1⋄ E2,

P1 and P2 for the first and second projection of an

algebraic expression, and set operations \, [, and �.
Given a document D = (N, Ed, l) and a path query E,

the path semantics of E(D) is a binary relation:

;ðDÞ ¼ ;
EðDÞ ¼ ðn; nÞ j n 2 Ng
blðDÞ ¼ fðn; nÞ j n 2 N and lðnÞ ¼ lg
ðDÞ ¼ Ed

" ðDÞ ¼ Ed�1

P1ðEÞðDÞ ¼ p1ðEðDÞÞ
P2ðEÞðDÞ ¼ p2ðEðDÞÞ
E1 � E2ðDÞ ¼ p1;4s2¼3ðE1ðDÞ
 E2ðDÞÞ
E1 \ E2ðDÞ ¼ E1ðDÞ \ E2ðDÞ
E1 [E2ðDÞ ¼ E1ðDÞ [E2ðDÞ
E1 � E2ðDÞ ¼ E1ðDÞ � E2ðDÞ

These primitives and operations identify the path

of navigation in a document to reach the resultant data

entries.

Path Query. Figire 1. A sample semi-structured

document presented in a tree structure (subscripts are

used to distinguish data entries with the same label).

2048P Path Query
The ↑∗ and ↓∗ are frequently used to identify the

ancestor-descendant relationship among data entries

along a path:

#	ðDÞ ¼
[

i¼0::heightðDÞ
. . . #|fflfflffl{zfflfflffl}

i

ðDÞ

"	ðDÞ ¼
[

i¼0::heightðDÞ
" . . . "|fflfflffl{zfflfflffl}

i

ðDÞ

The result of a path query against document D

under the path semantics is a set of node pairs whose

neighborhood data entries and structures satisfy the

query expression.

A localized semantics, also called the node semantics

of a path query Q is to apply the path expression to a

documentD and a specific noden0 in thedocument, such

that Q(D, n0) = {nj(n0, n) 2 Q(D)}. Usually, the results

are presented in a list that honors the document order.

For example, assuming document D is represented

as a tree structure as shown in Fig. 1, some sample

path queries are evaluated as follows:
Path Query Sample Result

Q1 ¼# �B Q1ðDÞ ¼ fðA1;B1Þ; ðA1;B4Þ; ðA2; B2Þ; ðA2; B3Þ; ðB4;B5Þg
Q1ðD;A1Þ ¼ fB1;B4g

Q2 ¼ P1ð# � # �CÞ Q2ðDÞ ¼ fðA1;A1Þ; ðA2;A2Þ; ðB4; B4Þg
Q2ðD;A2Þ ¼ fA2g
Q2ðD;B4Þ ¼ fB4g

Q3 ¼ E �P1ð# � # �CÞ� # �B� # Q3ðDÞ ¼ fðA1;C1Þ; ðA1;B5Þ; ðA2;C2Þ; ðA2;D1Þ; ðA2;C3Þ; ðB4;C4Þg
Q3ðD;A1Þ ¼ fC1;B5g
Q3ðD;B4Þ ¼ fC4g
Q3ðD;B2Þ ¼ ;

Q4 ¼" �P1ð#	 �DÞ �P1ð# �P1ð# �BÞÞ Q4ðDÞ ¼ fðB1;A1Þ; ðA2;A1Þ; ðB4;A1Þg
Q4ðD;B1Þ ¼ fA1g

Q5 ¼ E �P1ðð# �BÞ [ð" �AÞÞ� # � # Q5ðDÞ ¼ fðA2;C2Þ; ðA2;D1Þ; ðA2;C3Þg
Q5ðD;A2Þ ¼ fC2;D1;C3g
Path Query and Pattern Tree Matching

Path queries are frequently represented as tree struc-

ture, called pattern trees, in which nodes (optionally

labeled) represents the query requirement on the

data entries along the path, and edges (labeled with
parent-child or ancestor-descendant relationship) rep-

resent the structural requirements among the data

entries.

The evaluation of a path query is also called the

process of pattern matching, which is to find the witness

trees that consist of data entries that satisfy both

the node and structural constraint expressed by the

pattern tree.
Path Query Languages

Path query is the core of various query languages for

semi-structured data.

XPath [6] is a W3C standard for addressing part of

an XML document and for matching and testing

Path Query P 2049

P

whether a node satisfies a pattern. The primary syntac-

tic construct in XPath is the expression, which is eval-

uated to yield a node set, a boolean value, a number, or

a string. The core of the XPath query language is the

path query, which is called location paths in XPath.

Location path consists of relative location paths and

absolute location path. A relative location path consists

of a sequence of one ormore location steps separated by

‘‘/’’. A step is composed from left to right and each step

selects a set of nodes relative to a context node, which

will in turn serve as the context node for the following

step. An absolute location path consists of a leading ‘‘/’’,

followed optionally by relative location paths.

XPath, in turn, is the core of other XML query

languages and transformation languages, such as

XSLT [5] and XQuery [4].

Path Query Evaluation

Even though the way in which the document is stored

has great impact on how a path query can be evaluated,

some common challenges exist in the evaluation of

path queries, comparing to their relational peers, and

numerous new operators, optimization techniques and

index structures have been proposed to facilitate effi-

cient path query evaluation.

One major characteristic of path query is that the

query requirements are expressed not only on data

entries, such as the tag (label), attributes, and text

values of the entries, but also on the structural rela-

tionship among the data entries, which are highlighted

by the primitives ↑ (parent axis), ↓ (child axis),

↑∗ (ancestor axis), and ↓∗ (descendant axis).

Navigation is a natural approach for evaluating a

path query. The nagivational approach scans the whole

document to verify the query requirement on data

entries and the structural relationship among data

entries. This approach works more naturally while the

document is stored as file, in object-oriented database,

or in a native data store. In addition, the nagivational

approach is potentially very expensive in cost, especially

when the ancestor/descendent axis is involved.

The invention of structural join operator [1,13]

and multiple algorithms for efficient computing of

structural join advanced the evaluation technique of

path queries dramatically. A structural join operation

takes two sets of data entries as input and returns pairs

of data entries that satisfy the desired structural rela-

tionship. The basis of the structural join operation is

the pre-order and post-order numbering encoding of
data entries in the document. The parent-child rela-

tionship is a special case of the ancestor-descendant

relationship, in which the nodes that satisfies the de-

sired structural relationship have to be exactly one level

apart from each other.

ða; bÞ 2 #	ðDÞ , apre < bpre ^ apost > bpost

ða; bÞ 2# ðDÞ , apre < bpre ^ apost

bpost ^ alevel þ 1 ¼ blevel

The structure join operation and various algorithms

that support efficient evaluation of the operation

enables the evaluation of path queries by decomposi-

tion. This approach partitions a path query into twigs

that consists of either a node or a pair of nodes with a

desired parent-child or ancestor-descendant relation-

ship. The matching of the nodes can be easily evaluated

via indices that are similar to value indices in RDB. The

structural relationships between node pairs are evalu-

ated by the structural join. Holistic approach has been

proposed and widely adopted in answering path

queries. This approach uses a chain of linked stacks to

compute and represent intermediate results of a path in

a compactly fashion.
Path Query Optimization

As any database management system, optimization is a

critical step in evaluating path queries.

Syntax based optimization rewrites a path query

into a path query in normal format, in pursuit of

minimum expression length, minimum number of

predicates, and no redundant value and structural

requirements. The rewrite may also aim at decompos-

ing a path query into sub-queries that belong to some

fragments of path queries that are simpler to answer.

The cost-based optimization relies on the data sta-

tistics of the document to be queried, and the cost-

model of the physical operators to be employed, to

enumerate various physical evaluation plans and choose

one with minimum or acceptable estimate perfor-

mance. This process involves the study of access method

selection, query decomposition, cost estimation, etc.
Indices for Path Query Evaluation

Indexing, being one of the most important ingredients

in efficient query evaluation, has seen its importance in

the context of XML. Over 20 different types of indices

have been proposed and have led to significant

2050P Path Query
improvements in the performance of XML query

evaluation.

Indices similar to the ones used in RDBs, namely

value indices on element tags, attribute names and text

values, are first used, together with the structural join

algorithms [1,3,10,13], in XML query evaluation. This

approach turns out to be simple and efficient, but is

not capable of capturing the structural containment

relationships native to the XML data.

To directly capture the structural information of

XML data, a family of structural indices has been

introduced. DataGuide [7] was the first to be pro-

posed, followed by the 1-index [11], which is based

on the notion of bi-simulation among nodes in an

XML document. These indices can be used to evaluate

some path expressions accurately without accessing the

original data graph. Milo and Suciu [11] also intro-

duced the 2-index and T-index, based on similarity of

pairs (vectors) of nodes. Unfortunately, these and

other early structural indices tend to be too large for

practical use because they typically maintain too fine-

grained structural information about the document.

To remedy this, Kaushik et al. introduced the A(k)-

index which uses a notion of bi-similarity on nodes

relativized to paths of length k [8]. This captures loca-

lized structural information of a document, and can

support path expressions of length up to k. Focusing

just on local similarity, the A(k)-index can be sub-

stantially smaller than the 1-index and others. Several

works have investigated maintenance and tuning of

the A(k) indices. The D(k)-index and M(k)-index

extend the A(k)-index to adapt to query workload.

The integrated use of structural and value indices has

been explored, and there have also been investigations

on covering indices and index selection.

Other directions of XML indexing techniques pro-

posed by researchers include indexing frequent sub-

patterns, indexing XML tree and queries as sequences,

forward and backward index, HOPI index, XR-tree,

and encoding-based indices.

Key Applications
Path query is the core concept behind the query lan-

guages for semi-structured data. It is also the founda-

tion of path algebra that are used to represent and

reason about queries expressed against semi-structured

data, especially those focusing on retrieving fragments

of the document that satisfy certain value and struc-

tural constraints.
Future Directions
Even though the basic idea of the path query has been

around for decades, its popularity exploded since XML

prevails.

Path query has been adopted as the core of expres-

sing queries again semi-structural data, especially

XML. Even though XPath query language has been

very stable, new language and language features keep

emerging. As to the path query itself, there are on-

going study of the sub-languages and the characteris-

tics of such languages, their relationship to each other,

the decidability of the queries in these languages, and

the complexity of answer the queries.

On the practical side, systems have been developed

to answer path queries. Various query evaluation, query

optimization and indexing techniques have been pro-

posed to facilitate efficient evaluation of path queries.

However, the level of maturity of these techniques are

not at the same level as those of relational queries.

In the relational world, the use cases are well under-

stood and various benchmarks have been developed to

measure the performance of relational DBMSs. Those

of the queries on semi-structured documents are less

understood, despite the existence of a few XML bench-

marks, such as XMark [12]. In depth research on the

usage of path queries and the design and development

of benchmarks is yet another promising direction.
Data Sets
Example semi-structured data and queries can be

found in benchmarks such as XMark (http://www.

xml-benchmark.org), XMach (http://dbs.uni-leipzig.

de/en/projekte/XML/XmlBenchmarking.html), and

MBench (http://www.eecs.umich.edu/db/mbench).
Cross-references
▶Bi-Similarity

▶ Semi-Structured Data Model

▶XML Data Management

▶XPath/XQuery

▶XSL/XSLT

Recommended Reading
1. Al-Khalifa S., Jagadish H.V., Patel J.M., Koudas N., Srivastava D.,

and Wu Y. Structural joins: a primitive for efficient XML query

pattern matching. In Proc. 18th Int. Conf. on Data Engineering,

2002.

2. Benedikt M., Fan W., and Kuper G.M. Structural properties of

XPath fragments. Theor. Comput. Sci., 226(1):3–31, 2005.

Pattern-Growth Methods P 2051
3. Bruno N., Koudas N., and Srivastava D. Holistic twig joins:

optimal XML pattern matching. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2002, pp. 310–321.

4. Chamberlin D., Clark J., Florescu D., Robie J., Simeon J., and

Stefanescu M. XQuery 1.0: an XML Query Language, May 2003.

5. Clark J. XSL Transformations (XSLT) version 1.0. http://www.

w3.org/TR/XSLT

6. Clark J. and DeRose D. XML Path Language (XPath) version 1.0.

http://www.w3.org/TR/XPATH

7. Goldman R. and Widom J. Data Guides: enabling query formu-

lation and optimization in semistructured databases. In Proc.

23th Int. Conf. on Very Large Data Bases, 1997, pp. 436–445.

8. Kaushik R., Shenoy P., Bohannon P., and Gudes E. Exploiting

local similarity for efficient indexing of paths in graph structured

data. In Proc. 18th Int. Conf. on Data Engineering, 2002.

9. Koch C. Processing queries on tree-structured data efficiently. In

Proc. 25th ACM SIGACT-SIGMOD-SIGART Symp. on Princi-

ples of Database Systems. 2006, pp. 213–224.

10. McHugh J. and Widom J. Query optimization for XML. In Proc.

25th Int. Conf. on Very Large Data Bases, 1999, pp. 315–326.

11. Milo T. and Suciu D. Index structures for path expressions. In

Proc. 7th Int. Conf. on Database Theory, 1999, pp. 277–295.

12. Schmidt A., Waas F., Kersten M.L., Carey M.J., Manolescu I., and

Busse R. XMark: a benchmark for XML data management. In

Proc. 28th Int. Conf. on Very Large Data Bases, 2002, pp. 974–985.

13. Zhang C., Naughton J.F., DeWitt D.J., Luo Q., and Lohman G.M.

On supporting containment queries in relational database

management systems. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2001.
P

Pattern Based Clustering

▶ Subspace Clustering Techniques
Pattern Discovery

▶Data Mining
Pattern-Growth Methods

HONG CHENG
1, JIAWEI HAN

2

1Chinese University of Hong Kong, Hong Kong, China
2University of Illinois-Urbana-Champaign, Urbana,

IL, USA

Definition

Pattern-growth is one of several influential frequent

pattern mining methodologies, where a pattern (e.g.,
an itemset, a subsequence, a subtree, or a substructure)

is frequent if its occurrence frequency in a database is

no less than a specified minimum_support threshold.

The (frequent) pattern-growth method mines the data

set in a divide-and-conquer way: It first derives the set of

size-1 frequent patterns, and for each pattern p, it derives

p’s projected (or conditional) database by data set par-

titioning and mines the projected database recursively.

Since the data set is decomposed progressively into a

set of much smaller, pattern-related projected data sets,

the pattern-growth method effectively reduces the

search space and leads to high efficiency and scalability.

Historical Background
Frequent itemset mining was first introduced as an

essential subtask of association rule mining by Agrawal

et al. [1]. A candidate set generation-and-test approach,

represented by the Apriori algorithm, was proposed

by Agrawal and Srikant [2]. The approach effectively

reduces the search space by exploring the downward

closure property of frequent patterns, i.e., any subpat-

tern of a frequent pattern is frequent. Various kinds of

refinements of and extensions to this approach were

proposed afterwards. However, since the Apriori-like

candidate set generation-and-test approach repeatedly

scans the whole database and checks the candidates by

pattern matching, it is still rather costly.

The pattern-growth approach, represented by the

FP-growth algorithm, was first proposed by Han,

Pei, and Yin [8] for mining frequent itemsets. Since

then, the method has been developed in several

directions: (i) further enhancement of mining efficiency

using refined data structures, such as FP-growth* [6],

which uses an array-based implementation of prefix-

tree-structure of FP-growth; (ii) mining closed and max

patterns [6,13], where a pattern p is closed if there exists

no super-pattern with the same support, and p is amax

pattern if there exists no super-pattern that is frequent;

(iii) mining sequential patterns [11] and frequent sub-

structures [14]; and (iv) mining high-dimensional data

set [7] and colossal patterns [15], and pattern-based

classification [4] and clustering [12]. A comprehensive

overview of such extensions is presented in [7].

Foundations

Frequent Itemset Mining

To illustrate the pattern-growth method, the FP-growth

method is briefly introduced here that exploits

2052P Pattern-Growth Methods
pattern-growth in frequent itemset mining. FP-growth

works in a divide-and-conquer way. The first scan of the

database derives a list of frequent items in which items

are ordered by frequency-descending order (Notice that

this particular ordering is not essential, and different

ordering schemes can be explored). According to this

ordering, the database is compressed into a frequent-

pattern tree, or FP-tree, which retains the itemset asso-

ciation information.

The FP-tree is mined by starting from each frequent

length-1 pattern (as an initial suffix pattern), construct-

ing its conditional pattern base (a ‘‘subdatabase’’, which

consists of the set of prefix paths in the FP-tree co-

occurring with the suffix pattern), then constructing its

conditional FP-tree, and performing mining recursive-

ly on such a tree. The pattern growth is achieved by the

concatenation of the suffix pattern with the frequent

patterns generated from a conditional FP-tree. Figure 1

shows an example of a global FP-tree as well as a set of

conditional trees and the recursive mining process on

top of them. Therefore, the FP-growth algorithm

transforms the problem of finding long frequent pat-

terns to searching for shorter ones recursively and then

concatenating the suffix.

Sequential Pattern Mining

The pattern-growth philosophy has been extended to

sequential pattern mining, where a sequential pattern is

a set of (gapped) subsequences that occur frequently in a

set of sequences. PrefixSpan, developed by Pei et al. [11],

is a typical sequential patternmining algorithmbased on

the pattern-growth approach. It works in a divide-and-

conquer way, by first scanning the sequence database to

derive the set of length-1 sequential patterns. Then each

sequential pattern is treated as a prefix and the complete
Pattern-Growth Methods. Figure 1. FP-growth mining on c
set of sequential patterns can be partitioned into differ-

ent subsets according to different prefixes. To mine the

subsets of sequential patterns, corresponding projected

databases are constructed and mined recursively.

Frequent Subgraph Mining

Inspired by the pattern-growth-based frequent itemset

and sequential pattern mining algorithms, there are

quite a few pattern-growth-based graph patternmining

algorithms developed. Here gSpan [14] is used an

example to explain the ideas.

The pattern-growth graphmining algorithm extends

a frequent graph by adding a new edge, in every possible

position. A potential problem with the edge extension is

that the same graph can be discovered many times.

gSpan solves this problem by introducing a new lexico-

graphic order among graphs, and maps each graph to a

unique minimum DFS code as its canonical label. Based

on this lexicographic order, gSpan adopts the pattern-

growth philosophy with a right-most extension tech-

nique, where the only extensions take place on the

right-most path. A right-most path is the straight path

from the starting vertex v0 to the last vertex vn, accord-

ing to a depth-first search on the graph. In Fig. 2, the

graph shown in 2a has several potential children with

one edge growth, which are shown in 2b–f (assume the

darkened vertices constitute the rightmost path).

Among them, 2b–d grow from the rightmost vertex

while 2e and 2f grow from other vertices on the right-

most path. 2(b.0)–(b.3) are children of 2b, and 2(e.0)–

(e.2) are children of 2e. Backward edges can only grow

from the rightmost vertex while forward edges can grow

from vertices on the rightmost path. The enumeration

order of these children is enhanced by the DFS lexico-

graphic order, i.e., it should be in the order of 2b–f.
onditional FP-trees.

Pattern-Growth Methods. Figure 2. Graph growth with

DFS lexicographic order.

Pattern-Growth Methods. Figure 3. A search space:

DFS code tree.

Pattern-Growth Methods P 2053

P

With the DFS lexicographic order definition,

the frequent subgraph mining is performed in a DFS

Code Tree. In a DFS Code Tree, each node represents

a DFS code. The relation between parent and child

node complies with the parent–child relation; the rela-

tion among siblings is consistent with the DFS

lexicographic order. Figure 3 shows a DFS Code Tree,

the nth level nodes contain DFS codes of (n � 1)-edge

graphs. Through depth-first search of the code tree,

all the minimum DFS codes of frequent subgraphs

can be discovered. That is, all the frequent sub-

graphs can be discovered in this way. One should

note that if in Fig. 3, the dark nodes contain the same

graph but different DFS codes, then one of them must

not be the minimum code. Therefore, the search space

of that sub-branch can be pruned since it does not

correspond to a minimum DFS code.

Key Applications
Pattern-growth methods have been used in many

tasks that need the mining of frequent patterns, includ-

ing the discovery of association and correlation relation-

ships among large sets of transactions, event sequences,

or complex structures, the discovery of discriminative

frequent features for classification and clustering, as well

as many other data mining and pattern recognition

applications, such as biological data mining.

Future Directions

Mining Approximate or Noise-Tolerant Patterns

Pattern-growth method has been widely applied for

efficient mining of precise and complete set of frequent

patterns. However, in some real applications, the capac-

ity to accommodate approximation in the mining pro-

cess has become critical due to inherent noise and
imprecision in complex data sets, for example, gene

mutations in genomic DNA sequences, and protein–

protein interaction networks. Approximate or noise-

tolerant frequent patterns could be the natural choice

to handle noise or variations in many applications.

Some recent studies proposed new algorithms for

mining approximate itemsets [9] and subgraphs [3].

Among them, [9] adopts a candidate generation-and-

test approach with the noisy mining model while [3]

takes a pattern-growth approach. It is interesting to

explore whether pattern-growth method could be natu-

rally applied into a noisy mining model to efficiently

discover the approximate or noise-tolerant patterns.

Pattern-Based Classification and Clustering

Frequent patterns have been demonstrated useful in

other data mining tasks such as classification [4] and

clustering [12], where frequent patterns are used as

discriminative classification features and clustering sub-

spaces, respectively. Instead of using the complete set of

patterns, usually only a small number of frequent pat-

terns are used in classification and clustering tasks, e.g.,

the subset of highly discriminative patterns in classifica-

tion and the subset of frequent patterns with dense

regions in clustering. It would be desirable to directly

mine the subset of patterns of interests without gener-

ating the complete set, for efficiency consideration. To

achieve this goal, pruning strategies need to be designed

and integrated into the pattern-growth mining method-

ology to effectively prune the search space which does

not yield high-quality patterns. This is a non-trivial task

since many quality measures, such as information gain,

density, or entropy, are not anti-monotonic which is the

essential pruning strategy in frequent pattern mining.

2054P PCA
Experimental Results
In general, for every proposed method, there is an

accompanying experimental evaluation in the

corresponding reference. In addition, for frequent

itemset mining methods, [5] (The FIMI workshop)

provided a detailed and comprehensive experimental

evaluation on a large set of benchmark data.

Data Sets

Synthetic Data

A synthetic tree generator can be found at http://www.

cs.rpi.edu/�zaki/software

Real Data

A large collection of real transaction datasets can

be found at http://fimi.cs.helsinki.fi/data/. Commonly

used real graph data includes AIDS anti-viral screening

datasets at http://dtp.nci.nih.gov, and NCI anti-cancer

screening datasets at http://pubchem.ncbi.nlm.nih.gov.

URL to Code
The binary codes for FP-growth, PrefixSpan and gSpan

are provided by the IlliMine project at http://illimine.

cs.uiuc.edu/.

The source codes of FP-growth*, FPClose, and

FPMax* [6] are provided by Grahne and Zhu at

http://fimi.cs.helsinki.fi/src/fimi06.tgz

Cross-references
▶Apriori property and Breadth-First SearchAlgorithms

▶ Frequent Graph Patterns

▶ Frequent Itemsets and Association Rules

▶ Sequential Patterns
Recommended Reading
1. Agrawal R., Imielinski T., and Swami A. Mining association rules

between sets of items in large databases. In Proc. ACM-SIGMOD

Int. Conf. on Management of Data, 1993, pp. 207–216.

2. Agrawal R. and Srikant R. Fast algorithms for mining association

rules. In Proc. 20th Int. Conf. on Very Large Data Bases, 1994,

pp. 487–499.

3. Chen C., Yan X., Zhu F., and Han J. gApprox: Mining frequent

approximate patterns from a massive network. In Proc. 2007

IEEE Int. Conf. on Data Mining, 2007, pp. 445–450.

4. Cheng H., Yan X., Han J., and Yu P.S. Direct discriminative

pattern mining for effective classification. In Proc. 24th Int.

Conf. on Data Engineering, 2008.

5. Goethals B. and Zaki M. An introduction to workshop on

frequent itemset mining implementations. In Proc. ICDM
Int. Workshop on Frequent Itemset Mining Implementations,

2003, pp. 1–13.

6. Grahne G. and Zhu J. Efficiently using prefix-trees in mining

frequent itemsets. In Proc. ICDM Int. Workshop on Frequent

Itemset Mining Implementations, 2003.

7. Han J., Cheng H., Xin D., and Yan X. Frequent pattern mining:

Current status and future directions. Data Mining and Knowl-

edge Discovery, 15:55–86, 2007.

8. Han J., Pei J., and Yin Y. Mining frequent patterns without

candidate generation. In Proc. ACM-SIGMOD Int. Conf. on

Management of Data, 2000, pp. 1–12.

9. Liu J., Paulsen S., Sun X., Wang W., Nobel A., and Prins J.

Mining approximate frequent itemsets in the presence of noise:

Algorithm and analysis. In Proc. SIAM Int. Conf. on Data

Mining, 2006, pp. 405–416.

10. Pan F., Cong G., Tung A.K.H., Yang J., and Zaki M. CARPEN-

TER: Finding closed patterns in long biological datasets. In Proc.

9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data

Mining, 2003, pp. 637–642.

11. Pei J., Han J., Mortazavi-Asl B., Wang J., Pinto H., Chen Q.,

Dayal U., and Hsu M.-C. Mining sequential patterns by

pattern-growth: The prefixspan approach. IEEE Trans. Knowl.

Data Eng., 16:1424–1440, 2004.

12. Pei J., Zhang X., Cho M., Wang H., and Yu P.S. Maple: A fast

algorithm for maximal pattern-based clustering. In Proc. IEEE

Int. Conf. on Data Mining, 2001, pp. 259–266.

13. Wang J., Han J., and Pei J. CLOSET+: Searching for the best

strategies for mining frequent closed itemsets. In Proc. 9th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,

2003, pp. 236–245.

14. Yan X. and Han J. gSpan: Graph-based substructure pattern

mining. In Proc. 2002 IEEE Int. Conf. on Data Mining, 2002,

pp. 721–724.

15. Zhu F., Yan X., Han J., Yu P.S., and Cheng H. Mining colossal

frequent patterns by core pattern fusion. In Proc. 23rd Int. Conf.

on Data Engineering, 2007, pp. 706–715.
PCA

▶ Principal Component Analysis
PDMS

▶ Peer Data Management System
Pedigree

▶ Provenance

▶ Provenance in Scientific Databases

Peer Data Management System P 2055
Peer Data Management

▶ Structured Data in Peer-to-Peer Systems
P

Peer Data Management System

PHILIPPE CUDRÉ-MAUROUX

Massachussetts Institute of Technology, Cambridge,

MA, USA

Synonyms
PDMS; Decentralized data integration system

Definition
A Peer Data Management System (PDMS) is a triple

S ¼ hP;S;Mi where P is a set of autonomous peers,

S a set of heterogeneous schemas used by the peers to

represent their data, andM a set of schema mappings,

each enabling the reformulation of queries between a

given pair of schemas.

Key Points
A Peer Data Management System (PDMS) is a dis-

tributed data integration system providing transparent

access to heterogeneous databases without resorting

to a centralized logical schema. Instead of imposing a

uniform query interface over a mediated schema,
Peer Data Management System. Figure 1. Contrary to the

Systems (b) do not impose any form of centralization but con

related to each other through pairwise schema mappings.
PDMSs let the peers define their own schemas and

allow for the reformulation of queries through map-

pings relating pairs of schemas (see Fig. 1). PDMSs

typically exploit the schema mappings transitively in

order to retrieve results from the entire network.

Compared to centralized data integration systems,

PDMSs suggest a scalable, decentralized and easily

extensible integration architecture where any peer

can contribute data, schemas, and mappings. Peers

with new schemas simply need to provide a mapping

between their schema and any other schema already

used in the system to be part of the network.

The languages used to define the mappings in

PDMSs may vary, but are typically derived from GLAV

formulae with extensions to support both inclusion and

equality mappings. The Piazza system [3] proposes new

algorithms to retrieve certain answers in this context.

Hyperion [1] is a system focusing on relating data not

only at the schema level, but also at the instance level

through mapping tables. GridVine [2] provides

distributed probabilistic analyses in order to automati-

cally detect mapping inconsistencies in PDMS settings.

PDMSs generally use Peer-to-Peer overlay networks

to support their distributed operations. Some use un-

structured overlay networks [1,3] to organize the peers

into a random graph and use flooding or random

walks to contact distant peers. Other PDMSs maintain

a decentralized yet structured Peer-to-Peer network [2]

to allow any peer to contact any other peer by taking

advantage of a distributed index.
mediated architecture (a), Peer Data Management

sider instead networks of heterogeneous data sources

2056P Peer Database Management
The lack of global coordination has raised several

questions as to the global properties of such sys-

tems in the large. In particular, new complex systems

perspectives – such as the emergent semantics

approach – have been proposed to characterize the

global semantics of PDMSs.
Cross-references
▶Data Integration

▶ Emergent Semantics

▶ Peer-to-Peer Data Integration

▶ Peer to Peer Overlay Networks: Structure, Routing

and Maintenance
Recommended Reading
1. Arenas M., Kantere V., Kementsietsidis A., Kiringa I., Miller R.J.,

Mylopoulos J. The hyperion project: from data integration to

data coordination. ACM SIGMOD Rec., 32(3):53–58, 2003.

2. Cudré-Mauroux P. Emergent Semantics. EPFL Press, 2008.

3. Halevy A., Ives Z., Madhavan J., Mork P., Suciu D., Tatarinov I.

The piazza peer data management system. IEEE Trans. Knowl.

Data Eng., 16(7):787–798, 2004.
Peer Database Management

▶ Structured Data in Peer-to-Peer Systems
Peer to Peer Network

▶ Storage Grid
Peer to Peer Overlay Networks:
Structure, Routing and Maintenance

WOJCIECH GALUBA, SARUNAS GIRDZIJAUSKAS

EPFL, Lausanne, Switzerland

Definition
A peer-to-peer overlay network is a computer network

built on top of an existing network, usually the Inter-

net. Peer-to-peer overlay networks enable participating

peers to find the other peers not by the IP addresses but

by the specific logical identifiers known to all peers.
Usually, peer-to-peer overlays have the advantage over

the traditional client-server systems because of their

scalability and lack of single-point-of-failure. Peer-to-

peer overlays are commonly used for file sharing and

realtime data streaming.
Historical Background
The rise of the Internet brought the first instances of

peer-to-peer overlays like the Domain Name System

(DNS), the Simple Mail Transfer Protocol (SMTP),

USENET and more recently IPv6, which were needed

to facilitate the operation of the Internet itself. These

peer-to-peer overlays were intrinsically decentralized

and represented symmetric nature of the Internet,

where every node in the overlay had equal status and

assumed cooperative behavior of the participating peers.

The beginning of the file-sharing era and the rise and fall

of the first file-sharing peer-to-peer system Napster [9]

(2000–2001) paved the way for the second generation

of peer-to-peer overlays like Gnutella [5] (2000) and

Freenet [4] (2001). The simple protocols and unstruc-

tured nature made these networks robust and lacking

Napster’s drawbacks like single-point-of-failure. Since

2001, these peer-to-peer overlays became extensively

popular and accounted for the majority of the Internet

traffic. Soon after it was evident that the unstruc-

tured nature of Gnutella-like systems is embarrassingly

wasteful in bandwidth, more efficient structured over-

lays appeared, like the Distributed Hash Tables (DHTs),

which used the existing resources more effectively (e.g.,

Chord [13]). Currently, unstructured peer-to-peer over-

lays are sparsely used, as the most popular peer-to-peer

applications for file-sharing and data-streaming (e.g.,

Skype [12], Kademlia [8], KaZaA [6]) are implemented

using structured or hybrid overlay concepts.
Foundations

Taxonomy

There are many features of peer-to-peer overlays, by

which they can be characterized and classified [2,11].

However, strict classification is not easy since many

features have mutual dependencies on each other,

making it difficult to identify the distinct overlay char-

acteristics (e.g., overlay topologies versus routing in

overlays). Although every peer-to-peer overlay can dif-

fer by many parameters, but each of them will have to

have certain network structure with distinctive routing

Peer to Peer Overlay Networks: Structure, Routing and Maintenance P 2057

P

and maintenance algorithms allowing the peer-to-peer

application to achieve its purpose. Thus, most com-

monly, peer-to-peer overlays can be classified by:

1. Purpose of use;

2. Overlay structure;

3. Employed routing mechanisms;

4. Maintenance strategies.

Purpose of Use

Peer-to-peer overlays are used for an efficient and

scalable sharing of individual peers’ resources among

the participating peers. Depending on the type of the

resources which are shared, the peer-to-peer overlays

can be identified as oriented for:

1. Data-sharing (data storage and retrieval);

2. Bandwidth-sharing (streaming);

3. CPU-sharing (distributed computing).

Data-sharing peer-to-peer overlays can be further

categorized by their purpose to perform one or more

specific tasks like file-sharing (by-far the most com-

mon use of the peer-to-peer overlays), information

retrieval (peer-to-peer web search), publish/subscribe

services and semantic web applications. The examples

of such networks are BitTorrent [3] (file-sharing),

YaCy-Peer [14] (web search), etc.

Bandwidth-sharing peer-to-peer overlays to some

extent are similar to the data-sharing ones, however,

are mainly aimed at the efficient streaming of real-time

data over the network. Overlay’s ability to find several

disjoint paths from source to destination can signifi-

cantly boost the performance of the data streaming

applications. Bandwidth-sharing peer-to-peer overlays

are mostly found in peer-to-peer telephony, peer-to-

peer video/TV, sensor networks and peer-to-peer

publish/subscribe services. Currently Skype [12] is

arguably the most prominent peer-to-peer streaming

overlay application.

For the computationally intensive tasks, when the

CPU resources of a single peer cannot fulfill its needs, a

CPU-sharing peer-to-peer overlays can provide plenty

of CPU resources from the participating idle overlay

peers. Currently, only a major scientific experiments

employ such strategy for the tasks like simulation of

protein folding or analysis of an astronomic radio sig-

nals. Although not being a pure peer-to-peer overlay,

Berkeley Open Infrastructure for Network Computing

(BOINC) is very popular among such networks,
supporting such distributed computing projects as

SETI@home, folding@home, AFRICA@home, etc.

Overlay Structure

Peer-to-peer overlays significantly differ by the topolo-

gy of the networks which they form. There exist a wide

scope of possible overlay instances, ranging from cen-

tralized to purely decentralized ones, however, most

commonly, three classes of network topology are

identified:

1. Centralized overlays;

2. Decentralized overlays;

3. Hybrid overlays.

Depending on the routing techniques and whether the

overlay network was created by some specific rules

(deterministically) or in ad hoc fashion (nondetermi-

nistically), overlay networks can be also classified into

structured and unstructured peer-to-peer overlays.

Centralized Overlays Peer-to-peer overlays based on

centralized topologies are pretty efficient since the in-

teraction between peers is facilitated by a central server

which stores the global index, deals with the updates in

the system, distributes tasks among the peers or quick-

ly responds to the queries and give complete answers to

them (Fig.1(a)). However, not all the purposes of use

fit the centralized network overlay model. Centralized

overlays usually fail to scale with the increase of the

number of participating peers. The centralized compo-

nent rapidly becomes the performance bottleneck. The

existence of a single-point-of-failure (e.g., Napster [9])

also prevents from using centralized overlays for many

potential data-sharing applications.

Decentralized Overlays Because of the aforemen-

tioned drawbacks, decentralized structured and un-

structured overlays emerged, which use purely

decentralized network model, and do not differ peers

as servers or clients, but treat all of them equally – as

they were both servers and clients at the same time

(Fig.1(b)). Thus, such peer-to-peer overlays success-

fully deal with the scalability and can exist without any

governing authority.

The simplest decentralized overlays usually are

unstructured. Unstructured overlay networks typically

have arbitrary topology and use flooding based rout-

ing among the peers. The distribution of the resources

among the peers is completely unrelated to the

Peer to Peer Overlay Networks: Structure, Routing and Maintenance. Figure 1. Examples of peer-to-peer overlays.

2058P Peer to Peer Overlay Networks: Structure, Routing and Maintenance
network topology. Because of their simplicity, the

unstructured overlays are pretty robust to network

and peer failures, although are rather inefficient in

bandwidth consumption and have poor querying

performance.

Structured overlay networks, however, use more effi-

cient routing techniques and the topology of the

structured overlays is not arbitrary but typically exhibit

Small-World properties, specifically high clusterization

and low network diameter. The link establishment

among the peers is usually strictly defined by the specific

protocols. The topologies can result in various structures

like rings, toruses, hypercubes and de-Bruin networks or

more loose randomized networks, which do have prop-

erties of Small-World networks. A particular instance of

structured peer-to-peer overlays is a Distributed Hash

Table (DHT) enabling an efficient lookup service, by

using a predefined hashing algorithms to assign an own-

ership for a particular resource (e.g., Chord [13], P-Grid

[1], Symphony [7], etc.). In contrast to the traditional

Hash Table, the DHTs share the global hashing informa-

tion among all the participating peers equally and the

DHT protocols ensure that any part of a global hash

table is easily reachable (usually in logarithmic steps)

and there is enough replication to sustain the consistency

in the system.

Hybrid Overlays There also exist many hybrid peer-to-

peer overlays (super-peer systems) which trade-off be-

tween different degree of topology centralization and

structure flexibility. Hybrid overlays usually use hierar-

chical network topology consisting of regular peers and

super-peers, which act as local servers for the subsets of

regular peers (Fig.1(c)). For example, a hybrid overlay

might consist of the super-peers forming a structured
network which serves as a backbone for the whole

overlay, enabling an efficient communication among

the super-peers themselves. Hybrid overlays have ad-

vantage over simple centralized networks since the

super-peers can be dynamically replaced by regular

peers, hence do not constitute single points of failure,

but have the benefits of centralized overlays.

Routing

Peer-to-peer overlay networks enable the peers to com-

municate with one another even if the communicating

peers do not know their addresses in the underlying

network. For example, in an overlay deployed on the

Internet, a peer can communicate with another peer

without knowing its IP address. The way it is achieved

in the overlays is by routing overlay messages. Each

overlay message originates at a source and is forwarded

by the peers in the overlay until the message reaches

one or more destinations. A number of routing

schemes have been proposed.

Routing in Unstructured Overlays Unstructured over-

lay networks use mainly two mechanisms to deliver

routed messages: flooding and random walks (Fig.2).

When some peer v receives a flood message from one

of its overlay neighbors w, then v forwards the flood

message to all of its neighbors except w. When v

receives the same flood message again, it is ignored.

Eventually the flood reaches all of the destinations.

For example, in Gnutella [10], a file-sharing peer-

to-peer system, a peer s that wants to download a file

floods the network with queries. If some peer d that has

the file desired by s is reached by the query flood, then

d sends a response back to s. Flooding consumes a

significant amount of network bandwidth. To reduce

Peer to Peer Overlay Networks: Structure, Routing and Maintenance. Figure 2. Routing in unstructured overlay

networks. The circles and solid lines represent the overlay topology. The dashed arrows illustrate the flow of messages.

Peers routing in an unstructured network do not know the exact location of the destinations so they have to either look in

all possible directions via flooding or randomly walk to find the destination peer.

Peer to Peer Overlay Networks: Structure, Routing and Maintenance P 2059

P

it, the flooded messages typically contain a Time-To-

Live (TTL) counter included in every message that is

decremented whenever the message is forwarded. This

limits how far the flood can spread from the source but

at the same time lowers the chance of reaching the peer

that holds the searched file.

The high bandwidth usage of flooding has led to

the design of an alternative routing scheme for un-

structured overlay networks: random walks. Instead of

forwarding a message to all of the neighbors, it is only

forwarded to a randomly chosen one. Depending on

the network topology random walks provide different

guarantees of locating the destination peer(s), however

all of the random walk approaches share one disadvan-

tage: a significant and in most cases intolerable delivery

latency.

Routing in Structured Overlays As more peers join the

overlay network and there are more messages that need

to be routed, flooding and random walks quickly reach

their scalability limits. This problem has prompted the

research on structured overlays.

In structured overlays each peer has a unique and

unchanging identifier picked when a peer joins the

overlay. The peer identifiers enable efficient routing

in the structured overlays. Each routed message has a

destination identifier selected from the peer identifier

set. Instead of blindly forwarding the message to all

neighbors as in the unstructured overlays, a peer in a

structured overlay uses the destination identifier to
forward the message only to one neighbor. The next

hop neighbor is selected to minimize the number of

hops to the destination, i.e., the routing is greedy. This

selection is made using the peer identifier distance.

Most of the modern structured overlays define the

notion of distance between any two peer identifiers.

For example, in Chord [13] identifiers are selected

from the set of integers [0,2m � 1] and are ordered in

a modulo 2m circle. The distance d(x, y) between two

identifiers x and y is defined as the difference between

x and y on that identifier circle, i.e., d(x, y) = (y � x)

mod 2m In another overlay, Kademlia [8], the identi-

fiers are 160-bit integers and the distance between two

identifiers x and y is defined as their exclusive bitwise

OR (XOR) interpreted as an integer, i.e., d(x, y) = x
 y.

Although the modern structured overlays differ in

the details of how they make use of the peer identifiers

for routing efficiency, they are all based on the same

general greedy routing principle. When some peer v

receives a message with a given destination identifier

it forwards the message to that next hop whose identi-

fier is the closest to the destination identifier. In other

words, in every hop the message gets as close as possi-

ble to the destination. Routing terminates when TTL is

exhausted or one of the peers decides it is the destina-

tion for the message. The latter decision is application

dependent. For example, in a Distributed Hash Table

each peer knows for which hash table keys it is respon-

sible. The key space is mapped onto the peer identifier

space in DHTs and the destination identifier of each

Peer to Peer Overlay Networks: Structure, Routing and

Maintenance. Figure 3. Routing in chord. The big circle

represents the peer identifier space with IDs in the interval

[0,25]. The small circles are the peers and the number

beside them is their ID. Peer 7 is connected (solid arrows)

to peers with exponentially increasing distance from 7: 7 +

1¼ 8, 7 + 2¼ 9, 7 + 4¼ 11, 7 + 8¼ 15, 7 + 16¼ 23. Assume

that peer 7 wants to route a message to peer 28. Dashed

arrows represent the routing path. The peer 23 is the

neighbor of 7 that is closest on the ring to the destination

28 and that neighbor is chosen as the first hop for the

message. One hop is not enough to reach 28, but the peer

23 brings the message closer to the destination and peer

27 finally delivers it. The greedy routing rule of always

selecting such next hop that brings the message as close

as possible to its destination is the main building block of

all structured overlay networks.

2060P Peer to Peer Overlay Networks: Structure, Routing and Maintenance
DHT lookup message specifies the hash table key K the

lookup is querying for. The lookup message is greedily

routed hop by hop from the origin until the message

reaches a peer responsible for K. Routing then termi-

nates and the responsible peer sends a lookup response

to the origin. The lookup response contains the hash

table value stored under the key K.
Maintenance

Peer-to-peer systems are commonly deployed in envir-

onments characterized by high dynamicity, peers can

depart or join the system at any time. These continu-

ous joins and departures are commonly referred to as

churn. Instead of gracefully departing from the net-

work peers can also abruptly fail or the network con-

nection with some of its neighbors may be closed. In all
of these cases the changes in the routing tables may

adversely affect the performance of the system. The

overlay topology needs to be maintained to guarantee

message delivery and routing efficiency.

There are two main approaches to overlay mainte-

nance: proactive and reactive. In proactive maintenance

peers periodically update their routing tables such that

they satisfy the overlay topology invariants. For exam-

ple, Chord periodically runs a ‘‘stabilization’’ protocol

to ensure that every peer is linked to other peers at

exponentially increasing distance. This ensures routing

efficiency. To ensure message delivery each Chord peer

maintains connections to its immediate predecessor

and successor on the Chord ring.

In contrast to proactive maintenance, reactive

maintenance is triggered immediately after the detec-

tion of a peer failure or peer departure. The missing

entry in the routing table is replaced with a new one by

sending a connect request to an appropriate peer.

Failures and departures of peers are detected in two

ways: by probing or through usage. In probe-based

failure detection each peer continuously runs a ping-

response protocol with each of its neighbors. When

ping timeouts occur repeatedly the neighbor is consid-

ered to be down and is removed from the routing table.

In usage-based failure detection when a message is sent

to a neighbor but not acknowledged within a timeout,

the neighbor is considered to have failed.

The more neighbors a peer must maintain the

higher the bandwidth overhead incurred by the main-

tenance protocol. In modern structured overlays

maintenance bandwidth typically scales as O(log(N))

in terms of the network size.

Key Applications
The key applications of peer-to-peer overlay networks

include:

1. File-sharing systems, e.g., BitTorrent [3]

2. VoIP (Voice over IP) and VoD (Video on Demand)

systems, e.g., Skype [12]

3. Information retrieval, e.g., YaCy-Peer [14]

Cross-references
▶ Load Balancing in Peer-to-Peer Overlay Networks

▶ Peer-to-Peer Content Distribution

▶ Peer-to-Peer Storage

▶ Peer-to-Peer System

▶ Peer-to-Peer Web Search

Peer-To-Peer Content Distribution P 2061
Recommended Reading
1. Aberer K. P-Grid: A self-organizing access structure for P2P infor-

mation systems. In Proc. Int. Conf. on Cooperative Inf. Syst., 2001.

2. Androutsellis-Theotokis S. and Spinellis D. A survey of peer-to-

peer content distribution technologies. ACM Comput. Surv., 36

(4):335–371, December 2004.

3. Bittorrent. http://www.bittorrent.com/.

4. Clarke I., Sandberg O., Wiley B., and Hong T.W. Freenet:

A distributed anonymous information storage and retrieval

system. In Designing Privacy Enhancing Technologies: Proc.

Int. Workshop on Design Issues in Anonymity and Unobserva-

bility, 2001.

5. Gnutella Homepage. http://www.gnutella.wego.com/.

6. Kazaa Homepage. http://www.kazaa.com/.

7. Manku G.S., Bawa M., and Raghavan P. Symphony: Distributed

hashing in a small world. In Proc. 4th USENIX Symp. on

Internet Tech. and Syst., 2003.

8. Maymounkov P. and Mazières D. Kademlia: A peer-to-peer

information system based on the XOR metric. In Proc. 1st Int.

Workshop Peer-to-Peer Systems, 2002, pp. 53–65.

9. Napster. http://www.napster.com/.

10. Ripeanu M., Foster I., and Iamnitchi A. Mapping the Gnutella

network: Properties of large-scale peer-to-peer systems and

implications for system design. IEEE Internet Comput. J., 6(1),

August 2002.

11. Risson J. and Moors T. Survey of research towards robust

peer-to-peer networks: Search methods. Comput. Netw.,

50(17):3485–3521, 2006.

12. Skype Homepage. http://www.skype.com/.

13. Stoica I., Morris R., Karger D.R., Kaashoek M.F., and

Balakrishnan H. Chord: A scalable peer-to-peer lookup service

for internet applications. In Proc. ACM Int. Conf. of the on Data

Communication, 2001, pp. 149–160.

14. YaCyPeer. http://www.yacyweb.de/.
 P
Peer-To-Peer Content Distribution

PASCAL FELBER
1, ERNST BIERSACK

2

1University of Neuchatel, Neuchatel, Switzerland
2Eurecom, Sophia Antipolis, France

Synonyms
Cooperative content distribution; Peer-to-peer file

sharing

Definition
Peer-to-peer content distribution is an approach for

cost-effective distribution of bandwidth-intensive con-

tent to large numbers of clients based on swarming.

Content is split into blocks that are sent to different

clients. Thereafter, the clients can directly exchange
blocks with one another, in a peer-to-peer manner,

without the help of the original server.

Historical Background
Peer-to-peer systems are application-layer networks

that directly interconnect users. They have enjoyed a

phenomenal success in the last ten years together with

the democratization of broadband access. The first

disruptive peer-to-peer applications were designed

for file sharing (e.g., Napster, Gnutella, KaZaA): they

provided users with the means to (i) search for content,

and (ii) distribute content. In the research community,

most of the initial focus was on structured peer-to-peer

overlays, also known as distributed hash tables (e.g.,

CAN, Chord). These systems have proved very efficient

for looking up specific content.

Once users have started exchanging larger files,

notably full-length movies, the classical client-server

techniques used to transfer files were no longer suffi-

cient and the focus has shifted on developing

more scalable mechanisms for content distribution.

The first and most emblematic example of peer-to-

peer content distribution application is BitTorrent

[5]. Its development started in 2001 and it reached

widespread popularity in 2003.

BitTorrent is a peer-to-peer application that capi-

talizes the bandwidth of peer nodes to quickly replicate

a single large file to a set of clients. The challenge is

thus to maximize the speed of replication. The clients

involved in a torrent cooperate to replicate the file

among each other using swarming techniques: the

file is broken into fixed size blocks and the clients in

a peer set exchange blocks in parallel with one another.

BitTorrent only deals with distribution and does not

provide any mechanisms for locating content. Several

alternatives to BitTorrent have been proposed, but

none of them has reached the same level of popularity

nor demonstrated sufficient benefits to supersede it.

More recently, some peer-to-peer content distribu-

tion systems have been developed specifically for

streaming media, such as live television (e.g., PPLive).

For such applications, blocks have to be received in

order and in time, and clients are only interested in

the part of the stream that is being broadcast while

they are online.

Foundations
The principle underlying peer-to-peer content distri-

bution is to capitalize the upstream bandwidth of the

2062P Peer-To-Peer Content Distribution
clients. A user that downloads some content will, at the

same time, send part of the content to other peers.

Peer-to-peer content distribution networks are

inherently self-scalable, in that the bandwidth capacity

of the system increases as more peers arrive: each new

peer requests service from, but also provides service to,

the other peers. The peer-to-peer system can thus

spontaneously adapt to the demand by taking advan-

tage of the resources provided by every peer.

The behavior of each peer in a peer-to-peer content

distribution is determined by two factors: (i) the peer

selection strategy that determines the set of peers a

given peer will exchange blocks with and (ii) the

block selection strategy that determines which blocks

will be exchanged. The choice of the peer and the

block selection strategy has an important impact on

the architecture of the content distribution system.

One can distinguish between structured and unstruc-

tured architectures.

Structured architectures organize the peers in a

directed acyclic graph such as linear chain or a tree

(see Fig. 1). The peer selection is done once for the

whole duration of the content distribution. The block

selection becomes trivial as each peer simply forwards

all the blocks it receives to its children. While

structured architectures are easy to understand and

model, they are best suitable for content distribution

over networks where the bandwidth is homogeneous

and nodes stay connected during the whole duration of

the content distribution. If these conditions are not

met, which is typically the case for the Internet, com-

plex mechanisms are required to make structured

approaches work.
Peer-To-Peer Content Distribution. Figure 1. Evolution of t

(left), trees (center), and parallel trees (right). The nodes in eac

with the bandwidth allocated for the block transmission. In th
Self-organization is the ability of a peer-to-peer

network to dynamically determine how to best manage

the block exchange as peers join, leave, or fail. Unstruc-

tured architectures are self-organizing: they use an

underlying mesh structure and build directed graphs

through which data is forwarded along several possible

paths from the source to each peer. Meshes adapt well

to bandwidth fluctuations/heterogeneity and nodes

leaving and joining during the transfer at the price

of more complex peer and block selection strategies.

Since there exist multiple paths for receiving data, each

peer must coordinate with its neighbors to avoid re-

ceiving the same block multiple times. One such sys-

tem that uses an unstructured mesh-based approach

is BitTorrent, a very popular peer-to-peer system for

file distribution.

File Distribution

The BitTorrent protocol makes sensible choices for

peer and block selection that are based on a few simple

principles. Peer selection: first, every peer maintains a

limited number of active connections to the other

peers that offer the best upload and download rates,

thus optimizing bandwidth utilization; second, a peer

preferentially sends data to another peer that recipro-

cally sent data to it, which enforces fairness; third,

every peer periodically sends some data to newcomers,

so that peers can have an active role in the torrent

independent of their arrival time. Block selection: a

peer requests the block from its neighbors for which

the least number of copies exist (rarest first), as rare

blocks have a high trading value and can potentially

increase the lifetime of the torrent. Maintaining a good
hree simple distribution models with time: linear chains

h graph are labeled with the peer number and the edges

is example, C = 3 and k = 2.

Peer-To-Peer Content Distribution P 2063

P

diversity of the blocks available in the systems assures

that each peer can fully use its upload capacity since it

has blocks that its neighbors are interested in.

Despite the simplicity of these design principles

and the lack of theoretical foundations to back them

when they were introduced, studies [8] have shown

they perform exceptionally well in practice. The uplink

utilization at the peers is remarkably high, sharing

incentives are very effective and resilient to freeriders,

and one can observe that peers spontaneously cluster

according to their capacity [10].

The choice of the peer and block selection strategy

is very important for the good performance of mesh-

based systems, because peers can fully use their upload

capacity only if the diversity of blocks is high, i.e.,

if they own blocks their neighbors are interested

in. Another way to assure that a peer has useful infor-

mation to transmit to its neighbors is to use network

coding. In this case, every block that is transmitted is a

linear combination of all or a subset of the blocks

available at the peer. Since with high probability

every such block is unique and contains useful infor-

mation for the receiving peer, the block selection strat-

egy becomes trivial. Avalanche [6] is a peer-to-peer

system for file distribution that uses network coding.

Video Streaming

File distribution systems such as BitTorrent are often

used to download files that contain audio or video

content. Since the blocks can be downloaded in any

order, the consumption of the content cannot start

before the download is complete.

In recent years, some peer-to-peer content distri-

bution systems have been developed to support live

streaming, where the playback of the content occurs

simultaneously with its production. Supporting video

streaming is more challenging than file distribution:

the users expect that once viewing has started it will be

continuous, which means that data must be received in

sequence and the rate of data reception must be equal

the rate at which data are injected by the source. The

architectural variants available for live streaming are

the same as for file distribution, namely structured and

unstructured approaches.

SplitStream [4] uses a structured architecture and

constructs parallel trees, with every peer belonging to

all trees. Content is split in multiple layers, each sent

along a different tree. As was discussed for the case of

file distribution, structured architectures lack
flexibility. For this reason, the systems that have been

used most widely for video streaming are mesh-based.

One can notably mention PPlive [7] that has been used

to stream video to tens of thousands of peers.

A robust video streaming system must be able to

cope with the heterogeneity of the peers, which can

have widely varying download bandwidth. To assure

real-time data reception for all clients despite heteroge-

neity, one can use layered coding: the video is encoded

into a base layer and several enhancement layers. While

the video cannot be viewed if the base layer is not

completely received, the enhancement layer only im-

prove the viewing experience of the video and can be

omitted if the download bandwidth is not sufficient.

Many peers are connected via ADSL links that

provide much higher download rates than upload

rates. A peer-to-peer streaming system is only stable

if the aggregate upload rate of the participating peers is

at least as high as the aggregate playout rate [9]. In

many cases this can only be achieved if there are some

peers (‘‘super-peers’’) that have an upload capacity

much higher than the video playout rate [7].

Besides participating in a live streaming event,

users may want to watch a video at any point of time,

which is referred to as video on demand. While there

exist designs for peer-to-peer systems that support

video on demand [1], none of these systems has been

deployed on a large scale.

Performance Analysis of Distribution Architectures

To evaluate the potential of peer-to-peer file distribu-

tion, one can consider very simple distribution models

[3] where a server S distributes a file to N peers. The

server splits a file into C blocks and serves the file

sequentially and infinitely at rate b. The time needed

to download the complete file from the server to a

single peer at rate b is referred to as one round.

Consider first a linear chain architecture where the

peers are organized in a chain with the server upload-

ing the blocks to the first peer, which in turn uploads

the blocks to the second peer and so on (Fig. 1, left).

Peers disconnect once they have uploaded the whole

file once. The number of peers served in a given num-

ber of rounds grows linearly with the number of blocks

C, because one can faster engage all peers in the distri-

bution process, and quadratically with the number of

rounds t, because the source forks additional chains.

Interestingly, when N ∕C � 1, the time necessary to

serve N peers converges asymptotically to 1.

2064P Peer-To-Peer Content Distribution
Consider now a tree architecture where the peers

are organized in a tree with an outdegree k (Fig. 1,

center). The server serves k peers in parallel, each at

rate b ∕ k, and all the peers that are not leaves in the tree

in turn upload the blocks to k other peers at rate b ∕ k.
This means that it takes k rounds for a peer to down-

load the file and interior nodes upload an amount

of data equivalent to k times the size of the file,

while leaf nodes do not upload the file at all. The

performance of the tree architecture depends on the

node degree, and it turns out that forN ∕ C� 1 the best

value is k = 1, i.e., a linear chain. ForN ∕ C> 1 a binary

tree is more efficient. Trees with higher degrees are

penalized by the higher number of non-contributing

leaf nodes.

Finally, consider a forest of k parallel trees, each of

which contains all the peers (Fig. 1, right). The server

partitions the file into k parts and constructs k span-

ning trees to distribute each part along a separate tree

to all peers. The trees can be built such that each peer is

an interior node in at most one tree and a leaf in the

remaining k � 1 trees. The parallel tree architecture is

as efficient as the linear chain when N ∕C � 1 and

significantly outperforms the other two architectures

in other scenarios. The optimal performance is

obtained for trees with an outdegree k = e � 3.

Table 1 summarizes the scaling behavior of the

different approaches. One can see that for both the

tree and parallel trees architectures, the number of

clients served increases exponentially in time and in

the number of blocks C.

These performance results are remarkable: with the

same amount of effort at the server, distributing the

content to N peers using a peer-to-peer architecture

can be done in a little more than one round, i.e.,

it takes just slightly longer than to distribute the file

from the server to a single peer. While structured
Peer-To-Peer Content Distribution. Table 1. Performance c

Architecture Clients served Service time

Linear chain C � t2 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ 2�N

C

q

Tree kðt�kÞ
C
k
þ1 k þ ðblogkNc � 1Þ � k

C

Parallel trees kðt�1Þ
C
k 1þ blogkNc � kC
architectures are neither robust nor practical, these

performance models still give valuable insights on the

asymptotically performance of peer-to-peer content

distribution. See [11,2] for studies that take into ac-

count other factors such as bandwidth heterogeneity.

Developing performance models for unstructured

architectures is much more difficult than for struc-

tured ones. Yet, it turns out that the following unstruc-

tured architecture, called Interleave, is analytically

tractable [12]. The performance model for Interleave

assumes that all blocks are numbered in increasing

order, all peers have the same bandwidth, and the

transmission of a block takes one slot. Peer selection

is random, while block selection is as follows: in every

odd time slot the source and the other peers push the

highest numbered block they own to a random peer; in

every even time slot each peer requests from a random

peer the lowest numbered block that the peer does not

yet have. Note that Interleave does not require any peer

to exchange information with other peers about the

block it already has. As a consequence the protocol will

experience some inefficiency as a peer p may ask an-

other peer q for a block that q does not have, or may

send to q a block that q already has. It can be shown

analytically that with high probability the entire file

that consists of C blocks can be distributed to all

N peers in a time of 3:2þ logN
C

. Using simulation the

result obtained was 2þ logN
C

, which is similar to the

time required by a structured binary tree (see Table 1).

Such good performance is quite astonishing as is indi-

cates that there exist robust mesh-based file distribu-

tion schemes that can achieve performance as good as

structured architectures.

Key Applications
Peer-to-peer content distribution is a technique to

transfer large contents simultaneously to many users.
omparison of three structured distribution models

Copies served Download rate Upload rate

1 b b (except leaves)

k 1 ∕ b b (except leaves)

1 b b

Peer-to-Peer Data Integration P 2065
Key applications include file sharing systems, live TV,

video on demand, or distribution of critical updates.

It also represents a cost-effective alternative to scal-

ing up server architectures. It has notably been used as

a way to protect servers from unexpected surges in

request traffic, called flash crowds, by replicating pop-

ular content on multiple peers.
P

Future Directions
Peer-to-peer content distribution networks are over-

lays that typically ignore the underlay, i.e., the under-

lying IP connectivity. Therefore, such networks

generate much unnecessary traffic between Internet

service providers.

Another important problem that plagues content

distribution networks is the fact that the validity

of content cannot be verified until after it is down-

loaded. The media industry contributes to content

pollution in existing networks to deter exchange of

copyrighted files.

One can expect video on demand to be an impor-

tant application domain for peer-to-peer content dis-

tribution technology. A major challenge is that

users must be able to start watching a movie at any

time, as well as suspend it, rewind, skip chapters, etc.

(VCR functionality). In these scenarios, there is no

such synchronization between the peers as with live

streaming.

Cross-references
▶Distributed Hash Table

▶ Peer-to-Peer System

Recommended Reading
1. Annapureddy S., Guha S., Gkantsidis C., Gunawardena D., and

Rodriguez P. Is high quality VoD feasible using P2P swarming. In

Proc. 16th Int. World Wide Web Conference, 2007.

2. Biersack E.W., Carra D., Cigno R.L., Rodriguez P., and Felber P.

Overlay architectures for file distribution: Fundamental perfor-

mance analysis for homogeneous and heterogeneous cases.

Computer Networks, 51(3):901–917, 2007.

3. Biersack E., Rodriguez P., and Felber P. Performance analysis of

peer-to-peer networks for file distribution. In Proc. 5th Interna-

tional Workshop on Quality of Future Internet Services, 2004,

pp. 1–10.

4. Castro M., Druschel P., Kermarrec A.M., Nandi A., Rowstron A.,

and Singh A. SplitStream: High-bandwidth multicast in a co-

operative environment. In Proc. 19th ACM Symp. on Operating

System Principles, 2003.

5. Cohen B. Incentives to Build Robustness in BitTorrent. Tech.

rep., http://www.bittorrent.org/, 2003.
6. Gkantsidis C., Miller J., and Rodriguez P. Anatomy of a P2P

content distribution system with network coding. In Proc. 5th

Int. Workshop Peer-to-Peer Systems, 2006.

7. Hei X., Liang C., Liang J., Liu Y., and Ross K. A measurement

study of a large-scale P2P IPTV system. IEEE Trans. on Multi-

media, 9(8):1672–1687, 2007.

8. Izal M., Urvoy-Keller G., Biersack E., Felber P., Al Hamra A.,

and Garces-Erice L. Dissecting BitTorrent: Five months in a

torrent’s lifetime. In Proc. 5th Passive and Active Measurement

Workshop, 2004.

9. Kumar R., Liu Y., and Ross K.W. Stochastic fluid theory for P2P

streaming systems. In Proc. 26th Annual Joint Conf. of the IEEE

Computer and Communications Societies, 2007.

10. Legout A., Liogkas N., Kohler E., and Zhang L. Clustering and

sharing incentives in bittorrent systems. In Proc. 2007 ACM

SIGMETRICS Int. Conf. on Measurement and Modeling of

Comp. Syst., 2007.

11. Mundinger J., Weber R., and Weiss G. Optimal scheduling of

peer-to-peer file Dissemination. Journal of Scheduling, 2007.

12. Sanghavi S., Hajek B. and Massoulie L. Gossiping with

multiple messages. IEEE Transactions on Information Theory,

53(12), 2007.
Peer-to-Peer Data Integration

ANASTASIOS KEMENTSIETSIDIS

IBM T.J. Watson Research Center, Hawthorne,

NY, USA

Definition
Peer-to-Peer data integration lies in the intersection of

two popular research topics, namely, Peer-to-Peer sys-

tems and Data Integration, and is one of the key topics

in the area of Peer-to-Peer Data Management. A Peer-

to-Peer data integration setting involves a set P of

autonomous, heterogeneous, independently evolving

(peer) sourceswhose pairwise schema ordata-levelmap-

pings, collectively denoted byM, induce a peer-to-peer

network. In this setting, each (peer) source in the

network can be queried and act as an access point

to the data residing in the other network sources.

Research in this area focuses on studying the specifica-

tion and expressiveness of the peer mappings; the

corresponding query languages used; algorithms for

rewriting queries between peer source schemas; and,

to some extent, topics that concern the propagation of

updates between peer sources. Key characteristics of

the peer-to-peer data integration setting that differen-

tiate it from traditional data integration settings and

typical Peer-to-Peer systems include (i) the fact that

2066P Peer-to-Peer Data Integration
each peer can be full-fledged database; (ii) the lack of

centralized control and global schemas; (iii) the need

for more diverse set of mapping specifications; and

(iv) the need for integration of data across diverse

domains.

Historical Background
Data integration [11] has been characterized as one of

the longest-standing research problems faced by the

data management community. A typical data integra-

tion setting involves a set S of sources, a global schema

G, and a setM of mappings between the sources in S
and the global schema G. Figure 1 illustrates such a

setting along with the logical steps during query evalu-

ation. Central to the evaluation of queries are the

mappings between the global and local schemas (indi-

cated as Metadata in the figure). The mappings are

used during the rewriting of a user query over the

global schema G to a set of queries over the sources.

Two basic approaches have been used to specify the

mappings. In a nutshell, in the Global-as-View (GAV)

approach, the global schema G is expressed as a view of

the set of local schemas S. Main advantage of the GAV

approach is the simplicity of the rewriting algorithm.

However, a drawback of the approach is that the addi-

tion of source in S results in a revision of the mapping
Peer-to-Peer Data Integration. Figure 1. Typical data

integration setting.
and, in the worst case, a complete re-design of the

global schema. In the second approach, called Local-

as-View (LAV), each source Si 2 S is expressed as a

view over the global schema G. Query rewriting is

substantially more involved here, but the approach

handles source additions more gracefully.

Peer-to-peer computing involves an open-ended

network of computational peers, where each peer

exchanges data and services with a set of other peers,

called its acquaintances. The peer-to-peer paradigm,

initially popularized by file-sharing systems such as

Napster [12] and Gnutella [5], offers an alternative to

traditional architectures found in distributed systems

and the web. Distributed systems are rich in services,

but require considerable overhead to launch and have a

relatively static, controlled architecture. In contrast,

the web offers a dynamic, anyone-to-anyone architec-

ture with minimum startup costs but limited services.

Combining the advantages of both architectures, peer-

to-peer offers an evolving architecture where peers

come and go, choose with whom they interact, and

enjoy some traditional distributed services with less

startup cost. Figure 2 shows an example of such a

system, often referred to in the literature as an unstruc-

tured peer-to-peer system, to differentiate it from the

complementary class of structured peer-to-peer sys-

tems whose architecture is based on Distributed Hash

Tables (DHT’s). As shown in the figure, mappings in

unstructured peer-to-peer system (represented by solid

lines) exist between any pair of peers while queries

(represented by various line arrows) can be initiated
Peer-to-Peer Data Integration. Figure 2. A Peer-to-Peer

system.

Peer-to-Peer Data Integration P 2067

P

at any peer in the system. Furthermore, different

queries might involve a different set of peers.

Probably the first works to consider the interaction

between database and peer-to-peer systems were the

ones by Gribble et al. [6] and Bernstein et al. [3].

The former work focuses on the problem of data

placement, that is, to find an optimal placement of a

set of objects on a peer-to-peer system, under a pre-

specified query workload, so as to minimize the cost of

evaluating the queries. In more detail, the authors

consider graph whose nodes correspond to the peers

in a peer-to-peer network. Each node is associated with

a storage capacity and a query workload. Furthermore,

each pair of nodes connected by an edge has an asso-

ciated data trasfer cost, over this edge. Queries over

this network are object lookups and each query has an

associated frequency and cost (with the cost being zero,

if the query can be served locally in a peer, and a

function of the object size and edge transfer cost,

if served remotely). In this setting, the main result of

this work is that the problem of data placement with

optimal cost is NP-complete. The work by Gribble

et al. [6] initiated the Piazza System [17] (described

in the next section) although the follow-up work in

Piazza addresses a setting much closer to data integra-

tion. As presented here, the setting in Gribble et al. [6]

is more closely related to the one found on the work on

DHT’s like CAN [15] or Chord [16].

Bernstein et al. [3] is the first work to actually

discuss data integration in a peer-to-peer context.

The focus in this work is the introduction of the

Local Relational Mode (LRM), a model designed spe-

cifically for the peer-to-peer setting. Key notions in the

model are that of coordination formulas and domain

relations. Much like a mapping in a typical data inte-

gration setting, a coordination formula establishes

a relationship between the data items stored in

acquainted peers. This relationship can be used to

express a constraint, like for example, that a particular

data itemmust be stored in either one of three different

acquainted peer databases, or it can be used during

query answering by expressing, for example, a GAV

(LAV) type mapping where the data items returned

by query Q1 in a peer P1 are contained in those

returned by query Q2 in peer P2. Since different peers

might use different vocabularies to express the same

real-world notion, it is the responsibility of domain

relations to express the mapping between these

vocabularies. For example, a domain relation might
be used to map prices expressed in US dollars, in a

peer, to those in euro in another peer. The work

by Bernstein et al. [3] initiated the Hyperion project

[2] the details of which are described in the next

section.

Foundations
Important aspects in every peer-to-peer data integra-

tion system include (i) the peer joining process and

especially the type of mappings used by the system to

resolve the heterogeneity of the acquainted peer; (ii)

the supported query language and the processing of

queries; and (iii) how the system deals with the lack of

centralization and the inherent dynamic and unreliable

nature of the peer-to-peer setting. Not every system

addresses all these aspects and different systems put

more emphasis on a different system aspect. The fol-

lowing paragraphs provide an overview of some of the

main systems in this area.

In Piazza [17], each peer in the system exports a

schema which can be one of two kinds: (i) a virtual

schema, used for querying and mapping the schemas

of its acquainted peers, or (ii) a schema which inter-

nally is mapped to actual stored data in the peer. In

either case, a peer joining the system establishes GAVor

LAV mappings between its export schema and the

export schemas of peers that are already part of the

system. The creation of such mappings is a complicated

process which cannot be fully automated. Schema

matching techniques are used, both in Piazza and else-

where, to facilitate their creation. Both the created

mappings and the supported query language are

expressed in a fragment of XQuery. User queries in

this fragment are expressed over the schema of a single

peer. The query is answered locally by the peer, if the

peer actually stores data, and it is also reformulated to

a set of queries over the acquaintances of the current

peer. Briefly, the reformulation algorithm combines

view unfolding, if a GAV mapping exists between

acquainted peers, and an answering queries using

views algorithm [7], in the case of LAV mappings.

The reformulation algorithm terminates once all the

queries that result in from the reformulation refer only

to relations that correspond to stored data in peers

(and no virtual schemas).

Influenced by the work in the LRM model, in

Hyperion [2] two types of mappings are used to

support the sharing of information between relatio-

nal database peers, namely, mapping expressions and

2068P Peer-to-Peer Data Integration
mapping tables. Similar to the GAV/LAV mappings

in Piazza (and elsewhere), mapping expressions are

schema-level mappings used during query answering

for the reformulation of queries between peers. A dis-

tinguishing feature of Hyperion, mapping tables [9]

are data-level mappings that associate the values of

acquainted peers (inspired by the domain relations in

the LRM model). A mapping table T is a relation over

the set of attributes X [Y , where X and Y are non-

empty sets of attributes belonging to two acquainted

peers. Each tuple t 2 T (whose values might include

constants and/or variables) associates the set of values

in t[X] to those in t[Y].

While schema matching can still be employed

for the creation of mapping expressions, the creation

of mapping tables requires the development of spe-

cialized techniques. Indeed, the work in [9] formalizes

mapping tables as data-level constraints over the shar-

ing of data between peers and illustrates how new

mapping tables can be inferred automatically (from

existing tables) while establishing an acquaintance

between two peers. Due to the dynamic nature of

peer-to-peer system, peers are expected to continuous-

ly evolve and change their schema (less frequently) and

their data (very frequently). This change influences

both the existing mapping expressions and the existing

mapping tables. As a result, work in the Hyperion

project is concerned with how to maintain the existing

mappings with emphasis in the frequently updated

mapping tables.

In terms of query answering, for the case of

mapping expressions, Hyperion relies on techniques

similar to the ones developed for Piazza. For the case

of mapping tables, Hyperion uses a specialized algo-

rithm to rewrite select-project-join (SPJ) queries be-

tween peers, relying only on the use of mapping tables

for the rewriting [10]. No algorithm is provided in

Hyperion to rewrite queries by combining mapping

expressions and tables. However, mapping expressions

are used in conjunction with mapping tables in

Hyperion for data coordination [8]. Indeed, another

distinguishing characteristic of Hyperion is that it

supports the creation and distributed execution of

Event-Condition-Action (ECA) rules over multiple

acquainted peer.

The PeerDB [14] system is built on top of a generic

peer-to-peer platform, called BestPeer [13]. The Best-

Peer platform supports two types of peers, namely, a

large number of normal (data) peers and a smaller
number of location independent global names lookup

(LIGLO) peers. A LIGLO peer acts as a name server

with which every peer in the system registers, when

joining, in order to acquire a unique identifier.

Similar to Piazza and Hyperion, in PeerDB, data

sharing between heterogeneous peers is achieved in

two steps. In the first step, mappings are established

between the schemas of the peers. In the second

step, the mappings are used to rewrite a query over

the schema of one peer to a query over the schema

of another. PeerDB has a number of distinguishing

characteristics over the previous approaches. First, it

differs from the previous systems in that it uses an

information retrieval-based technique as a basis for

its schema mappings. In more detail, each peer rela-

tion and attribute name is associated with a set of

descriptive keywords. A mapping between two rela-

tions (attributes) that reside on different peers is estab-

lished if their corresponding descriptive keywords

overlap significantly. Once a mapping is established,

it is used to rewrite a query that refers to one relation

into a query that refers to its mapped counterpart.

The second distinguishing characteristic of PeerDB is

that mappings are established dynamically, at query

time. In more detail, PeerDB employs an agent-based

technology both during the discovery of schema map-

pings and during the rewriting of queries. After a user

initiates a query over a local peer schema, software

agents are responsible for crawling the peer-to-peer

network, looking for peers whose schemas can be

mapped to the schema where the user query is posed.

The agents carry all the necessary functionality to

perform the rewriting once such schemas are

discovered.

Similar to PeerDB, the GridVine [4] system is built

on top its own generic peer-to-peer platform, called

P-Grid [1]. However, while the architecture of BestPeer

follows the peer/super-peer paradigm, the architecture

of P-Grid is that of a structured overlay network.

Capitalizing on the efficiency of P-Grid in terms of

indexing, routing and load balancing, GridVine bui-

lds a semantic mediation layer on top of P-Grid. In this

semantic layer, schemas and data are represented

as RDF triples, while queries over these triples are

expressed as triple patterns. A triple pattern query iss-

ued at any peer is routed to the peer that can answer

the query by using the services of the overlay network

(by hashing the constants appearing in the query). In

terms of heterogeneity, GridVine employs OWL

Peer-to-Peer Publish-Subscribe Systems P 2069

P

statements to relate semantically similar schema ele-

ments that belong to pairs of schemas. During query

evaluation, these mappings are used for the rewriting

of queries which are then executed using the overlay

network, as described earlier.

Key Applications
Scientific databases, Health informatics databases,

Business-to-Business (B2B).

Cross-references
▶Data Integration

▶Distributed Database Systems

▶ Parallel Database Systems

▶ Peer Data Exchange

▶ Peer-to-Peer Data Management

▶ Schema Matching

Recommended Reading
1. Aberer K., Cudré-Mauroux P., Datta A., Despotovic Z.,

Hauswirth M., Punceva M., and Schmidt R. P-Grid: a

self-organizing structured P2P system. ACM SIGMOD Rec.,

32(3):29–33, 2003.

2. Arenas M., Kantere V., Kementsietsidis A., Kiringa I., Miller R.J.,

and Mylopoulos J. The hyperion project: from data integration

to data coordination. ACM SIGMOD Rec., 32(3):53–58, 2003.

3. Bernstein P., Giunchiglia F., Kementsietsidis A., Mylopoulos J.,

Serafini L., and Zaihrayeu I. Data management for peer-to-peer

computing: a vision. In Proc. 5th Int. Workshop on the World

Wide Web and Databases, 2002.

4. Cudre-Mauroux P., Agarwal S., and Aberer K. GridVine: an

infrastructure for peer information management. IEEE Internet

Comput., 11(5):36–44, 2007.

5. Gnutella Protocol Specification. World Wide Web URL: http://

gnet-specs.gnufu.net/.

6. Gribble S., Halevy A., Ives Z., Rodrig M., and Suciu D. What can

databases do for peer-to-peer? In Proc. 4th Int. Workshop on the

World Wide Web and Databases, 2001.

7. Halevy A.Y. Answering queries using views: a survey. VLDB J.,

10(4):270–294, 2001.

8. Kantere V., Kiringa I., Mylopoulos J., Kementsietsidis A., and

Arenas M. Coordinating peer databases using ECA rules. In Proc.

Int. Workshop on Databases, Information Systems and Peer-to-

Peer Computing, 2003, pp. 108–122.

9. Kementsietsidis A., Arenas M., and Miller R.J. Data mapping in

peer-to-peer systems: semantics and algorithmic issues. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2003,

pp. 325–336.

10. Kementsietsidis A. and Arenas M. Data sharing through query

translation in autonomous sources. In Proc. 30th Int. Conf. on

Very Large Data Bases, 2004, pp. 468–479.

11. Lenzerini M. Data integration: a theoretical perspective. In Proc.

21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2002, pp. 233–246.
12. Napster. World Wide Web URL: http://www.napster.com/.

13. Ng W.S., Ooi B.C., and Tan K.-L. BestPeer: a self-configurable

peer-to-peer system. In Proc. 18th Int. Conf. on Data Engineer-

ing, 2002, p. 272.

14. Ng W.S., Ooi B.C., Tan K.-L., and Zhou A. PeerDB: a P2P-based

system for distributed data sharing. In Proc. 19th Int. Conf. on

Data Engineering, 2003, pp. 633–644.

15. Ratnasamy S., Francis P., Handley M., Karp R., and Shenker S.

A scalable content addressable network. In Proc. ACM Int. Conf.

on Data Communication, 2001, pp. 161–172.

16. Stoica I., Morris R., Karger D., Kaashoek F., and Balakrishnan H.

Chord: a scalable peer-to-peer lookup service for internet appli-

cations. In Proc. ACM Int. Conf. on Data Communication,

2001, pp. 149–160.

17. Tatarinov I., Ives Z., Madhavan J., Halevy A., Suciu D., Dalvi N.,

Dong X.L., Kadiyska Y., Miklau G., and Mork P. The piazza peer

data management project. ACM SIGMOD Rec., 32(3):47–52,

2003.
Peer-to-peer Database

▶Distributed Architecture
Peer-to-peer File Sharing

▶ Peer-To-Peer Content Distribution
Peer-to-peer Network

▶ Peer-to-Peer System
Peer-to-peer Overlay

▶ Peer-to-Peer System
Peer-to-Peer Publish-Subscribe
Systems

PETER TRIANTAFILLOU, IOANNIS AEKATERINIDIS

University of Patras, Rio Patras, Greece

Definition
Publish/Subscribe (a.k.a. pub/sub) software systems

constitute a facility for asynchronous filtering of

2070P Peer-to-Peer Publish-Subscribe Systems
information. Users, consumers of information, present

the system with continuous queries, coined subscrip-

tions. Sources of data generation (producers) present

the system with data-carrying publication events. The

pub/sub system infrastructure is responsible for (asyn-

chronously) matching the publication events to all

relevant subscriptions. Hence, in essence, this infra-

structure filters all available information for every

user and presents to each user only the information

units (s)he has defined as relevant. As such, a pub/sub

infrastructure can play a vital role in large-scale data

systems, with huge volumes of data, shielding users

from the burden of always actively searching for and

retrieving relevant information units.

Peer-to-Peer (P2P) systems are software systems,

which in fact constitute overlay networks, which are

built over physical networks, such as the Internet.

Their key discriminative feature is the complete decen-

tralized algorithmic and system design, which, in turn,

leads to guarantees with respect to system scalability in

terms of the network size and stored data. In addition,

P2P systems are characterized by self-organization,

being able to withstand high dynamics with respect

to network nodes joining and leaving the system

while continuing to offer efficient operation.

Pub/sub P2P systems are an attempt to combine

these two important technologies. The central aim is to

offer facilities for asynchronous matching of continuous

user queries to publication events, at very large scales.

This entails dealing with large numbers of producers and

consumers of information, which are geographically

distributed and, also, supporting large publication-

event and subscription arrival rates. Coupling pub/sub

technology with the P2P paradigm achieves this aim,

while introducing the additional benefits of scalability

and self-organization into the pub/sub realm.

Historical Background
Publish/subscribe systems have evolved significantly

over time, differing on a number of fundamental

characteristics. They are classified into two major cate-

gories, according to the way subscribers express their

interests; the topic-based [6,10,16] and the content-

based [4,5,7,8] systems. Historically, the first systems

were topic-based, in which users subscribe to specific

topics. All incoming publication events associated with

a particular topic are sent to all user subscribers of the

topic. This paradigm mimics the way news groups

operate. Content-based pub/sub systems emerged
subsequently, offering users the much-needed ability

to express their interests on specific publication events,

carrying specific content. Principally, users issue sub-

scriptions which specify predicates over the values of

a number of well defined attributes. The matching

of publication events to subscriptions is performed

based on the content (i.e., the values of attributes)

being carried by the publication events.

At the turn of the century, related research efforts

were maturing and a number of content-based pub/

sub systems were already available. Influential exam-

ples, with respect to content-based pub/sub systems

research, include SIENA [5], Gryphon [4], Le Sub-

scribe [8] and JEDI, [7]. Already, some of this work

targeted the challenging issues arising in a distributed

system, where publishers and subscribers are geo-

graphically distributed [4,5]. Around the same time

and in parallel, research related to P2P networks and

systems was also maturing. Worthy of special mention

are structured P2P overlay networks, like Chord [14],

Pastry [13], CAN [12], and P-Grid [1]. Several of these

networks influenced work on pub/sub systems, espe-

cially endeavors aiming to leverage existing P2P net-

works for providing pub/sub functionality with

scalability, efficiency, and self-organization. The Scribe

system [6] was a first attempt at providing topic-based

pub/sub functionality over the Pastry P2P network.

This effort was followed by endeavors to build

content-based publish/subscribe systems over P2P

networks, [2,3,9,11,15,17].

Foundations
Pub/sub data management represents a significant

point of departure compared to traditional data man-

agement. In the latter, data items are stored and the

system is responsible for appropriate indexing and

processing queries and updates issued by users against

these data items. In the pub/sub model, it is the users’

continuous queries (subscriptions) that are stored and

indexed appropriately and the system is responsible for

processing data-carrying publication events, matching

them to all relevant stored subscriptions.

The fundamental functionality offered by a publish/

subscribe system rests on the pillars of subscription

processing and publication-event processing and mat-

ching. In a P2P environment, all this functionality is

based on distributed algorithms that appropriately

leverage the P2P network capabilities in order to ensure

scalability and efficiency of operation, free of concern

Peer-to-Peer Publish-Subscribe Systems P 2071

P

for network topology dynamics. The core functionality

exported by a P2P network is the so-called lookup()

function, which receives as input a key and returns

the network address of the peer node where the data

item associated with the key is located. Structured P2P

networks, such as those built using Distributed Hash

Tables (DHTs) (such as [12–14]) can ensure that

lookup() executes in O(logN) messages, in a network

of N nodes, a feature that in essence guarantees scal-

ability and efficiency.

In topic-based publish/subscribe systems, events

and subscriptions are associated with specific topics

(a.k.a. groups/subjects). A straightforward approach,

on which Scribe [6] for example is based for support-

ing topic-based pub/sub functionality in a P2P envi-

ronment is to further associate each topic with a

multicast tree. Topic (and thus multicast tree) creation,

involves identifying the node responsible for the tree

root, which is determined simply by issuing a lookup

(hash(topic_name)), using the DHT’s hash function.

The DHT hash function introduces a randomizing effect

when selecting root nodes for different multicast trees.

Subscription processing then involves storing the sub-

scription locally at the origin peer node and having that

node join the multicast tree. This is basically accom-

plished by also issuing a lookup(hash(topic_name)) and

creating a path in the multicast tree consisting of all the

DHT nodes visited during the execution of the lookup()

call. Finally, publication-event processing is performed

by locating the tree root node (again, using the lookup

() function) and sending the publication to it, which it

subsequently distributes to the multicast tree. Figure 1

illustrates this process.
Peer-to-Peer Publish-Subscribe Systems. Figure 1. Multicas

publish/subscribe.
The content-based pub/sub model has dominated

the area, since it allows for greater user-query expressive-

ness, resulting in more efficient information filtering.

However, this model incurs a much higher complexity.

The publication event and subscription schema adopted

in thismodel, defines a set ofA attributes (ai, 1� i� A).

Each attribute ai consists of a name, a type (usually

string or numerical), and a value v(ai). A publication

event is defined to be a set of k < attribute,value >

pairs (k � A), while a subscription is defined through

an appropriate set of predicates on attributes’ values

over a subset of the A attributes of the schema. The

complexity emerges from the need to support sub-

scriptions with complex predicates. For numerical-

typed attributes, the allowable predicates may involve

equality, inequality, �,�, and ranges of values. For

string-typed attributes, subscribers may define prefix,

suffix, sub-string and equality predicates. Fundamen-

tally, solutions in a P2P environment can be classified

according to whether they require knowledge of the

internal DHT routing state, which is maintained by

each DHT node, and its association with additional

state that is needed for subscription and publication

processing [3,11,15]. A key characteristic in several of

these approaches [11,15] is that each node n1 associates

with each other node in its routing table, say n2, addi-

tional state that consists of all subscriptions that n1 has

received from n2. When a publication event arrives at

n1, it is forwarded to every node n2 in its routing table

only if the publication event matches one of the sub-

scriptions sent to n1 by n2.

Approaches that do not belong in this category

avoid the maintenance costs associated with the extra,
t tree construction for event dissemination in topic-based

2072P Peer-to-Peer Publish-Subscribe Systems
per-node state and enjoy wider applicability as they

can be easily integrated with a number of DHTs. Here-

after, the focus is on these approaches, where the con-

tent (i.e., the values defined by the predicates) will

determine at which peer nodes the subscriptions will

be stored. Similarly, the values carried by a publication

event will determine which route must be followed

within the network so to reach every possible peer

node storing a relevant subscription.

Equality predicates can be handled straightfor-

wardly – the basic idea being the following. A subscrip-

tion s associating with attribute a the value v(a), can be

stored simply at the peer node with identifier p, where

p = hash(v(a)). A publication event e carrying a = v(a),

is processed by visiting the peer node p = hash(v(a))

and retrieving all locally-stored subscriptions, such as s.

However, for more complex predicates, this is in-

adequate. At an abstract, high-level view, proposed

solutions, albeit very different, share the following

characteristics. The node ID namespace is typically

associated in solution-specific manners with the value

domain of an attribute. A subscription with a complex

predicate on an attribute is stored at several nodes,

whose IDs depend on the values defined by the sub-

scription’s predicate. In other words, a subscription is

mapped to a subspace of the node ID namespace.

Publications, associating an attribute with a value cor-

respond to a point in the namespace. The node asso-

ciated with this point, by construction, will be storing

all subscriptions whose predicates on this attribute

include this event’s value. In this way, the subscription
Peer-to-Peer Publish-Subscribe Systems. Figure 2. Processi
to publication event rendezvous occurs and in this ren-

dezvous node the event can be matched to all relevant

subscriptions.

For concreteness, the basics of the approach adopted

in [17] – one of the first to leverage an existing P2P

network on top of which to build scalable content-based

pub/sub systems – for processing subscriptions with

range predicates, is outlined. The approach is simple,

requires no additional state maintenance, and no knowl-

edge of the internals of the underlying DHT state. This

approach utilizes the ChordDHT [14] inwhich nodes are

arranged in a circular list according to their IDs. However,

in [17] specific order-preserving hashing is employed to

store subscriptions in the Chord network. That is, when

processing subscriptions with values v(a)i and v(a)j, they

are stored at nodes pi and pj whose IDs are given by

hash(v(a)i) and hash(v(a)j), respectively. If v(a)j < v

(a)i, then pj < pi. An incoming subscription s, identify-

ing a range of values [v(a)j,v(a)i] is stored on all nodes

in the arc of the ring starting at node hash(v(a)j) and

ending at node hash(v(a)i). Given this, a publication

carrying value v(a)k, with v(a)j < v(a)k < v(a)i will be

directed at node hash(v(a)k) and this node by con-

struction falls on the arc of the ring where the sub-

scription s has been stored. Thus, the matching can be

locally performed at this node. Figure 2 illustrates this

process.

Finally, the aforementioned discussion has focused

on single-attribute (one-dimensional) subscriptions and

publications. In general, pub/sub systems involve sub-

scriptions and publications specifying multi-dimensional
ng range queries in a content-based pub/sub system.

Peer-to-Peer Publish-Subscribe Systems P 2073
content. Processingmulti-dimensional publication events

and subscriptions is a source of additional complexity. In

this setting, a publication event e will match a subscrip-

tion s if and only if all attributes named by s are also

named by e and the predicates defined by s on its

attributes are satisfied by the values for these attributes

carried by the publication event. A straightforward

approach dealing with multi-dimensional events and

subscriptions is the following. First, perform the pro-

cessing as discussed above for each named attribute in

the publication event and subscription. Second, for

each attribute collect a candidate result set, consisting

of the subscriptions being matched only for that attri-

bute of the publication. Lastly, merge and filter the per-

attribute candidate result sets into a single result set, by

removing those subscriptions in the candidate result

sets which have at least one attribute predicate not

satisfied by the publication event. Figure 3 illustrates

this process.

As these candidate result sets are distributed and

can contain very large numbers of subscriptions, the

tasks of merging them and filtering subscriptions

from them can introduce large overheads. Therefore,

multi-dimensional event processing is open to a num-

ber of crucial performance optimizations which reveal

key trade-offs with respect to network bandwidth

overheads, number of required messages, and event-

matching latencies [2].
Peer-to-Peer Publish-Subscribe Systems. Figure 3. Multi-di

based P2P publish/subscribe systems.
Key Applications
In recent years one notices a proliferation of data-inten-

sive and compute-intensive networked applications

aiming for efficiency, scalability, and self-organization.

A key characteristic in many such applications is the

massive amounts of data of various types and character-

istics being generated continuously, frommany different

sources, at different times, and possibly at very high

rates. Users can thus be inundated by the sheer volume

of this data and are confronted with severe difficulties in

accessing only the typically very small fraction of this

data that is of interest to them.Hence, what is very much

needed for such applications is an infrastructure that can

offer decentralized, scalable, self-organizing asynchro-

nous filtering of this massive information base.

Content-based publish subscribe systems operating

in the distributed environment of a P2P overlay net-

work appear as the appropriate infrastructure, and are

used to design and implement such applications. A few

representative example applications, which also indi-

cate open research and development challenges, are

listed below:

(i) Information Feeds
men
A classic example for publish/subscribe applica-

tion infrastructures are data applications based on

information feeds. In these applications publishers

can be, for example, news agencies that publish
sional event and subscription processing in content-

P

2074P Peer-to-Peer Publish-Subscribe Systems
news articles. Human subscribers declare their

interests with proper content-based subscriptions

involving numerical-attribute predicates such as

date ranges, and string-attribute predicates such

as words defining article title prefixes. In general,

any RSS feed-like information dissemination sys-

tem like stock exchange reports falls in this category.

The distributed aspects occur when considering

large, multi-national news agencies whose compu-

ters form a large, geographically-dispersed net-

work. One can even further imagine alliances of

such multi-nationals, increasing dramatically the

application’s scale.
(ii) Grid Computing
Consider a farm of computing clusters, each

one including a number of computing nodes with

heterogeneous characteristics involving, for exam-

ple, various types of operating systems, hardware

specifications, etc. and forming a peer-to-peer com-

puting grid. Each node publishes its characteristics

while possible users that wish to execute their pro-

grams are interested in specific node attributes

(subscriptions) defining for example acceptable

CPU speed ranges, minimum memory require-

ments, desirable operating system versions, etc.
(iii) Pub/sub and the Web
The web is of course a massive distributed data

repository. Web information systems can be signif-

icantly enriched by adopting pub/sub technology.

Overlay networks can be created consisting of

nodes representing web pages. A pub/sub system

over this overlay network can be used, for instance,

to inform existing web users of interesting new

pages being created, of updates to pages already

marked as relevant, etc.
(iv) Bio-Informatics Applications
In the area of bioinformatics research, one might

imagine a network of research data bases, belonging

to specific governmental or private, non-for-profit

research institutions, storing results or matching

protein sequences and specific sub-sequences. The

publishers in this case are the institutions’ researchers

publishing specific findings and subscribers are

researchers inquiring for specific sequences’ match-

ing, as defined in their subscriptions.
Experimental Results
Typically, all proposed research solutions are accompa-

nied by independent experimental results. So far the
community has not produced widely acceptable general

benchmarks, standard data sets, and workloads.

Data Sets
As mentioned, there are no generally-agreed upon real

data sets to be used for testing research and development

results. Some appropriate data sets are available, however,

for some champion pub/sub applications, such as those

based on RSS feeds. One example is data made available

by the New York Stock Exchange (NYSE) (http://

www.nysedata.com/nysedata/default. aspx).

Cross-references
▶Channel-Based Publish/Subscribe

▶Content-Based Publish/Subscribe

▶ Peer-to-Peer Content Distribution

▶ Peer to Peer Overlay Networks: Structure, Routing

and Maintenance

▶ Peer-to-Peer System

▶ Publish/subscribe

▶ Publish/Subscribe over Streams

▶Routing and Maintenance

▶ State-Based Publish/Subscribe

▶Topic-Based Publish/Subscribe

▶Type-Based Publish/Subscribe

Recommended Reading
1. Aberer K. P-Grid: a self-organizing access structure for P2P

information systems. In Proc. Int. Conf. on Cooperative Inf.

Syst., 2001.

2. Aekaterinidis I. and Triantafillou P. Internet scale string attribute

publish/subscribe data networks. In Proc. Int. Conf. on Infor-

mation and Knowledge Management, 2005.

3. Aekaterinidis I. and Triantafillou P. PastryStrings: a com-

prehensive content-based publish/subscribe DHT Network. In

Proc. 23rd Int. Conf. on Distributed Computing Systems, 2006.

4. Banavar G., Chandra T., Mukherjee B., Nagarajarao J., Strom J.,

and Sturman D. An efficient multicast protocol for content-

based publish-subscribe systems. In Proc. 19th Int. Conf. on

Distributed Computing Systems, 1999.

5. Carzaniga A., Rosenblum D.S., and Wolf A.L. Design and

evaluation of a wide-area event notification service. ACM

Trans. Comput. Syst., 2001.

6. Castro M., Druschel P., Kermarrec A., and Rowstron A. Scribe:

A large-scale and decentralized application-level multicast

infrastructure. J. Select. Areas Commun., 2002.

7. Cugola G., Nitto E.D., and Fuggetta A. The JEDI event-based

infrastructure and its application to the development of the

OPSS WFMS. In Proc. 23rd Int. Conf. on Software Eng., 2001.

8. Fabret F., Jacobsen A., Llirbat F., Pereira J., Ross K., and

Shasha D. Filtering algorithms and implementation for very

fast publish/subscribe. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2001.

Peer-to-Peer Storage P 2075
9. Gupta A., Sahin O.D., Agrawal D., and Abbadi A.E. Meghdoot:

content-based publish subscribe over p2p networks. In Proc.

ACM/IFIP/USENIX Int. Middleware Conf., 2004.

10. Lehman T., Laughry S., and Wyckoff P. Tspaces: The next wave.

In Proc. 32nd Annual Hawaii Int. Conf. on System Sciences,

1999.

11. Pietzuch P.R. and Bacon J. Hermes: a distributed event-based

middleware architecture. In Proc. 1st Int. Workshop Distributed

Event-Based Systems, 2002.

12. Ratnasamy S., Francis P., Handley M., Karp R., and Shenker S.

A scalable content addressable network. In Proc. ACM Int. Conf.

on Data Communication, 2001.

13. Rowstron A. and Druschel P. Pastry: Scalable and distributed

object location and routing for large-scale peer-to-peer systems.

In Proc. IFIP/ACM Int. Conf. on Dist. Syst. Platforms, 2001.

14. Stoica I., Morris R., Karger D., Kaashoek F., and Balakrishnan H.

Chord: A scalable peer-to-peer lookup service for internet appli-

cations. In Proc. ACM Int. Conf. on Data Communication, 2001.

15. Terpstra W.W., Behnel S., Fiege L., Zeidler A., and Buchmann A.P.

A peer-to-peer approach to content-based publish/subscribe. In

Proc. 2nd Int. Workshop Distributed Event-Based Systems, 2003.

16. TIBCO TIB/Rendezvous. Tech. rep., White paper, Palo Alto, CA,

http://www.tibco.com, 1999.

17. Triantafillou P. and Aekaterinidis I. Publish-subscribe over

structured P2P networks. In Proc. 3rd Int. Workshop

Distributed Event-Based Systems, 2004.
P

Peer-to-Peer Storage

ANWITAMAN DATTA

Nanyang Technological University, Singapore,

Singapore

Synonyms
Distributed storage systems; Cooperative storage

systems; Wide-area storage systems

Definition
Peer-to-peer (P2P) storage is a paradigm to leverage

the combined storage capacity of a network of storage

devices (peers) contributed typically by autonomous

end-users as a common pool of storage space to store

and share content, and is designed to provide persis-

tence and availability of the stored content despite

unreliability of the individual autonomous peers in a

decentralized environment.

Historical Background
For diverse reasons including fault-tolerance, load-

balance or response time, or geographic distribution

of end users, distributed data stores have been around
for a long while. This includes distributed databases,

distributed file systems and Usenet servers among

others. Usenet servers communicated among each

other in a peer-to-peer manner, and replicated content.

While some redundancy is necessary for fault tol-

erance, replicating all content at all peers is a very

special case of a peer-to-peer storage system, and is

very inefficient. In general, an object is replicated at

fewer locations. This leads to the problem of locating

the object in the network. Plaxton et al’s work on acces-

sing nearby copies in a distributed environment [9]

using key based routing is one of the seminal works,

which subsequently influenced the design of many

peer-to-peer storage systems. Advances in structured

overlay networks address the problem of object location

in a decentralized manner, that is ‘‘If an object is in the

network, how to find it?’’ This is important in realizing

an efficient decentralized peer-to-peer storage system.

Systems like OceanStore [7] aimed at archival stor-

age, Freenet [3] for anonymous file sharing and dis-

tributed hash table based DHash storage layer of CFS

[5] for a cooperative file system all store data at peers

based on key associations determined by the structured

overlay. These systems thus have the functionalities of

object location and storage coupled together. However,

note that locating and storing objects in a peer-to-peer

system are in principle independent of each other. One

can imagine the routing as a distributed index struc-

ture, which can store a pointer to the actual storage

location, instead of the object itself. In the file sharing

network Napster, the storage was peer-to-peer, howev-

er the indexing was in fact fully centralized, and very

well illustrates the orthogonality of object location and

storage issues. So in the rest of this entry the focus will

be only on storage.

A critical requirement in a peer-to-peer storage sys-

tem is to ensure that once a user (application) stores an

object, this object should be available and persist in the

network, notwithstanding the unreliability of individual

peers andmembership dynamics (churn) in the peer-to-

peer network. This throws open a host of interesting

design issues. For resilience, redundancy is essential.

Redundancy can be achieved either by replication or

using coding techniques, using schemes similar to the

RAID technique [8]. While coding is in principle stor-

age space efficient for achieving a certain level of resil-

ience, it leads to various kinds of overheads, including

computational overhead, and in the context of peer-to-

peer systems, communication overhead and even

2076P Peer-to-Peer Storage
storage overhead to keep track of encoded object frag-

ments, thus making coding mechanisms worthwhile

only for relatively larger or rarely accessed objects and

applications like archival storage.

Redundancy is lost unless replenished because of

departure of peers from the system. Trade-off consid-

erations of redundancy maintenance effort and resil-

ience led to the design of different maintenance

strategies [2,6,10].

Note that file sharing systems – early ones like

Napster and Gnutella as well as more recent ones

like Kazaa and BitTorrent – also store and provide

access to stored objects. However they are not reliable

storage systems. In file sharing networks, users store

locally only files they are interested in, and allow others

to download the same. However there is no explicit

intention to provide a highly available and persistent

storage, and hence there are no mechanisms for redun-

dancy management. The design of these systems is

often focused on improving the efficiency of search

and data transfer, while the content available in the

network is considered ephemeral. Nevertheless, popu-

lar content may get so widely replicated that it is

coincidentally (but not by design) always available.

Foundations
Distributed storage systems have traditionally been

managed in a centralized manner, for instance in

distributed databases and distributed file systems.

The advent of decentralized file sharing networks

demonstrated the potential as well as feasibility of

decentralized peer-to-peer storage systems composed

of autonomous peers. Peer-to-peer storage systems use

the combined capacity of the peers to provide storage

functionality to end users.

There are several reasons to have such a distributed

storage. Multiple users may share and access some

stored objects – data, files, etc. Individual users may

not have the capacity to store all the objects they wish

to access. Furthermore, by storing the same objects at

other peers (and reciprocating by storing other users’

objects), all peers benefit from an automatic back up

service. Against these advantages, the main drawbacks

include the unreliability of individual peers, who may

leave and re-join autonomously, or even leave perma-

nently, as well as transient communication failures,

and delay in accessing objects stored only at a remote

peer. Thus the main functionality of peer-to-peer stor-

age systems is to make the distribution of stored
objects transparent to the end users, even while users

benefit from this distribution.

File sharing networks can be viewed as a special

case of a peer-to-peer storage system. However they are

not designed to guarantee availability or persistence of

stored content, which are essential for a storage system.

Resilience and performance in terms of access cost and

latency pose some of the crucial challenges in realizing

peer-to-peer storage systems.

Resilience of storage systems is measured in terms

of two metrics - availability and durability (persis-

tence). Availability of an object within a period of

time is essentially the time averaged probability that

it is accessible at any random time within that period

of time. Durability of an object is the probability that

it persists in the system indefinitely (or long enough,

depending on the application requirements) under an

assumption of a worst case failure scenario.

Consequently, crucial to peer-to-peer storage sys-

tems research are some of the following questions:

What kind of redundancy is most efficient from vari-

ous perspectives including storage overhead as well as

access and maintenance costs and latency, and imple-

mentation complexity? What minimal redundancy is

necessary to meet a desired level of resilience? Which

maintenance strategy to apply to maintain the neces-

sary redundancy? Which peers to store the redundant

blocks in, based possibly on issues like reliability of

individual peers, locality and load? The following

delves into these. Figure 1 summarizes some of the

important design factors.

In a decentralized setting, it is not only essential to

ensure that stored objects stay available and persist over

time despite changes in the network membership –

churn – caused by peers leaving and (re-)joining the

network, but also it is important to locate the stored

objects efficiently. Some of the early storage systems like

OceanStore [7] use one of the precursors [9] of con-

temporary structured overlays to locate objects. The

basic idea is to assign to each peer an unique identifier,

and also to each object an unique identifier from a

same key-space, for instance using a hashing function.

Objects are stored at peers which have identifiers clos-

est to the object’s identifier. When looking for an

object, or the peer(s) at which an object is to be stored,

the network of peers is typically searched in a greedy

manner, by approaching peers with closer identifiers to

the object’s key, that is, using key based routing. Similar

ideas are also used in Freenet [3], which aims at

Peer-to-Peer Storage. Figure 1. Some of the important design decisions that need to be taken into consideration

when designing and deploying a peer-to-peer storage system.

Peer-to-Peer Storage P 2077

P

providing anonymity to its users. Other subsequent

storage systems have also followed this approach [5].

This traditional dual use of structured overlays for

both routing (indexing) and storage tends to blur the

difference between the two, and many people consider

the structured overlay (e.g., distributed hash tables)

to be the storage system also. In order to identify a

full spectrum of design space of peer-to-peer storage

systems it is crucial to understand that storage and

indexing are actually two different but necessary ingre-

dients for them. Combining these two sometimes

simplifies the system architecture and implementa-

tion. However, the structured overlay may be used to

store only pointers to the actual objects, which are

placed using any independent criterion. One may

also employ any other kind of directory (for example,

Napster has a centralized directory) or indexing

mechanism instead.

Resilience from Redundancy

Redundancy is essential to achieve resilience. Storage

systems realize redundancy by using either replication

or error correcting codes (e.g., erasure codes) as dis-

cussed next.
Replication Replication, i.e., mirroring, stores the

same object on multiple nodes. It is normally efficient

when the size of the object is small, or the object is

frequently accessed. Note that a large object may still be

split in multiple fragments, and each of these frag-

ments will then be replicated.

Erasure codes Erasure codes are a class of error-

correcting codes, which can transform a M-fragment

object into N (N > M) encoded fragments, such that

the original object can be reconstructed from any M

out of the N encoded fragments. This typically leads to

a storage overhead slightly more thanN ∕M. The rate of

erasure codes r is defined as the fraction of fragments

required for decoding, i.e., r ¼ M
N
. Based on the coding

rate, erasure codes can be categorized into two types,

fixed-rate codes in which N is limited and r has a

fixed value, and rateless codes (for example Digital

Fountains [4]) in which N is potentially unlimited

and r approaches zero (therefore called rateless).

Although replication is sometimes regarded as a

special case of erasure codes, a subtle difference exists

between them, which has its implications on the main-

tenance of redundancy. For replication, every reinte-

grated replica can enhance the object availability. In

2078P Peer-to-Peer Storage
contrast, for a fixed-rate erasure code, if the reinte-

grated fragment is identical to one of the existing

fragments, it does not improve the availability of the

whole object. Even withM fragments, one may still not

be able to reconstruct the original object, unless

the fragments are distinct. The above problem does

not occur for rateless codes, in which unique fragments

are generated, and thus every reintegrated fragment is

useful. In this aspect, replication is more similar to

rateless codes, instead of fixed-rate codes.

When accessing an object, if it had been stored

in coded fragments, enough fragments need to be

accessed first, and then the object needs to be decoded,

causing computational and possibly communication

overheads. The benefit of coding is that for the same

targeted resilience, using coding techniques drastically

reduces the storage overhead, alternatively said, for

same storage overhead, coding provides a much higher

resilience. However, depending on the implementation

details, using coding techniques may also lead to addi-

tional storage overheads to keep track of the encoded

fragments. For frequently accessed objects or small

objects, the overheads associated with coding may

thus outweigh the benefits.

Because of these considerations, a rule of thumb is

small or frequently accessed objects are typically repli-

cated, while large or rarely accessed objects erasure

coded. Another option is to use a hybrid approach

[11]. Erasure coded fragments are used to achieve

high persistence at a low storage overhead. Replication

is used for performance.
Maintaining Redundancy

Individual peers may be occasionally unavailable be-

cause users go offline, machines fail, or the network

gets disconnected. Typically, if there is sufficient re-

dundancy, such temporary churn has marginal effect on

the availability of a stored object. Furthermore tempo-

rary churn does not directly affect long term persis-

tence, since the peers join back, bringing back in the

network whatever is stored in them. However, over a

period of time, some participating peers may leave the

system permanently, in turn leading to permanent loss

of redundancy. Permanent churn thus makes the sys-

tem more vulnerable to temporary churn, and unless

mitigated, leads to permanent loss of stored objects,

thus adversely affecting persistence/durability. So while

redundancy provides resilience against temporary

churn, maintenance strategies are necessary to restore
the lost redundancy and make the system resilient

against permanent churn.

Henceforth both coded fragments or replicas will be

referred as fragments. The simplest maintenance mech-

anism is to probe periodically all the peers which are

supposed to store redundant fragments of an object,

and whenever a probe fails, reactively replenish the

redundancy be reintegrating a new suitable redundant

fragment. Example storage systems employing this

strategy include CFS [5]. This strategy is referred to as

an eager maintenance strategy. Such an eager reactive

(The simultaneous use of the adjectives eager and

reactive is admittedly oxymoronic, and is a vestige of

the historical development and nomenclature of vari-

ous maintenance mechanisms.) maintenance mecha-

nism means the system always operates in a state where

redundancy level remains constant apart from tempo-

rary reduction between repair periods. It has been

empirically observed [2] that eager (reactive) mainte-

nance strategy is bandwidth expensive.

A periodic probing and reintegration of all unavail-

able fragments ignores the fact that many of the frag-

ments are only temporarily unavailable, and will be

restored back in the system automatically once the

corresponding peers join back. Consequently, a lot of

overhead in regenerating and transferring new redun-

dant fragments is avoidable if only the system can wait

long enough for some of the absent peers to rejoin. This

observation is key to the design of the first lazy repair

(reactive) strategy, used in the TotalRecall system [2].

All nodes are probed periodically, and repairs

are initiated only when less than a certain threshold

Ta > M of nodes (and corresponding data) are avail-

able. Thus to say, when an object has no more than Ta
fragments available in the system, then a repair process

for the object is initiated so that at the end of the repair

process all N fragments are again available. As long as

an object has a redundancy more than the parameter

Ta, there is no maintenance. This lazy maintenance

mechanism saves overheads caused by transient failures.

However if the redundancy reduces below this threshold,

then it is considered imprudent to further delay repair

operations. So once the threshold is breached for an

object, TotalRecall regenerates all the corresponding

unavailable fragments. Thus, this reactive lazy mecha-

nism has a deterministic trigger for initiating repairs.

While saving on bandwidth in comparison to the

above mentioned eager reactive maintenance strategy,

the threshold based lazy repair strategy suffers from

several undesirable effects. First of all, by waiting for

Peer-to-Peer Storage P 2079

P

the redundancy to fall below a threshold, the system is

allowed to degenerate and become more susceptible as

compared to other systems which have the same maxi-

mum redundancy N. Secondly, while most of the time

this approach does not use the bandwidth even if it

were available, once the threshold is breached, this

approach tries to replenish all the missing fragments

at once, thus causing bandwidth spikes. Finally, be-

tween the maintenance spikes, as redundancy falls,

the available fragments are accessed more frequently,

causing access load imbalance, particularly overloading

the available peers. Two different works try to address

these shortcomings.

A randomized variant of the lazy repair strategy [6] is

to probe only a fraction of the stored fragments random-

ly (uniformly), until a minimal Tb � M number of live

fragments are detected. Thus a random number Tb + X

of probes (determined according to a probability dis-

tribution which in turn depends on the actual number

of live fragments) will be required to locate Tb live

fragments. Then X fragments which were detected to

be unavailable are replaced by the system. The beauty

of this randomized approach is that the expected value

of X adapts with the number of live fragments. If there

are fewer live fragments, then X will typically be large,

and vice versa. Normally X can be typically much

smaller than the total number of unavailable fragments

at that instant. As a consequence, the repair process is

continuous – thus available bandwidth is used more

judiciously, avoiding spikes. The randomized repair

process is naturally more aggressive when more redun-

dant fragments are missing, while if very few fragments

are missing then there are very few repairs.

While the randomized lazy repair strategy [6] tries

to strike a balance between the periodic repair and the

threshold based deterministic lazy repair strategies,

and as a consequence the bandwidth usage is continu-

ous and smoother, another independent approach [10]

makes it an explicit goal to not exceed a bandwidth

budget per unit time. Subject to the bandwidth budget

per unit time it proactively creates new replicas. In

contrast to the previously mentioned approaches all

of which react to lost redundancy, the proactive

approach does not aim to reduce overall bandwidth

usage, but instead tries to ensure that by not exceeding

the per unit time maintenance bandwidth budget,

a better bandwidth provisioning can be achieved,

and thus the maintenance operation does not inter-

fere with applications. Another consequence of this

approach is that typically enough redundancy is
available to ensure equitable load distribution. How-

ever, a maximum redundancy threshold needs to be

defined in using such a proactive replication approach

to make a judicious use of the storage capacity.
Placement Strategies

A final system design issue is determining the place-

ment strategy to be used to store the objects. One of

the most widely used approach is to determine the

placement of objects based on keys. In this scheme,

all the peers as well as objects are assigned unique

keys (e.g., by hashing), and then objects are stored at

peers with closest or similar keys. The peers them-

selves communicate among each other by forming a

structured overlay network, and messages are routed

based on key similarity (key based routing). Such an

object placement strategy can be seen in systems like

CFS [5], Oceanstore [7], Freenet [3] and Tempo [10] to

name a few. This approach essentially combines the

storage of the object with the search mechanism.

Alternatively, object placement may be decoupled

from the search mechanism, thus giving the systems

designer, or even the applications using the storage sys-

tem much more flexibility in choosing the storage

location. This choice may be random (for example, in

TotalRecall [2]), or based on reliability prediction

derived from the history of peers’ availability, or

based on proximity (locality) from the end users acces-

sing the object, load at peers, or other considerations

like storing the object within a specific domain. Fur-

thermore, this choice may be made by the peer-to-peer

storage system designer or its administrator, or even

independently by the applications and end users using

the storage system.

Against this flexibility, the main disadvantage of

decoupling storage from search is that one then needs

some kind of directory service (potentially realized

with a structured overlay) to perform the search func-

tionality. The search provides pointer(s) to the stored

object fragments. This creates additional storage and

maintenance (of the pointers) overheads. Thus, in

contrast to the key based storage approach, there is

an additional level of indirection, and the storage sys-

tem needs to explicitly keep track of any changes,

including network level changes like change of peers’

network address, unlike the structured overlay (key

based storage) approach, where the structured overlay

maintenance mechanism takes care of such changes

and simplify storage systems design.

2080P Peer-to-Peer Storage
Analysis Techniques

There are several approaches to analyze and study

the behavior of peer-to-peer storage systems to

better understand and refine its algorithms and design,

make better parameter choices and validate its

implementation.

Static resilience: Given a certain amount of redun-

dancy, if a certain fraction of the peers are not accessible,

either because they left the network, or the machines

temporarily crashed, or because of communication pro-

blems, one can determine the probability that any spe-

cific object will become inaccessible or permanently lost.

For example, for pure replication, if there are r replicas,

and each peer storing a replica is available only pon
fraction of the time (randomly and independently from

the other peers replicating the object), then the proba-

bility of the object becoming unavailable is (1 � pon)
r.

Such a static resilience analysis gives a system designer a

reference for determining an adequate redundancy to

tolerate a certain degree of membership dynamics.

Time-evolution: Static resilience does not take into

account the combined effect of membership dynamics,

which leads to loss of redundancyover time, and repairing

strategy, which regenerates redundancy, thus improving

the health of the storage system.Given a particular level of

network dynamics, the choice of maintenance strategy
Peer-to-Peer Storage. Figure 2. A snapshot of the probabilit

in the storage system when using (i) Deterministic lazy (react

maintenance. An any 8 out-of 32 fragments (rate 0.25) erasure

synthetically, such that online peers could go offline with a p

with a probability of 0.1, such that on an average one third of

Tb for the two variants of the lazy maintenance strategies we

maintenance was the same in both experiments. This figure h
affects the resilience of the storage system, as well as the

overheads incurred. A pragmatic system design thus

needs to take into account the combined effect of individ-

ual peers’ unreliability as well as the specifics of the

deployed redundancy maintenance strategy.

Of particular interest is the actual probability dis-

tribution of object redundancy under the combined

effect of churn and maintenance. This is in contrast to

the maximum or average redundancy of objects in the

system, based on which static resilience is typically

estimated. Objects with smaller actual redundancy at

a time instant are more vulnerable to become tempo-

rarily unavailable or even permanently lost. Also access

to these corresponding objects causes higher load

at the peers storing the object fragments or replicas.

Finally, more effort and bandwidth is required to re-

store redundancy for the objects with fewer fragments,

thus the maintenance operation witnesses spikes in

bandwidth usage. The probability distribution pro-

vides a more fine-grained state of the storage system’s

health, by showing what fraction of all the stored

objects are expected to have what level of actual redun-

dancy. Such information can be obtained by studying

the time evolution of storage systems [6,12].

For example, Fig. 2 shows the probability density

function of the actual redundancy of objects when the
y distribution of the available number of object fragments

ive) maintenance, (ii) Randomized lazy (reactive)

code was used to store the objects. Churn was simulated

robability of 0.2 and offline peers could come back online

the peers were online, i.e., pon = 1 ∕3. The thresholds Ta and

re chosen such that the aggregate bandwidth usage for

as been obtained from [6].

Peer-to-Peer System P 2081
deterministic or the randomized lazy maintenance

algorithms are used for an otherwise identical specific

scenario, that is, same redundancy for objects, same

churn level, and algorithm parameters chosen such

that total bandwidth usage in both cases are com-

parable. There is a greater area under the curve

corresponding to low redundancy if the deterministic

lazy maintenance mechanism is used, in comparison to

the case when the randomized variation is used.
P

Key Applications
Peer-to-peer storage systems have been used to realize

traditional applications like file systems [2,5], backup

[1] and archival storage [7]. A peer-to-peer backup

system has several advantages in comparison to tradi-

tional offline backup systems based on secondary stor-

age. It is easier to verify that the backup has indeed

worked correctly (in comparison to physical medium

like magnetic tapes), and backup as well as mainte-

nance of the backed up data and its restoration when-

ever necessary can all be completely automated.

Furthermore, peer-to-peer storage is not vulnerable to

geographically localized catastrophes. This gives large

corporations with geographically dispersed offices

strong economic incentives to use their employees’

desktop computers as a private corporate peer-to-peer

storage infrastructure, instead of managing a separate

secondary storage based backup. Similarly, individuals

can back-up their data by relying on the resource

pooled in a public peer-to-peer storage network.

Peer-to-peer storage systems also find use in web

proxies for caching, content distribution and file shar-

ing [3] applications. Peer data management systems

too rely on an underlying reliable storage service.
Cross-references
▶ Peer Data Management System

▶ Peer-to-Peer Content Distribution

▶ Peer to Peer Overlay Networks: Structure, Routing

and Maintenance

▶Updates and Transactions in Peer-to-Peer Systems
Recommended Reading
1. http://www.cleversafe.org/dispersed-storage

2. Bhagwan R., Tati K., Cheng Y., Savage S., and Voelker G.M.

TotalRecall: systems support for automated availability

management. In Proc. 1st USENIX Symp. on Networked

Systems Design & Implementation, 2004.
3. Clarke I., Miller S.G., Sandberg O., and Wiley B. Protecting free

expression online using Freenet. IEEE Internet Computing,

6(1):40–49, 2002.

4. Codes R. and Shokrollahi A. IEEE Trans. Inform. Theory, 2006.

5. Dabek F., Kaashoek F., Karger D., Morris R., and Stoica I. Wide-

area cooperative storage with CFS. In Proc. 18th ACM Symp. on

Operating System Principles, 2001.

6. Datta A. and Aberer K. Internet-scale storage systems under

churn – a study of the steady state using Markov models. In

Proc. Sixth IEEE Int. Conf. on Peer-to-Peer Computing, 2006.

7. Kubiatowicz J., Bindel D., Chen Y., Czerwinski S., Eaton P.,

Geels D., Gummadi R., Rhea S., Weatherspoon H., Weimer W.,

Wells C, and Zhao B. OceanStore: an architecture for global-

scale persistent storage. In Proc. 9th Int. Conf. on Architectural

Support for Programming Languages and Operating Systems,

2000.

8. Patterson D., Gibson G.A., and Katz R. A case for redundant

arrays of inexpensive disks (RAID). In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1988.

9. Plaxton C.G., Rajaraman R., and Richa A.W. Accessing nearby

copies of replicated objects in a distributed environment. In

Proc. ACM Symp. on Parallel Algorithms and Architectures,

1997.

10. Sit E., Haeberlen A., Dabek F., Chun B.G., Weatherspoon H.,

Morris R., Frans Kaashoek M., and Kubiatowicz J. Proactive

replication for data durability. In Proc. 5th Int. Workshop

Peer-to-Peer Systems, 2006.

11. Williams C., Huibonhoa P., Holliday J., Hospodor A., and

Schwarz T. Redundancy management for P2P storage. In Sev-

enth IEEE Int. Symp. on Cluster Computing and the Grid,

(CCGrid), 2007.

12. Wu D., Tian Y., Ng K.-W., and Datta A. Stochastic analysis

of the interplay between object maintenance and churn.

Elsevier Journal of Computer Communications, Special Issue

on Foundations of Peer-to-Peer Computing, Elsevier, 2007.
Peer-to-Peer System

WOJCIECH GALUBA, SARUNAS GIRDZIJAUSKAS

EPFL, Lausaune, Switzerland

Synonyms
Peer-to-peer network; peer-to-peer overlay

Definition
A peer-to-peer system is a computer network which

enables peers to share the network resources, compu-

tational power and data storage, without relying on a

central authority. Most commonly, peer-to-peer sys-

tems form overlay networks deployed in the Internet

and are used for file sharing, realtime data streaming

and computationally intensive tasks.

2082P Peer-to-Peer Web Search
Key Points
In contrast to client-server systems, peer-to-peer sys-

tems consist of interconnected peers of similar capabil-

ities and responsibilities, where the peers can act as

both servers and clients. Most commonly, the architec-

ture of the peer-to-peer systems is flat and all peers

are assumed to be functionally equal. However,

a number of peer-to-peer systems employ hier-

archical architecture where some peers (superpeers)

act as local servers for the subsets of regular peers. It

is also widely accepted in peer-to-peer systems, where

some services can be provided by a centralized com-

ponent, in particular system bootstrapping, authen-

tication etc.

Peer-to-peer systems are designed to be self-

organizing and to scale well with the number of par-

ticipating peers. Each peer contributes a different

amount of resources and peer-to-peer systems employ

various methods to distribute the load evenly

across these resources. Good load balancing is crucial

to the scalability of peer-to-peer systems. To account

for frequent peer departures and arrivals and to

maintain high availability peer-to-peer systems repli-

cate the services and data across several peers for

redundancy.

Peer-to-peer systems have a wide range of applica-

tions in such areas as the Internet infrastructure

(e.g., DNS), file sharing (e.g., Kazaa [3]), communica-

tion and data streaming (e.g., Skype [4]), distributed

computing (e.g., BOINC [1]), and can even make

use of human presence at the participating peers

(e.g., Galaxy Zoo project [2]). In addition, the decen-

tralized nature of peer-to-peer systems allows the

peer-to-peer applications to be highly resistant to

censorship.

High robustness, scalability and lack of the single-

point-of-failure make peer-to-peer systems a viable

alternative to large client-server systems.
Cross-references
▶Distributed Hash Table
Recommended Reading
1. Berkeley Open Infrastructure for Network Computing Home-

page. http://boinc.berkeley.edu/.

2. Galaxy Zoo Homepage. http://galaxyzoo.org/.

3. Kazaa Homepage. http://www.kazaa.com/.

4. Skype Homepage. http://www.skype.com/.
Peer-to-Peer Web Search

GERHARD WEIKUM

Max-Planck Institute for Informatics, Saarbrücken,

Germany

Definition
The peer-to-peer (P2P) computing paradigm is an

intriguing alternative to centralized search engines

for querying and ranking Web content. In a P2P

network with many thousands or millions of compu-

ters, every peer can have locally compiled content

such as recently visited or thematically gathered Web

pages, and can employ its own, potentially persona-

lized search engine on the locally indexed data. In

addition, queries can be forwarded to judiciously

chosen other peers for collaborative evaluation. Such

P2P architectures enable keyword search and result

ranking on the network-wide global content. Thus, all

peers together form a P2P search engine. Conversely,

such P2P architectures could be utilized for scalable,

distributed implementations of Web indexing with

appropriate partitioning across the nodes of a large

server farm.

Historical Background
Peer-to-peer (P2P) systems aim to provide scalable and

self-organizing ways of loosely coupling thousands

or millions of computers in order to jointly achieve

some global functionality [14]. In the last decade, very

successful systems of this kind have been built. Most

notably, these include file-sharing networks such as

Gnutella or BitTorrent, and IP telephony like Skype

and other collaborative messaging services. They orga-

nize peers in so-called overlay networks on top of

the standard Internet infrastructure, and use various

forms of epidemic dissemination or distributed data

structures like distributed hash tables (DHTs) such as

Chord or Pastry. The basic functionality that underlies

many of these systems is the distributed and dynamic

maintenance of a dictionary with efficient support for

exact-match key lookups.

Web search requires much richer functionality than

exact-match lookups: keyword queries combine multi-

ple dimensions of a very-high-dimensional data space in

an ad hoc manner so that standard multi-dimensional

indexes are not applicable, and they require ranking of

query results based on statistics about local and global

Peer-to-Peer Web Search P 2083

P

keyword frequencies. On the other hand, it seems very

natural to build Web search in a P2P manner as the

producers and owners of Web pages are widely

distributed and autonomous. In fact, the standard

approach of crawling the Web for centralized search

engines can be seen as rather artificial, but has advan-

tages regarding system management and commercial

services such as query-related advertisements.

Approaches to P2P Web search are reminiscent of

earlier work on distributed information retrieval (IR),

most notably, various kinds of metasearch engines

where queries are routed to judiciously chosen search

providers [15]. However, the P2P setting is much

more challenging regarding the enormous scale of the

underlying data sources, the dynamics of the system,

and the autonomy of the individual peers.

Foundations
Peer-to-peer (P2P) Web search has been studied from

two perspectives: global computing (GC) and social

computing (SC). The GC approaches consider peers

that dedicate all their storage and computing resources

to the P2P network. The network as a whole emulates a

traditional search engine architecture by partitioning

a global Web index and assigning partitions and query

load to peers. The SC approaches, on the other hand,

consider architectures where each peer corresponds to

one user, and emphasizes the autonomy of peers, with

every peer having full control over its local content and

extent of sharing it with other peers. Both GC and SC

can be embedded in a server-farm environment with a

high-speed physical network or in a geographically

distributed environment over the wide-area Internet.

P2P Global Computing for Scalable Search-Engine

Functionality

For indexing the Web, commercial search engines

use large data centers consisting of thousands of low-

end computers, carefully designed parallelism and

redundancy, and customized software with very low

overhead [2]. The key technique to sustain a peak

throughput of thousands of queries per second with

sub-second response times is data partitioning. Index

entries – postings that consist of a keyword id, a page

id, and a score – are hashed on page id, and each

resulting hash partition is assigned to one computer

in a very large cluster (with hundreds or thousands of

nodes). A query with one or more keywords is simply

sent to all nodes for parallel evaluation. The load is
perfectly balanced across the nodes of the cluster, so

that the approach scales up extremely well. For failure

resilience, high availability, and higher throughput, an

entire cluster is often replicated sufficiently.

The above architecture is distributed, but it is not

a P2P approach, for it assumes a fixed, reasonably

time-invariant system configuration with a high-

speed homogeneous network between nodes. If one

tried to carry this design over to a setting with a

dynamically varying number of peers that commu-

nicate over a high-latency wide-area network, the

fine-grained parallelism would probably result in a

poor cost/performance ratio. Thus, a geographically

distributed architecture for Web indexing needs more

sophisticated techniques and is still viewed as a re-

search challenge, but promising work is on its way [1].

The current approaches differ in their ways of

partitioning the data across peers, the overlay networks

that are employed, their load balancingmechanisms, and

their methods for caching and replication, which in turn

influences query processing strategies. As for data parti-

tioning, three common ways are: hash-partitioning on

page ids (documents), hash-partitioning on keywords

(terms), or thematic clustering based on page contents

or query logs. Load balancing needs to counter skewed

distributions of both index-list lengths and query popu-

larities for different keywords;many techniques from the

distributed computing literature are applicable. Caching

can consider different granularities like index lists for

individual keywords or entire query results, and needs to

employ appropriate strategies for cache refreshing and

replacement. Finally, efficient algorithms for distributed

top-k query processing are called for.

P2P Social Computing with Autonomous Peers

In the SC line of work, an architecture is pursued where

every peer has a powerful local search engine, with its

own crawler, indexer, and query processor. Such a peer

can compile its own content from thematically focused

crawls and other sources, andmake this content available

in a P2P overlay network. Search requests issued by a

peer can first be executed locally, on the peer’s locally

indexed content. When the recall of the local search

result is unsatisfactory, the query can be forwarded to a

small set of other peers that are expected to provide

thematically relevant, high-quality and previously un-

seen results. Deciding on this set of target peers is the

query routing problem in a P2P search network, also

known as collection selection. Subsequently, the actual

2084P Peer-to-Peer Web Search
search on the chosen target peers requires efficient

algorithms for top-k query processing. Search results

are then returned by different peers and need to be

meaningfully merged, which entails specific problems

for result ranking. Both query routing and result rank-

ing can build on various forms of distributed statistics,

computed in a decentralized way and aggregated and

disseminated in a scalable P2P manner (using compact

synopses such as Bloom filters or hash sketches and

leveraging the DHT infrastructure).

Query Routing

A practically viable query routing strategy needs

to consider the similarity of peers in terms of their

thematic profiles, the overlap of their contents, the

potential relevance of a target peer’s collection for

the given query, and also the costs of network commu-

nication and peer-specific processing loads.

Traditionally, the most important measure for

assessing the benefit of a candidate target peer for a

given query is the estimated relevance of the peer’s over-

all content for the query. This standard IR measure can

be estimated frequency statistics over the query’s key-

words (terms in IR jargon). In conventional, document-

oriented IR, these would be term frequencies (tf) within

a document and the so-called inverse document fre-

quencies (idf), the reciprocal of the global number of

documents that contain a given term. In P2P IR, the

estimation is based on the overall content of a peer

as a whole. Instead of tf, the document frequency (df)

of a peer is considered, which is the total number of

documents that contain the term and are in the peer’s

collection; and instead of idf, the inverse collection

frequency (icf) is considered, which is the reciprocal

of the total number of peers that contain (at least one

document with) the term. These basic measures are

combined into a relevance or query-specific quality

score for each candidate peer. There are various models

for the combined scores; among the most cited and

best performing models are CORI [4], based on prob-

abilistic IR, and statistical language models adapted to

the setting of P2P collection selection [9]. The Deci-

sion-Theoretic Framework (DTF) [11] provides a uni-

fied model for incorporating quality measures of this

kind as well as various kinds of cost measures.

Selecting peers solely by query relevance, like CORI

routing, potentially wastes resources when executing

a query on multiple peers with highly overlapping

contents. To counter this problem, methods for esti-

mating the overlap of two peers’ contents have been
developed. These estimates are then factored into an

overlap-aware query routing [10] method by using a

weighted combination of peer quality and overlap

(or novelty) as ranking and decision criterion.

Query routing decisions are typically made at query

run-time, when the query is issued at some peer. But the

above methods involve directory lookups, statistical

computations, andmulti-hopmessages; so it is desirable

to precompute preferred routing targets and amortize

this information over many queries. A technique for

doing this is to encode a similarity-based precomputed

binary relation among peers into a Semantic Overlay

Network (SON) [5]. The routing strategy would then

select target peers only or preferably from the SON

neighbors of the query initiator.

Search Result Ranking

When a query returns results that have been obtained

from different peers, the scores that the peers assign to

them are usually not comparable. The reason is that

different peers may use different statistics, for example,

for estimating the idf value of a term which is crucial for

weighting the importance of different query terms, or

they may even use completely different IR models. This

situation leads to the problem of result merging. It is

addressed by re-normalizing scores from different peers

to make results meaningfully comparable [15]. A variety

of such methods exist in the literature, some using only

the peer-specific scores and some aggregated measures

about peers (e.g., the total number of documents per

peer), some using sampling-based techniques, and some

using approaches that first reconstruct the necessary

global statistics (e.g., global document frequencies for

each term) for optimal re-normalization of scores.

Web search ranking usually also considers the query-

independent authority of pages as derived from link

analysis, and a P2P network is a natural habitat for

such ‘‘social ratings’’. Link analysis algorithms such

as PageRank are centralized algorithms with very high

memory demand. Executing them in a distributed

manner would allow scaling up to even larger link

graphs, by utilizing the aggregated memory of a P2P

system. Various decentralized methods have been de-

veloped to this end, including a general solution to

the spectral analysis of graphs and matrices [8], which

underlies the PageRank computation.

Most of these methods assume that the underlying

Web graph can be nicely partitioned among peers.

In contrast, a P2P system with autonomous peers

faces a situation where the Web pages and links that

Performance Analysis of Transaction Processing Systems P 2085

P

are known to the individual peers are not necessarily

disjoint. The JXP algorithm [12] computes global

authority measures such as PageRank in a decentralized

and scalable P2Pmanner, when theWeb graph is spread

across autonomous peers and peers’ local graph frag-

ments overlap arbitrarily, and peers are (a priori) un-

aware of other peers’ fragments. The scores computed

by JXP provably converge to the same values that would

be obtained by a centralized PageRank computation on

the full Web graph. These kinds of algorithms seem to

be highly relevant also for analyzing authority and

reputation measures in large-scale social networks.

Key Applications
The technology for P2PWeb search has many potential

applications, ranging from keyword search on the

Web or in blogs, possibly in a personalized manner

and exploiting social-network affinities among users,

all the way to more ‘‘semantic’’ search capabilities in

large enterprises, scholarly communities, federations of

digital libraries, and distributed Internet archives. The

latter may include searching XML, RDF, or multimedia

data as well as providing temporal querying and

other forms of enhanced search capabilities. With

richer functionality, centralized systems face scalability

bottlenecks, whereas decentralized approaches can

leverage the fact that the underlying information is

naturally distributed at a large scale.

Future Directions
Today, there is still no P2PWeb search system that would

scale anywhere near the sizes of the major commercial

search engines. But as theWeb continues to grow, search

functionality is becoming richer (e.g., by personali-

zation), and workloads are becoming much more

demanding, the P2P paradigm is likely to gain

more momentum for Web applications. Currently,

there is a variety of research prototypes (e.g., [3,6,7,13]),

including some that offer open-source software.

Cross-references
▶Distributed Hash Table

▶ Link Analysis

▶ Peer-to-Peer Data Management

▶ Social Networks

▶Top-k XML Query Processing

Recommended Reading
1. Baeza-Yates R.A., Castillo C., Junqueira F., Plachouras V., and

Silvestri F. Challenges on distributed web retrieval. In Proc. 23rd

Int. Conf. on Data Engineering, 2007, pp. 6–20.
2. Barroso L.A., Dean J., and Hölzle U. Web search for a planet: the

Google cluster architecture. IEEE Micro, 23(2):22–28, 2003.

3. Bender M., Michel S., and Parreira J.X., and Crecelius T.

P2P web search: make it light, make it fly. In Proc. 3rd Biennial

Conf. on Innovative Data Systems Research, 2007, pp. 164–168.

4. Callan J.P., Lu Z., and Croft W.B. Searching distributed

collections with inference networks. In Proc. 18th Annual Int.

ACM SIGIR Conf. on Research and Development in Informa-

tion Retrieval, 1995, pp. 21–28.

5. Crespo A. and Garcia-Molina H. Semantic overlay networks

for P2P systems. In Proc. 3rd Int. Workshop Agents and Peer-

to-Peer Computing, 2004, pp. 1–13.

6. Cuenca-Acuna F.M., Peery C., Martin R.P., and Nguyen T.D.

PlanetP: using gossiping to build content addressable peer-to-peer

information sharing communities. In Proc. 12th IEEE Int. Symp.

High Performance Dist. Comp., 2003, pp. 236–249.

7. Kalnis P., Ng W.S., Ooi B.C., and Tan K.-L. Answering

similarity queries in peer-to-peer networks. Inf. Syst., 31

(1):57–72, 2006.

8. Kempe D. and McSherry F. A decentralized algorithm for

spectral analysis. In Proc. 36th Annual ACM Symp. on Theory

of Computing, 2004, pp. 561–568.

9. Lu J. and Callan J.P. Content-based retrieval in hybrid peer-

to-peer networks. In Proc. Int. Conf. on Information and

Knowledge Management, 2003, pp. 199–206.

10. Michel S., Bender M., Triantafillou P., and Weikum G. IQN

routing: integrating quality and novelty in P2P querying and

ranking. In Advances in Database Technology, Proc. 10th Int.

Conf. on Extending Database Technology, 2006, pp. 149–166.

11. Nottelmann H. and Fuhr N. Comparing different architec-

tures for query routing in peer-to-peer networks. In Proc. 28th

European Conf. on IR Research, 2006, pp. 253–264.

12. Parreira J.X., Donato D., Michel S., and Weikum G. Efficient

and decentralized pageRank approximation in a peer-to-peer

web search network. In Proc. 32nd Int. Conf. on Very Large

Data Bases, 2006, pp. 415–426.

13. Podnar I., Rajman M., Luu T., Klemm F., and Aberer K.

Scalable peer-to-peer web retrieval with highly discriminative

keys. In Proc. 23rd Int. Conf. on Data Engineering, 2007, pp.

1096–1105.

14. Steinmetz R. and Wehrle K. Peer-to-peer systems and applica-

tions. Springer, 2005.

15. Weiyi M., Yu C.T., and Liu K.-L. Building efficient and effective

metasearch engines. ACM Comput. Surv., 34(1):48–89, 2002.
Performance Analysis of Transaction
Processing Systems

ALEXANDER THOMASIAN

Thomasian and Associates, Pleasantville, NY, USA

Synonyms
Queueing analysis; Probabilistic analysis; Cache per-

formance; Storage systems; Concurrency control

2086P Performance Analysis of Transaction Processing Systems
Definition
The performance of transaction (txn) processing (TP)

systems and more generally database management sys-

tems (DBMSs) is measured on operational systems, pro-

totypes, and benchmarks. Probabilistic and queueing

analyses have been used to gain insight into TP system

performance, but also to develop capacity planning

tools. The following is considered: (i) queueing analysis

of processors and disks, (ii) queueing network models

(QNMs) of computer systems, (iii) techniques to esti-

mate the database buffers miss rate, (iv) factors affect-

ing RAID performance, (v) concurrency control (CC)

methods for high data contention TP systems and their

analyses.

Historical Background
Early performance studies of TP were concerned with

processor or central processing unit (CPU) scheduling.

Queueing network models – QNMs were developed in

the 1970s to estimate delays at active computer system

resources, i.e., CPU and disks. The effect of passive

resources, such as the memory size constraint, was

later incorporated into capacity planning tools for

TP systems [5]. The Transaction Processing Council’s

(TPC’s) debit–credit benchmark in 1985 compares

the performance of TP systems using their through-

put at which a certain txn response time is reached

(http://www.tpc.org). Buffer/cache management poli-

cies in processors, databases, and disk controllers have

been studied since the 1970s. Coherence issues of CPU

caches in multiprocessors and database buffers in

shared disk systems gained importance in 1980s. Mag-

netic disks invented in 1950s have a significantly im-

proved capacity and transfer rate, but not random

access time. This led to the proposal and analysis of

numerous disk arm scheduling policies. The 1988

Redundant Array of Independent Disks (RAID) classi-

fication provided renewed impetus to improve the

performance and reliability of storage systems [1].

Shared-everything, -disk, and -nothing computer

organizations have limitations for high-performance

TP and DBMS applications, i.e., the first two pose

cache coherence problems and shared-nothing systems

are susceptible to processing time skew. (For example,

there is a twofold increase with exponentially

distributed processing times at four nodes, sinceP4
i¼1 1=i ¼ 2:08.) CC has limited effect on TP per-

formance in modern DBMSs, but this was not so in

early relational DBMSs with coarse granularity
locking, therefore many CC methods were proposed

and evaluated [10].

Foundations
CPU Scheduling. Processing of txns at the CPU has

been modeled by an M/G/1 queueing model, which

consists of a First-Come, First-Served (FCFS) queue

and a single server [4]. M stands for Poisson arrivals

with rate l, G stands for a general service time distri-

bution with xi as the ith moment. The server utiliza-

tion is r ¼ lx < 1, the mean waiting time at the queue

is WM=G=1 ¼ lx2=ð2ð1� rÞÞ, and the mean response

time R ¼ WM=G=1 þ x [4]. M/M/1 is a special case of

M/G/1 with an exponential service time distribution

with x2 ¼ 2ðxÞ2, so that the mean of the exponentially

distributed response time is R1 ¼ x=ð1� rÞ. M/M/m

has m servers, hence r ¼ lx=m. For m = 2 there is

R2 ¼ x=ð1� r2Þ (for m > 2 see [4]). For a single-

server which is twice as fast as the previous servers:

R3 ¼ ðx=2Þ=ð1� rÞ. The same r is maintained in the

three systems with Ri, 1 � i � 3, by setting the arrival

rate to 2l, but utilizing two M/M/1 queues with

uniform routing in the first case, so that the total

processing capacity is 2m in all three cases. There is

R1 > R2 > R3, where the first inequality reflects the

resource sharing advantage of a shared queue, while

the second inequality reflects the advantage associated

with a single fast server when service times are not

highly variable [4]. For K fork-join requests initiated

at K M/M/1 queues the expected value of the maxi-

mum of K response times is: Rmax
k = HKR, where

HK ¼
PK

k¼1 1=k is the Harmonic sum. The compo-

nents of a fork-join request are correlated, so that R
F=J
2

< Rmax
k ; e.g., R

F=J
2 = (1.5 � r/8)R < Rmax

2 . An approxi-

mate expression for R
F=J
k for K> 2 has been used in the

analysis of RAID5 disk arrays. With two txn classes the

response time for the more urgent (class 1) txns can be

improved by processing them at a higher priority than

less urgent (class 2) txns. The arrival rates are l1 and
l2 and the ith moments of service time are xi1 and xi2,

respectively. With preemptive priorities and a negligi-

ble preemption overhead, class 1 txns are processed

without being affected by class 2 txns. With non-

preemptive priorities W1 = W0 ∕ (1 � r1) and W2 =

W0 ∕ ((1 � r1)(1 � r)), where rj ¼ ljxj ; j ¼ 1;2

and W0 ¼ 1
2

P2
j¼1 ljx

2
j is the remaining processing

time of txns at the CPU [4]. Note that W1 is only

affected by r1, but not r = r1 + r2. Kleinrock’s conser-
vation law states that the improvement in waiting

Performance Analysis of Transaction Processing Systems P 2087

P

time of one txn class is at the cost of the other, so that

the weighted sum of waiting times remains constant:P2
j¼1 rjWj ¼ W0=ð1� rÞ. Preemptive (resp. non-

preemptive) priorities are applicable to CPU

(resp. disk) scheduling.

Queueing Network Models – QNMs

In open QNMs there are txn arrivals and departures,

while in a closed QNM a completed txn is immediately

replaced by a new txn, so that the number of txns

remains fixed at N. Txns are processed at K > 1

nodes, where each node is a single or multiserver

queueing system. The QNM of a computer system

may be organized as the Central Server Model (CSM),

with the CPU the central server and the disks as pe-

ripheral servers. Txns arrive at the CPU (node 1),

access one of the K � 1 disks with probability pk, 2 �
k � K, return to the CPU for additional processing,

and leave the system after CPU processing with proba-

bility p1, so that
PK

k¼1 pk ¼ 1. The transition proba-

bility matrix yields the mean number of visits to the

nodes: i.e., v1 = 1∕p1 and vk = pk ∕p1,2 � k � K. QNMs

satisfying the BCMP theorem allow four types of

nodes, most notably exponential service times at

single- or multi-server queues with FCFS scheduling

and nodes with an infinite number of servers [4,5]. The

steady-state probability Pr[n1,n2,...,nK] in such QNMs

can be expressed in product-form and their perfor-

mance metrics computed efficiently. Approximation

techniques or simulation can be applied otherwise.

The mean residence times at the nodes of an open

product-form QNM can be obtained separately. With

an external arrival rate L, the arrival rate to node k is

lk = vkL, its utilization rk ¼ lkxk=mk , where xk
is its mean service time and mk is the number of its

servers. The service demand or the total txn processing

time at a node k is given as Dk ¼ vkxk; 1 � k � K , so

that alternatively rk = LDk. The mean txn residence

time at node k is rk ¼ xk=ð1� rmk

k Þ, 1 � k � K with

mk � 2. The mean txn response time is R =
PK

j¼1 vkrk
and the mean number of txns at the system following

Little’s result is the product of the arrival rate and the

mean response time: N ¼ LR [4,5]. N can be used to

estimate the degree of txn concurrency or Multipro-

gramming Level (MPL) and the memory size require-

ments for TP.

Closed QNMs can be analyzed via the convolution

or themean value analysis – MVA algorithm [4,5]. The

MVA arrival theorem states that in a closed QNM with
n txns the mean queue-length at node k at an arrival

instant, is that of a closed system with n � 1 txns,

i.e., Ak(n) = Qk(n � 1) [5]. The mean queue-length

includes the request at the server, whose mean residual

service time is the same as its service time due to the

memoryless property of the exponential distribution:

x0k ¼ x2k=ð2xkÞ ¼ 2ðxkÞ2=ð2xkÞ ¼ xk [4]. The mean

residence time at node k for vk visits is RkðnÞ ¼
vkrkðnÞ ¼ vkxk½1þ Qkðn� 1Þ� ¼ Dk½1þ Qkðn� 1Þ�.

MVA Algorithm for Closed QNM with Single Servers.

Input parameters: N (MPL), K (number of nodes),

Dk, 1 � k � K (mean service demands).

for k = 1 to K do Qk(0) = 0 (initialize queuelengths at

n = 0)

for n = 1 to N do {(vary the number of txns)

for k = 1 to K do {(vary the node index)
if delay server Rk(n) = Dk (no queueing at

‘‘infinite servers’’)

if single server Rk(n) = Dk[1 + Qk(n � 1)]}
RðNÞ ¼
PK

k¼1 RkðnÞ (txn residence time)

X(n) = n ∕R(n) (txn throughput using Little’s result)

for k = 1 to K do Qk(n) = X(n)Rk(n) (mean queue-

length at the nodes, Little’s result) }

The convolution algorithm applied to single-server

queues computes G(0 : N), after the initialization

G(0) = 1 and G(n) = 0, n 6¼ 0, as: G(n) = G(n) +

DkG(n � 1), 1 � n � N, 1 � k � K, so that X(N) =

G(N � 1)∕G(N). Compared to MVA the order of

the iterations on n and k are reversed. Given thatPK
k¼1 Dk ¼constant, the throughput of a closed QNM

is maximized when the service demands at all the nodes

are equal. Due to symmetry Qk(N) = (N � 1) ∕K, so
that R(N) = KD(1 + (N� 1) ∕K) = (N + K� 1)D. Next,

consider Poisson arrivals to a QNM with a maximum

degree of concurrency M due to limited memory size.

For n < M arriving txns are activated immediately and

otherwise enqueued at a FCFS memory queue.

A hierarchical solution method is applicable in this

case [5]. The lower level model yields the throughput

characteristic of the closed QNM: X(n), 1 � n � M.

Additional txns waiting in the memory queue do not

contribute to throughput, so that X(n) = X(M), n > M.

A birth-death model is used at the higher level, with the

state n denoting the number of txns at the system. The

arrival rate at all states is L and the completion rate at

state n is X(n), n � 1. The probability that there are n

txns in the system is: Pn = LPn�1 ∕X(n), n � 1. The

normalization condition
P

n�0 Pn ¼ 1 yields P0 and

2088P Performance Analysis of Transaction Processing Systems
hence Pn,8n > 0. The mean number of txns at the

computer system, mean number of txns at the memory

queue, and the mean number of activated txns is:

N ¼
P

n>0nPn, NB ¼
P

n>M ðn�MÞPn, and

NA ¼
P

n>0minðn;MÞPn. The mean txn response

time, mean waiting time at the memory queue, and

the mean residence time at the computer system

are, respectively: R ¼ N=L, WM ¼ NB=L, and

RA ¼ NA=L. N ¼ NB þ NA, so R = WM + RA. The

throughput characteristic X(n), n� 1 vs. n (without an

MPL constraint) is a convex function, which reaches

an asymptotic value min{mk ∕Dk,8k}. The node with

the smallest throughput is the bottleneck resource,

since it determines the maximum system throughput

Lmax. The throughput may drop due to thrashing in an

overloaded virtual memory system [5] or due to exces-

sive lock contention with the standard locking method.

Buffer Miss Rate (BMR)

BMR is applicable to the various levels of the memory

hierarchy. Misses at the database buffer and disk con-

troller cache result in disk accesses, which significantly

degrade the performance of TP systems. BMR is affect-

ed by the buffer size, the replacement policy, and the

workload. Analyses of replacement policies, such as

FIFO, LRU, and CLOCK, using Markov chain model-

ing are based on the Independent Reference Model

(IRM). (http://www.informatik.uni-trier.de/~ley/db/

dbimpl/buffer.html.) Data streams can also be charac-

terized by stack depth and the hierarchical reuse or

fractal models. Trace-driven simulation is a straight-

forward technique for evaluating the performance of

buffer management policies, which can be used for

calibrating empirical formulas. A recent top-down

analysis derives an equation for the number of page

faults (n) vs. memory size (M) [9]. M0 andM∗ are the

min and maxM that are sufficient and necessary. n∗ is

the number of cold memory misses, i.e., misses starting

with an empty buffer. The parameters vary with pro-

gram behavior and replacement policy.

n ¼ 1

2
½H þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � 4

p
�ðn	 þ n0Þ � n0;

H ¼ 1þM	 �M0

M �M0

;M � M	:

Performance Analysis of Storage Systems

RAID performance is improved by striping and cach-

ing. Striping eliminates disk access skew by partitioning
large datasets into fixed size stripe units (SUs), which

are allocated in round-robin manner across all disks

[1]. The RAID controller cache complementing the

database buffer in main memory is partially nonvolatile

storage (NVS) and is used for fast writes, which are as

reliable as writing to disk. Disk writes can be deferred

and processed at a lower priority than reads, since read

response times affect txn response time. Dirty data

blocks in NVS are possibly overwritten several times,

before they are destaged or written to disk. This elim-

inates unnecessary disk accesses. Applying disk sched-

uling to batched destaging of multiple blocks leads to

higher disk access efficiency. Both effects can be cap-

tured by trace analysis [15].

RAID1 or disk mirroring, which predates the RAID

classification, replicates data on two disks to achieve

fault-tolerance. A data block can be read from either

disk, but both copies should be eventually updated.

Disk bandwidth can be saved by writing modified

blocks to NVS first. The doubling of data access band-

width is beneficial in view of increasing disk capacities,

but an even further improvement in bandwidth can be

attained by judicious routing of requests. When one of

mirrored disks fails the read load on the surviving disk

is doubled, but a smaller load increase can be attained

with interleaved declustering, which replicates the con-

tents of one disk on the other n� 1 disks of the cluster,

so that the read load increase is n ∕(n � 1) [13].

Erasure coding in RAID5 and RAID6 uses one and

two check disks to protect against single and double

disk failures, respectively [1]. RAID5 uses parity cod-

ing, so that the check SU is the exclusive-OR (XOR) of

the remaining SUs in the same stripe or row. RAID6

uses Reed-Solomon or specialized parity codes to pro-

tect two disks out of N. The updating of a data block

requires the corresponding check block(s) to be com-

puted and updated. If the old copies of data and check

blocks are not cached, four (resp. six) disk accesses are

required for RAID5 (resp. RAID6), this is therefore

referred to as the small write penalty [1]. Check SUs

are placed in repeating left-to-right diagonals to bal-

ance the load for updating the check blocks. When one

of the N disks fails, RAID5 continues its operation in

degraded mode, by reconstructing missing blocks of

the broken disk on demand as follows. The controller

issues a fork-join request to the N � 1 corresponding

blocks on surviving disks and these blocks are XORed

to reconstruct the missing block. The read load on

surviving disks is doubled, but the load increase for

Performance Analysis of Transaction Processing Systems P 2089

P

write requests is smaller. The clustered RAID paradigm

reduces the disk load in degraded mode by using a

parity group size G < N, so that the increase in

read load is a = (G � 1) ∕ (N � 1) < 1 [1]. The

RAID5 rebuild process reconstructs the contents of a

failed disk track-by-track on a spare disk, by reading

successive tracks from surviving disks, XORing all

corresponding tracks to reconstruct a missing track,

and writing it on the spare disk [15]. Distributed sparing

distributes the spare areas among N + 1 disks. so that

the bandwidth of the spare disk is not wasted [15]. The

vacationing server method (VSM) starts reading tracks

from disks when they become idle, so the rebuild pro-

cess does not affect the disk load. No new tracks are read

after there is an external arrival, but the reading of the

current track is completed. The increase in mean disk

waiting time over M/G/1 is the mean residual time to

read a track: WVSM ¼ WM=G=1 þ x0track [4]. RAID6

deals with the possibility of unsuccessful rebuild,

when unreadable sectors or latent sector failures –

LSFs are encountered during the rebuild process or to

cope with rare two disk failures.

Mean disk response time with FCFS disk scheduling

can be obtained using the M/G/1 queuing model [4].

Random disk accesses incur a seek, latency or rotational

delay (half a rotation time for small blocks), and transfer

time (negligible for small blocks). One has xdisk = xseek +

xlatency + xxfer . The moments of disk access time can be

obtained under various assumptions, e.g., all disk

cylinders are accessed uniformly. A significant reduc-

tion in disk response time is possible via the Shortest

Access Time First (SATF) policy [14]. Given n random

disk requests, the disk access time drops as n1∕5, e.g.,

n = 32 halves the access time with respect to FCFS.

Performance Analysis of Concurrency Control Methods

Performance degradation due to CC is in the form of

txn blocking and restarts. The standard lockingmethod

is based on the strict two-phase locking (2PL) method

[3], i.e., locks are requested on demand and held to

completion, at which point the txn commits, releasing

all of its locks. Locks are also released when a txn

is aborted to resolve deadlocks or other reasons

[3]. Restart-oriented locking methods and optimistic

CC (OCC) methods are also discussed.

Standard Locking

Consider an abstract model of standard locking [12].

There areM txns in a closed system. A txn of size k has
k + 1 steps with mean duration s, so that the mean txn

residence time with no lock contention is: rk = (k + 1)s.

A lock is requested at the end of the first k steps and all

locks are released at the end of the k + 1st step, i.e.,

strict 2PL, so that lock requests are uniformly

distributed over the lifetime of a txn. The mean num-

ber of locks held by a txn is the ratio of the time–space

of the number of locks held by a txn and rk, which is an

approximation to Rk at lower levels of lock contention,

which yields: Lk � k=2. Assuming that all lock requests

are exclusive and are uniformly distributed over the D

objects in the database, the probability of lock conflict

is: PcðkÞ � ðM � 1ÞLk=D. When the fraction of shared

lock requests is fS, the analysis can proceed as if all the

lock requests are exclusive with an effective database

size Deff = D ∕(1 � fS
2) [8]. The probability that a txn

encounters a lock conflict for Pc(k)� 1 can be used to

obtain the probability of a two-way deadlock [3]:

PwðkÞ ¼ 1� ð1� PcðkÞÞk � kPcðkÞ �
ðM � 1Þk2

2D
:

PDð2ÞðkÞ ¼
1

M � 1
Pr½T 1 ! T 2�Pr½T 2 ! T 1�

¼ ðPwðkÞÞ2

M � 1
� ðM � 1Þk4

4D2
:

A two-way deadlock can only occur if txn TA requests

a lock held by txn TB, which is blocked because of its

previous lock conflict with TA. Multiway deadlocks are

muchlesscommonandareignored[3].Weobtainthemean

blockingdelayof a txnwith respect toanactive txnholding

therequestedlock(Wk
(1)) by noting that the probability

of lock conflict increases with the number of locks

held by the txn (j) and that there are (k � j) remaining

steps each with mean duration (s + u) [10,11]:

W
ð1Þ
k �

Xk
j¼1

2j

kðk þ 1Þ ½ðk � jÞðs þ uÞ�

þ s0 ¼ k � 1

3
½r þ u� þ s0:

u = Pc(k)Wk is the mean blocking time per step, where

Wk is the mean waiting time per lock conflict, and s 0 is

the remaining processing time of a step. Since dead-

locks are rare, the mean txn response time only takes

into account txn blocking time due to lock conflicts:

Rk � (k + 1)s + kPc(k)Wk. The fraction of txn block-

ing time per lock conflict with an active txn is

A = Wk
(1)∕Rk � 1∕3. A more accurate expression for

2090P Performance Analysis of Transaction Processing Systems
two-way deadlocks as verified by simulation is:

P 0D(2)(k) � APD(2)(k) = PD(2)(k) ∕3 [16]. Next consider
K txn classes in a closed system, so that a completed

txn is replaced by a class k txn with frequency

fk;
PK

k¼1 fk ¼ 1. The mean response time over all txn

classes is: R = (K1 + 1)s + K1PcW, where Ki ¼
P

k�0 k
ifi

is the ith moment of txn size. The mean number

of txns in class k is Mk ¼MRkf k=R (the sum-

mation
PK

k¼1 yields M on both sides). Given that

Mk ¼Mðkþ1Þf k=ðK 1þ1Þ�Mkf k=K 1, the mean

number of locks held per txn is then:

L¼ 1

M

XK
k¼1

LkMk �
1

M

XK
k¼1

k

2
Mk

� 1

2K 1

XK
k¼1

k2f k ¼
K 2

2K 1

:

Similarly to fixed size txns Pc �ðM�1ÞL=D and

the expression for PD(2) is given in [16,12]. Both Pc
and PD(2) are affected by the variability of txn sizes, e.g.,

for a truncated geometric distribution there is a two-

fold and tenfold increase with respect to fixed txn sizes,

respectively [16]. W1 for variable txn sizes can be

obtained as the expected value of W1(k) over all txn

sizes. The normalized value for W1 is [10,11]:

A¼W 1

R
� K 3�K 1

3K 1ðK 2þK 1Þ
:

Denote the fraction of blocked txns with b and ignore

the difference in the number of locks held by active and

blocked txns. The probability that a txn has a lock

conflict with an active txn at level i = 0 (resp. has a

lock conflict with a txn blocked at level i = 1) is 1 � b
(resp. b) and the mean blocking time isW1 (resp.W2 =

1.5W1). The expression forW2 relies on the fact that at

the random instant when the lock conflict occurs the

active txn in the waits-for-graph is halfway to its com-

pletion. Generally, the probability that a txn is blocked

at level i is: Pb(i)� bi�1,i> 1 and Pb(1) = 1� b� b2�
b3. . .. The mean waiting time at level i> 1 isWi� (i�
0.5)W1, which is motivated by the expression for W2.

The mean blocking time is a weighted sum of delays

incurred by txns blocked at different levels:

W ¼
X
i�1

PbðiÞWi ¼W 1½1�
X
i�1

biþ
X
i>1

ði�0:5Þbi�1�:

LetMA andMB denote the mean number of active and

blocked txns, so that MAþMB ¼M . The fraction
of blocked txns is b¼MB=M . Dividing MB and M

by the system throughput yields b = K1PcW∕R. Multi-

plying both sides of the above equation by K1Pc ∕R
yields b on the left hand side and a = K1PcW1 ∕R =

AK1Pc on the right hand side. Note that a is the prod-

uct of the mean number of lock conflicts per txn and

the normalized waiting time with respect to active txns.

It follows: b = a(1 + 0.5b + 1.5b2 + 2.5b3 + . . .). A

closed-form expression for b can be obtained by noting
that b < 1 and assuming that the series is infinite:

f ðbÞ¼ b3�ð1:5aþ2Þb2þð1:5aþ1Þb�a¼ 0:

Plotting f(b) vs. b it is observed that the cubic equa-

tion has three roots 0 � b1 < b2 � 1 and b3 � 1

for a � a∗ = 0.226, which makes its discriminant

f ðaÞ ¼ a3þ 4
5
a2þ 28

15
a� 64

135
< 0 (http://en.wikipedia.

org/wiki/Cubic_equation.), and a single root b3 > 1

for a > a∗. The single parameter a determines the level

of lock contention for the standard locking and its critical

value a∗ determines the onset of thrashing. The smallest

root b1 for a� a∗ determinesMA¼Mð1�b1Þ, which
increases with M, but drops after a maximum value is

achieved. This is because of a snowball effect that

blocked txns cause further txn blocking. Given the

throughput characteristic X(n), n � 1 with no lock

contention, the throughput of a TP system when MA is

non-integer is: XðMAÞ¼ ðdMAe�MAÞ XðbMAcÞ
þðMA�bMAcÞXðdMAeÞ. The analysis for txns with

variable step durations uses iteration to estimate r,
which is the ratio of the number locks held by blocked

and active txns. It is shown in [12] that the critical

value of r matches the conflict ratio parameter in [17],

which is the ratio of the number of locks held by all and

active txns.
Restart-Oriented Locking Methods

Performance degradation in standard locking is mainly

caused by txn blocking. Txn aborts and restarts to

resolve deadlocks have little effect on performance,

because deadlocks are rare. Restart-oriented locking

methods follow the strict 2PL paradigm, but txns en-

countering lock conflicts are restarted to increase the

degree of txn concurrency, so that a higher txn through-

put can be attained. This is beneficial for high lock

contention TP systems with excess processing capacity,

but in hardware resource bound systems this may result

in performance degradation with respect to standard

locking. Since active txns are not guaranteed to

Performance Analysis of Transaction Processing Systems P 2091

P

complete successfully and commit, txn throughput can-

not be expressed as XðMAÞ, as in the case of standard

locking. The Running Priority (RP) method aborts txn

TB in the waits-for-graph TA!TB! TC, when TA has

a lock conflict with TB [2]. Similarly TB which is

already blocking TA is aborted when it is blocked

requesting a lock held by TC. In effect RP increases

the degree of txn concurrency even if the restart of an

aborted txn is delayed. The no-waiting [8] and cau-

tious waiting methods abort and restart a txn encoun-

tering a lock conflict with an active and blocked txn,

respectively. There is no benefit, since the restarted txn

will encounter the same lock conflict as before. The

Wait Depth Limited (WDL) method measures txn

progress by its length (L), which in [2] is approximated

by the number of locks that it holds in a lock conten-

tion bound system, while attained CPU time would be

a concern otherwise. WDL differs from RP in that it

attempts to minimize wasted processing by not restart-

ing txns holding many locks or txns nearing comple-

tion. This requires a priori knowledge of txn’s locking

requirements. For example, if TA which is blocking

another txn has a lock conflict with TB, then if L(TA)

< L(TB) then abort TA, else abort TB [2]. The superior

performance of WDL over RP and especially standard

locking has been shown via random-number-driven

(Monte-Carlo) simulation in [2], but also trace-driven

simulation in [17]. RP and WDL attempt to attain

essential blocking, i.e., allowing a txn to be blocked

only by active txns and not requesting a lock until it

is required. Immediately restarting an aborted txn may

result in cyclic restarts or livelocks, which should be

prevented to reduce wasted processing and to ensure

timely txn completion. Restart waiting delays the re-

start of an aborted txn until all conflicting txns are

completed [2]. Conflict avoidance delays with random

duration are a less reliable method to prevent cyclic

restarts.

Restart-oriented methods are analyzed using a

Markov chain model in [11], while flow-diagrams are

utilized in the analysis of the no-waiting method in [8].

Active (resp. blocked) states correspond to S2j, 0 � j �
k (resp. S2j+1, 0� j� k� 1). For example, in the case of

the no-waiting policy there is a transition forward

when there is no lock conflict: S2j ! S2j+2, 0 � j �
k � 1, otherwise the txn is aborted: S2j! S0. The state

equilibrium equations for the Markov chain yield the

steady-state probabilities pi, 0 � i � 2k. The mean

number of visits vi to Si can be similarly obtained by
noting that v2k = 1, which is the state at which the txn

commits. Given that hi denotes the mean holding time

at Si, then pi ¼ vjhi=
P2k

j¼0 vjhj , 0 � i � 2k. The mean

number of txn restarts is given by v0 � 1. A shortcom-

ing of the analytic approach is that requested locks are

implicitly resampled.

Optimistic Concurrency Control

A txn starting its execution first copies all objects

required for its processing into its private workspace

[6]. To ensure serializability after completing its pro-

cessing, the txn undergoes validation to ascertain that

none of the copied objects was modified by another

txn after it was read. If validation is successful the txn

commits and otherwise it is immediately restarted.

Given that the k objects updated by txns are uniformly

distributed over a database of size D, the probability of

data conflict between two txns of size k is: c = 1� (1�
k ∕D)k � k2∕D. The completion rate of successfully

validated txns is pms(M), where p is the probability of

successful validation, m is the completion rate of txns,

and s(M) takes into account the hardware resource

contention due to multiprogramming. A txn with pro-

cessing time x will require xM ∕s(M) time units to

complete. It observes the commits of other txns as a

Poisson process with rate l = (1 � 1∕M)pms(M). Txns

encountering data conflict with rate g = lc, fail their
validation with probability q = 1 � e�gxM∕s(M). The

number of txn executions in the system follows a

geometric distribution Pj = q(1 � q)j�1, j � 1 with a

mean J ¼ 1=q ¼ egxM=sðMÞ. The system efficiency p can

be expressed as the ratio of the mean execution time of

a txn without and with data contention, i.e., with the

possibility of restarts due to failed validation:

p ¼ E½xM=sðMÞ�
E½ðxM=sðMÞÞegxM=sðMÞ� ¼

R1
0

xe�mxdxR1
0

xeðgM=sðMÞ�mÞxdx

¼ ½1� ðM � 1ÞcpÞ�2:

The equation yields one acceptable root p = [1+2(M�1)
c�

ffi
1þ4ðM�1Þc

p
�=½2ðM�1Þ2c2� < 1, provided

gM ∕ s(M) < m and the integral in the denominator

converges. The txn execution time is not resampled

in this analysis, because resampling processing times

results in a mix of completed txns which is shorter than

original. Shorter txns have a higher probability of

successful validation and resampling results in over-

estimating performance. This analysis in [6] is that of

2092P Performance Analysis of Transaction Processing Systems
the OCC silent [7] or die method [2], which is ineffi-

cient in that a conflicted txn is allowed to execute to

the end, at which point it is restarted. The analysis in

[6] also considers static data access, i.e., all objects are

accessed at the beginning of execution, while dynamic

or on-demand data access is more realistic. The OCC

broadcast or killmethod aborts a txn as soon as a conflict

is detected. The analysis of the static/silentmethod in [6]

is extended to the other three cases in [7]. The distribu-

tion of txn processing time affects performance and in a

system with multiple txn sizes the wasted processing is

mainly due to lengthy txns [7]. This is due the quadratic

effect that the probability that a txn encounters a data

conflict increases with the number of objects it accesses

(k) and its processing time, which is also proportional

to k [2]. While the optimistic die method seems to be

less efficient than the optimistic kill method, this is not

the case when due to buffer misses txns make disk

accesses. It is advantageous then to allow a conflicted

txn to run to its completion to prime the database

buffer with all the objects required for its re-execution

in a second processing phase. In two-phase processing

txns in the second execution phase have a much

shorter processing time, since disk accesses are not

required, provided access invariance prevails, i.e., a

restarted txn accesses the same set of objects as it did

in its first execution phase [2]. The second execution

phase may use the optimistic kill method or even lock

preclaiming which ensures that the txn will not be

restarted. In general we have multiphase processing

methods with different CC methods with increasing

strengths, e.g., locking vs. OCC. WDL and RP restart-

oriented locking methods outperform two-phase

methods [2]. The analysis in [7] can be extended to

take into account the variability in txn processing

times and the use of different CC methods across txn

phases.
Conclusion

There is a need for methodologies combining analytic

models, simulation, and trace analysis to explore the

effectiveness of new computer organizations for TP,

since it is expensive to build realistic prototypes for

experimentation. An abstract model of a standard

locking system is analyzed here to provide an under-

standing of the thrashing phenomenon in standard

locking. It is shown that a single parameter a deter-

mines the level of lock contention with a critical
value, which determines the onset of thrashing. Re-

start-oriented locking methods selectively abort txns to

increase the degree of txn concurrency and reduce the

level of lock contention, by disallowing txns to wait for

the completion of already blocked txns. Two-phase

processing methods reduce the data contention level

in TP systems with access invariance, by lowering the

holding time of database objects. Both methods re-

quire excess processing capacity to cope with the addi-

tional processing when txns are restarted.
Cross-references
▶Optimistic Concurrency Control

▶RAID

▶ Strict 2PL

▶Two-Phase Locking
Recommended Reading
1. Chen P.M., Lee E.K., Gibson G.A., Katz R.H., and Patterson D.A.

RAID: High-performance, reliable secondary storage. ACM

Comput. Surv., 26(2):145–185, 1994.

2. Franaszek P., Robinson J.T., and Thomasian A. Concurrency

control for high contention environments. ACM Trans. Data-

base Syst., 17(2):304–345, 1992.

3. Gray J.N. and Reuter A. Transaction Processing: Concepts and

Facilities. Morgan Kauffmann, Los Altos, CA, 1992.

4. Kleinrock L. Queueing Systems: Vol. 1/2: Theory/Computer

Applications. Wiley, New York, 1975/1976.

5. Lazowska E.D., Zahorjan J., Graham G.S., and Sevcik K.C.

Quantitative System Performance. Prentice-Hall, Englewood

Cliffs, NJ, 1984.

6. Morris R.J.T. and Wong W.S. Performance analysis of locking

and optimistic concurrency control algorithms. Perf. Eval.,

5(2):105–118, 1985.

7. Ryu I.K. and Thomasian A. Performance evaluation of centra-

lized databases with optimistic concurrency control. Perf. Eval.,

7(3):195–211, 1987.

8. Tay Y.C. Locking Performance in Centralized Databases. Aca-

demic Press, New York, 1987.

9. Tay Y.C. and Zou M. A page fault equation for modeling the

effect of memory size. Perf. Eval., 63:99–130, 2006.

10. Thomasian A. Concurrency control: Methods, performance, and

analysis. ACM Comput. Surv., 30(1):70–119, 1998.

11. Thomasian A. Performance analysis of locking policies with

limited wait-depth. Perf. Eval., 33(1):1–21, 1998.

12. Thomasian A. Two-phase locking and its thrashing behavior.

ACM Trans. Database Syst., 18(4):579–625, 1993.

13. Thomasian A. and Blaum M. Mirrored disk reliability and

performance. IEEE Trans. Comput., 55(12):1640–1644, 2006.

14. Thomasian A., Fu G., and Han C. Performance evaluation

of two-disk failure tolerant arrays. IEEE Trans. Comput.,

56(6):799–814, 2007.

Performance Monitoring Tools P 2093
15. Thomasian A. and Menon J. RAID5 performance with

distributed sparing. IEEE Trans. Parallel Distr. Syst.,

8(6):640–657, 1997.

16. Thomasian A. and Ryu I.K. Performance analysis of two-phase

locking. IEEE Trans. Software Eng., 17(5):386–402, 1991.

17. Weikum G., Hasse C., Moenkeberg A., and Zabback P. The

COMFORT automatic tuning project. Inf. Syst., 19(5):381–432,

1994.
Performance Benchmark

▶Application Benchmark
Performance Measures

▶ Search Engine Metrics
Performance Metrics

▶ Evaluation Metrics for Structured Text Retrieval
P
Performance Monitoring Tools

PHILIPPE BONNET
1, DENNIS SHASHA

2

1University of Copenhagen, Copenhagen, Denmark
2New York University, New York, NY, USA

Definition
Performance monitoring tools denote the utilities and

programs that give access to database server internals.

Historical Background
Relational database systems have had to prove their

performance from the outset [1]. Tools to measure

their performance have therefore been present in

early versions of most major systems.
Foundations
Performance Monitoring tools are useful in finding

out how queries are being serviced, and how the

underlying resources are being used. In this entry, the
characteristics of the most relevant types of tools

are described.
Event Monitor

Event monitors capture the aggregate resources asso-

ciated to a given event (e.g., query execution, deadlock,

session) and report the collected data when the event

completes. Event monitors should have low overhead

as the collected data is usually accumulated in per-

formance counters that are updated as a side effect of

the operations monitored (e.g., CPU usage, IO issued,

locks collected during query execution) and only

accessed once the event has completed.

Event monitors are useful to identify the queries

that consume most resources and should require the

attention of the database tuner.
Query Plan Explainer

Query plan explainers display the execution plan chosen

by the query optimizer for a given query. Explainers

represent a query plan, either in textual form or graphi-

cally, as a tree whose leaves are base tables and internal

nodes are access methods and relational operators. The

nodes are possibly annotated with relevant properties

(e.g., cardinality, estimated cost).

Query plan explainers are useful to check that

the optimizer relies on updated statistics to generate

a query execution plan, to check that indexes are used

as intended, or to find out whether costly operators are

inserted against the programmer’s better judgment.
Profiler

There are two types of profilers:

1. Time-based profilers address the question: how is

the time spent? A time-based profiler logs the time

spent in the different components of the database

system and presents the time spent processing as

well as the time spent waiting for resources.

2. Counter-based profilers address the question: how

are resources used ? A counter-based profiler uses

counters to monitor the resources used during

execution and presents either database-wide or sys-

tem-wide aggregate counters.

Profilers might incur high running cost because of

the overhead of logging a potentially large number

of actions. Profilers are most useful to understand

the behavior of critical queries.

2094P Period-Stamped Temporal Models
Key Applications
Database management system developers need perfor-

mance monitoring tools to make sure that their system

is performing well. Database administrators need per-

formance monitoring tools to make sure that their

database instance is performing as well as possible.

Cross-references
▶Query Optimization

Recommended Reading
1. McJones P. The 1995 SQL reunion: people, projects, and

politics. Technical Report: SRC–TN–1997–018.

2. Millsap C. and Holt J. Optimizing Oracle Performance. O’Reilly,

Sebastopol, CA, 2003.

3. Shasha D. and Bonnet P. Database Tuning: Principles, Experi-

ments and Troubleshooting Techniques. Morgan Kaufmann,

San Francisco, CA, 2002.
Period-Stamped Temporal Models. Figure 1. Example of

a valid time relation.
Period-Stamped Temporal Models

NIKOS A. LORENTZOS

Agricultural University of Athens, Athens, Greece

Synonyms
Interval-based temporal models

Definition
A period-stamped temporal model is a temporal data

model for the management of data in which time has

the form of a time period.

Historical Background
There are applications that require the recording and

management not only of data but also of the time

during which this data is valid (valid time). A typical

example is the data maintained by pension and life

insurance organizations in order to determine the

benefits for which a person qualifies. Similarly, such

organizations have to record their financial obligations

at various times in the future.

There are also sensitive applications, in which it is

important to record not only the data but also the time

at which this data was either recorded in the database

or deleted or updated (transaction time). This time is

recorded automatically by the Database Management

System (DBMS) and it cannot be modified by the user.
Finally, there are applications in which both data,

valid time, and transaction time need be recorded.

A data model for the management of data and also

of either valid time or transaction time is a temporal

data model. If time has the form of a time period the

model is a period-stamped data model.

In the case of the relational model, data and time

are recorded in a relation. A relation to record data

and valid time is a valid time relation. A relation to

record data and transaction time is a transaction time

relation. Finally, a relation to record data, valid

time and transaction time is a bitemporal relation.

In spite of the interest for the management of tem-

poral data, there are many practical problems, which

cannot be supported directly by the use of a convention-

al DBMS. As a consequence, much programming is

required in order to support such applications. Hence,

the satisfaction of actual user requirements necessitated

the definition of a period-stamped temporal model. The

bulk of research, on the definition of such a model,

appeared in the 1980’s, at a time when computers

became powerful enough to process large volumes of

data.
Foundations
Problems related to the management of temporal data

are depicted next. The illustration is restricted to the

relational model, in particular to the management

of valid time relations. Note, however, that relevant

problems can be identified in the management of

transaction time relations whereas the management

of bitermporal relations is much more complicated.
Examples Illustrating Inadequacy of Conventional

Models to Support Time Period

Figure 1 shows SALARY, a valid time relation that

records salary histories. The notation ‘‘d_number,’’

for values recorded in attributes Begin and End,

Period-Stamped Temporal Models P 2095

P

represents a point in time, which is of a date-time data

type. For example, d100 could represent ‘‘January 1,

2007.’’ The interpretation of the first tuple is that

Alex earned 100 on each of the dates in the time period

[d100, d299], i.e., on each of the dates d100, d101,...,

d299. Then the amount earned was 150 for each of the

dates in [d300, d499].

Contrary to the simple representation of a valid time

relation, a conventional DBMS lacks the functionality

required for the management of such relations. This

is illustrated below by a number of examples.

Data insertion: If the tuple (Alex, 150, d400, d799)

is inserted into SALARY, it will be recorded in addition

to the other tuples. In this case, however, SALARY will

contain duplicate data for Alex’s payment on the

dates d400, d401,...,d499, since this data is already

recorded in the second tuple of the relation. Moreover,

the query, to return the time at which Alex’s salary

became 150, if not formulated carefully, will return

three dates, d300, d400 and d800 whereas the correct

answer should be d300. To avoid such problems, it

would be appropriate for the newly inserted tuple to

be combined with the second and third tuple for Alex

into a single one, (Alex, 150, d300, d999), i.e., tuples

with identical data for attributes Name and Amount

(value equivalence), which have either overlapping or

adjacent time periods, to coalesce into a single time

period (temporal coalescing).

Key: Declaring the primary key of SALARY, to be a

multi-attribute key of Name and Amount, will not

disallow the recording of the tuple (Alex, 200, d400,

d799). As a result, SALARY will contain conflicting

data, since its second tuple will be showing that

Alex’s payment is 150 for each of the dates d400,

d401,...,d499 whereas, from the newly inserted tuple,

it will also be shown that, for these dates, this payment

is 200. Hence, in the case of a conventional DBMS,

special integrity constraints have to be defined for

every relation like SALARY.

Data deletion: Assuming that John’s payment for

the dates d400, d401,...,d799 was recorded by mistake

and has to be deleted, the last tuple of SALARY has to

be replaced by two tuples, (John, 100, d200, d399) and

(John, 100, d800, d899).

Data update: Assuming that John’s payment for

dates d400, d401,...,d799 has to be corrected to be

150, the last tuple of SALARY has to be replaced by

three tuples, (John, 100, d200, d399), (John, 150, d400,

d799) and (John, 100, d800, d899).
Data projection: The query ‘‘for every employee, list

the time during which he is paid,’’ requires a projection

on attributes Name, Begin, End. This will generate four

tuples. In practice, however, a temporal coalescing of

the time periods recorded in SALARY is also required

in order to obtain the correct result, consisting of only

three tuples, (Alex, d100, d499), (Alex, d800, d999)

and (John, d200, d899).

Since a conventional DBMS lacks the functionality

illustrated above, special code has to be written to

handle correctly all the cases described. This limitation

gave rise to research on the definition of a temporal

data model. Many of the research efforts led to pro-

posals for the definition of various period-stamped

data models.
Common Characteristics of Period-Stamped Data

Models

The majority of researchers adopted the principle

that a temporal data model should be a minimal

extension of the conventional relational data model.

The most common characteristics of these approaches

are outlined below.

A period-stamped, valid time relation always has

two types of attributes: The first type consists of one

or more ordinary attributes of a conventional relation.

These attributes are termed explicit by some authors.

Valid time itself is not considered to be data, it is

considered as being orthogonal to data. Hence, the

second type consists of special attributes to record

valid time. These attributes are often termed implicit

and can be system-assigned by default. Some appro-

aches consider one pair of such attributes, to record

the Begin and End of valid time periods. The valid time

recorded in them is usually assumed to represent a

time period of the form [Begin, End], i.e., an interval

closed on both sides. It is said that the data recorded in

the explicit attributes is stamped by the time recorded

in the implicit attributes.

According to the concepts discussed above, the

explicit attributes of the relation in Fig. 1 are Name

and Amount and the implicit attributes are Begin and

End. The first tuple of the relation is (Alex, 100) and it

is stamped by the time period [d100, d299].

Some approaches define a time period data type;

therefore they consider only one implicit attribute.

In such approaches, the equivalent scheme for the

relation in Fig. 1 is SALARY (Name, Amount, Period).

Period-Stamped Temporal Models. Figure 2. Another

valid time relation.

Period-Stamped Temporal Models. Figure 3. Result of a

temporal join operation.

2096P Period-Stamped Temporal Models
Since valid time is not considered to be data, it

cannot be part of the primary key of a relation. Hence,

Name is designated as the primary key of SALARY, i.e.,

it matches the primary key of an ordinary relation.

In all the approaches, valid time is considered to be

discrete. Hence, the time period [d100, d299] is inter-

preted as consisting of the dates d100, d101,...,d299.

Various temporal granularities can be declared by the

user, depending on the application.

Temporal Algebras, Temporal Query Languages or

Temporal Calculi are proposed in various approaches.

The functionality of the operations of the conventional

relational model is revised accordingly, so as to over-

come the problems illustrated earlier. Appropriate

predicates are also defined, applicable to time peri-

ods, which can be used in selection operations. In

some approaches additional operations are defined to

capture temporal functionality that cannot be achieved

by simply extending existing languages. In general,

an implicit temporal coalescing takes place in all the

temporal operations introduced.

Most of the proposed models in the literature

support the valid time property over past, present

and future time periods.

Desired Behavior of Period-Stamped Data Models

Given the above limitations, new problems have to be

faced by the proposed period-stamped models. The

most interesting of them are illustrated next by making

use of relation SALARY in Fig. 1.

Data projection: The query ‘‘list all the employees

ever paid’’ requires a projection of SALARY on Name.

Such an operation normally yields a relation R with

tuples (Alex), (John). Given however that R lacks

implicit attributes, it gives rise to the question whether

it is an appropriate response. To overcome this prob-

lem, in some approaches projection is defined to

yield, after a temporal coalescing, the rows (Alex,

d100, d499), (Alex, d800, d999) and (John, d200,

d899). Notice however that, in this case, the result

matches exactly that of another query, ‘‘for every

employee, list the time during which he is paid.’’

Stamp projection: Since time is not data, some

special operation, to project only on time, may be

necessary. For example, the answer to the query ‘‘give

the time during which at least one employee was paid ’’

should consist of one row, (d100, d999). Given how-

ever that this result lacks explicit attributes, it is

necessary to determine whether it is appropriate to
allow time stamp projection without explicit attri-

butes. Similar questions arise in the case of projections

of only one of the two implicit attributes.

Association of data in distinct relations: Such an

association requires the use of the Cartesian product

operation. For an illustration, consider also the rela-

tion in Fig. 2, which is used to record the history of

employee assignments to departments. Then a Carte-

sian product of SALARY with ASSIGNMENTseems to

yield a relation with two pairs of Begin and End time

stamps, one pair from each relation. Clearly this is

not a correct period-stamped relation. The same is

also true for a join operation. As a consequence,

some researchers avoid defining Cartesian product

and restrict to the definition of a temporal join opera-

tion. This operation yields relation R, in Fig. 3, with a

single pair of implicit attributes.

Literature Overview

The characteristics of individual approaches are out-

lined below. Unless otherwise specified, a point-

stamped valid time relation, in the approach under

discussion, is that of Fig. 1.

Jones and Mason [1] define LEGOL, a language

for the management of period-stamped, valid time

relations. It is an early, yet incomplete piece of work.

Ben-Zvi defines a model for the management of

period-stamped, bitermporal relations ([14], Chap. 8).

One more attribute is used, to record the time at

which a tuple is deleted. Sets of time periods are also

Period-Stamped Temporal Models. Figure 4. A relation

in Tansel’s approach.

Period-Stamped Temporal Models P 2097

P

considered, consisting of mutually disjoint periods.

Some SQL extension is provided, too. It is also an

early and incomplete piece of work.

Snodgrass defines a QUEL extension, for the man-

agement of valid time, transaction time and bitem-

poral relations [9]. Data may alternatively be stamped

by time points (point-stamped temporal models). Time

may not be specified for the primary key. Formal

semantics are provided. A tuple calculus and a rela-

tional algebra are defined in [14], Chap. 6.

Navathe and Ahmed propose an SQL extension for

period-stamped valid time relations ([14], Chap. 4,

[5,6]). In this approach, the primary key of the relation

in Fig. 1 is <Name, Begin>. The definition of the

primary key of a relation, in conjunction with the

definition of a Time Normal Form, enables temporal

coalescing. One variation of the select operation takes

as argument a time period value. A moving window

operation enables a temporary split of the time stamps

of all the tuples into time periods of a fixed size, and the

subsequent application of aggregate functions on the

data that are associated with these fixed size periods.

Lorentzos and Johnson define a relational algebra

for the management of either period-stamped or

point-stamped valid time data [3,2]. It is also shown

that there are practical considerations for having rela-

tions with more than one valid time. A period data

type is later defined in [14], Chap. 3. A generic period

data type is defined in [14], Chap. 3, and in [4],

enabling the use of periods of numbers and strings.

Such periods can be used for the management of non-

valid time relations which, however, require a func-

tionality identical with that of period-stamped, valid

time relations. The operations of the conventional

relational model are not revised but two new algebraic

operations are defined. Time is treated as data. As such,

it may participate in the primary key [4]. In [14],

Chap. 3, and in [4], it is shown that there are applica-

tions in which a temporal coalescing should be disal-

lowed. An SQL extension is also defined in [4].

Sarda defines a relational algebra in [7] and an SQL

extension for valid time relations in [14], Chap. 5, and

in [8]. A time period data type is also defined in [7].

Data may alternatively be stamped by time points.

Time may not be specified for the primary key. The

operations of the conventional relational model are not

revised but, as reported in [14], if time is projected out,

the result relation is not a correct valid time relation.

Similarly, the result returned by the Cartesian product
operation is considered not to be a correct period-

stamped relation. Two additional relational algebra

operations are also defined, functionally equivalent

with those defined by Lorentzos.

TSQL2 is a consensus temporal SQL2 extension for

the management of either period or point-stamped

valid time relations, transaction time relations and

bitermporal relations. It is complemented by the defi-

nition of a relational algebra.

All the previous approaches incorporate time at the

tuple level (tuple time-stamping). Contrary to these,

Tansel incorporates time at the attribute level (attribute

time-stamping) [10]. Hence, to record the history of

salaries and of assignment to departments, it suffices to

consider a relation like that shown in Fig. 4, in place of

the two distinct relations in Figs. 1 and 2. The relation

consists of two tuples, one for Alex and another for

John. Time periods are open for the End time. One

exception is the case where the end point of a time

period equals now, in which case the period is closed

(see for example Fig. 4, the assignment of Alex to

the Food department). Therefore, data valid in the

future is not supported.

The approach considers four types of attributes,

atomic (Name, in Fig. 4), set valued (e.g., to record data

such as {Alex, Tom}), triplet valued (e.g., to record

data such as <[d100, d300), 100>) and set triplet

valued (Salary and Department, in Fig. 4). The opera-

tions of the relevant conventional model are revised

accordingly. Four additional operations are defined,

which enable transformations between relations with

different types of attributes. A QUEL extension is

defined in [11]. The approach in [10] is extended in

[14], Chap. 7, and in [12], to a nested model, incor-

porating the well-known nest and unnest operations. A

Calculus and Algebra are also defined. The approach in

[12] is extended in [13], in order to support nested

bitemporal relations, in which valid and transaction

time are incorporated at the attribute level.

2098P Persistence
Key Applications
There are many applications that necessitate the

management of period-stamped and, more generally,

temporal data. Some examples are the following.

Period-stamped, valid time relations can be used by

pension and life insurance organizations in order to

determine the benefits a person qualifies for. Such rela-

tions are also needed for these organizations to record

their financial obligations at various times in the future.

Similarly, period-stamped, transaction time rela-

tions can be used in sensitive applications, to enable

tracing the content of the database and evaluate some

decision taken in the past, with respect to the content

of the database at that time.

Future Directions
Given the practical interest of period-stamped data,

and given the many differences between different

approaches, it will be useful to agree on and develop

a standard model by an international organization,

such as ISO.

Further research is necessary for the management

of period-stamped geographical data and for the

definition of a nested period-stamped data model.
Cross-references
▶ Point-stamped Temporal Models

▶ Supporting Transaction Time Databases

▶Temporal Algebras

▶Temporal Database

▶Temporal data models

▶Temporal Logical Models

▶Temporal Object-Oriented Databases

▶Temporal Query Languages
Recommended Reading
1. Jones S. and Mason P.S. Handling the time dimension in a

database. In Proc. Int. Conf. Data Bases, 1980, pp. 65–83.

2. Lorentzos N.A. and Johnson R.G. Extending relational algebra to

manipulate temporal data. Inf. Sys., 13(3):289–296, 1988.

3. Lorentzos N.A. and Johnson R.G. TRA a model for a temporal

relational algebra. In Temporal Aspects in Information Systems,

C. Rolland, F. Bodart, M. Leonard (eds.). North-Holland, pp.

203–215, 1988.

4. Lorentzos N.A. and Mitsopoulos Y.G. SQL extension for interval

data. IEEE Trans. Knowl. Data Eng., 9(3):480–499, 1997.

5. Navathe S.B. and Ahmed R. A temporal relational model and a

query language.Inf. Sci. Int. J., 47(2):147–175, 1989.

6. Navathe S.B. and Ahmed R. TSQL: a language interface

for history databases. In Temporal Aspects in Information
Systems, C. Rolland, F. Bodart, M. Leonard (eds.). North-

Holland, pp. 109–122, 1988.

7. Sarda N.L. Algebra and query language for a historical data

model. Computer J., 33(1):11–18, 1990.

8. Sarda N.L. Extensions to SQL for historical databases. IEEE

Trans. Knowl. Data Eng., 2(2):220–230, 1990.

9. Snodgrass S. The temporal query language TQUEL. ACM Trans.

Database Sys., 12(2):247–298, 1987.

10. Tansel A.U. Adding time dimension to relational model and

extending relational algebra. Inf. Sys., 11(4):343–355, 1986.

11. Tansel A.U. Ahistorical query language. Inf. Sci., 53(1–2):101–133,

1991.

12. Tansel A.U. Temporal relational data model. IEEE Trans. Knowl.

Data Eng., 9(3):464–479, 1997.

13. Tansel A.U. Canan Eren Atay: Nested bitemporal relational

algebra. In Proc. 21st Int. Symposium on Computer and Infor-

mation Sciences, 2006, pp. 622–633.

14. Tansel A., Clifford J., Gadia J., Segev A., and Snodgrass R. (eds.).

Temporal databases: theory, design and implementation.

Benjamin/Cummings, 1993.
Persistence

▶ACID Properties
Persistent Applications

▶Application Recovery
Persistent Archives

▶Digital Archives and Preservation
Personal Data

▶ Individually Identifiable Data
Personalized Interfaces

▶Adaptive Interfaces

Personalized Web Search P 2099
Personalized Search

▶ Personalized Web Search
Personalized Web

▶Data Integration in Web Data Extraction System
P

Personalized Web Search

JI-RONG WEN
1, ZHICHENG DOU

2, RUIHUA SONG
1

1Microsoft Research Asia, Beijing, China
2Nankai University, Tianjin, China

Synonyms
Personalized search

Definition
For a given query, a personalized Web search can

provide different search results for different users or

organize search results differently for each user, based

upon their interests, preferences, and information

needs. Personalized web search differs from generic

web search, which returns identical research results

to all users for identical queries, regardless of varied

user interests and information needs.

Historical Background
Web search engines have made enormous contribu-

tions to the web and society. They make finding infor-

mation on the web quick and easy. However, they are

far from optimal. A major deficiency of generic search

engines is that they follow the ‘‘one size fits all’’ model

and are not adaptable to individual users. This is

typically shown in cases such as these:

1. Different users have different backgrounds and inter-

ests. Theymay have completely different information

needs and goals when providing exactly the same

query. For example, a biologist may issue ‘‘mouse’’

to get information about rodents, while program-

mers may use the same query to find information

about computer peripherals. When such a query is

issued, generic search engines will return a list of

documents on different topics. It takes time for a
user to choose which information he/she really

wants, and this makes the user feel less satisfied.

Queries like ‘‘mouse’’ are usually called ambiguous

queries. Statistics has shown that the vast majority of

queries are short and ambiguous. Generic web search

usually fails to provide optimal results for ambiguous

queries.

2. Users are not static. User information needs may

change over time. Indeed, users will have different

needs at different times based on current circum-

stances. For example, a user may use ‘‘mouse’’ to

find information about rodents when the user is

viewing television news about a plague, but would

want to find information about computer mouse

products when purchasing a new computer. Gener-

ic search engines are unable to distinguish between

such cases.

Personalized web search is considered a promising

solution to address these problems, since it can

provide different search results based upon the pre-

ferences and information needs of users. It exploits

user information and search context in learning

to which sense a query refers. Consider the query

‘‘mouse’’ mentioned above: Personalized web search

can disambiguate the query by gathering the follow-

ing user information:

1. The user is a computer programmer, not a biologist.

2. The user has just input a query ‘‘keyboard,’’ but not

‘‘biology’’ or ‘‘genome.’’ Before entering this query,

the user had just viewed a web page with many

words related to computer mouse, such as ‘‘com-

puting,’’ ‘‘input device,’’ and ‘‘keyboard.’’
Foundations

User Profiling

To provide personalized search results to users, per-

sonalized web search maintains a user profile for

each individual. A user profile stores approximations

of user tastes, interests and preferences. It is generated

and updated by exploiting user-related information.

Such information may include:

1. Demographic and geographical information, in-

cluding age, gender, education, language, country,

address, interest areas, and other information;

2. Search history, including previous queries and

clicked documents. User browsing behavior when

2100P Personalized Web Search
viewing a page, such as dwelling time, mouse

click, mouse movement, scrolling, printing, and

bookmarking, is another important element of

user interest.

3. Other user documents, such as bookmarks, favorite

web sites, visited pages, and emails. Teevan et al.

[15] and Chirita et al. [1] demonstrate that external

user data stored in a user client is useful to person-

alize individual search results.

User information can be specified by the user (explic-

itly collecting) or can be automatically learnt from a

user’s historical activities (implicitly collecting). As the

vast majority of users are reluctant to provide any

explicit feedback on search results and their interests,

many works on personalized web search focus on

how to automatically learn user preferences without

involving any direct user efforts [6,8,9,10,13]. Collect-

ed user information is processed and organized as a

user profile in a certain structure, depending on the

need of personalization algorithm. This can be com-

pleted by creating vectors of URLs/domains, keywords,

topic categories, tensors, or the like.

A user profile can usually aggregate a user’s history

information and represent the user’s long-term interests

(information needs). Some work has investigated wheth-

er such a long-term user profile is ineffective in some

cases. Consider the second case that was described in the

historical background section: a user will have different

needs at different times based on circumstances. In such

situations, personalization based on a user’s long-term

interests may not provide a satisfying performance,

because similar results could be returned. Some work

[10] has considered the use of a user’s active context to

represent short-term information needs. Search context

is incorporated into the user profile, or is constructed as

a separate short-term user model/profile and is used

in helping infer a user’s information needs.
Personalized Search Based on Content Analysis

Personalized web search can be achieved by checking

content similarity between web pages and user profiles.

Some work has represented user interests with

topical categories. User’s topical interests are either ex-

plicitly specified by users themselves, or can be

automatically learned by classifying implicit user data.

Search results are filtered or re-ranked by checking the

similarity of topics between search results and user

profiles. In some work [2,8], a user profile is structured
as a concept/topic hierarchy. User-issued queries and

user-selected snippets/documents are categorized into

concept hierarchies that are accumulated to generate a

user profile. When the user issues a query, each returned

snippet/document is also classified. The documents are

re-ranked based upon howwell the document categories

match user interest profiles. Chirita et al. [2] use the

ODP (Open Directory Project, http://www.dmoz.org/)

hierarchy to implement personalized search. User favor-

ite topics nodes are manually specified in the ODP hier-

archy. Each document is categorized into one or several

topic nodes in the same ODP hierarchy. The distances

between the user topic nodes and the document topic

nodes are then used to re-rank search results.

Some other work uses lists of keywords (bags

of words) to represent user interests. In [13], a user

profile is built as a vector of distinct terms and is

constructed by aggregating past user click history.

The cosine similarity between the user profile vector

and the feature vector of returned web pages are used

to re-rank results. Shen et al. [10] first use language

modeling to mine immediate search contextual and

implicit feedback information. The approach selects

appropriate terms from related preceding queries and

corresponding search results to expand the current

query. In a query session, the viewed document sum-

maries are used to immediately re-rank documents

that have not yet been seen by the user. Teevan et al.

[15] and Chirita et al. [1] exploit rich models of user

interests, built from both search-related information,

and other information about the user. This includes

documents and emails the user has read and created. In

[6], keywords are associated with categories and thus

user profiles are represented by a hierarchical category

tree based on keywords categories.

Personalized Web Search Based on Hyperlink Analysis

Most generic web search approaches rank importance

of documents based on the linkage structure of the

web. An intuitive approach of personalized web search

is to adapt these algorithms to compute personalized

importance of documents. A large group of these

works focuses on personalized PageRank. PageRank,

proposed by Page and Brin [7], is a popular link

analysis algorithm used in web search. The fundamen-

tal motivation underlying PageRank is the recursive

notion that important pages are those linked-to by

many important pages. This recursive notion can be

formalized by the ‘‘random surfer’’ model [7] on

Personalized Web Search P 2101

P

the directed web graph G. A directed edge <p, q>

exists in G if page p has a hyperlink to page q. Let O

(p) be the outdegree of web page p in G. O(p) is

equivalent to number of web pages that linked by

page p. Let A be the matrix corresponding to the web

graph G, where Aij¼ 1/O(j) if page j links to page i, and

Aij ¼ 0 otherwise. In the random surfer model, when a

surfer visits page p, he/she keeps clicking outlinks at

random with probability (1-c), and jumps to a random

web page with probability c. c is called teleportation

constraint or damping factor. The PageRank of a page

p is defined as the probability that the surfer visited

page p. Iterative computation of PageRank is done as

the following equation:

vkþ1 ¼ 1� cð Þ Avk þ cu ð1Þ

Here, u is defined as a preference vector, where |u| ¼ 1

and u(i) denotes the amount of preference for page i

when the surfer jumps to a random web page i.

The global PageRank vector is computed when

there is no particular preference on any pages, i.e.,

u ¼ [1/n,...,1/n]T. By setting variant preference to web

pages, a PageRank vector with personalized views of web

page importance is generated. It recursively favors pages

with high preference, and pages linked by high-prefer-

ence page. This PageRank vector is called a personalized

PageRank vector (PPV). To accomplish personalized

web search, a personalized PageRank is computed for

each user based upon the user’s preference. For exam-

ple, web pages in the user’s bookmarks are set higher

preferences in u. Rankings of the user’s search results

can be biased according to the user’s Personalized

PageRank vector instead of the global PageRank.

Unfortunately, computing a PageRank vector usu-

ally requires multiple scans of the web graph [7], which

makes it impossible to carry out online in response to a

user query. Furthermore, when a large number of users

employ a search engine, it is impossible to compute

and store so many personalized PageRank vectors off-

line. Many later works [4,5] make efforts to reduce the

computation and storage cost of personalized PageR-

ank vectors. Jeh and Widom [5] support the concept

that a user’s preference set is a sub-set of a set of hub

pages H, selected as those of greater interest for perso-

nalization. For each hub page p in H, setting the

preference to 1 for page p and 0 for other pages,

the corresponding personalized PageRank vector is

called a basis hub vector. The authors decompose
each basis hub vector in two parts: hub skeleton vector

and partial vector. Hub skeleton vector represents

common interrelationships between hub vectors, and

is computed offline. Each partial vector for a hub page

p represents the part of p’s hub vector unique to itself.

Partial vector can be computed at construction-time

efficiently. Finally, a personalized PageRank vector can

be expressed as a linear combination of a set of basis

hub vectors, and is computed at query time efficiently.

Experiments show that the approach is feasible when

size of hub set > 104.

Haveliwala [4] use personalized PageRank to

enable ‘‘topic-sensitive’’ web search. The approach

precomputes k personalized PageRank vectors using

k topics, e.g., the 16 top level topics of the Open

Directory. For each topic i, a preference vector ui is

generated. (ui)j represents the confidence that web

page j is classified into topic i. A PPV is computed

base upon preference vector ui. The k personalized

PageRank vectors are combined at query time, using

the context of the query to compute the appropriate

topic weights. The experiments concluded that the

use of personalized PageRank scores can improve web

search, but the number of personalized PageRank

vectors used was limited due to the computational

requirements. In fact, this approach modulates the

rankings based on the topic of the query and query

context, rather than for truly ‘‘personalizing’’ the rank-

ings to a specific individual. Qiu and Cho [9] develop

a method to automatically estimate a user’s topic pre-

ferences based on Topic-Sensitive PageRank scores of

the user’s past clicked pages. The topic preferences are

then used to bias future search results.
Community-based Personalized Web Search

In most of the above personalized search strategies,

each user has a distinct profile and the profile is used

to personalize search results for the user. There are

also some approaches that personalize search results

for the preferences of a community of like-minded

users. These approaches are called community-based

personalized web search or collaborative web search.

In a community-based personalized web search, when

a user issues a query, search histories of users who have

similar interests to the user are used to filter or re-rank

search results. For example, documents that have been

selected for the target query or similar queries by

the community are re-ranked higher in the results

2102P Personalized Web Search
list. Sugiyama et al. [13] use a modified collaborative

filtering algorithm to constructed user profiles to

accomplish personalized search. Sun et al. [14] pro-

posed a novel method named CubeSVD to apply per-

sonalized web search by analyzing correlations among

users, queries, and web pages in clickthrough data.

Smyth et al. [12] show that collaborative web search

can be efficient in many search scenarios when natural

communities of searchers can be identified.

Server-Side and Client-Side Implement

Personalized web search can be implemented on either

server side (in the search engine) or client side (in the

user’s computer or a personalization agent).

For server-side personalization, user profiles are

built, updated, and stored on the search engine side.

User information is directly incorporated into the

ranking process, or is used to help process initial search

results. The advantage of this architecture is that the

search engine can use all of its resources, for example

link structure of the whole web, in its personalization

algorithm. Also, the personalization algorithm can

be easily adapted without any client efforts. This archi-

tecture is adopted by some general search engines such

as Google Personalized Search. The disadvantage of

this architecture is that it brings high storage and

computation costs when millions of users are using

the search engine, and it also raises privacy concerns

when information about users is stored on the server.

For client-side personalization, user information

is collected and stored on the client side (in the user’s

computer or a personalization agent), usually by ins-

talling a client software or plug-in on a user’s comput-

er. In client side, not only the user’s search behavior

but also his contextual activities (e.g., web pages

viewed before) and personal information (e.g., emails,

documents, and bookmarks) could be incorporated

into the user profile. This allows the construction of a

much richer user model for personalization. Privacy

concerns are also reduced since the user profile is

strictly stored and used on the client side. Another

benefit is that the overhead in computation and stor-

age for personalization can be distributed among the

clients. A main drawback of personalization on the

client side is that the personalization algorithm cannot

use some knowledge that is only available on the server

side (e.g., PageRank score of a result document).

Furthermore, due to the limits of network bandwidth,

the client can usually only process limited top results.
Challenges of Personalized Search

Despite the attractiveness of personalized search, there

is no large-scale use of personalized search services

currently. Personalized web search faces several

challenges that retard its real-world large-scale

applications:

1. Privacy is an issue. Personalized web search, espe-

cially server-side implement, requires collecting

and aggregating a lot of user information including

query and clickthrough history. A user profile

can reveal a large amount of private user informa-

tion, such as hobbies, vocation, income level, and

political inclination, which is clearly a serious con-

cern for users [11]. This could make many people

nervous and feel afraid to use personalized search

engines. A personalized web search will be not well-

received until it handles the privacy problem well.

2. It is really hard to infer user information needs

accurately. Users are not static. They may randomly

search for something which they are not interested

in. They even search for other people sometimes.

User search histories inevitably contain noise that

is irrelevant or even harmful to current search. This

may make personalization strategies unstable.

3. Queries should not be handled in the same manner

with regard to personalization. Personalized search

may have little effect on some queries. Some work

[1,2,3] investigates whether current web search

ranking might be sufficient for clear/unambiguous

queries and thus personalization is unnecessary.

Dou et al. [3] reveal that personalized search has

little effect on queries with high user selection

consistency. A specific personalized search also

has different effectiveness for different queries.

It even hurts search accuracy under some situa-

tions. For example, topical interest-based persona-

lization, which leads to better performance for the

query ‘‘mouse,’’ is ineffective for the query ‘‘free

mp3 download.’’ Actually, relevant documents

for query ‘‘free mp3 download’’ are mostly classi-

fied into the same topic categories and topical

interest-based personalization has no way to fil-

ter out desired documents. Dou et al. [3] also reveal

that topical interest-based personalized search

methods are difficult to deploy in a real world

search engine. They improve search performance

for some queries, but they may hurt search perfor-

mance for additional queries.

Petri Nets P 2103
Key Applications
Personalized web search is considered a promising

solution to improve the performance of generic web

search. Currently, Google and other web search engines

are trying to do personalized search.

Experimental Results
Experimental results have shown that personalized

web search can indeed improve performance of web

search. Detailed experimental results can be found

in the corresponding reference for each presented

method. Dou et al. [3] propose a personalized web

search evaluation framework based upon large-scale

query logs.

Cross-references
▶ Information Retrieval

▶ Privacy

▶Relevance Feedback

▶WEB Information Retrieval Models

▶Web Search Relevance Feedback
P

Recommended Reading
1. Chirita P.A., Firan C., and Nejdl W. Summarizing local

context to personalize global web search. In Proc. Int. Conf. on

Information and Knowledge Management, 2006.

2. Chirita P.A., Nejdl W., Paiu R., and Kohlschütter C. Using ODP

metadata to personalize search. In Proc. 31st Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2005, pp. 178–185.

3. Dou Z., Song R., and Wen J. A large-scale evaluation and

analysis of personalized search strategies. In Proc. 33rd Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 2007.

4. Haveliwala T.H. Topic-sensitive pagerank. In Proc. 11th Int.

World Wide Web Conference, 2002.

5. Jeh G. and Widom J. Scaling personalized web search. In Proc.

12th Int. World Wide Web Conference, 2003, pp. 271–279.

6. Liu F., Yu C., and Meng W. Personalized web search by mapping

user queries to categories. In Proc. Int. Conf. on Information

and Knowledge Management, 2002, pp. 558–565.

7. Page L., Brin S., Motwani R., and Winograd T. The pagerank

citation ranking: bringing order to the web. Technical report,

Computer Science Department, Stanford University, 1998.

8. Pretschner A. and Gauch S. Ontology based personalized search.

In Proc. 11th IEEE Int. Conf. on Tools with Artificial Intelli-

gence, 1999, pp. 391–398.

9. Qiu F. and Cho J. Automatic identification of user interest

for personalized search. In Proc. 15th Int. World Wide Web

Conference, 2006, pp. 727–736.

10. Shen X., Tan B., and Zhai C. Implicit user modeling for perso-

nalized search. In Proc. Int. Conf. on Information and Knowl-

edge Management, 2005, pp. 824–831.
11. Shen X., Tan B., and Zhai C. Privacy protection in personalized

search. SIGIR Forum, 41(1):4–17, 2007.

12. Smyth B., Coyle M., Boydell O., Briggs P., Balfe E., Freyne J., and

Bradley K. A live-user evaluation of collaborative web search.

In Proc. 19th Int. Joint Conf. on AI, 2005.

13. Sugiyama K., Hatano K., and Yoshikawa M. Adaptive web

search based on user profile constructed without any effort

from users. In Proc. 12th Int. World Wide Web Conference,

2004, pp. 675–684.

14. Sun J.-T., Zeng H.-J., Liu H., Lu Y., and Chen Z. CubeSVD: a

novel approach to personalized web search. In Proc. 14th Int.

World Wide Web Conference, 2005, pp. 382–390.

15. Teevan J., Dumais S.T., and Horvitz E. Personalizing search

via automated analysis of interests and activities. In Proc. 31st

Annual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 2005, pp. 449–456.
Personally Identifiable Data

▶ Individually Identifiable Data
Perturbation Techniques

▶Randomization Methods to Ensure Data Privacy
Perusal

▶Browsing
Pessimistic Scheduler

▶Two-Phase Locking
Petri Nets

W. M. P. VAN DER AALST

Eindhoven University of Technology, Eindhoven,

The Netherlands

Synonyms
Place transition nets; Condition event nets; Colored nets

2104P Petri Nets
Definition
The Petri net formalism provides a graphical but also

formal language which is appropriate for modeling

systems and processes with concurrency and resource

sharing. It was introduced in the beginning of the

1960’s by Carl Adam Petri and was the first formalism

to adequately describe concurrency. The classical Petri

net is a directed bipartite graph with two node types

called places and transitions. The nodes are connected

via directed arcs. Places are represented by circles and

transitions by rectangles. The network structure of the

Petri net is static. However, places may contain tokens

and the distribution of tokens of places may change as

described in the firing rule. Petri nets have formal

semantics and allow for all kinds of analysis. Moreover,

due to the strong theoretical foundation much is

known about the properties of different subclasses of

Petri nets. Petri nets have been extended in many

different application domains, e.g., workflow man-

agement systems, flexible manufacturing, embedded

systems, communication protocols, web services, asyn-

chronous circuits, etc. Moreover, many modeling lan-

guages have been influenced by Petri nets (e.g., UML)

and have been mapped onto Petri nets for analysis

purposes (e.g., BPEL, BPMN, etc.). The classical Petri

net has been extended to allow for the modeling of

complex systems, e.g., so called ‘‘colors’’ have been

added to model data, timestamps have been added to

model time, and hierarchy concepts have been pro-

posed to structure large models. The resulting models

are called a high-level Petri nets.

Historical Background
Petri started his scientific career with his dissertation

‘‘Communication with Automata’’ [7], which he sub-

mitted to the Science Faculty of Darmstadt Technical

University in July, 1961. He defended his thesis there in

June, 1962 [8]. Petri’s dissertation has been quoted

frequently, but the Petri net formalism as it is known

today emerged later. However, the fundamental idea

that asynchronous systems are more powerful than
Petri Nets. Figure 1. A Petri nets consisting of six transitions
synchronous systems was already present. Petri nets

as they are used today first appeared in Petri’s talk

‘‘Fundamentals on the description of discrete pro-

cesses’’ at the Third Colloquium on Automata Theory

in Hannover in 1965. Using a simple graphical repre-

sentation consisting of two types of nodes (places and

transitions), Petri was able to describe processes exhi-

biting concurrency and possibly infinitely many states.

Figure 1 shows a simple Petri net consisting of six

transitions and seven places. The black dots in places

p1 and p3 denote tokens and are used to represent the

initial state. Despite the addition of concurrency, vari-

ous properties are decidable for Petri nets which are

not decidable for Turing machines (e.g., reachability,

liveness, boundedness, etc.).

Initially the focus was on understanding concur-

rency through Petri nets and little emphasis was put on

practical applications. This changed over time and

Petri nets were used more and more in all kinds of

applications. A nice example is the work on office

information systems in the late seventies and early

eighties. People like Skip Ellis, Anatol Holt, and

Michael Zisman worked on information systems

which were driven by explicit process models. It is

interesting to see that the three pioneers in this area

independently used Petri-net variants to model office

procedures. The ideas of these people resulted in all

kinds of workflow management systems and today

most of the workflow management systems use a

notation close to Petri nets [1]. Petri nets have been

used in many other application domains ranging from

embedded systems and asynchronous circuits to

flexible manufacturing, communication protocols,

and web services. Petri nets also influenced the devel-

opment of many languages ranging from process cal-

culi to more application oriented languages such as

UML, EPCs, etc.

The classical Petri net allows for the modeling of

states, events, conditions, synchronization, parallelism,

choice, and iteration. However, Petri nets describing

real processes tend to be complex and extremely large.
and seven places.

Petri Nets P 2105

P

Moreover, the classical Petri net does not allow for the

modeling of data and time. To solve these problems,

many extensions have been proposed. Three well-

known extensions of the basic Petri net model are:

(1) the extension with color to model data, (2) the

extension with time, and (3) the extension with hierar-

chy to structure large models. A Petri net extended with

color, time, and hierarchy is called a high-level Petri net

[2]. Using high-level Petri nets it is much easier to

describe complex systems and processes. However,

analysis of high-level Petri net other than simulation

is often intractable.

Foundations
The classical Petri net is a directed bipartite graph

consisting of places and transitions connected via di-

rected arcs. Connections between two nodes of the

same type are not allowed. Places are represented by

circles and transitions by rectangles as shown in Fig. 1.

A Petri net is formally defined by a triple (P, T, F):

1. P is a finite set of places,

2. T is a finite set of transitions (P \ T = ;),
3. F� (P
 T) [(T
 P) is a set of arcs (flow relation)

A place p is called an input place of a transition t iff

there exists a directed arc from p to t. Place p is called

an output place of transition t iff there exists a directed

arc from t to p. The notation �t is used to denote

the set of input places for a transition t. The notations

t�, �p and p� have similar meanings, e.g., p� is the set
of transitions sharing p as an input place. In Fig. 1

transition t2 has one input place (p1) and two output

places (p3 and p4).

At any time a place contains zero or more tokens,

drawn as black dots. The state, often referred to as

marking, is the distribution of tokens over places,

i.e., M 2 P !IN. A state is represented as follows:

1p1 + 2p2 + 1p3 + 0p4 is the state with one token in

place p1, two tokens in p2, one token in p3 and no

tokens in p4. The notation p1 + 2p2 + p3 can also be

used represent this state. To compare states a partial

ordering is defined. For any two states M1 and M2, M1

� M2 iff for all p 2 P: M1(p) � M2(p).

The number of tokens may change during the exe-

cution of the net. Transitions are the active compo-

nents in a Petri net: they change the state of the net

according to the following firing rule :

1. A transition t is said to be enabled iff each input

place p of t contains at least one token.
2. An enabled transition may fire. If transition t fires,

then t consumes one token from each input place

p of t and produces one token for each output place

p of t.

The initial marking shown in Fig. 1 is p1 + p3. In

this marking, t2, t3, and t4 are enabled. Firing t2,

results in the state 2p3 + p4. Firing t3, results in the

state p1 + p2. Firing t4, results in the state p1 + p5. Note

that firing t3 disables t4 and vice versa, i.e., there is a

non-deterministic choice between t3 and t4. However,

t2 can fire independently from t3 and t4 because it is

in parallel.

Given a Petri net (P, T, F) and a state M1, the

following notations are used:

1. M1 �!
t

M2: transition t is enabled in state M1 and

firing t in M1 results in state M2

2. M1 ! M2: there is a transition t such that

M1 �!
t

M2

3. M1 �!
s

Mn: the firing sequence s = t1t2t3...tn�1
leads from state M1 to state Mn via a (possibly

empty) set of intermediate states M2,...Mn�1, i.e.,

M1 �!
t1

M2 �!
t2

::: �!tn�1 Mn

A state Mn is called reachable from M1 (notation

M1 �!
	

Mn) iff there is a firing sequence s such that

M1 �!
s

Mn. Note that the empty firing sequence is also

allowed, i.e., M1 �!
	

M1.

(PN, M) is used to denote a Petri net PN with an

initial state M. A state M 0 is a reachable state of (PN,

M) iff M1 �!
	

M 0.

The marked Petri net shown in Fig. 1 has an un-

bounded number of states. Note that the sequence t2 t3

t1 can be repeated over and over again. In each cycle an

additional token is put in place p4.

In the remainder, some standard properties for

Petri nets are defined [3,4]. First, properties related to

the dynamics of a Petri net are defined. Then some

structural properties are given.

A Petri net (PN, M) is live iff, for every reachable

state M 0 and every transition t there is a state M 0

reachable from M 0 which enables t. Note that

the marked Petri net shown in Fig. 1 is not live. After

firing t4 twice, it becomes impossible to execute any

of the first three transitions. A Petri net is structurally

live if there exists an initial state such that the net

is live. Figure 1 is also not structurally live.

A Petri net (PN, M) is bounded iff for each place

p there is a natural number n such that for every

reachable state the number of tokens in p is less

2106P Petri Nets
than n. The net is safe iff for each place the maxi-

mum number of tokens does not exceed 1. As indi-

cated before, the marked Petri net shown in Fig. 1

is not bounded because the number of tokens in

p4 can exceed any number. A Petri net is structurally

bounded if the net is bounded for any initially state.

Figure 2 shows a more meaningful example of a

Petri net. In fact it models the workflow related to

some ordering process and the transitions correspond

to tasks. The token in start corresponds to an order.

Task register is represented by a transition bearing the

same name. From a routing point of view it acts as a

so-called AND-split (two outgoing arcs) and is enabled

in the state shown. If a person executes this task, the

token is removed from place start and two tokens are

produced: one for c0 and one for c2. Then, in parallel,

two tasks are enabled: check_availability and send_bill.

Depending on the eagerness of the workers executing

these two tasks either check_availability or send_bill is

executed first. Suppose check_availability is executed

first. Based on the outcome of this task a choice is

made. This is reflected by the fact that three arcs are

leaving c1. If the ordered goods are available, they can

be shipped, i.e., firing in_stock enables task ship_goods.

If they are not available, either a replenishment order
Petri Nets. Figure 2. A workflow expressed in terms of a Pet
is issued or not. Firing out_of_stock_repl enables

task replenish. Firing out_of_stock_no_repl skips task

replenish. Note that check_availability, place c1 and

the three transitions in_stock, out_of_stock_repl, and

out_of_ stock_no_repl together form a so-called OR-

split: As a result of this construct one token is pro-

duced for either c3, c4, or c5. Suppose that not all

ordered goods are available, but the appropriate replen-

ishment orders were already issued. A token is produced

for c3 and task update becomes enabled. Suppose that

at this point in time task send_bill is executed, resulting

in the state with a token in c3 and c6. The token in c6 is

input for two tasks. However, only one of these tasks

can be executed and in this state only receive_payment

is enabled. Task receive_payment can be executed the

moment the payment is received. Task reminder is an

AND-join/AND-split and is blocked until the bill is

sent and the goods have been shipped. However, it is

only possible to send a reminder if the goods have

actually been shipped. Assume that in the state with a

token in c3 and c6 task update is executed. This task

does not require human involvement and is triggered

by a message of the warehouse indicating that relevant

goods have arrived. Again check_availability is enabled.

Suppose that this task is executed and the result is
ri net.

Petri Nets P 2107

P

positive, i.e., the path via in_stock is taken. In the

resulting state ship_goods can be executed. Now there

is a token in c6 and c7 thus enabling task reminder.

Executing task reminder enables the task send_bill

for the second time. A newcopyof the bill is sent with the

appropriate text. It ispossible tosendseveralremindersby

alternating reminder and send_bill. However, assume

that after the first loop the customer pays resulting in

a state with a token in c7 and c8. In this state, the AND-

join archive is enabled and executing this task results in

the final state with a token in end.

The marked Petri net shown in Fig. 2 is bounded

but not live. In fact the model is safe because there are

never two tokens in the same place.

Reachability, liveness, and boundedness can be decid-

ed for any classical Petri net. For example, it is possi-

ble to construct the so-called coverability graph.

However, this may be quite inefficient. Fortunately,

more efficient techniques are available for different

subclasses of Petri nets. Some of these subclasses are

listed below.

A Petri net is a free-choice Petri net [5]. iff, for every

two transitions t1 and t2, �t1 \ �t2 6¼ ; implies �t1 = �t2.
Figure 1 is free-choice but Fig. 2 is not. Figure 2 is not

free-choice because of the two arcs between c7 and

reminder. Many properties of free-choice nets can

be exploited in their analysis. For example, the combi-

nation of liveness and boundedness can be decided

in polynomial time.

A Petri net is state machine iff each transition has

exactly one input and one output place. A Petri net

is marked graph iff each place has exactly one input

and one output transition. Both state machines and

marked graphs are examples of free-choice nets and

can be analyzed efficiently.

A Petri net PN = (P, T, F) is a WF-net (Workflow

net, [1,6]) if and only if:

1. There is one source place i 2 P such that �i = ;.
2. There is one sink place o 2 P such that o� = ;.
3. Every node x 2 P [T is on a path from i to o.

The class of WF-net has been extensively studied

because of its applications in workflow management

processes and other case-driven processes. Clearly,

Fig. 2 is a WF-net while Fig. 1 is not.

For a WF-net with one token on the source place i it

is interesting to know whether the net will always

terminate properly with a token in the sink place o.

This corresponds to the so-called soundness property.
Soundness can be expressed in terms of liveness and

boundedness. If the sink place o is connected to the

source place i using some transition t∗, the so-called

short-circuited net is obtained. The original WF-net

is sound if and only if the corresponding short-

circuited net is live and bounded. This result can be

exploited in the analysis of complex workflows.
Key Applications

Workflow Management

Petri nets are used for the modeling, analysis,

and enactment of workflows. Many workflow languages

have a graphical representation close to Petri nets. More-

over, today’s workflow engines use mechanisms com-

parable to using tokens and the firing rule.

Discrete/Flexible Manufacturing

Traditionally, there have been may applications of Petri

nets in manufacturing. The models are used to analyze

the manufacturing process in detail, e.g., to find dead-

locks or to analyze the performance.
Communication Protocols

Different protocols have been modeled using Petri

nets. Various errors have been discovered by verifying

established protocols using Petri-net-based analysis

techniques.
Embedded Systems

The interactions between hardware and software in

embedded systems (e.g., copiers, cars, mobile phones,

etc.) may result in all kinds of problems. Therefore,

Petri nets are used to model and analyze such systems.

Cross-references
▶Business Process Management

▶ Process Mining

▶Web Services

▶Workflow Model Analysis

▶Workflow Patterns

Recommended Reading
1. Brauer W. and Reisig W. Carl Adam Petri and Petri Nets.

Informatik-Spektrum, 29(5):369–374, 1996.

2. Desel J. and Esparza J. Free choice Petri nets, volume 40 of

Cambridge Tracts in Theoretical Computer Science. Cambridge

University Press, Cambridge, UK, 1995.

2108P Photograph
3. Jensen K., Kristensen L.M., and Wells L. Coloured Petri nets and

CPN tools for modelling and validation of concurrent systems.

Int. J. Softw. Tools Technol. Trans., 9(3–4):213–254, 2007.

4. Murata T. Petri nets: properties, analysis and applications. Proc.

IEEE, 77(4):541–580, April 1989.

5. Petri C.A. Kommunikation mit Automaten. PhD Thesis, Fakul-

tät für Mathematik und Physik, Technische Hochschule Darm-

stadt, Darmstadt, Germany, 1962.

6. Reisig W. and Rozenberg G. editors. Lectures on Petri nets I:

basicmodels, Springer-Verlag, Berlin Heidelberg New York, 1998.

7. van der Aalst W.M.P. The application of Petri nets to workflow

management. J. Circuit. Syst. Comput., 8(1):21–66, 1998.

8. van der Aalst W.M.P. and Hee K.M. vanWorkflowManagement:

Models, Methods, and Systems. MIT Press, Cambridge, MA,

2004.
Photograph

▶ Image
Physical Clock

CURTIS DYRESON

Utah State University, Logan UT, USA

Synonyms
Clock

Definition
A physical clock is a physical process coupled with a

method of measuring that process to record the pas-

sage of time. For instance, the rotation of the Earth

measured in solar days is a physical clock. Most physi-

cal clocks are based on cyclic processes (such as a

celestial rotation). One or more physical clocks are

used to establish a time-line clock for a temporal

database.

Key Points
Every concrete time is a measurement of some physical

clock. For instance a wind-up watch provides the time

‘‘now’’ by measuring the rate at which a coiled, wound

spring unwinds. A physical clock is limited by the

durability and regularity of the underlying physical

process that it measures, so to provide a clock for

every instant in a time-line for a temporal database

several physical clocks might be needed. For instance a
clock based on the rotation of the Earth will (likely be)

limited as current models predict the Earth will even-

tually be gravitationally drawn into the Sun. The mod-

ifier ‘‘physical’’ distinguishes this kind of clock from

other kinds of clocks in an application, in particular

a ‘‘time-line’’ clock. Atomic clocks, which are a kind

of physical clock, provide the measurements for Inter-

national Atomic Time (TAI).
Cross-references
▶Chronon

▶Time-Line Clock

▶Time Instant

Recommended Reading
1. Dyreson C.E. and Snodgrass R.T. Timestamp Semantics and

Representation. Inf. Syst., 18(3), 1993, pp. 143–166.

2. Dyreson C.E. and Snodgrass R.T. The baseline clock. The TSQL2

temporal query language, Kluwer, pp. 73–92, 1987.

3. Fraser J.T. Time: the familiar stranger. University of Massachusetts

Press, 1987.
Physical Database Design for
Relational Databases

SAM S LIGHTSTONE

IBM Canada Ltd., Markham, ON, Canada

Synonyms
Database design; Database materialization; Database

implementation; Table design; Table normalization;

Indexing; Clustering; Multidimensional clustering;

Range partitioning; Materialized views; Materialized

query tables

Definition
Physical database design represents the materialization

of a database into an actual system. While logical

design can be performed independently of the eventual

database platform, many physical database attributes

depend on the specifics and semantics of the target

DBMS. Physical design is performed in two stages:

1. Conversion of the logical design into table defini-

tions (often performed by an application developer):

includes pre-deployment design, table definitions,

normalization, primary and foreign key relation-

ships, and basic indexing.

Physical Database Design for Relational Databases P 2109

P

2. Post deployment physical database design (often

performed by a database administrator): includes

improving performance, reducing I/O, and stream-

lining administration tasks.

Generally speaking, physical database design covers

those aspects of database design that impact the actual

structure of the database on disk. Stage 1 is variably

referred to in the industry as an aspect of logical data-

base design or physical database design. It is known as

logical database design in the sense that it can be

designed independent of the data server or the partic-

ular DBMS used. It is also often performed by the same

people who perform the early requirements building

and entity relationship modeling. Conversely, it is also

called physical database design in the sense that it

affects the physical structure of the database and its

implementation. For the sake of this entry, the latter

assumption is used, and it is therefore included as part

of physical database design.

Although it is possible to perform logical design

independently of the physical platform and knowledge

of database software that will eventually be used, many

physical database design tasks depend on the specif-

ics and semantics of the target DBMS (software and

hardware). The major tasks of physical database design

include: table normalization, table denomalizat-

ion, indexing, clustering, multidimensional clustering

(MDC), range partitioning, hash partitioning, shared

nothing partitioning (hash), materialized views

(MVs), memory allocation, database storage topology,

and database storage object allocation.
Historical Background
Physical database design is as old as database research.

Specifically, if this question is limited to relational data-

bases, the first systems were prototyped in the early

1970’s. The most elementary problems of physical data-

base design are those of table normalization and index

selection. The relational model for databases was first

proposed in 1970 by E.F Codd at IBM. The first relation-

al databases using SQL and B+-tree was IBM’s System R,

in 1976 and the INGRES database at the University of

California, Berkeley. The B+-tree, the most commonly-

used indexing storage structure for user designed index-

es, was first described in the paper Organization and

Maintenance of Large Ordered Indices by Rudolf Bayer

and Edward M. McCreight. While System R was a

research prototype, commercialization followed with
products by IBM (DB2 – DB2 and Informix are trade-

marks or registered trademark of International Busi-

ness Machines Corporation in the United States, other

countries, or both. Oracle is a trademarks or registered

trademark of Oracle Corporation in the United States,

other countries, or both. Other company, product, or

service names may be trademarks or service marks of

others.) and Oracle around 1980. INGRES also became

commercial and was followed by POSTGRES which

was incorporated into Informix. Prior to these rela-

tional systems, other data models for databases had

been used, such as IMS which uses a hierarchical stor-

age model and dominated industrial practice between

1967 and 1980. These pre-relational systems also had

unique physical database design challenges.

As relational database systems advanced, new tech-

niques were introduced to help improve operational

efficiency, and reduce I/O by partitioning, distributing,

and/or better indexing data. All of these innovations,

while improving the capabilities and potential for data-

bases, expanded the scope of physical database design

increasing the number of design choices and therefore

the complexity of optimizing database structures.

Though the 1980’s and 1990’s were dominated by the

introduction of new physical database design capabil-

ities, it can also be said that the years since have been

dominated by efforts to simplify the process through

automation, best practices, or deploying pre-configured

‘‘database appliances’’.

Foundations
The vast majority of physical database design tasks

have the primary goal of reducing I/O consumption

at runtime for query processing. However, to a lesser

degree there are physical design aspects that help

improve administrative efficiency by reducing the

granularity of backup and restore operations (as in

the case of range partitioning), or by improving the

efficiency of mass insertion or deletion of data (so

called ‘‘roll-in’’ and ‘‘roll-out’’ of data) as in the case

of range partitioning. Some features can help reduce

CPU or network consumption as in the case of memo-

ry tuning for heaps associated with these resources

(such as the compiled SQL statement cache found in

many commercial database server products).

Infrastructure Mechanics

Indexing schemes typically exploit tree-based struc-

tures or hash methods to provide fast access to data,

2110P Physical Database Design for Relational Databases
with B+-trees being the dominant strategy. Range

partitioning and clustering methods are based on

grouping strategies to physically cluster like or similar

data nearby on disk in order to reduce I/O. Hash

partitioning methods hash data horizontally across

storage objects so that processing can be performed

on records associated with the different hash partition-

ing by different CPUs, providing parallel processing

efficiencies. MVs are based on the strategy of pre-

computation, so that results are available either in

full or in part when needed without scanning and

calculation. Considerable literature has been published

on strategies to match the information within the MV

at query compilation time to the queries requiring

them, which is non trivial except in cases where the

incoming query is an exact match to the MV.

The full breadth of physical database design is

beyond the scope of this entry, so this discussion

touches only on major aspects.

Design Choices

Physical database design, as performed by end users,

has not yet been codified into a scientifically based

strategy, and remains as much an art as a science.

Typical strategies include cost-benefit analysis of
Physical Database Design for Relational Databases. Figure

table. (image courtesy of K. Beck at IBM)
applying various design features. Trial-and-error is

still a significant part of the design process. For query

processing, indexing is the first design feature consid-

ered, and the design process can generally explore the

columns used in query predicates within the workload.

Range partitioning is generally designed around date

fields (by month or by quarter) for roll-in and roll-out

processing, and backup granularity. Hash partitioning

typically focuses on a unique key or near-unique key in

order to efficiently distribute records across CPUs

without skew. Data clustering strategies typically

focus on columns used in range predicates, or in

equality clauses that have high cardinality results sets

in order to place similar data that are likely to be jointly

required for query resolution physically nearby one

another on disk.

Combining Physical Design Choices

Figure 1 shows a conceptual illustration of data stored

in one large physical object without any specific treat-

ment of the data, so that the data is unsorted, unclus-

tered, unpartitioned, and not indexed. Data of

different characteristics is illustrated by the different

colored shapes that appear in the set. One can consider

a query that was interested in data represented by the
1. Data of various attributes, stored in a single monolithic

Physical Database Design for Relational Databases P 2111
blue triangles in the image, which appear scattered

throughout the object. A full data scan of the set

would be required to find and fetch these data.

Figure 2 shows a database with the same data as

Fig. 1, which has been carefully designed to exploit a

number of physical database design features in combi-

nation, such as indexing, range partitioning, MVs,

MDC, and hash partitioning. In this new configura-

tion a query for the data represented by the blue

triangles is not only clustered in order to perform

minimal IO, but the clearly indexed and can be

distributed across several CPUs due to hash partition-

ing. Aggregation on the data can be precomputed and

stored in the MV as well.

Other Physical Database Design Techniques

1. Other indexing mechanisms: hash index, bitmap

index

� These indexing strategies use hash functions, or

bitmaps to index data that is typically slow

changing. Bitmap indexes are favors for data

with low cardinality (i.e., few distinct values).
Physical Database Design for Relational Databases. Figure

extensions concurrently.
2. Physical design for XML data

� Semi-structured databases, like XML databases,

require alternate indexing strategies.

3. Indexing for Information Retrieval

� Text indexing is often based on an ‘‘inverted

tree’’ index method.

4. Storage and object layout

� Data placement on disk is affects the efficiency

of storage and retrieval. Particularly important

when some data has very different frequency or

urgency of access than others.

5. Page and block size for I/O efficiency

� Size of the storage pages, and the blocking levels

(number of pages) used during I/O dramatically

affect I/O efficiency, where random access

favors smaller blocking and while sequential

access favors large blocking.

6. Memory configuration and management

� Complex design choice in the distribution of

memory for caching, sorting, hashing, locking,

tat typically has large impact on the efficiency of

a database, especially if any key memory
2. Data stored using a number of physical design

P

2112P Physical Database Design for Relational Databases
consumer is constrained. Since memory is a

fixed resource, the distribution of memory is a

zero sum game (i.e., adding memory for one

purpose requires reducing it for another)

7. Distributed database design

� Distributed databases require complex design

choices for data placement and choice of access

(particularly where the distributed database

includes redundancy, providing choices for

which node to access).

8. Shared nothing partitioning

� Shared nothing partitioning, common in data

warehousing, hash partitions data across CPUs

(and/or server) to achieve parallel processing over

large volumes of data. The choice of hashing key

is non trivial. However, in a shared nothing ar-

chitecture, queries over each hash bucket later

need to be shipped and merged since each node

(or partition) is assumed to be distinct.

9. Hash partitioned tables

� Hash partitioning within a server, can divide

process of a query across CPUs, while still allow-

ing the efficiencies of shared memory proces-

sing within a server.
Key Applications

Lifecycle Differences

It is important to distinguish between physical data-

base design tasks performed during application devel-

opment, versus those performed following deployment

by an administrator.

During application development, the application

designer performs logical database design and derives

from it a physical design of the database. The physical

design assigns typing to the elements of the entities

in the database. This phase also designs the database

tables, including normalization. Indices are defined,most

commonly on primary and foreign keys. Views (non-

materialized) are created to abstract the physical imple-

mentation away from the application asmuch as possible

and to improve security of the system by controlling

access to the data by the logical definition of the views,

rather than by the physical structures of the storage.

Following deployment of the database, physical

design continues, usually conducted by a database

administrator. The design tasks here focus on perfor-

mance tuning, or performance problem alleviation.
Common tasks include the selection of secondary

indexes, clustering, MDC, and range partitioning.

A common problem in database application devel-

opment is that the application designer is forced to

develop the database application using small samples

of data. DBAs face design challenges when trying to

optimize data access for applications that operate over

large data sets, which the application designers them-

selves did not have access to when performing the

initial application and database design.

Another key difference between the database design

tasks performed at application development time and

those following deployment relate to the physical

resources of the database server. In most cases the

properties of the database server – number and speed

of CPUs, CPU-cores, disks, memory, bus bandwidth,

etc – are unknown during application development.

For applications that are deployed to possibly many sites

or many customers there can be many different eventual

target servers. Thus physical design qualities of the

database that depend on the server’s characteristics are

inherently the role of the DBA to design. These include

data placement and storage topology, memory alloca-

tion, and to a lesser degree clustering choices.

The design tasks performed by the DBA occur fre-

quently with the deployment of new applications, appli-

cation upgrades, or due to the evolution of the data set.
Application Domains

Different application domains require different physi-

cal design techniques. The section below highlights the

two largest categories of application domains, namely

Online Transaction processing (OLTP) and Decision

Support Systems (DSS).

OLTP/ERP. Such applications deal with small

numbers of records per transaction, and are commonly

subject to extremely high concurrency rates. Key phys-

ical design characteristics include: (i) Small storage

page sizes; (ii) Highly normalized data; (iii) Use of

clustering indices or single-dimension MDC to enforce

clustering of data; (iv) Memory allocation is heavily

used for data caching (bufferpools), and to a lesser

degree for caching compiled SQL statements. Memory

work area for sorting, hash joins, etc, has considerably

reduced demand in this space; (v) Due to the small

selectivity of the transactions, the use of range parti-

tioning, MDC with high dimensionality, and view

materialization are not heavily used.

Physical Database Design for Relational Databases P 2113

P

Decision Support, Data Warehousing and OLAP.

These applications are characterized by large numbers

of records accessed for aggregation, cubing etc. Table

scans are common, and the workloads often include a

high percentage of ad-hoc unpredictable queries,

which can not be explicitly optimized for. Key physical

design considerations here include: (i) Larger page size

and storage blocking to increase the efficiency of scans

and prefetching; (ii) Data may be stored in 3NF or Star

Schema; (iii) Use of clustering is extremely common,

especially long date and geography dimensions;

(iv) Range partitioning is heavily used for roll-in and

roll-out of data within the warehouse. This is almost

always performed along a date dimension (such as by

month or by quarter); (v) Memory allocation is com-

plex in these environments. Data caching remains dom-

inant, however, the common occurrence of sorting and

hashing in these workloads places increased demand on

work memory for these operations. The low concurren-

cy characteristics of these workloads (compared to

OLTP systems) place a reduced demand on memory

for locking and caching of compiled statements.

Future Directions
The powerful capabilities of modern RDBMSs add

complexity and have given rise to an entire profession-

al domain of experts, known as Database Administra-

tors (DBAs), to manage these systems. The problem is

not unique to RDBMSs, but is ubiquitous in Informa-

tion Technology today. Some have called this explosive

growth of complexity ‘‘creeping featurism’’. In fact

many companies now spend more money recruiting

administrators to manage their technology than the

money they have spent on the technology itself. One

of the key roles of such DBAs is in the development

and refinement of physical database design, to achieve

‘‘tuning’’ of the database.

The only real viable long term strategic solution is to

develop systems that manage themselves. Such systems

are called ‘‘self-managing’’ or ‘‘autonomic’’ systems. Sev-

eral research efforts have focused on such self-designing

database systems, working on problems such as:

1. What-if analysis reusing a database’s native query

optimizer to explore hypothetical design choices

over a real or synthetic workload.

2. Data sampling and statistical analysis to explore the

impact of design choices on data distribution and

density, or conversely to assess the suitability of

target data for design attributes.
Cross-references
▶Advanced Storage Systems

▶Database Design

▶Database Management System

▶Database Middleware

▶Database Security

▶Database Tuning and Performance

▶Distributed Database Systems

▶Hash Partitioning

▶ Indexing

▶Multidimensional Clustering

▶ Parallel Database

▶Range Partitioning

▶ Self-Management Technology in Databases

▶ Storage Systems

▶Workflow Management
Recommended Reading
1. Astrahan M.M., Blasgen M.W., Chamberlin D.D., Jim Gray W.,

King F. I.I., Lindsay B.G., Lorie R.A., Mehl J.W., Price T.G.,

Putzolu G.R., Schkolnick M., Selinger P.G., Slutz, D.R., Strong

H.R., Tiberio, P., Traiger, I.L., Bradford W., Yost W.R.A. System

R: A relational data base management system. IEEE Comput,

12(5):42–48, 1979.

2. Bayer R. and McCreight E.M. Organization and Mainte-

nance of Large Ordered Indexes. SIGFIDET Workshop,

107–141, 1970.

3.Finkelstein S., Schikolnick M. and Tiberio P. Physical Database

Design for Relational Databases. ACM Trans Database Syst,

13(1):91–128, 1988.

4. Jun R., Chun Zhang, Megiddo N., and Lohman G.M. Automat-

ing physical database design in a parallel database. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2002,

pp. 558–569.

5. Lightstone S., and Bishwaranjan B. Automated design of

Multi-dimensional clustering tables for relational databases.

In Proc. 30th Int. Conf. on Very Large Data Bases, 2004,

pp.1170–1181.

6. Lightstone S., Teory T., and Nadeau T. Physical Database Design:

The Database Professional’s Guide to Exploiting Indexes, Views,

Storage, and More. Morgan Kaufmann, 2007.

7. Markos Z., Cochrane R., Lapis G., Hamid P., and Monica U.

Answering complex SQL queries using automatic summary

tables. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2000, pp. 105–116.

8. Sanjay A., Surajit C., and Narasayya V.R. Automated Selection

of Materialized Views and Indexes in SQL Databases,

In Proc. 26th Int. Conf. on Very Large Data Bases, 2000,

pp. 496–505.

9. Sriram P., Bishwaranjan B., Malkemus T., Cranston L., and

Huras M. Multi-dimensional clustering: A new data layout

scheme in DB2. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, pp. 637–641.

2114P Physical Layer Tuning
10. Surajit C., and Narasayya V.R. AutoAdmin ‘‘What-if ’’ index

analysis utility. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1998, pp.367–378.

11. Surajit C., and Narasayya V.R. Microsoft Index Tuning

Wizard for SQL Server 7.0, In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1998, pp.553–554.

12. Teorey T., Lightstone S., and Nadeau T. Database Modeling &

Design: Logical Design, 4th edn. Morgan Kaufmann, 2005.

13. Zilio D.C., Jun R., Lightstone S., Lohman G.M., and Storm A.J.

Christian Garcia-Arellano, and Scott Fadden. DB2 Design

Advisor: Integrated Automatic Physical Database Design. In

Proc. 30th Int. Conf. on Very Large Data Bases, 2004,

pp. 1087–1097.

14. Zilio, D.C., Zuzarte C., Lightstone S., Wenbin Ma, Lohman G.

M., Cochrane R., Hamid P., Latha S.C., Gryz J., Alton E., Liang

D., Valentin G.: Recommending materialized views and indexes

with IBM DB2 design advisor. In Proc. 1st Int. Conf. on Auto-

nomic Computing, 2004, pp. 180–188.
Physical Layer Tuning

PHILIPPE BONNET, DENNIS SHASHA

University of Copenhagen, Copenhagen, Denmark

New York University, New York, NY, USA

Definition
Tuning the physical layer entails choosing and config-

uring the underlying hardware and operating system to

improve the performance of a database system running

a given set of applications.

Historical Background
Ultimately, a database management system runs on

processor and memory chips as well as secondary

devices such as flash memory and disks. Trying to use

those physical resources in the best way possible has

been a problem since the first databases were available.

Many researchers have noticed that disk capacity has

been less of an issue than disk speed (or aggregate

bandwidth from an entire disk array). Main memory

size has always been a critical factor, because accesses

tomainmemory are somuch faster than accesses to disk.

Processor speed has been important in applications that

mix sophisticated computation with data access (for

example in financial analysis), such computations are

often handled outside the database server. New technol-

ogies have improved the capacity and speed of proces-

sors, memory, and disks, but memory is still vastly

faster than disk (and somewhat faster than flash mem-

ory), so certain tuning principles will remain true.
Foundations

Hardware Tuning

Hardware tuning essentially consists of picking the hard-

ware components on which the database management

server is run. The goal is to design a balanced system [2].

Each processing unit consists of one or more

processors, one or more disks, and some memory.

Assuming a n-GIPS (billion instructions per second)

processor, disks will be the bottleneck for on-line

transaction-processing applications until the processor

is attached to around 30n disks (counting 500,000

instructions per random IO issued by the database

system and 70 random IOs per second). Each transac-

tion spends far more time waiting for head movement

on disk than in the processor.

Decision-support queries, by contrast, often entail

massive scans of a table. In theory, an n-GIPS processor is

saturated when connected to n/4 disks (counting 500,000

instruction per sequential IO and 8,000 IO per second,

considering 50 MB/second per disk and 64 KB per IO).

In practice, the system bus might become the bottle-

neck. Thus, decision-support sites may need fewer

disks per processor than transaction-processing sites

for the purposes of matching aggregate disk bandwidth

to processor speed. The numbers change when disks

are implemented using flash memory, but the principle

remains the same.

Operating System Tuning

Tuning the operating system primarily consists of

providing an efficient input/output (IO) subsystem

to the database server. A database server can issue

buffered or unbuffered IO using the file system, or it

can issue IO on raw disks thus bypassing the file

system. Raw disks offer control and performance to

the database system at the cost of a very low level

of abstraction. The file system, on the other hand,

provides a high level of abstraction, at the cost of

decreased performance and double buffering. Fur-

ther, IO is either synchronous or asynchronous.

A synchronous IO forces the thread that issued the

issuing thread to block until the IO is complete.

Asynchronous IO allows the database server to issue

concurrent IO requests on multiple files. Modern

operating system such as Linux or Windows, provide

database servers with direct asynchronous IO, that

provide file abstraction and efficient IO scheduling

at a low overhead. Note that out-of-the-box, a

Picture P 2115

P

database system will most likely be configured to use

standard buffered IO and thus needs to be tuned to

use direct asynchronous IO.

As noted above, if one could eliminate the overhead

caused by seeks and rotational delay, the aggregate band-

width could increase by a factor of 10–100. Making this

possible requires laying out the data to be read sequen-

tially along disk tracks. Recognizing the advantage of

sequential reads on properly laid-out data, most data-

base systems encourage administrators to lay out tables

in relatively large extents (consecutive portions of disk).

Having a few large extents is a good idea for tables that

are scanned frequently or (like database recovery logs or

history files) are written sequentially. Large extents,

then, are a necessary condition for good performance,

but not sufficient, particularly for history files. Consider,

for example, the scenario in which a database log is laid

out on a disk in a few large extents, but another hot

table is also on that disk. The accesses to the hot table

may entail a seek from the last page of the log; the next

access to the log will entail another seek. So, much of

the gain of large extents will be lost. For this reason,

each log or history file should be the only hot file on its

disk, unless the disk makes use of a large RAM cache to

buffer the updates to each history file.

When accesses to a file are entirely random (as

is the case in on-line transaction processing), seeks

cannot be avoided. But placement can still minimize

their cost, since seek time is roughly proportional to a

constant plus the square root of the seek distance.

The operating system also allows to control the

thread model used by the database server and to assign

priorities to the different database server threads (and

processes). The goal is to favor low latency requests

(log writes), ensure fairness among database clients

while avoiding starvation. This has several pitfalls

however as discussed in [3] below.

Key Applications
A database system depends on the underlying hard-

ware and operating system. Tuning the physical layer

is thus a necessary step when deploying any database

application.

Cross-references
▶Database Management System

▶Disk

▶Main Memory

▶ Processor Cache
Recommended Reading
1. Gray J. and Kukol P. Sequential disk IO tests for GBps

land speed record. MS Research Technical Report MSR-TR-

2004–62.

2. Gray J. and Shanoy P.J. Rules of thumb in data engineering.

In Proc. 18th Int. Conf. on Data Engineering, 2000.

3. Hall C. and Bonnet Ph. Getting priorities straight: improving

Linux support for database I/O. In Proc. 31st Int. Conf. on Very

Large Data Bases, 2005.

4. Shasha D. and Bonnet P. Database tuning: principles, experiments

and troubleshooting techniques. Morgan Kaufmann, 2002.
Physical Time

▶Transaction Time
Physical Volume

▶Volume
Physical Window = Tuple-based
Windows

▶Windows
Physician Order Entry

▶Computerized Physician Order Entry
Pictorial Metadata

▶ Image Metadata
Picture

▶ Icon

▶ Image

2116P Picture Metadata
Picture Metadata

▶ Image Metadata
Piecewise-Constant Approximations

▶Histograms on Streams
Pipeline. Figure 1. Impact of unbalanced pipelines and

pipelining overhead for as pipeline depth varies.

Normalized throughput is equal to 1/(T/N + k)/T. Note that

just 1% overhead (and/or imbalance) costs 10% ideal

throughput in a 10-stage pipeline.
Pipeline

RYAN JOHNSON

Carnegie Mellon University, Pittsburg, PA, USA

Definition
Pipelining is a performance-enhancing technique

which breaks a job into multiple overlapping pieces

of work assigned to pipeline stages. Each pipeline

stage operates in parallel, receiving inputs from a pre-

vious stage and passing intermediate results to the

next. A pipeline with N stages can accommodate up

to N in-progress jobs at a time. A well-designed pipe-

line requires only a fraction of the resources needed

to achieve the same throughput with non-pipelined

execution. A balanced pipeline, which distributes pro-

cessing time evenly between all stages, can produce N

results during the time it would have taken to process

a single job all at once; unbalanced pipelines do not

perform nearly as well. Pipelining also provides a sec-

ondary benefit of allowing each pipeline stage to spe-

cialize for its particular task, potentially making the

combined stages both faster and less expensive than

the non-pipelined server. Factory assembly lines lever-

age pipelining to great effect, allowing N specialized

workers to achieve far higher throughput than N gen-

eral purpose workers, while requiring less training per

worker and fewer resources overall. The impressive

throughput and efficiency pipelining provides make

it a useful tool in both hardware and software design.

Database systems often improve performance of query

processing by executing query plans in pipelined fash-

ion. Pipelining is a form of parallel dataflow execution.
Key Points
Suppose a non-pipelined server requires T time units

and R resources to process a job all at once. The server’s

latency (time to process a job start-to-finish) and occu-

pancy (time until it can accept more work) are both T.

In contrast, a pipelined server with N stages ideally

provides latency and occupancy of T’ � T and T’/N

time units, respectively, while consuming R + e
resources. Because peak throughput is the reciprocal of

the server’s occupancy, pipelined execution potentially

provides an N-fold increase in throughput over non-

pipelined execution. When plenty of work is available,

an initially empty pipeline fills or ramps up over a

period of T’ time units to reach peak operating capaci-

ty with N in-progress jobs. The pipeline must stall any

time the first pipeline stage becomes ready and no new

jobs are available. Stalls propagate through the pipeline

as bubbles and reduce throughput by leaving stages idle.

Ideal pipelines assume that (i) the job can be

broken into N pieces requiring no more than T/N

time units each (possibly less due to gains from

specialization), and that (ii) passing work between

stages imposes no extra overhead. In practice, pipelines

usually have non-negligible stage overhead and tend

to be unbalanced, with a bottleneck stage that runs

slower than the others. Real pipelines therefore have

occupancy and latency of T/N + k and T + kN, where k

is the total extra delay imposed by imbalance and

overhead. Pipeline bubbles, unbalanced stages, and

Pipelining P 2117
overhead all become more severe for deep pipelines

containing many stages, and limit the useful depth of

any pipeline. Figure 1 illustrates how even small values

of k reduce peak throughput from the ideal as a pipe-

line gets deeper.

Cross-references
▶Dataflow Execution

▶ Pipelined Query Execution
Pipelined and Independent
Parallelism

▶ Inter-operator Parallelism
P

Pipelining

EVAGGELIA PITOURA

University of Ioannina, Ioannina, Greece

Definition
The query execution engine operates on an execution

plan produced during query processing which typically

is a physical operator graph whose edges specify the

dataflow among the operators. There are two basic

alternatives for evaluating the execution plan: materi-

alization and pipelining. With materialized evaluation,

the results of each operator are created (materialized)

and stored in disk and then used as input for the

evaluation of the next operator. With pipelining, the

results of an operator are passed along as input to

the next operator, before the first operator completes

its execution. In general, pipelining improves the

efficiency of query evaluation by reducing the number

of temporary files that are produced.
Key Points
The output of query optimization is an execution plan

or operator tree. The execution plan can be thought of

as a dataflow graph where the nodes correspond to the

physical operators and the edges represent the data
flow among these physical operators. The query execu-

tion engine is responsible for the execution of this plan.

The engine provides generic implementations of all

physical operators that take as input one or more

data streams and produce one output data stream.

In most database systems, each operator supports

an iterator interface that allows a parent operator to get

the results from its children one tuple at a time. The

iterator interface supports pipelining, since tuples

produced as output by a child operator can be fed

as input to their parent in the operator tree, even

before the child operator has finished its execution.

The alternative would be materialized evaluation, in

which each operator would fully complete its operation

and write its results to disk before the next operator

starts execution. By reducing the number of intermedi-

ate results written to disk, pipelining improves the effi-

ciency of query evaluation. However, not all physical

operators can use pipelining efficiently. For instance,

merge-join cannot exploit pipelining in general, since

it requires both its input relations to be sorted and it

is not possible to sort a relation until all its tuples

are available.

Pipelines can be executed in one of two ways:

demand-driven or producer-driven. In a demand-

driven or demand-pull pipeline, an operator computes

the next tuple or tuples to be returned after receiving a

corresponding request from its parent operator. In a

producer-driven or push pipeline, operators do not wait

for requests to produce tuples, instead, they generate

output tuples eagerly and put them in their output

buffers until the buffers become full. Demand-driven

pipelining is more common, since it is easier to imple-

ment. It also allows for the whole plan to be executed

by a single process or thread.
Cross-references
▶ Execution of Relational Operators

▶ Iterator

▶ Parallel Query Execution Algorithms

▶Query Processing
Recommended Reading
1. Graefe G. Query evaluation techniques for large databases. ACM

Comput. Surv., 25(2): 73–170, 1993.

2. Silberschatz A., Korth H.F., and Sudarshan S. Database System

Concepts, 5th edn. McGraw Hill, New York, 2005.

2118P PiT Copy
PiT Copy

▶ Point-in-Time Copy
Pixed Oriented Visualiyation
Techniques

▶Dense Pixel Displays
Pixel Classification

▶ Image Segmentation
Place Names

▶Gazetteers
Place Transition Nets

▶ Petri Nets
Player

▶Actors/Agents/Roles
Plot

▶Graph
Plots for Qualitative Information

▶Visualizing Categorical Data
Point-based Temporal Models

▶ Point-Stamped Temporal Models
Point-based Temporal Data

▶Atelic Data
Point-in-Time Copy

KENICHI WADA

Hitachi Limited, Tokyo, Japan

Synonyms
Snapshot; PiT copy

Definition
A point-in-time copy is a copy of original data as it

appeared at a point in time. In a conventional backup

operation, users often create a PiT Copy, while an

application is in quiescing, to make the PiT Copy a

consistent copy of original data.
Key Points
There are two popular implementation techniques for

creating PiT Copies inside a storage system: split mir-

ror and copy on write.

Split mirror is a technique for replicating the origi-

nal data at a point in time. In some implementations, a

storage system replicates the original data, and when

users create the PiT Copy, a storage system splits the

replication. Copy on Write (CoW) is a technique for

capturing data changes to storage and creating a PiT

Copy after specifying the point in time. In some imple-

mentations, when users create the PiT Copy, a storage

system creates its image with both the original data and

the modified data.

Techniques for creating PiT Copies have a trade-

off between occupied storage capacity and perfor-

mance. A PiT Copy created by split mirror occupies

as much storage as the original data, but a PiT Copy by

CoW usually occupies less storage. On the other hand,

Point-Stamped Temporal Models P 2119
CoWusually hasmore time for accessing the copy source

and creating PiT Copies than split mirror.

Cross-references
▶Backup and Restore

▶ Logging and Recovery

Recommended Reading
1. Alain Azagury et al. Point-in-time copy: yesterday, today, and

tomorrow. In Proc. of IEEE Symp. Conf. on Mass Storage

Systems and Technologies, 2002.
P

Point-Stamped Temporal Models

DAVID TOMAN

University of Waterloo, Waterloo, ON, Canada

Synonyms
Point-based temporal models

Definition
Point-stamped temporal data models associate data-

base objects with time instants, indivisible elements

drawn from an underlying time domain. Such an asso-

ciation usually indicates that the information repre-

sented by the database object in question is valid (i.e.,

believed to be true by the database) at that particular

time instant. The time instant is then called the time-

stamp of the object.

Historical Background
Associating time-dependent data with time instants

has been used in sciences, in particular in physics, at

least since Isaac Newton’s development of classical

mechanics: time is commonly modeled as a two-way

infinite and continuous linear order of indivisible time

instants (often with distance defined as well). Similarly,

in many areas of computer science, ranging from pro-

tocol specifications to program verification to model

checking, discrete point-based timestamps play an es-

sential role. In database systems (and in AI), however,

the requirement of finite and compact representation

has often lead to the use of more complex timestamps,

such as intervals. This is particularly common when

information about durations is stored in a database

(in AI, such timestamps are called fluents). However,
Chomicki [2] has shown that many of these app-

roaches are simply compact representations of large

and potentially infinite sets of time instants associated

with a particular fact and that, at the conceptual level,

the underlying information is often better understood

as being timestamped by time instants.

Foundations
Temporal data models are typically defined as exten-

sions of standard non-temporal data models that pro-

vide means for representation and manipulation of

time-dependent data. Temporal extensions of the rela-

tional model accomplish this by relativizing truth, i.e.,

the sets of facts the database believes to be true in the

modeled reality, with respect to elements of the time

domain. These elements are then called the timestamps

of the facts and, intuitively, specify at which times the

associated facts are true. In the case of point-stamped

temporal models, these elements are indivisible time

instants drawn from an appropriate time domain.

The main ideas are outlined in a setting in which

the time domain is an unbounded countably infinite

linear order of time instants. Moreover, while the main

focus is on temporal extensions of the relational model,

most of the issues arise in other data models as well,

and admit similar solutions.

Timestamps and Database Objects

The choice of timestamps is orthogonal to other

choices that define the flavor and properties of the

resulting temporal data model, in particular:

1. To the decision of what database objects the time-

stamps are attached to, and

2. To the decision of how many timestamps (per such

object) are used.

First to explore is the choice of objects to be time-

stamped. Intuitively, timestamps should only be at-

tached to objects that actually capture information in

the underlying data model, indicating that the partic-

ular (piece of) information is valid for that timestamp.

In the relational model these are tuples and their mem-

bership in relations. Thus, the two principal choices are

as follows:

The Snapshot Model. Temporal databases in the snap-

shot model are formally defined as mappings from the

time domain T to (the class of) standard relational

databases with a particular fixed schema r. In the

2120P Point-Stamped Temporal Models
case of a linearly ordered time domain, such a tempo-

ral database can be viewed as a time-indexed sequence

of standard relational databases, commonly called

snapshots. Note that such a sequence is not necessarily

discrete or finite: that depends on the choice of the

underlying time domain. Intuitively, to capture the fact

that, in a snapshot temporal database D, a relationship

r holds among uninterpreted constants a1,...,ak at time

t it must be the case that r(a1,...,ak) holds inD(t), where

D(t) is a standard relational instance, the snapshot of

D at time t; this statement is denoted by writing

rD(t)(a1,...,ak).

These structures, in the area of modal logics, are

called Kripke structures in which worlds are described

by relational databases and where the time domain

serves as the accessibility relation.

The Timestamp Model. Temporal databases in the

timestamp model are defined in terms of temporal

relations, relations whose schemas are extended with

an additional attribute ranging over the time domain.

This attribute is commonly referred to as the time-

stamp attribute or simply timestamp.

More formally, a relational symbol R is a time-

stamped extension of a symbol r 2 r if it contains all

attributes of r and a single additional attribute t of the

temporal sort (without loss of generality, assuming

that it is always the first attribute). A timestamp

temporal database D is then a first-order structure

D = {R1
D,...,Rk

D} consisting of the interpretations

(instances) for all the temporal extensions Ri of ri
in r. The instances Ri

D are called temporal relations.

Similarly to the snapshot case, there is no restriction on

the number of timestamps (i.e., the cardinality of the

set of timestamps) in such instances; issues connected

with the actual finite representation of these relations

are addressed below. However, the relation

fa1;:::;ak : ðt ; a1; :::;akÞ 2 RD
i g;

a snapshot of R at t, must be finite for every timestamp

t 2 T.

It is easy to see that snapshot and timestamp tem-

poral models are simply different views of the same

(isomorphic) sets of facts and thus represent the

same class of temporal databases. Formally, a snapshot

temporal database D corresponds to a timestamp tem-

poral database D 0 (and vice versa) as follows:

8t :8x1;:::;xk:rDðtÞðx1;:::;xkÞ , RD0 ðt ; x1;:::;xkÞ;
where r and R are a relation in the schema of D and its

temporal extension in the schema of D 0, respectively.

This correspondence makes the two models inter-

changeable. Hence, for temporal queries formulated

in query languages such as Temporal Relational Calcu-

lus (TRC) or First-order Temporal Logic (FOTL), these

two models of point-stamped temporal databases can

be used interchangeably.

The Parametric Model. Several temporal data models

propose to use time-dependent unary functions as

attribute values of tuples in temporal relations. These

models are called parametric models or attribute time-

stamped models. As unary functions can be represented

by binary relations (e.g., with the first attribute being

the timestamp and the second attribute the value of the

function for that timestamp), these models are exam-

ples of nested, non-first normal form models [4,5].

Moreover, if the implicit grouping of tuples in such

relations is accidental or in the presence of appropri-

ate keys, a first-normal form representation can be

obtained by unfolding, similarly to the case of the

nested relational model. The transformation is then

defined by:

R :¼ fðt ; f1ðtÞ;:::; fkðtÞÞ j ð f1;:::;fkÞ 2 RP ; t 2 Tg;

where R is a timestamp relation corresponding to the

parametric relation RP. Note also that if a varying

number of tuples is to be modeled in this model,

partial functions must be used in RP; then, however,

tuples can become only partially defined for a given

time instant, and therefore additional conditions must

be enforced. This makes the model quite cumbersome

to use, in particular when compared to the snapshot

and timestamp models. Many of these difficulties orig-

inate from associating timestamps with uninterpreted

constants that, in the relational model, do not carry any

information on their own.
Multiple Atomic Timestamps

The second issue that arises is the question of how many

timestamps are attached to database objects. So far sin-

gle-dimensional temporal databases were considered,

i.e., where each database object was associated with a

single timestamp. The intuition behind such models is

that validity of data is determined by a single time

instant. In the case of the timestamp model, this trans-

lates to the fact that temporal relations were allowed

Point-Stamped Temporal Models P 2121
only a single (often distinguished) temporal attribute.

However, there are two natural reasons to relax this

requirement and to allow multiple timestamps to be

associated with database objects (i.e., multiple time-

stamp attributes to appear in schemas of relations, either

explicitly or implicitly). There are two cases to consider:
P

Models with a fixed number of timestamp attributes. In

many cases data modeling requires attaching several

timestamps to database objects. Intuitively, a particular

piece of information can be associated with, e.g., a

timestamp for which the information is valid in the

modeled world and another timestamp that states

when the information is recorded in the database.

Hence, every object has two timestamps. The resulting

data model is called the bitemporal model [6] and the

timestamps are called valid time and transaction time,

respectively. Similarly, one can envision temporal

models with three (or any fixed number) of distin-

guished temporal attributes – attributes with a prede-

termined interpretation – that are common to all

temporal relation schemas. Temporal data models with

an apriori fixed number of timestamp attributes can

still be equivalently represented using the snapshot and

the timestamp approaches. In the snapshot case, data-

base instances are indexed by fixed tuples of time

instants. Hence the bitemporal model can be seen as

a two-dimensional plane of relational instances. The

timestamp model simply adds an appropriate number

of (distinguished) attributes to the timestamp exten-

sions of relational schemes.
Models with a varying number of timestamp attri-

butes. While most of the data modeling techniques

require only a fixed number of timestamp attributes in

schemas of temporal relations, it is often convenient to

allow arbitrary number of timestamp attributes to be

associated with a database object. This leads to allow-

ing temporal data models without limits on the num-

ber of timestamp attributes in schemas of temporal

relations. In such models, time dependencies are cap-

tured by explicit (user-defined) attributes ranging over

the time domain. For a varying number of timestamps,

only the timestamp view of the temporal data model

makes sense.

Fixed-dimensional temporal data models are ap-

pealing as they commonly provide an additional built-

in interpretation for timestamps, e.g., the valid time
timestamp always states that the information is true in

the world at that particular time. Temporal data mod-

els with varying, user-defined timestamps do not

posses this additional interpretation, and the exact

meaning of the timestamps depends on how the

world is modeled by the associated attributes (similarly

to the standard relational case). However, there is

another need for models with varying and unbounded

number of timestamp attributes: for temporal query

languages based on temporal relational calculus, there

cannot be an equivalent temporal relational algebra

defined over any of the fixed-dimensional temporal

data models (see the entry on Temporal Logic in Data-

base Query Languages or [7,8] for details).

Sets of Timestamps: Compact Representation

The point-stamped temporal data models and the asso-

ciated temporal query languages provide an excellent

vehicle for defining a precise semantics of queries and

for studying their properties. However, in practical

applications an additional hurdle has to be overcome: a

naive storage of point-stamped temporal relations, either

in the timestamp or in the snapshot model, is often not

possible (as the instances of the relations can be infinite,

e.g., sets of time instants that represent bounded dura-

tions are infinite when a dense time domain is used) or

impractical (the number of instants is very large). For

these and other reasons, many temporal data models

associate database objects with sets of time instants

rather than with single individual time instants.

Temporal models that use complex timestamps,

such as intervals, no longer appear to be point-

stamped – or in the first normal form (1NF). However,

Chomicki [2] has shown that in many cases these

complex objects are merely compact representations

of a possibly large or even infinite number of time

instants associated with a particular fact. The most

common approach along these lines is to attach time-

stamps in the form of intervals to facts that persist over

time. For example, the temporal relation WorksFor

in Fig. 1 can be compactly (and finitely) represented

by the relation:

WorksFor0 ¼ fð½2001; 2002�; John; IBMÞ;
ð½2004;1�; John;MicrosoftÞg:

Note that such an interval encoding is not unique and

multiple snapshot equivalent representations can exist.

For single-dimensional temporal relations, uniqueness

Point-Stamped Temporal Models. Figure 1. Instances of matching Snapshot and Timestamp Temporal Database.

2122P Point-Stamped Temporal Models
of the representation can be achieved using tempo-

ral coalescing. However, it is not clear that meaning-

ful, canonical ways of defining coalescing for multi-

dimensional temporal relations, including bitemporal

relations, exist [3].

On the other hand, the use of temporal coalescing

and other set-oriented operations on interval time-

stamps, such as intersection of timestamps in temporal

joins, indicates that the interval timestamps are indeed

solely a representation tool for point-stamped rela-

tions: these operations cannot be used in a model

that associates truth with the intervals themselves as

there is no clear way to do so for the intervals that

result from such operations, e.g., it is unclear – from

a conceptual point of view – what facts should be

associated with an intersection of two intervals without

implicitly assuming that facts associated with the

original two intervals hold for all time points contai-

ned in those two intervals, or at least for certain

sub-intervals.

The choice of intervals to compactly represent

adjacent timestamps originates from the structure of

the temporal domain: intervals are the only (convex)

one-dimensional sets that can be defined by (first-

order) formulas in the language of linear order. For

more structured time domains, however, the repertoire

of encodings for sets of timestamps can be richer, e.g.,

using formulas describing periodic sets, etc., as compact

timestamps.

Query Languages and Integrity Constraints

Point-stamped data models support point-based

temporal query languages that are commonly based
on extensions of the relational calculus (first-order

logic). The two principal extensions are as follows:

1. First-order Temporal Logic: a language with an

implicit access to timestamps using temporal con-

nectives and

2. Temporal Relational Calculus: a two-sorted logic

with variables and quantifiers explicitly ranging

over the time domain.

These languages are the counterparts of the snapshot

and timestampmodels. However, unlike the data mod-

els that are equivalent in their expressiveness, the sec-

ond language is strictly more expressive than the first

[1,8]. Temporal integrity constraints can also be con-

veniently expressed in these languages [3].

Key Applications
Point-based temporal data models serve as the under-

lying data model for most abstract temporal query

languages.

Cross-references
▶Bitemporal Relation

▶Constraint Databases

▶Data Domain

▶Duplicate Semantics

▶ First-Order Temporal Logic

▶Key

▶Nested Transaction Models

▶Non First Normal Form (N1NF)

▶ Point-Stamped Temporal Models

▶Relational Model

▶ Snapshot Equivalence

Polytransactions P 2123
▶Temporal Coalescing

▶Temporal Data Models

▶Temporal Element

▶Temporal Granularity

▶Temporal Integrity Constraints

▶Temporal Joins

▶Temporal Logic in Database Query Languages

▶Temporal Query Languages

▶Temporal Relational Calculus

▶Time Domain

▶Time Instant

▶Transaction Time

▶Valid Time
P

Recommended Reading
1. Abiteboul S., Herr L., and Van den Bussche J. Temporal versus

first-order logic to query temporal databases. In Proc. 15th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1996, pp. 49–57.

2. Chomicki J. Temporal query languages: a survey. In Proc. 1st Int.

Conf. Temporal Logic, 1994, pp. 506–534.

3. Chomicki J. and Toman D. Temporal Databases. In Handbook

of Temporal Reasoning in Artificial Intelligence. M. Fischer,

D. Gabbay, and L. Villa (eds.). Elsevier, London, UK, 2005,

pp. 429–467.

4. Clifford J., Croker A., and Tuzhilin A. On the completeness of

query languages for grouped and ungrouped historical data

models. In Temporal Databases: Theory, Design, and Implemen-

tation, A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and

R.T. Snodgrass (eds.). Benjamin/Cummings, Redwood City,

CA, USA, 1993, pp. 496–533.

5. Clifford J., Croker A., and Tuzhilin A. On completeness of

historical relational query languages. ACM Trans. Database

Syst., 19(1):64–116, 1994.

6. Jensen C.S., Soo M.D., and Snodgrass R.T. Unification of tem-

poral data models. In Proc. 9th Int. Conf. on Data Engineering,

1993.

7. Toman D. On incompleteness of multi-dimensional first-order

temporal logics. In Int. Symp. on Temporal Representation

and Reasoning and Int. Conf. on Temporal Logic., 2003,

pp. 99–106.

8. Toman D. and Niwinski D. First-order queries over temporal

databases inexpressible in temporal logic. In Advances in Data-

base Technology, Proc. 5th Int. Conf. on Extending Database

Technology, 1996.
Point-versus Period-based
Semantics

▶Telic Distinction in Temporal Databases
Polyhedron

▶ Simplicial Complex
Polytransactions

GEORGE KARABATIS

University of Maryland, Baltimore County (UMBC),

Baltimore, MD, USA

Definition
A polytransaction T+is a transitive closure of a trans-

action T submitted to an Interdependent Data Man-

agement System (a type of a multidatabase system

which enforces dependencies among related data

objects). The transitive closure is computed with re-

spect to an Interdatabase Dependency Schema (IDS)

consisting of a collection of data dependency descrip-

tors (D3s), which specify the dependencies between

data objects.

Key Points
Data objects in multiple (possibly distributed and/

or heterogeneous) systems which form dependencies

among them are called interdependent data. These

dependencies are identified through data dependency

descriptors (D3s). A D3 specifies the relationships be-

tween source and target objects including how much

inconsistency can be tolerated between them before it

is necessary to restore it, and the actions to take to

maintain consistency when it reaches intolerable levels.

All these D3s together form an Interdatabase Depen-

dency Schema (IDS) [3].

When a source object in a D3 is updated, the

consistency between itself and the target object in the

same D3 may be violated beyond allowable levels.

Then, a system-generated transaction updates the tar-

get object to maintain consistency. The updated target

object may participate as source in another D3, there-

fore a series of related transactions may execute to

maintain consistency. These related transactions form

a transaction tree called a polytransaction [3,1,2].

A polytransaction tree contains nodes (corres-

ponding to its component transactions), and edges

(identifying the ‘‘execution mode’’ between the parent

and children transactions) and is determined as

2124P Port Binding
follows. For each D3
e IDS containing a source object

updated by T, and in need to restore consistency with

its target object, a new node is added corresponding to

a new transaction T’ (child of T). The operations of T’

which restore consistency are the actions specified in

the D3.

Execution modes: A child transaction is coupled if

the parent transaction must wait until the child trans-

action completes before proceeding further. It is

decoupled otherwise. Also, a coupled transaction is

vital (the parent transaction must fail if the child

fails), or nonvital (the parent transaction survives the

failure of a child).
Cross-references
▶Database Dependencies

▶Database Management System

▶Distributed Transaction Management

▶ Extended Transaction Models

▶ Inconsistent Databases

▶Transaction

▶Transaction Management

▶Transaction Manager
Recommended Reading
1. Karabatis G., Rusinkiewicz M., and Sheth A. Correctness and

enforcement of multidatabase interdependencies, Advanced

Database Systems, LNCS, vol. 759, Springer-Verlag, NY, 1993,

pp. 337–358.

2. Karabatis G., Rusinkiewicz M., and Sheth A. Interdependent

database systems. In Management of Heterogeneous and Auton-

omous Database Systems. A. Elmagarmid, M. Rusinkieuicz, and

A. Sheth (eds.), Morgan-Kaufmann, San Francisco, CA, 1999,

pp. 217–252.

3. Rusinkiewicz M., Sheth A., and Karabatis G. Specifying inter-

database dependencies in a multidatabase environment, IEEE

Computer, 24(12): December 1991, pp. 46–53.
Port Binding

▶ Storage Security
Position Snapping

▶Map Matching
Positive Infinity

▶ Forever
Positive Predictive Value

▶ Precision and Recall
Positive Relational Algebra

CRISTINA SIRANGELO

University of Edinburgh, Edinburgh, UK

Synonyms
SPJRU-Algebra; SPCU-Algebra
Definition
Positive relational algebra is the fragment of relational

algebrawhich excludes the difference operator. Relational

algebra queries are expressions defining mappings from

database instances of an input database schema to an

output relation. In particular a positive relational algebra

query over a database schema t is one of the following

expressions, each one with an associated set of attributes:

� A constant relation over a set of attributes U is a

positive relational algebra query with associated set

of attributes U;

� If R(U) is a relation schema in t, the relation

symbol R is a positive relational algebra query

with associated set of attributes U;

� If Q and Q 0 are positive relational algebra queries

with sets of attributes U and U0 respectively, the

following are positive relational algebra queries:
– The selection sA=B(Q) or sA=c(Q), with set of

attributes U, where A and B are attributes in U,

and c is a constant value;

– The projection pX(Q), with set of attributes X,

where X � U;

– The natural join Q⋈Q 0, with set of attributes

U [U 0;

– The renaming rU!W (Q), with set of

attributes W;

– The union Q [Q0, in the case that U = U 0, with

associated set of attributes U.

Postings File P 2125
The semantics of a positive relational algebra query on

a database instance I of schema t is a relation instance

defined as follows: the semantics of a constant relation

is the relation itself; the semantics of a relation symbol

R of t is the value of R in I; the semantics of selection,

projection, natural join, renaming and union expres-

sions above, is defined according to the semantics of

the corresponding operator on inputs given by the

semantics of Q and Q 0.
P

Key Points
The basic operators of the positive relational algebra

are a non-redundant set: by removing any of these

operators the set of expressible query mappings would

be reduced. Moreover they allow the simulation of other

operators. Among these, the intersection R1 \ R2 of two

relations over the same set of attributes can be

simulated as R1⋈R2; the generalized selection whose

condition is a positive boolean combination of equality

atoms can be simulated using composition and union

of primitive selection operators; consequently also the

theta-join, with the same restriction on the join condi-

tion, and the equijoin can be simulated.

An example of positive relational algebra query

over a database schema consisting of relation schemas

Students(student-number, student-name) and Exams

(course-number, student-number, grade), is the expres-

sion pstudent�name(Students ⋈ sgrade = A(Exams)). It

returns the names of the students that have passed at

least one exam with grade A.

The positive relational algebra is equivalent (in that

it expresses the same query mappings) to other query

languages such as unions of conjunctive queries in safe

relational calculus, and nonrecursive datalog with one

target predicate.

In the absence of attribute names, the basic opera-

tors of positive relational algebra are {s, p,
, [}. The
positive relational algebra without names turns out to

be equivalent to the positive relational algebra with

names and thus equivalent to the other above

mentioned query paradigms.
Cross-references
▶Difference

▶ Join

▶Nonrecursive Datalog

▶ Projection

▶Relation
▶Relational Algebra

▶Relational Calculus

▶Renaming

▶ Selection

▶Union

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases.

Addison-Wesley, Reading, MA, 1995.
Possible Answers

GÖSTA GRAHNE

Concordia University, Montreal, QC, Canada

Synonyms
Maybe answer; Credulous reasoning; Consistent facts

Definition
In an incomplete database, which is a set of complete

databases (possible worlds), the possible answer to a

query is the set of tuples that are in the answer to the

query, when posed on some possible world. The dual of

the possible answer is the certain answer, which con-

sists of all tuples true in the the answer to the query

when posed simulatenously on all possible worlds.

Key Points
For more information on the certain and possible

answers, as well as on various (partial) orders on

incomplete databases, see [1,2].

Cross-references
▶Certain (and Possible) Answers

▶ Incomplete Information

▶Naive Tables

Recommended Reading
1. Grahne G. The Problem of Incomplete Information in Relation-

al Databases. Springer, Berlin, 1991.

2. Libkin L. Aspects of Partial Information in Databases. PhD

Thesis, University of Pennsylvania, 1994.
Postings File

▶ Inverted Files

2126P Post-Randomization Method
Post-Randomization Method

▶ PRAM
PRAM

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona, Catalonia

Synonyms
Post-randomization method

Definition
The Post-RAndomization Method (PRAM) is a proba-

bilistic, perturbativemaskingmethod for disclosure pro-

tection of categorical microdata. In the masked file, the

scores on some categorical attributes for certain records

in the original file are changed to a different score

according to a prescribed probabilitymechanism, name-

ly aMarkovmatrix. TheMarkov approachmakes PRAM

very general, because it encompasses noise addition, data

suppression and data recoding.
Key Points
The PRAM matrix contains a row for each possible

value of each attribute to be protected. This rules out

using the method for continuous data. PRAM was

invented by Gouweleeuw et al. [1]. The information

loss and disclosure risk in data masked with PRAM

largely depend on the choice of the Markov matrix and

are still (open) research topics [2].
Cross-references
▶ Inference Control in Statistical Databases

▶Microdata

▶ SDC Score
Recommended Reading
1. Gouweleeuw J.M., Kooiman P., Willenborg L.C.R.J., and

DeWolf P.-P. Post randomisation for statistical disclosure con-

trol: Theory and implementation, 1997. Research Paper No.

9731 (Voorburg: Statistics Netherlands).

2. de Wolf P.-P. Risk, utility and PRAM. In J. Domingo-Ferrer

and L. Franconi (eds.). Privacy in Statistical Databases LNCS,

vol. 4302, 2006, pp. 189–204.
Precision

ETHAN ZHANG
1,2, YI ZHANG

2

1University of California-Santa Cruz, Santa Cruz,

CA, USA
2Yahoo! Inc., Santa Clara, CA, USA

Definition
Precision measures the accuracy of an information

retrieval (IR) system. More precisely, precision is the

fraction of retrieved documents that are relevant. Con-

sider a test document collection and an information

need Q. Let R be the set of documents in the collection

that are relevant to Q. Assume an IR system processes

the information need Q and retrieves a document set

A. Let jRaj denote the number of documents that are in

both R and A. Further let jRj and jAj be the numbers of

documents in R and A, respectively. The precision of

the IR system for Q is defined as P = jRaj ∕ jAj.

Key Points
Precision and recall are the most frequently used and

basic retrieval performance measures. Many other stan-

dard performancemetrics are based on the two concepts.

Cross-references
▶Average Precision

▶ F-Measure

▶ 11-Point Precision-Recall Curve

▶ Precision-Oriented Effectiveness

▶Recall

▶ Standard Effectiveness Measures
Precision and Recall

BEN CARTERETTE

University of Massachusetts Amherst, Amherst,

MA, USA

Synonyms
Positive predictive value; Sensitivity; False negative rate

Definition
Recall measures the ability of a search engine or re-

trieval system to locate relevant material in its index.

Precision measures its ability to not rank nonrelevant

Precision at n P 2127
material. With everything above rank cut-off n consid-

ered ‘‘retrieved’’ and everything below considered ‘‘not

retrieved,’’ precision and recall can be stated mathe-

matically as:

precision ¼ retrieved& relevant at rank nj j
retrieved at rank nj j

recall ¼ retrieved& relevant at rank nj j
relevantj j

Key Points
Precision and recall are the traditionalmetrics for retriev-

al system performance evaluation, and nearly all other

performance measures can be seen as either precision-

based, recall-based, or a combination of the two.

There is a trade-off between precision and recall: as

more is done to bring more relevant results into a

ranking, increasing recall, inevitably nonrelevavnt

results will be captured as well, decreasing precision.

This can be seen in precision-recall curves, which plot

precision against recall while varying rank cut-off n.
Condition

True False

Prediction True True Positive False Positive

False False Negative True Negative

P

Precision and recall are not limited to information

retrieval; they can be defined more formally on any

2
 2 contingency table. For the table

precision is True Positives divided by True Positivesþ
False Positives and recall is True Positives divided by

True PositivesþFalse Negatives. In medical literature,

precision is known as positive predictive value and recall

as sensitivity; in the statistics literature, recall is equiv-

alent to the power (or 1�Type II error rate) of a

hypothesis test (precision has no analogue).

Cross-references
▶Average Precision

▶ Precision at n

▶Recall

Recommended Reading
1. van Rijsbergen C.J. Information Retrieval. Butterworths,

London, UK, 1979.
Precision at n

NICK CRASWELL

Microsoft Research Cambridge, Cambridge, UK

Synonyms
P@n

Definition
In an information retrieval system that retrieves a

ranked list, the top-n documents are the first n in the

ranking. Precision at n is the proportion of the top-n

documents that are relevant.

Key Points
If r relevant documents have been retrieved at rank n,

then:

Precision at n ¼ r
n

The value of n can be chosen based on an assumption

about how many documents the user will view. In Web

search a results page typically contains ten results,

so n = 10 is a natural choice. However, not all users

will use the scrollbar and look at the full top ten list. In

a typical setup the user may only see the first five

results before scrolling, suggesting Precision at 5 as a

measure of the initial set seen by users. It is the docu-

ment at rank 1 that gets most user attention, because

this is the document that users view first, suggest-

ing the use of Precision at 1 (which is equivalent to

Success at 1).

It is possible to calculate precision at a later cutoff,

although precision gives equal weight to every result in

the list. For example, when calculating precision at

1,000 the 1,000th document is as important as the

1st, whereas users of a ranked retrieval system are likely

to consider the 1st document most important. Other

information retrieval measures place a greater empha-

sis on early ranks, such as Mean Average Precision and

Mean Reciprocal Rank.

In set-based retrieval, where there is no ranking, the

precision of a retrieved set of size n can still be calcu-

lated, as r/n.

In order to calculate precision at n it is only neces-

sary to obtain relevance judgments for the top-n docu-

ments, unlike recall, which can only be measured if the

complete set of relevant documents has been

identified.

2128P Precision-Oriented Effectiveness Measures
Cross-references
▶Average Precision

▶ Precision-Oriented Effectiveness Measures

▶Recall

▶ Success at n
Precision-Oriented Effectiveness
Measures

NICK CRASWELL

Microsoft Research Cambridge, Cambridge, UK

Definition
Precision-oriented evaluation in information retrieval

considers the relevance of the top n search results, for

small n and using a set of relevance judgments that

need not be complete. Such ‘‘shallow’’ evaluation is

consistent with a user who only cares about the top-

ranked documents. Relaxing the requirement of iden-

tifying all relevant documents for every query means

that certain measures, such as recall at n, cannot be

applied. However, it also allows evaluation on a very

large corpus, where employing human relevance asses-

sors to find the complete relevant set for each query

would be too expensive. Both aspects of precision-

oriented evaluation, the shallow viewing of results

and the large corpus, are associated with Web search,

where search results are typically a top-10 and the

corpus may contain tens of billions of documents.

Historical Background
The Cranfield II experiments in 1963 were a landmark

effort in information retrieval evaluation [3]. A test

collection comprising 1,440 documents, 225 queries

and relevance judgments was created. Because the docu-

ment set was small, it was possible to judge the relevance

of every document for each query. Using complete rele-

vance judgments it is possible to evaluate precision, the

proportion of retrieved documents that are relevant, and

recall, the proportion of relevant documents that are

retrieved. The test collection is reusable, in that it is

possible to run a new retrieval experiment using existing

queries and relevance judgments, without encountering

any unjudged document in the search results.

Judging all documents for every query does not

scale well with corpus size, and becomes untenable even

with tens of thousands of documents. The best-known
solution to this problem is the pooling method, as intro-

duced in the Text Retrieval Conference (TREC) in 1991

[5]. Under pooling, the top-n documents are merged

from a large number of systems. This pool of documents

does not necessarily contain all relevant documents.How-

ever, if a sufficient variety of top-n lists are merged, for a

large enough n, the pool will contain the majority of the

relevant documents. After judging the pool, the set of

relevance judgments can be thought of as ‘‘sufficiently

complete’’ to be reusable. In other words, a new retrieval

experiment may retrieve unjudged documents, but these

can be assumed to be irrelevant since almost all the

relevant documents have already been identified.

Most TREC experiments have resulted in test collec-

tions where the pools are sufficiently complete for reuse.

However, for the largest TREC corpora, it is unlikely

that the full relevant set has been identified, or could be

identified due to practical limitations in the judging

resources [4]. In such cases it is possible to judge

with shallow pools, for example judging the top 20

documents and using a precision-oriented measure.

Since the full relevant set has not been discovered, it

is not straightforward to measure recall, or use any

measure that relies on knowing the size of the relevant

set. The test collection may not be reusable.

Foundations
To understand precision-oriented evaluation, it is use-

ful to revisit the fundamental measures of information

retrieval, precision and recall. If there are R known

relevant documents, and r of them have been retrieved

at rank n, then:

Precision at n ¼ r

n

Recall at n ¼ r

R

For a given cutoff n, these are just different ways of

normalizing r. If r increases, because a new retrieval

system retrieves a better set of n documents, both

precision and recall improve.

One aspect of precision-oriented evaluation is

where not all relevant documents have been identified,

so R is unknown. In such a case it is not straightfor-

ward to estimate recall, which depends on knowledge

of R. However, if the top n documents have been

judged, it is possible to accurately measure precision.

Another aspect of precision-oriented evaluation

is shallow evaluation. At an early cutoff (small n) few

relevant documents will have been retrieved (small r),

Predicate Logic P 2129

P

but precision may still be quite high. By contrast, recall

might be low, particularly if R is much higher than

r and n. In a standard precision-recall curve, which

shows precision and recall at multiple cutoffs, precision-

oriented evaluation considers the left-hand end of the

curve. Precision-oriented evaluation models a user who

does not need to see all relevant documents and is

impatient, unwilling to look deep into the ranking.

Some experiments have both shallow evaluation

and incomplete judgments, for example the TREC

Very Large Collection Track [4] judged with a pool

depth of 20, to measure Precision at 20. Metrics such

as Precision at n, Success at n, Mean Reciprocal Rank

and Average Precision at n have been applied in such

settings. More details about these metrics can be found

from the corresponding entries in this encyclopedia.

In other experiments, judgments may be incom-

plete or evaluation shallow, but not both. In those

cases, it is not clear that the evaluation should be called

precision-oriented. It is possible to evaluate with a

recall-oriented measure using incomplete judgments,

via measures such as bpref and inferred AP [1,6]. It

is also possible to perform shallow evaluation with

complete judgments, particularly in cases with very

few relevant documents such as known item search.

In a setting where R tends to be between 1 and 10,

a metric such as R-Precision could be thought of

as precision-oriented.

Key Applications
Web search is probably the most well-known applica-

tion where precision-oriented evaluation is used. Users

do not often look deep into the results list, so evalua-

tion that concentrates on shallow ranks is appropriate.

In addition, the document collection is so large, that it

is difficult to be sure that all good answers for a query

have been identified. The exception is where a user has

a very focused need, for example navigational search,

where only a single document is required. Even then

the web is volatile, with documents being created,

modified and deleted without warning, so it is neces-

sary to perform careful maintenance of a query set. For

queries with multiple correct answers, it is usual to

calculate precision-oriented measures, and very diffi-

cult to estimate recall.

Data Sets
Data sets for precision-oriented evaluation, and Infor-

mation Retrieval experimentation in general, are
available from the National Institute of Standards and

Technology, in the Text Retrieval Conference (TREC)

series [5]. TREC experiments typically involve hundreds

of thousands of documents or more, and 50 or more

query topics.

Cross-references
▶Average Precision at n

▶Bpref

▶Mean Reciprocal Rank

▶ Precision

▶ Precision at n

▶R-Precision

▶ Standard Effectiveness Measures

▶ Success at n

Recommended Reading
1. Buckley C. and Voorhees E.M. Retrieval evaluation with incom-

plete information. In Proc. 30th Annual Int. ACM SIGIR Conf.

on Research and Development in Information Retrieval, 2004,

pp. 25–32.

2. Clarke C.L.A., Scholer F., and Soboroff I. The TREC 2005

terabyte track. In Proc. The 5th Text Retrieval Conference, 2005.

3. Cleverdon C. The Cranfield Tests on Index Language Devices.

Readings in Information Retrieval. Morgan Kaufmann, San

Fransisco, CA, 1997, pp. 47–59.

4. Hawking D. and Craswell N. The very large collection and

web tracks. In TREC Experiment and Evaluation in Informa-

tion Retrieval, E. Voorhees, D. Harman (eds.). MIT Press,

Cambridge, MA, 2005, pp. 199–231.

5. Voorhees E.M. and Harman D.K. TREC: Experiment and

Evaluation in Information Retrieval. MIT Press, Cambridge,

MA, 2005.

6. Yilmaz E. and Aslam J.A. Estimating average precision with

incomplete and imperfect judgments. In Proc. Int. Conf. on

Information and Knowlege Management, 2006, pp. 102–111.
Predicate Calculus

▶ First-Order Logic: Semantics

▶ First-Order Logic: Syntax
Predicate Logic

▶ First-Order Logic: Semantics

▶ First-Order Logic: Syntax

2130P Prediction of Event Occurrence
Prediction of Event Occurrence

▶ Event Prediction
Prediction Regarding Future Events

▶ Event Prediction
Prefix Tree

▶Trie
Presenting Structured Text
Retrieval Results

JAAP KAMPS

University of Amsterdam, Amsterdam,

The Netherlands

Synonyms
Structured Text Retrieval Tasks

Definition
Presenting structured text retrieval results refers to the

fact that, in structured text retrieval, results are not

independent and a judgment on their relevance needs

to take their presentation into account. For example,

HTML/XML/SGML documents contain a range of

nested sub-trees that are fully contained in their ances-

tor elements. As a result, structured text retrieval

should make explicit the assumptions on how the

retrieval results are to be presented. Four of the main

assumptions to be addressed are the following. First,

the unit of retrieval assumption: is there a designated

retrieval unit (such as the document or root node of

the structured document) or can every sub-tree be

retrieved in principle? Second, the overlap assumption:

may retrieval results contain text or content already

part of other retrieval results (such as a full article and

one of its individual paragraphs)? Third, the context

assumption: can results from the same structured doc-

ument be interleaved with results from other
structured documents? Fourth, the display assump-

tion: is a retrieval result (say a document sub-tree

corresponding to a paragraph) presented as an auton-

omous unit of text, or as an entry-point within a

structured document?

Historical Background
Although similar considerations play an important

role in the design of user interfaces (see, for example,

[6]), this entry will focus on the underlying principles

of the different structured text retrieval tasks.

Structured text retrieval dates back, at least, to the

early days of passage retrieval [14]. Early passage re-

trieval approaches have been using either the docu-

ment structure (sentences, paragraphs, sections, etc.),

or arbitrary text windows of fixed length. The early

experimental results primarily confirmed the effective-

ness of passage-level evidence for boosting document

retrieval. The use of document structure derived from

SGMLmark-up was pioneered by [20], studying adhoc

SGML element retrieval. Probabilistic indexing

approaches for databases have been studied even earli-

er [4], allowing to rank results based on vague queries.

Adhoc XML element retrieval and best entry point

retrieval was studied in the Focus project [3,10].

The main thrust in recent years is the initiative for

the evaluation of XML retrieval [7]. The retrieval task

descriptions heavily evolved during the different years.

Initially, in 2002, INEX studied adhoc XML element

retrieval for keyword (Content-Only) and structured

(Content-And-Structure) queries with the goal to ‘‘re-

trieve the most specific relevant document compo-

nents’’ [5, p. 2]. This generic adhoc XML element

retrieval task was continued at INEX 2003 [9, p. 200]

and at INEX 2004 [12, p. 237], asking for ‘‘components

that are most specific and most exhaustive with respect

to the topic of request.’’ Ongoing discussion, and vivid

disagreement, on the interpretation of generic adhoc

XML element retrieval task prompted the introduction

of three different retrieval strategies at INEX 2005 [11,

pp. 385–386]: Thorough aims to find all highly exhaus-

tive and specific elements (roughly corresponding to

the earlier INEX task); Focussed aims to find the

most specific and exhaustive element in path (no over-

lapping results); and Fetch and browse aims to first

identify relevant articles, and then to find the most

specific and exhaustive elements within the fetched

articles (results grouped by article). These different

adhoc XML element retrieval tasks have been

Presenting Structured Text Retrieval Results P 2131
continued and further explicated at INEX 2006 [1],

with the Fetch and browse task refined to: Relevant in

Context aims to retrieve a set of non-overlapping rele-

vant elements per article; and Best in Context aims to

retrieve, per article, a single best entry point to read

its relevant content. At INEX 2007 three tasks are

continued: Focused, Relevant in Context, and Best in

Context, but liberalized to arbitrary passages [2].

Foundations
The way in which retrieval results are presented to

users, is always a crucial factor determining the success

or failure of an operational retrieval system. However,

within the Cranfield/TREC tradition of evaluating

document retrieval systems it is unproblematic to

abstract away from presentation issues and analyze

retrieval effectiveness by regarding retrieved documents

as atomic and independent results. In structured text

retrieval, the situation is different, and there is a need to

make explicit some of the assumptions underlying the

retrieval task since these have an impact on what is

regarded as a ‘‘relevant’’ retrieval result.

First, the unit of retrieval assumption: is there a

designated retrieval unit (such as the document or

root node of the structured document) or can every

sub-tree be retrieved in principle? Rather than treating

documents as atomic, structured documents have
Presenting Structured Text Retrieval Results. Figure 1. Dis

elements (reproduced from [13]).
internal document structure that allows any logical

unit of them to be retrieved. For example, in case of a

textual document where the layout structure is marked

up, it is possible to retrieve sections, paragraphs, or still

the whole article if its completely devoted to the topic

of request. Figure 1 contains a screen-shot of a XML

element retrieval system that retrieves a ranked list of

XML elements.

Second, the overlap assumption: may retrieval

results contain text or content already part of other

retrieval results (such as a full article and one of

its individual paragraphs)? Interactive experiments at

INEX 2004 [17] clearly revealed that test persons dis-

liked a ranked list of element results that overlap in

whole or part in their content. Hence, if the retrieval

tasks should reflect a scenario in which the ranked

elements are directly displayed to an end-user, retrieval

results should be disjoint.

Third, the context assumption: can results from the

same structured document be interleaved with results

from other structured documents? A further finding of

the interactive experiments at INEX 2004 [17] is that

test persons prefer results from the same document be

grouped together. Figure 2 contains a screen-shot of a

XML element retrieval system that retrieves XML ele-

ments displayed in document order in their article’s

context.
playing structured text retrieval results as a ranked list of

P

Presenting Structured Text Retrieval Results. Figure 2. Displaying structured text retrieval results within article context

(reproduced from [15]).

2132P Presenting Structured Text Retrieval Results
Fourth, the display assumption: is a retrieval result

(say a document sub-tree corresponding to a para-

graph) presented as an autonomous unit of text, or

as an entry-point within a structured document? A

decision on the relevance of a particular document

component crucially depends on whether it will be

presented as an isolated excerpt, or within its original

context. In the first case, the component should be

fully self-contained: it should not only contain the

relevant information (say, for example, a description

of an algorithm) but also establish that this infor-

mation is, indeed, satisfying the topic of request

(for example, that the algorithm is the fastest way to

lexicographically sort a list, if that were the topic of

request). This is related to linguistics, where there is a

common distinction between the context (or topic/
theme: that what is being talked about), and the infor-

mation (or comment/rheme/focus: that what is being

said). If results are to be presented in their document

context, the link to the topic of request can be taken

for granted and only the sought information can be

regarded as relevant. If results are to be presented out

of context, both the information and its relation to the

topic of request are needed to establish the relevance of

a document component.

Table 1 shows how the different structured text

retrieval tasks are based on different underlying

assumptions. For traditional document or article

retrieval, there is a fixed unit of retrieval and assump-

tions on overlap, context, or display do not apply. For

the generic adhoc element retrieval task (INEX 2002–

2004) or Thorough (INEX 2005–2006), any document

Presenting Structured Text Retrieval Results. Table 1. Structured text retrieval tasks

Unit of retrieval Overlap Context Display

Article retrieval Whole article – – –

Thorough Arbitrary element Allowed Scattered Elements

Focussed/Focused Arbitrary element Non-overlapping Scattered Elements/Passages

Fetch and browse Arbitrary element Allowed List per article Elements

Relevant in context Arbitrary element Non-overlapping Set per article Elements/Passages

Best in context Arbitrary element Non-overlapping One result per article Starting point

Presenting Structured Text Retrieval Results P 2133

P

component can be retrieved, and there are no restric-

tions on overlap, context, or display. Basically, the task

is system-biased, reflecting the ability of the retrieval

engine to estimate the relevance of individual docu-

ment components, for example for further processing

methods. For Focussed/Focused (INEX 2005–2007),

a ranked list of non-overlapping document compo-

nents is asked for, with no restrictions on context or

display. This task reflects a scenario where a ranked-list

of document components is directly presented to the

searcher. For Fetch and browse (INEX 2005), retrieval

results from the same structured document need to be

returned consecutive, with no restriction on overlap or

display. This results in a tasks resembling on the one

hand traditional document retrieval, whilst on the

other hand providing deep-linking to relevant docu-

ment components. The same holds for Relevant in

context (INEX 2006–2007), where there is an

unranked set of now non-overlapping elements per

article, reflecting results to be presented in document

order. Finally, Best in context (INEX 2006–2007)

explicitly asks for a single best entry point into the

article (so non-overlapping and non-scattered articles

by definition). This scenario captures a ‘‘relative’’ no-

tion of relevance, where users desire access to the best

information, rather than all relevant information.

These different retrieval tasks lead to different

evaluations of what systems and techniques are effec-

tive for structured text retrieval. Although these tasks

are not unrelated, for example, the generic Thorough

task (capturing the ability of a system to estimate the

relevance of an element) can be use as input for further

processing for the other tasks, each of these different

retrieval tasks is capturing a different aspect of

structured text. The retrieval tasks bring in elements

from the task context in which they are to be applied,

either in a end-user setting or system setting. As a

result, the richer descriptions of the task’s context
and underlying assumptions are resonating more

closely with actual real-world applications [19]. Bring-

ing task-specific elements into information retrieval

benchmark testing has been identified as one of the

main research directions for further enhancing infor-

mation access in general [18].

Key Applications
Structured text retrieval has the potential to improve

information access by giving more direct access to the

relevant information inside documents. As [14, p. 49]

put it:

" Large collections of full-text documents are now com-

monly used in automated information retrieval. When

the stored document texts are long, the retrieval of

complete documents may not be in the users’ best

interest. In such circumstances, efficient and effective

retrieval results may be obtained by using passage

retrieval strategies designed to retrieve text excerpts

of varying size in response to statements of user

interest.

Structured document retrieval is becoming increas-

ingly important in all areas of information retrieval,

the application to full-text book searching is obvious

and such commercial systems already exist [19].

Future Directions
Improving information access by formulating retrieval

tasks that capture interesting aspects of real-world

structured text searching is an ongoing open problem.

There has been a series of workshops addressing open

problems, including real-world applications, the unit

of retrieval, tasks and measures, and the problem of

overlap [18].

The traditional picture of IR takes as input a docu-

ment collection and a query, and gives as output a

ranked list of documents. In the retrieval task, there

2134P Preservation
no distinction between the hit list (communicating

the ranked list) and the actual result documents.

Where structured document retrieval is going beyond

a linear ranked list of results, at least conceptually,

interesting new research questions present themselves.

By presenting related results from the same article, like

in Fig. 2, the hit-list becomes a query-biased summary

of the discourse structure of the retrieved article. [16]

conduct experiments on the level of detail desired by

searchers. Evaluation of such a system seems to require

taking both retrieval effectiveness and document sum-

marization aspects into account.
Data Sets
Notable data-sets are:

1. The Shakespeare test collection used in the Focus

project 2000–2001 [3].

2. The IEEE Computer Society collection used at INEX

2002–2004 [7].

3. The expanded IEEE Computer Society collection

used at INEX 2005 [7].

4. The Wikipedia XML Corpus used at INEX

2006–2007 [7].
Cross-references
▶ Evaluation Metrics for Structured Text Retrieval

▶ INitiative for the Evaluation of XML Retrieval

▶XML Retrieval
Recommended Reading
1. Clarke C., Kamps J., and Lalmas M. INEX 2006 retrieval task

and result submission specification. In INEX 2006 Workshop

Pre-Proceedings, 2006, pp. 381–388.

2. Clarke C.L.A., Kamps J., and Lalmas M. INEX 2007 retrieval

task and result submission format. In Pre-Proceedings of INEX,

2007, pp. 445–453.

3. Focus. Focussed Retrieval of Structured Documents – A Large

Experimental Study, 2001.

4. Fuhr N. A probabilistic framework for vague queries and

imprecise information in databases. In Proc. 16th Int. Conf. on

Very Large Data Bases, 1990, pp. 696–707.

5. Gövert N. and Kazai G. Overview of the INitiative for the

Evaluation of XML retrieval (INEX) 2002. In Proc. 2nd Int.

Workshop of the Initiative for the Evaluation of XML Retrieval,

2003, pp. 1–17.

6. Hearst M.A. User interfaces and visualization, Chapter X.

In Modern Information Retrieval. ACM, New York, NY, USA,

1999, pp. 257–324.

7. INEX. INitiative for the Evaluation of XML Retrieval, 2007.

http://inex.is.informatik.uni-duisburg.de/.
8. Jones K.S. What’s the value of TREC – is there a gap to jump

or a chasm to bridge? SIGIR Forum, 40(1):10–20, 2006.

9. Kazai G., Lalmas M., Gövert N., and Malik S. INEX’03

retrieval task and result submission specification. In Proc. 2nd

Int. Workshop of the Initiative for the Evaluation of XML

Retrieval, 2003, pp. 200–203.

10. Kazai G., Lalmas M., and Reid J. Construction of a test collection

for the focussed retrieval of structured documents. In Proc. 25th

European Conf. on IR Research, 2003, pp. 88–103.

11. Lalmas M. and Kazai G. INEX 2005 retrieval task and

result submission specification. In Proc. 4th Int. Workshop of

the Initiative for the Evaluation of XML Retrieval, 2005, pp.

385–390.

12. Lalmas M. and Malik S. INEX 2004 retrieval task and

result submission specification. In Proc. 3rd Int. Workshop

of the Initiative for the Evaluation of XML Retrieval, 2004, pp.

237–240.

13. Malik S., Klas C.-P., Fuhr N., Larsen B., and Tombros A.

Designing a user interface for interactive retrieval of structured

documents – lessons learned from the INEX interactive

track. In Proc. 10th European Conf. Research and Advanced

Technology for Digital Libraries, 2006, pp. 291–302.

14. Salton G., Allan J., and Buckley C. Approaches to passage

retrieval in full text information systems. In Proc. 16th Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 1993, pp. 49–58.

15. Sigurbjörnsson B. Focused Information Access using XML

Element Retrieval. SIKS dissertation series 2006–2028,

University of Amsterdam, 2006.

16. Szlávik Z., Tombros A., and LalmasM. Feature- and query-based

table of contents generation for XML documents. In Proc. 29th

European Conf. on IR Research, 2007, pp. 456–467.

17. Tombros A., Larsen B., and Malik S. The interactive track

at INEX 2004. In Proc. 3rd Int. Workshop of the Initiative for

the Evaluation of XML Retrival, 2004, pp. 410–423.

18. Trotman A., Geva S., and Kamps J. (eds.). In Proc. of the SIGIR

2007 Workshop on Focused Retrieval, 2007.

19. Trotman A., Pharo N., and Lehtonen M. XML-IR users and

use cases. In Proc. 5th Int. Workshop of the Initiative for the

Evaluation of XML Retrieval, 2006, pp. 400–412.

20. Wilkinson R. Effective retrieval of structured documents.

In Proc. 17th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 1994, pp. 311–317.
Preservation

▶Archiving Experimental Data
Preserving Database Consistency

▶Correctness Criteria Beyond Serializability

Primary Index P 2135
Preview

▶Result Display
Primary Index

YANNIS MANOLOPOULOS
1, YANNIS THEODORIDIS

2,

VASSILIS J. TSOTRAS
3

1Aristotle University of Thessaloniki, Thessaloniki,

Greece
2University of Piraeus, Piraeus, Greece
3University of California-Reverside, Riverside,

CA, USA

Synonyms
Clustering index; Sparse index
P

Definition
A tree-based index is called a primary index if its order

is the same as the order of the file which it indexes

Consider a relation R with some numeric attribute A

taking values over an (ordered) domain D. Assume

that relation R has been physically stored as an ordered

file, following the order of the values of attribute

A. Furthermore, assume that a tree-based index (e.g.,

B +-tree) has been created on attribute A. Then this

index is primary.
Key Points
Tree-based indices are built on numeric attributes and

maintain an order among the indexed search-key values.

They are further categorized by whether their search-key

ordering is the samewith the file’s physical order (if any).

Note that a file may or may not be ordered. Ordered is a

file whose records are stored in pages according to the

order of the values of an attribute. Obviously, a file can

have at most a single such order since it is physically

stored once. For example, if the Employee relation is

ordered according to the name attribute, the values in

the other attributes will not be in order. A file stored

without any order is called an unordered file or heap. If

the search-key of a tree-based index is the same as the

ordering attribute of a (ordered) file then the index is

called primary. An index built on any non-ordering

attribute of a file is called secondary.
Note that a primary index also controls the physical

placement of the data records in a file. Since such an

index also clusters the values of the file, the term

clustering index has alternatively been used. In con-

trast, the order in the leaf pages of a secondary index

is not the same as the order of the records in the file.

Hence, a secondary index (also called non-clustering)

needs an extra level of indirection, namely, a pointer to

the actual position of a record with a given value in the

relation file. In other words, a secondary index only

clusters references to records (in the form of <value,

pointer> fields), but not the records themselves. This

extra indirection from a leaf page of a secondary index

to the actual position of a record in a file has important

subsequences on optimization. Consider for example a

secondary index (B + -tree) on the ssn attribute of the

Employee relation (which assume is ordered by the

name attribute). A query that asks for the salaries of

employees with ssn in the range [x,y] can facilitate the

B + -tree on ssn to retrieve references to all records in

the query range. Assume there are 1,000 such ssn values

in the Employee file. Since the actual Employee records

must be retrieved (so as to report their salaries), each

such reference needs to be materialized by possibly a

separate page I/O (since the actual records can be in

different pages of the Employee file). If instead the file

was ordered on the ssn attribute, the B + -tree on ssn

would have clustered (as primary index) the Employee

records on ssn, and thus the 1,000 records that need to

be retrieved would be located within few pages.

In practice, the search-key of a primary index is

usually the file’s primary key, however this is not neces-

sary. That is, primary indexes need not be on the primary

keys of relations. (In the above example, it was first

assumed that the Employee file is ordered according to

the name attribute and not according to the primary

key ssn attribute). A relation can have several indices, on

different search-keys; among them, at most one is pri-

mary (clustering) index and the rest are secondary ones.

Cross-references
▶Access Path

▶ Index Creation and File Structures

▶ Index Sequential Access Method (ISAM)

▶ Secondary Index

Recommended Reading
1. Elmasri R. and Navathe S.B. Fundamentals of Database Systems,

5th edn. Addisson-Wesley, Boston, MA, 2007.

2136P Primary Memory
2. Manolopoulos Y., Theodoridis Y., and Tsotras V.J. Advanced

Database Indexing. Kluwer, Dordrecht, 1999.

3. Ramakrishnan R. and Gehrke J. Database Management Systems,

3rd edn. McGraw-Hill, New York, 2003.
Primary Memory

▶Main Memory
Primitive Event

▶Atomic Event
Principal Component Analysis

HENG TAO SHEN

The University of Queensland, Brisbane, QLD,

Australia

Synonyms
PCA

Definition
Principal components analysis (PCA) is a linear tech-

nique used to reduce a high-dimensional dataset to a

lower dimensional representations for analysis and

indexing. For a dataset P in D-dimensional space

with its principal component set F, given a point

p2P, its projection on the lower d-dimensional sub-

space can be defined as: p. Fd, where Fd represents the

matrix containing 1st to dth largest principal compo-

nents in F and d < D.

Key Points
PCA finds a low-dimensional embedding of the data

points that best preserves their variance as measured

in the high-dimensional input space [1]. It identifies

the directions that best preserve the associated varian-

ces of the data points while minimize ‘‘least-squares’’

(Euclidean) errormeasured by analyzing data covariance

matrix. The first principal component is the eigenvector

corresponding to the largest eigenvalue of the dataset’s

co-variance matrix, the second component corresponds
to the eigenvector with the second largest eigenvalue and

so on. The chosen principal components form the lower

dimensional subspace of interest. Typically, the top d

principal components are selected since they carry

the most information of original data. The lower

dimensional representation for a point is then gener-

ated by multiplying the data point with the selected

principal components. PCA makes a stringent assump-

tion of orthogonality to make it amenable to linearity.

PCA has been widely used in many applications

for exploratory data analysis and compression, making

predictive models, indexing, information retrieval, etc.

Cross-references
▶Dimensionality Reduction

▶Discrete Fourier Transform

▶Discrete Wavelet Transform and Wavelet Synopses

▶ Independent Component Analysis

▶ Isometric Feature Mapping

▶ Latent Semantic Indexing

▶ Locality-Preserving Mapping

▶ Locally Linear Embedding Laplacian Eigenmaps

▶Multidimensional Scaling

▶ Semantic Subspace Projection

▶ Singular Value Decomposition

Recommended Reading
1. Jolliffe I.T. Principlal Componet Analysis. 2nd edn. Springer,

New-York, 2002.
Principle of Locality

▶Memory Locality
Privacy

PATRICK C. K. HUNG
1, VIVYING S. Y. CHENG

2

1University of Ontario Institute of Technology,

Oshawa, ON, Canada
2Hong Kong University of Science and Technology,

Hong Kong, China

Definition
Privacy helps to establish personal autonomy and

create individualism. Privacy is a state or condition of

Privacy Metrics P 2137

P

limited access to a person (e.g., client). In particular,

information privacy relates to an individual’s right to

determine how, when, and to what extent information

about the self will be released to another person or

to an organization.

Key Points
With the rising occurrence of information privacy

violations, people have begun to take interest in how,

when, and where their personal information is being

used. People usually interchange the concepts of

security with privacy. In fact, they are essentially two

different concepts used to protect data. In general,

security involves the use of cryptographic tools to

protect information in terms of confidentiality, avail-

ability, and access control and integrity enforcement.

Privacy mainly focuses on the ability of keeping data

away from public access, and the way to protect it

according to the individual rights.

There are various definitions of privacy in the

literature. Some researchers describe confidentiality

as privacy, while some regard privacy as an aspect

different from using cryptographic tools. Anderson

[1] defined privacy as secrecy for benefit of the indi-

vidual, and confidentiality as secrecy for the benefit

of the organization. Alternatively, privacy can also

be described by the ability to have control over the

collection, storage, access, communication, manipula-

tion and disposition of data. Privacy is also referred as

the right for individuals to determine for themselves

when, how, and to what extent information about

them is communicated to others. As Westin [2] notes,

" No definition [of privacy]. . . is possible, because [those]

issues are fundamentally matters of values, interests

and power.

It can be said that privacy is a much broader concept

than security; privacy protection is based on security

protection. Security may enable privacy protection

from authorized access, but security alone cannot pro-

vide privacy.

To enhance the privacy protection of personal

information, legislative schemas and practice guide-

lines have been proposed by different organizations

such as the Health Insurance Portability and Account-

ability Act (HIPAA) in the United States of America

(USA) and the European Union (EU) Data Protec-

tion Act. These legislations and requirements can be

abstracted as access control policies or rules to serve as
a privacy foundation to control access to personal

information.

Cross-references
▶Data Privacy and Patient Consent

▶ Privacy-enhancing technologies

▶ Privacy Metrics

▶ Privacy policies and preferences

▶ Privacy-preserving data mining

Recommended Reading
1. Anderson R.J. A security policy model for clinical information

systems. In Proc. 1996 IEEE Symp. on Security and Privacy,

1996.

2. Westin A. Privacy and freedom. New York, Atheneum, 1967.
Privacy Measures

▶ Privacy Metrics
Privacy Metrics

CHRIS CLIFTON

Purdue University, West Lafayette, IN, USA

Synonyms
Privacy measures
Definition
Measures to determine the susceptibility of data or a

dataset to revealing private information. Measures in-

clude ability to link private data to an individual, the

level of detail or correctness of sensitive information,

background information needed to determine private

information, etc.
Historical Background
Legal definitions of privacy are generally based on

the concept of Individually Identifiable Data. Unfortu-

nately, this concept does not have a clear meaning in the

context of many database privacy technologies. The offi-

cial statistics (census) community has long been

concerned with measures for privacy, particularly in

the contexts of microdata sets (datasets that represent

2138P Privacy Metrics
real data, but obscured in ways to protect privacy) and

tabular datasets.Measures have largely been based on the

probability that a specific value belongs to a given indi-

vidual, given the disclosed data. As technologies have

been developed to anonymize and analyze private data,

measures have been developed to quantify the potential

for disclosure of private information by those techni-

ques. In 2001, Samarati and Sweeney published papers

on k-anonymity as a measure of individual identifia-

bility, leading to considerable research in anonymity

measures. At the same time, the rise in privacy-pre-

serving data mining techniques lead to measures based

on the ability to estimate values from disclosed data.

As of this writing, this field is still open, with many

competing measures, often tied to specific anonymiza-

tion, analysis, or privacy protection techniques.

Foundations
There have been two distinct approaches to measuring

privacy, or more specifically probability of disclosure.

The first is measuring anonymity. k-anonymity states

that any released data item must be linked to at least

k individuals with equal probability. It builds on a

concept of Quasi-Identifier QI: a quasi-identifier is

information that an adversary can use to link a released

data record to an individual. Formally,

k-Anonymity [8] A given table T* is said to satisfy

k-anonymity if and only if each sequence of values in

T*[QIT*] appears at least k times in T*.

While simple to compute, k-anonymity does not by

itself guarantee that sensitive data is protected. As first

pointed out in [7], if all k values with the same quasi-

identifiers also have the same value for a sensitive

attribute, k-anonymity can be met while still revealing

the sensitive value for an attribute to an adversary.

k-anonymity can be extended to deal with this issue:

‘-Diversity Principle [4] A q*-block is ‘-diverse if

contains at least ‘ ‘‘well-represented’’ values for the

sensitive attribute S. A table is ‘-diverse if every

q*-block is ‘-diverse.

This still does not resolve the issue, as real values

may have skewed distributions; a particular rare value

may be ‘‘well-represented’’ by occurring in only one

q*-block, identifying the individuals represented in

that block as having an unusually high probability of

possessing that rare value. A further refinement is:

The t-closeness Principle [3] An equivalence class

is said to have t-closeness if the distance between the

distribution of a sensitive attribute in this class and the
distribution of the attribute in the whole table is

no more than a threshold t. A table is said to have

t-closeness if all equivalence classes have t-closeness.

A challenge with any of these metrics is choosing

appropriate values for k. Achieving a suitably low risk

of disclosure may require a high value of k to protect

particularly easy to identify individuals, resulting little

specificity (and thus low value) in the anonymized

dataset. This leads to a second set of metrics for ano-

nymity, measuring not privacy but the fidelity of the

disclosed data. These are typically based on the levels

of generalization required to achieve a given level of

anonymization, but as yet it isn’t clear how well they

relate to actual data utility (see [6]).

An alternative is to measure specifically the risk of

identifying individuals, as with

d-Presence[6] Given an external public table P, and

a private table T, d-presence holds for a generalization
T* of T, with d = (dmin, dmax) if

dmin � Pðt 2 T j T 	 Þ � dmax 8 t 2 P:

The above approaches measure the ability of an

adversary to link a data item to a specific individual.

An alternative is to measure the ability to estimate

sensitive data for an individual, once such linkage is

performed. In [2], the assumption was that individuals

provided sensitive data directly to the data analyst; the

link between data and individual was thus known.

Instead, the sensitive data is distorted to prevent

the analyst from knowing values for an individual.

This leads to a metric based on bounding the knowl-

edge gained by an adversary from seeing the (dis-

torted) sensitive value. The metric in [2] was based

on two things: an interval and confidence level. If the

analyst can determine that a value lies within the range

[x1, x2] with c% confidence, then the privacy at that

confidence level is x2 � x1.

This measure raises two issues. First (as with

‘-diversity), it relies on two numbers. This increases

the difficulty of using it in practice. Second, as pointed

out in [1], knowledge of the distribution of the original

data (acquired by the analyst from the distorted data-

set) may allow tightening of the bounds. They propose

a measure based on the differential entropy of a random

variable. The differential entropy h(A) is a measure of

the uncertainty inherent in A. Their metric for privacy

is 2h(A). Specifically, when adding noise from a random

variable A, the privacy is:

Privacy Metrics P 2139

P

PðAÞ ¼ 2
�
R
OA

f AðaÞlog2f AðaÞda

where OA is the domain of A. This metric has several

nice features. It is intuitively satisfying for simple cases.

For noise generated from A, a uniformly distributed

random variable between 0 and a,P(A) = a. Thus this

privacy metric is exactly the width of the unknown

region. Furthermore, if a sequence of random variables

Ai converges to B, then P(Ai) converges to P(B). For

most random variables, e.g., a gaussian, the notion of

width of the unknown region does not make sense.

However, by calculating P for such random variables,

the above properties can be used to make the case that

the privacy is equivalent to having no knowledge of the

value except that it is within a region of width P. This

gives an intuitively satisfying way of comparing the

privacy of different methods of adding random noise.

The authors extend this definition to conditional

privacy, capturing the possibility that the inherent pri-

vacy from obscuring data may be reduced by what can

be learned from a collection. The conditional privacy

P(AjB) follows from the definition of conditional en-

tropy:

PðAjBÞ ¼ 2
�
R
OA;B

f A;Bða;bÞlog2f AjB¼bðaÞdadb

They show how this can be applied to measure the

actual privacy after reconstructing distributions of the

original data to improve the accuracy of decision trees

build on the obscured data [1,2].

Another use of this metric is to evaluate the inher-

ent loss of privacy caused by data mining results. The

use of conditional privacy enables estimating how

much privacy is lost by knowing the data mining

results, even with a ‘‘perfect’’ privacy-preserving tech-

nique such as secure multiparty computation. The

literature has not yet addressed this issue; the assump-

tion has generally been that the data mining results do

not of themselves violate privacy.

Numerous other metrics have been proposed; the

above give a representative view of the approaches and

challenges faced in measuring privacy.

Key Applications
Primary applications are in aggregate analysis of privacy-

sensitive data, such as individual health-care, personal

preference, or financial information. Direct access to

individual data is typically a confidentiality and access

control issue; access to data is either allowed or it is not.
Privacy measures come into play when individual data

is analyzed as part of a broader study, where the end

result is not solely for the benefit of the individuals

whose data was used. (e.g., Studies of demographics

or medical research.) Privacy laws typically control the

use of data when not specifically to complete a transac-

tion on behalf of the individual; measures are thus

needed to show that privacy is maintained.
Future Directions
One approach is measures that correlate with legal and

regulatory standards (e.g., the HIPAA safe harbor

rules). Perhaps more promising as a research direction

is risk-based measures such as d-presence [5]. Location
data (as from mobile devices) also poses new issues;

European Community rules specifically discuss protec-

tion of location, but it is not clear to what extent

existing measures can be applied. Another need is

measures that adjust for differences in individual pri-

vacy needs, e.g., protecting outliers.
Cross-references
▶ Individually Identifiable Data

▶ Privacy

▶ Privacy-Preserving Data Mining

▶Randomization Methods to Ensure Data Privacy

▶ Statistical Disclosure Limitation for Data Access

Recommended Reading
1. Agrawal D. and Aggarwal C.C. On the design and quantification

of privacy preserving data mining algorithms. In Proc. 20th

ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Data-

base Systems, 2001, pp. 247–255.

2. Agrawal R. and Srikant R. Privacy-preserving data mining. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2000,

pp. 439–450.

3. Li N. and Li T. T-closeness: privacy beyond k-anonymity and

l-diversity. In Proc. 23rd Int. Conf. on Data Engineering, 2007.

4. Machanavajjhala A., Gehrke J., Kifer D., and Venkitasubramaniam

M. l-diversity: privacy beyond k-anonymity. ACM Trans. Knowl.

Discov. Data, 1(1), No.3, March 2007.

5. Nergiz M., Atzori M., and Clifton C. Hiding the presence of

individuals from shared databases. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2007, pp. 665–676.

6. Nergiz M.E. and Clifton C. Thoughts on k-anonymization. Data

Knowl. Eng., 63(3):622–645, December 2007.

7. Øhrn A. and Ohno-Machado L. Using boolean reasoning to

anonymize databases. Artif. Intell. Med., 15(3):235–254, 1999.

8. Sweeney L. Achieving k-anonymity privacy protection using

generalization and suppression. Int. J. Uncertainty Fuzziness

Knowl.-based Syst., 10(5):557–570, 2002.

2140P Privacy Policies and Preferences
Privacy Policies and Preferences

PATRICK C. K. HUNG, YI ZHENG, STEPHANIE CHOW

University of Ontario Institute of Technology, Oshawa,

ON, Canada

Definition
Privacy policies describe an enterprise’s data prac-

tices, what information is collected from individuals

(subjects), what the information (objects) will be used

for, whether the enterprise provides access to the

information, who the recipients are of any result

generated from the information, how long the infor-

mation will be retained, and who will be informed in

the event of a dispute. A subject releases his or her data

to the custody of an enterprise while consenting to

the set of purposes for which the data may be used.

The subject can express his or her preferences in a set

of preference-rules to make decisions regarding the

acceptability of privacy policies.

Historical Background
People have been concerned with privacy policies and

preferences for more than 200 years. For example, the

Hippocratic Oath was written as a guideline of medical

ethics for doctors in respect to a patient’s health con-

dition, and states as follows: ‘‘Whatsoever things I

see or hear concerning the life of men, in my attendance

on the sick or even apart there from, which ought not to

be noised abroad, I will keep silence thereon, counting

such things to be sacred secrets.’’ Privacy policies and

preferences are often expressed in natural language to

specify or regulate how a system or an organization

is to preserve privacy. In response to privacy policy

and preference violations, many countries have enacted

legislation to protect privacy for individuals. There are

also different legislations for different industry sectors.

For example, in the financial sector the Gramm-Leach-

Bliley Act (GLB Act) of the U.S. requires banks to

implement security programs to protect customer infor-

mation; in the healthcare sector the Health Insurance

Portability and Accountability Act (HIPAA) of the

U.S. sets an American national standard to protect and

enhance the rights of consumers, clients, and patients

to control how their health information is used and

disclosed. Similarly, the Personal InformationProtection

and Electronic Documents Act (PIPEDA) of Canada sets

out ground rules for how private sector organizations
may collect, use, or disclose personal information in

the course of commercial activities. Failing to comply

with these legislations, in their respective countries, may

lead to civil and/or criminal penalties and/or imprison-

ment. In addition to the penalties, organizations may

even suffer the loss of reputation and goodwill when

the non-compliance of legislation is publicized. Looking

at the above factors, it is evident that the privacy

legislations have forced a widespread impact on the

privacy policies and preferences.

Foundations
One can imagine that information privacy is usually

concerned with the confidentiality of information.

Threats to information privacy can come from insiders

and from the outsiders in each enterprise. Privacy

control is usually not concerned with individual sub-

jects. Privacy policies are often expressed in natural

language to specify or regulate how a system or an

enterprise is to preserve privacy. Here are the principles

of information privacy protection:

� Principle 1: Data-level security protection principle
– Principle 1.1: Personal information shall be

protected by security safeguards in a secure

way such that data confidentiality, integrity,

and availability can be achieved.

– Principle 1.2: In needs to be accurate, complete,

and up-to-date. The correction of inaccurate

information should be allowed for maintaining

data quality.
� Principle 2: Communication-level security protec-

tion principle
– Principle 2.1: Information shall be transported

in a secure way that data confidentiality and

authentication of users/systems/services are

achieved.

– Principle 2.2: Data integrity must be main-

tained during the transmission in the com-

munication channel.
� Principle 3: Consent requirement principle
– Principle 3.1: Consent must be given by the

owner of the information for the collec-

tion, disclosure, use, and retention of his/her

information.

– Principle 3.2: Owners of information should be

allowed to review, control, and setup restric-

tions to their information on collection, usage,

disclosure, and retention.

Privacy Policies and Preferences P 2141

P

Principle 3 includes four limitations to specify how

personal information can be released upon request:

� Limitation on Collection: The collection of personal

information shall be limited to specific legitimate

purposes of collection only.

� Limitation on Disclosure: The owner of information

should be able to make special restrictions on the

disclosure of his/her own information.

� Limitation on Use: The use of personal information

shall be identified as legitimate use by the services

provider and/or the owner of information.

� Limitation on Retention: Personal information shall

be retained for only as long as the purpose for

which it is used.

A subject releases his or her data to the custody of

an enterprise while consenting to the set of purposes

for which the data may be used. The subject can

express his or her preferences in a set of preference-

rules to make decisions regarding the acceptability of

privacy policies. Preference assumes a real or imagined

choice between alternatives and the possibility of rank

ordering of these alternatives in a privacy policy. Pri-

vacy preferences are formally expressed by a set of rules

and should preferably be captured through an inter-

face. Subjects who are aware of how their personally

identifiable information is being used, collected

or disclosed can better understand how to protect

it. Personally Identifiable Information (PII) includes

information that identifies and individual and infor-

mation that an organization may be able to identify.

This includes, but is not limited to a subject’s name,

address, telephone number, social insurance number

and credit card number(s). Among the most sensitive

PII are medical and financial records.

Key Applications
In many instances, subjects do not have the know-

ledge or understanding of how his or her PII is

being used, collected or disclosed, nor what privacy

preferences are available. The adoption of information

technology and the Internet have further added to

this complexity. Even the most common daily trans-

actions such as Internet browsing, grocery shopping

and online banking increase the exposure and vulner-

ability of threats to information privacy. In response to

these threats, and concerns surrounding data integrity,

security, online privacy and confidentiality, profession-

al services firms have begun to expand their service
lines to include third-party enforcement programs.

Seals, or other easily distinguishable symbols, are

issued to enterprises whose privacy policies and pro-

cedures have been concluded to be in compliance

with its governing board(s). The purposes of third-

party enforcement programs are three-fold: (i) to

build consumer trust; (ii) to educate subjects of

their privacy preferences; and (iii) to develop a com-

plaint resolution mechanism. Here are the three

major procedures of enforcing privacy policies in

an organization:

� Building consumer trust
– There exists a natural conflict of interest

between organization and subject.

– Subject is absent from the development of

privacy policy.

– Independent review of an organization’s com-

pliance with governing board(s) adds reliability

and credibility.
� Educate subjects of their privacy preferences
– Promote awareness of privacy issues and how to

get in contact with privacy coordinator.

– If for any reason a subject’s PII is required for

another purpose from when it was collected,

it is the enterprise’s responsibility to obtain

additional consent.

– At a minimum, the enterprise is to inform

the subject of the circumstance and provide an

opportunity for the subject to opt out of such a

use.
� Complaint resolution mechanism
– Organizations rewarded a seal of validation are

required to provide subjects a method to resolve

any problems or discuss any complaints.

– Complaint resolution process should be easily

accessible and comprehendible.
In order to stand apart from industry rivals, companies

strive to obtain a competitive advantage. As an organi-

zation, it is advantageous to be knowledgeable of the

external risks associated affecting the protection of a

subject’s privacy. Participants of third-party enforce-

ment programs are continuously monitored for adapt-

ability to legislative frameworks and threats to privacy

compliance.

Privacy technologies have been researched for a

period of time. For example, the Platform for Privacy

Preferences Project (P3P) working group at World

Wide Web Consortium (W3C) develops the P3P

2142P Privacy Protection
specification for enabling Web sites to express their

privacy practices in a standard and machine-readable

XML format. P3P user agents allow users to automati-

cally be informed of site practices and to automate

decision-making based on the Web sites’ privacy prac-

tices. In addition, P3P also provides a language called

P3P Preference Exchange Language 1.0 (APPEL1.0)

that is used to express the user’s preferences for making

automated or semi-automated decisions regarding the

acceptability of machine-readable privacy policies

from P3P enabled Web sites. It provides a base schema

for the data collected and a vocabulary to express

purposes, the recipients, and the retention policy.

Although it captures common elements of privacy

policies, sites may have to provide further explanations

in human-readable policies.

Furthermore, WS-Privacy has been mentioned in

industry for a period of time for defining subject privacy

preferences and organizational privacy practice state-

ments for Web services. At this minute, the WS-Privacy

specification has not been released to public yet.

Then, the Enterprise Privacy Authorization Language

(EPAL) technical specification is used to formalize

privacy authorizations for actual enforcement within

an intra- or inter- enterprise for business-to-business

privacy control. On the other hand, the XACML is

a general- purpose access control policy language

used to describe policy and access control decision

request/response [11]. Though XACML has drafted a

privacy policy profile document [12], the current

XACML framework can not handle the privacy

enforcement.

One of the most significant privacy technologies

is the IBM Tivoli Privacy Manager for e-business.

This privacy middleware technology converts privacy

policy and data-handling rules from applications and

IT systems to P3P format. The future development will

include the integration of privacy technologies into

some specific Web-based applications like in health-

care sector (e.g., Microsoft Healthvault and Google

Health Portal), especially in light of recent changes in

health privacy legislative environment.

Cross-references
▶Data Privacy and Patient Consent

▶ Privacy

▶ Privacy-Enhancing Technologies

▶ Privacy Metrics

▶ Privacy-Preserving Data Mining
Recommended Reading
1. Cheng V.S.Y. and Hung P.C.K. Health Insurance Portability

and Accountability Act (HIPAA) compliant access control

model for web services. IJHISI, 1(1):22–39, 2005.

2. Fischer-Hubner S. IT-security and privacy. Lecture notes in

computer science, Springer, Berlin Heidelberg New York, 2001.

3. Online Privacy Alliance. Effective Enforcement of Self

Regulation. Online: http://www.privacyalliance.org/resources/

enforcement.shtml

4. Powers C.S., Ashley P., and Schunter M. Privacy promises,

access control, and privacy management – enforcing privacy

throughout an enterprise by extending access control. In Proc.

Third Int. Symp. on Electronic Commerce, pp. 13–21. IEEE

Computer Society, 2002.
Privacy Protection

▶ Statistical Disclosure Limitation For Data Access
Privacy-Enhancing Technologies

SIMONE FISCHER-HÜBNER

Karlstad University, Karlstad, Sweden

Synonyms
PETs

Definition
Privacy-Enhancing Technologies (PETs) can be defined

as technologies that are enforcing privacy principles in

order to protect and enhance the privacy of users of

information technology (IT) and/or of individuals

about whom personal data are processed (the so-called

data subjects). Privacy principles that PETs are enfor-

cing can be derived from internationally acknowledged

privacy guidelines or legislation, such as the OECD

Privacy Guidelines [10] and the EU Data Protection

Directive 95/46/EC [7]. One fundamental privacy prin-

cipal that serves as the foundation for the Privacy-

Enhancing Technologies that are aiming at providing

anonymity, pseudonymity, or unobservability for users

and/or other data subjects, is the privacy principles

of data minimization. It requires that the collection of

personally identifiable data should be minimized (and if

possible avoided), because obviously privacy is best

protected if no personal data at all (or at least as little

data as possible) is collected or processed. Further

Privacy-Enhancing Technologies P 2143

P

important privacy principles addressed by other PETs

are the informed consent by data subjects (as a prereq-

uisite for making data processing legitimate), transpar-

ency (i.e., openness) of data processing, and appropriate

technical security means for protecting the confidenti-

ality, integrity and availability personal data.

Historical Background
IT security technologies for protecting the confidenti-

ality, integrity and availability of (personal) data, such

as access control, have been developed and researched

since the beginning of computing – data encryption as a

technique for protecting the confidentiality of data has

been used since ancient times. Inference controls for

protecting the data of individuals stored in statistical

databases (e.g., medical databases) have been elabo-

rated since the 1970’s.

Most of the fundamental anonymity technology

concepts were introduced by David Chaum in the

1980’s (see: [3,4,2]). The term ‘‘Privacy-Enhancing

Technologies’’ was first introduced in 1995 in a report

on data minimization technologies, which was jointly

published by the Dutch Registratiekamer and the Infor-

mation and Privacy Commissioner in Ontario with the

title ‘‘Privacy-Enhancing Technologies: The path to An-

onymity’’ [13]. Since then, further research and devel-

opment has been done in data minimization

technologies (e.g., [12,14]), and areas such as privacy

policies [9,10] and privacy enhancing identity manage-

ment [11].

Privacy as an expression of the rights of self-deter-

mination and human dignity is considered a core value

in democratic societies and is recognized either explic-

itly or implicitly as a fundamental human right by

most constitutions of democratic societies. However,

in the network society, individuals are increasingly at

risk that all their communications, transactions and

movements can be monitored and profiled. Profiles

collected at various sites can be easily combined, aggre-

gated and retained without time limitations and with-

out the individuals’ knowledge or consent. Research

and development of PETs have been motivated by the

vision to provide technical means allowing individuals

to retain control over their personal spheres, i.e., to

protect their privacy in the electronic information age.

Foundations
Privacy-Enhancing Technologies can basically be

divided into:
1. The class of PETs for minimizing or avoiding

identifiable data for users and/or other data

subjects.

2. The class of PETs for safeguarding lawful and

privacy-friendly personal data processing.

3. PETs that are a combination of the two aforemen-

tioned PET classes.

PETs for Minimizing or Avoiding Personally

Identifiable Data

To the class PETs that are minimizing or eliminating

personally identifiable data of data subjects (that are

not acting as users) belong inference controls in statisti-

cal databases. In general-purpose database systems

(e.g., medical databases), some users (e.g., physicians)

need to access personal data attributes, while other

user (e.g., researchers) only need to access a personal

database by statistical queries. Thus, access control

mechanisms should allow certain users to access data

in anonymous form by performing only statistical

queries. However, by correlating different statistics

(i.e., by launching so-called tracker attacks), a user

may succeed in deducing confidential information

about some individual. Inference controls in statistical

databases shall ensure that the statistics released by

the database do not lead to the disclosure of any

confidential personal data.

PETs that are minimizing/avoiding identifiable

data of users, and that are thereby providing anonymi-

ty, pseudonymity, and/or unobservability, can be

divided dependent on whether data is minimized on

communication level or on application level. Examples

for anonymous communication schemes for achieving

sender anonymity are DC-nets [4], Mix-nets [2] or

Crowds [14], where the latter two ones will be pre-

sented in more detail below.

With DC-nets, the fact that someone is sending a

message is hidden by a one-time pad encryption,

which means that DC-nets can offer perfect sender

anonymity (in the information-theoretic sense). By

the use of message broadcast and implicit addresses

(i.e., by the use of an attribute which allows only the

addressee to recognize that the message is addressed to

him, e.g., the message is public-key encrypted and the

addressee is the only one who can successfully decrypt

it with his secret key), it also provides receiver and

relationship anonymity.

Another example for a protocol providing receiver

anonymity is private information retrieval [2], which

2144P Privacy-Enhancing Technologies
assures that a powerful attacker is not able to find out

what information another user has requested (i.e., who

has received certain information). The goal is to re-

quest exactly one datum that is stored in a remote

memory cell of a server without revealing which

datum is requested.

Mix Nets The technique of a Mix network, which was

originally introduced by David Chaum [4], realizes

unlinkability of a sender and recipient (relationship

anonymity), as well as, sender anonymity against the

recipient, and optionally recipient anonymity (via so-

called anonymous return addresses, which is however

not elaborated further here).

Amix is a special network station, which collects and

stores incoming messages, discards repeats, changes

their appearance by encryption, and outputs them in a

different order, and by this hides the relation between

incoming and outgoing messages. If a sender of a mes-

sage uses onemix for forwarding amessage to a recipient

on his behalf, the relation between sender and recipient

is hidden from everybody but the mix and the sender of

the message. This means also that the recipient only

learns that the message was sent to him by the mix, but

he does not know the identity of the real sender. Howev-

er, if only onemix is used, thismix can in detail learn and

potentially profile who is communicating with whom.

To improve security, a message is sent over a mix net,

which consists of a chain of independent mixes. The

sender must perform cryptographic operations inverse

to those of the mix, because the recipient must be able to
Privacy-Enhancing Technologies. Figure 1. Mix-network wi
read the message. A global attacker, who can monitor all

communication lines, should in principle only be able to

trace a message through the mix network, if he has the

cooperation of all mix nodes on the path or if he can

break the cryptographic operations. Thus, in order to

ensure unlinkability of sender and recipient, at least one

mix in the chain has to be trustworthy.

Assume that Alice wants to send anonymously a

message msg to recipient Bob (which could be

encrypted with Bob’s public key for providing also

message secrecy). Alice chooses a mix sequence Mix1,

Mix2,..., Mixm (In Fig. 1, Alice chooses m = 3 Mixes).

Let for simplicity Mixm + 1 denote the recipient (Bob).

Each Mixi with address Ai has initially chosen a key

pair (ci, di), where ci is a public key of Mixi and di is its

private key. Let zi be a random string.

Alice recursively creates the following encryptedmes-

sages, where Mi is the message that Mixi will receive:

Mmþ1 ¼ msg

Mi ¼ ci zi;Aiþ1;Miþ1ð Þ for i ¼ 1;:::;m;

i.e., she adds one layer of public key encryption to the

message in reverse order to the sequence of mixes in

the chain. She then sends the result M1 to Mix1.

EachMixi decrypts the incomingmessageMi = ci(zi,

Ai + 1, Mi + 1) with its private key di, discards the

random string zi, and finds the address Ai + 1 of the

next mix Mixi + 1 in the chain and the message Mi + 1,

which it forwards to Mixi + 1. The random string zi is

needed, because otherwise an attacker could again, by
th a chain of three mixes.

Privacy-Enhancing Technologies P 2145
encrypting an outgoing message from a mix with the

public key of the mix and comparing the result with

the former inputs to the mix, succeed to relate an input

to its output (i.e., he would be able to trace the message

flow through the mix). Besides anonymity protection,

mix nets can also provide unobservability, if dummy

messages (i.e., meaningless messages) are sent out by

the participants in order to hide information about if

and when meaningful messages were sent.

Attacks on mix nets and possible countermeasures

have been discussed in [8].

Mix-nets have first been developed for anonymous

email applications. Later the Mix-net concept has been

used for establishing anonymous bi-directional real-

time communication. One example for distributed

overlay networks designed to anonymize real-time,

bidirectional TCP-based communications is Onion

Routing, in which the sender’s proxy constructs an

onion which encapsulates a route to the responder

(e.g., Web server). An Onion is an object with layers

of public key encryption, which is used to produce

anonymous bi-directional virtual circuit between com-

munication partners (in Mix nets layered public key

encryption are also used to build up a path) and to

distribute symmetric keys to the nodes on the path.

The sender’s proxy constructs an onion which encap-

sulates a route to the responder. Faster symmetric

encryption with the symmetric keys that were
Privacy-Enhancing Technologies. Figure 2. Paths in a crowd

are labeled the same [14].
distributed to the nodes on the path with the help of

the Onion is used for data communication via the

virtual path once it has been established.

Crowds Reiter and Rubin developed Crowds – a sys-

tem based on the idea that users can make anonymous

Web transactions when they blend into a ‘‘crowd’’ [14].

A crowd is a geographically diverse group that performs

Web transactions on behalf of its members. Each crowd

member runs a process on his local machine called

‘‘jondo.’’ Once started, the jondo engages in a protocol

to join the crowd, during which it is informed of the

other current crowd members and in which the other

crowd members are informed of the new jondo’s mem-

bership. Besides, the user configures his browser to

employ the local jondo as a proxy for all network

services. Thus all http requests are directly sent to the

jondo rather than to the end Web-server and the jondo

forwards the request to a randomly chosen crowd

member. Whenever a crowd member receives a request

from another jondo in the crowd, it makes a random

choice to forward the request to another crowd mem-

ber with a probability pf > ½ or to submit the request

to the end Web server to which the request was des-

tined. Figure 2 shows a possible set of virtual paths that

are created according to the Crowds protocol.

The server’s reply is sent backward along the path,

with each jondo sending it to its predecessor on the
, where for each path the initiator (sender) and web server

P

2146P Privacy-Enhancing Technologies
path. All communication between jondos is encrypted

by a cryptographic key shared between the jondos

involved.

Crowds provides sender anonymity against the end

Web-server, since the end server obtains no informa-

tion regarding who initiated any given request (each

Crowds member is equally ‘‘suspicious’’). Second,

since a jondo on the path cannot distinguish whether

its predecessor on the path initiated the request or is

forwarding it, no jondo on the path can learn the

initiator of a request. Since all communication between

jondos is encrypted, Crowds also offers receiver ano-

nymity against a local eavesdropper (e.g., local gateway

administrator) that can observe the communication

involving the user’s machine unless the originator of

the request ends up submitting the request itself.

(However, the probability that an originator submits

its own request decreases as the crowd size increases).

Crowds enables very efficient implementations that

typically outperforms mixes that uses layered encryp-

tion techniques. However, in contrast to mix-nets,

crowds cannot protect against global attackers.

PETs for anonymous or pseudonymous applications/

transactions can be implemented on top of anonymous

communication protocols. Examples are anonymous

E-cash protocols based on blind signatures [3], as well

as anonymous credential systems (such as Idemix [1]),

which can be used to implement for instance anony-

mous or pseudonymous access control, e-health or

e-government, and other anonymous or pseudony-

mous applications.

PETs for Safeguarding Lawful and Privacy-Friendly

Personal Data Processing

It is not always possible to avoid the processing of per-

sonal data. Public authorities, health care providers,

employers are example of organizations that still need

to process personal data about their citizens, patients,

employers for various legitimate reasons. If personal

data are collected and processed, legal privacy require-

ments need to be fulfilled. The class of PETs described in

this section comprises technologies that enforce legal

privacy requirements in order to safeguard the lawful

processing of personal data. The driving principles be-

hind these types of PETs can also be found in data

protection legislation, such as the EU Data Protection

Directive 95/46/EC, which requires that controllers im-

plement security measures which are appropriate to the

risks presented for personal data in storage or
transmission, with a view to protecting personal data

against accidental loss, alteration, unauthorized access

and against all other unlawful forms of processing.

Examples of technologies belonging to this class of

PETs include classical security technologies, such as data

encryption or access control, which protects the confi-

dentiality and integrity of personal data. Other examples

are technologies for stating or enforcing privacy poli-

cies: The Platform for Privacy Preferences Protocol

(P3P) [6] increases transparency for the end users by

informing them about the privacy policies of web sites

and can hence be used to enforce the legal principles and

requirement (e.g., according to Art.10 EU Data Protec-

tion Directive 95/46/EC) to inform data subjects about

the purpose of data processing, identity of the control-

ler, retention period, etc. Privacy policy models (such as

the privacy model presented in [8]) can technically

enforce privacy requirements such as purpose binding,

and privacy policy languages, such as the Enterprise

Privacy Authorization Language EPAL [9], can be used

to encode and to enforce more complex enterprise pri-

vacy policies within and across organizations.

PETs that are a Combination of the Two Aforementioned

PET Classes

The third class of PETs comprises technologies that are

combining PETs of class 1 and class 2. An example is

provided by privacy-enhancing identity management

technologies as the ones that have been developed

within the EU FP6 project PRIME (Privacy and Iden-

tity Management for Europe) [11]. Identity Manage-

ment (IDM) subsumes all functionalities that support

the use of multiple identities by the identity owner

(user-side IDM) and by those parties with whom the

owner interacts (services-side IDM). The PRIME proj-

ect addresses privacy-enhancing IDM to support

strong privacy by particularly avoiding or reducing

identification and by technically enforcing informa-

tional self-determination.

PRIME is based on the principle that design must

start from maximum privacy. Therefore, with the help

of anonymous communication technologies and

anonymous credential protocols, a priori all interac-

tions are anonymous, and individuals can chose pseu-

donyms to link different interactions to each other,

bind attributes and capabilities to pseudonyms and

can establish end-to-end secure channels between

pseudonyms. Whether or not interactions are linked

to each other or to a certain pseudonym is under the

Privacy-Preserving Data Mining P 2147

P

individual’s control. For this, PRIME tools allow indi-

viduals to act under different pseudonyms with respect

to communication partners, roles or activities. Policy

management tools are helping them to define and

negotiate privacy policies with services sides regulating

who has the right to do what with one’s personal data

under which circumstances. Those policies are

enforced at the receiving end, and there is enough

evidence, so that users can actually trust in this en-

forcement. Transparency tools allow users to be in-

formed about who has received what personal data

related to them, and to trace personal data being

passed on, and include online functions for exercising

their rights to object to data processing or to rectify,

block, delete data (see also [11] for more information).

Key Applications
As illustrated above, PETs can be applied in all kinds of

application areas of IT, in which personal data is or can

be collected or processed.

Cross-references
▶Access Control

▶Anonymity

▶Blind Signatures

▶Data Encryption

▶Data Security

▶ Inference Control in Statistical Databases

▶ Privacy Policies and Preferences

▶ Pseudonymity

▶Unobservability
Recommended Reading
1. Camenisch J. and van Herreweghen E. Design and implementa-

tion of the idemix anonymous credential system. In Proc. Ninth

ACM Conf. on Computer and Communications Security, 2002,

pp. 21–30.

2. Chaum D.L. Untraceable electronic mail, return addresses, and

digital pseudonyms. Commun. ACM, 24(2):84–88, 1981.

3. Chaum D.L. Security without identification: card computers to

make big brother obsolete. Informatik-Spektrum, 10:262–277,

1987.

4. Chaum D.L. The dining cryptographers problem: unconditional

sender and recipient untraceability. J. Cryptol., 1(1):65–75,

1988.

5. Cooper D.A. and Birman K.P. Preserving privacy in a network of

mobile computers. In Proc. IEEE Symp. on Security and Privacy,

1995, pp. 26–83.

6. Cranor L. Web Privacy with P3P. O’Reilly, Sebastopol, CA, 2002.

7. European Union. Directive 95/46/EC of the European Parlia-

ment and of the Council of 24 October 1995 on the protection of
individuals with regard to the processing of personal data and on

the free movement of such data. Official Journal L, 281:1995.

8. Fischer-Hübner S. IT-Security and Privacy: Design and Use

of Privacy Enhancing Security Mechanisms. LNCS, vol. 1958,

Springer, Berlin, 2001.

9. Karjoth G., Schunter M., and Waidner M. Platform for enter-

prise privacy practices: privacy-enabled management of custom-

er data. In Proc. Second Workshop on Privacy Enhancing

Technologies, 2002, pp. 69–84.

10. Organization for Economic Co-operation and Development.

Guidelines on the protection of privacy and transborder flows

of personal data. OECD Guidelines, 1980.

11. PRIME EU FP6 Project. Privacy and Identity Management for

Europe. Available at: http://www.prime-project.eu/.

12. Reed M.G., Syverson P.F., and Goldschlag D.M. Anonymous

connections and onion routing. IEEE J. Select. Areas Commn.,

16(4):482–494, 1998.

13. Registratiekamer, Information and Privacy Commissioner/

Ontario. Privacy-enhancing technologies: the path to anonymi-

ty. Achtergrondstudies en Verkenningen 5B, vols. I and II,

Rijswijk, 1995.

14. Reiter M. and Rubin A. Anonymous web transactions with

crowds. Commun. ACM, 42(2):32–48, 1999.
PETs

▶ Privacy-Enhancing Technologies
Privacy-Preserving Data Mining

CHRIS CLIFTON

Purdue University, West Lafayette, IN, USA

Definition
Data Mining techniques that use specialized appro-

aches to protect against the disclosure of private

information may involve anonymizing private data,

distorting sensitive values, encrypting data, or other

means to ensure that sensitive data is protected.
Historical Background
The field of privacy-preserving data mining began in

2000 with two papers of that name[1,4]. Both papers

addressed construction of decision trees, approximat-

ing the ID3 algorithm while limiting disclosure of data.

While the problems appeared similar on the surface,

the fundamental difference in privacy constraints

shows the complexity of this field. In [1], the

2148P Privacy-Preserving Data Mining
assumption was that individuals were providing their

own data to a common server, and added noise to

sensitive values to protect privacy. The key to the

technique was to discover the original distribution of

the data, enabling successful construction of the deci-

sion tree. In [4], the data was presumed to be divided

between two (or a small number) of parties, and cryp-

tographic Secure Multiparty Computation techniques

are used to construct the decision tree without any

site disclosing the actual data values it holds.

A third approach to privacy-preserving data

mining, Data Transformation, was introduced in [5].

The idea behind this approach is to transform the data

space (e.g., using techniques such as Random Projec-

tion) so that data items can no longer be tied to

individuals, but sufficient information is preserved to

enable data mining.

Research in the field has largely been directed

toward:

� Supporting more data mining tasks and algorithms

(e.g., clustering, classification, outlier detection)

� Different privacy constraints (e.g., vertically parti-

tioned and horizontally partitioned data)

Techniques provide varying levels of privacy guaran-

tees, data mining result accuracy, and run-time

performance.

Foundations
There are several factors that must be identified in

developing or choosing a privacy-preserving data

mining approach. The first is the source of and privacy

constraints on the data. In some cases, data is held by a

relatively small number of trusted parties, such as

credit reporting bureaus, insurance companies, or gov-

ernment agencies. The challenge is that while these

parties are allowed to use the data for their own pur-

poses, privacy constraints prevent them from disclos-

ing the data to others.

Secure Multiparty Computation Methods address

this problem, allowing a data mining model to be

constructed from the distributed data using crypto-

graphic approaches that prevent disclosure of the indi-

vidual data items between the parties. The key

components of such a method are the algorithm,

which uses cryptographic computations to duplicate

a distributed data mining algorithm without disclo-

sing data from any site, and a proof that disclosure

is controlled. Typically such proofs use a simulation
argument, showing that given the final result, a party

can simulate the messages received in running the

protocol (thus showing that no valuable information

was disclosed other than that inherent in the result.)

When data is more widely distributed, such as

individuals providing their data to a server for use in

data mining, Data Transformation Methods and Data

Perturbation come into play. Data transformation

methods modify the data so that the original values

are lost, but important information (e.g., distances) is

preserved. A typical example of transformation is di-

mensionality reduction, for example random projec-

tion [3]. Typically the providers of data must agree on

a transformation, then transform their data and send it

to a central data collector / data miner. Details of the

transformation are kept secret from the data miner. In

many cases, the transformation is individualized or

constructed collaboratively in a way that protects

against collusion. Such techniques require specialized

versions of data mining algorithms to mine the trans-

formed data. The techniques also involve a proof; in

this case, showing the difficulty/impossibility of revers-

ing the transformation, or the amount of background

knowledge required to do so.

Data Perturbation is similar in that individualsmod-

ify their data before providing it to a central data ware-

house. The differences is that data perturbation

techniques add noise, while preserving the structure of

the original data. The key to these techniques is

specialized data mining algorithms that can utilize

knowledge of the distribution of the noise, along with

the noisy data, to obtain better results thanmining on the

noisy data alone. These approaches typically reconstruct

the data distribution, then use this to guide the data

mining, rather than mining the data directly. As the

goal of most data mining is to obtain models that gener-

alize well, models consistent with the distribution of the

data are likely to have good accuracy. In addition to the

reconstruction algorithm, data perturbation methods

need a measure of the privacy provided; as data is not

completely hidden, it is important to be able to measure

the tradeoff between privacy and model accuracy.

Once the data privacy constraints are understood

and a general approach is chosen, the next step is to

develop an algorithm for the data mining model to be

built. Privacy-preserving data mining algorithms typi-

cally replicate the results of traditional data mining

algorithms, and have been developed for many of the

standard machine learning approaches.

Privacy-Preserving Data Mining P 2149
Key Applications
Privacy-preserving data mining has application wher-

ever data mining is applied to data about individuals.

Examples include recommender systems, medical

studies, intelligence, and social network analysis. In

addition, this technology can be useful for sharing

sensitive corporate information, for example in supply

chain management [2].

As an example, Figure 1 shows a scenario evaluating

an Algorithm developed to identify terrorist organiza-

tion financial patterns. To evaluate this, it is necessary

to compare real financial records to see how many are

identified by the algorithm. An outlier detection algo-

rithm could be used to determine if the space identified

by the algorithm reflects a cluster of ‘‘normal’’ financial

patterns or just a few outliers, but accessing real finan-

cial records is problematic. Using the secure multiparty

computation technique in [6], it is possible to identify

the number of items in the vicinity of ‘‘Tom Terrorist’’

without revealing either the identity or specific values

of any of the items. This gives us the result sought

without exposing private data.

Future Directions
The main factors limiting adoption of this technology

are:

1. The difficulty of doing exploratory data analysis.

Privacy-preserving data mining techniques require
Privacy-Preserving Data Mining. Figure 1. Using a privacy-p

algorithm isolates terrorist behavior.
that the data mining task to be performed be

known without seeing the data.

2. Privacy standards and definitions. Current privacy

regulations do not make it clear if this technology is

either necessary or sufficient. Further work is need-

ed to establish technically meaningful definitions of

privacy.

3. Cost/performance. Many of these techniques are

expensive in either computational power, their

effect on result quality, and perhaps most impor-

tant the cost of implementing a solution for a

particular task.

Ongoing work is addressing these issues. Applications

in corporate collaboration using corporate-sensitive

data is likely to lead commercialization, as cost/benefit

tradeoffs are easier to evaluate than with personal

private data.

The field is closely related to inference control in

statistical databases and statistical disclosure limitation;

these fields have extensively studied the privacy risks

inherent in releasing data under various types of per-

turbation and transformation. The key difference with

privacy-preserving data mining is that the specific use

of the data is assumed to be known. This allows meth-

ods that drastically distort the data, keeping only spe-

cific information intact rather than trying to preserve

general statistical properties. The success of statistical

disclosure limitation provides a good historical
reserving outlier detection algorithm to determine if an

P

2150P Privacy-Preserving Spatial Queries
framework for the adoption of privacy-preserving

data mining.
Cross-references
▶ Inference Control in Statistical Databases

▶ Privacy Metrics

▶Randomized Methods to ensure Data Privacy

▶ Secure multiparty Computation Methods

▶ Statistical Disclosure Limitation for Data Access
Recommended Reading
1. Agrawal R. and Srikant R. Privacy-preserving data mining.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2000, pp. 439–450

2. Atallah M.J., Elmongui H.G., Deshpande V., and Schwarz L.B.,

Secure supply-chain protocols. In Proc. IEEE Int. Conf. on

E-Commerce, 2003, pp. 293–302.

3. Kaski S. Dimensionality reduction by randommapping. In Proc.

Int. Joint Conference on Neural Networks, 1999, pp. 413–418.

4. Lindell Y. and Pinkas B. Privacy preserving data mining.

In Advances in Cryptology – CRYPTO 2000. Springer, 2000,

pp. 36–54.

5. Oliveira S.R.M. and Zaı̈ane O.R. Privacy preserving clustering

by data transformation. In Proc. 18th Brazilian Symp. on Data-

bases, 2003.

6. Vaidya J. and Clifton C. Privacy-preserving outlier detection. In

Proc. 2004 IEEE Int. Conf. on Data Mining, 2004, pp. 233–240.

7. Vaidya J., Clifton C., and ZhuM. Privacy Preserving DataMining.

ser. Springer, Berlin, 2006.
Privacy-Preserving Spatial Queries

▶ Spatial Anonymity
Probabilistic Analysis

▶ Performance Analysis of Transaction Processing

Systems
Probabilistic Data

▶Data Uncertainty Management in Sensor Networks
Probabilistic Databases

DAN SUCIU

University of Washington, Seattle, WA, USA

Synonyms
Uncertain databases

Definition
A probabilistic database is a database in which every

tuple t belongs to the database with some probability

P(t); when P(t) = 1 then the tuple is certain to belong

to the database; when 0< P(t)< 1 then it belongs to the

database onlywith some probability; whenP(t) = 0 then

the tuple is certain not to belong to the database, and it

is not necessary to bother representing it. A traditional

(deterministic) database corresponds to the case when

P(t) = 1 for all tuples t. Tuples with P(t) > 0 are called

possible tuples. In addition to indicating the probabil-

ities for all tuples, a probabilistic database must also

indicate somehow how the tuples are correlated. In the

simplest cases the tuples are declared to be either

independent (when P(t1t2) = P(t1t2)), or exclusive (or

disjoint, when P(t1t2) = 0).

Historical Background
Extensions of databases to handle probabilistic data

have been considered since the 1980s. In 1992, Barbara,

Garcia-Molina, and Porter [6] developed a probabilis-

tic data model that is an extension of the relational

data model, in which relations have deterministic

keys, and non-key attributes that are stohastic. They

also introduced probabilistic analogs to the relational

algebraic operators, later called extensional operators.

Queries were restricted to return all deterministic keys

of relations mentioned in the query body. Efforts

to remove this restriction on queries lead to several

extensions. In 1997, Lakshmanan, Leone, Ross, and

Subrahmanian [19] modified the query semantics

and proposed that probabilities be combined by user-

defined strategies. In 1997, Fuhr and Roellke [17]

proposed an alternative way to compute the correct

semantics for all queries, using intensional semantics,

by which every tuple in the query answer is annotated

with a propositional formula called event expression: a

general-purpose probabilistic inference algorithm can

be used to compute the tuple’s probability from the

event expression, but this is known to be expensive in

Probabilistic Databases P 2151
general. Dalvi and Suciu in 2004 [12] showed that

some queries can be computed efficiently using exten-

sional operators if these are ordered carefully, to ensure

that they are applied correctly: a plan consisting of

correctly applied operators is called a safe plan. Not

all queries admit a safe plan, but those that do not

admit one can be shown to be #P-hard, thus they

cannot be evaluated efficiently unless P = NP. Recent

systems for managing probabilistic or incomplete

databases include Trio [8,24], MystiQ [20], and

MayBMS [4].
Foundations
For an illustration, consider the probabilistic database

in Fig. 1. It has three tables, of which Productp and

Customer
p are probabilistic and Order

p is determin-

istic. Productp contains three products; their names

and their prices are known, but their color and shape

are unknown. For example Gizmo may be have color

= red and shape = oval with probability p1 = 0.25,

or may have color = blue and shape = square with

probability p2 = 0.75 respectively. Camera has three

possible combinations of color and shape, and IPod

has two. In other words, for every product in the

database, the values for color and shape, are not

known, but instead there is a probability space over

their values. Each color-shape combination should

exclude the others, so p1 + p2 � 1, p3 + p4 + p5 � 1
Probabilistic Databases. Figure 1. A probabilistic database.
and p6 + p7 � 1, holds for our table. When the sum is

strictly less than one then that product may not occur

in the table at all: for example Camera may be missing

from the table with probability 1-p3-p4-p5.
Representation and Smantics

A popular representation of a probabilistic data-

base consists of a regular database with two additio-

nal pieces of information: for each probabilistic

table a distinguished attribute P is designated as

the probability attribute, and a set of attributes is

designated as possible worlds key. The key is interpreted

as follows. If two tuples have the same values of

the key attributes, then they are exclusive, i.e., only

one of them may actually occur in the database.

Otherwise, if the values of their key attributes differ

then the tuples are independent. Tuples from different

tables are always assumed to be independent. Figure 2a

illustrates such a representation. Here the attribute P

is designated as the probability attribute, and the two

attributes prod and price are the possible worlds key.

There are seven possible tuples, but at most three of

them may actually occur in the database, because the

first two are exclusive tuples, the next three are exclu-

sive, and the last two are exclusive.

Tuples with the same possible worlds key are some-

times called xor-tuples or x-tuples. The entire set of

such tuples is called a maybe tuple. The three Camera
P

Probabilistic Databases. Figure 2. A representation of a probabilistic table (a): it shows the probability of each

tuple, and the key of the possible worlds: if two tuples share the same key values then they are exclusive, otherwise

they are independent. Three possible worlds (b).

2152P Probabilistic Databases
tuples in Fig. 2a are x-tuples, and together they form

one maybe-tuple.

The semantics of a probabilistic database is a prob-

ability space over possible worlds. Product
p has 16

possible worlds, since there are two choices for

Gizmo, four for Camera (including removing Camera

altogether) and two for IPod. Figure 2b illustrates

three of these sixteen possible worlds and their

probabilities.
prod price P

Gizmo 20 p1

Camera 80 p3 + p5
Query Evaluation

The semantics of a query q on a probabilistic database

is defined as follows. Consider all possible worlds of the

probabilistic database: each such world is a standard,

deterministic database. Evaluate q on each possible

world, using the standard semantics of a query on a

deterministic database. Any tuple that is an answer to

the query in some possible world is called a possible

answer tuple. The probability of a possible answer tuple

is defined as the sum of the probabilities of all worlds

where the tuple is an answer. The semantics of the

query is the set of possible answer tuples together

with their probabilities.

A central problem in probabilistic databases is query

evaluation. It is infeasible to enumerate all possible

worlds, because their number is exponential is the size

of the database. There are two approaches to query

evaluation: extending relational algebra operators to
manipulate probabilities explicitly, or using a general-

purpose probabilistic inference algorithm. The first

approach is rather similar to standard query process-

ing, and is quite efficient: the declarative SQL query is

translated into a relational algebra plan, called an exten-

sional plan, then this plan is executed. We illustrate

this below. However not all queries admit correct exten-

sional plans. Those that do not admit such plans

require a more expensive, general-purpose probabilistic

inference, which have been studied in the context of

knowledge representation systems and are not be dis-

cussed here.

The three main extensional operators on the three

queries are illustrated in Fig. 3, then show how to

combine them for more complex queries. The left

column in the figure shows the queries in SQL syntax,

the right column shows the same queries in datalog

notation. In datalog, underline the variables that occur

in the key positions. The first query, Q1, asks for all the

oval products in the database, and it returns two pos-

sible answer tuples:
For example the probability of the possible answer

tuple Gizmo is the sum of the probabilities of the

Probabilistic Databases. Figure 3. Three simple queries, expressed in SQL and in datalog.

prod price color shape cust city P

Gizmo 20 red oval Sue New p q

Probabilistic Databases P 2153

P

8 possible worlds for Product (out of 16) where

Gizmo appears as oval, and this turns out (after

simplifications) to be p1. These probabilities can

be computed without enumerating all possible worlds,

directly from the table in Fig. 2a by the following

process: (i) Select all rows with shape=’oval’,

(ii) project on prod, price, and P (the probability),

(iii) eliminate duplicates, by replacing their probabil-

ities with the sum, because they are disjoint events. The

latter two steps are called a disjoint project:

Disjoint Project, pĀ
pD If k tuples with probabilities

p1,...,pk have the same value, ā, for their Ā attributes,

then the disjoint project will associated the tuple ā

with the probability p1 +...+ pk. The disjoint project

is correctly applied if any two tuples that share the

same values of the Ā attributes are disjoint events.

Q1 can therefore be computed by the following plan:

Q1 ¼ ppDprod;priceðsshape¼0oval0 ðProductpÞÞ

ppDprod;price is correctly applied, because any two tuples

in Productp that have the same prod and price are

disjoint events.

Query Q2 in Fig. 3 asks for all cities in the Cus-

tomer table, and its answer is:
city P

New York q1

Boston 1 � (1 � q2)(1 � q4)

Seattle 1 � (1 � q3)(1 � q5)

York
1 1

Gizmo 20 red oval Sue Boston p1q2

Gizmo 20 red oval Sue Seattle p1q3

Gizmo 20 blue square Sue New
York

p2q1

.
This answer can also be obtained by a projection with

a duplicate elimination, but now the probabilities

p1, p2, p3,... of duplicate values are replaced with 1 �
(1 � p1)(1 � p2)(1 � p3)..., since in this case all
duplicate occurrences of the same city are indepen-

dent. This is called an independent project:

Independent Project, ppI�A If k tuples with probabil-

ities p1,...,pk have the same value, ā, for their Ā attri-

butes, then the independent project will associated the

tuple āwith the probability 1� (1� p1)(1� p2)...(1�
pk). The independent project is correctly applied if any

two tuples that share the same values of the Ā attri-

butes are independent events.

Thus, the disjoint project and the independ-

ent project compute the same set of tuples, but with

different probabilities: the former assumes dis-

joint probabilistic events, where P(t ∨ t0) = P(t) + P

(t0), while the second assumes independent probabilis-

tic events, where P(t ∨ t0) = 1 � (1 � P(t))(1 � P(t0)).

Continuing our example, the following plan compu-

tes Q2: Q2 = ppIcity(Customer
p). Here ppIcity is correc-

tly applied because any two tuples in Customerp

that have the same city are independent events.

Query Q3 in Fig. 3 illustrates the use of a join,

and its answer is:
It can be computed by modifying the join operator to

multiply the probabilities of the input tables:

Join, ⋈p Whenever it joins two tuples with prob-

abilities p1 and p2, it sets the probability of the resulting

tuple to be p1p2.

2154P Probabilistic Databases
A plan for Q3 is: Q3 = Product ⋈ p Order ⋈
p Customer.

Extensional operators can be combined to form an

extensional plan. A plan is called safe if each operator is

applied correctly. It is possible to illustrate with the

following probabilistic database schema:

Productp(prod, price, color, shape)

Orderp(prod, price, cust)

Both tables are probabilistic. The following query

finds all colors of products ordered by the customer

named Sue:

Q4ðcÞ : �Productpðx; y; c; sÞ; Orderpðx; y; SueÞ

Q4 admits the following safe plan:

Q4 ¼ Ppl
colorðP

pD
prod;price;colorðProductpÞ fflp

scust¼0Sue0 ðOrderpÞÞ

This is safe because PpD
prod;price;color combines only

disjoint tuples, while PpI
color combines only indepen-

dent tuples. Similarly, the join operators combines

independent tuples, since the left operand consists of

tuples combined from the Productp table while the

right operand consists of tuples from the orderp table.

In contrast, the following plan is not safe:

PpI
colorðProduct

pfflpscust¼0Sue0 ðOrderpÞÞ

because the outermost projection PI
color will combine

tuples that are not independent: there may be two or

more distinct tuples in the join Productp ⋈ p Orderp

that have the same Productp tuple, hence they are not

independent.

Some queries do not admit any safe plans at all.

Figure 4 illustrates three queries that are known not

to admit any safe plan. All three are boolean queries,
Probabilistic Databases. Figure 4. Three queries that do no
i.e., they return either ‘‘true’’ or nothing, but they still have

a probabilistic semantics, and it is necessary to compute

the probability of the answer ‘‘true.’’ No combination of

extensional operators result in a safe plan for any of these

queries. For example ppI; (R ⋈ S ⋈ T) is an incorrect

plan for H1, because two distinct rows in R ⋈ S ⋈ T

may share the same tuple in R, hence they are not

necessarily independent events. In fact it has been

shown that the complexity of each of these three queries

is #P-hard, hence there is no polynomial time algorithm

for computing their probabilities unless P = NP.
Key Applications
Probabilistic databases are design to allow uncertain

data to be managed directly by a relational database

system. Several types of applications have been

considered.

In Information Extraction the goal is to extract

structured data from a collection of unstructured text

documents. Examples include address segmentation,

citation extraction, extractions for comparison shop-

ping, hotels, restaurant guides, etc. The schema is given

in advance by the user, and the extractor is tailored to

that specific schema. All approaches to extraction are

imprecise, and most often can associate a probability

score to each item extracted. A probabilistic database

allows these probability scores to be stored natively.

In Fuzzy Object Matching the problem is to recon-

cile objects from two collections that have used differ-

ent naming conventions. This is a central problem in

data cleaning and data integration, and has also been

called record linkage, or de-duplication. The basic

approach is to compute some similarity score between

pairs of objects, usually by starting from string similar-

ity scores on their attributes then combining these
t admit safe plans, and that are known to be #P-complete.

Probabilistic Querying P 2155

P

scores into a global score for the pair of objects. Thus,

the result of fuzzy object matching is inherently prob-

abilistic. In traditional data cleaning it needs to be

determinized somehow, e.g., by comparing the simi-

larity score with a threshold and classifying each pair of

object into a match, a non-match, and a maybe-match.

A probabilistic database allows users to keep the simi-

larity scores natively.

Other applications include: management of sensor

data and of RFID data, probabilistic data integration,

probabilistic schema matches, and flexible query

interfaces.

Cross-references
▶Data Uncertainty Management in Sensor Networks

▶ Incomplete information

▶ Inconsistent databases

▶Uncertainty Management in Scientific Database

Systems

Recommended Reading
1. Adar E. and Re C. Managing uncertainty in social networks.

IEEE Data Eng. Bull., 30(2):15–22, 2007.

2. Andritsos P., Fuxman A., and Miller R.J. Clean answers over dirty

databases. In Proc. 22nd Int. Conf. on Data Engineering, 2006.

3. Antova L., Koch C., and Olteanu D. 10ˆ(10ˆ6) worlds and be-

yond: Efficient representation and processing of incomplete

information. In Proc. 23rd Int. Conf. on Data Engineering, 2007.

4. Antova L., Koch C., and Olteanu D. MayBMS: Managing incom-

plete information with probabilistic world-set decompositions

(demonstration). In Proc. 23rd Int. Conf. on Data Engineering,

2007.

5. Antova L., Koch C., and Olteanu D. World-set decomposi-

tions: expressiveness and efficient algorithms. In Proc. 23rd

Int. Conf. on Data Engineering, 2007, pp. 194–208.

6. Barbara D., Garcia-Molina H., and Porter D. The management

of probabilistic data. IEEE Trans. Knowl. Data Eng.,

4(5):487–502, 1992.

7. Benjelloun O., Das Sarma A., Halevy A., and Widom J.

ULDBs: databases with uncertainty and lineage. In Proc. 32nd

Int. Conf. on Very Large Data Bases, 2006, pp. 953–964.

8. Benjelloun O., Das Sarma A., Hayworth C., and Widom J. An

introduction to ULDBs and the Trio system. IEEE Data Eng.

Bull., 29(1):5–16, 2006.

9. Cheng R., Kalashnikov D., and Prabhakar S. Evaluating pro-

babilistic queries over imprecise data. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2003, pp. 551–562.

10. Cheng R. and Prabhakar S. Managing uncertainty in sensor

databases. ACM SIGMOD Rec., 32(4):41–46, December 2003.

11. Dalvi N., Re C., and Suciu D. Query evaluation on probabilistic

databases. IEEE Data Eng. Bull., 29(1):25–31, 2006.

12. Dalvi N. and Suciu D. Efficient query evaluation on probabilistic

databases. In Proc. 30th Int. Conf. on Very Large Data Bases,

2004.
13. Dalvi N. and Suciu D. Management of probabilistic data: foun-

dations and challenges. In Proc. 26th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2007,

pp. 1–12. (invited talk).

14. Das Sarma A., Benjelloun O., Halevy A., and Widom J. Working

models for uncertain data. In Proc. 22nd Int. Conf. on Data

Engineering, 2006.

15. Deshpande A., Guestrin C.,Madden S., Hellerstein J.M., andHong

W. Model-driven data acquisition in sensor networks. In Proc.

30th Int. Conf. on Very Large Data Bases, 2004, pp. 588–599.

16. Deshpande A., Guestrin C., Madden S., Hellerstein J.M., and

Hong W. Using probabilistic models for data management in

acquisitional environments. In Proc. 2nd Biennial Conf. on

Innovative Data Systems Research, 2005, pp. 317–328.

17. Fuhr N. and Roelleke T. A probabilistic relational algebra for the

integration of information retrieval and database systems. ACM

Trans. Inf. Syst., 15(1):32–66, 1997.

18. Gupta R. and Sarawagi S. Creating probabilistic databases from

information extraction models. In Proc. 32nd Int. Conf. on Very

Large Data Bases, 2006, pp. 965–976.

19. Lakshmanan L., Leone N., Ross R., and Subrahmanian V.S.

Probview: a flexible probabilistic database system. ACM Trans.

Database Syst., 22(3), 1997.

20. MystiQ: a probabilistic database system, http://mystiq.cs.

washington.edu/.

21. Re C. and Suciu D. Materialized views in probabilistic databases

for information exchange and query optimization. In Proc. 33rd

Int. Conf. on Very Large Data Bases, 2007.

22. Re C., Letchner J., Balazinska M., and Suciu D. Event queries on

correlated probabilistic streams. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2008.

23. Re C. and Suciu D. Approximate lineage for probabilistic data-

bases. In Proc. 34th Int. Conf. on Very Large Data Bases, 2008.

24. Widom J. Trio: A system for integrated management of data,

accuracy, and lineage. In Proc. 2nd Biennial Conf. on Innovative

Data Systems Research, 2005, pp. 262–276.
Probabilistic Model

▶BM25

▶ Probabilistic Retrieval Models and Binary Indepen-

dence Retrieval (BIR) Model
Probabilistic Model of Indexing

▶Two-Poisson model
Probabilistic Querying

▶Data Uncertainty Management in Sensor Networks

2156P Probabilistic Retrieval Models and Binary Independence Retrieval (BIR) Model
Probabilistic Retrieval Models and
Binary Independence Retrieval (BIR)
Model

THOMAS ROELLEKE
1, JUN WANG

1, STEPHEN

ROBERTSON
2

1Queen Mary University of London, London, UK
2Microsoft Research Cambridge, Cambridge, UK

Synonyms
BIR model; Probabilistic model; RSJ model

Definition
Information retrieval (IR) systems aim to retrieve rele-

vant documents while not retrieving non-relevant

ones. This can be viewed as the foundation and justifi-

cation of the binary independence retrieval (BIR)

model, which proposes to base the ranking of docu-

ments on the division of the probability of relevance

and non-relevance.

For a set r of relevant documents, and a set �r of

non-relevant documents, the BIR model defines the

following term weight and retrieval status value

(RSV) for a document-query pair ‘‘d, q’’:

birwðt ; r;�rÞ :¼ Pðt jrÞ � Pð�t j�rÞ
Pðt j�rÞ � Pð�t jrÞ ð1Þ

RSVBIRðd; q; r;�rÞ :¼
X
t2d\q

log birwðt ; r;�rÞ ð2Þ

Here, P(tjr) is the probability that term t occurs in

the relevant documents, and P(tj�r) is the respective

probability for term t in non-relevant documents.

There are two ways to estimate the term probabil-

ities: (I1) Pðt jrÞ :¼ rt
R

and Pðt j�rÞ :¼ nt
N
, or (I2)

Pðt jrÞ :¼ rt
R

and Pðt j�rÞ :¼ nt�rt
N�R . R denotes the num-

ber of relevant documents, and N denotes the number

of all documents; rt denotes the number of relev-

ant documents containing term t, and nt denotes

the respective number of all documents. I1 assumes

term independence in the relevant documents and

in all documents; I2 assumes term independence in

the relevant documents and in the non-relevant

documents.

Given the two independence assumptions, and

given the option to consider term presence only,

there are four forms/variations of the BIR term weight.

Further, the BIR model proposes a technique for
dealing with missing relevance, where a zero probabil-

ity problem needs to be avoided. The definitions given

next show the case referred to as F4 where I2 is assumed

and term absence is considered. The constant 0.5 caters

for missing relevance data.

birwþ0:5ðt ; r;�rÞ :¼
ðrt þ 0:5Þ=ðR � rt þ 0:5Þ

ðnt � rt þ 0:5Þ=ðN � R � ðnt � rtÞ þ 0:5Þ
ð3Þ

RSVBIR; F4ðd; q; r;�rÞ :¼
X
t2d\q

log birwþ0:5ðt ; r;�rÞ

ð4Þ

The derivation of the term weight and the retrieval

status value is to be found in the scientific fundamen-

tals of this entry.
Historical Background
The paper [10] on ‘‘Relevance Weighting of Search

Terms’’ proposed what became known as the probabi-

listic retrieval model, binary independence retrieval

model, or RSJ (initials of the authors) model.

Closely related is the ‘‘The Probability Ranking

Principle in IR’’ [8] to justify that a ranking based on

the probability of relevance is an optimal ranking,

since the ranking minimises the costs for browsing

the ranking.

Reference [2] on ‘‘Using Probabilistic Models of

Document Retrieval without Relevance Information’’

investigated the generalisation for missing relevance,

and [4] contributed ‘‘An Evaluation of Feedback in

Document Retrieval using Co-occurrence Data.’’

Foundations

Derivation of the BIR Model

Derivations of the BIR model can be found in [6], [3]

(pp. 21–31), and [5] (pp. 167–175).

The BIR model is derived from the odds of the

probability of relevance:

Oðrjd; qÞ :¼ Pðrjd; qÞ
Pðrjd; qÞ ¼

Pðrjd; qÞ
I� P ðrjd; qÞ ð5Þ

Here, P(rjd, q) is the probability that the event relevant
(r) occurs for a given document-query pair. P(�rjd, q)
is the respective probability for non-relevant.

The derivation of the BIR model can be represented

in six steps:

Probabilistic Retrieval Models and Binary Independence Retrieval (BIR) Model P 2157
1. Bayes theorem and reduction of O(rjd, q).
2. Representation of d as a vector ~x of binary term

features (the binary term features are ‘‘term does

occur’’ and ‘‘term does not occur’’).

3. Independence assumption for features.

4. Split product over features into two products: a

product for term presence, and a product for

term absence.

5. Non-query term assumption: if non-query terms

occur with the same frequency in relevant and non-

relevant documents, then they do not affect the

ranking.

6. Rewrite the expression to obtain a compact form.
P

Bayes Theorem To estimate the unknown probability

P(rjd, q), the theorem of Bayes is applied:

Pðrjd; qÞ :¼ Pðrjd; qÞ
Pðd; qÞ ¼

Pðdjr; qÞ � PðrjqÞ � PðqÞ
P ðd; qÞ ð6Þ

For O(rjd, q), the probabilities P(q) and P(d, q) drop

out. With respect to the ranking of documents, the

factor
PðrjqÞ
PðrjqÞ has no effect, since it is document-

independent. Thus, the ranking of documents is

based on the following ranking equivalence:

Oðrjd; qÞ ¼rank Pðdjr; qÞ
Pðdjr; qÞ ð7Þ

Binary Feature Vector ~x The next step concerns the

representation and decomposition of the document d.

For this, the BIR model assumes that d is a vector of

binary features; this vector is denoted ~x ¼ ðx1;:::;xnÞ.
Each xi corresponds to a term ti, and for all xi, xi = 1 if

term is present, and xi = 0 if term is absent.
Independence Assumption Next, the BIR model

assumes that the binary features are independent.

This leads to the following equation for P(djr, q):

Pðdjr; qÞ ¼ Pð~xjr; qÞ ¼
Y
xi

Pðxijr; qÞ ð8Þ

The equation for P(dj�r , q) is accordingly.
Product Split The product over all features is split

into two products: one product for term presence

(xi = 1), and one for absence (xi = 0).
Pðdjr; qÞ ¼
Y
xi¼1

Pðxijr; qÞ
" #

:
Y
xi¼0

Pðxijr; qÞ
" #

ð9Þ

Since xi = 1 corresponds to ‘‘term occurs,’’ and xi = 0

corresponds to ‘‘term does not occur,’’ the next equa-

tion replaces xi by the term event t, where t means

‘‘term occurs.’’

Pðdjr; qÞ ¼
Y
t2d

Pðt jr; qÞ
" #

:
Y
t=2d

Pðt jr; qÞ

2
4

3
5 ð10Þ

In classical literature [10,6], the symbols pi and qi are

employed instead of P(tjr, q) and P(�t jr, q); however,
since the probabilities are more explicit, and avoid a

confusion of query (q) and absence of term (qi), and

facilitate to relate the BIR model to other retrieval

modes, the probabilistic notion is chosen here, while

keeping in mind that P(tjr, q) refers to the binary

feature of term t.
Non-Query Term Assumption For all non-query

terms, it is assumed that their frequency in relevant

documents is equal to their frequency in non-relevant

documents, i.e., 8t =2 q : P(tjr, q) = P(tj�r , q). This leads
to a reduction of the product, i.e., the non-query terms

are dropped.

Pðdjr; qÞ
Pðdj�r; qÞ ¼

Y
t2d\q

Pðt jr; qÞ
Pðt j�r; qÞ

" #
�

Y
t2qnd

Pð�t jr; qÞ
Pð�t j�r; qÞ

2
4

3
5 ð11Þ

This assumption corresponds to
Pðt jr;qÞ
Pðt j�r;qÞ ¼ 1, and the

more general assumption is
Pðt jr;qÞ
Pðt j�r;qÞ ¼ c, where c is a

constant.
Rewriting to Achieve Compact Form Finally, a rewrit-

ing leads to a compact form. The rewriting is based on

the following equation:

1:0 ¼
Y
t2d\q

Pð�t j�r; qÞ
Pð�t jr; qÞ �

Pð�t jr; qÞ
Pð�t j�r; qÞ

� �
ð12Þ

Equation 11 is multiplied with this 1.0. This fills up

the right product over query-only terms to a product

over all query terms; then, this product is document-

independent, and it can be dropped for ranking pur-

pose, as the next equations illustrate.

Traditional
Event-
based Comment

notation notation

rt nD(t, r) Number of relevant documents
with term t

R ND(r) Number of relevant documents

nt nD(t, c) Number of documents with
term t in the collection c

N ND(c) Number of documents in the
collection c

pt PD(tjr) Term probability in relevant
documents

qt PD(tj�r) term probability in non-relevant
documents

Traditional
notation Event-based notation Comment

pt ¼ rt
R

PDðt jrÞ ¼ nDðt ;rÞ
NDðrÞ Probability of

term in
relevant

qt ¼
nt
N
I1

nt�rt
N�R I2

�
PDðt j�rÞ¼

nDðt ;cÞ
NDðcÞ I1

nDðt ;cÞ�nDðt ;rÞ
NDðcÞ�NDðrÞ I2

(
Probability of
term in non-
relevant
assumptions
I1 and I2

2158P Probabilistic Retrieval Models and Binary Independence Retrieval (BIR) Model
Oðrjd; qÞ ¼
Y
t2d\q

Pðt jr; qÞ
Pðt j�r; qÞ

" #
�

Y
t2qnd

Pð�t jr; qÞ
Pð�t j�r; qÞ

2
4

3
5�

Y
t2d\q

Pð�t j�r; qÞ
Pð�t jr; qÞ �

Pð�t jr; qÞ
Pð�t j�r; qÞ

" #

¼rank
Y
t2d\q

Pðt jr; qÞ � Pð�t j�r; qÞ
Pðt j�r; qÞ � Pð�t jr; qÞ

ð13Þ

The fractional expression is referred to as the BIR term

weight, where either the above form or the logarithm of

it may be viewed as the term weight. The following

definition follows the first approach, and the logarithm

is applied to the termweight in the definition of RSVBIR.

birwðt ; r;�rÞ :¼ Pðt jr; qÞ � Pð�t j�r; qÞ
Pðt j�r; qÞ � Pð�t jr; qÞ ð14Þ

RSVBIRðd; q; r;�rÞ :¼
X
t2d\q

log birwðt ; r;�rÞ ð15Þ

The BIR weight is greater than 1.0 for good terms, i.e.,

good terms occur more frequently in relevant docu-

ments than in non-relevant documents. For P(tjr, q) =
P(tj�r , q), the BIR weight is 1.0; thus, such terms have

no effect on the ranking. For poor terms, the BIR

weight is less than 1.0; thus, poor terms have a negative

effect on the RSVBIR.

Alternative Derivation An alternative, shorter deriva-

tion is shown next. The abbreviations pi := P(xi = 1jr)
and qi := P(xi = 1j�r) are applied, and the document

probabilities are expressed as follows:

PðdjrÞ
Pðdj�rÞ ¼

Y
i

pxii � ð1� piÞ1�xi

qxii � ð1� qiÞ1�xi
ð16Þ

The exponent xi = 1 selects the probability pi that the

term occurs, and xi = 0 selects the probability (1 � pi)

that the termdoes not occur. Resolving the exponent 1�
xi leads to the next equation and ranking equivalence.

PðdjrÞ
P dj�rð Þ ¼

Y
i

pi

1� pi
:
1� qi

qi

	
xi
" #

:
Y
i

1� pi

1� qi
ð17Þ

!¼rank
Y
t2d\q

birwðt ; r;�rÞ ð18Þ

The right product (
Q

i
1�pi
1�qi

in 17) is constant, and

therefore does not affect the ranking. Since xi = 0 for
non-document terms, the first product reduces to

xi = 1 in d. With pi = qi for non-query terms, the

product reduces to xi = 1 in d and q, i.e., the product

is over t 2 d \ q.

Estimation of Term Probabilities

For describing the estimation of term probabilities, the

following notation is employed:
The notation comprises the traditional symbols, and

it shows an alternative, namely an event-based nota-

tion. The event-based notation is explicit regarding

the event-space (D for documents). Therefore, it is

applicable in a dual way to document-based and

location-based event spaces. Also, events such as a

document, a collection, and any set of documents

(relevant, non-relevant, retrieved, all) can be referred

to systematically.

The estimates of the term probabilities are

given next:

Probabilistic Retrieval Models and Binary Independence Retrieval (BIR) Model P 2159
The I2 assumption and the consideration of term

absence lead to the following equation for the BIR

term weight:

birwðt ; r;�rÞ ¼ rt=ðR � rtÞ
ðnt � r

t
Þ=ðN � R � ðnt � rt ÞÞ

ð19Þ

The next section groups the variations of the term

weight.

Variations of the BIR Term Weight

[10] introduced four variations (forms) of the term

weights: the four variations (referred to as F1, F2, F3,

and F4) follow from the two estimates for P(tj�r), and
whether or not term absence is considered.
Assumption
Term

absence Variation Term Weight

I1 no F1 rt=R
nt=N

I2 no F2 rt=R
ðnt�rt Þ=ðN�RÞ

I1 yes F3 rt=ðR�rt Þ
nt=ðN�nt Þ

I2 yes F4 rt=ðR�rt Þ
ðnt�rt Þ=ðN�R�ðnt�rt ÞÞ

P

For further reading, the BIR term weights are

summarised in [3], page 27. The variations form a

comprehensive mathematical coverage; F4 is the

prime choice.

Solving the Zero Probability Problem

The BIR term weight is not defined for missing rele-

vance; R = rt = 0 leads to a division by zero. Therefore,

[10] proposes to add constants to the frequency

counts:

birwþ0:5ðt ; r;�rÞ :¼
ðrt þ 0:5Þ=ðR � rt þ 0:5Þ

ðnt � rt þ 0:5Þ=ðN � R � ðnt � rt Þ þ 0:5Þ
ð20Þ

The subscript þ0.5 in birwþ0.5(t, r, �r) marks this term

weight to be different from the bare term weight

birw(t, r, �r) in 19; birwþ0.5(t, r, �r) is also referred to

as rsj(t, r, �r). What is the explanation underlying this

zero-probability ‘‘fix’’?

To reach an explanation, insert rt þ 0.5 for each rt ,

and insert R þ 1 for each R. This corresponds to

assuming that there is a virtual document that is
relevant, and each term occurs in half of the relevant

documents, i.e., pt = 0.5. The virtual document is

retrieved, i.e., nt þ 1. Finally, this requires to assume

Nþ 2 documents, which corresponds to assuming that

there are two virtual documents, one of which is rele-

vant. The next equation illustrates the explanation via

virtual documents:

birwþ0:5ðt ; r;�rÞ :¼
ðrt þ 0:5Þ=ðR þ 1� ðrt þ 0:5ÞÞ
ððnt þ 1Þ � ðrt þ 0:5ÞÞ=ððN þ 2Þ�
ðR þ 1Þ � ððnt þ 1Þ � ðrt þ 0:5ÞÞÞ

ð21Þ

This expanded form reduces to 20.

From a more general point of view, the estimate

Pðt jrÞ :¼ rtþk
RþK is applied to cover the case for missing

relevance, where k
K
¼ 0:5, and k = 0.5, and K = 1, for

birwþ0.5. This formulation reminds of the Laplace law

of succession. Since the notion of ‘‘half of a relevant

document’’ has no intuition, the number of virtual

documents could be scaled to four rather than two

[13]. This leads to: N þ 4, nt þ 2, R þ 2, rt þ 1.

Then, the BIR weight is as follows:

birwþ1ðt ;r;�rÞ :¼
ðrt þ1Þ=ðR� rt þ1Þ

ðnt � rt þ1Þ=ðN �R�ðnt � rt Þþ1Þ
ð22Þ

Relationship between the BIR Model, IDF, and BM25

The BIR model can be viewed as a theoretical argu-

ment to support IDF-based retrieval.

[2] proposes for missing relevance to assume that

for all term, P(tjr) is the same. This leads to a co-

ordination level component in the retrieval function:

X
t2d\q

log
Pðt jrÞ

1� Pðt jrÞ þ
X
t2d\q

� log
Pðt j�rÞ

1� Pðt j�rÞ

The left component expresses the co-ordination

level match. For large N and N >> nt , the right

component is similar to the IDF component. i.e.,P
t2d\q � log nt

N�nt �
P

t2d\q idf t ; cð Þ. [11] investiga-

tes how these assumptions are affected in the case

of little relevance information.

[9] reviews the relationship of the BIR model

and IDF, and theoretical arguments for IDF. The

relationship between BIR and IDF is based on

the definition idf(t, c) := �log PD(tjc) and the estima-

tion of the BIR probability P(tj�r). By assuming

2160P Probabilistic Spatial Queries
P(tj�r) = PD(tjc), the relationship is established, i.e., idf

(t, c) = �log P(tj�r).
[13] builds on this relationship and shows a fully

idf-based formulation of the BIR term weight:

log birw t ; r;�rð Þ ¼ log
P t jrð Þ : P �t j�rð Þ
P t j�rð Þ : P �t jrð Þ ð23Þ

¼ idfðt ;�rÞ � idfðt ; rÞ þ idfð�t ; rÞ � idfð�t ;�rÞ ð24Þ

� idfðt ; cÞ � idfðt ; rÞ þ idfð�t ; rÞ � idfð�t ; cÞ ð25Þ

This linear combination of idf values underlines the

issue that the collection c is much larger than the set r

of relevant documents (jcj >> jrj), and therefore the

maximum-likelihood estimates may be not compara-

ble, and may need to be normalised [13].

Ignoring the negated term events (dropping the

term absence, see section 1, variations of BIR term

weight) leads to the following simplified term weight:

log
Pðt jrÞ
Pðt j�rÞ ¼ idfðt ;�rÞ � idfðt ; rÞ �

idfðt ; cÞ � idfðt ; rÞ
ð26Þ

The formulation shows that the term weight is idf(t, c),

if idf(t, r) = 0. The latter is the case for terms that occur

in all relevant documents, i.e., P(tjr) = 1. Therefore,

from this simplified form of the BIR model, idf-based

retrieval assumes P(tjr) = 1. On the other hand, the

full formulation (25) assumes idf(t, r) = idf(�t , r), i.e.,

P(tjr) = 0.5, for missing relevance.

Regarding BM25, the BIR term weight is in BM25

what IDF is in TF-IDF, i.e., in BM25, a TF-component

is multiplied with the BIR F4 term weight, whereas in

basic TF-IDF, a TF-component is multiplied with the

IDF term weight.
Key Applications
The BIR model is applied to incorporate relevance

feedback data into document ranking; this model has

become a key foundation of retrieval models. In 2004,

the BIR model served as a foundation for a probabilis-

tic ranking of tuples for database queries [1].
Cross-references
▶BM25

▶ Language Models

▶TF*IDF
Recommended Reading
1. Chaudhuri S., Das G., Hristidis V., and Weikum G. Probabilistic

ranking of database query results. In Proc. 30th Int. Conf. on

Very Large Data Bases, 2004, pp. 888–899.

2. Croft W.B. and Harper D.J. Using probabilistic models of docu-

ment retrieval without relevance information. J. Doc.,

35:285–295, 1979.

3. Grossman D.A. and Frieder O. Information Retrieval. Algo-

rithms and Heuristics, 2nd edn., volume 15 of The Information

Retrieval Series. Springer, Berlin, 2004.

4. Harper D.J. and van Rijsbergen C.J. An evaluation of feedback

in document retrieval using cooccurrence data. J. Doc.,

34:189–216, 1978.

5. Richard K. Belew. Finding out about. Cambridge University

Press, 2000.

6. van Rijsbergen C.J. Inform. Retr.. Butterworths, London, 2nd

edn., 1979. http://www.dcs.glasgow.ac.uk/Keith/Preface.html.

7. Robertson S. On event spaces and probabilistic models in infor-

mation retrieval. Inform. Retr. J., 8(2):319–329, 2005.

8. Robertson S.E. The probability ranking principle in IR. J. Doc.,

33:294–304, 1977.

9. Robertson S.E. Understanding inverse document frequency: On

theoretical arguments for idf. J. Doc., 60:503–520, 2004.

10. Robertson S.E. and Sparck Jones K. Relevance weighting of

search terms. J. Am. Soc. Inform. Sci., 27:129–146, 1976.

11. Robertson S.E. and Walker S. On relevance weights with little

relevance information. In Proc. 20th Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1997, pp. 16–24.

12. Roelleke T. and Wang J. A parallel derivation of probabilistic

information retrieval models. In Proc. 32nd Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2006, pp. 107–114.

13. de Vries A. and Roelleke T. Relevance information: a loss of

entropy but a gain for IDF? In Proc. 31st Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2005, pp. 282–289.
Probabilistic Spatial Queries

REYNOLD CHENG, JINCHUAN CHEN

The University of Hong Kong, Hong Kong, China

Synonyms
Imprecise spatial queries

Definition
An uncertain item is defined as a range-limited proba-

bility density function (pdf) in a multi-dimensional

space, which can model the uncertainty of location,

sensor and biological data. Given a set of uncertain

Probabilistic Spatial Queries P 2161

P

items, a probabilistic spatial query returns results aug-

mented with probabilistic guarantees for the validity of

answers. The impreciseness of query answers is an

inherent property of these applications due to data

uncertainty, unlike the techniques for approximate

processing that trade accuracy for performance. New

query definitions, processing and indexing techniques

are required to handle these queries.

Historical Background
Data uncertainty is an inherent property in a number

of important and emerging applications. Consider, for

example, a habitat monitoring system used in scientific

applications, where data such as temperature, humidi-

ty, and wind speed are acquired from a sensor network.

Due to physical imperfection of the sensor hardware,

the data obtained are often inaccurate [9]. Moreover, a

sensor cannot report its value at every point in time,

and so the system can only obtain data samples at

discrete time instants. As another example, in the

Global-Positioning System (GPS), the location collect-

ed from the GPS-enabled devices (e.g., PDAs) also has

measurement and sampling error [16,14]. The location

data transmitted to the system may further encounter

some network delay. In biometric databases, the attri-

bute values of the feature vectors stored are not exact [1].

Hence, the data collected in these applications are often

imprecise, inaccurate, and stale.

Services or queries that base their decisions on

these data can produce erroneous results. There is

thus a need to manage these data errors more carefully.

In particular, the idea of probabilistic spatial queries

(PSQ in short), which is a variant of spatial queries

that handle data uncertainty, has been recently pro-

posed. The main idea of a PSQ is to consider the

models of the data uncertainty (instead of just the

data value reported), and augment probabilistic
Probabilistic Spatial Queries. Figure 1. Location and sensor
guarantees to the query results. For example, a tradi-

tional query asking who is the nearest neighbor of a

given point q can tell the user that John is the answer,

while a PSQ informs the user that John has a probabil-

ity of 0.8 of being the closest to q. The probabilities

reflect the degree of correctness of query results, there-

by facilitating the system to produce a more confident

decision.

In this entry, the recent research efforts on PSQ will

be summarized. Specifically, the details of how a PSQ

can be classified will be discussed. Then, the issues of

evaluating and indexing different types of PSQ in a

large database will be addressed.

Foundations
Spatial Uncertainty Models To understand a PSQ, it is

important to first discuss a commonly-used model of

data uncertainty. This model assumes that the actual

data value is located within a closed region, called the

uncertainty region. In this region, a non-zero probabil-

ity density function (pdf) of the value is defined, where

the integration of pdf inside the region is equal to one.

The cumulative density function (cdf) of the item is

also provided. In an LBS, a normalized Gaussian pdf is

used to model the measurement error of a location

stored in a database [16,14] (Fig. 1a). The uncertainty

region is a circular area, with a radius called the ‘‘dis-

tance threshold’’; the newest location is reported to the

system when it deviates from the old one by more than

this threshold (Fig. 1a). Gaussian distributions are also

used to model values of a feature vector in biometric

databases [1]. Figure 1b shows the histogram of tem-

perature values in a geographical area observed in a

week. The pdf, represented as a histogram, is an arbi-

trary distribution between 10 and 20oC.

A logical formulation of queries for this kind of

uncertainty model has been recently studied in [12,15].
uncertainty.

2162P Probabilistic Spatial Queries
Other variants have also been proposed. In [11], piece-

wise linear functions are used to approximate the cdf of

an uncertain item. Sometimes, point samples are derived

from an item’s pdf [10,13]. In the existential uncertainty

model, every object is represented by the value in the

space, as well as the probability that this object exists [8].

With thesemodifiedmodels, it is possible to develop fast

processing techniques for PSQs.

Query Classification Given the spatial uncertainty

model, the semantics of PSQs can be defined. Cheng

et al. proposed a classification scheme for different

types of PSQ [4]. In that scheme, a PSQ is classified

according to the forms of answers. An entity-based

query is one that returns a set of objects (e.g., list of

objects that satisfy a range query or join conditions),

whereas a value-based query returns a single numeric

value (e.g., value of a particular sensor). Another crite-

rion is based on whether an aggregate operator is used

to produce results. An aggregate query is one where

there is interplay between objects that determines the

results (e.g., a nearest-neighbor query). Based on these

two criteria, four different types of probabilistic

queries are defined. Each query type has its own meth-

ods for computing answer probabilities. In [4], the

notion of quality has also been defined for each query

type, which provides a metric for measuring the ambi-

guity of an answer to the PSQ.

In the rest of this section, two important PSQs,

namely the probabilistic range queries and the proba-

bilistic nearest-neighbor queries, will be studied.

Probabilistic Range Queries A well-studied PSQ

is the probabilistic range query (PRQ). Figure 2a illus-

trates this query, which shows the shape of the uncer-

tainty regions, as well as the user-specified range, R.

The task of the range query is to return the each

object that can be inside R, as well as its probability.

The PRQ can be used in location-based services, where
Probabilistic Spatial Queries. Figure 2. Probabilistic range q

each item, and (b) the p-bound of an uncertain item.
queries like: ‘‘return the suspect vehicles in a crime

scene’’ can be asked. It is also used in sensor network

monitoring, where sensor IDs whose physical values

(e.g., temperature, humidity) are returned to the user.

Figure 2a shows the probability values of the items

(A, B, and C) that are located inside R. A PRQ is an

entity-based query, since it returns a list of objects. It is

also a non-aggregate query, because the probability of

each object is independent of the existence of other

objects [4].

To compute an item’s probability for satisfying the

PRQ, one can first find out the overlapping area of

each item’s region within R (shaded in Fig. 2a), and

perform an integration of the item’s pdf inside the

overlapping area. Unfortunately, this solution may

not be very efficient, since expensive numerical inte-

gration may need to be performed if the the item’s pdf

is arbitrary [7]. Even if an R-tree is used to prune items

that do not overlap R, the probability of each item that

are non-zero still needs to computed. A more efficient

solution was developed in [7], where the authors pro-

posed a user-defined constraint, called the probability

threshold P, with P 2 (0,1]. An item is only returned if

its probability of satisfying the PRQ is not less than P.

In Fig. 2a, if P = 0.6, then only A and C will be returned

to the user. Under this new requirement, it is possible

to incorporate the uncertainty information of items

into a spatial index (such as R-tree). The main idea is

to precompute the p-bounds of an item. A p-bound of

an uncertain item is essentially a function of p, where

p 2 [0,0.5]. In a 2D space, it is composed of four

line segments, as illustrated by the hatched region in

Fig. 2b. The requirement of right p-bound (illustrated

by the thick solid line) is that the probability of the

location of the item on the right of the line has to be

exactly equal to p (the shaded area). Similarly, the

probability of the item on the left of the left p-bound
ueries over uncertain items, showing (a) the probability of

Probabilistic Spatial Queries P 2163

P

is exactly equal to p. The remaining line segments

(top and bottom p-bounds) are defined analogously.

Once these p-bounds are known, it is possible to

know immediately whether an item satisfies the PRQ.

Figure 2b shows that a range query R overlaps the

item’s uncertainty region, but does not cut the right

p-bound, where p is less than P. Since the integration

of the item’s pdf inside the overlapping area of R

and the uncertainty region cannot be larger than P,

the item is pruned without doing the actual probability

computation.

By precomputing a finite number of p-bounds, it

is possible to store them in a modified version of the

R-tree. Called Probability Threshold Index (PTI), this

index can facilitate the pruning of uncertain items in

the index level [7]. Compared with the R-tree which

uses the MBR of the object for pruning, the use of

p-bounds in the PTI provides more pruning power.

In Fig. 2b, for example, although the range R overlaps

with the MBR of the object (dashed rectangle), it does

not cut the p-bounds, and so it can be pruned by the

PTI but not by the R-tree. [7] also examined special

cases of pdf (uniform and Gaussian distributions) and

proposed an indexing scheme where p-bounds can be

computed on-the-fly without being stored in the

index. Since storing p-bounds for high-dimensional

uncertain items can be expensive, Tao et al. [17,18]

proposed a variant of PTI called U-tree, which only

stores approximate information of p-bounds in the

index. With these improvements, it is possible to

index uncertain items in the high-dimensional space.

The p-bound techniques were also used in [6] to facil-

itate the processing of join queries over uncertain

spatial data.

Another PRQ evaluation technique was recently

proposed by Ljosa et al. [7], who used piecewise linear

functions to approximate the cdf of an uncertain item

in order to avoid expensive integration. They also

described an index that stored these piecewise linear

functions, so that a PRQ can be evaluated more effi-

ciently. More recently, the problem of evaluating im-

precise location dependent range queries is studied

[18,2]. This is a variant of PRQ, where the range

query is defined with reference to the (imprecise)

position of the query issuer. For instance, if the query

issuer looks for his friends within 2 miles of his current

position, and his position is uncertain, then the actual

query range (a circle with a 2-mile radius) cannot

be known precisely. The authors of [2] proposed
several approaches to efficiently evaluate these queries,

by (i) using the Minkowski Sum (a computational

geometry technique), (ii) switching the role of query

issuer and data being queried, and (iii) using p-

bounds.

Nearest-Neighbor Queries Another important

PSQ for uncertain items is the probabilistic nearest-

neighbor queries (PNNQ in short). This query returns

the non-zero probability of each object for being the

nearest neighbor of a given point q [4]. A PNNQ can

be used in a sensor network, where sensors collect the

temperature values in a natural habitat. For data anal-

ysis and clustering purposes, a PNNQ can find out

the district(s) whose temperature values is (are) the

closest to a given centroid. Another example is to find

the IDs of sensor(s) that yield the minimum or maxi-

mum wind-speed from a given set of sensors [9,4].

A minimum (maximum) query is essentially a special

case of PNNQ, since it can be characterized as a PNNQ

by setting q to a value of �1 (1).

Evaluating a PNNQ is not trivial. In particular,

since the exact value of a data item is not known,

one needs to consider the item’s possible values in

its uncertainty region. Moreover, since the PNNQ

is an entity-based aggregate query [4], an item’s prob-

ability depends not just on its own value, but also on

the relative values of other objects. If the uncertainty

regions of the objects overlap, then their pdfs must

be considered in order to derive their corresponding

probabilities. This is unlike the evaluation of PRQ,

where each item’s probability can be computed inde-

pendent of others. To evaluate PNNQ, one method

is to derive the pdf and cdf of each item’s distance

from q. The probability of an item for satisfying

the PNNQ is then computed by integrating over a

function of distance pdfs and cdfs [9,4,5]. In [5],

an R-tree-based solution for PNNQ was presented.

The main idea is to prune items with zero probabilities,

using the fact that these items’ uncertainty regions

must not overlap with that of an itemwhose maximum

distance from q is the minimum in the database.

The probabilistic verifiers, recently proposed in [3],

are algorithms for efficiently computing the lower

and upper bounds of each object’s probability for

satisfying a PNNQ. These algorithms, when used to-

gether with the probability threshold defined by

the user, avoid the exact probability values to be calcu-

lated. In this way, a PNNQ can be evaluated more

efficiently.

2164P Probabilistic Spatial Queries
There are two other solutions for PNNQ that base

on a different representation of uncertain items. Krie-

gel et al. [10] used the Monte-Carlo method, where the

pdf of each object was sampled as a set of points. The

probability was evaluated by considering the portion of

points that could be the nearest neighbor. In [11],

Ljosa et al. used piecewise linear representation of the

cdf for an uncertain item to propose efficient evalua-

tion and indexing techniques.

Another important entity-based aggregate query

over uncertain items, namely the probabilistic skyline

queries, has been studied in [13]. A skyline query

returns a set of items that are not dominated by other

items in all dimensions. In that paper, the issues of

defining and computing the probability that an uncer-

tain item was in the skyline were addressed. Two

bounding-pruning-refining based algorithms were de-

veloped: the bottom-up algorithm used selected

instances of uncertain items to prune other instances of

uncertain items, while the top-down algorithm recur-

sively partitions the instances of uncertain items into

subsets. The authors showed that both techniques enable

probabilistic skyline queries to be efficiently computed.

Key Applications
A PSQ can be used in applications that require the

processing of uncertain spatial data. These applications

include location-based services, road traffic monitor-

ing, wireless sensor network applications, and biomet-

ric feature matching, where the data collected from the

physical environments (e.g., location, temperature, hu-

midity, images) cannot be obtained with a full accura-

cy. Recent works that propose to inject uncertainty to a

user’s location for location privacy protection also

requires the use of a PSQ [2].

Future Directions
A lot of work remains to be done in the area of uncer-

tain spatial data processing. An important future work

will be the definition and evaluation of important spa-

tial queries, such as reverse nearest-neighbor queries. It

will also be interesting to study the development of data

mining algorithms for spatial uncertainty. Another di-

rection is to study spatio-temporal queries over histor-

ical spatial data (e.g., trajectories of moving objects).

Other works include revisiting query cost estimation,

query plan evaluation, and user interface design that

allows users to visualize uncertain data. A long term

goal is to consolidate these research ideas and develop a
comprehensive spatio-temporal database system with

uncertainty management facilities.

URL to Code
The following URL contains source codes of the

ORION system, which is a database system that pro-

vides querying facilities for uncertain spatial data:

http://orion.cs.purdue.edu

Cross-references
▶Nearest Neighbor Query

▶R-Tree (and Family)

▶ Spatial Anonymity

▶ Spatial Indexing Techniques
Recommended Reading
1. Böhm C., Pryakhin A., and Schubert M. The Gauss-Tree: Effi-

cient object identification in databases of probabilistic feature

vectors. In Proc. 22nd Int. Conf. on Data Engineering, 2006.

2. Chen J. and Cheng R. Efficient evaluation of imprecise location-

dependent queries. In Proc. 23rd Int. Conf. on Data Engineer-

ing, 2007.

3. Cheng R., Chen J., Mokbel M., and Chow C. Probabilistic veri-

fiers: Evaluating constrained nearest-neighbor queries over un-

certain data. In Proc. 24th Int. Conf. on Data Engineering, 2008.

4. Cheng R., Kalashnikov D., and Prabhakar S. Evaluating proba-

bilistic queries over imprecise data. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2003, pp. 551–562.

5. Cheng R., Kalashnikov D.V., and Prabhakar S. Querying impre-

cise data in moving object environments. IEEE Trans. Knowl.

and Data Eng., 16(9), 2004.

6. Cheng R., Singh S., Prabhakar S., Shah R., Vitter J., and Xia Y.

Efficient join processing over uncertain data. In Proc. Int. Conf.

on Information and Knowledge Management, 2006.

7. Cheng R., Xia Y., Prabhakar S., Shah R., and Vitter J. S. Efficient

indexing methods for probabilistic threshold queries over un-

certain data. In Proc. 30th Int. Conf. on Very Large Data Bases,

2004, pp. 876–887.

8. Dai X., Yiu M. L., Mamoulis N., Tao Y., and Vaitis M. Probabi-

listic spatial queries on existentially uncertain data. In Proc. 9th

Int. Symp. Advances in Spatial and Temporal Databases, 2005,

pp. 400–417.

9. Deshpande A., Guestrin C., Madden S., Hellerstein J., and

Hong W. Model-driven data acquisition in sensor networks.

In Proc. 30th Int. Conf. on Very Large Data Bases, 2004.

10. Kriegel H., Kunath P., and Renz M. Probabilistic nearest-neighbor

query on uncertain objects. In Proc. 12th Int. Conf. on Database

Systems for Advanced Applications, 2007, pp. 337–348.

11. Ljosa V. and Singh A. APLA: Indexing arbitrary probability

distributions. In Proc. 23rd Int. Conf. on Data Engineering,

2007, pp. 946–955.

12. Parker A., Subrahmanian V., and Grant J. A logical formulation

of probabilistic spatial databases. IEEE Trans. Knowl. and Data

Eng., 19(11), 2007.

Probabilistic Temporal Databases P 2165
13. Pei J., Jiang B., Lin X., and Yuan Y. Probabilistic skylines on

uncertain data. In Proc. 33rd Int. Conf. on Very Large Data

Bases, 2007.

14. Pfoser D. and Jensen C. Capturing the uncertainty of moving-

objects representations. In Proc. 11th Int. Conf. on Scientific and

Statistical Database Management, 1999.

15. Singh S., Mayfield C., Shah R., Prabhakar S., Hambrusch S.,

Neville J., and Cheng R. Database support for probabilistic

attributes and tuples. In Proc. 24th Int. Conf. on Data Engineer-

ing, 2008.

16. Sistla P.A., Wolfson O., Chamberlain S., and Dao S. Querying the

uncertain position of moving objects. In Temporal Databases:

Research and Practice. Springer Verlag, 1998.

17. Tao Y., Cheng R., Xiao X., Ngai W. K., Kao B., and Prabhakar S.

Indexing multi-dimensional uncertain data with arbitrary prob-

ability density functions. In Proc. 31st Int. Conf. on Very Large

Data Bases, 2005, pp. 922–933.

18. Tao Y., Xiao X., and Cheng R. Range Search on Multidimensional

Uncertain Data. ACM Trans. Database Syst. 32(3), 2007.
P

Probabilistic Temporal Databases

V. S. SUBRAHMANIAN

University of Maryland, College Park, MD, USA

Synonyms
Temporally uncertain databases; Temporally indeter-

minate databases

Definition
There are many applications where the fact that a given

event occurred is known, but where there is uncertain-

ty about exactly when that event occurred. Such events

are called temporally indeterminate events. Probabilis-

tic temporal databases attempt to store information

about events that are both temporally determinate

and temporally indeterminate. For the latter, they

specify a set of time points (often an interval) – it is

known that the event occurred at some time point in

this set. The probability that the event occurred at a

specific time point is given by a probability distribu-

tion or by one of a set of probability distributions.

Historical Background
There is no shortage of events that are known to have

certainly occurred, but where the exact dates are not

known with certainty. For instance, the exact date of

the extinction of dinosaurs is unknown – nor does the

historical record show the precise date when Cyrus the

Great of Persia was born. The latter, estimated by
scholars to be between 590–576 BC, is an excellent

example of a temporally indeterminate event.

Techniques to study such temporally indeterminate

events in databases started with information about

partial null values [9,13]. Meanwhile, in a largely sepa-

rate community, researchers focused on the problem

of incorporating probabilistic information within a

relational database. One of the earliest efforts was

due to Cavallo and Pittarelli [4] who proposed an

extension of the relational data model to include prob-

abilities – they proposed a partial algebra consisting of

projection and join operators. Much early work in this

field, such as that of [2,7] made important advances

under some restrictions Lakshmanan et al.’s ProbView

system [11] proposed two representations of probabi-

listic data: a probabilistic tuple has the form ((t1,V1),...,

(tn,Vn)) where each ti is a set of possible values and Vi is

a probability distribution over the set. They then showed

that each probabilistic tuple could be ‘‘flattened’’ into an

‘‘annotated’’ representation. Annotated tuples look like

ordinary tuples except that a probability is attached to

the tuple as a whole (and a special ‘‘path’’ field was

introduced to handle tuples with identical data). Prob-

View introduced the important concept of conjunction

and disjunction strategies that allowed users to specify –

in their query – their knowledge about the dependencies

between events when posing the query. Thus, the barrier

of the independence assumption in previous works was

overcome. They proposed a query algebra for annotated

tuples, developed query rewrite rules, and developed

view maintenance algorithms.

Much work has subsequently been done on tempo-

ral probabilistic data. Despite a long history of

reasoning about time and uncertainty in AI [10],

a major advance in temporal probabilistic databases

occurred when Dyreson and Snodgrass [8] proposed

the notion of an indeterminate instant. This is just like

one of the (ti,Vi) pairs in the annotated representation

of [11] with the exception that the ti component repre-

sents a set of time points. They then extended the SQL

query language in several ways. First, they added

constructs to indicate that a temporal attribute in

indeterminate. Second, they added the concept of ‘‘cor-

relation credibility’’ which allows a query to modify

indeterminate temporal data (e.g., by choosing a max

temporal value or an expected temporal value). Third,

they introduced the concept of ‘‘ordering plausibility’’

which specifies an ordering about the plausibility levels

of different conditions in the WHERE clause of an SQL

VehicleID Vehicle Type Location Time PDF

V1 T72 b 20 <t<23 g0.5

2166P Probabilistic Temporal Databases
query. The next major breakthrough in temporal prob-

abilistic databases came when Dekhtyar et al. [6] pro-

posed a temporal probabilistic relational database

model that added ‘‘tp-cases’’ to ordinary relational

tuples. A tp-case contained two constraints one of

which was used to denote valid time points as solutions

of the constraints, and the other was used in conjunc-

tion with a distribution function to infer a probability

distribution on the solutions of the first constraint.

They developed an extension of the relational algebra

that directly manipulated tp-tuples and used the con-

junction and disjunction strategies of ProbView [11] to

avoid making independence assumptions. TP-data-

bases were one of the first temporal probabilistic

DBMSs to report real world applications for the US

Navy [12]. It was later used to build similar applica-

tions for the US Army as well. Later, Biazzo et al. [3]

extended this work to the case of object bases contain-

ing temporal indeterminacy. The Trio system [1]

extends temporal indeterminacy models to include

lineage information as well. More recently, SPOT data-

bases [14] allow reasoning in the presence of space,

time and uncertainty.

Foundations
Consider a relation R(A1,...,An) which describes events

whose temporal validity is not precisely known. In

order to identify when the tuples in such a relation

are valid, constraints can be to describe the period of

validity of the tuple. The table below (ignoring the

shaded column for now) is a temporally indeterminate

database about vehicle locations.

The first row in this table says that the event ‘‘Vehi-

cle V1 was at location a’’ occurred at some time during

the closed interval [11,20]. This is a form of temporal

indeterminacy with no probabilities. Suppose there is a

probability distribution over the last column. A com-

mon temptation is to add an additional column spe-

cifying the ‘‘name’’ of the distribution (e.g., ‘‘u’’ might

be the uniform distribution, gr may be a geometric

distribution with a parameter r, and so forth). Such a

table might now look like this:
VehicleID
Vehicle
Type Location Time PDF

V1 T72 a 11 < = t < = 20 U

V1 T72 b 18 < = t < = 25 g0.5
V1 T72 c 24 < = t < = 27 g0.2
Now consider the table above with the shaded

column included. The first row in the table now says

that there is a 10% probability that vehicle V1 will be at

location a at time 11 (and the same for times 12, 13,

and so on till time 20) and that the probability is

uniformly distributed (probability distribution func-

tion or pdf ‘‘u’’). In contrast, the second row says

something different because the pdf g treats time inter-

vals differently. It says, implicitly, that the probability

that vehicle V1 will be at location b at time 18 is 0.15, at

time 19 is 0.25, at time 20 is 0.125, and so on.

How should queries over this representation of

the database be answered? To see this, consider a tem-

poral query which says ‘‘Select all tuples where

20 < Time < 23.’’ The only tuple that has any chance

of satisfying this constraint is the second one. However,

there is no guarantee that the second tuple actually is

valid during this interval. Fortunately, there is a

9.375% chance that this is the case – so the system

could return the probabilistically valid response saying

that the second tuple is valid with probability 9.375%.

Unfortunately, there is no way of returning this answer

to the user unless the implicit assumption in all relation-

al databases that the output schema for selection queries

should match the input schema is sacrificed. It is clearly

inappropriate to just return the table:
The Time field here is computed merely by solving

the constraint in the second tuple of the input relation

in conjunction with the constraint in the query. Un-

fortunately, the distribution in the PDF field is incor-

rect, and would need to be recomputed. This is further

complicated by the fact that the shape of the original

geometric distribution does not look the same when

restricted to a portion (of interest) of the original

distribution.

There have been two attempts to solve the problem

of dealing with what happens when a distribution is

manipulated. Dyreson and Snodgrass [8] develop a

‘‘rod and point’’ method to store distributions and

infer new distributions when selection operations of

the kind above are performed. They approximate a

probability mass by splitting it into chunks called

‘‘rods.’’ However, each chunk can have a different

Probabilistic Temporal Databases P 2167
length. An approximate representation of the original

distribution is obtained through this rod mechanism.

Dekhtyar et al. [6] solve this problem by using some

extra space. They require that the ‘‘base relation’’ con-

tains two constraints,both of which are identical initially.

They would represent the original relation as follows:
VehicleID
Vehicle
Type Location Time Time 2 PDF

V1 T72 a 11< = t
< = 20

11< = t
< = 20

U

V1 T72 b 18< = t
< = 25

18< = t
< = 25

G0.5

V1 T72 c 24< = t
< = 27

24< = t
< = 27

G0.2
In base relations, the Time and Time2 fields have

exactly the same constraints in them. When queries are

executed, the Time field ends up denoting valid time

and changes based on the query – however, the Time2

field rarely changes. When the selection query men-

tioned above is execution, they would return the answer:
VehicleID
Vehicle
Type Location Time Time 2 PDF

V1 T72 B 20 < t
< 23

18 < = t
< = 25

G0.5

P

This is very subtle. The Time attribute here specifies

the valid time (in this case, time points 21 and 22). The

Time2 attribute is a system-maintained attribute

that need not be shown to the user which says apply

the PDF mentioned in the PDF field to the solutions of

the Time2 constraint – but only show the probability

values for the solutions of the Time constraint). Thus,

Time2 is used to derive the probabilities for each valid

time point. In the above case, the valid time points are

21 and 22, and their probabilities are derived – using

the distribution in the PDF column applied to the

constraint in the Time2 column – to get probabilities

of 0.0625 and 0.03125, respectively. Dekhtyar et al. [6]

goes on and specifies how to add additional ‘‘low’’ and

‘‘high’’ probability fields to such relations and provides

normalization methods.

Cartesian products between two relations are more

complex. When concatenating tuple st1 and t2 from
two different relations, it is important to consider the

probability that both tuples will be valid at a given time

point. This requires knowing the relationship between

the events being denoted by these two tuples: are they

independent? Are they correlated somehow? Is there no

information about the relationship? Thus, a conjunc-

tion strategy must be specified in the query when a

Cartesian product (and hence a join operation) is

being performed. Dekhtyar et al. [6] show how

Cartesian products and joins can be computed under

any assumption specified in a user query.

Another recent effort is the one on Trio [1] which

attempts to deal with time, uncertainty, and lineage.

They address the fact that inmany applications involving

uncertainty (such as crime-fighting applications), any

‘‘final’’ answer needs to be explainable. As a consequence,

they introduce ‘‘lineage’’ parameters when answering a

query – informally speaking, the lineage parameter asso-

ciated with a tuple in an answer (similar to the ‘‘path’’

parameter in [11]) associates a ‘‘justification’’ for each

tuple. This justification references the set of base tuples

that caused the derived tuple to be placed in an answer.

Key Applications
Temporal probabilistic databases have already been used

in defense applications. For instance, [12] describes

work in which temporal probabilistic databases are

used to store the results of predictions about where

enemy submarines will be in the future, when they will

be there, and with what probability. In fact, this raises a

large set of possible applications based on reasoning

about moving objects. For defense applications, cell

phone applications, logistics applications, and many

other application domains, there is interest in knowing

where a moving object will be in the future, when it is

expected to be there, and with what probability. Cell

phone companies can use such data to understand and

better handle load on cell towers.

Moreover, as the world is becoming increasing

‘‘geo-location aware’’ through the use of devices like

RFID tags and GPS locators, it is clear that reasoning

about where vehicles will be in the future and with

what probability will be important in a wide range of

applications such as traffic light settings to ease road

congestion, recommending detours on highway signs,

and more effectively directing 911 traffic in congested

situations. These would not be possible without a good

estimate of when and where and with what probabil-

ities vehicles will be in the future.

2168P Probability Ranking Principle
Logistics applications are another important class of

applications where companies need to plan activities in

the presence of uncertainty about when various supply

items will arrive. Corporations today use complex pre-

diction models to learn about suppliers’ performance.

Financial applications are another major source of

temporal uncertainty. Banks need to have a good idea

of their incoming funds. For instance, a credit card

provider deals with constant uncertainty about when

people will pay their credit card bills, how much of the

bills they will pay, and how much they will carry

forward as debt. Such applications embody a mix of

data uncertainty and temporal uncertainty.
Future Directions
Three major areas of expansion include:

1. Temporal probabilistic aggregates. To date, there are

almost no techniques to manage aggregates effi-

ciently in temporal probabilistic databases. Most

methods would compute aggregates by first an-

swering a non-aggregate query and then deriving

aggregates from there: however, techniques to scal-

ably answer aggregate queries are required.

2. Probabilistic spatio-temporal reasoning. Moving

objects clearly have a spatial component – hence,

reasoning about them involves a neat fusion of

temporal reasoning, spatial reasoning, and proba-

bilistic reasoning. Some work on indexing in such

domains has recently been proposed. However,

much future work is needed, especially in under-

standing the correlations that exist between the

presence of a vehicle at time t and its presence at

another location at time t + 1.

3. Query optimization. Recent work [5] has made a

good start on query optimization in probabilistic

databases – however, query optimization in data-

bases involving time and uncertainty has a ways to

go. Suchmethods are critical for scaling applications.
Cross-references
▶Qualitative Temporal Reasoning

▶Temporal Constraints

Recommended Reading
1. Agrawal P., Benjelloun O., Sarma A.D., Hayworth C., Nabar S.U.,

Sugihara T., and Widom J. Trio: a system for data, uncertainty,

and Lineage. In Proc. 32nd Int. Conf. on Very Large Data Bases,

2006, pp. 1151–1154.
2. Barbará D., Garcia-Molina H., and Porter D. The management of

probabilistic data. IEEE Trans. Knowl. Data Eng., 4(5):

487–502, 1992.

3. Biazzo V., Giugno R., Lukasiewicz T., and Subrahmanian V.S.

Temporal probabilistic object bases. IEEE Trans. Knowl. Data

Eng., 15(4):921–939, 2003.

4. Cavallo R. and Pittarelli M. The theory of probabilistic data-

bases. In Proc. 13th Int. Conf. on Very Large Data Bases, 1987,

pp. 71–81.

5. Dalvi N. and Suciu D. Answering queries from statistics and

probabilistic views. In Proc. 31st Int. Conf. on Very Large Data

Bases, 2005, pp. 805–816.

6. Dekhtyar A., Ross R., and Subrahmanian V.S. Probabilistic tem-

poral databases, I: algebra. ACM Trans. Database Syst., 26(1):

41–95, 2001.

7. Dey D. and Sarkar S. A probabilistic relational model and alge-

bra. ACM Trans. Database Syst., 21(3):339–369, 1996.

8. Dyreson C.E. and Snodgrass R.T. Supporting valid-time indeter-

minacy. ACM Trans. Database Syst., 23(1):1–57, 1998.

9. Grant J. Partial values in a tabular database model. Inf. Process.

Lett., 9(2):97–99, 1979.

10. Kraus S. and Subrahmanian V.S. Multiagent reasoning with

probability, time and beliefs. Int. J. Intell. Syst., 10(5):459–499,

1994.

11. Lakshmanan L.V.S., Leone N., Ross R.B., and Subrahmanian V.S.

ProbView: a flexible probabilistic database system. ACM Trans.

Database Syst., 22(3):419–469, 1997.

12. Mittu R. and Ross R. Building upon the coalitions agent

experiment (COAX) – integration of multimedia information

in GCCS-M using IMPACT. In Proc. Ninth Int. Workshop

on Multimedia Information Systems, 2003, pp. 35–44.

13. Ola A. Relational databases with exclusive disjunctions. In Proc.

8th Int. Conf. on Data Engineering, 1992, pp. 328–336.

14. Parker A., Subrahmanian V.S., and Grant J. A logical formula-

tion of probabilistic spatial databases. IEEE Trans. Knowl. Data

Eng., 19(11):1541–1556.
Probability Ranking Principle

BEN HE

University of Glasgow, Glasgow, UK

Synonyms
PRP

Definition
The probability ranking principle asserts that relevance

has a probabilistic interpretation. According to this

principle documents are ranked by a probability

p(Reljd, q), where Rel denotes the event of a document

d being relevant to a query q. Robertson called this

principle the probability ranking principle [1].

Probability Smoothing P 2169

P

Key Points
By assuming independence between query terms,

Robertson and Sparck-Jones proposed for the probabil-

ity p(Reljd,q) the following model (the RSJ model [2]):

logðpðReljd; qÞÞ /
X
t2q

log
pðt jRelÞ � pðt jRelÞ
pðt jRelÞ � pðt jRelÞ

ð1Þ

where Rel indicates the event of non-relevance; t and t

indicate the events that the term t occurs in document

d or does not, respectively. For each query term t, the

probability p(Reljd,t) is given by the sum of two log-

odds, log
pðt jRelÞ
pðt jRelÞ

and log
pðt jRelÞ
pðt jRelÞ .

If N is the number of documents in the whole

collection, R is the number of relevant documents, r

is the number of relevant documents containing t, Nt

is the document frequency, i.e., the number of docu-

ments containing t, [3] instantiated the RSJ model as

follows:

wð1Þ ¼ log
ðr þ 0:5ÞðN � Nt � R þ r þ 0:5Þ
ðR � r þ 0:5ÞðNt � r þ 0:5Þ ð2Þ

where w(1) is the raw weight of a term t in a document

d. The number 0.5 is used to avoid assigning negative

weights. The formula is called the ‘‘point-5’’ formula.

If relevance information is not available, i.e.,

R = r = 0, the point-5 formula can be written as:

wð1Þ ¼ log
N � Nt þ 0:5

Nt þ 0:5
ð3Þ

As one of the most well-established IR systems, Okapi

uses a weighting model that is based on the RSJ model

introduced above, and takes also term frequency (tf)

and query term frequency (qtf) into consideration.

Cross-references
▶ Information Retrieval

▶ Information Retrieval Models

▶Term weighting

Recommended Reading
1. Robertson S.E. The probability ranking principle in IR. J. Doc.,

33:294–304, 1977.

2. Robertson S.E. and Sparck-Jones K. Relevance weighting of

search terms. J. Am. Soc. Inf. Sci., 27:129–146, 1977.

3. Robertson S.E. and Walker S. On relevance weights with

little relevance information. In Proc. 20th Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 1997, pp. 16–24.
Probability Smoothing

DJOERD HIEMSTRA

University of Twente, AE Enschede, The Netherlands

Definition
Probability smoothing is a language modeling tech-

nique that assigns some non-zero probability to events

that were unseen in the training data. This has the

effect that the probability mass is divided over more

events, hence the probability distribution becomes

more smooth.
Key Points
Smoothing overcomes the so-called sparse data prob-

lem, that is, many events that are plausible in reality are

not found in the data used to estimate probabilities.

When using maximum likelihood estimates, unseen

events are assigned zero probability. In case of infor-

mation retrieval, most events are unseen in the data,

even if simple unigram language models are used

documents are relatively short (say on average several

hundreds of words), whereas the vocabulary is typical-

ly big (maybe millions of words), so the vast majority

of words does not occur in the document. A

small document about ‘‘information retrieval’’ might

not mention the word ‘‘search,’’ but that does not

mean it is not relevant to the query ‘‘text search.’’ The

sparse data problem is the reason that it is hard for

information retrieval systems to obtain high recall

values without degrading values for precision, and

smoothing is a means to increase recall (possibly

degrading precision in the process). Many approaches

to smoothing are proposed in the field of automatic

speech recognition [1]. A smoothing method may be

as simple so-called Laplace smoothing, which adds

an extra count to every possible word. The follow-

ing equations show respectively (1) the unsmoothed,

or maximum likelihood estimate, (2) Laplace smooth-

ing, (3) Linear interpolation smoothing, and (4)

Dirichlet smoothing [3]:

PMLðT ¼ t jD ¼ dÞ ¼ tf ðt ; dÞ=
X

t 0
tf ðt 0; dÞ ð1Þ

PLPðT ¼ t jD ¼ dÞ ¼ ðtf ðt ; dÞ þ 1Þ=
X

t 0
ðtf ðt 0; dÞ þ 1Þ

ð2Þ

2170P Procedure Order
PLI ðT ¼ t jD ¼ dÞ ¼ lPMLðT ¼ t jD ¼ dÞ
þ ð1� lÞPMLðT ¼ t jCÞ ð3Þ

PDiðT ¼ t jD ¼ dÞ ¼ ðtf ðt ; dÞ þ mPMLðT ¼ t jCÞÞ
=ðð

X
t 0
tf ðt 0; dÞÞ þ mÞ ð4Þ

Here, tf(t,d) is the frequency of occurrence of the term

t in the document d, and PML(T jC) is the probability
of a term occurring in the entire collection C. Both

linear interpolation smoothing and Dirichlet

smoothing assign a probability proportional to the

term occurrence in the collection to unseen terms.

Here, l (0<l<1) and m (m>0) are unknown para-

meters that should be tuned to optimize retrieval

effectiveness. Linear interpolation smoothing has

the same effect on all documents, whereas Dirichlet

smoothing has a relatively big effect on small docu-

ments, but a relatively small effect on bigger docu-

ments. Many smoothed estimators used for language

models in information retrieval (including Laplace

and Dirichlet smoothing) are approximations to the

Bayesian predictive distribution [2].

Cross-references
▶ Language Models

▶N-Gram Models

Recommended Reading
1. Chen S.F. and Goodman J. An empirical study of smoothing

techniques for language modeling. Technical report TR-10-98,

Center for Research in Computing Technology, Harvard Univer-

sity, August 1998.

2. Zaragoza H., Hiemstra D., Tipping M., and Robertson S.

Bayesian extension to the language model for ad hoc informa-

tion retrieval. In Proc. 26th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2003,

pp. 4–9.

3. Zhai C. and Lafferty J. A study of smoothing methods for

language models applied to information retrieval. ACM Trans.

Inf. Syst., 22(2):179–214, 2004.
Procedure Order

▶Clinical Order
Procedure Request

▶Clinical Order
Process Composition

▶Composition
Process Definition

▶Workflow Model
Process Evolution

▶Workflow Evolution
Process Life Cycle

NATHANIEL PALMER

Workflow Management Coalition, Hingham,

MA, USA

Synonyms
Workflow lifecycle; Thread lifecycle; Process state

model
Definition
The stages of life from the start to the end of a process

instance within the context of workflow management.
Key Points
The Process Life Cycle represents the stages of a process

instance as it evolves from instantiation to termina-

tion. This life cycle is most closely related to the life

cycle of a thread, and is distinct from the life cycle

approach to Business Process Management initiatives,

involving an iterative or recursive evolution through

the five stages of design, modeling, execution, moni-

toring, and optimization.

The latter notion of Business Process Management

Life cycle is associated with the discipline of contin-

uous process improvement, whereby processes are

Process Mining P 2171
never deemed ‘‘complete’’ and thus no longer subject to

change, but rather are continuously improved through

multiple instances of execution, examination, and mod-

ification. In contrast, the Process Life Cycle as defined

herein refers to the ‘‘life span’’ of a process instance and

has definitive start and end points. Thus the Process Life

Cycle of the individual process instance is more aptly

described as linear as opposed to cyclical, although at

various steps in the process itmay cycle between running

and suspended states.

The steps of the Process Life Cycle are ‘‘Instantiate’’

representing the creation of a new instance (making it

live but not necessarily running); ‘‘activate’’ represent-

ing the activation of the process instance (now live and

running); ‘‘passivate’’ which refers to temporarily sus-

pending the instance (live but not running); ‘‘termi-

nate’’ which represents the end of life of the process

instances, through either abortion, cancellation, or

completion after running through the full process as

defined.

Cross-references
▶Business Process Model

▶ Process Definition

▶Workflow Model
P
Process Management

▶Business Process Management
Process Mining

W. M. P. VAN DER AALST

Eindhoven University of Technology, Eindhoven,

The Netherlands

Synonyms
Workflow mining

Definition
Process mining techniques allow for the analysis of

business processes based on event logs. For example,

the audit trails of a workflow management system, the
transaction logs of an enterprise resource planning

system, and the electronic patient records in a hospital

can be used to discover models describing processes,

organizations, and products. Moreover, such event logs

can also be used to compare event logs with some a

priori model to see whether the observed reality con-

forms to some prescriptive or descriptive model.

The basic idea of process mining is to discover,

monitor, and improve real processes (i.e., not assumed

processes) by extracting knowledge from event logs.

Today many of the activities occurring in processes

are either supported or monitored by information

systems. Consider for example ERP, WFM, CRM,

SCM, and PDM systems to support a wide variety of

business processes while recording well-structured and

detailed event logs. However, process mining is not

limited to information systems and can also be used

to monitor other operational processes or systems. For

example, process mining has been applied to complex

X-ray machines, high-end copiers, web services, care-

flows in hospitals, etc. All of these applications have in

common that there is a notion of a process and that the

occurrences of activities are recorded in so-called event

logs. Assuming that the supporting systems log events,

a wide range of process mining techniques comes into

reach. The basic idea of process mining is to learn

from observed executions of a process and can be

used to (i) discover new models (e.g., constructing a

Petri net that is able to reproduce the observed behav-

ior), (ii) check the conformance of a model by checking

whether the modeled behavior matches the observed

behavior, and (iii) extend an existing model by project-

ing information extracted from the logs onto some

initial model (e.g., show bottlenecks in a process

model by analyzing the event log). All three types of

analysis have in common that they assume the exis-

tence of some event log.
Key Points
The goal of process mining is to discover, monitor, and

improve real processes by extracting knowledge from

event logs. Clearly, process mining is relevant in a

setting where much flexibility is allowed or needed,

because the more ways in which people and organiza-

tions can deviate, the more variability and the more

interesting it is to observe and analyze processes as they

are executed. Three basic types of process mining can

be identified (Fig. 1):

Process Mining. Figure 1. Three types of process mining: (i) discovery, (ii) conformance, and (ii) extension.

2172P Process Mining
1. Discovery. There is no a priori model, i.e., based on

an event log some model is constructed. For exam-

ple, using the a-algorithm [2] a process model can

be discovered based on low-level events.

2. Conformance. There is an a priori model. This

model is used to check if reality conforms to the

model. For example, there may be a process model

indicating that purchase orders of more than one

million Euro require two checks. Another example

is the so-called four-eyes principle where two activ-

ities need to be executed by different people. Con-

formance checking may be used to detect

deviations, to locate and explain these deviations,

and to measure the severity of these deviations.

3. Extension. There is an a priori model. This model is

extended with a new aspect or perspective, i.e., the

goal is not to check conformance but to enrich

the model. An example is the extension of a pro-

cess model with performance data, i.e., some a

priori process model dynamically annotated with

performance data (e.g., bottlenecks are shown by

coloring parts of the process model). Figure 1

shows that a log and a model are used to create a

new model.

Traditionally, process mining has been focusing on

discovery, i.e., deriving information about the original

process model, the organizational context, and execu-

tion properties from enactment logs. An example of a

technique addressing the control flow perspective is
the a-algorithm, which constructs a Petri net model

describing the behavior observed in the event log.

However, process mining is not limited to process

models (i.e., control flow) and recent process mining

techniques are more and more focusing on other per-

spectives, e.g., the organizational perspective or the

data perspective. For example, there are approaches

to extract social networks from event logs and analyze

them using social network analysis [1]. This allows

organizations to monitor how people and groups are

working together.

Conformance checking compares an a priori model

with the observed behavior as recorded in the log. In

[4] it is shown how a process model (e.g., a Petri net)

can be evaluated in the context of a log using metrics

such as ‘‘fitness’’ (Is the observed behavior possible

according to the model?) and ‘‘appropriateness’’ (Is

the model ‘‘typical’’ for the observed behavior?). How-

ever, it is also possible to check conformance based

on organizational models, predefined business rules,

temporal formula’s, Quality of Service (QoS) defini-

tions, etc.

There are different ways to extend a given process

model with additional perspectives based on event

logs, e.g., decision mining. Decision mining, also

referred to as decision point analysis, aims at the

detection of data dependencies that affect the routing

of a case. Starting from a process model, one can

analyze how data attributes influence the choices

Process Optimization P 2173
made in the process based on past process executions.

Classical data mining techniques such as decision trees

can be leveraged for this purpose. Similarly, the process

model can be extended with timing information (e.g.,

bottleneck analysis).

Process mining is strongly related to classical data

mining approaches. However, the focus is not on

data but on process-related information (e.g., the

ordering of activities). Process mining is also related

to monitoring and business intelligence [3].
Cross-references
▶Association Rule Mining on Streams

▶Data Mining

▶Workflow Management
Recommended Reading
1. van der Aalst W.M.P. Reijers H.A., and Song M. Discovering

social networks from event logs. Comput. Support. Coop. Work,

14(6):549–593, 2005.

2. van der Aalst W.M.P. Weijters A.J.M.M., and Maruster L. Work-

flow mining: discovering process models from event logs. IEEE

Trans. Knowl. Data Eng., 16(9):1128–1142, 2004.

3. Grigori D., Casati F., Castellanos M., Dayal U., Sayal M., and

Shan M.C. Business process intelligence. Comput. Ind.,

53(3):321–343, 2004.

4. Rozinat A. and van der Aalst W. M. P. Conformance checking of

processes based on monitoring real behavior. Inf. Syst.,

33(1):64–95, 2007.
P

Process Optimization

DANILO ARDAGNA

Politechnico di Milano University, Milan, Italy

Synonyms
Business process optimization; QoS-based web services

composition

Definition
With the development of the service oriented architec-

ture (SOA), complex applications can be composed as

business processes invoking a variety of available Web

services (WSs) with different characteristics. Advanced

SOA systems [1,12,15] allow the development of appli-

cations by specifying component WSs in a process only

through their required functional characteristics, and
to select WSs during process execution from the ones

included in a registry of available services. Service

descriptions are stored and retrieved from enhanced

UDDI registries, which also provide information about

quality of service (QoS) on the provider side. Usually, a

set of functionally equivalent services can be selected,

i.e., services which implement the same functionality

but differ for the quality parameters.

Process optimization identifies the best set of ser-

vices available at run time, taking into consideration

end-user preferences and constraints on the QoS

properties.

Historical Background
Process optimization has its roots in workflow sched-

uling problems. Scheduling of workflows [13] is the

problem of finding a correct execution sequence of

workflow tasks such that some temporal constraints

or resource constraints (i.e., agents which can support

tasks executions) are met. In workflow management

systems, agents could be human beings or software

applications, in Process optimization the available

resources are component WSs. Process optimization

is related also to workflow/process planning [3] where

the problem of synthesizining a complex behavior

from an explicit goal and a set of candidates which

contribute to a partial reaching of this goal is investi-

gated. In Process optimization, vice versa, the process

schema, i.e., the sequence of activities, is given and the

optimum mapping of activities to component WSs

candidate for their execution is identified.

Process optimization has been applied in context-

aware business processes and e-science research fields.

The literature has provided three generations of solu-

tions. First generation solutions implemented local

approaches [3,14,15] which select WSs one at the

time by associating the running abstract activity to

the best candidate service which supports its execution.

Local approaches can guarantee only local QoS con-

straints, i.e., candidate WSs are selected according to a

desired characteristic, e.g., the price of a single WS is

lower than a given threshold.

Second generation solutions proposed global

approaches [5,8,10,12,15]. The set of services which

satisfy the process constraints and user preferences

for the whole application are identified before exe-

cuting the process. In this way, QoS constraints can

predicate at a global level, i.e., constraints posing

restrictions over the whole composed service execution

2174P Process Optimization
can be introduced. In order to guarantee the fulfilment

of global QoS constraints, second generation optimi-

zation techniques consider the worst case execution

scenario for the composed service. For cyclic processes,

loops are unfolded, i.e., unrolled according to their

maximum number of iterations [5,15]. This approach

could be very conservative and constitutes the main

limitation of second generation techniques. Further-

more, global approaches introduce an increased

complexity with respect to local solutions. The main

issue for the fulfillment of global constraints is WSs

performance variability. Indeed, the QoS of a WS

may evolve relatively frequently, either because of in-

ternal changes or because of workload fluctuations

[15]. If a business process has a long duration, the set

of services identified by the optimization may change

their QoS properties during the process execution or

some services can become unavailable or others may

emerge. In order to guarantee global constraints,

WS selection and execution are interleaved: optimiza-

tion is performed when the business process is instan-

tiated and its execution is started, and is iterated during

the process execution performing re-optimization at

run time.

To reduce optimization/re-optimization complex-

ity, a number of solution have been proposed which

guarantee global constraints only for the critical path

[15] (i.e., the path which corresponds to the highest

execution time), or reduce loops to a single task [5],

satisfying global constraints only statistically, by apply-

ing the reduction formula proposed in [7].

Another drawback of second generation solutions is

that, if the end-user introduces severe QoS constraints

for the composed service execution, i.e., limited

resources which set the problem close to un-feasibility

conditions (e.g., limited budget or stringent execution

time limit), no solutions could be identified and the

composed service execution fails [5].

Third generation techniques [3] overcome the lim-

its of the previous approaches and focus on the execu-

tion of processes under severe QoS constraints. Severe

constraints are very relevant whenever processes have

to be performed with stringently limited resources.

Third generation solutions are based on loops peeling,

which significantly improves the solutions based on

loops unfolding. Furthermore, negotiation is exploited

if a feasible solution cannot be identified, to bargain

QoS parameters with service providers offering ser-

vices, reducing process invocation failures.
Foundations
Process optimization allows the specification of com-

plex applications as business processes composed by

abstract services which act as place holders of WS com-

ponents invoked at run time. The best set of services,

selected by solving an optimization problem, is in-

voked at run time by implementing a dynamic/late

binding mechanism.

Process optimization is usually formalized as a

multi-objective optimization problem since several

quality criteria can be associated with WS execution.

Past approaches [5,12,15] focussed on execution time

(the expected delay, between the time instant when

a request is sent and the time when the result is

obtained), availability (the probability that the service

is accessible), price (the fee that a service requester

has to pay to the Service Provider for the service

invocation), and reputation (a measure of the service

trustworthiness). Furthermore, the optimization is per-

formed statistically, i.e., by considering the probability of

execution of the execution paths of the business process

(i.e., any possible sequence of invocations of abstract

services). For this reason, some annotations are added

to the BPEL specification in order to identify: (i) the

maximum [15] or the probability distribution [3] of the

number of iterations of loops; (ii) the expected frequen-

cy of execution of conditional branches; (iii) global and

local constraints on quality dimensions.

Figure 1 shows an example of composed process

which implements a virtual travel agency, and the

corresponding annotations which specify constraints.

The BPEL specification includes invocation to abstract

WSs which can be supported at run time by concrete

WS components.

The probability distribution of the number of ite-

rations of loops and the frequency of execution of

conditional branches can be evaluated from past

executions by inspecting system logs or can be speci-

fied by the composite service designer. If an upper

bound for loops execution cannot be determined,

then the optimization cannot guarantee that global

constraints are satisfied [15]. Prior to perform process

optimization, loops are unfolded [15] or peeled [3]

(see Fig. 2) and are modeled as directed acyclic graphs

(DAGs). Loops peeling is a form of loops unrolling

where loop iterations are represented as a sequence

of branches and each branch condition evaluates if

the loop has to continue with the next ith iteration

or it has to exit with probability pi.

Process Optimization. Figure 1. Virtual travel agency process specification.

Process Optimization P 2175

P

The objective function to be optimized is, usually

[3,14,15], the aggregated value of QoS for the end user

which can be obtained by applying the simple additive

weighting (SAW) technique. SAW is one of the most

widely used techniques to obtain a score from a list of

dimensions. Since the quality dimensions have differ-

ent units of measure, the SAWmethod first normalizes

the raw values for each quality dimension. Each quality

dimension is also associated with a weight which

expresses the user preferences among multiple quality

parameters. The overall value of QoS is calculated as

a weighted sum of the normalized values of quality

dimension. The SAW method originates a linear

objective function, other proposal introduces more gen-

eral utility functions (i.e., functions which map each
possible configuration of the business process to a scalar

value) which can be non-linear [5].

First generation solutions considered only local

constraints. In that case, the process optimization is

very simple and the optimum solution can be identi-

fied by a greedy algorithm which selects the best can-

didate service suitable for the execution. An example of

first generation technique can be found in [11], where

Web agents can migrate to invoke services locally in

order to minimize also the network bandwidth.

Second generation solutions support global con-

straints and introuce NP-hard optimization problems.

In [4] the complexity of some variants of the global

process optimization problem is analyzed, while an

overview of heuristic techniques, which hence identify

Process Optimization. Figure 2. Loops unfolding and peeling.

2176P Process Optimization
only sub-optimal solutions, can be found in [10]. In

[14] global process optimization has been modeled as a

multiple choice multiple dimension knapsack problem

(MMKP) and as a graph constrained optimum path

problem. A MMKP is one kind of knapsack problem

where the resources are multidimensional, that is, there

are multiple resource constrains for the knapsack (e.g.,

weight and volume) and items are classied in groups.

Each item of the group has a particular value and it

requires resources. The objective of the MMKP is to

pick exactly one item from each group for maximum

total value of the collected items, subject to the re-

source constraints of the knapsack. Process optimiza-

tion can be reduced to a MMKP since each abstract

service corresponds to a group, each concrete WS is an

item in a group and each QoS constraint corresponds

dimension of the knapsack. Authors in [14] has imple-

mented ad hoc efficient techniques to identify sub-

optimal solutions of the MMKP.

Global approaches have been proposed for the first

time in [15], where the Process optimization problem
has been formalized as a mixed integer linear program-

ming problem, solved by integer linear programming

solvers. The authors separately optimize each execution

path and obtain the abstract services to concrete services

mapping by composing separate solutions according to

the frequency of execution. This approach has some

limitations (e.g., availability and response time con-

straints are guaranteed only for the critical path, and

global constraints cannot always be fulfilled) which have

been solved by following research proposals [3,14].

Some recent proposals face the Process optimiza-

tion problem by implementing genetic algorithms

[5,8]. In Canfora et al. [5] the reduction formulas

presented in [7] are adopted, the re-optimization is

considered but abstract services specified in loops

are always assigned to the same concrete WS compo-

nent. Furthermore, by applying reduction formulas

the solution guarantees global constraints only statisti-

cally. At run time, if low probability paths are taken

(see [5]), then the solution could become infeasible

and re-optimization must be triggered. In [8], the

Process Optimization P 2177

P

multi-objective evolutionary approach NSGA-II (non-

dominated sorting genetic algorithm) is implemented,

which identifies a set of Pareto optimal solutions with-

out introducing a ranking among different quality

dimensions. Every identified solution is characterized

by the fact that no other plans exist such that a quality

dimension is improved without worsening the other

ones. Genetic algorithms are more flexible than mixed

integer linear approaches, since they allow consider-

ing also non-linear composition rules for composed

WSs, but are less computationally efficient. In current

implementations, some execution time is wasted by

generating also non-feasible solutions and, sometimes,

no solution can be identified even when the problem

is feasible in case the global constraints are stringent.

The work presented in [3] proposes a third genera-

tion solution which poses the basis for the execution of

processes under severe QoS constraints. The solution is

based on loops peeling which significantly improves

the solutions based on loops unfolding (up to 40%).

Furtheremore, negotiation techniques are exploited

to identify a feasible solution of the problem, if one

does not exist, reducing process invocation failures.

The joint optimization and negotiation approach has

been proved to be effective for large processes (including

up to 10,000 abstract services), whenQoS constraints are

severe and reduces also the re-optimization overhead.

Key Applications

Context-Aware Business Process

Dynamic WS selection for composed WSs focused in

particular on context aware business processes. Con-

text awareness may be needed both when considering

WS personalization, where a generic process is perso-

nalized choosing services according to user prefer-

ences, and in mobile composed services, to provide

ubiquitous services where selection and execution

depend on the available services and their QoS [1].

E-Science and Grid Computing

In e-science complex processes, defined as workflows

enacted in grid environments, are being developed

reaching the dimension of thousands of tasks in ‘‘in

silico’’ experiments [9]. Each task is performed select-

ing and invoking a service. In this case, the Process

optimization problem is more challenging, since the

concrete resources have to be modeled with a more fine

grain and are represented by the physical machines
which can support tasks execution instead of abstract

WSs. Current solutions propose to create a hierarchy of

processes or distributing the workflow over a number

of engines, partitioning in this way the optimization

problem but leading to sub-optimal solutions.

Future Directions
All of the above approaches consider the optimization

of a single process instance and assume a constant QoS

profile. Cardellini et al. [6] tackled the problem of

optimization of multiple process instances in order to

reduce optimization overhead. The work presented in

[2] considered variable (periodic) quality of service

profiles of component WSs and explicitly addressed

long term process execution. The execution of multiple

instances, variable QoS profiles, and long term process

execution make the optimization problem more cum-

bersome. Only heuristic approaches have been proposed

so far, more efficient solutions, both in term of optimi-

zation time and quality of the final solution, are needed.

Experimental Results
For every presented approach, there is an experimental

evaluation in the corresponding reference. Zeng et al.

[15] discuss local and global approaches. Tao Yu et al.

[14] present a comparison among linear integer pro-

gramming approaches and heuristic solutions. The

work presented in [3] analyzes loops peeling and

second and third generation solutions.

Cross-references
▶Composed Services and WS-BPEL

▶Grid Workflow

▶Workflow Management and Workflow Manage-

menet System

Recommended Reading
1. Ardagna D., Comuzzi M., Mussi E., Pernici B., and Plebani P.

PAWS: A Framework for Executing Adaptive Web-Service

Processes. IEEE Software, 24(6):39–46, 2007.

2. Ardagna D., Giunta G., Ingraffia N., Mirandola R., and

Pernici B. QoS-driven Web services selection in autonomic

grid environments. In Proc. OTM Confederated Int. Conf.

CODPIS, DOA, GADA, and ODBASE, 2006, pp. 1273–1289.

3. Ardagna D. and Pernici B. Adaptive Service Composition in

Flexible Processes. IEEE Trans. Software Eng., 2007.

4. Bonatti P.A. and Festa P. On optimal service selection. In Proc.

14th Int. World Wide Web Conference, 2005, pp. 530–538.

5. Canfora G., Penta M., Esposito R., and Villani M.L. QoS-Aware

Replanning of Composite Web Services. In Proc. IEEE Int. Conf.

on Web Services, 2005.

2178P Process Semantics
6. Cardellini V., Casalicchio E., Grassi V., and Mirandola R. A

framework for optimal service selection in broker-based archi-

tectures with multiple QoS classes. In Proc. IEEE Services Com-

put. Workshops, 2006, pp. 105–112.

7. Cardoso J. Quality of Service and Semantic Composition of

Workflows, Ph. D. Thesis, Univ. of Georgia, 2002.

8. Claro D.B., Albers P., and Hao J.K. Selecting Web Services for

Optimal Composition. In Proc. IEEE Int. Conf. on Web Ser-

vices., 2005.

9. Fox G.C. and Gannon D. Workflow in Grid Systems. Con-

currency and Computation: Practice and Experience,

18(10):1009–1019, 2006.

10. Jaeger M.C., Muhl G., and Golze S. QoS-Aware Composition

of Web Services: An Evaluation of Selection Algorithms. In Proc.

Int. Conf. on Cooperative Inf. Syst., 2005.

11. Maamar Z., Sheng Q.Z., and Benatallah B. Interleaving Web

Services Composition and Execution Using Software Agents

and Delegation. In Proc. Web Services and Agent-Based Eng.,

2003.

12. Patil A.A., Oundhakar S.A., Sheth A.P., and Verma K. METEOR-S

web service annotation framework. In Proc. 12th Int. World Wide

Web Conference, 2004, pp. 553–562.

13. Senkul P. and Toroslu I.H. An architecture for workflow sched-

uling under resource allocation constraints. Inf. Syst.,

30(5):399–422, 2005.

14. Yu T., Zhang Y., and Lin K.J. Efficient algorithms for Web

services selection with end-to-end QoS constraints. ACM

Trans. Web, 1(1):1–26, 2007.

15. Zeng L., Benatallah B., Dumas M., Kalagnamam J., and

Chang H. QoS-Aware Middleware for Web Services Composi-

tion. IEEE Trans. Software Eng., 30(5), 2004.
Process Semantics

▶Workflow Constructs
Process State Model

▶ Process Life Cycle
Process Structure of a DBMS

PAT HELLAND

Microsoft Corporation, Redmond, WA, USA

Synonyms
Cluster databases; Scale-out databases; Scale-up

databases; Shared-disk databases; Shared-nothing

databases; Shared-everything databases
Definition
Database Management Systems are typically imple-

mented on top of operating systems which allow exe-

cution within processes. Different systems have chosen

different process structures as they map their compu-

tation onto the operating system. This section surveys

some of these choices.

Historical Background
The first database management systems were simple

libraries that ran inside the process of the application.

While the use of these libraries offered leverage to the

applications by providing essential functionality, they

did not offer protection for the data in the presence of

application errors.

To provide protection, DBMSs were initially moved

into higher security rings accessible by hardware pro-

tected transitions to memory and code which was

more secure than the application but less secure than

the operating system kernel. Running the DBMS in

shared (but secured) memory allowed access by multi-

ple applications (in separate processes). The shared

memory within the DBMS allowed for efficient cross

application management of data (See Fig. 1).

Two trends caused gradual retreat from the imple-

mentation of the DBMS within a trusted security ring.

First, there is the emergence of DBMSs that were

designed to be ported across operating systems. Second,

the emergence of distributed computing drove the need

to run different portions of the computing stack (both

application and database) across different machines.

Both of these trends grew throughout the 1980s and led

to a constellation of process and processor architectures

for both applications and databasemanagement systems.

The process structure of database management sys-

tems has evolved and today can be seen in many forms.

As mentioned above, initial implementations of DBMS

systems in the 1960s and 1970s were embedded in the

same process (but soon with protection for the DBMS

within a security ring).

In the 1980s, a number of distributed databases

emerged, exemplified by Tandem’s NonStop SQL.

In these, the application interface remained an in-

memory call to portions of the database system but

behind the scenes there were cross-process and cross-

processor calls to other portions of the DBMS. This

was implemented transparently to the application

except, of course, with some performance implications

which could be both positive and negative.

Process Structure of a DBMS. Figure 1. Early implementations of DBMS systems used shared memory as a technique to

allow the DBMS to run in process with the application. This minimized app to DBMS communication costs.

Process Structure of a DBMS P 2179

P

In the 1990s, the client-server computing first ar-

rived with the separation of the client and server-side

database in what became known as two-tier client-

server applications. This necessitated the creation of

the database connection, exemplified by ODBC (Open

Database Connectivity). With a database connection,

both DML (Data Manipulation Language) and the

resultant data sets were returned across process bound-

aries, allowing the application process (and processor)

to be different than the database process and pro-

cessor. Subsequently, the application itself began to

break across processes and processors resulting in

three-tier client-server or even later N-tier client-server

systems. Within each of these architectures, the appli-

cation program still perceived the notion of a single

database even though the work was potentially spread

across multiple systems.

Shortly after the year 2000, the industry began to

recognize the importance of the relationships of appli-

cations and databases running independently and

speak about what is today called SOA (Service Oriented

Architecture). This is delineated from N-tier client-

server by the absence of a common DBMS; SOA

services each have the own DBMS whereas a client-

server system shares a common DBMS, even if the

common DBMS is distributed across processes and/

or processors.

Foundations
To understand the process and processor architecture

of DBMS and applications, the reader first looks at a

sketch of their high-level architecture independent of
the processes and processors implementing the com-

ponents of the architecture, followed by some common

patterns for breaking this work up.

Layers of the DBMS and Application

Figure 2, depicts a breakdown of both the 3-tier appli-

cation and the underlying DBMS. The dotted lines

show the classic 3-tier architecture. The presentation

tier is connected to the logic tier with an application

specific call or RPC. The logic tier is connected with the

database tier using a database connection.

Inside the database, more layers of abstraction

are utilized to examine different process and proces-

sor architectures. Closest to the application is the

front-end to the Query and DML Processor: it accepts

a database connection from the application and is

responsible for the processing DML and queries and

returning the results across the connection. The front-

end of this function will interact with a back-end

which is intimate with the various access methods

which hold the database records and/or alternate

keys. The back-end of the Query and DML Processor

will interact with the Access Methods using keys and

records. The Access Methods, in turn, use blocks

(which are mapped into in-memory pages) by the

Block and Page Manager, which issues physical I/Os to

the disks themselves.

In the simplest DBMS architectures, the Shared-

Everything design, all DBMS components are resident

on the same computer system and they interact

through memory. In the Shared Disk architecture, the

interactions between the Block and Page Management

Process Structure of a DBMS. Figure 2. The architecture

of a 3-Tier application and its supporting database

management system. The notations beside the arrows

denote the formats of the requests and data flowing

between the layers.

2180P Process Structure of a DBMS
and the Physical Disk are spread apart. Finally, the

Shared Nothing architecture separates the front and

back ends of the Query and DML Processor.

Client-Server Computing

When client-server computing first arrived on the

scene, its hallmark was the separation of the application

from the DBMS itself leaving the database on its own

system. Initially, this was done with two tiers, the client

and DBMS-server. The client interacted with the server

using a database connection such as ODBC (See Fig. 3).

The transition between two-tier client-server sys-

tems and three-tier (or even N-tier) client-server

systems lies in the architecture of the application itself.

It is simply the splitting up of the application tiers that

differentiate these (See Fig. 4).
As soon as the 3-tier architecture was introduced,

new challenges arose in the management of transac-

tions as they propagated through the system. In 2-tier

client-server architectures, the transactional scope was

bounded by a time interval on the database connec-

tion. Now, in a 3-tier client-server scheme, the work

initiated by the Presentation layer may need to be

atomic as it propagates through different servers

implementing the Logic layer. For the moment, con-

sider this architecture with a single process DBMS at

the back-end (See Fig. 5).

New notions in the management of transaction

identifiers needed to be created for this to work. The

identity of the atomic transaction needed to be pro-

pagated with the RPC or other app-specific call from

the client to the middle-tier server. Also, the same

transaction-id could now arrive at the database from

different database connections. Awindow of time using

the database-connection could no longer be a surro-

gate for the transaction. These challenges came as the

application that related to the database underwent

changes in its process architecture.

Multi-Database Computing

As distributed systems progressed, there were occa-

sions in which a 2-tier client wished to do transactional

work across multiple database servers. This was only

possible with the arrival of BOTH distributed transac-

tions (implemented with two-phase commit) AND

the ability for the client application to create a trans-

action independent of the database connection and

manage the association of the transaction to the con-

nections to the separate databases. This involved both

extensions to the client libraries and the creation of

DBMS server to DBMS server distributed transaction

management.

Most systems did not implement transactional sup-

port for multiple databases in 2-tier applications until

after this was accomplished for 3-tier applications. The

need to have a client call different middle-tier applica-

tion servers with different databases was the pressure

that led to the implementation of two phase commit

for distributed transactions across the multiple data-

bases. Only later were the facilities for sharing transac-

tions across database connections directly connected to

a single client implemented. See Fig. 6 for a depiction

of a 3-tier client-server application where some of the

middle-tier servers use different databases all asso-

ciated with a single common transactional scope.

Process Structure of a DBMS. Figure 3. Two-tier client-server architecture. The application is separated out from the

database. The interaction is maintained with a database connection.

Process Structure of a DBMS P 2181

P

Service-Oriented Architectures (SOA)

A recently popular application architecture is the

service-oriented architecture. It is distinguished from

the client-server application architecture in that there

are no transactions shared across the service bound-

aries and, indeed, no direct visibility to the partner’s

database. All access to the database is indirect and

mitigated by the application. Because there are no

shared transactions across the service boundaries and

there are no database connections or semantics across

these boundaries, the database management system

does not see the SOA architecture.

SOA implementations often use an internal client-

server architecture to build out a single service. Still,

from the standpoint of the process architecture of a

DBMS, the use of an application combined with its

database in a larger SOA system is not of any impact on

the DBMS process structure.

Shared-Memory (Single Database) DBMS Architectures

In a shared-memory (or sometimes called shared-

everything) system, the DBMS runs in a single process

or, at least, in a fashion where the processes are able

to share their memory. Figure 1 is an example of a
shared-memory system, one where multiple processes

have a special mechanism to access special (protected)

memory. The architecture depicted in Fig. 1 is not a

client-server system.

Most shared-nothing systems are a little less exotic

and look like Figs. 3–5. There is a single database and it

runs on a large process (perhaps with multiple threads

within a shared-memory multiprocessor).

Figure 6 is considered to be a shared-everything

system precisely because each database is a separate data-

base, and there cannot be queries issued across them.

There is no way to view the data from these multiple

databases except through the assistance of application

logic. There cannot exist a single database connection

to that pool of databases – they are separate databases.

The presence of distributed transactions spanning

multiple databases does not make them a single

database.

Shared-Disk (Single Database) DBMS Architectures

Shared-Disk systems comprise a cluster in which mul-

tiple independent machines have access to a pool of

disks. In addition to some mechanism for sending

messages across the machines, each of the computers

Process Structure of a DBMS. Figure 4. 3-tier client-server architecture. The presentation, logic, and database are

distributed across different systems.

2182P Process Structure of a DBMS
in the cluster can read and write pages of disk across a

collection of many disk spindles. Typically, this is

implemented with some form of disk controller man-

aging access by the computers to the disks. Figure 7

shows a sketch of the hardware architecture of a

shared-disk cluster.

The distinction between the database process archi-

tecture versus the application process architecture is

sometimes confusing. The first shared-disk systems

used block mode terminals and there was no notion

of a smart client at that time. As an example, consider

Fig. 8 which is a slight modification of Fig. 7. Figure 8

depicts a system in which the business logic (the mid-

dle tier of a three tier system) runs on the same pro-

cessors (or potentially the same processes in the same

spirit as shown in Fig. 1). In this example, the business

logic of the application as well as the entire processing

of the DBMS can run in the same process (or at least

the same processor) while still scaling across a multi-

processor cluster with tremendous efficiency if the load

characteristics are appropriate for the architecture.
Shared-Disk DBMS systems have the advantage

that, once all of the blocks are brought into memory,

the entire query can be processed within a single pro-

cess. This style of distributed implementation delivers

high performance when the workload splits into easily

partitioned sets of blocks but works less efficiently

when the workload has conflicts over the blocks need-

ed by the different processes.

Shared-Nothing (Single Database) DBMS Architectures

Share-Nothing DBMS architectures are implemented

by splitting the query processing engine into a front-

end and a back-end. Messaging is used to pass portions

of the query or update from the front-end to the

back-end. Resulting sets of records are passed from

the back-end to the front-end where the completion

of the query is performed. The optimizations used in

these architectures have been the source of significant

research and engineering and can result in fascinating

performance gains. Figure 9 shows a Shared-Nothing

DBMS in which the application’s Business Logic is

Process Structure of a DBMS. Figure 5. Building a 3-tier client-server application necessitates both the management

of the same transaction coming into the DBMS on different database connections AND the propagation of

transactions from the client to the middle-tier server.

Process Structure of a DBMS. Figure 6. A 3-tier client-server application with DIFFERENT databases not only has to

manage the propagation of transactions from client to app-server AND app-server to DBMS, it must in addition manage

the atomic two-phase commit of the transactions across database servers.

Process Structure of a DBMS P 2183

P

Process Structure of a DBMS. Figure 7. A Shared-Disk Database Management System. For the first time in our

figures, the single database SPANS multiple processes and, indeed, multiple processors. The single database

(with single database semantics presented to the application) runs on many different computers but

sharing the access to the physical disks. Special locking infrastructure on the contents of the blocks of disk

must be maintained.

2184P Process Structure of a DBMS
running on the same scale out cluster as the DBMS.

Just like the Shared-Disk DBMS, it is important to

realize that the application’s process/processor archi-

tecture may take different forms. Running the Business

Logic close to the Front-End of the DBMS is one

configuration of Shared-Nothing.

Implications of Shared-Nothing, Shared-Disk, and

Shared-Everything Architectures

For a number of years, there have been debates in the

industry about the strengths and weaknesses of differ-

ent process architectures for a DBMS system. Before

even engaging in these, it is important to remember the

delineation of the DBMS architecture from that of a
Service Oriented Architecture and, also, from the

application architecture of an N-tier system. The

term DBMS is used to refer to a single collection of

records across which relational operations may occur.

Service Oriented Architectures (SOAs) offer an aggre-

gation of computation connected by business logic

without the presence of spanning relational operations

or transactions. N-tier application environments

frequently offer atomic transactions across different

databases but do not offer relational operations across

the contents of the databases. So, the taxonomy of

DBMS process structures refers only to the portion of

the system providing a single relational database

semantic.

Process Structure of a DBMS. Figure 8. Shared-Disk DBMS within a Two-Tier application architecture.

Process Structure of a DBMS P 2185

P

The Shared-Everything DBMS architecture is by far

the highest performing architecture in that it offers the

most throughput for a single computer (it is not nec-

essarily the most scalable one; scalability is discussed

below). Shared-Everything DBMSs do not need to

perform any messaging or other cross process commu-

nication because they don’t cross processes in their

implementation of the DBMS. All of the work is

done within a single machine. Included in this archi-

tecture are various single memory multi-processor

implementations. There are few concerns in a Shared-

Everything DBMS about the types of queries and usage

patterns because everything coexists in a single shared

process. Again, Shared-Everything works wonderfully

until the DBMS grows too large to fit into one system.

A Shared-Disk DBMS architecture allows for addi-

tional sharing by letting multiple DBMS processes and

processors to access the same physical disks. When the

usage pattern of the application has a low probability

of conflict in its updates of a shared page, Shared-Disk

DBMS systems are very efficient. The pages needed for

a query are brought into the processor requesting them
and the work of the application’s transaction is han-

dled inside one processor of the cluster in what is

(hopefully) a very efficient fashion. When the data in

question has low update rates, this typically works well.

When a single data item is rapidly updated (called a

‘‘hot-spot’’), this can lead to performance conflicts

which cause the block of the database to be pulled

back-and-forth across processors. Another challenge

occasionally presented by Shared-Disk DBMS systems

lies in block (or page) mode locking. Distinct records

in the same block may observe lock conflicts causing

performance challenges that would not be present in

other architectures. Still, Shared-Disk DBMS systems

have been wildly successful for many applications and

allow many databases to scale beyond what a single

shared-memory system could offer.

Shared-Nothing DBMS architectures typically carry

a heavier cost to set up a complex transaction but can,

in some cases, offer greater throughput over a particu-

lar amount of data. It is typical for a Shared-Nothing

system to offer record locking. For systems with

very high throughput ‘‘hot-spots,’’ the data for the

Process Structure of a DBMS. Figure 9. A Shared-Nothing DBMS running with an application configuration which

places the business logic tier on the same cluster as the Shared-Nothing DBMS. Also, in this configuration, the Query

Front-End of the DBMS runs on the same processors as the Business-Logic.

2186P Process Structure of a DBMS
‘‘hot-spot’’ does not move around the cluster and it is

possible for the system to get more transactions over

the same piece of data in a fixed period of time. This is

sometimes referred to as ‘‘moving the operation to the

data’’ (Shared-Nothing) rather than ‘‘moving the data

to the operation’’ (Shared-Disk).

When a database can fit into a single shared-

memory multiprocessor, Shared-Everything offers

distinct advantages (at least until the application’s

demands exceed the single machine and you have a

problem). For databases that exceed this size and yet

want full database semantics, there is a lively debate

within the community about which architecture is

better and different applications offer different perfor-

mance characteristics.

Key Applications
Database process structures are an essential part of scal-

ing past a single system. As discussed, the distinction

between an application multi-processor architecture

and a DBMS multi-processor architecture has many

nuances.
Cross-references
▶Application Server

▶Client-Server Architecture

▶Clustering

▶Database Client

▶Distributed Concurrency Control

▶Distributed Database Systems

▶Distributed DBMS

▶Distributed Query Processing

▶Distributed Transaction Management

▶Multi-Tier Architecture

▶ODBC

▶ Service Oriented Architecture

▶ Shared-Disk Architecture

▶ Shared-Memory Architecture

▶ Shared-Nothing Architecture

▶Two-Phase Commit

▶Multi-Tier Architecture

Recommended Reading
1. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Mateo, CA, 1992.

Processing Overlaps P 2187
2. Michael S. (UC Berkeley). The case for shared nothing architec-

ture. Database Eng., 9(1):4–9, 1986.

3. Oracle RAC (Real Application Clusters). http://www.oracle.

com/database/rac_home.html

4. Susanne E., Jim G., Terrye K., and Praful S. A Benchmark of

NonStop SQL Release 2 Demonstrating Near Linear Speedup

and Scaleup on Large Databases. In Proc. 2000 ACM SIG-

METRICS Int. Conf. on Measurement and Modeling of Comp.

Syst., 1990, pp. 24–35.

5. The Tandem Database Group. NonStop SQL: a distributed high

performance, high availability implementation of SQL. In Proc.

of 2nHigh Performance Transaction ProcessingWorkshop, 1989.
P

Processing Overlaps

GEORGINA RAMÍREZ

Yahoo! Research Barcelona, Barcelona, Spain

Synonyms
Removing overlap; Controlling overlap

Definition
In semi-structured text retrieval, processing overlap

techniques are used to reduce the amount of overlap-

ping (thus redundant) information returned to the

user. The existence of redundant information in result

lists is caused by the nested structure of semi-structured

documents, where the same text fragment may appear

in several of the marked up elements (see Fig. 1). In

consequence, when retrieval systems perform a focused

search on this type of document and use the marked

up elements as retrieval objects, very often result lists

contain overlapping elements. In retrieval applications

where it is assumed that the user does not want to see

the same information twice, it may be necessary to

reduce or completely remove this overlap and return

a ranked list of no overlapping elements. Thus,

depending on the underlying user model and retrieval

application, different processing overlap techniques

are used in order to decide, given a set of relevant but

overlapping elements, what are the most appropriate

elements to return to the user.

Historical Background
Although the problem of overlap in semi-structured

text retrieval is as old as the semi-structured documents

themselves, not much work has been published on pro-

cessing techniques for reducing or removing overlap.

Some related work can be found in the area of passage
retrieval, where approaches that use a varying window

size for passage selection might produce result lists with

overlapping passages. However, most of this work is per-

formed on unstructured documents and the appro-

aches taken for processing overlap tend to be simpler.

In the domain of semi-structured documents, there

are several areas where different overlap issues are stud-

ied. For example, there is quite some work in the area of

evaluation of XML systems that addresses the so called

overlap problem (e.g., [3]). A different overlap problem

is created by the possibility that standards like SGML

provide of having multiple annotations (markups) on

the same document (a.k.a. multiple hierarchies). In this

case the overlap is produced by the structure of the

different annotations. Since the multiple hierarchies

complicate the use of standard retrieval techniques on

this type of documents, work on this area is still focus-

ing on addressing other indexing and retrieval issues. It

is only recently that in the domain of XML documents,

several approaches have been presented that address the

problem of processing overlap from result lists contain-

ing overlapping elements. The next section summarizes

some of them.

Foundations
One of the advantages of semi-structured documents is

that retrieval systems can perform focused search by

simply using the marked up divisions of the docu-

ments (elements) and retrieving those instead of the

whole documents. However, since elements overlap

with each other (see Fig. 1), when using traditional

ranking techniques to independently rank these ele-

ments, result lists often contain many overlapping ele-

ments. This is due to the nested structure of semi-

structured documents, where the same text fragment

is usually contained in several of the marked up ele-

ments. Thus, when a specific element is estimated

relevant to the query, all the elements containing this

element (a.k.a. ancestors) will also be estimated to

some degree relevant to the query. Furthermore, this

element is probably estimated relevant because it con-

tains several relevant elements (a.k.a. descendants). For

example, if a section of a document is estimated highly

relevant, it probably contains several highly relevant

paragraphs and it is contained in a relevant article. If

all of these elements are returned to the user, the amount

of redundant information contained in the result list will

be considerable. In retrieval scenarios where users do not

like to see the same information twice, retrieval systems

Processing Overlaps. Figure 1. Example of a semi-structured document and its tree structure representation. Note that

each fragment of the document is contained in three different elements (nodes in the tree).

2188P Processing Overlaps
need to decide which of these relevant but overlapping

elements is the most appropriate piece of information to

return to the user. The final decision on which elements

the system should return depends on the search applica-

tion and the underlying user model but a common goal

is to reduce redundancy in the result lists. Although this

can be done at indexing time (e.g., by selecting a subset

of non-overlapping elements as potential retrievable

objects), commonly this is done by removing overlap-

ping elements from the result set, after retrieval systems

have produced an initial ranking of all elements. Proces-

sing overlap techniques have recently been widely dis-

cussed in the domain of XML retrieval, where different

approaches have been presented. The rest of this section

presents and discusses some of them.

Using Element Types

A simple way to reduce overlap is to select a subset of

element types and consider only these for retrieval. For

example, if sections of documents are considered to be

the most appropriate pieces of information, retrieval

systems might want to use only these as retrievable

objects and ignore all the other element types. This

can be done at indexing time or by post-filtering the

result lists. Depending on the number and element

types selected, overlap is reduced at different degrees.

Note that it might not always be possible to completely

remove overlap; even if a single element type is selected

as a unique retrievable object, it is still possible that

elements of the same type overlap each other. The

main drawback of this approach is that, since it is
desirable to select element types that are likely to be

relevant and useful to the user, it requires knowledge of

the structure of the documents and its common usage.

Using Paths

A common approach for processing overlaps keeps the

highest ranked element on each path and removes its

ancestors and descendants from the result list, i.e., all

the elements in the result list that contain or are

contained within it (e.g., [6], [2]). It is important to

notice that depending on the order in which the differ-

ent paths are processed different outputs might be

produced.

In [6] the authors present a two steps algorithm to

remove the overlap. The first step is used to select the

highest scored element from each relevant path. Since

their algorithm selects the elements from the different

paths simultaneously, the output may still contain

overlapping elements. That is why a second step is

needed, to completely remove overlap. This is done

by selecting again (this time from the output of the

first step) the highest scored element from each path:

Algorithm 1

1. Select highest scored element from each rele-

vant path.

2. Select highest scored element from each rele-

vant path in output of step 1.

Another commonway to remove overlap using paths [5]

is to recursively process the result list by selecting the

highest ranked element and removing any element from

Processing Overlaps P 2189

P

lower ranks that belongs to the same path (it contains the

selected element or it is contained within it):

Algorithm 2

1. Return highest ranked element from result list.

2. Remove from result list all the elements belong-

ing to the same path.

3. Repeat step 1 and 2 until result list is empty.

The underlying assumption of this type of approaches

is that the most appropriate piece of information in

each path has been assigned a higher score than the rest

and therefore, removing overlap is simply a presenta-

tion issue. These approaches rely completely on the

underlying retrieval models to produce the best rank-

ing. This could indeed be the case if the retrieval model

would consider, when ranking, not only the estimated

relevance of the element itself but also its appropriate-

ness compared to other elements in the same path.

However, since many retrieval models rank elements

independently, the highest scored element may not be

the most appropriate one, i.e., the one the user prefers

to see.

To illustrate the different outputs of the previous

algorithms, have another look at the example docu-

ment from Fig. 1. Imagine now that, given a query, the

retrieval model estimates the relevance of each element

in the document. Figure 2 shows the retrieval scores

obtained by each of the elements and the outputs

produced when removing overlap with the algorithms

described above. Both algorithms produce a result list

of non-overlapping elements. However, there are sub-

stantial differences. The main drawback of the first
Processing Overlaps. Figure 2. Example of a retrieval run an

elements with algorithm 1 and 2. The numbers on the tree in

elements.
algorithm is that it might miss some relevant informa-

tion. For example, one could argue that element K

should also be contained in the output list. To be able

to do that, the algorithm should consider structural

relationships between elements and re-add element K

to the result list when it decides to remove element D

in the second step.

Although the second algorithm produces a more

complete list, someone could argue that the output

produced is not the most desirable. For example, imag-

ine that elements F and G are, respectively, the title and

the abstract of the document. In this case, even if the

title has been ranked high (it may contain most or all of

the query terms), users might prefer to see a result item

containing both, title and abstract (i.e., element B)

instead of seeing both elements independently. In gen-

eral, it can be argued that retrieval systems should only

return those elements that have enough content infor-

mation to be useful and can stand alone as indepen-

dent objects. A similar example can be seen for

elements D, J, and K. Even if J is ranked higher, element

D contains mostly relevant information and therefore,

it might be more desirable (from a user perspective) to

read element D, than J, and K independently. Further-

more, for elements E, L, and M it could be argued that

it is better to return L than E because the relevance

estimated for element E is due to the content of L and

no extra benefit is obtained when returning E.

In these, cases a better output might be produced if

the algorithms would consider structural relationships

between elements when deciding which elements to

return to the user.
d the resulting outputs when removing overlapping

dicate the initial retrieval scores obtained by each of the

Processing Overlaps. Figure 3. Illustration of the three

cases considered in the approach presented in [4]. The

grayer the node, the higher the relevancy estimated for

that node.

2190P Processing Overlaps
Using Structural Relationships for Re-Ranking

The following approaches present more advanced

techniques that exploit the structural relationships

within a document to decide which elements should

be removed or pushed down the ranked list and which

ones should be returned to the user (e.g., [5], [1], [4]).

These techniques often modify the initial ranking pre-

dicted by the retrieval model.

In [1] elements are re-ranked by adjusting the ele-

ment scores of the lower ranked elements according to

their containment relationship with other higher ranked

elements. The assumption underlying this approach is

that the score of the elements that are contained or

contain other elements that have been already shown

to the user (i.e., are ranked higher) should be adjusted in

order to reflect that the information they contain might

be redundant. They do that by reducing the importance

of terms occurring in already reported elements. The

basic algorithm is similar to algorithm 2 but instead of

removing the ancestors and descendants of the reported

elements, their scores get adjusted:

Algorithm 3

1. Report the highest ranked element.

2. Adjust the scores of the unreported elements.

3. Repeat steps 1 and 2 until m elements are

reported.

The author also presents an extended version of the

algorithmwhere different weighting values are used for

ancestors and descendants and where the number of

times an element is contained within others is consid-

ered. For example, a paragraph contained in an already

seen section and in an already seen article is further

punished because the user has already seen this infor-

mation twice. Note that this algorithm is not designed

to remove the overlap but to push down the result list

those elements that contain redundant information.

In [4] a completely different approach is taken. The

authors present a two step re-ranking algorithm for

removing overlap. The first step identifies clusters of

highly ranked results and picks the most relevant ele-

ment from each cluster. The second round is used to

remove any remaining overlap between the selected

elements. The selection criteria for the first step is

based on three different cases (illustrated in Fig. 3):

(i) if an element N has a descendant that is substan-

tially more relevant, the element N is removed from the

result list, (ii) if case 1 does not hold and the element N

has a child that contains most of the relevant
information (the relevant elements are concentrated

under this child), the element N is also removed from

the result list, and (iii) if none of the previous cases

hold and the results are evenly distributed under the

element N, then the element N is kept and all its

descendants removed from the result list. In the rest

of the cases they do not do anything and leave the final

overlap removal for the second phase. In the second

step, they remove overlap by comparing the score of

each element with the ones of its descendants. If the

score of the element is bigger, all the descendants are

removed and the element is kept. Otherwise, the ele-

ment is removed.

In [5] the authors present an approach that makes

use of an utility function that captures the amount of

useful information contained in each element. They

argue that to model the usefulness of a node three

important aspects need to be considered: (i) the rele-

vance score estimated by the retrieval model, (ii) the

size of the element, and (iii) the amount of irrelevant

information the element contains. They present an

algorithm that selects elements according to the esti-

mated usefulness of each element. If an element has an

estimated usefulness value higher than the sum of the

usefulness values of its children, then the element is

selected and the children are removed. Otherwise, the

children elements whose usefulness value exceeds some

threshold are selected and the element is removed.

Key Applications
Processing overlap techniques are needed in any re-

trieval application where users need to be directed to

specific parts of documents and there are not prede-

fined retrieval units.

Processing Structural Constraints P 2191
Experimental Results
For every presented approach, there is an accompa-

nying experimental evaluation in the corresponding

reference. Commonly, the referred article provides

an overview of the performance of the approach

and of its variations. However, it is difficult to use

the reported evaluations to compare approaches

between articles. The main reason is that all

approaches make use of different retrieval models

for their initial runs, thus it is not clear whether

the performance obtained after removing overlap is

due to the underlying retrieval model or to the

approach used to remove the overlap. Besides, not

all the presented approaches experiment on the

same dataset or use the same evaluation measures

to report their numbers.

In [5] the authors present an experimental com-

parison between several of the approaches described

above. They show that the best performing approach is

the one that returns only paragraphs. As a general

trend for the first type of approach (the ones that select

a specific element type), the longer the element type

selected, the worse the performance. The authors

also show that their approach of estimating the useful-

ness of an element can help to improve retrieval

performance (in terms of precision at low recall levels)

when compared to the approach of using paths

(algorithm 2).
P

Data Sets
Since 2005 the INitiative for the Evaluation of XML

Retrieval (INEX) provides a data-set that can be used

to test processing overlap strategies (see http://inex.is.

informatik.uni-duisburg.de/).
Cross-references
▶ INEX

▶ Structured Document Retrieval

▶XML Retrieval
Recommended Reading
1. Clarke C.L.A. Controlling overlap in content-oriented XML

retrieval. In Proc. 31st Annual Int. ACM SIGIR Conf. on Re-

search and Development in Information Retrieval, 2005,

pp. 314–321.

2. Geva S. GPX – gardens point XML IR at INEX 2005. In Proc.

4th Int. Workshop of the Initiative for the Evaluation of XML

Retrievals, 2006, pp. 240–253.
3. Kazai G., Lalmas M., and de Vries A.P. The overlap problem in

content-oriented XML retrieval evaluation. In Proc. 30th Annu-

al Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 2004, pp. 72–79.

4. Mass Y. and Mandelbrod M. Using the INEX environment as a

test bed for various user models for XML retrieval. In Proc.

4th Int. Workshop of the Initiative for the Evaluation of XML

Retrievals, 2006, pp. 187–195.

5. Mihajlovi V., Ramı́rez G., Westerveld T., Hiemstra D., Blok H.E.,

and de Vries A.P. TIJAH scratches INEX 2005: vague element

selection, image search, overlap and relevance feedback. 2006,

pp. 72–87.

6. Sauvagnat K., Hlaoua L., and Boughanem M. XFIRM at INEX

2005: ad-hoc and relevance feedback tracks. In Proc. 4th Int.

Workshop of the Initiative for the Evaluation of XML Retrievals,

2006, pp. 88–103.
Processing Structural Constraints

ANDREW TROTMAN

University of Otago, Dunedin, New Zealand

Definition
When searching unstructured plain-text the user is

limited in the expressive power of their query – they

can only ask for documents that are about something.

When structure is present in the document, and with

a query language that supports its use, the user is

able to write far more precise queries. For example,

searching for ‘‘smith’’ in a document is not necessarily

equivalent to searching for ‘‘smith’’ as an author of a

document. This increase in expressive power should

lead to an increase in precision with no loss in recall.

By specifying that ‘‘smith’’ should be the author, all

those instances where ‘‘smith’’ was the profession

will be dropped (increasing precision), while all those

in which ‘‘smith’’ is the author will still be found

(maintaining recall).
Historical Background
With the proliferation of structured and semi-

structured markup languages such as SGML and

XML came the possibility of unifying database and

information retrieval technologies. The Evaluation

of XML Retrieval (INEX) was founded in 2002 to

examine the use of semi-structured data for both tech-

nologies. It was expected that the use of structure

would not only unify the two technologies but would

also improve the performance of both.

2192P Processing Structural Constraints
Foundations

User Querying Behavior

When using an information retrieval search engine

the user typically has some information need. This

information need is expressed by the user as a keyword

query. There are many different queries that could be

drawn from the same information need. Some might

contain only keywords, others phrases, and others a

combination of the two. It is the task of the search

engine to satisfy the information need given the query.

Because the task is not to satisfy the query, the terms in

the query can be considered nothing more than hints

by the user on how to identify relevant documents. It is

likely that some relevant documents will not contain

the user’s keywords, while others that do might not be

relevant.

If the user does not immediately find an answer

they will often change their query, perhaps by adding

different keywords, or by removing keywords. If the

query syntax permits they might add emphasis mar-

kers (plus and minus) to some terms.

With a few exceptions semi-structured search

engines remain experimental, so user behavior can-

not be studied in a natural environment. Instead

the user behavior is expected to mirror that of other

search engines, or search engines that include some

structural restriction.

The model used at INEX is that a user will give a

query containing only search terms, then, if they are

dissatisfied with the results, they might add structural

constraints to their query. The keyword searches are

known as Content Only (CO) and when structure

is added as Content Only + Structure (CO + S) or

Content And Structure (CAS) queries. Just as the key-

words are hints, so too are the structural constraints.

For this reason they are commonly referred to as

structural hints.

The addition of structure to an otherwise content

only search leads to a direct comparison of the per-

formance of a search engine before and after the

structural constraint has been added. The two queries

are instantiations of the same information need, so

the same documents or document components are

relevant to each query making a direct comparison

meaningful.

The analysis of runs submitted to INEX 2005

(against the IEEE document collection) showed no

statistical difference in performance between the top
CO and top CO + S runs – having structural hints in

the query did not improve performance [12]. Even at

low levels of recall (1 and 10%) no significant improve-

ment was seen. About half the systems showed a per-

formance gain, the other half no gain.

There are several reasons why improvements are

not seen: first it could be a consequence of the struc-

ture present in the IEEE collection; second (and more

likely) it could be that users are not proficient at

providing structural hints.

The result was backed up by a user study [13] in

which users were presented with three ways of querying

the document collection: keywords, natural language

(including structure), and Bricks [15] (a graphical user

interface). Sixteen users each performed six simulated

work tasks, twowith each interface. The same conclusion

is drawn, that is no significant improvement was seen

when structure was used in querying.

Structural Constraints

There are two reasons a user might add structural

constraints to a query. The first is to constrain the

size of the result. When searching a collection of text-

books it is, perhaps, of little practical use to identify a

book that satisfies the user need. A better result might

be a chapter from the book, or a section from the

chapter, or even a single paragraph. One way to identi-

fy the best granularity of result is to allow the user to

specify this as part of the query. These elements are

known as target elements.

The user may also wish to narrow the search to just

those parts of a document he or she knows to be

appropriate. In this case the user might search for

‘‘smith’’ as an author in order to disambiguate the

use from that as any of: an author, a profession, a

street, or a food manufacturer. Restricting a query to

a given element does not affect the granularity of the

result; instead it lends support on where to look so

such elements are known as support elements. Both

target elements and support elements can appear in the

same query.

It is not at all obvious from a query whether or not

the user expects the constraint to be interpreted precisely

(strictly) or imprecisely (vaguely). In the case of ‘‘smith’’

as an author, it is likely that ‘‘smith’’ as a profession is

inappropriate, but ‘‘smith’’ as an editor might be appro-

priate. If the target element is a paragraph, then a docu-

ment abstract (about the size of a paragraph) is likely to

be appropriate, but a book not so.

Processing Structural Constraints P 2193

P

The four possible interpretations of a query were

examined at INEX 2005 [11]. Runs that perform well

with one interpretation of the target elements do

so regardless of the interpretation of the support ele-

ments. The interpretation of the target element does,

however, matter. The consequence is that the search

engine needs to know, as part of the query, whether a

strict or vague interpretation of the target element is

expected by the user.

Processing Structural Constraints

Given a search engine, the strict interpretation of target

elements can be satisfied by a simple post-process

eliminating all results that do not match. As just dis-

cussed above, strictly processing support elements has

been shown to be unnecessary.

Several techniques for vaguely satisfying target ele-

ment constraints have been examined including ignor-

ing them, pre-generating a set of tag-equivalences,

boosting the score of elements that match the target

element, and propagating scores up the document tree.

Ignoring Structural Constraints

Structural constraints might be removed from the

query altogether and a Content Only search engine

used to identify the correct granularity of result.

Tag Equivalence

A straightforward method for vaguely processing

structural constraints is tag equivalence. A set of infor-

mational groups are chosen a priori and all tags in the

DTD (DTD is the Document Type Definition, specify-

ing the format of the XML documents forming the

collection.) are mapped to these groups. If, for exam-

ple, <p> is used for paragraphs and <ip> is used for

initial paragraphs, these would be grouped into a single

paragraph group.

Mass and Mandelbrod [5] a priori choose appro-

priate retrieval units (target elements) for the docu-

ment collection and build a separate index for each.

The decision about which units these are is made by

a human before indexing. A separate index is built

for each unit and the search is run in parallel on

each index. Within each index the traditional vector

space model in used for ranking. The lexicon of their

inverted index contains term and context (path) infor-

mation making strict evaluation possible. Vague eval-

uation of paths is done by matching lexicon term

contexts against a tag-equivalence list.
Mihajlović et al. [6] build their tag equivalence lists

using two methods, both based on prior knowledge of

relevance. For INEX 2005 they build the first list by taking

the results from INEX 2004 and selecting the most fre-

quent highly and fairly relevant elements and adding the

most frequently seen elements from the queries. In the

second method they take the relevant elements from

previous queries targeting the same element and normal-

ize a weight by the frequency of the element in the

previous result set (the training data, in this case INEX

2004). Using this second method they automatically

construct many different tag equivalence sets using the

different levels of relevance seen in the training data.

In a heterogeneous environment in which many

different tags from many different DTDs are semanti-

cally but not syntactically identical, techniques from

research into schema-matching [1] might be used to

automatically identify tag equivalence lists.

Structure Boosting

Van Zwol [14] generates a set of results ignoring struc-

tural constraints then boosts the score of those that do

match the constraints by linearly scaling by some tag

specific constant. The consequence is to boost the score

of elements that match the structural constraints while

not removing those that do not. A score penalty is also

used for deep and frequent tags in the expectation of

lowering the score of highly frequent (and short) tags.

A similar technique is used by Theobald et al. [9] who

use it with score propagation.

Score Propagation

Scores for elements at the leaves of the document tree

(that is, the text) are computed from their content.

Scores for nodes internal to the document tree are

computed from the leaves by propagating scores up

the tree until finally a score for the root is computed.

Typically as the score propagates further up the tree,

its contribution to the score of an ancestor node is

reduced (see the entry on Propagation based structured

text Retrieval for details).

Figure 1 illustrates score propagation. A search

term is found to occur two times in the p element,

and four times in the (left) sec element. With a decay

factor of 0.5, the score of the bdy element is computed

as 4 *0.5 + 2 * 0.5 * 0.5 = 2.5. The score for the article

element is computed from that score likewise. If the

target element is bdy and the score, for example, is

boosted by K = 5, then the element with the highest

Processing Structural Constraints. Figure 1. Score

Propagation, each time a score is propagated the score is

weakened (in the example: halved), but at target nodes it

is boosted (in the example: K = 2).

2194P Processing Structural Constraints
score is that element. The score for K and the propaga-

tion value are chosen here for illustrative purposes only

and should be computed appropriately for a given

document collection.

Hurbert [3] uses score propagation with structure

reduction – if a node in the tree does not match a

constraint in the query then the score there is reduced

by some factor. In this way all nodes in the tree

obtain scores but those matching the constraints are

over-selected for. Sauvagnat et al. [8] use score propa-

gation in a similar way but in combination with

tag equivalence.
Key Applications
Retrieval of document components from structured

document collections.
Future Directions
The best performing search engines that interpret

structural constraints have not yet significantly out-

performed those that ignore them. Several reasons

have been forwarded.

There is evidence to suggest specifying a structural

constraint is difficult for a user. Studies into the use

of structure in INEX queries suggest that even expert

users, when asked to give structured queries, give simple

queries [12]. This is inline with studies that show virtu-

ally no use of advanced search facilities on the web.

Structure aware search engines are not as mature as

web search engines and as yet the best way to use

structural constraints (when present in a query) is

unknown. The annual INEX workshop provides a

forum for testing and presenting new methods.
Improvements were not seen when the IEEE docu-

ment collection was used, but this result may not

generalize to all collections. Alternative collections

including newspapers, radio broadcast, and television,

have been suggested [7,10]. In 2006, INEX switched to

using the Wikipedia as the primary test collection for

ad hoc retrieval, but a comparative study on that col-

lection has not yet been conducted.

Relevance feedback including structural constraints

has been examined. Users might provide feedback on

both the desired content and the preferred target ele-

ment, or just one of these. Evidence suggests that

including structure in relevance feedback does improve

precision.
Experimental Results
Evidence that use of structure increases precision is

tentative. In the XML search engine of Kamps et al.

[4], no significant difference is seen overall, however

significant differences are seen at early recall points

(the first few tens of documents). The search engine

of Geva [2] recently performed better without struc-

ture than with.

At INEX 2005, a comparative analysis of perfor-

mance with and without structural constraints

on the same set of information needs was performed

[1]. The best structure run was compared to the

best non-structure run and no significant difference

was found. Not even a significant difference at early

recall points was found. On a system by system basis

about half the search engines show a performance

increase.
Cross-references
▶Content-and-Structure Query

▶Content-Only Query

▶ INitiative for the Evaluation of XML Retrieval

▶Mean Average Precision

▶Narrowed Extended XPath 1

▶ Propagation-based Structured Text Retrieval

▶XML Retrieval
Recommended Reading
1. Doan A. and Halevy A.Y. Semantic integration research in

the database community: a brief survey. AI Magazine, 26(1):

83–94, 2005.

2. Geva S. GPX – gardens point XML IR at INEX 2006. In Proc. 5th

Int. Workshop of the Initiative for the Evaluation of XML

Retrieval, 2007, pp. 137–150.

Processor Cache P 2195

P

3. Hubert G. XML retrieval based on direct contribution of

query components. In Proc. 4th Int. Workshop of the Initiative

for the Evaluation of XML Retrieval, 2006, pp. 172–186.

4. Kamps J., Marx M., Rijke M.D., and Sigurbjörnsson B.

Articulating information needs in XML query languages.

Trans. Inf. Sys., 24(4):407–436, 2006.

5. Mass Y. and Mandelbrod M. Using the INEX environment

as a test bed for various user models for XML retrieval. In

Proc. 4th Int. Workshop of the Initiative for the Evaluation of

XML Retrieval, 2006, pp. 187–195.

6. Mihajlovic V., Ramı́rez G.,Westerveld T., Hiemstra D., Blok H.E.,

and de Vries A.P. Vtijah scratches INEX 2005: Vague element

selection, image search, overlap, and relevance feedback. In Proc.

4th Int. Workshop of the Initiative for the Evaluation of XML

Retrieval, 2006, pp. 72–87.

7. O’Keefe R.A. If INEX is the answer, what is the question? In Proc.

3rd Int. Workshop of the Initiative for the Evaluation of XML

Retrieval, 2005, pp. 54–59.

8. Sauvagnat K., Hlaoua L., and Boughanem M. Xfirm at INEX

2005: ad-hoc and relevance feedback tracks. In Proc. 4th Int.

Workshop of the Initiative for the Evaluation of XML Retrieval,

2006, pp. 88–103.

9. Theobald M., Schenkel R., and Weikum G. Topx and xxl at

INEX 2005. In Proc. 4th Int. Workshop of the Initiative for the

Evaluation of XML Retrieval, 2006, pp. 282–295.

10. Trotman A. Wanted: element retrieval users. In Proc. INEX 2005

Workshop on Element Retrieval Methodology, 2005, pp. 63–69.

11. Trotman A. and Lalmas M. Strict and vague interpretation of

XML-retrieval queries. In Proc. 32nd Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

2006, pp. 709–710.

12. Trotman A. and Lalmas M. Why structural hints in queries do

not help XML retrieval. In Proc. 32nd Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

2006, pp. 711–712.

13. Woodley A., Geva S., and Edwards S.L. Comparing XML-IR

query formation interfaces. Australian J. Intelligent Inf. Proc.

Syst., 9(2):64–71, 2007.

14. van Zwol R. B3-sdr and effective use of structural hints. In Proc.

4th Int. Workshop of the Initiative for the Evaluation of XML

Retrieval, 2005, pp. 146–160.

15. van Zwol R., Baas J., van Oostendorp H., and Wiering F. Bricks:

the building blocks to tackle query formulation in structured

document retrieval. In Proc. 28th European Conf. on IR

Research, 2006, pp. 314–325.
Processor Cache

PETER BONCZ

CWI, Amsterdam, The Netherlands

Synonyms
Data cache; Instruction cache; CPU cache; L1 cache; L2

cache; L3 cache; Translation Lookaside Buffer (TLB)
Definition
To hide the high latencies of DRAM access, modern

computer architecture now features a memory hierar-

chy that besides DRAM also includes SRAM cache

memories, typically located on the CPU chip. Memory

access first check these caches, which takes only a few

cycles. Only if the needed data is not found, an expen-

sive memory access is needed.
Key Points
CPU caches are SRAM memories located on the CPU

chip, intended to hide the high latency of accessing

off-chip DRAM memory. Caches are organized in

cache lines (typically 64 bytes). In a fully-associative

cache, each memory line can be stored in any location

of the cache. To make checking the cache fast, however,

CPU caches tend to have limited associativity, such

that storage of a particular cache line is possible

in only 2 or 4 locations. Thus only 2 or 4 locations

need to be checked during lookup (these are called 2-

resp. 4-way associative caches). The cache hit ratio

is determined by the spatial and temporal locality

of the memory accesses generated by the running

program(s).

Cache misses can either be compulsory misses (get-

ting the cache lines of all used memory once), capacity

misses (caused by the cache being too small to keep all

multiply used lines in cache), or conflict misses (due to

the limited associativity of the cache).

Most modern CPUs have at least three independent

caches: an instruction cache to speed up executable

instruction fetch, a data cache to speed up data fetch

and store, and a Translation Lookaside Buffer (TLB)

used to speed up virtual-to-physical address transla-

tion for both executable instructions and data. The

TLB is not organized in cache lines, it simply holds

pairs of (virtual, logical) page mappings, typically a

fairly limited amount (e.g., 64). In practice, this mean

that algorithms that repeatedly touch memory in more

than 64 pages (whose size is often 4 KB) shortly after

each other, run into TLB thrashing. This problem can

sometimes be mitigated by setting a large virtual mem-

ory page size, or by using special large OS pages

(sometimes supported in the CPU with a separate,

smaller, TLB for large pages).

Another issue is the tradeoff between latency and

hit rate. Larger caches have better hit rates but longer

latency. To address this tradeoff, many computers use

multiple levels of cache, with small fast caches backed

2196P Production-based Approach to Media Analysis
up by larger slower caches. Multi-level caches generally

operate by checking the smallest Level 1 (L1) cache

first; if it hits, the processor proceeds at high speed. If

the smaller cache misses, the next larger cache (L2) is

checked, and so on, before external memory is

checked. As the latency difference between main mem-

ory and the fastest cache has become larger, some

processors have begun to utilize as many as three levels

of on-chip cache.

For multi-CPU and multi-core systems, the fact

that some of the higher levels of cache are not shared,

yet provide coherent access to shared memory, causes

additional cache-coherency inter-core communication

to invalid stale copies of cache lines on other cores

when one core modifies it. In multi-core CPUs, an

important issue is which cache level is shared among

all cores – this cache level is on the one hand a potential

hot-spot for cache conflicts, on the other hand pro-

vides an opportunity for very fast inter-core data

exchange.

In case of sequential data processing, the memory

controller or memory chipset in modern computers

often detect this access pattern and start requesting

the subsequent cache lines in advance. This is called

hardware prefetching. Prefetching effectively allows to

hide compulsory cache misses. Without prefetching,

the effective memory bandwidth would equate cache

line size dividedmymemory latency (e.g., 64/50 ns = 1.2

GB/s). Thanks to hardware prefetching, modern com-

puter architectures reach four times that on sequential

access. Modern CPUs also offer explicit prefetching

instructions, which a software writer can exploit to per-

form (non-sequential) memory accesses in advance,

hiding their latency. In database systems, such software

prefetching has successfully been used in making hash--

table lookup faster (e.g., in hash-join and hash-

aggregation).

In database systems, a series of cache-conscious

data storage layouts (e.g., DSM and PAX) have been

proposed to improve cache line usage. Also, a number

of cache-conscious query processing algorithms,

such as cache-partitioned hash join and hash-join

using memory prefetching, have been studied. In

the area of data structures and theoretical computer

science, there has recently been interest in cache-

oblivious algorithms, that regardless the exact

parameters of the memory hierarchy (number of

levels, cache size, cache line sizes and latencies)

perform well.
Cross-references
▶Architecture-Conscious Database System

▶Cache-Conscious Algorithms

▶Disk

▶DSM

▶Main Memory

▶Main Memory DBMS

▶ PAX Storage Layouts
Production-based Approach to
Media Analysis

▶Computational Media Aesthetics
Projected Clustering

▶ Subspace Clustering Techniques
Projection

CRISTINA SIRANGELO

University of Edinburgh, Edinburgh, UK

Definition
Given a relation instance R over set of attributes U,

and given a subset X of U, the projection of R on

X – denoted by pX(R) – is defined as a relation over

set of attributes X whose tuples are the restriction of

tuples of R to attributes X. That is t 2 pX(R) if and only

if t = t0(X) for some tuple t0 of R (here t0(X) denotes the

restriction of t0 to attributes X).

Key Points
The projection is one of the basic operators of the

relational algebra. It operates by ‘‘restricting’’ the

input relation to some of its columns.

The arity of the output relation is bounded by the

arity of the input relation. Moreover the number of

tuples in pX(R) is bounded by the number of tuples in

R. In particular, the size of pX(R) can be strictly smaller

than the size of R since different tuples of R may have

the same values on attributes X.

As an example, consider a relation Goods

over attributes (code, price, quantity), containing tuples

Propagation-based Structured Text Retrieval P 2197
{(001, 5.00, 10), (002, 5.00, 10), (003, 25.00, 3)}. Then

pprice,quantity(Goods) is a relation over attributes (price,

quantity) with tuples {(5.00, 10), (25.00, 3)}.

In the case that attribute names are not present in

the relation schema, the projection is specified by an

expression of the form pi1,...,in(R). Here i1,...,in is a

sequence of positive integers – where each ij is bounded

by the arity of R – identifying attributes of R. The

output is a relation of arity n with tuples (t(i1),...,

t(in)), for each tuple t in R. In this case the arity n of

the output relation can be possibly larger than the arity

of R, since integers i1,...,in need not be distinct.

Cross-references
▶Relation

▶Relational Algebra
Projection Index

▶Bitmap-based Index Structures for Multidimension-

al Data
P

Propagation-based Structured Text
Retrieval

KAREN PINEL-SAUVAGNAT

IRIT-SIG, Toulouse Cedex, France

Synonyms
Relevance propagation; Score propagation

Definition
Evaluate the relevance score of text components.

Approaches using propagation view the logical struc-

ture of a structured document as a tree whose nodes are

components of the document and whose edges repre-

sent the relationships between the connected nodes.

A document component can be either a leaf or an

inner node. Leaf nodes are document components

that correspond to the last elements of hierarchical

relationship chains and that contain raw data (textual

information). With propagation, relevance scores are

first calculated for leaf components. They are then
propagated upwards in the document tree structure to

calculate relevance scores for the inner components.

Historical Background
With appropriate query languages, users may want to

exploit the structure of structured text documents

to perform fine-grained and flexible retrieval. Instead

of treating documents as atomic units, structured text

retrieval systems aim thus at retrieving document com-

ponents that answer a given information need in

the most specific way. Classical information retrieval

(IR) models (e.g., the vector space model, the probabi-

listic model, language models) have been extended

in order to take into account the structural dimension

of documents. IR research has shown that document

termweighting is a crucial concept for effective retrieval,

thus classical formalisms were adapted with additional

weighting parameters: component type, number of

descendant components, frequency of the component

type, to name a few. However, most of these adaptations

do not use (or make little use of) the tree representation

of structured documents to identify the most specific

components.

The idea behind relevance propagation method is

to follow the way relevance changes in a document tree

to estimate the relevance of the document compo-

nents. Indeed relevance in structured text documents

has been expressed in terms of specificity and exhaus-

tivity: the specificity (its coverage of the topic and

nothing else) of components in the tree typically

decreases as one moves up the tree, and when a compo-

nent has multiple relevant descendants, its exhaustivity

(coverage of the topic) usually increases compared to

that of each of the descendant elements.

In propagation methods, relevance scores are thus

first computed at leaf level, and then propagated up the

document tree: to allow the identification of the most

specific components, the relevance score of leaf com-

ponents should be somehow decreased while being

propagated upwards in the document tree, and to

allow the identification of the most exhaustive compo-

nents, relevance scores may be aggregated (a parent

score should be evaluated using its children scores).

A naive solution would be to just sum the relevance

scores of each inner component relevant children.

However, this would ultimately result in root compo-

nents being returned at top ranks although they may

not be the most specific components for the given

information need.

2198P Propagation-based Structured Text Retrieval
Few relevance propagation approaches were pro-

posed before 2002 (when INEX, the evaluation Initia-

tive for XML Retrieval, was set-up). One can however

cite the method presented in [5] using inference nets.

The retrieval process is applied to SGML documents

but can be extended to any type of structured docu-

ments. The basic retrieval strategy is to calculate the

degree to which a component at any level of the docu-

ment hierarchy satisfies the query by considering what

components are contained in that component. This

strategy makes it possible to systematically calculate

the expected relevance of a component at any level,

taking into account its relationship with other compo-

nents in the hierarchy. Consider the following

net made of two section components S1 and S2 that

are the parent node of a term node T and the children

nodes of the component C (see Fig.1).

The retrieval process is performed in a bottom-up

fashion, because of the way documents are represented

in the inference net: no components other than leaf

components contain actual text, and the retrieval pro-

cess must start from leaf components whose text con-

tains a query term.

The degree of belief of T given the network topolo-

gy is computed with a simplified formula as follows

(the simplification comes from considering only posi-

tive events):

BðT jCÞ ¼ PðT jS1Þ
 PðS1Þ þ PðT jS2Þ
 PðS2Þ
¼ PðT jS1Þ
 PðS1jCÞ
 PðCÞ þ PðT jS2Þ

 PðS1jCÞ
 PðCÞ:

ð1Þ
Propagation-based Structured Text Retrieval. Figure 1.

A simple network.
Children components Si and their parent C are repre-

sented as Si = <si1, si2,...,sin> and C = <c1, c2,...,cn>

respectively, where n is the number of index terms and

sij and ci are calculated using standard term frequency

(TF) and inverse document frequency (IDF) statistics.

The probability P(SijC) of observing Si given C (or the

degree of belief that C supports Si) is calculated as a

similarity between the two vectors:

PðSijCÞ ¼ li
 ðSi � CÞ; ð2Þ

where li is a weight associated to the component type,

representing its overall importance relative to other

types of components sharing the same parent. This

computation incorporates both the content and the

type of components.

The probability P(TjSi) of observing a term T given

a component Si (or the degree of belief that Si supports

T) is estimated with:

PðT jSiÞffi IDFT
 TFi;Si : ð3Þ

P(C) is the probability of observing C assuming that C

is the root node (i.e., document) in the inference net.

In the implementation, it is set to 1. This approach was

however not evaluated, since no suitable test collection

was available.

Other approaches presented in the rest of the entry

were developed and evaluated in the context of the

INEX evaluation campaign, which is concerned with

the evaluation of XML retrieval. In this case, document

components correspond to XML elements.
Foundations
As all IR approaches, propagation-based approaches

can be caracterized in terms of indexing and scoring

methods (here both for leaf and inner elements).
Indexing

Approaches using relevance propagation consider

indexing units as disjoint units: the text of each element

is the union of one or more of its disjoint parts. Thus,

as textual information is only present in leaf elements,

inverted index only concern leaf elements. Propagation

accounts then for the fact that the text in a given leaf

element is also contained in its ancestors. The docu-

ment structure is generally stored in a separate index

and used to build the document trees.

Propagation-based Structured Text Retrieval P 2199

P

Relevance Scores Evaluation for Content-Only Queries

In the rest of the entry, the following notations are

used. Let q be a query composed of k terms t1,...tk. In

the document tree, le is a leaf element and e an inner

element having n children. RSV(q, le) is the relevance

score of the leaf element le with respect to query q and

RSV(q, e) is the final score of element e with respect to

query q.

Scoring Leaf Elements To evaluate leaf element scores

(RSV(q, le)), approaches found in the literature have

used the following parameters:

1. Frequency of term ti in query q or leaf element le

2. Frequency of term ti in the whole collection

3. Number of leaf elements containing ti
4. Length of leaf element

5. Average length of leaf elements

6. Inverse element frequency ief, which is similar to idf

(inverse document frequency) but that takes into

account the collection of leaf elements instead of

the collection of documents.

In [1], the weighting scheme used to compute the

relevance score of leaf elements also uses the cross-

structural importance of ti relative to le and q, which

allows to increase or decrease the importance of a term

depending on its location in the query (some terms

may be more important than others in a content-and-

structure query). In [3], the frequency of terms in the

leaf elements and in the whole collection are used with

a parameter scaling up the score of elements having

multiple query terms. The formula penalizes elements

with frequently occurring query terms (frequent in the

collection), and rewards elements with more unique

query terms within a result element. One can also cite

the leaf elements weighting scheme presented in [9],

where term frequency and inverse element frequency

ief are applied together with idf. This allows to take

into account the importance of terms in both the

collection of leaf elements and the collection of

documents.

Propagating Relevance Scores Once the relevance

score of the leaf elements have been calculated, they

are used to evaluate the relevance score of the inner

elements. The main issue here is how to combine these

scores. As already said, a naive solution that simply

sums the relevance sores of leaf elements will result in
root elements being ranked at the top of the result

lists, although they are likely to not constitute the

most specific elements to the query.

In [1] the relevance of inner elements is for instance

evaluated using the maximum of their leaf element

scores. Other approaches use a weighted sum of leaf

or children element scores, and make some assump-

tions related to the document tree structure. They are

described below.

For example, in the GPX approach [3], a heuristi-

cally derived formula is proposed to evaluate the scores

of inner elements that accounts for specificity and

exhaustivity:

RSVðq; eÞ ¼ DðnÞ
Xn
l¼1

RSVðq; lÞ; ð4Þ

where n is the number of children elements,

D(n) = 0.49 if n = 1, 0.99 otherwise, and RSV(q, l) is

the relevance score of the lth child element.

The value of the decay factor D depends on the

number of relevant children that the inner element has.

If the element has one relevant child then the decay

constant is 0.49. An element with only one relevant

child will be ranked lower than its child. If the element

has multiple relevant children the decay factor is 0.99.

An element with many relevant children will be ranked

higher than its descendants. Thus, a section with a

single relevant paragraph would be judged less relevant

than the paragraph itself, but a section with several

relevant paragraphs will be ranked higher than any of

the paragraphs.

‘‘t2 t3 t4’’. The method is illustrated in Fig. 2, with

the content-only query ‘‘t2 t3 t4’’. To simplify, the

weight of a term in a leaf element is equal to 1 if it is

a query term and 0 otherwise. For example the /article

[1]/body[1]/section[3]/paragraph[2] element that

contains three query terms has thus a score of 3. Its

parent (/article[1]/body[1]/section[3]) contains two rel-

evant children with scores 1 and 3. Its score is then

calculated with a decay factor equal to 0.99 as follows:

0.99
 (1 + 3). To evaluate the score of the root element

(which only contains one relevant child), the decay fac-

tor used is 0.49, and the root element has consequently a

lower score than its child /article[1]/body[1]. As a result

of the propagation, the /article[1]/body[1] element has

the highest score and will be ranked first by the GPX

system.

Propagation-based Structured Text Retrieval. Figure 2. Relevance propagation according to [3].

2200P Propagation-based Structured Text Retrieval
The distance between an element and its descendant

leaf elements has also been used as a weight in the

weighted sum that calculates the relevance score of

inner elements. Terms that occur close to the root of

a given subtree are more significant to the root element

that ones at deeper levels of the subtree. It seems

therefore that the greater the distance of a element

from its ancestor, the less it should contribute to the

relevance of its ancestor. This can be modeled with the

d(x, y) parameter, which is the distance between ele-

ments x and y in the document tree, i.e., the number of

arcs joining x and y.

In [4], the relevance score of an inner element takes

into account this distance and also the distance separ-

ating the root element and leaf elements. The latter is

used as a normalization factor. The relevance score of

an inner element e is calculated as follows:

RSVðq; eÞ ¼
X
lej2Le
ð1� 2ll

dðe; lejÞ
dðe; lejÞ þ dðroot ; lejÞ

2

Þ

RSVðq; lejÞ: ð5Þ

l is a constant coefficient � 0, lej are leaf elements

being descendant of e, and Le is the set of leaf

elements being descendant of e. This process tends to

consider an element having a relevant descendant ele-

ment less relevant than the descendant element itself,

which is comparable to the approach followed in [3],

as above described.
Finally, in [9], the distance between elements

and the number of relevant descendant leaf elements

are used together with an additional parameter,

b, in the weighted sum. The b factor captures the

assumption that small elements may be used

by authors to highlight important information (title

elements, bold elements, ...). Small elements can there-

fore give important indications on the relevance of

their ancestors and their importance should be

increased during propagation. The relevance value

of an element e is thus computed according to the

following formula:

RSVðq; eÞ ¼ jLrej:
X
lej2Le

adðe; lejÞ�1
 bðlejÞ

 RSVðq; lejÞ;
ð6Þ

where a is a constant coefficient 2]0,1] used to tune

the importance of the distance d(e, lej) parameter and

jLerj is the number of leaf elements being descendant

of e and having a non-zero relevance value. b(lej) is

experimentally fixed and allows to increase the role

of elements smaller than the average leaf element

size in the propagation function.

Sauvagnat et al. (2005) [9] also propose a back-

ward propagation after the first propagation, in order

to account for the whole document relevance (and

thus for the element context) in the calculation of

the relevance score of inner elements.

Protein Sequence P 2201

P

Content-and-Structure Queries Processing

In most of the approaches using relevance propaga-

tion, results elements are simply filtered to satisfy the

structural constraints of content-and-structure queries

[3,4]. The approach described in [8] however uses

relevance propagation to process structural con-

straints. Queries may have several constraints, and

each constraint is composed of both a content and a

structure condition, one of them indicating which type

of elements should be returned (target elements). For

each constraint, propagation starts from leaf nodes

answering the content condition and goes until an

element that matchs the structure constraint is found.

The score of result elements of each constraint is then

propagated again to elements belonging to the set of

targeted structures.

Key Applications
The access to structured text documents such as SGML

or XML documents is the main application of the

relevance propagation approach described in this

entry. Propagation can also be used to access HTML

documents in the context of web retrieval, for example

to determine among a set of related web pages, which

one corresponds to the best entry in the set. Moreover,

propagation can also be applied to distributed IR, as

presented in [2].

Future Directions
Propagation methods presented in this entry are rela-

tively independent of the DTDs of collections, since

most of them do not use the type of elements to

estimate relevance. However, propagation cannot be

done in the same way on small document collections

and large document collections. Methods should be

adapted to process large document collections and

efficiency issues that follow.

Relevance propagation may evolve in the future

with the use of another source of evidence to calculate

inner element relevance score, for example, link infor-

mation. Indeed, web approaches using relevance prop-

agation have also used links to find relevant web pages

(a relevant page may be linked to other relevant pages)

[7]. The same approaches could be used for structured

text retrieval.

Experimental Results
INEX evaluation campaign. For example, the approach

in [3] was ranked in the top 5 for the focused retrieval
task (which aims at targeting the appropriate level of

granularity of relevant content that should be returned

to the user for a given topic) and comparable results

were achieved by the approach described in [8] using

content-and-structure queries.

Cross-references
▶Aggregation-Based Structured Text Retrieval

▶ INEX

▶On Enlve

▶Relevance

▶ Specificity

▶Term Statistics for Structured Text Retrieval

▶XML Retrieval

Recommended Reading
1. Anh V.N. and Moffat A. Compression and an IR approach to

XML Retrieval. In Proc. 1st Int. Workshop of the Initiative for

the Evaluation of XML Retrieval, 2002.

2. Baumgarten C. A probabilistic model for distributed informa-

tion retrieval. In Proc. 20th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1997,

pp. 258–266.

3. Geva S. GPX – Gardens Point XML IR at INEX 2005. In Proc.

4th Int. Workshop of the Initiative for the Evaluation of XML

Retrieval, 2005, pp. 240–253.

4. Hubert G. XML retrieval based on direct contribution of

query components. In Proc. 4th Int. Workshop of the Initiative

for the Evaluation of XML Retrieval, 2005, pp. 172–186.

5. Myaeng S.-H., Jang D.-H., KimM.-S., and Zhoo Z.-C. A flexible

model for retrieval of SGML documents. In Proc. 21st Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 1998, pp. 138–145.

6. Ogilvie P. and Callan J. Parameter estimation for a simple hier-

archical generative model from XML retrieval. In Proc. 4th Int.

Workshop of the Initiative for the Evaluation of XML Retrieval,

2005, pp. 211–224.

7. Qin T., Liu T.-Y., Zhang X.-D., Chen Z., and MaW.-Y. A study of

relevance propagation for web search. In Proc. 31st Annual Int.

ACM SIGIR Conf. on Research and Development in Informa-

tion Retrieval, 2005, pp. 408–415.

8. Sauvagnat K., Boughanem M., and Chrisment C. Answering

content-and-structure-based queries on XML documents using

relevance propagation. Inf. Syst., 31:621–635, 2006.

9. Sauvagnat K., Hlaoua L., and Boughanem M. XFIRM at INEX

2005: adhoc and relevance feedback tracks. In Proc. 4th Int.

Workshop of the Initiative for the Evaluation of XML Retrieval,

2005, pp. 88–103.
Protein Sequence

▶Biological Sequence

2202P Protein-Protein Interaction Networks
Protein-Protein Interaction
Networks

▶Biological Networks
Provenance

WANG-CHIEW TAN

University of California-Santa Cruz, Santa Cruz,

CA, USA

Synonyms
Lineage; Origin; Source; History; Pedigree

Definition
Let t be a data element in the result of a query Q applied

to a dataset D. A data element may be a tuple in the

relational model, or a subtree in the semi-structured

model. The provenance of t is the set of all proofs for

t according to Q and D. A proof for t according to Q

and D is a setD 0 of data elements in D so that t is in the

result of applying Q on D 0. In some cases, a proof also

details the process by which t is derived fromQ andD 0.

Most work on provenance in databases focused

on finding data elements of D that witness the exis-

tence of t in the result, as well as which data elements

of D is t copied from. In scientific workflows, the

provenance of a result is typically a detailed descrip-

tion of the entire workflow used to arrive at the result.

Key Points
The need to understand and manage the provenance of

data arises in almost every application. For example, it

is natural to ask for the provenance of data seen on the

Web. In scientific experiments, the provenance of

results generated by the experiments constitutes to

the proof of correctness directly or indirectly, and is

typically regarded to be as important as the result itself.

There are generally two types of provenance: data

provenance and workflow provenance [1,3].

Data provenance is an account of the derivation of

a piece of data in a dataset that is typically the result

of a database operation on an input database. There

are two approaches for computing data provenance

[2]: annotation-based versus non annotation-based

approaches. In annotation-based approaches, prove-

nance is captured by propagating annotations (i.e.,
extra information) from input to output along data-

base transformations. Hence, the provenance of an

output data can typically be determined by analyzing

the associated annotations. In contrast, non annota-

tion-based approaches do not carry along extra infor-

mation. Instead, the provenance of an output data is in

the determined by analyzing the database transforma-

tion, as well as the input and output databases.

Workflow provenance refers to the record of the

history of the derivation of some dataset in a scientific

workflow. The amount of information recorded for

workflow provenance varies, depending on application

needs. For example, workflow provenance of a scien-

tific result may include details about the type and

model of external devices used, as well as the versions

of softwares used for deriving the result.

Cross-references
▶Data Provenance

▶ Provenance

▶ Provenance in Experimental Data Management

▶ Provenance in Scientific Databases

▶ Storage Security

Recommended Reading
1. Bose R. and Frew J. Lineage retrieval for scientific data proces-

sing: a survey. ACM Comput. Surv., 37(1):1–28, 2005.

2. Buneman P. and Tan W.-C. Provenance in databases. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2007, pp.

1171–1173.

3. Simmhan Y., Plale B., and Gannon D. A survey of data

provenance in E-Science. ACM SIGMOD Rec., 34:31–36, 2005.
Provenance Metadata

▶Data Provenance
Provenance in Scientific Databases

SARAH COHEN-BOULAKIA
1, WANG-CHIEW TAN

2

1University of Pennsylvania, Philadelphia, PA, USA
2University of California-Santa Cruz, Santa Cruz,

CA, USA

Synonyms
Lineage; Origin; Source; History; Pedigree

Provenance in Scientific Databases P 2203

P

Definition
Scientific databases contain data which may have been

produced as answer to a query posed over other

resources, or generated by in-silico experiments (or

scientific workflow) involving various softwares, or

manually curated by domain experts based on analysis

of several other resources. The provenance of a piece of

data in scientific databases typically includes informa-

tion of where this piece of data originates from, as well

as details of the scientific process (e.g., parameters used

in the experiments, software versions etc.) by which it

arrived in the scientific database.

Historical Background
Provenance of scientific databases has been studied

in two granularities: workflow provenance and data

provenance.

Workflow provenance (or coarse-grained prove-

nance) refers to the record of the history (or workflow)

of the derivation of some dataset in a scientific work-

flow [5,13,14]. The amount of information recorded

for workflow provenance varies, depending on appli-

cation needs. For example, in some cases, a workflow

provenance may record the type and model of external

devices used, such as sensors, cameras, or other data

collecting equipments, as well as the associated ver-

sions of software used for processing data; in other

cases, these information may be deemed unnecessary.

More recently, workflow systems developed within

the scientific community to conduct and manage

experiments have started recording information about

the processes used to derive intermediate and final

data objects from raw data. Survey papers dedicated to

workflow provenance approaches have been proposed

[5,14] and ‘‘provenance challenges’’ [13] have been held

to encourage system designers to learn about the cap-

abilities and expressiveness of each others’ systems and

work towards interoperable solutions.

Data provenance (or fine-grained provenance) is

an account of the derivation of a piece of data in a

dataset that is typically the result of executing a data-

base query against a source database [9]. This type of

provenance determines the parts of source data that

were used to generate a piece of data in the resulting

dataset. Typically, data provenance is obtained by

carefully reasoning about the algebraic form of the

database query and the underlying data model of

the source and resulting databases. In contrast, trans-

formations occurring in scientific workflows are often

external processes (e.g., perl scripts), and the log files of
scientific workflows provide only object identifiers to

pieces of data involved in the transformation at

best. Often, such external processes and data involved

do not possess good properties for detailed analysis.

Hence, a fine-grained analysis of an external process is

not always possible and the provenance recorded for

such transformation is usually more coarse-grained.

Foundations
Workflow Provenance : The notion of workflow pro-

venance is illustrated using the workflow of the first

provenance challenge, which aimed to establish an un-

derstanding of the capabilities of available provenance-

related systems. This simple workflow is inspired from

a real experiment in the area of functional Magnetic

Resonance Imaging (fMRI) and formed the basis of

the challenge. It is represented in Fig. 1 as a graph

where oval nodes represent steps and rectangle nodes

represent kind of data exchanged between them. Typi-

cal provenance queries ask for the history of some data

item, e.g., ‘‘What caused Atlas X Graphic (one final

output) to be as it is?’’. Depending on whether

the complete history of the data is asked or only the

previous step and its inputs, queries are qualified as

deep (or recursive) or immediate. For example, the

immediate provenance of Atlas X Graphic is given by

the step 13.convert and its input, Atlas X slice, while its

deep provenance is given by all the data and steps used

to compute the step 9.softmean and Atlas Image, Atlas

Header, 10.slicer, Atlas X slice, and 13.convert. Other

provenance queries may include annotation queries

finding data annotated with some specific metadata,

such as ‘‘Find all invocations of procedure align_warp

using a twelfth order nonlinear 1365 parameter

model?’’ (metadata on the procedure used should be

recorded) and ‘‘Find the outputs of align_warp where

the inputs are annotated with center = UChicago’’

(metadata on the data used should be recorded).

Various workflow provenance approaches have

been designed and applied to very diverse scientific

domains (e.g., biology, ecology, astronomy, meteorolo-

gy). As workflow provenance is by nature associated with

actual scientific experiments, most of these approaches

have been implemented into prototypes or systems that

have typically participated in such challenges [13].

Approaches differ in various aspects. In particular,

provenance can be tracked at various degrees of gran-

ularity: from OS or instrument level to input/output

data and metadata associated to them. The graphs

formed by the workflow provenance information are

Provenance in Scientific Databases. Figure 1. Workflow of the first provenance challenge.

2204P Provenance in Scientific Databases
also represented using various data models, from rela-

tional to tree-based data models (e.g., XML, such as in

the Kepler and ES3 projects) or graph-based data mod-

els (e.g., Web semantic approaches based on RDF, such

as in the myGrid or Wings/Pegasus projects). As a

consequence, a plethora of languages have been used

to query workflow provenance information including

SQL, XQuery, and SPARQL while several dedicated

graph query languages have been designed.

More precisely, Foster et al. [13] tackle with the

problem of reproducing experiments by providing a

virtual data system approach offering the ability to not
only track the data consumed and produced during

computations but also rederive deleted intermediate

results of an experiment (virtual data).

Callahan et al. [13] focus on the problem of work-

flow evolution: VisTrails provides techniques to com-

pute workflow differences and similarities.

In an orthogonal way, Miles et al. define an open

architecture for provenance [13] designed to be domain

and technology independent. In this architecture, pro-

cess documentations describe what actually occurred at

execution time and are created and stored by prove-

nance-aware applications.

PIR

id desc

p445 AB

p267 CD

p547 ED

Mapping-Table

mid swissprot pir

1 a231 p445

2 w872 p267

Provenance in Scientific Databases P 2205

P

Finally, Biton et al. provide abstraction mechanisms

to help users face the overwhelming amount of

provenance information in workflow environments,

offering the possibility of focusing on the most relevant

provenance information. The technique pursued in

ZOOM*UserViews is that of ‘‘user views’’ [3]: Since

bioinformatics tasks may themselves be complex

sub-workflows, a user view determines what level

of sub-workflow the user can see, and thus what data

and steps are visible in provenance queries. Algorithms

tocomputerelevantuserviewshavebeenproposedin[4].

Data Provenance: Here, biological databases are

used as example scientific databases for illustrating

data provenance. The relations and SQL query are

shown below.

SELECT swissprot, pir, s.desc

FROM SWISS-PROT s, PIR p, Mapping

Table m

WHERE s.id = m.swissprot AND p.id = m.

pir

The result of executing the SQL query consists of

two tuples (a231, p445, AB) and (w872, p267, CD).

Work on data provenance [7,11] has provided expla-

nations for why a tuple, such as (a231, p445, AB), is in

the query result. The reason is because the first tuples

in SWISS-PROT, PIR and Mapping-Table respecti-

vely, joined according to the query to produce the

output tuple. This type of provenance is termed why-

provenance in [7]. In contrast, the where-provenance of

‘‘AB’’ in the output tuple (i.e., where ‘‘AB’’ is copied

from) is the desc attribute of the first tuple in SWISS-

PROT. In particular, no other source tuples are

involved in the explanation of where-provenance.

Subsequent work by Green et al. [12] is also able to

explain how a tuple is derived in the result of a query.

Another line of work captures provenance by

propagating annotations of source data to the output,

based on provenance, along query transformations.

Wang and Madnick [15] first articulated the idea

of using propagated annotations to analyze source

attribution. Subsequently, Buneman et al. [8] studied

the annotation placement problem using a variation
SWISS-PROT

id desc

a231 AB

w872 CD

u812 DD
of the propagation scheme of [15]. The propagation

scheme of [8,15] is essentially based on where data

is copied from. This scheme forms the default pro-

pagation scheme of DBNotes [2]. A serious draw-

back of the default scheme is that two equivalent SQL

queries (select-project-join-union queries) may not

propagate annotations in the same way. In DBNotes,

the authors proposed an alternative default-all scheme

to overcome this limitation. In the default-all pro-

pagation scheme, equivalent queries always propagate

annotations in the same way. Additionally, DB-

Notes also support the custom propagation scheme,

where one is allowed to customize a propagation

scheme as desired. So far, all systems [2,8,15] only

allow annotations on attribute values. Subsequent

research efforts have proposed techniques to relax

this restriction.

Most database and workflow techniques provide lit-

tle help for managing provenance in curated databases.

This is because curated databases are, by definition, not

constructed from the result of executing a query but

rather, created manually by scientists through the analy-

sis of information from several sources. In [6], the

authors proposed a copy-and-paste model that captures

a scientist’s manual curation efforts as provenance-aware

transactions. These transactions are logged and various

hierarchical compression techniques were proposed and

validated experimentally.
Key Applications
There are many application domains that can benefit

from a provenance system in science. Several uses of

2206P Provenance in Scientific Databases
provenance information are considered here, as de-

scribed in the literature [5,13,14].

Informational: Interpreting and understanding the

result of a scientific experiment necessitates to know

the provenance or context in which the data has been

produced.

Data Quality: By providing the source data and

transformations, provenance may help to estimate

data quality and data reliability.

Error Detection: Provenance can be used to detect

errors in data generation.

Re-use: Reproducing a local experiment or an ex-

periment described in a research paper may be possible

if precise provenance information is provided.

Attribution: The copyright and ownership of data

can be determined using provenance information. It

enables its citation, and may determine liability in case

of erroneous data.

Probabilistic Databases: Provenance has been

used to compute the confidences in the result of a

probabilistic query correctly, as well as to correctly

reason about the set of possible instances in the result

of the query [1].

Data Sharing and Data Integration: Provenance has

also been used to describe trust policies in the data

sharing system Orchestra and to prioritize updates, as

well as to understand and debug a data exchange or

data integration specification [10].
URL to Code
Chimera Project: http://www.ci.uchicago.edu/wiki/

bin/view/VDS/VDSWeb/WebMain

DBNotes Project: http://www.soe.ucsc.edu/�
wctan/Projects/dbnotes

ES3 Project: http://eil.bren.ucsb.edu

GriPhyN Virtual Data System Project: http://www.

ci.uchicago.edu/wiki/bin/view/VDS/VDSWeb/

WebMain

Kepler Project: http://kepler-project.org

myGrid Project: http://www.mygrid.org.uk

Orchestra Project: http://www.cis.upenn.edu/�
zives/orchestra

Pasoa Project: http://users.ecs.soton.ac.uk/lavm/

projects/pasoa.html

Provenance Challenges: http://twiki.ipaw.info/bin/

view/Challenge

SPIDER Project: http://www.soe.ucsc.edu/wctan/

Projects/debugger/index.html
VisTrails Project: http://vistrails.sci.utah.edu/index.

php/Main_Page

Wings/Pegasus Project: http://www.isi.edu/ikcap/

wings

ZOOM*UserViews Project: http://zoomuserviews.

db.cis.upenn.edu

Cross-references
▶Data Provenance

▶ Provenance

▶ Provenance in Experimental Data Management

▶ Scientific Databases

▶ Scientific workflows

Recommended Reading
1. Benjelloun O., Sarma A.D., Halevy A.Y., and Widom J. ULDBs:

databases with uncertainty and lineage. In Proc. 32nd Int. Conf.

on Very Large Data Bases, 2006, pp. 953–964.

2. Bhagwat D., Chiticariu L., Tan W.C., and Vijayvargiya G.

An annotation management system for relational databases.

VLDB J., 14(4):373–396, 2005.

3. Biton O., Cohen-Boulakia S., and Davidson S. Zoom* User-

Views: querying relevant provenance in workflow systems.

In Proc. 33rd Int. Conf. on Very Large Data Bases, 2007,

pp. 1366–1369.

4. Biton O., Cohen-Boulakia S., Davidson S., and Hara C.S.

Querying and managing provenance through user views

in scientific workflows. In Proc. 24th Int. Conf. on Data Engi-

neering, 2008.

5. Bose R. and Frew J. Lineage retrieval for scientific data pro-

cessing: a survey. ACM Comput. Surv., 37(1):1–28, 2005.

6. Buneman P., Chapman A., and Cheney J. Provenance manage-

ment in curated databases. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 2006, pp. 539–550.

7. Buneman P., Khanna S., and Tan W.C. Why and where:

a characterization of data provenance. In Proc. 8th Int. Conf.

on Database Theory, 2001, pp. 316–330.

8. Buneman P., Khanna S., and Tan W.C. On propagation of

deletions and annotations through views. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2002, pp. 150–158.

9. Buneman P. and Tan W.C. Provenance in databases. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2007, pp.

1171–1173.

10. Chiticariu L. and Tan W.C. Debugging schema mappings with

routes. In Proc. 32nd Int. Conf. on Very Large Data Bases, 2006,

pp. 79–90.

11. Cui Y., Widom J., and Wiener J.L. Tracing the lineage of

view data in a warehousing environment. ACM Trans. Database

Syst., 25(2):179–227, 2000.

12. Green T.J., Karvounarakis G., and Tannen V. Provenance semir-

ings. In Proc. 26th ACM SIGACT-SIGMOD-SIGART Symp. on

Principles of Database Systems, 2007, pp. 31–40.

13. Moreau L., Ludäscher B., Altintas I., Barga R.S., Bowers S.,

Callahan S., Chin G., Clifford B., Cohen S., Cohen-Boulakia S.,

Public-Key Encryption P 2207
Davidson S., Deelman E., Digiampietri L., Foster I., Freire J.,

Frew J., Futrelle J., Gibson T., Gil Y., Goble C., Golbeck J.,

Groth P., Holland D.A., Jiang S., Kim J., Koop D., Krenek A.,

McPhillips T., Mehta G., Miles S., Metzger D., Munroe S.,

Myers J., Plale B., Podhorszki N., Ratnakar V., Santos E.,

Scheidegger C., Schuchardt K., Seltzer M., Simmhan Y.L.,

Silva C., Slaughter P., Stephan E., Stevens R., Turi D., Vo H.,

Wilde M., Zhao J., and Zhao Y. The first provenance challenge.

Concurrency Comput. Pract. Exp., 20(5):409–418, 2007, Special

issue on the First Provenance Challenge.

14. Simmhan Y., Plale B., and Gannon D. A survey of data

provenance in e-science. ACM SIGMOD Rec., 34:31–36, 2005.

15. Wang Y.R. andMadnick S.E. A polygen model for heterogeneous

database systems: the source tagging perspective. In Proc. 16th

Int. Conf. on Very Large Data Bases, 1990, pp. 519–538.
Proximity

▶ Similarity and Ranking Operations
PRP

▶ Probability Ranking Principle
P

p-Sensitive k-Anonymity

▶ k-Anonymity
Pseudonymity

SIMONE FISCHER-HÜBNER

Karlstad University, Karlstad, Sweden

Synonyms
Nymity

Definition
The term pseudonymous originates from the Greek

word ‘‘pseudonymos’’ meaning ‘‘having a false name.’’

A pseudonym is an identifier of a subject other than

one of the subject’s real names, and pseudonymity is

the use of pseudonyms as identifiers. Sender pseudo-

nymity is defined as the sender being pseudonymous,
recipient pseudonymity as the recipient being pseu-

donymous [2].
Key Points
Pseudonymity resembles anonymity as both concepts

aim at protecting the real identity of a subject. The use

of pseudonyms, however, allows one to maintain a

reference to the subject’s real identity, e.g., for account-

ability purposes [1]. A trusted third party, adhering to

agreed rules, could for instance reveal the real identities

of misbehaving pseudonymous users. Pseudonymity

also allows a user to link certain actions under

one pseudonym. For instance, a user could re-use the

same pseudonym for purchasing items at a certain

online shop for building up a reputation or for collect-

ing bonus points under this so-called relationship

pseudonym.

The degree of anonymity protection provided by

pseudonyms depends on the amount of personal data

of the pseudonym holder that can be linked to the

pseudonym, and on how often the pseudonym is

used in various contexts/for various transactions. The

best protection can be achieved if for each transaction a

new so-called transaction pseudonym is used that is

unlinkable to any other transaction pseudonyms and

at least initially unlinkable to any other personal data

items of its holder (see also [2]).
Cross-references
▶Anonymity

▶Privacy

▶Privacy-enhancing Technologies
Recommended Reading
1. Common Criteria Project, Common Criteria for Informa-

tion Technology Security Evaluation, Version 3.1, Part 2:

Security Functional Requirements, September 2006, www.

commoncriteriaportal.org

2. Pfitzmann A. and Hansen M. Anonymity, unlinkability,

unobservability, pseudonymity, and identity management – a

consolidated proposal for terminology. Version 0.29, http://dud.

inf.tu-dresden.de/Anon_Terminology.shtml, July, 2007.
Public-Key Encryption

▶Asymmetric Encryption

2208P Publish/Subscribe
Publish/Subscribe

HANS-ARNO JACOBSEN

University of Toronto, Toronto, ON, Canada

Definition
Publish/Subscribe is an interaction pattern that char-

acterizes the exchange of messages between publishing

and subscribing clients. Subscribers express interest in

receiving messages and publishers simply publish mes-

sages without specifying the recipients for a message.

The publish/subscribe message exchange is decoupled

and anonymous. That is, publishers neither know sub-

scribers’ identities nor whether any subscribers with

matching interests exist at all. This supports a many-

to-many style of communication, where data sources

publish and data sinks subscribe. Different classes of

publish/subscribe approaches have crystallized. Their

main differences lie in the way subscribers express

interest in messages, in the structure and format of

messages, in the architecture of the system, and in the

degrees of decoupling supported. Publish/Subscribe

is widely used as middleware abstraction, applied to

enterprise application integration, system and network

monitoring, and selective information dissemination.

Historical Background
The definition in this entry aims to be general and

characterizes publish/subscribe as an interaction pattern

that governs the interaction between many publishing

data sources andmany subscribing data sinks. However,

in practice, publish/subscribe is often interpreted to

mean many slightly different concepts, such as an asyn-

chronous communication style, a messaging paradigm,

a message routing approach, an event filtering (match-

ing) approach, or a design pattern. Moreover, research

on publish/subscribe has been conducted in different

communities, such as distributed systems, networking,

programming languages, software engineering, and

databases. The exact origins of publish/subscribe are

therefore difficult to pinpoint exactly. Today, publish/

subscribe-style abstractions can be found in many mes-

saging standards, messaging products, databases, and

even in special purpose hardware solutions.

The interpretation of publish/subscribe as asyn-

chronous communication style emphasizes the data

dissemination aspect and the associated qualities of

service. The primary concern is the distribution of
data from many sources to many sinks. Sometimes

only a single source is considered and publish/sub-

scribe is viewed as a one-to-many data dissemination

paradigm, analogous to multicast. The channel-based

publish/subscribe model best represents this interpre-

tation. The indirect ancestry of publish/subscribe in

this context are early reliable broadcast protocols [3]

and primitives for process group management in

operating systems [4], which inspired work on group

communication as abstraction for reliable many-

to-many communication, surveyed in [5]. It is this

context that resulted in the subject-based publish/

subscribe approach (a.k.a. topic-based model), first

articulated by Oki et al. [16] and popularized by

TIBCO with its TIBCO/RV product.

The interpretation of publish/subscribe asmesaging

paradigm emphasizes the asynchronously decoupled

nature of publishing data sources and subscribing

data sinks. This view of publish/subscribe results from

the inclusion of publish/subscribe functionality into

standard messaging system specifications and pro-

ducts, such as MQ Series from IBMor the Java Message

Service specification [9].While these abstractions focus

more on asynchronous one-to-one communication

realized through message queues, they also include

publication, subscription and filtering capabilities,

often realized as subscriber-side filtering.

The interpretation of publish/subscribe as event

filtering and matching approach emphasizes the selec-

tive filtering capabilities of the approach. Subscriptions

represent filter expressions and publications represent

observations about events in the environment that need

to be selectively brought to the attention of subscribing

entities. The ancestry of this work goes back to the

formulation of the many-to-many pattern matching

problem in the artificial intelligence domain by Forgy

[7] who proposed the Rete algorithm for solving this

problem. Rete is the basis of many rule-based expert

systems. It efficiently evaluates observed facts provided

as input against rules compiled into a memory resident

graph (network), or an equivalent program [7]. This

work was succeeded by approaches for efficient trigger

management in database systems [2,6] and research on

active databases. In software engineering, similar con-

cepts were applied for integrating software tools result-

ing in approaches such as YEAST [12]. Around

the same time work on specifying events for event

correlation and root cause analysis appeared in net-

work management [14].

Publish/Subscribe P 2209

P

The interpretation of publish/subscribe as design

pattern is based on the Observer design pattern, first

articulated in the Gang of Four book [8], where the

Observer pattern is also synonymously referred to as

Publish/Subscribe. This reference is somewhat unfortu-

nate, as the prescribed realization of the Observer pat-

tern in the literature violates a key property of publish/

subscribe. The Observer pattern is suggested for use in

expressing one-to-many dependency between objects in

a system. When the state of one object (the subject)

changes state, all dependent objects are notified. This is

achieve by having the subject know about its dependents

by maintaining a list of them and requiring dependents

to register, if they are interested in the subject’s state

changes. This violates the anonymous communication

property of publish/subscribe, which requires that pub-

lishers and subscribers do not know each other.

There are a few other approach that have appeared

independently in different contexts, such as tuple

spaces in the programming languages context to model

concurrency in the 1980’s blackboard architectures in

the context of artificial intelligence to model the inter-

action of agents, continuous query processing in the

data management context, and stream processing, also

in the data management context. All these approaches

resemble publish/subscribe, but also differ in funda-

mental ways.

Foundations
A publish/subscribe system comprises publishers, sub-

scribers, and publish/subscribe message broker(s), also

referred to as message router(s).

Publishers and subscribers are roles held by applica-

tions built with the publish/subscribe abstraction. That

is a client of the system could be publisher as well as

subscriber at the same time. Subscribers express interest

by registering subscriptions with the publish/subscribe

system and publishers report on events by publishing

messages to the publish/subscribe system. The system

evaluates publications against registered subscriptions

and determines which subscriptions match for a

given publication. The complexity of matching varies

among different publish/subscribe models. In the

content-based publish/subscribe model, matching

involves the evaluation of publication message content

against expressive subscription filters. In the topic-

based publish/subscribe model matching involves the

evaluation of message topics against path-like sub-

scription language expressions. In the channel-based
publish/subscribe model, no explicit matching takes

place; subscribers select among a set of channels and

listen for messages broadcast on the channel.

Publications are transient and once match are not

further stored or processed. Exceptions to this treat-

ment are state-based publish/subscribe systems and the

Subject spaces model [10,11] where publications might

be maintained as partial matching state and as persis-

tent state per se, respectively.

Matching and notification are performed by the

publish/subscribe message brokers. In centralized

installations, there is a single broker to which subscri-

bers and publishers connect. In distributed installa-

tions, there are multiple brokers to which subscribers

and publishers connect.

Publish/Subscribe offers the following decoupling

characteristics. Decoupling in space allows clients to

be physically distributed. Decoupling in time allows

clients to be independently available. Decoupling in

location means that clients do not know each others

identity. This last characteristics is also referred to as

anonymous communication.

A publish/subscribe system is defined by the sub-

scription language model, the publication data model,

and the matching semantic. All these elements closely

depend on each other and define the subscription, the

notification, the advertisement, the publication and

specify the matching of the former.

The subscription language model defines the lan-

guage for expressing subscriptions. It determines the

expressiveness of the publish/subscribe model. For

example, in the content-based model a subscription is

a Boolean function over Boolean predicates. Predicates

test conditions, such as equality, binary relations, or

string operators over attribute values in publications.

Subscriptions are also referred to as filters, as they

specify which publication to filter out from a flow of

publications processed. Some systems distinguish

among the subscriber and the consumer. The subscriber

is the entity that specifies subscriptions and the con-

sumer is the entity that receives notifications when

certain subscriptions match. Subscriber and consumer

entities must not be the same.

The publication data model defines the structure,

the format, and the content type of publication mes-

sages. Publications are the messages emitted by publish-

ers. They represent the event of interest about the state

of the system or world in the context of the modeled

application. An event is an asynchronous state transition

Publish/Subscribe. Table 1. Comparison of models

Model Filtering Publication Subscription

Channel-
based

No
filtering

Messages Listening to
channels

Topic-
based

Topics
&topic
hierarchy

Messages
tagged with
topics

Expressions with
wildcards over
topics

Type-
based

Type
checking

Objects –

Content-
based

Message
content

Messages Content-based
filters

2210P Publish/Subscribe
of interest to subscribers. The publication is the message

that conveys the occurrence of the event to any interested

subscribers. In practice, the term publication and event

are often used synonymously without distinguishing

between the actual state transition and the message pub-

lished about the event. The publication concept can be

further refined by introducing notifications. A notifica-

tion is the message sent from the publish/subscribe

system to subscribers with matching subscriptions,

whereas a publication is the message published by

publishers. A notification must not be identical to a

publication that triggered it. Systems may define a noti-

fication semantic that specified which values of a publi-

cation to forward to subscribers. Also, more refined

notification semantics that apply transformations to

publications before notifying subscribers are imaginable.

However, many authors do not distinguish between the

publication and notification concept defined above and

use both terms synonymously. Some publish/subscribe

approaches rely on the concept of an advertisement.

An advertisement is similar to a type in programming

languages or schemas in databases and specifies the

kind of information a publisher will publish. It is

used by publish/subscribe systems to optimize match-

ing and routing of publications. In symmetry to the

difference between subscriber and publisher, a similar

difference could be made among publisher and pro-

ducer, where one entity publishes, while the other

entity merely advertises. However, this difference does

not seem to have been explored in practice so far. Not

all publish/subscribe approaches use advertisements.

The matching semantic defines the conditions

under which a publication matches a subscription.

For example, in content-based publish/subscribe, sub-

scriptions are often conjuncts of Boolean predicates.

That is a publication matches a subscription, if each

predicate in the subscription evaluates to true given

the values specified in the publication. This is a crisp

matching semantic; it requires that the publication

matches the subscription exactly by either evaluating

to true or false. In contrast, an approximate matching

semantic weakens the matching condition and toler-

ates that certain predicates do not match or only match

to a certain degree. A model based on fuzzy set theory

and possibility distribution is model realized in the

Approximate Toronto Publish/Subscribe (A-ToPSS)

project [13]. Similarly, probabilistic matching seman-

tics that are defined by evaluating the probability that

a publication matches a subscription are conceivable.
Also, similarity-based semantics that measure the simi-

larity between a publication and subscription based on

some similarity measure or metric are conceivable.

Various publish/subscribe models have crystallized

over time. These models are the channel-based, topic-

based, type-based, content-based, state-based, and sub-

ject spaces. Table 1 compares these models with respect

to publications, subscriptions, and filtering capabilities

they support. More details about each model and addi-

tional subject spaces and state-based smodels is provided

in a separate definition for each term.

Rule-based systems are intended to process facts

against rules through logical inference, forward chain-

ing or backward chaining algorithms, or by evaluating

rules on events. Facts represent the state of the world

and rules represent knowledge. Rule-based systems

generally require the maintenance of state in the rule

engine, as multiple facts processed over time may con-

tribute to the evaluation of rules.

Key Applications
Applications of publish/subscribe include Information

dissemination, information filtering, alerting and

notification.

Standards that implement the publish/subscribe

are the CORBA Event Service [18], the CORBA Noti-

fication Service [19], AMQP [1], JMS [9], WS Topics,

WS Notifications, WS Brokered Notifications, WS

Eventing, OMG’s Data Dissemination Service Specifi-

cation [17], OGF’s INFO-D [15].

Data Sets
The publish/subscribe research community has yet to

produce benchmarks and collect data sets. Initial

efforts are starting to emerge [20].

Publish/Subscribe over Streams P 2211
Cross-references
▶Channel-Based Publish/Subscribe

▶Content-Based Publish/Subscribe

▶ Event

▶ Event Routing

▶ State-Based Publish/Subscribe

▶ Streams

▶ Subject Spaces

▶Topic-Based Publish/Subscribe

▶Triggers

▶Type-Based Publish/Subscribe
P

Recommended Reading
1. AMQP Consortium. AdvancedMessage Queuing Protocol Spec-

ification, version 0–10 edition, 2008.

2. Chakravarthy S. and Mishra D. Snoop: an expressive event

specification language for active databases. Data Knowl. Eng.,

14(1):1–26,1994.

3. Chang J.M. and Maxemchuk N.F. Reliable broadcast protocols.

ACM Trans. Comput. Syst., 2(3):251–273, 1984.

4. Cheriton D.R. and Zwaenepoel W. Distributed process groups in

the v kernel. ACM Trans. Comput. Syst., 3(2):77–107, 1985.

5. Chockler G.V., Keidar I., and Vitenberg R. Group communi-

cation specifications: a comprehensive study. ACM Comput.

Surv., 33(4):427–469, 2001.

6. Cohen D. Compiling complex database transition triggers. ACM

SIGMOD Rec., 18(2):225–234, 1989.

7. Forgy C.L. Rete: A fast algorithm for the many pattern/

many object pattern match problem. Artifi. Intell., 19

(1):17–37, 1982.

8. Gamma E., Helm R., Johnson R., and Vlissides J. Design

Patterns: Elements of Reusable Object-oriented Software.

Addison-Wesley Longman Publishing Co., Inc., 1995.

9. Hapner M., Burridge R., and Sharma R. Java Message

Service. Sun Microsystems, version 1.0.2 edition, November

9th 1999.

10. Ka Yau Leung H. Subject space: a state-persistent model for

publish/subscribe systems. In Proc. Conf. of the Centre for

Advanced Studies on Collaborative Research, 2002, p. 7.

11. Ka Yau Leung H. and Jacobsen H.A. Efficient matching for state-

persistent publish/subscribe systems. In Proc. Conf. of the Cen-

tre for Advanced Studies on Collaborative Research, 2003, pp.

182–196.

12. Krishnamurthy B. and Rosenblum D.S. Yeast: A general

purpose event-action system. IEEE Trans. Softw. Eng.,

21(10):845–857, 1995.

13. Liu H. and Jacobsen H.A. Modeling uncertainties in publish/

subscribe system. In Proc. 20th Int. Conf. on Data Engineering,

2004.

14. Mansouri-samani M. and Sloman M. Gem: A generalized event

monitoring language for distributed systems. Distrib. Syst. Eng.

J., 4:96–108,1997.

15. OGF. Information Dissemination in the Grid Environment Base

Specifications, 2007.
16. Oki B., Pfluegl M., Siegel A., and Skeen D. The information bus:

an architecture for extensible distributed systems. In Proc. 14th

ACM Symp. on Operating System Principles, 1993, pp. 58–68.

17. OMG. Data Distribution Service for Real-time Systems, version

1.2, formal/07-01-01 edition, January 2007.

18. OMG. Event Service Specification, version 1.2, formal/04-10-02

edition, October 2004.

19. OMG. Notification Service Specification, version 1.1, formal/04-

10-11 edition, October 2004.

20. The PADRES Team. Publish/subscribe data sets. http://research.

msrg.utoronto.ca/Padres/DataSets, 2008.
Publish/Subscribe over Streams

YANLEI DIAO
1, MICHAEL J. FRANKLIN

2

1University of Massachusetts Amherst, MA, USA
2University of California-Berkeley, Berkeley, CA, USA

Definition
Publish/subscribe (pub/sub) is a many-to-many com-

munication model that directs the flow of messages

from senders to receivers based on receivers’ data inter-

ests. In this model, publishers (i.e., senders) generate

messages without knowing their receivers; subscribers

(who are potential receivers) express their data inter-

ests, and are subsequently notified of the messages

from a variety of publishers that match their interests.
Historical Background
Distributed information systems usually adopt a three-

layer architecture: a presentation layer at the top, a

resource management layer at the bottom, and a mid-

dleware layer in between that integrates disparate infor-

mation systems. Traditional middleware infrastructures

are tightly coupled. Publish/Subscribe [13] was pro-

posed to overcome many problems of tight coupling:

� With respect to communication, tightly coupled

systems use static point-to-point connections (e.g.,

remote procedure call) between senders and recei-

vers. In particular, a sender needs to know all its

receivers before sending a piece of data. Such com-

munication does not scale to large, dynamic systems

where senders and receivers join and leave frequent-

ly. Pub/sub offers loose coupling of senders and

receivers by allowing them to exchange data without

knowing the operational status or even the existence

of each other.

2212P Publish/Subscribe over Streams
� With respect to content, tight coupling can occur in

remote database access. To access a database, an

application needs to have precise knowledge of

the database schema (i.e., its structure and internal

data types) and is at risk of breaking when the

remote database schema changes. Extensible Mark-

up Language (XML)-based pub/sub has emerged as

a solution for loose coupling at the content level.

Since XML is flexible, extensible, and self-describing,

it is suitable for encoding data in a generic format

that senders and receivers agree upon, hence allow-

ing them to exchange data without knowing the

data representation in individual systems.

In many pub/sub systems, message brokers serve

as central exchange points for data sent between sys-

tems. Figure 1 illustrates a basic context in which a

broker operates. Publishers provide information by

creating streams of messages (Besides ‘‘messages,’’ the

words ‘‘events,’’ ‘‘tuples,’’ and ‘‘documents’’ are often

used with similar meanings in various contexts in the

database literature.) that each contain a header descri-

bing application-specific information and a payload

capturing the content of the message. Subscribers

register their data interests with a message broker in a

subscription language that the broker supports. Inside

the broker, arriving subscriptions are stored as con-

tinuous queries that will be applied to all incoming

messages. These queries remain effective until they

are explicitly deleted. Incoming messages are processed

on-the-fly against all stored queries. For each message,

the broker determines the set of queries matched by the

message. A query result is created for each matched

query and delivered to its subscriber in a timely

fashion.

Figure 2 shows a design space for publish/subscribe

over data streams. In this diagram, pub/sub systems are

first classified by the data model and the query lan-

guage that these systems support. Roughly speaking,

there are three main categories.
Publish/Subscribe over Streams. Figure 1. Overview of pub
� Subject-based: Publishers label each message with a

subject from a pre-defined set (e.g., ‘‘stock quote’’)

or hierarchy (e.g., ‘‘sports/golf ’’). Users subscribe

to the messages in a particular subject. These

queries can also contain a filter on the data fields

of the message header to refine the set of relevant

messages within a particular subject.

� Complex predicate-based: Some pub/sub systems

model the message content (payload) as a set of

attribute-value pairs, and allow user queries to con-

tain predicates connected using ‘‘and’’ and ‘‘or’’

operators to specify constraints over values of the

attributes. For example, a predicate-based query ap-

plied to the stock quotes can be ‘‘Symbol = ‘ABC’

and (Change > 1 or Volume > 50,000).’’

� XML filtering and transformation: Recent pub/sub

systems have started to exploit the richness of

XML-encoded messages, in particular, the hierar-

chical, flexible XML structure. User queries can be

written using an existing XML query language such

as XQuery. The rich XML structure and use of an

XML query language enable potentially more accu-

rate filtering of messages and further re-structuring

of messages for customized result delivery.

Pub/sub systems can be further classified based on the

style of query processing. In some systems, queries are

applied only to individual messages, e.g., filtering mes-

sages, which does not involve any interaction across

message boundaries. Such processing is referred to as

stateless. Stateless processing is in contrast to stream

query processing that maintains state over a long

stream of messages, hence referred to as stateful pro-

cessing. This distinction is illustrated for complex

predicate-based systems in Fig. 2.

Finally, pub/sub systems can be distinguished based

on the distribution of the architecture, as also shown

in Fig. 2. In a coarse-grained fashion, this design

space considers centralized and distributed processing.

Distributed processing spreads the processing load for
lish/subscribe.

Publish/Subscribe over Streams. Figure 2. Design space for publish/subscribe over streams.

Publish/Subscribe over Streams P 2213
larger-scale pub/sub services; accordingly, it requires a

more sophisticated routing functionality.
P

Foundations
As with stream processing, subscriptions, stored as

continuous query inside a broker, need to be evaluated

as data continuously arrives from other sources; that is,

queries are evaluated every time when a new data item

is received. Besides stream processing, pub/sub raises

several additional challenges:

� Scalability. A key distinguishing requirement of

pub/sub is scalability, in particular, in query popu-

lation that pub/sub systems need to support. Such

query populations can range from hundreds to

millions in applications such as personalized con-

tent delivery. Given such populations, a salient

issue is to efficiently search the huge set of queries

to find those that can be matched by a message and

to construct complete query results for them.

� Robustness. A second requirement ofmessage brokers

is the ability to perform in highly-dynamic environ-

ments where subscribers join and leave and their data

interests change over time. Since message brokers see

a constantly changing collection of queries, they must

react quickly to query changes without adversely af-

fecting the processing of incoming messages.

� Distribution. Due to the scale of message volume

and query population, large-scale pub/sub may

require the use of a network of message brokers to

distribute the query population and message pro-

cessing load. In this case, an additional issue is how

to efficiently route a message from its publishing

site to the set of brokers hosting relevant queries for

complete query processing.
Scope of this entry. The rest of the entry focuses on

complex predicate-based pub/sub systems. Pub/sub sys-

tems exploring XML filtering and transformation are

described in detail in the entry ‘‘XMLPublish/Subscribe.’’

Centralized, Stateless Publish/Subscribe

Le Subscribe [9] and Xlyeme [12] are predicate-based

message filtering systems that use centralized proces-

sing. In these systems, a predicate is a comparison

between an attribute and a constant using relational

operators such as ‘‘=’’, ‘‘>’’, and ‘‘<’’. The main issue

they address is how to efficiently match an incoming

event, in the form of attribute value pairs, with the

predicates of a large number of queries. The key idea is

to index predicates as well as to cluster queries. In

particular, Le Subscribe uses multi-attribute hash in-

dexes to evaluate several predicates in a query with a

single operation. In addition, it groups queries based

on the number of contained predicates and the com-

mon conjunction of equality predicates, so many

queries can be (partly) evaluated using a single opera-

tion. It further offers cost-based algorithms to find

optimal clustering and to dynamically adjust it.

Centralized, Stateful Publish/Subscribe

NiagaraCQ [6] considers continuous queries with more

complex predicates that can compare attributes of an

input message to constants or to attributes of another

message. To efficiently handle multiple queries, it groups

query plans of continuous queries based on common

expression signatures: an expression signature presents

the same syntax structure, but possibly different con-

stant values, in different queries. Consider queries that

are interested in stock quotes of different symbols.

Traditional query processing involves repeated

2214P Publish/Subscribe over Streams
retrieval of the symbol attribute from input and evalu-

ation of different predicates on this attribute for differ-

ent queries. The group plan employs a constant table to

store the constant values form different queries, and

retrieves this attribute from the input once and then

performs an equality join of the retrieved value and the

constant table to find all matching queries. For robust

processing, NiagaraCQ constructs group plans incre-

mentally: Given a new query, it constructs the query

plan, and merges the query plan bottom up with a

group plan with the same signature, extending the

group plan with the mismatched branch(es) if neces-

sary. This process is incremental as the addition of the

new query plan does not affect existing queries.

Recently, there has been a significant amount of

activity on handling continuous and time-varying

tuple streams, resulting in the development of multiple

general-purpose stream management systems [1,5,11].

These systems support complex continuous queries

that join multiple streams and/or compute aggregate

values over a period of time called a window (hence,

performing stateful processing). While this surge of

research explores a broad set of issues such as

adaptivity and approximation, shared processing of

window-based queries [5,11,10] is of particular rele-

vance to pub/sub.

Several special-purpose pub/sub systems have been

recently proposed to handle temporal correlations

among events in a stream. SASE [15] supports se-

quencing operators that integrate parameterized pre-

dicates (i.e., predicates that compare different events),

negation, and windowing. It explores a new query pro-

cessing abstraction that uses an automaton-based imple-

mentation for fast sequence operations and relational-

style post-processing for other tasks such as negation

and windowing. It also devises a set of optimizations in

this automaton-based framework for efficiency and scal-

ability. Cayuga [7] offers an algebra for expressing event

sequences that may address a finite yet unbounded

number of events with a similar property, and employs

a more sophisticated automaton model to support this

algebra. Its implementation focuses on multi-query

optimization including merging states of automata for

different queries and further indexing query predicates.

Distributed, Stateless Publish/Subscribe

In distributed pub/sub systems, messages are published

and subscriptions are registered to different brokers.
A key issue is to efficiently route each message from its

publishing site to the subset of brokers hosting relevant

queries for complete query processing. For complexity

reasons, most distributed pub/sub systems restrict

themselves to stateless services.

ONYX [8] presents an overview of a pub/sub net-

work exploring content-based routing. In this paradigm,

brokers are organized as an application-level overlay

network with a particular topology. When a new mes-

sage enters the broker network, the root broker as well

as each intermediate broker routes the message to its

neighboring brokers based on the correspondence be-

tween the content of the message and the subscriptions

residing at and reachable from those brokers. Content-

based routing is used as a key mechanism to avoid the

flooding of messages to all brokers in the network,

hence reducing bandwidth usage and broker processing

load and rendering better scalability.

ONYX consists of two layers of functionality. The

lower layer deals with the overlay network; in particular,

for each broker, it constructs a broadcast tree that is

rooted at that broker and reaches all other brokers in

the network. On top of these broadcast trees, the higher

layer performs content-based processing by dealing with

subscriptions and messages. Two issues determine the

effectiveness of content-based routing. The first is how to

partition subscriptions and assign them to host brokers.

Results of ONYX show that content-based routing is

most effective if the clustering of subscriptions results

in mutual exclusiveness in data interest among host

brokers. The second issue is how to aggregate subscrip-

tions from their host brokers and place such aggregations

as routing specifications in the intermediate brokers for

later directing the message flow. Different degrees of

generalization are possible depending on the precision-

efficiency tradeoff suitable for each pub/sub system.

For content-based routing, Gryphon [2] and Siena

[3] both aggregate subscriptions into compact, precise

in-network data structures and use efficient algorithms

to search these data structures to determine the routing

of the messages to other brokers in the network.

XPORT [14] focuses on the construction, mainte-

nance, and optimization of an overlay dissemination

tree of the available message brokers in the system. Its

tree-oriented optimization framework consists of a

generic aggregation model that allows system cost to

be expressed through various combinations of aggre-

gation functions and local metrics, and distributed

Publish/Subscribe over Streams P 2215

P

iterative optimization protocols for cost-based optimi-

zation of the overlay structure.

Distributed, Stateful Publish/Subscribe

For stateful publish/subscribe, Chandramouli et al. [4]

adopt the following model: Users define subscriptions as

SQL views over a conceptual (possibly distributed) data-

base and messages are published as updates to the data-

base; if a database update affects a subscription, the pub/

sub system sends a notification to the subscriber contain-

ing the change to the content of the subscription view.

The main idea of this work is to explore appropriate

interfacing between the database and the pub/sub net-

work so that existing stateless pub/sub networks can be

leveraged for efficient dissemination. To do so, the key is

to transform publishedmessages into a semantic descrip-

tion of affected subscriptions (performed at the database

side) and subscriptions into a predicate over the semantic

description (evaluated in the stateless pub/sub network).

Consider a selection-join subscription sp(sp-R R

"3sp-S S). If a new message applies an update DR
to table R, its effect on the subscription, sp(sp-R DR
"3 sp-S S), requires access to table S that is not in the

original update message (hence, stateful processing).

The proposed solution reformulates each message DR
into a series of messages containing the tuples in DR
"3 S at the database side; to utilize a stateless pub/

sub network, it transforms the select-join subscription

into a simple condition that evaluates sp ∧ p-R ∧ p-S

over reformulated messages.

Key Applications
Personalized content delivery. This class of applications

provide personalized filtering and delivery of news

feeds, web feeds (RSS), stock tickers, sport tickers,

etc. to large numbers of online users.

Online auction and online procurement. Through

these applications, users can create their own feeds

for their favorite searches, for example, on eBay.

Enterprise information management. Pub/sub has

been traditionally used to support application inte-

gration, which integrates disparate, independently-

developed applications into new services via the loose

coupling of senders and receivers based on receivers’

data interest.

System and network monitoring. Pub/sub has

been recently used in system and network monitoring,

where large-scale complex systems generate reports
categorizing various aspects of system performance and

resource utilization, and system administrators, end

users, and visualization applications subscribe to receive

updates on particular aspects of those reports.
Data Sets
Many data sources are available online, including RSS

feeds (indicated by the orange button labeled with

‘‘RSS’’ or ‘‘XML’’ in many web pages) and financial

feeds (e.g., Yahoo! Finance).
Cross-references
▶Continuous Query

▶ Stream Processing

▶XML

▶XML Document

▶XML Publish/Subscribe

▶XPath/XQuery

Recommended Reading
1. Abadi D., Carney D., Cetintemel U., Cherniack M., Convey C.,

Lee S., Stonebraker M., Tatbul N., and Zdonik S. Aurora: a new

model and architecture for data stream management. VLDB J.,

12(2):120–139, 2003.

2. Aguilera M.K., Strom R.E., Sturman D.C., Astley M., and

Chandra T.D. Matching events in a content-based subscription

system. In Proc. ACM SIGACT-SIGOPS 18th Symp. on the

Principles of Dist. Comp., 1999.

3. Carzaniga A. and Wolf A.L. Forwarding in a content-based

network. In Proc. ACM Int. Conf. of the on Data Communica-

tion, 2003, pp. 163–174.

4. Chandramouli B., Xie J., and Yang J. On the database/network

interface in large-scale publish/subscribe systems. In Proc. ACM

SIGMOD Int. Conf on Management of Data, 2006, pp. 587–598.

5. Chandrasekaran S., Cooper O., Deshpande A., Franklin M.J.,

Hellerstein J.M., Hong W., Krishnamurthy S., Madden S.,

Raman V., Reiss F., and Shah M.A. TelegraphCQ: continuous

dataflow processing for an uncertain world. In Proc. 1st Biennial

Conf. on Innovative Data Systems Research, 2003.

6. Chen J., Dewitt D.J., Tian F., and Wang Y. NiagaraCQ: a scalable

continuous query system for Internet databases. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2000, pp.

379–390.

7. Demers A.J., Gehrke J., Hong M., Riedewald M., and

White W.M. Towards expressive publish/subscribe systems.

In Advances in Database Technology, Proc. 10th Int. Conf. on

Extending Database Technology, 2006, pp. 627–644.

8. Diao Y., Rizvi S., and Franklin M.J. Towards an Internet-scale

XML dissemination service. In Proc. 30th Int. Conf. on Very

Large Data Bases, 2004, pp. 612–623.

9. Fabret F., Jacobsen H.A., Llirbat F., Pereira J., Ross K.A., and

Shasha D. Filtering algorithms and implementation for very fast

2216P Punctuations
publish/subscribe systems. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 2001, pp. 115–126.

10. Krishnamurthy S. Shared query processing in data streaming

systems. Ph.D. Dissertation, University of California, Berkeley.

11. Motwani R., Widom J., Arasu A., Babcock B., Babu S., Datar M.,

Manku G., Olston C., Rosenstein J., and Varma R. Query pro-

cessing, resource management, and approximation in a data

stream management system. In Proc. 1st Biennial Conf. on

Innovative Data Systems Research, 2003.

12. Nguyen B., Abiteboul S., Cobena G., and Preda M. Monitoring

XML data on the Web. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2001, pp. 437–448.

13. Oki B., Pfleugl M., Siegel A., and Skeen D. The information bus:

an architecture for extensible distributed system. In Proc. 14th

ACM Symp. on Operating System Principles, 1993, pp. 58–68.

14. Papaemmanouil O., Ahmad Y., Çetintemel U., Jannotti J., and

Yildirim Y. Extensible optimization in overlay dissemination

trees. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2006, pp. 611–622.

15. Wu E., Diao Y., and Rizvi S. High-performance complex event

processing over streams. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2006, pp. 407–418.
Punctuations

DAVID MAIER
1, PETER A. TUCKER

2

1Portland State University, Portland, OR, USA
2Whitworth University, Spokane, WA, USA

Definition
A punctuation is an item embedded in a data stream that

specifies a subset of the domain of that stream. A data

item that belongs to the subset specified by a punctua-

tion is said tomatch that punctuation. A data stream is

said to be grammatical if, for each punctuation, no data

items will follow that match that punctuation. Consid-

er a stream of bids for online auctions. When an

auction closes, a punctuation p is embedded in the

stream that matches all bids for that auction. In a

grammatical stream, p indicates no more bids will

arrive from that stream for that auction.

In themost common format, a punctuation is a tuple

of patterns, where each pattern corresponds to an attri-

bute of the data items in a stream. Typically, four

patterns are used: a wildcard (denoted by ‘∗’) is

matched by all values, a literal is matched by only the

given value, a list (denoted by { }) is matched by any

value in the given list, and a range (denoted by []) is

matched by any value that falls in the given range. If each

value in adata itemmatches its correspondingpattern in a
punctuation, then thedata itemmatches thepunctuation.

For example, if auction bids have schema <auction_id,

bidder_id,price,timestamp>, given the punctuation

p = P<{ 105,106},∗,[0.00,100.00],∗>, all bids for

auctions 105 and 106 with prices between 0 and 100

match p. Thus, the data item <105,95,90.00,10495>

matches p, but the data items <104,95,90.00,10495>

and <105,95,105.00,10495> do not.

Key Points
Punctuations have been shown to unblock query

operators and reduce the amount of state required by

query operators [2] when processing non-terminating

data streams. In addition, punctuations have proven

useful for dealing with disorder in streams [1] and in

specifying window semantics [1,3].

A punctuation-aware operator is a stream query op-

erator that can take advantage of grammatical streams.

Such an operator implements three different behaviors

in the presence of punctuations [2]. A pass behavior

allows operators to output data items due to punctua-

tions. For example, when a punctuation arrives, an

aggregate can output results for a particular group if

all possible data items for that group match that punc-

tuation. A keep behavior specifies which data items

must remain in state when a punctuation arrives. For

example, when a punctuation arrives, some data items

that are held in state for symmetric hash join may be

released. Finally, a propagation behavior defines which

punctuations can be output when punctuation arrives.

For example, union can output any punctuation that

has arrived from both inputs.

Most punctuation-aware operators are counterparts

of operators on finite relations. However, there can be

more than one way to define pass, keep and propagation

behavior when extending a relational operator to be

punctuation-aware. An important property here is for

a stream operator s to be faithful to its analogous

relational operator r, which means that on any finite

prefix x of a stream, the output of s on x is consistent

with the output of r on any finite extension of x.

Cross-references
▶Continuous Query

▶Data Stream

▶ Stream-Oriented Query Languages and Operators

▶ Stream Models

▶ Stream Processing

▶Window-Based Query Processing

Push/Pull Delivery P 2217
Recommended Reading
1. Li J., Maier D., Tufte K., Papadimos V., and Tucker P.A. Seman-

tics and evaluation techniques for window aggregates in data

streams. In ACM SIGMOD International Conference on Man-

agement of Data, 2005, pp. 311–322.

2. Tucker P.A., Maier D., Sheard T., and Fegaras L. Exploiting

punctuation semantics in continuous data streams. IEEE Trans.

Knowl. Data Eng., 15(3):555–568, 2003.

3. Tucker P.A., Maier D., Sheard T., and Stephens P. Using punc-

tuation schemes to characterize strategies for querying over data

streams. IEEE Trans. Knowl. Data Eng., 19(9):1227–1240, 2007.
Push Transactions

▶ Information Filtering
Push/Pull Delivery

▶Data Broadcasting, Caching and Replication
P

Q

QE, Query Enhancement

▶Query Expansion for Information Retrieval
QoS-Based Web Services
Composition

▶ Process Optimization
Quadtree Variations

▶Quadtrees (and Family)
Quadtrees (and Family)

MICHAEL VASSILAKOPOULOS
1,

THEODOROS TZOURAMANIS
2

1University of Central Greece, Lamia, Greece
2University of the Aegean, Salmos, Greece

Synonyms
Hierarchical spatial indexes; Hierarchical regular-

decomposition structures; Quadtree variations

Definition
In general, the term Quadtree refers to a class of repre-

sentations of geometric entities (such as points, line

segments, polygons, regions) in a space of two (or

more) dimensions, that recursively decompose the

space containing these entities into blocks until the

data in each block satisfy some condition (with respect,

for example, to the block size, the number of block

entities, the characteristics of the block entities, etc.).

In a more restricted sense, the term Quadtree

(Octree) refers to a tree data-structure in which each

internal node has four (eight) children and is used for
2009 Springer ScienceþBusiness Media, LLC
the representation of geometric entities in a two

(three) dimensional space. The root of the tree repre-

sents the whole space/region. Each child of a node

represents a subregion of the subregion of its parent.

The subregions of the siblings constitute a partition of

the parent’s regions.

Several variations of quadtrees are possible, accord-

ing to the dimensionality of the space represented,

the criterion guiding the subdivision of space, the

type of data represented, the type of memory (internal

or external) used for storing the structure, the shape,

position and size of the subregions, etc. However, the

term Quadtree usually refers to tree structures that

divide space in a hierarchical and regular (decompos-

ing to equal parts on each level) fashion. Since final

subregions/blocks (that are no further subdivided,

i.e., the blocks of the tree leaves) do not overlap, the

underlying space is partitioned to a set of regions, in

favor of the efficient processing of spatial queries.

Historical Background
As computer science evolved, the need for representing

and manipulating spatial data (data expressing geomet-

ric properties of entities, conceptually expressed by

points, line segments, regions, geometric shapes, etc.)

arose in several applications areas, like Computer Gra-

phics, Multimedia, Geographical Information Systems,

or VLSI Design. The recursive decomposition of space

was naturally identified as a means for organizing spatial

data. The term ‘‘quadtree’’ was used by Finkel and

Bentley [3] to express an extension of the Binary Search

Tree in two dimensions that was able to index points

(Point Quadtree). Since then, several Quadtree varia-

tions for a multitude of spatial data types that were

used for almost all sorts of spatial-data manipulations

have appeared in the literature.

The term Quadtree has taken a generic meaning

and is used to describe a class of hierarchical data struc-

tures whose common property is that they are based

on the principle of recursive decomposition of space.

The Quadtree, a variable resolution structure, is often

confused with the Pyramid [11], a multi-resolution

2220
Q

Quadtrees (and Family)
representation consisting of a hierarchy of arrays. Quad-

trees and family are space-driven methods (follow the

embedding space hierarchy): the division to subregions

obeys a predefined way. On the contrary, R-trees and

family are data-driven methods (follow the data space

hierarchy): the division to subregions depends on the data.

The Region Quadtree is the most famous such

structure. As its name implies, is used for representing

regions and was initially termed Q-tree by Klinger and

Dyer [6]. This is a main memory tree. A secondary

memory implementation, the Linear Quadtree, was

proposed by Gargantini [4]. The MX and PR Quad-

trees are adaptations of the Region Quadtree for

representing point data [11]. The MX-CIF Quadtree

is a structure able to represent a collection of rectan-

gles [11]. The PM family of Quadtrees are used for

representing polygonal maps and collections of line

segments. In general, extensions to three or more

dimensions of each quadtree-like structure are possi-

ble. For example, the extension of the Region Quadtree

for three dimensional volume data is called Region

Octree. More details about the history of these and

other quadtree-like structures can be found at [11,10].

There have also been proposed Quadtree variations for

storing a pictorial database, like the DI-Quadtree, for

binary images and the Generic Quadtree, for grayscale

and color images. These and other quadtree-basedmeth-

ods that have been proposed for representation and

querying in image database applications are reviewed

in [8]. Quadtree variations have also been proposed for

evolving regional data, like Overlapping Quadtrees [15],

Overlapping Linear Quadtrees, the Multiversion Linear

Quadtree, the Multiversion Access Structure for Evol-

ving Raster Images and the Time-Split Linear Quadtree

[13]. The XBR tree [13] is a quadtree-like structure for

indexing points, or line segments especially designed for
Quadtrees (and Family). Figure 1. A collection of points (a)
external memory. The Skip Quadtree [2] is based on

Region Quadtrees and Skip Lists. It indexes points and

can be used for efficiently answering point location,

approximate range, and approximate nearest neighbor

queries. Quadtrees have also been used in commercial

Database Management Systems [7]. Demos of several

Quadtree structures can be found at [1].

Foundations
This section briefly presents some key Quadtree struc-

tures among the numerous structures that have appea-

red in the literature.

Point Quadtree

The Point Quadtree [11] is an indexing mechanism for

points. Each tree node corresponds to a point that

subdivides the region of the node in four parts defined

by two lines (parallel to the coordinate axes) on which

this point lies. Thus, the shape, and position of sub-

regions depend on the coordinates of the point (data-

driven subdivision). However, each region is always

subdivided in four parts. A region is considered closed

in relation to its lower and left border. If multiple

points with the same coordinates are allowed, each

node contains a list of the points it stores. In Fig. 1, a

collection of points and the resulting partitioning of

space (a) and the corresponding Point Quadtree (b)

are depicted. By convention, in this and other Quad-

tree variations, the children of a node correspond in

order to the North-West, North-East, South-West and

South-East subregions of the node. Note that the par-

titioning of space and the tree shape depend on the

order of insertion of the points. Balanced versions of

this tree have been proposed in the literature [11].

A Point Quadtree is not only suitable for point

indexing (e.g., discovering if there is and which is the
and the corresponding point quadtree (b).

Quadtrees (and Family)
Q

2221

Q

gas station that lies at a given pair of coordinates), but

for answering range queries, as well (e.g., finding all the

cities that reside within a specified distance from a

given pair of coordinates). The efficiency of the Point

Quadtree during this operation comes from pruning

the search space only to nodes that may contain part of

the answer.

Region Quadtree

The Region Quadtree [11] (or Q-tree [6]) is a popular

hierarchical data structure for the representation of

binary images, or regional data. Such an image can

be represented as a 2n � 2n binary array, for some

natural number n, where an entry equal to 0 stands

for a white pixel and an entry equal to 1 stands for a

black pixel. The Region Quadtree for this array is made

up either of a single white (black) node if every pixel of

the image is white (black), or of a gray root, which

points to four subquadtrees, one for every quadrant of

the original image. Each region is always subdivided in

four equal parts (space-driven subdivision). An exam-

ple of an 8 � 8 binary image, its Region Quadtree and

the unicolor blocks to which it is partitioned by the

Quadtree external nodes are shown in Figs. 2a, 2b and

2c, respectively.

The Region Quadtree, depending on the distribu-

tion of data, may result in considerable space savings.

However, it can be used for several operations on

regional data. One of the them is the determination

of the color of a specific pixel, or the determination of

the block where this pixel resides (a specialized point-

location query). Set theoretic operations are also well

adapted to Region Quadtrees (recoloring, or dithering

of a single image, or overlaying, union, intersection of

sets of images). Connected component labeling (that is

grouping pixels according to their color) is performed

by utilizing Region Quadtrees. Other operations that
Quadtrees (and Family). Figure 2. A binary image (a), its pa
are well adapted to Region Quadtrees include window

clipping and certain transformations (like scaling by a

power of two, or rotating by 90�). For more operations

and details, see [9].

The pointer-based implementation of Region Quad-

trees is a main memory implementation with one node

type that consists of pointer fields and one color field.

This node type is used for internal and external nodes

according to the value of the color field. Although such

an implementation is memory consuming it simplifies

several operations. A secondary memory implementa-

tion of a Region Quadtree, called a Linear Quadtree [4],

consists of a list of values where there is one value

for each black node of the pointer-based Quadtree.

The value of a node is an address describing the position

and size of the corresponding block in the image. These

addresses can be stored in an efficient structure for

secondary memory (such as a B-tree or one of its varia-

tions). Evidently, this representation is very space effi-

cient, although it is not suited tomany useful algorithms

that are designed for pointer-based Quadtrees. Themost

popular linear implementations are the FL (Fixed

Length) and the FD (Fixed length – Depth) linear imple-

mentations. In the former implementation, the address

of a black Quadtree node is a code-word that consists of

n base 5 digits. Codes 0, 1, 2 and 3 denote directions

NW, NE, SWand SE, respectively, while code 4 denotes

a do-not-care direction. If the black node resides on

level i, where n > = i > = 0, then the first n-i digits

express the directions that constitute the path from the

root to this node and the last i digits are all equal to 4.

In the latter implementation, the address of a black

Quadtree node has two parts: the first part is a code-

word that consists of n base 4 digits. Codes 0, 1, 2 and 3

denote directions NW, NE, SW and SE, respectively.

This code-word is formed in a similar way to the

code-word of the FL-linear implementation with the
rtition to blocks (b) and its region quadtree (c).

2222
Q

Quadtrees (and Family)
difference that the last i digits are all equal to 0. The

second part of the address has [log2(n + 1)] bits and

denotes the depth of the black node, or in other words,

the number of digits of the first part that express the

path to this node. Another interesting secondary mem-

ory implementation of the Region Quadtree is the

Paged-pointer Quadtree [12] that partitions the tree

nodes into pages and manages these pages using B-

tree techniques.

PR Quadtree

The PR Quadtree [11] (P comes from point and R

from region) is an indexing technique for points

(with similar functionality to Point Quadtrees) that is

based on the RegionQuadtree. Points are associatedwith

quadrants that are formed according to the Region

Quadtree rules. A leaf node may be white (without any

points residing in its region), or black (with one point

residing in its region). In Fig. 3, the collection of points

of Fig. 1 and the resulting partitioning of space (a) and

the corresponding PR Quadtree (b) are depicted.

The final shape of the PR Quadtree is independent

to the order of insertion of the points. A problem with

this structure is that the maximum depth of recursive

decomposition depends on the minimum distance

between two points (if there are two points very close

to each other, the decomposition can be very deep).

This effect is reduced by allowing leaf nodes to hold

up to C points. When this capacity is exceeded, the

node is split in four. By storing leaf nodes on secondary

memory and setting C according to the disk-page

size, a structure that partially resides on disk is created.

PMR Quadtree

The PMR Quadtree [11] is capable of indexing line

segments and answering window queries (e.g., find the
Quadtrees (and Family). Figure 3. A collection of points (a)
line segments that intersect a given window/area in the

plane). The internal part of the tree consists of an

ordinary Region Quadtree. The leaf nodes of this

Quadtree are bucket nodes that hold the actual line

segments. Each line segment is stored in every bucket

whose quadrant (region) it crosses. A line segment can

cross the region of a bucket either fully or partially.

Each bucket has a maximum capacity. When this

capacity is exceeded due to an insertion of a line

segment, the bucket is split in four equal quadrants.

However, it is possible that one (or more) of these

quadrants holds a number of line segments that still

exceeds the bucket capacity. Since this is not occurring

very often in practical applications (e.g., when line

segments represent a road network) a bucket is split

only once in four and overflow buckets are created

when needed. The PMR quadtree can be implemented

with bucket nodes residing on disk.

In Fig. 4, an example of the splitting of regions

during the creation of a PMR Quadtree by the succes-

sive insertion of line segments is depicted. The bucket

capacity is two (just for demonstration purposes).

Figures 4a, 4b and 4c show the subdivision of space

and the buckets created as line segments are inserted.

Overflow buckets do not result from the insertions of

Fig. 4. Note that the shape of the PMR Quadtree

depends on the order of insertion of the line segments.

XBR Tree

The XBR tree (XBR stands for eXternal Balanced Regu-

lar) is an indexing method suitable for indexing points

(like a bucket PR Quadtree), or line segments (like a

PMRQuadtree). It totally resides in secondary memory.

Its hierarchical decomposition of space is the same as

the one in Region Quadtrees. There are two types of

nodes in an XBR-tree. The first are the internal nodes
and the corresponding PR quadtree (b).

Quadtrees (and Family). Figure 5. XBR trees with one level (a) and two levels (b) of internal nodes.

Quadtrees (and Family). Figure 4. Splitting of PMR-quadtree regions by the successive insertion of line segments.

Quadtrees (and Family)
Q

2223

Q

that constitute the index. The second are the leaves

containing the data items. Both the leaves and the

internal nodes correspond to disk pages.

In an internal node, a number of pairs of the form

<address, pointer> are contained. The number of

these pairs is non-predefined because the addresses

being used are of variable size. An address expresses a

child node region and is paired with the pointer to this

child node. Both the size of an address and the total

space occupied by all pairs within a node must not

exceed the node size. The addresses in these pairs are

used to represent certain subquadrants that result from

the repetitive subdivision of the initial space. This is

done by assigning the numbers 0, 1, 2 and 3 to NW,

NE, SW and SE quadrants respectively. For example,

the address 1 is used to represent the NE quadrant

of the initial space, while the address 10 to repre-

sent the NW subquadrant of the NE quadrant of the

initial space.

In the XBR-tree, the region of a child is the sub-

quadrant specified by the address in its pair, minus the

subquadrants corresponding to all the previous pairs

of the internal node to which it belongs. Figure 5

presents XBR-trees of one (a) and two (b) levels of
internal nodes. The þ, is used to denote the end of each

variable size address. The address 2þ in the root

denotes the SW quadrant of the initial space. On the

other hand, the address þ in the root specifies the

initial space minus the SW quadrant.

Each leaf node in the XBR tree may contain a

number of data items, which is limited by a predefined

capacity C. When an insertion causes the number of

data items of a leaf to exceed C, the leaf is split follow-

ing a hierarchical decomposition analogous to the

quadtree decomposition. In case line segments

are stored, (like PMR Quadtrees) a leaf is split only

once in four and overflow buckets are created

when needed.

Due to the incremental (level-by-level) formation

of absolute addresses and the variable length coding of

them, XBR trees are very compact structures. Thus, I/O

during query processing is reduced, favoring proces-

sing efficiency.

Quadtree and Time-Evolving Regional Data

In Tzouramanis et al. [13] and previous papers by

the same authors, four temporal extensions of the Linear

Region Quadtree are presented: the Time-Split Linear

2224
Q

Quadtrees (and Family)
Quadtree, the Multiversion Linear Quadtree, the Multi-

version Access Structure for Evolving Raster Images and

Overlapping Linear Quadtrees. Thesemethods comprise

a collection of specialized quadtree-based access meth-

ods that can efficiently store andmanipulate consecutive

raster images. Through these methods, efficient sup-

port for spatio-temporal queries referring to the past is

provided. An extensive experimental space and time

performance comparison of all the above-mentioned

access methods, presented in Tzouramanis et al. [13],

has shown that the Overlapping Linear Quadtrees is the

best performing method. For more details, see [13] and

its references.

Key Applications
Quadtree-based access methods speed up access and

queries in database systems that support spatial data.

Some common uses ofQuadtrees include representation

and indexing of images, spatial indexing for several

spatial types (points, regions, line segments, polygonal

maps), several set operations, point location, range, and

nearest neighbor queries and temporal queries on series

of evolving images. Quadtrees have been employed in

numerous application areas that require efficient retriev-

al of complex objects, such as Computer Graphics and

Animation, Computer Vision, Robotics, Geographical

Information Systems (GIS), Image Processing, Image

and Multimedia Databases, Content-Based Image Re-

trieval, Medical Imaging, Urban Planning, Computer-

Aided Design (CAD), or even in recent novel database

applications such as P2P Networks. Furthermore, to-

gether with the R-tree family, Quadtrees serve as an

important bridge for extending spatial databases to

applications of several scientific areas, such as Agricul-

ture, Oceanography, Atmospheric Physics, Geology, As-

tronomy, Molecular Biology, etc. Commercial database

vendors like IBM and Oracle [7] have recently imple-

mented the Quadtree and the Linear Quadtree to cater

for the large and diverse above application markets.

Future Directions
Since Quadtrees were mainly introduced as main mem-

ory structures, the development of further external

memory versions of several Quadtree variations and

the study of their performance for several queries remain

a target. Recent papers, like [5], show that the compara-

tive performance study for several query types between

space-driven and data-driven indexing techniques can

lead to interesting conclusions. Algorithms for queries
based on the joining of data (e.g., image data) tradition-

ally stored in Quadtree structures and other types of

spatial data stored in data-driven structures (e.g., point

data stored in R-tree family structures) are worth devel-

oping and studying, especially when the evolution of the

data is considered (spatio-temporal data).

Cross-references
▶ Indexing

▶ Indexing Historical Spatio-temporal Data

▶Main Memory

▶Multidimensional Indexing

▶Query Processing and Optimization in Object Rela-

tional Databases

▶R-Tree (and Family)

▶Raster Data Management

▶ Spatial Indexing Techniques

▶Tree-based Indexing

Recommended Reading
1. Brabec F. and Samet H. Spatial Index Demos. http://donar.

umiacs.umd.edu/quadtree/index.html

2. Eppstein D., Goodrich M.T., and Sun J.Z. The skip quadtree:

a simple dynamic data structure for multidimensional data.

In Proc. 21st Annual Symp. on Computational Geometry,

2005, pp. 296–305.

3. Finkel R. and Bentley J.L. Quad trees: a data structure for

retrieval on composite keys. Acta Informatica, 4(1):1–9, 1974.

4. Gargantini I. An effective way to represent quadtrees. Commun.

ACM, 25(12):905–910, 1982.

5. Kim Y.J. and Patel J.M. Rethinking choices for multi-dimensional

point indexing: making the case for the often ignored quadtree.

In Proc. 3rd Biennial Conf. on Innovative Data Systems Re-

search, 2007, pp. 281–291.

6. Klinger A. and Dyer C. Experiments on picture representation

using regular decomposition. Comput. Graph. Image Process.,

5:68–105, 1976.

7. Kothuri R., Ravada S., and Abugov D. Quadtree and r-tree.

indexes in oracle spatial: a comparison using gis data. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2002, pp.

546–557.

8. Manouvrier M., Rukoz M., and Jomier G. Quadtree-Based

Image Representation and Retrieval. In Spatial Databases:

Technologies, Techniques and Trends. Idea Group Publishing,

2005, pp. 81–106.

9. Samet H. Applications of Spatial Data Structures. Addison

Wesley, Reading, MA, USA, 1990.

10. Samet H. Foundations of Multidimensional and Metric Data

Structures. Morgan Kaufmann, 2006.

11. Samet H. The Design and Analysis of Spatial Data Structures.

Addison Wesley, 1990.

12. Shaffer C.A. and Brown P.R. A Paging Scheme for Pointer-Based

Quadtrees. In Proc. 3rd Int. Symp. Advances in Spatial Data-

bases, 1993, pp. 89–104.

Qualitative Temporal Reasoning
Q

2225
13. Tzouramanis T., Vassilakopoulos M., and Manolopoulos Y.

Benchmarking access methods for time-evolving regional data.

Data Knowl. Eng., 49(3):243–286, 2004.

14. Vassilakopoulos M. and Manolopoulos Y. External balanced

regular (x-BR) trees: New structures for very large spatial

databases. In Advances in Informatics, D.I. Fotiadis, S.D.

Nikolopoulos. World Scientific, 2000, pp. 324–333.

15. Vassilakopoulos M., Manolopoulos Y., and Economou K. Over-

lapping quadtrees for the representation of similar images.

Image Vis. Comput., 11(5):257–262, 1993.
Qualitative Relations between Time
Intervals

▶Allen’s Relations
Qualitative Temporal Constraints
between Time Intervals

▶Allen’s Relations
Q

Qualitative Temporal Reasoning

PAOLO TERENZIANI

University of Turin, Turin, Italy

Synonyms
Non-metric temporal reasoning; Reasoning with qual-

itative temporal constraints

Definition
Qualitative temporal constraints are non-metric tempo-

ral constraints stating the relative temporal position of

facts that happen in time (e.g., fact F1 is before or

during fact F2). Different types of qualitative con-

straints can be defined, depending on whether facts

are instantaneous, durative, and/or repeated. Qualita-

tive temporal reasoning is the process of reasoning with

such temporal constraints. Given a set of qualitative

temporal constraints, qualitative temporal reasoning

can be used for different purposes, including checking
their consistency, determining the strictest constraints

between pairs of facts (e.g., for query answering pur-

poses), pointing out a consistent scenario (i.e., a possi-

ble instantiation of all the facts on the timeline in such

a way that all temporal constraints are satisfied).

Historical Background
In several domains and\or application areas, temporal

indeterminacy has to be coped with. In such domains,

the absolute time when facts hold (i.e., the exact tem-

poral location of facts) is generally unknown. On the

other hand, in many of such domains, qualitative tem-

poral constraints about the relative temporal location

of facts are available, and reasoning about such con-

straints is an important task. As a consequence, there is

a long tradition for qualitative temporal reasoning

within philosophical logic (consider, e.g., Walker [15],

who first formulated a kind of logical calculus about

durative periods, and Prior’s seminal branching time

logics [11].

In particular, qualitative temporal reasoning is im-

portant in several artificial intelligence areas, including

planning, scheduling, and natural language under-

standing. Therefore, starting from the beginning of

the 1980s, several specialized approaches (as opposed

to logical approaches, which are usually general-pur-

pose) to the representation of qualitative temporal

constraints and to temporal reasoning about them

have been developed, especially within the artificial

intelligence area.

The first milestone in the specialized approaches to

qualitative temporal reasoning dates back to Allen’s

Interval Algebra [1], coping with qualitative temporal

constraints between intervals (called periods by the

database community, and henceforth in this entry),

to cope with durative facts. Further on, several other

algebrae of qualitative temporal constraints have

been developed, to cope with instantaneous [14] or

repeated/periodic [9,12] facts, and several temporal

reasoning systems have been implemented and used

in practical applications (see e.g., some comparisons in

Delgrande et al. [4]).

Significant effort in the area has been devoted to

the analysis of the trade-off between the expressiveness

of the representation formalisms and the complexity

of correct and complete temporal reasoning algorithms

operating on them (see e.g., the survey by Van Beek

[13]). Since consistency checking in Allen’s algebra is

NP-complete, several approaches, starting from Nebel

2226
Q

Qualitative Temporal Reasoning
and Burkert [10], have focused on the identification

of tractable fragments of it. The integration of qualita-

tive and metric constraints has also been analyzed

(see e.g., Jonsson and Backstrom [7]). Recent develop-

ments also include incremental [6] and fuzzy [2] quali-

tative temporal reasoning. Moreover, starting in the

1990s, some approaches also started to investigate

the adoption of qualitative temporal constraints and

temporal reasoning within the temporal database

context [8,3].

Foundations
Qualitative temporal constraints concern the relative

temporal location of facts on the timeline. A significant

and milestone example is Allen’s Interval Algebra (IA).

Allen pointed out the 13 primitive qualitative relations

between time periods: before, after, meets, met-by,

overlaps, overlapped-by, starts, started-by, during,

contains, ends, ended-by, equal. These relations are

exhaustive and mutually exclusive, and can

be combined in order to represent disjunctive rela-

tions. For example, the constraints in (Ex.1) and

(Ex.2) state that F1 is before or during F2, which, in

turn, is before F3.

(Ex.1) F1 (BEFORE,DURING) F2
(Ex.2) F2 (BEFORE) F3

In Allen’s approach, qualitative temporal reasoning is

based on two algebraic operations over relations on

time periods: intersection and composition. Given two

possibly disjunctive relations R1 and R2 between two

facts F1 and F2, temporal intersection (henceforth \)
determines the most constraining relation R between

F1 and F2. For example, the temporal intersection

between (Ex.2) and (Ex.3) is (Ex.4). On the other

hand, given a relation R1 between F1 and F2 and a

relation R2 between F2 and F3, composition (@) gives

the resulting relation between F1 and F3. For example,

(Ex.5) is the composition of (Ex.1) and (Ex.2) above.

(Ex.3) F2 (BEFORE,MEETS,OVERLAPS) F3

(Ex.4) F2 (BEFORE) F3
(Ex.5) F1 (BEFORE) F3

In Allen’s approach, temporal reasoning is performed

by a path consistency algorithm that basically computes

the transitive closure of the constraints by repeatedly

applying intersection and composition. Abstracting

from many optimizations, such an algorithm can be

schematized as follows:
Repeat

For all triples of facts<Fi,Fk,Fj>

Let Rij denote the (possibly ambiguous) relation

between Fi and Fj
Rij←Rij\(Rik@Rkj)

Until quiescence

Allen’s algorithm operates in a time cubic in the num-

ber of periods. However, such an algorithm is not

complete for the Interval Algebra (in fact, checking

the consistency of a set of temporal constraints in the

Interval Algebra is NP-hard [14]).

While in many approaches researchers chose to

adopt Allen’s algorithm, in other approaches they

tried to design less expressive but tractable formalisms.

For example, the Point Algebra is defined in the same

way as the Interval Algebra, but the temporal elements

are time points. Thus, there are only three primitive

relations between time points (i.e., <,=, and>), and

four disjunctive relations (i.e., (<,=), (>,=), (<,>),

and (<,=,>). In the Point Algebra, sound and com-

plete constraint propagation algorithms operate in

polynomial time (namely, in O(n4), where n is

the number of points [13]). Obviously, the price to

be paid for tractability is expressive power: not all

(disjunctive) relations between periods can be mapped

onto relations between their endpoints. For instance F1
(BEFORE,AFTER) F2 cannot be mapped into a set of

(possibly disjunctive) pairwise relations between time

points; indeed an explicit disjunction between two

different pairs of time points is needed (i.e., (end

(F1)<start(F2)) or (end(F2)<start(F1)). The Continu-

ous Point Algebra restricts the Point Algebra excluding

inequality (i.e., (<,>)). Allen’s path consistency algo-

rithm is both sound and complete for such an algebra,

and operates in O(n3) time, where n is the number of

time points (for more details, see e.g., the survey by

Van Beek [13]).

A different simplification of Allen’s Algebra has been

provided by Freksa [5]. Freska has identified coarser

qualitative temporal relations than Allen’s ones, based

on the notion of semi-intervals (i.e., beginnings and

ending points of durative events). As an example of

relation on semi-intervals, Freksa has introduced the

‘‘older’’ relation (F1 is older than F2 if F1’s starting point

is before F2’s starting point, with no constraint on the

ending points). Notice that Freska’s older relation cor-

responds to a disjunction of five Allen’s relations (i.e.,

before,meets, overlaps, finished-by, contains). Freska has

Qualitative Temporal Reasoning
Q

2227

Q

also shown that relations between semi-intervals result

in a possible more compact notation and more effi-

cient reasoning mechanisms, in particular if the initial

knowledge is, at least in part, coarse knowledge.

Another mainstream of research about qualita-

tive temporal reasoning focused on the identifica-

tion of tractable fragments of Allen’s algebra. The

milestone work by Nebel and Burkert [10] first pointed

out the ‘‘ORD-Horn subclass,’’ showing that reasoning

in such a class is a polynomial time problem and that

it constitutes a maximal tractable subclass of Allen’s

algebra.

Starting in the early 1990s, some integrated tempo-

ral reasoning approaches were devised in order to deal

with both qualitative and quantitative (i.e., metric)

temporal constraints. For instance, Jonsson and Back-

strom [7] proposed a framework, based on linear pro-

gramming, that deals with both qualitative and metric

constraints, and that also allows one to express con-

straints on the relative duration of events (see e.g.,

(Ex.6)).

(Ex.6) John’s drive to work is at least 30 minutes

more than Fred’s.

Many other important issuesmust be taken into account

when considering qualitative temporal reasoning. For

example, starting from Ladkin’s seminal work [9], quali-

tative constraints between repeated facts have been con-

sidered. In the same mainstream, Terenziani has

proposed an extension ofAllen’s algebra to consider qua-

litative relations between periodic facts [12]. Terenziani’s

approach deals with constraints such as (Ex.7):

(Ex.7) Between January 1, 1999 and December 31,

1999 on the first Monday of each month,

Andrea went to the post office before going

to work.

In Terenziani’s approach, temporal reasoning over

such constraints is performed by a path consistency

algorithm which extends Allen’s one. Such an algo-

rithm is sound but not complete and operates in

cubic time with respect to the number of periodic facts.

As concerns more strictly the area of (temporal)

databases, starting in the mid 1990s, some researchers

started to investigate the treatment of qualitative tem-

poral constraints within temporal (relational) databases

(see e.g., [8,3]). In such approaches, the valid time of

facts (tuples) is represented by symbols denoting time

periods, and qualitative and quantitative temporal
constraints are used in order to express constraints

on their relative location in time, on their duration,

and so on.

Koubarakis [8] first extended the constraint data-

base model to include indefinite (or uncertain) tem-

poral information (including qualitative temporal

constraints). Koubarakis proposed an explicit repre-

sentation of temporal constraints on data; moreover,

the local temporal constraints on tuples are stored into

a dedicated attribute. He also defined the algebraic

operators, and theoretically analyzed their complexity.

On the other hand, the work by Brusoni et al., [3]

mainly focused on defining an integrated approach

in which ‘‘standard’’ artificial intelligence tempo-

ral reasoning capabilities (such as the ones sketched

above in this entry) are suitably extended and paired

with an (extended) relational temporal model. First,

the data model is extended in such a way that each

temporal tuple can be associated with a set of identi-

fiers, each one referring to a time period. A separate

relation is used in order to store the qualitative (and

quantitative) temporal constraints of such periods.

The algebraic operations of intersection, union and

difference are defined over such sets of periods, and

indeterminacy (e.g., about the existence of the intersec-

tion between two periods) is coped with through the

adoption of conditional intervals. Algebraic relational

operators are defined on such a data model, and their

complexity analyzed. Finally, an integrated and modu-

lar architecture combining a temporal reasoner with an

extended temporal database is described, as well as a

practical application to the management of temporal

constraints in clinical protocols and guidelines.

Key Applications
Qualitative temporal constraints are pervasive in many

application domains, in which the absolute and exact

time when facts occur is generally unknown, while

there are constraints on their relative order (or tempo-

ral location). Such domains include the ‘‘classical’’

domains of planning and scheduling, but also more

recent ones such as managing multimedia presenta-

tions or clinical guidelines.

As a consequence, temporal reasoning is already a

well-consolidated area of research, especially within

the artificial intelligence community, in which a large

deal of works aimed at building application-indepen-

dent and domain-independent managers of temporal

constraints. Such managers are intended to be

2228
Q

Qualitative Temporal Reasoning
specialized knowledge servers that represent and reason

with temporal constraints, and that co-operate with

other software modules in order to solve problems

in different applications. For instance, in planning

problems, a temporal manager could co-operate with

a planner, in order to check incrementally the temporal

consistency of the plan being built. In general, the

adoption of a specialized temporal manager is advan-

tageous from the computational point of view (e.g., with

respect to general logical approaches based on theorem

proving), and it allows programmers to focus on their

domain-specific and application-specific problems and

to design modular architectures for their systems.

On the other hand, the impact and potentiality of

extensively exploiting qualitative temporal reasoning in

temporal databases have only been minimally explored

by the database community, possibly due to the compu-

tational complexity that it necessarily involves. However,

(temporal) databases will be increasingly applied to new

applications domains, in which the structure and the

inter-dependencies of facts (including the temporal

dependencies) play a major role, while the assumption

that the absolute temporal location of facts is known

does no longer hold. Significant application areas in-

clude database applications to store workflows, proto-

cols, guidelines (see, e.g., the example in [3]), and so on.

To cope with such applications, ‘‘hybrid’’ approaches in

which qualitative (and/or quantitative) temporal

reasoning mechanisms are paired with classical temporal

database frameworks (e.g., along the lines suggested in

[3]) are likely to play a significant role in a near future.

The role of qualitative temporal constraints (and tem-

poral reasoning) may be even more relevant at the con-

ceptual level. Several temporal extensions to conceptual

formalisms (such as the Entity-Relationship) have

been proposed in recent years, and there is an increas-

ing awareness that, in many domains, qualitative (and/

or quantitative) temporal constraints between concep-

tual objects are an intrinsic part of the conceptual

model. As a consequence, qualitative temporal

reasoning techniques such as the ones discussed

above, may in the near future, play a relevant role at

the conceptual modeling level.

Future Directions
One of several possible future research directions of

qualitative temporal reasoning, which may be particu-

larly interesting for the database community, is its
application to ‘‘Active Conceptual Modeling.’’ In his

keynote talk at ER’2007, Prof. P. Chen, the creator of

the Entity-Relationship model, has stressed the impor-

tance of extending traditional conceptual modeling to

‘‘Active Conceptual Modeling.’’ Roughly speaking, the

term ‘‘active’’ denotes the need for coping with evol-

ving models having learning and prediction capabil-

ities. Such an extension is needed in order to

adequately cope with a new range of phenomena,

including disaster prevention and management. Chen

has stressed that ‘‘Active Conceptual Modeling’’

requires, besides the others, an explicit treatment

of time. The extension and integration of qualitative

temporal reasoning techniques into the ‘‘Active Con-

ceptual Modeling’’ context is likely to give a major

contribution to the achievement of predictive and

learning capabilities, and to become a potentially fruit-

ful line of research.
Cross-references
▶Absolute Time

▶Allen’s Relations

▶Relative Time

▶Temporal Constraints

▶Temporal Indeterminacy

▶Temporal Integrity Constraints

▶Temporal Periodicity

▶Time in Philosophical Logic

▶Time Period

▶Valid Time
Recommended Reading
1. Allen J.F. Maintaining knowledge about temporal intervals.

Commun. ACM, 26(11):832–843, 1983.

2. Badaloni S. and Giacomin M. The algebra IA
fuz: a framework

for qualitative fuzzy temporal reasoning. Artif. Intell., 170

(10):872–908, 2006.

3. Brusoni V., Console L., Pernici B., and Terenziani P. Qualitative

and quantitative temporal constraints and relational databases:

theory, architecture, and applications. IEEE Trans. Knowl. Data

Eng., 11(6):948–968, 1999.

4. Delgrande J., Gupta A., and Van Allen T. A comparison of

point-based approaches to qualitative temporal reasoning.

Artif. Intell., 131(1–2):135–170, 2001.

5. Freksa C. Temporal reasoning based on semi-intervals. Artif.

Intell., 54(1–2):199–227, 1992.

6. Gerevini A. Incremental qualitative temporal reasoning:

algorithms for the point algebra and the ORD-Horn class.

Artif. Intell., 166(1–2):37–80, 2005.

Quality and Trust of Information Content and Credentialing
Q

2229
7. Jonsson P. and Backstrom C. A unifying approach to temporal

constraint reasoning. Artif. Intell., 102:143–155, 1998.

8. Koubarakis M., Database models for infinite and indefinite

temporal information. Inf. Syst., 19(2):141–173, 1994.

9. Ladkin P. Time representation: a taxonomy of interval relations.

In Proc. 5th National Conf. on AI, 1986. pp. 360–366.

10. Nebel B. and Burkert H.J. Reasoning about temporal relations:

a maximal tractable subclass of Allen’s interval algebra. J. ACM,

42(1):43–66, 1995.

11. Prior A.N. Past, Present and Future. Oxford University Press,

Oxford, 1967.

12. Terenziani P. Integrating calendar-dates and qualitative temporal

constraints in the treatment of periodic events. IEEE Trans.

Knowl. Data Eng., 9(5):763–783, 1997.

13. Van Beek P. Reasoning about qualitative temporal information.

Artif. Intell., 58(1–3):297–326, 1992.

14. Vilain M. and Kautz H. Constraint propagation algorithms

for temporal reasoning. In Proc. 5th National Conf. on AI,

1986, pp. 377–382.

15. Walker A.G. Durèes et instants. La Revue Scientifique, (3266),

p. 131, 1947.
Q

Quality and Trust of Information
Content and Credentialing

CHINTAN PATEL, CHUNHUA WENG

Columbia University, New York, NY, USA

Definition
The quality and reliability of biomedical information is

critical for practitioners (clinicians and biomedical

scientists) to make important decisions about patient

conditions and to draw key scientific conclusions to-

wards developing new drugs, therapies and proce-

dures. Evaluating the quality and trustworthiness of

biomedical information [1] requires answering ques-

tions such as, where did the data come from, under what

conditions was the data generated, how accurate and

complete is the data, and so on.

Key Points
The quality and reliability of biomedical information is

dependent on the task or the context of the application.

There is a basic set of domain-independent features that

can be used to characterize the quality and trustworthi-

ness of the information:

Accuracy: The correctness of the information. Inher-

ent noisiness in the underlying data generating clinical

processes or biological experiments often leads to various
errors in the resulting data. It is critical to quantify the

frequency and source of such errors using the measure of

accuracy to enable the clinicians and researchers for

making informed decisions using the data.

Completeness: In biomedical settings, it is often

necessary to have all the pertinent (complete) informa-

tion at hand while making important clinical decisions

or performing complex biological experiments. There

are various constraints due to limited technology and

the nature of clinical practice that leads to incomplete

biomedical data:

1. In healthcare settings, only partial data gets recorded

in electronic form and vast amount of data is still

only available on paper [4]. For example, various

clinical notes such as admit, progress and discharges

notes containing valuable clinical information are

generally written on paper charts and not entered

electronically.

2. In several instances, despite the availability of elec-

tronic data, the information is not usable or accessi-

ble due to differences in underlying data standards,

information models, terminology, etc. Consider for

example, two biological databases using different

ontologies for protein annotation, which will not

be able to support data reuse or sharing across.

Transparency: An important aspect for determining

the trustworthiness of information is the understand-

ing or knowledge of the underlying processes or

devices generating the data. Various tools or resources

that provide transparency to data sources are more

likely to be trusted by clinicians or biologists [2].

Credentialing: The trustworthiness of information

in turn depends on the level of trust in data origina-

tors. Hence, it is important to attribute the informa-

tion to its source in order to allow consumers of

information to make appropriate decisions. Consider

for example that a biological annotation reviewed by

human curators will be trusted more than an annota-

tion automatically extracted from literature using text-

mining [3].

As the biomedical domain becomes more and more

information driven, the methods and techniques to

characterize the quality and trustworthiness of infor-

mation will gain more prominence.

Cross-references
▶Clinical Data Quality and Validation

2230
Q

Quality Assessment
Recommended Reading
1. Black N. High-quality clinical databases: breaking down

barriers. Lancet, 353(9160):1205–1211, 1999.

2. BuzaT.J., McCarthyF.M., WangN., Bridges S.M., and Burgess S.C.

Gene Ontology annotation quality analysis in model eukaryotes.

Nucl. Acids Res., 36(2):e12, 2008.

3. D’Ascenzo M.D., Collmer A., and Martin G.B. PeerGAD: a peer-

review-based and community-centric web application for view-

ing and annotating prokaryotic genome sequences. Nucl. Acids

Res., 32(10):3124–3159, 2004.

4. Thiru K., Hassey A., and Sullivan F. Systematic review of scope

and quality of electronic patient record data in primary care.

BMJ, 26(7398):1070, 2003.
Quality Assessment

▶Clustering Validity
Quality of Data Warehouses

RAFAEL ROMERO
1, JOSE-NORBERTO MAZÓN

1, JUAN

TRUJILLO
1, MANUEL SERRANO

2, MARIO PIATTINI
2

1University of Alicante, Alicante, Spain
2University of Castilla – La Mancha, Spain

Definition
Quality is an abstract and subjective aspect for

which there is no universal definition. It is usually said

that there is a quality definition for each person. Perhaps

the most abstract definition for this topic is that the data

warehouse quality means the data is suitable for the

intended application by all users. In this way, it is very

complex to measure or assess the quality of a data

warehouse system. Normally, the data warehouse

quality is determined by: (i) the quality of the data

presentation, and (ii) the quality of the data warehouse

itself. The latter is determined by the quality of the

Database Management System (DBMS), the data quali-

ty and the quality of the underlying data models used to

design it. A good design may (or may not) lead to a

good data warehouse, but a bad designwill surely render

a bad data warehouse of low quality. In order to mea-

sure the quality of a data warehouse, a key issue is

defining and validating a set of measures to help to
assess the quality of a data warehouse in an objective

way, thus guaranteeing the success of designing a good

data warehouse.

Historical Background
Few works have been presented in the area of objective

indicators or measures for data warehouses. Instead,

most of the current proposals for data warehouses still

delegate the quality of the models to the experience of

the designer.

Only the model proposed by Jarke et al. [5], which

is described in more depth in Vassiladis’ Ph.D. thesis

[14], explicitly considers the quality of conceptual mod-

els for data warehouses. Nevertheless, these approaches

only consider quality as intuitive notions. In this way,

it is difficult to guarantee the quality of data warehouse

conceptual models, a problem which has initially been

addressed by Jeusfeld et al. [6] in the context of the

DWQ (Data Warehouse Quality) project. This line of

research addresses the definition of measures that allows

designers to replace the intuitive notions of quality of

conceptual models of the data warehouse with formal

and quantitative measures. Sample research in this

direction includes normal forms for data warehouse

design as originally proposed in [8] and generalized in

[7]. These normal forms represent a first step towards

objective quality metrics for conceptual schemata.

Following the idea of assessing the quality of

data warehouses in an objective way, several measures

for evaluating the quality of data warehouse logical

models have been proposed in recent years and vali-

dated both formally and empirically [11,12].

Lately, Si-Saı̈d and Prat [13] have proposed some

measures for multidimensional schemas analyzability

and simplicity. Nevertheless, none of the measures pro-

posed so far has been empirically validated, and there-

fore, their practical utility has not been proven.

Foundations
The information quality of a data warehouse is deter-

mined by: (i) the quality of the system itself, and

(ii) the quality of the data presentation (see Fig. 1).

In fact, it is important that the data of the data ware-

house not only correctly reflects the real world, but also

that the data are correctly interpreted. Regarding data

warehouse quality, three aspects must be considered:

the quality of the DBMS (Database Management Sys-

tem) that supports it, the quality of the data models

Quality of Data Warehouses. Figure 1. Quality of the information and the data warehouse.

Quality of Data Warehouses
Q

2231

Q

used in their design (conceptual, logical and physical),

and the quality of the data contained in the data

warehouse. The presentation quality of data ware-

houses is more related to the data presentation accord-

ing to front-end tools such as OLAP (On-Line

Analytical Processing), data reporting or data mining.

For this reason, the following issues pertaining to

data warehouse quality are described next: (i) DBMS

quality, (ii) data model quality, and (iii) data quality.

Quality of DBMS

The quality of the DBMS in which the data warehouse

is implemented is important, since the database engine

is the core of the data warehouse system and has a

deep impact on the performance of the whole system.

A good DBMS could improve the performance of

the system and the quality of the data by imple-

menting constraints and integrity rules. In order to

assess the quality of a DBMS, several international

standards can be used, such as ISO/IEC 9126 [3] and

ISO/IEC 9075 [4] or even information from database

benchmarks [9].

Quality of Data Warehouse Data Models

The quality of the data models used in the design of data

warehouses relies on the quality of the conceptual,

logical, and physical models used for its design. A first

step towards obtaining high quality data models is the

definition of development methodologies. However, a

methodology, though necessary, may not be sufficient to
guarantee the quality of a data warehouse. Indeed, a

good methodology may (or may not) lead to a good

product, but a bad methodology will surely render a bad

product of low quality. Furthermore, many other factors

could influence the quality of the products, such as

human decisions. Therefore, it is necessary to complete

specific methodologies with measures and techniques

for product quality assessment.

Structural properties (such as structural complexity)

of a software artifact have an impact on its cognitive

complexity as shown in Fig. 2. Cognitive complexity

means the mental burden on those who have to deal

with the artifact (e.g., developers, testers, maintainers).

High cognitive complexity of an artifact reduces its

understandability and leads to undesirable external

quality attributes as defined in the standard ISO/IEC

9126 [3]. The model presented in Fig. 2 is an adapta-

tion of the general model for software artifacts pro-

posed in Briand et al. [2].

Indeed, as data warehouse models are software arti-

facts, it is reasonable to consider that they follow the same

pattern. It is thus important to investigate the potential

relationships that can exist between the structural prop-

erties of these schemas and their quality factors.

In order to get a valid set of data warehouse mea-

sures, the definition of measures should be based on

clear measurement goals and the measures should be

defined following the organization’s needs related

to external quality attributes. In defining measures, it

is also advisable to take into account the expert’s

Quality of Data Warehouses. Figure 2. Relationship between Structural Properties, Cognitive Complexity,

Understandability and External Quality Attributes – based on the work described in Briand et al. [12].

2232
Q

Quality of Data Warehouses
knowledge. Figure 3 presents a method (based on the

method followed in [11,12]) for obtaining valid and

useful measures. In this figure, continuous lines show

measure flow and dotted lines show information flow.

This method has five main phases starting at the

identification of goals and hypotheses and leading to

the measure application, accreditation, and retirement:

1. Identification: Goals of the measures are defined

and hypotheses are formulated. All of the subsequent

phases will be based upon these goals and hypotheses.

2. Creation: This is the main phase, in which mea-

sures are defined and validated. This phase is divided

into three sub phases:

a) Measures definition. Measure definition is made

by taking into account the specific characteristics of the

system to be measured, the experience of the designers

of these systems and the work hypotheses. A goal-

oriented approach as GQM (Goal-Question-Metric

[1]) can also be very useful in this step.

b) Theoretical validation. The formal (or theoreti-

cal) validation helps identify when and how to apply

the metrics. There are two main tendencies in

measuring formal validation: the frameworks based

on axiomatic approaches [7] and the ones based on

measurement theory [10]. The goal of the former is

merely definitional, as in this type of formal frame-

work, a set of formal properties is defined for given

software attributes and it is possible to use this set of

properties for classifying the proposed measures. On

the other hand, in the frameworks based on measure-

ment theory, the information obtained is the scale to

which a measure pertains and, based on this informa-

tion, statistics and transformations, which can be ap-

plied to the measure, can be known.
c) Empirical validation. The goal of this step is to

prove the practical utility of the proposed measure.

Empirical validation is crucial for the success of any

software measurement project as it helps to confirm

and understand the implications of the measurement

of products. Although there are various ways perform

to this step, the empirical validation can be divided

into experiments, case studies, and surveys.

This process is evolutionary and iterative and as

a result of the feedback, the measure could be redefined

or discarded, depending on their formal and empir-

ical validation. As a result of this phase a valid metric

is obtained.

3. Acceptance: The goal of this phase is the system-

atic experimentation of the measure. This is applied

in a context suitable to reproduce the characteristics

of the application environment, with real business

cases and real users, to verify its performance against

the initial goals and stated requirements.

4. Application: The accepted measure is used in

real cases.

5. Accreditation: This is the final phase of the process.

It is a dynamic phase that proceeds simultaneously

with the application phase. The goal of this phase is

the maintenance of the measure, so it can be adapted

to the changing environment of the application. As a

result of this phase, the measure can be retired or

reused for a new measure definition process.

The most important data models for measuring

quality are conceptual and logical models as the quality

of physical models has to do with performance issues

and the physical distribution of data. Following the

above method, a set of measures can be defined

and validated for data warehouse conceptual models

Quality of Data Warehouses. Figure 3. Metrics creation process.

Quality of Data Warehouses
Q

2233

Q

quality [12]. Some examples of the measures defined in

[12] are: number of dimensions of the multidimen-

sional conceptual model, number of hierarchy levels of

the multidimensional conceptual model, ratio of hier-

archy levels (i.e., number of hierarchy levels per dimen-

sion of the multidimensional conceptual model), and

the maximum depth of the hierarchy relationships of

the multidimensional conceptual model.

Taking into account these characteristics, a set of

measures for data warehouses logical models have also

been defined and validated in [11]. Specifically, these

measures are defined for a relational implementation

(tables, columns, foreign keys, etc.). Some examples of

the measures defined in [11] are: number of fact tables of

the schema, number of shared dimension tables (i.e.,

number of dimension tables shared for more than one

star (fact) of the schema), number of foreign keys in all

the fact tables of the schema, and ratio of schema attri-

butes (i.e., number of attributes in dimension tables per

attributes in fact tables).
Data Quality

Finally, data quality is a multidimensional concept that

is made up of several aspects, all of which depend on

the needs of the data consumers or system designers.

The most accurate definition for data quality is fitness

for use, i.e., how suitable the data is for a concrete task.

This concept can be defined in terms of particular

criteria, related either to the data life-cycle or to the

way data are meant to be used. Usually, the way of

determining the data quality of an application is to

define a framework that specifies the data quality

dimensions in a concrete domain. The reader is re-

ferred to the DWQ project [6]. Figure 4 shows the

quality factors as stated in the DWQ project.

As stated in the DWQ project, data warehouse

data quality is related to several characteristics or qual-

ity dimensions, such as interpretability, usefulness,

accessibility and believability. These quality dimen-

sions should be interpreted as the ability to under-

stand, use, access and trust the data that is stored in

Quality of Data Warehouses. Figure 4. Data warehouse quality factors.

2234
Q

Quality of Data Warehouses
the data warehouse. Each dimension tackles a different

aspect of data quality and is broken up into several

sub-categories, such as timeliness, availability, clarity,

and accuracy.

When dealing with interpretability, the data must be

easy to understand, and special attention should be

placed on the format and structure of the data. In this

sense, the syntax of the data should be inspected, since

aliases and abbreviations may be eluded and the origin

and the different versions of the data must be controlled.

Data relevancy and timeliness are the main pro-

blems to be tackled in data usefulness. Data relevancy

can be analyzed in ETL processes, while timeliness is

more related to the currency of the data. It is univer-

sally known that data warehouses are typically not

updated everyday, but irrelevant data cannot be

allowed in the system. A good schedule of data ware-

house refresh process can avoid this problem.

Accessibility is related to system availability and

access privileges. Data warehouse systems should be

in stable and well-dimensioned systems and privileges

should be studied in great detail. It is also necessary to

test and maintain the system periodically.

Believability is a very important aspect of data

warehouse data quality, as it deals with completeness,

consistency, credibility and accuracy of the data.
Probably this quality dimension is the most studied

by data quality experts, but it is usually the most

difficult to assess. This quality dimension is not only

related to source data quality and ETL processes’ qual-

ity, it is also related to the data warehouse update

processes that can pollute the data warehouse data. In

this way, data cleaning algorithms could be very useful.

In order to detect data quality problems, it is ad-

visable to have indicators that can help identify the

different quality threats for each of the data warehouse

data quality dimensions. There are several quality in-

dicator proposals, but they are not oriented to the data

warehouse field and are only usually oriented to a

specific quality dimension such as accuracy, complete-

ness and timeliness. Further research has to be done in

this field in order to obtain a complete set of data

warehouse data quality indicators.

Key Applications
The main application of Data Warehouse Quality is

oriented to the work of data warehouse designers.

Introducing quality aspects from early phases of data

warehouse design is a good way to improve the quality

and success of a data warehouse. In this way, quality

models and quality driven design methods are good

approaches to design successful data warehouse

Quantiles on Streams
Q

2235

Q

systems. These design methods should be based on the

metrics and techniques that have been discussed in the

previous sections.

Future Directions
Some open research lines within data warehouse quality

are: (i) to provide a complete set of quality measures that

allows to measure and assess data warehouse quality

models in different dimensions such as the complexity,

understandability, usability and so on (Fig. 2), (ii) the

traceability of the measures throughout all the design

steps (conceptual, logical and physical), and (iii) the

measure’s thresholds, which should be the last step in

defining measures, i.e., being able to provide a number

for each measure under which one can completely

assure the quality of a model. The latter is definitely

the most difficult issue that has not yet been covered.

Experimental Results
Generally speaking, before doing an experiment with

data quality measures, the settings must first be defined

(including the main goal of the experiment, the sub-

jects that will participate in the experiment, the main

hypothesis under which the experiment will be run, the

independent and dependent variables to be used in the

model, the experimental design, the experiment run-

ning, material used and the subjects that performed the

experiment). After that, the collected data validation

must be discussed. Finally, the results are analyzed and

interpreted to find out if they follow the formulated

hypothesis. Only after a complete set of experiments,

and following the method presented in Fig. 3, a mea-

sure can be accepted or rejected.

The reader is referred to the work of the Software

Engineering Lab [15] for expanding the concepts about

experimental process. A complete set of experimental

works can be found in [11,12]. In those works several

data warehouse quality measures are empirically vali-

dated as data warehouse quality indicators.

Cross-references
▶Data Warehouse

▶Data Warehouse Life-Cycle and Design

▶Data Warehouse Security
Recommended Reading
1. Basili V. and Weiss D.A. Methodology for collecting valid

software engineering data. IEEE Trans. Software Eng.,

10:728–738, 1984.
2. Briand L., Morasca S., and Basili V. Property-based software

engineering measurement. IEEE Trans. Software Eng., 22

(1):68–86, 1996.

3. ISO/IEC, 9126: Software Engineering – Product quality. Geneva,

Switzerland, 2003.

4. ISO/IEC, 9075: Information Technology – Database languages.

Geneva, Switzerland, 2006.

5. Jarke M., Lenzerini M., Vassiliou Y., and Vassiliadis P. Funda-

mentals of Data Warehouses. Springer, 2002.

6. Jeusfeld M.A., Quix C., and Jarke M. Design and analysis of

quality information for data warehouses. In Proc. 17th Int. Conf.

on Conceptual Modeling, 1998, pp. 349–362.

7. Lechtenbörger J. and Vossen G. Multidimensional normal forms

for data warehouse design. Inf. Syst., 28:415–434, 2003.

8. Lehner W., Albretch J., and Wedekind H. Normal forms for

multidimensional databases. In Proc. 10th Int. Conf. on Scien-

tific and Statistical Database Management, 1998, pp. 63–72.

9. Othayoth R. and Poess M. The Making of TPC-DS. In Proc.

32nd Int. Conf. on Very Large Data Bases, 2006, pp. 1049–1058.

10. Poels G. and Dedene G. DISTANCE: a framework for

software measure construction, Research Report DTEW9937,

Department of Applied Economics, Katholieke Universiteit

Leuven, Belgium, 1999, p. 46.

11. Serrano M., Calero C., and Piattini M. Validating metrics

for data warehouses. IEE Proc. Software, 149(5):161–166, 2002.

12. Serrano M., Trujillo J., Calero C., and Piattini M. Metrics

for data warehouse conceptual models understandability. Inf.

Software Technol., 49(8):851–870, 2007.

13. Si-Saı̈d S. and Prat N. Multidimensional schemas quality: asses-

sing and balancing analyzability and simplicity. In Proceedings

of the ER 2003 Workshops, 2003, pp. 140–151.

14. Vassiliadis P. Data Warehouse Modeling and Quality Issues,

Ph.D. Thesis, National Technical University of Athens, Athens,

Greece, 2000.

15. Wohlin C., Runeson P., Höst M., Ohlson M., Regnell B., and

Wesslén A. Experimentation in Software Engineering: An

Introduction. Dordrecht, Kluwer Academic, 2000.
Quantiles on Streams

CHIRANJEEB BURAGOHAIN
1, SUBHASH SURI

2

1Amazon.com, Seattle, WA, USA
2University of California-Santa Barbara, Santa

Barbara, CA, USA

Synonyms
Median; Histogram; Selection; Order statistics

Definition
Quantiles are order statistics of data: the f-quantile
(0 � f � 1) of a set S is an element x such that fjSj
elements of S are less than or equal to x and the

remaining (1 � f)jSj are greater than x. This entry

2236
Q

Quantiles on Streams
describes data stream (single-pass) algorithms for

computing an approximation of such quantiles.
Historical Background
Since the earliest days of data processing, there has

been a need to summarize data. Large volumes of

raw, unstructured data easily overwhelm the human

ability to comprehend or digest. Tools that help iden-

tify the major underlying trends or patterns in data

have enormous value. Quantiles characterize distribu-

tions of real world data sets in ways that are less

sensitive to outliers than simpler alternatives such as

the mean and the variance. Consequently, quantiles are

of interest to both database implementers and users:

for instance, they are a fundamental tool for query

optimization, splitting of data in parallel database sys-

tems, and statistical data analysis.

Quantiles are closely related to the familiar con-

cepts of frequency distributions and histograms. The

cumulative frequency distribution F() is commonly

used to summarize the distribution of a (totally or-

dered) set S. Specifically, for any value x,

FðxÞ ¼ Number of values less than x: ð1Þ

The quantile Q(f), or the f-th quantile is simply the

inverse of F(x). Specifically, if the set S has n elements,

then the element x has the property that

QðFðxÞ=nÞ ¼ x: ð2Þ

Thus, the 1∕2-quantile is just the familiar median of a

set, while 0- and 1-quantiles are the minimum and the

maximum elements of the set. Histograms are another

popular method for summarizing data into a smaller

number of ‘‘buckets’’: the buckets only retain the in-

formation how many elements fall between two con-

secutive bucket boundaries, but not their precise

values. It is easy to see that a sequence of quantiles

resembles a histogram of the underlying set, and pro-

vides a natural and complete summary of the entire

distribution of the data values.

In computer science, sorting and selection (another

name for quantile computation) are two of the

most basic problems, with long and intellectually rich

history of research. Indeed, the computational com-

plexity of selection, namely, determining the element

of a given rank, is one of the earliest celebrated pro-

blems, and the elegant, linear-time algorithm of Blum

et al. [2] is a classical result, taught regularly in the
undergraduate algorithms and data structures course.

For more recent theoretical results on the complexity

of selection in the classical comparison-complexity

model, please refer to the survey by Paterson [16].

Foundations
The problem with quantile computation, while well-

solved in the classical model of computation, assumes

a new and challenging character within the constraints

of single-pass computation (the streaming model).

Indeed, when the algorithm’s memory is limited and

significantly smaller than the size of the data set S, it is

not possible to compute the quantile precisely, and the

best possible solution is an approximation. This was

formalized in a 1980 paper by Munro and Paterson

[15], who proved that any algorithm that determines

the median of a set by making at most p sequential

scans of the input requires at least O(n1∕p) working

memory. Thus, computing the true median will re-

quire memory linear in the size of the set.

Against this backdrop, the main focus of recent re-

search has been on achieving provable-quality approxi-

mation of the quantiles. In particular, an e-approximate

quantile summary of a sequence of n elements is a data

structure that can answer quantile queries about the

sequence to within a precision of en. In other words,

when queried for a f-quantile, for 0 � f � 1, the

structure returns an element x that is guaranteed to be

in the [f� e, f + e] quantile range. The key evaluation
metric for the performance of these approximation

schemes is the size (memory footprint) of their sum-

mary data structures, although other factors such as

simplicity of implementation are also desirable.

The discussion in this entry will focus on algo-

rithms that operate in the data stream model: the

algorithm is endowed with a finite memory, which is

significantly smaller in size than the size of the input.

The input is presented to the algorithm in an arbitrary

(perhaps adversarial) order, and any data not explicitly

stored by the algorithm is irretrievably lost. Thus, the

algorithm is restricted to a single scan of the data in the

input order, and after this scan it must output an

approximation of the quantiles of the input values.

Before discussing the state of the art for this prob-

lem, it may help to consider a real-world scenario for

the use of quantiles in data streams, both to illustrate a

motivating application and to appreciate the scale of

the problem. A web site, such as a search engine, con-

sists of several web server hosts. The users’ queries

Quantiles on Streams
Q

2237

Q

(requests) are collectively handled by these servers

(using some scheduling protocol); and the overall per-

formance of the web site is characterized by the latency

(delay) encountered by the users. The distribution of

the latency values is typically very skewed, and a com-

mon practice is to track some particular quantiles, for

instance, the 95th percentile latency. In this context,

one can ask several questions.

� What is the 95th percentile latency of a single web

server?

� What is the 95th percentile latency of the entire web

site (over all the servers)?

� What is the 95th percentile latency of the website

during the last 1 h?

The Yahoo website, for instance, handles more than 3.4

billion hits per day, which translates to 40,000 requests

per second. The Wikipedia website handles 30,000

requests per second at peak, with 350 web servers.

While all three questions relate to computing of

quantiles, they have different technical nuances, and

often require different algorithmic approaches. In par-

ticular, the first question is the most basic version,

asking for a determination of quantiles for a stream

of data; the second extends the setting to distribu-

ted input, and thus demands an algorithm in the

distributed computing model. The third problem is

an instance of the sliding window model, where the

computation must occur over a subset (time window)

of the stream, and this subset is continuously changing.

This entry is primarily focused on the stream setting

(problem 1), also known as the cash register model,

but will also discuss, when appropriate, extensions to

these other models.

Randomized Algorithms

One can estimate the quantiles of a stream by the

quantiles of a random sample of the input. The key

idea is to maintain a random sample of appropriate

size and when asked for a quantile of the input set,

simply report the corresponding quantile of the ran-

dom sample. If the size of the input stream, N is

known, then the following simple algorithm can com-

pute a random sample of size k in one-pass: choose

each element independently with probability k∕N to

include in the sample. If the size of the full data stream

is not known in advance, or if the ability to answer

queries during reading the stream is required as well,

then the reservoir sampling algorithm of Vitter [19]
can be used instead. To maintain a sample of size k, the

reservoir sampling algorithms begins by including

the first k stream elements in the sample; from then

on, the ith element from the stream is chosen with

probability i∕n. If the ith element is chosen, one of the

elements from the current sample is evicted uniformly

at random to keep the size of the sample constant at k.

While straightforward to implement, random sam-

pling has the disadvantage of needing a rather large

sample to achieve expected approximation accuracy.

Specifically, in order to estimate the quantiles with

precision en, with probability at least 1 � d, a sample

of size Yð 1E2 log 1
dÞ is required, where 0 < d < 1.

In [3], Cormode and Muthukrishnan proposed a

more space-efficient data structure, called Count-

Min sketch, which is inspired by Bloom filters.

Count-Min sketch allows e-approximation of quan-

tiles using Oð1E log
2
n logðlog nfd ÞÞ memory. Although the

space needed by Count-Min is worse than the two

deterministic schemes discussed below, it has the ad-

vantage of allowing general updates to the streams:

past elements can be deleted as well as their values

updated.

Deterministic Algorithms

The first deterministic streaming algorithm for quan-

tiles was proposed by Manku et al. [13,14], building on

the prior work by Munro and Paterson [2]. This algo-

rithm has space complexity Oð1E log
2EnÞ, meaning that

using memory that grows poly-logarithmically in the

stream size and inversely with the accuracy parameter

e, the quantiles can be estimated with precision en.
This result has since been improved by two groups: in

[10], Greenwald and Khanna propose a Oð1E log EnÞ
memory scheme, and in [18], Shrivastava et al. pro-

pose a Oð1E logUÞ memory scheme, where U is the size

of domain from which the input is drawn.

The Greenwald-Khanna (GK) algorithm is based

on the idea that if a sorted subset {v1,v2,...} of the input

stream S (of current size n) can be maintained such

that the ranks of vi and vi+1 are within 2e of each other,

then an arbitrary quantile query can be answered with

precision en. Their main contribution is to show how

to maintain such a subset of values using a data struc-

ture of size Oð1E log EnÞ. The Q-Digest scheme of Shri-

vastava et al. [18] approaches the quantile problem as a

histogram problem over a universe of size U; thus logU

is the number of bits needed to represent each element.

Q-Digest maintains a set of buckets dynamically,

2238
Q

Quantiles on Streams
merging those that are light (containing few items of

the stream) and splitting those that are heavy, with an

aim to keep the relative sizes of all the buckets nearly

equal. Specifically, using a Oð1E logU Þ size data struc-

ture, Q-Digest ensures that the input stream is divided

into O(1∕E) buckets, with each bucket containing O

(En) items. Thus, the rank of any item can be deter-

mined with precision en by locating its bucket.

In theoretical terms, the GK scheme has better

performance when the input is drawn from a large

universe, but the stream itself has only modest size.

The Q-Digest, on the other hand, is superior when the

stream size is huge but elements are drawn from a

smaller universe. The GK algorithm is very clever, but

requires a sophisticated analysis. The Q-Digest is sim-

pler to understand, analyze, and implement, and it

lends itself to easy extensions to distributed settings.

Practical Considerations

A detailed study of the empirical performance of quan-

tile algorithms was carried out by Cormode et al. [5]

on IP stream datasets. They concluded that with care-

ful implementation, a commodity hardware machine

(dual Pentium 2.8 GHz CPU and 4 GB RAM) can keep

up with a 2 Gbit/s stream (310,000 packets per sec-

ond). Performance numbers can depend also on the

input distribution. For example, the deterministic

algorithms presented above can have different memory

usage and accuracy depending on the order in which

the input values are presented, but sketching techni-

ques such as the Count-Min sketch are not affected by

the order of the input. The input value distribution can

also impact perceived accuracy of the approximate

quantiles. For example, for skewed distributions, the

numeric value of the exact f-th quantile can be arbi-

trarily far from the numeric values of the (f � E)-th
quantile.

Extensions

Given the fundamental nature of quantiles and their

widespread applications in data processing, it is no

surprise that there are multiple extensions of the

basic setting that have been considered so far. There

are many interesting and practically-motivated appli-

cations, such as the latency of the web site mentioned

earlier, where quantiles must be computed over

distributed data, or over a sliding window portion of

the stream etc. In the following, the current state of

algorithms for these variants are briefly discussed.
Quantiles in Distributed Streams In many settings,

data of interest are naturally distributed across multi-

ple sources, such as servers in a web application and

measurement devices in a sensor network. In these

applications, it is necessary to compute the quantile

summary of the entire data, but without creating a

centralized repository of data, which could be undesir-

able because of the additional latency, communication

overhead, or energy constraints of untethered sensors.

The efficiency of an algorithm in this distributed

setting is measured by the amount of information

each node in the system must transmit during the

computation.

One natural approach for distributed approxima-

tion of quantiles is for each node (server, sensor, etc.)

to compute a local summary of its data, and arrange

the nodes in a virtual hierarchy that guides them to

merge these summaries into a final structure computed

at the root of the hierarchy. The tree-based Q-digest

[18] algorithm extends rather easily to the distributed

setting, as the histogram boundaries of the Q-Digest

are aligned to binary partition of the original value

space U. The space complexity of the distributed ver-

sion remains the same as the stream version, namely,

Oð1E logUÞ. The GK algorithm is little more compli-

cated to extend to distributed streams, but Greenwald

and Khanna themselves developed such an extension

in [9]. However, the space complexity of their dis-

tributed data structure grows to Oð1E log
3
nÞ [9]. The

Bloom filter based Count-Min sketch [3] also extends

easily to the distributed setting also without any in-

crease in the space complexity.

Quantiles in Sliding Windows In many applications,

the user is primarily interested in the most recent

portion of the data stream. This poses the sliding win-

dow extension of the quantiles problem, in which the

desired quantile summary for the most recent N data

elements – the window slides with the arrival of each

new element, as the oldest element of the window is

discarded and the new arrival added. In [12], Lin et al.

presented such a sliding window scheme for quantile

summaries, however, the space requirement for their

algorithm is Oð 1E2 þ 1
E log E

2NÞ. This was soon im-

proved by Arasu and Manku [1] to Oð1E log 1
E logNÞ.

Biased Estimate of Quantiles The absolute measure of

approximation precision is quite reasonable as long as

the error en is quite small compared to the rank of the

Quantiles on Streams
Q

2239

Q

quantile sought, namely, fn. This holds as long as the
quantiles of interest are in the middle of the distribu-

tion. But if f is either close to 0 or 1, one may prefer a

relative error, so that the estimated quantile is in the

range [(1 � e)f, (1 + e)f]. This variant was solved by

Gupta and Zane [13] using random sampling techni-

ques with a Oð 1E3 log n log 1
dÞ size data structure. The

space bound has since been improved by Cormode

et al. [4] to Oð1E logU logðEnÞÞ using a deterministic

algorithm.

Duplicate Insensitive Quantiles In some distributed

settings, a single event can be observed multiple times.

For example in the Internet, a single packet is observed

at multiple routers. In wireless sensor networks, due to

the broadcast nature of the medium, and to add fault-

tolerance, data can be routed along multiple paths.

Summaries such as quantiles or the number of distinct

items are clearly not robust against duplication of data;

on the other hand, simpler statistics such as minimum

and maximum are not affected by duplication. Flajolet

and Martin’s distinct counting algorithm [8] is the

seminal work in this direction. Cormode et al. have

introduced algorithms based on sampling to compute

various duplicate insensitive aggregates [6]. Their

Count-Min sketch can be also easily adapted to com-

pute duplicate insensitive quantiles.

Key Applications
Internet-scale network monitoring and database query

optimization are two important applications that origi-

nally motivated the need for quantiles summaries over

data streams. Gigascope [7] is a streaming database

system that employs statistical summaries such as quan-

tiles for monitoring network applications and systems.

Quantile estimates are also widely used in query

optimizers to estimate the size of intermediate results,

and use those estimates to choose the best execution

plan [5]. Distributed quantiles have been used to suc-

cinctly summarize the distribution of values occurring

over a sensor network [8]. In a similar context, dis-

tributed quantiles are also used to summarize perfor-

mance of websites and distributed applications [17].

Future Directions
The field of computing approximate quantiles over

streams have led to a fertile research program and is

expected to bring up new challenges in both theory

and implementation. Although there is an obvious
lower bound of Oð1EÞ memory required to compute

e-approximate quantiles, there is no known non-trivial

lower bound on memory. Since the current best algo-

rithms requires Oð1E logðEnÞÞ or Oð1E logðU ÞÞ memory,

it will be useful to either lower the memory usage or

prove a better lower bound.

Another direction in which improvements are

highly desirable is running time. The current deter-

ministic algorithms require amortized running time

of Oðlog 1
E þ log logðEnÞÞ or Oðlog 1

E þ log logðU ÞÞ per
item. In high data-rate streams, even such low proces-

sing times are not fast enough: what is desired is aO(1)

insert time, or even a sublinear time quan-

tile algorithm. As of now, there is no memory efficient

sub-linear time quantile algorithm known except for

random sampling.
Cross-references
▶Adaptive Stream Processing

▶Approximate Query Processing

▶Continuous Query

▶Data Aggregation in Sensor Networks

▶Data Stream

▶Distributed Data Streams

▶Distributed Query Processing

▶Geometric Stream Mining

▶Hierarchical Heavy Hitter Mining on Streams

▶ In-Network Query Processing

▶ Stream Mining

▶ Stream Processing

▶ Streaming Applications
Recommended Reading
1. Arasu A. and Manku G.S. Approximate counts and quantiles

over sliding windows. In Proc. 23rd ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2004, pp.

286–296.

2. Blum M., Floyd R., Pratt V., Rivest R., and Tarjan R.E. Time

bounds for selection. J. Comput. Syst. Sci., 7:448–461, 1973.

3. Cormode G. and Muthukrishnan S. An improved data stream

summary: the count-min sketch and its applications. J. Algo-

rithms, 55(1):58–75, 2005.

4. Cormode G., Korn F., Muthukrishnan S., and Srivastava D.

Space- and time-efficient deterministic algorithms for biased

quantiles over data streams. In Proc. 25th ACM SIGACT-SIG-

MOD-SIGART Symp. on Principles of Database Systems, 2006,

pp. 263–272.

5. Cormode G., Korn F., Muthukrishnan S., Johnson T.,

Spatscheck O., and Srivastava D. Holistic UDAFs at streaming

speeds. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2004, pp. 35–46.

2240
Q

Quantitative Association Rules
6. Cormode G., Muthukrishnan S., and Zhuang W. What’s differ-

ent: distributed, continuous monitoring of duplicate-resilient

aggregates on data streams. In Proc. 22nd Int. Conf. on Data

Engineering, 2006, p. 57.

7. Cranor C., Johnson T., Spataschek O., and Shkapenyuk V. Giga-

scope: a stream database for network applications. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2003, pp.

647–651.

8. Flajolet P. andMartin G.N. Probabilistic counting algorithms for

data base applications. J. Comput. Syst. Sci., 31(2):182–209,

1985.

9. Greenwald J.M. and Khanna S. Power-conserving computation

of order-statistics over sensor networks. In Proc. 23rd ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2004, pp. 275–285.

10. Greenwald J.M. and Khanna S. Space-efficient online computa-

tion of quantile summaries. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 2001, pp. 58–66.

11. Gupta A. and Zane F. Counting inversions in streams. In Proc.

14th Annual ACM-SIAM Symp. on Discrete Algorithms, 2003,

pp. 253–254.

12. Lin X., Lu H., Xu J., and Yu J.X. Continuously maintaining

quantile summaries of the most recent N elements over a data

stream. In Proc. 20th Int. Conf. on Data Engineering, 2004,

pp. 362–374.

13. Manku G.S., Rajagopalan S., and Lindsay B.G. Random sam-

pling techniques for space efficient online computation of order

statistics of large datasets. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1999, pp. 251–262.

14. Manku G.S., Rajagopalan S., and Lindsay B.G. Approximate

medians and other quantiles in one pass and with limited mem-

ory. In Proc. ACM SIGMOD Int. Conf. on Management of Data,

1998, pp. 426–435.

15. Munro J.I. and Paterson M.S. Selection and sorting with limited

storage. Theor. Comput. Sci., 12:315–323, 1980.

16. Paterson M.S., Progrees in Selection. In Proc. Scandinavian

Workshop on Algortithm Theory, 1996, pp. 368–379.

17. Pike R., Dorward S., Griesemer R., and Quinlan S. Interpreting

the data: parallel analysis with sawzall. Sci. Program. J., 13

(4):227–298, 2005.

18. Shrivastava N., Buragohain C., Agrawal D., and Suri S. Medians

and beyond: new aggregation techniques for sensor networks. In

Proc. 2nd Int. Conf. on Embedded Networked Sensor Systems,

2004, pp. 239–249.

19. Vitter J.S. Random sampling with a reservoir. ACM Trans. Math.

Softw., 11(1):37–57, 1985.
Quantitative Association Rules

XINGQUAN ZHU

Florida Atlantic University, Boca Ration, FL, USA

Synonyms
Numeric association rules
Definition
Quantitative association rules refer to a special type

of association rules in the form of X! Y, with X and Y

consisting of a set of numerical and/or categorical

attributes. Different from general association rules

where both the left-hand and the right-hand sides of

the rule should be categorical (nominal or discrete)

attributes, at least one attribute of the quantitative

association rule (left or right) must involve a numeri-

cal attribute. Examples of this type of association rule

can be categorized into the following two classes,

depending on whether the rules are measured by the

frequency of the supporting data records or by some

distributional features of some numerical attributes.

1. Frequent Rules: Out of all applicants whose age is

between 30 and 39 and marriage status is ‘‘yes,’’

(!) 95% of them have two cars, and 10% appli-

cants in the database satisfy this rule.

2. Distributional Rules: If the patient is non-smoker

and wine-drinker then (!) his/her average life

expectancy is 85 (whereas the average life expec-

tancy in the overall population is 80).

In the above first example, ‘‘applicant age’’ is a numer-

ical attribute, and ‘‘marriage status’’ and ‘‘# of cars’’ are

categorical attributes. The support and confidence

measures indicate that out of all the data records

matching the left-hand of the rule, 95% of them satisfy

the whole rule (Confidence) and there are 10% of the

data records which hold this rule (Support). The key to

discovering this type of rules is to discretize numerical

attributes into discrete regions, so the frequency of the

data records satisfying the rule can be measured and

the general Apriori-based association rule mining

approaches [1] can apply.

Distributional rules denote a set of quantitative

association rules with instances covered by the rules

rendering themselves statistically different from the

overall population (with respect to some statistical

measures, such as mean and standard deviation

values). Because the calculation of the statistical values

over numerical attributes is straightforward, attribute

discretization is unnecessary, which consequently

avoids possible information loss from the data discre-

tization. The key to discovering this type of rules is to

find a small group of instances (with respect to the left-

hand side of the rules) statistically and significantly

different from the overall population, if the right-

hand of the rules is considered.

Quantitative Association Rules
Q

2241

Q

Historical Background
The problem of discovering quantitative association

rule was first introduced by Srikant and Agrawal [4],

and the main focus then was to discover frequent rules.

The solution proposed in the paper [4] adopts a data

discretization for mining association rules. Their app-

roach first partitions the values of the numerical attri-

butes into fine intervals and then combines adjacent

intervals if necessary. A partial completeness measure

was introduced to quantify the information loss due to

the partitioning, so the algorithm can properly deter-

mine the number of partitions. Traditionally, numeri-

cal attribute discretization can be achieved through

the following two approaches, with the latter preferred

in practice:

� Equal-width discretization divides the range of

a numerical attribute into N intervals of equal

width. For example, ages from 20 to 60 can be

divided into four intervals of 10-year width. This

method can be easily implemented, but subject to a

clear drawback that there may be too few instances

in some intervals and too many in other intervals,

and both cases hinder mining high quality asso-

ciation rules.

� Equal-depth discretization divides the range of

numerical attribute into N intervals such that

each interval equally contains 1/N of the total

instances. This method avoids the possible imbal-

ance inherent in the equal-width discretization

method, but it may separate similar attribute values

into different intervals and group dissimilar attri-

butes into the same interval.

Noticing the adoption of the information discretiza-

tion can lead to unavoidable information loss or mis-

leading association rules, Aumann and Lindell [2]

suggested distributional quantitative association

rules, where the general structure of the rules take the

form of:

population � subset ! interesting � behavior

More specifically, the left-hand of the rule confines a

population subset, whereas the right-hand of the rule

provides the statistical measures of the confined subset.

The objective is to discover subsets significantly differ-

ent from the whole population (with respect to the

underlying measures, e.g., mean or standard deviation

values). Following this principle, Webb [5] extended
the framework to include other measures such as the

minimum and the count measures.
Foundations

Frequent Rules

To demonstrate the procedures of the frequent quantita-

tive association rule discovery, take the toy database in

Fig. 1(a) as an example [4], where attribute ‘‘Age’’ is

numerical, and ‘‘Married’’ and ‘‘NumCars’’ are categorical

attributes. Assuming the user specified Support and Con-

fidence values are 40% and 50% respectively, it means

that a prospective rule (the left-hand and the right-

hand together) should cover at least two records

(5 � 40%). For all data records satisfying the left-

hand of the rule, 50% of them should also contains

the right-hand sides of the rule (X ! Y). The major

steps of discovering frequent quantitative association

rules can then be summarized as follows [4]:

1. Determining the partition numbers and the region

of partitioning for each numerical attribute. E.g.,

Fig. 1(a) lists four partitions for ‘‘Age’’ (denoted by

[20,24], [25,29], [30,34], and [35,39]), with each

region mapping to one integer value {1,2,3,4}.

2. Applying each mapping table to all records of the

corresponding numerical attribute, with numerical

values replaced by the matching integer values. The

example of themapped database is shown in Fig. 1(c).

3. Generating frequent itemsets based on the mapped

database and the user specified Support value

(the existing Apriori like association rule mining

methods can be applied directly).

4. Using discovered frequent itemsets to generate quan-

titative association rules, with each frequent itemset

decomposed into two (left- and right-hand) compo-

nents. For example, if itemset ‘‘ABCD’’ is found

frequent, a possible quantitative association rule

can be made by decomposing ‘‘ABCD’’ as ‘‘AB’’ !
‘‘CD.’’ As long as the validate check asserts that con-

fidence value of this rule (‘‘AB’’ ! ‘‘CD’’) is greater

than the user specified value (Confidence), the rule

is taken as a valid rule.

5. Collect all quantitative association rules generated

from the above process and prune redundant rules.

E.g., if ‘‘AB’’! ‘‘CD’’ and ‘‘AB’’! ‘‘CDE’’ are both

valid rules, ‘‘AB’’ ! ‘‘CD’’ can be pruned as it can

be generalized (inferred) from ‘‘AB’’ ! ‘‘CDE’’.

Quantitative Association Rules. Figure 1. Example of problem decomposition for quantitative association rule mining

(revised from [2]).

2242
Q

Quantitative Association Rules
Distributional Rules

Different from the frequent quantitative association

rules, where the main challenge is to determine the

‘‘optimum’’ number of partitions and the region of

partitioning, the distributional rules represent a set of

quantitative association rules, where the statistical fea-

tures of the samples covered by the rule are different

from the whole population. Similar to general associa-

tion rules, the distributional rules also contain the left-

and the right-hand. The left-hand side of the rule is a

description of a subset of the database, while the right-

hand side provides a description of outstanding beha-

viors of this subset. A rule is only interesting if the

mean for the subset (specified by the left-hand side) is

significantly different from the rest and is there-

fore unexpected. Consider the following distributional

rule, the left-hand side consists of two categorical attri-

butes (Non-smoker: {Yes or No}, and Wine-drinker:

{Yes or No}), and the right-hand side is a numerical

attribute (life expectancy). The rule is considered infor-

mative and meaningful as it indicates that individuals

characterized by the left-hand side of the rule (Non-

smoker and wine-drinker) have a longer average life

expectancy (85) than the whole population (80).
Non� smoker andwine� drinker

! life expectancy ¼ 85 ðoverall ¼ 80Þ

Following this definition, one can easily extend the

framework to allow one or multiple numerical attri-

butes to appear on the left- or right-hand sides of the

rule (or both), or employ other statistical measures

rather than the mean values to assess the rules.

In order to discover distributional rules, Aumann

and Lindell [3] proposed two methods to discover the

following two types of rules:

� X ! MeanJ (TX), where X and J denote a single

numerical attribute, TX denotes transactions con-

fined by attribute X and MeanJ(TX) represents the

mean value of attribute J (for all samples in TX).

� X ! MJ (TX), where X denotes one or multi-

ple categorical attributes, J consists of one or

multiple quantitative attributes, and M means one

particular statistical measure (there is no restriction

on the number of attributes in X and J).

The solution to the first type of distributional rules

is straightforward, since the rules only involve two

Quantitative Association Rules
Q

2243

Q

numerical attributes (one on each side), an algorithm

can afford to go through each pair of numerical attri-

butes to discover meaningful rules. More specifically,

for any two numerical attributes i and j, one can first

sort all records in the database based on the attribute i,

then any above or below average continuous region of

values in j can form a prospective quantitative rule. For

example, given the toy database in Fig. 2(a) which

records the age and the size of the striped bass, the

sorted database with respect to attribute i (age) is given

in Fig. 2(a). The average of attribute j for the top three

records (001, 003, and 002) is 0.77, which is signifi-

cantly lower than the mean of the whole population

(1.83). Therefore, the below average region (001, 003,

and 002) forms a meaningful quantitative association

rule denoted by:

Age � 2 ! Meanweight 0:77 lbs ðOverall 1:83Þ

Because any above or below average continuous

region of values in j can form a prospective quantita-

tive rule, one can continuously span the region with

respect to the attribute j, and discover the maximum

region satisfying the user specified requirements (e.g.,

a times less/larger than the average).

In order to discover the second type of distri-

butional quantitative association rules, one can employ

a two-stage approach, which applies general associa-

tion rule to the whole database by considering categor-

ical attributes only, followed by a refining process to

check each rule by considering the numerical attribute

values [5].

1. Discovering frequent itemsets: Finding all frequent

itemsets by considering categorical attributes of the

database only (this can be easily achieved through

existing Apriori-like algorithms [1].

2. Calculating statistical distribution values: For each

numerical attribute, calculate the value of the
Quantitative Association Rules. Figure 2. Example of distrib

striped bass).
distribution measures (mean/variance) over samples

confined by each frequent itemset. For example, if

‘‘Non-smoker andWine-drinker’’ are found frequent

(i.e.,, a frequent itemset), all samples matching this

itemset form a sample set P, from which the statis-

tical distribution value of a numerical attribute

can be calculated.

3. Refining quantitative association rules: For every

frequent itemset (denoted by X) and one numerical

attribute e, the algorithm continuously check if

X ! Meane (TX) and X ! Variancee (TX) are

meaningful rule (comparing to the whole popula-

tion). In addition, for any two rules X ! Meane
(TX) and Y!Meane (TY), the algorithm will check

whether the former is a sub-rule of the latter, or

vice versa, such that the algorithm can output

compact rules with minimum redundancy.
Key Applications
Business intelligence, market basket analysis, fraud

detection (fraud medical insurance claims).

Future Directions
All of the above techniques intend to discover quantita-

tive association rules in the forms of the conjunction of

individual attributes. One interesting problem is to find

quantitative association rules with (linearly or nonli-

nearly) combined attributes. For example, finding rules

like ‘‘Age � a ! Length/Weight � b.’’ Here the right-

hand of the rule is a non-linear combination of

the numerical attributes (Length and Height), and

a and b are some discovered values. In [3], Ruckert

et al. proposed a quantitative association rule mining

approach which is able to discover similar rules

with linearly weighted attributes like ‘‘Age � a !
a1·Length + a2·Weight � b.’’ Future research may em-

phasize the generalized quantitative association
utional association rule mining (age and weight of the

2244
Q

QUEL
rule discovery, where rules consist of non-linearly

combined attributes.

Another interesting problem concerning quantita-

tive association rules is to discover relational patterns

of the quantitative association rules across multiple

databases. E.g., Finding patterns that are frequent

with a support level of a in database A, but significantly
infrequent with a support level of b in databases B or/

and C. In [6], Zhu and Wu proposed a hybrid frequent

pattern tree based solution to address this problem

with a focus on the general association rules. Extend-

ing the problem of relational frequent pattern discov-

ery to quantitative association rules is another

interesting topic for future research.

Cross-references
▶Association Rules

Recommended Reading
1. Agrawal R., Imielinski T., and Swami A. Mining association rules

between sets of items in large databases. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1993, pp. 207–216.

2. Aumann Y. and Lindell Y. A statistical theory for quantitative

association rules. In Proc. 5th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, 1999, pp. 261–270.

3. Ruckert U., Richter L., and Kramer S. Quantitative association

rules based on half-spaces: an optimization approach. In Proc.

2004 IEEE Int. Conf. on Data Mining, 2004, pp. 507–510.

4. Srikant R. and Agrawal R. Mining quantitative association

rules in large relational tables. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1996, pp. 1–12.

5. Webb G.I. Discovering associations with numeric variables.

In Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining, 2001, pp. 383–388.

6. Zhu X. and Wu X. Discovering relational patterns across

multiple databases. In Proc. 23rd Int. Conf. on Data Engineer-

ing, 2007, pp. 726–735.
QUEL

TORE RISCH

Uppsala University, Uppsala, Sweden

Definition
QUEL was the query language used in the original

Ingres system from Berkeley University.

Key Points
QUEL was one of the first relational database query

languages. It can be seen as a syntactically sugared
tuple relational calculus language. The Postgres exten-

sion of Ingres originally used an extention of QUEL

called PostQUEL, but was later replaced with SQL.

Cross-references
▶ Ingres

▶ Postgres

▶Tuple Relational Calculus
Query Answering in Analytical
Domains

▶Query Processing in Data Warehouses
Query Assistance

▶Web Search Query Rewriting
Query by Example

▶Video Querying
Query by Humming

YINGYI BU
1, RAYMOND CHI-WING WONG

2,

ADA WAI-CHEE FU
1

1Chinese University of Hong Kong, Hong Kong, China
2Hong Kong University of Science and Technology,

Hong Kong, China

Synonyms
Music retrieval; Time series database querying

Definition
With the appearance of large scale audio and video

databases in various application areas, novel informa-

tion retrieval methods adapted to the specific charac-

teristics of these data types are required. A natural way

of searching in a musical audio database is by hum-

ming the tune of a song as a query, which is so-called

‘‘query by humming’’. In this entry, state-of-the-art

techniques for effective and efficient querying by hum-

ming are described.

Query by Humming
Q

2245
Historical Background
In 1995, Asif Ghias et al. [1] proposed the basic archi-

tecture for a system supporting query by humming.

Three main components are introduced in the system:

a pitch-tracking module, a melody database, and a

query engine. Queries are hummed into a microphone,

digitized, and fed into a pitch-tracking module. Then,

a symbol sequence representation upon the relative

pitch transitions of the hummed melody is sent to

the query engine, which produces a ranked list of

matching melodies.

Foundations
In recent researches, musical data are modeled as time

series which are real valued sequences rather than

symbol sequences. In speech comparisons, small fluc-

tuation of the tempo of the speaker could be allowed in

order to identify similar contents. There have been

some works that match a melody more effectively by
Query by Humming. Figure 1. Motivating example.
considering warping and scaling in humming queries.

This generally gives better query results because it is free

from the error-prone note segmentation. However,

those works rely on distance measures such as univer-

sal scaling (US), dynamic time warping (DTW) [2,4]

and scaling and time warping (SWM) [5], the effi-

ciency might be rather poor. Fortunately, tight lower

bounds for DTW and SWM could greatly improve the

efficiency by pruning large portions of non-candidate

data at an early stage.
Comparisons of Distance Measures on Examples

Figure 1 demonstrates the effects of different distance

measures with a typical piece of music,Happy Birthday

to You, from top to bottom:

1. Since the query sequence is performed at a much

faster tempo, direct application of DTW fails to

produce an intuitive alignment;
Q

2246
Q

Query by Humming
2. Rescaling the shorter performance by a scaling fac-

tor of 1.54 seems to improve the alignment, but the

higher pitched note produced on the third ‘‘birth...’’

of the candidate is forced to align with the lower

note of the third ‘‘happy...’’ in the query;

3. Only the application of both uniform scaling and

DTW produces the appropriate alignment.

Dynamic Time Warping (DTW)

Intuitively, dynamic time warping is a distance measure

that allows time series to be locally stretched or shrunk

before the base distance measure is applied. Given two

sequences C = C1,C2,...,Cn and Q = Q1, Q2,...,Qm, the

time warping distance DTW is defined recursively as

follows:

DTWðf;fÞ ¼ 0

DTWðC;fÞ ¼ DTWðf;QÞ ¼ 1
DTWðC;QÞ ¼ DbaseðFirstðCÞ; FirstðQÞÞþ

min

DTWðC; RestðQÞÞ

DTW ðRestðCÞ; QÞ

DTW ðRestðCÞ;RestðQÞÞ

8>><
>>:

where F is the empty sequence, First(C) = C1, Rest

(C) = C2,C3,...,Cn, and Dbase denotes the distance be-

tween two entries. Several Lpmeasures were used as the

Dbase distance in previous literature, such as Manhat-

tan Distance (L1), squared Euclidean Distance (L2) and

maximum difference (L1). Typically Squared Euclide-

an Distance is used as the Dbase measure. That is,

Dbase ðCi;QjÞ ¼ ðCi � QjÞ2:

Thus in the following parts, without loss of generality,

it is assumed that Dbase is the squared Euclidean Dis-

tance andD is also used to denote it. However, the time

complexity of DTWdistance calculation is O(mn), and

intensive computations are employed for the

corresponding dynamic programming. Thus, lower

bounds on the distance are adopted to effectively

prune the search space and support efficient search.
Constraints and Lower Bounds on Dynamic Time

Warping

Keogh et al. [2] viewed a global constraint as a constraint

on the warping path entrywk = (i, j)k and gave a general

form of global constraints in terms of inequalities on

the indices to the elements in the warping matrix,
j � r � i � j þ r

where r is a constant for the Sakoe–Chiba Band and r is

a function of i for the Itakura Parallelogram. Incorpor-

ating the global constraint into the definition of

dynamic time warping distance, DTW can be modified

as follows.

Given two sequences C = C1,C2,...,Cn and Q = Q1,

Q2,...,Qm, and the time warping constraint r, the

constrained time warping distance cDTW is defined

recursively as follows:

Distr ðCi;QjÞ ¼ D
base

ðCi;QjÞ if j i - j j � r

1 otherwise

�

CDTWðf;f; rÞ ¼ 0

CDTWðC;f; rÞ ¼ CDTWðf; Q; rÞ ¼ 1
CDTWðC;Q; rÞ ¼ DistrðFirstðCÞ; FirstðQÞÞþ

min

CDTWððC; RestðQÞ; rÞ

CDTWð ðRestðCÞ; Q; rÞ

CDTWððRestðCÞ; RestðQÞ; rÞ

8>>><
>>>:

where F is the empty sequence, First(C) = C1, Rest

(C) = C2,C3,...,Cn. The upper bounding sequence UW

and the lower bounding sequence LWof a sequence C are

defined using the time warping constraint r as follows.

Let UW = UW1,UW2,...,UWn and LW = LW1,

LW2,...,LWn,

UWi ¼maxðCi�r ;:::;CiþrÞ and
LWi ¼ maxðCi�r ;:::;CiþrÞ

Considering the boundary cases, the above can be

rewritten as

UWi ¼ maxðCmaxð1;i�rÞ;:::;Cminðiþr;nÞ Þ and
LWi ¼ minðCminð1;i�rÞ;:::;Cminðiþr;nÞÞ

E(C)=< UW, LW> is called the envelope sequences of

Keogh et al. [2] propose the lower bound distance

LB_Keogh based on envelope sequences. The time

warping distance between two sequences Q and C is

lower bounded by the squared Euclidean distance be-

tween Q and the envelope sequences of C. Equation (1)

below formally defines the lower bounding distance.

LB KeoghðQ; CÞ ¼ D ðQ; EðCÞÞ

¼
Xm
i¼1

ðQi � UWiÞ2 if Qi > UWi

ðQi � LWiÞ2 if Qi < LWi

0 otherwise

8><
>:

ð1Þ

Query by Humming
Q

2247

Q

Zhu et al. [3] further improve on LB_Keogh. If a

transformation T is a linear transform and lower-

bounding, and Envr(Ci) is the envelope of Ci by global

constraint r then

DðTðQÞ; TðEnvr ðCiÞÞÞ � cDTWðQ; Ci ; r Þ ð2Þ

Therefore transforms such as PAA, DWT, SVD and

DFTon the envelope sequence of a candidate sequence

could still lower bound DTW distance, since those

transforms are both linear and lower bounding.

Uniform Scaling (US)

Given two sequences Q = Q1,...,Qm and C = C1,...,Cn

and a scaling factor bound l, l � 1. Let C(q) be

the prefix of C of length q, where dm ∕ le� q � lm and

C(m,q) be a rescaled version of C(q) of length m,

Cðm; qÞi ¼ CðqÞ i:q=md e where 1 � i � m

USðC;Q; lÞ ¼ min
minðlm;nÞ

q¼ m=ld e
DðCðm; qÞ;QÞ

where D(X, Y) denotes the Euclidean distance between

two sequences X and Y.

Lower Bounding Uniform Scaling

The two sequences UC = UC1,...,UCm and LC = LC1,...,

LCm, such that

UCi ¼ maxðC i=ld e;:::;C ild eÞ
LCi ¼ minðC i=ld eÞ;:::;C ild eÞ

bound the points of the time series C that can be

matched with Q. The lower bounding function,

which lower bounds the distance between Q and C

for any scaling r, 1 � r � l, can now be defined as:

LBsðQ;CÞ ¼ S
m

i¼1

ðQi � UCiÞ2 if Qi > UCi

ðQi � LCiÞ2 if Qi < UCi

0 otherwise

8<
: ð3Þ

Scaling and Time Warping (SWM)

Having reviewed time warping, uniform scaling, and

lower bounding, this part introduces scaling and time

warping (SWM) distance. Given two sequences Q =

Q1,...,Qm and C = C1,...,Cn, a bound on the scaling

factor l, l � 1 and the Sakoe–Chiba Band time warping

constraint r which applies to sequence length m. Let

C(q) be the prefix of C of length q, where dm ∕ le� q �
min(lm, n) and C(m, q) be a rescaled version of C(q) of

length m,
Cðm; qÞi ¼ CðqÞ i:q=md e where 1 � i � m

SWMðC;Q; l; rÞ ¼ min
minðlm;nÞ

q¼ m=ld e
cDTWðCðm; qÞ;Q; rÞ

If time warping is applied on top of scaling, i.e., the

sequence is first scaled, and then measure the time

warping distance of the scaled sequence with the

query. Typically, time warping with Sakoe–Chiba

Band constrains the warping path by a fraction of the

data length, which is translated into a constant r.

Hence, if the fraction is 10%, then r = 0.1jCj. If the
length of C is changed according to the scaling fraction

r, that is, C is changed to rC, then the Sakoe–Chiba

Band time warping constraint is r = 0.1jrCj. Hence,

r = r 0r, where r 0 is the Sakoe–Chiba Band time warp-

ing constraint on the unscaled sequence, and r is the

scaling factor.

Lower Bounding SWM

The lower envelope Li and upper envelope Ui on C can

be deduced as follows: recall that the upper and lower

bounds for uniform scaling between 1 ∕ l and l is given

by the following:

UCi ¼ maxðC i=ld e;:::;C ild eÞ
LCi ¼ minðC i=ld e;:::;C ild eÞ

and the upper and lower bounds for a Sakoe –Chiba

Band time warping constraint factor of r for a point Ci

is given by:

UWi ¼ maxðCmaxð1;i�rÞ;:::;Cminðiþr;nÞÞ
LWi ¼ minðCmaxð1;i�rÞ;:::;Cminðiþr;nÞÞ

Therefore, when time warping is applied on top of

scaling the upper and lower bounds will be:

Ui ¼ maxðUW i=ld e;:::;UW ild eÞ
¼ maxðCmaxð1; i=ld e�r 0Þ;:::;Cminð i=ld eþr 0;nÞ;:::;

Cmaxð1; ild e�r 0Þ;:::;Cminð ild eþr 0;nÞÞ
¼ maxðCmaxð1; i=ld e�r 0Þ;:::;Cminð ild eþr 0;nÞÞ

ð4Þ

Li ¼ minðLW i=ld e;:::;LM ild eÞ
¼ minðCmaxð1; i=ld e�r 0Þ;:::;Cminð i=ld eþr 0;nÞ;:::;

Cmaxð1; ild e�r 0Þ;:::;Cminð ild eþr 0;nÞÞ
¼ minðCmaxð1; i=ld e�r 0Þ;:::;Cminð ild eþr 0;nÞÞ

ð5Þ

In [4], the lower bound function which lower bounds

the distance between Q and C for any scaling in the

2248
Q

Query by Humming
range of {1 ∕ l ,l} and time warping with the Sakoe–

Chiba Band constraint factor of r 0 on C is given by:

LBðQ;CÞ ¼
Xm
i�1

ðQi � UiÞ2 if Qi > Ui

ðQi � LiÞ2 if Qi < Li
0 otherwise

8<
: ð6Þ

Efficient Pruning Algorithm by Lower Bounds

Algorithm 1 gives the pseudocode for the search

algorithm, which utilizes the computational efficient
Algorithm 1: Lower_Bounding_Sequential_Scan(Q)

Query by Humming. Figure 2. Pruning power vs. length of
lower bounds on computational intensive distance

measures to prune candidate sequences at an early

stage. ‘‘real_distance’’ could be DTW, US, or SWM

distance, while ‘‘lower_bound_distance’’ denotes the

corresponding lower bound.

Key Applications
Query by humming is essential for audio informa-

tion retrieval in terms of both effectiveness and

efficiency.

Future Directions
In [3], a unified framework is proposed to explain the

existing lower-bound functions for dynamic time

warping distance. A new lower-bound function that

is shown by experiments to be superior is also pro-

posed. For future studies, this function can be investi-

gated for the effectiveness in query by humming.

Experimental Results
This section describes the experiments carried out to

verify the effectiveness of the proposed lower bounding
original data.

Query Containment
Q

2249

Q

distance for the most effective distance measure: SWM.

The Pruning Power P is defined in [2] as follows:

p ¼ Number of objects that do not require full SWM

Number of objects in database

The pruning power is an objective measure because

it is free of implementation bias and choice of the

underlying spatial index. This measure has become

a common metric for evaluating the efficiency of

lower bounding distances, therefore, it was adopted

in evaluating the proposed lower bounding distance.

Figure 2 shows how the pruning power of the lower

bounding measure varies as the length of data changes

for different datasets. More than 78% (32 out of 41) of

the datasets achieved a pruning power above 90%.

Data Sets
http://www.cs.ucr.edu/	eamonn/VLDB2005/

Cross-references
▶Multimedia Information Retrieval

▶ Spatial Network Databases

Recommended Reading
1. Ghias A., Logan J., Chamberlin D., and Smith B.C. Query by

humming: musical information retrieval in an audio database.

In Proc. 3rd ACM Int. Conf. on Multimedia, 1995, pp. 231–236.

2. Keogh E.J. Exact indexing of dynamic time warping. In Proc.

28th Int. Conf. on Very Large Data Bases, 2002, pp. 406–417.

3. Zhou M. and Hon Wong M. Boundary-based lower-bound

functions for dynamic time warping and their indexing. In

Proc. 23rd Int. Conf. on Data Engineering, 2007, pp. 1307–1311.

4. Zhu Y. and Shasha D. Warping indexes with envelope transforms

for query by humming. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2003, pp. 181–192.

5. Wai-Chee Fu A., Keogh E.J., Yung Hang Lau L., and Chotirat

(Ann) Ratanamahatana. Scaling and time warping in time series

querying. In Proc. 31st Int. Conf. on Very Large Data Bases,

2005, pp. 649–660.
Query Compilation

▶Query Optimization

▶Query Optimization (in Relational Databases)
Query Compilation and Execution

▶Query Processing (In Relational Databases)
Query Containment

RADA CHIRKOVA

North Carolina State University, Raleigh, NC, USA

Definition
One query is contained in another if, independent of

the values of the ‘‘stored data’’ (that is, database), the

set of answers to the first query on the database is a

subset of the set of answers to the second query on the

same database. A formal definition of containment is

as follows: denote with Q(D) the result of computing

query Q over database D. A query Q1 is said to be

contained in a query Q2, denoted by Q1 v Q2, if for

all databasesD, the set of tuplesQ1(D) is a subset of the

set of tuples Q2(D) – that is, Q1(D)
 Q2(D). This

definition of containment, as well as the related defini-

tion of query equivalence, can be used to specify query

containment and equivalence on databases conform-

ing to both relational and nonrelational data models,

including XML and object-oriented databases.
Historical Background
Testing for query containment on finite databases is,

in general, co-recursively enumerable: The proce-

dure is going through all possible databases and

simultaneously checking for noncontainment via

bottom-up evaluation. See [6] for the details and

for a discussion of the relationship between regular

and unrestricted (that is, on not necessarily finite

databases) containment and equivalence of relation-

al expressions.

Chandra and Merlin [3] have shown that the pro-

blems of containment, equivalence, and minimization

of conjunctive queries are NP complete. (Conjunctive

queries are a subset of Datalog that is equivalent in

expressive power to SQL select-project-join queries

with only equality comparisons permitted.) It is also

shown [3] that there is a simple test for containment,

and thus for equivalence. While the question of whether

one conjunctive query is contained in another is NP

complete, all the complexity is caused by ‘‘repeated

predicates,’’ that is, predicates appearing three or more

times in the body. In the very common case that no

predicate appears more than twice in any query, con-

tainment can be tested in linear time [11]. Moreover,

conjunctive queries tend to be short, so in practice

containment testing is not likely to be too inefficient.

2250
Q

Query Containment
Klug [8] has shown that containment for conjunc-

tive queries with arithmetic – that is, inequality or

disequality – comparisons (CQAC) is in P2
p, while

being in NP for some proper subclasses. In addition

to reporting some new results on the complexity of

CQAC query containment, Afrati and colleagues [2]

provide a survey, comprehensive as of 2006, on the

complexity of query containment, for query classes

including conjunctive queries, CQAC and its sub-

classes, as well as recursive and nonrecursive Datalog.

More original work and further references on query

containment in relational and nonrelational databases

can be found in [1,5,7,9,10,12–15].

Foundations
This overview of key ideas concerning conjunctive

queries, Datalog programs, and their containment is

based on [9] as well as on [15], which includes the

details and references to the original sources of the

results discussed here. The first item on the agenda is a

review of containment of conjunctive queries. A con-

junctive query is a single Datalog rule with subgoals that

are assumed to have predicates referring to stored rela-

tions. (The standard Datalog notation is reviewed in,

e.g., Sect. 6.1 of [4].) A conjunctive query is applied to

the stored relations in a given database by considering

all possible substitutions of values for the variables in

the body. If a substitution makes all the subgoals true,

then the same substitution, applied to the head of the

rule, is an element of the set of answers to the head’s

predicate on the given database.

For example, rule

pðX ;ZÞ : � aðX ;Y Þ; aðY ;ZÞ

talks about predicate a, for stored relation that contains

information about arcs in a directed graph: a(X, Y)

means that there is an arc from node X to node Y in

the graph. The rule also talks about predicate p whose

relation is constructed by the rule. The rule says ‘‘p(X, Z)

is true if there is an arc from node X to some node Y

and also an arc from Y to Z.’’ That is, conjunctive query

p represents paths of length 2, in the sense that p(X, Z)

will be inferred exactly when there is a path of length

2 from X to Z in the graph represented by stored

relation a.

It was proved in [3] thatQ1vQ2 if and only if there

is a homomorphism h : Q2
D ! Q1

D, where QD is the

canonical database associated with conjunctive query
Q. The canonical database QD for query Q is defined as

the result of ‘‘freezing’’ the body of Q, which turns each

subgoal of Q into a fact in the database. That is, the

‘‘freezing’’ procedure replaces each variable in the body

of Q by a distinct constant, and the resulting subgoals

are the only tuples in the canonical database QD.

Consider now an example of checking conjunctive-

query containment using canonical databases. Rule

rðW ;W Þ : � aðW ;UÞ; aðU ;W Þ

defines conjunctive query r, whose answer represents

circular paths of length 2 in a graph specified by arcs

stored in relation a. As each circular path of length 2 is

also an (arbitrary) path of length 2, the containment

r v p is expected to hold. Indeed, the canonical data-

base r D, for the query defining predicate r, is a set of

tuples {a(w, u), a(u, w)}, while the canonical database

pD, for the query defining predicate p, is a set of tuples

{a(x, y), a(y, z)}. There exists a homomorphism from

pD to rD that maps x into w, y into u, and z into w (or,

alternatively, maps a(x, y) into a(w, u) and a(y, z) into

a(u, w)). Thus, by [3], the set of tuples in the answer to

r on every database D is a subset of the set of tuples in

the answer to p on D.

As no homomorphism exists from rD to pD, the

conclusion is that p is not contained in r, which is to

be expected from an intuitive interpretation of the

two queries. However, if conjunctive query t defined by

the rule

tðL;NÞ : � aðL;MÞ; aðM ;NÞ; aðM ; SÞ

is also considered, it is possible to ascertain both p v t

and t v p, by constructing a homomorphism from pD

to tD (for the query defining predicate t) and another

homomorphism from tD to pD. Thus, conjunctive

queries p and t are equivalent. Indeed, each of p and

t represents arbitrary paths of length 2 in a graph.

However, p is more efficient to evaluate than t, because

computing the set of answers to p requires only one

join on the stored relation a, while evaluating t requires

two joins. As described in [3], one can minimize con-

junctive queries for more efficient evaluation; in fact,

query p in this example can be obtained as a result of

minimizing query t.

Another test for containment of conjunctive query

Q1 in conjunctive query Q2 consists in computing the

set of answers to Q2 on the canonical database Q1
D for

Q1. The test succeeds if the frozen head of Q1 is an

Query Containment
Q

2251

Q

element of Q2(Q1
D); otherwise the database Q1

D is a

counterexample to the containment.

An important extension of the theory of contain-

ment of conjunctive queries is the inclusion of arithme-

tic comparisons as subgoals, with so-called built-in, or

interpreted, predicates (e.g., subgoal X � Y with built-

in predicate �). When testing two conjunctive queries

with arithmetic comparisons (CQACs) for contain-

ment Q1 v Q2 using canonical databases, one must

consider the set of values in the database as belonging

to a totally ordered set, e.g., the integers or reals.

The containment test using canonical databases is

conducted as follows. Each basic canonical database

is constructed from only those subgoals of Q1 that

have uninterpreted predicates. Each basic canonical

database is the canonical database (QD for query Q)

defined above, together with a partition of the variables

of the query into a list of blocks, such that each block is

associated with a distinct integer value for all its vari-

ables, in increasing order of the integer values on the list

of the blocks. The containment test succeeds if the

frozen head of Q1 is an element of Q2ðQDi

1 Þ on all

basic canonical databases QDi

1 for Q1; otherwise any

QDi

1 on which the test fails is a counterexample to

containment. Another more general containment test

for conjunctive queries with interpreted (not necessar-

ily arithmetic-comparison) predicates uses homo-

morphisms on the uninterpreted predicates and

logical implication on the built-in predicates; see [15]

for the details.

The problem of testing CQACs for containment

is complete for P2
p, at least in the case of a dense

domain such as real numbers. (In fact, the problem

is P2
p complete even for conjunctive queries with

disequalities 6¼ as the only comparison predicate.)

A containment test for conjunctive queries with nega-

tion is outlined in [15]. The test in this case is also

complete for P2
p, as it also involves exploring an

exponential number of canonical databases. The

query-containment problem is also P2
p complete for

unions of conjunctive queries [1].

Containment questions involving Datalog programs

are often harder than for conjunctive queries. It is

known that containment of Datalog programs is unde-

cidable, while containment of a Datalog program in a

conjunctive query is doubly exponential. However, the

important case for purposes of information integration

is the containment of a conjunctive query in a Datalog

program, and this question turns out to be no more
complex than containment of conjunctive queries. To

test whether a conjunctive query Q is contained in a

Datalog program P, one would ‘‘freeze’’ the body of Q

to make a canonical database D. Then a check is done

to see if P(D) contains the frozen head of Q. The only

significant difference between containment in a con-

junctive query and containment in a Datalog program

is that in the latter case one must keep applying the

rules until either the head of Q is derived or no more

facts can be inferred in evaluating P(D).

Key Applications
Query containment was recognized fairly early as a

fundamental problem in database query evaluation and

optimization. The reason is, for conjunctive queries –

a broad class of frequently used queries, whose expressive

power is equivalent to that of select-project-join queries

in relational algebra – query containment can be used

as a tool in query optimization, since the problem of

conjunctive-query equivalence is equivalent to the prob-

lem of conjunctive-query containment. Specifically, to

find a more efficient and answer-preserving formula-

tion of a given conjunctive query, it is enough to ‘‘try

all ways’’ of arriving at a ‘‘shorter’’ query formulation,

by removing a query subgoal, in a process called query

minimization [3]. In this process, a subgoal-removal

step succeeds only if a containment test ensures equiv-

alence (via containment) of the ‘‘original’’ and

‘‘shorter’’ query formulations.

Note that the problems of query containment

and query equivalence are equivalent for conjunctive

queries under the common setting of set semantics

for query evaluation, where both stored relations and

query answers are interpreted as sets of tuples. Inter-

estingly, the relationship between the problems of con-

tainment and equivalence is very different under bag

semantics for query evaluation, where both stored rela-

tions and query answers are allowed to have duplicates.

See Jayram and colleagues [5] for a discussion and

references on containment and equivalence under bag

semantics, for conjunctive queries as well as for more

expressive classes of queries, including CQACs and

queries with grouping and aggregation. Jayram and

colleagues [5] also present original undecidability

results for containment of conjunctive queries with

inequalities under bag and bag-set semantics for

query evaluation.

In recent years, there has been renewed interest in

the study of query containment, because of its close

2252
Q

Query Containment
relationship to the problem of answering queries using

views [4]. Intuitively, the problem of answering queries

using views is as follows: Given a query on a database

schema and a set of views (i.e., named queries) over the

same schema, can the query be answered (efficiently)

using only the views? Alternatively, what is the maxi-

mum set of tuples in the answer to the query that can be

obtained from the views? As another alternative, in case

it is possible to access both the views and the database

relations, what is the cheapest query-execution plan for

answering the query?

The problem of answering queries using views has

emerged as a central problem in integrating informa-

tion from heterogeneous sources, an area that has been

the focus of concentrated research efforts for a number

of years [4,15]. An information-integration system

can be described logically by views that specify what

queries the various information sources can answer.

These views might be conjunctive queries or Datalog

programs, for example. The ‘‘database’’ of predicates

over which these views are defined is not a concrete

database but rather a collection of ‘‘global’’ predicates

whose actual values are determined by the sources, via

the views. Information-integration systems provide a

uniform query interface to a multitude of autonomous

data sources, which may reside within an enterprise or

on the World-Wide Web. Data-integration systems free

the user from having to locate sources relevant to a

query, interact with each one in isolation, and manu-

ally combine data from multiple sources.

Given a user query Q, typically a conjunctive query,

on the global predicates, an information-integration

system determines whether it is possible to answer

Q by using the various views in some combination.

In addressing the problem of answering queries using

views in the information-integration setting, query

containment appears to be more fundamental than

query equivalence. In fact, answering a query using

only the answers to the views is considered ‘‘good

enough’’ even in cases where equivalence does not

hold (or cannot be demonstrated), provided that the

view-based query rewriting can be shown to be

contained in the query and is a maximal (i.e., returning

the maximal set of answers) rewriting of the query

using the available views and a given rewriting lan-

guage. (For the details and references on maximally

contained rewritings see, e.g., [2].)

Besides its applications in information integration,

the problem of answering queries using views is of
special significance in other data-management applica-

tions. (Please see [4] for the details and references.) For

instance, in query optimization finding a rewriting of a

query using a set of materialized views (i.e., the

answers to the queries defining the views) can yield a

more efficient query-execution plan, because part of

the computation necessary to answer the query may

have already been done while computing the materi-

alized views. Such savings are especially significant in

decision-support applications when the views and

queries contain grouping and aggregation.

In the context of database design, view definitions

provide a mechanism for supporting the independence

of the logical and physical views of data. This indepen-

dence enables the developers tomodify the storage sche-

ma of the data (i.e., the physical view) without changing

its logical schema, and to model more complex types of

indices. Provided the storage schema is described as a set

of views over the logical schema, the problem of com-

puting a query-execution plan involves figuring out how

to use the view answers (i.e., the physical storage) to

answer the query posed on the logical schema.

In the area of data-warehouse design the desidera-

tum is to choose a set of views (and indexes on the views)

to materialize in the warehouse. Similarly, in web-site

design, the performance of a web site can be significantly

improved by choosing a set of views to materialize. In

both problems, the first step in determining the utility of

a choice of views is to ensure that the views are sufficient

for answering the queries expected to be posed over the

data warehouse or the web site. The problem, again,

translates into the view-rewriting problem.

The problem of query containment is also of

special significance in artificial intelligence, where con-

junctive queries, or similar formalisms such as descrip-

tion logic, are used in a number of applications. The

design theory for such logics is reducible to contain-

ment and equivalence of conjunctive queries. Original

results and a detailed discussion concerning an inti-

mate connection between conjunctive-query contain-

ment in database theory and constraint satisfaction in

artificial intelligence can be found in [9].

Cross-references
▶Conjunctive Query

▶Query Optimization

▶Query Optimization (in Relational Databases)

▶Query Rewriting Using Views

▶ SQL

Query Evaluation Techniques for Multidimensional Data
Q

2253

Q

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases.

Addison-Wesley, 1995.

2. Afrati F.N., Li C., and Mitra P. Rewriting queries using views in

the presence of arithmetic comparisons. Theor. Comput. Sci.,

368(1–2):88–123, 2006.

3. Chandra A.K. and Merlin P.M. Optimal implementation of

conjunctive queries in relational data bases. In Proc. 9th Annual

ACM Symp. on Theory of Computing, 1977, pp. 77–90.

4. Halevy A.Y. Answering queries using views: A survey. VLDB J.,

10(4):270–294, 2001.

5. Jayram T.S., Kolaitis P.G., and Vee E. The containment problem

for REAL conjunctive queries with inequalities. In Proc. 25th

ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Data-

base Systems, 2006, pp. 80–89.

6. Kanellakis P.C. Elements of Relational Database Theory.

In Handbook of Theoretical Computer Science, Volume B:

Formal Models and Sematics (B). Elsevier and the MIT Press,

1990, pp. 1073–1156.

7. Kimelfeld B. and Sagiv Y. Revisiting Redundancy andMinimization

in an XPath Fragment. In Advances in Database Technology, Proc.

11th Int. Conf. onExtendingDatabase Technology, 2008, pp. 61–72.

8. Klug A.C. On conjunctive queries containing inequalities.

J. ACM, 35(1):146–160, 1988.

9. Kolaitis P.G. and Vardi M.Y. Conjunctive-Query Containment

and Constraint Satisfaction. J. Comput. Syst. Sci., 61

(2):302–332, 2000.

10. Miklau G. and Suciu D. Containment and equivalence for a

fragment of XPath. J. ACM, 51(1):2–45, 2004.

11. Saraiya Y. Subtree elimination algorithms in deductive data-

bases. Ph.D. thesis, Stanford University, 1991.

12. Ullman J.D. CS345 lecture notes. http://infolab.stanford.edu/

	ullman/cs345-notes.html.

13. Ullman J.D. Principles of Database and Knowledge-Base Sys-

tems, Volume II. Computer Science press, 1989.

14. Ullman J.D. The database approach to knowledge representa-

tion. In Proc. 13th National Conf. on Artificial Intelligence and

8th Innovative Applications of AI Conf., Volume 2, 1996, pp.

1346–1348.

15. Ullman J.D. Information integration using logical views. Theor.

Comput. Sci., 239(2):189–210, 2000.
Query Engine

▶Query Processor
Query Evaluation

▶ Evaluation of Relational Operators

▶Query Processing

▶Query Processing and Optimization in Object Rela-

tional Databases
Query Evaluation Plan

▶Query Plan
Query Evaluation Techniques for
Multidimensional Data

AMARNATH GUPTA

University of California-San Diego, La Jolla, CA, USA

Synonyms
Spatial data

Definition
There are two senses of the term ‘‘multidimensional

data.’’ The first relates to the data warehousing and

online analytical processing (OLAP). The second

sense of the term, used mostly in the context of scien-

tific data, refers to variants of array-representable data

where the dimensionality refers to the dimensions of

the array. Query processing for this class of data uses

array algebras [3] and array-specific storage [1]

indexing techniques [4].
Key Points
In many scientific applications, data can be represented

as multidimensional arrays. For example, the current

flow in oceans is a time-varying vector field and can be

roughly viewed as 4-dimensional data. In many appli-

cations the array may not be uniform, but it can be

nested, and even irregular. Query evaluation on this

kind of data is greatly dependent on applications.

Some applications need to perform operations like

value-based clustering on the data, while other appli-

cations need fast computation of aggregates such as

temporal trends in regions that are selected by user

queries. It has been established that storing the multi-

dimensional data as relational tables and developing

special routines to handle such relational data is feasi-

ble but not optimal, especially when the data is large.

ESRI, the GIS provider, has assembled a number of

operations collectively called the MapAlgebra for the

case where the arrays are two dimensional and the

applications are spatial. Recently [2] developed a

generic algebra called the gridfield algebra for manip-

ulating arbitrary gridded datasets (i.e., arrays), and

2254
Q

Query Execution Engine
present algebraic optimization techniques in these

applications. This system is implemented in a system

called CORIE (http://www.ccalmr.ogi.edu/CORIE/)

for an environmental observation and forecasting

system.
Cross-references
▶Multidimensional Modeling

▶On-Line Analytical Processing

▶Raster Data Management and Multi-Dimensional

Arrays
Recommended Reading
1. Furtado P. and Baumann P. Storage of multidimensional arrays

based on arbitrary tiling. In Proc. 15th Int. Conf. on Data

Engineering, 1999, pp. 480–489.

2. Howe B. and Maier D. Algebraic manipulation of scientific

datasets. VLDB J., 14(4):397–416, 2005.

3. Marathe A.P. and Salem K. Query processing techniques for

arrays. VLDB J. 11(1):68–91, 2002.

4. Sinha R.R. and Winslett M. Multi-resolution bitmap indexes for

scientific data. ACM Trans. Database Syst., 32(3):16, 2007.
Query Execution Engine

▶Query Processor
Query Execution in Star/ Snowflake
Schemas

▶Query Processing in Data Warehouses
Query Execution Plan

▶Query Plan
Query Expansion

▶Web Search Query Rewriting
Query Expansion for Information
Retrieval

OLGA VECHTOMOVA

University of Waterloo, Waterloo, ON, Canada

Synonyms
QE, Query enhancement; Term expansion

Definition
Query expansion (QE) is a process in Information

Retrieval which consists of selecting and adding terms

to the user’s query with the goal of minimizing query-

document mismatch and thereby improving retrieval

performance.

Historical Background
The work on query expansion following relevance

feedback dates back to 1965, when Rocchio [9] forma-

lized relevance feedback in the vector-space model.

Early work on using collection-based term co-occur-

rence statistics to select query expansion terms was

done by Spärck Jones [10] and van Rijsbergen [12].
Foundations
The central task of information retrieval (IR) is to find

documents that satisfy the user’s information need.

This is usually taken to mean finding documents or

some parts of them, such as passages, which contain

information that would help resolving the user’s infor-

mation need. Therefore, at least in a more traditional

sense, IR does not involve providing the user directly

with the information needed. The user usually

expresses his/her information need in free-text using

natural language words and phrases (terms). Some-

times, prior to retrieving the documents, the user’s

free-text query is translated into controlled vocabulary

which is a subset of the words that comprise a natural

language. A document is similarly indexed either by

the natural language terms that constitute its content,

or by a set of controlled index terms that map its

contents to the concepts in a given domain. Both

directly matching free-text query terms to free-text

index terms and translating natural language words

to controlled vocabularies are inherently imprecise. In

the first case, the main problem is that the user and the

author of a document may express the same idea by

means of different terms. In the second case, the shades

Query Expansion for Information Retrieval
Q

2255

Q

of meanings that natural language terms carry may be

lost in the translation process. In addition to these

problems, the user’s query may be incomplete or inac-

curate, i.e., the user may not specify his/her informa-

tion need exactly or express it accurately.

The goal of query expansion is to enrich the user’s

query by finding additional search terms, either auto-

matically, or semiautomatically that represent the user’s

information need more accurately and completely,

thus avoiding, at least to an extent, the aforementioned

problems, and increasing the chances of matching the

user’s query to the representations of relevant ideas

in documents. Query expansion techniques may be

categorized by the following criteria:

� Source of query expansion terms;

� Techniques used for weighting query expansion

terms;

� Role and involvement of the user in the query

expansion process.

Query expansion can be performed automatically or

interactively. In automatic query expansion (AQE), the

system selects and adds terms to the user’s query,

whereas in interactive query expansion (IQE), the

system selects candidate terms for query expansion,

shows them to the user, and asks the user to select (or

deselect) terms that theywant to include into (or exclude

from) the query.

There are three main sources of QE terms: (i) hand-

built knowledge resources such as dictionaries, the-

sauri, and ontologies; (ii) the documents used in the

retrieval process; (iii) external text collections and

resources (e.g., the WWW, Wikipedia).

Hand-built knowledge resources have three main

limitations: they are usually domain-specific, have to be

kept up-to-date, and typically do not contain proper

nouns. Experiments with QEusing knowledge resources

did not show consistent performance improvements.

For example, in [13] QE with words manually selected

from WordNet, a large domain-independent lexical

resource with lexical-semantic relations between words,

didnotimprovewell-formulatedqueries,butsignificantly

improvedperformanceofpoorly-constructedqueries.

The most common source of QE terms is the

text collection used in the retrieval process or its sub-

set (e.g., retrieved documents). These QE techniques

showed overall better performance than techniques

using hand-built knowledge resources. They can be

subdivided into the following categories:
– QE following relevance feedback. QE terms are

extracted from the documents retrieved in response

to the user’s query and judged relevant by the user.

– QE following blind (pseudo-relevance) feedback.

QE terms are extracted from the top-ranked docu-

ments retrieved in response to the user’s query.

– QE using automatically built association thesauri

and collection-wide word co-occurrences.
Query Expansion Following Relevance and

Pseudo-Relevance Feedback

Relevance feedback (RF) is a process by which the

system, having retrieved some documents in response

to the user’s query, asks the user to assess their rele-

vance to his/her information need. Documents are

typically shown to the user in some surrogate form,

for example, as document titles, abstracts, snippets of

text, query-biased, or general summaries, keywords

and key-phrases. The user may also have an option to

see the whole document before making the relevance

judgement. After the user has selected some docu-

ments as relevant, query expansion terms are extracted

from them, weighted and the top-weighted terms are

either added to the query automatically, or shown to

the user for further selection.

Query expansion following relevance feedback

has consistently yielded substantial gains in perfor-

mance in experimental settings. Many term selection

methods have been proposed for query expansion fol-

lowing RF. The general idea behind all such methods

is to select terms that will be useful in retrieving pre-

viously unseen relevant documents. Below is a brief

description of a query expansion method [11] which

showed consistently high performance results on Text

REtrieval Conference (TREC) test collections. The first

step is to retrieve documents in response to the user’s

initial query, which is done by calculating document

matching score (Eq. 1) using the Robertson/Spärck-

Jones probabilistic model.

MS ¼
X
i2Q

ðk1 þ 1Þ � tfi

k1 � NF þ tfi
� wi ð1Þ

Where i is a term in the queryQ, tfi is the frequency of i

in the document, k1 is term frequency normalization

factor, NF is document length normalization factor

and is calculated as NF = (1-b) + b�DL/AVDL, where

DL is document length, AVDL is average document

length, b is a tuning constant, wi is term collection

2256
Q

Query Expansion for Information Retrieval
weight, calculated as wi = log(N/ni), where N is the

number of documents in the collection, ni is the num-

ber of documents containing i.

After the user looks through the top-retrieved

documents, and judges some of them as relevant, the

system extracts all terms from these documents, ranks

them according to the Offer Weight (OW) in Eq. 2, and

either adds a fixed number of terms to the query

(automatic query expansion), or asks the user to per-

form the term selection.

OW ¼ r � RW ð2Þ

Where r is the number of relevant documents contain-

ing the candidate query expansion term and RW is

Relevance Weight calculated as shown in Eq. 3:

RW ¼ log
ðr þ 0:5ÞðN � n� R þ r þ 0:5Þ

ðR � r þ 0:5Þðn� r þ 0:5Þ

� �
ð3Þ

Where R is the number of documents judged rele-

vant; r is the same as above; N is the number of

documents in the collection; n is the number of docu-

ments containing the term.

The subsequent document retrieval with the

expanded query is performed using Eq. 1 for docu-

ment ranking with RW used instead of w.

A related approach to RF is pseudo-relevance or

blind feedback (BF), which uses a number of top-ranked

documents in the initially retrieved set for query expan-

sion without asking the user to assess their relevance.

The query expansion method described above can be

used in BF with R being the number of top documents

assumed to be relevant. Many other QE methods

following blind feedback have been proposed. Two of

the methods that showed good performance on large

test collections are briefly introduced below.

Local Context Analysis (LCA) [14] technique

consists of extracting terms (nouns and noun phrases)

from n top ranked passages retrieved in response to the

user’s query. The extracted terms are ranked by their

similarity to the entire user’s query, and top m terms

are added to the query. Carpineto et al. [3] proposed

a term ranking method for QE based on Kullback-

Leibler divergence (KLD) measure. The method ranks

candidate QE terms based on the difference between

their distribution in pseudo-relevant documents and

in the entire collection.

In general, blind feedback has been demonstrated to

be less robust in performance than relevance feedback.
The QE performance following BF depends greatly

on the performance of the user’s initial query: if many

of the top-ranked documents retrieved in response to the

initial query are relevant, then it is likely that QE terms

from these documents will be useful in retrieving other

relevant documents. However, if the initial query is

poorly formulated or ambiguous, and many top-ranked

documents are nonrelevant, then QE terms extracted

from such documents may deteriorate performance.

Billerbeck and Zobel [2] report that blind feedback in

their experiments improves performance of less than a

third of queries. They also conclude that the best values

for such BF parameters as the number of documents

and terms used for QE vary widely across topics.
Query Expansion Using Association Thesauri and

Term Co-Occurrence Measures

UnlikeQE following relevance or pseudo-relevance feed-

back, where terms are selected from documents at search

time, QE techniques in this category rely on lexical

resources automatically constructed prior to the search

process. Typically, statistical measures of term similarity

are applied to identify terms in a large document collec-

tion that co-occur in the same contexts, and which,

therefore, are likely to be conceptually related.

For example, Qiu and Frei [7] developed a query

expansion method where query expansion terms

are selected from an automatically constructed co-

occurrence based term-term similarity thesaurus on

the basis of the degree of their similarity to all terms in

the query. Jing and Croft [4] developed a technique for

automatic construction of a co-occurrence thesaurus.

Each indexing unit, defined through a set of phrase

rules, is recorded in the thesaurus with its most strongly

associated terms. An evaluation of different similarity

measures (Dice, Jaccard, Cosine, Average Conditional

Probability, and Normalized Mutual Information) for

selecting query expansion terms from a document

collection is reported in [5]. The Dice, Jaccard, and

Cosine led to better QE results than Average Conditional

Probability and Normalized Mutual Information.

Interactive Query Expansion

In interactive query expansion the task of selecting

and adding terms to the user’s query is split between

the user and the system in such a way that the system

selects the candidate query expansion terms, but it is

the user who makes the final decision which terms to

Query Expansion Models
Q

2257
include into the query. Similarly to automatic query

expansion, the most common source of terms used in

IQE is a set of documents resulting from either relevance,

or pseudo-relevance feedback. Terms are extracted by the

system, ranked, and the top-ranked terms are shown

to the user for selection. The process of IQE is iterative,

and may be triggered either by the system, or the user.

Several studies comparing the effectiveness of AQE

and IQE have been conducted. Intuitively, since the

user is the one who decides which document is rele-

vant to his/her information need, the user should be

able to make better decisions than the system with

respect to which terms to add to the query. However,

experiments do not offer conclusive results that IQE

is more effective than AQE. For instance, Beaulieu [1]

showed that AQE is more effective than IQE in opera-

tional settings. On the other hand, Koenemann and

Belkin [6] reported higher subjective user satisfaction

with an IQE system, as well as better performance.

This suggests that the effectiveness of IQE is highly

variable, depending on the specific interactive system,

the users, and the task. Ruthven [8] did a simulation

study of a potential benefit of IQE. He concludes that

while IQE has potential to achieve higher performance

than AQE, this potential may not be easy to realize,

because it is difficult for the users to make decisions

about which terms are better in differentiating between

relevant and nonrelevant documents.
Q

Key Applications
Query expansion is used in some web search engines

and enterprise search systems. Although QE following

relevance feedback has been experimentally shown as

one of the most successful IR techniques, its use in Web

search has been limited.
Cross-references
▶BM25

▶ Information Retrieval

▶ Information Retrieval Models

▶ Probabilistic Retrieval Models and Binary Indepen-

dence Retrieval (BIR) Model.

▶Query Expansion Models

▶Relevance Feedback for Text Retreival
Recommended Reading
1. Beaulieu, M. Experiments with interfaces to support query

expansion. J. Doc. 53(1):8–19, 1997.
2. Billerbeck B. and Zobel J. Questioning query expansion:

an examination of behaviour and parameters. In Proc. 15th

Australasian Database Conf., 2004, pp. 69–76.

3. Carpineto C., de Mori R., Romano G., and Bigi B. An

information-theoretic approach to automatic query expansion.

ACM Trans. Information Syst., 19(1):1–27, 2001.

4. Jing Y. and Croft B. An association thesaurus for information

retrieval. In Proc. 4th Int. Conf. Computer-Assist IR. ‘‘Recherche

d’Information Assistée par Ordinateur’’, pp. 146–160.

5. Kim M-C. and Choi K-S. A comparison of collocation-based

similarity measures in query expansion. Inf. Proc. & Man., 35,

19–30, 1999.

6. Koenemann J. and Belkin N.J. A case for interaction: a study

of interactive information retrieval behavior and effectiveness.

In Proc. SIGCHI Conf. on Human Factors in Computing Sys-

tems, 1996, pp. 205–212.

7. Qiu Y. and Frei H.P. Concept based query expansion. In Proc.

16th Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 1993, pp. 160–169.

8. Ruthven I. Re-examining the potential effectiveness of inter-

active query expansion. In Proc. 26th Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

2003, pp. 213–220.

9. Salton G. The SMART retrieval system (Chapter 14). Prentice-

Hall, Englewood Cliffs NJ. (Reprinted from Rocchio J.J. (1965).

Relevance feedback in information retrieval. In Scientific Report

ISR-9, Harvard University), 1971.

10. Spärck Jones K. Automatic keyword classification for informa-

tion retrieval. Butterworths, London, 1971.

11. Spärck Jones K., Walker S., and Robertson S.E. A probabilistic

model of information retrieval: development and comparative

experiments. Inf. Proc. &Man., 36(6):779–808 (Part 1); 809–840

(Part 2), 2000.

12. van Rijsbergen C.J. A theoretical basis for the use of

co-occurrence data in information retrieval. J. Doc., 33,

(2):106–119, 1977.

13. Voorhees E. Query expansion using lexical-semantic relations.

In Proc. 17th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 1994, pp. 61–69.

14. Xu J. andCroft B.Query expansionusing local and global document

analysis. In Proc. 19th Annual Int. ACM SIGIR Conf. on Research

and Development in Information Retrieval, 1996, pp. 4–11.
Query Expansion Models

BEN HE

University of Glasgow, Glasgow, UK

Synonyms
Term expansion models

Definition
In information retrieval, the query expansion models

are the techniques, algorithms or methodologies that

2258
Q

Query Expansion Models
reformulate the original query by adding new terms

into the query, in order to achieve a better retrieval

effectiveness.

Historical Background
The idea of expanding a query to achieve better re-

trieval performance emerged around the early 1970’s.

A classical query expansion algorithm is Rocchio’s

relevance feedback technique proposed in 1971 [10]

for the Smart retrieval system. Since then, many differ-

ent query expansion techniques and algorithms have

been proposed.

Foundations
Query expansion models can be classed into three cate-

gories: manual, automatic, and interactive. Manual

query expansion relies on searcher’s knowledge and

experience in selecting appropriate terms to add to

the query. Automatic query expansion weights candi-

date terms for expansion by processing the documents

returned from the first-pass retrieval, and expands the

original query accordingly. Interactive query expansion

automates the term weighting process, but it is the user

who decides which are the expanded query terms.

Manual query expansion inspires and motivates the

user to refine the initial query through heuristics, for

instance, by providing a list of candidate terms mined

from query log, and allowing user the to choose

appropriate terms to add.

Automatic query expansion, different from manual

query expansion, expands search queries without any

form of human interaction. According to [15], the rea-

son for not involving human interaction could be that

the searcher does not want tomake an effort perhaps he/

she simply does not understand and does not bother

adding more terms to the query. Efthimiadis [4] cate-

gorized the automatic query expansion methods into

three subgroups on which the expansion process is

based: search results, collection dependent data struc-

tures (e.g., term co-occurrence, term frequency distribu-

tion etc.), and collection independent data structures

(e.g., lexicon relation between terms, synonyms etc.).

The first category (automatic query expansion

based on search results) uses the returned documents

from the first-pass retrieval with or without relevance

information, as feedback for query expansion. In [10],

Rocchio proposed a classical query expansion algo-

rithm based on the Vector Space model. His algorithm

has the following steps:
1. The first-pass retrieval consists of ranking the

documents for the given query.

2. A term weight w(t, d) is assigned to each term

occurring in one of the top-ranked document set

Dpsd. Such a document set is usually called a pseudo

relevance set. A term weight is first assigned to each

term document pair, that is the same weight

assigned in the first-pass retrieval. The weighting

model used is tf·idf (see TF IDF model).

3. Add the most weighted terms in the pseudo rele-

vance set to the query, and modify the query term

weights by taking into account both the original-

query term weight (qtw) used in the first-pass

retrieval, and the weight assigned by the term

weighting model. The query used in the first-pass-

retrieval is called the original query. Moreover, the

query with the modified query term weights is

called the reweighed query. The reweighed query-

with the added query terms is called the expanded

query. Using Rocchio’s method, the new query term

weight qtwmis given by Rocchio’s query expansion

formula as follows.

qtwm ¼ a � qtw þ b �
X
d2Dpsd

wðt ; dÞ
jDpsd j

ð1Þ

If an expanded query term is not in the original query,

qtw is zero. a and b are free parameters. The new

query term weight is given by an interpolation of the

original query term weight and the average term

weight in the pseudo relevance set with a + b = 1.

Another popular and successful automatic query

expansion algorithm was proposed by Robertson [7,8]

in the development of the Okapi system. Okapi’s query

expansion algorithm is similar to Rocchio’s, while

using a different term weighting function. It takes the

top R documents returned from the first-pass retrieval

as the pseudo relevance set. Unique terms in this set are

ranked in descending order of the Robertson Selection

Value (RSV) weights [7]. A number of top-ranked

terms, including a fixed number of non-original

query terms, are then added to the query. A major

difference between Rocchio’s and Robertson’s methods

is that the former explicitly uses relevant documents

for feedback, while the latter assumes a pseudo rele-

vance set. Okapi’s query expansion method has been

shown to be very effective for ad-hoc information

retrieval. For example, in TREC-3 ad-hoc retrieval

task, a 15.43% improvement over the Okapi BM25

Query Expansion Models
Q

2259

Q

baseline brought by Okapi’s query expansion was

reported [9].

Recently, Amati proposed a query expansion algo-

rithm in his Divergence from Randomness (DFR)

framework [1,2], which similarly follows the steps

in Rocchio’s algorithm. However, in Amati’s method,

term weights are assigned by a DFR term weighting

model. Two DFR term weighting models have been

proposed, namely Bo1 based on Bose-Einstein statis-

tics, and KL based on Kullback-Leibler divergence.

For example, using the Bo1 model, the weight of

a term t in the pseudo relevance document set D(Rel)

is given as:

wðtÞ ¼ tf x � log2
1þ l
l

þ log2ð1þ lÞ ð2Þ

where l is the mean of the assumed Poisson distribution

of the term in the pseudo relevant document set D(Rel).

It is given by
tf rel
Nrel

. tfrel is the frequency of the term in

the pseudo relevant documents, and Nrel is the number

of pseudo relevant documents. tfx is the frequency

of the query term in the pseudo relevance document

set.

Once the first-pass retrieval is finished, using a

document weighting model, a weight is assigned to

each term in the top-ranked documents returned

from the first-pass retrieval. This corresponds to the

first and second steps of the relevance feedback process

as introduced above.

In the next step, the original query terms are

reweighed. The modified query term weight qtwm is

given by the following parameter-free formula [1]:

qtwm ¼ qtw þ wðtÞ
M

ð3Þ

where qtw is the original query term weight. w(t) is the

weight of the query term that is given by Bo1. M is the

upper bound of the weight of a term in the top-ranked

documents. For Bo1, it is computed by:

M ¼
tf c!

lim
tf c;max

wðtÞ

¼ tf c;max log2
1þ Pmax

Pmax

þ log2ð1þ PmaxÞ
ð4Þ

where tfc is the frequency of the query term in the

whole collection, and tfc,max is the frequency of

the query term with the highest w(t) weight in the

top-ranked documents. Pmax is given by tfc,max∕N. N is

the number of documents in the collection. An
obvious advantage of Amati’s approach is that the

query term reweighting formula is parameter free.

The parameter a in Rocchio’s formula (see Equation

(1)) is omitted.

In addition to automatic query expansion based

on search results, various query expansion methods

have been proposed based on collection dependent

data structures (e.g., [6,11,12]), or collection indepen-

dent data structures (e.g., [3,5,13]).

In interactive query expansion, on one hand,

the search system offers the user a list of terms

for expansion. On the other hand, it relies on the user

to choose the appropriate expanded query terms. Simi-

larly to automatic query expansion, interactive query

expansion methods can also be categorized into three

subgroups by on which the expansion process is based

[4]: search results, collection dependent data structures,

and collection independent data structures.

Key Applications
Query expansion models are employed in many infor-

mation search systems such as library search systems

and Web search engines for boosting their retrieval

effectiveness.

Experimental Results
Query expansion models are usually helpful in im-

proving retrieval effectiveness for general search tasks

such as ad-hoc retrieval [14]. For example, a 15.43%

improvement over the BM25 baseline was reported in

the TREC-3 adhoc task using Okapi’s query expansion

method [9].

Table 1 demonstrates the effectiveness of query

expansion for ad-hoc retrieval on the TREC (http://

trec.nist.gov/) test data. The weighting model used for

retrieval is DFRee proposed by G. Amati and imple-

mented in the Terrier Platform (http://ir.dcs.gla.ac.uk/

terrier/). Terrier’s default query expansion setting is

applied, which expands the original query with the 10

most informative terms from the top-3 returned docu-

ments. Table 1 shows markable improvement in the

retrieval performance, measured by mean average pre-

cision, over the baseline. In all cases, the improvement

is statistically significant according to the Wilcoxon

matched-pairs signed-ranks test.

However, the effectiveness of query expansion

becomes unreliable when there are only very few rele-

vant documents, or when the information needed is

very specific, in which cases expanding the query does

Query Expansion Models. Table 1. The mean average precision (MAP) obtained with and without query expansion

Task MAP, No QE MAP QE Difference (%) p-value

TREC-1 ad-hoc 0.2148 0.2478 15.36 4.665e-06

TREC-2 ad-hoc 0.1821 0.2370 30.15 5.306e-08

TREC-3 ad-hoc 0.2557 0.3070 20.06 2.818e-07

TERC-8 small-web 0.2829 0.3164 11.84 9.261e-05

TREC2004 robust 0.2485 0.2920 17.50 2.41e-20

TREC-9 Web 0.2034 0.2180 7.18 0.01561

TREC-10 Web 0.2027 0.2526 24.62 1.715e-06

TREC-2004 Terabyte 0.2646 0.3027 14.40 4.537e-05

TREC-2005 Terabyte 0.3293 0.3828 16.25 2.818e-07

TREC-2006 Terabyte 0.2859 0.3348 17.10 1.582e-05

TREC-2004 Genomics 0.2921 0.3398 16.33 0.0005686

TREC-2005 Genomics 0.2172 0.2500 15.10 0.001759

2260
Q

Query Language
not bring up more relevant documents. There are also

other factors that may affect the effectiveness of query

expansion, such as the quality of the top-ranked doc-

uments, how much noise the document collection con-

tains etc. For example, query expansion does not improve

retrieval performance on the Blog06 test collection

(http://ir.dcs.gla.ac.uk/test_collections/blog 06info.

html), possibly due to the large amount of spam.

Cross-references
▶Binary Independence Model

▶ Probabilistic Models

▶Relevance feedback

▶Relevance Feedback for Content-Based Information

Retrieval

▶Rocchio’s Formula

▶Web search Relevance Feedback

Recommended Reading
1. Amati G. Probabilistic models for information retrieval based on

divergence from randomness. Ph.D thesis, Department of Com-

puting Science, University of Glasgow, Glasgow, UK, 2003.

2. Carpineto C., de Mori R., Romano G., and Bigi B. An informa-

tion-theoretic approach to automatic query expansion. ACM

Trans. Inf. Syst., 19(1):1–27, 2001.

3. Croft B. and Das R. Experiments with query acquisition and use

in document retrieval systems. In Proc. 12th Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 1989, pp. 349–368.

4. Efthimiadis N.E. Query expansion. Annu. Rev. Inf. Syst. Tech-

nol., 31:121–183, 1996.

5. Jarvelin K., Kristensen J., Niemi T., Sormunen E., and

Keskustalo H. A deductive data model for query expansion.

Technical report, Department of Information Studies, 1995.
6. Minker J., Wilson G., and Zimmerman B. An evaluation

of query expansion by the addition of clustered terms for a

document retrieval system. Inf. Storage Retrieval, 8:329–348,

1972.

7. Robertson S.E. On term selection for query expansion. J. Doc.,

46:359–364, 1990.

8. Robertson S.E., Walker S., Beaulieu M.M., Gatford M., and

Payne A. Okapi at TREC-4. In Proc. The 4th Text Retrieval

Conference, 1995.

9. Robertson S.E., Walker S., Jones S., Hancock-Beaulieu M.M.,

and Gatford M. Okapi at TREC-3. In Proc. The 3rd Text Re-

trieval Conference, 1994.

10. Rocchio J. Relevance Feedback in Information Retrieval.

Prentice-Hall, USA, 1971, pp. 313–323.

11. Sparck J.K. Automatic Keyword Classification for Information

Retrieval. Butterworths, London, 1971.

12. Sparck J.K. Collection properties influencing automatic term

classification. Inf. Storage Retrieval, 9:499–513, 1973.

13. Voorhees E. Query expansion using lexical-semantic relations.

In Proc. 17th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 1994, pp. 61–69.

14. Voorhees E. TREC: Experiment and Evaluation in Information

Retrieval. MIT, Cambridge, MA, USA, 2005.

15. Walker S. The Okapi Online Catalogue Research Projects. Li-

brary Association, London, 1989.
Query Language

TORE RISCH

Uppsala University, Uppsala, Sweden

Synonyms
Data manipulation language

Query Languages and Evaluation Techniques for Biological Sequence Data
Q

2261

Q

Definition
A query language is a specialized programming lan-

guage for searching and changing the contents of a

database. Even though the term originally refers to a

sublanguage for only searching (querying) the contents

of a database, modern query languages such as SQL are

general languages for interacting with the DBMS, in-

cluding statements for defining and changing the data-

base schema, populating the contents of the database,

searching the contents of the database, updating the

contents of the database, defining integrity constraints

over the database, defining stored procedures, defining

authorization rules, defining triggers, etc. The data

definition statements of a query language provide pri-

mitives for defining and changing the database schema,

while data manipulation statements allow populating,

querying, as well as updating the database. Queries are

usually expressed declaratively without side effects

using logical conditions. However, modern query lan-

guages also provide general programming language

capabilities through the definition of stored proce-

dures. Most query languages are textual, meaning

that the queries are expressed as text string processed

by the DBMS. There are also graphical query lan-

guages, such as Query-By-Example (QBE), where the

queries are expressed graphically and then translated

into textual queries interpreted by the DBMS.

Key Points
Since data is represented in terms of the data model

used by the DBMS, the syntax and semantics of a query

language depends on the data model of the DBMS.

For example, the relational data model is based on

representing data as tables which allows expressing

queries over the tables using expressions expressed in

variant of predicate logic called relational calculus.

Such queries are non-procedural since the user need

not specify the details how a query is executed, but

rather only how to select and match data from the

tables. It is up to the query optimizer to translate the

non-procedural logical queries into an efficient program

for searching the database. Queries can also be expressed

as relational algebra expressions. A query language is

said to be relationally complete if its power is equivalent

to the power of the relational algebra or the relational

calculus. The most widespread query language is SQL

the standard language used for interacting with relati-

onal DBMSs. Queries in SQL are mainly expressed as

syntactically sugared relational calculus expressions.
However SQL also has query constructs based on the

relation algebra and other paradigms. The logical query

language Datalog, as well as SQL’s predecessor QUEL, is

purely based on predicate calculus. Other data models

use other query languages. For example, OQL is used

for searching object-oriented databases and Daplex for

functional databases.

Cross-references
▶Data Model

▶Datalog

▶Daplex

▶OQL

▶QBE

▶Relational Calculus

▶ SQL

▶ Stored Procedure
Query Languages and Evaluation
Techniques for Biological
Sequence Data

SANDEEP TATA
1, JIGNESH M. PATEL2

1IBM Almaden Research Center, San Jose, CA, USA
2University of Wisconsin-Madison, Madison, WI, USA

Synonyms
Querying DNA sequences; Querying protein sequences

Definition
A common type of data that is used in life science

applications is biological sequence data. Data such as

DNA sequence and protein sequence data are growing

at a very fast rate. For example, the data at GenBank

[GB07] has been growing exponentially, doubling

roughly every 18 months. These sequence datasets are

often queried in complex ways and the methods re-

quired to query these sequences go far beyond the

simple string matching methods that have been used

in more traditional string applications. In order to

enable users to easily pose sophisticated queries on

these biological sequences, different languages have

been designed to support a rich library of functions.

In addition, some database systems have been extend-

ed to support a rich set of operators on the sequence

data type. Compared to the stand-alone approach, the

database method brings the power of algebraic query

2262
Q

Query Languages and Evaluation Techniques for Biological Sequence Data
optimization and the use of indexes making it possible

to find efficient execution plans for sophisticated

queries. Furthermore, biological sequence processing

can be integrated with traditional database processing,

such as selecting a subset of data for analysis, or com-

bining data from multiple sources, to produce a pow-

erful sequence analysis and mining system.

Historical Background
Several research efforts have tackled the problem of

enabling complex and efficient querying on biological

data. Early efforts such as [4] investigated the idea of a

Genomics Algebra, which would abstract several

biological processes and enable users to construct com-

plex expressions, thereby providing a sophisticated

platform for processing biological sequences. As part

of another effort, the Periscope project, an algebra for

biological sequences called PiQA (Protein Query Alge-

bra) was proposed in [12]. PiQA can be used to con-

struct complex expressions that allow sophisticated

manipulation of both genetic and protein sequence

data. The Periscope/SQ [13] system and the PQL

query language are based on this algebra.

One of the primary operations in biological se-

quence processing is local alignment. A dynamic pro-

gramming algorithm was proposed in [9] for this

problem. The popular BLAST algorithm [1] is a heu-

ristic version proposed in 1990 to support local align-

ment search on massive datasets.

Foundations
The amount of biological sequence data available to

scientists for analysis has grown rapidly. While small

sequences can be analyzed and queried fairly quickly

on computers, large datasets require careful design of

algorithms and data structures. Database systems have

dealt with the problem of managing and processing

large datasets for several years, and the area of query

processing for biological sequences aims to bring the

benefits of this research to the domain of biological

sequences.

One of the most common computations in the

context of sequence data is that of finding ‘‘similar’’

sequences. This is often the first step biologists perf-

orm to begin investigation of a particular biological

sequence they have discovered. For instance, finding a

known protein with a sequence similar to the one

under investigation may yield some clues to the func-

tion of the protein. Sequence similarity is defined in
many ways and the type of similarity used may depend

on the sequence and the application for which the

similarity is being computed. Some distance measures

are based on the evolutionary distance between the

sequences, while in some cases they simply count

the number of mismatches between an alignment

of two sequences of the same length. Examples of

evolutionary distance matrices include the PAM [3]

and BLOSUM [5] matrices for comparing protein

sequences. Simple models for mismatches include sim-

ply finding sequences that have up to a specified num-

ber of mismatches, or models in which mismatches are

only tolerated in specific positions (such at the middle

portion of the sequence).

The problem of finding a local alignment for two

sequences requires finding a region of maximum simi-

larity in a longer sequence that will match with a

shorter query sequence. This version of sequence simi-

larity is extremely popular, especially for large DNA

sequence repositories. While the Smith-Waterman al-

gorithm [9] is an elegant dynamic programming tech-

nique to compute an optimal alignment with O(n2)

cost, for large sequence databases this cost can be

prohibitive. In practice, methods that approximate

Smith-Waterman but are much faster are used. Popu-

lar methods in this category include BLAST [1] and

FASTA [8]. While these methods allow the fast evalua-

tion of simple sequence queries, for sophisticated

queries, they do not address sophisticated queris,

such as a complex string pattern query. Additional

methods are required that include a language to ex-

press such quires and algorithms to efficiently evaluate

the operations in these queries.

Query languages provide a convenient way to ex-

press common computational tasks. The class of query

languages can be divided into two categories: (i) pro-

cedural and (ii) declarative. Several procedural query

languages are often general purpose programming lan-

guages or scripting languages with a library of func-

tions that support operations on biological sequences.

BioPerl and BioPython are two such examples. Figure 1

shows an example of a BioPerl code snippet that uses

library function to translate the DNA sequence into the

corresponding protein sequence, and another function

to compute the reverse complement. These libraries

also provide functions to read and translate betw-

een several popular sequence file formats. Although

such languages make it somewhat easier to develop

biological sequence processing applications, they suffer

Query Languages and Evaluation Techniques for

Biological Sequence Data. Figure 1. Sample BioPerl code.

Query Languages and Evaluation Techniques for

Biological Sequence Data. Figure 2. Sample PiQL query.

Query Languages and Evaluation Techniques for

Biological Sequence Data. Figure 3. Sample suffix tree

built on the string ‘‘ATTAGT.’’

Query Languages and Evaluation Techniques for Biological Sequence Data
Q

2263

Q

from two major drawbacks: (i) inability to rapidly

express sophisticated queries (ii) lack of an indexing

and optimization infrastructure to choose efficient

query plans. Applications written in procedural lan-

guages often need to solve several database problems in

order to scale to larger data sets. As a result, researchers

have recently focused on declarative query processing

for biological data.

In addition to an algebra, a declarative query

infrastructure needs efficient physical operators cor-

responding to the operators in the algebra in order to

produce query evaluation plans. The research proto-

type system Periscope [14] uses the PiQA algebra and

the PiQL query language. Figure 2 shows an example

PQL query that finds all instances of the sequence

‘‘ACAC’’ followed by ‘‘TTACAGGG’’ within 100 sym-

bols in the given sequence database. The Periscope

system is built as an extension to an object-relational

system, which allows the user to mix sequence queries

with traditional relation data manipulation queries

such as selections and joins. Relational database sys-

tems are now commonly used to manage large

biological datasets (for example the GMOD project).

Arguably, the declarative query processing with

the relational frameworks provides a better framework

(compared to the procedural framework) for complex

biological data analysis.

Index Structures

To speed up the evaluation of complex biological se-

quence operations, a number of index-based methods

have been designed. Exploiting these indexes is crucial

in having efficient query execution plans, especially to

cope with the increasing data volumes and query com-

plexity. The suffix tree is one of the useful data struc-

tures in the world of string processing [15]. A Suffix

tree is a tree that is built using an input string such that

every path from the root of the tree to a leaf node

corresponds to a suffix in the string. The edges are labeled
with substrings from the string. A suffix tree can be used

to evaluate exact substring queries in time proportional

to the length of the query. Figure 3 shows an example

suffix tree on the string ATTAGT$. In order to check if

the string TAG is a substring of the database string (on

which the suffix tree is built), one simply follows the

labeled edges from the root of the tree while trying to

consume the symbols (T,A,G) from the query string.

Suffix trees can be constructed in time proportional

to the length of the input string, i.e., in time O(n).

Several algorithms have been designed to accomodate

very large input datasets and construct disk based

suffix trees. Suffix trees can also be used to efficiently

answer approximate matching queries and even com-

pute the local alignment of a query string with the

database string.

Another interesting approach to indexing sequence

data in the context of similarity search is the use of

metric space indexing [7]. While extremely efficient for

distance measures that are metrics, such indexing tech-

niques tend to be less flexible than suffix trees.

Given the popularity of BLAST for sequence query

processing, a number of approaches have added support

for invoking BLAST from a database engine [2,6,11], and

regular expression engines in SQL engines have also been

adapted for more sophisticated biological pattern match-

ing [10]. Their support for scanning sequences with

complex patterns (including arbitrary position-specific

2264
Q

Query Languages for the Life Sciences
weight matrices containing probabilistic models for

matching a nucleic or protein sequence) is limited. How-

ever, such extensions have recently been made for the

declarative framework using suffix trees [12].

Key Applications
Any application that requires complex sequence

matching, which include combinity sequence homo-

logy matching, and TFBS prediction.

Cross-references
▶Biological Sequences

▶Data Types in Scientific Data Management

▶ Index Structures for Biological Sequences

▶Query Languages for the Life Sciences

▶ Scientific Databases

▶ Suffix Tree

Recommended Reading
1. Altschul S.F., Gish W., Miller W., Myers E.W., and Lipman D.J

Basic local alignment search tool. J. Mol. Biol., 215:403–10, 1990.

2. Barbara A. and Eckman A.K. Querying BLAST within a data

federation. Q. Bull. IEEE TC on Data Engineering, 27(3):12–19,

2004.

3. Dayhoff M.O., Schwartz R.M., and Orcutt B.C. A model of

evolutionary change in proteins. Atlas of Protein Sequence and

Structure, 5:345–352, 1978.

4. Hammer J. and Schneider M. Genomics algebra: a new, integrat-

ing data model, language, and tool for processing and querying

genomic information. In Proc. 1st Biennial Conf. on Innovative

Data Systems Research, 2003, 176–187.

5. Henikoff S. and Henikoff J. Amino acid substitution matrices

from protein blocks. In Proc. Natl. Acad. Sci., 89(22):

10915–10919, 1992.

6. Hsiao R-L., Stott Parker D., and Yang H-C. Support for

BioIndexing in BLASTgres. In Data Integration in the Life

Sciences (DILS). LNCS, Vol. 3615. Springer, Berlin, 2005,

pp. 284–287.

7. Mao R., Xu Weijia., Singh Neha., and Miranker D.P. An assess-

ment of a metric space database index to support sequence

homology. In Proc. IEEE 3rd Int. Symp. on Bioinformatics and

Bioengineering, 2003, pp. 375–382.

8. Pearson W.R. and Lipman D.J. Improved tools for biological

sequence comparison. In Proc Natl Acad Sci., 85(8):2444–2448,

1988.

9. Smith T.F. and Waterman M.S. Identification of Common Mo-

lecular Subsequences. J. Mol. Biol., 147:195–197, 1981.

10. Stephens S., Chen J.Y., Davidson M.G., Thomas S., and

Trute B.M. Oracle database 10 g: a platform for BLAST search

and regular expression pattern matching in life sciences. Nucleic

Acids Res., 33(Database-Issue):675–679, 2005.

11. Stephens S., Chen J.Y., and Thomas Shiby. ODM BLAST:

sequence homology search in the RDBMS. Q. Bull. IEEE TC

on Data Engineering, 27(3):20–23, 2004.
12. Tata S., Lang W., and Patel J.M. Periscope/SQ: interactive

exploration of biological sequence databases. In Proc. 33rd

Int. Conf. on Very Large Data Bases, 2007, pp. 1406–1409.

13. Tata S. and Patel J.M. PiQA: an algebra for querying protein data

sets. In Proc. 15th Int. Conf. on Scientific and Statistical Data-

base Management, 2003, pp. 141–150.

14. Tata S., Patel J.M., Friedman J.S., and Swaroop A. Declarative

querying for biological sequences. In Proc. 22nd Int. Conf. on

Data Engineering, 2006, p. 87.

15. Weiner P. Linear pattern matching algorithm. In Proceedings

of the 14th Annual IEEE Symp. on Switching and Automata

Theory, 1973, pp. 1–11.
Query Languages for the Life
Sciences

ZOÉ LACROIX

Arizona State University, Tempe, AZ, USA

Synonyms
Biological query Languages; Scientific query Lan-

guages; Biological data retrieval, integration, and

transformation.

Definition
A scientific query language is a query language that

expresses the data retrieval, analysis, and transforma-

tion tasks involved in the dataflow pertaining to a

scientific protocol (or equivalently workflow, dataflow,

pipeline). Scientific query languages typically extend

traditional database query languages and offer a variety

of operators expressing scientific tasks such as ranking,

clustering, and comparing in addition to operators

specific to a category of scientific objects (e.g.,

biological sequences).

Historical Background
A scientific query may involve data retrieval tasks from

multiple heterogeneous resources and perform a vari-

ety of analysis, transformation, and publication tasks.

Existing approaches used by scientists include hard

coded scripts, data warehouses, link-based federations,

database mediation systems, and workflow systems.

Hard coded scripts written in Perl and Python are

widely used in the biological community. Unlike an

approach based on a query language, scripts are very

limited in terms of scalability and flexibility. Extending

or altering a protocol over time requires writing new

scripts. Further, scripts are limited in the degree to

Query Languages for the Life Sciences
Q

2265

Q

which they capture biological expertise so they can be

re-used for future related queries. Finally, unless ex-

plicitly written to do so, scripts do not assist the user in

filtering retrieved data, resolving inconsistencies and

sorting and ranking the results, or optimizing the

overall execution. Data warehousing consists in collect-

ing data from many possible data sources, curating the

data, and creating a new database. Data warehouses

typically are relational databases designed to provide

users an integrated platform to answer a pre-defined

set of scientific tasks.

A federation, e.g., NCBI Entrez and the Sequence

Retrieval System (SRS) [4], links semi-autonomous

distributed databases with powerful full text indexing

and keyword based search techniques for cross data-

base retrieval. The approach expresses navigational

queries over linked entries retrieved from multiple

databases. In addition, useful tools such as BLAST are

often made available. However, the approach is limited

in that a federation relies on a materialized index that

is difficult to keep up-to-date. Moreover, it focuses on

data retrieval and does not support complex queries.

Most existing data integration approaches rely on an

internal query language that captures data manage-

ment operations and a user query interface that aims

at expressing queries meaningful to the scientists.

Existing mediation approaches rely on traditional da-

tabase query languages such as SQL adapted to handle

biological data. K2 follows the Object Data Manage-

ment Group (ODMG 1999) and its internal query

language, called K2 Mediator Definition Language

(K2MDL), is a combination of the Object Query Lan-

guage (OQL) and the Object Definition Language

(ODL) both specified by the ODMG. Kleisli (also

known as Discovery Hub) provides the collection pro-

gramming language (CPL) [2], a nested version of

SQL, and Java and Perl access programming interfaces

(API). Users may express their queries in SQL or

through a graphical interface that limits access to

query capabilities. The system that supports the Object

Protocol Model (OPM) [3] provides a query language

similar to OQL (ODMG 1999) and also exploits SQL

when integrated data sources are retrofitted from a

relational data model. Additional query capabilities

may be integrated through CORBA classes. Tools

such as BLAST are wrapped through an Application

Specific Data Type (ASDT). Users may express their

queries in a simplified version of OQL and generate

query forms that do not offer access to all query
capabilities. Discovery Link (also known as Informa-

tion Integrator) offers a rich subset of SQL3 (SQL

1993) including user-defined functions, stored proce-

dures, recursion, row types, object views, etc. P/FDM

provides support to access specific capabilities of

sources. P/FDM uses Daplex that offers a richer syntax

than SQL [10] and Prolog. In particular it allows uses

of function calls within queries. In addition to these

query languages, P/FDM offers users a visual interface

that enables users to build their queries by browsing

and clicking through the database schema. The P/FDM

Web interface uses HTML forms and access the medi-

ator through CGI programs. Both interfaces restrict

the query capabilities of the mediator. TAMBIS,

which uses CPL internally, is primarily concerned

with overcoming semantic heterogeneity through the

use of ontologies. It provides users an ontology-driven

browsing interface. Thus it too restricts the extent to

which sources can be exploited for scientific discovery.

To summarize, these systems have made many inroads

into the task of data integration from diverse data

sources. However they all rely on significant program-

ming effort to adjust to specific scientific tasks, are

difficult to maintain and provide user’s query language

that require programming ability such as SQL, OQL,

Daplex, etc. or user’s friendly interfaces that signifi-

cantly limit the query capabilities. A comparative study

of these systems and the many causes of failure of

traditional database approaches to support the process

of scientific discovery are detailed in [6].

Workflows are used in business applications to as-

sess, analyze, model, define, and implement business

processes. A workflow automates the business proce-

dures where documents, information or tasks are passed

between participants according to a defined set of rules

to support an overall goal. In the context of scientific

applications, a workflow approach may address the

collaboration among scientists, as well as the integration

of scientific data and tools. The procedural support of a

workflow resembles the query-driven design of scientific

problems and facilitates the expression of scientific

pipelines (as opposed to a database query). However,

because workflows are designed to orchestrate various

applications (e.g., Web services) into a combined data-

flow they do not provide a query language and do not

express the specific queries against biological datasets.

Peer-to-Peer (e.g., Chinook) and grid approaches (e.g.,

myGRID) may offer the support for resource and data

sharing without providing a query language.

2266
Q

Query Languages for the Life Sciences
Foundations
Systems that focus on specific datasets such as

sequences, protein structure, phylogenetic trees, meta-

bolic pathways, rely on query languages designed to

handle the characteristics of the biological datasets.

Life sciences data are exceptionnaly diverse. Biological

data include string data (e.g., sequences over various

alphabets), 3D geometric data (e.g., protein structure),

tree data (e.g., phylogenetic tree), and graph data (e.g.,

pathways). When their description and annotations are

mostly textual and deeply nested in one or several

documents, the intrinsic structure of the datasets are

often poorly represented by traditional data models,

thus poorly accessed and transformed by the

corresponding query languages [7]. Each of these spe-

cific biological datasets has motivated the design of

suitable query languages. For example PiQA, an alge-

bra designed to query sequences, offers a match opera-

tor that expresses sequence alignment.

Query languages that express search queries (using

regular expressions, wildcards, and Boolean operators)

are often developed for life scientific applications. This

is because scientific data are mostly textual (annotation

on scientific instances) and scientists seem to mimic

the manual query process they follow when exploring

data sources on the Web. Querying systems that are

compatible with scripting languages such as Perl are

also favored because most scientific protocols are

implemented with scripts. Additional features

expected by scientists include the ability to compare

and rank results. The ability to express cross-database

queries and to integrate scientific analysis tools such as

BLAST has a significant value to the scientist.

Scientific queries may exploit metadata as well as

data. Querying scientific data through their meaning

expressed in a terminology or an ontology is scientist-

friendly because it hides the complex structure of data

as they are organized and stored in the various reposi-

tories. A domain ontology may also provide a global

schema for multiple integrated scientific resources. It

facilitates scientific tasks such as profiling which aims at

combining all information known about a scientific

object. TAMBIS is an example of a system that pro-

vides a ontology-driven query interface.

The challenge for the design of a biological query

language is to express the data management tasks

involved in the scientific dataflow while offering mean-

ingful and scientist-friendly query functionality. A sci-

entific query language typically handles complex
datatypes including text, string, tree, graph, list, vari-

ant, etc. for data and metadata. Scientific queries may

invoke an increadibly diverse range of functions in-

cluding extracting information in a textual document,

identifying a feature common to two biological

sequences, exploring a biological pathway, profiling a

gene, etc.

Key Applications
The Acedb Query Language (AQL) is the language

developed for the AceDB genome database. It is

inspired by the Object Query Language (OQL), and

Lorel the query language developed for semi-

structured and XML data (also based on OQL). AQL

expressions use the Select, From, Where syntax.

Queries in AQL express traditional database retrieval

and transformation against a data warehouse mostly

populated with annotated scientific data (textual). It

provides AcePerl and object-oriented Perl module ac-

cess local or remote AceDB databases transparently.

Many biological resources use the AceDB system that

is still updated and maintained by the Sanger institute.

The former version of AQL consisting of search state-

ments of the form ’’find Gene TP*’’ is currently used to

query WormBase.

SRS has its own query language that express re-

trieval queries using string comparison, wildcards, reg-

ular expresions, numeric comparison, Boolean

operations, and the link operator specific to SRS that

allows the navigation through resources exploiting the

interal cross-references (hyperlinks, indices, and com-

posite structures) made available by the providers. SRS

uses Icarus as its internal interpreted object-oriented

programming language. SRS queries return sets of

entries or lists of entry identifiers that can be sorted

with respect to various criteria. Because SRS integrates

scientific analysis tools (e.g., BLAST) as tool-specific

databanks, SRS queries may exploit the expressive

power of the scientific analysis tools integrated in the

federation. However, the SRS query language mostly

expresses retrieval queries over cross databases. For a

detailed description of the system and its query lan-

guage see Chapter 5 in [6]. SRS is currently updated

and mainted by Biowisdom Ltd.

The Life Sciences community has developed

unique approaches to handle complex retrieval and

integration tasks. They express the query ‘‘retrieve ev-

erything known about [a specific scientific instance].’’

Unlike a query language, the resources where the data

Query Languages for the Life Sciences
Q

2267

Q

are to be retrieved and the criteria for retrieval cannot

be selected by the user. These approaches include

sequence profiling tools that express complex data

retrieval and integration queries over multiple hetero-

geneous resources to generate summaries of all infor-

mation related to a particular biological sequence. For

example, the Karlsruhe Bioinformatik Harvester (KIT)

crawls and crosslinks 25 biological resources. Data

integration is limited as queries against KIT are spe-

cies-specific boolean expressions of keywords and the

result is a list of summaries (each summary corre-

sponds to a biological sequences), where each sum-

mary is the concatenation of relevant retrieved pages.

Other approaches focus on the textual material

contained in the biological data sources and use

biological language processing to achieve information

retrieval, extraction, classification, and integration [5].

These approaches retrieve documents from various

resources and generate a document summary as

input. Textpresso uses the Gene Ontology (GO) to

markup documents related to a particular organism

retrieved from PubMed. It provides a query language

that expresses Boolean expressions on keyword, cate-

gory, and attribute. Because the approach is docu-

ment-driven, the query language expresses advanced

search queries. Patent databases are other documented

sources of biological information. In addition to the

traditional features of querying documented data,

Patent Lens offers the useful feature of querying the

biological sequences contained in the patent docu-

ments with BLAST [9].

The use of a domain ontology as an interface (or

view) for biological data is usually well received by the

scientists. Such approches typically support explora-

tion, navigation, and search queries. TAMBIS uses an

ontology to provide an homogeneous layer over the

integrated resources (data sources and applications)

that acts as a global schema, to hide the heterogeneities

of the integrated resources, and to be used as a query

interface. WormBase is a warehouse derived from

ACeDB and BioMart databases and uses biomaRt, a

bioconductor package that provides a platform for

data mining. BioMart databases are annotated with

the Gene Ontology (GO) and the eVOC ontologies.

These annotations provide support for querying data.

EnsMart organizes data with respect to foci, that are

central scientific objects (e.g., gene). All data are linked

to the instances of those central objects. Queries con-

sist of the selection of the species and focus of interest
and the specification of filters and outputs. AmiGO

provides a query interface to GO, genes, and gene

products.

The Pathway Tools developed and maintained at

SRI International to support pathway databases pro-

duces a query form for basic or advanced search

against BioCyc databases. Each form consists of the

selection of the BioCyc database (queries are limited

to the scope of a single resource), the field(s) to be

searched or the ontology term(s), and the format of the

output. Most of the databases developed with BioCyc

allow the use of BLAST. The BioVelo query language is

designed to retrieve data from BioCyc databases. It is

based on the object-oriented BioCyc data model com-

posed of object classes that are identified to ontology

classes and express set comprehension statements

used in functuional programming languages such

as Python.

Future Directions
The design of query languages for the Life Sciences is a

challenging problem. The desired expressive power

and features of the languages are not well understood.

The expectations of the users (life scientists) and the

developers (computer scientists) are often dissimilar.

Life scientists expect support for all their scientific

questions which often go beyond the scope of tradi-

tional database query languages handling data retrieval

and transformation. Scientific questions are often

complex protocols that invoke not only data retrieval

and transformation tasks but ranking, comparison,

clustering and classification as well as sophisticated

analysis tasks. The implementation of such a ‘‘query’’

would require accessing multiple resources and coor-

dinating the dataflow as currently achieved by scientific

workflow systems such as Taverna. However, workflow

systems lack the elegance of a query language and its

benefits such as query planning and optimization.

Because many of the scientific tasks invoked in a scien-

tific protocol could be expressed by operators of a

query language, the design of a generic query language

to handle data retrieval, transformation, comparison,

clustering, and integration operations would be valu-

able to scientific data management.

Data Sets
AceDB databases http://www.acedb.org/Databases/

Public SRS servers http://downloads.biowis-

domsrs.com/publicsrs.html

2268
Q

Query Load Balancing in Parallel Database Systems
Biopathways Graph Data Manager (BGDM) http://

hpcrd.lbl.gov/staff/olken/graphdm/graphdm.htm

BioCyc database collection http://www.biocyc.org/

Textpresso for C. elegans http://www.textpresso.org/

Patent Lens http://www.patentlens.net/daisy/patentlens/

patentlens.html

WormBase http://www.wormbase.org/ and http://

www.wormbase.org/db/searches/wb_query

BioMart http://www.biomart.org/

EnsMart http://www.ensembl.org/EnsMart

URL to Code
Chinook http://www.bcgsc.bc.ca/chinook/

myGRID http://www.mygrid.org.uk/

AceDB Query Language http://www.acedb.org/Cornell/

aboutacedbquery.html

AQL - Acedb Query Language http://www.acedb.org/

Software/whelp/AQL/

Lorel - Lore Query Language http://infolab.stanford.

edu/lore/

BioVelo Query Language http://www.biocyc.org/

bioveloLanguage.html

BioCyc Pathway Tools http://bioinformatics.ai.sri.

com/ptools/ptools-overview.html

Karlsruhe Bioinformatik Harvester (KIT) http://har

vester.fzk.de/harvester/

biomaRt and Bioconductor http://www.bioconductor.

org/

AmiGO http://amigo.geneontology.org/cgi-bin/amigo/

go.cgi

Cross-reference
▶Database mediation

▶Data integration

▶Graph management for the life sciences

▶Management of gene expression data

▶Metadata management and resource discovery

▶ Scientific workflows.

Recommended Reading
1. Bartlett J. C. and Toms. E.G. Developing a Protocol for Bioin-

formatics Analysis: An Integrated Information Behaviors and

Task Analysis Approach. J. American. Soc. for Inf. Sci. & Tech.,

56(5):469–482, 2005.

2. Buneman P., Naqvi S.A., Tannen V., and Wong L. Principles of

Programming with Complex Objects and Collection Types.

Theoretical Computer Science, 149(1):3–48, 1995.

3. Chen and I-Min A. Markowitz. Victor M. An Overview of the

Object-Protocol Model (OPM) and OPM Data Management

Tools. Inf. Syst., 20(5):393–418, 1995.
4. Etzold T., Harris H., and Beaulah S. SRS: An Integration Plat-

form for Databanks and Analysis Tools in Bioinformatics, chap-

ter 5, pp. 109–146. In Lacroix and Critchlow [6], 2003.

5. Hunter L. and Bretonne K. Cohen. Biomedical Language Proces-

sing: Perspective What’s Beyond PubMed? Molecular Cell, 21

(5):589–594, 2006.

6. Lacroix Z. and Critchlow T. (eds.) Bioinformatics: Managing

Scientific Data. Morgan Kaufmann, 2003.

7. Lacroix Z., Ludaescher B., and Stevens R. Integrating Biological

Databases, chapter 42, pp. 1525–1572. Vol. 3 of Lengauer [8],

2007.

8. Lengauer T. (ed). Bioinformatics - From Genomes to Therapies.

Wiley-VCH Publishers, 2007

9. Seeber I. Patent searches as a complement to literature searches

in the life sciences-a ‘how-to’ tutorial. Nature Protocols, 2(10):

2418–28, 2007.

10. Shipman D.W. The Functional Data Model and the Data Lan-

guage DAPLEX. ACM Trans. Database Syst., 6(1):140–173, 1981.

11. Stevens R., Goble C., Baker P., and Brass A. A Classification

of Tasks in Bioinformatics. Bioinformatics, 17(2):180–188,

2001.
Query Load Balancing in Parallel
Database Systems

LUC BOUGANIM

INRIA, Rocquencourt, Lechesnay Cedex, France

Synonyms
Resource scheduling

Definition
The goal of parallel query execution is minimizing

query response time using inter- and intra-operator

parallelism. Inter-operator parallelism assigns different

operators of a query execution plan to distinct (sets of)

processors while intra-operator parallelism uses sev-

eral processors for the execution of a single operator

thanks to data partitioning. Conceptually, parallelizing

a query amounts to divide the query work in small

pieces or tasks assigned to different processors. The

response time of a set of parallel tasks being that of

the longest one, the main difficulty is to produce and

execute these tasks such that the query load is evenly

balanced within the processors. This is made more

complex by the existence of dependencies between

tasks (e.g., pipeline parallelism) and synchronizations

points. Query load balancing relates to static and/or

dynamic techniques and algorithms to balance the

query load within the processors so that the response

time is minimized.

Query Load Balancing in Parallel Database Systems
Q

2269
Historical Background
Parallel database processing appeared very early in the

context of database machines in the 1970s. Parallel

algorithms (e.g., hash joins) were later proposed in

the early 1980s, where tuples are uniformly distributed

at every stage of the query execution. However several

works (e.g., [8]) gave considerable evidence that data

skew, i.e., non-uniform distribution of tuples, exists

and its negative impact on query execution was shown

in e.g., [7]. This motivated numerous studies [10] on

intra- and inter-operator load balancing in the 1990s.
Foundations
Load balancing problems can appear with intra-

operator parallelism (variation in partition size, namely

data skew) and inter-operator parallelism (variation

in the complexity of operators, synchronization pro-

blems). Intra- and inter-operator load balancing pro-

blems are first detailed on a simplified query execution

plan example considering a static allocation of proces-

sors to the query operators. The main load balancing

techniques proposed to address these problems are

described next:
Load balancing problems

Figure 1(a) shows a simplified query execution plan for

the following query: ‘‘Select T.b from R, S, T where R.

Rid = S.Rid and S.Sid = T.Sid and R.a = value’’ (the

Scan and Project operators were omitted to simplify
Query Load Balancing in Parallel Database Systems. Figure

simple example.
the drawing). The following assumptions are made:

(i) the degree of parallelism (i.e., number of processors

allocated) for the selection on R (called sR), the join
with S (called ./S) and the join with T (called ./T) has

been statically fixed, using a costmodel, to respectively 2,

3, and 2; and (ii) these operators are processed in pipe-

line, thus leading to a total degree of parallelism of 7.

Intra-operator load balancing issues are first illu-

strated using the classification proposed in [13]. As

shown in Fig. 1(c), R and S are poorly partitioned

because of Attribute Value Skew (AVS) inherent in the

dataset and/or Tuple Placement Skew (TPS). The pro-

cessing time of the two instances sR1 and sR2 are

thus not equal. The case of ./S is likely to be worse (see

Fig. 1b). First, the number of tuples received can be

different from one instance to another because of poor

redistribution of the partitions of R (Redistribution

Skew, RS) or variable selectivity according to the parti-

tion of R processed (Selectivity Skew, SS). Finally, the

uneven size of S partitions (AVS/TPS) yields different

processing times for tuples sent by the sR operator

and the result size is different from one partition to the

other due to join selectivity (Join Product Skew, JPS).

The skew effects are therefore propagated toward the

query tree and even with a perfect partitioning of T, the

processing time of ./T1 and ./T2 can be highly differ-

ent (uneven size of their left input resulting from ./S).

Intra-operator load balancing is thus difficult to

achieve statically, given the combined effects of differ-

ent types of data skew.
1. Intra- and inter-operator load balancing problems on a

Q

2270
Q

Query Load Balancing in Parallel Database Systems
In order to obtain good load balancing at the inter-

operator level, it is necessary to choose how many and

which processors to assign to the execution of each

operator. This should be done while taking into ac-

count pipeline parallelism, which requires inter-opera-

tor communication and introduces precedence

constraints between operators (i.e., an operator must

be terminated before the next one begins). In [15],

three main problems are described: (i) the degree of

parallelism and the allocation of processors to opera-

tors, when decided in the parallel optimization phase,

are based on a possibly inaccurate cost model. Indeed,

it is difficult, if not impossible, to take into account

highly dynamic parameters like interference between

processors, memory contentions, and obviously, the

impacts of data skew; (ii) the choice of the degree of

parallelism is subject to errors because both proces-

sors and operators are discrete entities. For instance,

considering Fig. 1(b), the number of processors for

sR, ./S and ./T may have been computed by the

cost model as respectively 1.5, 3.8 and 2.4 and have

been rounded to 2, 3 and 2 processors. But the good

distribution, taking into account data skew on S parti-

tions should have been 1, 4 and 2; (iii) the processors

associated with the latest operators in a pipeline chain

may remain idle a significant time. This is called the

pipeline delay problem. For instance, while tuples do

not match the selection on R or the join with S,

processors assigned to ./T remain idles.

In a shared-nothing architecture, the inter-operator

load balancing problem is even more complex, since the

degree of parallelism and the set of processors assigned

for some operators is constrained by the physical place-

ment of the manipulated data. For instance, if R is

partitioned on two nodes, sR must be executed on

these nodes.

This simple example thus shows that static alloca-

tion of processors to operators is usually far from

optimal, thus advocating for more dynamic strategies.

In the following section, existing proposals at the intra-

and inter-operator level are detailed.

Intra-Operator Load Balancing

Good intra-operator load balancing depends on the

degree of parallelism and on the allocation of proces-

sors for the operator. For some algorithms, e.g., the

parallel hash join algorithm, these parameters are not

constrained by the placement of the data. Thus, the

home of the operator (the set of processor where it
is executed) must be carefully decided. The skew prob-

lem makes it hard for a parallel query optimizer

to make this decision statically (at compile-time) as it

would require a very accurate and detailed cost

model. Therefore, the main solutions rely on adaptive

techniques or specialized algorithms which can be

incorporated in the query optimizer/processor. These

techniques are described below in the context of paral-

lel joins, which has received much attention. For sim-

plicity, each operator is given a home either statically

or just before execution, as decided by the query opti-

mizer/processor.

Adaptive techniques: The main idea is to statically

decide on an initial allocation of the processors to the

operator (using a cost model) and, at execution time,

adapt this decision to skew using load reallocation.

A simple approach to load reallocation is detecting

the oversized partitions and partition them again

onto several processors (among those already allocated

to the operator) to increase parallelism [6]. This app-

roach is generalized in [2] to allow for more dynamic

adjustment of the degree of parallelism. It uses specific

control operators in the execution plan to detect wheth-

er the static estimates for intermediate result sizes

differ from the run-time values. During execution, if

the difference between estimate and real value is high

enough, the control operator performs data redistribu-

tion in order to prevent join product skew and redi-

stribution skew. Adaptive techniques are useful to

improve intra-operator load balancing in all kinds of

parallel architectures. However, most of the work has

been done in the context of shared-nothing where

the effects of load unbalance are more severe on

performance.

Specialized algorithms: Parallel join algorithms can

be specialized to deal with skew. The approach pro-

posed in [3] is to use multiple join algorithms, each

specialized for a different degree of skew, and to deter-

mine the best at execution time. It relies on two main

techniques: range partitioning and sampling. Range

partitioning is used instead of hash partitioning (in

the parallel hash join algorithm) to minimize redi-

stribution skew of the building relation. Thus, proces-

sors can get partitions of equal number of tuples,

corresponding to different ranges of join attribute

values. To determine the values that delineate the

range values, sampling of the building relation is used

to produce a histogram of the join attribute values, i.e.,

the numbers of tuples for each attribute value.

Query Load Balancing in Parallel Database Systems
Q

2271

Q

Sampling is also useful in determining which algo-

rithm to use and which relation to use for building

or probing. The parallel hash join algorithm can then

be adapted to deal with skew as follows: (i) Sample the

building relation to determine the partitioning ranges.

(ii) Redistribute the building relation to the processors

using the ranges. Each processor builds a hash table

containing the incoming tuples. (iii) Redistribute the

probing relation using the same ranges to the proces-

sors. For each tuple received, each processor probes the

hash table to perform the join. This algorithm can be

further improved to deal with high skew using addi-

tional techniques and different processor allocation

strategies [3]. A similar approach is to modify the

join algorithms by inserting a scheduling step which

is in charge of redistributing the load at runtime [14].

Inter-Operator Load Balancing

The inter-operator load balancing problem was exten-

sively addressed during the 1990s. Since then many

processor allocation algorithms have been proposed

for different target parallel architectures and consider-

ing CPU, I/Os or other resources, such as available

memory.

The main approach in shared-nothing is to deter-

mine dynamically (just before the execution) the degree

of parallelism and the localization of the processors for

each operator. For instance, the Rate Match algorithm

[9] uses a cost model in order to define the degree of

parallelism of operators having a producer-consumer

dependency such that the producing rate matches the

consuming rate. It is the basis for choosing the set of

processors whichwill be used for query execution (based

on available memory, CPU, and disk utilization). Many

other algorithms are possible for the choice of the num-

ber and localization of processors, for instance, by a

dynamic monitoring and adjustment of the use of

several resources (e.g., CPU, memory and disks) [11].

Shared-disk and shared-memory architectures

provide more flexibility since all processors have

equal access to the disks. Hence there is no need for

physical relation partitioning and any processor can be

allocated to any operator [12].

Considering the shared-disk architecture, Hsiao

et al. [5] propose to assign processors recursively

from the root up to the leaves of a so-called allocation

tree. This tree is derived from the query tree, each

pipeline chain (i.e., set of operators having pipeline

dependencies) being represented as a node. The edges
of the allocation tree represent precedence constraints.

All available processors are assigned to the root node of

the allocation tree (the last pipeline chain to be exe-

cuted). Then, a cost model is used to divide the CPU

power between each child of the root in order to ensure

that all the data necessary for the execution of the root

pipeline chain will be produced synchronously.

The approach proposed in [4] for shared-memory

allows the parallel execution of independent pipeline

chains called tasks. The main idea is combining

IO-bound and CPU-bound tasks to increase system

resource utilization. Before execution, a task is classi-

fied as IO-bound or CPU-bound using cost model

information. CPU-bound and IO-bound tasks can

then be run in parallel at their optimal IO-CPU

balance, by dynamically adjusting the degree of intra-

operator parallelism of the tasks.
Intra-Query Load Balancing

Intra-query load balancing combines intra- and inter-

operator parallelism. To some extent, given a parallel

architecture, the load balancing techniques presented

above can be extended or combined. For instance, the

control operators used a-priori for intra-operator

load balancing can modify the degree of parallelism

of an operator, thus impacting inter-operator load

balancing [2].

A general load balancing solution in the context

of hierarchical parallel architectures (a shared-nothing

system whose nodes are shared-memory multiproces-

sors) is the execution model called Dynamic Proces-

sing (DP) [1]. In such systems, the load balancing

problem is exacerbated because it must be addressed

both locally (among the processors of each shared-

memory node) and globally (among all nodes). The

basic idea of DP is decomposing the query into self-

contained units of sequential processing, each of which

can be carried out by any processor. Intuitively, a

processor can migrate horizontally (intra-operator

parallelism) and vertically (inter-operator parallelism)

along the query operators. This minimizes the com-

munication overhead of inter-node load balancing by

maximizing intra and inter-operator load balancing

within shared-memory nodes.
Key Applications
Load balancing techniques are essential in applica-

tions dealing with very large databases and complex

2272
Q

Query Mapping
queries, e.g., data warehousing, data mining, business

intelligence and more generally all OLAP (On Line

Analytical Processing) applications.

Data Sets
DBGen, a synthetic data generator can be used to gener-

ate biased data distribution, for studying intra-operator

load-balancing issues. It allows generating datawith non-

uniform distribution (Zipfian, Poisson, Gaussian, etc).

See http://research.microsoft.com/	Gray/DBGen/

Cross-references
▶ Parallel Architectures

▶ Parallel Database Management

▶ Parallel Data Placement

▶ Parallel Query Processing

▶ Storage Resource Management

Recommended Reading
1. Bouganim L., Florescu D., and Valduriez P. Dynamic load

balancing in hierarchical parallel database systems. In Proc.

22th Int. Conf. on Very Large Data Bases, 1996, pp. 436–447.

2. Brunie L. and Kosch H. Control strategies for complex relational

query processing in shared nothing systems. ACM SIGMOD

Rec., 25(3):34–39, 1996.

3. DeWitt D.J., Naughton J.F., Schneider D.A., and Seshadri S.

Practical skew handling in parallel joins. In Proc.18th Int.

Conf. on Very Large Data Bases, 1992, pp. 27–40.

4. Hong W. Exploiting inter-operation parallelism in XPRS. In

Proc. ACM SIGMOD Int. Conf. on Management of Data,

1992, pp. 19–28.

5. Hsiao H., Chen M.S., and Yu P.S. On parallel execution of

multiple pipelined hash joins. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1994, pp. 185–196.

6. Kitsuregawa M. and Ogawa Y. Bucket spreading parallel hash:

a new, robust, parallel hash join method for data skew in the

super database computer. In Proc. 16th Int. Conf. on Very Large

Data Bases, 1990, pp. 210–221.

7. Lakshmi M.S. and Yu P.S. Effect of skew on join performance in

parallel architectures. In Int. Symp. Databases in Parallel and

Distributed Systems, 1988, pp. 107–120.

8. Lynch C. Selectivity estimation and query optimization in large

databases with highly skewed distributions of column values. In

Proc. 14th Int. Conf. on Very Large Data Bases, 1988, pp.

240–251.

9. Metha M. and DeWitt D. Managing intra-operator parallelism

in parallel database systems. In Proc. 21th Int. Conf. on Very

Large Data Bases, 1995, pp. 382–394.

10. Özsu T. and Valduriez P. Principles of Distributed Data-

base Systems (2nd edn.). Prentice Hall, 1999 (3rd edn.,

forthcoming).

11. Rahm E. and Marek R. Dynamic multi-resource load balancing

in parallel database systems. In Proc. 21th Int. Conf. on Very

Large Data Bases, 1995.
12. Shekita E.J. and Young H.C. Multi-join optimization for

symmetric multiprocessor. In Proc. 19th Int. Conf. on Very

Large Data Bases, 1993, pp. 479–492.

13. Walton C.B., Dale A.G., and Jenevin R.M. A taxonomy and

performance model of data skew effects in parallel joins. In Proc.

17th Int. Conf. on Very Large Data Bases, 1991, pp. 537–548.

14. Wolf J.L., Dias D.M., Yu P.S., Turek J. New Algorithms for

parallelizing relational database joins in the presence of data

skew. IEEE Trans. Knowl. Data Eng., 6(6):990–997, 1994.

15. Wilshut N., Flokstra J., and Apers P.G. Parallel evaluation of

multi-join queries. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1995, pp. 115–126.
Query Mapping

▶Query Translation
Query Optimization

EVAGGELIA PITOURA

University of Ioannina, Ioannina, Greece

Synonyms
Query compilation

Definition
A query optimizer translates a query into a sequence of

physical operators that can be directly carried out by

the query execution engine. The output of the opti-

mizer is called a query execution plan. The execution

plan may be thought of as a dataflow datagram that

pipes data through a graph of query operators. The

goal of query optimization is to derive an efficient

execution plan in terms of relevant performance mea-

sures, such as memory usage and query response time.

To achieve this, the optimizer needs to provide: (i) a

space of execution plans (search space), (ii) cost esti-

mation techniques to assign a relevant cost to each

plan in the search space, and (iii) an enumeration

algorithm to search through the space of plans.

Key Points
The query optimizer takes as input a parsed query and

produces as output an efficient execution plan for the

query. The task of the optimizer is nontrivial, since

given a query (i) there are many logically equivalent

algebraic expressions (for instance, resulting from the

commutativity property among the logical operators),

Query Optimization (in Relational Databases)
Q

2273

Q

and (ii) for each expression, there are many physical

operators supported by the query execution engine for

implementing each logical operator (for example, there

are several join algorithms, e.g., nested-loop and sort-

merge join, for implementing join). The task of finding

an equivalent algebraic expression is often called query

rewriting.

The optimizer needs to enumerate all possible exe-

cution plans, estimate their cost and select the one with

the smallest cost. The cost assigned to each plan is based

on a cost model that provides an estimation of the

resources needed for its execution, where the resources

include CPU time, I/O cost, memory, and communi-

cation bandwidth. The cost model relies on statistics

maintained on relations and indexes, and uses cost

formulas for estimating the selectivity of the various

operators and their expected recourse usage. Often,

dynamic programming techniques are used to enu-

merate different plans. These techniques, exploit the

fact that to obtain an optimal plan for an expression, it

suffices to consider only the optimal plans for its sub-

expressions [1,2,3].

Cross-references
▶Query Optimization (in Relational Databases)

▶Query Optimization in Sensor Networks

▶Query Plan

▶Query Processing

▶Query Rewriting

Recommended Reading
1. Chaudhuri S. An overview of query optimization in relational

systems. In Proc. 17th ACM SIGACT-SIGMOD-SIGART Symp.

Principles of Database Systems, 1998, pp. 34–43.

2. Ioannidis Y. Query optimization. In Handbook of Computer

Science, A.B. Tucker (ed.). CRC Press, 1996.

3. Jarke M. and Koch J. Query optimization in database systems.

ACM Comput. Surv., 16(2):111–152, 1984.
Query Optimization (in Relational
Databases)

THOMAS NEUMANN

Max-Planck Institute for Informatics, Saarbrücken,

Germany

Synonyms
Query compilation
Definition
Database queries are given in declarative languages,

typically SQL. The goal of query optimization is to

choose the best execution strategy for a given query

under the given resource constraints. While the query

specifies the user intent (i.e., the desired output), it

does not specify how the output should be produced.

This allows for optimization decisions, and for many

queries there is a wide range of possible execution

strategies, which can differ greatly in their resulting

performance. This renders query optimization an im-

portant step during query processing.
Historical Background
One of the first papers to discuss query optimization in

relational database systems was the seminal System R

paper [2]. It introduced a dynamic programming

algorithm for optimizing the join order, and coined

the concept of interesting orders for exploiting avail-

able orderings. Later approaches increased the set

of optimized operators, and included a rule based

description of optimization techniques (whereas the

optimizations in System R were hard wired). One prom-

inent example is the Starburst [3] optimizer. It intro-

duced a different internal representation (query graph

model), that could express complex queries suitably for

optimization, and proposed using grammar-like rules

to combine low level physical operators (LOLEPOPs)

in execution plans. Besides being rule-based, the opti-

mization itself used a bottom-up approach similar to

System R. Another family of optimizers was introduced

by Volcano [4] (which itself evolved from Exodus) and

Cascades [5]. Instead of bottom-up constructive opti-

mization they used transformative top-down optimiza-

tion with memorization. Besides these more

fundamental approaches, a rich literature of optimiza-

tion techniques exist, ranging from support for specific

operators like outer joins or expensive predicates to

fundamental data reduction like magic sets.
Foundations
The key idea behind query optimization is the obser-

vation that the same query can be formulated in dif-

ferent ways. When a user gives a query in SQL, the

query is first parsed and analyzed, and then brought

into an internal representation, for example in rela-

tional algebra. This translation first creates a canonical

representation, as shown in Fig. 1. As a first translation

Query Optimization (in Relational Databases). Figure 1. Translating a SQL query.

2274
Q

Query Optimization (in Relational Databases)
step, the select-from-where queries in a) can be an-

swered by combining all relations in the from clause

with a cross product and then checking the where

condition on each resulting tuple (shown in b)). But

cross products are expensive operations, therefore it is

preferable to move a part of the where condition into

the cross product to form a join. The remaining part of

the condition can be checked before the join, which

further reduces the effort for the join (shown in c)).

Both operator’s trees produce the same tuples when

executed, and thus are different representations of the

same query. But executing the tree in (i) is most likely

cheaper than executing the tree in (ii), which means

that (iii) is preferable. The query optimizer therefore

starts by translating the query into a canonical repre-

sentation, which is easy to construct but inefficient to

execute, and therefore finds better representations of

the same query.

The base for finding better alternatives is the con-

cept of algebraic equivalences. Two algebra expressions

are equivalent if they produce the same result when

executed. As this is difficult to decide in general, query

optimizers instead rely on known equivalences. For

example the join operator is commutative and

associative:

A ffl B
 B ffl A

A ffl ðB ffl CÞ
 ðA ffl BÞ ffl C

Many equivalences are known from the literature [7].

The equivalences form the search space that is explored

by the query optimizer: When two (sub-)expressions

are equivalent, the optimizer is free to choose any of

the two. Optimizers that are directly based upon this

principle are called transformative optimizers, as they

transform algebra expressions into other algebra

expressions by applying algebraic equivalences. Trans-

formative optimizers are relatively easy to build and

can potentially make use of arbitrary equivalences, but

an efficient exploration of the search space is very

difficult. Most transformative optimizers are therefore
only heuristical. The family of constructive optimizers

does not apply the equivalences directly, but builds

expressions bottom-up from smaller expressions such

that the resulting expression is still equivalent to the

original expression. This allows for a much more effi-

cient exploration of the search space, but is difficult to

organize for more complex equivalences. Therefore

most constructive optimizers are at least partially

transformative, applying transformative rewrite heur-

istics for complex equivalences before (and after) the

constructive optimization step.

The goal of query optimization is improving query

processing, which means that the query optimizer

needs to take into account the runtime effect of differ-

ent alternatives. This is done by estimating the costs of

executing an alternative. A primitive way to estimate

the costs is to estimate the number of tuples processed.

The intuition here is that a larger number of processed

tuples implies more effort spent on executing the

query. This estimation requires statistical information,

in particular the cardinalities of the relations and the

selectivities of the operators involved, but given these it

can be computed directly from the algebra expression.

Unfortunately this is much too inaccurate for practical

purposes. A proper cost function should model the

expected execution time (as this is the most common

optimization goal), which implies taking into account

access patterns on disk, costs for evaluating expensive

predicates, etc. The cost function is therefore usually a

linear combination of expected I/O costs and expected

CPU costs. But this information cannot be derived from

the algebra expression, as it is not detailed enough.

Optimizers therefore distinguish between logical

algebra and physical algebra. The logical algebra con-

sists of all operator concepts known to the optimizer,

while the physical algebra consists of the operator

implementations supported by the execution engine.

For example the logical algebra contains one inner join

operator ⋈, while the physical algebra contains one

join operator for each supported implementation, like

Query Optimization (in Relational Databases).

Figure 2. Left-deep Versus bushy join trees.

Query Optimization (in Relational Databases)
Q

2275

Q

nested loop join ⋈NL or sort-merge join ⋈SM. While

the initial query is represented in logical algebra (or an

equivalent calculus), the final result must be in physical

algebra, e.g., the optimizer must decide which operator

implementations should be used. As these physical

algebra expressions (including some annotations)

could be executed by the runtime system, they are

often called query execution plans. The logical algebra

is more abstract, which can be useful for optimization,

but ultimately the optimizer must construct physical

algebra expressions. In particular, cost-based optimi-

zation requires physical algebra, as then only costs can

be estimated.

Optimizing Simple Queries

The Select-Project-Join queries (SPJ) are relatively sim-

ple yet commonly used. They correspond to SQL queries

of the form SELECT ... FROM ... WHERE ... without

any nested queries. They can be answered by using only

selections (s), joins/cross-products (⋈/�), and pro-

jections (P). Nevertheless, it has been shown that

finding the optimal execution plan is NP hard in gen-

eral, even for these simple queries. Several simplifica-

tion are commonly used to reduce the optimization

time. As a first step, the optimization concentrates on

the join operators. The projections can be added as

needed, i.e., whenever an operator materializes its

input (and thus breaks the processing pipeline), all

attributes that are no longer needed are projected

away. Selections are added greedily, i.e., a selection is

applied as early as possible. The rationale is that most

selection predicates are cheap to evaluate and the selec-

tions reduce the work required by the following opera-

tors. Thus the optimizer only has to order the join/

cross-product operators, and the other operators are

added greedily. Unfortunately the problem remains NP

hard even with this simplification.

The problem of finding the optimal join order can

be seen as finding the optimal binary tree whose leaves

correspond to the relations in the from clause. The

inner nodes are joins or cross products, depending

on available predicates suitable for a join, and are

determined implicitly by the relations involved in

their subtrees. Therefore, only the structure of the

binary tree and the labeling of the leaf nodes has to

be specified by the query optimizer. However the num-

ber of binary trees with n leaf nodes is Cðn� 1Þ, where
CðnÞ are the Catalan Numbers, which grow in the order

of Yð4n=n 3
2Þ. As this grows very fast, some approaches
reduce the search space by considering only a limited

set of binary trees. A popular restriction is the limita-

tion to left-deep join trees (or more general to linear

join trees). A linear join tree is a join tree where only

one of the two subtrees of a join operator may contain

other join operators. If only the left subtree may con-

tain other join operators, the trees are called left-deep.

Figure 2 shows an example. General join trees without

restrictions are called bushy join trees. Left-deep join

trees are attractive (e.g., System R used them), as they

are potentially easier to execute and the number of left-

deep join trees is much smaller than the number of

bushy join trees. As there are n! ways to label the leaf

nodes of the join tree for n relations, there are

n!Cðn� 1Þ bushy trees, but ‘‘only’’ n! left-deep trees.

Unfortunately the optimal join tree can be a bushy tree,

and these cases are not uncommon, which means that

generating only left-deep trees can hurt query execu-

tion performance. Most modern query optimizers

therefore construct bushy join trees.

The huge factor of n! is caused by the fact that all

combinations of relations are considered valid. The

search space can be significantly reduced by avoiding

the creation of cross products. When combining two

relations, the optimizer can either use a cross-product,

or use a join if there is a suitable join predicate in the

where condition. Joins are much more efficient than

cross-products, and although it is sometimes beneficial

to use cross-products between separate relations, these

cases are rare. When allowing cross-products, any rela-

tions can be combined, otherwise combinations are

only possible if a suitable join predicate exists. The

join possibilities implied by the query are captured in

the query graph, as shown in Fig. 3. The relations from

the from clause form the nodes, while the potential join

conditions form the edges. Now the optimizer only has

to consider sub-problems, i.e., sets of relations, that are

connected in the query graph (this assumes that the

2276
Q

Query Optimization (in Relational Databases)
query graph itself is connected, which can be guaran-

teed by adding additional edges). For example the rela-

tions A,B,C can be joined and thus could be part of a

join tree, while no join tree will consist only of B,C,D,

as this would require a cross-product. The structure of

the query graph greatly affects the size of the search

space. If the query graph forms a chain, the join order-

ing problem is no longer NP hard and can be solved in

O(n3). If the query graph forms a clique, the problem is

still NP hard (and just as difficult as when including

cross products). Most queries are between those two

extremes, and more like a chain than like a clique, and

can thus be optimized much more efficiently by avoid-

ing cross products.

Putting these observations together, SPJ queries

can be optimized by the following strategy:

1. The only optimization decision is the join order,

selections and projections are added greedily

2. The relations in a join tree must be connected in

the query graph

3. When constructing left-deep trees, the right hand

side of a join must contain only one relation.

The seminal System R paper on query optimization [9]

introduced a dynamic programming (DP) strategy to
Query Optimization (in Relational Databases).

Figure 3. A query and its query graph.

Query Optimization (in Relational Databases). Figure 4. Dy
optimize the join order. A slightly generalized version

that generates bushy trees is shown in Fig. 4. It com-

putes the optimal join order of the relations R1,...,Rn

(ignoring selections and projections for a moment).

The basic strategy is to construct solutions for larger

(sub-)problems (i.e., problems involving more rela-

tions) from optimal solutions of smaller problems.

For example, consider the top-most join in a join

tree with four relations. It will either combine two

join trees with two relations each or a single relation

with a join tree with three relations. The problem of

joining four relations can thus be expressed as com-

bining smaller problems with one to three relations

each. Accordingly, the DP table is first organized by

the size (i.e., number of relations) of a problem. For

a given size, the table stores the optimal execution

plan for a given set of relations. In lines 1–2 the

algorithm initializes the DP table by adding table

scans as the optimal solution for problems involving

a single relation. The loop starting in line 3 now

creates solutions of size s by combining smaller solu-

tions. Lines 4–5 find all pairs of problems already

solved (S1, S2) that have a combined size of s. If S1
and S2 overlap (i.e., they have relations in common)

the pair is ignored, as no valid join tree can

be constructed (line 6). Similarly (S1, S2) is ignored if

S1 and S2 are not connected in the query graph to avoid

the creation of cross-products (line 7). Otherwise it is

possible to construct a new execution plan p that joins

the known solutions for S1 and S2 (line 8). If no

solution for S1 [S2 is known, (or the estimated costs

of the new plan are less than for the currently known

solution), p is added as a solution of size s for S1 [S2 in

the DP table (lines 9–10). At the end of the algorithm

the DP table entry for size n contains the optimal

solution (line 11).
namic programming strategy for SPJ queries.

Query Optimization (in Relational Databases)
Q

2277

Q

The algorithm in Fig. 4 is simplified, as it ignores

selections and projections. They can be added greedily

in lines 2 and 8 and do not affect the algorithm other-

wise. A more complex part that is missing is the selec-

tion of the physical join operator. Line 8 simply states

⋈, but in a real system, there are multiple join opera-

tors available, typically at least nested-loop join, hash

join, and sort-merge join. Lines 8–10 should therefore

loop over the different join implementations and try all

of them. What complicates this choice is that the

different implementations behave differently, in par-

ticular the sort-merge join. When the input has to be

sorted, the sort-merge join is relatively expensive, but

when it is already sorted it is very cheap. And the

output of a sort-merge join is itself sorted, which can

render a following sort-merge join cheap if the order

can be reused. Tuple orders that could be used by other

operators are called interesting orderings, and the set of

interesting orderings for the current query is com-

puted before starting the plan generation (i.e., the DP

algorithm, which constructs execution plans). During

plan generation, plans that are more expensive than

others have to be preserved, but provide an interesting

order the others do not. This can be generalized by the

concept of physical properties. A physical property is a

characteristic of a plan that affects its runtime behavior

(i.e., the costs of subsequent operators), but not its

logical equivalence. The physical properties define a

partial order between plans, describing which plans

satisfy ‘‘more’’ properties. For example a plan with

sorted output dominates another plan with unsorted

output (concerning the physical property ‘‘ordered’’),

while two plans with differently sorted output are not

directly comparable. During plan generation, a plan

only dominates another plan if both the physical prop-

erties are dominating and the estimated costs are lower.

As a consequence, the DP table entries no longer consist

of single optimal plans, but of sets of plans, in which no

plan dominates the other. Note that physical properties

are an example for re-establishing the principle of opti-

mality required for dynamic programming, which is

also required in other contexts.

More Complex Queries

While Selection-Projection-Join queries are a impor-

tant class of queries, queries can be much more com-

plex. When only optimizing (inner) joins, the joins are

freely reorderable, which means that any join order is

valid as long as syntax constraints are satisfied (i.e., the
relations required for the join predicates are available).

This is no longer the case for other operators like outer

joins and aggregations. A simple approach to handle

these is to split the query into blocks that are freely

reorderable (e.g., above and below an outer join) and

to optimize the blocks individually. But this is too restric-

tive, and outer joins still allow for some reorderings,

which have been described as algebraic equivalences.

The challenge is to incorporate these equivalences into

a cost-based (and potentially constructive) query opti-

mizer. For outer joins, it has been shown how the

possible reorderings can be expressed as dependencies

on input relations [8]. The algorithm analyzes the

original query and computes the set of relations that

have to be part of a join tree before a specific outer join

is applicable. Using this information the outer joins

can be integrated easily, the plan generator just has to

check the additional requirements before inserting an

outer join. The main difficulty is computing this de-

pendency information, but once it is available, the

optimization is relatively simple. Other operators like

aggregations are more difficult to integrate. Aggrega-

tions can be moved down a join if the join itself does

not affect the aggregation results (e.g., a 1:1 join in-

volving the grouping attribute where the join behaves

like a selection). Pushing the aggregation down can

reduce the effort for the join itself and might thus be

beneficial. But in cases where the aggregation can simply

be moved are relatively limited. Here, a more general

movement of aggregations is possible by allowing for

compensation actions. These are computations added

to the plan that compensate the fact that the aggregation

is performed at a different position. Adding these kinds

of optimizations into a cost-based, constructive query

optimizer is very challenging, which is why they are

usually implemented as heuristical rewrite operations.

Another important aspect of optimizing complex

queries is unnesting nested queries and the related

problem of view resolution. The SQL query language

allows for nesting queries inside other queries, either

explicitly by including a nested select block, or implic-

itly by accessing a view. The nested query could be

optimized independently from the outer query, and

then during the optimization of the outer query trea-

ted like a base relation with specific costs. But this will

often lead to inferior plans, for example if selection

predicates from the outer query could be pushed

down into a view. Instead, the optimizer tries to

merge the nested query with the outer query into one

2278
Q

Query Optimization for Multidimensional Systems
flat query, which is then optimized in one step. Perhaps

even more important than the unified optimization

is a decoupling between the nested query and the

outer query. The evaluation of the nested query can

depend on the attributes of the outer query, which

implies a very expensive nested-loop evaluation. In

many cases it is possible to unnest these queries such

that the nested (and apparently dependent) part can

be evaluated independently, and then joined appropri-

ately with the outer part of the query [9]. These opti-

mizations greatly improve the evaluation of nested

queries.
Key Applications
Query optimization techniques can improve the query

execution time by orders of magnitude. All modern

relational database systems therefore implement at

least some optimization techniques.

Cross-references
▶ Parallel data placement

▶ Parallel database management

▶ Parallel query execution algorithms

▶ Parallel query processing
Recommended Reading
1. Chaudhuri S. An overview of query optimization in relational

systems. In Proc. 17th ACM SIGACT-SIGMOD-SIGART Symp.

on Principles of Database Systems, 1998, pp. 34–43.

2. Garcia-Molina H., Ullman J.D., and Widom J. Database system

implementation. Prentice-Hall, 2000.

3. Graefe G. The cascades framework for query optimization. Q.

Bull. IEEE TC on Data Engineering, 18(3):19–29, 1995.

4. Graefe G. and McKenna W.J. The volcano optimizer generator:

Extensibility and efficient search. In Proc. 9th Int. Conf. on Data

Engineering, 1993, pp. 209–218.

5. Haas L.M., Freytag J.C., Lohman G.M., and Pirahesh H. Exten-

sible query processing in starburst. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1989, pp. 377–388.

6. Moerkotte G. Building query compilers, available at http://db.

informatik.uni-mannheim.de/moerkotte.html.en, 2006.

7. Muralikrishna M. Improved unnesting algorithms for join

aggregate SQL Queries. In Proc. 18th Int. Conf. on Very Large

Data Bases, 1992, pp. 91–102.

8. Rao J., Lindsay B.G., LohmanG.M., PiraheshH., and SimmenD.E.

Using EELS, a practical approach to outerjoin and antijoin reor-

dering. In Proc. 17th Int. Conf. on Data Engineering, 2001, pp.

585–594.

9. Selinger P.G., Astrahan M.M., Chamberlin D.D., Lorie R.A., and

Price T.G. Access path selection in a relational database manage-

ment System. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1979, pp. 23–34.
Query Optimization for
Multidimensional Systems

▶Query Processing in Data Warehouses
Query Optimization in Distributed
Database Systems

▶Distributed Query Optimization
Query Optimization in Sensor
Networks

KIAN-LEE TAN

National University of Singapore, Singapore,

Singapore

Synonyms
In-network query processing
Definition
Query optimization is the process of producing a

query evaluation plan (QEP) for a query that mini-

mizes or maximizes certain objective functions. A

query in a sensor network has additional clauses that

specify the life time of a query, the frequency in which

the sensor data should be monitored, and even the rate

in which query answers should be returned. As such,

the query plan must reflect these. In addition, a typical

query plan comprises two main components: a commu-

nication component that sets up the communication

structure for data delivery, and a computation compo-

nent that performs the operation in the sensor network

and/or the root node. Because sensor nodes are low-

powered, besides minimizing computation cost, optimi-

zation criterion include minimizing energy consumption

(e.g., by minimizing transmission cost) or maximizing

the lifespan of the entire sensor network. As such, the cost

model must consider these various factors.

Historical Background
Query optimization has always been an important area

of research in database query processing. This is be-

cause a poorly chosen query execution plan can result

Query Optimization in Sensor Networks
Q

2279

Q

in significant waste of resources, andmore importantly,

user dissatisfaction. In sensor network, the problem is

more critical because of the resource constrains of the

sensor nodes which are limited in computation power,

bandwidth, memory, and energy.

Most of the existing works focused on in-network

aggregation [2,3,5,6,10]. While work in [3,10] aim at

precise answers, work in [2,6] assume errors (approx-

imations) can be tolerated. In particular, the work in

[6] exploits the tradeoff between data quality and

energy consumption to extend the lifetime of the sen-

sor network. Both the Cougar project [10] and the

TinyDB project [3], in their prototype design of a

sensor network management system, offer broader

insights into query processing and optimization issues.

Foundations
To support applications in sensor networks, the database

community has viewed the sensor network as a database

[3,10]. This provides a good logical abstraction for sen-

sor datamanagement. Users can issue declarative queries

without having to worry about how the data are gener-

ated, processed, and transferred within the network, and

how sensor nodes are (re)programmed. As such, query

optimization techniques can also be applied to optimize

the network operations.

Queries

Queries are typically expressed using an extended SQL

that include additional clauses that specify the dura-

tion and sampling rates. As an example, the following

query counts the number occupied nests in each loud

region of a certain island [3,10]:

SELECT region, CNT(occupied), AVG

(sound)

FROM sensors

GROUP BY region

HAVING AVG(sound) > 200

SAMPLE PERIOD 10 FOR 3,600

Here, the clause ‘‘SAMPLE PERIOD ... FOR’’ indicates

that the sensors will sample the environment every

10 seconds for a duration of 3,600 seconds.

Query Plan

To evaluate a query, a query plan has to be generated

for the sensors. A query plan specifies the role of each

sensor (the computation to be performed, the rate at

which it should sample the data), and the communica-

tion structure between sensors. For the sample query
above, three alternative plans can be considered: (i)

Each sensor samples its data every 10 seconds, and

then transmits the data back to the base station; at

the base station, it will perform the grouping and

aggregate computation as in a centralized system. (ii)

A sensor within a region is selected as a cluster head

(CH); all sensors within the region send their sampled

data to the corresponding CH; the CH performs the

aggregate and sends it back to the base station if it

satisfies the HAVING clause (i.e., >200). (iii) This is

similar to Plan 2, except that sensors within a region

can be further hierarchically partitioned so that each

partition has a leader that performs partial aggregation

of the sampled data from its child nodes.

For Plan 1, each sensor node takes on at most two

roles: (i) sample the data and transmit the sampled

value back to the base station, and (ii) relay the data it

receives from its child nodes if it is an internal node

along the path to the base station. For Plan 2, the CH

has the additional computation task of performing the

aggregate and determining whether it should be routed

back to the base station. For Plan 3, leaders have the

responsibility to perform partial aggregates.

All the plans may also specify the sensor nodes in

which one should be transmitting data to and/or re-

ceiving data from, i.e., the communication structure.

Clearly, there are many other possible plans that

can be generated, and it is the optimizer’s task to pick

the one that best suits the objectives.

Metadata

The optimizer makes its decision based on certain

metadata. For example, the metadata for each sensor

include the static information about its location (re-

gion), the sensor types, the amount of memory, the

energy consumption per operation type, the energy

consumption per sampling per sensor type, and so on.

It may also be necessary to maintain dynamic statistics

on a sensor’s estimated (remaining) battery life, and

the selectivity of query predicates. These metadata are

periodically collected (via the routing tree) by the

optimizer, and used in several ways. For example, for

sensor nodes with short battery life, the sampling rate

may be adjusted so that they can operate in a doze

mode longer in order to extend the lifespan of the

entire network. As another example, nodes with long

battery life may be selected as the cluster heads or

leaders, nodes with moderate amount of energy can

relay messages, and nodes with low battery power will

2280
Q

Query Optimization in Sensor Networks
simply transmit their sampled data. As such, it is

possible to balance the energy across all nodes. As

another example, knowing the energy consumption

per sampling per sensor type may allow the optimizer

to reorder predicates on different sensor types.

Cost Model

For each query plan, the optimizer estimates the cost of

the plan. The cost model depends on the objective

function. In a sensor network environment, there are

two key metrics: energy consumption and transmis-

sion cost (as communication consumes most energy).

As an example, consider an arbitrary sensor node

along the path of the routing tree. Let N be the number

of sensor types and k be the number of predicates.

Let Ei is the cost to sample sensor type i, Etrans and

Erecv be the energy to transmit and receive a message

respectively, Ei
pred be the energy consumed to evaluate

predicate i, and Eagg be the energy to compute a (partial)

aggregate, and C be the number of child nodes routing

through this node. The energy at a node s to collect a

sample, and transmit its partial aggregate, including

the costs to forward data, can be estimated as follows:

es ¼
XN
i¼0

Ei þ
XN
i¼0

Ei
pred þ Erecv � C þ Eagg þ Etrans

The energy consumed by the node is the cost to read all

the sensors at the node (first component), plus the cost

to evaluate the predicates (second component), plus

the cost to receive partial aggregates from its child

nodes (third component), plus the cost to compute a

partial aggregate (fourth component), plus the cost to

transmit the partial aggregate (fifth component).

Suppose sensor s has a remaining battery capacity of

Bs Joules. Then, s has enough power to last Bs/es sample

collections. To extend the lifespan of the system, a plan

thatmaximizes this value has to be determined. Let there

be P plans, then a plan that maximizes the minimim

number of sample collections is the one that should be

selected (to maximize the lifespan of the system), i.e.,

maxPi¼1ðminNj¼1Bj=ejÞ

Depending on different objectives and model, similar

cost models can be derived.

Centralized Optimization

Most of the existing work on optimizing sensor

network queries are based on a centralized optimizer,
i.e., the optimizer at the base station determines the

query plan [3,10]. There are two dimensions in which

query processing can be optimized. The first dimension

deals with the grouping of the sensor nodes to support

in-network computation (e.g., aggregates). Essentially,

the optimizer enumerates the possible alternative plans

based on different ways in which nodes are grouped.

Some heuristics are:

1. On one extreme, all nodes belong to a single group;

2. On another extreme, each node forms a single

group;

3. Between the two extremes, different group-based

heuristics can be adopted: proximity-based schemes

cluster nodes that are close-by together, semantic-

based schemes cluster nodes that are semantically

related, e.g., same set of sensor types, same resources,

same metadata, etc.

The second dimension covers heuristics that are used

to reorder the operations of a query. Some of these are:

1. When a sensor node is required to sample multiple

attributes (temperature, humidity, light) and the

query involves a number of predicates, different

orderings of the samping and predicate evaluations

may result in different energy consumption. This is

the case because sampling consumes more power

than evaluating a predicate. As such, to conserve

energy, it makes sense to order selective predicates

first before the non-selective predicates; in addition,

data should be sampled only when necessary. Intui-

tively, once a sampled value is discarded (because it

does not satisfy a predicate), there is no need to

expend energy to sample other attributes. Thus,

the optimizer enumerates different sequences of

sampling and predicate evaluations to find the one

that is most energy efficient. As an example, consider

a query that finds sensor nodes whose accerlerom-

eter and magnetometer readings exceed thresholds

a1 and m1 respectively. As the magnetometer con-

sumes 50 times more energy than the accerlerometer

to sample a reading, if the selectivity of the predicate

on the accerlerometer reading is low, then it makes

sense to sample the accerlerometer first. Moreover,

the magnetometer should only be sampled when the

accerlerometer reading is larger than a1.

2. For certain event monitoring queries, they can be

rewritten into a window join queries that can

be more efficiently processed in the network.

Query Optimization in Sensor Networks
Q

2281

Q

Distributed Optimization

As centralized optimization schemes require certain

metadata that must be periodically obtained from the

sensor nodes, it may be costly (in terms of power) to

collect this information. An alternative approach is to

perform distributed optimization [4]. Here, the basic

idea is to identify clusters of nodes with its associated

cluster head (CH) so that these CHs optimize the

queries for processing within the cluster. Thus, the

base stations disseminate the query to the CHs, each

of which optimizes the query based on the local meta-

data and controls the processing within the cluster.

With distributed optimization, the metadata is col-

lected at the CH, rather than the base station. This

means that the transmission overhead for metadata is

reduced. Moreover, ‘‘local’’ metadata are more accurate

as some globally collected metadata may be too coarse

(e.g., distribution of data). However, the CHs incur the

overhead of optimizing the query.

Here, the challenge is to determine the clusters (either

spatially or semantically). In spatial-based clustering

scheme, the number of groups are based on the radius of

a group, which is the number of hops between a non-CH

node and itsCH. In the semantic-based clustering scheme,

nodes with similar netadata are formed into groups.

Key Applications
Sensor databases can be applied in many applications,

e.g., environmental monitoring, military surveillance.

To process queries in these applications, it is necessary

to optimize the queries in order to ensure that

resources are well utilized, and the system lifespan

can be sufficiently large to minimize any need to re-

place the batteries regularly.

Future Directions
Most of the existing work in the literature focused on

optimizing aggregate queries one at a time. Recently,

join queries have been studied. In [1], static join queries

are considered, and in [9], continuous join queries

are examined. In both cases, join processing is pushed

into the sensor network. In the former, sensor nodes are

grouped so that a static table can be partitioned across

them; new sampled records are broadcast within a

group, and only answers need to be sent back to the

base stations. In the latter, the focus is on minimizing

the number of subqueries that need to be injected into

the sensor network. As sensor nodes become more

powerful, there is much opportunity for optimizing
complex queries that have not been previously studied.

Another promising direction that has recently received

attention is the multi-query optimization problem

[7,8]. Here, multiple queries submitted by users are

optimized collectively to exploit commonality among

them so that any redundant data accesses from the

sensors can be eliminated. Current focus is on non-

join queries. Extending these schemes to handle more

complex queries is an interesting direction to explore.

Yet another direction is to consider a large scale sensor

network deployment that involves multiple base sta-

tions. Here, the challenge is to optimize the network

lifespan as well as the load across the base stations.
Cross-references
▶Continuous Queries in Sensor Networks

▶Data Aggregation in Sensor Networks

▶ In-Network Query Processing

▶ Sensor Networks
Recommended Reading
1. Abadi D.J., Madden S., and Lindner W. REED: robust,

efficient filtering and event detection in sensor networks. In Proc.

31st Int. Conf. on Very Large Data Bases, 2005, pp. 769–780.

2. Deligiannakis A., Kotidis Y., and Roussopoulos N. Hierarchical

in-network data aggregation with quality guarantees. In Proc.

9th Int. Conf. on Extending Database Technology, 2004, pp.

658–675.

3. Madden S., Franklin M.J., Hellerstein J.M., and Hong W.

TINYDB: an acquisitional query processing system for sensor

networks. ACM Trans. Database Syst., 30(1):122–173, 2005.

4. Rosemark R. and Lee W.-C. Decentralizing query processing

in sensor networks. In Proc. 1st Annual Int. Conf. on Mobile

and Ubiquitous Syst., 2005, pp. 270–280.

5. Silberstein A. and Yang J. Many-to-many aggregation for sensor

networks. In Proc. 23rd Int. Conf. on Data Engineering, 2007,

pp. 986–995.

6. Tang X. and Xu J. Extending network lifetime for precision

constrained data aggregation in wireless sensor networks. In

Proc. 25th Annual Joint Conf. of the IEEE Computer and Com-

munications Societies, 2006.

7. Trigoni N., Yao Y., Demers A.J., Gehrke J., and Rajaraman R.

Multi-query optimization for sensor networks. In Proc. 1st IEEE

Int. Conf. on Dist. Comput. in Sensor Syst., 2005, pp. 307–321.

8. Xiang S., Lim H.B., Tan K.L., and Zhou Y. Two-tier multiple

query optimization for sensor networks. In Proc. 23rd Int. Conf.

on Distributed Computing Systems, 2007, p. 39.

9. Yang X., Lim H.B., Ozsu T., and Tan K.L. In-network execution

of monitoring queries in sensor networks. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data., 2007, pp. 521–532.

10. Yao Y. and Gehrke J. Query processing in sensor networks.

In Proc. 1st Biennial Conf. on Innovative Data Systems Research,

2003.

2282
Q

Query Parallelism
Query Parallelism

▶ Intra-query parallelism
Query Plan

EVAGGELIA PITOURA

University of Ioannina, Ioannina, Greece

Synonyms
Query plan; Query execution plan; Query evaluation

plan; Query tree; Operator tree
Definition
A query or execution plan for a query specifies precisely

how the query is to be executed. Most often, the plan for

a query is represented as a tree whose internal nodes are

operators and its leaves correspond to the input rela-

tions of the query. The edges of the tree indicate the data

flow among the operators. The query plan is executed

by the query execution engine.
Key Points
During query processing, an input query is trans-

formed into an internal representation, most often,

into a relational algebra expression. To specify how to

evaluate a query precisely, each relational operator is

then mapped to one or more physical operators, which

provide several alternative implementations of rela-

tional operators.

A query plan for each query specifies the physical

operators to be used for its execution and the order

of their invocation. Most commonly, a query plan is

represented as a tree. The leaf nodes of the query tree

correspond to the input (or base) database relations of

the query and its internal nodes to physical operators.

The edges of the tree specify the data flow among the

operators. Each operator receives input from its child

nodes in the tree and, in turn, its output is used as

input to its parent node.

The query optimizer enumerates alternative query

plans for each query and selects the most efficient

among them using a cost estimation model. The selec-

ted query plan is then passed for execution to the query

execution engine that results in generating answers to

the query.
Query plans can be divided into prototypical

shapes and query execution engines can be divided

into groups based on which shapes of plans they can

evaluate. Such shapes include left-deep, right-deep and

bushy plans. Deep plans are plans in which each join

involves at least one base relation, whereas bushy plans

are more general in that a join could involve one or two

base relations or the results of one or two other join

operations. Finally, for queries with common sub-

expressions, the query evaluation plan may be an acy-

clic directed graph (DAG) instead of a tree.

Cross-references
▶ Evaluation of Relational Operators

▶Query Optimization

▶Query Processing

Recommended Reading
1. Graefe G. Query evaluation techniques for large databases. ACM

Comput. Surv., 25(2):73–170, 1993.

2. Ramakrishnan R. and Gehrke J. Database Management Systems.

McGraw-Hill, New York, 2003.
Query Planning and Execution

▶Query Processing and Optimization in Object Rela-

tional Databases
Query Point Movement Techniques
for Content-Based Image Retrieval

KIEN A. HUA, DANZHOU LIU

University of Central Florida, Orlando, FL, USA

Definition
Target search in content-based image retrieval (CBIR)

systems refers to finding a specific (target) image such

as a particular registered logo or a specific historical

photograph. To search for such an image, query point

movement techniques iteratively move the query

point closer to the target image for each round of the

user’s relevance feedback until the target image is

found. The goals of query point movement techniques

include avoiding local maximum traps, achieving fast

convergence, reducing computation overhead, and

guaranteeing to find the target.

Query Point Movement Techniques for Content-Based Image Retrieval
Q

2283
Historical Background
Images in a database are characterized by their visual

features, and represented as points in a multidimen-

sional feature space. A query point is one of these image

points, selected to find similar images represented

by image points nearest to the query point in the

feature space. This cluster of nearby or relevant image

points has a shape (see Figs. 1 and 2) referred to as the

query shape.

For each iteration, a query point movement tech-

nique attempts to move the query point closer to the

target image by refining the query based on user’s

relevance feedback. Existing query point movement

techniques can be divided into two categories: single-

point and multiple-point movement techniques.

A technique is classified as a single-point movement

technique if the refined query Qr at each iteration

consists of only one query point; otherwise, it is a

multiple-point movement technique. In the latter cat-

egory, the query result is the set of images nearest to

the set of query points. Typical query shapes of single-

point movement and multiple-point movement tech-

niques are illustrated in Figs. 1 and 2, respectively,

where the contours represent equi-similarity surfaces.

Single-point movement techniques, such as MARS [9]

and MindReader [5], construct a single query point
Query Point Movement Techniques for Content-Based Ima

shapes.

Query Point Movement Techniques for Content-Based Ima

shapes.
close to relevant images and away from irrelevant ones.

MARS uses a weighted distance (producing shapes as

shown in Fig. 1b), where each dimension weight is

inversely proportional to the standard deviation of

the relevant images’ feature values in that dimension.

The rationale is that a small variation among the values

is more likely to express restrictions on the feature, and

thereby should carry a higher weight. On the other

hand, a large variation indicates that this dimension

is not significant in the query, and should thus assume

a lower weight. MindReader achieves better results

by using a generalized weighted distance, see Fig. 1c

for its shape.

In multiple-point movement techniques such as

Query Expansion [1], Qcluster [6], and Query Decom-

position [4], multiple query points are used to define

the ideal space that is most likely to contain relevant

results. Query Expansion groups query points into

clusters and choose their centroids as the representa-

tives of the query Qr (see Fig. 2a). The distance of a

point to Qr is defined as a weighted sum of individual

distances to those representatives. The weights are

proportional to the number of relevant objects in the

clusters. Thus, Query Expansion treats local clusters

differently, compared to the equal treatment in single-

point movement techniques. In some queries, clusters
ge Retrieval. Figure 1. Single-point movement query

ge Retrieval. Figure 2. Multiple-point movement query

Q

2284
Q

Query Point Movement Techniques for Content-Based Image Retrieval
are too far apart for a unified, all-encompassing con-

tour to be effective; separate contours can yield more

selective retrieval. This observation motivated Qcluster

to employ an adaptive classification and cluster-merg-

ing method to determine optimal contour shapes for

complex queries. Qcluster supports disjunctive

queries, where similarity to any of the query points is

considered relevant (see Fig. 2b). To bridge the seman-

tic gap more effectively, A Query Decomposition tech-

nique was presented in [4]. Based on user’s relevance

feedback, this scheme automatically decomposes a

given query into localized subqueries, which more

accurately capture images with similar semantics but

with very different appearance (see Fig. 2c).

Standard query point movement techniques,

explained above, allow re-retrieval of previously deter-

mined relevant images when they fall in the search

range again. This leads to two major disadvantages:

1. Local maximum traps. Since query points in rele-

vance feedback systems have to move through many

regions before reaching a target, it is possible that

they get trapped in one of these regions. Figure 3

illustrates a possible scenario where ps and pt de-

note the starting query point and the target point,

respectively. As a result of a 3-NN search at ps, the

system returns points p1 and p2, in addition to

query point ps. Since both p1 and p2 are relevant,

the refined query point pr is their centroid and the

anchor of the next 3-NN search. In this situation,

the system will retrieve exactly the same set; from

which, points p1 and p2 are again selected. In other

words, the system can never get out of the subspace

because the retrieval set is saturated with the k
Query Point Movement Techniques for Content-Based Imag
selected images. Although the system can escape

with a larger k, it is difficult to guess a proper

threshold. Consequently, the user might not even

know a local maximum trap is occurring, and there

is no guarantee to find the target image.

2. Slow convergence. The centroid of the relevant

points is typically selected as the anchor of refined

queries. This, coupling with possible retrieval of

already visited images, prevents aggressive move-

ment of the search process (see Fig. 4, where k = 3).

Slow convergence incurs longer search time, and

significant computation and disk access overhead.
Foundations
To address the limitations of standard query point

movement techniques, four target search methods

have been proposed [8]: Naı̈ve Random Scan (NRS),

Local Neighboring Movement (LNM), Neighboring

Divide and Conquer (NDC), and Global Divide and

Conquer (GDC) methods. All these methods are

designed around a common strategy: they do not re-

trieve previously selected images (i.e., shrink the search

space). Furthermore, NDC and GDC exploit Voronoi

diagrams to aggressively prune the search space and

move towards the target image faster.

More formally, a query in target search is defined as

Q = hnQ, PQ, WQ, DQ, S, ki, where nQ denotes the

number of query points in Q, PQ the set of nQ query

points in the search space S, WQ the set of weights

associated with PQ, DQ the distance function, and k the

number of points to be retrieved in each iteration.

Using these notations, the four target search techni-

ques can be described as follows:
e Retrieval. Figure 3. Local maximum trap.

Query Point Movement Techniques for Content-Based Image Retrieval. Figure 4. Slow convergence.

Query Point Movement Techniques for Content-Based Image Retrieval
Q

2285

Q

Naı̈ve Random Scan Method (NRS)

This method randomly retrieves k different images at a

time until the user finds the target image or the

remaining set is exhausted. Specifically, at each itera-

tion, a set of k not previously selected images are

randomly retrieved from the candidate set S0 for rele-

vance feedback, and S0 is then reduced by k for the next

iteration. Clearly, this strategy does not suffer local

maximum traps and is able to locate the target image

after some finite number of iterations. In the best case,

NRS takes one iteration, while the worst case requires
jSj
k

l m
. On average, NRS can find the target in

P jSj
kd e

i¼1 i= jSj
k

l m� �
¼ ð jSj

k

l m
þ 1Þ=2

l m
iterations. In

other words, NRS takes OðjSjÞ to reach the target

point. Therefore, NRS is only suitable for a small

database set.

Local Neighboring Movement Method (LNM)

This method applies the non-re-retrieval strategy to

MindReader [5]. Specifically, Qr is constructed so that

it moves towards neighboring relevant points and away

from irrelevant ones, and k-NN query is now evaluated

against S0 instead of S. When LNM detects a local

maximum trap, it requests that the user selects the

most relevant image. This way, LNM can overcome

local maximum traps, although it could take many

iterations to do so. Again, one iteration is required in

the best case. If data is uniformly distributed in the

n-dimensional hypercube, the worst and average cases

are
ffiffiffi
n

p ffiffiffiffiffiffi
jSjn

p
=dlog2nke

l m
and ð

ffiffi
n

p ffiffiffiffiffi
jSjn

p
dlog2n ke

þ 1Þ=2
� �

, res-

pectively. If the data are arbitrarily distributed, then

the worst case could be as high as that of NRS, i.e.,
jSj
k

l m
iterations (e.g., when all points are on a line).
In summary, in the worst case LNM could take any-

where from Oð
ffiffiffiffiffiffi
jSjn

p
Þ to OðjSjÞ.
Neighboring Divide and Conquer Method (NDC)

Although LNM can overcome local maximum traps, it

does so inefficiently, taking many iterations and in the

process returning numerous false hits. To speed up

convergence, Voronoi diagrams are used in NDC to

reduce the search space after each round of relevance

feedback. That is, the k-NN search in each iteration is

performed only within the Voronoi cell containing the

query point. It can be proved that the target image

must reside in this Voronoi cell [8]. Since this strategy

aggressively prunes the search space and moves rapidly

towards the target image, it can overcome local maxi-

mum traps and achieve fast convergence. Figure 5

illustrates how NDC approaches the target after prun-

ing the search space three times. In the first iteration,

points p1, p2, and ps are randomly chosen by the sys-

tem, assuming k = 3; and they are used to construct a

Voronoi diagram partitioning the search space into

three regions. The user identifies ps as the most relevant

point (i.e., most similar to the target image). Since the

target image must reside in the Voronoi cell containing

ps, the computation of the k-NN query anchored at ps
can be confined to this cell while the other two Voronoi

regions can be safely ignored. This step retrieves three

new nearest neighbors p3, p4, and p5. Their Voronoi

diagram further partitions the current search space

into three regions. The user again correctly selects p5
as the most relevant point, and therefore the query

point for the third iteration. This refined query results

in another set of relevant points p6, p7, and p8; and

another Vonronoi diagram is constructed. This time,

the user selects p6 as the most relevant image. Using it

Query Point Movement Techniques for Content-Based Image Retrieval. Figure 5. Example of NDC.

Query Point Movement Techniques for Content-Based Image Retrieval. Figure 6. Example of GDC.

2286
Q

Query Point Movement Techniques for Content-Based Image Retrieval
as the query point for the fourth iteration, the system

returns three relevant points and the user identifies pt
as the target image. If the data points are uniformly

distributed, NDC reaches the target point in no more

than OðlogkjSjÞ iterations. When S is arbitrarily

distributed, the worst case could take up to S
k

� 	
itera-

tions (e.g., all points are on a line), the same as that of

NRS. In other words, NDC could still require OðjSjÞ
iterations to reach the target point in the worst case.

Global Divide and Conquer Method (GDC)

To reduce the number of iterations in NDC under

the worst case scenario, GDC constructs the Voronoi

diagram based on points randomly selected from the

current search space, instead of using points from

the query result. An example is given in Fig. 6. In the

first iteration, a Voronoi diagram is constructed based

on three randomly sampled points p1, p2, and ps, as-

suming k = 3. The user selects p3 as the most relevant
point, and this results in p4, p5, and p6 as the query

result as computed in NDC. The user now selects p5
as most relevant in the second iteration. The system

randomly selects three points in the Vonoroi cell asso-

ciated with p5, and uses them to further partition this

cell into three smaller Vonoroi cells. The computation

of the k-NN query anchored at p5 over the smaller

Vonoroi cell containing p5 returns three new points,

and the user identifies pt as the target image in the

third round. As proved in [8], the worst case for

GDC is bounded by OðlogkjSjÞ. This implies that for

arbitrarily distributed datasets, GDC converges faster

than NDC in general, although NDC might be as fast

as GDC for certain queries, e.g., the starting query

point is close to the target point. In the previous

example (Fig. 5), NDC could also take three iterations,

instead of four, to reach the target point if the

initial k points were the same as in Fig. 6, as opposed

to Fig. 5.

Query Point Movement Techniques for Content-Based

Image Retrieval. Figure 7. False hit ratio.

Query Point Movement Techniques for Content-Based

Image Retrieval. Figure 8. Average iterations.

Query Point Movement Techniques for Content-Based Image Retrieval
Q

2287

Q

Key Applications
Multimedia Search Engine, Crime Prevention, Graphic

Design.

Future Directions
1. Incorporate information from the log file on user

relevance feedback to determine the query results

in each feedback iteration, instead of performing

the traditional k-NN computation. This strategy

can minimize the effect of the semantic gap be-

tween the low-level visual features and the high-

level concepts in the images.

2. Multiple query points, as in standard query point

movement techniques such as Query Expansion [1]

and Qcluster [6], can be used in each iteration to

better convey user’s relevance feedback.

3. With the growing interest in Internet-scale image

search applications, it is desirable to extend the

target search techniques because it will enable con-

current users to share computation [7].

Experimental Results
Figure 7 shows that standard techniques MARS [9],

MindReader [5], and Qcluster [6] have poor false hit

ratio when k is small. This is due to the effect of local

maximum traps. Even for fairly large k, their false hit

ratios remain very high. As a result, users of these

techniques have to examine a large number of returned

images, but might still not find their intended targets.

Figure 8 shows that NDC and GDC perform more

efficiently when k is small, with GDC being slightly

better than NDC. Specifically, when k = 5, the average
numbers of iterations for LNM, NDC, and GDC are

roughly 21, 10, and 7, respectively. Experimental studies

basedon a prototype [8] showed that only seven iterations

on average were needed to locate a given target image.

Additional performance results can be found in [8].

Data Sets
The data set consists of more than 68,040 images from

the COREL library. Thirty-seven visual image features

divided into three main groups were used: colors (9

features), texture (10 features), and edge structure (18

features).

Cross-references
▶Content-based Image Retrieval (CBIR)

▶Relevance Feedback

▶Target Search
Recommended Reading
1. Chakrabarti K., Ortega-Binderberger M., Mehrotra S., and

Porkaew K. Evaluating refined queries in top-k retrieval systems.

IEEE Trans. knowledge and Data Eng., 16(2):256–270, 2004.

2. Cox I.J., Miller M.L., Minka T.P., Papathomas T.P., and

Yianilos P.N. The Bayesian image retrieval system, PicHunter:

theory, implementation, and psychophysical experiments. IEEE

Trans. Image Processing, 9(1):20–37, 2000.

3. Flickner M., Sawhney H.S., Ashley J., Huang Q., Dom B.,

Gorkani M., Hafner J., Lee D., Petkovic D., Steele D., and

Yanker P. Query by image and video content: The QBIC system.

IEEE Computer, 28(9):23–32, 1995.

4. Hua K.A., Yu N., and Liu D. Query decomposition: A multiple

neighborhood approach to relevance feedback processing in

contentbased image retrieval. In Proc. 22nd Int. Conf. on Data

Engineering, 2006.

2288
Q

Query Processing
5. Ishikawa Y., Subramanya R., and Faloutsos C. MindReader:

Querying databases through multiple examples. In Proc. 24th

Int. Conf. on Very Large Data Bases, 1998, pp. 218–227.

6. Kim D.-H. and Chung C.-W. Qcluster: relevance feedback using

adaptive clustering for content-based image retrieval. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2003, pp.

599–610.

7. Liu D. and Hua K.A. Support concurrent queries in multiuser

CBIR systems. In Proc. 23rd Int. Conf. on Data Engineering,

2007, pp. 1379–1381.

8. Liu D., Hua K.A., Vu K., and Yu N. Fast query point movement

techniques with relevance feedback for content-based image

retrieval. In Advances in Database Technology, In Proc. 10th

Int. Conf. on Extending Database Technology, 2006, pp. 700–717.

9. Rui Y., Huang T., Ortega M., and Mehrotra S., Relevance feed-

back: A power tool for interactive content-based image re-

trieval.IEEE Trans. Circuits Syst. Video Technol., 8(5):644–655,

1998.
Query Processing

EVAGGELIA PITOURA

University of Ioannina, Ioannina, Greece

Synonyms
Query evaluation

Definition
A query processor receives a query, validates it, opti-

mizes it into a procedural dataflow execution plan and

executes it to obtain the results of the query.

Key Points
Query processing consists of several phases. In the first

phase, the query parser checks whether the query is

correctly specified, resolves any names and references,

verifies consistency, and performs authorization tests. If

the query passes validation, it is converted into an inter-

nal representation that can be easily processed by the

subsequent phases. Then, the query rewrite module, or

rewriter, simplifies the query and transforms it into an

equivalent form by carrying out a number of optimiza-

tions that do not depend on the physical state of the

system, such as view expansion and logical rewriting of

predicates. These initial phases rely only on data and

metadata in the system catalog.

Next, the query optimizer transforms the internal

query representation into an efficient query plan. It deci-

des which indices to use, which methods to use for

executing the query operators and in which order.
A query plan may be thought of as a dataflow diagram

that pipes data through a graph of query operators. The

optimizer enumerates alternative plans and chooses

the best plan using a cost estimation model that relies

on various selectivity estimation techniques and avail-

able statistics regarding the physical state of the system.

The code generation component transforms the plan pro-

duced by the optimizer into an executable plan. Finally,

the query execution engine operates on the fully-speci-

fied query plan. It provides generic implementations

for every operator. Most execution engines are based

on the iterator model. In such a model, operators are

implemented as iterators, with all iterators having the

same interface [1,2,3].

Cross-references
▶ Evaluation of Relational Operators

▶ Iterator

▶Query Optimization

▶Query Optimization in Sensor Networks

▶Query Plan

▶ Selectivity Estimation

Recommended Reading
1. Graefe G. Query evaluation techniques for large databases. ACM

Comput. Surv., 25(2):73–170, 1993.

2. Haas L.M., Freytag J.C., Lohman G.M., and Pirahesh H. Exten-

sible query processing in starburst. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1989, pp. 377–388.

3. Hellerstein J.M., Stonebraker M., and Hamilton J. Architecture

of a database system. Foundations and Trends in Databases,

vol. 1(2), 2007.
Query Processing (in Relational
Databases)

VOLKER MARKL

IBM Almaden Research Center, San Jose, CA, USA

Synonyms
Query compilation and execution

Definition
Query processing denotes the compilation and execu-

tion of a query specification usually expressed in a

declarative database query language such as the

structured query language (SQL). Query processing

consists of a compile-time phase and a runtime

phase. At compile-time, the query compiler translates

Query Processing (in Relational Databases)
Q

2289

Q

the query specification into an executable program.

This translation process (often called query compila-

tion) is comprised of lexical, syntactical, and semanti-

cal analysis of the query specification as well as a query

optimization and code generation phase. The code

generated usually consists of physical operators for a

database machine. These operators implement data

access, joins, selections, projections, grouping, and ag-

gregation. At runtime, the database engine interprets

and executes the program implementing the query

specification to produce the query result.

Historical Background
In the 1960s and 1970s, navigational database manage-

ment systems emerged. The hierarchical database man-

agement system, IMS from IBM is a prominent example

that is still widely used. The Database Task Group de-

veloped the CODASYL approach to data management

during the standardization of COBOL. The CODASYL

approach focuses on following pointers that link a net-

work of data records. CODASYL lacks a declarative

query language. Query processing for CODASYL data-

bases is mainly about efficient access to data, where

queries are implemented as procedural programs by

software developers. There was no query optimization

in the CODASYL model.

In 1970, Edgar Codd invented a relational algebra

over tables. This relational data model was much more

flexible than navigational data models. Relational alge-

bra allowed the specification of arbitrary queries over

relations. A combination of five primitive operations

(selection, projection, union, filter, Cartesian product)

over tables define a query in the relational algebra.

Initially, the relational model was considered to be

impractical, as it required data to be normalized into

relations, and queries were very expensive operations.

Queries often have to use the join operation (a combi-

nation of a Cartesian product with a selection) in order

to reconstruct normalized relations. However, over

the years, many inventions (database indexes, join

methods like nested-loop join, merge join or hash-

join, and techniques for query optimization) have to-

gether made relational database management systems

feasible.

The prime example of a relational query language is

SQL, which is based on a logical calculus called tuple

calculus. An SQL query specifies what data to access

and process in order to compute a query result, but not

how to access and process the data. An SQL query over
a relational database can be implemented in many

different ways. For complex queries on databases with

many indexes and tables, there may be millions of

different ways to implement an SQL query. Each im-

plementation may use different orders for combining

the normalized tables, or use different join methods

like hash join or nested-loop join, or use different types

of indexes like B-Trees or bitmap indexes, or using

indexes on different columns to efficiently process a

selection over a table. Choosing the right method for

processing a query over a large database can produce a

query result in seconds (or faster), whereas choosing of

the wrong method can result in queries running for

hours, or even days.

Query optimization aims at selecting the most effi-

cient access path (often called query execution plan, or

plan) for any given query. The task of a query optimizer

is to find the most efficient overall implementation of

the query. Query optimization has been an active area

of research since the 1970s, with advances still being

made today. Some standard optimizations are based on

simple heuristics. A typical objective may be to avoid

large intermediate results during query processing by

applying selections as early as possible. However, de-

termining the most efficient access method for each

table as well as the best join methods and join orders to

combine tables cannot be carried out by simple heur-

istics alone. In order to find the best plan, the query

processor actually needs to know some characteristics

of the data that the query will process. For example, a

nested-loop join method works best if one of the two

tables to be joined is relatively small. A hash join has

higher overhead for small tables, but will produce the

query result much faster if both tables are large. Simi-

larly, it is good to use an index if a selection results in

very few rows of a table. If many rows qualify, a table

scan will be much faster, as it can use sequential I/O,

avoiding the consecutive repositioning of the read/

write head of a hard disk as required when processing

an index.

In 1979, Pat Selinger proposed a cost-based query

optimizer for System R which determines the optimal

query plan based on a mathematical model of the

execution cost of each operator in a query execution

plan. The System R optimizer, which has become the

basis for many commercial database systems (e.g.,

IBM’s DB2 and Oracle), enumerates all possible physi-

cal query execution plans for a query in a stratified

bottom-up fashion. This is done by first determining

2290
Q

Query Processing (in Relational Databases)
the cheapest table accesses, then processing all two-

table joins, three-table joins, and so on, and uses dy-

namic programming to prune the search space. In

1994, volcano introduced an alternative approach of

a top-down optimizer based on goal-directed search

and branch-and-bound pruning, which has found its

way into commercial DBMS like Microsoft’s SQL

Server.

During the 2000s, advanced techniques for query

processing have been proposed and implemented into

commercial systems. One of these developments relies

on feedback loops to improve query execution. Feed-

back obtained by monitoring some parameters of

the mathematical cost model during query execution

is used to either alter the query execution plan while

the query is running, or to adjust the mathemati-

cal model to increase its accuracy for subsequent

queries. In addition, integration of semi-structured

data (XML) and the Xquery language are active areas

of research, with new requirements imposed on a

query processor due to the navigational operators like

XPath needed for processing hierarchical data.

Foundations
The figure below gives an architectural overview of a

query processor. The query compiler of a relational

database translates a declarative SQL query into a

procedural program. Initially, a parser carries out toke-

nization and creates a parse tree of the query based on

the grammar of the query language. Semantical analy-

sis then tests semantical correctness of the query. Those

tests usually validate if the table names or column

names in the query exist and have the right types.

These parsing steps are similar to the steps a program-

ming language parser would carry out, except that the

query compiler has to generate a program for a data

flow engine, not for a microprocessor. The query is

therefore usually represented as a data flow graph (also

called query graph) in a query compiler. A query graph

is a graph whose edges represent the data flow and

whose nodes represent operations on the data. Typical

data flow operations are table access and join, group,

and filter. Many query optimizers, like the optimizer of

IBM’s DB2 or Oracle’s rule based optimizer, utilize a

rule-based query rewrite phase before carrying out

cost-based optimization. Query rewrite translates the

query graph into a semantically equivalent query

graph, which is preferable to execute. Rewrite rules

include, among others, translations from subqueries

into joins, or rules to generate transitive predicates to
involve indexes in query processing, which would

otherwise not be applicable.

The System R approach to cost-based query optimi-

zation enumerates all possible physical query execution

plans for a the query graph model, associates a cost with

them, and selects the cheapest plan to be executed. The

cost of a query plan is expressed as a linear combination

of intermediate result sizes (cardinalities) weighed by

factors for CPU cost, I/O cost. Cost models for

distributed systems also factor in a the communication

cost for transferring data between the processing com-

ponents. The optimizer uses dynamic programming and

prunes the search space as early as possible by only

retaining the plan with the lowest cost whenever possi-

ble. The search space can be pruned whenever some

(intermediate) plans are comparable. Plans are compa-

rable, when they are semantically equivalent, i.e., when

their execution produces the same intermediate result.

However, in practice, there are cases where semantically

equivalent plans are not yet comparable. For example, a

semantically equivalent plan may not be comparable to

an intermediate plan that has an interesting property,

like a particular sort order for a an intermediate result,

which could be exploited at a later stage during query

processing to lower the overall cost.

Plans are enumerated bottom-up in a stratified

way. This stratification starts with enumerating table

access plans for each table then enumerates all (inter-

mediate) plans for combining two of these table access

plans, then all (intermediate) plans for three tables,

and so on, until the all plans have been enumerated

that produce the overall query result. As soon as several

semantically equivalent (intermediate) plans have been

computed, the optimizer retains only the plan with the

lowest cost for further consideration. Dynamic pro-

gramming has a complexity, which is exponential in

the number of tables joined in a query. If the exponen-

tial memory requirement of dynamic programming

is too high due to too many joins in a query, the

optimizer uses a greedy algorithm as a fallback. While

dynamic programming is guaranteed to determine the

optimal plan with respect to the cost model, greedy

algorithms usually do not return the optimal plan.

Moreover, greedy algorithms tend to have a bias

towards bushy plans (i.e., balanced join trees as

opposed to left-deep join trees), which usually has

negative impact on pipelining and transactional

queries with small intermediate results. Many com-

mercial database systems like DB2 and Oracle use a

System R style bottom-up optimizer.

Query Processing (in Relational Databases)
Q

2291

Q

Volcano’s alternative approach refines the query

graph model by replacing logical operators like join

with physical implementations like hash-join or merge-

join and uses branch and bound to limit recursion. For

instance, the top-down approach is used by the query

optimizer of Microsoft’s SQL Server.

Both bottom-up and top-down optimizers achieve

the goal of determining the optimal planwith respect to

a cost model. The quality of the plan does not depend

on which of these search methods is used, but rather on

the repertoire of rules available for generating or

expanding plans. Top-down optimizers have an advan-

tage, though, in that they always maintain a feasible

execution plan, so it is possible to stop optimization at

any time and execute the currently cheapest plan. Bot-

tom-up optimizers have the risk of running out of

memory without having produced a feasible plan,

thus the necessary fallback to greedy or other heuristics.

Both bottom-up and top-down optimizers need a

good model for the cost of producing the intermediate

results that occur during query processing. This execu-

tion cost is largely dependent upon the number of

rows – often called cardinality – that will be processed

by each operator in the plan. Typically, an estimate for

the cardinality of some intermediate result relies on

statistics of database characteristics. Many database

systems use simple statistics to approximate the size

of an intermediate result, like the number of rows for

each table and as well as the number of distinct values

for each column. For a simple selections with an equal-

ity predicate ‘‘C = value’’ on column C of a table with n

rows and c distinct values in column C, many cost

models use the simple formula 1/c * n to estimate the

cardinality of the selection predicate. This simple for-

mula assumes a uniform distribution of all values in

column C. The cardinality estimate may be vastly in-

correct if some values in column C occur more fre-

quently than others.

Estimating the number of rows (after one or more

predicates have been applied) has been the subject of

much research since the 1980s. The percentage of the

number of rows in a table or intermediate result satis-

fying a predicate P is often called selectivity of P. The

selectivity of P effectively represents the probability

that any row in the database will satisfy P. Database

statistics are expensive to compute and cannot always

easily be maintained incrementally, when the database

changes. In general, there is a trade-off between accu-

racy of statistics and their storage and maintenance

cost. The goal of database statistics is to be good
enough to enable the optimizer to produce a robust

and efficient plan. The cost model of a database systems

therefore uses simplifying assumptions to compute

selectivities and cardinalities from the available data-

base statistics. Examples of these assumptions include:

1. Currency of information: The statistics are

assumed to reflect the current state of the database,

i.e., that the database characteristics are relatively sta-

ble. This may not be true, if a table is changing rapidly.

In this case, statistics need to be collected frequently,

using the database statistics collection tool. Outdated

statistics are a major source for performance problems

in database queries. Many modern database manage-

ment systems have an infrastructure that tries to auto-

matically detect when statistics are outdated by

monitoring update, insert, and delete operations on a

table. Those systems can be configured to (re-)collect

statistics automatically when a certain amount of

changes have occurred.

2. Uniformity: As describe above, without detailed

statistics on a column, the data values within a column

are assumed to be uniformly distributed. If that is not

the case, the database administrator can create histo-

grams for particular columns to deal with skew in

values. This will improve the accuracy of selectivity

estimation for selection predicates on a single table.

Only recently have researchers begun to explore ways

to improve the estimation of selectivities for join pre-

dicates which combine multiple tables.

3. Independence of predicates: Without any knowl-

edge about interactions of predicates, selectivities for

each predicate are calculated individually and multi-

plied together, even though the underlying columns

may be related, e.g., by a functional dependency. This

independence assumption usually results in severe

underestimation of the selectivity of predicates on

correlated columns. For a table containing cars with

two columns, make and model, the independence

assumption will result in severe estimation errors

for a selection predicate like ‘‘make=‘VW’ and

model = ‘Jetta’.’’ If 10% of the cars in the table are

VW, and 1% of the cars are Jetta, the independence

assumption would result in a selectivity:

s
VW Jetta ¼ s

VW � s
Jetta ¼ 10%� 1% ¼ 0:1% ¼ 0:001

Since only VWmakes Jettas, the real number is 1%, with

an order of magnitude error in the estimation. This

means that the intermediate result size for that part of

a query will be ten times larger than what the optimizer

assumes. This can result in not allocating enough

2292
Q

Query Processing (in Relational Databases)
memory for processing the query, or choice of a subop-

timal plan. Overall, this estimation error progressively

worsens, as more predicates are present in a query.

Collecting multivariate statistics across multiple

columns can overcome the independence assumption

when data is correlated. A simple correlation parame-

ter is the number of distinct values over a set of attri-

butes. This statistic is employed for instance by IBM’s

DB2 to correct the independence assumption for cor-

related local predicates, or to better estimate the selec-

tivity of a join predicate with correlation between the

two tables. While the number of distinct values over a

set of columns addresses the correlation between these

columns, it assumes all combinations of values in these

columns to be uniformly distributed. Correlations in-

flate errors more than the uniformity assumption.

Thus distinct values have proved worthwhile in prac-

tice as correlation statistics. In case of non-uniform

correlations, multidimensional histograms have been

proposed. These histograms store and maintain multi-

variate distribution statistics. However, multidimen-

sional histograms do not work well for equality

predicates or for maintaining correlations over a large

set of columns. For that reason, they have not been

widely adopted in commercial databases.

4. Principle of inclusion: The selectivity for a

join predicate X.a = Y.b is typically defined to be
Query Processing (in Relational Databases). Figure 1. An o
1/max{|a|, |b|}, where |b| denotes the number of dis-

tinct values of column b. This implicitly assumes the

‘‘principle of inclusion,’’ i.e., that each value of the smal-

ler domain has a match in the larger domain (which

is frequently true for joins between foreign keys and

primary keys). Again, correlation statistics can help over-

come this assumption. Products like IBM’s DB2 or

Microsoft’s SQL Server offer statistics on views, which

can address incorrect assumptions about correlations

of columns between tables or within tables.

Applications commonly used today have hundreds

of columns in each table and thousands of tables,

making it very hard for a database administrator to

know on which columns to collect and maintain

multivariate statistics or statistics on views. Tooling,

either based on query feedback or proactive sampling,

is addressing that problem by determining the most

important correlated columns that joint statistics need

to be collected on, employing statistics methods like

w2-testing for correlation detection. Methods such as

entropy maximization have been proposed to general-

ize the independence assumption and allow for dealing

with arbitrary correlation between columns, either

within or across tables.

Once the best overall query plan according to the

optimizer’s model has been determined, it is handed to

the runtime system for execution. In some architectures,
verview of query processing.

Query Processing and Optimization in Object Relational Databases
Q

2293
e.g., Informix, the query plan is directly interpreted by

the runtime system. Other architectures follow the Sys-

tem R design and employ a code generator to produce

code for a database machine, which is then executed by

the runtime system. This additional code generation

step allows for optimizations typically found in pro-

gramming languages, to reduce path length and copying

of data between CPU and memory (Fig. 1).
Key Applications
All major database systems (DB2, SQL Server, Oracle,

Sybase, Informix, MySQL, PostGres) implement a

query processor that largely follows the previously

described architecture and concepts. DB2 and Oracle

follow the System R style optimizer as described above,

Microsoft SQL server uses a top-down optimizer.
Q

Recommended Reading
1. Codd E.F. A relational model of data for large shared data banks.

Commun. ACM., 13(6):377–387, 1970.

2. Freytag J.C., Maier D., and Vossen G. (eds.) Query process-

ing for advanced database systems. Morgan Kaufmann, 1994.

3. Graefe G. Volcano – an extensible and parallel query evaluation

system. IEEE Trans. Knowl. Data Eng., 6(1):120–135, 1994.

4. Graefe G. Query evaluation techniques for large databases. ACM

Comput. Surv., 25(2):73–170, 1993.

5. Lorie R.A. and Fischer N.J. An access specification language for a

relational data base system. IBM J. Res. Dev., 23(3):286–298,

1979.

6. Markl V., Haas P.J., Kutsch M., Megiddo N., Srivastava U.,

and Tran T.M. Consistent selectivity estimation via maximum

entropy. VLDB J., 16(1):55–76, 2007.

7. Selinger P.G., Astrahan M.M., Chamberlin D.D., Lorie R.A., and

Price T.G. Access path selection in a relational database manage-

ment system. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data., 1979, pp. 23–34.

8. Yu C.T. and Meng W. Principles of Database Query Processing

for Advanced Applications. Morgan Kaufmann, 1997.
Query Processing and Optimization
in Object Relational Databases

JOHANN-CHRISTOPH FREYTAG

Humboldt University of Berlin, Germany

Synonyms
Query evaluation; Query planning and execution
Definition
In an (object) relational database management system

(DBMS) query processing comprises all steps of pro-

cessing a user submitted query including its execution

to compute the requested result. Usually, a user query –

for example a SQL query – declaratively describes what

should be computed. Then, it is the responsibility of

the DBMS to determine how to compute the result by

generating a (procedural) query execution plan (QEP)

that is semantically equivalent to the original query.

Query processing also includes the execution of this

generated QEP.

While generating a QEP for a user submitted query

the DBMS explores a large number of potential execu-

tion alternatives. To choose the best ones among those

alternatives requires one or more (query) optimization

phases.

Historical Background
In the late 1960s and early 1970s it became clear that

existing DBMSs were too complex and cumbersome to

use. The programmer was forced to know the physical

layout of the data on disc for efficient access. The

answer to those problems was the Relational Model

developed by E.F. Codd in the early 1970s.

With the design and implementation of relational

DBMSs in the mid-1970s it became clear very quickly

that query processing and optimization are the key

for implementing DMBSs with acceptable performance

for the end user. In 1979, the first relational DBMS,

IBM’s System-R laid the foundation for today’s query

processing and optimization approaches: In System-R,

query processing consists of three major phases:

1. Syntactic and semantic checking

2. (physical) query optimization

3. Query execution

The INGRES DBMS (Stonebreaker, UC Berkeley) took

a similar approach to implement query processing.

Over the last 25 years this phase-based model has

been extended by

1. adding more query processing phases such as logi-

cal query optimization or query rewrite

2. considering more alternatives during query optimi-

zation to generate better QEPs

Furthermore, the complexity of query processing

has increased due to more complex query languages

(such as SQL-2 or SQL-3), more complex query

2294
Q

Query Processing and Optimization in Object Relational Databases
execution environments such as parallel processors,

distributed data collections, and more complex data

types, richer data structuring capabilities including

object orientation.

As a response to the development of object oriented

database management systems (OODBMS) the Relation-

al Model was extended with object oriented concepts and

features to embrace the major concepts of those lan-

guages. The extension of the language forced the database

vendors to extend query optimization and query exten-

sion to handle those new concepts correctly efficiently

such as objects, classes, path expressions, inheritance,

methods, and polymorphism [10]. Most of those lan-

guage features are reflected in the SQL-3 Standard.

Foundations

The Four Phases of Query Processing

Today’s DBMSs usually implement query processing

(including query optimization) in three different

phases before executing the query to generate the

requested result [2,8].

During the first phase, the query is checked for

syntactic and semantic correctness. Then, during the

second phase the query is rewritten into a semantically

equivalent one using additional (logical/conceptual)

information, such as schema information (candidate

keys/Primary key, uniqueness of values, foreign keys)

or integrity constraints. Rewriting might also strive

for a normalized form of the query to simplify the

processing during the following phases [7].

Example 1:

The SQL query

SELECT *

FROM CUSTOMER

WHERE EXIST (

SELECT *

FROM ORDER

WHERECUSTOMER.ID=ORDER.CUSTOMER_ID

AND ORDER.VALUE > 10.000)

could be rewritten into the query

SELECT *

FROM CUSTOMER, ORDER

WHERECUSTOMER.ID=ORDER.CUSTOMER_ID

AND ORDER.VALUE > 10.000

if the inner query block returns zero or one tuple.
The third phase – commonly known as the (phys-

ical) query optimization – translates a user query

into a query execution plan (QEP). While the initial

query declaratively expresses which properties the

result should have, the QEP determines the execution

steps to evaluate the query generating the requested

result.

In general, there are many different ways (QEPs) to

evaluate a user submitted query based on the physical

properties of the tables accessed, such as available indexes,

available materialized views, sorting order, or clustering.

Thus, the query optimizers must consider and evaluate

many different alternatives to execute a query using dif-

ferent access paths and different operators.

During the QEP generation the optimizer

determines

� The best (optimal) way to access each individual

relation referenced in the query using indexes (in-

cluding how and in which order to evaluate local

predicates)

� The best (optimal) order to join two or more

tables

� The best algorithm to perform the join between

two tables
Example 2:

The rewritten query of Example 1

SELECT *

FROM CUSTOMER, ORDER

WHERE CUSTOMER.ID = ORDER.CUSTOMER_ID

AND ORDER.VALUE > 10.000

might be translated into the following QEP. For the

sake of clarity the QEP uses a LISP-like notation to

represent the relational algebra-like expression [4].

(OUTPUT

(PROJECT

(ID CUSTOMER_NAME ADDRESS)

(NESTED_LOOP_JOIN

(CUSTOMER.ID = ORDER.CUSTOMER_ID)

(SCAN CUSTOMER)

(FILTER

(ORDER.VALUE > 10.000)

(SCAN ORDER)))))□

Finally, during the last phase the DBMS executes the

generated QEP to compute the requested result, i.e.,

the set of tuples that match the submitted query.

Query Processing and Optimization in Object Relational Databases
Q

2295

Q

The Fundamentals of a (Physical) Query Optimizer

To generate the best (optimal) QEP any query optimizer

embodies the following three aspects [4]:

1. A search strategy

2. (A set of) Cost functions

3. A QEP generation strategy

The search strategy determines which alternative (par-

tial) QEPs should be generated while looking for the

best (optimal) QEP among possibilities. Strategies such

as exhaustive search strategies (together with dynamic

programming) or heuristics (Greedy heuristic) are

approaches used in current DBMSs. However it seems

that exhaustive strategies – with some restrictions – are

still the preferred approach to generate the best QEP

despite a large search space whose size is determined by

various parameters, such as the number of tables in

the query, the available indexes, or the available join

methods (algorithms).

While generating different alternatives for query

execution, the optimizer must determine which of

these alternatives is better. Therefore, cost functions

assign cost values to (partially generated) QEPs

by determining the resource consumption for that

plan. The resources used might be CPU time, space

(amount ofmemory), communication time (distributed

query processing), and –most importantly – the number

of disk IOs since disk IOs are the dominating cost in

almost all QEPs. Cost functions therefore estimate

(‘‘foresee’’) the amount of resources that a plan will

consume when being executed.

To feed the cost functions with input, most DBMSs

maintain so-called histograms which record value dis-

tributions for various (sets of) attributes in different

tables [5]. Those value distributions allow the optimizer

to make informed decisions regarding the different

operators of a QEP with respect to their efficiency

and effectiveness.

Once the optimizer settled for one alternative

during partial QEP generation it must determine how

to advance the QEP generation in its search for the best

(complete) QEP. This progress might be implemented

by extending the current partial QEP with new opera-

tors possibly on additional tables not yet considered, or

by generating alternatives for the existing QEP by

transforming it into a syntactically different QEP. The

latter might include considering alternative access

paths (using different indexes) or replacing an existing

join algorithm with a different one.
The query optimization phase terminates once the

optimizers found the best QEP based on the given

(searched) alternatives and based on the given cost

functions. However, since the search might take time,

the optimizermight also terminate after having reached

a pre-determined tie limit or after having evaluated a

certain number of alternatives.

Formalisms and Approaches for Query Processing and

Query Optimization

The (research) literature reports on many different

approaches to query processing and query optimiza-

tion. However, there does not seem to be one formal-

ism to describe those different approaches. Some of

them use a relational algebra like notation (with exten-

sions) to show operational approaches. Others use

logic based notation such domain/tuple relational cal-

culus or the tableaux notation. Some presentations use

proprietary notations based on innovative data struc-

tures to present sophisticated algorithms.

Of course, the approach to query processing and

query optimization is heavily influenced by the data

model and the expressiveness of the query language.

The continuous extension of SQL to SQL-2 or SQL-3

has lead to an extended portfolio of query processing

and query optimization techniques. The same is true

object oriented and object relational DBMSswhere intro-

duced. Similarly, the extension of SQL to express Data

Warehouse queries leads to new techniques (algorithms

and ‘‘tricks’’) for query processing and query

optimization.

Implementing Query Optimizers

The first optimizers were implemented for the database

prototypes IBM System-R [8] and Berkley’s INGRES.

The former system laid the foundation conceptually

and architecture wise for many optimizers to come

including those that are used in today’s DBMS products.

Inmany cases, DBMSproducts only provide access to

the architecture, the optimization strategies, or the cost

functions used. Most of the dominant products allow the

user to view the QEP as generated by the optimizer

together with cost values and cardinality estimates.

However, for several DBMS products, there exist

well known prototypes that provide hints how some of

the optimizers in existing products might work. The

newly researched ideas and novelties in those proto-

types are often described in research papers published

at well-know conferences like the ACM Sigmod

2296
Q

Query Processing and Optimization in Object Relational Databases
conference, the VLB conference, the IEEE ICDE con-

ference, or the European EDBT conference.
Key Applications
The query optimizer is an integral part of any DBMS

(product). The degree and extent of optimization is

determined by the vendors or implementers. The rep-

ertoire of the optimization step is continuously ex-

tended, depending on the requirements coming from

OLTP queries, data warehousing/OLAP queries (star

schema, aggregate queries), data mining queries, or

queries coming from systems such as geographical

information systems booking systems, and others.
Future Directions
Over the last several decades, query processing and

optimization has adapted to the changes in computing

hardware. In the 1990s, parallel hardware became read-

ily available at a reasonable cost, DBMSs and query

processing had to be extended and adapted to parallel

QEP execution.

In addition, many database experts doubt that the

general two-phase query processing approach (opti-

mize the query, then execute) is the right one for future

DBMs that should run on the next generation of hard-

ware. Especially when the underlying system continu-

ously changes query optimization and query execution

must be closely intertwined to react to those changes in

(almost) real time. Furthermore, when executing

queries on large tables, it might be desirable to change

execution strategies ‘‘on the fly.’’ Currently, once the

query processing phase is done (determining the best

plan) the QEP is fixed. Recent research in the area of

query processing has developed approaches to change

QEPs either ‘‘on the fly’’ when necessary.

Now, multi-core CPUs seem to be the new devel-

opment direction for hardware. At the same time, new

storage technology comes to life (flash disks) with

different operating characteristics that will change the

architecture and therefore the processing models and

processing capabilities of existing DBMSs. In addition,

large CPU farms, large storage farms, and increasing

main memory sizes already have a dramatic impact on

existing approaches and techniques in query proces-

sing and query optimization. Understanding the Web

as one large database could completely change today’s

DBMS architecture standards and assumptions on how

to build future DBMSs.
Experimental Results
Unfortunately, there are no benchmarks that consider

the database query optimizer as a separate component

for benchmarking. However, there are efforts to ensure

the stability of the optimizers despite estimation errors

during query optimization and despite changes in the

expected resources available during query execution.
Cross-references
▶Cost Function

▶Database Products that include optimizer technology

▶Histogram

▶ IBM DB2

▶ Indexing

▶ Informix (owned by IBM)

▶ Ingres

▶Logical Schema Design

▶Materialized Views

▶Microsoft SQLServer

▶Oracle

▶Parallel Database

▶Physical schema

▶Query Language

▶Relational Algebra

▶Relational Integrity Constraints

▶Relational Model

▶ SAP MaxDB

▶ Search Strategy

▶ Sybase

▶ System-R
Recommended Reading
1. Deshpande A., Ives Z., and Raman V. Adaptive query processing.

Foundations and Trends in Databases, 1(8):1–140, 2007.

2. Freytag J.C. The basic principles of query optimization in rela-

tional database management systems. In Proc. IFIP 11th World

Computer Congress, 1989, pp. 801–807.

3. Freytag J.C., Maier D, and Vossen G (eds.) Query Processing for

Advanced Database Systems. Morgan Kaufmann, 1994.

4. Graefe G. Query evaluation techniques for large databases. ACM

Comput. Surv., 25(2):73–170, 1993.

5. Ioannidis Y.E. The history of histograms (abridged). In Proc.

29th Int. Conf. on Very Large Data Bases, 2003, pp. 19–30.

6. Jarke M. and Koch J. Query optimization in database systems.

ACM Comput. Surv., 16(2):111–152, 1984.

7. Pirahesh H., Hellerstein J.M., and Hasan W. Extensible/rule

based query rewrite optimization in starburst. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1992, pp. 39–48.

8. Selinger P.G., Astrahan M.M., and Chamberlin D.D., Lorie R.A.,

and Price T.G. Access path selection in a relational database

Query Processing in Data Warehouses
Q

2297
management system. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1979, pp. 23–34.

9. Yu C.T. and Meng W. Principles of Database Query Processing

for Advanced Applications. Morgan Kaufmann, 1998.
Query Processing in Data
Warehouses

WOLFGANG LEHNER

Dresden University of Technology, Dresden, Germany

Synonyms
Data warehouse query processing; Query answering in

analytical domains; Query optimization for multidi-

mensional systems; Query execution in star/snowflake

schemas
Q

Definition
Data warehouses usually store a tremendous amount

of data, which is advantageous and yet challenging

at the same time, since the particular querying/updat-

ing/modeling characteristics make query processing

rather difficult due to the high number of degrees of

freedom.

Typical data warehouse queries are usually gener-

ated by on-line analytical processing (OLAP) or data

mining software components. They show an extremely

complex structure and usually address a large number

of rows of the underlying database. For example,

consider the following query: ‘Compute the monthly

variation in the behavior of seasonal sales for all Euro-

pean countries but restrict the calculations to stores

with> 1 million turnover in the same period of the last

year and incorporate only 10% of all products with

more than 8% market share. ‘In a first step, this query

has to identify certain stores based on the previous

year’s sales statistics and it needs to define the top-

selling products on a monthly basis. In a second step,

the system is able to compute the different behavior

based on individual countries.

The structural complexity as well as the huge data

volume addressed by data warehouse queries makes it a

true challenge to optimize and execute these queries.

Therefore, query processing in data warehouse systems

encompasses the definition, the logical and physical

optimization, as well as the efficient execution of
analytical queries. The specific techniques range from

classic rewrite rules to rules considering the special struc-

ture of a query. For example, data warehouse queries

usually target star schemas. Such star queries with refer-

ences to a fact table and foreign-key joins to multiple

dimension tables can be beneficially exploited during

query optimization and query processing. Moreover,

the embedding of specialized operators (like CUBE or

ROLLUP) or approximate query processing methods

using samples or general-purpose synopses has to be

addressed in the context of query processing in data

warehouse environments. Finally, query processing in

data warehouse systems has to address the support of

non-SQL query languages (e.g., specialized analytical

query languages like MDX [13]), alternative storage

structures (e.g., column-wise organization), or alter-

native processing models based purely on main-

memory structures.

Historical Background
Query processing has a long history with research and

commercial products. The generation of efficient plans

for the smooth execution of database queries thus

represents one of the most challenging research direc-

tions in database history. With the advent of descrip-

tive query languages, this has turned into a crucial

problem, since systems must now figure out the opti-

mal way to execute queries.

Traditional transactional-style (on-line transaction

processing = OLTP) interaction patterns between an

application and the database system consist of short

read and write queries with correlated sub-queries,

which typically compete with a large number of con-

currently running transactions. DWH-style query pat-

terns follow a significantly different style. Since the

update/load of data warehouse databases is under the

control of data warehouse monitors, user queries are

typically read queries that touch a large number of

rows with star joins and group-by operations as their

functional core. Around 1995, the concept of data

warehousing emerged and showed that OLTP-style

query processing and optimization techniques were

insufficient in dealing with this specific class of

requirements. This deficit triggered a tremendous

amount of research activities to push the envelope in

multiple directions. After more than 10 years of re-

search and development, a fairly large number of

extensions/modifications have turned it into a com-

mercially available system. However, due to the

2298
Q

Query Processing in Data Warehouses
increasing need for analytical tasks performed within

(and not on top of) database systems, the improve-

ment of query processing techniques for analytical

applications still represents an active research area

with significant potential for innovation.

Foundations
Query processing in data warehouse systems does not

address individual methods or techniques. In contrast,

query processing in the analytical domain is character-

ized by a broad range of individual techniques ([3,7];

see 3.13). The challenge in this context is to orchestrate

the different and individually deployed methods. The

following introduction to important query processing

aspects, including a brief discussion of the require-

ments and specifics of query processing in data ware-

house systems and possible solutions, provides a

comprehensive overview of the topic.

Requirements and Specifics of the Analytical Context

While the specific character of data warehouse systems

poses challenges for query processing from multiple

perspectives, it also has constraints, which can be

exploited and therefore reduce the number of space

limitations. Although the processing and optimization

of SQL queries attracts the most attention, query pro-

cessing in data warehouse environments addresses

other query languages like MDX [13], DMX [5], or

SQL/XML [12] with analytical functionality specified

within the XPath/XQuery fragments. The complexity of

handling domain-specific query languages and of map-

ping these expressions either to highly specialized storage

structures or to SQL is further increased by the need for

support of domain-specific operators. In this context, the

integration of data mining algorithms for cluster searches

or for the computation of association rules into database

systems can be seen as a prominent example.

To counterbalance these requirements, query proces-

sing in data warehouse systems shows a number of

limitations or specializations that facilitate adequate

solutions. For example, a high ratio of analytical queries

is issued to compute standardized reports (e.g., legal

reporting in the financial sector, cockpit solutions,

etc.). These canned queries show huge potential to

pre-compile the execution plans, to apply multiple-

query optimization or to pre-compute partial results

using materialized views. Furthermore, the explicitly

controlled update transactions in data warehouse sys-

tems typically show append-only characteristics, which
enable the system to apply specifically tailored optimiza-

tion strategies. For example, adding incoming rows to a

single partition and periodically attaching it to the ana-

lytical database in an atomic way affects the concurrently

running analytical queries only to a minimal extent.

Finally, although analytical queries usually apply aggre-

gation techniques over a large number of rows, the ana-

lytical queries may exhibit quite selective predicates. For

example, consider the following query: ‘Return the

weighted sales distribution of all Californian stores sell-

ing Mac and Linux machines with more than 4GB RAM

in 2007 and divide it by month.’ It shows a highly selec-

tive predicate but may still incorporate a huge number of

rows within the computation of the measure. Query

processing may tackle this phenomenon by introducing

special index structures to support selective predicates of

multiple columns from different tables or by applying

specialized processing techniques such as online aggre-

gation or approximate query answering in general.

Potential and Solutions for Efficient Data Warehouse

Query Processing

The specific characteristics as well as the specific circum-

stances create a wide range of options to perform query

processing in data warehouse scenarios in an efficient

way. The following list provides the most prominent

classes of methods with an outline of their specific role

in this context:

Part I: Query Planning and Execution

Optimizing the Optimization Process

� Since analytical queries usually show a complex

structure, the optimization of a query may require

a considerable fraction of the overall query execu-

tion cost. Therefore, modern techniques propose a

variety of solutions ranging from the a-priori limi-

tation of the search space (usually by applying

certain heuristics – e.g., the optimization pattern

of star queries) to the pruning of alternative plans

as early as possible [15].

Optimization Goal

� In contrast to OLTP-style query optimization, the

general goal of OLAP-style query optimization is to

generate only a good (i.e., not an optimal) but

robust plan. Due to the complex structure of a

query, potential errors in the cost estimation usu-

ally have their origin at the leaf nodes of an

Query Processing in Data Warehouses
Q

2299

Q

operator tree and – after having been propagated

along an operator path – they may result in ex-

tremely vague estimates. A robust plan is required

to expose well-performing behavior even if the data

show different characteristics than those used in the

planning phase. The notion of robust plans and

the design of more adequate statistics (e.g., sample

or wavelet synopses) are currently the subject of

intense discussions in the research community.

Specific Rewrite Rules

� As already mentioned, data warehouse environments

imply a specific characteristic of queries – usually

following the notion of star queries, which consist of

a join of the fact table and multiple dimension tables

followed by a complex selection predicate and a

grouping condition with aggregation. Query proces-

sing has to detect such situations and apply specific

optimization patterns. For example, group-by opera-

tions can be pushed down in certain cases to reduce

the number of rows for join operations [18]. Another

example addresses star joins: the star join technique

may decide to compute the Cartesian product of the

selected parts of all dimension tables in a first step and

then join the (large) fact table in a last step.

Multi-Query Optimization

� A final class of techniques – which have not been

considered in OLTP-style query processing due to

restrictions of ACID properties – address the issue

of optimizing a set of queries simultaneously, thus

resulting in shared use of different resources. Key

applications for these techniques can be found on

the application level (in the computation of multiple

similarly structured statistical reports) or within a

system (in the propagation of changes of a base

table to multiple dependent materialized views to

share update efforts).

Part II: Considering Logical Access Paths

Partition Management

� Partitions reflect a concept that is useful for the

administration of a database system as well as for

the optimized execution of partition-aware queries.

Within a data warehouse environment, incoming

data items are typically stored within staging tables.

After transformation and cleaning steps, tables are

converted into partitions and attached to the global
data warehouse database. Whenever data items in a

partition are obsolete, a partition can be detached

and moved (as a table) to the archive. From a query

optimization perspective, partition pruning repre-

sents a powerful mechanism to potentially reduce

the number of rows accessed within a query. When-

ever a selection predicate refers to a partitioning

criterion, the systemmay restrict the query execution

to only those partitions that are actually referenced

by the query. Themain partitioning criterion usually

addresses the time dimension, e.g., by month, but

may also be used to partition other dimensions, e.g.,

by product category or geographical entities.

Materialized Views

� A second component of the logical access path con-

sideration is the transparent use and the implicit

maintenance of materialized views. Similar to clas-

sic index structures, a query is matched against a

view description and internally rewritten to exploit

an existingmaterialized view by producing the same

result as the original query. Especially in the context

of aggregation queries, the concept of materialized

views represents an extremely powerful mechanism

to speed up analytical queries. For example, a mate-

rialized view may hold summary data grouped

on the family level within a product dimension,

with an additional grouping based on city and

month. Every query with a compatible aggregation

function and a grouping condition that is ‘‘coarser’’

than the grouping combination of the materialized

view, e.g., sum per quarter, product category, and

state, may benefit from the pre-aggregated data

stored within a materialized view. In addition (and

similar to physical index structures), materialized

views are transparently maintained in the case of

changing base tables to provide a consistent view

of the data.

Part III: Considering Physical Access Paths

Data Organization

� While classic relational database engines favor the

concept of row-based storage, a variety of specialized

systems exist that follow the concept of column-based

storage layout. Query processing in column-based

systems benefits from reading only those columns

that are actually required to answer an incoming

query. This feature is extremely beneficial in the

2300
Q

Query Processing in Data Warehouses
presence of wide dimension tables and queries refer-

ring to just a few attributes.

Compression and Main-Memory Techniques (see main

memory DBMS)

� Although (persistent) storage costs have been de-

creasing significantly, a compressed version of data

may speed up the query processing because of the

reduced number of I/O operations. While block-

and table-based compression schemes have been

well understood, the static characteristics of data

warehouse data have provided the motivation to

push compression techniques into commercial sys-

tems. For column-based systems with the primary

goal to be main-memory-centric, compression is a

must; a large variety of techniques (e.g., Huffman

coding schemes) is applied in different systems.

Additional Index Structures

� The history of database research has shown that

different application areas can be supported with

specialized index structures. Particularly aimed at

the support of queries within the analytical domain,

bitmap index structures have experienced a rejuve-

nation and are now part of the prominent

commercially available systems [2,16]. Another

approach to take advantage of the static characteristic

of a data warehouse database can be seen in the

concept of star indexes (also called join indexes or

foreign-table indexes), which follow the basic idea

to index the result of a join operation. Join indexes

are particularly well-suited to exploit the relation-

ship of dimension tables with the corresponding

fact table.

Multidimensional Clustering Schemes

� Clustering in general tries to preserve the topologi-

cal relationship of entries in a database. Since data

warehouse datasets are typically multidimensional

in nature (e.g., sales by shop, date, and product),

multidimensional clustering schemes represent a

valuable solution to store logically related facts

within the same block with the overall goal to

reduce the number of I/O operations.

Part IV: Alternative Query Answering Models

Online Aggregation

� Analytical queries typically show a response time in

the range of multiple seconds, minutes, and
sometimes hours. Online aggregation [9] is a

promising technique to return intermediate results

of the queries while the query is still running; the

intermediate results are refined step by step until the

final result is computed or until the application is

satisfied with the precision of the answer.

Approximate Query Answering/Approximate Query

Processing

� Many application areas that perform statistical ana-

lyses prefer to yield an approximate but quick an-

swer instead of delaying an exact answer. The

concept of approximate query answering addresses

this idea and proposes techniques for the online or

offline design of database synopses, which are then

used to answer incoming queries. The design of

synopses ranges from simple uniform samples

over specifically tailored (stratified) samples to

wavelet synopses. The main challenge of approxi-

mate query answering consists of the creation and

exploitation of synopses on the fly (i.e., within the

context of the execution of a single query) and of

the provision of error bounds to derive a quality

measure to be returned to the user.

This list of methods and techniques outlines the

most influential factors for query processing in data

warehouse environments. Behind every perspective

touched in this description, there are huge numbers

of specific research issues – solved and unsolved ones.

Key Applications
Over the last 10 years, database systems have become

the foundation of every larger analytical infrastructure

(usually embedded within a data warehouse system).

Therefore, all analytically-flavored applications heavily

exploit specialized database support. This obviously

large spectrum of applications ranges from mass report-

ing for the computation of thousands of parameterized

reports to the support of interactive data cube explora-

tion (OLAP). As data mining methods are becoming

more and more standardized techniques, the computa-

tion of association rules, classification trees, and (hierar-

chical) clusters represent key applications.

Future Directions
In the future, query processing in analytical domains

will be driven by two factors. On the one hand, data

volumes will continue to grow significantly, mainly

Query Processing in Deductive Databases
Q

2301
because of advances in data integration efforts (to ease

the pain of manual integration of additional data

sources) and the growing presence of sensors to track

individual items. More data will go hand in hand with

the presence of increased main-memory capacity and

the integration of solid-state disks (SSD) into the

memory hierarchy. Physical database design and the

corresponding exploitation of specialized structures

will be major challenges.

On the other hand, the topic of query processing

will be faced with more sophisticated statistical

methods, which have to be natively supported by

the database engine to yield reasonable query perfor-

mance. While for many analytical application infra-

structures, the ‘‘bring the data to the statistical

package’’ method still holds, this approach will be

inverted at some point. Statistical packages will

work more closely with database systems, implying

that computational components are brought closer

to the data (as an integral part of a database engine)

to be integrated within the overall optimization pro-

cess. Also, the scope of analytical applications will

widen and incorporate comprehensive data visualiza-

tion techniques.

Both future developments on the application level

will have significant consequences for the design of

query processing techniques ranging from low-level

data organization up to the support of a specialized

query interface.
Q
Cross-references
▶Approximate Query Processing

▶Bitmap Index

▶Cube

▶Data Sampling

▶Main-Memory DBMS

▶Multidimensional Modeling

▶ Parallel Query Processing

▶Query Optimization

▶Query Processing

▶Query Rewriting Using Views

▶ Snowflake Schema

▶ Star Schema

▶ SQL
Recommended Reading
1. Celko J. Joe Celko’s Data Warehouse and Analytic Queries in

SQL. Morgan Kaufmann, 2006.
2. Chan C.-Y. Bitmap index design and evaluation. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1998, pp.

355–366.

3. Chaudhuri S.and Dayal U. An Overview of Data Ware-

housing and OLAP Technology. ACM SIGMOD Rec., 26(1):

65–74, 1997.

4. Clement T.Y. and Meng W. Principles of Database Query

Processing for Advanced Applications. Morgan Kaufmann, 1997.

5. Data Mining Extensions (DMX) Reference. Available at: http://

msdn2.microsoft.com/en-us/library/ms132058.aspx

6. Graefe G. Query Evaluation Techniques for Large Databases. In

ACM Comput. Surv., 25(2), 1993, S. 73–170.

7. Gray J. et al. The Lowell Database Research Self Assessment, June

2003. Available at: http://research.microsoft.com/	gray/lowell/

8. Gupta A. and Mumick I. Materialized Views: Techniques, Imple-

mentations and Applications. MIT Press, Cambridge, MA, 1999.

9. Hellerstein J.M., Haas P.J., andWang H.J. Online Aggregation. In

Proc. ACM SIGMOD Int. Conf. on Management of Data,1997,

pp. 171–182.

10. Inmon W.H. Building the Data Warehouse. 2nd edn, Wiley, NY,

USA.

11. Niemiec R. Oracle Database 10g Performance Tuning Tips &

Techniques, 2007.

12. N.N. ISO/IEC 9075–14:2003: Information technology –

Database languages – SQL – Part 14: XML-Related Specifications

(SQL/XML). Available at: http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber = 35341.

13. N.N. Multidimensional Expressions (MDX) Reference. Available

at: http://msdn2.microsoft.com/en-us/library/ms145506.aspx.

14. Roussopoulos N. The logical access path schema of a database.

In IEEE Trans. Softw. Eng., 8, (6)S.563–573,1982.

15. Tao Y., Zhu Q., Zuzarte C., and Lau W. Optimizing large star-

schema queries with snowflakes via heuristic-based query

rewriting. In Proc. Conf. of the IBM Centre for Advanced Stud-

ies on Collaborative Research, 2003, pp. 279–293.

16. Valduriez P. Join indices. ACM Trans. Database Syst., 12(2):218–

246, 1987.

17. Weininger A. Efficient execution of joins in a star schema. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2002,

pp. 542–545.

18. Weipeng P.Y. and Larson, P. Eager Aggregation and Lazy Aggre-

gation. In Proc. 21th Int. Conf. on Very Large Data Bases, 1995,

pp. 345–357.
Query Processing in Deductive
Databases

LETIZIA TANCA

Politecnico di Milano University, Milan, Italy

Synonyms
Datalog query processing and optimization; Recur-

sive query evaluation; Logical query processing and

optimization

2302
Q

Query Processing in Deductive Databases
Definition
Most of the research work on deductive databases has

concerned the Datalog language, a query language

based on the logic programming paradigm which was

designed and intensively studied for about a decade. Its

origins date back to the beginning of logic program-

ming, but it became prominent as a separate area

around 1978, when Hervé Gallaire and Jack Minker

organized a workshop on logic and databases. In this

entry, the definition of the typical computation styles

of Datalog will be given, the most important optimiza-

tion types will be summarized, and some develop-

ments will be outlined.

Historical Background
The research on deductive databases was concentrated

mostly between the mid-1980’s and the mid-1990’s. In

those years, substantial efforts were made to merge Arti-

ficial Intelligence technologies with those of the Database

area, with the aim of building large and persistent

Knowledge Bases. An important contribution towards

this goal came from database theory, which concen-

trated on the formalization of Datalog – specifically

designed for the logic-based interaction with large

knowledge bases – and on the definition of computa-

tion and optimization methods for Datalog rules

[2,5,7,14]. In parallel, various experimental projects

showed the feasibility of Datalog as a data-oriented

logic programming environment [4,13].

The reaction of the database community to Datalog

has often been marked by skepticism. In particular, the

immediate practical use of research on sophisticated

rule-based interaction has often been questioned.

However, the research experience on Datalog, properly

filtered, has taught important lessons to Database

researchers, setting the basis for the theoretical system-

atization of several related issues [1].

Foundations
Datalog is in many respects a simplification of the more

general Logic Programming paradigm [11], where a

program is a finite set of facts and rules. Facts are

assertions about the reality of interest, like John is a

child of Harry, while rules are sentences which allow

deducing of facts from other facts. For instance, a rule

might say If X is a child of Y, and Y is a child of Z, then X

is a grandchild of Z. Facts and rules may contain vari-

ables; facts that only contain constants are called

ground facts.
In the formalism of Datalog, both facts and rules

are represented as Horn clauses:

L0 : �L1;:::;Ln

where each Li is a literal of the form p(t1...tn), such that

p is a predicate symbol and the ti are terms. A term is

either a constant or a variable, while functional sym-

bols are not allowed, at least in the basic syntax of

Datalog. The left hand side (LHS) of a Datalog clause

is also called its head, while the right hand side (RHS)

is its body. Clauses with an empty body are the facts:

indeed, the body contains the clause premises, thus if

there are no premises this means that the head is an

assertion. Clauses with a non-empty body are the rules.

A set of ground facts can easily be thought of as a

relational database, since each fact parent (John, Harry)

(between John and Harry there is a child-parent rela-

tionship) can be written as a tuple hJohn, Harryi stored
into a relation PARENT. Both facts and rules are a form

of knowledge; indeed, the knowledge stored in the data-

base (alternatively represented as the set of ground facts)

is enriched by the knowledge which can be deduced from

the rules.

In the context of general Logic Programming, it

is usually assumed that all application-relevant knowl-

edge (facts and rules) are contained within a single

logic program. On the other hand, Datalog has been

developed for applications which use large, relational

databases; therefore two sets of clauses will be consid-

ered: the set of ground facts, called Extensional Data-

Base (EDB), and the set of rules, i.e., the Datalog

program, called the Intensional DataBase (IDB). The

Herbrand Base is the set of all ground facts that can be

expressed in the language of Datalog, by using all the

constants present in the database and all the predicates of

EDB [IDB.

A Datalog program is a set of ground facts (possibly

stored into a relational database) and rules, satisfying

the safety condition that all the variables contained in

the rule head must also be present in its body.

Note that a Datalog program can be considered as

the specification of a query against the EDB, producing

as answer the (set of) relation(s) of the IDB. It often

happens that a user is interested in a subset of the

(large) relation(s) that can be defined from a Datalog

program: a goal is a single literal, preceded by a ques-

tion mark and a dash, used to express constraints on

the relations specified by the Datalog program. For

Query Processing in Deductive Databases
Q

2303

Q

example, ? � parent(John,X). specifies all the X such

that John is a child of X.

Consider, as an example, the EDB constituted by a

unary relation PERSON and a binary relation PARENT

(containing all the pairs hchild,parenti) and the follow-

ing program:

r1 : sgcðX ;XÞ : �personðXÞ:

r2 : sgcðX ;Y Þ : �parentðX ;X1Þ; sgcðX1;Y1Þ;
parentðY ;Y1Þ:

Rule r1 simply states that a person is a cousin at the

same generation of him/herself, while rule r2 says that

two persons are same generation cousins if they have

parents who, in turn, are same generation cousins.

Note that r2 is recursive, and that rule r1 constitutes

the recursion base. A typical goal against the set {r1, r2}

is ? � sgc(John, Y)., asking for all the same generation

cousins of John.

Evaluation of Datalog Programs

Consider a Datalog rule R = L0 : �L1,...,Ln, and a set of

ground facts F ={F1,...Fn}. If a substitution y exists,

such that 81� i� n, Liy = Fi, then, from the rule R and

from the facts F, the fact L0y can be inferred in one step.
This fact might be new, or already known.

The just described inference rule – which is actually

a meta-rule – is called EPP (Elementary Production

Principle). Consider now a whole Datalog program S.

New knowledge can be obtained from the Datalog

program by applying it to the set of all ground

facts of the database, to obtain new ground facts.

Informally, it can be said that a ground fact F is inferred

from S (S ‘ F) iff, either a) F 2 S or b) F can be

obtained by applying the EPP a finite number of

times. More precisely:

� S ‘ F if F 2 S.

� S ‘ F if a rule R and ground facts F1,...,Fn exist such

that 81� i� n, S ‘ Fi, and Fi can be inferred in one

step by the application of EPP to R and F1,...,Fn.

The sequence of applications of EPP which is used

to infer a ground fact F from S is called a proof of

F from S. The proof-theoretical framework thus estab-

lished allows to infer new ground facts from an

original set of Datalog clauses; on the other hand,

there is a model-theoretic approach, which provides a

definition of logical consequence (⊨). It is possible to
prove that:
Theorem 1. (Soundness and completeness of Datalog)

Let S be a set of Datalog clauses, and let F be a ground

fact. Then S ‘ F if and only if S ⊨F.

A proof of this theorem can be found, for example, in [5].

In order to check whether EPP applies to a

rule R : L0 : �L1,...,Ln and to an ordered list of

ground facts F1,...,Fn, an appropriate substitution

y for the variables of R must be found, such that

81 � i � n, Liy = Fi.

Given a finite set S of Datalog clauses, i.e., a Datalog

program, according to the soundness and complete-

ness theorem, the set of all facts which are derivable

from S is the set cons(S) of the logical consequences of S,

which can be computed by the following algorithm:

FUNCTION INFER(S)

INPUT: a finite set S of Datalog clauses

OUTPUT: cons(S)

begin

W:= S

while EPP produces a new ground fact F =2 W

do W := W [F

return (facts(W))

end

The INFER algorithm always terminates and produces

as output a finite set of ground facts, cons(S), since the

number of constants and predicates symbols, as well as

the number of arguments of these predicates, is finite.

The order in which INFER generates new facts corre-

sponds to the bottom-up order of a proof tree, thus the

principle underlying INFER is called bottom-up evalu-

ation, or, as in Artificial Intelligence, forward chaining

(forward in the sense of the logical implication

contained in the Datalog rules).

The set cons(S) can also be characterized as the least

fixpoint of the transformation TS, a mapping from 2HB

to itself defined as follows:

8W 2 HB;TS Wð Þ ¼ W [FACTS Sð Þ
[INFER1 RULES Sð Þ [Wð Þ

where INFER1(S) denotes the set of all ground facts

that can be inferred in one step from S via EPP.

Accordingly, cons(S) can be computed by fixpoint

iteration, i.e., by computing, in order, TS(;),TS(TS(;),
TS(TS(TS(;))),...,until a term which is equal to its

predecessor is reached. This final term is cons(S).

The top-down evaluation of a Datalog program is

based on a radically different approach, where proof

2304
Q

Query Processing in Deductive Databases
trees are built from the top to the bottom, by applying

EPP ‘‘backwards,’’ which is much more appropriate

when a goal is specified together with S. The general

principle of backward chaining corresponds, in Prolog,

to the SLD resolution (SL resolution with Definite

clauses) inference rule, introduced by Robert Kowalski

[9]. Its name is derived from SL resolution, which is

both sound and refutation complete for the unrestrict-

ed clausal form of logic.

The logic programming formalism is now related

to a database query language, in order to show how

easy the integration between the two realms is. Each

clause of a Datalog program can be translated into an

inclusion relationship of Relational Algebra; then, the

set of relationships which refer to the same predicate

are interpreted as Relational Algebra equations, whose

constants are the EDB relations and whose variables

are the IDB predicates, defining virtual relations. De-

termining a solution of the thus composed system

corresponds to determining the values of the variable

relations, i.e., to finding the ground facts in the IDB

predicates. Consider a Datalog clause:

C : p a1:::anð Þ : �q1 bk1:::bkh

 �

;:::qm bkj:::bkm
�

the translation associates to C an inclusion relationship

Expr(Q1,...,Qm)
 P among the relations Q1,...,Qm,P

that correspond to the predicates q1,...,qm,p, adopting

the convention that relation attributes are named

according to the number of the corresponding argu-

ment of the related predicate. For example, the Datalog

rules of the same generation cousins program are trans-

lated into the inclusion relationships:

p1;1PERSON
 SGC

p1;5

ðPARENT ./ 2¼1SGCÞ ./ 4¼2PARENT

�

 SGC

The rationale behind this translation is that literals

with common variables correspond to equi-joins over

those variables, while the variables exported to the rule

head correspond to projections. The new (virtual)

relation SGC (actually, a view) is defined as the exten-

sion of the predicate sgc. For each IDB predicate, all the

related inclusion relationships are collected, generating

an algebraic equation that obtains the predicate by

performing the union:

SGC ¼ p 1;1PERSON

[p 1;5 PARENT ./ 2¼1SGCð Þ ./ 4¼2PARENTð Þ
Logical goals are also translated into algebraic queries,

over the EDB or over the just defined views: ? � sgc

(John,Y). corresponds to s1=‘‘John’’SGC.

Note that this translation is based on the use of all

classical algebraic operators, except the difference. In

fact, it can be shown that Datalog without recursion is

equivalent to Relational Algebra deprived of the differ-

ence operator.

Optimization of Datalog Programs

The evaluation of Datalog programs according to vari-

ous forms of fixpoint computation, similar to the

INFER algorithm, is called naive, as opposed to better,

more performant techniques whose mutual relation-

ship is not always obvious. Optimization methods can

be observed with regard to different orthogonal

dimensions: the formalism (logical vs. algebraic), the

search strategy (bottom-up vs. top-down), the tech-

nique (rewriting programs into more efficient ones

vs. directly applying an efficient evaluation method),

and the type of information exploited by the optimiza-

tion process (semantic vs. syntactic).

Since Datalog programs can equivalently be written

as sets of algebraic equations, a Datalog program can

actually be evaluated in the same way as any algebraic

query, provided that a way to process recursion is

available. Actually, algebraic evaluation methods that

mimick the naive method have been introduced, and

the classical results of algebraic query optimization,

like common subexpression analysis and equivalence

transformations, have been profitably transformed to

be applied to recursive queries [5].

As far as the search strategy is concerned, observe that

bottom-up methods actually consider rules as produc-

tions, generating all possible consequences of EDB [
IDB until no new facts can be deduced; thus, these

methods are applied in a set-oriented fashion, which is

a desirable feature in the database context, where large

amounts of data are stored in mass memory andmust be

retrieved in the buffer in a ‘‘set-at-a-time’’ way. On the

other hand, also observe that bottom-upmethods do not

take in immediate advantage the selectivity due to the

existence of bound arguments in the goal predicate.

By contrast, top-down methods [5,9] use rules

as subproblem generators, since each goal is con-

sidered as a problem to be solved. The initial goal ? �
p(a1...an). is matched against some rule

C : p a1:::anð Þ : �q1 bk1:::bkh

 �

;:::qm bkj:::bkm
�

, and

generates subgoals ? � qi(b1...bi) that represent new

Query Processing in Deductive Databases
Q

2305

Q

subproblems to be solved. In this case, if the goal con-

tains some bound (i.e., constant) argument, then only

facts that are related to the goal constants are involved in

the computation. Suppose, for instance, that the goal ?�
sgc(John,Y). be given. Then, when applying top-down

rule r2, the subgoal parent(X, X1) is only further ana-

lyzed with regard to the parents of John, that is, only

the subrelation s1 = ‘‘John’’0PARENT is involved in the

computation of the first literal. However, although

the algorithms based on this evaluation method already

produce some optimization, they may be inappropriate

for the database context, because many of them work

‘‘one-tuple-at-a-time.’’

Another analysis dimension for optimization

methods is whether they directly interpret the program

or first rewrite it into an equivalent, more efficient

form and then evaluate it in a naive way. To this

category belong, for instance, the Magic Sets and

Counting methods [2], where the authors ‘‘simulate’’

the binding propagation achieved by top-down evalu-

ation by applying a simple program transformation to

a certain class of programs, in a similar way as algebraic

database optimization techniques (e.g., push of the

selections) are applied. A similar approach, directly

introduced by means of the algebraic formalism, is

taken in the Reduction of Variables and reduction of

Constants methods [5].

Finally, also semantic information can be used to

optimize programs: for instance, [6] base the optimi-

zation on the additional semantic knowledge provided

by database constraints. For example, a constraint

might state that all sailing vessels in Ischia are sheltered

in the main harbour, thus the query asking for

the harbour in Ischia where the sailing boat ‘‘Roxanne’’

is located can be answered without even accessing

the DB.

Negation in Datalog
In pure Datalog, the negation sign ¬ is not allowed;

however, negative facts can be inferred from Datalog

programs by adopting the Closed World Assumption

(CWA), which, in this context, reads as follows:

If a fact is not derivable from a set of Datalog clauses,

then the negation of that fact is true.

For example if, after computing the SGC relation, the

tuple hLUCY, JOHNi is not found, the fact ¬sgc (lucy,

john) – that is, Lucy is not a child of John – is inferred.

The CWA applied to Datalog clauses allows the

deduction of negative facts, but not their use within
the Datalog rules in order to deduce some new facts.

For instance, in Relational Algebra, all the pairs of

persons who are not same generation cousins are spe-

cified as: NONSGC = (PERSON � PERSON) � SGC.

Accordingly, one would like to write:

r3 : nonsgcðX ;Y Þ : � personðXÞ; personðY Þ;
:sgcðX ;Y Þ:

The language Datalog¬ has the same syntax as Datalog,

but here negated literals are allowed in the rule bodies.

For safety reasons, all the variables occurring within a

negated literal must also occur in a positive literal of

the body. Without delving into semantic details, note

that unfortunately, because of recursion, the com-

putation of Datalog¬ programs is not as straightfor-

ward as that of a pure Datalog program; indeed, by

simply applying the EPP and the INFER algorithm to

a recursive Datalog¬ program, one may incur into a

contradiction, since some negative facts that are in-

ferred at step n of the computation might be derived as

positive at some step n + k. Intuitively, consider the

program composed by rules r1, r2, r3, and think of the

set of same generation cousins derived at the first

computation step. Suppose that sgc(lucy, john) has

not been derived; then, at the second step, ¬sgc(lucy,

john) may be derived by applying r3; yet, it might be

that sgc(lucy, john) is derived from r1, r2 at some later

step k(k > 2).

The most common policy used to avoid such pro-

blems is only allowing Datalog¬ programs which are

stratified [7], according to the following intuition:

when evaluationg a rule with one or more negative

literals in the body, evaluate first the predicates

corresponding to these negative literals. Then, the CWA

is ‘‘locally’’ applied to these predicates. Consider the

example above: since the sgc predicate appears in neg-

ative form in rule r3, it is first evaluated by applying

only rules r1,r2 (the ‘‘first stratum’’ of the program);

then, once the whole extension of sgc has been com-

puted, all the pairs of persons who are not in the SGC

relation can be derived (actually by difference).

However, one can intuitively guess that not neces-

sarily all the Datalog programs can be stratified in this

way, that is, it may be possible that there is another rule

r4 which in turn contains the predicate nonsgc in nega-

tive form, and so on and so forth. More formally,

define the Dependency Graph DG(P) =hN(P),E(P)i of
a Datalog¬ program P as follows: N(P) is the set of

2306
Q

Query Processing in Deductive Databases
predicates p occurring in the rule heads of P, while an

edge hp,qi belongs to E(P) if the predicate symbol q

occurs positively or negatively in some rule whose head

predicate is p. Moreover, hp,qi is labeled by¬ if there is

at least one rule in P with head predicate p, whose body

contains a negative occurrence of q.

A Datalog¬ program P is stratified iff DG(P)

does not contain any cycle involving an edge labeled

by¬. If P is stratified, it is quite easy to construct

a stratification of P [1,5,14], that is, a sequence of

subprograms P0 = EDB, P1,...,Pn of P such that P0 [
P1 [...[Pn = P and, by evaluating them separately and

in order from P0 to Pn, and by applying the CWA to Pk
when computing Pk+1, the result does not contain any

contradiction. Note that stratifications are not unique,

that is, if the condition on theDG(P) is satisfied, P can

be stratified in several different ways. It is easy to see

that the sample program P ={r1,r2,r3} is stratified, and

that a stratification is P0 = EDB, P1 ={r1,r2}, P2 ={r3}.

Much further work has been done on the semantics

of negation and of non-monotonic programs [1]. Se-

mantics based on various kinds of partial models, like

the stable models [12] and the well-founded models [10]

are often studied. An example of more recent work on

the subject is [3], where the new concept of soft strati-

fication, based on a new bottom-up query evaluation

method based on the Magic Set approach, is proposed.

Key Applications
The research on deductive databases was concentrated in

the decade between the mid-eighties and the mid-

nineties. This work, and all logic-based approaches to

database problems, constitute the foundational experi-

ence for speculation that have lead to a number of results

in different fields. The field of active databases is one

interesting example of the application of the theoretical

foundations of Datalog. An active database system is a

DBMS endowed with active rules, i.e., stored procedures

activated by the system when specific events occur. The

processing of active rules is characterized by two impor-

tant properties: termination and confluence. In [8], a set

of active rules is translated into logical clauses, taking into

account the system’s execution semantics, and simple

results about termination and determinism available in

the literature for deductive rules are transferred to the

active evaluation process. Another, more recent applica-

tion is the integration of Databases with the Semantic

Web, an interesting example of which is the SWRL (Se-

mantic Web Rule Language) [15], a proposal combining
sublanguages of the OWLWeb Ontology Language with

the rule-based paradigm. SWRL is (roughly) the union of

Horn logic and OWL, where rules are of the form of an

implicationbetween an antecedent (body) and consequent

(head), with a semantics very similar to that of Datalog.

Cross-references
▶Active Databases

▶ Logics and Databases

▶Query Language

▶ Semantic Web and Ontology

▶Views

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases.

Addison-Wesley, 1995.

2. Bancilhon F., Maier D., Sagiv Y., and Ullman J.D. Magic sets and

other strange ways to implement logic programs. In Proc. 5th

ACM SIGACT-SIGMOD Symp. on Principles of Database Sys-

tems, 1986, pp. 1–15.

3. Behrend A., Soft stratification for magic set based query evalua-

tion in deductive databases. In Proc. 22nd ACM SIGACT-SIG-

MOD-SIGART Symp. on Principles of Database Systems, 2003,

pp. 102–110.

4. Bocca J.B. EDUCE: a marriage of convenience: Prolog and a

Relational DBMS. In Proc. Symp. in Logic Programming,

1986, pp. 36–45.

5. Ceri S., Gottlob G., and Tanca L. Logic Programming and

Databases. Springer, Berlin, 1990.

6. Chakravarthy U.S., Minker J., and Grant J. Semantic query

optimization: additional constraints and control strategies. In

Proc. Expert Database Conference, 1986, pp. 345–379.

7. Chandra A.K. and Harel D. Horn clauses queries and general-

izations. J. Log. Program., 2(1):1–15, 1985.

8. Comai S. and Tanca L. Termination and confluence by rule

prioritization. IEEE Trans. Knowl. Data Eng., 15(2):257–270,

2003.

9. Kowalski R.A. and Kuehner D. Linear resolution with selection

function. Artif. Intell., 2:227–260, 1971.

10. Laenens E. and Vermeir D. Assumption-free semantics for or-

dered logic programs: on the relationship between well-founded

and stable partial models. J. Log. Comput., 2(2):133–172, 1992.

11. Lloyd J.W. Foundations of Logic Programming, 2nd edn.

Springer, Berlin, 1987, ISBN 3-540-18199-7.

12. Sacca’ D. and Zaniolo C. Stable models and non-determinism in

logic programs with negation. In Proc. 9th ACM SIGACT-SIG-

MOD-SIGART Symp. on Principles of Database Systems, 1990,

pp. 205–217.

13. Tsur S. and Zaniolo C. LDL: a logic-based data language. In

Proc. 12th Int. Conf. on Very Large Data Bases, 1986, pp. 33–41.

14. Ullman J.D. Principles of Database and Knowledge-Base Sys-

tems, Computer Science Press, Rockville, MD, USA, 1988.

15. W3C Member Submission. SWRL: a semantic Web rule lan-

guage combining OWL and RuleML. 21 May 2004, Available

at: http://www.w3.org/Submission/SWRL/.

Query Processor
Q

2307

Q

Query Processor

ANASTASIA AILAMAKI, IPPOKRATIS PANDIS

EPFL, Lausanne, Switzerland

Carnegie Mellon University, Pittsburgh, PA, USA

Synonyms
Query execution engine; Relational query processor;

Query engine

Definition
The query processor in a database management system

receives as input a query request in the form of SQL

text, parses it, generates an execution plan, and com-

pletes the processing by executing the plan and return-

ing the results to the client.

Key Points
In a relational database system the query processor is the

module responsible for executing database queries. The

query processor receives as input queries in the form of

SQL text, parses and optimizes them, and completes

their execution by employing specific data access

methods and database operator implementations. The

query processor communicates with the storage engine,

which reads and writes data from the disk, manages

records, controls concurrency, and maintains log files.

Typically, a query processor consists of four sub-

components; each of them corresponds to a different

stage in the lifecycle of a query. The sub-components

are the query parser, the query rewriter, the query

optimizer and the query executor [3].

The parser initially reads the SQL text, renames the

table references to the schema.table template, and vali-

dates the structure. As a second step, it uses the database

catalog to check the existence of the referenced tables,

as well as ensuring that the user who submitted the

specific query has the appropriate privileges for the

particular operation on the particular data. If every-

thing succeeds, the output from the parser is a data

structure understood internally by both the rewriter

and the optimizer. This data structure is handed over

to the query rewriter.

The query rewriter modifies the query without

changing its semantics. The rewriter replaces references

to views as references to base tables, simplifies arithmetic

expressions, and applies logical transformations to pre-

dicates. After the query is parsed and rewritten (and

before it is passed on to the optimizer), the system checks
a cache of execution plans of recently optimized queries

for an execution plan for the specific query in order to

avoid the (usually expensive) optimization phase.

The optimizer generates an efficient execution plan

for answering a specific query. The decision on which

specific access method or database operator imple-

mentation will be used relies heavily on the statistics

kept by the system and the selectivity estimation. The

output of the optimizer is the query execution plan. In

the common case, the query plan is an interpretable

dataflow directed acyclic graph, where each node is a

specific implementation of a database operation. There

are some systems where the optimizer generates directly

executable machine code, such as in Daytona [2]. The

optimizer can choose from many techniques that can

speed up the execution of a query. For example, it may

decide to generate a plan where multiple threads or

processes work in parallel to answer a specific query.

Such an execution strategy works well especially if the

machine where the system is running contains multiple

processors. Query optimization is the responsibility of a

fairly sophisticated software module [1,3,4].

Although the query plan describes in detail the

various operations needed for the execution of the

query, it is the query executor that contains the algo-

rithms for accessing base tables and indexes, as well

as various database operator execution algorithms.

The objective of the query executor is to execute the

plan as fast as possible and return the answer to the

client. The query optimizer and query executor are

tightly coupled together. The query executor deter-

mines which algorithms implement the plans generated

by the optimizer. For instance, if a query executor

supports only Hash and Sort-Merge joins, then the

optimizer is restricted to producing plans that use

only those two join implementations.

Typically, query executors employ the iterator

model, a simple and intuitive way to filter data. Each

operator is implemented as a subclass of the iterator

class, using as interface functions such as init(),

get_next(), and close(). An iterator can be used

as input to any other iterator, thereby enabling univer-

sal handling of iterators or iterator combinations by

the system, regardless of the particular function they

implement. However, recently researchers argue that

the overhead of processing data in a tuple-at-a-time,

iterator-based fashion leads to inefficient execution of

queries when running on modern hardware and deep

memory hierarchies [5].

2308
Q

Query Reformulation
There are many interpretations of what constitutes

a query processor. The query executor is the sub-

component that does the ‘‘real’’ job of answering a

query. It pulls the data out of the database and employs

the various data manipulation algorithms towards

them. Thus, a frequent misinterpretation is to consider

the query processor and query executor as being

synonyms.

Cross-references
▶Hash Join

▶ Iterator

▶ Parallel Query Processing

▶Query Optimization

▶Query Plan

▶Query Rewriting

▶ Sort-Merge Join

Recommended Reading
1. Graefe G. The cascades framework for query optimization. Q.

Bull. IEEE TC on Data Engineering, 18(3):19–29, 1995.

2. Greer R. Daytona and the fourth-generation language Cymbal.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

1999, pp. 525–526.

3. Hellerstein J.M., Stonebraker M., and Hamilton J. Architecture

of a database system. Foundations and Trends in Databases,

1(2):141–259, 2007.

4. Selinger P.G., Astrahan M., Chamberlin D., Lorie R., and Price T.

Access path selection in a relational database management sys-

tem. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1979, pp. 23–34.

5. Zukowski M., Boncz P., Nes N., and Heman S. MonetDB/X100 –

a DBMS in the CPU cache. Q. Bull. IEEE TC on Data Engineer-

ing, 28(2):17–22, 2005.
Query Reformulation

▶Web Search Query Rewriting
Query Rewriting

EVAGGELIA PITOURA

University of Ioannina, Ioannina, Greece

Synonyms
Query transformations
Definition
Query rewriting is one of the initial phases of query

processing. After the original query is parsed and

translated into an internal representation, query re-

write transforms it to an equivalent one by carrying

out a number of optimizations that are independent of

the physical state of the system. Typical transforma-

tions include un-nesting of subqueries, views expan-

sions, elimination of redundant joins and predicates

and various other simplifications.

Key Points
Query rewriting is one of the phases of query proces-

sing. It refers to the application of a number of trans-

formations to the original query in order to produce

an equivalent optimized one. Such transformations do

not depend on the physical state of the system (such as

the size of the relations, the system workload, etc).

They are usually based on well-defined rules that spec-

ify how to transform a query expression into a logically

equivalent one.

The goal of query rewriting is threefold: (i) the

construction of a standardized starting point for query

optimization (standardization), (ii) the elimination of

redundancy (simplification), and (iii) the construction

of expressions that are improved with respect to evalua-

tion performance (amelioration).

To satisfy this goal, common responsibilities of the

query rewriter include:

� View expansion

� Logical rewriting of predicates. For example, im-

proving the match between expressions and the

capabilities of index-based access methods

� Various semantic optimizations such as elimina-

tion of redundant joins and predicates

� Sub-query flattening

Typically, query rewriting is performed after parsing

the original query. It can be thought of as either being

the first part of query optimization or as an indepen-

dent component preceding the query optimizer and

the generation of the alternative execution plans.

Rewriting is particularly important for complex

queries, including queries with many sub-queries or

many joins.

Cross-references
▶Query Optimization

▶Query Processing

Query Translation
Q

2309
Recommended Reading
1. Hellerstein J.M., Stonebraker M., and Hamilton J. Architecture

of a database system. Foundations and Trends Databases,

1(2):141–259, 2007.

2. Jarke M. and Koch J. Query optimization in database systems.

ACM Comput. Surv., 16(2):111–152, 1984.

3. Pirahesh H., Hellerstein J.M., and Hasan W. Extensible/rule

based query rewrite optimization in starburst. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1992, pp. 39–48.
Query Rewriting Using Views

▶Answering Queries Using Views
Query Suggestion

▶Web Search Query Rewriting
Query Transformations

▶Query Rewriting
Q

Query Translation

ZHEN ZHANG

University of Illinois at Urbana-Champaign, Urbana,

IL, USA

Synonyms
Query translation; Query mapping

Definition
Given a source query Qs over a source schema and a

target query template over a target schema, query

translation generates a query that is semantically closest

to the source query and syntactically valid to the target

schema. The semantically closest is measured by a

closeness metrics, typically defined by precision and/

or recall of a translated query Versus a source query

over a database content. Syntax validness indicates the

answerability of a translated query over the target

schema. Therefore, the goal of query translation is to

find a query that is answerable over the target schema
and meanwhile retrieves the closest set of results as the

source query would retrieve over a database content.
Historical Background
Query translation is an essential problem in any data

integration system and has been studied extensively in

the database area. Since a data integration system

needs to integrate many different sources, query trans-

lation is thus needed to mediate heterogeneous query

capabilities presented by those sources. A source typi-

cally only accepts and processes queries of certain for-

mats. Such restrictions on acceptable queries form the

query capability of the source. For instance, a Web

database may only accept queries through their Web

query interfaces, a relational database may accept SQL

queries, and a legacy system may only accept selection

queries over certain attributes through their wrappers.
Foundations
To represent query capabilities, different description

languages have been proposed. Vassalos [13] proposes

p-Datalog, a datalog-like language for describing

query capabilities. Halevy [8] uses capability records

to describe, for accepted queries, their binding require-

ments of input parameters and the attribute name of

output parameters. Rajaraman [12] proposes query

templates in the format of parameterized queries to

specify binding patterns of acceptable queries. Similarly,

Zhang [15] uses predicate templates and form

templates to represent query capabilities of Web data-

bases through Web query interfaces. As an example,

Fig.1 shows two query forms with different query

capabilities. The source query form S accepts conjunc-

tive queries over four predicates: such as s1 : [author;

contain; Tom Clancy], s2 : [title; contain; red storm],

s3 : [age;>; 12], and s4 : [price;�; 35], i.e., Qs = s1 ∧
s2 ∧ s3 ∧ s4. A target query form T supports predicate

templates on author, title, subject, ISBN one

at a time with an optional template on predicate price.

More specifically, the heterogeneity of query cap-

abilities can be categorized into three levels:
Attribute Heterogeneity

Two sources may query a same concept using different

attribute names. For instance, the source schema S in

Fig.1 supports querying the concept of reader’s age,

while the target schema T does not. Also, S denotes

book price using price range, while T using price.

Query Translation. Figure 1. Form assistant: A translation example.

2310
Q

Query Translation
Predicate Heterogeneity

Two sources may use different predicates for the

same concept. For instance, the price predicate in

T has a different set of value ranges from those of S.

As a result, a translated target predicate can only be as

‘‘close’’ to the source predicate as possible. Therefore, a

closeness metrics needs to be introduced to set up a

goal of translation. For instance, a minimal subsump-

tion translation requires that a translated target query

subsume the source query with fewest extra answers.

Query Structure Heterogeneity

Two sources may support different sets of valid com-

binations of predicates. In the above example, the

target schema T only supports queries on one of the

four attributes author, title, subject and ISBN at

a time with an optional attribute price. Therefore, T

cannot query author and title together, while S can.

The goal of query translation is to generate an appro-

priate query expressed upon the target schema T. Such

a query, as Fig.1 shows, in general, consists of two
parts: a union query Q�
t which is a union of queries

upon the target schema to retrieve relevant answers

from a target database, and a filter s which is a selec-

tion condition to filter out false positives retrieved by

Q�
t . To minimize the cost of post processing, i.e., filter-

ing, translation aims at finding a union query Q�
t that

is as ‘‘close’’ to the source query Qs as possible so that

it retrieves fewest extra answers. Q�
t in Fig.1 is such a

query.

To realize the translation, query translation needs

to reconcile the heterogeneities at the three levels –

attribute, predicate and query. Techniques have been

studied extensively for addressing the heterogeneity at

each level.

Schema Matching for Attribute Heterogeneity

Schemamatching (e.g., see the survey of [11]) focuses on

mediating the heterogeneity at the attribute level. Recent

schema matching approaches follow two different

forms – pairwise matching and holistic matching. The

pairwise matching approaches (e.g., [3,7]) take two

Query Translation
Q

2311

Q

schemas as input, and find best attribute matchings

between the two. The holistic matching approaches,

pursued by, e.g., [5,6,14], take a collection of schemas

as input and generate a set of matchings over all these

schemas. Different approaches suit different application

settings. The holistic matching approaches are suitable

for applications that would dynamically query a large

scale of sources simultaneously, while the pairwise

matching approaches are suitable for applications that

query a small set of pre-configured sources.

Predicate Mapping for Predicate Heterogeneity

Predicate mapping focuses on addressing the hetero-

geneity at the predicate level. Existing solutions can be

categorized into two categories: static predicate

mapping mechanism and dynamic predicate mapping

mechanism. The static predicate mapping mechanism

works with a set of pre-configured data sources. It pre-

defines mapping knowledge between a source schema

and a target schema. In such scenarios, it is common,

e.g., as [1] studies, to use pairwise rules to specify

the mapping. Figure 2 gives some example rules that

encode the mapping knowledge required for transla-

tion in the example of Fig.1.

In contrast, the dynamic predicate mapping mech-

anism works with dynamically discovered sources in a

domain. It does not encode themapping knowledge for

specific sources, but instead defines common domain-

based translation knowledge that handles most sources

in a domain. Such a system may use rules to encode

domain knowledge or alternatively may use a search-

driven mechanism to dynamically search for the best

mapping. Such a search-driven mechanism ‘‘materia-

lizes’’ the semantics of a query as results over a database.

For instance, to realize rule r3 in Fig.2 in the search

mechanism, the dynamic mechanism projects both the

source and target predicates onto an axis of real num-

bers, and thus compares their semantics based on their

coverage. Finding the closest mapping thus naturally

becomes a search problem – to search for the ranges

expressible in the target form that minimally cover the

source predicate.
Query Translation. Figure 2. Example mapping rules of sou
Query Rewriting for Query Structure Heterogeneity

Capability-based query rewriting focuses on mediating

the heterogeneity at query structure level. Most query

rewriting works [4,8,9,10,12] are studied for data inte-

gration systems following amediator-wrapper architec-

ture, where a global mediator integrates local data

sources through their wrappers. Query rewriting spe-

cifically studies the problemof how tomediate a ‘‘global’’

query (from the mediator) into ‘‘local’’ subqueries (for

individual sources) based on their query capabilities.

There are two basic approaches for addressing query

rewriting in data integration system – global as view

(GAV) and local as view (LAV). In global as

view, each relation in the mediated (global) schema is

defined as a view over schemas of local data source.

Query rewriting in GAV is straightforward – simply

replacing relation names in a query (over global

schema) with their view definitions will yield a valid

rewriting of query (over local schemas). In contrast, in

local as view, each relation of a local schema is defined as

a view over the mediated global schema. Query rewrit-

ing in LAV is thus to find a query plan or query expres-

sion which uses only views (i.e., local schemas) to

answer queries over global schema. In particular, this

problem is often abstracted as answering queries using

views. For a thorough survey of related techniques for

answering query using views, please refer to [4].

Key Applications
Query translation is a key component in any data

integration system. The broad range of applications

for data integration gives rise to the diverse applica-

tions of query translation. Two examples are:

Vertical Integration Systems

A vertical integration system integrates information

from multiple pre-configured sources (usually in the

same domain of data), and thus requires translating

queries from a unified query interface to individual

data sources. As data sources are usually pre-configured,

such a system usually replies on static query translation

mechanism such as [1] to handle translation with pre-

defined source knowledge.
rce S and target T.

2312
Q

Query Tree
Meta Querying Systems

A meta querying system, e.g., [2], integrates dynami-

cally selected sources relevant to user’s queries, and

on-the-fly translates user’s queries to these sources.

As sources are dynamically discovered without pre-

defined source knowledge, such a system needs a dyna-

mic query translation mechanism such as [15] which

handles translation without relying on source-specific

knowledge.

Cross-references
▶ Information Integration

▶Query Rewriting

▶Query Rewriting Using Views

▶ Schema Matching

▶View-Based Data Integration

Recommended Reading
1. Chen-Chuan C.K. and Garcia-Molina H. Approximate query

mapping: Accounting for translation closeness. VLDB J., 10(2–

3):155–181, September 2001.

2. Chen-Chuan C.K., He B., and Zhang Z. Toward large scale

integration: Building a metaquerier over databases on the web.

In Proc. 2nd Biennial Conf. on Innovative Data Systems Re-

search, 2005, pp. 44–55.

3. Doan A., Domingos P., and Halevy A.Y. Reconciling schemas

of disparate data sources: A machine-learning approach. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2001, pp.

509–520.

4. Halevy A.Y. Answering queries using views: A survey. VLDB J.,

10(4):270–294, 2001.

5. He B. and Cheng-Chuan C.K. Statistical schema matching across

web query interfaces. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2003, pp. 217–228.

6. He B., Cheng-Chuan C.K., and Han J. Discovering complex

matchings across web query interfaces: A correlation mining

approach. In Proc. 10th ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining, 2004, pp. 148–157.

7. Kang J. and Naughton J.F. On schema matching with opaque

column names and data values. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2003, pp. 205–216.

8. Levy A.Y., Rajaraman A., and Ordille J.J. Querying heteroge-

neous information sources using source descriptions. In Proc.

22th Int. Conf. on Very Large Data Bases, 1996, pp. 251–262.

9. PapakonstantinouY., GuptaA., Garcia-MolinaH., andUllman J.D.

A query translation scheme for rapid implementation of wrappers.

In Proc. 4th Int. Conf. on Deductive and Object-Oriented Data-

bases, 1995, pp. 161–186.

10. Papakonstantinou Y., Gupta A., and Haas L. Capabilities-based

query rewriting in mediator systems. In Proc. Int. Conf. Parallel

and Distributed Information Systems, 1996, pp. 170–181.

11. Rahm R. and Bernstein P.A. A survey of approaches to automatic

schema matching. VLDB J., 10(4):334–350, 2001.
12. Rajaraman A., Sagiv Y., and Ullman J.D. Answering queries using

templates with binding patterns. In Proc. 14th ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems,

1995, pp. 105–112.

13. Vassalos V. and Papakonstantinou Y. Expressive capabilities

description languages and query rewriting algorithms. J. Logic

Program., 43(1):75–122, 2000.

14. WuW., Yu C.T., Doan A., and Meng W. An interactive clustering-

based approach to integrating source query interfaces on the deep

web. In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2004, pp. 95–106.

15. Zhang Z., He B., and Chen-Chuan Chang K. Light-weight

domain-based form assistant: querying web databases on the

fly. In Proc. 31st Int. Conf. on Very Large Data Bases, 2005,

pp. 97–108.
Query Tree

▶Query Plan
Query Tuning

▶Application-Level Tuning
Querying DNA Sequences

▶Query Languages and Evaluation Techniques for

Biological Sequence Data
Querying Protein Sequences

▶Query Languages and Evaluation Techniques for

Biological Sequence Data
Querying Semi-Structured Data

▶ Structured Document Retrieval

Quorum Systems
Q

2313
Queuing Analysis

▶ Performance Analysis of Transaction Processing

Systems
Queuing Mechanism

▶ Scheduler
Queuing Systems

▶Message Queuing Systems
Q

Quorum Systems

MARTA PATIÑO-MARTINEZ

Universidad Politecnico de Madrid, Madrid, Spain

Definition
Replication is a technique that provide scalability and

high availability by introducing redundancy. This

entry focuses on full replication for simplicity, that

is, each node (site) has a copy of the entire data-

base. Therefore, the terms nodes and replicas are used

interchangeably. Replication increases performance

(scale-out) as access to the data can be distributed

across the replicas. Furthermore, the data remains

available as long as some replicas are accessible. The

most common approach is to execute all write opera-

tions (updates) at all replicas in order to keep them

consistent while read operations are executed at a

single replica. For read-intensive workloads this

achieves the desired scalability. However, this app-

roach, known as read-one/write-all (ROWA), has poor

availability for write operations (writes cannot operate

once a single replica fails) and does not provide scalabil-

ity under write-intensive workloads. Quorum systems

address both of these issues. They reduce the number of

copies involved inwrite operations at the cost of increas-

ing the number of copies involved in read operations.

Reducing the number of copies to be accessed implies

increased availability, tolerance of network partitions,
reduced communication costs and the possibility of

balancing the load among replicas.

In order to preserve data consistency of write

operations, and a read and a write operation on the

same data item must overlap at least at one replica. For

that, each operation has to execute on a subset of

replicas called a quorum. A quorum system over a set

of nodes N ¼ fN 1;:::Nng is defined as a collection S
of subsets Si
 N with pair-wise non-null intersec-

tion. This means, for each Si; Sj 2 S; Si \ Sj 6¼ ;.
Each subset Si
 N is called a write quorum. A write

operation on a data item of the database must be

executed in a write quorum. The requester asks all

sites in the quorum for permission. If all of them

grant permission, the write operation is executed at

all nodes in the quorum. Data items are tagged with

versions. If a write operation succeeds in a write

quorum Si, all nodes in Si set the version of the affec-

ted data item to the same value, namely a value higher

than any current version among the nodes in the

quorum. The non-empty intersection property guar-

antees that only one quorum can make a decision at

a time. That is, if two concurrent write operations

on the same data item ask for permission to two

write quorums, at least one node is member of both

write quorums and gives permission to only one of

the write operations. Read operations are executed

on a read quorum, a set of sites Rj 2 N such that

8Si 2 S; Si \ Rj 6¼ ;. The requester of the read opera-

tion executes the read at all the sites of the read quorum,

which return the value read and the version. The re-

quester selects the value corresponding to the highest

version. Since a read quorum intersects with all write

quorums, it is guaranteed that at least one of the ver-

sions read is the latest one.

Historical Background
Quorum systems for data replication were proposed

concurrently by [13] and [6] in order to provide avail-

ability despite individual node failures and network

partitions. Majority quorum (also known as quorum

consensus) [13] exploits the concept of majority to

guarantee the intersection property. A quorum can be

any majority of nodes. Weighted voting [6] generalizes

majority by assigning votes to each site and defining a

quorum to be a majority over the total number of votes

in the system. An overview of early quorum systems

is given in [4].

2314
Q

Quorum Systems
Maekawa [9] initiated a research line for increasing

the scalability of quorum systems by reducing their size

(in the order of Oð
ffiffiffi
n

p
Þ). After this seminal work a

large number of quorum systems exploiting different

schemes have been proposed, mainly in the nineties.

Extensive surveys on quorum systems can be found

in [11,7].

Many of the proposed quorum systems exploit geo-

metrical properties to satisfy the intersection property.

Grid quorums arrange sites as a grid and then define

read and write quorums as rows and columns to en-

force their intersection. Grids quorums can be rectan-

gular [5] or can have other shapes, such as triangles

[11]. Grid quorums were generalized into hierarchical

grid quorums by [8]. Another popular way to arrange

sites are trees. Tree quorums were introduced by [1].

Quorums have been extended to tolerate Byzantine

(arbitrary) failures requiring the intersection of two

quorums to be bigger than one. Such quorums have

been termed Byzantine quorums [10].

The properties of quorums have been studied exten-

sively, especially availability and scalability. Optimal

availability for sites with homogeneous failure probabil-

ity were studied in [2,3,12]. Scalability (also known as

load) has been first studied for symmetric update pro-

cessing (all the sites in the write quorum fully execute the

update transaction or operation) in [11], and then under

asymmetric update processing (only one site executes

the operations, the others only apply the changes) in [7].

Foundations
There are two basic ways to define quorum systems,

plain (or exclusive) quorums and read/write quorums.

Read/write quorums allow reduction of cost of read

operations by exploiting the knowledge of whether an

operation is a read or a write. They are more adequate

for data replication where this knowledge is typically

exploited. Plain quorums, or just quorums, are typi-

cally defined for mutual exclusion purposes, but can

also be used for data replication by using exclusive

quorums for both reads and writes.

A set system S is a collection of subsets Si
 N of a

finite universe N . A quorum system defined over a set

of sites N is a set system S that fulfils the following

property: 8Si; Sj 2 S; Si \ Sj 6¼ ;. Given a quorum

system S, each Si 2 S is a quorum. A read-write quo-

rum system, over the set of sites N , is a pair (R,W)

whereW is a quorum system (write quorums), and R a
set system (read quorums) with the following prop-

erty: 8 Wi 2 W ; 8 Rj 2 R; Wi \ Rj 6¼ ;.

Quorum Types and Their Sizes

For scalability purposes it is beneficial to keep both read

and write quorums as small as possible. Furthermore, in

order to distribute the load fairly, each node should

ideally participate in the same number of quorums. In

the following, n denotes the number of nodes in N .

Majority In the majority quorum system [13] read

and write quorums must fulfill the following con-

straints (wq and rq stand for the write and read quo-

rum sizes): 2 � wq>n and rqþwq>n. The minimum

quorum sizes satisfying these constraints are: 2 � wq ¼
nþ1 and rqþwq ¼ nþ1 and therefore, wq ¼ bn

2
c þ 1

and rq ¼ dn
2
e ¼ bnþ1

2
c. The ROWA approach can be

seen as an extreme case of majority, in which rq¼1

(a single replica is read) and wq ¼ n (all replicas are

written). An example of a majority quorum system

for three sites (1,2,3) with rq ¼ wq ¼ 2 is: {{1, 2},

{2, 3}, {1, 3}}. The majority quorum system is fair since

each node has the same probability to be part of a

quorum. In weighted majority [6], each site has a

non-negative weight (votes). A write quorum consists

of nodes such that the sum of their votes is more than

half of the total number of votes. A read quorum

consists of nodes that have at least half of the total

number of votes. Assigning votes allows to adjust to

heterogeneous environments where nodes have differ-

ent processing power and availabilities.

Grids Another family of quorums is grid quorums.

The simplest form of grid quorum is the rectangular

grid [5]. A rectangular grid quorum organizes n sites in

a grid of r rows and c columns (i.e., n¼r � c). Figure 1a
depicts a 3 � 4 rectangular grid. A read quorum con-

sists of accessing an element of each column of the

grid (rq ¼ c). A write quorum consists of a full column

and one element from each of the remaining columns

(wq ¼ r þ c�1). In the quorum system of Fig. 1a

{1,10,7,12} would be a read quorum and {2,6,10,5,3,8}

a write quorum. The rectangular grid with the optimal

(smallest) quorum size is the square. In this case,

rq ¼ ffiffiffi
n

p
and wq ¼ 2 � ffiffiffi

n
p � 1.

A variation of rectangular grids are hierarchical

grids [8]. For instance, 16 sites can be configured into

a two-level-grid with 2 � 2 grids at each level (Fig. 1c).

Quorum Systems. Figure 1. Different quorum systems.

Quorum Systems
Q

2315

Q

A hierarchical grid organizes sites into a multi-level

hierarchy, such that they reside on the leaves of this

hierarchy, while other levels are represented by logical

nodes. Each node at level i of the hierarchy (beside

leaves) is defined by a rectangular m � n grid of nodes

at level iþ1. Two constructions are used to build

quorums: row covers and full rows. A row cover is

formed recursively by selecting a set of (iþ1)-level

nodes where each node pertains to a different row of

the grid. A full row is formed recursively by selecting

at level i a set of (iþ1)-level nodes all pertaining to a

single row of the grid. A read quorum consists of

a row cover. A write quorum consists of the union

of a full row and a row cover. A read quorum would

be {1,6,7,8} and a write quorum would be {1,5,6,7,8,

10,14}. For square grids, this results in a read quorum

size of
ffiffiffi
n

p
and a write quorum size of 2 � ffiffiffi

n
p � 1, i.e.,

identical to its non-hierarchical counterpart.

Another way to arrange a grid quorum is a trian-

gular grid [11]. Sites in a triangular grid are arranged in

d rows such that row i (1� i�d) has i elements

(Fig. 1b). A write quorum is defined as the union of

one complete row and one element from every row

below the full row. Therefore, the quorum size is al-

ways d. Read quorums are either a write quorum or an

element from each row. In Fig. 1b a sample quorum

would be {2,3,5}.

Triangle quorums are not fair since nodes that are

higher in the triangle are more likely to be part of a

quorum. In contrast, both rectangular and hierarchical

grid quorums are fair.

Trees Another important family of quorum systems

is tree quorums. Tree quorums were introduced in [1].

Similar to grid quorums, tree quorums are arranged as

a logical structure over the nodes in order to reduce

quorum sizes. The nodes are organized into a tree of
height h and degree d, i.e., each inner node in the tree

has d children. Figure 1d shows a tree with d¼h¼3.

A tree quorum q ¼hl,bi over a tree with height h and

degree b is a tree of height l and degree b constructed as

follows. Read and write quorums have the same struc-

ture. The quorum contains the root of the tree and b

children of the root. Then, recursively for each selected

child, b of its children have to be selected, and so on,

until a depth l is reached. In the case all nodes are

accessible the quorum forms a tree of height l and

degree b. If some node is inaccessible at depth h0 from

the root, the node is replaced by b tree quorums of

height l�h0 starting from the children of the inaccessi-

ble node. In order to guarantee intersecting quorums,

quorums must overlap both in height and degree.

A read quorum rq ¼hlr,bri and write quorum wq ¼
hlw,bwi overlap if lrþ lw>h and brþbw>d. Two write

quorums overlap if 2 � lw>h and 2 � bw>d. Tree

quorums are generally not fair since nodes that are

closer to the root take part in more quorums.

Depending on the values of l and b, different tree

quorum systems can be defined. The most well-known is

the ReadRoot in which a write quorum wq ¼ hh,d ∕2þ
1i, i.e., at each level in the tree a majority of

nodes needs to be accessed while a read quorum is

rq ¼h1,(dþ1) ∕2i. That is, all reads go to the root. If

the root fails, reads go to the next level while writes

cannot be performed anymore. More availability is

provided by MajorityTree where a majority approach is

used both for the degree and height parameters. That is, a

read quorum is rq ¼h(hþ1) ∕2,(dþ1) ∕2i and a write

quorum is wq ¼ hh ∕2þ1,d ∕2þ1i. This increases the
availability of write operations (since write quorums

can be built without the root) but also the access

costs of read operations. For the tree depicted in

Fig. 1d, {1, 2, 3} is a read and a write quorum, or,

if the root is down, {2, 5, 6, 3, 8, 9}.

2316
Q

Quorum Systems
Availability

Availability of quorums has also been studied exten-

sively. Barbara and Garcia-Molina [3] demonstrated

that majority is the most available quorum system

for homogeneous failure probabilities (all sites have

the same failure probability), if the failure probability

p is higher than 0.5. Later, it was shown in [12] that

for p<0.5 monarchy (all access goes to a single node)

was the most available quorum system. When the

failure probabilities are heterogeneous, the most avail-

able quorum system is weighted majority. The compu-

tation of the optimal weights has been provided for

the different cases: all sites with p>0.5 [14] and

the general case in which 0<p<1 [2]. An extensive

comparative study of the availability of different quo-

rum systems is presented in [12].

Experimental Results
A comparison of the performance of quorum systems

has been performed by [7,11]. In [7], two differ-

ent forms of update processing were considered. Using
Quorum Systems. Figure 2. Scalability of majority.
symmetric update processing all the nodes in the write

quorum fully execute update transactions (i.e., update

operations). In contrast, asymmetric processing lets one

node execute the operation while the others only apply

the changes. As applying changes typically requires less

resources than fully executing the operation, asymmetric

processing imposes less load per write operation on the

system than symmetric processing. Figure 2 compares

the scalability of ROWA, majority and rectangular

grids using the analytical model from [7]. The x-axis

shows the the fraction of writes (w ¼ 1.0 means 100%

write operations, w ¼ 0.0 means 100% reads). The

y-axis shows the total number of nodes (replicas).

The z-axis shows the scalability (how many times the

throughput of a single-node system is multiplied by

the replicated system). The first row of figures shows

the performance for symmetric update processing. The

scalability is generally very poor, especially for majority

and grid. The second row shows results for asymmetric

update processing when applying writes has 15% of

the costs of fully executing the operation. Scalability

Quorum Systems
Q

2317

Q

improves substantially. Majority and grid quorums

can improve over ROWA for write-intensive work-

loads, but at the cost of performing worse in read-

intensive environments.

Key Applications
One of the main applications of quorum systems is

data replication. However, they are also used for other

decentralized control protocols such as distributed

mutual exclusion, distributed consensus, Byzantine

replication, and group membership.

Future Directions
One of the main open issues with data replication

based on quorum systems is how to manage efficiently

collections of objects such as tables. Quorum systems

might work reasonably well for accesses to individual

objects. However, the access of collections of objects has

not yet been adequately addressed. When accessing col-

lections of objects the system is forced to collect all the

instances of the collection from a read quorum to obtain

the latest version of every object and only then, it

becomes possible to select the subset of objects from the

collection (typically by means of a predicate as in a

SELECT statement). This compilation of the full collec-

tion from all the sites in the quorum at a single site ruins

the performance and scalability of the quorum approach.

Recommended Reading
1. Agrawal D. and Abbadi A.E. The Generalized Tree Quorum

Protocol: An Efficient Approach for Managing Replicated

Data. ACM Trans. Database Syst., 17(4):689–717, 1992.
2. Amir Y. and Wool A. Optimal Availability Quorums Systems:

Theory and Practice. Inf. Proc. Letters, 65(5):223–228, 1998.

3. Barbara D. and Garcia-Molina H. The reliability of vote mechan-

isms. IEEE. Trans. Comput., 36:1197–1208, 1987.

4. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison Wesley,

1987.

5. Cheung S.Y., AhamadM., and AmmarM.H. The grid protocol: a

high performance scheme for maintaining replicated data. In

Proc. 6th Int. Conf. on Data Engineering, 1990, pp. 438–445.

6. Gifford D.K. Weighted Voting for Replicated Data. In Proc. 7th

ACM Symp. on Operating System Principles, 1979, pp. 150–162.

7. Jiménez-Peris R., Patiño-Martı́nez M., Alonso G., and Kemme B.

Are Quorums an Alternative for Data Replication. ACM Trans.

Database Syst., 28(3):257–294, 2003.

8. Kumar A. Hierarchical Quorum Consensus: A New Algorithm

for Managing Replicated Data. IEEE Trans. Comput., 40

(9):996–1004, 1991.

9. Maekawa M. A Algorithm for Mutual Exclusion in Decentra-

lized Systems. ACM Trans. Computer Syst., 3(2):145–159, 1985.

10. Malkhi D., Reiter M.K., and Wool A. The Load and Availability

of Byzantine Quorum Systems. SIAM J. Comput., 29(6):

1889–1906, 2000.

11. Naor M. and Wool A. The Load, Capacity, and Availability of

Quorum Systems. SIAM J. Comput., 27(2):423–447, 1998.

12. Peleg D. and Wool A. The Availability of Quorum Systems.

Information and Computation, 123(2):210–223, 1995.

13. Thomas R.H. A Majority Consensus Approach to Concurrency

Control for Multiple Copy Databases. ACM Trans. Database

Syst., 4(9):180–209, 1979.

14. Tong Z. and Kain R.Y. Vote Assignments in Weighted Voting

Mechanisms. In Proc. 7th Symp. on Reliable Distributed Syst.,

1988, pp. 138–143.

R

RAID

▶Redundant Array of Independent Disks
Random Access Memory (RAM)

▶Main Memory
Randomization Methods to Ensure
Data Privacy

ASHWIN MACHANAVAJJHALA, JOHANNES GEHRKE

Cornell University, Ithaca, NY, USA

Synonyms
Perturbation techniques
Definition
Many organizations, e.g., government statistical offices

and search engine companies, collect potentially sensi-

tive information regarding individuals either to publish

this data for research, or in return for useful services.

While some data collection organizations, like the cen-

sus, are legally required not to breach the privacy of the

individuals, other data collection organizations may not

be trusted to uphold privacy. Hence, if U denotes the

original data containing sensitive information about a

set of individuals, then an untrusted data collector or

researcher should only have access to an anonymized

version of the data, U*, that does not disclose

the sensitive information about the individuals. A ran-

domized anonymization algorithm R is said to be a

privacy preserving randomization method if for every

table T, and for every output T * = R(T), the privacy

of all the sensitive information of each individual in

the original data is provably guaranteed.
2009 Springer ScienceþBusiness Media, LLC
Historical Background
This is a brief survey of state of the art randomization

methods. The reader is referred to the classical survey

by Adam and Wortman [1] for a more comprehensive

description of older randomization techniques.

Existing literature can be classified based onwhether

the individuals sharing the data trust the data collector

or not. The untrusted data collector scenario is discussed

first. Randomization methods have been historically

used to elicit accurate answers to surveys of sensitive

yes/no questions. Respondents may be reluctant to

answer such questions truthfully when the data collector

(surveyor) is untrusted. Warner’s classical paper on ran-

domized response [17] proposed a simple technique,

where each individual i independently randomized

the answer as follows: i answers truthfully with proba-

bility pi, and lies with probability (1� pi). Randomized

response intuitively ensures privacy since no individual

reports the true value. However, Warner did not for-

malize this intuition.

Subsequent works [7,2] generalized the above

randomized response technique to other domains.

Evfimievski et al. [7] studied the problem where indi-

viduals share itemsets (e.g., a set of movies rented)

with an untrusted server (e.g., an online movie rental

company) in return for services (e.g., movie recom-

mendations), and they proposed a formal definition of

privacy breaches. They invented a provably private

randomization technique where users submit indepen-

dently randomized itemsets to the server. They also

proposed data reconstruction algorithms to help the

server mine association rules from these randomized

itemsets, and experimentally illustrated the accuracy of

the reconstruction techniques. The above methods are

called local randomization techniques since every indi-

vidual perturbs his/her data locally before sharing it

with the data collector.

In the trusted data collector scenarios, while the

individuals trust the data collector, they may not trust

any third party with whom their data is shared. Hence,

randomization methods have been proposed to help

2320R Randomization Methods to Ensure Data Privacy
privately share the collected data. These techniques can

be broadly categorized into input randomization and

output randomization techniques. Input randomiza-

tion techniques publish a perturbed version of the

table; queries are answered using the perturbed data.

Output randomization techniques, on the other hand,

execute queries on the real data, and return perturbed

answers.

One thread of work on input randomization

techniques was initiated by Agrawal and Srikant [3].

They proposed an input randomization technique

wherein 0-mean random noise is added to the numeric

attributes of each individual in the table. The algo-

rithm was experimentally shown to be utility preserv-

ing. Nevertheless, Kargupta et al. [10] and Huang et al.

[9] showed that adding noise independently to each

record in the table does not guarantee privacy.

Yet another thread of work involves publishing syn-

thetic data that has the same properties as the original

data, but preserves privacy. Synthetic data generation is

a very popular technique in the statistics community,

and real applications (like OnTheMap [13]) publish

sensitive information using this technique. First pro-

posed by Rubin [16], these techniques build a statistical

model using a noise infused version of the data, and

then generate synthetic data by randomly sampling

from this model. While much research has focused

on deriving variance and confidence estimators from

synthetic data, only recently has the privacy of these

techniques been formally analyzed [12,15].

Among output randomization techniques, the

SULQ framework proposed by Blum et al. [5] stands

out since it has provable guarantees of privacy. Here,

numeric query answers are perturbed by adding

Laplace noise. Unlike in input perturbation techni-

ques, privacy is guaranteed if and only if the number

of queries that are answered is sub-linear in the num-

ber of entities in the table. Nevertheless, Blum et al.

show that a large number of useful data mining tasks

can be performed using this framework. However,

exploratory research could be hindered in this frame-

work, since the researchers need to formulate their

queries before seeing the data.

Foundations

Local Randomization Techniques

Let U be the original data and let DU be its (potentially

multi-dimensional) domain. Each record u 2 U
corresponds to the sensitive information of a distinct

individual. Each u is independently randomized using a

perturbation matrix A. The entry A[u, v] describes the

transition probability Pr[u! v] of perturbing a record

u 2 DU to a value v in the perturbed domain DV. This

random process maps to a Markov process, and the

perturbation matrix A should therefore satisfy the fol-

lowing properties:

A � 0;
X
n2DV

A u; v½ � ¼ 1 8u 2DU ð1Þ

Privacy

Since each record u 2 U is perturbed independent of

the rest of the records, it is sufficient to reason about

the privacy of each record separately. A privacy breach

[7] is said to occur if for some predicate f of an

individual’s private information, the prior belief in

the truth of f is very different from the posterior belief

in its truth after seeing the randomized record R(u).

More precisely, an upward (r1, r2) privacy breach with
respect to a predicate f occurs if

9u 2 U ; 9v 2 Dv; s:t:;

Pr f uð Þ½ � � r1 and Pr f uð ÞjR uð Þ ¼ v½ � � r2 ð2Þ

Similarly, a downward (r1, r2) privacy breach with

respect to a predicate f occurs if

9u 2 U ; 9v 2 Dv; s:t:;

Pr f uð Þ½ � � r1 and Pr f uð ÞjR uð Þ ¼ v½ � � r2 ð3Þ

A randomization method R is defined to be g-amplify-

ing if

8v 2 DV ; 8u1; u2 2 DU ;
Pr½u1 ! v�
Pr½u2 ! v� � g ð4Þ

Evfimievski et al. [8] showed that a local randomiza-

tion method that is g-amplifying permits a (r1, r2)
privacy breach if and only if

r2
r1

� 1� r1
1� r2

� g ð5Þ

Algorithms

Randomized Response: Warner’s randomized response

technique [17] can be instantiated in this model as

follows. Each entry u 2 U is a yes/no answer given by

a distinct individual to a sensitive question Q (e.g.,

Randomization Methods to Ensure Data Privacy R 2321

R

‘‘Have you ever used illegal drugs?’’). Hence, DU ={0,1}.

In order to preserve privacy, each individual flips a

coin with bias p, and answers honestly if the coin

lands heads and lies otherwise. The perturbation ma-

trix is the 2 � 2 matrix with A[0,0] = A[1,1] = p and A

[0,1] = A[1,0] = (1 � p).

Given n such perturbed answers, the aggregate

answer can be estimated as follows. Let p be the frac-

tion of the population for which the true response toQ

is yes . Then the expected proportion of yes responses is

Pr yes½ � ¼ p � p þ 1� pð Þ � 1� pð Þ ð6Þ

Hence; p ¼ Pr yes½ � � 1� pð Þ
2p � 1

ð7Þ

If m out of the n individuals answered yes , then the

following p̂ is an unbiased estimator for p.

p̂ ¼
m
n
� 1� pð Þ
2p � 1

ð8Þ

Warner also proposed a second randomization tech-

nique wherein, instead of lying with probability (1� p),

the respondent answers the question Q honestly with

probability p and answers a different innocuous ques-

tion QI with probability (1 � p). For instance, with

probability p, the respondent truly answers if she had

used illegal drugs, and with probability (1 � p), the

respondent flips a coin with bias a and answers yes if

the respondent got a head. In this case, the probability

that the answer toQI is yes is a. Hence, ifm out of the n

individuals answered yes , then the following �p is an

estimator for p.

Pr yes½ � ¼ p � p þ a � 1� pð Þ ð9Þ

p ¼ Pr yes½ � � 1� pð Þ � a
p

ð10Þ

p
� ¼

m
n
� 1� pð Þ � a

p
ð11Þ

Typically, the innocuous question method is better

than the former method, since the estimator �p has a

smaller variance than p̂ when the probability of an-

swering the correct question p is not too small.

Itemset Randomization

Itemset randomization is a useful tool that allows users

to privately share their (e.g., shopping) histories with a

centralized server in return for recommendation
services. Let I represents the set of all items (e.g.,

products bought by at least one of the users). Then

each entry u 2 U corresponds to a set of items Iu � I .
Suppose, for simplicity, all the itemsets Iu are assumed

to have the same number of items, say m. The server

wants to learn the frequent itemsets, i.e., itemsets A � I
whose support supðAÞ :¼ jfu2U jA�Iugj

jU j

� �
is � smin. The

following Select-a-Size algorithm, with parameters r
and {p[j]}j

m=0, is used to randomize itemsets.

	 Select an integer j 2 [1,m], with probability p[j].

	 Select a simple random sample of size j of Iu,

called I0
u.

	 For every a 2 I � Iu, add a to I0
u with

probability r.

Evfimievski et al. [8] proved sufficient conditions

on the parameters, r and {p[j]}j
m=0, in order for this

algorithms to be g-amplifying while simultaneously

maximizing the utility of the randomization method

(e.g., maximizing the number of original items retained

in the randomized itemset, jIu \ Iu
0j). Algorithms

for recovering the original data from the randomized

itemsets and unbiased estimators for the mean

and the covariance of these estimates are provided

in [8].

Output Perturbation Techniques

Again let U be the original data. Output perturbation

techniques execute queries on the real data, and then

return perturbed answers. More precisely, if Q is a

query on the data U, and R is the perturbation algo-

rithm, R(Q(U)) is returned as the answer. In any such

technique, there needs to be a limit on the number and

the type of queries that can be posed to the database;

for instance, answering the same query Q a large num-

ber of times discloses the exact answer to Q.

Privacy

Recall that each record in U corresponds to a distinct

individual, and that the value of every record in U is

independent of the other records. If each query

accesses only one record in the table, then output

perturbation essentially reduces to local randomiza-

tion and the privacy breach analysis can be used.

When a query Q accesses multiple records (UQ �
U), however, one cannot reason about the privacy of a

single record u 2 U (and hence, the privacy of an

individual i) in isolation from the rest of the records

UQ�{u}. Moreover, depending on the amount of prior

2322R Randomization Methods to Ensure Data Privacy
information known about UQ, the extent of u’s disclo-

sure varies. For instance, if u is, say, the salary of Betty,

Q is the query returning the total salary of women in

the table, and the adversary knows that Betty is the

only woman in the department (jUQj = 1), then dis-

closing Q(U) discloses the value of u completely.

Differential privacy [6] can be used to quantify

privacy in this case. Answering a query Q(.) using R

(Q(.)) is e- differential private if for every pair of

original tables U1 and U2 that differ in the value of a

single record u, and for every possible answer A,

log
Pr½RðQðU 1ÞÞ ¼ A�
Pr½RðQðU 2ÞÞ ¼ A�

� �����
���� � E ð12Þ

Intuitively, the above definition preserves privacy as

follows. Consider a worst-case adversary who knows

the exact values of all the records in U�{u} and who is

attempting to discover the value of record ui. Now, if aS
denote the adversary’s prior belief that u 2 S (S � DU),

then after seeing the answer R(Q(U)), the adversary’s

posterior belief bS conditional on his knowledge of the

rest of the records in the table is bounded by,

aS=eE � bS � eE � aS ð13Þ

Algorithms

The SULQ framework, introduced by Blum et al. [6],

answers aggregate queries by adding random noise. Let

Q be a function DU
n !ℜ The sensitivity of query Q, is

the smallest number S(Q), such that

8U 1;U 2that differ in one record;

jQðU 1Þ � QðU 2Þj � SðQÞ
ð14Þ

Let Lap(l) denote the Laplace distribution which has a

density function h(y) / exp(�jyj ∕l). Suppose a query
Q(U) posed to a database U is answered using Q(U) +

Y , where Y
Lap(S(Q) ∕e). This perturbation scheme

satisfies e-differential privacy. For every U1,U2 that

differ in only one record u,

Pr Q U1ð Þ þ Y ¼ x½ �
Pr Q U2ð Þ þ Y ¼ x½ � ¼

h x � Q U1ð Þð Þ
h x � Q U2ð Þð Þ

¼ exp �jx � Q U1ð Þj � E=S Qð Þð Þ
exp �jx � Q U2ð Þj � E=S Qð Þð Þ ð15Þ

� exp E� Q U1ð Þ � Q U2ð Þj j=S Qð Þð Þ ¼ exp Eð Þ ð16Þ

This technique is useful when the amount of noise added

is small; i.e., when theQ has low sensitivity. Examples of
queries with low sensitivity are histograms, linear ag-

gregation queries.

Input Perturbation Techniques

Most research is exploratory; the output perturbation

techniques can be inconvenient, since researchers must

specify queries before seeing the data. Input perturba-

tion techniques on the other hand publish a perturbed

version of the data that the researchers can then directly

query. Though the two techniques seem different, tech-

nically they are the same; input perturbation uses a

single perturbed query over the data, namely the sani-

tization algorithm. Dwork et al. [6] and Kifer et al. [11]

show that in many cases publishing perturbed answers

to multiple queries gives more utility than publishing a

single perturbed dataset like in input perturbation.

Privacy

A simple technique to perturb the data is to indepen-

dently add 0-mean noise to each attribute of each

record. Let V be a noise matrix, then the perturbed

data is Up = U + V . The random noise added to each

cell (v 2 V) is usually either a uniform random variable

in [�a,a] or distributed as a Gaussian with 0 mean and

a known variance. The privacy of such a scheme is

unclear; in fact, Kargupta et al. [10] and Huang et al.

[9] showed that the very accurate estimates of the origi-

nal data can be recovered from such additively perturbed

data due to dependencies inherent in U. For instance,

suppose an adversary knows that all the records in U

have the same value, say z. Then, additive randomiza-

tion does not guarantee any privacy; the mean of the

perturbed data accurately estimates z if there are

enough records in U.

Additive randomization can be broken using

Principal Components Analysis (PCA). Suppose the

data has m dimensions and is perturbed by adding

noise independently to each dimension. Usually, dif-

ferent attributes in the data are correlated; hence, it can

projected onto a smaller number, p < m, of dimen-

sions. The first principle component (PC) of the data is

the direction, e1, along which the data has the highest

variance. The ith PC, ei, is a vector orthogonal to the

first (i � 1) PC’s with the largest variance. These

vectors are the eigenvectors of the covariance matrix

of the data. In correlated data, only the variances along

p directions are large. However, for the random data,

the variances are the same along all directions. The

variances of the perturbed data are roughly the sum

Randomization Methods to Ensure Data Privacy R 2323

R

of the variances of the original data and the random

noise. Hence, by dropping (m � p) directions along

which the perturbed data has the least variance, while

much information is not lost about the original data, a

(1 � p ∕m) fraction of the noise added is removed; this

might lead to privacy breaches.

Algorithms

In order to guarantee privacy, the noise added should

be correlated to the data. This is ensured by synthetic

data generation. Here, a statistical model is generated

from a noise infused version of the existing data, and

synthetic data points are sampled from this model.

Noise is introduced into the synthetic data on two

counts: the noise infused prior to building the model,

and the noise due to random sampling.

Different algorithms for generating synthetic data can

be created by varying the synthetic model that is built

using the data. One simple technique is based onDirichlet

resampling [12]. Let H denote the histogram of U, i.e.,

H ={f (v)j v 2 DU, f (v) = multiplicity of v in U}, and let

R denote the noise histogram. Then the statistical

model is D(H + R), where D denotes the Dirichlet

distribution. Synthetic data is generated as follows.

Draw a vector of probabilities, X, from D(H + R),

and generate m points according to the probabilities

in X. The above process is mathematically equivalent to

the following resampling technique. Consider an urnwith

ballsmarkedwithvalues v 2DU such that the number of

balls marked with v equals the sum of the frequency of

v in U and the frequency of v in the noise histogram.

Synthetic data is generated inm sampling steps as follows.

In each sampling step, a ball, say marked v, is drawn at

random and two balls marked v are added back to

the urn. In this step, the synthetic data point is v.

Machanavajjhala et al. [12] characterized the priva-

cy guaranteed by this algorithm in terms of noise

distribution. Specifically, they showed that in order

to guarantee e-differential privacy, the frequency of

every v 2 DU in the noise histogram should be at

least m/(ee � 1). For large m and small e the noise

required for privacy overwhelms all of the signal in the

data and renders the synthetic data completely useless.

Such large requirements of noise is due to the follow-

ing worst case requirement of differential privacy. Con-

sider a scenario where an adversary knows that U

contains exactly one record ui that takes either the

value v1 or v2. Now suppose that in the output sample,

every record takes the value v1. If m is large, then the
adversary’s belief that ru = v1 is close to 1. In order to

guard against such adversaries, differential privacy

requires a large amount of noise. However, the proba-

bility that such synthetic data is output is negligibly

small. This can be remedied using a weaker (e, d)-
probabilistic differential privacy definition, where an

algorithm is private if it satisfies e-differential privacy
for all outputs that are generated with a cumulative

probability of at least (1 � d). Under this weaker

definition, the Dirichlet resampling technique is pri-

vate with much smaller noise requirements.

Barak et al. [4] propose a solution to publish mar-

ginals of a contingency table (i.e., a histogram) using

the SULQ framework. Publishing a set of noise infused

marginals is not satisfactory; such marginals may not

be consistent, i.e., there may not exist a contingency

table that satisfies all these marginal contingency tables.

Barak et al. solve this problem by adding noise to a

small number of Fourier coefficients; any set of Fourier

coefficients correspond to a (fractional and possibly

negative) contingency table. They show that only a

‘‘small’’ number of Fourier coefficients are required to

generate the requiredmarginals, and hence only a small

amount of noise (proportional to the size of the

marginal domain) is required. The authors employ

a linear program solution (in time polynomial in the

size of multidimensional domain) to generate the final

non-negative integral set of noise infused marginals.

Rastogi et al. [14] propose the ab algorithm

for publishing itemsets. It is similar to the select-a-

size randomization operator. Given an itemset I that

is a subset of the domain of all items D, the ab algo-

rithm creates a randomized itemset V by retaining

items in I with probability a + b and adding items in

D � I with probability b. This algorithm satisfies a

variant of e-differential privacy. Moreover, the authors

show that for queries Q : 2D !R, Q(I) can be esti-

mated as follows:

Q̂ðIÞ ¼ ðQðV Þ � bQðDÞÞ=a ð17Þ

where Q(V) and Q(D) are the answers to the query Q

on the randomized itemset V and the full domain D,

respectively. Q̂ðIÞ is shown to provably approximate Q

(I) with high probability.
Key Applications
Privacy preserving techniques have been used in

Census applications and various web-applications.

2324R Range Partitioning
The Dirichlet resampling based synthetic data genera-

tion technique is used in the web-based OnTheMap

Census application that plots worker commute pat-

terns on the U.S. map to study workforce indicators

[13]. Warner’s randomized response has been used in

eliciting responses to sensitive survey questions.

Future Directions
One common property of all provably private random-

ization methods is that the probability of perturbing a

value u 2 DU to every value v 2 DV (the perturbed

domain, which is usually the same as DU) should be

positive. As shown by Machanavajjhala et al. [12], this

causes a problem when the size of the domain is very

large. For instance, in the On The Map [13] applica-

tion, the domain DU is the set of census blocks on the

U.S. map and there are about 8 million such blocks.

However, given a destination, there is only a few hun-

dred workers commuting to it. Hence, even if a small

amount of noise is added to each block on the map,

spurious commute patterns will arise in the synthetic

data. All of the techniques discussed in this article

should be revisited in the context of real scenarios

with sparse data.

Cross-references
▶Association Rule Mining on Streams

▶Differential Privacy

▶ Principal Component Analysis

▶ Statistical Disclosure Limitation for Data Access

▶ Synthetic Data
Recommended Reading
1. Adam N.R. and Wortmann J.C. Security-control methods for

statistical databases: a comparative study. ACM Comput. Surv.,

21(4):515–556, 1989.

2. Agrawal R. and Srikant R. Privacy preserving data mining. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2000,

pp. 439–450.

3. Agrawal S. and Haritsa J.R. A framework for high-accuracy

privacy-preserving mining. In Proc. 21st Int. Conf. on Data

Engineering, 2005, pp. 193–204.

4. Barak B., Chaudhuri K., Dwork C., Kale S., McSherry F., and

Talwar K. Privacy, accuracy and consistency too: a holistic

solution to contingency table release. In Proc. 26th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2007.

5. Blum A., Dwork C., McSherry F., and Nissim K. Practical

privacy: the SuLQ framework. In Proc. 24th ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems,

2005, pp. 128–138.
6. Dwork C., McSherry F., Nissim K., and Smith A. Calibrating

noise to sensitivity in private data analysis. In Proc. 3rd Theory

of Cryptography Conf., 2006, pp. 265–284.

7. Evfimievski A., Gehrke J., and Srikant R. Limiting privacy

breaches in privacy preserving data mining. In Proc. 22nd

ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Data-

base Systems, 2003, pp. 211–222.

8. Evfimievsky A., Srikant R., Gehrke J., and Agrawal R. Privacy

preserving data mining of association rules. In Proc. 8th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,

2002, pp. 217–228.

9. Huang Z., Du W., and Chen B. Deriving private information

from randomized data. In Proc. 23th ACM SIGMOD Conf. on

Management of Data, 2004.

10. Kargupta H., Datta S., Wang Q., and Sivakumar K. On

the privacy preserving properties of random data perturbation

techniques. In Proc. 2003 IEEE Int. Conf. on Data Mining, 2003,

pp. 99–106.

11. Kifer D. and Gehrke J. Injecting utility into anonymized datasets.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2006.

12. Machanavajjhala A., Kifer D., Abowd J., Gehrke J., and Vihuber L.

Privacy: from theory to practice on the map. In Proc. 24th Int.

Conf. on Data Engineering, 2008.

13. On The Map (Version 2) http://lehdmap2.dsd.census.gov/.

14. Rastogi V., Suciu D., and Hong S. The Boundary Between

Privacy and Utility in Data Publishing. Tech. rep., University of

Washington, 2007.

15. Reiter J. Estimating risks of identification disclosure for micro-

data. J. Am. Stat. Assoc., 100:1103–1113, 2005.

16. Rubin D.B. Discussion statistical disclosure limitation. J. Off.

Stat., 9(2):461–468, 1993.

17. Warner S.L. Randomized response: a survey technique for

eliminating evasive answer bias. J. Am. Stat. Assoc., 60(309):

63–69, 1965.
Range Partitioning

▶ Physical Database Design for Relational Databases
Range Query

MIRELLA M. MORO

The Federal University of Rio Grande do Sul, Porto

Alegre, Brazil

Synonyms
Range search; Range selection

Definition
Consider a relation R with some numeric attribute A

taking values over an (ordered) domainD. A range query

Ranked XML Processing R 2325

R

retrieves all tuples in R whose attribute A has values

in the interval [low, high]. That is, low � R.A � high.

The range interval may be closed as above, open (e.g.,

low < R.A < high), or half-open in either side

(e.g., low < R.A � high). A range query can be one-

sided (e.g., low� R.A retrieves all tuples with R.A value

greater or equal to low). When low = high the range

query becomes an equality (or membership) query.

Key Points
Range queries involve numeric (or numerical) attri-

butes. These are attributes whose domain is totally

ordered and thus a query interval (e.g., [low, high])

can be formed. In contrast, attributes whose domain is

not naturally ordered are called categorical (or nomi-

nal). Range queries correspond to selections and are thus

amenable to indexing. The standard access method

for a range query on some attribute A is a B+-tree

built on the values of attribute A. Since the

B+-tree maintains the order of the indexed values in its

leaf pages, a range query is implemented as a search for

the leaf page with the lower value of the range interval,

followed by the accessing of sibling pages until a page

that contains the higher value of the range interval is

reached. The above discussion considers the one-dimen-

sional range search. Multidimensional range queries are

also important. A typical example is the spatial range

query that retrieves all objects which fall within (or

intersect, overlap, etc.) a region (a rectangle specified

by ranges in each dimension). Such multidimensional

range queries are typically indexed by R-trees.

Cross-references
▶AccessMethods

▶B+-Tree

▶ Indexing

▶Rtree

▶ Spatial RangeQuery
Range Search

▶Range Query
Range Selection

▶Range Query
Rank Swapping

▶Data/Rank Swapping
Ranked Multimedia Retrieval

▶Top-k Selection Queries on Multimedia Datasets
Ranked XML Processing

AMÉLIE MARIAN
1, RALF SCHENKEL

2,

MARTIN THEOBALD
3

1Rutgers University, Piscataway, NJ, USA
2Max Planck Institute for Computer Science,

Saarbrücken, Germany
3Stanford University, Stanford, CA, USA

Synonyms
Aggregation and threshold algorithms for XML; Approx-

imate XML querying; Top-k XML query processing

Definition
When querying collections of XML documents with

heterogeneous or complex schemas, existing query

languages like XPath or XQuery with their exact-

match semantics are often not the perfect choice.

Such exact querying languages will typically miss

many relevant results that do not conform to the strict

formulation of the query.

Top-k query processing for XML data, which fo-

cuses on finding the k top-ranked XML elements to an

XPath (or XQuery) query with full-text search predi-

cates, is a particularly appropriate query model for

querying semi-structured data when the actual content

or structure of the underlying data is not fully known.

Challenges in processing top-k queries over XML

data include scoring individual answers based on how

closely they match the query, supporting IR-style

vague search over both content and structure, and

ranking the k best answers in an efficient manner.

Historical Background
Non-schematic XML data that comes from many dif-

ferent sources and inevitably exhibits heterogeneous

structure and annotations in the form of hierarchical

2326R Ranked XML Processing
tags and deeply nested XML elements often cannot be

adequately searched using pure database-style query

languages like XPath or XQuery. Typically, queries

either return too many or too few results using only

Boolean search predicates. Rather, the ranked-retrieval

paradigm needs to be called for, with relaxable search

conditions, various forms of similarity predicates on

tags and contents, and quantitative relevance scoring.

The information retrieval (IR) community has histori-

cally focused on scoring documents based on how

closely they match a user’s keyword query. Intense

research on applying IR techniques to XML data has

started in the early 2000’s and has meanwhile gained

considerable attention. Recent IR extensions to XML

query languages such as XPath 1.0 Full-Text or the

NEXI query language used in the INEX benchmark

series [5] reflect this emerging interest in IR-style

ranked retrieval over semi-structured data. So far, var-

ious work on scoring answers to XML queries have

focused on adapting IR-style scoring techniques from

unstructured text to the semi-structured world, see, e.g.,

[2,5,11]. On the IR side, some foray into adding struc-

ture to standard IR search has taken place before the

advent of XML [13]. The popularity of XML provides an

opportunity to combine efforts led separately by both

the DB and IR communities and provide robust techni-

ques to query semi-structured data.

Threshold Algorithms

The method of choice for efficient processing of top-k

similarity queries is the family of threshold algorithms

(TA), most notably presented by Fagin et al. [8] and

originally developed for multimedia databases and

structured records stored in relational database systems

(RDBMS). These algorithms rely on making dynamic

choices for scheduling index lookups during query exe-

cution in order to prune low-scoring candidate items as

early as possible. They typically scan precomputed index

lists for text terms or attribute values of structured

records in descending order of local (i.e., per-term)

scores and aggregate these scores for the same data

item into a global score, using a monotonic score aggre-

gation function such as (weighted) summation. Based

on clever bookkeeping of score intervals and thresholds

for the top-k matches, these index scans can often

terminate early, namely as soon as the final top-k

results can be safely determined, and thus the algo-

rithm often only has to scan short prefixes of the

inverted lists. In contrast to the heuristics adopted by
many Web search engines, these threshold algorithms

compute exact results and are provably optimal in

terms of asymptotic costs.

XML and IR

Efficient evaluation and ranking of XML path condi-

tions is a very fruitful research area. Solutions include

various forms of structural joins, multi-predicate

merge joins, the staircase join based on index structures

with pre- and postorder encodings of elements within

document trees [10], and holistic twig joins [6]. The

latter, also known as path stack algorithm, is probably

the most efficient method for twig queries using a

combination of sequential scans over index lists stored

on disk and linked stacks in memory. However, these

approaches are not dealing with uncertain structure

and do not support top-k-style threshold-based early

termination.

IR on XML data has become popular in recent

years. Some approaches extend traditional keyword-

style querying to XML data [7,11], introduced full-

fledged XML query languages with rich IR models for

ranked retrieval [9,19], or developed extensions of the

vector space model for keyword search on XML docu-

ments. FleXPath [4] was among the first approaches

to combine this theme with full-text conditions over

search predicates. Meanwhile, various groups have

started adding IR-style keyword conditions to existing

XML query languages. TeXQuery is the foundation for

the W3C’s official full-text extensions to XPath 2.0 and

XQuery 1.0. TIX and TAX are query algebras for XML

that integrate IR-style query processing into a pipe-

lined query evaluation engine. TAX furthermore comes

with an efficient algorithm for computing structural

joins. Here, the results of a query are scored subtrees of

the data, and TAX already provides a threshold opera-

tor that drops candidate results with low scores from

the result set. TOSS is an extension of TAX that inte-

grates ontological similarities into the TAX algebra.

XIRQL [9], a pioneer in the field of ranked XML

retrieval, presents a path algebra based on XQL, an

early ancestor of W3C’s XQuery, for processing and

optimizing structured queries. It combines Boolean

query operators with probabilistically derived weights

for ranked result output, thus carrying the probabilis-

tic IR paradigm over to the XML case. Finally, XXL

[19], specifies a full-fledged, SQL-oriented query lan-

guage for ranked XML-IR with a high semantic expres-

siveness that made it stand apart from the Boolean

Ranked XML Processing R 2327

R

XQL and XPath language standards being predomi-

nant at that time. For ranked result output, XXL

leverages both a standard IR vector space model and

an ontology-oriented similarity search for the dynamic

relaxation of structure and term conditions. TopX

[17], the actual successor of XXL, on the other hand,

focuses on a smaller, XPath-like, subset of the XXL

query language which allows for a radically different

query processing architecture that outperforms XXL in

terms of efficiency by a large margin.

Foundations
Applying the TA paradigm for inverted index lists to

XML ranked retrieval is not straightforward. In a data-

centric XML setting, a ranking of query results to a

query is typically induced by defining some form of

structural similarity, whereas in a more text-centric

view (with a rich mixture of XML tags and text con-

tents), ranking is derived from IR-style text relevance

measures, or a combination of structural similarity and

text relevance. More precisely, the XML-specific diffi-

culties arise from the following challenges:

Query Processing and Index Structures: Relevant in-

termediate results to amixture of structural and content-

related search conditions must be tested as to whether

they satisfy the path conditions of the query, and this

may incur repetitive and expensive random access to

large, disk-resident index structures. Furthermore, in-

stead of enforcing conjunctive query processing, it is

desirable to relax path conditions and rather rank

documents by a combination of content scores and

an additional degree to which the structural query

conditions are satisfied. Incremental path evaluations

are required when the index structures are accessed

mostly using efficient sequential disk access in order to

limit or entirely avoid the more expensive random

accesses. Yet all incremental updates to candidate

score bounds during the query processing need to

stay monotonic, in order to guarantee a correct algo-

rithmic basis for top-k query evaluation with early

candidate pruning.

IR Scoring Models and Vague Search: Existing IR

scoring models for text documents cannot be directly

carried over to the XML case, because they would

not consider the specificity of content terms in combi-

nation with hierarchical elements or attribute tags. For

example, the term ‘‘transactions’’ in a bibliographic

data set should be viewed as specific (and lead to a

high score) when occurring within elements of type
section or caption but be considered less informative

within tags like journalname. Furthermore, it should

be possible to relax search terms and, in particular, tag

names, using tree editing operations, or ontology- and

thesaurus-based similarities. For example, a query for

a book element about ‘‘XML’’ should also consider a

monograph element on ‘‘semi-structured data’’ as a

relevant result candidate.

Result Granularity: Scores and index lists refer to

individual XML elements and their content terms, but

from an IR point-of-view it is desirable to aggregate

scores at the document level and return the most

relevant XML subtrees, up to the entire XML docu-

ment, as results. Thus, the query evaluation has to

weigh different result granularities against each other

dynamically in the top-k query processing, and the

relevance scoring model should consider XML-specific

ranking aspects such as exhaustiveness and specificity

when choosing the most suitable result granularity to

address the user’s information need.

Scoring Structure

Structural similarity is considered in the sense that docu-

ments can qualify even if they do not satisfy all path

conditions, i.e., if there were too few results otherwise.

For dynamically relaxing tag names and structural rela-

tionships of tags in path queries, various tree editing

operations can be employed, such that only the most

similar matches in the collection are returned.

XML data can typically be represented as forests of

node-labeled trees. Figure 1 shows a database instance

containing fragments of heterogeneous news docu-

ments. Figure 2 gives examples of several queries

drawn as trees: the root nodes represent the returned

answers, single and double edges represent the descen-

dant and child axes, respectively, and node labels stand

for names of elements or keywords to be matched.

Hence, different queries match the different news docu-

ments inFig. 1. For example, query (a) in Fig. 2 matches

document (a) exactly, but would neither match docu-

ment (b) (since link is not a child of item) nor docu-

ment (c) (since item is entirely missing). Query (b)

matches document (a), also since the only difference

between this query and query (a) is the descendant axis

between item and title. Query (c) matches both docu-

ments (a) and (b) since link is not required to be a

child of item while query (d) matches all documents in

Fig. 1. Intuitively, it makes sense to return all three

news documents as candidate matches, suitably ranked

Ranked XML Processing. Figure 2. Query tree patterns and relaxations.

Ranked XML Processing. Figure 1. Heterogeneous XML database example.

2328R Ranked XML Processing
based on their similarity to query (a) in Fig. 2. Queries

(b), (c), and (d) in Fig. 2 correspond to structural

relaxations of the initial query (a) as defined in [4].

In the same manner, none of the three documents in

Fig. 1 matches query (e) because none of their title

elements contains reuters.com. Query (f), on the other

hand, is matched by all documents because the scope

of reuters.com is broader than in query (e). It is thus

desirable to return these documents suitably ranked

according to their similarity to query (e).

In order to achieve the above goals, [4] defines

query relaxations, including edge generalization (repla-

cing a child axis with a descendant axis), leaf deletion

(making a leaf node optional), and subtree promotion

(moving a subtree from its parent node to its grand-

parent). These relaxations capture approximate answers

but still guarantee that exact matches to the original

query continue to be matches to the relaxed query. For

example, query (b) can be obtained from query (a) by

applying edge relaxation to the axis between item and
title and still guarantees that documents where title is a

child of item are matched. Query (c) is obtained from

query (a) by composing edge generalization between

item and title and subtree promotion (applied to the

subtree rooted at link). Finally, query (d) is obtained

from query (c) by applying leaf deletion to the nodes

ReutersNews, title and item. Query (d) is a relaxation of

query (c) which is a relaxation of query (b) which is in

turn a relaxation of query (a). Similarly, query (f) in

Fig. 2 can be obtained from query (e) by a combination

of subtree promotion and leaf deletion. Other works

have considered additional query relaxation such as

node renaming, node generalization, node insertion,

and node deletion [1,9,15,16]. The use of schema

knowledge can reduce the number of possible relaxed

queries by ignoring relaxations that are guaranteed not

to lead to additional matches [16].

Amer-Yahia et al. [3] presented strategies to assign

scores to query relaxations. These strategies are based

on the traditional tf � idfmeasure derived from IR-style

Ranked XML Processing R 2329

R

ranking of keyword queries against an unstructured

document collection. The twig scoring method intro-

duced in [3] computes the score of an answer taking

occurrences of all structural and content-related (i.e.,

keyword) predicates in the query. For example, a

match to query (c) would be assigned an inverse docu-

ment frequency score, idf, based on the fraction of the

number of channel nodes that have a child item with a

descendant title containing the keyword ReutersNews

and a descendant link that contains the keyword reu-

ters.com. Such a match would then be assigned a term

frequency score, tf, based on the number of query

matches for the specific channel answer.

Scoring Text

A variety of IR-style scoring functions has been pro-

posed and adopted for XML retrieval, ranging from the

classic vector space model with its tf � idf family of

scoring approaches, typically using Cosine measure for

score aggregations, over to the theoretically more

sound probabilistic scoring models, with Robertson &

Sparck-Jones and Okapi BM25 being the most widely

used ranking approaches in current IR benchmark

settings such as TREC or INEX, up to even more

elaborated statistical language models. An important

lesson from text IR is that the influence of the term

and document frequency values, tf and df – in the

following referred to as their element-specific counter-

parts ftf and ef, should be sub-linearly dampened to

avoid a bias for short elements with a high term fre-

quency of a few rare terms. To address these considera-

tions, the TopX engine, presented by Theobald et al.

[17,18], adopts the empirically very successful Okapi

BM25 probabilistic scoring model to a generic XML

setting by computing individual relevance models for

each element type occurring in the collection.

For a typical NEXI query pattern of the form q = //

A[about(.//,t1,...,tm)], the following relevance score is

computed for an element e with tag name A:

scoreðe; qÞ ¼
Xm
i¼1

ðk1 þ 1Þftf ðti;eÞ
k þ ftf ðti; eÞ

: log
NA � efAðtiÞ þ 0:5

efAðtiÞ þ 0:5

� �

withK ¼ k1 ð1� bÞ þ b
lengthðeÞ

avg�lengthA

� �

Here, ftf(ti, e) models the relevance of a term ti for an

element’s full content, i.e., the frequency of ti in all the
descending text nodes of element e; while efA(ti) mod-

els the specificity of ti for a particular element with tag

name A by capturing how many times ti occurs under a

tag A across the whole collection having NA elements

with this tag name.

That is, this extended BM25 model computes a

separate relevance model for each term ti with respect

to its enclosing tag name A, thus maintaining detailed

element frequency statistics efA(t) of each individual

tag-term pair that occurs in the collection. It provides a

smoothed (i.e., dampened) influence of the ftf and

ef components, as well as a compactness-based nor-

malization that takes the average length of each ele-

ment type into account. Note that the above function

also includes the tunable parameters k1 and b just

like the original BM25 model that now even allows

for fine-tuning the influence of the ftf components

and the length normalization for each element type

individually – if desired. For an about operator with

multiple keyword conditions as used in the NEXI

query language of the INEX benchmark series (or

similarly for ftcontains in the XPath 2.0 Full-Text spec-

ification), that is attached to an element e with tag

name A, the aggregated score of e is simply computed

as the sum of the element’s scores over the individual

tag-term conditions. For path queries with more than

one structural tag condition or with multiple full-text

operators, the content scores of each element can be

combined with the structural scores described above.

Various extensions for more specific full-text pre-

dicates such as keyword proximity and phrase match-

ing, as well as incorporating ontological concept

similarities for query expansion, have been proposed

in the literature – some of which are leaving some

interesting research questions for a top-k-style query

processor, since most of the more sophisticated prox-

imity- or graph-based compactness measures inher-

ently lead to non-monotonic score aggregation

functions.

XML Top-k Query Evaluation Techniques

Combining Structure Indexes and Inverted Lists:

Kaushik et al. [12] proposed one of the first, exact-

match, top-k algorithms for XML by employing

various path index operations as basic steps for non-

relaxed evaluations of branching path queries. Their

strategy combines two forms of auxiliary indexes, a

DataGuide-like path index for the structure whose

extent identifiers are linked to an inverted index for

2330R Ranked XML Processing
processing relevance-ranked keyword conditions. The

index processing steps are then invoked within a TA-

style top-k algorithm, involving eager random access to

these inverted index structures.

XRank: Among the most prominent IR-related

approaches for ranked retrieval of XML data is

XRank [11]. It generalizes traditional link analysis

algorithms such as PageRank for authority ranking in

linked Web collections and conceptually treats each

XML element as an interlinked node in a large element

graph. Then the element rank of an XML element

corresponds to the authority weight computed over a

mixture of containment edges, obtained from the XML

tree structure, and hyperlink edges, obtained from the

inter-document XLink structure, similar to the HTML

case. XRank may indeed return deeply nested elements

but merely supports conjunctive keyword search; it

does not yet support structured and/or path query

languages such as XPath. For efficient retrieval of

multi-keyword queries, it also uses inverted lists sorted

in descending order of element ranks and sketches the

usage of standard threshold algorithms for pruning the

search space.

FlexPath: FlexPath [4] integrates structure and key-

word queries and regards the query structure as tem-

plates for the context of a full-text keyword search. The

query structure (as well as the content conditions) can

be dynamically relaxed for ranked result output

according to predefined tree editing operations when

matched against the structure of the XML input docu-

ments. The FlexPath query processor already com-

prises the usage of top-k-style query evaluations for a

slightly modified, XPath-like, query language that later

evolved as part of the officialW3C Full-Text extensions to

XPath 2.0 and XQuery 1.0. Like [12], it uses separate

index structures for storing and retrieving the structural

and content-related conditions of an XPath 2.0 Full-Text

query; it may thus require a substantial amount of ran-

dom access to disk-resident index structures for resolving

the final structure of a result candidate.

Whirlpool: The Whirlpool system introduced by

Marian et al. [14] provides a flexible architecture for

processing top-k queries on XML documents adaptive-

ly. Whirlpool allows partial matches to the same query

to follow different execution plans, and takes advan-

tage of the top-k query model to make dynamic

choices during query processing. The key features of

Whirlpool are: (i) a partial match that is highly likely

to end up in the top-k set is processed in a prioritized
manner, and (ii) a partial match unlikely to be in the

top-k set follows the cheapest plan that enables its early

pruning. Whirlpool provides several adaptivity policies

and supports parallel evaluation; details on experimen-

tal results can be found in [14].

TopX: The biggest challenge in further accelerating

full-text query evaluations over large, semi-structured

data collections lies in finding appropriate encodings

of the XML data, for indexes that can be read sequen-

tially in big chunks directly from disk when the collec-

tion (or index) no longer fits into the main memory of

current machines. Thus, the TopX engine [17,18] oper-

ates over a combined inverted index for content- and

structure-related query conditions by precomputing

and materializing joins over tag-term pairs, the most

common query patterns in full-text search. This simple

precomputation step makes the query processing more

scalable, with an encoding of the index structure that is

easily serializable and can directly be stored sequential-

ly on disk just like any inverted index, for example

using conventional Bþ-tree indexes or inverted files.

At query processing time, TopX scans the inverted

lists for each tag-term pair in the query in an inter-

leaved manner, thus fetching large element blocks into

memory using only sorted access to these lists and then

iteratively joining these blocks with element blocks

previously seen at different query dimensions for the

same document. Using pre-/postorder tree encodings

[10] for the structure, TopX only needs a few final

random accesses for the potential top-k items to re-

solve their complete structural similarity to a path

query. An extended hybrid indexing approach using

a combination of DataGuide-like path indexes and

pre-/postorder-based range indexes can even fully elim-

inate the need for these random accesses – however at

the cost of more disk space.

TopX further introduces pluggable extensions for

probabilistic candidate pruning, as well as a probabilistic

cost-model for adaptively scheduling the sorted and

random accesses, that help to significantly accelerate

query evaluations in the presence of additional, pre-

computed index list statistics such as index list selec-

tivities, score distribution histograms or parameterized

score estimators, and even index list (i.e., keyword)

correlations. For dynamic query expansions of tag and

term conditions, TopX can incrementally merge the

inverted lists for similar conditions obtained from an

exchangeable background thesaurus such as WordNet

or OpenCyc. Thus, TopX provides a whole toolkit of

Ranked XML Processing R 2331

R

specialized top-k operators for efficient full-text search,

including incremental merge operators for dynamic

query expansion and nested top-k operators for high-

dimensional phrase expansions.

Key Applications
Scalable, Web-Style Search over Semi-structured Collec-

tions: Efficient IR over large Web collections will re-

main one of the most challenging applications for

XML-top-k query processing with full-text search,

with an ever-increasing demand for scalability, inter-

active runtimes, and vague search involving dynamic

query relaxation and/or expansion over heterogeneous

collections or unknown schemata.

INEX Benchmark Series: INEX provides a compre-

hensive forum for IR research on semi-structured data,

that goes beyond using the formerly prevalent synthet-

ic data collections such as XMark or XBench for eval-

uating retrieval quality in true IR-style settings, with

a variety of subtasks, XML-IR-specific evaluation

metrics, and peer assessments of retrieval results [5].

Future Directions
Graph Top-k: Current XML-top-k algorithms are re-

stricted to XML data trees. Future work could focus on

further generalizing the scoring approach, in order to

handle cycles arising from inter- or intra-document

XLinks, with the need to still derive tight and accurate

bounds for early candidate pruning. This may involve

efficient index structures for arbitrary graphs and po-

tentially non-monotonic score aggregation functions

to incorporate graph compactness measures such as

Steiner trees.

More XQuery: Similarly, current work has only fo-

cused on implementing various subsets of the XPath

query language. Providing top-k-style bounds and prun-

ing thresholds for more complex XQuery constructs

such as loops and if-cases would be an intriguing issue

for future work.

Experimental Results
Extensive experiments can be gleaned from the various

approaches presented in the literature, see, e.g.,

[3,4,12,14,17].

Data Sets
Links to the INEX IEEE and Wikipedia collections can

be obtained from the INEX homepage: http://inex.is.

informatik.uni-duisburg.de
URL to Code
http://topx.sourceforge.net

Cross-references
▶Text Indexing and Retrieval

▶XML Information Integration

▶XQuery Full-Text

Recommended Reading
1. Amer-Yahia S., Cho S., and Srivastava D. Tree pattern relaxation.

In Advances in Database Technology, Proc. 8th Int. Conf. on

Extending Database Technology, 2002. pp. 496–513.

2. Amer-Yahia S., Curtmola E., and Deutsch A. Flexible and effi-

cient XML search with complex full-text predicates. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2006, pp.

575–586.

3. Amer-Yahia S., Koudas N., Marian A., Srivastava D., and

Toman D. Structure and content scoring for XML. In Proc.

31st Int. Conf. on Very Large Data Bases, 2005.

4. Amer-Yahia S., Lakshmanan L.V.S., and Pandit S. FleXPath:

flexible structure and full-text querying for XML. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2004, pp.

83–94.

5. Amer-Yahia S. and Lalmas M. XML search: languages, INEX and

scoring. ACM SIGMOD Rec., 35(4):16–23, 2006.

6. Bruno N., Koudas N., and Srivastava D. Holistic twig joins:

optimal XML pattern matching. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2002, pp. 310–321.

7. Cohen S., Mamou J., Kanza Y., and Sagiv Y. XSEarch: a semantic

search engine for XML. In Proc. 29th Int. Conf. on Very Large

Data Bases, 2003, pp. 45–56.

8. Fagin R., Lotem A., and Naor M. Optimal aggregation algorithms

for middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

9. Fuhr N. and Großjohann K. XIRQL: a query language for infor-

mation retrieval in XML documents. In Proc. 24th Annual Int.

ACM SIGIR Conf. on Research and Development in Informa-

tion Retrieval, 2001. pp. 172–180

10. Grust T., van Keulen M., and Teubner J. Staircase join: teach a

relational DBMS to watch its (axis) steps. In Proc. 29th Int.

Conf. on Very Large Data Bases, 2003, pp. 524–525.

11. Guo L., Shao F., Botev C., and Shanmugasundaram J. XRank:

ranked keyword search over XML documents. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2003.

12. Kaushik R., Krishnamurthy R., Naughton J.F., and Ramakrish-

nan R. On the integration of structure indexes and inverted lists.

In Proc. ACM SIGMOD Int. Conf. onManagement of Data, 2004.

13. Kilpeläinen P. and Mannila H. Retrieval from hierarchical texts

by partial patterns. In Proc. 16th Annual Int. ACM SIGIR Conf.

on Research and Development in Information Retrieval, 1993,

pp. 214–222.

14. Marian A., Amer-Yahia S., Koudas N., and Srivastava D.

Adaptive processing of top-k queries in XML. In Proc. 21st Int.

Conf. on Data Engineering, 2005, pp. 162–173.

15. Schenkel R., Theobald A., and Weikum G. Semantic similarity

search on semistructured data with the XXL search engine. Inf.

Retr., 8(4):521–545, 2005.

2332R Ranking
16. Schlieder T. Schema-driven evaluation of approximate tree-

pattern queries. In Advances in Database Technology, Proc. 8th

Int. Conf. on Extending Database Technology, 2002,

pp. 514–532.

17. Theobald M., Schenkel R., and Weikum G. An efficient and

versatile query engine for TopX search. In Proc. 31st Int. Conf.

on Very Large Data Bases, 2005.

18. Theobald M., Schenkel R., and Weikum G. The TopX DB&IR

engine. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2007, pp. 1141–1143.

19. Theobald A. and Weikum G. Adding relevance to XML. In Proc.

3rd Int. Workshop on theWorldWideWeb and Databases, 2000,

pp. 105–124.
Ranking

▶Web Search Relevance Ranking
Raster Data Management

▶ Storage of Large Scale Multidimensional Data
Raster Data Management and
Multi-Dimensional Arrays

PETER BAUMANN

Jacobs University, Bremen, Germany

Synonyms
Array databases; Raster databases

Definition
In this enry, the management of raster data is described

based on the concept of an array database system. An

array database system is a database system that sup-

ports the array (also called raster) data structure, as

understood in programming languages: a homoge-

neous collection of data items where each item has a

coordinate associated, and coordinates sit at grid

points in a rectangular, axis-parallel subset of the

Euclidean space Zd for some d > 0.

Such arrays convey a very regular structure with a

well-defined neighborhood relation between its cells,

which requires suitable storage structures. Frequently,

operations on cells are applied simultaneously to large

contiguous portions of arrays, such as overlaying two
equally-sized images; efficient query processing needs

to provide support for such patterns. Finally, arrays

tend to be very large, with single objects frequently

ranging into Terabyte and soon Petabyte sizes; for

example, today’s earth and space observation archives

grow by Terabytes a day.

Query language support for arrays consists of array

primitives which can be nested as in standard SQL, and

preferably integrated into SQL. Once sufficiently declar-

ative query languages are available, query optimization

and parallelization can be appliedwhich has been proven

to accelerate array evaluation up to orders of magnitude.

Storage management must give efficient access to large

arrays and sub-arrays thereof. Due to the large sizes,

compression often is applied, but some high-volume

applications still require storage hierarchies.

Today, an important application domain is Web

services on geo raster data, such as 1-D environmental

sensor time series, 2-D satellite images, 3-D x/y/t image

time series (Fig. 1), 3-D x/y/z exploration data, and

4-D x/y/z/t climate simulation data. Other spatio-

temporal applications can be found, e.g., in the Life

Sciences. On-line analytical processing (OLAP) and

Statistical Databases consider arrays as well, often com-

bining the time dimension with abstract axes such as

sales and products.

Historical Background
The array paradigm is not directly supported by the

relational data model. Therefore, two different

approaches have traditionally been pursued to achieve

array support: BLOBs and OLAP data cubes.

Imagery in Array Databases

If stored in databases, image pixel matrices go into

BLOBs (Binary Large OBjects), linearized and encoded

in some data exchange format, and result in a byte string

whose semantics is unknown to the database system. The

database system, therefore, cannot provide any array

operation aside from reading and writing the complete

BLOB. As a consequence, for many potential application

domains, users believe that databases cannot support

their raster data, and they still tend to develop their

own file-based services in an ad-hoc manner.

The requirement for further array processing cap-

abilities distinguishes array databases frommultimedia

databases and imaging systems. Array databases are

different from multimedia databases which analyze

images using some built-in algorithms to obtain

Raster Data Management and Multi-Dimensional

Arrays. Figure 1. Retrieval result from a 3-D x/y/t satellite

image time series data cube on sea surface temperature;

original data cube contains about 10,000 satellite images

(image: rasdaman screenshot, data: NASA/DLR).

Raster Data Management and Multi-Dimensional Arrays R 2333

R

feature vectors. Subsequently, search is performed on

the feature vectors, not the images. Array databases,

conversely, do not attempt to interpret the raster data,

but always operate on the cell values themselves.

Likewise, array databases are different from image

processing and understanding systems. Imaging sys-

tems offer elaborate functionality, however are not

constrained to excessively large images in relation to

main memory size. Array databases, conversely, con-

strain themselves in functionality to remain safe in

evaluation, but aim to have no object size limit.

Statistics Data in Array Databases

Statistical data are usually modeled as OLAP data

cubes. Today, the main paradigm is Relational OLAP

(ROLAP) where each data item, together with its coor-

dinates, is stored in a so-called fact table in a relational

DBMS. This explains why ROLAP is suitable only for

very sparse data, where listing only valid points togeth-

er with their coordinates represents an efficient com-

pression scheme.

Relational query operators, extended with specific

data cube operators, provide powerful analysis capabil-

ities on such data cubes.
A Unified View

Although treated differently, both images (here under-

stood to have any spatio-temporal dimensions, not just

2-D x/y axes) and data cubes share characteristics to a

large extent. Both consist of a data structure mapping

n-D coordinates with rectangular boundaries into a

value space. Operations also convey similarities, as

the following examples show: Subsetting (cutting out

sub-cubes) is known in both worlds, and an OLAP

roll-up from days to weeks is equivalent to scaling an

image by a factor of seven using linear interpolation.

Actually the main difference motivating different

treatment lies in a data property. Statistical data tend

to be very sparse, typically only up to 5% of the data

cube holds values of interest. Image data, on the other

hand, tend to be 100% dense.

Some authors [7] argue that OLAP data cubes

are not strictly arrays because, in the case of categorical

axes (in OLAP called measures), the neighborhood rela-

tion between points does not induce a strict ordering.

Others [2] subsume data cubes under the array paradigm,

for example because categorical measures ultimately are

mapped to integer coordinates during physical modeling.

History and Current State

A first important step beyond BLOBs was accomplished

with PICDMS [4] where a 2-D array query language,

still procedural and without suitable storage support,

has been introduced. A declarative n-D array query

language with an algebraic foundation and a suitable

architecture, which is implemented and in operational

use, has been presented in [2,1]. Marathe and Salem

present a 2-D database array language [8]. In [4] nested

relational calculus is extended with multidimensional

arrays, obtaining a model called NCRA and a query

language derived from it, AQL. Both seem to be more

theoretically motivated and aim in particular at com-

plexity studies for array addressing. Mennis et al. [9]

introduce 3-D map algebra, a framework suitable for

handling 2-D and 3-D geo raster data.

While OLAP is a well established business today,

arrays are considered by industry only recently. ESRI’s

ArcSDE and Oracle’s GeoRaster cartridge offer tiled

storage of 2-D maps with mainly spatial subsetting sup-

port; the rasdaman system offers n-D full query support.

Foundations
The collection paradigm in databases encompasses

sets, bags, lists, and arrays. The array concept forms a

2334R Raster Data Management and Multi-Dimensional Arrays
separate, distinct information category. While it might

be emulated, e.g., by nested lists, this will not lead to

usable query concepts (e.g., for slicing a data cube

along all its axes), nor can this be a basis for efficient

implementations.

Consequently, all database aspects need to be

reconsidered for array support, including conceptual

modeling (what are appropriate operations?), storage

management (how to manage objects spanning many

disk blocks, if not several media?), and query evalua-

tion (what are efficient and optimizable processing

strategies?).

Conceptual Modeling

Formally, an array a is a function a: X! F where X is a

finite axis-parallel hypercube in Euclidean space Zd for

some d > 0 and F is some algebra. Let X be the array’s

domain, F its cell type, and the individual locations

x 2 X carrying some value f 2 F the array’s cells.

Following good practice in databases, an array

query language should be declarative and safe in eval-

uation. Declarative in this context means that there is

no explicit iteration sequence over an array (or part of

it) during evaluation – conceptually, all cells should be

inspected simultaneously. This opens up avenues for

efficient storage and evaluation patterns, and query

optimization in general (see below). Avoiding explicit

iterations also contributes to be safe in evaluation, i.e.,

every query is evaluated in a finite number of (finite-

time) steps.

Actually it turns out that a wide range of practically

relevant operations can be expressed using only a few

primitives [2]. The MARRAYoperator creates an array

over some given domain and sets its cells by evaluating

an also given expression at each cell location. An ap-

plication of the MARRAY operator has the general

form

marray index-range-specification

values cell-value-expression

where index-range-specification defines the resulting

array’s domain and binds an iteration variable to it.

In cell-value-expression the value of the cells are deter-

mined for each cell coordinate; this expression may or

may not use the current value of the iteration variable,

e.g., to read out cells from some given array. The first

example, domain subsetting, makes use of this addres-

sing by copying the values of cells within the cutout

region from the original array into the new array.
Example: ‘‘A cutout of array a specified by the

corner points (100,100) and (200,300).’’

marray p in [100:200,100:300]

values a[p]

In the query language this particular application pat-

tern of MARRAY can be abbreviated as

a[100:200,100:300]

Aside from copying cells as above, the resulting array

can also have new values assigned which may or may

not depend on other arrays.

Example: ‘‘Array a (which is known to be of size

1024 � 768), with intensity reduced by a factor of 2.’’

Auxiliary function dom(a) returns the domain of a,

over which the query has to iterate:

marray p in dom(a)

values a[p]/2

Such operations are abbreviated in the query language

by applying the operation on hand directly to the array,

in the example obtaining:

a/2

All unary and binary operations on cells can thus be

lifted to become array operations.

Example: ‘‘Array a’s values where they are above

threshold t, and 0 otherwise.’’

(a > t) * a

In this example, Boolean and arithmetic operations are

combined. Similar to many programming languages,

Boolean results from the comparison are interpreted as

0 and 1 for the subsequent multiplication.

The CONDENSE operator aggregates cell values

into one scalar result, similar to SQL aggregates. Its

application has the general form

condense condense-op

over index-range-specification

using cell-value-expression

where, like with MARRAY before, index-range-specifica-

tion indicates the array index domain to be iterated over

and binds a variable to it. Similarly, cell-value-expression

represents an expression to be evaluated for each index

range coordinate. The additional element, condense-op,

specifies the aggregating operation used to combine

the cell value expressions into one single value.

Example: ‘‘The sum of all values in a.’’

Raster Data Management and Multi-Dimensional Arrays R 2335

R

condenseþ
over p in sdom(a)

using a[p]

This is abbreviated as add_cells(a); further predefined

condensers include count_cells(), minimum, maxi-

mum, and quantifiers.

Histogram computation demonstrates nesting of

these operations.

Example: ‘‘A histogram of 256 buckets over 8-bit

greyscale array a.’’

marray n in [0:255]

values count_cells(a = n)

The inner expression, a = n, is an application of the

formerly introduced ‘‘lifted’’ operation. For each coor-

dinate p of a, the comparison a[p] = n is performed,

yielding a Boolean array.

The SORToperator allows slicing of an array along

one of its axes and reordering of slices according to

some sorting criterion.

By embedding this into a set-oriented model with

array-valued attributes one can write queries over sets

of arrays. The next example assumes a table BrainActi-

vationMaps where one of the attributes, named data, is

an array. The data array might contain processed scans

of human brains indicating activity like electrical flow,

temperature, blood pressure, etc. Note that for the

query it does not matter whether the data array is,

say, 2-D or 3-D. This way queries can be kept rather

generic.

Example: ‘‘Tuple identifier and histogram of all

those BrainActivationMaps tuples where the average

data intensity exceeds threshold 127.’’
Raster Data Management and Multi-Dimensional Arrays. F
select id,

marray n in [0:255]

values count_cells(bam.data = n)

from BrainActivationMaps as bam

where avg_cells(bam.data) > 127

Such languages allow formulating statistical and

imaging operations which can be expressed analytically

without using loops. In [6] it has been proven that the

expressive power of such array languages in principle is

equivalent to relational query languages with ranking.

Physical Modeling

In almost all practically relevant scenarios, array

objects are by orders of magnitude larger than disk

blocks. The foremost task for an array storage manager

is to preserve spatial proximity on disk. For n-D data

this obviously is impossible to achieve on a linear

storage space, hence approximations need to be

employed. One such technique is tiling, adopted

from imaging. Tiling (also called chunking) partitions

an n-D cube into a set of non-overlapping n-D sub-

cubes (Fig. 2), each of which is stored in a BLOB in the

traditional manner. The partitioning pattern can be

chosen freely, which opens up a wide space for storage

optimization. In the most simple case, equally sized

tiles are employed where the tile size is chosen suitably

for the disk and bus specs; an advanced alternative is to

determine an optimal tile distribution with individual

tile proportions and sizes for a given query set.

A spatial index, such as the R-Tree, helps to quickly

determine the tiles affected by a query, which usually is

a range query. As opposed to spatial (i.e., vector) data-

bases the situation is simple: the target objects, which
igure 2. Sample tiling of 2-D and 3-D arrays.

2336R Raster Data Management and Multi-Dimensional Arrays
have a regular box structure, partition a space of

known extent. Hence, almost any spatial index will

perform decently.

Often compression of tiles is advantageous. Still, in

face of very large array databases tertiary storage may

be required, such as tape robots [10,11].

Query Evaluation

A tile-based storage structure suggests a tile-by-tile

processing strategy. Indeed a large class of practically

relevant queries can be evaluated by inspecting a tile

stream, rather than loading the whole source object

into main memory. Additionally, for some query types

such as condensers, tile streaming can be terminated

prematurely.

It turns out that array query evaluation times typi-

cally are CPU bound, except for the very rare cases

where only domain subsetting and no processing is

required. The reason lies in the large number of array

cells to be processed per query. Preliminary results

show that query parallelization by assigning tiles to

different CPUs yields promising performance gains [5].

Query Optimization

Array queries lend themselves well towards query opti-

mization. Currently only heuristic optimization is rea-

sonably understood, but shows good results. Consider

the query

select avg_cells(a þ b)

from a, b

Figure 3 shows an equivalence rule which can speed up

evaluation: substituting the left-hand side array expres-

sion with the right-hand side yields

select avg_cells(a) þ avg_cells(b)

from a, b
Raster Data Management and Multi-Dimensional

Arrays. Figure 3. Algebraic equivalence rule ‘‘avg_cells

(m1 þ m2) � avg_cells(m1) þ avg_cells(m2).’’
This query involves two array traversals and two (neg-

ligible) scalar operations. Bottom line, three array tra-

versals have been reduced to two this way.
Key Applications
In many cases where some phenomenon is sampled or

simulated, the result is a rasterized data set. Given the

high volumes and multi-faceted retrieval arising, there

is a remarkably wide application domain for array

databases. Briefly, it can be summarized as sensor,

image, and statistics data in the widest sense. Exem-

plarily geo and life sciences will be inspected next.

Earth Sciences

By far, the most important and visible application do-

main for large-scale array information systems is geos-

patial raster data, with high public visibility through

novel, user-friendly interaction techniques like the Vir-

tual Globes of NASAWorldWind (worldwind.arc.nasa.

gov) and GoogleEarth (earth.google.com).

The Open GeoSpatial Consortium (OGC, www.

opengeospatial.org), in collaboration with ISO, OASIS,

W3C and others, provides standards for open, interop-

erable geoWeb service interfaces. OGC develops a family

of modular geo service standards, of which the Web

Coverage Service (WCS) suite is particularly relevant

for raster data (there also called coverage data). It offers

basic subsetting services, scaling, and reprojection. This

static request type is augmented with a coverage proces-

sing language in the Web Coverage Processing Service

(WCPS) Implementation Specification [3].

A typical WCPS request computes the Normalized

Difference Vegetation Index (NDVI), which computes a

measure of the degree of vegetation for each pixel. For a

multi-spectral satellite image s with near-infrared chan-

nel nir and red channel red, the NDVI is defined as:

NDVI(s) = (s.nir - s.red)/(s.nir þ s.red)

The result is a real value between -1 and þ1; the closer

it is to þ1, the higher is the likelihood for vegetation.

For some server object LandsatScene (note that WCPS

lists single objects and does not operate on sets like

database languages) an 8-bit greyscale NDVI image is

specified as follows:

for s in (LandsatScene)

return

encode((char) (255 * (s.nir - s.red)/(s.nir þ s.red) þ 1),

‘‘TIFF’’)

Raster Data Management and Multi-Dimensional Arrays R 2337
Life Science

Human Brain Imaging In human brain imaging, the

research goal is to understand the relations between

brain structure and its function. In experiments,

human subjects have to perform some mental task

while activity parameters such as brain temperature,

electrical activity, and oxygen consumption are

measured by PET or fMRI CAT scans. The resulting

3-D x/y/z data cubes have a resolution of 1 mm and

an overall volume in the Megabyte size. In a computa-

tionally expensive warping operation, the brain images

get normalized against some chosen standard brain so

that organs always sit at known voxel coordinates (Fig. 4

left). In the end, a brain image set as large as possible is

desired to achieve high statistical significance.

Traditionally, feature search is the only property

through standard SQL on structured and semi-

structured data; specialized tools can perform search on

single images or small sets thereof. With array databases,

thousands of experiments each with large image sets can

be searched by brain feature. The brain organs can be

registered as voxel masks (Fig. 4 right). The query types

arising mainly perform standard statistics per brain.

Example: ‘‘A parasagittal view of all scans contain-

ing critical Hippocampus activations, TIFF-coded.’’

Positional parameter $1 denotes the slicing position,

$2 the intensity threshold value, $3 the confidence, as

chosen by a user through some browser interface.
Raster Data Management and Multi-Dimensional Arrays. F

organ masks (right).
select tiff(ht[$1, *:*, *:*])

from HeadTomograms as ht, Hippocampus as mask

where count_cells(ht > $2 and mask)/count_cells

(mask) > $3

Gene Expression Analysis Gene expression is the ac-

tivity of reading out genes for reproduction in a living

body. The research goal in gene expression analysis is

to understand how and when genes express to become

manifest in the phenotype. One step towards this is to

understand the spatio-temporal expression patterns in

a well-known research object, the fruit fly Drosophila

melanogaster.

The staining process delivers activity patterns

(Fig. 5 left). It is common to combine three gene

images into one by randomly assigning them to the

red, green, and blue channel, resp. (Fig. 5 top right).

Traditionally, diagrams like Fig. 5 bottom right are

constructed.

Array queries allow searching the resulting 4-D x/y/

z/t activity cube and generate, among others, the views

researchers are used to. A gene expression database

might contain 4-D objects where the first dimension

lists the fruitfly genes in some chosen order and the

other three spatial dimensions allow addressing into

the fruitfly body. Then, a query can slice these 4-D

cubes and recombine these slices into the aforemen-

tioned RGB overlay.
igure 4. Human brain activation map (left) and brain

R

Raster Data Management and Multi-Dimensional Arrays. Figure 5. Gene activity maps for a fruitfly embryo (left),

overlay into RGB (top right), slice aggregating activity over the 10% central strip of a snapshot (bottom right).

2338R Raster Data Management and Multi-Dimensional Arrays
Example: ‘‘Genes $1, $2, and $3 at time $4, as RGB

images.’’

select jpeg({1c,0c,0c}*e[$1, *:*, *:*, $4]

þ{0c,1c,0c}*e[$2, *:*, *:*, $4]

þ{0c,0c,1c}*e[$3, *:*, *:*, $4])

from EmbryoImages as e

where oid(e) = 193537

Future Directions
Array databases are in their infancy, with many inviting

research avenues. On a conceptual level, a unified alge-

braic array theory seems promising which is to unify

(dense) image handling with (sparse) statistical and

OLAP handling. Advanced query optimization deserves

further investigation, with topics like cost-based optimi-

zation and complex array addressing schemes (such as

filter kernels). Physical tuning parameters are not yet

fully understood in their effects and interplay. Finally,

further experience in as many applications as possible is
desirable for a better understanding of the relevant

query patterns. The ultimate goal is to establish arrays

as first-class database citizens.
Cross-references
▶Biomedical Image Data Types and Processing

▶Digital Elevation Models

▶Discrete Wavelet Transform and Wavelet Synopses

▶Geographic Information System

▶ Image Database

▶ Index Creation and File Structures

▶On-Line Analytical Processing

▶Query Languages and Evaluation Techniques for

Biological SEQUENCE Data

▶Query Load Balancing in Parallel Database Systems

▶Query Optimization

▶Query Processing and Optimization in Object Rela-

tional Databases

▶Query Processing in Data Warehouses

Real and Synthetic Test Datasets R 2339
▶Query Rewriting

▶Query Translation

▶Range Query

▶R-Tree (and Family)

▶ Scientific Databases

▶ Semantic Modeling for Geographic Information

Systems

▶ Spatial and Spatio-Temporal Data Models and Lan-

guages

▶ Spatial Data Analysis

▶ Spatial Data Mining

▶ Spatial Data Types

▶ Spatial Indexing Techniques

▶ Spatio-Temporal Data Warehouses
R

Recommended Reading
1. Baumann P. On the management of multidimensional discrete

data. VLDB J., 4(3):401–444, 1994. Special Issue on Spatial

Database Systems.

2. Baumann P. A database array algebra for spatio-temporal data

and beyond. In Proc. Fourth Int. Workshop on Next Generation

Information Technologies and Systems, 1999, pp. 76–93.

3. Baumann P. and Chulkov G. Web coverage processing service

implementation specification. Jacobs University Technical Re-

port #9, July 2007.

4. Chock M., Cardenas A., and Klinger A. Database structure and

manipulation capabilities of a picture database management

system (PICDMS). IEEE Trans. Pattern Analy. Machine Intell.,

6(4):484–492, 1984.

5. Hahn K., Reiner B, Höfling G., and Baumann P. Parallel query

support for multidimensional data: inter-object parallelism.

In Proc. 13th Int. Conf. on Database and Expert Syst. Appl.

2002, pp. 820–830.

6. Libkin L., Machlin R., and Wong L. A query language for

multidimensional arrays: design, implementation and optimiza-

tion techniques. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1996, pp. 228–239.

7. Machlin R. Index-based multidimensional array queries:

safety and equivalence. In Proc. 27th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2008, pp.

175–184.

8. Marathe A. and Salem K. A language for manipulating arrays. In

Proc. 23th Int. Conf. on Very Large Data Bases, 1997, pp. 46–55.

9. Mennis J., Viger R., and Tomlin C.D. Cubic map algebra func-

tions for spatio-temporal analysis. Cartogr. Geogr. Inf. Sci.,

32(1):17–32, 2005.

10. Reiner B. and Hahn K. Hierarchical storage support and man-

agement for large-scale multidimensional array database man-

agement systems. In Proc. 13th Int. Conf. Database and Expert

Syst. Appl., 2002, pp. 689–700.

11. Sarawagi S. and Stonebraker M. Efficient organization of large

multidimensional arrays. In Proc. 10th Int. Conf. on Data Engi-

neering, 1994, pp. 328–336.
Raster Databases

▶Raster Data Management and Multi-Dimensional

Arrays
RBAC

▶Role Based Access Control
RBAC Standard

▶ANSI/INCITS RBAC Standard
RDF

▶Resource Description Framework
Reactive Rules

▶ ECA Rules
Read/Write Model

▶Transaction Models – The Read/Write Approach
Real and Synthetic Test Datasets

THOMAS BRINKHOFF

Institute for Applied Photogrammetry and

Geoinformatics (IAPG), Oldenburg, Germany

Synonyms
Spatio-temporal data generator; Spatio-temporal

benchmarking

Definition
In the area of mobile and ubiquitous datamanagement,

real and synthetic test datasets are used for experi-

mental investigations of performance and robustness.

2340R Real and Synthetic Test Datasets
Typical applications are the examination of access

methods for spatio-temporal databases and the simu-

lation of mobility for location-based services. Besides

synthetic and real datasets, combinations of these two

types of data are often used that integrate a predefined

infrastructure.

Historical Background
Beginning in the mid 1990s, the development of algo-

rithms and data structures for spatio-temporal data

took place of the research in the field of pure (geo-)

spatial applications. Previous spatial test datasets were

not sufficient for investigating the performance and

robustness of those algorithms and data structures.

Consequently, first data generators for spatio-temporal

test datasets were published in the end of the 1990s.

Foundations
Comprehensible performance evaluations are an

important requirement in the field of mobile and ubiq-

uitous data management. This demand covers the pre-

paration and use of well-defined test datasets and

benchmarks enabling the systematic and comprehensi-

ble evaluation and comparison of algorithms and data

structures in this area.

In experimental investigations, synthetic data follow-

ing some statistical distributions as well as data from

real-world applications are used as test datasets. The use

of synthetic datasets allows testing the behavior of an

algorithm or of a data structure under exactly specified

conditions or in extreme situations. In addition, for

testing the scalability, synthetic data sets are often suit-

able. However, it is difficult to assess the performance of

real applications by employing synthetic data. The use of

real datasets tries to solve this problem. In this case, the

selection of the data is crucial. For non-experts it is often

difficult to decide whether a dataset reflects a ‘‘realistic’’

situation or not. Furthermore, real datasets are typically

connected with a special type of application. For exam-

ple, a dataset recording cars driving within a city may

have completely different properties than the traffic in

rural areas or the movement of vehicles in battlefields.

In the area of mobile and ubiquitous data mana-

gement, infrastructure-based dataset generators have

become popular. These generators compute moving

objects that are restricted by some infrastructure like

a network or prohibited areas. The infrastructure may

be a real-world dataset or completely artificial. The

number, distribution, speed and other properties of
the moving objects are influenced by the infrastructure

as well as by parameters specified by the user of the

generator. Dataset produced by infrastructure-based

dataset generators are a compromise between real

and synthetic datasets in respect of realism on the

one hand and of controllability on the other hand.

Synthetic Datasets

A prominent example for a program providing synthetic

spatio-temporal test datasets is the GSTD (Generate

SpatioTemporal Data) algorithm by Theodorides,

Silva and Nascimento [8]. The basic idea of this algo-

rithm is to start with a distribution of point or rectangu-

lar objects, e.g., a uniform, a Gaussian or a skewed data

distribution. These objects are modified by computing

positional and shape changes using parameterized ran-

dom functions. If amaximum time stamp is exceeded, an

object will become invalid. If an object leaves the

predefined spatial data space, different approaches can

be applied: the position remains unchanged, the position

is adjusted tofit into thedata space, or theobject re-enters

the data space at the opposite edge of the data space.

In order to create more realistic movements, a later

version of the GSTD algorithm considers rectangles

for simulating an infrastructure: each moving object has

tobeoutside of these rectangles.

The Oporto generator by Saglio and Moreira [7]

is designed for a specific scenario: fishing at sea. The

generator supports different object types, which allow

modeling different behavior. In order to generate

smoothmovements, objects of one typemay be attracted

(e.g., fish by plankton) or repulsed by objects of other

types (e.g., ships by stormy areas).

G-TERD (Generator for Time-evolving Regional

Data) by Tzouramanis, Vassilakopoulos and Manolo-

poulos [9] generates two-dimensional raster data (see

Fig. 1). The user can control the behavior of the gener-

ator by defining parameters and statistical models. The

parameters influence the color, the maximum speed,

size and rotation of the moving regions. Other moving

or static objects may have impact on the speed and on

the direction of a moving object.

Real Datasets

There exist many spatio-temporal datasets in the

WWW [6]. Very often GPS positions of cars or other

vehicles like buses, trains or bikes are recorded. An

example is the INFATI dataset from the Aalborg Uni-

versity [3]. It represents a collection of spatio-temporal

Real and Synthetic Test Datasets. Figure 1. Raster regions generated by G-TERD.

Real and Synthetic Test Datasets R 2341

R

data that was collected for a project about intelligent

speed adaptation. The dataset contains the GPS tracks

of about two dozen cars equipped with GPS receivers

and logging equipment.

Other popular objects are animals equipped with

active satellite tags, e.g., whales, sharks and turtles. The

recordings of weather phenomena like hurricanes

and the orbits of satellites can also be used as spatio-

temporal test datasets.

The section ‘‘Data Sets’’ of this entry gives a

small overview on real datasets that are provided for

download.

Datasets from Infrastructure-Based Generators

The Network-based Generator by Brinkhoff [1] is

based on the observation that the motion of objects

is often restricted by a network. Examples are streets,

railways, air corridors or waterways. Therefore, the

generator computes moving objects according to a

network that is provided by a file or by a spatial

database (see Fig. 2). For each edge of the network, a

speed limit and a maximum capacity can be defined. If

the number of objects traversing an edge at the same

time exceeds the specified capacity, the speed limit

on this edge may decrease. In addition, each moving

object has a (maximum) speed. The computations of

the number of new objects per time stamp, of the start

location, of the length of a new route and of the

location of the destination are done by time-dependent

Java functions that can be overloaded by the user of

the generator. This concept allows modeling daily com-

muting and rush hours. The route of a moving object is

computed at the time of its creation. However, the fastest
path may change over the time by the motion of other

objects and of other influences. Therefore, the re-compu-

tation of a route is triggered by events depending on the

travel time and on the deviation between the current

speed and the expected speed on an edge.

The City Simulator by Kaufman, Myllymaki, and

Jackson [4] is a scalable, three-dimensional model city

that enables the creation of dynamic spatial data simu-

lating the motion of up to one million moving objects.

The data space of the city is divided into different types

of places that influence the motion of the moving

objects: roads, intersections, lawns and buildings are

such places that define together a city plan (see Fig. 3).

Each building consists of an individual number of

floors for modeling the third dimension.

SUMO (Simulation of Urban Mobility) [5] devel-

oped by Institute of Transport Research at the German

Aerospace Center and the Center for Applied Infor-

matics (ZAIK) is open-source software for traffic sim-

ulation. Its objective is to support the traffic research

community with a common platform for testing and

comparing models of vehicle behavior, traffic light

optimization, routing etc. Therefore, the car move-

ment model of SUMO is much more evaluated than

the models of the other generators.

Key Applications
The primary field of application of the presented test

datasets is the evaluation of spatio-temporal databases,

but also in other fields the datasets are used. According

to Citeseer and the ACM Portal, applications cover

(among others) the evaluation of spatio-temporal

data structures, the analysis of spatio-temporal queries

Real and Synthetic Test Datasets. Figure 2. Demo of the network-based generator.

2342R Real and Synthetic Test Datasets
and of mobility patterns, the simulation of wireless

environments by mobile agents, the design of (web)

server architectures for moving objects, and the test of

car-to-car communication.

Future Directions
It can be expected that spatio-temporal test datasets

will be more often used for evaluations of sensor
networks, peer-to-peer communication and position-

ing techniques.
Data Sets
INFATI Dataset: http://arxiv.org/abs/cs.DB/0410001

Pfoser, D. Where can I get spatio-temporal data?

http://dke.cti.gr/people/pfoser/data.html

Real and Synthetic Test Datasets. Figure 3. Visualization of a city plan by the city simulator.

Real and Synthetic Test Datasets R 2343

R

Sea Turtle Migration-Tracking:

http://www.cccturtle.org/satellitetracking.php

Unisys Weather – Hurricane/Tropical Data: http://

weather.unisys.com/hurricane/index.html

WhaleNet: http://whale.wheelock.edu/whalenet-stuff/

stop_cover.html

URL to code
GSTD: see http://www.cs.ualberta.ca/~mn/ for further

notices

G-TERD: http://delab.csd.auth.gr/stdbs/g-terd.html

Network-based generator: http://www.fh-oow.de/

institute/iapg/personen/brinkhoff/generator/

Oporto: http://www.inf.enst.fr/~saglio/etudes/oporto/

SUMO: http://sumo.sourceforge.net/

Cross-references
▶Geographic Information System

▶ Indexing Historical Spatio-temporal Data

▶ Indexing of the Current and Near-Future Positions

of Moving Objects

▶ Location-based services (LBS)
▶Moving Objects Databases and Tracking

▶Road Networks

▶ Spatial and Spatio-temporal Data Models and

Languages

▶ Spatial Network Databases

▶ Spatio-Temporal Trajectories
Recommended Reading
1. Brinkhoff T. A framework for generating network-based

moving objects. GeoInformatica, 6(2):153–180, 2002.

2. Jensen C.S (ed.). Special issue on infrastructure for research in

spatio-temporal query processing. Bull. Tech. Comm. Data Eng.,

26(2):51–55, 2003.

3. Jensen C.S., Lahrmann H., Pakalnis S., and Runge J. The INFATI

Data, 2004. Available at: http://oldwww.cs.aau.dk/research/DP/

tdb/TimeCenter/TimeCenterPublications/TR-79.pdf

4. Kaufman J., Myllymaki J., and Jackson J. City Simulator. IBM

alphaWorks emerging technologies, 2001. Available at: https://

secure.alphaworks.ibm.com/aw.nsf/techs/citysimulator

5. Krajzewicz D., Hertkorn G., Rössel C., and Wagner P. SUMO

(Simulation of Urban MObility): an open-source traffic

simulation. In Proc. of the Fourth Middle East Symp. on Simu-

lation and Modelling, 2002, pp. 183–187.

2344R Real-Time Transaction Processing
6. Nascimento M.A., Pfoser D., and Theodoridis Y. Synthetic and

real spatiotemporal datasets. Q. Bull. IEEE TC on Data Engi-

neering, 26(2):26–32, 2003.

7. Saglio J.-M. and Oporto M.J. A realistic scenario generator for

moving objects. GeoInformatica, 5(1):71–93, 2001.

8. Theodoridis Y., Silva J.R.O., and Nascimento M.A. On the

generation of spatiotemporal datasets. In Proc. Int. Symp. on

Large Spatial Databases, 1999, pp. 147–164.

9. Tzouramanis T., Vassilakopoulos M., and Manolopoulos Y.

On the generation of time-evolving regional data. GeoInfor-

matica, 6(3): 207–231, 2002.
Real-Time Transaction Processing

JÖRGEN HANSSON
1, MING XIONG

2

1Carnegie Mellon University, Pittsburgh, PA, USA
2Bell Labs, Murray Hill, NJ, USA

Synonyms
Time-constrained transaction management

Definition
Real-time transaction processing focuses on (i) enfor-

cing time constraints of transactions, i.e., meet time con-

straints on invocation and completion, and (ii) ensuring

temporal consistency of data, i.e., data should be valid/

fresh at the timeofusage.

The successful integration of time-cognizant

behavior and transaction processing into a database

system is generally referred to as a real-time database

system (RTDB).

Historical Background
The area of real-time transaction processing has emerged

from the need for real-time systems, which often are

safety-critical, to handle large amounts of data in a

systematic fashion, and the increasing expectation of

non-critical applications that have used conventional

databases but are now needed to deal with ‘‘soft’’ real-

time data applications, e.g., multimedia. Real-time sys-

tems have traditionally managed data in an ad hoc

manner, i.e., system developers have stored andmanipu-

lated data in regular data structures resident in the

application code. This approach does not scale well as

applications increase in complexity and in their needs

for managing large amounts of data. Conventional data-

bases, however, are considered inadequate for handling

real-time requirements. Conventional databases impose
a throughput-centric design, e.g., maximizing average

throughput, and is thus not concerned about the specific

outcome of a transaction (in fact, transactions are con-

sidered equally important). Furthermore, conventional

databases are general-purpose transaction processing

system design to be satisfy the needs of a multitude of

non-real-time applications. In contrast, a predominant

part of the real-time systems are very resource limited,

normally these systems have a couple of orders of mag-

nitude less resources, e.g., primary memory, and are not

using hard disks. Thus, system functionality need to be

tailored to application-specific needs to accommodate a

minimum footprint and overcome different architectur-

al assumptions and data requirements.

Note that the term real-time has many connota-

tions in industry and in the general literature it is often

used interchangeably to denote that something is fast.

This differs from the notion used here, where real-time

is synonymous to the notion of predictability. The

notion of real-time indicates that the correctness of a

result depends not only on the logical result of its

computation but also on the time at which the result

is derived. Thus, the system correctness depends both

on the functional and temporal behavior of the system

execution. The temporal behavior is tightly connected

to the time constraints associated with transactions

and data, e.g., deadlines. This requires that a transac-

tion management system needs to enforce that the

timeliness of transactions and data, in turn requiring

that scheduling and concurrency control algorithms

are time-cognizant.

Examples of real-time applications are control

systems, multimedia, to air-traffic control, and as

evident, these applications differ in their real-time

requirements, complexity, and the type of data they

manage. In order to maintain external/internal cor-

rectness, real-time systems have to respond to input

stimuli and by an actuator, i.e., produce an output

result/action within a finite and sufficiently small

time bound. These systems must feature predictability,

i.e., the ability to show that the system meets the

specified requirements under various conditions the

system is expected work under [11].

Several research platforms have developed, e.g.,

ARTS-RTDB & BeeHive (both from University of

Virginia,USA),COMET(LinköpingUniversity,Sweden),

DeeDS (University of Skövde, Sweden), REACH

(Technical University of Darmstadt, Germany), Rodain

Real-Time Transaction Processing R 2345

R

(University of Helsinki, Finland), and STRIP (Stanford

University,USA).

Foundations
Real-transaction processing systems operate under and

are benchmarked against different performance goals,

correctness criteria, and assumptions applications than

throughput-centric systems. The performance metrics

adopted for real-time transaction processing system

reflect that real-time transactions have time constraints

on the execution, and the validity of the data. These

requirements impose constraints on the system, which

is reflected in the performance metrics used for mea-

suring the timeliness of the system, in addition to con-

ventional metrics for measuring consistency. Typical

performance metrics, out of which several originate

from the area of real-time systems, include deadline

miss ratio of transactions, tardiness/lateness of tran-

sactions, cost/effects due transactions missing their

deadlines, data temporal consistency (external and logi-

cal). The requirements of timeliness can exceed

that of consistency and isolation, i.e., it might be more

important to deliver a result of adequate precision/qual-

ity in time than delivering an exact result late. This

implies that correctness of a result can be traded for

timeliness by relaxing consistency (referring to ACID

properties).

Transaction Model

Real-time transactions are typically characterized

along the dimensions of the temporal scope, criticality,

and transaction type.

The temporal scope of a transaction is typically de-

scribed by an arrival time ai, a release time ri, a (worst

case) execution time ei, and a deadline di, where the

following conditions hold (the times are expressed as

absolute variables): ai� ri < di, ri + ei� di. A system is,

thus, considered schedulable if it can be shown that

all transactions can meet their deadlines.

Real-time transactions can be categorized given the

criticality and the stringency of meeting their deadlines

and the notions of hard, firm, and soft deadlines are

generally used. A hard deadline is critical and, thus, the

transaction must always complete within the deadline.

Missing a hard deadline will have severe or even cata-

clysmal consequences. In contrast, firm and soft dead-

lines are used to for transactions when it system can

tolerate occasional time constraint violations. The
distinction between them is in the utility of completing

a task after its deadline; a soft deadline indicates there

is often value of completing the task albeit late. A firm

deadline indicates that there is no value for late com-

pletion and tardy transactions, i.e., tasks running be-

yond their deadline, can thus be aborted to minimize

resource usage.

Transactions may have precedence constraints that

put constraints on the relative order of execution

among transactions.

The temporal consistency of a data object has two

parts: absolute consistency, which reflects the state of an

external environment and how that state is reflected in

the database, and relative consistency, which concerns

the consistency among data elements used to derive

other data. Thus, absolute consistency (a.k.a. external

consistency) is necessary to ensure that a system’s view

of the external environment (e.g., the controlled sys-

tem) is consistent with the actual state of the environ-

ment. Relative consistency (a.k.a. logical consistency)

ensures that only valid data is used to derive new

data. To express temporal consistency, a real-time

data object oj is annotated with an absolute validity

interval avij denoting the time length and a timestamp

tsj when the data object was last updated/sampled.

The data object is considered valid in the time interval

[tsj, tsj + avij].

To define the notion of a relative validity interval

rvi, a relative consistency set R is introduced for each

derived data object, which contains the set of data

objects used for its derivation. Furthermore, each

such set is has a relative validity interval denoted Rrvi.

A data object oj is temporally consistent if the following

two conditions hold: (i) (t + tsj) � avij (absolute

consistency) and (ii) (assume R is the set for oj) for

all ok2R| tsj– tsk | � Rrvi.

Concurrency Control

A conventional non-real-time two-phase-locking

scheme (2PL) is prone to priority inversion, unknown

blocking times, and deadlocks, making it infeasible in a

real-time context. Priority inversion occurs when a

high-priority transaction is blocked due to a resource

locked by a low-prioritized transaction. Thus, the

high-priority transaction experiences blocking delays

that can jeopardize this timeliness. Several 2PL variants

have been developed to overcome these deficiencies,

and the most well-known scheme is two-phase-locking

2346R Real-Time Transaction Processing
with high priority resolution (2PL-HP). Consider the

case a transaction TR is requesting a lock, which is held

by another transaction TH. In 2PL-HP, TR will abort

TH if the priority of TR exceeds that of TH; otherwise

TR will wait until TH completes. There are additional

schemes that deploy more elaborate conditions to

avoid that a process is aborted unnecessarily, e.g., con-

sidering the remaining execution time of TR and the

needed execution time of TR.

In real-time optimistic concurrency control

(OCC), transactions execute in three stages: read, vali-

dation, and write. In the read stage, transactions read

and update data items freely, storing their updates into

private workspaces. Note that the updates of a transac-

tion stored in the private workspaces are installed as

global copies in the write stage (i.e., after the transac-

tion is validated). In the validation stage, a validating

transaction may conflict with ongoing transactions.

Depending on the transaction characteristics, there

are several real-time conflict resolution mechanisms

for the validation [5], i.e., a validating transaction

may commit, abort, or be ‘‘put on the shelf ’’ to wait

for the conflicting transactions.

In priority-wait conflict resolution mechanism [5],

which is demonstrated to have superior performance

for OCC, a transaction that reaches validation and

finds higher priority transactions in its conflict set is

‘‘put on the shelf ’’, that is, it is made to wait and not

allowed to commit immediately. This gives the higher

priority transactions a chance to make their deadlines

first. After all conflicting higher priority transactions

leave the conflict set, either due to committing or due

to aborting, the on-the-shelf waiter is allowed to com-

mit. Note that a waiting transaction might be restarted

due to the commit of one of the conflicting higher

priority transactions.

Distributed Real-Time Transaction Processing The

distributed transaction execution model for a real-

time two-phase commit protocol is presented next. A

commonly adopted sub-transaction model has been

presented [4] in which there is one process, called the

master, which is executed at the site where the transac-

tion is submitted, and a set of other processes, called

cohorts, which execute on behalf of the transaction

at the various sites that are accessed by the transac-

tion. Cohorts are created by the master sending a

STARTWORKmessage to the local transaction manager

at that site. This message includes the work to be done at
that site and is passed on to the cohort. Each cohort

sends a WORKDONE message to the master after it has

completed its assigned data processing work. Themaster

initiates the commit protocol (only) after it has received

this message from all its cohorts. Within the above

framework, a transaction may execute in either sequen-

tial or parallel fashion. The distinction is that cohorts in a

sequential transaction execute one after another, whereas

cohorts in a parallel transaction execute concurrently.

Real-Time Two-Phase Commit The master imple-

ments the classical two-phase commit protocol [3] to

maintain transaction atomicity. In this protocol, the

master, after receiving the WORKDONE message from

all its cohorts, initiates the first phase of the commit

protocol by sending PREPARE (to commit) messages

in parallel to all its cohorts. Each cohort that is ready to

commit first force-writes a prepare log record to its

local stable storage and then sends a YES vote to the

master. At this stage, the cohort has entered a prepared

state wherein it cannot unilaterally commit or abort

the transaction, but has to wait for the final decision

from the master. On the other hand, each cohort that

decides to abort force writes an abort log record and

sends a NO vote to the master. Since a NO vote acts

like a veto, the cohort is permitted to unilaterally abort

the transaction without waiting for the decision from

the master.

After the master receives votes from all its cohorts,

the second phase of the protocol is initiated. If all the

votes are YES, the master moves to a committing state

by force-writing a commit log record and sending

COMMIT messages to all its cohorts. Each cohort,

upon receiving the COMMIT message, moves to the

committing state, force-writes a COMMIT log record,

and sends an ACK message to the master. On the other

hand, if the master receives one or more NO votes, it

moves to the aborting state by force-writing an abort

log record and sends ABORTmessages to those cohorts

that are in the prepared state. These cohorts, after

receiving the ABORT message, move to the aborting

state, force-write an abort log record and send an ACK

message to the master. Finally, the master, after receiv-

ing ACKs from all the prepared cohorts, writes an

end log record and then ‘‘forgets’’ the transaction (by

removing from virtual memory all information asso-

ciated with the transaction).

A real-time two-phase commit protocol such as

PROMPT (Permits Reading Of Modified Prepared

Real-Time Transaction Processing R 2347
data for Timeliness) [6], works differently from tradi-

tional two-phase commit protocol in that transactions

requesting data items held by other transactions in

the prepared state are allowed to access this data.

That is, prepared cohorts lend their uncommitted

data to concurrently executing transactions (without

releasing the update locks) in the optimistic belief

that this data will be committed. If the lender is

aborted later, the borrower is also aborted since it has

utilized dirty data. On the other hand, if the borrowing

cohort completes its local data processing before the

lending cohort has received its global decision, the

borrower is ‘‘put on the shelf ’’, that is, it is made to

wait until either the lender receives its global decision

or its own deadline expires, whichever happens earlier.

In this case, the borrower can only commit if the lender

commits.

In contrast to centralized databases where transac-

tions that validate successfully always commit, a

distributed transaction that is successfully locally vali-

dated might be aborted later because it fails during

global validation. This can lead to ’’wasteful’’ aborts of

transactions–a transaction that is locally validated may

abort other transactions in this process. If this transac-

tion is itself later aborted during global validation,

it means that all the aborts it caused during local

validation were unnecessary.
R

Key Applications
The number of real-time applications that handle real-

time data is large. Thus, a range of applications that

manage data with temporal constraints is given in the

following.

	 Air-traffic control systems. This system is used to

monitor air-traffic around an airport, which

requires continuous monitoring of aircraft posi-

tions and weather data, as well as (non-real-time)

data of different aircraft types.

	 Control system. A specific case is an engine con-

trol system, which approximately uses readings of

twenty sensors, and these sensor values are funda-

mental in the computation of 400 other variables,

where the validity of the derived data is a function

of the sensed value. Derived data is used control the

mixture of fuel and air in the ignition, as well as

diagnostics.

	 Wireless networking systems for retrieval of sub-

scriber information such as service subscription
and device location stored in Home Location Reg-

ister (HLR) as well as billing information in the

case of prepaid phone calls. For example, the net-

work communication protocols have various

timers for call delivery that may cause connection

failure if information is not retrieved before a trans-

action deadline.
Future Directions
The increasing number of applications that handle

large amounts of real-time data calls for a strong sup-

port from the underlying transaction processing sys-

tem to satisfy timeliness and consistency requirements.

The development of time-cognizant concurrency

control and scheduling algorithms has provided a

foundation for real-time transaction processing sys-

tems. There are several challenging areas where prog-

ress would be conducive to enforce the predictability,

and below a few examples are provided

	 The underlying assumption which most real-time

scheduling approaches build upon is the knowledge

of the worst-case execution times of the transac-

tions, either a priori to the system starts its execu-

tion or they are made available upon their arrival to

the system. The dynamic nature of transaction

workloads can cause the system to experience tran-

sient overloads. Techniques that are shown to effec-

tively manage the uncertainty of execution times or

can measure tight and not overly conservative

worst case execution times would increase schedul-

ability and resource utilization, as well as techni-

ques for resolving and minimizing the effects of

transient overloads.

	 Extended transaction models supporting relaxed

ACID properties. Enforcement of ACID in real-

time applications has shown to be costly, jeopardize

timeliness, and does not utilize the potential paral-

lelism that can be exploited by relaxation of the

ACID properties. This has resulted in the develop-

ment of, e.g., epsilon-serializability and the notion

of data similarity. There is a need for additional

application-centric consistency that would capture

the tolerance of the applications and the presence

of multiple models coexisting in parallel.

	 Transaction scheduling for guaranteeing data tempo-

ral consistency. There is need to maintain coherency

between the state of the environment and data

used in applications such as control systems.

2348R Real-World Time
For example, in order to react to abnormal situations

in time, it is necessary to monitor the environment

continuously. Such requirements pose a great chal-

lenge for maintaining the freshness of data while

scheduling transactions to meet their deadlines.

	 The notion of data precision and data confidence

are becoming increasingly important in real-time

applications, i.e., data is annotated with additional

attributes to represent the confidence in the data

value, (i.e., the level of trust in how the data was

derived) and the precision/accuracy of the data. It is

unclear how these two notions can be effectively

used as decision parameters for concurrency con-

trol and schedulability.
Cross-references
▶ACID Properties

▶Temporal Consistency
Recommended Reading
1. Abbott R. and Garcia-Molina H. Scheduling real-time transac-

tions: a performance evaluation. In Proc. 14th Int. Conf. on Very

Large Data Bases, 1988.

2. Bestavros A. and Fay-Wolfe V. Real-Time Database and Infor-

mation Systems – Research Advances. Kluwer Academic

Publishers, MA, USA, 1997.

3. Carey M. and Livny M. Conflict detection tradeoffs for repli-

cated data. ACM Trans. Database Syst., 16:703–746, 1991.

4. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, CA, USA, 1992.

5. Haritsa J., Carey M., and Livny M. Data access scheduling in

firm real-time database systems. J. Real-Time Syst., 4: 203–241,

1992.

6. Haritsa J., Ramamritham K., and Gupta R. The PROMPT

real-time commit protocol. IEEE Trans. Parall. Distr. Syst.,

11(2):160–181, 2000.

7. Ramamritham K. Real-time databases. Int. J. Distr. Parall.

Databases, 1, (2) 1993.

8. Ramamritham K., Son S.H., and Cingiser D.L. Real-Time

databases and data services. Real-Time Syst. J., 28:179–215, 2004.

9. Son S.H. Advances in Real-Time Systems. Prentice-Hall, NJ,

USA, 1995.

10. Soparkar N., Korth H.F., and Silberschatz A. Time-Constrained

Transaction Management – Real-Time Constraints in Database

Transaction Systems. Kluwer Academic Publishers, MA,

USA, 1996.

11. Stankovic J. and Ramamritham K. What is Predictability

for Real-Time Systems? Real-Time Syst., 2(4):247–254, 1990.

12. Xiong M., Han S., and Lam K.-Y. A Deferrable Scheduling

Algorithm for Real-Time Transactions Maintaining Data

Freshness. In Proc. 26th IEEE Real-Time Systems Symp., 2005,

pp. 27–37.
Real-World Time

▶Valid Time
Reasoning with Qualitative
Temporal Constraints

▶Qualitative Temporal Reasoning
Recall

ETHAN ZHANG
1,2, YI ZHANG

1

1University of California, Santa Cruz, Santa Cruz,

CA, USA
2Yahoo! Inc., Santa Clara, CA, USA

Definition
Recall measures the coverage of the relevant docu-

ments of an information retrieval (IR) system. It is

the fraction of all relevant documents that are re-

trieved. Consider a test document collection and an

information need Q. Let R be the set of documents in

the collection that are relevant to Q. Assume an IR

system processes the information need Q and retrieves

a document set A. Let jRj and jAj be the numbers of

documents in R and A, respectively. Let jR \ Aj denote
the number of documents that are in both R and A.

The recall of the IR system for Q is defined as R = jR \
A j ∕ jRj.
Key Points
Precision and recall are the most frequently used and

basic retrieval performance measures. Many other

standard performance metrics are based on the two

concepts.
Cross-references
▶ Eleven Point Precision-recall Curve

▶ F-Measure

▶ Precision

▶ Standard Effectiveness Measures

Receiver Operating Characteristic R 2349
Receiver Operating Characteristic

PANG-NING TAN

Michigan State University, East Lansing, MI, USA

Synonyms
Operating characteristic; Relative operating

characteristic; ROC
R

Definition
Receiver operating characteristic (ROC) analysis is a

graphical approach for analyzing the performance of a

classifier. It uses a pair of statistics – true positive rate

and false positive rate – to characterize a classifier’s

performance. The statistics are plotted on a two-

dimensional graph, with false positive rate on the

x-axis and true positive rate on the y-axis. The result-

ing plot can be used to compare the relative perfor-

mance of different classifiers and to determine whether

a classifier performs better than random guessing.

Historical Background
ROC analysis was originally developed in signal detec-

tion theory to deal with the problem of discriminating

known signals from a random noise background [11].

It was first applied to the radar detection problem to

quantify how effective targets such as enemy aircrafts

can be identified according to their radar signatures. In

the 1960s, ROC analysis was applied to experimental

psychology and psychophysics [6]. The approach has

subsequently found its application in a variety of areas

including radiology, epidemiology, finance, weather

forecasting, and social sciences. In machine learning,

the benefits of using ROC analysis for evaluating

and comparing the performance of classifiers was first

demonstrated by Spackman [14]. The approach was

brought to the attention of the data mining commu-

nity by Provost and Fawcett [12], who proposed the

idea of using a convex hull of ROC curves to com-

pare multiple classifiers in imprecise and changing

environments.

Foundations
Predictive accuracy has traditionally been used as the

primary evaluation measure for classifiers. However, its

limitation is well-documented, particularly for data sets

with skewed class distributions [12]. ROC analysis pro-

vides an alternative way for measuring performance by
examining the trade-off between the successful detection

of positive examples and themisclassification of negative

examples. The approach was originally developed for

binary classification problems, where each example is

assigned to either a positive or a negative class. When

applying the classifier to a given example, four possible

outcomes may arise: (i) true positive (TP), when a posi-

tive example is classified correctly, (ii) true negative

(TN), when a negative example is classified correctly,

(iii) false positive (FP), when a negative example is

misclassified as positive, and (iv) false negative (FN),

when a positive example is misclassified as negative.

These outcomes can be tabulated in a 2 � 2 table

known as the confusion matrix, as shown in Table 1.

An ROC graph is constructed by examining the

true positive rate and false positive rate of a classifier.

The true positive rate (TPR), also known as hit rate or

sensitivity, corresponds to the proportion of positive

examples that are correctly labeled by the classifier,

whereas the false positive rate (FPR), also known as

false alarm rate, corresponds to the proportion of

negative examples that are incorrectly labeled. Mathe-

matically, these statistics are computed from a given

confusion matrix as follows:

TPR ¼ TP

TPþ FN
ð1Þ

FPR ¼ FP

FPþ TN
ð2Þ

The number of points in an ROC graph depends on the

type of output produced by the classifier. A classifier

that produces a discrete-valued output is mapped to a

single point in the ROC graph because there is only one

confusion matrix. Other classifiers such as naı̈ve Bayes

and neural networks can produce numeric-valued out-

puts to indicate the degree to which an example

belongs to the positive class. A threshold must be

specified to determine the class membership – if the

classifier’s output exceeds the threshold, the example is

assigned to the positive class. Each threshold setting

leads to a different point in the ROC graph. By varying

the threshold, a piecewise linear curve, known as the

ROC curve, is formed. For example, the solid line in

Fig.1c shows the ROC curve obtained by varying the

threshold on classification outputs produced by a neu-

ral network classifier.

There are several critical points in the diagram that

are of practical significance. The critical point (FPR = 0,

2350R Receiver Operating Characteristic
TPR = 0) corresponds to an extremely conservative

classifier, i.e., one that assigns every example to the

negative class. In contrast, the critical point (FPR = 1,

TPR = 1) corresponds to a classifier that liberally

declares every example to be positive. Since the ideal

classifier corresponds to the critical point (FPR = 0,

TPR = 1), points closer to the upper-left corner of the
Receiver Operating Characteristic. Table 1. Confusion

matrix for a 2-class problem

Predicted Class

+ �
Actual Class + TP FN

� FP TN

Receiver Operating Characteristic. Figure 1. ROC curve for

neural network.
ROC graph are generally better classifiers. A random

classifier, on the other hand, produces points that reside

along the diagonal line connecting the bottom-left to

the upper-right corner of the ROC graph, as shown by

the dashed line in Fig.1c. For example, a classifier that

randomly assigns one-fourth of the examples to the

positive class has TPR = 0.25 and FPR = 0.25.

An ROC curve X dominates another ROC curve Y

if X lies above and to the left of Y . The more dominant

the ROC curve, the better the classifier is. For example,

Fig.2 shows that classifier A is better than classifiers B

and C because it has a more dominant ROC curve. In

practice, however, one seldom finds an ROC curve that

completely dominates other ROC curves. Instead, one

would find different ranges of FPR values in which

one classifier is better than another. For example,
a two-dimensional data set classified using a single layer

Receiver Operating Characteristic. Figure 2. Performance comparison of classifiers using ROC curve.

Receiver Operating Characteristic. Table 2. Confusion

matrices to illustrate the difference between ROC and

precision-recall curves

(a) Predicted Class

+ �
Actual Class + 35 5

� 25 435

(b) Predicted Class

+ �
Actual Class + 35 5

� 5 455

Receiver Operating Characteristic R 2351

R

in Fig.2, classifier C is better than B when FPR below

0.2 or above 0.95. Therefore, Provost and Fawcett [12]

introduced the ROC convex hull (ROCCH) method to

combine the ROC curves from a set of classifiers to

obtain the most dominant ROC curve. The convex hull

can be used to identify ranges of FPR values in which a

classifier is potentially optimal.

Although an ROC curve provides a visual display of a

classifier’s performance, it is often useful to summarize

the curve into a single metric to estimate the overall

classifier’s performance. By analyzing the statistical prop-

erties of the metric [10], this provides a quantitative way

to determine whether the observed difference in perfor-

mance of two classifiers is statistically significant. Exam-

ples of ROC-derived metrics include area under ROC

curve (AUC), slope intercept index, and the ROC break-

even point. AUC is also equivalent to the Wilcoxon-

Mann-Whitney statistic [7], thus allowing us to compute

its statistical properties such as standard error and confi-

dence interval.

In addition to ROC curves, there are alternative

ways to visualize the performance of a classifier such

as precision-recall curves [2] and cost curves [3]. A

precision-recall curve plots the tradeoff between preci-

sion, which is the fraction of examples classified as

positive that are actually positive, against recall,

which is equivalent to true positive rate. Davis and

Goadrich [2] has shown that a curve that dominates
in the ROC space also dominates in the precision-recall

space. Nevertheless, an ROC curve may not effectively

capture important differences between classifiers when

applied to data sets with skewed class distributions. For

example, the confusion matrices shown in Table 2 have

very similar TPR and FPR values even though their

precision values are very different. The ROC represen-

tation also does not commit to any particular cost

function or class distribution. As a result, it does not

convey information such as the misclassification costs

and class probabilities for which a classifier performs

better than another. To overcome this limitation,

Drummond and Holte [3] proposed the idea of using

cost curves to explicitly represent the cost information.

2352R Recodings
A cost curve plots the expected cost of a classifier

against a probability cost function which is defined as

follows:

Probability Cost

Function
¼ PðþÞCð�jþÞ

PðþÞCð�jþÞ þ Pð�ÞCðþj�Þ

ð3Þ

where P(+) and P(�) are the prior probabilities of each

class, C(�j+) is the cost of misclassifying a positive

example as negative, while C(+j�) is the cost of mis-

classifying a negative example as positive.

Key Applications
ROC analysis has been successfully applied to many

application domains including psychology (in the

studies of perception to resolve the issue of sensory

threshold) [15], radiology (to distinguish between sub-

jective judgment and objective detectability in imaging

systems) [9], and epidemiology [13]. In addition to

classification problems, ROC analysis is also applicable

to other ranking problems such as recommender sys-

tems, information retrieval, and anomaly detection.

Future Directions
Most of the previous work on ROC analysis are limited to

binary class problems. Formulti-class problems, the anal-

ysis is more complicated as the confusion matrix is no

longer a simple 2� 2 table. An obvious way to extend the

approach is to generate a different ROC graph for each

class. However, with this approach, the ROC analysis is no

longer insensitive to the class distribution [4]. Further-

more, combining the AUC statistics from multiple ROC

graphs remains an open problem.

Another research direction that has attracted con-

siderable interests in recent years is designing classifi-

cation algorithms that directly optimize the area under

ROC curve, or equivalently, the Wilcoxon-Mann-

Whitney statistic. For instance, Cortes and Mohri [1]

showed that, under certain conditions, the objective

function optimized by the RankBoost algorithm is

identical to AUC. New algorithms have also been de-

veloped to incorporate AUC into decision tree induc-

tion [5] and support vector machines [8].

URL to Code
The WEKA data mining software provides codes for

plotting ROC curves and cost curves (http://www.cs.

waikato.ac.nz/~ml/weka/.) The software for plotting
ROC convex hull is available at http://home.comcast.

net/~tom.fawcett/public_html/ROCCH/index.html.

Cross-references
▶Area Under ROC Curve

▶Classification

Recommended Reading
1. Cortes C. and Mohri M. Auc optimization vs. error rate mini-

mization. In Advances in Neural Inf. Proc. Syst. 16, Proc. Neural

Inf. Proc. Syst., December 2003.

2. Davis J. and Goadrich M. The relationship between precision-

recall and roc curves. In Proc. 23rd Int. Conf. on Machine

Learning, 2006.

3. Drummond C. and Holte R.C. Explicitly representing expected

cost: an alternative to roc representation. In Proc. 6th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,

2000, pp. 198–207.

4. Fawcett T. An introduction to roc analysis. Pattern Recogn. Lett.,

27(8):861–874, 2006.

5. Ferri C., Flach P.A., and Hernandez-Orallo J. Learning decision

trees using the area under the roc curve. In Proc. 19th Int. Conf.

on Machine Learning, 2002.

6. Green D.M. and Swets J.A. (eds.). Signal Detection Theory and

Psychophysics. Wiley, New York, 1966.

7. Hanley J.A. and McNeil B.J. The meaning and use of the area

under a receiver operating characteristic (roc) curve. Radiology,

143(1):29–36, 1982.

8. Joachims T. A support vector method for multivariate perfor-

mance measures. In Proc. 22nd Int. Conf. on Machine Learning,

2005.

9. Lusted L.B. Signal detectability and medical decision making.

Science, 171, 1971.

10. McNeil B.J. and Hanley J.A. Statistical approaches to the analysis

of the receiver operating characteristic (roc) curves. Med. Decis.

Making, 4(2):137–150, 1984.

11. Peterson W.W., Birdsall T.G., and Fox W.C. The theory of signal

detectability. IRE Trans., PGIT-4, 1954.

12. Provost F.J. and Fawcett T. Analysis and visualization of classifier

performance: comparison under imprecise class and cost distri-

butions. In Proc. 3rd Int. Conf. on Knowledge Discovery and

Data Mining, 1997, pp. 43–48.

13. Sackett D.L. Clinical diagnosis and the clinical laboratory. Clin.

Invest. Med., 1, 1978.

14. Spackman K.A. Signal detection theory: Valuable tools for

evaluating inductive learning. In Proc. 6th Int. Workshop on

Machine Learning, 1989, pp. 160–163.

15. Swets J.A. The relative operating characteristics in psychology.

Science, 182, 1973.
Recodings

▶Matrix Masking

Record Linkage R 2353
Reconciliation-based Data
Replication

▶Optimistic Replication and Resolution
Record Extraction

▶Column Segmentation
R

Record Linkage

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona, Catalonia

Synonyms
Record matching; Re-identification

Definition
Record linkage is a computational procedure for link-

ing each record a in file A (e.g., a file masked for

disclosure protection) to a record b in file B (original

file). The pair (a, b) is a match if b turns out to be the

original record corresponding to a.

Key Points
Record linkage techniques were created for data fusion

and to increase data quality. However, they have also

found an application in measuring the risk of identity

disclosure in statistical disclosure control. In the SDC

context, it is assumed that an intruder has an external

dataset sharing some (key or outcome) attributes with

the released protected dataset and containing addition-

ally some identifier attributes (e.g., passport number,

full name, etc.). The intruder is assumed to attempt to

link the protected dataset with the external dataset using

the shared attributes. The number of matches gives an

estimation of the number of protected records whose

respondent can be re-identified by the intruder. Accord-

ingly, disclosure risk is defined as the proportion of

matches among the total number of records in A.

There are two main types of record linkage used to

measure identity disclosure in SDC: distance-based

record linkage and probabilistic record linkage.

Distance-based record linkage consists of linking

each record a in file A to its nearest record b in file B.

Therefore, this method requires a definition of a
distance function for expressing nearness between

records. This record-level distance can be constructed

from distance functions defined at the level of attri-

butes. Construction of record-level distances requires

standardizing attributes to avoid scaling problems and

assigning each attribute a weight on the record-level

distance. A straightforward choice is to use the Euclid-

ean distance, but other distances can be used.

The main advantages of using distances for record

linkage are simplicity for the implementer and intui-

tiveness for the user. Another strong point is that

subjective information (about individuals or attri-

butes) can be included in the re-identification process

by properly modifying distances.

The main difficulty of distance-based record link-

age consists of coming up with appropriate distances

for the attributes under consideration. For one thing,

the weight of each attribute must be decided and this

decision is often not obvious. Choosing a suitable

distance is also especially difficult in the cases of cate-

gorical attributes and of masking methods such as local

recoding where the masked file contains new labels

with respect to the original dataset.

Like distance-based record linkage, probabilistic

record linkage aims at linking pairs of records (a, b)

in datasets A and B, respectively. For each pair, an

index is computed. Then, two thresholds LT and NLT

in the index range are used to label the pair as linked,

clerical or non-linked pair: if the index is above LT, the

pair is linked; if it is below NLT, the pair is non-linked;

a clerical pair is one that cannot be automatically

classified as linked or non-linked and requires human

inspection. When independence between attributes is

assumed, the index can be computed from the follow-

ing conditional probabilities for each attribute: the

probability P(1jM) of coincidence between the values

of the attribute in two records a and b given that these

records are a real match, and the probability P(0jU) of
non-coincidence between the values of the attribute

given that a and b are a real unmatch.

To use probabilistic record linkage in an effective

way, one needs to set the thresholds LT and NLT and

estimate the conditional probabilities P(1jM) and

P(0jU) used in the computation of the indices. In

plain words, thresholds are computed from: (i) the

probability P(LPjU) of linking a pair that is an un-

matched pair (a false positive or false linkage) and (ii)

the probability P(NPjM) of not linking a pair that is a

match (a false negative or false unlinkage). Conditional

2354R Record Matching
probabilities P(1jM) and P(0jU) are usually estimated

using the EM algorithm.

Cross-references
▶Disclosure Risk

▶ Inference Control in Statistical Databases

▶Microdata

▶Record Matching

Recommended Reading
1. Fellegi I.P. and Sunter A.B. A theory for record linkage. J. Am.

Stat. Assoc., 64(328):1183–1210, 1969.

2. Torra V. and Domingo-Ferrer J. Record linkage methods

for multidatabase data mining. In Information Fusion in Data

Mining, V. Torra (ed.). Germany, Springer, Berlin. 2003,

pp. 101–132.
Record Matching

ARVIND ARASU
1, JOSEP DOMINGO-FERRER

2

1Microsoft Research, Redmond, WA, USA
2The Public University of Tarragona, Tarragona, Spain

Synonyms
Record linkage; Merge-purge; Entity resolution; Data

deduplication; Duplicate detection; Instance identifi-

cation; Name matching

Definition
Record matching is the problem of identifying whether

two records in a database refer to the same real-world

entity. For example, in Fig.1, the customer record A1

in Table A and record B1 in Table B probably refer to

the same customer, and should therefore be matched.

(The example in Fig.1 was adapted from an example in

[21].) As Fig.1 suggests, the same entity can be encoded

in different ways in a database; this phenomenon is fairly

common and occurs due to a variety of natural reasons

such as different formatting conventions, abbreviations,

and typographic errors. Record matching is often stud-

ied in the following setting: Given two relations A and B,

identify all pairs of matching records, one from each

relation. For the two tables in Fig.1, a reasonable out-

put might be the pairs (A1,B1) and (A2,B2). In some

settings of the record matching problem, there is a

constraint that each record of table A be matched

with at most one record of table B. This asymmetric
setting is typically used when records in table B are

‘‘clean’’ and those of table A, ‘‘dirty.’’ The record

matching problem is closely related to the deduplica-

tion problem. The focus of recordmatching is to identify

pairs of matching records while that of deduplication

is to partition records so that records in the same parti-

tion refer to the same entity. In practice, the output

produced by record matching is inaccurate; it is not an

equivalence relation and does not correspond to a natu-

ral partitioning. The above distinction between record

matching and deduplication is often ignored and the two

terms are used synonymously.

Historical Background
Record matching has a rich history dating back to the

work by Newcombe and others [16] in 1959. Fellegi

and Sunter [10] formalize the intuition of Newcombe

and others. Specifically, they cast the record matching

problem as a classification problem that can be stated

as follows: Given a vector of similarity scores between

attribute values for a pair of records, classify the pair

as a match or a nonmatch. For a given attribute, a

similarity score indicates how similar the two records

are on that attribute. A simple similarity measure

assigns a score 1 if the records agree on the attribute

and 0 otherwise. More sophisticated similarity mea-

sures are discussed subsequently. Fellegi and Sunter

[10] use a naive Bayes classifier, but subsequent work

has considered other kinds of classifiers such as deci-

sion trees [7] and SVMs [3]. The classifiers are typically

trained using learning examples comprising of a set

of record pairs, each labeled as a match or a non-match

[3,7,10]. One of the problems with this approach is

that learning examples required to train an accurate

classifier are hard to generate, since they should not

be either obvious matches or obvious non-matches.

Sarawagi and Bhamidipaty [17] address this problem

and propose an approach based on active learning to

interactively identify useful learning examples. Jaro

[13] and Winkler [20] propose an alternate approach

where the classifier is learned in an unsupervised set-

ting without learning examples using a variant of

EM (expectation maximization) algorithm.

A large class of work on record matching has focused

on more sophisticated measures of similarity between

attribute values of records. As mentioned above, these

form the basis for classifying record pairs as a match or

a nonmatch. A variety of classic similarity functions such

as edit distance and variants [5] and cosine similarity with

Record Matching. Figure 1. Record matching example.

Record Matching R 2355

R

tf-idf (term frequency-inverse document frequency)

weights [8] have been used for record matching. Jaro

[12] proposes a more domain specific similarity measure

designed for people names. Sarawagi and Bhamidipaty

[17] propose using a weighted linear combination of

simple similarity functions such as those mentioned

above, and present techniques for learning the weights

using training examples. Bilenko andMooney [3] present

a generalization of edit distance whose parameters can be

learnt from a large text corpus. Arasu and others [1]

present a framework for programmable similarity,

where a similarity function can be programmed to

be sensitive to synonymous words or phrases such

as Robert and Bob or US and United States.

Another body of work on record matching has

focused on efficiency issues. For large inputs, it is im-

practical to exhaustively consider all pairs of records and

check if they are a match or not. Hernandez and Stolfo

[11] present the sorted neighborhood approach, which

linearly orders all the records based on a carefully select-

ed key and considers only pairs of records that are

close to each other in the linear ordering. McCallum

and others [15] present an approach based on canopies,

which are overlapping clusters of the input records. Only

pairs of records within a cluster are checked for a match.

Chaudhuri and others [6] identify set-similarity join

as a useful primitive for large scale record matching.

Foundations

String Similarity

Most record matching approaches are based on the

observation that two matching records have similar

values for their attributes. For example, the records

A2 and B2 have similar names and similar addresses
and the same age, and are therefore likely to bematches.

The similarity between two values is typically deter-

mined using a similarity function that takes two values

and produces as output a number that quantifies the

similarity of the values. String similarity functions that

quantify the similarity between two strings are partic-

ularly relevant for record matching since many attri-

butes in record matching are textual in nature. One of

the earliest and well-known string similarity measure is

edit distance or Levenshtein distance. The edit distance

between two strings s1 and s2 is defined as the smallest

number of edit operations required to produce s2 from

s1, where an edit operation is an insertion, deletion, or

substitution at the character level. For example, the

edit distance between Martinez and Marteenez is

2 since one can derive the second string from the first

using one substitution and one insertion. Edit distance

is often a poor fit for record matching since two strings

representing different entities can have small edit dis-

tance (e.g., 148th Ave NE and 147th Ave NE) and two

strings representing the same entity, a large edit dis-

tance (e.g., 148th Ave NE and 148th Ave

Northeast).

An alternate approach that works well for some

domains is to treat strings as a bag of words (or tokens)

and use a token-based similarity function such as

cosine or jaccard (defined below). For a string s, let

Tokens(s) denote the set of tokens in s. For a token t,

let w(t) denote the weight of token t. The weight of a

token represents its ‘‘importance’’ for the purposes of

computing similarity. The jaccard similarity of two

strings s1 and s2 is defined as:

j Tokensðs1Þ \ Tokensðs2Þ j
j Tokensðs1Þ [Tokensðs2Þ j

2356R Record Matching
For a set S, jSj denotes the weighted cardinality of S,

i.e., the sum of weights of the tokens in B. The cosine

similarity between two strings s1 and s2 is defined as:

jj Tokensðs1Þ \ Tokensðs2Þ jj2
jj Tokensðs1Þ jj2 � jj Tokensðs2Þ jj2

For a set S, jjS jj2 is defined as

ffiP
t2SwðtÞ

2
q

. Token-

based similarity functions differ from edit distance in

two aspects: First, they ignore the ordering of tokens;

for example, 148th Ave NE represents the same bag of

tokens as NE 148th Ave. This feature is desirable in

some domains. For example, the list of authors appears

before the title string in some citations and after the title

in other citations. An order-sensitive similarity func-

tion would produce a low similarity score for two

citation strings referring to the same publication but

with different author-title orderings. Second, token-

based similarity functions are not sensitive to intra-

token edits. Two tokens are considered different even

if they are textually very similar. As mentioned earlier,

this feature is useful in domains such as addresses

where, for example, two street names can differ by a

single character. Token-based similarity functions en-

able weighting of tokens to capture their relative im-

portance. A commonly used weighting scheme is the

idf-based one, where the weight w(t) of a token t is

defined to be log(N∕Nw), where N is the number of

records in a reference table andNw denotes the number

of records in the reference table containing the token t.

With idf-based weighting, the similarity of the pair

(Applecross Rd, Applecross Road) would be

higher than the similarity of the pair (Applecross

Rd, Maltby Rd) although both pairs have one token

that is common to the two strings in the pair. This

happens since the idf-weights of the rarer words

Applecross and Maltby are higher than the weights

for the common words Road and Rd. A related class of

similarity functions is obtained by tokenizing strings to

their character-level n-grams instead of words. For

example, the set of 2-grams of the string Applecross

is: {Ap, pp, pl, le, ec, cr, ro, os, ss}. These

similarity functions share some characteristics with

edit distance since they can capture intra-word edits,

but they are not as order sensitive as edit distance.

A variety of other domain specific similarity

functions have been used for record matching.

These are covered in depth in the survey by Elma-

garmid and others [9] and the tutorial by Koudas

and others [14].
Record Matching

Let R and S denote the input tables of record matching.

The record matching problem can be viewed as a

binary classification problem, where a given pair of

records (r, s), r 2 R and s 2 S, has to be classified either

as a match or a nonmatch. A slight variant, not dis-

cussed here, is to consider a third category possible

match consisting of hard-to-classify pairs that require

manual inspection. One common approach for record

matching is to train a standard binary classifier using

learning examples consisting of a set of record pairs

prelabeled as a match or nonmatch. The original Fellegi

and Sunter approach uses a naive Bayes classifier and is

discussed below. Other kinds of classifiers such as

SVMs [3] and decision trees [7] have also been used.

Fix a record pair (r, s) 2 R � S. Define a similarity

vector x ¼ ½x1;:::; xn�, where each xi denotes the simi-

larity between r and s on some attribute A. The

similarity can be computed using one of the functions

discussed earlier (for string attributes). It can also be

a simple binary value based on equality, i.e., xi = 1

if r and s agree on the attribute and 0, otherwise. LetM

denote the event that the pair (r,s) is a match and U the

event that it is a nonmatch. Using Bayes rule, one gets

PrðM jxÞ ¼ PrðxjMÞPrðMÞ
PrðxÞ

PrðU jxÞ ¼ PrðxjU ÞPrðUÞ
PrðxÞ

Therefore, PrðM jxÞ � PrðU jxÞ whenever,

PrðxjMÞ
PrðxjUÞ � PrðUÞ

PrðMÞ

The expression ‘ðxÞ ¼ PrðxjMÞ=PrðxjUÞ is called the

likelihood function. The construction of the naive Bayes

classifier assumes that xi and xj, i 6¼j, are conditionally

independent given M or U, implying:

PrðxjMÞ ¼
Yn
i¼1

pðxijMÞ

PrðxjU Þ ¼
Yn
i¼1

pðxijU Þ

The probabilities p(xijM) and p(xijU) can be estimated

using the learning examples, which can be used to

estimate PrðxjMÞ and PrðxjU Þ using the expressions

above. It is harder to estimate Pr(U) and Pr(M).

A simple approach is to empirically pick a threshold

Record Matching R 2357
T and classify the pair (r, s) as a match if ‘ðxÞ � T and

a nonmatch otherwise.

A simple classifier that has performance advantages

over more sophisticated machine-learning (ML) clas-

sifiers is the threshold-based classifier. Here, the record

pair (r, s) is classified as a match if the similarity vector

x satisfies:

ðx1 � T 1Þ ^ ðx2 � T 2Þ^ � � � ^ðxn � TnÞ

where T1,...,Tn are thresholds that can be learned using

labeled examples or set manually based on domain

expertise. Record matching based on a threshold-

based classifier can be performed efficiently using the

string similarity join primitive discussed below. Chaud-

huri and others [4] show that the record matching

accuracy of union of several threshold-based classifiers

is comparable to that of state-of-art ML classifiers.

A related approach, sometimes called distance-

based [19] record matching, is to define a distance

measure between two records by suitably combining

the similarity (distance) scores of the attributes of the

two records. A pair (r, s) is considered a match if the

distance between r and s is smaller than a given thresh-

old value. This approach is also easily extended to the

asymmetric version of record matching where each

record in R is constrained to match at most one record

in S: For each record r in R, the record in S with the

smallest distance to r is selected as a match.

More details of the other approaches used for re-

cord matching can be found in the survey by Elmagar-

mid et al. [9].
R

Performance

For large input tables R and S, it is impractical to

consider every pair of records (r, s) 2 R� S and classify

them as a match or a nonmatch. Therefore, an impor-

tant challenge in record matching is to identify the

matching pairs without exhaustively considering every

pair in R � S. An important primitive for efficient

record matching is string similarity join: Given two

tables R and S, identify all pairs of records (r, s) 2
R �S such that the string similarity of r.A and s.B

is above some specified threshold, where the string

similarity is measured using one of the similarity func-

tions mentioned earlier. A string similarity join can be

used to heuristically identify promising matching can-

didates, which can then be subjected to more complex

classification. The string similarity join primitive can
also be used to perform record matching based on the

threshold-based classifier discussed above [4].

Since many of the string similarity measures such as

jaccard and cosine are set-based, a more foundational

primitive is set-similarity join [6]. A set-similarity join

conceptually takes two collections of sets U and V as

input and outputs all pairs of sets (u, v) 2 U � V

having high set-similarity. String-similarity joins can be

evaluated using set-similarity joins as a primitive even

for many non-set based similarity functions such as edit

distance. A simple algorithm for set-similarity join

involves building an inverted index over the collection

V . The inverted index efficiently retrieves for any given

element e all sets in V containing e. For each set u in U,

the inverted index is used to retrieve all sets v in V that

share one or more elements with u; the pair (u, v) is

then produced as output if its satisfies the set-similarity

join condition. More efficient algorithms for set-

similarity joins are presented in [2,18].

Key Applications
The primary application of record matching is data

cleaning. The presence of duplicate records in a data-

base adversely affects the quality of the database and its

utility for analysis and mining. Another related appli-

cation of record matching is data integration. The

same real-world entity is often represented differently

in other databases being integrated, and record mat-

ching is necessary to evolve a common representation

for the entity. Another application of record matching

is to measure the risk of identity disclosure in statistical

disclosure control (SDC) [19]. In the SDC context, a

datasetA (for public release) is produced from a source

dataset B by masking values for identity protection.

The goal of this step is to make it hard for an adversary

to link a record in A to the record in B from which it

was generated. The number of records in A that can be

matched to records in B using the record matching

techniques discussed above gives an estimate for dis-

closure risk of the released dataset A. Distance-based

record matching is often used for this purpose.

Cross-references
▶Column segmentation

▶Constraint-Driven Database Repair

▶Data Cleaning

▶Data Deduplication

▶Deduplication in Data Cleaning

▶Record Linkage

2358R Records Management
Recommended Reading
1. Arasu A., Chaudhuri S., and Kaushik R. Transformation-based

framework for recordmatching. In Proc. 24th Int. Conf. on Data

Engineering, 2008, pp. 40–49.

2. Arasu A., Ganti V., and Kaushik R. Efficient exact set-similarity

joins. In Proc. 32nd Int. Conf. on Very Large Data Bases, 2006,

pp. 918–929.

3. Bilenko M. and Mooney R.J. Adaptive duplicate detection using

learnable string similarity measures. In Proc. 10th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,

2003, pp. 39–48.

4. Chaudhuri S., Chen B.C., Ganti V., and Kaushik R. Example-

driven design of efficient record matching queries. In Proc. 33rd

Int. Conf. on Very Large Data Bases, 2007, pp. 327–338.

5. Chaudhuri S., Ganjam K., Ganti V., and Motwani R. Robust and

efficient fuzzy match for online data cleaning. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2003, pp. 313–

324.

6. Chaudhuri S., Ganti V., and Kaushik R. A primitive operator for

similarity joins in data cleaning. In Proc. 22nd Int. Conf. on

Data Engineering, 2006.

7. Cochinwala M., Kurien V., Lalk G., and Shasha D. Efficient data

reconciliation. Inf. Sci., 137(1–4):1–15, 2001.

8. Cohen W.W. Data integration using similarity joins and a word-

based information representation language. ACMTrans. Inform.

Syst., 18(3):288–321, 2000.

9. Elmagarmid A.K., Ipeirotis P.G., and Verykios V.S. Duplicate

record detection: a survey. IEEE Trans. Knowl. Data Eng., 19

(1):1–16, 2007.

10. Felligi I.P. and Sunter A.B. A theory for record linkage. J. Am.

Stat. Soc., 64(328):1183–1210, 1969.

11. Hernandez M. and Stolfo S. The merge/purge problem for large

databases. In Proc. ACM SIGMOD Int. Conf. onManagement of

Data, 1995, pp. 127–138.

12. Jaro M.A. Unimatch: A Record Linkage System: User’s Manual.

Tech. rep., US Bureau of the Census, Washington DC, 1976.

13. Jaro M.A. Advances in record-linkage methodology as applied to

matching the 1985 census of Tampa, Florida. J. Am. Stat. Assoc.,

84(406):414–420, 1989.

14. Koudas N., Sarawagi S., and Srivastava D. Record linkage: simi-

larity measures and algorithms. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2006, pp. 802–803.

15. McCallum A., Nigam K., and Ungar L.H. Efficient clustering of

high-dimensional data sets with application to reference match-

ing. In Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Dis-

covery and Data Mining, 2000, pp. 169–178.

16. Newcombe H.B., Kennedy J.M., Axford S.J., and James A.P.

Automatic linkage of vital records. Science, 130:954–959, 1959.

17. Sarawagi S. and Bhamidipaty A. Interactive deduplication using

active learning. In Proc. 8th ACM SIGKDD Int. Conf. on Knowl-

edge Discovery and Data Mining, 2002, pp. 269–278.

18. Sarawagi S. and Kirpal A. Efficient set joins on similarity

predicates. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 2004, pp. 743–754.

19. Torra V. and Domingo-Ferrer J. Record Linkage methods for

multidatabase data mining. In Information Fusion in Data

Mining, V. Torra (ed.), Springer, 2003, pp. 101–132.
20. WinklerW. Improved Decision Rules in the Felligi-Sunter Model

of Record Linkage. Tech. rep., Statistical Research Division, US

Bureau of the Census, Washington DC, 1993.

21. Winkler W. The state of record linkage and current research

problems. Tech. rep., Statistical Research Division, US Bureau

of the Census, Washington DC, 1999.
Records Management

▶ Enterprise Content Management
Recovery Guarantees

▶Application Recovery
Recovery in Distributed Commit
Protocols

▶Distributed Recovery
Recovery in Distributed Database
Systems

▶Distributed Recovery
Recovery in Replicated Database
Systems

▶Distributed Recovery
Recovery Manager

▶ Logging/Recovery Subsystem
Recursive Query Evaluation

▶Query Processing in Deductive Databases

Reference R 2359
Recursive View Maintenance

▶Maintenance of Recursive Views
Redo

▶Crash Recovery

▶ Logging and Recovery
Redundant Arrays of Independent
Disks

KENICHI WADA

Hitachi Limited, Tokyo, Japan

Synonyms
Array; Disk array; Storage array; RAID

Definition
A set of disks from one or more commonly accessible

disk subsystems is combined with a body of control

software in which part of the physical storage capacity

is used to store redundant information about user data

stored on the remainder of the storage capacity. The

redundant information enables regeneration of user

data in a storage emergency in which a disk in the

array or an access path fails.
R

Key Points
The term RAID was adopted from the 1988 SIGMOD

paper ‘‘A Case for Redundant Arrays of Inexpensive

Disks (RAID).’’ In the paper, RAID refers to a group of

storage schemes that divide and replicate data among

multiple disks to provide better performance, cost and

power consumption rate with reasonable availability

comparing with conventional Single Large Expensive

Disk (SLED) used for Mainframe. Currently, the term

of ‘‘independent’’ is usually used rather than ‘‘inexpen-

sive’’ because SLED becomes obsolete.

A number of standard schemes have evolved which

are referred to as levels. Originally, five RAID levels

were conceived, but many more variations have

evolved. Currently, there are several sublevels as well

as many non-standard levels.
The two key concepts in RAID are striping, and

error correction using parity. The striping of RAID

means dividing user data into fixed length blocks

(striping units). The error correction using parity con-

ceals one disk failure in an array of disks from the host

computer and user data lost by one disk failure is

regenerated using the parity.

Original five RAID levels are as follows:

1. Level 1: Mirrored disk. Two or more identical cop-

ies of data are maintained on separate disks.

2. Level 2: Using Hamming Code and striping with

small striping unit (each read or write spread across

all disks in an array). During read or write, on the

fly ECC is adopted using Hamming Code in order

to conceal some number of disk failures in an array.

3. Level 3: Using parity and striping with small

striping unit (each read or write spread across all

disks in an array). If one disk fails in an array, data

on the failed disk are regenerated using corres-

ponding parity and data on other disks in the array.

4. Level 4: Using parity and striping with large striping

unit (small read or write can fit in one disk). One

disk in an array is allocated to store the parity

and user data is striped across remaining disks.

5. Level 5: Using parity and striping with large

striping unit (small read or write can fit in one

disk). Parity and user data is striped across all

disks in an array.

In addition to these 5 levels, Level 0 is often used to

represent arrays using striping without data redun-

dancy in which fixed-length sequences of virtual disk

data addresses are mapped to sequences of member

disk addresses in a regular rotating pattern.
Cross-references
▶Disk
Recommended Reading
1. Patterson D., Gibson G., and Katz R. A case for redundant

arrays of inexpensive disks (RAID). In Proc. ACM SIGMOD

Conf. on Management of Data, 1988.
Reference

▶Citation

2360R Reference Collections
Reference Collections

▶Archiving Experimental Data
Reference Knowledge

CHINTAN PATEL, CHUNHUA WENG

Columbia University, New York, NY, USA

Definition
Reference knowledge is the knowledge about a particu-

lar part of the world in a way that is independent from

specific objectives, through a theory of the domain [2].

Different knowledge bases reuse or extend subsets of

the reference knowledge for application specific tasks.

Key Points
Developing knowledge bases is a laborious process

involving domain experts, knowledge engineers and com-

puter scientists. To minimize this effort, often the core

theory and concepts of a given domain are represented in

a reference knowledgebase that are reused or extended by

other application specific knowledge bases. Consider for

example, in the biomedical domain, the Foundational

Model of Anatomy [3] is considered a reference knowl-

edge base for representing anatomy terms that can be

used for representing the mouse anatomy.

One of the important advantages of using reference

knowledge bases is that they provide interoperability

[1] across the applications using the knowledge. The

applications that heavily reuse or extend the reference

knowledge achieve higher levels of interoperability.

The reference knowledge bases are generally devel-

oped without any application requirements or objec-

tives. The reference knowledge imposes a rigid set of

constraints on representing the application specific or

local knowledge base. Such constraints sometimes con-

flict with the application or turn out to be difficult to

implement or maintain, hence impeding the use of

reference knowledge. Secondly, the reference knowl-

edge bases tend to be very large [1] and creating sub-

sets appropriate for small applications is challenging.

Recommended Reading
1. Brinkley J., Suciu D., Detwiler L., Gennari J., and Rosse C. A

framework for using reference ontologies as a foundation for

the semantic web. In Proc. AMIA Annual Symposium, 2006.
2. Burgun A. Desiderata for domain reference ontologies in

biomedicine. J Biomed Inform, 39(3):307–313, 2003.

3. Rosse C., and Mejino J. A reference ontology for biomedical

informatics: the foundational model of anatomy. J Biomed

Inform. 36(6):478–500, 2003.
Reference Reconciliation

▶Deduplication in Data Cleaning
Refinement

▶ Specialization and Generalization
Region Algebra

MATTHEW YOUNG-LAI

Sybase iAnywhere, Waterloo, ON, Canada

Definition
A region algebra is a collection of operators, each of

which returns a set of regions as a result and takes as

arguments one or more sets of regions. A region of a

string is a pair of natural number positions (s,e) that

correspond to the substring starting at s and ending

at e. A position is a count of bytes, characters, or words

from the beginning of the string.

Choosing a set of operators defines a particular re-

gion algebra. Operators are chosen for efficiency as well

as utility. For example, if regions correspond to structure

elements such as chapters and sections in a document,

then many operators for querying structure conditions

are useful and can be implemented efficiently. One

example of such an operator is containedIn(X,Y)

which takes two sets of regions X and Y and returns

the subset of regions in X that are contained in some

region of Y , i.e., {(sx, ex) 2 X j ∃(sy, ey) 2 Y (sx � sy) ∧
(ex � ey)}. A similar operator is contains(X,Y) which

returns the subset of regions in X that contain some

region of Y , i.e., {(sx, ex) 2 X j ∃(sy, ey) 2 Y (sx � sy) ∧
(ex � ey)}.

Another defining characteristic of a particular region

algebra is the restrictions that apply to the sets of regions.

Region Algebra R 2361

R

If sets are unrestricted, then a string of length n has n
2

� 	
regions. This means that the worst case cost of evalu-

ating a single operator cannot be linear in the length of

the string. Thus, region algebras are often defined with

restrictions on the nesting or overlap of regions in a set.

Historical Background
The first use of a region algebra for text search was in

the PAT system [10]. The operators in PAT assume the

use of a PAT array (also known as a suffix array) as the

underlying implementation. This data structure can

provide sets of matches for various lexical patterns

(e.g., find all positions corresponding to a given sub-

string of the text). It can also filter matches based

on frequency or length conditions (e.g., return only

the most frequent words matching a substring). The

query language includes operators for dynamically

combining matches into regions – a very flexible capa-

bility. It also provides set operators such as union and

difference and structure operators such as including.

Thus, it is a good example of the idea of using a region

algebra to mix structure and content operations in text

search. The system makes a distinction between sets of

regions and sets of points which means that it does not

completely fit the definition of a region algebra. Its

operators are typed in that their arguments and return

values must be either sets of regions or sets of points.

Thismeans that the language is not fully compositional.

Also, region sets are not allowed to include nesting or

overlapping regions which causes semantic problems.

For example, when an operator such as union results in

overlapping regions, only the start points are returned.

Burkowski describes a region algebra for combined

content and structure search in text [2,1]. It treats both

single words and structure elements spanning many

words uniformly as regions. Thus it avoids the pro-

blems that result from distinguishing points and

regions. Like PAT, region sets do not include nesting

or overlapping regions. Later extensions to this work

allow regions to overlap which is just as efficient [3].

An advantage of overlapping regions is that it makes

the ability to dynamically define regions outside of a

fixed hierarchical structure even more flexible and

useful. The earlier papers by Burkowski describe sim-

ple structure operations such as containing, simple

content operators for selecting words, and ranking

operators based on inverse document frequency from

traditional information retrieval. Later work explores

ranking for information retrieval in more depth [6].
Jaakkola continues the pattern of imposing fewer

restrictions on region sets [7,8]. Sets are allowed to nest

and overlap arbitrarily, abandoning the guarantee of

linear size relative to the length of the string. However,

the maximum depth of nesting tends to be constant in

most data, and independent of the length of the data.

This is true, at least, when talking about structure in

text documents where region algebras are usually ap-

plied. Therefore, allowing arbitrary sets gives even

more flexibility while not abandoning efficiency in

practice.

Compared to relational algebra, there has been

relatively little work exploring expressiveness or opti-

mization issues with region algebras. Many systems

make an informal effort to balance expressiveness

with efficiency. For many useful algebras, the operators

are restricted enough that the efficiency of evaluating

arbitrary compositions is obvious without need of

formal proof. Some work does explore more general

issues. For example, Consens and Milo examine equiv-

alence testing and whether operators like direct inclu-

sion can be efficiently supported [4,5]. Young-Lai and

Tompa look at characterizing operators that allow the

possibility of efficient evaluation [12].

Foundations
The operators of a region algebra can combine and select

regions. An important question, however, is where the

regions originate. The most flexible approach is to scan

the string for matches at every query. These matches

can then be treated as regions and further manipulated

using the algebra. In principle, any type of pattern lan-

guage can be used for scanning. For example, it is possi-

ble to search for simple substrings, for regular

expressions, or for words (possibly with linguistic pro-

cessing such as stemming or lemmatization). It is also

possible to parse the string with a grammar and return

structures as regions. This is useful for data such as

programming language source code where a well-de-

fined grammar exists. For a scanning operation such as

parsing with a grammar, the functionality of the parser

starts to overlap with what can be accomplished with the

region algebra. In fact, it is possible to use appropriately

defined region algebra operators to simulate the process

of parsing a string of tokens with a grammar.

If a string is too long to efficiently scan at every

query, then regions can be pre-computed and stored

persistently. This means making choices before-hand

about what queries to support, and involves a tradeoff

2362R Region Algebra
between flexibility and space. For example, consider

storing a list of regions for every unique word.

It is possible to apply a stoplist of common words to

save space, but then it is impossible to search for

phrases involving these stop words. There is also a

tradeoff between efficiency and flexibility. For example,

consider stemming the input by converting all forms of

a word such as ‘‘stemming,’’ ‘‘stemmed,’’ and ‘‘stem-

mer’’ to the root word ‘‘stem.’’ This does not reduce the

number of stored regions (ignoring for the moment

the fact that it can reduce the total space requirement

in some compressed representations). However, it

reduces the flexibility since it is no longer possible to

search for just one of the forms. On the other hand,

it increases the efficiency of searching for all forms

together since there is no need to combine separate

lists. Overall, choosing what regions to pre-compute

means predicting the types of queries that need to be

supported.

Various representations are possible for persistently

stored regions. The simplest is a collection of unor-

dered lists. Given that region lists generated by scan-

ning are ordered by position in the string, however, it

makes sense to store them in that order. This can be

done in a flat file which allows sequential access or

binary searching. Alternatively, it can be in an index

structure such as a B-tree which allows more efficient

searches and updates. Ordered representations allow

the possibility of particularly efficient compression

using various techniques.

For a non-nesting set of regions, there is a single,

unique sort order. For a set of regions with nesting

there are two possible sort orders. That is, regions may

ordered primarily by either s or by e. The choice has

some effect on evaluation strategies for expressions

that compose multiple operators. If regions are stored

persistently, then a single sort order must be chosen.

Of course, a physical operator can be provided to

convert between the two orderings, although this is

not possible in linear time and constant memory.

Note that considering such an operator part of the

algebra itself implies modifying the definition to use

lists of regions with physical order properties rather

than sets of unordered regions. Alternatively, one can

make a distinction between the logical algebra that

works with un-ordered sets, and the physical operators

that are used for optimization and evaluation.

One way to avoid choosing between the two possi-

ble sort orders in persistent storage is to only index
non-nested regions. This is less of a limitation than it

might appear since it is easy to generate nested regions

dynamically given two lists of endpoints. For example,

it is possible to index the start and end tags for nested

sections in a text in separate lists. The tags themselves

have a unique order since they are not nested. A physi-

cal operator can scan and merge the two lists of tag

regions, pushing the start tags onto a stack and pop-

ping the stack at every end tag. This results in a region

list ordered primarily by e. A very similar operator can

be used to dynamically generate regions that contain

two words of interest. In this case, there is no natural

pairing of word occurrences and the result may be as

big as the cross product of the two lists. A useful

solution is to define the operator so that it discards

all but the shortest regions in the cross product, or

equivalently, those that do not contain another nested

region.

Given operands that are stored in an ordered list

representation, there are many useful operators such as

contains and containedIn that can be evaluated by

scanning both lists and performing a type of merge

join. This produces an ordered result that can then be

used as an input to another operator. If an algebra

consists exclusively of operators that can be evaluated

with such merge strategies, then it is possible to evalu-

ate arbitrarily composed expressions with very little

query optimization effort and relatively good effi-

ciency. A simple strategy is to evaluate the operator

with the two smallest available inputs at each step until

all operators in the tree are finished. Intermediate

results can be buffered.

There are many ways to improve on this basic

strategy. Some of them are implied by viewing the

problem as an instance of relational query optimiza-

tion and have not been explicitly described in the

context of region algebras. For example, it is possible

to consider additional physical operators such as index

nested loop join. This can be used in the above strategy

when joining a small operand with a larger one. Rather

than scan the entire large operand, the join operator

performs a binary search or index lookup within the

large operand for each region in the small operand.

It is also possible to consider optimizing an entire

query rather than making a local, greedy decision at

each step about which operator to evaluate next. This

implies the need to determine equivalences between

expressions, to consider different physical evaluation

plans based on these equivalences, and to choose

Region Algebra R 2363

R

between the plans. The choice must involve estimating

the costs of physical plans which is a difficult problem

in general. However, it may admit heuristic or approx-

imate solutions that do well in practice as is the case

with relational query optimization.

There are some inherent limitations of the region

model. One has to do with the limited information

contained in a region. Given just numeric endpoints, it

is easy to tell whether two given regions overlap or nest.

However, nothing is known about their relationship

with other regions that may exist. For example, given

two regions a and b such that a contains b, there is no

way to tell if a directly contains bmeaning that there is

no region c in the system such that a contains c and c

contains b. Ignoring the possibility of constraints that

may allow this to be inferred, the only way to know if

this is the case is to search every other region list. This

is likely to be inefficient.

By definition, operators in a region algebra are also

excluded from referring to the content of a region.

Thus, it is not possible to define an operator that

takes the region endpoints and goes back to the origi-

nal string to check some condition. Note that this is

related to the issue of which regions have been indexed

in a string. If there is a set of regions for ‘‘stem,’’ an

operator cannot check the string to see which of those

regions were really the word ‘‘stemmed.’’ However,

even if there are separate region lists for ‘‘stem’’ and

‘‘stemmed,’’ it is not possible to look up the value of

words that follow ‘‘stem’’ in the text.

Of course, both of these limitations can be over-

come by extending from regions to arbitrary tuples of

information. To solve the direct containment problem,

it is possible to store a third number depth with each

region that indicates its nesting level. Then b is directly

contained in a if it is contained in a and its depth is

higher by one. Similarly, it is possible to add a text

column to a region to store the word that follows the

region and carry it with subsequent intermediate

results. Essentially then, it is possible to consider

extending to a full relational model. However, the

region columns in such an extended model might

admit the possibility of useful physical operators not

generally provided in relational systems. For example,

many region algebra operators can be executed with

list merges but cannot be formulated as joins with

equality conditions.

Another general limitation of region algebras has to

do with the use of regions as a structure model.
Consider a collection of region sets where each set

has an associated type or label. This can represent

arbitrarily nested structures in a strictly non-overlapping

hierarchy. It can also represent multiple independent

hierarchies over the same string. It can represent over-

lapping structures which goes beyond what is possible

with a strict hierarchy. One thing that it cannot do is

represent an arbitrary graph structure. For example, if

regions are mapped to nodes in a graph, and there is an

edge between any two nodes that overlap, then not all

graphs are possible. For example, this can represent a

chain of nodes with edges between them, but cannot

add an edge from the first node in the chain to the last

node without adding other edges at the same time. This

limitation applies even if using regions only to encode a

structure without requiring that the endpoints corre-

spond to physical locations in a contiguous string.
Key Applications
A region algebra can be used as a query language for

searching structured or semi-structured text, for

searching structured or semi-structured data encoded

in a text format such as SGML or XML, or for infor-

mation retrieval. Alternatively, it can be used as an

underlying model for query optimization or execution

for some other query language.

As a query language, a region algebra can also serve

as a component of a larger text processing task. One

example is structure recognition where features such as

composability and a loose structure model give advan-

tages over alternatives such as grammars [11]. Other

examples include constraint definition, outlier finding,

and editing by example [9].
Cross-references
▶ Information Retrieval

▶Relational Calculus

▶ Semi-Structured Query Languages

▶XML

▶XML Indexing
Recommended Reading
1. Burkowski F.J. Retrieval activities in a database consisting of

heterogeneous collections of structured text. In Proc. 15th An-

nual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 1992, pp. 112–125.

2. Burkowski F.J. An algebra for hierarchical organized text-

dominateddatabases. Inform.Process. Manag., 28:313–324, 1994.

2364R Region Segmentation
3. Clarke C.L.A., Cormack G.V., and Burkowski F.J. An algebra for

structured text search and a framework for its implementation.

Comput. J., 38(1):43–56, 1995.

4. Consens M.P. and Milo T. Algebras for querying text regions.

In Proc. 14th ACM SIGACT-SIGMOD-SIGART Symp. on

Principles of Database Systems, 1995, pp. 11–22.

5. Consens M.P. and Milo T. Algebras for querying text regions:

expressive power and optimization. J. Comput. Syst. Sci.,

57:272–288, 1998.

6. Cormack G.V., Clarke C.L.A., Palmer C.R., and Good R.C. The

multitext retrieval system (demonstration abstract). In Proc.

22nd Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 1999, p. 334.

7. Jaakkola J. and Kilpelinen P. Using sgrep for querying structured

text files. In Proc. SGML Finland 1996, J. Saarela (ed.), 1996,

pp. 56–67.

8. Jaakkola J. and Kilpeläinen P. Nested text-region algebra. Tech-

nical Report C-1999-2, Department of Computer Science,

University of Helsinki, January 1999.

9. Miller R.C. Lightweight Structure in Text. Ph.D thesis, School of

Computer Science, Carnegie Mellon University, 2002.

10. Salminen A. and Tompa F. PAT expressions: an algebra for text

search. Acta Linguistica Hungarica, 41(1–4):277–306, 1992.

11. Young-Lai M. Text Structure Recognition Using a Region Alge-

bra. Ph.D thesis, Department of Computer Science, University

of Waterloo, 2000.

12. Young-Lai M. and Tompa F.W. One-pass evaluation of region

algebra expressions. Inf. Syst., 28(3):159–168, 2003.
Region Segmentation

▶ Image Segmentation
Registration Time

▶Transaction Time
Regulatory Compliance in Data
Management

RADU SION

Stony Brook University, Stony Brook, NY, USA

Definition
Regulatory compliance in data management refers to

information access, processing and storage mechan-

isms designed according to regulations governing
their respective data types and semantics. For example,

in the United States, health-related data falls under the

incidence of the Health Insurance Portability and Ac-

countability Act (HIPAA) and any associated data

management systems need to provide compliance to

HIPAA requirements, including data retention and

secure deletion assurances. Such compliance has po-

tential for far reaching impact in the design of data

processing semantics, from relational ACID properties

to complex query processing and index optimization.

Historical Background
Modern digital societies and markets increasingly man-

date consistent procedures for the access, processing and

storage of information. In the United States alone, over

10,000 such regulations can be found in financial, life

sciences, health-care and government sectors, including

the Gramm–Leach–Bliley Act (1999), the Health Insur-

ance Portability and Accountability Act (1996), and the

Sarbanes–Oxley Act (2002). A recurrent theme in these

regulations is the need for regulatory – compliant data

management as an underpinning to ensure data confi-

dentiality, access integrity and authentication; provide

audit trails, guaranteed deletion, and data migration;

and deliver Write Once Read Many (WORM) assur-

ances, essential for enforcing long-term data retention

and life-cycle policies.

Foundations

Overview

Over 10,000 regulations govern the management of

documents in the United States alone [8], in financial,

life sciences, health-care industries, and the government.

These regulations impose a wide range of policies, rang-

ing from information life-cycle management (e.g., man-

datory data retention and deletion) to audit trails and

storage confidentiality. Examples include the Gramm–

Leach–Bliley Act [6], Health Insurance Portability and

Accountability Act [13], Federal Information Security

Management Act [14], Sarbanes–Oxley Act [15], Secu-

rities and Exchange Commission rule 17a-4 [12], De-

partment of Defense Records Management Program

under directive 5015.2 [9], Food and Drug Administra-

tion 21 CFR Part 11 [11], and the Family Educational

Rights and Privacy Act [10]. In Europe, the Directive 95/

46/EC of the European Union on the protection of

personal data, provides privacy and security guarantees

for personal information [3]. In addition, many

Regulatory Compliance in Data Management. Figure 1. WORM prevents history ‘‘re-writing’’.

Regulatory Compliance in Data Management R 2365

R

countries have their own data protection laws. For ex-

ample, in the United Kingdom, the Data Protection Act

of 1998 [1] regulates, among other information, person-

al health-care records. It requires mandatory disposal

of electronic records after retention period, accuracy

of information, logging any changes, and strict

confidentiality.

While each regulation has its own unique char-

acteristics, certain assurance features can be found

throughout:

Guaranteed data retention. To address this require-

ment, the goal of compliant data management is to

support Write Once Read Many (WORM) semantics:

once written, data cannot be undetectably altered or

deleted before the end of their regulation-mandated

life span, even with physical access to its hosting server.

Secure deletion.Once data has reached the end of its

lifespan, it can (and in some cases must) be deleted.

Deleted records should not be recoverable even with

unrestricted access to the underlying medium; more-

over, after data is deleted, no hints of its existence

should remain on the server, even in the indexes. The

term secure deletion is used to describe this combina-

tion of features.

Compliant data migration. Retention periods are

measured in years. For example, national intelligence

information, educational records, and certain health

records have retention periods of over 20 years. To

address this requirement, compliant data management

needs data migration mechanisms that allow infor-

mation to be transferred from obsolete to new

storage media while preserving its associated security

guarantees.
Litigation holds. Even if a data record has reached

the end of its lifespan, it should remain fully accessible

if it is the subject of current litigation.

In addition to these features, a common thread

running through many of these regulations is the per-

ception of powerful insiders as the primary adversary.

These adversaries have superuser powers coupled with

full access to the storage system hardware. This corre-

sponds to the perception that much recent corporate

malfeasance has been at the behest of CEOs and CFOs,

who also have the power to order the destruction

or alteration of incriminating records. Since the visible

alteration or destruction of records is tantamount to

an admission of guilt in the context of litigation,

a successful adversary must perform their misdeeds

undetectably.

Regulatory Compliant Commercial Systems

As the ability to control data retention is an essential

requirement to be found in a majority of regulations,

systems aimed at providing WORM assurances have

been brought to the market by virtually all major

storage vendors, including companies such as IBM

[5], HP, EMC [2], Hitachi Data Systems Zantaz, Stor-

ageTek, Sun Microsystem Network Appliance and

Quantum Inc. [7]. A set of representative instances

are discussed in the following.

Tape-based WORM

Due to the favorable cost-per-MB ratio of tape-based

storage in the past, it was a natural choice for massive

data storage in commercial enterprise deployments

(where regulatory compliance is of concern). Thus

2366R Regulatory Compliance in Data Management
storage vendors started offering tape-based WORM

mechanisms first. The Quantum DLTSage predictive,

preventative and diagnostic tools for tape storage

environments [7] are a representative instance. The

WORM assurances of the tape systems are provided

under the assumption that only Quantum tape-readers

are deployed. ‘‘DLTSage WORM provides features to

assure compliance, placing an electronic key on each

cartridge to ensure WORM integrity. This unique

identifier cannot be altered, providing a tamper-proof

archive cartridge that meets stringent compliance

requirements to ensure integrity protection and full

accessibility with reliable duplication.’’ [7]. Such sys-

tems however, are subject to a set of impractical

assumptions. Given the nature of magnetic tape, an

attacker can easily dismantle the plastic tape enclosure

and access the underlying data on a different custo-

mized reader, thus compromising its integrity. Relying

on the physical integrity of a ‘‘plastic yellow label’’ to

safe-guard essential enterprise information is likely un-

acceptable in any medium to high-stake commercial

scenarios.

Optical-Disk WORM

Optical (compact) disk (CD) media has been around

experimentally since 1969 and commercially available

since 1983. Given the prohibitive costs of high-

powered lasers in small form factors, in the early

days, most CD devices were only capable of reading

disk information. As the technology matured, write-

once (and later read-write) media appeared. Optical

WORM-disk solutions rely on the irreversible phy-

sical primitive write effects to ensure the inability to

alter existing content. However, with ever increasing

amounts of information being produced and requiring

constant low-latency accessibility in commercial sce-

narios, it is challenging to deploy a scalable optical-

only WORM solution. Moreover, optical WORM disks

are plagued with other practical issues such as the

inability to fine-tuneWORM and secure deletion gran-

ularity (problems partially shared also by tape-based

solutions). Moreover, as the WORM disks do not

provide any strong security features (due to bulk-

production requirements) any optical WORM solu-

tions are vulnerable to simple data replication attacks

as discussed above. Optical WORM also perform rela-

tively poorly in the price-performance measurements

because current technology is somewhat under-sized

for the volumes of data associated with compliance.
Sony’s Professional Disk for Data optical disk system,

for example, holds only 23 GB per disk side. Neverthe-

less, because it is faster than tape and cheaper than

hard disks, optical WORM storage technology is often

deployed as a secondary, high-latency storage medium

to be used in the framework of a hard disk-based

solution. Care needs to be taken in establishing points

of trust and data integrity when information leaves the

secured hard disk store for the optical media.

Hard Disk-based WORM

Magnetic disk recording currently offers better overall

cost and performance than optical or tape recording.

Moreover, while immutability is often specified as a

requirement for records, what is required in practice

is that they be ‘‘term-immutable’’, i.e., immutable

for a specified retention period. Thus almost all recent-

ly-introduced WORM storage devices are built atop

conventional rewritable magnetic disks, with write-

once semantics enforced through software (‘‘soft-

WORM’’).

EMC Centera. The EMC Centera Compliance Edi-

tion [2] is a content addressed storage (CAS) solution

that also offers regulatory compliance capabilities.

Each data record ‘‘has two components: the content

and its associated content descriptor file (CDF) that

is directly linked to the stored object (business record,

e-mail, etc.). A digital fingerprint derived from the

content itself is the content’s locator (content address).

The CDF contains metadata record attributes (e.g.,

creation date, time, format) and the object’s content

address. The CDF is used for access to and manage-

ment of the record. Within this CDF, the application

will assign a retention period for each individual busi-

ness record. Centera will permit deletion of a pointer

to a record upon expiration of the retention period.

Once the last pointer to a record has been so deleted,

the object will be eliminated’’ [2], and, in the Plus

version, also ‘‘shredded’’ (from the media). Given its

software-only nature, these mechanisms are vulnerable

to simple software or physical direct disk-access attacks

like described above. Data integrity can be easily

compromised.

Hitachi message archive for compliance. Similarly,

Hitachi Data Systems provide the Data Retention Util-

ity, a software-based ‘‘virtual’’ WORM mechanism for

mainstream Hitachi storage systems. The system

allows customers to ‘‘lock down archived data, making

it non-erasable and non-rewritable for prescribed

Regulatory Compliance in Data Management R 2367

R

periods, facilitating compliance with governmental or

industry regulations’’.

IBM LockVault compliance software. IBM offers

multiple soft-WORM solutions. The LockVault com-

pliance software is a layer that operates on top of IBM

System Storage N series to provide ‘‘disk-based regu-

latory compliance solutions for unstructured data’’.

IBM system storage archive manager. The IBM

Tivoli Storage Manager is part of the IBM TotalStorage

Software [5] and provides certain software data reten-

tion protection. It ‘‘makes the deletion of data before

its scheduled expiration extremely difficult. Short of

physical destruction to storage media or server, or delib-

erate corruption of data or deletion of the Archive Man-

ager database, Archive Manager will not allow data [...]

to be deleted before its scheduled expiration date.’’

However, it is not desirable to base the functioning of

the regulatory compliance mechanism on the correct

behavior of the main system. After all, the compliance

mechanism’s main role is to guarantee exactly such

fault-less behavior. The main adversary of concern in

regulatory settings is exactly one with incentives for

data corruption and physical compromise attacks.

Network appliance snaplock compliance/enterprise

software. The NetApp SnapLock software suite is

designed to work on top of NetApp NearStore and

FAS storage systems. It provides soft-WORM assur-

ances, ‘‘preventing critical files from being altered or

deleted until a specified retention date’’. As opposed to

other vendors, NetApp SnapLock supports open in-

dustry standard protocols such as NSF and CIFS.

Sun StorageTek compliance archiving software. Sun

also offers soft-WORM assurances through its Stora-

geTek Compliance Archiving Software . The software

runs on top of the Sun StorageTek 5320 NAS Appliance

to ‘‘provide compliance-enabling features for authen-

ticity, integrity, ready access, and security’’.

Security Properties

The design of compliance data management is

extremely challenging due to the conflict between

security, cost-effectiveness, and efficiency. For exam-

ple, the requirement to find requested information

quickly means in practice data must be indexed. But

trustworthy indexing of compliance data is a challeng-

ing problem, as it is easy to tamper with traditional

indexes stored on WORM. Further, trustworthy index-

es will make it very hard to delete all traces of docu-

ments that are past their retention periods, as required
by certain regulations. Yet another complicating factor

is the decades-long retention periods required by many

regulations; it is unrealistic to expect data to reside on

the same device for so long. One of the main challenges

of such an endeavor lies in securing the system against

attack by insiders with superuser powers, and in bal-

ancing the conflicting requirements for trustworthi-

ness, high performance, and low cost.

Current regulatory compliant data management sys-

tems constitute an important step in the right direction.

These systems however, are unfortunately fundamental-

ly vulnerable to faulty behavior or illicit adversaries with

incentives to alter stored data, as they rely on enforce-

ment primitives – such as software and/or simple hard-

ware device-hosted on/off switches – ill-suited to their

target (insider) adversarial setting.

Achieving a secure, cost-effective, and efficient de-

sign when the insider is the adversary is extremely

challenging. To defend against insiders, processing

components that are both tamper-resistant and active,

such as general – purpose trustworthy hardware are

needed. By offering the ability to run logic within a

secured enclosure, such devices allow fundamentally

new paradigms of trust. Trust chains spanning

untrusted and possibly hostile environments can now

be built by deploying secure tamper-resistant hardware

at the storage components’ site. The trusted hardware

can run certified logic; close proximity to data coupled

with tamper-resistance guarantees allow an optimal

balancing and partial decoupling of the efficiency/

security trade-off. Assurances can now be both effi-

cient and secure.

However, trusted hardware devices are not a panacea.

Their practical limitations pose a set of significant chal-

lenges in achieving sound regulatory-compliance assur-

ances. Specifically, heat dissipation concerns under

tamper-resistant requirements limit the maximum

allowable spatial gate-density. As a result, general-

purpose secure coprocessors (SCPUs) are often signifi-

cantly constrained in both computation ability and

memory capacity, being up to one order of magnitude

slower than host CPUs. Such constraints mandate care-

ful consideration in achieving efficient protocols. Direct

implementations of the full processing logic inside the

SCPU are bound to fail in practice due to lack of

performance. The server’s main CPUs will remain

starkly under-utilized and the entire cost-proposition

of having fast untrusted main CPUs and expensive

slower secured CPUs will be defeated. Efficient

2368R Re-identification
protocols need to access the secure hardware sparsely,

asynchronously from the main data flow.

Recently, Hsu et al. [4] analyzed some of the prin-

cipal requirements for trustworthy ‘‘content immuta-

ble storage’’ (CIS) of electronic records and identified a

set of principles, including: (i) increasing the cost and

conspicuity of any attack against the system, (ii) focus-

ing on end-to-end trust, rather than single compo-

nents, (iii) using a small trusted computing base,

isolate trust-critical modules and make them simple,

verifiable and correct, (iv) using a simple, well-defined

interface between trusted and untrusted components,

and (v) trust, but verify every component and individ-

ual operation.

Key Applications
Recent compliance regulations are intended to foster

and restore humans trust in digital information

records and, more broadly, in our businesses, hospitals,

and educational enterprises. As increasing amounts of

information are created and live digitally, compliance

data management will be a vital tool in restoring this

trust and ferreting out corruption and data abuse at all

levels of society.

Future Directions
Future research will need to explore novel regulatory

compliant data management solutions that address the

appropriate insider adversary. Numerous technical

challenges are associated with such an endeavor, in-

cluding designs for SCPU overhead-minimizing tech-

niques for expected transaction loads, amortized

commitment schemes to enforce write-once-read-

many (WORM) semantics at the throughput rate of

the servers ordinary processors, while benefiting from

existing work on compliance indexing to create effi-

cient indexes secured by novel cryptographic constructs

such as fast short-lived signatures. Compliant data

migration mechanisms will likely require backwards-

compatible, inter-device trust chains and fast re-

encryption techniques.

Cross-references
▶Trusted Hardware

Recommended Reading
1. British Parliament. Data Protection Act of 1998. http://www.

staffs.ac.uk/legal/privacy/dp10rules/index.php, 1998.
2. EMC. Centera Compliance Edition Plus. http://www.emc.com/

centera/ and http://www.mosaictech.com/pdf_docs/emc/centera.-

pdf, 2007.

3. European Parliament. Legislative Documents. Online at http://ec.

europa.eu/justice_home/fsj/privacy/law/index_en.htm, 2006.

4. Hsu W., Huang L., and Ong S. Content Immutable Storage:

Truly Trustworthy and Cost-Effective Storage for Electronic

Records. Research Report RJ 10332. Technical Report, 2004.

5. IBM Corp. IBM TotalStorage Enterprise. http://www03.ibm.

com/servers/storage/, 2007.

6. National Association of Insurance Commissioners. Graham-

Leach-Bliley Act, 1999. www.naic.org/GLBA.

7. Quantum Inc. DLTSage Write Once Read Many Solution. http://

www.quantum.com/Products/TapeDrives/DLT/SDLT600/DLTIce/

Index.aspx and http://www.quantum.com/pdf/DS00232.pdf,

2007.

8. The Enterprise Storage Group. Compliance: The effect on infor-

mation management and the storage industry. Online at http://

www.enterprisestoragegroup.com/, 2003.

9. The U.S. Department of Defense. Directive 5015.2: DOD

Records Management Program. Online at http://www.dtic.mil/

whs/directives/corres/pdf/50152std_061902/p50152s.pdf, 2002.

10. The U.S. Department of Education. 20 U.S.C. 1232g; 34

CFR Part 99:The Family Educational Rights and Privacy

Act (FERPA). http://www.ed.gov/policy/gen/guid/fpco/ferpa,

1974.

11. The U.S. Department of Health and Human Services Food and

Drug Administration. 21 CFR Part 11: Electronic Records and

Signature Regulations. http://www.fda.gov/ora/compliance_ref/

part11/FRs/background/pt11finr.pdf, 1997.

12. The U.S. Securities and Exchange Commission. Rule 17a-3&4, 17

CFRPart 240: Electronic Storage of Broker-Dealer Records. Online

at http://edocket.access.gpo.gov/cfr_2002/aprqtr/17cfr240.17a-4.

htm, 2003.

13. U.S. Department of Health & Human Services. The Health

Insurance Portability and Accountability Act (HIPAA), 1996.

www.cms.gov/hipaa.

14. U.S. Public Law 107-347. The E-Government Act, 2002.

15. U.S. Public Law No. 107-204, 116 Stat. 745. newblock The Public

Company Accounting Reform and Investor Protection Act,

2002.
Re-identification

▶Record Linkage
Re-Identification Risk

▶Disclosure Risk

Relational Algebra R 2369
Relational Algebra

VAL TANNEN

University of Pennsylvania, Philadelphia, PA, USA

Definition
The operators of the relational algebra were already

described in Codd’s pioneering paper [2]. In [3] he

introduced the term relational algebra and showed its

equivalence with the tuple relational calculus.

This entry details the definition of the relational

algebra in the unnamed perspective [1], with selection,

projection, cartesian product, union and difference

operators. It also describes some operators of the

named perspective [1] such as join.

The flagship property of the relational algebra is

that it is equivalent to the (undecidable!) set of domain

independent relational calculus queries thus providing

a standard for relational completeness.
R

Key Points
Fix a countably infinite set D of constants over which

S-instances are defined for a relational schema S.
The relational algebra is a many-sorted algebra,

where the sorts are the natural numbers. The idea is

that the elements of sort n are finite n-ary relations.

The carrier of sort n of the algebra is the set of finite

n-ary relations onD If f is a many-sorted k-ary opera-

tion symbol that takes arguments of sorts n1,...,nk (in

this order) and returns a result of sort n then its type is

written as follows: f : n1 �... � nk!n0, and this is

simplified to n for nullary (k = 0) operations. Bold

letters x, y used for tuples and xi for the i’th component

of x. The operations of the algebra, with their types and

their interpretation over the relational carriers are the

following:

constant-singletons {c } : 1(c 2 D).

selection1 sij
n : n!n (1 � i < j � n) interpreted as

sij
n(R) = {x 2 R j xi = xj}

selection2 sic
n : n!n (1� i� n, c 2D) interpreted

as sic
n(R) = { x 2 Rjxi = c }

projection pi1
n...ik : n!k (1 � i1,...,ik � n,

not necessarily distinct) interpreted as pni1...ik ðRÞ ¼
fxi1 ;:::; xik j x 2 Rg

cartesian(cross-) product �mn : m � n!m + n

interpreted as �mn(R, S) = {x1,...,xm, y1,...,yn jx 2
R ∧y 2 S}
union [n : n � n!n interpreted as [n(R, S) ={xjx
2 R ∨x 2 S}

difference �n : n � n!n interpreted as �n(R, S) =

{xjx 2 R ∧x =2S}
Relational algebra expressions are built, respecting

the sorting, from these operation symbols, using the

relational schema symbols as variables.

Note that an obvious operation, intersection, is

missing. Of course, intersection can be defined from

union and difference, by De Morgan’s laws. Interest-

ingly, intersection is also definable just from cartesian

product, selection, and projection. Other useful opera-

tions are definable also.

Given a relational schema S, a relational algebra

query is an algebraic expression constructed from the

symbols in S and the relational algebra operation

symbols. Given a database instance I as input, such a

query e returns a relation eðIÞ as output. For example

if R, S are binary, the expression p2414(s13(R � S)) �
(R � R) defines a query that returns a 4-ary relation

(omit the operation’s superscripts because they can usu-

ally be reconstructed and use infix notation for the binary

operations). Clearly, each of the operations of the rela-

tional algebra maps finite instances to finite relations, and

more importantly, it is easily seen that relational algebra

queries are domain independent. Moreover, there exists

an (easily) computable translation that takes any rela-

tional algebra query into an equivalent domain inde-

pendent FO (first-order) query.

The converse of this last fact is the main ‘‘raison

d’être’’ for the relational algebra. However, because the

set of domain independent FO queries is not decidable,

it is not possible to define an effective translation just

for these queries. Instead, define a ‘‘translation’’ for all

FO queries, such that domain independent FO queries

are indeed translated to equivalent relational algebra

queries. Recalling the notation qðI=DÞ gives
Theorem

There exists a total computable translation

that takes any FO query q into a relational algebra

query e such that for any instance I , gives

eðIÞ ¼ qðI=adomðIÞ [adomðqÞÞ (and for domain

independent queries the right-hand side further

equals qðIÞ.
The key to the proof is the observation that active

domains can be computed in the relational algebra.

This result justifies Codd calling a query language

relationally complete whenever it has the expressive

2370R Relational Algebra for XML
power of the relational algebra. However, it is necessary

to note that the relational algebra also inherits the

negative results about first-order logic: it is undecid-

able whether there exists some instance on which a

given query returns a non-empty answer (satisfiability)

and it is undecidable whether two queries are

equivalent.

The presentation above assumes that the relational

symbols have just arity. This is the so-called unnamed

perspective [1] and it is convenient for theoretical

investigations. The practical descriptions of the rela-

tional model, e.g., [4], use the named perspective[1] in

which a set of attributes is fixed and each relation is

organized vertically by a finite set of them. For such as

relation, a tuple is function from its attributes to con-

stants. The relational algebra operators in the named

perspective are similar to the ones above except that

attributes are used instead of the integers identifying

components of tuples. Complications arise with cartesian

product when the two relations have attributes in com-

mon. Thus, in the named perspective an additional op-

erator is needed for the renaming of a relation’s

attributes. On the positive side, using attributes leads

to an nice generic definition of natural join, and opera-

tion that generalizes both cartesian product (when attri-

bute sets are disjoint) and intersection (when attribute

sets are identical) andwhich hasmany elegant properties.

Cross-references
▶Cartesian Product

▶Computationally Complete Relational Query

Languages

▶Difference

▶Division

▶ First-Order Logic: Semantics

▶ First-Order Logic: Syntax

▶ Join

▶Natural Join

▶ Projection

▶Relational Algebra

▶ Selection

▶Union

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases:

The Logical Level. Addison Wesley, Reading, MA, 1994.

2. Codd E.F. A Relational Model of Data for Large Shared Data

Banks. Commun. ACM, 13(6):377–387, 1970.

3. Codd E.F. Relational completeness of database sublanguages,

In Courant Computer Science Symposium 6: Data Base Systems,
R. Rustin (ed.). Prentice-Hall, Englewood Cliffs, NJ, 1972,

pp. 65–98.

4. Ramakrishnan R. and Gehrke J. Database Management Systems,

3rd edn. McGraw-Hill, New York, 2003.
Relational Algebra for XML

▶XMLTuple Algebra
Relational Calculus

VAL TANNEN

University of Pennsylvania, Philadelphia, PA, USA

Synonyms
Domain relational calculus; Tuple relational calculus;

First-order query

Definition
The relational database model was proposed by Codd

in [2] where he assumed that its ‘‘data sublanguage’’

would be based on the predicate calculus (FOL) and

where he introduced various algebraic operations on

relations. Only in [3] did he introduced the terms

relational algebra and relational calculus.

Later, it became customary to talk about the do-

main relational calculus (detailed below), which is

closely related to the syntax of first-order logic and

has quantified variables ranging over individual con-

stants, and about the tuple relational calculus which is

in fact the one given by Codd in [3] and whose vari-

ables range over tuples of constants. The two calculi

are equivalent, via easy back and forth translations.

However, both calculi allow the formulation of domain

dependent queries which are inappropriate for database

languages. While domain independence is undecid-

able, it is possible to define decidable sublanguages

of safe queries which are themselves domain indepen-

dent and such that any domain independent query is

equivalent to a safe one.

Key Points
A relational (database) schema is a finite first-order

vocabulary consisting only of relation symbols. In

fact, relational formalisms also permit constants so it

is necessary to fix a countably infinite set D of con-

stants and work with formulae over the first-order

Relational Database R 2371

R

vocabulary S [D where S is a relational schema. Also,

the setD is taken as the sole universe of discourse for the

interpretation of formulae. A relational (database) in-

stance for a given schema S (a S-instance) is a first-

order structure whose domain, or universe, is D and in

which the relation symbols are interpreted by finite rela-

tions, while the constants are interpreted as themselves.

For a given schema S , a domain relational calculus

query (a.k.a. first-order query) has the form {he1,...,eni
j’} where e1,...,en are (not necessarily distinct) variables
or constants and ’ is a first-order formula over the

vocabulary S [D with equality such that the all free

variables of ’ occur among e1,...,en. The inputs of the

query are the S-instances. For each input I , the output
of the query q �{he1,...,eni j’} is the n-ary relation

qðIÞ ¼ fh�mðe1Þ;:::; �mðenÞi j
assignment m such that I ; m � ’g

Let I be an instance. The active domain of I , notation
adomðIÞ, is the set of all elements of D that actually

appear in the relations that interpret S in I . While D

is infinite, adomðIÞ is always finite. Moreover, given a

query q �{he1,...,eni j’} adom(q) is denoted by the

(finite) set of constants that occur in ’ or among

e1,...,en. One expects that the instance I together with

the query q completely determines the output qðIÞ. In
particular, only the elements in adomðIÞ [adomðqÞ
can appear in the output. However, this is not the

case for all first-order queries. For example, the out-

puts of {xj¬R(x)} or {hx,yi jR(x) ∨ S(y)} are in fact

infinite! More subtly, the following query is also prob-

lematic: {xj8yR(x,y)}. Here the output contains only

elements from adomðIÞ but whether a tuple is in the

output or not depends on the set of elements that y

ranges over. These queries are ‘‘dependent on the do-

main.’’ More precisely, for any instance I and any D

such that adomðIÞ [adomðqÞ � D � D, denote by

qðI=DÞ the output of the query q on the input struc-

ture obtained by restricting the domain to D. A query q

is domain independent if for any I and any D1,D2

where adomðIÞ [adomðqÞ � Di � D; i ¼ 1; 2 one

has qðI=D1Þ ¼ qðI=D2Þ. It is generally agreed that in

a reasonable query language, all the queries should be

domain independent. Therefore, general first-order

queries do not make a good query language. Worse, it is

undecidable whether a first-order query is domain inde-

pendent [1]. So how does one get a reasonable query

language? It is possible (in several ways) to define
decidable safety restrictions on general first-order for-

mulae such that the safe queries are domain indepen-

dent and moreover for any domain independent query

there exists an equivalent safe query [4,1]. The safety

restrictions tend to be complicated and have little

practical value. A better idea is the relational algebra.

Clearly, not all functions that map instances to

relations are meanings of first-order queries. However,

the meanings of first-order queries are all generic, i.e.,

invariant under bijective renamings of the constants in

D n adomðqÞ. Conversely, a function f that maps

instances to relations and is generic is said to be first-

order definable (a.k.a. definable in the relational calcu-

lus) if there exists a first-order query qwhose semantics

is f (contrast this with the definability within a given

structure described in FIRST-ORDER LOGIC: Seman-

tics). A well-known example of function that is not

first-order definable is taking the transitive closure of a

binary relation.

Codd’s tuple relational calculus [4,3] differs from

the domain relational calculus in that its variables

range over tuples and its terms are either constants or

of the form t.k where t is a variable and k is a positive

integer selecting one of the components of the tuple

(for example if t is assigned to (a,b,c) then the meaning

of t.2 is b).

Cross-references
▶Computationally Complete Relational Query

Languages

▶ First-Order Logic: Semantics

▶ First-Order Logic: Syntax

▶Relational Algebra

Recommended Reading
1. Abiteboul S., Hull R., and Vianu V. Foundations of Databases:

The Logical Level. Addison Wesley, Reading, MA, 1994.

2. Codd E.F. A relational model of data for large shared data banks.

Commun. ACM, 13(6):377–387, 1970.

3. Codd E.F. Relational Completeness of Database Sublanguages.

In Courant Computer Science Symposium 6: Data Base Systems,

R. Rustin (ed.). Prentice-Hall, Englewood Cliffs, NJ, 1972,

pp. 65–98.

4. Ullman J.D. Principles of Database and Knowledge-Base Systems

Volume, I. Computer Science Press, Rockville, MD, 1988.
Relational Database

▶Relational Model

2372R Relational Integrity Constraints
Relational Integrity Constraints

▶ FOL Modeling of Integrity Constraints

(Dependencies)
Relational Model

DAVID W. EEMBLEY

Brigham Young University, Provo, Utah, USA

Synonyms
Relational database

Definition
The Relational Model describes data as named relations

of labeled values. For example, customer ID’s can relate

with customer names and addresses in the relational

model as Customer: {<(CustomerID, 11111), (Name,

Pat), (Address, 12 Maple)>, <(CustomerID, 22222),

(Name, Tracy), (Address, 44 Elm)>}. In this example,

there is a name for the relation – Customer; label-value

pairs – e.g., (CustomerID, 11111), which provide

the labeled values; and tuples – e.g., <(CustomerID,

11111), (Name, Pat), (Address, 12 Maple)>, which are

the tuples of the named relation.

Usually, the relations of the relational model are

viewed as tables. Figure 1 shows an example of several

relations viewed as tables. Together, they constitute a

relational database. The first table in Fig. 1 is the table

view of the relation described in the previous paragraph.

Besides their structures, tables in the relational model

also have constraints. Typical constraints include key

constraints (e.g., CustomerID values must be unique),
Relational Model. Figure 1. Sample named relations of labe
type constraints (e.g., DateOrdered values must be of

type Date), and referential integrity constraints (e.g.,

the CustomerID values in table Order must refer to

existing CustomerID values in table Customer).

Historical Background
Codd’s seminal paper [2] introduced the relational

model as a model based on n-ary relations. The semi-

nal paper also introduces normal forms for relations

and a query language for relations. In perspective,

Codd essentially showed how to apply fundamental

concepts in set theory to form the relational data

model, the foundation of relational databases.

Several textbooks describe the relational data

model. Widely read descriptions are in the textbook

by Elmasri and Navathe [3] and the textbook by

Silberschatz, Korth, and Sudarshan [5], both of which

appear in their fifth edition. A few textbooks focus

solely on the relational model and treat it from a

theoretical perspective [1,4].

Foundations
The relational model can be viewed in several ways:

(i) intuitively, (ii) conceptually, (iii) as an implemen-

tation description, and (iv) formally. Each view satis-

fies different user needs.

Intuitive View

Figure 1 shows three tables that together model a sim-

ple item-order application. An intuitive description of

the relational model has the following characteristics:

	 A group of tables stores the data of an application,

and together the tables constitute a relational data-

base (e.g., the tables in Fig. 1).
led data viewed as tables in the relational model.

Relational Model. Figure 2. Schematic of table headers.

Relational Model R 2373

R

	 Each table has a name (e.g., Customer for the first

table in Fig. 1).

	 Each table has labeled column headers (e.g., Custo-

merID, Name, and Address for the first table in

Fig. 1).

	 Each table has data for each column header (e.g., Pat

and Tracy for the Name column of the first table in

Fig. 1).

	 The rows of each table constitute a record for the

table (e.g., <11111, Pat, 12 Maple> for the first

row in the first table in Fig. 1).

	 Each record asserts a fact that relates the table

name, column headers, and record values (e.g.,

the first row of the first table in Fig. 1 asserts that

a Customer exists whose CustomerID is 11111,

whoseName is Pat, and whose Address is 12 Maple).

	 Each value belongs to a specified domain, a defined

set of possible values (e.g., CustomerID values are

five-digit numbers).

	 A key uniquely identifies each record (e.g., in Fig. 1

CustomerID uniquely identifies customers and the

triple OrderNr-CustomerID-ItemNr uniquely iden-

tifies a line item in an order).

	 Values link records in different tables (e.g., in Fig. 1

the value 11111 links the customer whose Custo-

merID is 11111 with the orders for that customer by

recording the CustomerID in the same record as the

OrderNr).

	 For these cross-table linkages to make sense, refer-

enced values must exist (e.g., in Fig. 1 an order

record references customers by CustomerID’s;

thus, any CustomerID value recorded in the Order

relation must exist in the Customer relation).
Conceptual View

In a conceptual view of the relational model, the focus

is on the conceptual schema of each table. The collec-

tion of table schemas for all the tables constitutes the

relational database schema.

Figure 2 shows a schematic view of the relational

database schema for the database in Fig. 1. A relational

schema is a named template for a set of n-tuples with

the following features.

	 The schema has a name – Customer, for example, in

Fig. 2.

	 The schema has n attribute names, one for each

component of the n-tuples being represented. The

n attribute names must all be different so that they
form a set. The attribute names are usually just

called attributes. In Fig. 2 the Customer schema

has three attributes: CustomerID, Name, and

Address.

	 The schema has key constraints. An attribute (or a

set of attributes) whose value (or values) uniquely

determine at most one tuple is a key. One of these

keys is the primary key; often there is just one key,

which therefore is the primary key. In the schematic

view, underlines designate keys; double underlines

designate primary keys. In the Customer schema in

Fig. 2, CustomerID is the primary key, and the pair

Name-Address is another key.

	 The schema has referential integrity constraints.

This prevents referencing objects that do not exist.

In the example in Fig. 2, the customers referred to

in the Order table must exist in the Customer table,

and the items referred to must exist in the Item

table. Almost always, the referring attribute refers

to a key, usually the primary key. Thus, the refer-

ring attribute is called a foreign key – a key in

another table. When an attribute is a foreign key,

the values for the attribute in the n-tuples for the

table must be a subset of the values for the attri-

bute in the m-tuples of the referenced table. Sche-

matically, as Fig. 2 shows, an arrow is drawn from a

foreign key to a key. In the example, the customer

IDs in the Order tuples must be a subset of the

customer IDs in the Customer tuples, and the item

numbers in the order tuples must be a subset of the

item numbers in the Item tuples.

	 Optionally, the schema may also have domain

specifications for the attributes. For example, cus-

tomer IDs may always be five-digit numbers. If

so, ‘‘CustomerID: five-digitnumber’’ could be writ-

ten as a note in the schematic diagram in Fig. 2.

	 Optionally, the schema may also have additional

information. Additional constraints or notes may

2374R Relational Model
be written – for example, a note to say that the

DateOrdered should be initialized as today’s date.

Implementation View

The language used to express implementation views is

called a Data-Definition Language (DDL). Figure 3

shows an example for the sample customer-order ap-

plication in Fig. 1. The DDL in Fig. 3 is SQL, a standard

commercial database language for specifying, updat-

ing, and querying a database.

SQL allows database developers to declare relations

for the database and constraints over and among these

relations. The SQL syntax provides a way to declare

these basic relational-model features as follows.

	 A developer declares a schema for a table with a

create table declaration. The developer must pro-

vide a name for the table, and then must declare

each of the table’s attributes. Customer is the name

for the first table declared in Fig. 3.

	 A developer declares an attribute by giving its name

and then listing the constraints that apply to the

attribute. The attributes in the Customer table de-

clared in Fig. 3 are CustomerID, Name, and Address.

	 A developer declares domain constraints for an

attribute by giving a type declaration. In Fig. 3 the

type declaration for CustomerID is numeric (5),

declaring that customer IDs are 5-digit numbers.

SQL provides various types such as numbers, strings,

dates, time, and money. Type declarations are unfor-

tunately not uniform across all database systems.
Relational Model. Figure 3. SQL implementation

schemas.
	 A developer declares key constraints for an attribute

either by stating that it is the primary key or that it

is unique – a key but not the primary key. In Fig. 3

CustomerID in the first table schema and ItemNr in

the second table schema are primary keys.

	 A developer declares foreign-key constraints for

an attribute with a references clause. The references

clause designates the table in which the referenced

attribute is found. When the attribute in the refer-

enced table has the same name as the attribute in

the referencing table, this simple declaration is

sufficient. If the name is different, then the references

clause must also include the name of the attri-

bute being referenced. In Fig. 3, CustomerID in

the Order table references CustomerID in the Cus-

tomer table, and ItemNr references ItemNr in the

Item table. These foreign-key constraints ensure

that the CustomerID and ItemNr values in the

Order table refer to existing values in the Customer

and Order tables.

	 When constraints involve multiple attributes, SQL

provides syntax that allows a developer to declare

these constraints in a separate entry in a table

declaration. Thus, as Fig. 3 shows, a developer can

declare that the attribute combination consisting of

Name and Address constitutes a key for the Cus-

tomer table, and that the attribute combination

consisting of OrderNr, CustomerID, and ItemNr

constitutes the primary key for the Order table.

The SQL syntax also provides for multiple-attri-

bute foreign keys. Thus, although neither necessary

nor even desirable in the example in Fig. 3, the

attributes Name and Address could be added to

the Order table and a foreign-key constraint could

then be declared as foreign key (Name, Address)

referencesCustomer (Name, Address).

	 Typical additional constraints declarable with

SQL include null constraints and check con-

straints. Null constraints let developers decide

whether null values can or cannot appear as

values for attributes. Values for primary-key

attributes may never be null; other attributes

require a not null designation (otherwise they can

have null values). Check constraints let developers

add conditions that must hold. For example, a

developer can declare that NrOrdered can be nei-

ther negative nor zero by adding the constraint

check(NrOrdered > 0) to the NrOrdered attribute

in the Order table in Fig. 3.

Relational Model R 2375

R

Formal View

The formal view of the relational model captures the

essence of a relational schema in terms of mathemati-

cal concepts. The definition is based on the concepts of

sets, relations, and functions.

A relational schema R is a non-empty set of attri-

bute names R = {A1, A2,...,An}. Usually an ‘‘attribute

name’’ as just called an ‘‘attribute.’’ Further, as a notational

convenience, when an attribute name is a single letter, the

set notation is reduced by dropping the braces, commas,

and spaces. Thus, a relational schema R is a non-empty

set of attributes R = A1A2...An. Each attribute A has a

domain, denoted dom(A), which is a set of values.

A relation is always defined with respect to a rela-

tional schema. The notation r(R) denotes that relation

r is defined with respect to a relational schema R and is

read ‘‘r is a relation on schema R’’ or just ‘‘r on R’’ when

the context is clear. A relation is a set of n-tuples, {t1,...,

tk}, where n is jRj, the cardinality of R. Let schema R be

A1A2...An. Then, an n-tuplet for a relation r(R) is a

function, from R to the union of domains D = dom

(A1) [dom(A2) [... [dom(An), with the restriction

that t(Ai) 2 dom(Ai), 1 <= i <= n.

A relation is usually written as a table – the table in

Fig. 4, for example. In Fig. 4 the relation r has relational

schema R = AB. To declare the attribute domains,

assume dom(A) is {a, b, c} and dom(B) is {0,...,9}.

The set of n-tuples for r is the set of discrete functions

{{(A, a), (B, 1)}, {(A, b), (B, 1)}, {(A, b), (B, 2)}}.

Another way to view the relational model formally is

to view it as an interpretation in first-order logic. In this

view of the relational model each relation r, whose sche-

ma has n attributes, is an n-place predicate. An inter-

pretation for a first-order language consists of (1) a non-

empty domain D of values, which under the unique

name assumption each represent themselves, and (2)

for each n-place predicate, an assignment of True or

False for each possible substitution of n values from D.

As an example, consider the relation in Fig. 4. To

see this relation as an interpretation, let r(x, y) be
Relational Model. Figure 4. Sample table for illustrating

the formal definition.
a two-place predicate. The domain D is {a, b, c, 0, 1,

2, 3, 4, 5, 6, 7, 8, 9}. True is assigned to the substitutions

(x = a, y = 1), (x = b, y = 1), and (x = b, y = 2) and

False is assigned to all other substitutions.

Most often in this first-order-logic view, the ‘‘closed

world assumption’’ is used to conveniently assign True

and False to each substitution. The ‘‘closed world as-

sumption’’ states that whatever is not True is False, and

thus only the True facts need to be recorded. This, then,

reduces to the equivalent of just giving a table such as

the one in Fig. 4 – the rows in the table represents the

substitutions for which the predicate is True and the

only substitutions for which the predicate is True.

In a first-order-logic view of the relational model, it

is also possible to express constraints. For the table in

Fig. 4, for example, the constraint that A should be a

key can be expressed by the closed formula 8x18y18x2
8y2(r(x1, y1)∧ r(x2, y2)∧ x1 = x2) y1 = y2). This does

not hold for the table in Fig. 4, however, since the

second and third tuples have x1 = x2, but y1 6¼ y2.

A check constraint stating that the values in the B

column must all be less than 5 can be expressed as

8x 8y(r(x, y)) y < 5). This constraint does hold in

the table in Fig. 4.

For an interpretation for a first-order language,

when all the closed formulas hold, the interpretation

is said to be a model. Database instances in which all

constraints hold are therefore models – models of the

world they represent.

Key Applications
Relations, stored in relational databases, are widely used

in industry. Indeed, their combined usage constitutes a

mega-billion-dollar industry. Relational databases range

from relatively small databases used as backends to web

applications such as ‘‘items for sale’’ to relatively large

databases used to store corporate data.

Cross-references
▶Database Normalization

▶Key

▶Relational Algebra

▶Relational Calculus

▶ SQL
Recommended Reading
1. Atzeni P. and De Antonellis V. Relational Database Theory,

The Benjamin/Cummings Publishing Company, Inc., Redwood

City, CA, 1993.

2376R Relational Query Processor
2. Codd E.F. A relational model for large shared data banks,

Commun. ACM, 13(6)377–487, 1970.

3. Elmasri R. and Navathe S.B. Fundamentals of Database Systems,

Fifth Edition. Addison-Wesley, Boston, MA, 2007.

4. Maier D. The Theory of Relational Databases, Computer Science

Press, Inc., Rockville, MA, 1983.

5. Silberschatz A., Korth H.F., and Sudarshan S. Database System

Concepts, Fifth Edition. McGraw-Hill, New York, 2006.
Relational Query Processor

▶Query Processor
Relation-Completeness

▶BP-Completeness
Relations with Marked Nulls

▶Naive Tables
Relationship of Reliance

▶Trust in Blogosphere
Relationships in Structured Text
Retrieval

MOUNIA LALMAS

Queen Mary, University of London, London, UK

Definition
In structured text retrieval, the relationship between

text components may be used in ranking components

relative to a given query.

Key Points
In a structured text document, there exists a relation-

ship between the document components. In the context

of XML retrieval, the relationships between elements are

provided by the logical structure of the XML mark-up.

An element, unless it is the root element (the document

itself), has a parent element, which itself may have a
parent element. Similarly, non-leaf elements have chil-

dren elements, and so on. Considering relationships

between elements appears to be beneficial for XML

retrieval. For instance, in a collection of scientific articles,

it is reasonable to assume that the ‘‘abstract’’ of an article

is a better indicator of what the article is about than a

‘‘future work’’ section in the same article. The challenge

in XML retrieval is what types of relationship should be

considered, and how this information can be used to

score elements according to how relevant they are for a

given query. In the contextualization approach [1], con-

sidering the ‘‘root element – element’’ relationship to

rank an element in addition to the element own content

has shown to improve retrieval effectiveness [2,3].

Cross-references
▶Contextualization

▶ Logical Structure

▶ Structure Weight

▶XML Retrieval

Recommended Reading
1. Arvola P., Junkkari M., and Kekäläinen J. Generalized contex-

tualization method for XML information retrieval. In Proc.

ACM Conf. on Information and Knowledge Management,

2005, pp. 20–27.

2. Mass Y. and MandelbrodM. Component ranking and automatic

query refinement for XML retrieval. In Advances in XML Infor-

mation Retrieval and Evaluation, LNCS, vol. 3493, Springer,

2005, pp. 73–84.

3. Sigurbjörnsson B., Kamps J., and de Rijke M. An element-based

approach to XML retrieval. In Proc. 2nd Int. Workshop of the

Initiative for the Evaluation of XML Retrieval, 2003, pp. 19–26.
Relative Operating Characteristic

▶Receiver Operating Characteristic (ROC)
Relative Time

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Definition
Viewing a temporal database as a collection of time-

referenced (or timestamped) facts, a time reference in

Relevance R 2377
such a database is called relative if its value is depen-

dent of the context. For example, this context can be

the current time, now, or it can be another instant.

Key Points
The relationship between times can be qualitative

(before, after, etc.) as well as quantitative (3 days

before, 397 years after, etc.). If quantitative, the relation-

ship is specified using a time span.

Examples: ‘‘Mary’s salary was raised yesterday,’’ ‘‘it

happened sometime last week,’’ ‘‘it happened within

3 days of Easter, 2005’’ ‘‘the Jurassic is sometime after

the Triassic,’’ and ‘‘the French revolution occurred 397

years after the discovery of America’’.

The simplest example of a relative timestamp is a

period that starts at a time in the past and extends to

now, such as (2005, now). As the clock ticks, this period

gets longer.

Cross-references
▶Absolute Time

▶Now in Temporal Databases

▶Qualitative Temporal Reasoning

▶Temporal Database

▶Time Span

Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Temporal

Databases: Research and Practice, O. Etzion, S. Jajodia, S. Sripada

(eds.). LNCS, vol. 1399. Springer, Berlin, 1998, pp. 367–405.
R

Relevance

JOVAN PEHCEVSKI
1, BIRGER LARSEN

2

1INRIA Paris-Rocquencourt, Le Chesnay Cedex,

France
2Royal School of Library and Information Science,

Copenhagen, Denmark

Synonyms
Exhaustivity; Specificity; Topical-hierarchical relevance

Definition
Relevance is the extent to which some information is

pertinent, connected, or applicable to the matter at

hand. It represents a key concept in the fields of documen-

tation, information science, and information retrieval.
In information retrieval, the notion of relevance is

used in three main contexts. Firstly, an algorithmic

relevance score is assigned to a search result (usually

a whole document) representing an estimated like-

lihood of relevance of the search result to a topic of

request. This relevance score often determines the

order in which search results are presented to the

user. Secondly, when the performance of information

retrieval systems is tested experimentally, the retrieved

documents are assessed for their actual relevance to

the topic of request by human assessors (topic experts).

A binary relevance scale is typically used to assess the

relevance of the search result, where the relevance is

restricted to be either zero (when the result is not

relevant to the user request) or one (when the result

is relevant). Thirdly, in experiments involving users (or

in operational settings) a broader notion of relevance is

often used, with the aim of expressing the degree to

which the retrieved documents are perceived as useful

in solving the user’s search or work task.

In structured text (XML) retrieval, the search result

is typically an XML element, and the relevance score

assigned by an XML retrieval system again represents

an estimated likelihood of relevance of the search result

to the topic of request. However, when the results are

subsequently assessed for relevance, the binary rele-

vance scale is not sufficient, primarily due to the hier-

archical relationships that exist among the elements

in an XML document. Accordingly, in XML retrieval

one or more relevance dimensions (each with a

multi-graded relevance scale) have been used to assess

the relevance of the search result.

Key Points
In traditional information retrieval experiments where

whole documents are retrieved, a fairly simple notion of

relevance may suffice for most purposes [1]. The chal-

lenge in XML retrieval is that the relevance assessments

must capture not only whether the retrieved elements are

relevant, but also how they relate to one another.

The different relevance definitions for XML retriev-

al have mainly been investigated by the INitiative for

the Evaluation of XML Retrieval (INEX). In 2002, the

INEX relevance definition comprised two relevance

dimensions named topical relevance and component

coverage. This relevance definition has not been used

by INEX since then, partly because of the vague termi-

nology used for the names of the two relevance dimen-

sions, and partly because it has been subsequently

2378R Relevance Evaluation of IR Systems
shown that the INEX 2002 assessors did not fully

comprehend component coverage. In 2003 and 2004,

the two INEX relevance dimensions were named Ex-

haustivity and Specificity, which respectively reflect the

extent that an element covers and is focussed on aspects

of an information need represented by the topic of

request. The two INEX relevance dimensions used

four grades to assess the relevance of an element (either

its exhaustiveness or its specificity): ‘‘none,’’ ‘‘margin-

ally,’’ ‘‘fairly,’’ and ‘‘highly.’’ The grades from each di-

mension were then combined into a single 10-point

relevance scale.

From 2005 onwards, a highlighting assessment pro-

cedure is used at INEX to gather relevance assessments

for the XML retrieval topics. As a result, the INEX

relevance definition was simplified such that only

three Exhaustivity values were assigned to a relevant

element, while the Specificity of the relevant element

was measured on a continuous relevance scale and

computed automatically as the ratio of highlighted to

fully contained text. From 2006 onwards, relevance in

INEX is defined only according to the notion of Speci-

ficity, where the continuous relevance scale is used to

assess the relevance of retrieved elements.

The experience of both assessors and users is im-

portant when defining relevance in XML retrieval. An

interactive track was established at INEX in 2004 to

investigate the behavior of users when elements of

XML documents (rather than whole documents) are

presented as answers. The interactive track was run

again at INEX in 2005 and 2006, comprising various

tasks and different XML document collections [2].

A topical-hierarchical relevance definition was used

by the INEX Interactive tracks in 2005 and 2006, which

comprises two relevance dimensions and a five-point

nominal relevance scale [2,3]. An analysis of the feed-

back gathered from users participating in the INEX

2005 Interactive track showed that users did not find

the five-point scale to be very hard to understand [3].

Furthermore, a mapping between the five-point rele-

vance scale (used by users) and the continuous Speci-

ficity scale (used by the expert assessors) can easily be

established [3], which allows for a better understand-

ing of the definition of relevance in XML retrieval.

Cross-references
▶ Evaluation Metrics for structured text retrieval

▶ Similarity and Ranking Operations

▶ Specificity
Recommended Reading
1. Borlund P. The concept of relevance in IR. J. Am. Soc. Inf. Sci.

Technol., 54(10):913–925, 2003.

2. Malik S., Tombros A., and Larsen B. The interactive track at

INEX 2006. In Proc. 5th Int. Workshop of the Initiative for the

Evaluation of XML Retrievals, 2007, pp. 387–399.

3. Pehcevski J. Relevance in XML retrieval: the user perspective. In

Proc. SIGIR 2006 Workshop on XML Element Retrieval Meth-

odology, 2006, pp. 35–42.
Relevance Evaluation of IR Systems

▶ Effectiveness Involving Multiple Queries
Relevance Feedback

BEN HE

University of Glasgow, Glasgow, UK

Synonyms
RF

Definition
The relevance feedback technique expands the initial

query by taking into account relevance assessments on

documents by the user. Relevance feedback techniques

aim to improve the retrieval accuracy and to better

satisfy the user information need.

Key Points
The relevance feedback algorithms may use explicit

(e.g., user labels), implicit (e.g., click-through data)

or blind (e.g., pseudo relevance documents) relevance

information for the feedback purpose.

A classical relevance feedback algorithm based on

the Vector Space model was proposed by Rocchio in

1971 [1].
Cross-references
▶ Probabilistic Retrieval Models and Binary Indepen-

dence Retrieval (BIR) Model

▶ Probabilistic Model

▶Query Expansion Models

▶Relevance Feedback for Content-Based Information

Retrieval

Relevance Feedback for Content-Based Information Retrieval R 2379
▶Rocchio’s Formula

▶Web Search Relevance Feedback

Recommended Reading
1. Rocchio J. 1Relevance Feedback in Information Retrieval. Pren-

tice-Hall, Englewood Cliffs, NJ, USA, 1971, pp. 313–323.
R

Relevance Feedback for Content-
Based Information Retrieval

XIN-JING WANG, LEI ZHANG

Microsoft Research Asia, Beijing, China

Definition
Relevance feedback (RF) [5,2] is an on-line approach

which tries to learn the users’ intentions on the fly.

It leverages users to guide the computers to search

for relevant documents. An RF mechanism has two

components: a learner and a selector. At every feedback

round, the user marks (part of) the images returned

by the search engine as relevant or irrelevant. The

learner exploits this information to re-estimate

the target of the user. This information is used both

quantitatively (retrieving more documents like the rele-

vant documents) and qualitatively (retrieving documents

similar to the relevant ones before other documents).

With the current estimation of the target, the selector

chooses other images that are displayed by the interface

of the search engine; then the user is asked to provide

feedback on these images during the next round. The

process of RF is usually presented as a cycle of activity: an

IR system presents a user with a set of retrieved docu-

ments; the user indicates those that are relevant; and the

system uses this information to produce a modified ver-

sion of the query. The modified query is then used to

retrieve a new set of documents for presentation to the

user. This process is known as an iteration of RF which

ends until the user is satisfied.

Historical Background
RF is a powerful tool which is traditionally used in text-

based information retrieval systems. It was introduced to

CBIR during mid-1990s [4], with the intention of bring-

ing the user into the retrieval loop and reducing the

‘‘semantic gap’’ between what queries represent (low-

level features) and what the user thinks.

Early approaches assumed the existence of an

ideal query point that, if found, would provide the
appropriate answer to the user. These approaches be-

long to the family of query point movement (QPM)

methods, for which the task of the learner consists in

finding, at every round, a better query point together

with a re-weighting of the individual dimensions of the

description space.

Recent work on RF often relies on support vector

machines (SVM). With SVMs, generally the data is

first mapped to a higher-dimensional feature space

using a non-linear transform kernel, then is classified

in this mapped feature space using maximum margin

strategy [6].

Foundations

General Assumptions

Before developing relevance feedback mechanisms

for content-based image retrieval, it is necessary

to understand some general assumptions underly-

ing. According to [2], the assumptions are as the

following:

1. The discrimination between relevant and irrelevant

images must be possible with the available image

descriptors.

2. There are some relatively simple relations between

the topology of the description space and the char-

acteristics shared by the images that the user is

searching for.

3. Relevant images are a small part of the entire image

database.

4. While some of the early work on RF assumed that

the user could (and would be willing to) provide a

rather rich feedback, including relevance notes for

many images, currently the assumption is that this

feedback information is scarce. The user will only

mark a few relevant images as positive and some

very different images as negative.

Figure 1 shows the flowchart of a typical Content-

based image retrieval process with relevance feedback

[3]. Based on the above general assumptions, a typical

scenario for relevance feedback in content-based image

retrieval is as below [3,9]:

1. The system provides initial retrieval results given

query examples;

2. User judges the above results as to what degree,

they are relevant (positive examples) or irrelevant

(negative examples) to the query.

Relevance Feedback for Content-Based Information Retrieval. Figure 1. CBIR with RF.

2380R Relevance Feedback for Content-Based Information Retrieval
3. Machine learning algorithm is applied to learn a

new ranking model based on the user’s feedback.

Then go back to (2).

Steps (2)–(3) are repeated till the user is satisfied with

the results.

Step (3) is comparably the most important step

and different approaches can be used to learn the

new query. A few generally adopted approached are

introduced in the following.

Re-Weighting Approaches

A typical approach in step (3) is to automatically

adjust the weights of low-level features to accommo-

date the users’ need, rather than asking the user to

specify the weights as adopted in earlier content-

based image retrieval systems. This re-weighting step

dynamically updates the weights embedded in the

query (not only the weights to different types of low-

level features such as color, texture, shape, but also the

weights to different components in the same feature

vector) to model the high-level concepts and percep-

tion subjectivity [4].

Query Point Movement Approaches

Another method is called query-point-movement

(QPM) [3]. It improves the estimation of the query
point by moving it towards the positive examples and

away from the negative examples. A widely adopted

query point removing technique is called the Rocchio’s

formula [1] (see (1) below):

Q
0 ¼ aQ þ bð 1

N
R
0
S
i2D0

R
DiÞ � gð 1

N
N

0
S
i2D0

N
DiÞ ð1Þ

In (1), Q and Q
0
are the original query and updated

query, respectively, and D
0

R and D
0

N are sets of the

positive and negative images returned by the user,

and N
R
0 and N

N
0 are the set sizes. a, b and g are

weights.
Machine Learning Approaches

Machine learning techniques are also widely used. As

mentioned previously, support vector machine (SVM)

is used to capture the query concept by firstly apply-

ing the kernel trick which projects images onto a hy-

perspace and then separates the relevant images from

irrelevant ones using maximum margin strategy. The

advantages of adopting SVM are that (i) it has high

generalization ability, and (ii) it works for small train-

ing sets.

Another step-forward approach is proposed by

Tong and Chang [8] called SVM active learning,

which was reported to be able to effectively use

Relevance Feedback for Text Retrieval R 2381

R

negative and non-labeled samples, and learn the query

concept faster and with better accuracy.

Since manually labeling images is tedious and

expensive, training image set is usually very small. This

is called the small sample problem. To handle this prob-

lem, some researchers proposed boosting methods, e.g.,

Discriminant-EM (D-EM) [7], which boosts the classi-

fier learnt from the limited labeled training data.

Decision-tree learning methods such as C4.5, ID3

were also used in RF loop to classify the database

images into relevant and irrelevant.

Key Applications
Relevance feedback approach can help not only

content-based image retrieval, but also applications

like image annotation, segmentation, etc.

Future Directions
There are still many research work on adopting rele-

vance feedback to content-based image retrieval [2]:

1. It is better to exploit prior information, such as

domain-specific similarity, clustering, context of

session, etc., in the RF mechanisms.

2. The impact of the data and of the policy of the

user on both the learner and the selector must

be addressed.

3. How to scale up RF to handle very large image

databases is an important issue which was not

extensively studied.

Cross-references
▶Content-Based Image Retrieval

▶Relevance Feedback
Recommended Reading
1. Chen Z. and Zhu B. Some formal analysis of Rocchio’s similarity-

based relevance feedback algorithm. Information Retrieval

5:61–86, 2002.

2. Crucianu M., Ferecatu M., and Boujemaa N. Relevance feedback

for image retrieval: a short survey. In state of the art in audiovi-

sual content-based retrieval, Information Universal Access and

Interaction, Including Datamodels and Languages. Report of the

DELOS2 European Network of Excellence (FP6), (2004).

3. Liu Y., Zhang D., Lu G., and MaW.-Y. A survey of content-based

image retrieval with high-level semantics. Pattern Recognition

40(1):262–282, 2007.

4. Rui Y., Huang T.S., Ortega M., and Mehrotra S. Relevance

feedback: a power tool for interactive content-based image re-

trieval. IEEE Transactions on Circuits and Systems for Video

Technology 8(5):644–655, 1998.
5. Ruthven I. and Lalmas M. A survey on the use of relevance

feedback for information access systems. The Knowledge Engi-

neering Review(2003). Cambridge University Press, London.

6. Schölkopf B. and Smola A. Learning with Kernels. MIT Press,

Cambridge, MA, 2002.

7. Tian Q., Yu Y., and Huang T.S. Incorporate discriminant

analysis with EM algorithm in image retrieval. In Proc. IEEE

Int. Conf. on Multimedia and Expo, 2000, pp. 299–302.

8. Tong S. and Chang E. Support vector machine active learning for

image retrieval. In Proc. 9th ACM Int. Conf. on Multimedia,

2001, pp. 107–118.

9. Zhu X.S. and Huang T.S. Relevance feedback in image retrieval: a

comprehensive review. Multimedia System 8(6):536–544, 2003.
Relevance Feedback for Text
Retrieval

OLGA VECHTOMOVA

University of Waterloo, Waterloo, ON, Canada

Synonyms
RF
Definition
Relevance feedback (RF) is a process by which the

system, having retrieved some documents in response

to the user’s query, asks the user to assess their rele-

vance to his/her information need. The user’s relevance

judgements are then used to either adjust the weights

of the query terms, or add new terms to the query

(query expansion).
Key Points
Searchers may have difficulties in finding the words

and phrases (terms) to express their information needs

accurately and completely. They may also use different

words in the queries than the words used by the

authors of documents. On the other hand, searchers

tend to know relevant information when they see it.

In other words, it may be easier for them to tell which

documents are relevant, instead of formulating a

detailed query.

A typical relevance feedback process consists of the

following steps: the user formulates and submits an

initial query to an information retrieval system, which

retrieves a ranked list of documents. Documents are

typically presented in the ranked list in some surrogate

2382R Relevance Propagation
form, for example, as document titles, abstracts, snip-

pets of text, query-biased, or general summaries. The

user then reads the contents of the documents that

seem promising. After reading each document, the

user is expected to indicate to the system whether it

is relevant or not to his/her information need. After the

user has judged some documents as relevant, either the

system, or the user initiate the process of query expan-

sion or query term reweighting. The relevance feed-

back process can be iterative.

When relevance feedback is used for reweighting,

the weights of the user-entered query terms are adjust-

ed based on their occurrence in the judged documents.

For example, in the probabilistic model [2], terms are

reweighted based on their presence in the documents

judged relevant to give a more accurate estimation of

the probability of the document’s relevance to the

query.

Relevance feedback has consistently yielded sub-

stantial gains in performance in experimental settings

when used for query expansion. In this case, docu-

ments judged relevant by the searcher are used as the

source of new terms to be added to the query. Many

term selection methods have been proposed for query

expansion following relevance feedback. The general

idea behind all such methods is to select terms that

discriminate between relevant and nonrelevant docu-

ments, and are useful in retrieving previously unseen

relevant documents, e.g., [1,2].

A related process is known as pseudo-relevance or

blind feedback (BF). The difference from RF is that

instead of asking the user to indicate the relevance of a

document, the system assumes that n top ranked docu-

ments are relevant. An advantage of BF over RF is

that it requires less cognitive effort on the part of

the user. The performance of BF, however, depends

on the performance of the user’s query. If the docu-

ments in the top ranks are nonrelevant, then query

expansion or query term reweighting will deteriorate

the performance.

Another technique is implicit relevance feedback

(IRF), where the system infers the user’s interest in

the documents based on his/her behavior with respect

to the IR system. A detailed study analyzing the utility

of IRF was conducted by [4].

The adoption of relevance feedback in its tradition-

al form by the web search engines has been limited.

A study of the use of relevance feedback in the Excite

search engine is reported in [3].
Cross-references
▶ Information Retrieval

▶ Information Retrieval Models

▶Query Expansion for Information Retrieval
Recommended Reading
1. Carpineto C., de Mori R., Romano G., and Bigi B. An

information-theoretic approach to automatic query expansion.

ACM Trans. Inf. Syst., 19(1):1–27, 2001.

2. Spärck Jones K., Walker S., and Robertson S.E. A probabilistic

model of information retrieval: development and comparative

experiments. Inf. Process. Manage., 36(6):779–808 (Part 1);

809–840 (Part 2), 2000.

3. Spink A., Jansen B.J., and Ozmultu H.C. Use of query reformu-

lation and relevance feedback by Excite users. Internet Res.:

Electron. Networking Appl. and Policy, 10(4):317–328, 2000.

4. White R.W., Ruthven I., and Jose J.M. A study of factors affecting

the utility of implicit relevance feedback. In Proc. 31st Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 2005, pp. 35–42.
Relevance Propagation

▶ Propagation-Based Structured Text Retrieval
Remote Method Invocation

▶RMI
Removing Overlap

▶ Processing Overlaps
Rendezvous

▶Workflow Join
Replica and Concurrency Control

▶Replicated Database Concurrency Control

Replica Control R 2383
Replica Consistency

▶Consistency Models For Replicated Data
R

Replica Control

RICARDO JIMENEZ-PERIS, MARTA PATIÑO-MARTINEZ

Universidad Polytecnica de Madrid, Madrid, Spain

Synonyms
Database replication; Data replication protocols; Clus-

ter database replication

Definition
In database replication, each data item has several

physical copies, also called replicas, that are distributed

over different nodes (sites). In case of full replication,

each data item has a copy on each site. In this case, the

term replica can also refer to a node hosting a copy of

the entire database. Replica control is in charge of

translating the read and write operations that clients

submit on the logical data items into operations on the

physical data copies. The goal is to keep a consistent

state among all the replicas and to provide a consistent

view of the data to the client. Replica control extends

concurrency control in order to coordinate the execu-

tion of concurrent transactions at different replicas.

Historical Background
Replica control in databases has been studied since the

1980’s. Early approaches mostly explored distributed

locking and had their main focus on providing high

availability and enforcing strong consistency in the

advent of site failures and network partitions [3]. In

particular, the correctness criterion 1-copy-serializability

requires the execution in a replicated system to be equiv-

alent to a serial execution over a non-replicated database.

In the 1990’s a seminal paper from Gray et al. [7]

criticized existing database replica control protocols

providing analytical evidence of the lack of scalability

due to the high deadlock probabilities when the num-

ber of replicas increases. This paper raised a new wave

of research around data replication searching for scal-

able approaches. Some of these approaches explore

weaker levels of consistency (e.g., [2,6,15]). Others

aim at maintaining strong levels of consistency while

still offering good scalability (e.g., [1,8,11]), sometimes
relying on powerful abstractions such as group com-

munication. Snapshot isolation has been explored as a

new isolation level [5,9,14] to allow for more concur-

rency in the replicated system. A considerable effort

has been undertaken to optimize those parts of repli-

cation control that have a large impact on the perfor-

mance. Both kernel based replication solutions (e.g.,

[8,11] as middleware-based replication tools (e.g.,

[1,9,14] have been developed. Different solutions

have been developed for LAN andWAN environments.

All these efforts have led to a wide range of replica

control protocols. Which one to choose for a specific

scenario depends on the environment and the applica-

tion requirements. A trade-off between correctness,

performance, generality, and potential of scalability is

nearly always unavoidable.

Foundations
Replica control algorithms and their implementations

can be categorized by a wide range of parameters.

Architecture

One aspect of replica control is where the protocol is

implemented. It can be implemented within the data-

base what is known as kernel-based or white box ap-

proach (e.g., Postgres-R [8] and the database state

machine [11]). A client connects to any database replica

which then coordinates with the other replicas. Typically,

replica control is tightly coupled with the concurrency

control mechanism of the database system.

Alternatively, replica control can be implemented

outside the database as a middleware layer (e.g.,

[1,9,10,14,15]). Clients connect to the middleware

that appears as a database system. The middleware

then controls the execution and directs the read and

write operations to the individual database replicas.

This can be instrumented in two ways: (i) A black-box

approach uses standard database systems to store the

database replicas [1,14,15]; (ii) A gray-box approach

expects the database system to export some minimal

functionality that can be used by the middleware for a

more efficient implementation of replica control, e.g.,

providing the tuples that a transaction has updated so

far in form of a writeset [10]. A middleware-based

approach typically has its own concurrency control

mechanism which might partially depend on the con-

currency control of the underlying database systems.

There might be a single middleware component

(centralized approach), or the middleware might be

2384R Replica Control
replicated itself. For example, the middleware could

have a backup replica for fault-tolerance. Other

approaches have one middleware instance per database

replica, and both together build a replication unit.

Replica Control Phases

A replica control protocol has to control the execution

of transactions during regular operation (no failure),

while failures occur, and during recovery (failed sites

with stale data replicas rejoin the system or new sites

are added to the system). As shown in Fig. 1, the

execution of a transaction during regular operation

may have a number of phases (adjusted from [12]):

1. Client connection. The client interacts with the da-

tabase through a client proxy (such as a JDBC or an

ODBC driver, or the database client API). The

client connects to the replicated database by invok-

ing the client proxy connection method. In the

middleware approach, the client connects to the

middleware (or one of the middleware instances if

they are replicated). In the kernel-based approach,

it connects to one of the database replicas. Con-

necting to a replicated database may require some

mechanism to enable replica discovery in a trans-

parent way (such as a well-known registry or IP

multicast). With this, the client can connect to

the database independently of which replicas are

currently available. If transparency is required, i.e.,

the client application should not be aware of
Replica Control. Figure 1. Replica control phases.
replication, then replica discovery can be hidden

in the client proxy.

2. Request submission. The client submits a request via

the client proxy that forwards it to the middleware

or database replica to which it is connected.

3. Pre-processing coordination. Some protocols require

sending requests to all replicas. As a result, the

replica to which the client is connected might for-

ward the request to one, some or all replicas. This

phase may also be used for other purposes such as

distributed concurrency control or load-balancing.

4. Request processing. The request is processed by one

or more replicas.

5. Post-processing coordination. Once a request is

processed some protocols perform concurrency

control tasks, propagate changes, aggregate results

from a quorum, or guarantee atomicity by execut-

ing a two-phase commit protocol or another ter-

mination protocol.

6. Result return. The result of the request is sent back

to the client proxy that returns it to the client.

A request can be either an entire transaction (consist-

ing of one or multiple read and write operations), or

an operation within a transaction. In the latter case,

phases 2–6 may be repeated for each operation and

for the final commit of a transaction (as in distributed

locking [3]). Moreover, the order of the last two pha-

ses could be reversed, i.e., first a result is sent to the

client and after that, some coordination takes place.

Replica Control R 2385

R

Replica control protocols are implemented in the pre-

processing phase, in the post-processing phase or in

both of them. five phases are independent of the archi-

tecture of the replicated database (replica control is

implemented as a middleware layer, either centralized

or distributed, or is a kernel based implementation).

Mapping Approaches

One of the main tasks of replica control is to map read

and write operations on logical data items to opera-

tions on the physical data copies such that replicas

eventually converge to the same value and reads see

consistent data. With ROWA (read-one-write-all) pro-

tocols, read-only operations are processed at a single

replica, while write operations are executed at all repli-

cas. The extension to ROWAA (read-one-write-all-

available) protocols aims at handling site failures.

However, in case of network partitions ROWAA

might result in two partitions executing transactions.

In contrast, quorum-based replica control can handle

both site and network failures. Both read and write

operations need to access a quorum of replicas. Any

two write quorums, and each read and write quorum

have to overlap in at least one replica in order to

guarantee data consistency and consistent read

operations.

Correctness Criteria

One of the main aspects of replica control is the correct-

ness criterion to be supported. Several, relatively strong

correctness criteria extend the notion of isolation from a

non-replicated database to a replicated setting. 1-copy

correctness states that the replicated data should appear

as one logical non-replicated database. Depending on

the isolation level used in the non-replicated execution

different correctness criteria can be defined. In a non-

replicated database, serializability guarantees that

the concurrent execution of transactions is equivalent

to a serial execution. 1-copy-serializability [3] (1CS)

extends this notion and guarantees that the concurrent

execution of transactions over the replicated database

is equivalent to a serial execution over a non-replicated

database. Non-replicated database systems usually

offer more relaxed forms of isolation, such as the

ANSI isolation levels or snapshot isolation. 1-copy-

snapshot-isolation has been defined as a correctness

criterion for a replicated database (e.g., [9], and several

replica control protocols consider snapshot isolation

(e.g., [5,9,14]).
Weak consistency models do not require 1-copy

correctness. Depending on the consistency level, clients

might read replicas that are stale, that is, have not yet

applied the latest updates, or copies might even diverge

if different replicas are allowed to concurrently apply

conflicting updates [16]. The degree of staleness or

divergence might be bound.

Concurrency Control

In cases where 1-copy correctness is required, dis-

tributed concurrency control is needed to enforce the

correctness criteria by restricting the execution of con-

current conflicting transactions. That is, many replica

control protocols extend concurrency control to a

replicated system.

Concurrency control protocols can be either opti-

mistic or pessimistic. A pessimistic approach restricts

concurrency to enforce consistency across replicas. The

easiest way consists in executing all update transactions

sequentially in the same order at all sites, what would

provide 1CS trivially. Other protocols increase concur-

rency by exploiting knowledge about the data that will

be accessed. With this information, transactions acces-

sing disjoint data sets can be executed in parallel while

those that potentially access common data are executed

sequentially. The granularity of data can be at different

levels, such as tables, tuples or conflict classes (i.e., data

partitions). Pessimistic replica control protocols are

implemented in the pre-processing phase. Optimistic

approaches, in contrast, execute potentially conflicting

transactions concurrently. Only when the transact-

ion has completed execution, a validation phase (also

known as certification) takes place. It checks whether

the transaction being validated conflicts with concur-

rent transactions. If there is a conflict, some transac-

tion must be aborted. A standard mechanism to

guarantee serializability is to abort the validating trans-

action if the set of data items it read during execution

overlaps with the set of data items written by a concur-

rent transaction that already validated. With snapshot

isolation, a transaction fails validation if it wrote some

data item that a concurrent, already validated transac-

tion also wrote.

Processing Update Transactions

Another important feature of replica control is how

update transactions are processed. With symmetric up-

date processing each update transaction is fully exe-

cuted at all replicas. In contrast, asymmetric update

2386R Replica Control
processing executes update transactions at one site (or

subset of sites) and then, the resulting changes (known

as writeset) are propagated to the rest of the replicas.

Some protocols [1] lie in between, being symmetric at

the statement level, but asymmetric at the transaction

level. That is, if an update transaction contains both

write and read statements, the read statements are

executed at one site while write statements are exe-

cuted at all sites. Asymmetric update processing has

typically much less overhead than symmetric update

processing and thus, allows for better scalability in

update-intensive environments [8].

Timepoint of Synchronization

As described earlier, a client typically connects to one

replica and submits its transactions to this replica.

An important question is when this replica coordinates

with other replicas to guarantee data consistency.

In eager (aka synchronous) protocols, coordination

takes place before the transaction commits locally.

Typically, this means that the replica sends the chan-

ges (asymmetric processing) or the operation request

(symmetric processing) and the concurrency control

component decides on a serialization order for this

transaction before it commits. In contrast, with lazy

replication (aka asynchronous), updates are asynchro-

nously propagated after the transaction commits. Lazy

replication usually applies asymmetric processing.

The propagation can be done immediately after

the commit, periodically, or be triggered by some

weak consistency criteria such as freshness. With lazy

replication, transaction execution has usually no pre-

processing coordination phase, and phases five and six

are switched. This means, the results are first returned

to the client, and then, the post-processing phase is

run. Eager replication usually results in longer client

response times since communication is involved but

can more easily provide strong consistency.

Who Executes Transactions

Primary copy replication requires that all update trans-

actions are executed at a given site (the primary) (e.g.,

[5,14,15]). The primary propagates the changes to the

other replicas (secondary replicas). Secondaries are

only allowed to execute read-only transactions them-

selves. In order to be able to forward read-only trans-

actions to secondaries and update transactions to

the primary, the system must be aware at the start

time of a transaction whether it is read-only or not
(e.g., through a tagging mechanism). If update trans-

actions can be executed at any site, the replica control

protocol follows an update everywhere approach (also

referred to as update anywhere). An alternative to pri-

mary copy replication and update everywhere is based

on partitioning the database items such that each par-

tition has a primary, but different partitions may have

different primaries (e.g., [4,10]). This avoids that the

primary becomes a bottleneck under write-intensive

workloads. However, it is only suitable for applications

where the database can be partitioned such that each

transaction only accesses data of one partition.

Degree of Replication

A further dimension is the degree of replication. In full

replication every data item is replicated at each site. At

the other extreme, in a distributed database each data

item is stored at only one site and there is no replica-

tion. In partial replication each data item is replicated

at a subset of nodes.

Coordination Steps

Another aspect considers the number of coordination

steps, and thus, the number of message rounds, per

transactions. Some protocols use a constant number

of message rounds, while others require a linear num-

ber of message rounds, depending on the number

of (write) operations within the transaction (e.g.,

in distributed locking). In the former case, the

pre-processing and/or the post-processing phases are

executed once for each transaction. In the latter case,

these phases are executed per (write) operation.

Furthermore, some replica control protocols requ-

ire a coordination protocol among the replicas in order

to decide the outcome of a transaction (voting termi-

nation), similar to a distributed commit protocol. In

others, each replica decides by itself deterministically

about the outcome of a transaction (non-voting

termination).

In early eager approaches, atomicity was achieved

by running a commit protocol, such as two-phase-

commit, at the end of transaction. This was not only

time-consuming by itself but also required that all sites

had completely executed the transaction before the

transaction was committed at any site. In more recent

approaches, atomicity is often achieved by other means

such as reliable multicast that provides the required

failure atomicity. Even in eager approaches where the

participating sites agree on a serialization order before

Replica Control R 2387
the transaction commits at any site, this allows the user

to receive the commit outcome before the transaction

is actually executed at all replicas.
Restrictions

Another point to consider when analyzing replica con-

trol protocols are the possible constraints they set on

the kind of transactions that are supported. Some pro-

tocols only allow single statement transactions (known

as auto-commit mode in JDBC). Other protocols allow

several statements within a transaction, but they have to

be known at the beginning of the transaction. This is

typically implemented using stored procedures (or

prepared statements in JDBC) [1,10]. The more general

protocols do not have any restriction on the number of

statements a transaction contains [8,9,14].
Other Aspects

Replica control also needs to work correctly in the case

of failures and when new or repaired replicas are added

to the system. Replica control can also be affected by

the implementation of self-* properties or autonomic

behavior.

Another crucial feature of replica control is the

environment for which it is designed. Many approaches

target local area networks (LAN) where the bandwidth

is high and partitions are rare. Some approaches have

explored how to attain acceptable response times in

wide area networks (WANs). Other kinds of networks

have also been explored such as mobile networks and

peer-to-peer networks. There are specific entries for

all them.
 R
Key Applications
Replica control is always needed if replicated data is

updated. In particular, in database replication, where

updates occur in the context of transactions, replica

control is also needed to guarantee transactional

correctness.
Future Directions
An important future direction is to combine replica

control with modern multi-tier and service-oriented

architectures. Providing high availability and scalabili-

ty for a multi-tier architecture is a non-trivial task. It

implies replicating all the tiers to avoid single points of

failure and performance bottlenecks. In this setting,
guaranteeing consistency is very challenging, especially

in the face of failures. Some initial work has already

been started in this direction [13] and future develop-

ments are expected along this line.
Cross-references
▶Autonomous Replication

▶Online Recovery in Parallel Database Systems

▶Optimistic Replication and Resolution

▶Replication Based on Group Communication

▶Replication for High Availability

▶Replication for Scalability

▶ Strong Consistency Models for Replicated Data

▶Traditional Concurrency Control for Replicated

Databases

▶WAN Data Replication
Recommended Reading
1. Amza C., Cox A.L., and Zwaenepoel W . Distributed versioning:

consistent replication for scaling back-end databases of dynamic

content web sites. In Proc. ACM/IFIP/USENIX Int. Middleware

Conf., 2003, pp. 282–304.

2. Bernstein P.A., Fekete A., Guo H., Ramakrishnan R., and

Tamma P. Relaxed-currency serializability for middle-tier

caching and replication. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2006, pp. 599–610.

3. Bernstein P.A, Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison Wesley,

1987.

4. Breitbart Y., Komondoor R., Rastogi R., Seshadri S., and

Silberschatz A. Update propagation protocols for replicated

databases. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1999, pp. 97–108.

5. Daudjee K. and Salem K. Lazy Database Replication with Snap-

shot Isolation. In Proc. 32nd Int. Conf. on Very Large Data

Bases, 2006, pp. 715–726.

6. Gançarski S., Naacke H., Pacitti E., and Valduriez P. The

leganet system: Freshness-aware transaction routing in a data-

base cluster. Inf. Syst., 32(2):320–343, 2007.

7. Gray J., Helland P., O’Neil P., and Shasha D. The Dangers of

Replication and a Solution. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1996, pp. 173–182.

8. Kemme B. and Alonso G. Don’t be lazy, be consistent: Postgres-R,

a new way to implement database replication. In Proc. 26th Int.

Conf. on Very Large Data Bases, 2000, pp. 134–143.

9. Lin Y., Kemme B., Patiño-Martı́nez M., and Jiménez-Peris R.

Middleware based data replication providing snapshot isolation.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2005, pp. 419–430.

10. Patiño-Martı́nez M., Jiménez-Peris R., Kemme B., Alonso G.

MIDDLE-R: Consistent database replication at the middleware

level. ACM Trans. Computer Syst., 23(4): 375–423, 2005.

2388R Replica Freshness
11. Pedone F., Guerraoui R., and Schiper A. The Database State

Machine Approach. Distrib. Parall. Databases, 14(1), 2003.

12. Pedone F., Wiesmann M., Schiper A., Kemme B., and Alonso G.

Understanding replication in databases and distributed systems.

In Proc. 20th Int. Conf. on Distributed Computing Systems,

2000, pp. 464–474.

13. Perez-Sorrosal F., Patiño-Martı́nez M., Jiménez-Peris R., and

Kemme R. Consistent and scalable Cache replication for multi-

tier J2EE applications. In Proc. ACM/IFIP/USENIX 8th Int.

Middleware Conf., 2007, pp. 328–347.

14. Plattner C. and Alonso G. Ganymed: scalable replication for

transactional web applications. In Proc. ACM/IFIP/USENIX

Int. Middleware Conf., 2004, pp. 155–174.

15. Röhm U., Böhm K., Schek H.-J., and Schuldt H. FAS – A

Freshness-Sensitive Coordination Middleware for a Cluster of

OLAP components. In Proc. 28th Int. Conf. on Very Large Data

Bases, 2002, pp. 754–765.

16. Saito Y. and Shapiro M. Optimistic replication. ACM Computer

Surveys 37(1):42–81, 2005.
Replica Freshness

ALAN FEKETE

University of Sydney, Sydney, NSW, Australia

Synonyms
Divergence control; Freshness control; Incoherency

bounds

Definition
In a distributed system, information is often replicated

with copies of the same data stored on several sites.

Ideally, all copies would be kept identical, but doing

this imposes a performance penalty. Many system

designs allow replicas to lag behind the latest value.

For some applications, it is acceptable to use out-of-

date copies, provided they are not too far from the

true, current value. Freshness refers to a measure of the

difference between a replica and the current value.

Historical Background
The tradeoff between consistency and performance

or availability is an old theme in distributed comput-

ing. In the database community, many researchers

worked on ideas connected with explicitly allowing

some discrepancy between replicas during the late

1980s and early 1990s. Early papers identified many

of the diverse freshness measures discussed here, from

groups at Princeton, Bellcore and Stanford [1,10,11].

A mixed model that integrated freshness limits of
several kinds was Pu’s epsilon-serializability [6,7].

TACT is a more recent mixed model, introduced by

Yu and Vahdat [12]. Much of the research since the

1990s focused on optimization decisions to improve

the performance of a system with slightly stale replicas.

Many different system assumptions and metrics to

optimize have been considered. Among influential

papers are [4,5,9]. Research continues on defining dif-

ferent models which bound the staleness of replicas.

Unlike earlier work, the focus has recently been on

setting bounds which relate to the clients’ view of

divergence, rather than to the underlying state of the

replicas. Röhm et al. designed a system with transac-

tion-level client-defined staleness limits for read-only

transactions, within the framework of 1-copy serial-

izability [8]. Guo et al. suggested SQL extensions to

express query-specific limits on the perceived staleness

and inter-object drift [3], and later developed a theory

to express these constraints even when stale reads are

allowed within update transactions [2].

Foundations
Consider a distributed system, where information

is stored at multiple sites, connected by a communica-

tions network. If several sites all store values that are

intended to represent the same information in the real

world, one can call these copies or replicas; it is usual to

write xA to represent the replica at site A of the logical

data item x. At any instant, the true or current value of

the logical item is the value assigned to x in the most

recent non-aborted update of x. The ideal, of course,

has this value stored in every replica, always (or at least,

at any instant when a read operation can occur). This

is possible using traditional eager replication (see entry

on Traditional Concurrency Control for Replicated

Databases). However, many systems prefer to propagate

updates lazily, and to allow replicas or cached copies

that are not completely up-to-date, as described in the

entry on Optimistic Replication and Resolution. While

there are many applications that can tolerate data that is

not current, there are usually limits on the application’s

tolerance for inaccuracy. Thus many system designs

allow for a bound to be placed on how far a replica

can diverge from the true value; such a bound expresses

a constraint on the freshness of the replica. This entry

describes some of the main ideas that have been pro-

posed to quantify the freshness of replicas.

The focus here is on the properties that define what

is allowed, rather than on implementation details that

Replica Freshness R 2389

R

control how these bounds are enforced. For example,

some system designs have a single master replica, which

always has the true value, while in others the most up-

to-date information is sometimes found in one copy

and sometimes in another. However, the definitions can

be stated without concern for this issue. Another axis

of variation is whether the bounds have to apply always,

or onlywhen a replica is used in a query. Some papers give

a numeric value for freshness or precision (which should

be high), others measure staleness or imprecision. This

paper uses measures where a low value is better, so zero

means that the replica is completely up-to-date.

Value-Based Divergence

Suppose the logical data item comes from a numeric

domain such as real numbers. In that case, one can just

use the metric on the values themselves. For example, if

the true current value is 10.5 and a replica has the value

9.2, then the divergence of that replica is measured as

1.3. In some proposals, the interest is in the value-

based divergence between two replicas, even if neither

has the current true value. If each replica is within d
of the true value, the difference between any pair of

replicas is bounded above by 2d.

Delay-Based Staleness

For some applications, a useful measure of tolerance

for imprecise data is to quantify how recently the data

was correct. For example, when a person moves house,

the post-office will often redirect mail that had the

former address, for a short period. Thus staleness can

be measured by how long the replica has to wait before

learning of an update that has occurred. For example,

suppose the true value was 9.2 until time 100, and which

time the value was updated to 10.5; if at time 103 a

replica still contains 9.2, one says it is stale by 3 time

units. Where the values are representing a real-world

quantity, and the quantity can’t change by more than v

units each time interval, then a bound of d on the delay

implies a bound of vd on the value divergence.

Many system designs can’t determine, at a replica,

how stale it is. Instead they keep a timestamp with each

value, indicating when that update instruction was

first applied. If they bound the difference between the

timestamp and the current time, they also bound the

staleness. Suppose one wants to keep delay below

5 time units; one can say that this holds at time 103,

if the replica contains a value whose timestamp is 98

or greater. However, the argument does not work in
reverse: even at time 103, a replica with timestamp 93

might be stale by less than 103 � 93 = 10, depending

on when the next update occurred after time 93.

One says that a value has a valid period, which is a

half-closed interval from the time at which the value

first appeared in an update, until just before the next

update occurred which changed the value.

Measures of Missed Updates

In many system designs, only a subset of updates

are propagated to the replica (in order to save band-

width). This motivates a definition where one measures

howmany updates occurred on the logical item, without

being recorded (yet) at the replica. For example, suppose

the logical item is updated from 9.2 to 10.5 at time 100,

and then to 10.1 at time 102, and then to 9.6 at time 104.

A replica with value 9.2 at time 103 has missed 2 updates

that have occurred by that time. This definition can

be related to a delay-based measure if the updates come

periodically, as is common for sensor readings.

Inter-Object Consistency Drift

When a query reads several logical objects, one might

bound the drift between the versions seen in the two

reads. For example, if a query examines copies of the

temperature and humidity from a sensor, the user

might care that the two measurements were taken at

almost the same time, because the humidity affects the

accuracy of the thermometer. Suppose a replica xA

contains a value whose valid period is the interval

[T,U) and y B contains a value valid in the interval [V,

W). Measure the drift between the replicas, as the

smallest separation between the valid intervals; this is

zero if [T,U) \ [V,W) 6¼ ø, and otherwise it ismin(jV�
Uj, jT � Wj). A drift bound of zero is called a ‘‘snap-

shot’’ condition, as all the data examined must come

from a common state of the database.

Transaction Semantics

Often, each update and each query is a separate opera-

tion. However, several updates or several queries can be

placed in a single transaction. In 1-copy serializability

(q.v.), all the operations in a transaction have to appear

to take place together, but a transaction with reads

may be serialized in the past, and so one might desire

a common maximum delay for all the reads done in

that transaction. A different approach is taken in epsi-

lon-serializability. Here one ascribes a numeric mea-

sure to each of the various situations of divergence

2390R Replicated Database Concurrency Control
between the value read and the correct value, and adds

up the divergence measure seen in each read, there is

then a bound on the total divergence accumulated

during the reads in a given query transaction.

Mixed Measures

Each of the definitions of freshness seems to work

for some applications but not for others. Thus the

TACT model has separate bounds of each measure

which must be applied to all the logical data items

within a user-specified grouping of items. For example,

a particular logical item might require that whenever it

is read, it is separated from the true value by no more

than 1.5 in numeric value, it is stale by no more than

10 in delay, and it must be missing no more than

3 updates done at the master.

Key Applications
The commercial database platforms generally offer

best-effort update propagation, rather than giving

applications guaranteed bounds on freshness. Thus

the properties described here are usually found in

research prototypes or special-purpose data manage-

ment, for example in cache management for web con-

tent or sensor data.

Future Directions
The ideas of replica freshness reappear in new domains,

where applications might be able to tolerate some impre-

cision and where there is a high cost to keeping data

up-to-date. For example, somewhat stale data might be

used in a sensor network, or delivered in dynamic web

page content.Manyof these ideas are being generalized, in

a broad research agenda that deals with uncertain or

imprecise data.

Cross-references
▶Data Acquisition

▶Data Replication

▶Real-Time Transaction Processing

▶ Sensor Networks

▶Uncertainty Management in Scientific Database

Systems
Recommended Reading
1. Alonso R., Barbará D., and Garcia-Molina H. Data caching

issues in an information retrieval system. ACM Trans. Database

Syst., 15(3):359–384, 1990.

2. Bernstein P.A., Fekete A., Guo H., Ramakrishnan R., and

Tamma P. Relaxed-currency serializability for middle-tier
caching and replication. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2006, pp. 599–610.

3. Guo H., Larson P.-Å., Ramakrishnan R., and Goldstein J. Re-

laxed currency and consistency: how to say ‘‘good enough’’ in

SQL. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2004, pp. 815–826.

4. Olston C., Loo B.T., and Widom J. Adaptive precision setting

for cached approximate values. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2001, pp. 355–366.

5. Pacitti E., Coulon C., Valduriez P., and Özsu M.T. Preventive

replication in a database cluster. Distrib. Parall. Databases,

18(3):223–251, 2005.

6. Pu C. and Leff A. Replica control in distributed systems: as

asynchronous approach. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1991, pp. 377–386.

7. Ramamritham K. and Pu C. A formal characterization of epsilon

serializability. IEEE Trans. Knowl. Data Eng., 7(6):997–1007, 1995.

8. Röhm U., Böhm K., Schek H.J., and Schuldt H. FAS –

a freshness-sensitive coordination middleware for a cluster

of OLAP components. In Proc. 28th Int. Conf. on Very Large

Data Bases, 2002, pp. 754–765.

9. Shah S., Ramamritham K., and Shenoy P.J. Resilient and

coherence preserving dissemination of dynamic data using

cooperating peers. IEEE Trans. Knowl. Data Eng., 16(7):

799–812, 2004.

10. Sheth A.P. and Rusinkiewicz M. Management of interdependent

data: specifying dependency and consistency requirements. In

Proc. Workshop on the Management of Replicated Data, 1990,

pp. 133–136.

11. Wiederhold G. and Qian X. Consistency control of replicated

data in federated databases. In Proc. Workshop on the Manage-

ment of Replicated Data, 1990, pp. 130–132.

12. Yu H. and Vahdat A. Design and evaluation of a conit-based

continuous consistency model for replicated services. ACM

Trans. Comput. Syst., 20(3):239–282, 2002.
Replicated Database Concurrency
Control

BETTINA KEMME

McGill University, Montreal, QC, Canada

Synonyms
Replica and concurrency control

Definition
In a replicated database, there exist several database

servers each of them maintaining a (partial) copy

of the database. Thus, each logical data item of

the database has several physical copies or replicas.

As transactions submit their read and write operations

Replication R 2391

R

on the logical data items, the replica control component

of the replicated system translates them into opera-

tions on the physical data copies. The concurrency

control component of the replicated system controls

the execution order of these operations such that the

global execution obeys the desired correctness criteria.

For a tightly coupled system with strong consistency

requirements, 1-copy-serializability is the standard cor-

rectness criterion, requiring that the concurrent execu-

tion of transactions on the replicated data has to be

equivalent to the serial execution of these transactions

over a logical copy of the database. Thus, a global

concurrency control strategy is needed. For loosely

coupled systems with weak consistency requirements,

each database server uses its local concurrency control

mechanism. Inconsistencies are only resolved later via

reconciliation techniques.

Key Points
Global concurrency control strategies for replicated

databases can be centralized or distributed. In a cen-

tralized solution, there is a single or main concurrency

control module which could be installed on one of the

database servers or in an independent component

(e.g., a middleware layer between clients and the indi-

vidual database servers). This single scheduler decides

on the global execution order. Using this architecture,

standard concurrency control methods found in non-

replicated database systems can be easily extended to

the replicated environment. However, the single mod-

ule becomes a single point of failure, and might lead to

considerable message overhead. In a distributed solu-

tion, each database server has its own concurrency

control component, and the different components

have to work in a coordinated fashion in order to

guarantee the correct global execution order.

The standard strict two-phase-locking (2PL) pro-

tocol can be extended very easily to a replicated system.

In a centralized solution, there is no real difference to a

non-replicated database. Before an operation on a data

item is issued, a lock for this data item has to be

acquired and all locks are released at commit time.

In a distributed solution, each local lock manager per-

forms strict 2PL. The difference is that locks are now

set on the physical copies and not on the logical data

item. As many replica control algorithms follow the

read-one-copy/write-all-copies strategy it means that a

write operation on a data item will lead to write locks

on all database servers holding a copy of the data item.
With this, a distributed deadlock might occur that

involves only a single data item.

Optimistic concurrency control mechanisms are

attractive in a replicated database system since they

allow a transaction to be executed first locally at only

one database server. Only at commit time, the mod-

ified data items are propagated to the other replicas

and a validation phase checks whether a proper global

execution order can be found. This keeps the commu-

nication overhead low.

In general, communication is an important issue in

a replicated database. An option is to take advantage of

advanced communication primitives, e.g., multicast

protocols that provide delivery guarantees and a global

total order of all messages. As all available database

servers receive all messages in the same total order, this

order can be used as a guideline to determine at each

site locally the very same global serialization order.
Cross-references
▶Concurrency Control – Traditional Approaches

▶Data Replication

▶One-Copy-Serializability

▶Replica Control

▶Replication Based on Group Communication

▶ Serializability

▶Traditional Concurrency Control for Replicated

Databases
Recommended Reading
1. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

control and recovery in database systems. Addison Wesley,

Reading, MA, 1987.

2. Carey M.J. and Livny M. Conflict detection tradeoffs for repli-

cated data. ACM Trans. Database Syst., 16(4):703–746, 1991.

3. Wiesmann M. and Schiper A. Comparison of database replica-

tion techniques based on total order broadcast. IEEE Trans.

Knowl. Data Eng., 17(4):551–566, 2005.
Replication

KENICHI WADA

Hitachi Limited, Tokyo, Japan

Synonyms
Data Replication; Duplication

2392R Replication Based on Group Communication
Definition
Replication (or data replication) is the process to make

copy of a collection of data. Copied data made by

replication is referred as replica (or data replica).

Replication can be categorized by data type to

be copied. Most DBMSs support database replication

for high availability or parallel transaction processing.

Some filesystems support filesystem replication for high

availability or workload distribution. Filesystem replica-

tion is commonly used in distributed filesystems. Vol-

ume replication can be processed by Logical Volume

Manager, Filesystem or Storage system.

Most replication techniques try to keep replicas

consistent and updated so that in case of system fail-

ures, the replica can be used to recover from the failure

with minimal data loss.

Key Points
During data replication, original data is usually copied

on an ongoing basis. The goal of this data replication

is to provide high availability. There are two types

of data replication in terms of data copy method:

synchronous and asynchronous. Synchronous replica-

tion guarantees, ‘‘zero data loss’’ by means of atomic

write operations (i.e., a write either completes on both

sides or not at all). A write is not complete until there is

acknowledgment for both original and replica. Most

applications wait for a write transaction to complete

before proceeding with further work, so synchronous

replication may lower overall performance considerably.

In asynchronous replication, a write is complete as

soon as the original is updated. The replica is usually

updated after a small lag. This decreases write costs,

but ‘‘zero data loss’’ is not guaranteed.

Data replication can be categorized by the layer of

doing it. In case of Server-based replication, some

entity (e.g., DBMS, Filesystem, Logical Volume Man-

ager, and Application) in a server performs replication.

Most Database replication and filesystem replication

falls into this category.

Appliance-based replication is another category. Some

appliance in a network connecting servers and storage

systems makes replication. Most storage virtualization

appliances have volume replication functions. File virtua-

lization appliances may provide filesystem replication.

Storage-based replication is done by storage sys-

tem. Block storage can provide volume replication

and file storage such as NAS can provide filesystem

replication.
Cross-references
▶Backup and Restore

▶Data Replication
Replication Based on Group
Communication

FERNANDO PEDONE

University of Lugano, Lugano, Switzerland

Definition
Database replication based on group communication

encompasses protocols that implement database repli-

cation using the primitives available in group commu-

nication systems. Most commonly, these replication

protocols ensure strong data consistency (e.g., serial-

izability, snapshot isolation), which translates into or-

dering requirements on the data operations. Protocols

not based on group communication primitives should

implement this ordering from scratch, typically in

some ad hoc manner. Implementing ordering guaran-

tees is not an easy task, notably in the presence of

failures since it is usually difficult to determine the

state a failed site was in when the crash occurred.

Group communication primitives offer message reli-

ability and ordering properties that simplify the design

of replication protocols. As a consequence, database

replication protocols based on group communication

are usually highly modular.

Historical Background
Group communication was introduced in the 1980s.

The Isis system pioneered work on group communica-

tion primitives that provide strong guarantees in the

presence of failures [4], a concept that builds on the

earlier abstraction of process groups to support one-

to-many communication. Database replication based

on group communication was introduced in the 1990s.

To understand how group communication influ-

enced database replication, the first step is to provide a

brief account of how group communication is related

to replication in distributed systems in general. Many

fault-tolerant distributed systems aiming at strong

consistency are implemented according to the state-

machine replication approach [10,15], sometimes

called active replication. (Notice that while [15]

extends state-machine replication to the context of

Replication Based on Group Communication. Figure 1.

Group communication primitives.

Replication Based on Group Communication R 2393

R

failures, the concept was introduced in [10] for envir-

onments in which failures could not occur.) Essentially,

the state-machine replication approach can be decom-

posed into two requirements, which orchestrate the

dissemination of operations to replicas:

Agreement. Every non-faulty replica receives every

operation.

Order. Every non-faulty replica processes the opera-

tions it receives in the same relative order.

Assuming that each replica can be made to behave

as a state machine, when provided with the same

operations in the same order, all replicas will produce

the same results. The problem is then how to ensure

the agreement and order properties. It turns out that

group communication systems provide primitives that

guarantee these properties. Thus, it comes perhaps as

no surprise that group communication has become a

basic building block for implementing state-machine

replication, and fault-tolerant distributed systems.

Two observations from the mid-1990s help under-

stand how group communication came into play

in database replication. First, it was pointed out

that transactions in replicated databases share com-

mon properties with group communication primitives

[14]. For example, transaction isolation translates into

ordering requirements among requests, a property

typically available in group communication systems.

Likewise, transaction atomicity is usually referred to as

agreement in group communication systems. Second,

it was shown that mechanisms typically used to pro-

vide strong consistency in distributed databases are

inappropriate in replicated scenarios. For example,

distributed two-phase locking has an expected dead-

lock rate that grows with the third power of the num-

ber of replicas [7]. The underlying argument from

these results follows from the fact that out of order

requests may get entangled, increasing the chances of

deadlocks, a shortcoming that group communication

primitives can easily solve.

As a consequence, researchers started looking at

database replication protocols based on primitives

that provide guarantees similar to those found in

transactional systems.

Foundations
How can group communication help design database

replication protocols? To answer this question group

communication primitives are discussed and then a
framework is presented to reason about the usefulness

of these primitives in database replication. A recurrent

approach to replication based on group communica-

tion is the deferred update model, which is presented

next. In this discussion, unless stated otherwise, servers

are assumed to have a full copy of the database.

Group Communication Primitives

The abstraction of groups (of servers) acts as a logical

addressing mechanism in a replicated system, allowing

the degree of replication and the identity of the indi-

vidual servers to be ignored. For example, a group

can abstractly represent the servers that replicate the

database. Moreover, group communication primitives

provide one-to-many communication with various

powerful semantics, and hide much of the complexity

of maintaining the consistency of the system and

handling failures of replicated servers.

Group communication is usually characterized by

two primitives: multicast(m, g) allows a message m

to be forwarded to the members of group g; the mes-

sage is passed to the application by means of the deliver

(m) primitive. Multicast and deliver are implemen-

ted on top of simpler communication primitives (i.e.,

providing weaker guarantees). A multicast message is

delivered to the application after the members of the

group the message is addressed to have interacted,

possibly exchanging point-to-point messages, to im-

plement the properties ensured by the group commu-

nication (see Fig. 1).

Group communication primitives typically provide

message atomicity: if a server in g deliversm, then every

2394R Replication Based on Group Communication
non-faulty server in g should also deliver m. Notice

that if a server is down when a message m is multicast,

it will not be able to deliverm (i.e., the server is faulty).

If the server later recovers, it should deliver all mes-

sages it has missed. This is done using a state transfer

mechanism, by which a recovering server receives the

missed state from operational severs before it resumes

its execution. State transfer is transparent to the appli-

cation and implemented by the group communication

system.

Another property typically ensured by group com-

munication primitives concerns message ordering. Two

such properties are first-in-first-out (FIFO) and total

order. FIFO ensures that messages multicast by the

same sender are delivered in the order they are multi-

cast, that is, if a server executes multicast(m, g) fol-

lowed by multicast(m0, g), all non-faulty servers in g

will deliver m first and then m0. Total order guarantees

that all messages, regardless of the sender, are delivered

in the same order by all non-faulty servers. If server

s executes multicast(m, g) and server s0 executes multi-

cast(m0, g), then m and m0 should be delivered in the

same order. Notice that FIFO is not a special case of

total order. With total order, if a server multicasts m

followed by m0, the destinations can deliver m0 before

m, as long as they all deliver m and m0 in the same

order. Both properties can be combined in a FIFO total

order property.

Groups can be static or dynamic. Static groups do

not change their membership during the execution,

although members can crash and later recover. Dynamic

groups adapt the membership according to the state of

their members, operational or crashed. Dynamic groups

use a sequence of views, v0(g),v1(g),...,vi(g),..., to man-

age membership. Each view vi(g) defines the composi-

tion of g at some time t, i.e., the members of the group
Replication Based on Group Communication. Figure 2. A f
that are operational at time t. Whenever a server in

some view vi(g) is suspected to have crashed, or some

server wants to join, a new view viþ1(g) is installed,

which reflects the membership change.

Group communication primitives for dynamic

groups can guarantee properties relating views to mul-

ticast messages. One such property is sending view

delivery, according to which a message can only be

delivered in the context of the view in which it was

multicast. This means that if a server multicasts mes-

sagemwhile in view vi(g), thenm can only be delivered

before view viþ1(g) is installed.

The following sections use two multicast primitives

with different properties: abcast(m, g) ensures message

atomicity and total order in the context of static

groups; vscast(m, g) assumes dynamic groups and

guarantees message atomicity, FIFO ordering, and

sending view delivery properties. In both cases, mes-

sages are delivered to the application using deliver(m).

A Functional Model for Database Replication

Replication protocols can be generically decomposed

into five phases, as shown in Fig. 2 [16]. Some proto-

cols may skip some phases, while others may apply

some of the phases several times during the execution

of transactions. In Phase 1 the client contacts one or

more database replicas to submit its requests. Phase

2 involves coordination among servers before executing

requests. (Notice that message exchanges in Fig. 2 are

illustrative only; different communication protocols

may present different message patterns.) The actual

execution of a request takes place in Phase 3; one or

more servers may be involved in the execution of the

operation. In Phase 4 servers agree on the result of the

execution, usually to ensure atomicity, and in Phase 5

one or more servers send the result to the client. There
unctional model for database replication.

Replication Based on Group Communication R 2395

R

are basically two parts in which group communication

primitives can help: during server coordinaton (Phase 2)

and agreement coordination (Phase 4).

Database replication protocols can be eager or lazy,

according to when update propagation takes place; and

update everywhere or primary copy, according to who

performs the updates. Group communication has tra-

ditionally been used by eager protocols, both in the

case of update everywhere and primary copy. Some

eager approaches are briefly reviewed next; a more

detailed account can be found in [16].

Distributed two-phase locking (D2PL) is a tradi-

tional mechanism to coordinate servers during transac-

tion execution. In replicated scenarios, implementing

D2PL with point-to-point communication may lead to

many distributed deadlocks [7]. If lock requests are

propagated to servers using abcast, however, total

order is ensured, and the probability of deadlocks is

reduced [2]. In such a protocol, the client submits its

requests to one database server (Phase 1) which abcasts

them to all servers (Phase 2). Upon delivering the re-

quest, servers should make sure that conflicting locks

are obtained in a consistent manner (Phase 3). Once the

servers have executed the operation they send the re-

sponse to the client (Phase 5). Commit and abort

requests are processed like any other operation and so

there is no need for agreement coordination (Phase 4).

Notice that Phases 1–3,5 may be executed multiple

times, once per request. If transactions can be pre-

defined (e.g., storage procedures), then they can be

abcast to all servers as a single request, and then Phases

1–3,5 are executed only once per transaction [3,11].

The deferred update approach is another form of

eager update-everywhere replication mechanism based

on group communication. In this case, the client

selects one database server and submits all its requests

to this server, without communicating with other ser-

vers (Phase 1). During the execution of the transaction,

there is no synchronization among servers (i.e., no

Phase 2), and only the selected server executes the

transaction (Phase 3). Read-only transactions are com-

mitted locally by the selected server. Update transac-

tions are propagated to all servers at commit time

using abcast. The delivery of a terminating update

transaction triggers a certification procedure used to

ensure consistency. If the transaction passes the certifi-

cation test its updates are committed against the data-

base (Phase 4). Only then the reply is sent to the client

(Phase 5). Several group communication-based
replication protocols follow this approach, which is

discussed in more detail in the next section.

Eager primary copy replication can also take ad-

vantage of group communication primitives. In this

case clients interact only with the primary copy during

the execution of the transactions (Phase 1). Therefore,

there is no Phase 2. After the primary executes a

request it sends the result to the client (Phase 3 exe-

cuted by the primary only). Several requests from the

client may be executed against the primary copy until

commit is requested, at which point the primary com-

municates the new database state (e.g., redo logs) to

the secondary copies (Phase 4). The secondaries apply

the modifications to their local database. Communica-

tion between the primary and the secondaries is

through vscast. FIFO ordering ensures that updates

from the primary are received in the order they are

sent. Sending view delivery guarantees correct execu-

tion in case of failure of the primary. For example, if

the primary fails before all secondaries receive the

updates for a certain request and another replica

takes over as new primary, vscast ensures that updates

sent by the new primary will be properly ordered with

regard to the updates sent by the faulty primary.

Deferred Update Database Replication Protocols

Database replication protocols based on the deferred

update technique, sometimes called certification-based

protocols, are optimistic in that transactions execute

on a single server without synchronization among

servers. Abcast ensures that at termination transactions

are delivered in the same order by all servers. The total

order property together with a deterministic certifica-

tion test guarantee that all servers agree on which

transactions should be committed and which ones

should be aborted.

The precise way in which the certification test is

implemented and the information needed to implement

it depend on the consistency criterion. Two typical

consistency criteria are serializability and snapshot iso-

lation. Serializability specifies that a concurrent execu-

tion of transactions in a replicated setting should be

equivalent to a serial execution of the same transactions

using a single replica. With snapshot isolation, transac-

tions obtain at the beginning of their execution a ‘‘snap-

shot’’ of the database reflecting previously committed

transactions; a transaction can commit as long as its

writes do not intersect with the writes of the transac-

tions that committed since the snapshot was taken.

2396R Replication Based on Group Communication
The certification test may require transaction read-

sets and writesets. Transaction readsets and writesets

refer to the data items the transaction reads and writes

during its execution (e.g., the primary keys of the rows

read or written). Let RS(T) andWS(T) denote, respec-

tively, the readset and writeset of transaction T, and let

CC(T) be the set of transactions that executed concur-

rently with T. There are different ways to define the

concurrent transactions set; typically, the set contains

the transactions that committed after T started its

execution, but before T itself committed. The proposi-

tions below abstractly define the conditions for com-

mitting a transaction according to serializability and

snapshot isolation, respectively.

Serializability. T can commit if and only if 8T 02 CC

(T) : RS(T) \ WS(T 0) = ;
Snapshot isolation. T can commit if and only if 8T 02
CC(T) : WS(T) \ WS(T 0) = ;

There are two general ways in which certification can be

implemented in order to ensure serializability: with and

without explicit information about transaction readsets.

If information about data items read by the transaction

is available, both the readsets and the writesets, together

with the actual updates, are abcast to all servers as part

of the termination of T. Upon delivering this message,

each server individually evaluates the condition for

serializability and determines whether T can be com-

mitted. When certifying T, each server builds CC(T)

based on transactions previously delivered, and in

doing so, the test can be implemented deterministical-

ly, guaranteeing that all servers reach the same decision

concerning committing transactions [12].

Certification without transaction readsets can be

performed with an additional communication step

among servers [9]. In the following, read operations

are assumed to be performed before write operations.

When a transaction requests to commit, only its wri-

teset and the actual updates are abcast to all servers.

After delivering the message, the server that executed

the read operations tries to execute all write operations

of the terminating transaction. Ongoing local transac-

tions with read locks that conflict with the terminating

transaction’s write locks require special care: If the

transaction has not been abcast yet, it is simply locally

aborted; otherwise an abort message is abcast to all

servers. Once the terminating transaction has acquired

all its write locks, a commit message is abcast to all

servers, which upon delivery commit the transaction.
Snapshot isolation can be implemented with a single

round of messages (i.e., one abcast per transaction only)

without readsets [9]. At commit time the writeset

and the updates of a committing transaction are abcast

to all servers. Each server executes the certification test

and decides individually whether the transaction can

commit or not.
Key Applications
Database replication protocols based on group com-

munication are usually used to guarantee high avail-

ability for OLTP applications. Some of the existing

protocols have been proved to provide good scalability

under read-intensive workloads. Given the frequent

assumption that each participating server should have

a full copy of the database (i.e., full replication), scal-

ability under write-intesive workloads is limited.
Future Directions
Replication based on group communication has been a

hot topic of research in the past years. Several protocols

have been proposed, a few implemented, and some

made available for free download. While the main

tradeoffs are known now, some problems are still open.

One open problem concerns how to structure

group communication-based database replication

protocols. According to whether changes in the data-

base engine are required or not, there are two possi-

bilities: kernel- and middleware-based architectures.

Kernel-based protocols (e.g., [12,9]) take advantage

of internal components of the database to increase

performance in terms of throughput, scalability, and

response time. For the sake of portability and hetero-

geneity, however, replication protocols should be inde-

pendent of the underlying database management

system. Even if the database internals are accessible,

modifying them is usually a complex operation. As a

consequence, middleware-based database replication

(e.g., [6,13]) has received much attention in the last

years. Such solutions can be maintained independently

of the database engine, and can potentially be used in

heterogeneous settings. Kernel-based protocols, on the

other side, have more information about the data

accessed by the transactions (e.g., readsets), which

may result in more concurrency or less abort rate or

both. In order to make its complexity more manage-

able, some efforts have tried to standardize kernel-

based protocols [1].

Replication for High Availability R 2397
Another problem subject to further investigation is

partial replication. Full replication protocols have lim-

ited scalability under update-intensive workloads [8].

This is not a specific limitation of existing protocols,

but an inherent characteristic of fully replicating the

database on each server. Each new server added to a

fully replicated system allows more clients to connect

and submit transactions. If such transactions update

the database, they will add load to every individual

server. Partial replication does not suffer from the

same problem since the degree of replication of each

data item can be controlled. Thus, servers can be added

to the system, improving the performance of data

mostly read and without increasing the load of existing

servers. It is not obvious how to implement partial

replication in the context of group communication

though and few proposals have considered it so far

(e.g., [5]).
Cross-references
▶Consistency Models for Replicated Data

▶ 1-Copy-Serializability

▶Data Replication

▶Replica Control
R

Recommended Reading
1. http://gorda.di.uminho.pt/

2. Agrawal D., Alonso G., Abbadi A.E., and Stanoi I. Exploiting

atomic broadcast in replicated databases. In Proc. 3rd Int. Euro-

Par Conference, 1997.

3. Amir Y. and Tutu C. From total order to database replication. In

Proc. 22nd Int. Conf. on Distributed Computing Systems, 2002.

4. Birman K. The process group approach to reliable distributed

computing. Commun. ACM, 36(12):37–53, 1993.

5. Camargos L., Pedone F., and Wieloch M. Sprint: a middle-

ware for high-performance transaction processing. In Proc. Sec-

ond European Conference on Systems Research, 2007.

6. Cecchet E., Marguerite J., and Zwaenepoel W. C-JDBC: flexible

database clustering middleware. In Proc. ACM/IFIP/USENIX

Int. Middleware Conf., 2004.

7. Gray J.N., Helland P., O’Neil P., and Shasha D. The dangers of

replication and a solution. In Proc. 1996 ACM SIGMOD Int.

Conf. on Management of Data, 1996.

8. Jiménez-Peris R., Patiño-Martı́nez M., Alonso G., and Kemme B.

Are quorums an alternative for data replication? ACM Trans.

Database Syst., 28(3):257–294, 2003.

9. Kemme B. and Alonso G. A new approach to developing and

implementing eager database replication protocols. ACM Trans.

Database Syst., 25(3), 2000.

10. Lamport L. Time, clocks, and the ordering of events in a

distributed system. Commun. ACM, 21(7):558–565, 1978.
11. Patiño-Martı́nez M., Jiménez-Peris R., Kemme B., and Alonso G.

Middle-R: Consistent database replication at the middleware

level. ACM Trans. Comput. Syst., 23(4), 2005.

12. Pedone F., Guerraoui R., and Schiper A. The database state

machine approach. Distrib. Parall. Databases, 14(1):71–98, 2003.

13. Salas J., Jiménez-Peris R., Patiño-Martı́nez M., and Kemme B.

Lightweight reflection for middleware-based database replica-

tion. In IEEE Int. Symp. on Reliable Distributed Systems, 2006.

14. Schiper A. and Raynal M. From group communication to trans-

action in distributed systems. Commun. ACM, 39(4):84–87,

1996.

15. Schneider F.B. Implementing fault-tolerant services using the

state machine spproach: A tutorial. ACM Comput. Surv., 22

(4):299–319, 1990.

16. Wiesmann M., Pedone F., Schiper A., Kemme B., and Alonso G.

Understanding replication in databases and distributed systems.

In Proc. 20th Int. Conf. on Distributed Computing Systems,

2000.
Replication for High Availability

BETTINA KEMME

McGill University, Montreal, QC, Canada

Synonyms
Fault-tolerance; Backup mechanisms

Definition
Replication is a common mechanism to increase the

availability of a data service. The idea is to have several

copies of the database, each of them installed on a

different site (machine). Using replication, the data

remains available as long as one site is running and

accessible. Fault-tolerance is related to availability.

A system is considered fault-tolerant if it continues to

work correctly despite the failure of individual compo-

nents. Replicating data and processes over several sites,

the failure of any individual site can be masked since

the tasks executed by the failed site can be transferred

to one of the available sites. The terms high availability

and fault-tolerance are often used interchangeably.

However, fault-tolerance is stronger than a high avail-

ability solution since it expects the fault-tolerant sys-

tem to behave exactly as a system where components

never fail. This requires to make failures transparent to

clients and typically means that all data copies have to

be consistent at all times. This is difficult to achieve in

systems where network connectivity is not always guar-

anteed. There, a high availability solution might allow

2398R Replication for High Availability
users to access locally available data copies although it

is possible that they do not reflect the latest updates.

Historical Background
High availability and fault-tolerance have received at-

tention in many different communities covering high

available hardware, fault-tolerant software systems and

data availability. Redundancy is one of the major

mechanisms to achieve the desired goal.

In the database community, looking for high avail-

ability solutions was the main reason to start research

into database replication [3], while replication for

scalability and performance were only explored later.

The research community has mainly focused on the

maintenance of transactional properties despite vari-

ous kinds of failures. Apart from mere correctness,

there exist many implementation alternatives that can

have a large impact on the performance of the system,

and current major database systems have developed a

wide range of high availability solutions with different

trade-offs.

Data availability has also been explored in many

other data centric domains such as file systems [10, 12],

mobile systems [6] or fault-tolerant processes [4].

Foundations
This entry focuses solely on availability for database

systems. However, many of the issues and solutions
Replication for High Availability. Figure 1. Primary-backup
discussed here are also valid outside the database

domain.

Basic Fault-Tolerance Architecture

This discussion first looks at the case when a database

system crashes. In this case, it does not perform any

further actions and the data is no more available. Only

after restart and recovery it becomes again operational.

As the recovery procedure can take considerable time,

a fault-tolerance solution maintains more than one

copy of the database. In the following, the terms replica

and site refer to a machine running a database man-

agement instance and controlling a copy of the com-

plete database.

A fault-tolerance replication architecture has to

tackle several issues. Firstly, when data is updated the

data copies have to be kept consistent, resulting in

additional measures, and thus overhead during normal

processing when no failures occur. Secondly, when a

replica fails, a failover procedure has to reconfigure

the system. Thirdly, after a failure, the failed replica

or a new replica have to be started and added to the

system in order to handle future failures. For this,

the joining replica has to receive the current state

of the database from the available replicas. This third

step is referred to as replica recovery.

As the most common fault-tolerance architecture

uses primary-backup replication (Fig. 1) the following
architecture.

Replication for High Availability R 2399

R

discussion focuses on this architecture. There is one

primary replica and one or more backup replicas in the

system. All clients are connected to the primary replica

which executes all transactions. In the case the primary

fails, the clients have to be reconnected to one of the

backups which takes over the tasks of the primary.

Execution While No Failures Occur The primary exe-

cutes all transactions and decides on a serialization

order (via the concurrency control module). At specific

timepoints, the replication module of the primary

replica propagates updates to the backup replica(s).

Each backup replica applies the changes in an order

that conforms to the serialization order determined by

the primary.

Propagation can be done in several ways. In a 2-safe

approach, the changes performed by a transaction are

propagated before the transaction commits, and an

agreement protocol, such as a 2-Phase-Commit proto-

col, guarantees atomicity (the transaction either com-

mits or aborts at all participating replicas). In a 1-safe

approach, the primary can commit a transaction be-

fore update propagation is completed.

1-safe propagation is faster than 2-safe propaga-

tion. However, if the primary fails after committing a

transaction but before propagating its changes then the

transaction is lost because the backup that becomes the

new primary has no information about it. Neither

atomicity nor durability of the transaction is given.

Recovery of this transaction can be complex. In other

context, 1-safe propagation is also often referred to

as lazy, asynchronous or optimistic replication, while

2-safe propagation is often referred to as eager or

synchronous replication.

There are several other design choices in regard to

propagation. For instance, a message could be sent per

update operation, per transaction or even per set of

transactions. Furthermore, the update message could

contain the physically changed records (e.g., taken

from the log used for local recovery) or the update

statement.

Changes can be applied at the backup at different

timepoints. A backup is called hot-standby if it imme-

diately applies any changes it receives to its own local

database. Therefore, at the time of the failover, the

backup is immediately operational and can accept cli-

ent requests. However, it requires a powerful backup

because of the high overhead during normal proces-

sing. A cold-standby defers applying the changes, e.g.,
to a timepoint when it is idle or when it actually

becomes the new primary at failover time. This results

in low overhead during normal processing. Thus, a

cold-standby could be a less-expensive machine.

However, failover will likely take longer and perfor-

mance will be compromised until the powerful ma-

chine has completed recovery and can become again

the primary.

Failover If there is more than one backup, an agree-

ment protocol can be used to decide which of the

backups takes over as new primary.

As part of the failover procedure, the clients have

to be reconnected to the new primary. This recon-

nection is typically implemented within the driver

software (e.g., JDBC driver) running on the client

side (see Fig. 1). The driver is connected to the primary

but knows the backup(s). When it looses connection

to the primary, it connects to the backups to see who is

the new primary.

Furthermore, the new primary, if is has not yet

done so, has to apply all the changes of committed

transactions that it received from the old primary

before the crash. It aborts transactions for which it

has already received some information but not all.

A difficult issue is the handling of transactions that

were active at the time of the failure. If the client had

not yet submitted the commit request, the driver can

simply throw an abort exception for this transaction

before it connects to the new primary. This is correct

since independently of being 1-safe or 2-safe, the new

primary has neither committed nor is involved in a

2PC for this transaction. It is up to the client to

resubmit the transaction (as would be the case for

transactions involved in deadlocks). A different situa-

tion arises if the application program has already sub-

mitted the commit request, and the driver is waiting

for the confirmation from the primary when the failure

occurs. In this case, the transaction might already be

committed at the backups. The driver has to ask the

new primary for the outcome of the transaction and

inform the client accordingly with a commit confirma-

tion or an abort exception.

Replica Recovery Replica recovery is the task of inte-

grating a new or failed replica into the replicated sys-

tem. The recovery procedure can be performed online

or offline. In offline recovery, transaction processing is

halted in the system, the joining replica receives the

2400R Replication for High Availability
accurate state of the data, and then transaction proces-

sing can resume. The problem is that availability is

compromised. Online recovery, in contrast, performs

recovery without stopping transaction processing in

the rest of the system.

Data transfer strategies. There are several possibili-

ties to provide a recovering replica with the latest state

of the database [6]. One possibility is to transfer the

entire database state to the recovering replica. This

approach is simple but leads to unnecessary data trans-

fer if large parts of the data did not change during the

downtime of the recovering replica. Thus, an alterna-

tive solution first determines for each data item,

whether this data item was actually changed during

the downtime. Only if this is the case, the current

version is transferred to the recovering replica. While

this might decrease the size of data to be transferred it

needs additional measures during normal processing

and recovery to determine the changed objects. Instead

of the data items, one can also transfer the log with all

updates that the recovering replica has missed. Then,

the recovering replica applies these missing updates to

its database. The later two approaches are only possible

for failed replicas that later recover while completely

new replicas need a complete state transfer.

Recovery Procedure. A failed replica or a new replica

typically joins as a backup. It can become the primary

once recovery has completed (e.g., if it is the most

powerful machine). The joining replica can receive

the state from the primary or from another backup.

Using online recovery, the state transfer takes place

concurrently to transaction processing at the primary.

Thus, one has to make sure that the recovering replica

does not miss any transactions. That is, for a given

transaction, the updates performed by this transac-

tion at the primary are either reflected by the state

transfered through recovery, or are propagated by

the primary to the new backup after recovery has

completed.

Combining Scalability and Fault-Tolerance

Many recent approaches exploit replication for both

scalability and fault-tolerance by allowing transaction

execution to be distributed across all available replicas

(typically a LAN cluster). The protocols follow a read-

one-write-all-available (ROWAA) replication strategy

[2] where read operations are executed at one replica

(which allows load-balancing) and write operations

are executed at all replicas that are currently available
(to keep copies consistent). In fact, the primary-back-

up approach is also a ROWAA approach but all clients

are connected to the primary and transactions are only

executed there. In these cluster replication solutions

[9], when a replica fails, it is excluded from the system.

Clients served by the replica are transferred to available

replicas, and writes are only performed on the remain-

ing available replicas. Failover is complicated by the

fact of ongoing transaction execution during the fail-

over period.

Network Partitions

Site crash is not the only failure type that can occur. A

network problem might (temporarily) partition the

replicas, allowing each replica to only communicate

with a subset of other replicas. Network partitions

occur seldom in LANs but are common in WANs or

wireless networks. They are often transient and only

hold for short periods of time. In general, it is impos-

sible for a replica to determine whether another replica

that is not reachable has failed, is currently not

connected, or is simply slow and overloaded making

it temporarily non-responsive. A correct fault-tolerance

solution needs to work correctly despite this ambiguity.

Standard primary-backup replication does not work

correctly if network partitions occur. Figure 2 depicts

two cases. When a network partition occurs between

primary and backup (Fig. 2a), the backup and all

clients within the partition of the backup will suspect

the primary to have failed leading to both partitions

having one primary serving local clients. If only clients

but not the backup are disconnected from the primary

(Fig. 2b), the system continues to run correctly, but

from the disconnected clients’ point of view, the sys-

tem is unavailable.

Quorums One major approach to handle network

partitions is to use quorums [7,13]. A read operation

has to access a read quorum of replicas while a write

operation has to access a write quorum of replicas.

A quorum could, e.g., be the majority of replicas.

Quorums are defined such that any two write opera-

tions on the same data item access at least one common

replica. This is needed to serialize write operations and

assure that any given write quorum has at least one

replica with the latest version of the data item. Each

read quorum must overlap with each write quorum.

Therefore, each read operation is guaranteed to read at

least one replica with the latest version. The beauty of

Replication for High Availability. Figure 2. Network partitions. (a) Two primaries. (b) Unavailability for some clients.

Replication for High Availability R 2401

R

quorums is that they handle both replica failures and

network partitions in the same way. It does not matter

whether a client cannot reach a particular replica be-

cause it is down or disconnected, as long as the client

can access a quorum of replicas, the operation can

succeed. Recovery does not need any particular actions.

While a replica is down it will not participate in any

operations. Once it restarts it can be accessed and build

part of a quorum. However, its data versions are out-

dated. Thus, any read operation will not read the data

versions of this replica but the most current one from

other replicas in the quorum. When the replica parti-

cipates in a write quorum for a data item, the write

operation will automatically update the value of the

data item to the latest version.

Despite these attractive properties, quorums have

not been used in database systems so far because of the

complexity of handling database operations (e.g., com-

plex SELECTs) on a quorum of replicas. The entry

Quorum Systems discusses quorums in detail.

A possibility is to combine the strengths of

ROWAA and quorums [1]. A connected group of

replicas processes transactions according to ROWAA

if the group fulfills a quorum requirement. A quorum

is defined so that it is impossible that two partitioned

groups of replicas can fulfill the quorum requirement.

Group membership is dynamically adjusted whenever

failures, restarts or network reconfigurations occur.

1-Safe (Lazy) Replication in WANs A further approach

to address network partitions is to trade data accuracy

with availability. It generally follows the ROWAA
technique and performs update propagation lazily

after commit (i.e., 1-safe). Each read operation only

needs to access one copy of the data item, typically the

one that is the closest. Thus, queries are usually fast

and high availability is given since only one replica

needs to be reachable.

For update transactions, one approach is to still

have a primary replica and execute all update transac-

tions at the primary. The primary then propagates the

updates to all available secondary replicas sometime

after commit. Having a single primary for update

transactions allows for a globally correct serialization

order. Propagating lazily allows the primary to commit

a transaction without caring whether the other replicas

are available. However, the secondaries can have out-

dated data, and thus local read operations might read

stale data. Furthermore, if a client cannot reach the

primary, its update transactions cannot be executed.

A second approach allows an update transaction to

execute and commit at any replica, typically the closest,

(update everywhere). This provides high availability

for update transactions. However, data copies might

diverge requiring some form of conflict detection and

reconciliation, and read operations can read inconsis-

tent data. Still, for many WAN applications, this is the

only feasible option. Also, in mobile environments

with planned periods of disconnection, this is the

only way to provide availability to the mobile units.

In these lazy strategies, recovery is done incremen-

tally. When a site wants to propagate an update but

cannot reach a replica, it stores the update locally on

persistent storage. When the replica is again available,

2402R Replication for High Availability
the update will be propagated. That is, propagation is

typically done via a persistent queue guaranteeing

that an update is propagated and applied exactly once

despite transient failures.
Other Failure Types

There exist other failures that are not considered here.

For instance message loss can be handled by the un-

derlying communication system.
Key Applications
Basically all commercial database systems provide a

high availability solution based on primary-backup

replication. Furthermore, other data replication strate-

gies are also often supported and can be deployed for

high availability and performance reasons. Most busi-

nesses that have update intensive workloads and re-

quire 24/7 availability deploy one or more of these

solutions.

Outside the database domain, lazy (1-safe) replica-

tion is used both for fast local access and availability by

file systems [10,12], web-servers [11] and cooperative

applications such as distributed calendars.

Replication for fault-tolerance has also become pop-

ular in application servers. They represent the middle-

tier in modern mutli-tier architectures, and maintain

various kinds of data such as session information or

cached versions of data stored in persistent storage.

The challenges are similar as in pure database replication

as the access to this data is transactional [5,14].
Future Directions
As applications are built increasingly on component-

based architectures, combining software and hardware

from many different vendors, it becomes a challenging

task to assure that the system as a whole provides fault-

tolerance. According to the end-to-end paradigm, the

levels closest to the application might be the only ones

able to completely implement the required level of

fault-tolerance. On the other hand, lower levels might

be able to ensure fault-tolerance more efficiently.

Cross-references
▶Data Replication

▶ Logging and Recovery

▶Optimistic Replication and Resolution

▶Quorum Systems

▶Replica Control
▶Traditional Concurrency Control for Replicated

Databases

▶Two-Phase Commit

▶WAN Data Replication
Recommended Reading
1. Abbadi A.E. and Toueg S. Availability in partitioned replicated

databases. In Proc. 5th ACM SIGACT-SIGMOD Symp. on Prin-

ciples of Database Systems, 1986, pp. 240–251.

2. Bernstein P.A. and Goodman N. An algorithm for concurrency

control and recovery in replicated distributed databases. ACM

Trans. Database Syst., 9(4):596–615, 1984.

3. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

control and recovery in database systems. Addison Wesley,

Reading, MA, 1987.

4. Budhiraja N., Marzullo K., Schneider F.B., and Toueg S. The

primary-backup approach. In Distributed Systems S. Mullender

(ed.). (2nd Edition), Addison Wesley, Reading, MA, 1993,

pp. 199–216.

5. DeCandia G., Hastorun D., Jampani M., Kakulapati G.,

Lakshman A., Pilchin A., Sivasubramanian S., Vosshall P., and

Vogels W. Dynamo: Amazon’s highly available key-value store.

In Proc. 21st ACM Symp. on Operating System Principles, 2007,

pp. 205–220.

6. Gray J., Helland P., O’Neil P., and Shasha D. The dangers of

replication and a solution. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1996, pp. 173–182.

7. Jiménez-Peris R., Patiño-Martı́nez M., Alonso G., and Kemme B.

Are quorums an alternative for data replication? ACM Trans.

Database Syst., 28(3):257–294, 2003.

8. Kemme B., Bartoli A., and Babaoglu Ö. Online reconfiguration

in replicated databases based on group communication. In Proc.

IEEE Int. Conf. on Dependable Systems and Networks, 2001, pp.

117–130.

9. Lin Y., Kemme B., Patiño-Martı́nez M., and Jiménez-Peris R.

Middleware based data replication providing snapshot isolation.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2005, pp. 419–430.

10. Satyanarayanan M., Kistler J.J., Kumar P., Okasaki M.E.,

Siegel E.H., and Steere D.C. Coda: A highly available file

system for a distributed workstation environment. IEEE Trans.

Comput., 39(4):447–459, 1990.

11. Sivasubramanian S., Szymaniak M., Pierre G., and van Steen M.

Replication for web hosting systems. ACM Comput. Surv., 36

(3):291–334, 2004.

12. Terry D.B., Theimer M., Petersen K., Demers A.J., Spreitzer M.,

and Hauser C. Managing update conflicts in Bayou, a weakly

connected replicated storage system. In Proc. 15th ACM Symp.

on Operating System Principles, 1995, pp. 172–183.

13. Thomas R.H. A majority consensus approach to concurrency

control for multiple copy databases. ACM Trans. Database Syst.,

4(2):180–209, 1979.

14. Wu H. and Kemme B. Fault-tolerance for stateful application

servers in the presence of advanced transactions patterns. In

Proc. Int. Symp. on Reliable Distributed Systems, 2005, pp.

95–108.

Replication for Scalability R 2403
Replication for Scalability

RICARDO JIMÉNEZ-PERIS, MARTA PATIÑO-MARTÍNEZ

Universidad Polytecnica de Madrid, Madrid, Spain

Synonyms
Scale out; Cluster replication; Scalable database

replication
R

Definition
One of the main uses of data replication is to increase

the scalability of databases. The idea is to have a cluster

(of possibly inexpensive) nodes, to replicate the data

across the nodes, and then distribute the load among

them. In order to be scalable, the more nodes are added

to the system, the higher the achievable throughput

should be. The scale reached today is on tens of nodes

(i.e., below 100 nodes). Communication is not an

issue since CPU and IO overheads are dominant. The

approach in the last years has been to learn from the

traditional approaches but change some fundamentals

so that the limitations of these traditional approaches

are avoided.

In order to attain scalability each transaction should

not be fully processed by every replica. This depends on

how transactions are mapped to replicas. For read only

transactions, it is easy to avoid redundant processing

since they can be executed at any single replica. Update

transactions are more challenging, since updates should

be reflected at all replicas where there are copies of the

updated data items. This should be achieved in an atom-

ic way across the replicated system what makes scalabil-

ity challenging. Under the traditional approaches,

atomicity was attained by means of distributed locking

(for isolation) and two-phase-commit (for failure atom-

icity), what resulted in solutions lacking scalability.

A second aspect introduced by updates is their

overhead. With symmetric update processing no scal-

ability is achieved for updates, since all replicas pay the

cost of fully executing the transaction. However, for

asymmetric processing some scalability is possible,

since only one replica pays the cost of fully executing

the transaction, whilst the others just pay the cost of

propagating and installing the resulting updated

tuples. Another of the major factors that impact the

scalability is the degree of replication. Under full repli-

cation, all replicas keep a full copy of the database. This

means that an update transaction executed at one of the
replicas should propagate the resulting updated tuples to

all other replicas. This update propagation overhead

increases its relative weight with an increasing number

of replicas, what inherently limits the scalability. Some

research efforts pursue partial replication to overcome

the scalability limit of full replication.

There are a number of additional factors that influ-

ence scalability. One of such factors is the consistency

being provided. The traditional consistency criterion

for replicated databases, 1-copy-serializability, con-

strains the potential concurrency therefore limiting

the scalability. A lot of research has targeted to relax

consistency in order to increase the scalability.

Historical Background
Traditional textbook approaches for data replication

[3] were concerned with consistency and did not pro-

vide any scalability. The paper from Gray et al. [9]

provided analytical evidence of this lack of scalability

triggering a large body of research performed during

the last decade on scalable database replication.

One set of approaches that aim at attaining scal-

ability were based on lazy replication [8,4]. In order to

provide consistency, some of these lazy approaches

constrained update propagation to attain 1-copy-seri-

alizability [4].

A second batch of research explored scalable eager

(synchronous) replication. The seminal approaches in

this directionwere Postgres-R [12] and the database state

machine [17]. These approaches explored optimistic

concurrency control under a white box (or kernel-

based) replication approach and triggered the resea-

rch performed in the last decade around scalable data

replication. Due to the complexity of white box app-

roaches, middleware-based replication was proposed to

simplify the engineering of replication. The seminal ap-

proach to middleware-based replication was Middle-R

[22,16] that explored scalable pessimistic replica control.

The middleware approach from Middle-R became very

popular and today it is one of the main approaches

to engineer database replication [1,20,15,5]. Middleware

approaches took two different flavors, those based on

group communication [22,16,15] and those based

on schedulers [1,5,20].

Another batch of research has looked at trading

off some consistency in favor of scalability. There are

two main families within this batch: those stemming

from lazy approaches and those coming from eager

replication. On the lazy replication side, consistency

2404R Replication for Scalability
was relaxed through the concept of freshness. Freshness

quantifies consistency, e.g., by the potential number of

missed updates [8]. On the eager replication side, con-

sistency was relaxed by resorting to isolation levels

lower than serializability. The most popular one has

been snapshot isolation [13] provides full 1-copy cor-

rectness (1-copy-snapshot-isolation, 1CSI) for snapshot

isolation replicated databases. 1CSI is provided by

a number of replication protocols both under update-

everywhere [13] and primary-copy [20]. Another con-

sistency criterion proposed based on snapshot isolation

is Generalized Snapshot Isolation (GSI) [7]. It enables

queries to see older snapshots that are prefix consistent.

More recently, snapshot isolation has also been exploited

in the context of lazy approaches in [6] and also for

multi-tier architectures [18].

The fourth batch of research has tried to overcome

the lack of scalability of full replication. The paper [11]

demonstrated analytically the scalability limits of full

replication. Two ways to overcome this inherent scal-

ability limitation are quorum-based replication and

partial replication. Quorum-based replication can im-

prove the scalability for extreme update workloads, but

introduces a number of technical problems, the most

important ones related to the scalability of predicate

reads [11]. Partial replication approaches have aimed

at improving scalability by limiting the number of

copies of each data item [21,19].

Foundations
One of the uses of database replication is to increase

the scalability of the system. The use of data replication

to scale is also known as scale-out approach, in which

the scalability increases by adding new nodes. This

contrasts with the scale-up approach in which a system

scales by substituting the current node with a more

powerful computer. This section discusses the major

factors that influence scalability of data replication,

namely: how to attain atomicity, the mapping of trans-

actions to replicas, and the consistency criterion.

Attaining Atomicity and Isolation

The traditional way to attain transactional properties

in data replication [3] was based on using distributed

locking to serialize transactions in the same order (isola-

tion at replicated level) and using two-phase-commit

(2PC) to guarantee that either all replicas commit the

transaction or none (failure atomicity). Gray et al. [9]

showed analytically the lack of scalability of traditional
approaches. Basically, distributed locking has a proba-

bility of deadlock that increases exponentially with the

number of transactions and 2PC does not scale and

produces high response times. Two trends were followed

to escape from the bottlenecks of traditional approaches.

Lazy protocols commit transactions without waiting

for transaction update propagation, that is, updates

are propagated lazily or asynchronously with respect

to transaction commit at the replica that processed

the transaction. Alternatively, eager protocols propagate

transaction updates atomically using alternative ways

to enforce atomicity more scalable than 2PC.

Lazy protocols havemainlyresortedtotwoapproaches

to attain some levels of consistency: primary-copy

(aka single-master) and multi-master data replication.

The primary-copy approach simplifies the consistency

problem by enabling updates only at a single replica

known as primary. All the other replicas, known as sec-

ondaries, only allow the execution of read-only queries.

In this way, the consistency problem boils down to

installing the updates from the primary in FIFO order

or a more relaxed order that guarantees the same

relative order of conflictive transactions. A popular

replication protocol providing primary-copy is [20].

Primary-copy replication has its bottleneck in the

primary that has to fully process all update transac-

tions. As an alternative, multi-master replication has

been proposed in which update transactions can be

processed by any replica. Different approaches have

been adopted for multi-master replication. In some

approaches the way update transactions are propa-

gated is constrained to guarantee high levels of consis-

tency [4]. In others consistency is relaxed by providing

quantitative levels of consistency such as freshness.

A more detailed discussion on freshness is provided

later in this text. Leganet is one of the systems with a

lazy replication protocol providing freshness [8].

Eager protocols aim at high levels of qualitative

consistency. Most eager protocols are either based on

group communication or on a scheduler. Approaches

based on group communication use atomic multicast

to enforce atomicity in a more scalable way than 2PC.

Atomic multicast provides failure atomicity by guaran-

teeing that all or none of the replicas receive messages and

also guarantees that all replicas receive themessages in the

same relative order. In this way, each replica is able to

schedule the messages containing updates in an order

consistent with respect to the common total order. There

are a number of data replication protocols based on

Replication for Scalability R 2405
group communication such as Postgres-R [12], database

state machine [17], and Middle-R [16,13].

The scheduler-based approach has also been pro-

posed for attaining consistency in eager protocols. The

idea is to use a node as transaction scheduler. This

scheduler is in charge of enforcing consistency. It

labels transactions with a sequence number and for-

wards them to the replicas. In this way, replicas are

able to order conflictive transactions in the same way

and atomicity can also be enforced by preventing gaps

in the transaction processing. Some of the database

replication systems based on scheduler are conflict-

aware data replication [1] and C-JDBC [5].

Transaction Mapping

The mapping of transactions to replicas is crucial

in attaining scalability. There are several issues related

to the transaction mapping: which replicas processes

read-only transactions (queries), how update transac-

tions are processed, and how many copies of each data

item are kept.

The first issue is how read-only transactions

(queries) are managed. Since queries only read data,

for fully replicated systems it becomes possible to execute

queries at any single replica, whilst update transactions

are fully executed at all replicas. This mapping is known
Replication for Scalability. Figure 1. Scalability of symmetri
as read-one write-all-available approach (ROWAA) [3].

It enables to scale under read workloads, since for reads

the loadis sharedamongreplicas.However, thisapproach

fails to scale even with a small percentage of update

transactions [11]. ROWAA has been used by the early

replicationprotocols that are surveyed in [3].

The second issue is how update transactions are

processed. Update transactions can be executed at only

one of the replicas, as far as the other replicas get the

resulting updates and install them. This mapping is

known as asymmetric update processing, in contrast

with symmetric update processing in which update

transactions are fully executed by all replicas. This

mapping also enables sharing the load introduced by

update transactions, enabling scalability with update

workloads [11].

Figure 1 compares the scalability of symmetric and

asymmetric processing under ROWAA. The x-axis

shows the fraction of writes (1.0 = 100% writes), the

y-axis shows the number of nodes. The z-axis shows the

scale-out, i.e., how many times the throughput of a

single-node system is multiplied by the replicated sys-

tem. Figure 1 shows that symmetric processing only

achieves a high scale-out for very low values of w.

With asymmetric processing, assuming that installing

updates has around 15% of the costs of executing
c and asymmetric processing (wo = 0.15 for asymmetric).

R

Replication for Scalability. Figure 2. Scalability of full

versus partial data replication.

2406R Replication for Scalability
the update transaction itself (wo = 0.15), the scale-out

is relatively high even for higher update rates.

A different mapping that has been proposed to fur-

ther increase the scalability of update workloads is based

on quorum systems.Quorum systems enable towrite just

in a subset of the replicas (write quorum). This has the

associated tradeoff that reads should also be performed

on a subset of replicas (read quorum). Quorums can

compete with ROWAA when the percentage of updates

in the workload is very high (80–100%) [11]. However,

they only work for transactions accessing individual

objects. When combined with collections of objects

such as tables, queries become too expensive for being

practical.

The third issue is how many copies of each data item

are kept (aka degree of replication). The paper [11]

demonstrated analytically the scalability limits of full

replication as a function of the ratio of the cost of

fully executing the transaction and installing the result-

ing updates termed write overhead, wo.

With typical write overheads of 0.15 and below, the

scalability becomes very reasonable for a few tens of

nodes. However, full replication does not scale beyond

that. The reason is that the overhead introduced by

the update propagation and installation consumes

higher and higher fractions of the capacity of the full

system what finally is translated in consuming any

extra additional capacity to process updates from the

existing replicas.

The alternative to scale beyond the limits of

full replication is to use partial replication. Partial

replication, however, also introduces other challenges.

If there is no single replica with the full database, what

is called pure partial replication, transactions become

inherently distributed. As an alternative, if there is

application knowledge available, it can be exploited

to guarantee that there will be at least a replica that

can execute a transaction fully locally. A potential

solution is to have hybrid partial replication in which

there are some replicas containing the full database and

some replicas storing a fraction of the database. The

former enables to avoid distributed transactions, and

the latter enables to scale. Unfortunately, this app-

roach, although it scales significantly better than full

replication, reaches a limit of scalability. This limit

is reached when the full replicas are saturated with

update installation from partial replicas (even if they

do not process any local transaction). The way to scale

beyond hybrid partial replication is to use pure partial
replication, what implies to be able to process repli-

cated distributed transactions in an efficient way. The

scalability of partial replication, both hybrid and

pure, has been studied recently both analytically and

empirically [21].

Figure 2 compares the scale-out of full replication,

pure partial replication where each data item has five

copies equally distributed among the nodes, and hy-

brid replication where one node has a copy of the

entire database, and each data item has a total of five

copies. The update workload in this case is 20% one

can clearly see, that only pure replication has no scal-

ability limit while the others are limited by the fact

that all updates have to be performed on all copies,

and there is at least one server that has copies of all

data items.

Consistency Criterion

Another of the major factors influencing the scalability

of replication is the consistency criterion. Some repli-

cation protocols provide a qualitative consistency.

These protocols are usually eager protocols in which

replica control is tightly integrated with update pro-

pagation to guarantee the qualitative consistency crite-

rion. Other protocols have aimed at quantitative

consistency, typically lazy protocols. In lazy protocols

replica control is more relaxed and typically offers

quantitative consistency, and in some cases simply

eventual consistency.

Qualitative consistency for data replication provides

a formal definition of the attained consistency. The con-

sistency criterion can be seen as the extension of the

Replication for Scalability R 2407

R

isolation concept of centralized systems to a replicated

setting. Isolation formalizes the consistency for con-

current executions in a centralized system. The replica-

tion consistency criterion extends this formal notion to

the consistency of the concurrent transaction execution

in a replicated system. The traditional criterion for repli-

cated databases has been 1-copy-serializability (1CS) [3].

This criterion states that the concurrent execution of a set

of transactions in a replicated system should be equ-

ivalent to the execution in a serializable centralized sys-

tem. 1CS has been the only criterion used till very

recently. 1CS, as its centralized counterpart, serializabil-

ity, constrains the potential concurrency in the system by

making reads and writes conflicting. Constraining the

potential concurrency is harmful for scalability (even

for performance in a centralized system) since it might

prevent to fully utilize the available capacity in the repli-

cated system. In order to overcome the scalability limita-

tion of 1CS, some researchers have explored snapshot

isolation (SI) as isolation notion on which to build a

replication consistency criterion. 1-copy snapshot-isola-

tion [13] (1CSI) provides the notion of 1-copy correct-

ness underlying in 1CS for a SI database. That is, the

concurrent execution of a set of transactions in a repli-

cated system should be equivalent to a centralized

(1-copy) execution in a centralized SI database. The

main advantage of SI is that reads and writes do not

conflict. The only conflicts are between writes on the

same tuples that are rare in most applications. 1CSI

enables replica control protocols that are based on SI

databases. This means that they do not have contention

problems due to read-write conflicts, what results

in higher scalability. Snapshot isolation is currently

being used for different replica control protocols,

lazy primary-copy replication [20], eager update-every-

where [13], lazy replication [6], and application server

replication [18].

Quantitative consistency aims at increasing the scal-

ability by relaxing the consistency enabling queries to see

outdated data bounded quantitatively. It is typically used

in lazy propagation schemes. Freshness criteria bound

howmuch the value a query reads differs from the actual

value of the data item. Freshness, e.g., could bound the

number of updates a query has missed or the time since

the copy read was last updated. The concept of freshness

has been exploited by many different systems, and has

been used in the context of primary-copy [20], multi-

master [8], or application server replication [2]. The

entry Consistency Models for Replicated Data provides
a more detailed discussion on the different qualitative

and quantitative consistency levels that exist.

Key Applications
Database replication has a wide number of applica-

tions. In principle any database that reaches saturation

can be substituted by a replicated database to scale out.

Enterprise data centers are certainly one of the main

targets of database replication in order to scale for

high loads typical of these systems. Web farms hosting

dynamic content require the use of a database for storing

it. In this kind of systems themain bottleneck is precisely

the database and therefore, it can benefit from replicated

databases. Grid systems are able to scale for applications

based on the paradigm of bag of tasks, problems that can

be split in a myriad of small subproblems that can be

solved independently. In some cases, some grid applica-

tions require database access that is what finally becomes

the bottleneck of the system. By employing a replicated

database as a data grid, these grid applications can

increase their scalability. A recent and increasingly

important trend is Software as a Service (SaaS). In

this new paradigm, applications are hosted at a remote

data center such as Google. SaaS aims for providing

transparent scalability by means of self-provisioning.

In this way, the hosted application can increase the

number of replicas as needed depending on the received

load and paying only for the resources it needs. SaaS

platforms require an underlying scalable storage system

such as a replicated database. Another area in which

database replication is becoming a competitive solution

is edge computing. Edge computing aims at moving web

contents closer to clients located at the edge of Inter-

net. Centralized solutions to edge computing are not

adequate since distant clients observe high latencies.

With edge computing, the contents is cached or repli-

cated at data centers geographically close to the client

to mask the latency. Early approaches only managed to

reduce the latency of static contents. Recently, it has

been shown that by using database replication in

wide area networks it becomes possible also to mask

the latency for dynamic contents [23].

Cross-references
▶Data Replication

Recommended Reading
1. Amza C., Cox A.L., and Zwaenepoel W. Distributed versioning:

consistent replication for scaling back-end databases of dynamic

2408R Replication in Multi-Tier Architectures
content web sites. In Proc. ACM/IFIP/USENIX Int. Middleware

Conf., 2003.

2. Bernstein P.A., Fekete A., Guo H., Ramakrishnan R., and

Tamma P. Relaxed-currency serializability for middle-tier cach-

ing and replication. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2006, pp. 599–610.

3. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison Wesley,

1987.

4. Breitbart Y., Komondoor R., Rastogi R., Seshadri S., and

Silberschatz A. Update propagation protocols for replicated

databases. In Poc. ACM SIGMOD Int. Conf. on Management

of Data, 1999.

5. Cecchet E., Marguerite J., and Zwaenepoel W. C-JDBC: flexible

database clustering middleware. In Proc. USENIX 2004 Annual

Technical Conference, 2004.

6. Daudjee K. and Salem K. Lazy database replication with

snapshot isolation. In Proc. 32nd Int. Conf. on Very Large

Data Bases, 2006, pp. 715–726.

7. Elnikety S., Zwaenepoel W., and Pedone F. Database replication

using generalized snapshot isolation. In Proc. 24th Symp. on

Reliable Distributed Syst., 2005, pp. 73–84.

8. Gançarski S., Naacke H., Pacitti E., and Valduriez P. The

leganet system: freshness-aware transaction routing in a

database cluster. Inf. Syst., 32(2):320–343, 2007.

9. Gray J., Helland P., O’Neil P., and Shasha D. The dangers

of replication and a solution. In Poc. ACM SIGMOD Int.

Conf. on Management of Data, 1996.

10. Jiménez-Peris R., Patiño-Martı́nez M., Alonso G., Kemme B.

Scalable Database replication middleware. In Proc. 22nd Int.

Conf. on Distributed Computing Systems, 2002.

11. Jiménez-Peris R., Patiño-Martı́nez M., Alonso G., and Kemme B.

Are quorums an alternative for data replication. ACM Trans.

Database Syst., 28(3):257–294, 2003.

12. Kemme B. and Alonso G. Don’t be lazy, be consistent:

Postgres-R, a new way to implement database replication. In

Proc. 26th Int. Conf. on Very Large Data Bases, 2000.

13. Lin Y., Kemme B., Patiño-Martı́nez M., and Jiménez-Peris R.

Middleware based data replication providing snapshot isolation. In

Poc. ACM SIGMOD Int. Conf. on Management of Data, 2005.

14. Lin Y., Kemme B., Patiño-Martı́nez M., and Jiménez-Peris R.

Enhancing edge computing with database replication. In Proc.

26th Symp. on Reliable Distributed Syst., 2007.

15. Muñoz-Escoı́ F.D., Pla-Civera J., Ruiz-Fuertes M.I., Irún-Briz L.,

Decker H., Armendáriz-Iñigo J.E., and de Mendı́vil J.R.G.

Managing transaction conflicts in middleware-based database

replication architectures. In Proc. 25th Symp. on Reliable

Distributed Syst., 2006, pp. 401–420.

16. Patiño-Martı́nez M., Jiménez-Peris R., Kemme B., and Alonso G.

Middle-R: consistent database replication at the middleware level.

ACM Trans. Computer Syst., 23(4):375–423, 2005.

17. Pedone F., Guerraoui R., and Schiper A. The database state

machine approach. Distributed and Parallel Databases, 14(1):

71–98, 2003.

18. Perez-Sorrosal F., Patiño-Martı́nez M., Jiménez-Peris R., and

Kemme B. Consistent and scalable cache replication for multi--

tier J2EE applications. In Proc. ACM/IFIP/USENIX 8th Int.

Middleware Conf., 2007, pp. 328–347.
19. Pinto A.L., Oliveira R., Moura F., and Pedone F. Partial

replication in the database state machine. In IEEE Internation-

al Symposium on Networking Computing and Applications,

2001, pp. 298–309.

20. Plattner C. and Alonso G. Ganymed: scalable replication for

transactional web applications. In Proc. ACM/IFIP/USENIX

Int. Middleware Conf., 2004.

21. Serrano D., Patiño-Martı́nez M., Jiménez-Peris R., and

Kemme B. Boosting database replication scalability through

partial replication and 1-copy-snapshot-isolation. In IEEE

Pacific Rim Dependable Computing Conference, 2007,

pp. 328–347.

22. Serrano D., Patiño-Martı́nez M., Jiménez-Peris R., Kemme B.

An Autonomic Approach for Replication of Internet-based

services. In Proc. 27th Symp. on Reliable Distributed Syst., 2008.
Replication in Multi-Tier
Architectures

RICARDO JIMENEZ-PERIS, MARTA PATIÑO-MARTINEZ

Universidad Polytecnica de Madrid, Madrid, Spain

Synonyms
Cloud computing; Scale out; Cluster replication; Scal-

able replication; Application server clustering; SOA

replication

Definition
Modern middleware systems are commonly used in

multi-tier architectures to enable separation of con-

cerns. For each tier, a specific component container is

provided, tailored to its mission, web interface, busi-

ness logic, or persistent storage. Data consistency

across tiers is guaranteed by means of transactions.

This entry focuses on the main three tiers: web, appli-

cation server, and database tiers.

Middleware systems are at the core of enterprise

information systems. For this reason they require high

levels of availability and scalability. Replication is the

main technique to achieve these two properties. First

middleware replication approaches addressed the repli-

cation of individual tiers and focused initially on

providing availability and later, on scalability. However,

an integral approach is needed to provide availability

and scalability of multi-tier systems. Replicating an

individual tier increases its availability and might in-

crease its scalability as well. However, replicating a single

tier is not sufficient for providing data availability and

scaling for the whole system; the non-replicated tiers

Replication in Multi-Tier Architectures R 2409

R

eventually become a single point of failure and/or a

potential bottleneck. A potential solution is to combine

independently replicated tiers. However, due to their

independent replication, they are not aware of the repli-

cation of each other; this results in inconsistency pro-

blems in the event of failures.

Recent research has introduced new approaches to

replication of multi-tier architectures. The two main

replication architectures are horizontal and vertical repli-

cation. In horizontal replication, the tiers are replicated

independently, then measures are taken to make at least

one of them aware of the other to deal in a consistent way

with failures and failovers. In vertical replication, a set of

tiers (typically the application and database tiers) are

replicated as a unit, and the replication logic is

encapsulated in the upper tier (typically the application

server). Another important aspect of replication of multi-

tier systems is related to the definition of the correctness

criterion, i.e., the conditions a replicated multi-tier archi-

tecture should fulfill in order to provide consistency.

There are two important criteria in this area, namely,

exactly-once semantics and 1-copy correctness.

Historical Background
The first wave of research on the replication of multi-

tier architectures focused solely on the availability of

individual tiers, mainly the application server and data-

base tiers. In the first wave, the theoretical basis for

process replication was set [22]. The state machine

approach was proposed to guarantee the consistency

of replicated servers. This approach stated that a server

could be consistently replicated by guaranteeing that all

server replicas receive the requests in the same order and

the server deterministically processed them. This deter-

minism requirement was interpreted as the server had

to be sequential, which was too restrictive for real

servers that are multi-threaded in nature.

The efforts on the database tier concentrated on how

to attain data consistency in the advent of failures and how

to characterize data consistency. These initial efforts led to

lock-based data replication approaches. These approaches

were not scalable but they enabled the development of

correctness criterion. The criterion characterizing correct-

ness was 1-copy-serializability, i.e., replication should be

semantically transparent, the replicated database should

allow only those executions that had an equivalent in

a non-replicated (1-copy) system.

A second wave of research on middleware replica-

tion addressed the fault-tolerance of real systems in the
context of CORBA, which led to the (fault-tolerant)

FT-CORBA standard. These approaches were based on

the theoretical foundations of the state machine and

tried to solve the difficulties of engineering replication

in real middleware systems [2,7,16]. A new line of

research opened in this wave enabled the use of the

state machine approach for multi-threaded servers.

A seminal paper [11] showed that it was possible to

devise a scheduler that can guarantee deterministic

behavior of multi-threaded servers. Later approaches

studied how to increase the potential concurrency [3].

The efforts on the database tier focused on how to

attain scalability. Some approaches relaxed consistency in

the quest for scalability relying on lazy replication

approaches (see the entry Replication for Scalability for

a deeper view) [5,17]. Other approaches aimed at

attaining scalability while preserving full consistency

[1,12,18,19]. The three later approaches leveraged

group communication to provide consistency in any

failure scenario.

The third wave of research on middleware replica-

tion focused on dealing with specific aspects of multi-

tier architectures, more concretely, on how to deal with

transactional processing in a consistent way, the con-

sistency criteria, and how to attain scalability. The issue

of the lack of transactional consistency in replication

approaches for multi-tier architectures was then raised

[8]. In the context of FT-CORBA, it was studied how

to connect a replicated CORBA application server with

a shared database guaranteeing exactly once semantics

[25], therefore providing the same semantics as the

non-replicated system. Also in the J2EE context trans-

actional consistency has been studied. First approaches

replicated session state in the application server repli-

cas sharing a common database [24] and enforced

transactional consistency in this context.

More recently, replication of multiple tiers has also

been studied, e.g., in a vertical replication approach

[21]. That is, an application server and database

server pair is the replication unit. Database servers

are centralized and are not aware of the replicat-

ion. The application server encapsulates the replication

logic transparently to the database. The application

server replicas interact among them to enforce consis-

tency (i.e., 1-copy-serializability). Additionally, in this

approach transactions are not aborted in the advent of

failures from the client perspective, that is, it provides

high transaction availability. Another recent approach

has considered the issue of replicating application

2410R Replication in Multi-Tier Architectures
servers accessing multiple databases [14]. In this ap-

proach a primary-backup model is adopted. Clients

interact with the primary application server. The

most general case in which the application server

accesses multiple databases is considered. This case is

more complex since it involves dealing with two-

phase-commit (2PC) and the failover of the 2PC coor-

dinator (the transaction manager of the application

server). The primary application server accesses multi-

ple databases to process client requests. When the

client transaction ends, 2PC is started and coordinated

by the primary application server. The primary check-

points session state as well as transaction management

information to the backups. The approach is able

to handle the primary failure and enforce transaction

consistency for distributed transactions, providing

transaction manager (2PC coordinator) failover.

On the correctness side, it was studied how to

guarantee exactly once semantics in multi-tier archi-

tectures in which the application server tier is stateless

[9]. That is, how to guarantee transaction atomicity

and exactly once semantics in the advent of a failover

in replicas of stateless application servers. A thorough

study of the different approaches for multi-tier repli-

cation that guarantee transactional consistency was

presented in [13].

On the database tier, the third wave of research has

focused on boosting the scalability beyond a few tens

of replicas attained in the second wave. Two aspects

were mainly addressed: How to overcome the scalabil-

ity limits of 1-copy-serializability and full replication.

1-copy-serializability limits significantly the potential

concurrency of the system which had an impact on

the attainable scalability. This resulted in approaches

based on a more relaxed consistency criterion, 1-copy-

snapshot-isolation [15]. The scalability limits of full

replication were studied analytically in [10] which led

to the exploration of partial replication. Partial repli-

cation has resulted in boosting the scalability of full

data replication [23], although it has some complex-

ities such as how to deal with data partitioning and

distributed transactions.

Nowadays, integral approaches for the replication

of multi-tier architectures are becoming common.

Research in the area is aiming at enhancing the

scalability of the seminal approaches to replication of

multi-tier systems. More concretely [4] studies how to

replicate the application server tier with a shared data-

base and boost the scalability by relaxing data currency
through freshness constraints. Another recent approach

is looking at the scalable replication of application server

and database tiers [20]. In order to overcome the scal-

ability bottleneck of serializability, this approach is based

on 1-copy-snapshot isolation. Additionally, it deals for

the first time with the issue of the cache consistency

at the application server for relaxed isolation levels, in

particular, for snapshot isolation.

Foundations
This section reviews the main replication approaches

for the different tiers. Both approaches (replicating a

single tier and replicating multiple tiers) will be

considered.

The web tier is simple to replicate due to its state-

less nature. On the other hand, it has to deal with a

very specific aspect that lies in the availability and

scalability of the connectivity to the Internet. This

has resulted in multiple approaches to virtualize

URLs and IP addresses. IP virtualization enables

providing transparent failover since the client sees a

single logical IP despite the fact that two physical IPs

might get involved in the processing of its requests

upon a failover. IP virtualization also enables to pro-

vide transparent load balancing since a network switch

can transparently route requests to a logical IP to

different physical IPs to balance the load across differ-

ent sites. A thorough survey on the replication of the

web tier can be found in [6].

The replication of the application server tier is

more challenging due to its stateful nature and also

due to its support for transactional processing. It is

possible to distinguish between replication for avail-

ability and replication for scalability. Replication for

availability aims at providing fault-tolerance but typi-

cally without taking care of scalability, even providing

negative scalability (a performance below the one of the

non-replicated server). Replication for scalability, in

addition to providing availability, it is able to increase

the system capacity by increasing the number of

replicas.

Replication for availability approaches rely on the

state machine approach [22]. The state machine replica-

tion is based on two basic principles: (i) All replicas

receive requests in the same global order; (ii) Each

replica behaves deterministically and then, given the

same input request sequence produces the same output

sequence. Therefore, replication protocols for availability

rely on a method for ordering client requests in the same

Replication in Multi-Tier Architectures R 2411
order at all replicas to attain the required global order,

typically, using group communication and total order

multicast. Then, they remove the non-determinism

from the application. In this class, it is possible to find

all the efforts around FT-CORBA such as Eternal [16].

One of the main sources of non-determinism is

multi-threading. Most of the approaches simply tackle

with single-threaded (sequential) servers to guarantee

determinism. However, multi-threading is a necessary

feature for real-world servers. Some research has been

conducted in how to guarantee determinism of repli-

cas in the presence of multi-threading [3,11]. This

research has produced different multi-threading sche-

dulers that enforce deterministic scheduling enabling

the replication of multi-threaded servers. The seminal

approach [11] showed that by using a deterministic

scheduler and setting a deterministic method to sched-

ule requests integrated in the deterministic scheduler it

became possible to guarantee the determinism of

multi-threaded servers. Later on some other determin-

istic schedulers have been proposed aiming at increas-

ing the real concurrency [3].

An important issue that needs to be dealt with in

the replication of application servers is how to preserve

transactional consistency [8]. The paper [9] proposes

e-transactions to preserve consistency and identifies

exactly once semantics as a key consistency criterion
Replication in Multi-Tier Architectures. Figure 1. Horizonta

shared database.
for replication of transactional multi-tier architectures.

e-Transactions also provide a protocol for satisfying

exactly-once semantics for replicated stateless applica-

tion server tiers with a shared database (see Fig. 1).

Exactly-once semantics states that each transaction

should be executed exactly once despite failures and

re-executions due to failovers.

A more evolved approach [24] deals with the repli-

cation of stateful application servers also with a shared

database. In this approach, the relationship between

request and transaction is not constrained to be 1 to 1

as in e-transactions, instead, it can be arbitrary. That is,

it can be 1:1, N:1, and 1:N. In [24] it is proposed

a protocol providing exactly-once semantics [9]

despite failures. The protocol intercepts database

accesses labeling them with a global sequence identifier

and the associated client and request identifier. Each

database requests is multicast to the other replicas

with the associated information. In the advent of a

failure of the primary replica of the application server,

a backup replica will take over. Those clients that have

not received a reply to their last request will resubmit it

to the new primary. The new primary will execute

resubmitted requests intercepting the requests submit-

ted to the database. This interception takes care of

executing the database requests in the same order as

in the old primary in order to guarantee a
l replication with a replicated application server tier and a

R

2412R Replication in Multi-Tier Architectures
deterministic execution and exactly once semantics.

New requests will be delayed till the requests received

from the former primary are replayed.

All the aforementioned approaches deal exclusively

with the replication of the application server tier,

which results in the database becoming a single point

of failure and performance bottleneck. More recently,

research has been conducted to deal with the replica-

tion of both the application server and database tiers

guaranteeing consistency despite failures. Two alterna-

tive architectures have been considered: horizontal and

vertical replication [13].

In horizontal replication each tier is replicated

independently (see Fig. 2). However, the integration

of two independently replicated tiers results in incon-

sistency problems in the advent of failures [13]. In

order to avoid inconsistencies the replicated tiers sho-

lud become aware of each other to handle failovers

consistently. However, this is typically unrealistic

since it implies the cooperation of two different ven-

dors very often competitors in the market. [13] pro-

poses two solutions to attain consistent failover by

incorporating awareness of replication in only one of

the two tiers, either the application server or the data-

base tier.

Vertical replication lies in taking as replication

unit an application server - database server pair [21]

(see Fig. 3). The database server is not aware of the
Replication in Multi-Tier Architectures. Figure 2. Horizonta
replication. The application server encapsulates all the

replication logic. In the vertical replication approach

[21] both changes to session (session beans in the

context of J2EE) and persistent state (entity beans in

the context of J2EE) are captured. The two kinds of

changes are propagated to the backup replicas at the

end of each client request to provide highly available

transactions, that is, transactions that do not abort

despite failovers.

Both horizontal and vertical replication architectures

are also used to attain scalability. Horizontal replication

has mainly focused on replicating the middleware tier to

replicate sessions while sharing a single database. In these

approaches, consistency is attained through the shared

database that serializes concurrent database accesses

from different replicas. The replication of sessions enables

to increase the scalability of applications in which the

bottleneck is located in the application server, they are

CPU intensive (e.g., image processing). However, these

approaches fail to scale when the bottleneck is on the

database, which is the most common case in practice.

Vertical approaches have aimed at increasing the

scalability independently of whether they are application

server or database intensive whilst providing strong

consistency [4,20]. To date there are two different

approaches to scalable vertical replication: [20] that pro-

vides strong consistency and [4] that provides relaxed

consistency.
l replication with two replicated tiers.

Replication in Multi-Tier Architectures. Figure 3.

Vertical replication. Replicated application server and

database tiers.

Replication in Multi-Tier Architectures R 2413

R

[4] uses a master-slave approach and aims at scal-

ing read-intensive workloads. The master processes all

update transactions that get reflected in the underlying

database and takes care of propagating a sequence of

committed updates to the slaves. Each slave updates

the cache and also commits the updates to the database

in commit order. Read-only queries can be executed at

any replica and can read stale data. The system can be

configured to set the staleness or freshness upon which

each transaction should be executed.

On the other hand, [20] is an update-everywhere

approach (all replicas can process update transac-

tions) and aims at scaling both read and write work-

loads. Unlike [4,20], provides strong consistency,

namely, 1-copy-snapshot-isolation. [20] firstly pro-

vides a consistency criterion for application server cach-

ing, named cache-transparency. An application server is

cache-transparent if it allows the same executions as the

application server with the cache disabled. Cache trans-

parency extends the isolation notion of databases to a

multi-tier architecture. This is crucial since current ap-

plication servers may work incorrectly with databases

running on some relaxed isolation levels, such as, snap-

shot isolation. Secondly, it guarantees 1-copy correctness

for the multi-tier server which provides replication

transparency. [20] builds on 1-copy-snapshot isolation
to obtain higher scalability levels since 1-copy-serializ-

ability has some strict scalability limits as discussed

earlier. Basically, [20] uses multi-versioning in the

cache of the application server replicas that is synchro-

nized with the snapshots of the underlying database and

among replicas in order to provide cache and replication

transparency, respectively.

Cross-references
▶Data Replication
Recommended Reading
1. Amza C., Cox A.L., and Zwaenepoel W. Distributed versioning:

consistent replication for scaling back-end databases of dynamic

content web sites. In Proc. ACM/IFIP/USENIX Int. Middleware

Conf., 2003.

2. Baldoni R. and Marchetti C. Three-tier replication for

FT-CORBA infrastructures. Software Practice & Experience,

33(8):767–797, 2003.

3. Basile C., Kalbarczyk Z., and Iyer R.K. Active Replication of

Multithreaded Applications. IEEE Trans. Parallel and Dist.

Syst., 17(5):448–465, 2006.

4. Bernstein P.A., Fekete A., GuoH., Ramakrishnan R., and TammaP.

Relaxed-currency serializability for middle-tier caching and

replication. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 2006, pp. 599–610.

5. Breitbart Y., Komondoor R., Rastogi R., Seshadri S., and

Silberschatz A. Update propagation protocols for replicated

databases. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1999.

6. Cardellini V., Casalicchio E., Colajanni M., and Yu P.S. The state

of the art in locally distributed Web-server systems. ACM Com-

put. Surv., 34(2):263–311, 2002.

7. Felber P., Guerraoui R., and Schiper A. The Implementation

of a CORBA Object Group Service. Theory & Practice of Object

Systems, 4(2):93–105, 1998.

8. Felber P. and Narasimhan P. Reconciling Replication and Trans-

actions for the End-to-End Reliability of CORBA Applications.

In Proc. Int. Symp. on Distributed Objects and Applications,

2002.

9. Frølund S. and Guerraoui R. e-Transactions: End-to-End Reli-

ability for Three-Tier Architectures. IEEE Trans. Software Eng.,

28(4):378–395, 2002.

10. Jiménez-Peris R., Patiño-Martı́nez M., Alonso G., and Kemme B.

Are Quorums an Alternative for Data Replication. ACM Trans.

Database Syst., 28 (3), 2003.

11. Jiménez-Peris R., Patiño-Martı́nez M., and Arevalo S. Determin-

istic Scheduling for Transactional Multithreaded Replicas. In

Proc. IEEE Int. Symp. on Reliable Distributed Systems, 2000,

pp. 164–173.

12. KemmeB. andAlonsoG.Don’t be lazy, be consistent: Postgres-R, a

new way to implement database replication. In Proc. 26th Int.

Conf. on Very Large Data Bases, 2000.

13. KemmeB., Jiménez-Peris R.R., Patiño-Martı́nezM.M., and Salas J.

Exactly once interaction in a multi-tier architecture. In Proc. of

2414R Report Writing
VLDBWorkshop on Design, Implementation and Deployment of

Database Replication, 2005.

14. Kistijantoro A.I., Morgan G., and Shrivastava S.K. Enhancing an

Application Server to Support Available Components. IEEE

Trans. Software Eng., SE-34(4):531–545, 2008.

15. Lin Y., Kemme B., Patiño-Martı́nez M., and Jiménez-Peris R.

Middleware based Data Replication providing Snapshot

Isolation. In Proc. ACM SIGMOD Int. Conf. on Management

of Data (SIGMOD), 2005.

16. Moser L.E., Melliar-Smith P.M., Narasimhan P., Tewksbury L.,

and Kalogeraki V. The eternal system: an architecture for enter-

prise applications. In Proc. Int. Enterprise Distributed Object

Computing Conf., 1999, pp. 214–222.

17. Pacitti E. and Simon E. Update propagation strategies to

improve freshness in lazy master replicated databases. VLDB J.,

8(3), 2000.

18. Patiño-Martı́nez M., Jiménez-Peris R., Kemme B., and Alonso G.

Middle-R: Consistent Database Replication at the Middleware

Level. ACM Trans. Computer Syst., 23(4):375–423, 2005.

19. Pedone F., Guerraoui R., and Schiper A. The Database State

Machine Approach. Distrib. Parall. Databases, 14(1):71–98,

2003.

20. Perez-Sorrosal F., Patiño-Martı́nez M., Jiménez-Peris R.,

and Kemme B. Consistent and scalable cache replication for

multi-tier J2EE applications. In Proc. ACM/IFIP/USENIX 8th

Int. Middleware Conf., 2007, pp. 328–347.

21. Perez-Sorrosal F., Patiño-Martı́nez M., Jiménez-Peris R., and

Vuckovic J. Highly available long running transactions and

activities for J2EE applications. In Proc. 23rd Int. Conf. on

Distributed Computing Systems, 2006.

22. Schneider F.B. Implementing Fault-Tolerant Services Using the

State Machine Approach: A Tutorial. ACM Comput. Surv., 22

(4):299–319, 1990.

23. Serrano D., Patiño-Martı́nez M., Jiménez-Peris R., and Kemme B.

Boosting Database Replication Scalability through Partial Repli-

cation and 1-Copy-Snapshot-Isolation. In Proc. IEEE Pacific Rim

Dependable Computing Conference, 2007, pp. 328–347.

24. Wu H. and Kemme B. Fault-tolerance for Stateful Application

Servers in the Presence of Advanced Transactions Patterns. In

Proc. IEEE Int. Symp. on Reliable Distributed Systems, 2005, pp.

95–108.

25. Zhao W., Moser L.E., and Melliar-Smith P.M. Unification of

Transactions and Replication in Three-Tier Architectures

Based on CORBA. IEEE Transactions on Dependable and Secure

Computing, 2(1), 2005.
Report Writing

▶ Summarization
Representation

▶ Icon
Reputation

▶Trust in Blogosphere
Reputation and Trust

ZORAN DESPOTOVIC

NTT DoCoMo Communications Laboratories Europe,

Munich, Germany

Synonyms
Feedback systems; Word of mouth

Definition
Trust means reliance on something or someone’s

action. As such, it necessarily involves risks on the

side of the subject of trust, i.e., trustor. The main goal

of a trust management system is to reduce the involved

risks. Reputation systems present a possible solution

to do that. They use relevant information about the

participants’ past behavior (feedback) to encourage

trustworthy behavior in the community in question.

The key presumptions of a reputation system are that

the participants of the considered online community

engage in repeated interactions and that the informa-

tion about their past doings is informative of their

future performance and as such will influence it.

Thus, collecting, processing, and disseminating the

feedback about the participants’ past behavior is

expected to boost their trustworthiness.

Key Points
The goal of a reputation system is to encourage trust-

worthy behavior. It is up to the system designer to

define what trustworthy means in her specific setting.

There are two possible ways to do this: signaling

and sanctioning reputation systems. In a signaling repu-

tation system, the interacting entities are presented

with signals of what can go wrong in the interactions

if they behave in specific ways. Having appropriate

signals, the entities should decide what behavior is

most appropriate for them. An important assumption

of the signaling reputation systems is that the involved

entities do not change their behavior in response to a

change of their reputation. As an example, the system

may just provide a prospective buyer with indications

of the probability that the seller will fail to deliver a

Request Broker R 2415
purchased item. This probability is the main property

of the seller. It can change with time, but independent-

ly of the seller’s reputation.

The other possibility is sanctioning reputation

systems. The main assumption they make is that the

involved entities are aware of the effect the reputation

has on their benefits and thus adjust their behavior

dynamically as their reputation changes. The main task

of a reputation system in this case is to sanctionmisbe-

havior through providing correlation between the

feedback the agent receives and the long-run profit

she makes.

Cross-references
▶Distributed Hash Table

▶ P2P Database

▶ Peer-to-Peer System

▶ Similarity and Ranking Operations

▶ Social Networks

▶Trust in Blogosphere
R

Request Broker

ANIRUDDHA GOKHALE

Vanderbilt University, Nashville, TN, USA

Synonyms
Object request broker; Event broker; Storage broker

Definition
A Request Broker is a software manifestation of the

Broker architectural pattern [3] that deals primarily

with coordinating requests and responses, and manag-

ing resources among communicating entities in a

distributed system. A Request Broker is usually found

as part of middleware, which are layers of software that

sit between applications, and the underlying operating

systems, hardware and networks.

Historical Background
The mid to late 1980s established the TCP/IP protocol

suite as the de facto standard suite of protocols

for building networked applications. Contemporary

operating systems provided a number of application

programming interfaces (APIs) for network program-

ming. The famous among these were the socket API

that were tailored towards building TCP/IP-based
applications. This era also saw the widespread use of

killer TCP/IP-based applications, such as the File

Transfer Protocol (FTP).

Despite the success of the socket API to build

distributed applications, there were a number of chal-

lenges involved in developing these applications. First, the

socket API was tedious to use and incurred a number of

accidental complexities stemming from the use of type-

unsafe C-language data types. Second, application pro-

grammers were responsible for handling the marshaling

and demarshaling of the data types transferred between

the communication entities, which involved a number of

challenges. Notable among these were the need to address

the byte ordering, and word size and padding issues

arising from the heterogeneity in the hardware architec-

tures. Third, server applications were able to provide only

one primary functionality due to the lack of an object-

oriented service abstraction. Finally, client applications

had to explicitly bind to a location-dependent service,

which made the applications inflexible and brittle.

Every distributed application that was developed

had to reinvent the wheel and address these complex-

ities. There was a compelling need to overcome these

challenges by factoring out the commonly occurring

patterns of network programming and provide them

within reusable frameworks. This led to the notion of

middleware [1,2], which provide reusable capabilities

in one or more layers of software that sit between the

application logic, and the operating systems, hardware

and networks. A Request Broker is at the heart of such

a middleware and performs a number of functions on

behalf of the applications.

Request Brokering capabilities at themiddleware layer

started appearing with the advent of the Remote Proce-

dure Call (RPC). Sun RPC was among the earlier mid-

dleware platforms that illustrated Request Brokers.

Others that emerged thereafter included the Distributed

Computing Environment (DCE), the Common Object

Request Broker Architecture (CORBA), Java Remote

Method Invocation (RMI), Distributed Component Ob-

ject Model (DCOM) and .NET Remoting.

Foundations
A Request Broker implements the Broker architectural

pattern [3]. The primary objectives of a request broker

are to decouple clients and servers of a distributed

application and provide reusable services, such as

concurrency management, connection management,

seamless transport-level networking support, data

2416R Request Broker
marshaling, and location transparency. Figure 1 illus-

trates the commonly found functional blocks [5] in a

Request Broker discussed below.

	 Proxy – A Request Broker allows the separation of

interface from implementation thereby decoupling

the client of a service from the implementation of

the service. A service is often described using inter-

face definition languages to define the interfaces,

the operations they support and data types that can

be exchanged. Versioning of interfaces can also be

provided within these descriptions. A proxy gives

an illusion of the real implementation to the client.

	 Discovery services – A Request Broker manages ser-

vice discovery on behalf of clients. Some form of a

service description, such as a URL or service name,

is used by the broker to lookup a potentially remote

implementation that offers the service. The broker

will return to the client application a handle to the

external service in the address space of the client so

that the client can seamlessly invoke services on the

handle via the Proxy. Depending on whether pass

by reference or pass by value semantics are used, the

execution of client requests may occur remotely on

the server machine or locally in the client’s address

space, respectively.

	 Marshaling engine– A Request Broker often speci-

fies an encoding scheme or a serialization format

for representing application data. Often there exist

tools that read the interface descriptions of services

and synthesize code that can marshal and unmar-

shal all the data types that are defined as serializable

in the interface descriptions. This tool-generated
Request Broker. Figure 1. Request broker functional archite
code, which is usually called a stub, is linked into

the fabric of the Request Broker, which manages

data marshaling and unmarshaling on behalf of the

application.

	 Concurrency control – A server application may re-

quire finer-grained control on concurrency for

scalability and performance. Request Brokers often

provide sophisticated concurrency control mechan-

isms, such as thread pools, to handle application

requests in a scalable and concurrent manner.

	 Object lifetime manager – A server application may

host multiple different services to optimally utilize

resources. Often these services are provided in the

form of objects implemented in a programming

language. The Request Broker must manage several

objects simultaneously in the system according to

the policies dictating their lifetimes, e.g., transient

or persistent. Other policies that tradeoff between

memory footprint and performance include the

activate-on-demand policy, which activates a ser-

vice only on demand and for the duration of the

request. This conserves resources but impacts

performance.

	 Request demultiplexing and dispatching – A broker

may manage several hundreds of objects at a time.

When requests arrive at a server, they must be

efficiently demultiplexed and dispatched to the

right object implementation.

	 Connection management and Transport Adapter –

Since applications are distributed they must com-

municate over different networking protocols.

Request Brokers often enable applications to
cture.

Request Broker R 2417

R

configure the choice of protocol to use for commu-

nication. For example, the unpredictable behavior of

TCP/IP will not suffice for real-time applications in

which case special transport protocols must be used.

But the application must be shielded from these

differences. Transport adapters [4] can provide

these capabilities. For the transport protocol used,

appropriate connection management capabilities are

required. For example, connections may need to be

purged periodically to conserve resources.

Apart from the functional architecture, a taxonomy

of the capabilities provided by a Request Broker can be

developed along the following orthogonal dimensions.

(1) Communication models – This dimension includes

different classifications, such as (i) Remote Proce-

dure Calls (RPC) versus Message Passing; (ii)

Synchronous versus Asynchronous communica-

tions; (iii) Request/Response versus Anonymous

Publish/Subscribe semantics; (iv) Client/Server

versus Peer-to-Peer.

(2) Location transparency – This dimension includes

mechanisms, such as object references or URLs,

used by the Request Broker to hide the details of

the service.

(3) Type system support – This dimension includes the

richness of the data types that can be exchanged

between the communicating entities, and the se-

mantics of data exchange. For example, Request

Brokers can support passing objects by value or by

reference or both.

(4) Interoperability and portability – This dimension

includes the degree of heterogeneity supported by

the Request Brokers. For example, technologies such

as CORBA are both platform- and language-inde-

pendent, which makes them widely applicable but

requires complex mapping between the platform-

and language-independent representations to plat-

form- and language-specific artifacts. Often this

impacts the richness of data types that can be ex-

changed. On the other hand some technologies are

language-dependent, e.g., Java RMI, or platform-

dependent, e.g., DCOM and .NET Remoting.

(5) Quality of service (QoS) support – This dimension

includes the capabilities provided by the Request

Broker to support different QoS requirements of

applications. Some brokers may be tailored to

support real-time support while others are custo-

mized for persistence and transaction support.
Key Applications
Request Brokers are at the heart of distributed com-

puting, and span a wide range of application domains

including telecommunications, finance, healthcare,

industrial automation, retail, grid computing, among

others. Request Brokers with enabling technologies

to support real-time applications have also been

used to build distributed real-time and embedded

systems found in domains, such as automotive control,

avionics mission computing, shipboard computing,

space mission computing, among others. Request

Brokers are also found in systems that require manage-

ment and scheduling of storage resources, or in large,

event-based or content-management systems.
Future Directions
As applications become more complex, heterogeneous,

and require multiple different and simultaneous quali-

ty of service properties, such as real-time, fault toler-

ance and security, the responsibilities of the Request

Broker increase substantially. Brokering capabilities

themselves will need to be distributed requiring coor-

dination among the distributed brokers. Supporting

multiple QoS properties will require design-time tra-

deoffs due to the mutually conflicting objectives of

each QoS property. Run-time resource management

will be a key in supporting the QoS properties since

applications are increasingly demanding autonomic

capabilities.
Experimental Results
Experimental research on Request Brokers is proceed-

ing along the discussion articulated in the future

trends. Service oriented computing is requiring Re-

quest Brokers to move beyond simple client-server or

peer-to-peer computing to more advanced scenarios

where the brokering capabilities are required across

entire application workflows.
URL to Code
The following URLs provide more information on

different Request Broker technologies and sample

code.

CORBA is standardized by the Object Management

group (http://www.omg.org).

Java RMI is a technology of Sun Microsystems

(http://java.sun.com/javase/technologies/core/basic/

rmi/index.jsp).

2418R Residuated Lattice
DCOM and .NET Remoting are technologies from

Microsoft (http://msdn2.microsoft.com/en-us/library/

ms809340.aspx and http://msdn2.microsoft.com/en-

us/library/2e7z38xb.aspx, respectively).

DCE is a technology standardized by the Open

Group (http://www.opengroup.org/dce/).

Cross-references
▶CORBA

▶DCE

▶DCOM

▶ .NET Remoting

▶RMI

▶ Service Oriented Architecture

▶ Subsumed by Windows Communication

Framework

Recommended Reading
1. Bakken D.E. Middleware. In Encyclopedia of Distributed Com-

puting. J. Urban and P. Dasgupta (eds.). Kluwer, Dordrecht,

2001.

2. Bernstein P.A. Middleware: a model for distributed system ser-

vices. Commun. ACM, 39(2):86–98, 1996.

3. Buschmann F., Meunier R., Rohnert H., Sommerlad P., and

Stal M. Pattern-Oriented Software Architecture – A System of

Patterns. Wiley, New York, 1996.

4. Gamma E., Helm R., Johnson R., and Vlissides J. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-

Wesley, Reading, MA, 1995.

5. Schmidt D.C. Evaluating Architectures for Multi-threaded

CORBA Object Request Brokers. Commun. ACM Special Issue

on CORBA, 41(10):54–60, October 1998.
Residuated Lattice

VILÉM NOVÁK

University of Ostrava, Ostrava, Czech Republic

Synonyms
Structure of truth values

Definition
The residuated lattice is a basic algebraic structure

accepted as a structure of truth values for fuzzy logic

and fuzzy set theory. In general, it is an algebra

hL;_;^;
;!; 0; 1i

where L is a support,∨and∧are binary lattice opera-

tions of join and meet, 0 is the smallest and 1 is

the greatest element. The
 is additional binary
operation of product that is associative and commuta-

tive, and a
 1 ¼ a holds for every a 2 L. The! is a

binary residuation operation that is adjoined with
 as

follows:

a
 b � c if and only if a � b ! c

for arbitrary elements a,b,c 2 L. The residuation oper-

ation is a generalization of the classical implication.

Key Points
The residuated lattice is naturally ordered by the clas-

sical lattice ordering relation defined by

a � b if and only if a ^ b ¼ a:

In general, of course, there can exist incomparable

elements in L. A typical property of the residuation

operation is a ! b ¼ 1 iff a � b. In words: a � b iff

the degree of implication a ! b is equal to 1.

A typical example of residuated lattice is the stan-

dard Łukasiewicz MV-algebra

h½0; 1�;max;min;
;!; 0; 1i

where a
 b¼max{0,aþb�1} is Łukasiewicz product

(conjunction) and a ! b ¼ min{1,1�aþb} is Łuka-

siewicz implication.

Another widely used residuated lattice is an MTL-

algebra, where L ¼ [0,1],
 as some left continuous

t-norm (see TRIANGULAR NORMS) and!is the

corresponding residuation.

Every boolean algebra is a residuated lattice. Thus,

a special case of residuated lattice is also the boolean

algebra for classical logic

hf0; 1g;_;^;
;!; 0; 1i

where
 ¼∧(i.e.,
 coincides with minimum) and!
is the classical boolean (material) implication.

Both∧as well as
 are natural interpretations of

logical conjunction. This means that there are two, in

general different, conjunctions in fuzzy logic. In classi-

cal logic they coincide, though. The residuation! is

natural interpretation of implication.

Negation is defined by

:a ¼ a ! 0:

This operation coincides with classical negation in

boolean algebra for classical logic, i.e., :0 ¼ 1 and

:1 ¼ 0. In the standard Łukasiewicz MV-algebra

(based on [0,1]) this operation reduces to :a ¼ 1�a.

Resource Allocation Problems in Spatial Databases R 2419
The biresiduation operation is defined by

a $ b ¼ ða ! bÞ ^ ðb ! aÞ:

This operation coincides with with classical equiva-

lence in boolean algebra for classical logic. In fuzzy

logic, it is used as a natural interpretation of logical

equivalence. In standard Łukasiewicz MV-algebra it

gives a ↔ b ¼ 1 � ja�b j, a, b 2 [0,1].

There are many more special kinds of residua-

ted lattices. Except for boolean algebra, the most

important are BL-algebra, Gödel algebra, product

algebra and MV-algebra.

Cross-references
▶ Fuzzy Relation

▶ Fuzzy Set

▶Triangular Norms

Recommended Reading
1. Esteva F. and Godo L. Monoidal t-norm based logic: towards a

logic for left-continuous t-norms. Fuzzy Sets Syst., 124:271–288,

2001.

2. Hájek P. Metamathematics of Fuzzy Logic. Kluwer, Dordrecht,

1998.

3. Klement E.P., Mesiar R., and Pap E. Triangular Norms. Kluwer,

Dordrecht, 2000.

4. Novák V. and Perfilieva I. Močkoř J. Mathematical Principles of

Fuzzy Logic. Kluwer, Boston/Dordrecht, 1999.

5. Gottwald S. ATreatise onMany-Valued Logics. Research Studies,

Baldock, Herfordshire, 2001.
R
Resource Allocation Problems in
Spatial Databases

DONGHUI ZHANG, YANG DU

Northeastern University, Boston, MA, USA

Synonyms
Facility-location problem

Definition
Assume that a franchise plans to open one or more

branches in a state. How shall the locations of the new

branches be allocated to maximally benefit the custo-

mers? Depending on whether some branches already

exist and how to quantify the benefits to the customers,

there are multiple forms of such resource allocation

problems. In spatial databases, distance plays an
important role. A customer is assumed to always visit

the closest branch. Therefore it is beneficial to a cus-

tomer if a new branch is opened at a location closer

than her closest existing branch. The max-inf optimal-

location query assumes the existence of a set of sites

(already opened franchise branches), and aims to find

a new location within a given area which benefits the

largest number of customers. The min-dist optimal-

location query also assumes the existence of a set of

sites and aims to find a location for a new site which is

optimal; but here the optimality is defined as minimi-

zation of the average distance from each customer to

the nearest site. Compared with its max-inf counter-

part, the min-dist optimal-location query takes into

account the saved distance for each customer. The k-

medoid query assumes that there does not exist any p as

residential blocks) that minimize the average distance

from every customer to the nearest picked location.

Historical Background
There exists an extensive literature in operations re-

search on resource allocation problems, named the

facility location problems. The most widely studied

version is the uncapacitated facility location (UFL)

problem.

Given a set of customers, a set of potential sites, a

non-negative cost for opening each site, and a non-

negative service cost between each site and a customer,

the UFL problem is to find a subset of the potential

sites so that the total cost (opening cost plus service

cost) is minimum. Here, the term ‘‘uncapacitated’’

refers to the assumption that there is no limit on the

number of customers that each site can serve.

The k-medoid problem is a variation of the UFL

problem, where the set of customers and sites are identi-

cal, the opening cost of each site is zero, the service cost

between a site and a customer is the distance between

them, and there is an additional constraint that exactly k

sites will be opened. The k-means problem is a related

problem, where the potential sites can be anywhere.

Facility location problems are (typically) NP-hard.

Therefore research has focused on approximate algo-

rithms with low computational complexity and small

approximation errors. A recent survey of approximate

algorithms for facility location problems appeared in

[5]. Unlike spatial database research, the operations

research assumes that all objects fit in memory and

existing approaches typically scan through the dataset

multiple times.

2420R Resource Allocation Problems in Spatial Databases
Foundations
When considering resource allocation problems in a

large spatial database, the data usually reside in sec-

ondary storage and are indexed by spatial index struc-

tures so that scanning through all objects is avoided.

The research goal is not to derive good asymptotic

complexities, but to design efficient algorithms

which, when applied to real datasets, incur a small

number of I/O operations.

For both the max-inf and min-dist optimal-

location queries under L1 distance, there exist straight-

forward O(n2) solutions which find exact answers.

Note that this differentiates the optimal-location

queries from the NP-hard facility-location problem.

However, such O(n2) algorithms are prohibitively

slow in large spatial databases. Exploiting spatial

index structures, [1] and [6] proposed solutions

which are much faster (sub-linear in practice).

Similarly, the k-medoid query was examined in the

context of spatial databases by utilizing spatial index
Resource Allocation Problems in Spatial Databases.

Figure 1. The nn_buffer of an object (or customer) under

L1 metric is a diamond (rotated square).

Resource Allocation Problems in Spatial Databases. Figure

transformation in (b) shows that any location in the intersecti
structures. In particular, [2] relies on the clustering of

higher-level index entries in an R-tree to avoid scan-

ning through all objects.

Max-Inf Optimal-Location Query

The max-inf optimal location (OL) query aims to

find the location of a new site which benefits (or

influences) the largest number of customers. Here the

influence of a location is the number of customers

which are closer to the location than to any existing

site. To answer the max-inf OL query under L1 metric,

Du et al. [1] introduced the concept of nn_buffer and

reduced the problem into finding a location with max-

imum overlap among nn_buffers of objects. Formally,

the nn_buffer of an object is defined as follows.

Definition Given an object o and its closest site s, the

nn_buffer of o is a contour such that 8l on the contour, d

(l, o) = d(o, s).

In other words, a location l is inside o.nn_buffer if and

only if o is closer to l than to any site. As shown in

Figure 1, the nn_buffer of an object o under L1 metric is

a diamond. The object o contributes to the influence of

a location l, if and only if l is inside the nn_buffer of o.

Furthermore, if the coordinates are rotated by 45
�

counter-clockwise, the nn_buffers become axis-parallel

squares. Therefore, given a query region Q, an optimal

location is a location l inside Q which maximizes

the total weight of overlapped nn_buffers. Here the

weight of an object tells how important an object

is. For instance, if the object is an apartment com-

plex, its weight can be the number of residents living

in it. Figure 2 gives an example of the query with

four objects and two sites and its corresponding
2. In (a), l is an optimal location, with influence 11. The

on between Q and region 2 is an optimal location.

Resource Allocation Problems in Spatial Databases R 2421

R

transformation. Based on this observation, three solu-

tions are proposed to answer the max-inf OL query

under L1 metric.

The first one is an R-tree based solution. It assumes

that an R-tree is used to index the set O of objects.

Furthermore, the R-tree is augmented with some extra

information. Every object stores the L1 distance to its

closest existing site, and every index entry stores the

maximum such distance of objects in the sub-tree. The

solution follows two steps. The first step is to retrieve

those objects from the R-tree whose nn_buffers inter-

sect with Q. The objects are identified in increasing

order of X coordinate in the rotated coordinate, even

though the R-tree was built in the original coordinate.

The second step is a plane-sweep process, which con-

sumes the objects streamed in from the first step and

computes the weight of overlapped nn_buffers. A naive

plane-sweep solution has O(n2) cost, where n is the

number of retrieved objects. However, it can be im-

proved to O(n log n) by using a data structure called

aggregation SB-tree. After processing all retrieved

objects, the algorithm reports the location with maxi-

mum overlap as the answer.

The second solution is based on a specialized ag-

gregation index called the OL-tree. The OL-tree is

a balanced, disk-based, dynamically updateable index

structure extended from the k-d-B-tree. This index is

built in the rotated coordinate. Objects to be inserted

into the OL-tree are nn_buffers versus points in

the original k-d-B-tree. Local optimal location infor-

mation in each subtree is stored along with the index

entry referencing the sub-tree. Such information

enables efficient processing algorithms that can ans-

wer the max-inf optimal-location query without exa-

mining all nn_buffers intersecting the query region Q.

In the best case, the algorithm only needs to examine

the root node of the tree.

These two solutions have interesting tradeoffs be-

tween storage cost and query efficiency. The R-tree

based solution utilizes the existing R-tree structure.

The storage cost is linear to the number of objects.

However, as the objects are not pre-aggregated, a query

needs to examine all objects whose nn_buffers intersect

with the query range Q. If Q has large size, the query

performance is poor. On the other hand, the OL-tree is

a specialized aggregation index, whose space overhead

is much higher, but provides faster query processing.

The third solution combines the benefits of the pre-

vious two approaches. As in the R-tree based
solution, it uses an R-tree to store the objects. But to

guide the search, it uses a small, in-memory OL-tree-

like index structure. This index is named theVirtual OL-

tree (VOL-tree). It resembles the top levels of an OL-tree

and it does not physically store any nn_buffer. A leaf

entry plays a similar role to an index entry. It corre-

sponds to a spatial range, and it logically references

a node that stores (pieces of) nn_buffers in that range.

If necessary, these nn_buffers can be retrieved from

the R-tree dynamically. To prune the search space, the

VOL-tree stores some (but not all) aggregated infor-

mation of the nn_buffers in each level. This solution

provides the best trade-off between space overhead and

computational costs, as shown experimentally in [1].

Min-Dist Optimal-Location Query

The min-dist OL query aims to find the location of a

new site which minimizes the average distance from

each customer to the nearest site. Zhang et al. [6]

proposed a progressive algorithm to find the exact

answer of the Min-Dist OL query under L1 metric.

The algorithm works in two steps. In the first step, it

limits the candidate locations to finite locations, which

are the intersections of certain horizontal and vertical

lines. The second step is a recursive partition-and-

refine step. In this step, it partitions the query range

Q into a few cells (by using some of the vertical and

horizontal lines), and calculates AD(·) for the corners

of these cells. Here AD(l) is denoted as the average

distance from each customer to the nearest site after

opening a new site l. The smaller AD(l) is, the better

the new location l is. For each cell, the algorithm

estimates the lower-bound of AD(·) among all loca-

tions in the cell and prunes the cell if its lower bound is

larger than the minimum AD(·) already found. It re-

peatedly partitions the unpruned cells into smaller cells

to further refine the result, until the actual optimal

location is found.

To understand how the candidate locations are

limited to finite locations, consider the example in

Figure 3. The black dots are the objects and the thick-

bordered rectangle is the query region Q. The sha-

dowed region is composed of the horizontal extension

of Q and the vertical extension of Q. The following

theorem guarantees that the optimal location can be

limited to finite candidates.

Theorem Consider the set of horizontal (and vertical)

lines that gothrough some object in the horizontal (and

vertical) extension of Q or go through some corner of Q.

2422R Resource Allocation Problems in Spatial Databases
The min-dist optimal location under L1 metric can be

found among the intersection points of these lines.

In order to prune some cells, the second step of

the algorithm utilizes a novel lower-bound estimator

for AD(·) of all locations in a cell. The following theo-

rem describes how the estimator works.

Theorem Let the corners of a cell C be c1, c2, c3, and c4,

where c1c4 is a diagonal. Let the perimeter of C be p.

maxfADðc1Þ þ ADðc4Þ
2

;
ADðc2Þ þ ADðc3Þ

2
g � p

4

is a lower bound of AD(l) for any location l 2 C.

The progressive algorithm, which starts with one cell

(the query region Q) and keeps partitioning it into

smaller cells and trying to prune cells from the pro-

cessing queue, has two advantages. First, it avoids

computing AD(·) for all candidate locations, as all

candidate locations inside a pruned cell are ignored.

Second, it responds fast. An approximate answer is

reported at the very beginning (after computing AD

(·) for the four corners ofQ), within a guaranteed error

bound. As the algorithms runs, the candidate optimal

location and the associated error rate are improved

progressively, until the exact optimal location is found.
Resource Allocation Problems in Spatial Databases. Figure

Resource Allocation Problems in Spatial Databases.

Figure 3. The candidate locations are limited to the

intersections of the dashed lines.
Disk-Based k-Medoid Query

Mouratidis et al. [3] studied the k-medoid problem in

large spatial databases. They assume that the data

objects are spatial points indexed by an R-tree and

the service cost between two points is defined by the

distance between them. They propose the TPAQ (Tree-

based PArtition Querying) algorithm that achieves low

CPU and I/O cost. The TPAQ algorithm avoids reading

the entire dataset by exploiting the grouping properties

of the existing R-tree index.

Initially, TPAQ traverses the R-tree in a top-down

manner, stopping at the topmost level that provides

enough information for answering the given query. In

the case of the k-medoid problem, TPAQ finds the

topmost level with more than (or equal to) k entries.

For instance, if k = 3 in the tree of Figure 4, TPAQ stops

at level 1, which contains five entries, n1 through n5.

Next, TPAQ groups the entries of the partitioning

level into k slots (i.e., groups.) To utilize the grouping

properties of the R-tree index, TPAQ augments each

retrieved entry ni with a weight w and a center c. Here,

the weight w is the number of points in the subtree

referenced by ni and the center c is the geometric

centroid of the entry, assuming that the points in the

sub-tree are uniformly distributed. To merge the initial

entries into exactly k groups, TPAQ utilizes space-

filling curves to select k seed entries which capture

the distribution of points in the dataset. Then, each

remaining entry is inserted into the slot whose weigh-

ted center is the closest to its center.

The final step of TPAQ is to pick k medoid objects,

one from each group; TPAQ reports the weighted

center of each group as the corresponding medoid.

Since the k-medoid problem is NP-hard, like any

other practical algorithm TPAQ can only provide an

approximate answer to the query. Experiments show

that, compared to previous approaches, TPAQ achieves
4. R-tree example.

Resource Description Framework R 2423
comparable or better quality, at a small fraction of the

cost (seconds as opposed to hours).

In [3], the authors also extended the above method

to solve the medoid-aggregate query, where k is not

known in advance. Given a user-specified parameter T,

the medoid-aggregate query determines the smallest

value of k and computes k-medoids such that the

average distance from each object to the nearest

medoid is smaller than T. The solution extends from

TPAQ in two ways. First, without knowing k in ad-

vance, the R-tree top-down traversal stops at the level

decided by the spatial extents and the expected cardi-

nality of the entries. Second, multiple passes over the

initial entries might be required to find the proper way

of grouping the entries into slots.
Key Applications

Location-Based Services

Research on resource allocation problems is expected

to help enhance the performance of location-based

services based on the geographic proximity of clients

to potential facilities of interest.
Spatial Decision Making

The efficient solutions to the resource allocation pro-

blems can provide valuable information to decision

making. For example, to help provide candidate loca-

tions of a new branch.
R
Future Directions
One future research direction is to extend the solutions

to other practical distance metrics. The existing solu-

tions to both the max-inf and min-dist OL queries

assume L1 distance. Extending to L2 (i.e., Euclidean)

distance and road network distance is desirable. Simi-

larly, extending the existing k-medoid solution to

handle road network distance is interesting. Another

future direction is to extend the queries to allow both

the pre-existence of certain sites and the ability to find

multiple locations. Existing solutions to the OL queries

are limited to only one optimal location, and existing

solutions to the k-medoid query are limited to zero

existing site. Relaxing/avoiding these limitations will

lead to more practical problems and solutions. The

third future direction is to consider moving objects

instead of static ones. In this case, the optimal
locations and k-medoids should be continuously mon-

itored over a set of moving objects [3,4].

Cross-references
▶Nearest Neighbor Query

▶Reverse Nearest Neighbor

Recommended Reading
1. Du Y., Zhang D., and Xia T. The optimal-location query. In Proc.

9th Int. Symp. Advances in Spatial and Temporal Databases,

2005, pp. 163–180.

2. Mouratidis K., Papadias D., and Papadimitriou S. Medoid

queries in large spatial databases. In Proc. 9th Int. Symp.

Advances in Spatial and Temporal Databases, 2005, pp. 55–72.

3. Papadopoulos S., Sacharidis D., and Mouratidis K. Continuous

medoid queries over moving objects. In Proc. 10th Int. Symp.

Advances in Spatial and Temporal Databases, 2007, pp. 38–56.

4. U L.H., Mamoulis N., and Yiu M.L. Continuous monitoring of

exclusive closest pairs. In Proc. 10th Int. Symp. Advances in

Spatial and Temporal Databases, 2007, pp. 1–19.

5. Vygen J. Approximation algorithms for facility location problems

(lecture notes). Technical Report, University of Bonn, Germany,

2005, pp. 1–59.

6. Zhang D., Du Y., Xia T., and Tao Y. Progressive computation of

the min-dist optimal-location query. In Proc. 32nd Int. Conf. on

Very Large Data Bases, 2006, pp. 643–654.
Resource Description Framework

MICHAEL WEISS

Carleton University, Ottawa, ON, Canada

Synonyms
RDF

Definition
RDF (Resource Description Framework) is a language

for making statements about resources, i.e., for repre-

senting metadata [7]. Here, the term resource is inten-

tionally used very broadly in the sense of any entity

that can be uniquely identified by a URI (Universal

Resource Identifier). This includes traditional web

resources (such as web pages or images), as well as

physical objects (such as devices) and humans about

which the statements are made.

Historical Background
In 1998, Tim Berners-Lee described RDF in his vision

for how metadata should be represented on the

Semantic Web [4]. The first W3C Recommendation

2424R Resource Description Framework
of RDF as a standard for encoding metadata was pub-

lished in 1999. Several related efforts include the Meta

Content Format (MCF) developed at Apple between

1995 and 1997, and the Dublin Core metadata stan-

dard [5] originally defined in 1995.

Foundations

Resource Description Framework

RDF is a core component of the layered specification of

the semantic web (also known as the ‘‘layered cake’’). It

has its basis in the theory of semantic networks. The

relationships between the elements of an RDF model

can be presented in a number of ways: as a directed

labeled graph (helpful to visualize the model), as

object-attribute-value or resource-property-value tri-

plets, or through an XML binding.

Figure 1 shows a simple example of an RDF graph.

Oval nodes represent resources, and arrows between them

represent properties. Property values that are themselves
Resource Description Framework. Figure 1. Example of

an RDF graph.

Resource Description Framework. Figure 2. Resource-

property-value triplets.

Resource Description Framework. Figure 3. XML binding f
resources are shown as ovals, while literal values (such as

strings) are shown as boxes. This figure makes two state-

ments about an iPod music player: it is a type of music

player, and it has a screen size of 320 � 240 pixels. The

same information is shown as a set of resource-property-

value triplets in Fig. 2. The resource iPod has two

properties, rdf:type and profile:ScreenSize. The

value of the property rdf:type is the type Music-

Player, and the volume of the property profile:

ScreenSize is the strip 320 � 240.

Finally, Fig. 3 shows a corresponding XML binding.

The XML binding starts with several namespace declara-

tions, one for the RDF syntax, the other for the RDF

schema that defines a vocabulary for describing mobile

devices. This schema describes that a MusicPlayer is a

kind of MobileDevice, and that MobileDevice

resources have certain properties such as Screen-

Size. The description of the iPod resource itself

is contained in an rdf:Description element. It

specifies a unique id through the rdf:id property,

and a list of property values. As Fig. 2 illustrates, an

rdf:Description element can contain multiple state-

ments. However, it is not required that these statements

are made within the same description. In fact, this

allows a resource to be described in a decentralized

manner. For example, the description of an iPod

above could be extended – in a separate document –

to make a statement about the iPod’s owner without

affecting the original description.

Key Applications
Another key application is FOAF (Friend of a Friend), a

vocabulary for describing people and their relationships.

A FOAF description can also contain information such as

the organizations and projects a person works for and

contributes to, documents they have created, and images

that show them (Brickley & Miller, 2007). Information

about a person can be distributed, leveraging the capabil-

ity of RDF for decentralized representation. A person’s
or RDF.

Resource Description Framework (RDF) Schema (RDFS) R 2425

R

own FOAF profile on their home page might only list the

projects they work on and some of their friends. Other

sites can provide additional information about that per-

son using FOAF, for example, the page of a conference

could list images of conference attendees. RDF has been

applied to a variety of uses: annotating documents (e.g.,

Dublin Core [5]), representing device profiles (e.g., CC/

PP [6]) and recently as exchange format in web services

(e.g., MusicBrainz [9]). A popular use is in the RDF Site

Summary (RSS) format, one of several RSS formats for

lightweight content syndication in blogs [8].

Cross-references
▶Dublin Core

▶Metadata

▶RDF Schema

▶XML

Recommended Reading
1. Allemang D. and Hendler J. Semantic Web for the Working

Ontologist: Modeling in RDF, RDFS and OWL. Morgan

Kaufmann, 2008.

2. Berners-Lee T. What the semantic web can represent. Available

online at: http://www.w3.org/DesignIssues/RDFnot.html, 1998.

3. Brickley D. and Guha R.V. RDF vocabulary description lan-

guage: RDF schema. W3C recommendation. Available online

at: http://www.w3.org/TR/rdf-schema/, 2004.

4. Brickley D. and Miller L. FOAF Vocabulary Specification. Avail-

able online at: http://xmlns.com/foaf/spec/, 2007.

5. Hillman D. Using dublin core. DCMI recommended resource.

Available online at: http://dublincore.org/documents/usage

guide/, 2005.

6. Klyne G., Reynolds F.,WoordrowC., OhtoH., Hjelm J., ButlerM.,

and Tran L. Composite capability/preference profiles (CC/PP):

structure and vocabularies 1.0. W3C recommendation. Available

online at: http://www.w3.org/TR/CCPP-struct-vocab/ 2004.

7. Manola F. and Miller E. RDF primer. W3C recommendation.

Available online at: http://www.w3.org/TR/rdf-primer/, 2004.

8. RSS-DEV Working Group. RDF site summary (RSS) 1.0. Avail-

able online at: http://web.resource.org/rss/1.0/, 2000.

9. Swartz A. MusicBrainz: a semantic web service. IEEE Intell. Syst.,

17(1):76–77, 2002.
Resource Description Framework
(RDF) Schema (RDFS)

VASSILIS CHRISTOPHIDES

University of Crete, Heraklion, Greece

Synonyms
Conceptual schemas
Definition
An RDF schema (RDFS) is represented in the basic

RDF model and provides (i) abstraction mechanisms,

such (multiple) class or property subsumption and

(multiple) classification of resources; (ii) domain and

range class specifications to which properties can apply;

(iii) documentation facilities for names defined in a

schema.

RDF/S follow the W3C design principles of interop-

erability, evolution and decentralization. In particular, it

is possible to interconnect in an extensible way resource

descriptions (by superimposing different statements

using the same resource URIs) or schema namespaces

(by reusing or refining existing class and property defini-

tions) regardless of their physical location on the Web.

Key Points
Over the last decade, RDF and its accompanying RDFS

specifications has been the subject of an extensive col-

laborative design effort. (1http://www.w3.org/RDF)

RDF/S was originally developed as an application-neu-

tral model to represent various kinds of descriptive in-

formation aboutWeb resources, i.e., metadata. TheW3C

published the RDF Schema as Candidate Recommenda-

tion in 2000. Under the boost of the Semantic Web for

transforming the Web into a universal medium for data,

information, and knowledge exchange, refined versions

of the RDF/S family of specifications have been pub-

lished in 2004 [1–5]. As a matter of fact, RDF/S serves

today as general purpose languages for consistent encod-

ing, exchange and processing of available Web content,

through a variety of syntax formats (XML or others).

Their current design has been strongly influenced by

recent advances in knowledge representation and aims

to provide a simple semantic layer to the Web (no

negation), as a base for more advanced query answer-

ing and reasoning services.

To present the core RDF/S modeling primitives, the

example of a catalog of a cultural Portal (see Fig. 1) is

used. To build this catalog, various cultural resources

(e.g., Web pages of cultural sites) must be described

from both a Portal and a Museum curator perspective.

Figure 1 relies on an almost standard graphical nota-

tion, where nodes represent RDF/S resources (circles)

or literals (rectangulars) while edges represent either

user-defined (single arrows) or build-in (double and

dashed arrows) properties.

The lower part of Fig. 1 depicts the description of an

image (e.g., museoreinasofia.mcu.es/guernica.

Resource Description Framework (RDF) Schema (RDFS). Figure 1. A cultural Portal Catalog in RDF/S.

2426R Resource Description Framework (RDF) Schema (RDFS)
jpg) available on the Web. Hereforth the prefix ‘‘&’’ is

used to abbreviate the involved resource URIs (e.g.,

&r1). In a first place, &r1 is described from a Portal

perspective as instance of the class named adm:

ExtResource (uniqueness of names is ensured by

using as prefix the corresponding schema URIs, like

adm or cult in the example). More precisely, the state-

ment (a triple in the RDF jargon) <&r1,rdf:type,adm:

ExtResource> asserts that the resource &r1 (subject) is

of type (predicate) adm:ExtResource (object). Addi-

tionally &r1 is stated to have two properties: one with

name title and value the string ‘‘Guernica’’ (tri-

ple <&r1,adm:title,Guernica>) and, the other, with

name file_size and value the integer 200 (triple < &r1,

adm:file_size,200>). Resource &r1 is also asserted as an

instance of the class named Painting (triple <&r1,rdf:

type,cult:Painting>) having a property technique with

the literal value (string) ‘‘oil on canvas’’ (tri-

ple <&r1,cult:technique,oil on canvas>). &r1 is further
described by considering additional resources as for

instance, &r2 whose identifier (#artist132) is local

to the Portal, i.e., not universally accessible in the Web.

Resource &r2 is then classified under Cubist and has

a property first_name with value ‘‘Pablo’’ and a prop-

erty last_name with value ‘‘Picasso.’’ Finally, it is

asserted that &r2 and &r1 are related thought the

property paints (triple < &r2,cult:paints,&r1>).

The upper part of Fig. 1 depicts two RDF/S

schemas (i.e., the namespace URIs cult = http://

www.icom.com/schema.rdf# and adm = http://

www.oclc.org/schema.rdf#) which define the

classes and properties (i.e., the names) employed by

the previous resource descriptions. In schema cult, the

property creates(triple < cult:creates,rdf:

type,rdf:Property>), is defined with domain the

class Artist (triple < cult:creates,rdf:domain,

cult:Artist>) and range the class Artifact (triple

< cult:createsrdf:range,cult:Artifact>).

Resource Description Framework (RDF) Schema (RDFS) R 2427
Note that properties are binary relations used to repre-

sent attributes of resources (e.g., technique with

range a literal type (XML Schema datatypes could be

used in this respect.) as well as relationships between

resources (e.g., creates with range a class of

resources). Furthermore, both classes and properties

can be organized into taxonomies carrying inclu-

sion semantics (multiple subsumption is also

supported). For example, the class Painter subsumes

Cubist (<cult:Cubist, rdfs:subClassof,

cult:Painter>) while the property paints is sub-

sumbed by creates (<cult:paints,rdfs:subPro-

pertyof,cult:creates>). According to the RDFS

semantics [3], rdfs:subClassof (or rdfs:subProper-

tyof) relations are transitive (and reflexive), thus en-

abling one to infer more triples (not depicted in Fig. 1.)

than those explicitly stated (e.g., < cult:Cubist,

rdfs:subClassof,cult:Artist > < &r2,rdf:type,

cult:Painter > < &r2,rdf:type,cult:Artist > etc.).

To summarize, RDF/S properties are by default are

unordered (e.g., there is no order between the properties

first_name and last_name), optional (e.g., the prop-

erty mime-type is not used) or with multi-occurrences

(e.g., &r2 may have two properties paints). Cardinality

constraints for property domains/ranges (as well as
Resource Description Framework (RDF) Schema (RDFS). Fig
inverse properties and Boolean class expressions) can

be captured in more expressive ontology languages

such as OWL. Furthermore, utility properties like

rdfs:label, rdfs:comment, rdfs:isDefinedBy

and rdfs:seeAlso are also available for document-

ing the development of a schema. Although not illu-

strated in Fig. 1, RDF/S also support structured values

called containers for grouping statements, namely

rdf:Bag (i.e., multi-sets) and rdf:Sequence (i.e.,

tuples), as well as, higher-order statements (i.e., reified

statements whose subject or object can be another RDF

statement). Figure 2 summarizes RDF/S axiomatic

triples.

The RDF/S modeling primitives are reminis-

cent of knowledge representation languages (like

Telos). Compared to traditional object or rela-

tional database models, RDF/S blurs the distin-

ction between schema and instances. RDF/S

schemas are descriptive (and not prescriptive designed

by DB experts), interleaved with the instances (i.e., may

cross abstraction layers when a resource is related

through a property with a class) while may be

large (compared to the size of instances). In particular,

unlike objects (or tuples) RDF/S resources are not

strongly typed:
ure 2. RDF/S Axiomatic Triples.

R

2428R Resource Identifier
	 RDF/S Classes do not define object or relation types:

an instance of a class is just a resource URI without

any value/state (e.g., &r1 is an instance of Paint-

ing regardless of any property associated to it);

	 RDF Resources may be instances of different classes

not necessarily pair wise related by subsumption:

the instances of the same class may have associated

quite different properties (e.g., see the properties of

&r1 which is multiply classified under the classes

ExtResource and Painting);

	 RDF/S Properties are self-existent individuals (i.e.,

decoupled from class definitions) which may also

be related through subsumption (e.g., the property

creates).

In addition, less rigid data models, such as those

proposed for semi-structured databases, when they are

not totally schemaless (such as OEM, UnQL), they can-

not certainly exploit the RDF class (or property) sub-

sumption taxonomies (as in the case of YAT). Finally,

XML DTDs and Schemas have substantial differences

from RDF schemas: (i) they cannot represent directed

label graphs (Formally speaking, RDF graphs are not

quite classical directed labeled graphs. First, a resource

(e.g., paints) may occur both as a predicate (e.g.,< &r2,

cult:paints,&r1>) and a subject (e.g.,< cult:paints,

rdf:domain, cult:Painter>) of a triple. This

compromises one of the more important aspects of

graph theory: the intersection between the nodes and

arcs labels must be empty. Second, in an RDF graph a

predicate (e.g., rdfs:subPropertyof) may relate

other predicates (<cult:paints,rdfs:subPro-

pertyof,cult:creates>). Thus, the resulting

structure is not a graph in the strict mathematical

sense, because the set of arcs must be a subset of the

Cartesian product of the set of nodes. There is an

ongoing research on formalizing RDF using adequate

graph models (e.g., bipartite graphs, directed hyper-

graphs).) (vs. rooted labeled trees); (ii) they cannot

distinguish between entity labels (e.g., Artist) and

relationship labels (e.g., creates); and (iii) they con-

strain the structure of XMLdocuments, whereas an RDF/

S schema simply defines the vocabulary of class and

property names employed in RDF descriptions.
Cross-references
▶Ontologies

▶Resource Description Framework

▶ Semantic Web
Recommended Reading
1. Beckett D. RDF/XML syntax specification (revised). W3C rec-

ommendation. Available online at: http://www.w3.org/TR/rdf-

syntax-grammar/, 2004.

2. Brickley D. and Guha R.V. RDF Vocabulary Description Lan-

guage 1.0: RDF Schema. W3C Recommendation. Available on-

line at: http://www.w3.org/TR/rdf-schema/, 2004.

3. Hayes P. RDF Semantics. W3C Recommendation. Available on-

line at: http://www.w3.org/TR/rdf-mt/, 2004.

4. Klyne G. and Carroll J. Resource Description Framework (RDF):

Concepts and Abstract Syntax. W3C Recommendation. Avail-

able online at: http://www.w3.org/TR/rdf-concepts/, 2004.

5. Manola F. and Miller E. RDF Primer W3C Recommendation.

Available online at: http://www.w3.org/TR/rdf-primer/, 2004.
Resource Identifier

GREG JANÉE

University of California-Santa Barbara, Santa Barbara,

CA, USA

Synonyms
Document identifier; UUID; GUID; Uniform resource

identifier; URI

Definition
In a networked information system, a resource identifier

is a compact surrogate for a resource that can be used

to identify, retrieve, and otherwise operate on the

resource. An identifier typically takes the form of a

short textual string. An identifier must be resolved to

yield the associated resource.
Key Points
Resource identifiers can be broadly characterized as

either locations, which identify resources by where

they reside, or names, which identify resources by

properties intrinsic to the resources [2]. This distinc-

tion is not absolute, and identifiers can exhibit char-

acteristics of both classes. Nevertheless, the distinction

is useful in defining the relationship between identi-

fiers and resources. Consider:

Can two distinct, yet identical resources have the

same identifier?

If a resource changes, must its identifier change?

If the answer to these questions is yes, then the identi-

fiers should be considered names; if no, locations. To

take two well-known examples, International Standard

Restricted Data R 2429

R

Book Numbers (ISBNs) are names, while HTTP URLs

on the World Wide Web are locations.

Uniqueness

Uniqueness is the property that an identifier resolves to

a single resource. The converse property – that every

resource is identified by a single identifier, i.e., that

identifier ‘‘aliasing’’ is avoided – is generally desirable,

but is often not enforceable in systems that allow free

generation of identifiers.

Broadly speaking, two approaches have been

employed to guarantee uniqueness. The first is to incor-

porate into each identifier unique characteristics of the

identified resource, for example a content-based signa-

ture, or characteristics of the context inwhich the resource

and/or identifier system reside, for example a network

address and timestamp. UUIDs incorporate both types

of characteristics. The second approach is to acquire

identifiers from an ‘‘authority’’ that maintains a centra-

lized store of previously generated identifiers (identifier–

resource associations are often stored as well). For scal-

ability such systems are often arranged hierarchically so

that a root authority, located at a well-known address,

may delegate identifier generation and resolution requests

to distributed sub-authorities. DNS and the Handle sys-

tem are two well-known examples of this approach.

Persistence

Persistence is the property that an identifier continues

to reference the associated resource over time. Strictly

speaking, persistence is not a property of an identifier,

or even a property at all; it’s an outcome of the com-

mitment of the operator of the identifier resolution

system. A persistent identifier system is one that

attempts to address known risks to persistence.

The risk of identifier breakage due to resource

movement is universally mitigated by employing indi-

rection: identifiers identify intermediate quantities

which are maintained by resource owners to track

current resource locations. In principle the indirection

may be hidden from users, but for scalability reasons

it is typically exposed. For example, the persistent

uniform resource locator (PURL) system employs

HTTP’s redirection mechanism. The risk of break-

age due to resource renaming has been mitigated in

some systems by issuing so-called ‘‘semantics-free’’

identifiers; for example, DOIs are strings of digits

with no external referent. However, the benefit of this

approach must be balanced by the inscrutability of
such identifiers to humans. Other notable persistent

identifier systems include OpenURLs, which identify

objects by metadata constraints, i.e., by intrinic re-

source properties; ‘‘robust hyperlinks,’’ which append

content-based signatures to locations, specifically

URLs; and archival resource keys (ARKs), which incor-

porate a protocol for obtaining resource persistence

guarantees and policies.

Other Properties

Additional desirable properties of resource identifiers

include global scope, global uniqueness, extensibility,

machine readability, recognizability in text, and

human transcribability [3]. Identifiers that are subject

to transcription errors may benefit from having error-

correcting codes incorporated into them.

Cross-references
▶Citation

▶Digital Signatures

▶Distributed Architecture

▶Object Identity

Recommended Reading
1. Hilse H.-W. and Kothe J. (2006). Implementing persistent iden-

tifiers: overview of concepts, guidelines and recommendations.

London/Amsterdam: Consortium of European Libraries and

European Commission on Preservation and Access. http://nbn-

resolving.de/urn:nbn:de:gbv:7-isbn-90-6984-508-3-8

2. Jacobs I. and Walsh N. (eds.) (2004). Architecture of the World

Wide Web, Volume One. http://www.w3.org/TR/webarch/

3. Sollins K. andMasinter L. Functional Requirements for Uniform

Resource Names. IETF RFC 1737, 1994. http://www.ietf.org/rfc/

rfc1737.txt
Resource Scheduling

▶Query Load Balancing in Parallel Database Systems
Restart Processing

▶Crash Recovery
Restricted Data

▶ Statistical Disclosure Limitation For Data Access

2430R Result Display
Result Display

CATHERINE PLAISANT

University of Maryland, College Park, MD, USA

Synonyms
Result display; Result overview; Preview; Data

visualization

Definition
After formulating and initiating a search in a database,

users review the results. The complexity of this task

varies greatly depending on the users’ needs, from

selecting one or more top ranked items to conducting

a complex analysis of the results in the hope of discov-

ering an unknown phenomena. Displaying results

includes providing and overview of the results and

previews of items, manipulating visualizations, chang-

ing the sequencing of the results, adjusting the size

of the results, clustering results by topic or attribute
Result Display. Figure 1. After querying for birdwatching bi

using the Hive Group’s treemap. Each box corresponds to a pa

price. Green boxes are best sellers, gray indicates unavailabili

sliders on the right, users can filter results e.g., showing only
values, providing relevance feedback, examining indi-

vidual items, and presenting explanatory messages

such as restating the initial query.
Key Points
Displaying results is part of a dynamic and iterative

decision-making process in which users initiate

queries, review results and refine their queries. Users

scan objects rapidly to determine whether to examine

them more closely, or move on in the dataset. This

process continues until the information need is satis-

fied, or the search is abandoned [3]. A visual result

display typically includes interactive widgets to further

filter the results, blurring the boundary between search

and result display, e.g., dynamic queries entirely blend

searching and result display [1].

The visual display of results relies on previews and

overviews of the items returned by the search [2].

Graphical overviews indicate scope, size or structure

and help gauge the relevance of items retrieved. Those
noculars, users can review the results of their query

ir of binoculars and the size of the box is proportional to its

ty. Results are grouped by manufacturer. Using the

items under $200.

Retrospective Event Processing R 2431

R

overviews can vary from simple bar charts displaying

the distribution of results over important attributes

such as size or type, or consist of specialized visualiza-

tions such as interactive geographical maps, timelines,

node link diagrams, conceptual topic maps etc. When no

natural representation exist, more abstract overviews of

the results can be used e.g., a treemap (Fig. 1). Multiple

overviews are tightly coupled to facilitate synchronized

browsing in multiple representations.

Previews consist of samples or summaries and help

users select a subset of the results for detail review.

Multimedia database require specialized preview

mechanisms such as thumbnail browsers or video sum-

maries allowing zooming and scene skipping. Both pre-

views and overviews help users define more productive

queries as they learn about the content of the database.

Users should be given control over what the size of

the result set is, which fields are displayed, how results

are sequenced (alphabetical, chronological, relevance

ranked, and how results are clustered (by attribute

value, by topics). One strategy involves automatic

clustering and naming of the clusters for example in

Vivisimo. Studies show that clustering according to

more established and meaningful hierarchies such as

the open directory might be effective. Translations may

be proposed. Finally users need to gather information

for decision making, therefore results need to be saved,

annotated, sent by email or used as input to

other programs such as visualization and statistical tools.

Cross-references
▶ Information Retrieval

▶Video Querying

▶Visualization

Recommended Reading
1. Ahlberg C. and Shneiderman B. Visual information seeking:

tight coupling of dynamic query filters with starfield displays.

In Proc. SIGCHI Conf. on Human Factors in Computing

Systems, 1994, pp. 313–317.

2. Greene S., Marchionini G., Plaisant C., and Shneiderman B.

Previews and overviews in digital libraries: designing surrogates

to support visual Information-seeking, J. Am. Soc. Inf. Sci., 51

(3):380–393, 2000.

3. Shneiderman B. and Plaisant C. Designing the User Interface,

(4th edn.). Addison-Wesley, 2005.
Result Overview

▶Result Display
Result Ranking

▶Web Search Relevance Ranking
Retrieval Models

▶Web Search Relevance Ranking
Retrieval Models for Text Databases

▶ Structured Text Retrieval Models
Retrospective Event Processing

OPHER ETZION

IBM Research Lab-Haifa, Haifa, Israel

Definition
Retrospective event processing is the detection of pat-

terns on past events i.e., not done when the event occur,

this can be done as part of existing event processing.

Historical Background
While the concept of ‘‘event pattern’’ typically refers to

the events on-the-move, there are cases, in which it is

required to use these patterns on past events, this

typically happens in one of the following cases:

1. Situation Reinforcement: An event pattern desig-

nates the possibility that a business situation has

occurred; in order to provide positive or negative

reinforcement, as part of the on-line pattern detec-

tion, there is a need to find complementary pattern

in order to assert or refute the occurrence of the

situation.

2. Retrospective Context. In regular cases, contexts to

start and look for patterns start with a certain

event, and go forward until either some event

occurs, or the context expires. There are cases in

which the arrival of an event indicates the end of

the context, however the context has not been

monitored in the forward-looking way, and need

to be monitored backwards.

3. Patterns as queries. Patterns are higher-level

abstractions relative to SQL queries; in some cases

2432R Retrospective Event Processing
it is more convenient to use patterns, as higher-level

languages on top of queries.

The issue of querying past information have been

introduced in the area of temporal databases in which

dealt with maintaining, querying and even updating

past (and future) information. This included regular

database queries or updates, however provided the

infrastructure for storing past events.

The emerging of the event processing area have

lead to the development of event processing patterns

that initially was applied on the current events, retro-

spective event processing is the next logical step in

getting the patterns on the past. It should be noted

that there are three approaches to implementation of

retrospective pattern language:

1. Extending pattern language to look at retrospective

contexts

2. Adding patterns as an extension to SQL

3. Providing a hybrid language

Foundations
Taking the approach of extending event processing

patterns for past information, this materializes in the

following areas:

	 Retention policies: in order to enable retrospective

processing, event should be available beyond the

original context of their processing, this leads to

issues such as retention policies and vacuuming

policies.

	 Grid storage: one of the emerging areas in storing

events and states for pre-determined term is storing

events on in-memory stores on the grid.

	 Extending the notion of context: the notion of tem-

poral context should be extended to include past

time intervals.

	 Automatic translation to SQL: Assuming that the

events are stored on a database, the pattern lan-

guage should be translated to SQL. Again, it should

be noted that an alternative approach is to include

pattern extensions to SQL.

Key Applications

Use Cases for Situation Reinforcement

Anti-Money Laundering A person that has deposited

(in aggregate) more than $20,000 within a single work-

ing day is a SUSPECT inmoney laundering. To reinforce
the suspicion the following retrospective patterns are

sought:

	 There has been a period of week within the last year

in which the same person has deposited (in aggre-

gate) $50,000 or more and has withdrawn (in ag-

gregate) at least $50,000 within the same week.

	 The same person has already been a ‘‘suspect’’

according to this definition within the last 30 busi-

ness days.

If any of these patterns are satisfied – the event

‘‘confirmed suspect’’ is derived.

The Greedy Seller Alert An electronic trade site pro-

vides the opportunity to customers to offer items for

sale, but letting them conduct a bid, and provide bid

management system (using a CEP system, of course).

One of the services it provides to the customer is ‘‘alert

on expensive sales’’:

If there have been at least two bidders, however,

and none of them have matched the minimum price of

the seller then this may be an indication of ‘‘too ex-

pensive bid.’’

To reinforce it, if at least two-thirds of the past bids

of the same sellers have also resulted in a ‘‘too expen-

sive bid’’ situation, then reinforce and send the seller a

notification ‘‘you are too greedy.’’

Monitored Patient Alert A patient is hooked up to

multiple monitors, the monitors are uncorrelated and

each of them issues an alert when a certain threshold

is passed (either up or down), results in most cases being

false alarms. The physician can set up a ‘‘global monitor-

ing system’’ which checks a pattern over recent time, e.g.,

	 An alert has been given from the blood pressure

monitor

	 and Reinforcement condition:
– If fever is more than 103F despite medication

taken less than 2 hours ago, and blood pressure

is strictly increasing in the last five measures

then alert nurse.
Use Cases for Retrospective Contexts

Smart Retail The detected pattern is – ‘‘no item of a

certain product reached the checkout in the last hour.’’

This is a pattern that is detected hourly. If it is detected

there is a retrospective context opened for this hour to

check two retrospective patterns:

Retrospective Event Processing R 2433

R

	 If during that hour more than five customers took

an item of that product from the shelf, but returned

it after they have taken a competitive product (the

information can be obtained by RFID tag on each

item, an RFID reader for putting and removing

items from the shopping cart).

	 If no customer has taken an item of the product

from the shelf, and did not take a competitor’s

product either.

Luggage Handling The reported event is – Luggage

did not arrive.

Retrospective context – start at luggage check-in time.

	 Collect all events related to this luggage (using the

tag reading at various points).

	 If no events found – notify the source airport to

trace in their video tracking system.

Utilities Billing System Identified situation – customer

has not paid 30 days after due date.

	 Find out over the last billing cycle – has the cus-

tomer addressed the customer center around issues

with this bill, and obtain status.

	 Look at the customer billings over the last year –

determine maximal and average days of late in

paying.

	 Look at customers with the same Zip-code

over the last billing cycle and determine the per-

centage of non-payment, late-payment (to deter-

mine if they are mail has significant delays in

that area).

Use Cases for Patterns as Queries

Stock Trends Find all stocks that during the last

month have satisfied the following conditions:

	 The stock closing values at the end of the day were

strictly increasing over a period of five consecutive

working days, anywhere during this month.

	 The stock value in the beginning at the end of the

5 days value was at least 30% more than its value

at the beginning of the 5 days period.

Fraud Detection in On-Line Gaming Determine the

case in which one commits identity theft, on the ex-

pense of the victim, consistently loose money to his

partners in on-line poker game as a way of fraud (the

example came from Oracle).
	 Find a ‘‘consistent looser’’ – in a session that includes

at least 30 poker games, in which a person loses in all

the games, and the total loss is more than $20K.

	 Find a person who has been a ‘‘consistent looser’’ at

least twice, on distinct set of games.

Inventory Management The level of inventory is de-

termined according to consumption prediction, to im-

prove the inventory management, there are:

	 Pre-planned orders that may be cancelled if the

level of inventory does not justify order.

	 Emergency orders that are requested if inventory

goes below threshold in an unpredicted time.

The following patterns are requested:

	 Find products for which ‘‘emergency order’’ has been

requested at least twice during a period of the period

of 30 days that ended in a date Last-Day (variable

name) and no cancellation of pre-planned order

during that period.

	 Find products in which within 30 days there were

cancellation of pre-planned order followed by an

emergency order.

	 Find products in the monitored period which all

pre-planned orders have been cancelled, and no

emergency orders occurred.

Cross-references
▶Complex Event

▶Context

▶ Event and Pattern Detection over Streams

▶ Event Pattern Detection

▶Temporal Database

Recommended Reading
1. Arasu A., Babu S., and Widom J. The CQL continuous

query language: semantic foundations and query execution.

VLDB J., 15(2):121–142, 2006.

2. Deng M., Prasad Sistla A., and Wolfson O. Temporal conditions

with retroactive and proactive updates. In Proc. 1st Int.

Workshop on Active and Real-Time Database Syst., 1995,

pp. 122–141.

3. Etzion O., Gal A., and Segev A. Retroactive and proactive

database processing. In Proc. 4th Int. Workshop on Research

Issues on Data Eng., 1994, pp. 126–131.

4. Gal A. and Etzion O. A multiagent update process in a database

with temporal data dependencies and schema versioning. IEEE

Trans. Knowl. Data Eng., 10(1):21–37, 1998.

5. Luckham D, The Power of Events: An Introduction to Complex

Event Processing in Distributed Enterprise Systems. Addison-

Wesley, 2002.

2434R Reverse Nearest Neighbor Query
6. Won J. and Elmasri R. Representing retroactive and proactive

versions in bi-temporal databases. In Proc. 12th Int. Conf. on

Data Engineering, 1996, pp. 85–94.

7. Yang Y., Pierce T., and Carbonell J.G. A study of retrospective

and on-line event detection. In Proc. 21st Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 1998, pp. 28–36.
Reverse Nearest Neighbor Query. Figure 1. 2NN and

R2NN examples.

Reverse Nearest Neighbor Query

DIMITRIS PAPADIAS
1, YUFEI TAO

2

1Hong Kong University of Science and Technology,

Hong Kong, China
2Chinese University of Hong Kong, Hong Kong, China

Synonyms
Reverse nearest neighbor search; RNN query

Definition
Given a multi-dimensional dataset P and a point q, a

reverse nearest neighbor (RNN) query retrieves all the

points p2P that have q as their nearest neighbor. The

set RNN(q) of reverse nearest neighbors of q is called

the influence set of q. Formally, RNN(q) = {p2P j
¬∃p02P such that dist(p,p0) < dist(p,q)}, where dist is

a distance metric (Euclidean distance is assumed in the

following examples).

The definition can also be extended to reverse

k nearest neighbors (RkNN). Specifically, a RkNN

query retrieves all the points p2P that have q as one

of their k nearest neighbors. In this case, RkNN

(q) = {p2P j dist(p,q) � dist(p,pk), where pk is the

k-th NN of p}.

Historical Background
Reverse nearest neighbor queries were proposed in [4]

and have received considerable attention due to their

importance in several applications involving decision

support, resource allocation, profile-based marketing,

etc. Figure 1 shows an example R2NN query. The

dataset P contains 4 points each associated with a circle

covering its two nearest neighbors (NNs), e.g., the two

NNs of p4 (p2, p3) are in the circle centered at p4. The

result of a R2NN query q includes the ‘‘owners’’ of

the circles that contain q, i.e., R2NN(q) = {p3, p4}.

Let kNN(q) be the set of k nearest neighbors of q.

Note that p 2 kNN(q) does not necessarily imply p 2
RkNN(q), and vice versa. For instance, 2NN(q) = {p1,
p3}, but p1 does not belong to R2NN(q). On the other

hand, although p4 2 R2NN(q), p4 is not in 2NN(q).

Other versions of the problem include: (i) continu-

ous RNN [1], where P contains linearly moving objects

with fixed velocities, and the goal is to retrieve all

RNNs of q for a future interval; (ii) stream RNN [5],

where data arrive in the form of streams, and the goal is

to report aggregate results over the RNNs of a set of

query points, and (iii) bichromatic RNN [10] where,

given two data sets P1, P2 and a query point q 2 P1, the

goal is to find all the points p2 2 P2 that are closer to q

than to any other object in P1, i.e., d(q, p2) < d(p1, p2)

for any p1 2 P1 and p1 6¼ q.

Foundations
Algorithms for RNN processing can be classified in two

categories depending on whether they require pre-

processing, or not. For simplicity, this section describes

all methods for single RNN retrieval in 2D space,

assuming that the dataset P contains points indexed

by an R-tree. Their applicability to arbitrary values of k

and dimensionality will be discussed at the end of the

section.

The first RNN method, KM (Algorithms are refer-

enced according to the author initials.) [4], pre-com-

putes for each data point p its nearest neighbor NN(p).

Then, it represents p as a vicinity circle (p, dist(p,NN

(p))) centered at p with radius equal to the Euclidean

distance between p and its NN. The MBRs of all circles

are indexed by an R-tree, called the RNN-tree. Using the

RNN-tree, the reverse nearest neighbors of q can be

efficiently retrieved by a point location query, which

returns all circles that contain q. Figure 2(a) illustrates

KM using four data points, each associated with a

vicinity circle. Since q falls in the circles of p3 and p4,

the result of the query is RNN(q) = {p3, p4}. Because

Reverse Nearest Neighbor Query. Figure 2. Illustration of KM.

Reverse Nearest Neighbor Query. Figure 3. Illustration

of SAA.

Reverse Nearest Neighbor Query R 2435

R

the RNN-tree is optimized for RNN, but not NN

search, KM uses an additional (conventional) R-tree

on the data points for nearest neighbors and other

spatial queries.

In order to avoid the maintenance of two separate

structures, YL [13] combines the two indexes in the

RdNN-tree. Similar to the RNN-tree, a leaf node of the

RdNN-tree contains vicinity circles of data points. On the

other hand, an intermediate node contains the MBR of

the underlying points (not their vicinity circles), together

with the maximum distance from every point in the sub-

tree to its nearest neighbor. As shown in the experiments

of [13], the RdNN-tree is efficient for both RNN and NN

queries because, intuitively, it contains the same informa-

tion as the RNN-tree and has the same structure (for

node MBRs) as a conventional R-tree. MVZ [7] is also

based on pre-computation. The methodology, howev-

er, is applicable only to 2D spaces and focuses on

asymptotical worst case bounds (rather than experi-

mental comparison with other approaches).

The problem of KM, YL, MVZ, and all techniques

that rely on pre-processing, is that they cannot deal

efficiently with updates. This is because each insertion

or deletionmay affect the vicinity circles of several points.

Consider Fig. 2(b), where a new point p5 needs to be

inserted in the database. First, a RNN query is performed

to find all objects (in this case p3 and p4) that have p5 as

their new nearest neighbors. Then, the vicinity circles of

these objects are updated in the index. Finally, the update

algorithm computes the NN of p5 (i.e., p4) and inserts

the corresponding circle. Similarly, each deletion must

update the vicinity circles of the affected objects. In

order to alleviate the problem, Lin et al. [6] propose a

method for bulk insertions in the RdNN-tree.
SAA [9] eliminates the need for pre-computing all

NNs by utilizing some interesting properties of RNN

retrieval. Consider Fig. 3, which divides the space

around a query q into six equal regions S1 to S6. Let

p be the NN of q in some region Si; it can be proved

that (i) either p 2 RNN(q) or (ii) there is no RNN of q

in Si. For instance, in Fig. 3 the NN of q in S1 is point

p2. However, the NN of p2 is p1. Consequently, there is

no RNN of q in S1 and it is not necessary to search

further in this region. The same is true for S2 (no data

points), S3, S4 (p4, p5 are NNs of each other) and S6
(the NN of p3 is p1). The actual result is RNN(q) = {p6}.

Based on the above property, SAA adopts a two-step

processing method. First, six constrained NN queries

[2] retrieve the nearest neighbors of q in regions S1
to S6. These points constitute the candidate result.

Then, at a second step, a nearest neighbor query is

applied to find the NN p0 of each candidate p.

2436R Reverse Nearest Neighbor Query
If dist(p,q) < dist(p,p0), p belongs to the actual result;

otherwise, it is a false hit and discarded.

The number of regions to be searched for candidate

results increases exponentially with the dimensionality,

rendering SAA inefficient even for three dimensions.

SFT [8] follows a different approach that: (i) finds

(using an R-tree) the K NNs of the query q, which

constitute the initial candidates; (ii) it eliminates the

points that are closer to some other candidate than q;

(iii) it applies boolean range queries on the remaining

candidates to determine the actual RNNs. Consider,

for instance, the query of Fig. 4 assuming that K (a

system parameter) is 4. SFT first retrieves the 4 NNs of

q: p6, p4, p5 and p2. The second step discards p4 and p5
since they are closer to each other than q. The third

step uses the circles (p2,dist(p2,q)) and (p6,dist(p6,q)) to

perform two boolean ranges on the data R-tree. The

difference with respect to conventional range queries is

that a boolean range terminates immediately when (i)

the first data point is found, or (ii) the entire side of a

node MBR lies within the circle. For instance, N1
Reverse Nearest Neighbor Query. Figure 4. Illustration

of SFT.

Reverse Nearest Neighbor Query. Figure 5. Illustration of h
contains at least a point within the range. Thus, p2 is

a false hit and SFT returns p6 as the only RNN of q. The

major shortcoming of the method is that it may incur

false misses. In Fig. 4, although p3 is a RNN of q, it does

not belong to the 4 NNs of the query and will not be

retrieved.

Similar to SAA and SFT, TPL [11] follows a filter-

refinement framework. As opposed to SAA and SFT

that require multiple queries for each step, the filtering

and refinement processes are combined into a single

traversal of the R-tree. In particular, TPL traverses

the data R-tree and retrieves potential candidates in

ascending order of their distance to the query point q

because the RNNs are likely to be near q. Each candi-

date is used to prune node MBRs (data points) that

cannot contain (be) candidates. For instance, consider

the perpendicular bisector ⊥(p,q) between the query q

and an arbitrary data point p as shown in Fig. 5(a). The

bisector divides the data space into two half-planes:

PLq(p,q) that contains q, and PLp(p,q) that contains p.

Any point (e.g., p0) in PLp(p,q) cannot be a RNN of q

because it is closer to p than q. Similarly, a node MBR

(e.g., N1) that falls completely in PLp(p,q) cannot con-

tain any candidate.

In some cases, the pruning of an MBR requires

multiple half-planes. For example, in Fig. 5(b), al-

though N2 does not fall completely in PLp1(p1,q) or

PLp2(p2,q), it can still be pruned since it lies entirely

in the union of the two half-planes. In general, if p1,

p2,...,pnc are candidate results, then any node whose

MBR falls inside [i¼1
ncPLp i
ðpi;qÞ cannot contain

any RNN result. The filter step terminates, when

there are no more candidates inside the remaining

(i.e., non-pruned data space). Each pruned entry is

inserted in a refinement set Srfn. In the refinement

step, the entries of Srfn are used to eliminate false hits.

Table 1 summarizes the properties of each algo-

rithm. Pre-computation methods cannot efficiently
alf-plane pruning in TPL.

Reverse Nearest Neighbor Query. Table 1. Summary of

algorithm properties

Dynamic
data

Arbitrary
dimensionality

Exact
result

Arbitrary
k

KM,
YL

No Yes Yes No

MVZ No No Yes No

SAA Yes No Yes Yes

SFT Yes Yes No Yes

TPL Yes Yes Yes Yes

Reverse Nearest Neighbor Query R 2437

R

handle updates. MVZ is suitable only to 2D spaces,

while SAA is practically inapplicable for three or more

dimensions. SFT incurs false misses, the number of

which depends on the parameter K: a large value of K

decreases the false misses but increases significantly

the processing cost. Regarding the applicability of

the existing algorithms to arbitrary values of k, pre-

computation methods only support a specific value

(typically equal to 1), used to determine the vicinity

circles. SFT can be adapted for retrieval of RkNN by

setting a large value of K (�k) and replacing the

boolean with count queries (that return the number

of objects in the query range instead of their actual

ids). SAA can be extended to arbitrary k as discussed in

[11]. TPL can handle dynamic data for arbitrary values

of k and dimensionality.

Key Applications
A number of applications for RNN can be found in [4]

and [14]. Examples include:

Profile-Based Marketing

Assume that a real estate company keeps profiles of its

customer set P based on their goals, i.e., each customer

is a point in a vector space defined by the features of

interest (e.g., house area, neighborhood etc). When a

new estate q enters the market, a RNN query could

retrieve the clients for which q constitutes the closest

match to their interests.

Decision Support Systems

Consider that a franchise wants to open a new branch

at location q so that it attracts a large number of

customers from competitors based on proximity. This

can be modeled as a bichromatic RNN query where P1
corresponds to the competitor set and P2 to the
customer dataset. The result for a potential location q

is the set of customers that are closer to q than

any competitor.

Peer-to-Peer Systems

Assume that a new user q enters a P2P system. A RNN

query retrieves among the existing users, the ones

for which q will become their new NN based on the

network latency. In a collaborative environment,

q would inform such users about its arrival, so that

they could address future requests directly to q, mini-

mizing the network cost. Furthermore, the set RNN(q)

reflects the potential workload of q; thus by know-

ing this set, each peer could manage/control its avail-

able resources.

Future Directions
Stanoi et al. [10] solve bichromatic RNN queries using

R-trees to prune the search space. Benetis et al. [1]

extend the SAA algorithm for continuous RNN

queries. Yiu et al. [14] deal with reverse nearest neigh-

bors in large graphs. Tao et al. [12] focus on RNN

processing in metric spaces. Kang et al. [3] discuss the

continuous evaluation of RNN queries in highly dy-

namic environments.

Experimental Results
Tao et al. [11] contains a comprehensive comparison

of SAA, SFT and TPL. Each of the following references,

except for [7], also contains an experimental evalua-

tion of the proposed algorithm.

Data Sets
A common benchmark for RNN queries in the Euclid-

ean space is the Tiger dataset: http://www.census.gov/

geo/www/tiger/

In addition, the DBLP graph has been used for

RNN queries in large graphs [14], while road networks

have been applied in [12] and [11].

Cross-references
▶Metric Space

▶Nearest Neighbor Query

▶R-Tree (and Family)

Recommended Reading
1. Benetis R., Jensen C., Karciauskas G., and Saltenis S. Nearest

neighbor and reverse nearest neighbor queries for moving

objects. VLDB J., 15(3): 229–250, 2006.

2438R Reverse Nearest Neighbor Search
2. Ferhatosmanoglu H., Stanoi I., Agrawal D., and Abbadi A. Con-

strained nearest neighbor queries. In Proc. 7th Int. Symp.

Advances in Spatial and Temporal Databases, 2001.

3. Kang J., Mokbel M., Shekhar S., Xia T., and Zhang D. Continu-

ous evaluation of monochromatic and bichromatic reverse

nearest neighbors. In Proc. 23rd Int. Conf. on Data Engineering,

2007, pp. 806–815.

4. Korn F. and Muthukrishnan S. Influence sets based on reverse

nearest neighbor queries. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2000, pp. 201–212.

5. Korn F., Muthukrishnan S., and Srivastava D. Reverse nearest

neighbor aggregates over data streams. In Proc. 28th Int. Conf.

on Very Large Data Bases, 2002, pp. 814–825.

6. Lin K., NolenM., and Yang C. Applying bulk insertion techniques

for dynamic reverse nearest neighbor problems. In Proc. Int.

Conf. on Database Eng. and Applications, 2003, pp. 290–297.

7. Maheshwari A., Vahrenhold J., and Zeh N. On reverse nearest

neighbor queries. In Proc. Canadian Conf. Computational Ge-

ometry, 2002, pp. 128–132.

8. Singh A., Ferhatosmanoglu H., and Tosun A. High dimensional

reverse nearest neighbor queries. In Proc. Int. Conf. on Infor-

mation and Knowledge Management, 2003.

9. Stanoi I., Agrawal D., and Abbadi A., Reverse nearest neighbor

queries for dynamic databases. In Proc. SIGMODWorkshop on

Research Issues in Data Mining and Knowledge Discovery, 2000,

pp. 44–53.

10. Stanoi I., Riedewald M., Agrawal D., and Abbadi A. Discovery

of influence sets in frequently updated databases. In Proc. 27th

Int. Conf. on Very Large Data Bases, 2001, pp. 99–108.

11. Tao Y., Papadias D., and Lian X. Reverse kNN search in

arbitrary dimensionality. In Proc. 30th Int. Conf. on Very

Large Data Bases, 2004, pp. 744–755.

12. Tao Y., Yiu M., and Mamoulis N. Reverse nearest neighbor

search in metric spaces. IEEE Trans. Knowl. Data Eng., 18(9):

1239–1252, 2006.

13. Yang C. and Lin K. An index structure for efficient reverse

nearest neighbor queries. In Proc. 17th Int. Conf. on Data

Engineering, 2001, pp. 482–495.

14. Yiu M., Papadias D., Mamoulis N., and Tao Y. Reverse nearest

neighbors in large graphs. IEEE Trans. Knowl. Data Eng., 18(4):

540–553, 2006.
Reverse Nearest Neighbor Search

▶Reverse Nearest Neighbor Query
RF

▶Relevance Feedback

▶Relevance Feedback for Text Retrieval
Rich Media

▶Video
Right-Time Data Warehousing

▶Active and Real-Time Data Warehousing
Risk-Utility Tradeoff

▶ Statistical Disclosure Limitation For Data Access
Rewriting Queries using Views

CHEN LI

University of California-Irvine, Irvine, CA, USA

Definition
Given a query on a database schema and a set of

views over the same schema, the problem of query

rewriting is to find a way to answer the query using

only the answers to the views. Rewriting algorithms

aim at finding such rewritings efficiently, dealing with

possible limited query-answering capabilities on the

views, and producing rewritings that are efficient to

execute.
Historical Background
Query rewriting is one of the oldest problems in data

management. Earlier studies focused on improving

performance of query evaluation [9], since using mate-

rialized views can save the execution cost of a query. In

1995, Levy et al. [10] formally studied the problem and

developed complexity results. The problem became

increasingly more important due to new applications

such as data integration, in which views are used wide-

ly to describe the semantics of the data at different

sources and queries posed on the global schema.

Many algorithms have been developed, including the

bucket algorithm [11] and the inverse-rules algorithm

[7,15]. See [8] for an excellent survey.
Foundations
Formally, a query Q1 is contained in a query Q2 if for

each instance of their database, the answer to Q1 is

always a subset of that toQ2. The queries are equivalent

if they are contained in each other. Let T be a database

schema, and V be a set of views on T. The expansion of

Rewriting Queries using Views R 2439

R

a query P using the views in V, denoted by P exp, is

obtained from P by replacing all the views in P with

their corresponding base relations. Given a query Q on

T, a query P is called a contained rewriting of query Q

using V if P uses only the views in V, and P exp is

contained in Q as queries. P is called an equivalent

rewriting of Q using V if P exp and Q are equivalent as

queries.

Examples: Consider a database with the following

three relations about students, courses, and course

enrollments:

Student(sid, name, dept);

Course(cid, title, quarter);

Take(sid, cid, grade).

Consider the following query on the database:

Query Q1: SELECT C.title, T.grade

FROM Student S, Take T, Course C

WHERE S.dept = ’ee’ AND S.sid = T.sid AND

T.cid = C.cid;

The query asks for the titles of the courses taken by EE

students and their grades. Queries and views are often

written as conjunctive queries [4]. For instance, the

above query can be rewritten as:

Q1(T, G) :- Student(S, N, ee), Take(S,

C, G), Course(C, T, Q).

Lower-case arguments (such as ‘‘ee’’) are used for con-

stants, upper-case arguments (such as ‘‘T’’) for vari-

ables. The right-hand side of the symbol ‘‘:-’’ is the

body of the query. It has three subgoals, each of which is

an occurrence of a relation in the body. The constant

‘‘ee’’ in the first subgoal represents the selection con-

dition. The variable S shared by the first two subgoals

represents the join between the relations Student

and Take on the student-id attribute. The variables T

and G in the head of the query, which is the left-hand

side of the symbol ‘‘:-’’, represent the final projected

attributes.

Consider the following materialized views defined

on the base tables:

Views: V1(S, N, D, C, G) :- Student(S, N,

D), Take(S, C, G);

V2(S, C, T) :- Take(S, C, G), Course(C,

T, Q).

The SQL statement for the view definition of V 1 is the

following:
CREATE VIEW V1 AS

SELECT S.sid, S.name, S.dept, T.cid,

T.grade

FROM Student S, Take T

WHERE S.sid = T.sid;

This view is the natural join of the relations Student

and Take. Similarly, view V2 is the natural join of the

relations Take and Course, except that the attributes

about grades and quarters are dropped in the final

results. The following is a rewriting of the query Q1

using the two views.

answer(T, G) :- V1(S, N, ee, C, G), V2(S,

C, T).

This rewriting takes a natural join of the two views on

the attributes of student ids and course ids, then does a

projection on the title and grade attributes. This rewrit-

ing can always compute the answer to the query on every

instance of the base tables. In particular, after replacing

each view in the rewriting with the body of its definition,

the rewriting becomes the following expansion:

answer(T, G) :- Student(S, N, ee), Take

(S, C, G),

Take(S, C, G’), Course(C, T, Q’).

G’ and Q’ are fresh variables introduced during the

replacements. This expansion is equivalent to the query,

thus the rewriting is an equivalent rewriting of the query.

Now, assume in the definition of V2, there is an-

other selection condition on the quarter attribute. The

following is the view definition:

V2’(S, C, T) :- Take(S, C, G), Course(C,

T, fall2006).

That is, it only includes the information about the

courses offered in the fall quarter of 2006. If only

views V1 and V20 are given, then the following is a

rewriting of the query Q1:

answer(T, G) :- V1(S, N, ee, C, G),

V2’(S, C, T).

In particular, its expansion, which is obtained by repla-

cing each view with the body of its definition, is the

following:

answer(T, G) :- Student(S, N, ee), Take

(S, C, G),

Take(S, C, G’), Course(C, T,

fall2006).

2440R Rewriting Queries using Views
This expansion is contained in the original query, thus

this rewriting is a contained rewriting of the query Q1.

It is not an equivalent rewriting, since it does not

include information about courses offered in other

quarters. On the other hand, each fact in the answer

to this rewriting is in the answer to the original query.

Suppose the view definition of V2 does not have the

attribute about course ids. Then using this modified

view and V1, there is no rewriting of the query, since

the modified view does not have the course id to join

with view V1. As another example, if the view defini-

tion of V1 does not keep the grade information, the

following is the new view:

V1’(S, N, D, C) :- Student(S, N, D), Take

(S, C, G).

Using this new view and the original viewV2, there is no

rewriting to answer the query, since the views do not

provide any information about grades, which is requested

by the query. All these examples show that, when decid-

ing how to answer a query using views, it is important to

consider the conditions in the query and the views,

including their selections, joins, and projections.

Algorithms. There are two classes of algorithms for

rewriting queries using views: the first one includes the

bucket algorithm [11] and its variants, and the second

one includes the inverse-rules algorithm [7,15]. Notice

that the number of possible rewritings of a query using

views is exponential in the size of the query. Here the

main idea of the bucket algorithm is explained using

the running example, in which the query Q1 needs to

be answered using the views V1 and V2. Its main idea is

to reduce the search space of rewritings by considering

each subgoal in the query separately, and deciding

which views could be relevant to the query subgoal.

The bucket algorithm has two steps. In step 1, for

each subgoal in the query, the algorithm considers each

view definition, and checks if the body (definition) of

the view also includes a subgoal that can be used to

answer this query subgoal. For each view, if it includes a

subgoal that can be unified with the query subgoal, and

the query and the view are compatible after the unifica-

tion, the corresponding head of the view definition is

added to the bucket of this query subgoal. The following

shows the buckets for the three query subgoals.

Student(S, N, ee): {V1(S, N, ee, C’,

G’)};

Take(S, C, G): {V1(S, N’, D’, C, G)};

Course(C, T, Q): {V2(S’, C, T)}.
Each primed variable is a fresh variable introduced in

the corresponding unification process. The bucket of

the second query subgoal does not include the view

V2 because the query subgoal requires the grade

information be included in the answer, while the

corresponding grade information in the view subgoal is

not exported in the head of V2.

In step 2, the algorithm selects one view from each

bucket, and combines the views from these buckets to

construct a contained rewriting. The following is a

contained rewriting:

Q1(T, G) :- V1(S, N, ee, C’, G’), V1(S,

N’, D’, C, G), V2(S’, C, T).

The final output of the algorithm is the union of

contained rewritings in order to maximize the set of

answers to the query using the views, since these rewrit-

ings could produce different pieces of information.

One main advantage of the bucket algorithm is that it

can prune those views that do not contribute to a condi-

tion in the query, thus it can reduce the number of

candidate rewritings to be considered. One limitation of

the algorithm is that each query subgoal introduces a view

in a rewriting. For instance, in the example above, viewV1

could be used to answer the first two query subgoals. But

the algorithm needs to use three view instances in each

candidate rewriting, which requires more postprocessing

steps to simplify this rewriting. In addition, the algorithm

does not use the fact that if a view can be used to cover a

query subgoal using a view variable that is not exported

in the head of the view, then the view has to cover all the

query subgoals that use the corresponding query variable.

Based on these observations, a new algorithm, called

MiniCon, was developed to make the rewriting process

significantly more efficient [14]. A similar idea was used

in the shared-bucket-variable (SVB) algorithm [13].

In some cases, especially in the context of data

integration, where a view is a description of the content

at a data source, the views could have limited query

capabilities. For instance, imagine the case where the

view V1 above is a materialized table, such that it can

be accessed only if a student id is provided to the table,

and the table can return its information about that

student id. The table does not accept arbitrary queries

such as ‘‘return all records,’’ or ‘‘retrieve all information

about students from the CS department.’’ These lim-

itations on the views present new challenges for the

development of query-rewriting algorithms. The prob-

lem in this setting was studied in [16]. It is shown that

RMI R 2441

R

the the inverse-rules algorithm [7] can handle such

restrictions with minor modifications.

Other algorithms have been developed to study

variants of the query-rewriting problem. The Core-

Cover algorithm [2] was developed for the problem

of generating an efficient equivalent rewriting efficient-

ly. There was also a study [1] for the case where the

query and the views can have comparison conditions

such as salary > 30K and year <= 2004. The work

in [6] studied how to compute a set of views with a

minimal size to compute the answers to a set of

queries. In some settings, applications need to find

a rewriting called ‘‘maximally contained rewriting,’’

which can compute the maximal set of answers to the

query using the views. The problem is also different

depending on whether the closed-world assumption is

taken (as in data warehousing, in which each materi-

alized view is assumed to include all the facts satisfying

the view definition) or the open-word assumption is

taken (as in data integration, in which each view

includes a subset of the facts satisfying the view defini-

tion). In the literature there is another related problem

called ‘‘query answering.’’ See [3] for a comparison

between ‘‘query rewriting’’ and ‘‘query answering.’’

Key Applications
The problem of rewriting queries using views is related

to many data-management applications, including in-

formation integration [12,18], data warehousing [17],

and query optimization [5].

Cross-references
▶Answering Queries Using Views

▶Closed-World Assumption (CWA)

▶Data Integration

▶Data Warehouse

▶Global-as-View (GAV)

▶ Local-as-Views (LAV)

▶Open-World Assumption (OWA)

▶Query Containment

▶Query Optimization

Recommended Reading
1. Afrati F.N., Li C., and Mitra P. Answering Queries Using Views

with Arithmetic Comparisons. In Proc. 21st ACM SIGACT-

SIGMOD-SIGART Symp. Principles of Database Systems,

2002, pp. 209–220.

2. Afrati F., Li C., and Ullman J.D. Generating Efficient Plans Using

Views. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2001, pp. 319–330.
3. Calvanese D., Giacomo G.D., Lenzerini M., and Vardi M.Y.

View-Based Query Processing: On the Relationship Between

Rewriting, Answering and Losslessness. In Proc. 10th Int.

Conf. on Database Theory, 2005, pp. 321–336.

4. Chandra A.K. and Merlin P.M. Optimal Implementation of

Conjunctive Queries in Relational Data Bases. In Proc. 9th

Annual ACM Symp. on Theory of Computing, 1977, pp. 77–90.

5. Chaudhuri S., Krishnamurthy R., Potamianos S., and Shim K.

Optimizing Queries with Materialized Views. In Proc. 11th Int.

Conf. on Data Engineering, 1995, pp. 190–200.

6. Chirkova R. and Li C. Materializing views with minimal size to

answer queries. In Proc. 22nd ACM SIGACT-SIGMOD-SIGART

Symp. Principles of Database Systems, 2003, pp. 38–48.

7. Duschka O.M. and Genesereth M.R. Answering Recursive

Queries Using Views. In Proc. ACM SIGACT-SIGOPS 16th

Symp. on the Principles of Dist. Comp., 1997, pp. 109–116.

8. Halevy A.Y. Answering queries using views: A survey. VLDB J.,

10(4):270–294, 2001.

9. Larson P.Å. and Yang H.Z. Computing Queries from Derived

Relations. In Proc. 11th Int. Conf. on Very Large Data Bases,

1985, pp. 259–269.

10. Levy A., Mendelzon A.O., Sagiv Y., and Srivastava D. Answering

Queries Using Views. In Proc. 14th ACM SIGACT-SIGMOD-

SIGART Symp. Principles of Database Systems, 1995, pp. 95–104.

11. Levy A., Rajaraman A., and Ordille J.J. Querying Heterogeneous

Information Sources Using Source Descriptions. In Proc. 22th

Int. Conf. on Very Large Data Bases, 1996, pp. 251–262.

12. Li C. Query Processing and Optimization in Information-

Integration Systems. Ph.D. Thesis, Computer Science Dept.,

Stanford Univ., 2001.

13. Mitra P. An algorithm for answering queries efficiently using

views. In Proc. the 12th Australasian Database Conf. 2001,

pp. 99–106.

14. Pottinger R. and Levy A. A Scalable Algorithm for Answering

Queries Using Views. In Proc. 26th Int. Conf. on Very Large

Data Bases, 2000.

15. Qian X. Query folding. In Proc. 12th Int. Conf. on Data Engi-

neering, 1996, pp. 48–55.

16. Rajaraman A., Sagiv Y., and Ullman J.D. Answering Queries

Using Templates with Binding Patterns. In Proc. 14th ACM

SIGACT-SIGMOD-SIGART Symp. Principles of Database Sys-

tems, 1995, pp. 105–112.

17. Theodoratos D. and Sellis T. Data warehouse configuration. In

Proc. 23th Int. Conf. on Very Large Data Bases, 1997, pp. 126–135.

18. Ullman J.D. Information Integration Using Logical Views. In

Proc. 6th Int. Conf. on Database Theory, 1997, pp. 19–40.
RMI

ANIRUDDHA GOKHALE

Vanderbilt University, Nashville, TN, USA

Synonyms
Remote method invocation

2442R RNN Query
Definition
Java Remote Method Invocation (RMI) [1,2] is a

Java language-based technology to achieve distributed

computing among distributed Java virtual machines.
Key Points
Java RMI is a Java language-dependent technology for

distributed computing. It provides seamless distributed

communication between Java virtual machines. RMI

uses object serialization and offers true object-oriented

polymorphism even across distributed address spaces.

Since RMI is based on Java, it brings the power of safety,

concurrency and portability to distributed applications.

In developing their applications, programmers must

explicitly indicate which interfaces will be available

as a remote service by extending the java.rmi.Remote

interface.

A special quality of RMI is its ability to dynamically

load new objects into an address space. For example, if

a remote service has undergone change and extended

its capabilities, it is feasible for RMI to dynamically

load the new class in the client’s address space.

Another attractive feature of RMI is its ability to

allow entire behaviors of objects to be sent to remote

entities. At the remote end, it is then feasible to activate

a local copy of the passed object with its behavior.

These techniques are useful in load balancing and

faster response times.

RMI can allow clients behind firewalls to contact

remote servers. This capability enables clients to reside

within applets. RMI also provides interoperability

with other broker technologies, such as CORBA, by

supporting RMI over CORBA IIOP.
Cross-references
▶Client-Server Architecture

▶CORBA

▶DCE

▶DCOM

▶ J2EE

▶ .NET Remoting

▶Request Broker

▶ SOAP
Recommended Reading
1. Sun Microsystems. Java Remote Method Invocation. 1996.

2. SunDeveloper Network. RemoteMethod Invocation. Available at:

http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp.
RNN Query

▶Reverse Nearest Neighbor Query
Road Network Databases

▶Road Networks
Road Networks

CYRUS SHAHABI

University of Southern California, Los Angeles,

CA, USA

Synonyms
Spatial network databases; Road vector data; Road

network databases
Definition
In vector space, the distance between two objects can be

computed as a function of the components of the

vectors representing the objects. A typical distance

function for multidimensional vector spaces is the

well-known Minkowski metric, with the Euclidean

metric as a popular case for two-dimensional space.

Therefore, the distance computation in multidimen-

sional vector spaces is fast because its complexity

depends on the number of dimensions which is limited

to two or three in geospatial applications. However,

with road-networks, the distance between two objects is

measured by their network distance, i.e., the length of

the shortest path through the network edges that con-

nects the two locations. This computationally expen-

sive network-based metric mainly depends on the

connectivity of the network. For example, representing

a road network as a graph with e weighted edges and v

vertices, the complexity of the Dijkstra algorithm to

find the minimum weighted path between two vertices

is O(e + vLogv). Therefore, several distance-based

queries, such as nearest-neighbor queries, cannot be

performed efficiently in road-networks. One option is

to estimate the distance between two objects by

their Euclidean distance. Unfortunately, as shown

in [13], the Euclidean distance is not a good approxi-

mation of the network distance with real-world

Road Networks R 2443

R

road-networks. Therefore, in the past several years,

many studies have been investigating new techniques

to index road-networks and/or pre-compute distances

in order to expedite distance-based query processing

on road-networks.

Historical Background
The main challenge with query processing in road-

networks is the high complexity of network dis-

tance computation. This is important since many

applications, especially those dealing with moving

objects, require frequent, fast and on-the-fly computa-

tion of distances between a query point and several

points of interests. The earliest work that studied this

challenge of fast distance computation in road-net-

work databases is by Shahabi et al. [13]. In this paper,

the authors proposed an embedding technique to

transform the road network to a high dimensional

space in which fast Minkowski metrics can be utilized

for distance measurement. The results are still approx-

imation of the actual distances but much more accu-

rate than using Euclidean distances on the points’

geographical coordinates.

Besides this transformation-based approach to per-

form fast network distance computation, three other

main approaches are based on either indexing the

network or pre-computing the network distances or a

hybrid of the two. A prominent work in the indexing

category is by Papadias et al. [10], which proposes an

architecture for road-networks that uses a disk-based

network representation. Their approach is based on

the fact that the current algorithms (e.g., Dijkstra)

for computing the distance between a query object

q and an objectO in a network will automatically result

in the computation of the distance between q and the

objects that are (relatively) closer to q than O. This

approach applies an optimized network expansion

algorithm with the advantage that the network expan-

sion only explores the objects that are closer to q

and computes their distances to q during expansion.

The advantages of this approach are: (i) it offers a

method that finds the exact distance in networks, and

(ii) the architecture can support other spatial queries

like range search and closest pairs. There are other

studies that similar to this work try to combine tradi-

tional spatial access methods with some sort of net-

work representation and expansion method such

as [3,5,7]. The main disadvantage of these network-

expansion approaches is that they perform poorly
when the objects are not densely distributed in the

network because then they require to retrieve a large

portion of the network for distance computation. A

rather different indexing approach is proposed in [4],

termed distance signature. This approach categorizes

the distances between objects and network nodes into

groups and then encodes these groups.

A representative work for pre-computation ap-

proaches is the work by Sankaranarayanan et al. [12],

which proposes a framework called SILC for computing

the shortest distance between vertices on a spatial

network. The proposed framework pre-computes the

shortest path between all pairs of vertices, which in

turn results in fast distance computation. Examples of

other studies that used some sort of pre-computation

to expedite network distance computation are [6,2].

A hybrid approach that combines an indexing tech-

nique with pre-computation is proposed in [8]. This

approach is based on partitioning and then indexing a

large network to small network Voronoi regions, and

then pre-computing distances both within and across

the regions.

There are also many variations in the applications

and query types on road-networks that require special-

purpose index structures and/or query processing

algorithms for efficient network distance computation.

Some of these applications and query-types are

reviewed below.

As mentioned, the fast computation of network

distance becomes more critical when objects are

moving. Most of the aforementioned techniques can

indeed be used for querying points of interests from a

moving object. However, some optimization can be

performed if one wants to update the query results as

the query point moves. One main representative query

type here is the Continuous k-nearest-neighbor

(C-kNN) queries. C-kNN on road-networks maintains

the k nearest neighbors in network distance as the

query object moves on the road network, which has

its own unique challenges as opposed to C-kNN in

Euclidean spaces. Sample studies focusing on moving

objects in road-networks are [1,11].

Other novel applications include [9], which tries to

address NN queries by proposing a novel travel time

network that integrates both spatial networks and real-

time traffic event information. In [15], the authors

propose and solve Aggregate nearest neighbor queries

(ANN) in the context of large road networks. In [14],

the authors study the novel problem of optimal

2444R Road Networks
sequenced route (OSR) query in both vector and road-

network spaces. The OSR query tries to find a route of

minimum length starting from a given source location

and passing through a number of typed locations in a

specific sequence imposed on the types of the loca-

tions. The paper proposes a pre-computation ap-

proach to OSR query by exploiting the geometric

properties of the solution space and relating it to

additively weighted Voronoi diagrams.

Foundations
A popular class of queries in geospatial applications

is the class of distance-based queries. To answer these

queries, the distance between one or more query points

or regions with some points or areas of interests must

be computed. A frequently used member of this class

is the k nearest neighbor (kNN) query where the

k closest points to a query point are requested. For

example, many car navigation systems provide the

feature to ask for the k closest gas stations to the

vehicle’s current location. One way to answer this

query is to estimate the distance by computing the

Euclidean distance between the vehicle’s geographical

coordinates (i.e., latitude and longitude) and all the

gas stations’ coordinates in the vicinity. The problem

with this approach is that the Euclidean distance

corresponds to the air-distance between the vehicle

and the gas station. Basically, if the car could have

flown, then the Euclidean distance would have been

the accurate distance between the car and the gas

station. Unfortunately, most cars are restricted to the

underlying road network. Hence, the actual distance

between the car and the gas station depends on the

connectivity of the underlying network and usually is

very different than the Euclidean distance. In [13], it is

shown that in real-world road-networks, Euclidean

distance does not yield a good approximation of the

network distance.
Road Networks. Figure 1. (a) Graph model of a road networ
Formal Definition of the Problem

The challenge with computing network-distance is that

the complexity of its computation depends on the num-

ber of vertices and edges of the underlying network,which

is normally very large for real road-networks. Now imag-

ine computing this distance continuously from a moving

vehicle to several gas stations and one would appreciate

the efforts in developing new techniques to compute this

distance as fast as possible. To formally define this prob-

lem, first a formal model to represent road networks is

provided and then using this model, the concept of net-

work-distance is defined more accurately.

A road-network can be modeled as a weighted

graph. Consider the weighted undirected (Many spa-

tial networks consist of directed edges and hence must

be modeled as directed graphs. Throughout this entry,

undirected graphs are used for simplicity.) graph G =

(V, E) as the two sets V of vertices, and E � V �V of

edges. Each edge of E, directly connecting vertices u

and v, is represented as the pair [u, v]. Each vertex v

represents a 2-d point (v.x, v.y) in a geometric space

(e.g., an intersection in a road network). Hence, each

edge is also a line segment in that space (e.g., a road

segment). A numeric weight (cost) wuv is associated

with the edge [u, v]. In road-networks, this is the

distance or the travel time between intersections u

and v. N refers to the space of points located on the

edges/vertices of graph G. For a point p 2 N located on

the edge [u, v], wup ¼ jupj
juvjwuv where juvj is the Euclid-

ean distance between u and v. Figure 1a shows the

graph model of a road network including the vertex

set V ={a,...,p}. Each edge of the graph is labeled by its

weight. Figure 1b shows points s1,...,s4, r1,...,r3, and

t1,...,t3 on the edges of the same graph. As shown in

the figure, point r1 2 N corresponds to the weights

wr1a ¼ 1 and wr1b ¼ 3.

The main challenge with query processing in road-

networks is the expensive cost of computing the
k, (b) 10 points of interest on the edges of the graph.

Road Networks R 2445

R

network distance between two points. Hence, network

distance for road-networks is formally defined below.

Definition 1: Given a graph G, a path P from p1 2N to

p2 2 N is an ordered set P = {p1, v1,...,vn, p2} consisting

of a sequence of connected edges from p1 to p2. Here,

p1 and p2 are located on the edges [u, v1] and [vn, w],

respectively. Also, vi is connected to vi+1 by the edge [vi,

vi+1] for 1� i< n. As shown in Fig. 1b, P = {t1, a, b, s3}

is a path from t1 to s3.

Definition 2: Given a path P = {p1, v1,...,vn, p2}, Path

Cost of P, pcost(P), is defined as the sum of the costs of

all edges in P. Formally, for the path P,

pcostðPÞ ¼ wp1v1 þ
Xn�1

i¼1

wviviþ1
þ wvnp2

In Fig. 1b, the cost of path P = {t1, a, b, s3} is calculated

as pcost(P) = 3 + 4 + 1 = 8. For the points p1, p2 2 N,

Pp1p2
is used to denote the shortest path from p1 to p2 in

G; the path P ={p1,...,p2}with minimum cost pcost(P).

Definition 3: Given the two points p1 and p2 in N, the

network distance between p1 and p2, Dn(p1, p2), is

the cost of the shortest path between p1 and p2 (i.e.,

Dnðp1; p2Þ ¼ pcostðPp1p2
Þ). For instance, Dn(t1, s3) = 8.

The network distanceDn(.,.) is non-negative and obeys

identity, symmetry and the triangular inequality.

Hence, together with N, it forms a metric space.

As discussed in the background section several

techniques have been proposed to expedite the com-

putation of this network-distance for efficient proces-

sing of distance-based queries. Here, one hybrid

approach is reviewed which combines indexing the

space (using voronoi diagrams) with a distance pre-

computation approach and has shown to be superior

in performance to its competitors [8].

A Voronoi-Based Solution for Road-Networks

A comprehensive solution for spatial queries in road-

networks must fulfill the following real-world req-

uirements: (i) be able to incorporate the network

connectivity to provide exact distances between

objects, (ii) efficiently answer the queries in real-time

in order to support distance-based queries (e.g., kNN)

for moving objects, (iii) be scalable in order to be

applicable to usually very large networks, (iv) be inde-

pendent of the density and distribution of the points of
interest, (v) be adaptive to efficiently cope with data-

base updates where nodes, links, and points of interest

are added/deleted, and (vi) be extendible to consider

query constraints such as direction or range.

In [8], the authors proposed a novel approach that

fulfills the above requirements by reducing the prob-

lem of distance computation in a very large network, in

to the problem of distance computation in a number of

much smaller networks plus some additional table

lookups.

The main idea behind this approach, termed

Voronoi-based Network Nearest Neighbor (VN3), is

to first partition a large network in to smaller/more

manageable regions. This is achieved by generating a

first-order network Voronoi diagram over the points

of interest. Each cell of this Voronoi diagram is cen-

tered by one point of interest (e.g., a restaurant) and

contains the nodes that are closest to that object in

network distance (and not the Euclidean distance).

Next, the intra and inter distances for each cell are

pre-computed. That is, for each cell, the distances

between all the edges (or border points) of the cell to

its center are pre-computed. In addition, the distances

across the border points of the adjacent cells are also

pre-computed. This will reduce the pre-computation

time and space by localizing the computation to cells

and handful of neighbor-cell node-pairs.

Now, to find the k nearest-neighbors of a query

object q, first the first nearest neighbor is found by

simply locating the Voronoi cell that contains q. This

can be easily achieved by utilizing a spatial index (e.g.,

R-tree) that is generated for the Voronoi cells. In [8], it

is shown that the next nearest neighbors of q are within

the adjacent cells of the previously explored ones,

which can be efficiently retrieved from a lookup

table. Next, the intra-cell pre-computed distances are

utilized to find the distance from q to the borders of

the Voronoi cell of each candidate, and finally the

inter-cell pre-computed distances are used to compute

the actual network distance from q to each candidate.

The local pre-computation nature of VN3 also results

in low complexity of updates when the network is

modified.

Key Applications
The applications of distance-based queries on road-

networks are numerous. In emergency response, the

first responders may want to find k closest hospitals to

a crisis area (kNN query). In urban planning, one may

2446R Road Networks
need to find the set of parks that are closest to a set of

houses (known as spatial skyline queries). In location-

based services, a group of mobile users want to find a

meeting location where traveling towards which mini-

mizes their total travel distance (Aggregate-NN query).

In Location-based Services (LBS), a driver wants to find

all the gas stations within its 4-mile distance (spatial

range queries). In OnLine map services such as Yahoo!

Maps, Google Earth or Microsoft Virtual Earth, one

may want to minimize distance when planning a day

trip to a shopping center, a restaurant and a movie

theater (OSR query). In all these applications and

queries, the accurate and fast computation of network

distance given the underlying road network is critical.

Future Directions
Even though, as reviewed in this entry, several tech-

niques for fast computation of network distances

have been proposed, there are still no real-world

deployment of these or any other techniques to en-

able accurate and fast network distance computation

for spatial queries. This may be attributed to the fact

that many users can tolerate or are used to the inac-

curacy in distance computations. However, as the

collected geospatial data becomes more accurate

and the users become more sophisticated, the com-

petition between different geospatial services would

lead into the adaptation of a simple but effective

technique to provide accurate network distance for

query processing. Therefore, a technique that can

easily be integrated into the current information in-

frastructure used by geospatial applications is of sub-

stantial importance.

On the research front, new queries and applications

for multidimensional spaces are often proposed

in academic conferences and journals. Most of these

queries are applicable to geospatial applications and

road-networks. Therefore, a rather effortless way

of finding a new research topic is to take any of

these new queries and extend it to work in the road-

network space.

Finally, adding other attributes that would affect

the distance or time-to-travel in road-networks ren-

ders most if not all of the current solutions insufficient.

For example, one can consider efficient on-the-fly

computation of network distance in the presence of

traffic flow, road direction, road closure, road eleva-

tion, or navigational data such as costs of left-turns,

right turns, U-turns, and stops.
Cross-references
▶Rtree

▶ Spatial Data Analysis

▶ Spatial Data Mining

▶ Spatial Data Types

▶ Spatial Indexing Techniques

▶ Spatial Network Databases

▶ Spatial Operations and Map Operations

▶ Spatio-Temporal Trajectories

▶Voronoi Diagrams
Recommended Reading
1. Almeida V.T.D. and Güting R.H. Indexing the Trajectories

of Moving Objects in Networks, GeoInformatica, 9(1):33–60,

2005.

2. Cho H.-J. and Chung C.-W. An efficient and scalable approach

to cnn queries in a road network. In Proc. 31st Int. Conf. on Very

Large Data Bases, 2005, pp. 865–876.

3. Güting H., de Almeida T., and Ding Z. Modeling and

querying moving objects in networks. VLDB J., 15(2):165–190,

2006.

4. Hu H., Lee D.L., and Lee V.C.S. Distance indexing on road

networks. In Proc. 32nd Int. Conf. on Very Large Data Bases,

2006, pp. 894–905.

5. Hu H., Lee D.L., and Xu J. Fast nearest neighbor search on

road networks. In Advances in Database Technology, Proc.

10th Int. Conf. on Exdending Database Technology, 2006,

pp. 186–203.

6. Huang X., Jensen C.S., and Saltenis S. The islands approach

to nearest neighbor querying in spatial networks. In Proc. 9th

Int. Symp. Advances in Spatial and Temporal Databases, 2005,

pp. 73–90.

7. Jensen C.S., Kolářvr J., Pedersen T.B., and Timko. I. Nearest

neighbor queries in road networks. In Proc. 11th ACM Int.

Symp. on Advances in Geographic Inf. Syst., 2003, pp. 1–8.

8. Kolahdouzan M.R. and Shahabi C. Voronoi-based k nearest

neighbor search for spatial network databases. In Proc. 30th

Int. Conf. on Very Large Data Bases, 2004, pp. 840–851.

9. Ku W.-S., Zimmermann R., Wang H., and Wan C.-N. Adaptive

nearest neighbor queries in travel time networks. In Proc.

13th ACM Int. Symp. on Geographic Inf. Syst., 2005,

pp. 210–219.

10. Papadias D., Zhang J., Mamoulis N., and Tao Y. Query proces-

sing in spatial network databases. In Proc. 29th Int. Conf. on

Very Large Data Bases, 2003, pp. 790–801.

11. Pfoser D. and Jensen C.S. Indexing of network constrained

moving objects. In Proc. 11th ACM Int. Symp. on Advances

in Geographic Inf. Syst., 2003, pp. 25–32.

12. Sankaranarayanan J., Alborzi H., and Samet H. Efficient query

processing on spatial networks. In Proc. 13th ACM Int. Symp.

on Geographic Inf. Syst., 2005. pp. 200–209.

13. Shahabi C., Kolahdouzan M.R., and Sharifzadeh M. A road

network embedding technique for k-nearest neighbor search in

moving object databases. In Proc. 10th ACM Int. Symp. on

Advances in Geographic Inf. Syst., 2002, pp. 94–100.

Role Based Access Control R 2447
14. Sharifzadeh M. and Shahabi C. Processing optimal sequen-

ced route queries using voronoi diagrams. GeoInformatica, 12

(4):411–433, 2008.

15. Yiu M.L., Mamoulis N., and Papadias D. Aggregate nearest

neighbor queries in road networks. IEEE Trans. Knowl. Data

Eng., 17(6):820–823, 2005.
Road Vector Data

▶Road Networks
Robot

▶Web Crawler Architecture
ROC

▶Receiver Operating Characteristic
R

Rocchio’s Formula

BEN HE

University of Glasgow, Glasgow, UK

Definition
Rocchio’s formula is used to determine the query term

weights of the terms in the new query when Rocchio’s

relevance feedback algorithm is applied.

Key Points
In 1971, Rocchio proposed a classical query expansion

algorithm based on the Vector Space model [1]. The

basic algorithm assumes that the user identifies a set R

of relevant documents and a set N of non relevant

documents and the improved query is the result of a

linear combination of the mean frequencies tf of the

terms in the original query and in these two sets (the

centroids of R and N), that is the weight of each term in

the new query is:

qtfm ¼ a:qtf þ b:
X
d2R

tf � g:
X
d2N

tf

Feedback variations assume that positive feedback

exhibits a much clear impact on the reformulation of
the query. Also positive feedback can be applied to

expand query without the explicit feedback from the

user (blind relevance feedback). Blind relevance feed-

back can be obtained in four steps:

1. All documents are ranked for the given query using

a particular Information Retrieval model, for ex-

ample the TF-IDF term weighting of the vector

space model. This step is called first-pass retrieval.

The user identifies a set R of relevant documents

and a set N of non relevant documents.

2. Aweight qtfexq is assigned to each term appearing in

the set of the k highest ranked documents. In gen-

eral, qtfexq is the mean of the weights provided by

the Information Retrieval model, for example the

TF-IDF weights, computed over the set of the k

highest ranked documents.

3. The vector of query terms weight is finally modified

by taking a linear combination of the initial query

term weights qtf used for the first-pass retrieval and

the new weight qtfexq, that is:

qtwm ¼ qtf þ b � qtf exq ð1Þ

4. To remove noisy terms from the expanded query,

automatic query expansion techniques usually

selects only the highest informative terms from

the set of top-ranked documents. The informative-

ness of a term is determined by the terms with

highest weights assigned in step 2.
Cross-references
▶Query Expansion Models

▶Relevance Feedback
Recommended Reading
1. Rocchio J. Relevance Feedback in Information Retrieval.

Prentice-Hall, Englewood Cliffs, NJ, USA, 1971, pp. 313–323.
Role Based Access Control

YUE ZHANG, JAMES B.D. JOSHI

University of Pittsburgh, Pittsburgh, PA, USA

Synonyms
RBAC; Role based security

2448R Role Based Access Control
Definition
Access control is a security service responsible for

defining which subjects can perform what type of

operations on which objects. A subject is typically an

active entity such as a user or a process, and an object is

an entity, such as a file, database table or a field, on

which the subject can perform some authorized opera-

tions. A permission indicates the mode of operation on

a particular object.

Role based access control (RBAC) involves con-

trolling access to computer resources and informa-

tion by (i) defining users, roles, and permissions, and

(ii) assigning users and permissions to roles. A user can

create a session in which he/she can activate a subset of

the roles he/she has been assigned to and use the

permissions associated with the activated roles. RBAC

approach is based on the understanding that a user’s

access needs are defined by the roles that he/she plays

within his/her organization. In general, a role is con-

sidered as a group of permissions. RBAC approach also

uses role-role relation, known as role-hierarchy, to pro-

vide permission inheritance semantics, and constraints

on the assignment relations and the activation of

roles to capture various access control requirements.

Historical Background
The origin of the concept of roles can be traced back to

organizational theory much earlier than the advent of

computerized information systems. However, it was

primarily in the early 1990s that the security research-

ers and practitioners became interested in adopting the

notion of a role to address the access control issues

for information systems. In particular, in 1992,

Ferraiolo and Kuhn showed that the existing manda-

tory and discretionary access control (MAC and DAC)

approaches were inadequate in addressing the complex

and diverse access control needs of various organiza-

tions and proposed the use of a Role based approach.

While the MAC approach uses the predefined set of

system rules to control accesses to resources, thus not

giving users discretionary power to grant the rights

they have on objects (e.g., files, databases) to other

users/subjects, the DAC approach allowed the users

to grant the permissions that they have on objects to

others freely. Later, the initial work by Ferrailolo and

Kuhn was followed by Nyanchama and Osborn’s role

graph model in 1995 [9], and later by the seminal

paper by Sandhu, Coyne, Feinstein and Youman in

1996 [13], where they defined a family of RBAC
models each with different sets of capabilities, known

as the RBAC96 model. This model later evolved into

the NIST RBAC model. The NIST model was later

modified into the ANSI/INCITS (ANSI/ICITS stands

for American National Standards. Institute and Inter-

national Committee for Information Technology Stan-

dards) RBAC standard in 2004 [2]. The significant

interest in this area can be seen by the establishment

of the ACM Workshop on RBAC in 1996 which later

evolved into the current ACM Symposium in Access

Control Method and Technologies (SACMAT). Several

extensions of the RBAC model have been proposed

and several newer RBAC issues have been identified

over the last one decade. A key contribution is also

related to the demonstration by Osborn et al. that the

RBAC96 model can also be configured to represent the

MAC and DAC policies [10], establishing its usefulness

as a uniform model for addressing very diverse set of

access control needs.

Foundations
Role is a prevalent organizational concept and it iden-

tifies the various job functions and responsibilities

within an organization. As organizational information

systems has become a crucial component for carrying

out organizational job functions, it has motivated the

use of roles that users within the organization play to

define what accesses should be authorized to them so

that they can carry out their job functions and respon-

sibilities efficiently. Based on the premise that the role

represents the set of permissions that are needed for

carrying out the job functions, various RBAC

approaches have been proposed. RBAC96 model is

the most widely recognized initial model which has

evolved into the ANSI/ICITS RBAC standard. The

RBAC96 family of models is briefly described next

followed by a discussion on other extensions made to

it and its standardized version.

Figure 1 depicts the RBAC96 family ofmodels which

include RBAC0, RBAC1, RBAC2, and RBAC3. RBAC0 is

the base model containing only basic elements; RBAC1

augments RBAC0 with role hierarchy; RBAC2 aug-

ments RBAC0 with constraints; and RBAC3 combines

RBAC1 and RBAC2, and provides the most complete

set of features.

RBAC0 Base Model

In the base model RBAC0, the key elements are the sets

users (U), roles(R), permissions (P) and sessions (S).

Role Based Access Control. Figure 1. RBAC96 model.

Role Based Access Control. Figure 2. Sample Role

Hierarchies.

Role Based Access Control R 2449

R

Various relations are defined among them, as depicted

in Fig. 1. A user in this model is a human being but can

also be generalized to include intelligent autonomous

agents such as robots, immobile computers, or even

networks of computers. A role typically represents a job

function within the organization with some authority

and responsibility. The objects are data objects as well

as other computer resources within a computer sys-

tem. RBAC96 model only supports ‘‘positive permis-

sions’’ that grants accesses to objects, and does not

support ‘‘negative permissions’’ that deny accesses.

Constraints, as defined in RBAC2, are used as a mech-

anism to achieve the denial of accesses.

The user assignment (UA) and permission assign-

ment (PA) relations shown in Fig. 1 are many-to-many

relations. A user can be a member of many roles, and

a role can have many users. Similarly, a role can

have many permissions and the same permission can

be assigned to many roles. The placement of a role as

an intermediary to enable a user to exercise a permis-

sion provides much greater control over access config-

uration and review than does directly relating users

to permissions.

A session is essentially a mapping of one user to

possibly many roles, i.e., a user can establish a session

and activate within it some subset of roles that he/she

has been assigned to. The set of permissions that can be

used by a user is the union of the permissions assigned

to the roles that the user activates in one session. The

association between a user and the activated set of roles

within a session remains constant for the life of the

session. A user may have multiple sessions open at

the same time and each session may have a different

combination of assigned roles activated in it. This

feature of RBAC0 supports the principle of least privi-

lege that involves use of the minimal set of permissions

needed for a particular task. A user who is a member of
several roles can invoke any subset of these within a

session to complete a task. The concept of a session is

equivalent to that of the traditional notion of a subject

in the access control literature. A subject (or session) is

a unit of access control, and a user may have multiple

subjects (or sessions) with different permissions [13].

RBAC1: RBAC with Role Hierarchy

RBAC1 introduces role hierarchies (RH) on top of

RBAC0 to indicate which roles can inherit which per-

missions from which other roles. Role hierarchies are a

natural way of structuring roles to reflect an organiza-

tion’s lines of authority and responsibility. Figure 2

depicts some example of role hierarchies. By conven-

tion senior roles are shown toward the top of these

diagrams, and junior roles toward the bottom. For

example, in Fig. 2(a), the junior-most role is health-

care provider. The physician role is senior to health-care

provider and thereby inherits all permissions from

health-care provider. In addition to the permissions

inherited from the health-care provider role, the phy-

sician role can have other permissions assigned directly

to it. Inheritance of permissions is transitive. For

example, in Fig. 2(a), the primary-care physician role

inherits permissions from the physician and health-care

provider roles. Primary-care physician and specialist

physician both inherit permissions from the physician

role. Figure 2(b) illustrates multiple inheritances of

permissions, where the project supervisor role inherits

from both test engineer and programmer roles. Mathe-

matically, these hierarchies are partial orders. A partial

order is a reflexive, transitive and anti-symmetric relation.

RBAC2: RBAC with Constraints

RBAC2 introduces the concept of constraints. Con-

straints are an important aspect of RBAC and are

sometimes argued to be a principal motivation for

using RBAC. Constraints are a powerful mechanism

for capturing higher-level organizational security

2450R Role Based Access Control
policies. Constraints can be applied to the UA and PA

relations, as well as to the association between a user

and its activated set of roles within a session.

The most frequently mentioned constraint in the

context of RBAC is the mutually exclusive roles (MER)

constraint that is used to enforce Separation of Duty

(SoD) requirements. For instance, a user can be re-

stricted to assume at the most one role in a mutually

exclusive role set. This supports separation of duty

requirements where a person should not be able to

assume two different roles to carry out critical steps of

a task. Consider twomutually exclusive roles, accounts-

manager and purchasing-manager. Mutual exclusion in

terms of UA specifies that one individual cannot be a

member of both these roles. Mutual exclusion in terms

of PA specifies that the same permission cannot be

assigned to both these roles. For example, the per-

mission to issue checks should not be assigned to

both these roles. Normally such a permission would

be assigned to the accounts-manager role only. The

mutual exclusion constraint on PA helps prevent

the permission from being unintentionally or inten-

tionally assigned to the purchasing-manager role.

Another example of a user assignment constraint is

that a role can have a maximum number of members.

For instance, the number of roles to which and indi-

vidual user can belong to could also be limited. These

are called cardinality constraints. Similarly, the number

of roles to which a permission can be assigned can

have cardinality constraints to control the distribution

of powerful permissions.

RBAC3: The Consolidated Model

RBAC3 combines RBAC1 and RBAC2 to provide both

role hierarchies and constraints. There are several issues

that arise by bringing these two concepts together.

Constraints can be applied to the role hierarchy

itself. For example, constraints on RH can limit the

number of senior (or junior) roles that a given role

may have. Two or more roles can also be constrained to

have no common senior (or junior) role. These kinds

of constraints are useful in situations where the au-

thority to change the role hierarchy has been decen-

tralized, but the chief security administrator desires to

restrict the cases in which such changes can be made.

Benefits of the RBAC Approach

The RBAC approach has been recognized for several

beneficial features. First, it supports the principle of
least privilege which has been considered very impor-

tant for better security of systems. When RBAC is used,

a user’s access requirements can be easily changed when

his role is changed within his organization. All that

should be done is removing him as a member of his

current role and assigning him to the new role. Also, the

total number of assignment relationships that needs

to be maintained in RBAC is nr(nu + np) where nr,

nu, and np represent the number of roles, users and

permissions, respectively, in a system. In general sub-

ject-object based authorization system will need to

maintain nu.np subject-to-permission associations.

Role hierarchy makes security administration signi-

ficantly easy as it eliminates the need for explicitly

assigning the permissions to multiple roles. Con-

straints can be used to capture various types of policies

including very important SoD requirements. It has

been shown that by configuring constraints and rela-

tionships in RBAC, one can configure an RBAC system

to express the traditional DAC and MAC policies [10].

Because of its capability to capture very diverse sets

of requirements, it has been considered as a very

promising approach to address emerging multidomain

security problems where various domains with differ-

ent access control policies need to securely interact

with each other.

RBAC Standards

The NIST RBAC model was the first attempt towards

establishing an RBAC standard. Compared to the

RBAC96 models, the most distinct feature in NIST

RBAC is the clear specification of incremented

4-level RBAC models. The first level, called the core

RBAC is similar to the RBAC0 model with the explicit

specification of user-role view where the roles

assigned to a specific user and the users assigned to

a specific role can be determined. The second level,

called the hierarchical RBAC model is based on the

RBAC1 model and includes the separation of general

hierarchy (the same as in RBAC1) and the restricted

hierarchy, where the structure of the hierarchy is re-

stricted to a certain type, such as, a tree or an inverted

tree structure. The third level is the same as the con-

straint RBAC. The fourth level further adds the per-

mission-role view where the roles assigned to a specific

permission and the permissions assigned to a specific

role can be determined. Later, the NIST model was

further refined to establish the ANSI/INCITS RBAC

standard.

Role Based Access Control R 2451

R

Administration Models for RBAC

In large organizational systems the number of roles can

be in the hundreds or thousands. Managing these roles

and their relationships is a daunting task that is often

highly centralized. A key issue is how the benefits of the

RBAC model can be used to construct an administra-

tion model for managing the RBAC policies. Several

researchers have addressed this issue, including the

Administrative RBAC (ARBAC) family of models by

Sandhu et al. [12] and Scoped ARBAC (SARBAC)

family of models by Crampton et al. [6].

RBAC Extensions

The RBAC96 model and its standardized versions

also have been extended in several ways to address

emerging applications. One notable among the emer-

ging requirements is the need to capture context based

access control requirements. Several extensions of

RBAC models have been made to address such a

need. Notable among these are extensions of RBAC

to capture temporal and/or location context. Temporal

RBAC (TRBAC) model [3] and its generalized version

Generalized TRBAC (GTRBAC) [7] are main work

related to temporal extensions of the RBAC model.

While these capture the time context, several works

have tried to address the need of capturing location

context within an RBAC framework. Covington et al.

propose a Generalized RBAC (GRBAC) model, where

they introduce the concept of environment roles, which

are roles that can be activated based on the value of

conditions in the environment where the request has

been made. Bertino et al. [4] has recently proposed the

GEO-RBAC model that integrates RBAC with a spatial

model based on the OpenGIS system. A significant

aspect of the GEO-RBAC model includes (i) its specifi-

cation of role schema that are location-based, and

(ii) the separation of role schema and role instances

to provide different authorizations for different logical

and physical locations. Location and time-based RBAC

(LoT-RBAC) model was proposed by Chandran et al.

[5] to address the access control requirements of highly

mobile, dynamic environments to provide both loca-

tion and time based control. Significant work has

also been done to try to develop specification languages

for RBAC models. This includes the inclusion of

RBAC profile in OASIS’s XACML. Joshi et al. pro-

pose X-RBAC that generalizes X-GTRBAC, which is

the XML-based language for specifying the GTRBAC

policies. Other extensions to the RBAC work include
developing better constraint frameworks and analyzing

their complexity issues.

Support for SoD constraints is a major issue for the

RBAC model. Various SoD constraints proposed in the

literature include: Static SoD, Dynamic SoD, History

Based SoD, Object Based SoD, Operational SoD, Order

Dependent/Independent SoD. The ANSI RBAC stan-

dard, however, only supports the basic SoD constraints.

Several researchers have developed RBAC extensions

to support these advanced SoD constraints. Ahn et al.

have proposed the RCL2000 language for specifying

several role-based SoD constraints [1]. Joshi et al. have

proposed time-based SoD constraints in [8].

RBAC approach has also been shown to be very

beneficial for multi-domain security which refers to

the need to facilitate secure interactions among multi-

ple security domains with very diverse set of access

control requirements. Several researchers have recently

focused on using RBAC to address the multi-domain

security challenge [11,14]. One approach uses mapp-

ing roles frommultiple domains to ensure secure cross--

domain accesses. Such inter-domain role mapping

problem has been recently formalized and solutions

for both tightly coupled environments as well as lightly

coupled environments are being sought [11,14]. Some

researchers have employed RBAC delegation models to

address such multi-domain sharing issues [15]. Several

RBAC delegation models have been proposed that use

roles as the central entity in the process of delegating

rights from one user to another.

Key Applications
RBAC has been used in operating systems, databases

and applications. In particular, RBAC is very promising

for large scale application environments and enterprises.

Emerging systems and applications have more context

and content based access control requirements as can be

seen in mobile and peer to peer applications and several

extensions of RBAC has been motivated by such

requirements.

Future Directions
Future applications will require efficient access control

techniques to protect large number of objects and

manage huge number of privileges that may need to

be given to unknown users. Furthermore, interactions

among multiple domains with different access control

policy requirements are crucial in emerging applica-

tions. RBAC has been found to be promising for

2452R Role Based Security
these emerging access control requirements. Several

researchers have advocated use of RBAC to address

large scale enterprise security as well as multidomain

security. Work related to multidomain security using

RBAC approach is in its initial stages of development.

Policy verification and evolution management issues are

crucial for access control in large and dynamic systems

but little work currently have addressed these.
URL to Code
NIST provides an implementation of some RBAC

versions http://csrc.nist.gov/rbac/.

ANSI/INCITS website: http://csrc.nist.gov/groups/

SNS/rbac/standards.html.
Cross-references
▶Access Control Policy Languages

▶Discretionary Access Control

▶Mandatory Access Control

▶ Security Policies

▶Temporal Access Control
Recommended Reading
1. Ahn G. and Sandhu R. Role-based authorization constraints

specification. ACM Trans. Inf. Syst. Secur., 3(4):207–226, 2000.

2. American national standard for information technology (ANSI).

Role based access control. ANSI INCITS 359–2004, February 2004.

3. Bertino E., Bonatti P.A., and Ferrari E. TRBAC: a temporal role-

based access control model. ACM Trans. Inf. Syst. Secur.,

4(3):191–233, 2001.

4. Bertino E., Catania B., Damiani M.L., and Perlasca P. GEO-

RBAC: A spatially aware RBAC. In Proc. 10th ACM Symp. on

Access Control Models and Technologies, 2005, pp. 29–37.

5. Chandran S.M. and Joshi J.B.D. LoT RBAC: a location and time-

based RBAC model. In Proc. 6th Int. Conf. on Web Information

Systems Eng., 2005, pp. 361–375.

6. Crampton J. and Loizou G. Administrative scope: a foundation

for role-based administrative models. ACM Trans. Inf. Syst.

Secur., 6(2):201–231, 2003.

7. Joshi J.B.D., Bertino E., Latif U., and Ghafoor A. A generalized

temporal role-based access control model. IEEE Trans. Knowl.

Data Eng., 17(1):4–23, 2005.

8. Joshi J.B.D., Shafiq B., Ghafoor A., and Bertino E. Dependencies

and separation of duty constraints in GTRBAC. In Proc. 8th

ACM Symp. on Access Control Models and Technologies, 2003,

pp. 51–64.

9. Nyanchama M. and Osborn S.L. The role graph model. In Proc.

1st ACM Workshop on Role-Based Access Control, 1995.

10. Osborn S., Sandhu R., and Munawer Q. Configuring role-based

access control to enforce mandatory and discretionary

access control policies. ACM Trans. Inf. Syst. Secur., 3:85–106,

2000.
11. Piromruen S. and Joshi J.B.D. An RBAC framework for time

constrained secure interoperation in multi-domain environ-

ment. In Proc. IEEE Workshop on Object-oriented Real-time

Dependable Systems, 2005, pp. 36–45.

12. Sandhu R., Bhamidipati V., and Munawer Q. The ARBAC97

model for role-based administration of roles. ACM Trans. Inf.

Syst. Secur., 2(1):105–135, 1999.

13. Sandhu R.S., Coyne E.J., Feinstein H.L., and Youman C.E. Role-

based access control models. IEEE Comput., 29(2):38–47, 1996.

14. Shafiq B., Joshi J.B.D., Bertino E., and Ghafoor A. Secure inter-

operation in a multi-domain environment employing RBAC

policies. IEEE Trans. Knowl. Data Eng., 17(11):1557–1577, 2005.

15. Zhang L., Ahn G., and Chu B. A role-based delegation frame-

work for healthcare information systems. In Proc. 7th ACM

Symp. on Access Control Models and Technologies, 2002, pp.

125–134.
Role Based Security

▶Role Based Access Control
Rollback

▶Crash Recovery

▶ Logging and Recovery
Rollback Operator

▶Timeslice Operator
Rotation

▶Dynamic Graphics
Rotation Estimation

▶Cross-Validation
Rough Computing

▶Decision Rule Mining in Rough Set Theory

R-Tree (and Family) R 2453
Rough Set Theory (RST)

▶Decision Rule Mining in Rough Set Theory
Rough Set Theory, Granular
Computing on Partition

▶Deductive Data Mining Using Granular Computing
Rounding

▶Microdata Rounding
Row-Level Locking

▶B-Tree Locking
Row-Versioning

▶ Snapshot Isolation
R

R-Precision

NICK CRASWELL

Microsoft Research Cambridge, Cambridge, UK

Definition
For a given query topic Q, R-precision is the precision

at R, where R is the number of relevant documents

for Q. In other words, if there are r relevant docu-

ments among the top-R retrieved documents, then

R-precision is r
R
.

Key Points
R-precision is defined as the proportion of the top-R

retrieved documents that are relevant, where R is the

number of relevant documents for the current query.

This requires full knowledge of a query’s relevant set,

and will be a shallow evaluation for a query with few
relevant documents and a deep evaluation for a query

with many relevant documents. Rank cutoff R is the

point at which precision and recall are equal, since at

that point both are r
R
.

Cross-references
▶Average R-Precision

▶ Precision

▶ Precision at n

▶ Precision-Oriented Effectiveness Measures
RSJ Model

▶ Probabilistic Retrieval Models and Binary Indepen-

dence Retrieval (BIR) Model
Rtree

▶Tree-based Indexing
R-Tree (and Family)

APOSTOLOS N. PAPADOPOULOS
1, ANTONIO CORRAL

2,

ALEXANDROS NANOPOULOS
1, YANNIS THEODORIDIS

3

1Aristotle University, Thessaloniki, Greece
2University of Almeria, Almeria, Spain
3University of Piraeus, Piraeus, Greece

Definition
The R-tree is an indexing scheme that has been origi-

nally proposed towards organizing spatial objects such

as points, rectangles and polygons. It is a hierarchical

data structure suitable to index objects in secondary

storage (disk) as well as in main memory. The R-tree

has been extensively used by researchers to offer effi-

cient processing of queries in multi-dimensional data

sets. Queries such as range, nearest-neighbor and spatial

joins are supported efficiently leading to considerable

decrease in computational and I/O time in comparison

to previous approaches. The R-tree is capable of

handling diverse types of objects, by using approxima-

tions. This means that an object is approximated by

its minimum bounding rectangle (MBR) towards

providing an efficient filtering step. Objects that

2454R R-Tree (and Family)
survive the filtering step are inspected further for rele-

vance in the refinement step. The advantages of the

structure, its simplicity as well as its resemblance to the

Bþ-tree ‘‘persuaded’’ the database industry to imple-

ment it in commercially available systems in addition

to research prototypes.

Historical Background
The R-tree index was proposed by Guttman [6] in 1984

in order to solve an organization problem regarding

rectangular objects in VLSI design. Later on, the struc-

ture was revised to become even more efficient and to

adapt to the particular problem. The set of variants

comprise the so called R-tree family of access methods.

The first variant, the R+-tree, was proposed in 1987

[15]. The main difference between the two schemes is

that while in the R-tree the MBR of an object is placed

to one leaf node only, in the R+-tree the MBR may

break to several smaller MBRs and stored in different

leaf nodes. The motivation behind this new index is

that large MBRs may cause performance degradation.

However, storage utilization decreases because of the

MBR decomposition.

The next most important variation, the R∗-tree

[1], retains the properties of the original R-tree and

provides better strategies for inserting MBRs. New

heuristics are offered towards improving the shape of

the tree during insertions and node splits. Performance

evaluation results have shown that the R∗-tree offers

significantly better performance in range query proces-

sing in comparison to R-trees and R+-trees. The trade-

off is that more time is spent during insertions and

deletions of objects, since the heuristics used require

more computational overhead.

Another important variation of the R-tree is the

Hilbert R-tree [8]. It is a hybrid structure based on the

R-tree and the B+-tree. Actually, it is a B+-tree with

geometrical objects being characterized by the Hilbert

value of their centroid. The structure is based on the

Hilbert space-filling curve. According to the authors’

experimentation in [8], Hilbert R-trees were proven to

be the best dynamic version of R-trees as of the time of

publication. The term dynamic is used to denote that

insertions and deletions are allowed in the underlying

data set.

The aforementioned contributions focused on the

use of heuristics during tree construction with the

aim to provide a well-formed structure towards bet-

ter query processing. However, by inserting objects
one-by-one two problems may arise: (i) the shape of

the structure may not be compact and (ii) the storage

utilization will never reach 100% due to the rules

applied in node splits. In cases where objects are

known in advance, a bottom-up building process

(also called bulk-loading) may be applied in contrast

to the usual top-down tree construction. The first

contribution in this area is due to Roussopoulos

and Leifker in [13] who proposed the use of packed

R-trees. Along the same lines, Kamel and Faloutsos

[7] proposed a packed version of the R-tree where

packing is performed by the use of the Hilbert space

filling curve. Other packed variants have been pro-

posed in [3,4,9].

The R-tree inspired subsequent work on handling

high-dimensional data. It has been observed by many

researchers that the performance of R-trees degrades

rapidly when the number of dimensions increases

above a threshold (10 or 15). To tackle this di-

mensionality curse problem a number of R-tree var-

iations appeared that show better scaling capabilities

for high-dimensional spaces. Some of these contribu-

tions are the TV-tree [10], the X-tree [2] and the

A-tree [14].

Due to space limitations, the description of more

variations (actually these are more than 70) is not

feasible. A more detailed presentation of the R-tree

family can be found in [11].

Foundations
Let O be a set of objects in the two-dimensional space.

Each object oi 2 O is represented by its MBR, which is

the minimum rectangle that completely encloses the

object. The MBR of object oi is denoted by oi.mbr. Since

MBRs are forced to be orthogonal with respect to the

axes, each MBR is completely defined by its lower-left

and upper-right corners. The R-tree organizes data in a

hierarchical manner. It is a height-balanced tree where

object MBRs are hosted in leaf nodes, whereas internal

nodes contain auxiliary entries to guide the search

process. More formally, each leaf node contains pairs

of the form (objMBR, objPtr) where objMBR is the

MBR of an object, and objPtr is the pointer to the

object’s detailed information (geometry and/or other

attributes). Each internal node contains entries of the

form (entryMBR,childPtr) where entryMBR is the MBR

enclosing all descendants in the corresponding subtree

and childPtr is the pointer to the subtree. The format of

leaf and internal nodes is illustrated in Fig. 1.

R-Tree (and Family). Figure 1. Format of leaf and internal nodes. (a) Format of a leaf node. (b) Format of an internal

node.

R-Tree (and Family). Figure 2. Intersection of objects

and MBRs.

R-Tree (and Family) R 2455

R

Each R-tree node corresponds to one disk page

which has a limited capacity. The number of entries

in each internal node determines the tree fanout, which

is the maximum number of subtrees that can emanate

from an internal node. Let Mint and Mleaf denote the

maximum number of entries that can be hosted in an

internal node and a leaf node, respectively. To guaran-

tee acceptable storage utilization, a minimum number

of entries per node must also be defined. Therefore, the

tree construction procedure forces that each internal

node (leaf) must contain no less than mint (mleaf)

entries. In the case where the R-tree stores MBR of

objects, then evidently Mint = Mleaf and mint = mleaf.

However, there are cases where the above equalities do

not hold. For example, when the R-tree stores point

objects, then the number of objects in a leaf node

increases, since a point requires less data for represen-

tation than a rectangle. For ease of illustration, for the

rest of the article it is assumed that the R-tree stores

rectangles, which means that the minimum and the

maximum number of entries is the same for all tree

nodes (the symbols m and M are used, respectively).

Therefore, each tree node contains at least m � M ∕ 2
entries and at mostM entries. A violation of this rule is

only allowed for the root of the tree, which may con-

tain less than m entries.

Since MBR is an approximation of the original ob-

ject, intersection tests must be performed in two steps to

guarantee correctness of results. Figure 2 depicts three

polygonal objects with their corresponding MBRs.

Searching for objects intersected by o2, it is evident

that both o1 and o3 may be contained in the final

answer, because o2.mbr intersects both o1.mbr and

o3.mbr. This information is easily obtained by

performing efficient intersection tests for rectangular

objects. However, to produce the final result the answer

requires further refinement by considering the detailed

geometric characteristics of objects o1, o2 and o3. This

refinement step involves more complex geometric
computations and it is applied only for candidate

objects. Evidently, if an MBR does not intersect o2.

mbr (e.g., o4.mbr) there is no need to investigate it

further.

Figure 3 shows a set of objects in the 2-d space (left)

and the corresponding R-tree index (right). For sim-

plicity only the MBRs of objects are shown using the

symbols r1 through r12. The R-tree is composed of seven

nodes. There are four leaf nodes containing the object

MBRs, and three internal nodes containing MBRs that

enclose all the descendants in the corresponding sub-

tree. For example, the MBR R1 which is hosted at the

root, encloses MBRs R3 and R4. Moreover, R3 encloses

the object MBRs r1, r2 and r3. In this example, it is

assumed that each node can host up to three entries.

However, in real implementations this number is sig-

nificantly higher and depends on the page size and the

number of dimensions.

It is evident that the R-tree for a collection of object

is not unique. The shape of the tree depends signifi-

cantly on the insertion order. As it has been pointed

out previously, there are two ways to build an R-tree:

(i) by individual insertion of objects and (ii) by bulk

loading. In dynamic data sets, where objects may be

R-Tree (and Family). Figure 3. R-tree example.

2456R R-Tree (and Family)
inserted and deleted in an ad hoc manner, the first

method is applied. In the sequel, the insertion process

is discussed briefly.

Insertions in an R-tree are handled similarly to

insertions in a B+-tree. In particular, the R-tree is

traversed to locate an appropriate leaf node L to ac-

commodate the new entry. The selection of L involves a

number of internal node selections towards determin-

ing an appropriate path from the root to the most

convenient leaf. It is important to guarantee that after

the insertion, the tree will be in a good shape. Towards

this goal, the insertion process tries to select the next

node in the insertion path, aiming at lowMBR enlarge-

ment, because the size of MBRs is directly connected to

search efficiency. The new entry is inserted in L and

then all nodes within the path from the root to L are

updated accordingly (adjustment of MBRs). In case

the found leaf cannot accommodate the new entry

because it is full (it already contains M entries), then

it is split into two nodes. Splitting in R-trees is different

from that of the B+-tree, because it considers different

criteria. Guttman in his original paper [6] proposed

three different split policies:

Linear Split. Choose two objects as seeds for the

two nodes, where these objects are as far apart as

possible. Then consider each remaining object in a

random order and assign it to the node requiring the

smallest enlargement of its respective MBR.

Quadratic Split. Choose two objects as seeds for

the two nodes, where these objects if put together

create as much dead space as possible (dead space is

the space that remains from the MBR if the areas of the

two objects are ignored). Then, until there are no

remaining objects, insert the object for which the dif-

ference of dead space if assigned to each of the two
nodes is maximized in the node that requires less

enlargement of its respective MBR.

Exponential Split. All possible groupings are ex-

haustively tested and the best is chosen with respect to

the minimization of the MBR enlargement.

Guttman suggested using the quadratic algorithm

as a good compromise between insertion speed and

retrieval performance. The linear split policy is the

most efficient but the resulting R-tree does not keep

its nice characteristics, whereas the exponential split

policy although it takes the best split decision it

requires significant computational overhead. Albeit

the split policy being used, splits may propagate up-

wards up to the root node. If there is a split in the root,

a new root node is created and the height of the tree

increases. To demonstrate the importance of the

splitting policy an example is given in Fig. 4. Figure 4a

depicts an overflowing node, assuming that at most

three entries can be stored. A ‘‘bad’’ split is shown in

Fig. 4b whereas Fig. 4c depicts a ‘‘good’’ split choice.

The first split should be avoided since the quality of

the resulting nodes degrades (large MBRs with a lot

of overlap), whereas the second is more preferable

(small MBRs with small overlap).

Deletions are performed by first searching the tree

to locate the corresponding leaf L which contains the

deleted object. After the removal of the entry from L

the node may contain fewer than m entries (node

underflow). The handling of an underflowing node is

different in the R-tree, compared with the case of

B+-tree. In the latter, an underflowing case is handled

by merging two sibling nodes. Since B+-trees index

one-dimensional data, two sibling nodes will contain

consecutive entries. However, for multi-dimensional

data, this property does not hold. Although one still

R-Tree (and Family). Figure 4. Splitting example.

R-Tree (and Family). Figure 5. Range query example using an R-tree.

R-Tree (and Family) R 2457

R

may consider the merging of two R-tree nodes that are

stored at the same level, reinsertion is more appealing

for the following reasons:

1. Reinsertion achieves the same result as merging.

Additionally, the algorithm for insertion is used.

Moreover, the pages required during reinsertion

are likely to be available in the buffer memory,

because they have been retrieved during the search

of the deleted entry.

2. As described, the insertion process tries to maintain

the good quality of the tree during the query opera-

tions. Therefore, it sounds reasonable to use rein-

sertion, because the quality of the tree may degrade

after several deletions.

In all R-tree variants that have appeared in the litera-

ture, tree traversals for any kind of operations are

executed in a way similar to the one applied in the

original R-tree. An exception is the R+-tree which

decomposes an object to smaller parts and therefore,
the search process requires some modifications in

comparison to other variants. Basically, the dynamic

variations of R-trees differ in how they perform splits

and how they handle insertions in general.

To demonstrate the way queries are executed, a

simple range query example is given. Figure 5 shows

the region of interest Q and the query asks for all

objects that intersect Q. The nodes of the R-tree are

labeled using the symbols A through G. The first

accessed node is A (the root). The entries of A are

tested for intersection with Q. Evidently, Q intersects

both R1 and R2, therefore both subtrees require further

investigation. The next accessed node is B which con-

tains the MBRs R3 and R4. Among them, only R3

intersects the region of interest, which means that

node D should be accessed next. Node D contains the

object MBRs r1, r2 and r3 and none of them intersects

Q. At this point, the search process backtracks to node

B and since no eligible entries are found it backtracks

to node A. Next, node C is accessed which contains the

2458R R-Tree (and Family)
MBRs R5 and R6. Only R5 intersects the region of

interest, and therefore node F is accessed next. By

inspecting the entries of F it is evident that both object

MBRs r7 and r8 intersect Q, and both are included in the

final answer. The search process backtracks to node C

and since no more promising branches can be fol-

lowed, it backtracks to node A. At this point, all

promising branches have been examined and the range

query execution terminates. The object MBRs that inter-

sectQ are r7 and r8. Note that if r7 and r8 correspond to

the real objects then no further actions should be taken.

Otherwise, the detailed geometry of these objects must

be tested for intersection with Q (refinement).

In the previous lines, the main issues related to

R-tree construction and search have been briefly

discussed. The interested reader is directed to [11] for

an exhaustive list of algorithmic techniques regarding

R-trees and related structures.
Key Applications

Geographic Information Systems

R-tree is an excellent choice for indexing spatial

data sets. Algorithms have been proposed to answer

fundamental query types like range queries, nearest-

neighbor queries and more complex queries like spatial

joins and closest pairs using R-trees to index the under-

lying data. Therefore, the structure is equipped with all

necessary tools to organize and index geographic

information.

Location-Based Services

Many location-aware algorithmic techniques are based

on the R-tree index or its enhancements. Queries in-

volving the current location of moving objects are

handled efficiently by R-tree variants and therefore

these schemes are a convenient tool for organizing

objects that potentially change their location.

Multimedia Database Systems

Since the R-tree index is capable of organizing multi-

dimensional data, it can be utilized as an indexing

scheme for multimedia data (e.g., images, audio). A

common approach to organize multimedia data is to

represent the complex multimedia information by

using feature vectors. These feature vectors can be

organized by means of R-trees, to facilitate similarity

search towards multimedia retrieval by content [5].
Future Directions
R-trees have been successfully applied to offer efficient

indexing support in diverse disciplines such as query

processing in spatial and spatio-temporal databases,

multi-attribute data indexing, preference query pro-

cessing to name a few. An important research direction

towards more efficient query processing in modern

systems is to provide efficient indexing schemes

towards distributed processing. A significant effort to-

wards this direction has been reported in [12], which

proposes a distributed R-tree indexing scheme. Taking

into account that huge volumes of multi-attribute data

are scattered across different systems, such distributed

schemes are expected to offer enormous help towards

efficient query processing. The challenge is to provide

efficient implementations of the corresponding centra-

lized algorithms developed so far, since the methods

used for centralized structures are likely to fail when

applied to distributed data.
Experimental Results
The interested reader will find a plethora of perfor-

mance evaluation results in the corresponding litera-

ture. Usually, when a new indexing scheme is proposed

it is experimentally compared to other methods. Al-

though these comparisons are not based on a common

framework, they reveal the advantages and disadvan-

tages of the indexing schemes under study. Usually,

the comparison is based on the number of disk accesses

and the computational time required to process

queries.
Data Sets
Performance evaluation results regarding R-trees and

related indexing schemes are produced based on real-

life as well as on synthetically generated data sets with

diverse distributions. The interested reader can browse

the data sets hosted in http://www.rtreeportal.org to

view some representative real-life data sets that are

consistently being used by researchers for comparison

purposes. Synthetically generated data sets follow dif-

ferent distributions (e.g., uniform, normal, Zipf) and

their use provide additional hints for the index perfor-

mance. Moreover, the use of synthetically generated

data sets offers the flexibility to choose the cardinality

of the data set, the distribution and the size of the

objects (e.g., extent of MBRs). Hence, the comparison

among indexing schemes is more reliable.

Rule-based Classification R 2459

R

URL to Code
R-tree portal (http://www.rtreeportal.org) contains the

code for most common spatial access methods (mainly

R-tree and variations), as well as data generators and

several useful links for researchers and practitioners

interested in spatial database issues.

Cross-references
▶Closest Pair Query

▶Nearest-Neighbor Query

▶Range Query

▶ Spatial Join

Recommended Reading
1. Beckmann N., Kriegel H.P., Seeger B. The R.*-tree: an efficient

and robust method for points and rectangles. In ACM SIGMOD

Conf. on Management of Data, 1990, pp. 322–331.

2. Berchtold S., Keim D.A., and Kriegel H.P. The X-tree: an index

structure for high-dimensional data. In Proc. 22th Int. Conf. on

Very Large Data Bases, 1996, pp. 28–39.

3. Chen L., Choubey R., and Rundensteiner E.A. Bulk-Insertions into

R-trees using the small-tree-large-tree approach. In Proc. 6th Int.

Symp. on Advances in Geographic Inf. Syst., 1998, pp. 161–162.

4. Choubey R., Chen L., and Rundensteiner E.A. GBI – A

generalized R-tree bulk-insertion strategy. In Proc. 6th Int.

Symp. Advances in Spatial Databases, 1999, pp. 91–108.

5. Faloutsos C. Searching Multimedia Databases by Content.

Kluwer, Dordecht, 1996.

6. Guttman A. R-trees: a dynamic index structure for spatial

searching. In ACM SIGMOD Conf. on Management of Data,

1984, pp. 47–57.

7. Kamel I. and Faloutsos C. On Packing R-trees. In ACM Int.

Conf. on Information and Knowledge Management, 1993,

pp. 490–499.

8. Kamel I. and Faloutsos C. Hilbert R-tree – an Improved R-tree

using fractals. In Proc. 20th Int. Conf. on Very Large Data Bases,

1994, pp. 500–509.

9. Leutenegger S., Edgington J.M., and Lopez M.A. STR – A Simple

and Efficient Algorithm for R-tree Packing. In Proc. 13th Int.

Conf. on Data Engineering, 1997, pp. 497–506.

10. Lin K., Jagadish H.V., and Faloutsos C. The TV-Tree: An

index structure for high-dimensional data. VLDB J. 3, 1994,

517–542.

11. Manolopoulos Y., Nanopoulos A., Papadopoulos A.N., and

Theodoridis Y. R-trees: Theory and Applications. Springer,

Berlin Heidelberg New York, 2006.

12. du Mouza C., Litwin W., and Rigaux P. SD-Rtree: A

Scalable Distributed R-tree. In Proc. 23rd Int. Conf. on Data

Engineering, 2007, pp. 296–305.

13. Roussopoulos N. and Leifker D. Direct spatial search on pictorial

databases using packed R-trees. ACM SIGMOD Rec. 14

(4):17–31, 1985.

14. Sakurai Y., Yoshikawa M., Uemura S., and Kojima H. Spatial

indexing of high-dimensional data based on relative approxima-

tion. VLDB J. 11(2):93–108, 2002.
15. Sellis T., Roussopoulos N., Faloutsos C. The R+-tree: a dynamic

index for multidimensional objects. In Proc. 13th Int. Conf. on

Very Large Data Bases, 1987, pp. 507–518.
Rule Bases

▶Closed Itemset Mining and Nonredundant Associa-

tion Rule Mining
Rule-based Classification

ANTHONY K. H. TUNG

National University of Singapore, Singapore,

Singapore

Definition
The term rule-based classification can be used to

refer to any classification scheme that make use of

IF-THEN rules for class prediction. Rule-based classi-

fication schemes typically consist of the following

components:

	 Rule Induction Algorithm This refers to the process

of extracting relevant IF-THEN rules from the data

which can be done directly using sequential cover-

ing algorithms [1,2,5–7,9,12,14–16] or indirectly

from other data mining methods like decision

tree building [11,13] or association rule mining

[3,4,8,10].

	 Rule Ranking Measures This refers to some values

that are used to measure the usefulness of a rule in

providing accurate prediction. Rule ranking mea-

sures are often used in the rule induction algorithm

to prune off unnecessary rules and improve effi-

ciency. They are also used in the class prediction

algorithm to give a ranking to the rules which will

be then be utilized to predict the class of new cases.

	 Class Prediction Algorithm Given a new record

with unknown class, the class prediction algorithm

will predict the class of the new record based on the

IF-THEN rules that are output by the rule induc-

tion algorithm. In many cases where multiple rules

could be matched by the new case, the rule ranking

measures will be used to either select the best best

matching rule based on the ranking or to compute

an aggregate from the multiple matching rules in

order to arrive at a final prediction.

2460R Rule-based Classification
Historical Background
Earlier rule-based classification methods includes AQ

[7], CN2 [1] and more recently RIPPER [2]. These

methods induce rules using the sequential covering

algorithm where. Rules are learned one at a time.

Decision tree classification methods like C4.5 [13]

can also be considered as a form of rule-based classifi-

cation. However, decision tree induction involved par-

allel rule induction, where rules are induced at the

same time. Even more recently, advances in association

rule mining had made it possible to mine association

rules efficiently in order to build a classifier [3,4,8,10]].

Such an approach can also be considered as rule-based

classification.
Foundations
The discussion first looks at how IF-THEN rules can

be used for classification before proceeding to look at

their ranking measures and induction algorithms.

1. Using IF-THEN Rules for Classification

An IF-THEN rule is typically an expression of the

form LHS) RHS where LHS is a set of conditions

that much be meet in order to derive a conclu-

sion represented by RHS. In much literature, LHS is

called the antecedent of the rule and RHS is called

the consequent \of the rule. For rule-based classifi-

cation, the rule antecedent typically consists of a conjunc-

tion(AND)of attribute tests while the rule consequent is

a class value. An example of a IF-THEN rule will be:

ðNo: of years � 6Þ and ðRank
¼ Associate ProfessorÞ) ðTenured ¼ YESÞ

A rule is say to cover a record if the record matches all

the antecedent conditions in the rule. Given a new

record with unknown class value, rules which cover the

record will be used to determine the class value of the

record. In the case where only one rule matches the tuple,

the class value at the consequent of such a rule will be

assigned as the predicted class for the tuple. On the other

hand, it is also possible for none of the rules to match, in

which case a default class value will be assigned.

For more complex situation in which multiple rules

are matched, there are usually two approaches:

(i) Top Rule Approach In this approach, all the rules

that matched the new record are ranked based on the

rule ranking measures. The consequent of the rule that
is rank top based on this approach will be the predicted

class value of the record.

(ii) Aggregation Approach In the aggregation ap-

proach, rules that match the new record are separated

into groups based on their consequent. For each of the

rule group with the same consequent, an aggregated

measure will be computed based on the rule ranking

measure for each rule in the group. Each group of rules

are then ranked based on their aggregated measure and

the consequent of the rule group that are ranked high-

est will be the predicted class value for the new record.

Note that the two approaches described above are

not mutually exclusive. For example it is possible to

pick the top-k rules based on the first approach and

then apply the aggregation approach on the top-k rules

so as to determine the final predicted class value.

2. Rule Ranking Measures

Rule ranking measures are important components in a

rule-based classification scheme because of two reasons.

First, they can improve the efficiency of constructing

and using the classifier. Rules that are not deemed to be

useful based on these measures can be pruned off during

rule induction making the process more efficient and

also reducing the number of rules that must be pro-

cessed during classification. Second, they can enhance

the effectiveness of a rule-based classifier by removing

rules which have weak prediction power.

Among the various rule ranking measure, the most

basic ones are coverage, accuracy and length of the rule.

Let n be the number of record in the training database,

nr be the number of records that match both the

antecedent and consequent of a rule r and nlr be the

number of records that are covered by r. The coverage

of a rule r, denotes as cov(r) is defined to be nlr ∕nwhile
the accuracy of rule r is defined to be nr ∕nlr and denote

as acc(r). A rule should have high coverage and accu-

racy in order to be useful for classification. Besides

coverage and accuracy, the length of a rule, len(r),

which is the number of terms at the antecedent of r,

is also important in determining the usefulness of a

rule in a rule-based classification scheme.

More complex rule ranking measures try to

integrate both coverage and accuracy. They include

information gain and likelihood ratio. Information

gain was proposed in FOIL (First Order Inductive

Learner) for comparing rules whose antecedents are

subset/superset of each other. Let r 0 be a rule which

Rule-based Classification R 2461

R

antecedent is a superset of r. FOIL assess the informa-

tion gain of r 0 over r to be

FOIL Gain ¼ p0 � log2
p0

p0 þ n0
� log2

p

p þ n

� �
ð1Þ

where p0, n0, p0 and n are the number of records that are

of positive class and negative class and which are cov-

ered by r 0 and r respectively. FOIL_gain favors rules

that have high accuracy and cover many positive tuples.

Besides, information gain, one can also use a statis-

tical test of significance to determine if the apparent

effect of a rule is not attributed to chance but instead

indicates a genuine correlation between attribute

values and classes. The test compares the observed

distribution among classes of tuples covered by a rule

with the expected distribution that would result if the

rule made predictions at random. Given m classes, let

pi be the probability distribution of class i within the

database and pi(r) be the probability distribution of

class i within the set of records that are covered by r.

The likelihood ratio is computed as:

Likelihood Ratio ¼ 2
Xm
1

piðrÞ logð
piðrÞ
pi

Þ ð2Þ

The likelihood ratio is then used to perform a signifi-

cant test against a w2 distribution with m-1 degrees of

freedom. The higher the likelihood ratio is, the more

likely that there is a significant difference in the num-

ber of correct predictions made by the rule in compar-

ison with a random guess that following the class

probability distribution of the database.

3. Rule Induction

Various forms of rule induction can be performed for

rule-based classification. Here, the sequential covering

algorithm will be described.
Algorithm 1 presents a generic algorithm for se-

quential covering rule induction. The algorithm itera-

tively learn one rule from the database and then

remove all records that are covered by the rule before

learning the next rule. This is done repeatedly until a

terminating condition is met. The terminating condi-

tion can varies across different algorithms but is typi-

cally linked to the fact no more interesting rules can be

induced once many of the records are removed from

the database. All rules that are induced during the

process are then output.

Each single invocation of LearnOneRule typically

involve a greedy search for interesting rule based on the

rule ranking measures. This is done by searching for

attribute conditions which will improve the rule rank-

ing measure when they are appended to the antecedent

of the rule. A single attribute condition that best im-

prove the measure is appended each time and this is

done repeatedly until the measure cannot be improved.

The rule will then be return as the output for

LearnOneRule.
Key Applications
Rule-based classification has been very popularly used

in machine learning for classification of data. It is

applicable whenever other classification scheme is

applicable.
Future Directions
Despite efforts to reduce the number of rules in a rule-

based classifier, the number of rules being used are still

substantially higher than what a human can handle.

More studies on new interestingness measure and

visualization techniques are needed to further enhance

the interpretability of a rule-based classifier.

2462R Rule-based Classification
Cross-references
▶Associative Classifiers

▶Association Rule Mining

▶Decision Tree Induction

▶ Sequential Covering Algorithm BBb
Recommended Reading
1. Clark P. and Niblett T. The CN2 induction algorithm. Mach.

Learn., 3(4):261–283, 1989.

2. Cohen W. Fast effective rule induction. In Proc. 12th Int. Conf.

on Machine Learning, 1995, pp. 115–123.

3. Cong G., Tan K., Tung A., and Xu X. Mining top-K covering

rule groups for gene expression data. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2005, pp. 670–681.

4. Cong G. Tung A.K.H., Xu X., Pan F., and Yang J. FARMER:

finding interesting rule groups in microarray datasets. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2004, pp.

143–154.

5. Domingos P. The RISE system: conquering without separating.

Tools with Artificial Intelligence, 1994. In Proc. 6th IEEE Int.

Conf. on Tools with Artificial Intelligence, 1994, pp. 704–707.

6. Furnkranz J. and Widmer G. Incremental reduced error

pruning. In Proc. 11th Int. Conf. on Machine Learning, 1994,

pp. 70–77.
7. Hong J., Mozetic I., and Michalski R. AQ15: Incremental

Learning of Attribute-Based Descriptions from Examples: The

Method and User’s Guide. Reports of the Intelligent Systems

Group, ISG, pp. 86–5.

8. Liu B., Hsu W., and Ma Y. Integrating Classification and

Association Rule Mining. In Proc. 4th Int. Conf. on Knowledge

Discovery and Data Mining, 1998.

9. Major J. and Mangano J. Selecting among rules induced from a

hurricane database. J. Intell. Inform. Syst., 4(1):39–52, 1995.

10. Pan F., Cong G., and Tung A.K.H. CARPENTER: Finding

closed patterns in long biological datasets. In Proc. 9th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,

2003.

11. Quinlan J. Simplifying decision trees. Int. J. Man–Machine

Studies, 27(3):221–234, 1987.

12. Quinlan J. Learning logical definitions from relations. Mach.

Learn., 5(3):239–266, 1990.

13. Quinlan J. C4.5: Programs for Machine Learning. Morgan

Kaufmann, San Mateo, CA, 1993.

14. Quinlan J. and Cameron-Jones R. FOIL: A Midterm Report. In

Proc. European Conf. on Machine Learning, 1993.

15. Smyth P. and Goodman R. An information theoretic approach

to rule induction from databases. IEEE Trans. Knowl. Data Eng.,

4(4):301–316, 1992.

16. Weiss S. and Indurkhya N. Predictive Data Mining: A Practical

Guide. Morgan Kaufmann, Los Altos, CA, 1998.

S

S@n

▶ Success at n
Safety and Domain Independence

RODNEY TOPOR

Griffith University, Nathan, QLD, Australia

Synonyms
Finiteness

Definition
The values in the relations of a relational database

are elements of one or more underlying sets called

domains. In practical applications, a domain may be

infinite, e.g., the set of natural numbers. In this case,

the value of a relational calculus query when applied

to such a database may be infinite, e.g., {n j n � 10}.

A query Q is called finite if the value of Q when applied

to any database is finite.

Even when the database domains are finite, all that is

normally known about them is that they are some finite

superset of the values that occur in the database. In this

case, the value of a relational calculus query may depend

on such an unknown domain, e.g., {x j 8yR(x, y)}.
A query Q is called domain independent if the value

of Q when applied to any database is the same for any

two domains containing the database values or, equiv-

alently, if the value of Q when applied to a database

contains only values that occur in the database.

The term safe query has been used ambiguously

in the literature. Often safe queries have been identified

with finite queries. Sometimes safe queries have been

members of a large, simple, decidable class of queries

that are guaranteed to be finite, or, in other cases,

domain independent. The use of word safe is preferred

to denote a large, simple, decidable class of queries
2009 Springer ScienceþBusiness Media, LLC
that are guaranteed to be domain independent and

hence, normally finite.

Obviously, it is desirable that queries be finite

and domain independent. Unfortunately, the classes

of finite queries and domain independent queries

are undecidable, which leads to a search for decidable

classes of queries that can represent all, or as many as

possible, finite (resp., domain independent) queries.
Historical Background
DiPaola [3] and independently Vardi [11] recognized

the desirability that queries be domain independent

and proved that the class of domain independent

queries was undecidable.

Many researchers then attempted to define decid-

able classes of queries that were guaranteed to be domain

independent. This work was summarized by Topor [9],

Kifer [6], Ullman [10], and Abiteboul et al. [1]. Many

different names such as range-restricted, allowed, safe,

with subtle differences, were used in these definitions.

Ullman [10], Van Gelder and Topor [12], and Abite-

boul et al. [1] gave algorithms for translating queries

in these classes into relational algebra for efficient

evaluation.

Other researchers such as Escobar-Molano et al.

[4], Hull and Su [5] and Suciu [8] attempted to define

decidable classes of queries, safe queries, that were

guaranteed to be finite in the presence of functions

(e.g., arithmetic functions) over infinite domains

(e.g., the natural numbers).

Whether or not there is a decidable class of

queries that can express every finite (resp., domain

independent) query depends critically on the particular

set of functions on the domains. Stolboushkin and

Taitslin [7] showed that, for many common domains,

there is a decidable class of queries that can express

every finite (resp. domain independent) query, but

that there do exist domains for which there is no such

decidable class. Benedikt and Libkin [2] extended and

generalized these results to a wider class of domains.

2464S Safety and Domain Independence
Foundations
Following standard practice in the literature, assume

that every database is defined over a single domain.

The use of multiple domains complicates the presenta-

tion without introducing any substantially new

concepts.

A domain D = (U, O) consists of an underlying set

U and a set of operations O on the set. The set may be

infinite or finite. The operations may be represented as

(infinite) relations over the set. Technically, each oper-

ation must be decidable. Often, one also wants the

first-order theory of the domain to also be decidable.

These conditions are satisfied in most common cases.

Examples of such domains include (a) any finite set

of symbols possibly with an equality operator, (b) the

set of natural numbers with addition and linear order

operators, and (c) the set of finite strings over some

finite alphabet with concatenation and lexicographic

order operators.

A database scheme S is a finite set of pairs {(Si, pi)j
1 � i � k}, where each Si is a relation name with arity

pi � 1.

Given a domain D = (U, O), a database (instance) I

of a scheme {(Si, pi) j 1 � i � k} over D is a family of

finite sets {Ri j 1 � i � k}, where each Ri � Upi .

A query over a database scheme is a first-order

formula constructed from the relations in the scheme

and the operators (and constants) in its domain. That

is, the domain relational calculus is used as our query

language.

A query Q over a database scheme S and domain

D = (U, O) is called finite if, for every database instance

I of S over D, the value of Q when applied to I is a finite

relation over U.

For example, over the domain of natural numbers,

the query Q1 = {n j n þ 1 � 10} is finite, but the query

Q2 = {n j 10 � n þ 1} is infinite.

It is desirable that queries be finite so that they

may be composed and so that their results may be

displayed.

The active domain of a database I is the finite set

of domain elements that occur in the relations of I.

A query Q over a database scheme S and domain

D = (U, O) is called domain independent (d.i.) if, for

every database instance I of S over D, the value of Q

when applied to I contains only elements in the active

domain of I. Equivalently, a query Q is domain inde-

pendent if and only if, for every database instance I,
and for every two extensions U1 and U2 of the active

domain of D, the value of Q when applied to I over U1

equals the value of Q when applied to I over U2.

For example, over a finite domain of symbols with-

out equality, the query Q3 = {x j ∃y(P(x) ∨ R(y))} is

not domain independent because, when applied to

any database instance over this domain, the value

consists all elements x that occur in P if R is empty,

and all elements of the domain otherwise.

It is desirable that queries be domain independent

so that their values are predictable despite the possibly

unknown underlying domain.

It is natural to ask about the difference between

finiteness and independence.

Clearly, if the domain is finite, all queries are finite,

but the query Q3 above is still not domain

independent.

However, if the domain is infinite and the only

operation on the domain is equality, then a query is

finite if and only if it is domain independent [7].

Further, if the domain is infinite, even if there are

operations other than equality, every domain indepen-

dent query is also finite (as the active domain of every

database instance is finite).

More interestingly, if the domain is the set of natu-

ral numbers and the only operation on the domain is

linear order, then the query

Q4 ¼ fx j 8yðDðyÞ ! x > yÞ
^ 8yðy < x ! 9zðDðzÞ ^ z � yÞÞ;

where D(y) is true if and only if y is in the active

domain of the database, defines the smallest integer

greater than all the active domain elements, and is

hence finite but not domain independent [7].

Next, it is natural to ask whether it is possible to

effectively recognize finite or domain independent

queries. The answer is no. By reduction from standard

undecidable problems in first-order logic, DiPaola [3]

and, independently, Vardi [11] showed that, over any

infinite domain, if the database scheme contains at

least one relation of arity 2 or more, the classes of finite

and domain independent queries are both undecid-

able. This undecidability result extends to domains

such as the natural numbers with addition and linear

order operations.

However, Benedikt and Libkin [2] show that finite-

ness (resp., d.i.) is decidable for Boolean combinations

Safety and Domain Independence S 2465

S

of conjunctive queries for a large class of domains over

the real numbers.

Given that it is not possible to recognize whether or

not a given query is finite (resp., d.i.) over a given

domain D, two further questions arise naturally. First,

is there is a decidable class of queries over D that can

express all finite (resp., d.i.) queries over D? That is, is

there a decidable class C of queries over D such that,

for every finite (resp., d.i.) query Q there exists an

equivalent query Q 0 in C ? Second, can a large, simple,

decidable class C 0 of queries be defined such that every

query in C0 is finite (resp., d.i.)? Historically, the sec-

ond question was considered first, but they were con-

sidered in the order given.

For many domains, there is a decidable class of

queries that can express every finite (resp., d.i.) query.

Stolboushkin et al. [7] say that the finite (resp. d.i.)

queries hence have an ‘‘effective syntax’’ for such

domains. Examples of domains for which the finite

(resp., d.i.) queries have an effective syntax include

(a) an infinite domain of symbols in which the only

operation is equality, (b) the domain of natural num-

bers with only the linear order operation, (c) the do-

main of natural numbers with the addition and linear

order operations (Pressburger arithmetic), and (d)

the domain of finite strings over a finite alphabet

with the lexicographic order operation [7].

However, Stolboushkin and Taitslin [7] show that

it is possible to construct an (artificial) domain with

decidable operations and decidable first-order theory

that does not have an effective syntax for the finite

(resp., d.i.) queries. They also give an example of a

domain with undecidable first-order theory (arithme-

tic) that has an effective syntax for the finite (resp., d.i.)

queries.

Given the undecidability results above, many

researchers, e.g., [1,6,9,10]) have defined specific, de-

cidable classes of queries that are guaranteed to be

finite (resp. d.i.). Researchers have attempted to make

these classes both simple and as large as possible. In

many cases, they showed that queries in their class

could express all finite (resp. d.i.) queries. These classes

were given names such as safe, range-restricted,

allowed, and many others. Most researchers restricted

attention to domains with equality as the only opera-

tion, but some extended their work to the domain of

the natural numbers with arithmetic and linear

order operations, and some, e.g., [2,4,5]) considered
more arbitrary domains. Others, e.g., [9]) applied these

ideas to the domain independence of deductive

databases.

The basic idea of these definitions is to ensure that

every free variable in the query is somehow bound

to an element in the active domain of the database

or, in the presence of nontrivial operations, to one

of a finite number of domain elements. In the absence

of operations, this is typically done by ensuring that

every free or existentially quantified variable in a query

occurs positively in its scope, every universally quanti-

fied variable occurs negatively in its scope, and that the

same free variables occur in every component of a

disjunction. For example, the query {x j P(x) ∧8y(Q
(x, y) ! R(x, y))} is safe according to these ideas.

The equality operation is used to propagate a positive

variable (or constant) from one side of the equality to

the other. For example, the query {x j P(y) ∧ x = y} is

safe according to this idea. Finiteness dependencies

are used with arithmetic operations over the natural

numbers of concatenation operations over strings to

propagate a positive variable (or constant) from one

or more positions in the operation to one or more

other positions. For example, the query {x j P(z) ∧ x

þ y = z ∧ ¬Q(y)} is safe according to this idea. With

deductive databases or, equivalently, with Datalog

queries, it is necessary to require that every variable

in the head of a rule occurs positively in the body of a

rule and that the body of a rule is itself safe. In every

case, the details of the definitions are too complicated

to present here.

Finally, as relational calculus queries are evaluated

in real database systems by translation into relational

algebra, many researchers have studied techniques

for translating safe queries (as defined in the previous

two paragraphs) into equivalent relational algebra

expressions. (A basic result that many researchers

proved is that the class of safe queries is equivalent to

the class of relational algebra queries.) These transla-

tions typically involve a sequence of transformations

into increasingly restricted forms, until the translation

into relational algebra is direct. Again, the details of

the transformations too complicated to present here.

See [1,10,12] for more information.

Key Applications
The concepts of finiteness, domain independence and

safety are fundamental to our understanding of

2466S Sagas
database queries over different domains. Tools that

generate queries over specific domains should only

generate safe queries. Query processors should check

that input queries over specific domains are safe and

should report warnings otherwise.
Future Directions
These questions of finiteness, domain independence

and safety are well-understood and largely resolved

for relational databases. However, additional work

extending these ideas and methods to other data

models and query languages may still be required.
Cross-references
▶Complete Query Languages

▶Conjunctive Query Language

▶Constraint Query

▶Query Language

▶Relational Algebra

▶Relational Calculus

▶Relational Model
Recommended Reading
1. Abiteboul R., Hull R., and Vianu V. Foundations of Databases,

Chapter 5. Addison-Wesley, Reading, MA, 1995, pp. 70–104.

2. Benedikt M. and Libkin L. Safe constraint queries, SIAM

J. Comput., 29:1652–1682, 2000.

3. DiPaola R.A. The recursive unsolvability of the decision problem

for the class of definite formulas. J. ACM, 16(2):324–327, 1969.

4. Escobar-Molano M., Hull., and Jacobs D. Safety and translation

of calculus queries with scalar functions. In Proc. 12th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1993, pp. 253–264.

5. Hull R. and Su J. Domain independence and the relational

calculus. Acta Inform., 31:513–524, 1994.

6. Kifer M. On Safety, Domain Independence, and Capturability

of Database Queries (Preliminary Report). In Proc. 3rd Int.

Conf. on Data and Knowledge Bases, 1988, pp. 405–415.

7. Stolboushkin A.P. and Taitslin M.A. Finite queries do not have

effective syntax, Inform. Comput., 153(1):99–116, 1996.

8. Suciu D. Domain-independent queries on databases with exter-

nal functions. Theor. Comput. Sci., 190(2):279–315, 1998.

9. Topor R.W. Domain independent formulas and databases.

Theor. Comput. Sci., 52(3):281–306, 1987.

10. Ullman J.D. Principles of Database and Knowledge-Base

Systems, Volume I, Sections 3.2 and 3.8. Computer Science

Press, 1988, pp. 100–106 and 145–156.

11. Vardi M.Y. The decision problem for database dependencies.

Inform. Process. Lett., 13(5):251–254, 1981.

12. Van Gelder A. and Topor R.W. Safety and translation of

relational calculus aueries. ACM Trans. Database Syst., 16(2):

235–278, 1981.
Sagas

KENNETH SALEM

University of Waterloo, Waterloo, ON, Canada

Definition
A saga [3] is a sequence of atomic transactions T1,...,Tn

for which the following execution guarantee is made.

Either the component transactions Ti will all commit

in the order

T1 T2;:::;Tn

in which case that saga is said to have committed, or

one of the transaction sequences

T1;:::;Tj Cj ;:::;C1

will be executed (for some 0� j< n), in which case the

saga is said to have aborted. The transactions Ci are

compensating transactions for the corresponding saga

transactions Ti. Each transaction Ti in a saga must have

a corresponding compensating transaction, which is

responsible for undoing the Ti’s effects.

Key Points
A saga is a type of extended transaction model [1] Each

component transaction in a saga is executed atomi-

cally, but the saga itself is not atomic. Effects of the

component transactions are visible to other operations

as soon as those transactions commit, which may be

well before the saga has finished.

The saga model guarantees execution of a com-

pensating transaction for each component transaction

that has already committed at the time that a saga

aborts. This guarantee is known as semantic atomicity

[2]. The saga model does not specify the nature of

these compensations. Rather, the definition or identifi-

cation of appropriate compensations is an application-

specific task.

Sagas were originally proposed as a weaker substitute

for the traditional atomic transactionmodel in situations

for which atomicity would be expensive to enforce, e.g.,

when the traditional transaction would be long-running.

Sagas and other extended transaction models have since

found a variety of applications, such asworkflow systems.

Cross-references
▶Compensating Transactions

▶ Extended Transaction Model

SAN File System S 2467
▶Open Nested Transaction Models

▶ Semantic Atomicity

▶Workflow Management
Recommended Reading
1. Chrysanthis P.K. and Ramamritham K. Synthesis of extended

transaction models using ACTA. ACM Trans. Database Syst.,

19(3):450–491, 1994.

2. Garcia-Molina H. Using semantic knowledge for transaction

processing in a distributed database. ACM Trans. Database

Syst., 8(2):186–213, 1983.

3. Garcia-Molina H. and Salem K. Sagas. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1987, pp. 249–259.
Samba

▶ Storage Protocols
Sampling

▶Matrix Masking
S

Sampling Techniques for Statistical
Databases

AMARNATH GUPTA

University of California-San Diego, La Jolla, CA, USA

Definition
A sampling technique is a method by which one

inspects only a small portion of data from a database

to reduce the time to compute an aggregate query, but

simultaneously ensuring that result computed on the

sample faithfully represents the true results of the

query for the entire data population.

Example: Acceptance-Rejection sampling (AR sam-

pling) is sampling technique.

Key Points
Sampling is used in a database for different reasons

such as (i) to estimate the results of aggregate queries
(e.g., SUM, COUNT, or AVERAGE), (ii) to retrieve a

sample of records from a database query for subsequent

processing, (iii) for internal use by the query optimizer

for selectivity estimation, (iv) to provide privacy protec-

tion for records on individuals contained in statistical

databases. It has been determined that fixed size random

sampling of data does not yield a true representation of

the population. Acceptance/rejection (A/R) sampling is

used to construct weighted samples in which the inclu-

sion probabilities of a record are proportional to some

arbitrary weight. Reservoir sampling is a form of se-

quential scan sampling algorithms which are used on

files of unknown size to perform on-the-fly sampling

from the results of a query. Methods have been devel-

oped to perform sampling not only from raw records,

but also from B+-trees, hash structures, spatial data

structures and so on.
Cross-references
▶On-line Analytical Processing

▶ Privacy

▶ Secure Database Development

▶ Summarizability
Recommended Reading
1. Olken F. and Rotem D. Random sampling from databases: a

survey. Stat. Comput., 5:25–42, 1995.
SAN

▶ Storage Area Network
SAN File System

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Synonyms
Shared-Disk File System

Definition
The term SAN file system refers to a file system which

transfers file data directly to/from a storage device

through a SAN. A SAN file system often has the

2468S SARBAC
capability of coherency control such that multiple ser-

vers may share the file system volume and simulta-

neously access files stored in the volume. The term

shared disk file system is also used to refer to a SAN

file system.
Key Points
In contrast to local file systems, SAN file systems

allow multiple servers to share file system volumes

directly and to access the same file simultaneously. To

achieve this, the SAN file system has the capability of

coherency control between servers. File system soft-

ware running on each server may cache file data in a

main memory buffer. Suppose that two servers, A

and B, have cached the same file X. If A and B were

to update X independently at the same time, two

versions of X might be generated. The SAN file sys-

tem needs to let each server be aware of the other

servers. When server A updates a fragment of the file

X, server B must be informed of a message of cache

invalidation or changed information regarding the

file X. Some SAN file systems exchange mutual exclu-

sion messages to synchronize write accesses between

servers.

The beneficial property of SAN file systems is high

performance in comparison with network file systems

such as NFS and CIFS. SAN file systems can directly

transfer file data between servers and storage devices

e.g., on a high-speed Fibre Channel network. In addi-

tion, SAN file systems do not need a central file server,

which often becomes a bottleneck.

A variety of SAN file systems have been proposed

and some of them have been deployed mainly into

cluster computer systems often used to run scientific

calculations. Recently, SAN file systems are also used as

back-end file systems for large-scale enterprise NAS

systems.
Cross-references
▶ Storage Network Architectures
Recommended Reading
1. Barrios M., Jones T., Kinnane S., Landzettel M., Al-Safran S.,

Stevens J., Stone C., Thomas C., and Troppens U. Sizing and

tuning GPFS. IBM Redbook. SG24–5610–00, 1999.

2. Burns R.C., Rees R.M., and Long D.D.E. Semi-preemptible

locks for a distributed file system. In Proc. 19th IEEE Int.

Performance, Computing and Communications Conf., 2000,

pp. 397–404.
3. Soltis S.R., Ruwart T.M., and O’Keefe M.T. The global file sys-

tem. In Proc. 15th NASA Goddard Conference on Mass Storage

Systems, 1996, pp. 319–342.
SARBAC

▶Administration Model for RBAC
SAS

▶ Storage Protocols
SATA

▶ Storage Protocols
SBQL

▶ Stack-Based Query Language
SCA

▶ Service Component Architecture (SCA)
Scalable Classification Tree
Construction

▶ Scalable Decision Tree Construction
Scalable Database Replication

▶Replication for Scalability
Scalable Decision Support Systems
High Performance Data
Warehousing

▶ Parallel and Distributed Data Warehouses

Scalable Decision Tree Construction S 2469
Scalable Decision Tree Construction

JOHANNES GEHRKE

Cornell University, Ithaca, NY, USA

Synonyms
Scalable classification tree construction; Scalable

top-down decision tree construction; Tree-structured

classifier
S

Definition
Decision trees are popular classification models. Deci-

sion trees are usually contructed greedily top-down

from a training dataset. In many modern applications,

the training dataset is very large and thus decision tree

construction algorithms that scale with the size of the

training dataset are needed.

Historical Background
Decision trees, in particular classification trees, have a

long history both in the statistics [4] and the machine

learning communities [12,13]. Scalability was not

much a concern until the advent of data mining

brought training datasets that were orders of magni-

tude larger than in traditional applications in machine

learning and statistics.

Scalability concerns in classification started with

the work by Agrawal et al. who presented an interval

classfier that generated classification functions that

distinguishes the different groups of training records

based on their class label [1]. A follow-up paper intro-

duces scalable construction of classification models as

one of the three important classes of database mining

problems [2], the other two being associations and

sequences. The first scalable classification tree con-

struction algorithm in the literature was SLIQ [9],

which was then quickly followed by more algorithms

that improved performance and allowed scaling up a

more general class of algorithms from the machine

learning and statistics literature [5,6,14–17].

Foundations
The input to a classification or regression problem is a

dataset of training records (also called the training

database). Each record has several attributes. Attributes

whose domain is numerical are called numerical attri-

butes, whereas attributes whose domain is not numeri-

cal are called categorical attributes. A categorical
attribute takes values from a set of categories. Some

authors distinguish between categorical attributes that

take values in an unordered set (nominal attributes)

and categorical attributes having ordered domains (or-

dinal attributes).

There is one distinguished attribute called the de-

pendent attribute. The remaining attributes are called

predictor attributes; they are either numerical or cate-

gorical. If the dependent attribute is categorical, the

problem is referred to as a classification problem and

the dependent attribute is called the class label. The

elements of the domain of the class label attribute will

also be denoted as class labels; the meaning of the term

class label will be clear from the context. If the depen-

dent attribute is numerical, the problem is called a

regression problem. This entry concentrates on classifi-

cation problems.

The goal of classification is to build a concise

model of the distribution of the dependent attribute

in terms of the predictor attributes. The resulting

model is used to assign values to a database where the

values of the predictor attributes are known but the

value of the dependent attribute is unknown. This

entry surveys research on scalable classification tree

construction from the database literature. An excellent

survey of other aspects of decision tree construction

can be found in Murthy [11].
Problem Definition

Let X1,...,Xm, C be random variables where Xi has

domain dom(Xi); assume without loss of generality

that dom(C) = {1, 2,...,J}. A classifier is a function

d : domðX1Þ � :::� domðXmÞ 7! domðCÞ:

Let P(X 0,C 0) be a probability distribution on dom(X1)

�...� dom(Xm)� dom(C) and let t = ht.X1,...,t.Xm, t.Ci
be a record randomly drawn from P, i.e., t has probabili-

ty P(X 0,C 0) that ht.X1,...,t.Xmi 2 X 0 and t.C 2 C 0.

Define the misclassification rate Rd of classifier d to be

P(d(ht.X1,...,t.Xmi) 6¼ t.C). The training database D is a

random sample from P, the Xi correspond to the predic-

tor attributes and C is the class label attribute.

A decision tree is a special type of classifier. It is a

directed, acyclic graph T in the form of a tree. The

focus here is on binary decision trees although these

techniques can be generalized to non-binary decision

trees. If a node has no outgoing edges it is called a leaf

node, otherwise it is called an internal node. Each leaf

2470S Scalable Decision Tree Construction
node is labeled with one class label; each internal node

n is labeled with one predictor attribute Xn called the

splitting attribute. Each internal node n has a predicate

qn, called the splitting predicate associated with it. If Xn

is a numerical attribute, qn is of the form Xn � xn,

where xn 2 dom(Xn); xn is called the split point at node

n. If Xn is a categorical attribute, qn is of the form Xn 2
Yn where Yn � dom(Xn); Yn is called the splitting subset

at node n. The combined information of splitting

attribute and splitting predicates at node n is called

the splitting criterion of n. An example training data-

base is shown in Fig. 1, and a sample classification tree

is shown in Fig. 2.

With each node n 2 T there is assciated a predicate

f n : domðX1Þ � :::� domðXmÞ 7! ftrue;falseg;

called its node predicate as follows: For the root node n,

fn ¼def true. Let n be a non-root node with parent p who-

se splitting predicate is qp. If n is the right child of p,

define fn ¼def fp ∧ qp; if n is the right child of p, define

fn ¼def fp ∧¬qp. Informally, fn is the conjunction of all

splitting predicates on the internal nodes on the path

from the root node to n. Since each leaf node n 2 T is

labeled with a class label, n encodes the classification

rule fn ! c, where c is the label of n. Thus the tree T

encodes a function T : dom(X1) �...�dom(Xm) 7!
dom(C) and is therefore a classifier, called a decision

tree classifier. (Both the tree as well as the induced

classifier will be denoted by T; the semantics will be

clear from the context.) For a node n 2 T with parent

p, the family of tuples Fn is the set of records in D that
Scalable Decision Tree Construction. Figure 1. Example

training database.
follows the path from the root to n when being pro-

cessed by the tree, formally

Fn ¼def ft 2 D : f nðtÞg:

Also define Fn
i for i 2 {1,...,J} as the set of records in Fn

with class label i, formally

Fi
n ¼def ft 2 D : f nðtÞ ^ t :C ¼ ig:

The problem of classification tree construction can

now be stated formally: Given a dataset D = {t1,...,tn}

where the ti are independent random samples from an

unknown probability distribution P, find a decision

tree classifier T that minimizes the misclassification

rate RT(P).

A classification tree is usually constructed in two

phases. In phase one, the growth phase, an overly large

decision tree is constructed from the training data.

In phase two, the pruning phase, the final size of

the tree T is determined with the goal to minimize

RT. It is possible to interleave growth and pruning

phase for performance reasons as in the PUBLIC

Pruning Method described later in this entry. Nearly

all decision tree construction algorithms grow the tree

top-down in the following greedy way: At the root

node n, the training database is examined and a

splitting criterion for n is selected. Recursively, at a

non-root node n, the family of n is examined and

from it a splitting criterion is selected. This schema is

depicted in Fig. 3.

During the tree growth phase, two different algo-

rithmic issues need to be addressed. The first issue is

to devise an algorithm such that the resulting tree T

minimizes RT; this part of the overall decision tree

construction algorithm is called the split selection met-

hod. The second issue is to devise a data access method

for data management in the case that the training

database is very large. During the pruning phase a

third issue arises, namely how to find a good estimatorcRT of RT and how to efficiently calculate cRT .

A popular class of split selection methods are

impurity-based split selection methods [4,12]. Impurity-

based split selection methods find the splitting criterion

byminimizing a concave impurity function impy such as

the entropy [12] or the gini-index [4]. (Arguments

for the concavity of the impurity function can be

found in Breiman et al. [4].) The most popular split

selection methods such as CART [4] and C4.5 [12] fall

Scalable Decision Tree Construction. Figure 2. Magazine Subscription Example Classification Tree.

Scalable Decision Tree Construction. Figure 3.

Classification tree construction.

Scalable Decision Tree Construction S 2471

S

into this group. At each node, all predictor attributes

X are examined and the impurity impy of the best split

on X is calculated. The final split is chosen such that

the combination of splitting attribute and splitting

predicates minimizes the value of impy.

Data Access

There exist many scalable data access methods for

classification tree construction. Some of the issues in

scalable decision tree construction are introduced by

briefly discussing one method, RainForest [6].

An examination of the split selection methods in

the literature reveals that the greedy schema can be

refined to the generic RainForest Tree Induction Schema

shown in Fig. 4. A broad class of split selection meth-

ods, namely those that generate splitting criteria in-

volving a single splitting attribute, proceed according

to this generic schema. Split selection methods that

generate linear combination splits cannot be captured

by RainForest. Consider a node n of the decision tree.

The split selection method has to make two decisions

while examining the family of n: (i) It has to select the

splitting attribute X, and (ii) it has to select the

splitting predicates on X. Once decided on the splitting

criterion, the algorithm is recursively applied to each

of the children of n. Denote by SS a representative

split selection method.

Note that at a node n, the utility of a predictor

attribute X as a possible splitting attribute is examined

independent of the other predictor attributes: The

sufficient statistics are the class label distributions for

each distinct attribute value of X. Define the AVC-set of

a predictor attribute X at node n to be the projection
of Fn onto X and the class label where counts of the

individual class labels are aggregated. Denote the AVC-

set of predictor attribute X at node n by AVCn(X). (The

acronym AVC stands for Attribute-Value, Classlabel.)

To give a formal definition, let an,X,x,i be the number of

records t in Fn with attribute value t.X = x and class

label t.C = i. Formally,

an;X;x;i ¼
def jft 2 Fn : t :X ¼ x ^ t :C ¼ igj:

For a predictor attribute X, let S ¼def dom(X) �NJ where

N denotes the set of natural numbers. Then

AVCnðXÞ ¼def fðx; a1;:::;aJ Þ 2 S : 9t 2 Fn :

ðt :X ¼ x ^ 8i 2 f1;:::;Jg : ai ¼ an;X;x;i Þg:

Define the AVC-group of a node n to be the set of the

AVC-sets of all predictor attributes at node n. Note that

the size of the AVC-set of a predictor attribute X at

Scalable Decision Tree Construction. Figure 4.

RainForest refinement.
Scalable Decision Tree Construction. Figure 5.

Rainforest AVC-sets.

Scalable Decision Tree Construction. Figure 6.

Rainforest AVC-sets of the left child of the root node.

2472S Scalable Decision Tree Construction
node n depends only on the number of distinct attri-

bute values of X and the number of class labels in Fn.

As an example, consider the training database shown

in Fig. 1. The AVC group of the root node is depicted in

Fig. 5. Assume that the root node splits as shown in

Fig. 2. The AVC-group of the left child node of the root

node is shown in Fig. 5 and the AVC-group of the

left child node of the root node is shown in Fig. 6.

If the training database is stored inside a database

system, the AVC-set of a node n for predictor attribute

X can be retrieved through a simple SQL-query:

SELECT D:X;D:C;COUNTð�Þ
FROM D

WHERE fn

GROUP BY D;X;D:C

In order to construct the AVC-sets of all predic-

tor attributes at a node n, a UNION-query would be

necessary. (In this case, the SELECT clause needs to

retrieve also some identifier of the attribute in order

to distinguish individual AVC-sets.) Graefe et al. observe

that most database systems evaluate the UNION-query

through several scans and introduce a new operator

that allows gathering of sufficient statistics in one

database scan [7].

Based on this observation, there exist several algo-

rithms that construct as many AVC-sets as possible in

main memory while minimizing the number of scans

over the training database. As an example of the sim-

plest such algorithm, assume that the complete AVC-

group of the root node fits into main memory. Then

the tree can be constructed according to the following

simple schema: Read the training database D and con-

struct the AVC-group of the root node n in-memory.

Then determine the splitting criterion from the AVC-

sets through an in-memory computation. Then make a

second pass over D and partition D into children
partitions D1 and D2. This simple algorithm reads the

complete training database twice and writes the train-

ing database once per level of the tree; more sophisti-

cated algorithms are possible [6]. Experiments show

that RainForest outperforms SPRINTon the average by

a factor of three. Note that RainForest has a large

memory requirement: RainForest is only applicable if

the AVC-group of the root node fits in-memory (this

requirement can be relaxed through more sophisticat-

ed memory management [6]).
Tree Pruning

The pruning phase of classification tree construction

decides on the tree of the right size in order to prevent

overfitting to minimize the misclassification error

RT(P). In bottom-up pruning, in the tree growth phase

the tree is grown until the size of the family of each

leaf node n falls below a user-defined threshold c;

the pruning phase follows the growth phase. Examples

of bottom-up pruning strategies are cost-complexity

pruning, pruning with an additional set of records

called a test set [4], and pruning based on the

MDL-principle [10]. In top-down pruning, during

the growth phase a statistic sn is computed at each

node n, and based on the value of sn , tree growth at

node n is continued or stopped [13]. Bottom-up prun-

ing results usually in trees of higher quality [4,8,13],

:

Scalable Decision Tree Construction S 2473

S

but top-down pruning is computationally more effi-

cient since no parts of the tree are first constructed and

later discarded.

The section describes the PUBLIC pruning algo-

rithm [14], an algorithm that integrates bottom-up

pruning into the tree growth phase; thus PUBLIC

preserves the computational advantages of top-

down pruning while preserving the good properties

of top-down pruning. PUBLIC uses pruning based

on the MDL principle [10], which sees the classifica-

tion tree as a means to encode the values of the class

label attribute given the predictor attributes X1,...,

Xm. The MDL principle states that the ‘‘best’’ classifi-

cation tree is the tree can be encoded with the least

number of bits. Thus there needs to be an encoding

schema that allows encoding of any binary decision

tree. Given an encoding schema, a classification tree

can be pruned by selecting the subtree with minimum

code length.

In the MDL encoding schema for binary splitting

predicates from Mehta et al. [10], each node requires

one bit to encode its type (leaf or intermediate

node). An intermediate node n needs to encode its

splitting criterion, consisting of the splitting attribute

X (log m bits since there are m predictor attributes)

and splitting predicate. Let X be the splitting attribute

at node n and assume that X has v different attribute

values. If X is a numerical attribute, the split will be of

the form X � c. Since c can take v � 1 different values,

encoding of the split point c requires log(v � 1) bits. If

X is a categorical attribute, the split will be of the form

X 2 Y . Since Y can take 2v � 2 different values, the

encoding requires log(2v� 2) bits. Denote the cost of a

split at a node n by CSplit(n). For a leaf node n, Metha

et al. show that the cost of encoding the leaf is [10]:

Cleaf ðnÞ ¼
X
i

ni log
jFnj
jFi

nj
þ k � 1

2
log

jFnj
2

þ log
pk=2

Gðk=2Þ

Given this encoding schema, a fully grown tree can

be pruned bottom-up by deciding for each node

whether it should be pruned or whether it should

remain [10].

The PUBLIC algorithm integrates the building

and pruning phase by computing a lower bound L(n)

on the MDL-cost of any subtree rooted at a node n. A

trivial lower bound is L(n) = 1 (for the encoding of n).

Rastogi and Shim give in their PUBLIC algorithmsmore

sophisticated lower bounds including the following:
PUBLIC Lower Bound [14]

Consider a (sub-)tree T with s > 1 nodes rooted at

node n. Then the cost C(n) of encoding T has the

following lower bound:

CðnÞ � 2 	 ðs � 1Þ þ 1þ ðs � 1Þ 	 logmþ
Xk
i¼sþ1

jFi
nj

With this lower bound the MDL Pruning Schema

can be used even during top-down tree construction.

PUBLIC distinguishes two different types of leaf nodes:

‘‘True’’ leaf nodes that are the result of pruning or that

cannot be expanded any further, and ‘‘intermediate’’

leaf nodes n, where the subtree rooted at n might be

grown further. During the growth phase, the PUBLIC

Pruning Schema is executed from the root node of the

tree. Rastogi and Shim show experimentally that inte-

gration of pruning with the growth phase of the tree

results in significant savings in overall tree construc-

tion. More sophisticated ways of integrating tree

growth with pruning in addition to tighter lower

bounds are possible [14].

Key Applications
Classification has a wide range of applications, includ-

ing scientific experiments, medical diagnosis, fraud

detection, credit approval, and target marketing.

Cross-references
▶Classification

▶Data Mining

Recommended Reading
1. Agrawal R., Ghosh S.P., Imielinski T., Iyer B.R., and Swami A.N.

An interval classifier for database mining applications. In Proc.

18th Int. Conf. on Very Large Data Bases, 1992. pp. 560–573.

2. Agrawal R., Imielinski T., and Swami A.N. Database mining: a

performance perspective. IEEE Trans. Knowl. Data Eng., 5(6):

914–925, 1993.

3. Alsabti K., Ranka S., and Singh V. Clouds: a decision tree

classifier for large datasets. In Proc. 4th Int. Conf. on Knowledge

Discovery and Data Mining, 1998, pp. 2–8.

4. Breiman L., Friedman J.H., Olshen R.A., and Stone C.J. Classifi-

cation and regression trees. Wadsworth, Belmont, 1984.

5. Gehrke J., Ganti V., Ramakrishnan R., and Loh W.-Y. BOAT –

Optimistic decision tree construction. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1999, pp. 169–180.

6. Gehrke J., Ramakrishnan R., and Ganti V. Rainforest – a

framework for fast decision tree construction of large datasets.

Data Min. Knowl. Dis., 4(2/3):127–162, 2000.

7. Graefe G., Fayyad U., and Chaudhuri S. On the efficient

gathering of sufficient statistics for classification from large

2474S Scalable Replication
SQL databases. In Proc. 4th Int. Conf. on Knowledge Discovery

and Data Mining, 1998, pp. 204–208.

8. Lim T.-S., Loh W.-Y., and Shih Y.-S. A comparison of prediction

accuracy, complexity, and training time of 33 old and new

classification algorithms. Mach. Learn., 48:203–228, 2000.

9. Mehta M., Agrawal R., and Rissanen J. SLIQ: A fast scalable

classifier for data mining. In Advances in Database Technology,

Proc. 5th Int. Conf. on Extending Database Technology, 1996.

10. Mehta M., Rissanen J., and Agrawal R. MDL-based decision tree

pruning. In Proc. 1st Int. Conf. on Knowledge Discovery and

Data Mining, 1995.

11. Murthy S.K. Automatic construction of decision trees from data:

a multi-disciplinary survey. Data Min. Knowl. Dis., 2(4):

345–389, 1998.

12. Quinlan J.R. Induction of decision trees.Mach. Learn., 1:81–106,

1986.

13. Quinlan J.R. C4.5: Programs for Machine Learning. Morgan

Kaufman, 1993.

14. Rastogi R. and Shim K. PUBLIC: a decision tree classifier that

integrates building and pruning. In Proc. 24th Int. Conf. on Very

Large Data Bases, 1998, pp. 404–415.

15. Shafer J., Agrawal R., and Mehta M. SPRINT: a scalable parallel

classifier for data mining. In Proc. 22th Int. Conf. on Very Large

Data Bases, 1996.

16. Sreenivas M.K., AlSabti K., and Ranka S. Parallel out-of-core

decision tree classiers. In Advances in Distributed and Parallel

Knowledge Discovery. Kargupta H. and Chan P. (eds.). AAAI.

2000, pp. 317–336.

17. Srivastava A., Han E., Kumar V., and Singh V. Parallel formula-

tions of decision-tree classication algorithms. Data Min. Knowl.

Dis., 3(3), 1999.
Scalable Replication

▶Replication in Multi-Tier Architectures
Scalable Top-Down Decision Tree
Construction

▶ Scalable Decision Tree Construction
Scale Out

▶Replication for Scalability

▶Replication in Multi-Tier Architectures
Scale-Out Databases

▶ Process Structure of a DBMS
Scale-Up Databases

▶ Process Structure of a DBMS
Scaling

▶Zooming Techniques
Scanning

▶Browsing
Scene Change Detection

▶Video Segmentation
Scheduler

NATHANIEL PALMER

Workflow Management Coalition, Hingham,

MA, USA

Synonyms
Workflow scheduler; Queuing mechanism

Definition
The mechanism that identifies and initiates the se-

quence for activities and work items are executed.

Key Points
A Scheduler initiates work assignments based on pre-

cedence relationships and the state of a workflow in-

stance. A Scheduler is not a “queue” which is typically

a set of work items or activities waiting to be sched-

uled, however, a queue of items may be managed by

the Scheduler. The role of the Scheduler is to minimize

queue time and optimize executive efficiency.

Cross-references
▶Activity

▶Work Item

Scheduling Strategies for Data Stream Processing S 2475
Scheduling

▶Concurrency Control – Traditional Approaches
Scheduling Policies

▶ Scheduling Strategies for Data Stream Processing
Scheduling Strategies for Data Stream Processing.

Figure 1. Continuous queries plans.

S

Scheduling Strategies for Data
Stream Processing

MOHAMED SHARAF
1, ALEXANDROS LABRINIDIS

2

1Electrical and Computer Engineering, University of

Toronto, Toronto, Ontario, Canada
2Department of Computer Science, University of

Pittsburgh, Pittsburgh, PA, USA

Synonyms
Operator scheduling; Continuous query scheduling;

Scheduling policies

Definition
In a Data Stream Management System (DSMS), data

arrives in the form of continuous streams from differ-

ent data sources, where the arrival of new data triggers

the execution of multiple continuous queries (CQs).

The order in which CQs are executed in response to the

arrival of new data is determined by the CQ scheduler.

Thus, one of the main goals in the design of a DSMS is

the development of scheduling policies that leverage

CQ characteristics to optimize the DSMS performance.

Historical Background
The growing need for monitoring applications [8] has

forced an evolution on data processing paradigms,

moving from Database Management Systems (DBMSs)

to Data Stream Management Systems (DSMSs) [4,11].

Traditional DBMSs employ a store-and-then-query

data processing paradigm, where data are stored in the

database and queries are submitted by the users to be

answered in full, based on the current snapshot of the

database. In contrast, in DSMSs, monitoring applica-

tions register continuous queries which continuously

process unbounded data streams looking for data that

represent events of interest to the end-user.

The data stream concept permeated the data man-

agement research community in the mid- to late 90’s,
with general-purpose research prototypes of data

stream management systems materializing shortly

afterwards, for example Aurora[8], TelegraphCQ[10]

and STREAMS[5].

Scheduling is one of the fundamental research chal-

lenges for effective data stream management systems;

as such, it has received a lot of attention, with early

works on scheduling in 2003 [2,9].

Foundations

System Model

A continuous query evaluation plan can be conceptua-

lized as a data flow tree [2,8], where the nodes are

operators that process tuples and edges represent the

flow of tuples from one operator to another (Fig. 1).

An edge from operator Ox to operator Oy means that

the output of Ox is an input to Oy. Each operator is

associated with a queue where input tuples are buffered

until they are processed.

Multiple queries with common sub-expressions are

usually merged together to eliminate the repetition of

similar operations. For example, Figure 1 shows the

global plan for two queries Q1 and Q2. Both queries

operate on data streamsM1 and M2 and they share the

common sub-expression represented by operators O1,

O2 and O3, as illustrated by the half-shaded pattern for

these operators.

A single-stream query Qk has a single leaf oper-

ator Qk
l and a single root operator Qk

r , whereas a

multi-stream query has a single root operator and

more than one leaf operators. In a query plan Qk, an

2476S Scheduling Strategies for Data Stream Processing
operator segment Ek
x;y is the sequence of operators

that starts at Ok
x and ends at Ok

x . If the last operator

on Ek
x;y is the root operator, then that operator segment is

simply denoted as Ek
x . For example, in Fig. 1, E1

1 = <O1,

O3, O4>, whereas E2
1 = <O1, O3, O5>.

In a query, each operator Ox
k (or simply Ox) is

associated with two parameters:

1. Processing cost or Processing time (cx) is the amount

of time needed to process an input tuple.

2. Selectivity or Productivity (sx) is the number of tuples

produced after processing one tuple for cx time units.

sx is less than or equal to 1 for a filter operator and

it could be greater than 1 for a join operator.

Multiple CQ Scheduling

At the arrival of new data, theMCQ scheduler decides the

execution order of CQs, or more precisely, the execution

order of operators within CQs. The execution order is

decided with the objective of optimizing the DSMS per-

formance under certain metrics. Towards this, the sched-

uler assigns a priority to each operator and operators are

executed according to these priorities.

For a single-stream query Qk which consists of

operators<Ok
l ;:::;O

k
x ;O

k
y ;:::;O

k
r> (Fig. 1), the function

for computing the priority of operator Ok
x typically

involves one or more of the following parameters:

 Operator Global Selectivity (Skx) is the number of

tuples produced at the root Ok
r after processing one

tuple along operator segment Ek
x .

Skx ¼ skx � sky � :::� skr

 Operator Global Average Cost (C
k

x) is the expected

time required to process a tuple along an operator

segment Ck
x .

C
k

x ¼ ðckxÞ þ ðcky � skxÞ þ :::þ ðckr � skr�1 � :::� skxÞ

If Ok
x is a leaf operator (x = l), when a processed tuple

actually satisfies all the filters in Ek
l , then C

k

l represents

the ideal total processing cost or time incurred by any

tuple produced or emitted by query Qk. In this case, C
k

l

is denoted as Tk:

 Tuple Processing Time (Tk) is the ideal total proces-

sing cost required to produce a tuple by query Qk.

Tk ¼ ckl þ :::þ ckx þ cky þ :::þ ckr
The exact priority function depends on the perfor-

mance metric to optimize, and in turn on the

employed scheduling strategy.

Metrics and Strategies

Response Time: Processing a tuple by a CQ might lead

to discarding it (if it does not satisfy some filter predi-

cate) or it might lead to producing one or more tuples

at the output, which means that the input tuple repre-

sents an event of interest to the user who registered the

CQ. Clearly, in DSMSs, it is more appropriate to define

response time from a data/event perspective rather

than from a query perspective as in traditional

DBMSs. Hence, the tuple response time or tuple latency

is defined as follows:

Definition 1

Tuple response time, Ri, for tuple ti is Ri = Di � Ai, where

Ai is ti’s arrival time and Di is ti’s output time. Accord-

ingly, the average response time for N tuples is:
1
N

PN
i¼1Ri .

For a single CQ over multiple data streams, the Rate-

based policy (RB) has been shown to improve the average

response time of tuples processed by that CQ [17].

For multiple CQs, the Aurora DSMS [9], uses a two-

level scheduling strategy where Round Robin (RR) is

used to schedule queries and RB is used to schedule

operators within the query. The work in [14] proposes

the Highest Rate policy (HR) which extends the RB

to schedule both queries and operators. Basically, HR

views the network ofmultiple queries as a set of operators

and at each scheduling point it selects for execution the

operator with the highest priority (i.e., output rate).

Specifically, underHR, each operator Ok
x is assigned

a value called global output rate (GRk
x). The output rate

of an operator is basically the expected number of

tuples produced per time unit due to processing one

tuple by the operators along the operator segment

starting at Ok
x all the way to the root Ok

r . Formally,

the output rate of operator Ok
x is defined as follows:

GRk
x ¼

Skx

C
k

x

ð1Þ

where Skx and C
k

x are the operator’s global selectivity

and global average cost as defined above. The intuition

underlying HR is togivehigherpriority tooperatorpaths

that are both productive and inexpensive. In other

Scheduling Strategies for Data Stream Processing S 2477
words, the highest priority is given to the operator

pathswith theminimumlatency forproducingone tuple.

Slowdown: Under a heterogeneous workload, the

processing requirements for different tuples may vary

significantly and average response time is not an ap-

propriate metric, since it cannot relate the time spent

by a tuple in the system to its processing requirements.

Given this realization, other on-line systems with het-

erogeneous workloads such as DBMSs, OSs, and Web

servers have adopted average slowdown or stretch [13]

as another metric. This motivated considering the

stretch metric in [14].

The definition of slowdown was initiated by the

database community in [12] for measuring the perfor-

mance of a DBMS executing multi-class workloads.

Formally, the slowdown of a job is the ratio between

the time a job spends in the system to its processing

demands [13]. In a DSMS, the slowdown of a tuple is

defined as follows [14]:
S

Definition 2

The slowdown, Hi, for tuple ti produced by query Qk is

Hi ¼ Ri

Tk
, where Ri is ti’s response time and Tk is its ideal

processing time. Accordingly, the average slowdown for N

tuples is: 1
N

PN
i¼1Hi .

Intuitively, in a general purpose DSMS where all

events are of equal importance, a simple event (i.e., an

event detected by a low-cost CQ) should be detected

faster than a complex event (i.e., an event detected by a

high-cost CQ) since the latter contributes more to the

load on the DSMS.

The HR policy schedules jobs in descending order

of output rate which might result in a high average

slowdown because a low-cost query can be assigned a

low priority since it is not productive enough. Those

few tuples produced by this query will all experience a

high slowdown, with a corresponding increase in the

average slowdown of the DSMS.

The work in [14] proposes the Highest Normalized

Rate (HNR) policy for minimizing the slowdown in a

DSMS. Under HNR, each operator Ok
x is assigned a

priority Vk
x which is the weighted rate or normalized

rate of the operator segment Ek
x that starts at operator

Ok
x and it is defined as:

Vk
x ¼

1

Tk

� Skx

C
k

x

ð2Þ
The HNR policy, like HR, is based on output rate,

however, it also emphasizes the ideal tuple processing

time in assigning priorities. As such, an inexpensive

operator segment with low productivity will get a

higher priority under HNR than under HR.

Worst-Case Performance: It is expected that a sched-

uling policy that strives to minimize the average-case

performance might lead to a poor worst-case perfor-

mance under a relatively high load. That is, some

queries (or tuples) might starve under such a policy.

The worst-case performance is typically measured using

maximum response time or maximum slowdown [7].

Intuitively, a policy that optimizes for the worst-

case performance should be pessimistic. That is, it

assumes the worst-case scenario where each processed

tuple will satisfy all the filters in the corresponding

query.

The work in [14] shows that the traditional First-

Come-First-Serve (FCFS) minimizes the maximum

response time. Similarly, it shows that the traditional

Longest Stretch First (LSF) [1] optimizes the maximum

slowdown.

Average- vs. Worst-Case Performance: On one hand,

the average value for a QoS metric provided by

the system represents the expected QoS experienced

by any tuple in the system (i.e., the average-case per-

formance). On the other hand, the maximum value

measures the worst QoS experienced by some tuple

in the system (i.e., the worst-case performance). It is

known that each of these metrics by itself is not enough

to fully characterize system performance.

The most common way to capture the trade-off

between the average-case and the worst-case perfor-

mance is to measure the ‘2 norm [6]. For instance, the

‘2 norm of response times, Ri, is defined as:
Definition 3

The ‘2 norm of response times for N tuples is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiPN
1 R

2
i

q
.

The definition shows that the ‘2 norm considers the

average in the sense that it takes into account all values,

yet, by considering the second norm of each value

instead of the first norm, it penalizes more severely

outliers compared to the average metrics.

In order to balance the trade-off between the

average- and worst-case performance, the Balance Slow-

down (BSD) and the Balance Response Time (BRT)

2478S Scheduling Strategies for Data Stream Processing
policies have been proposed in [14]. To avoid starva-

tion, the two policies consider the amount of time an

operator Ok
x has been waiting for scheduling (i.e.,W

k
x).

Specifically, under BSD, each operator Ok
x is assigned

a priority value Vk
x which is the product of the

operator’s normalized rate and the current highest

slowdown of its pending tuples. That is:

Vk
x ¼

Skx

C
k

xTk

 !
Wk

x

Tk

� �
ð3Þ

As such, under BSD, an operator is selected either

because it has a high weighted rate or because its

pending tuples have acquired a high slowdown.

Application-Specific QoS: Aurora also proposes a

QoS-aware scheduler which attempts to satisfy appli-

cation-specified QoS requirements [9]. Specifically,

under that QoS-aware scheduler, each query is asso-

ciated with a QoS graph which defines the utility of

stale output.

Given, a QoS graph, the scheduler computes for each

operator a utility value which is basically the slope of

the QoS graph at the tuple’s output time. The schedul-

er also computes for each operator its urgency value

which is an estimation of how close is an operator to a

critical point on the QoS graph where the QoS changes

sharply. Then, at each scheduling point, the scheduler

chooses for execution the operators with the highest

utility value and among those that have the same

utility, it chooses the one that has the highest urgency.

Memory Usage: Multi-query scheduling has also

been exploited to optimize metrics beyond QoS. For

example, Chain is a multi-query scheduling policy that

optimizes memory usage in order to minimize space

requirements for buffering tuples [2]. Towards this, for

each query plan, Chain constructs what is called a

progress chart. A progress chart is basically a set of

segments where the slope of each segment represents

the rate of change in the size of a tuple being processed

by a set of consecutive operators along the query plan.

Given that progress chart, at each scheduling point,

Chain schedules for execution the tuple that lies on the

segment with the steepest slope. The intuition is to give

higher priority to segments of operators with higher

tuple consumption rate which will lead to quickly

freeing more memory.

Quality of Data (QoD): Another metric to optimize

is Quality of Data (QoD). For instance, the work in

[15] proposes the freshness-aware scheduling policy for
improving the QoD of data streams, when QoD is

defined in terms of freshness. The proposed scheduler

exploits the variability in query costs, divergence in

arrival patterns, and the probabilistic impact of selec-

tivity in order to maximize the freshness of output data

streams.

Multiple-Objective Scheduling: In DSMSs, and in

computer systems in general, it is often desirable to

optimize for multiple metrics at the same time. How-

ever, those metrics might be in conflict most of the

time. This motivated the proposals of schedulers that

are able to balance the trade-off between certain

conflicting metrics.

For instance, the work in [3] attempts to balance

the trade-off between memory usage and latency by

formalizing latency requirements as a constraint to the

Chain scheduler. This formulation lead to the Mixed

policy which can be viewed as a heuristic strategy that

is intermediate between Chain and FIFO. Specifically,

Mixed is tuned via a parameter where a high value of

that parameter causesMixed to behave more like FIFO,

whereas a lower value makes it behave more like Chain.

In another attempt towards multiple-objective

scheduling, the work in [16] proposes AMoS which is

an Adaptive Multi-objective Scheduling selection

framework. Given several scheduling algorithms,

AMoS employs a learning mechanism to learn the

behavior of the scheduling algorithms over time. It

then uses the learned knowledge to continuously select

the algorithm that has statistically performed the best.

Scheduler Implementation: To ensure the applicabil-

ity of scheduling policies in DSMSs, a low-overhead

implementation is needed in order to reduce the

amount of computation involved in computing prio-

rities. For static policies (i.e., policies where an opera-

tor priority is constant over time), priorities are

computed only once when a query is registered in the

DSMS which naturally leads to a low-overhead imple-

mentation. Examples of such static policies include

HR, HNR, and Chain. On the other hand, for dynamic

policies where priority is a function of time, the prior-

ity of each operator should be re-computed at each

instant of time. Such a naive implementation renders

that class of policies very impractical. This motivated

several approximation methods for efficient imple-

mentation of dynamic policies to balance the trade-

off between scheduling overhead and accuracy.

For instance the work in [9] proposes using bucketing

as well as pre-computation for an efficient

Schema Evolution S 2479
implementation of the QoS-aware scheduling in

Aurora. Similarly, [14] proposes using search space

reduction and pruning methods in addition to clus-

tered processing of continuous queries.

Key Applications
There is a plethora of applications that require data

stream management systems and, as such, proper

scheduling strategies. The most well-known class of

applications is that of monitoring applications[8], be it

environmental monitoring (e.g., via sensor networks),

network monitoring (e.g., by collecting router data), or

even financial monitoring (e.g., by observing stock-

market data). In all such cases, the sheer amount of

input data precipitates the use of the data stream

processing paradigm and proper scheduling strategies.
S

Cross-references
▶Adaptive Query Processing

▶Adaptive Stream Processing

▶Data Stream

▶ Event Stream

▶ Stream Processing

▶ Stream-Oriented Query Languages and Operators

▶ Streaming Applications

Recommended Reading
1. Acharya S. and Muthukrishnan S. Scheduling on-demand

broadcasts: New metrics and algorithms. In Proc. 4th Annual

Int. Conf. on Mobile Computing and Networking, 1998.

2. Babcock B., Babu S., Datar M., and Motwani R. Chain: operator

scheduling for memory minimization in data stream systems. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2003.

3. Babcock B., Babu S., Datar M., Motwani R., and Thomas D.

Operator scheduling in data stream systems. VLDB J.,

13(4), 2004.

4. Babcock B., Babu S., Datar M., Motwani R., and Widom J.

Models and Issues in Data Stream Systems. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2002.

5. Babu S. and Widom J. Continuous queries over data streams.

ACM SIGMOD Rec., 2001.

6. Bansal N. and Pruhs K. Server scheduling in the Lp norm: a

rising tide lifts all boats. In Proc. 35th Annual ACM Symp. on

Theory of Computing, 2003.

7. Bender M.A., Chakrabarti S., and Muthukrishnan S. Flow

and stretch metrics for scheduling continuous job streams. In

Proc. 9th Annual ACM -SIAM Symp. on Discrete Algorithms,

1998.

8. Carney D., Cetintemel U., Cherniack M., Convey C., Lee S.,

Seidman G., Stonebraker M., Tatbul N., and Zdonik S. Monitor-

ing streams: a new class of data management applications.

In Proc. 28th Int. Conf. on Very Large Data Bases, 2002.
9. Carney D., Cetintemel U., Rasin A., Zdonik S., Cherniack M.,

and Stonebraker M. Operator scheduling in a data stream

manager. In Proc. 29th Int. Conf. on Very Large Data Bases,

2003.

10. Chandrasekaran S., Cooper O., Deshpande A., Franklin M.J.,

Hellerstein J.M., Hong W., Krishnamurthy S., Madden S.,

Raman V., Reiss F., and Shah M.A. TelegraphCQ: continuous

dataflow processing for an uncertain world. In Proc. 1st Biennial

Conf. on Innovative Data Systems Research, 2003.

11. Golab L. and Özsu M.T. Issues in data stream management.

ACM SIGMOD Rec., 32(2):5–14, 2003.

12. Mehta M. and DeWitt D.J. Dynamic memory allocation

for multiple-query workloads. In Proc. 19th Int. Conf. on Very

Large Data Bases, 1993.

13. Muthukrishnan S., Rajaraman R., Shaheen A., and Gehrke J.E.

Online Scheduling to Minimize Average Stretch. In Proc. 40th

Annual Symp. on Foundations of Computer Science, 1999.

14. Sharaf M.A., Chrysanthis P.K., Labrinidis A., and Pruhs K.

Efficient Scheduling of Heterogeneous Continuous Queries. In

Proc. 32nd Int. Conf. on Very Large Data Bases, 2006.

15. Sharaf M.A., Labrinidis A., Chrysanthis P.K., and Pruhs K.

Freshness-Aware Scheduling of Continuous Queries in the

Dynamic Web. In Proc. 8th Int. Workshop on the World Wide

Web and Database, 2005.

16. Sutherland T., Pielech B., Zhu Y., Ding L., and Rundensteiner E.

A. An adaptive multi-objective scheduling selection framework

for continuous query processing. In Proc. Int. Database Engi-

neering and Applications Symp, 2005.

17. Urhan T. and Franklin M.J. Dynamic pipeline scheduling

for Improving Interactive Query Performance. In Proc. 27th

Int. Conf. on Very Large Data Bases, 2001.
Schema Evolution

JOHN F. RODDICK

Flinders University, Adelaide, SA, Australia

Definition
Schema evolution deals with the need to retain current

data when database schema changes are performed.

Formally, Schema Evolution is accommodated when a

database system facilitates database schema modifica-

tion without the loss of existing data, (q.v. the stronger

concept of Schema Versioning) (Schema evolution and

schema versioning has been conflated in the literature

with the two terms occasionally being used inter-

changeably. Readers are thus also encouraged to read

also the entry for Schema Versioning.).

Historical Background
Since schemata change and/or multiple schemata are

often required, there is a need to ensure that extant

data either stays consistent with the revised schema or

2480S Schema Evolution
is explicitly deleted as part of the change process.

A database that supports schema evolution supports

this transformation process.

The first schema evolutioning proposals discussed

database conversion primarily in terms of a set of

transformations from one schema to another [10].

These transformations focused on the relational struc-

ture of the database and included name changing,

changing the membership of keys, composing and

decomposing relations both vertically and horizontally

and so on. In all cases only one schema remained and

all data (that still remained) was coerced (ie. copied

from one type to another) to the new structure.

Schema evolution has also been covered in the

proposals to manage issues such as data coercion

[5,12], authority control [2] and query language

support [9].
Foundations
Schema evolution is related to the view-update prob-

lem, discussed in-depth when the relational model was

introduced [1], and is strongly linked to the notion of

information capacity [4,7]. Specifically, non-loss evo-

lution can only be guaranteed when the information

capacity of the new schema exceeds that of the existing

schema. Formally, if I(S) is the set of all valid instances

of S, then for non-loss evolution I(Snew) � I(Sold). One

novel solution is the integration of schema evolution

with the database view facilities. When new require-

ments demand schema updates for a particular user,

then the user specifies schema changes to a personal

view, rather than to the shared base schema [8].

Once a schema change is accepted, the common

procedure is for the underlying instances to be coerced

to the new structure. Since the old schema is obsolete,

this presents few problems and is conceptually simple.

However, results in an inability to reverse schema

amendments. Schema versioning support provides

two other options (q.v.).

Four classes of schema evolution can be envisaged.

Each type brings different problems.

1. Attribute Evolution occurs when attributes are

added to, deleted from, or renamed in a relation.

Issues here include the values to be ascribed to

attributes in tuples stored under a new version

that does not possess the attribute.

2. Domain Evolution occurs when the domain over

which an attribute is defined is altered. Issues here

include implying accuracy that does not exist in
existing data when, for example, attributes defined

as integers are converted to reals, and in truncation

when character fields are shortened.

3. Relation Evolution occurs when the relational struc-

ture is altered through the definition, deletion,

decomposition or merging of a relation. Such

changes are almost always irreversible.

4. Key Evolution occurs when the structure of a pri-

mary key is altered or when foreign keys are added

or removed. The issues here can be quite complex.

For example, removing an attribute from a primary

key may not violate the primary key uniqueness

constraint for current data (the amendment can

be rejected if it does) but in a temporal database

may still do so for historical information.

Note that one change may involve more than one type

of evolution, such as changing the domain of a key

attribute.

These changes may also be reflected in the concep-

tual model of the system. For example, the addition of

an entity in an EER diagram would result in the addi-

tion of a relation in the underlying relational model;

deleting a 1-to-many relationship would remove a

foreign key constraint, and so on.
Key Applications
Schema changes are linked to either error correction or

design change. It is therefore useful if the design deci-

sions can be consulted and the users can interact with

schema changes at a high level. One way is to propa-

gate requirements changes to database schemas [3] or

provide better support for metadata management by

providing a higher level view in which models can be

mapped to each other [6].

In order to quantify the types of schema evolution,

Sjøberg [11] investigated change to a database system

over 18 months, covering 6 months of development

and 12 months of field trials. A more recent study

complements this by following the changes in an estab-

lished database system over many years [13].
Future Directions
The major directions for schema versioning research

have moved from low-level handling of syntactic ele-

mental changes (such as adding an attribute or demoting

an index attribute) to more model-directed semantic

handling of change (such as propagating changes in a

conceptual model to a database schema) [3]. Research

Schema Mapping S 2481
has also moved from schema evolution to the more

complex problem of providing versions of schema.

Cross-references
▶Conceptual Modeling

▶ Schema Versioning

▶Temporal Algebras

▶Temporal Query Languages
S

Recommended Reading
1. Bancilhon F. and Spyratos N. Update semantics of relational

views. ACM Trans. Database Syst., 6(4):557–575, 1981.

2. Bretl R., Maier D., Otis A., Penney J., Schuchardt B., Stein J.,

Williams E.H., andWilliamsM. The GemStone datamanagement

system. In Object-Oriented Concepts, Databases and Applica-

tions. W. Kim and F. Lochovsky (eds.). ACM, New York, NY,

USA, 1989, pp. 283–308.

3. Hick J.M. and Hainaut J.L. Database application evolution: a

transformational approach. Data Knowl. Eng., 59(3): 534–558,

2006.

4. Hull R. Relative information capacity of simple relational data-

base schemata. Soc. Ind. Appl. Math., 15(3):856–886, 1986.

5. Kim W. and Chou H.T. Versions of schema for object-oriented

databases. In Proc. 24th Int. Conf. on Very Large Data Bases,

1988, pp. 148–159.

6. Melnik S., Rahm E., and Bernstein P.A. Rondo: a programming

platform for genericmodelmanagement. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2003, pp. 193–204.

7. Miller R., Ioannidis Y., and Ramakrishnan R. The use of infor-

mation capacity in schema integration and translation. In Proc.

19th Int. Conf. on Very Large Data Bases, 1993, pp. 120–133.

8. Ra Y.G. and Rundensteiner E.A. A transparent schema-evolution

system based on object-oriented viewtechnology. IEEE Trans.

Knowl. Data Eng., 9(4):600–624, 1997.

9. Roddick J.F. SQL/SE – a query language extension for databases

supporting schema evolution. ACM SIGMOD Rec., 21(3):10–16,

1992.

10. Shneiderman B. and Thomas G. An architecture for automatic

relational database system conversion. ACM Trans. Database

Syst., 7(2):235–257, 1982.

11. Sjøberg D. Quantifying schema evolution. Inf. Softw. Technol.,

35(1):35–44, 1993.

12. Tan L. and Katayama T. Meta operations for type management

in object-oriented databases – a lazy mechanism for schema

evolution. In Proc. First Int. Conf. on Deductive and Object-

Oriented Databases, 1989, pp. 241–258.

13. de Vries D. and Roddick J.F. The case for mesodata: an empirical

investigation of an evolving database system. Inf. Softw. Tech-

nol., 49(9–10):1061–1072, 2007.
Schema Evolution in Process
Management Systems

▶Workflow Evolution
Schema Evolution in Workflow
Management Systems

▶Workflow Evolution
Schema Mapping

ARIEL FUXMAN
1, RENÉE J. MILLER

2

1Microsoft Research, Mountain View, CA, USA
2University of Toronto, Toronto, ON, Canada

Synonyms
Mapping

Definition
The problem of establishing associations between data

structured under different schemas is at the core of

many data integration and data sharing tasks. Schema

mappings establish semantic connections between

schemas. Given a source schema S and a target schema

T, a schema mapping M is a specification of a relation

between instances of S and instances of T. Given an

instance of the source I and an instance of the target

J that satisfy the mapping, say that ðI ; JÞ � M.

Research on schema mapping has focused on the

formal specification of schema mappings, the seman-

tics of mappings, along with techniques for creating

schema mappings.

Historical Background
Schema mappings have been developed primarily to

solve two different problems, each of which has led to a

substantial body of research: data integration [11] and

data exchange [4]. In both problems, one is given a

source schema S (or a set of source schemas) and an

instance I of S, along with a target schema T, which is

sometimes called a global schema. A user knows the

schema of the target and would like to retrieve source

data by posing queries on the target. In data integra-

tion, queries posed on the global schema are translated,

at query time, to the schema(s) of the local data source

(s) and answered using source data. Data integration is

sometimes called virtual data integration to emphasize

that the translated source data are not materialized in

the target. In contrast, in data exchange the goal is to

translate the source data into a target instance that

conforms to the target schema and reflects the source

2482S Schema Mapping
data as accurately as possible. Target queries are then

answered using the materialized target instance.

For both problems, schema mappings are used to

describe the semantic relationship between the schemas

and their instances, and to determine how queries are

translated (in data integration) and what is the best

target instance to materialize (in data exchange).

Foundations

Semantics of Schema Mappings

Schema mappings establish semantic connections be-

tween schemas. These connections can be represented

formally using logical formulas. Assume the existence

of two schemas, called the source schema S, and

the target schema T. The specifications of S and T

may include a set of constraints that instances of

the schema must satisfy. A schema mapping M is a

specification of a relation between instances of S

and instances of T. Given an instance of the source

I and an instance of the target J that satisfy the

mapping, one could say that ðI ; JÞ � M. A mapping

setting is a triple S ¼ hS;T;Mi. In order to give se-

mantics to a mapping setting, it is assumed that an

instance of the source is given, and the goal is to reason

about the instances of the target that satisfy the con-

straints imposed by the schema mapping. That is,

given an I, are would like to reason about all J such

that ðI ; JÞ � M. These target instances are called solu-

tions. (This terminology comes from the data exchange

literature, and was introduced by Fagin et al. [4].

However, the same concepts are equally applicable to

data integration, where the target schema may be re-

ferred to as the global or mediated schema.).

Definition

[solution] Let S ¼ hS;T;Mi be a mapping setting. Let

I be an instance over the source schema S. One could

say that an instance J over the target schema T is a

solution for I in S if hI ; Ji � M.

A mapping may be a function which defines a

single target instance J for each source instance I.

If T consists of a single relation, then any view over S

defines such a function. Alternatively, in many indus-

trial mapping tools, a mapping is a program which,

given an instance of S, outputs an instance of T. But in

general, a mapping does not need to be a function and

there are clear advantages in having a declarative spec-

ification language for mappings. Declarative mapping
specifications permit easier reasoning about the rela-

tionship between mappings, something that is essential

in designing, maintaining, and evolving mappings.

The most commonly used specification for schema

mappings are source-to-target tuple-generating-

dependencies (TGDs) which have the form

8xðfSðxÞ ! 9ycTðx; yÞÞ;

where fS(x) is a conjunction of atomic formulas over

S and cT(x, y) is a conjunction of atomic formulas

over T. TGDs have been generalized in some

approaches to permit more general source (fS) and

target (cT) queries (formulas) in the mapping.

Since a solution is any target instance that satisfies

the mapping, there may be more than one solution for

a given source instance. This fact must be accounted

for in the semantics of query answering. The prevalent

semantics adopted in the literature is based on the

notion of certain answers. This semantics takes the

conservative approach of returning only the answers

that are valid in every solution.

Definition

[certain answer] Let S be a mapping setting. Let I be a

source instance such that there exists some solution for

I in S. Let q be a query. We one could that a tuple t is a

certain answer to q in S, denoted t 2 certainðq; I ;SÞ, if
for every solution J for I in S, it is the case that t 2 q(J).

In addition to certain answers, other semantics

have been explored in the literature, such as epistemic

interpretations and probabilistic notions.

To illustrate the notions introduced so far, let S

be a schema with relation symbol Country(per-

son,country). Let T be a schema with relation

symbols Home(person,city) and Loc(city,

country). As an example of a mapping setting, let

S ¼ hS;T;Mi, where M consists of the following

source-to-target TGD:

8p; cou:ðS:Countryðp; couÞ !
9cit :T:Homeðp; citÞ ^ T:Locðcit ; couÞÞ

There may be more than one solution for a

given instance I. For example, let I ={Country(john,

canada)}. Consider J1 = {Home(john, toronto), Loc

(toronto, canada)} and J2 = {Home(john, montreal),

Loc(montreal, canada)}. It is easy to see that both J1
and J2 are solutions for I in S. The reason for this is

that the mapping states that the people and countries

Schema Mapping S 2483

S

of the source must be in the target, but the city is left

unspecified.

Now, consider a query q1 that retrieves all people

from the database. Let q1(p) = ∃cit : T.Home(p,cit).

Since M must be satisfied by all solutions, there

are tuples Home(john,c) and Loc(c,canada) for some

city c, in every solution for I. Thus, (john) 2 q1(J), for

every solution J. Say that (john) is a certain answer to

q1, and denote this by ðjohnÞ 2 certainðq1; I ;SÞ. Next,
consider a query q2 that returns all cities. Let q2(cit) =

∃p : T.Home(p,cit). In this case, there are no certain

answers to q2. To see why, notice that there is no tuple

t such that t 2 q2(J1) \ q2(J2). The intuition is that

John is the only person in the database, but different

solutions may assign him a different city (as long as it is

within Canada).

Types of Schema Mappings

Sound, Complete, and Exact Mappings

A common assumption in the data integration and

data exchange literature is that the mappings consist

of implications, where each side of the implication

contains relation symbols coming from the same sche-

ma. This results in the following three types of map-

pings [6,11]. Let fs be a formula over the source

schema, and ct be a formula over the target schema.

Sound mappings are rules of the form fs(x) ! ct(x);

complete mappings are of the form ct(x) ! fs(x); and

exact mappings are of the form fs(x) ↔ ct(x). (Vari-

able quantifiers are omitted for generality.)

There is a substantial body of work on sound map-

pings. Such systems are sometimes called open because

the mapping specifies what source data must be in

the solutions, but it does not give negative information

(i.e., it does not specify what must not be in any

solution). A setting S containingonly soundmappings

isreferredtoasanopen mapping setting. If J is a solution

for an instance I in an open setting S, and J0 is such that
J � J0, then J0 is a solution for I in S. As an example,

consider an open setting with the following sound

mapping.

8p; cou:S:Countryðp; couÞ !
9cit :T:Homeðp; citÞ ^ T:Locðcit ; couÞ

Let I = {Country(john,canada)}. Let J = {Loc(calgary,

canada), Home(john,ottawa), Loc(ottawa,canada)},

which is a solution for I in S. The tuple Loc(calgary,
canada) does not seem to be related to the sources,

and the mapping does not force its addition to the

solution. However, it does not forbid its inclusion in

the solution either. In fact, one could add any arbitrary

tuple to J, and still have a solution for I.

Research on data integration and data exchange

has focused primarily on open settings. One reason

for this is that, given a source instance, open settings

always have a solution. From a practical standpoint,

open settings are better suited than settings containing

exact or complete mappings in dynamic or autono-

mous environments, where new sources may be added

independently of other sources. With open settings,

sources can be described without requiring any knowl-

edge of the other sources, or their relationship to the

target. In particular, consider the problem of adding a

new data source to an existing data integration (or

exchange) system. With open settings, it is not neces-

sary to change any of the existing mappings. A

mapping for a new data source cannot conflict with

existing mappings.

In contrast, in mapping settings containing com-

plete or exact rules, the addition of a new source may

lead to conflicts resulting in a setting for which there

may be no solutions. In fact, even for a single setting

the use of complete or exact mappings may sometimes

preclude the existence of a solution. The problem of

deciding the existence of a solution for mapping set-

tings has been studied by Fuxman et al. [5]. As an

example of a case in which there may be no solution,

consider a setting S ¼ hS;T;Mi, where M consists of

the following rules.

8p; cou:S:Countryðp; couÞ !
9cit :T:Homeðp; citÞ ^ T:Locðcit ; couÞ

ð1Þ

8p; cit ; cou:T:Homeðp; citÞ ^ T:Locðcit ; couÞ !
S:Capitalðcit ; couÞ

ð2Þ

For the source instance I = {Country(john, canada),

Capital(washington,us)}, there is no solution in S. To
see this, assume that there is a solution J for I in S.
By rule (1) ofM, J has tuples Home(john, c) and Loc(c,

canada), for some city c. By rule (2) ofM, I is required

to have a tuple Capital(canada, c) which it does not.

Intuitively, there is no solution for I in S since the

source has no information on what city is the capital

of Canada. Notice the effect of rules (1) and (2) on the

solutions. The former is a sound mapping and specifies

Schema Mapping. Figure 1. Complexity of query

answering using open LAV mappings.

2484S Schema Mapping
what must be in the solutions; the latter is a complete

mapping and constrains what can be in the solutions.

Global-as-View and Local-as-View

In many data integration systems, each relation (or

element) of the target schema is defined in terms of

the source schemas. In many early systems, there was

also an implicit assumption that the schema mapping

was a function (for example a view). This approach

is known as global-as-view. An alternative approach,

known as local-as-view, was later proposed in which

each relation of the source schema is defined in terms

of the target schema. For relational systems, these

notions can be defined formally as follows [11].

 In global-as-view systems (GAV), mappings are

of the form 8x.fs(x) ↔ Rt(x), where Rt is a rela-

tion symbol from T and fs(x) is a formula over S

(i.e., rather than a formula, there is just one atom

on the right-hand-sidewith no repeated variables).

(Note that GAV mappings as originally defined,

were typically exact mappings, though more re-

cently sound GAV mappings have also been studied

[11].)

 In local-as-view systems (LAV), mappings are of the

form 8x.Rs(x) ! ct(x), where Rs is a relation sym-

bol from S and ct(x) is a formula over T (i.e., rather

than a formula, there is just one atom on the left-

hand-side with no repeated variables).

Recall that queries are posed in terms of the target (glob-

al) schema. For this reason, query answering in GAV is

easy: themapping indicates explicitly how to retrieve data

from the sources. In particular, given a query q over the

target schema, it suffices to unfold q using the mapping

in order to obtain a rewriting q0 of q (i.e., a query that

computes the certain answers to q). As an example,

consider the following GAV setting S ¼ hS;T;Mi,
where M consists of the following rule.

8cit ; cou9p:S:Capitalðcit ; couÞ^
S:Countryðp; couÞ $ T:Locðcit ; couÞ

Suppose that a user wants to retrieve the cities and

countries from relation Loc. Thus, she issues the fol-

lowing query over the global schema:

qðcit ; couÞ ¼ T:Locðcit ; couÞ

In order to obtain a rewriting of q, it suffices to replace

Loc(cit, cou) by its definition in M:
q0ðcit ; couÞ ¼ 9p:S:Capitalðcit ; couÞ^
S:Countryðp; couÞ

Query processing in LAV is more involved than in

GAV. The reason is that queries are written over the

target schema, but a LAV mapping associates views to

relations of the source schemas. Thus, the unfolding

strategy no longer works in this case; and it is not

immediate how to rewrite queries over the source

schema. In general, the complexity of query answering

in LAV is higher than in GAV. The intuitive explanation

is that in GAV, given a source instance I, it suffices to

concentrate on a single solution J, whereas in LAV

there may be many such solutions.

Rather than unfolding, the problem of reformulat-

ing a target query using a LAV mapping boils down to

the problem of answering queries using views [12].

For many classes of open schema mappings (in-

cluding source-to-target TGDs) query answering has

tractable data complexity. For example, query answer-

ing is tractable when the schema mappings and queries

are conjunctive. In contrast, if complete or exact

rules are allowed, the same problem becomes coNP-

complete. To show the jump in complexity, consider

Figs. 1 and 2 (due to Abiteboul and Duschka [1]). The

former gives results for open LAV mappings. The latter

gives results under the ‘‘closed world assumption’’,

where mappings consist of exact LAV mappings of

the form 8x : Rs(x) ↔ ct(x), where Rs(x) is a relation

from the source, and ct(x) is a formula over the target.

The results are given for different logical languages

used for the mappings and queries: conjunctive queries

(CQ), conjunctive queries with inequalities (CQ 6¼),

union of conjunctive queries (UCQ), Datalog, and

first-order logic (FO). In addition to these results,

the problem of query answering in open mapping

settings has also been studied for other query languages

(e.g., description logics) and on other data models

(e.g., semi-structured models).

Schema Mapping. Figure 2. Complexity of query

answering using exact LAV mappings.

Schema Mapping S 2485

S

Schema Mappings in Peer Data Sharing

The success of peer-to-peer (P2P) technology in the

domain of file exchange motivated the research com-

munity to consider peer-to-peer architectures for data

sharing. In a P2P system, participants (peers) rely

on one another for service, blurring the distinction

between clients and servers, source and target. P2P

systems are founded on the principles of peer autonomy

and decentralized coordination. As a result, peers do not

have a global view of the system. Rather, global behav-

ior emerges from local interactions.

In a Peer Data Management System (PDMS), each

peer has a schema that describes the structure of its

data, and can establish connections (typically specified

as schema mappings) with other peers in order to

exchange data [2,7]. A PDMS is expected to satisfy

the desirable properties of P2P systems. For example,

the requirement of decentralized coordination pre-

cludes the existence of a central catalog. Rather, knowl-

edge about schemas and mappings should be

distributed among the peers.

A PDMS should support an arbitrary network of

mappings among peers. More importantly, it should be

able to exploit the transitive relationships of the network

during query answering. A PDMS is essentially a directed

graph whose nodes are individual mapping settings,

and whose arcs correspond to mappings that relate the

schemas in the network. More precisely, there is an arc

from P1 to P2 if there is a sound rule in some peer

setting hP1;P2;Mi or a complete rule in some peer

setting hP2;P1;Mi. It turns out that the topology of

this graph has a direct impact on query answering. In

particular, Halevy et al. [7] showed the undecidability

of the problem of obtaining the certain answers for

a PDMS of arbitrary topology, where conjunctions

are used for the mapping rules and the queries. Con-

trast this to the case of a single mapping setting

with exact mappings, which is not undecidable, but
coNP-complete and tractable for open settings. Fuxman

et al. [5] studied this problem for a special case of PDMS,

called Peer Data Exchange, and gave a class of mappings

and queries for which the problem is decidable under

the existence of cycles. Calvanese et al. [3] proposed

an alternative semantics for query answering, based on

epistemic interpretations, for which obtaining the certain

answers in a PDMS of arbitrary topology is decidable

and, in some cases, tractable. An alternative approach

involves specifying schema mappings using mapping

tables which specify how data values are mapped be-

tween peers [10]. Research is on-going on what are

good mapping formalisms to support PDMS.

Creating Schema Mappings

Creating a schema mapping between independently

designed schemas can be a tremendous challenge.

Schemas that are designed independently, even if they

represent the same or similar information may use

different names and structures to describe the same

or similar data. Designing schema mappings by hand is

known to be a very difficult task requiring expert users

familiar with both source and target schemas. Even

experts can often make errors leading to specifications

that omit information or produce incorrect answers to

target queries.

To help automate this task, Milo and Zohar pro-

posed the use of schema matchings (or matchings)

which indicate potential associations between elements

within different schemas [14]. A matching is most

often represented as a set of pairs of schema attributes

from two different schemas. Schema matchings can be

semi-automatically inferred by using a variety of

matching tools. These tools use schema and data char-

acteristics such as lexical similarities, structural prox-

imity, data values, etc. to infer potential matches

between attributes of different schemas. Matchings,

however, do not represent the full semantic relation-

ship between schemas and their instances.

Figure 3 shows two schemas that represent infor-

mation about companies and grants. The left-

most schema (the source S) is a relational schema

(with three tables companies, grants, and con-

tacts), presented in a nested relational representation

that is used as a common platform for modeling rela-

tional and XML schemas. The curved lines f1, f 2 and f3

in the figure represent either foreign keys or simple

inclusion dependencies, specified as part of the schema

(or discovered using a dependency or constraint miner).

Schema Mapping. Figure 3. A matching between source and target schemas.

2486S Schema Mapping
The schema on the right (the target T), records the

funding (fundings) that an organization (organi-

zations) receives, nested within the respective orga-

nization element. The amount of each funding is

recorded in the finances record along with a contact

phone number (phone).

Figure 3 indicates, using the dotted lines v1 through

v4, a matching entered by a schema expert or discovered

by a matching tool. Due to the heterogeneity and the

different requirements under which the two databases

were developed, the same real world entity (for example,

a company ‘IBM’) may be represented in very different

ways in the two databases, and structures that appear to

be the same may actually model different concepts. In

our example, the matching v1 indicates that what is

called a company name in the first schema, is referred

to as an organization code in the second. On the other

hand, both schemas have an element year, but there is

no match between these attributes indicating that they

likely do not represent the same concept. For instance,

element year in the source schema may represent the

time the company was founded, while in the target

it may represent the time the company had its initial

public offer.

Note that matchings are far from sufficient to tell

us how the data instances of S and T are related. While

the matching may indicate that companies.name data

should appear in the organizations.code attribute

of the target and that grants.gid data should appear

in fundings.fid, it does not tell us which grant should

be associated with which company. Similarly, if one

relies solely on the matching, one could map grants.
gid to fundings.fid and leave the finId attribute

value empty (since there is no matching for finId). If

one does this, in the target data, there will be no way to

associate a funding record with a finance record. How-

ever, the foreign key f4 indicates there is a real world

relationship between these concepts.

The generation of schema mappings have been

considered in a number of research projects and indus-

trial tools. The Clio project [13] was the first mapping

system to exploit logical reasoning about the semantics

embedded in the schemas and their instances to help

automate mapping creation. In this work, the mapping

discovery process has been referred to as query discov-

ery in that the goal is to discovery a query over the

source (fS), a query over the target (cT), and their

relationship, in order to create a set of possible source-

to-target TGDs: 8x(fS(x) !∃ycT(x, y)) [15]. These

mappings can then be shown to a mapping designer

(visually or using data examples) who can decide if

they correctly represent the relationship between

source and target instances.

To illustrate Clio’s approach, consider our exam-

ple schemas. In the target, the nesting structure

within organizations indicates that there is a real-

world relationship between organizations and their

fundings– that is, the association of a specific funding

record with a specific organization has some natural

semantics in the domain. For example, the nesting may

represent fundings given to (or alternatively given by)

an organization. Hence, in creating a mapping, Clio

will consider related associations in the source. In the

example, the data that matches organizations and

Schema Mapping S 2487

S

fundings comes from companies and grants (via the

matches v1 and v2). There is a relationship between

these two tables represented by the inclusion depen-

dency on grants.recipient. Hence, by ignoring v3
and v4 for the moment, Clio will suggest the following

source-to-target TGD to a user. (Notation is slightly

abused and let F represent identifiers for sets nested

inside of organizations.)

8n; 8d; 8y;8g ; 8a; 8s; 8m
companiesðn; d; yÞ; grantsðg ; n; a; s;mÞ !
9y 0; F; f ; organizationsðn; y 0; FÞ; Fðg ; f Þ

ð3Þ

Notice that this mapping retains the semantic associa-

tion between companies and their grants, and uses this

to associate organizations with a set of related fund-

ings. This mapping is correct if these two associations

represent the same real world association, something a

user must verify. By extending this example to include

v3, Clio will see that there is an association between

gid and amount in the source (because these values

are paired in the same record) and consider possible

ways of associating the matched attributes (in this case

fid and budget) in the target. These attributes are not

in the same record in the target, but are associated

through a foreign key on finId. To maintain the source

association in the target, Clio creates a mapping con-

taining a target join on finId. Finally, if one considers

how to create finances tuples in the target, notice

that there are two possible ways of associated the

related source data (grants.amount and contacts.

phone) – using a join on supervisor and cid, or

using a join on manager and cid. These joins repre-

sent different semantic associations and Clio will create

mappings corresponding to each and let the user de-

cide which (if any) of these associations should be

preserved in the target data. One of the mappings

created by Clio, which uses the source association

represented by f2, is illustrated below.

8n;8d;8y;8g ;8a;8s;8m;8e;8p companiesðn;d; yÞ
^ grantsðg ;n; a; s;mÞ ^ contactsðs; e; pÞ !
9y 0;F; f ; organizationsðn; y 0;FÞ ^ Fðg ; f Þ^
financesðf ;a; pÞ

ð4Þ

Clio’s mapping discovery algorithm is based on an ex-

tension of standard relational dependency inference

(based on the chase) to nested relational schemas.

The schemas may be relational or nested relational
containing source and target TGDs (e.g., inclusion

dependencies) and egds (e.g., functional dependencies).

Data Translation

Mapping tools that create declarative mappings pro-

vide a way of translating these specifications into

programs (transformation code) that given a source

instance produce a single target instance for data ex-

change [15,16], Industrial mapping systems, such as

Altova Mapforce (http://www.altova.com/products/

mapforce/data_mapping.html), Stylus Studio (http://

www.stylusstudio.com), or Aqualogic (http://www.

bea.com/aqualogic) are often visual programming sys-

tems which compile visual specifications of mappings

into executable code including SQL, XSLT, Java or C.

Within this area, there has been a great deal of work

on producing data transformation code that is modular

and efficient [9,16]. For schema mappings that permit

many solutions, a decision must be made as to what is

the ‘‘best’’ solution to materialize. Notice that there may

be target data (for example, organizations.year, or

fundings.finId attributes from Fig. 3) that do not

correspond to any source data. It may not be sufficient

to simply fill in null values for this information. Con-

sider the fundings.finId and finances.finId from

Fig. 3. If one fills both with null values, it is possible

to join fundings with finances to find the budget of

a specific funding. As an alternative, to maintain the

association between the source values grants.gid and

grants.amount as this data are translated into the

target, one option is to create identifiers (using Skolem

functions) that represent the desired association [8].

The Clio project was the first to consider systematically

how to create Skolem functions that fill in missing

target data specifically for data exchange [15].

Key Applications
Schema mappings are foundational to enabling data

integration, data exchange, schema evolution, and data

translation (between data models). Applications of

schema mappings include Enterprise Information

Integration (EII), e-commerce, object-to-relational

wrappers, XML-to-relational mapping, data ware-

housing, and portal design tools.

Cross-references
▶Answering Queries Using Views

▶Certain Answers

▶Data Exchange

2488S Schema Mapping Composition
▶ Peer Data Management System

▶ Peer-to-Peer Data Integration

▶ Schema Mapping Composition

▶ Schema Matching
Recommended Reading
1. Abiteboul S. and Duschka O.M. Complexity of answering

queries using materialized views. In Proc. 17th ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems,

1998, pp. 254–263.

2. Bernstein P.A., Giunchiglia F., Kementsietsidis A., Mylopoulos J.,

Serafini L., and Zaihrayeu I. Data management for peer-to-peer

computing: a vision. In Proc. 5th Int. Workshop on the World

Wide Web and Databases, 2002.

3. Calvanese D., De Giacomo G., Lenzerini M., and Rosati R.

Logical foundations of peer-to-peer data integration. In Proc.

23rd ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2004, pp. 241–251.

4. Fagin R., Kolaitis P.G., Miller R.J., and Popa L. Data exchange:

semantics and query answering. Theor. Comput. Sci.,

336(1):89–124, May 2005.

5. Fuxman A., Kolaitis P.G., Miller R.J., and Tan W.-C. Peer

data exchange. ACM Trans. Database Syst., 31(4):1454–1498,

2006.

6. Grahne G. and Mendelzon A.O. Tableau techniques for querying

information sources through global schemas. In Proc. 7th Int.

Conf. on Database Theory, 1999, pp. 332–347.

7. Halevy A., Ives Z., Suciu D., and Tatarinov I. Schema mediation

in peer data management systems. In Proc. 9th Int. Conf. on

Data Engineering, 2003, pp. 505–518.

8. Hull R. and Yoshikawa M. ILOG: declarative creation

and manipulation of object identifiers. In Proc. 16th Int. Conf.

on Very Large Data Bases, 1990, pp. 455–468.

9. Jiang H., Ho H., Popa L., and Han W.S. Mapping-driven xml

transformation. In Proc. 16th Int. WorldWideWeb Conf., 2007,

pp. 1063–1072.

10. Kementsietsidis A., Arenas M., and Miller R.J. Mapping data in

peer-to-peer systems: Semantics and Algorithmic Issues. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2003, pp.

325–336.

11. Lenzerini M. Data integration: a theoretical perspective. In Proc.

21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2002, pp. 233–246.

12. Levy A.Y., Mendelzon A.O., Sagiv Y., and Srivastava D.

Answering queries using views. In Proc. 14th ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems,

1995, pp. 95–104.

13. Miller R.J., Haas L.M., and Hernández M. Schema mapping as

query discovery. In Proc. 26th Int. Conf. on Very Large Data

Bases, 2000, pp. 77–88.

14. Milo T. and Zohar S. Using schema matching to simplify

heterogeneous data translation. In Proc. 24th Int. Conf. on

Very Large Data Bases, 1998, pp. 122–133.

15. Popa L., Velegrakis Y., Miller R.J., Hernández M.A., and Fagin R.

Translating web data. In Proc. 28th Int. Conf. on Very Large

Data Bases, 2002, pp. 598–609.
16. Shu N.C., Housel B.C., Taylor R.W., Ghosh S.P., and Lum V.Y.

EXPRESS: a data eXtraction, processing, amd restructuring

system ACM Trans. Database Syst., 2(2):134–174, 1997.
Schema Mapping Composition

WANG-CHIEW TAN

University of California-Santa Cruz, Santa Cruz,

CA, USA

Synonyms
Mapping composition; Semanticmapping composition
Definition
A schema mapping (ormapping) is a tripleM = (S1, S2,

S), where S1 and S2 are relational schemas with no

relation symbols in common and S is a set of formulas

of some logical formalism over (S1, S2). An instance of

M is a pair (I, J) where I is an instance of S1 and J is an

instance of S2 such that (I, J) satisfies every formula

in the set S. The set of all instances ofM is denoted as

Inst(M).

Let M12 = (S1, S2, S12) and M23 = (S2, S3, S23)

be two consecutive mappings such that there are

no relation symbols in common between any two

schemas of S1, S2 and S3. A mapping M = (S1,

S3, S) is a composition of M12 and M23 if

InstðMÞ ¼ InstðM12Þ
 InstðM23Þ. In other words,

InstðMÞ is the set of all pairs (I, J) such that I is an

instance of S1, J is an instance of S3 and there exists

an instance K of S2 such that ðI ;KÞ 2 InstðM12Þ and
ðK ; JÞ 2 InstðM23Þ.
Historical Background
Mappings are widely used in the specification of rela-

tionships between data sources in applications such

as data integration, data exchange, and peer data man-

agement systems. The model management framework

introduced by Bernstein et al. [3], where the primary

abstractions are models and mappings between

Schema Mapping Composition S 2489

S

models, can be used to model these applications. Sev-

eral operators for manipulating mappings between

models were introduced in this framework. Among

them, the composition operator is one of the most

fundamental operators for manipulating mappings be-

tween models.

Madhavan and Halevy [10] first studied the prob-

lem of composing mappings between relational

schemas (mappings are also called semantic mappings

in [10]). They gave a definition of the semantics of the

composition operator in the context where mappings

are specified by sound Global-Local-As-View (GLAV)

formulas [9]. Sound GLAV formulas are the most

widely used and studied form of mappings in data

integration systems and they are equivalent to source-

to-target tuple generating dependencies (s-t tgds) [13].

(See Foundations section for a definition of s-t tgds.)

The Madhavan and Halevy semantics of composition

is different from the one stated above; The set of for-

mulas that specifies the compositionM of two succes-

sive mappings, M12 and M23, is relative to a class of

queries Q that is defined over the schema S3. This

means that for every query q in Q, the certain answers

of q according to M coincide with the certain answers

of q that would be obtained by applying the consecu-

tive mappings M12 and M23.

The Madhavan and Halevy notion of composition

is termed a composition that is certain answer adequate

for Q in [8]. Fagin et al. [8] showed that while certain

answer adequacy may be sufficient for obtaining

the certain answers of any query in Q, whether via

Madhavan and Halevy’s notion of composition M or

through the successive mappings M12 and M23, there

may be formulas that are logically inequivalent to S of

M that are also certain answer adequate for Q. In

other words, there can be two mappings M and M0

that are both certain answer adequate for the consecu-

tive mappings M12 and M23 with respect to the class

of queries Q, but the sets of formulas S and S0 of M
and M0, respectively, are logically inequivalent. It was

also shown in [8] that certain answer adequacy is a

rather fragile notion. A mappingM that is a composi-

tion of M12 and M23 with respect to a class Q of

conjunctive queries may no longer be a composition

of the same two mappings when Q is extended to the

class of conjunctive queries with inequalities.

Fagin et al. [8] introduced a definition of composi-

tion that is based entirely on the set-theoretic compo-

sition of instances of the two successive mappingsM12
and M23. (See the Definition section for the set-

theoretic definition given in [8].) Unlike the definition

of composition given by Madhavan and Halevy, Fagin

et al.’s [8] definition is not relative to a class of queries.

Furthermore, the set of formulas inM that defines the

composition of M12 and M23 is unique up to logical

equivalence. Hence, with Fagin et al.’s [8] notion of

composition, M is referred to as the composition

of M12 and M23. It was also shown in [8] that the

composition M is always certain answer adequate for

M12 and M23 for every class of queries.

The results established in [8] were based on map-

pings specified by s-t tgds. In other words, Fagin et al.

[8] assumes that the sets of formulas S12 and S23 in the

successive mappings M12 and M23, respectively, are

finite sets of s-t tgds. A subsequent paper by Nash et al.

[12] also studied the composition operator where

mappings are specified by embedded dependencies. Em-

bedded dependencies are more general than s-t tgds

and can model constraints such as keys. Among the

results established in [12] is an algorithm that com-

putes the composition of two successive mappings

specified by embedded dependencies. Their algorithm

may not terminate in general and the authors charac-

terized sufficient conditions on the input mappings

for which their composition algorithm is guaranteed

to produce a composition of the input mappings.

An implementation of the composition operator

that extends the composition algorithm of [12] is

described in [2].
Foundations
In [8], mappings are specified by finite sets of s-t tgds

which are equivalent to sound GLAV assertions used

in [10]. A s-t tgd is a first-order formula of the form:

8XðfSðXÞ ! 9ycTðx; yÞÞ;

where fS(x) is a conjunction of atomic formulas over

the schema S and where cT(x, y) is a conjunction of

atomic formulas over the schema T. Every variable in

x and y must appear in fS and cT respectively. How-

ever, some variables in x need not appear in cT.

A full source-to-target tuple generating dependency (full

s-t tgd) is a special s-t tgd of the form

8XðfSðxÞ ! cT ðxÞ;

where no existentially-quantified variables appears on

the right-hand-side of the s-t tgd. As before, fS(x) is a

2490S Schema Mapping Composition
conjunction of atomic formulas over S and cT(y) is

a conjunction of atomic formulas over T. Every vari-

able in x must appear in fS.

Example 1. Let M12 ¼ ðS1; S2;S12Þ and M23 =

(S2, S3, S12) be two successive mappings. The schema

S1 consists of a binary relation symbol Takes, the

second schema S2 consists of two binary relation sym-

bols Takes1 and Student, and the third schema S3
consists of a single binary relation symbol Enroll-

ment. The formulas in S12 and S23 are s-t tgds stated

below:

X
12 ¼ f8n8cðTakesðn; cÞ ! Takes1ðn; cÞÞ;

8n8cðTakesðn; cÞ ! 9s Studentðn; sÞÞg
X

23 ¼ f8n8s8cðStudentðn; sÞ ^ Takes1ðn;cÞÞ;
Enrollmentðs; cÞÞÞg

Observe that the first s-t tgd in S12 and the s-t tgd in

S23 are full s-t tgds. The s-t tgds in S12 state that the

Takes1 relation in S2 contains the Takes relation in S1
and that every student with name n who takes a course

c (in Takes) has a associated tuple in Student with

name n and some student id s. The s-t tgd in S23 states

that every student with name n and student id s (in

Student) who is also taking a course c (in Takes1)

must have a corresponding tuple (s, c) that associates

the student id s with the course c in the Enrollment

relation of S3.

Recall from the definition that the composition

M12 and M23 is a mapping M that captures exactly

the set of instances InstðM12Þ
 InstðM23Þ. The set of
instances fðI1; I3Þ j ðI1; I3Þ 2 InstðM12Þ
 InstðM23Þg
is called the composition query of M12 and M23.

Among the issues investigated by Fagin et al. [8] in

composing mappings under this semantics are:

 Is the language of s-t tgds always sufficient to define

the composition of two successive mappings?

 What is the complexity of the instances associated

with the composition query of two successive

mappings?

 What is a right language for composing mappings?

 How does data exchange and query answering be-

have in the chosen language for composing

mappings?

Composing s-t TGDs: Definability and Complexity.

The answer to the first question above is no. It was

shown in [8] that if M12 and M23 are specified by
finite sets of full s-t tgds and s-t tgds respectively, then

the composition of M12 with M23 is always definable

by a finite set of s-t tgds. Furthermore, the associated

composition query is in PTIME. However, if M12 is

specified by a set of s-t tgds, not necessarily full, then

the composition of M12 with M23 may not always be

definable by a finite set of s-t tgds. For instance, the

composition of the successive mappings in Example 1

is not definable by any finite set of s-t tgds. However,

the composition of M12 and M23 is definable by an

infinite set of s-t tgds and, in fact, definable by a first-

order formula. As a consequence, the composition

query of M12 and M23 is a PTIME query.

Fagin et al. [8] further showed that there exists

successive mappings M12 and M23 where the compo-

sition query of M12 and M23 is NP-complete and the

composition of the two mappings is not definable in

least fixed-point logic LFP. The mappings used are

such that M12 is specified by a finite set of s-t tgds

each having at most one existentially-quantified vari-

able and M23 consists of only one full s-t tgd. Essen-

tially, the NP-hardness result is obtained by a reduction

from 3-COLORABILITY to the composition query of two

fixed mappings with the above properties. They

showed that the composition query of mappings spe-

cified by finite sets of s-t tgds is always in NP.

Second-Order TGDs. Since the composition query of

mappings specified by finite sets of s-t tgds is always in

NP, it follows from Fagin’s theorem [5] that the compo-

sition of the two mappings is always definable by an

existential second-order formula, where the existential

second-order variables are interpreted over relations

on the union of the set of values in I1 with the set of

values in I3. Here, ðI1; I3Þ 2 InstðM12Þ
 InstðM23Þ.
Fagin et al. [8] showed that, in fact, the composition

of mappings specified by finite sets of s-t tgds is always

definable by a restricted form of existential second-

order formula, called second-order tgds (SO tgds).

SO tgds are s-t tgds that are extended with existen-

tially quantified functions and with equalities. SO tgds

are the ‘‘right’’ language for composing mappings be-

cause they form the smallest well-behaved extension to

the class of s-t tgds that is closed under conjunction and

composition. In addition, as explained later, SO tgds also

possess good properties for data exchange and query

answering. The precise definition of SO tgds is given

next, after the definition of terms.

Given a collection x of variables and a collection f

of function symbols, a term (based on x and f) is

Schema Mapping Composition S 2491

S

defined recursively as follows: (i) Every variable in x is

a term. (ii) If f is a k-ary function symbol in f and t1,...,

tk are terms, then f (t1,...,tk) is a term. Let S be a source

schema and T a target schema. A second-order tgd (SO

tgd) is a formula of the form:

9fðð8x1ðf1 ! c1ÞÞ ^ ::: ^ ð8xnðfn ! cnÞÞÞ;

where

1. Each member of f is a function symbol.

2. Each fi is a conjunction of

 atomic formulas of the form S(y1,...,yk), where

S is a k-ary relation symbol of schema S and

y1,...,yk are variables in xi, not necessarily dis-

tinct, and

 equalities of the form t = t 0 where t and t 0 are

terms based on xi and f.

3. Each ci is a conjunction of atomic formulas

T(t1,...,tl), where T is an l-ary relation symbol of

schema T and t1,...,tl are terms based on xi and f.

4. Each variable in xi appears in some atomic formula

of fi.

Each subformula 8xi(fi ! ci) is a conjunct of the SO

tgd. The last condition is a safety condition similar to

that made for s-t tgds. As an example, the formula

∃f 8x8y(S(x) ∧ (y = f(x)) ! T(x, y)) is not a SO tgd

because the safety condition is violated. In particular,

the variable y does not appear in an atomic formula

on the left-hand-side of the formula. As another exam-

ple, the formula

9f 8n8cðTakesðn; cÞ ! Enrollmentðf ðnÞ; cÞ

is a SO tgd. Recall that the composition of the succes-

sive mappings in Example 1 is not definable by any

finite set of s-t tgds. Fagin et al. [8] showed that the

SO tgd above defines the composition of the two map-

pings given in Example 1. Hence, existentially quantified

function symbols are a necessary extension to the lan-

guage of s-t tgds for composing mappings. Intuitively,

the SO tgd states that if a student with name n takes a

course c in Takes, then the student id of n, which is

denoted by the function f(n), is associated with c in

Enrollment. An example of SO tgds where equalities

are involved is described next.

Example 2. Let M12 ¼ ðS1; S2;S12Þ and

M23 ¼ ðS2; S3;S23Þ be two successive mappings. The

first schema S1 consists of a unary relation symbol Emp,

the second schema S2 consists of a binary relation
symbol Mgr1, and the third schema S3 consists of a

binary relation symbol Mgr and a unary relation sym-

bol SelfMgr. The s-t tgds in S12 and S23 are:

X
12 ¼ 8eðEmpðeÞ ! 9m Mgr1ðe;mÞÞf g

X
23 ¼ f8e8mðMgr1ðe;mÞ! Mgrðe;mÞÞ;

8e ðMgr1ðe;eÞ! SelfMgrðeÞÞg

Intuitively, the s-t tgd in S12 asserts that every emp-

loyee e in Emp must have a manager m and this associ-

ation can be found in Mgr1. The first s-t tgd in S23

asserts that the Mgr relation contains the Mgr1 relation

and the second s-t tgd in S23 asserts that SelfMgr

contains employees who are their own managers

according to the Mgr1 relation.

Fagin et al. [8] showed that the following SO tgd

defines the composition of M12 and M23.

9f ð8e ðEmpðeÞ ! Mgrðe; f ðeÞÞ ^ 8e ðEmpðeÞ
^ ðe ¼ f ðeÞÞ ! SelfMgrðeÞÞÞ

They also showed that the above SO tgd is not logi-

cally equivalent to any finite or infinite sets of SO

tgds without equalities. In other words, the compo-

sition of M12 and M23 is not definable by SO tgds

without equality. Hence, equalities are a necessary ex-

tension to the language of s-t tgds for composing

mappings.

The extensions of s-t tgds with function symbols

and equalties in SO tgds are necessary to compose

mappings specified by s-t tgds. Fagin et al. [8] also

showed that SO tgds are closed under composition.

This means that the composition of two mappings,

each specified by an SO tgd, is another SO tgd.

Example 3. An illustration of the algorithm de-

scribed in [8] for composing two mappings, based on

Example 2, is described next. The algorithm takes as

input two mappings, M12 and M23, specified by s-t

tgds and returns as output a mappingM13 that defines

the composition of the two input mappings.

The first step of the algorithm is to transform the

s-t tgds in S12 and S23 into SO tgds by introducing

Skolem functions to replace existentially quantified

variables. For example, S12 and S23 will now become

S0
12 and S0

23 respectively.

X0

12
¼ 9f 8e ðEmpðeÞ ! Mgr1ðe; f ðeÞÞÞf g

2492S Schema Mapping Composition
X0

23
¼f8e8mðMgr1ðe;mÞ! Mgrðe;mÞÞ;

8e ðMgr1ðe;eÞ!SelfMgrðeÞÞg

In particular, observe that S0
12 now consists of an SO

tgd with function f(e) that denotes the manager of

employee e. The arguments of f consist of all univer-

sally quantified variables in the s-t tgd. The next step of

the algorithm combines S0
12 with S0

23 to obtain S13
0

by replacing atomic formulas on the left-hand-side of

conjuncts of SO tgds in S0
23 with atomic formulas

from S1 through conjuncts of SO tgds in S0
12. In the

running example, Emp(e0) !Mgr1(e0, f(e0)) is com-

bined with Mgr1(e,m) !Mgr(e,m) to obtain

Empðe0Þ^ ðe¼ e0Þ^ ðm¼ f ðe0ÞÞ! Mgrðe;mÞÞ

and Emp(e1) ! Mgr1(e1, f(e1)) is combined with

Mgr1(e, e) ! SelfMgr(e) to obtain

Empðe1Þ^ ðe¼ e1Þ^ ðe¼ f ðe1ÞÞ! SelfMgrðeÞ

Observe that the equalities generated by this step has

the form y = t where y is a variable in S0
23 and t is

a term based on the variables and functions of S0
12.

The next step of the algorithm removes variables from

S0
23 according to the equalities. For example, e is

replaced with e0 in the first formula and e is replaced

with e1 in the second formula to obtain the follow-

ing SO tgds:

Empðe0Þ^ ðm¼ f ðe0ÞÞ!Mgrðe0;mÞ

Empðe1Þ ^ ðe1 ¼ f ðe1ÞÞ ! SelfMgrðe1Þ

At this point, the variable m is replaced with f(e0) to

obtain the following SO tgds:

Empðe0Þ ! Mgrðe0; f ðe0ÞÞ

Empðe1Þ ^ ðe1 ¼ f ðe1ÞÞ ! SelfMgrðe1Þ

Finally, when no more variables of S0
23 can be

replaced, the following SO tgd is returned.

9f ð8eðEmpðeÞ ! Mgrðe; f ðeÞÞÞ ^ 8eðEmpðeÞ
^ ðe ¼ f ðeÞÞ ! SelfMgrðeÞÞÞ

Data Exchange and Query Answering. Let

M ¼ ðS1; S2;SÞ be a mapping. Given a finite instan-

ceIover the schema S1, the data exchange problem [7]

is to construct a finite instance J over the schema

S2 such that (I, J) satisfies all the formulas specified

in S. Such an instance J is called a solution of I under
the mapping M. If S is specified by a finite set of

s-t tgds, many solutions for I under M may exist in

general because s-t tgds underspecify the data exchange

process in general. In [7], the classical chase procedure

[1,11] has been used to construct universal solutions

of I under a mapping M. Universal solutions are the

most general type of solutions in the following sense:

If J is a universal solution for Iunder M, this means

that J is a solution for I under M with the additional

property that J has a homomorphism into every solu-

tion for I under M. Intuitively, an instance K has

a homomorphism into an instance K0 if K can be

embedded in K 0 (modulo the renaming of nulls that

occur in K). It was shown in [7] that universal solu-

tions can be computed in polynomial time when the

mapping is fixed. Universal solutions are desirable not

only because they are the most general, but also be-

cause they can be used to compute the certain answers

of unions of conjunctive queries that are posed against

the schema S2 in polynomial time. If q is a k-ary query

over S2, then the certain answers of q with respect to

an instance I over S1, denoted as certainMðq; IÞ, is
the set of all k-tuples t of constants from I such that

t 2 q(J) for every solution J of I under M. It was

shown in [7] that if J is a universal solution for I

under M and q is a union of conjunctive queries,

then certainMðq; IÞ can be computed as follows: (i)

Evaluate q(J) and then (ii) discard tuples from q(J)

that contain nulls. The remaining tuples obtained

from this process, denoted as q(J)↓, form the certain

answers of q with respect to I.

In the case where there are two or more successive

mappings specified by s-t tgds and only the target

instance over the last schema is of interest, one ap-

proach to obtain a universal solution of the last schema

when given an instance I over the first schema is to

perform a series of data exchanges (using the chase

procedure [7]) starting from I according to the

sequence of mappings. The final target instance that

is arrived through this process is a universal solution

for I for the sequence of mappings. (The series of data

exchanges produces a universal solution. This result

can be found in Proposition 7.2 of [6].) Obviously,

one drawback of this approach is the unnecessary

construction of potentially many intermediate

instances which are not of interest. Another approach

that avoids the construction of intermediate instances

altogether is to first compose the sequence of mappings

to obtain a composed mapping over the first source

Schema Mapping Composition S 2493

S

schema and the final target schema. After this, data are

exchanged (by using the chase procedure) according to

the composed mapping. However, as described earlier,

the language of s-t tgds may no longer be sufficient for

defining the composition of two or more successive

mappings. Instead, SO tgds are needed to describe the

composition of successive mappings in general. In [8],

the classical chase technique is extended to SO tgds.

They showed that chasing with SO tgds is again a

polynomial time procedure and that the chase with

SO tgds produces a universal solution as in s-t tgds.

Hence, a universal solution for the final target schema

can be computed by simply chasing I over the com-

posed mapping. As a consequence, the certain answers

of unions of conjunctive queries that are posed over

the target schema of a mapping specified by SO tgds

can also be computed in polynomial time: First, a

universal solution J of I is computed by chasing I

with the mapping. After this, compute q(J)↓, as de-

scribed earlier.

Key Applications
One important application of composing mappings is

schema evolution. Consider the figure shown in the

Definition section. If S3 is an evolved schema of S2 and

the mappings M12 and M23 are given, then it is

possible to derive the direct relationships between S1
and S3 by composing M12 with M23. See [14] for an

application of composition to schema evolution.

Another important application of composition is

to optimize the migration of data through a sequence

of mappings. An end-to-end mapping is first assem-

bled from a sequence of two or more mappings by

composition before data are migrated through the

assembled mapping. The benefit of using an end-to-

end mapping for migrating data from the first schema

to the last schema in the sequence of mappings is the

potential savings from the sequence of unnecessary

data migration steps through the intermediate schemas

along the sequence of mappings. For a similar reason,

the end-to-end mapping could also be used to opti-

mize query rewriting. Referring back to the figure in

the Definition section, if a query that is posed against

the schema S3 needs to be rewritten into a query

against the schema S1, it is potentially rewarding to

first compose the sequence of mappingsM12 andM23

and then reason about the rewriting through the com-

position rather than through the sequence of mappings

M23 and M12.
Composed mappings can also be used as an ab-

straction for a sequence of data migration steps. A

recent work [4] on Extract-Transform-Load (ETL)

systems illustrates this point. An ETL script can be

modeled as a network of mappings describing the

flow of data from a source to a target. By composing

various sequences of mappings in the network of map-

pings, an abstraction of the overall ETL transformation

can be achieved.

Cross-references
▶Data Exchange

▶ Schema Mapping

Recommended Reading
1. Beeri C. and Vardi M.Y. A Proof Procedure for Data Dependen-

cies. J. ACM, 31(4):718–741, 1984.

2. Bernstein P.A., Green T.J., Melnik S., and Nash A. Implementing

Mapping Composition. In Proc. 32nd Int. Conf. on Very Large

Data Bases, 2006, pp. 55–66.

3. Bernstein P.A., Halevy A.Y., and Pottinger R. A Vision of Man-

agement of Complex Models. ACM SIGMOD Rec., 29(4):55–63,

2000.

4. Dessloch S., Hernández M., Wisnesky R., Radwan A., and

Zhou J. Orchid: Integrating Schema Mapping and ETL. In

Proc. 24th Int. Conf. on Data Engineering, 2008, pp. 1307–1316.

5. Fagin R. Generalized First-Order Spectra and Polynomial-Time

Recognizable Sets. In Complexity of Computation, SIAM-AMS

Proceedings, Vol. 7, R.M. Karp (ed.), 1974, pp. 43–73.

6. Fagin R. Inverting Schema Mappings. ACM Trans. Database

Syst., 32(4):24, 2007.

7. Fagin R., Kolaitis P.G., Miller R.J., and Popa L. Data Exchange:

Semantics and Query Answering. Theoretical Computer

Science, 336(1):89–124, 2005.

8. Fagin R., Kolaitis P.G., Popa L., and Tan W.C. Composing

Schema Mappings: Second-Order Dependencies to the Rescue.

ACM Trans. Database Syst., 30(4):994–1055, 2005.

9. Lenzerini M. Data Integration: A Theoretical Perspective. In

Proc. 21st ACM SIGACT-SIGMOD-SIGART Symp. on Princi-

ples of Database Systems, 2002, pp. 233–246.

10. Madhavan J. and Halevy A.Y. Composing Mappings Among

Data Sources. In Proc. 29th Int. Conf. on Very Large Data

Bases, 2003, pp. 572–583.

11. Maier D., Mendelzon A.O., and Sagiv Y. Testing Implications

of Data Dependencies. ACM Trans. Database Syst., 4(4):

455–469, 1979.

12. Nash A., Bernstein P.A., and Melnik S. Composition of Map-

pings Given by Embedded Dependencies. ACM Trans. Database

Syst., 32(1):4, 2007.

13. Popa L., Velegrakis Y., Miller R.J., Hernández M.A., and Fagin R.

Translating Web Data. In Proc. 28th Int. Conf. on Very Large

Data Bases, 2002, pp. 598–609.

14. Yu C. and Popa L. Semantic Adaptation of Schema Mappings

when Schemas Evolve. In Proc. 31st Int. Conf. on Very Large

Data Bases, 2005, pp. 1006–1017.

2494S Schema Matching
Schema Matching

ANASTASIOS KEMENTSIETSIDIS

IBM T.J. Watson Research Center, Hawthorne,

New York, USA

Synonyms
Attribute or value correspondence

Definition
Schema matching is the problem of finding potential

associations between elements (most often attributes

or relations) of two schemas. Given two schemas S1
and S2, a solution to the schema matching problem,

called a schema matching (or more often a matching),

is a set of matches. A match associates a schema ele-

ment (or a set of schema elements) in S1 to (a set of)

schema elements in S2. Research in this area focuses

primarily on the development of algorithms for the

discovery of matchings. Existing algorithms are

often distinguished by the information they use during

this discovery. Common types of information used

include the schema dictionaries and structures, the

corresponding schema instances (if available), external

tools like thesauri or ontologies, or combinations of

these techniques. Matchings can be used as input to

schema mappings algorithms, which discover the se-

mantic relationship between two schemas.

Historical Background
A schema matching is most often a binary relation be-

tween the elements of two schemas, but may, in a few

approaches, be a relation between sets of elements in

different schemas. In general, a matching represents a

potential semantic relationship, but does not specify the

semantics. For example, a matching between attributes

S1.A and S2.B indicates that there may be some semantic

relationship between these attributes. Examples of pos-

sible semantic relationships include subset relationships

(e.g., all values of S1.A are also values of S2.B) or has-

a relationships (e.g., each value of S2.B has-a S1.A

value). Consider the matches (v1 through v4) in

Fig. 1. The matching helps in understanding the possi-

ble relationship between the schemas, but is not suffi-

cient to determine how to transform data or queries

from one schema to another. In contrast, a schema

mapping (or mapping) is a specification of the seman-

tic relationship between schemas [8]. The discovery
of matchings between elements of different schemas

has been studied for decades, most notably in the

context of the schema integration problem [1]. A solu-

tion to the schema integration problem presumes the

ability to discover elements in the various schemas that

are potentially semantically related, including those

that may represent the same real-world concepts. Sche-

ma matching algorithms attempt to find candidate

elements that may have a semantic relationship,

though notably, they do not attempt to specify (or

differentiate) the semantics of the relationship. These

algorithms have been motivated by the presence of

naming or structural differences (referred to as con-

flicts) among schemas that have been developed inde-

pendently. Such differences are due to the fact that a

real-world concept might have a different name or

representation in different schemas. Schema integra-

tion deals with the development of methodologies to

discover matchings in the presence of conflicts, but the

main focus is on how each methodology resolves such

conflicts (e.g., through schema transformations) so

that the real-world concept is uniquely represented in

the global schema. Indeed, from the five generic sche-

ma integration steps in each methodology, identified

in [1], three of them deal with the resolution of con-

flicts. On the other hand, schema matching deals

exclusively with the development of algorithms to dis-

cover matchings (see [9] for a survey of matching

approaches).
Foundations
A matching between a pair of schemas S1 and S2 is

typically a binary relation between the elements of

the two schemas. In such cases, the so-called local

cardinality of the matching is said to be one-to-one

(1:1). Some algorithms consider matchings between

sets of elements and, in the terminology of [9], are

said to have a many-to-many local cardinality (see

Figs. 2 and 3). In most approaches, the matching is

between individual attributes of the schemas (Fig. 1).

Matching algorithms compute a matching between S1
and S2 through a process which can abstractly be

described by the following steps:

1. Consider (possibly all) pairs of elements s1, s2 with

s1 2 S1 and s2 2 S2.

2. Compute a score indicating the confidence in the

validity of each match between s1 and s2.

Schema Matching. Figure 1. A matching between source and target schemas.

Schema Matching. Figure 2. A matching with n:1 local

cardinality.

Schema Matching S 2495

S

3. Compute a matching by filtering and selecting

a subset of the matching elements of the

previous step.

Existing matching algorithms differ on how they imple-

ment each of these steps. Each implementation needs to

make some key decisions in each step, hence the sub-

stantial diversity of existing solutions. During the first

step, an important consideration is whether every pos-

sible pair of schema elements will be considered as a

candidate for a match [6], or whether there is a more

sophisticated mechanism in place to prune the poten-

tially unrelated element pairs considered [3]. Many

approaches assume that an element can be associated

with at most one element in another schema (a restric-

tion referred to as (1:1) global cardinality in [9]). For

matching algorithms that only associate elements (not

sets of elements), this means the resulting matching is a

simple 1:1 relation over the schema elements.

The second step is probably the most important,

and there is a huge space of alternatives for the compu-

tation of scores. Score computation may take into ac-

count the name and types of schema elements, the

structure of schemas and the corresponding nesting

depths of elements, instance-level information (if

instances of the schemas are available) like value ranges

and patterns (for example, the frequency or position of

substrings appearing in attribute values), or it may

combine various types information to compute a

score. Matching algorithms are commonly classified by

the type of information used during scoring computa-

tion (see the classification in [9]). The term individual
matcher is commonly used to describe algorithms that

consider only a single (or a limited) type of informa-

tion during score computation. Individual matchers

are further classified into schema-based and instance-

based depending on the type of information (i.e., sche-

ma versus instance) used during this phase. In contrast

to individual matchers, hybrid or composite matchers

rely on several types of information during score com-

putation, where each type essentially corresponds to a

different individual matcher. While hybrid matchers

combine the results of multiple individual matchers in

a prespecified manner, composite matchers are more

flexible and allow for a dynamic composition of indi-

vidual matchers which can be customized for the spe-

cific schemas being matched.

In the final step, there are two key considerations

which influence the selection of matching elements that

will comprise the result matching. First, the selection of

matching elements is influenced by the supported car-

dinality which determines whether, or not, sets of

Schema Matching. Figure 3. A matching with 1:n local

cardinality.

2496S Schema Matching
elements (for example, Street, City and PostalCode as a

set as in Fig. 3) are considered in the matching.

The second consideration in this final step relates

to how matching elements are selected based on their

score. A common approach is to select matching ele-

ments whose scores are above a certain threshold and

then select the matching elements with the maximum

score, among the alternatives [6]. While such an ap-

proach results in matchings that are locally optimal, a

more sophisticated approach considers maximizing

the cumulative score of the matching elements in a

matching [7].

State of the Art

There are many approaches to schema matching, so we

offer a non-comprehensive overview of some of the

representative approaches.

Cupid [6] is one of the first hybrid schema match-

ing algorithms proposed in the context of model man-

agement. The algorithm considers initially every

possible pair of elements in the two input schemas

and thus its local cardinality is 1:1. It computes a

linguistic and structural similarity score between

these elements from which a weighted mean is com-

puted using these two scores. The selection of match-

ing elements in the resulting matching is performed by

using a threshold over the computed scores and the

supported global cardinality is 1:1, although it is sug-

gested that matchings with global cardinality 1:n can

also be supported (Fig. 4).

Coma [4] is a composite matcher with an extensi-

ble library of single and hybrid matchers. For example,

Cupid might become one of the matchers used by

Coma. Both the local and global cardinality is 1:1,

and each component matcher of COMA computes a

score between every pair of elements in the input

schemas. Being a composite matcher, emphasis in

Coma is given on how the results of component

matchers are combined and four alternative strategies
are proposed to this end. The four strategies compute

the score of a matching element by taking the max,

min, average or weighted sum of scores, computed for

this element, of the component matchers. Experiments

with these four strategies show that average gives the

best results on the schemas tested.

Themajority ofmatchers discovermatchings whose

local cardinality is 1:1. The iMap [3] matcher in con-

trast emphasizes the discovery of complex matching

elements between two schemas, i.e., matchings with a

local cardinality of n:1. For each element in the target

schema, iMap employs a set of specialized searchers to

discover candidate sets of elements in the source sche-

ma that together can be associated to the target schema

element. Examples of the matchers supported are a

numerical matcher, which discovers matches between

elements containing numerical values; a categorical

matcher, for categorical attributes; a unit conversion

matcher; and a date matcher. In terms of global cardi-

nality, iMap supports n:1 matchings (Fig. 5), since it

allows an element to participate in more than one

complex matching. An interesting feature of iMap is

that apart from discovering (candidate) matchings, it

also provides a module which traces the key decisions

made by the system during matching discovery and it

can therefore present the reasoning behind a suggested

matching, in a human understandable format.

Kang and Naughton [5] make the interesting obser-

vation that matching algorithms often rely on interpret-

ing the element names and values in the two input

schemas, that is, they assume that the names used to

described the same real-world concept or entity are

syntactically and semantically related (e.g., a relational

column named COLOR in S1 versus one called PAINT

in S2). Therefore, when different element names

are used, for the same elements in the two schemas

(e.g., the former column is called CID in S1 and PMS

(PMS stands for the Pantone Color Matching System

used in various industries.) in S2), or different data

encodings are used for the same real-world domain

(e.g., different encodings for colors), then existing

matching algorithms fail to discover appropriate

matching elements. To this end, Kang and Naughton

propose an instance-based matching algorithm that

does not interpret values. Their matcher relies on the

well-known notions of entropy and mutual-informa-

tion, from Information Theory, to discover a matching

between two input schemas. In a nutshell, their ap-

proach consists of two main steps. First, for each input

Schema Matching. Figure 4. A 1:1 local and 1:n global

cardinality matching.

Schema Matching. Figure 5. A 1:n local and n:1 global

cardinality matching.

Schema Tuning S 2497

S

schema, it computes the mutual information between

each pair of attributes within the schema. The second

step considers each possible matching with local and

global cardinality of 1:1 and computes a score for this

matching, a computation that takes into account the

mutual information and entropy of the matched

elements.

Key Applications
Schema Mapping, Schema Integration

Future Directions
Schema matchings represent potential associations be-

tween a pair of schema elements (or between two sets

of schema elements). Matching algorithms do not dis-

cover the meaning of the association. A match between

elements S1.A and S2.B may be discovered because

these attributes contain similar values, because their

names have a small edit-distance, their names are

related in a domain ontology, or for numerous other

reasons. Hence, matchings by themselves are not di-

rectly useful until they have been interpreted, either by

a human, or a system designed to infer the semantic

relationship between the elements. The most common

example of the latter are schema mapping algorithms,

which are designed to infer the semantic relationship

between two schemas.
Cross-references
▶ Information Integration

▶Metadata

▶ Schema Mapping
Recommended Reading
1. Batini C., Lenzerini M., and Navathe S.B. A comparative analysis

of methodologies for database schema integration. ACM

Comput. Surv., 18(4):323–364, 1986.

2. Bernstein P.A., Halevy A.Y., and Pottinger R.A. A vision for

management of complex models. ACM SIGMOD Rec., 29

(4):55–63, 2000.

3. Dhamankar R., Lee Y., Doan A., Halevy A., and Domingos P.

iMap: Discovering complex semantic matches between database

schemas. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2004.

4. Do H. and Rahm E. Coma – a system for flexible combination of

schema matching approaches. In Proc. 28th Int. Conf. on Very

Large Data Bases, 2002, pp. 610–621.

5. Kang J. and Naughton J.F. On schema matching with opaque

column names and data values. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2003, pp. 205–216.

6. Madhavan J., Bernstein P.A., and Rahm E. Generic schema

matching with cupid. In Proc. 27th Int. Conf. on Very Large

Data Bases, 2001, pp. 49–58.

7. Melnik S., Garcia-Molina H., and Rahm E. Similarity flooding:

a versatile graph matching algorithm. In Proc. 18th Int. Conf. on

Data Engineering, 2002, pp. 117–128.

8. Miller R.J., Haas L.M., and Hernández M.A. Schema mat-

ching as query discovery. In Proc. 26th Int. Conf. on Very

Large Data Bases, 2000, pp. 77–88.

9. Rahm E. and Bernstein P.A. A survey of approaches to automatic

schema matching. VLDB J., 10(4):334–350, 1994.
Schema Normalization

▶Design for Data Quality
Schema Tuning

PHILIPPE BONNET
1, DENNIS SHASHA

2

1University of Copenhagen, Copenhagen, Denmark
2New York University, New York, NY, USA

Definition
Schema tuning is the activity of organizing a set of

table designs in order to improve overall query and

update performance.

2498S Schema Tuning
Historical Background
Table design entails deciding which tables to imple-

ment and which attributes to put in those tables. Other

sections of this encyclopedia (design theory, normali-

zation theory) discuss a mathematical model of table

design to eliminate redundancy. Sometimes however

redundancy can be good for performance, so database

tuners must consider the possibility of a principled

incorporation of redundancy.
Foundations
Normalization tends to break up the attributes of an

application into separate tables. Consider the normal-

ized schema consisting of two tables:

Blog(blog_id, author_id, title, numreaders) and

Author(author_id, author_city).

If one frequently wants to associate blogs with the

city of their authors, then this table design requires a

join on author_id for each of these queries. A denorma-

lized alternative is to add author_location to Blog, yield-

ing Blog(blog_id, author_id, product, numreaders,

author_city) and Author(author_id, author_city).

The Author table avoids anomalies such as the

inability to store the location of an author whose

blogs are perhaps temporarily offline.

Comparing these two schemas, one can see that

the denormalized schema requires more space and

more work on insertion of a blog. On the other hand,

the denormalized schema is much better for finding the

authors in a particular city.

The tradeoff of space plus insertion cost vs. im-

proved speeds for certain queries is the characteristic

one in deciding when to use a denormalized schema.

Good practice suggests starting with a normalized

schema and then denormalizing sparingly.
Schema Tuning. Figure 1. Denormalization experiment

on MySQL 6.0.
Redundant Tables

The previous example showed that redundancy can

be helpful. The form of redundancy there was to

repeat an association between two fields (in this case

between authors and their address) for every blog.

One may also consider a completely redundant

table.

For example:

Blog(blog_id, author_id, product, numreaders,

author_city)

Author(author_id, author_city).

City_Agg(city, totalreaders)
This improves performance if one frequently wants

to know the total readers per author city, but imposes

an update time as well as a small space overhead. The

trade-off is worthwhile in situations where many ag-

gregate queries are issued and an exact answer is

required.

Key Applications
Schema tuning is relevant for all applications, but it is

especially important for complex multi-table queries,

particularly involving aggregates. Data warehousing

applications typically include denormalized, redun-

dant schemas, because data warehouses can be engi-

neered to be updated at off hours and then intensively

queried during the work day.

Experimental Results

Denormalization

This experiment compares the performance impact of

denormalization in the example presented above. Con-

sider a query that finds the author in a given city. That

query requires a join in the normalized schema where-

as it requires a simple lookup in the denormalized

schema.

Figure 1 presents the performance figures running

this example on MySQL 6.0. The author table is

Schema Tuning. Figure 2. Materialized view experiment

on MySQL 6.0.

Schema Versioning S 2499

S

populated with 100,000 tuples, and the blog table with

50,000. Note that the denormzalized schema provides a

significant speed-off whether the cache is cold (in

which case IOs are issued) or warm (the data already

resides in the database cache).

Materialized Views

This experiment illustrates the trade-off between query

speed-up and insert slow-down when using a materia-

lized view. Consider the schema from the example

above. The code includes a trigger in MySQL that main-

tains the materialized view when data are inserted in the

blog table. The experiment includes the insertion

throughput as well as query throughput. The query

find the total number of readers per city.

Figure 2 shows the expected trade-off. Insertions are

much slower with the materialized view due to trigger

execution. Queries aremuch faster, however, because the

query requires a join and an aggregate computation

under the initial schema, whereas the query requires

only a simple lookup when using the materialized view.

URL to Code and Data Sets
Denormalization experiment: http://www.databasetuning.

org/sec = denormalization

Materialized viewexperiment: http://www.databasetuning.

org/sec =materalized_views
Cross-references
▶Application-level Tuning

▶Clustering Index

▶Design Theory

▶Normalization Theory

▶ Performance Monitoring Tools

Recommended Reading
1. Celko J. and Joe Celko’s. SQL for Smarties: Advanced SQL

Programming (3rd Edn.). Morgan Kaufmann, San Fransisco,

CA, 2005.

2. Kimball R. and Ross M. The Data Warehouse Toolkit: The

Complete Guide to Dimensional Modeling (2nd Edn.). Wiley,

New York, NY, 2002.

3. Shasha D. and Bonnet P. Database Tuning: Principles, Experi-

ments and Troubleshooting Techniques. Morgan Kaufmann, San

Fransisco, CA, 2002.

4. Tow D. SQLTuning. OReilly, North Sebastopol, CA, 2003.
Schema Versioning

JOHN F. RODDICK

Flinders University, Adelaide, SA, Australia

Definition
Schema versioning deals with the need to retain cur-

rent data, and the ability to query and update it,

through alternate database structures. (The structure

of a database is held in a schema (pl. schemata or

schemas). Commonly, particularly in temporal data-

bases, these schemata represent the historical structure

of a database but this may not always be the case.)

Schema Versioning requires not only that data are not

lost in schema transformation but also requires that all

data are able to be queried, both retrospectively and

prospectively, through user-definable version inter-

faces. Partial schema versioning is supported when

data stored under any historical schema may be viewed

through any other schema but may only be updated

through one specified schema version – normally the

current or active schema. (Schema evolution and sche-

ma versioning has been conflated in the literature with

the two terms occasionally being used interchangeably.)

Historical Background
Multiple versions of a database schema may exist for a

number of reasons. First, as a result of changes in

system functionality and the external environment,

2500S Schema Versioning
the structure of a database system might change over

time but the historical shape of the database might

need to be retained. Second, future versions might be

created to develop and test later versions of a system.

Third, more than one schema may be required in

parallel to access the same data in a number of ways.

Temporal databases, because of their requirement to

maintain the context of historical information, are

particularly affected by schema change.

The idea of schema versioning was introduced in the

context of OODBs with a number of systems imple-

menting techniques to handle multiple schema (such as

Encore [12], Gemstone [7] and Orion [1]), including

those that might be required for reasons other than

simple historical succession. For example, parallel,

alternate schema might be required to conceptualize

an idea from a number of semantically consistent but

different perspectives. In particular, polymorphism

was suggested as a mechanism for providing some

stability when faced with changing schema [6].

In order to maintain long-established concepts

such as soundness and completeness, algebraic exten-

sions have also been discussed [3]. More recently, sche-

ma versioning has also been considered in the context

of spatio-temporal databases [9] and meta-data man-

agement [2,4].

Foundations
Schema versioning is closely related to the concepts of

schema integration and data integration – all deal with

the problems of accessing data through schema that

were not used when the data were originally stored.

However, the idea of maintaining multiple schemata,

and allowing data to be accessed through them, raises a

number of issues.

 What is the significance of a difference between two

schema (or two databases) and therefore what is

the informational cost of the change?

 What are the atomic operations of schema transla-

tion or transformation and what happens to the

data during these operations?

 Are there any modelling techniques that can be used?

 Are there any other side-effects or opportunities

(for instance in query language support)?

Types of Schema Evolution

As outlined elsewher, four forms of schema evolution

can be envisaged - attribute, domain, relation and key
evolution. Moreover, one change may involve more

than one type of evolution, such as changing the do-

main of a key attribute and may also be reflected in the

conceptual model of the system. Importantly for sche-

ma versioning, the inverse function for each of these

must be considered. For example, when a schema

(merely) evolves by vertically splitting a relation in

two with data being suitably transformed, for schema

versioning to be allowed, active transformation func-

tions must be provided if the old schema is still to be

utilized.
Practical and Theoretical Limits of Schema Versioning

It has been shown that in order to update data stored

under two different schemata using the opposite sche-

mata, they must have equivalent information capacity –

all valid instances of some schema S1 must be able to be

stored under S2 and vice-versa [5]. Specifically, S1 � S2
if I(S1) ! I(S2) is bijective where I(S) is the set of all

valid instances of S. This means that, in theory, full

schema versioning across nonequivalent versions of a

schema is unattainable and much research in the area

adopts the weaker concept of partial schema versioning

in which data stored under any historical schema may

be viewed through any other schema but may only be

updated through one specified schema version - nor-

mally the current or active schema.

However, in practice, many schema changes that

expand or reduce the information capacity of a schema

can be done without loss of information. This is the

case, for example, for domains defined too large for any

of the data, or for the creation of subclass relations from

a single relation where the subclass type attribute al-

ready exists. It is a common practice, where there is

some ambiguity in the requirements definition of a

system, to allow for a larger schema capacity – some

of which may never materialize and, as a result, changes

to schemata to adhere to the data actually collected are

not uncommon. For example, allowing for time and

date when only date is recorded in practice.

Thus the limits for practical schema versioning

in a database D are that S1�
p
S2 (S1 and S2 have

practical equivalent information capacity) if

I 0ðDj S1Þ ! I 0ðDj S2Þ is bijective where I 0ðDjSnÞ is

the set of all instances of Sn inferrable from D given

the constraints of Sn. This means that whether the

integration of two schema is possible is dependent on

the data held as well as the schema definition and while

Schema Versioning S 2501
this makes the ability to undertake wholesale change

less predictable, it may provide an acceptable level of

support in many practical situations.

Completed Schemas

In order to make all data for a relation available with-

out the need to issue multiple queries, each targeting

different time periods, the concept of a completed sche-

ma, C, can be employed that includes all attributes that

have ever been defined over the life of a relation. The

domain of each attribute in C is considered syntacti-

cally general enough to hold all data stored under every

version of the relation and the implicit primary key of

C is defined as the maximal set of key attributes for the

relation over time. Depending on the mechanism used

to implement schema versioning, the completed sche-

ma can then be used by a series of view functions. For

example, in Fig. 1, Vt5 maps the completed schema C

to a subset of the attributes in a schema St5 active

during t5. A converse view function Wt2 maps from

St2 to C.

Thus the data stored during t2 may be mapped to

the format specified during t5 through invocation of

Vt5ðWt2ðSt2ÞÞ.

Query Language Support

Support for schema versioning does not yet exist in

commercially available query languages. However, the

TSQL2 proposal [10] and an earlier SQL/SE proposal

[8] outlined some parts of the solution. As examples of

such extensions:
Schema Versioning. Figure 1. Versions of Schemata over tim

 Reference to the completed schema can be included

to provide access to all data;

 The specification of the schema could be done either

through the specification of a global schema-time

as in TSQL2, which would be useful for SQL emb-

edded in a program with the schema-time set to

compile time, or explicitly as part of the query;

 Attribute definition might be able to be tested by

adding a test to see if a value was missing because it

was not defined rather than being merely null;

 The language may also include meta-data queries

such as the ability to ask what version of the schema

a given piece of data adheres to.
Instance Amendment

For schema versioning in which the old schemata are

still considered valuable, once a schema change is ac-

cepted, there are three options regarding the change to

existing data. First, the underlying instances may be

coerced to the new structure. While conceptually sim-

ple, this may result in lost information and an inability

to reverse schema amendments. Secondly, data are

retained in the format in which it was originally stored.

This retains information content at the expense of

more complex (and slower) translation of data when

needed. Third, data are initially retained in the format

in which it was originally stored but is converted when

amended. While the most complex option, it has the

advantage of identifying data that has not been

amended since the schema change.
e.

S

2502S Scientific Databases
Future Directions
Schema versioning research has moved from low-level

handling of syntactic elemental changes to more

model-directed semantic handling of change. There

are a number of other issues that make schema ver-

sioning non-trivial. Some of these represent future

issues to be investigated.

 Many schema change requirements involve com-

posite operations and thus a mechanism for sche-

ma level commit and rollback functions could be

envisaged which could operate at a higher level to

the data level commit and rollback operations.

 Access rights considerations are particularly a prob-

lem in object-oriented database systems. Consider,

for example, a change to a class (e.g., Employees)

from which attributes are inherited to a sub-class

(e.g., Engineers) for which the modifying user has

no legitimate access. Any change to the definition

of attributes inherited from the superclass can be

considered to violate the access rights of the sub-

class. Moreover, in some systems ownership of a

class does not imply ownership of all instances of

that class.

 In temporal databases the concept of vacuuming

(q.v.) allows for the physical deletion of temporal

data in cases where the utility of holding the data

are outweighed by the cost of doing so [11]. Similar

consideration must be given to the deletion of obso-

lete schema definitions, especially in cases where no

data exists adhering to either that version (physically)

or referring, through its transaction-time values,

to the period in which the definition was active.

Cross-references
▶Conceptual Modelling

▶ Schema Evolution

▶Temporal Algebras

▶Temporal Evolution

▶Temporal Query Languages

Recommended Reading
1. Kim W., Ballou N., Chou H.T., Garza J.F., and Woelk D.

Features of the orion object-oriented database system. In

Object-Oriented Concepts, Databases and Applications.

W. Kim and F. Lochovsky (eds.). ACM Press, New York, 1989,

pp. 251–282.

2. Madhavan J. and Halevy A.Y. Composing mappings among data

sources. In Proc. 29th Int. Conf. on Very Large Data Bases, 2003,

pp. 572–583.
3. McKenzie L. and Snodgrass R. Schema evolution and the rela-

tional algebra. Inf. Syst., 15(2):207–232, 1990.

4. Melnik S., Rahm E., and Bernstein P.A. Rondo: a programming

platform for generic model management. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2003, pp. 193–204.

5. Miller R. Ioannidis Y. and Ramakrishnan R. The use of infor-

mation capacity in schema integration and translation. In Proc.

29th Int. Conf. on Very Large Data Bases, 1993, pp. 120–133.

6. Osborn S. The role of polymorphism in schema evolution in an

object-oriented database. IEEE Trans. Know. Data Eng.,

1(3):310–317, 1989.

7. Penney D. and Stein J. Class modification in the gemstone

object-oriented DBMS. In Proc. 1987 Conf. on Object-Oriented

Programming Systems, Languages, and Applications, 22(12):

111–117, 1987.

8. Roddick J.F. SQL/SE - a query language extension for databases

supporting schema evolution. ACM SIGMOD Rec., 21

(3):10–16, 1992.

9. Roddick J.F., Grandi F., Mandreoli F., and Scalas M.R. Beyond

schema versioning: a flexible model for spatio-temporal schema

selection. Geoinformatica, 5(1):33–50, 2001.

10. Roddick J.F. and Snodgrass R. Schema versioning support,

Chapter 22. In The TSQL2 Temporal Query Language.

R. Snodgrass (ed.). Kluwer, Boston, 1995, pp. 427–449.

11. Skyt J., Jensen C.S., and Mark L. A foundation for vacuuming

temporal databases. Data Know. Eng., 44(1):1–29, 2003.

12. Zdonik S. Version management in an object-oriented database.

In Proc. Int. Workshop on Adv. Programming Env., 1986,

pp. 405–422.
Scientific Databases

AMARNATH GUPTA

University of California-San Diego, La Jolla, CA, USA

Definition
Scientific data refers to data that arise from scientific

experiments, instruments, analytical tools, and compu-

tations. A chemistry experiment, for example, can yield

data about the experimental setup, the pressure and

temperature conditions under which the experiment

was set up, measured variable like the heat released,

initial and final masses the ingredients and products

of the experiment, and so forth. The output of an ins-

trument like a radio-telescope, after running signal

processing algorithms, will produce ‘‘images’’ of the

radio-frequency sources in a part of the sky that the

telescope was looking at. A biologist, after obtaining

the image of a dye-filled nerve cell, uses image analysis

software to produce a set of measurements that reflect

the structure of the cell and its subparts. Recently, envi-

ronmental sensors are cast in oceans and send real-time

Scientific Databases S 2503

S

data on ocean temperature, salinity, oxygen content

and other parameters. A scientific database refers to

an information management framework need to store,

organize, index, query, analyze, maintain, and mine

such heterogeneous scientific data.

Historical Background
Investigation in data management techniques for

scientific data started with studying file organization

principles that are tuned toward specific kinds of scien-

tific data [5], where the problem explored was to devel-

op a multi-query indexing scheme for scientific records.

Discipline-specific systems with data retrieval capabil-

ities were also developed. Coughran [2] describes a

systems called Hydrosearch for worldwide hydrographic

data from oceans that supported range queries like:

OCEAN = PACIFIC

OUTPUT = REPORT

LATHEM = N

LONHEM = W

LATDEG GEQ 31 AND LATDEG LEQ 33

LONDEG GEQ 121 AND LONDEG LEQ 123

MONTHGEQ 3 ANDYEAR = 63 ORMONTH

LEQ 2

MXDPTH GEQ.98 DBOT

Around the same time, the National Laboratories deal-

ing with a wide category of data related to energy re-

search, recognized that ‘‘such diverse data applications as

material compatibility, laser fusion, magnetic fusion,

test, equation of state, weather, environmental and

demographic data, has an acute need for a Scientific

Data Base Management System (SDBMS). . .The large

volume of data, the numeric values within an epsilon

of accuracy, the unknown data relationships, the chang-

ing requirements, coupled with the overall goal of

extracting new intelligence from the raw data, dictate

a data base system tailored toward scientific appli-

cations. Such an SDBMS should support scientific

data types, a relational end user view, an interactive

user language, interfaces to graphical and statistical

packages, a programming language interface, interfaces

to existing facilities, extensibility, portability, and use in

a distributed environment’’ [1]. The system in [1] was

developed on the CODASYL model [7].

It was in the 1980s that these different efforts

started to take a coherent form where some general

characteristics of scientific data management were

identified. It was recognized through papers like [10]
that unlike business data that is usually defined by a

data schema and values conforming to the schema,

scientific data can come with a measurement frame-

work, a metadata specification, and often a summari-

zation framework. In [11] the database requirements

for scientific data were characterized, and a new con-

ference started in 1986 devoted to the issues managing

scientific and statistical data.

Foundations
As alluded to in the previous paragraph, scientific

data are usually more than the values of attributes –

they are often accompanied by additional descriptors

which together specify the semantics of the data and

therefore determines how the data can be interpreted

for query and analytical operations. Some broad cate-

gories of these additional components that specify the

context of the raw scientific data are described below.

Measurement Framework

A measurement framework is a specification of the

setting of the experimental data. For time-series data, it

may be the sampling frequency. For spatial data repre-

sented as a raster, it includes the resolution of the grid,

and how the measurement is obtained per grid (e.g.,

once at the center of the grid, average of nmeasurements

within the grid . . .). For finite element data such as data

from a fluid mechanics model, it may be the nature and

regularity of the mesh over which data are recorded. The

measurement framework is important in understanding

the semantics of the data. If there are two raster data sets

containing the measured temperature of two overlap-

ping regions such that (i) one has a finer resolution than

another, and (ii) one has the average-of-the-grid seman-

tics, while the other has a single-sample-at-center se-

mantics, how can one define a join operation to

combine the two data sets? One cannot simply define a

band join without considering a way to homogenize the

data sets before they can be joined. Another aspect of the

measurement framework is an assessment of the uncer-

tainty associated with the measured, estimated or com-

puted data. When data are associated with uncertainty,

the traditional data models do not suffice – probabilistic

or uncertainty-aware data models and query evaluation

techniques are needed.

Metadata Framework

Metadata refers to descriptors that provide additional

semantics beyond the value of an attribute. These

2504S Scientific Databases
include the unit of measurement, the precision and

accuracy of the data value, the uncertainty associated

with the temporal or spatial position at which the data

are taken, the experimental setting including whether

the data are absolute or relative to any other reference,

what if any computational corrections should be

made on the data before it can be delivered to an end

user. Metadata also covers constraint statements that

limit the allowable domain of data values, or additional

conditions that must be satisfied for the data to be

interpreted. These may range from simple encoding

schemes that specify ‘‘out of range’’ or ‘‘unknown’’

values, to multi-attribute constraints like ‘‘data are

valid only if the cloud cover coefficient at the loca-

tion is less than 0.2.’’ For data that are produced by

computational algorithms (such as simulations of

natural phenomena), the metadata also consists of

the parameter settings of the algorithms, which must

be taken into account to interpret, compare and ana-

lyze the data.
Summarization Framework

Scientific data are often voluminous due to high degree

of sampling, or the total time or space over which data

are acquired. In many applications, the total amount

of data are too much and non-informative, and the

scientists maintain only summarized versions of the

data. For example, one may keep only weekly average

temperature obtained from satellites; alternatively, one

might keep the information only when there is a sig-

nificant local change in the data. Since this is a common

practice in many scientific disciplines, specification of

how the data was summarized is a form of information

that needs to go together with the data itself.
Heterogeneity of Types

An important characteristic of scientific data is the

wide range of complexity and heterogeneity of the

data types that are needed to model the applications.
Complexity and Heterogeneity of Formats

Distinct from the issue of data types, scientific data

demonstrates a wide variety of formats for the same

kind of data. In some domains, there is a lack of a

single standard, and vendors of instruments that pro-

vide data, or vendors of software that manipulate

the data define their own formats to facilitate their

respective needs for data generation, analysis and
visualization. For example, biological pathways, which

are essentially graphs with node and edge attributes are

represented differently by software such as Cytoscape

[9], PATIKA [3], Pathway Studio [6] and the standar-

dization effort called BioPAX (www.biopax.org) In

other domains, there is more standardization. But the

formats are very complex. HDF (Hierarchical Data

Format) is a complex scientific data format for storing

multidimensional data, raster data and tables. It is

also designed to be self-describing and contains addi-

tional metadata. The multiplicity of supported models

and the embedded metadata requires special data

management tools [4] to be developed for indexing

and querying HDF data. A consequence of this format

heterogeneity and complexity is that interoperability

of scientific data remains a research challenge.
Data Management Issues in Scientific Databases

Traditional Issues In 1985, [11] identified a number

of data management issues that pertain to scientific

data management. Many of these issues that hold

equally well today are:

 Data Volume and Compression: Much of scientific

data are multidimensional. While the data sets can

be very large, the fraction of the multidimensional

space that is occupied by the data is smaller. This

brings up the need to compress the data as well as

to choose a data organization that will exploit the

sparsity of data. Further, data manipulation and

query evaluation techniques that utilize the com-

pressed data or a new data organization are needed.

Managing large-scale scientific data is now consid-

ered to be an important challenge. A notable proj-

ect in this area is led by the Stanford Linear

Accelerator (SLAC – http://www.slac.stanford.edu/)

that is attempting to build a data management

system for a petabyte of data.

 Data Structures: With new scientific data types,

there is a need for new data structures and access

methods. In recent years, a number of index struc-

tures have been proposed for multidimensional

data. For example, Zhang et al. [12] proposed a

data structure for sampling multidimensional data;

Rotem et al. [8] have developed bitmap indexes for

very large-scale multidimensional data.

 New Operations: Data manipulation and search in

scientific databases need operators that go beyond

Scientific Databases S 2505

S

traditional relational or tree manipulation algebras.

It requires new operations such as sampling, neigh-

borhood searching in metric space, estimation and

interpolation operators for sampled data over a

dense data space, novel join methods for complex

data types.

 Analysis Support: The ultimate goal of scientific data

acquisition and storage is some form of analysis and

derivation of scientific truth. Scientists, the primary

users of the database, are not often willing to learn

complex query languages – instead, they want to

query the data as part of their analytical tasks. The

management of the entire analysis process require

analysis-friendly user interfaces that are sufficiently

expressive but not overly complex, a way to facilitate

repeated use of the same query with differing para-

meters, management of long-running queries,

handling large volumes of intermediate data, and

optimal execution of an entire analytical workflow.

 Quality Management: Quality awareness of data is

important when the data collected in a database

comes from any error prone process. For scientific

data, errors and approximations arise often due to

factors like resolution limits of instruments, mal-

functioning of devices, unforeseen environmental

or experimental confounding factors, biases intro-

duced by sampling, approximations used by pre-

processing computations and, of course, human

error. The problem gets compounded when a data

product is derived from an existing data product.

In many cases, data for a given application may

come from data sources with different quality and

‘‘believability.’’ Query languages, evaluation techni-

ques and analysis for scientific data needs to be

quality-aware, and give a user the ability to filter

data based on its quality and integrity.
Recent Trends More recently, the scientific data man-

agement community has identified newer challenges

over and above the issues above. Some of them are:

 Annotation Management: Annotating data is a com-

mon practice in science. An annotation is a piece of

user-imposed data that references an arbitrary data

element in an existing data store. One can annotate

a block of data with a statement about its quality;

one may annotate a fragment of data with informa-

tion of its provenance (i.e., where the data was

obtained from and how it was transformed before
it appeared in its present form); one may annotate

data by tagging it with keywords or terms from an

ontology so that it can be easily related to other

data. Annotation management attempts to create a

uniform way to store the annotation and their

referent data so that both the primary data and

the annotations can be queried together.

 Semantics: In many domain sciences, the semantics

of data is not adequately represented in data repo-

sitories. This makes it very difficult to one user to

interpret data from another user, and even harder

to combine multiple kinds of data together. This

recognition has led to a renewed interest in devel-

oping semantic data models for scientific data. As

part of this effort ontologies are being created to

standardize and define the terms and the inter-term

relationships in a discipline using standards like

the Web Ontology Language, OWL, so that data

producers can either use the ontological terms to

represent their data, or map their existing data

to the ontologies. At the same time, efforts are

underway to develop query, integration and data

mining techniques that make use of the semantic

framework.

Cross-references
▶Annotation Management

▶Data Types in Scientific Data Management

Recommended Reading
1. Birss E.W., Jones S.E., Ries D.R., and Yeh J.W. Scientific data

base management at Lawrence Livermore Laboratory: needs

and a prototype system. Technical Report UCRL-80146;

CONF-771062–1, Lawrence Livermore Lab, California University,

1977.

2. Coughran E. HYDROSEARCH, an easy-to-use retrieval system

for hydrographic station data. OCEANS, 7:418–421, 1975.

3. Demir E., Babur O., Dogrusoz U., Gursoy A., Nisanci G.,

Cetin-Atalay R., and Ozturk M. PATIKA: an integrated visual

environment for collaborative construction and analysis of

cellular pathways. Bioinformatics, 18(7):996–1003, 2002.

4. Gosink L., Shalf J., Stockinger K., Wu K., and Bethel W. HDF5-

FastQuery: accelerating complex queries on HDF datasets using

fast bitmap indices. In Proc. 18th Int. Conf. on Scientific and

Statistical Database Management, 2006, pp. 149–158.

5. Ikeda H. and Naito M. Evaluation of a combinatorial

file organization scheme of order one. In Proc Study on Scien-

tific Database Management Systems, 1979, pp. 195–199 (in

Japanese).

6. Nikitin A., Egorov S., Daraselia N., andMazo I. Pathway studio –

the analysis and navigation of molecular networks. Bioinformat-

ics, 19(16):2155–7, 2003.

2506S Scientific Knowledge Bases
7. Olle T.W. The Codasyl Approach to Data Base Management.

Wiley, Chichester, UK, 1978.

8. Rotem D., Stockinger K., and Wu K. Minimizing I/O costs of

multi-dimensional queries with bitmap indices. In Proc. 18th

Int. Conf. on Scientific and Statistical Database Management,

2006, pp. 33–44.

9. Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T.,

Ramage D., Amin N., Schwikowski B., and Ideker T. Cytoscape:

a software environment for integrated models of biomolecular

interaction networks. Genome Res., 13(11):2498–2504, 2003.

10. Shoshani A., Olken F., and Wong H.K.T. Characteristics of

scientific databases. In Proc. 10th Int. Conf. on Very Large

Data Bases, 1984, pp. 147–160.

11. Shoshani A. and Wong H.K.T. Statistical and scientific database

issues. IEEE Trans. Softw. Eng., 11(10):1040–1047, 1985.

12. Zhang X., Kurc T., Saltz J., and Parthasarathy S. Design and

analysis of a multi-dimensional data sampling service for large

scale data analysis applications. In Proc. 20th Int. Parallel and

Distributed Processing Symp., 2006.
Scientific Knowledge Bases

▶Biomedical Scientific Textual Data Types and

Processing
Scientific Medicine

▶ Evidence Based Medicine
Scientific Query Languages

▶Query Languages for the Life Sciences
Scientific Visualization

RONALD PEIKERT

ETH Zurich, Zurich, Switzerland

Definition
Scientific visualization [1] provides graphical repre-

sentations of numerical data for their qualitative and

quantitative analysis. In contrast to a fully automatic

analysis (e.g., with statistical methods), the final ana-

lytic step is left to the user, thus utilizing the power of

the human visual system. Scientific visualization differs
from the related field of information visualization in

that it focuses on data that represent samples of

continuous functions of space and time, as opposed

to data that are inherently discrete.

The challenge in scientific visualization is to cope

with massive data, which cannot be presented to the

user in an unprocessed way for several reasons:

1. Volumetric data, i.e., data givenona three-dimensional

domain, occlude each other. This problem becomes

even more severe if data are not scalars, but vectors

or even tensors.

2. Visualization should provide a global picture of the

spatial and temporal behavior of the data, but also

allow for interactive exploration of details.

3. There can be multiple data (different physical

quantities, multiple data channels, etc.) at each

point in the domain.

4. Visualization of scientific data should also include

visualization of their uncertainty.

5. The amount of raw data often exceeds limitations

of processor speed, transfer rates, memory size, and

display resolution.

Applications of scientific visualization cover a wide

spectrum of science and engineering disciplines. Curr-

ently, some of the most active fields are medical and

biomedical image data, simulation and measurement

data from fluid or solid mechanics, molecular data,

data from geology and geophysics, astronomy, weather

and climate.

Key Points
Scientific visualization evolved in the 1980s from earlier

graphing techniques when 3D computer graphics

opened new ways of displaying numerical data. The

abstraction from the application domain led to inter-

disciplinary visualization software systems with a

modular dataflow architecture. This approach is still

successful [2], since for many visualization tasks, the

semantics of the data is less relevant than mathematical

properties such as the discretization type or the cate-

gorization into scalars, vectors, and tensors.

For volumetric scalar data, important visualization

techniques are isosurfaces and direct volume rendering.

For vector fields examples are arrow glyphs, integral lines

(streamlines, streaklines) and texture advection. Tensor

fields are visualized with glyphs (ellipsoids, superquad-

rics) or tensor lines. In the special case of diffusion tensor

MRI data, fiber tracking techniques are applied. Scalar,

Scientific Workflows S 2507
vector, and tensor fields all are amenable to topology-

based visualization, which provides both the singularities

and a segmentation of the domain into regions of ‘‘simi-

lar data behavior.’’ More general, feature extraction and

feature tracking techniques aim at reducing the data

complexity and providing the viewer with only the

most salient information. Features (e.g., edges, ridges,

flow structures) are typically defined in terms of data

and their derivatives. User-defined feature definitions

are possible in visualization systems built on the linked

views paradigm, where simultaneous views of both

physical and data space are available all of which allow

for interactions such as data coloring and subsetting.

The visualization of very large data requires optimiza-

tion techniques including multi-resolution, parallel

and out-of-core algorithms, as well as view-dependent

visualization.

Cross-references
▶Data Visualization

▶Visualization Pipeline

Recommended Reading
1. Hansen C.D. and Johnson C.R. (eds.). Visualization Handbook.

Academic Press, San Diego, CA, 2004.

2. Schroeder W., Martin K., and Lorensen B. The Visualization

Toolkit: An Object-Oriented Approach to 3D Graphics Kitware,

Inc., New York, 2006.
S

Scientific Workflows

BERTRAM LUDÄSCHER, SHAWN BOWERS,

TIMOTHY MCPHILLIPS

University of California-Davis, Davis, CA, USA

Synonyms
In silico experiment; Grid workflow

Definition
A scientific workflow is the description of a process for

accomplishing a scientific objective, usually expressed

in terms of tasks and their dependencies. Typically,

scientific workflow tasks are computational steps for

scientific simulations or data analysis steps. Common

elements or stages in scientific workflows are acquisi-

tion, integration, reduction, visualization, and publi-

cation (e.g., in a shared database) of scientific data.

The tasks of a scientific workflow are organized (at
design time) and orchestrated (at runtime) according

to dataflow and possibly other dependencies as speci-

fied by the workflow designer. Workflows can be

designed visually, e.g., using block diagrams, or textu-

ally using a domain-specific language.

Historical Background
Workflows have a long history in the database com-

munity and in business process modeling, in which

case they are sometimes called business workflows to

distinguish them from scientific workflows. The data-

base community realized early [10] that scientific data

management has different characteristics from more

traditional business data management. Early work on

scientific workflows within the database community

took a database-centric view by defining data models

and query languages suitable for scientific experiment

management systems. The MOOSE data model and

FOX query language have their roots in the late

1980’s [5] and early 1990’s [13] and gave rise to the

ZOO experiment management environment [6], an

early system based on an underlying object-oriented

database. Another pioneering work that emphasized

the importance of workflow concepts in scientific

data management is WASA, a Workflow-based Archi-

tecture for Scientific Applications [8]; the related publi-

cation [12] introduced the term ‘‘scientific workflow’’

and contrasted such workflows with office automation

and business workflows. An early benchmark compar-

ing different database architectures for scientific work-

flow applications is LabFlow-1 [1].

Other roots of scientific workflow systems include

problem solving environments, which emerged in the

nineties in the computational sciences community as

intuitive tools to ‘‘solve a target class of problems for

scientific computing’’ [4], and laboratory information

management systems (LIMS) [9], which can be seen as

special scientific workflow systems that are used in a

laboratory environment for the management of samples,

instrument-based measurements, and other functions,

including data analysis and workflow automation. Simi-

lar to many scientific workflow systems, problem solv-

ing environments and LIMS sometimes employ a

visual programming paradigm to link together com-

ponents. An early, if not the first, visual language that

allowed simple interfacing with lab instruments was G

in LabVIEW1.0, released in 1986 for the Apple Macin-

tosh. Modern incarnations of LIMS can include func-

tions of enterprise resource planning (ERP) systems

2508S Scientific Workflows
and thus go beyond the scope of current scientific

workflow systems.

With the advent of e-Science as a paradigm, scien-

tific workflow research and development has seen a

major resurgence. Similar to the related term cyberin-

frastructure, e-Science brings together computational

techniques and tools from the computational sciences,

distributed and high-performance computing, data-

bases, data analysis, visualization, sharing, and collab-

oration. There are now a number of new open source

as well as commercial scientific workflow systems avail-

able and under active development. For example, a

special journal issue of Concurrency and Computation:

Practice and Experience covers a number of systems,

including Kepler, Taverna, and Triana among others

[2]. For a high-level overview and attempt at a classifi-

cation of current scientific workflow systems see [14],
Scientific Workflows. Figure 1. Example workflow represent

extracts gene IDs from human chromosome 22 with mapping

fetches base pairs of the associated DNA sequences; combine

sequence alignment; and renders the result. The workflow us

plot) that run on the EBI compute cluster.
which includes also references to many other systems,

such as Askalon, Pegasus/DAGMan, Karajan, etc.

Foundations
Science is an exploratory process involving cycles of

observation, hypothesis formation, experiment design

and execution. Today, scientific knowledge discovery is

increasingly driven by data analysis and computational

methods, e.g., due to ever more powerful instruments

for observation and the use of commodity clusters for

high-performance scientific computing and simulations

in the computational sciences. Scientific workflows

can be applied during various phases of the larger

science process, specifically modeling and automation

of computational experiments, data analysis, and data

management. The results from workflow runs can yield

new data and insights and thus may lead to affirmation,
ed in the Taverna workflow system. This workflow

s to disease functions and homologues in mouse and rat;

s the sequences into a FASTA file; performs a multiple

es three soaplab-based analysis operations (seqret, emma,

Scientific Workflows S 2509
modification, or refutation of a given hypothesis or

experiment outcome.

Scientific workflow systems automate the execution

of scientific workflows, and may additionally assist in

workflow design, composition, and the management

and sharing of workflow descriptions. Other important

functions include support for workflow execution

monitoring, for recording and querying provenance

information, for workflow optimization (e.g., exploit-

ing dataflow and concurrency information for parallel

execution), and for fault-tolerant execution. These

additional features also distinguish a scientific workflow

systems approach from more traditional script-based

solutions in which such functionality is usually not

provided. Workflow provenance information can be

used, e.g., to facilitate the interpretation, debugging,

and reproducibility of scientific analyses. An increasing
Scientific Workflows. Figure 2. Example scientific workflow

editing, and executing scientific workflows; (b) a visual repres

computed by a workflow run; and (c) a viewer for navigating

trace. This workflow uses a combination of local and remote

and phylogenetic tree inference on input DNA sequences.
number of scientific workflow systems now offer sup-

port for various forms of provenance. One can distin-

guish data provenance, i.e., the processing history of

data, and provenance information describing the work-

flow evolution, i.e., the history of changes of a workflow

definition and the parameter settings used for a partic-

ular workflow instance.

Scientific workflows are often visually represented

as directed graphs (Figs. 1 and 2) linking atomic tasks

or composite components, so-called subworkflows.

Tasks can include native functions of the workflow

system, but often correspond to invocations of

localapplications, remote (web) services, or subwork-

flows. Scientific workflows differ from conventional

programming in that the workflows are often more

coarse-grained and involve wiring together of pre-exist-

ing components and specialized algorithms. Figure 1
in the Kepler system: (a) user interface for creating,

entation of the data product (a phylogenetic tree)

the data provenance (lineage) captured in an execution

(web) services to perform multiple sequence alignment

S

2510S Scientific Workflows
shows a simple bioinformatics workflow in the Taverna

system, consisting of multiple (soaplab) services.

There is currently no standard scientific workflow

language, and standards from related communities (e.g.,

BPEL4WS) have not found widespread adoption in the

scientific workflow community. For example, job-based

grid workflows are often represented as directed acyclic

graphs (DAGs), which are then scheduled on a compu-

tational grid or cluster computer according to the

implied task dependencies. In this model of computa-

tion, each task is executed only once per workflow run

and task scheduling amounts to finding a topological

sort for the partial order implied by the DAG. Other

more sophisticated models of computation consider

tasks as independent and continuously executing pro-

cesses which can receive and send many different data

items per workflow run. Scientific workflow systems

that support such models of computation may thus be

used for data stream processing and continuous queries.

Similar to business workflows, formal approaches such

as Petri nets can be used to describe scientific workflow

execution semantics. However, the dataflow models

of computation of many scientific workflow systems

can exhibit both task- and pipeline-parallelism where

token order is important. A standard computation

model for such dataflow systems is the Kahn Process

Network model. The structurally simple linear Kepler

workflow in Fig. 2 is achieved via a special model of

execution, implemented by a so-called director. (Kepler

inherits from the underlying Ptolemy II system the

capability to use distinct directors at different work-

flow modeling levels and thus to combine different

models of computation in a single workflow.) The

COMAD (Collection-Oriented Modeling And Design)

director in Fig. 2 specifies that workflow components

work on a continuous, XML-like data stream which

passes through all components eventually. Each com-

ponent is configurable to compute only on certain

(tagged) data collections. Results are injected back

into the stream. The resulting more linear workflows

are easy to comprehend and evolve over time, another

important advantage over script-based solutions.

Key Applications
Scientific workflows now span virtually all areas of the

natural sciences. Bioinformatics is a particularly active

application area (cf. Figs. 1 and 2), but the spectrum

of disciplines employing scientific workflow systems

is much wider and includes particle physics, chemistry,
neurosciences, ecology, geosciences, oceanography, at-

mospheric sciences, astronomy and cosmology, among

others.

URL to Code
A number of open source scientific workflow systems

are available, among them:

Kepler: http://www.kepler-project.org

Taverna: http://taverna.sourceforge.net

Triana: http://www.trianacode.org

For a list including many other systems,

see http://www.extreme.indiana.edu/swf-

survey/.

Cross-references
▶Business Process Modeling

▶ (Business) Workflow

▶Data Analysis

▶Dataflow

▶ Problem Solving Environment

▶ Provenance

▶Visual Programming

Recommended Reading
1. Bonner A.J., Shrufi A., and Rozen S. LabFlow-1: a database

benchmark for high-throughput workflow management. In Adv-

ances in Database Technology, Proc. 5th Int. Conf. on Extending

Database Technology, 1996, pp. 463–478,

2. Fox G.C. and Gannon D. (eds.) Concurrency and Computation:

Practice and Experience. Special Issue: Workflow in Grid

Systems, 18(10), 2006.

3. Gil Y., Deelman W., Ellisman W., Fahringer T., Fox G.,

Gannon D., Goble C., Livny M., Moreau L., and Myers J. Exam-

ining the challenges of scientific workflows. Computer, 40(12):

24–32, 2007.

4. Houstis E., Gallopoulos E., Bramley R., and Rice J. Problem-

solving environments for computational science. IEEE Comput.

Sci. Eng., 4(3):18–21, 1997.

5. Ioannidis Y.E. and Livny M. MOOSE: modeling objects in a

simulation environment. In IFIP Congress, G.X. Ritter (ed.).

North-Holland, 1989, pp. 821–826.

6. Ioannidis Y.E., Livny M., Gupta S., and Ponnekanti N. ZOO: a

desktop experiment management environment. In Proc. 22th

Int. Conf. on Very Large Data Bases, 1996, pp. 274–285.

7. Ludäscher B. and Goble C. (eds.) ACM SIGMOD Rec., 34(3):

44–49, September 2005. Special Issue on Scientific Workflows.

8. Medeiros C.B., Vossen G., and Weske M. WASA: a workflow-

based architecture to support scientific database applications.

In Proc. 6th Int. Conf. Database and Expert Syst. Appl., 1995,

pp. 574–583.

9. Nakagawa A.S. LIMS: Implementation and Management.

The Royal Society of Chemistry, Thomas Graham House.

The Science Park Cambridge CB4 4WF, 1994.

Screen Scraper S 2511
10. Shoshani A., Olken F., and Wong H.K.T. Characteristics of

scientific databases. In Proc. 10th Int. Conf. on Very Large

Data Bases, 1984, pp. 147–160.

11. Taylor I., Deelman E., Gannon D., and Shields M. (eds.)

Workflows for e-Science: Scientific Workflows for Grids.

Springer, Berlin, 2007.

12. Wainer J., Weske M., Vossen G., and Medeiros C.B. Scientific

workflow systems. In Proc. NSF Workshop on Workflow and

Process Automation in Information Systems: State of the Art

and Future Directions, 1996.

13. Wiener J.L. and Ioannidis Y.E. A moose and a fox can aid

scientists with data management problems. In Proc. Fourth

Int. Workshop on Database Programming Languages, 1993,

pp. 376–398.

14. Yu J. and Buyya R. A taxonomy of scientific workflow systems for

grid computing. ACM SIGMOD Rec., 34(3):44–49, September

2005. Special Issue on Scientific Workflows.
Score Propagation

▶ Propagation-Based Structured Text Retrieval
Screen Scraper

HARALD NAUMANN

Vienna University of Technology, Vienna, Austria

Synonyms
Screen scraping; Data extraction; Screen wrapper
S

Definition
A screen scraper is a program which extracts relevant

data from the visual user interface of an application.

Input data are commonly represented using text-only

or graphically enhanced tables, lists and forms, tailored

to a human audience. Scraping is the task of collecting

data from its presentation, not directly from its source

for lack of access. The scraper output has a structured

and machine-readable format, where extracted data

are usually annotated with its semantics (metadata),

suitable for automatic post-processing. The process

can be thought of as reverse-engineering a data store

from its presentation, abstracting content from layout.

Using this approach, application data are taken from

the human-oriented screen output rather than the

application’s hidden proprietary data structures.
Key Points
Traditionally, screen scrapers have been used to inter-

face legacy systems residing on old mainframes,

which often host critical data processing applications.

Although both hardware and software are obsolete,

they cannot be replaced for various reasons. Screen

scraping offers a cost-effective alternative to access

and leverage underlying data stores. Typical applica-

tions include capturing emulated IBM 3270 screens

(a widely used text-based protocol for dumb term-

inals). Combined with macros to enable navigation

throughout different screens, scrapers can be used to

integrate with modern architectures.

Common text scraping methods make heavy use

of syntactic tools such as regular expressions to

identify relevant data. Recently, more semantic

approaches have been researched that furthermore

allow scraping from unstructured documents such

as PDF using generic document understanding tech-

niques supplemented by domain-specific knowledge

modeled with ontologies. Layout and table recogni-

tion can be performed on a visual level using top-

down segmentation (recursive X-Y cut), bottom-up

clustering as well as probabilistic graph-matching

algorithms [1]. Identified document segments can

then be classified using semantically designed rules

in order to annotate the original document with its

implicit structure.

Another key area is web scraping, which locates

data by exploiting the explicit underlying layout mark-

up (HTML) of its presentation. As a means to build

interfaces (APIs) for web sites not available otherwise,

scrapers also serve as the basis for state-of-the art

semantic web applications called web mashups, such

as MIT’s SIMILE project [2]. Web scrapers filter rele-

vant content, serializing it in annotated XML format.

The main complexity issue arising with all scraper

types is coping with change: scrapers are said to

‘‘break,’’ when data presentation changes substantially.

Visual IDEs can assist scraper design, offering lower

maintenance effort compared to purely programmatical

solutions.
Cross-references
▶ Information Extraction

▶Web Data Extraction

▶Wrapper Generator

▶Wrapper Maintenance

2512S Screen Scraping
Recommended Reading
1. Hassan T. and Baumgartner R. Intelligent text extraction from

PDF documents. In Proc. Int. Conf. on Intelligent Agents, Web

Technologies and Internet Commerce, 2005, pp. 2–6.

2. Huynh D., Mazzocchi S., and Karger D. Piggy bank: experience

the semantic web inside your web browser. In the Fourth Int.

Semantic Web Conf., 2005.
Screen Scraping

▶ Languages for Web Data Extraction

▶ Screen Scraper
Screen Wrapper

▶ Screen Scraper
SCSI Target

KALADHAR VORUGANTI

Network Appliance, Sunnyvale, CA, USA

Definition
In SCSI protocol, the server which provides the storage

is known as target. There can be multiple targets in a

storage controller. Each target can offer access to either

a single volume or multiple volumes. The volumes

being offered by a storage target are mapped into

LUNs by the host operating system.

Key Points
Storage controllers, JBOD (just a bunch of disks in an

enclosure), direct attached disks, and storage virtuali-

zation boxes can all act as SCSI targets. Other types

of storage media that can support the SCSI protocol

can also act as SCSI targets. The transport protocol

encapsulating the SCSI commands dictate the unique-

ness of the SCSI target and initiator identifiers.

Cross-references
▶ LUN

▶ LUN Mapping

▶ Storage Protocols

▶Volume
SDI, Selective Dissemination of
Information

▶ Information Filtering
Search Advertising

▶Web Advertising
Search Engine Caching and
Prefetching

▶Web Search Result Caching and Prefetching
SDC Score

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona, Catalonia

Definition
Statistical disclosure control (SDC) methods for

microdata can be ranked based on information loss,

disclosure risk or a combination of both. An SDC score

is a combination of information loss and disclosure

risk measures used to rank methods.

Key Points
The construction of an SDC score combining informa-

tion loss and disclosure risk was first proposed in [1,2].

For each method M and parameterization P, the

following score is computed:

ScoreðV;V0Þ ¼ ILðV;V0Þ þ DRðV;V0Þ
2

where IL is an information loss measure, DR is a

disclosure risk measure and V0 is the protected dataset

obtained after applying method M with parameteriza-

tion P to an original dataset V.

In the above references, IL and DR were computed

using a weighted combination of several information

Search Engine Metrics S 2513

S

loss and disclosure risk measures. With the resulting

score, a ranking of a set of masking methods (and their

parameterizations) was obtained. Yancey et al. [3] later

followed the same approach to rank a different set of

methods using a slightly different score.

To illustrate how a score can be constructed,

the particular score used by [2] is next described. Let

X and X0 be matrices representing original and pro-

tected datasets, respectively, where all attributes are

numerical. Let V and R be the covariance matrix and

the correlation matrix of X, respectively; let �X be the

vector of attribute averages for X and let S be

the diagonal of V . Define V 0, R 0, �X 0, and S0 analogously

from X0. The Information Loss (IL) is computed

by averaging the mean variations of X � X0, �X ��X 0,

V � V 0, S � S 0, and the mean absolute error of R � R0

and multiplying the resulting average by 100.

Thus, the following expression is obtained for infor-

mation loss:

IL ¼ 100

5

Pp
j¼1

Pn
i¼1

jxij�x0 ij j
jxij j

np
þ
Pp

j¼1

j�xj��x 0
j
j

j�xj j

p

0
@

þ
Pp

j¼1

P
1�i�j

jvij�v 0 ij j
jvij j

pðpþ1Þ
2

þ
Pp

j¼1
jvjj�v0 jj j
jvjj j

p

þ
Pp

j¼1

P
1�i�j jrij � r 0ij j
pðp�1Þ

2

!

The expression of the overall score is obtained by

combining information loss and information risk as

follows:

Score ¼
IL þ ð0:5DLDþ0:5PLDÞþID

2

2

Here, DLD (Distance Linkage Disclosure risk) is the

percentage of correctly linked records using distance-

based record linkage, PLD (Probabilistic Linkage Record

Disclosure risk) is the percentage of correctly linked

records using probabilistic linkage, ID (Interval Disclo-

sure) is the percentage of original records falling in the

intervals around their corresponding masked values and

IL is the information loss measure defined above.

Based on the above score, it turned out that, for

the benchmark datasets and the intruder’s external

information they used in [2], two good performers

among the set of methods and parameterizations they

tried were: (i) rankswapping with parameter p around
15; (ii) multivariate microaggregation on unprojected

data taking groups of three attributes at a time.

Cross-references
▶Disclosure Risk

▶ Inference Control in Statistical Databases

▶ Information Loss Measures

▶Microaggregation

▶Microdata

▶Rank Swapping

▶Record Matching

Recommended Reading
1. Domingo-Ferrer J., Mateo-Sanz J.M., and Torra V. Comparing

SDC methods for microdata on the basis of information loss

and disclosure risk. In Pre-proceedings of ETK-NTTS’2001,

2001, pp. 807–826.

2. Domingo-Ferrer J. and Torra V. A quantitative comparison

of disclosure control methods for microdata. In P. Doyle, J.I.

Lane, J.J.M. Theeuwes, and L. Zayatz (eds.). Confidentiality,

Disclosure and Data Access: Theory and Practical Applications

for Statistical Agencies. North-Holland, Amsterdam, 2001,

pp. 111–134.

3. Yancey W.E., Winkler W.E., and Creecy R.H. Disclosure

risk assessment in perturbative microdata protection. In

J. Domingo-Ferrer (ed.). Inference Control in Statistical Data-

bases. LNCS, Vol. 2316. Springer, 2002, pp. 135–152.
Search Engine Metrics

BEN CARTERETTE

University of Massachusetts Amherst, Amherst,

MA, USA

Synonyms
Evaluation measures; Performance measures

Definition
Search engine metrics measure the ability of an infor-

mation retrieval system (such as a web search engine)

to retrieve and rank relevant material in response to a

user’s query. In contrast to database retrieval, relevance

in information retrieval depends on the natural lan-

guage semantics of the query and document, and

search engines can and do retrieve results that are not

relevant.Thetwofundamentalmetricsarerecall, measur-

ing the ability of a search engine to find the relevant

2514S Search Engine Metrics
material in the index, and precision, measuring

its ability to place that relevant material high in the

ranking. Precision and recall have been extended and

adapted to many different types of evaluation and task,

but remain the core of performance measurement.

Historical Background
Performance measurement of information retrieval

systems began with Cleverdon and Mills in the early

1960s with the Cranfield tests of language indexing

devices [4,3]. Prior to that, retrieval systems had been

measured primarily by their efficiency; as with data-

bases, it was implicitly assumed that any document

matching the query was relevant. Cleverdon and

Mills recognized that information retrieval is not like

database retrieval. Queries can be under- or over-

specified, polysemy can confound the relationship be-

tween query and document, the wrong word can be

chosen for a concept with many names, and so on.

Results that are not relevant to the user’s request will

be returned and results that are relevant will not be

returned; there is a need to measure how often this can

be expected to happen in general.

Cleverdon and Mills identified two primary dimen-

sions on which to evaluate performance: the propor-

tion of relevant material retrieved (the recall ratio) and

the proportion of retrieved material that is relevant

(originally the relevance ratio, later precision). Part of

the goal of the Cranfield tests was to measure how

different indexing strategies affected recall and preci-

sion. To this end, Cleverdon and Mills assembled a

collection of 1,100 papers in high speed aerodynamics

and asked the authors to list the research questions that

inspired the paper. Each of the cited references was

then judged for relevance to each of the questions.

The resulting set of data – a collection of documents,

a set of questions or queries, and judgments of the

relevance of each document to each query – is called

a test collection, and the use of test collections for

information retrieval evaluation is now referred to as

the Cranfield methodology.

Through his extensive evaluations of the SMART

retrieval system in the 1960’s and 1970’s using the Cran-

field collection and methodology, Gerald Salton cemen-

ted precision and recall as the primary evaluationmetrics

for search engine performance [8]. He additionally of-

fered extensions and refinements to these basic measures:

normalized precision and recall, precision-recall curves

to demonstrate the tradeoff between the two,
interpolated precision at standard levels of recall, average

precision over different levels of recall or different

queries.

The early 1990s saw the formation of the Text RE-

trieval Conference (TREC) and the first evaluations over

hundreds of thousands of full-text documents rather

than the tens of thousands of abstracts that had previ-

ously been the standard in research [12]. The TREC

collections are large and heterogeneous, and thus are a

prime proving ground for any automatic retrieval tech-

nique. However, with an order-of-magnitudes increase

in the number of documents, it became impossible to

know every relevant document, and thus to know recall

with certainty. TREC also motivated the birth of a field

of research on ‘‘meta-evaluation,’’ the evaluation of per-

formance measures themselves, the evaluation of test

collections, and the estimation of retrieval measures.

TREC also led the way in defining and providing

models for the evaluation of new retrieval tasks. Some

of the tasks studied and evaluated at TREC over the

years include routing, multimedia retrieval, cross-lan-

guage retrieval, and passage retrieval. Closely related to

TREC are conferences on machine translation, sum-

marization, and document understanding. Precision-

and recall-based metrics such as the BLEU score [5]

have become standard in these fields as well.

The 1990’s also saw the explosive growth of the

web, which over the past 15 years has grown into a

collection of billions of documents, and within which

search is a multi-million dollar industry. Accurate

measures of performance are more important than

ever, as millions of dollars are at stake when decisions

are made based on those measures.

Foundations
Automatic text retrieval systems such as web search

engines return results in the form of a ranked list,

with the documents most likely to be relevant to the

user’s request at the top. Bad results can be returned if a

query is over- or under-specified, a word with multiple

meanings included in the query, or a word chosen to

represent a concept that is in the index but not under

that word, the ranked list will be ‘‘polluted’’ with

nonrelevant results. To understand the extent to

which this happens and how to fix it, it is necessary

to evaluate the ability of the system to retrieve and rank

relevant material independent of other factors affecting

the utility of the search engine such as interface design

or response time.

Search Engine Metrics S 2515
The two primary dimensions on which to evaluate

a ranked list are its ability to find the indexed relevant

material (recall) and its ability to rank that rele-

vant material highly (precision). Formally, precision

and recall are defined for a given rank cut-off in

terms of binary relevance – each document is either

relevant or not. Considering everything above the cut-

off to be ‘‘retrieved’’ and everything below it to be ‘‘not

retrieved’’ and comparing to the relevance of each

document produces a 2 � 2 contingency table, as

shown in Fig. 1.

Precision at rank n is defined as the proportion of

relevant documents in the top n retrieved:

precision@n ¼

number of documents relevant &

retrieved in the top n

number retrieved

Recall at rank n is the proportion of all relevant docu-

ments in the index retrieved in the top n:

recall@n ¼

number of documents relevant &

retrieved in the top n

total number relevant

this means that the engine was able to find every

relevant document without ever confusing a nonrele-

vant document for relevant.

As Fig. 2 shows, precision-recall curves appear jag-

ged, as each new relevant document increases both

precision and recall. The curve can be smoothed into a

non-increasing curve by interpolating precision: k
Search Engine Metrics. Figure 1. A ranking of eight docume

nonrelevant (N). Cut-offs at ranks one, three, five, and seven p
equally-spaced points of recall are chosen, and the

interpolated precision at the ith point is defined as

the highest precision at any point of recall greater

than or equal to that point [7]. The interpolated curve

demonstrates the trade-off between recall and preci-

sion: retrieving more documents increases recall, but

it also brings more nonrelevant material into the rank-

ing, decreasing precision. Figure 2 shows an example of

an 11-point (recall = 0,0.1,...,1) interpolated curve.

Besides precision and recall (which readers may also

know as ‘‘positive predictive value’’ and ‘‘sensitivity’’

respectively) there are many other statistics that can be

calculated on a 2 � 2 contingency table as in Fig. 1:

specificity, w2, mutual information, and accuracy,

among others; besides the precision-recall curve,

there are other curves that can be plotted over varying

cut-off values, the ROC curve being the most famous.

The utility of these to information retrieval is limited:

they depend on counts of ‘‘true negatives,’’ i.e., nonrel-

evant documents that were not retrieved. When retriev-

ing documents over a large heterogeneous collection

such as the web, nonretrieved nonrelevant documents

make up the vast majority of indexed pages – to a close

approximation, 100% of the index. Thus the difference

in one of these statistics for any two rankings is negligi-

ble, and certainly not distinguishable from chance.

A number of statistics that summarize the precision-

recall curve have been invented over the years. The most

common is average precision, the area under the preci-

sion-recall curve (originally the interpolated curve,

now more commonly the non-interpolated curve).
nts, four of which have been judged relevant (R) and four

roduce the 2 � 2 tables shown.

S

Search Engine Metrics. Figure 2. An example precision-recall curve, along with its 11-point interpolated curve.

2516S Search Engine Metrics
Another is R-precision, the point at which recall and

precision are equal. These are both measures that re-

ward systems for having both high recall and high

precision, but in a nonlinear fashion. The F-measure

is more linear: it is the weighted harmonic mean of

precision and recall (weights are chosen depending on

the relative importance of precision vs. recall); max-F

is the highest of all such values.

Additionally, there are a number of other metrics

in the literature that are based on the fundamental

ideas behind precision and recall. One that has found

widespread use in web measurement is discounted

cumulative gain (DCG) [5]. Since it can handle graded

relevance judgments, it is more flexible than precision

as traditionally defined. Normalized DCG (NDCG)

incorporates a recall component into DCG by dividing

it by the best possible DCG for the query.

Relevance Judgments

As described above, calculating metrics requires

judgments of the relevance of each document to each

query. Precision requires a judgment on every retrieved

document to the query. Recall requires that every doc-

ument that is in the index and relevant to the query

has been identified; thus until every document in the

collection has been judged, the possibility remains that

recall is being overestimated.

In Cleverdon and Mills’ original experiments, judg-

ments were made on how relevant a cited reference was

to the research questions that inspired the citing paper

[4]. They were made by the authors of the citing

papers, the ones who came up with the research ques-

tions to begin with. To fill out the set needed for precise
recall computation, additional judgments were made

by students working for Cleverdon.

With the shift to much larger, much more hetero-

geneous document collections that was inaugurated by

the National Institute for Standards and Technology

(NIST) at the TREC conferences, it became impossible

to judge every document to every query. Instead, the

pooling method [10] was adopted: a set of queries is

sent to participating sites without relevance judg-

ments; sites run the queries through their retrieval

systems and return the resulting ranked lists to NIST.

The top N documents retrieved by each system are

pooled, and the entire pool judged for relevance. Al-

though this results in a small fraction of the total

collection being judged, it is a biased sample that

ensures that most of the documents that are likely to

be retrieved by any system will be judged. Zobel has

shown that although relevant documents are missed

using this method (and thus recall overestimated), it is

more than satisfactory for evaluation when the goal is

comparing two or more different systems [13]. Addi-

tional work has shown that reliable comparisons can be

made with very few judgments; even when judgments

needed to calculate precision are missing, system com-

parisons can often be made with high confidence, and

even when confidence is not high, the degree of confi-

dence can be reliably estimated [2,1].

The judgments acquired for TREC are typically

binary – relevant or not – or trinary – highly relevant,

relevant, or not relevant – but binarized for evaluation.

This is appropriate for the tasks studied at TREC, which

tend to emphasize recall. For many types of web

searches, recall is significantly less important than

Search Engine Metrics S 2517

S

precision. For example, the query ‘‘microsoft’’ may re-

turnMicrosoft’s corporateweb page, pages aboutMicro-

soft software, pages about court cases Microsoft is

involved in, and pages about Microsoft’s stock activity.

All of these are relevant to some user’s need, but it is

unlikely that all of them are relevant to the same need.

Since the query is so broad, the best ranking would

probably put Microsoft’s home page at rank 1. But if

relevance is binary, any of those pages would be consid-

ered equally relevant, and a page about a small drop in

Microsoft stock on a certain date could appear at rank 1

without affecting precision or recall, even though the

user’s utility is clearly negatively affected.

To resolve this, web judgments are often made on

a graded scale. Examples of graded scales include the

‘‘highly relevant,’’ ‘‘relevant,’’ and ‘‘nonrelevant’’ some-

times used at TREC; ‘‘highly relevant,’’ ‘‘relevant,’’

‘‘maybe relevant,’’ ‘‘nonrelevant’’ to allow for some

uncertainty on the part of the judge, or the five-point

scale originally used by Cleverdon and Mills. There is a

trade-off between finer performance distinctions and

judgment quality, however: as more categories are

added, it becomes harder to define what exactly distin-

guishes one category from another, and as a result the

judgments become less reliable. Even with the binary

judgments and highly-specified information needs

used at TREC, there is a fair amount of disagreement

about what is relevant [11]; when moving to finer

scales and trying to infer user’s needs on the basis of

a 1–3 word query, disagreement may skyrocket.

Hypothesis Testing and Relative Performance

Measures like average precision and NDCG defy easy

interpretation. What does it mean for a system to have

an NDCG of 0.69? Thus the goal of performance mea-

surement is often to compare the performance of two

engines, one of which may be a minor modification of

the other. But a small difference in performance can

occur simply by chance. A decision based on such a

difference should take into account the probability that

it is ‘‘real,’’ i.e., whether it is unlikely to have occurred

only due to random factors.

Estimating this probability involves taking a ran-

dom sample of queries likely to be input to the system.

For the web, the sample can be obtained from search

logs. The measure of interest is computed for each

query, and some test statistic computed over the set.

The ideal test statistic should have high power to detect

the ‘‘real’’ differences when they exist.
There has been some debate over which test statis-

tic (and therefore which hypothesis test) is applicable

to information retrieval. If the same sample of queries

can be treated as a random sample to either engine and

both engines index the same documents, paired tests

provide more powerful analysis [7]. The sign test makes

no assumptions about the distribution of metrics like

NDCG over queries, but is not very powerful. The

Wilcoxon sign rank test, which has been popular, also

makes no distributional assumptions, but as a test for

difference in median has limited power to detect differ-

ences in mean performance. The t-test is a powerful test

for detecting differences in means. Although it requires

some distributional assumptions that may not hold in

practice, it is robust to violations of those assumptions,

and therefore is probably the best test to use when at

least 25 queries can be sampled [13].

Key Applications

Measuring Search Engine Performance

Precision, recall, and DCG measure how well the

engine ranks documents independent of other

factors that can influence users’ opinions, such as

interface, extra tools, and so on. Each metric measures

a different aspect of performance with varying degrees

of fineness.

Comparing Search Engines

Metrics allow the comparison of two different search

engines or two variations on a baseline ranking algo-

rithm. The statistical significance of differences can be

evaluated and used to make decisions about develop-

ment and deployment.

Optimizing Search Engine Performance

Search engine algorithms can be optimized to maxi-

mize performance on one or more of these metrics.

Future Directions
There are many open problems in search performance

measurement: how to evaluate personalized search (in

which results are tailored to the user), how to evaluate

novelty (ensuring that the same information is not

duplicated in results), how to use context in evalua-

tion, and so on.

A challenge of web evaluation is the ever-changing

nature of the query stream and the indexed documents

[9]. The distribution of queries changes frequently, and

2518S Search Engine Query Result Caching
there is always a long tail of queries that only appear in

the logs once. As a result, queries need to be resampled

and reevaluated constantly. Web pages disappear or fall

out-of-date frequently, and judgments should be kept

accordingly up-to-date. Finally, changes in the search

engine’s interface or its underlying algorithms can af-

fect the way users interact with it, making comparisons

between engines separated by long time periods diffi-

cult if not impossible.

Finally, there is still more work to be done on

understanding how missing relevance judgments affect

conclusions that can be drawn from evaluations.
Data Sets
The TREC test collections described in this article are

available from NIST at http://trec.nist.gov/.
Cross-references
▶Average Precision

▶Discounted Cumulated Gain

▶ F-Measure

▶ Information Retrieval

▶MRR

▶Relevance

▶R-Precision

▶Web Page Quality Metrics

▶Web Search Relevance Ranking
Recommended Reading
1. Aslam J.A., Pavlu V., and Yilmaz E. A statistical method for

system evaluation using incomplete judgments. In Proc. 32nd

Annual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 2006, pp. 541–548.

2. Carterette B., Allan J., and Sitaraman R.K. Minimal test collec-

tions for retrieval evaluation. In Proc. 32nd Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2006, pp. 268–275.

3. Cleverdon C.W. The cranfield tests on index language devices. In

Readings in Information Retrieval. K.S. Jones and P. Willett

(eds.). Morgan Kaufmann, 1967, pp. 47–59.

4. Cleverdon C.W. and Mills J. The testing of index language

devices. In Readings in Information Retrieval. K.S. Jones and

P. Willett (eds.). Morgan Kaufmann, 1963, pp. 98–110.

5. Kekalainen J. and Jarvelin K. Using graded relevance assessments

in ir evaluation. JASIST, 53:1120–1129, 2002.

6. Papineni K., Roukos S., Ward T., and Zhu W.J. BLEU: a method

for automatic evaluation of machine translation. In Proc. 40th

Annual Meeting of the Assoc. for Computational Linguistics,

2002, pp. 311–318.

7. van Rijsbergen C.J. Information Retrieval. Butterworths,

London, UK, 1979.
8. Salton G. and Lesk M.E. Computer evaluation of indexing and

text processing. In Readings in Information Retrieval. K.S. Jones

and P. Willett (eds.). Morgan Kaufmann, 1967, pp. 60–84.

9. Soboroff I. Dynamic test collections: measuring search effective-

ness on the live web. In Proc. 32nd Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

2006, pp. 276–283.

10. Sparck J.K. and van Rijsbergen C.J. Information retrieval test

collections. J. Doc., 32(1):59–75, 1976.

11. Voorhees E. Variations in relevance judgments and the measure-

ment of retrieval effectiveness. In Proc. 21st Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 1998, pp. 315–323.

12. Voorhees E.M. Harman D.K. (eds.). TREC: Experiment and

Evaluation in Information Retrieval. MIT, Cambridge, MA,

USA, 2005.

13. Zobel J. How reliable are the results of large-scale information

retrieval experiments? In Proc. 21st Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1998, pp. 307–314.
Search Engine Query Result Caching

▶Web Search Result Caching and Prefetching
Search Ranking

▶Web Search Relevance Ranking
Searching Compressed XML

▶Managing Compressed Structured Text
Searching Digital Libraries

PANAGIOTIS G. IPEIROTIS

New York University, New York, NY, USA

Synonyms
Federated search

Definition
Searching digital libraries refers to searching and re-

trieving information from remote databases of digi-

tized or digital objects. These databases may hold

Searching Digital Libraries S 2519
either the metadata for an object of interest (e.g.,

author and title), or a complete object such as a book

or a video.
S

Historical Background
The initial efforts to standardize and facilitate search-

ing of digital libraries date back to the 1970s, when the

development of the Z39.50 protocol started. The

Z39.50 protocol is an ANSI standard and defines how

to search and retrieve items from a remote database

catalog. The Z39.50 protocol was widely deployed

within library environments, allowing users to perform

searches to remote libraries.

With the advent of the Web, libraries started digi-

tizing and making contents available on the Web, and

the Z39.50 protocol started losing its importance.

Many libraries made their content ‘‘searchable’’

through standard Web forms, allowing users to search

and retrieve content using simply a Web browser.

However, due to the lack of a link structure, the con-

tents of the libraries remained ‘‘hidden’’ from the

modern search engine crawlers, forming part of the

‘‘Hidden-Web’’ (also known as Deep Web, or Invisible

Web). Searching across multiple Hidden Web data-

bases, despite the tremendous progress since 2000, is

still an open research problem.

However, achieving interoperability across all Web

databases is inherently harder than achieving inter-

operability across library databases, which are relatively

more homogeneous. Therefore, a set of efforts focused

on introducing protocols to facilitate integrating

and searching digital libraries. The Open Archives Ini-

tiative focused on defining a protocol for exporting

metadata about the objects in the collections hosted

by each library. The SRU protocol aims to modernize

the Z39.50 by making it similar to modern Web ser-

vices. Such efforts allow programmers to leverage their

existing skills and develop easier tools for the library

market.
Foundations
Digital libraries host a variety of digital objects, including,

but not limited to, textual documents, images, sounds,

videos, or even multimodal objects that combine the

above. The concept of searching digital libraries may

refer either to the action of searching a single digital

library or to the action of searching across multiple

digital libraries.
Searching a single digital library typically refers

to the action of searching and browsing the contents

of the underlying relational, textual, or multimedia

database.

Searching across multiple digital libraries is a con-

cept that evolved significantly over the years. The de-

velopment of these efforts is broadly divided in three

periods:

 The pre-Web period (late 1970s–mid 1990s): Devel-

opment of the Z39.50 standard.

 The early-Web period (mid 1990s–early 2000s):

Emergence of the Web, and increased accessibility

of libraries over the Web.

 The Web-services period (early 2000s–now): Defini-

tion of protocols for Web services, and develop-

ment of library-focused search and discovery

protocols.
The Pre-Web Period

The first attempts to define a standardized, common

protocol for searching library databases date back to

the 1970s. Then, the ‘‘Linked Systems Project’’ exam-

ined how to provide support for standardized access

method to a small set of homogeneous, bibliographic

databases. This effort led to the formation of a NISO

committee in 1979, which after years of efforts defined

the ‘‘American National Standard Z39.50, Information

Retrieval Service Definition and Protocol Specifica-

tions for Library Applications’’ in 1987. The protocol

was later revised in 1992, in 1995, and in 2003. (See

[11] for a detailed history and timeline of the develop-

ment of Z39.50.)

The Z39.50 protocol was designed as a client-serv-

er protocol, defining how the client can search and

retrieve information from a remote database. The

protocol supports a significant number of actions,

including searching across individual fields, such as

author, abstract, title, and so on. Unfortunately, the

protocol did not mandate the implementation of

several aspects of the specifications, allowing the

developers to choose the aspects of the protocol to

implement. This led to unexpected behavior of some

systems, as the same query, executed over the same

underlying content, could return very different

results, depending on the implementation. Further-

more, the extremely heavy specification made it diffi-

cult for vendors to develop systems that were fully

compatible with each other.

2520S Searching Digital Libraries
The Early-Web Period

The emergence of the Web changed significantly

the way that digital libraries make their content avail-

able. Many libraries, perhaps encouraged by the Digi-

tal Libraries Initiative in 1994, started digitizing and

making their content available over the Web. This

meant that user could simply visit the Web site of

a library and then, using simply Web forms, could

query and browse the holdings of the library.

A significant fraction of these new digital libraries

are only accessible via a search interface and the ability

to browse through a static hyperlink structure is often

missing. This means that the contents of these libraries

are ‘‘hidden’’ from search engines, since traditional

crawlers, which discover new pages by following links,

cannot discover the contents of the library. Such

libraries are part of the hidden-Web [2]. On the other

hand, libraries that provide a link structure for acces-

sing their holdings, are part of the surface Web, which

is accessible by using general search engines, such as

Google.

For libraries with content available as part of the

surface Web, the common model for searching is

through vertical search engines. The vertical search

engines create topically-focused indexes of the material

available on the Web by using focused crawlers [4] to

identify and index the pages about a given topic. Under

this model, the distributed digital libraries become

searchable through a centralized search interface that

indexes the remotely stored content. When a user

issues a query, the vertical search engine identifies the

most relevant pages in the index and returns to the user

the URLs of the pages, which are stored remotely.

For libraries with hidden Web content, the typical

way of searching their contents is through metasearch-

ers. A complete metasearcher has to perform the fol-

lowing tasks:

 Discover the available digital libraries. This invol-

ves crawling the Web to identify pages with Web

forms that are search interfaces for underlying

databases [5].

 Understand the capabilities of the available query

interface [1,13,16].

 Characterize the contents of the underlying data-

base, typically by extracting a small sample of the

stored contents through query-based sampling.

The characterization may involve classifying the

database into a topic hierarchy [6], extracting a
statistical summary of the content [3,8], or it may

involve keeping the actual sample as a surrogate for

the contents of the database [7,15].

 Use the database characterization to select the most

promising databases for evaluating a given query

[9,15].

 Evaluate the queries in the selected databases, re-

trieve, and merge the results from multiple data-

bases into a single list [14].

An alternative approach to the distributed search

technique adopted by metasearchers is to try to down-

load all contents of a hidden Web database [12]. Once

all the contents of the remote digital libraries are re-

trieved and stored locally, the problem of searching

multiple digital libraries is reduced to the problem of

searching a single, centralized database. One of the

issues in this case is the need to periodically refresh

the local copy with the most recent contents of the

remote database [10].

The Web-Services Period

During the early-Web period, the problem of inte-

grating and searching across digital libraries was

similar to the problem of integrating Web databases

at large. The vision of the semantic Web promised a

solution for this problem, and the implementation of a

Web services framework was a first step towards this

direction.

Inherently, though, the library integration problem is

much easier than the problems involved in the full im-

plementation of the semantic Web. Therefore, a set of

niche solutions were developed for the library integra-

tion problem, focusing on the one hand on library-

specific needs, but building on top of the existing tools

for general Web services that are being developed and

rapidly improved.

One of the first attempts to make effortless the

discovery of the contents of a library database was

the development of the Open Archives Initiative Proto-

col for Metadata Harvesting (OAI-PMH). This protocol

defines how a library can export metadata descriptions

of its holdings. Then, metadata harvesters can easily

collect the contents of the database and make these

contents searchable through a centralized search inter-

face. The OAI-PMH protocol is now widely adopted by

many libraries and a set of OAI registries facilitate even

further the discovery of libraries that support this proto-

col. Notably, major search engines, such as Google

Searching Digital Libraries S 2521

S

and Yahoo! also support the protocol, as an alternative of

the sitemaps protocol. This support allows libraries to be

an integral part of the general Web and at the same time

use a protocol developed and customized for their own

needs.

Beyond OAI, there are also attempts to modernize

the Z39.50 protocol and make it part of the larger family

of Web protocols. First, the Bath profile specifies the

exact query syntax that Z39.50 clients should use, so

that clients can interpret the results returned by Bath-

compliant Z39.50 servers. A more significant develop-

ment is the agreement for the Search/Retrieval via URL

(SRU) protocol. SRU is a standard XML-focused search

protocol for Internet search queries that uses Contex-

tual Query Language (CQL) for representing queries.

The SRU uses the REST protocol and introduces a stan-

dard method for querying library databases, by simply

submitting URL-based queries. For example, con-

sider the following URL-encoded query:

http://z3950.loc.gov:7090/voyager?version=1.1&

operation=searchRetrieve&query=dinosaur&maximum

Records=10

This example is a search for the term ‘‘dinosaur,’’

requesting that at most ten records to be returned. The

SRU protocol is easy to support and implement, and is

familiar to programmers that also use such syntax to

interact with other popular Web services.

Key Applications
Digital libraries are increasingly becoming part of

everyday life. The book digitization projects underta-

ken by corporations (e.g., Google, Microsoft) and by

many universities will generate enormous digital

archives accessible over the Web. Similarly, the high-

quality holdings of the existing libraries are becoming

increasingly accessible over the Web, allowing users to

reach easier authoritative sources of information.
Cross-references
▶Bioinformatics Data Management

▶Digital Libraries

▶Health Informatics Databases

▶Metadata Management

▶Multimedia Databases

▶Multimedia IR

▶Querying over Data Integration Systems

▶ Scientific Databases

▶ Semantic Web and Ontology

▶ Semi-structured Text Retrieval
▶ Structured and Semi-structured Document

Databases

▶Text Retrieval

▶Web Search and Crawl

▶Web Services and Service Oriented Architecture
Recommended Reading
1. Bergholz A. and Chidlovskii B. Using query probing to identify

query language features on the web. In Distributed Multimedia

Information Retrieval, In Proc. SIGIR 2003 Workshop on

Distributed Information Retrieval, 2004, pp. 21–30.

2. Bergman M.K. The deep Web: surfacing hidden value. J. Elec-

tron. Pub., 7(1), August 2001.

3. Callan J.P. and Connell M. Query-based sampling of text data-

bases. ACM Trans. Inf. Syst., 19(2):97–30, 2001.

4. Chakrabarti S., van den Berg M., and Dom B. Focused crawling:

a new approach to topic-specific web resource discovery. Com-

put. Netw., 31(11–16):1623–1640, May 1999.

5. Cope J., Craswell N., and Hawking D. Automated discovery of

search interfaces on the web. In Proc. 14th Australasian Database

Conf., 2003, pp. 181–189.

6. Gravano L., Ipeirotis P.G., and Sahami M. QProber: a system for

automatic classification of hidden-web databases. ACM Trans.

Inf. Syst., 21(1):1–41, January 2003.

7. Hawking D. and Thomas P. Server selection methods in hybrid

portal search. In Proc. 31st Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2005,

pp. 75–82.

8. Ipeirotis P.G. and Gravano L. Distributed search over the hidden

web: hierarchical database sampling and selection. In Proc. 28th

Int. Conf. on Very Large Data Bases, 2002, pp. 394–405.

9. Ipeirotis P.G. and Gravano L. When one sample is not enough:

improving text database selection using shrinkage. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2004,

pp. 767–778.

10. Ipeirotis P.G., Ntoulas A., Cho J., and Gravano L. Modeling and

managing content changes in text databases. In Proc. 21st Int.

Conf. on Data Engineering, 2005, pp. 606–617.

11. Lynch C.A. The Z39.50 information retrieval standard. D-Lib

Mag., 3(4), April 1997.

12. Ntoulas A., Zerfos P., and Cho J. Downloading textual hidden

web content by keyword queries. In Proc. ACM/IEEE Joint Conf.

on Digital Libraries, 2005.

13. Raghavan S. and Garcı́a-Molina H. Crawling the hidden web. In

Proc. 27th Int. Conf. on Very Large Data Bases, 2001, pp. 129–138.

14. Si L. and Callan J. A semisupervised learning method to merge

search engine results. ACM Trans. Inf. Syst., 21(4):457–491,

2003.

15. Si L. and Callano J. Modeling search engine effectiveness for

federated search. In Proc. 31st Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2005,

pp. 83–90.

16. Zhang Z., He B., and Chang K.C.-C. Understanding web query

interfaces: best-effort parsing with hidden syntax. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2004,

pp. 107–118.

2522S Second Normal Form (2NF)
Second Normal Form (2NF)

MARCELO ARENAS

Pontifical Catholic University of Chile, Santiago, Chile

Synonyms
2NF

Definition
Let R(A1,...,An) be a relation schema and S a set of

functional dependencies over R(A1,...,An). An attribute

Ai (i 2{1,...,n}) is a prime attribute if Ai is an element of

some key of R(A1,...,An). Then specification (R, S) is
said to be in Second Normal Form (2NF) if for every

nontrivial functional dependency X! A implied by S,
it holds that A is a prime attribute or X is not a proper

subset of any (candidate) key for R [1].

Key Points
In order to avoid update anomalies in database schemas

containing functional dependencies, 2NF was intro-

duced by Codd in [1]. This normal form is defined in

terms of the notions of prime attribute and key as shown

above. For example, given a relation schema R(A, B, C)

and a set of functional dependencies S = {A ! B},

it does not hold that (R(A, B, C), S) is in 2NF since B is

not a prime attribute and A is a proper subset of

the key AC. On the other hand, (S(A, B, C), G) is in
2NF if G = {A! B, B! C}, since A is a key (and thus

it is not a proper subset of any candidate key) and B is

not contained in any (candidate) key for S.

It should be noticed that relation schema S(A, B, C)

above is in 2NF if G = {A ! B, B ! C}, although this

schema is not in 3NF. In fact, 3NF is strictly stronger

than 2NF; every schema in 3NF is in 2NF, but there exist

schemas (as the one shown above) that are in 2NF but

not in 3NF.
Cross-references
▶Boyce-Codd Normal Form

▶ Fourth Normal Form

▶Normal Forms and Normalization

▶Third Normal Form
Recommended Reading
1. Codd E.F. Further Normalization of the Data Base Relational

Model. In Data base systems. Englewood Cliffs, N.J. Prentice-

Hall, 1972, pp. 33–64.
Secondary Index

YANNIS MANOLOPOULOS
1, YANNIS THEODORIDIS

2,

VASSILIS J. TSOTRAS
3

1Aristotle University of Thessaloniki, Thessaloniki,

Greece
2University of Piraeus, Piraeus, Greece
3University of California-Reverside, Riverside,

CA, USA

Synonyms
Non-clustering index

Definition
A tree-based index is called a secondary index if the

order which it maintains on the search-key values is

not the same as the order of the file which it indexes.

For example, consider a relation R with some numeric

attribute A taking values over an (ordered) domain D.

Assume that relation R is not physically stored on the

values of attribute A (i.e., relation R is either stored as a

heap – an unordered file, or is ordered on another

attribute). Furthermore, assume that a tree-based

index (e.g., B + -tree) has been created on attribute A.

Then this index is secondary.
Key Points
Tree-based indices are built on numeric attributes and

maintain an order among the indexed search-key

values. They are further categorized by whether their

search-key ordering is the same with the file’s physical

order (if any). Note that a file may or may not be

ordered. Ordered is a file whose records are stored in

pages according to the order of the values of an attri-

bute. Obviously, a file can have at most a single such

order since it is physically stored once. For example, if

the Employee relation is ordered according to the name

attribute, the values in the other attributes will not be

in order. A file stored without any order is called

an unordered file or heap. An index built on any

non-ordering attribute of a file is called secondary (or

non-clustering) while an index built on the ordering

attribute of a file is called primary (clustering).

Since the actual data record can be anywhere in

the file, the secondary index needs an extra level of

indirection, namely, a pointer to the actual position of

a record with a given value in the relation file. In other

words, a secondary index only clusters references to

Secure Data Outsourcing S 2523
records (in the form of<value, pointer> fields), but not

the records themselves. This extra indirection from a leaf

page of a secondary index to the actual position

of a record in a file has important subsequences on

optimization. Consider, for example, a secondary index

(B + -tree) on the ssn attribute of the Employee relation

(which assume is ordered by the name attribute). A

query that asks for the salaries of employees with ssn in

the range [x, y] can facilitate the B + -tree on ssn to

retrieve references to all records in the query range.

Assume there are 1,000 such ssn values in the Employee

file. Since the actual Employee records must be re-

trieved (so as to report their salaries), each such refer-

ence needs to be materialized by possibly a separate

page I/O (since the actual records can be in different

pages of the Employee file).

A relation can have several indices, on different

search-keys; among them, at most one is primary

(clustering) index while the rest are secondary ones.

Cross-references
▶Access Methods

▶B+-Tree

▶ Index Sequential Access Method (ISAM)

▶ Indexing

Recommended Reading
1. Elmasri R.A., and Shamkant N.B. Fundamentals of Database

Systems (5th edn.). Addisson-Wesley, Reading, MA, 2007.

2. Manolopoulos, Theodoridis Y. and Tsotras Y. Vassilis J. Ad-

vanced Database Indexing. Kluwer, Dordecht, 1999.

3. Ramakrishnan and Raghu Gehrke. Johannes Database Manage-

ment Systems (3rd edn.). McGraw-Hill, NY, 2003.
S

Secret-Key Encryption

▶ Symmetric Encryption
Secure Data Outsourcing

BARBARA CARMINATI

University of Insubria, Varese, Italy

Synonyms
Secure third-party data management
Definition
Data outsourcing is a new, emerging data management

paradigm in which the owner of data is no longer

totally responsible for its management. Rather, a por-

tion of data is outsourced to external providers who

offer data management functionalities. Secure data

outsourcing is a discipline that investigates security

issues associated with data outsourcing.

Historical Background
At present, service outsourcing is a paradigm widely

used by many companies and organizations to achieve

better service by delegating some of their business func-

tions to external specialized service providers. A natural

evolution of this paradigm is the recent emergence of

data outsourcing. With this strategy, a company is no

longer completely responsible for its own data manage-

ment. Rather, it outsources some of its data functional-

ities to one or more external data management service

providers (such as efficient query processing or large

storage capability). Data outsourcing clearly leads to a

range of security issues, because data owners have the

potential to lose control over the data that

is outsourced. Thus, the challenge is to ensure the high-

est level of security when data are managed by external

service providers. With this aim, several research groups

have started to investigate and propose mechanisms to

achieve secure data outsourcing.

Foundations
In general, the enforcement of data outsourcing requires

examination of new, challenging issues.With traditional,

well-known client server architecture (see Fig. 1a), data

owners manage the DBMS and directly answer user

queries. Data outsourcing relies on third-party archi-

tecture (see Fig. 1b), in which data owners outsource

their data (or portions of it) to one or more service

providers. In real world environments, it cannot be

assumed that third parties always operate according

to the data owner’s security policies. By contrast, to

achieve secure data outsourcing, one needs to define

techniques that satisfy the main security properties

even in the presence of an untrusted third party –

that is, a provider that could maliciously modify or

delete the data it manages by, for instance, inserting

fake records or sending data to unauthorized users.

Several researchers have focused on this problem and

have developed different proposals. However, before

illustrating the techniques proposed to date, it is

Secure Data Outsourcing. Figure 1. (a) Two-party; (b) third-party architecture.

2524S Secure Data Outsourcing
necessary first to identify the main security require-

ments in secure data outsourcing.

Security Requirements in Secure Data Outsourcing

In third-party architectures, potentially untrusted pro-

viders manage data. For this reason, secure data out-

sourcing must examine novel security issues as well as

reexamine the traditional ones. The following presents

the main security issues studied so far in secure data

outsourcing.

Privacy: If a third-party architecture is adopted, a

user could be concerned about his/her privacy for any

query processing that is performed by a third-party

provider. This is due to the fact that by simply tracking

a user’s queries, an untrusted provider could infer

sensitive information about the user (for instance, the

user’s preferences). For this reason, the privacy of the

submitted queries needs to be protected. To ensure

access privacy, a provider should not be able to know

the details of the query, but should be able to process it.

Authenticity and Integrity: Ensuring authenticity

and integrity in third-party architecture enables a

user, upon receiving some data from a provider, to

verify that the data received has been in fact generated

by the data owner and not modified by the provider.

(Integrity also has an additional meaning, that is, en-

suring that unauthorized users have not modified the

data; however, since data outsourcing is mainly con-

ceived for read-only data access, this definition of

integrity is not considered in this entry.) In traditional

architectures, both authenticity and integrity are en-

sured by means of digital signatures. When a user

submits a query, the data owner re-evaluates it and
digitally signs the query result. Then, the query result

together with its digital signature is sent to the user,

thus enabling the user to verify the query’s authenticity

and integrity. However, in third-party architectures,

traditional signature techniques cannot be used. A

provider may return to the user only selected portions

of the signed data in answer to the query evaluation.

Thus, a user that is provided with only these portions

is not able to validate the owner’s digital signature,

which has been generated on the whole data. To cope

with these requirements, alternative ways must be

found to sign outsourced data digitally so that a user

is able to validate the digital signature even if he/she

has only received selected portions of the signed data.

Completeness: Third-party architectures introduce

a further novel security requirement, called complete-

ness. If satisfied, this property ensures a user that the

answer received by third-party service providers to a

query genuinely contains all of the data answering to

the submitted query. (In the literature, some works

refer to this property as query correctness, by also im-

plying authenticity and integrity requirements.)

Confidentiality: Data confidentiality means ensur-

ing that data are disclosed only to authorized users.

However, it is obvious that when data are outsourced,

confidentiality requirements are not limited to users,

but extended also to providers. Thus, confidentiality in

data outsourcing acquires a twofold meaning. The

first deals with protecting the owner’s data from access

by a malicious or untrusted provider, and is referred

to as confidentiality wrt the provider. A further confi-

dentiality requirement, hereafter called confidentiality

wrt users, refers to the protection of data from

Secure Data Outsourcing S 2525

S

unauthorized user access on the basis of the access

control policies stated by the data owners. In tradition-

al client-server architectures, this requirement is

enforced by access control mechanisms, called reference

monitors, which mediate each user request by author-

izing only those in accordance with the owner’s access

control policies. This type of solution can hardly be

applied in data outsourcing, since it implies the dele-

gation of the reference monitor tasks to a potentially

untrusted publisher. For this reason, alternative solu-

tions should be devised for access control enforcement

when data services are outsourced.

Techniques for Secure Data Outsourcing

Many research groups have investigated security prop-

erty enforcement in data outsourcing, resulting in sev-

eral proposals for different security requirements. The

following presents the main results proposed so far,

grouped according to the security properties addressed

by each.

Access Privacy: Private Information Retrieval pro-

tocols (PIR, for short), first introduced in [5], are one

of the most relevant results of investigations into the

problem query privacy protection. The underlying

idea of PIR protocols is that several replications

of the same database are available in different servers

(i.e., providers). To preserve access privacy, the user

submits different queries to each different server,

defined so that by combing the servers’ answers, the

user is able to obtain the information desired, but by

analyzing the submitted query, each server is unable

to infer the actual interest of the user.

Authenticity and Integrity: These are the first prop-

erties that have been investigated in secure data

outsourcing. The aim is to devise alternative digital

signature schemes for signing the data to be out-

sourced, enabling users to validate the signature even

if users are only provided with selected portions of

the signed data. Several schemes have been proposed

so far, exploiting different strategies for achieving this

result. In particular, two of the most widely used tech-

niques are Merkle trees and aggregate signatures. The

following presents both of these concepts by introdu-

cing some of the related proposals.

Merkle Trees. Merkle proposed a method to

authenticate, with a unique signature, a set of messages

{m1,...,mn}, by at the same time enabling an intended

verifier to authenticate a single message without the

disclosure of the other messages. The proposed
solution exploits a binary tree, where each leaf contains

the hash values of a message in {m1,...,mn}, whereas

internal nodes enclose the concatenation of the hash

values corresponding to its left and right children (see

Merkle tree entry for more details). The root node of

the resulting binary hash tree can be considered the

digest of all messages, and thus it can be digitally

signed by using a standard signature technique. The

main benefit of this method is that a user is able to

validate the signature by having a subset of messages,

provided that he/she receives a set of additional hash

values. Indeed, by having hash values of the missing

messages, a user is able to build up locally the binary

hash tree and thus is able to validate the signature.

Merkle trees have been used in several computer

areas. However, the first work to exploit them in data

outsourcing was the one by Devanbu et al. [7], which

adapts these trees to relational data to prove the com-

pleteness, authenticity, and integrity of query answers.

According to this approach, for each relation R, a

different Merkle tree is generated in such a way that

leaves contain hash values of tuples in R. Then, when

a user submits a query on R, the provider replies to

him/her with the tuples answering the submitted query

together with the signature generated on the root node

of the corresponding Merkle tree. Moreover, the pro-

vider also sends the user the hash values of the tuples

of R not included in the result set. These additional

hash values enable the user locally to generate the

Merkle tree of R and to validate the signature. A similar

approach has been proposed to authenticate query

results in edge computing [14]. Here, besides signing

only the root of the Merkle tree, all leaves as well

as all of the internal nodes are also signed. This leads

to a reduced number of hash values to be returned

to users to enable them to verify owner signatures.

Merkle trees have also been investigated for secure

data outsourcing of XML documents [1,6]. In these

approaches, Merkle trees are generated in a different

way wrt those computed over relational data, i.e., a flat

list of tuples. Here, the challenge is how to generate a

Merkle tree that exploits the hierarchical organization of

an XML document. In both these approaches, a hash

value is univocally associated with the document root

through a recursive bottom-up computation on its

structure. The digest is computed by associating a hash

value with each node n of the XML document, com-

puted by also taking into account the hash values of its

children and the attributes in addition to contents of

2526S Secure Data Outsourcing
the n itself. Thus, the digest of the whole document is

the hash value of the root of the document.

Aggregate signatures. Boneh et al. [2] introduced

the notion of aggregate signatures, that is, a signat-

ure scheme able to aggregates n distinct signatures

generated by n distinct data owners into a unique

digital signature. The main advantage of this scheme

is that the validation of this unique digital signature

implies the validation of each component signature.

The aggregate signature has been used by Mykletun

et al. in [12] to ensure authenticity and integrity of

outsourced relational data. According to this approach,

given a relation R, the data owner generates a different

signature for each tuple in R. These signatures, together

with the corresponding tuples, are outsourced to the

provider. Then, when a user submits a query on rela-

tion R, the provider evaluates the query on R and

aggregates all of the signatures corresponding to the

tuples in the result set into a unique signature. There-

fore, as result of the submitted query, the third party

returns to the user the resulting aggregate signature, as

well as the tuples answering the query. The properties

of aggregate signatures assure the user that if the ag-

gregate signature generated by the third party is valid,

then all of the signatures generated by the owner on the

tuples in the result set are also valid, which proves

tuples’ authenticity and integrity.

Completeness: Researchers have investigated the

completeness property in combination with authen-

ticity and integrity requirements. As a consequence,

the main solutions proposed for ensuring this property

exploit the same techniques used for authenticity and

integrity – that is, Merkle trees and aggregate signatures.

First, let introduce how completeness can be ensured by

exploiting Merkle trees. In particular, [7] considers the

problem of completeness of answers to range queries.

The proposed solution’s underlying idea is that given a

range query whose predicate is against attribute a, the

Merkle tree is generated over tuples sorted according to

a values. Then, when a user submits a range query

containing a predicate against a, the provider returns

two additional tuples to the user together with the

result set answering the range query – that is, the tuples

precedent and subsequent to the lower and upper

bound of the result set. These two values are then

used to verify the owner’s signature. Since the signature

is computed on a Merkle tree generated over sorted

tuples, if the user validates the owner’s signature, he/

she is ensured that the received precedent and
subsequent tuples really precede and follow the lower

and upper bounds of the result set and that no tuples

are omitted from the result set, which proves the com-

pleteness of the answer. In contrast, the approach to

ensure completeness that has been proposed by Myk-

letun et al. [12] modifies an aggregation signature

scheme in such a way to include in the signature of a

tuple t, the hash value of tuples preceding t according

to all possible sorts defined on a the relation’s attri-

butes, obtaining a so-called signature chain. Thus,

when a user submits a range query, the provider also

inserts into the result set the boundary tuples, i.e., the

tuples preceding the upper and lower bound of the

result set, as well as their aggregated signatures. By

means of these signatures, a user is therefore able to

prove that the third party has not omitted any tuple.

Notice that to ensure completeness, both these solu-

tions require the user to be sent two additional tuples

wrt the result set answering the range query. This could

lead to some confidentiality breaches, since these addi-

tional tuples could contain sensitive data. To overcome

this problem, Pang et al. [13] proposed an approach

exploiting signature chains that does not disclose more

tuples than those in the result set.

Confidentiality: Several research groups have inves-

tigated confidentiality issues in data outsourcing. Most

have focused on confidentiality wrt providers, whereas

only the approach proposed in [3] also investigates con-

fidentiality wrt users in the context of outsourcing XML

documents. It is interesting to note, however, that all

these solutions share a common underlying idea by

which the data owners provide outsource service provi-

ders with an encrypted version of the data to manage,

without providing themwith the corresponding decryp-

tion keys. Consequently, the third party is unable to

access and to misuse outsourced data. This obviously

ensures confidentiality wrt providers. Also, to provide

assurance of confidentiality wrt users, the authors of [3]

proposed a selective encryption for XML documents

in which different portions of the same document

are encrypted with different encryption keys. More pre-

cisely, the owner encrypts all portions of the data to

which the same policies apply with the same key. Then,

the owner provides each user with all and only the keys

corresponding to the portions of data that the user is

allowed to access. This selective key distribution ensures

that each user is able to access all and only the portions

of data for which there is an access control policy author-

izing the access. Obviously, applying these solutions

Secure Data Outsourcing S 2527

S

requires addressing an interesting problem – that is, how

to enable providers to evaluate queries on encrypted data

without accessing them. In recent years, this problem has

been deeply investigated by several researchers, with the

results of different proposals. The following sections

introduce some of them by grouping them according

to the underlying data model.

Querying encrypted relational data. The most rele-

vant solution to querying encrypted relational data has

been proposed by Hacigumus et al. [10,11], where bin-

ning techniques and privacy homomorphic encryption

are exploited to execute SQL queries over encrypted

relations. The first step is to introduce how binning

techniques enable a service provider to evaluate selec-

tion queries. The underlying idea in [10,11] is that,

given a relation R, the data owner partitions the do-

main of each attribute in R into distinguished inter-

vals, to which the data owner assigns a different id.

Then, for each tuple t in R, the data owner outsources

to providers its encryption complemented with the ids

associated with the intervals to which t’s attribute

values belong. According to this approach, when a user

intends to submit a query, he/she rewrites the query’s

conditions in terms of interval ids, thus enabling the

provider with the ability to evaluate them without acces-

sing the data. For instance, the condition ‘‘Salary =200K’’

is rewritten as ‘‘Salary =id(200K),’’ where id(200K) is

the id of the partition containing the value 200K.

Moreover, to enable third parties to evaluate aggregate

functions over encrypted data, in [11] Hacigumus et al.

exploited privacy homomorphisms (PH) to calculate

some arithmetic operations directly on encrypted data.

More precisely, PH functions are used to encrypt attri-

butes of R, on which it is expected to do some aggrega-

tions. The data owner outsources the encrypted tuples

of R and the corresponding partition ids together with

attributes encrypted by PH functions. In [11], it is

shown that by having the privacy homomorphisms of

attributes to be aggregated, the third party is able to

evaluate aggregate functions directly over them.

Querying encrypted textual data. In 2000, Song et al.

proposed a first cryptographic scheme that supports

searching words on encrypted textual data [16]. (In

this context, the textual data consists of a set of

encrypted words.) According to this scheme, the

third party is provided with a ciphered version of

words to be managed. These ciphered words are gen-

erated as follows: first, each word is symmetrically

encrypted with a single secret key k; then, each
resulting encrypted word is XORed with a different

pseudorandom number. Since different occurrences

of the same encrypted word are XORed with a different

pseudorandom number, information about the word

distribution cannot be inferred by analyzing the distri-

bution of the encrypted words. Each user is provided

with the secret key k, and the used pseudorandom

numbers. (The scheme proposed in [16] is defined in

such a way that users are able to compute pseudoran-

dom numbers locally without any interaction with the

data owner.) By having this information, therefore,

when a user intends to ask the third party for a key-

word W, the user first generates the encrypted word

using the secret key k, and then computes the XOR of

the result with the corresponding pseudorandom num-

ber. The user then submits the obtained ciphered word

to the third party, which sequentially scans all ciphered

words to search for the one matching the one submit-

ted. Thus, this scheme allows the third party to search

for a keyword W directly on the ciphered data without

gaining any information on the clear text or on the

required keyword W. In 2003, Eu-Jin Gon proposed

an alternative solution for searching keywords in an

encrypted document [8], based on indexes. According

to this approach, a different index is associated with

each document to be encrypted. These indexes, called

security indexes, are based on Bloom filters and have

the property to store hidden information about the

keywords contained within the corresponding docu-

ment. According to this scheme, the owner outsources

the encrypted documents and the corresponding secu-

rity indexes to service providers, which are then able to

search for a keyword by simply accessing the indexes. A

similar approach has been devised in [4], which pro-

poses dictionary-based keyword indexes.

However, all of this work has the limitation that third

parties are able to identify only documents matching

with a given keyword, but are not able to support more

expressive searches, such as Boolean combinations of

keywords. A first step to overcome this limitation has

been done by Golle et al. in [9], which proposes a public

key scheme to support conjunctive keywords searches.

Key Applications
Data outsourcing offers several benefits. One of themost

relevant is related to cost reduction. Indeed, the com-

pany pays only for services that it uses from providers,

which are generally significantly less than the cost im-

plied by deployment, installation, maintenance, and

2528S Secure Database Design
upgrades of DBMSs. Moreover, the data management

services offered by specialized providers are more com-

petitive than the ones provided by the company itself.

A further benefit of data outsourcing is its scalability,

since a company can outsource its data to as many

providers as it needs according to the amount of data

and the number of managed users, avoiding that pro-

vider might become a bottleneck for the system. All

these benefits make secure data outsourcing suitable for

a wide range of applications in different data domains.

For geographical data, for instance, the secure data

outsourcing paradigm can be adopted to support geo-

marketing services. A data owner can outsource some

of its geographical data (for instance, maps at various

levels of details) to a publisher that provides them to

customers based upon different registration fees or

different confidentiality requirements (for instance,

maps of some regions that cannot be distributed to

everyone because they show sensible objectives).
Future Directions
Given the attention that the data outsourcing para-

digm is receiving, it is expected that secure data out-

sourcing will be intensely investigated in the future.

Besides proposing more efficient strategies for the

security requirements considered so far, it is necessary

to consider further challenging security issues, like

those related to user privacy and ownership protection.

Moreover, more consideration must be given to com-

plex data outsourcing scenarios to enable users to

manipulate the outsourced data rather than just simply

reading it.

Cross-references
▶Access Control

▶Data Encryption

▶Digital Signatures

▶Merkle Trees
Recommended Reading
1. Bertino E., Carminati B., Ferrari E., Thuraisingham B., and

Gupta A. Selective and authentic third-party distribution of

XML documents. IEEE Trans. Knowl. Data Eng.,

16(10):1263–1278, 2004.

2. Boneh D., Gentry C., Lynn B., and Shacham H. Aggre-

gate and verifiably encrypted signatures from bilinear maps.

In Proc. Advances in Cryptology, 2003.

3. Carminati B., Ferrari E., and Bertino E. Securing XML data in

third-party distribution systems. In Proc. Int. Conf. on Infor-

mation and Knowledge Management, 2005.
4. Chang Y. and Mitzenmacher M. Privacy preserving keyword

searches on remote encrypted data, Cryptology ePrint Archive,

Report, 2004.

5. Chor B., Goldreich O., Kushilevitz E., and Sudan M. Private

information retrieval. In Proc. Symp. on Foundations of Com-

puter Science, 1995.

6. Devanbu P., Gertz M., Kwong A., Martel C., Nuckolls G., and

Stubblebine S.G. Flexible authentication of XML documents. In

Proc. 8th ACM Conf. on Computer and Communications Secu-

rity, 2001.

7. Devanbu P., Gertz M., Martel C., and Stubblebine S.G. Authentic

third-party data publication. In Proc. 14th Annual IFIPWG 11.3

Working conference on Database Security, 2000.

8. Goh E. Secure Indexes, Cryptology ePrint Archive, Report 2003/

216, 2003.

9. Golle P., Staddon J., and Waters B. Secure conjunctive keyword

search over encrypted data. In Proc. the Applied Cryptography

and Network Security Conf., 2004.

10. Hacigumus H., Iyer B., Li C., and Mehrotra S. Executing SQL

over encrypted data in the database service provider model. In

Proc. 9th Int. Conf. on Database Systems for Advanced Applica-

tions, 2002.

11. Hacigumus H., Iyer B., Li C., andMehrotra S. Efficient execution

of aggregation queries over encrypted relational databases. In

Proc. 9th Int. Conf. on Database Systems for Advanced Applica-

tions, 2004.

12. Mykletun E., Narasimha M., and Tsudik G. Authentication and

integrity in outsourced databases. In Proc. 11th Annual Symp.

on Network and Distributed System Security, 2004.

13. Pang H., Jain A., Ramamritham K., and Tan K. Verifying com-

pleteness of relational query results in data publishing. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2005.

14. Pang H. and Tan K. Authenticating query results in edge

computing. In Proc. 20th Int. Conf. on Data Engineering, 2004.

15. Rivest R., Adleman L., and Dertouzos M. On data banks and

privacy homomorphisms. In Foundations of Secure Computa-

tion, Richard J. Lipton, David P. Dobkin, Anita K. Jones (eds.).

Academic press, 1978, pp 169–178.

16. Song D.X., Wagner D., and Perrig A. Practical techniques for

searches on encrypted data. In Proc. IEEE Symp. on Security and

Privacy, 2000.
Secure Database Design

▶ Secure Database Development
Secure Database Development

JAN JURJENS
1, EDUARDO B. FERNANDEZ

2

1The Open University, Buckinghamshire, UK
2Florida Atlantic University, Boca Raton, FL, USA

Synonyms
Secure DBMS development; Secure database design

Secure Database Development S 2529
Definition
This entry considers how to build secure database

system software. In particular, it describes how to build

a general-purpose database management system where

security is an important design parameter. For the data-

base community, the words secure database design may

refer to the schema design to produce a database for

a specific application with some level of security pro-

perties. There is a large amount of literature on this

latter subject and a related entry in this encyclopedia

(Database security). This entry concentrates mostly

on how to build the software of a DBMS such that it

exhibits security properties, which is called secure data-

base development. Both approaches are contrasted so

that the reader can decide which one of these problems

applies to their specific case but more space is dedicated

to the general secure database development problem.
S

Historical Background
While there is a large number of papers on security

models including authorization and other security

aspects of databases [2,4,5], there is little work on how

to implement a secure Database Management System

(DBMS). It is true that many proposals for secure

multilevel databases include details of implementation

but most of them are ad hoc architectures that cannot

be generalized to databases using different models or

even to othermultilevel databases with different require-

ments. Of the books on database security, [7] had several

chapters on how to build secure relational database

systems, and later [4] included also multilevel models.

Those books do a good job of indicating the architectural

units of such systems and their general requirements.

However, software development aspects are not dis-

cussed in detail. It appears that [10] is the only work

discussing these aspects explicitly.
Foundations
There are two aspects to the problem of developing

software for secure databases: building a general

(application-independent) secure DBMS and building

a database system which is part of a secure application.

These two problems are first briefly defined and then

discussed in more detail. Other approaches and possi-

ble system architectures are also considered.

In the first approach the DBMS is just a complex

software application in itself and a general secure soft-

ware methodology can be applied without or with little

change. Object-oriented applications typically start from
a set of use cases, which define the user interactions

with the system under development. In this particular

case, use cases would define the typical functions of a

DBMS, e.g. search, query, and update, and security

would be included as part of its development life cycle.

The DBMS would follow an appropriate model, e.g.

Role-Based Access Control (RBAC), selectable in the

design stage, which defines security constraints for the

functions defined by the use cases. In some cases, it may

be possible to support more than one security model.

This would result in a secure DBMS where security

would be a general nonfunctional requirement. The

approach results in a general-purpose secure DBMS,

where nothing is known about the specific applications

that will be executed by its users. The DBMS itself is the

application. The secure development methodologies of

[6,13] and others are applicable here.

Another view is the one from a designer who needs

to build a specific user application (or type of applica-

tion) that includes a DBMS as part of its architecture,

e.g. a financial system (most applications require

a database but the degree of security needed may

vary). This is discussed in [4,9,10,11]. In this case, the

DBMS is rather ad hoc and tailored to the level of

security desired for the specific type of application. For

example, [11] separates the requirements into three

types: functional, security, and database. Typically,

these approaches emphasize how to define and enforce

a set of application-specific rules that follow some secu-

rity model and how to reflect them in the schema and

other parts of the DBMS. Most of these studies

emphasize the security of the database schema or some

specific sections without much concern for the rest

of the application. A methodology such as [6] or [13]

can also be applied here, the DBMS being one of

the architectural levels of a system that implements a

specific application, although these methodologies have

little to say about the contents of the specific rules that

are needed in the schema (only their safe storage but not

their consistency or security).

An interesting problem that applies to both

approaches is the mapping from the conceptual secu-

rity model (that may apply to a collection of DBMSs)

to the authorization system of a specific database; for

example, security constraints defined in a conceptual

UML model defining authorizations in terms of classes

must be mapped to an SQL-based authorization sys-

tem which defines authorizations in terms of relations.

Clearly, whatever is defined in the common conceptual

model must be respected in the DBMS authorization

2530S Secure Database Development
system, although this latter may add further con-

straints related to implementation aspects.

General Secure Database Systems

In this case, as indicated earlier, the DBMS is a complex

application requiring a general high level of security.

There are several methodologies for this purpose and

two of them are described below. A methodology for

secure software development should include appropriate

tools and provide a unified and consistent approach

through all the life cycle stages. Ideally, a methodology

should use a Model-Driven Development approach,

where transformations between development stages are

based on correspondingmetamodels. Since the resulting

software is independent of the access control model

adopted, it does not provide for special requirements

of the model; for example, multilevel models typically

require data labeling. This means that the resulting soft-

ware would be less secure than an ad hoc design (unless

the multilevel model was the target in the example).

Because of the generality of the resultant DBMS it

may be difficult to prove formally security properties.

An early approach in this direction was based on adding

security functions to a general-purpose DBMS, e.g.

INGRES or System/R.

Secure Database Development using Patterns

A methodology to build secure systems is presented

in [6]. A main idea in the proposed methodology is

that security principles should be applied at every stage

of the software lifecycle and that each stage can be

tested for compliance with those principles. Another

basic idea is the use of patterns at each stage. A pattern

is an encapsulated solution to a recurrent problem

and their use can improve the reusability and quality

of software.

Domain analysis stage: A business model is defined.

Legacy systems are identified and their security impli-

cations analyzed. Domain and regulatory constraints

are identified and use as global policies. The suitability

of the development team is assessed, possibly leading

to added training. This phase may be performed only

once for each new domain or team. The need for

specialized database architectures should be deter-

mined at this point. The approach (general DBMS or

application-oriented system) should also de defined

at this stage.

Requirements stage: Use cases define the required

interactions with the system. Each activity within a
use case is analyzed to see which threats are possible.

Activity diagrams indicate created objects and are a

good way to determine which data should be pro-

tected. Since many possible threats may be identified,

risk analysis helps to prune them according to their

impact and probability of occurrence. Any require-

ments for degree of security should be expressed as

part of the use cases.

Analysis stage: Analysis patterns can be used to build

the conceptual model in a more reliable and efficient

way. The policies defined in the requirements can now

be expressed as abstract security models, e.g. access ma-

trix. The model selected must correspond to the type of

application; for example, multilevel models have not

been successful for medical applications. One can

build a conceptual model where repeated applications

of a security model pattern realize the rights determined

from use cases. In fact, analysis patterns can be built

with predefined authorizations according to the roles in

their use cases. Patterns for authentication, logging, and

secure channels are also specified at this level. Note that

the model and the security patterns should define pre-

cisely the requirements of the problem, not its software

solution. UML is a good semi-formal approach for

defining policies, avoiding the need for ad-hoc policy

languages. The addition of OCL (Object Constraint

Language) can make the approach more formal.

Design stage: When one has defined the policies

needed, one can select mechanisms to stop attacks

that would violate them. A specific security model,

e.g. RBAC, is now implemented in terms of software

units. User interfaces should correspond to use cases

and may be used to enforce the authorizations defined

in the analysis stage. Secure interfaces enforce author-

izations when users interact with the system. Compo-

nents can be secured by using authorization rules for

Java or .NET components. Distribution provides

another dimension where security restrictions can be

applied. Deployment diagrams can define secure con-

figurations to be used by security administrators. A

multilayer architecture is needed to enforce the secu-

rity constraints defined at the application level. In each

level, one can use patterns to represent appropriate

security mechanisms. Security constraints must be

mapped between levels.

The persistent aspects of the conceptual model

are typically mapped into relational databases. The

design of the database architecture is done according

to the requirements from the uses cases for the level of

Secure Database Development S 2531

S

security needed and the security model adopted in the

analysis stage. Two basic choices for the enforcement

mechanism include query modification as in INGRES

and views as in System R. A tradeoff is using an existing

DBMS as a Commercial Off-the-Shelf (COTS) compo-

nent, although in this case security will depend on the

security of that component.

Implementation stage: This stage requires reflecting

in the code the security rules defined in the design stage.

Because these rules are expressed as classes, associations,

and constraints, they can be implemented as classes in

object-oriented languages. In this stage one can also

select specific security packages or COTS, e.g., a firewall

product or a cryptographic package. Some of the pat-

terns identified earlier in the cycle can be replaced by

COTS (these can be tested to see if they include a similar

pattern). Performance aspects become now important

and may require iterations. As indicated, a whole DBMS

could be such component.

An important aspect for the complete design is

assurance. Experience shows that one can verify each

pattern used but this does not in general verify their

combination. One can however still argue that since one

has used a careful and systematic methodology with

verified and tested patterns, the design should provide

a good level of security. The set of patterns can be shown

to be able to stop or mitigate the identified threats.

Secure Database Development using UMLsec

A general methodology for developing security-critical

software which in particular can be used to develop

secure DBMSs has been proposed in [13]. It makes use

of an extension of the Unified Modeling Language

(UML) to include security-relevant information, which

is called UMLsec. The approach is supported by exten-

sive automated tool-support for performing a security

analysis of the UMLsec models against the security

requirements that are included [14] and has been used

in a variety of industrial projects [3]. The UMLsec exten-

sion is given in form of a UML profile using the standard

UML extension mechanisms. Stereotypes are used to-

gether with tags to formulate the security requirements

and assumptions. Constraints give criteria that determine

whether the requirements are met by the system design,

by referring to a precise semantics of the used fragment of

UML. The security-relevant information added using

stereotypes includes security assumptions on the physical

level of the system, security requirements related to the

secure handling and communication of data, and
security policies that system parts are supposed to obey.

The UMLsec tool-support can be used to check the

constraints associated withUMLsec stereotypesmechan-

ically, based on XMI output of the diagrams from the

UML drawing tool in use. There is also a framework for

implementing verification routines for the constraints

associated with the UMLsec stereotypes. Thus advanced

users of the UMLsec approach can use this framework to

implement verification routines for the constraints of

self-defined stereotypes. The semantics for the fragment

of UMLused for UMLsec is defined using so-called UML

Machines, which is a kind of state machine which is

equipped with UML-type communication mechanisms.

On this basis, important security requirements such as

secrecy, integrity, authenticity, and secure information

flow are defined.

Applications Including Secure Databases

Since this approach is tailored to the application, one

can add the required level of security using formal proofs

when necessary. Specialized operating system and hard-

ware are also possible and may be needed to reach the

required level of security. High-security systems require

faithful application of basic security principles; for

example, multilevel databases apply completemediation.

Databases work through transactions and a concurrency

control system serializes transactions to prevent incon-

sistencies. High-security multilevel databases also require

that the concurrency control system preserves security.

The methods described in the last section still apply here,

except that additional requirements must be considered.

Because of this, these approaches are discussed in less

detail, describing only two recent papers that contain

references to past work.

Designing Secure Databases using OCL

Anapproachtodesigningthecontentofasecurity-critical

data base uses the Object Constraint Language (OCL)

which is an optional part of the Unified Modeling

Language (UML). More specifically, [8] presents the

Object Security Constraint Language V.2. (OSCL2),

which is based in OCL. This OCL extension can be

used to incorporate security information and constraints

in a Platform Independent Model (PIM) given as a

UML classmodel. The information from the PIM is then

translated into a Platform Specific Model (PSM) given

as a multilevel relational model. This can then be

implemented in a particular Database Management

System (DBMS), such asOracle9i Label Security. These

2532S Secure Database Development
transformations can be done automatically or semi-

automatically using OSCL2 compilers. Related to

this, [9] presents a methodology that consists of four

stages: requirements gathering; database analysis; mul-

tilevel relational logical design; and specific logical

design. Here, the first three stages define activities to

analyze and design a secure database. The last stage

consists of activities that adapt the general secure data

model to one of the most popular secure database

management systems: Oracle9i Label Security. They

later extended the approach to data warehouses, multi-

dimensional databases, and on-line analytical processing

applications.

In both cases, a particular multilevel database sys-

tem, meaning a set of users organized in levels, com-

partments, and groups, is given access to specific items

of a relational database, according to the characteristics

of those items, which also include levels, compartments,

and groups. A set of rules describes the allowed access of

users to data items. The secure metamodel is stored in

the labels of each row or user definition. As indicated,

the extra requirements can be superimposed in a general

secure software development methodology.
Other Approaches to Secure Software Development

with Applicability to Databases

There are other approaches to developing security-

critical software which can be applied to
Secure Database Development. Figure 1. Standard placem
developing secure databases and database manage-

ment systems.

[12] presents an approach for the predicative spec-

ification of user rights in the context of an object

oriented use case driven development process. It

extends the specification of methods by a permission

section describing the right of some actor to call the

method of an object. The syntactic and semantic

framework is first-order logic with a built-in notion

of objects and classes provided with an algebraic

semantics. The approach can be realized in OCL.

[1] presents an approach to building secure systems

where designers specify system models along with their

security requirements and use tools to automatically

generate system architectures from the models, includ-

ing complete, configured access control infrastructures.

It includes a combination of UML-based modeling

languages with a security modeling language for for-

malizing access control requirements.

[15] presents an approach based on the high-level

concepts and modeling activities of the secure Tropos

methodology and enriched with low level security-

engineering ontology and models derived from the

UMLsec approach.

System Architecture for Security

Whichever approach is used, there are basically three

general architectural configurations to include security

functions:
ent of security services.

Secure Database Development. Figure 2. Common security services.

Secure Database Development. Figure 3. Architecture using a Web Application Server.

Secure Database Development S 2533

S

1. Figure 1 shows the standard approach. Here the

DBMS and the operating system have their own

set of security services.

2. Figure 2 shows a way to unify the design of the

DBMS with the design of the OS, using an I/O and

file subsystem and a security subsystem to be used

by both the DBMS and the OS.

3. Figure 3 is an extension of the standard approach

where a Web Application Server (WAS) unifies

security for several databases. The WAS applies a

common conceptual model to the information and

can integrate different types of databases.
These configurations can be used in either of the

approaches discussed earlier. Within each configura-

tion it is possible to use security kernels and virtual

machines.

Key Applications
Clearly, the first approach makes sense when the

objective is a secure DBMS product, since it is not

possible to know what user applications will be sup-

ported in the future. The only choice is then to build

a system which is as secure as possible within these

constraints and within a reasonable cost.

2534S Secure Database Systems
In the second case, the type of application to be

supported is known. This gives the designers the flexi-

bility of choosing an appropriate existing database

system, as done in [9], or to build the DBMS to

reach the required degree of security. If the complete

DBMS is to be built, the first approach is appropriate,

using as parameter the degree of security.

Cross-references
▶Access Control Administration Policies

▶Access Control Policy Lauguages

▶Architecture-Conscious Database System

▶Application Server

▶Authentication

▶Authorization

▶Concurrency Control – Traditional Approaches

▶Data Stream Management Architectures and

Prototypes

▶Data Warehouse Life-Cycle and Design

▶Data Warehouse Security

▶Database Design

▶Database Security

▶DB Middleware

▶DBMS

▶Discretionary Access Control

▶Distributed Database Design

▶Distributed Database Systems

▶Distributed DBMS

▶Mandatory Access Control

▶Metamodel

▶Object Constraint Language

▶Object Data Models

▶Object-Role Modeling

▶ Privacy

▶ Process Life Cycle

▶ Process Structure of a DBMS

▶Role Based Access Control

Recommended Reading
1. Basin D.A., Doser J., and Lodderstedt T. Model driven security:

from UMLmodels to access control infrastructures. ACM Trans.

Softw. Eng. Methodol., 15(1):39–91, 2006.

2. Bertino E. and Sandhu R. Database security – Concepts,

approaches, and challenges. IEEE Trans. Dependable Sec.

Comput., 2(1):2–19, 2005.

3. Best B., Jurjens J., and Nuseibeh B. Model-based security

engineering of distributed information systems using

UMLsec. In Proc. 29th Int. Conf. on Software Eng., 2007,

pp. 581–590.

4. Castano S., Fugini M., Martella G., and Samarati P. Database

Security. Addison-Wesley, 1994.
5. Fernandez E.B., Gudes E., and Song H. A model for evaluation

and administration of security in object-oriented databases.

IEEE Trans. Knowl. Database Eng., 6(2):275–292, 1994.

6. Fernandez E.B., Larrondo-Petrie M.M., Sorgente T., and

VanHilst M. A methodology to develop secure systems using

patterns, Chapter V. In Integrating Security and Software

Engineering: Advances and Future Vision, H. Mouratidis,

P. Giorgini (eds.). IDEA Press, 2006, pp. 107–126.

7. Fernandez E.B., Summers R.C., and Wood C. Database Security

and Integrity (Systems Programming Series). Addison-Wesley,

1981.

8. Fernández-Medina E. and Piattini M. Extending OCL for

secure database development. In Proc. Int. Conf. on the Unified

Modeling Language, 2004, pp. 380–394.

9. Fernández-Medina E. and Piattini M. Designing secure

databases. Inf. Softw. Technol., 47(7):463–477, 2005.

10. Fugini M. Secure database development methodologies. In

Database Security: Status and Prospects, C.E. Landwehr (ed.).

Elsevier, 1987, pp. 103–129.

11. Ge X., Polack F., and Laleau R. Secure Databases: an Analysis of

Clark-Wilson Model in a Database Environment. In Proc. 16th

Int. Conf. on Advanced Information Systems Eng., 2004,

pp. 234–247.

12. Hafner M. and Breu R. Towards a MOF/QVT-Based Domain

Architecture for Model Driven Security. In Proc. 9th Int. Conf.

Model Driven Eng. Lang. and Syst., 2006.

13. Jurjens J. Secure Systems Development with UML. Springer,

New York, 2004.

14. Jurjens J. Sound methods and effective tools for model-based

security engineering with UML. In Proc. 27th Int. Conf. on

Software Eng., 2005, pp. 322–331.

15. Mouratidis H., Jürjens J., and Fox J. Towards a comprehensive

framework for secure systems development. In Proc. 18th

Int. Conf. on Advanced Information Systems Eng., 2006,

pp. 48–62.
Secure Database Systems

▶Multilevel Secure Database Management Systems
Secure Datawarehouses

▶Data Warehouse Security
Secure DBMS Development

▶ Secure Database Development

Secure Multiparty Computation Methods S 2535
Secure Hardware

▶Trusted Hardware
S

Secure Multiparty Computation
Methods

MURAT KANTARCIOǦLU
1, JAIDEEP VAIDYA

2

1University of Texas at Dallas, Richardson, TX, USA
2Rutgers University, Newark, NJ, USA

Definition
The problem of preserving privacy while allowing data

analysis can be attacked in many ways. One way is to

avoid disclosing data beyond its source while still con-

structing data mining models equivalent to those that

would have been learned on an integrated data set.

This follows the approach of Secure Multiparty Com-

putation (SMC). SMC refers to the general problem of

computing a given function securely over private inputs

while revealing nothing extra to any party except what

can be inferred (in polynomial time) from its input and

output. Since one can prove that data are not disclosed

beyond its original source, the opportunity for misuse is

not increased by the process of data mining.

The definition of privacy followed in this line of

research is conceptually simple: no site should learn

anything new from the process of data mining. Specifi-

cally, anything learned during the data mining process

must be derivable given one’s own data and the final

result. In other words, nothing is learned about any

other site’s data that is not inherently obvious from the

data mining result. In the context of data mining, the

approach followed in this research has been to select a

type of data mining model to be learned and develop a

protocol to learn the model while meeting this defini-

tion of privacy.

Historical Background
Privacy-preserving data mining can be defined as the

problem of how to mine data when it is not possible to

see it. Two seminal papers [1,9] first considered this

problem and proposed different ways to attack it. Both

looked at the problem of constructing decision trees

from distributed data in a privacy-preserving manner.

Agrawal and Srikant [1] proposed a randomization

approach based on perturbing the input data and
reconstructing the distribution. Lindell and Pinkas

[9] proposed a cryptographic solution based on secure

multiparty computation. This entry describes the

second approach following the application of secure

multiparty computation methods to data mining.

Secure Multiparty Computation (SMC) originated

with Yao’s Millionaires’ problem [15]. The basic prob-

lem is that two millionaires would like to know who is

richer, with neither revealing their net worth. Abstractly,

the problem is to simply compare two numbers, each

held by one party, without either party revealing its

number to the other. Yao [15] presented a generic

circuit evaluation based solution for this problem as

well as generalizing it to any efficiently computable

function restricted to two parties. Goldreich et al. [6]

generalized this to multi-party computation and

proved that there exists a secure solution for any func-

tionality. There has been significant theoretical work

in this area. The restriction of polynomially time

bounded passive adversaries has been removed. Simi-

larly, work has been extended to active adversaries,

as well as mobile adversaries. While much effort has

been due to efficiency reasons, it is completely infeasi-

ble to directly apply the theoretical work from SMC to

form secure protocols for privacy-preserving data

mining.

Thus, work in privacy-preserving data mining has

focused on creating specialized efficient solutions in

the context of data mining. Starting with the work of

Lindell and Pinkas [9], secure methods have been

proposed for various tasks such as association rule

mining [7,13], clustering [8], classification [2], and

outlier detection [12]. [14] gives a good overview of

much of this work.

Foundations
The basic ideas used in SMC based privacy-preserving

data mining techniques are now illustrated using a com-

monly deployed public key encryption technique called

homomorphic encryption [11].More formally, let Epk(.)

denote the encryption function with public key pk and

Dpr(.) denote the decryption function with private key

pr. A secure public key cryptosystem is called additively

homomorphic if it satisfies the following requirements:

(i) Given the encryption of m1 and m2, Epk(m1) and

Epk(m2), there exists an efficient algorithm to compute

the public key encryption ofm1þm2, denoted Epk(m1þ
m2) :¼ Epk(m1)þh Epk(m2). (ii) Given a constant k and

the encryption of m1, Epk(m1), there exists an efficient

2536S Secure Multiparty Computation Methods
algorithm to compute the public key encryption of km1,

denoted Epk(km1) :¼ k �h Epk(m1).

Using the homomorphic encryption technique,

one can easily develop many secure protocols. For

example, consider the case where three sites S1,S2 and

S3 want to add their private values (resp.) v1,v2, and v3
to learn v1þv2þv3 securely. A simple protocol for

the above task using homomorphic encryption can

be given as follows: S1 creates a homomorphic encryp-

tion public and private key pair, and sends the public

key to S2 and S3. In addition, S1 computes e1¼Epk(v1)

and sends e1 to S2. Using the homomorphic encryption

scheme, S2 can calculate e2 ¼ e1þh Epk(v2) and can

send e2 to S3. Similarly, S3 can calculate e3 ¼ e2þh

Epk(v3)¼Epk(v1þv2)þEpk(v3). Finally, S1 can decrypt

the e3 to compute Dpr(e3) ¼ v1þv2þv3. If all the

parties follow the protocol exactly, it can be shown

that nobody learns anything other than the final result.

The obvious question is what happens when the parties

do not follow the protocol exactly. Clearly S3 can

collaborate with S1 to learn the private value v2 because

if S3 sends the message e2 to S1 then S1 can compute

Dpr(e2)�v1¼(v1þv2)�v1¼v2 to learn v2.

The above example indicates that when considering

privacy, one must first model the different adversarial

behaviors that an attacker can assume. The SMC liter-

ature defines two basic adversarial models:

Semi-Honest: Semi-honest (or Honest but Curious)

adversaries follow the protocol faithfully, but can try to

infer the secret information of the other parties from the

data they see during the execution of the protocol.

Malicious: Malicious adversaries may do anything to

infer secret information. They can abort the protocol at

any time, send spurious messages, spoof messages, col-

lude with other (malicious) parties, etc.

While the semi-honest model may seem questionable

for privacy (if a party can be trusted to follow the

protocol, why would they not be trusted with the

data?), it does meet several practical needs for early

adoption of the technology. Consider the case where

credit card companies jointly build data mining mod-

els for credit card fraud detection. In many cases the

parties involved already have authorization to see the

data (e.g., the theft of credit card information from

CardSystems involved data that CardSystems was

expected to see during processing). The problem is

that storing the data brings with it a responsibility

(and cost) of protecting that data; CardSystems was
supposed to delete the information once the processing

was complete. If parties could develop the desired

models without seeing the data, then they are saved

the responsibility (and cost) of protecting it. Also the

simplicity and efficiency possible with semi-honest

protocols will help speed adoption so that trusted

parties are saved the expense of protecting data other

than their own. As the technology gains acceptance,

malicious protocols will become viable for uses where

the parties are not mutually trusted.

In either adversarial model, there exist formal defi-

nitions of privacy [5]. Informally, the definition of

privacy is based on equivalence to having a trusted

third party perform the computation. This is the gold

standard of secure multiparty computation. Imagine

that each of the data sources gives their input to a

(hypothetical) trusted third party. This party, acting in

complete isolation, computes the results and reveals

them. After revealing the results, the trusted party for-

gets everything it has seen. A secure multiparty compu-

tation approximates this standard: no party learns more

than it would in the trusted third party approach.

One fact is immediately obvious: no matter how

secure the computation, some information about the

inputs may be revealed. This is a result of the com-

puted function itself. For example, if one party’s net

worth is $100,000, and the other party is richer, one

has a lower bound on their net worth. This is captured

in the formal SMC definitions: any information that

can be inferred from one’s own data and the result can

be revealed by the protocol. Thus, there are two kinds

of information leaks; the information leak from the

function computed irrespective of the process used to

compute the function and the information leak from

the specific process of computing the function. What-

ever is leaked from the function itself is unavoidable as

long as the function has to be computed. In secure

computation, the second kind of leak is provably pre-

vented. There is no information leak whatsoever due to

the process.

While the generic secure multi-party computation

methods exist, they pose significant computational

problems. The challenge of privacy-preserving dis-

tributed data mining is to develop algorithms that

have reasonable computation and communication

costs on real-world problems, and prove their security

with respect to the SMC definition. The typical

approach taken is to reduce the large domain problem

to a series of smaller sub-tasks and to use secure

Secure Multiparty Computation Methods S 2537

S

cryptographic protocols to implement those smaller

sub-tasks.

In the following, the common secure sub-protocols

used in privacy-preserving distributed data mining

are now described. As far as possible, for each sub-

protocol, a version using only homomorphic encryp-

tion is described. Unless otherwise stated, all the

sub-protocols are secure in the semi-honest model

with no collusion, and all the arithmetic operations

are defined in some large enough finite field.

Following the description of the subprotocols, it

is shown how different algorithms could be implemen-

ted using these secure sub-protocols. Since these com-

mon building blocks are quite general, using the

Composition theorem [5], they can be combined to

create new privacy preserving algorithms in the future.

Secure Sum

Secure Sum securely calculates the sum of values from

individual sites. As seen above, homomorphic encryp-

tion can easily be used to secure compute the sum local

values. Assuming three or more parties and no collu-

sion, a more efficient method can be found in [7].

Secure Comparison / Yao’s Millionaire Problem

Assume that two sites, each having one value, want to

compare the two values without revealing anything

else other than the comparison result. Secure Compar-

ison methods can be used to solve the above prob-

lem. To the best of our knowledge, secure circuit

evaluation based approaches still provide the best per-

formance [15].

Dot Product Protocol

Securely computing the dot product of two vectors is

another important sub-protocol required in many pri-

vacy-preserving data mining tasks. Many secure dot

product protocols have been proposed in the past.

Among those proposed techniques, the method of

Goethals et al. [4] is quite simple and provably secure.

It is now briefly described.

The problem is defined as follows: Alice has

a n-dimensional vector ~X ¼ ðx1;:::;xnÞ while Bob has

a n-dimensional vector ~Y ¼ ðy1;:::;ynÞ. At the end of

the protocol, Alice should get ra ¼ ~X 	 ~Y þ rb where rb
is a random number chosen from uniform distribution

that is known only to Bob, and ~X 	 ~Y ¼
Pn

i¼1xi 	 yi .
The key idea behind the protocol is to use a homomor-

phic encryption system that can be used to perform
arithmetic operations over encrypted data. Using such

a system, it is quite simple to build a dot product

protocol. If Alice encrypts her vector and sends in

encrypted form to Bob, using the additive homomor-

phic property, Bob can compute the dot product. The

specific details can be found in [4].

Oblivious Evaluation of Polynomials

Another important sub-protocol required in privacy-

preserving data mining is the secure polynomial eval-

uation protocol. Consider the case where Alice has a

polynomial P of degree k over some finite field F . Bob

has an element x 2 F and also knows k. Alice would

like to let Bob compute the value P(x) in such a way

that Alice does not learn x and Bob does not gain any

additional information about P (except P(x)). This

problem was first investigated by [10]. Subsequently,

there have been more protocols improving the com-

munication and computation efficiency as well as

extending the problem to floating point numbers.

Privately Computing ln x

For entropy measures used in data mining, one must

be able to privately compute ln x, where x ¼ x1þx2
with x1 known to Alice and x2 known to Bob. Thus,

Alice should get y1 and Bob should get y2 such that

y1þy2 ¼ ln x ¼ ln(x1þx2). One of the key results

presented in [9] was a cryptographic protocol for this

computation. One point to note is that ln x is Real

while general cryptographic tools work over finite

fields. Therefore, ln x is actually multiplied with a

known constant to make it integral. The basic idea

behind computing random shares of ln(x1þx2) is to

use the Taylor approximation for ln x. Thus, shares for

the Taylor approximation are actually computed. The

actual details of the protocol, as well as the proof of

security, can be found in [9].

Secure Intersection

Secure Intersection methods are useful in data mining

to find common rules, frequent itemsets etc., without

revealing the owner of the item. Many algorithms have

been developed for calculating Secure Set Intersection.

For example, [13] provides an efficient solution. How-

ever, a secure set intersection protocol that utilizes

secure polynomial evaluation [3] is described below.

Let us assume that Alice has set X ¼ {x1,...,xn} and Bob

has set Y ¼ {y1,...,yn}. Our goal is to securely calculate

X\Y . By representing set X as a polynomial and using

2538S Secure Multiparty Computation Methods
polynomial evaluation, Alice and Bob can calculate

X\Y securely.

Secure Set Union

Secure unionmethods are useful in datamining to allow

each party to give its rules,decision trees etc. without

revealing the owner of the item. Union of items can be

easily evaluated using SMCmethods if the domain of the

items is small. Each party creates a binary vector (where

the ith entry is 1 if the ith item is present locally). At

this point, a simple circuit that or’s the corresponding

vectors can be built and securely evaluated using gen-

eral secure multi-party circuit evaluation protocols.

However, in data mining, the domain of the items

are usually very large, potentially infinite. This prob-

lem can be overcome using approaches based on com-

mutative encryption [7].
Key Applications
This section overviews how different sub-protocols

described above could be used to create various

privacy-preserving distributed data mining (PPDM)

algorithms for different data models. In each of the

discussed PPDM algorithms general data mining

functionality is reduced to a computation of secure

sub-protocols.

In the following discussion, horizontal partitioning

of data implies that different sites collect the same set

of information about different entities. Vertical data

partitioning implies that different sites collect different

features of information for the same set of entities.

While this entry does not explicitly discuss arbitrary

partitioning, the building blocks presented above are

actually useful even in that case.
Classification

In the first work on privacy-preserving distributed data

mining on horizontally partitioned data [9], the goal is

to securely build an ID3 decision tree where the train-

ing set is horizontally distributed between two parties.

The basic idea is that finding the attribute that max-

imizes information gain is equivalent to finding the

attribute that minimizes the conditional entropy.

The conditional entropy for an attribute for two

parties can be written as a sum of the expression of

the form (v1þv2) � log(v1þv2). The authors use the

secure log algorithm, secure polynomial evaluation,

and secure comparison sub-protocols to securely cal-

culate the expression (v1þv2) � log(v1þv2) and
show how to use this function for building the ID3

securely. Correspondingly, decision trees for vertically

partitioned data can also be built if the attribute with

maximum entropy gain can be found. If the class attri-

bute is present with all parties, this can be easily done.

But even when the class attribute is only present with

one of the parties, the secure scalar product protocol

can be used to compute counts of transactions having

certain attribute values and class values. This can then

be used to compute the information gain for the attri-

bute, and thus to decide the best attribute. Naı̈ve Bayes

classifiers can also be built for both horizontally

and vertically partitioned data using combinations

of the secure sum, secure scalar product and secure

comparison primitives. [14] provides more details.
Association Rule Mining

The essential problem in association rule mining is

the problem of finding frequent itemsets (meeting

some support threshold). Once frequent itemsets are

found, it is easy to find association rules meeting certain

confidence thresholds. For horizontally partitioned

data, [7] showed that for every candidate itemset, the

support at each site can be computed locally. Now,

a secure sum followed by a secure comparison is suffi-

cient to evaluate if a candidate itemset is indeed fre-

quent. However, this still requires the knowledge of the

candidate itemsets. [7] uses some additional techniques

(such as Secure Union) to ensure that candidate item-

sets contributed by each site are also kept secret along

with their support values. Similarly, [13] shows that the

problem of finding frequent itemsets in vertically parti-

tioned data can be reduced to the problem of securely

computing the scalar product of multiple vectors (or

equivalently as the problem of finding the size of the

intersection set). Once this is done, finding globally

valid association rules is quite simple.
Clustering

Several solutions for privacy-preserving clustering

have been proposed. Lin et al. [8] propose a privacy

preserving EM algorithm for secure clustering of hor-

izontally partitioned data. EM clustering is an itera-

tive algorithm. Each iteration consists of an

expectation (E) step followed by a maximization

(M) step. In the E-step, the expected value of the

cluster membership for each entity is determined. In

the M-step, the each cluster distribution parameters

are re-estimated to maximize the likelihood of the data,

Secure Third-Party Data Management S 2539
given the expected estimates of the membership. Lin

et al. [8] show that computing the cluster parameters

at each iteration can be easily done via secure summa-

tion once the total number of objects is known. Once

computed, the cluster parameters are assumed to be

public (i.e., known to all parties). Therefore each party

can then locally assign its entities to the appropriate

clusters. This is repeated until the algorithm converges

or until a sufficient number of iterations have been

carried out. Similar solutions exist for vertically parti-

tioned data as well.
Outlier Detection

The goal of outlier detection is to find anomalies or

outliers in the data. This requires a definition/metric of

outlyingness. Many such metrics (with varying degrees

of sophistication) have been defined in the statisti-

cal literature. One of the simplest metrics is that of

DB(p,d) outliers. Under this definition, an entity e in

the dataset DB is said to be an outlier if more than

p percentage of the entities in the datasetDB are farther

than distance d from e. Thus, to figure out if an entity

is an outlier, several tasks need to be performed: first,

the distance of this entity to other entities must be

computed; next, one must check if the number of

farther entities is more than the given threshold.

Vaidya and Clifton [12] show how to do this for both

horizontally and vertically partitioned data. The key

primitives used are the secure sum, secure comparison

and secure dot product primitives. More detail can be

found in [12].
S

Future Directions
Now that the key concepts behind secure multiparty

computation methods have been presented, it is neces-

sary to discuss some of the problems and challenges

still open in this area. Inherently, the primary challenge

with secure multiparty computation techniques lies

with efficiency. Even with cryptographic accelerators

and faster machines, since data mining is typically

done over millions of transactions, this cost signifi-

cantly balloons up. Even for other application areas,

more efficient protocols are clearly needed. One alter-

native that has not been well explored is that of ap-

proximation. Instead of computing the exact results, it

may make a lot more sense to compute approxima-

tions of the final results, especially if it gives huge

efficiency improvements. This will be critical for devel-

opment of real solutions in this area.
Cross-references
▶Horizontally Partitioned Data

▶ Privacy-Preserving Data Mining

▶Vertically Partitioned Data

Recommended Reading
1. Agrawal R. and Srikant R. Privacy-preserving data mining. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2000,

pp. 439–450.

2. Du W. and Zhan Z. Building decision tree classifier on private

data. In C. Clifton and V. Estivill-Castro (eds.). IEEE Int. Conf.

on Data Mining Workshop on Privacy, Security, and Data

Mining, 2002, pp. 1–8.

3. Freedman M.J., Nissim K., and Pinkas B. Efficient private

matching and set intersection. In Proc. Int. Conf. Theory and

Application of Cryptographic Techniques, 2004.

4. Goethals B., Laur S., Lipmaa H., and Mielikäinen T. On secure

scalar product computation for privacy-preserving datamining. In

Proc. the Seventh Annual Int. Conf. in Information Security and

Cryptology, 2004, pp. 104–120.

5. Goldreich O. The Foundations of Cryptography, vol. 2, General

Cryptographic Protocols. Cambridge University Press, London,

2004.

6. Goldreich O., Micali S., and Wigderson A. How to play any

mental game – a completeness theorem for protocols with hon-

est majority. In Proc. 19th ACM Symp. on the Theory of Com-

puting, 1987, pp. 218–229.

7. Kantarcoǧlu M. and Clifton C. Privacy-preserving distributed

mining of association rules on horizontally partitioned data.

IEEE Trans. Knowl. Data Eng., 16(9):1026–1037, 2004.

8. Lin X., Clifton C., and ZhuM. Privacy preserving clustering with

distributed EMmixture modeling. Knowl. Inf. Syst., 8(1):68–81,

2005.

9. Lindell Y. and Pinkas B. Privacy preserving data mining.

J. Cryptol., 15(3):177–206, 2002.

10. Naor M. and Pinkas B. Oblivious transfer and polynomial eval-

uation. In Proc. Thirty-First Annual ACM Symp. on Theory of

Computing, 1999, pp. 245–254.

11. Paillier P. Public-key cryptosystems based on composite degree

residuosity classes. In Proc. Int. Conf. Theory and Application of

Cryptographic Techniques, 1999, pp. 223–238.

12. Vaidya J. and Clifton C. Privacy-preserving outlier detection. In

Proc. 2004 IEEE Int. Conf. on Data Mining, 2004, pp. 233–240.

13. Vaidya J. and Clifton C. Secure set intersection cardinality with

application to association rule mining. J. Comput. Security,

13(4):593–622, November 2005.

14. Vaidya J., Clifton C., and Zhu M. Privacy-Preserving Data

Mining, vol. 19 of Advances in Information Security, 1st edn.

Springer, Berlin, 2005.

15. Yao A.C. How to generate and exchange secrets. In Proc. 27th IEEE

Symp. on Foundations of Computer Science, 1986, pp. 162–167.
Secure Third-Party Data
Management

▶ Secure Data Outsourcing

2540S Secure Transaction Processing
Secure Transaction Processing

INDRAKSHI RAY

Colorado State University, Fort Collins, CO, USA

Definition
Secure transaction processing refers to execution of

transactions that cannot be exploited to cause security

breaches.

Historical Background
Research in making transaction processing secure has

progressed along different directions. Most of the early

research in this area focused in processing multilevel

transactions suitable for military applications. Such

applications are characterized by having a set of security

levels which are partially ordered using the dominance

relation. The requirement is that information can flow

from a dominated level to a dominating level but all

other flows are considered to be illegal. The traditional

concurrency control and recovery algorithms cannot

be used for processing transactions in military applica-

tions because they cause illegal information flow. Most

research in this area involved developing architectures,

concurrency control and recovery mechanisms to pre-

vent illegal information flow. Subsequently, researchers

have also looked into the problem of processing real-

time secure transactions. These transactions must satisfy

real-time requirements together with preventing illegal

information flow.

In the commercial sector, subsequent research

focused on how to deal with the effect of malicious

transactions that may have compromised the integrity

of the database. The malicious transactions can dam-

age one or more data items. Other transactions reading

from these committed data items help spread the dam-

age. Traditional recovery mechanisms cannot undo the

effects of committed transactions. The research in this

area focused on developing efficient techniques that

will remove the effects of malicious transactions while

minimizing the impact on good transactions.
Foundations
A comprehensive survey on the work in multilevel se-

cure (MLS) databases was performed by Atluri et al.

[11]. Some of the important results discussed in this

paper are enumerated. AnMLS database environment is

characterized by a set of security levels L that are
partially ordered by the relation≺.≺ is the dominance

relation between classes and it is transitive, reflexive

and anti-symmetric. For any two levels, li, lj 2 L, if level

li ≺ lj, then lj is said to dominate li. In this case, lj and li
are referred to as dominating and dominated level

respectively. If neither li ≺ lj, nor lj ≺ li, then li and lj
are said to be incomparable. Each data object o in an

MLS an environment is associated with a security

classification, denoted by l(o), where l(o) 2 L. Each

user u is also cleared to some security level l(u), where l

(u) 2 L. A user u cleared to security level l(u) can log in

at any security level l0, where l0 is dominated by l(u). All

processes, including transactions, initiated during a

session inherit the security level at which the user has

logged in.

MLS systems allow information to flow from

dominated to dominating levels but all other informa-

tion flows are considered illegal. Direct information

flow occurs by virtue of transactions reading and

writing data items. When a transaction reads a data

item, information flows from the data item to the

transaction. Similarly, when a transaction writes a

data item, information flows from the transaction to

the data item. Such direct illegal information flow is

prevented by using the simple security property and

the⋆-property of the Bell-LaPadula (BLP) model [12].

Simple security property states the condition under

which a transaction can read a data item. A transaction

Tmay read a data itemO only if the security level of the

data item, denoted by L(O), is dominated by the secu-

rity level of the transaction, denoted by L(T), that is,

only when L(O) ≺ L(T). During the read operation,

information flows from the data item to the transac-

tion. Thus, when L(O)≺ L(T), information flows from

dominated level to the dominating one. ⋆-property

states the condition under which a transaction T can

write a data item O. The write operation is allowed

only when the security level of the data object, denoted

by L(O), is dominated by that of the transaction,

denoted by L(T). In other words, the write operation

is allowed only when L(T) ≺ L(O). In this case the

information flows from the dominated level to the

dominating level. However, the ⋆-property does not

prevent a transaction operating at the dominated level

from corrupting data items at the dominating level.

Thus, for reasons of integrity, a modified form of

⋆-property, known as restricted ⋆-property, is used

in practice. The restricted ⋆-property allows a trans-

action T to write a data item O only if the security

Secure Transaction Processing S 2541

S

levels of the transaction is the same as that of the

object, that is, L(T) = L(O). The properties stated in

the BLP model are not adequate in preventing illegal

information flows that occur through indirect means.

One such example is the covert channels. A covert

channel is an information flow mechanism within a

system that is based on the use of system resources; it is

not intended for communication between the regular

users of the system. Unfortunately, the traditional

transaction processing mechanisms can be exploited

to establish a covert channel.

First, the discussion describes how the concurrency

control protocols that are used in traditional transaction

processing systems can be used to establish a covert

channel. Two concurrency control mechanisms are con-

sidered: two-phase locking (2PL) and timestamp order-

ing (TO). 2PL requires transactions to acquire read lock

(write lock) before reading (writing) a data item. A read

lock on a data item can be acquired if no other transac-

tion has a write lock on the same data item. Awrite lock

can be acquired if no other transaction has any lock on

the data item. The locks acquired by a transaction must

eventually be released. Moreover, once a transaction

releases a lock, it can no longer lock any other data

item. TO requires each transaction t to have a unique

timestamp ts(t). Each data item x is associated with a

read timestamp rts(x) and a write timestamp wts(x)

that denotes the timestamp of the latest transaction

that have read and written x respectively. The opera-

tions are executed on a first-come-first-serve basis. If

the execution of an operation does not violate the

serialization order specified by the timestamps of the

transactions, it is executed. If not, the operation is not

allowed and the transaction is aborted.

Suppose this MLS database system is associated

with two security levels low and high where the level

high dominates low. The transactions initiated by a high

user can read all data items and write high data items

in accordance with the security and the restricted-⋆
properties of the BLP model. The transactions initiated

by a low user can read and write low data items only.

Suppose there are two transactions Th and Tl that have

decided to collude and there are no other transactions

executing in the system. The security level of Th and Tl

are high and low respectively. The database has a data

item x whose security level is low - both transactions

have decided to communicate by accessing this data

item: Th will read the data item x and Tl will write the

data item. Assume that the concurrency control
mechanism uses two-phase locking (2PL). When Th

wants to read data item x, a read lock is placed on x

which prohibits Tl from acquiring a write lock on x.

Thus, Th can selectively issue lock request on x to

transmit information. Tl can measure the delay in

acquiring lock and interpret the information. Thus, a

covert communication channel has been established

between Tl and Th. A similar problem occurs if a time-

stamp-based protocol is used. Suppose ts(Tl) < ts(Th).

If Tl attempts to write x after Th has read it, the write

operation is rejected and Tl is aborted. Here again, a

high transaction can selectively cause a low transaction

to abort and communicate information. Thus, concur-

rency control mechanisms in an MLS database must

not only ensure serializability but must also eliminate

such illegal information flows.

Researchers have proposed several concurrency

control algorithms for processing transactions in an

MLS database. The algorithms are dependent on the

underlying architecture of the DBMS. First, the discus-

sion focuses on the algorithms developed for the ker-

nelized architecture. Some of the early solutions

proposed are by Schaefer [35], Lamport [22], and

Reed and Kanodia [34]. In these solutions, the transac-

tions are allowed to proceed. However, before a trans-

action can commit it is validated. Thus, if a transaction

at the dominating level has read some data item which

has been updated by a transaction at the dominated

level, the dominating level transaction must abort.

Such algorithms will cause starvation of transactions

at the dominating levels. Keefe and Tsai [20] proposed

a protocol based on multiversion timestamp ordering.

Although this protocol ensures serializable histories

without causing starvation of transactions at the dom-

inating levels, it has several problems. First, it requires

a large number of versions to be maintained. Second,

transactions at the dominating levels read stale data.

Third, performance is an issue. Subsequent research

[2,4,27] focused on limiting the number of versions to

two. The idea is that transactions reading at the domi-

nated level read from the snapshot, while those writing

data at their own level write it on the current state.

Researchers have also proposed solutions that are

suitable for replicated architectures. In such architec-

tures, an MLS DBMS is constructed from several

single-level DBMSs. The DBMS at level l will contain

a copy of every data item that a transaction at level l

can access. The first protocol for this architecture was

proposed by Jajodia and Kogan [17]. The protocol

2542S Secure Transaction Processing
assumes that the set of security levels are totally or-

dered. Transactions are submitted to a global transac-

tionmanager (GTM) who is responsible for forwarding

the transactions to the corresponding DBMSs. The

updates made by the transactions must also be propa-

gated to the DBMSs at the dominating levels. Two

transactions that conflict at level l must be submitted

at the dominating level l0 in the order in which they

commit. However, when transactions do not conflict,

they are sent in an arbitrary order to the dominating

levels. This may result in nonserializable histories as

pointed out by Kang and Keefe [18]. Costich [14]

improves upon the Jajodia-Kogan protocol in the fol-

lowing manner. First, it reduces the amount of trust

required to implement GTM. Second, it does not

require the security levels to form a total order. How-

ever, McDermott, Jajodia, and Sandhu [26], illustrate

that certain security posets cause the protocol to

deadlock and block update projections and produce

non-serializable executions. Subsequently, researchers

[3–5,18] have characterized the posets that create this

problem. An example will help illustrate the problem.

Suppose there are the following security levels: A, B, C,

AB, BC, AC, and ABC. The dominance relationship

between the levels is as follows: A ≺ AB, A ≺ AC, B

≺ AB, B ≺ BC, C ≺ AC, C ≺ BC, AB ≺ ABC, BC ≺
ABC, and AC≺ ABC. Three update transactions T1, T2

and T3 are submitted at levels A, B, and C respectively.

These transactions execute at the DBMS at these levels

and are then propagated to dominating levels. Thus,

T1, T2 must execute in the DBMS at level AB, T2, T3

must execute at level BC, and T3, T1 must execute at

level AC. Suppose T1 is serialized before T2 in level AB,

T2 is serialized before T3 in level BC, and T3 is serialized

before T1 in level AC. Now these updates must be

propagated to level ABC. The DBMS at level ABC

must respect the serialization orders of the dominated

levels. Here is a deadlock situation because the orders

are conflicting. This problem is solved by ordering

transactions according to the timestamps generated

when the transactions commit for the first time and

using a conservative TO protocol which ensures that

update projections are never aborted.

The transactions discussed so far have a single

security level associated with them and are termed

single-level transactions. These transactions can read

at multiple security levels but can update data at one

security level only. The problemwith single-level trans-

actions is that they cannot preserve integrity
constraints spanning multiple security levels. Thus,

for these databases serializability is an overly restrictive

correctness criterion [16,25]. Jajodia and Atluri [16]

have proposed weaker notions of correctness, such as,

levelwise serializability, one-item read serializability,

and pairwise serializability for MLS databases having

single-level transactions. Other researchers have pro-

posed the notion of multilevel transactions. A multi-

level transaction is associated with a set of security

levels. It allows the transaction to read and write data

items at multiple security levels. A multilevel transac-

tion is composed of a set of subtransactions. Each

subtransaction is associated with a single security

level and performs operations following the simple

security and restricted-⋆ property of the BLP model.

Ideally, a multilevel transaction must have the proper-

ties of atomicity, consistency, isolation, and durability

and it also should not cause any illegal information

flow by virtue of its execution. However, it is often not

possible to guarantee atomicity without causing illegal

information flow [13,36]. Towards this end, Blaustein

et al. [13] defines varying degree of atomicity that can

be achieved by multilevel transactions. Ray, Ammann,

and Jajodia [31] provide a notion of semantic atom-

icity which is suitable for multilevel transactions. The

application containing the transactions are formally

analyzed to give assurance of the satisfaction of this

property. This work does not use serializability as the

correctness criterion but uses the notion of semantic

correctness.

Protocols for distributed transaction also may have

to bemodified for multilevel secure databases. Consider,

for instance, the early prepare protocol that ensures

atomicity for distributed transactions. When a transac-

tion Ti is submitted, the coordinator decomposes

it into subtransactions, say, Tij and Tik, which are

distributed to the participants at sites j and k for

processing. The participants execute the subtransac-

tions and replies to the coordinator with a prepare/

no vote. If all the sites have responded with a prepare

vote, the transaction will be committed and the coor-

dinator sends a commit message to all the participants.

Now suppose that the transaction Ti is executing on a

MLS database. Since Ti is a distributed transaction, it is

possible that the subtransaction Tij has finished its

execution and entered the prepare state before Tik
completes. Some other subtransaction say Tmj at the

dominated level may want to write a data item, say x,

that has been read by Tij. To prevent a covert channel,

Secure Transaction Processing S 2543

S

the lock on x must be released by Tij. Since Tik is

executing at a different site, it is possible that Tik will

acquire a lock after Tij releases the lock. This will

violate the two phase locking rule and may result in

non-serializable executions.

This motivated Atluri, Bertino, and Jajodia [8] to

propose a new protocol called secure early prepare

(SEP). The coordinator decomposes the transaction

Ti into subtransactions Ti1, Ti2,...,Tin and sends them

together with their security levels to the participants. The

participants on completing their work successfully

responds with a yes vote as before. However, if the

participant has read a data item at the dominated level,

it also sends a read-low indicator bit. If none of the

participants have read low data items, the transaction

proceeds like the early prepare protocol. However, if at

least one participant has read a data item at the domi-

nated level, additional rounds of message are necessary.

In such cases, the coordinator sends a confirm message

to all participants who have read data items at domi-

nated levels. If the participant has not released any locks

so far, it responds with a confirmed message. Other-

wise it responds with a non-confirmed message. When

the coordinator receives confirmedmessages from all the

participants who have read data items at dominated

levels, the coordinator sends a commit message to all

the participants. Otherwise, an abort message is sent. In

a subsequent work [8], the authors propose an optimi-

zation to SEP that avoids some unnecessary aborts

caused by SEP and also reduces the number of messages.

Ray et al. [32] also attempts to improve upon SEP –

instead of aborting subtransactions that have read from

low data items, it rolls back the subtransaction to an

earlier savepoint and reexecutes it. On successful reex-

ecution, the participant sends a yes message. When all

subtransactions have responded with a yes message, the

transaction is committed. Otherwise, it is aborted.

Some researchers [1,19,37] have also looked into

secure real-time transaction processing. The goal in

such systems is to prevent illegal information flow as

well maintain the timing constraints required for real-

time applications. When both security constraints and

real-time constraints cannot be satisfied, some works

[1,37] trade-off security in order to improve the per-

formance. Others [15,19] do not compromise security

for the sake of performance. George and Haritsa [15]

propose a concurrency control mechanism in which

data conflicts are resolved in favor of the dominated

level. Within a given level, data conflicts are resolved in
favor of the earliest transaction deadline. Kang et al.

[19] improve upon the work presented by George and

Haritsa [15] by providing guarantees on average/tran-

sient miss ratios. A separate work [30] describes a new

concurrency control protocol, known as, multiversion

locking protocol with freezing, for processing secure

real-time transactions.

Researchers have also investigated the impact of

multilevel security on extended transaction models,

such as workflows. A workflow is characterized as

having a set of tasks and dependencies specified

between the tasks. In an MLS workflow, each task is

associated with a single security level and is allowed to

read and write data items provided they obey the BLP

rules. However, the dependencies between tasks at

different levels may cause illegal information flow.

Towards this end, Atluri et al. [10] have proposed an

approach that redesigns the dependencies such that

illegal information flow does not occur. A separate

work [9] argues about how mandatory and discretion-

ary access controls can be enforced in a workflow.

Secure transaction processing in non-MLS database

systems focused on survivability. Attacks will occur in

spite of sophisticated prevention mechanisms. The issue

is how to identify the attack, confine it, assess the damage

caused by it, and repair the damage in a timely manner.

One of the early works in damage detection and recovery

is by Ammann et al. [7]. After an attack occurs, the data

items are marked with different colors to indicate the

severity of the damaged. The authors define a notion

of consistency for databases in which some data may

have been damaged. Clean datamust satisfy the integrity

constraints defined over them. Damaged data must

satisfy a set of relaxed integrity constraints. The authors

classify transactions into three categories: attack tran-

sactions, normal transactions and countermeasure trans-

actions. Attack transactions damage data items.

Normal transactions sometimes help spread the dam-

age. The normal transaction access protocol deter-

mines how the damage is propagated and ensures

that the database satisfy the consistency constraints.

The countermeasure transactions detect and repair

the effects of an attack. These transactions must exe-

cute as trusted processes. Detection transactions

change the marking of data items whereas repair trans-

actions alter the value of data items. When an attack

has occurred, the state of the database before the exe-

cution of attack transactions can be retrieved using

snapshots. Towards this end, the paper proposes a

2544S Secure Transaction Processing
technique by which snapshots can be generated while

the database is servicing normal transactions.

Survivability issues and repair from malicious

attacks have received attention in the database context.

Ammann et al. [6] propose repair algorithms for tradi-

tional database systems that help to recover from the

damage caused by malicious transactions. A two pass

static algorithm is proposed where the first pass scans

the log forward to locate all malicious and suspect tasks

and the second pass goes backward from the end of the

log to undo all malicious and suspect tasks. They also

proposed a dynamic repair algorithm that continues to

accept new transactions while repair is taking place.

Panda et al. [21] have also proposed a number of algo-

rithms on damage assessment and repair; some of these

store the dependency information in separate struc-

tures so that the log does not have to be traversed for

damage assessment and repair. Ray et al. [33] improve

upon the time taken to assess the damage by using a

dependency graph to store the dependencies and using

depth-first search to retrieve the affected transactions.

Liu and Jajodia [24] present a multi-phase damage

confinement model. In the initial confinement phase,

an estimation is done with respect to the damaged

items. The estimationmay not be accurate. The authors

propose several schemes about damage confinement.

The first one maintains timestamps. The initial con-

finement confines all data items that were updated after

the commitment of the bad transactions. A damage

assessor unconfines data items that are written by

transactions not dependent on the bad transactions.

This simple scheme causes damage leakage because a

data item unconfined by an unaffected transaction can

be updated by an affected transaction. Thus, even tem-

porarily releasing this data item can cause damage

spreading. The second scheme takes care of this prob-

lem. Confining the data items and later unconfining

them usually takes some time. To reduce the relaxation

latency, the authors propose a third scheme which uses

transaction access patterns to unconfine data items that

were not affected by the bad transaction. Panda and

Giordano [28] provide two techniques for performing

damage assessment and recovery. The first algorithm

does detection and recovery simultaneously and is not

very efficient. Moreover, new transactions are blocked

until recovery is complete. These two shortcomings are

removed in the second algorithm. Most of the work

on damage assessment are based on transaction depen-

dency approach. In these approaches, the goal is to
identify affected transactions which must be undone

and then re-executed. However, this may involve un-

necessary undoing and redoing of operations. This is

because not all operations of an affected transaction are

influenced by a bad transaction. Towards this end,

Panda and Haque [29] propose a damage assessment

technique based on data dependency approach – only

the affected operations are undone and redone.

Damage assessment in distributed databases has also

been studied by several researchers. Liu and Hao [23]

propose a damage assessment technique for distributed

database that incurs a high communication overhead.

Zuo and Panda [40] propose two approaches for damage

assessment in distributed databases. The first one is a

peer-to-peer approach which does not require a coordi-

nator to perform damage assessment.When a site knows

that it has some global affected transactions, it sends a

multicast message to other sites which were involved

with these global transactions. The other sites on receiv-

ing this message may identify some more global affected

transactions which are then broadcast. The process con-

tinues until nomore new global affected transactions are

detected. This approach incurs high communication

overhead. The other approach requires a coordinator.

There are three variants of this other approach. In the

first one, known as receive and forward, the coordinator

keeps information about all global transactions. Each

site manager sends a list of global affected transaction

identifiers to the coordinator. The coordinator informs

the other sites of these affected transactions. The other

sites check whether or not any new transactions are

affected. If not, a clearmessage is sent to the coordinator.

Otherwise, the identity of the affected transactions are

sent. The process stops when all the other sites send a

clear message. The second coordinator-based approach

incurs less communication overhead. When a malicious

transaction is identified, the coordinator requests other

sites for their local dependency graphs. The coordinator

builds a global dependency graph using this informa-

tion. The global graph is used for identifying affected

transactions. The third coordinator-based approach

relies on sites sending their graphs periodically to the

coordinator. In this approach, the local graphs are not

merged.

Yu, Liu and Zang [38] describe an algorithm

for on-line attack recovery of workflows. The algo-

rithm tries to build the list of redo and undo tasks,

after an independent Intrusion Detection System

reports malicious tasks. They also relax the restriction

Secure Transaction Processing S 2545

S

of executing order that exist in an attack recovery

system; they introduced multi-version data objects

to reduce unnecessary blocks in order to reduce deg-

radation of performance in recovery. However, like in

most existing papers, the authors only pay attention

to restore consistency for data objects, while they

do not analyze the correct actions needed in repair

for different control-flow dependencies. In repair for

advanced transactions, one needs to ensure that con-

straints of all control-flow dependencies are satisfied,

and one should not treat all types of control-flow

dependencies in the same manner – need to distin-

guish different types of control-flow dependencies

and adopt different treatment to enforce these depen-

dencies during repair. This issue is addressed in a

subsequent work [39].

Key Applications
Critical information, such as health records, financial

records are stored in the databases of an organization.

Organizations must also interact with each other and

share critical information to accomplish a particular

mission. Security and privacy breaches involving such

critical information have disastrous consequences.

Thus, there is a need to formalize the concept of secure

information flow both in the context of military and

commercial databases. Ideally, mechanisms that en-

force the secure information flow policies are needed.

Automated capabilities that will track information

flow and detect and thwart illegal flows are also need-

ed. Since it is impossible to protect against all kinds of

security and privacy breaches, it is also necessary to

design systems that can automate to the extent possible

the detection and repair from an attack.

Cross-references
▶Data Confidentiality

▶Data Integrity Services

▶ Information Flow

▶Mandatory Access Control

▶Multilevel Secure Database Management System

▶Transaction Processing

Recommended Reading
1. Ahmed Q. and Vrbsky S. Maintaining security in firm real-time

database systems. In Proc. 14th Annual Computer Security

Applications Conference, 1998.

2. Ammann P., Jaeckle F., and Jajodia S. A two-snapshot algorithm

for concurrency control in secure multi-level databases. In Proc.

IEEE Symp. on Security and Privacy, 1992, pp. 204–215.
3. Ammann P. and Jajodia S. Distributed timestamp generation

in planar lattice networks. ACM Trans. Comput. Syst., 11(3):

205–225, 1993.

4. Ammann P. and Jajodia S. An efficient multiversion algorithm

for secure servicing of transaction reads. In Proc. First ACM

Conf. on Computer and Communication Security, 1994, pp.

118–125.

5. Ammann P., Jajodia S., and Frankl P. Globally consistent event

ordering in one-directional distributed environments. IEEE

Trans. Parallel Distrib. Syst., 7(6):665–670, 1996.

6. Ammann P., Jajodia S., and Liu P. Recovery from malicious

transactions. IEEE Trans. Knowl. Data Eng., 14:1167–1185,

2002.

7. Ammann P., Jajodia S., McCollum C., and Blaustein B. Surviving

information warfare attacks on databases. In Proc. IEEE Symp.

on Security and Privacy, 1997.

8. Atluri V., Bertino E., and Jajodia S. Degrees of isolation, con-

currency control protocols, and commit protocols. In Proc.

IFIP WG11.3 Working Conf. on Database Security, 1995,

pp. 259–274.

9. Atluri V. and Huang W.K. Enforcing mandatory and discretion-

ary security in workflow management systems. J. Comput.

Secur., 5(4):303–340, 1997.

10. Atluri V., Huang W.K., and Bertino E. A semantic-based execu-

tion model for multilevel secure workflows. J. Comput. Secur.,

8(1):3–41, 2000.

11. Atluri V., Jajodia S., Keefe T.F., McCollum C., andMukkamala R.

Mutilevel secure transaction processing: status and prospects.

In Proc. 10th IFIP WG11.3 Working Conf. on Database Security,

1996.

12. Bell D.E. and LaPadula L.J. Secure computer system: unified

exposition and multics interpretation. Tech. Rep. MTR-2997,

MITRE Corporation, 1975.

13. Blaustein B.T., Jajodia S., McCollum C.D., and Notargiacomo L.

A model of atomicity for multilevel transactions. In Proc.

IEEE Symp. on Research in Security and Privacy, 1993, pp.

120–134.

14. Costich O. Transaction processing using an untrusted scheduler

in a multilevel database with replicated architecture. In Proc.

IFIP WG11.3 Working Conf. on Database Security, 1992,

pp. 173–190.

15. George B. and Haritsa J. Secure concurrency control in firm real-

time databases. Distrib. Parallel Databases, 5:275–320, 1997.

16. Jajodia S. and Atluri V. Alternative correctness criteria for

concurrent execution of transactions in multilevel secure data-

bases. In Proc. IEEE Symp. on Security and Privacy, 1992, pp.

216–224.

17. Jajodia S. and Kogan B. Integrating an object-oriented data

model with multilevel security. In Proc. IEEE Symp. on Security

and Privacy, 1990, pp. 76–85.

18. Kang I. and Keefe T. Transaction management for multilevel

secure replicated databases. J. Comput. Secur., 3:115–145, 1995.

19. Kang K., Son S., and Stankovic J. STAR: secure real-time trans-

action processing with timeliness guarantees. In Proc. 23rd IEEE

Real-Time Systems Symp., 2002.

20. Keefe T. and Tsai W. Multiversion concurrency control for mul-

tilevel secure databases. In Proc. IEEE Symp. on Security and

Privacy, 1990, pp. 369–383.

2546S Security Services
21. Lala C. and Panda B. Evaluating damage from cyber attacks: a

model and analysis. IEEE Trans. Syst. Man Cybern. A, 31(4):

300–310, 2001.

22. Lamport L. Concurrent reading and writing. Commun. ACM,

20(11):806–811, 1977.

23. Liu P. and Hao X. Efficient damage assessment and repair in

resilient distributed database systems. In Proc. 15th IFIP

WG11.3 Working Conf. on Data and Application Security,

2001, pp. 75–89.

24. Liu P. and Jajodia S. Multi-phase damage confinement in data-

base systems for Intrusion Tolerance. In Proc. 14th IEEE Com-

puter Security Foundations Workshop, 2001.

25. Maimone W. and Greenberg I. Single-level multiversion sche-

dulers for multilevel secure database systems. In Proc.

6th Annual Computer Security Applications Conf., 1990, pp.

137–147.

26. McDermott J., Jajodia S., and Sandhu R. A single-level scheduler

for replicated architecture for multilevel secure databases. In

Proc. 7th Annual Computer Security Applications Conf., 1991,

pp. 2–11.

27. Pal S. A locking protocol for multilevel secure databases

providing support for long transactions. In Proc. 10th IFIP

WG11.3 Working Conf. on Database Security, 1996, pp. 183–

198.

28. Panda B. and Giordano J. Reconstructing the database after

electronic attacks. In Proc. 12th IFIP WG11.3 Int. Working

Conf. on Database Security, 1998.

29. Panda B. and Haque K.A. Extended data dependency approach:

a robust way of rebuilding database. In Proc. 2002 ACM Symp.

on Applied Computing, 2002.

30. Park C., Park S., and Son S. Multiversion locking protocol with

freezing for secure real-time database systems. IEEE Trans.

Knowl. Data Eng., 14(5):1141–1154, 2002.

31. Ray I., Ammann P., and Jajodia S. A semantic-based model

for multi-level transactions. J. Comput. Secur., 6(3):181–217,

1998.

32. Ray I., Bertino E., Jajodia S., and Mancini L. An advanced

commit protocol for MLS distributed database systems. In

Proc. 3rd ACM Conf. on Computer and Communications Secu-

rity, 1996, pp. 119–128.

33. Ray I., McConnell R., Lunacek M., and Kumar V. Reducing

damage assessment latency in survivable databases. In Proc.

21st British National Conf. on Databases, 2004.

34. Reed D. and Kanodia R. Synchronizations with event counts and

sequencers. Commun. ACM, 22(5):115–123, 1979.

35. Schaefer M. Quasi-synchronization of readers and writers in

a multi-level environment. Tech. Rep. TM-5407/003, System

Development Corporation, 1974.

36. Smith K.P., Blaustein B.T., Jajodia S., and Notargiacomo L.

Correctness criteria for multilevel secure transactions. IEEE

Trans. Knowl. Data Eng., 8(1):32–45, 1996.

37. Son S., Mukkamala R., and David R. Integrating security and

real-time requirements using covert channel capacity. IEEE

Trans. Knowl. Data Eng., 12(6):865–879, 2000.

38. Yu M., Liu P., and Zang W. Multi-version attack recovery for

workflow systems. In Proc. 19th Annual Computer Security

Applications Conf., 2003, pp. 142–151.
39. Zhu Y., Xin T., and Ray I. Recovering from malicious attacks in

workflow systems. In Proc. 16th Int. Conf. Database and Expert

Syst. Appl., 2005.

40. Zuo Y. and Panda B. Damage discovery in distributed database

systems. In Proc. 18th IFIP WG11.3 Working Conf. on Data and

Applications Security, 2004.
Security Services

ATHENA VAKALI

Aristotle University, Thessaloniki, Greece

Synonyms
Authentication; Data confidentiality; Data integrity

services

Definition
Given a set of local or distributed resources to be

protected, a security service is a task (or set of tasks)

that coherently performs processing or communica-

tion on behalf of the underlying system infrastructure,

in order to support and employ several security

requirements of both the system and the data sources.

Such requirements involve authentication, PKI acces-

sing etc. over the underlying resources. Security ser-

vices typically implement portions of security policies

and are implemented via particular processes which

are called security mechanisms.
Key Points
Security services are well documented and described

in X.800 documentation [1] for almost all the layers

from the physical up to the application layer, whereas

focus on security services applied on the Web is given

in [2]. Physical and data layer security services focus on

support confidentiality at various levels, namely at the

connection, the traffic flow (both full and limited) and

they are designed for peer to peer or multi-peer com-

munications. At the network and transport layers se-

curity services involve authentication, access control,

traffic flow, confidentiality and they are provided

together or separately.

At the application layer, from X.800 the core secu-

rity services are identified and they may be supported

either singly or in combination, to employ access con-

trol for enforcing authentication, data confidentiality,

Selective XML Dissemination S 2547
data integrity and non-repudiation. As highlighted

in [2], these involve:

1. Services for subjects/clients and resources identi-

ties: to verify the identity of the subject who

requests a source access and prevent malicious cli-

ent attempts. Therefore, such services may be either

authentication services (to verify an identity

claimed by/for an entity) or Nonrepudiation ser-

vices (to prevent either sender or receiver from

denying a transmitted message).

2. Services for subjects/clients authorizations over

resources: to manage relationships among clients

and protected resources. Therefore, such services

involve either access control services (for protecting

system resources against unauthorized access) or

data privacy (for protecting data against unautho-

rized disclosure-data confidentiality and changes-

data integrity.

Cross-references
▶Authentication

▶Database Security

▶ Secure Database Development
Recommended Reading
1. Recommendation X.800, Security architecture for open systems,

Interconnection for CCITT applications. http://fag.grm.hia.no/

IKT7000/litteratur/paper/x800.pdf

2. Stoupa K. and Vakali A. Policies for Web Security Services,

Chapter III. In Web and Information Security, E. Ferrari,

B. Thuraisingham (eds.). Idea Group, USA, 2006.
S
Segmentation

▶Cluster and Distance Measure
Selection

CRISTINA SIRANGELO

University of Edinburgh, Edinburgh, UK

Definition
Given a relation instance R over set of attributes U

and a condition F, the selection sF(R) returns a new
relation over U consisting of the set of tuples of R

which satisfy F. The condition F is an atom of the

form A = B or A = c, where A and B are attributes in

U, and c is a constant value.

The generalized selection allows more complex

conditions: F can be an arbitrary boolean combination

of atoms of the form A = B or A 6¼B or A = c or A 6¼c.

Moreover, if a total order is defined on the domain

of attributes, more general comparison atoms of the

form A a B or A a c are allowed, where a ranges over

{=, 6¼, <, >, �, �}.
Key Points
The selection is one of the basic operators of the

relational algebra. It operates by ‘‘selecting’’ rows of

the input relation. A tuple t over U satisfies the condi-

tion A = B if the values of attributes A and B in t are

equal. Similarly t satisfies the condition A = c if the

value of attribute A in t is c. Satisfaction of generalized

selection atoms is defined analogously.

As an example, consider a relation Exams over attri-

butes (course-number, student-number, grade), containing

tuples {(EH1, 1001, A), (EH1, 1002, A),(GH5, 1001,

C)}. Then sgrade=A∧course�number = EH1(Exams) is a rela-

tion over attributes (course-number, student-number,

grade) with tuples {(EH1, 1001, A),(EH1, 1002, A)}.

In the case that a relation schema is only specified

by a relation name and arity, the result of the selec-

tion is a new relation having the same arity as the

input one, containing the tuples which satisfy the

selection condition. In this case the selection atoms

are expressions of the form j = k or j = c (or j a k and j

a c in the generalized selection). Here j and k are

positive integers bounded by the arity of the input

relation, identifying its j-th and k-th attribute,

respectively.
Cross-references
▶Relation

▶Relational Algebra
Selective XML Dissemination

▶XML Publish/Subscribe

2548S Selectivity Estimation
Selectivity Estimation

EVAGGELIA PITOURA

University of Ioannina, Ioannina, Greece

Synonyms
Selectivity estimation; Cost estimation

Definition
For each query, there are many equivalent execution

plans. To choose the most efficient among these differ-

ent query plans, the optimizer has to estimate their

cost. Computing the precise cost of each plan is usually

not possible without actually evaluating the plan.

Thus, instead, optimizers use statistical information

stored in the DBMS, such as the size of relations and

the depth of the indexes, to estimate the cost of each

plan. For large databases, this cost is dominated by the

number of disk accesses.

Since, in general, the cost of each operator depends

on the size of its input relations, it is important to

provide good estimations of their selectivity, that is, of

their result size.
Key Points
During query optimization, the optimizer enumerates

potential execution plans for each query and evaluates

their cost in order to choose the less expensive among

them. In general, computing the exact cost of each

query plan is not possible without actually evaluating

the plan. Instead, optimizers make use of statistical

information stored in the DBMS catalog to estimate

the cost of each plan. Such statistics include the number

of tuples in each relation, the size of each tuple and

the number of distinct values that appear in each rela-

tion. The cost of a plan can be measured in terms of

different resources, such as CPU, I/O, buffer utilization,

and, in the case of parallel and distributed databases,

communication costs. However, in large databases, the

cost is usually dominated by disk accesses.

The cost of each plan is computed by combining

the estimations of the cost of each of the operators

appearing in the plan. Since the cost of an operator

depends mainly on the sizes of its input relations, it is

central to have good estimates of the result size of each

operator that is going to be used as input to the next

operator in the plan.
Take, for example, a selection condition consisting

of a number of predicates. Each predicate has a reduc-

tion factor, which is the relative reduction in the num-

ber of result tuples caused by this predicate. There are

many heuristic formulas for the reduction factors of

different predicates. In general, they depend on the

assumption of uniform distribution of values and in-

dependence among the various relation fields. More

accurate reduction factors can be achieved by main-

taining more accurate statistics, for example in the

form of histograms or multidimensional histograms.

The accuracy of the estimates also depends on how

frequently the available statistics are updated to reflect

the current database state.

Cross-references
▶ Evaluation of Relational Operators

▶Query Optimization

▶Query Plan

Recommended Reading
1. Chaudhuri S. An overview of query optimization in relatio-

nal systems. In Proc. 17th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 1998, pp. 34–43.

2. Ramakrishnan R. and Gehrke J. Database Management Systems.

McGraw-Hill, New York, 2003.

3. Selinger P.G., Astrahan M.M., Chamberlin D.D., Lorie R.A., and

Price T.G. Access path selection in a relational database manage-

ment system. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1979, pp. 23–34.
Selectivity for Predictive
Spatio-Temporal Queries

▶ Spatio-Temporal Selectivity Estimation
Self-Maintenance of Views

HIMANSHU GUPTA

Stony Brook University, Stony Brook, NY, USA

Definition
A data warehouse is a collection of materialized views

derived from base relations that may not reside at the

warehouse. It is important to keep the views up to

date in response to changes to the base relations. Self-

maintenance of views involves maintaining the views,

Self-Maintenance of Views S 2549

S

using informationthat is strictly local to thewarehouse: the

view definitions and the view contents. Such self-mainte-

nance of views (whenever possible) is more efficient than

incremental maintenance or recomputation of views.

Key Points
In a data warehouse, views are computed and stored

in the database to allow efficient querying and analysis

of the data. These views stored at the data warehouse

are known as materialized views, and are defined in

terms of the base relations residing in data sources that

may or may not be local to the warehouse. To keep the

views consistent with the base data, any change

reported by the data sources must be reflected in the

views. In response to the changes at the base relations,

the view can be either recomputed from scratch, or

incrementally maintained, or self-maintained.

Incremental maintenance of a view involves propa-

gating the changes at the source onto the view so that

the view reflects the changes. While maintaining these

views incrementally is often significantly more efficient

than recomputing them from scratch (as done in most

current data warehouses), it can still be expensive. For

instance, in response to an update to a base relation,

incremental maintenance of views defined as a join

may involve looking up the non-updated base rela-

tions, which may reside in external sources. Some of

these base relations may even be unavailable when the

view needs to be maintained. Further, since base rela-

tions are independently updated, they may be read in

an inconsistent state, often resulting in erroneous view

updates. Thus, in data warehousing environments

where maintenance is performed locally at the ware-

house, an important incremental view-maintenance

issue is how to minimize external base data access.

Motivated by the above, another approach of

maintaining a view is called self-maintenance. In view

self-maintenance, a view is maintained using informa-

tion only local to the datawarehouse, viz., the view defi-

nition and the view contents. In general, a view may

not be self-maintainable. However, in certain cases, a

view can still be maintained using only a specified subset

of the base relations. With the above approach of self-

maintenance, it is possible to minimize the cost to main-

tain the datawarehouse, shorten the time window during

which the warehouse is inconsistent with the updated

data sources, and avoid view update anomalies due to

asynchronous base data updates.
There can be two notions [2] of self-maintainability

(SM): the compile-time SM where a view is

self-maintainable independently of the view’s contents

and the contents of the base relations, and under all

updates of a certain type. The runtime SM is when a

specific view is self-maintainable under a specific up-

date and given the contents of a specified subset of base

relations. Note that the runtime approach is more

aggressive in the way that it may succeed in maintain-

ing a view when the compile-time approach may

fail. Below, works on run-time self-maintainability

approach are described.

An important question is to determine whether a

view is (run-time) self-maintainable. In other words,

test for self-maintainability requires whether a unique

new state is guaranteed, given an update to the base

relations, an instance of the views, and an instance of a

subset of the base relations. A second question is how

to bring the view up to date using only the given

information. Together, these two questions define the

view self-maintenance problem.

The authors in [1,5] give self-maintainability condi-

tions for views that are select-project-join queries

with no self-joins and for single-relation insertions

or deletions. Huyn in [3] solved the problem more

efficiently than [1] for select-project-join views with

no self-joins for single insertions. In particular, Huyn

generate SQL queries that test whether a view is

self-maintainable and update the view if it is. More

specifically, he shows that for insertion updates and

conjunctive queries: (i) the self-maintainability test are

extremely simple queries that look for certain tuples in

the view to be maintained, (ii) these tests can be gener-

ated from just the view definition using a simple algo-

rithm based on the concept of ‘‘Minimum Z-Partition,’’

and (iii) view self-maintenance can also be expressed as

simple update query over the view.

In a follow-up work [4], Huyn considers the view

self-maintenance problem in the presence of multiple

views, under arbitrary mixes of insertions and deletions.

In particular, for conjunctive queries, he gives an algo-

rithm that generates, at view definition time, the query

expressions required to maintain the view in response to

base updates. He generalizes his techniques to the prob-

lem of generalized self-maintenance problem, where in

addition to the warehouse views, one is also given access

to some of the base relations. In general, he provides

better insight into the problem by showing that view

2550S Self-Management Technology in Databases
self-maintainability can be reduced to the problem of

deciding query containment.

Cross-references
▶Data Warehouse

▶View Maintenance

▶Views

Recommended Reading
1. Gupta A. and Blakeley J.A. Using partial information to update

materialized views. Inf. Syst., 20(9):641–662, 1995.

2. Gupta A. and Mumick I.S. Maintenance of materialized views:

problems, techniques, and applications. IEEE Data Eng. Bull.,

18(2):3–18, 1995.

3. Huyn N. Efficient view self-maintenance. In Proc. Workshop on

Materialized Views (VIEWS), 1996.

4. Huyn N. Multiple-view self-maintenance in data warehousing

environments. In Proc. 23rd Int. Conf. on Very Large Data Bases,

1997.

5. Tompa F.W. and Blakeley J.A. Maintaining materialized views

without accessing base data. Inf. Syst., 13(4):393–406, 1988.
Self-Management Technology in
Databases

SURAJIT CHAUDHURI
1, GERHARD WEIKUM

2

1Microsoft Corporation, Redmond, WA, USA
2Max-Planck Institute for Informatics, Saarbrueken,

Germany

Synonyms
Self-managing database systems; Autonomic data-

base systems; Self-tuning database systems; Auto-

administration and auto-tuning of database systems

Definition
The total cost of ownership (TCO) for a database-

centric information system is dominated by the

expenses for highly skilled human staff in order to

deploy, configure, administer, monitor, and tune the

database system. Self-management technology for

databases aims to automate these tasks to the largest

possible extent and throughout the entire life-cycle of

the information system. This involves many dimen-

sions that determine the system performance and avail-

ability such as: workload analysis, capacity planning,

physical database design, database statistics manage-

ment for query optimization, load control, memory
management, system-health monitoring, failure diag-

nosis and root-cause identification, configuration of

backup procedures and other self-healing capabilities.

The self-managing capabilities can be incorporated in a

system using a number of architectural options. For

example, such capabilities can be either built into the

system itself and integrated with its normal functional-

ity, or provided through external tools that for the

database engine. The latter approach is often referred

to as DB advisors, DB assistants, or DB wizards.

The notion of self-management for database systems

comprises a wide spectrum of issues, and it is tempting

to consider the partial automation of all database-related

human activity as facets of self-management, for exam-

ple, information integration. However, this entry defines

self-management technology to be confined to system

issues that arise with the operation of a database engine,

thus excluding the tasks that do not directly affect the

engine’s operation.
Historical Background
Needs for tuning tools and certain self-managing cap-

abilities have been around for decades. For example,

analytic models for capacity planning has a long tra-

dition in the mainframe world [13], and methods

for incremental online reorganization of storage and

indexing systems can be seen as early forms of self-

management. Selected issues of automatic tuning have

been addressed already in the 1980’s, most notably, on

index selection [11].

In the late 1980’s and throughout the 1990’s, both

database system functionality and workloads became

much richer and increased the complexity of system

management. Together with the proliferation of data-

base systems across a wide spectrum of IT applications,

this created a shortage of sufficiently skilled system

administrators and tuning experts. At the same time

hardware and software-licensing costs were rapidly

decreasing, so that human staff for system management

became the key factor in total cost of ownership (TCO).

These trends alerted the database-system industry in the

mid 1990’s and led to intensive research and develop-

ment initiatives at all of the major system vendors.

Early work on more comprehensive strategies and

principles of automatic tuning included the Comfort

project at ETH Zurich [18,19] and the ‘‘DBMS Auto-

pilot’’ work at the University of Wisconsin [2]. These

projects were in turn inspired by prior work towards

Self-Management Technology in Databases S 2551

S

adaptive and self-tuning operating systems [16], and

particularly focused on resource control for dynami-

cally evolving, mixed workloads. Starting in the mid

1990’s interest in self-management was revived by the

AutoAdmin project, which then became the leading

initiative in this area [5,8,9]. AutoAdmin initially fo-

cused on physical database design, but subsequently

also considered many other issues such as adaptive

statistics management, system monitoring, and online

tuning techniques. Good overviews of the progress

achieved in the past ten years, in terms of both research

contributions and product impact, are given by [1,8,9].

Foundations

General Framework

The overriding goal of self-management is to operate

the database system at a satisfactory level of perfor-

mance and service quality – at every point in time

regardless of load peaks or shifts in workload charac-

teristics. Specifically, the system should automatically

adjust its configuration to evolving workloads. To this

end, the key issue is to understand for each component

of the system the dependencies that relate the system

configuration and workload properties to the resulting

performance measures:

configuration � workload → performance

All three parameters of this relation need to be

interpreted broadly:

 System configuration includes the hardware setup

(number and speed of processor cores, memory

size, number and characteristics of disks and access

channels, etc.), the software setup at system-boot

time (e.g., thresholds for lock escalation or memory-

pressure handling), the physical database design

(indexes, materialized views, etc.), the backup or

replication procedures and their parameters (e.g., fre-

quency and granularity of backups, consistency pro-

tocols for replication), and also the system’s run-time

adaptation policies to handle newly arising condi-

tions (e.g., the scheduling policy and workload-

class priorities, the memory allocation policy, etc.)

as well as the system’s exception-handling policies

(e.g., load shedding under memory pressure).

 Workload characteristics include the types of

queries, update operations, transactions, and work-

flows that access the database (i.e., the workload
classes), their frequencies, their arrival rates during

specific periods (e.g., main business hours vs. week-

end vs. end-of-fiscal-year processing), their arrival

patterns (e.g., typical sequences of different queries),

their co-occurrence patterns (e.g., online tran-

sactions concurrently with certain batch jobs), the

distribution of query parameter values, and so on.

 Performance measures include the throughput and

response times (or properties of response-time dis-

tributions like quantiles) of different workload clas-

ses, but also metrics that capture the system’s

dependability, namely, reliability (e.g., probability

of losing data by a permanent failure such as double

or triple disk failures), availability (i.e., probability

of being able to service requests at any timepoint in

the presence of transient outages), performability

(i.e., the performance level that can be sustained in

degraded configurations, e.g., when servers or data

replicas are temporarily unavailable), and ulti-

mately, even capabilities to react to the system envi-

ronment such as resilience to security attacks, graceful

handling of denial-of-service attacks, countering

attempts to breach data privacy, and so on.

If one had a reasonably accurate and complete model

of the configuration-workload-performance relation,

a self-managing system could, in principle, solve the

following ‘‘inverse problem’’:

Given specified goals for performance measures

and the workload properties, find the lowest-cost con-

figuration that satisfies the performance goals.

This would have to be solved dynamically whenever

the workload exhibits major changes and necessitates

adaptive reconfiguration. The goals in this setting

should cover throughput, response time (e.g., a 95th

quantile of at most 1 second), availability (e.g., expected

downtime per year of at most 10 minutes), and other

measures, leading to a more general notion of service

level agreements (SLA) or quality-of-service (QoS) guar-

antees. The specified SLA/QoS requirements would

drive the self-management procedures.

All three elements of the configuration-workload-

performance function can refer to an entire system or

to individual components. The latter is highly prefera-

ble: the configuration parameters are then restricted to

the ones that are relevant for the specific component

at hand, and the same modularization holds for work-

load properties and performance measures. At the

system level, the configuration is the union of

2552S Self-Management Technology in Databases
the component-specific parameters, the workload at

the system level is decomposed into workload prop-

erties for each component, and the performance

observed at the component level is aggregated into

system-level measures. As a consequence, predicting

the system-wide performance requires composability

of workload-characterization models and, most cru-

cially, of performance-prediction models for the

underlying components.

An inherent difficulty in achieving self-manageability

is that many of the input parameters are not known a

priori, may change rapidly thus posing difficulties to

parameter estimation techniques, and are inherently

difficult to model and thus bound to be incompletely

captured. In particular, workload modeling is an ex-

tremely difficult task: queries, for example, can be mod-

eled at different resolution levels from SQL statements

down to internal operator trees (or actually, pipelined

DAGs) or storage-level access operations; arrival rates

can refer to steady state (long-term averages) or a spe-

cific look-ahead time horizon like the next hour or next

minute; the dependencies in the arrival patterns of

different query or transaction types can be determined

by statistical correlations or by causal flow models via

static program analysis of the application code.

Although the above discussion presents only a con-

ceptual model, this framing does provide useful guide-

lines for approaching specific self-management issues.

The salient aspects of the configuration-workload-

performance framework and the general aim of solving

for a suitable configuration suggest a methodology that

is best characterized as an observe-predict-react cycle:

 Observe: Workload characteristics need to be ob-

served as the system is running, so as to estimate

parameters of the workload model or models.

Observations may need to be collected at different

resolution levels and time scales, and they must track

drifts and anomalies in the workload evolution. This

calls for a form of introspection or self-monitoring.

 Predict: As the current configuration is known and

given the outcome of the observation step, one can

aim to assess the performance in the near-term

future, either with the current configuration as

well as with various alternative configurations that

could potentially improve performance. This calls

for a notion of what-if analysis.

 React: Occasionally the system configuration needs

to be reconsidered, in view of the observed workload
changes and projected near-term performance. In

the case that explicit performance goals are given,

the search for and assessment of new configurations

could be triggered whenever one of the goals is

violated (or about to be violated) with the current

configuration. In the case without explicit goals, one

or more objective functions need to be specified, so

that whenever there is a significant loss in the objec-

tive function(s), the reaction step is invoked. The

react step needs a smart search strategy to identify

promising new configurations.

The observe-predict-react approach can be applied

to different time scales based on the specific self-

management task at hand from long-term capacity

planning, which may be done relatively infrequently,

down to real-time decisions, for example, about mem-

ory management, which requires all three steps at the

resolution of minutes or even seconds to handle sud-

den memory-pressure situations. The three steps may

be implemented as tools outside the database engine,

or could be incorporated into the engine at different

integration levels. Typically, short time scales mandate

deeper integration, whereas long-term decisions could

be made by external advisor tools.

Self-Management Paradigms

Ideally, the models and strategies for self-managing

systems would follow a unified principle such as math-

ematical optimization theory, but such a ‘‘grand solu-

tion’’ is not in reach today. Instead, there are many

diverse results on a variety of specific self-management

issues; the state of the art is best characterized by a

number of self-management paradigms: approaches

that work well on paradigmatic example problems

but bear the potential for being generalized into more

broadly applicable principles. In the following, several

such paradigms will be introduced, each with a general

characterization and one or more exemplary use cases.

Trade-off Elimination: Tuning knobs exist because

of trade-offs: there is no algorithm (or data structure)

that performs near-optimal under all possible work-

loads, and therefore, systems are equipped with differ-

ent options. However, sometimes it is possible to

design an algorithm or a strategy that performs very

well across the full spectrum of workloads, and this

algorithm should be knob-free or only have second-

order parameters which are uncritical or easy to set

once across (almost) all workloads [19]. Such an

Self-Management Technology in Databases S 2553

S

algorithm effectively eliminates the trade-off. Exam-

ples are modern cache-replacement algorithms (LRU-

k, ARC, etc.) or B + -tree indexes for both exact-match

lookups and range scans. In the case of quantitative

tuning parameters such as disk block sizes or striping

units, similar considerations may lead to robust tech-

niques that can effectively eliminate knobs.

Static Optimization: Some self-tuning problems can

be cast into mathematical optimizations with statically

given input parameters. In principle, this opens up

solutions based on combinatorial optimization meth-

ods such as branch-and-bound. Physical database de-

sign falls into this category; planning backup or

replication procedures is another example. However,

it is crucial to obtain input parameters and evaluate

the objective function in a way that preserves the

actual behavior of the database system. A major lesson

from the research on physical design automation [8,9]

is that a hand-crafted cost model, for assessing the

quality of a particular design configuration, is bound

to be inappropriate no matter how detailed and seem-

ingly accurate it may be. The crux is that a separate cost

model does not consider the actual behavior of the

engine’s query optimizer in selecting indexes for par-

ticular queries. Instead, the practically viable solutions

references the query optimizer’s cost model each time

they need to assess the benefit of a design configuration

for the given workload. To limit the computational

overhead of these calls, thoroughly designed techni-

ques for what-if assessment are needed (so as to esti-

mate the benefit of a design configuration without

actually building indexes). In addition, great care

must be taken in the enumeration of candidate con-

figurations. Although this is an offline optimization,

the combinatorial explosion of the search space could

easily lead to unacceptable run-time.

Stochastic Optimization: In some situations, albeit

dealing with an offline optimization problem, the input

parameters can only be characterized as random vari-

ables or by means of stochastic processes. System

capacity planning falls into this category, for example,

deciding how many disks are needed or how big

a shared database cache should be in order to satisfy

throughput and response time goals. For such problems,

the established methodology is stochastic modeling,

most importantly, queuing theory as the non-linear

effects of resource contention under multi-user load

are most critical [13,15]. For tractability, stochastic

models often need to make simplifying assumptions,
and this entails the crucial issue of how accurate the

model’s predictions can still be. This concern can be

addressed in two ways: (i) using more advanced mathe-

matics to capture also non-standard situations or com-

bining analytic models with simulations (e.g., to capture

realistic inter-arrival time distributions rather than

simply postulating an exponential distribution), and

(ii) using stochastic models as a building block in a

more comprehensive approach, where even somewhat

inaccurate relative predictions are beneficial towards

configuration decisions.

Online Optimization:Many self-managing problems

obtain their inputs – workload parameters – only dyna-

mically (but then accurately, not stochastically) and

need to optimize configuration parameters as the work-

load evolves. These situations typically entail periodic or

even continuous re-optimization, possibly in an incre-

mental manner, and face tight timing constraints for

finding the solution [2,3]. Memory governing for work-

spaces (e.g., for hash-joins or sorting) and database

statistics management (e.g., for multidimensional histo-

grams) fall into this category, the former having a time

horizon of minutes or seconds, the latter with a typical

reconsideration cycle of days but then requiring expen-

sive database accesses. Inspired by online optimization

theory, a possible approach to tackle these problems is

to identify fast approximation techniques to obtain a

viable solution. However, the details of the specific

approach heavily depend on the problem at hand.

Feedback Control: When it is very difficult, if not

impossible, to capture some aspect of the configura-

tion-workload-performance relation in a causal model,

the paradigm of feedback control loops offers a princi-

pled alternative even in the absence of causal under-

standing. Dynamic load control that adjusts the

multiprogramming level (MPL, i.e., the maximum num-

ber of concurrent threads) of a server falls into this

category. These methods consist of an admission control,

to avoid overload effects that may result in performance

thrashing, and a cancellation control to shed load when

performance goals can no longer be met. This is crucially

important especially for memory management, but po-

tentially also for lock management and other resources.

Themain challenge that must be addressed here is that of

sudden load surges: bursty arrivals of requests that re-

quire adjustment of MPL settings for smoother load

(possibly even with workload-class-specific MPL limits).

These transient effects are inherently difficult to model

analytically, even with stochastic models. Feedback loops

2554S Self-Management Technology in Databases
treat the MPL settings as control variables that are

adjusted based on simple differential equations over

the measured performance values, the desired perfor-

mance goals, and the control values. Control theory

may be harnessed to ensure stability properties. Feedback

control has been shown to work well for sufficiently

simple functionality such asWeb application servers [10].

Statistical Learning: Machine-learning models that

use statistics for regression of continuous functions or

classification with discrete labels are becoming increas-

ingly attractive for self-tuning tasks [12,17]. Modern

statistical learning methods can handle large numbers

of input parameters (high-dimensional multivariate

models) and can determine the most influential factors

or can learn a predictor for an output variable. The

only input is prior observations, sometimes along with

manually assigned labels for training (if needed). In the

context of self-managing database systems, the data are

the system’s event log: fine-grained information about

configuration values (whenever they change), perfor-

mance measurements, and also exceptions and poten-

tial problem situations. Statistical learning on this data

can be used for diagnosis and root-cause analysis.

A word of caution is in order, though: even if, in

principle, all kinds of functions, labelings, and rank-

ings can be learned, it is still an art to design the

learning models and their feature spaces in the right

way. So just like all the other self-management para-

digms, statistical learning is not a panacea in itself.

Infrastructure

Self-management technology requires capabilities for

adaptation, introspection, and self-healing. This in

turn calls for a rich infrastructure in or around the

database engine, so as to gather the necessary data and

provide the mechanisms that will be enacted by the

self-managing strategies. In the last few years, all mod-

ern database systems have addressed these require-

ments and provide rich facilities in this regard:

 Many internal algorithms (e.g., hash-joins or sort-

ing) are resource-adaptive: they can continue run-

ning even if their resources, like workspacememory,

are reduced at run-time. (But this alone does not

provide self-management; in addition, strategies are

needed for deciding when and how to reduce or

increase resource assignments.)

 For continuous self-monitoring, light-weight techni-

ques have been developed to identify and trace
relevant events (e.g., exceptions raised because of

memory shortage) and aggregate large amounts of

monitoring data. The difficulty that these techni-

ques have successfully overcome is to do all this

with very low run-time overhead so as not to

adversely affect normal system operation [7].

 For self-healing, techniques have been added to iso-

late abnormal behavior and re-initialize potentially

affected system components [4]. These approaches

are eased by the fact that database systems generally

follow the transactional paradigm for data accesses.

By aborting ongoing transactions and sessions,

resetting software components is greatly simplified.

A similar argument holds for fail-over techni-

ques among redundant servers (with data replica-

tion or shared disk storage), and this even works

over large geographic distances to provide disaster

recovery.
Future Directions
Self-management is an important topic across all kinds

of computer systems. Ultimately, all IT systems should

strive to become as easily usable as household appli-

ances such as washing machines or TV sets. In some

areas, the vision of administration-less and trouble-

free solutions has almost been achieved, most notably,

in storage systems [20]. However, database systems,

with their very powerful languages like SQL and XQu-

ery and their application-specific extensibility, have a

much richer functionality than storage and thus face a

much harder challenge.

In fact, database systems and their application work-

loads have become so complex that self-management is

no longer just a desirable capability but will be a vital

necessity in the long run. But despite the good progress

on many issues of this theme, the quest for overriding

principles has not yet achieved any breakthrough. This is

partly due to the difficulty of the problems (and the

quest is certainly ongoing); on the other hand, one

could conjecture that the problem may, to some extent,

be ill-defined given today’s very sophisticated system

architecture with their overwhelming richness of fea-

tures and the limited set of abstractions.

This concern is reflected in considerations on com-

ponentizing database systems into building blocks with

narrow interfaces and much fewer tuning choices [6,14],

in building specialized data-management engines for

particular application domains, or drastically limiting

Semantic Data Integration for Life Science Entities S 2555

S

the engine’s options and functionality. Virtualization

of resources is another trend towards simplifying system

management, but its impact on database engine tuning is

still unclear. A breakthrough may require radical depar-

tures from today’s architectures as well as rethinking

the functionality that is offered by the database system.

Similar to the ‘‘design-for-recovery’’ position of [4],

a completely new design-for-manageability approach

may be needed.

Cross-references
▶Database Tuning using Combinatorial Search

▶Database Tuning using Online Algorithms

▶Database Tuning using Trade-off Elimination

Recommended Reading
1. Ailamaki A (ed.) Special issue on self-managing database sys-

tems. IEEE Data Eng. Bull., 29(3):2006.

2. Brown K.P., Mehta M., Carey M.J., and Livny M. Towards auto-

mated performance tuning for complex workloads. In Proc. 20th

Int. Conf. on Very Large Data Bases, 1994.

3. Bruno N. and Chaudhuri S. To tune or not to tune? A light-

weight physical design alerter. In Proc. 32nd Int. Conf. on Very

Large Data Bases, 2006, pp. 499–510

4. Candea G., Brown A.B., Fox A., and Patterson D.A. Recovery-

oriented computing: building multitier dependability. IEEE

Comput., 37(11):60–67, 2004.

5. Chaudhuri S., König A.C., and Narasayya V.R. SQLCM: a con-

tinuous monitoring framework for relational database engines.

In Proc. 20th Int. Conf. on Data Engineering, 2004.

6. Chaudhuri S. and Narasayya V.R. An efficient cost-driven index

selection tool for microsoft SQL server. In Proc. 23th Int. Conf.

on Very Large Data Bases, 1997.

7. Chaudhuri S. and Narasayya V. Self-tuning database systems:

a decade of progress. In Proc. 33rd Int. Conf. on Very Large Data

Bases, 2007.

8. Chaudhuri S., Narasayya V., and Syamala M. Bridging the appli-

cation and DBMS profiling divide for database application devel-

opers. In Proc. 33rd Int. Conf. on Very Large Data Bases, 2007.

9. Chaudhuri S., and Weikum G. Rethinking database system ar-

chitecture: towards a self-tuning RISC-style database system. In

Proc. 26th Int. Conf. on Very Large Data Bases, 2000.

10. Diao Y., Hellerstein J.L., Parekh S.S., Griffith R., Kaiser G.E., and

Phung D.B. A control theory foundation for self-managing

computing systems. IEEE J. Select. Areas Commun., 23(12):

2213–2222, 2005.

11. Finkelstein S.J., Scholnick M., and Tiberio P. Physical database

design for relational databases. ACM Trans Database Syst.,

13(1):91–128, 1988.

12. Jiang N., Villafane R., Hua K.A., Sawant A., and Prabhakara K.

ADMiRe: an algebraic data mining approach to system perfor-

mance analysis. IEEE Trans. Knowl. Data Eng., 17(7):888–901,

2005.

13. Lazowska E.D., Zahorjan J., Scott Graham G., and Sevcik K.C.

Quantitative system performance: computer analysis using
queuing network models, Prentice-Hall, Englewood, Cliffs, NJ,

1984.

14. Lightstone S. Seven software engineering principles for auto-

nomic computing development. Innovations in Syst. and

Softw. Eng., 3(1):71–74, 2007.

15. Menasce D.A. and Almeida V.A.F. Capacity Planning for Web

Performance. Metrics, Models and Methods: Metrics, Models

and Methods, Prentice-Hall, 2001.

16. Reiner D.S. and Pinkerton T.B. A method for adaptive perfor-

mance improvement of operating systems. In Proc. 18th ACM

Symp. on Operating System Principles, 1981.

17. Stillger M., Lohman G.M., Markl V., and Kandil M. LEO – DB2’s

LEarning Optimizer. In Proc. 27th Int. Conf. on Very Large Data

Bases, 2001.

18. Weikum G., Hasse C., Moenkeberg A., and Zabback P. The

COMFORT automatic tuning project. Inform. Syst., 19(5):

381–432, 1994.

19. Weikum G., Moenkeberg A., Hasse C., and Zabback P. Self-

tuning database technology and information services: from

Wishful thinking to viable engineering. In Proc. 28th Int. Conf.

on Very Large Data Bases, 2002.

20. Wilkes J., Golding R.A., Staelin C., and Sullivan T. The HP

AutoRAID hierarchical storage system. ACM Trans. Comput.

Syst., 14(1):108–136, 1996.
Self-Managing Database Systems

▶ Self-Management Technology in Databases
Self-Tuning Database Systems

▶ Self-Management Technology in Databases
Semantic Analysis of Video

▶Video Content Analysis
Semantic Data Integration for Life
Science Entities

ULF LESER

Humboldt University of Berlin, Berlin, Germany

Synonyms
Object identification; Data fusion; Duplicate detection;

LSID

2556S Semantic Data Integration for Life Science Entities
Definition
An entity is the representation of a (not necessarily

physical) real-world object, such as a gene, a protein,

or a disease, within a database. To integrate informa-

tion about the same entities from different databases,

these representations must be analyzed to uncover

the corresponding underlying objects. This process is

called entity identification. A variation of entity iden-

tification is duplicate detection, which analyses two or

more entities to determine whether they represent the

same real-world object or not. Finally, data fusion is

the process of generating a single, homogeneous repre-

sentation from multiple, possibly inconsistent entities

that represent the same real-world object.

When entities have globally unique keys, such as

ISBN numbers in the case of books, entity identifica-

tion and duplicate detection are simple. However, in

life science databases, one usually has only descriptive

information, such as the name or the sequence of a

gene, which does not suffice to uniquely identify real-

world objects. A homonym is a single name (or an ID)

that is identifies multiple, different objects. For in-

stance, the term ‘‘ACE’’ may reference many different

proteins, such as ‘‘angiotensin converting enzyme’’ or

‘‘acetylcholinesterase.’’ Synonyms are multiple names

(or IDs) given to the same object.

Entity identification is particularly important in

data curation, which is the (often manual) process of

distilling a comprehensive description of a complex

object from multiple data sources.

Historical Background
Duplicate detection has a long tradition in census

databases where multiple representations of a person

have to be identified to ensure reliable statistics. In the

life sciences, the problem is particularly difficult,

because many biological objects are much less strin-

gently defined than, say, a human being. For instance,

it is not clear whether two copies of a gene sequence

on different sections of a chromosome should be con-

sidered the same gene or not, or if two highly similar

and functionally identical genes in different species

should be considered as different genes or not. At the

other extreme, one often treats a gene and the protein

it encodes as one object, especially in prokaryotes

where differential splicing is almost non-existent, lead-

ing to a strict 1:1 relationship between genes and pro-

teins. Thus, although a (DNAor protein) sequence is the

fundamental identifying property of many biological
objects, it does not always lead to unique entity

identification.

First calls for establishing world-wide standards

to identify biological objects appeared in the early

1990s, when theHumanGenome Project (HGP) quickly

increased the amount of available information on genes

and other molecular objects [4]. The HGP from the very

start was an internationally distributed effort with no

central organization that could have enforced consistent

naming of objects or assignment of IDs to objects.

Standardization efforts were initiated in the domains

of genes, proteins, and clones. Other areas where

identification of objects is an important issue are small

molecules, diseases, and species. One way to achieve

standardized names was the installation of committees

to define naming conventions for biological objects,

such as the HUGO Gene Nomenclature Committee.

On the other hand, some databases have become the

de-facto standards for some types of biological objects,

and their IDs are now commonly used as identifiers.

An example is the use of UniProt-IDs as identifiers for

proteins.

However, in many areas no standards exist or stan-

dards are not commonly used. Thus, many areas are

facing the problem of identifying duplicates. The pre-

dominant approach is the comparison of biological

sequences, i.e., DNA or protein sequences, using various

variations of edit distance calculations. However, recent

scientific discoveries, such as the importance of differ-

ential splicing (one gene forming several proteins) or

the existence of paralogs (highly similar genes in the

same genome with different function) render the pure

usage of sequence similarity insufficient. Today, the

method of choice for performing duplicate detection

in a life sciences database therefore depends on the

specific domain and the scientists’ and databases’ par-

ticular understanding of the biological object.

Foundations

Identity Versus Similarity

The entity identification problem exists for all types of

objects in the life sciences. It is particularly pressing for

genes and proteins. For most purposes one considers a

gene to be a (not necessarily continuous) stretch of

DNA, i.e., a sequence of the four nucleic acids, on a

chromosome, which is – by some complex regulation

mechanism – at times first transcribed into RNA and

then translated into a protein. A protein is a molecule

Semantic Data Integration for Life Science Entities S 2557

S

consisting of a linear chain of amino acids forming a

complex 3D structure. The translation procedure

moves through the RNA and appends for each triple

of nucleic acids one amino acid to the growing protein

chain; thus, the translation of a given gene sequence

into a protein is unique. The function of a protein

mostly depends on the topology of its 3D structure

and the properties of atoms exhibited at the surface of

the structure [3].

The revelation of the function(s) of a protein is a

crucial task in Bioinformatics and especially important

for drug development. Because similar structure may

hint toward similar function (independent of the spe-

cies), a standard procedure for revealing the function

of a human protein is to experimentally analyze the

structure of a similar protein in another well-studied

species, such as mouse or fruit-fly. Because the se-

quence of a gene determines the sequence of its pro-

tein(s), which in turn determines the structure of

the protein, the same principle holds for genes: Two

genes with similar sequence quite likely code for pro-

teins with similar function.

With the function being the most important attri-

bute of a gene/protein, the predominant question

for semantic integration of genes and proteins is

one of similarity of sequences rather than identity.

The similarity of two biological sequences usually is

measured by their (weighted) edit distance [9]. Two

genes are considered as identical if their sequences are

very similar, with the exact definition of ‘‘very similar’’

being a subject of much debate. The fundamental

tool for entity identification and duplicate detection

of genes and sequences therefore still is sequence com-

parison, using tools such as BLAST.

Naming Standards

Once a group of genes or proteins have been identified

as ‘‘one real-world’’ object, one has to select a common

name or ID for this group. For human genes, the

Human Genome Organization (HUGO) installed the

HUGO Gene Nomenclature Committee (HGNC),

which is responsible for assigning names to human

genes. Gene names are often complex, multi-term

phrases that might include parts of the name of the

person who discovered the gene, the phenotype it pro-

duces when a defect occurs, an inherited disease the

gene is associated to, the chromosome and species

where it first was detected, etc. However, the work of

the HGNC is still widely ignored (especially in scientific
publications). For other species, similar bodies often

were more successful in terms of standardization. The

reason for their success is (i) the number of researchers

working on a particular other species is usually much

smaller than for humans, (ii) the number of genes in

other species is much smaller (e.g., Yeast �4,000 genes,

human �22,000 genes), and (iii) data collection was

centralized early on; (see the Mouse Genome Database

MGD for an example). Furthermore, certain data-

base identifiers are commonly used to denote genes,

especially those from the EntrezGene database.

No established naming convention exists for human

proteins. The problem is worse than for genes, because

on average every human gene codes for �8 proteins

by means of differential splicing. Very often database

identifiers are used instead of spoken names. De-facto

standards are IDs from the Protein Data Bank (PDB)

and the Uniprot Knowledge Base (formerly known as

SwissProt).

For DNA sequencing, chromosomes are broken

into pieces, which are cultivated, copied, and dis-

tributed inside living bacteria, called clones. Sets of

clones are gathered in libraries that often contain

hundreds of thousands of clones. Physically, a library

is a set of so-called plates with 10–100 dwells, each

containing a particular clone. To avoid duplication of

work, clones must be identified uniquely. However,

after generation nothing is known about a particular

clone except the dwell where it is hosted. Researchers

therefore identify clones by the plate number and

column/row number inside the library. Since re-distri-

bution of clones into different, specialized libraries is

commonplace, there are clones with more than 20

different IDs of this form (see the Genome Database

(GDB) for examples).

To overcome the problem of object names, the

Object Management Group (OMG) recently has defined

the LSID – Life Science Identifiers – standard for ‘‘per-

sistent, location-independent, resource identifiers for

uniquely naming biologically significant resources in-

cluding species names, concepts, occurrences, genes or

proteins, or data objects that encode information about

them.’’ An LSID identifier consists of a network identi-

fier (usually the fixed term urn:lsid), an authority

identifier (who defines this name), a namespace iden-

tifier, an object identifier, and a revision identifier (see

discussion below on object versions). Whether or not

this standard will be accepted by the community

remains to be seen.

2558S Semantic Data Integration for Life Science Entities
Evolution of Names

A particular problem with names and IDs is how to

keep them stable and consistent. For instance, the

question of which (of multiple) names of a particular

gene is used in the literature is highly influenced by a

kind of social-scientific ‘‘fashion’’ [10]. In biological

databases, objects need to be merged and deleted,

rendering existing IDs inconsistent. Furthermore,

new findings may completely change what is known

about a gene while keeping the ID unchanged, which

makes previous studies based on the now outdated

knowledge obsolete. This problem is usually solved

by implementing a particular versioning model,

which distinguishes major and versioned IDs; major

ID always point to the most current version and a new

version of the object is created with every update.

Key Applications

Semantic Integration of Entities

Duplicate detection is vital to ensure high data quality

in integrated databases. It consists of two steps. First,

multiple representations of same real-world entities

have to be discovered. Second, for each group of dupli-

cates, a uniform representation must be found [8].

Both steps are particularly difficult in the Life Sciences,

because object definitions are vague (see above) and

most biological data are obtained by complex experi-

ments and are notoriously noisy [2].

Therefore, both tasks most often are performed

manually, a process called data curation. It is common

that large biological databases employ professional

curators whose task it is to read new publications and

to convert the most important information into some

semi-structured database entry. There are also forms of

community curation, where the correction of errors in

databases through a web interface is possible for

registered users [5].

The general problem with curation is that it is very

costly and highly subjective. At the same time, deciding

on the correct value given two diverging experimental

results is usually impossible without further experi-

ments. Consequently, a typical approach to data inte-

gration in this field is to omit the second step. The

resulting architecture has been called ‘‘entity-based’’ or

‘‘multidimensional.’’ Different sources containing in-

formation about the same set of entities are considered

as dimensions of the entities and are integrated into a

schema similar to a star schema in Data Warehouses
[11]. The advantage and disadvantage is that the dif-

ferent views on entities are reported to the user in a

logically separated manner; thus, she has the ability but

also the obligation to select the appropriate values

herself. Alternatively, mixtures of manual and auto-

matic data fusion are used (see [1] for an example).
Entity Identification in Text

A related problem is the identification of object names

in scientific publications, i.e., in English sentences.

Named Entity Recognition (NER) is the problem of

judging for a given set of terms within a document

whether they form a gene name. A standard technique

for solving NER is the usage of classification based

on machine learning algorithms. Named Entity

Normalization (NEN) is the problem of assigning a

unique name to an entity in text once it has been

identified as such. NEN typically is tackled using

large dictionaries of names and some kind of fuzzy

string matching method. See [6,7] for recent surveys

on both tasks.
URL to Code
BLAST tool for search similar sequences in database:

http://www.ncbi.nlm.nih.gov/BLAST/

EntrezGene database: http://www.ncbi.nlm.nih.

gov/sites/entrez

HUGO Gene Nomenclature Committee: http://

www.genenames.org/

Mouse Genome Database: http://www.informatics.

jax.org/

OMG Life Science Research Task Force: http://

www.omg.org/lsr/

Protein Data Bank (PDB): http://www.pdb.org/

Uniprot knowledge base: http://www.uniprot.org/

Cross-references
▶Data Deduplication

▶ Information Integration

▶ Information Integration Techniques for Scien-

tific Data

▶Metadata Management and Resource Discovery

▶Object Identity

▶ Scientific Databases

Recommended Reading
1. Bhat T.N., Bourne P., Feng Z., Gilliland G., Jain S., Ravichandran

V., Schneider B., Schneider K., Thanki N., and Weissig H, et al.

Semantic Data Model S 2559
The PDB data uniformity project. Nucleic Acids Res.,

29(1):214–218, 2001.

2. Brenner S.E. Errors in Genome Annotation. Trends Genet.,

15(4):132–133, 1999.

3. Gibson G. and Muse S.V. A Primer of Genome Science. Sinauer

Associates, Sunderland, MA, 2001.

4. Karp P.D. Models of identifiers. In Proc. Second Meeting on

Interconnection of Molecular Biology Databases. Cambridge,

UK, 1995.

5. Kingsbury D. Consensus, common entry, and community cura-

tion. Nat. Biotechnol., 14:679, 1996.

6. Krauthammer M. and Nenadic G. Term identification in the

biomedical literature. J. Biomed. Inform., 37(6):512–526, 2004.

7. Leser U. and Hakenberg J. What Makes a Gene Name? Named

Entity Recognition in the Biomedical Literature. Briefings in

Bioinformatics, 6(4):357–369, 2005.

8. Müller H., Naumann F., and Freytag J.-C. Data quality in ge-

nome databases. In Proc. Conf. on Information Quality, 2003.

9. Smith T.F. and Waterman M.S. Identification of common mo-

lecular subsequences. J. Mol. Biol., 147:195–197, 1981.

10. Tamames J. and Valencia A. The success (or not) of HUGO

nomenclature. Genome Biol., 7(5):402, 2006.

11. Trissl S., Rother K., Müller H., Koch I., Steinke T., Preissner R.,

Frömmel C., and Leser U. Columba: an integrated database of

proteins, structures, and annotations. BMC Bioinformatics,

6:81, 2005.
S

Semantic Data Model

DAVID W. EMBLEY

Brigham Young University, Provo, UT, USA

Synonyms
Conceptual model; Conceptual data model

Definition
A semantic data model represents data in terms of

named sets of objects, named sets of values, named

sets of relationships, and constraints over these object,

value, and relationship sets. The semantics of a seman-

tic data model are the intensional declarations: the

names for object, value, and relationship sets that

indicate intended membership in the various sets and

the declared constraints that the data should satisfy.

The data of a semantic data model is extensional and

consists of instances of object identifiers and values for

object and value sets and of m-tuples of instances for

m-ary relationship sets. The model of a semantic-data-

model instance describes intensionally a real-world

domain of interest. The modeling components of the
semantic data model specify the modeling elements

from which a real-world model instances can be built.

For a general description of semantic data models,

see [1]. This article describes the generic properties of

semantic data models and presents a representative

collection of early semantic data models.
Key Points
Figure 1a gives a sample semantic data model. Seman-

tic data models use graphical symbols to represent data

semantics. Each semantic data model, however, has its

own set of graphical symbols. The graphical symbols

in Fig. 1b are meant to be generic-representative of

the symbols used and illustrative of the kinds of data

sets and constraints included in typical semantic

data models.

The legend in Fig. 1b tells what each symbol means.

 A box with a solid border designates a set of objects.

In Fig. 1a State designates the set of U.S. states (e.g.,

the state of California) and Region designates areas

within the U.S. (e.g., the region of states in the

Northeastern part of the U.S.).

 A box with a dashed boarder represents a set

of values. In Fig. 1a Capital City designates the

names of the capital cities of the U.S. states (e.g.,

‘‘Sacramento’’ for California) and Longitude desig-

nates the set of longitude values for the geographic

coordinates of locations (e.g., 120∘4.90W for the

longitudinal part of the centerpoint of California).

 A large filled-in dot represents a single object or

value. In Fig. 1a the object stands for the year 2000.

Single objects or values can be thought of as single-

ton object or value sets – an object set or value set

with one object.

 Relationship-set names can appear explicitly or can

be a composition of the names of connected object

and value sets. In Fig. 1a the names are all compo-

sitions (e.g., State-CapitalCity names the binary

relationship set between State and Capital City).

In general, relationship sets are m-ary (n � 2)

(e.g., the Location-2000-Population relationship set

is ternary).

 Constraints on relationship sets include function-

al/non-functional and mandatory/optional con-

straints. An arrowhead designates a functional

relationship set from its tail(s) as domain space

(s) to its head(s) as range space(s) (e.g., Location-

GeographicCoordinate is functional from Location

Semantic Data Model. Figure 1. Sample semantic data model instance.

2560S Semantic Data Model
to Geographic Coordinate). A small ‘‘o’’ near a con-

nection between an object (value) set and a rela-

tionship set allows for optional participation of the

objects in the object set (values in the value set) in

relationships in the relationship set (e.g., the ‘‘o’’

near Location in the Location-GeographicCoordinate

relationship set makes the participation of location

objects in the relationship set optional – a geo-

graphic coordinate for a location such as Northeast

need not have a geographic coordinate).

 Generalization/specialization constraints, repre-

sented by a triangle, designate the specialization

sets attached to the base of the triangle as subsets

of the generalization set attached to the apex of the

triangle (e.g., both the set of states and the set of

regions are subset of the set of locations). If a

union symbol ([) appears in the triangle, the gen-

eralization is a union of the specializations. If a

mutual-exclusion symbol (+) appears, the speciali-

zations are pairwise non-intersecting. And if a par-

tition symbol (
U
) appears, both a union and

mutual-exclusion constraint hold, making the
constraint be a partition (e.g., in the semantic-

data-model instance in Fig. 1, Region and State are

mutually exclusive and the union constitutes Loca-

tion – all the locations of interest for the semantic-

data-model instance).

 Aggregation constraints, represented by a filled-in

triangle, designate sub-part/super-part constraints.

In Fig. 1a several states make up a region, and a

longitude and latitude together constitute a geo-

graphic coordinate. The functional constraints

associated with the aggregations allow a state to

be part of at most one region and require that a

longitude and latitude together correspond to one

and only one geographic coordinate.

Formally, a populated semantic-data-model instance is

an interpretation for a first-order language. Each ob-

ject set and value set is a unary predicate (e.g., State(x)

and Latitude(x)), and each m-ary relationship set is

an m-ary predicate (e.g., State-StateCapital(x, y) and

Location-GeographicCoordinate(x, y)). The domain for

the interpretation is the set of object identifiers

Semantic Matching S 2561
and values in the populated semantic-data-model

instance (or more generally the set of potential object

identifiers and potential values for the semantic-data-

model instance). The constraints are closed, well-

formed formulas (e.g., 8x(State(x))∃!yState-State
Capital(x, y)). A populated semantic-data-model

instance whose data satisfies all the constraints is said

to be a model – a valid semantic-data-model instance.

Cross-references
▶ Entity Relationship Model

▶ Extended Entity-Relationship Model

▶Hierarchical Data Model

▶Network Data Model

▶Object Data Models

▶Object-Role Modeling

▶Ontology

▶Unified Modeling Language

Recommended Reading
1. Peckham J. and Maryanski F. Semantic data models. ACM

Comput. Surv., 20(3):153–189, September 1988.
Semantic Image Retrieval

▶Annotation-based Image Retrieval
Semantic Inference in Audio

▶Audio Content Analysis
S

Semantic Mapping Composition

▶ Schema Mapping Composition
Semantic Matching

FAUSTO GIUNCHIGLIA, PAVEL SHVAIKO,

MIKALAI YATSKEVICH

University of Trento, Trento, Italy

Definition
Semantic matching : given two graph representations of

ontologies G1 and G2, compute N1 � N2 mapping
elements hIDi,j, n1i, n2j, R
0i , with n1i 2 G1, i = 1,...,N1,

n2j 2 G2, j = 1,...,N2 and R0 the strongest semantic

relationwhich is supposed to hold between the concepts

at nodes n1i and n2j.

A mapping element is a 4-tuple hIDij, n1i, n2j, Ri,
i = 1,...,N1; j = 1,...,N2; where IDij is a unique identifier

of the given mapping element; n1i is the i-th node of

the first graph, N1 is the number of nodes in the first

graph; n2j is the j-th node of the second graph, N2 is

the number of nodes in the second graph; and R

specifies a semantic relation which is supposed to

hold between the concepts at nodes n1i and n2j.

The semantic relations are within equivalence (=),

more general (w), less general (v), disjointness (⊥) and

overlapping (u). When none of the above mentioned

relations can be explicitly computed, the special idk

(I don’t know) relation is returned. The relations are

ordered according to decreasing binding strength, i.e.,

from the strongest (=) to the weakest (idk), with more

general and less general relations having equal binding

power. The semantics of the above relations are the

obvious set-theoretic semantics.

Concept of a label is the logical formula which

stands for the set of data instances or documents that

one would classify under a label it encodes. Concept at

a node is the logical formula which represents the set of

data instances or documents which one would classify

under a node, given that it has a certain label and that it

is in a certain position in a graph.

Historical Background
An ontology typically provides a vocabulary that

describes a domain of interest and a specification of

the meaning of terms used in the vocabulary. Depend-

ing on the precision of this specification, the notion of

ontology encompasses several data and conceptual

models, for example, classifications, database schemas,

or fully axiomatized theories. In open or evolving sys-

tems, such as the semantic web, different parties would,

in general, adopt different ontologies. Thus, just using

ontologies, just like using XML, does not reduce het-

erogeneity: it raises heterogeneity problems to a higher

level. Ontology matching is a plausible solution to

the semantic heterogeneity problem faced by informa-

tion management systems. Ontology matching aims

at finding correspondences or mapping elements

between semantically related entities of the input ontol-

ogies. These mapping elements can be used for various

tasks, such as ontology merging, query answering, data

2562S Semantic Matching
translation, etc. Thus, matching ontologies enables

the knowledge and data expressed in the matched

ontologies to interoperate [6].

Many diverse solutions of matching have been pro-

posed so far, see [7,17,18] for recent surveys which

addressed the matching problem from different per-

spectives, including databases, artificial intelligence

and information systems; while the major contributions

of the last decades are provided in [2,14,19]. Some

examples of individual approaches addressing the

matching problem can be found in [4,5,8,15,16]. (See

http://www.ontologymatching.org for a complete infor-

mation on the topic.) Finally, ontology matching has

been given a book account in [6]. This work provided a

uniform view on the topic with the help of several

classifications of the available methods, discussed these

methods in detail, etc. In particular, the matching meth-

ods are primarily classified and further detailed accord-

ing to (i) the input of the algorithms, (ii) the

characteristics of the matching process and (iii) the

output of the algorithms.

The work in [10] mixed the process dimension of

matching together with the output dimension and clas-

sified matching approaches into syntactic and semantic.

Syntactic are those approaches that rely on purely syn-

tactic matching methods, e.g., edit distance between

strings, tree edit distance. The semantic category, in

turn, represents methods that work with concepts and

compare their meanings in order to compute mapping

elements. However, these have been also constrained
Semantic Matching. Figure 1. Two simple XML schemas. Th

corners, while attributes are shown without them. Numbers b

the XML elements and attributes. In turn, the mapping eleme

otherwise, these are mentioned above the arrows.
by a second condition dealing with the output dimen-

sion: syntactic techniques return coefficients in the

[0 1] range, while semantic techniques return logical

relations, such as equivalence, subsumption (and justi-

fied by deductive techniques for instance). The work

in [4] provided a first implementation of semantic

matching.

Foundations
In order to motivate the matching problem two simple

XML schemas are used. These are represented as trees

in Fig. 1 and exemplify one of the possible situations

which arise, for example, when resolving a schema

integration task. Suppose an e-commerce company

A1 needs to finalize a corporate acquisition of another

company A2. To complete the acquisition, databases of

the two companies have to be integrated. The docu-

ments of both companies are stored according to XML

schemas A1 and A2, respectively. A first step in inte-

grating the schemas is to identify candidates to be

merged or to have taxonomic relationships under

an integrated schema. This step refers to a process

of ontology (schema) matching. For example, the ele-

ments with labels Personal_Computers in A1 and PC in

A2 are the candidates to be merged, while the element

with label Digital_Cameras in A2 should be subsumed

by the element with label Photo_and_Cameras in A1.

Consider semantic matching as first motivated in

[10] and implemented within the S-Match system

[13]. Specifically, a schema-based solution is discussed,
e XML elements are shown in rectangles with rounded

efore the labels of tree nodes are the unique identifiers of

nts are expressed by arrows. By default, their relation is =;

Semantic Matching S 2563

S

where only the schema information is exploited. It is

assumed that all the data and conceptual models, e.g.,

classifications, database schemas, ontologies, can be

generally represented as graphs. This allows for the

statement and solution of a generic (semantic) match-

ing problem independently of specific conceptual or

data models, very much along the lines of what is

done, for example, in Cupid [15].

The semantic matching takes as input two graph

representations of ontologies and returns as output

logical relations, e.g., equivalence, subsumption (in-

stead of computing coefficients rating match quality

in the [0 1] range, as it is the case with other

approaches, e.g., [15,16]), which are supposed to hold

between the nodes in the graphs. The relations are

determined by (i) expressing the entities of the ontolo-

gies as logical formulas, and (ii) reducing the matching

problem to a logical validity problem. In particular,

the entities are translated into logical formulas which

explicitly express the concept descriptions as encoded

in the ontology structure and in external resources,

such as WordNet. (http://wordnet.princeton.edu/.)

This allows for a translation of the matching problem

into a logical validity problem, which can then be

efficiently resolved using (sound and complete) state

of the art satisfiability solvers.

Consider tree-like structures, e.g., classifications,

and XML schemas. Real-world ontologies are seldom

trees, however, there are (optimized) techniques, trans-

forming a graph representation of an ontology into a

tree representation, e.g., the graph-to-tree operator of

Protoplasm [3]. From now on it is assumed that a

graph-to-tree transformation can be done by using

existing systems, and therefore, the focus is on other

issues instead.

Consider Fig. 1. ‘‘C’’ is used to denote concepts of

labels and concepts at nodes. Also ‘‘C1’’ and ‘‘C 2’’ are

used to distinguish between concepts of labels and

concepts at nodes in tree 1 and tree 2, respectively.

Thus, in A1, C1Photo_and_Cameras and C13 are, respec-

tively, the concept of the label Photo_and_Cameras and

the concept at node 3. Finally, in order to simplify

the presentation whenever it is clear from the context,

it is assumed that the formula encoding the concept

of label is the label itself. Thus, for example in A2,

Cameras_and_Photo2 is a notational equivalent of

C2Cameras_and_Photo.

The algorithm inputs two ontologies and outputs a

set of mapping elements in four macro steps. The first
two steps represent the pre-processing phase. The third

and the fourth steps are the element level and structure

level matching, respectively. (Element level matching

techniques compute mapping elements by analyzing

entities in isolation, ignoring their relations with other

entities. Structure level techniques compute mapping

elements by analyzing how entities are related

together.)

Step 1. For all labels L in the two trees, compute

concepts of labels. The labels at nodes are viewed as

concise descriptions of the data that is stored under the

nodes. The meaning of a label at a node is computed by

taking as input a label, analyzing its real-world seman-

tics, and returning as output a concept of the label, CL.

Thus, for example, CCameras_and_Photo indicates a

shift from the natural language ambiguous label Cam-

eras_and_Photo to the concept CCameras_and_Photo,

which codifies explicitly its intended meaning, namely

the data which is about cameras and photo. Technical-

ly, concepts of labels are codified as propositional logi-

cal formulas [9]. First, labels are chuncked into tokens,

e.g., Photo_and_Cameras ! hphoto,and,camerasi;
and then, lemmas are extracted from the tokens, e.g.,

cameras ! camera. Atomic formulas are WordNet

senses of lemmas obtained from single words (e.g.,

cameras) or multiwords (e.g., digital cameras). Com-

plex formulas are built by combining atomic formulas

using the connectives of set theory. For example,

C2Cameras_and_Photo = hCameras,sensesWN#2i t hPhoto,
sensesWN#1i, where sensesWN#2 is taken to be disjunc-

tion of the two senses that WordNet attaches to Cam-

eras, and similarly for Photo. The natural language

conjunction ‘‘and’’ has been translated into the logical

disjunction ‘‘t.’’
Step 2. For all nodes N in the two trees, compute

concepts at nodes. During this step the meaning of the

positions that the labels at nodes have in a tree is

analyzed. By doing this, concepts of labels are extended

to concepts at nodes, CN. This is required to capture the

knowledge residing in the structure of a tree, namely

the context in which the given concept at label occurs.

For example, in A2, by writing C6 it is meant the

concept describing all the data instances of the elec-

tronic photography products which are digital cam-

eras. Technically, concepts of nodes are written in the

same propositional logical language as concepts of

labels. XML schemas are hierarchical structures where

the path from the root to a node uniquely identifies

that node (and also its meaning). Thus, following an

2564S Semantic Matching
access criterion semantics, the logical formula for a

concept at node is defined as a conjunction of

concepts of labels located in the path from the given

node to the root. For example, C26 = Electronics2 u
Cameras_and_Photo2 u Digital_Cameras2.

Step 3. For all pairs of labels in the two trees, compute

relations among atomic concepts of labels. Relations

between concepts of labels are computed with the

help of a library of element level semantic matchers.

These matchers take as input two atomic concepts

of labels and produce as output a semantic relation

between them. Some of them are re-implementations

of the well-known matchers used, e.g., in Cupid.

The most important difference is that these matchers

return a semantic relation (e.g., =, w, v), rather than

an affinity level in the [0 1] range, although sometimes

using customizable thresholds.

The element level semantic matchers are briefly

summarized in Table 1. The first column contains the

names of the matchers. The second column lists the

order in which they are executed. The third column

introduces the matcher’s approximation level. The

relations produced by a matcher with the first approx-

imation level are always correct. For example, name w
brand returned by the WordNet matcher. In fact,

according to WordNet name is a hypernym (superor-

dinate word) of brand. In WordNet name has 15 senses

and brand has 9 senses. Some sense filtering techniques

are used to discard the irrelevant senses for the given

context, see [13] for details. Notice that matchers are

executed following the order of increasing approxima-

tion. The fourth column reports the matcher’s type,

while the fifth column describes the matcher’s input.

As from Table 1, there are two main categories of

matchers. String-based matchers have two labels as

input. These compute only equivalence relations (e.g.,

equivalence holds if the weighted distance between the

input strings is lower than a threshold). Sense-based
Semantic Matching. Table 1. Element level semantic match

Matcher name Execution order Approximation level

WordNet 1 1

Prefix 2 2

Suffix 3 2

Edit distance 4 2

Ngram 5 2
matchers have two WordNet senses as input. The

WordNetmatcher computes equivalence, more/less gen-

eral, and disjointness relations. The result of step 3 is

a matrix of the relations holding between atomic con-

cepts of labels. A part of this matrix for the example of

Fig. 1 is shown in Table 2.

Step 4. For all pairs of nodes in the two trees, compute

relations among concepts at nodes. During this step,

initially the tree matching problem is reformulated

into a set of node matching problems (one problem

for each pair of nodes). Then, each node matching

problem is translated into a propositional validity

problem. Semantic relations are translated into propo-

sitional connectives in an obvious way, namely: equiv-

alence (=) into equivalence (↔), more general (w) and

less general (v) into implication (← and !, respec-

tively) and disjointness (⊥) into negation (¬) of the

conjunction (∧). The criterion for determining wheth-

er a relation holds between concepts at nodes is the fact

that it is entailed by the premises. Thus, it is necessary

to prove that the following formula:

axioms ! relðcontext 1; context 2Þ ð1Þ

is valid, namely that it is true for all the truth assign-

ments of all the propositional variables occurring in it.

context1 is the concept at node under consideration in

tree 1, while context2 is the concept at node under

consideration in tree 2. rel (within =, v, w, ⊥) is the

semantic relation (suitably translated into a proposi-

tional connective) to be proved to hold between con-

text1 and context2. The axioms part is the conjunction

of all the relations (suitably translated) between atomic

concepts of labels mentioned in context1 and context2.

The validity of formula (1) is checked by proving that

its negation is unsatisfiable. Specifically, it is done,

depending on a matching task, either by using ad

hoc reasoning techniques or standard propositional

satisfiability solvers.
ers

Matcher type Schema info

Sense-based WordNet senses

String-based Labels

String-based Labels

String-based Labels

String-based Labels

Semantic Matching S 2565
From the example in Fig. 1, trying to prove that

C26 is less general than C13, requires constructing

formula (2), which turns out to be unsatisfiable, and

therefore, the less general relation holds.

ððElectronics1 $ Electronics2Þ ^ ðPhoto1 $ Photo2Þ^
ðCameras1 $ Cameras2Þ^
ðDigital Cameras2 ! Cameras1ÞÞ ^ ðElectronics2^
ðCameras2 _ Photo2Þ ^ Digital Cameras2Þ^
:ðElectronics1 ^ ðPhoto1 _ Cameras1Þ ð2Þ

A part of this matrix for the example of Fig. 1 is

shown in Table 3.

Finally, notice that the algorithm returns N1 � N2

correspondences, therefore the cardinality of mapping

elements is one-to-many. Also, these, if necessary, can

be decomposed straightforwardly into mapping ele-

ments with the one-to-one cardinality.

Key Applications
Semantic matching is an important operation in tradi-

tional metadata intensive applications, such as ontology

integration, schema integration, or data warehouses.

Typically, these applications are characterized by het-

erogeneous structural models that are analyzed and

matched either manually or semi-automatically at de-

sign time. In such applications matching is a prerequi-

site of running the actual system. A line of applications

that can be characterized by their dynamics, e.g., agent

communication, peer-to-peer information sharing, web

service composition, is emerging. Such applications,

contrary to traditional ones, require (ultimately) a run
Semantic Matching. Table 2. The matrix of semantic

relations holding between atomic concepts of labels

Cameras2 Photo2 Digital_Cameras2

Photo1 idk = idk

Cameras1 = idk w

Semantic Matching. Table 3. The matrix of semantic

relations holding between concepts at nodes (the

matching result)

C21 C22 C23 C24 C25 C26

C13 v idk = idk w w
time matching operation and take advantage of more

explicit conceptual models [18].
Future Directions
Future work includes development of a fully-fledged

iterative and interactive semantic matching system. It

will improve the quality of the mapping elements by

iterating and by focusing user’s attention on the critical

points where his/her input is maximally useful. Initial

steps have already been done in this direction by dis-

covering automatically missing background knowledge

in ontology matching tasks [11]. Also, an evaluation

methodology is needed, capable of estimating quality of

the mapping elements between ontologies with

hundreds and thousands of nodes. Initial steps have

already been done as well; see [1,12] for details. Here,

the key issue is that in these cases, specifying reference

mapping elements manually is neither desirable

nor feasible task, thus a semi-automatic approach

is needed.
S

Experimental Results
In general, for the semantic matching approach, there

is an accompanying experimental evaluation in the

corresponding references. Also, there is the Ontology

Alignment Evaluation Initiative (OAEI), (http://oaei.

ontologymatching.org/.) which is a coordinated inter-

national initiative that organizes the evaluation of the

increasing number of ontology matching systems. The

main goal of the Ontology Alignment Evaluation Ini-

tiative is to be able to compare systems and algorithms

on the same basis and to allow anyone for drawing

conclusions about the best matching strategies. From

such evaluations, matching system developers can

learn and improve their systems.
Data Sets
A large collection of datasets commonly used for

experiments can be found at:http://oaei.ontology-

matching.org/.
URL to Code
The OntologyMatching. org contains links to a num-

ber of ontology matching projects which provide code

for their implementations of the matching operation:

http://www.ontologymatching.org/.

2566S Semantic Modeling and Knowledge Representation for Multimedia Data
Cross-references
▶Data Integration

▶Data models (including semantic data models)

▶Mobile and ubiquitous data management
Recommended Reading
1. Avesani P., Giunchiglia F., and Yatskevich M. A large scale tax-

onomy mapping evaluation. In Proc. Fourth Int. Semantic Web

Conf., 2005, pp. 67–81.

2. Batini C., Lenzerini M., and Navathe S. A comparative analysis

of methodologies for database schema integration. ACM Com-

put. Surv., 18(4):323–364, 1986.

3. Bernstein P., Melnik S., Petropoulos M., and Quix C. Industrial-

strength schema matching. ACM SIGMOD Rec., 33(4):38–43,

2004.

4. Bouquet P., Serafini L., and Zanobini S. Semantic coordination: a

new approach and an application. In Proc. Second Int. Semantic

Web Conf., 2003, pp. 130–145.

5. Doan A., Madhavan J., Dhamankar R., Domingos P., and

Halevy A.Y. Learning to match ontologies on the Semantic

Web. VLDB J., 12(4):303–319, 2003.

6. Euzenat J. and Shvaiko P. Ontology Matching. Springer, 2007.

7. Gal A.Why is schemamatching tough and what can we do about

it? ACM SIGMOD Rec., 35(4):2–5, 2006.

8. Gal A., Anaby-Tavor A., Trombetta A., and Montesi D. A frame-

work for modeling and evaluating automatic semantic reconcil-

iation. VLDB J., 14(1):50–67, 2005.

9. Giunchiglia F., Marchese M., and Zaihrayeu I. Encoding

classifications into lightweight ontologies. J. Data Semantics,

8:57–81, 2007.

10. Giunchiglia F. and Shvaiko P. Semantic Matching. Knowl. Eng.

Rev., 18(3):265–280, 2003.

11. Giunchiglia F., Shvaiko P., and Yatskevich M. Discovering

missing background knowledge in ontology matching. In

Proc. 17th European Conf. on Artificial Intelligence, 2006,

pp. 382–386.

12. Giunchiglia F., Yatskevich M., Avesani P., and Shvaiko P. A large

scale dataset for the evaluation of ontology matching systems.

Knowl. Eng. Rev., 23:1–22, 2008.

13. Giunchiglia F., Yatskevich M., and Shvaiko P. Semantic

matching: algorithms and implementation. J. Data Semantics,

9:1–38, 2007.

14. Larson J., Navathe S., and Elmasri R. A theory of attributed

equivalence in databases with application to schema integration.

IEEE Trans. Software Eng., 15(4):449–463, 1989.

15. Madhavan J., Bernstein P., and Rahm E. Generic schema match-

ing with Cupid. In Proc. 27th Int. Conf. on Very Large Data

Bases, 2001, pp. 48–58.

16. Noy N. and Musen M. The PROMPT suite: interactive tools for

ontology merging and mapping. Int. J. Hum. Comput. Stud., 59

(6):983–1024, 2003.

17. Rahm E. and Bernstein P. A survey of approaches to automatic

schema matching. VLDB J., 10(4):334–350, 2001.

18. Shvaiko P. and Euzenat J. A survey of schema-based matching

approaches. J. Data Semantics, 4:146–171, 2005.
19. Spaccapietra S. and Parent C. Conflicts and correspondence

assertions in interoperable databases. ACM SIGMOD Rec.,

20(4):49–54, 1991.
Semantic Modeling and Knowledge
Representation for Multimedia Data

EDWARD Y. CHANG

Google Research, Mountain View, CA, USA

Synonyms
Multimedia information retrieval; Image/Video/Music

search

Definition
Semantic modeling and knowledge representation

is essential to a multimedia information retrieval sys-

tem for supporting effective data organization and

search. Semantic modeling and knowledge represen-

tation for multimedia data (e.g., imagery, video, and

music) consists of three steps: feature extraction,

semantic labeling, and features-to-semantics mapping.

Feature extraction obtains perceptual characteristics

such as color, shape, texture, salient-object, and mo-

tion features from multimedia data; semantic labeling

associates multimedia data with cognitive concepts;

and features-to-semantics mapping constructs corre-

spondence between perceptual features and cognitive

concepts. Analogically to data representation for text

documents, improving semantic modeling and knowl-

edge representation for multimedia data leads to en-

hanced data organization and query performance.

Historical Background
The principal design goal of a multimedia information

retrieval system is to return data (images, video clips,

or music) that accurately match users’ queries (for

example, a search for pictures of a deer). To achieve

this design goal, the system must first comprehend a

user’s query concept thoroughly, and then find data in

the low-level input space (formed by a set of perceptual

features) that match the concept accurately. For tradi-

tional relational databases, a query concept is explicitly

specified by a user using SQL. For multimedia infor-

mation retrieval, however, articulating a query concept

(e.g., a deer) using low level features (e.g., color, shape,

texture, and salient-object features) is infeasible.

Semantic Modeling and Knowledge Representation for Multimedia Data S 2567

S

Semantic modeling and knowledge representation thus

plays a key role in query-concept formulation and

query processing for a multimedia query.

The QBIC system [8] introduced in 1995 is the first

query-by-example system. QBIC uses color histograms

to represent an image/video clip; two images/clips

containing similar color histograms are considered to

be similar. Such knowledge representation for multime-

dia data is clearly inadequate. In the subsequent 5 years,

many researchers in the signal processing and computer

vision communities proposed techniques to extract

perceptual features, such as textures, shapes, and seg-

ments of objects, for improve image representation

(see [13] for a survey). At the same time, the query-

by-example paradigm was applied also to music

retrieval.

Query by just one example was soon discovered

insufficient to represent a query concept. Relevance

feedback, a query refinement technique developed by

the information retrieval community in the 1970’s

[12], was then borrowed to provide additional exam-

ples to augment the shortcoming of knowledge under-

representation. In 2001, the work of [14] showed that

relevance feedback could be much improved by using

the kernel methods [1] with active learning. The kernel

methods project data from their input space formed by

perceptual features to a much higher (possibly infinite)

dimensional space, where a linear classifier can be

learned to separate desired data (with respect to the

query) from the others. The kernel methods enjoy both

rich semantic modeling (the linear class boundary in

a high-dimensional space represents a non-linear

boundary in the input space) and computational effi-

ciency (computation is performed in the projected,

linear space). Active learning is applied to select the

most ambiguous and diversified training instances

along the class boundary to query the user for labels.

Once these training instances have been labeled, maxi-

mal information is gained for refining the class bound-

ary. This process of active learning continues until the

search result is satisfactory. In order to further improve

the effectiveness of query-concept learning through

active learning, keywords (tagged by users [9] or

obtained from query logs [10]) were subsequently

integrated into the semantic modeling and knowledge

representation framework.

Over a decade of research since QBIC, though pro-

ductive, has not yielded a large-scale real-world
deployment of multimedia information retrieval sys-

tem. The key reason is that semantic modeling and

knowledge representation for multimedia data is intrin-

sically inter-disciplinary. Its success demands

collaborative effort from researchers of signal processing,

computer vision, machine learning, and databases. Re-

cent works in addressing issues of perceptual similarity

[11] and scalability in statistical learning [5] are inter-

disciplinary approaches that hold promises to lead to a

Web-scale deployment. The survey conducted by [6]

provides a complementary view on the historical

background.

Foundations

Semantic Modeling

There are two realistic ways for users to specify a

multimedia query semantic: query by keywords and

query by examples. In order to support query by key-

words, semantic annotation provides data with seman-

tic labels (for example, landscape, sunset, animals, and

so forth). Several researchers (e.g., [2]) have proposed

semi-automatic annotation methods to propagate key-

words from a small set of annotated images to the

other images. Although semantic annotation can pro-

vide some relevant query results, annotation is often

subjective and narrowly construed. When it is, query

performance may be compromised. To thoroughly un-

derstand a query concept, with all of its semantics

and subjectivity, a system must obtain the target con-

cept from the user directly via query-concept learning.

Semantic annotation can assist, but not replace, query-

concept learning.

Both semantic annotation and query-concept

learning require mapping features to semantics. This

semantic modeling consists of three steps. First, a set

of perceptual features (e.g., color, texture and shape) is

extracted from each training instance. Second, each

training feature-vector xi is assigned semantic labels

gi. Third, a classifier f(.) is trained by a supervised

learning (or semi-supervised learning) algorithm,

based on the labeled instances, to predict the class

labels of a query instance xq. Given a query instance

xq represented by its low-level features, the semantic

labels gq of xq can be predicted by gq = f(xq). (About

how multimedia data and knowledge can be repre-

sented is discussed in the Knowledge Representation

section.)

2568S Semantic Modeling and Knowledge Representation for Multimedia Data
At first it might seem that traditional supervised

learning methods could be directly applied to perform

semantic annotation and query-concept learning. Unfor-

tunately, traditional learning algorithms are not ade-

quate to deal with the technical challenges posed by

these two tasks. To illustrate, let D denote the number

of low-level features. Let N denote the number of

training instances, Nþ the number of positive training

instances, and N� the number of negative training

instances (N = Nþ + N�). And let U denote the

number of unlabeled instances in the repository.

Three major technical challenges arise:

1. Scarcity of training data. The features-to-semantics

mapping problem often comes up against the

D > N challenge. For instance, in the query-con-

cept learning scenario, the number of low-level

features that characterize an image (D) is greater

than the number of training instances that a user

can provide (N) via her query history or relevance

feedback. The theories underlying ‘‘classical’’ data

analysis are based on the assumptions that D < N,

and N approaches infinity. But when D > N, the
Semantic Modeling and Knowledge Representation for Mu
basic methodology which was used in the classical

situation is not similarly applicable [7].

2. Imbalance of training classes. The target class in the

training pool is typically outnumbered by the non-

target classes (N� > > Nþ). When the prior of the

non-target class dominates the target class, a class

prediction favors the non-target class. This skew

can substantially reduce recall in search perfor-

mance [16].

3. Scalability. A typical value of D can be in the order

of hundreds, and U can be millions or even billions.

Scalability challenges arise in at least two areas.

First, searching data among U instances in a high-

dimensional space is inefficient [3]. Second, when

U > > N, training data may under-represent the

knowledge required to model semantics.

Effective techniques for addressing the above chal-

lenges are inter-disciplinary. The signal processing and

computer vision communities devise algorithms to ex-

tract useful features to represent multimedia data. The

machine learning community develops models that

can map features to semantics both effectively and
ltimedia Data. Figure 1. Cat query initial screen.

Semantic Modeling and Knowledge Representation for Multimedia Data S 2569
efficiently. The database community improves

indexing, metadata fusion, and query processing tech-

niques to deal with scalability issues. All these endea-

vors may consult experts in neural processing or

cognitive science (e.g., [15]) to develop representations

and models that fit human perception.

Knowledge Representation

As mentioned, a piece of multimedia data can be

represented at two levels: low-level features and high-

level semantics/concepts. A set of low-level features

consists of perceptual features, and these features can

be put in the form of a vector or a bag. High-level

concepts are organized into an ontology structure,

depicting relationship between concepts. In between,

descriptors can be formulated either explicitly or im-

plicitly to provide building blocks for low-level

to high-level mapping and reasoning. For instance, a

high-level ski concept can be formed by descriptors of

snow, ski equipment, and people. Each of these descrip-

tors is in turn composed of color, texture, shape, or

salient-point features. Texts when available can be used

to augment low-level perceptual features (e.g., using

word ‘‘white’’ to depict the color of the mountain), to
Semantic Modeling and Knowledge Representation for Mu
label descriptors (e.g., snow), or to directly annotate

high-level semantics/concepts (e.g., ski). Statistical

methods such as SVMs and Latent Semantic Analysis

techniques (e.g., LDA [4]) can be employed to perform

mapping between the three levels.

Efforts of standardizing knowledge representation

have been embarked on for over a decade by academia

and industry. For instance, digital cameras save JPEG

files with EXIF (Exchangeable Image File) data. EXIF

records camera settings, scene information, and time

(and location where a photo is taken in the near future).

DOLCE devises descriptive ontology for linguistic and

cognitive engineering. MPEG-7 proposes different

description granularity to depict multimedia data. Stan-

dard knowledge representation is essential for support-

ing metadata exchange and system interoperability.

Key Applications
The launches of photo and video sharing sites such

as Flickr, Google Photos, and YouTube between

2002 and 2008 renewed the interest on multimedia

data management. The following applications are in

high demand to manage large-scale multimedia data

repositories:
ltimedia Data. Figure 2. Cat query after iteration #2.

S

2570S Semantic Modeling and Knowledge Representation for Multimedia Data
1. Content-based Video, Image, Music Search Engines

2. Copy Right Infringement Detection

3. Multimedia Digital Libraries

4. Semi-automatic Photo/Video Annotation/

Classification

An application scenario is used to illustrate how

aforementioned science fundamentals can improve

multimedia information retrieval. Figures 1–3 show

an example query using a Perception-based Image Re-

trieval (PBIR) prototype developed at UC Santa Bar-

bara. The figures demonstrate how a query concept is

learned in an iterative process by the PBIR search

engine to improve search results. The user interface

shows two frames. The frame on the left-hand side is

the feedback frame, on which the user marks images

relevant to his or her query concept. On the right-hand

side, the search engine returns what it interprets as

matching this far from the image database.

Most images were annotated by users. To query

‘‘cat,’’ one first enters the keyword cat in the query

box to get the first screen of results in Fig. 1. The

right-side frame shows a couple of images containing
Semantic Modeling and Knowledge Representation for Mu
domestic cats, but several images containing tigers or

lions. This is because many tiger/lion images were anno-

tated with ‘‘wild cat’’ or ‘‘cat.’’ To disambiguate the con-

cept, the user clicks on a couple of domestic cat images

on the feedback frame (left side, in gray/green borders).

The search engine refines the class boundary accordingly,

and then returns the second screen in Fig. 2. In this

figure, the images in the result frame (right side) have

been much improved. All returned images contain a

domestic cat or two. After performing another couple

of rounds of feedback to make some further refine-

ments, more satisfactory results are shown in Fig. 3.

This example illustrates three critical points. First,

keywords alone cannot retrieve images effectively be-

cause words may have varied meanings or senses. This

is called the word-aliasing problem. Second, the num-

ber of labeled instances that can be collected from a

user is limited. Through three feedback iterations, it is

possible to gather just 16 � 3 ¼ 48 training instances,

whereas the feature dimension of this dataset is more

than one hundred. Since most users would not be

willing to give more than three iterations of feedback,
ltimedia Data. Figure 3. Cat query after iteration #3.

Semantic Modeling for Geographic Information Systems S 2571
the system encounters the problem of scarcity of train-

ing data. Third, the negatives outnumber the relevant

or positive instances being clicked on. This is known as

the problem of imbalanced training data. Besides, there

are a large number of images in the repository. To

achieve real-time performance in query refinement

and in search, efficiently indexing schemes are needed

to reduce search space.
Future Directions
Major advancements in three areas are necessary before

large-scale multimedia systems can be realistic: accu-

rate and efficient object segmentation, scalable statistical

learning, and high-dimensional indexing. For details

please consult the section of Foundations.
Cross-references
▶Nearest Neighbor Query in Spatio-temporal

Databases
S

Recommended Reading
1. Aizerman M.A., Braverman E.M., and Rozonoer L.I. Theoretical

foundations of the potential function method in pattern

recognition learning. Automation and Remote Control,

25:821–837, 1964.

2. Barnard K. and Forsyth D. Learning the semantics of words

and pictures. Int. Conf. on Computer Vision, 2:408–415, 2000.

3. Beyer K., Goldstein J., Ramakrishnan R., and Shaft U. When

is Nearest Neighbor meaningful. In Proc. 7th Int. Conf. on

Database Theory, 1999, pp. 217–235.

4. Blei D.M., Ng A., and Jordan M. Latent Dirichlet allocation.

J. Machine Learning Res. 3, 2003.

5. Chang E.Y. et al. Parallelizing support vector machines on

distributed computers. In Proc. Advances in Neural Inf. Proc.

Syst. 20, Proc. 21st Annual Conf. on Neural Inf. Proc. Syst., 2007.

6. Datta R., Joshi D., Li J., and Wang J.Z. Image retrieval: ideas,

influences, and trends of the new age. ACM Comput. Surv.,

40(65), 2008.

7. Donoho D.L. Aide-Memoire. High-Dimensional Data Analysis:

The Curses and Blessings of Dimensionality (American Math.

Society Lecture). In Math Challenges of the 21st Century

Conference, 2000.

8. Flickner M. et al. Query by Image and Video Content: QBIC

system. IEEE Comput., (28), 1995.

9. Goh K., Chang E.Y., and Lai W.-C. Concept-dependent

multimodal active learning for image retrieval. In Proc. 12th

ACM Int. Conf. on Multimedia, 2004, pp. 564–571.

10. Hoi C.-H. and Lyu M.R. A novel log-based relevance feedback

technique in content-based image retrieval. In Proc. 12th ACM

Int. Conf. on Multimedia, 2004, pp. 24–31.

11. Li B. and Chang E.Y. Discovery of a perceptual distance

function for measuring image similarity. ACM Multimedia
Syst. J. (Special Issue on Content-Based Image Retrieval),

8(6):512–522, 2003.

12. Rocchio J.J. Relevance feedback in information retrieval. In

The SMART Retrieval System – Experiments in Automatic Doc-

ument Processing, G. Salton (ed.). Prentice-Hall, Chapter 14,

1971, pp. 313–323.

13. Rui Y., Huang T.S., and Chang S.-F. Image retrieval: current

techniques, promising directions and open issues. J. Visual

Commn. Image Representation, 1999.

14. Tong S. and Chang E.Y. Support vector machine active

learning for image retrieval. In Proc. 9th ACM Int. Conf. on

Multimedia, 2001, pp. 107–118.

15. Tversky A. Features of similarity. Psychol. Rev., 84:327–352,

1997.

16. Wu G. and Chang E.Y. KBA: Kernel Boundary Alignment

considering imbalanced data distribution. IEEE Trans. Knowl.

Data Eng., 17(6):786–795, 2005.
Semantic Modeling for Geographic
Information Systems

CHRISTINE PARENT
1, STEFANO SPACCAPIETRA2,

ESTEBAN ZIMÁNYI
3

1University of Lausanne, Lausanne, Switzerland
2EPFL, Lausanne, Switzerland
3Free University of Brussels, Brussels, Belgium

Synonyms
Conceptual modeling; Geographical databases; GIS;

Conceptual modeling for Geographic Information

System; Conceptual modeling for Spatio-temporal

applications
Definition
Semantic modeling denotes the activity of designing

and describing the structure of a data set using a

semantic data model. Semantic data models (also

known as conceptual data models) are data models

whose aim is to provide designers with modeling con-

structs and rules that are well suited for representing

the user’s perception of data in the application world,

abstracting from implementation concerns. They

contrast with logical and physical data models, whose

aim is to organize data in a way that is easily manage-

able by a computer. The most popular semantic data

models are UML, a de facto standard, and ER (Entity-

Relationship), still widely used inmany designmethod-

ologies and favored by the academic community.

2572S Semantic Modeling for Geographic Information Systems
Semantic models were first created in the database

community in the 1980s. They started to be developed

for Geographical Information Systems (GIS) in the

1990s. Their aim is the same as for traditional data-

bases, to free GIS users from the specificities of system-

oriented data models and proprietary file formats (e.g.,

spaghetti and topological data models, triangulated

irregular network (TIN) models, shape files, and raster

models). While a number of semantic data models

for geographic data have been developed, rapidly the

focus has shifted from supporting spatial data to sup-

porting data with both spatial and temporal features,

leading to the development of several spatiotemporal

semantic data models. Despite the fact that current

GIS and Database Management Systems (DBMS) pro-

vide poor support for temporal features, semantic

modeling advocates that space and time aspects are

intrinsically correlated in the application world.

Historical Background
Most people consider the 1976 paper by Peter Chen [5],

defining the basic ideas of Entity-Relationshipmodeling,

as the foundational milestone for semantic model-

ing. The paper had indeed an enormous effect on the

database design community, leading to considerable

developments to further extend the semantic capabilities

of the approach. It took more than 15 years to see the

same idea spreading in the academic GIS community

with, for example, the 1993 MODUL-R formalism [4],

which extended with spatial data the ER approach used

in the leading French design methodology, Merise. Fur-

ther work on MODUL-R eventually resulted in the Per-

ceptory UML-based approach and tool [3]. Semantic

models for GIS bloomed in the 1990s, basically splitting

into approaches stemming from the object-oriented

paradigm (e.g., [6,16]) and approaches following the

ER or the UML paradigm (e.g., MADS [10], STER

[15], GeoUML [2]). A survey of many spatial data mod-

els may be found in [12]. The industrial and application

world has also developed GIS data modeling specifi-

cations to help promoting interoperability between

different systems and different applications. The Open

Geospatial Consortium (OGC) and the International

Standards Organization (ISO) have produced speci-

fications supporting conceptual modeling for data

with spatial (and some temporal) features (http://www.

opengeospatial.org/).

Thanks to the development of ubiquitous and

mobile computing on the one hand, and of sensors
and GPS technologies on the other hand, large-scale

capture of the evolving position of mobile objects

has become technically and economically feasible.

This opened new perspectives for a large number of

applications (e.g., from transportation and logistics

to ecology and anthropology) built on the knowledge

of objects’ movements. Typical examples of moving

objects include cars, persons, and planes equipped

with a GPS device, animals bearing a transmitter

whose signals are captured by satellites, and parcels

tagged with RFIDs. This fostered the interest in spatio-

temporal models, rather than purely spatial or purely

temporal models at the logical and semantic levels.

Güting’s approach [8] defined a set of data types and

associated operators for moving objects (points and

surfaces), which allows one to record, for example, the

changing geometry of pollution clouds and flooding

waters. At the semantic level, examples of spatiotem-

poral models include MADS [10], Perceptory [3],

STUML [15], STER [15], and ST USM [9]. Extending

the limited capabilities of commercial data manage-

ment systems, some research prototype systems [1,11]

do provide nowadays support for storing and querying

the position of a moving object all along the lifespan

of the object. The latest developments in this domain

are the management of trajectories, which adds a

semantic interpretation to the movement of objects

of kind moving point [13]. Trajectory management is

important in many application domains, e.g., for

addressing traffic management issues, building social

models of people’s movements within a city, and opti-

mizing the localization of resources (e.g., communica-

tion antennas, shops, advertisement panels) that have

to be available to moving customers.

Foundations

Requirements for Semantic Modeling of Spatial Data

Semantic modeling of spatial data requires concepts for

the description of both the discrete and the continuous

view of space, in a seamlessly integrated way. The dis-

crete view (or object-based view) is the one that sees

space as filled by objects with a defined location and

shape. Parts of space where no object is located are

considered as empty. This view typically serves appli-

cation requests asking where certain objects are locat-

ed, or which objects are located in a given surface. On

the other hand, the continuous view (or field-based

view) is the one that sees space as a continuum, holding

Semantic Modeling for Geographic Information Systems S 2573

S

properties whose values depend on the location in

space but not on any specific object (i.e., the value for

the property is given by a function whose domain is

a spatial extent). Typical examples where this view

applies are the recording of continuous phenomena

such as temperature, altitude, soil coverage, etc. Both

views are important for applications, which may use

one or the other, or both simultaneously.

Assuming the discrete view, any traditional data-

base schema can be enriched to become a spatiotem-

poral database schema by including the description

of the spatial and/or temporal properties of the real-

world phenomena represented in the schema. Con-

sider, for instance, a Building object type, with proper-

ties name, address, usage, architect, and owner. Adding

positional information on the geographic location

of the building (e.g., its coordinates in some spatial

reference system) turns Building into a spatial object

type. If one adds information characterizing the exis-

tence of the building in time (e.g., when construction

was first decided, when construction started, when it

was completed, when it was abandoned, and when

it was demolished), Building becomes a temporal

object type. Space and time are independent dimen-

sions. Some data may have spatial features, some may

have temporal features, some may have both, and some

may have none.

Objects, be they spatial or not, can have spatial

properties, i.e., properties whose value domain is com-

posed of spatial values rather than alphanumeric

values. Spatial values conform to spatial data types

(see the entry in this encyclopedia), e.g., point, line,

polyline, surface. For example, a Building object type

can have a property nearestFireStation whose value

for each building is the geographic location of the

nearest fire station, e.g., a spatial value composed of

two spatial coordinates defining a point.

Most basic types for space are Point, Line, and

Surface (and volume for 3D databases). However,

applications may require more than simple spatial

data types. Some spatial objects have extents (the

term ‘‘extent’’ denotes the set of points that an object

occupies in space) that are made up of a set of elemen-

tary extents. For example, an archipelago is a set of

surfaces; many coastal countries do have islands too;

and facility networks may be represented by connected

sets of lines. Moreover, some spatial objects have com-

plex extents made up of a heterogeneous set of spatial

values. For example, an avalanche zone is described by
a surface and a set of oriented lines describing, respec-

tively, its maximal extent and the usual avalanche

paths. Similarly, a river may be described by lines

when its bed is narrow and by surfaces when it is

broad. Therefore, the set of spatial data types should

include types for homogeneous or heterogeneous col-

lections, like PointSet, LineSet, SurfaceSet, or Spatial-

HeterogeneousSet. The whole set of spatial data types

is organized into a generalization hierarchy with gener-

ic data types, in order to support spatial object types

whose extent may be of different types depending on

the instance. For example, the object type City may

contain larges cities represented by a surface and small

ones represented by a point. The spatial extent of City

could then be described by a generic spatial data type

that would contain points and surfaces. The Open

Geospatial Consortium (OGC) has defined such a

hierarchy of spatial data types.

Geographical applications often need to enforce spa-

tial or temporal constraints between spatial or temporal

features. For example, harbors should be located along

water bodies and bridges on roads or railways. Therefore,

a spatial data model should support constructs allowing

designers to specify constraints that will be automatically

enforced by the system. A first kind of construct is the

spatial (or temporal) relationship type. They link two

spatial (and/or temporal) object types and bear a spatial

(and/or temporal) condition that the linked objects

must obey. Typically, conditions express topological rela-

tionships (e.g., inclusion, disjointedness, overlapping),

metric relationships (e.g., based on distance), orienta-

tion relationships (e.g., North of), or the temporal pre-

dicates defined by Allen (e.g., during). Applications may

need two different kinds of these spatial and temporal

relationships:

 Spatially/temporally constraining relationship

types: Users can link two spatial objects by a spa-

tially constraining relationship only if their spatial/

temporal extents abide by the condition.

 Derived spatial/temporal relationship types: The

system automatically creates the instances of the

relationship for all couples of objects that satisfy

the condition.

Moving and deforming objects may also be linked by

spatial relationships. For instance, an aeronautic da-

tabase may need recording the trajectories of planes

when they cross storms, the two being moving

objects. In these cases, the condition of the

2574S Semantic Modeling for Geographic Information Systems
relationship type is spatiotemporal: It bears on the

location and the time.

Applications may also need constraints between

composite and component elements. For example, a

spatial aggregation relationship may enforce that the

extent of the composite object is made up by the union

of the extents of the component objects, as in a spatial

aggregation linking the spatial object types Country

and District. Another example is restricting the spatial

(or temporal) values of attributes to be within the

spatial (or temporal) extent of the object to which

they belong. For example, the values of the spatial

attribute major Cities (a multivalued attribute of type

Point) of the object type Country should be within the

spatial extent of the country. This kind of constraint

may be frequent, but it is not always the case. Refer

for example to the Building spatial object type with

the spatial attribute nearestFireStation. Therefore, the

data model should not automatically and implicitly

enforce these constraints. It should provide designers

with a means for explicitly specifying which constraints

should be enforced.

The modeling of the continuous view of space

requires another construct for properties that are defined

on a spatial extent and whose value depends on the exact

location (point) of the spatial extent. The spatial extent

may be the whole space covered by the database or a

specific extent. For example, the water quality of a river

exists only in the spatial extent of the river course. On

the other hand, temperature, soil, and land coverage

are information that exist and may be measured (if

relevant) at any point of the geographical space covered

by the database. Field-based models are well suited for

applications that perceive the real world exclusively

through varying properties. For the many applications

that use both the discrete and continuous views, several

spatial data models provide a predominant discrete view

(i.e., based on spatial objects) in addition to a special

construct for representing varying properties, the space-

varying attribute, which is a function from a spatial

extent to a range of values. Any object and relationship,

be it spatial or not, should be able to bear space-varying

attributes. Moreover, the range of space-varying attri-

butes may be simple (e.g., elevation) or complex (e.g.,

weather composed of temperature, pressure, and rain-

fall), monovalued (e.g., altitude) or multivalued (e.g.,

insects in forests, assuming this information is captured

using a space unit large enough to be the home of

several kinds of insect, e.g., using cells of 1 m2).
Another important requirement for space model-

ing is the ability to describe data at different granu-

larity or resolution, for example to be able to support

applications working with maps at different scales.

Finally, an essential requirement is the ability

to model spatial features of a phenomenon irrespec-

tively of the fact that the phenomenon has been mod-

eled as an object, a relationship, or an attribute. This

orthogonality of the space modeling dimension with

the data structure modeling dimension is what avoids

making the designs in the two dimensions dependent

on each other.

Survey of Current Semantic Modeling Approaches

Semantic models are typically developed in the

academic world. For example, MADS [10] has been

purposely developed to match all the requirements

discussed in the previous section. MADS belongs to

the extended ER family of models. Its distinguishing

feature is the full support for multiple perceptions

and multiple representations of the same real-world

objects. Another distinguishing feature of MADS is

its support of explicit relationships equipped with

topological and synchronization constraints. Multi-

ple perceptions and representations are also supported,

to a more limited extent, by Perceptory [3], an UML

extension targeted to support spatiotemporal analysis

in a data-warehousing framework. STUML [15] and

GeoUML [2] are other UML-based approaches, al-

though without multi-perception support. Other spa-

tiotemporal approaches include ST USM [9], very

similar to MADS but emphasizing support of multi-

granularity, and STER [15], another extended ER for-

malism which supports both valid and transaction

time but, compared to MADS, is weaker in data struc-

tures. Most of these academic proposals have been

implemented in prototypes, but, with the exception of

Perceptory, they have not yet turned in commercial

products. These proposals deal with 2D data.

A very different approach, known as spatial con-

straint database modeling, relies on mathematical

equations to define spatial extents. Some existing pro-

totype systems (e.g., DEDALE [7]) use this approach.

Key Applications
Semantic modeling is an essential capability for orga-

nizations that need to develop a database that provides

different applications and different categories of users

with different sets of data, possibly organized in

Semantic Modeling for Geographic Information Systems S 2575

S

different ways. Designing a database in such a complex

environment is a very challenging task, as has been

extensively proven in traditional data management.

Adding spatial features makes the design task even

more complex, in particular since this inevitably leads

to adding also temporal features. Indeed, what most

applications in the geographical domain need to ana-

lyze is the temporal evolution of the spatial features

of interest. Cartographic applications are the most

traditional ones, but today the focus is rather on all

kinds of planning and forecasting services to citizens

and the society at the municipal, regional, and state-

wide levels. Examples of such services include environ-

mental control management and global warming.

Given the cost of developing databases for these

applications and the need for people in charge (politi-

cians and managers) to be successful, it is of the highest

importance that the design of an operational database

is carried out using the most suitable tools. Semantic

modeling is the key to a successful design that deter-

mines what data are needed, to be complemented

afterwards in the implementation phase by addressing

performance aspects in order to guarantee that

the data can be used effectively.

Semantic modeling is also the key to all data ex-

change, reuse, and integration efforts. Whether in da-

tabase terms, as discussed here, or in ontological terms,

semantic modeling is the kernel of the semantic web.

Future Directions
The economic trend towards worldwide enterprise op-

eration and the technical trend towards web-based inter-

operability will significantly increase the complexity of

GIS and the challenges designers will have to overcome.

A key help in this context will come from ontologies

about spatiotemporal application domains. These ontol-

ogies provide a common semantic basis to build reposi-

tories of domain knowledge that go beyond traditional

enterprise boundaries. In this perspective, the current

focus on ontology-assisted semantic modeling and on-

tology-assisted data integration is leading research into

a fruitful direction [14].

In a complementary effort, ontologies and geo-

graphic markup languages facilitate the integration

of geographical knowledge coming from multiple

sources available through the Web. This will con-

tribute to significantly enhance geographical knowl-

edge, benefiting from geo-content actually hidden in

Web pages.
Cross-references
▶Data Models

▶Database Design

▶ Field-Based Spatial Modeling

▶Geographic Information System

▶Multiple Representation Modeling

▶ Spatial Data Types

▶Topological Data Models

▶Topological Relationships
Recommended Reading
1. Almeida V.T., Güting R.H., and Behr T. Querying moving

objects in SECONDO. In Proc. 7th Int. Conf. on Mobile Data

Management, 2006, pp. 47–51.

2. Belussi A., Negri M., and Pelagatti G. GeoUML: A geographic

conceptual model defined through specialization of ISO TC211

standards. In Proc. Tenth EC GI & GIS Workshop, ESDI State of

the Art, 2004.

3. Brodeur J., Bédard Y., and Proulx M.J. Modelling geospatial

application database using UML-based repositories aligned

with international standards in geomatics. In Proc. 8th

ACM Symp. on Adavances in Geographic Inf. Syst., 2000,

pp. 39–46.

4. Caron C. and Bédard Y. Extending the individual formalism for

a more complete modeling of urban spatially referenced data.

Comput. Environ. Urban Syst., 17(4):337–346, 1993.

5. Chen P.P. The entity-relationship model: toward a unified view

of data. ACM Trans. Database Syst., 1(1):9–36, 1976.

6. Egenhofer M.J. and Frank A.U. Object-oriented modeling for

GIS. J. Urban Reg. Inf. Syst. Assoc., 4(2):3–19, 1992.

7. Grumbach S., Rigaux P., Scholl M., and Segoufin L. The

DEDALE prototype. In Constraint Databases, Springer, 2000,

pp. 365–382.

8. Güting R.H., Böhlen M.H., Erwig M., Jensen C.S., Lorentzos

N.A., Schneider M., and Vazirgiannis M. A foundation for

representing and querying moving objects. ACM Trans. Data-

base Syst., 25(1):1–42, 2000.

9. Khatri V., Ram S., and Snodgrass R.T. On augmenting database

design-support environments to capture the geo-spatio-

temporal data semantics. Inf. Syst., 31(2):98–133, 2006.

10. Parent C., Spaccapietra S., and Zimányi E. Conceptual Modeling

for Traditional and Spatio-Temporal Applications: The MADS

Approach. Springer, 2006.

11. Pelekis N., Theodoridis Y., Vosinakis S., and Panayiotopoulos T.

Hermes – A framework for location-based data management. In

Advances in Database Technology, Proc. 10th Int. Conf. on

Extending Database Technology, 2006, pp. 1130–1134.

12. Rios Viqueira J.R., Lorentzos N.A., and Brisaboa N.R. Survey

on spatial data modelling approaches. In Spatial Databases:

Technologies, Techniques and Trends, Y. Manolopoulos,

A. Papadopoulos, M. Vassilakopoulos (eds.). Idea Group, 2005,

pp. 1–22.

13. Spaccapietra S., Parent C., Damiani M.L., Macedo J., Porto F.,

and Vangenot C. A conceptual view on trajectories. Data Knowl.

Eng., 65(1):126–146, 2008.

2576S Semantic Overlay Networks
14. Sugumaran V. and Storey V.C. The role of domain ontologies

in database design: an ontology management and concep-

tual modeling environment. ACM Trans. Database Syst.,

31(3):1064 –1094, 2006.

15. Tryfona N., Price R., and Jensen C.S. Spatiotemporal conceptual

modeling. vol. 2520, In Spatiotemporal Databases: The Choro-

chronos Approach (chapter 3), Lecture Notes in Computer

Science, vol. 2520, 2003, pp. 79–116.

16. Worboys M., Hearnshaw H., and Maguire D. Object-oriented

data modelling for spatial databases. Int. J. Geogr. Inf. Syst.,

4(4):369–383, 1990.
Semantic Overlay Networks. Figure 1. Three overlay

networks.
Semantic Overlay Networks

GEORGE ANADIOTIS, SPYROS KOTOULAS, RONNY SIEBES

VU University Amsterdam, Amsterdam,

The Netherlands

Synonyms
Semantic overlays; SONs

Definition
Semantic Overlay Networks are types of Overlay

Networks where the topology is formed according to

the resources (i.e., services or data provided) of the

participants. This is done on the basis of similarity

between participants, which is calculated by means of

resource metadata exchange (e.g. keywords, term vec-

tors, concepts from ontologies, histograms).

Historical Background
Semantic Overlay Networks were introduced in 2002,

by H. Garcia-Molina and A. Crespo [3]. The motiva-

tion was to give an alternative to inefficient search

methods for overlay networks, one that would provide

more relevant results in less time and using less

resources (mainly bandwidth).

Foundations
The original idea of Semantic Overlay Networks [3]

was to organize the nodes that participate in a network

into many different overlays, based on the content that

the nodes are contributing and some classification

scheme for this content. As one overlay is created for

each class, the classification to be used is rather impor-

tant for the operation of the system. Having classifica-

tions whose distribution is skewed would result in

overlays that are not efficient (either too big or too

small to be of real value). Classification as used in [3]

entails hierarchy, so it is in fact a taxonomy.
After choosing an appropriate taxonomy, content

needs to be classified (either manually or automatically).

This is performed massively for all content belonging

to incoming nodes, so then the results of content classifi-

cation are used to assign nodes to overlays, by choosing

the one(s) that is the bestmatch according to themajority

of the content’s classification. Different techniques and

policies can be applied here (for example the predecessors

and the descendants of a class are also considered), and

nodes can be assigned to more than one overlay.

Finally, in order to be able to answer queries,

queries are also subjected to the same classification.

When they have been classified, they are subsequently

forwarded only to the appropriate overlay. Results can

be incremental, meaning that the query can also be

sent to overlays that correspond to predecessors of

the querys assigned class (i.e., more general classes)

in order to retrieve additional matches.

In Fig. 1, one can see an example of three semantic

overlay networks, as described above. Each node may

belong to more than one semantic overlay (e.g., node d

belongs to all semantic overlays) and has to maintain a

number of connections for each one of them.

Inter and intra overlay routing (i.e., finding the

appropriate overlay and routing within the overlay)

presents a series of challenges which, along with other

optimizations, have been elaborated by recent research.

In [6], the metadata used to extract similarity are

(schema-less) XML documents extracted from peer

Semantic Overlay Networks S 2577

S

content, and supported queries are extended from

keyword to path queries that exploit the structure

of XML documents. Peers maintain specialized data

structures that summarize large collections of docu-

ments (filters – specialized extensions of Bloom filters).

Each node maintains a local filter that summarizes the

documents stored locally. Nodes are organized in hier-

archies (trees) based on similarity of local filters; non-

leaf nodes also contain merged filters summarizing the

documents of its children, or in the case of root nodes,

other root nodes as well.

With this organization, nodes belonging to the top

levels receive more load and responsibilities, thus, the

most stable and powerful nodes should be located to

the top levels of the hierarchies. When receiving a

query, nodes use their local filter to find results and

then forward the query to their sub-tree.

In [12], the notion of peer schemas is defined. Peer

schemas are virtually defined schemas that represent a

peer’s view of the world and are used for purposes of

querying and mapping. Relations between peer

schemas are called peer relations. Peers also contribute

data to the system in the form of stored relationships,

which correspond to the peer’s local view of the data.

Mappings are utilized in order to translate queries

between different semantic networks. There are two

types of mappings, namely mappings that relate two

or more peer schemas (peer descriptions) as well as

mappings that relate a stored schema to a peer schema

(storage descriptions).

Sending queries only to peers that might provide

answers is achieved using a two-fold approach: on the

one hand, there is a query reformulation algorithm

that works by combining global-as-view (GAV) and

local-as-view (LAV) approaches and selectively apply-

ing unfolding and rewriting techniques to the original

query. Since however the algorithm is only able to

exploit information pertaining to schema mappings

and not actual data stored at the peers, a (centralized)

index structure that allows simple value lookup with

partial match over structured attributes is also used.

Participating peers upload data summaries as well as

peer mappings to the index, thus enabling the index

engine to correlate attributes from different peers and

provide a simple type of schema mapping.

In [9], a variation on the approach presented in [6]

is given. Instead of schema-less XML documents,

metadata consist of RDF statements abiding to differ-

ent RDFS schemas. There are normal peers (P) and
super peers (SP) that normal peers attach to, as well as

index structures (SP/P and SP/SP) that utilize fre-

quency statistics used to define similarity measures

responsible for clustering peers to super-peers, thus

making them dynamic. Furthermore, an efficient to-

pology is maintained for communication in the super

peer network (HyperCup), which also offers mediation

services between different peer schemas.

In [2], a layered architecture for SONs is proposed,

comprising of a knowledge infrastructure layer and

a communication infrastructure layer. Here fully blown

ontologies are used instead of taxonomies or schemas.

Each peer is able to store data as well as a peer ontology.

When a peer sends a query Q over the H3 network, the

request goes through a query processing module for

rewriting in terms of the ontological description of target

concept(s). The rewritten query is then forwarded to a

semantic routing module that sends it only to peers that

may provide results semantically related to the kind of

concepts requested (semantic neighbors).

In order to choose the semantic neighbors, seman-

tic routing exploits the services of a knowledgemanager

module to retrieve ontology location links to the peers

whose contents are semantically related to the target

concept(s) in the query. Location links are returned to

the semantic routing module, which uses them for

query routing. When a peer’s routing module receives

a query, it forwards it to the query processing manager,

where it is analyzed and processed. If no matching

concepts are found, the query is discarded and no

reply is returned. Otherwise the query answer is com-

posed and forwarded to the semantic routing module

which sends back the reply to the requesting peer.

In some systems, SONs are not discretely clustered

and are formed on per-peer basis. While in the original

approach by [3] there is a separate SON for each

concept, a category of systems use pair-wise peer inter-

actions. They are used to construct a topology enriched

with content information about every neighbor, and

dynamically determine routing according to this infor-

mation, instead of broadcasting on the entire SON.

In [5,10], the SON is built using advertising. Peers

exchange descriptions of their content with their neigh-

bors. Furthermore, they keep advertisements that are

similar to theirs, and thus, a semantic topology is for-

med. An example of such a topology is given in Fig. 2.

Peers keep neighborhood relations based on their

content descriptions. Thus, locality is improved. Fur-

thermore, each peer is aware of the description of the

emantic Overlay Networks. Figure 2. Peer

eighborhood relations.

2578S Semantic Overlay Networks
S

n

content of its neighbors. Thus, it can forward queries

to the peers which are more likely to have relevant

content. Research in the context of [10] indicates that

either maintaining neighbor relations according to de-

scription similarity or forwarding queries to the peers

with description most similar to the query perform

much better than flooding approaches.

It is important to note a category of systems that

use both a semantic and a structured overlay. P-Search

[11] uses Latent Semantic Indexing LSI to extract

vector representations of documents. These vectors

are mapped into a multi-dimensional space main-

tained by a Content Addressable Network (CAN),

a type of structured overlay. Nodes within this overlay

participate in an an additional semantic overlay used

for content-directed search.

Gridvine [1] uses semantic overlays to store,

query and make mappings between RDFS schemas.

They are split into triples and are indexed by subject,

predicate and object using the P-Grid structured over-

lay. Each peer may define and use its own RDFS schema,

so naturally incompatibilities in terms of resource

description/query interpretation may appear. To cope

with such incompatibilities, the notion of schema trans-

lations is introduced. A schema translation is a mapping

between two different schemas. Since RDFS does not

support schemamapping, these translations are encoded

using OWL.

This is a very powerful feature, as it enables the

gradual forwarding of requests from the originating

peer to peers for which no direct schema translation

exists. This is achieved through a procedure called

Semantic Gossiping, in which each peer that receives
a query expressed in a certain schema examines avail-

able translation links and evaluates (by performing

syntactic and semantic analysis) if and where it should

forward this query. In addition, schema inheritance

is also supported, which enables peers to not only

define their own schemas, but also either directly

reuse or extend existing schema hierarchies. Sets of

peers that share the same schema are called semantic

neighborhoods.

Finally, other state-of-the-art features in SONs

include observing past queries submitted/answers

received in order to judge semantic proximity [13],

proactively acquiring semantic links through gossiping

[14], and applying ant-colony heuristics to improve

semantic routing [8].

Key Applications
Semantic overlay networks use an order of magnitude

less messages than flooding overlays. They enable

Internet-scale systems, by providing the infrastructure

for efficient search over large numbers of hosts.

Despite keen interest in the area by the scientific com-

munity, none of the aforementioned systems has been

commercially deployed yet.

The OpenKnowledge project (http://www.openk.

org.) works on a P2P system where web-services and

workflows, annotated by keywords, can be shared. The

system uses a SON to store and retrieve them eff-

iciently and to find peers that execute the webservices.

Bibster [5] is a P2P application for sharing biblio-

graphic items. These items are annotated by concepts

from an ontology. The SON is used to route queries,

which are also concepts from the same ontology, to the

peers that semantically match the query.

Another proposed application of SONs is using them

to cluster content providers on the WWW in order to

facilitate a comprehensive distributed search engine [4].

Future Directions
An interesting problem concerns optimizing multi-

attribute search. Simply joining the results of single

attributes is often not scalable, especially when the

single attributes individually result in many answers.

Another topic is to do efficient information retrieval

by using SONs. Currently, most resource discovery sys-

tems do not rank the results according to the relevance:

either they match or they do not match.

Current peer-to-peer discovery systems using

SONs fail to solve privacy infringement issues and are

Semantic Web S 2579
actually more vulnerable than centralized approaches.

This is because, due to the nature of SONs, peers

‘‘know’’ about the content of other peers, which may

be undesirable.

Distributed reasoning over a P2P network is another

interesting topic where SONs may be of help, for exam-

ple to cluster consistent parts of knowledge. Especially

in the Semantic Web area, there is a desire to have an

efficient (RDF) triple storage where reasoning is done

via shared or local schema’s. Some first solutions like

Unistore (http://www.p-grid.org/publications/applica-

tions.html.) and Gridvine [1] are based on storing the

triples inDHTs, which leads to many messages because

each triple leads at least to three DHT storage- or

lookup messages.
Cross-references
▶Data Semantics

▶DHT

▶GAV

▶ LAV

▶ LSI

▶ Peer-to-Peer Overlay
S

Recommended Reading
1. Aberer K., Cudré-Mauroux P., Hauswirth M., and Pelt T.V.

GridVine: Building Internet-Scale Semantic Overlay Networks.

In McIlraith et al. [7], pp. 107–121.

2. Castano S., Ferrara A., Montanelli S., Pagani E., and Rossi G.

Ontology-addressable contents in p2p networks. In Proc. First

Workshop on Semantics in Peer-to-Peer and Grid Computing,

2003.

3. Crespo A. and Garcia-Molina H. Semantic Overlay Networks for

P2P Systems, Technical Report 2003–75, Stanford University,

InfoLab, 2003.

4. Doulkeridis C., Nørvåg K., and Vazirgiannis M. DESENT:

Decentralized and Distributed Semantic Overlay Generation in

P2P Networks, IEEE Jour. Selected Areas in Commun., 25

(1):25–34, 2007.

5. Haase P., Broekstra J., Ehrig M., Menken M., Mika P., Olko M.,

Plechawski M., Pyszlak P., Schnizler B., Siebes R., Staab S., and

Tempich C. Bibster - A Semantics-Based Bibliographic Peer-to-

Peer System. In McIlraith et al. [7], pp. 122–136.

6. Koloniari G. and Pitoura E. Content-Based Routing

of Path Queries in Peer-to-Peer Systems. In Advances in Data-

base Technology, Proc. 9th Int. Conf. on Extending Database

Technology, 2004, pp. 29–47.

7. McIlraith S.A., Plexousakis D., and van Harmelen F. (eds.), The

Semantic Web. In Proc. 3rd Int. Semantic Web Conf., 2004.

8. Michlmayr E., Pany A., and Kappel G. Using Taxonomies for

Content-based Routing with Ants. In Proc. Workshop on Inno-

vations in Web Infrastructure, 2006.
9. Nejdl W., Wolpers M., Siberski W., Schmitz C., Schlosser M.,

Brunkhorst I., and Löser A. Super-Peer-Based Routing and

Clustering Strategies for RDF-Based Peer-To-Peer Networks. In

Proc. 12th Int. World Wide Web Conf., 2003.

10. Siebes R. and Kotoulas S. pRoute: Peer selection using shared

term similarity matrices. Web Intelligence and Agent Systems,

5(1):89–107, 2007.

11. Tang C., Xu Z., and Dwarkadas S. Peer-to-Peer Information

Retrieval Using Self-Organizing Semantic Overlay Networks.

Tech. rep., HP Labs, 2002.

12. Tatarinov I., Ives Z., Madhavan J., Halevy A., Suciu D., Dalvi N.,

Dong X.L. Kadiyska Y., Miklau G., and Mork P. The Piazza peer

data management project. ACM SIGMOD Rec., 32(3):47–52,

2003.

13. Tempich C., Staab S., and Wranik A. Remindin’: semantic query

routing in peer-to-peer networks based on social metaphors. In

Proc. 12th Int. World Wide Web Conf., 2004, pp. 640–649.

14. Voulgaris S., Kermarrec A.M., Massoulie L., and Van Steen M.

Exploiting Semantic Proximity in Peer-to-peer Content Search-

ing. In Proc. 10th Int. Workshop on Future Trends in

Distributed Computing Systems, 2004.
Semantic Overlays

▶ Semantic Overlay Networks
Semantic Web

GRIGORIS ANTONIOU
1,2, DIMITRIS PLEXOUSAKIS

1,2

1Foundation for Research and Technology-Hellas

(FORTH), Heraklion, Greece
2University of Crete, Heraklion, Greece

Definition

The central idea of the Semantic Web initiative is to

enrichWeb content by machine-processable semantics.

The approach is based on the following ideas:

1. Use meta-data (data about data) as semantic

annotations

2. Use ontologies to describe knowledge needed to

understand collections of Web information. The

semantic annotations are linked to such ontologies

3. Use logic-based techniques to process and query

collections of meta-data and ontologies

In the current Semantic Web work, two main goals can

be distinguished.

Interpretation 1: The Semantic Web as the Web of

Data

2580S Semantic Web
In the first interpretation, the main aim of the Se-

mantic Web is to enable the integration of structured and

semi-structured data sources over the Web. The main

recipe is to expose data-sets on the Web enriched with

semantic annotations, to use ontologies to express the

intended semantics of these data-sets, in order to enable

the integration and unexpected re-use of these data.

A typical use case for this version of the Semantic

Web is the combination of geo-data with a set of

consumer ratings for restaurants in order to provide

an enriched information source.

Interpretation 2: The Semantic Web as an enrichment of

the current Web

In the second interpretation, the aim of the Seman-

tic Web is to improve the current World Wide Web.

Typical use cases here are improved search engines,

dynamic personalization of Web sites, and semantic

enrichment of existing Web pages.

The source of the required semantic meta-data in

this version of the Semantic Web is mostly claimed to

come from automatic sources: concept extraction,

named-entity recognition, automatic classification,

etc. More recently, the insight is gaining ground that

the required semantic markup can also be produced by

social mechanisms of communities that provide large-

scale human-produced markup.

Historical Background
The Semantic Web sprang as a vision approximately 10

years after the birth of the World-Wide Web. Not

surprisingly, it was the inventor of the WWW that

shaped the vision of the Semantic Web, which in turn

gave rise to the entire research field.

Up until that stage, the Web was (and still is to a

great extent) purely about syntax, a specific syntax

geared towards homogenizing the way in which infor-

mation is presented to human users via a browser. As

revolutionary as the concept may have been, it was

making content available only for human consump-

tion as the interpretation of the content relied on

implicit semantics. In other words, meaningful repre-

sentation of content was not possible in HTML or its

precursor SGML. Information and its presentation

were mixed in the form of HTML documents, many

of which generated automatically by applications. The

Web made it easy to fetch any Web page from any

server, on any platform through a uniform interface.

HTML has many benefits: it is simple, textual, porta-

ble, easily searchable by keyword-based search engines
and connects pieces of information together through

hypertext links. The browser is the universal applica-

tion. If written properly, normal HTML markup may

reflect document presentation, but it cannot adequ-

ately represent the semantics & structure of data.

Newer applications require more than the publishing

of HTML documents; data must be made available on

the Web for use by Web-enabled applications.

XML was the incarnation of the paradigm shift on

the Web: a new standard that could be easily generated

and consumed by applications, facilitating data exchange

across platforms and organizations, transforming the

Web from a collection of documents to a collection of

data published as documents. XML gained popularity

very fast. It resembles HTML in that it is easy to read and

learn, it is universal, portable and at the same time

extensible and more flexible than HTML. However,

XML cannot address all interoperability requirements

as it only provides the means for solving syntactic het-

erogeneity problems. The challenge is to address the

inherent structural but foremost semantic heterogene-

ities that are encountered on the Web. Modern applica-

tions need more than data on the Web; they need

semantics on the Web. Applications themselves evolve

into services on the Web that may exploit semantics.

The main motivation behind the Semantic Web

(or Web of meaning) vision is to make vast amounts

of information resources (data, documents, programs)

available along with various kinds of descriptive infor-

mation, i.e., metadata. Better knowledge about the

meaning, usage, accessibility or quality of web resources

considerably facilitates automated processing of avail-

ableWeb content/services especially whenmetadata are

described in a form that is precise, human-readable and

machine-interpretable. The Semantic Web enables syn-

tactic and semantic/structural interoperability among

independently-developed Web applications, allowing

them to efficiently perform sophisticated tasks for

humans. At the same time, it enables Web resources

(data & applications) to be accessible by their meaning

rather than by keywords and syntactic forms.

Foundations
The Semantic Web approach is based on the use of

semantic annotations to describe the meaning of cer-

tain parts of Web information. For example, the Web

site of a hotel could be suitably annotated to distin-

guish between hotel name, location, category, number

of rooms, available services etc. Such metadata can

Semantic Web S 2581
facilitate the automated processing of the information

on the Web site, thus making it accessible to machines.

However, the question arises as to how the seman-

tic annotations of different Web sites can be combined,

if everyone uses terminologies of their own. The solu-

tion lies in the organization of vocabularies in so-called

ontologies. Recommended Reading to such shared

vocabularies allow interoperability between different

Web resources and applications. For example, an on-

tology of hotel classifications in a given country could

be used to relate the rating of certain hotels. And a

geographic ontology could be used to determine that

Crete is a Greek island and Heraklion a city on Crete.

Such information would be crucial to establish a con-

nection between a requester looking for accommoda-

tion on a Greek island, and a hotel advertisement

specifying Heraklion as the hotel location.

The development of the Semantic Web proceeds in

steps, each step building a layer on top of another. The

basic layered design is shown in Fig. 1, which is out-

lined below.

1. The bottom layer comprises XML, a language that

lets one write structured Web documents with a

user-defined vocabulary. XML is particularly suit-

able for sending documents across the Web, thus

supporting syntactic interoperability

2. RDF (Resource Description Framework) is a basic

data model, like the entity-relationship model, for

writing simple statements about Web objects

(resources). The RDF data model does not rely on

XML, but RDF has an XML-based syntax. There-

fore it is located on top of the XML layer

3. RDF Schema provides modeling primitives, for

organizing Web objects into hierarchies. RDF
Semantic Web. Figure 1. The semantic web tower.

S

Schema is based on RDF. RDF Schema can be

viewed as a primitive language for writing ontologies

4. But there is a need for more powerful ontology

languages that expand RDF Schema and allow the

representations of more complex relationships be-

tween Web objects. Ontology languages, such as

OWL (Ontology Web Language), are built on the

top of RDF and RDF Schema

5. The logic layer is used to enhance the ontology

language further and to allow writing application-

specific declarative knowledge. Rule languages are

the most popular logical languages used in Seman-

tic Web applications

6. The proof layer involves the actual deductive pro-

cess, as well as the representation and exchange of

proofs in Web languages, for purposes such as

explanation provision and proof validation

7. Finally, trust will emerge through the use of digital

signatures, and other kind of knowledge, based on

recommendations by agents that can be trusted, or

rating and certification agencies and consumer bodies

RDF Basic Features

The language of RDF allows one to write statements.

A statement consists of three parts (subject, predicate,

object) and is often referred to as a triple. A triple of

the form (x, P, y) corresponds to the logical formula

P(x, y), where the binary predicate P relates the object

x to the object y; this representation is used for trans-

lating RDF statements into a logical language ready to

be processed automatically in conjunction with rules.

There are other ways to describe an RDF docu-

ment, using a graphical and an XML representation.

RDF Schema Basic Features

In RDF, Web resources are individual objects. In RDFS,

objects sharing similar characteristics are put together

to form classes. Examples for classes are hotels, airlines,

employees, rooms, excursions etc. Individuals belong-

ing to a class are often referred to as instances of that

class. For example, John Smith could be an instance of

the class of employees of a particular hotel.

Binary properties are used to establish connections

between classes. For example, a propertyworks_for estab-

lishes a connection between employees and companies.

Properties apply to individual objects (instances of the

classes involved) to form RDF statements, as seen above.

The application of predicates can be restricted

through the use of domain and range restrictions. For

2582S Semantic Web
example, the property works_for can be restricted to

apply only to employees (domain restriction), and to

have as value only companies (range restriction).

Classes can be put together in hierarchies through

the subclass relationship: a class C is a subclass of a class

D if every instance of C is also an instance of D. For

example, the class of island destinations is a subclass of

all destinations: every instance of an island destination

(e.g., Crete) is also a destination.

The hierarchical organization of classes is impor-

tant due to the notion of inheritance: once a class C has

been declared a subclass of D, every known instance of

C is automatically classified also as instance of D. This

has far-reaching implications for matching customer

preferences to service offerings. For example, a customer

may wish to make holidays on an Indonesian island. On

the other hand, the hotel Noosa Beach advertises its

location to be Bali. It is not necessary (nor is it realistic)

for the hotel to add information that it is located in

Indonesia and on an island; instead, this information is

inferred by the ontology automatically.
Key Applications
This section provides a bird’s eye survey of key appli-

cation areas. It should be noted that a healthy uptake of

Semantic Web technologies is beginning to take shape

in the following areas:

1. Knowledge management, mostly in intranets of

large corporations

2. Data integration (Boeing, Verison and others)

3. e-Science, in particular the life-sciences

4. Convergence with Semantic Grid

If one considers the profiles of companies active in this

area, they will see a distinct transition from small start-

up companies such as Aduna, Ontoprise, Network

Inference, Top Quadrant (to name but a few) to large

vendors such as IBM (their Snobase ontology Manage-

ment System}, HP (with their popular Jena RDF

platform), Adobe (with their RDF-based based XMP

meta-data framework), and Oracle (now lending sup-

port for RDF storage and querying in their prime

database product).

However, besides the application areas listed above,

there is also a noticeable lack of uptake in some other

areas. In particular, promises in the areas of

1. e-commerce

2. Personalization
3. Large-scale semantic search (on the scale of the

World Wide Web, not limited to intra-nets),

4. Mobility and context-awareness

are largely unfulfilled, though there is significant

ongoing activity in these directions.

A pattern that seems to emerge between the suc-

cessful and unsuccessful application areas is that the

successful areas are all aimed at closed communities

(employees of large corporations, scientists in a partic-

ular area), while the applications aimed at the general

public are still in the laboratory phase at best. The

underlying reason for this could well be the difficulty

of dealing with multiple ontologies and mappings

among them.
Future Directions
At present, Semantic Web research focuses, among

others, on:

1. Rule languages and their interaction or integration

with ontology languages (RDF and OWL)

2. Scalable storage and retrieval systems

3. Knowledge and ontology evolution and change

4. Mapping mechanisms between different ontologies

A number of items on the research agenda are hardly

tackled, but do have a crucial impact on the feasibility

of the Semantic Web vision. In particular:

1. The mutual interaction between machine-process-

able representations and the dynamics of social

networks of human users

2. Mechanisms to deal with trust, reputation, integ-

rity and provenance in a (semi-) automated way

3. Inference and query facilities that are sufficiently

robust to work in the face of limited resources (be

it either computation time, network latency,memory

or storage space), and that canmake intelligent trade-

offdecisionsbetweenresourceuseandoutput-quality
Cross-references
▶ Interoperation of NLP-based Systems with Clinical

Databases

▶Ontology

▶OWL: Web Ontology Language

▶Resource Description Framework

▶Resource Description Framework (RDF) Schema

(RDFS)

▶World Wide Web Consortium

Semantic Web Query Languages S 2583
Recommended Reading
1. Antoniou G. and van Harmelen F. A Semantic Web Primer

(2nd ed.). MIT Press Cambridge, MA, 2008.

2. Staab S. and Studer R. (eds.). Handbook on Ontologies

(2nd ed.). Springer, New York, 2008.

3. Berners-Lee T., Hendler J., and Lassila O. The Semantic Web.

Sci. Am., 284 (May 2001): 34–43.

4. REASE. Available at: ubp.l3s.uni-hannover.de/ubp.

5. www.SemanticWeb.org.

6. www.w3.org/2001/sw/.

7. www.ontology.org.

8. The International Semantic Web Conference (http://iswc.

semanticweb.org/).

9. Journal of Web Semantics (www.elsevier.com/locate/websem).
S

Semantic Web Query Languages

JAMES BAILEY
1, FRANÇOIS BRY

2, TIM FURCHE
2,

SEBASTIAN SCHAFFERT
3

1University of Melbourne, Melbourne, VIC, Australia
2University of Munich, Munich, Germany
3Salzburg Research, Salzburg, Austria

Synonyms
Web query languages; Ontology query languages

Definition
A number of formalisms have been proposed for repre-

senting data and meta data on the Semantic Web. In

particular, RDF, Topic Maps and OWL allow one to

describe relationships between data items, such as con-

cept hierarchies and relations between the concepts.

A key requirement for the Semantic Web is integrated

access to data represented in any of these formalisms,

aswelltheabilitytoalsoaccessdataintheformalismsofthe

‘‘standard Web,’’ such as (X)HTML and XML. This data

accessistheobjectiveofSemantic Web query languages. A

wide range of query languages for the Semantic Web

exist, ranging from (i) pure ‘‘selection languages’’ with

only limited expressivity, to fully-fledged reasoning lan-

guages, and (ii) from query languages restricted to a

certain data representation format, such as XML or

RDF, to general purpose languages that support multiple

data representation formats and allow simultaneous que-

rying of data on both the standard and Semantic Web.

Historical Background
The importance of Semantic Web query languages

can be traced back to the roots of the Semantic Web
itself. In its original conception, Tim Berners-Lee

viewed the Semantic Web as allowing Web-based

systems to take advantage of ‘‘intelligent’’ reasoning

capabilities [4]:

" The Semantic Web will bring structure to the mean-

ingful content of Web pages, creating an environment

where software agents roaming from page to page

can readily carry out sophisticated tasks for users

For the Semantic Web to function, computers must

have access to structured collections of information

and sets of inference rules that they can use to con-

duct automated reasoning.

As the representation format for the Semantic Web

has grown to cover XML, RDF, Topic Maps and OWL,

there has been a corresponding growth in query

languages that support access to each of these kinds

of data.

Foundations
A number of techniques have been developed to facili-

tate powerful data retrieval on the Semantic Web. This

article follows the classification and taxonomy given in

[1], which provides a comprehensive survey of the

area. Several categories of query languages can be dis-

tinguished, according to the format of the Semantic

Web data they can retrieve:

1. Query languages for XML

2. Query languages for Topic Maps

3. Query languages for RDF

4. Query languages for OWL

XML Query Languages: Although not a primary

format, it is possible to specify information on the

Semantic Web using XML. Hence query languages for

XML are applicable to Semantic Web data. Most query

and transformation languages for XML specify the

structure of the data to retrieve using either of two

approaches. In the navigational approach, path-based

queries over the XML data are specified and the W3C

standardized languagesXPath,XSLTandXQuery arewell

known instances of this scheme. In the example based

approach, query patterns are specified as ‘‘examples’’ of

the XML data to be retrieved. Languages of this kind are

mainly research languages, with some well known repre-

sentatives beingXML-QL[7] andXcerpt [3,15].

Topic Maps Query Languages: Several different

query languages for Topic Maps data exist, with repre-

sentatives being tolog [9], AsTMA [2] and Toma [11].

2584S Semantic Web Query Languages
tolog was selected as the initial straw man for the ISO

Topic Maps Query Language and is inspired from logic

programming, also having SQL style constructs.

AsTMa is a functional query language, in the style of

XQuery, whereas Toma combines both SQL syntax and

path expressions for querying.

RDF Query Languages can be grouped into several

families, that differ in aspects such as data model,

expressivity, support for schema information, and

type of queries. Principal among these families is the

‘‘SPARQL Family.’’ This originated with the language

SquishQL [12], which evolved into RDQL [12] and

then was later extended to the language SPARQL [14].

These languages all ‘‘regard RDF as triple data without

schema or ontology information unless explicitly in-

cluded in the RDF source.’’ SPARQL currently has

W3C Candidate Recommendation status as being the

‘‘Query Language for RDF.’’ In particular, SPARQL has

facilities to:

1. Extract RDF subgraphs

2. Construct a new RDF graph using data from the

input RDF graph queried

3. Return ‘‘descriptions’’ of the resources matching a

query part

4. Specify optional triple or graph query patterns (i.e.,

data that should contribute to an answer if present

in the data queried, but whose absence does not

prevent an answer being returned 5. Test the ab-

sence, or non-existence, of tuples. The general for-

mat of a SPARQL query is:
PREFIX Specification of a name for a URI (like
RDQL’s USING)

SELECT Returns all or some of the variables
bound in the WHERE clause

CONSTRUCT Returns a RDF graph with all or some of
the variable bindings

DESCRIBE Returns a ‘‘description’’ of the resources
found

ASK Returns whether a query pattern matches
or not

WHERE list, i.e., conjunction of query (triple or
graph) patterns

OPTIONAL list, i.e., conjunction of optional (triple or
graph) patterns

AND boolean expression (the filter to be
applied to the result)
Another family of languages for RDF, the ‘‘RQL

family,’’ consists of the language RQL [10], and its

extensions such as SeRQL [5]. Common to this family

is support for the combination of both data and schema

querying. The RDF data model which is used slightly

deviates from the standard data model for RDF and

RDFS, disallowing cycles in the subsumption hierarchy

and requiring both a domain and a range to be defined

for each property. RQL itself has a large number of

features and choices in syntactic constructs. This results

in a complex, yet powerful language, which is far more

expressive than other RDF query languages, especially

those of the SPARQL family.

A number of other types of query languages for

RDF also exist, using alternative paradigms. These

include query languages using reactive rules, such as

Algae [13] and deductive languages such as TRIPLE

[6] and Xcerpt [15,3]. The last of these is noteworthy,

as it combines querying on both the Standard Web

(HTML/XML), with querying on the Semantic Web

(e.g. RDF, TopicMaps) and also allows pattern-based,

incomplete specification of queries.

OWL Query Languages: Query languages for OWL

are still in their infancy compared to those for RDF.

OWL-QL [8] is a well known language for querying

OWL data and is an updated version of the DAML

Query language. Its design targets the assistance of

query-answering dialogues between computational

agents on the Semantic Web. Unlike the RDF query

languages, it focuses on the querying of schema rather

than instance data. An RDF language such as SPARQL

may of course be used to query OWL data, but it is not

well suited to the task, since it is not designed to be

aware of OWL semantics.

Several themes emerge from considering the design

of the various Semantic Web Query languages [1].

 Choice of querying paradigm: Semantic Web query

languages express basic queries using either the path

based (navigational) or logic based (positional)

paradigm.

 Choice of variable type: When Semantic Web query

languages have variables, they almost always are

logical variables, as opposed to variables in imper-

ative programming languages.

 Provision of Referential Transparency and Answer-

Closure. Referential Transparency (i.e., within the

same scope, an expression always means the same),

awell known trait of declarative languages, is striven

Semantic Web Query Languages S 2585

S

for by Semantic Web query languages. Answer clo-

sedness is a property that allows answers to queries

themselves to be used as input to queries and is a

key design principle of the languages SPARQL and

Xcerpt.

 Degree of Incompleteness: Many Semantic Web

query languages offer a means for incomplete spe-

cifications of queries, a reflection of the semi-

structured nature of data on the Semantic Web.

 Reasoning Capabilities. Interestingly, but not sur-

prisingly, not all XML query languages have views,

rules, or similar concepts allowing the specification

of other forms of reasoning. Surprisingly, the same

holds true of RDF query languages. Many authors of

RDF query languages see deduction and reasoning

to be a feature of an underlying RDF store offering

materialization, i.e., completion of RDF data with

derivable data prior to query evaluation. This is sur-

prising, because one might expect many Semantic

Web applications to access not only one RDF data

store at one Web site, but instead many RDF

data stores at differentWeb sites and to draw conclu-

sions combining data from different stores.

Key Applications
Like classical query languages such as SQL, the first key

application of Semantic Web query languages is the

efficient and scalable access, classification, analysis and

transformation of large collections of data in a Web

format such as XML, RDF, OWL, or Topic Maps.

Whereas classical query languages are most often used

for accessing a single, centralized database, Semantic

Web query languages need to be able to access also

remote databases and data sources. This opens up new

application scenarios, potentially utilizing any of the

vast number of the data sources available on the Web.

For example, one might query researcher and pub-

lication information integrated over various sources,

such as DBLP, Citeseer, IEEE and Cordis, combine that

data with course and lecturer information from the

Semantic Web School and then even further correlate

it with the US census data. All these resources would be

far too large to download individually and query lo-

cally, but they provide interfaces known as endpoints,

that can be used to select the relevant portions via a

Semantic Web query interface. Another example appli-

cation is the W3C Amaya browser, which can be used

to enrich Web pages visited by a user, with annotations

contained in remote data sources. The annotations
relevant to a given Web page are accessed by querying

an annotation server using Algae [13], an RDF query

language similar to SPARQL. In such scenarios, the

ability of RDF (and to some extent, XML) to define

the names and concepts used in a database, reason

about them and to map them to names and concepts

used in another database, is essential. This clearly sepa-

rates the use of Semantic Web query languages from the

use of classical query languages for centralized databases.

Increasingly, current Web applications (often

referred to as Web 2.0 applications) contain a Java-

script-based user interface which is separate from the

data processed by the application itself. Thus, the user

interface can be loaded once and data then requested

from the origin server or other data sources on the Web

as required. Web query languages for XML, RDF, JSON

and Topic Maps are now becoming recognized as the

ideal interfaces between the client user interfaces of Web

2.0 applications and data sources, since they can target

just the data that is needed in the current state of the

application. Web query languages allow flexible, but

fine-grained access to the required data, rather than

the coarse-grained access provided by other solutions.

Future Directions
Most RDF query languages are RDF-specific, and

even specifically designed for one RDF serialization,

which of course limits their applicability. It is to be

hoped that in the future, there will be an evolution

towards data format ‘‘versatile’’ languages, capable of

easily accommodating XML, RDF, Topic Maps and

OWL, without requiring ‘‘serialization consciousness’’

from the programmer.

The method of query evaluation in current Semantic

Web query languages is either backtracking-free logic

programming (as used by positional languages) or set-

oriented functional query evaluation. It seems likely

these two paradigms may converge in future Semantic

Web query languages. Language engineering issues, such

as abstract data types and static type checking, modules,

polymorphism, and abstract machines, have not yet

made their way into Semantic Web query languages, as

they did not in database query languages. This situation

opens avenues for promising research of great practical,

as well as theoretical relevance.

Data Sets
There are a number of SPARQL endpoints that can

be browsed on the Web. These provide RDF data

2586S Semantic Web Services
which can be viewed and then queried using a SPARQL

client:

 The 2000 US Census Data endpoint: http://www.

rdfabout.com/demo/census/

 The Semantic Web School endpoint: http://sparql.

semantic-web.at/

 A compilation of endpoints including DBLP, Cite-

seer, IEEE and Cordis: http://www.rkbexplorer.

com/

A collection of concrete query language use cases

for accessing RDF data can be found in the W3C RDF

Use Case document at http://www.w3.org/TR/rdf-

dawg-uc/. A use case collection is also included in [2].

URL to Code
The D2R Server is a utility for publishing relational

databases on the Semantic Web and can be found at:

http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/

Annotea is a project that aims to assist collabora-

tion via shared semantic meta-data. The Annotea-

Server with Amaya Browser and Algae QL can found

at: http://www.w3.org/2001/Annotea/

Cross-references
▶Ontology

▶OWL: Web Ontology Language

▶Resource Description Framework

▶Resource Description Framework (RDF) Schema

(RDFS)

▶ Semantic Web

▶Topic Maps

▶XML

▶XPath/XQuery

▶XSL/XSLT
Recommended Reading
1. Bailey J., Bry F., Furche T., and Schaffert S. Web and semantic

Web query languages: a survey. In Reasoning Web, LNCS 3564,

Springer, 2005, pp. 35–133.

2. Barta R. AsTMa 1.3 language specification. Technical report,

Bond University, 2003.

3. Berger S., Bry F., Furche T., Linse B., and Schroeder A. Beyond

XML and RDF: the versatile Web query language Xcerpt.

In Proc. 15th Int. World Wide Web Conf., 2006, pp. 1053–1054.

4. Berners-Lee T., Hendler J., and Lassila O. The Semantic Web—a

new form of Web content that is meaningful to computers will

unleash a revolution of new possibilities. Scientific American,

2001, 29–37.
5. Broekstra J. and Kampman A. SeRQL: a second generation RDF

query language. In Proc. SWAD-Europe Workshop on Semantic

Web Storage and Retrieval, 2003.

6. Decker S., Sintek M., Billig A., Henze N., Dolog P., Nejdl W.,

Harth A., Leicher A., Busse S., Ambite J.L., Weathers M.,

Neumann G., and Zdun U. TRIPLE – an RDF rule language

with context and use cases. In Proc. Rule Languages for Interop-

erability, 2005.

7. Deutsch A., Fernandez M., Florescu D., Levy A., and Suciu D. A

query language for XML. Comput. Netw., 31(11–16):1155–1169,

1999.

8. Fikes R., Hayes P., and Horrocks I. OWL-QL – a language for

deductive query answering on the semantic Web. J. Web

Semant., 2(1):19–29, 2004.

9. Garshol L.M. Tolog – a topic maps query language. In Proc. 1st

Int. Workshop on Topic Maps Research and Applications, 2005,

pp. 183–196.

10. Karvounarakis G., Magkanaraki A., Alexaki S., Christophides V.,

Plexousakis D., Scholl M., and Tolle K. Querying the Semantic

Web with RQL. Comput. Netw. ISDN Syst. J., 42(5):617–640,

August 2003.

11. Lacher M. and Decker S. RDF, topic maps, and the

semantic web. Markup Lang. Theory and Pract., 3(3):313–331,

December 2001.

12. Miller L., Seaborne A., and Reggiori A. Three implementations

of SquishQL, a simple RDF query language. In Proc. Int. Seman-

tic Web Conf., 2002, pp. 423–435.

13. Prud’hommeaux E. Algae RDF Query Language. http://www.w3.

org/2004/05/06-Algae/, 2004.

14. Prud’hommeaux E. and Seaborne A. SPARQL query language

for RDF. Candidate recommendation, W3C, June 2007, http://

www.w3.org/TR/rdf-sparql-query/.

15. Schaffert S. and Bry F. Querying the Web reconsidered: a practi-

cal introduction to Xcerpt. In Proc. Extreme Markup Languages,

2004.
Semantic Web Services

DAVID MARTIN

SRI International, Menlo Park, CA, USA

Definition
SemanticWeb Services (SWS) is a research area develop-

ing theory, technology, standards, tools, and infrastruc-

ture for working with distributed, networked services.

As its name indicates, SWS has arisen from the cross-

fertilization of challenges and approaches from the Web

services and Semantic Web areas. The central theme of

SWS is the enrichment of Web services technology with

knowledge representation and reasoning technologies

Semantic-based Retrieval S 2587

S

(including but not limited to those associated with

the Semantic Web). The starting point for most SWS

approaches is the use of expressive, declarative descrip-

tions of the elements of dynamic distributed computa-

tion, with a particular focus on services, processes that

are encapsulated by services, and message-based con-

versations between service providers and consumers.

(Depending on the approach, other relevant concepts

might include goals, transactions, roles, commitments,

mediators of various kinds, etc.) These descriptions, in

turn, are seen as the basis for fuller, more flexible auto-

mation of service provision and use, and the construc-

tion of more powerful components, architectures, tools

and methodologies for working with services. In most

cases, descriptions are expressed in a formal logical

framework allowing for the use of well-understood

reasoning procedures.

Many SWS researchers have articulated a broad and

ambitious long-term vision of a Web where support

for shared activities is as central as support for shared

information. Many view SWS, developed to its full

potential, as a technology foundation for distributed

autonomous agents (and much SWS work draws

on earlier work on agent-based systems). Another im-

portant theme in SWS is the development of a uni-

fied, comprehensive representation framework (often

making use of ontologies) that can provide a foundation

for a broad range of activities throughout the Web ser-

vice lifecycle, including design and development, publi-

cation in registries, discovery and selection, negotiation

and contracting, composition of services, monitoring

and recovery from failure, and so forth.

Key Points
SWS research, as a distinct field, began in earnest in

2001. In that year, the initial release of OWL for Services

(OWL-S) [5] became available. Other major initiatives

began not long thereafter, including the Web Services

Modeling Ontology (WSMO) [4], the Semantic Web

Services Framework (SWSF) [2], WSDL-S [1], and

the Internet Reasoning Service [3]. Many individual

researchers and small teams have also done much valu-

able work, sometimes drawing on one of these larger

efforts, sometimes not.

A fair amount of work in SWS has been focused

on two central problems. Given a service request and a

collection of service descriptions, service discovery is

the problem of identifying those services that can
satisfy the request, and possibly ranking them accord-

ing to some measure of suitability. Given a goal to be

satisfied and a collection of service descriptions, service

composition is the problem of finding a procedure

composed of service invocations that will achieve that

goal. It should be emphasized, however, that SWS is a

broad field with many challenging problems, of which

these two are mentioned as illustrations.

Important application areas for SWS have included

business (e.g., automated or partially automated dis-

covery and use of needed services, enactment and

composition of business processes and workflow, sup-

ply chain management, contracting, formation of vir-

tual organizations, etc.), e-Government, and e-Science.

A few SWS standards activities have occurred. For

example, the World Wide Web Consortium (W3C)

has published a set of extensions to the Web Services

Description Language (WSDL), known as Semantic

Annotations forWSDL (SAWSDL), which makes it pos-

sible to associate elements of WSDL specifications with

elements defined in a SWS framework (not defined by

SAWSDL).W3C also hosts workshops and study groups

to consider the suitability of various aspects of SWS for

standardization.

Cross-references
▶ Semantic Web

▶Web Services
Recommended Reading
1. Akkiraju R., Farrell J., and Miller J, et al. Web Service Semantics –

WSDL-S, vol. 1.0, tech. note, Apr. 2005.

2. Battle S, Bernstein A, and Boley H, et al. Semantic Web Services

Framework (SWSF) Overview, 2005.

3. Cabral L., Domingue J., and Galizia S, et al. IRS-III: a broker for

semantic web services based applications. In Proc. 5th Interna-

tional Semantic Web Conference, 2006, pp. 201–214.

4. Fensel D., Lausen H., and Polleres A, et al. Enabling Semantic

Web Services: The Web Service Modeling Ontology. Springer,

New York, 2006.

5. Martin D., Burstein M., and McDermott D, et al. Bringing seman-

tics to web services with OWL-S. World Wide Web J., 10(3): 243–

277, 2007.
Semantic-based Retrieval

▶Multimedia Information Retrieval Model

2588S Semantic Atomicity
Semantic Atomicity

GREG SPEEGLE

Baylor University, Waco, TX, USA

Definition
Let T be a transaction composed of subtransactions

S0, S1,...,Sn�1. Let C0, C1,...,Cn�1 be a set of com-

pensating transactions, such that Ci compensates for

the corresponding Si. T is semantically atomic iff all Si
have committed, or for all Si that have committed, Ci

has also committed. A schedule (or history) ensures

semantic atomicity if all transactions are semantically

atomic. If T requires compensating transactions, then

the resulting database is semantically equivalent to one

in which T did not execute at all, but it is not guaran-

teed to be identical. Typically, two database states are

equivalent if they both satisfy all of the database

constraints.

Historical Background
Semantic Atomicity is first defined in [6], with the use

of countersteps to remove parts of a failed transac-

tion executing in a distributed database environment,

without rolling back the entire transaction. The ‘‘step’’

grew in complexity to a subtransaction with the intro-

duction of Sagas [7]. This required a corresponding

increase in the complexity of the counter-measure,

now called compensating transactions. Within Sagas,

subtransactions are allowed to interleave with other

transactions, and an execution is correct if every sub-

transaction commits, or the corresponding compen-

sating transaction is executed. In [10], transactions are

extended to transaction programs with input and out-

put constraints, thus allowing formal representations

of the capabilities and requirements for compensa-

ting transactions. Semantic atomicity has been applied

in multidatabases[4], multilevel secure databases [2],

workflows [3], and real-time database systems [16].

Foundations
Under traditional database correctness criteria, either

all of the updates performed by a transaction must be

committed to the database, or none of them should be.

This is the atomicity requirement in ACID (atomicity,

consistency, isolation and durability), the standard

correctness criteria for database transactions. Atom-

icity has potentially far-reaching consequences.
Consider the scenario where transaction T1 updates

some data, and transaction T2 reads the updated, but

not committed, value. If T1 fails, then the update must

be removed from the database, which implies T2 can-

not have read that value, and thus, T2 must be aborted

as well. This situation is called cascading aborts.

Within traditional database applications, atomic-

ity (and consequently cascading aborts) is the correct

criterion. Transactions in this environment are very

short (only a few operations) and access only a few

data items. In fact, the traditional database environ-

ment avoids cascading aborts by using a protocol

called strict two-phase locking [8], which forces T2

to wait until T1 commits before it can read anything

written by T1.

The success of database management systems and

the explosion of electronic data has pushed DBMSs

(database management systems) into non-traditional

applications. In these applications, transactions can be

very long and very complex (e.g., design applications

[9] and workflows [3]). In these applications, cascad-

ing aborts are unacceptable, but it is also unacceptable

to force long-duration waits with two-phase locking.

There are many efforts in the literature to solve this

problem by exploiting the semantic information of the

transactions (see e.g., [1,5,7,11,12,17]).

These solutions focus on relaxing one or more of

the ACID properties while still ensuring the correct

execution of the DBMS. This relaxation can only

occur by using additional information (semantics)

not exploited in traditional database systems. Semantic

atomicity focuses on relaxing the atomicity require-

ment by using additional information in the form

of compensating transactions for any transaction that

is executing in the system [7]. A compensating trans-

action uses application specific information to restore

the database consistency constraint for any failed

transaction.

Additionally, semantic atomicity is often used in

environments where transactions are nested [14],

which means transactions are divided into subtransac-

tions. One way to prevent cascading aborts is to pro-

hibit the exposure of the results of a subtransaction

beyond the transaction itself. However, with semantic

atomicity, these intermediate results can be visible to

other transactions and cascading aborts can still be

avoided. This is one of the benefits of the long duration

transaction model called Sagas [7].

Semantic Atomicity S 2589

S

Semantic atomicity allows transactions to read

dirty data if all failed transactions meet the following

compensation requirement:

Definition: Let T be a transaction, H be the set of

all transactions concurrently executing with T (exclud-

ing T), and let C be the compensating transaction for

T. Let D represent the database state resulting from

executing THC on the database, andD 0 be the database

state resulting from executing H alone. A transaction

has been compensated if D � D 0.

In general, two database states are equivalent if they

both satisfy all database consistency constraints. Like-

wise, it must be the case that the database state seen by

H is consistent, otherwise the execution of some of the

transactions inH is unpredictable. It is also possible for

subtransactions to have reduced consistency require-

ments, both in terms of the state of the database before

transactions execute, and in the database state after the

execution is finished [10]. In these cases, the compen-

sating transaction does not have to completely restore

the database state, but it must create a database state

that allows the other subtransactions to continue.

An example can clarify the benefits of semantic

atomicity. Consider a business process in which a

company manufactures widgets. Some of the widgets

are sold after they are manufactured, and others are

ordered in advance. The database consistency con-

straint is that the number of widgets in production

must be at least twice the number of widgets that have

been pre-ordered. Let P and O be data items in the

database such that P is the number of widgets in

production, and O is the number of ordered widgets.

The constraint is that P� 2� O. Furthermore, assume

a purchase transaction, T, is composed of two parts –

order placement (S0) and payment (S1). Finally, as-

sume the current database state has O = 10 and P = 23.

An order comes in for 3 additional widgets. Since

the company wants to produce the needed widgets as

soon as possible, the database is updated right away by

having transaction S0 set O to 13, and correspondingly,

increasing P to 26. Under semantic atomicity, S0 is free

to commit. As soon as P is increased, a workflow

transaction W begins the manufacturing process for

three additional widgets.

Now the customer decides the price for the three

widgets is too high, and cancels the order. As a result, T

has failed. Under traditional atomicity, the update by

T would rollback, and therefore the execution of
W would also abort. Note that aborting W may not

even be possible, depending on the state of widget

production. Under semantic atomicity, a compensat-

ing transaction CO is executed instead. CO performs a

rollback on the value of O, but leaves P unchanged.

Therefore,W can continue execution. Thus, consisten-

cy is restored and the schedule is semantic atomic, even

thoughW would never execute without T. The database

states are equivalent (both are consistent), but not

identical.

One great but not immediately obvious benefit of

semantic atomicity is that subtransactions can commit

as soon as possible, thus externalizing the effects of the

subtransactions right away. This is because a later

failure cannot cause a cascading abort. The appropriate

compensating transaction is executed, and the transac-

tion system continues forward. As a result, long dura-

tion transaction systems do not have to impose long

duration waits to avoid cascading aborts. Thus, the two

primary disadvantages for ensuring ACID with ad-

vanced transactions (long waits and large amounts of

lost work) are prevented.

Unfortunately, compensating transactions cannot

always be applied automatically. Consider the example

from before, but assume the constraint is 2 � O � P �
2.5 � O. The compensation for S0 cannot simply

rollback O, as the resulting state would be inconsistent.

One possible solution would require the compensation

of W, perhaps removing a widget from production.

Whether or not this is possible would depend on the

application semantics. Alternatively, S0 cannot be com-

pensated, and thus semantic atomicity reduces to

traditional atomicity. In this case, Twould not commit

until payment is received, and the extra widgets would

not begin production until the order is committed.

The complexity of using application semantics in

building compensating transactions prevents the com-

mon deployment of semantic atomicity. In [10] these

problems are studied in detail, with the creation of

operations which are arbitrarily complex modifications

to a single database entity. These operations are allowed

local variables, thereby resembling functions in tra-

ditional programming languages. The operations are

combined into transaction programs, which include

conditional statements and statement blocks. Within

this model, several aspects of compensating transactions

are explored, such as compensation when the database

states must be identical (not just equivalent) and

2590S Semantic Atomicity
compensation when some transaction program must

follow the compensated-for transaction (called

unsound).

Another key issue mentioned in [10] is the require-

ment that compensating transactions do not fail. Al-

though this can be ensured during normal database

operations (e.g., using a deadlock avoidance mechanism

for compensating transactions), system failures cannot be

prevented. The solution to this problem requires logging

the internal state of the compensating transaction as well

as any database modifications. During recovery, incom-

plete compensating transactions are not aborted, but are

continued from the saved internal state, similar to the

notion of compensating log records in ARIES [13].

Note that semantic atomicity is distinctly different

from the concept of a savepoint. A savepoint does not

expose the updates of a transaction to outside pro-

cesses (called externalized operations in [10]), while

semantic atomicity supports this. Likewise, when a

traditional database transaction performs a rollback

to a savepoint, any other transaction which has read

the aborted updates, must also abort. Thus, savepoints

do not prevent cascading aborts.

Key Applications
Semantic atomicity is appropriate for any application

where the benefit of avoiding cascading aborts without

long-duration waits is greater than the difficulty of cre-

ating the compensating transactions. Examples include:

1. Multidatabases [4] where each site can commit a

subtransaction without the over head of two-phase

commit

2. Application services such as the Microsoft Phoenix

project [3] which Support applications surviving

database failures in part by using semantic

information

3. Workflows [3] where processes need to begin as

soon as possible, and often cannot be aborted

4. Web services [15] where actions are performed by

loosely coupled systems

5. Real-time systems [16] where the ability to predict

transaction length is greatly improved by avoiding

cascading aborts and by allowing early commits

6. Secure databases [2] where cascading aborts can

cause covert information exchange

Although not an application per se, support for com-

pensating transactions, and thereby semantic atomic-

ity, has been included in the Organization for the

Advancement of Structured Information Standards
(OASIS)Web Services Business Activity (WS-Business-

Activity) standard released in July 2007. Certainly, this

will increase the number of commercial applications

using semantic atomicity.

Cross-references
▶ACID

▶Atomicity

▶Compensating Transactions

▶ Extended Transaction Models and ACTA

▶Nested Transactions

▶Open-Nested Transaction Model

▶ Sagas

▶Workflows

Recommended Reading
1. Ahmed E. (ed.). Database transaction models for advanced

applications. Data Management Systems. Morgan Kaufmann,

Los Altos, CA, 1992.

2. Ammann P., Jajodia S., and Ray I. Ensuring atomicity of multi-

level transactions. In Proc. IEEE Symp. on Research in Security

and Privacy, 1996, pp. 74–84.

3. Breitbart Y., Deacon A., Schek H.-J., Sheth A., and Weikum G.

Merging application-centric and data-centric approaches to

support transaction-oriented multi-system workflows. ACM

SIGMOD Rec., 22(3):23–30, 1993.

4. Breitbart Y., Garcia-Molina H., and Silberscahtz A. Overview of

multidatabase transaction management. VLDB J., 1(2):181–240,

1992.

5. Chrysanthis P.K. and Ramamritham K. Synthesis of extended

transaction models using ACTA. ACM Trans. Database Syst.,

19(3):450–491, 1994.

6. Garcia-Molina H. Using semantic knowledge for transaction

processing in a distributed database. ACM Trans. Database

Syst., 8(2):186–213, June 1983.

7. Garcia-Molina H. and Salem K. Sagas. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1987, pp. 249–259.

8. Gray J., Lorie R., Putzolu G., and Traiger I. Granularity of locks

and degrees of consistency in a shared database. In Readings in

Database Systems, Morgan Kaufmann, 1998, pp. 94–121.

9. Korth H.F., Kim W., and Bancilhon F. On long duration CAD

transactions. Inf. Sci., 46:73–107, October 1988.

10. Korth H.F., Levy E., and Silberschatz A. A formal approach of

recovery by compensating transactions. In Proc. 16th Int. Conf.

on Very Large Data Bases, 1990, pp. 95–106.

11. Korth H.F. and Speegle G. Formal aspects of concurrency control

in long-duration transaction systems using the NT/PV model.

ACM Trans. Database Syst., 19(3):492–535, 1994.

12. Lynch N., Merritt M., Wiehl W., and Fekete A. Atomic transac-

tions. Data Management Systems. Morgan Kaufmann, 1994.

13. Mohan C., Haderle D., Lindsay B., Pirahesh H., and Schwarz P.

ARIES: A transaction recovery method supporting fine-

granularity locking and partial rollbacks using write-ahead

logging. ACM Trans. Database Syst., 17:94–162, March 1992.

14. Moss J.E.B. Nested Transactions – An Approach to Reliable

Distributed Computing. MIT Press, Cambridge, MA, 1985.

Semantics-based Concurrency Control S 2591
15. Puustjarvi J. Using advanced transaction and workflow models

in composing web services. In Adv. Comput. Sci. Technol., 2007.

16. Soparkar N., Levy E., Korth H.F., and Silberschatz A. Adaptive

commitment for distributed real-time transactions. In Proc. Int.

Conf. on Information and Knowledge Management, 1994,

pp. 187–194.

17. Weikum G. Principles and realization strategies of multilevel

transaction management. ACM Trans. Database Syst., 16(1):

132–180, 1991.
S

Semantics-based Concurrency
Control

KRITHI RAMAMRITHAM
1, PANOS K. CHRYSANTHIS

2

1Indian Institute of Technology Bombay, Mumbai,

India
2University of Pittsburgh, Pittsburgh, PA, USA

Definition
Specifications of data contain semantic information that

can be exploited to increase concurrency. For example,

two insert operations on a multiset object commute and

hence, can be executed in parallel; further, regardless of

whether one operation commits, the other can still

commit. Applying the same rule, two push operations

on a stack object do not commute and hence cannot be

executed concurrently. Several schemes have been pro-

posed for exploiting the semantics of operations have to

provide more concurrency than obtained by the con-

ventional classification of operations as reads or writes.

Key Points
In most semantics-based protocols, conflicts between

operations is based on commutativity, an operation oi
which does not commute with other uncommitted

operations will be made to wait until these conflicting

operations abort or commit. Some protocols use

operations’ return value commutativity, wherein infor-

mation about the results of executing an operation is

used in determining commutativity, and some use the

arguments of the operations in determining whether

or not two operations commute. An example of the

former, two increment operations on a counter object

commute as long as they do not return the new or old

value of the counter. An example of the latter, two

insert operations on a set object commute as long as

they do not insert the same item.

In the scheme reported in [1], non-commuting but

recoverable operations are allowed to execute in parallel;
but the order in which the transactions invoking the

operations should commit is fixed to be the order in

which they are invoked. If oj is executed after oi, and oj is

recoverable relative to oi, then, if transactions Ti and Tj

that invoked oi and oj respectively commit, Ti should

commit before Tj. Thus, based on the recoverability

relationship of an operation with other operations, a

transaction invoking the operation sets up a dynamic

commit dependency relation between itself and

other transactions. If an invoked operation is not

recoverable with respect to an uncommitted operation,

then the invoking transaction is made to wait. For

example, two pushes on a stack do not commute, but

if the push operations are forced to commit in the

order they were invoked, then the execution of the

two push operations is serializable in commit order.

Further, if either of the transactions aborts the other

can still commit.

In [2] authors make an effort to discover, from first

principles, the nature of concurrency semantics inherent

in objects. Towards this end, they identify the dimen-

sions along which object and operation semantics can be

modeled. These dimensions are then used to classify and

unify existing semantic-based concurrency control

schemes. To formalize this classification, a graph repre-

sentation for objects that can be derived from the ab-

stract specification of an object is proposed. Based on

this representation, which helps to identify the semantic

information inherent in an object, a methodology is

presented that shows how various semantic notions ap-

plicable to concurrency control can be effectively com-

bined to improve concurrency. A new source of semantic

information, namely, the ordering among component

objects, is exploited to further enhance concurrency.

Lastly, the authors present a scheme, based on this

methodology, for deriving compatibility tables for

operations on objects.
Cross-references
▶ACID Properties

▶Concurrency Control – Traditional Approaches
Recommended Reading
1. Badrinath B.R. and Ramamritham K. Semantics-based con-

currency control: beyond commutativity. ACM Trans. Database

Syst., 17(1):163–199, 1991.

2. Chrysanthis P.K., Raghuram S., and Ramamritham K. Extracting

concurrency from objects: a methodology. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1991.

2592S Semijoin
Semijoin

KAI-UWE SATTLER

Technical University of Ilmenau, Ilmenau, Germany

Synonyms
Semijoin filter; Hash filter join; Bit vector join; Bloom

filter join; Bloom join

Definition
Semijoin is a technique for processing a join between

two tables that are stored sites. The basic idea is to

reduce the transfer cost by first sending only the pro-

jected join column(s) to the other site, where it is

joined with the second relation. Then, all matching

tuples from the second relation are sent back to the

first site to compute the final join result.
Historical Background
The semijoin technique was originally developed by

Bernstein et al. [3] as part of the SDD-1 project as a

reduction operator for distributed query processing. The

idea of applying hash filtering was proposed by Babb [1]

as well as by Valduriez [9] particularly for specialized

hardware (content addressed file stores and distributed

databasemachines respectively). The theory of semijoin-

based distributed query processing was presented in [2].

In [10] semijoins are also exploited for query processing

on multiprocessor database machines. Results of de-

tailed experimental work on semijoins in distributed

databases were first reported by Lu and Carey [6] as

well as by Mackert and Lohman [7].
Foundations
Semijoin is a join processing technique which was

originally developed for distributed databases. A semi-

join is the ‘‘half of a join’’ and is particularly useful as

a reduction operator.
Relational Definition

Given two relations R(A,B) and S(C,D) with the join

condition R.A = S.C the semijoin R ⋉ S is defined as

follows:

R⋉A¼CS ¼ pattrðRÞðRfflA¼C SÞ

where attr(R) denotes the set of attributes in R. The

semijoin has two important characteristics:
1. It is a reducing operator, because R ⋉ A=C S � R.

2. It is asymmetric, i.e., R ⋉ A=C S 6¼ S ⋉ A=C R.

Semijoin Filtering

The obvious approach of processing a join between a

relation R stored at site 1 and S stored at site 2 is to ship

the smaller relation to the other site and compute the

join locally. This is also called ‘‘ship whole’’ approach.

However, for computing the join one or both of rela-

tions can be replaced by a semijoin with the other

relation, i.e.,:

RfflA¼BS ¼ ðR ⋉A¼CSÞfflA¼CS

¼ RfflA¼CðS ⋉C¼ARÞ
¼ ðR⋉A¼CSÞfflA¼CðS⋉C¼ARÞ

In each case the semijoin acts as a reducer operation

just like a selection operator. Which variant is chosen

for the actual join processing has to decided by esti-

mating the costs.

The principled approach of the semijoin filtering

can be formulated in the following algorithm:

1. At site 1 compute R 0 := pA(R) and send it to site 2

2. At site 2 process the semijoin S 0 := S ⋉ C=AR
0 Note,

relation S 0 contains only tuples matching the join

condition and will appear in the final result. Fur-

thermore, the result relation provides only the

attributes from S

3. Send relation S 0 to site 1

4. At site 1, R⋈A=CS
0 is computed producing a result

equivalent to R⋈A=CS

In Fig. 1 the process is illustrated using an example.

In order to estimate the benefit of the semijoin

compared to the ‘‘ship whole’’ approach it is sufficient

to consider only the transfer costs. Let C denote the

cost for transfer a data unit and size(R) = jRj	 width(R)
the size of the relation derived from the cardinality jRj
and the size width(R) of a tuple in data units. Then, the

cost for the ship whole strategy is

C 	 sizeðSÞ

assuming S is the smaller relation (size(S) < size(R)).

For the semijoin the main costs are in step 1 and

step 3, i.e.,

C 	 sizeðpAðRÞÞ þ C 	 sizeðS⋉C¼ARÞ

Comparing these costs, one can observe that the semi-

join approach is better if

Semijoin. Figure 1. Example of semijoin processing.

Semijoin S 2593

S

sizeðpAðRÞÞ þ sizeðS⋉C¼ARÞ < sizeðSÞ

More exactly due to width(S ⋉ C=A R) = width(S) the

semijoin is the better choice if jS ⋉ C=ARj < jSj, i.e., if
the semijoin is really a reducer. At the other hand, the ship

whole approach is better if nearly all tuples of S contrib-

ute to the join result. In this case, the semijoin has the

disadvantage of the additional transfer of pA(R).
Thus, a decision for one of these join strategies

requires an estimation of the join selectivity factor SF.

For the semijoin the following approximation

SFR⋉A¼CS ¼
jpCðSÞj

jdistinctðCÞj

was proposed by [5], where jdistinct(C)j denotes the
number of distinct values in attribute C.

Bit Vector Filtering

The effort for step 1 of the semijoin can be further

reduced by sending only a compact bitmap representa-

tion of the column values instead of pA(R). This

bitmap or bit vector is built using a hash function [4]

and, thus, the approach is called bit vector filtering,

hash filter join or bloom join.

For a hash function h(v) returning values 0...n a bit

vector B[0...n] containing n þ 1 bits initially set to 0 is

required. For each value v 2 pA(R) the corresponding
bit B[h(v)] is set to 1. Instead of processing the semi-

join S ⋉ R at site 2, this bit vector and the

hash function are used to probe the tuples of S for

matching with the join values of R, i.e., if for a value v 0

of the join attribute B the corresponding bit is set:

B[h(v 0)] ¼ 1. The whole process is shown in the

following algorithm:

1. At site 1: for each v 2 pA(R) set B[h(v)] = 1 and sent

B to site 2

2. At site 2: derive S0 = {t 2 SjB[h(t.C)] = 1}

3. Sent S0 to site 1

4. At site 1: R⋈A=CS
0 is computed producing a result

equivalent to R⋈A=CS

This algorithm is illustrated by an example in Fig. 2

using a simple hash function h(v)¼ vmod 7. Applying

h to column A of relation R produces the vector of

seven bits ([0111000]) which is used to probe

the S-tuples at site 2 by computing h(C). Note, that

√ indicates a match and � a non-match.

Note that a hash function is usually not injective and

therefore the problem of collision occurs, i.e., for differ-

ent values v16¼v2 one can have h(v1) ¼ h(v2). Thus,

useless tuples are sent to site 1 in step 3 which will not

contribute to the final result, e.g. the tuple with C ¼ 8

in this example. This problem can be mitigated by chos-

ing a bit vector of an appropriate length. An alternate

Semijoin. Figure 2. Example of hash filter join.

Semijoin. Figure 3. Comparison of semijoin algorithms.

2594S Semijoin
approach is to use multiple hash functions h1,...,hk
together with the associated bit vectors B1,...,Bk
and to set the bits for a value v in each bit vector:

B1½h1ðvÞ� ¼ 1;B2½h2ðvÞ� ¼ 1;:::;Bk½hkðvÞ� ¼ 1

All these bit vectors are sent to site 2 and used there for

probing. A tuple t 2 S qualifies only to be a candidate

tuple if all bits are set to 1, i.e., if the result of the

bitwise AND is 1. It can be shown that with an increas-

ing k the collision probability comes close to 0.
Key Applications
The main application of semijoin techniques is

distributed join processing, where the semijoin acts as

a reducer. Though, experimental work has shown that

the computational overhead is typically higher than

the savings in transfer cost, particularly the hash filter

strategy is often an attractive alternative.

Variants of the semijoin are also used for processing

queries in heterogeneous databases where a component

database provides only limited query capabilities,

Semijoin Program S 2595
e.g. selections with parameters (also called bindings).

If a set of tuples is sent to the component database

as binding parameter, this corresponds in fact to the

semijoin strategy.

Finally, semijoins are also useful for processing star

queries in datawarehouses. Here, the semijoin technique

is exploited for joining each dimension table with the

fact table (or more exactly an index on the fact table) in

order to collect the rowids of the fact tuples. Then, the

intersection of all rowid sets is computed which is finally

used to retrieve the tuples from the fact table.

Experimental Results
Mackert and Lohman [7] report results of an experimen-

tal analysis of the performance of distributed join stra-

tegies in the R* system. Though, the experiments were

conducted on a hardware which was up-to-date in the

eighties (e.g., a highspeed networkwith 4Mbit/s effective

transfer rate), the general trend of the results is still valid.

Figure 3 shows the results of a comparison of sev-

eral strategies for computing R ⋈ S where the cardi-

nality of R was jRj = 1,000 and the cardinality of S

varied from 100 to 6,000.

In this experiment, the hash filter join clearly out-

performed the other strategies. Only for small cardin-

alities where the inner relation S fits into the buffer, the

semijoin has advantages. The third join variant was

the R* strategy of shipping one relation to the other

site and exploiting local indexes for join processing.
S

Cross-references
▶Distributed Join

▶ Evaluation of Relational Operators

▶ Semijoin Program

Recommended Reading
1. Babb E. Implementing a relational database by means of

specialized hardware. ACMTrans.Database Syst., 4(1):1–29, 1979.

2. Bernstein P.A. and Chiu D-M.W. Using semi-joins to solve

relational queries. J. ACM, 28(1):25–50, 1981.

3. Bernstein P.A., Goodman N., Wong E., Reeve C.L., and Rothnie

Jr. Query processing in a system for distributed databases

(SDD-1). ACM Trans. Database Syst., 6(4):602–625, 1981.

4. Bloom B.H. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM, 13(7):422–426, 1970.

5. Hevner A.R. and Yao S.B Query Processing in distributed data-

base systems. IEEE Trans. Software Eng., 5(3):177–182, 1979.

6. Lu H. and Carey M. Some experimental results on distributed

join algorithms in a local network. In Proc. 11th Int. Conf. on

Very Large Data Bases, 1985, pp. 229–304.
7. Mackert L.F. and Lohman G. R* optimizer validation and per-

formance evaluation for local queries. In Proc. ACM SIGMOD

Int. Conf. on Management on Data, 1986, pp. 4–95.

8. Özsu M.T. and Valduriez P. Principles of distributed database

systems, 2nd edn. Prentice-Hall, 1999.

9. Valduriez P. Semi-join algorithms for distributed database

machines. In J.-J. Schneider (ed.). Distributed Data Bases.

North-Holland, 1982, pp. 23–37.

10. Valduriez P. and Gardarin G. Join and semi join algorithms for a

multiprocessor database machine. ACM Trans. Database Syst.,

9(1):133–161, 1984.
Semijoin Filter

▶ Semijoin
Semi-Structured Data

▶ Semi-structured Data Model
Semi-Structured Query Languages

▶ Semi-structured query language
Semijoin Program

STÉPHANE BRESSAN

National University of Singapore, Singapore,

Singapore

Synonyms
Semijoin reducer

Definition
A semijoin program is a query execution plan for

queries to distributed database systems that uses semi-

joins to reduce the size of relation instances before they

are transmitted and further joined. Yet the reduction

itself requires that a projection of the relation instances

involved in the join onto the join attributes be trans-

mitted. The maximum amount of reduction can be

achieved by a semijoin program called a full reducer.

Full reducers that do not require the computation of

a fixpoint exist for acyclic queries. Fully reducing rela-

tion instances is rarely beneficial. However semijoin

Semijoin Program. Figure 1. Hyper-graph representing R

⋈ (S ⋈ T).

Semijoin Program. Figure 2. Hyper-graph representing

R ⋈ (S ⋈ U).

2596S Semijoin Program
programs partially reducing selected relation instances

may be an effective optimization when the dominant

cost of query execution is communication. Considering

semijoin programs considerably increases the

distributed query optimization search space.

Historical Background
Semijoin programs were first introduced to improve

the performance, input/output operations and commu-

nication of database applications running on database

machines [7] and on parallel database machines [10].

These machine were possibly equipped with specialized

hardware such as filters efficiently implementing semi-

joins. SDD-1 [3] is the first distributed database man-

agement system making use of semijoin programs

for query optimization. Bernstein and Chiu, in [1],

review the algorithms for these early applications. In

these approaches, reduction of relation instances and

the other steps of global and local optimization are

conducted as successive phases of the distributed query

optimization. Stoker et al. [8], revisit semijoin programs

for modern applications and empirically evaluate their

usefulness. The authors propose dynamic programming

query optimization algorithms that integrate the selec-

tion of selected semijoin reducers with join ordering into

a single phase.

The hyper-graph representation of relational

queries and the notion of acyclic queries is from

Fagin [5]. Bernstein et al. introduce comparable

notions [2] and define the notion of full reducer. Sev-

eral authors, see for instance [11] and, more recently

[6], have discussed the relationship between reducers

and constraint satisfaction problems in the context of

database query optimization.

The textbook [4] gives a good overview of semijoin

programs and their use in early distributed database

systems. It describes the use of semijoin programs

in SDD-1 while the presentation in [9] emphasizes the

notions of reducers, full reducers, and reduction

algorithms.

Foundations

Cyclic and Acyclic Query Hyper-Graphs

For the sake of simplicity, queries are considered which

contain natural joins only. The hyper-graph represent-

ing such queries is composed of vertices corresponding

to attributes and hyper-edges corresponding to

relations.
Given, for instance, the three relations R(A, B),

S(A, C) and T(C, B), the query R ⋈ (S ⋈ T) is the

natural join of R with the natural join of S and T. Its

hyper-graph is represented on Fig. 1.

In addition, consider the relation U(C, D). The

query R ⋈ (S ⋈ U) is the natural join of R with the

natural join of S and U. Its hyper-graph is represented

on Fig. 2.

An ear of a hyper-graph is a hyper-edge that con-

tains a vertex that does not belong to any other hyper-

edge. R and U in Fig. 2. are ears. Notice that removing

one ear may create new ears. If all hyper-edges of a

hyper-graph can be removed by iteratively removing

ears, the hyper-graph is said to be acyclic. The hyper-

graph of Fig. 2. is acyclic. The ears U, S and R can be

removed in this order, for instance. The hyper-graph of

Fig. 1. is cyclic: none of the hyper-edges is an ear.

Reducer and Full Reducer

A reducer for a relation R with respect to a query Q is

a program of semijoins with other relations in Q ap-

plied to R, such that R can be replaced by the result of

the program in Q without changes in the result of the

Semijoin Program S 2597
query Q. In other words, the semijoins possibly remove

some tuples that do not contribute to the query Q. The

program R⋉ S is a reducer of R in both queries of Figs.

Fig 1. and Fig 2, respectively. The reader can verify that

with the instances of R and S given in Fig. 3, the tuple R

(1, 2) is removed from R by the semijoin. This tuple

neither contributes to the result of the query of Fig. 1

nor to the result of the query of Fig. 2.

A full reducer is a reducer that eliminates all the

tuples that do not contribute to the result of the query

for any instance of the relations in the query. The pro-

gramR⋉ (S⋉ U) is a full reducer of R for the query of

Fig. 2. For the instances of relations R, S and U given in

Fig. 3, it reduces R to the instance given in Fig. 4.

Fully reducing R for the query of Fig. 1. requires a

fixpoint program that iteratively applies semijoin until

no more tuples can be eliminated. It is clear that the

number of iterations in the fixpoint depends on the

actual instances. For the instances R, S and T in Fig. 3,

the query of Fig. 1. denotes an empty result. R can only

be reduced to the empty relation by if one iteratively
Semijoin Program. Figure 3. Instances of R, S, T, and U.

Semijoin Program. Figure 4. R fully reduced.
applies the semijoins S ⋉ T, R ⋉ S and T ⋉ R until a

fixpoint is reached. In the example the fully reduced

instance of R is empty. This is not always the case.

There always exists a full reducer for acyclic queries

while cyclic queries always require a fixpoint iteration.

Semijoins, Distributed Query Optimization and

Semijoin Programs

Given two relation instances R and S located on two

different servers, the computation of the join R ⋈ S

would normally consist in sending a copy of either one of

the two instances from the server where it resides to the

other server. Depending on the attributes of S, on the join

condition and on the selectivity of the join, the volume

of data transferred might be reduced significantly if the

projection of S onto the join attributes is shipped to the

server on which R is located (or conversely without loss

of generality) where they can be used to compute the

semijoin R ⋉ S. The result is shipped to the site of S

where the original join can be computed.

Example instances of the relations R(A, B) and S

(A, C) allocated to server S1 and S2, respectively, are

given in Fig. 5.

The natural join of R and S is equivalent to the

following expressions.

ðRffl pAðSÞÞffl S¼ ðRffl SÞffl S

The projection pA(S) is executed on S2. The result is

sent to S1 and used to compute the semijoin (S ⋉ R).

The result of the semijoin for the instances of Fig. 5. is

given in Fig. 6. The result of the semijoin is sent to S2.

The join (R ⋉ S) ⋈ S is computed on S2.
Semijoin Program. Figure 5. The instance of relation R is

on site S1 and the instance of relation S is on site S2.

S

Semijoin Program. Figure 6. Semijoin of R and S.

2598S Semijoin Reducer
This plan is valuable if the volume of data in the

projection of S on A plus the volume of data in

the results of its join with R is significantly smaller

than the volume of data in S.

volumeðpAðSÞÞ þ volumeðSfflðpA ðSÞfflRÞÞvolumeðSÞ

In the example, if each integer is 4 bytes, by using a

semijoin, 4 � 4 + 4 � 2 � 4 bytes = 48 bytes are

transmitted, instead of 8 � 2 � 4 bytes = 64 bytes.

Semijoin programs are implementation of (full

or partial) reducers by means of semijoins. Their tra-

ditional application to distributed query optimization

consists in the reduction of fragments before fragments

are shipped from one server to another, as illustrated in

the example above. It is rarely beneficial to fully reduce

relations, even for acyclic queries.

Considering semijoin programs for query optimi-

zation significantly increases the number of candidate

query execution plans and, therefore, the search space

of the optimization algorithm.
Key Applications
Semijoin programs have been designed and used for

the optimization of queries in early distributed data-

base systems, at a time when communication, i.e., data

transmission, was the dominant cost. Although semi-

join programs fell in desuetude, the authors of [8]

argue that they cannot only significantly reduce com-

munication cost in modern distributed database sys-

tems, but also allow a better utilization of resources for

some applications in both centralized and distributed

systems.
Cross-references
▶Bloom Join

▶Distributed Join

▶Distributed Query Processing

▶ Semijoin
Recommended Reading
1. Bernstein P.A. and Chiu D.-M. W. Using semi-joins to solve

relational queries. J. ACM., 28(1):25–40, 1981.

2. Bernstein P.A. and Goodman N. Power of natural semijoins.

SIAM J. Comput., 10(4):751–771, 1981.

3. Bernstein P.A., Goodman N., Wong E., Reeve C.L., and

Rothnie J.B. Query processing in a system for distributed

databases (SDD-1) ACM Trans. Database Syst., 6(4):602–625,

1981.

4. Ceri S. and Pelagatti G. Distributed databases: Principles and

systems. McGraw-Hill, 1984.

5. Fagin R. Degrees of acyclicity for hypergraphs and relational

database schemes. J. ACM, 30(3):514–550, 1983.

6. Lal A. and Choueiry B.Y. Constraint processing techniques

for improving join computation: a proof of concept. In Proc.

1st Int. Symp. on Applications of Constraint Databases, 2004,

pp. 149–167.

7. Ozkarahan E.A., Schuster S.A., and Sevcik K.C. Performance

evaluation of a relational associative processor ACM Trans.

Database Syst., 2(2):175–195, 1977.

8. Stocker K., Kossmann D., Braumandl R., and Kemper A.

Integrating semi-join-reducers into state of the art query pro-

cessors. In Proc. 17th Int. Conf. on Data Engineering, 2001,

pp. 575–584.

9. Ullman J.D. Principles of Database and Knowledge-Base Sys-

tems, Vol. II. Computer Science, 1989.

10. Valduriez P. and Gardarin G. Join and semijoin algorithms for

a multiprocessor database machine. ACM Trans. Database Syst.,

9(1):133–161, 1984.

11. Wallace M., Bressan S., and Provost T.L. Magic checking: con-

straint checking for database query optimization. In Proc.

ESPRIT WG CONTESSA Workshop on Constraint databases

and Applications. LNCS, Vol. 1034. Springer, 1995, pp. 148–166.
Semijoin Reducer

▶ Semijoin Program
Semi-Streaming Model

▶Graph Mining on Streams

Semi-Structured Data S 2599

S

Semi-Structured Data

SERGE ABITEBOUL

INRIA-Saclay, Ile-de-France, Orsay, Cedex, France

Synonyms
XML (almost)

Definition
A semi-structured data model is based on an organiza-

tion of data in labeled trees (possibly graphs) and on

query languages for accessing and updating data. The

labels capture the structural information. Since these

models are considered in the context of data exchange,

they typically propose some form of data serializa-

tion, i.e., a standard representation of data in files.

Indeed, the most successful such model, namely XML

(that is promoted by the W3C), is often confused with

its serialization syntax. XML equipped with query/

update language [10] is a semi-structured data model.

Semi-structured data models are meant to repre-

sent from very structured to very unstructured infor-

mation, and in particular, irregular data. In a

structured data model such as the relational model

[9], one distinguishes between the type of the data

(schema in relational terminology) and the data itself

(instance in relational terminology). In semi-

structured data models, this distinction is blurred.

One sometimes speaks of schemaless data although it

is more appropriate to speak of self-describing data.

Semi-structured data may possibly be typed. For in-

stance, tree automata have been considered for typing

XML. However, semi-structured data applications typ-

ically use very flexible and tolerant typing or some-

times no typing at all.
Historical Background
Before the Web, publication of electronic data was

limited to a few scientific and technical areas. With

the Web and HTML, it rapidly became universal.

HTML is a format meant for presenting documents

to humans. However, a lot of the data published on

the Web is produced by machines. Moreover, it is

more and more the case that Web data are consumed

by machines. Since HTML is not appropriate for

machine processing, this lead in the 1990’s to the

development of semi-structured data models and most

importantly of a new standard for the Web, namely
XML. The use of a semi-structured data model as a

standard for data representation and data exchange on

the Web brought important improvement to the pub-

lication and reuse of electronic data by providing a

simple syntax for data that is machine-readable and

at the same time, human readable (with the help of the

so-called ‘‘style-sheets’’).

Semi-structured data models may be viewed, in

some sense, as bringing together two cultures that

were for a long while seen as irreconcilable, document

systems (with notably SGML [8]) and database sys-

tems (with notably relational systems [9]). From a

model perspective, there are many similarities with

the object database model [5]. Indeed, like XML, the

object database model is also based on trees, provides

an object API, comes equipped with a query language

and offers some form of serialization. A main differ-

ence is that the very rigorous typing of object databases

was abandoned in semi-structured data models.

The articulation of the notion of semi-structured

data may be traced to two simultaneous origins, the

OEM model at Stanford [3,6] and the UnQL model at

U. Penn [4].

Specific data formats had been previously proposed

and even became sometimes popular in specific

domains, e.g. ASN.1 [7]. The essential difference be-

tween data exchange formats and semi-structured data

models is the presence of high level query languages in

the latter. A query language for SGML is considered in

[2]. Languages for semi-structured data models such as

[3,4] then paved the way for languages for XML [10].

Foundations
One can start with an idea familiar to Lisp program-

mers of association lists, which are nothing more than

label-value pairs and are used to represent record-like

or tuple-like structures:

{name: "Alan," tel: 2157786, email:

"agb@abc.com"}

This is simply a set of pairs such as name: "Alan"

consisting of a label and a value. The values may

themselves be other structures as in:

{name: {first: "Alan," last: "Black"},

tel: 2157786,

email: "agb@abc.com"}

This data may be represented graphically with

nodes denoting object, connected by edges to values,

Semi-Structured Data. Figure 1. Tree representation.

2600S Semi-Structured Data
see Fig. 1. Departing from the usual assumption made

about tuples or association lists that labels are unique,

duplicate labels may be allowed as in:

{name:"alan,’’tel:2157786,tel:2498762}

The syntax makes it easy to describe sets of tuples

as in:

{person: {name: "alan," phone: 3127786,

email: "agg@abc.com"},

person: {name: "sara," phone: 2136877,

email: "sara@math.xyz.edu"},

person: {name: "fred," phone: 7786312,

email: "fds@acme.co.uk"}}

Furthermore, one of the main strengths of semi-

structured data is its ability to accommodate variations

in structure, e.g., all the Person tuples do not need to

have the same type. The variations typically consist of

missing data, duplicated fields or minor changes in

representation, as in the following example:

{person: {name: "alan," phone: 3127786,

email: "agg@abc.com"},

person: &314

{name: {first: "Sara," last: "Green"},

phone: 2136877,

email: "sara@math.xyz.edu,"

spouse: &443

person: &443

{name: "fred," Phone: 7786312, Height:

183,

spouse: &314}}

Observe how identifiers (here &443 and &314) and

references are used to represent graph data. It should

be obvious by now that a wide range of data structures,

including those of the relational and object database

models, can be described with this format.

As already mentioned, in semi-structured data, the

conscious decision is made of possibly not caring
about the type the data might have, and serialize it by

annotating each data item explicitly with its descrip-

tion (such as name, phone, etc). Such data are called

self-describing. The term serializationmeans converting

the data into a byte stream that can be easily transmit-

ted and reconstructed at the receiver. Of course

self-describing data wastes space, since these descrip-

tions are repeated for each data item, but more inter-

operability is achieved, which is crucial in the Web

context.

There have been different proposals for semi-

structured data models. They differ in choices such as

labels on nodes versus on edges, trees versus graphs,

ordered trees versus unordered trees. Most important-

ly, they differ in the languages they offer.
Key Applications
The main applications of semi-structured data models

are found on the Web.

First, semi-structured data models and XML are

very useful for data publication. XML is also serving

as a universal data exchange format in a wide variety of

fields, from bioinformatics to e-commerce. It presents

the advantage compared to previous formats that it

comes equipped with an array of available software

such as parsers or programming interfaces. Also, the

flexibility of the typing in semi-structured data models

turns out to be essential for data integration, and in

particular in the integration of heterogeneous data in

mediator systems.
Cross-references
▶Document representations (incl. native and rela-

tional)

▶ Semi-Structured Data Model

▶W3C XML Query Language

▶XML

▶XMLTypes

Semi-Structured Data Model S 2601
Recommended Reading
1. Abiteboul S., Buneman P., and Suciu D. Data on the Web: From

Relations to Semistructured Data and XML. Morgan Kaufmann,

1999.

2. Abiteboul S., Cluet S., Christophides V., Milo T., Moerkotte G.,

and Simeon J. Querying documents in object databases. Int. J.

Digit. Libr., 1(1):5–19, 1997.

3. Abiteboul S., Quass D., McHugh J., Widom J., and Wiener J.

The Lorel query language for semistructured data. Int. J. Digit.

Libr., 1(1):68–88, 1997.

4. Buneman P., Davidson S., and Suciu D. Programming constructs

for unstructured data. In Proc. 5th Int. Workshop on Database

Programming Languages, 1995.

5. Cattell R.G.G. The Object Database Standard: ODMG-93.

Morgan Kaufmann Publishers, 1994.

6. Papakonstantinou Y., Garcia-Molina H., and Widom J. Object

exchange across heterogeneous information sources. In Proc.

11th Int. Conf. on Data Engineering, 1995, pp. 251–260.

7. Specification of Abstraction Syntax Notation One (ASN.1), ISO

Standard 8824, Information Processing System, 1987.

8. Standard Generalized Markup Language (SGML), ISO 8879,

1986.

9. Ullman J.D. Principles of Database and Knowledge-Base

Systems, Vol. I: Classical Database Systems. Computer Science,

1988.

10. XQuery. XQuery 1.0: An XML query language. http://www.w3.

org/TR/Xquery
S

Semi-Structured Data Model

DAN SUCIU

University of Washington, Seattle, WA, USA

Synonyms
Semi-Structured data

Definition
The semi-structured data model is designed as an evo-

lution of the relational data model that allows the

representation of data with a flexible structure. Some

items may have missing attributes, others may have

extra attributes, some items may have two ore more

occurrences of the same attribute. The type of an

attribute is also flexible: it may be an atomic value, or

it may be another record or collection. Moreover, col-

lections may be heterogeneous, i.e., they may contain

items with different structures. The semi-structured

data model is self-describing data model, in which

the data values and the schema components co-exist.

Formally:
Definition 0.1

A semi-structured data instance is a rooted, directed

graph in which the edges carry labels representing schema

components, and leaf nodes (i.e., nodes without any

outgoing edges) are labeled with data values (integers,

reals, strings, etc.).

There are two variations of semi-structured data,

depending on how one interprets equality. In the ob-

ject exchange model (OEM) introduced in Tsimmis

[8], each node in the data has its own identity, and

thus two data instances are ‘‘equal’’ if and only if they

are isomorphic, and this corresponds to the bag se-

mantics of collections. In the value-based model intro-

duced in UnQL [2], two data graphs are equal if they

are bisimilar; this corresponds to the set semantics of

collections.

A variation of the semi-structured data model is

one in which labels are placed on nodes rather than

edges.
Historical Background
The term semi-structured data was introduced by

Luniewski et al. in 1993 in a system called Rufus

[6,9]. In 1995, Papakonstantinou et al. introduced a

data model for semi-structured data (called object ex-

change model, OEM) for a system for integrating het-

erogeneous databases called Tsimmis [5,8]. In 1995,

Buneman et al. introduced a data model for biological

data where equality is based on bisimulation [1–3]. The

connection between the semi-structured datamodel and

XML was described in 1999 by Deutsch et al., who

proposed a query language for XML called XML-QL [4].

Foundations
Semi-structured data are schema-less or self-describing.

Both the data and its schema is described directly using

a simple syntax for sets of label-value pairs, similar to

association lists in Lisp. For example:

{name: "Alan", tel: 2157786, email:

"agb@abc.com"}

This is simply a set of pairs such as name: "Alan"

consisting of a label and a value. The values may

themselves be other structures as in

{name: {first: "Alan", last: "Black"},

tel: 2157786,

email: "agb@abc.com"

}

Semi-Structured Data Model. Figure 1. Graph representations of simple structures.

r1 a b c

a1 b1 c1

a2 b2 c2

r2 c d

c2 d2

c3 d3

c4 d4

2602S Semi-Structured Data Model
One may represent this data graphically as a node that

represents the object, connected by edges to values, see

Fig.1.

Unlike in traditional tuples or association lists the

labels are not necessarily unique, and duplicate labels

are allowed, as in:

{name: "alan, tel: 2157786, tel:

2498762}

The syntax makes it easy to describe sets of tuples as in

{person:

{name: "alan", phone: 3127786,

email: "agg@abc.com"},

person:

{name: "sara", phone: 2136877,

email: "sara@math.xyz.edu"},

person:

{name: "fred", phone: 7786312,

email: "fds@acme.co.uk"}

}

Person tuples do not necessarily have to be of the same

type. One of the main strengths of semi-structured data

is its ability to accommodate variations in structure.

While in principle semi-structured data could become

a completely random graph, data instances that are

usually found in practice are ‘‘close’’ to some type,

and have only minor variations from that type. The

variations typically consist of missing data, duplicated

fields or minor changes in representation, as in the

example below.

{person:

{name: "alan", phone: 3127786,

email: "agg@abc.com"},

person:

{name: {first: "Sara", last:

"Green"},

phone: 2136877,
email: "sara@math.xyz.edu"

},

person:

{name: "fred", Phone:

7786312 Height: 183}

}

Representing relational databases. It is easy to represent

every relational database as a semi-structured data,

which happens to have a regular structure. For example

the relational database instance:
can be described as a set of rows:

{r1: {row: {a: a1, b: b1, c: c1},

row: {a: a2, b: b2, c: c2}

},

r2: {row: {c: c2, d: d2},

row: {c: c3, d: d3},

row: {c: c4, d: d4}

}

}

It is worth noting that this is not the only possible repre-

sentation of a relational database. Figure 2 shows tree

diagrams for the syntax given above and for two other

representations of the same relational database.

Semi-Structured Data Model. Figure 2. Three representations of a relational database.

Semi-Structured Data Model S 2603

S

Representing object databases. Consider for example

the following collection of three persons, in which

Mary has two children, John and Jane. Object iden-

tities may be used to construct structures with refer-

ences to other objects.

{person: &o1{name: "Mary",

age: 45,

child: &o2,

child: &o3

},

person: &o2{name: "John",

age: 17,

relatives: {mother: &o1,

sister: &o3}

},

person: &o3{name: "Jane",

country: "Canada",

mother: &o1

}

}

The presence of a label such as &o1 before a structure

binds &o1 to the identity of that structure. This makes

it possible to use that label – as a value – to refer to that

structure. In this graph representation it is allowed to

build graphs with shared substructures and cycles, as

shown in Fig.3. The name &o1, &o2, &o3 are called

object identities, or oid’s. In this figure, arrows are

placed on the edges to indicate the direction, which is

no longer implicit, like in the tree-like structure.

The object exchange model (OEM) was explicitly

defined for the purpose of integrating heterogeneous
data sources in Tsimmis. An OEM object is a quadru-

ple (label, oid, type, value), where label is a

character string, oid it the object’s identifier, type is

either complex, or some identifier denoting an atomic

type (like integer, string, gif-image, etc.). When

type is complex, then the object is called a complex

object, and value is a set (or list) of oid’s. Otherwise

the object is an atomic object and the value is an

atomic value of that type. Thus OEM data are essen-

tially a graph, but in which labels are attached to nodes

rather than edges.

Equality in semi-structured data. A shallow notion

of equality simply checks whether two object identifiers

are the same, or two data values are equal. Beyond that a

deep notion of equality is needed, which addresses the

following question: given two semi-structured data

instances (i.e., two graphs), do they represent the same

data? This question is fundamental in query optimiza-

tion, since it allows replacement of one query expression

with another if the instances they return are equal.

Two notions of deep equality have been considered.

One is graph isomorphism: two data instances are equal

if there exists an isomorphism that preserves the edge

labels and the data values.
Definition 0.2

An isomorphism between two semi-structured data

instances D1, D2 is a function f mapping the nodes of

D1 to the nodes of D2 such that:

1. f is a bijection.

2. f maps the root of D1 to the root of D2.

Semi-Structured Data Model. Figure 3. A cyclic structure.

2604S Semi-Structured Data Model
3. If there exists an edge from a node x to a node y in D1

then there exists an edge from the node f (x) to the

node f (y) in D2 and both edges have the same label.

4. Conversely, if there exists an edge from f (x) to f (y) in

D2 then there exists an edge (It follows from the

previous condition that the two edges have the

same label.) from x to y in D2.

5. If a leaf node x in D1 is labeled with a data value v

then the node f (x) in D2 is labeled with the same data

value (It follows from the previous conditions that

f (x) is also a leaf node.)v.

In the first interpretation two data instances are

equal if there exists an isomorphism between them.

For example the two instances {a : 3, b : 5, c : 7, b : 9}

and {b : 5, b : 9, a : 3, c : 7} are equal, because they are

isomorphic. On the other hand, the instances {a : 3, a :

3, b : 5} and {a : 3, b : 5} are not equal. Thus, when

restricted to collections this notion of equality corre-

sponds to the bag semantics.

The second notion of equality is based on bisimula-

tion: two data instances are equal if there exists a

bisimulation:

Definition 0.3

A bisimulation between two semi-structured data

instances D1, D2 is a relation R(x, x 0) between the

nodes in the two instances s.t.
1. If r1 is the root node in D1 and r2 is the root node in

D2, then R(r1, r2).

2. If R(x, x 0) holds, and D1 contains an edge (x, y) with

label a, then there exists an edge (x 0, y 0) labeled a in

D2, and R(y, y 0) holds.

3. Symmetrically, if R(x, x 0) holds and D2 contains

an edge (x 0, y 0) with label a then there exists an

edge (x, y) in D1 labeled a, and R(y, y 0) holds.

4. If R(x, x 0) holds and the node x in D1 is a leaf node, and

is labeled with the atomic value v then the node x 0 in D2

is also a leaf node and labeled with the same atomic

value v (the symmetric property follows automatically).

In the second interpretation, two semi-structured

data instances are said to be equal if there exists a

bisimulation between them. For example {a : 3, a : 3,

b : 5} is equal to {a : 3, b : 5} because, denoting r, n1,

n2, n3 the nodes in the first graph and r0, n1
0, n2

0

the nodes in the second graph, the relation R(r, r0),

R(n1, n1
0), R(n2, n1

0), R(n3, n2
0) is a bisimulation. Thus,

the equality based on bisimulation corresponds to the

set semantics on collections.

If two data instances are isomorphic, then there

always exists a bisimulation between them; the con-

verse does not always hold. Checking whether two data

instances are isomorphic is a computationally hard

problem. By contrast, checking if two data instances

are bisimilar can be done efficiently [7].

Semi-Structured Database Design S 2605

S

Edge vs. node labeled graphs. The model described

here is that of an edge-labeled graph. A minor variation

is one in which nodes are labeled, and this has gained a

lot of popularity since the introduction of XML.

Key Applications
The initial motivation for the introduction of semi-

structured data was to support the integration of het-

erogeneous data, and to model non-standard data

formats, especially in the bioinformatics domain, s.a.

ACEDB and ASN.1. After the introduction of XML, this

became the main application of semi-structured data.

Cross-references
▶ Semi-Structured Data

▶ Semi-Structured Query Languages

▶XML

Recommended Reading
1. Buneman P., Davidson S., and Suciu D. Programming constructs

for unstructured data. In Proc. Workshop on Database Program-

ming Languages, 1995.

2. Buneman P., Davidson S., Hillebrand G., and Suciu D. A query

language and optimization techniques for unstructured data. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1996,

pp. 505–516.

3. Buneman P., Fernandez M., and Suciu D. UNQL: A query

language and algebra for semistructured data based on structural

recursion. VLDB J., 9(1):76–110, 2000.

4. Deutsch A., Fernandez M., Florescu D., Levy A., and Suciu D.

A query language for XML. In Proc. 8th Int. World Wide Web

Conference, 1999, pp. 77–91.

5. Garcia-MolinaH., Papakonstantinou Y., Quass D., Rajaraman A.,

Sagiv Y., Ullman J., and Widom J. The TSIMMIS project:

integration of heterogeneous information sources. J. Intell. Inf.

Syst., 8(2):117–132, March 1997.

6. Luniewski A., Schwarz P., Shoens K., Stamos J., and Thomas J.

Information organization using Rufus. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1993, pp. 560–561.

7. Paige R. and Tarjan R. Three partition refinement algorithms.

SIAM J. Comput., 16:973–988, 1987.

8. Papakonstantinou Y., Garcia-Molina H., and Widom J. Object

exchange across heterogeneous information sources. In Proc.

11th Int. Conf. on Data Engineering, 1995, pp. 251–260.

9. Shoens K., Luniewski A., Schwarz P., Stamos J., and Thomas II J.

The Rufus system: Information organization for semi-structured

data. In Proc. 19th Int. Conf. on Very Large Data Bases, 1993,

pp. 97–107.
Semi-Structured Database

▶Graph Database
Semi-Structured Database Design

GILLIAN DOBBIE
1, TOK WANG LING

2

1University of Auckland, Auckland, New Zealand
2National University of Singapore, Singapore,

Singapore

Synonyms
XML Database Design

Definition
From a requirements document, a database designer

distills the real world constraints and designs a data-

base schema. While the design process for structured

data is well defined, the design process for semi-

structured data is not as well understood. What is a

‘‘good’’ design for semi-structured databases that cap-

tures real world constraints, prevents data redundancy

and update anomalies, and allows typical queries to

execute quickly?
Historical Background
There was a lot of research into the design of relatio-

nal databases in the 1970s, and it was found that the

design of relational databases involves a trade off be-

tween the speed of execution of queries and the updating

anomalies caused by maintaining redundant data when

updates occur. During logical schema design normaliza-

tion algorithms are used to reduce redundancy, and

during physical design to improve performance some

redundancy may be reintroduced, views can be created

over the schema, and indexes may be introduced.

Semi-structured data differs from relational data in

a number of ways: it is hierarchical, the queries that are

posed are more complex, a database may or may not

have a schema, and there is no generally agreed upon

mathematical foundation. Because of these differences,

there is a need for a different design process for semi-

structured databases.

Foundations
Consider the XML document in Fig. 1a. It models

the courses that students are taking within a depart-

ment, and the grade of each student taking a course.

What is the best way to organise this information?

There are various possibilities, such as modeling

course as a subelement of student, or modeling student

as a subelement of course. While both of these options

Semi-Structured Database Design. Figure 1. An original and normalized XML Document.

2606S Semi-Structured Database Design
seem quite natural, Fig. 1a demonstrates that these

options involve repeating information. The details of

the course, i.e., title in this example, are repeated

for each student that takes that course. Consequently,

if the title of a course changes, it must be updated in

every title element of the course. Brandin [2] describes

a simple way to define XML documents, in which

the modeler designs simple forms entailing the infor-

mation to be modeled, and uses the form headings

as tags and the entries on the form as data. While

the simplicity of methods like this is appealing, they

can lead to similar anomalies that arise with relational

databases.

In order to ensure a ‘‘good’’ design for semi-

structured databases, the following steps must be

followed:

1. Choose a data model that is able to represent the

semantics necessary for modeling semi-structured

data.

2. Capture the semantics of the data that will be

stored, either by:
(a) Extracting the schema from a set of docu-

ments and discovering the semantics in a data

model, or

(b) Studying the constraints in the real world and

capturing them in a data model.

3. Reorganize the schema into a normalized schema

to avoid replication of data in the XML documents.

4. Consider the typical query set and reorganize the

schema to improve the performance of typical

queries, perhaps by introducing controlled replica-

tion of data.

5. Consider the users of the system and define views

over the data for individual users or groups of users.

A data model for semi-structured database design needs

to model the logical structure of the schema from a real

world perspective, much like an ER diagram [4], while

alsomodeling the physical aspects that are representative

of XML documents, such as the hierarchical relationship

between elements. This enables a designer to first model

the real world constraints on the data, and using the

same diagram, capture the extra constraints that are

Semi-Structured Database Design S 2607
introduced with XML. For example, consider again the

scenario captured in Fig. 1a. From a real world perspec-

tive the data model must model the relationship

between students and courses, and from an XML per-

spective the data model must be able to capture wheth-

er student should be modeled as a subelement of

course or vice-versa. The data model must also capture

the participation constraints between elements, be-

cause they also change the way the data are modeled.

For example, there is a many-to-many relationship

between courses and students and this will be modeled

differently than a one-to-many relationship say be-

tween department and employees. In order to capture

these requirements, the data model must be able to

model n-ary relationship sets, cardinality, participation

and uniqueness constraints, ordering, irregular and het-

erogeneous structures, for both data- and document-

centric data. One such data model is ORA-SS (Object

Relationship Attribute Data Model for Semi-Structured

Data) [6].

One of the advantages of semi-structured data

is that it is self-describing, and so it does not require a

schema. However, after XML was introduced, it was

soon realized that schemas offer many benefits, and as

a consequence schema languages have been defined for

XML recently [3,8]. Some semantics of a document can

be extracted from the schema if one exists or extracted

from the document. In [7,9] and Chap. 4 of [6], the

authors have described how an approximate schema
Semi-Structured Database Design. Figure 2. A symmetric r
can be extracted from semi-structured data. The algo-

rithms generally follow two steps. The first step extracts

the structural information, such as elements and their

subelements. The second step infers semantics from the

original document, such as key attributes, attributes of

object classes vs attributes of relationship types, and

participation constraints. Normalization is used to

identify and reduce anomalies, and a key ingredient in

normalization algorithms is functional dependencies.

Consider the real world constraints that should be mod-

eled in the document in Fig. 1a. There is a many-to-

many relationship between elements student and

course, attributes stuNo and stuName belong to student,

attributes code and title belong to course, and attribute

grade belongs to the relationship type between student

and course. These relationships may be modeled as

functional dependencies, such as stuNo ! stuName,

code ! title, and {stuNo,code} ! grade. Yu and Jagad-

ish [10] describe a system, DiscoverXFD, which given

an XML document, discovers XML functional depen-

dencies and data redundancies. However, multi-valued

dependencies (MVDs) are also very important in rela-

tional database design, such as in the definition of 4NF.

Like with relational databases, functional dependencies

cannot describe all redundancy in XML databases, so

MVDs must also be considered.

The motivation for normalization algorithms

for semi-structured databases is similar to that for

relational databases, namely the identification of
elationship in an XML Document for department.

S

2608S Semi-Structured Database Design
redundant data that lead to update anomalies. The

normalization algorithms must recognize the hierar-

chical structure of semi-structured data, the participa-

tion constraints of both parents and children in

hierarchical relationships, and whether an attribute is

an attribute of an object class or the attribute of a

relationship type. The algorithm described in [1] con-

verts an arbitrary DTD into a well-designed one, using

path functional dependencies. They show that the nor-

mal form that they define, XNF, generalizes BCNF for

XML documents. This algorithm works with the se-

mantics available in the DTD along with additional

functional dependencies, however it does not consider

MVDs, so documents in XNF may still contain redun-

dancy. Using the semantics expressed in ORA-SS, it is

possible to capture the multi-valued attributes of ob-

ject classes and relationship types, avoiding the redun-

dancy because of the existence of multi-valued

attributes or MVDs. Note each multi-valued attribute

of an object class is a MVD, e.g. if a student can have

many hobbies, studNo ! hobby. As hobby is not

involved in any functional dependencies, XNF will

not be able to detect such redundancy but the normal-

ization algorithm defined in [6] deals with this case.
Semi-Structured Database Design. Figure 3. Views over the
Figure 1b shows a normalized version of the XML

document shown in Fig. 1a. Note that the details of

each course are no longer stored for each student that

takes the course. These details are extracted and stored

in a course element which is a sibling to the student

elements. A new element, cGrade, is introduced to

record the grade a student scored in a course. The

element code in cGrade is effectively a reference to

course.

During physical database design, the database

schema is tuned to ensure that queries, which are

likely to be asked often, will run faster. This can be

done by reintroducing redundant data in a controlled

way, considering how indexes will improve execution

times, or by introducing views. There has not been a

lot of work carried out in the area of physical data-

base design or database tuning for semi-structured

databases. When reintroducing redundant data, it is

necessary to consider both the cost of storage and the

cost of updating the redundant data. Consider for

example, the XML document in Fig. 1a. The infor-

mation that is repeated is the title of the course, and

it is repeated for every student taking the course. In

this case, the title of a course is not likely to be
XML Document in Fig. 1a.

Semi-Structured Database Design S 2609

S

updated very often. If users were expected to ask a

query often that lists the students name and the titles

of all the courses a student is taking, then with this

profile the designer would opt to retain this level of

redundancy. In fact, title is an example of a relatively

stable attribute, that is an attribute that is updated

infrequently. For relatively stable attributes or relative-

ly stable relationship types [5] one needs to consider

only the cost of extra storage since these data are not

updated often. For all replications ensure that the

necessary controls are put in place to maintain the

integrity of the data. For example, for relatively stable

attributes and relationship types, it is necessary to

enforce that replicated data are consistent when the

data are inserted.

In some instances, it is not obvious whether to

embed one object class inside another or vice versa.

Consider the relationship in Fig. 1a. If it is equally

likely that users will ask for all the students by course,

and all the courses by student then the best design

may be a symmetric relationship type. For the pairing

required for symmetric relationship types, a reference

is duplicated. The consistency of this duplication

must be enforced when information is inserted, de-

leted or updated. A symmetric relationship type is

modeled in Fig. 2. In this case, within the student

element a reference to course is stored and in the course

element a reference to student is stored. The grade is

stored in both student and course. This approach is

similar to a bidirectional relationship with physical

pairing in IBM’s Information Management System

(IMS).

When views are defined, one of the challenges

is ensuring that the view over the underlying data is

valid. None of the systems available today check the

validity of a view against the semantics of the underly-

ing data. In [6], a set of operators is described that can

be used to define views, along with guidelines of how

the operators can be used to produce valid views. For

example, a view over the XML document in Fig. 1a

is shown in Fig. 3a. This view is very simple, and

was created by extracting all the course elements from

the original document. However, this view is invalid

because although it lists course codes with their titles,

each course element also has a grade attached to

it. Having removed the context of student, the infor-

mation about who the grade was assigned to is lost.

The operators that are needed to create views are select,

drop, join, and swap. The select operator filters
elements for which a particular condition is true and

does not alter the schema. For example, a view over the

XML document in Fig. 1a can be created using

the select operator of all students and courses where

the student achieved an ‘‘A’’ grade. The drop operator

drops elements or attributes from the source schema.

For example, it is possible to create a view by dropping

the student elements from the XML document in

Fig. 1a. However, it is important that if an element

which represents an object class is dropped, then all

its attributes or attributes of relationship types in

which it participates must also be dropped, otherwise

it is possible to create an invalid view such as that

shown in Fig. 3a. Note that grade is an attribute of

the relationship type between the object classes student

and course and should be removed when student is

dropped. The join operator joins two elements where

one contains a foreign key of another. For example, if

the underlying schema is that shown in Fig. 2 it would

be possible to create a view that joins the course and

student elements in Fig. 2 to improve the performance

of queries that ask for the courses taken by a student

with a specific stuNo. In order to guarantee the valid-

ity of the drop operator it is necessary to ensure that

all ancestors and descendents of the object class

being joined are dealt with appropriately. The swap

operator exchanges the position of a parent element

with a child element. For example, the XML docu-

ment in Fig. 1a embeds course elements in student

elements. In order to answer the query that asks for

the students taking a particular course, it is possible to

use the swap operator to create a view where student

elements are embedded in course elements. When the

swap operator is used, the relationship types must be

updated, and the attributes that belong to the relation-

ship types must also be moved to the appropriate

place. The relationship types that need to be updated

are those among the elements involved in the swap.

Figure 3b shows a valid view over the XML document

in Fig. 1a, created by swapping the object classes stu-

dent and course.

Key Applications
The motivation for studying this area is to ensure that

databases that are designed to store semi-structured

data will always contain consistent data, and will al-

ways provide answers to queries in an acceptable time.

The people that will benefit most from this research are

the users of semi-structured database systems.

2610S Semi-Structured Query Languages
Future Directions
There are a number of key areas that deserve further

investigation:

 Definition of a standardized data model for semi-

structured data

 Investigation and comparison of the normalization

algorithms that have been proposed for semi-

structured data

 Investigation and experimentation of physical da-

tabase design techniques for semi-structured data

 Case studies that show how well the research works

in practice

 Cost models for queries over XML databases

Cross-references
▶ Entity Relationship Model

▶Normal Form ORA-SS Schema Diagrams.

▶Object Relationship Attribute Model for semi-

structured Data

▶Database Design

▶ Semi-structured Data Models

▶XML

▶ Semi-structured Query Languages

Recommended Reading
1. Arenas M. and Libkin L. A normal form for XML documents.

ACM Trans. Database Syst., 29(1):195–232, 2004.

2. Brandin C. Information Modeling with XML. In A. Chaudhri,

A. Raschid, and R. Zicari (ed.). XML Data Management.

Addison-Wesley, 2003, pp. 3–17.

3. Bray T., Paoli J., and Sperberg-McQueen C.M. Extensible mark-

up language (XML) 1.0., 2nd edn. October 2000.

4. Chen P.P. The entity-relationship model – toward a unified

view of data. ACM Trans. Database Syst., 1(1):9–36, 1976.

5. Ling T.W., Goh C.H., Lee M.-L. Extending classical functional

dependencies for physical database design. Inf. & Software Tech.,

38(9):601–608, 1996.

6. Ling T.W., Lee M.L., and Dobbie G. Semistructured Database

Design. Springer, 2005.

7. Nestorov S., Abiteboul S., and Motwani R. Extracting schema

from semistructured data. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1995, pp. 295–306.

8. Thompson H.S., Beech D., Maloney M., and N. Mendelson

(eds.). XML Schema Part 1: Structures. May 2001. http://www.

w3.org/TR/xmlschema-1.

9. Wang Q.Y., Yu J.X., and Wong K.F. Approximate graph

schema extraction for semi-structured data. In Advances in

Database Technology, Proc. 7th Int. Conf. on Extending Data-

base Technology, 2000, pp. 302–317.

10. Yu C. and Jagadish H.V. Efficient discovery of XML data redun-

dancies. In Proc. 32nd Int. Conf. on Very Large Data Bases, 2006,

pp. 103–114.
Semi-Structured Query Languages

DAN SUCIU

University of Washington, Seattle, WA, USA

Synonyms
Semi-Structured query languages
Definition
A query language for semi-structured data allows a

user to extract items from a semi-structured data in-

stance, or to transform it into another semi-structured

data instance. The first type of expressions are called

queries, the latter kind of expressions are interchange-

ably called queries or transformations. Query languages

can be classified along several dimensions:

1. Expressive power. What kind of queries or transfor-

mations can they express?

2. Querying vs. restructuring. Some query languages

allow only the extraction of items from the data,

others allow the data to be transformed.

3. Compositionality. Can the output of a query be used

as input in another query expressed in the lan-

guage, and is the composed transformation still

expressible in the same language? Query languages

that are restricted to extraction only are not com-

positional, because the type of their outputs are

not semi-structured data instances. Transformation

languages may fail to be compositional if the

composition of two queries cannot be expressed

in the same language.
Historical Background
Query languages for semi-structured data were intro-

duced almost as early as the data model itself. Lorel [1]

was one of the first query language for semi-structured

data, and it introduced the concept of regular path

expressions for navigating paths with partially known

structure. The language UnQL [2] emphasized trans-

formations over queries, and introduced structural

recursion as a central paradigm for transforming semi-

structured data. MSL [5] introduced Skolem functions

in a logic-based language for transforming semi-

structured data: these were later used extensively in

Strudel [4], a system for declarative specification of

Web sites. The first language to apply the principles

Semi-Structured Query Languages S 2611

S

of semi-structured data query languages to XML was

XML-QL [3].

Foundations
Path expressions. A node sequence of edge labels l1.

l2,...,ln is called a path expression. In its most general

form the path expression denotes all pairs of nodes

(x, y) such that there exist edges (x, l1, v1),(v1, l2, v2),...,

(vn�1, ln, y). When used in a query language, x is either

specified explicitly or assumed by default to be the root

node. Thus, a path expression denotes a set of nodes,

namely the set of nodes y, given the fixed x.

A regular path expression is

e ::¼ l j E j � j e‘:’e j ‘ð’e‘Þ’ j e‘j’e j e‘�’ j e‘þ’ j e?

where l ranges over label, e over expressions and e is the
empty expression. The expression e∗ stands for 0 or

more repeats of e, i.e., for

E j e j e:e j e:e:e j e:e:e:e j : : :

Also, e+ stands for one or more repeats, and e? for 0 or

one occurrence of e.

(Regular) path expression form a simple query

language for semi-structured data, or can be embedded

in a simple query syntax to define such a language. For

example the query below returns all nodes X accessible

by the path biblio.book.author.

% Query q1

select X

from biblio.book.author X

Note that a query language consisting of path expres-

sions is not compositional, since queries return sets

of nodes, not pieces of semi-structured data.

Patterns. A convenient way to combine multiple

path expressions is through patters. Consider the fol-

lowing query, returning all titles that were published

before 1979:

% Query q2:

select X

from biblio.paper T, T.title X, T.year Y

where Y < 1979

Note that here the expression T.title starts from the

node T rather than from the root. The query can be

written more concisely as:

% Query q3:

select X
from {biblio: {paper: {title: X, year:

Y}}}

where Y < 1979

Here biblio: paper: title: X, year:Y is a

pattern.

Constructors. To return semi-structured data rather

than nodes a query language needs to have constructors.

For example the expressions authorResult:X and

result:{title X, author Z} are constructors

below:

% Query q4:

select authorResult:X

from biblio.book.author X

% Query q5:

select result:{title: X, author: Z}

from biblio.paper T, T.title X, T.year

Y, T.author Z

where Y < 1979

More complex constructors can built by nesting

subqueries inside constructors, as in:

% Query q6:

select row:(select author: Y

from X.author Y)

from biblio.book X

% Query q7:

select row: (select author: Y, title: T

from X.author Y

X.title T)

from biblio.paper X

where "Roux" in X.author

Declarative semantics. The formal semantics of a query

is given in three steps. In the first step a set of bindings

to all variables is computed, which results in a relation

that has one column for every variable in the query,

and one row for every binding of these variables. In the

second step the predicates in the where clause are

applied to select a subset of the rows. In the third

step, the constructor is applied to each remaining

row. For example in query q6 above, the effect of the

first step is to construct a relation of tuples of the form

(t, x, y, z), where t, x, y, z are nodes or atomic values in

the input databases. The second step selects only those

tuples for which z < 1979. The third step constructs a

partial graph for each remaining tuple (t, x, y, z) con-

sisting of a root (common among all these graphs), an

2612S Semi-Structured Text Retrieval
edge labeled result, and from there two more edges

labeled title and author.

Skolem functions. A Skolem function takes as input

some arguments and constructs as output a fresh new

node. The essential property of a Skolem function is

that if called again at a later time, on the same argu-

ments, then it returns the same node for those argu-

ment, not a new one. This allows for duplicate

elimination, grouping, and the construction of cyclic

outputs. The query below is a standard grouping query

that groups publications by their years:

% Query q8:

select resultYear f(Y): {paper:

{title: X, author: Z}

from biblio.paper T, T.title X, T.year

Y, T.author Z

Here f(Y) is the Skolem function. Without it, the query

would construct a separate resultYear node for

every binding of the variables T, X, Y, and Z. The

Skolem function determines the query to construct

only one node for every year, thus performing a dupli-

cate elimination on years.

The combination of Skolem functions and regular

path expressions leads to transformation languages

that are not compositional. Consider a semi-structured

data instance that represents a binary table R:

R: { row: {a: 4, b:8},

row: {a: 3, b:4},

row: {a: 3, b:9},

. . .

}

It is known that the relational calculus cannot express

the transitive closure of R. The same holds for the

language described so far, since its only addition

to the relational calculus consists of regular path

expressions, but on this simple data instance these

expressions can only be applied to very short paths,

namely R.row.a and R.row.b, and therefore do not

give extra power. However, the transitive closure can be

expressed by first transforming the relation R into a

graph, i.e., making all atomic values into nodes, then

using a regular expression on this graph to compute

the transitive closure. The two queries are

% Query q9:

select node f(X): {value: X, next: f(Y)}

from row T, T.a X, T.b Y
% Query q10:

select result: {a: X, b:Y}

from node U, U.value X, U.next* V, V.

value Y

The first query constructs for every value x of the a

attribute a new node f(x) with two outgoing edges:

one to a leaf holding the value x, and the other to

the node f(y). Thus, the edges from f(x) to f(y) in the

output graph materialize the implicit graph given by

the binary relation R. The second query uses the regu-

lar expression next* to compute the transitive closure

on this graph.

Key Applications
See applications for semi-structured data.

Cross-references
▶ Indexing Semi-Structured Data

▶ Semi-Structured Data

▶ Semi-structured Data

▶ Semi-structured Data Model

▶Top-k XML Query Processing

▶XML

▶XMLTree Pattern, XMLTwig Query

▶XPath/XQuery
Recommended Reading
1. Abiteboul S., Quass D., McHugh J., Widom J., and Wiener J. The

Lorel query language for semistructured data, 1996. http://www-

db.stanford.edu/lore/.

2. Buneman P., Davidson S., and Suciu D. Programming constructs

for unstructured data. In Proc. Workshop on Database Program-

ming Languages, 1995.

3. Deutsch A., Fernandez M., Florescu D., Levy A., and Suciu D.

A query language for XML. In Proc. 8th Int. World Wide Web

Conference, 1999, pp. 77–91.

4. Fernandez M., Florescu D., Kang J., Levy A., and Suciu D. Catch-

ing the boat with Strudel: experience with a Web-site manage-

ment system. In Proc. ACMSIGMOD Int. Conf. onManagement

of Data, 1998, pp. 414–425.

5. Papakonstantinou Y., Abiteboul S., and Garcia-Molina H. Object

fusion in mediator systems. In Proc. 22th Int. Conf. on Very

Large Data Bases, 1996, pp. 413–424.
Semi-Structured Text Retrieval

▶Biomedical Scientific Textual Data Types and

Processing

Semi-Supervised Learning S 2613
Semi-Supervised Classification

▶ Semi-Supervised Learning
Semi-Supervised Clustering

▶Clustering with Constraints
S

Semi-Supervised Learning

SUGATO BASU

Google Inc, Mountain View, CA, USA

Synonyms
Semi-supervised classification

Definition
In machine learning and data mining, supervised algo-

rithms (e.g., classification) typically learn a model for

predicting an output variable (e.g., class label for classi-

fication) from some supervised training data (e.g., data

instances annotated with both features and class labels).

These algorithms use various techniques of increasing

the accuracy of predicting the training data labels, by

minimizing a loss function that measures the prediction

error on the training data. They also use different regu-

larization methods to ensure that the model does not

overtrain on the training data, thereby having good

prediction performance on unseen test data.

In semi-supervised learning, unlabeled data (i.e.,

data instances with only features) are used along with

the labeled training data, in an effort to improve the

accuracy of the models on the training data as well as

provide better generalization performance on unseen

data. This paradigm is very useful in practical applica-

tions, where unlabeled data are generally available in

more abundance (since in most cases unlabeled data

are easier to collect) and at a substantially lower cost

(e.g., less human effort) than labeled data.

In the published literature, the term semi-

supervised learning usually refers to semi-supervised

classification. However it can also refer to semi-super-

vised regression, where unlabeled data are used to

improve the performance of a regression algorithm

that predicts a real valued output instead of a class
label. A related area of research is semi-supervised

clustering, where small amounts of supervision is

used to improve the performance of clustering algo-

rithms on unlabeled data.

Historical Background
As outlined in [3] (see Chap. 1 for a detailed history of

this area, with more references), the earliest known

work [10] that suggested using unlabeled data to im-

prove classification performance is self-learning or self-

training. The method first trains a classifier on just the

labeled data. In each successive step, the trained model

predicts the labels on the unlabeled data instances and

uses a part of that (e.g., the labels on which it has

highest prediction confidence) as additional labeled

data for training in the following step.

Transductive learning [12] is an idea closely related

to semi-supervised learning – it uses only the features

of the test data instances as unlabeled data to improve

the performance of the classifier learned on the labeled

data. The main difference between transductive

learning and semi-supervised learning is that the latter

is an inductive method, i.e., it can generalize to give

predictions on new data, while transduction can only

give predictions for the given finite set of test data. The

relative benefits of these two approaches are well com-

pared in Chap. 25 of [3].

In the 1970s, researchers started to investigate

the use of unlabeled data in different classification

algorithms, e.g., Fisher’s linear discriminant [6],

using iterative refinement algorithms like expectation

maximization (EM) [5]. The 1990s saw a significant

increase of research in semi-supervised learning, espe-

cially related to different application areas in text

and natural language processing [2,4,7,8,13]. This

was accompanied by theoretical analysis of semi-

supervised learning algorithms, notably using the

PAC learning framework [9].

For detailed historical background and overview of

recent work, readers are referred to the excellent surveys

[11,14] and book [3] on semi-supervised learning.

Foundations
To concretize the concepts introduced in the defini-

tion, consider that the features of the ith data instance

in the training data X is represented by the vector xi,

and the corresponding output variable is yi e Y . In

classification, Y is a set of labels, while in regression it a

set of real-values. In semi-supervised learning, the

2614S Semi-Supervised Learning
training set X consists of two components: (i) the

supervised data Xl, where the data instances xl are

annotated with the corresponding y values; (ii) the

unsupervised data Xu, where the data instances xu do

not have corresponding y values.

There are different types of semi-supervised

learning methods, some of which are listed below:

1. Generative models. They estimate the class-

conditional probability of the data p(xjy), and use the

unlabeled data Xu as additional information to im-

prove the model fitting (as shown in Fig. 1). For

example, [8] first trains a naive-Bayes classifier Cl on

the labeled data Xl and then uses EM to re-train the
Semi-Supervised Learning. Figure 1. Shows the effect of us

class boundary of the generative model-based classifier (d) tr

different from the one trained using just the labeled data (c)
classifier on the unlabeled data Xu, using their esti-

mated class probabilities p(yujxu) of the unlabeled

data instances (estimated by Cl) as fractional class

labels during the EM iterations.

2. Low density separation. Models following this

principle push the decision boundary of the classifier

away from the high-density regions of the unlabeled

data. For example, [7] trains a transductive support

vector machine (SVM) that maximizes the margin

of the SVM classifier on both labeled and unlabeled

data – it first trains a classifier Cl using only the labeled

data Xl, and then uses the predictions p(yujxu) of Cl on

the unlabeled data XU to retrain a new SVM. The
ing unlabeled data in semi-supervised classification. The

ained using both the labeled and unlabeled data are quite

[14].

Semi-Supervised Learning. Figure 2. Shows the effect of

using unlabeled data in learning a SVM classifier. The

dotted line shows the classifier trained on only the labeled

training data, while the solid line is the classifier trained on

both labeled and unlabeled data [14].

Sense and Respond Systems S 2615

S

process is repeated iteratively, increasing the weights of

the unlabeled data in each iteration, thereby forcing

the classifier decision boundary to pass through the

low-density regions of Xu (as shown in Fig. 2).

3. Graph-based methods. These approaches encode

the data as nodes in a graph (labeled data instances

have class labels associated with the nodes), with edges

encoding pairwise distance between data instances. They

operate under the assumption that the original (high-

dimensional) data can be projected to a low-dimensional

manifold without significant loss of information, and

use the unlabeled points for different types of regulari-

zation, e.g., classify unlabeled points using label pro-

pagation algorithms that prefer smoothness of inferred

classes across edges [15].

There are various other methods of semi-supervised

learning that employ different techniques of using un-

labeled data to improve supervised learning, e.g., co-

training [2], semi-supervised manifold embedding [1],

which are outlined in the book and surveys on semi-

supervised learning mentioned in the historical back-

ground section.
Key Applications
Semi-supervised learning has been applied successfully

to various applications in text analysis (e.g., document

categorization), natural language processing (e.g., word

sense disambiguation), bioinformatics (e.g., protein

classification, protein function prediction) image analy-

sis (e.g., handwritten digit/character recognition, face
detection, facial expression recognition), and speech

recognition (e.g., speaker identification).

Cross-references
▶Classification

▶Clustering with Constraints

Recommended Reading
1. Belkin M. and Niyogi P. Semi-supervised learning on manifolds.

Technical Report, The University of Chicago, TR-2002-12, 2002.

2. Blum A. and Mitchell T. Combining labeled and unlabeled data

with co-training. In Proc. 11th Annual Conf. on Computational

Learning Theory, 1998, pp. 92–100.

3. Chapelle O., Schölkopf B., and Zien A. (eds.). Semi-supervised

learning. MIT Press, Cambridge, MA, 2006.

4. Collins M. and Singer Y. Unsupervised models for named entity

classification. In Proc. Conf. on Empirical Methods in Natural

Language Processing and Very Large Corpora, 1999.

5. Dempster A.P., Laird N.M., and Rubin DB.Maximum likelihood

from incomplete data via the EM algorithm. J. R. Stat. Soc. B,

39:1–38, 1977.

6. Hosmer D.W. Jr. A comparison of iterative maximum likelihood

estimates of the parameters of a mixture of two normal distribu-

tions under three different types of sample. Biometrics,

29(4):761–770, 1973.

7. Joachims T. Transductive inference for text classification using

support vector machines. In Proc. 16th Int. Conf. on Machine

Learning, 1999, pp. 200–209.

8. Nigam K., McCallum A., Thrun S., and Mitchell T. Learning to

classify text from labeled and unlabeled documents. In Proc.

11th National Conf. on AI, 1998, pp. 792–799.

9. Ratsaby J. and Venkatesh S.S. Learning from a mixture of labeled

and unlabeled examples with parametric side information. In

Proc. Eighth Annual Conf. on Computational Learning Theory,

1995, pp. 412–417.

10. Scudder H.J. Probability of error of some adaptive pattern-recog-

nition machines. IEEE Trans. Inf. Theory, 11:363–371, 1965.

11. Seeger M. Learning with labeled and unlabeled data. Technical

Report, Edinburgh University, 2001.

12. Vapnik V.N. and Chervonenkis A. Theory of pattern recognition

[in Russian]. Nauka, Moscow, 1974.

13. Yarowsky D. Unsupervised word sense disambiguation rivaling

supervised methods. In Proc. 23rd Annual Meeting of the Assoc.

for Computational Linguistics, 1995, pp. 189–196.

14. Zhu X. Semi-supervised learning literature survey. Computer

Sciences Technical Report TR 1530, University of Wisconsin

Madison, 2006.

15. Zhu X., Ghahramani Z., and Lafferty J. Semi-supervised learning

using Gaussian fields and harmonic functions. In Proc. 20th Int.

Conf. on Machine Learning, 2003.
Sense and Respond Systems

▶ Event Driven Architecture

2616S Sensitivity
Sensitivity

▶ Precision and Recall
Sensor Network Systems

▶ Event Driven Architecture
Sensor Networks

RAMESH GOVINDAN

University of Southern California, Los Angeles,

CA, USA

Synonyms
Wireless sensor networks; Embedded networked

sensing; Sensornet

Definition
A sensor network is a collection of small battery-

operated embedded devices each with a built-in proces-

sor, sensors, and wireless communication capability.

It usually has one or more gateways, or embedded

computers, connected to an external communications

infrastructure (e.g. the Internet or the cellular net-

work). Either the embedded devices or the gateways

may be mobile. The purpose of a sensor network is

to collaboratively sense the environment, and convey

(a possibly condensed version of) the sensed informa-

tion to one or more human users via the gateways.

More advanced sensor networks may autonomously

react to the sensed information and effect an action,

such as activating a camera or a light switch.

Historical Background
As early as 1977, researchers appear to have discussed,

in significant depth, the various issues in building a

distributed wireless sensor network. These discussions

were part of the ARPA Sensor Net project, and fore-

shadowed many of the issues that sensor network

researchers have been more recently addressing. More-

over, with great prescience, project participants enum-

erated many application scenarios that are relevant

even today: airborne deployment of sensors, wireless

surveillance, tracking, and so on.
Perhaps the first concrete instance of a wireless

sensor node was the WINS prototype developed by

Pottie and Kaiser [2]. The development of these pro-

totypes made significant advances in low-power elec-

tronics and device integration. Moreover, the WINS

project anticipated the need for sophisticated network

self-configuration in wireless sensor networks.

However, sensor networking really blossomed as a

separate discipline following the ‘‘Simple Systems’’

DARPA ISAT study led by Deborah Estrin, and

the subsequent establishment of a DARPA-funded pro-

gram networked sensing called SenseIT. The SenseIT

program explored a number of important early

research directions in the field, including collaborative

signal processing, energy-efficient data dissemination,

and the application of database concepts to data man-

agement in sensor networks.
Foundations
The technological constraints imposed by battery-

operated wireless sensors have resulted in five cate-

gories of research questions that have been explored

by the sensor networks community:

1. Energy-awareness. Since sensor nodes operate on

batteries, the lifetime of a sensor network is deter-

mined by how quickly individual sensor nodes

drain their energy resources. This line of research

examines techniques for increasing network life-

time through careful energy management or

harvesting.

2. Communication reliability. Wireless communica-

tion is notoriously unpredictable, and sensor net-

works are often deployed in heavily obstructed

environments. As such, being able to reliably re-

trieve sensed data, while still being energy-efficient,

is a significant challenge.

3. Spatio-temporal awareness. Information generated

by sensors is useful only when it is associated with a

spatio-temporal context that indicates when and

where the data was generated. To do this, sensor

nodes need accurate positioning and time synchro-

nization technologies. Unfortunately, these nodes

are often deployed in locations (indoors, or in

foliage) where the Global Positioning System

(GPS) is unavailable.

4. Programmability. Sensor networks have a very large

number of potential applications, and there is a

dire need for novel programming paradigms that

Sensor Networks S 2617

S

hide the complexity imposed by the previous chal-

lenges, yet promote reusable and easily understood

systems.

5. Security and Data integrity. Because sensors may be

deployed in unattended and harsh environments,

there is critical need for software that ensures the

security of the data generated by the sensors, and

the overall integrity or correctness of the data.

The following paragraphs summarize research in these

areas.

Energy-awareness. Perhaps most widely studied,

research in improving network lifetime has proceeded

on two fronts. There has been exploratory work on

technologies for harvesting energy from light sources,

from vibration, or by using mobility to find a nearby

power source. This line of research aims to renew the

supply of energy at a node. More extensively studied is

the direction in which careful algorithms and systems

design techniques are used to conserve energy. Specifi-

cally, it has been experimentally determined that com-

munication and sensing are among the primary

contributors to energy usage. To conserve communica-

tion energy, researchers have explored techniques like

data aggregation [6,11] where sensor readings are pro-

cessed and possibly compressed within the network

before being transmitted. In addition, techniques

employed at various software layers (medium access,

routing, and application) that turn the radio off or put

the node to seek during periods of inactivity have also

been studied. To conserve sensing energy, researchers

have proposed exploiting correlations between sensors,

or using one sensor to trigger another higher-energy

sensor.

Communication reliability. Wireless packet trans-

missions are susceptible to losses or corruption due to

environmental noise and collisions from concurrent

transmissions. To overcome losses due to packet corr-

uption, researchers have explored careful coding techni-

ques that allow for packet reconstruction using relatively

small amounts of information. Another line of research

has explored the construction of high-quality routing

paths which attempt to reduce the likelihood of corr-

uption [15]. To ensure reliable end-to-end delivery,

researchers have explored the combined use of hop-by-

hop recovery and end-to-end retransmissions. To reduce

packet loss due to contention, a line ofwork has explored

congestion control techniques that dynamically adapt a

node’s sending rate to avoid saturating the channel
capacity [13]. These techniques essentially sample the

current channel conditions, and adjust node sending

rates according to feedback control laws that ensure

stability and efficiency.

Spatio-temporal awareness. When a sensor node is

deployed, it faces two important questions: ‘‘Where am

I?’’ and ‘‘What is the time?’’ Without answers to these

questions, the data generated by sensor networks

becomes meaningless. Since GPS cannot be assumed

to work well in the kinds of obstructed environments

that sensor networks are likely to be deployed in,

researchers have explored a wide variety of methods

for localization and time synchronization. For the for-

mer problem, a variety of devices (such as ultrasound,

radio, lasers) have been used to estimate the distances

between two nodes, and a variety of techniques ranging

from multi-lateration and least-squares regression to

multidimensional scaling have been used to take these

estimates and place nodes in a coordinate system [9].

For the latter problem, a similar approach has been

followed: methods to locally synchronize clocks between

neighboring nodes use message transmission and pro-

cessing latencies and carefully compensate for clock drift

and skew [12]; a second class of methods attempts to

synchronize clocks across the entire network while mini-

mizing error accumulation at every hop.

Programmability. Programming these tiny sensors

because of the platform constraints imposed by form

factor and lifetime requirements: energy, processor,

memory, and wireless communication bandwidths

are all constraints that affect application development.

The literature on programming sensor networks has

focused on how to relieve the burden of the program-

mer in dealing with these constraints. Starting from

seminal work on event-driven operating systems [5],

researchers have moved on to higher-level abstractions

that simplify programming. These include specialized

abstractions for programming individual nodes such

as virtual machines [10], state machines, neighbor-

hood communication abstractions, and so on. More

recently, researchers have turned towards specialized

programming languages for expressing the behavior of

the network as a whole [8]. An important thread in this

line of research is the application of database techni-

ques to program sensor networks: this thread is dis-

cussed below.

Security and data integrity. More recently, research

in sensor networks has turned towards techniques to

ensure the integrity of data produced by the sensors

2618S Sensor Networks
and transmitted across the network. Fundamentally,

sensors can produce erroneous results, and the data

transmitted by sensors can be inadvertently or mali-

ciously corrupted while in transit. Techniques to ad-

dress these problems have examined encryption and

authentication mechanisms for medium access [7] and

routing, as well as statistical techniques for detecting

outliers in sensor data or for being able to quantify the

confidence attributable to a received result.

Data-Centric Techniques in Sensor Networks

An important development in the history of sensor

networking has been the emergence of data-centricity –

the use of programming abstractions that specify

attributes or characteristics of data, rather than the

nodes at which data may be found. Two views of

data-centricity in sensor networks have emerged: the

database view which views the network as a virtual

relational table, and the networking view which views

the network as a distributed hash table [14].

More prominently explored, research on the data-

base view has been motivated by three challenges: first,

the data being generated by sensors is continuously

changing; second, because of quantization effects and

variable spatial density, these data are inherently ap-

proximate; and third, given the energy constraints, it is

infeasible to extract large volumes of data from the

network. These constraints have motivated research

on approximate, aggregate, continuous queries, on the

virtual relational table resulting from data generated by

the various sensors. This setting provides ample scope

for exploring query optimization techniques. These

optimization techniques exploit user-specified bounds

on result error, correlations among different types of

sensors, or models of the sensor field in order to reduce

communication and sensing cost.

The networking view has explored one-shot

point and enumeration queries by modeling the sensor

network as a distributed hash table. This approach uses

random or locality preserving hashing of generated sen-

sor data to a geographic location in a two-dimensional

coordinate system. The data are stored at the corre-

sponding location. This approach enables the construc-

tion of innovative distributed indexing structures, such

as, for example, those that support multidimensional

range queries. Overall, this approach tends to have

higher communication costs except in regimes with rel-

atively high query rates (such as, for example, queries

generated by programs running within the network).
Key Applications
The following are some examples of potential applica-

tion areas for sensor networks.

1. Atmospheric. In this application, sensors measure the

concentration of pollutants or carbon dioxide, as well

as other atmospheric conditions (temperature, hu-

midity, wind direction and speed). These dense mea-

surements can give a much clearer picture of local

variations in atmospheric conditions.

2. Habitats. Sensors can be used to measure light,

temperature, humidity, and photo-synthetically ac-

tive radiation across a forest floor or a forest canopy

transect. This gives a detailed picture of spatio-

temporal variations in these quantities, and can

help biologists understand the effect of these varia-

tions on local distributions of plant and animal life.

3. Water. Sensor nodes deployed on buoys on the

surface of the lake or near the seashore and mea-

suring temperature gradients and chlorophyll be-

neath the lake’s surface can help marine biologists

study the dynamics of plankton populations. These

populations can significantly affect marine life and

thereby have huge economic impact.

4. Soil. A network of sensors deployed in soil can

measure temperature, light, humidity and contam-

inant flow. Such measurements can aid precision

agriculture for improving crop yields and ensuring

better land management.

5. Man-made structures. Integrity and energy-

expenditure of structures. Sensors deployed on build-

ings andmeasuring light and temperature conditions,

as well as ambient vibrations, can help understand

(and control) energy usage in largebuildings as well

as assess the integrity of these structures. Similar

sensor networks can also be used to measure activity

in seismically active areas (e.g., volcanos).
Future Directions
In the first 5–8 years of its existence, sensor networks

were driven by a technological push. Advances in min-

iaturization made it possible to envision networks of

small devices, and these advances prompted many

of the research directions described above. Now that

the potential of sensor networks is well established, the

next phase of research has to deliver reliable, manage-

able systems that provide ease of programmability.

Thereafter, advances in sensor networks will be driven

by experiences obtained from large-scale deployments.

Sequenced Semantics S 2619
Cross-references
▶Continuous Queries in Sensor Networks

▶Data Acquisition and Dissemination in Sensor

Networks

▶Data Aggregation in Sensor Networks

▶Data Compression in Sensor Networks

▶Data Estimation in Sensor Networks

▶Data Fusion in Sensor Networks

▶Data Storage and Indexing in Sensor Networks

▶Database Languages for Sensor Networks

▶Query Optimization in Sensor Networks
S

Recommended Reading
1. Akyildiz I., Su W., Sankarasubramaniam Y., and Cayirci E.

A survey on sensor networks. IEEE Commun. Mag.,

40(8):102–114, 2002.

2. Asada G., Dong T., Lin F., Pottie G., Kaiser W., and Marcy H.

Wireless integrated network sensors: low power systems on

a chip. In Proc. European Solid State Circuits Conference,

1998.

3. Culler D.E. and Hong W. Wireless sensor networks –

introduction. Commun. ACM, 47(6):30–33, 2004.

4. Estrin D., Govindan R., and Heidemann J. Embedding the

internet: introduction. Commun. ACM, 43(5):38–41, 2000.

5. Hill J., Szewczyk R., Woo A., Hollar S., Culler D., and Pister K.

System archtecture directions for networked sensors. SIGPLAN

Not., 35(11):93–104, 2000.

6. Intanagonwiwat C., Govindan R., and Estrin D. Directed diffu-

sion: a scalable and robust communication paradigm for sensor

networks. In Proc. 6th Annual Int. Conf. on Mobile Computing

and Networking, 2000, pp. 56–67.

7. Karlof C., Sastry N., and Wagner D. TinySec: link-layer

encryption for tiny devices. In Proc. 2nd Int. Conf. on Embed-

ded Networked Sensor Systems, 2004, pp. 162–175.

8. Kothari N., Gummadi R., Millstein T., and Govindan R. Reliable

and efficient programming abstractions for wireless sensor

networks. In Proc. SIGPLAN Conf. on Programming Language

Design and Implementation, 2007, pp. 10–13.

9. Langendoen K. and Reijers N. Distributed Localization in

Wireless Sensor Networks: A Quantitative Comparison. Tech-

nical Report PDS-2002-003, Technical University, Delft,

November 2002.

10. Levis P. and Culler D. Maté: a tiny virtual machine for sensor

networks. In Proc. 10th Int. Conf. on Architectural Support

for Programming Languages and Operating Systems, 2002,

pp. 85–95.

11. Madden S., Franklin M.J., Hellerstein J.M., and Hong W. TAG:

Tiny AGgregate queries in ad-hoc sensor networks. In Proc. 5th

USENIX Symp. on Operating System Design and Implementa-

tion, 2002, pp. 131–146.

12. Maróti M., Kusy B., Simon G., and Lédeczi Á. The flooding time

synchronization protocol. In Proc. 2nd Int. Conf. on Embedded

Networked Sensor Systems, 2004, pp. 39–49.

13. Rangwala S., Gummadi R., Govindan R., and Psounis K.

Interference-aware fair rate control in wireless sensor networks.
In Proc. ACM SIGCOMM Symp. on Network Architectures and

Protocols, 2006.

14. Woo A., Madden S.,and Govindan R. Networking support for

query processing in sensor networks. Commun. ACM,

47(6):47–52, 2004.

15. Woo A., Tong T., and Culler D. Taming the underlying

challenges of reliable multihop routing in sensor networks.

In Proc. 1st Int. Conf. on Embedded Networked Sensor Systems,

2003.
Sensornet

▶ Sensor Networks
Sentiment Analysis

▶Opinion Mining
SEQUEL

▶ SQL
Sequence Data Mining

▶Temporal Data Mining
Sequenced Semantics

MICHAEL H. BÖHLEN
1, CHRISTIAN S. JENSEN

2

1Free University of Bozen-Bolzano, Bolzano, Italy
2Aalborg University, Aalborg, Denmark

Definition
Sequenced semantics make it possible to generalize a

query language statement on a non-temporal database

to a temporal query on a corresponding temporal,

interval-timestamped database by applying minor syn-

tactic modifications to the statement that are indepen-

dent of the particular statement. The semantics of such

a generalized statement is consistent with considering

the temporal database as being composed of a se-

quence of non-temporal database states. Sequenced

2620S Sequenced Semantics
semantics takes into account the interval timestamps

of the argument tuples when forming the interval

timestamps associated with result tuples, as well as

permits the use of additional timestamp-related pre-

dicates in statements.
Key Points
A question that has intrigued temporal database

researchers for years is how to systematically generalize

non-temporal query language statements, i.e., queries

on non-temporal databases, to apply to corresponding

temporal databases. A prominent approach is to view

a temporal database as a sequence of non-temporal

databases. Then a non-temporal statement is rendered

temporal by applying it to each non-temporal data-

base, followed by integration of the non-temporal

results into a temporal result. Sequenced semantics

formalizes this approach and is based on three con-

cepts: S-reducibility, extended S-reducibility, and in-

terval preservation. These topics are discussed in turn.

The ensuing examples assume a database instance

with three relations:
Employee

ID Name VTIME

1 Bob 5�8

3 Pam 1�3

3 Pam 4�12

4 Sarah 1�5

Salary

ID Amt VTIME

1 20 4�10

3 20 6�9

4 20 6�9

Bonus

ID Amt VTIME

1 20 1�6

1 20 7�12

3 20 1�12
S-Reducibility

S-reducibility states that the query language of the

temporally extended data model must offer, for each

query q in the non-temporal query language, a syntac-

tically similar temporal query qt that is its natural gen-

eralization, i.e., qt is snapshot reducible to q, and qt is

syntactically identical to S1qS2. The goal is to make the

semantics of temporal queries easily understandable

in terms of the semantics of the corresponding non-

temporal queries. The strings S1 and S2 are indepen-

dent of q and are termed statement modifiers because

they change the semantics of the entire statement q that

they enclose.

In the following examples, statements are prefixed

with the modifier SEQ VT [2]. This modifier tells the

temporal DBMS to evaluate statements with sequenced

semantics in the valid-time dimension. These examples

illustrate that S-reducible statements are easy to write

and understand because they are simply conventional

SQL statements with the additional prefix SQL VT.

Writing statements that compute the same results,

but without using statement modifiers, can be very

difficult [3].

SEQ VT SELECT * FROM EMPLOYEE;

SEQ VT

SELECT ID

FROM EMPLOYEE AS E

WHERE NOT EXISTS (

SELECT *

FROM SALARY AS S

WHERE E.ID = S.ID);

The first query returns all Employee tuples together

with their valid time – this corresponds to returning the

content of Employee at each state. The second query

determines the time periods when an employee did not

get a salary. It returns {h3, 1�3i, h3, 4�5i, h3, 10�12i,
h4, 1�5i}. Conceptually the enclosed statement is eval-

uated on each state of the database. Computationally,

the interval 6�9 is subtracted from the interval 4�12

to get the intervals 4�5 and 10�12.
Extended S-Reducibility

S-reducibility is applicable only to queries of the un-

derlying non-temporal query language and does not

extend to queries with explicit references to time.

Consider the following queries.

Sequential Patterns S 2621

S

SEQ VT

SELECT E.ID

FROM Employee AS E, Salary AS S

WHERE E.ID = S.ID

AND DURATION(VTIME(E)) >

DURATION(VTIME(S));

SEQ VT

SELECTE.ID,VTIME(S), VTIME(E)

FROMEmployeeAS E, Salary AS S

WHEREE.ID = S.ID;

The first query constrains the temporal join to tuples

in Employee with a valid time that is longer than the

valid time of the salary tuple it shall be joined with.

This condition cannot be evaluated on individual non-

temporal relation states because the timestamp is not

present in these states. Nevertheless, the temporal join

itself can still be conceptualized as a non-temporal join

evaluated on each snapshot, with an additional predi-

cate. The second query computes a temporal join as

well, but also returns the original valid times. Again,

the semantics of this query fall outside of snapshot

reducibility because the original valid times are not

present in the non-temporal relation states.

DBMSs generally provide predicates and functions

on time attributes, which may be applied to, e.g., valid

time, and queries such as these arise naturally. Apply-

ing sequenced semantics to statements that include

predicates and functions on time offers a higher degree

of orthogonality and wider ranging temporal support.

Interval Preservation

Coupling snapshot reducibility with syntactical simi-

larity and using this property as a guideline for how to

semantically and syntactically embed temporal func-

tionality in a language is attractive. However, S-reduc-

ibility does not distinguish between different relations

if they are snapshot equivalent. This means that differ-

ent results of an S-reducible query are possible: the

results will be snapshot equivalent, but will differ in

how the result tuples are timestamped. As an example,

consider a query that fetches and displays the content

of the Bonus relation. An S-reducible query may re-

turn the result {h1, 20, 1�6i, h1, 20, 7�12i, h3, 20,
1�12i}. If Bob received a 20K bonus for his perfor-

mance during the first half of the year and another 20K

bonus for his performance during the second half of

the year and Pam received a 20K bonus for her
performance during the entire year, this is the expected

result. This is also the result supported by the three

tuples in the example instance displayed above. How-

ever, S-reducibility does not distinguish this result

from any other snapshot equivalent result. With S-

reducibility a perfectly equivalent result would be {h1,
20, 1�12i, h3, 20, 1�6i, h3, 20, 7�12i}.

Interval preservation settles the issue of which result

should be favored out of the many possible results

permitted by S-reducibility. When defining how to

timestamp tuples of query results, two possibilities

come to mind. Results can be coalesced. This solution

is attractive because it defines a canonical represen-

tation for temporal relations. A second possibility

is to consider lineage and preserve, or respect, the time-

stamps as originally entered into the database [1].

Sequenced semantics requires that the default is to

preserve the timestamps – being irreversible, coalescing

cannot be the default.

Cross-references
▶Nonsequenced Semantics

▶ Snapshot Equivalence

▶Temporal Coalescing

▶Time Interval

▶Valid Time

Recommended Reading
1. Böhlen M.H., Busatto R., and Jensen C.S. Point- versus interval-

based temporal data models. In Proc. 14th Int. Conf. on Data

Engineering, 1998, pp. 192–200.

2. Böhlen M.H., Jensen C.S., and Snodgrass R.T. Temporal state-

ment modifiers. ACM Trans. Database Syst., 25(4):48, 2000.

3. Snodgrass R.T. Developing Time-Oriented Database Applica-

tions in SQL. Morgan Kaufmann, 1999.
Sequential Patterns

JIANYONG WANG

Tsinghua University, Beijing, China

Synonyms
Frequent subsequences

Definition
A sequence database D = {S1, S2,...,Sn} for sequen-

tial pattern mining consists of n input sequences

(where n � 1), and an input sequence

2622S Sequential Patterns
Si ¼ hei1 ; ei2 ;:::;eimið1 � i � nÞ is an ordered list of m

events (wherem�1). Each event eij (1� i� n, 1� j�
m) is a non-empty set of items. Given two sequences,

Sa ¼ hea1 ; ea2 ;:::;eak i and Sb ¼ heb1 ; eb2 ;:::;ebl i, if k � l

and there exist integers 1�x1<x2< ...< xk�l such that

ea1 � ebx1 ; ea2 � ebx2;:::;eak � ebxk ; Sb is said to contain

Sa (or equivalently, Sa is said to be contained in Sb).

The number of input sequences in D that contain

sequence S is called the support of S in D, denoted by

supD(S). Given a user-specified minimum support

threshold min_sup, S is called a sequential pattern (or

a frequent subsequence) in D if supD (S)�min_sup. If

there exists no proper supersequence of a sequential

pattern Swith the same support as S, S is called a closed

sequential pattern (or a frequent closed subsequence) in

D. Furthermore, a sequential pattern S is called a

maximal sequential pattern (or a frequent maximal

subsequence) if it is not contained in any other sequen-

tial pattern. The problems of sequential pattern mining,

closed sequential pattern mining, and maximal sequen-

tial pattern mining, are to find all frequent subse-

quences, all frequent closed subsequences, and all

frequent maximal subsequences from input sequence

database D, respectively, given a user-specified mini-

mum support threshold min_sup.

Historical Background
Similar to association rule mining, sequential pattern

mining was initially motivated by the decision support

problem in retail industry and was first proposed

by Rakesh Agrawal and Ramakrishnan Srikant in [1].

Later on, it was applied to other domains. Some recent

research work further validated its utility in various

applications, such as identifying outer membrane

proteins, automatically detecting erroreous sentences,

discovering block correlations in storage systems, iden-

tifying copy-paste and related bugs in large-scale soft-

ware code, API specification mining and API usage

mining from open source repositories, frequent subse-

quence-based XML document clustering, sequence-

based XML query pattern mining for effective caching,

and Web log data mining.

In the seminal paper on sequential pattern mining,

three algorithms were introduced [1]. Among these

algorithms, AprioriSome and DynamicSome were pro-

posed for mining maximal sequential patterns, while

AprioriAll was designed for mining all sequential pat-

terns. The same authors later generalized the sequential

pattern mining problem by allowing time constraints,
sliding time window, and taxonomies, and proposed a

new algorithm, GSP [10]. The inefficiency of AprioriAll

mainly stems from its computationally expensive data

transformation operation which transforms each trans-

action to a set of frequent itemsets in order to find

sequential patterns. As GSP overcomes the drawbacks

of AprioriAll, it is much faster than AprioriAll. In [4],

Jiawei Han et al. proposed the FreeSpan algorithm,

which shows better performance than GSP. In [15],

Mohammed J. Zaki adopted the vertical data represen-

tation for sequential pattern mining and devised an

efficient algorithm, SPADE, which fully exploits the lat-

tice search techniques and some join operations. Anoth-

er state-of-the-art sequential pattern mining algorithm

is PrefixSpan, whichwas proposed by Jian Pei et al. [8]. It

adopts a projection-based, sequential pattern growth

approach to avoiding the traditional candidate-genera-

tion-and-test paradigm, thus improves the algorithm

efficiency. In [3], Jay Ayres et al. designed another se-

quential pattern mining algorithm, SPAM. This

algorithm integrates a depth-first search strategy with

some effective pruning techniques, uses a vertical bitmap

data representation, and can incrementally output fre-

quent subsequences in an online fashion.

All the preceding algorithms except AprioriSome

and DynamicSome mine the complete set of sequential

patterns. One problem with sequential pattern mining

is that it may generate too many redundant patterns,

which also impedes the algorithm efficiency. One popu-

lar solution to this problem is to mine closed sequential

patterns only, which usually leads to not only a more

compact yet complete result set but also better efficiency.

In [14], Xifeng Yan and Jiawei Han presented the Clo-

Span approach, which incorporates several effective

pruning methods into the PrefixSpan framework and

achieves much better performance than PrefixSpan. Re-

cently, another closed sequential pattern mining algo-

rithm, BIDE, was proposed in [12] by Jianyong Wang

et al. It integrates a new pattern closure checking scheme

and a new pruning techniquewith the PrefixSpan frame-

work, and is both runtime and memory efficient.

Foundations
The biggest challenge faced by sequential pattern

mining is the combinatorial explosion problem. To

alleviate this problem, researchers have tried various

ways. In the following some factors which may have an

impact on the efficiency of a sequential pattern mining

(or closed sequential pattern mining) algorithm are

Sequential Patterns S 2623

S

summarized. These factors mainly include the data

representation format, pattern enumeration frame-

work (i.e., search strategy), search space pruning tech-

niques, and pattern closure checking scheme.

Sequence Data Format

The input sequence data can be represented in two alter-

native formats. The horizontal representation is a natural

bookkeeping of the input sequences. Each sequence

consists of an ordered list of events, while each event

is recorded as a list of items (which are supposed in

most algorithms to be sorted according to a certain

order, say the lexicographical order). AprioriAll, GSP,

PrefixSpan, CloSpan, and BIDE are typical examples

adopting the horizontal representation. Note that

AprioriAll needs to first find the frequent itemsets

and transform each event to the set of frequent item-

sets contained in the event in order to find sequential

patterns. To compute the support of a subsequence, the

horizontal format based algorithms need to scan the

database, which is computationally expensive. To assist

support counting, these algorithms devise some special

mechanisms. For example, GSP introduces the hash-

tree data structure, while PrefixSpan, CloSpan, and

BIDE use a projection-based approach to shrink the

part of database that needs to be scanned.

In the vertical representation, the database is repre-

sented as a set of items, where each item is recorded as a

set of pairs of sequence identifier (SID) and event identi-

fier (EID) containing the item. SPADE and SPAMuse the

vertical format. With the vertical representation, the sup-

port-counting can be performed using simple join opera-

tions with temporal ordering constraint. To improve the

efficiency of support counting, SPAM proposes to use

vertical bitmaps to represent the sequence database.

Each item is converted to a bitmap, which has a bit for

each event in the database. If an event contains an item,

the corresponding bit regarding the event and item is set

to one; otherwise, it is set to zero. Based on the trans-

formed bitmap sequence representation, efficient support

counting can be easily achieved using bitwise ANDopera-

tions of bitmaps.

Search Strategy

Given an input sequence database D and a minimum

support threshold min_sup, the set of sequential pat-

terns are deterministic, and can be organized into a

lexicographic frequent sequence tree structure. Sup-

pose min_sup=2, database D contains three input
sequences, h(A B D)(B C D)(A)i, h(B) (A B E) (B)i,
and h(A B) (B C D)i (here the commas separating each

pair of adjacent events in the same sequence are omit-

ted), respectively, and there exists a lexicographic or-

dering among the set of distinct items A �B �C �D

�E. For a prefix subsequence Sp, it can be extended in

two ways, namely, sequence-extension and itemset-

extension. The sequence-extension extends Sp by a new

event containing a single item, while itemset-extension

adds a new item to the last event of Sp and the new

item must be lexicographically larger than any item of

the last event of Sp. Assume both sequence-extension

and itemset-extension are performed in lexicographic

ordering and itemset-extension is performed before

sequence-extension for the same prefix sequence.

Then, the lexicographic sequence tree structure of

the frequent subsequences in the running example is

shown in Fig. 1. Note that each node in the tree shows

a sequential pattern and its corresponding support

(i.e., the number after the colon), and all the patterns

at the same level have the same length (namely, they

contain the same number of items). An edge which

links a parent node P at level k to a child node C at

level (k+1) indicates that the pattern at C is directly

extended from the prefix pattern at node P, either by

sequence-extension or by itemset-extension.

Once the sequential patterns are organized into a

lexicographic tree structure, one can choose a tree travers-

al strategy for sequential patternmining. The two popular

search strategies are breadth-first search and depth-first

search. In the breadth-first search method, frequent

subsequences are mined in a level-wise manner, that

is, before mining patterns with length (k+1), one needs

to first mine all patterns with length k. In contrast, a

depth-first search method traverses the sequence tree

in depth-first order. GSP adopts the breadth-first search

strategy to enumerate the sequential patterns, Prefix-

Span, SPAM, CloSpan, and BIDE choose the depth-

first search paradigm, while SPADE supports both

breadth-first search and depth-first search methods.

Search Space Pruning

One of the most crucial optimization considerations

to improve the efficiency of a data mining algorithm

is to devise some effective search space pruning tech-

niques. Based on some heuristics, if some parts of the

search space are already known to be futile in gener-

ating sequential patterns, they should be found

and pruned as quickly as possible. Perhaps the most

2624S Sequential Patterns
well-known property used for designing pruning

methods in frequent pattern mining is the Apriori

property (also known as the downward closure prop-

erty or anti-monotone property). It states in the se-

quence mining setting that all the subsequences of a

frequent sequence must be also frequent, or equiva-

lently, a sequence must be infrequent if it contains an

infrequent subsequence. All the existing sequential

pattern mining algorithms have exploited the Apriori

property in different ways.

From Fig. 1 one can see that only three out of the 31

frequent subsequences are closed, namely, (B)(A):2,

(AB)(B):3, and (AB)(BCD):2, and many subtrees in

Fig. 1 contain no closed sequential pattern. An efficient

closed sequential pattern mining algorithm should

avoid traversing the subtrees containing no closed pat-

terns, which leaves room to further prune the search

space. Both CloSpan and BIDE adopt some optimiza-

tion techniques. The pruning methods proposed in

CloSpan are listed as follows.

 Common prefix pruning: if there exists a common

prefix, all sequences beginning with a proper sub-

sequence of this prefix cannot be closed.
Sequential Patterns. Figure 1. The lexicographic sequence t

example.

 Partial-order pruning: if an item ‘‘a’’ always occurs

before item ‘‘b’’ in all sequences, any sequence

beginning with ‘‘b’’ cannot be closed.

 Equivalent projected DB pruning: given two subse-

quences, s and s0, where s is a proper subsequence of

s0 and they have equivalent projected database, any

sequence beginning with s cannot be closed.

The concepts of common prefix, partial-order, and

equivalent projected database can be found in [7].

The BIDE algorithm proposes a single but effective

pruning technique called BackScan search space prun-

ing. Given a prefix Sp, if ∃ i (i is a positive integer and is

no greater than the length of Sp) and there exists any

item that appears in each of its ith semimaximum

periods, Sp can be safely pruned. The interested readers

are referred to [12] for more details.

Pattern Closure Checking Scheme

The optimization methods proposed in CloSpan and

BIDE are very effective in pruning the unpromising

parts of the search space, however, they cannot assure

that each discovered sequential pattern is closed. For

closed sequential pattern mining algorithms, one still
ree structure of the frequent subsequences in the running

Sequential Patterns S 2625

S

needs to devise some methods to check if a sequential

pattern is closed or not. In CloSpan, all the candidate

closed sequential patterns are maintained in a tree data

structure. CloSpan eliminates the non-closed patterns in

a post-processing phase and adopts the hashing tech-

nique to accelerate the pattern closure checking. When

the number of candidate sequential patterns is large, the

pattern tree structure may consume non-trivial space.

In [12], BIDE adopts a so-called BI-Directional Exten-

sion closure checking scheme. One big advantage of

this new scheme is that it avoids maintaining the set of

candidate closed sequential patterns, and thus saves

space. If there exists no forward-S-extension item,

forward-I-extension item, backward-S-extension item,

nor backward-I-extension item with respect to a prefix

sequence Sp, Sp is a closed sequence, otherwise, Sp
must be non-closed. The definitions of a forward-S-

extension item, a forward-I-extension item, a back-

ward-S-extension item, and a backward-I-extension

item can be found in [8].

Key Applications
In recent years sequential pattern mining witnessed

many applications, which roughly fall into the follow-

ing categories.

Frequent Subsequence-based Classifier

In [9], the authors used an efficient implementation

of generalized suffix tree to mine a set of frequent sub-

sequences with a minimum length constraint, and built

the rule-based classifier and SVM classifier based on the

discovered frequent subsequences. Their performance

results demonstrate that the frequent subsequence-

based classifier achieves high accuracy in identifying

outer membrane proteins. Recently the authors of [11]

proposed a method to build associative classification

rules from frequent subsequences returned by a variant

of the PrefixSpan algorithm. Their performance study

shows that sequence-based classification rules are very

helpful in automatically detecting erroreous sentences.

Operating System and Software Engineering

In [5,6], the authors adopted the CloSpan algorithm to

mine closed sequential patterns, which have been

shown very useful in discovering block correlations in

storage systems and identifying copy-paste and related

bugs in large-scale software code. In [7,13], the BIDE

algorithm was used to discover the set of frequent

closed subsequences with the purpose of API
specification mining and API usage mining from

open source repositories.

Frequent Subsequence-based XML Data Management

Sequential pattern mining has also been widely applied

in semi-structured data management. In this applica-

tion, an XML document is first converted to a sequence

instead of a tree structure. Then some kinds of con-

strained frequent subsequences are mined, which can

be exploited to accelerate XML query or XML docu-

ment clustering. The performance results in [2] dem-

onstrate that the frequent subsequence-based XML

clustering algorithm XProj achieves better clustering

quality than previous algorithms.

Web Log Data Mining

Some researchers have also applied sequential pattern

mining algorithms in mining salient patterns (e.g.,

contiguous sequential patterns) from Web log data.

Experimental Results
Some experimental results on sequential pattern

mining can be found in [3,8,10,15], which compares

the efficiency of some typical sequential pattern

mining algorithms including GSP, SPADE, PrefixSpan,

and SPAM, while [14] and [12] present the perfor-

mance study of two closed sequential pattern mining

algorithms, CloSpan and BIDE.

Data Sets
The IBM synthetic dataset generator can generate se-

quence datasets and can be found from the link of

http://www.cs.rpi.edu/�zaki/software/. The popularly

used real sequence datasets include some Web log data,

and protein sequence datasets.

URL to Code
The code for PrefixSpan and CloSpan algorithms can

be found from the Illini Mine portal, http://dm1.cs.

uiuc.edu/protected/im, the code for SPADE algorithm

can be downloaded from the link of http://www.cs.rpi.

edu/�zaki/software/, while the code for BIDE algo-

rithm can be traced from http://dbgroup.cs.tsinghua.

edu.cn/wangjy/.

Cross-references
▶Apriori Property and Breadth-First Search Algo-

rithms

▶Closed Itemset Mining and Non-redundant Associ-

ation Rule Mining

2626S Serializability
▶ Frequent Graph Patterns

▶ Frequent Itemsets and Association Rules

▶ Frequent Partial Orders

▶ Pattern-Growth Methods
Recommended Reading
1. Agrawal R. and Srikant R. Mining sequential patterns. In Proc.

11th Int. Conf. on Data Engineering, 1995.

2. Aggarwal C.C., Ta N., Wang J., Feng J., and Zaki M.J. XProj: a

framework for projected structural clustering of XML docu-

ments. In Proc. 13th ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining, 2007.

3. Ayres J., Gehrke J., Yiu T., and Flannick J. Sequential pattern

mining using a bitmap representation. In Proc. 8th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,

2002.

4. Han J., Pei J., Mortazavi-Asl B., Chen Q., Dayal U., and Hsu M.C.

FreeSpan: frequent pattern-projected sequential pattern mining.

In Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining, 2000.

5. Li Z., Chen Z., Srinivasan S., and Zhou Y. C-Miner: mining

block correlations in storage systems. In Proc. 3rd USENIX

Conf. on File and Storage Technologies, 2004.

6. Li Z., Lu S., Myagmar S., and Zhou Y. CP-Miner: finding copy-

paste and related bugs in large-scale software code. IEEE Trans.

Software Eng., 32(3):176–192, 2006.

7. Lo D. and Khoo S.C. SMArTIC: towards building an accurate,

robust and scalable specification miner. In SIGSOFT FSE., 2006.

8. Pei J., Han J., Mortazavi-Asl B., Pinto H., Chen Q., Dayal U., and

Hsu M.C. PrefixSpan: mining sequential patterns efficiently by

prefix-projected pattern-growth. In Proc. 17th Int. Conf. on

Data Engineering, 2001.

9. She R., Chen F.,WangK., EsterM., Gardy J.L., and BrinkmanF.S.L.

Frequent-subsequence-based prediction of outer membrane

proteins. In Proc. 9th ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining, 2003.

10. Srikant R. and Agrawal R. Mining sequential patterns: general-

izations and performance improvements. In Advances in Data-

base Technology, Proc. 5th Int. Conf. on Extending Database

Technology, 1996.

11. Sun G., Liu X., Cong G., Zhou M., Xiong Z., Lee J., and Lin C.Y.

Detecting erroreous sentences using automatically mined se-

quential patterns. In Proc. 45th Annual Meeting of the Assoc.

for Computational Linguistics, 2007.

12. Wang J., Han J., and Li C. Frequent closed sequence mining

without candidate maintenance. IEEE Trans. Knowl. Data Eng.,

19(8):1042–1056, 2007.

13. Xie T. and Pei J. Data mining for software engineering. In Proc.

12th ACM SIGKDD Int. Conf. on Knowledge Discovery and

Data Mining, 2006.

14. Yan X., Han J., and Afshar R. CloSpan: mining closed sequential

patterns in large databases. In Proc. SIAM International Confer-

ence on Data Mining, 2003.

15. Zaki M.J. SPADE: an efficient algorithm for mining frequent

sequences. Machine Learn., 42:31–60, 2001.
Serializability

K. VIDYASANKAR

Memorial University of Newfoundland, St. John’s,

NL, Canada

Synonyms
Correctness criterion for concurrent executions
Definition
A database is a collection of data items operated

on concurrently by several programs. A set of values

for the data items is called a database state. It is consis-

tent if the values satisfy the integrity constraints speci-

fied for the database. Arbitrary interleaving of the

executions of the programs may affect the consistency

of the database. The executions that preserve the

consistency are called correct executions. The notion

of serializability helps to identify correct executions. It

is based on the transaction concept: a transaction

is a partially ordered set of atomic steps that constit-

ute an execution of a program, with the property

that, when executed alone, it transforms a consist-

ent database state into another consistent one. Exam-

ples of atomic steps are read and write of a data

item, increment and decrement on a counter object,

enqueue and dequeue on a queue object, etc. The

sequence of steps in an execution is called a history.

A serial history corresponds to a serial, that is, non-

interleaving, execution of the transactions. Any (con-

current) execution whose effect is ‘‘equivalent’’ to that

of some serial execution of the same set of transactions

is called serializable. Clearly, any serial execution of a

set of transactions preserves consistency, and hence is

correct. Therefore serializable executions are also cor-

rect. Serializability theory concerns finding properties

of histories which are serializable. This knowledge is

useful for designing schedulers that will allow only

those concurrent executions that are correct.

Historical Background
After the initial exposure to the problem in [2], several

characterizations of serializability were obtained, for

example, in [2,6,9,11], and the theory was extended in

several directions.

One main direction was defining different notions of

serializability corresponding to different interpretations

Serializability S 2627

S

of ‘equivalence’ to serial histories. Examples are view-

serializability, where the values read by all the transac-

tions and the final values of all the data items are the

same as in some serial execution, state-serializability

where only the final values of the data items need be

the same and the general S-serializability where only

the values read by a specified subset S of the transac-

tions need be the same.

Another main direction was the study of serializ-

ability under some constraints [11]. Here, the transac-

tion order in an equivalent serial history must satisfy

certain constraints which are usually derived from

some syntactic properties of the histories. In general,

checking whether a history is serializable is NP-

complete. Constraints help to identify subclasses of

serializable histories that have a polynomial member-

ship test.

A third direction dealt with relaxing the unit of

atomicity. Instead of taking all the steps of a transaction

as forming a single unit preserving consistency of the

database, groups of several subsets of the steps were

considered as atomic units, and interleaving constraints

were applied to them. Also, the units of atomicity were

allowed to be different for different transactions, giving

rise to the relative atomicity notion. Hierarchical group-

ing of the steps led to the study of nested transactions

[8]. Non-hierarchical groupings were studied, for

example, in [3,13].

Another extension was the study of multi-version

serializability [10]. Here, the value written by each

write step of the transactions is kept as a separate

version, and a read operation can read any of the

versions of the corresponding data item. This notion

allows more concurrent executions as correct ones

compared to the single version serializability.

Orthogonal developments have been the study and

applicability of serializability theory in different

architectures (from centralized to distributed data-

bases, multi-databases, mobile environments and re-

cently Internet) and with different objects (from

simple data items to complex objects, B-trees, design

objects, workflows, business processes and Web ser-

vices). Executions that ‘‘slightly’’ deviate from being

serializable and hence are ‘‘almost correct’’ have also

been studied. Serializability theory initially focused

only on concurrency. Later, recovery aspects were com-

bined and unified theories studied. Details and refer-

ences can be found in [15].
Foundations

Serializability Characterization

In the following, a simple transaction model is consid-

ered where (i) each atomic step is either a read step or a

write step, that reads or writes the value of a data item,

respectively, and (ii) each data item is accessed by at

most one read step and at most one write step in a

transaction, and if both these steps do occur, then the

read step occurs before the write step. The theory can

easily be extended to other transaction models, and

with other atomic steps.

A transaction is write-only if it does not have any

read steps, and read-only if it does not have any write

steps. Let D be the set of data items in a database, and

{T1,...,Tn} be a set of transactions. For convenience, a

hypothetical write-only initial transaction T0 which

writes the initial values of all the data items, and a

hypothetical read-only final transaction Tf which

reads the values of all the data items after all the

transactions have completed are added. The transac-

tion T0 helps to set up a consistent initial database

state, and Tf helps to argue about the final database

state. Let T be {T0, T1,...,Tn, Tf}. A read step (write

step) of transaction Ti reading (writing) the data

item X is denoted Ri[X](Wi[X]). A set of read steps,

unrelated by the partial order, reading a subset

C of D and occurring together, is denoted Ri[C]. For

example, Ri[{X, Y}] denotes the unrelated read steps

Ri[X] and Ri[Y] occurring together in any order;

for brevity, it is written as Ri[X, Y], ignoring the curly

brackets. Similar notation is followed for the write

steps.

A history h of T is a sequence of the steps of T

representing the execution of the transactions in a

possibly interleaved fashion, starting with W0[D] and

ending with Rf [D]. A history is serial if there is no

interleaving, that is, once a transaction starts execut-

ing, it finishes without any other transaction executing

some step in between. A transaction Tj reads X from

transaction Ti in a history h if Wi[X] is the last write

X step before Rj[X] in h. The reads-from relation rf of

a history h is defined as: rf (h) = {(Ti,X,Tj): Tj reads X

from Ti}. Two histories h and h0 (of the same set of

transactions) are equivalent if rf (h) = rf (h0). A

history h is serializable if there is a serial history

h0 equivalent to h. (This is the view-serializability

notion [11].)

Serializability. Figure 1. History graph H (h1).

2628S Serializability
Example: Consider the history h1, for D = {X, Y}:

W0[D]R1[X]R2[X]R3[Y]W2[Y]W3[Y]W4[X,Y]Rf[D].

The reads-from relation rf (h1) is {(T0, X, T1),(T0, X,

T2),(T0, Y, T3),(T4, X, Tf),(T4, Y, Tf)}. The history h1
has the same reads-from relation as the following serial

history h2, corresponding to the serial order (T0, T1,

T3, T2, T4, Tf): W0[D]R1[X]R3[Y]W3[Y]R2[X]W2[Y]

W4[X,Y]Rf[D] and hence is serializable.

A write X step of transaction Ti (also the value that

is written) is useless in h if no transaction reads this

value, that is, there is no Tj for which (Ti, X, Tj) is in

rf (h); otherwise, it is useful.

The history graph of h, denoted H (h), is a directed

graph constructed as follows.

The vertex set of H (h) is T [T 0 where T 0 = {T 0
iX : Ti

has a useless write X in h}.

The set T 0 is a set of dummy transactions, one for each

useless write in h.

The edge set of H (h) has the following:
– An edge labeled X from Ti to Tj, for each (Ti,X,

Tj) in rf (h)

– An edge labeled X from Ti to T0
iX for each

useless write X of Ti, for all Ti
– An unlabeled edge from each vertex in T0 to Tf

– An unlabeled edge from each read-only trans-

action other than Tf to Tf

– An unlabeled edge from T0 to each write-only

transaction other than T0
The transaction name itself is used to denote the vertex

corresponding to that transaction in the graph. An

edge a from Ti to Tj is denoted (Ti, Tj). Here, Ti is

the positive end pa of a, and Ti is the negative end na of
a. The edge a is also referred to as an outdirected edge

of Ti and an indirected edge of Tj. A source is a vertex

with no indirected edges, and a sink is a vertex with no

outdirected edges. An X-edge refers to an edge labeled

X. The labeled edges incident to T 0 are useless; all other

labeled edges are useful.

The history graph for h1 is given in Fig. 1. In the

graph, useful edges are indicated by a star (*).

Clearly, two histories h and h0 are equivalent iff

H (h) = H (h0). It is easy to verify that the history graph

of a serial history is acyclic. Hence, the history graph of

a serializable history will also be acyclic; any topological

sort of the vertices will give a serial order of the transac-

tions in an equivalent serial history. (The dummy trans-

actions are ignored.) However,H (h) being acyclic is not

sufficient for h to be serializable. For example, the
history W0[X]R1[X]R2[X]W2[X]W1[X]Rf[X] gives an

acyclic history graph, but neither of the two possible

topological sorts, (T0,T1,T2,Tf) and (T0,T2,T1,Tf), gives

a serial history which has the same reads-from relation

as the original one. Thus for h to be serializable, H (h)

must satisfy some other property in addition to being

acyclic. That property is characterized in the following,

after some more terminology is introduced.

The coboundary dS of a subset S of the vertex set of
a graph G is the set of edges each with one end in S and

the other not in S. By a coboundary of G is meant a set

of edges that is a coboundary of some subset of the

vertex set of G. A cutset is a minimal nonnull cobound-

ary. (A set is minimal with a given property if it has

that property but none of its proper subsets has that

property.) An edge a of a coboundary dS is outdirected
if pa is in S; it is indirected if na is in S. A coboundary

(cutset) dS is outdirected if all its edges are outdirected,
and similarly it is indirected if all its edges are indir-

ected; in either case, it is directed. For a data item X in

D, a cutset is X-unsafe if it is directed and it contains a

useful X-edge a and another (useful or useless) X-edge

b such that pb 6¼ pa. A cutset is unsafe if it is X-unsafe

for some X in D. Any cutset which is not unsafe is safe.

Note that all undirected cutsets are safe.

A transaction precedence graph of h, denoted TP (h),

is a graph that contains (i) H (h) and possibly some

additional, unlabeled, edges and (ii) no unsafe cutsets.

Theorem: A history h is serializable iff there exists an

acyclic TP(h) [12].

ATP (h) can be obtained from H (h) by repeatedly

applying the following construction: for each X-unsafe

cutset with useful X-edge a and another X-edge b,
add an unlabeled edge from na to pb, or from nb to

pa, thus making this cutset undirected. Either of these

edges is an exclusion edge. A transaction precedence

Serializability. Figure 2. Transaction precedence graph

TP (h1).

Serializability S 2629

S

graph for the history graph in Fig. 1 is shown in Fig. 2.

The added exclusion edges are shown in broken lines.

For instance, in H (h1), d{T0, T2} is Y -unsafe: it

is outdirected with edges {(T0, T3),(T0, T4),(T0, T1),

(T2, T
0
2Y)}, it has one useful Y -edge (T0, T3) and one

useless Y -edge (T2, T
0
2Y). The exclusion edge (T3, T2)

makes the cutset undirected and therefore safe. The

cutset d{T0,T2,T3} is directed and has two Y -edges,

but is safe since both Y -edges are useless.

Note that, for each unsafe cutset, at most one

exclusion edge can be added, to get an acyclic TP (h).

(Adding both edges will create a directed cycle.) Thus

there are two choices for an exclusion edge. If there are

n unsafe cutsets, then there are 2n choices for adding n

exclusion edges. With each such choice, the resulting

graph can be checked for acyclicity in polynomial time.

However, because of the number of choices, checking

whether there exists an acyclic TP (h) for a givenH (h),

in brute-force manner, will take exponential time. It

has been shown that a better time is unlikely. That is,

checking whether a history is serializable is an NP-

complete problem. Hence, serializability under some

additional constraints have been studied so as to get

polynomial membership test. The constraints limit the

serial histories which can be taken as correct

executions.

Another Serializability Characterization

First, another characterization of serializability that

depicts the nature of the constraints for polynomial

membership test is given. It is based on the following

property:

In an acyclic TP (h), for any setC of useful X-edges no

two of which have the same positive end,
(a) There is a directed path that contains all the

edges of C.

(b) For each useless X-edge b,there is a directed

path that contains b and all the edges of C.

In the following, a transaction that writes X will be

called an X-writer. It is useful (useless) X-writer if the

write X step is useful (useless) in h. Note that for some

X and Y, the same transaction could be a useless

X-writer but a useful Y -writer. The property instru-

mental to the characterization is the following:

In an acyclic TP (h), for each X in D,

(a) There is a directed path from T0 that contains

all the useful X-writers.

(b) For each useless X-writer Ta , there is a directed

path from T0 that contains all the useful X-

writers and Ta.

A weak order on X-writers in h is an irreflexive partial

order such that

(a) It totally orders all the useful X-writers and T0.

(b) For any useless X-writer Ta, it totally orders all

useful X-writers, T0 and Ta.

A weak order in h is the union of weak orders on

X-writers in h, one for each X in D.

Figure 3 depicts a weak order on X-writers for some

X. Here, T1u,T2u,... are useful X-writers,T0 may or may

not be useful, and all others are useless X-writers.

A weak order q can be added to TP (h) by means of

unlabeled edges, one for each element of q. The result-

ing graph is called TP[q](h).

Theorem. A history h is serializable iff for some weak

order q in h there exists an acyclic TP[q](h) [12].

For any weak order q, in each unsafe cutset ofH (h)

with useful X-edge a and another X-edge b, the weak
order edges will introduce a directed path between

pa and pb and this will induce a directed cycle with

one of the exclusion edges; therefore only the other

exclusion edge can possibly be added to get an acyclic

TP[q](h) graph. Acyclicity of a graph can be checked in

polynomial time. Therefore, checking whether there

exists an acyclic TP[q](h), for a given q, can be done

in polynomial time.
Serializability under Constraints

For read or write steps O and O 0, OO 0-constraints are

defined as: if Oi[X] of transaction Ti occurs before

O 0
j[X] of transaction Tj in h, for some X in D, then

Serializability. Figure 3. Weak order on X-writers.

2630S Serializability
Ti must be serialized before Tj. Depending on whether

each of these steps is a read (R) or a write (W), the

constraints are classified as WW-, WR-, RW- and RR-

constraints. In addition, WRW-constraints are defined

as the union of WR- and RW-constraints. It turns

out that WRW-constraints impose exactly a weak

order q. WW-constraints are more stringent than

WRW-constraints; they impose a total order on all

the X-writers whereas the latter impose a total order

only on useful X-writers. Hence there are histories

which are serializable under WRW-constraints but

not under WW-constraints. For histories in which

there are no useless writes (on any data item), WRW-

constraints are equivalent to WW-constraints. Serial-

izability under WRW-constraints, and similarly WW-

constraints, can be checked in polynomial time. It

turns out that WR- and RW-constraints, individually,

do not induce a weak order on h. They leave the

choices of exclusion edges for some unsafe cutsets

open, and checking membership under each of them

is NP-complete.

Serializability under WW-constraints corresponds

exactly to serializability under the union ofWW-,WR-

and RW-constraints. It also corresponds exactly to

conflict preserving serializability CPSR [1], also called

conflict serializability [15]. Here, the constraints are

stated in terms of conflicts: two steps conflict if they

are on the same data item and at least one of them is

a write, and two transactions conflict if they have

conflicting steps.

A constraint that is not based on conflicts is: if a

transaction Ti finishes execution before a transaction Tj

starts, in the given history h, then Ti should appear

before Tj in an equivalent serial order. The histories
serializable under these constraints are called strictly

serializable (also order-preserving serializable [1,9]).

Different Notions of Serializability

In the serializability definition that the reads-from rela-

tion of the given history be the same as that of a serial

history, the reads of all transactions were considered.

This notion has been called view-serializability [11]. If

only the reads of Tf are considered, then state-serial-

izability notion is obtained. Here the final database

state is consistent but some transactions may see

(read from) an inconsistent database state. A general

notion is S-serializability where a subset S of T sees a

consistent database state. This is characterized as

follows:

A step O is immediately-useful-to another step O 0 if

either O 0 reads the value (of a data item) written by O,

or (i) O is a read of some data item, (ii) O 0 is a write of

another (perhaps different) data item, (iii) both O and

O 0 belong to the same transaction and (iv) O precedes

O 0 in the transaction partial order. The useful-to is the

transitive closure of immediately-useful-to. With re-

spect to a specified subset S of T, a step of Ti is S-useful

if it is useful to some transaction in S; otherwise, it is

S-useless.

The reads-from relation of h with respect to S,

denoted rf (h, S), is defined as rf (h, S) = {(Ti, X, Tj):

Tj reads X from Ti, and Rj[X] is S-useful}. Two histories

h and h0 are S-equivalent if rf (h, S) = rf (h0, S).

A history h is S-serializable if there is a serial history

h0 S-equivalent to h.

Relative Atomicity

Serializable executions have been considered as correct

executions on the premise that a transaction is a unit of

Serializability S 2631

S

atomicity, and any serial execution is correct. A serial

execution is called a basic correct execution. This no-

tion of atomicity has been found to be unnecessarily

restrictive for many applications. Hence, researchers

started refining atomicity units and hence accepting

some non-serial histories as basic correct executions.

An earliest refinement is in the definition of nested

transactions, where a transaction consists of several

subtransactions, each of which in turn consists of sev-

eral subtransactions, and so on, with the traditional

transactions at the lowest levels of the hierarchy. In one

definition of nested transactions [8], each subtransac-

tion is an atomic unit to other subtransactions which

are siblings at the same level or their descendants.

The atomicity property in the nested transaction

definition has two important characteristics: (i) an

atomic unit may consist of some, not necessarily all,

steps of a transaction; and (ii) some steps may consti-

tute an atomic unit to some transactions, not to others.

The atomicity property in sagas [5] has characteristic

(i). A saga is a two-level nested transaction where each

bottom level transaction is an atomic unit for every

other transaction. The characteristic (ii) has been

called relative atomicity [7]. The relative atomicity

notion has been generalized in various stages. Garcia-

Molina [4] defines compatible transactions as a set of

transactions whose steps can interleave arbitrarily. If Ti
and Tk are not compatible, then the entire transaction

Ti is an atomic unit for Tk, and vice versa. If transac-

tions Ti and Tj are compatible, then each step of Ti is an

atomic unit for Tj, and vice versa. Then, (i) the steps of

Tj can interleave with those of Ti arbitrarily and (ii) any

number of steps of Tj can be executed after any step of

Ti. The relative atomicity notion in [3] constrains

property (i): Tj is allowed to interleave only at certain

points in the execution of Ti, defined as the breakpoints

of Ti with respect to Tj; but, whenever Tj is allowed,

any number of its steps can be executed. With the

generalized relative serializability notion of [13],

the number of steps of Tj that can be executed at the

individual breakpoints is restricted. Further, in the rel-

ative serializability notion, the above interleaving

restrictions are only with respect to ‘‘dependent’’

steps; non-dependent steps are allowed to interleave

anywhere in Ti. The precedence relation among the

steps of the same transaction and conflict relations

among the steps of different transactions contribute

to the dependency. In all these proposals, any execu-

tion equivalent to any of the basic correct executions
is considered as a correct execution. Lynch [7]

extends the compatibility notion of [4] to subtran-

sactions of nested transactions. Further extensions

appear in [12].
Key Application
Serializability has become a de facto yardstick for

arguing correctness of concurrent executions of pro-

grams. Serializability theory has revealed the amount

of concurrency that can be achieved in correct

executions and has helped in designing methods of

achieving them. The theory has been extended from

simple database operations to complex (and even

non-electronic) activities, from individual to collab-

orative applications, and from centralized to highly

distributed environments. The theory has also been

enriched by adding application semantics along with

the syntactic considerations.

Conflict serializability notion has served as a cor-

nerstone to the design of database schedulers. The

strength of the notion includes the following two nice

properties: (i) it can be checked with a much simpler

history graph where vertices correspond to transac-

tions, edges correspond to conflicts, and acyclicity of

the graph is a necessary and sufficient condition for the

history to be conflict serializable; and (ii) if a history is

conflict serializable then the projection of the history

over any subset of the transactions is also conflict

serializable. The class of histories allowed by the very

popular two-phase locking policy is a subset of conflict-

serializable histories.

Other serializability notions have been used in sev-

eral advanced applications (for example in design data-

bases [14]).
Cross-references
▶ACID Properties

▶Atomicity

▶Concurrency Control – Traditional Approaches

▶Multi-Version Serializability and Concurrency

Control

▶Transaction Management

▶Transaction Models – the Read/Write Approach
Recommended Reading
1. Bernstein P.A., Shipman D.W., and WongW.S. Formal aspects of

serializability in database concurrency control. IEEE Trans. Soft-

ware Eng., SE-5:203–215, 1979.

2632S Service Bus
2. Eswaran K.P., Gray J.N., Lorie R.A., and Traiger I.L. The notion

of consistency and predicate locks in a database system. Com-

mun. ACM, 19:624–633, 1976.

3. Farrag A.A. and Özsu M.T. Using semantic knowledge of trans-

actions to increase concurrency. ACM Trans. Database Syst.,

14(4):503–525, 1989.

4. Garcia-Molina H. Using semantic knowledge for transactions

processing in a distributed database. ACM Trans. Database Syst.,

8(2):186–213, 1983.

5. Garcia-Molina H. and Salem K. Sagas. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1987, pp. 249–259.

6. Ibaraki T., Kameda T., and Minoura T. Serializability with con-

straints. ACM Trans. Database Syst., 12(3):429–452, 1987.

7. Lynch N.A. Multilevel atomicity – a new correctness criterion for

database concurrency control. ACM Trans. Database Syst.,

8(4):485–502, 1983.

8. Moss T.E.B. Nested Transactions: An Approach to Reliable

Distributed Computing. Ph.D. Thesis, Technical Report MIT/

LCS/TR-260, MIT Laboratory for Computer Science,

Cambridge, Massachusetts, 1981.

9. Papadimitriou C.H. The serializability of concurrent database

updates. J. ACM, 26:631–653, 1979.

10. Papadimitriou C.H. and Kanellakis P. On concurrency control

by multiple versions. ACM Trans. Database Syst., 9:(1):89–99,

1984.

11. Vidyasankar K. Generalized theory of serializability. Acta Inf.,

24:105–119, 1987.

12. Vidyasankar K. Unified theory of database serializability. Funda-

menta Inf., 14(2):147–183, 1991.

13. Vidyasankar K. Generalized relative serializability. In Proc. of

9th Int. Conf. on Management of Data, 1998, pp. 313–327.

14. Vidyasankar K. and Dampney C.N.G. Version consistency and

serializability in design databases. In Proc. 2nd Int. Conf. on

Database Theory, 1988, pp. 368–382.

15. Weikum G. and Vossen G. Transactional information systems –

theory, algorithms, and the practice of concurrency control and

recovery. Morgan Kaufmann, 2002.
Service Bus

▶ Enterprise Service Bus (ESB)
Service Buses

▶ Interface Engines in Healthcare
Service Choreography

▶Composed services and WS-BPEL
Service Component Architecture
(SCA)

ALLEN CHAN

IBM Toronto Software Lab, Markham, ON, Canada

Synonyms
SCA

Definition
The Service Component Architecture (SCA) [1] is a

collaborative effort driven by a number of software

vendors in the Open SOA (OSOA) [2] Collaboration

group to facilitate the building of applications and

systems based on service-oriented architecture. The

final specification for SCA Version 1.0 was available

as of March 21, 2007.

SCA is a set of specifications in the area of service

composition, assembly, protocol bindings and policy

definitions, where the Service Data Objects (SDO) [3]

specification is used to specify how service data can be

specified and manipulated. SDO provides a uniform

access pattern for heterogeneous data sources, such as

XML or relational databases. Although SCA and SDO

can work independently of each other, they are often

used together to provide a full end-to-end framework

for defining SOA applications and systems.

Key Points
Conceptually, SOA is an architecture principle to enable

software applications to be exposed as services. However,

since SOA itself does not dictate how these services

will be packaged or assembled, some of the benefits of

SOA such as reuse, manageability and scalability become

unpredictable. SCA can speed up SOA adoption by using

the SCA Assembly Model to define how services can

be declared, implemented and connected to each other.

The basic building block for SCA is an SCA Com-

ponent, which can be used to declaratively describe the

business services exposed by an implementation, and

declare dependency on other business services as refer-

ences. In addition, bindings can be applied to any

services or references to describe how a client applica-

tion can invoke an existing service or how an external

service can be accessed, respectively.

SCA also supports a recursive composition model to

support the creation of a composite SCA Component.

Another aspect of the SCA Assembly Model is the SCA

Policy Framework [2], which provides a way to capture

the non-functional aspects of an SOA system.

Service Oriented Architecture S 2633
The SCA specification provides a framework for

the implementation of scalable and manageable SOA

systems, such as the enterprise service bus (ESB).

Cross-references
▶ Enterprise Service Bus (ESB)

▶ Service Data Objects (SDO)

▶ Service Oriented Architecture (SOA)

Recommended Reading
1. Open SOA Collaboration, http://www.osoa.org/.

2. SCA Specification, Final Version 1.0, http://www.osoa.org/display/

Main/ServiceþComponentþArchitectureþSpecifications.

3. SDO Specification, Final Version 2.1, http://www.osoa.org/

display/Main/ServiceþDataþObjectsþSpecifications.

4. Spring Framework http://static.springframework.org/spring/

docs/2.0.x/reference/index.html.
Service Composition

▶Composition
Service Item

▶Clinical Order
Service Orchestration

▶Composed services and WS-BPEL
S

Service Order

▶Clinical Order
Service Oriented Architecture

SERGE MANKOVSKI

CA Labs, CA Inc., Thornhill, ON, Canada

Synonyms
SOA
Definition
Service Oriented Architecture is a conceptual model

for integration of software systems where system func-

tion is performed by coordinated invocation of ser-

vices. In this model term service refers to significant

atomic computational activity that can be invoked over

a computer network. Service computational activity is

significant in the sense that it is in order of several

magnitudes more complex than a function invocation

and atomic in the sense that it is a smallest element of

functional decomposition in this model.

Historical Background
Historically IT systems are built in a competitive envi-

ronment where each vendor is trying to develop best

possible solutions to their customers and, at the same

time, trying to build even more complex systems in

attempt to serve any customer need and prevent custo-

mers looking for solutions from another vendor. Logic

of this process led to development of IT systems that

either did not have any means for integration with other

systems, or at most had interfaces necessary for integra-

tion between within the brand. At the same time com-

panies using IT systems to conduct business were trying

to integrate systems in attempt to streamline operations,

increase utilization of IT asset and achieve business criti-

cal functionality. These competing forces were shaping

landscape IT for several decades. Over time there were a

number of successful attempts to build large scale inte-

gration of IT systems, but more often than not, these

integrated solutions themselves were becoming silos in

its own right. A notable example of this process was

emergence of electronic data interchange (EDI) system

that was under development from mid 1960s almost at

the same time when DARPA started work leading to

development of the Internet. By the time when Tim

Berners-Lee developed a first web browser in 1990,

EDI was already well established as a successful model

of integration of IT functionality across multiple

companies.

It is perhaps not possible to pinpoint when exactly

SOA way of thinking started. Impact and acceptance

of SOA became more evident after successes standardi-

zation of technologies that were necessary within the

SOA model. Experience and lessons learned by the

industry from several decades of development, deploy-

ment and operation of various integration architectures,

emergence of XML as a universal data interchange for-

mat, emergence of new open standards, and tremendous

success of Internet have build technological foundation

2634S Service Oriented Architecture
for SOA adoption. Broad adoption started when critical

mass of standards comprising SOA stack hasmatured. At

the same time Open Source Development phenomena

made implementations of the standards broadly avail-

able. It removed barriers created by proprietary

implementations and lowered barrier to entry for

new users of the technology. Growth in scope, diver-

sity and rapid pace of change in business require-

ments and demand business agility created

awareness of SOA benefits in business community.

Foundations
SOA as an integration architecture is concerned with

all aspects of interactions between IT systems. SOA

postulates that a basic element of SOA architecture

is service.

SOA system is comprised of a number of services

deployed over a computer network. Service is a basic

building element of SOA. Notion of a service is similar

to notion of object in object oriented programing, but

it is more coarse-grained. For example, a service can

represent an important function of an IT system or

even entire system all together. Each service has an

interface. Service interface is metadata, or data about

data, needed to invoke service operation.

In respect to invocation SOA distinguishes two

roles – Service Consumer and Service Producer. Ser-

vice Consumer is a system invoking service and Service

Producer performs the service. Service Producer

invokes service by message to an instance of Service

Producer. Upon receiving an invocation conforming to

the service interface, Service Producer executes

requested operation using parameters provided by

the invocation. Service execution might also include

invocation of other services within the SOA system and

hence Service Producer can also play role of Service

Consumer in respect to another service. When Service

Producer completes execution of the operation it

replies to Service Consumer with an acknowledgement

of successful completion or data containing results of

the invocation or indication of fault. This reply from

Service Producer to Service Consumer indicates com-

pletion of service execution.

It is important to note that service interface is an

abstraction that does not take into account details of

the network data transport needed to invoke the ser-

vice or details of service implementation. Use of the

interface abstraction allows for definition of service

interactions at the higher level of abstraction than in
any other integration architecture. In particular, it

allows for definition of service interactions at design

time and achieves high degree of flexibility regarding

service implementation, location, time, and transport

protocol needed for service invocation.

Since interface is separated from service instance it

is necessary to associate interface with a service in-

stance in a process that is called service binding. SOA

allows to perform service binding at any time of SOA

system life time. In particular, it can be done at run time

by means of service discovery and service lookup. Service

discovery is a process of discovery of services capable to

perform a necessary function. Service lookup is a process

of finding a service end point reference based on a

service name, name of a service interface, or the inter-

face metadata itself. End point reference is a piece of

metadata that must contain a protocol dependent ser-

vice address along with optional parameters and ses-

sion identifier.

Notion of service interface is important from the

software engineering point of view because allows

for separation of the function performed by service

from implementation of service itself. This constitutes

a good software engineering practice leading to more

robust system design. It also enables very powerful

notion of service orchestration. Service orchestration

is a process of delivering a composite service function

by coordinated invocation of other services. It is usu-

ally done within an orchestration engine that executes

the service in accordance with the process definition

describing logic and sequence of invocation of orche-

strated services along with the necessary data transfor-

mation. Data transformation is an activity of

modifying syntax of the data exchanged between the

services to accommodate their interface requirements.

SOA as a conceptual model accommodates wide

variations. Any of the architectural concepts highlighted

above can be omitted, except concept of service. This is

perhaps why it is called service-oriented architecture.

In respect to services there are at least two major

types of services:

1. SOAP services use WS-∗ stack of Web Service Stan-

dards. These services are based on a number of

international standards developed with W3C and

OASIS standardization committees and make ex-

tensive use of XML.

2. RESTful services emerged from the world of Open

Source. They make use of HTTP protocol and

Service Oriented Architecture S 2635

S

became ‘‘standard-de-facto’’ for web based services

and mush-ups.

Within SOA, there is a wide degree of variation in

respect to use of metadata. SOAP services make exten-

sive use of metadata: XML Schema for message

syntax, WSDL and Schema for interface definition,

WSDL for binding, UDDI for lookup, BPEL for or-

chestration. RESTful services use HTTP verbs for

defining actions and use HTTP for data transport.

They do not have formal definition of data syntax

beyond URL syntax, no notion of binding, lookup,

discovery and orchestration and hence no metadata

associated with them.

In respect to invocation there are three types of

invocation:

1. Synchronous invocation. This form of invocation

passes control of execution from Service Consumer

to Service Producer and it does not return to Ser-

vice Consumer until service is completed. This type

of invocation is common within both SOAP and

RESTful services.

2. Asynchronous invocation. In this form of invoca-

tion Service Consumer does not need to wait for

Service Producer to complete service invocation.

Service Consumer can carry on performing its

own function, but it requires capability on the

part of the Service Consumer to receive message

indicating completion of the service. This type of

invocation is often done by use of a messaging

system. This type of invocation is more common

among SOAP services.

3. Enterprise Services Bus (ESB) based invocation. In

this form of invocation Enterprise Service Bus per-

forms function of discovery, lookup, binding, mes-

saging, data transformation and orchestration.

ESB-based invocation can be performed synchro-

nously or asynchronously, but in this case service

invocation can be done using abstract Service Pro-

ducer interface. Service invocation is passed to ESB

that performs Service Producer lookup and binding

and invocation. If necessary, ESB performs data

transformation. If requested service is a composite

service, ESB performs necessary orchestration.

Variation in respect to service discovery, lookup and

binding range from systems fully bound at design time

to systems using run-time semantic-based mechan-

isms employing artificial intelligence methods and
techniques. Systems performing mission critical func-

tion tend to drift towards design time binding. SOA

systems aiming to accommodate high rate of changes

tend to drift towards sophisticated run-time binding.

There is a wide variation in use and purpose of the

SOA systems themselves. WS-∗ based service architec-

ture tend to be used for enterprise integration. They

often use ESB as a back-bone carrying majority of the

business related data. It becomes a focal point where

enterprise policies can be enforced and formal audit

necessary for proving business compliance can be con-

ducted. Because of this highly visible position of

SOA systems within enterprise it gives rise to notion

of SOA Governance. SOA Governance is an on-going

activity within an enterprise maximizing leverage of

the SOA infrastructure for business purposes. SOA

Governance has two distinctive aspects. One aspect

refers to ensuring that all aspects of an enterprise

functioning within SOA are performing their functions

in expected manner by means of enforcing and audit-

ing compliance with business policies, practices. In this

aspect SOA provides means for automated support

and tractability of decisions and actions performed

within enterprise. Automated decision and action sup-

port within SOA is achieved by use of service orches-

tration. SOA Orchestration provides automation of

business processes, automatic routing of documents,

enforcement of timely document processing, notifica-

tion of non-compliance, and change management.

Tractability of decision and actions is achieved by

retaining of service invocation data within the SOA

infrastructure. It allows for cross-referencing and cor-

relation of logging data retained with the services and

allows reconstructing entire picture of business activity

at any point of time. It ensures that at any point of time

there is a means of checking if business activities were

performed in accordance with law, regulations and in

adherence to best practices.

Another meeting of SOA Governance relates to

operation of the SOA system itself. Services within

SOA have a certain degree of freedom and can change

independently from each other as long as interfaces

remain unchanged. However they are not completely

independent because it is often not possible make them

completely independent and there is still some degree

of dependence between the services. This requires

some level of control over the degree in which services

can vary. SOA Governance makes sure that any change

within the system does not destabilize or jeopardize

2636S Service Request
business function performed by the system. It is

accomplished by imposing policies to restrict degree

of changes in behavior of services, ensure that services

continue to perform within established service levels,

managing deployment of new services and maintain-

ing operation of the existing services. This from of

governance also uses the same automation and tracta-

bility infrastructure as the other one.

Key Applications
Enterprise Application Integration, Business Process

Optimization.
Future Directions
Deployment of SOA without changing business

processes does not produce the same level of return

on investment as if deployment is accompanied by

changes in the business processes tailored to take ad-

vantage of the SOA system. On the other hand changes

in business processes trigger changes in the SOA sys-

tem. In the future, it would be necessary to develop a

methodology for SOA deployment. This methodology

would have to cover both technical and business aspects

as well as provide foundation for understanding of

economic impact and, ultimately, quantify return on

investment associated with SOA deployment.

Cross-references
▶BPEL

▶ Enterprise Application Integration

▶ Enterprise Service Bus

▶Messaging Systems

▶Mush-up

▶OASIS

▶Open Source

▶RPC

▶ SOAP

▶UDDI

▶W3C

▶Web Services

▶WSDL

Recommended Reading
1. OASIS Reference Model for Service Oriented Architecture,

http://www.oasis-open.org/committees/download.php/19679/

soa-rm-cs.pdf

2. Service-Oriented Architecture (SOA): Concepts, Technology,

and Design. Thomas Erl. The Prentice-Hall Service Oriented

Computing Series, 2005.
3. Understanding Enterprise SOA. Eric Pulier, Hugh Taylor,

Manning, 2005.

4. W3C Web Services Glossary, http://www.w3.org/TR/ws-gloss/
Service Request

▶Clinical Order
Session

SAMEH ELNIKETY

Microsoft Research, Cambridge, UK

Synonyms
Database interaction

Definition
A database session is sequence of interactions between

a client and a database server. The session captures the

state of the client’s in-flight SQL commands.

Key Points
Session state may contain database objects, such as

temporary relations, which are accessible only within

the session. For efficiency, some database engines

maintain session state per connection rather than per

client. In this case, it is called connection state.

A client expects to see the effects of its previous

updates to the database. This concept is called session

consistency [1] and is illustrated in the following

example. A client issues a transaction to buy a book.

Then, it sends a subsequent transaction to see the list

of ordered books. Session consistency requires the list

to contain that book. Session consistency is trivial to

implement in a centralized database system, but

becomes harder in a distributed database system.

Cross-references
▶Connection

▶ Strong Consistency Models for Replicated Data
Recommended Reading
1. Daudjee K. and Salem K. Lazy database replication with

ordering guarantees. In Proc. 20th Int. Conf. on Data Engineer-

ing, 2004, pp. 424–435.

Shared Health Record S 2637
Set Abstraction

▶Comprehensions
Set-Difference

▶Difference
Shape Descriptors

▶ Feature-Based 3D Object Retrieval
Shared-Disk File System

▶ SAN File System
S

Shared-Disk Architecture

PATRICK VALDURIEZ

INRIA, LINA, Nantes, Cedex, France

Definition
In the shared-disk architecture, only the disks are

shared by all processors through the interconnection

network. The main memory is not shared: each pro-

cessor exclusive (non-shared) access to its main mem-

ory. Each processor-memory node is under the control

of its own copy of the operating system. Since any

processor can cache the same disk page, a cache coher-

ency mechanism is necessary.

Key Points
Shared-disk requires a cache coherency mechanism

which allows different nodes to cache a consistent disk

page. This function is hard to support and requires

some form of distributed lock management. The most

notable parallel database systemwhich uses shared-disk

is Oracle, with an efficient implementation of a dis-

tributed lock manager for cache consistency.

Shared-disk has a number of advantages: lower cost,

good extensibility, availability, load balancing, and easy

migration from centralized systems. The cost of the
interconnection network is significantly less than with

shared-memory since standard bus technology may be

used between processor nodes. Given that each proces-

sor has enough main memory, interference on the

shared disk can be minimized. Thus, extensibility can

be better, typically up to a hundred processors. Since

memory faults can be isolated from other nodes, avail-

ability can be very good. Load balancing is relatively

easy as a query at any node can access all data on the

shared disks. Finally, migrating from a centralized sys-

tem to shared-disk is relatively straightforward since

the data on disk need not be reorganized.

However, shared-disk suffers from complexity and

potential performance problems. It requires distributed

database system protocols, such as distributed locking

and two-phase commit which are complex. Further-

more, maintaining cache consistency can incur high

communication overhead among the nodes. Finally,

access to a shared-disk is a potential bottleneck.

Cross-references
▶ Parallel Data Placement

▶ Parallel Query Processing

▶Query Load Balancing in Parallel Database Systems
Shared-Disk Databases

▶ Process Structure of a DBMS
Shared-Everything

▶ Shared-Memory Architecture
Shared-Everything Databases

▶ Process Structure of a DBMS
Shared Health Record

▶ Electronic Health Records (EHR)

2638S Shared-Memory Architecture
Shared-Memory Architecture

PATRICK VALDURIEZ

INRIA, LINA, Nantes Cedex, France

Synonyms
Shared-everything

Definition
In the shared-memory architecture, the entire memory,

i.e., main memory and disks, is shared by all processors.

A special, fast interconnection network (e.g., a high-

speed bus or a cross-bar switch) allows any processor to

access any part of thememory in parallel. All processors

are under the control of a single operating systemwhich

makes it easy to deal with load balancing. It is also very

efficient since processors can communicate via the

main memory.

Key Points
Shared-memory is the architectural model adopted by

recent servers based on symmetric multiprocessors

(SMP). It has been used by several parallel database

system prototypes and products as it makes DBMS

porting easy, using both inter-query and intra-query

parallelism.

Shared-memory has two advantages: simplicity and

load balancing. Since directory and control information

(e.g., lock tables) are shared by all processors, writing

database software is not very different than for single-

processor computers. In particular, inter-query para-

llelism is easy. Intra-query parallelism requires some

parallelization but remains rather simple.

Load balancing is also easy to achieve since it can

be achieved at run-time by allocating each new task

to the least busy processor.

However, shared-memory has three problems: cost,

limited extensibility and low availability. The main cost

is incurred by the interconnection network which

requires fairly complex hardware because of the need

to link each processor to each memory module or disk.

With faster processors, conflicting accesses to the

shared-memory increase rapidly and degrade perfor-

mance. Therefore, extensibility is limited to a few tens

of processors, typically up to 16 for the best cost/

performance. Finally, since memory is shared by all

processors, a memory fault may affect several proces-

sors thereby hurting availability. The solution is to use
duplex memory with a redundant interconnect which

makes it more costly.

Cross-references
▶Parallel Data Placement

▶Parallel Query Processing

▶Query Load Balancing in Parallel Database Systems
Shared-Nothing Architecture

PATRICK VALDURIEZ

INRIA, LINA, Nantes, Cedex, France

Synonyms
Distributed architecture

Definition
In the shared-nothing architecture, each node is made

of processor, main memory and disk and communi-

cates with other nodes through the interconnection

network. Each node is under the control of its own

copy of the operating system and thus can be viewed as

a local site (with its own database and software) in a

distributed database system. Therefore, most solutions

designed for distributed databases such as database

fragmentation (called partitioning in parallel databases),

distributed transaction management and distributed

query processing may be reused.

Key Points
As opposed to symmetric multiprocessor (SMP),

shared-nothing is often called massively parallel

processor (MPP). Many research prototypes and com-

mercial products have adopted the shared-nothing

architecture because it has the best scalability.

The first major parallel DBMS product was Teradata

which could accommodate a thousand processors in its

early version in the 1980s. Other major DBMS ven-

dors, except Oracle, have provided shared-nothing

implementations.

Shared-nothing has three main advantages: low

cost, high extensibility, and high availability.

The cost advantage is better than that of shared-disk

which requires a special interconnection network for the

disks. By easing the smooth incremental growth of the

system by the addition of new nodes, extensibility can

be better (in the thousands of nodes). With careful

Side-Effect-Free View Updates S 2639
partitioning of the data on multiple disks, almost linear

speedup and linear scale up could be achieved for simple

workloads. Finally, by replicating data on multiple

nodes, high availability can be also achieved.

However, shared-nothing is much more complex

than either shared-memory or shared-disk.

Higher complexity is due to the necessary imple-

mentation of distributed database functions for large

numbers of nodes, in particular, data placement. Load

balancing is more difficult to achieve because it relies

on the effectiveness of database partitioning. Unlike

shared-memory and shared-disk, load balancing is

decided based on data location and not the actual

load of the system. Furthermore, the addition of new

nodes in the system presumably requires reorganizing

the database to deal with the load balancing issues.

Cross-references
▶ Parallel Data Placement

▶ Parallel Query Processing

▶Query Load Balancing in Parallel Database Systems
Shared-Nothing Databases

▶ Process Structure of a DBMS
Shot Boundary Detection

▶Video Shot Detection
S

Shot Segmentation

▶Video Segmentation
Shotcut Detection

▶Video Segmentation
SI

▶ Snapshot Isolation
Side-Effect-Free View Updates

YANNIS VELEGRAKIS

University of Trento, Trento, Italy

Definition
A view is an un-instantiated relation. The contents of

its instance depend on the view query and the instances

of the base tables. For that reason, an update issued

on the view cannot be directly applied on the view

instance. Instead, it has to be translated into a series

of updates on the base tables so that when the view

query is applied again on the modified base table

instances, the result of the view update command will

be observed on the view instance. Unfortunately, it is

not always possible to find an update translation such

that the change observed on the view instance is the

one and only the one specified by the view update

command. When this happens for a view update trans-

lation, the translation is said to have no side-effects.

To fully exploit the updateability power of views, it is

desired to be able to find update translations that have

no side-effects.

Historical Background
Updates on the views were introduced almost simulta-

neously with views. Their importance has been recog-

nized by Codd himself. In fact, one of the twelve

rules that Ed Codd [2] introduced to define what a

real relational database is, was referring to the ability

of the views to be updateable. In particular, the sixth

rule was:

‘‘All views that are theoretically updatable must be

updatable by the system’’.

The term theoretically updateable is referring to the

ability of finding side-effect-free translations of the

view updates.

Foundations
The problem of side-effect-free updates is based on the

problem ofUpdates through views. Referring to Figure 1

of that entry, the update translation Wof a view update

U on a view V is said to have no side-effects if U

(QV(I)) = QV(W(I)), where I is the database instance

and QV is the view query of the view V.

To better realize the problem of side-effect-free

view updates, consider a database instance that consists

of the 3 tables of Figure 1.

Side-Effect-Free View Updates. Figure 1. Three base

Tables.

2640S Side-Effect-Free View Updates
Suppose that a view V1 is defined on top of these

three tables through the following view query:

select *

from Personnel P, Teaching T, Schedule S

where P.Employee = T.Professor and

T.Seminar = S.Course

The instance of the view will be the relation illustrated

in Figure 2.

Consider now an update command on this view

that requests the deletion of the tuple td:[EE, Smith,

Smith, Projector, Databases, Databases, 10]. Tuple td
appears in the view instance due to the join of the 3

tuples [EE, Smith], [Smith, Projector, Databases] and

[Databases, 10] of the base tables Personnel, Teaching

and Schedule. Deletion of any (or all) of these tuples

will achieve the desired result of deleting tuple td from

the view. However, any such deletion will have addi-

tional effects in the view instance. For instance, the
removal of tuple [EE, Smith] from Personnel will also

eliminate the view tuples that are immediate before

and after td. Similar observations can be made for the

tuples in the other two base relations. In fact, for the

particular update, it can be shown that there is no

change that can be made on the base tables to achieve

the desired tuple deletion without any additional

changes, i.e., side-effects, in the view instance.

Side-effects are not observed only on deletions but

also on insertions. For instance, consider the update

command that requests the insertion of tuple ti:[Econ-

omy, Smith, Smith, Projector, Databases, Databases,

10] in V1. For the appearance of ti in the view V1

to be justified, tuples [Economy, Smith], [Smith, Pro-

jector, Databases] and [Databases, 10] need to exist in

the instances of Personnel, Teaching, and Schedule,

respectively. The last two are already there, but not

the first. The translation of the insert command on

the base tables will insert [Economy, Smith] in Person-

nel. Unfortunately, due to the value ‘‘Smith’’ in its

attribute Employee, tuple [Economy, Smith] will be

able to join with every other tuple of table Teaching

that has value ‘‘Smith’’ in the attribute Professor. This

will introduce additional tuples in the V1 instance that

the insert command did not request.

Base tables, i.e., tables that have been defined

through the ‘‘create table’’ command, have standalone

instances, thus, update commands on them can be

implemented without side-effects by simply modifying

their materialized instance accordingly. If views are to

be used as any other table, a view needs to show the

same behavior as base tables. This means that update

commands need to have translations that generate no

side-effects in the view instance. It would have been

really surprising for an application or a user that is not

aware that a relation she is interacting is actually a

view, to request the deletion (or insertion) of a tuple

and then see additional tuples disappearing from

the view (or appearing in it).

To cope with the view update translation side-

effects one option is to leave the burden to the data-

base administrator who defines the view. During the

view definition, the administrator is responsible to

specify not only the view query but also how exactly

each update is translated to updates on the base

tables [7] and make sure that side-effects will not

occur. The drawback of this option is that it requires

a lot of knowledge and experience from the admin-

istrators. If the administrator determines that for a

Side-Effect-Free View Updates. Figure 2. The view V1 instance.

Side-Effect-Free View Updates S 2641

S

given view update there is no translation that has no

side-effects, she can make the view not to accept this

kind of updates, or allow the side-effects to happen

if she believed that this is the semantically correct

behavior.

Instead of letting the administrator deciding

whether an update should be allowed or not, an alter-

native solution is to develop methods to perform this

test automatically. Based on this idea, Keller [4] devel-

oped five criteria to characterize the correctness of

a view update translation. The first of these criteria

requires the translation to have no side-effects. A con-

sequence of this is that keys of the base relations have

to appear in the views, i.e., cannot be projected out.

This reduces the cases in which side-effects may appear

in the views, but does not completely eliminate them.

Keller studied the different choices that exist when

translating updates on select, project, select-project

and select-project-join views, and provided algorithms

for update translation for each case. These algorithms

are guaranteed to respect his 5 criteria. For a given

update on the view, there may be more than one

algorithms that can be used, i.e., more than one possi-

ble translations. Which one to be used is a decision

that is provided by the database administrator at the

moment of view definition [5].

Dayal and Bernstein [3] introduced the notion of

the view-trace and the view-dependency graph. They are

graphs that model the dependencies between the attri-

butes of the base tables as determined by the schema
and the view definitions. Through them one can deter-

mine whether there is an update translation that has

no side-effects. For each update on the view, either

a unique side-effect-free translation is found and is

applied, or the update is not allowed to occur. This

approach eliminates the need of an administrator in-

volvement, but cannot be applied in cases in which

side-effect generated translations are allowed to occur

if they are semantically meaningful.

A different method to determine the kind of

updates a view can accept without generating side-

effects is through the constant complement. Two views

are considered complementary if given the state of

each view there is a unique corresponding database

state. This means that when the instance of one of

these views changes (due to an update) while the

instance of the other is kept constant, then there is a

unique database instance from which the instances of

the two views are generated. In other words, the correct

translation of the view update is unique [1]. Unfortu-

nately, given a view V, finding its view complement has

been shown to be NP-complete even for views with

very simple view definition queries.

In summary, it is not always guaranteed that

there is a unique side-effect-free translation of a view

update. In practical situations, updates are typically

allowed on the views. If there are more than one

translations of a view update, some criterion may be

used to select one of these translations, e.g., the minim-

ality of the changes in the database instance, or

2642S Sight
some specific parameters that the data administrator

specified at the time of view definition. Another ap-

proach is to disallow updates on the view that have

more than one translation. In the presence of side-

effect generating translations, one approach is to

allow the translation to take place, allowing that way

the side-effects to appear on the view, or to disallow

the update completely.

But what would happen in cases in which an up-

date on the view is absolutely necessary, as is the case of

an application that can access the database only

through a view interface without being aware of the

fact that the relation it is accessing is actually a view

and with the need to perform updates on it as it would

have done if it was a base table? An idea proposed by

Kotidis et al. [6] is the following. When an update

command is issued on the view, the change in the

view instance must be exactly the one described by

the update. However, any change on the base table

should not take place unless it is implied by the seman-

tics of the view query and the update command. For

instance, the deletion of the tuple [EE, Smith] from

Personnel as a translation of the delete command for

the view tuple [EE, Smith, Smith, Projector, Databases,

Databases, 10] mentioned above, would have implied

that the reason that the view tuple is deleted is that

Smith stopped being affiliated with the EE department.

However, neither the semantics of the update com-

mand, nor the semantics of the view query imply

something like that. Similar claims can be done for

tuples [Smith, Projector, Databases] and [Databases,

10] of tables Teaching and Schedule, respectively. For

the specific view tuple deletion, the claim is that no

change should be observed in the instances of the three

base tables, but tuple [EE, Smith, Smith, Projector,

Databases, Databases, 10] will be removed from the

view instance. This behavior will only be possible if one

can accept views whose instances are not exclusively

determined by the results of their view queries on the

base tables, but also from the update commands that

have been issued on them.

Key Applications
Achieving side-effect-free updates on the views is of

great importance for systems that provide access to

their data through views, but at the same time need

to hide from their users or the applications that use

the system the fact that they are dealing with views and

not actual relations.
Cross-references
▶ Provenance

▶Updates through Views

Recommended Reading
1. Bancilhon F.B. and Spyratos N. Update Semantics of Relational

Views. ACM Trans. Database Syst., 6(4):557–575, 1981.

2. Codd E.F. Is Your DBMS Really Relational? Computer-World,

1985.

3. Dayal U. and Bernstein P. On the correct translation of

update operations on relational views. ACM Trans. Database

Syst., 8(3):381–416, 1982.

4. Keller A.M. Algorithms for translating view updates to database

updates for views involving selections, projections, and joins. In

Proc. 4th ACM SIGACT-SIGMOD Symp. on Principles of Data-

base Systems, 1985, pp. 154–163

5. Keller A.M. Choosing a view update translator by dialog at view

definition time. In Proc. 12th Int. Conf. on Very Large Data

Bases, 1986, pp. 467–474.

6. Kotidis Y., Srivastava D., and Velegrakis Y. Updates through

views: a new hope. In Proc. 22nd Int. Conf. on Data Engineering,

2006.

7. Rowe L.A. and Shoens K.A. Data abstractions, views and updates

in Rigel. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1979, pp. 71–81.
Sight

▶Visual Perception
Signal Transduction Networks

▶Biological Networks
Signature Files

MARIO A. NASCIMENTO

University of Alberta, Edmonton, AB, Canada

Definition
A signature file allows fast search for text data. It is

typically a very compact data structure that aims at min-

imizing disk access at query time. Query processing is

performed in two stages: filtering, where false-negatives

are guaranteed to not occur but false-positives may

occur and, query refinement, where false-positives are

removed.

Signature Files S 2643

S

Historical Background
Efficient and effective text indexing is a well-known

and long-standing problem in information retrieval.

While inverted files are nowadays a de facto standard

for text indexing, in the early days, its storage overhead

was not acceptable for larger datasets. In addition,

accessing an inverted file on disk would require a

relatively large number of (expensive) disk seeks. The

main motivation for signature files is to allow fast

filtering of text using a linear scan of the signature

file for finding text segments that may contain the

queried term(s). Given that the found segments may

be false-positives, a refinement step is required before

the final correct answer is returned. The main compro-

mise in signature files lies in how to build signatures

for terms and for text segments that allow low storage

overhead, fast disk access, and minimizes the ratio of

false-positives.

Foundations
Let T be a text to be indexed that is divided into non-

overlapping blocks Ti each containing b contiguous

terms. For each block Ti a binary signature S(Ti) is

built. Assume a hashing function h(.) that takes as an

argument a term and returns a signature of length B.

The signature for a block Ti can then be obtained by

performing a bitwise-OR of the signatures of the terms

in that block typically excluding the terms in the stop-

list. The signature file for T is then the set of signatures

for its Ti. A query term Q is also mapped into a

signature h(Q). At query time each block signature

S(Ti) is compared to the query’s signature h(Q).

Denoting the bitwise-AND operator by ‘‘&’’ one can

show that if S(Ti) & h(Q) = h(Q) then block Ti may

contain the query termQ and is considered a candidate

answer. However, in order to guarantee that only cor-

rect answers are returned, all candidate answers must

be refined to ensure that they do contain query termQ.

The reason for such false-candidates is that when a

block signature is built, a particular bitstring matching

the query’s signature may appear as an incidental

combination of different signatures.
Signature Files. Table 1. Sample term signatures

Term To Be or not

H(term) 100100 011000 010010 10100
Consider the sample text T: ‘‘To be, or not to

be: that is the question’’ (punctuation marks can be

ignored without loss of generality). Assume further

that a hashing function h(.) is such that it hashes all

the terms in this text as shown in Table 1.

The resulting block signatures will depend on the

value chosen for b. Table 2 shows the resulting blocks

Ti and their respective block signatures S(Ti) assuming

b = 2 and the hashing signatures shown in Table 1.

If Q = ‘‘question,’’ then T5 satisfies the criterion

S(T5) & h(Q) = h(Q). In this particular case, T5 indeed

contains Q and the text is selected as a true-positive

answer. Consider now the case where Q = ‘‘to.’’ In this

case (S(T1) & h(Q)) = (S(T3) & h(Q)) = (S(T5) &

h(Q)) = h(Q). In query refinement the actual blocks

T1, T3 and T5 need to be read from disk and inspected.

While T1 and T3 do contain query term Q thus being

true-positives, block T5 does not, i.e., it is a false-

positive. This illustrates the major drawback of signa-

ture files. While one can safely discard a block Ti if

S(Ti) & h(Q) = h(Q), the same is not true otherwise.

Without the query refinement step the query’s answer is

prone to contain false-positives, which is typically not

acceptable. Several factors need to be considered when

aiming at minimizing the probability of false-positives.

For instance, the length of the produced signatures (B),

the number of terms per text block (b) and the number

of bits randomly set in the signatures (which is

denoted by n). For instance, for an optimal selection

of n = B ln(2)/b then the false-positive probability is

1/2n [1].

There are other important issues to be considered

in addition to minimizing the false-positive proba-

bility, and thus the overhead of query refinement,

when using signature files. In principle the query

signature could be also be the result of a bitwise-OR

between several terms, hence in principle leading to the

possibility of querying for phrases. Unfortunately,

phrase queries are not well supported by signature

files. This is due to the fact that the bitwise-OR opera-

tion used to produce the block and query signatures

does not preserve any notion of order among the terms
that is the question

0 001100 010001 100001 000110

2644S Signature Files
in the block. Therefore, two blocks with very different

term ordering will have the exactly same block signa-

ture, which is an obvious problem. Another related

problem occurs when terms in a phrase query occur

in the boundaries of blocks. For instance, consider if

one searches for Q = ‘‘not to,’’ which would yield

h(Q) = 101100. Using the block signature illustrated

in Table 2, one would find that while T1 and T2 would

be candidate blocks all would be considered false-posi-

tives in the query refinement and one would be unable

to find that the queried phrase is indeed in T. It would

be missed altogether for being in the boundaries of the

constructed text blocks.

Although less popular, negation queries, where one

searches for a document not containing a query term,

can also be answered using signature files. Recall that in

the discussion above if S(Ti) had at least the same bits

set as h(Q) then Ti could be answer, pending further

checking. If a block Ti does not have at least the same

bits as h(Q) set is definitely an answer to the nega-

tion query. However, if it has those same bits set, it

may still be an answer because those bits may have

independently been set by other terms. Thus, in this

case further checking is required as well. As an illustra-

tion consider the term Q = ‘‘writer’’ and assume that h

(Q) = 100010. Since S(Ti) & h(Q) 6¼ h(Q) for i = 1, 3

and 4 one can be sure that those blocks do not contain

Q and therefore, up to that point, T could be an answer

to query Q. However the fact that S(Ti) & h(Q) = h(Q)

for i = 2 and 5 does not necessarily mean that those

blocks contain Q. In fact, only upon checking the text

of the blocks one could verify that they do not and

consequently classify the text as satisfying the query.

It should be clear by now that the crucial issue in

dealing with signature files is to minimize the overhead

of query refinement. The more blocks needed to be

further check the closer the performance will be to that
Signature Files. Table 2. Block signatures for ‘‘To be, or

not to be: that is the question’’

Block # (i)
Terms in the block

(Ti)

Block Signature
S(Ti)

1 To be 111100

2 or not 111010

3 to be 111100

4 that is 011101

5 the question 100111
of reading the whole dataset, which is obviously not

desirable. This issue can be addressed by using length-

ier signatures possibly through more complex hashing

schemes. Due care is needed though as excessively long

signatures detract from the claimed low storage over-

head yielded by the signature files.

Despite its limitations above, signature files offer

the possibility of very efficient search on disk. Given

that the only operation necessary is to read and com-

pare binary signatures in a linear fashion, no relatively

expensive disk seeks are necessary during the file

scan. Furthermore, the inspection of the signature

blocks can be implemented very efficiently in memory.

Updating the indexed texts can also be carried out with

low overhead in a fairly straightforward way.

Bit-Slice Signature File

Even though the framework presented above is effec-

tive, fairly efficient and relatively simple to implement

it can be further optimized by exploring the layout of

the signature file. The typical layout is to have all block

signatures written contiguously in a file. At query time,

each and every block is read from the disk and com-

pared to the query signature, regardless of which bits

are set in the same. The bit-slice signature aims at

reducing disk access per query by exploiting the fact

that likely few bits are set in the query signature and in

the text blocks.

In order to illustrate the idea, take Table 2 and

transpose it, i.e., instead of having one row per

signature, one will have one row per bit, i.e., the jth

row will contain the jth bit of every block signature,

ordered frommost to less significant. Table 3 shows the

resulting table after ‘‘transposing’’ Table 2.

Notice that the idea when checking whether S(Ti) &

h(Q) = h(Q) is to look for common set bits in

corresponding positions. For instance, when searching

for a block that contains Q = ‘‘or’’ one needs to inspect

the second and fifth bits since h(Q) = 010010. Using

the bitslice S2 one can infer that blocks T1, T2, T3 and

T4 have the 2nd bit set and therefore they could con-

tain Q if they also have the 5th bit set. Similarly using

S5 one can infer that blocks T2, T4 and T5 could contain

Q is their 2nd bit is also set. If S2 & S5 is computed, one

obtains the index to the blocks that need be verified.

Interestingly enough, this is equivalent to performing

the intersection of the two sets of terms obtained by

inspecting each bit individually. In this case S2 &

S5 = 01010 and hence blocks T2 and T4 are candidate

Signature Files S 2645
blocks. Note that as before, candidate blocks need to be

further refined as false-positives are still possible.

While the query processing using plain signature

files would require a linear scan of the whole signature,

using bitslice signature this is typically not the case.

The tradeoff to be considered is that now one needs to

perform (relatively expensive) random disk access in

both the bitslice file and the signature files. As well, the

storage overhead for the bitslice file, nearly as large as

the signature file itself needs to be taken into account.

Just like the more straightforward case, a number of

parameters need to be considered to produce efficient

bitslice signature files.

Signature Trees

As an alternative to simple flat signature files one can

also arrange the signatures in a hierarchical balanced

tree structure, similar to a B+-tree. Once again, the idea
Signature Files. Table 3. Bitslices for the block signatures

in Table 2

Bit # (i) Bitslice (Si)

1 11101

2 11110

3 11110

4 10111

5 01011

6 00011

Signature Files. Figure 1. A sample signature-tree. The actu

respective text block (not shown for simplicity).
is to trade the few disk seeks required by a linear scan of

the signature file by additional seeks that would allow

pruning, hence not reading large portions of the

signatures.

Assume that a given text has already been broken

into blocks Ti and their signatures S(Ti) obtained as

discussed above. A signature-tree (or S-tree as it is

called in [4]) can be constructed as follows. A set of

block signatures are clustered together and stored in a

disk page. The number of signatures per page depends

primarily on the signature size and the page size. Each

entry in such a node is a signature S(Ti) and points to

the actual text block Ti, which, as before will be needed

to check for false-positives. Note that at this point it

would be trivial to process a query by simply traversing

all constructed nodes, which would function as a regu-

lar signature file. Fortunately, it is possible to avoid

reading many of these blocks if a tree structure is used

on top of the block signature nodes.

A tree can be constructed by creating an upper layer

of nodes that will point to the first layer (which will

become leaves of the tree). Each entry in a non-leaf

node points to a leaf node containing entries for

signatures S(Ti), S(Tj),...S(Tk), thus its entry signa-

ture will be the bitstring (S(Ti) | S(Tj) |...| S(Tk)),

where ‘‘|’’ denotes the bitwise-OR operator. The same

reasoning can be applied recursively replacing the leaf

nodes with the nodes of the current upper level. The

sample tree depicted in Fig. 1, assuming an eight bit

block signature and a disk page that can fit two signa-

tures, illustrates the result of this process using the set
al block signatures are at leaf level and point to the

S

2646S Signatures
of signatures at the leaf level. For instance, the entry

0011 1110 in the root node points to a node containing

signatures 0011 0100 and 0011 1010 (indeed 0011 0100

| 0011 1010 = 0011 1110). Similarly the entry 0011

0100 points to the leaf node containing signatures 0010

0100 and 0001 0100.

An important issue is how to cluster signatures in

the leaf nodes and, similarly how to group nodes under

a single entry in the upper levels of the tree and so on

and so forth until the root node. Since one of the

possible criteria for this clustering task is tightly related

to how the query is processed, the latter is discussed

first.

Query processing starts by traversing the signa-

ture tree down from the root node choosing which

subtree to traverse based on the probability that the

subtree contains a candidate block. Assume that a

node N hasm (signature) entriesNi and it is pointed to

by a parent node P under an entry with signature

Pi = (N1 | N2 |...| Nm). The query starts with Pi being

each of the root entries. If Pi & h(Q) 6¼ h(Q) then it is

certain that the subtree pointed by that entry cannot

contain a candidate block and it is discarded. Given the

way the tree is constructed the bits set are propagated

from the leaf nodes up to the root entries, therefore if a

given block in that subtree contained h(Q) the root of

that subtree entry would necessarily contain h(Q). All

is needed now is to repeat the same reasoning using as

the new root the node pointed to by the candidate root

entry. Note that all candidate subtrees need be tra-

versed and, when finally reaching the leaf level, query

refinement step is still required.

As an illustration consider the signature tree in

Fig. 1 and assume h(Q) = 1000 0100. Starting from

the entries in the root node one can discard the upper

subtree in the Figure since 0011 1110 & h(Q) 6¼ h(Q).

The lower subtree needs to be traversed given that 1101

1100 & h(Q) 6¼ h(Q). However, at that point and the

expense of one single disk access, half of the signatures

can be safely discarded, illustrating the pruning power

of signature trees. Of the two subtrees only the one

pointed by first entry (1000 1100) needs to be read. Of

the two block signatures found in the corresponding

leaf nodes, only the one corresponding to signature

1000 0100 needs to be retrieved for the mandatory

refinement step.

Given the query processing reasoning above if too

many bits are set per block signature, the entries in the

non-leaf nodes will quickly have too many bits set and
therefore be unable to help pruning the traversal of the

tree. If too many subtrees are traversed, the savings of

not reading all signatures is bound to be offset by the

additional disk seeks. Clearly the less bits are set higher

up in the tree the more selective the traversal will be.

This provides a criterion for cluster signatures within a

node. Let W(Si) be defined as a function that returns

the number of bits set in signature Si. Clearly, for any

pair of signatures Si and Sj, W(Si | Sj)�W(Si) + W(Sj).

Thus the driving criteria for clustering signatures to-

gether is to minimize the value of W(.) over the

bitwise-OR’ed signatures. Just as in the case of plain

signature files and bitslice signature files, a number of

parameters have to be set in order to obtain efficient

signature trees.
Key Applications
Text indexing and search.
Cross-references
▶B+-Tree

▶Disk

▶ File Systems

▶Hash Functions

▶ Inverted Files

▶Text Indexing and Retrieval
Recommended Reading
1. Baeza-Yates R.A and Ribeiro-Neto B.A. Modern information

retrieval. ACM Press/Addison-Wesley, 1999.

2. Christos F. Access methods for text. ACM Comput. Surv.,

17(1):49–74, 1985.

3. Justin Z., Alistair M., and Kotagiri R. Inverted files versus signa-

ture files for text indexing. ACM Trans. Database Syst.,

23(4):453–490, 1998.

4. Uwe D. S-tree: a dynamic balanced signature index for office

retrieval. In Proc. 9th Annual Int. ACM SIGIRConf. on Research

and Development in Information Retrieval, 1986, pp. 77–87.

5. William B.F. and Baeza-Yates R.A. Information Retrieval: Data

Structures & Algorithms. Prentice-Hall, 1992.

6. Witten I.H, Alistair M., and Bell T.C. Managing Gigabytes:

Compressing and Indexing Documents and Images (2nd ed.).

Morgan Kaufman, 1999.
Signatures

▶Digital Signatures

Similarity and Ranking Operations S 2647
Similarity and Ranking Operations

MICHAEL HUGGETT

University of British Columbia, Vancouver,

BC, Canada

Synonyms
Association; Correlation; Matching; Proximity; Order-

ing; Relevance
S

Definition
Similarity and ranking operations are fundamental to

information searching, in which a user generates a query

phrase of one or more words that reflects an informa-

tion need. The query is used to find related items that

satisfy that need.

Similarity operations quantify the resemblance or

alikeness between two information objects. An infor-

mation object is a conceptual unit, most typically de-

scribed as a document, but also taking the form of a

term, phrase, paragraph, page, section, chapter, article,

book, or script, etc. Information objects may be

printed or digital.

Similarity judgments may be subjective (per-

formed by a user) or algorithmic (performed by a

computer). Depending on the method of evaluation,

alikeness judgments may be semantic (i.e., within

the meaning of a document), structural (i.e., within

parts of speech, position in a document, or pattern

of links between documents), or statistical (i.e.,

within correlations between document attributes).

Statistical methods that model the distribution of

terms in a corpus are most common in information

retrieval (IR).

In typical IR systems, documents are preprocessed

to extract representative keyword terms. The terms of a

user’s query are then compared with the keywords of

each document to find the best matches. Given a

document that satisfies an information need, its key-

words may themselves be used to query for related

documents.

Ranking operations are based on the numeric result

of a similarity measure: given a query representing an

information need, the documents that are scored as

most similar to the query are most highly ranked.

Rank is typically presented to the user as a list of

document descriptors (esp. titles) sorted monotonica-

lly in decreasing order of similarity score.
Historical Background
The history of information retrieval is parallel to and

largely separate from that of database research, since the

goal of IR is to find semantically related information in

an arbitrary corpus of unstructured documents, where-

as the traditional relational database model searches

within specified value ranges in pre-defined fields. In-

formation retrieval produces ‘‘best guess’’ matches for a

given keyword query, whereas relational databases ret-

urn items that are true of a (typically boolean) query

statement. Information retrieval is uncertain and prob-

abilistic; its similarity and ranking operations are vital

to this distinction.

Notions of similarity and ranking are fundamental to

every-day information needs, as intelligent agents (e.g.,

people, animals) define target objects (e.g., food) that

meet certain goals (e.g., survival), and then seek objects

in the environment that meet these goals. As such, the

topics of similarity and ranking have beenwell-discussed

by cognitive scientists who study the structure of knowl-

edge (e.g., Tversky, 1975), and before them by philoso-

phers from the Enlightenment (e.g., Hume) back to

Ancient Greece (e.g., Aristotle).

By the start of the Information Age in the mid-20th

century, discrete mathematics was already the basis of

information retrieval research. Proposed techniques

included the comparison of attribute lists between

documents, called association (Yule, 1912); ranking as

a process of ordinal measurement (Stevens, 1946);

distance metrics that quantify the differences between

strings, originally used for error detection (Hamming,

1950); the automatic indexing of documents based on

the statistical distribution of their terms (Luhn, 1957);

and the weighting of terms to improve retrieval accu-

racy (Maron and Kuhns, 1960).

Beginning in the 1960s, these techniques were refined

and combined into the associative and probabilistic

approaches that form the basis of current practice—

although earlier explorations can claim to have pro-

duced the first operational information retrieval

system (e.g., Goldberg’s Statistical Machine as the first

electronic system, c. 1927, and Tillett’s QUEASY as the

first system on a general-purpose computer, c. 1953).

The associative approach was consolidated and

evaluated exhaustively in the first viable product of

modern information retrieval: the SMART system

(Salton, 1966), which continues to be much imitated.

The probabilistic approach thereafter established a

solid theoretical foundation that had been lacking in

2648S Similarity and Ranking Operations
earlier work, and over a series of refinements improved

retrieval accuracy to become a standard benchmark

(Robertson & Sparck, 1976). Some researchers believe

the probabilistic approach represents the future of

information retrieval.

Foundations
Similarity refers primarily to alikeness based on sha-

red attributes; it is sometimes described as associat-

ion, relatedness or relevance. Computational similarity

operates by comparing lists of representative terms

derived from information objects. Comparisons are

either between a query and document, or between

two documents. In the latter case, if a user has an

exemplar document in hand that represents an infor-

mation need, that exemplar may be used to ‘‘give me

more like this one’’.

Automatic similarity and ranking operations require

information objects in digital form; paper documents

may be digitized using optical character recognition

(OCR). Similarity comparisons are necessarily auto-

matic in systems that index and organize large corpora

of documents. Some systems anticipate significant

human interaction, but may not be practical

since human similarity valuations are slower, and inter-

evaluator consistency is poor.

Information retrieval systems typically encode

documents as term vectors. Each document in a corpus

is assigned a term vector. Words in the document are

typically stemmed to pool together related words such

as stemmer, stemmed, stemming, etc. under a single

unique root term, e.g., stem. Each unique term is

assigned a specific cell in the term vector that contains

a numerical value. Binary vectors show a ‘1’ in a cell if

the document contains the term, ‘0’ otherwise.

Weighted vectors use either integer values to record

the number of times each term appears in the docu-

ment, or real-number values that express the degree to

which the term is representative of the document. All

the term vectors in the same corpus use the same

(binary or weighted) numbering scheme.

All the term vectors in the same corpus are con-

figured the same way. Two types of configuration are

typical. The first type reserves a cell for each unique

term that appears in the corpus, and numerical

values are assigned only to cells for terms that appear

in the document. In a large corpus, document vec-

tors can contain many zeroes, and thus be ineffi-

ciently sparse.
The second type of configuration involves the use

of document keywords: a small set of discriminating

terms from within the document that represent its

content. Keywords are fundamental to indexing,

whose goal is to identify terms that best identify a

document with respect to other documents in a cor-

pus. Using a term-weighting algorithm, a score is cal-

culated for each term in each document, and each

document is assumed to be best described by its

highest-scoring terms. These terms are chosen as the

document’s keywords and low-scoring terms are

ignored.

The use of such automatically-extracted keywords

provides some advantages. Similarity scores can be

calculated more efficiently with a small number of

representative keywords than by using all the terms

in a document. Keywords also provide a human-read-

able summary of document content without requir-

ing that all documents be read and evaluated

manually. Keywords require less space for term stor-

age: a document term vector is a compact mapping

from each keyword to its numerical value. Weighted

keywords are standard in IR; more complicated meth-

ods than this seldom justify the additional complexity

and difficulty (Cleverdon, Mills, & Keen 1966).

Ranking refers to any function that follows the

Probability Ranking Principle, which states that IR sys-

tems are most effective when the documents that they

retrieve in response to a query are ordered in decreas-

ing probability of relevance to the user’s information

need. Ranking is always performed as a result of some

user-generated query.

Associative Similarity

In associative similarity, document term vectors define

a metric space: a corpus with n unique keywords can be

described as a Euclidean n-space, in which each docu-

ment vector describes a point, line, or hyperplane.

Together, the document vectors of a corpus comprise

a matrix subject to algebraic methods for space divi-

sion and summarization. Associative similarity is also

commonly known as the vector space model.

The associative approach finds documents

most similar to a query by matching the terms of the

query vector against all of the document term

vectors in the corpus. The matching process typically

uses an index to retrieve candidate document vectors.

The documents that generate the highest similarity

scores are assumed to be those that best meet

Relevant Non-relevant

documents w/ term r n � r n

documents w/o
term

R � r N � n � (R � r) N � n

R N � R N

Similarity and Ranking Operations S 2649

S

the user’s information need as represented by the

query. Documents are then presented to the user in a

ranked list sorted in decreasing order of similarity

score.

There are several associative vector methods that

can be applied to binary and weighted document

vectors to generate a similarity score. The simplest

method counts the number of found terms in common

between two binary vectors: this produces a simple

matching coefficient, which is useful under the assump-

tion that anymatching is important, for example when

two objects are assumed to be incomplete descriptions

of each other. In practice, this assumption proves to be

coarse and inaccurate, and most similarity operations

normalize the simple matching coefficient by the

lengths of the input vectors. For weighted vectors,

the inner product of two vectors is used as the equiva-

lent of the simple matching coefficient, and sum-

squares of the vectors are used for normalization.

Table 1 shows binary and weighted versions of four

common similarity measures. The weighted cosine

method is especially popular, and represents a geomet-

rically accurate interpretation of correlation.

In practice, these methods are virtually interchange-

able, since all their scores increase monotonically given

the same input data. However, it is notable that for a

given method and query vector, multiple target docu-

ments with significantly different term vector composi-

tions may generate the same similarity score.

Furthermore, the effective domain of similarity scores

in n-dimensional space can vary dramatically between

different similarity functions. Such results suggest that

different similarity operations may be more or less

appropriate for corpora with different types of term

distribution (Jones & Furnas, 1987) [2].

Probabilistic Retrieval

Probabilistic retrieval is a decision-theoretic process

based on the idea that for each query, documents

should be retrieved if they maximize the probability

that they are relevant to the query, P (relevancejdocu-
ment). Whereas associative similarity measures are

largely ad hoc, probabilistic retrieval is based on an

explicit theoretical framework. The intuition is that

users will find documents relevant if the documents

have a certain distribution of attributes, and that the

probability of relevance depends on how closely a

document’s distribution of attributes matches the dis-

tribution sought by the user.
Since the probabilistic model depends on the pres-

ence or absence of terms, documents are represented

with binary term vectors, writing a ‘1’ in each cell that a

given term is present, ‘0’ otherwise. In its simplest

form, the model assumes that errors of false-positive

choices (deemed relevant when irrelevant) and false-

negative choices (deemed irrelevant when actually rel-

evant) are negligible.

For a given document represented by term vector

X, probability of relevance P(R) and probability of

irrelevance Pð�RÞ, the document is judged relevant if

PðRjXÞ > Pð�RjXÞ, i.e., if the following discriminant

function g(X) is greater than 1:

gðXÞ ¼ PðRjXÞ
Pð�RjXÞ

Using Bayes’ Law, this is rewritten as:

gðXÞ ¼ PðX jRÞPðRÞ
PðX j�RÞPð�RÞ �

PðX jRÞ
PðX j�RÞ

since P(R) and Pð�RÞ are constant for each document.

The calculation of P(XjR) and PðXj�RÞ depend on the

probabilities of each term in the document. For each

term, the following table is used, with N the number of

documents in the corpus, R the number of documents

relevant to the query, n the number of documents that

contain the term, and r the number of relevant docu-

ments that contain the term:
Thus for each binary term xi in X that matches a

term in the query, the relevance function is re-written

as a ratio of relevant to non-relevant portions:

gðXÞ � PðX jRÞ
PðX j�RÞ ¼

Q
i

PðxijRÞQ
i

Pðxij�RÞ

¼
X
i

xilog
ri=ðR � riÞ

ðn� riÞ=ðN � n� R þ riÞ

This simplifies to gðxÞ �
P

i xilog
N�ni
ni

in the absence

of relevance information, and approximates further to

Similarity and Ranking Operations. Table 1. Four popular methods for calculating the similarity between two objects.

The binary vectors use a simple count of matching keywords, given their attribute vectors X and Y. The weighted vectors

hold term weights calculated by an indexing algorithm; (wX, wY) indicates the inner product of the vector weights, and

Sw2
A indicates the sum of squares of all weights of vector A.

Binary vectors Weighted vectors

Jaccard X\Yj j
X[Yj j Dice 2 X\Yj j

Xj jþ Yj j Jaccard wX ;wYð Þ
Sw2

X
þSw2

Y
�S wXwYð Þ Dice 2 wX ;wYð Þ

Sw2
X
þSw2

Y

cosine X\Yj jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xj j2� Yj j2

p overlap X\Yj j
min Xj j; Yj jð Þ cosine wX ;wYð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sw2
X
Sw2

Y

p overlap wX ;wYð Þ
min Sw2

X
;Sw2

Yð Þ

2650S Similarity and Ranking Operations
gðxÞ �
P
i

xilog
N
ni

for ni � N, noting that the log

factor in this last equation is identical to the common

form for inverse document frequency (IDF). Once g(X)

is calculated, documents can be ranked by their rele-

vance score.

The crucial factor in probabilistic retrieval is how

to estimate relevance. The problem is that R is initially

unknown, since there are no retrieved documents. To

gain a notion of what may actually satisfy a user’s

information need, a common technique has been to

estimate term relevance based on distributions of

terms in the corpus. One approach is to simply use

term IDF scores, and to assume that all query terms

have an equal probability of appearing in relevant

documents. Another approach is to use a mixture of

two Poisson distributions to characterize the distribu-

tion of each term among relevant and irrelevant docu-

ments in the corpus.

Once the model has made some retrievals based on

these relevance estimates, the user can provide rele-

vance feedback by stating explicitly whether a retrieved

document is relevant or irrelevant. This feedback is

used to refine the model’s term weight parameters

incrementally. Relevance feedback is a direct approach

to system personalization, but may not be practical

with large corpora, or with systems with many (per-

haps anonymous) users with different information

needs. Relevance feedback also imposes a burden of

decision that some users may wish to avoid, and its

use reminds us that information retrieval is not a

purely objective science: it is subject to often ill-defined

information need. Users themselves may not be aware

of their goal or able to describe their need, other than

by a vague feeling of relevance.
Although probabilistic retrieval has been described

here in its simplest form, further developments have

addressed the troublesome assumption of term inde-

pendence endemic to information retrieval, and accu-

racy of relevance scores has been improved by

incorporating parameters for document length and

term frequency.

Related Areas

Information retrieval deals primarily with textual infor-

mation objects, although the advent of digital images and

videos has led to techniques for quantifying the alikeness

of non-textual media. Traditional textual similarity and

ranking operationsmay be applied to non-textualmedia if

they can first be interpreted into textual-symbolic form,

such as by using machine-learning techniques to generate

keyword descriptions of photographs. Whatever the

source media, if symbolic (esp. alphanumeric) descriptive

attributes can be extracted in a robust, consistent manner,

then themedia canbe comparedbasedon those attributes.

Alternatively, where many users share a common

information space, they may add their own tags to

information objects. Tagging is a form of social filtering

where semantic relations between objects emerge from

the collective valuations of a group of interested indi-

viduals. The resulting tag cloud acts as an organic

index, preferentially retrieving objects strongly repre-

sented by a conjunction of query terms.

The World Wide Web, with its search engines, is by

far the most popular information retrieval system: a

text-based information medium with many millions

of users and linked pages. Correspondingly, it has

become an increasingly popular domain for informa-

tion retrieval research and development. Although

the term-based similarity methods discussed above

Simplicial Complex S 2651

S

can be used to compare the content of documents, other

effective methods have taken advantage of the semantic

collaboration that gives the Web its structure: the many

Web authors who link to pages that they consider rele-

vant to their own. Web ranking algorithms (such as

HITS and PageRank) observe which pages are

highly-connected hubs and authorities; these pages are

retrieved preferentially for a given query.

It is often useful to calculate the similarity between

documents of a corpus, whether to find documents

related to an exemplar document, or as a prelude

to clustering operations. Since calculating similarity

scores on demand in a large corpus can be expensive

(particularly where corpus-wide sums are necessary, as

with TF*IDF), pair-wise similarity scores between

documents may be stored in memory for later rapid

retrieval. One approach is to create a similarity

matrix—triangular if the similarity property is as-

sumed to be commutative, but twice as large otherwise.

Another common approach is to store relations

between documents in an associative similarity network

(ASN). Documents act as the nodes of a network; links

between pairs of documents represent relatedness, and

are typically weighted with a real-valued similarity

score. As many remotely-related documents could be

linked with trivial weights, nodes are only linked for

similarity scores above some threshold. In addition to

fast nearest-neighbour retrieval, an ASN also provides

opportunities for interactive navigation through

the network, following a semantic gradient descent

moving toward clusters of documents that better sup-

port a user’s information need. ASNs can be seen as an

example of the cluster hypothesis, which states that

similar documents will be relevant to the same query:

after a document has been retrieved with a term-based

query, other documents similar to that document are

already linked and immediately available for further

inspection.

Key Applications
Classification; Thesaurus construction; Recommenda-

tion systems; Similarity (nearest-neighbour) search;

Summarization and Information Filtering.

Cross-references
▶BM25

▶Classification

▶Clustering for Post-Hoc Information Retrieval

▶Dimensionality Reduction
▶ Index Creation and File Structures

▶ Indexing and Similarity Search

▶Multimedia Information Retrieval

▶ Probability Ranking Principle

▶Relevance Feedback for Text Retrieval Model

▶ Stemming

▶Term Weighting

▶TF*IDF

▶Web Information Retrieval Models

Recommended Reading
1. Harman D. Ranking algorithms. In Information Retrieval: Data

Structures & Algorithms, Chap. 14, W.B. and Frakes R. Baeza-

Yates Prentice-Hall, Upper Saddle River, NJ, 1992, pp. 363–392.

2. Jones W.P. and Furnas G.W. Pictures of relevance: A geo-

metric analysis of similarity measures. J. Am. Soc. Inf. Sci.,

38(6):420–442, 1987.

3. Rasmussen E.M. Clustering algorithms. In Information Retriev-

al: Data Structures & Algorithms, Chap. 16, W.B. Frakes and

R. Baeza-Yates (eds.) Prentice-Hall, Upper Saddle River, NJ,

1992, pp. 419–442.

4. Salton G. and McGill M. An Introduction to Modern Informa-

tion Retrieval. McGraw-Hill, New York, NY, 1983.

5. van Rijsbergen C.J. Information Retrieval. Butterworths,

London, 1979.
Similarity in Video

▶Video Querying
Similarity Measure

▶ Image Retrieval
Similarity-based Data Partitioning

▶Database Clustering Methods
Simplicial Complex

ANDREW U. FRANK

Vienna University of Technology, Vienna, Austria

Synonyms
CW complex; Polyhedron; Cell complex

2652S Simplicial Complex
Definition
A simplicial complex is a topological space constructed

by gluing together dimensional simplices (points, line

segments, triangles, tetrahedrons, etc.).

A simplicial complex K is a set of simplices k, which

satisfies the two conditions:

1. Any face of a simplex in K is also in K

2. The intersection of any two simplices in K is a face

of both simplices (or empty)

Historical Background
Raster (field) or vector (object) are the two dominant

conceptualizations of space. Applications focusing on

object with 2 or 3 dimensional geometry structure

the storage of geometry as points, lines, surfaces, and

volumes and the relations between them; a classical

survey paper discussed the possible approaches mostly

from the perspective of Computer AidedDesign (CAD)

where individual physical objects are constructed [10].

The representation of geographic information, e.g.,

maps, introduces consistency constraints between the

objects; consider the sketch of a few cadastral parcels

(lots) and the adjoining street (Fig. 1). Land, in this

case 2 dimensional space, is divided into lots, such that

the lots do not overlap and there are no gaps between

them; this is called a partition (definition next section).

Corbett [2] proposed to check that a sequence of line

segments around a face closes and that the left neigh-

bor of line segment and the right neighbors of the

following line segment around a point is the same

face; these two conditions are dual to each other

(Fig. 2). This duality is the foundation of the DIME
Simplicial Complex. Figure 1. Cadastral parcels provide

an example of a simplicial complex.
(dual independent map encoding) schema to store 2D

line geometry for areas.

Every line of a graph, which represents a partition,

is related to a start and an end point and to two

adjacent faces (Fig. 3). Such data structures were typi-

cal for the 1980s; implemented originally with network

and later relational DBMS. They did not perform ac-

ceptably fast with large Geographic Information Sys-

tem data, mostly because geometric operations do not

translate to database operations directly (the so-called

impedance mismatch of record oriented programming

and tuple oriented database operations [7]), most ob-

vious when checking geometric consistency. As late as

1985, all commercial programs to compute the overlay

of two partitions, which is one of the most important

operations in geographic information processing,

failed.

In 1986, Frank observed that simplicial (and possi-

bly cell) complexes enforced exactly the consistency

constraints required by the large class of applications

that manage geometry as 2D or 3D partitions [5].

A commercial implementation became available,

designed concurrently by Herring (then with Inter-

graph). Alternative approaches to manage the geome-

try of partitions without explicit representation of

topology and to reconstruct topology when required

were often used, but cause difficulties, because of the

fundamental limitations of approximative numerical

processing.

Foundations
Topology, specifically the theory of homotopy, pro-

vides the mathematical theory to program geometric

operations. Homotopy captures the notion that multi-

ple metric (coordinative) descriptions of a single ge-

ometry may be different but represent ‘‘essentially’’ the
Simplicial Complex. Figure 2. The two consistency

checks: following the line segments around a face and

following the line segments around a point.

Simplicial Complex. Figure 3. An UML object diagram for a database schema for partitions.

Simplicial Complex. Figure 4. A deformed, but

homotopic, copy of Fig. 1.

Simplicial Complex S 2653

S

same geometry. Figure 1 can be transformed continu-

ously to Fig. 4 but not to Fig. 5.

Homotopy creates equivalence classes for geomet-

ric figures. Many applications are interested in exactly

these equivalence classes and benefit from the achieved

abstraction that leaves out imprecisions caused, e.g., by

measurements or approximative numerical processing.

Topology studies the invariants of space under con-

tinuous (homeomorphic) transformations, which pre-

serve neighborhoods. Algebraic topology, also called

combinatorial topology [1], studies invariants of spaces

under homotopy with algebraic methods. The perspec-

tive of point set topology, which sees geometric figures as

(infinite) sets of points is not practical for programming

and the discretization of geometry achieved through

algebraic topology is crucial: the unmanageable infinite

sets are converted into countable objects, namely points,

lines between points, and faces bounded by the bound-

ary lines. Algebraic topology studies different ‘‘spaces’’

like Fig. 4 and Fig. 5 (both are embedded in ordinary

2D space, but the embedding is not in focus in alge-

braic topology).

The complexity of operations on arbitrary cells of

a partition can be reduced by forcing a triangulation;

all elements are then convex! Figure 1 is a cell complex

and the corresponding simplicial complex is Fig. 6.

Algebraic topology studies simplices and their rela-

tions: A simplex is the simplest geometric figure in each

dimension. A zero dimensional simplex (0-simplex) is a

point, a one dimensional simplex (1-simplex) is a straight

line segment, a two dimensional simplex (2-simplex) is a

triangle, a three dimensional simplex (3-simplex) a tetra-

hedron, etc. n + 1 points in general position define an

n-simplex. Each n-simplex consists of (is bounded) by

(n + 1) (n�1)-simplexes: a line (1-simplex) is bounded

by 2 0-simplices (points), etc. Simplices can be orien-

ted; the oriented 1-simplex 2–3 (in Fig. 1) is different

from the oriented 1-simplex 3–2 (Fig. 7).

A k-simplicial complex K is a complex in which at

least one simplex has dimension k and none a higher

dimension. A homogeneous (or pure) k-complex K is a

complex in which every simplex with dimension less
than k is the face of some higher dimension simplex

in K. For example, a triangulation is a homogeneous

2-simplicial complex, a graph is a homogeneous 1-

simplicial complex. Homogeneous simplicial com-

plexes are models of partitions of space and used

therefore to model geographic spatial data. Whitehead

gave for so-called CW-complexes a slightly more gen-

eral, more categorical definition mostly used in homo-

topy theory.

Four operations are important for simplicial com-

plexes: the closure of a set of simplices S is the smallest

complex containing all the simplices; it contains all

the faces of every simplex in S. The star of a set of

simplices S is the set of simplices in the complex

that have simplices in S as faces. The link of a set of

simplices S is a kind of boundary around S in the

complex. The skeleton of simplicial complex K of

dimension k is the subcomplex of faces of dimension

k-1 in K.

Simplicial complexes can be represented as chains,

which are lists of the ordered simplices included in the

complex. Chains can be written as polynomials with

integer factors for the simplices included in the com-

plex, e.g., the 2-chain of the 2-complex in Fig. 1 is

K ¼ 1 Aþ 1 B þ 1 S:

Simplicial Complex. Figure 5. Metric is preserved, but

the figure is not homotopic to Fig. 1, because elements are

missing.

Simplicial Complex. Figure 6. The geometry of Fig. 1

triangulated.

Simplicial Complex. Figure 7. The simplices of 0, 1, 2,

and 3 dimensions.

2654S Simplicial Complex
The boundary operator d applied to a k-simplex

gives the set of k-1-simplices, which form the boundary

of the simplex; for example, the boundary of a 1-simplex

gives the two 0-simplices, which are start and end point

of the line, one taken with positive, the other with

negative orientation. The boundary operator is applied

to a chain by applying it to every oriented simplex in the

chain. The boundary of a closed simplicial complex is 0;

in general, the boundary of the boundary is 0.

dA ¼ l12 þ l23 þ�l15

dðdAÞ ¼ dl12 þ dl23 þ dl35 � dl15
¼ pr � p2 þ p2 � p3 � ps � pr þ ps

¼ 0

The boundary operator is important to deduce the

topological 4- and 9-intersection (Egenhofer) relations

between two subcomplexes, of the same complex [3,4].

Chains and boundary operator are easy to implement

with list operators and often it is sufficient to general-

ize the code for operations on polynoms.

The theory of simplicial complexes can be gene-

ralized to cell complexes. Cells are homomorph to

simplices, but can have arbitrary form; a 2-cell can

have an arbitrary number of nodes in its boundary.

From an application point of view, it is often im-

portant that objects do not overlap and all of space is

accounted for. The concept of a partition captures this

idea; a partition of a space S is a set of subsets of the

space, such that

 All subsets cover all of space (jointly exhaustive):S
i

si ¼ s

 Notwosubsetsoverlap(pairwisedisjoint):si \ sj = Ø

for i 6¼ j.

These two properties are sometimes abbreviated as

JEPD.

Partitions are changed by the Euler operations, glue

and split, which maintain the Euler characteristic of

the surface; the Euler characteristic is computed as

w = V – E + F, where V is the number of nodes

(vertices), E is the number of edges and F is the num-

ber of faces. From Fig. 1 with w = 8–10 + 3 = 1 merging

two parcels obtains Fig. 8 with w = 8–9 + 2 = 1 or Fig. 9

where parcel A is split into parcel C and D with w = 10–

13 + 4 = 1.

Consistency of these operations is difficult to check

in cell complexes if ‘‘islands’’ occur as in Fig. 10, which

is realistic for many application areas. The problem is

avoided by triangulation and therefore simplicial com-

plexes are an effective representation for maintainable

geometric data describing partitions.

Simplicial complexes are triangulations of 2 dimen-

sional space; they contain more objects than a partition

represented as cells, but operations to maintain consis-

tency in a triangulation are faster and simpler to pro-

gram. The representation of a simplicial or cell complex

Simplicial Complex. Figure 8. A and B merged.

Simplicial Complex. Figure 9. A subdivided in C and D.

Simplicial Complex. Figure 10. A parcel with ‘‘islands.’’

Simplicial Complex. Figure 11. Two half edges, pointing

to adjacent nodes.

Simplicial Complex S 2655

S

requires the explicit representation of the boundary

and converse co-boundary relation. The schema used

initially (Fig. 3) contains redundancy (which is used in

Corbett’s tests for consistency) and is therefore difficult

to maintain. Popular today are schemes with half edges

(Fig. 11), where a half-edge points to the starting node

and the corresponding other half edge or quad edges

[6] (Fig. 12), where each quad-edge points to the next

quad-edge and either a boundary node or face; in a

quad-edge structure, the boundary graph and its dual

are maintained in a well-defined algebra with a single

operation splice. For example, taking Fig. 1 as a bound-

ary graph (primal) the dual is Fig. 13, which shows

adjacency between faces.

Quad edges represent efficiently without redundan-

cy a much larger universe, namely partitions of orien-

table manifold. The Euler operations glue and split can

be efficiently implemented and maintain a simplicial

or cell complex. The geometry can be represented as
generalized maps, for which efficient implementation

using relational databases has been reported [9].

Key Applications
Many applications include geometric descriptions of

objects; Computer Aided Design for mechanical and

civil engineering are important, but also Geographic

Information Systems, with many special applications

like Utility Mapping for cities, Cadastral Maps to show

ownership of land, but also car navigation systems, are

popular examples.

Management of partitions is central for Geographic

Information Systems (GIS); 2D partitions are wisely

used for land ownership parcels, soil types, etc. In-

creasingly 3D models of cities and buildings are built

to produce visualizations for virtual trips. Town

planning applications expect that changes in 3D mod-

els over time can be visualized, which requires 4 (3

spatial plus one temporal) dimensions.

Management of the geometry of partitions of 3D

space is important for CAD (Computer Aided Design),

used for architecture, civil engineering but also me-

chanical engineering. Image processing intended to

Simplicial Complex. Figure 12. Four quad edges give

one edge and point to adjacent nodes and faces.

Simplicial Complex. Figure 13. The dual graph of Fig. 1

(dashed) shows the neighbor relations.

2656S Simplicial Complex
produce 3D representations of the environment is

using hierarchically structured partitions and needs

effective operations to subdivide these.

A generalizable approach to storing and maintain-

ing geometry in a database integrates for many appli-

cation areas the treatment of geometric data with other

data. Approaches based on the theory of simplicial or

cell complexes are now available as plug-ins to convert

general purpose DBMS to spatial databases. They re-

place earlier systems where geometric data was man-

aged in proprietary file structures and the connection

between geometry and descriptive data established

only in the application program.

Future Directions
Besides efforts to enhance the performances of imple-

mentations three major research goals stand out:
1. Efficient solutions for 3D data; required for example

to build 3D city models and to construct operations

for consistently updating these [12]

2. Generalization to n-dimensions to include tempo-

ral data, especially 2 and 3 dimensional geometry

and time required to include time related data,

movement and, in general, processes in CAD and

GIS applications [11]

3. Hierarchical structures to have partitions at one

level of resolution (e.g., countries of the world)

and then allow subdivision (e.g., regions, depart-

ments, counties, towns) [13]

A fully general application independent, n-dimensional

and hierarchical representation that supports Euler

operations effectively within data stored in a database

is the implied goal of research in the first decade of

the twenty-first century.

Cross-references
▶Geographic Information System

▶Topological Data Models

▶Topological Relationships
Recommended Reading
1. Alexandrov P.S. Combinatorial Topology Volumes 1, 2 and 3.

Dover Publications, Inc., Mineola, New York, 1960.

2. Corbett J.P. Topological Principles in Cartography, Bureau of the

Census, US Department of Commerce, 1979.

3. Egenhofer M. and Herring J.R. A mathematical framework for

the definition of topological relationships. In Proc. Fourth Int.

Symp. on Spatial Data Handling, 1990.

4. Egenhofer M.J. and Franzosa R.D. On the equivalence of

topological relations. Int. J. Geogr. Inf. Syst., 9(2):133–152,

1995.

5. Frank A.U. and Kuhn W. Cell graph: a provable correct method

for the storage of geometry. In Proc. Second Int. Symp. on

Spatial Data Handling, 1986.

6. Guibas L.J. and Stolfi J. A language for bitmap manipulation.

ACM Trans. Grap., 1(3):191–214, 1982.

7. Härder T. New approaches to object processing in engineering

databases. In Proc. 1986 Int. Workshop on Object-Oriented

Database Systems, 1986.

8. Levin B. Objecthood: an event structure perspective. In Proc.

Chicago Linguistic Society 35, 1999, pp. 223–247.

9. Lienhardt P. Extensions of the notion of map and subdivision of

a three-dimensional space. In Proc. 5th Annual Symp. on Theo-

retical Aspects of Computer Science, 1988.

10. Requicha A. Representation for rigid solids: theory, methods and

Systems. ACM Comp. Surv., 12(4):437–464, 1980.

11. Sellis T, et al. (eds.) SpatiotemporalDatabases: TheChorochronos

Approach. LNCS, vol. 2520. Springer, Berlin, 2003.

Singular Value Decomposition S 2657
12. Thompson R.J. Towards a Rigorous Logic for Spatial Data

Representation. Doctoral thesis, Delft, NCG, 2007.

13. Timpf S. Hierarchical Structures in Map Series. Ph.D thesis,

Technical University Vienna, Vienna, 1998.
Simulated Data

▶ Synthetic Microdata
Single Instancing

▶Deduplication
Single Instruction Multiple Data
(SIMD) Parallelism

▶ Intra-operator Parallelism
Singular Value Decomposition. Figure 1. SVD

transformation of matrix and its approximation.

S

Singular Value Decomposition

YANCHUN ZHANG, GUANDONG XU

Victoria University, Melbourne, VIC, Australia

Synonyms
SVD transformation; Latent semantic indexing; Prin-

ciple component analysis

Definition
The SVD definition of a matrix is illustrated as follows

[1]: For a real matrix A ¼ aij
� �

m�n
, without loss of

generality, suppose m � n and there exists SVD of A

(shown in Fig. 1):

A ¼ U
S1

0

� �
VT ¼ Um�m

X
m�nV

T
n�n

where U and V are orthogonal matrices

UTU ¼ Im,V
TV ¼ In. Matrices U and V can be re-

spectively denoted as Um�m ¼ u1; u2;:::;um½ �m�m and

Vn�n ¼ v1; v2;:::;vn½ �n�n, where ui; i ¼ 1;:::;mð Þ is a

m-dimensional vector ui ¼ u1i; u2i;:::;umið ÞT and

vj ; j ¼ 1;:::;nð Þ is a n-dimensional vector

vj ¼ v1j ; v2j ;:::;vnj
� �T

. Suppose rank(A) = r and the

single values of A are diagonal elements of S as follows:
X
¼

s1 0 	 	 	 0

0 s2 . .
. ..

.

..

. . .
. . .

.
0

0 	 	 	 0 sn

2
6664

3
7775 ¼ diag s1; s2; 	 	 	 smð Þ;

where si � siþ1 > 0, for 1 � i � r � 1; sj ¼ 0, for

j � r þ 1, that is

s1 � s2 � 	 	 	 sr � srþ1 ¼ 	 	 	 ¼ sn ¼ 0

For a given threshold e (0<e<1), choose a

parameter k such that sk � skþ1ð Þ=sk � e. Then,

denote Uk ¼ u1;u2;:::;uk½ �m�k , Vk ¼ v1;v2;:::;vk½ �n�k ,P
k ¼ diag s1;s2;:::;skð Þ, and

Ak ¼Uk

X
kV

T
k

As known from the theorem in algebra [1], Ak is the

best approximation matrix to A and conveys main

and latent information among the processed data.

This property makes it possible to find out the under-

lying semantic association from original feature space

with a dimensionality-reduced distance computa-

tional cost, in turn, is able to be used for latent

semantic analysis.
Key Points
Singular Value Decomposition (SVD) algorithm could

be considered as a useful means for applications of data

engineering and knowledge discovery, such as Web

search, image and document retrieval and Web data

mining. For example, finding the closely relevant pages

to a given page can be carried out by manipulating

Singular Value Decomposition. Figure 2. Page source

structure for the given page u.

2658S Sketch
SVD operation on a constructed page source to reveal

the latent linkage relationships from them [3]. In order

to avoid high cost of similarity computations and keep

the minimum loss of linkage information contained in

the feature space, SVD algorithm is applied to not only

reduce the dimensionality of original feature, which

leads to less computational costs, but also capture

the semantic similarity among web pages, which is

unseen intuitively. The algorithm is working as follows:

(i) construct a web page space A (page source) for

the given page u from link topology on the web. The

page source is represented as a directed graph with

edges indicating hyperlinks and nodes standing for

web objects (shown in Fig. 2); (ii) since the topological

relationships amongst the page source is expressed in a

linkage matrix, manipulating SVD results in decompo-

sition of original feature space A ¼ Um�mSm�nV
T
n�n;

(iii) From the SVD theorem, the best approximation

matrix Ak contains main linkage information among

the pages, and makes it possible to filter those irrele-

vant pages; (iv) by selecting a threshold of similarity,

the relevant pages in page source to the given page are

eventually found.

While SVD algorithm is usually used in conven-

tional latent semantic analysis (LSA) techniques, some

variants of LSA have been proposed recently in the

context ofWeb information processing and text mining.

Apart from the difference at theoretical formulation, the

common characteristics of these methods are to map

the original feature space, which is utilized to model the

co-occurrence observation, into a new dimensionality-

reduced feature space, and maintain the maximum

approximation of the original feature distance with

the converted feature space. For example, Probabilistic
Latent Semantic Analysis (PLSA) model is an represen-

tative of such kinds of approaches [2]. For instance, [3]

proposed a PLSA-based Web usage mining approaches

for Web recommendation. In this collaborative recom-

mendation scheme, user task-oriented access patterns

are extracted from Web log files, in turn, are used to

predict user’s likely interested Web content via referring

the navigational preference of other users, who exhibit

like-minded access task.

Cross-references
▶Database Clustering Methods

▶ Principal Component Analysis

Recommended Reading
1. Datta B. Numerical Linear Algebra and Application. Brooks/

Cole Publishing Company, Pacific Grove, CA, 1995.

2. Hofmann T. Latent semantic models for collaborative filtering.

ACM Trans. Inf. Syst., 22(1):89–115, 2004.

3. Zhang Y., Yu J.X., and Hou J. Web Communities: Analysis and

Construction. Springer, Berlin, 2006.
Sketch

▶AMS Sketch

▶ Structure Indexing
SMI-S

▶ Storage Management Initiative-Specification
Snapshot

▶ Point-in-Time Copy (PiT Copy)
Snapshot Data

▶Atelic Data

Snapshot Isolation S 2659
Snapshot Equivalence

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Temporally weak; Weak equivalence
Definition
Informally, two tuples are snapshot equivalent or

weakly equivalent if all pairs of timeslices with

the same time instant parameter of the tuples are

identical.

Let temporal relation schema R have n time dimen-

sions, Di, i = 1,...,n, and let ti, i = 1,...,n be

corresponding timeslice operators, e.g., the valid time-

slice and transaction timeslice operators. Then, for-

mally, tuples x and y are snapshot equivalent if

8t1 2 D1:::8tn 2 Dnðtntnð:::ðt
1
t1
ðxÞÞ:::Þ

¼ tntnð:::ðt
1
t1
ðyÞÞ:::ÞÞ

Similarly, two relations are snapshot equivalent or

weakly equivalent if at every instant their snapshots are

equal. Snapshot equivalence, or weak equivalence, is a

binary relation that can be applied to tuples and to

relations.
S

Key Points
The notion of weak equivalence captures the infor-

mation content of a temporal relation in a point-based

sense, where the actual timestamps used are not impor-

tant as long as the same timeslices result. For example,

consider the two relations with just a single attribute:

{(a, [3,9]} and {(a, [3,5]), (a, [6,9])}. These relations are

different, but snapshot equivalent.

Both ‘‘snapshot equivalent’’ and ‘‘weakly equiva-

lent’’ are being used in the temporal database commu-

nity. ‘‘Weak equivalence’’ was originally introduced

by Aho et al. in 1979 to relate two algebraic expressions

[1,2]. This concept has subsequently been covered in

several textbooks. One must rely on the context to

disambiguate this usage from the usage specific to

temporal databases. The synonym ‘‘temporally weak’’

does not seem intuitive—in what sense are tuples or

relations weak?
Cross-references
▶Temporal Database

▶Time Instant

▶Timeslice Operator

▶Transaction Time

▶Valid Time

▶Weak Equivalence

▶ Point-Stamped Temporal Models

Recommended Reading
1. Aho A.V., Sagiv Y., and Ullman J.D. Efficient optimization of

a class of relational expressions. ACM Trans. Database Syst.,

4(4):435–454, 1998.

2. Aho A.V., Sagiv Y., and Ullman J.D. Equivalences among

relational expressions. SIAM J. Comput., 8(2):218–246, 1979.

3. Gadia S.K. Weak temporal relations. In Proc. 4th ACM SIGACT-

SIGMOD Symp. on Principles of Database Systems, 1985, pp.

70–77.

4. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Tempo-

ral Databases: Research and Practice, O. Etzion, S. Jajodia, S.

Sripada (eds.). LNCS 1399, Springer-Verlag, 1998, pp. 367–405.
Snapshot Isolation

ALAN FEKETE

University of Sydney, Sydney, NSW, Australia

Synonyms
SI; Row-versioning

Definition
Snapshot Isolation is a multi-version concurrency

control approach that is widely used in practice.

A transaction T that operates under Snapshot Isolation

never observes any effects from other transactions

that overlap T in duration; instead T sees values as if

it were operating on a private copy or snapshot of the

database, reflecting all other transactions that had

committed before T started. In Snapshot Isolation,

the system will not allow both of two transactions to

commit if they overlap in duration and modify the

same data item. Snapshot Isolation prevents many

well-known anomalies (such as Lost Updates and In-

consistent Reads) that are also prevented by Serializ-

ability, but it does not guarantee that all executions

will be Serializable. Snapshot Isolation allows reads

to occur without delay or blocking caused by

2660S Snapshot Isolation
concurrent updates, and also updates are never

blocked by concurrent readers, so Snapshot Isolation

often gives the transactions better throughput than

traditional concurrency control based on Two-Phase

Locking.

Historical Background
The idea of providing a multi-version concurrency

control algorithm based on reading from a private

snapshot has been wide-spread since at least 1982,

Chan et al. [4] provided a detailed discussion of how

this could work, considering many practical issues.

However, in this early period, the idea was only con-

sidered for read-only transactions. That is, any trans-

action that included writes was treated with a different

concurrency control, in order to ensure serializability.

In 1995, Berenson et al. [2] introduced the term

Snapshot Isolation, and explained the algorithm for

transactions that include write operations. They did

so in the context of a paper about ambiguities in how

the SQL Standard defines Isolation. As well as describ-

ing the algorithm, this paper showed that it could allow

non-serializable executions, though it did not allow

any of the particular erroneous phenomena that had

been considered in the SQL Standard. Also in 1995,

Oracle 7 introduced the use of the algorithm when

transactions request ‘‘Isolation Level Serializable’’ [9];

previous releases of Oracle had not provided any trans-

action-level consistency, but rather they had each SQL

statement within a transaction see a different state of

the database. In 1999, Oracle obtained a US patent

(number 5870758) on their approach.

Considerable research has been devoted to under-

standing the properties of executions allowed by

Snapshot Isolation. Bernstein et al. [3] showed how

to reason about whether transactions preserve indi-

vidual integrity constraints when run with Snapshot

Isolation. In 2005, Fekete et al. [8] published a theory

to show which sets of transactions are guaranteed to

run serializably on a DBMS platform that uses

Snapshot Isolation (and therefore that every possible

integrity constraint is preserved); some of these

checks were automated by Jorwekar et al. [10]. Several

papers [3,7] look at issues that arise when some

transactions run with Snapshot Isolation, while

other transactions use other concurrency control

techniques. An abstract characterization of the isola-

tion provided by Snapshot Isolation was suggested by

Adya [1].
Since 2000, the issues of storing replicated data in

sites each using Snapshot Isolation has been studied

extensively. Different approaches are explored by many

researchers [5,6,11,12,13,16].
Foundations
Like other concurrency control techniques, Snapshot

Isolation (hereafter abbreviated SI) responds to

requests from clients for reading and writing data

items that are stored by the DBMS engine. Each re-

quest could be either performed immediately or

delayed for a while, or the requesting transaction

might be aborted. SI is a multi-version mechanism,

so when performing a request to read an item, the

engine might return a value other than the current

value of the item (that is, it might return a value that

had been written in some earlier transaction, not nec-

essarily the value written by the transaction that most

recently altered the item).

The SI mechanism is defined by two properties. The

first property (that explains the term ‘‘Snapshot’’) deter-

mines which value is to be returned in a read operation.

If transaction T reads a data item x, then the value

returned by the system is whichever value was written

by the most recently committed transaction, among all

the transactions that wrote the item x and also com-

mitted before T started. There is one exception to this

rule: if T itself writes the item x, and later requests to

read x, then T will see the value it wrote itself. The

second property of SI is sometimes called ‘‘First Com-

mitter Wins’’; it requires the engine to prevent the situ-

ation where there are two concurrent (Transactions T

and U are concurrent if their duration overlaps, that is

there is some intersection between the interval from

the start of T to its completion, and the interval from

the start of U to its completion.) transactions that both

write to the same item, and that both commit.

To illustrate the way SI controls concurrency, con-

sider the sequence of operations shown in Schedule 1.

In presenting this and later schedules, this entry uses

the standard notation where each operation has a

subscript that indicates which transaction performs

the operation, so ri is a read within Ti. As well as

subscripts on the operations, each data item has ver-

sions that are indicated by subscripts, where the ver-

sion of item x produced by transaction Ti is

represented as xi. Thus when T5 writes x, this is indi-

cated by w5[x5], and if T3 later does a read of x that

Snapshot Isolation S 2661

S

returns the value that was written by T5, one includes

r3[x5] in the schedule. (Readers might mistakenly think

that the subscript indicates the version order; thus they

think that x2 represents the second version of x. This is

not the case in the notation used here.) The usual

notation is extended by representing the start of trans-

action Ti as bi (while the completion of the transaction

is ci in the case of a commit, or ai when the transaction

aborts)

b1r1½x0�r1½y0�c1b2w2½x2�a2b3r3½x1�r3½y1�w3½x3�
b4r4½x1�r4½y1�w3½y3�r3½x3�c3c4 (1Þ

In Schedule 1, notice that the snapshot used by T4

includes the changes made by T1 (which committed

before T3 started), but not those made by T2 which

aborted, nor those made by T3 which is concurrent

with T4. In particular, when T4 reads x, it sees the

version x1 which was written by T1, even though

there is already a more recent version x3. In this sched-

ule one also can find an example where T3 reads x

twice, having modified the item in between; the second

time T3 reads x, it sees its own version.

SI is an attractive concurrency control mechanism

for many reasons. It usually performs well, and in par-

ticular it does not suffer from the delays that can reduce

throughput in locking-based concurrency control. For

example, if a large slow transaction T is reading many

items, in order to calculate some complicated statistics,

traditional two-phase locking takes read locks on many

items, and holds these while T is running; through this

long period, other transactions which want to change

those items will be blocked if locking is used for con-

currency control. Under SI, in contrast, the large slow

transaction T does not take read locks, and concurrent

transactions can update the items.

The database literature has identified a number of

anomalies that can occur from uncontrolled concur-

rency. For example, the Inconsistent Read phenome-

non happens when a transaction T sees some but not

all of the changes made by another transaction U.

Under SI, this can’t happen: if U committed before T

starts, then the effects of U are all in the snapshot used

when T reads, while if U is still running when T starts,

then none of the changes made by U are in the snap-

shot. For example, in Schedule 1 the snapshot used

when T4 reads includes both changes made by T1 (to x

and also to y) and none of the changes made by T3.

Another famous phenomenon is Lost Update. An
example of this occurs when two transactions both

read an item, and both produce new values that incre-

ment what they read; if both these transactions com-

mit, the final value of the item will be incremented by

one instead of by two (as would happen in a serial,

non-interleaved execution). If the database platform is

using SI, the First Committer Wins property will pre-

vent Lost Update (as one of the transactions will be

required to abort). For example, in Schedule 2, T2 is

not allowed to commit (since T1 and T2 are concurrent

and both have written the same item x, the property

says that they cannot both commit).

b1r1½x0�w1½x1�b2c1r2½x0�w2½x2�a2 ð2Þ

Despite preventing the well-known concurrency con-

trol anomalies, SI does not ensure that all executions

are serializable. Schedule 3 shows an anomaly called

‘‘Write Skew.’’

b1r1½x0�r1½y0�b2r2½x0�r2½y0�w1½x1�w2½y2�c1c2 ð3Þ

In Schedule 3, the First Committer Wins property is

not effective, because the concurrent transactions do

not have any item that both of them write (T1 writes x

and T2 writes y). The lack of serializability in this

schedule can result in data corruption. For example,

suppose x and y are data items that represent the

balance in two different bank accounts, and suppose

a business rule requires the sum of the balances to be

positive. Suppose initial values are x0 = 100 and y0 =

200, and T1 is reducing x by 150 (aborting if it sees

insufficient funds in the combined balance), while T2

reduces y by 175 (again, aborting if there is not enough

in the total of the balances). One sees that each trans-

action, run alone, preserves the business rule; however

the Schedule 3 is possible with SI and yet it produces a

final state where x is �50, and y is 25, violating the

integrity of the data according to the business rule.

Because many developers think that correct isola-

tion ought to be what SI does (namely, a transaction

does not see any effects of concurrent transactions), it

is worth explaining why this is not so. Correct isolation

(‘‘serializable’’ execution) means that the outcome is

just like in a serial or batch execution. In a batch

execution, between any pair of transactions, one will

come first, and so the other will see its effects. Thus if

neither of two transactions sees the other, this is not

like a batch execution. The Write Skew example shows

that two transactions may each decide to take some

2662S Snapshot Isolation
action like removing money from a bank account,

where it is acceptable for one to make the change, but

not when the other has already done so. When neither

sees the other, they might both make the change and

commit.

The Schedule 3 is not serializable, and this can be

proved because it has a multi-version serialization

graph with a cycle. In the literature, there are several

variant definitions of multi-version serialization graph

(MVSG) for a schedule; this entry uses the one in the

text by Weikum and Vossen [15]. MVSG is defined for

a given schedule and a version order � which relates

every pair of versions of the same data item. When

working with SI, the version order is always taken as

the order of the commits of the transactions that

wrote the versions; that is one defines xi � xj when

Ti commits before Tj. MVSG has nodes for the trans-

actions, and there is an edge from Ti to Tj in the

following three circumstances: (i) the schedule con-

tains rj[xi] for some item x, (ii) xi � xj and the sche-

dule contains rk[xj] for some x and k, or (iii) the

schedule contains ri[xk] and xk � xj, for some x and

k. It turns out that for understanding the behavior of

SI, it is important to pay attention to particular edges

in the MVSG: those which go between concurrent

transactions. Call such an edge vulnerable, and draw

it with a dashed line in the multi-version serialization

graph. Notice that the First Committer Wins rule

means that there can never be a vulnerable edge be-

tween two transactions if there is some data item to

which both transactions write. The Snapshot property

means that if there is an edge from Ti to Tj because of

an operation rj[xi], then Ti must have committed be-

fore Ti started and so the edge is not vulnerable. Thus

the only vulnerable edges arise from conflicts where

one transaction reads an item which the concurrent

transaction writes. The MVSG for the Schedule 3 above

is in Fig. 1.

Even though SI can allow executions that are not

serializable, these executions are not observed often.

There are some sets of application programs which

never give rise to a non-serializable execution when

running with SI as the concurrency control mecha-

nism. For example many of the standard benchmark
Snapshot Isolation. Figure 1. MVSG for Schedule 3.
suites, such as TPC-C [14], generate only serializable

schedules. It can be proved [8] that in any schedule

allowed by SI, if there is a cycle in the MVSG, then the

cycle contains two consecutive vulnerable edges. Given

a set of transactions T1, T2 etc, one can draw a static

dependency graph SDG, which is a directed graph

whose nodes are transactions, with an edge from Ti
to Tj if it is possible to find a schedule h with some of

these transactions, so that MVSG(h) has an edge from

Ti to Tj. Furthermore, one says that the edge in SDG is

vulnerable if there is a schedule h where the edge in

MVSG(h) is vulnerable. Note that MVSG(h) depends

on the schedule h which shows how the transactions

interleave, but SDG can be found from the set of

separate transactions. Because for any schedule h,

MVSG(h) is a subset of SDG, it follows that if SDG

has no cycle with consecutive vulnerable edges, then

MVSG(h) also has no cycle with consecutive vulnera-

ble edges, and so h is serializable. Thus, a set of trans-

actions will always interleave in serializable executions

under SI, provided that SDG does not have any cycle

with consecutive vulnerable edges.

As an example, consider the transactions In Fig. 2.

For these transactions, the SDG is shown in Fig. 3. The

only vulnerable edges in this SDG are from T1 to T2

and from T1 to T3. The edge from T2 to T1 is not

vulnerable because T1 has no write operations (and

under SI, a vulnerable edge can only come from a

read-to-write conflict), and similarly T3 to T1 is not

vulnerable. The edges between T2 and T3 are not vul-

nerable (in either direction) because both transactions

write the item x, and so the First Committer Wins

property of SI prevents these transactions both com-

mitting if they are concurrent. Thus there are no con-

secutive vulnerable edges at all in SDG, and so every

execution of T1, T2 and T3 will be serializable when

they run on a platform using SI for concurrency con-

trol. To use these ideas in practice, one needs to deal

with application code that contains parameterized SQL

statements, and complicated control flow; the techni-

ques needed are discussed in [8,10].
Snapshot Isolation. Figure 2. Transactions with every

execution serializable.

Snapshot Isolation. Figure 3. SDG for Transactions

from Fig. 2.

Snapshot Isolation S 2663

S

What can the database administrator do if they

have an application which will run on a platform

where SI is the concurrency control mechanism, and

yet the application is made up of transactions that are

not guaranteed to have serializable executions on

such a platform? The natural approach is to alter the

application code, without changing the meaning of

each transaction, so that the changed transactions are

certain to execute serializably. This means changing

programs so as to make some edges from the SDG be

not vulnerable. Two techniques are known to change

transactions Ti and Tj where the edge from Ti to Tj

is vulnerable. One can materialize the conflict, by cre-

ating a new table called say Conflict, and including in

both Ti and Tj an update of a particular row in this

table. Alternatively, one can sometimes leave Tj unal-

tered, and introduce an identity write into Ti. That is,

perform ‘‘SET x=x’’ in an UPDATE statement which

is added to the code of Ti, to affect whichever data item

(row) is the one which Ti reads and Tj writes.

In conclusion, SI is a concurrency control mecha-

nism that has many attractive features. It usually gives

quite good throughput, since a read operation is never

delayed by other transactions that are changing the

data, and updates are not delayed when other transac-

tions have read the data they want to change. The

outdated versions that are used in SI, to respond to

read requests, are often available anyway, because they

are kept to support rollback recovery. SI prevents many

bad executions; it can’t suffer from Lost Update or

Inconsistent Read or Phantoms. The way SI works is
easy to understand, and indeed many articles have just

assumed that being ‘‘isolated’’ means ‘‘not seeing any

changes made by concurrent transactions’’ (as happens

in SI). However, SI does not enforce that every execu-

tion will be serializable. Developers and users need

to be aware that when SI is used, it is possible that

transactions can interleave in ways that make the data

invalid according to some business rule which is

obeyed by every transaction running alone.

Key Applications
Snapshot Isolation is used as a concurrency control

mechanism in a wide range of common platforms.

For example, Microsoft SQL Server 2005 offers it

when a user chooses to invoke ‘‘SET TRANSACTION

ISOLATION LEVEL SNAPSHOT.’’ It is similarly

available as a separate isolation level in Interbase and

Oracle Berkeley DB. Other platforms, such as Post-

greSQL (since version 7) and Oracle, use SI when the

client chooses ‘‘SET ISOLATION LEVEL SERIALIZ-

ABLE’’ even though SI does allow non-serializable

executions. SI is very useful in managing replicated

data. One can combine individual databases which

use SI, to act transparently as a global one-copy data-

base. This is easier than to combine traditional locking

databases to provide one-copy serializability. Many

research prototypes combine SI with consistent repli-

cation, however these ideas are not widely used in

practice yet.
Future Directions
The main focus of current research with SI is in repli-

cated data management. There are many issues that

arise when data are replicated between sites some or all

of which use SI rather than traditional locking for local

concurrency control. Many different systems have

been designed and evaluated but no clear winner has

yet emerged, so research is continuing. Another topic

that needs more understanding is the performance of

SI, in particular to understand which characteristics

of an application domain make SI perform better or

worse than other concurrency control techniques.
Cross-references
▶Concurrency Control – Traditional Approaches

▶Consistency Models for Replicated Data

▶Multi-Version Serializability andConcurrencyControl

▶Replication for Scalability

2664S SNIA
▶ Serializability

▶ SQL Isolation Levels

Recommended Reading
1. Adya A. Weak consistency: a generalized theory and optimistic

implementations for distributed transactions (PhD thesis).

Technical Report MIT/LCS/TR-786, Laboratory for Computer

Science, Massachusetts Institute of Technology, Cambridge,

MA, USA, 1999.

2. Berenson H., Bernstein P.A., Gray J., Melton J., O’Neil E.J.,

and O’Neil P.E. A critique of ANSI SQL isolation levels. In

Proc. ACM SIGMOD Int. Conf. on Management of Data,

1995, pp. 1–10.

3. Bernstein A.J., Lewis P.M., and Lu S. Semantic conditions

for correctness at different isolation levels. In Proc. 16th Int.

Conf. on Data Engineering, 2000, pp. 57–66.

4. Chan A., Fox S., Lin W.-T.K., Nori A., and Ries D.R.

The implementation of an integrated concurrency control and

recovery scheme. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1982, pp. 184–191.

5. Daudjee K. and Salem K. Lazy database replication with

snapshot isolation. In Proc. 32nd Int. Conf. on Very Large

Data Bases, 2006, pp. 715–726.

6. Elnikety S., Zwaenepoel W., and Pedone F. Database replication

using generalized snapshot isolation. In Proc. 24th IEEE Symp.

on Reliable Dist. Syst., 2005, pp. 73–84.

7. Fekete A. Allocating isolation levels to transactions. In Proc.

24th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2005, pp. 206–215.

8. Fekete A., Liarokapis D., O’Neil E., O’Neil P., and Shasha D.

Making snapshot isolation serializable. ACM Trans. Database

Syst., 30(2):492–528, 2005.

9. Jacobs K. Concurrency control: transaction isolation and

serializability in SQL92 and Oracle7. Technical Report A33745

(White Paper), Oracle Corporation, 1995.

10. Jorwekar S., Fekete A., Ramamritham K., and Sudarshan S. Auto-

mating the detection of snapshot isolation anomalies. In Proc.

33rd Int. Conf. on Very Large Data Bases, 2007, pp. 1263–1274.

11. Lin Y., Kemme B., Patiño-Martı́nez M., and Jiménez-Peris R.

Middleware based data replication providing snapshot isolation.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2005, pp. 419–430.

12. Plattner C. and AlonsoG. Ganymed: scalable replication for trans-

actional web applications. In Proc. ACM/IFIP/USENIX Int. Mid-

dleware Conf., 2004, pp. 155–174.

13. Schenkel R. and Weikum G. Integrating snapshot isolation

into ransactional federation. In Proc. Int. Conf. on Cooperative

Inf. Syst., 2000, pp. 90–101.

14. Transaction Processing Performance Council. TPC Benchmark

C Standard Specification, Revision 5.0. 2001. URL: http://www.

tpc.org/tpcc/

15. Weikum G. and Vossen G. Transactional information systems:

Theory, algorithms, and the practice of concurrency control and

recovery. Morgan Kaufmann, Los Altos, CA, USA, 2002.

16. Wu S. and Kemme B. Postgres-R(SI): combining replica control

with concurrency control based on snapshot isolation. In Proc.

21st Int. Conf. on Data Engineering, 2005, pp. 422–433.
SNIA

▶ Storage Network Industry Association
Snippet

MARCUS HERZOG
1,2

1Vienna University of Technology, Vienna, Austria
2Lixto Software GmbH, Vienna, Austria

Synonyms
Web widget; Macro; Module; Capsule; Mini; Flake

Definition
A snippet is a chunk of re-usable source code. In the

context of Web programming, a snippet refers to a

chunk of re-usable HTML source code, along with all

relevant resources such as stylesheets and scripts ap-

plied within the context of the snippet. In the context

of Web information extraction, a snippet is a subset of

the available information items that can be extracted

from the Web page.

Key Points
The term snippet originates from the domain of text

editors, where snippets refer to chunks of source code

which can be organized for copy and paste usage.

Snippet management allows for viewing, editing, sort-

ing, and storing snippets in a repository of re-usable

source code fragments. The overall goal of snippets is

to ease the process of writing code by reducing the

manual effort to type in source code and to re-use

existing lines of code.

Snippets can be classified according to the com-

plexity of the interaction process: static, dynamic, and

scriptable snippets. A static snippet is a fixed chunk of

text that can be inserted at the cursor position. This

operation is similar to a cut-and-paste operation well

known from text editors. Dynamic snippets contain

some dynamic elements which are filled in on inser-

tion of the snippet into the main document. Scriptable

snippets take this dynamic concept one step further by

not only allowing for filling in placeholders, but by

providing means to compute the values of place-

holders, e.g., by applying a transformation operation

on a placeholder value.

Snowflake Schema S 2665
In Web programming, snippets are often used

when assembling a web page from pre-existing build-

ing blocks. This is very popular in constructing social

network home pages or other types of personal Web

2.0 applications such as Blogs. In this context snippets

are often referred to as e.g., Web widgets, minis, or

flakes, depending on the framework in which the snip-

pet is programmed. In Web programming a snippet is

already more like a mini application which can be re-

used in the context of a Web application, e.g., a portal

such as iGoogle or MyYahoo.

In Web data extraction [1] the concept of snippet is

used to refer to a particular part of the Web page which

is extracted and transformed into an information item.

Here the emphasis is on the re-use of existing data or

content which is transformed into a presentation-

independent representation, e.g., XML document for-

mat. The goal is to re-use exiting data in the context

of new applications which assemble data snippets from

various sources and provide additional value by relat-

ing the content extracted from these independent

sources.

Cross-references
▶Blogging

▶Re-Usable Code

▶Re-Usable Information Item

▶Web Programming

Recommended Reading
1. Baumgartner R., Flesca S., and Gottlob G. Visual web informa-

tion extraction with lixto. In Proc. 27th int. Conf. on Very Large

Data Bases, 2001, pp. 119–128.
S

Snowflake Join Schema

▶ Snowflake Schema
Snowflake Schema

KONSTANTINOS MORFONIOS, YANNIS IOANNIDIS

University of Athens, Athens, Greece

Synonyms
Snowflake join schema
Definition
A snowflake schema has one ‘‘central’’ table whose

primary key is compound, i.e., consisting of multiple

attributes. Each one of these attributes is a foreign key

to one of the remaining tables, which may, in turn,

have some of its non-key attributes each be a foreign

key to yet another, different table. This continues re-

cursively with the remaining tables, until they are

exhausted, forming chains or trees of foreign key

dependencies rooted at the ‘‘central’’ table, i.e., each

table in the schema (except the ‘‘central’’ table) is

pointed to by exactly one such foreign key. (In the

above, without loss of generality, we make the assump-

tion that all tables except the ‘‘central’’ table have

simple primary keys. This is usually the case in almost

all practical situations, as for efficiency, these keys are

often generated, surrogate keys.)
Key Points
Many data warehouses (see definitional entry for Data

Warehouse) that represent the multidimensional con-

ceptual data model in a relational fashion [1,2] store

their primary data as well as the data cubes derived

from it in snowflake schemas, as an alternative to star

schemas. As in star schemas, the ‘‘central’’ table and the

remaining tables of the definition above correspond,

respectively, to the fact table and the dimension tables

that are typically found in data warehouses. Each fact

(tuple) in the fact table consists of a set of numeric

measures, comprising the objects of analysis, and a set

of dimensions, which uniquely determine the set of

measures. The remaining tables store the attributes

of the aforementioned dimensions at different levels

of granularity.

Unlike star schemas, snowflake schemas can explicitly

capture hierarchies in the dimensions, with each table in

each chain (or tree path) of foreign key dependencies

corresponding to one level of one such hierarchy. For

instance, dimension Store in the example below con-

tains values at different levels of detail, forming the hier-

archy Street!City!State. On the contrary, star

schemas capture all levels of a hierarchical dimension in a

single, de-normalized table. Starting from a star schema

(usually in Second Normal Form), one may generate the

corresponding snowflake schema (usually in Third Nor-

mal Form at least) by normalization, decomposing the

dimensions into multiple tables. Accordingly, star

schemas lend themselves to simpler and usually faster

2666S SOA
queries, while snowflake schemas are easier to maintain

and require less space.

For example, consider a data warehouse of a retail

chain with many stores around a country. The dimen-

sions may be the products sold, the stores themselves

with their locations, and the dates, while the numeric

measures may be the number of items and the total

monetary amount corresponding to a particular prod-

uct sold in a particular store on a particular date. The

relevant snowflake schema, with the product, store,

and date dimensions normalized, is shown below,

where SalesSummary is the fact table, primary

keys are in italics, and each attribute of the fact-table

primary key as well as each non-key ‘Id’ attribute of the

other tables is a foreign key.

SalesSummary(ProductId, StoreId, DateId,

NumOfItems, TotalAmount)

Product(ProductId, ProdName, Prod-

Descr, CategoryId, UnitPrice)

Category(CategoryId, CategoryDescr)

Store(StoreId, StreetId)

Street(StreetId, Street, CityId)

City(CityId, City, StateId)

State(StateId, State)

Date(DateId, Date, MonthId)

Month(MonthId, Month, YearId)

Year(YearId, Year)

Cross-references
▶Cube Implementations

▶Data Warehouse

▶Dimension

▶Hierarchy

▶Measure

▶Multidimensional Modeling

▶ Star Schema

Recommended Reading
1. Chaudhuri S. and Dayal U. An overview of data warehousing

and OLAP technology. ACM SIGMOD Rec., 26(1):65–74, 1997.

2. Kimball R. and Ross M. The Data Warehouse Toolkit: The

Complete Guide to Dimensional Modeling. Wiley, New York,

NY, USA, 2nd edn., 2002.
SOA

▶ Service Oriented Architecture
SOA Replication

▶Replication in Multi-Tier Architectures
SOAP

ERIC WOHLSTADTER

University of British Columbia, Vancouver,

BC, Canada

Definition
SOAP [1] is an application-level protocol standard

used to transport messages in distributed systems.

The standard was defined and is maintained by the

XML Protocol Working Group of the World WideWeb

Consortium. SOAP is commonly used in the context of

Web services. SOAP messages are encoded using XML

and intended to carry XML encoded application data.

Key Points
SOAP provides a standard to separate infrastructure

related data from application data for XML based

messages. SOAP messages are known as ‘‘envelopes,’’

which contain both a header, for infrastructure data,

and a body for application data. The infrastructure

which handles messages for applications is referred

to as a ‘‘SOAP node.’’ This role is commonly filled

by some middleware platform. The SOAP protocol

dictates the rules for the proper processing of messages

by nodes on behalf of applications; this includes pro-

cessing of header information and handling of faults.

The header processing rules are designed to make it

easy to interpose network intermediaries between the

sender and receiver of messages. The SOAP specifica-

tion mentions that these intermediaries could be used

for purposes such as ‘‘security services, annotation

services, and content manipulation services.’’ The spec-

ification of header information used by specific

kinds of intermediaries is left to other specifications

commonly known as the WS-* proposals.

The SOAP specification is intended to be extensible

so that different rules for message processing can be

described in further specifications. These rules are

called ‘‘message exchange patterns.’’ SOAP provides

details of patterns for simple synchronous and asyn-

chronous message exchange, which can be used for the

purpose of remote procedure calls. The specification

Social Networks S 2667
mentions but does not provide details for other more

stateful patterns such as conversational exchanges and

peer-to-peer message routing.

When a SOAP node is unable to process a message,

an error message, called a SOAP fault is issued. Several

descriptive fault types are provided by the specification

as well as the conditions under which each type should

be used.

SOAP provides the foundation of a Web services

stack. SOAP messages are commonly layered on top of

the Hypertext Transfer Protocol (HTTP). This tends to

make SOAP services easier to deploy behind network

firewalls; although, some critics have argued this is an

abuse of HTTP. Since XML messages tend to be much

larger than their binary counterparts, SOAP provides

guidelines for using a binary encoding of a SOAP

message body.

SOAPwas originally intended as the ‘‘Simple Object

Access Protocol,’’ and its designers intended it to be

used with traditional distributed object technologies

such as remote method invocation. When SOAP

became popular for Web services the acronym was

dropped because Web service interfaces are agnostic

as to whether object-oriented implementations

are used.
Cross-references
▶RMI

▶Web Services

▶W3C

Recommended Reading
1. SOAP Version 1.2, Part 1: Messaging Framework (2nd edn.).

W3C Recommendation. http://www.w3.org/TR/soap12-part1/
S

Social Applications

MARISTELLA MATERA

Politecnico di Milano University, Milan, Italy

Synonyms
Web 2.0 applications; Collaborative software

Definition
Web applications, characteristic of the Web 2.0, that

allow users to share data and interact with other users.
Key Points
The advent of the Web 2.0 has empowered the Web

clients, thus providing users with richer and more

complex interaction capabilities. The development of

communication and interaction tools has therefore

emerged, giving raise to computer-mediated com-

munication and to collaborative approaches to content

creation, based on new applications, such as social

networking, file sharing, instant messaging, and blogs –

just tomention few.

The advantage from the user experience perspective

is that Web users do not play only the role of passive

actors accessing information, but they become creators

of the contents published by Web applications.

Very often, such new applications also foster the

creation of online communities, i.e., groups of people

that interact via Web-based communication media and

cooperatively create contents.

Cross-references
▶Visual Interaction

▶Web 2.0/3.0
Social Networks

FELIX SCHWAGEREIT, STEFFEN STAAB

University of Koblenz-Landau, Koblenz, Germany

Definition
A social network is a social structure made of actors,

which are discrete individual, corporate or collective

social units like persons or departments [19] that are

tied by one or more specific types of relation or inter-

dependency, such as friendship, membership in the

same organization, sending of messages, disease trans-

mission, web links, airline routes, or trade relations.

The actors of a social network can have other attri-

butes, but the focus of the social network view is on the

properties of the relational systems themselves [19].

For many applications social networks are treated as

graphs, with actors as nodes and ties as edges. A group

is the finite set of actors the ties and properties of

whom are to be observed and analyzed. In order to

define a group it is necessary to specify the network

boundaries and the sampling. Subgroups consist of any

subset of actors and the (possible) ties between them.

2668S Social Networks
The science of social networks utilizes methods

from general network theory and studies real world

networks as well as structurally similar subjects deal-

ing e.g., with information networks or biological

networks.

Historical Background
The science of social network analysis comprises

methods from social sciences, formal mathematical,

statistical and computing methodology [19]. The first

developments of scientific methods were empirically

motivated and date back to the late nineteenth centu-

ry. Jacob Moleno developed methods to facilitate the

understanding of friendship patterns within small

groups in the 1920s and 1930s. Other pioneers in

the field of social networks were Davis, who studied

social circles of women in an unnamed American city

and Elton Mayo, who studied social networks of fac-

tory workers. Many of the current formal concepts (e.

g., density, span, connectedness) had been introduced

in the 1950s and 1960s as ways to describe social

structures through measures. Another important

milestone was an experiment Stanley Milgram con-

ducted in 1967. In Milgram’s experiment, a sample of

US individuals were asked to reach a particular target

person by passing a message along a chain of acquain-

tances. The average length of successful chains turned

out to be about five intermediaries or six steps of

separation.

Early research on social networks was limited

to small networks with up to a few hundred actors,

which could be examined visually. With increased

computational power for data acquisition and man-

agement, networks may now comprise several millions

of actors.
Social Networks. Figure 1. Types of social networks.
Foundations

Types

The simplest type of network consists of only one set of

actors and one relation representing one type of ties

between the actors. More complex networks can be

composed of different types of actors (multi-mode)

and different relations (multi-relational). Furthermore

the actors and ties between them can have assigned

properties, which are mostly numerical. Ties can have a

direction, which makes the network a directed graph.

Figure 1 shows a selection of network types [12]. Net-

work (i) is a directed network in which each edge has a

direction; (ii) is an undirected network with only one

type of actors; (iii) is a network with several types of

actors and relations; (d) shows a network with differ-

ent weights for actors and ties.

Of special interest in science of social networks are

bipartite graphs [12] which contain actors of two types

and ties connecting only actors of different types. They

are called affiliation networks because they are suitable

to express the membership of people (one type of

actors) in groups (the second type of actors).

Notation

The common notation for social networks is the socio-

metric notation [19]. Simple social networks with one

relation and only one group of actors (like the one

shown above) are represented as a matrix, called socio-

matrix or adjacency matrix. For one relation X, let X be

the corresponding matrix. This matrix has g rows and

g columns. The value at position xij denotes whether

there exists a tie from the ith element of the social

network to the jth element. An example sociomatrix

for the social network (a) in Fig. 1 is shown in Table 1.

Social Networks. Table 1. Sociomatrix for network (a) in

Fig. 1

n1 n2 n3 n4 n5 n6

n1 - 1 0 1 0 0

n2 0 - 1 0 0 0

n3 0 0 - 1 0 0

n4 0 0 0 - 1 0

n5 0 0 0 0 - 1

n6 0 0 0 1 0 -

Social Networks S 2669

S

For more complex networks, like multi-mode and/or

multi-relational social networks, tensors may be used

instead of matrices [18].

Measures

Measures have been developed in order to formalize

local and global properties for social networks. Local

and global properties of social networks describe

ego-centric properties of individual actors and socio-

centric properties of the network as a whole, respec-

tively. Furthermore, subsets of actors (subgroups) can

be determined. The following paragraphs contain an

outline of several basic concepts.

Socio-centric Properties In order to compare different

social networks in size and structure the following

basic measures have been established.

 Number of Actors: g

 Number of Ties: m

 Mean Standarized Degree (Density): z ¼
P

CDðniÞ
gðg�1Þ

 Mean Actor-Actor Distance / Characteristic Path

Length: l ¼ 1
1
2
gðgþ1Þ

P
i�jdðni; njÞ

 Diameter: is the longest Distance between all pairs

of nodes of a given network. The distance d(ni, nj)

between a pair of nodes ni and nj in the network is

the length of the geodesic (which is the shortest

path between the two nodes).

Ego-centric Properties The identification of the ‘‘most

important’’ or ‘‘prominent’’ actor was one of the pri-

mary goals of social network analysis [19]. Therefore

various measures were developed to quantify ‘‘impor-

tance’’ of actors and subgroups for a given social net-

work. The following measures can be calculated for

simple undirected graphs of social networks.

 Actor Degree Centrality is the count of the number of

ties to other actors in the network. The relevance of
this measure is based on the assumption that an actor,

which has more connections than other actors can be

considered more active and therefore important. The

actor degree centrality is calculated from sociomatrix

X as follows:

CD nið Þ ¼
X
j

xij

 Actor Closeness Centrality is the degree to which an

individual is close to all other individuals in a

network (directly or indirectly). Therefore an

actor is central if it can quickly (that means by

relying on so few mediatorsas possible) interact

with all other actors. The index of actor closeness-

centrality is:

CC nið Þ ¼
Xg

j¼1;j 6¼i

d ni; nj
� �" #�1
where d(ni, nj) is the length of the geodesic of actor

i and actor j. To allow comparisons between differ-

ent networks actor closeness can be standardized:

C 0
CðniÞ ¼

g � 1Pg
j¼1; j 6¼idðni; njÞ

h i

Actor Betweenness Centrality is the degree to which

an individual lies between other individuals in the

network. Therefore it is based on the assumption

that all other actors lying in between have a certain

amount of control on the interaction relying on

them. So the betweenness of an actor is higher if

more of the possible interactions rely on it as me-

diator. In order to calculate betweeness centrality

two other measures are needed: gjk, the number of

geodesics linking two actors j and k; as well as

gjk(ni), which is the number of geodesics linking

two actors that contain the actor i:

CB nið Þ ¼
X
j<k

gjk nið Þ=gik

For comparisons the measure can be normalized:

C 0
B nið Þ ¼ CB nið Þ= g � 1ð Þ g � 2ð Þ=2½ �

Subgroups In most social networks actors organize

themselves in subgroups or cliques, which have their

2670S Social Networks
own values, sub-cultures, and structures. Therefore

several methods to define and recognize certain kinds

of subgroups were developed [19].

 AClique of size k is a subgroup consisting of kmany

actors which are all adjacent to each other.

 An n-Clique is a subgroup with the property that

the distance (length of the geodesic) between all

actors is no greater than n and there is no actor

with a distance equal or less than n outside the

n-clique. An n-clique with n = 1 is equal to a

normal clique.

 A k-Core is a subgroup with each actor is adjacent

to at least n other actors in the subgroup.

 ACluster is a subgroup consisting of actors which are

similar to each other. The similarity (structural

equivalence) of two actors can be defined with cri-

teria like euclidean distance or correlation based on

vectors of a sociomatrix. Similarity based clusters

in undirected networks are usually created by using

agglomerative or divisive hierarchical clustering

methods [14]. For clustering directed networks

methods like directed spectral clustering [7] can be

used. In general graph theory there exist methods for

partitioning graphs which can also be applied to

graphs of social networks. One of these methods is

themin-max cut algorithmwhich pursues the goal of

minimizing the similarity between subgraphs while

maximizing the similarity within each subgraph.

Other clustering approaches are based on methods

for finding densely connected subgroups by the cal-

culation of special clustering coefficients or by com-

paring the number of connections within a subgroup

with the number of connections to outside actors.
Topological Properties

Small-World Topology The small-world model [20] is

a well studied distribution model of actors and ties,

since it has interesting properties and features. Due to

the fact that networks often have a geographical com-

ponent to them it is reasonable to assume that geo-

graphical proximity will play a role in deciding which

actors are connected. So in a small-world network each

actor is connected to actors in its near neighborhood.

Other connections between more distant actors (long-

range connections) are infrequent and have a low

probability. The probability for each actor of having a

degree k follows a power law pk � k�a with a as
constant scaling exponent. Despite the fact that long-

range connections occur only sporadicly the diameter

of small-world networks is exponentially smaller than

their size, being bounded by a polynomial in logg,

where g is the number of nodes. In other words, there

is always a very short path between any two nodes [8].

The discovery that real world social networks

might have small-world characteristics explains the

importance of this model. So it can be observed that

the chain of social acquaintances required to connect

one arbitrary person to another arbitrary person any-

where in the world is generally short. This concept

gave rise to the famous phrase six degrees of separa-

tion after a 1967 small-world experiment by Stanley

Milgram. Academic researchers continue to explore

this phenomenon. A recent electronic small-world

experiment [5] at Columbia University showed that

about five to seven degrees of separation are sufficient

for connecting any two people through e-mail. Other

applications of the small-world model are investiga-

tions of iterated games, diffusion processes or epi-

demic processes [12].

Creation of Networks

Artificially generated graphs allow comparison with

real datasets and by analyzing and comparing their

properties they give insights into the inner structure

of social networks. They also allow for the generation

of (overlay) network structures on top of existing in-

formation structures.

Several procedures are known to generate social

networks from scratch. A Poisson random graph is

the simplest way to construct a social network. This

is simply done by connecting each pair of actors

with the probability of p. The result of this procedure

is a network with a Poisson degree distribution

(pk ¼ lk
k! e

�l). Since this distribution is unlike the

highly skewed power-law distributions of real world

networks other methods have been proposed [12].

One of the important methods is known as prefer-

ential attachment [1]. In this model, new nodes are

added to a pre-existing network, and connected to

each of the original nodes with a probability propor-

tional to the number of connections each of the origi-

nal nodes already had. I.e., new nodes are more likely

to attach to hubs than peripheral nodes or in other

words the ‘‘rich-get-richer’’. Statistically, this method

will generate a power-law distributed small-world net-

work (that is, a scale-free network).

Social Networks S 2671

S

Since there is evidence that the preferential attach-

ment model does not show all the properties real world

networks obey, like increasing of the average degree

and shrinking of the diameter on growing of a net-

work, other models have been proposed [9]. The Com-

munity Guided Attachment, which is based on a

decomposition of actors into a nested set of subgroups,

such that the difficulty of forming new links between

subgroups increases with the size of the subgroups. In

the Forest Fire Model new actors are attached to the

network by burning through existing ties in epidemic

fashion.

Key Applications

Distributed Information Management

Social routing allows to route efficiently in peer-to-peer

networks without knowledge about the global network

structure. This routing with local knowledge can be

achieved by regarding the network as a social network

and exploiting several properties of social networks like

small-world characteristics [8,10].

Information Replication in information networks

can improve scalability and reliability. By performing

social network clustering on these structures prefetch-

ing of content can be improved [15].

Information Extraction

Name disambiguation is a technique for distinguishing

person names in unsupervised information frame-

works (e.g., web pages), where unique identifiers can

not be assumed [2].

Ontology Extraction methods can be performed on

social network structures like communities and their

folksonomies. This approach is based on the assump-

tion that individual interactions of a large number of

actors might lead to global effects that could be ob-

served as semantics [11].

Social Recommendations

Social networking portals like Xing or LinkedIn allow

users to express their relationships to other users

and to provide personal information. This social net-

work can be used e.g., for finding a short path to

persons in special positions by identifying the geodesic

to them [16].

Filtering, recommendations and inferred trust can be

improved by taking into account the social networks

all relevant actors are involved. So e.g., the
trustworthiness of Bob can be inferred from a social

network by Alice even if both are not directly known to

each other [6].

Viral marketing is the strategy to let satisfied cus-

tomers distribute advertisements (e.g., video clips) by

recommendation or forwarding to other potential

customers they know. Viral marketing campaigns are

usually started by sending the advertisements to actors

holding central positions in social networks in order to

facilitate a rapid distribution [13,17].
Future Directions
For the future of the social network science many areas

remain insufficiently explored [12]. Many properties

of social networks have been studied in the past dec-

ades. But the scientific community is still lacking

the whole picture which shows what the most impor-

tant properties for each application are. Especially

generalized propositions (e.g., ‘‘Are more centralized

organizations more efficient?’’) about the structure of

social networks need further verification across a large

number of networks [19]. Another important direc-

tion of future research is to improve the understanding

of the dynamics in and the evolution of social networks

[3]. In order to archive this new and more sophisticat-

ed models of social networks have to be developed.

New kinds of data including more complex structures

and new properties of actors or relations demand

further generalization of current models. An example

of these more complex structures are multiple relations

which connect more than two actors.
Data Sets

 Enron Email dataset (http://www.cs.cmu.edu/

�enron/ and http://www.enronemail.com/) con-

tains about 600,000 Email messages belonging to

156 users. It was made public during the legal

investigation concerning the Enron corporation.

 The Internet Movie Data Base (IMDB) (http://

www.imdb.com/interfaces/) is a collection of data

about movies (about 400,000) and actors (about

900,000). Especially the affiliation network of the

co-appearance of actors in the same movie is sub-

ject of several studies. (cf. ‘‘The Oracle of Bacon’’

http://oracleofbacon.org/)

 Digital Bibliography & Library Project (DBPL) col-

lects the bibliographic information on major com-

puter science journals and proceedings (currently

2672S Software Transactional Memory
about 950,000 articles). Similar to the IMDB the

co-authorship can be used to generate affiliation

networks. (dataset http://dblp.uni-trier.de/xml/)

 Southern Woman Dataset, which was collected in

the 1930s is published in the classical study of Davis

[4], a pioneer of social network analysis. It contains

the attendance at 14 social events by 18 women in

an unnamed US city.
URL to Code

Tools and Libraries

(cf. http://www.insna.org/software/index.html):

 Jung: http://jung.sourceforge.net/

 Pajek: http://vlado.fmf.uni-lj.si/pub/networks/

pajek/default.htm

 UCINET: http://www.analytictech.com/ucinet/uci

net.htm

Conference Series

 International Sunbelt Social Network Conferences:

http://www.insna.org/sunbelt/index.html

Journals

 Social Networks: http://www.innsa.org/pubs/

connections/index.html

 CONNECTIONS: http://www.insna.org/indexCon

nect.html

 Journal of Social Structure: http://www.cmu.edu/

joss/

Cross-references
▶Biological Networks

▶Cluster and Distance Measure

▶Clustering Overview and Applications

▶Graph

▶Hierarchial Clustering

▶Web Characteristics and Evolution
Recommended Reading
1. Barabási A.L. and Albert R. Emergence of scaling in random

networks. Science, 286:509–512, 1999.

2. Bekkerman R. and McCallum A. Disambiguating Web appear-

ances of people in a social network. In Proc. 14th Int. World

Wide Web Conference, 2005, pp. 463–470.

3. Berners-Lee T., Hall W., Hendler J., Shadbolt N., and

Weitzner D.J. Creating a science of the Web. Science, 313:769–

771, 2006.
4. Davis A., Gardner B.B., and Gardner M.R. Deep South. The

University of Chicago Press, 1941.

5. Dodds P.S., Muhamad R., and Watts D. An experimental

study of search in global social networks. Science, 301:827–829,

2003.

6. Golbeck J. and Hendler J.A. Inferring binary trust relationships

in Web-based social networks. ACM Trans. Internet Techn.,

6(4):497–529, 2006.

7. Huang J., Zhu T., and Schuurmans D. Web communities identi-

fication from random walks. In Proc. Joint European Conf. on

Machine Learning and European Conference on Principles and

Practice of Knowledge Discovery in Databases, 2006.

8. Kleinberg J. Navigation in a small world. Nature, 406:845, 2000.

9. Leskovec J., Kleinberg J., and Faloutsos C. Graph evolution:

Densification and shrinking diameters. ACM Trans. Knowl.

Discov. Data, 1(1):2, 2007.

10. Löser A., Staab S., and Tempich C. Semantic Social Overlay

Networks. IEEE Journal on Selected Areas in Communication,

25(1):5–14, 2007.

11. Mika P. Social Networks and the Semantic Web. Springer, 2007.

12. Newman M.E.J. The Structure and Function of Complex net-

works. SIAM Rev., 45(2):167–256, 2003.

13. Richardson M. and Domingos P. Mining knowledge-sharing

sites for viral marketing. In Proc. 8th ACM SIGKDD Int. Conf.

on Knowledge Discovery and Data Mining, 2002, pp. 61–70.

14. Scott J. Social Network Analysis: A Handbook. Sage, 2000.

15. Sidiropoulos A., Pallis G., Katsaros D., Stamos K., Vakali A., and

Manolopoulos Y. Prefetching in content distribution networks

via web communities identification and outsourcing. World

Wide Web J., 11(1):39–70, 2008.

16. Staab S., Domingos P., Mika P., Golbeck J., Ding L., Finin T.W.,

Joshi A., Nowak A., and Vallacher R.R. Social networks applied.

IEEE Intell. Syst., 20(1):80–93, 2005.

17. Subramani M.R. and Rajagopalan B. Knowledge-sharing and

influence in online social networks via viral marketing. Com-

mun. ACM, 46(12):300–307, 2003.

18. Sun J., Tao D., and Faloutsos C. Beyond streams and graphs:

dynamic tensor analysis. In Proc. 12th ACM SIGKDD Int. Conf.

on Knowledge Discovery and Data Mining, 2006, pp. 374–383.

19. Wasserman S. and Faust K. Social network analysis. Cambridge

University Press, Cambridge, 1994.

20. Watts D.J. and Strogatz S.H. Collective dynamics of ‘‘small-

world’’ networks. Nature, 393:440–442, 1998.
Software Transactional Memory

KEIR FRASER

University of Cambridge, Cambridge, UK

Definition
Software transactional memory (STM) is a method

of concurrency control in which shared-memory

accesses are grouped into transactions which either

Sort-Merge Join S 2673

S

succeed or fail to commit in their entirety. STM

provides applications programmers with an alternative

to mutual-exclusion locks which avoids many of the

latter’s pitfalls, including risk of deadlock, unnecessary

serialization, and priority inversion. Many STMs

are themselves implemented using lock-free program-

ming methods, although this is not a hard-and-

fast rule.

Key Points
A software transactional memory (STM) is a software

library or programming-language feature which pro-

vides application programmers with an interface for

allocating and accessing shared-memory variables [3].

These variables are accessible in a concurrency-safe

manner without resorting to classical concurrency-

management techniques such as mutual exclusion.

This is achieved by grouping accesses into transactions

which execute in isolation and then atomically succeed

or fail in their entirety.

The application programmer chooses when transac-

tions should start and end, rather like choosing when to

acquire and release mutexes in a conventional multi-

threaded program, to ensure consistency of application

data structures. The STM implementation is responsible

for ensuring that transactions execute in isolation and

coomit atomically. Thus transactional memory guaran-

tees the sameACIDproperties as classical database trans-

actions, with the exception of durability.

The benefits of a transactional interface to shared

memory are numerous. Traditional mutexes, when

used conservatively, can lead to unnecessary serialization

of operations that do not otherwise conflict. When a

finer-grained approach is taken, involvingmultiple locks

with individually smaller scope, the programmer must

take care to avoid subtle deadlock scenarios. STM

is perhaps the most promising of the proposed lock-

free techniques which eschew traditional mutual exclu-

sion and hope to enable the average programmer to

implement scalable multi-threaded applications in

mainstream languages [1]. Hence, although still in its

infancy and an ongoing topic of research, STM is being

viewed eagerly by an industry looking for salvation from

the complexity of optimizing for modern multi-core

systems [2].

Cross-references
▶ Performance Analysis

▶Transaction
Recommended Reading
1. Fraser K. and Harris T. Concurrent programming without locks.

ACM Trans. Comput. Syst., 25(2), 2007.

2. Saha B., Adl-Tabatabai A., Hudson R., Minh C., and Hertzberg B.

McRT-STM: a high performance software transactional memory

system for a multi-core runtime. In Proc. 11th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming,

2006, pp. 187–197.

3. Shavit N. and Touitou D. Software transactional memory.

In Proc. ACM SIGACT-SIGOPS 14th Symp. on the Principles

of Dist. Comp., 1995, pp. 204–213.
SONs

▶ Semantic Overlay Networks
Sort-Merge Join

JINGREN ZHOU

Microsoft Research, Redmond, WA, USA

Synonyms
Merge join

Definition
The sort-merge join is a common join algorithm in

database systems using sorting. The join predicate

needs to be an equality join predicate. The algorithm

sorts both relations on the join attribute and then

merges the sorted relations by scanning them sequen-

tially and looking for qualifying tuples.

Key Points
The sorting step groups all tuples with the same value in

the join attribute together. Such groups are sorted

based on the value in the join attribute so that it is

easy to locate groups from the two relations with the

same attribute value. Sorting operation can be fairly

expensive. If the size of the relation is larger than the

available memory, external sorting algorithm is re-

quired. However, if one input relation is already clus-

tered (sorted) on the join attribute, sorting can be

completely avoided. That is why the sort-merge join

looks attractive if any of the input relations is sorted on

the join attribute.

The merging step starts with scanning the relations

R and S and looking for matching groups from the two

relations with the same attribute value. The two scans

2674S Source
start at the first tuple in each relation. The algorithm

advances the scan of R as long as the current R tuple

has an attribute value which is less than that of

the current S tuple. Similarly, the algorithm advances

the scan of S as long as the current S tuple has an

attribute value which is less than that of the current R

tuple. The algorithm alternates between such advances

until an R tuple R and an S tuple S with R:r ¼ S:s.
The join tuple fR;Sg is added to result.

There could be several R tuples and several S tuples

with the same attribute value as the current tuples R
and S. That is, several R tuples may belong to the

current R group since they all have the same attribute

value. The same applies to the current S group. Every

tuple in the current R group joins with every tuple in

the current S group. The algorithm them resumes

scanning R and S, beginning with the first tuples that

follow the group of tuples that are just processed.

When the two relations are too large to be held in

available memory, one improvement is to combine the

merging step of external sorting with the merging step

of the join if the number of buffers available is larger

than the total number of sorted runs for both R and S.

The idea is to allocate one buffer page for each run of R

and one for each run of S. The algorithm merges the

runs of R, merges the runs of S, and joins (merges)

the resulting R and S streams as they are generated.
Cross-references
▶ Evaluation of Relational Operators

▶ External Sorting

▶ Parallel Join Algorithms

Recommended Reading
1. Mishra P. and Eich M.H. Join processing in relational databases.

ACM Comput. Surv., 24(1):63–113, 1992.
Source

▶ Provenance

▶ Provenance in Scientific Databases
Space-Filling Curves

MOHAMED F. MOKBEL
1, WALID G. AREF

2

1University of Minnesota, Minneapolis, MN, USA
2Purdue University, West Lafayette, IN, USA

Synonyms
Distance-preserving mapping; Locality-preserving

mapping; Multi-dimensional mapping; Linearization

Definition
A space-filling curve (SFC) is a way of mapping the

multi-dimensional space into the one-dimensional

space. It acts like a thread that passes through

every cell element (or pixel) in the multi-dimensional

space so that every cell is visited exactly once. Thus, a

space-filling curve imposes a linear order of points in

the multi-dimensional space. A D-dimensional space-

filling curve in a space of N cells (pixels) of each

dimension consists of ND � 1 segments where each

segment connects two consecutive D-dimensional

points. There are numerous kinds of space-filling

curves (e.g., Hilbert, Peano, and Gray). The difference

between such curves is in their way of mapping to the

one-dimensional space, i.e., the order that a certain

space-filling curve traverses the multi-dimensional

space. The quality of a space-filling curve is measured

by its ability in preserving the locality (or relative

distance) of multi-dimensional points in the mapped

one-dimensional space. The main idea is that any

two D-dimensional points that are close by in the

Space-Filling Curves for Query Processing S 2675

S

D-dimensional space should be also close by in

the one-dimensional space.

Key Points
Space-filling curves are discovered by Peano [3] where

he introduces a mapping from the unit interval to

the unit square. Hilbert [1] generalizes the idea to a

mapping of the whole space. Following Peano and

Hilbert curves, many space-filling curves are proposed,

e.g., [4]. Space-filling curves are classified into two

categories: recursive space-filling curves (RSFC) and

non-recursive space-filling curves. An RSFC is an SFC

that can be recursively divided into four square RSFCs

of equal size. Examples of RSFCs are the Peano SFC,

the Gray SFC, and the Hilbert SFC. For the past two

decades, recursive space-filling curves have been con-

sidered a natural method for locality-preserving map-

pings. Recursive space-filling curves are special case of

fractals [2]. Mandelbrot [2], the father of fractals,

derived the term fractal from the Latin adjective frac-

tus. The corresponding Latin verb frangere means ‘‘to

break’’ or ‘‘to fragment.’’ Thus, fractals divide the space

into a number of fragments, visiting the fragments in a

specific order. Once a fractal starts to visit points from

a certain fragment, no other fragment is visited until

the current one is completely exhausted. By dealing

with one fragment at a time, fractal locality-preserving

mapping algorithms perform a local optimization

based on the current fragment.

Cross-references
▶High-Dimensional Indexing

▶ Space Filling Curves for Query Processing

▶ Spatial Indexing Techniques

Recommended Reading
1. Hilbert D. Ueber stetige abbildung einer linie auf ein flashen-

stuck. Math. Ann., 459–460, 1891.

2. Mandelbrot B.B. Fractal geometry of nature. W. H. Freeman,

New York, 1977.

3. Peano G. Sur une courbe qui remplit toute une air plaine. Math.

Ann., 36:157–160, 1890.

4. Sagan H. Space Filling Curves. Springer, Berlin Heidelberg New

York, 1994.
Space Partitioning

▶ Indexing and Similarity Search
Space Segmentation

▶ Indexing and Similarity Search
Space-Filling Curve

▶ Fractal
Space-Filling Curves for Query
Processing

MOHAMED F. MOKBEL
1, WALID G. AREF

2

1University of Minnesota, Minneapolis, MN, USA
2Purdue University, West Lafayette, IN, USA

Synonyms
Distance-preserving mapping; Locality-preserving

mapping; Multi-dimensional mapping; Linearization

Definition
Given a query Q, a one-dimensional index structure I

(e.g., B-tree), and a set of D dimensional points, a

space-filling curve S is used to map the D dimensional

points into a set of one-dimensional points that can be

indexed through I for an efficient execution of query Q.

The main idea is that space-filling curves are used as

a way of mapping the multi-dimensional space into

the one-dimensional space such that existing one-

dimensional query processing and indexing techniques

can be applied.
Historical Background
Although space-filling curves were discovered in 1890

[14], their use in query processors has emerged only in

the last two decades as it is mainly motivated by the

emergence of multi-dimensional applications. In partic-

ular, space-filling curves have been used as a mapping

scheme that supports spatial join algorithms [13], spatial

access methods [2,7], efficient processing of range

queries [1,6], and nearest-neighbor queries in [8]. Nu-

merous algorithms are developed for efficiently generat-

ing different space-filling curves that include recursive

2676S Space-Filling Curves for Query Processing
algorithms for the Hilbert SFC [4,15], recursive algo-

rithms for the Peano SFC [15], table-driven algorithms

for the Peano and Hilbert SFCs [4]. The clustering and

mapping properties of various space-filling curves have

been extensively studied in the literature (e.g., see

[10,12]).

Foundations

Mapping Scheme

Figures 1 and 2 give examples of two- and three-

dimensional space-filling curves with grid size (i.e.,

number of points per dimension) eight and four, re-

spectively. Space-filling curves are classified into two

categories: recursive space-filling curves (RSFC) and

non-recursive space-filling curves. An RSFC is an SFC

that can be recursively divided into four square RSFCs

of equal size. Non-recursive space-filling curves in-

clude the Sweep SFC (Figs. 1a and 2a), the Scan SFC

(Figs. 1b and 2b), the Diagonal SFC (Fig. 1f), and the

Spiral SFC (Fig. 1g). Recursive space-filling curves

include the Peano SFC (Figs. 1c and 2c), the Gray

SFC (Figs. 1d and 2d), and the Hilbert SFC (Figs. 1e
Space-Filling Curves for Query Processing. Figure 1. Two-d
and 2e). Table 1 gives the first 16 visited points for the

Peano, Gray, and Hilbert space-filling curves.

The Peano SFC

The Peano SFC (Figs. 1c and 2c) is introduced by Peano

[14] and is also termed Morton encoding, quad code,

bit-interleaving, N-order, locational code, or Z-order.

The Peano SFC is constructed recursively as in Fig. 3.

The basic shape (Fig. 3a) contains four points in the

four quadrants of the space. Each quadrant is repre-

sented by two binary digits. The most significant digit

is represented by its x position while the least signifi-

cant digit is represented by its y position. The Peano

SFC orders space quadrants in ascending order (00, 01,

10, 11). Figure 3b contains four blocks of Fig. 3a at a

finer resolution and is visited in the same order as in

Fig. 3a. Similarly, Fig. 3c contains four blocks of Fig. 3b

at a finer resolution.

The Gray SFC

The Gray SFC (Figs. 1d and 2d) uses the Gray code

representation [5] in contrast to the binary code rep-

resentation as in the Peano SFC. Figure 4 gives the
imensional space-filling curves.

Space-Filling Curves for Query Processing. Figure 2. Three-dimensional space-filling curves.

Space-Filling Curves for Query Processing S 2677

S

recursive construction of the Gray SFC. The

basic shape (Fig. 4a) contains four points in the four

quadrants of the space. The Gray SFC visits the space

quadrants in ascending order according to the Gray

code (00, 01, 11, 10). Figure 4b is constructed by

having the first and fourth blocks as those of Fig. 4a,

while the second and the third blocks are the rotation

of the blocks in Fig. 4a by 1800. Similarly, Fig. 4c

is constructed from two blocks of Fig. 4b at a finer

resolution and two blocks of the rotation of Fig. 4b

by 1800.

The Hilbert SFC

Figure 5 gives the recursive construction of the Hilbert

SFC. The basic block of the Hilbert SFC (Fig. 5a) is the

same as that of the Gray SFC (Fig. 4a). The basic block

is repeated four times at a finer resolution in the four

quadrants, as given in Fig. 5b. The quadrants are visit-

ed in their gray order. The second and third blocks in

Fig. 5b have the same orientation as in Fig. 5a. The first

block is constructed from rotating the block of Fig. 5a
by 900, while the fourth block is constructed by rotat-

ing the block of Fig. 5 by � 900. Similarly, Fig. 5a is

constructed from Fig. 5b.

Segment Types

A space-filling curve consists of a set of segments. Each

segment connects two consecutive multi-dimensional

points. Five different types of segments are distin-

guished, namely, Jump, Contiguity, Reverse, Forward,

and Still. A Jump segment in an SFC is said to happen

when the distance, along any of the dimensions, be-

tween two consecutive points in the SFC is greater than

one. Similarly, a Contiguity segment in an SFC is said to

happen when the distance, along any of the dimen-

sions, between two consecutive points in the SFC is

equal to one. On the other side, a segment in an SFC

is termed a Reverse segment if the projection of its two

consecutive points, along any of the dimensions,

results in scanning the dimension in decreasing order.

Similarly, a segment in an SFC is termed a Forward

segment if the projection of its two consecutive points,

Space-Filling Curves for Query Processing. Table 1. The first 16 traversed points by two-dimensional Peano, Gray, and

Hilbert space-filling curves

Point Peano Gray Hilbert Point Peano Gray Hilbert

0 (0,0) (0,0) (0,0) 8 (2,0) (3,3) (2,2)

1 (0,1) (0,1) (0,1) 9 (2,1) (3,2) (3,2)

2 (1,0) (1,1) (1,1) 10 (3,0) (2,2) (3,3)

3 (1,1) (1,0) (1,0) 11 (3,1) (2,3) (2,3)

4 (0,2) (1,3) (2,0) 12 (2,2) (2,0) (1,3)

5 (0,3) (1,2) (3,0) 13 (2,3) (2,1) (1,2)

6 (1,2) (0,2) (3,1) 14 (3,2) (3,1) (0,2)

7 (1,3) (0,3) (2,1) 15 (3,3) (3,0) (0,3)

Space-Filling Curves for Query Processing. Figure 3. The Peano SFC.

Space-Filling Curves for Query Processing. Figure 4. The Gray SFC.

2678S Space-Filling Curves for Query Processing
along any of the dimensions, results in scanning the

dimension in increasing order. Finally, a segment in an

SFC is termed a Still segment when the distance, along

any of the dimensions, between the segment’s two

consecutive points in the SFC is equal to zero. Closed

formulas to count the number of Jump, Contiguity,

Reverse, Forward, and Still segments along each dimen-

sion can be found in [10].

Irregularity

An optimal locality-preserving space-filling curve is

one that sorts multi-dimensional points in ascending
order for all dimensions. However, in reality, when a

space-filling curve attempts to sort the points in as-

cending order according to one dimension, it fails to

do the same for the other dimensions. A good space-

filling curve for one dimension is not necessarily good

for the other dimensions. In order to measure the

mapping quality of a space-filling curve, the concept

of irregularity has been introduced as a measure of

goodness for the order imposed by a space-filling

curve [11]. Irregularity introduces a quantitative mea-

sure that indicates the non-avoidable reverse order

imposed by space-filling curves for some or all

Space-Filling Curves for Query Processing. Figure 5. The Hilbert SFC.

Space-Filling Curves for Query Processing S 2679

S

dimensions. Irregularity is measured for each dimen-

sion separately, and gives an indicator of how a space-

filling curve is far from the optimal. The lower the

irregularity, the better the space-filling curve. The ir-

regularity is formally defined as: For any two points,

say Pi and Pj, in the D-dimensional space with coordi-

nates (Pi.u0,Pi.u1,...,Pi.uD�1), (Pj.u0,Pj.u1,...,Pj.uD�1),

respectively, and for a given space-filling curve S, if S

visits Pi before Pj, an irregularity occurs between Pi and

Pj in dimension k iff Pj.uk < Pi.uk. Closed formulas to

count the number of irregularities for various space-

filling curves can be found in [11].

Key Applications

Pre-processing for Multi-dimensional Applications:

Multimedia Databases, GIS,and Multi-dimensional

Indexing

Mapping the multi-dimensional space into the one-

dimensional domain plays an important role in applica-

tions that involve multi-dimensional data. Multimedia

databases, Geographic Information Systems (GIS), QoS

routing, and image processing are examples of multi-

dimensional applications. Modules that are commonly

used in multi-dimensional applications include search-

ing, sorting, scheduling, spatial access methods,

indexing, and clustering. Considerable research has

been conducted for developing efficient algorithms

and data structures for these modules for one-dimen-

sional data. In most cases, modifying the existing one-

dimensional algorithms and data structures to deal with

multi-dimensional data results in spaghetti-like pro-

grams to handle many special cases. The cost of main-

taining and developing such code degrades the system

performance. Mapping from the multi-dimensional

space into the one-dimensional domain provides a

pre-processing step for multi-dimensional applications.

The pre-processing step takes the multi-dimensional data
as input and outputs the same set of data represented in

the one-dimensional domain. The idea is to keep the

existing algorithms and data structures independent of

the dimensionality of data. The objective of the mapping

is to represent a point from the D-dimensional space by

a single integer value that reflects the various dimensions

of the original space. Such a mapping is called a locality-

preserving mapping in the sense that, if two points are

near to each other in the D-dimensional space, then

they will be near to each other in the one-dimensional

space.

Network-Attached Storage Devices NASDs

Writing efficient schedulers is becoming a very chal-

lenging task, given the increase in demand of such

systems. Consider the case of network-attached storage

devices (NASDs) [3] as a building block for a multi-

media server. NASDs are smart disks that are attached

directly to the network. In a multimedia server, a major

part of a NASD function goes towards fulfilling the

real-time requests of users. This involves disk and

network scheduling with real-time constraints, possi-

bly with additional requirements like request priorities,

and quality-of-service guarantees. NASDs require-

ments can be mapped in the multi-dimensional space

and a SFC-based scheduler is used. The type of space-

filling curve used in NASD scheduling is determined by

its requirements. For example, in NASD, if reducing

the number of requests that lose their deadlines is more

important than increasing the disk or network band-

width, then the real-time deadline dimension of the

scheduling space will be favored. As a result, a space-

filling curve with intentional bias is favored.

Multimedia Disk Scheduling

Consider the problem of disk scheduling in multime-

dia servers [9]. In addition to maximizing the band-

width of the disk, the scheduler has to take into

2680S Space-Span (in Part)
consideration the real-time constraints of the page

requests, e.g., as in the case of video streaming. If

clients are prioritized based on quality-of-service guar-

antees, then the disk scheduler might as well consider

the priority of the requests in its disk queue. Writing a

disk scheduler that handles real-time and QoS con-

straints in addition to maximizing the disk bandwidth

is challenging and a hard task. Scheduler parameters

can be mapped to space dimensions and an SFC-based

scheduler is used. The reader is referred to [9] to get

more insight about the applicability of the irregularity

in multi-media disk schedulers.

Future Directions
Future directions for space-filling curves include: (i)

exploiting new multi-dimensional applications that

can make use of the properties of space-filling curves,

(ii) analyzing the behavior of various space-filling

curves in high-dimensional space, (iii) providing auto-

mated modules with the ability of choosing the appro-

priate space-filling curve for a given application, and

(iv) developing new space-filling curves that are tai-

lored to specific applications.

Cross-references
▶High-Dimensional Indexing

▶ Space-Filling Curves

▶ Spatial Indexing Techniques

Recommended Reading
1. Faloutsos C. Gray codes for partial match and range queries.

IEEE Trans. Software Eng, 14(10):1381–1393, October 1988.

2. Faloutsos C. and Rong Y. Dot: a spatial access method using

fractals. In Proc. 7th Int. Conf. on Data Engineering, 1991,

pp. 152–159.

3. Gibson G., Nagle D., Amiri K., Butler J., Chang F.W., Gobioff H.,

Hardin C., Riedel E., Rochberg D., and Zelenka J. File server

scaling with network-attached secure disks. In Proc. 1997 ACM

SIGMETRICS Int. Conf. on Measurement and Modeling of

Comp. Syst., 1997, pp. 272–284.

4. Goldschlager L.M. Short algorithms for space-filling curves.

Software–Prac. Exper., 11(1):99–100, 1981.

5. Gray F. Pulse code communications. US Patent 2632058, 1953.

6. Jagadish H.V. Linear clustering of objects with multiple

attributes. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1990, pp. 332–342.

7. Kamel I. and Faloutsos C. Hilbert r-tree: an improved r-tree

using fractals. In Proc. 20th Int. Conf. on Very Large Data

Bases, 1994, pp. 500–509.

8. Liao S., Lopez M.A., and Leutenegger S.T. High dimensional

similarity search with space-filling curves. In Proc. 17th Int.

Conf. on Data Engineering, 2001, pp. 615–622.
9. Mokbel M.F., Aref W.G., El-Bassyouni K., and Kamel I. Scalable

multimedia disk scheduling. In Proc. 20th Int. Conf. on Data

Engineering, 2004, pp. 498–509.

10. Mokbel M.F., Aref W.G., and Kamel I. Analysis of multi-

dimensional space-filling curves. GeoInformatica, 7(3):179–209,

September 2003.

11. Mokbel M.F. and Aref W.G. Irregularity in multi-dimensional

space-filling curves with applications in multimedia databases.

In Proc. Int. Conf. on Information and Knowledge Manage-

ment, 2001, pp. 512–519.

12. Moon B., Jagadish H.V., Faloutsos C., and Salz J. Analysis of the

clustering properties of hilbert space-filling curve. IEEE Trans.

Knowl. Data Eng., 13(1):124–141, 2001.

13. Orenstein J.A. Spatial query processing in an object-oriented

database system. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1986, pp. 326–336.

14. Peano G. Sur une courbe qui remplit toute une air plaine. Math.

Ann., 36:157–160, 1890.

15. Witten I.H. and Wyvill B. On the generation and use of space-

filling curves. Software–Prac. Exper., 3:519–525, 1983.
Space-Span (in Part)

▶Context
Spamdexing

▶Web Spam Detection
Span

▶Time Interval
Sparse Index

MIRELLA M. MORO
1, VASSILIS J. TSOTRAS

2

1Federal University of Rio Grande do Sul,

Porte Alegre, Brazil
2University of California-Riverside, Riverside,

CA, USA

Synonyms
Non-dense Index

Spatial and Spatio-Temporal Data Models and Languages S 2681

S

Definition
Consider a tree-based indexon somenumeric attributeA

of a relation R. If an index record (of the form<search-

key, pointer>) is created for some of the values that

appear in attribute A, then this index is sparse.

Key Points
Tree-based indices are built on numeric attributes

and maintain an order among the indexed search-key

values. Hence, they provide efficient access to the

records of a relation by attribute value. Consider for

example an index built on attribute A of relation R.

The leaf pages of the index contain index-records of the

form <search-key, pointer>, where search-key corre-

sponds to a value from the indexed attribute A and

pointer points to the respective record in the indexed

relation R with that attribute value. If not all distinct

values that appear in R.A also appear in index records,

this index is sparse, otherwise it is called dense.

A sparse index needs a way to access even the rela-

tion records with values that do not directly appear in

the index. Hence it is required that the indexed relation

is ordered according to the values of the indexed attri-

bute A; in this way the relation order can be used to

access values not directly indexed by the sparse index.

Tree-indices are further categorized by whether

their search-key ordering is the same with the relation

file’s physical order (if any). If the search-key of a tree-

based index is the same as the ordering attribute of a

(ordered) file then the index is called primary. An

index built on any non-ordering attribute of a file is

called secondary. Hence a primary index is also sparse

while a secondary index should also be dense.

A dense index is typically larger than a sparse index

(since all search-key values are indexed) and thus

requires more space. It also needs to be updated for

every relation update that involves the attribute value

being indexed.

Cross-references
▶Access Methods

▶B+-Tree

▶ Index Sequential Access Method (ISAM)

▶ ISAM

▶ Primary Index

Recommended Reading
1. Elmasri and Ramez Navathe. Shamkant B. Fundamentals of

Database Systems (5th edn.). Addisson-Wesley, Reading, MA,

2007.
2. Manolopoulos, Yannis Theodoridis, and Yannis Tsotras. Vassilis

J. Advanced Database Indexing. Kluwer, Dordecht, 1999.

3. Silberschatz, Avi Korth, and Henry F. S. Sudarshan Database

System Concepts (5th edn.). McGraw-Hill, NY, 2006.
Spatial Access Methods

▶ Spatial Indexing Techniques
Spatial Analysis

▶ Spatial Data Analysis
Spatial and Spatio-Temporal Data
Models and Languages

MARKUS SCHNEIDER

University of Florida, Gainesville, FL, USA

Definition
A data model provides a formalism consisting of a

notation for describing data of interest and of a set of

operations for manipulating these data. It abstracts

from reality and provides a generalized view of data

representing a specific and bounded scope of the real

world. In the context of databases, a data model

describes the organization, that is, the structure, of a

database. In the context of complex objects like video,

genomic, and multimedia objects, a data model

describes a type system consisting of data types, opera-

tions, and predicates. Spatial and spatio-temporal data

models are of this second kind. A spatial data model is a

data model defining the properties of and operations

on static objects in space. These objects are described

by spatial data types like point (for example, represent-

ing the locations of cities in the US), line (for example,

describing the ramifications of the Nile Delta), and

region (for example, depicting school districts). Opera-

tions on spatial data types include, for instance, the

geometric intersection, union, and difference of spatial

objects, the computation of the length of a line or the

area of a region, the test whether two spatial objects

overlap or meet, and whether one object is north or

southeast of another object. A spatio-temporal data

model is a data model representing the temporal

2682S Spatial and Spatio-Temporal Data Models and Languages
evolution of spatial objects over time. These evolutions

can be discrete, that is, they happen from time to

time (for example, the change of the boundary of a

land parcel) or continuous, that is, they happen perma-

nently and smoothly (for example, the devastating tra-

jectory of a hurricane). In the continuous case, one

speaks about moving objects and represents them by

spatio-temporal data types likemoving point (for exam-

ple, recording the route of a cell phone user), moving

line (for example, representing the boundary of a tsu-

nami), and moving region (for example, describing

the motion of an air polluted cloud). Operations on

spatio-temporal data types comprise, for instance,

the spatio-temporal intersection, union, and difference

of moving objects, the computation of the trajectory

of a moving point as a line object, the determination of

the location of a moving object at a particular time, the

calculation of a moving object during a given set of

intervals, and the test whether a moving point enters or

crosses a moving region. Spatial and spatio-temporal

query languages enable the user to query databases

enhanced by these concepts.

Historical Background
The interest to store geometric data in databases began

in the late 1970s. Due to the increasing success of

relational databases, the first approach has been to

decompose a spatial object recursively into its constit-

uent parts until they can be stored in tables. For exam-

ple, this approach decomposes a polygon into its set of

segments. Each segment is decomposed into a pair of

points. A point is decomposed into a pair of two float

numbers. Float numbers are a DBMS data type and can

be stored in a table. This approach has revealed a

number of fundamental drawbacks. Since all lines

and polygons are decomposed into their constituent

parts scattered as tuples over a relation, a spatial object

is not treated as an entity or unit but only corresponds

to a collection of tuples. Since this approach is based

on standard domains and has no concept of spatial
Spatial and Spatio-Temporal Data Models and Languages.

line object (b), a simple region object (c), a complex point ob

object (f).
data types, it cannot provide and support any mean-

ingful geometric operations. A more detailed discus-

sion can be found in [7].

Classical research on time-varying geometric data

has focused on discrete changes of spatial objects over

time. For example, cadastral applications deal with the

management of land parcels whose boundaries can

change from time to time due to specific legal actions

such as splitting, merging, or land consolidation. Po-

litical boundaries can suddenly disappear, as the reuni-

fication of West and East Germany shows. Different

approaches have been proposed to model these dis-

crete changes. One of them is to enhance temporal

databases [12] with spatial data types. Each discrete

change leads to a new stored snapshot with a modified

spatial object in the temporal database. Another ap-

proach [15] keeps a single version of each spatial object

only but annotates each of its components (for in-

stance, a point or a segment) with a temporal element

indicating the period of validity or existence of this

component. Hence, discrete changes of a spatial object

are registered within the object.

Foundations
Spatial data types form the basis of a large number of

data models and query languages for spatial data. They

are extensively leveraged by spatial databases [9] and

embedded as attribute data types into their data mod-

els, that is, in the same way as standard data types such

as integer, real, and string. The geometric types are

designed as abstract data types, that is, the internal

structure of a spatial object is hidden from the user,

and its features can only be retrieved by (abstract)

operations on this object. In this manner, they provide

a high-level view of geometric data. One can distin-

guish the older generation of simple spatial data types

and the newer generation of complex spatial data

types, depending on the spatial complexity the types

are able to model. In the two-dimensional space, sim-

ple spatial data types only provide simple object
Figure 1. Examples of a simple point object (a), a simple

ject (d), a complex line object (e), and a complex region

Spatial and Spatio-Temporal Data Models and Languages S 2683
structures like single points, continuous lines, and

simple regions (Fig. 1a–c). However, from an applica-

tion perspective, simple spatial data types have turned

out to be inadequate abstractions for spatial applica-

tions since they are insufficient to cope with the variety

and complexity of geographic reality. From a formal

perspective, they are not closed under the geometric set

operations intersection, union, and difference. This

means that these operations applied to two simple spa-

tial objects can produce a spatial object that is not

simple. Complex spatial data types solve these pro-

blems. They provide universal and versatile spatial

objects and are closed under geometric set operations.

They allow objects with multiple components, region

components that may have holes, and line components

that may model ramified, connected geometric net-

works (Fig. 1d–f).

As an example, in a relational setting, states, cities,

and rivers are represented in the following relations:

states(sname: string, area: region)

cities(name: string, population: integer,

location: point)

rivers(name: string, route: line)

Queries can then be formulated by employing opera-

tions and predicates on spatial attribute values within

an extended standard database query language such as

SQL, leading to Spatial SQL [1]. Assume that the

following operations and predicates are available:
area: region ! real

inside: point � region ! bool

intersection: line � region ! line

length: line ! real

meet: region � region ! bool
S

The predicates inside and meet represent topological

relationships [8] that characterize the relative position

between spatial objects. The operation length is a nu-

merical function computing the length of a line object.

The operation intersection computes the part of a line

object intersecting a region object.

One can now pose queries: What is the total popu-

lation of the cities in France?

select sum(c.pop) as total

from cities as c, states as s
where c.location inside s.area and

s.name = ‘France’

Compute the part of the river Rhine that is located

within Germany and determine its length.

select intersection(r.route,s.area)asrhine,

length(intersection(r.route,

s.area)) as len

from rivers as r, states as s

where r.name=‘Rhine’ands.name=‘Germany’

Make a list that shows for each state the number of its

neighbor states, and their total area.

select s.name, count(*),

sum(area(t.area))

from states as s, states as t

where s.area meet t.area

group by s.name

Spatio-temporal data types enable the user to describe

the dynamic behavior of spatial objects over time. The

dynamic behavior refers to the continuous change of

the locations of spatial objects over time. That is, the

spatial objects move, and they are therefore called

moving objects. They are stored in special spatio-

temporal databases called moving objects databases

[6]. In the same way as spatial data types, spatio-

temporal data types are also designed as abstract data

types and embedded as attribute types into a DBMS

data model. Spatio-temporal data types are available

for moving points (type mpoint for short), moving

lines (mline), and moving regions (mregion). In case

of moving regions, one can also represent the change of

their extent and shape over time. Conceptually, a

moving point is a function f : time ! point, a moving

line is a function f : time! line, and a moving region is

a function f : time! region. For example, for a moving

region this means that at each time instant an object of

type region has to be returned. Geometrically, moving

objects correspond to the three-dimensional shapes. In

case of a moving point it is a three-dimensional line

(Fig. 2a) and in case of a moving region it is a volume

(Fig. 2b). One can distinguish moving objects data-

bases that model and query the history of movement

for spatio-temporal analysis [2,5] and moving objects

databases that model, predict, and query current and

future movement [10,11]. In the latter case, location

updates require a balancing of update costs and

Spatial and Spatio-Temporal Data Models and

Languages. Figure 2. Examples of a moving point object

(a) and a moving region object (b).

2684S Spatial and Spatio-Temporal Data Models and Languages
imprecision [14] and introduce the feature of uncer-

tainty [13].

As an example, consider relations describing the

movements of airplanes or storms:

flight(id: string, from: string,

to: string, route: mpoint)

weather(id: string, kind:

string, area: mregion)

One can pose queries by employing operations and

predicates on spatio-temporal attribute values within

an extended standard database query language such as

SQL, leading to Spatio-Temporal Query Language

(STQL) [3]. Assume that the following operations

and predicates are available:
deftime: mpoint ! periods

Disjoint: mpoint � mregion ! bool

distance: mpoint � mpoint ! mreal

Inside: mpoint � mregion ! bool

intersection: mpoint � mregion ! mpoint

meet: point � region ! bool

min: mreal ! real

trajectory: mpoint ! line
The function deftime returns the set of time

intervals when a moving point is defined. The spatio-

temporal predicate [3,4,6] Disjoint checks whether a

moving point and a moving region are disjoint for

some period. The function distance computes the dis-

tance between two moving points and is a real-valued

function of time, captured here in a data typemreal for

moving reals. The spatio-temporal predicate Inside

tests whether a moving point is located inside a

moving region for some period. The operation
intersection returns the part of a moving point when-

ever it lies inside a moving region, which is a moving

point again. The topological predicate meet checks

whether a point object is located on the boundary of

a region object. The function min yields the minimal

value assumed over time by a moving real.

One can now pose queries: Find all flights from

Frankfurt that are longer than 5,000 kms.

select id

from flight

where from = ‘FRA’ and length

(trajectory(route)) > 5000

Retrieve any pairs of airplanes, which, during their

flight, came closer to each other than 500 m.

select f.id, g.id

from flight as f, flight as g

where f.id <> g.id and min(distance

(f.route, g.route)) < 0.5

At what time was flight TB691 within a snowstorm

with id RS316?

select deftime(intersection(f.route,

w.area))

from flight as f, weather as w

where f.id = ‘TB691’ and w.id = ‘RS316’

Which are the planes that ran into a hurricane and had

to traverse it?

select f.id, w.id

from flight as f, weather as w

where w.kind = ‘hurricane’ and

f.route Disjoint >> meet >>

Inside >> meet >> Disjoint w.area

The term Disjoint >> meet >> Inside >> meet >>

Disjoint is a spatio-temporal predicate that is composed

of a temporal sequence of the basic spatio-temporal

predicates Disjoint and Inside as well as the topological

predicate meet. The temporal composition operator is

indicated by the symbol>>. The query above searches

for a spatio-temporal pattern in which a plane is dis-

joint from a hurricane for some period, then meets the

boundary of the hurricane at a time instant, is inside

the hurricane for some period, meets the boundary of

the hurricane again at a time instant, and is disjoint

again from the hurricane for some period. The alter-

nating sequence of topological predicates that hold for

Spatial Anonymity S 2685

S

some period or for some time instant is characteristic

for composite spatio-temporal predicates.

Key Applications
Spatial data models containing spatial data types,

operations, and predicates are a universal and general

concept for representing geometric information in all

kinds of spatial applications. They have found broad

acceptance in spatial extension packages of commer-

cially and publicly available database systems as well as

in geographic information systems. Further, all appli-

cations in the geosciences (for example, geography,

hydrology, soil sciences) as well as many applications

in government and administration (for example, ca-

dastral applications, urban planning) already benefit

from them. Independent studies have shown that

about 80% of all data have spatial features (like geo-

metric attributes) or a spatial reference (like an ad-

dress). Thus, it is not surprising that independent

international studies have predicted that geoinforma-

tion technology will belong to the most important

and promising technologies in the future, besides bio-

technology and nanotechnology.

The usage of moving objects in databases and espe-

cially in geographic information systems is still in its

infancy since it is a relatively new technology. But

increasingly, applications like location management,

GPS-equipped PDAs, phones, and vehicles, navigation

systems, RFID-tag tracking, sensor networks, hurri-

cane research, and national security show interest in

moving objects databases.

Cross-references
▶ Spatial Data Types

▶ Spatio-temporal Trajectories

▶Temporal Database
Recommended Reading
1. Egenhofer M.J. Spatial SQL: a query and presentation language.

IEEE Trans. Knowl. and Data Eng., 6(1):86–94, 1994.

2. Erwig M., Güting R.H., Schneider M., and Vazirgiannis M.

Spatio-temporal data types: an approach to modeling and que-

rying moving objects in databases, Geoinformatica, 3(3):

265–291, 1999.

3. Erwig M. and Schneider M. Developments in spatio-temporal

query languages. In Proc. IEEE International Workshop on Spa-

tio-Temporal Data Models and Languages, 1999, pp. 441–449.

4. Erwig M. and Schneider M. Spatio-Temporal Predicates. IEEE

Trans. Know. and Data Eng., 14(4):1–42, 2002.
5. GütingR.H., BöhlenM.H., ErwigM., Jensen C.S., LorentzosN.A.,

Schneider M., and Vazirgiannis M. A foundation for represent-

ing and querying moving objects. ACM Trans. Database Syst.,

25(1):1–42, 2000.

6. Güting R.H. and Schneider M. Moving Objects Databases.

Morgan Kaufmann, San Fransisco, CA, USA, 2005.

7. Schneider M. Spatial Data Types for Database Systems – Finite

Resolution Geometry for Geographic Information Systems.

LNCS 1288. Springer, Berlin Heidelberg New York, 1997.

8. Schneider M. and Behr T. Topological relationships between

complex spatial objects. ACM Trans. Database Syst., 31(1):

39–81, 2006.

9. Shekar S. and Chawla S. Spatial Databases: ATour. Prentice-Hall,

Englewood Cliffs, NJ, USA, 2003.

10. Sistla A.P., Wolfson O., Chamberlain S., and Dao S. Modeling

and Querying Moving Objects. In Proc. 13th Int. Conf. on Data

Engineering, 1997, pp. 422–432.

11. Sistla A.P., Wolfson O., Chamberlain S., and Dao S. Querying the

uncertain position of moving objects. In: Temporal Databases:

Research and Practice. O. Etzion, S. Jajodia, S. Sripada (eds.).

LNCS 1399. Springer, Berlin Hiedelberg New York, 1998,

pp. 310–337.

12. Tansel A.U., Clifford J., Gadia S., Jajodia S., Segev A., and

Snodgrass R.T. (eds.). Temporal Databases: Theory, Design,

and Implementation. Benjamin/Cummings, 1993.

13. Trajcevski G., Wolfson O., Hinrichs K., and Chamberlain S.

Managing uncertainty in moving objects databases. ACM

Trans. Database Syst., 29(3):463–507, 2004.

14. Wolfson O., Chamberlain S., Dao S., Jiang L., and Mendez G.

Cost and Imprecision in Modeling the Position of Moving

Objects. In Proc. 14th Int. Conf. on Data Engineering, 1998,

pp. 588–596.

15. Worboys M.F. A unified model for spatial and temporal infor-

mation. Comput. J., 37(1):25–34, 1994.
Spatial Anonymity

PANOS KALNIS, GABRIEL GHINITA

National University of Singapore, Singapore,

Singapore

Synonyms
Spatial k-anonymity; Privacy-preserving spatial queries;

Anonymity in location-based services

Definition
Let U be a user who is asking via a mobile device (e.g.,

phone, PDA) a query relevant to his current location,

such as ‘‘find the nearest betting office.’’ This query can

be answered by a Location Based Service (LBS) in a

public web server (e.g., Google Maps, MapQuest),

2686S Spatial Anonymity
which is not trustworthy. Since the query may be sensi-

tive, U uses encryption and a pseudonym, in order to

protect his privacy. However, the query still contains

the exact location, which may reveal the identity of U.

For example, if U asks the query within his residence, an

attacker may use public information (e.g., white pages)

to associate the location with U. Spatial k-Anonymity

(SKA) solves this problem by ensuring that an attacker

cannot identify U as the querying user with probability

larger than 1 ∕k, where k is a user-defined anonymity

requirement. To achieve this, a centralized or dis-

tributed anonymization service replaces the exact loca-

tion of U with an area (called Anonymizing Spatial

Region or ASR). The ASR encloses U and at least k � 1

additional users. The LBS receives the ASR and

retrieves the query results for any point inside the

ASR. Those results are forwarded to the anonymiza-

tion service, which removes the false hits and returns

the actual answer to U.

Historical Background
The embedding of positioning capabilities (e.g., GPS)

in mobile devices has triggered several exciting appli-

cations. At the same time, it has raised serious concerns

[1] about the risks of revealing sensitive information in

location based services (LBS). An untrustworthy LBS

may use public knowledge to relate a set of query

coordinates to a specific user, even if the user-id is

removed. In practice, users are reluctant to access a

service that may disclose their political/religious affilia-

tions or alternative lifestyles. Furthermore, users might

be hesitant to ask innocuous queries such as ‘‘find

the restaurants in my vicinity’’ since, once their iden-

tity is revealed, they may face unsolicited advertise-

ments. Spatial k-Anonymity (SKA) aims at solving

this problem.

k-Anonymity [15] has been used in relational

databases for publishing census, medical and voting

registration data (often called microdata). A relation

satisfies k-anonymity if every tuple is indistinguishable

from at least k � 1 other tuples with respect to a set

of quasi-identifier (QI) attributes. QIs are attributes

(e.g., date of birth, gender, zip code) that can be

linked to publicly available data to identify individuals.

In the context of location based services, the k-Ano-

nymity concept translates as follows: given a query,

an attack based on the query location must not be

able to identify the query source with probability larger

than 1∕k.
A straightforward method is to pick k � 1 random

users and forward k independent queries (including

the real one) to the LBS. This method achieves SKA

because the query could originate from any client with

equal probability 1 ∕k. However, depending on the

value of k, a potentially large number of locations are

transmitted and processed by the LBS. Also, the exact

locations of k users are revealed, which is undesirable

in many applications.

Most of the existing work adopts the framework of

Fig. 1a, which assumes a trusted server, called anon-

ymizer. Users access the anonymizer through a secure

connection and periodically report their position.

A querying user U sends his location-based query to

the anonymizer, which removes the user-id and trans-

forms the location of U through a technique called

cloaking. Cloaking hides the actual location by an

anonymizing spatial region (k-ASR or ASR), which is

an area that encloses U, as well as at least k � 1 other

users. The anonymizer then sends the ASR to the LBS,

which returns a set of candidate results that satisfy the

query condition for any possible point inside the ASR.

Figure 1b presents an example, where Bob asks for

the nearest betting office. Bob forwards his request to

the anonymizer, together with his anonymity require-

ment k. Assuming that k = 3, the anonymizer generates

a 3-ASR (shaded rectangle) that contains Bob and two

other users U1, U2 (the anonymizer knows the exact

locations of all users). Then, it sends this 3-ASR to the

LBS, which finds all betting offices that can be the

nearest-neighbor (NN) of any point in the 3-ASR

(the LBS does not know where Bob is). This candidate

set (i.e., {p1, p2, p3, p4}) is returned to the anonymizer,

which filters the false hits and forwards the actual NN

(in this case p2) to Bob. Even if an attacker knows the

location of Bob and the other users, she can only

ascertain that the query originated from Bob with

probability 1 ∕3.
The privacy of user locations has also been studied

in the context of related problems. Probabilistic Cloak-

ing [2] does not apply the concept of SKA; instead, the

ASR is a closed region around the query point, which is

independent of the number of users inside. Given an

ASR, the LBS returns the probability of each candidate

result satisfying the query, based on its location with

respect to the ASR. Kamat et al. [10] propose a model

for sensor networks and examine the privacy charac-

teristics of different sensor routing protocols. Hoh and

Gruteser [8] describe techniques for hiding the

Spatial Anonymity. Figure 1. Framework and example for spatial k-anonymity.

patial Anonymity. Figure 2. Example of Clique Cloak.

Spatial Anonymity S 2687

S

trajectory of users in applications that continuously

collect location samples.

Foundations
In order to solve the SKA problem, the following

assumptions about the capabilities of the attacker

apply:

1. The attacker intercepts the ASR, which implies that

either the LBS is not trustworthy, or the communi-

cation channel between the anonymizer and the

LBS is not secure.

2. The attacker knows the cloaking algorithm used by

the anonymizer. This is common in the security

literature where algorithms are typically public.

3. The attacker can obtain the current locations of all

users. This assumption is motivated by the fact that

users may often issue queries from locations (e.g.,

home, office), which may be identified through

physical observation, triangulation, telephone cat-

alogs etc. However, it is difficult to model the exact

amount of knowledge an attacker can gain. There-

fore, the third assumption dictates that the anon-

ymization method should be provably secure under

the worst-case scenario.

4. The attacker uses current data, but not historical

information about movement and behavior pat-

terns of particular clients (e.g., a user often asking

a particular query at a certain location or time).

Therefore, SKA is defined only for snapshot, but not

for continuous queries.

Given these assumptions, a spatial cloaking algorithm

is said to be secure, if for any U and any k the probabil-

ity of identifying U as the querying user is at most 1 ∕k.
S

In addition to being secure, spatial cloaking should be

efficient and effective. Efficiency means that the CPU

and I/O cost of generating the ASR (at the anonymi-

zer) should be minimized for better scalability and

faster service. Effectiveness refers to the area of the

ASR, which should also be minimized. Specifically, a

large ASR incurs high processing overhead (at the LBS)

and network cost (for transferring numerous candi-

date results from the LBS to the anonymizer). The rest

of this article discusses several representative algo-

rithms for the SKA problem.

In Clique Cloak [5], each query defines an axis-

parallel rectangle whose centroid lies at the user loca-

tion and whose extents are Dx, Dy. Figure 2 illustrates

the rectangles of three queries located at U1, U2, U3,

assuming that they all have the same Dx and Dy. The
anonymizer generates a graph where a vertex represents

a query: two queries are connected if the corresponding

users fall in the rectangles of each other. Then, the graph

is searched for cliques of k vertices and the minimum

2688S Spatial Anonymity
bounding rectangle (MBR) of the corresponding user

areas, forms the ASR sent to the LBS. Continuing the

example of Fig. 2, if k = 2, U1 and U2 form a 2-clique

and the MBR of their respective rectangles is generated

so that both queries are processed together. On the

other hand, U3 cannot be processed immediately, but

it has to wait until a new query (generating a 2-clique

with U3) arrives. Clique Cloak allows users to specify

a temporal interval Dt such that, if a clique cannot be

found within Dt, the query is rejected. Therefore,

Clique Cloak may affect the quality of service, as

some queries may be delayed or completely rejected.

The algorithms discussed next do not suffer from this

drawback.

Simply generating an ASR that includes k clients

is not sufficient for SKA. Consider for instance an

algorithm, called Center Cloak in the sequel, that

given a query from U, finds his k � 1 closest users

and sets the ASR as the MBR that encloses them. In

fact, a similar technique is proposed in [4] for anon-

ymization in peer-to-peer systems (i.e., the ASR con-

tains the query issuing peer and its k � 1 nearest

nodes). However, by construction, the querying user

U is often closest to the ASR center. Thus, a simple

‘‘center-of-ASR’’ attack would correctly guess U with

probability that far exceeds 1∕k, especially for large

k values.

Nearest Neighbor Cloak (NN-Cloak) [9] is a ran-

domized variant of Center Cloak, which is not vulner-

able to the center-of-ASR attack. Given a query from U,

NN-Cloak first determines the set S0 containing U and

his k � 1 nearest users. Then, it selects a random user

Ui from S0 and computes the set S1, which includes Ui

and his k � 1 nearest neighbors (NN). Finally, NN-

Cloak obtains S2 = S1 [U. This step is essential, sinceU
Spatial Anonymity. Figure 3. Example of NN-Cloak.
is not necessarily among the NNs of Ui. The ASR is the

MBR enclosing all users in S2. Figure 3 shows an

example of NN-Cloak, where U1 issues a query with

k = 3. The two NNs of U1 are U2,U3, and S0 ={U1,U2,

U3}. NN-Cloak randomly chooses U3 and issues a

2-NN query, forming S1 ={U3, U4, U5}. The 3-ASR is

the MBR enclosing S2 ={U1, U3, U4, U5}. It is not

vulnerable to the center-of-ASR attack since the proba-

bility of U being near the center of the ASR is at most

1 ∕k (due to the random choice).

In another approach called Casper [12], the anon-

ymizer maintains the locations of the clients using a

pyramid data structure, similar to a Quad-tree [14],

where the minimum cell size corresponds to the ano-

nymity resolution. Once the anonymizer receives a

query from U, it uses a hash table on the user-id

pointing to the lowest-level cell c where U lies.

If c contains enough users (i.e., jcj� k), it becomes

the ASR. Otherwise, the horizontal ch and vertical cv
neighbors of c are retrieved. If the union of c with ch or

cv contains at least k users, the corresponding union

becomes the ASR. Else, Casper retrieves the parent of c

and repeats this process recursively. Figure 4 shows an

example. Cells are denoted by the coordinates of their

lower-left and upper-right points. Assume a query q

with k = 2. If q is issued by U1 or U2, the ASR is cell

h(0,2),(1,3)i . If q is issued by U3 or U4, the ASR is the

union of cells h(1,2),(2,3)i [h(1,3),(2,4)i . Finally, if q
is issued by U5, the ASR is the entire data space.

Interval Cloak [7] is similar to Casper in terms of

both the data structure used by the anonymizer (i.e., a
Spatial Anonymity. Figure 4. Example of Casper.

Spatial Anonymity S 2689
Quad-tree) and the cloaking algorithm. The main dif-

ference is that Interval Cloak does not consider neigh-

boring cells at the same level when determining the

ASR, but ascends directly to the ancestor level. For

instance, a query with k = 2 issued by U3 or U4,

would generate the ASR h(0,2),(2,4)i (instead of

h(1,2),(2,4)i for Casper).
An important observation is that Casper and Inter-

val Cloak are secure only for uniform data [8]. In the

example of Fig. 4, although U1 to U4 are in the 2-ASR

of U5, U5 is not in the 2-ASR of any of those users.

Consequently, an attacker that detects an ASR covering

the entire space can infer with high probability that it

originates from U5 (by assumption 3, in the worst case

the attacker may know the locations of all users). NN-

Cloak also faces similar problems. Kalnis et al. [9]

identified reciprocity as a sufficient property for secure

algorithms. Formally:

Definition [Reciprocity]. Let U be any user who is

issuing a query with anonymity degree k, a set of users AS

called anonymizing set, and a region ASR which encloses

the users in AS. AS satisfies the reciprocity property if

(i) it contains U and at least k � 1 additional users, and

(ii) every user in AS also generates the same anonymiz-

ing set AS for the given k.

The only existing reciprocal (i.e., secure) algorithm

is Hilbert Cloak [9], which has also been implemented

on a peer-to-peer system for distributed anonymiza-

tion [6].Hilbert Cloak sorts the users according to their

Hilbert value. The Hilbert space filling curve [13]

transforms the multi-dimensional coordinates of each

user U into an 1-D value H(U). Figure 5 illustrates the

Hilbert curve for a 2-D space using a 8 � 8 space

partitioning. A user U is assigned the value H(U) of
Spatial Anonymity. Figure 5. Example of Hilbert Cloak.
the cell that covers him. If two users are near each other

in the 2-D space, they are likely to be close in the 1-D

transformation. Given a query with anonymization

degree k, Hilbert Cloak assigns the first k users (in the

Hilbert order) to the first bucket, the next k users to the

second bucket and so on. Following this approach,

each bucket contains exactly k users, except for the

last one that may include up to 2k � 1. Let r(U) be

the rank of U in the Hilbert order. The bucket bU of U

contains all clients whose ranks are in the range [s,e],

where s = r (U) � (r (U) � 1) mod k and e = s + k � 1

(unless bU is the last bucket). The example of Fig. 5

contains 10 users, whose user-ids are ordered accord-

ing to their Hilbert value. Consider a query from U7

with k = 5. The rank of U7 is r (U7) = 7. The bucket

containing U7 starts at s = 7� 6 mod 5 = 6 and ends at

e = 10, i.e., it contains all users from U6 to U10. Its ASR

is the MBR (shaded rectangle at the upper-right cor-

ner) covering the corresponding users. Any query with

k = 5 originating from these users will generate the

same bU and ASR, thus guaranteeing reciprocity. It

must be noted that Hilbert Cloak constructs on-the-

fly only bU, as the remaining buckets are irrelevant to

the query. Figure 5 illustrates another ASR (shaded

rectangle at the lower-left corner) for a query with

k = 3 originating from one of U1 to U3.

Key Applications
In recent years, positioning devices (e.g., GPS) have

gained tremendous popularity. Navigation systems

are already widespread in the automobile industry and,

together with wireless communications, facilitate excit-

ing new applications. GeneralMotorsOnStar system, for

example, supports on-line rerouting to avoid traffic jams
S

2690S Spatial Anonymity
and automatically alerts the authorities in case of an

accident. More applications based on the user locations

are expected to emerge with the arrival of the latest

gadgets (e.g., iPAQ hw6515, Mio A701), which combine

the functionality of a mobile phone, PDA and GPS

receiver. For such applications to succeed, the privacy

and confidentiality issues are of paramount importance.

Future Directions
Existing methods focus on snapshot queries. An inter-

esting problem concerns continuous SKA [3]. In

this setting, a client poses a long running query

about its surroundings (e.g., ‘‘find the nearest gas sta-

tion’’), whose results are updated as the client moves.

The cloaking algorithm should generate a continuously

changing ASR in a way that does not reveal information

about the user through inspection of the individual

ASR snapshots. Another future direction involves the

elimination of the anonymizer layer by employing

private information retrieval techniques. Khoshgozaran

and Shahabi [11] present an initial approach which

employs 1-D transformation and encryption to conceal

both the spatial data and the queries from the LBS.
Experimental Results
Compared to Interval Cloak, Casper is better both in

terms of efficiency (i.e., ASR generation cost) and

effectiveness (i.e., ASR size). NN-Cloak is worse than

Casper in terms of efficiency, but it is considerably

better in terms of effectiveness. The choice of cloaking

algorithm depends on the application characteristics.

If, for instance, the anonymizer charges clients accord-

ing to their usage and the LBS is a public (i.e., free)

service, efficiency is more important. On the other

hand, if the LBS imposes limitations (e.g., on the

number of results, processing time, etc) effectiveness

becomes the decisive factor. Finally, Hilbert Cloak is

very similar to Casper both in terms of efficiency and

effectiveness. However, Hilbert Cloak is the only prov-

ably secure method.
Cross-references
▶Anonymity

▶ Location-Based Services

▶Nearest Neighbor Query

▶ Privacy
▶Quadtrees (and Family)

▶ Space-Filling Curve
Recommended Reading
1. Beresford A.R. and Stajano F. Location privacy in pervasive

computing. IEEE Pervasive Comput., 2(1):46–55, 2003.

2. Cheng R., Zhang Y., Bertino E., and Prabhakar S. Preserving user

location privacy in mobile data management infrastructures.

In Proceedings of Privacy Enhancing Technologies, 2006,

pp. 393–412.

3. Chow C.-Y. and Mokbel M.F. Enabling private continuous

queries for revealed user locations. In Proc. 10th Int. Symp.

Advances in Spatial and Temporal Databases, 2007, pp. 258–275.

4. Chow C.-Y., Mokbel M.F., and Liu X. A peer-to-peer spatial

cloaking algorithm for anonymous location-based services.

In Proc. 14th ACM Int. Symp. on Geographic Inf. Syst., 2006,

pp. 171–178.

5. Gedik B. and Liu L. Location privacy in mobile systems: a

personalized anonymization model. In Proc. 23rd Int. Conf. on

Distributed Computing Systems, 2005, pp. 620–629.

6. Ghinita G., Kalnis P., and Skiadopoulos S. PRIVE: anonymous

location-based queries in distributed mobile systems. In Proc.

16th Int. World Wide Web Conference, 2007, pp. 371–380.

7. Gruteser M. and Grunwald D. Anonymous usage of location-

based services through spatial and temporal cloaking. In Proc.

1st Int. Conf. Mobile Systems, Applications and Services, 2003,

pp. 31–42.

8. Hoh B. and Gruteser M. Protecting location privacy through

path confusion. In Proc. 1st Int. Conf. on Security and Privacy

for Emerging Areas in Communication Networks, 2005.

9. Kalnis P., Ghinita G., Mouratidis K., and Papadias D. Preventing

location-based identity inference in anonymous spatial

queries. IEEE Trans. Knowledge and Data Eng., 19(12):

1719–1733, 2007.

10. Kamat P., Zhang Y., Trappe W., and Ozturk C. Enhancing

source-location privacy in sensor network routing In Proc.

23rd Int. Conf. on Distributed Computing Systems, 2005,

pp. 599–608.

11. Khoshgozaran A. and Shahabi C. Blind evaluation of nearest

neighbor queries using space transformation to preserve loca-

tion privacy. In Proc. 10th Int. Symp. Advances in Spatial and

Temporal Databases, 2007, pp. 239–257.

12. Mokbel M.F., Chow C. Y., and Aref W.G. The new Casper: query

processing for location services without compromising privacy.

In Proc. 32nd Int. Conf. on Very Large Data Bases, 2006,

pp. 763–774.

13. Moon B., Jagadish H.V., and Faloutsos C. Analysis of the clus-

tering properties of the hilbert space-filling curve. IEEE Trans.

Knowledge and Data Eng., 13(1):124–141, 2001.

14. Samet, H. The Design and Analysis of Spatial Data Structures.

Addison-Wesley, New York, 1990.

15. Sweeney L. k-Anonymity: a model for protecting privacy. Int. J.

Uncertain., Fuzziness Knowledge-based Syst., 10(5):557–570,

2002.

Spatial Data Analysis S 2691
Spatial Autocorrelation

▶ Spatial Data Mining
Spatial Data

▶Query Evaluation Techniques for Multidimensional

Data
S

Spatial Data Analysis

MICHAEL F. GOODCHILD

University of California‐Santa Barbara, Santa Barbara,
CA, USA

Synonyms
Spatial analysis; Geographical data analysis; Geogra-

phical analysis

Definition
Methods of data analysis perform logical or mathemat-

ical manipulations on data in order to test hypotheses,

expose anomalies or patterns, or create summaries

or views that expose particular traits. Data often refer

to specific locations in some space. To qualify as

spatial, the locations must be known and must affect

the outcome of the analysis. While many spaces might

be relevant, including the space of the human brain

or the space of the human genome, the history of

spatial data analysis is dominated by location in geo-

graphic space, in other words location on or near the

surface of the Earth. Thus, geographical and spatial are

often essentially synonymous. More formally, spatial

data analysis can be defined as a set of techniques

devised for the manipulation of data whose outcomes

are not invariant under relocation of the objects of

interest in some space. The term exploratory spatial

data analysis (ESDA) describes an important subset

that emphasizes real-time interaction, the creation of

multiple views of data, the search for patterns and

anomalies, and the generation of new hypotheses as

opposed to the formal testing of existing ideas. The

term spatial data mining describes another important

subset that emphasizes the analysis of very large

volumes of spatial data.
Historical Background
Berry andMarble [2] made one of the earliest efforts to

assemble a systematic review of methods of spatial data

analysis, drawing on a literature that had accumulated

for many decades. Their interest was sparked in large

part by what later became known as the Quantitative

Revolution in Geography, a paradigm shift that origi-

nated at the University of Washington in the late 1950s

and spread rapidly as the original group of graduate

students found faculty positions. Bunge [3] summar-

ized the core concept: that the analysis of patterns

of phenomena on the Earth’s surface could lead to a

set of formal theories about the behavior of human and

natural systems, and that the discovery of such theories

would put the discipline of geography on a sound

scientific footing. Substantial progress was made in

the 1960s, particularly in the study of patterns of

settlement and economic activity, and in the study of

such physical phenomena as meandering rivers and

stream channel networks.

Beginning in the 1960s, the development of geo-

graphic information systems (GIS) provided a major

impetus, by creating a simple structure in which meth-

ods of spatial data analysis could be implemented.

By the 1980s, GIS had become a popular and rapidly

growing software application, with a flourishing indus-

try and tools to enable spatial data analysis, along with

the necessary techniques for data acquisition, editing,

and display. Today, GIS is often portrayed as an engine

for spatial data analysis, and many new techniques

have been added to what are now literally thousands

of methods. GIS finds application in virtually all dis-

ciplines that deal with the surface and near-surface of

the Earth, ranging from ecology and geology to sociol-

ogy and political science [7]. It is extensively used in

logistics, in planning and public decision making, in

military and intelligence applications, and in the man-

agement of utility networks.

While the use of computers to perform spatial data

analysis was already well established in the 1960s,

ESDA emerged rather later, when the graphics and

interactive capabilities of computers had advanced

sufficiently. By the early 1990s, researchers were devel-

oping novel ways of linking multiple views using the

windowing techniques that emerged at that time, and

exploiting the high-resolution graphics that became

available on standard personal computers. Today,

interactive tools inspired by ESDA are widely available

in GIS products, and more specialized software is

2692S Spatial Data Analysis
also available (see, for example, GeoDa, http://geoda.

uiuc.edu).

Interest in spatial data mining has grown in the

past decade, driven in part by the increasing availabili-

ty of very large volumes of spatial data. For example, it

is now routine to capture the location and time of use

of credit and debit cards, and to apply sophisticated

algorithms in an effort to detect fraudulent use. Heavy

use of spatial data analysis is made by intelligence

agencies, based on software that can examine tele-

phone and email traffic and detect references to places.

Foundations
Several approaches have been devised for organizing

the thousands of techniques that qualify as spatial

data analysis. Perhaps the commonest, represented by

several recent textbooks and by the organization of

some GIS user interfaces, is based on a taxonomy of

spatial data types. Very broadly, one can capture varia-

tion within a space using either raster or vector stru-

ctures; a raster structure is created by dividing the

space into discrete, regularly shaped elements and

describing the contents of each, while vector structures

describe each feature present in the space as either a

point, line, area, or volume, with associated attributes.

Tomlin [9] and others have systematized the analy-

sis of raster data in schemata described as map alge-

bras, image algebras, or cartographic modeling, and

several GIS have adopted these schemata in their user

interfaces. In one such schema the analysis of raster

data are described as either focal, local, zonal, or glob-

al: focal operations are performed independently on

the contents of each cell; local operations are per-

formed on a cell and its immediate neighborhood;

zonal operations apply to contiguous patches of cells

with identical descriptions; and global operations

apply to the entire raster.

To date a similarly simple systematization of vector

operations has not been achieved. Instead, several text-

books (e.g., [1,5]) organize methods of vector-based

analysis according to the types of features being ana-

lyzed, focusing in turn on points, lines, areas, and

volumes. For example, techniques for the analysis of

sets of points might determine the degree of dispersion

of the points; search for anomalous clusters; or find

a shortest tour through the points. Some texts also

provide descriptions of methods for the analysis

of relationships or interactions between features. For

example, retailers and traffic engineers commonly use
methods of spatial data analysis to predict the numbers

of trips expected between home neighborhood areas

and such destination points as shopping centers or

places of work.

Longley et al. [7] use a different organizing scheme

that is designed to be more strongly related to user

motivation, and to overcome some of the ambiguities

inherent in an emphasis on data type. Their scheme

assigns techniques to six categories, ordered by increas-

ing conceptual sophistication: query and reasoning,

measurement, transformation, descriptive summary,

optimization, and hypothesis testing.

Query and reasoning functions rely on the presen-

tation of alternative views to the user. For example, a

set of data on average income by US state might be

presented as a map, as a table, as a histogram, and as a

scatterplot in which average income is graphed against

another variable such as percent with more than high-

school education. The user gains insight by examining

the alternative views, by querying specific values, or by

selecting data items in one window and seeing them

highlighted in the other windows.

Measurement functions represent one of the earliest

motivations for GIS. Manual methods for obtaining

measures of such properties as area, length, slope, or

shape from maps are notoriously inaccurate, tedious,

and time-consuming, whereas it is trivial to obtain

them from digital representations. Nevertheless, digital

representations are only approximations or generaliza-

tions of real phenomena, and many estimates exhibit

representation-related biases.

Transformation functions obtain new objects, or

new properties of those objects. They include many

key GIS functions, including buffering (the geometric

dilation of points, lines, areas, or volumes), overlay

(the computation of intersections between objects),

and interpolation (the use of data from sample loca-

tions to estimate values at locations where no samples

were taken). Figure 1 shows an example of buffering,

using half-mile circles around points representing the

schools of part of Los Angeles. The example was moti-

vated by proposals to ban registered sex offenders from

living within a specified distance of a school.

Descriptive summaries include the widest range of

spatial data analysis techniques. Standard univariate

statistics such as the mean, median, mode, standard

deviation, and variance have equivalents in multidi-

mensional spaces. Figure 2 shows the two-dimensional

equivalents of the mean and standard deviation

Spatial Data Analysis. Figure 1. The buffer operation. Half-mile buffers have been drawn around points representing

the locations of schools in an area of central Los Angeles. Such buffers are often required by legislation; this example was

motivated by a proposal to ban registered sex offenders from living within a prescribed distance of schools.

Spatial Data Analysis S 2693

S

applied to the black and white populations of

Milwaukee, using data by census tract. A suite of sum-

mary statistics have been devised for measuring spatial

dependence, a key property of many spaces based on the

observation that measurements of many properties

taken close together tend to be more similar than

measurements taken far apart. The fields of spatial

statistics and geostatistics are both based on this prop-

erty, and provide ways of addressing it explicitly. Spa-

tial heterogeneity, or the tendency for the properties of

spaces to vary widely from one area to another, is also

the subject of many forms of descriptive summary.

The rapidly evolving field of local or place-based sum-

maries (e.g., [4]) addresses the spatial heterogeneity

property directly, arguing that it is more important to

determine how the results of spatial data analysis vary

from one area to another than to attempt to extract

single, global results. Another suite of summary statis-

tics addresses the fragmentation of landscapes, with

particularly strong applications in ecology.
Methods of optimization focus on the design of

spatial pattern rather than on its analysis. They include

methods for optimum location of points (e.g., retail

stores, schools), lines (e.g., roads, pipelines), and areas

(e.g., political voting districts), as well as on the design

of optimum routes (e.g., for delivery vehicles or school

buses).

Finally, methods of hypothesis testing address the

process of inference, by which analysts reason from the

analysis of a sample to conclusions about the larger world

represented by the sample. Suchmethods are well known

in statistical analysis, encompassing many well-known

statistical tests, significance levels, and the formulation

of null hypotheses. Unfortunately the application of such

methods to spatial data is confounded by two major

issues. First, it is rare for a sample of objects to be

representative of any larger and well-defined set; instead,

spatial data analysis is commonly applied to all of the

objects that exist in a given study area. Second, it is also

rare for objects distributed in space to be selected

Spatial Data Analysis. Figure 2. Two-dimensional equivalents of the mean and standard deviation. The larger ellipse

shows the dispersion of the white population of Milwaukee around its centroid; the smaller ellipse shows the greater

concentration of the city’s black population. The map shows percent black, using 1990 data by census tract.

2694S Spatial Data Analysis
independently from any larger set; instead, the property

of spatial dependence virtually ensures that nearby

objects will have some degree of similarity.

Key Applications
As noted earlier, techniques of spatial data analysis

can be applied to virtually all spaces, and all phenome-

na distributed within such spaces. Nevertheless, the

vast majority of applications are found in geographic

space, that is, the space defined by the surface and

near-surface of the Earth, at spatial resolutions ranging

from sub-meter to global.

Many important applications have derived from the

need to understand the mechanisms of disease, and

particularly its transmission within human populations.

The work of Dr. John Snow on cholera [8] is often cited

as the seminal example, but today methods of spatial

data analysis are routinely used to scan data on such
diseases as cancer, searching for anomalous clusters and

thus for potential causal mechanisms. Spatial data anal-

ysis has been central to the study of outbreaks of new

diseases such as West Nile virus and SARS.

Spatial data analysis has also been central to the

study of landscape change, and related phenomena of

urban sprawl, deforestation, desertification, and habitat

destruction. Such analyses are often based on snapshots

of landscape obtained from Earth-orbiting satellites,

and can form the basis for sophisticated models of

landscape change that can be used to investigate the

future effects of management alternatives.

Transportation applications are also particularly rich.

Methods of spatial data analysis are routinely used to

model traffic patterns, and to evaluate planning options,

including new roads, mass transit, and congestion pric-

ing. The possibility of real-time tracking of vehicles using

GPS has recently given this field new impetus.

Spatial Data Mining S 2695
Future Directions
The insights that can be obtained from spatial data

analysis are limited by its essentially cross-sectional

nature – the need to draw inferences from snapshots

obtained at one point in time. It is difficult, for exam-

ple, to ascribe cause when no information is available

about change through time. Thus there is great interest

in the development of an improved suite of methods

for spatiotemporal data analysis. In the past, the lack

of suitable data has been a major impediment, but

today vast new sources are becoming available as the

result of developments in satellite remote sensing,

GPS tracking, and Internet-based data sharing.

GIS owes much of its original stimulus to the paper

map, which is of necessity flat. At global scales, analysis

based on flattened or projected views of the Earth’s

surface can be misleading, and there is therefore strong

interest in developing methods of spatial data analysis

for the Earth’s curved surface. This interest has been

stimulated in part by the recent emergence of virtual

globes, including Google Earth.
Cross-references
▶Geographic Information System

▶ Spatial Data Mining

▶ Spatial Data Types

▶ Spatial Operations and Map Operations
Spatial Data Mining. Figure 1. Spatial hotspots of crimes

in Boston, MA (best viewed in color) (courtesy: NIJ, Infotech).

S

Recommended Reading
1. Bailey T.C. and Gatrell A.C. Interactive Spatial Data Analysis.

Longman, 1995.

2. Berry B.J.L. and Marble D.F. Spatial Analysis: A Reader in

Statistical Geography. Prentice Hall, Englewood Cliffs, NJ, 1968.

3. Bunge W. Theoretical Geography. University of Lund. Gleerup,

Sweden, 1966.

4. Fotheringham A.S., Brunsdon C., and Charlton M. Geogra-

phically Weighted Regression: The Analysis of Spatially Varying

Relationships. Wiley, 2002.

5. Haining R.P. Spatial Data Analysis: Theory and Practice.

Cambridge University Press, UK, 2003.

6. Johnson S. The Ghost Map: The Story of London’s Most

Terrifying Epidemic and How It Changed Science, Cities, and

the Modern World. Riverhead, 2006.

7. Longley P.A., Goodchild M.F., Maguire D.J., and Rhind D.W.

Geographic Information Systems and Science. Wiley, New York,

2005.

8. O’Sullivan D., Unwin D.J. Geographic Information Analysis.

Wiley, 2003.

9. Tomlin C.D. Geographic Information Systems and Cartographic

Modeling. Prentice Hall, Englewood Cliffs, NJ, 1990.
Spatial Data Mining

SHASHI SHEKHAR, JAMES KANG, VIJAY GANDHI

University of Minnesota, Minneapolis, MN, USA

Synonyms
Spatial data analysis; Spatial statistics; Co-locations;

Spatial outliers; Hotspots; Location prediction; Spatial

autocorrelation
Definition
Spatial data mining is the process of discovering non-

trivial, interesting, and useful patterns in large spatial

datasets. The most common spatial pattern families are

co-locations, spatial hotspots, spatial outliers, and lo-

cation predictions.

Figure 1 gives an example of a spatial hotspot pat-

tern for burglary related crimes in the Boston, MA area.

In this figure, each point depicts a burglary event in the

year 1999. The dark blue and green shapes in the figure

represent the discovered hotspots or the source of this

type of crime. Notice that discovering these hotspots is a

non-trivial process due to the irregular size and spatial

shape of the pattern. In addition, not all incidents con-

tribute to the hotspot. Discovery of these patterns is very

useful and interesting to public safety professionals

Spatial Data Mining. Figure 2. Spatial outlier (station

ID 9) in traffic volume data (best viewed in color).

2696S Spatial Data Mining
as they plan police patrols and social interventions to

reduce future crime incidents in the area.

Historical Background
Spatial data mining research began several decades ago

when practitioners and researchers noticed that critical

assumptions in classical data mining and statistics were

violated by spatial datasets. First, whereas classical data-

sets often assume that data are discrete, spatial data were

observed to reside in continuous space. For example,

classical data mining and statistical methods may use

market-basket datasets (e.g., history of Walmart’s trans-

actions), where each item-type in a transaction is dis-

crete. However, ‘‘transactions’’ are not natural in

continuous spatial datasets, and decomposing space

across transactions leads to loss of information about

neighbor relationships between items across transaction

boundaries. In addition, spatial data often exhibits het-

erogeneity (i.e., no places on the Earth are identical),

whereas classical data mining techniques often focus

on spatially stationary global patterns (i.e., ignoring

spatial variations across locations). Finally, one of the

common assumptions in classical statistical analysis is

that data samples are independently generated. Howev-

er, this assumption is generally false when analyzing

spatial data, because spatial data tends to be highly

self-correlated. For example, people with similar char-

acteristics, occupation and background tend to cluster

together in the same neighborhoods. In spatial statistics

[1] this tendency is called spatial auto-correlation. Ig-

noring spatial auto-correlation when analyzing data

with spatial characteristics may produce hypotheses or

models that are inaccurate or inconsistent with the data

set. Thus, classical data mining algorithms often per-

form poorly when applied to spatial data sets. Better

methods are needed to analyze spatial data to detect

spatial patterns.

Foundations
The spatial data mining literature has focused on

four main types of spatial patterns: (i) spatial outliers,

which are spatial locations showing a significant differ-

ence from their neighbors; (ii) spatial co-locations, or

subsets of event types that tend to be found more often

together throughout space than other subsets of event

types; (iii) location predictions, that is, information

that is inferred about locations favored by an event

type based on other explanatory spatial variables; and

(iv) spatial hotspots, unusual spatial groupings of
events. The remainder of this section presents a general

overview of each of these pattern categories.

A spatial outlier is a spatially referenced object

whose non-spatial attribute values differ significantly

from those of other spatially referenced objects in

its spatial neighborhood. Figure 2 gives an example

of spatial outliers, detected in traffic measurements

for sensors on highway I-35W (North bound) in the

Minneapolis-St. Paul area, for a 24-h time period.

Station 9 may be considered a spatial outlier as it

exhibits inconsistent traffic flow compared with its

neighboring stations. Once a spatial outlier is identified,

one may proceed with diagnosis. For example, the sensor

at Station 9 may be diagnosed as malfunctioning.

Spatial attributes are used to characterize location,

neighborhood, and distance. Non-spatial attribute

dimensions are used to compare a spatially referenced

object to its neighbors. Spatial statistics literature pro-

vides two kinds of bi-partite multidimensional tests,

namely graphical tests and quantitative tests. Graphical

tests, such as Variogram clouds and Moran scatter-

plots, are based on the visualization of spatial data

and highlights spatial outliers. Quantitative methods

provide a precise test to distinguish spatial outliers

from the remainder of data.

Spatial co-location pattern discovery finds frequently

co-located subsets of spatial event types given a map of

their locations. Figure 3 gives an example map with two

examples of spatial co-locations. Readers are encour-

aged to determine for themselves the co-located pairs

of spatial event types in Fig. 3. The answers provided

Spatial Data Mining. Figure 4. (a) Learning dataset: The geo

(b) The spatial distribution of distance to open water. (c) The s

marshland. (d) The spatial distribution of water depth.

Spatial Data Mining. Figure 3. An example of spatial

co-location patterns.

Spatial Data Mining S 2697
there show that trees and fire tend to co-occur together

across the spatial region, as well as the pattern bird and

house. Spatial co-location is a generalization of a clas-

sical data mining pattern-family called association

rules, since transactions are not natural in spatial data-

sets, and partitioning space across transactions leads to

loss of information about neighbor relationships be-

tween items near transaction boundaries. Additional

details about co-location interest measures, e.g., par-

ticipation index and K-functions, and mining algo-

rithms are described in [2].

Location prediction is concerned with the discovery

of a model to infer preferred locations of a spatial

phenomenon from the maps of other explanatory

spatial features. For example, ecologists may build mod-

els to predict habitats for endangered species using maps

of vegetation, water bodies, climate, and other related

species. Figure 4 gives an example of a dataset used in

building a location prediction model for red-winged
metry of the Darr wetland and the locations of nests.

patial distribution of vegetation durability over the

S

2698S Spatial Data Types
blackbirds in the Darr and Stubble wetlands on the

shores of Lake Erie in Ohio, USA. This dataset consists

of nest location, distance to open water, vegetation

durability and water depth maps. Classical prediction

methods may be ineffective in this problem due to

the presence of spatial auto-correlation. Spatial data

mining techniques that capture the spatial auto-

correlation of nest location such as the Spatial Auto-

regression Model (SAR) [1] and Markov Random

Fields based Bayesian Classifiers (MRF-BC) are used

for location prediction modeling. A comparison of

these methods is discussed in [6].

Spatial Hotspots are unusual spatial groupings of

events that tend to be much more closely related than

other events. Examples of spatial hotspots can be inci-

dents of crime in a city or outbreaks of a disease.

Hotspot patterns have properties of clustering as well

as anomalies from classical data mining. However,

hotspot discovery [11] remains a challenging area of

research due to variation in shape, size, density of

hotspots and underlying space (e.g., Euclidean or spa-

tial networks such as roadmaps). Additional challenges

arise from the spatio-temporal semantics such as

emerging hotspots, displacement etc.

Key Applications
Spatial data mining and the discovery of spatial pat-

terns has applications in a number of areas. Detecting

spatial outliers is useful in many applications of geo-

graphic information systems and spatial databases,

including the domains of public safety, public health,

climatology, and location-based services. As noted ear-

lier, for example, spatial outlier applications may be

used to identify defective or out of the ordinary (i.e.,

unusually behaving) sensors in a transportation system

(e.g., Fig. 1). Spatial co-location discovery is useful in

ecology in the analysis of animal and plant habitats to

identify co-locations of predator-prey species, symbi-

otic species, or fire events with fuel and ignition

sources. Location prediction may provide applications

toward predicting the climatic effects of El Nino on

locations around the world. Finally, identification of

spatial hotspots can be used in crime prevention and

reduction, as well as in epidemiological tracking of

disease.

Cross-references
▶Data Mining

▶Geographic Information System
▶ Spatial Network Databases

▶ Spatio-temporal Databases

▶ Spatio-temporal Data Mining
Recommended Reading
1. Cressie N.A. Statistics for Spatial Data (Revised Edition). Wiley,

New York, NY, 1993.

2. Huang Y., Shekhar S., and Xiong H. Discovering co-location

patterns from spatial datasets: a general approach. IEEE Trans.

Knowl. Data Eng., 16(12):1472–1485, 2004.

3. Kou Y., Lu C.T., and Chen D. Algorithms for spatial outlier

detection. In Proc. 2003 IEEE Int. Conf. on Data Mining,

2003, pp. 597–600.

4. Longley P.A., Goodchild M., Maquire D.J., and Rhind D.W.

Geographic Information Systems and Science. Wiley, 2005.

5. Mamoulis N., Cao H., and Cheung D.W. Mining frequent spa-

tio-temporal sequential patterns. In Proc. 2003 IEEE Int. Conf.

on Data Mining, 2005, pp. 82–89.

6. Shekhar S., Schrater P., Vatsavai R., Wu W., and Chawla S.

Spatial contextual classification and prediction models for

mining geospatial data. IEEE Trans. Multimed. (special issue

on Multimedia Databases), 4(2):174–188, 2002.

7. Shekhar S. and Chawla S. A Tour of Spatial Databases. Prentice

Hall, 2003.

8. Shekhar S., Lu C.T., and Zhang P. A unified approach to detect-

ing spatial outliers. GeoInformatica, 7(2):139–166, 2003.

9. Shekhar S., Zhang P., Huang Y., and Vatsavai R. Trend in spatial

data mining. In Data Mining: Next Generation Challenges and

Future Directions, H. Kargupta, A. Joshi, K. Sivakumar, and

Y. Yesha (eds.). AAAI/MIT Press, 2003.

10. Solberg A.H., Taxt T., and Jain A.K. A Markov random field

model for classification of multisource satellite imagery. IEEE

Trans. Geosci. Remote Sens., 34(1):100–113, 1996.

11. US Department of Justice - Mapping and Analysis for Public

Safety report. Mapping Crime: Understanding Hot Spots, 2005

(http://www.ncjrs.gov/pdffiles1/nij/209393.pdf).
Spatial Data Types

MARKUS SCHNEIDER

University of Florida, Gainesville, FL, USA

Synonyms
Geometric data types

Definition
Data types are a well known concept in computer

science (for example, in programming languages or

in database systems). A data type defines a set of

homogeneous values and the allowable operations on

those values. An example is a type integer representing

Spatial Data Types S 2699

S

the set of 32-bit integers and including operations such

as addition, subtraction, and multiplication that can be

performed on integers. Spatial data types or geometric

data types provide a fundamental abstraction for mod-

eling the geometric structure of objects in space as well

as their relationships, properties, and operations. They

are of particular interest in spatial databases [4,8,12]

and Geographical Information Systems [4]. One speaks

of spatial objects as values of spatial data types. Exam-

ples are two-dimensional data types for points (for

example, representing the locations of lighthouses in

the U.S.), lines (for example, describing the ramifica-

tions of the Nile Delta), regions (for example, depicting

air-polluted zones), spatial networks (for example,

representing the routes of the Metro in New York),

and spatial partitions (for example, describing the 50

states of the U.S. and their exclusively given topological

relationships of adjacency or disjointedness) as well as

three-dimensional data types for surfaces (for example,

modeling the shape of landscapes) or volumes (for

example, representing urban areas). Operations on

spatial data types include spatial operations like the

geometric intersection, union, and difference of spatial

objects, numerical operations like the length of a line or

the area of a region, topological relationships checking

the relative position of spatial objects to each other like

overlap, meet, disjoint, or inside, and cardinal direction

relationships like north or southeast.

Historical Background
In the late 1970s, the interest to store geometric data

into databases arose. The success and efficiency of

relational database technology for standard applica-

tions, which is rooted in its simple data model, its

high-level query languages, and its well understood

underlying theory, has led to many proposals to trans-

fer this technology directly to geometric applications

and to explicitly model the structure of spatial data as

relations (tables). The consequence is that the user

conceives spatial data in tabular form, just the same

as standard data, and that a spatial object is repre-

sented by several or even many tuples. An example of

such a relation schema is RelName(id : integer, x1 :

integer, y1 : integer, x2 : integer, y2 : integer, type : string,

<other information>) where x1, y1, x2, and y2 are the

coordinates of a point or a line segment. The flag type

indicates whether a tuple describes a point, a single

line, a line segment of a line, or a line segment of a

polygon. The value id denotes the object identifier.
This approach has revealed a number of fundamen-

tal drawbacks. Since all lines and polygons are decom-

posed into a set of line segments (tuples) scattered over

a relation, a spatial object is not treated as an entity or

unit but only corresponds to several tuples. This is

different compared to values of standard data types.

A second drawback is that the approach forces the user

to model complex spatial objects in flat, independent

relations. Since the representations of spatial data occurs

on a very low level and is exclusively based on standard

domains like integers, strings, and reals (while the user

has originally intended to deal with points, lines, or

polygons (regions)), an adequate treatment of spatial

data is impeded. Although the facilities of the query

language of a DBMS are available, they are only of

limited use. Since such a language is based on standard

domains and has no concept of spatial data types,

it cannot provide and support any meaningful geome-

tric operations. A more detailed discussion can be

found in [9].

Foundations
The numerous deficiencies of the approach of model-

ing spatial data as relations, have resulted in the assess-

ment that this approach is unsuitable to manage spatial

data in a clean and efficient manner, and that a high-

level view of spatial objects is essential. This has led to

the design of spatial data types that are represented as

abstract data types, thus provide such a high-level view,

and can be used as attribute data types in a database

schema in the same way as standard data types like

integer, float, or string. That is, the internal structure of

a spatial object is hidden from the user, and its features

can only be retrieved by (abstract) operations on this

object.

One can distinguish different kinds of spatial data

types. Universal spatial data types either only provide a

single generic spatial data type called spatial, and there-

fore do not consider the dimensionality and shape of

spatial objects, or they provide the types spatial_0,

spatial_1, spatial_2, and spatial_3 and thus, consider

the dimensionality but not the shape of spatial objects

[6]. Another conceptual model for spatial data types is

based on mathematical abstractions called point sets.

The user is supplied with the concept that each spatial

object consists of an infinite set of points that can be

described by finite means. The approach in [7] intro-

duces a type POINT-SET for point sets together with a

collection of geometric operations. Aspects like

2700S Spatial Data Types
dimensionality and shape of an object are not consid-

ered. A further approach of modeling spatial objects

is that of using half planes [13], where each half plane

is defined by a half plane segment. A half plane

segment uniquely determines a straight line which is

given by an inequality, passes this segment and forms

the one-sided boundary of a half plane. For construct-

ing a polygonal region, an appropriately arranged se-

quence of intersection operations (conjunction of

inequalities) defined on half planes is employed. This

concept is the precursor of so-called constraint spatial

databases. Most popular and fundamental abstractions

of spatial objects fall into the category of structure-

based spatial data types. These data types organize

space into points, lines, regions, surfaces, volumes, spa-

tial partitions, spatial networks, and similarly structured

entities. Thus, this approach considers the structural

shape and spatial extent of spatial objects, that is, their

geometry. Spatial data types for points, lines, and regions

have, for example, been considered in [1,5,6,9,11,14], for

surfaces and volumes in [10], for spatial partitions in [3],

and for spatial networks in [12].

Structure-based spatial data types have prevailed

and form the basis of a large number of data models

and query languages for spatial data. They have also

found broad acceptance in spatial extension packages

of commercially and publicly available database sys-

tems, as well as in Geographical Information Systems.

One can distinguish the older generation of simple

spatial data types and the newer generation of com-

plex spatial data types, depending on the spatial

complexity the types are able to model. In the two-

dimensional space, simple spatial data types only

provide simple object structures like single points,

continuous lines, and simple regions (Fig. 1a–c). How-

ever, from an application perspective, simple spatial

data types have turned out to be inadequate abstrac-

tions for spatial applications, since they are insufficient

to cope with the variety and complexity of geographic
Spatial Data Types. Figure 1. Examples of a simple point ob

complex point object (d), a complex line object (e), and a com
reality. From a formal perspective, they are not closed

under the geometric set operations intersection, union,

and difference. This means that these operations ap-

plied to two simple spatial objects can produce a spa-

tial object that is not simple. Complex spatial data

types solve these problems. They provide universal

and versatile spatial objects and are closed under geo-

metric set operations. They allow objects with multiple

components, region components that may have holes,

and line components that may model ramified,

connected geometric networks (Fig. 1d–f).

Even more complex structure-based spatial data

types are spatial networks and spatial partitions. They

are the essential components of maps. A spatial net-

work (Fig. 2a) can be viewed as a spatially embedded

graph which consists of a set of point objects represent-

ing its nodes and a set of line objects describing the

geometry of its edges. Examples are highways, rivers,

public transport systems, power lines, and phone lines.

A spatial partition (Fig. 2b) is a set of region objects

together with the topological constraint that any two

regions either meet or are disjoint. The neighborhood

relationship is of particular interest here since region

objects may share common boundaries. Examples are

states, school districts, crop fields, and land parcels.

Both in spatial networks and in spatial partitions, their

components (line objects, region objects) are anno-

tated with thematic data like state name, unemploy-

ment rate, and parcel id.

Spatial operations manipulate spatial objects. They

take spatial objects as operands and return either spa-

tial objects or scalar values (like Boolean or numerical

values) as results. One can classify them into the fol-

lowing categories:

Spatial predicates returning Boolean values. A spatial

relationship is a relationship between two or more

spatial objects. A spatial predicate compares two spatial

objects with respect to some spatial relationship and
ject (a), a simple line object (b), a simple region object (c), a

plex region object (f).

Spatial Data Types. Figure 2. Examples of a spatial

network (a) and a spatial partition (b).

Spatial Data Types S 2701

S

thus conforms to a binary relationship returning a

Boolean value. Spatial predicates can be classified into

three subcategories. Topological predicates characterize

the relative position of spatial objects towards each

other and are preserved under topological transforma-

tions such as translation, rotation, and scaling; they do

not depend on metric concepts like distance. Examples

are the well known predicates equal, disjoint, coveredBy,

covers, overlap, meet, inside, and contains between two

simple regions. Metric predicates use measurements

such as distances. For example, the predicates in_circle

and in_window test if a spatial object is located within

the scope of a predefined circle or rectangle.Directional

predicates like north or southeast compare the cardinal

direction of a target object with respect to a reference

object.

Spatial operations returning numbers. These operations

compute metric properties of spatial objects and return

a number. Examples are the operations area and

perimeter computing the corresponding values of a

region object, the operation length calculating the

total length of a line object, the operation diameter

determining the largest distance between any two ob-

ject components, the operation dist computing the

minimal distance between two spatial objects, and the

operation cardinality yielding the number of compo-

nents of a spatial object.

Spatial operations returning spatial objects. These

operations return spatial objects as results and can be

subdivided into object construction operations, which

construct new objects from existing objects, and object

transformation operations, which transform one or

more spatial objects into a new spatial object. The

object construction operations include, for example, the

geometric set operations union, intersection, and differ-

ence, which satisfy closure properties, the operation

convex_hull, which constructs the smallest convex re-

gion (polygon) enclosing a finite collection of points,

the operation boundary, which returns the boundary of
a region object as a line object, the operation box,

which determines the minimal, axis-parallel rectangle

(calledminimal bounding box or rectangle) that bounds

a spatial object, and the operation components, which

extracts the vertices of a line object. Examples of object

transformation operations are the operation extend,

which takes a spatial object s and a real number r as

operands and creates a polygonal region that is a spa-

tial extension of s with distance r from s (also known as

buffer zoning), the operation rotate, which rotates a

spatial object around a point, and the operation trans-

late, which moves a spatial object by a defined vector.

Spatial operations on spatial networks and spatial parti-

tions. An important operation on spatial networks is

the shortest_path operator. It computes the route or path

ofminimumdistance between a source and a destination.

An important operation on spatial partitions is the over-

lay operation. It takes two spatial partitions modeling

different themes as operands, lays them transparently on

top of each other, and combines them into a new spatial

partition by intersection. A large collection of other

operations is available for both kinds of structures.

A brief example illustrates the embedding of a spatial

data type into a relation schema and the posing of a

spatial query. Consider the map of the 50 states of the

USA. Besides its thematic attributes like name and

population, each state is also described by a geometry

which is a region. Cities can be represented as points,

that is, one is here interested in their location and not

so much in their extent. As thematic attributes, one

could be interested in their name and population. In

the following two relation schemas, the spatial data

types point and region are used in the same way as

attribute data types as standard data types.

states(sname: string, spop: integer, ter-

ritory: region)

cities(cname: string, cpop: integer, loc:

point)

A query could ask for all pairs of city names and state

names where a city is located in a state. This can then

be formulated as a spatial join:

select cname, sname

from cities, states

where loc inside territory

The term inside is a topological predicate testing

whether a point object is located inside a region object.

2702S Spatial Graph Databases
Key Applications
Spatial data types are a universal and general concept for

representing geometric information in all kinds of spa-

tial applications. Hence, they are not only applicable to a

few key applications. In principle, all applications in the

geosciences (for example, geography, hydrology, soil

sciences) and Geographical Information Systems, as

well as many applications in government and adminis-

tration (for example, cadastral application, urban

planning), can benefit from them. Independent studies

have shown that about 80% of all data have spatial

features (like geometric attributes) or a spatial reference

(like an address). Thus, it is not surprising that indepen-

dent international studies have predicted that geoinfor-

mation technology will belong to the most important

and promising technologies in the future, besides bio-

technology and nanotechnology.

Cross-references
▶Cardinal Direction Relationships

▶Dimension-Extended Topological Relationships

▶ Simplicial Complex

▶ Spatial Operations and Map Operations

▶Three-Dimensional GIS and Geological Applica-

tions

▶Topological Relationships
Recommended Reading
1. Clementini E. and Di Felice P. A model for representing topo-

logical relationships between complex geometric features in

spatial databases. Inf. Syst., 90(1–4):121–136, 1996.

2. Egenhofer M.J. Spatial SQL: a query and presentation language.

IEEE Trans. Knowl. Data Eng., 6(1):86–94, 1994.

3. Erwig M. and Schneider M. Partition and Conquer. In Proc.

Third International Conference on Spatial Information Theory,

1997, pp. 389–408.

4. Güting R.H. An introduction to spatial database systems. VLDB

J., 3(4):357–399, 1994.

5. Güting R.H. and Schneider M. Realm-based spatial data types:

the rose algebra. VLDB J., 4:100–143, 1995.

6. Güting R.H. Geo-relational algebra: a model and query language

for geometric database systems. In Advances in Database Tech-

nology, Proc. 1st Int. Conf. on Extending Database Technology,

1988, pp. 506–527.

7. Manola F. and Orenstein J.A. Toward a general spatial

data model for an object-oriented DBMS. In Proc. 12th Int.

Conf. on Very Large Data Bases, 1986, pp. 328–335.

8. Rigaux P., Scholl M., and Voisard A. Spatial Databases – With

Applications to GIS. Morgan Kaufmann Publishers, 2002.

9. Schneider M. Spatial Data Types for Database Systems – Finite

Resolution Geometry for Geographic Information Systems, Vol.

LNCS 1288. Springer, 1997.
10. Schneider M. and Weinrich B. An abstract model of three-

dimensional spatial data types. In Proc. 12th ACM Int. Symp.

on Geographic Inf. Syst., 2004, pp. 67–72.

11. Schneider M. and Behr T. Topological relationships between

complex spatial objects. ACM Trans. Database Syst.,

31(1):39–81, 2006.

12. Shekar S. and Chawla S. Spatial Databases: ATour. Prentice-Hall,

2003.

13. Scholl M. and Voisard A. Thematic map modeling. In Proc. 1st

International Symposium on Advances in Spatial Databases,

1989, pp. 167–190.

14. Worboys M.F. and Bofakos P. A canonical model for a class of

areal spatial objects. In Proc. Third International Symposium on

Advances in Spatial Databases, 1993, pp. 36–52.

15. Worboys M.F. and Duckham M. GIS: A Computing Perspective.

CRC, 2004.
Spatial Graph Databases

▶ Spatial Network Databases
Spatial Indexing Techniques

YANNIS MANOLOPOULOS
1, YANNIS THEODORIDIS

2,

VASSILIS J. TSOTRAS
3

1Aristotle University of Thessaloniki, Thessaloniki,

Greece
2University of Piraeus, Piraeus, Greece
3University of California-Riverside, Riverside,

CA, USA

Synonyms
Spatial access methods

Definition
A Spatial Index is a data-structure designed to enable

fast access to spatial data. Spatial data come in various

forms, the most common being points, lines, and

regions in n-dimensional space (practically, n = 2 or 3

in GIS Geographical Information System applica-

tions). Typical ‘‘selection’’ queries include the spatial

range query (‘‘find all objects that lie within a given

query region’’), and the spatial point query (‘‘find all

objects that contain a given query point’’). In addition,

multi-dimensional data introduce spatial relationships

(such as overlapping and disjointness) and operators

Spatial Indexing Techniques S 2703

S

(e.g., nearest neighbor), which need to be efficiently

supported as well. Example queries are the spatial join

query (‘‘find all pairs of objects that intersect each

other’’) and the nearest neighbor query (‘‘find the

five objects nearest to a given query point’’). It should

be noted that traditional indexing approaches

(B+-trees, etc.) are not appropriate for indexing spatial

data; the basic reason is the lack of total ordering,

which is an inherent characteristic in a multi-dimen-

sional space. As a result, specialized access methods are

necessary.

Historical Background
Many applications (VLSI, CAD/CAM, GIS, multi-

media) need to represent, store and manipulate

spatial data types, such as points, lines, and regions

in n-dimensional space. Although the representation

of this type of data may be straightforward in a tradi-

tional database system (e.g., a 2-dimensional point

may be represented as a pair of x- and y- numeric

values), spatial relationships (e.g., overlapping) and

operators (e.g., nearest neighbor) need to be efficiently

supported as well. These spatial relationships and

operators have led to a variety of interesting and

more complex queries like spatial joins, nearest neigh-

bors etc. As a result, specialized access methods have

been proposed in order to quickly answer the above

complex queries, as well as spatial range/point queries.

Given the characteristics of spatial data, for each

spatial operator the query object’s geometry needs to

be combined with each data object’s geometry. Never-

theless, the processing of complex geometry represen-

tations, usually polygons, is very expensive in terms of

CPU cost. For that reason, the object geometries

are approximated (typically by Minimum Bounding

Rectangles –MBRs), and these approximations are

then stored in underlying indices while the actual

geometry is stored separately. As a result, a two-step

procedure is involved during query processing, con-

sisting of a filter step and a refinement step. The ques-

tion that arises is how the object approximations

(MBRs) are organized in order to answer the hits and

the candidates, i.e., the result of the filter step.

Various spatial indices have been proposed in the

literature and can be divided in two categories: indices

designed for multi-dimensional points, and indices for

multi-dimensional regions. Examples in the first cate-

gory are the LSD tree [7], the Grid File [10], the hB-tree

[9], the Buddy Tree [14] and the BV-tree [3]. Themajor
representatives in second category are the R-tree [5]

and the Quadtree [2], and their variants.

Given the complexity of the indexing problem and

the different requirements of the multiple applications

that index spatial data, it is not clear which the best

index is. Nevertheless, R-tree implementations have

found their way into commercial DBMSs. This is

mainly due to their simplicity and ease of implemen-

tation (their structure is an adaptation of the B+-tree

for spatial data), as well as their robust performance for

many applications.

Foundations
This section first discusses indices formulti-dimensional

points, while the description of major indices for multi-

dimensional (non-point) regions follows.

Indices for Multi-Dimensional Points

The LSD-tree (Local Split Decision tree), proposed in

[1], maintains a catalog that separates space in a col-

lection of (non-equal sized) disjoint subspaces using

the extended k-d tree structure. New entries are

inserted into the appropriate bucket. When an over-

flow happens then the bucket is split and the informa-

tion about the partition line (split dimension and split

position) is stored in a directory. Thus the overall

structure of the LSD-tree consists of data buckets and

a directory tree. The directory tree is kept in main

memory until it grows more than a threshold; then a

sub-tree is stored in an external catalogue in order for

the whole structure to remain balanced (an example

appears in Fig. 1). Inserting a new entry (point) in the

LSD-tree is straightforward since nodes are disjoint.

However, the target node may overflow due to an

insertion; a split procedure then takes place.

The LSD-tree is a space-driven structure, i.e., it

decomposes the complete workspace. Other members

of this family include the Grid File [10] and the hB-tree

[9]. On the other hand, data-driven structures only

cover those parts of the workspace that contain data

objects. Examples are the Buddy Tree [14] and the

BV-tree [3].

The Grid File is an access method comprising of

two separate parts: (i) the directory, and (ii) the linear

scales. The Grid File imposes a grid on the indexed

multidimensional attribute space. Each cell in this

grid corresponds to one data page. The data points

that ‘‘fall’’ inside a given cell are stored in the cell’s

corresponding page. Each cell must thus store a

Spatial Indexing Techniques. Figure 1. The LSD-tree.

2704S Spatial Indexing Techniques
pointer to its corresponding page. This information is

stored in the Grid File’s directory. The information of

how each dimension is divided (and thus how data

values are assigned to cells) is kept in the linear scales.

The Grid File can be thought as a multidimensional

extension of hashing. As a result, exact match queries

take only two disk accesses one for the directory and

one for the data page.

Indices for Multi-Dimensional Regions

As with point indexing, two different approaches

(data-driven and space-driven) have been proposed

for indexing regions as well. The main representatives

are the R-tree [5] and the Quadtree, [2,13], which were

later followed by dozens of variants. In the sequel, the

two structures are presented in detail. The reader is

referred to a recent exhaustive survey [4] for further

reading on their variants.

R-trees were originally proposed [5] as a direct

extension of B+-trees in n-dimensional space. The

data structure is a height-balanced tree that consists

of intermediate and leaf nodes. A leaf node is a collec-

tion of entries of the form (o_id, R) where o_id is an

object identifier, used to refer to an object in the

database, and R is the MBR minimum bounding rect-

angle approximation of the data object. An intermedi-

ate node is a collection of entries of the form (ptr, R)

where ptr is a pointer to a lower level node of the tree

and R is a representation of the minimum rectangle

that encloses all MBRs of the lower-level node entries.

Let M be the maximum number of entries in a node

and let m � M/2 be a parameter specifying the mini-

mum number of entries in a node. An R-tree satisfies
the following properties: (i) every leaf node contains

between m and M entries unless it is the root; (ii) for

each entry (o_id, R) in a leaf node, R is the MBR

minimum bounding rectangle approximation of the

object represented by o_id; (iii) every intermediate

node has between m and M children unless it is the

root; (iv) for each entry (ptr, R) in an intermediate

node, R is the smallest rectangle that completely encloses

the rectangles in the child node; (v) the root node has

at least two children unless it is a leaf; and (vi) all leaves

appear at the same level. As an example, Fig. 2 illus-

trates several MBRs minimum bounding rectangle

mi and the corresponding R-tree built on these rectan-

gles (assuming maximum node capacity M = 3).

In order for a new entry E to be inserted into the

R-tree, starting from the root node, the child that

needs minimum enlargement to include E is chosen

(ties are resolved by choosing the one with the smallest

area). When a leaf node N is reached, E is inserted

into that, probably causing a split if N is already full.

In such a case, the existing entries together with E

are redistributed in two nodes (the current and a new

one) with respect to the minimum enlargement crite-

rion. In the original paper [6] three alternatives were

proposed in order to find the two groups: an exhaus-

tive, a quadratic-cost, and a linear-cost split algorithm.

The processing of a point or range query with respect

to a query window q (which could be either point or

rectangle, respectively) is straightforward: starting

from the root node, several tree nodes are traversed

down to the leaves, depending on the result of the

overlap operation between q and the corresponding

node rectangles. When the search algorithm reaches

Spatial Indexing Techniques. Figure 2. The R-tree.

Spatial Indexing Techniques S 2705

S

the leaf nodes, all data rectangles that overlap the query

window q are added to the answer set. Regarding

k-nearest-neighbor queries, [12] proposed customized

branch-and-bound algorithms for R-trees.

After Guttman’s proposal, several researchers

proposed their own improvements on the basic idea.

Roussopoulos and Leifker [11] proposed the Packed

R-tree for bulk loading data in an R-tree. Objects are

first sorted in some desirable order (according to the

low-x value, low-y value, etc.) and then the R-tree is

bulk loaded from the sorted file and R-tree nodes are

packed to capacity. Note that the above techniques

allow node ‘‘overlapping’’: MBRs of different nodes

can overlap. Since no disjointness is guaranteed, dur-

ing a search multiple paths of the R-tree may be tra-

versed. An efficient variation, namely the R+-tree, was

proposed by Sellis et al. [15]. To preserve disjointness

among node rectangles, the R+-tree uses a ‘‘clipping’’

technique that duplicates data entries when necessary.

However, the penalty is a (possibly high) increase in

space demand due to the replication of data, which,

in turn, degenerates search performance. Generally

speaking, clipping techniques are ideal for point

queries because a single path should be traversed,

while range queries tend to be expensive, when com-

pared with the overlapping techniques.

Later, Beckman et al. [1] and Kamel and Faloutsos

[8] proposed two R-tree-based methods, the R*-tree

and the Hilbert R-tree, respectively, which are currently

considered to be the most efficient members of the

R-tree family in terms of query performance. The

R*-tree uses a rather complex but more effective group-

ing algorithm to split nodes by computing appropriate

area, perimeter, and overlap values while the Hilbert

R-tree actually stores Hilbert values at the leaf level

and ranges of those values at the upper levels, similarly
to the B+-tree construction algorithm. In addition, a

‘‘lazy’’ split technique is followed, where overflow

entries are evenly distributed among sibling nodes

and only when all those are full, a new node (hence,

split) is created.

The Region Quadtree [2] is the most popular mem-

ber in the Quadtree family. It is used for the represen-

tation of binary images, that is 2n � 2n binary arrays

(for a positive integer n), where a ‘‘1’’ (‘‘0’’) entry

stands for a black (white) picture element. More pre-

cisely, it is a degree four tree with height n, at most.

Each node corresponds to a square array of pixels (the

root corresponds to the whole image). If all of them

have the same color (black or white) the node is a leaf

of that color. Otherwise, the node is colored grey and

has four children. Each of these children corresponds

to one of the four square sub-arrays to which the array

of that node is partitioned. It is assumed here, that the

first (leftmost) child corresponds to the upper left sub-

array, the second to the upper right sub-array, the third

to the lower left sub-array and the fourth (rightmost)

child to the lower right sub-array, denoting the direc-

tions NW, NE, SW, SE single ended, respectively.

Figure 3 illustrates a Quadtree for an 8 � 8 pixel

array. Note that black (white) squares represent black

(white) leaves, whereas circles represent internal nodes

(also, grey ones).

Region Quadtrees, as presented above, can be imple-

mented as main memory tree structures (each node

being represented as a record that points to its children).

Variations of Region Quadtrees have been developed for

secondary memory. Linear Region Quadtrees [8] are the

ones used most extensively. A linear Quadtree repre-

sentation consists of a list of values where there is

one value for each black node of the pointer-based

Quadtree. The value of a node is an address describing

Spatial Indexing Techniques. Figure 3. The Quadtree.

2706S Spatial Indexing Techniques
the position and size of the corresponding block in the

image. These addresses can be stored in an efficient

structure for secondary memory (such as a B+-tree).

There are also variations of this representation where

white nodes are stored too, or variations which are

suitable for multicolor images. Evidently, this repre-

sentation is very space efficient, although it is not

suited to many useful algorithms that are designed

for pointer-based Quadtrees. The most popular linear

implementations are the FL Fixed Length (Fixed

Length), the FD Fixed Depth (Fixed length – Depth)

and the VL Variable Length (Variable Length) linear

implementations [13]. Techniques for computing var-

ious kinds of geometric properties have also been

developed. Connected component labeling, polygon

coloring and computation of various types of peri-

meters fall in this category. Finally, many operations

on images have been developed. For example, point

location, set operations on two or more images (inter-

section, union, difference, etc.), window clipping,

linear image transformations and region expansion.

Other region Quadtree variants have appeared in the

literature mainly for indexing non-regional data. MX

Quadtrees are used for storing points seen as black

pixels in a Region Quadtree. PR Quadtrees are also

used for points. However, points are drawn from a

continuous space, in this case. MX-CIF Quadtrees are

used for small rectangles. Each rectangle is associated

with the Quadtree node corresponding to the smallest

block that contains the rectangle. PMR Quadtrees

are used for line segments. Each segment is stored in

the nodes that correspond to blocks intersected by the

segment. A detailed presentation of these and other

region Quadtree variants is given in [8].

Key Applications
Geographic Information Systems (GIS) deal extensively

with the management of 2- and 3- dimensional spatial
data. For example, a map typically contains point

objects (locations of interest), line objects (road seg-

ments, highways, rivers, etc.) as well as region objects

(lakes, forests, etc.) GIS use spatial indexing as a

means to provide fast access to large amounts of

spatial data.

Multimedia Systems manage multimedia objects

like images, text, audio, video, etc. A typical query in

such systems is the similarity query (i.e., find objects

that are similar to a query object according to some

measure). To answer these queries, each multimedia

object is abstracted by a set of multidimensional points

(features). These multidimensional points are then

indexed by a spatial index. Similarly, the query object

is represented by a multidimensional point. The simi-

larity query is then answered as a nearest neighbor

query (i.e., find the nearest neighbor(s) to the point

that represents the query).

The World-Wide Web has also provided new appli-

cations for geographic related queries and thus spatial

indexing. Users can now find maps, driving directions,

etc. through specialized web sites that typically offer

the ability to perform spatial queries.

Location-based services provide querying capabil-

ities based on the location of the user (e.g., ‘‘find the

cheapest gas station within 5 miles of my car’’). As the

user moves in space, the results of the queries change.

Such queries typically have a spatial component

and spatial (and spatio-temporal) indexes are used to

provide fast response.

CAD systems use spatial objects to store surfaces

and bodies of design objects (for e.g., the wings or the

wheels of an airplane). Typical spatial queries involve

the proximity of spatial objects, their overlap etc.

Related queries (but mainly in the 2-dimensional

space) are also relevant for VLSI design systems; here

the layout of a chip involves various rectangular

regions and overlap and proximity queries are of

importance.

Computer Games also involve many spatial searches.

In such an environment, players move around in a

3-dimensional space and need to be able to see parts of

(partially hidden) objects, various triggers are initiated if

a player passed over them, or an explosion needs to

identify the nearby objects that are affected. Spatial

indexing is used to improve such query response.

Medical Imaging also involves large amounts of

2- and 3-dimensional spatial data. Consider for exam-

ple X-rays, or, magnetic resonance imaging (MRI)

Spatial Join S 2707

S

brain scans. Again, proximity, overlap and related

spatial queries are of interest.

Experimental Results
In general, for every presented method, there is

an accompanying experimental evaluation in the

corresponding reference.

Data Sets
A large collection of real spatial datasets, commonly

used for experiments, can be found at R-tree-portal

(URL: http://www.rtreeportal.org/).

URL to Code
R-tree portal (see above) contains the code for most

common spatial and spatio-temporal indexes, as well

as data generators and several useful links for research-

ers and practitioners in spatio-temporal databases.

Similarly, the Spatial Index Library [6] provides a

general framework for developing various spatial

indices (URL: http://dblab.cs.ucr.edu/spatialindexlib).

Cross-references
▶B-Tree

▶GIS

▶Grid File (and family)

▶Nearest Neighbor Query

▶Quadtrees (and family)

▶R-Tree (and family)

▶ Spatial Join

Recommended Reading
1. Beckmann N., Kriegel H.-P., Schneider R., and Seeger B. The R*-

tree: an efficient and robust access method for points and

rectangles. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1990, pp. 322–331.

2. Finkel R.A. and Bentley J.L. Quad Trees: a data structure for

retrieval on composite keys. Acta Informatica, 4(1):1–9, 1974.

3. Freeston M.A. General solution of the n-dimensional B-tree

problem. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1995, pp 80–91.

4. Gaede V. and Guenther O. Multidimensional access methods.

ACM Comput. Surv., 30(2):170–231, 1998.

5. Guttman A. R-trees: a dynamic index structure for spatial

searching. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1984, pp. 47–57.

6. Hadjieleftheriou M., Hoel E., and Tsotras V.J. SaIL: A spatial

index library for efficient application integration. GeoInforma-

tica, 9(4):367–389, 2005.

7. Henrich A., Six H.-W., and Widmayer P. The LSD tree: spatial

access to multidimensional point and non point objects. In Proc.

15th Int. Conf. on Very Large Data Bases, 1989, pp. 43–53.
8. Kamel I. and Faloutsos C. Hilbert R-tree: an improved R-tree

using fractals. In Proc. 20th Int. Conf. on Very Large Data Bases,

1994, pp. 500–509.

9. Lomet D.B. and Salzberg B. The hB-tree: a multiattribute

indexing method with good guaranteed performance. ACM

Trans. Database Syst., 15(4):625–658, 1990.

10. Nievergelt J., Hinterberger H., and Sevcik K.C. The grid file: an

adaptable symmetric multikey file structure. ACM Trans. Data-

base Syst., 9(1):38–71, 1984.

11. Roussopoulos N. and Leifker D. Direct Spatial Search on Picto-

rial Databases Using Packed R-trees. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1985, pp. 17–31.

12. Roussopoulos N., Kelley S., and Vincent F. Nearest neighbor

queries. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1995, pp. 71–79.

13. Samet H. The Design and Analysis of Spatial Data Structures.

Addison-Wesley, 1990.

14. Seeger B. and Kriegel H.-P. The Buddy-tree: an efficient and

robust access method for spatial database systems. In Proc.

16th Int. Conf. on Very Large Data Bases, 1990, pp. 590–601.

15. Sellis T., Roussopoulos N., and Faloutsos C. The R+-tree: a

dynamic index for multidimensional objects. In Proc. 13th Int.

Conf. on Very Large Data Bases, 1987, pp. 507–518.
Spatial Information System

▶Geographic Information System

▶Three-Dimensional GIS and Geological Applications
Spatial Join

NIKOS MAMOULIS

University of Hong Kong, Hong Kong, China

Definition
The spatial join is one of the core operators in spatial

database systems. Efficient spatial join evaluation is

important, due to its high cost compared to other

queries, like spatial selections and nearest-neighbor

searches. A binary (i.e., pairwise) spatial join combines

two datasets with respect to a spatial predicate (usually

overlap/intersect). A typical example is ‘‘find all pairs

of cities and rivers that intersect.’’ For instance, in Fig. 1

the result of the join between the set of cities {c1, c2, c3,

c4, c5} and rivers {r1, r2}, is {(r1, c1), (r2, c2), (r2, c5)}.

The query in this example is a spatial intersection

join. In the general case, the join predicate could

be a combination of topological, directional, and

Spatial Join. Figure 1. Graphical example of a spatial

intersection join.

Spatial Join. Table 1. Classification of spatial join

methods

Both inputs are
indexed

One input is
indexed

Neither input
is indexed

� Transformation
to z-values and
use of B-trees
[4]

� Indexed nested
loops

� Spatial hash
join [7]

� Synchronized
tree traversal [3]

� Seeded tree join
[8]

� Partition-
based
spatial
merge join
[11]

� Build a second
R-tree and match
it with the
existing [10, 11]

� Size
separation
spatial join
[6]

� Sort and match
[10]

� Sweeping-
based
spatial join
[5]

� Slot-index spatial
join [9]

2708S Spatial Join
distance spatial relations. Apart from the intersection

join, variants of the distance join have received consid-

erable attention, because they find application in data

analysis tasks (e.g., data mining, clustering). Given two

sets R and S of spatial objects (or multidimensional

points), and a distance function dist(), the e-distance

join (or else similarity join [1]) returns the pairs of

objects {(r, s) : r 2 R, s 2 S, dist(r, s)� e}. A closest pairs

query [2] returns the set of closest pairs CP ={(r, s) :

r 2 R, s 2 S}, such that dist(r, s) � dist(r 0, s 0), for all

r 0 2 R, s 0 2 S : (r 0, s 0) =2 CP.

Historical Background
The first spatial join methods [3,4] assume that both

inputs are indexed by some spatial access method (e.g.,

R-trees). The latest spatial join techniques do not rely

on pre-existing indices [5–11]. Such situations may

arise when at least one input is an intermediate result

of a preceding operator. Consider for instance the

query ‘‘find all rivers of width larger than 20 m, which

intersect a forest.’’ If there is a large percentage of

narrow rivers, it might be natural to process the selec-

tion part of the query before the spatial join. In such an

execution plan, even if there exists a spatial index on

rivers, it is not employed by the join algorithm.

Table 1 classifies the spatial join techniques accord-

ing to the assumption they make on pre-existing

indices for the joined inputs. Methods of the first

column can be applied only when both inputs are

indexed (e.g., two relations Forests and Rivers are

joined with respect to a spatial predicate). The second

column includes algorithms suitable when only one

input is indexed by an R-tree (e.g., Forests are joined

with Rivers wider than 20 m). Join algorithms in the
last column can be used in cases when both inputs

are not indexed (e.g., Forests that intersect some

City are joined with Rivers wider than 20 m). Most

of the spatial join techniques focus on the filter step of

the query. The refinement step (i.e., testing the exact

geometry of objects against the join predicate) is ap-

plied independently of the algorithm, used for the filter

step to the pairs that pass it, afterwards.
Foundations

Early Spatial Join Algorithms

Most early spatial join algorithms apply transformation

of objects in order to overcome difficulties due to their

spatial extent and dimensionality. The first known spa-

tial join algorithm [4] uses a grid to regularly divide the

multidimensional space into small blocks, called pixels,

and uses a space-filling curve (z-ordering) to order them.

Each object is then approximated by the set of pixels

intersected by its MBR, i.e., a set of z-values. Since

z-values are one-dimensional, the objects can be dyna-

mically indexed using relational index structures like the

B+-tree. The spatial join is then performed in a sort-

merge fashion. The performance of the algorithm

depends on the granularity of the grid; larger grids

Spatial Join S 2709
can lead to finer object approximations, but also in-

crease the space requirements. Other approaches trans-

form the MBRs of the objects into higher dimensional

points and use k-d-trees or grid-files to index the

points. The join is then performed by the use of these

data structures in a similar way as relational multi-

attribute joins.

The R-Tree Join R-tree Join (RJ) [2], often referred to

as tree matching or synchronous traversal, computes the

spatial join of two relations provided that they are both

indexed by R-trees [5]. RJ synchronously traverses

both trees, starting from the roots and following

entry pairs which intersect. Let nR, nR be two directory

(non-leaf) nodes of the R-trees that index relations

R and S, respectively. RJ is based on the following

observation: if two entries ei 2 nR and ej 2 nS do not

intersect, there can be no pair (oR, oS) of intersecting

objects, where oR and oS are under the sub-trees point-

ed by ei and ej, respectively. A simple pseudo-code for RJ

that outputs the result of the filter spatial join step (i.e.,

outputs pairs of objects whose MBRs intersect) is given

in Fig. 2. The pseudo-code assumes that both trees
Spatial Join. Figure 2. The R-tree Join (RJ) Algorithm.

Spatial Join. Figure 3. Two datasets indexed by R-trees.

S

have the same height, yet it can be easily extended to

the general case by applying range queries to the deeper

tree when the leaf level of the shallow tree is reached.

Figure 3 illustrates two datasets indexed by R-trees.

Initially, RJ is run taking the tree roots as parameters. The

qualifying entry pairs at the root level are (A1, B1) and

(A2, B2). Notice that since A1 does not intersect B2,

there can be no object pairs under these entries that inter-

sect. RJ is recursively called for the nodes pointed by the

qualifying entries until the leaf level is reached, where

the intersecting pairs (a1, b1) and (a2, b2) are output.

Two optimization techniques can be used to im-

prove the CPU speed of RJ [2]. The first (search space

restriction) reduces the quadratic number of pairs to

be evaluated when two nodes nR, nS are joined. If an

entry eR 2 nR does not intersect the MBR of nS (that is

the MBR of all entries contained in nS), then there can

be no entry eS 2 nS, such that eR and eS overlap. Using

this fact, space restriction performs two linear scans in

the entries of both nodes before RJ, and prunes out

from each node the entries that do not intersect the

MBR of the other node. The second technique, based

on the plane sweep paradigm [15], applies sorting in

one dimension in order to reduce the cost of comput-

ing overlapping pairs between the nodes to be joined.

Plane sweep also saves I/Os compared to nested loops,

because consecutive computed pairs overlap with high

probability.

Algorithms That Do Not Consider Indexes

The most straightforward and intuitive algorithm that

can be used to join two relations that are not indexed

is the Nested Loops Join. This method can be applied

for any type of joins (spatial, non-spatial) and condi-

tion predicates (topological, directional, distance, etc.).

2710S Spatial Join
On the other hand, nested loops is the most expensive

algorithm, since its cost is quadratic to the size of the

relations (assuming that R and S have similar sizes). In

fact, evaluation can be performed much faster. Spatial

join algorithms for non-indexed inputs process the

join in two steps; first the objects from both inputs

are preprocessed in some data structures, and then

these structures are used to quickly match objects

that cover the same area. The algorithms differ in the

data structure they use and the way the data are

preprocessed.

Spatial Hash Join The Spatial Hash Join (HJ) [9] has

common features with the relational hash-join algo-

rithm. Set R is partitioned into K buckets, where K is

decided by system parameters, such that the expected

number of objects hashed in a bucket will fit in mem-

ory. The initial extents of the buckets are determined

by sampling. Each object is inserted into the bucket

whose bounding box is enlarged the least after the

insertion. Set S is hashed into buckets with the same

extent as R’s buckets, but with a different insertion

policy; an object is inserted into all buckets that inter-

sect it. Thus, some objects may go into more than one

bucket (replication), and some may not be inserted at

all (filtering). The algorithm does not ensure partitions

of equal number of objects from R, as sampling cannot

guarantee the best possible slots. Equal sized partitions

for S cannot be guaranteed in any case, because the

distribution of the objects in the two datasets may be

totally different. Figure 4 shows an example of two

datasets, partitioned using HJ.

After hashing set S into buckets, the two bucket sets

are joined; each bucket Bi
R from R is matched with the

corresponding bucket Bi
S from S that covers the same
Spatial Join. Figure 4. The partitioning phase of HJ algorith
spatial region. For this phase, a single scan of both sets

of buckets is required, unless for some pairs of buckets

none of them fits in memory. If one bucket fits in

memory, it is loaded and the objects of the other bucket

are matched with it in a nested-loops fashion. If none of

the buckets fits in memory, an R-tree is dynamically

built for one of them, and the bucket-to-bucket join is

executed in an indexed nested-loop fashion.

Partition Based Spatial Merge Join Partition-based

Spatial Merge Join (PBSM) [14] is also based on the

hash join paradigm. The space, in this case, is regularly

partitioned using an orthogonal grid, and objects from

both datasets are hashed into partitions corresponding

to grid cells, replicating wherever necessary. Figure 5a

illustrates a regular space partitioning incurred by PBSM

and some data hashed into the partitions. Objects

hashed into the same partitions are then joined inmem-

ory using plane sweep. If the data inserted in a partition

do not fit in memory, the algorithm recursively

repartitions the cell into smaller parts and redistributes

the objects. Since data from both datasets may be repli-

cated, the output of the algorithm has to be sorted in

order to remove pairs reported more than once.

When the data to be joined are skewed, some parti-

tions may contain a large percentage of the hashed

objects, whereas others very few objects, rendering

the algorithm inefficient. In order to evenly distribute

the data in the partitions and efficiently handle skewed

data, a spatial hash function is introduced. The cells of

the grid are assigned to partitions according to this

function and the space covered by a partition is no

longer continuous, but consists of a number of scat-

tered tiles. Figure 5b shows such a (round-robin like)

spatial hash function.
m.

Spatial Join. Figure 5. Regular partitioning by PBSM.

Spatial Join. Figure 6. Size separation spatial join.

Spatial Join S 2711

S

Size Separation Spatial Join Another algorithm that

applies regular partitioning, like PBSM, but avoids

object replication is Size Separation Spatial Join (S3J)

[6]. S3J uses a hierarchical space decomposition.

L partition layers of progressively larger resolution

are introduced; the layer at level l partitions the space

into 4l cells. A rectangle is then assigned to the topmost

layer where it is not intersected by a grid line. This

method achieves separation of the data according to

their size. The rectangles in each layer are then sorted

according to the Hilbert value of their MBRs center.

A synchronized scan of the layer files is finally per-

formed and the rectangles from dataset R in a partition

at level l are joined with all partitions of dataset S that

intersect it at levels 0,...,l. A partition from S is joined

with partitions from R at levels 0,...,l � 1. The Hilbert

values of the data inside a layer determine the order of

the join, avoiding scanning a partition more than once.

Figure 6 shows two partition layers of both datasets.

Partition r2,3 is joined with s2,3 and s1,0, and partition

s2,3 is joined with r1,0.

S3J also maintains a dynamic spatial bitmap which,

after partitioning the first set, indicates the cells at each

layer that contain at least one rectangle, or cover same

area with cells at other layers that contain at least one

rectangle. This bitmap can be used during the partition-

ing of the second set to filter entries that cannot intersect

any rectangle of the first set. If a rectangle from set S is to

be hashed into a partition cell and the bitmap entry of

the cell is zero, the hashed rectangle is filtered out.

Scalable Sweeping-Based Spatial Join The Scalable

Sweeping-based Spatial Join (SSSJ) [1] is a relatively

simple algorithm that is based on plane sweep. Both

datasets are sorted according to the lower bound of
their projection on an axis (e.g., the x-axis), and some

variant of plane sweep (e.g., the forward-sweep algo-

rithm described before) is applied to compute the

intersection pairs. SSSJ is based on the square-root

rule: the expected number of rectangles in a dataset R

that intersect the sweep line is
ffiffiffiffiffiffi
jRj

p
, where jRj is the

total number of rectangles in R. SSSJ initiates an inter-

nal memory plane sweep algorithm. If it runs out of

memory, i.e., the rectangles intersected by the sweep

line do not fit in memory, the space is dynamically

partitioned by stripes parallel to the sorted axis, the

rectangles are hashed into the stripes, and plane sweep

is recursively executed for each stripe.

Single-Index Join Methods

Methods in this class can be applied when one input is

not indexed. Such situations often arise when proces-

sing complex queries, where another operator precedes

the spatial join. Notice that in this case index-based

methods cannot directly be applied, because the inter-

mediate result is not supported by any index. Also,

algorithms that consider non-indexed inputs could be

expensive. All single-index join methods were pro-

posed after RJ, and they assume that the indexed

input is supported by an R-tree. Most of them build a

2712S Spatial Join
second structure for the non-indexed input and match

it with the existing tree.

Indexed Nested Loops Join In accordance to the

equivalent algorithm for relational joins, the Indexed

Nested Loops Join (INLJ) applies a window query to

the existing R-tree for each rectangle from the non-

indexed set. This method can be efficient only when

the non-indexed input is very small. Otherwise, the

large number of selection queries can incur excessive

computational overhead and access a large number of

index pages.

Seeded Tree Join Let R be a dataset indexed by an

R-tree and S be a non-indexed dataset. The Seeded Tree

Join algorithm (STJ) [10] builds an R-tree for S, using

the existing for R as a seed, and then applies RJ to

match them. The rationale behind creating a seeded

R-tree for the second input, instead of a normal R-tree,

is the fact that if the new tree has similar high-level

node extents with RA, this would lead to minimization

of overlapping node pairs during tree matching. Thus,

the seeded tree construction algorithm creates an

R-tree which is optimal for the spatial join and not

for range searching. The seeded tree construction is

divided into two phases: the seeding phase and the

growing phase. At the seeding phase, the top k levels

(k is a parameter of the algorithm) of the existing

R-tree are copied to formulate the top k levels of the

new R-tree for S. The entries in the lowest of these

levels are called slots. After copying, the slots maintain

the copied extent, but they point to empty (null)

sub-trees. During the growing phase, all objects from

S are inserted into the seeded tree. A rectangle is

inserted under the slot that contains it, or needs the

least area enlargement. Figure 7 shows an example of a

seeded tree structure. The top k = 2 levels of the exist-

ing R-tree are copied to guide the insertion of the

second dataset.
Spatial Join. Figure 7. A seeded tree.
Build and Match Building a packed R-tree using bulk

loading can be much more efficient in terms of both

CPU time and I/O than constructing it incrementally.

Moreover, packed R-trees have a minimum number of

nodes and height, and could be very efficient for range

queries and spatial joins. The Build and Match (BaM)

method [13,14] first builds a packed R-tree for the

non-indexed dataset S and then joins it with the exist-

ing tree of R, using RJ.

Sort and Match Sort and Match (SaM) [13] is an

alternative of BaM, which avoids building a whole R-

tree structure prior to matching. The algorithm

employs an R-tree bulk-loading technique [8] to sort

the rectangles from the non-indexed dataset S but,

instead of building the packed tree, it matches each

in-memory created leaf node with the leaf nodes from

the R-tree of R that intersect it, using the structure of

the tree to guide search. For each produced leaf node

nL at the last phase of STR, a window query using the

MBR of nL is applied on R’s tree, in order to identify

the leaf nodes there that intersect nL. Plane sweep is

then applied to match nL with the qualifying leaves of

R’s tree. The matching phase of SaM is expected to be

efficient, as two consecutive produced nodes will be

close to each other with high probability, and there will

be good utilization of the LRU buffer. Graphical exam-

ples of BaM and SaM are shown in Fig. 8.

Slot Index Spatial Join The Slot Index Spatial Join [9]

is a hash-based spatial join algorithm, appropriate for

the case where only one of the two joined relations is

indexed by an R-tree. It uses the existing R-tree to

define a set of hash buckets. If K is the desired number

of partitions (tuned according to the available

memory), SISJ will find the topmost level of the tree

such that the number of entries there is larger than or

equal to K. These entries are then grouped into K

(possibly overlapping) partitions called slots. Each

Spatial Join. Figure 8. Algorithms based on bulk-loading.

Spatial Join. Figure 9. Entries of an R-tree and a slot index built over them.

Spatial Join S 2713

S

slot contains the MBR of the indexed R-tree entries,

along with a list of pointers to these entries. Figure 9

illustrates a three-level R-tree (the leaf level is not

shown) and a slot index built over it. If K = 9, the

root level contains too few entries to be used as parti-

tion buckets. As the number of entries in the next level

is over K, they are partitioned in nine (for this exam-

ple) slots. The grouping policy used by SISJ is based on

the R*-tree insertion algorithm. After building the slot

index, all objects from the non-indexed relation are

hashed into buckets with the same extents as the slots.

If an object does not intersect any bucket it is filtered;

if it intersects more than one buckets it is replicated.

The join phase of SISJ loads all data from the R-tree

under a slot and joins them (in memory) with the

corresponding hash-bucket from the non-indexed

dataset (in a similar way as HJ).

Comparison of Spatial Join Algorithms

Since indexes can facilitate the spatial join operation,

algorithms (like RJ) that are based on existence of

indexes are typically more efficient compared to meth-

ods that do not rely on indexes. For example, RJ (which
uses two R-trees) is expected to be more efficient than

SISJ (which uses one R-tree), which is expected to be

more efficient than HJ (which does not use trees).

RJ is the most popular index-based algorithm due

to its efficiency and the fact that R-trees are becoming

the standard access method in spatial database systems.

Empirical and analytical studies have shown that the

most efficient single-index methods are SISJ and SaM.

Finally, conclusive results cannot be drawn about the

relative performance of methods that do not consider

indexes. S3J is expected to be faster than PBSM and HJ

when the datasets contain relatively large rectangles and

extensive replication occurs in HJ and PBSM. On the

other hand, this method uses sorting which is more

expensive than hashing, in general. SSSJ is also based

on sorting, thus it could be more expensive than hash-

based methods. Furthermore, sort-based methods do

not favor pipelining and parallelism of spatial joins.

On the other hand, the fact that PBSM uses partitions

with fixed extents makes it suitable for processing mul-

tiple joins in parallel, since the space partitions (and

the local joins for them) can be assigned to different

processors.

2714S Spatial k-Anonymity
Key Applications

Spatial Database Systems

The spatial join is a core operation of Spatial Database

Management Systems [4].

Geographic Information Systems

A fundamental operator in GIS is map overlay. Given

two thematically different maps of the same region

(e.g., elevation and political), this operator produces

a join map that emphasizes on the overlaps of objects

from both joined maps. Spatial join is the database

operator used to produce this output.

Data Mining

Inmany applications that handle high dimensional data,

an important analysis operation is to discover groups of

objects that are close to each other in the multidimen-

sional space. Examples of such mining tasks include

‘‘find stocks with similar movements’’ (time-series data-

bases) and ‘‘find pairs of similar images’’ (multimedia

databases). This type of clustering of complex data

objects can be performed with the help of spatial joins

with distance predicates [7]. Simply speaking, the origi-

nal objects (e.g., images) are approximated by high di-

mensional feature vectors, and a spatial self-join is

applied on this space to derive pairs of nearby objects,

which are then postprocessed to larger groups (clusters).

Cross-references
▶Hash Join

▶ Index Join

▶ Join

▶ Join Order

▶Nested Loop Join

▶Rtree

▶ Spatial Indexing Techniques
Recommended Reading
1. Arge L., Procopiuc O., Ramaswamy S., Suel T., and Vitter J.S.

Scalable sweeping-based spatial join. In Proc. 24th Int. Conf. on

Very Large Data Bases, 1998, pp. 570–581.

2. Brinkhoff T., Kriegel H.-P., and Seeger B. Efficient processing

of spatial joins using r-trees. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1993, pp. 237–246.

3. Corral A., Manolopoulos Y., Theodoridis Y., and Vassilakopoulos

M. Closest pair queries in spatial databases. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2000, pp. 189–200.

4. Güting R.H. An introduction to spatial database systems. VLDB

J., 3(4):357–399, 1994.
5. Guttman A. R-trees: a dynamic index structure for spatial

searching. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1984, pp. 47–57.

6. Koudas N. and Sevcik K.C. Size separation spatial join. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1997, pp.

324–335.

7. Koudas N. and Sevcik K.C. High dimensional similarity joins:

algorithms and performance evaluation. IEEE Trans. Knowl.

Data Eng., 12(1):3–18, 2000.

8. Leutenegger S.T., Edgington J.M., and Lopez M.A. Str: a simple

and efficient algorithm for R-tree packing. In Proc. 13th Int.

Conf. on Data Engineering, 1997, pp. 497–506.

9. Lo M.-L. and Ravishankar C.V. Spatial hash-joins. In Proc. ACM

SIGMOD Int. Conf. onManagement of Data, 1996, pp. 247–258.

10. Lo M.-L. and Ravishankar C.V. The design and implementation

of seeded trees: An efficient method for spatial joins. IEEE Trans.

Knowl. Data Eng., 10(1):136–152, 1998.

11. Mamoulis N. and Papadias D. Slot index spatial join. IEEE

Trans. Knowl. Data Eng., 15(1):211–231, 2003.

12. Orenstein J.A. Spatial query processing in an object-oriented

database system. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1986, pp. 326–336.

13. Papadopoulos A., Rigaux P., and Scholl M. A performance

evaluation of spatial join processing strategies. In Proc. 6th Int.

Symp. Advances in Spatial Databases, 1999, pp. 286–307.

14. Patel J.M. and DeWitt D.J. Partition based spatial-merge join.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

1996, pp. 259–270.

15. Preparata F.P. and Shamos M.I. Computational Geometry -

An Introduction. Springer, 1985.
Spatial k-Anonymity

▶ Spatial Anonymity
Spatial Network Databases

BETSY GEORGE, SHASHI SHEKHAR

University of Minnesota, Minneapolis, MN, USA

Synonyms
Spatial graph databases

Definition
Spatial network databases render support for spatial

networks by providing the necessary data model, query

language, storage structure, and indexing methods.

Spatial networks can be modeled as graphs where

nodes are points embedded in space. One characteristic

that distinguishes a spatial network database is the pri-

mary focus on the role of connectivity in relationships

Spatial Network Databases S 2715
rather than the spatial proximity between objects. These

databases are the kernel of many important applications,

including transportation planning; air traffic control;

water, electric, and gas utilities; telephone networks;

urban management; utility network maintenance, and

irrigation canal management. The phenomena of inter-

est for these applications are structured as a spatial

graph, which consists of a finite collection of the points

(i.e., nodes), the line-segments (i.e., edges) connecting

the points, the location of the points and the attributes of

the points and line-segments. For example, a spatial

network database storing a road network may store

road intersection points and the road segments connect-

ing the intersections (Fig. 1).

Foundations

Data Model of Spatial Networks

This section presents techniques related to the data

modeling of spatial networks. The database design

involves three steps, namely conceptual modeling, log-

ical modeling and physical modeling.

Conceptual Data Model: The purpose of conceptual

modeling is to adequately represent the data types,

their relationships and the associated constraints.

The Entity Relationship (ER) model, widely used in

conceptual modeling, does not offer adequate features

to capture the spatial semantics of networks. The most

critical feature of spatial networks, namely the connec-

tivity between objects can be expressed, using a graph

framework. At the conceptual level, the pictogram en-

hanced ER (PEER) model [13] can be used. Figure 2

shows a PEER diagram for a spatial network. In a
Spatial Network Databases. Figure 1. A Road Map and its S

Graph Representation (Source for Figure 1(a): http://maps.yah
spatial graph, vertices represent road intersections

and edges represent road segments. A path represents

a street and consists of a series of edges.

Labels and weights can be attached to vertices and

edges to encode additional information such as

names and travel times. Two edges are considered to

be adjacent if they share a common vertex.

Modifications to the spatial network model have

been proposed to make it more suitable in the con-

text of some applications. For example, a simple

node-edge network model might not be adequate to

represent all features of a transportation network [9].

To address such limitations, various enhanced mod-

els have been proposed. One such model is the trans-

portation data model (UNETRANS) that organizes

the data model as three layers, namely (i) a reference

network layer that represents the topological struc-

ture of the network, (ii) a route features layer that

defines more complex features such as routes from

the elements of the reference network layer, and (iii)

the events layer that represents events such as traffic

signs [2].

Logical Data Model: In the logical modeling phase, the

conceptual data model is implemented using a com-

mercial database management system. Among the var-

ious implementation models such as hierarchical,

network, relational, object-relational data models and

object-oriented models, the object-relational model

has been gaining popularity in the representation of

spatial applications. To model spatial network data-

bases, graphs can be embedded into object-relational

models. Shekhar and Chawla [11] lists some common

graph operations used by spatial network applications,
patial Network Representation. (a) A road map (b) Spatial

oo.com).

S

Spatial Network Databases. Figure 2. A PEER Diagram for Spatial Graph for a Road Network.

2716S Spatial Network Databases
using a high-level object oriented notation that

employs three fundamental classes in graphs, namely,

Graph, Vertex, and Edge. Models such as GraphDB [5],

which allow additional data types such as path, have

also been proposed. A path class explicitly stores paths

or routes in a graph, which contains the list of edges

and nodes. In this model, an operator called ‘‘rewrite’’

can apply transformations to subsequences of hetero-

geneous sequences such as paths.

Physical Data Model: The physical data modeling phase

deals with the actual implementation of the database

application. Issues related to storage, indexing and

memory management are addressed in this phase.

Very often, queries that are posed on a network data-

base such as a road map, involve route finding. This

means the database must provide adequate support for

network computations such as finding shortest paths.

Figure 3 shows three representations of a graph. Adja-

cency-matrix and adjacency list are two well-known

data structures used for implementing road networks

represented as graphs [11]. In an adjacency-matrix,

the rows and columns of a matrix represent the vertices

of the graph. Amatrix entry can be either 1 or 0, depend-

ing on whether there is an edge between the two

vertices as shown in Fig. 3b. An adjacency list (shown

in Fig. 3c) consists of an array of pointers. Each element

of the array represents a vertex in the graph and the

pointer points to a list of vertices that are adjacent

to the vertex. Directed graphs can be implemented in
the relational model using a pair of relations, one for the

nodes and the other for the edges. The ‘‘Node’’ (R) and

the ‘‘Edge’’ (S) relations are shown in Fig. 3d and a

denormalized representation is shown in Fig. 3e.

The denormalized representation of a node table contains

the coordinates of the node, a list of its successors and a list

of its predecessors. This representation is often used in

shortest path computations.

A spatial access method called the Connectivity-

Clustered Access Method (CCAM) was proposed in

[12], which clusters the vertices of the graph based

on graph partitions, thus providing an ordering

based on connectivity.

Graph Algorithms: Frequent queries on a spatial net-

work involve operations such as shortest path, nearest

neighbor search, range search and closest pairs [10].

‘‘Shortest’’ path algorithms find the least cost path

between two nodes in a given graph. The cost of the

path could be based on network distance, travel time

or a user specified factor. Examples of popular shortest

path algorithms are Dijkstra’s algorithm and A* search.

Nearest neighbor search algorithms find the point(s)

closest to a given query point. Traditionally, the closest

point was determined based on the Euclidean distances,

which did not consider the network connectivity of

the objects. However, in practice, trajectories of objects

are usually constrained by an underlying spatial net-

work such as a road network and hence algorithms

that find nearest neighbors and closest pairs that

Spatial Network Databases. Figure 3. Three different representations of a graph.

Spatial Network Databases S 2717

S

consider network connectivity are critical in a spatial

network database. Query processing algorithms that

find nearest neighbors and closest pairs have been pro-

posed [7,10].

Turn Restrictions: Turn restrictions are frequently

encountered in road networks and they can affect the

traversal in the network. A physical model that does

not consider turn restrictions can lead to the compu-

tation of routes that are not entirely feasible. Turns

have been modeled using a turn table where each

turn restriction is represented as a row in the table

that references the two associated edges [9]. Another

proposed method to represent turn restrictions is node

expansion [1]. The node that corresponds to a junc-

tion is expanded to a subgraph where permissible turns

are represented as edges. This technique can lead to a

substantial increase in the size of the network, which

adversely affects the performance. Another method

involves the transformation of the road network to a

line graph where the edges in the original network are

mapped to vertices in the line graph and the turns are

represented as edges in the line graph [15].
A representation, consisting of a junction table, edge

table and turn table was proposed in [6]. Every junc-

tion is represented as a row in the junction table. A row

corresponding to a junction stores the edges that con-

verge at the junction and the junctions connected to

the given junction. The edge table stores edge identi-

fiers and the junction where the edge originates (from-

junction). A tuple in the turn table corresponds to

a junction in the network. Each tuple consists of a

junction identifier, and a triplet (turn identifier, first

edge-id, last edge-id) corresponding to each turn

associated with the given junction.

Figure 4 illustrates the representation of turn restric-

tions in a road network. Figure 4a shows a part of a road

network around a junction j1 where the edges e1, e2, e3

and e4 meet. The curved arrows indicate the permitted

turns at the junction. For example, a turn is allowed

from edge e1 to edge e2. Figures 4b–4d show the

edge, junction and turn tables respectively, corre-

sponding to turn t1 in the example e4) and the junc-

tions connected to it (j2, j3, j4, and j5). The turn table

shows the permitted turns at junction j1 and the edges

Spatial Network Databases. Figure 4. Representation of Turn Restrictions (adapted from [6]).

2718S Spatial Network Databases
that participate in each turn. For example, turn t1

represents a turn from edge e1 to edge e2 as illustrated

by the ‘‘first edge id’’ and ‘‘last edge id’’ entries in the

turn table in Fig. 4d.
Key Applications

Location-Based Services

Spatial network databases are indispensable for any

location-based service that involves route based

queries [14]. Location-based services (LBS) provide

the ability to find the geographical location of a mobile

device and subsequently provide services based on that

location. Spatial network databases play a key role in

providing efficient query-processing capabilities such

as finding the nearest facility (e.g., a restaurant) and

the shortest path to the destination from a given loca-

tion. Route-finding queries typically deal with route

choice (shortest route to a given destination), destina-

tion choice (the nearest facility from the given loca-

tion) and departure time choices (the time to start the

journey to a destination so that the travel time is
minimized). Though a significant amount of work

has been done to find best routes and destinations,

the problem of computing the best time to travel on

a given route (time choice) needs further exploration.

Emergency Planning

One key step in emergency planning is to find routes in

a road network to evacuate people from disaster-

stricken areas to safe locations in the least possible

time. This requires finding shortest routes from disas-

ter areas to destinations. In metropolitan-sized trans-

portation networks, manual computation of the

required routes is almost impossible, making digital

road maps integral to the efficient computation of

these routes.

Future Directions
A significant fraction of queries that are posed on a

road network involves finding the shortest path be-

tween a pair of locations. Travel times on the road

segments very often depend on the time of day due

to varying levels of congestion, thus making the

Spatial Operations and Map Operations S 2719
shortest paths also time-dependent. Road networks

need to be modeled as spatio-temporal networks to

account for this time-dependence. Various models

such as time-expanded networks [8] and time-aggre-

gated graphs [4,3] are being explored in this context. A

time expanded graph represents the time-dependence

by copying the network for every time instant whereas

in time aggregated graphs, the time-varying attributes

are aggregated over edges and nodes.
Cross-references
▶Graph

▶Graph Database

▶Road Networks
S

Recommended Reading
1. Anez J., de la Barra T., and Perez B. Dual graph representation of

transport networks. Transport. Res., 30(3):209–216, 1996.

2. Curtin K., Noronha V., Goodchild M., and Grise S. ARCGIS

Transportation Model (UNETRANS), UNETRANS Data Model

Reference, December 2003.

3. George B. and Shekhar S. Time-aggregated graphs for modeling

spatio-temporal networks – an extended abstract. In Proc.

Workshops at Int. Conf. on ConceptualModeling, 2006, pp. 85–99.

4. George B. and Shekhar S. Spatio-temporal network databases

and routing algorithms: a summary of results. In Proc. 10th Int.

Symp., Advances in Spatial and Temporal Databases, 2007,

pp. 460–477.

5. Guting R.H. GraphDB: modeling and querying graphs in data-

bases. In Proc. 20th Int. Conf. on Very Large Data Bases, 1994.

6. Hoel E.G., Heng W.L., and Honeycutt D. High performance

multimodal networks. In Proc. 9th Int. Symp. Advances in

Spatial and Temporal Databases, 2005.

7. Jensen C.S., Kolar J., Pederson T.B., and Timko I. Nearest neigh-

bor queries in road networks. In Proc. 11th ACM Int. Symp. on

Advances in Geographic Inf. Syst., 2003.

8. Kohler E., Langtau K., and Skutella M. Time-expanded graphs

for flow-dependent transit times. In Proc. Tenth Annual Euro-

pean Symp. on Algorithms, 2002.

9. Miller H.J. and Shaw S.L. GIS-T Data Models, Geographic In-

formation Systems for Transportation: Principles and Applica-

tions. Oxford University Press, Oxford, 2001.

10. PapadiasD., Zhang J.,MamoulisN., andTaoY.Query processing in

spatial network databases. In Proc. 29th Int. Conf. on Very Large

Data Bases, 2003.

11. Shekhar S. and Chawla S. Spatial Databases: A Tour. Prentice

Hall, Englewood Cliffs, NJ, 2002.

12. Shekhar S. and Liu D.R. CCAM: a connectivity-clustered access

method for networks and network computations. IEEE Trans.

Knowl. Data Eng., 9(1):102–119, 1997.

13. Shekhar S., Vatsavai R., Chawla S., and Burke T.E. Spatial picto-

gram enhanced conceptual data models and their translation to

logical data models. In Proc. Int. Workshop on Integrated spatial

databases, digital maps, and GIS, 1999.
14. Shekhar S., Vatsavai R., Ma X., and Yoo J. Navigation systems: a

spatial database perspective, Chapter 3. In Location-Based

Services, J. Schiller, A. Voisard (eds.). Morgan Kaufmann, 2004.

15. Winter S. Modeling costs of turns in route planning. GeoInfor-

matica, 6(4):345–361, 2002.
Spatial Operations and Map
Operations

MICHEL SCHOLL
1, AGNÈS VOISARD

2,3

1Cedric-CNAM, Paris, France
2Fraunhofer Institute for Software and Systems

Engineering (ISST), Berlin, Germany
3Free University of Berlin, Berlin, Germany

Synonyms
Map Algebra; Layer Algebra; Theme Algebra

Definition
Map operations refer to the operations that an end user

performs on maps stored in a database. Map informa-

tion is stored according to themes (for instance, cities,

roads, or population), sometimes called layers in the

GIS terminology. The maps considered here are stored

in a vector format – as opposed to a raster format such

as a grid of pixels – and can be 1 dimensional (e.g., a

network of roads for a navigation system), 2 dimen-

sional (e.g., a map of land-use for regional planning

activities), or 2.5 dimensional if the elevation at certain

locations is considered (for instance, the height of a

building in an architecture project). A map is made of

what is often called geographic objects. A geographic

object (for instance, a city) has two parts, an alphanu-

meric one (e.g., its name and population) and a spatial

one (e.g., a polygon), usually called spatial object. The

alphanumeric attributes of a geographic object consti-

tute its description. Map operations may use opera-

tions on spatial objects, commonly referred to as

spatial operations. When describing the structure of a

map – its description and its spatial part – together with

its associated operations, one refers to amap model. The

same applies to the structure and behavior of the spatial

part of the geographic objects, leading to a spatial model.
Historical Background
When data are stored in a database, it is accessed

through a query language, such as SQL. In the case of

The basic types of spatial objects that are usually

considered are:

POINT a 0-dimensional spatial object

LINE a 1-dimensional spatial object made of segments

REG a 2-dimensional spatial object made of polygons

2720S Spatial Operations and Map Operations
maps, however, SQL needs to be extended in order to

consider their spatial component. With the emergence

of GIS in the 80s, and also because maps are particular

‘‘non standard’’ entities, a set of operations to manipu-

late them was proposed by database researchers to

describe these operations at a high level of abstraction,

i.e., without considering SQL details. The idea was to

define, at a conceptual level, unary or binary operations

on maps that possibly take other arguments (alphanu-

merical or spatial) and that return maps, hence the term

algebra often used in this context. Such operations

also need spatial operations (geometric or topological)

such as the intersection of polygons. Many proposals

for lists of spatial operations were made. [8] is one

of the first attempts to describe general map operati-

ons from a GIS view point. [7] proposed an extensible

query language to the designer of geographic data-

bases, independent of any underlying database

model. The geo-relational algebra [2] was a pioneer

approach, proposing an algebra based on the relational

model that encompassed spatial operations. The

SpatialSQL language [1] includes a list of spatial opera-

tions to be eventually used in conjunction with SQL.

Operations on thematic layers were also proposed

(e.g., [4]). The ROSE algebra [3] is a rich approach

based on the relational model that allows extensible

sets of functions. The OGIS Standard for SQL [5] from

the Open GIS Consortium (OGC) focuses on spatial

operations to be integrated in SQL and proposes

an exhaustive list of such operations. Most current

commercial approaches such as Oracle or ArcGIS

from ESRI offer data types and operations that are

OGIS compliant.

Foundations
This part focuses on end-user map operations that are

performed in a database. In current applications, maps

are usually stored in a relational database extended to

abstract spatial data types. A kernel of elementary

operations that can be combined in order to answer

complex queries is presented here. The following list is

coming from [2,6].

Map model. A map M is defined as a set of geo-

graphic objects: M = {g} where a geographic object g is

defined as follows: g = {<A>, S}, where<A> is a list of

alphanumerical attributes and S a spatial attribute.

Spatial model. The spatial attribute S of a geograph-

ic object corresponds to its associated geometric part

(it also has topological relationships with other
objects). It can be simple (for instance, one polygon

for a lake) or complex, i.e., made of many parts (for

instance, many polygons for a given country and its

islands). A spatial attribute has a certain type and can

be 0-, 1-, or 2-dimensional. Note that dimensions are

often not mixed in a spatial attribute. An entity with a

spatial type is usually called a spatial object and the

referential used is the Euclidean plane.
as well as sets of these objects.

Spatial Operations

The operations presented below are primitives on

spatial objects that are used in map operations. In

the following, their signature is used for their short

description (i.e., the type of arguments that these opera-

tions take and the one that they return). The spatial

operations are presented here according to four groups:

spatial predicates, spatial extractions, set operations,

and geometric operations. Other classifications based

for instance on the types of arguments are also sensible.

Note also that the list given below is not exhaustive.
Map Operations

The operations described below constitute a common

set of operations on maps. They are illustrated using the

map of the 12 districts of Berlin, Germany, or a subset of

it in some cases, and using the following schemas:

District (Name:STRING, Population:NUM, Area:

REG)

CityDivision (Name:STRING, Area:REG)
Other Operations

The list of operations given above is not exhaustive but

it corresponds to a kernel of common general opera-

tions on thematic maps. They are typical database

operations performed in a GIS. Other GIS operations

that are not detailed here include classification, zoom

in, zoom out, as well as operations on layers stored in a

raster form.

Group 1: Spatial Predicates

In the following, BOOL represents a Boolean value (true or false) and REG is an abbreviation for the REGION type.

Different Tests whether two spatial objects are different in the plane

Possible
signatures:

POINT � POINT! BOOL, LINE � LINE! BOOL, REG � REG !
BOOL

Equal Tests whether two spatial objects are the same (i.e., have the same value
in the plane)

Possible
signatures:

POINT � POINT! BOOL, LINE � LINE! BOOL, REG � REG !
BOOL

Intersects Tests whether two spatial objects intersect

Possible
signatures:

LINE � LINE! BOOL, LINE � REG! BOOL, REG � REG !
BOOL

Inside/Outside Tests whether a spatial object is inside/outside a given region

Possible
signatures:

POINT � REG ! BOOL, LINE � REG! BOOL, REG � REG !
BOOL

Adjacent Tests whether two spatial objects are adjacent (i.e., have a common
boundary)

Possible
signatures:

LINE � REG! BOOL, REG � REG ! BOOL

Group 2: Spatial Extractions

These operators transform their spatial input into another type of spatial object.

Intersection Returns the intersection of two spatial objects

Possible
signatures:

LINE � LINE! {POINT}, LINE � LINE ! LINE, LINE � REG !
{POINT}, LINE � REG ! LINE, REG � REG ! {POINT},
REG � REG ! LINE, REG � REG ! REG

Voronoi Returns the Voronoi diagram of a region. Note that the returned set of
regions has the particularity that the regions do not overlap

Signature: {POINT} � REG ! {REG}

Closest Returns the closest spatial object from a given object, taken from a set

Possible
signatures:

POINT � {POINT} ! POINT, POINT � {LINE} ! LINE,
POINT� {REG}! REG, LINE� {POINT}! POINT, LINE� {LINE}
! LINE, LINE � {REG} ! REG, REG � {POINT} ! POINT,
REG � {LINE} ! LINE, REG � {REG} ! REG

Group 3: Set Operations

The following operations are common operations on sets of objects. Note again that a set only contains entities of the
same type.

SetUnion Returns the union of two sets of spatial objects, in the mathematical
sense

Possible
signatures:

{POINT} � {POINT} ! {POINT}, {LINE} � {LINE} ! {LINE},
{REG} � {REG} ! {REG}

SetDifference Returns the difference of two sets of spatial objects

Possible
signatures:

{POINT} � {POINT} ! {POINT}, {LINE} � {LINE} ! {LINE},
{REG} � {REG} ! {REG}

SetIntersection Returns the intersection of two sets of spatial objects

Possible
signatures:

{POINT} � {POINT} ! {POINT}, {LINE} � {LINE} ! {LINE},
{REG} � {REG} ! {REG}

Spatial Operations and Map Operations S 2721

S

Group 4: Geometric Operations

In the following, NUM represents a numerical value.

Convex Hull Returns the region (polygon) that encompasses all the points given in the
argument set

Signature: {POINT} ! REG

Center Returns the center of a set of points

Signature: {POINT} ! POINT

Min/Max Distance Returns the minimal (respect. maximal) distance between two spatial
objects

Possible
signatures:

POINT � LINE ! NUM, LINE � LINE ! NUM, POINT � REG !
NUM, LINE � REG ! NUM, REG � REG ! NUM

Length Returns the length of a line

Signature: LINE ! NUM

Perimeter Returns the perimeter of a region. In case the region is composed of
many polygons, it returns the sum of their respective perimeters

Signature: REG ! NUM

Area Returns the area of a region (total area if it is composed of many
polygons)

Signature: REG ! NUM

2722S Spatial Operations and Map Operations
Key Applications
Users likely to eventually use these map operations are

end-users who need to get information from existing

maps, for instance for the purpose of planning or

geo-marketing. However, this conceptual approach –

which moves away from implementation details – is

targeted towards spatial database application designers

who need to design appropriate application environ-

ments. Such environments should be easy to use,
extensible, and adaptable to various application

needs. They should, moreover, offer an efficient opera-

tion processing, however, this aspect is not handled by

the conceptual approach presented here.

The key applications of this area concern thematic

map manipulation (by the census bureau, city plan-

ners, local administrators, transportation managers,

and so on) in order to perform statistics and analysis

on data having a spatial dimension.

Map
Projection

Returns a map having a list of attributes given as argument and an unchanged spatial part

Signature: map � <A> ! map, where <A> is a collection of alphanumerical attributes

Map
Selection

Returns a map whose geographic objects satisfy the selection criteria given as argument (e.g., population
greater than 300 thousand inhabitants)

Signature: map � selection-criteria (<A>) ! map, where selection-criteria (<A>) is a predicate
on one or many alphanumerical attributes

Spatial
Selections

- Windowing (or
region query):

Returns the map made of the original map whose objects intersect the region
given as argument (often, a rectangle)

- Clipping: Returns the part of the map that is exactly in the region given as argument

Signature: map � REG! map

Spatial Operations and Map Operations S 2723

S

Map
Overlay

Generates a newmap from two (overlaid) maps, for instance a map of the former city division in Berlin and
the map of districts. It uses the intersection operation on spatial objects. It creates new geographic
objects as can be seen in the center of the newly created map. This operation is also called a spatial join in
the database terminology

Signature: map � map ! map

Note: For legibility reasons, the following map of districts does not include their population.

Map Union Returns a map made of the two arguments

Signature: map � map ! map

Fusion Performs the geometric union of the spatial part of geographic objects that belong to the same map.
Note the sum of the population in the example

Signature: map ! map

2724S Spatial Operations and Map Operations
Cross-references
▶Geographic Information System

▶OGC

▶ Semantic Modeling for Geographic Information

Systems

▶ Spatial Data Types

Recommended Reading
1. Egenhofer M.J. Spatial SQL: a query and presentation language.

IEEE Trans. Knowl. Data Eng., 6(1):86–95, 1994.
2. Güting R.H. Geo-relational algebra: a model and query language

for geometric database systems. In Advances in Database Technol-

ogy, Proc. 1st Int. Conf. on Extending Database Technology, 1988,

pp. 506–527.

3. Güting R.H. and Schneider M. Realm-based spatial data types:

the ROSE algebra. VLDB J., 4(2):243–286, 1995.

4. Hadzilacos T. and Tryfona N. Logical data modelling for geo-

graphical applications. Intl. J. Geogr. Inf. Sci., 10(2):179–203,

1996.

5. Open GIS Consortium. OpenGIS1 Geographic objects imple-

mentation specification, 2007.

Spatio-Temporal Data Mining S 2725
6. Rigaux P., Scholl M., and Voisard A. Spatial Databases – With

Application to GIS, Chapter 3. Morgan Kaufmann/Elsevier, 2001.

7. Scholl M. and Voisard A. Thematic map modeling. In Proc. Int.

Symp. on Spatial Databases, 1989, pp. 167–190.

8. Tomlin D. A Map algebra. In Proc. Harvard Computer Graphic

Conf., 1983.
Spatial Outliers

▶ Spatial Data Mining
Spatial Referencing

▶Georeferencing
Spatial Statistics

▶ Spatial Data Mining
Spatio-Temporal Approximation

▶ Spatiotemporal Interpolation Algorithms
Spatio-Temporal Benchmarking

▶Real and Synthetic Test Datasets
S

Spatio-Temporal Data Generator

▶Real and Synthetic Test Datasets
Spatio-Temporal Data Mining

NIKOS MAMOULIS

University of Hong Kong, Hong Kong, China

Synonyms
Data mining in moving objects databases
Definition
The extraction of implicit, non-trivial, and poten-

tially useful abstract information from large collections

of spatio-temporal data are referred to as spatio-tempo-

ral datamining. There are two classes of spatio-temporal

databases. The first category includes timestamped

sequences of measurements generated by sensors

distributed in a map, and temporal evolutions of the-

matic maps (e.g., weather maps). The second class are

moving object databases that consist of object trajec-

tories (e.g., movements of cars in a city). A trajectory

can be modeled as a sequence of (pi,ti) pairs, where

pi corresponds to a spatial location and ti is a time-

stamp. The management and analysis of spatio-

temporal data has gained interest recently, mainly

due to the rapid advancements in telecommunications

(e.g., GPS, Cellular networks, etc.), which facilitate the

collection of large datasets of object locations (e.g., cars,

mobile phone users) and measurement sequences (e.g.,

sensor readings). Mining tasks for moving object data-

bases include detection and prediction of traffic jams,

analyzing the movement behavior of animals, clustering

or classification of moving objects according to their

direction and/or speed, and identification of trends

that associate the movement/speed of objects to their

destination. In addition, fromdatabases ofmeasurement

sequences, spatial relationships between correlated or

anticorrelated sequences can be extracted (e.g., ‘‘sensors

within 10 m from each other produce similar readings

with high probability’’), or build classificationmodels to

detect abnormal combinations of sensor readings. The

analysis of spatio-temporal databases is challenging due

to the vast amount of collected data, and the complexity

of novel mining tasks. Special issues include the fuzzy

and implicit nature of spatio-temporal relationships be-

tween objects, the complex geometry of spatial objects,

the varying temporal nature of events (instantaneous vs.

durable), the variability of spatio-temporal data

(moving objects, evolution of spatial events or phenom-

ena, etc.), and the multiple (spatial and temporal) reso-

lution levels of abstraction.

Historical Background
Data mining became a core field of database research

in the 1990s [6]. Initial research focused on mining

tasks (association analysis, classification, and cluster-

ing) applied on relational databases, or transactional,

data that record sets of items purchased together. Two

parallel streams of research were born soon after the

2726S Spatio-Temporal Data Mining
first papers; data mining for temporal and spatial data.

Temporal data mining focused on the extraction of

sequential patterns from ordered transactional data or

event sequences. Clustering and classification of time

series, a classic problem in statistics, also triggered the

interest of this research stream. The spatial relationships

between associated events has been the main focus of

spatial data mining. Spatio-temporal data mining is a

rather new research field. Initially [4,11], temporal data

mining techniques were applied for spatio-temporal

data, after modeling the input as multi-dimensional

temporal sequences. Lately, new problems, particular

to this type of data have emerged, such as clustering

multidimensional trajectories [12], clustering or pattern

mining based on common subtrajectories [2,8] mining

periodic patterns in moving object trajectories [9] and

discovery of moving clusters with partial membership of

objects during a cluster’s lifetime [7].

Foundations

Clustering

Clustering is a classic data mining task that divides

a set of objects into groups (clusters), such that the

objects in the same cluster are similar to each other

and objects in different clusters are dissimilar. Most

clustering prototypes [6] can be applied for spatio-

temporal data after (i) the objects to be clustered

are well-defined, and (ii) a distance function between

objects has been determined. The first prototype is

partitioning-based clustering, where a set of k initial

random partitions are iteratively refined. Charac-

teristic algorithms in this class are the k-means and

k-medoids algorithms. Hierarchical methods is anoth-

er category of algorithms, where initially each object

forms a cluster on its own and clusters are merged

iteratively until a convergence criterion is met. Another
Spatio-Temporal Data Mining. Figure 1. Measuring distanc
popular clustering prototype is density-based cluster-

ing, where dense regions of nearby objects are itera-

tively merged. These general methods will not be

discussed in detail here; instead, the focus will be on

similarity measures for spatio-temporal data and on

special definitions of clustering in this context.

Clustering can be performed on trajectories in order

to classify moving objects into groups of similar move-

ment behavior. The distance between two trajectories

can be defined after modeling them as high-dimensional

vectors, by some preprocessing if necessary. More specif-

ically, if the timestamps of trajectories do not match, any

missing timestamped values are generated by interpola-

tion, such that the transformed trajectories correspond

to vectors of the same length and they have the same

timestamps (as regular as possible). In addition, if the

sequences have different timespan they are shrunk (or

extended) as necessary by truncation (or interpolation).

Eventually, the distance between the resulting trajec-

tories ismeasuredusing some appropriate distance func-

tion (e.g., Euclidean distance). Figure 1 illustrates this

process. Apart from the Euclidean distance, other mea-

sures specific to (multidimensional) time series have

been proposed. A popular distance measure is dynamic

time warping (DTW) [1]. DTW allows elastic shifting

of sequence in order to detect similar shapes with

different phases. DTW aligns each element of one

sequence to one or more elements of the other se-

quence by applying a dynamic programming process,

similar to the edit distance computation between

strings. Another method to assess the similarity be-

tween two time series is to find their longest common

subsequence (LCSS) [3]. One definition of the LCSS

between two vectors~s and~t is the pair of subsequences

~s0 2~s and~t 0 2~t , such that (i)~s0 and~t 0 have the same

length, (ii) distð~s0;~t 0Þ � E, and (iii) ð~s0;~t 0Þ are the lon-
gest subsequences that qualify the distance constraint
e between trajectories.

Spatio-Temporal Data Mining. Figure 2. Example of a

moving cluster.

Spatio-Temporal Data Mining. Figure 3. Identifying

areas of high object density.

Spatio-Temporal Data Mining S 2727

S

expressed in (ii). Here, dist() is a basis measure be-

tween sequences (e.g., Euclidean distance) and e is a

threshold quantizing adequate closeness. LCSS (like

DTW) allows stretching of sequences in time

(provided that a DTW-like measure is used as mea-

sure), and at the same time is more robust to noise,

giving weight to the similar portions of the sequences

and ignoring the very different parts. In [12] an appro-

priate definition of LCSS is given for multidimensional

time series (i.e., trajectories), where a constraint for the

maximum shift in time between common subse-

quences exists, and different stretching/shifting at dif-

ferent dimensions can also be performed in order to

reach the best possible matching.

Instead of applying classic clustering algorithms

with the help of an appropriate distance measure, [4]

define clusters of trajectories by mixtures of regression

models, which are extracted with the help of an EM

algorithm. In a recent work, [8] clusters trajectories,

after partitioning them to line segments. The clusters

in this case are formed by similar line segments, and a

trajectory may belong to more than one cluster.

A special definition of moving clusters is presented

in [7]. The difference compared to the trajectory clusters

defined above is that the identity of a moving cluster

remains unchanged, while its location and content may

change over time. For example, while a group of animals

are migrating, some new animals may enter the group

(e.g., those passing nearby the clusters trajectory or

newborns), while some animals may leave the group

(e.g., those attacked and eaten by lions). Formally, con-

sider a set of moving objects in a long, timestamped

history H ={t1,t2,...,tn}. A snapshot Si of H is the set of

objects and their locations at time ti. Given a snapshot

Si, a standard spatial clustering algorithm can be

employed to identify dense groups of objects in Si
which are close to each other. Let ci and ci+1 be two

such snapshot clusters for Si and Si+1, respectively. Then

cici+1 is said to be amoving cluster if
jci\ciþ1j
jci[ciþ1j � y, where

y (0 < y � 1) is an integrity threshold for the contents

of the two clusters. Intuitively, if two spatial clusters at

two consecutive snapshots have a large percentage of

common objects, then these are considered as a single

cluster that moved between these two timestamps.

Figure 2 shows an example of a moving cluster. S1,

S2, and S2 are three snapshots. In each of them there is

a timeslice cluster (c1, c2, and c3). Let y = 0.5. c1c2c3 is a

moving cluster, since
jc1\c2j
jc1[c2j ¼

3
6
and

jc2\c3j
jc2[c3j ¼

4
5
are both
at least y. Note that objects may enter or leave the

moving cluster during its lifetime. Using this definition,

Kalnis et al. [7] extended a density-based clustering

algorithm into methods that discover moving clusters

in a large database of moving object trajectories.

Hadjieleftheriou et al. [5] proposed a framework

for the discovery of areas with a high density of moving

objects in the future, given the current locations and

movements of a set of points, e.g., ‘‘Find all regions

that will contain more than 500 objects, 10 min from

now.’’ The time interval during which the areas remain

dense is also part of the mining task. Figure 3 (taken

from [5]) shows a graphical example of such dense

areas (A in timestamp 2 and B in timestamp 3), assum-

ing that at least three objects must exist in an area of

one square unit for the area to be considered dense.

2728S Spatio-Temporal Data Mining
The discovery of dense regions is done after defining a

space-time 3D grid and merging neighboring dense

cells in this grid. Note that this problem is different

to classic clustering, where objects are grouped based

on the whole history (or trend) of their movement.

Classification and Prediction

Classification of trajectories is usually performed by

nearest neighbor (NN) classifiers [12]. Given a trajec-

tory~s of unknown label and a database D of labeled

samples, such a classifier (i) searches in D for the k

most similar time series to~s and (ii) gives~s the most

popular label in the set of k returned time series. NN

classifiers, like clustering algorithms, rely on an appro-

priate similarity function between trajectories.

Depending on the application, one of the distance

functions used for clustering (as discussed above) can

be used.

A related task to classification is predicting the

future movement of an object given its past locations.

Regression models for one-dimensional time series can

be extended for (multidimensional) moving object

trajectories. The movement of objects is approximated

by (mixtures of) functions, which in turn are used for

prediction. Given the recent past movement of an

object [10] propose a methodology that computes a

recursive motion function; a concise form that cap-

tures a large number of movement types (e.g., poly-

nomials, ellipses, sinusoids, etc.). A recursive function

differs from classic regression functions in that it

relates an objects location to those of the recent past.

Pattern Extraction

There is limited work on extraction of patterns from

spatio-temporal databases, which has been treated as a

generalization of pattern mining in time series data.

For example, [11] studied the discovery of frequent

patterns related to changes of natural phenomena

(e.g., temperature changes) in spatial regions. The

locations of objects or the changes of natural phenom-

ena over time are converted to categorical values. For

instance, the map can be divided into spatial regions

and replace the location of the object at each time-

stamp, by the region-id where it is located. Similarly,

the change of temperature in a spatial region can be

modeled as a sequence of temperature values. Contin-

uous domains of the resulting time series data are

discretized, prior to mining. In the case of multiple
moving objects (or time series), trajectories are typi-

cally concatenated to a single long sequence. Then, an

algorithm that discovers frequent subsequences in a

long sequence (e.g., [13]) is applied.

In many applications, the movements obey periodic

patterns; i.e., the objects follow the same routes (approx-

imately) over regular time intervals. Objects that follow

approximate periodic patterns include transportation

vehicles (buses, boats, airplanes, trains, etc.), animal

movements, mobile phone users, etc. For example,

Bob wakes up at the same time and then follows, more

or less, the same route to his work everyday. Periodic

patterns can be thought of as (possibly non-contiguous)

sequences of object locations that reappear in the move-

ment history periodically.

Formally, let S be a sequence of n spatial locations

{l0,l1,...,ln�1}, representing the movement of an object

(e.g., Bob) over a long history. Let T� n be an integer

called period (e.g., day, week, month). A periodic seg-

ment s is defined by a subsequence lili+1...li+T�1 of S,

such that i modulo T = 0. Thus, segments start at

positions 0;T ;:::;ðbn
T
c � 1Þ� T , and there are exactly

m ¼ bn
T
c periodic segments in S. A periodic pattern P

is defined by a sequence r0r1...rT�1 of length T, such

that ri is either a spatial region or *. The length of a

periodic pattern P is the number of non-* regions in P.

A segment sj is said to comply with P, if for each ri 2 P, ri
= * or si

j is inside region ri. The support of a pattern P in

S is defined by the number of periodic segments in S

that comply with P. The same symbol P is used to refer

to a pattern and the set of segments that comply with

it. Let min_sup � m be a positive integer (minimum

support). A pattern P is frequent, if its support is larger

than min_sup. Patterns for which the regions ri are too

sparse are not interesting, therefore an constraint is

imposed to the density of these regions. Let SP be the

set of segments that comply with a pattern P. Then each

region ri of P is valid if the set of locations

RP
i :¼ fsji j sj 2 SPg form a dense cluster.

The discovery of partial periodic patterns froma long

trajectory has been studied in [9]. This process is per-

formed in two phases. First, S is divided into T spatial

datasets, one for each offset of the period T. Specifically,

locations {li,li+T,...,li+(m�1)�T} go to set Ri, for each 0� i

< T (m is the length of S). A spatial clustering

algorithm is applied to discover clusters in each Ri.

These clusters define periodic patterns of length 1.

Figure 4 a shows the spatial datasets obtained after

Spatio-Temporal Data Mining. Figure 4. Locations and

regions per periodic offset.

Spatio-Temporal Data Mining. Figure 5. Subsequence

approximation.

Spatio-Temporal Data Mining S 2729

S

decomposing the trajectory of an object in three con-

secutive days (periods). A different symbol is used to

denote locations that correspond to different periodic

offsets and different colors are used for different

segment-ids. Observe that a dense cluster r in dataset

Ri corresponds to a frequent pattern, having * at all

positions and r at position i. Figure 4b shows examples

of five clusters discovered in datasets R1, R2, R3, R4, and

R6. These correspond to five 1-patterns (i.e., r11*****,

*r21****, etc.).

In the second phase, [9] extend the Apriori algo-

rithm [6] to identify longer patterns level-by-level.

In specific, Pairs hP1,P2i of frequent (k � 1)-patterns

with their first k � 2 non-* regions in the same posi-

tion and different (k � 1)-th non-* position create

candidate k-patterns, the supports of which are

counted at the next pass of the data sequence.

There has also been research on spatio-temporal

pattern mining, where trajectories are regarded as

sequences of locations (without giving any importance

to the timestamps). In this case, the objective is to

extract route-patterns of moving objects irrespectively

to their speed. In this spirit, [2] define spatio-temporal

patterns as sequences of line segments that form fre-

quently followed routes by moving objects. A line

simplification algorithm is used to approximate subse-

quences of trajectories by line segments. Figure 5 illus-

trates a subsequence sij which is approximated by a line

segment ~lij , such that the maximum distance of any

point from sij to its projection on ~lij is at most e.
Simplified line segments of subsequences are clustered

to form spatial regions (pattern elements) that can ap-

proximate a large number of subsequences. If a region

approximates more than min_sup subsequences, then
it forms a frequent movement pattern of length 1.

A generalized frequent movement pattern is an

m-length ordered sequence of pattern elements that is

supported by (i.e., approximates) more than min_sup

subsequences. The enumeration of frequent patterns is

performed in two phases; first the frequent 1-patterns

are identified with the help of the clustering algo-

rithm that is based on line simplification; then, longer

patterns are found by employing a substring tree

which compresses overlapping sequences of pattern

elements.
Key Applications

Traffic Analysis

A motivating application of spatio-temporal data

mining is to predict and analyze the causalities of

traffic phenomena. Clustering or pattern extraction

can help towards this purpose, since common routes

that pass through the same map locations are likely the

cause of traffic. Analyzing the causes of such clusters

can lead to better transportation design for a city map.
Studying the Movement Behavior of Animals

With the help of GPS technology, the movements of

animals can be tracked and analyzed. Identifying clus-

ters or movement patterns can help in understanding

the behavior of animals, such as the formulation and

maintenance of herds, motion trends based on weather

conditions, etc.
Video Analysis

The identification of objects and their movement be-

havior in video scenes is also an important application

of spatio-temporal data mining. In this case, patterns

of movement behavior can be extracted and analyzed.

2730S Spatio-Temporal Data Reduction
For example, from a soccer game, one can extract the

movement style of players. Or, from a martial arts

video, one can analyze movement sequences of body

parts and relate them to the objective of the subject.

Cross-references
▶Data Mining

▶Geometric Stream Mining

▶ Spatial and Spatio-Temporal Data Models and

Languages

▶ Spatial Data Mining

▶ Spatio-Temporal Data Warehouses

▶ Spatio-Temporal Trajectories

▶Temporal Data Mining
Recommended Reading
1. Berndt D. and Clifford J. Using dynamic time warping to find

patterns in time series. In Proc. KDDWorkshop, 1994.

2. Cao H., Mamoulis N., and Cheung D.W. Mining frequent

spatio-temporal sequential patterns. In Proc. 2005 IEEE Int.

Conf. on Data Mining, 2005, pp. 82–89.

3. Das G., Gunopulos D., and Mannila H. Finding similar time

series. In Advances in Knowledge Discovery and Data Mining,

1st Pacific-Asia Conf., 1997, pp. 88–100.

4. Gaffney S. and Smyth P. Trajectory clustering with mixtures of

regression models. In Proc. 5th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, 1999, pp. 63–72.

5. Hadjieleftheriou M., Kollios G., Gunopulos D., and Tsotras V.J.

On-line discovery of dense areas in spatio-temporal databases.

In Proc. 8th Int. Symp. Advances in Spatial and Temporal

Databases, 2003, pp. 306–324.

6. Han J. and Kamber M. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2000.

7. Kalnis P., Mamoulis N., and Bakiras S. On discovering moving

clusters in spatio-temporal data. In Proc. 9th Int. Symp.

Advances in Spatial and Temporal Databases, 2005, pp. 364–381.

8. Lee J.-G., Han J., and Whang K.-Y. Trajectory clustering: a

partition-and-group framework. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2007, pp. 593–604.

9. Mamoulis N., Cao H., Kollios G., Hadjieleftheriou M., Tao Y.,

and Cheung D.W. Mining, indexing, and querying his-

torical spatiotemporal data. In Proc. 10th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2004,

pp. 236–245.

10. Tao Y., Faloutsos C., Papadias D., and Liu B. Prediction and

indexing of moving objects with unknown motion patterns. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2004,

pp. 611–622.

11. Tsoukatos I. and Gunopulos D. Efficient mining of spatiotem-

poral patterns. In Proc. 7th Int. Symp. Advances in Spatial and

Temporal Databases, 2001, pp. 425–442.

12. Vlachos M., Gunopulos D., and Kollios G. Discovering similar

multidimensional trajectories. In Proc. 18th Int. Conf. on Data

Engineering, 2002, pp. 673–684.
13. Zaki M.J. Spade: an efficient algorithm for mining frequent

sequences. Machine Learning, 42(1/2):31–60, 2001.
Spatio-Temporal Data Reduction

▶Compression of Mobile Location Data
Spatio-Temporal Data Types

RALF HARTMUT GÜTING

University of Hagen, Hagen, Germany

Synonyms
Data Types for Moving Objects
Definition
Abstract data types to represent time dependent geo-

metries, in particular continuously changing geome-

tries, or moving objects. The most important types are

moving point and moving region.
Key Points
Amoving point represents an entity for which only the

time dependent position is of interest. Amoving region

describes an entity for which the time dependent loca-

tion as well as the shape and extent are relevant.

For example, moving points could represent people,

vehicles such as cars, trucks, ships or planes, or ani-

mals; moving regions could be hurricanes, forest fires,

spread of epidemic diseases etc. Moving point data

may be captured by GPS devices or RFID tags; moving

region data may result from processing sequences of

satellite images, for example. Geometrically, moving

points or moving regions exist in a 3D (2D + time)

space, if the movement is modeled within the 2D

plane; for moving points this can be easily extended

to 4D (3D + time).

Beyond the most relevant types of moving point

and moving region, to obtain a closed system there are

related time dependent data types, such as real-valued

functions or time dependent boolean values. To have a

uniform terminology these types are also calledmoving

real and moving bool, respectively. Static spatial data

types such as point, line or region, and standard data

Spatio-Temporal Data Warehouses S 2731
types are also needed. The data types include suitable

operations such as:
trajectory: mpoint !
line

Projection of a moving point
into the plane

inside: mpoint �
mregion ! mbool

When is a moving point inside
a moving region

distance: mpoint �
point ! mreal

Distance between a moving
and a static point
Cross-references
▶Moving Objects Databases and Tracking

Recommeded Reading
1. Erwig M., Güting R.H., Schneider M., and Vazirgiannis M.

Spatio-temporal data types: an approach to modeling and que-

rying moving objects in databases. GeoInformatica, 3:265–291,

1999.
S

Spatio-Temporal Data Warehouses

YUFEI TAO
1, DIMITRIS PAPADIAS

2

1Chinese University of Hong Kong, Hong Kong, China
2Hong Kong University of Science and Technology,

Hong Kong, China

Synonyms
Spatio-temporal online analytical processing; Spatio-

Temporal OLAP

Definition
Consider N regions R1, R2,...,RN and a time axis

consisting of discrete timestamps 1, 2,...,T, where

T represents the total number of recorded timestamps

(i.e., the length of history). The position and area of

a region Ri may vary along with time, and its extent

at timestamp t is denoted as Ri(t). Each region carries a

set of measures Ri(t).ms, also called the aggregate data

of Ri(t). The measures of regions change asynchro-

nously with their extents. In other words, the measure

of Ri (1�i�N) may change at a timestamp t (i.e., Ri(t).

ms 6¼Ri(t�1).ms), while its extent remains the same

(i.e., Ri(t) = Ri(t�1)), and vice versa.

A spatio-temporal data warehouse stores the above

information, and efficiently answers the spatio-temporal

window aggregate query, which specifies an area qR
and a time interval qT of continuous timestamps. The

goal is to return the aggregated measure Agg(qR, qT,

fagg) of all regions that intersect qR during qT, accor-

ding to some distributive aggregation function fagg, or

formally:

AggðqR; qT ; fagg Þ ¼ faggfRiðtÞ:ms

jRiðtÞ intersects qR and t 2 qTg:

If qT involves a single timestamp, the query is a

timestamp query; otherwise, it is an interval query. An

example of a timestamp window aggregate query is

‘‘find the total number of mobile users in the city

center at 12 P.M.’’ The query will summarize the number

of users (measures) in all regions intersecting qR = ‘‘city

center’’ at qT = ‘‘12 P.M.’’
Historical Background
The motivation behind spatio-temporal data ware-

houses is that many spatio-temporal applications re-

quire summarized results, rather than information

about individual objects. As an example, traffic super-

vision systems monitor the number of cars in an area

of interest, instead of their ids. Similarly, mobile phone

companies use the number of phone-calls per cell in

order to identify trends and prevent potential net-

work congestion. Although summarized results can

be obtained using conventional operations on individ-

ual objects (i.e., accessing every single record qualifying

the query), the ability to manipulate aggregate infor-

mation directly is imperative in spatio-temporal data-

bases due to several reasons. First, in some cases

personal data should not be stored due to legal issues.

For instance, keeping historical locations of mobile

phone users may violate their privacy. Second, the

individual data may be irrelevant or unavailable, as in

the traffic supervision system mentioned above. Third,

although individual data may be highly volatile and

involve extreme space requirements, the aggregate in-

formation usually remains fairly constant for long per-

iods, thus requiring considerably less space for storage.

A considerable amount of related research has been

carried out on data warehouses and OLAP (on line

analytical processing) in the context of relational data-

bases. The most common conceptual model for data

warehouses is the multi-dimensional data view. In this

model, each measure depends on a set of dimensions,

e.g., region and time, and thus is a value in the multi-

dimensional space. A dimension is described by a

Spatio-Temporal Data Warehouses. Figure 1. A data

cube example.

2732S Spatio-Temporal Data Warehouses
domain of values (e.g., days), which may be related via

a hierarchy (e.g., day-month-year). Figure 1 illustrates

a simple case, where each cell denotes the measure of a

region at a certain timestamp. Observe that although

regions are 2-dimensional, they are mapped as one

dimension in the warehouse.

The star schema [6] is a common way to map a data

warehouse onto a relational database. A main table

(called fact table) F stores the multi-dimensional array

of measures, while auxiliary tables D1, D2,...,Dn store

the details of the dimensions. A tuple in F has the

form <Di[].key, M[] > where Di[].key is the set of

foreign keys to the dimension tables and M[] is the

set of measures. OLAP operations ask for a set of tuples

in F, or for aggregates on groupings of tuples. Assum-

ing that there is no hierarchy in the dimensions of the

previous example, the possible groupings in Fig. 1

include: (i) group-by Region and Time, which is iden-

tical to F, (ii)-(iii) group-by Region (Time), which

corresponds to the projection of F on the region-

(time-) axis, and (iv) the aggregation over all values

of F which is the projection on the origin (Fig. 1

depicts these groupings for the aggregation function

sum). The fact table together with all possible combi-

nations of group-bys composes the data cube [2]. Al-

though all groupings can be derived from F, in order to

accelerate query processing some results may be pre-

computed and stored as materialized views.

A detailed group-by query can be used to answer

more abstract aggregates. In the example of Fig. 1, the

total measure of all regions for all timestamps

(i.e., 1828) can be computed either from the fact

table, or by summing the projected results on the
time or region axis. Ideally, the whole data cube should

be materialized to enable efficient query processing.

Materializing all possible results may be prohibitive

in practice as there are O(2n) group-by combinations

for a data warehouse with n dimensional attributes.

Therefore, several techniques have been proposed

for the view selection problem in OLAP applications

[1,4]. In addition to relational databases, data ware-

house techniques have also been applied to spatial

[3,10] and temporal [8] databases. All these methods,

however, benefit only queries on a predefined hierar-

chy. An ad-hoc query not confined by the hierarchy,

such as the one involving the gray cells in Fig. 1, would

still need to access the fact table, even if the entire data

cube were materialized.

Foundations
The next discussion describes several solutions to

implementing a spatio-temporal data warehouse, as-

suming summation as the underlying aggregate func-

tion fagg. Extensions to other aggregation functions

(e.g., count, average) are straightforward.

� Using a 3D aggregate R-tree

The problem of a spatio-temporal window aggregate

search can be regarded as a multi-dimensional aggregate

retrieval in the 3D space (the spatial dimensions plus a

time dimension) and solved using an aggregate R-tree

(aR-tree). The aR-tree [5,9] is similar to a conventional

R-tree, where each node also stores summarized infor-

mation about the regions in each sub-tree. Whenever

the extent or measure of a region changes, a new 3D

box is inserted in a 3D version of the aR-tree, called the

a3DR-tree. Using the example of Fig. 1, four entries are

required for R1: one for timestamps 1 and 2 (when its

measure remains 150) and three more entries for the

other timestamps. A spatio-temporal window aggre-

gate query can also be modeled as a 3D box, which can

be processed on the a3DR-tree, following the strategy

of solving a range aggregate query on an aR-tree [5,9].

The problem with this solution is that it creates a

new box duplicating the region’s extent, even though it

does not change. Since the measure changes are much

more frequent than extent updates, the a3DR-tree

incurs high redundancy. The worst case occurs for

static regions: although the extent of a region remains

constant, it is still duplicated at the rate of its measure

changes. Bundling the extent and aggregate informa-

tion in all entries significantly lowers the node fanout

Spatio-Temporal Data Warehouses. Figure 2.

A multi-index architecture for indexing spatio-temporal

data warehouses.

Spatio-Temporal Data Warehouses S 2733

S

and compromises query efficiency, because more

nodes must be accessed to retrieve the same amount

of information. Note that redundancy incurs whenever

the extent and measure changes are asynchronous, i.e.,

the above problem also exists when a new box is

spawned because of an extent update, in which case

the region’s measure must be replicated.

� Using a data cube

Following the traditional data warehouse approach, it

is possible to create a data cube, where one axis corre-

sponds to time, the other to regions, and keep the

measure values in the cells of this two-dimensional

table (see Fig. 1). Since the spatial dimension has no

one-dimensional order, the table can be stored in the

secondary memory ordered by time, and a B-tree index

can be created to locate the pages containing informa-

tion about each timestamp. The processing of a query

employs the B-tree index to retrieve the pages (i.e.,

table columns) containing information about qT;

then, these regions (qualifying the temporal condition)

are scanned sequentially and the measures of those

satisfying qR are aggregated.

Even if an additional spatial index on the regions

exists, the simultaneous employment of both indexes

has limited effect. Assume that first a window query qR
is performed on the spatial index to provide a set of ids

for regions that qualify the spatial condition. Measures

of these regions must still be retrieved from the col-

umns corresponding to qT (which, again, are found

through the B-tree index). However, the column stor-

age does not preserve spatial proximity, and hence the

spatially qualifying regions are expected to be scattered

in different pages. Therefore, the spatial index has

some effect only on very selective queries (on the

spatial conditions). Furthermore, recall that pre-mate-

rialization is useless, since the query parameters qR and

qT do not conform to pre-defined groupings.

� The aggregate R-B-tree

Since (i) the extent and measure updates are asynchro-

nous and (ii) in practice, measures change much more

frequently than extents (which may even be static), the

two types of updates should be managed independently

to avoid redundancy. This implies the deployment of

two types of indexes: (i) a host index, which is an

aggregate spatial or spatio-temporal structure manag-

ing region extents, and (ii) numerous measure indexes

(one for each entry of the host index), which are
aggregate temporal structures storing the values of

measures during the history. Figure 2 shows a general

overview of the architecture [14]. Given a query, the

host index is first searched, identifying the set of entries

that qualify the spatial condition. The measure indexes

of these entries are then accessed to retrieve the time-

stamps qualifying the temporal conditions. Since the

number of records (corresponding to extent changes)

in the host index is very small compared to the mea-

sure changes, the cost of query processing is expected

to be low.

The following discussion explains an instantiation of

the architecture for solving window aggregate queries

when the underlying data regions are static. The instan-

tiation leads to a structure, called the aggregate R- B-tree

(aRB-tree). It adopts an aR-tree as the host index,

where an entry r has the form<r.MBR, r.aggr, r.pointer,

r.btree>; r.MBR and r.pointer have the same semantics

as a normal R-tree, r.aggr keeps the aggregated measure

about r over the entire history, and r.btree points to an

aggregate B-tree which stores the detailed measure

information of r at concrete timestamps. Figure 3b

illustrates an example using the data regions of Fig. 3a

and the measures of Fig. 1. The number 710 stored

with R-tree entry R1, equals the sum of measures in R1

for all 5 timestamps (e.g., the total number of phone

calls initiated at R1). The first leaf entry of the B-tree for

R1 (1, 150) indicates that the measure of R1 at time-

stamp 1 is 150. Since the measure of R1 at timestamp

2 is the same, there is no a special entry, but this

knowledge is implied from the previous entry

(1, 150). Similarly, the first root entry (1, 445) of the

same B-tree indicates that the aggregated measure

in R1 during time interval [1,3] is 445. The topmost

B-tree stores aggregated information about the whole

space, and its role is to answer queries involving

only temporal conditions (similar to that of the extra

row in Fig. 1).

Spatio-Temporal Data Warehouses. Figure 3. A solution to static regions.

2734S Spatio-Temporal Data Warehouses
To illustrate the processing algorithms, consider the

query ‘‘find the number of phone-calls initiated during

interval qT = [1,3] in all cells intersecting the window

qR shown in Fig. 3a.’’ Starting from the root of the

R-tree, the algorithm visits the B-tree of R5 since the

entry is totally contained in qR. The root of this B-tree

has entries (1,685), (4,445) meaning that the aggre-

gated measures (of all data regions covered by R5)

during intervals [1,3], [4,5] are 685 and 445, respec-

tively. Hence, the contribution of R5 to the query result

is 685. The second root entry R6 of the R-tree partially

overlaps qR, so its child node is visited, where only

entry R3 intersects qR, and thus its B-tree is retrieved.

The first entry of the root (of the B-tree) suggests that

the contribution of R3 for the interval [1,2] is 259. In

order to complete the result, the algorithm will have to

descend the second entry and retrieve the measure of
R3 at timestamp 3 (i.e., 125). The final result equals

685 + 259 + 125, which corresponds to the sum of

measures in the gray cells of Fig. 3b.
Key Applications

Traffic Control

Traffic control systems require summarized informa-

tion about areas of interest instead of the concrete

vehicle ids. Furthermore, in most cases, approximate

aggregation [11] is sufficient for tasks such as traffic

jam detection and shortest path computation.
Mobile Computing

Measures such as the number of phone-calls per cell

can help identify trends, prevent potential network

Spatio-Temporal Graphs S 2735
congestion and achieve load balancing in mobile com-

puting applications.
Sensor Systems

Spatio-temporal data warehouses can collect and store

readings from geographically distributed sensors. As an

example consider a pollution monitoring system, where

the readings from several sensors are fed into a ware-

house that arranges them in regions of similar or identi-

cal values. These regions should then be indexed for the

efficient processing of queries such as ‘‘find the areas near

the center with the highest pollution levels yesterday.’’

Future Directions
Tao and Papadias [13] discuss spatial aggrega-

tion techniques, i.e., when both the regions and their

measures are static. Tao et al. [12] present a sketch-

based aggregation technique that avoids counting the

same object twice (distinct counting problem) during

the computation of aggregates. A survey of spatio-

temporal aggregation techniques can be found in [7].

Experimental Results
[14] contains an extensive set of spatio-temporal ag-

gregation techniques for static and dynamic regions,

and experimental (as well as analytical) comparisons.
S

Data Sets
Common benchmark datasets can be found at:

www.rtreeportal.org

Cross-references
▶B+-Tree

▶Data Warehouse

▶On-Line Analytical Processing

▶R-Tree (and Family)

▶ Star Schema

Recommended Reading
1. Baralis E., Paraboschi S., and Teniente E. Materialized view

selection in a multidimensional database. In Proc. 23th Int.

Conf. on Very Large Data Bases, 1997, pp. 156–165.

2. Gray J., Bosworth A., Layman A., and Pirahesh H. Data cube: a

relational aggregation operator generalizing group-by, cross-tabs

and subtotals. In Proc. 12th Int. Conf. on Data Engineering,

1996, pp. 152–159.

3. Han J., Stefanovic N., and Koperski K. Selective materialization:

an efficient method for spatial data cube construction. In Proc.
Pacific-Asia Conf. on Knowledge Discovery and Data Mining,

1998, pp. 144–158.

4. Harinarayan V., Rajaraman A., and Ullman J. Implementing data

cubes efficiently. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1996, pp. 205–216.

5. Jurgens M. and Lenz H. The Ra*-tree: an improved R-tree with

materialized data for supporting range queries on OLAP-data.

In Proc. Int. Workshop on Database and Expert Systems Appli-

cations, 1998, pp. 186–191.

6. Kimball R. The Data Warehouse Toolkit. John Wiley, New York,

NY, 1996.

7. Lopez I., Snodgrass R., and Moon B. Spatiotemporal aggregate

computation: a survey. IEEE Trans. Knowl. and Data Eng.,

17(2):271–286, 2005.

8. Mendelzon A. and Vaisman A. Temporal queries in OLAP.

In Proc. 26th Int. Conf. on Very Large Data Bases, 2000,

pp. 242–253.

9. Papadias D., Kalnis P., Zhang J., and Tao Y. Efficient OLAP

operations in spatial data warehouses. In Proc. 7th Int. Symp.,

Advances in Spatial and Temporal Databases, 2001, pp. 443–459.

10. Stefanovic N., Han J., and Koperski K. Object-based selective

materialization for efficient implementation of spatial data

cubes. IEEE Trans. Knowl. and Data Eng., 12(6):938–958, 2000.

11. Sun J., Papadias D., Tao Y., and Liu B. Querying about the

past, the present and the future in spatio-temporal databases.

In Proc. 20th Int. Conf. on Data Engineering, 2004, pp. 202–213.

12. Tao Y., Kollios G., Considine J., Li F., and Papadias D. Spatio-

temporal aggregation using sketches. In Proc. 20th Int. Conf. on

Data Engineering, 2004, pp. 214–225.

13. Tao Y. and Papadias D. Range aggregate processing in

spatial databases. IEEE Trans. Knowl. and Data Eng., 16(12):

1555–1570, 2004.

14. Tao Y. and Papadias D. Historical spatio-temporal aggregation.

ACM Trans. Inf. Syst., 23(1):61–102, 2005.
Spatio-Temporal Databases

▶Moving Objects Databases and Tracking
Spatiotemporal Estimation

▶ Spatiotemporal Interpolation Algorithms
Spatio-Temporal Graphs

▶Time Aggregated Graphs

2736S Spatiotemporal Interpolation Algorithms
Spatiotemporal Interpolation
Algorithms

PETER REVESZ

University of Nebraska-Lincoln, Lincoln, NE, USA

Synonyms
Moving objects interpolation; Spatio-Temporal ap-

proximation; Spatiotemporal estimation
Definition
Spatiotemporal interpolation is the problem of estimat-

ing the unknown values of some property at arbitrary

spatial locations and times, using the known values

at spatial locations and times where measurements

were made. In spatiotemporal interpolation the esti-

mated property varies with both space and time, with

the assumption that the values are closer to each other

with decreasing spatial and temporal distances.

Spatiotemporal interpolation is used in spatiotem-

poral databases, which record spatial locations and

time instances together with other attributes that

are dependent on space and time. For example, a

spatiotemporal database may record the sales of houses

in a town. The house sales database records the loca-

tion, usually as the address of the house from which

an (x, y) location can be easily found, by correlating

the address with a map of the town, the calendar date

when the sale occurred, the area and the sale price of

the house.

Spatiotemporal interpolation is also used in mov-

ing objects databases to estimate the trajectory of

moving objects.
Historical Background
Spatiotemporal interpolation is a generalization of spa-

tial interpolation by the addition of a temporal dimen-

sion. While spatial interpolation is well-investigated

[1], spatiotemporal interpolation in general, including

interpolation of the trajectory of moving objects, is a

relatively new area [5].

Spatiotemporal interpolation problems were either

assumed to be just a sequence of spatial interpolation

problems, called the time slices approach, or they were

assumed to be as easily handled as adding one more

spatial dimension, called the extension approach. Li and
Revesz [10] pointed out problems with the time slices

and the extension approaches, and proposed the spa-

tiotemporal product (ST-product) approach. Gao and

Revesz [2] described several adaptive spatiotemporal

interpolation approaches that improve the ST-product

method.

Moving objects carrying positioning devices, thus

recording their positions in arbitrary spatial locations

along with their corresponding timestamps, provide

data for moving object databases. In moving object

databases a variety of spatiotemporal interpolation

methods can be applied, e.g., linear interpolation [1],

which is the most commonly adopted, and polynomial

functions and splines [6,8,11,16].
Foundations
There are several problems with the simple spatio-

temporal interpolation approaches, like the time slices

approach and the extension approach. Among these

problems the following need to be mentioned.

Poor Estimation Accuracy: The time slices approach

is not accurate in general. For example, a spatiotempo-

ral interpolation problem is to estimate the price of

houses based on sales data from sold houses in a town.

To solve this problem the time slices approach would

first select just the houses that were sold in one short

time slice, for example on a single day or in a single

week. Then the time slices approach would do a spatial

interpolation on the selected data. The accuracy of this

method is often poor, because there is simply not too

many houses sold on a single day or in a single week to

cover the town dense enough for accurate interpola-

tion. Many town subdivisions may not have a single

house sold on just one day.

Lack of Continuous Time: The time slices approach

cannot deal with continuous time.

Non-Invariance to Scaling: The extension approach

handles a k-dimensional spatial and one dimensional

temporal interpolation problem as if it were a k+1-

dimensional spatial interpolation problem. Li and

Revesz [10] pointed out that the extension approach

can also lead to problems because of the non-

invariance to scaling of many spatial interpolation algo-

rithms. Scaling invariance means that if the unit of

measurement changes in one dimension, then the esti-

mated value does not change. While many spatial in-

terpolation algorithms are scaling invariant if the units

Spatiotemporal Interpolation Algorithms S 2737

S

change in each spatial dimension, few spatial interpo-

lation algorithms are scaling invariant if the units

change only in one dimension. For example, the inverse

distance weighting (IDW) [14] spatial interpolation

method is non-invariant to scaling in only one dimen-

sion. Such methods are difficult to use because it is

difficult to decide what is the right unit of time given

certain units of spatial distance. For example, IDW

gives a different house price estimate if the unit of

time is days than if the unit of time is weeks, even

if all houses are always sold on Mondays. That is a

strange phenomenon that makes IDW inherently awk-

ward to use.

The spatiotemporal product (or ST-product) ap-

proach [10] improves the times slices method. Using

the house price estimation problem, the ST-product

approach can be explained as follows. For each house

that is sold several times according to the sales

spatiotemporal database, the ST-product approach

first estimates its price based on a simple linear

temporal interpolation between two consecutive sales.

For example, if a house was sold for $200,000 on

July 29th, 2000, and was sold for $250,000 on July 1st,

2002, then one can estimate that the price of the

house rose $500 for each of the 100 weeks between

the two sales.

After these temporal interpolations, a spatial inter-

polation is done for each week like in the time slices

method. However, since a large percentage of the values

for eachweek are filled in, the ST-product method uses a

considerably greater density of houses in the spatial

interpolation part than the time-slices method does.

Hence, in general, the ST-product method is more

accurate than the time-slices method. Further, the

ST-product method can be applied without an exact

calculation of the temporal interpolation values by

using a temporal parameter t. Then the ST-product

method yieldsan interpolation functionofx, y, and t for

any (x, y) location and time instance t, even in con-

tinuous time.

The spatiotemporal accuracy is increased further

by adoptive spatiotemporal interpolation [2]. To explain

the adoptive method, suppose R(x, y, t, w) is a spatio-

temporal relation where (x, y) is the location, t is the

time instance, and w is the measured value. The key

idea behind the adaptive method is that to interpolate

the value w at any location (a, b) at time c, where a,b

and c are constants, there are two main choices:
1. Spatial Projection + 1D temporal interpolation:

Select from R the records with x = a and y = b.

Then use any 1D temporal interpolation method

on the selected records.

2. Temporal Projection + 2D spatial interpolation: Se-

lect from R the records with t = c. Then use any 2D

spatial interpolation method on the selected

records.

When the spatial and temporal projections of R both

contain enough number of records to do an interpola-

tion at location (a, b) and time c, then one could

choose either (1) or (2) as an option. These two

options may give different interpolation values.

Which one of the two estimates is more reliable? The

choice-based adaptive interpolation method decides that

question based on the relationship strength measures for

space and time. Intuitively, the larger the relationship

strength measure for space (or time), the more reliable

is the estimation using a spatial (or temporal) interpo-

lation. These measures are denoted by the following

symbols:

Sða; b; cÞ – the relationship strength measure for space

at location (a, b) and time c.

T ða; b; cÞ – the relationship strength measure for time

at location (a, b) and time c.

Both measures are localized, hence the spatial relation-

ship strength can be larger than the temporal rela-

tionship strength at some locations and times, while

the reverse may be true at a different location and

time within the same problem. The choice-based

adaptive method works as follows whenever there is a

choice:

Spatial interpolation if S(a, b, c) > T (a, b, c)

Temporal interpolation if S(a, b, c) � T (a, b, c)

(1)

8<
:

Both the ST-product and the choice-based adaptive

methods first interpolate the missing values for the

(a, b) locations for which several measurements at

different times are known. While the ST-product

method always preferred to do a temporal interpola-

tion, the adaptive method at some spatiotemporal

locations will prefer to do a spatial interpolation.

This is the only reason why the two interpolation

results may disagree. Finally, for both methods the

2738S Spatiotemporal Interpolation Algorithms
non-measurement locations, that is, the locations that

do not appear in the original data set, need to be

estimated using some 2D spatial interpolation.

Gao and Revesz [2] suggested several spatial and

temporal relationship strength measures. A simple

measure is to use the inverse of the variance of the

measured values in the spatial neighborhood of (a, b),

which is defined as the nearest k other (a, b) locations

for some integer k, as the spatial relationship strength.

Similarly, one can use the inverse of the variance

of the two measures at the earliest time following c,

and latest time preceding c, as the temporal relation-

ship strength. As an alternative to the choice-based

adaptive interpolation approach, [2] also proposed a

linear combination adaptive interpolation approach,

which gives a weighted linear sum of the two esti-

mates. The weights depend on the relative magnitudes

of the spatial and temporal relationship strength

measures.

Trajectory of Moving Objects: The estimation of the

trajectory of moving objects can also be viewed as a

spatiotemporal interpolation problem. Applying the

above described ideas, in each sensor location the

moving object can be either sensed with value one or

not sensed and assigned a value zero. However, there

are more advanced interpolation techniques, which

associate each moving object’s approximated position

with an uncertainty factor [9,12,15].

Key Applications
Spatiotemporal interpolation has a growing number of

applications, in areas such as the following:

1. Real Estate Analysis: In an experiment with a data-

base of house sales in the town of Lincoln,

Nebraska, USA, the ST-product method had less

than a 9%mean absolute error in estimating house

prices [10]. The surprising feature of the estimation

was that nothing special was known about the

houses except their locations, sizes in square feet,

and prices. The estimation could be easily im-

proved with a visit to the houses to check their

conditions. The house price estimation can tell

whether some given houses in given years were

assessed too high or too low taxes.

2. Weather Analysis: Weather is a spatiotemporal phe-

nomenon that shows several cyclical patterns. The

ST-product spatiotemporal interpolation method

was used for ground water level and drought
analysis. Carbon dioxide concentrations over time

is another application area.

3. Epidemiology: Spatiotemporal interpolation was

also used to predict the spread of epidemics, for

example, the spread of the West Nile Virus in the

continental USA [13].

4. Forest Fires: The spread of forest fires can be pre-

dicted similar to the spread of epidemics.

5. Traffic Accident Report: In a traffic accident report

spatiotemporal interpolation may be used to esti-

mate the trajectories of the vehicles that were

involved in the accident. An accurate estimation

may be important to decide what caused the acci-

dent and to get insurance payments.

Future Directions
There are still several problems about the relation-

ship of spatiotemporal interpolation and prediction

of spatiotemporal phenomena. Spatiotemporal inter-

polation seems to work best if one is interested in a

location that is in the middle of the space, and in a

time that is in the middle of the time interval recorded.

Predictions are at future times, hence they use specia-

lized algorithms. For example, voting prediction is a

research area in itself and has many specialized techni-

ques different from the spatiotemporal interpolation

approaches. For example, when one is trying to predict

the outcome of an election in a voting district A, one

cannot use the time-slices, the ST-product, and the

adoptive interpolation approaches because there are

no spatial neighbors in general. There are some excep-

tions to this rule. For example, if the neighboring

voting districts have all already reported their election

results while the votes in district A are still being

(re)counted, then one can predict the outcome in

voting district A using the results of the neighboring

districts [3].

While voting problems are almost always predic-

tion problems, on occasion, analysis of past election

results may be also interesting, for example, to identify

and help settle possible election fraud cases in the past.

Predicting other spatiotemporal behaviors beside vot-

ing, for example, the number of customers in a town

who would buy a certain product is also an important

area of interest.

Spatiotemporal databases can be conveniently

represented using constraint databases [7]. Constraint

databases allow convenient handling of different types

of interpolation data [4].

Spatio-Temporal Selectivity Estimation S 2739
Cross-references
▶Constraint Databases

▶Databases

▶Moving Object

▶Moving Objects Databases and Tracking
S

Recommended Reading
1. Davis P.J. Interpolation and Approximation. Dover, NY,

USA, 1975.

2. Gao J. and Revesz P. Adaptive spatiotemporal interpolation

methods. In Proc. First Int. Conf. on Geometric Modeling,

Visualization, and Graphics, 2005, pp. 1622–1625.

3. Gao J. and Revesz P. Voting prediction using new spatiotemporal

interpolation methods. In Proc. 7th Int. Conf. on Digital Gov-

ernment Research, 2006, pp. 293–300.

4. Grumbach S., Rigaux P., and Segoufin L. Manipulating inter-

polated data is easier than you thought. In Proc. 26th Int. Conf.

on Very Large Data Bases, 2000, pp. 156–165.

5. Güting R. and Schneider M. Moving Objects Databases. Morgan

Kaufmann, Los Altos, CA, 2005.

6. Hadjieleftheriou M., Kollios G., Tsotras V.J., and Gunopulos D.

Efficient indexing of spatiotemporal objects. In Advances in Data-

base Technology, Proc. 8th Int. Conf. on Extending Database

Technology, 2002, pp. 251–268.

7. Kanellakis P.C., Kuper G.M., and Revesz P. Constraint query

languages. J. Comput. Syst. Sci., 51(1):26–52, 1995.

8. Koubarakis M., Sellis T.K., Frank A.U., Grumbach S., Güting R.

H., Jensen C.S., Lorentzos N.A., Manolopoulos Y., Nardelli E.,

Pernici B., Schek H.-J., Scholl M., Theodoulidis B., and

Tryfona N. (eds.). Spatio-Temporal Databases: The CHORO-

CHRONOS Approach, LNCS 2520. Springer, 2003.

9. Kuijpers B. and Othman W. Trajectory databases: Data

models, uncertainty and complete query languages. In Proc.

11th Int. Conf. on Database Theory, 2007, pp. 224–238.

10. Li L. and Revesz P. Interpolation methods for spatiotem-

poral geographic data. J. Comput. Environ. Urban Syst.,

28(3):201–227, 2004.

11. Ni J. and Ravishankar C.V. Indexing spatio-temporal trajectories

with efficient polynomial approximations. IEEE Trans. Knowl.

Data Eng., 19(5):663–678, 2007.

12. Pfoser D. and Jensen C.S. Capturing the uncertainty of moving-

object representations. In Proc. Int. Symp. on Large Spatial

Databases, 1999, pp. 111–132.

13. Revesz P. and Wu S. Spatiotemporal reasoning about epidemio-

logical data. Artif. Intell. Med., 38(2):157–170, 2006.

14. Shepard D.A. A two-dimensional interpolation function for

irregularly spaced data. In Proc. 23rd ACM National Conf.,

1968, pp. 517–524.

15. Trajcevski G., Wolfson O., Zhang F., and Chamberlain S. The

geometry of uncertainty in moving objects databases. In

Advances in Database Technology, Proc. 8th Int. Conf. on

Extending Database Technology, 2002, pp. 233–250.

16. Yu B., Kim S.H., Bailey T., and Gamboa R. Curve-based represen-

tation of moving object trajectories. In Proc. 8th Int. Database

Engineering and Applications Symp., 2004, pp. 419–425.
Spatio-Temporal OLAP

▶ Spatio-Temporal Data Warehouses
Spatio-Temporal Online Analytical
Processing

▶ Spatio-Temporal Data Warehouses
Spatio-Temporal Representation

▶ Spatio-Temporal Trajectories
Spatio-Temporal Selectivity
Estimation

GEORGE KOLLIOS

Boston University, Boston, MA, USA

Synonyms
Selectivity for predictive spatio-temporal queries

Definition
In spatio-temporal databases, the locations of moving

objects are usually modeled as linear functions of time.

Thus, the location of an object at time t is represented as

o(t) = os þ ovt, where os is the initial location of the

object at time t = 0 and ov is its velocity. Given that the

object moves in a d�dimensional space, o(t), os, and ov
are d�dimensional vectors. In this setting, the selectivity

estimation of spatio-temporal queries is defined as

follows:

Given a database that stores the locations of moving

objects and a spatio-temporal query, estimate the number

of objects that satisfy the query.

There are two important types of queries in this envi-

ronment: spatio-temporal window (or range) queries

and spatio-temporal distance join queries. A spatio-

temporal window query (STWQ) specifies a (static or

moving) region qS, a future time interval qT, and a

2740S Spatio-Temporal Selectivity Estimation
dataset of moving objects D, and retrieves all data

objects that will intersect (or will be covered by) qS
during qT. On the other hand, a spatio-temporal dis-

tance join query (STDJQ) assumes two datasets DA

and DB of moving objects, a time period qT and a

distance qd, and asks for the pairs of objects (oa, ob)

that oa 2 DA, ob 2 DB and are closer than qd during the

time interval qT .

Historical Background
The problem of spatio-temporal selectivity estimation is

related to spatio-temporal indexing and spatial selectiv-

ity estimation. In the spatio-temporal indexing problem

the system must report all the objects that satisfy the

query; here the system must just give an estimate on the

number of such objects. In spatial selectivity estimation

the main difference is that the objects are static and

therefore easier to model and represent succinctly.

In particular, selectivity estimation for spatial queries

is based on spatial histograms. A histogram partitions

the data space into a set of buckets, and the object

distribution in each bucket is assumed to be (almost)

uniform. A bucket B stores the number B.num of

objects whose centroids fall in B, and the average extent

B.len of such objects. Consider a window query Q.

Then, using an analysis based on uniformly distributed

data [12,7], the expected number of qualifying objects

in B is approximated by B:num I :area
B:area , where I.area is

the area of the intersection of the query Q with bucket

B and B.area the area of B. The total number of objects

intersecting Q is estimated by summing the results of

all buckets. Evidently, satisfactory estimation accuracy

depends on the degree of uniformity of objects’ dis-

tributions in the buckets. An example of a histogram

construction that generates nearly uniform buckets for

spatial datasets appeared in [1].

Another approach uses spatial sketches to esti-

mate the selectivity of spatial queries and in addition

provides probabilistic guarantees on the quality of

the estimation [4]. In particular, given a dataset D

of n spatial rectangles (points are assumed to be degen-

erated rectangles) it is possible to create a synopsis

for each dataset, which has size poly-logarithmic to

n and proportional to 1
E2 , and provides answers that

with high probability are 	 e away from the exact

answer. The synopsis is based on AGMS sketches [2]

extended to handle multidimensional intervals (rec-

tangles) in poly-logarithmic space. Note that the his-

togram based techniques provide no guarantees on
the estimation quality (e.g., in the worst case the

error can be arbitrary large), but work well in most

practical cases.
Foundations
To estimate the selectivity of STWQs efficiently two

basic approaches have been proposed. One is based on

random sampling and the other on spatio-temporal

histograms. Moreover, the histogram based approach

can be extended for STDJQs as well.
Selectivity Estimation for STWQ

The simplest approach is to use random sampling [6].

Given a dataset of n moving objects the method keeps

a uniform random sample S of the set of moving

objects that is used to estimate the result. Note that

each time an object issues an update, the function

that represents its location in the database must

change. Therefore, a tuple must be deleted (the one

that corresponds to the old function) and a new one

must be inserted. To maintain a uniform random

sample in such a dynamic environment a specialized

solution must be used [5,9]. For a query Q, let r be the

size of the result of Q over the random sample S. Then,

the method estimates the result of Q as r n
jSj , where jSj

is the size of S. If the set of queries is known before-

hand, then a technique that is based on stratified

sampling can be applied which reduces the size of the

sample and increases the accuracy of the estimator.

This improved method is called Venn sampling and

appeared in [10].

The other approach is based on spatio-temporal

histograms. For d�dimensional moving points, the

histogram is constructed in a 2d�dimensional space,

where d dimensions represent the coordinates of the

moving objects at a reference time instant (e.g., t = 0)

and the other d dimensions their velocity. Each bucket

stores the number of objects and the minimum and

maximum locations and velocities of these objects in

each dimension. Furthermore, it is assumed that the

objects are distributed uniformly inside the bucket.

Based on that, a query estimation procedure is used to

find the percentage of the objects in each bucket that are

expected to intersect the query. Then, the (approxi-

mate) result of Q is obtained by summing the contri-

butions of all buckets (see [3,6,11] for more details).

The spatio-temporal histogram can also be dynami-

cally maintained in the presence of object updates.

Spatio-Temporal Stream Processing S 2741
Selectivity Estimation for STDJQ

For estimating the size of a STDJQ between two sets of

moving objects DA and DB, two spatio-temporal histo-

grams are maintained, one for each set. Then, there are

two approaches to estimate the size of the join. In one

approach, the distance between objects is defined using

the Lmax norm, i.e., given two d�dimensional points a

and b, their distance is: dist(a, b) = maxi=1,2,...,dja.xi� b.

xij. Because of the independence between the dimen-

sions under this distance, the selectivity of the join

query can be estimated using the selectivity of each

dimension independently of the others. Thus, the se-

lectivity of a STDJQ Q is expressed as Sel(Q) ¼
Pd

i=1Seli(Q). Furthermore, the Seli(Q) can be estimated

using the projections of the buckets to dimension i.

More details can be found in [8].

In the other approach, the distance function is the

L2 metric (i.e., Euclidean distance), and a more com-

plicated formula is used to estimate the selectivity of

the query. The analysis is based on the following idea:

consider a moving object p1 with specific location and

velocity and another object p2 with fixed velocity. Also,

assume that the location of p2 is distributed uniformly

in space. Based on these assumptions, it is possible to

compute the probability that p2 will satisfy the query.

Moreover, using this probability, the selectivity of the

SPDJQ can be estimated. Note that, this method can be

used for both moving points and moving rectangles

and can be extended to other Lp norms. The details of

this technique appears in [11].
S

Key Applications
Selectivity estimation is used extensively in database

query optimization. Therefore, the techniques devel-

oped for spatio-temporal selectivity estimation can be

useful in systems that need to generate execution plans

for spatio-temporal queries. Also, many application like

traffic monitoring, sensor networks or mobile commu-

nications, require aggregate information about the loca-

tions of moving objects. Furthermore, getting the exact

answer to these queries can be very expensive. In that

case, fast approximate answers on spatio-temporal ag-

gregation queries using the techniques discussed above

is the best alternative.
Future Directions
Current techniques for spatio-temporal selectivity

estimation use the assumption that objects move
linearly over time. However, in many real life applica-

tion this may not be a good approximation. It is an open

problem how to extend the existing techniques to han-

dle moving objects with non-linear motion functions.

Cross-references
▶ Indexing of the Current and Near-Future Positions

of Moving Objects

▶ Spatio-Temporal Data Warehouses

Recommended Reading
1. Acharya S., Poosala V., and Ramaswamy S. Selectivity estimation

in spatial databases. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1999, pp. 13–24.

2. Alon N., Gibbons P.B., Matias Y., and Szegedy M. Tracking join

and self-join sizes in limited storage. In Proc. 18th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1999, pp. 10–20.

3. Choi Y.-J. and Chung C.-W. Selectivity estimation for

spatio-temporal queries to moving objects. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2002, pp. 440–451.

4. Das A., Gehrke J., and Riedewald M. Approximation techniques

for spatial data. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2004, pp. 695–706.

5. Frahling G., Indyk P., and Sohler C. Sampling in dynamic data

streams and applications. In Proc. Symp. on Computational

Geometry, 2005, pp. 142–149.

6. Hadjieleftheriou M., Kollios G., and Tsotras V.J. Performance

evaluation of spatio-temporal selectivity estimation techniques.

In Proc. 15th Int. Conf. on Scientific and Statistical Database

Management, 2003, pp. 202–211.

7. Pagel B.-U., Six H.-W., Toben H., and Widmayer P. Towards an

analysis of range query performance in spatial data structures.

In Proc. 12th ACM SIGACT-SIGMOD-SIGART Symp. on Prin-

ciples of Database Systems, 1993, pp. 214–221.

8. Sun J., Tao Y., Papadias D., and Kollios G. Spatio-temporal join

selectivity. Inf. Syst., 31(8):793–813, 2006.

9. Tao Y., Lian X., Papadias D., and Hadjieleftheriou M. Random

sampling for continuous streams with arbitrary updates. IEEE

Trans. Knowl. Data Eng., 19(1):96–110, 2007.

10. Tao Y., Papadias D., Zhai J., and Li Q. Venn sampling: a novel

prediction technique for moving objects. In Proc. 21st Int. Conf.

on Data Engineering, 2005, pp. 680–691.

11. Tao Y., Sun J., and Papadias D. Analysis of predictive spatio-

temporal queries. ACM Trans. Database Syst., 28(4):295–336,

2003.

12. Theodoridis Y. and Sellis T. A model for the prediction of R-tree

performance. In Proc. 15th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 1996, pp. 161–171.
Spatio-Temporal Stream Processing

▶Continuous Monitoring of Spatial Queries

Spatio-Temporal Trajectories. Figure 1. The

spatio-temporal trajectory of a moving point: dots

2742S Spatio-Temporal Trajectories
Spatio-Temporal Trajectories

ELIAS FRENTZOS
1, YANNIS THEODORIDIS

1,

APOSTOLOS N. PAPADOPOULOS
2

1University of Piraeus, Piraeus, Greece
2Aristotle University, Thessaloniki, Greece

Synonyms
Moving object trajectories; Spatio-temporal

representation

represent sampled positions and lines in between

represent alternative interpolation techniques (linear vs.

arc interpolation). Unknown type of motion can be also

found in a trajectory (see [t3, t4) time interval).
Definition
A spatio-temporal trajectory can be straightforwardly

defined as a function from the temporal I
R domain

to the geographical space R2, i.e., the 2-dimensional

plane. From an application point of view, a trajectory

is the recording of an object’s motion, i.e., the record-

ing of the positions of an object at specific timestamps.

Generally speaking, spatio-temporal trajectories

can be classified into two major categories, according

to the nature of the underlying spatial object:

(i) objects without area represented as moving points,

and (ii) objects with area, represented as moving

regions; in this case the region extent may also change

with time. Among the above two categories, the for-

mer has attracted the main part of the research

interest, since the majority of real-world applications

involving spatio-temporal trajectories consider objects

represented as points, e.g., fleet management systems

monitoring cars in road networks.

Focusing on trajectories of moving points, while

the actual trajectory consists of a curve, real-world

requirements imply that the trajectory has to be built

upon a set of sample points, i.e., the time-stamped

positions of the object. Thus, trajectories of moving

points are often defined as sequences of (x, y, t) triples:

T ¼ fðx1; y1; t1Þ; ðx2; y2; t2Þ;:::;ðxn; yn; tnÞg;

where xi,yi,ti 2R, and t1 < t2 < ... < tn, and the actual

trajectory curve is approximated by applying spatio-

temporal interpolation methods on the set of sample

points; among the proposed in the literature spatio-

temporal interpolation techniques, the notion of linear

interpolation has been widely adopted, given that it is

fast, natural, and easy to implement (Fig. 1).

There are several techniques developed merely

for the management of spatio-temporal trajectories

in databases: spatio-temporal models and languages,
indexing of historical spatio-temporal data, advan-

ced query processing, and trajectory summarization

techniques.
Historical Background
From a modeling perspective, the concept of spatio-

temporal trajectories was introduced in some early

works [6,7,10], which addressed the need for capturing

the complete history of objects’ movement. Clearly, as

location data may change over time, the database must

contain the whole history of this development. Thus,

the DBMS should be allowed to go back in time at any

particular timestamp, and to retrieve the state of the

database at that time. More specifically, [11] models

moving points (mpoints) and moving regions (mre-

gions) as 3-dimensional (2D space + time) or higher-

dimensional entities whose structure and behavior is

captured by modeling them as abstract data types.

Such types and their operations for spatial values

changing over time can be integrated as base (attri-

bute) data types into an extensible DBMS. Guting et al.

[11] introduced a type constructor t which transforms

any given atomic data type a into a type t(a) with

semantics t(a) = time ! a. In this way, the two afore-

mentioned basic types, namely mpoint and mregion,

may be also represented as t(point) and t(region),
respectively. Guting et al. [11] also provided an algebra

with data types (such as moving point, moving region,

moving real, etc.) together with a comprehensive set of

operations, supporting a variety of queries of spatio-

temporal trajectory data.

On another line of research, [14] first dealt with the

special requirements that spatio-temporal trajectories

Spatio-Temporal Trajectories. Table 1. Classification of

spatio-temporal queries

Query type Operation

Coordinate-based Overlap, inside, etc.

Trajectory-
based

Topolo-
gical

Enter, leave, cross, bypass, etc.

Naviga-
tional

Travelled distance, covered area,
speed, heading, etc.

Spatio-Temporal Trajectories S 2743
pose to the database engine, in terms of efficient index

structures and specific query processing techniques. In

particular, [14] addressed the most commonly used

queries over spatio-temporal trajectories and classified

them according to Table 1. Based on the observation

that many query types are trajectory-based (i.e., they

require the knowledge of a significant part of the

moving objects’ trajectory), [14] proposed the Trajecto-

ry Bundle tree (TB-tree), based on the well-known

R-tree, considered as a seminal work in the context of

Indexing Historical Spatio-temporal Data.
S

Foundations
Spatio-temporal trajectories may be queried with a

variety of operators, which are mainly extensions of

existing spatial operators. Among them, the simple

spatio-temporal range query, involving both spatial and

temporal components over R-tree structures indexing

spatio-temporal trajectories, is a straightforward gen-

eralization of the standard R-tree FindLeaf algorithm in

the 3-dimensional space. Nearest neighbor queries have

been also considered in the context of spatio-temporal

trajectories; the algorithms over R-trees and variations

(e.g., TB-tree) proposed in [8], are based on both

depth-first and best-first R-tree traversals, similar to

the algorithms used for nearest neighbor querying

over spatial data. The proposed algorithms vary with

respect to the type of the query object (stationary or

moving point) as well as the type of the query result

(historical continuous or not), thus resulting in four

types of nearest neighbor queries.

Trajectory join has been also investigated in several

papers motivated as an extension of the respective

spatial operator. Bakalov et al. in [3] consider the pro-

blem of evaluating all pairs of trajectories between two

datasets, during a given time interval, which, given a

distance function, all distances between timely
corresponding trajectory positions are within a given

threshold. Then an approximation technique is used to

reduce the trajectories into symbolic representations

(strings) so as to lower the dimensionality of the origi-

nal (3-dimensional) problem to one. Using the con-

structed strings, a special lower-bounding metric

supports a pruning heuristic which reduces the number

of candidate pairs to be examined. The overall schema

is subsequently indexed by a structure based on the

B-tree, requiring also minimal storage space. Another

variation on the subject of joining trajectories is

the closest-point-of-approach recently introduced in

[2]. Closest-point-of-approach requires finding all pairs

of line segments between two trajectories such that their

distance is less than a predefined threshold. The work

presented in [2] proposes three approaches; the first

utilizes packed R-trees treating trajectory segments as

simple line segments in the d + 1 dimensional space,

and then employs the well known R-tree spatial join

algorithm which requires carefully controlled syn-

chronized traversal of the two R-trees. The second is

based on a plane sweep algorithm along the temporal

dimension, while the third is an adaptive algorithm

which naturally alters the way in which it computes

the join in response to the characteristics of the

underlying data.

Much more challenging are the so called similarity-

based queries over spatio-temporal trajectory data. Sim-

ilarity search has been extensively studied within the

time series domain; consequently, techniques addressed

there, are usually extended in the spatio-temporal

domain, in which spatio-temporal trajectories are con-

sidered as time series. Traditionally, similarity search

has been based on the Euclidean Distance between

time series, nevertheless having several disadvantages

which the following proposals are trying to confront.

In particular, in order to compare sequences with

different lengths, [12] use the Dynamic Time Warping

(DTW) technique that allows sequences to be stretched

along the time axis so as to minimize the distance

between sequences. Although DTW incurs a heavy

computation cost, it is robust against noise. Moreover,

in order to reduce the effect of its quadratic complexity

on large time series, a lower bounding function along

with a dedicated index structure has been proposed

for pruning in [12]. Longest Common SubSequence

(LCSS) measure [16] matches two sequences by allow-

ing them to stretch, without rearranging the sequence

of the elements, also allowing some elements to be

Spatio-Temporal Trajectories. Figure 2. Top-down

Douglas-Peucker algorithm used for trajectory

compression. Original data points are represented by

closed circles [MB04] [13].

2744S Spatio-Temporal Trajectories
unmatched (which is the main advantage of the LCSS

measure compared to Euclidean Distance and DTW).

Therefore, LCSS can efficiently handle outliers and

different scaling factors. In [5], a distance function,

called Edit Distance on Real Sequences (EDR), was

introduced. EDR distance function is based on the

edit distance, which is the number of insert, delete, or

replace operations that are needed to convert a trajec-

tory T into Q. In the respective experimental study

presented in [5], EDR was shown to be more robust

than DTW and LCSS over trajectories with noise. In

order to speed up the similarity search between trajec-

tories, both [16] and [5], rely on dedicated index

structures, thus achieving pruning of over 90% of the

total number of indexed trajectories. However, such

approaches fail to utilize the most commonly available

access methods for Indexing Historical Spatio-temporal

Data such as R-trees, leading to additional overhead.

In order to overcome this disadvantage, [9] employ the

average Euclidean distance between two trajectories as

a measure of their dissimilarity, and then, using R-trees

indexing spatio-temporal trajectories provide a series

of metrics and heuristics which efficiently prune the

search space. These metrics are based (i) on the obser-

vation that an upper value for the speed of the spatio-

temporal trajectories can provide lower and upper

bounds of the average Euclidean distance between

two trajectories, and (ii), on the fact that a best-first

R-tree traversal on the mindist(N,q) between a query

trajectory q and a node N, provides a tighter lower

bound for the average Euclidean distance. Finally, [9]

provide an efficient algorithm for k-most similar tra-

jectory search over R-trees indexing spatio-temporal

trajectories.

In the indexing domain, a challenging line of re-

search deals with network-constrained trajectories; this

is due to the fact that the majority of the applications

involving spatio-temporal trajectories deal with objects

moving along road networks (i.e., cars, buses, trains).

Following this observation, several specific access

methods for objects moving in networks have been

proposed; among them the most efficient is the

Moving Objects in Networks tree (MON-tree) [1].

However, in order to exploit such network constrained

indexes, the need for mapping the trajectories into the

underlying network introduces the so called map

matching problem. Specifically, the observation that

raw trajectory positions are affected by the
measurement error introduced by e.g., GPS, and, the

sampling error being up to the frequency with which

position samples are taken, reveals the problem of

correctly matching such tracking data in an underlying

map containing e.g., a road network. Currently, the

state-of-the-art approach addressing the map match-

ing problem is the one presented in [4], which pro-

poses mapping the entire trajectory to candidate paths

in the road network using the Fréchet distance, which

can be illustrated as follows: suppose a human and her

dog constrained to walk on two different curves, while

they are both allowed to control their speed indepen-

dently. Then, the Fréchet distance between the two

curves is the minimal length of a leash that is necessary.

The proposed global map-matching algorithms in [4]

find a curve in the road network that is as close as

possible to the given trajectory in terms of the Fréchet

distance between them.

Last but not least, it is the need for compression

techniques that arises due to the fact that all the ubiqui-

tous positioning devices will eventually start to generate

an unprecedented stream of time-stamped positions,

leading to storage and computation challenges [13]. In

this direction, [13] exploit existing algorithms used

in the line generalization field, and present one top-

down and one opening window algorithm, which can

be directly applied to spatio-temporal trajectories.

The top-down algorithm, named TD-TR, is based

on the well known Douglas-Peucker algorithm (Fig. 2)

originally used in the context of cartography. This

algorithm calculates the perpendicular distance of

each internal point from the line connecting the first

and the last point of the polyline (line AB in Fig. 2)

and finds the point with the greatest perpendicular

distance (point C). Then, it creates lines AC and CB

Spatio-Temporal Trajectories S 2745
and, recursively, checks these new lines against the

remaining points with the same method. When the

distance of all remaining points from the currently

examined line is less than a given threshold (e.g., all

the points following C against line BC in Fig. 2) the

algorithm stops and returns this line segment as part of

the new – compressed – polyline. Being aware of the

fact that trajectories are polylines evolving in time, the

algorithm presented in [13] replaces the perpendicular

distance used in the DP algorithm with the so-called

Synchronous Euclidean Distance (SED), which is the

distance between the currently examined point (Pi in

Fig. 3) and the point of the line (Ps, Pe) where the

moving object would lie, assuming it was moving on

this line, at time instance ti determined by the point

under examination (Pi’ in Fig. 3). The experimental

study presented in [13] shows that such compression

techniques introduce a small and manageable error,

reducing at the same time the size of the dataset

under 40% of its original size.
Key Applications
� Location-based Services (LBS) – Spatio-temporal

trajectories are used in location-based services

for determining the exact position of users, based

on the map-matching solutions provided over

trajectories.

� Spatio-temporal Decision Support Systems (STDSS) –

A number of decision support tasks can exploit

the presence of spatio-temporal trajectories. Traffic

estimation and prediction systems. Analysis of
Spatio-Temporal Trajectories. Figure 3. The

Synchronous Euclidean Distance (SED): The distance is

calculated between the point under examination (Pi) and

the point Pi’ which is determined as the point on the line

(Ps, Pe) the time instance ti [MB04] [13].
traffic congestion conditions. Fleet management

systems. Urban and regional planers analyzing the

life courses of city residents. Scientists studying

animal immigration habits.
Future Directions
There are several research directions arising regarding

spatio-temporal trajectory data management. For ex-

ample, the problem of estimating the selectivity of a

range query over historical trajectory data still remains

open. More specifically, such a technique would have

to deal with the distinct counting problem [15], which

is also present in the context of Spatio-temporal Data

Warehouses. This problem stands when an object sam-

ples its position in several timestamps inside a given

query window resulting to be counted multiple times

in the query result. Nevertheless, a selectivity estima-

tion technique based on a space partitioning method,

such as a histogram, would had to return the number

of distinct trajectories contained inside the query re-

gion, summing the containment of several buckets;

then trajectories appearing in several buckets would

had to be counted only once.

Another interesting research direction appears when

considering network-constraint trajectory compression;

in particular, existing compression techniques do not

consider that trajectories may be network-constraint,

resulting in trajectories which after the compression

may be invalid regarding the underline network. As

such, future work should investigate on techniques

which may produce compressed trajectories being still

valid under the network constraints.
S
Experimental Results
In general, for every presented method, there is an

accompanying experimental evaluation in the corres-

ponding reference.

Data Sets
A collection of real spatio-temporal datasets, as well

as links to generators for spatio-temporal trajectory

data can be found at R-tree portal (URL: http://www.

rtreeportal.org/).
Url to Code
R-tree portal (URL: http://www.rtreeportal.org/) con-

tains the code for most common spatio-temporal

2746S SPC Query
indexes, as well as data generators and several useful

links on spatio-temporal databases.
Cross-references
▶ Indexing Historical Spatio-Temporal Data

▶Nearest Neighbor Query

▶Road Networks

▶Rtree

▶ Spatial

▶ Spatial and Spatio-Temporal Data Models and

Languages

▶ Spatial Join

▶ Spatio-Temporal Data Warehouses

▶ Spatiotemporal Interpolation Algorithms
Recommended Reading
1. Almeida V.T. and Guting R.H. Indexing the trajectories of

moving objects in networks. GeoInformatica, 9(1):33–60, 2005.

2. Arumugam S. and Jermaine C. Closest-point-of-approach join

for moving object histories. In Proc. 22nd Int. Conf. on Data

Engineering, 2006, p. 86.

3. Bakalov P., Hadjieleftheriou M., Keogh E., and Tsotras V.

Efficient trajectory joins using symbolic representations. In

Proc. 6th Int. Conf. on Mobile Data Management, 2005,

pp. 86–93.

4. Brakatsoulas S., Pfoser D., Salas R., and Wenk C. On map-

matching vehicle tracking data. In Proc. 31st Int. Conf. on

Very Large Data Bases, 2005, pp. 853–864.

5. Chen L., Özsu M.T., and Oria V. Robust and fast similarity

search for moving object trajectories, In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2005, pp. 491–502.

6. Chomicki J. and Revesz P. A geometric framework for specifying

spatiotemporal objects. In Proc. 6th Int. Workshop Temporal

Representation and Reasoning, 1999, pp. 41–46.

7. Erwig M., Güting R.H., Schneider M., and Varzigiannis M.

Spatio-temporal data types: an approach to modeling and

querying moving objects in databases. GeoInformatica,

3(3):265–291, 1999

8. Frentzos E., Gratsias K., Pelekis N., and Theodoridis Y. Algo-

rithms for nearest neighbor search on moving object trajectories.

Geoinformatica, 11(2):159–193, 2007.

9. Frentzos E., Gratsias K., and Theodoridis Y. Index-based most

similar trajectory search. In Proc. 23rd Int. Conf. on Data

Engineering, 2007, pp. 816–825.

10. Forlizzi L., Güting Nardelli E., and Schneider M. A data

model and data structures for moving objects databases.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2000, pp. 319–330.

11. Guting R.H., Bohlen M.H., Erwig M., Jensen C.S.,

Lorentzos N.A., Schneider M., and Vazirgiannis M. A founda-

tion for representing and querying moving objects. ACM Trans.

Database Syst., 25(1):1–42, 2000.

12. Keogh E. Exact indexing of dynamic time warping. In Proc. 28th

Int. Conf. on Very Large Data Bases, 2002, pp. 406–417.
13. Meratnia N. and By R. Spatiotemporal compression techniques

for moving point objects. In Advances in Database Technology,

Proc. 9th Int. Conf. on Extending Database Technology, 2004,

pp. 765–782.

14. Pfoser D., Jensen C.S., and Theodoridis Y. Novel approaches to

the indexing of moving object trajectories. In Proc. 26th Int.

Conf. on Very Large Data Bases, 2000, pp. 395–406.

15. Tao Y., Kollios G., Considine J., Li F., and Papadias D. Spatio-

temporal aggregation using sketches. In Proc. 20th Int. Conf. on

Data Engineering, 2004, pp. 214–226.

16. Vlachos M., Kollios G., and Gunopulos D. Discovering similar

multidimensional trajectories. In Proc. 18th Int. Conf. on Data

Engineering, 2002, pp. 673–684.
SPC Query

▶Conjunctive Query
SPCU-Algebra

▶ Positive Relational Algebra
Specialization

▶Abstraction
Specialization and Generalization

BERNHARD THALHEIM

Christian-Albrechts University Kiel, Kiel, Germany

Synonyms
Refinement; Abstraction; Hierarchies

Definition
Specialization and generalization are main princi-

ples of database modeling. Specialization is based on

a refinement of types or classes to more specific ones.

Generalization maps or groups types or classes to more

abstract or combined ones. Typically, generalizations

and specializations form a hierarchy of types and

classes.

Specificity S 2747

S

Key Points
Specialization introduces a new entity type by adding

specific properties belonging to that type, which are

different from the general properties of its more gen-

eral type. Is-A associations specialize a type to a more

specific one. Is-A-Role-Of associations consider a spe-

cific behavior of objects. Is-More-Specific-To associa-

tions specialize properties of objects of the more

general type. The student type and the customer type

are specializations of the person type. The rectangle

type is specialized to the square type by adding

restrictions. Different kinds of specialization may be

distinguished: structural specialization which extends

the structure, semantic specialization which strength-

ens type restrictions, pragmatic specialization which

allows a separation of the different usage of objects in

contexts, operational specialization which introduces

additional operations, and hybrid specializations.

Identification and other properties of objects of the

special type can be inherited from the more general

one. Methods applicable to objects of the more general

one should be applicable to corresponding more

special objects or specialized as well. Exceptions can

be modeled by specializations. Specialization allows

developers to avoid null values and to hide details

from non-authorized users.

Generalization combines common features, attri-

butes, or methods of types. It is based either on abstrac-

tion, on combination or on grouping. Generalization

often tends to be an abstraction in which a more general

type is defined by extracting common properties of

one or more types while suppressing the differences

between the subtypes. The subtypes can be virtually

clustered by or generalized to or combined by a view to

a general type. The library’s holding type is a generaliza-

tion of the journal, book, preprint and PhD/Master

thesis types. The occupation type is a generalization of

the lawyer, merchant, teacher and banker types. It is

obtained by factoring out the commonalities among

the specializations. Structural combination typically

assumes the existence of a unifiable identification of

all types. The livestock type combines the different types

of farming. Generalization is represented by clusters of

types. The cluster construct of the extended ER model

represents common properties and abstractions. Iden-

tification of generalized objects is either inherited from

the more special objects or built as an abstraction of the

identification of themore special types. Generalizations

often do not have their own methods.
Cross-references
▶Database Fundamentals – Semantic Data Models

Recommended Reading
1. Ter Bekke J.H. Semantic Data Modeling. Prentice-Hall,

London, 1992.

2. Thalheim B. Entity-Relationship Modeling – Foundations of

Database Technology. Springer, Berlin Hiedelberg New York,

2000.
Specificity

JOVAN PEHCEVSKI
1, BENJAMIN PIWOWARSKI

2

1INRIA Paris Rocquencourt, Le Chesnay Cedex, France
2University of Glasgow, Glasgow, UK

Synonyms
Coverage

Definition
Specificity is a relevance dimension that describes the

extent to which a document part focuses on the topic

of request. In the context of structured text (XML)

retrieval, a document part corresponds to an XML

element.

Specificity is defined as the length ratio, typically in

number of characters, of contained relevant to irrele-

vant text in the document part. Different Specificity

values can be associated to a document part. These

values are drawn from the Specificity relevance scale,

which has evolved from a discrete multi-graded rele-

vance scale to a continuous relevance scale.

Key Points
The Initiative for the Evaluation of XML Retrieval

(INEX) has defined Specificity as a relevance dimen-

sion that uses values from its own relevance scale to

express the extent to which an XML element focuses on

the topic of request. Since 2002, different names and

relevance scales were used for Specificity at INEX. It

initially evolved because the relevance dimension was

not sufficiently well defined, and later because the

assessment procedure changed.

In 2002, Specificity was named coverage at INEX,

which reflected the extent to which an XML element

was focused on aspects of the information need (as

represented by the INEX topic). The component

2748S Spectral Clustering
coverage used a relevance scale comprising four rele-

vance grades, from ‘‘no coverage,’’ ‘‘too large,’’ ‘‘too

small,’’ to ‘‘exact coverage.’’ However, this dimension

was used solely in 2002, partly because of the vagueness

introduced in the terminology for its name, and partly

because it has been subsequently shown that the INEX

2002 assessors did not particularly understand the no-

tion of ‘‘too small’’ [1]. In particular, assessors under-

stood ‘‘too small’’ as a measure of quantity while

Specificity is more related to the concentration of rele-

vant information. In 2003 and 2004, four grades were

used for the Specificity relevance dimension at INEX,

such that the extent to which an XML element may

focus on the topic of request could range from ‘‘none’’

(0), to ‘‘marginally’’ (1), to ‘‘fairly’’ (2), or to ‘‘highly’’

(3) focused. An XML element was considered relevant

only if its Specificity value was greater than zero.

From 2005 onwards, a highlighting assessment pro-

cedure was used at INEX to gather relevance assess-

ments for the XML retrieval topics. The Specificity of

an XML element is automatically computed as the

ratio of highlighted to fully contained text, where the

relevance values that can be associated to the element

are drawn from a continuous relevance scale. These

values are in the range between 0 and 1, where the

value of 0 corresponds to an element that does not

contain any highlighted text, while the value of 1

corresponds to a fully highlighted element.

With the highlighting assessment procedure, asses-

sors are asked to highlight all the relevant information

contained by returned XML documents. This results in

a reduced cognitive load on the assessor, since in this

case there is no need for the assessor to explicitly

associate a Specificity value to a judged element. Stud-

ies of the level of assessor agreement, which used topics

that were double-judged at INEX, have shown that the

use of the new highlighting procedure further increases

the level of assessor agreement compared to the level of

agreement observed among assessors during previous

years at INEX [2,3].

Cross-references
▶ Evaluation Metrics for Structured Text Retrieval

▶Relevance

Recommended Reading
1. Kazai G., Masood S., and Lalmas M. A study of the assessment of

relevance for the INEX 2002 test collection. In Proc. 26th Euro-

pean Conf. on IR Research, 2004, pp. 296–310.
2 Pehcevski J. and Thom J.A. HiXEval: highlighting XML retrieval

evaluation. In Proc. 4th Int. Workshop of the Initiative for the

Evaluation of XML Retrieval, pp. 43–57.

3. Trotman A. Wanted: element retrieval users. In Proc. 4th Int.

Workshop of the Initiative for the Evaluation of XML Retrieval,

2005, pp. 63–69.
Spectral Clustering

SERGIOS THEODORIDIS
1,

KONSTANTINOS KOUTROUMBAS
2

1University of Athens, Athens, Greece
2Institute for Space Applications and Remote Sensing,

Athens, Greece

Synonyms
Graph-based clustering

Definition
Let X be a set X ={ x1, x2,...,xN} of N data points. Anm-

clustering of X, is defined as the partition of X into m

sets (clusters), C1,...,Cm, so that the following three

conditions are met:

� Ci 6¼ ;, i = 1,...,m

� [i=1
m Ci = X

� Ci \ Cj = ;, i 6¼ j, i, j = 1,...,m

In addition, the data points contained in a cluster Ci

are ‘‘more similar’’ to each other and ‘‘less similar’’ to

the points of the other clusters. The terms ‘‘similar’’

and ‘‘dissimilar’’ depend very much on the types of

clusters the user expects to recover from X. A clustering

defined as above is known as hard clustering, to distin-

guish it from the fuzzy clustering case.

Historical Background
The essence of clustering is to ‘‘reveal’’ the organization

of patterns into ‘‘sensible’’ groups. It has been used as a

critical analysis tool in a vast range of disciplines, such

as medicine, social sciences, engineering, computer

science, machine learning, bioinformatics, data mining

and information retrieval. The literature is huge and

numerous techniques have been suggested over the

years. A comprehensive introduction to clustering

can be found e.g., in [14]. An important class of

clustering algorithms builds around graph theory. Ref-

erence [9] is one of the first efforts in this direction.

Points of X are assigned to the nodes of a graph.

Spectral Clustering. Figure 1. The dotted line indicates

the clustering that is likely to favor the minimum cut

criterion, while the full line indicates a more natural

partitioning.

Spectral Clustering S 2749

S

Notions such as minimum spanning tree and directed

trees have extensively been used to partition the graph

into clusters (e.g., [14]). Spectral clustering is a more

recent class of graph based techniques, which unravels

the structural properties of a graph using information

conveyed by the spectral decomposition (eigendecom-

position) of an associated matrix. The elements of this

matrix code the underlying similarities among the

nodes (data points) of the graph (e.g., [3]). Among

the earlier works on spectral clustering are [6,12].

Fiedler [4] was one of the first to show the application

of eigenvectors in graph partitioning.

Foundations
In the sequel, the simplest task of partitioning a given

data set, X, into two clusters,A and B , is considered. Let

X ¼ fx1; x2;:::;xNg � Rl , where the latter denotes the

l-dimensional Euclidean space. According to the previ-

ous discussion, the following preliminary steps are in

order:

� Construction of a graph G(V, E), where each vertex

of the graph corresponds to a point xi, i = 1,2,...,N,

of X. It is further assumed that G is undirected and

connected. In otherwords, there exists at least one path

of edges that connects any pair of points in the graph.

� Assignment of a weight W(i, j) to each one of the

edges of the graph, eij, that quantifies proximity

between the respective nodes, vi, vj in G (For nota-

tional convenience in some places i is used instead

of vi). The set of weights defines the N � N weight

matrix W, also known as affinity matrix, with ele-

ments

W � ½W ði; jÞ
; i; j ¼ 1; 2;:::;N

The weight matrix is assumed to be symmetric, i.e.,

W(i, j) = W(j, i). The choice of the weights is carried

out by the user and it is a problem dependent task.

A common choice is

W ði; jÞ ¼ exp � jjxi�xj jj2
2s2

� �
; if jjxi � xj jj < E

0; otherwise

(

where e is a user-defined constant and jj�jj is the

Euclidean norm in the l-dimensional space.

By the definition of clustering, A [B = X and

A \ B = ;. Once a weighted graph has been formed,

the second phase in any graph-based clustering algo-

rithm consists of the following two steps: (i) Choose an
appropriate clustering criterion for the partitioning of

the graph and (ii) Adopt an efficient algorithmic

scheme to determine the partitioning that optimizes

the previous clustering criterion.

A clustering optimality criterion, that is in line with

‘‘common sense,’’ is the so called cut [16]. If A and B are

the resulting clusters, the associated cut is defined as:

cutðA;BÞ ¼
X

i2A; j2B
W ði; jÞ ð1Þ

Selecting A and B so that the respective cut(A, B) is

minimized means that the set of edges, connecting

nodes in A with nodes in B, have the minimum sum

of weights, indicating the lowest similarity between

points in A and B. However, this simple criterion

turns out to form clusters of small size of isolated

points (least similar with the rest of the nodes). This

is illustrated in Fig. 1. The minimum cut criterion

would result in the two clusters separated by the dotted

line, although the partition by the full line seems to be

a more natural partitioning.

To overcome this drawback, the normalized cut

criterion has been suggested in [12]. This is one of

the most commonly used criteria in spectral clustering.

The essence of this criterion is to minimize the cut and

at the same time trying to keep the sizes of the formed

clusters large. To this end, for each node, vi 2 V , in the

graph G the index

Dii ¼
X
j2V

W ði; jÞ ð2Þ

2750S Spectral Clustering
is defined. This is an index indicative of the ‘‘impor-

tance’’ of a node, vi, i = 1,2,...,N. The higher the value

of Dii the more similar the ith node is to the rest

of the nodes. A low Dii value indicates an isolated

(remote) point. Given a cluster A, a measure of the

‘‘importance’’ of A is given by the following index

V ðAÞ ¼
X
i2A

Dii ¼
X

i2A; j2V
W ði; jÞ ð3Þ

where V (A) is sometimes known as the volume or the

degree of A. It is obvious that small and isolated clus-

ters will have a small V (�). The normalized cut between

two clusters A,B is defined as

NcutðA;BÞ ¼ cutðA;BÞ
V ðAÞ þ cutðA;BÞ

V ðBÞ ð4Þ

Obviously, small clusters correspond to large values

(close to one) for the previous ratios, since in such

cases cut(A,B) will be a large percentage of V (A).

Minimization of the Ncut(A, B) turns out to be an

NP-hard task. To bypass this computational obstacle,

the problem will be reshaped to a form that allows an

efficient approximate solution. To this end let ([1])

yi ¼
1

V ðAÞ ; if i 2 A

� 1
V ðBÞ ; if i 2 B

(
ð5Þ

y ¼ ½y1; y2;:::;yN

T

where T denotes the transpose operation. After some

algebraic manipulations it can be verified that

1

V ðAÞ þ
1

V ðBÞ

� �2

cutðA;BÞ /

1

2

X
i2V

X
j2V

ðyi � yjÞ
2
W ði; jÞ ¼ yTLy

ð6Þ

where / denotes proportionality and

L ¼ D �W ; D � diagfDiig

is known as the graph Laplacian matrix and D is the

diagonal matrix having the elements Dii across the

main diagonal. It is also easily verified that

yTDy ¼ 1

V ðAÞ þ
1

V ðBÞ ð7Þ

Combining (4), (6) and (7) it turns out that minimiz-

ing Ncut(A, B) is equivalent with minimizing
J ¼ yTLy

yTDy
ð8Þ

subject to the constraint that yi 2 f 1
V ðAÞ ;� 1

V ðBÞg. Fur-
thermore, based on the respective definitions, it can be

shown that

yTD1 ¼ 0 ð9Þ

where 1 is the N-dimensional vector having all its

elements equal to 1. In order to bypass the computa-

tionally hard nature of the original task a relaxed

problem will be solved: Eq. (8) will be minimized

subject to the constraint of (9). The unknown ‘‘cluster

labels,’’ yi, i = 1,2,...,N, are now allowed to move freely

along the real axis. Let

z � D1=2y

Then (8) becomes

J ¼ zT~Lz

zTz
ð10Þ

and the constraint in (9)

zTD1=21 ¼ 0 ð11Þ

Matrix ~L � D�1 ∕2LD�1 ∕2 is known as the normalized

graph Laplacian matrix. It can easily be shown that ~L

has the following properties

� It is symmetric, real valued and nonnegative definite.

Thus, as it is known from linear algebra, all its eigen-

values are non-negative and the corresponding

eigenvectors are orthogonal to each other.

� D1 ∕21 is an eigenvector corresponding to zero ei-

genvalue. Indeed,

~LD1=21 ¼ 0

Obviously l = 0 is the smallest eigenvalue of ~L, due to

the non-negative definite nature of the matrix.

Furthermore, the ratio in (10) is the celebrated

Rayleigh quotient for which the following hold

(e.g., [5])

� The smallest value of the quotient, with respect to

z, is equal to the smallest eigenvalue of ~L and it

occurs for z equal to the eigenvector corresponding

to this (smallest) eigenvalue.

� If the solution is constrained to be orthogonal to all

eigenvectors associated with the j smaller

Spectral Clustering S 2751

S

eigenvalues, minimization of the Rayleigh quotient

results to the eigenvector corresponding to the next

smallest eigenvalue, lj+1 and the minimum value is

equal to lj+1.

Taking into account i) the orthogonality condition in

the constraint (11) and ii) the fact that D1 ∕21 is the

eigenvector corresponding to the smallest eigenvalue

l0 = 0 of ~L, it follows that:

The optimal solution vector z minimizing the Ray-

leigh quotient in (10), subject to the constraint (11), is

the eigenvector corresponding to the second smallest

eigenvalue of ~L.

In summary, the basic steps of the spectral cluster-

ing algorithm are:

� Given a set of points x1,x2,...,xN the weighted graph

G(V, E) is constructed. Then, the weight matrix W

is formed by adopting a similarity rule.

� The matrices D, L = D �W and ~L are formed. The

eigenanalysis of the normalized Laplacian matrix

~Lz ¼ lz

is performed and the computation of the eigenvector

z1 corresponding to the second smallest eigenvalue l1
of ~L is carried out. Then y = D�1 ∕2z1 is computed.

� Finally, discretization of the components of y

according to a threshold value takes place.

The final step is necessary since the components of the

obtained solution are real-valued and our required

solution is binary. To this goal, different techniques

can be applied. For example, the threshold can be

taken to be equal to zero. Another choice is to adopt

the median value of the components of the optimum

eigenvector. An alternative approach would be to select

the threshold value that gives the minimum cut.

The eigenanalysis or spectral decomposition, as it is

sometimes called, of an N � N matrix, using a general

purpose solver, amounts to O(N 3) operations. Thus,

for large number of data points, this may be prohibi-

tive in practice. However, for most of the practical

applications the resulting graph is only locally

connected, and the associated affinity matrix is a sparse

one. Moreover, only the smallest eigenvalues/eigenvec-

tors are required and also the accuracy is not of major

issue, since the solution is to be discretized. In such a

setting, the efficient Lanczos algorithm can be mobi-

lized and the computational requirements drop down

to approximately O(N3 ∕2).
So far, the partition of a data set into two clusters

has been considered. If more clusters are expected, the

scheme can be used in a hierarchical mode, where, at

each step, each one of the resulting clusters is divided

into two partitions. This is continued until a prespeci-

fied criterion is satisfied.

In the discussion above the focus was on a specific

clustering criterion, i.e., the normalized cut, in order to

present the basic philosophy behind the spectral clus-

tering techniques. No doubt, a number of other criteria

have been proposed in the related literature, e.g., [8,13].

In [15] a review and a comparative study of a number of

popular spectral clustering algorithms is presented.
Key Applications
Spectral clustering has been used in a number of appli-

cations such as image segmentation and motion track-

ing [13,11], circuit layout [2], gene expression [8],

machine learning [10], load balancing [7].
Cross-references
▶Clustering Overview and Applications

▶Graph

▶Hierarchial Clustering

▶ Image Segmentation
Recommended Reading
1. Belikn M. and Niyogi P. Laplacian eigenmaps for dimensiona-

lity reduction and data representation. Neural Comput.,

15(6):1373–1396, 2003.

2. Chan P., Schlag M., and Zien J. Spectral k-way ratio cut parti-

tioning. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst.,

13:1088–1096, 1994.

3. Chung F.R.K. Spectral Graph Theory. American Mathematical

Society, 1997.

4. Fiedler M. A property of eigenvectors of nonnegative symmetric

matrices and its application to graph theory. Czehoslovak

Math. J., 25(100):619–633, 1975.

5. Golub G.H. and Van Loan C.F. Matrix Computations. John

Hopkins, Baltimore, MD, USA, 1989.

6. Hagen L.W. and Kahng A.B. New spectral methods for ratio cut

partitioning and clustering. IEEE Trans. Comput. Aided Des.

Integrated Circ. Syst., 11(9):1074–1085, 1992.

7. Hendrickson B. and Leland R. Multidimensional spectral load

balancing. In Proc. Fourth SIAM Conf. on Parallel Processing.

1993, pp. 953–961.

8. Kannan R., Vempala S., and Vetta A. On clusterings- good, bad

and spectral. In Proc. 41st Annual Symp. on Foundations of

Computer Science, 2000, pp. 367–377.

9. Ling R.F. On the theory and construction of k-clusters. Comput.

J., 15:326–332, 1972.

2752S Spider
10. Ng A.Y., Jordan M., and Weiis Y. On spectral clustering analysis

and an algorithm. In Proc. 14th Conf. on Advances in Neural

Information Processing Systems, 2001.

11. Qiu H. and Hancock E.R. Clustering and embedding using

commute times. IEEE Trans. Pattern Anal. Mach. Intell.,

29(11):1873–1890, 2007.

12. Scott G. and Longuet-Higgins H. Feature grouping by relocali-

zation of eigenvectors of the proximity matrix. In Proc. British

Machine Vision Conf., 1990, pp. 103–108.

13. Shi J. and Malik J. Normalized cuts and image segmentation.

IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888–905, 2000.

14. Theodoridis S. and Koutroumbas K. Pattern Recognition

(4th edn.). Academic Press, 2008.

15. Verma D. and Meilă M. A comparison of spectral clustering

algorithms. Technical report, UW-CSE-03-05-01, CSE Depart-

ment, University of Washington, Seattle, 2003.

16. Wu Z. and Leahy R. An optimal graph theoretic approach to data

clustering: Theory and its applications to image segmentation.

IEEE Trans. Pattern Anal. Mach. Intell., 15(11):1101–1113, 1993.
Spider

▶Web Crawler Architecture
Spidering

▶ Incremental Crawling
SPJRU-Algebra

▶ Positive Relational Algebra
Split

NATHANIEL PALMER

Workflow Management Coalition, Hingham,

MA, USA

Synonyms
AND-split

Definition
A point within the workflow where a single thread of

control splits into two or more parallel activities.
Key Points
The execution of parallel activities commences with

an AND-Split and concludes with an AND-Join. For

example, in a credit application process there may be

a split in the workflow at which point multiple activ-

ities are completed separately (in parallel, if not simul-

taneously.) At an And-Split separate threads of control

within the process instance are created; these threads

will proceed autonomously and independently until

reaching an And-Join condition. In certain work-

flow systems, all the threads created at an And-Split

must converge at a common And-Join point (Block

Structure);

in other systems convergence of a subset of the threads

can occur at different And-Join points, potentially

including other incoming threads created from other

And-split points.

Cross-references
▶AND-Join

▶OR-Split
Split Transactions

GEORGE KARABATIS

University of Maryland, Baltimore County (UMBC),

Baltimore, MD, USA

Definition
The split-transaction is an extended transaction model

that introduces two new transaction management

primitives/operations, namely, split and join. The

split operation on a transaction T splits T and replaces

it with two serialisable transactions; each one is later

committed or aborted independently of the other. The

inverse of split is the join operation on a transaction T

SQL S 2753

S

which dissolves T by joining its results with a target

transaction S.

Key Points
The concept of split transactions was introduced

by Pu, Kaiser, and Hutchinson in [3] and later elabora-

ted in [2] to support open-ended activities such as

CAD/CAM projects, engineering type of applications,

and software development. The syntax of the split-

transaction operation on transaction T produces two

new transactions A and B and dissolves T [3,2]:

Split-Transaction (

A: (AReadSet, AWriteSet, AProcedure),

B: (BReadSet, BWriteSet, BProcedure))

where AReadSet, AWriteSet, BReadSet, BWrite-

Set are sets of data items accessed by A and B.

AProcedure and BProcedure are the starting points

of code where A and B will begin execution. There is no

need to explicitly mention T in the arguments of

the operation, as by definition the operation can only

be executed within the body of transaction T. The

syntax for a join operation on T to join S is: Join-

Transaction (S: TID)

The split-transaction operation can be used

to commit some work of a transaction early, or to dis-

tribute on-going work among several coworkers. On

the contrary, the join-transaction is used to hand over

and integrate results with a coworker [2]. These opera-

tions pertain to programmed transactions, and to actual

open-ended activities with unpredictable developments

(users determine the next operation to be executed in an

adhoc manner). In the latter case, the read sets and write

sets defined above are replaced with data sets on which

application specific operations (e.g., edit or compile for

software development) are applied; the AProcedure

and Bprocedure are replaced with AUser and

BUser specifying the users who take control of A

and B. Thus, the definition changes to:

Split-Transaction (

A: (AReadSet, AWriteSet, AUser),

B: (BReadSet, BWriteSet, BUser))

There are additional operations such as: Split-Commit

(transaction A is immediately committed, while

B may be taken over by BUser; also Suspend

(giving up control of a transaction) and Accept-

Join-Transaction (a user executes this operation

to accept responsibility of a joined transaction).

The main advantages of the restructuring operations

(split/join transaction) on open-ended activities are:
� Adaptive recovery: committing resources that will

not change

� Added concurrency: releasing committed resources

or transferringownershipofuncommitted resources

� Serialisable access to resources by all activities

The split and join primitives were subsequently

incorporated with nested transactions to produce

combined transaction models [1].
Cross-references
▶Database Management System

▶Distributed Transaction Management

▶ Extended Transaction Models

▶ Serializability

▶Transaction

▶Transaction Management

▶Transaction Manager
Recommended Reading
1. Chrysanthis P.K. and Ramamritham K. Synthesis of extended

transaction models using ACTA. ACM Trans. Database Syst., 19

(3):450–491, 1994.

2. Kaiser G.E. and Pu C. Dynamic restructuring of transactions.

In Database Transaction Models for Advanced Applications,

A. K. Elmagarmid (ed.). Morgan Kaufmann Publishers, 1992,

pp. 265–295.

3. Pu C., Kaiser G.E., and Hutchinson N.C. Split-transactions for

open-ended activities. In Proc. 14th Int. Conf. on Very Large

Data Bases, 1988, pp. 26–37.
SQL

DON CHAMBERLIN

IBM Almaden Research Center, San Jose, CA, USA

Synonyms
SEQUEL; Structured Query Language

Definition
SQL is the world’s most widely-used database query

language. It was developed at IBM Research Labora-

tories in the 1970s, based on the relational data model

defined by E. F. Codd in 1970. It supports retrieval,

manipulation, and administration of data stored in

tabular form. It is the subject of an international

standard named Database Language SQL.

2754S SQL
Historical Background

Early Language Development

In June 1970, E. F. Codd of IBM Research published a

paper [4] defining the relational data model and intro-

ducing the concept of data independence. Codd’s

thesis was that queries should be expressed in terms

of high-level, nonprocedural concepts that are inde-

pendent of physical representation. Selection of an

algorithm for processing a given query could then be

done by an optimizing compiler, based on the access

paths available and the statistics of the stored data;

if these access paths or statistics should later change,

the algorithm could be re-optimized without human

intervention. In a series of papers, Codd proposed two

high-level languages for querying relational databases,

called relational algebra and relational calculus (also

known as Data Sublanguage Alpha) [5].

The advantages of the relational model for applica-

tion developers and database administrators were im-

mediately clear. It was less clear whether an optimizing

compiler could consistently translate nonprocedural

queries into algorithms that were efficient enough for

use in a production database environment. To investi-

gate this issue, IBM convened a project called System

R [1] at its research laboratory in San Jose, California.

Between 1973 and 1979, this project designed and imple-

mented a prototype relational database system based on

Codd’s ideas, testing and refining the prototype in sever-

al customer locations. SQLwas the user interface defined

by the System R research project. It later became the user

interface for relational database products marketed by

IBM and several other companies.

The principal goals that influenced the design of

SQL were as follows:

1. SQL is a high-level, nonprocedural language inten-

ded for processing by an optimizing compiler. It is

designed to be equivalent in expressive power to

the relational query languages originally proposed

by Codd.

2. SQL is intended to be accessible to users without

formal training in mathematics or computer pro-

gramming. It is designed to be typed on a keyboard.

Therefore it is framed in familiar English keywords,

and avoids specialized mathematical concepts or

symbols.

3. SQL attempts to unify data query and update with

database administration tasks such as creating and
modifying tables and views, controlling access to

data, and defining constraints to protect database

integrity. In pre-relational database systems, these

tasks were usually performed by specialized data-

base administrators and required shutting down

and reconfiguring the database. By building admin-

istrative functions into the query language, SQL

helps to eliminate the database administrator as a

choke point in application development.

4. SQL is designed for use in both decision support

and online transaction processing environments.

The former environment requires processing of com-

plex queries, usually executed infrequently but acces-

sing large amounts of data. The latter environment

requires high-performance execution of parameter-

ized transactions, repeated frequently but accessing

(and often updating) small amounts of data.

Both end-user interfaces and application program-

ming interfaces are necessary to support this spec-

trum of usage.

The first specification of SQLwas published inMay

1974, in a 16-page conference paper [3] by Don

Chamberlin and Ray Boyce, members of the System

R project. In this paper, the language was named

SEQUEL, an acronym for Structured English Query

Language. The paper included a BNF syntax for the

proposed language. This original paper presented only

basic query features, without any facilities for data

definition or update. However, the basic structure

of the language, including query-blocks, grouping,

set operations, and aggregating functions, has been

consistent from this paper to the present day.

Over the course of the System R project, SEQUEL

continued to evolve based on experience gathered by

users and implementers. A much more complete de-

scription of the language was published in the IBM

Journal of Research and Development in November

1976 [2], including data manipulation facilities (insert,

delete, and update), a more complete join facility,

facilities for defining tables and views, and database

administration facilities including access control, asser-

tions, and triggers. In 1977, because of a trademark

issue, the name SEQUEL was shortened to SQL.

Although SQL was designed and prototyped at

IBM Research, the language was published in the

open literature, and the first commercial SQL product

was released by a small company called Relational

Software, Inc., in 1979. This product was named

SQL S 2755
Oracle, a name that was later adopted by the company,

which is no longer small. The first IBM product based

on SQL was called SQL/Data System, released in 1981,

followed by DB2, released in 1983 on mainframes and

eventually supported on many IBM platforms. SQL

has now been implemented by all major database

vendors and is available in a wide variety of operating

environments. In addition to commercial database

products, SQL implementations include several popu-

lar open-source products such as MySQL (http://www.

mysql.com) and Apache Derby (http://db.apache.org/

derby/).
S

Standards

Shortly after the first appearance of SQL in a commercial

product, an effort wasmade to standardize the language.

Over the years, the SQL standard has contributed to

the growth of the database industry by defining a com-

mon interface for use by database vendors, application

developers, and tools.

The first SQL standard, named ‘‘Database Language

SQL,’’ was published by the American National Stan-

dards Institute (ANSI) in 1986 (Standard No. X3.135-

1986), and an identical standardwith the same namewas

published by the International Standards Organization

(ISO) in 1987 (Standard No. ISO 9075-1987). Over the

years, ANSI and ISO have cooperated to keep their

respective SQL standards synchronized as they have

evolved through several versions.

The original standard, often called SQL-86, occu-

pied just under 100 pages and included only simple

queries, updates, and table definitions. It was follo-

wed in 1989 by a revised standard that added several

kinds of constraints for protecting the integrity

of stored data. This version of the standard com-

prised about 120 pages and is often referred to as

SQL-89 (‘‘Database Language SQL with Integrity

Enhancement’’).

A major revision of the SQL standard, usually

called SQL-92, was published by ANSI and ISO/IEC

in 1992. This version improved the orthogonality of

the language, allowing expressions to be used wherever

tables or scalar values are expected. SQL-92 also added

several new features, including date and time data-

types, set-oriented operators such as UNION and

INTERSECT, standard catalog tables for storing meta-

data, and schema-evolution features such as ALTER

TABLE. SQL-92 comprised about 600 pages.
A conformance test suite for SQL-92 was developed

in the United States by the National Institute of Stan-

dards and Technology (NIST). After certifying several

conforming products, NIST discontinued SQL confor-

mance testing in 1996.

Between 1992 and 1999, two specialized extensions

to SQL-92 were published, named Call Level Interface

(CLI) and Persistent Stored Modules (PSM). CLI

defines a set of functions whereby programs written in

languages such as C can dynamically connect to rela-

tional databases and execute SQL statements. PSM

extends SQL with assignment statements, control-flow

statements, and exception handlers, making it possible

to implement some database applications entirely

in SQL. PSM was an attempt to standardize the proce-

dural extensions such as PL/SQL [9] and Transact-SQL

[12] that had been added to SQL by several database

vendors.

The next major update of the SQL standard

occurred in 1999 and is usually called SQL:1999.

This new version split the standard into several parts,

incorporating CLI as Part 3 and PSM as Part 4.

SQL:1999 introduced important new functionality in-

cluding triggers, large objects, recursive queries, and

user-defined functions. It placed major emphasis on

object-relational functionality and on new features for

on-line analytic processing (OLAP). Details of these

and other recent additions to SQL are described below

under ‘‘Advanced Features.’’ The sum of all the parts of

SQL:1999 exceeded 2,000 pages. Additional parts con-

tinue to be added to the SQL standard from time to

time. The most recent major revision of the standard,

known as SQL:2003, with all its parts, comprises more

than 3,600 pages.

Over the years, the SQL standard has provided a

controlled framework within which the language can

evolve to correct its initial limitations and to meet

changing user requirements. The standard has also

served to focus the industry’s attention and resources,

providing a common framework in which individuals

and companies could develop tools, write books, teach

courses, and provide consulting services. The standard

has been only partially successful in making SQL appli-

cations portable across implementations; this goal has

been hampered by the fact that different vendors have

implemented different subsets of the standard, and by

the lack (since 1996) of a test suite to validate confor-

mance of an implementation. The latest versions of the

various parts of the standard can be obtained from ISO

2756S SQL
[7] or from national standards organizations such as

ANSI [8]. Jim Melton, editor of the SQL standard, has

also published a two-volume reference book explaining

the standard in a very accessible style [11, see also 10].

Foundations

Queries

SQL operates on data in the form of tables. Each table

has a name and consists of one or more columns, each

of which has a name and a datatype. The content of a

table consists of zero or more rows, each of which has a

value for each of the columns. The value associated

with a given row and column may be an instance of the

datatype of that column, or may be a special ‘‘null’’

value indicating that the value is missing (not available

or not applicable). SQL statements, which may be

queries or updates, operate on stored tables or on

tabular ‘‘views’’ that are derived from stored tables.

The result of a query is an unnamed virtual

table. The result of an update is a change to the stored

data, which is visible to subsequent statements. Gener-

ally, updates can be applied to a view only if each row

in the view can be mapped uniquely onto a row of a

stored table. This rule makes it possible to map updates

on the view to updates on the underlying table.

An SQL query consists of one or more query-blocks.

A query-block consists of several clauses, each of which

begins with a keyword. Some of these clauses (keywords

SELECT and FROM) are required, and others (key-

words WHERE, GROUP BY, and HAVING) are

optional. The examples in this article use upper-case

keywords and lower-case names, although SQL is a

case-insensitive language. The examples are based on

two tables named PARTS and SUPPLIERS. The primary

key of PARTS is PARTNO and the primary key of SUP-

PLIERS is SUPPNO. SUPPNO also appears as a foreign

key in the PARTS table (see ‘‘Database Administration’’

below for definitions of primary key and foreign key.)

The following query-block illustrates a join of two

tables. Conceptually, rows from the PARTS table are

paired with rows from the SUPPLIERS table according

to the criterion specified in the WHERE clause (SUPP-

NO’s must match), and the resulting row-pairs are

filtered by an additional condition (supplier’s location

must be Denver). From the surviving row-pairs, the

SELECT clause specifies the columns that appear in

the query result (in this case, the part number and the

supplier name). Many different strategies are possible
for executing this query; since SQL is a non-procedural

language, choice of an execution strategy is left to an

optimizing compiler.

SELECT p.partno, s.name

FROM parts p, suppliers s

WHERE p.suppno = s.suppno

AND s.location = ‘Denver’

The following query-block illustrates grouping and

aggregation. Conceptually, the rows of the PARTS table

are partitioned into groups with matching SUPPNO

values. The groups are then filtered by the HAVING

clause, which applies a predicate based on group proper-

ties (in this case, retaining only groups that have at least

ten rows.) Finally, the SELECT clause specifies the col-

umns of the query result, which consists of one row for

each group. In a grouping query, the selected expressions

must consist of groupproperties (grouping keys or aggre-

gating functions such as avg, sum,max, min, and count.)

The SELECT clause can also specify names for the output

columns. The query-block in this example returns, for

each supplier that supplies at least ten parts, the average

cost of all parts supplied by that supplier.

SELECT suppno, avg(cost) AS avgcost

FROM parts

GROUP BY suppno

HAVING count(*) >= 10

Many queries, including the above examples, con-

sist of a single query-block. Query-blocks can also be

combined to form larger queries. In the following

example, a query-block serves as a subquery that com-

putes a value used in another query-block. The sub-

query finds the maximum cost in the PARTS table, and

the outer query-block returns the part numbers of the

parts that have this maximum cost. The query-blocks

are linked together by the IN keyword, denoting that

the value in the WHERE-clause is tested for inclusion

in the list of values returned by the subquery, which

may in general return multiple values.

SELECT partno

FROM parts

WHERE cost IN

(SELECT max(cost)

FROM parts)

Another way in which query-blocks can be com-

bined to form a larger query is by means of the set-

operators UNION, INTERSECT, and EXCEPT, which

SQL S 2757

S

compute the union, intersection, or difference of the

sets of rows returned by two query-blocks (after elim-

inating duplicate rows). The datatypes of the rows

returned by the respective query-blocks must be com-

patible. The following example computes the differ-

ence of two query-blocks to find the suppliers that

supply no parts. It also includes an ORDER BY clause,

which specifies an ordering for the rows in the query

result. The ORDER BY clause applies to the whole

query rather to an individual query-block.

SELECT suppno

FROM suppliers

EXCEPT

SELECT suppno

FROM parts

ORDER BY suppno

The first example above showed how the condition

for joining two tables can be specified in a WHERE-

clause. This method returns only data for which a

matching row exists in both tables. Another join meth-

od called an outer join can be used to include rows

from one of the joined tables that have no matching

rows in the other table. The following example returns

the supplier numbers of suppliers located in Denver,

together with the parts that they supply, including

Denver suppliers that supply no parts (the latter sup-

pliers will appear in the query result with a null value

in the PARTNO column):

SELECT s.suppno, p.partno

FROM suppliers s LEFT OUTER JOIN parts p

ON s.partno = p.partno

AND s.location = ‘Denver’

Data Manipulation

The data manipulation facilities of SQL consist of the

INSERT, DELETE, and UPDATE statements, which are

used for inserting rows into a table, deleting rows from

a table, and updating the values of rows in a table. The

values to be used in data manipulation statements may

be specified as constants or computed by subqueries, as

illustrated by the following examples.

This example updates the PARTS table, increasing

the cost of all the parts supplied by a certain supplier

by 10%:

UPDATE parts

SET cost = cost * 1.1

WHERE suppno = ‘105’
The following example deletes from the SUPPLI-

ERS table all the suppliers that supply no parts. This

example illustrates a subquery that is linked to the

outer DELETE statement by the keywords NOT

EXISTS. Notice that the subquery depends on a value

in a row supplied by the outer UPDATE statement

(referred to as s.suppno); therefore the subquery

must be executed repeatedly for each row in the table

being updated. This kind of subquery is called a corre-

lated subquery.

DELETE FROM suppliers s

WHERE NOT EXISTS

(SELECT partno

FROM parts

WHERE suppno = s.suppno)
Database Administration

In addition to queries and data manipulation, SQL pro-

vides facilities for performing database administration

tasks. These tasks fall into three general categories: data

definition, access control, and active data features.

SQL data definition facilities include statements for

creating or dropping tables and views, and for adding

or deleting columns of existing tables. The definition

of a view takes the form of an SQL query specifying

how the view can be derived from stored tables and/

or other views.

SQL access control facilities are based on the con-

cepts of users, privileges, and roles. A privilege is the

ability to perform an action (such as select, insert, delete,

or update) on an object (such as a table or, in some cases,

a column of a table). A role is a set of privileges that can

be granted to a set of users. In general, the user who

creates an object can grant privileges on that object to

individual users and to roles, and can also revoke these

privileges. When granting a privilege, the grantor can

specify whether the grantee is authorized to pass along

the privilege to additional users or roles.

SQL active data facilities include constraints and

triggers. Constraints serve to enforce database integrity

by limiting the kinds of updates that can be applied to

a table. Important kinds of constraints include the

following:

� NOT NULL constraints, which prohibit null values

in a specific column.

� CHECK constraints, which specify a predicate that

must not be false for any row of the table.

2758S SQL
� PRIMARY KEY constraints, which require that

the values in a specific set of columns called the

primary key uniquely identify a row of the table.

� FOREIGN KEY constraints, which require that, for

each row of the constrained table, a specific set of

columns called the foreign key contain only combi-

nations of values that are also found in the primary

key of a related table called the parent table. The

definer of a FOREIGN KEY constraint can specify

what happens when a data manipulation statement

attempts to violate the constraint (for example, the

violating statement might have no effect; or dele-

tion of a row from the parent table might cause the

automatic deletion of related rows in the con-

strained table). Enforcement of foreign key con-

straints is said to protect the referential integrity of

stored data.

A trigger is an action that is automatically invoked

whenever a specific event, called the triggering event,

occurs. The definer of a trigger specifies the following

properties:

� The triggering event, which may be insert, delete, or

update of rows (or, in some cases, columns) of a

specific table.

� Whether the trigger is invoked before or after the

triggering event becomes effective.

� If the triggering event affects multiple rows, wheth-

er the trigger is invoked once for each affected row

or only once for the whole triggering event.

� An optional trigger condition: a predicate that

must be true at the time of the triggering event in

order for the trigger to be activated.

� The trigger body: one or more SQL statements that

are automatically executed when the triggering

event occurs and the trigger condition is true. The

trigger condition and the trigger body have access

to special variables that contain the data values

before and after the triggering event.

Constraints and triggers are useful for specifying

and enforcing the semantics of stored data. In general,

it is preferable to specify a given semantic rule by

means of a constraint rather than a trigger if possible,

since constraints apply to all kinds of actions and

provide maximum opportunities for optimization.

On the other hand, some kinds of semantic rules (for

example, ‘‘salaries never decrease’’) can only be speci-

fied by using triggers.
Advanced Features

Over the years, a great deal of functionality has been

added to the SQL language. The full set of SQL features

is far too large and complex to be explained here. The

following are some of the major areas in which

advanced functionality has been added to SQL:

� Recursion: A recursive query consists of an initial

subquery that computes some preliminary results

and a recursive subquery that computes additional

results based on values that were previously com-

puted. The recursive subquery is executed repeat-

edly until no additional results are computed.

Recursion is useful in queries that search some

space for an optimum result, such as ‘‘Find the

cheapest combination of flight segments to travel

from Shanghai to Copenhagen.’’ Recursive queries

were first defined in SQL:1999.

� OLAP: Online analytic processing (OLAP) is used

by businesses to analyze large volumes of data to

identify facts and trends that may affect business

decisions. The GROUP BY clause and aggregating

functions (sum, avg, etc.) of early SQL provided a

primitive form of OLAP functionality, which was

greatly extended in later versions of the language.

For example, the ROLLUP facility enables a query

to apply aggregating functions at multiple levels

(such as city, county, and state). The CUBE facility

enables data to be aggregated along multiple di-

mensions (such as date, location, and category)

within a single query. The WINDOW facility allows

aggregating functions to be applied to a ‘‘moving

window’’ as it passes over a collection of data.

These facilities, and others, were introduced by

SQL:1999 and enhanced in subsequent versions of

the standard.

� Functions and procedures: Originally, SQL sup-

ported a fixed collection of functions, which grew

slowly over the years. SQL:1999 introduced a capa-

bility for users to define additional functions and

procedures that can be invoked from SQL state-

ments. (In this context, a procedure is simply a

function that is invoked by a CALL statement and

that is not required to return a value.) The bodies

of user-defined functions and procedures can be

written either in SQL itself or in a host language

such as C or Java.

� Object-relational features: Early versions of SQL

could process data conforming to a fixed set of

SQL S 2759
simple datatypes such as integers and strings.

Over the years, a few additional datatypes such as

dates and ‘‘large objects’’ were added. In the

late 1990’s, requirements arose for a more extensi-

ble type system. SQL:1999 introduced facilities

for user-defined structured types and methods.

These facilities support limited forms of object-

oriented functionality, including inheritance and

polymorphism.

� Multi-media: In 2000, the SQL Standard was aug-

mented by a separate but closely-related standard

called ‘‘SQLMultimedia and Application Packages’’

(ISO/IEC 13249:2000), often referred to as SQL/

MM. This new standard used the object-relational

features introduced by SQL:1999 to define specia-

lized datatypes and methods for text, images, and

spatial data.

� XML-related features: XML is an increasingly

popular format for data exchange because it mixes

metadata (tags) with data, making the data self-

describing. The popularity of XML has led to

requirements to store XML data in relational data-

bases and to convert data between relational and

XML formats. These requirements have been

addressed by a facility called SQL/XML, which

was introduced as Part 14 of SQL:2003 and was

updated in 2006. SQL/XML includes a new XML

datatype, a set of functions for converting query

results into XML format, and a feature whereby

SQL can invoke XQuery as a sublanguage for pro-

cessing stored XML data.
S

Criticisms

Like most widely-used programming interfaces, SQL

has attracted its share of criticism. Issues that have been

raised about the design of SQL include the following:

� The earliest versions of SQL lacked support for

some important aspects of Codd’s relational data

model such as primary keys and referential integri-

ty. These concepts were added to the language in

SQL-89, along with other integrity-related features

such as unique constraints and check-constraints.

� The earliest versions of SQL had some ad-hoc rules

about how various language features could be com-

bined, and lacked the closure property because the

columns of query results did not always have

names. These problems were largely corrected by

SQL-92.
� Null values are a complex and controversial subject.

One of Codd’s famous ‘‘twelve rules’’ requires rela-

tional database systems to support a null value, de-

fined as a representation of missing or inapplicable

information that is systematic and distinct from all

regular values [6]. Some writers believe that the com-

plexity introduced by null values outweighs their

benefit. However, there seems to be no method for

dealingwithmissing data that is free of disadvantages.

The SQL approach to this issue has been to support a

null value and to allow database designers to specify,

on a column-by-column basis, where nulls are per-

mitted. One benefit of this approach has been that

null values have proven useful in the design of various

language features, such as outer join, CUBE, and

ROLLUP, that have been added during the evolution

of SQL.

� Unlike Codd’s definition of the relational data

model, SQL permits duplicate rows to exist, either

in a database table or in the result of a query. SQL

also allows users to selectively prohibit duplicate

rows in a table or in a query result. The intent of

this approach is to give users control over the

potentially expensive process of duplicate elimina-

tion. In some applications, duplicate rows may be

meaningful (for example, in a point-of-sale system,

a customer may purchase several identical items in

the same transaction.) As in the case of nulls, the

SQL approach has been to provide users with tools

to allow or disallow duplicate rows according to the

needs of specific applications.

� Another source of criticism has been the ‘‘imped-

ance mismatch’’ between SQL and the host lan-

guages such as C and Java in which it is often

embedded. Exchanging data between two languages

with different type systems makes applications

more complex and interferes with global optimiza-

tion. One approach to this problem has been the

development of computationally complete SQL-

based scripting languages such as PSM.

Key Applications
SQL is designed to be used in a variety of application

environments.

Most SQL implementations support an interactive

interface whereby users can compose and execute

ad-hoc SQL statements. In many cases, a graphical

user interface is provided to display menus of available

tables and columns and help the user to construct valid

2760S SQL
statements. These systems also usually support menu-

based interfaces for administrative functions such as

creating and dropping tables and views.

More complex applications usually involve use of

both SQL and a host programming language. This

requires a mapping between the type systems of SQL

and the host language, and a well-defined interface for

exchanging data between the two environments. Inter-

faces have been defined between SQL and C, Java,

and many other host languages. These interfaces fall

into two major categories:

� Embedded SQL: In this approach, SQL statements

are embedded syntactically in the host program,

and are processed by a precompiler that extracts

the SQL statements and converts them to an opti-

mized execution plan that is invoked when the host

program is executed.

� Call interfaces: In this approach, the host program

uses function calls to establish a connection to a

database and to pass SQL statements to the database

system for execution. Conversion of the SQL state-

ments to optimized execution plans is done at

runtime. The most widely-used interfaces of this

type are ODBC (Open Database Connectivity) [13]

and JDBC (Java Database Connectivity) [14]. Since

ODBC and JDBC drivers exist for many popular

relational database systems, these interfaces are

widely used by applications that need to access

remote databases or need to be compatible with

database systems from multiple vendors.

Modern web-based database applications often em-

ploy a three-tiered architecture. The client tier handles

user interaction and communicates with a remote

server via a protocol such as HTTP. Application logic

resides on this server, called the mid-tier. The applica-

tion logic, in turn, accesses an SQL database using

ODBC or JDBC. The database may be implemented

on the mid-tier or on a separate machine called the

database tier or ‘‘back-end.’’

Cross-references
▶Computationally Complete Relational Query

Languages

▶Database Trigger

▶Expressive Power of Query Languages

▶ Java Database Connectivity

▶ Join

▶Key
▶Metadata

▶Multi-Tier Architecture

▶Null Values

▶On-Line Analytical Processing

▶Open Database Connectivity

▶Query Language

▶Query Optimization

▶Query Processing

▶Relational Algebra

▶Relational Calculus

▶Relational Integrity Constraints

▶Relational Model

▶ SQL Isolation Levels

▶ SQUARE

▶Transaction

▶Views

▶XPath/XQuery

Recommended Reading
1. Astrahan M.M. et al. System R: A relational approach to data-

base management. ACM Trans. Database Syst., 1(2):97–137,

1976.

2. Chamberlin D. et al. SEQUEL 2: A unified approach to data

definition, data manipulation, and control. IBM J. Res. Develop.,

20(6):560–575, 1976.

3. Chamberlin D. and Boyce R. SEQUEL: A structured english

query language. In Proc. ACM SIGFIDET Workshop, 1974,

pp. 249–264.

4. Codd E.F. A relational model of data for large shared databanks.

Commun. ACM, 13(6):377–387, 1970.

5. Codd E.F. A data base sublanguage founded on the

relational calculus. In Proc. ACM SIGFIDET Workshop, 1971,

pp. 35–68.

6. Codd E.F. Does Your DBMS Run by the Rules? Computer-

World, 21 Oct., 1985. See also http://en.wikipedia.org/wiki/

Codd’s_12_rules.

7. Database Language SQL. Standard ISO/IEC 9075-1, -2, etc.

Available at: http://www.iso.ch.

8. Database Language SQL. Standard ANSI/ISO/IEC 9075-1, -2,

etc. Available at: http://www.ansi.org.

9. Feuerstein S. and Pribyl B. Oracle PL/SQL Programming,

O’Reilly, Sebastopol, CA, 2005.

10. Melton J. Advanced SQL:1999–Understanding Object-Relational

and Other Advanced Features. Morgan Kaufmann, San Fransisco,

CA, 2003.

11. Melton J. and Simon A.R. SQL:1999–Understanding Relational

Language Components. Morgan Kaufmann, San Fransisco,

CA, 2002.

12. Microsoft SQL Server Development Center. Transact-SQL Refer-

ence. http://msdn2.microsoft.com/en-us/library/ms189826.aspx.

13. Sanders R.E. ODBC 3.5 Developer’s Guide. McGraw-Hill, NY,

1998.

14. Sun Developer Network. JDBC Overview. http://java.sun.com/

products/jdbc/overview.html.

SQL Isolation Levels S 2761
SQL Isolation Levels

PHILIP A. BERNSTEIN

Microsoft Corporation, Redmond, WA, USA

Synonyms
Degrees of consistency; Degrees of isolation

Definition
A transaction is an execution of a well-defined set of

read and write operations on shared data, which ter-

minates with a commit operation that makes its

updates permanent, or an abort operation that

undoes its updates. Isolation levels define the situa-

tions in which a transaction can be affected by the

execution of other transactions. In the ACID proper-

ties, isolation requires that transactions behave serial-

izably, that is, as if they executed in a serial order with

no interleaving. To obtain a serializable execution

when many transactions are executing concurrently,

a transaction’s operations may be delayed and occa-

sionally even rejected. This reduces the rate at which

transactions execute. Users often regard this through-

put reduction as unsatisfactory and therefore seek

isolation levels that are less stringent than serializabil-

ity, some of which are defined as part of the SQL

language. These are the SQL Isolation Levels, which

are called Read Uncommitted, Read Committed, Re-

peatable Read, and Serializable. They are derived

primarily from the ‘‘degrees of consistency’’ originally

presented in [3].
S

Key Points
The SQL isolation levels are defined in terms of the

following types of interleavings, P1 – P3, that each isola-

tion allows or prohibits. The interleavings are expressed

by sequences of operations, using the notation r1[x]

(respectively, w1[x]) to represent the execution of

a read (respectively write) operation by transaction

T1 on row x.

P1. Dirty Read – A dirty read is an operation that

reads a value that was written by an uncommitted

transaction. In the execution ‘‘w1[x] r2[x],’’ r2[x] per-

forms a dirty read. The problem is that transaction T1

might abort after T2 read row x, in which case T2 has

read a value of x that never existed.

P2. Non-repeatable Read – A transaction reads a

row x, a second transaction writes into x and commits,
and then the first transaction reads x again. In the

execution ‘‘w0[x] r1[x] w2[x] c2 r1[x],’’ transaction T1

has experienced a non-repeatable read, since it read

one value of x before T2 executed and a different value

of x after T2 committed.

P3. Phantom – A transaction T1 reads a set of rows

that satisfy a predicate P (such as a WHERE-clause in

SQL). Before T1 commits or aborts, a second transaction

T2 inserts, updates, or deletes rows that change the set

of rows that satisfy P. Therefore, if T1 re-executes its

read, the read will return a different set of rows than it

returned the first time. The rows that appear and disap-

pear are called phantoms. This is the same situation as

non-repeatable reads, except that the set of rows that T1

retrieves is affected by T2, not just their value. In the

following execution, the row inserted byw2 is a phantom:

� r1[rows of the Employee table where

Department = ‘‘Toy’’]

� w2[insert a new row in the Employee table where

Department = ‘‘Toy’’]

� r1[rows of the Employee table where

Department = ‘‘Toy’’]

The SQL isolation levels are defined using the above

three phenomena:

1. Read Uncommitted – All three phenomena (P1, P2,

and P3) are allowed. The intent is to allow all inter-

leavings of reads andwrites by different transactions.

2. Read Committed – Dirty reads are prohibited. This

ensures that each read operation reads a value that

will not be undone because the transaction that

wrote the value later aborts.

3. Repeatable Read – Dirty reads and non-repeatable

reads are prohibited. The intent is to ensure that

transaction executions are serializable except for

phantom situations that arise.

4. Serializable – All three phenomena are prohibited.

The intent is to ensure that transactions are truly

serializable.

Each transactionmay independently define its isolation

level. This creates some difficulty in how a user should

interpret the levels. For example, if a transaction runs as

Serializable, it may still read data that was written by

transactions running (say) as Read Committed.

SQL isolation levels have been criticized because there

is a gap between the definition of the phenomena they

prevent, and the intent of the isolation level as presented

in the descriptions of (1) – (4) above. For details, see [1].

2762S SQL-Based Temporal Query Languages
In principle, all transactions that perform updates

should execute at the Serializable level. That way, if

each transaction preserves database consistency, then

each serial execution will preserve consistency. Hence a

serializable execution will too. If update transactions

execute at less than serializable level, then this consis-

tency preservation guarantee is lost. Nevertheless, it is

believed that most database applications execute at

lower isolation levels than Serializable, typically Read

Committed. This gives them higher throughput at

the expense of some loss of correctness. One simula-

tion study of transaction performance showed that

transaction throughput is 2½–3 times higher with

transactions executing at Read Committed level com-

pared to Serializable level [2].

Cross-references
▶ACID Properties

▶ Serializability

▶Transaction

▶Transaction Model

Recommended Reading
1. Berenson H., Bernstein P., Gray J., Melton J., O’Neil E., and

O’Neil P. A critique of ANSI SQL isolation levels. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 1995, pp. 1–10.

2. Bober P.M. and Carey M.J. On mixing queries and transactions

via multiversion locking. In Proc. 8th Int. Conf. on Data Engi-

neering, 1992, pp. 548–556.

3. Gray J., Lorie R.A., Potzulo G.R., and Traiger I.L. Granularity of

locks and degrees of consistency in a shared database. In IFIP

Working Conf. on Modelling in Data Base Management Sys-

tems, 1976, pp. 365–394. Reprinted in Readings in Database

Systems (3rd edn.), M. Stonebraker and J. Hellerstein (eds.).

Morgan Kaufmann, 1998, pp. 175–193.

4. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, 1993, pp. 397–403.
SQL-Based Temporal Query
Languages

MICHAEL BÖHLEN
1, JOHANN GAMPER

1,

CHRISTIAN S. JENSEN
2, RICHARD T. SNODGRASS

3

1Free University of Bozen-Bolzano, Bolzano, Italy
2Aalborg University, Aalborg, Denmark
3University of Arizona, Tucson, AZ, USA

Definition
More than two dozen extensions to the relational

data model have been proposed that support the storage
and retrieval of time-referenced data. These models time-

stamp tuples or attribute values, and the timestamps used

include time points, time periods, and finite unions of

time periods, termed temporal elements.

A temporal query language is defined in the context

of a specific data model. Most notably, it supports the

specification of queries on the specific form of time-

referenced data provided by its data model. More gener-

ally, it enables the management of time-referenced data.

Different approaches to the design of a temporal

extension to the Structured Query Language (SQL)

have emerged that yield temporal query languages

with quite different design properties.

Historical Background
A number of past events and activities that included

the temporal database community at large had a sig-

nificant impact on the evolution of temporal query

languages. The 1987 IFIP TC 8/WG 8.1 Working Con-

ference on Temporal Aspects in Information Systems [7]

covered topics such as requirements for temporal data

models and information systems, temporal query lan-

guages, versioning, implementation techniques, as well

as temporal logic, constraints, and relations to natural

language.

The 1993 ARPA/NSF International Workshop on

an Infrastructure for Temporal Databases [8] gathered

researchers in temporal databases with the goal of

consolidating the different approaches to temporal

data models and query languages. In 1993, the influ-

ential collection Temporal Databases: Theory, Design,

and Implementation [11] was also published. This col-

lection describes a number of data models and query

languages produced during the previous 10 years of

temporal database research.

Year 1995 saw the publication of the book The

TSQL2 Temporal Query Language [9]. TSQL2 repre-

sents an effort to design a consensus data model and

query language, and it includes many of the concepts

that were proposed by earlier temporal data models

and query languages. In 1995, the International Work-

shop on Temporal Databases [3] was co-located with

the VLDB conference.

Then, in 1996, SQL/Temporal: Part 7 of SQL3

was accepted. This was the result of an effort aimed

at transferring results of temporal database research

into SQL3. The first step was a proposal of a new

part to SQL3, termed SQL/Temporal, which included

the PERIOD data type. In 1997, the Dagstuhl Seminar

Cnt T

SQL-Based Temporal Query Languages S 2763
on Temporal Databases took place [5]. Its goal was

to discuss future directions for temporal database

management, with respect to both research issues and

the means to incorporate temporal databases into

mainstream application development.
1 [3,4]

2 [5,5]

1 [6,7]

0 [8,8]

1 [9,12]

0 [13,18]

1 [19,20]

1 [21,22]

Cnt

5

Foundations
A discrete and totally ordered time domain is as-

sumed that consists of time instants/points. The

term (time) ‘‘period’’ is used to denote a convex

subset of the time domain. The term (time) ‘‘interval’’

then denotes a duration of time, which coincides with

its definition in SQL. As a running example, the

temporal relation Rental in Fig. 1(a) is used, which

records car rentals, e.g., customer C101 rents vehicle

V1234 from time 3 to time 5. Figures 1(b)–(e) show

different representations of this relation, using the

strong period-based, weak period-based, point-based,

and parametric model, respectively. (In all the example

relation instances, the conventional attribute(s) are

separated from the timestamp attribute(s) with a ver-

tical line.) The following queries together with their

intended results build on the car rental example. These

will serve for illustration.

Q1: All rentals that overlap the time period [7,9].

Query Q1 asks for all available information about

rentals that overlap the period [7,9].
CustID VID T

C102 V1245 [5,7]

C102 V1234 [9,12]

CustID VID

C101 V1234

C102 V1245

S

Q2: All 2-day rentals. This query constrains the

number of time points included in a time period and

teases out the difference between the use of time points

versus periods.
VID T

V1245 [19,20]

V1245 [21,22]
Q3: How many vehicles have been rented? This is an

example of an ordinary query that must be applied to

each state of a temporal database. The non-temporal

query is an aggregation. Thus, the result at a specific

time point is computed over all tuples that are valid
at that time point. (Note that some query languages

don’t return tuples when there is no data, e.g., when

the Cnt is 0.)
Q4: How many rentals were made in total? This

is another aggregation query; however, the aggregation

is to be applied independently of any temporal

information.
Q5: List all (current) rentals. This query refers to the

(constantly moving) current time. It is assumed that

the current time is 5.
Approach I: Abstract Data Types – SQL/ATD

The earliest and, from a language design perspective,

simplest approaches to improving the temporal data

management capabilities of SQL have simply intro-

duced time data types and associated predicates and

functions. This approach is illustrated on the Rental

instance in Figure 1(b).

Q1SQL/ATD: select * from Rental where T

overlaps [7,9]

Q2SQL/ATD: select VID, T from Rental where

duration(T) = 2

Q4SQL/ATD: select count(*) as Cnt from Rental

Q5SQL/ATD: select CustID, VID from Rental

where T overlaps [now,now]

SQL-Based Temporal Query Languages. Figure 1. Temporal relation rental.

2764S SQL-Based Temporal Query Languages
The predicates on time-period data types available

in query languages have been influenced by Allen’s 13

period relationships [1], and different practical propo-

sals for collections of predicates exist. For example, the

overlaps predicate (as defined in the TSQL2 language)

can be used to formulate Query Q1. Predicates that

limit the duration of a period (Q2) and retrieve current

data (Q5) follow the same approach.

Expressing the time-varying aggregation of Q3

in SQL is possible, but exceedingly complicated and

inefficient. The hard part is that of expressing the

computation of the periods during which the aggregate

values remain constant. (This requires about two

dozen lines of SQL with nested NOT EXISTS sub-

queries [10, pp. 165–166].) In contrast, counting the

rentals independently of the time references is easy,

as shown in Q4.

Adding a new ADT to SQL has limited impact

on the language design, and extending SQL with new

data types with accompanying predicates and functions

is relatively simple and fairly well understood. The

approach falls short in offering means of conveniently

formulating a wide range of queries on period time-

stamped data, including temporal aggregation. It also

offers no systematic way of generalizing a simple snap-

shot query to becoming time-varying. Shortcomings

such as these motivate the consideration of other

approaches.

Approach II: Folding and Unfolding – IXSQL

Another approach is to equip SQL with the ability

to normalize timestamps. Advanced most prominently

by Lorentzos [4,6] in the IXSQL language, the earliest

and most radical approach is to introduce two
functions: unfold, which decomposes a period-

timestamped tuple into a set of point-timestamped

tuples, and fold, which ‘‘collapses’’ a set of point-

timestamped tuples into value-equivalent tuples

timestamped with maximum periods. The general pat-

tern for queries is then: (i) construct the point-based

representation by unfolding the argument relation(s),

(ii) compute the query on the period-free representa-

tion, and (iii) fold the result to obtain a period-based

representation. The Rental relation in Fig. 1(b) is

assumed.

Q3IXSQL :select count(*) as Cnt, T

from (select * from Rental

reformat as unfold T)

group by T reformat as fold T

The IXSQL formulations of Q1, Q2, Q4, and Q5

are essentially those of the ADT approach (modulo

minor syntactic differences); specifically, normaliza-

tion is not needed. The fold and unfold functions

become useful for the temporal aggregation in Q3. The

inner query unfolds the argument relation, yielding

the point-based representation in Fig. 1(d), on which

the aggregation is computed. The fold function then

transforms the result back into a period-stamped rela-

tion, which, however, is different from the intended

result because the last two tuples are merged into a

single tuple (1,[19,22]). The combination of unfold-

ing and folding yields maximal periods of snapshot

equivalent tuples and does not carry over any lineage

information.

SQL with folding and unfolding is conceptually

simple and offers a systematic approach to formulating

at least some temporal queries, including temporal

SQL-Based Temporal Query Languages S 2765

S

queries that generalize non-temporal queries. It obtains

the representational benefits of periods while avoiding

the potential problems they pose in query formulation,

since the temporal data are manipulated in point-

stamped form. The fold and unfold functions pre-

serve the information content in a relation only up to

that captured by the point-based perspective; thus,

lineage information is lost. This leaves some ‘‘techni-

calities’’ (which are tricky at times) to be addressed by

the application programmer.

Approach III: Point Timestamps – SQL/TP

Amore radical approach to designing a temporal query

language is to simply assume that temporal relations

use point timestamps. The temporal query language

SQL/TP advanced by Toman [12] takes this approach

to generalizing queries on non-temporal relations to

apply to temporal relations. The point-timestamped

Rental relation in Fig. 1(d) is assumed in the

following.

Q1SQL/TP: select distinct a.* from Rental a,

Rental b where a.SeqNo = b.SeqNo

and or (b.T = 7 or b.T = 8 or b.T = 9)

Q2SQL/TP: select SeqNo, VID, T from Rental

group by SeqNo having count(T) = 2

Q3SQL/TP: select count(*) as Cnt, T

from Rental group by T

Q4SQL/TP: select count(distinct SeqNo) as Cnt

from Rental

Q5SQL/TP: select CustID, VID from Rental

where T = now

Q1 calls for a comparison of neighboring database

states. The point-based perspective, which separates

the database states, does not easily support such

queries, and a join is needed to report the original

rental periods. The distinct keyword removes dupli-

cates that are introduced if a tuple shares more than

one time point with the period [7,9].

Duration queries, such as Q2, are formulated as

aggregations and require an attribute, in this case

SeqNo, that distinguishes the individual rentals. The

strength of SQL/TP is in its generalization of queries

on snapshot relations to queries on temporal relations,

as exemplified by Q3. The general principle is to extend

the snapshot query to separate database snapshots,

which here is done by the grouping clause. SQL/TP

and SQL are opposites when it comes to the handling

of temporal information. In SQL, time-varying
aggregation is poorly supported, while SQL/TP needs

an additional attribute that identifies the real-world

facts in the argument relation to support time-invari-

ant aggregation (Q4).

The restriction to time points ensures a simple

and well-defined semantics that avoids many of the

pitfalls that can be attributed to period timestamps.

As periods are still to be used in the physical represen-

tation and user interaction, one may think of SQL/TP

as a variant of IXSQL where, conceptually, queries

must always apply unfold as the first operation and

fold as the last. To express the desired queries, an

identifying attribute (e.g., SeqNo) is often needed.

Such identifiers do not offer a systematic way of

obtaining point-based semantics and a semantics that

preserves the periods of the argument relations. The

query ‘‘When was vehicle V1245, but not vehicle V1234,

rented?’’ illustrates this point. A formulation using the

temporal difference between the timestamp attributes

does not give the expected answer {[6,7],[19,20],

[21,22]} because the sequence number is not included.

If the sequence number is included, the difference is

effectively disabled. This issue is not only germane

to SQL/TP, but applies equally to all approaches that

use a point-based data model.

Approach IV: Syntactic Defaults – TSQL2

What may be viewed as syntactic defaults have been

introduced to make the formulation of common tem-

poral queries more convenient. The most comprehen-

sive approach based on syntactic defaults is TSQL2 [9].

As TSQL2 adopts a point-based perspective, the Rental

instance in Fig. 1(c) is assumed, where the periods are

a shorthand representation of time points.

Q1TSQL2: select * from Rental

where valid(Rental) overlaps

period ’7–9’

Q2TSQL2: select SeqNo, VID from Rental

where cast(valid(Rental) as

interval) = 2

Q3TSQL2: select count(*) as Cnt from Rental

group by valid(Rental) using instant

Q4TSQL2: select snapshot count(*) as Cnt

from Rental

Q5TSQL2: select snapshot * valid(date ’now’)

from Rental

In TSQL2, a valid clause, which by default is present

implicitly after the select clause, computes the

2766S SQL-Based Temporal Query Languages
intersection of the valid times of the relations in the

from clause, which is then returned in the result. With

only one relation in the from clause, this default clause

yields the original timestamps as exemplified in Q1 and

Q2. The cast function in Q2maps between periods (e.g.,

[7�9]) and intervals (e.g., 3 days). The argument rela-

tion must be augmented by the SeqNo attribute (thus

obtaining a relation with five tuples, as in Fig. 1(b)) for

this query to properly return the 2-day rentals.

The default behavior of the implicit valid clause

was designed with snapshot reducibility in mind,

which shows nicely in the instant temporal aggregation

query Q3. The grouping is performed according to

the time points, not the original timestamps returned

by valid(Rental). The using instant is in fact

the default and could be omitted (added for clarity).

As TSQL2 returns temporal relations by default, the

snapshot keyword is used in queries Q4 and Q5 to

retrieve non-temporal relations.

Well-chosen syntactic defaults yield a language that

enables succinct formulation of common temporal

queries. However, adding temporal support to SQL

in this manner is difficult since the non-temporal

constructs do not permit a systematic and easy way

to express the defaults. It is challenging to be compre-

hensive in the specification of such defaults, and to

ensure that they do not interact in unattractive ways.

Thus, syntactic defaults lack ‘‘scalability’’ over language

constructs.

Approach V: Statement Modifiers – ATSQL

ATSQL [2] introduces temporal statement modifiers to

offer a systematic means of constructing temporal

queries from non-temporal queries. A temporal query

is formulated by first formulating the corresponding

non-temporal query, and then prepending this query

with a statement modifier that tells the database system

to use temporal semantics. In contrast to syntactic

defaults, statement modifiers are semantic in that

they apply in the same manner to any statement they

modify. The strong period-timestamped Rental in-

stance in Fig. 1(b) is assumed in the following.

Q1ATSQL: seq vt select * from Rental

where T overlaps [7,9]

Q2ATSQL: seq vt select VID from Rental

where duration(T) = 2

Q3ATSQL: seq vt select count(*) as Cnt from

Rental
Q4ATSQL: nseq vt select count(*) as Cnt

from Rental

Q5ATSQL: select * from Rental

Queries Q1 and Q2 can be formulated almost as

in SQL. The seq vt (‘‘sequenced valid time’’) modifier

indicates that the semantics is consistent with eva-

luating the non-temporal query on a sequence of

non-temporal relations, and ensures that the original

timestamps are returned. Modifiers also work for

queries that use period predicates, such as, e.g., Allen’s

relations, which cannot be used in languages of point-

timestamped data models.

Query Q3 is a temporal generalization of a non-

temporal query and can be formulated by prepending

the non-temporal SQL query with the seq vt modi-

fier. The modifier ensures that at each time point, the

aggregates are evaluated over all tuples that overlap

with that time point. Query Q4 is to be evaluated

independently of the time attribute values of the

tuples. This is achieved by using the nseq vt (‘‘non-

sequenced valid time’’) modifier, which indicates that

what follows should be treated as a regular SQL query.

A query without any modifiers considers only the

current states of the argument relations, as exemplified

by Query Q5. This ensures that legacy queries on non-

temporal relations are unaffected if the non-temporal

relations are made temporal.

Statement modifiers are orthogonal to SQL and

adding them to SQL represents a much more funda-

mental change to the language than, e.g., adding a new

ADT or syntactic defaults. The notion of statement

modifiers offers a wholesale approach to rendering a

query language temporal: modifiers control the se-

mantics of any query language statement. This lan-

guage mechanism is independent of the syntactic

complexity of the queries that the modifiers are applied

to. It becomes easy to construct temporal queries that

generalize snapshot queries.
Approach VI: Temporal Expressions – TempSQL

The notion of temporal expression was originally

advocated by Gadia and is supported in the TempSQL

language [11, p. 28ff], which is based on the para-

metric data model (see Fig. 1(e)). Relations in

TempSQL consist of tuples with attribute values that

are functions from a subset of the time domain to

some value domain (specified as a pair of a temporal

SQL-Based Temporal Query Languages S 2767

S

element, a finite union of time periods, and a value).

The functions in the same tuple must have the same

domain. The relations are keyed. If a set of attributes is

a key, then no two tuples are allowed to exist in the

relation that have the same range values for those

attributes. Fig. 1(e) with the key SeqNo is assumed in

the following.

Q1TempSQL: select * from Rental

where [[VID]] \ [7,9] 6¼ ;
Q2TempSQL: select VID from Rental

where duration([[VID]]) = 2

Q3TempSQL: select count(*) as Cnt from Rental

Q5TempSQL: select * from Rental

Queries Q1 and Q2 can be formulated using temporal

expressions. If X is an expression that returns a func-

tion from time to some value domain then [[X]] is

a temporal expression which returns the domain of X,

i.e., the time when X is true. The result of Q2 is the

relation {h[19,22] V1245i}. For the aggregation query

Q3, TempSQL automatically performs an instant tem-

poral aggregation [11, p. 42]. A different query must

be used to determine the time-invariant count in Q4.

One possibility would be to formulate a query that first

drops or equalizes all timestamps and then performs the

above aggregation. For so-called current users, TempSQL

offers built-in support for accessing the current state of a

database, by assuming that the argument relations are the

ordinary snapshot relations that contain the current

states of the temporal relations.This is exemplified inQ5.

Temporal expressions as used in TempSQL, which

return the temporal elements during which a logical

expression is true, are convenient and often enable the

elegant formulation of queries. Temporal expressions

along with temporal elements fit well into the point-

based framework. However, as of yet, little research has

been done to further explore temporal expressions and

to include them into query languages.
Key Applications
SQL-based temporal query languages are intended

for use in database applications that involve the man-

agement of time-referenced data. Such applications are

found literally in all data management application

areas – in fact, virtually all real-world databases con-

tain time-referenced data. SQL-based languages are

attractive in comparison to other types of languages
because SQL is used by existing database management

systems.
Future Directions
While temporal query language support appears to

be emerging in commercial systems, comprehensive

temporal support is still not available in products.

Much research in temporal query languages has

implicitly or explicitly assumed a traditional adminis-

trative data management setting, as exemplified by

the car rental example. The design of temporal query

languages for other kinds of data and applications, e.g.,

continuous sensor data, has received little attention.
Cross-references
▶Allen’s Relations

▶Now in Temporal Databases

▶ Period-Stamped Temporal Models

▶ Point-Stamped Temporal Models

▶Temporal Database

▶Temporal Data Models

▶Temporal Element

▶Time Interval

▶Time Period

▶Temporal Query Languages

▶TSQL2

▶Valid Time
Recommended Reading
1. Allen J.F. Maintaining Knowledge about temporal intervals.

Commun. ACM, 26 (11):832–843, 1983.

2. Böhlen M.H., Jensen C.S., and Snodgrass R.T. Temporal state-

ment modifiers. ACM Trans. on Database Syst., 25(4):407–456,

2000.

3. Clifford J. and Tuzhilin A. editors. Recent advances in temporal

databases. In Proc. Int. Workshop on Temporal Databases, 1995.

4. Date C.J., Darwen H., and Lorentzos N. editors. Temporal Data

and the Relational Model. Morgan Kaufmann publishers, 2002.

5. Etzion O., Jajodia S., and Sripada S. editors. Temporal Databases:

Research and Practice, Volume 1399 of Lecture Notes in

Computer Science. Springer Verlag, 1998.

6. Lorentzos N.A. and Johnson R.G. Extending relational algebra

to manipulate temporal data. Inf. Syst., 13(3):289–296, 1988.

7. Rolland C., Bodart F., and Lèonard M. editors. Temporal aspects

in information systems. In Proc. IFIP TC 8/WG 8.1 Working

Conf. on Temporal Aspects in Information Systems, 1987.

8. Snodgrass R.T. editor. In Proc. Int. Workshop on an Infrastruc-

ture for Temporal Databases, 1993.

9. Snodgrass R.T. editor. The TSQL2 Temporal Query Language.

Kluwer, 1995.

2768S SRM
10. Snodgrass R.T. Developing Time-Oriented Database Appli-

cations in SQL. Morgan Kaufmann Publishers, San Francisco,

CA, July 1999.

11. Tansel A., Clifford J., Gadia S., Jajodia S., Segev A., and

Snodgrass R.T. Temporal Databases: Theory, Design, and Imple-

mentation. Benjamin/Cummings, Publishing Company, Inc.

1993.

12. Toman D. Point-based temporal extensions of SQL and their

efficient implementation. In [5], 1997, pp. 211–237.

SRM

▶ Storage Resource Management
Stability-based Validation of
Clustering

▶Clustering Validity
Stable Distribution

PING LI

Cornell University, Ithaca, NY, USA

Synonyms
Lévy skew a-stable distribution

Definition
A random variable Z is said to follow a symmetric

a-stable distribution[13,15], where 0 < a � 2, if the

Fourier transform of its probability density function

fZ (z) satisfies

Z 1

�1
e
ffiffiffiffiffi
�1

p
zt f ZðzÞdt ¼ e�djt ja ; 0 < a � 2 ð1Þ

where d > 0 is the scale parameter. This is denoted by

Z � S(a, d).
There is an equivalent definition. A random vari-

able Z follows a symmetric a-stable distribution if,

for any real numbers, C1 and C2,

C1Z1 þ C2Z2 ¼d jC1ja þ jC2jað Þ1=aZ ; ð2Þ

where Z1 and Z2 are independent copies of Z, and

the symbol ‘‘¼d ’’ denotes equality in distribution.

The probability density function fZ(z) can be

obtained by taking inverse Fourier transform of 1. In
particular, fZ(z) can be expressed in closed-forms when

a¼ 2 (i.e., the normal distribution) and a¼ 1 (i.e., the

Cauchy distribution).

Historical Background
The early comprehensive development of the stable

distribution theory is credited to the French math-

ematician P. Lévy and the Soviet mathematician A.

Ya. Khinchin, in the 1920s and 1930s[13,15]. Stable

distributions have been widely used for modeling

real-world data which exhibit heavy-tailed behaviors,

for example, data that do not have finite variance or

even finite mean.

In databases, data mining, and theoretical comput-

er science, stable distributions have become an impor-

tant tool for developing randomized dimension

reduction algorithms, in particular, for efficiently com-

puting summary statistics including distances, fre-

quency moments, inner products and angles, in

massive dynamic data sets. This type of technique is

called (stable) random projections[1–4,7–9,11,14].

Pioneered by Alon, Matias, and Szegedy [2] in

1996, the method of random projections has been exten-

sively applied in databases for approximating joint

sizes and (l2) Euclidean distances. Indyk and Motwani

[8] in 1998 developed local sensitive hashing (LSH)

using random projections, for efficiently searching for -

approximate nearest neighbors in high-dimensional

data. In 2004, Datar et al. [4] extended LSH for

approximating nearest neighbors in the la (0 < a � 2)

norm. Indyk[7] in 2000 proposed using stable ran-

dom projections to approximate the la distances and

frequency moments in massive data streams. Cormode

et al. [3] in 2002 proposed approximating the (l0)

Hamming distances in dynamic data using stable ran-

dom projections with very small a.
The method of stable random projections

eventually boils down to estimating the scale param-

eter of an a-stable distribution for a fixed a. This
problem has been studied in statistics. For example,

Fama and Roll[6] suggested estimators based on sam-

ple quantiles. Ping Li [11] in 2008 developed estima-

tors based on the geometric mean and the harmonic

mean.

Foundations
From the definitions (1) and (2), it follows that, if D

random variables, r1, r2,...,rD , are independent

and identically distributed (i.i.d.), ri � S(a, 1), then a

Stable Distribution S 2769
linear combination of ri’s also follows an a-stable dis-
tribution. That is

c1r1 þ c2r2 þ ::: þ cDrD �
S a; jc1ja þ jc2ja þ ::: þ jcDjað Þ;

ð3Þ

for any real numbers c1, c2,...,cD. This property is the

foundation for stable random projections.
S

Stable Random Projections

The basic procedure of stable random projection is

quite straightforward. Consider two D-dimensional

vectors, u1 2 RD and u2 2 RD. A matrix

R ¼ frijgDi¼1
k
j¼1 2 RD�k is generated by sampling

the entries from i.i.d. a-stable distributions, i.e.,

rij � S(a, 1). The matrix-vector multiplications,

v1 ¼ RT � u1 and v2 ¼ RT � u2, result in two

k-dimensional vectors, v1 2 Rk and v2 2 Rk. The

entries of v1 and v2 also follow a-stable distributions:

v1;j � S a;
XD
i¼1

ju1;i ja
 !

; i:i:d: j ¼ 1; 2;:::;k ð4Þ

v2;j � S a;
XD
i¼1

ju2; iaj

 !
; i:i:d: j ¼ 1; 2;:::;k ð5Þ

v1;j �v2;j � S a;
XD
i¼1

ju1;i � u2;ija
 !

; i:i:d:

j ¼ 1; 2;:::;k

ð6Þ

The term,
PD

i¼1 u1;i
�� ��a, is the la norm (raised to the ath

power) of the vector u1; and in data stream computa-

tions, it is often referred to as the ath frequency mo-

ment. The term,
PD

i¼1 u1;i � u2;i
�� ��a, is the la distance

(raised to the ath power) between vectors u1 and u2.

Many applications such as clustering, classification,

nearest neighbor searching etc. only require pairwise

distances of the data; and hence one might discard the

original massive data after stable random projections,

as long as one can estimate the distances from the

stable samples.

Statistical Estimations

The method of stable random projections boils down

to a statistical estimation problem. That is, given k i.i.d.

samples xj � S (a, d(a)), j ¼ 1, 2,...,k, estimate the scale

parameter d(a). Listed below are various estimators,

together with their estimation variances either exactly

or asymptotically.
� The arithmetic mean estimator, for a ¼ 2 only

d̂ð2Þ;am ¼ 1

k

Xk
j¼1

jxj j2; ð7Þ

Var d̂ð2Þ;am

� �
¼ 2

k
d2ð2Þ: ð8Þ

� The harmonic mean estimator, for small a only

d̂ðaÞ;hm ¼
� 2

pGð�aÞ sin p
2
a

� 	
Pk

j¼1jxj j
�a

k � �pGð�2aÞ sin pað Þ
Gð�aÞ sin p

2
a

� 	
 �2 � 1

 ! !
;

ð9Þ

Var d̂ðaÞ;hm

� �
¼ d2ðaÞ

1

k

�pGð�2aÞ sin pað Þ
Gð�aÞ sin p

2
a

� 	
 �2 � 1

 !

þ O
1

k2

� �
:

ð10Þ

As a approaches zero, in the limit,

lim
a!0þ

� 2

p
Gð�aÞ sin p

2
a

� �
¼ 1;

lim
a!0þ

�pGð�2aÞ sin pað Þ
Gð�aÞ sin p

2
a

� 	
 �2 � 1

 !
¼ 1:

ð11Þ

� The geometric mean estimator

d̂ðaÞ;gm ¼
Qk

j¼1jxj j
a=k

2
pG

a
k

� 	
G 1� 1

k

� 	
sin p

2
a
k

� 	
 �k : ð12Þ

Var d̂ðaÞ;gm

� �
¼ d2ðaÞ

2
pG

2a
k

� 	
G 1� 2

k

� 	
sin p a

k

� 	
 �k
2
pG

a
k

� 	
G 1� 1

k

� 	
sin p

2
a
k

� 	
 �2k � 1

()

ð13Þ

¼ d2ðaÞ
1

k

p2

12
a2 þ 2
� 	

þ O
1

k2

� �
: ð14Þ

� The sample median estimator

d̂ðaÞ;me ¼
medianfjxj ja; j ¼ 1; 2;:::;kg

medianfSða; 1Þga : ð15Þ

The estimation variance of the sample median estima-

tor d̂ðaÞ;me cannot be expressed in closed-forms.

2770S Stable Distribution
Compared with the geometric mean estimator, the

sample median estimator is not as accurate when the

sample size k is not very large. The sample median

estimator, however, is more convenient to compute.

Sample Complexity

When a ¼ 2, the celebrated Johnson-Lindenstrauss

(JL) Lemma [9] showed that k, the required number

of projections, should satisfy k ¼ O (log n ∕e2) so that

any pairwise l2 distance among n data points can be

approximated within a 1 	 e factor of the truth.
For general 0 < a � 2, it is proved[11] using the

geometric mean estimator that the sample complexity

should also be k ¼ O (log n ∕e2). The constants can be

explicitly specified.

Sampling from Stable Distributions

Sampling from a stable distribution is in general quite

expensive, unless a ¼ 2 or a ¼ 1. One procedure is

described in [13, Proposition 1.71.1]. A random vari-

ableW1 is sampled from a uniform distribution on the

interval ð� p
2
; p
2
Þ; and a random variable E1 is sampled

from an exponential distribution with mean 1.W1 and

E1 are independent. Then

sinðaW 1Þ
cos ðW 1Þ1=a

cos ð1� aÞW 1ð Þ
E1

� �ð1�aÞ=a
ð16Þ

is distributed as S(a, 1).
Under certain reasonable regularity assumptions

on the original data, it is possible to simplify the

sampling procedure by replacing the a-stable distribu-
tion S(a, 1) with a mixture of a symmetric a-Pareto
distribution (with probability 0 < b � 1) and a point

mass at the origin (with probability 1 � b), i.e.,

Pa with prob: b
2

0 with prob: 1� b
�Pa with prob: b

2

8<
: ; ð17Þ

where Pa denotes an a-Pareto variable, i.e.,

Pr Pa > tð Þ ¼ 1
ta
if t� 1, and 0 otherwise. An a-Pareto

distribution has the same tail behaviors as S(a, 1), but
it is much easier to sample from. For example, given

a random variable U drawn from a uniform distribu-

tion on the unit interval (0,1), then 1 ∕U1 ∕a follows

an a-Pareto distribution.

If D random variables, r1, r2,...,rD , are sampled

i.i.d. from (17), then a linear combination of ri’s is

asymptotically stable, as D ! 1. That is [10],
c1r1 þ c2r2 þ :::þ cDrD)

S a; bGð1� aÞ cos p
2
a

� �XD
j¼1

jcija
 !

;
ð18Þ

provided that the data, c1, c2,...,cD , satisfy

max
1�i�D

jcij
PD

i¼1jcij
a� 	1=a ! 0; as D ! 1: ð19Þ

The parameter b in (17) controls the sparsity of the

projection matrix. Small b values considerably reduce

the processing cost for conducting random projec-

tions. b should be chosen according to the data dimen-

sion D and the prior knowledge about the data. Some

synthetic and real-world data experiments in [10] indi-

cated that, when a ¼ 1, using (17) with b < 0. 1,

achieved very similar estimation accuracy as using

the exact stable distribution, even when D is not too

large.
Key Applications
Stable distributions have been widely used for model-

ing real-world heavy-tailed data, arising in finance,

economics, Internet traffic, computational Linguistics,

and many other fields.

There have been numerous applications of

stable random projections, in theoretical computer

science, databases, data mining, data streams, and sig-

nal recovery[5].
Stable Random Projections for Dimension Reductions

Data mining and machine learning algorithms often

assume a ‘‘data matrix’’ A 2 Rn�D, with n rows and D

columns. For many algorithms, the data matrix A is

utilized only through pairwise distances of A instead of

the original data. A projection matrix R 2 RD�k is

generated by sampling each entry from i.i.d. S(a, 1).
The projected data matrix B ¼ A � R 2 Rn�k contain

enough information to approximately recover pairwise

la distances of A. The number of projections (sample

size), should satisfy k ¼ O (log n ∕e2).

� The original data matrix A may be too large for

physical memory, for example, A could be the

term-by-document matrix at Web scale. Even if A

may fit in memory, storing all pairwise distances of

A in memory can be infeasible when n > 106. In

contrast, the projected data matrix B may be small

Stack-based Query Language S 2771
enough for the memory. Because B has only k col-

umns, pairwise distances may be computed on

demand.

� Computing all pairwise distances of A costs

O(n2D). The cost is reduced to O(nDk þ n2k)

using stable random projections.

� When a ¼ 2, the projected data matrix B preserve

not only the pairwise (squared) l2 distances of A in

expectations, but also the pairwise inner products

of A in expectations. Some applications care about

inner products more than distances. In databases,

for example, counting the joint sizes can be viewed

as computing inner products.
S

Stable Random Projections for Data Stream

Computations

Consider the Turnstile model [12], which is a

linear model for data streams. The input data stream

st ¼ (i, It) arriving sequentially describes the underly-

ing signal S, meaning St[i] ¼ St � 1[i] þ It , i ¼ 1 to D,

where t denotes time. For example, Smay represent the

arriving IP addresses (D ¼ 264) and St[i] records the

frequencies of IP address i. The term
PD

i¼1 St i½
j ja is

often referred to as the ath frequency moment of St. Due

to the linearity of the Turnstile model, stable random

projections can be applied for approximating the fre-

quency moments.

Again, a random projection matrix R 2 RD�k is

generated by sampling each entry rij from i.i.d.

S(a, 1). A vector x of length k is initialized so that

xj ¼ 0, for j ¼ 1 to k. Then for each arriving tuple

st ¼ (i, It), update xj ← xj þ rij � It for j ¼ 1 to k.

At any time t, the entries xj, j ¼ 1 to k, are i.i.d.

samples from S a;
PD

i¼1 St i½
j ja
� 	

; and hence one can

estimate the ath frequency moment
PD

i¼1 St i½
j ja. Due
to the linearity, the same methodology can also be

applied for approximating the difference between two

streams.

In particular, when a ! 0þ;
PD

i¼1 St i½
j ja
approaches the Hamming norm of St, which is the

total number of nonzero entries, sometimes referred

to as the number of distinct items. Thus, stable random

projections can provide the tool for approximating the

Hamming norm (and Hamming distance) in dynamic

streaming data, using very small a.
Cross-references
▶ Stream Mining
Recommended Reading
1. Achlioptas D. Database-friendly random projections: Johnson-

Lindenstrauss with binary coins.. J. Comput. Syst. Sci., 66(4):

671–687, 2003.

2. Alon N., Matias Y., and Szegedy M. The space complexity of

approximating the frequency moments. In Proc. 28th Annual

ACM Symp. on Theory of Computing, 1996, pp. 20–29.

3. Cormode G., Datar M., Indyk P., and Muthukrishnan S. Com-

paring data streams using hamming norms (how to zero in).

In Proc. 28th Int. Conf. on Very Large Data Bases, 2002,

pp. 335–345.

4. Datar M., Immorlica N., Indyk P., and Mirrokn V.S. Locality-

sensitive hashing scheme based on p-stable distributions. In

Proc. 20th Annual Symp. on Computational Geometry, 2004,

pp. 253–262.

5. Donoho D.L. Compressed sensing. IEEE Trans. Inform. Theory,

52(4):1289–1306, 2006.

6. Fama E.F. and Roll R. Parameter estimates for symmetric stable

distributions.. J. Am. Stat. Assoc., 66(334):331–338, 1971.

7. Indyk P. Stable distributions, pseudorandom generators, embed-

dings, and data stream computation.. J. ACM, 53(3):307–323,

2006.

8. Indyk P. and Motwani R. Approximate nearest neighbors: Towards

removing the curse of dimensionality. In Proc. 30th Annual ACM

Symp. on Theory of Computing, 1998, pp. 604–613.

9. Johnson W.B. and Lindenstrauss J. Extensions of Lipschitz

mapping into Hilbert space. Contemp. Math., 26:189–206, 1984.

10. Li P. Very sparse stable random projections for dimension

reduction in la (0 < a � 2) norm. In Proc. 13th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2007.

11. Li P. Estimators and tail bounds for dimension reduction in la

(0 < a � 2) using stable random projections. In Proc. 19th

Annual ACM -SIAM Symp. on Discrete Algorithms, 2008.

12. Muthukrishnan S. Data streams: Algorithms and applications.

Found. Trends Theor. Comput. Sci., 11:117–236, 2005.

13. Samorodnitsky G. and Taqqu M.S. Stable Non-Gaussian Ran-

dom Processes. Chapman & Hall, 1994.

14. Vempala S. The Random Projection Method. American

Mathematical Society, Providence, RI, 2004.

15. Zolotarev V.M. One-dimensional Stable Distributions. American

Mathematical Society, Providence, RI, 1986.
Stack-based Query Language

KAZIMIERZ SUBIETA

Polish-Japanese Institute of Information Technology,

Warsaw, Poland

Synonyms
SBQL

Definition
Stack-Based Query Language [1] is a query and pro-

gramming language devoted to object-oriented database

2772S Staged Database Systems
models. SBQL is the result of investigations into a

uniform theoretical and conceptual basis for object-

oriented query languages integrated with programming

capabilities and abstractions, including database abstrac-

tions: updatable views, stored procedures and transac-

tions. SBQL is developed according to the Stack-Based

Architecture (SBA) [3,2] that is a conceptual frame for

developing object-oriented query and programming

languages. SBQL has the same role and meaning as

object algebras, but it is much more universal and

formally precise. SBQL deal with object store models

that include complex objects, associations, classes,

types, methods, inheritance, dynamic roles, encap-

sulation, polymorphism, semi-structured data, and

other features. The functionality of SBQL includes all

well-known query operators (selection, projection, nav-

igation, path expressions, join, quantifiers, etc.), some

less known operators (transitive closures, fixed-point

equations, etc.), imperative (updating) statements

integrated with queries, modules, procedures, func-

tions and methods (with parameters being queries

and recursive). SBQL deals with static strong type

checking and with query optimization methods based

on indices, rewriting rules and other techniques. Ab-

stract implementation (a kind of operational semantics)

is the basic paradigm of formal specification of SBQL

semantics. It involves an abstract machine that employs

abstract definitions of three internal data structures well-

known in specification of programming languages: an

object store, an environmental stack, and a query result

stack (thus the Stack-Based Architecture). SBQL has

been implemented within several research prototypes;

the last and the most complete one is ODRA (Object

Database for Rapid Applications).

Key Points
SBQL adopts a classical run-time mechanism of Pro-

gramming Languages (PLs), with some improve-

ments. The main syntactic decision is the unification

of PL expressions and queries; queries remain the only

kind of PL expressions. In SBQL there is no conceptual

difference between expressions such as 2 + 2 and

(x + y) � z, and queries such as Employee where

Salary = 1000 or (Employee where Salary = (x + y)

*z). Name. All such expressions/queries can be used as

arguments of imperative statements, as parameters of

procedures, functions or methods, as a return from a

procedure, etc.
Semantically, SBQL is based on the classical naming-

scoping-binding paradigm. Scopes are organized in an

environmental stack with the ‘‘search from the top’’

rule. The operational semantics of query operators,

programming constructs and procedures (functions,

methods, views, etc.) is defined in terms of the three

mentioned abstract data structures: object store,

environmental stack, and query results stack. SBQL

subdivides operators into algebraic and non-algebraic.

Algebraic operators act only on the query result

stack. The essence is non-algebraic operators, such as

selection, projection, join, quantifiers, ordering, tran-

sitive closures, and iterations that are defined through

the environment stack (with no reference to any

object algebra or calculus). SBQL is extended by pro-

gramming constructs, procedures, methods, modules,

transactions and updatable views. SBQL has a (semi)

strong static type checking and query optimizations.

SBQL is implemented for different environments,

including XML and workflow systems. SBQL is con-

sidered as a departure point for the new fourth gener-

ation database standard developed by OMG.
Cross-references
▶Class

▶Database Programming Language

▶ Inheritance

▶OODB (Object-Oriented Database)

▶Query Language

▶Query Optimization

▶ Strong Typing

▶Updatable View
Recommended Reading
1. SBQL web pages with a lot of resources and references. http://

www.sbql.pl/.

2. Subieta K., Beeri C., Matthes F., Schmidt J.W. A stack-based

approach to query languages. In Proc. 2nd East-West Database

Workshop. 1994, pp. 159–180.

3. Subieta K., Kambayashi Y., Leszczyłowski J. Procedures in

object-oriented query languages. In Proc. 21st Int. Conf. on

Very Large Data Bases, 1995, pp. 182–193.
Staged Database Systems

▶ Staged DBMS

Staged DBMS S 2773

S

Staged DBMS

STAVROS HARIZOPOULOS

HP Labs, Palo Alto, CA, USA

Synonyms
Staged database systems

Definition
A Staged Database Management System (DBMS) is a

database software architecture that optimizes data and

instruction locality at all levels of the memory hierar-

chy in a computer system. An additional goal of Staged

DBMS is to provide a robust and efficient platform for

both parallelizing and pipelining database requests.

The main principle of the Staged Database System

design is to organize and assign software system com-

ponents into self-contained stages; database request

execution is broken into stages and sub-requests are

group-processed at each stage. This allows for a con-

text-aware execution sequence of requests that pro-

motes reusability of both instructions and data, and

also facilitates development of work sharing mechan-

isms, which has been a key application for StagedDB;

work sharing is defined as any operation that reduces

the total amount of work in a system by eliminating

redundant computation or data accesses. Existing

database systems can be converted to staged ones by

carrying over their algorithms and mechanisms, and

adapt those in a platform that supports staged

execution.

Historical Background
Though the Staged DBMS architecture was proposed

by Harizopoulos and Ailamaki in 2003 [3], one of the

earliest prototype relational database systems, INGRES

[12], also consisted of four ‘‘stages’’ (processes) that

enabled pipelining; the reason for breaking up the

DBMS software was main memory size limitations.

Work in staged architectures re-emerged in the early

2000s, first by Larus and Parkes as a generic program-

ming paradigm for building server applications [7],

and subsequently by Welsh et al as a means for deploy-

ing highly concurrent internet services [13]. Initial

prototypes of database systems developed at Carnegie

Mellon University that followed the principles of

StagedDB (Qpipe and Cordoba [4,5]), focused on the

performance benefits of work sharing. A relational
engine based on the Staged DBMS design can proac-

tively coordinate same-operator execution among con-

current queries, thereby exploiting common accesses

to memory and disks as well as common intermediate

result computation.

Foundations
Modern commercial DBMS are typically built as a

large piece of software that serves multiple requests

using a thread-based concurrency model. Queries

are handled by one or more threads (or processes)

that follow the query execution plan up to its comple-

tion. This model implicitly defines a query execution

sequence and a resource utilization schedule in the

system. Whenever a thread blocks due to an I/O, an

ungranted lock request, an internal synchronization

condition, or due to an expiring CPU time quantum,

the thread scheduler assigns the CPU to the next run-

nable thread of the highest priority. This context-

switching mechanism creates a logical gap in the

sequence of actions the DBMS performs. While a soft-

ware developer can optimize the individual steps

involved in a single query’s execution, she or he typi-

cally has no means of applying similar optimization

techniques to a collection of multiplexed queries.

A staged database system consists of a number of

self-contained software modules, each encapsulated

into a stage. A stage is an independent server with its

own queue, thread support, and resource manage-

ment that communicates and interacts with the other

stages through a well-defined interface. Stages accept

packets, each carrying a query’s state and private data,

perform work on the packets, and may enqueue the

same or newly created packets to other stages. Each

stage is centered around exclusively owned (to the

degree possible) server code and data. There are two

levels of CPU scheduling: local thread scheduling

within a stage and global scheduling across stages.

The StagedDB design promotes stage autonomy, data

and instruction locality, and minimizes the usage

of global variables.

A stage provides two basic operations, enqueue and

dequeue, and a queue for the incoming packets. The

stage-specific server code is contained within dequeue.

The system works through the exchange of packets

between stages. A packet represents work that the

server must perform for a specific query at a given

stage. It first enters the stage’s queue through the

2774S Staged DBMS
enqueue operation and waits until a dequeue opera-

tion removes it. Then, once the query’s current state is

restored, the stage specific code is executed. Depending

on the stage and the query, new packets may be created

and enqueued at other stages. Eventually, the stage

code returns by either (i) destroying the packet (if

done with that query at the specific stage), (ii) for-

warding the packet to the next stage (i.e., from parse to

optimize), or by (iii) enqueueing the packet back into

the stage’s queue (if there is more work but the client

needs to wait on some condition). Queries use packets

to carry their state and private data. Each stage is

responsible for assigning memory resources to a

query. In a shared-memory system, packets carry only

pointers to the query’s state and data structures (which

are kept in a single copy). Each stage employs a pool of

worker threads (the stage threads) that continuously

call dequeue on the stage’s queue, and one thread

reserved for scheduling purposes (the scheduling

thread). An analysis of scheduling tradeoffs in staged

database systems along with a description of an initial

implementation can be found in [2].

Key Applications
A key application for the Staged DBMS design has been

detecting and exploiting work sharing opportunities at

run-time inside a relational database engine. Tradi-

tional relational DBMS typically execute concurrent

queries independently by invoking a set of operator

instances for each query. To exploit common data

retrievals and computation in concurrent queries, re-

lational engines employ techniques ranging from con-

structing materialized views to optimizing multiple

queries and sharing concurrent scans to the same

table. These three techniques are briefly described next.

Materialized view selection [8] is typically applied

to workloads known in advance, in order to speed up

queries that contain common sub-expressions. Materi-

alized views exploit commonality between different

queries at the expense of potentially significant view

maintenance costs. Tools for automatic selection of

materialized views take such costs into account when

recommending a set of views to create. The usefulness

of materialized views is limited when the workload is

not always known ahead of time or the workload

requirements change frequently.

Multiple-query optimization (MQO) [10] identifies

common sub-expressions in query execution plans

during optimization, and produces globally-optimal
plans. The detection of common sub-expressions is

performed at optimization time, thus, all queries need

to be optimized as a batch. In addition, to share inter-

mediate results among queries, MQO typically relies on

costly materializations. To avoid unnecessary materia-

lizations, a study described in [9] introduces a model

that decides at the optimization phase which result can

be pipelined and which needs to be materialized to

ensure continuous progress in the system.

Shared scans allow multiple independent concur-

rent scans to the same table on disk to be synchronized,

so that each new page fetched from disk is consumed

by all scans that include the page in their range. This

optimization applies to scans that can receive their

input pages in any arbitrary order. Since queries inter-

act with the buffer pool manager through a page-level

interface, it requires a certain engineering effort to

develop generic policies to coordinate current and

future accesses from different queries to the same

disk pages. Several commercial DBMSs (Teradata,

Microsoft’s SQL Server, IBM’s DB2 [6]) and research

prototypes [4,14] incorporate various forms of multi-

scan optimizations.

A relational engine based on the Staged DBMS de-

sign complements the above-mentioned techniques, by

proactively coordinating same-operator execution

among concurrent queries, thereby exploiting common

accesses to memory and disks as well as common inter-

mediate result computation. Such staged relational

engines are the academic prototypes QPipe and Cor-

doba [4,5], developed at Carnegie Mellon University.

To maximize data and work sharing at execution

time, QPipemonitors each relational operator for every

active query in order to detect overlaps. For example,

one query may have already sorted a file that another

query is about to start sorting; by monitoring the sort

operator QPipe can detect this overlap and reuse the

sorted file. Once an overlapping computation is

detected, the system executes the corresponding opera-

tion only once, and simultaneously pipelines the results

of the common operation to the interested parties,

thereby avoiding materialization costs.

QPipe follows a ‘‘one-operator, many-queries’’ de-

sign philosophy. Each relational operator is promoted

to a staged, independent micro-engine which manages

a set of threads and serves queries from a queue (see

Fig. 1). A packet dispatcher converts an incoming

query plan to a series of query packets. Data flow

between micro-engines occurs through dedicated

Staged DBMS. Figure 1. QPipe architecture: queries with the same operator queue up at the same micro-engine

(for simplicity, only three micro-engines are shown).

Staged DBMS S 2775

S

buffers - similar to a parallel database engine. QPipe

optimizes resource utilization by grouping requests

of the same nature together, and by having dedica-

ted micro-engines to process each group of similar

requests. Every time a new packet queues up in

a micro-engine, all existing packets are checked for

overlapping work. On a match, each micro-engine

can employ different mechanisms for data and work

sharing, depending on the enclosed relational operator.

Such mechanisms are described in detail in [4].

Subsequent work on QPipe produced the Cordoba

prototype which is suited for execution on multicore

CPUs. The tradeoffs of work sharing in highly parallel

muticore chip designs are discussed in [5].

Future Directions
By the year 2005 it was apparent to microprocessor

designers that performance increases in next generation

CPUs would come by incorporating an increasing num-

ber of CPU cores on the same chip. If this trend con-

tinues to hold, then software designers will need to

devise efficient solutions to take advantage of the (in-

creasing) hardware-available parallelism. A preliminary

study of bottlenecks for database systems on multicore

CPUs (chip multiprocessors or CMPs) that was pub-

lished in 2007 can be found in [1]. A future direction for

Staged database systems is to exploit their inherent

parallelism nature and apply it to CMP designs.

From a software engineering point of view, years

of DBMS software development have lead to complex
implementations that are increasingly difficult to

extend, tune, and evolve. While software developers

commonly organize code into separate components,

the final product consists of tightly integrated and

interdependent software modules, ‘‘glued’’ together to

eliminate overheads and increase performance. It has

been argued that such monolithic systems are ‘‘one size

fits all’’ designs [11] that cannot possibly excel in all

areas of data management. Another potential future

direction for StagedDB is to allow several software

components with specialized functionality to be trans-

parently integrated and used inside a single system,

thereby achieving high performance in several areas

of data management without needing a number of

different specialized architectures.
Cross-references
▶Operator-level Parallelism

▶ Parallel Database
Recommended Reading
1. Hardavellas N., Pandis I., Johnson R., Mancheril N., Ailamaki A.,

and Falsafi B. Database servers on chip multiprocessors: limita-

tions and opportunities. In Proc. 3rd Biennial Conf. on Innova-

tive Data Systems Research, 2007.

2. Harizopoulos S. Staged Database Systems. PhD Thesis, Com-

puter Science Department, Carnegie Mellon University, 2005.

3. Harizopoulos S. and Ailamaki A. A case for staged database

systems. In Proc. 1st Biennial Conf. on Innovative Data Systems

Research, 2003.

2776S Standard Effectiveness Measures
4. Harizopoulos S., Shkapenyuk V., and Ailamaki A. QPipe: a

simultaneously pipelined relational query engine. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2005,

pp. 383–394.

5. Johnson R., Hardavellas N., Pandis I., Mancheril N.,

Harizopoulos S., Sabirli K., Ailamaki A., and Falsafi B. To

Share Or Not To Share? In Proc. 33rd Int. Conf. on Very Large

Data Bases, 2007, pp. 351–362.

6. Lang C., Bhattacharjee B., Malkemus T., Padmanabhan S., and

Wong K. Increasing buffer-locality for multiple relational table

scans through grouping and throttling. In Proc. 23rd Int. Conf.

on Data Engineering, 2007, pp. 1136–1145.

7. Larus J.R. and Parkes M. Using cohort-scheduling to enhance

server performance. In Proc. General Track of the USENIX

Annual Technical Conf., 2002, pp. 103–114.

8. Roussopoulos N. View indexing in relational databases. ACM

Trans. Database Syst., 7(2):258–290, 1982.

9. Roy P., Seshadri S., Sudarshan S., and Bhobe S. Efficient and

Extensible Algorithms for Multi Query Optimization. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2000,

pp. 249–260.

10. Sellis T.K. Multiple query optimization. ACM Trans. Database

Syst., 13(1):23–52, 1988.

11. Stonebraker M., Bear C., Cetintemel U., Cherniack M., Ge T.,

Hachem N., Harizopoulos S., Lifter J., Rogers J., and Zdonik S.

One size fits all? - Part 2: Benchmarking results. In Proc. 3rd

Biennial Conf. on Innovative Data Systems Research, 2007,

pp. 173–184.

12. Stonebraker M., Held G., Wong E., and Kreps P. The design and

implementation of Ingres. ACM Trans. Database Syst., 1(3):

189–222, 1976.

13. Welsh M., Culler D., and Brewer E. Seda: an architecture for

well-conditioned, scalable internet services. In Proc. 18th ACM

Symp. on Operating System Principles, 2001, pp. 230–243.

14. Zukowski M., Héman S., Nes N., and Boncz P.A. Cooperative

scans: dynamic bandwidth sharing in a DBMS. In Proc. 33rd Int.

Conf. on Very Large Data Bases, 2007, pp. 723–734.
Standard Effectiveness Measures

ETHAN ZHANG
1,2, YI ZHANG

1

1University of California‐Santa Cruz, Santa Cruz,
CA, USA
2Yahoo! Inc., Santa Cruz, CA, USA

Synonyms
Evaluation in information retrieval
Definition
The standard effectiveness evaluation in information

retrieval centers around determining how relevant are

the documents retrieved to users’ information needs.
A user query represents the user’s information need.

A user information need is hidden, depending on what

the user already knows, what the user wants to find out

about, and what is the users constraint (time, format,

price, recent, location). Recall and precision are the

basis of relevance-based effectiveness measures. Other

commonly used evaluation measures based on recall

and precision include the F-measure, the 11-point

precision-recall curve, and the average precision.
Historical Background
The first formal evaluation of information retrieval

(IR) systems was conducted in the late 1950s by

Cyrid Cleverdon at the College of Aeronautics in Cran-

field, England [2]. These studies are often referred to as

the Cranfield experiments and are the foundation of

future research on IR evaluation. The Cranfield model

requires an experimental setting with a test document

collection, a set of queries, and relevance judgements

that tell the relationships between the documents and

the queries. Recall and precision are the effectiveness

measures used in the Cranfield experiments, where the

former is the percentage of the relevant documents

that are retrieved and the latter is the percentage of

the retrieved documents that are relevant.

TREC (Text REtrieval Conference) [3] is the most

notable large IR evaluation project. The conference,

co-sponsored by the National Institute of Standards

and Technology (NIST) and the Advanced Research

and Development Activity (ARDA) center of the U.S.

Department of Defense, started in 1992 and convenes

once a year. At the conference TREC participants from

different research institutions evaluate and compare

their IR systems on large test collections that consist of

many gigabytes of documents. TREC usually uses the

Cranfield model for evaluation setup and variations of

recall and precision as effectiveness measures. The test

collections and effectiveness measures used at TREC

have been widely adopted by IR researchers as the stan-

dards for the evaluation of information retrieval systems.
Foundations

Experimental Setup

To evaluate an information retrieval (IR) system in the

standard way, an experimental setting needs to be

created that involves three things: i) a test document

collection, ii) a set of information needs that are

Standard Effectiveness Measures S 2777

S

represented as queries, and iii) relevance judgements

for each query-document pair. The relevance judge-

ment is made by one or more human assessors who

determine whether a document is relevant or irrelevant

to a query. A document is considered relevant to a

query if the document satisfies the user information

need represented by the query. After each retrieval

experiment for a given query, four document sets are

formed and counted: retrieved and relevant documents

(tp), retrieved and irrelevant documents (fp), relevant

and nonretrieved documents (fn), and irrelevant and

nonretrieved documents (tn). It is clearer to illustrate

the four document sets in the confusion matrix in

Table 1.

A basic assumption of the Cranfield model is that

relevance judgement is available for each query-

document pair in the collection. However, it is practical-

ly impossible to obtain exhaustive relevance judgements

in an experiment with millions of documents, which

is very common in information retrieval evaluations.

In such cases, assessors usually only provide relevance

judgements for the top-n results returned by several

different search systems for each query. In some evalua-

tion experiments, the retrieval systems perform a new

searchusing new queries based on the judgeddocuments

and newly retrieved documents in the top-n results are

then judged. This process is iterated until no new

relevant documents are found in the top-n results.

Recall and Precision

Recall and precision are the basis of relevance-based

retrieval effectiveness measures. They have been the

most commonly used IR evaluation measures since

the Cranfield experiments, and are considered the

‘‘gold standard’’ of IR evaluation by many researchers.

Recall is the fraction of all relevant documents that

have been retrieved by an IR system. Precision is the

fraction of all retrieved documents that are relevant. In

terms of the numbers in the confusion matrix, recall is
Standard Effectiveness Measures. Table 1. Confusion

matrix, where tp, fp, fn and tn correspond to the number of

documents that fall into the corresponding category

Relevant Irrelevant

Retrieved true positive (tp) false positive (fp)

Not retrieved false negative (fn) true negative (tn)
R ¼ tp

tp þ fn

and precision is

P ¼ tp

tp þ fp

Recall and precision trade off against each other. One

can easily build a system with a recall value of one by

returning all documents in the collection, but the pre-

cision in this case would be very low. In contrast, a

search engine can only return a few documents that

some user has judged to be relevant, which would

possibly result in high precision but have low recall.

The fact that two numbers are used to evaluate an

IR system allows researchers to emphasize on one

measure versus the other in various circumstances.

For web search engines, a typical user would like the

first few search results to be relevant (high precision),

however he/she usually does not have enough time to

read every document that is relevant. On the other

hand, a research scientist surveying a research topic

would like to see every relevant document (high recall)

while tolerating low precision to a certain degree.

F-Measure

The F-measure is a single number that combines recall

and precision. The measure is formally defined as the

weighted harmonic mean of recall and precision, or

F ¼ 1

a 1
P
þ ð1� aÞ 1

R

where a 2 [0,1] is used to adjust the weighting of R

and P. F is equivalent to recall when a = 0 and precision

when a = 1. The commonly used F-measure has a = 1 ∕2
and weighs recall and precision equally. It can be writ-

ten as F1 ¼ 2PR
PþR

. This measure can be viewed as a

compromise between recall and precision. It is high

only when both recall and precision are high.

Precision-Recall Curve

Recall and precision treat retrieved documents as a set,

in which the order of the documents does not matter.

However, most modern search systems return a ranked

list of documents, where a document is ranked higher

if the system believes it is more likely to be relevant to

the query. For such systems, the precision-recall curve is

a commonly used tool to evaluate the retrieval perfor-

mance. The precision-recall curve plots precision as

a function of recall. Standardly the precision is

Standard Effectiveness Measures. Figure 1. A 11-point

precision-recall curve.

2778S Standard Effectiveness Measures
interpolated and plotted at 11 recall levels, r =

0.0,0.1,..,1.0. For multiple queries, the precisions at

the same recall level can be averaged over all queries.

Figure 1 shows the 11-point precision-recall curve of

one of the best systems in TREC 8.

Average Precision

Average Precision (AP), which has become a standard

effectiveness measure among the TREC community in

recent years, is a combination of recall and precision

for ranked retrieval results. Given a ranked list of

documents for a single query, the average precision is

the mean of the precision scores after each relevant

document is retrieved.

Average Precision ¼
P

rP@r

R

where r is the rank of each relevant document, R is the

total number of relevant documents, and P@r is the

precision of the top-r retrieved documents. This mea-

sure is very sensitive to the rankings of the relevant

document in the retrieval results, and therefore a good

measure for tuning ranking algorithms. For one query,

the average precision is approximately the area under

the uninterpolated precision-recall curve.

ROC Curve

An alternative to the precision-recall curve is the

Receiver Operating Characteristics (ROC) curve, which

plots true positive rate (sensitivity) against false posi-

tive rate (1-specificity). In this setting, sensitivity
is a synonym for recall, and false positive rate is

fp ∕ (fp + tn) (therefore specificity is tn ∕ (fp + tn)).

Key Applications
Retrieval effectiveness evaluation is an integral part of

designing an IR system or algorithm. The standard

effectiveness measures are used to compare a new

system with benchmark systems and to justify the

value of the new system. Although the relevance-

based evaluation model has drawn criticism since the

beginning, it is still the most widely accepted and used

approach for IR evaluation. It is fair to say that the

standard measures and their variations are used wher-

ever information retrieval algorithms are built.

Data Sets
TREC has by far the largest data collections for infor-

mation retrieval evaluation. The most often used col-

lections are those that were built for the Ad Hoc

retrieval track in the first 8 TREC conferences. In total

these collections consist of 1.89 million documents.

For each conference, TREC also collected relevance

judgements for 50–100 information needs, which are

called topics in TREC. There are relevance judgements

for totally 450 information needs. Other TREC collec-

tions used for information retrieval evaluations are:

TRECWeb track collections, TREC terabyte track collec-

tions, TREC Blog Track collections, TREC Enterprise

Track collections, TREC Filtering Track collections,

TREC Genomics Track collections, TREC HARD Track

collections, TREC Interactive Track collections, TREC

Legal Track collections, TREC Novelty Track collections,

TREC Robust Track collections, TREC Query Track

collections, TREC Question Answering Track collec-

tions, and TREC SPAM Track collections. For details

about the collections and different standard evaluation

measures used for each collection, readers may refer to

book [3] or visit TREC’s web site at http://trec.nist.gov.

Cross-references
▶Average Precision

▶ Effectiveness Involving Multiple Queries

▶ Eleven Point Precision-recall Curve

▶ F-Measure

▶ Information Retrieval

▶ Precision

▶ Precision at n

▶ Precision-Oriented Effectiveness Measures

▶Recall

Star Schema S 2779
Recommended Reading
1. Baeza-Yates R. and Ribeiro-Neto B. Modern Information

Retrieval. Addison Wesley, New York, NY, USA, 1999.

2. Cleverdon C.W. The significance of the Cranfield tests on index

languages. In Proc. 14th Annual Int. Conf. on Research and

Development in Information Retrieval, 1991, pp. 3–12.

3. Voorhees E.M. and Harman D.K. (eds.). TREC: Experiment and

Evaluation in Information Retrieval. MIT, Cambridge, MA,

USA, 2005.
Standing Query

▶Continuous Query
S

Star Index

THEODORE JOHNSON

AT&T Labs Research, Florham Park, NJ, USA

Synonyms
Star index; Join index; Join indices

Definition
A star index is a collection of join indices, one for every

foreign key join in a star or snowflake schema.

Key Points
A common structure for a data warehouse is a fact

table consisting of several dimension fields and several

measure fields. To reduce storage costs, the fact table is

often normalized into a star or a snowflake schema.

Since most queries reference both the (normalized)

fact tables and the dimension tables, creating a star

index can be an effective way to accelerate data ware-

house queries. The Red Brick data warehouse system

has implemented star indices.

Cross-references
▶ Join Index

▶ Star Schema

▶ Snowflake Schema
Star Join Schema

▶ Star Schema
Star Schema

KONSTANTINOS MORFONIOS, YANNIS IOANNIDIS

University of Athens, Athens, Greece

Synonyms
Star join schema

Definition
A star schema has one ‘‘central’’ table whose primary

key is compound, i.e., consisting of multiple attributes.

Each one of these attributes is a foreign key to one of

the remaining tables. Such a foreign key dependency

exists for each one of these tables, while there are no

other foreign keys anywhere in the schema. (In the

above, without loss of generality, the assumption is

made that all these other tables have simple primary

keys. This is usually the case in almost all practical

situations, as for efficiency, these keys are typically

generated surrogate keys.)
Key Points
Most data warehouses that represent the multidimen-

sional conceptual data model in a relational fashion

[1,2] store their primary data as well as the data cubes

derived from it in star schemas. The ‘‘central’’ table and

the remaining tables of the definition above corre-

spond, respectively, to the fact table and the dimension

tables that are typically found in data warehouses. Each

fact (tuple) in the fact table consists of a set of numeric

measures, comprising the objects of analysis, and a set

of dimensions, which uniquely determine the set of

measures. The dimension tables are usually smaller

than the fact table and store the attributes of the

aforementioned dimensions.

For example, consider a data warehouse of a

retail chain with many stores around a country. The

dimensions may be the products sold, the stores them-

selves with their locations, and the dates, while the

numeric measures may be the number of items and

the total monetary amount corresponding to a partic-

ular product sold in a particular store on a particular

date. The relevant star schema is shown below, where

SalesSummary is the fact table, primary keys are in

Italics, and each attribute of the fact-table primary key

is a foreign key to one of the other tables.

SalesSummary(ProductId, StoreId, DateId,

NumOfItems, TotalAmount)

2780S Star Schema Modeling
Product(ProductId, ProdName, ProdDescr, Cate-

gory, CategoryDescr, UnitPrice)

Store(StoreId, Street, City, State)

Date(DateId, Day, Month, Year)

If one were to draw the above as a graph, with

tables as nodes and foreign keys as edges, or even as

an ER diagram, with the fact table as a relationship and

the dimension tables as entities, the resulting image is

that of a star, with the fact table in the middle, hence,

the name of these schemas.

Finally, note that dimensions often consist of several

attributes organized in hierarchies. For instance, dimen-

sion Store in the example above contains values at

different levels of detail, forming the hierarchy

Street!City !State. As also shown in the ex-

ample, star schemas capture all levels of a hierarchical

dimension in a single, non-normalized table. An exten-

sion of the star schema that explicitly captures hierar-

chies in the dimensions is the snowflake schema.
Cross-references
▶Cube Implementations

▶Data Warehouse

▶Dimension

▶Hierarchy

▶Measure

▶Multidimensional Modeling

▶ Snowflake Schema
Recommended Reading
1. Chaudhuri S. and Dayal U. An overview of data warehousing

and OLAP technology. ACM SIGMOD Rec., 26(1):65–74, 1997.

2. Kimball R. and Ross M. The data warehouse toolkit: The

complete guide to dimensional modeling. Wiley, New York,

NY, USA, 2nd edn., 2002.
Star Schema Modeling

▶Multidimensional Modeling
State Query

▶Timeslice Operator
State-based Publish/Subscribe

HANS-ARNO JACOBSEN

University of Toronto, Toronto, ON, Canada

Definition
State-based publish/subscribe is an instance of the

publish/subscribe concept. However, it is distinguished

from other publish/subscribe approaches by maintain-

ing partial matching state when processing publica-

tions, whereas, traditionally, publish/subscribe treat

publications as transient and does not manage match-

ing state. State-based publish/subscribe support the

detection of composite events, event correlation and

complex event processing.

Key Points
In terms of publishing, subscribing, and decoupling,

state-based publish/subscribe is no different from topic-

based or content-based publish/subscribe. The main dif-

ference to the other publish/subscribe approaches is

that state-based publish/subscribe treats publications as

non-transient. A publication is processed by the publish/

subscribe system and builds up partial matching state,

contributes to existing partial matching state, triggers

notifications if a match is complete, or is discarded,

if no matching subscription exists. This is unlike in

the other publish/subscribe approaches that treat publi-

cations as transient messages, where the arriving

publication is matched against the subscriptions stored

with the system and forwarded towards all matching

subscribers, or dropped, if no matching subscription

exists. In state-based publish/subscribe, the publish/sub-

scribe system carries state across the processing of differ-

ent publications. That is, various different publications

arriving over time are correlated based on conditions

expressed in subscriptions to result in matching

subscriptions.

The publication data model is exactly the same as

in a topic-based or a content-based publish/subscribe

model, depending on the nature of the state-based

approach, either topic-based, or content-based.

The subscription language model follows suite, but

greatly extends the subscription language capabilities

with means to express the correlation of publications.

These capabilities are added to allow the application to

express so called composite subscriptions. A composite

subscription is the combination of several individual

State-based Publish/Subscribe S 2781

S

atomic subscriptions by means of an operator algebra

that allows the developer to compose individual atomic

subscriptions. An atomic subscription is a subscription

in the publish/subscribe sense. It is referred to as atomic

because it is matched by a single publication. A com-

posite subscription defines a composite event. A compo-

site event defines the set of events that have to occur in

the specified constellation in order for the composite

subscription to match. In publish/subscribe, the no-

tion of event and publication are synonymous, while

only the term composite event is used. Also, the term

composite event is often used to refer to the composite

subscription expression without differentiating be-

tween event and subscription.

There are large differences in the expressive power

of subscription languages for specifying composite sub-

scriptions. Common operators include the specifica-

tion of composite-and (all specified events must occur

in any order), composite-or (one of the events must

occur), sequence operator (the specified sequence of

events must occur and other events may or may not be

interspersed with the sequence), and regular expression

pattern (the specified pattern of events must occur). In

addition, reference to time is included in many sub-

scription languages to delimit the time a composite

subscription can remain in a partial matching state

before resetting to a completely unmatched state. More

generally, various consumption policies attached to

subscriptions express what should happen with partial

matching state, as it accumulates in the system and new

events arrive. For example, a consumption policy could

express that a newly arriving event is correlated with the

oldest or the newest event in a composite event that has

accumulated a partial matching state holding many in-

dividual events already. Consumption policies are a

powerful way to customize the matching behavior of

state-based publish/subscribe systems.

In the state-based publish/subscribe model, the

publish/subscribe matching problem is defined as fol-

lows: Given a set of subscriptions, S, and a sequence of

events, E, as seen by the publish/subscribe system,

determine the subscriptions in S that match under E.

This formulation of the matching problem is different

from the standard publish/subscribe matching prob-

lem that only looks at a single event e at a time. In

state-based publish/subscribe, the matching algorithm

has to manage partial matching state and correlated

newly arriving events with already existing partial
matching state stored in the algorithm’s data

structures.

State-based publish/subscribe is a fairly new sub-

classification of publish/subscribe, consequently few

established standards and products exist that refer to

this model. However, several research projects are

experimenting with the above described schemes. For

example, the PADRES [?,?] project is an example of a

state-based publish/subscribe system. Moreover, many

rule-based engine products, such as JESS and Drools are

similar in conception to the above described function-

ality. There is a large product space of older and

emerging rule-based systems that are applied to similar

applications as state-based publish/subscribe. There is

no clear dominant player at this point. The key differ-

ence between these approaches and the here described

state-based publish/subscribe model, is the notion of a

rule, which essentially is a composite subscription; ex-

cept that rules follow a stricter if-then-else syntax model

than composite subscriptions, which often only capture

the antecedent part of a rule. Moreover, these is an

emerging space of complex event processing, event cor-

relation, or simply correlation technology, which also

falls under the here defined space of state-based pub-

lish/subscribe systems. State-based publish/subscribe

targets applications that need correlate events over

time. Applications of this nature are event correlation

for network management, system management and

diagnostics, and business process execution and business

activity monitoring. In these application scenarios, large

numbers of events that in isolation are not useful, need

to be correlated to detect higher-level composite events.

In the literature, the term state-based publish/sub-

scribe is not used uniformly. Also, state-based publish/

subscribe is just emerging as a separate model. The

functionality provided by a state-based publish/sub-

scribe system is very close to what rule-based systems

offer. However, unlike rule-based systems, state-based

publish/subscribe does not explicitly use rules to let

developers model applications. Besides capturing state

as the correlation of events, the management of publi-

cation state and subscription state are another impor-

tant property of publish/subscribe systems, which falls

into the subject spaces publish/subscribe model.

Cross-references
▶ Publish/Subscribe

▶ Subject Spaces

2782S Statistical Correctness
Recommended Reading
1. Fidler E., Jacobsen H.-A., Li G., and Mankovski S. The PADRES

distributed publish/subscribe system. In Feature Extractions in

Telecom. and Softw. Syst., S. Reiff-Marganie. andM. Ryan (eds.),

IOS Press, 2005.

2. Li G., and Jacobsen H.-A. Composite subscriptions in content-

based publish/subscribe systems. In Proc. ACM/IFIP/USENIX

6th Int. Middeware Conf., 2005.
Statistical Correctness

▶ Summarizability
Statistical Data Management

AMARNATH GUPTA

University of California-San Diego, La Jolla, CA, USA

Synonyms
Statistical database

Definition
A Statistical data management system is a data man-

agement system designed to explicitly handle so called

‘‘macro data,’’ i.e., data computed by different forms of

summarization, including grouping and classification,

as first class objects. In a statistical data management

system, there are data manipulation operators that

‘‘slice and dice’’ the macro data. In many statistical

databases, one of the goals is to hide the micro data

(i.e., the raw data records from which the macro data

are computed) from user queries.

Example : A classical example of a statistical data-

base is a database created for social or economic

surveys. STORM [4] is a classical statistical data man-

agement system.

Key Points
Research on statistical databases started in the 1970s

and flourished in the 1980s, predating OLAP. A number

of systems developed based on both relational and

object-oriented data models. Many of these systems

developed a graph-based representation of statistical

data where one could construct hierarchies of categories

using different attributes, and place the summarized

data under the suitable categories. One goal of query
evaluation was to minimize redundancy of computation

when answering a user query. A second important con-

sideration in designing statistical DBMS is security

so that the individual data records are not exposed

to a malicious user. Several strategies are used to attain

this security including (i) allowing the user to ask only

aggregate queries, (ii) answering a query with a range

of values instead of exact values, (iii) disallowing a user

to make repeated increasingly specific queries that

might expose actual data values.

Cross-references
▶ Privacy

▶On-line Analytical Processing

▶ Secure Database Development

▶ Summarizability

Recommended Reading
1. Denning D.E. and Schlörer J. A fast procedure for finding a

tracker in a statistical database. ACM Trans. Database Syst., 5

(1):88–102, 1980.

2. Ghosh S.P. Statistical relational tables for statistical database

management. IEEE Trans. Softw. Eng., 12(12):1106–1116, 1986.

3. Rafanelli M. and Ricci F.L. Mefisto: a functional model for

statistical entities. IEEE Trans. Knowl. Data Eng., 5(4):670–681,

1993.

4. Rafanelli M. and Shoshani A. STORM: a statistical object repre-

sentation model. In Proc. 2nd Int. Conf. on Scientific and

Statistical Database Management, 1990, pp. 14–29.

5. Shoshani A. OLAP and statistical databases: similarities and

differences. In Proc. 16th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 1997, pp. 185–196.
Statistical Database

▶ Statistical Data Management
Statistical Decision Techniques

▶Classification
Statistical Disclosure Control (SDC)

▶ Inference Control in Statistical Databases

Statistical Disclosure Limitation For Data Access S 2783
Statistical Disclosure Limitation
(SDL)

▶ Inference Control in Statistical Databases
S

Statistical Disclosure Limitation For
Data Access

STEPHEN E. FIENBERG, JIASHUN JIN

Carnegie Mellon University, Pittsburgh, PA, USA

Synonyms
Confidentiality protection; Multiplicity; Privacy pro-

tection; Restricted data; Risk-utility tradeoff

Definition
Statistical Disclosure Limitation refers to the broad

array of methods used to protect confidentiality of

statistical data, i.e., fulfilling an obligation to data

providers or respondents not to transmit their infor-

mation to an unauthorized party. Data Access refers to

complementary obligations of statistical agencies and

others to provide information for statistical purposes

without violating promises of confidentiality.

Historical Background
Starting in the early twentieth century, U.S. government

statistical agencies worked to develop approaches for the

protection of the confidentiality of data gathered on

individuals and organizations. As such agencies also

have a public obligation to use the data for the public

good, they have developed both a culture of confidenti-

ality protection and a set of statistical techniques to

assure that data are released in a form that limits the

identification of individual data providers [2]. In a now

classic 1977 paper, Dalenius [3] described the probabi-

listic notion of a disclosure: ‘‘If the release of the statis-

tics S makes it possible to determine the value [of

confidential statistical data] more accurately than is

possible without access to S, a disclosure has taken

place.’’ The ensuing statistical literature on disclosure

limitation has built on this probabilistic notion.

Foundations

Privacy, Confidentiality, and Individual Identification

Massive databases and widespread data collection and

processing offer enormous opportunities for statistical
analyses, advances in the understanding of social and

health problems, and benefits to society more broadly.

But the explosion of computerized databases contain-

ing financial and healthcare records, and the vulnera-

bility of databases accessible via the Internet, has

heightened public attention and generated fears re-

garding the privacy of personal data. Identify theft

and sensitive data disclosure may be just a click away

from a new generation of computer users and potential

intruders.

Data collected directly under government auspices or

at public expense are in essence a public good; legitimate

analysts wish to utilize the information available in such

databases for statistical purposes. Thus, society’s chal-

lenge is how to release the maximal amount of informa-

tion without undue risk of disclosure of individually

identifiable information. Assessing this tradeoff is inher-

ently a statistical matter, as is the development of meth-

ods to limit disclosure risk. What distinguishes the field

of statistical disclosure limitation from many other

approaches to privacy protection is the ultimate goal of

data access and enhanced data utility.

The term privacy is used both in ordinary language

and in legal contexts with a multiplicity of meanings.

Among these is the concept of privacy as ‘‘the right to

be let alone,’’ e.g., see Warren and Brandeis [14], and

privacy in the context of data as the control over

information about oneself. But privacy is personal

and subjective, varies from one person to another,

and varies with time and occasion depending on the

context. It is even more difficult to define precisely the

meaning of ‘‘privacy-preserving’’ with respect to data-

bases, and the data pertaining to individual entities

contained therein.

Confidentiality is the agreement, explicit or implic-

it, between data subject and data collector regarding

the extent to which access by others to personal infor-

mation is allowed. Confidentiality protection has

meaning only when the data collector can deliver on

its promise to the data provider or respondent. Confi-

dentiality can be accorded to both individuals and

organizations; for the individual, it is rooted in the

right to privacy (i.e., the right of individuals to control

the dissemination of information about themselves),

whereas for establishments and organizations, there are

more limited rights to protection, e.g., in connection

with commercial secrets.

Disclosure relates to inappropriate attribution of

information to a data provider or intruder, whether

2784S Statistical Disclosure Limitation For Data Access
to an individual or organization. There are basically

two types of disclosure, identity and attribute. An

identity disclosure occurs if the data provider is identi-

fiable from the data release. An attribute disclosure

occurs when the released data make it possible to

infer the characteristics of an individual data provider

more accurately than would have otherwise been pos-

sible. The usual way to achieve attribute disclosure is

through identity disclosure; first one identifies an in-

dividual through some combination of variables and

then one associates with that individual values of other

variables included in the released data.

Statistical disclosure limitation (SDL) is a set of

techniques designed to ‘‘limit’’ the extent to which

databases can be used to glean identifiable informat-

ion about individuals or organizations. The dual goals

of SDL are to assure that, based on released data,

respondents can be identified only with relatively low

probability, but also to release data that are suitable

for non-identifiable analytical statistical purposes.

The Intruder

To protect the confidentiality of statistical data, one

needs to understand what intruders or data snoopers

want and how they may learn information about indi-

viduals in a database that require protection. Intruders

may be those with legitimate access to databases and/or

those who gain access to a database by breaking secu-

rity measures designed to keep them out. In either case,

one needs to distinguish among

� Intruders with a specific target, e.g., a friend or relative.

The intrudermay already know that the respondent is

included in the database, will possess information

about the target (e.g., height, weight, habits, income)

and will search the database in order to learn addi-

tional information, e.g., drug and alcohol use.

� Intruders in possession of data on multiple indivi-

duals whose goal is record linkage, e.g., to build a

larger database containing more individual infor-

mation. Data consolidators or aggregators fit with-

in this category.

� Intruders without any specific target, whose goal is to

embarrass the data owner. The intruder may be an

enemy agent or a ‘‘hacker’’ eager to demonstrate a

capability of breaking through efforts to limit

disclosure.

Data owners can be successful in protecting the confi-

dentiality of released data if the intruder remains
sufficiently uncertain about a protected target value

after data release. Various authors in the SDL literature

discuss confidentiality protection from the perspective

of protecting against intruders or data snoopers, e.g.,

see [8,12], especially those using record linkage meth-

ods [11] for attempting to identify individuals in

databases.

One may consider the intruder as someone en-

gaged in a form of a large number of statistical tests,

each at significance level a associated with an effort to

identify an individual in the database. The data owner

needs to account for this somehow. Some of the null

hypotheses will eventually be rejected whether or not

they are actually false, and thus there is a problem for

the intruder as well. For the data owner, simply

controlling the probability of erroneously identifying

each respondent, at say 1%, is not enough. To ensure

that the probability that at most one out of 1,000

individuals in a sample will be identified to be less

than 1%, one in fact needs to assure that the probabil-

ity of identifying each individual is no greater than �
1% ∕ 1000 = 10�5.
Statistical Analysis Methods for Protecting Privacy

Matrix Masking refers to a class of SDL methods used

to protect confidentiality of statistical data, transform-

ing an n� p (cases by variables) data matrix Z through

pre- and post-multiplication and the possible addition

of noise. The four most common forms of masking are:

1. Sampling clearly provides a measure of direct pro-

tection from disclosure provided that there is no

information of which individuals or units are in-

cluded in the sample. An intruder wishing to iden-

tify an individual in the sample and link that

person’s information to data in external files,

using ‘‘key’’ variables such as age and geography

available in both databases, needs to determine

whether a record is unique in the sample, and

if so, the extent to which a record that is unique

in the sample is also unique in the population.

For continuous variables, virtually all indivi-

duals are unique in the sample, and one needs

to understand the probability that an intruder

would correctly match records, e.g., in the presence

of error in the key variables (e.g., see Fienberg

et al. [8]). For categorical data, uniqueness corre-

sponds to counts of ‘‘1’’ and various authors have

shown, roughly speaking, that the probability that

Statistical Disclosure Limitation For Data Access S 2785

S

an individual record that is unique in the sample is

also unique in the population from which the sam-

ple was drawn equals the sampling fraction, n ∕N,
e.g., see [7]. Thus for a sample of size 2,000 drawn

from a population of 200,000,000 adults the sam-

pling fraction is 2,000/200,000,000 or 0.00001. The

bottom line therefore is that sampling protects, just

not absolutely.

2. Perturbation is an approach to data masking in

which the transformation involves random pertur-

bations of the original data, either through the

addition of noise or via some form of restricted

randomization. The simplest form of perturbation

is the addition of noise. Common forms for the

noise are observations drawn from a normal distri-

bution with zero mean or perhaps a double expo-

nential, also centered at zero. Someone analyzing

the resulting transformed data must statistically

reverse the noise addition process using methods

from the literature on measurement error models –

this requires release of the parameters of the noise

component, e.g., the error variance in the nor-

mal case. Other examples of perturbation include

data swapping and related tabular adjustment

approaches, e.g., see [9].

3. Collapsing is also referred to using the labels micro-

aggregation and global recoding in the statistical

literature [15], and k-anonymity in the computer

science literature. In the statistical literature on

tabular categorical data, collapsing across variables

in a table produces a marginal table and a popular

form of data release to protect confidentiality is the

release of multiple marginal tables, especially when

they correspond to the minimal sufficient statistics

of a log-linear model. For more details, see [10].

4. Synthetic data are used to replace a database by a

similar one, for which the individuals are generated

through some statistical process. This can be

achieved through the repeated application of data

swapping, e.g., see [9], or the method known as

multiple imputation, e.g., [13].

Implicit in all of these techniques is the notion that

when masked data are released they can be used by

responsible analysts to carry out statistical analyses so

that they can reach conclusions similar to those that

they would have reached had they analyzed the original

data. This means that all of the details of the transfor-

mation, both stochastic and non-stochastic, must be
made available to the user, a point not well understood

in the computer science literature or by many statisti-

cal agencies. See the related discussion in [6]. Even

when one has applied a mask to a data set, the possi-

bilities of both identity and attribute disclosure re-

main, although the risks may be substantially

diminished. Thus, one must still assess the extent of

risk posed by the transformed data.
Putting SDL Methods to Use: Risk-Utility Tradeoff

If one is adding noise to a set of observations in order

to protect confidentiality, how much noise is suffi-

cient? And can one add too much? Clearly, too much

noise will distort the data substantially and even if the

details of the error variance are released the masking

may impede legitimate statistical analyses of the data.

The same is true for any of the methods of SDL. Thus,

one faces a tradeoff between data protection and data

utility, something that one can assess formally using

statistical decision analysis and depict graphically, e.g.,

see the chapter by Duncan et al. in [5]. For a slightly

less formal approach to the tradeoff for categorical

data protection through the release of multiple mar-

gins, see [10].

A crucial but relatively rarely discussed aspect of

the risk-utility tradeoff involves the issue of multiplicity,

introduced above. For illustration, consider a data set

with information on 2,000 individuals, for each

of which records the diagnostic result of an HIV test,

with 1 corresponding to a positive result and 0 to a

negative one. To protect the confidentiality for those

individuals with positive HIV test outcomes, the data

owner adds noise to each record value.

Suppose an intruder wishes to identify the individuals

corresponding to the proportion e of ‘‘1’’s (0 < e < 1)

and the data owner attempts to protect the records by

adding i.i.d. Gaussian noiseN(0, s2) to each data point.

Clearly s needs to be large enough to disguise some of

the 1s and make them hard to distinguish from some

of the ‘‘00s. Suppose that the intruder wants to make

sure that most of those identified as ‘‘1’’s are

indeed ‘‘1’’s (otherwise the attack on the database

would be unsuccessful). In statistical terms, this

means that the intruder must control for the False

Discover Rate (FDR), i.e., the rate of misclassified

‘‘1’’s out of all those individuals labeled as being

‘‘1’’s [2,1]: FDR = [#{Misclassified ‘‘1’’s}] ∕ [#{All clas-
sified ‘‘1’’s}]. Consider an intruder who decides

2786S Statistical Disclosure Limitation For Data Access
to set the FDR at 5% by picking a threshold

st and classifying any entry as a ‘‘10 if the observed

value exceeds the threshold. By elementary statistics,

the number of misclassified ‘‘10s is distributed as

a binomial random variable, B(n(1 � e),�F(t)), and
the number of correctly classified ‘‘10s is distributed

as BðnE; �Fð1� 1
sÞÞ. Consequently, the associated

FDR
nð1�EÞ�FðtÞ

nð1�EÞ�FðtÞþnE�Fðt�1
sÞ

� 1 þ E
1�E

� 	 �Fðt�1
sÞ

�FðtÞ

� �h i�1

; where

�F = 1 � F is the survival function of the standard

normal distribution function.

Consider a high risk population where 50% of

the individuals test positive for HIV, i.e., e = 1∕2
and suppose that the data owner chose s = 1 as

the noise variance to protect the data. To ensure

that FDR � 5%, the intruder needs to set

ð E
1�EÞð

�Fðt�1
sÞ

�FðtÞ Þ ¼ 19, which yields t � 3.132. The thresh-

old is high enough so that the chance for each of

the individuals exhibiting a ‘‘1’’ to be correctly classi-

fied as ‘‘1’’ is �F(t � 1) = �F(2.132) � 0.0165, which

seems not very large. But since n = 2000, the number

of ‘‘0’’s that are misclassified as ‘‘1’’s is approximately

nð1� EÞ�Fð3:132Þ � 2000� 1
2
� 0:00087 ¼ 0:87, and

the number of ‘‘1’’s that are correctly classified as ‘‘1’’s

is approximately nE�Fð2:132Þ ¼ 2000� 1
2
� 0:0165

� 16:5. This says that the intruder is able to identify

17 records, out of which 16 are corrected classified!

Alternatively, one might ask about the probabil-

ity that no more than k ‘‘1’’s are correctly classified,

i.e.,
Pk

j¼0
nE
j

� �
pjð1� pÞnE�j

, p � �F(2.132). For k = 0, 3,

6, 9, the probabilities are correspondingly 5.45 � 10�8,

5.22 � 10�5, 2.62 � 10�3, and 0.031. To understand

the implications of these values, consider k = 9.

This says that with probability as high as 97%, 9

or more records that are actually ‘‘1’’s are correctly

identified as ‘‘1’’! For many this might seem to be a

worrisome situation, and it raises issues associated

with the efficacy of adding noise that have not

appeared in the statistical literature on confidentiality

protection.

Suppose that the data come from a low risk popu-

lation where only 5% or 100 individuals test posi-

tive for HIV, i.e., e = 0.05, and the data owner uses

a similar level of noise addition for confidentiality

protection, i.e., s = 1. Then to ensure that FDR �
5%, the intruder needs to set ð

�Fðt�1
sÞ

�FðtÞ Þ ¼ 361, which

yields t � 6.22. Correspondingly, �F(t) = 2.5 � 10�10
and �Fðt � 1
sÞ ¼ 8:9� 10�8. The expected number of

‘‘0’’ that are misclassified as ‘‘1’’s is approximately

n(1 � e)�F(6.22) = 2000 � 0.95 � 2.49 � 10�10 �
4.7 � 10�6, and the number of ‘‘1’’ that are correctly

classified as ‘‘1’’s is approximately ne�F(5.22) = 2000 �
0.05 � 8.95 � 10�8 � 8.95 � 10�6. In this case, since

n�F(6.22) � 1, the approximation is inaccurate and

one needs to take a different approach.

In fact, the proportion of true HIV cases is so small

that the example falls into the so-called very sparse

regime studied in detail in the multiple testing litera-

ture, see for example [1,4]. One phenomenon from

that literature implies that when the noise level is

relatively high, the extreme values are not necessary

related to cases with positive HIV tests. Consider the

following simulated data set with n = 2,000 cases,

where 100 of them are HIV (equal to 1) and all others

are non-HIV (equal to 0). The data owner adds inde-

pendent standard Gaussian N(0,1) noise to each value.

Figure 1 shows the result where red correspond to cases

with positive HIV tests, and green correspond to

cases with negative HIV tests. The red values are larger

than typical green ones, but not larger than all of

them. In fact, among the largest 10 values, only 2 are

red, with 8 are green.

This leadsus toanother interestingphenomenon from

the statistical literature on the FDR. Let mFDR denote

the minimum FDR across all possible thresholds t,

mFDR = min{t} {FDRt: FDR at the threshold t}.

How small can mFDR be? Figure 1 shows the histo-

gram of the mFDR values for 100 independent repeti-

tions of the simulation experiment. More than half of

the time, the mFDR value is no less than 15%, and

sometimes it is as great as 50% and larger!

This simple example implies that with s = 1, the

noise level might be so large that the intruder cannot

correctly identify any HIV cases. But from the perspec-

tive of the risk-utility tradeoff, one also needs to ask

whether the noise level is so high that the data are no

longer analytically useful. Thus one needs to ask: What

is the largest noise variance that still allows for valid

inferences, c.f., [1,4]. If the number of true HIV cases is

m ¼ mn ¼ n1�b; ð1Þ

and the noise level is s ¼ sn ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2r log n

p , where 0 < b,

r < 1 are parameters, then as n tends to 1, there is a

boundary, r = b, which separates the b-r plane into two

Statistical Disclosure Limitation For Data Access. Figure 1. Left Panel: Perturbed HIV data through addition of

independent draws from N(0,1). Those values associated with positive HIV tests are in red, and those with negative HIV

tests are in green. Right Panel: 100 simulated mFDR values based on 100 simulation for n = 2,000 and e = .05 and added

noise from N(0,1).

Statistical Disclosure Limitation For Data Access S 2787

S

2788S Statistical Disclosure Limitation For Data Access
regions: the classifiable region and the non-classifiable

region; In the interior of the classifiable region, asymp-

totically, it is possible to isolate completely the cases with

positive HIV tests from those with negative ones. In fact,

there is a threshold by which one can identify that subset

of the data corresponding to positive HIV tests. On the

one hand, almost every ‘‘identified’’ HIV case has a

positive HIV test and the subset includes almost all

the cases with positive HIV tests. In the interior of the

non-classifiable region, by contrast, such isolation of

cases is impossible. In fact, given any chosen threshold,

either one situation or the other occurs!

For the example of n = 2,000 and m = 100 cases

with positive HIV tests. take b = 1 � log(m) ∕ log(n) �
0.3941 in model (1). In order not to have complete

isolation of cases with HIV, one should take

sn > 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2b logðnÞ

p � 0:409. For sn = 0.5, consider a repe-

tition of the case of n = 2,000 and e = 1 ∕ 2, as well as the
case of n = 2,000 and e = 0.05. Thus 1 ∕s = 2 and to

control the FDR at 5%, one must evaluate

E
1�E ð

�Fðt�2Þ
�FðtÞ Þ ¼ 19, which yields t = 0.54. Correspond-

ingly, nð1� EÞ�FðtÞ ¼ 2; 000� 1
2
� 0:029 � 29, and

nE�Fðt � 2Þ ¼ 2; 000� 1
2
� 0:54 � 540. Furthermore,

for k = 0,3,6.9, the probability that no more than

k ‘‘1’’s are correctly classified are extremely small

(< 10�315). For the case of n = 2,000 and e = 0.05.

Similarly, one must similarly evaluate E
1�E ð

�Fðt�2Þ
�FðtÞ Þ ¼ 19,

which yields t = 3.62. Correspondingly, n(1� e)�F(t) =
2,000 � 0.95 � 1.47 � 10�4 � 0.28, and ne�F(t � 2) =

2,000� 0.05� 0.053� 5. Furthermore, for k = 0,3,6.9,

the probability that no more than k ‘‘1’’s are correctly

classified are 4.5 � 10�3, 0.22, 0.73, 0.96. Take k = 3.

The probability that more than three ‘‘1’’s are correctly

classified is about 78%.

This example illustrates how the multiplicity issue

arises when an intruder tries to match many records

with those in a database ‘‘protected’’ by matrix masking.

Simply protecting each individual recordwith high prob-

ability is not enough; there remains a substantial chance

for one or more record to be vulnerable to disclosure.

Summary

The accumulation of massive data sets and the rapid

development of the Internet expanded opportunities

for data analyses as well as created enormous challenges

for privacy protection. This brief overview of the litera-

ture on statistical disclosure limitation has stressed four
categories of approaches: sampling, perturbation, col-

lapsing (aggregation), and the use of synthetic data. An

overlooked issue in privacy protection is the notion of

‘‘multiplicity,’’ which is present whenever one attempts

to protect many records simultaneously, or a data in-

truder tries to match the records of multiple targets in a

database simultaneously. Simply protecting each indi-

vidual record with high probability does not automati-

cally protect all records, and careful statistical measures

for resolving the multiplicity issue are necessary.

Key Applications
The methods of statistical disclosure limitation out-

lined here are already in widespread use by government

statistical agencies throughout the world. The volumes

by Doyle et al. [5] and Willenborg and de Waal [15]

summarize a number of the approaches and methodol-

ogies. In particular, census data released by most de-

veloped countries are protected using these methods.

Future Directions
The elaboration of approaches described here to deal

with very large scale databases remains a challenge, espe-

cially in the face of demands for increased access to data

and novel attacks on databases by intruders. This entry

presents the first known application of ideas and results

from the multiplicity literature to the problem of statis-

tical disclosure limitation and risk-utility tradeoff.

These ideas require further development and integra-

tion with the rest of the literature. And methodology

dealing with the risk-utility tradeoff will clearly need

to evolve in response to the evolution of intruder strate-

gies to compromise databases.

Cross-references
▶Data Perturbation

▶ Individually Identifiable Data

▶ Inference Control in Statistical Databases

▶Matrix Masking

▶ Privacy

▶ Privacy-Preserving Data Mining

▶Randomization Methods to Ensure Data Privacy

Recommended Reading
1. Abramovich F., Benjamini Y., Donoho D., and Johnstone I.

Adapting to unknown sparsity by controlling the false discovery

rate. Ann. Stat., 34:584–653, 2006.

2. Anderson M. and William Seltzer W. Challenges to the confi-

dentiality of U.S. federal statistics, 1910–1965. J. Off. Stat.,

23:1–34, 2007.

Steganography S 2789
3. Benjamini Y. and Hochberg Y. Controlling the false discovery

rate: A practical and powerful approach to multiple testing.

J. Roy. Statist. Soc. B, 57:289–300, 1995.

4. Dalenius T. Towards a methodology for statistical disclosure

control. Statistisk Tidskrift, 5:429–444, 1977.

5. Donoho D. and Jin J. Higher Criticism for detecting sparse

heterogeneous mixtures. Ann. Stat., 32:962–994, 2004.

6. Doyle P., Lane J.I., Theeuwes J.J.M., and Zayatz L. (eds.). Confi-

dentiality, Disclosure and Data Access: Theory and Practical

Application for Statistical Agencies. Elsevier, New York, NY,

USA, 2001.

7. Fienberg S.E. Confidentiality, privacy and disclosure limitation.

In Encyclopedia of Social Measurement, Vol. 1. Academic Press,

San Diego, CA, USA, 2005, pp. 463–469.

8. Fienberg S.E. and Makov U.E. Confidentiality, uniqueness and

disclosure limitation for categorical data. J. Off. Stat.,

14:485–502, 1998.

9. Fienberg S.E., Makov U.E., and Sanil A.P. A Bayesian approach

to data disclosure: Optimal intruder behavior for continuous

data. J. Off. Stat., 13:75–89, 1997.

10. Fienberg S.E., Makov U.E., and Steele R.J. Disclosure limitation

using perturbation and related methods for categorical data

(with discussion). J. Off. Stat., 14:485–502, 1998.

11. Fienberg S.E. and Slavkovic A.B. Preserving the confidentiality of

categorical statistical databases when releasing information for

association rules. Data Min. Knowl. Discov., 11:155–180, 2005.

12. Hertzog T.N., Scheuren F.J., and Winkler W.E. Data Quality and

Record Linkage Techniques. Springer-Verlag, New York, NY,

USA, 2007.

13. Lambert D. Measures of disclosure risk and harm. J. Off. Stat.,

9:313–331, 1993.

14. Raghunathan T.E., Reiter J., and Rubin D.B. Multiple imputation

for statistical disclosure limitation. J. Off. Stat., 19:1–16, 2003

15. Warren S. and Brandeis L. The right to privacy. Harvard Law

Rev., 4:193–220, 1890.

16. Willenborg L. and de Waal T. Elements of Statistical Disclosure

Control. Vol. 155. Lecture Notes in Statistics Springer-Verlag,

New-York, NY, USA, 2001.
S

Steganography

RADU SION

Stony Brook University, Stony Brook, NY, USA

Synonyms
Information hiding; Covert communication

Definition
Steganography (from the greek ‘‘steganos’’ – covered)

is a term denoting mechanisms for hiding information

within a ‘‘cover’’ such that, generally, only an intended

recipient will (i) have knowledge of its existence, and

(ii) will be able to recover it from within its cover. In
modern digital steganography applications, the cover is

often a multimedia object such as an image that is

minorly altered in the steganographic process. Stega-

nographic techniques have been deployed for millenia

and several primitive war-time instances are described

in the Histories of Herodotus of Halicarnassus, includ-

ing a case of a message tattooed on the shaven head of a

slave, which, when covered with grown hair acted as an

effective ‘‘cover’’ when traversing enemy lines.

Key Points

Steganography versus Watermarking

A common trend of term misuse is associated with

steganography. Specifically, many sources consider

the term ‘‘watermarking’’ as equivalent. This is incor-

rect. There are fundamental differences, from both

application perspectives and associated challenges. Ste-

ganography usually aims at enabling Alice and Bob to

exchange messages in a manner as stealthy as possible,

through a hostile medium where Malory could lurk.

On the other hand, Digital Watermarking is deployed

by a rights holder (Alice) as a court proof of rights

over a Work, usually in the case when an adversary

(Mallory) would benefit from using or selling that

very same Work or maliciously modified versions

of it. In Digital Watermarking, the actual value to be

protected lies in the Works themselves, whereas pure

steganography usually makes use of them as simple

value ‘‘transporters.’’ In Watermarking, Rights Assess-

ment is achieved by demonstrating (with the aid of a

‘‘secret’’ known only to Alice – ‘‘watermarking key’’)

that a particular Work exhibits a rare property

(‘‘hidden message’’ or ‘‘watermark’’). For purposes of

convincing the court, this property needs to be so rare

that if one considers any other random Work ‘‘similar

enough’’ to the one in question, this property is ‘‘very

improbable’’ to apply (i.e., bound false-positives rate).

It also has to be relevant, in that it somehow ties to

Alice (e.g., by featuring the bit string ‘‘(c) by Alice’’).

There is a threshold determining the ability to

convince the court, related to the ‘‘very improbable’’

assessment. This defines a main difference from stega-

nography: from the court’s perspective, specifics of the

property (e.g., watermark message) are not important

as long as they link to Alice (e.g., by saying ‘‘(c) by

Alice’’) and, she can prove ‘‘convincingly’’ it is she who

induced it to the (non-watermarked) original. In

watermarking, the emphasis is on ‘‘detection’’ rather

2790S Stemming
than ‘‘extraction.’’ Extraction of a watermark, or bits of

it, is usually a part of the detection process but just

complements the process up to the extent of increasing

the ability to convince in court.

Fingerprinting

In this application of steganography, license violators

are ‘‘tracked’’ by hiding uniquely identifying ‘‘finger-

prints.’’ If the Work would then be found in the public

domain, the fingerprints can then be used to assess the

source of the leak.

Recommended Reading
1. Watermarking World. Online at http://www.watermarkingworld.

org/
Stemming

CHRIS D. PAICE

Lancaster University, Lancaster, UK

Synonyms
Suffix stripping; Suffixing; Affix removal; Word

conflation

Definition
Stemming is a process by which word endings or other

affixes are removed or modified in order that word

forms which differ in non-relevant waysmay bemerged

and treated as equivalent. A computer program which

performs such a transformation is referred to as a

stemmer or stemming algorithm. The output of a stem-

ming algorithm is known as a stem.

Historical Background
The need for stemming first arose in the field of infor-

mation retrieval (IR), where queries containing search

terms need to be matched against document surrogates

containing index terms. With the development of com-

puter-based systems for IR, the problem immediately

arose that a small difference in form between a search

term and an index term could result in a failure to

retrieve some relevant documents. Thus, if a query

used the term ‘‘explosion’’ and a document was indexed

by the term ‘‘explosives,’’ there would be no match on

this term (whether or not the document would actually

be retrieved would depend on the logic and remaining

terms of the query).

The first stemmer for the English language to be

fully described in the literature was developed in the
late 1960s by Julie Beth Lovins [11]. This has now been

largely superseded by the Porter stemmer [14], which

is probably the most widely used, and the Paice/Husk

stemmer [12]. Stemmers have also been developed for

a wide variety of other languages.
Foundations

Definitions

In an IR context, the process of taking two distinct

words, phrases or other expressions and treating

them as semantically equivalent is referred to as

conflation. The two expressions need not be precisely

synonymous, but they must refer to the same core

concept (compare ‘‘computed’’ and ‘‘computable’’).

In this article, the term ‘‘practically equivalent’’ is

used to mean that, for the purposes of a particular

application, the words may as well be taken as

equivalent.

The term conflation is sometimes used as though it is

equivalent to stemming, but it is in fact a much broader

concept, since it includes (i) cases where the strings

concerned are multi-word expressions, as in ‘‘access

time’’ and ‘‘times for access’’, and (ii) cases where the

strings are not etymologically related, as in ‘‘index term’’

and ‘‘descriptor’’. In case (i) special string matching

techniques may be used, whereas in case (ii) reference

to a dictionary or thesaurus is necessary. The present

account deals exclusively with the conflation of etymo-

logically related single words.

There are various possible approaches to word

conflation, including the following.

1. Direct matching. In this method, the character

sequences of two words are compared directly, and

a similarity value is computed. The words are then

considered tomatch if theirmutual similarity exceeds

a predefined threshold. To give a simple example, the

first six letters of the words ‘‘exceeds’’ and ‘‘exceeded’’

are the same, so these words together contain

12 matching letters out of 15. Hence, a similarity of

12/15 = 0.80 can be computed. Use of a threshold

(say, 0.70) allows a decision as to whether the words

canbe considered equivalent.
With such a method, setting the threshold is

problematic. Thus, the similarity between ‘‘exceeds’’

and ‘‘excess’’ is 0.62, which is below the stated thresh-

old. However, allowing for this by lowering the

threshold to 0.60 would cause ‘‘excess’’ and ‘‘except’’

(similarity 0.67) to be wrongly conflated.

Stemming S 2791

S

2. Lexical conflation. In this case a thesaurus or dictio-

nary is used to decide whether two words are

equivalent. Obviously, this method can be used

even for etymologically unrelated words. A prob-

lem here is obtaining a suitably comprehensive and

up-to-date thesaurus, and one which explicitly lists

routine variants such as plurals.

3. Cluster-based conflation. This method, investigated

by Xu and Croft [15], involves creating clusters of

practically equivalent words by analyzing the word-

word associations in a large representative text cor-

pus. Each query word is then supplemented by

adding in the other words in its cluster. In contrast

to method (2), the clusters created are specific to

the text collection in question. However, the crea-

tion of the clusters can be very time-consuming.

4. N-gram conflation. In this method, each word is

decomposed into a collection of N-letter fragments

(N-grams), and a similarity is computed between

the N-gram collections of two words; a threshold is

then applied to decide whether the words are equiv-

alent. This approachwas pioneered by Adamson and

Boreham [1], who used sets of bigrams, whereN = 2.

For example, after eliminating duplicates and sort-

ing into order, ‘‘exceeds’’ can be represented by the

bigram set {ce, ds, ed, ee, ex, xc} and ‘‘exceeded’’ by

{ce, de, ed, ee, ex, xc}. Out of 7 distinct bigrams

here, 5 are shared between the two words; hence

a similarity of 5/7 = 0.712 can be computed.

5. Stemming. Stemming refers to the removal of any

suffixes (and sometimes other affixes) from an

input word to produce a stem. Two words are

then deemed to be equivalent if their stems are

identical. This method is much favored because it

is fast: all words can be reduced to stems on input

to the system, and simple string matching used

thereafter. The remainder of this article focuses on

stemming in this narrow sense.

Stemming Algorithms

The most primitive type of stemming is length trunca-

tion, in which any word containing more than N letters

is represented by its first N letters. Thus, using N = 6,

‘‘exceeds’’ and ‘‘exceeded’’ are both reduced to ‘‘exceed,’’

though ‘‘excess’’ remains distinct. Most stemmers, how-

ever, use rules which test for specific endings which, if

found, are removed or replaced.

It is possible to implement a set of stemming rules

by encoding them directly as a computer program.
This permits an arbitrary level of complexity in the

tests and transformations used, but it makes the

stemmer harder to design and modify. An alternative

approach is to hold the rules in one or more tables,

with a stemming engine designed to operate on those

tables. This separation means that the same stemming

engine can in principle be used with different rules

on different occasions, depending on the particular

stemming requirements. It also means that a given

stemming engine can be used, with little or no adap-

tation, for a range of other languages.

In all of the stemmers to be described below, a stem-

ming operation is subject to ‘‘acceptability’’ constraints.

This ensures that if the ending of a word matches an

ending in a table, the indicated action is only taken if

relevant conditions are satisfied. These constraints vary

from one stemmer to another (and sometimes from one

ending to another). The Paice/Husk stemmer [12] uses a

very simple constraint: an action only proceeds if the

resulting stem will contain at least two letters, including

at least one vowel. Thus, ‘‘string’’ cannot be transformed

to ‘‘str’’ through a hit with an ‘‘-ing’’ rule.

It is important to note that, for the purposes of

most applications, the stem returned by a stemmer

need not be an actual word of the language. The

essential desideratum is that the stem should be the

same for all practically equivalent words, and different

for all other words.

Stemming algorithms can be classified roughly as

single-stage, multi-stage or iterative. Lovins’ stemmer

[11] is often described as a single-stage stemmer, since it

uses a single table containing all the distinct endings

which are to be removed. In this table, the rules are held

in decreasing order of length, and the first matching rule

is the one applied. This ensures that, if the table contains

the endings ‘‘-mentary,’’ ‘‘-ment’’ and ‘‘-ary,’’ the word

‘‘documentary’’ and ‘‘document’’ are both reduced to

‘‘docu.’’ If the ‘‘-ary’’ ending were tested first, ‘‘documen-

tary’’ would simply be stemmed to ‘‘document.’’

In fact, Lovins’ stemmer has a second (iterative)

stage, using a table of 35 ‘‘recoding rules,’’ which can

adjust the stem returned by the first stage, e.g., by

replacing double final consonants by single, and

making other changes – thus,

admission ! admiss ! admis

admittance ! admitt ! admit ! admis

The 290 endings listed for the original Lovins’ stemmer

are demonstrably inadequate, but a satisfactory rule set

2792S Stemming
would need to be much longer, and would show con-

siderable structural redundancy. The Paice/Husk stem-

mer [12] avoids this by taking an iterative approach,

where long endings are removed or transformed in a

series of actions using a much shorter table containing

shorter endings. When one action has been activated

and completed, the table may be entered again to see if

another rule will fire. Thus, some endings are removed

in several stages:

sensibilities ! sensibility ! sensibil

! sensibl ! sens

Themost popular stemmer for English is that devised by

Martin Porter at Cambridge University [14]. This stem-

mer, which was designed to reflect the linguistic struc-

ture of suffixes in English words, proceeds through five

main stages. Stage 1 deals with plurals, verb inflexions,

and words ending with ‘‘-y’’; stages 2–4 with all the

majorderivational endings; and stage5with ‘‘-e’’ removal

and singling of final ‘‘-ll.’’ Acceptability constraints are

based on a quantity called the ‘‘measure’’ of the word,

which is derived by scanning the consonant/vowel

patternof eachword.

To facilitate the development of stemmers, Porter

developed a special language known as Snowball (see

URL below).

Krovetz developed a stemmer KSTEM which uses

a machine readable dictionary to decide whether a

stemmed form corresponds to an acceptable root form

of the original word [9]. Despite careful refining of the

algorithm to allow for a range of problem cases, IR

performance was not consistently better than with

Porter’s algorithm.

The design of a stemmer for a new language can be a

labor-intensive business. An attractive alternative is to

generate a set of stemming rules automatically. Thus,

Bacchin et al. have developed a probabilistic approach

which uses a large representative corpus to determine

the optimal splitting of words into ‘‘stems’’ and ‘‘deri-

vations.’’ They showed that, in terms of retrieval per-

formance, their approach was about as good as Porter’s

algorithm for a range of European languages [5].

Prefixes and Infixes

In English, stemmers are usually designed for remov-

ing suffixes from words. The removal of ‘‘intimate’’

prefixes such as ‘‘intro-,’’ ‘‘pro-’’ and ‘‘con-’’ generally

results in words being wrongly conflated (consider
‘‘intro-duction,’’ ‘‘pro-duction’’ and ‘‘con-duction’’).

However, there may be a case for removing looser pre-

fixes such as ‘‘hyper-’’ or ‘‘macro-.’’ Also, prefix removal

may be desirable in certain domains with highly

artificial vocabularies, suchas chemistry andmedicine.

As explained below, there are some languages in

which removal or replacement of prefixes, or even

infixes, is in fact essential.

Performance and Evaluation

Since stemmers were originally developed to aid the

operation of information retrieval systems, it was

natural that they were first assessed in terms of their effect

on retrieval performance, as well as on ‘‘dictionary com-

pression’’ rates. Researchers were frustrated to find

that the effects on retrieval performance for English-

language material were small and often negative [10].

Removal of ‘‘-s’’ and other regular inflectional endings

might be modestly helpful, but use of heavier stemming

could easily result in a loss of performance [7]. Work by

Krovetz and byHull showed thatmost benefit is obtained

in cases where the document or the query is short [8,9].

Stemmers are not used only in IR systems, but in a

wide range of natural language applications. A less ‘‘IR-

oriented’’ general approach tomeasuring performance is

to consider the number of actual stemming errors com-

mitted by an algorithm, and this forms the basis of a

method developed by Paice [13]. Notice first that stem-

ming errors are of two kinds: understemming, in which a

pair of practically equivalent words are not conflated,

and overstemming, in which two semantically distinct

words are wrongly conflated. It is easy to see that these

two types of error trade off against one another.

Paice’s method makes use of a collection of distinct

words (typically derived from an actual text source)

which have been manually collected into groups, such

that all the members of a group are practically equiva-

lent. Two indices are computed based on a stemmer’s

treatment of pairs of words, which reflect the rate of

understemming and of overstemming. Morerover, the

resulting values are related to a baseline represented by

length truncation (see above). This results in a general

measure of accuracy called the ‘‘error rate relative to

truncation,’’ ERRT. Whilst this approach provides

some insights into the activities of stemmers, it is

unclear how such information should be used, though

in future it might provide the basis for an optimization

process. The use of human-defined target groups is a

weak feature.

Stewardship S 2793

S

As a by-product, Paice’s method yields a ‘‘stem-

ming weight,’’ which is the ratio of the overstemming

to the understemming indices; a large stemming

weight means that the stemmer is ‘‘heavy,’’ ‘‘strong’’

or ‘‘aggressive.’’ Frakes and Fox [6] present a series of

other metrics related to stemming weight, as well as

metrics for comparing stemmers one with another.

These are all ‘‘behavior metrics,’’ and do not relate

directly to the actual accuracy of the stemming process.

Non-English Stemmers

Stemming is appropriate for most (though not all)

natural languages, and appears to be especially beneficial

for highly inflected languages [9]. There is neither space

nor need to describe non-English stemmers here, except

to note that some languages exhibit much greater struc-

tural complexity, and this warrants special approaches.

Thus, a typical Arabic word consists of a root verb of

three (or occasionally four or five) consonants (e.g.,

‘‘k-t-b’’ for ‘‘to write’’), into which various prefixes,

infixes and suffixes are inserted to produce specific vari-

ant forms (‘‘katabna’’: ‘‘we wrote’’ and ‘‘kitab’’: ‘‘book’’).

Some researchers have concentrated on extracting the

correct root from a word [3], but Aljlayl and Frieder

have demonstrated that better retrieval performance is

obtained by using a simpler ‘‘light stemming’’ approach,

in which only the most frequent suffixes and prefixes

are removed [4]. Their results showed that extraction

of roots causes unacceptable levels of overstemming.

Key Applications
As noted earlier, stemmers are routinely used in infor-

mation retrieval systems to control vocabulary varia-

bility. They also find use in a variety of other natural

language tasks, especially when it is required to aggre-

gate mentions of a concept within a document or set of

documents. For example, stemmers may be used in

constructing lexical chains within a text. Stemming

can also have a role to play in the standardization of

data for input to a data warehouse.
Data Sets
Useful resources can be found on the two websites

noted below.

URL to Code
Stemming algorithms and other resources may be

obtained from the following websites:
http://www.snowball.tartarus.org/

http://www.comp.lancs.ac.uk/computing/research/

stemming/.

Cross-references
▶ Lexical Analysis of Textual Data

Recommended Reading
1. Adamson G.W. and Boreham J. The use of an association

measure based on character structure to identify semantically

related pairs of words and document titles. Inf. Process.

Manage., 10(7/8):253–260, 1974.

2. Ahmad F., Yusoff M., and Sembok M.T. Experiments with a

stemming algorithm for Malay words. J. Am. Soc. Inf. Sci.

Technol., 47(12):909–918, 1996.

3. Al-Sughaiyer I.A. and Al-Kharashi I.A. Arabic morphological

analysis techniques: a comprehensive survey. J. Am. Soc. Inf.

Sci. Technol., 55(3):189–213, 2004.

4. Aljlayl M. and Frieder O. On arabic search: Improving the

retrieval effectiveness via a light stemming approach. In Proc.

Int. Conf. on Information and Knowledge Management, 2002,

pp. 340–347.

5. Bacchin M., Ferro N., and Melluci M. A probabilistic model for

stemmer generation. Inf. Process. Manage., 41(1):121–137, 2005.

6. Frakes W.B. and Fox C.J. Strength and similarity of affix

removal stemming algorithms. SIGIR Forum, 37(1):26–30,

2003 (Spring 2003).

7. Harman D. How effective is suffixing? J. Am. Soc. Inf. Sci.,

42(1):7–15, 1991.

8. Hull D. A Stemming algorithms: a case study for detailed

evaluation. J. Am. Soc. Inf. Sci., 47(1):70–84, 1996.

9. Krovetz R. Viewing morphology as an inference process. Artifi-

cial Intelligence, 118(1/2):277–294, 2000.

10. Lennon M., Pierce D.S., Tarry B.D., and Willett P. An evaluation

of some conflation algorithms for information retrieval. J. Inf.

Sci., 3:177–183, 1981.

11. Lovins J.B. Development of a stemming algorithm.Mech. Transl.

Comput. Linguist., 11:22–31, 1968.

12. Paice C.D. Another stemmer. SIGIR Forum, 24(3):56–61, 1990.

13. Paice C.D. A method for the evaluation of stemming algorithms

basedonerrorcounting.J. Am. Soc. Inf. Sci., 47(8):632–649, 1996.

14. Porter M.F. An algorithm for suffix stripping. Program,

14(3):130–137, 1980.

15. Xu J. and Croft W.B. Corpus-based stemming using coocurrence

of word variants. ACM Trans. Inf. Syst., 16(1):61–81, 1998.
Step

▶Activity
Stewardship

▶Digital Curation

2794S Stop-&-go Operator
Stop-&-go Operator

NIKOS HARDAVELLAS, IPPOKRATIS PANDIS

Carnegie Mellon University, Pittsburgh, PA, USA

Synonyms
Non-pipelineable operator

Definition
A Stop-&-Go operator, or non-pipelineable operator,

is a relational operator which cannot produce any

result tuples unless it has consumed all of its input.

A typical Stop-&-Go operator is the Sort operator. The

usage of Stop-&-Go operators in the query execution

plan limits the degree of operator-level parallelism.

Key Points
Some relational operators need to consume their entire

input before they are able to produce tuples. These

operators are called Stop-&-Go or non-pipelineable

operators. A typical example of a Stop-&-Go operator

is the Sort operator. To sort a set of tuples, the entire

input set needs to be consumed before the operator can

output the tuples in sorted order. There are many Stop-

&-Go operators, such as various flavors of Join and

Aggregation. For example, Hash Join is a Stop-&-Go

operator because the Probe phase cannot start unless

the Build phase has finished. Similarly, Sort-Merge Join

is a Stop-&-Go operator because the Merge phase can-

not start unless the Sort phase has finished.

The Stop-&-Go operators stop the flow of tuples in

a pipelined execution, so their usage limits the degree

of operator-level parallelism. Thus, a query optimizer

that aims to achieve high levels of operator-level paral-

lelism may choose to replace Stop-&-Go operators

with more expensive – but pipelineable – operators

[1,2] in the query execution plan.

Cross-references
▶Hash Join

▶Operator-Level Parallelism

▶ Pipelining

▶Query Plan

▶ Sort-Merge Join

Recommended Reading
1. Graefe G. Encapsulation of parallelism in the volcano query

processing system. In Proc. of the ACM SIGMOD Conf. on

Management of Data, 1990, pp. 102–111.
2. Johnson R., Hardavellas N., Pandis I., Mancheril N.,

Harizopoulos S., Sabirli K., Ailamaki A., and Falsafi B. To

share or not to share? In 33rd Int. Conf. on Very Large Data

Bases, 2007, pp. 351–362.
Stoplists

EDIE RASMUSSEN

University of British Columbia, Vancouver, BC,

Canada

Synonyms
Negative dictionary; Stopwords

Definition
Stoplists are lists of words, commonly called stopwords,

which are not indexed in an information retrieval sys-

tem, and/or are not available for use as query terms.

A stoplist can be created by sorting the terms in a

document collection by frequency of occurrence, and

designating some number of high frequency terms as

stopwords, or alternately, by using one of the published

lists of stopwords available. Stoplists may be generic or

domain specific, and are of course language specific.

When a stoplist is used for indexing, as a document is

added to the system, each word in it is checked against

the stoplist (for example through dictionary lookup or

hashing), and those which match are eliminated from

further processing. In some systems, stopwords are

indexed, but the stoplist is used to eliminate the words

from processing when they are used as query terms.

Key Points
Hans Peter Luhn, in pioneering work on automatic

abstracting, put forward the idea that certain words

are too common to provide a significant discrimina-

tion value, instead contributing noise to the calcula-

tions, and should be excluded from consideration [6].

In his description of the processing needed to create

Keyword-in-Context (KWIC) indexes, he described

a ‘‘dictionary of insignificant words’’ which was to be

excluded fromprocessing. In his view, these insignificant

words would include ‘‘articles, conjunctions, preposi-

tions, auxiliary verbs, certain adjectives, and words

such as ‘‘report,’’ ‘‘analysis,’’ ‘‘theory’’ and the like’’ [7].

This idea was incorporated in the 1960s in commercial

KWIC indexes introduced by Biological Abstracts

(BASIC) and Chemical Abstracts (Chemical Titles). At

Stoplists S 2795

S

Biological Abstracts the number of excluded terms

varied, but grew to 1,000 words, although analysis

showed that 14 words were enough to prevent 80% of

the entries, and the tradeoff between reduction in

(printed) index size and cost of dictionary lookup

became a factor as the length of the stopword list

increased [2]. The use of the term ‘‘stopword’’ seems to

come from this application, where designation of a word

as a stopword stops the corresponding index entries

from being printed [9]. As electronic databases became

available for searching, database vendors created lists of

stopwords which were not indexed or available for use

in searching. The lists used by commercial systems were

usually quite short; for example, in the Dialog system,

the list consists of only nine words: An, And, By, For,

From, Of, The, To, With [1]. Other lists which were

published and used in IR research contain several hun-

dred words; for an example see Fox [3].

There have been dual arguments put forward for

the use of a stopword list, or stoplist, in building an

index. The first relates to efficiencies in storage and

processing. Common words follow a Bradford distri-

bution and therefore a relatively small number of

words account for a relatively large number of word

occurrences. Data will vary somewhat from one corpus

to another, but a typical analysis might show, for

instance, that six words account for 20% of a corpus

or 250–300 words for 50% [3]. Therefore, removing

these words from the inverted index in a text retrieval

system significantly decreases the size of an uncom-

pressed index, though it adds to the processing time

needed to create the index since a dictionary lookup or

other technique is needed to identify words as stop-

words when the text is processed. However, Witten

et al. [10] suggest that the storage savings are most

obvious in an uncompressed index, and are much

less significant if an appropriate compressed represen-

tation is used. Processing queries containing stop-

words can also be expensive, since their frequency of

occurrence results in very long lists of postings. How-

ever efficiencies in query processing can be introduced,

such as sorting postings lists by term weight, so that

processing can be terminated when term weights are

small, as is the case with stopwords [8]. Therefore,

current techniques can address to a large extent the

problems associated with processing very common

words in both indexes and queries.

The second rationale for using a stoplist is the claim

put forward by Luhn, that these words have very little
power for semantic resolution, and therefore may con-

tribute noise rather thanmeaning for retrieval purposes.

However, current term weighting techniques greatly

reduce the contribution of common words in ranking

functions, and there are many situations where an in-

ability to use stopwords as query terms makes it difficult

if not impossible to perform an effective search. There

are classic examples of searches composed entirely of

stopwords, such as ‘‘AT&T,’’ ‘‘To be or not to be,’’ or

where a stopword is critical to the query, for example

the ‘‘A’’ in ‘‘VitaminA.’’ In other situations the removal of

stopwords makes it impossible to adequately specify the

query, for example, where commonwords are needed to

clarify the relationship between terms. One approach, as

used by Google for instance, is to index stopwords but to

process them in queries only when the searcher specifi-

cally requests it in the query formulation, or when the

query is composed only of stopwords [4]. This allows the

stopwords to be used when they would be helpful, and

ignores themwhen they are not, but it does require some

knowledge of advanced search techniques on the part of

the searcher. Overall, improved storage and compression

techniques, term weighting schemes, and advanced

query processing techniques significantly reduce the

cost of including stopwords in a text retrieval system

and arguments can be made for eliminating the stop-

word list [8,10].
Cross-references
▶ Index Creation and File Structures

▶ Lexical Analysis of Textual Data
Recommended Reading
1. Dialog Online Courses: Glossary of search terms. Available at:

http://training.dialog.com/onlinecourses/glossary/glossary_life.

html

2. Flood B.J. Historical note: the start of a stop list at Biological

Abstracts. J Am Soc. Inf Sci., 50(12):1066, 1999.

3. Fox C. 1Lexical analysis and stoplists. In Information Retrieval:

Data Structures and Algorithms, W.B. Frakes, R. Baeza-Yates,

(eds.). Prentice-Hall, Englewood Cliffs, NJ, 1992, pp. 102–130.

4. Google Web Search Help Center. Search basics: use of com-

mon words. Available at: http://www.google.com/support/bin/

answer.py?answer=981

5. Korfhage R.R. Information Storage and Retrieval. Wiley, NY,

1997.

6. Luhn H.P. The automatic creation of literature abstracts. IBM J.

Res. Development, 2:157–165, 1958.

7. Luhn H.P. Keyword-in-context index for technical literature.

Am. Doc., 11(4):288–295, 1960.

2796S Stopwords
8. Manning C.D., Raghavan P., and Schütze H. Introduction to

Information Retrieval. Cambridge University Press, Cambridge,

UK, 2008.

9. Parkins P.V. Approaches to vocabulary management in

permuted-title indexing of Biological Abstracts. In Proc.

American Documentation Institute, 26th Annual Meeting,

1963, pp. 27–29.

10. Witten I.H., Moffat A., and Bell T.C. Managing Gigabytes:

Compressing and Indexing Documents and Images (2nd ed.).

Morgan Kaufmann, San Francisco, CA, 1999.
Stopwords

▶ Stoplists
Storage Access Models

KALADHAR VORUGANTI

Network Appliance, Sunnyvale, CA, USA

Synonyms
Database storage layer; Database physical layer

Definition
Database management systems provide storage that

can be accessed via a query language interface and

that can be updated under the control of a transaction

management system. A database management system

can reside on top of a file system (system management

storage) or on top of raw block storage (direct man-

aged storage), or on a combination of file system and

block storage (hybrid model). There are advantages

and disadvantages of using these different types of

underlying storage.

Historical Background
Database management systems have historically man-

aged data on disks by themselves. Over the past few

years, the management functionality in file systems has

steadily improved. In order to leverage this management

functionality (like data backup and recovery), and make

it easier for system administrators to manage their

storage infra-structure in a uniform manner, database

system vendors started to architect database systems so

that they can also run on top of file systems. This, in turn,

has now provided users with multiple storage alter-

natives. These alternatives are discussed in this section.
Foundations
A database is logically organized into multiple table

spaces. A table space determines the location from

where a table gets its storage space. Thus, database

tables are created inside table spaces. Multiple tables

can exist in a table space. A table space obtains its

storage from either files or a directory of a file system

or multiple raw block devices. Each raw block device or

file or directory that provides storage to a table space is

known as a container. Multiple containers can provide

storage to a single table space. Separate table spaces

exist for user data, user index data, temporary data,

and log data. Similarly, separate table spaces also exist

for system tables and catalog tables. A table space can

be classified as one of the following:

System Managed Space (file system): This type of

storage container is fully under the control of the file

system. The advantages of system managed space are:

� In-time Provisioning: Typically, database adminis-

trators use system managed storage for managing

temporary storage. This ensures that space is only

allocated when needed, and re-used for other

purposes when it is de-allocated. This is an advan-

tage of system managed space over database man-

aged space, where space is pre-reserved in the

containers.

� Leverage File System Utilities: Systemmanaged stor-

age files can leverage backup,migration, and all of the

other file system utilities. Previously, this was amajor

advantage for system managed storage, but over the

past few years, a lot of progress has been made in

building block level data management utilities that

can be leveraged by a database managed system.

Database Managed Space (Raw Storage): This type of

storage container is fully under the control of the

database management system. The advantages of data-

base managed space are:

� Better Performance: Database managed storage

offers better performance because of the following

reasons:
� Unlike in system managed space, the absence of

file system logging also helps with the overall

performance.

� As file systems age, the underlying managed

storage system can become fragmented. The

absence of file system fragmentation also helps

with the performance of database managed

storage.

Storage Area Network S 2797
� The lack of an intermediate file system buffer (in

addition to the database buffer) in the I/O path,

and the absence of contention in the file system

buffer with other non-database applications, helps

to improve the performance of database managed

storage. With the recent emergence of direct I/O

mechanisms, where the file system places data

directly into the database buffer the disadvantages

of an intermediate buffer have been reduced even

in system managed storage space.

� Each database containers resource is dedicated

to that container, and thus, there is no conten-

tion for storage space with other non-database

applications.
S

� Storage Extensibility: Database managed storage

allows for dynamic addition of more storage con-

tainers to a table space. Thus, one does not have to

a priori know the maximum size of the required

storage space.

� Concurrent Access: Some file systems put a limit on

the number of concurrent accesses on a file (con-

tainer). These limitations are not present in data-

base managed containers.

Hybrid Space (database managed file): In this type of

storage container, the file system created file is given

to the database management system to manage. It is

a compromise between the above two types of con-

tainers. In these containers, there is no intermediate

file system buffer but the size of the container is limited

to the size limits of the created file. The perfor-

mance of hybrid containers is almost as good as the

database managed containers, and one can leverage the

conventional file system provided backup/migration

utilities.

Key Applications
OLTP applications that are performance sensitive typi-

cally use system managed storage. Applications store

their temporary storage in system managed containers.

Cross-references
▶Backup and Restore

▶Buffer Management

▶Database Concurrency

▶ Logging and Recovery

Recommended Reading
1. Mellish B., Aschoff J., Cox B., and Seymour D. IBM ESS and IBM

DB2 UDB Working Together. IBM Redbook, SG24–6262–00,

San Jose, CA, 2001.
Storage Area Network

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Synonyms
SAN

Definition
A Storage Area Network is a network whose main pur-

pose is to transfer data between storage devices and

servers and among storage devices. The term Storage

Area Network can be a synonym of the term Storage

Network, but differs in that the term Storage Area Net-

work is usually identified with a network with block-

level I/O services rather than file access services. More

specifically, the term Storage Area Network is often used

to refer to a network with Fiber Channel technology.

However, SNIA released a more general definition in

which the term Storage Area Network is not connected

with any specific types of network connections. Under

this definition, an Ethernet-based network infrastruc-

ture for mainly connecting storage devices could also

be considered a Storage Area Network. The term Storage

Area Network is often abbreviated to SAN. When the

term SAN is used in connection with a specific network

technology X, the use of a term ‘‘X SAN’’ is encouraged.

A SAN based on Fiber Channel technology is sometimes

referred to as Fiber Channel SAN. A SAN based on TCP/

IP technology is often shortened to IP SAN. Despite the

original meaning, the term SAN is sometimes identified

with a storage systemwhich is also implemented using a

network.

Key Points
A SAN is a general network for connecting storage

devices, but as a matter of fact, currently most SANs

are implemented on top of Fiber Channel technology. A

typical SAN is composed of Fiber Channel switches,

storage devices such as disk arrays and tape libraries,

and Fiber Channel host bus adapter (HBA) cards that

are installed into servers. Alternative network technolo-

gies such as iSCSI, IFCP and FCIP are used mainly in

entry-level storage systems or in wide-area network

connections.

Cross-references
▶Direct Attached Storage

▶Network Attached Storage

▶ Storage Network Architectures

2798S Storage Array
Recommended Reading
1. Clark T. Designing Storage Area Networks: A Practical Reference

for Implementing Fibre Channel and IP SANs. Addison-Wesley,

Reading, MA, 2003.

2. Storage Network Industry Association. The Dictionary of

Storage Networking Terminology. Also available at: http://

www.snia.org/.

3. Troppens U., Erkens R., and Müller W. Storage Networks

Explained. Wiley, New York, 2004.
Storage Array

▶Redundant Array of Independent Disks (RAID)
Storage Broker

▶Request Broker
Storage Consolidation

HIROSHI YOSHIDA

Fujitsu Limited, Yokohama, Japan

Definition
The processes of centralizing the storage infrastructure

resources of multiple servers to reduce management

costs, achieve better service levels, and strengthen con-

trol over data.

Key Points
In small scale IT systems, each server has its own dedi-

cated storage infrastructure (internal disks or DAS).

However, as server numbers and the amount and impor-

tance of business data stored in the storage infrastructure

increases, managing such dedicated storage infrastruc-

ture resources per server becomes difficult and expen-

sive. To solve this problem, the dedicated infrastructure

resources of servers are centralized to storage infrastruc-

ture resources shared by all servers, using storage net-

working technologies such as SAN and/or NAS.

Once dedicated storage infrastructure resources

are consolidated to SAN and/or NAS resources, storage
management operations can also be consolidated and

centralized. For example, data backup is performed

only once for the consolidated storage instead of indi-

vidually for each server. This greatly reduces the cost of

storage management. Another advantage is that expen-

sive storage solutions such as disaster recovery using

replicated data in remote sites can be shared by multi-

ple servers with consolidated storage. The result is

much improved data availability that can be achieved

cost-effectively. In addition, from a data management

and data security viewpoint; rather than having data

spread over multiple servers, often managed by multi-

ple administrators or divisions and based on disparate

policies, data stored in consolidated storage can be

managed based on more consistent policies.
Cross-references
▶DAS

▶ ILM

▶NAS

▶ SAN

▶ SRM

▶ Storage Network Architectures

▶ Storage Virtualization
Storage Controllers

▶ Storage Devices
Storage Devices

KALADHAR VORUGANTI

Network Appliance, Sunnyvale, CA, USA

Synonyms
Tapes; Tape libraries; CDs; DVDs; Optical storage;

WORM; Storage controllers; NAS servers; Storage ser-

vers; Flash
Definition
One of the goals of database, file and block storage

systems is to store data persistently. There are many

Storage Devices S 2799
different types of persistent storage devices technolo-

gies such as disks, tapes, DVDs, and Flash. The focus

of this write-up is on the design trade-offs, from a

usability standpoint, between these different types of

persistent storage devices and not on the component

details of these different technologies.
Historical Background
From a historical standpoint, tapes were the first type

of persistent storage followed by disks, CDs, DVDs,

and Flash. Newer types of memory technologies such

as PRAM and MRAM are still in their infant stages.

These newer non-volatile memory technologies prom-

ise DRAM access speeds and packaging densities, but

these technologies are still too expensive with respect

to cost/gigabyte.
S

Foundations
� Tapes/Tape Libraries: Tape readers/tape head, tape

library, tape robot, and tape cartridge are the key

components of a tape subsystem. Tapes provide the

best storage packaging density in comparison to

other types of persistent storage devices. Tapes do

not provide random access to storage. Data on

tapes can be stored either in compressed or uncom-

pressed format. Unlike disks, tape cartridges can be

easily transported between sites. Most organiza-

tions typically migrate data from older tape car-

tridges to newer tape cartridges once every 5 years

to prevent data loss due to material degradation.

One can employ disk based caches in front of tape

subsystems in order to allow for tapes to handle

bursty traffic. Tapes that provide Write-Once, Read

Many (WORM) characteristics are also available.

WORM tapes are useful in data compliance envir-

onments where regulations warrant guarantees that

a piece of data has not been altered. DLT and LTO

are currently the two dominant tape technologies

in the market. Technology wise both these stan-

dards have minor differences. Finally, from a pure

media cost standpoint, tapes are less expensive

(cost per gigabyte) than disks and other forms of

persistent media.

� Disks/Storage Controllers/NAS Boxes: Disks are the

most widely used form of persistent storage media.

Disks are typically accessed by enterprise level

applications when they are packaged as part of the
processing server box (direct attached storage

model), or are part of a network attached storage

box (NAS) and accessed via NAS protocols or, are

packaged as part of a storage controller box and

accessed via storage area network protocols (SAN).

The current trend is for protocol consolidation,

where the same storage controller provides support

for both SAN and NAS protocols. Typically, the size

of the storage controllers can vary from a few tera-

bytes to hundreds of terabytes (refrigerator sized

storage controllers). A storage controller typically

consists of redundant processors, protocol proces-

sing network cards, and RAID processing adapter

cards. The disks are connected to each other via

either arbitrated loop or switched networks. Stor-

age controllers also contain multi-gigabyte volatile

caches. Disks are also packaged as part of laptops.

There is a marked difference in the manufacturing

process, and testing process between the enterprise

class disks and commodity laptop class disks.

Disks vary in their form factor, rotational speed,

storage capacity, number of available ports, and

the protocols used to access them. Currently, serial

SCSI, parallel SCSI, serial ATA and parallel ATA,

Fiber Channel, and SSA are the different protocols

in use for accessing disks. Lower RPM and disk

idle mode are new disk spin-down modes that

allow disks to consume less power when they are

not actively being used.

� DVD/Juke Boxes: DVDs and CDs are optical storage

media that provide random access and WORM cap-

abilities. Only recently, the multiple erase capacity of

an individual CD, or DVD was less than the capacity

of a single disk drive or tape cartridge. DVDs can

store more data than a CD, and a high definition

DVD can store more data than a DVD. There are

numerous competing standards for CDs, DVDs and

high definition DVDs, however, format agnostic

DVD players and DVD writers are emerging. Usage

of DVDs is more prominent in the consumer space

rather than in the enterprise space. A juke box system

allows one to access a library of CDs or DVDs. DVDs

have slower access speeds than most types of disks.

� Flash/SSDs/Hybrid Disks: Flash is memory technol-

ogy that has non-volatile characteristics. Flash

memory has slower read times than DRAM. More-

over, it has much slower write times than DRAM.

One has to perform an erase operation before one

2800S Storage Grid
can re-use a flash memory location. One can only

perform a limited number of erase operations.

Thus, the number of write operations determines

the Flash memory life. SLC and MLC are the two

different NAND flash technologies. SLC can be

erased a greater number of times, and it has faster

access times than MLC based flash. NAND flash has

faster write and erase times than NOR flash. NOR

flash has faster read times than NAND flash.

NAND flash is used to store large amounts of data

whereas NOR flash is used to store executable code.

People are using MLC flash in cameras and digital

gadgets, and are using SLC flash as part of solid

state disks (SSDs). SSDs provide block level access

interface (SCSI), and they contain a controller that

performs flash wear leveling and block allocation.

Hybrid disks that contain a combination of disks

and Flash are emerging. Hybrid disks provide a

Flash cache in front of the disk media. One typically

can store meta-data or recently used data in the

flash portion of hybrid disks to save on power

consumption. That is, one does not have to spin-

up the disk. Flash storage provide much better

random access speeds than disk based storage.

Key Applications
Tapes are being used primarily for archival purposes

because they provide good sequential read/write times.

Disks are the media of choice for most on-line applica-

tions. Optical media (CDs, DVDs) are popular in the

consumer electronic space. Flash based SSDs are popular

for those workloads that exhibit random IOs. Disks are

being used in Laptops, desktops and storage servers

(SANs, NAS, DAS). Tape based WORMmedia and con-

tent addressable based disk storage are providing

WORMmedia capabilities in tape and disk technologies,

and thus, these technologies can be used to also store

compliance/regulatory data.

Cross-references
▶Backup and Restore

▶Direct Attached Storage

▶Network Attached Storage

▶ Storage Area Network

Recommended Reading
1. Anderson D., Dykes J., and Riedel E. More than an interface-

SCSI versus ATA. In Proc. 2nd USENIX Conf. on File and

Storage Technologies, 2003.
2. Toigo J. Holy Grail of Network Storage Management. Prentice

Hall, Englewood Cliffs, NJ, 2003.

3. Voruganti K., Menon J., and Gopisetty S. Land below a DBMS.

ACM SIGMOD Rec., 33(1):64–70, 2004.
Storage Grid

KALADHAR VORUGANTI

Network Appliance, Sunnyvale, CA, USA

Synonyms
Data grids; Content delivery networks; Peer to Peer

network; Distributed databases; Cloud computing;

Utility computing

Definition
In grid computing, storage and computing resources are

geographically spread out and accessed via fast wide-area

networks. Storage resources could either co-exist with

computing resources, or they could exist separately from

the computing resources. Databases, file systems or

block storage devices can be accessed remotely across

fast wide-area network based grids. A storage grid pro-

vides services for discovering storage resources, transfer-

ring data, recovering from unfinished data transfer

failures, data authentication/encryption services, and

data replication services for performance and availability

purposes. Storage grids also typically provide the neces-

sary mapping layers to access data from heterogeneous

sources. Heterogeneity can be due to differences under-

lying system architectures, data formats, protocols used

to access the data, and data organization. Finally, storage

grids provide a global unified namespace across the

resources, and one typically transfers large datasets

(multi-terabytes) across the different nodes.

Key Points
Content Delivery Networks (CDNs) is a related area,

where data are cached at secondary servers at various

geographically distributed servers to cut down on data

access latency. Peer-to-Peer networks is another related

area where data are distributed across different peers in

an ad-hoc manner and there is no central authority.

Storage grids can be further classified based on the

following criteria [1]:

Storage Grid Organization: Storage grid organiza-

tion deals with how resources are organized in the

system. Resources can be organized in a hierarchical

Storage Grid S 2801

S

manner, or in a monadic manner. In hierarchical

model data exists at multiple sites. Each site in turn

decides which of its children sites can have access to

data. In a monadic grid data exists only at a single

location and everyone accesses data from that location.

Data sources in a grid can also be arranged in a feder-

ated model, where each site retains independent con-

trol over the data and its participation in the grid.

Data Transport:Data transport deals with transport

issues, security issues, and fault-tolerance issues:

� Transport: Data can be transferred using protocols

such as FTP and GridFTP. In addition, one could

potentially employ overlay networks that provide

caching functionality and control to the applica-

tions to directly control data transfer. Data can also

be transferred via multiple parallel streams from

one source location, and in a striped manner from

multiple data source locations.

� Security: Authentication, encryption and authori-

zation are the three security issues that are also

applicable in grid environments.

� Fault-Tolerance:The primary fault-tolerance approa-

ches are to restart a failed data transfer, or to have the

ability to resume from the failed point. In some

environments, if the destination node is not available,

intermediate caches can temporarily store the data

and then forward the data once the unavailable node

comes back on line.

Data Replication and Storage: Data replication strate-

gies can be classified in the following different ways:

� Method: Synchronous and asynchronous replica-

tion strategies are the two major classes of data

replication mechanisms. In synchronous replica-

tion, updates are not acknowledged at the source

until data has been successfully copied at the target

locations. In asynchronous protocols, updates are

immediately acknowledged at the source, and there

is a lag in data consistency between the primary and

secondary data copies.

� Protocols: Some grids employ open data transfer

replication protocols, such as FTP or GridFTP. In

open protocols, the catalog management becomes

the responsibility of the application. Others employ

a closed protocol which perform catalog manage-

ment in an integrated manner.

� Replication Granularity : Data can be replicated at

dataset, file, block, and database table level.
� Replication Strategy: Data can be replicated dynami-

cally based on an objective function such as response

time requirements, load balancing requirements or

data consistency requirements, or data can be repli-

cated statically based on an a priori schedule or on

demand.

Resource Allocation and Scheduling: The goal of re-

source allocation and scheduling is to ensure that the

data are located at the appropriate site in order to meet

the performance and availability goals of the applica-

tion. The settings for the following parameters can be

varied in this regard:

� Process Model: The processes can be scheduled as

independent tasks, as a bag of tasks or as part of a

workflow. Workflow corresponds to a sequence of

tasks, whereas, a bag of tasks correspond to execut-

ing the same task on different input parameters.

� Objective Function: Resource allocation and task

scheduling is performed based on an objective

function. The objective function tries to optimize

load balancing, or business profit, or application

performance. The object function is assigned at the

task, bag of tasks or workflow level.

� Scope of the Scheduler: The scheduler decides

whether to replicate/migrate data/process can try to

optimize the utility function at the level of an individ-

ual application or at a more global community level.

� Types of Tasks: Data can be migrated, replicated,

cached or remotely accessed in order to satisfy

application’s storage requirements. Alternately, the

computation process can be migrated to the loca-

tion where the data exists.

Storage grids are primarily used in scientific com-

puting environments that deal with large amounts of

data. It is usually not practical to replicate all of the

data, and thus, grid architecture facilitates the remote

access of large datasets across wide-area networks.

However, variants of storage grid architectures such

as CDNs are used to transfer streaming video, and

P2P networks are used to shared audio and video

data. Cloud computing is the new variant of utility

computing where application, storage and server

resources are managed by a service provider and clients

remotely access these resources.

Cross-references
▶Grid and Workflows

▶Grid File

2802S Storage Layer
▶Resource Scheduling

▶ Storage Protocols

▶ Storage Security
Recommended Reading
1. Venugopal S., Buyya R., and Ramamohan Rao K. A Taxo-

nomy of Data Grids for Distributed Data Sharing, Management,

and Processing. ACM Comput. Surv., 38(1):1–53, 2006.
Storage Layer

▶ Storage Manager
Storage Management

HIROSHI YOSHIDA

Fujitsu Limited, Yokohama, Japan

Definition
The methods and tools used to manage storage devices

(disk arrays, tape libraries, etc.), storage networking

devices (fiber channel switches, etc.), storage-related

components inside servers (host bus adaptors, etc.),

and logical objects mapped on those devices (logical

units, access paths, etc.). In general, the scope of stor-

age management is limited to the management of

storage infrastructure and does not handle the data

stored in the infrastructure. The functions of storage

management include device management, perfor-

mance management, and problem management.

Those functions are usually provided as software tools.
Historical Background
Storage management technologies have developed in

parallel with the evolution of storage networking.

In the early 1990s, storage devices were used as DAS

devices. Even in a DAS environment, storage manage-

ment functions such as storage device management

were required, and those functions were provided as

dedicated software tools for specific vendors and/or

devices, and those tools were often bundled with the

hardware.
With the evolution of storage area networks

(SANs) in the late 1990s, new requirements for storage

management arose:

� Initially, SAN brought significant reduction of

management cost through its storage consolidation

capability. The storage capacity which could be

managed by storage administrators was also greatly

increased, compared to DAS environments. How-

ever, along with the growth of SAN, the number of

connected devices and the amount and business

importance of stored data increased; causing

SANs to become more and more complex. This

increased the ‘‘storage management gap,’’ i.e., the

gap between the decrease in storage hardware costs

and the extreme increase in storage management

costs. A reduction in the manpower required for

storage management was urgently needed.

� Tomanage a SAN environment, both storage device

management functions and network management

functions, such as discovery, network configuration

management, and network topology management,

are necessary. In a networked environment, coping

with hardware and software failures and perfor-

mance problems also becomes much more difficult,

compared to a DAS environment.

� SAN environments are usually constructed using

products from multiple vendors. Storage manage-

ment tools must cope with such multi-vendor

environments. Therefore a new business model of

providing software products which are indepen-

dent from specific storage vendors’ devices was

established. This requirement also accelerated the

standardization of the interfaces between storage

devices and management software.
Foundations

General Classification of Storage Management

Functions

Although storage management is necessary for all types

of storage networking, the management of SANs is

mainly discussed in the following description. This is

because SANs are the most commonly used storage

infrastructures, and feature the most typical manage-

ment requirements. In general SAN environments,

storage management is achieved by software tools run-

ning on a management server. Those tools provide

Storage Management S 2803

S

functions such as device management, configuration

management, performance management, and problem

management.

� Device management and configuration manage-

ment consists of functions to configure and to

monitor storage devices (disk arrays, tape libraries,

etc.), network devices (fiber channel switches, etc.),

server components (fiber channel host bus adapters

(HBAs), etc.), and relationship between those com-

ponents. For example, disk array management pro-

vides the following functions:

– Monitoring and displaying the status of devices

– Creation/configuration/masking/mapping of logi-

cal units/logical unit numbers (LUNs)

Management of fiber channel switches and SAN

configuration provides the following functions:

– Monitoring and displaying switch ports

– Collecting and displaying statistic information on

switch ports

– Displaying SAN topology

– Configuration of zones

– Integrated and consistent control of multiple

switches

As a SAN environment includes multiple levels of

virtualization (e.g., disk arrays, volume managers,

and virtualization network appliances) and access

control features (zone, host affinity, and LUN

mapping), the mapping of logical access paths on

physical paths and the correlation between applica-

tions and physical storage devices tend to be com-

plex. Configuration management should provide

functions to visualize such mapping and correla-

tion from the viewpoint of application and to con-

figure multiple SAN components in a consistent

manner.

� Performance management consists of functions

to monitor, to analyze, and to display storage

access performance based on statistic information

collected from storage devices and fiber channel

switches. It also includes functions to issue an alert

in case that a specific parameter (e.g., device busy

rate) exceeds the predefined threshold.

� Problem management consists of functions to

monitor the status of storage devices as well as fiber

channel switches and to notify the administrators
and/or remote maintenance centers when problems

such as hardware failures are detected.

‘‘Storage management’’ is a very generic term and

those elemental storage management functions are

sometimes named ‘‘storage x management,’’ e.g., ‘‘stor-

age device management’’ and ‘‘storage configuration

management.’’ Note that the term ‘‘Storage resource

management’’ represents a different concept from stor-

age management mentioned here. It is usually used to

indicate the functions to visualize and control usage of

storage systems from the more application-aware or

content-aware management viewpoint. It is described

as a separate article.

Actual storage management software products include

those typical functions as well as additional functions

such as automation and the provision of integrated

monitoring and operational views.

Elemental Technologies of Storage Management

Another aspect of understanding storage management

is the technologies needed to implement storage man-

agement software. In general, the following internal

functions are commonly required to implement stor-

age management software.

� Discovery is a function to find storage devices in an

SAN environment before knowing the topology of

the SAN. When a new device such as a disk array

system is connected to an SAN, it also has to be

discovered.

� Data collection acquires necessary information,

once storage devices are discovered. Information

is collected through proprietary interfaces and/or

standard interfaces such as SNMP (Simple Network

Management Protocol) and SMI-S (Storage Man-

agement Initiative Specification). Data collection

also stores that information in storage management

repositories which are usually located in the storage

management server. Collected information inclu-

des both information on the current status of stor-

age resources such as configuration information

and historical information such as accumulated

performance information on storage devices.

� Topology management analyzes the topology of

SANs based on the collected information. Topology

management handles both physical network topol-

ogy which represents the relationship between

physical resources such as HBA ports, switch

2804S Storage Management
ports, and storage device ports and logical network

topology which represents the relationship between

logical and/or virtualized resources such as LUNs,

zones, and logical access paths.

� Visualization is a set of functions which display the

information mentioned above on a management

console and provide human interfaces to enable

administrators to monitor and configure the stor-

age resources easily.

� Event processing receives asynchronous events from

storage resources, categorizes them based on the

predefined policies, and notices administrators

and/or remote maintenance centers if necessary,

and records those events into event log files.

� Security management is a set of functions which are

necessary to meet the appropriate security require-

ments. Security management includes authoriza-

tion and access control features of administrators

considering multiple administrative roles, single

sign-on features among multiple storage manage-

ment software products, management of credentials

of managed storage resources for data collection,

and logging functions for auditing all operations

applied to the storage infrastructure to fulfill com-

pliance requirements.

One important topic related to storage manage-

ment implementation is how the interoperability be-

tween management software products and managed

storage resources is achieved. At an early stage, storage

management was implemented as management tools

provided by individual storage vendors. Those tools

were dedicated to the storage devices of respective

vendors. Each storage vendor developed a proprietary

interface and protocol which was applicable only to its

storage devices and storage management software

tools.

However, it became very common for datacenters

to use storage devices provided by multiple vendors.

Using multiple storage management tools with differ-

ent looks-and-feels and manageability increased the

management and labor costs in datacenters. This situ-

ation led to the new requirement that storage manage-

ment software must be able to manage not only single

vendor storage resources but multi-vendor storage

resources. The goal was that every storage management

software product could manage every storage resource.

Standard interfaces and protocols which could be ap-

plied to the communication between management
software and storage resources was crucial to achieving

this goal.

Since the storage industry became aware early on of

the importance of interoperability between products,

standard interfaces and protocols for storage manage-

ment were established as ISO standard SMI-S by the

storage standards body SNIA (Storage Networking In-

dustry Association).
Key Applications
Storage management is one of the essential features for

administrative practice of computer system storage

infrastructure. It allows administrators to configure,

monitor, and control storage resources, particularly

in SAN environments.

Storage management is also necessary as the basis

of implementing higher level management, which is

described as ‘‘management applications’’ later. For ex-

ample, datacenter management requires storage man-

agement as part of its resource management as well as

server management and network management. Anoth-

er example is that information management requires

storage management to manage the infrastructure in

which information resides. In information lifecycle

management, optimal storage devices are assigned

to store information in accordance with its business

value. Storage management is responsible for establish-

ing the multiple storage device tiers which meet the

different service level objectives and cost requirements.

Future Directions
The following areas will become more important in

terms of storage management.

Integration of Management Software Including Storage

Management

Currently a huge variety of management software pro-

ducts are used in large datacenters. Storage manage-

ment software products must be integrated with those

products.

To achieve consistent and automated resource man-

agement in a datacenter, storage management should

be integrated with other resource management such as

server and network management. This integration of

resource management will provide capability such as

the ‘‘provisioning’’ of a set of servers, storage devices,

and network resources to an application. When admin-

istrators use this feature, they will not need to have

Storage Management S 2805

S

detailed knowledge and skills in storage management,

letting them manage storage devices in an SAN envi-

ronment without regard to the SAN. This feature will

be achieved through the cooperation of server manage-

ment, networkmanagement, and storage management,

which will configure internal connections between ser-

vers and storage devices automatically. Such integrated

provisioning will greatly reduce management and labor

costs in the datacenter.

Another example is integration with IT service

management such as incident management, problem

management, change management, release manage-

ment, and configuration management. IT service man-

agement controls those management processes in

a manner which is compliant to ITIL (Information

Technology Infrastructure Library). In addition, con-

figuration information needed for those management

processes is stored in a CMDB (ConfigurationManage-

ment Database). To achieve integration with IT service

management, storage management operations will

have to be initiated as part of management processes

by workflow managers, and configuration information

on storage resources collected by storage management

will also have to be federated with CMDB.

Visualization and Optimization from a Business

Viewpoint

The business value proposition brought by IT systems

becomes more and more important and needs to be

clearly stated. On the other hand, to achieve business

risk management, the impact of IT infrastructure

outages on the customer’s business also has to be

clearly analyzed. To fulfill such requirements, the rela-

tionship between IT resources and business applica-

tions must be visualized. The IT resources must also

be optimally configured and managed to achieve the

performance and availability objectives of business

applications. The most important key technology is

dependency mapping between business applications

and resources. Another important technology is policy

management which allows customers to specify the

criteria of system behavior based on their business

requirements. Storage management is responsible for

that capability with regard to storage resources.

Establishing Framework for Management Applications

In addition to the necessity of basic management capa-

bility such as the configuring andmonitoring of storage

devices, the importance of higher level ‘‘management
applications’’ is continuously increasing. For example,

such management applications include:

– Database performance management

– Resource provisioning

– Lifecycle management of storage resources and in-

formation lifecycle management

– Security management

– Automated management such as run book auto-

mation and autonomic management such as self

configuration

Management applications are essential for achiev-

ing integrated management and business-aware man-

agement. The amount of management applications

which are available on a storage platform is a key factor

in achieving strategic use of storage and stored data in

an enterprise.

In general, management applications monitor and

control storage resources on the level of logical

resources not on physical storage device level. In the

main the information directly collected with current

storage management tools, from storage hardware

and the control functions of storage hardware, are

sometimes too detailed for management applications.

For example, a management application which pro-

vides provisioning capability is only aware of LUNs,

their capacities, and the zoning configurations which

restrict accessibility between servers and storage

resources. There are also functions which many man-

agement applications use commonly to implement

their storage-related capabilities. High-level interfaces

which allow management applications to handle stor-

age resources more logically, as well as a set of common

components which help the development of manage-

ment applications, are strongly required.

The storage industry has started to provide the

higher-level interfaces and functional components as

frameworks for management applications. One exam-

ple is SNIA’s attempt to standardize ‘‘management

framework’’ as a higher level interface than the current

SMI-S. It also includes common functional compo-

nents such as discovery, data collection, topology man-

agement, data models, and policy management.

Another example is ‘‘Aperi,’’ which is the open source

storage management software provided by open source

community Eclipse. Aperi also provides the higher

level management functions which are implemented

on the SMI-S based storage management to manage-

ment applications.

2806S Storage Management Initiative-Specification
URL to CODE
The latest documents on SMI-S can be downloaded

from the SNIA web site.

http://www.snia.org/tech_activities/standards/curr_

standards/smi/

An open-source framework of storage management

software can be downloaded from the Aperi project of

Eclipse.

http://www.eclipse.org/aperi/

Cross-references
▶DAS

▶ ILM

▶ LUN

▶Mapping

▶Masking

▶ SAN

▶ SMI-S

▶ SRM

▶ Storage Consolidation

▶ Storage Network Architectures

▶ Storage Networking Industry Association

▶ Storage Protocols

▶ Storage Virtualization

▶Volume

▶Zoning

Recommended Reading
1. Cummings, R. Storage Network Management, Storage Network

Industry Association, 2004. Available at: http://www.snia.org/

education/storage_networking_primer/stor_mngmnt/

2. Storage Network Industry Association. Storage Network Indus-

try Association tutorials, 2007. Available at: http://www.snia.org/

education/tutorials/
Storage Management
Initiative-Specification

HIROSHI YOSHIDA

Fujitsu Limited, Yokohama, Japan

Synonyms
SMI-S

Definition
A standard storage management interface developed by

the Storage Networking Industry Association (SNIA).

SNIA describes SMI-S as follows: SMI-S defines a
method for the interoperable management of a hetero-

geneous SAN, and describes the information available

to a Web-Based Enterprise Management (WBEM) cli-

ent from an SMI-S compliant Common Information

Model (CIM) server and an object-oriented, XML-

based, messaging-based interface designed to support

the specific requirements of managing devices in and

through SANs.
Key Points
To implement storage management, methods to retrieve

configuration information on storage components such

as storage devices (disk arrays, tape libraries, etc.,), net-

work devices (fiber channel switches, etc.,), and servers

(hardware such as host bus adapters and software such as

drivers and volume managers), plus methods to operate

those components are necessary. To manage SAN envir-

onments composed of multi-vendor products, common

methods of collecting information and operations must

be standardized. In the standardization of those com-

mon methods, not only the standardized interfaces and

protocols but also the semantics of the information

and operations, i.e., object models of managed resour-

ces, must be defined.

To achieve SANmanagement in multi-vendor envir-

onments, the SNIA standardized on the Storage Man-

agement Initiative-Specification (SMI-S). Based on the

Common Information Model (CIM) standardized by

the Distributed Management Task Force (DMTF),

SMI-S defines a common object model for each storage

resource class as well as common methods of collecting

information and operations using a Web-browser based

management framework (Web-Based Enterprise Man-

agement, WBEM).

Figure 1 shows the architecture of SMI-S. It is based

on the client-server model. Managed storage compo-

nents act as CIM servers and storage management soft-

ware tools act as CIM clients. CIM servers and CIM

clients communicate by passing XML texts through

HTTP. A SMI-S CIM server includes an HTTP server,

an XML parser, an SLP agent used for discovery, and a

CIM provider. The CIM provider implements actual

CIM operations according to the profile defined for

the corresponding storage resource class.

SMI-S version 1.3 includes the following storage

management features and functionality:

Hardware Devices: SMI-S Providers
Switches

Storage Management Initiative-Specification. Figure 1. The architecture of SMI-S.

Storage Manager S 2807
Arrays (fiber channel and iSCSI)

Servers

NAS devices

Tape libraries

Host profiles

Host bus adapters
SMI-S Clients (software)
S

Configuration discovery

Provisioning and trending

Security

Asset management

Compliance and cost management

Event management

Data protection
The standardization effort began in 1997 and

was adopted formally by the SNIA as SMI-S in

2002. It was designated as a standard by ISO/IEC

in January 2007.

Cross-references
▶ Storage Management

▶ Storage Networking Industry Association

Recommended Reading
1. Storage Network Industry Association. Storage management

initiative-specification, 2007. Available at: http://www.snia.org/

tech_activities/standards/curr_standards/smi/
Storage Manager

GOETZ GRAEFE

Hewlett-Packard Laboratories, Palo Alto, CA, USA

Synonyms
Storage layer; Disk process

Definition
The storage manager is a software layer within a data-

base management system. It relies on operating system

primitives for I/O, synchronization, etc. and exposes

records in storage structures such as B-trees and heaps.

Its principal operations are creation and removal of

storage structures as well as retrieval, search, scans,

insertion, update, and deletion of records. For those

operations, the storage layer provides concurrency

control among threads and among transactions, as

well as recovery from transaction, media, and system

failures. Standard implementation techniques include

locking and write-ahead logging. Using a buffer pool,

records are made accessible in random access memory,

although the permanent storage is on block-access

media, typically on disk but possibly in flash memory.

The storage layer may support data compression,

‘‘blobs’’ (binary large objects), bitmaps in non-unique

secondary indexes, hash indexes, multi-dimensional

2808S Storage Manager
indexes, etc. It may also manage the catalogs needed to

manage its objects, or it may leave metadata manage-

ment to a higher software layer. For all the supported

data structures, the storage layer provides utilities such

as backup and restore, bulk insertions and deletions,

logical and physical consistency check, defragmentation

and other forms of reorganization, etc.

Historical Background
Design and scope of the storage layer are often similar

to those of the RSS (research storage system) of the

System R prototype. The basic architecture of the core

functions has remained unchanged, including space

management for records in pages, indexing and search,

concurrency control and recovery. Many specific im-

plementation techniques have changed, e.g., introduc-

tion of multi-dimensional indexes. Another change

has been the transition from write-ahead logging with

recovery from a read-only log to recovery by compen-

sation of logical actions and guaranteed exactly-once

execution of physical actions, both logged and even

checkpointed during database recovery.

The architecture of utilities has also undergone

some changes. The implementation of many storage

layer functions now employs query execution and even

query optimization, e.g., memory management policies

or partitioning and pipelining for parallel execution. For

example, creation of a new secondary index may scan

existing secondary indexes rather than the primary

index, or consistency check may aggregate facts gathered

during a disk-order scan rather than navigate each

index with many random I/O operations.

Sorting used to be a storage layer function because

it was used almost exclusively for index creation, tradi-

tionally a storage layer function. Sorting can be used

for many tasks, however, including complex query

execution plans with merge join operations, etc., such

that sort- and hash-based operations should both be

part of the query processing layer.

The plethora of features and functions has led

to complexity and high total cost of ownership for

many installations. Extensible database management

systems have not solved this problem, and the tension

between ‘‘one size fits all’’ and ‘‘tailor-made’’ database

systems might be resolved through factoring and mass-

customization.

XML support is now available in the storage layer

of many commercial database management systems,

but further improvements in query processing over
XML documents and databases will likely require

further improvements of storage layer techniques.

In other words, as much as the storage layer may

seem like a well-understood component of database

technology, research, development, and competition

continue unabated.
Foundations
This section describes a database system’s storage layer

by its external interfaces above and below, followed by

internal components and data structures on disk and

in memory, and completed by specific techniques for

query processing, concurrency control and recovery,

utilities, and catalogs.
Storage Layer Concepts

The most important services provided by a database

system’s storage layer revolve around indexes and

records. Both of these are physical database concepts,

quite different from logical database concepts such

as table and row. For example, a single table may

require many indexes due to redundant, secondary

indexes as well as horizontal and vertical partitioning.

Similarly, a single row might be represented by many

records. Conversely, multiple tables may be clustered

within a single index such that related information,

e.g., about a purchase order and its line items, can be

read, written, and buffered within a single disk page.

Finally, a single record may contain information about

multiple rows, e.g., a B-tree entry in a non-unique

non-clustered index with a key value and a list of row

identifiers.

The mapping between logical and physical con-

cepts is usually provided by the relational layer and

its query optimization component. Some implementa-

tions of the storage layer, however, provide some of this

mapping, e.g., maintenance of all indexes for a row

update, in order to maximize performance by mini-

mizing the number of storage layer invocations.

Logical concepts include table, view, row, column,

and domain; physical concepts include index, parti-

tion, record, and field. The word ‘‘key’’ is used both in

the relational layer, where it restricts duplicates and

null values, and in the storage layer, where it indicates

index organization, sort order, or a search argument.

It might be useful in some discussions to avoid

the term ‘‘key’’ and to use ‘‘primary key,’’ ‘‘foreign

key,’’ ‘‘index key,’’ and ‘‘search key’’ instead.

Storage Manager S 2809

S

Storage Layer Services

The storage layer provides access and updates for

indexes and their records. Heaps can be thought of as

indexes that map a record identifier to a record, with no

capability to modify the record identifier. Indexes

can be created and dropped. Records can be inserted,

deleted, updated, scanned, and searched using an

appropriate search key. Some indexes, e.g., heaps and

clustered indexes, may generate unique row identifiers

during insertion and possibly a new one during update.

Such row identifiers can link all records representing a

logical row, e.g., during retrieval using a non-clustered

index or during deletion of a logical row.

All operations are part of transactions with concur-

rency control and recovery. The storage layer supports

pre-commit for participation in coordinated commits

in addition to the traditional immediate commit. The

set of currently active transactions and their current

state may be managed by the storage layer or by another

component within the database management system.

If multiple threads invoke the storage layer at the

same time, internal data structures are protected

against concurrency problems using appropriate low-

level synchronization.

If catalogs are managed by a higher software layer,

the storage layer provides appropriate indexes and,

most likely, special high-performance lock scopes and

lock modes for metadata. For example, all metadata

about a table may be covered by a single lock, and

this lock may cover both the metadata and the data.

Specifically, the weakest mode merely read-protects

the metadata, whereas the strongest mode permits

arbitrary changes to both metadata and data. Tradi-

tional read and write locks (shared and exclusive)

imply read-protection on the metadata.

Storage Layer Requirements

A storage layer invokes two basic functions of the

operating system: input/output and synchronization.

Asynchronous I/O functions are valuable as otherwise

they must be simulated with additional threads. Syn-

chronization primitives that provide both shared and

exclusive levels directly support the need of database

management systems and their storage layers.

Storage Layer Components

The well-known components of a storage layer are the

access methods (B-tree structure etc.), buffer pool, con-

currency control and recovery. The less prominent
components are memory management, disk space allo-

cation, and catalogs. Asynchronous I/O could be sepa-

rated into its own component, as could be latches,

temporary structures (for sort- and hash-based opera-

tions), page structures (managing variable-length

records), utilities for reorganization and consistency

checks, backup and restore. Initial access to a database

file, e.g., during recovery from a crash or when opening a

database from a less-than-fully-trusted source, requires

substantial logic and could be its own component, too.

Typically, multiple threads may invoke the storage

layer at the same time; access and update of shared data

structures within the storage layer is coordinated using

latches. Those are equivalent to critical sections or

locks in programming languages. Latch modes are

typically shared and exclusive (read and write). Dead-

lock avoidance is required as latches do not participate

in deadlock detection. Ordering latches based on levels

is a standard technique to avoid deadlocks. Latches

must not be retained while waiting for I/O to complete

or while waiting for a database lock.

On-Disk Data Structures

The essential on-disk data structures are index for user

data. This includes both primary, clustered indexes and

secondary, non-clustered indexes on both tables and

views. Additional data structures enable the essential

ones: catalogs, free space management, and the recov-

ery log. Each of those is special in their own way. For

example, the recovery log is often mirrored on two

devices in order to approximate the fiction of guaran-

teed stable storage.

Catalogs and their indexes often use the same on-

disk format as user data. This is also possible for free

space management, in particular if bitmap indexes are

supported. The free space information is crucial during

initial access to a database, i.e., system boot and recov-

ery must be supported.

There is also the issue of free space management

within each page. Each page typically consist of a page

header, space for variable-length records, and an indi-

rection vector that indicates the location of each re-

cord. A format version number in the page header

enables incremental improvement of the database for-

mat without unloading and reloading entire databases.

A ‘‘page LSN’’ (log sequence number) indicates the

most recent log record pertaining to the page and

is essential for exactly-once change application in

modern recovery schemes.

2810S Storage Manager
Many database management systems and their stor-

age layer support multiple index formats, e.g., hash

indexes, heaps,multi-dimensional indexes, column stor-

age, etc. All of them can be mapped to B-trees with

reasonable efficiency in time and space, with a great

savings in implementation effort. For example, imple-

mentation and testing for high scalability through a

fine granularity of locking is a very substantial effort

required for each storage structure.

In addition, bitmap indexes can be realized as a

form of compression for non-unique non-clustered

indexes. Even master-detail clustering (e.g., purchase

orders and their line items) can be implemented relying

merely on the sort order of B-trees and appropriate

record formats. Finally, B-trees can be adapted to sup-

port ‘‘blobs’’ (binary large objects) for unstructured

data. XML documents and other semi-structured data

can be mapped to blobs plus traditional indexes for

efficient search.

In-Memory Data Structures

The most prominent in-memory data structures with-

in the storage layer are the lock manager’s hash table

and the buffer pool including buffers for the recovery

log. Other data structures enable transaction manage-

ment, checkpoints, device management, and asynchro-

nous I/O.

In addition to the direct images of on-disk pages in

the buffer pool, a storage layer may cache high-traffic

data in data structures designed for fast in-memory

access. Catalogs and bitmaps for free space manage-

ment are obvious candidates. In order to achieve ‘‘in-

memory performance’’ for user data and their indexes,

interior B-tree nodes can be augmented in the buffer

pool with in-memory pointers to child nodes also in

the buffer pool, in a special form of pointer swizzling.

In all cases, update propagation between cache and

disk page images in the buffer pool must be ensured.

Query and Update Processing

The storage layer serves query and update processing

but does not drive it. In addition to providing in-

memory access to needed database pages, the storage

layer speeds up query and update processing with

prefetch, read-ahead, shared scans, and write-behind.

The storage layer may also provide automatic main-

tenance of non-clustered indexes. This design only

applies to centralized systems or to parallel systems

with local indexes, i.e., partitions of indexes aligned
with the partitions of the table. This design forces

row-by-row maintenance, although index-by-index

maintenance can be required for correctness (certain

updates of unique indexes) or for performance (sorting

large sets of changes as appropriate for each index).

In very traditional designs, the storage layer may

provide the navigation from non-clustered index to

clustered index during query execution, but coupling

these accesses inhibits many beneficial techniques such

as covering a query with a non-clustered index alone,

sorting references obtained from a non-clustered

index, index intersection for conjunctive predicates

and index union for disjunctive predicates, joining

non-clustered indexes of the same table to cover a

query not covered by any one index, and joining

non-clustered indexes of two tables as a form of semi-

join reduction.

Concurrency Control

Concurrencycontrol is avery important serviceprovided

by the storage layer, both latching to protect in-memory-

data structures from conflicting threads and locks

to protect database contents from conflicting transac-

tions. Alternatives to locking (‘‘pessimistic concurrency

control’’) include validation (‘‘optimistic concurr-

ency control’’) and versioning (‘‘multi-version con-

currency control’’). Transactional memory may become

analternative to latching.

Locking and latching are described in detail

elsewhere.

Logging and Recovery

Logging and recovery are also very important services

provided by the storage layer, including transaction

rollback, crash recovery, and media reconstruction.

Since the units of recovery cannot be larger than the

units of concurrency control, a high-concurrency sys-

tem with key value locking or row-level locking cannot

rely on page-based recovery provided by, for example,

the file system or a network-attached storage service.

The storage layer may provide log-shipping or con-

tinuous log-based replication using a ‘‘hot stand-by’’

database copy perpetually in recovery.

Logging and recovery are described in detail

elsewhere.

Utilities

The broad term ‘‘utilities’’ covers all those operations

needed for a complete database management system

Storage Manager S 2811

S

product but not directly associated with query proces-

sing and transaction processing. Examples include

index creation and removal, defragmentation and

other forms of reorganization, moving and partition-

ing data, backup and restore, statistics creation and

update, consistency checks and repairs, etc. Catching

up on deferred maintenance can apply to materialized

views, indexes, statistics, caches, and replicas.

Utilities may be offline, online, i.e., permitting user

transactions to read and modify database data while

the utility is scanning or reorganizing them, or incre-

mental, i.e., the utility operation’s effects such as

index creation become useful to user transactions in

multiple discrete steps.

As many utility operation move data similar to a

query execution plan, and since similar services are

required such as memory management, partitioning

and pipelining for parallel execution, etc., many utili-

ties can be implemented using the query processing

component.

Key Applications
A storage manager is useful in many applications,

practically all applications that map collections of

records to pages on persistent storage. This includes

entertainment software such as music players, personal

productivity applications such as e-mail clients, and

server-side data management applications such as mail

servers and database management systems. A storage

manager that provides buffering and transactions for

both records and large fields (such as pictures, sound

tracks, videos, messages, and documents) is even more

widely useful.

Future Directions
While the basics of access methods, buffer pool man-

agement, concurrency control and recovery are all well

understood and documented, the need for further

development continues.

Queuing

Some database management systems have integrated

queuing into their feature set. It enables access patterns

typical for workflow applications, electronic mail, and

service-oriented architectures. Technical challenges in-

clude hotspots for both insertion and deletion as well

as transaction semantics that link data records into

messages and ‘‘conversations’’ among automatic pro-

cesses and human users.
XML Support

XML is not only a message format but also a storage

format, in particular for human-authored documents

and in service-oriented architectures based on message

passing. XML in databases creates challenges for storage,

compression, fine-grained concurrency control and re-

covery, consistency enforcement and verification, and

query processing. While initial research prototypes

and even commercial implementations exist, their opti-

mization and adaptation for large applications is not

yet complete.
Transactional Memory

Forthcoming many-core processors require, for perfor-

mance and power-efficiency, data structures and algo-

rithms that permit very high degrees of parallelism as

well as appropriate concurrency control among con-

current software threads. Transactional memory is a

promising approach to these issues. Hardware-assisted

transactional memory enables very fast execution of

critical sections as well as guaranteed success based

on automatic rollback and re-execution.
Self-Tuning, Self-Repair, Total Cost of Ownership

Perhaps the greatest challenge in the design and im-

plementation of a storage layer is the total cost of

ownership, i.e., the amount of human attention and

trouble-shooting required to ensure the desired levels of

availability, integrity, and performance. For example, can

the storage layer software prevent data loss unless a user

knowingly and deliberately accepts a risk? Such a storage

layer would have to require, during initial deployment,

that multiple storage devices with independent failures

be specified, among many other things. Similarly, could

the storage layer software assume all responsibility for

tuning the set of indexes, or could there be a standard

interface to other relevant components such as the rela-

tional layer within a relational database?

Cross-references
▶Autonomic Computing

▶B-Tree

▶B-Tree Locking

▶Buffer Pool

▶Concurrency Control and Recovery

▶ Indexing

▶ Self-Tuning Database Systems

▶Transaction

2812S Storage Network Architectures
Recommended Reading
1. CareyM.J., DeWitt D.J., FranklinM.J., Hall N.E.,McAuliffeM.L.,

Naughton J.F., Schuh D.T., Solomon M.H., Tan C.K., Tsatalos O.

G., White S.J., and Zwilling M.J. Shoring up persistent applica-

tions. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 23(2):383–394, 1994.

2. Chamberlin D.D., Astrahan M.M., Blasgen M.W., Gray J.,

King W.F., Lindsay B.G., Lorie R.A., Mehl J.W., Price T.G.,

Putzolu G.R., Selinger P.G., Schkolnick M., Slutz D.R.,

Traiger I.L., Wade B.W., and Yost R.A. A history and evaluation

of system R. Commun. ACM, 24(10):632–646, 1981.

3. Härder T. and Reuter A. Principles of transaction-oriented data-

base recovery. ACM Comput. Surv., 15(4):287–317, 1983.

4. Hellerstein J.M., Stonebraker M., and Hamilton J.R. Archi-

tecture of a database system. Found. Trends Databases,

1(2):141–259, 2007.

5. Stonebraker M. Retrospection on a database system. ACMTrans.

Database Syst., 5(2):225–240, 1980.
Storage Network Architectures

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Definition
Storage Network Architecture is the conceptual struc-

ture and logical organization of a network whose main

purpose is to transfer data between storage devices and

servers and among storage devices. The term Storage

Network is identified with such a network, but is

sometimes used to refer to a storage system communi-

cating over a network. Related terms such as Storage

Area Network and Network Attached Storage are

described in separate entries. Note that usages of

terms related to storage network architectures may

depend on contexts at times.

Historical Background
The first version of SCSI was released in 1986. SCSI

then became deployed in many open systems, thus

acquiring the position of the standard IO technology.

However, after Fibre Channel technology was invented

in the late 1990s, Fibre Channel rapidly extended its

use in the market. Recent mid-range and high-end

storage systems have deployed Fibre Channel as the

standard IO technology. Alternative storage network

technologies such as iSCSI may be available in entry-

level systems. The SCSI bus technology has been

replaced with Fibre Channel and iSCSI, but the SCSI
protocol is still effectively used on top of such new

network technologies.

Foundations
In conventional ITsystems, storage devices such as disk

drives, disk arrays, tape drives and tape libraries are

connected only to a single server. Such an IT system is

often referred to as a server-centric system, in which a

storage device is considered a dedicated peripheral

device of a server to which the storage device is

connected. Small Computer System Interface (SCSI)

is the main technology of network infrastructure used

in the server-centric system. Storage devices are

connected together to a server by SCSI bus cables and

provide block-level I/O services to the server using the

SCSI protocol. The scalability of such bus technologies

is rather limited. A single SCSI cable can be at most

25 m long, and allows a maximum of 15 storage

devices to be connected. Storage space which a single

server can accommodate is thus severely limited. A

server is not able to directly access storage devices

connected to another server. Instead the server has to

access such storage devices indirectly through a Local

Area Network (LAN). The inflexibility of interconnec-

tion thus scatters and duplicates data management

functions among multiple servers. Storage manage-

ment may be optimized within each server, but should

be far from global optimization of the entire system.

Such issues were not visible when expensive micropro-

cessors limited the system capability. However, recent

technology innovations have been decreasing the

cost of high-speed microprocessors and explosively

expanding the volume of managed digital data. The

system capability is then more likely to be limited by

the storage system, so the issues of the conventional

server-centric systems have become more obvious.

In contrast, the innovations of network technologies

have given new possibilities of directly transferring data

between storage devices and servers and among storage

devices. All servers connected to a storage network are

able to access all storage devices in the same network.

Such a flexible connection helps storage devices to be

consolidated in the network, thus isolating storage

resource management from the server. That is, stor-

age resources are placed and managed within a storage

network, and servers are then positioned around the

network. This type of IT system is often referred to as

a storage-centric system. Figure 1 illustrates a server-

centric system and a storage-centric system.

Storage Network Architectures. Figure 1. A server-centric IT system and a storage-centric IT system.

Storage Network Architectures S 2813

S

Storage networks have given system designers several

alternatives for linking storage devices and servers. Cur-

rently available interconnections can be grouped into

three architectures: Storage Area Network, Network At-

tached Storage and Direct Attached Storage. This cate-

gorization is widely accepted although it may not be

formal. Figure 2 presents an illustrative comparison

of these architectures. Separate entries give a formal

definition of each storage network architecture.

A Storage Area Network, which is often abbreviated

to SAN, is a network which mainly transfers data from/

to storage devices. A SAN is used to connect storage

devices with servers and with other storage devices.

A storage system which is implemented over a network

is sometimes referred to as a SAN too. A SAN provides

block-level I/O services. Most SANs are implemented

on top of Fibre Channel technology, although alter-

native technologies such as internet SCSI (iSCSI)

are available for SANs. A SAN which is implemented

on Fibre Channel technology is sometimes referred to as

Fibre Channel SAN.

Fibre Channel is a gigabit-level network technology,

which is mostly used for SANs at present. The Fibre

Channel protocol stack is divided into two parts.

The lower part defines fundamental network infra-

structure, which can be further subdivided into four

layers (FC-0–FC-3). FC-0 defines transmission media

such as optical/electrical interfaces, cables and con-

nectors. FC-1 specifies signal encoding and decoding

(8b/10b conversion and 40b ordered sets) and link

controls. FC-2 defines frame formats, frame transmis-

sion management (sequences and exchanges) and

flow controls. FC-3 defines common services such as

multipathing, On top of these fundamental layers, the
higher part (FC-4) defines protocol mappings to

application protocols. When Fibre Channel is used

for SANs, Fibre Channel Protocol for SCSI (FCP)

maps the Fibre Channel infrastructure to the SCSI

protocol. Fibre Channel is characterized by its power-

ful transmission capabilities such as serial transmis-

sion, low error rate and low latency. Processing of the

Fibre Channel protocol is usually implemented in

host bus adapter (HBA) cards at the hardware level

so as to relieve servers’ processors. These attributes

are preferable for SANs, however, they increase the

cost of Fibre Channel network devices. Fibre Channel

SANs are thus deployed mainly in mid-range and

larger IT systems. On the other hand, iSCSI is an

approach to exploit the IP network infrastructure so

that SANs can be installed and operated at much

lower cost. iSCSI, which is placed on the top of

the TCP/IP protocol stacks, encapsulates SCSI data in

TCP/IP packets. At present, iSCSI is used for connect-

ing servers and entry-level storage systems. Internet

Fibre Channel Protocol (iFCP) and Fibre Channel over

Internet Protocol (FCIP) are alternative approaches to

use TCP/IP technology for SANs. These protocols can

transmit Fibre Channel frames over IP networks. In

contrast to iSCSI, iFCP and FCIP are mainly used for

connecting remotely distant SAN islands. Note that

Fibre Channel and iSCSI are network technologies that

only replace the classical SCSI bus technology. The SCSI

protocol is still utilized on top of such network technol-

ogies even in today’s storage-centric systems.

Network Attached Storage is a storage device that is

connected to a network and provides file access ser-

vices. Network File System (NFS) and Common Inter-

net File System (CIFS) are two major protocols used

Storage Network Architectures. Figure 2. Three storage network architectures.

2814S Storage Network Architectures
for NAS networks. That is, NAS is used over IP net-

work technology.

The history of NAS can be traced back to file

sharing functions provided by operating systems. NFS

and CIFS were developed for sharing files between

servers in the conventional server-centric system.

A file server, which exports file access services to other

computers, is a type of implementation of a NAS

device. Recent NAS devices are comprised of dedicated

hardware and software because of the increasing

demand on reliability and performance. A diskless

NAS device, specifically a NAS device which has only

controllers but contains no disk drives, is sometimes

referred to as a NAS gateway or a NAS head. A NAS

gateway/head can provide NAS clients with file access

services to other storage devices that only export block-

level I/O services. That is, a NAS gateway/head could

be considered a service bridge between a SAN and a

NAS network. Since NAS systems are based on TCP/IP

technology, poor access performance is typically

observed in comparison with a SAN. However, NAS

systems have the strong benefit of exploiting existing IP

network resources. The cost effectiveness of NAS sys-

tems has expanded their use especially in the entry-

level markets.
The conventional storage system architecture, in

which storage devices are connected to a single server

via a SCSI bus cable, has been renamed to Direct

Attached Storage after new storage network architec-

tures such as SAN and NAS appeared. Direct Attached

Storage is often abbreviated to DAS.

Key Applications
The flexible interconnection provided by storage net-

works enables storage devices to communicate with

each other. In such a system, not necessarily all the

functions need to be executed on server processors.

Instead, executing some software codes on storage

devices may be more efficient. Actually, storage devel-

opers are accommodating different applications into

their storage devices. Below are described major stor-

age network applications.

LAN-free Backup: in the server-centric storage

architecture, a dedicated server connected to a LAN is

usually responsible for creating and managing backup

copies. The backup server reads data from other ser-

vers through the LAN and writes the data to the

archiving storage, such as disk arrays and tape libraries,

connected to the backup server. In contrast, the storage-

centric architecture enables all the servers to access all the

Storage Networking Industry Association S 2815

S

storage devices. The backup server can thus copy data

directly from the source storage devices to the archiving

storage device. Such LAN-free backup can be considered

an approach of moving the copy traffic from the LAN

toward the SAN.

Server-free Backup: server-free backup is a more

advanced solution, in which storage devices or network

devices connected in a storage network directly make a

backup copy. Thus, the storage network does manage

backup copies without any dedicated backup servers.

A copy functionwhich is incorporated in storage devices

and/or network devices is often referred to as third-

party copy.

Remote Replication: remote replication, which can

be seen as a type of server-free backup, keeps a fresh

backup copy in a remote data center. Communication

between a local data center and a remote data center

usually involves non-negligible latency. Two techniques

are used for remote replication. Synchronous remote

replication forwards a given write command to a re-

mote storage device and then commits the command

after the forwarded command is acknowledged by the

remote device. This strict mode can synchronize data

between the two storage devices all the time; no data

would be lost even if a severe disaster damages the local

storage device. However, high communication latency

between the devices is likely to affect the response time

of write commands, thus degrading application perfor-

mance. In contrast, asynchronous remote replication

commits a write command without waiting for the

command to be acknowledged by the remote device.

Inter-device communication latency would be invisi-

ble, but data coherence could not be guaranteed.

Data Sharing and Code Conversion: in a storage-

centric environments, a storage device is shared by

multiple servers. Sharing the data among multiple

servers is also a natural approach. However, presenta-

tion forms of data usually depend on microprocessor

architectures and operating systems. A file written by a

server to a storage device may not be directly inter-

preted by another server. In the conventional server-

centric system, the dedicated application running on

the server converts data formats and character codes

so that the application can interpret the data appropri-

ately. Such code conversion facilities are being imple-

mented in storage infrastructure. That is, when a server

tries to read data stored in a storage system, the storage

system converts and then exports the data to the server.

Code conversion functions implemented in storage
networks are deployed for downsizing from main-

frames towards open systems and for file sharing

between different types of machines.

SAN File system: a SAN file system is a file system

which exports services for accessing files stored in

storage devices connected to a SAN. A volume of a

SAN file system is often shared among multiple ser-

vers. Thus, concurrency control is a key technology for

a SAN file system. A SAN file system is deployed in

many high-performance clusters and also in several

high-end NAS systems.
Cross-references
▶Direct Attached Storage

▶ IP Storage

▶Network Attached Storage

▶ SAN File System

▶ Storage Area Network

▶ Storage Management

Recommended Reading
1. Benner A.F. Fibre channel for SANs. McGraw-Hill Professional,

2001.

2. Clark T. IP SANS: a guide to iSCSI, iFCP, and FCIP protocols for

storage area networks. Addison-Wesley Professional, Reading,

MA, 2001.

3. Clark T. Designing storage area networks: a practical reference

for implementing fibre channel and IP SANs. Addison-Wesley,

Reading, MA, 2003.

4. Robert W., Kembel R. W., and Cummings R. The fibre channel

consultant: a comprehensive introduction. Northwest Learning

Association, 1998.

5. Storage Network Industry Association. The Dictionary of Stor-

age Networking Terminology. Available at: http://www.snia.org/

6. Troppens U., Erkens R., and Müller W. Storage networks

explained. Wiley, London, 2004.
Storage Networking Industry
Association

HIROSHI YOSHIDA

Fujitsu Limited, Yokohama, Japan

Synonyms
SNIA

Definition
A non-profit trade association dedicated to the devel-

opment and promotion of standards, technologies,

2816S Storage of Large Scale Multidimensional Data
and educational services, to empower organizations in

the management of information.

Key Points
The SNIA works toward these goals by forming and

sponsoring technical work groups, producing a series

of conferences, building and maintaining a vendor

neutral technology center, and promoting activities

that expand the breadth and quality of the storage

and information management market. With seven re-

gional affiliates spanning the globe, SNIA represents

the voice of the storage industry on a worldwide scale.

Cross-references
▶ Storage Management

▶ Storage Management Initiative-Specification

Recommended Reading
1. Storage Network Industry Association, Storage Network Indus-

try Association, 2007. http://www.snia.org/
Storage of Large Scale
Multidimensional Data

BERND REINER
1, KARL HAHN

2

1Technical University of Munich, Munich, Germany
2BMWAG, Munich, Germany

Synonyms
Hierarchical storage management; HSM; Multidimen-

sional database management system; Raster data

management

Definition
An identified major bottleneck today is fast and effi-

cient access to and evaluation of high performance

computing results. This contribution addresses the

necessity of developing techniques for efficient retriev-

al of requested subsets of large datasets from mass

storage devices (e.g., magnetic tape). Furthermore,

the benefit of managing large spatio-temporal data

sets, e.g., generated by simulations of climate models

or physical experiments, with Data Base Management

Systems (DBMS) will be shown. Such DBMS must be

able to handle very large data sets stored on mass

storage devices. This means DBMS need a smart con-

nection to tertiary storage systems with optimized
access strategies. HEAVEN (Hierarchical Storage and

Archive Environment for Multidimensional Array Da-

tabase Management Systems) is specifically designed

and optimized for storing multidimensional array data

on tertiary storage media.

Historical Background
Large-scale scientific experiments or supercomputing

simulations often generate large amounts of multidi-

mensional data sets. Data volume may reach hundreds

of terabytes (up to petabytes). Typically, these data sets

are permanently stored as files in an archival mass stor-

age system, on up to thousands ofmagnetic tapes. Access

times and/or transfer times of these kinds of tertiary

storage devices, even if robotically controlled, are rela-

tively slow. Nevertheless, tertiary storage systems are

currently for the common state of the art storing such

large volumes of data, because magnetic tapes are much

cheaper than hard disk devices. This will also be the

future trend. Furthermore, tapes are a good example

for Green-IT. The generation of new data will increase

extremely, because of new satellites, sensors, parameters

etc. Consequently, scientists needmore andmore capac-

ity for storing these large amounts of data, and tapes are

well prepared for this task.

Concerning data access in the High Performance

Computing (HPC) area, the main disadvantages are

high access latency compared to hard disk devices and

to have no random access. A major bottleneck for

scientific applications is the missing possibility of

accessing specific subsets of data. If only a subset of

such a large data set is required, the whole file must be

transferred from tertiary storage media. Taking into

account the time required to load, search, read, rewind,

and unload several cartridges, it can take many hours

to retrieve a subset of interest from a large data set.

Entire files (data sets) must be loaded from the mag-

netic tape, even if only a subset of the file is needed for

further processing.

Furthermore, processing of data across a multitude

of data sets, for example, time slices, is hard to support.

Analysis of dimensions been contrary to storage pat-

terns and requires network transfer of each required

data set, implying a prohibitively immense amount of

data to be shipped. Another disadvantage is that access

to data sets is done on an inadequate semantic level.

Applications accessing HPC data have to deal with

directories, file names, and data formats instead of

accessing multidimensional data in terms of area of

Storage of Large Scale Multidimensional Data S 2817

S

interest and time interval. Examples of large-scale HPC

data are climate-modeling simulations, cosmological

experiments and atmospheric data transmitted by

satellites. Such natural phenomena can be modeled

as spatio-temporal array data of some specific dimen-

sionality. Their common characteristic is that a huge

amount of Multidimensional Discrete Data (MDD)

has to be stored. For overcoming the above mentioned

shortcomings, and for providing flexible data manage-

ment of spatio-temporal data, HEAVEN (Hierarchical

Storage and Archive Environment for Multidimen-

sional Array Database Management Systems) was

implemented [5].

Foundations
In order to implement smart management of large-

scale data sets held on tertiary storage systems, HEAV-

EN combines the advantages of efficient retrieval and

manipulation of data sets by using multidimensional

array DBMS, and storing big amounts of data sets on

tertiary storage media. This means the DBMS must be

extended with easy to use functionalities to automati-

cally store and retrieve data to/from tertiary storage

systems without user interaction. A description of

related work can be found in [5].

Such intelligent concepts are implemented within

the European funded project ESTEDI, and integrated

into the kernel of the multidimensional array DBMS

RasDaMan (Raster Data Management). RasDaMan

is designed for generic multidimensional array data

of arbitrary size and dimensionality. In this context,

generic means that functionality and architecture of

RasDaMan are not tied to particular application areas.

Figure 1 depicts the architecture of HEAVEN.

One can see the original RasDaMan architecture

with the RasDaMan client, RasDaMan server and the

underlying conventional DBMS (e.g., Oracle, which is

used as a storage and transaction manager). The addi-

tional components for the tertiary storage interface

are the Tertiary Storage Manager (TS-Manager), File

Storage Manager and Hierarchical Storage Manage-

ment System (HSM-System). The TS-Manager and

File Storage Manager are included in the RasDaMan

server. The HSM-System is a conventional product

like TSM/HSM (Tivoli Storage Manager) from IBM.

Such an HSM-System can be seen as a normal file

system with unlimited storage capacity. In reality, the

virtual file system of HSM-Systems is separated into a

limited cache on which the user works (load or store
his data), and a tertiary storage system with robot

controlled tape libraries. The HSM-System automati-

cally migrates or stages data to or from the tertiary

storage media, if necessary.

Efficient Storage of Large Multidimensional Data

For overcoming the major bottleneck, i.e., the missing

possibility of accessing specific subsets of data (MDD),

the tiling concept of the RasDaMan DBMS is intro-

duced. A MDD object consists of an array of cells of

some base type (e.g., integer, float or arbitrary complex

types), which are located on a regular multidimen-

sional grid. An often discussed approach is chunking

or tiling of large data [1,8,2]. Basically, chunking means

the subdividing of multidimensional arrays into dis-

joint sub-arrays. Tiling is more general than chunking,

because sub-arrays don’t have to be aligned or have

the same size. In RasDaMan, MDD can be subdivided

into regular or arbitrary tiles. Consequently one MDD

object is a set of multidimensional tiles. In RasDaMan,

every tile is stored as one single Binary Large Object

(BLOB) in the underlying relational DBMS. This makes

it possible to transfer only a subset of large MDD from

the DBMS (or tertiary storage media) to client applica-

tions, because access granularity is one singe tile. Also,

the problem of inefficient access to data sets stored

according to their generation process order is not any

longer relevant with the tiling strategy of RasDaMan.

This will mainly reduce access time and network traffic.

The query response time scales with the size of the

query box, not any longer with the size of MDD.

Data Export to Tertiary Storage Media

The export of data sets to tertiary storage media is

two-tiered. The first step is the migration of the data

sets from RasDaMan to the cache area (RAID-System)

of the HSM-System. Transferring data sets from the

hard disk of the underlying DBMS of RasDaMan to a

RAID-System is very fast. Within a second step the

migration from the cache area of the HSM-System to

the tertiary storage media takes place. This process is

performed by the HSM-System, and does not concern

the RasDaMan system regarding I/O workload. During

this process RasDaMan can execute another export

process or user request in parallel.

Data Retrieval

RasDaMan provides an algebraic query language

RasQL, which extends SQL with powerful

2818S Storage of Large Scale Multidimensional Data
multidimensional operators like geometric, induced

and aggregation operators. The primary benefit of

such a complex query language is the minimization

of data transfer between database server and client.

Areas of interest can be specified with geometric opera-

tors, and complex calculations can be executed on the

server side. Only the result is transferred to the client

instead of the entire object [6,7]. With this feature,

RasDaMan, overcomes the mentioned shortcoming

of processing data across a multitude of data sets,

because RasDaMan transfers only a minimum of data

to the client. Furthermore, the query language RasQL

provides data access on an adequate semantic level.

Users can formulate queries such as: ‘‘average temper-

ature on the earth surface of altitude y in the area of

latitude x and longitude z.’’

With respect to data accessibility, three well-

defined areas can be differentiated, i.e., online, nearline

and offline area (Fig. 1). Data sets stored online means

that data sets are stored on hard disk and, therefore,

access time is very fast. Data sets stored on magnetic

tape and stored in robot controlled libraries are called

nearline data. Access time is much higher than with

online access, but the process of data retrieval is done
Storage of Large Scale Multidimensional Data. Figure 1. E

connection.
automatically. If data sets are stored in the offline area,

user interaction is necessary for retrieving data sets

(tapes are not robot controlled).

The new RasDaMan tertiary storage functionality

is based on the TS-Manager module. If a query is

executed, the TS-Manager knows (by metadata) wheth-

er the needed data sets are stored on hard disk (online

area, DBMS or HSM-Cache) or on tertiary storage

media. If the data sets are held on hard disk, the

query will be processed very fast. If the data sets

are stored on one or more tertiary storage media, the

data sets must be imported into the database system

(cache area for tertiary storage data) first. The import

of data sets stored on tertiary storage media is done

by the TS-Manager automatically whenever a query

is executed and those data sets are requested. After

the import process of the data sets is done, RasDaMan

can handle the data sets in the normal way. The

complexity of the RasDaMan storage hierarchy is

completely hidden from the user.

Techniques for Reducing Tertiary Storage Access Time

The access time for tape systems is by order of mag-

nitude slower than for hard disk devices. It is
xtended RasDaMan architecture with tertiary storage

Storage of Large Scale Multidimensional Data S 2819
important to use data management techniques for the

efficient retrieval of arbitrary areas of interest from

large data sets stored on tertiary storage devices.

Hence, techniques that partition data sets into clusters

based on optimized data access patterns and storage

device characteristics, has to be developed. Therefore,

methods for reducing tertiary storage access time,

i.e., Super-Tile concept, data clustering and data cach-

ing are presented [5,6].

Super-Tile Concept In RasDaMan, DBMS tiles

(BLOBs) are the smallest unit of data access. Typical

sizes of tiles stored in RasDaMan range from 64 KB to

1 MB and are optimized for hard disk access [2]. Those

tile sizes are much too small for data sets held on

tertiary storage media. It is necessary to choose differ-

ent granularities for hard disks and tape access because

they differ significantly in their access characteristics.

Hard disks have fast random access, whereas tape

systems have sequential access with much higher

access latency. The average access time for tape systems

(20–180 s) is by order of magnitude slower than for

hard disk drives (5–12 ms), whereas the difference

between transfer rate is not significant [5,10]. For

this reason, HEAVEN exploits the good transfer rate

of tertiary storage systems, preserving the advantages

of the tiling concept. The main goal is to minimize the

number of media load and search operations.

It is unreasonable to increase the RasDaMan MDD

tile size, because then RasDaMan would loose the
Storage of Large Scale Multidimensional Data. Figure 2. L

granularity. Right: Example R+ tree index of one MDD with Su
advantage of reducing transfer volumes when accessing

data on HDD. The solution is to introduce an addi-

tional data granularity as provided by the so-called

Super-Tile. The main goal of the new Super-Tile algo-

rithm is a smart combination of several small MDD

tiles to one Super-Tile to minimize tertiary storage

access costs. ‘‘Smart’’ means to exploit the good trans-

fer rate of tertiary storage devices and to preserve

advantages of other concepts like data clustering. The

left side of Fig. 2 visualizes one three dimensional

MDD with Super-Tile and tile granularity. An algo-

rithm for computing Super-Tiles was developed which

combines tiles of spatial neighborhood within the mul-

tidimensional object. For the realization, HEAVEN

utilizes information of the RasDaMan R+ tree index

[3,5].

The creation of the multidimensional index and

the index access is no performance issue compared to

data retrieval and data processing. Also, the primary

criticism of the R-tree, that performance problems for

very many dimensions occur, is not relevant for the

application field. The used scientific data from various

scientific fields (e.g., climat-modeling simulations,

cosmological experiments, atmospheric data, earth ob-

servation, computational fluid dynamics) does not

have more than five dimensions. Therefore, the inte-

gration of advanced multidimensional index methods,

e.g., the bitmap index for scientific data proposed by

Rishi Sinha and Marianne Winslet [9] or the UB tree

proposed by Rudolf Bayer [4], was not considered.
eft: Visualization of one MDD with Super-Tile and Tile

per-Tile nodes.

S

2820S Storage of Large Scale Multidimensional Data
The conventional R+ tree index structure of the

multidimensional DBMS was extended to handle

such Super-Tiles stored on tertiary storage media.

This means that information (whether tiles are stored

on hard disk or on tertiary storage media) must be

integrated into the index. Tiles of the same sub index of

the R+ tree are combined into a Super-Tile and stored

within a single file on tertiary storage medium (see

right side of Fig. 2). Super-Tile nodes can exist

on arbitrary levels of the R+ tree. Super-Tiles are the

access (import/export) granularity of MDD on tertiary

storage media, which preserve the advantages of

the RasDaMan tiling concept (load minimum data)

and exploit the good transfer rates of tertiary storage

devices. More details about determining optimal

file sizes on tertiary storage media can be found in [5].

Clustering Clustering is particularly important for

tertiary storage systems where positioning time of the

device is very high. The main goal is to minimize the

number of search and media load operations and to

reduce the access time of clusters read from tertiary

storage system when subsets are needed. Clustering

exploits the spatial neighborhood of tiles within data

sets. Clustering of tiles according to spatial neighbor-

hood on one disk or tertiary storage system, proceed

one step further in the preservation of spatial proximi-

ty, which is important for the typical access patterns of

array data, because users often request data using range

queries, which implies spatial neighborhood.

The R+ tree index used to address tiles already

defines the clustering of the stored MDD. With the

developed Super-Tile concept intra Super-Tile cluster-

ing and inter Super-Tile clustering can be distin-

guished. The implemented algorithm for computing

Super-Tiles maintains the predefined clustering of sub

trees (of Super-Tile nodes) of the R+ tree index and

achieves intra Super-Tile clustering (left side of Fig. 2).

The export algorithm (export of Super-Tiles to tertiary

storage) implements the inter Super-Tile clustering

within one MDD. Super-Tiles of one MDD are written

to tertiary storage media in the clustered order (pre-

defined R+ tree clustering).

Caching In order to reduce expensive tertiary storage

media access, the underlying DBMS of RasDaMan is

used as a hard disk cache for data sets held on tertiary

storage media. The general goal of caching tertiary stor-

age data (Super-Tile granularity) is to minimize
expensive loading, rewinding and reading operations

from slower storage levels (e.g., magnetic tape). In the

tertiary storage version of RasDaMan, requested data

sets held on tertiary storage media are migrated to the

underlying DBMS of RasDaMan (Fig. 1). The migrated

Super-Tiles are now cached in the DBMS. After the

migration, the RasDaMan server transfers only

requested tiles from the DBMS to the client

application.

The tertiary storage Cache-Manager evicts data

(Super-Tile granularity) from the DBMS cache area

only if necessary, i.e., the upper limit of cache size is

reached. A special H-LRU (HEAVEN Least Recently

Used) algorithm was developed, and together with the

caching component of the HSM-System a caching

hierarchy (Fig. 1) was built.

Conclusion

The main goal was the realization of optimized man-

agement of large-scale data sets stored on tertiary

storage systems combined with access functionality

like retrieval of subsets. Therefore, a multidimensional

array DBMS for optimized storage, retrieval and ma-

nipulation of large multidimensional data was intro-

duced. In order to handle hundreds of petabytes stored

on tertiary storage media, an interface was presented

connecting tertiary storage systems to the multidimen-

sional array DBMS RasDaMan. The Hierarchical Stor-

age and Archive Environment for Multidimensional

Array Database Management Systems (HEAVEN) is

specifically designed and optimized for storing multi-

dimensional array data on tertiary storage media. For

this reason, the query response time scales with the size

of the query box and not with the size of the multidi-

mensional data. This will dramatically reduce access

time compared with the traditional access case.

Key Applications
HEAVEN is specifically designed for storing large-scale

multidimensional array data (hundreds of terabytes)

on tertiary storage media, and is optimized toward

HPC. Addressed HPC areas are for example climate-

modeling simulations, cosmological experiments and,

atmospheric data transmitted by satellites.

Cross-references
▶Archiving Experimental Data

▶Clustering

▶Data Partitioning

Storage Power Management S 2821

S

▶Database Management System

▶Disk

▶Query Language

▶Raster Data Management and Multi-Dimensional

Arrays

▶Rtree

▶ Storage Management

Recommended Reading
1. Chen L.T., Drach R., Keating M., Louis S., Rotem D.,

and Shoshani A. Efficient organization and access of multi-

dimensional datasets on tertiary storage. Inf. Syst., 20(2), 1995.

2. Furtado P.A. Storage Management of Multidimensional

Arrays in Database Management Systems, PhD Thesis,

Technische Universität München, 1999.

3. Gaede V. and Günther O. Multidimensional access methods.

ACM Comput. Surv., 30(2):170–231, 1998.

4. Ramsak F., Markl V., Fenk R., Zirkel M., Elhardt K., and Bayer R.

Integrating the UB-Tree into a Database System Kernel. In Proc.

26th Int. Conf. on Very Large Data Bases, 2000, pp. 263–272.

5. Reiner B. HEAVEN – A Hierarchical Storage and Archive Envi-

ronment for Multidimensional Array Database Management

Systems, PhD Thesis, Technische Universität München, 2005.

6. Reiner B., Hahn K., Höfling G., and Baumann P. Hierarchical

Storage Support and Management for Large-Scale Multi-

dimensional Array Database Management Systems. In Proc.

13th Int. Conf. Database and Expert Syst. Appl., 2002, pp.

689–700.

7. Ritsch R. Optimization and Evaluation of Array Queries

in Database Management Systems, PhD Thesis, Technische

Universität München, 1999.

8. Sarawagi S. and Stonebraker M. Efficient organization of large

multidimensional arrays. In Proc. 10th Int. Conf. on Data Engi-

neering. 1994, pp. 328–336.

9. Sinha R.R. and Winslett M. Multi-resolution bitmap indexes for

scientific data. ACM Trans. Database Syst., 32(3):2007.

10. Yu J. and DeWitt D. Processing satellite images on tertiary

storage: a study of the impact of tile size on performance. In

Proc. 5th NASA Goddard Conf. on Mass Storage Systems and

Technologies, 1996.
Storage Power Management

KAZUO GODA

The University of Tokyo, Tokyo, Japan

Definition
Storage Power Management is a process of improving

the efficiency of electric power consumption of all the

concerned storage resources including storage devices,

storage controllers and storage network devices. Stor-

age Power Management may sometimes cover related
equipment such as power supplies and cooling appa-

ratuses. The definition of ‘‘the efficiency’’ may depend

on the situation; system designers and administrators

often need to balance electric power reduction against

performance degradation.

Historical Background
Electric power consumption of storage devices was

discussed mainly with regard to battery-operated com-

puting environments such as laptop PCs. However,

due to the rapid growth of power consumption in

data centers and the increased interest in environmen-

tal issues, much attention has recently been paid to

electric power consumption of enterprise-level storage

systems. Energy efficiency is recognized as a new direc-

tion for research and development of storage systems.

Foundations
Hard disk drives are main components of modern

storage systems. In the disk drive, a spindle motor,

which rotates metal platters at high speed, consumes

most of the electric power. Gurumurthi et al. [3] report

that the spindle motor can account for 81% of the

power consumed by the disk. For a given disk drive,

the power consumption of its spindle motor P theo-

retically relates to the angular velocity o as

P ¼ K 2
e o

2

R

where Ke is a motor voltage constant and R is a

motor resistance constant. In reality, since the spindle

motor rotates the platters against air drag, the angular

velocity o may has a cubic or greater effect on the

power consumption P. Disk drive manufacturers have

increased the rotational speed to decrease the access

latency and improve the transfer rate. Disk array devel-

opers have been accommodating a number of such

high-speed disk drives into a single disk array enclo-

sure. Thus, greater electric power consumption is often

seen in enterprise-level storage systems.

Many commercial disk drives have a ‘‘stand-by’’

mode. While a disk drive is in the stand-by mode, its

head is unloaded from the platters to the ramp and its

spindle motor is completely suspended. The disk drive

consumes much less electric energy in the stand-by

mode than in the active (currently processing read/

write requests) and idle (being able to start processing

read/write requests immediately) modes. However,

the transition to/from the stand-by mode involves

2822S Storage Power Management
non-negligible overhead of time and electric energy.

Especially, spinning up a spindle motor to regular

speed takes several to tens of seconds and consumes

tens to hundreds of joules. Such a significant overhead

associated with low-power modes is rarely seen in

other computer components including processors

and memory. Several commercial disk drives may

have different low-power modes other than the

stand-by mode. For example, a disk drive in a ‘‘low-

rpm’’ mode may keep rotating the platters at lower

speed with its head unloaded, accordingly consuming

more power but involving less overhead.

The minimum time that the disk needs to be idle

for the power saving achieved to exceed the control

energy overhead is called ‘‘break-even time.’’ The

break-even time is a specific parameter of a disk

drive. Assuming that the system could perfectly predict

accesses that would be issued to a disk drive in the

future, the system could spin down the disk drive after

the disk becomes idle only if the idle period will be

longer than its break-even time. In turn, the system

could also spin up the drive in advance before new disk

accesses are issued. This ‘‘oracle power management’’

gives the maximum possible energy saving for a given

series of disk accesses. However, predicting the future

disk accesses perfectly is impossible in reality. Alterna-

tive solutions have been studied so far.

Typical techniques of disk power management are

based on idleness threshold. The simplest strategy is to

spin down a disk drive to a low-power mode after a

predetermined time has elapsed since the last disk

access. This is based on the heuristic prediction that a

disk drive is likely to continue to be idle if it has been

idle for a long period. This traditional strategy is

deployed in many commercial low-end disk drives,

since it works effectively in end-user computing envir-

onments where the workload is dominated by interac-

tive applications and users can accept reasonable

spinning-up latency. More sophisticated techniques

that try to tune the idleness threshold adaptively have

been also investigated.

Dynamic Rotations Per Minute (DRPM) [3] is an

attempt to exploit innovative disk drives that have the

capability of dynamically changing the rotational speeds.

Instead of completely spinning down the disk drive, this

idea controls the rotational speeds adaptively by observ-

ing disk access performance. DRPM is helpful to balance

between power and performance tradeoffs more flexibly

compared with the conventional low-power modes.
Gurumurthi et al. [3] validated potential benefits of

DRPM techniques on a simulator. At present, disk drives

that can change their rotational speeds are not commer-

cially available but merely reported in papers.

In enterprise systems, a number of individual disk

drives are incorporated into a disk array and managed

by the array controller. Data layout among the disk

drives is a key to power management of such systems.

A disk array which has the capability of spinning down

member disk drives is called Massive Array of Idle

Disks (MAID). The original paper [2] of MAID inves-

tigated the caching strategy. Suppose that member disk

drives of a given disk array can be divided to a small

number of active disk drives and a large number of

passive disk drives, and all the blocks that are exported

to the server are originally located in the passive disk

drives. By replicating hot blocks that are frequently

accessed onto the active disks, the array can achieve

long idle periods for the passive disks so that they may

be spun down. Another paper [1] studied a block

migration strategy called Popular Data Concentration

(PDC), which clusters hot blocks onto particular disk

drives in order to spin down the other drives.

This entry focuses on electric power consumption

of disk drives, which are main components of modern

storage systems. Other components such as RAID con-

trollers and power supplies and other types of storage

devices such as optical discs, electromagnetic tapes and

solid-state memory should be more carefully studied

in the future.

Key Applications
The rapid growth of electric power consumption has

stimulated the economic demand of energy saving

technologies. In addition, a variety of government-

level restrictions and business-level standards are

being considered to resolve or mitigate environmental

issues. Much more attention is likely to be paid to

Storage Power Management in the future.

Cross-references
▶Deduplication

▶Disk Power Saving

▶Massive Array of Idle Disks

Recommended Reading
1. Carrera E.V., Pinheiro E., and Bianchini R. Conserving disk

energy in network servers. In Proc. 17th Annual Int. Conf. on

Supercomputing, 2003, pp. 86–97.

Storage Protection S 2823
2. Colarelli D. and Grunwald D. Massive arrays of idle disks for

storage archives. In Proc. 16th Annual Int. Conf. on Supercom-

puting, 2002, pp. 1–11.

3. Gurumurthi S., Sivasubramaniam A., Kandemir M., and

Hubertus F. Reducing disk power consumption in servers with

DRPM. IEEE Comput 36(12):59–66, 2003.

4. Hitachi Global Storage Technologies, Inc. Quietly Cool. White

Paper, 2004.

5. Lu Y.-H. and Micheli G.D. Comparing System-Level Power

Management Policies. IEEE Design Test Comput, 8(2):10–19,

2001.
S

Storage Protection

KENICHI WADA

Hitachi Limited, Tokyo, Japan

Synonyms
Data protection

Definition
Storage protection is a kind of data protection for

data stored in a storage system. The stored data

can be lost or becomes inaccessible due to, mainly, a

failure in storage component hardware (such as a hard

disk drive or controller), a disastrous event, an opera-

tor’s mistake, or intentional alteration or erasure of

the data.

Storage protection provides the underlying foun-

dation for high availability and disaster recovery.

Historical Background
In 1956, IBM shipped the first commercial storage that

had a hard disk drive. To protect data from bit errors

on disk platters, the hard disk drive commonly uses

cyclic redundancy check (CRC) and an error-correct-

ing code (ECC).

CRC and ECC cannot protect data from a whole

disk failure in which an entire disk becomes inaccessi-

ble (for example, because of a disk head crash). The

IBM 3990, which was shipped in the 1980s, had

the replication functionality in which two identical

copies of data were maintained on separate media.

This approach protected data from this kind of failure.

Replication functionality can be implemented in many

other layers of the computer system. Most DBMS sup-

port database replication. Some file systems and Logical

Volume Managers have file or volume replication func-

tionality. Further, many storage systems and storage
virtualization appliances support volume replication

functionality.

RAID (Redundant Array of Inexpensive Disks) is

another technology for protecting data from whole

disk failure. D. Patterson et al. published a paper

‘‘A Case for Redundant Arrays of Inexpensive Disks

(RAID)’’ in June 1988 at the SIGMOD conference

[6]. This paper introduced a five level data protection

scheme. The term RAID was adopted from this paper,

but currently RAID is an acronym for Redundant

Arrays of Independent Disks. It is noted that the

patent covering RAID level 5 technology was issued

in 1978 [5].

RAID level 1 is a kind of replication. RAID level

2 to 5 can reduce the capacity required to protect data

against disk drive failure than replication, but it is

limited to protect disk drive failure. Replication, on

the other hand, can be used to protect databases, file

systems and logical volume. Further replication can be

used for disaster recovery, if data are replicated

remotely.

Foundations
Hard disk drives commonly use Reed-Solomon code

[7] to correct bit errors. Data in hard disk drives is

usually stored in fixed length blocks. Controllers in

hard disk drives calculate ECC for each block and

record it associated with the original data. When data

are read, the controller checks data integrity using

ECC. CRC can be used with ECC for detecting bit

errors and/or reducing the possibility of correction

error.

Most DBMS support database replication with

master/slave relation between the original and the rep-

lica. The master process updates and transfer it to the

slave. This type of replication can provide high avail-

ability to the client of the DBMS in case of storage

system failures as well as server failures. Another type

of database replication is multi-master, which is mostly

used to provide high performance parallel processing.

Both types can be either synchronous or asynchronous

replication. In synchronous replication, updates made

in original are guaranteed in the replica, note there may

be some delay in asynchronous replication.

Volume replication by storage system is also widely

accepted as data protection. There are synchronous

and asynchronous replications, the same as database

replication. Asynchronous volume replication is often

used for long distance remote replication. It may

2824S Storage Protocols
prevent performance degradation caused by replica-

tion delay, but could cause some data loss in case of

recovery. Synchronous replication, on the other hand,

may provide no data loss recovery, but may cause

performance degradation due to replication delay. Vol-

ume replication is also used within a local datacenter

for online backup. Backup servers use replica volume

for backup during original volume is online. To sup-

port this, a storage system can pause update delegation

from original to replica volume.

RAID (Redundant Array of Independent Disks) is a

set of disks from one or more commonly accessible

disk subsystems, combined with a body of control

software, in which part of the physical storage capacity

is used to store redundant information about user data

stored on the reminder of the storage capacity. The

term RAID refers to a group of storage schemes that

divide and replicate data among multiple disks, to

enhance the availability of data at desired cost and

performance levels. A number of standard schemes

have evolved which are referred to as levels. Originally,

five RAID levels were introduced [6], but many more

variations have evolved. Currently, there are several

sublevels as well as many non-standard levels. There

are trade-offs among RAID levels in terms of perfor-

mance, cost and reliability.
Key Applications
Storage protection is essential to achieve business

continuity and legal compliance with adequate per-

formance, cost, and reliability.
Cross-references
▶Backup and Restore

▶Checksum and Cyclic Redundancy Check Mecha-

nism

▶Continuous Data Protection

▶Disaster Recovery

▶ Logical Volume Manager

▶ Point-in-Time Copy

▶Redundant Arrays of Independent Disks

▶Replication

▶Write Once Read Many

Recommended Reading
1. ANSI. NFPA1600 Standard on Disaster/Emergency Manage-

ment and Business Continuity Programs.

2. BSI. BS25999; Business Continuity Management.
3. Houghton A. Error Coding for Engineers. Kluwer Academic

Publications, Hingham, MA, 2001.

4. Keeton K., Santos C., Beyer D., Chase J., and Wilkes J. Designing

for disasters. In Proc. 3rd USENIX Conf. on File and Storage

Technologies, 2004.

5. Ouchi N.K. System for recovering data stored in failed memory

unit. US Patent 4,092,732, 1978.

6. Patterson D., Gibson G., and Katz R. A case for redundant arrays

of inexpensive disks (RAID). In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1988.

7. Sweeney P. Error Control Coding From Theory to Practice.

Wiley, New York, 2002.

8. http://www.sec.gov/
Storage Protocols

KALADHAR VORUGANTI

Network Appliance, Sunnyvale, CA, USA

Synonyms
iSCSI; FCP; Parallel SCSI; SAS; ATA; SATA; NFS; CIFS;

Samba

Definition
The emergence of networked storage has allowed orga-

nizations to de-couple their server and storage pur-

chasing decisions. Thus, multiple application/database

servers can share storage on the same network attached

storage (NAS) server, or on a block storage controller

via a storage area network protocol (SAN). This is

unlike direct attached storage systems (DAS) where

disks are connected to an application to a database

server. In DAS environments, even if one only needs

to add more storage, one has to also add more servers.

Various types of storage networking protocols have

emerged to support both NAS and SAN systems. Cur-

rently, the same storage boxes can support both

distributed file (NAS) protocols such as NFS and

CIFS, and block storage (SAN) protocols such as

iSCSI and FCP (fiber channel). Most of the direct

attached storage systems are moving from supporting

parallel SCSI protocol to supporting serial ATA (SATA)

or serial SCSI (SAS) protocols. The focus of this sec-

tion is to set the context with respect to when they are

used, and to compare the advantages and disadvan-

tages of these different protocols.

Historical Background
Historically the fields of storage and networking were

two separate fields. With the advent of network

Storage Protocols S 2825
attached storage the fields of storage and networking

have now converged. Many of the existing networking

protocols are now also used to carry storage payload

from storage devices to the application servers.
Foundations

� SAN Protocol Analysis: SAN protocols transfer SCSI

commands and data over a transport protocol.

SAN protocol is between SCSI initiators and SCSI

targets. The initiators typically reside on the host

(application server), and the targets reside on a

storage controller box. The SCSI initiator can be

software based or it can reside in a host bus adapter

card. In the SAN protocol space the comparison is

primarily between Fiber Channel and iSCSI. Previ-

ously, IBM’s SSA protocol competed with Fiber

Channel, but has been discontinued as it was not

universally adopted by all the storage controller

vendors.
� iSCSI: iSCSI protocol transfers SCSI blocks and

commands over TCP/IP networks. iSCSI proto-

col allows organizations to leverage their IP net-

works to transfer block storage data. Until the

emergence of gigabit Ethernet networks, trans-

fer of block storage data over Ethernet/TCP/IP

stack proved to be not viable due to perfor-

mance problems. Hardware TCP/IP off-load

cards as well as multi-core CPU servers have

alleviated the TCP/IP processing overhead.

Software TCP/IP optimizations such as inter-

rupt coalescing, and zero-copy optimizations

have also reduced the CPU processing over-

head. iSCSI based SANs have the following ben-

efits over Fiber Channel based SANs:
 S
� Interoperability: Until recently, Fiber Channel

devices from different vendors did not always

interoperate with each other. Device interop-

erability certification is a much more elabo-

rate and expensive process in the fiber

channel world in comparison to the IP world.

� Distance: IP networks have been designed to

operate across large geographic distances.

Fiber Channel networks have distance lim-

itations and one typically needs channel

extenders to extend their range.

� Cost: An organization can leverage their IP

network management expertise and devices

for also transferring their storage traffic.
� Security: The security protocols for IP net-

works have been well developed. Since Fiber

Channel networks have been typically used

behind fire-walls, the security aspects are

being still developed.
� FCP (Fiber Channel): Sending SCSI block com-

mands and data over the Fiber Channel proto-

col is known as FCP. Fiber Channel protocol

stack consists of physical, data link, network,

and transport layer protocol specification.

Fiber Channel protocol has the following bene-

fits in comparison to TCP/IP stack:
� Performance: Fiber Channel provides better

performance than TCP/IP stack due to the

following reasons:
� Hardware Offload: The performance of

first generation iSCSI HBAs was inferior

to Fiber Channel HBAs. However, per-

formance gap is being reduced in the

newer generation iSCSI offload cards.

The iSER and iWARP standards are

trying to commoditize the RDMA

standard for IP networks in order to

bring down the cost of iSCSI offload

cards. That is, these cards will be

useful for additional protocols (not just

iSCSI).

� Reservation Based Protocol: Fiber Chan-

nel is a reservation based protocol in-

stead of a retry based protocol. Thus,

frames are not lost in Fiber Channel.

The slow-start congestion control mech-

anism in TCP/IP is ill-suited for gigabit

speed networks.
Currently, Fiber Channel protocol is the most com-

monly used SAN protocol in data centers.

� Parallel versus Serial Protocols Analysis: Parallel

SCSI and ATA are two parallel protocols who have

distance and device connectivity limitations. It is

important to distinguish between the parallel SCSI

transport protocol, and the SCSI block protocol

which transfers data on top of the transport proto-

col. The physical wires for these parallel protocols

are also quite wide and they make wiring a cum-

bersome process. Serial ATA (SATA), and Serial

SCSI (SAS) have overcome the stringent distance

and connectivity limitations of parallel SCSI and

ATA transport mechanisms.

2826S Storage Protocols
� SCSI versus ATA Command Set Analysis: The SCSI

block protocol is transported over Fiber Channel

(FCP), TCP/IP (iSCSI), and parallel SCSI, and se-

rial SCSI (SAS) transport layers. The IDE/ATA pro-

tocol is transported over ATA and Serial ATA

(SATA) transport mechanisms. It is important not

to mix the block protocol with the underlying

transport protocol. SCSI block and ATA block pro-

tocols have the following key differences:
� Command Queuing at the Device: Previously

SCSI protocol allowed for the queuing of mul-

tiple commands at the SCSI device, whereas,

ATA protocol did not have this functionality.

Recently, tagged command queuing functional-

ity has been added to ATA protocol. Tagged

command queuing also allows the device to

optimize the order in which the queued com-

mands are executed.

� Number of Connected Devices: ATA protocol

supported fewer devices per channel than the

SCSI protocol. However, this limitation has

been reduced in the serial ATA protocol with

the emergence of port multipliers. Thus, 15

devices can be simultaneously supported using

SATA.

� Checksums: ATA protocol did not initially con-

tain support for checksums on command and

data. Later versions of the protocol have added

checksum support for data.

� Hot-Plug of Devices: ATA does not provide sup-

port for hot replacement of devices. Serial ATA

has rectified this deficiency.

� Bus Mastering: Previous versions ATA protocol

did not allow to DMA data directly from the

device into memory. However, recent versions

of the protocol have overcome this limitation.
� Block versus File-Based NAS Protocols: NAS proto-

cols provide a file level abstraction to the client

applications, whereas SAN protocols provide a

block level abstraction. NAS protocols allow for

multiple hosts to share a file system namespace,

whereas, SAN protocols allow multiple hosts to

share a block level (SCSI device and LUN level)

namespace. Previously, Fiber Channel based SANs

provided better performance than IP based NAS

protocols due to the implementation differences

between the IP and Fiber Channel transport proto-

col stacks. However, this difference is disappearing
due to the arrival of TCP/IP stack offload cards.

In the past, NAS systems were not as scalable as

SAN systems due to the absence of clustered NAS

solutions but with the advent of clustered NAS solu-

tions, this limitation has been also overcome.

� NAS Protocol Analysis: NFS and CIFS are the two

primary NAS protocols. NAS protocols are between

NAS clients that reside on the application/database

server, and a NAS server that typically is a separate

box that contains a file system and manages disks.

NAS clients provide a file system interface to the

host applications. NFS is used primarily in the

Unix/Linux environment and it is an IETF stan-

dard, whereas, CIFS is used primarily in the Win-

dows OS environment and its management/

administrative APIs are proprietary (controlled by

Microsoft). Samba is a popular protocol bundle

that implements many different CIFS related pro-

tocols. A Samba server can act as an open-sourced

CIFS server on Unix systems that makes Unix direc-

tories appear as Windows folders to Windows cli-

ents. With the emergence of NFSv4, many of the

NFS deficiencies with respect to recovery manage-

ment, caching, and security have been overcome

and makes NFS a competitive protocol. NFSv4

has consolidated numerous protocols such as nfs,

nlm, mountd, and nsm. NFSv4 is a stateful proto-

col, and it introduces the concept of delegation to

allow for aggressive data caching at the clients [2].

Key Applications
SANs have been typically used by applications that

want block level access to storage and are performance

conscious. NAS solutions have been typically used by

users who are more cost conscious and want to lever-

age their existing IP infra-structure and IP network

management experience. In SANs, Fiber Channel and

iSCSI protocols are typically used to connect applica-

tion servers to the storage controller boxes. Fiber

Channel, SATA and SAS protocols are typically used

to connect the storage controller processor/cache com-

plex to its backend arrays/disks. In DAS environments,

the server is connected to its backend storage using

Parallel SCSI, ATA, SATA or SAS. In NAS environ-

ments, NFS/CIFS are used to connect the application

servers to the NAS server, and SATA, Fiber Channel or

SAS is used to connect the NAS processor complex to

the back-end disk arrays.

Storage Security S 2827
Cross-references
▶Direct Attached Storage

▶Network Attached Storage

▶ SAN File System

▶ Storage Area Network

Recommended Reading
1. Kaladhar V. and Prasenjit S. An analysis of three gigabit net-

working protocols for storage area networks. In Proc. 20th IEEE

Int. Performance, Computing and Communications Conf.,

2001.

2. Peter R., Li Y., Pawan G., Prasenjit S., and Prashant S. A perfor-

mance comparison of NFS and iSCSI for IP-networked storage.

In Proc. 3rd USENIX Conf. on File and Storage Technologies,

2004.
S

Storage Resource Management

HIROSHI YOSHIDA

Fujitsu Limited, Yokohama, Japan

Synonyms
SRM

Definition
The management of physical and logical stor-

age resources, including storage elements, storage

devices, appliances, virtual devices, disk volume and

file resources. In most cases, storage resource manage-

ment is achieved by software tools which indicate and

manage the storage resource utilization in a storage

networking environment.

Key Points
When multiple storage devices are connected to a SAN

and shared by multiple servers, the space in each device

cannot be used uniformly, e.g., one device may be

almost full while another is underutilized. If the stor-

age administrator is unaware of the correct space utili-

zation status, inefficient resource utilization of the

whole SAN environment can occur. This may cause

unnecessary addition of new storage resources, or ad-

ditional resources are not installed in time causing

business applications to stop due to lack of required

storage space.

To indicate and manage storage resource utiliza-

tion, storage resource management software tools pro-

vide the following functions:
� Discovery and investigation of the utilization of all

storage resources in a SAN, plus related integrated

monitoring and integrated management operations.

� Analysis and reporting of storage resource utilization

� Analysis and estimation of movements in resource

utilization, issuing alerts and/or execution of

scripts for automation

Monitoring and indicating storage resource utilization

from the business application viewpoint is an impor-

tant requirement for storage resource management. To

meet this requirement, storage resource management

and storage configuration management, including de-

pendency mapping between applications and storage

devices, are often provided in combination.

Cross-references
▶ ILM

▶ LUN

▶ SAN

▶ Storage Consolidation

▶ Storage Management

▶ Storage Network Architectures

▶ Storage Virtualization

Recommended Reading
1. Storage Network Industry Association. Storage Network Indus-

try Association tutorials, 2007. Available at: http://www.snia.org/

education/tutorials/
Storage Security

KALADHAR VORUGANTI

Network Appliance, Sunnyvale, CA, USA

Synonyms
CAS; Authentication; Access control; WORM; Com-

pliance; On-wire security; On-Disk security; Data

corruption; Zoning; LUN masking; Port binding;

Provenance; Watermarking

Definition
The definition of storage security has many facets, and

some of the key requirements are:

Storage (and the appropriate manipulation capabil-

ities) should only be accessible and visible to users

with the appropriate permissions

2828S Storage Security
Users should be notified if their data has been tam-

pered with or altered either intentionally or

unintentionally

Malicious users should not be allowed to access or

tamper with other people’s storage. If possible, the

system should be able to catch malicious users.

User’s data should be physically deleted at the appro-

priate time. That is, it should not be present past its

intended life-time

Tracking unauthorized copying or access control dele-

gations is also an important security concern.

Historical Background
Security has been a key computer science topic for

many decades. Initially, people focused on authentica-

tion, encryption and access control for standalone

systems. As distributed computing became popular,

people started focusing on security within the context

of network protocols. Now, with the emergence of

utility computing, grid computing and cloud comput-

ing, storage is being accessed remotely. Thus, security

issues pertaining to storage environment is now gain-

ing importance. Many of the known security algo-

rithms and techniques are now being re-used within

the context of storage systems.

Foundations
The following different security mechanisms together

provide the appropriate desired security functionality:

Storage Access Authentication: In order to prevent un-

authorized users from accessing a storage device, there

is usually an authentication mechanism employed

(e.g., Kerberos, CHAP) to prevent unauthorized users

from accessing the storage device. If the storage device

is being accessed in a client-server manner, where the

client resides on a database or application server, the

client-server protocol needs to employ an authentica-

tion mechanism (e.g., Kerberos, or CHAP). In cases

where both the host servers and the storage devices

reside behind the firewall, client authentication is typi-

cally not performed.

On-Wire Security: When information flows between

clients and storage servers outside the fire-wall pro-

tected domains, information is typically encrypted and

sent over the wire to prevent eavesdropping. Data are

also protected by a hash key to detect data tampering.

IPSec security infra-structure provides authentication,
data encryption and tampering detection support at

the IP layer for internet environments. Data are typi-

cally not encrypted on the wire in intranet environ-

ments behind the firewall.

On-Disk Encryption: Data stored on persistent storage

(disks, tapes etc) is typically not encrypted because

disks usually reside in secure places. However, with

the emergence of storage service providers, an organi-

zation’s data are managed by others. Thus, many orga-

nizations prefer to encrypt their data before storing it

at a remote location. It is very important to store and

remember the keys that have been used to encrypt the

data because loss of the key is as good as the loss of the

data. Organizations also periodically re-encrypt data to

prevent the use of brute-force approaches to break the

keys being used to encrypt the data. AES, DES and

3DES are some of the encryption algorithms that are

being currently used.

Access-Control: Access control mechanisms have been

in place and are used extensively in operating systems

to control access to various resource types. Access

control typically amounts to controlling read/write

access for individual users, groups and everyone to

files, directories of files, volumes, and storage devices.

Access control mechanisms also deal with delegation of

control by secondary data owners to third parties who

want to access the data.

Compliance: Organizations are being expected to ad-

here to many different types of government regulations

such as:

� There should be only a single copy of a particular

type of data.

� Data should be physically erased from the storage

medium after so many years. That is, data cannot be

logically deleted, and one should not be able to

reconstruct the data from the physically deleted copy.

� Organization should be able to provide a guarantee

that data has not been altered since its creation.

Many organizations employ WORM (write-once,

read-many) type of storage medium such as optical

storage or WORM tapes or CAS systems to attain

this capability.

� During audits data belonging to a certain topic

should be available within a short specified period

of time (for example, data should be available

within 48 h). In some cases this precludes the

storing of data on tape.

Storage Security S 2829

S

Data Corruption: Data can be corrupted either unin-

tentionally due to device failure or malfunction, or it

could be corrupted intentionally by a malicious user or

a virus. In either case, data corruption has to be

detected and subsequently corrected. Data corruption

can be detected at the time of data creation, or it can be

checked for by a periodic checking process such as

virus scans or disk scrubbing. Data corruption can

dealt with in the following ways:

� Detection: Data corruption can be detected (not

corrected) using a hash function such as MD5 or

SHA-1, checksum or CRC.

� Detection and Correction: Data corruption can be

detected and corrected using error correction codes

such as Reed-Solomon.

� Correction: Data corruption can be only corrected

using erasure correcting codes such as a variant of

Reed-Solomon codes.

Zoning: In storage area networks, zoning is a technique

that is used to control which host port can have access

to which storage device port. Zoning can be controlled

at the switch firmware level (called hard zoning), by

which one controls which switch input port can see

which switch output port. Zoning can also be con-

trolled at the Fiber Channel name service level (soft

zoning), by which one controls which host server port

can see which storage device port.

Port Binding: Port binding is the process by which one

controls which port can be connected to a particular

switch port. That is, one explicitly specifies the address

of the host or storage device port that can exclusively

transfer data to a particular switch port.

LUN Masking: The process of determining which host

port can access which volume on the target via which

target port is called as LUN masking. Thus, using this

process one can control the access of storage volumes

by the different hosts.

Provenance and Watermarking: With the emergence of

peer to peer networks, data are getting copied at a very

rapid rate often without the proper permission. In

many cases, parts of the original document get copied

and combined with new content. Thus, it is necessary

to keep track of the trail of how data has been copied

and modified from its source to its current location. In

addition to keeping track of the original author and

source of the data, it is also necessary to detect pirated

copies of data. New digital document water-marking
techniques are being developed to add hidden copy-

right notices to documents.

CAS: Content addressable storage (CAS) systems pro-

vide a new type of data access mechanism. In CAS

systems one generates a hash value out of the data con-

tent. This hash value is subsequently used to uniquely

access the data. In CAS systems, one typically does not

overwrite existing data but instead a new copy of the data

gets created when updates are made to existing data

copies. CAS systems have been used to provide WORM

media capabilities for disk based systems.
Key Applications
Until recently, storage systems have been based behind

company fire-walls. Thus, authentication and encryption

have not been a major issue. Access control and data

corruption (due to viruses or device failures) have been

the major forms of security/integrity checking processes.

With the emergence of government compliance regula-

tions, data compliance has become a very major issue for

most organizations. With the emergence of third party

archival or storage service provider paradigms, more

importance is being given to storage authentication and

encryption mechanisms.
Cross-references
▶Access Control Administration Policies

▶Access Control Policy Languages

▶Asymmetric Encryption

▶Authentication

▶Data Encryption

▶Database Security

▶Discretionary Access Control

▶Homomorphic Encryption

▶Mandatory Access Control

▶Message Authentication Codes

▶Network Attached Secure Device

▶ Security Datawarehouses

▶ Security Services

▶ Symmetric Encryption

▶Temporal Access Control

▶XML Security
Recommended Reading
1. Riedel E., Kallahalla M., and Swaminathan R. A framework for

evaluating storage system security. In Proc. 1st USENIXConf. on

File and Storage Technologies, 2002.

2830S Storage Servers
Storage Servers

▶ Storage Devices
Storage Systems

▶ Performance Analysis of Transaction Processing

Systems
Storage Virtualization. Figure 1. Block aggregation in

shared storage model by SNIA.
Storage Virtualization

HIROSHI YOSHIDA

Fujitsu Limited, Yokohama, Japan

Definition
Storage virtualization is technology to build logical

storage using physical storage devices. More precisely,

SNIA defines storage virtualization as follows:

1. The act of abstracting, hiding, or isolating the in-

ternal function of a storage (sub) system or service

from applications, compute servers or general net-

work resources for the purpose of enabling appli-

cation and network independent management of

storage or data.

2. The application of virtualization to storage services

or devices for the purpose of aggregating, hiding

complexity or adding new capabilities to lower level

storage resources.

3. Storage can be virtualized simultaneously in multi-

ple layers of a system, for instance to create hierar-

chical storage manager like systems.

Key Points
Storage virtualization is used to provide an aggregation

of data blocks (a logical volume) to applications run-

ning on servers. This aggregation of blocks may reside

on a single storage device, may be spanned across

multiple devices when it is too large to fit on a single

device, may be mirrored to multiple storage devices to

increase availability, or may be striped across multiple

storage devices to enable parallel accesses.

Storage virtualization (block aggregation) can be

implemented in various layers between the host

server and the storage devices, i.e., in the host layer
(software-based logical volume manager), in the net-

work layer (switch-based virtualization appliance), and

in the device layer (disk array). Figure 1 shows where

block aggregation is implemented in the shared storage

model defined by Storage Networking Association.

Storage virtualization technologies are now being

extended to provide more capabilities. For example,

multiple storage devices which reside in different loca-

tions can be virtualized as a single logical storage device

with disaster recovery capability. Another example is

the virtualization of inexpensive storage devices with

high capacity together with expensive devices with high

performance to form a single logical device where

migration between the physical devices is done auto-

matically. This provides a cost-effective storage system

suitable for hierarchical storage management or infor-

mation lifecycle management (ILM).
Cross-references
▶ ILM

▶ SAN

▶ SRM

▶ Storage Consolidation

▶ Storage Network Architectures

▶ Storage Networking Industry Association
Recommended Reading
1. Storage Network Industry Association. Storage Virtualization:

the SNIA technical tutorials, 2007. Available at: http://www.snia.

org/education/storage_networking_primer/stor_virt/

2. Storage Network Industry Association. The SNIA shared stor-

age model, 2007. Available at: http://www.snia.org/education/

storage_networking_primer/shared_storage_model/

Stream Mining S 2831
Stored Procedure

TORE RISCH

Uppsala University, Uppsala, Sweden

Definition
Modern relational query languages such as SQL

provide general programming language capabilities in

addition to the statements for searching and updating

the database. A stored procedure is a user program

written in a query language running inside the data-

base server. Stored procedures often include side effects

that update the database. This makes it possible to

define general programs using the query language.

These programs are called stored procedures and are

executed inside the database server.
S

Key Points
In SQL, the user defines stored procedures as a

schemamanipulation statement using as CREATE PRO-

CEDURE statement. A so defined procedure is immedi-

ately shipped to the database server where it is compiled

and stored. Stored procedures can have side effects that

change the state of the database. In order to prohibit

searches that change the state of the database, in SQL

stored procedures cannot be called from within queries,

but only from applications or general SQL interfaces.

SQL provides a special EXEC statement passing to the

procedure when it is called.

The advantage with stored procedures are:

� Communication time is saved in case the com-

munication with the application program is slow

or unreliable.

� Common database centered updates and computa-

tions belong naturally to the database.

A disadvantage with stored procedures is that diffe-

rent vendors often provide different stored procedure

languages. The SQL-PSM (Persistent Stored Modules)

standard defines stored procedures in SQL.

Related to stored procedures (and part of SQL-

PSM) are user defined functions (UDFs), which are

user defined functions to perform common side-effect

free computations. UDFs are allowed as expressions in

queries.

Cross-references
▶Query Language
S-Transactions

▶ Flex Transactions
Stream Data Analysis

▶ Stream Mining
Stream Mining

JIAWEI HAN, BOLIN DING

University of Illinois at Urbana-Champaign,

Champaign, IL, USA

Synonyms
Stream data analysis

Definition
Stream mining is the process of discovering knowledge

or patterns from continuous data streams. Unlike tra-

ditional data sets, data streams consist of sequences of

data instances that flow in and out of a system contin-

uously and with varying update rates. They are tempo-

rally ordered, fast changing, massive, and potentially

infinite. Examples of data streams include data gener-

ated by communication networks, Internet traffic, on-

line stock or business transactions, electric power

grids, industry production processes, scientific and

engineering experiments, and video, audio or remote

sensing data from cameras, satellites, and sensor net-

works. Since it is usually impossible to store an entire

data stream, or to scan through it multiple times due

to its tremendous volume, most stream mining algo-

rithms are confined to reading only once or a small

number of times using limited computing and storage

capabilities. Moreover, much of stream data resides at

a rather low level of abstraction, whereas analysts

are often interested in relatively high-level dynamic

changes, such as trends and deviations. Therefore,

it is essential to develop online, multilevel, multi-

dimensional stream mining methods. Stream mining

can be considered a subfield of data mining, machine

learning, and knowledge discovery.

2832S Stream Mining
Historical Background
There are extensive studies on stream data manage-

ment and the processing of continuous queries in

stream data [4]. Different from stream query proces-

sing, stream mining extracts patterns and knowledge

from online stream data. It covers the topics of mining

multidimensional stream statistics, frequent patterns,

classification models, clusters, and outliers in online

data streams. Substantial research on stream mining

has appeared since only 2000, almost at the same time

as the research on stream data management. However,

lots of results have been generated in this line of

research.
Foundations
Stream mining problems are challenging because of

the following two reasons. (i) Stream data are massive,

arriving with high speed, and updated frequently, so

that one can neither store all the data nor scan the data

repeatedly, and in the meantime, the response time is

usually required to be short in applications; therefore,

stream synopsis construction is popularly used to

maintain a summary of stream data online using lim-

ited space without losing too much information.

(ii) Stream data often evolves considerably over time,

and for classification or clustering, one should often

use biased sampling of the stream data to emphasize

more recent behavior of the stream. In general,

stream mining can be partitioned into four themes:

(i) online computing multidimensional stream statis-

tics, (ii) mining frequent items and itemsets over

stream data, (iii) stream data classification, and

(iv) clustering data streams.

For online computing multidimensional stream

statistics, a multidimensional stream cube model was

proposed by Chen et al. [6] in their study of multidi-

mensional regression analysis of time-series data

streams. A stream cube can be efficiently constructed

based on (i) a tilted timeframe, where the finer granu-

larity is used for more recent time, and the coarser

granularity for more distant time, (ii) a minimal inter-

est layer to register the minimal layer of the cube that

is still of user’s interest, and an observation layer for

the cuboid that a user usually watches for trends

or anomaly, and (iii) partial materialization that mate-

rializes the cuboids only along the popular drilling

path, serving as a tradeoff between the storage space

and online response time. Statstream, a statistical
method for the monitoring of thousands of data

streams in real time, was developed by Shasha and

Zhu [15].

For mining frequent items and itemsets over

stream data, one important issue is how to return

approximate frequency counts for items or itemsets

with limited buffer size for infinite data streams.

Manku and Motwani [12] proposed Sticky Sampling

algorithm and Lossy Counting algorithm for com-

puting approximate frequency counts of items over

data streams, and developed a Lossy Counting based

algorithm for computing frequency counts of item-

sets with the focus on system-level issues and imple-

mentation artifices. Another important issue is how

to track frequent items dynamically. ‘‘Dynamically’’

means data streams consist of both ‘‘insertion’’ opera-

tions and ‘‘deletion’’ operations of items (imagine cars

entering and exiting the parking lot). Cormode and

Muthukrishnan [7] proposed algorithms for this prob-

lem using group testing and randomization techni-

ques. Keeping track of frequent of items in such data

streams arises in applications of both traditional data-

bases and other domains, like telecommunication

networks.

For stream data classification, the goal is to predict

the class label or the value of new instances in the data

stream, given some knowledge about the class mem-

bership or values of previous instances in the data

stream. Since the distribution underlying the instances

or the rules underlying their labeling may change over

time, the class label or the target value to be predicted

may change over time as well (stream data is evolving).

This problem is referred to as concept drift. A major

challenge in stream classification is how to construct

highly accurate models with the existence of concept

drift in stream data. Hulten et al. [10] developed an

algorithm CVFDT, by integrating concept drift in

time-changing data streams and a statistical measure,

Hoeffding bound. Wang et al. [16] proposed an en-

semble classifier to mine concept-drifting data streams.

Aggarwal et al. [3] developed a k-nearest neighbor-

based method for classify evolving data streams. Gao

et al. [8] handled skewed distributions and proposed

an ensemble-based framework that under-samples the

overwhelming negative data, and repeatedly samples

the scarce positive data for model construction with

concept-drifting data streams.

For clustering data streams, in some applications,

simply assume that the clusters are to be computed

Stream Mining S 2833
over the entire data stream, and view the stream clus-

tering problem as a variant of single-scan clustering

algorithms. For example, Guha et al. [9] gave space-

efficient constant-factor approximation algorithms

for the k-median problem in stream data using

divide-and-conquer and randomization techniques;

O’Callaghan et al. [14] proposed a k-median based

stream clustering method by incrementally updating

k-median centers. However, it is important to consider

stream evolution over time besides the single-scan

constraint and resource limitation. When stream data

is evolving, the underlying clusters may also change

considerably over time. If the entire data stream is

used for clustering, the result is likely to be inaccu-

rate. What’s more, at one moment, users may wish

to examine clusters occurring in different time per-

iods (e.g., last week/month/year). Aggarwal et al. [2]

proposed a CluStream framework for clustering

evolving data streams by introducing a tilted time-

frame, an online microclustering maintenance, and

an offline query-based macro-clustering mechanism,

to achieve efficiency and high clustering quality and

to provide the flexibility to compute clusters over

user-defined time periods in an interactive fashion.

Aggarwal [1] provides a comprehensive survey on

stream data processing and stream mining with a col-

lection of chapters on difference issues on stream

mining.
S

Key Applications
There are broad applications of stream mining, of

which only a few examples are illustrated.

Mining anomaly in network streams. Stream

mining has been popularly used for mining anomaly

in computer network or other stream data. For exam-

ple, MAIDS (Mining Alarming Incidents in Data

Streams) [5] is a system that explores tilted timeframe

and stream cube for mining computer network

anomaly.

Computing statistical measures over time series data

streams. Another popular application is to compute

statistical measures over time series streams, such as

StatStream [15].

Integration of mobile computing with stream mining.

Kargupta et al. [11] have developed VEDAS (Vehicle

Data Stream Mining System) that allows continuous

monitoring and pattern extraction from data streams

generated onboard a moving vehicle.
Future Directions
There are many challenging issues to be researched

further. Only a few are listed below.

Mining sophisticated patterns in data streams. Due

to the single-scan constraint and resource limitation,

the current stream pattern mining methods are con-

fined to simple patterns, such as single items or some

limited itemsets. Tasks for mining sequential patterns

[13] and structured patterns are challenging but inter-

esting for research.

Mining sophisticated data sets for advanced applica-

tions. Text (e.g., document) streams and video streams

are important real-life stream mining applications.

However, it is challenging to mine such streams because

it requires both sophisticated text/video analysis and

real-time resource constraints. Other advanced stream

mining applications include spatial data streams, finan-

cial transaction data streams, and so on.
Experimental Results
There are many experimental results reported in nu-

merous conference proceedings and journals.

Data Sets
UCI Machine Learning Repository: http://archive.ics.

uci.edu/ml/datasets.html

URL to Code
RapidMiner (previously called YALE (Yet Another

Learning Environment)), at http://rapid-i.com, is a

free open-source software for knowledge discovery,

data mining, and machine learning. It also features

data stream mining, learning time-varying concepts,

and tracking drifting concept.

MassDAL (Massive Data Analysis Lab) Public Code

Bank, at http://www.cs.rutgers.edu/muthu/massdal-

code-index.html, is a library of routines in C and Java

for stream data and other massive data set analysis,

including implementations of some published algo-

rithms for finding frequent items over stream data.

Cross-references
▶Association Rule Mining on Streams

▶Classification in Streams

▶Clustering on Streams

▶Data Mining

▶ Event Stream

▶ Frequent Items on Streams

2834S Stream Models
▶Geometric Stream Mining

▶ Stream Similarity Mining

▶Wavelets on Streams
Recommended Reading
1. Aggarwal C.C. Data Streams: Models and Algorithms. Kluwer

Academic, 2006.

2. Aggarwal C.C., Han J., Wang J., and Yu P.S. A framework for

clustering evolving data streams. In Proc. 29th Int. Conf. on Very

Large Data Bases, 2003, pp. 81–92.

3. Aggarwal C.C., Han J., Wang J., and Yu P.S. On demand

classification of data streams. In Proc. 10th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2004,

pp. 503–508.

4. Babcock B., Babu S., Datar M., Motwani R., and Widom J.

Models and issues in data stream systems. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2002, pp. 1–16.

5. Cai Y.D., Clutter D., Pape G., Han J., Welge M., and Auvil L.

MAIDS: Mining alarming incidents from data streams. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2004, pp.

919–920.

6. Chen Y., Dong G., Han J., Wah B.W., and Wang J. Multi-

dimensional regression analysis of time-series data streams.

In Proc. 28th Int. Conf. on Very Large Data Bases, 2002, pp.

323–334.

7. Cormode G. and Muthukrishnan S. What’s hot and what’s not :

tracking most frequent items dynamically. In Proc. 22nd ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2003, pp. 296–306.

8. Gao J., Fan W., Han J., and Yu P.S. A general framework

for mining concept-drifting data streams with skewed distribu-

tions. In Proc. SIAM International Conference on Data Mining,

2007.

9. Guha S., Mishra N., Motwani R., and O’Callaghan L. Clustering

data streams. In Proc. 41st Annual Symp. on Foundations of

Computer Science, 2000, pp. 359–366.

10. Hulten G., Spencer L., and Domingos P. Mining time-changing

data streams. In Proc. 7th ACM SIGKDD Int. Conf. on Knowl-

edge Discovery and Data Mining, 2001.

11. Kargupta H., Bhargava B., Liu K., Powers M., Blair P., Bushra S.,

Dull J., Sarkar K., Klein M., Vasa M., and Handy D. VEDAS: A

mobile and distributed data stream mining system for real-time

vehicle monitoring. In Proc. SIAM International Conference on

Data Mining, 2004.

12. Manku G. and Motwani R. Approximate frequency counts over

data streams. In Proc. 28th Int. Conf. on Very Large Data Bases,

2002, pp. 346–357.

13. Mendes L., Ding B., and Han J. Stream sequential pattern

mining with precise error bounds. In Proc. 2008 IEEE Int.

Conf. on Data Mining, 2008.

14. O’Callaghan L., Meyerson A., Motwani R., Mishra N., and

Guha S. Streaming-data algorithms for high-quality clustering.

In Proc. 18th Int. Conf. on Data Engineering, 2002, pp. 685–696.

15. Shasha D. and Zhu Y. High Performance Discovery In Time

Series : Techniques and Case Studies. Springer, 2004.
16. Wang H., Fan W., Yu P.S., and Han J. Mining concept-drifting

data streams using ensemble classifiers. In Proc. 9th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,

2003, pp. 226–235.
Stream Models

LUKASZ GOLAB

AT&T Labs-Research, Florham Park, NJ, USA

Definition
Conceptually, a data stream is a sequence of data items

that collectively describe one or more underlying sig-

nals. For instance, a network traffic stream describes

the type and volume of data transmitted among nodes

in the network; one possible signal is a mapping be-

tween pairs of source and destination IP addresses to

the number of bytes transmitted from the given source

to the given destination. A stream model explains how

to reconstruct the underlying signals from individual

stream items. Thus, understanding the model is a

prerequisite for stream processing and stream mining.

In particular, the computational complexity of a data

stream problem often depends on the complexity of

the model that describes the input.
Historical Background
The stream models discussed in this article were intro-

duced in [3] and extended in [7,8]. In addition to

modeling a stream with respect to its underlying sig-

nal(s), there exist the following two related concepts.

First, the stream computational model asserts that a

stream algorithm must run in limited space and time,

and can only make a small number of passes (often

only one pass) over the data [8,6]. Furthermore, one can

also model various statistical properties of a data stream,

such as changes in the frequency distribution of the

underlying signals or inter-arrival times of stream

items (see, e.g., [9]).
Foundations

Basic Model Definitions

Consider a data stream S composed of individual items

s1,s2,..., ordered by arrival time. Let A be a signal

described by S. Assume that A is a function from

Stream Models S 2835

S

a discrete and ordered domain to the range of reals; i.e.,

A : [1...N] ! R. For instance, in the motivating

example from above, the domain consists of IP address

pairs. That is, N = 264 since an IP address is

32 bits long.

There are four models for representing A using

individual stream items:

1. In the aggregate model, each stream item si corre-

sponds to a range value for some domain value.

2. In the cash register model, each stream item si
represents a domain value and a partial range

value ri, such that ri � 0. Reconstructing the

signal A involves aggregating all the ri values

corresponding to each domain value.

3. The turnstile model generalizes the cash register

model by allowing any ri to be negative. Thus,

reconstructing the signal A involves adding/sub-

tracting the contributions of stream items having

positive/negative range values.

4. In the reset model, each stream item si corresponds

to a range value and is understood to replace

all previously reported range values for the given

domain value.

Each of the four models defined above has an ordered

and an unordered version. In the ordered version,

stream items arrive over time in increasing order of

the domain values. In the unordered version, the or-

dering of the domain does not correspond to the

arrival order of stream items.

In terms of complexity and expressive power, the

turnstile model is the most general, followed by

the cash register model and the aggregate model, res-

pectively. As a result, designing stream algorithms for

the turnstile model is the most challenging. For in-

stance, while many types of sketches have provable

time and accuracy bounds in the turnstile and cash

register models, stream sampling algorithms are typi-

cally applicable only in the cash register model [8]

(effectively, the turnstile model allows deletions via

negative range values, therefore it may not be possible

to maintain a fixed-size sample of the stream over

time). Additionally, geometric problems over streams

(e.g., estimating the diameter of a stream of points)

are difficult to solve in the turnstile model since

previously seen points may be deleted in the future

[8]. The reset model is also quite general and some

algorithms in this model are more complex than in the

other three models [8]. See [3,7,8] for examples of
algorithms and complexity bounds for different stream

models.

Examples and Extensions of Basic Models

Consider a network traffic stream S composed of IP

packets. Each packet contains (among other things)

the source IP address, destination IP address, and

size. Define signal A1 as a function from the source

and destination address pairs to the total number of

bytes exchanged by each pair (i.e., sums of sizes of all

the packets sent between a given pair). Since many

packets may be exchanged between two nodes and pack-

ets may arrive in random order, this example corre-

sponds to the unordered cash register model.

For an example of an ordered cash register model,

define S2 to be the output stream of a pipelined query

plan for the following query:

SELECT a1, a2, count(*)

FROM T

GROUP BY a1, a2

ORDER BY a1, a2

Define signal A2 as a function from values of a1 to

the corresponding frequency counts (aggregated over

all possible values of a2). This example corresponds to

the ordered cash register model – stream items arrive

in the order of their domain values due to the ORDER

BY clause, but must be aggregated on a1 in order to

reconstruct A2.

Now suppose that the output stream of the above

query is not ordered by a1, but has the property that

all the groups having the same value of a1 are streamed

out contiguously. This conforms to the contiguous

unordered cash register model. Note that the ordered

cash register model is always contiguous.

Next, suppose that stream S3 is a pre-processed

version of S, where each item si is a triple of the

form: (source IP address, destination IP address,

event), where the event field denotes the start or end

of a connection between two nodes. Define signal A3 as

a function from the source and destination address

pairs to the total number of open connections between

each pair that have not yet ended. This corresponds to

the unordered turnstile model since a stream item

carrying an end-of-connection event decrements the

total count of open connections for the given pair

of nodes; furthermore nodes may open and close con-

nections in arbitrary order.

In the above examples, the range of the signal

corresponds to non-negative integers. A turnstile

2836S Stream Models
model whose signal has a non-negative range is said to

be a strict turnstile model. For an example of a non-

strict turnstile model, consider tracking the difference

between the number of connections originating from

two different IP addresses. Note that some sketch-

based algorithms that work in the strict turnstile

model do not apply in the non-strict version [8].

As in the cash register model, one may define

a contiguous unordered (strict or non-strict) turns-

tile model; the ordered (strict or non-strict) turnstile

model is always contiguous.

For an example of an aggregate model, suppose

that stream S4 is a pre-processed version of S, where

each stream item denotes the total number of bytes

exchanged between a given source-destination pair

over a 5 min. window. Define signal A4 as a function

from the source and destination address pairs to the

total number of bytes exchanged by each pair in the

window. This gives rise to an ordered aggregate model

if stream items are ordered by the source and destina-

tion addresses, and an unordered aggregate model

otherwise. Note that S4 may contain a concatenation

of many instances of A4, each corresponding to range

values calculated over a particular 5 min. window.

Alternatively, one can model S4 as carrying a single

signal over time, call it A5, whose domain is the same as

that of A4, but whose range is total number of bytes

exchanged by each pair in the most recent 5 min.

interval. This corresponds to the (unordered and

non-contiguous) reset model because new items arriv-

ing on the stream (i.e., those corresponding to the

most recent 5 min. window) replace old items having

the same domain value.
Key Applications
The unordered cash register model is appropriate for

applications where the incoming stream contains mul-

tiplexed data feeds from many sources (e.g., network

traffic). However, the turnstile model must be used

if the input (which may be a pre-processed version of

a stream originally conforming to the cash register

model) includes positive and negative range values.

In particular, the turnstile model can represent a signal

whose range values are computed over sliding win-

dows. To see this, note that values that expire from

the window may be modeled as new stream items

with negative range values. Stream items whose
purpose is to invalidate previously arrived items are

often referred to as negative tuples [1,2,5].

On the other hand, the aggregate model is appropri-

ate for many types of time series data, e.g., aggregated

network traffic data generated every 5 min. In some

cases, the reset model may also be suitable. Moreover,

the reset model is useful in applications that process

locations of moving objects over time. In these applica-

tions, moving objects (e.g., a fleet of delivery trucks)

periodically report their current positions [7].

Future Directions
The four stream model described in this article can

express a wide range of application scenarios. However,

new streaming applications, such as publish-subscribe over

streams, XML-stream processing, signal-oriented stream

processing [4], and analysis of the results of large-scale

scientific experiments, may require new models.

Cross-references
▶Data Stream

▶ Stream Mining

▶ Stream Processing

Recommended Reading
1. Arasu A., Babu S., and Widom J. The CQL continuous

query language: semantic foundations and query execution.

VLDB J., 15(2):121–142, 2006.

2. GhanemT., HammadM., MokbelM., Aref W., and ElmagarmidA.

Incremental evaluation of sliding-window queries over data

streams. IEEE Trans. Knowl. and Data Eng., 19(1):57–72, 2007.

3. Gilbert A., Kotidis Y., Muthukrishnan S., and Strauss M.

Surfing wavelets on streams: one-pass summaries for approxi-

mate aggregate queries. In Proc. 27th Int. Conf. on Very Large

Data Bases, 2001, pp. 79–88.

4. Girod L., Mei Y., Newton R., Rost S., Thiagarajan A.,

Balakrishnan H. and Madden S. The case for a signal-oriented

data stream management system. In Proc. 3rd Biennial Conf. on

Innovative Data Systems Research, 2007, pp. 397–406.

5. Golab L. and Özsu M.T. Update-pattern aware modeling

and processing of continuous queries. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2005, pp. 658–669.

6. Henzinger M., Raghavan P., and Rajagopalan S. Computing

on data streams. DIMACS Ser. Discrete Math. Theor. Comput.

Sci., 50:107–118, 1999.

7. Hoffmann M., Muthukrishnan S., and Raman R. Streaming

algorithms for data in motion. ESCAPE. Springer, Berlin

Hiedelberg New York, 2007, pp. 294–304.

8. Muthukrishnan S. Data streams: algorithms and applications.

Found. Trends Theor. Comput. Sci., 1(2):1–67, 2005.

9. Paxson V. and Floyd S. Wide-area traffic: the failure of Poisson

modeling. IEEE/ACM Trans. Netw., 3(3):226–244, 1995.

Stream Processing S 2837

S

Stream Processing

MICHAEL STONEBRAKER
1,2

1Massachusetts Institute of Technology, Cambridge,

MA, USA
2StreamBase Systems, Inc., Lexington, MA, USA

Synonyms
Complex event processing (CEP); Event stream proces-

sing (ESP); Data stream processing

Definition
Stream processing refers to a class of software systems

that deals with processing streams of high volume mes-

sages with very low latency. It is distinguished from

business activity monitoring (BAM) or business pro-

cess monitoring (BPM), in that the client of a stream

processing application is often a program, rather than a

human. Hence, the volume and latency requirements

are often much more stringent.

Currently, stream processing is widely used in com-

puting real-time analytics in e-trading, maintaining the

state ofmassivelymulti-player Internet games, real-time

risk analysis, networkmonitoring, and national security

applications. In the future, the declining cost of sensor

technology will create new markets for this technology

including congestion-based tolling on freeways and pre-

vention of lost children at amusement parks.

Key Points
There are three main technical approaches to stream

processing at the present time.

� Custom code. Traditionally, stream processing

applications have been hand-coded in a low-level

programming language such as C or C++. The

current trend is toward using one of the other two

technologies to achieve lower development and

maintenance cost.

� Stream-oriented SQL. Recent research activity has

extended SQL with primitives for real-time opera-

tion. The main additions are the notion of real-

time windows, over which SQL aggregates can be

computed, facilities to perform pattern matching

on sequences of messages, and primitives to deal

with out-of-order data. There are now high-

performance Stream-oriented SQL engines from

several vendors (e.g., Coral8, http://www.coral8.
com and StreamBase, http://www.streambase.

com).

� Rule engines. The final approach is to utilize a high-

performance implementation of a rule engine for

stream processing. These systems are descendents

of the rule engines found in expert systems in the

1980’s and originally specified by the Artificial In-

telligence community in pioneering work in the

1970s. Such systems contain rich pattern matching

capabilities, but must be extended with aggregation

and windowing constructs. Currently, there are a

variety of commercial rule engines addressing the

stream processing market.

In cases where real-time processing must be combined

with access to historical data, Stream-oriented SQL

enjoys a natural advantage. Both real-time and histori-

cal analysis can be done in a single paradigm (SQL),

whereas a rule engine must switch paradigms to access

historical data. On the other hand, where very sophis-

ticated pattern matching is the main requirement, rule

engines enjoy an advantage, due to their richer pattern

matching capabilities.

In either case, achieving high performance and low

latency requires a collection of implementation opti-

mizations. Extensive compilation, often to machine

code, will lower message processing overhead. In addi-

tion, some systems go to great lengths to remove

scheduling overhead, by pre-computing what opera-

tion must be performed next, and then directly calling

that operation from the current one, thereby removing

both scheduling and message queuing overhead. In

addition, implementations based on storing real-

time state in a DBMS (either a conventional disk-

based one or a main memory DBMS) are not likely

to be successful, because of the inherent overhead of

these class of products.

Over the course of the next decade, it is expected

that stream processing products will enter the

mainstream, thereby complementing other system

software components such as application servers and

DBMSs.

Cross-references
▶Data Stream

▶Data Stream Management Architectures and

Prototypes

▶ Streaming Applications

▶ Stream-Oriented Query Languages and Operators

2838S Stream Query Processing
Recommended Reading
1. Stonebraker M., Çetintemel U., and Zdonik S. The 8 require-

ments of real-time stream processing. ACM SIGMOD Rec.,

34(4):420–447, 2005.
Stream Query Processing

▶Window-based Query Processing
Stream Sampling

BIBUDH LAHIRI, SRIKANTA TIRTHAPURA

Iowa State University, Ames, IA, USA

Definition
Stream sampling is the process of collecting a repre-

sentative sample of the elements of a data stream. The

sample is usually much smaller than the entire stream,

but can be designed to retain many important char-

acteristics of the stream, and can be used to estimate

many important aggregates on the stream. Unlike sam-

pling from a stored data set, stream sampling must be

performed online, when the data arrives. Any element

that is not stored within the sample is lost forever, and

cannot be retrieved. This article discusses various

methods of sampling from a data stream and applica-

tions of these methods.

Historical Background
An early algorithm to maintain a random sample of a

data stream is the reservoir sampling algorithm due

to Vitter [15]. More recent random sampling based

algorithms have been inspired by the work of Alon

et al. [1]. Random sampling has for a long time been

used to process data within stored databases – the

reader is referred to [13] for a survey.

Foundations
A powerful sampling technique is random sampling,

where random elements of the stream are selected

into the sample. A random sample of a stream can be

used in deriving approximate answers to aggregate

queries such as quantiles [12] or frequent elements

[11]. It can also be used in the estimation of the

selectivity of a query predicate, which is defined as the

fraction of the data items in the stream which satisfy
the given user predicate. The intuition behind the

above applications of random sampling is as follows.

Suppose R is A uniform random sample of a data

stream S. For any A � S, the size of A, jAj can be

estimated as jA \ Rj · jSj ∕ j Rj. The accuracy of this

estimate depends on the value of jA \ Rj ∕ jRj. There are
tradeoffs between the quality of the answer returned,

the confidence in the answer, and the space taken by

the sample.

There are two basic ways of generating a random

sample of any data set – sampling without replacement

and sampling with replacement. Consider a data stream

with N elements and a sample size n. In random

sampling with replacement, each element of the sam-

ple is chosen at random from among all N elements of

the data set. It is possible that the same element is

chosen more than once into the sample (though this

is unlikely if the sample is much smaller than the data).

A random sample without replacement is a randomly

chosen subset of n elements from among all N
n

� 	
sub-

sets of size n, thus ensuring that a data element appears

no more than once in the random sample.

Reservoir Sampling

This technique, due to Vitter [15], allows the mainte-

nance of a random sample of the stream of a particular

target size in an online fashion. Suppose the objective

is to maintain a random sample of n elements without

replacement, from a stream of N elements, where N

is not known a priori. Let the stream elements be

a1,a2,...,aN.

A discussion of how to maintain a sample of a

single element from the stream i.e., the case n = 1,

can be a good point to begin. When a1 arrives, it is

always selected into the sample. For i � 2, element ai
is selected into the sample with probability 1 ∕ i, i.e, a2 is
selected with a probability 1 ∕ 2, a3 is selected with a

probability 1 ∕ 3, and so on. Each time an element is

selected into the sample, it replaces the existing ele-

ment in the sample. It can be verified that the final

element in the sample has an equal probability of being

any of the N elements in the stream.

The above idea can be extended to maintain a

random sample without replacement of size n as fol-

lows. The first n elements of the stream are (determin-

istically) included in the sample. For t � n, when atþ1

arrives, it is included in the sample with probability

n ∕ (t þ 1). If an element is selected for inclusion in the

sample, it replaces an element that is chosen uniformly

Stream Sampling S 2839

S

at random from the currently existing elements in

the sample. It is easy to verify that the resulting sample

is equally likely to be any of the tþ1
n

� 	
subsets of size n

of the set a1,a2,...,atþ1. This algorithm is described

in Fig. 1.

Note that if one wanted to sample n elements from

a stream with replacement, this could be achieved by

running n copies of the single element reservoir sam-

pling algorithm. Further enhancements are possible to

the algorithm in Fig. 1. In particular, instead of exam-

ining every element of the stream to see if it will be

sampled, it is possible to directly generate the number

of elements of the stream to be skipped before the next

element that will be included in the sample. This can

significantly reduce the number of stream elements to

be examined by the sampling algorithm. For further

details, the reader is referred to [15].

Sample and Count

This is a technique pioneered by Alon et al. [1], and is

based on random sampling followed by counting. This

technique has been applied in the estimation of fre-

quency dependent statistics on a data stream in very

small space. To see its use in the context of estimating

the frequency moments of a data stream, consider a

stream S = a1,a2,...,aN, where each ai 2 {1,2,...,m}. For 1

� j �m, let fj denote the number of occurrences of j in

stream S. For integral k� 0, the kth frequency moment

of S, denoted by Fk is defined as follows.

Fk ¼
Xm
j¼1

f kj

For k 6¼ 1, computing Fk exactly on a large data

stream S is provably expensive space-wise. There are

lower bounds showing that such an exact computation

of F k , or even an accurate deterministic approximation
Stream Sampling. Figure 1. Reservoir sampling for sampling
of Fk requires O(m) space, in the worst case. However,

a randomized approximation to Fk (for k � 2) can be

found as follows. First, choose a random element ap
from S (this can be done without a knowledge of N

using the reservoir sampling technique). Then main-

tain the count X = j{q : q� p, aq = ap}j. In other words,

count the number of re-occurrences of the element ap
in the portion of the stream that succeeds ap (including

ap). Then, the random variable Y = N [Xk � (X � 1)k]

is an unbiased estimator of Fk, i.e., E[Y] = Fk. Further,

it can also be shown that the variance of Y is small. For

user defined parameters 0 < e, d < 1, this can be used

to generate an estimator of Fk that is within a relative

error of e with probability more than 1� d using small

space. For exact space bounds, proofs and details, the

reader is referred to [1].

The sample and count technique has also been

used in accurate estimation of another frequency de-

pendent aggregate, the empirical entropy of a data

stream, in limited space. Consider a stream of integers,

S = a1,a2,...,aN, where each ai 2 {1,2,...,m}. For 1 � j �
m, let fj denote the number of occurrences of j in S.

The empirical entropy of the stream is defined as

∑ m
j=1 � (fj ∕N) log (fj ∕N). The entropy of a stream

yields valuable information about the amount of ‘‘ran-

domness’’ within the stream, and is useful in many

contexts in network monitoring. Chakrabarti et al.

[3] present an algorithm for estimating the entropy

of a stream. Their algorithm uses the sample and

count technique, and yields a provably accurate esti-

mate of the entropy (a randomized approximate esti-

mate) using nearly optimal space.
Distinct Sampling

In some cases, it may be necessary to compute aggre-

gates over all the distinct elements in the stream.
without replacement from a stream.

2840S Stream Sampling
Consider a stream of tuples (i,v) where i is an item

identifier and v is the value. In database query optimi-

zation, a question of interest is often just an estimate of

the number of distinct values for an attribute in a

relation. In network monitoring, an objective may be

tracking all those sources that have contacted a large

number of distinct destinations in the recent past. For

computing such aggregates over all distinct identifiers,

a uniform random sample will not be useful. For

example, suppose a stream of 108 elements had 1,000

distinct identifiers, but every identifier appeared exact-

ly once in the stream, except for the ‘‘dominant identi-

fier’’, which made up the remaining 108� 999 elements

of the stream. Even if a fairly large random sample of

this stream is collected, say a sample of 104 elements,

the sample is likely to contain only the dominant

identifier, and any estimate from this sample is likely

to be extremely inaccurate. To derive an useful sample

for estimating aggregates over distinct elements in

a stream, Gibbons and Tirthapura [9] introduced a

technique called distinct sampling.

In distinct sampling, the sampling is performed

with the help of a randomly chosen hash function,

rather than through independent random choices for

each element. The hash function h is chosen before the

stream elements are observed. Given a target sample

size n, the algorithm in Fig. 2 maintains a random

sample of all distinct elements of a stream S of size

approximately n. For example, suppose the stream of

108 elements had 7,500 distinct identifiers. If the target

sample size was 104, then all distinct elements would be
Stream Sampling. Figure 2. Algorithm for maintaining a sam
included in the sample. If the target sample size was

103, then each distinct element would be included in

the sample with probability p, where p is reduced until

the resulting sample fits within the target sample size.

Let the stream S be an integer sequence a1,a2,..,aN.

The algorithm maintains a sample D of distinct ele-

ments, and a sampling level ‘. At level ‘, each distinct

element is selected into the sample with probability

1 ∕ 2‘. For simplicity, assume a random hash function

h is available such that h(x) is a random real number

which is uniformly chosen from the range (0,1), and

the outputs of the hash function on different inputs are

mutually independent. The analysis of the algorithm

using more practical hash functions with limited inde-

pendence (and integral outputs) is presented in [9].

The above distinct sampling algorithm assumed

that all elements in the stream have the same weight –

in general, this may not be true. For example, a user

might be interested in computing the mean of the

values received over all distinct identifiers in the

stream – in this case, different elements should be

weighted differently. The above algorithm was extend-

ed to the more general weighted case by Pavan and

Tirthapura [14], who designed a ‘‘range-sampling’’ al-

gorithm that allowed the weighted sampling problem

to be reduced to the unweighted case.

Time-Decayed Sampling

The reservoir sampling (distinct sampling) algorithm

maintains a sample of all elements (distinct elements)

from the start of time, and such a sample is useful in
ple of all distinct elements of a stream.

Stream Sampling S 2841

S

computing aggregates over the entire data stream. How-

ever, in many cases the interest lies in computing time-

decayed aggregates of data, where older elements must

be discounted. For such aggregates, it is useful to have

a sample where a more recent stream element has a

higher probability of being included in the sample. For

example, a typical sliding-window aggregate asks for an

aggregate over all data elements that have appeared in a

window of the lastW elements of a stream – to answer

such queries, it is useful to have a random sample of all

elements within the current window. The problem

with directly using any of the above algorithms to

maintain a sample over a slidingwindow is that elements

in the samplemay expire, i.e., fall out of the window, and

replacing themwith enough new sampled elements may

not be possible, causing the number of elements within

the sample to become too small.

The reservoir sampling algorithm was extended to

sliding windows by Babcock et al. [2], who presented

probabilistic guarantees on the space taken by their

sampling algorithm. Gibbons and Tirthapura [10]

have extended the distinct sampling algorithm to slid-

ing windows, by sampling the stream at multiple prob-

abilities, and maintaining a fixed number of the most

recent elements at each sampling probability. It is

known [4] that for computing decayed aggregates, an

arbitrary time-decay function such as polynomial or

exponential decay can be reduced to sliding

window decay. Thus, for any stream aggregate that

can be estimated well using random samples, such as

quantiles, frequent elements, distinct counts and sum,

the above techniques can be used to estimate time-

decayed aggregates over an arbitrary decay function.

Handling Deletions

Thus far, it has been assumed that a data stream is a

sequence of additions to a data set (which is so massive

that it is too expensive to store it explicitly). More

generally, it is necessary to deal with a stream where

each element is an operation on the data set, which may

be an addition or a deletion of one or more elements.

On such a stream of add/delete operations, a direct

sampling algorithm such as reservoir sampling or dis-

tinct sampling may not perform well, since elements

that currently belong in the sample may be deleted by a

future stream operation, leading to a sample that is too

small to give useful estimates. The basic stream sam-

pling algorithms have been extended to handle such

‘‘update streams’’ (sometimes called ‘‘dynamic data
streams’’) by Ganguly [7], Cormode et al. [5], and

Frahling et al. [6].

Key Applications
Estimating Query Selectivity : The selectivity of a query

on a database table is defined as the ratio of the num-

ber of records that match the query to the total number

of records in the table. Suppose that the records

appeared as a stream, and it was not possible to store

the entire table on the disk (or disk access was too

expensive). Then, a stream sampling algorithm can be

used to maintain a random sample of all the records.

The selectivity of the query on the random sample is an

unbiased estimate of the selectivity of the query on the

whole stream (i.e., the expected value of the estimate

equals the actual selectivity). Of course, the larger the

random sample, the more accurate is the estimate.

Note that the query can be posed after the stream was

observed, since the random sampling procedure was

not sensitive to the query.

Network Monitoring : In the context of monitoring

a TCP/IP network, a ‘‘network flow’’ is a unidirectional

set of packets that arrive at the router on the same

subinterface, have the same source and destination IP

addresses, same transport layer protocol (TCP/UDP),

same TCP/UDP source and destination ports and

the same type of service (ToS) byte in the IP headers.

A network monitoring tool is a software that cons-

tantly monitors the flows in a network and helps in

network management tasks such as load balancing and

fault management. Some network monitoring tools,

for example, Random Sampled Netflow (by Cisco),

Gigascope (by AT&T Research), and ‘‘Smart Sampling’’

(by AT&T), provide data for a subset of traffic in a

router by processing only a random sample of the

packet stream. Traffic sampling substantially reduces

consumption of router resources while providing valu-

able network flow statistics.

Sensor Data Aggregation: A sensor network is a

network of resource-constrained embedded devices,

capable of computing and sensing, deployed to moni-

tor environmental conditions like temperature, sound,

vibration, pressure, light, etc. In a typical scenario,

sensors collect readings periodically and send them

to a base-station or a local cluster-head where compu-

tation/aggregation takes place. Data within a sensor

network can be viewed as the union of multiple

distributed streams, one per sensor node. Random

samples of such distributed data streams can be used

2842S Stream Similarity Mining
in computing key aggregates of sensor data streams,

such as the mean, quantiles, frequent elements, of data.

Transmitting the random samples rather than the en-

tire observation stream can lead to savings in commu-

nication cost and hence, energy.
Cross-references
▶AMS Sketch

▶Data Aggregation in Sensor Networks

▶Data Sketch/Synopsis

▶Distributed Streams

▶ Frequency Moments

▶Randomization Methods to Ensure Data Privacy

▶ Stream Mining
Recommended Reading
1. Alon N., Matias Y., and Szegedy M. The space complexity

of approximating the frequency moments. J. Comput. Syst.

Sci., 58(1):137–147, 1999.

2. Babcock B., Datar M., and Motwani R. Sampling from a moving

window over streaming data. In Proc. ACM-SIAM Symp. on

Discrete Algorithms, 2002, pp. 633–634.

3. Chakrabarti A., Cormode G., and McGregor A. A near-optimal

algorithm for computing the entropy of a stream. In Proc. ACM-

SIAM Symp. on Discrete Algorithms, 2007, pp. 328–335.

4. Cohen E. and Strauss M. Maintaining time-decaying

stream aggregates. In Proc. 22nd ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2003, pp.

223–233.

5. Cormode G., Muthukrishnan S., and Rozenbaum I. Summariz-

ing andmining inverse distributions on data streams via dynamic

inverse sampling. In Proc. 31st Int. Conf. on Very Large Data

Bases, 2005, pp. 25–36.

6. Frahling G., Indyk P., and Sohler C. Sampling in dynamic data

streams and applications. In Proc. 21st Annual ACM Symp. on

Computational Geometry, 2005, pp. 142–149.

7. Ganguly S. Counting distinct items over update streams. Theor.

Comput. Sci., 378(3):211–222, 2007.

8. Gibbons P. Distinct sampling for highly-accurate answers

to distinct values queries and event reports. In Proc. 27th Int.

Conf. on Very Large Data Bases, 2001, pp. 541–550.

9. Gibbons P. and Tirthapura S. Estimating simple functions on

the union of data streams. In Proc. ACM Symp. on Parallel

Algorithms and Architectures, 2001, pp. 281–291.

10. Gibbons P. and Tirthapura S. Distributed streams algorithms for

sliding windows. Theor. Comput. Syst., 37:457–478, 2004.

11. Manku G.S. and Motwani R. Approximate frequency

counts over data streams. In Proc. of the 28th Int. Conf. on

Very Large Data Bases, 2002, pp. 346–357.

12. Manku G.S., Rajagopalan S., and Lindsay B.G. Random sam-

pling techniques for space efficient online computation of order

statistics of large datasets. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1999, pp. 251–262.
13. Olken F. and Rotem D. Random sampling from databases -

a survey. Stat. Comput., 5(1):43–57, 1995.

14. Pavan A. and Tirthapura S. Range-efficient counting of distinct

elements in a massive data stream. SIAM J. Comput.,

37(2):359–379, 2007.

15. Vitter J.S. Random sampling with a reservoir. ACM Trans. Math.

Softw., 11(1):37–57, 1985.
Stream Similarity Mining

ERIK VEE

Yahoo! Research, Silicon Valley, CA, USA

Synonyms
Distance between streams; Datastream distance

Definition
In many applications, it is useful to think of a data-

stream as representing a vector or a point in space.

Given two datastreams, along with a distance or simi-

larity measure, the distance (or similarity) between the

two streams is simply the distance (respectively, simi-

larity) between the two points that the datastreams

represent. Due to the enormous amount of data

being processed, datastream algorithms are allowed

just a single, sequential pass over the data; in some

settings, the algorithm may take a few passes. The

algorithm itself must use very little memory, typically

polylogarithmic in the amount of data, but is allowed

to return approximate answers.

There are two frequently used datastreammodels. In

the time series model, a vector,~x, is simply represented

as data items arriving in order of their indices: x1,x2,

x3,.... That is, the value of the ith item of the stream is

precisely the value of the ith coordinate of the repre-

sented vector. In the turnstile model, each arriving item

signals an update to some component of the repre-

sented vector. So item (i,a) indicates that the value of

the ith component of the vector is increased by a. For

this reason, datastream items are typically written

in the form (i,xi
(j)) to indicate that this is the jth update

to the ith component of the represented vector. The

value of xi is then the sum of xi
(1) + xi

(2) + ... over all

such updates. The update values may be negative; the

special case when they are restricted to be nonnegative

is sometimes called the cash register model.

One of the most commonly used measures for

datastream similarity is the Lp distance between two

Stream Similarity Mining S 2843

S

streams, for p� 0. As in the standard definition, the Lp
distance between points ~x;~y (hence, between streams

representing those points) is defined to be ∑ ijxip �
yi
pj1∕p. In the case that p = 0, the L0 distance (sometimes

called the Hamming distance) is taken to be the num-

ber of i such that xi 6¼yi. For p = 1, the L1 distance is

maxijxi � yij. Other measures include the Jaccard sim-

ilarity, the edit distance, the earth-mover’s distance,

and the length of the longest common subsequence

between the streams (viewed as sequences).

Historical Background
Although the earliest datastream-style algorithms were

discovered some 30 years ago [11], the current resur-

gence of interest in datastreams began with the seminal

paper of Alon et al. [2] in 1996. Implicit in their work is

an algorithm for estimating the L2 distance between

streams. In 1999, Feigenbaum et al. [10] developed a

datastreaming algorithm to approximate the L1 dis-

tance between two streams. Building on this, Indyk

[12] gave datastreaming algorithms to approximate

the Lp distance between two datastreams, for all p 2
(0,2], utilizing the idea of p-stable distributions. Later,

Cormode et al. [7] demonstrated an efficient algorithm

for approximating the L0 distance (i.e., Hamming dis-

tance). Sun and Saks [15] provide lower bounds for

approximating Lp, for p > 2 (and including p = 1),

showing no datastream algorithm working in polylo-

garithmicspacecanapproximatetheLp distance between

two streams within a polylogarithmic factor. (The

bounds are even stronger for p much larger than 2.)

Datar et al. [8] studied the sliding window model

for datastreams, producing an algorithm that approx-

imates the Lp distance between two windowed data-

streams. Work by Datar and Muthukrishnan [9] gave

an algorithm for approximating the Jaccard similarity

between two datastreams in the sliding window model.

Foundations

Estimating the L2 Distance

In their seminal paper, Alon et al. [2] provide a method

for estimating F2, the second frequency moment, of a

datastream. As observed in [10,1], this method can

easily be extended to produce a datastream algorithm

to approximate the L2 distance. The ideas are briefly

outlined below.

Throughout, the datastreams considered have

length n. For i = 1,2,...,n, the variable Xi is defined to
be an i.i.d. (independent and identically distributed)

random variable taking on the value � 1 or 1 with

equal probability. Of course, a datastream algorithm

cannot maintain all the values of each of the random

variables in memory. This will be accounted for later;

for now, an algorithm is presented assuming that there

is random access to these values.

The datastreams vectors are represented in the turn-

stile model; (x1,...,xn) denotes the accumulated values

of the first stream, and (y1,...,yn) denotes the accumu-

lated values in the second stream. The algorithm sim-

ply maintains the value of
Pn

i¼1 Xi � ðxi � xyÞ. This
value is straightforward to maintain: If an item

(i,xi
(j)) arrives for some i, j, the value Xi · xi

(j)

is added to it. If an item (i,yi
(j)) arrives, the value Xi ·

yi
(j) is subtracted.

The algorithm focuses on the expected value of the

square of this quantity:

E
Xn
i¼1

Xi � ðxi � yiÞ
 !2" #

¼ E
Xn
i¼1

X2
i � ðxi � yiÞ

2

"

þ
X
i 6¼j

XiXj � ðxi � yiÞðxj � yjÞ
#

¼
Xn
i¼1

ðxi � yiÞ
2;

wherethelastequality followssinceE[Xi] = 0 and Xi
2 = 1

for all i, and all the random variables are indepen-

dent. But this quantity is just the square of the L2
distance between the two streams. Hence, the problem

amounts to obtaining a good estimate of this expected

value.

To do so, the above algorithm is run in parallel k

times, for k = y(1∕e2). That is, it maintains the valuePn
i¼1 Xi � ðxi � xyÞ for k different random assignments

of the Xi. The algorithm then takes the average of

their squares. For a given run t, this value is denoted

v(t). To further ensure that the algorithm does not

obtain a spurious estimate, the procedure is repeated

‘ times, for ‘ = y(log(1∕d)). The algorithm then takes

the median value over {v(1),v(2),...,v(‘)}. A standard

application of Chebyshev’s Inequality shows that this

estimates the square of the L2 distance within a (1 + e)
factor with probability greater than 1 � d. (In total,

this method maintains k‘ values in parallel.)

2844S Stream Similarity Mining
Unfortunately, the procedure as described above

produces and maintains values for n random variables.

(In fact, due to the parallel repetitions, it actually needs

k‘n random variables.) However, the technique only

needed these variables to be four-wise independent.

(Two-wise independence is needed for the expected

value to be an unbiased estimator of the square of the

L2 distance; four-wise independence implies that the

variance is small.) Hence, these fully independent ran-

dom variables can be replaced with four-wise inde-

pendent random variables, which is necessary for

Chebyshev’s Inequality to hold. These random vari-

ables can be pseudorandomly generated on the fly;

the datastream algorithm thus only needs to remember

a logarithmic-length seed for the pseudorandomly

generated values. The full details are omitted here.

Estimating the Lp Distance: p-Stable Distributions

In 2000, Indyk [12], using many of the ideas in [2,10],

extended the results to produce datastream algorithms

for approximating the Lp distance between streams, for

all p 2 (0,2]. (Feigenbaum et al. were the first to

produce a datastream algorithm for L1 distance; their

technique relied on their construction of pseudoran-

domly generated ‘‘range-summable’’ variables that

were four-wise independent. Although similar in flavor

to the result of [2], it is somewhat more complicated.)

For convenience, the algorithm outlined below details

the method for approximating the Lp norm of a single

vector. Note, however, that in the turnstile model, it is

a simple matter to produce the Lp distance between

two streams (by simply negating all of the values in the

second stream and finding the norm of their union).

Indyk’s method uses random linear projections, and

relies on the notion of p-stable distributions.

A distribution D is p-stable if for all k real numbers

a1,...,ak, if X1,...,Xk are i.i.d random variables drawn

from distribution D, then the random variable ∑

iaiXi has the same distribution as (∑ ijaijp)1∕pX for

random variable X with distribution D. There are two

well-known p-stable distributions. The Cauchy distri-

bution, with density function mCðxÞ ¼ 1
p

1
1þx2

, is 1-sta-

ble. The Gaussian distribution, with density function

mGðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2, is 2-stable. Although closed-form

functions are not known for p-stable distributions for

p6¼1,2, Chambers et al. [4] provide a method for gen-

erating p-stable random variables for all p 2 (0,2].

Throughout the rest of this discussion, D denotes a

p-stable distribution, for some fixed p.
The method for approximating the Lp norm of a

stream will now be outlined. As previously noted, this

is easily modified to give the Lp distance between two

streams. Throughout, the vectors are represented as in

the turnstile model, and (z1,...,zn) denotes the vector

represented by the datastream. As in the previous sec-

tion, the n i.i.d. random variables X1,...,Xn are gener-

ated first, this time drawn from p-stable distribution

D. A brief discussion of how to reduce the number of

these variables appears later.

The algorithm simply maintains the value ∑ iXizi.

Again, these values are easy to maintain: If item (i,zi
(j))

appears for some i,j, the algorithm adds the value Xizi
(j)

to the sum. As in the previous section, the algorithm

gains better accuracy by repeating the procedure

multiple times in parallel; in this case, the algorithm

runs the procedure k times in parallel, for

k ¼ yð 1E2 logð1=dÞÞ. The value of ∑ iXizi obtained in

the ‘-th run using this procedure is denoted Z(‘).

The value Z(‘) is a random variable itself. Since D is

p-stable, it is the case that Z(‘) = X(‘) · (∑ ijzijp)1∕p for
some random variable X(‘) drawn from D. then the

output of the algorithm is

1

g
medianfjZ ð1Þj; :::; jZ ðkÞjg;

where g denotes the median value of jXj, for X a

random variable distributed according to D. (The ab-

solute value is taken for technical reasons. For instance,

the median value of X is 0 when D is the Gaussian

distribution, while the median value of jXj is strictly
greater than 0.) The value of the median of {jZ(1)j,...,j
Z(k)j} is (∑ ijzijp)1∕p times the median of {jX(1)j,...,j
X(k)j}. Hence, the above output is an approximation

of (∑ ijzijp)1∕p, i.e., the Lp norm of the datastream, as

needed. A more careful argument shows that this esti-

mate is within a multiplicative factor (1 	 e) of the

true Lp norm, with probability greater than 1 � d.
As in the previous section, Indyk observes that rather

than storing the values of n i.i.d random variables, the

values can be generated on the fly, using pseudoran-

dom generators. The details are omitted here.

Cormode et al. [7] investigate the problem of esti-

mating the L0 norm. One of their key technical obser-

vations is that the Lp norm is a good approximation of

the L0 norm of the stream, for p sufficiently small. (In

particular, they show the p = e∕logM is sufficient, where

M is the maximum absolute value of any item in the

Stream Similarity Mining S 2845

S

stream.) Thus, the Hamming distance between two

streams can be approximated using the same general

algorithm that was described above.

Approximating Jaccard Similarity: Min-Wise Hashing

Another useful similarity measure between two

streams is their Jaccard similarity. Given two data-

streams in the time-series model, a1,a2,...,an and b1,

b2,...,bn denote their respective vectors. Further, A

(and B) denotes the set of distinct elements appearing

in the first stream (respectively, the second stream).

The Jaccard similarity between the streams is given by

jA \ Bj ∕ jA [Bj.
The first explicit study of the Jaccard simi-

larity between two streams was given by Datar and

Muthukrishnan [9]. Their paper examined the sliding

window model, which is discussed further in the

next section. However, a datastream algorithm in the

standard model was given implicitly in the work of

Cohen et al. [6], although the notion of datastreams

is never mentioned in the paper.

The major technical tool uses min-wise hashing, or

min-hashing [3,5]. For every subset A of [n], the min-

hash for A (with respect to p), denoted hp(A), is de-

fined to be hp(A) = mini2A{p(i)}, where p denotes a

permutation on [n] ={ 1,...,n}. The wonderful property

of the min-hash is that, when p is chosen uniformly at

random from the set of all permutations on [n], for

any two subsets A,B of [n], it is the case that

Pr½hpðAÞ ¼ hpðBÞ
 ¼
jA \ Bj
jA [Bj :

This suggests the following algorithm.

The algorithm chooses p uniformly at random

from the set of permutations on [n]. (The fact that

storing p take y(n log n) space will be discussed

momentarily.) For the first stream, the algorithm

finds the value hp(A) = mini2A{p(i)}, where A is the

set of distinct elements occurring in the first stream.

This is simple to do in a datastreaming fashion: as each

new aj appears, the algorithm updates the min value if

p(aj) is smaller than the min seen so far. Likewise, for

the second stream, the algorithm finds the value hp(B),

where B is the set of distinct elements occurring in

the second stream. From the above, the probability

that the two values are equal is precisely the Jaccard

similarity between the two streams.

Of course, to obtain an accurate estimate of this

probability, the algorithm needs to run the procedure
multiple times. In this case, it will run the procedure in

parallel k times, each with an independently chosen

random permutation. (Here, k = O(e�3log(1∕d)).) The
value r is defined to be the fraction of times (out of k)

that the min values for the two streams coincide. That

is, if p1,...,pk are the k independently chosen random

permutations, then

r ¼ 1

k
�# fj : hpj ðAÞ ¼ hpj ðBÞg
�� ��:

It is shown in [11] that with probability at least 1 � d,
the value r approximates the Jaccard similarity within

multiplicative factor (1 	 e).
In order for the above algorithm to be useable in a

datastreaming context, it must be able to generate

and store the necessary random permutations in

small space. This is done using approximately

min-wise independent hash functions. Although this

introduces additional error, it can be done in small

space and time. The reader is referred to [13] for

more details.
Sliding Windows

In many applications, the data from streams becomes

outdated or unnecessary quickly. To help understand

this scenario better, researchers have proposed the slid-

ing window model of datastreams. Here, the algorithm

must maintain statistics (e.g., stream similarity), using

only the lastN items from the stream, for some N. This

causes additional complications, since as each new

item comes in, an old item is removed. Since memory

is limited, algorithms cannot track which of these old

items is disappearing. Still, there are datastream algo-

rithms for both Lp distance and Jaccard similarity in

the sliding window model.

In [8], Datar et al. define the sliding window

model, and give a datastream algorithm for approxi-

mating the Lp distance between two streams (as well

as several other datastream algorithms). Their tech-

nique uses what they call an exponential histogram.

The histogram partitions the last N items (i.e., those

items in the sliding window) into buckets; the last

bucket may in fact contain items older than the

last N. Each bucket maintains the necessary statistics

for the items it contains. For instance, a bucket con-

taining the items as,as+1,...,at would hold the Lp-sketch

for those items. (Due to memory constraints, the

bucket cannot actually maintain the values of all the

items it holds.)

2846S Stream Similarity Mining
As new items come in, the algorithm merges old

buckets to maintain the histogram structure, creating

new buckets only for newly encountered items. The

last bucket will eventually contain only items that do

not appear in the N most recent, and will be removed

from the histogram at this time. Datar et al. observe

that the additional error in this windowed model,

beyond that of the standard model, comes from the

fact that the last bucket may contain items that are no

longer in the N-item window. But the structure of the

exponential histogram ensures that this error is not too

large. Hence, they provide a general method for trans-

lating a wide range of datastream algorithms into win-

dowed-datastream algorithms.

Datar andMuthukrishnan [9] study the problem of

approximating the Jaccard similarity of two streams in

the sliding window model. As in the non-windowed

version, they use min-hashing as a primary tool. The

main complication in the sliding window model is that

maintaining the minimum value over a sliding window

is hard. At a given time step t, the algorithm needs to

know the value mini=t,...,t�N+1{pj(ai)}, where pj is a

permutation chosen by the datastream algorithm in

the standard model. Their solution is to maintain the

value pj(ai) for every relevanti = t,...,t � N + 1. For

instance, if pj(ai) > pj(ai+s) for some s > 0, then the

value pj(ai) will never be the minimum over the sliding

window at any time; hence, it may be discarded. (Here,

item ai occurs earlier than ai+s, thus item ai will move

out of the window before ai+s.) Amazingly, with high

probability, the number of relevant values that need to

be maintained is at most O(log n). Hence, the standard

datastream algorithm can be adapted to the sliding

window model, using small space.

Lower Bounds for Stream Distance

The major technique for proving lower bounds utilize

reductions from communication complexity. Here,

only sketches of the very high level ideas are presented,

with some of the main results cited.

An often-used communication complexity prob-

lem is DISJOINTNESS: Alice is given a set, A, and Bob is

given a set, B. Neither knows what the other set is. They

must communicate with each other by sending mes-

sages back and forth, until they decide whether A \ B is

nonempty. (They are allowed to decide ahead of time

the protocol they will use to communicate messages.)

It has been shown that if the size of A and B is y(n), the
communication complexity (i.e., the number of bits
that must be communicated in the worst case) is also at

least y(n) [14].
A datastream algorithm that calculates the distance

between two streams can provide the basis for a commu-

nication complexity algorithm. A typical reduction gives

a method for Alice to transform her set A into a data-

stream (without looking at set B). Likewise, the reduc-

tion gives a method for Bob to transform B into a

datastream, without looking at A. Finally, the reduc-

tion guarantees that Alice’s datastream and Bob’s data-

stream are close if and only if A \ B is non-empty. Then

Alice can begin running the datastream algorithm on

her datastream. When it has processed her stream, the

algorithm will have some memory bits indicating its

current state. Alice sends a message to Bob, telling him

that state. Bob can then finish running the datastream

algorithm on his own datastream. If the algorithm indi-

cates that the two streams are close, he knows A \ B is

nonempty; otherwise, he knows that A \ B = (andmay

communicate this to Alice in one bit). Hence,

Alice and Bob have solved their communication com-

plexity problem. Since the original communication

complexity problem took at least y(n) bits, the data-

stream algorithm must also use at least this much

memory. (In this case, showing that it cannot be

space efficient.)

There is, of course, a great deal of technical work in

providing the proper reductions; the difficulties are

even greater when showing lower bounds for approx-

imations. However, building on these ideas, Saks and

Sun [15] show that approximating the L1 distance

between two datastreams is impossible to do in sub-

linear space. In fact, their work shows that approximat-

ing within factor nO(e) the Lp distance for any p� 2 + e
requires space at least nO(e). For p close to 2, this

has very little practical implications, but the bounds

become more meaningful for large p. Much simpler

reductions show the impossibility of space-efficient

datastream algorithms for approximating the length

of the longest common subsequence between two data-

streams (viewed as sequences).

Key Applications

Tracking Change in Network Traffic

The datastream algorithms outlined above allow one to

take an entire day of network traffic and synopsize it

using a small sketch. It is then possible to measure how

different traffic is from day-to-day. Large changes in

Streaming Applications S 2847
the network traffic can signal denial of service attacks

or worm infestations.

Query Optimization

Most query-optimization techniques utilize data sta-

tistics to produce better plans. The L2 norm is a useful

measure for approximating join sizes, while the L0
norm gives the number of distinct items in the stream.

Processing Genetic Data

Since genetic data consists of millions or billions of

base pairs for an individual, it is useful to think of them

as streams of data. The similarity of two base-pair

sequences is a fundamental concept.

Data Mining

Often individual entities are represented by massive

streams of data (e.g., phone calls from a large company,

or IP addresses of users visiting a given web site, or

items bought at a grocery store). Estimating the simi-

larity between these streams can be a useful tool for

identifying similar entities. As one example, it is possi-

ble to determine which web sites are most similar to

each other, based on the IP addresses of their visitors.
S

Cross-references
▶Approximation and Data Reduction Techniques

▶ Stream Data Management

▶ Stream Mining

Recommended Reading
1. Alon N., Gibbons P., Matias Y., and Szegedy M. Tracking join

and self-join sizes in limited storage. In Proc. 18th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1999, pp. 10–20.

2. Alon N., Matias Y., and Szegedy M. The space complexity of

approximating the frequency moments. In Proc. 28th ACM

Symp. on Theory of Computing, 1996, pp. 20–29.

3. Broder A., Charikar M., Frieze A., and Mitzenmacher M. Min-

wise independent permutations. In Proc. of the 30th ACM

Symp. on Theory of Computing, 1998, pp. 327–336.

4. Chambers J.M., Mallows C.L., and Stuck B.W. A method for

simulating stable random variables. J. Am. Stat. Assoc.,

71:340–344, 1976.

5. Cohen E. Size-estimation framework with applications to tran-

sitive closure and reachability. J. Comput. Syst. Sci., 55:441–453,

1997.

6. Cohen E., Datar M., Fujiwara S., Gionis A., Indyk P.,

Motwani R., and Ullman J. Finding interesting associations

without support pruning. In Proc. 16th International Conf. on

Data Engineering, 2000.
7. Cormode G., Datar M., Indyk P., and Muthukrishnan S. Com-

paring data streams using hamming norms. In Proc. 28th Int.

Conf. on Very Large Data Bases, 2002, pp. 335–345.

8. Datar M., Gionis A., Indyk P., and Motwani R. Maintaining

stream statistics over sliding windows. In Proc. 13th Annual

ACM-SIAM Symp. on Discrete Algorithms, 2002, pp. 635–644.

9. Datar M. and Muthukrishnan S. Estimating rarity and similarity

on data stream windows. In Proc. 10th European Symp. on

Algorithms, 2002.

10. Feigenbaum J., Kannan S., Strauss M., and Viswanathan M. An

approximate l1-difference algorithm for massive data streams. In

Proc. 40th Annual Symp. on Foundations of Computer Science,

1999.

11. Flajolet P. and Martin G. Probabilistic counting. In Proc. 24th

Annual Symp. on Foundations of Computer Science, 1983, pp.

76–82.

12. Indyk P. Stable distributions, pseudorandom generators, embed-

dings and data stream computation. In Proc. 41st Annual Symp.

on Foundations of Computer Science, 2000, pp. 189–197.

13. Indyk P. A small approximately min-wise independent family of

hash functions. J. Algorithm., 38:84–90, 2001.

14. On the distributional complexity of disjointness. J. Comput. Sci.

Syst., 2, 1984.

15. Saks M. and Sun X. The space complexity of approximating the

frequency moments. In Proc. 34th ACM Symp. on Theory of

Computing, 2002.
Streaming Algorithm

▶One-Pass Algorithm
Streaming Applications

YANIF AHMAD, UĜUR ÇETINTEMEL

Brown University, Providence, RI, USA

Synonyms
Stream-oriented applications; Continuous query

processing applications

Definition
Streaming applications typically involve the processing

of continuous data streams for the purposes of filter-

ing, aggregation, correlation, transformation, pattern

matching and discovery, and domain-specific tempo-

ral analytics. These applications often require such

continuous processing to be performed with both

high throughput and low latency, and are able to

2848S Streaming Database Systems
tolerate approximate results and forego some of the

persistence requirements of standard database transac-

tion processing applications.
Key Points
A large fraction of streaming applications are moni-

toring oriented: they involve the tracking of events or

activities to identify and act upon situations (or pat-

terns) of interest, either manually or automatically.

This so-called ‘‘sense and respond’’ model requires

query results to be generated in real-time (meaning

low latency) as results lose their utility over time. As

such, persistence of all the input data is often not an

application requirement, unlike in traditional database

applications. Thus, most input data can be simply dis-

carded or, alternatively, asynchronously recorded for

archival needs. As on-line data sources proliferate and

consolidate, streaming applications need to deal with

increasingly higher volume streams, which makes real-

timeoperation especially challenging.

A flagship stream processing application is auto-

mated trading, which continually watches market

streams (bids and asks) from financial feed providers

(e.g., Reuters), evaluating sophisticated real-time pat-

terns over them to identify arbitrage opportunities and

automatically act on them. For automated trading, the

desired processing latencies are in milliseconds (and

continually decreasing) and the estimated peak input

data rates are in 170,000 messages/s (as of July 2006),

with rates roughly doubling every year [1]. Network

monitoring is another application that has stringent

real-time response needs under high data volumes:

network elements (e.g., routers, gateways) are instru-

mented to log, summarize and forward traffic data,

which is then analyzed to identify and automatically

respond to online security attacks (e.g., denial of ser-

vice attacks) and QoS problems (e.g., SLA violations).

Another early streaming application is event detection

in MMORPGs, where the virtual game world is con-

tinually monitored to identify oddities, semantic bugs

and cheats.

Overall, streaming applications abound in various

verticals including:

� Financial services: automated trading, market feed

processing (cleaning, smoothing, and translation),

smart order routing, real-time risk management

and compliance (MiFID, RegNMS)
� Government and military: surveillance, intrusion

detection and infrastructure monitoring, battlefield

command and control

� Telecommunications: network management, quality

of service (QoS)/service level agreement (SLA)

management, fraud detection

� Web/E-business: click-stream analysis, real-time

customer experience management (CEM)

� Entertainment: online gaming (online cheat, bug

detection)

� Retail and logistics: automated supply-chain

management

� Healthcare: patient monitoring

� Energy: power-grid/pipeline monitoring and

control

Cross-references
▶Data Stream Management Architectures and

Prototypes

▶ Stream-oriented Query Languages and Operators

Recommended Reading
1. Options Price Reporting Authority (OPRA) Traffic Projections,

http://www.opradata.com/specs/projections_2005_2006.pdf
Streaming Database Systems

▶ Event Driven Architecture
Stream-Oriented Applications

▶ Streaming Applications
Stream-Oriented Query Languages
and Operators

MITCH CHERNIACK
1, STAN ZDONIK

2

1Brandeis University, Wattham, MA, USA
2Brown University, Providence, RI, USA

Synonyms
Continuous query languages

Stream-Oriented Query Languages and Operators S 2849

S

Definition
Many research prototypes and commercial products

have emerged in the new area of stream processing.

All of these systems support a language for specifying

queries. A fundamental difference between a stream

query language and a conventional query language

like SQL is that stream queries are not one-time com-

putations, but rather, they continue to produce answers

as new tuples arrive on one or more input streams.

Thus, queries are registered with the system and answers

continue to evolve over time. This new assumption is

crucial to understanding some of the technical differ-

ences that arise in stream query languages.

Most stream query languages try to extend SQL in

one way or another. The form of these extensions can

be either a purely textual extension of SQL or GUI,

through which users can construct dataflow diagrams

that connect extended versions of relational operators.

These days, many systems provide both.

The most fundamental addition to a stream query

language over their relational counterparts is the no-

tion of a window. Windows produce finite structures

(i.e., tables) from infinite structures (i.e., streams).

Much of the technical detail of a streaming data

model revolves around the specifics of how windows

are formed. This will be discussed in detail below.

One of the biggest technical challenges in the im-

plementation of such a stream query language is the

ability to produce answers with minimum latency.

The latency requirement is a reaction to the kinds of

applications that stream processing was invented to

address. In broad terms, these applications have to

do with monitoring conditions on the input streams.

Typically, in this setting, the value of the answer decays

quickly.

The main thrust of this article is on the technical

choices that must be faced by anyone who designs a

stream query language. The main concepts with exam-

ples from major systems will be illustrated. There are

also many related technologies and associated lan-

guages (e.g., XML streams, temporal databases, active

databases) that are not discussed in this article. The

focus is on extensions to the relational model and

relational languages (e.g., relational algebra, SQL)

that incorporate streams.

Historical Background
There has been significant work on stream query lan-

guages in the past. The academic languages include:
CQL [3,10] (from the STREAM project out of

Stanford),

SQuAl [1,6] (from the Aurora/Borealis project out

of Brandeis, Brown and MIT), and

ESL [4,13] (from the Atlas project out of UCLA).

The commercial languages include:

StreamSQL [11] (from Streambase),

CCL [9] (from Coral8),

EQL [7] (from Esper), and

StreaQuel [5,8] (from Truviso).

The commercial stream query languages are, in many

cases, derived from the academic languages; StreamSQL

is derived from SQuAl and CQL, CCL is derived from

CQL, and StreaQuel is derived from a language of the

same name from the Telegraph CQ project out of UC

Berkeley. The material from which information about

these languages was gleaned is listed at the end. Especially

in the case of commercial languages, published documen-

tation on these languages is sometimes incomplete. Thus,

there may be omissions in the descriptions of the features

of these languages that follow. For example, documenta-

tion on StreaQuel is especially scant and so the descrip-

tion for this language is likely to be incomplete.

Foundations
Stream query languages (both academic and commer-

cial) primarily differ in how they approach the most

fundamental requirements of stream processing. These

requirements include:

1. Language Closure: Are the language’s operators

closed under streams? Or does the language sup-

port operators that convert streams to relations

and/or relations to streams? The approach a lan-

guage takes to closure reveals a lot about how

tightly integrated is the language with a relational

query language such as SQL.

2. Windowing: Does the language support first-class

windows? (I.e., are windows namable, sharable and

queryable?). Or are windows internal to the defini-

tion of stateful operations. And what kinds of

windows can be expressed in the language?

3. Correlation: Does the language provide a way to

correlate tuples (events) arriving on a stream with

historical data, and with tuples arriving on a sepa-

rate stream?

4. Pattern Matching: Does the language have a way to

identify interesting subsequences of tuples on one

or more streams?

2850S Stream-Oriented Query Languages and Operators
Language Closure: The simplicity of the relational alge-

bra/calculus is largely due to the closure property that

says that all inputs and outputs of relational queries are

relations. Beyond simplifying the type system, closure

also ensures that the output of any one query can be

input to another.

The various stream query languages compared here

approach closure in one of two ways. Languages such

as SQuAl and EQL define a language that is closed

under streams. That is, every operator in these two

languages accepts one or more streams as input and

produces streams as output. (SQuAl includes two

operators that have the side-effect of accessing a rela-

tion (WRITESQL and READSQL), but both return

stream outputs.) The other languages in this list

include both streams and relations in their type system.

For example, CQL includes no stream-to-stream

operations. Instead, operation on a stream demands

that it first be converted into a relation (via window-

ing). Thereafter, all query operations are relation-

to-relation operations as in SQL. If the desired result

is a stream, the specialized operators ISTREAM,

DSTREAM and RSTREAM produce stream outputs

from relational inputs by (essentially) returning the

log of changes to the relations in the order in which

they occur. The other languages in this list (StreamSQL,

CCL and StreaQuel) largely follow the CQL model,

except that queries in these languages that contain

exactly one unwindowed stream in the FROM clause

are considered to be stream-to-stream. For example, in

these languages, the query,

SELECT *

FROM S

WHERE p

returns a stream if S is a stream. In CQL, this query is

assumed to be a syntactic shorthand for,

SELECT ISTREAM *

FROM S [1]

WHERE p

and thus also returns a stream, but only as a result of

first windowing S into a relation (see the subsection

below on windowing) and then converting the result

back into a stream.

Many of the query languages that include both

relations and streams in their data model also define

query operations that produce relations from streams

and streams from relations. As mentioned previously,
CQL produces streams from relations using windows,

and the specialized operations ISTREAM, DSTREAM

and RSTREAM produce relations from streams.

StreamSQL, CCL and StreaQuel all include additional

operations for producing relations from windows

(INSERT, UPDATE and DELETE), which update pre-

specified relations with the arrival of each tuple on a

stream in the same way that the equivalent SQL opera-

tions update a relation with an individual tuple. Strea-

Quel and StreamSQL also support ISTREAM and

DSTREAM (and in the case of StreaQuel, RSTREAM)

operations that produce streams from relations, as in

CQL. No such operations are described in the publicly

available literature on CCL as of the time of this

writing.

Table 1 summarizes the closure properties of the

academic and commercial languages studied in this

report, as well as the operations the languages support

(if any) for producing relations from streams and

streams from relations. Note that all stream languages

support windowing as a means of producing a rela-

tion from a stream. However, some of these lan-

guages (e.g., SQuAl, ESL, EQL) are still considered

to be closed under streams because their window

definitions are internal to the query’s operation and

not output.

Windowing: All stream query languages have some

form of windowing to convert infinite streams into

automatically maintained, time-varying relations. But

different query languages vary in whether they support

first-class windows, and in terms of the features of

window definition that they support. Table 2 sum-

marizes how various stream query languages support

windows.

A first-class window is a window that can be

named, shared and independently queries. Put simply,

a query language supports first-class windows allows a

window to be named and defined as the result of

a statement in the query language, and subsequent

queries can then access this window. Windows are

not first-class if they are defined as part of a query,

but are not visible outside of the execution of that

query. First-class windows are typically supported in

query languages that are closed under both streams and

relations (i.e., CQL, StreamSQL, CCL and StreaQuel).

Languages such as SQuAl, EQL and ESL that are closed

under streams define windows internally within queries.

All windows are characterized as having a certain

size, and advancing in some way (i.e., adding new

Stream-Oriented Query Languages and Operators. Table 2. Windowing support in stream query languages

Features
First-
class

Windows (sizing)
Windows

(movement)
Windows (other

features)

Row-
based

Time-
based

Value-
based Sliding Tumbling Sampling Top-K Landmark

Academic
Languages

CQL
(STREAM)

Yes Yes Yes No Yes Yes X%
SAMPLE

- -

SQuAl
(Aurora)

No Yes Yes Yes Yes Yes RESAMPLE BSORT -

ESL (Atlas) No Yes Yes No Yes Yes Definable
with
UDA’s

Definable
with UDA’s

Definable
with UDA’s

Commercial
Languages

StreamSQL
(Streambase)

Yes Yes Yes Yes Yes Yes - EVICT MIN/
MAX

-

CCL (Coral8) Yes Yes Yes No Yes Yes - KEEP
LARGEST/
SMALLEST

Yes (KEEP
FOR
DURATION)

EQL (Esper) No Yes Yes No Yes Yes - - -

StreaQuel
(Truviso)

Yes Yes Yes No Yes Yes ? ? Yes

Stream-Oriented Query Languages and Operators. Table 1. Closure properties of stream query languages

Features
Closed
under

Operations

Stream-to-stream Stream-to-relation
Relation-to-

stream

Academic
Languages

CQL (STREAM) Streams,
Relations

No, but many queries assume use
of ISTREAM

Windows ISTREAM,
DSTREAM,
RSTREAM

SQuAl (Aurora) Streams Default Windows, WRITESQL READSQL

ESL (Atlas) Streams Default Windows -

Commercial
Languages

StreamSQL
(Streambase)

Streams,
Relations

All queries with unwindowed
stream in FROM clause

Windows, INSERT,
UPDATE, DELETE

ISTREAM,
DSTREAM

CCL (Coral8) Streams,
Relations

All queries with unwindowed
stream in FROM clause

Windows, INSERT,
UPDATE, DELETE

-

EQL (Esper) Streams Default Windows -

StreaQuel
(Truviso)

Streams,
Relations

Default (from implicit use of
ISTREAM and RSTREAM)

Windows, Active
Tables

?

Stream-Oriented Query Languages and Operators S 2851

S

tuples and deleting old ones as new tuples arrive on a

stream). Though each language has its own syntax for

specifying how to size and advance a window, all of the

languages discussed looked at support windows whose

size is ‘‘row-based’’ (i.e., defined by the number of

tuples contained in the window) or ‘‘time-based’’

(i.e., defined by the maximum time interval between

any two tuples in the window). SQuAl and StreamSQL
also support ‘‘value-based’’ windows over streams

whose tuples are known to arrive in ascending order

on some data field of the tuple. Value-based windows

specify the maximum difference in value of that attri-

bute between tuples in the same window. All languages

studied in this article looked at support sliding by

some query-specified amount (expressed in number

of tuples, increment in time, or (in the case of SQuAl

2852S Stream-Oriented Query Languages and Operators
and StreamSQL), increment in value of the attribute

over which the windowed stream is ordered. As well, all

of the languages discussed here support ‘‘tumbling

windows,’’ which are windows that contain tuples

that belong to exactly one window.

The last 3 columns of Table 2 show some of the

window properties that are supported by some but not

all of the query languages discussed here. For example,

both CQL and SQuAl support a form of sampling

to determine the contents of a window. In the case of

CQL, a window defined with SAMPLE will consist of a

subset of the most items that have arrived on the

windowed stream. In the case of SQuAl, a window

defined with RESAMPLE will use interpolation with

a user-supplied function to fill-in missing values

from the windowed stream. SQuAl, StreamSQL and

CCL all support ‘‘top-k’’ (or ‘‘bottom-k’’) windows,

which at any point in time, contain those tuples that

have arrived on the windowed stream that have the

maximum (minimum) values of some specified attri-

bute. And CCL and StreaQuel both support ‘‘Landmark

Windows’’; so-named because these are windows which

are fixed at the start-point with an end-point that

advances as tuples arrive on the windowed stream.

ESL has expressive user-defined aggregate support

whereby aggregates are defined with SQL statements

on an internal table that specify how to initialize, incre-

ment and return a final result, and this mechanism

could be used to specify each of the window types

described here.
Stream-Oriented Query Languages and Operators. Table 3

Features Stream-to

Academic
Languages

CQL
(STREAM)

No, but relation-to-relation corr
most recent tuples in stream (N

SQuAl
(Aurora)

READSQL

ESL (Atlas) JOIN with Stream, Relation in FR

Commercial
Languages

StreamSQL
(Streambase)

JOIN with Stream, Relation in FR

CCL (Coral8) JOIN with Stream, Relation in FR

EQL (Esper) JOIN with Stream, Relation in FR

StreaQuel
(Truviso)

JOIN with Stream, Relation in FR
Correlation: A key component of any stream query

language is its support for correlating tuples appearing

on a stream with either a repository of historical data,

or with the tuples appearing on another stream.

As Table 3 shows, all of the query languages studied

here support both forms of correlation, though in

different ways.

The correlation of a tuples on a stream with histor-

ical data are expressed in most languages by allowing

exactly one stream to appear in a stream query’s FROM

clause. Then, either periodically (e.g., CQL) or upon

the arrival of each tuple on this stream (e.g.,

StreamSQL), the query is reevaluated using the tuple(s)

that have arrived on the stream since the last time the

query was evaluated. ESL, StreamSQL, CCL, EQL and

StreaQuel all allow FROM clauses to include one

unwindowed stream for this purpose. A CQL query

containing one unwindowed stream implicitly win-

dows that stream using the ‘‘NOW’’ size directive,

which says to create a window with all tuples that

have arrived on the stream since the last time when

all queries were reevaluated. Thus, the FROM clause

of a CQL query always consists solely of relations

including those resulting from windowing streams.

SQuAl, which has a graphical rather than SQL-like

notation, uses the operation, READSQL to correlate

stream data with historical data.

Most query languages correlate the tuples on two

streams by first windowing at least one (or in case of

CQL, both) of the streams. The resulting query then is
. Correlation support in stream query languages

Correlation

-relation Stream-to-stream

elation with window on
OW) often has same effect

Must window both
streams

JOIN

OM Clause Must window one of the
streams

OM Clause Must window one of the
streams

OM Clause Must window one of the
streams

OM Clause Must window one of the
streams

OM Clause Must window one of the
streams

Stream-Oriented Query Languages and Operators. Table 4. Pattern matching support in stream query languages

Features

Pattern matching

Multi-stream Regular expression

Academic Languages CQL (STREAM) - -

SQuAl (Aurora) - -

ESL (Atlas) - -

Commercial Languages StreamSQL (Streambase) Yes (MATCH) Yes (PATTERN)

CCL (Coral8) Yes (MATCHING) No

EQL (Esper) Yes (PATTERN) Yes (PATTERN)

StreaQuel (Truviso) Yes (EVENT clause) Simple (A B C)

Stream-Oriented Query Languages and Operators S 2853

S

either a join of two relations as in SQL, or a join of an

unwindowed stream with a relation as described in the

previous paragraph. StreamSQL also has a GATHER

operation which performs key matching to match each

tuple on an input stream with the single tuple it

matches on each of the other input streams.

Pattern Matching: Pattern matching is a relatively

new addition to stream query languages, and is only

supported in the commercial languages examined in

this study (though there exist some work in the aca-

demic literature on pattern matching on streams such

as [12]). Pattern matching in stream query languages

can take one of two forms:

Multi-stream pattern matching resembles joins

between streams in that it correlates tuples appearing

on separate streams according to the order in which

they arrive. For example, this form of pattern matching

might identify all cases where a particular stock

received a bid quote (on a BIDS stream) without a

corresponding ask quote (on an ASKS stream) within

some specified time period. All of the commercial

stream query languages examined here (StreamSQL,

CCL, EQL and StreaQuel) support this form of pattern

matching.

Single-stream pattern matching looks for a se-

quence pattern of tuples arriving on a single stream,

and typically uses a rich pattern matching language

based on regular expressions to express desired patterns.

For example, this form of pattern matching might iden-

tify all sequence of quotes for a particular company that

resulted in an ‘‘M-pattern’’ whereby the stock’s price

rises for a time, then falls, then rises again and then

falls again [2]. This form of pattern matching is part of a

general SQL standard proposal put forth by Streambase,

Oracle and IBM, and documented in [13].
A summary of each query language’s support for

pattern matching is shown in Table 4.

In short, while there are several query languages for

streams with both academic and commercial roots,

these languages share much in common that identify

the crucial requirements of stream processing. Specifi-

cally, all of these languages are closed either under

streams, or under streams and relations; all have

some notion of windowing to convert streams to rela-

tions; all provide ways to correlate tuples on a stream

with both historical data and tuples on other streams,

and all commercial languages support some form of

pattern matching to identify interesting subsequences

of tuples from one or more streams.
Key Applications
The applications of stream processing revolve around

low-latency monitoring of physical or virtual items or

events of interest. Examples include automated trad-

ing, network security monitoring, and event detection

in massively multiplayer on-line games.
Cross-references
▶Continuous Query

▶Data Stream

▶ Event and Pattern Detection over Streams

▶ Punctuations

▶ Stream Processing

▶Windows

Recommended Reading
1. Abadi D., Carney D., Cetintemel U., Cherniack M., Convey C.,

Lee S., Stonebraker M., Tatbul N., and Zdonik S. Aurora: a new

model and architecture for data stream management. VLDB J.,

12(2):120–139, 2003.

2854S Strong Consistency Models for Replicated Data
2. Anon.s Pattern matching in sequences of rows. SQL Stan-

dard Proposal, http://asktom.oracle.com/tkyte/row-pattern-

recogniton-11-public.pdf, March, 2007.

3. Arvind A., Shivnath B., and Jennifer W. The CQL continuous

query language: semantic foundations and query execution.

VLDB J., 15(2):121–142, 2006.

4. Bai Y, Thakkar H., Luo C., Wang H., and Zaniolo C. A data

stream language and system designed for power and extensi-

bility. In Proc. Int. Conf. on Information and Knowledge

Management, 2006, pp. 337–346.

5. Chandrasekaran S. and Franklin M. Streaming queries over

streaming data. In Proc. 28th Int. Conf. on Very Large Data

Bases, 2002, pp. 203–214.

6. Cherniack M. SQuAl: The Aurora [S]tream [Qu]ery [Al]gebra,

Technical Reprt, Brandeis University, 2003.

7. Codehaus.org, Esper online documentation set, http://esper.

codehaus.org/tutorials/tutorials.html, 2007.

8. Conway N. An introduction to data stream query processing.

Slides from a talk given onMay 24, 2007, http://www.pgcon.org/

2007/schedule/attachments/17-stream_intro.pdf, 2007.

9. Coral8 Systems, Coral8 CCL Reference Version 5.1, http://www.

coral8.com/system/files/assets/pdf/current/Coral8CclReference.

pdf, 2007.

10. Jennifer W. CQL: a language for continuous queries over streams

and relations. Slides from a talk given at the Database Program-

ming Language (DBPL) Workshop, Potsdam, Germany, 2003.

http://www-db.stanford.edu/~widom/cql-talk.pdf

11. Streambase Systems, StreamSQL online documentation set,

http://streambase.com/developers/docs/latest/streamsql/index.

html, 2007.

12. Wu E., Diao Y., and Rizvi S. High-performance complex event

processing over streams. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2006, pp. 407–418.

13. Zaniolo C., Luo C., Wang H., Bai Y., and Thakkar H. An

Introduction to the Expressive Stream Language (ESL), Techni-

cal Report, UCLA.
Strong Consistency Models for
Replicated Data

ALAN FEKETE

University of Sydney, Sydney, NSW, Australia

Synonyms
Strong memory consistency; Copy transparency

Definition
If a distributed database system keeps several copies

or replicas for a data item, at different sites, then a

replica control protocol determines how the replicas

are accessed. Some replica control protocols ensure

that clients never become aware that the data are repli-

cated. In other words, the system provides the
transparent illusion of an unreplicated database. Such

a system is described as offering a strong consistency

model. 1-copy-serializability (q.v.) is the best-known

strong consistency model.

Historical Background
Early work in the 1970s investigated a range of repli-

ca control mechanisms, usually with the intention of

providing transparent serializability. In the early 1980s,

Bernstein and colleagues formalized the concept of

1-copy-serialiability as a consistency model [1], with a

careful proof technique [2] like that for single-site serial-

izability.Herlihy[8]extendedtheseideastoreplicatingdata

typeswithgeneral operations (not just read andwrite).

1996 marked the seminal paper by Gray et al. who

used some simple performance models to show the

scalability barriers for different system designs [7].

This inspired research on ways to gain 1-copy serial-

izability within a lazy single-master replica control,

through restrictions on the placement of copies, and/

or the ordering of update propagation [3,4].

Since 2000, the prevalence of DBMS platforms with

Snapshot Isolation concurrency control led to research

on replication for these, especially by groups of research-

ers centered on Alonso and Kemme. The concept of

1-copy-SI was defined [10], and a proof theory was

developed [9]. Variant consistency models were defined

by considering different session properties [5,6].

Foundations
A major theme in the development of distributed

databases has been transparency, that is, the clients

should not have to change if they interact with a

distributed system rather than a traditional, single-

site database. Transparency applies to many aspects:

table naming should be the same as for a single DBMS,

queries should not need rewriting even if data is frag-

mented between sites, etc. The shift from a single-site

system to a replicated one should be seen in better

quality of service, but not in altered functionality.

Since a single-site database has only one copy of each

data item, a transparently replicated system will pro-

vide clients with the illusion of a single copy, hiding all

evidence of the replication. A scheme for replica con-

trol (q.v.) that does this can be described as providing a

strong consistency model. Other replica control

mechanisms do not hide the fact of replication.

There are in fact several variants among strong

consistency models, because there are several different

Strong Consistency Models for Replicated Data S 2855

S

isolation models used by different DBMS platforms,

and because the formal definition of isolation doesn’t

always capture exactly the properties of an implemen-

tation. The next paragraphs describe the main strong

consistency models that have been proposed for repli-

cated data.

Replicated Serializability. The theory of concurrency

control has an established notion of correct functio-

nality for ACID transactions in a single-site DBMS:

serializability (q.v.). This is defined by having execution

equivalent to a serial (i.e., batch, non-overlapped) exe-

cution of the same transactions. When a replicated

database gives to clients the transparent appearance of

a single-site system with serializable transactions,

one says that the replica consistency model is 1-copy-

serializability (q.v.). That is, the operations of the trans-

actions are indistinguishable from what happens if

they are run serially in a database with only one site.

To illustrate the consistency model, consider a data-

base with two logical items, x and y representing re-

spectively the balance in the checking and savings bank

accounts for a single customer. There is a single client

C which submits two transactions. One client transac-

tion T1,C is a transfer of two units of funds from y to x,

and T2,C is a transaction to display the status of the

customer’s finances. Initial values are x = 10 and y = 20.

In (1) below is a sequence of events that might

happen in a system with two sites A and B, using an

eager locking-based read-one-write-all replica control.

Notice how each client-submitted transaction has sub-

transactions at the local sites A and B; T1,C reads both

items at site A, and then updates replicas at both sites;

while T2,C reads the replica xA and the replica yB. The

notation that is used in this and later examples is to

indicate the event where a value 5 is written to the local

replica of item x at site A, as part of transaction T1, by

w1[x
A,5]. Here the subscript on the event type indicates

the transaction involved, and the superscript on the

item name indicates the site of the replica which is

affected. The event where a client C running transac-

tion T3 has requested a read of the logical data item y,

and the value 6 is returned, will be represented by

r3,C[y,6]. Note there is no superscript on the item

since this is the client’s view. Many consistency models

need to refer to where transactions start and finish, so

one also has events like b3, C for the start of transaction

T3 at client C, or c3, C for the commit of that transac-

tion by the client, or indeed c3
A for the commit of the

local subtransaction of T3 which is running at site A.
b1;C b
A
1 r1½xA; 10
 r1;C ½x; 10
 b2;C bA2 r1½yA; 20

r1;C ½y; 20
w1½xA; 12
 bB1 w1½xB; 12
w1;C ½x; 12

w1½yA; 18
w1½yB; 18
w1;C ½y; 18
 cA1 r2½xA; 12

r2;C ½x; 12
bB2 cB1 c1;C r2½yB; 18

r2;C ½y; 18
 cA2 cB2 c2;C ð1Þ

When one hides the internal details (the events at the

replicas), and only considers what the client sees, the

relevant event sequence is

b1;C r1;C ½x; 10
 b2;C r1;C ½y; 20
w1;C ½x; 12

w1;C ½y; 18
 r2;C ½x; 12
 c1;C r2;C ½y; 18
 c2;C ð2Þ

This sequence is 1-copy-serializable, because the client

sees the same as in a serial execution on a single-site

DBMS, in the order T1,C then T2,C.

Here is a sequence that might occur in a system

where site A is the primary or master site, where all

updates are initially done, and site B has secondary

replicas which are updated through copier transactions

that lazily apply the write sets of any update transaction.

The copier that transmits values produced by T1, C from

site A to site B will be denoted by T�
B; notice that in

contrast to T1
B in the eager system modeled previously,

T�
B is not a subtransaction of any global client-submit-

ted transaction but instead it can commit independently.

b1;C b
A
1 r1½xA; 10
 r1;C ½x; 10
 r1½yA; 20
 r1;C ½y; 20

w1½xA; 12
w1;C ½x; 12
w1½yA; 18

w1;C ½y; 18
 cA1 c1;Cb2;C
bB2 r2½xB; 10
 r2;C ½x; 10
 r2½yB; 20
 r2;C ½y; 20
 cB2
c2;C b

B
� w�½xB; 12
w�½yB; 18
 cB� ð3Þ

Again hiding the internal details, and considering only

what the client sees, it is

b1;C r1;C ½x; 10
 r1;C ½y; 20
w1;C ½x; 12

w1;C ½y; 18
 c1;C
b2;C r2;C ½x; 10
 r2;C ½y; 20
 c2;C ð4Þ

This sequence is also 1-copy-serializable, since the

values read are what could happen with an unrepli-

cated system running the transactions serially in the

order T2,C then T1,C.

There is a detailed theory that allows one to

prove that this property holds for schedules of certain

read-one-write-all replica control mechanisms.

Session properties. The sequence of events shown in

sequence (4) is indeed something that could happen

2856S Strong Consistency Models for Replicated Data
according to the definition of serializable execution in

a single-site DBMS, but it would never happen in a

single site DBMS that used a concurrency control

mechanism like two-phase locking. It might be very

disturbing to be a client, who submits a transfer trans-

action T1,C, learns that the transfer succeeded, and then

uses T2,C to check the status of their accounts and is

told that the initial balances are still unchanged. In the

definition of serializability, it is enough that there

exists some way to order the transactions and perform

them serially; but in DBMS products, the concurrency

control makes sure that the apparent serial order does

not rearrange transactions unless they are actually

concurrent (that is, unless they overlap). Any single-

site system will not allow a situation where T1,C has

completed, and then T2,C starts, but the apparent serial

order has an inversion of the transaction order, with

T2,C coming first. Thus it is often proposed to have

explicit session properties [11] in a consistency model,

to require that the apparentorderhavesomerelationship

towhatreallyhappened.Avery restrictive sessionrequire-

ment is external consistency; this means that whenever

Ti,C completes before Tj,D starts, then the apparent

serial order must contain Ti,C ahead of Tj,D. A less

restrictive property is session consistency, which says

that the apparent order must not rearrange transac-

tions from the same client, where one completes before

the other starts. That is, whenever Ti,C completes be-

fore Tk,C starts, then the apparent serial order must

contain Ti,C ahead of Tk,C. But session consistency says

nothing about the serialization order of Ti,C and Tj,D

where C 6¼ D.

Replicated Snapshot Isolation. Several prominent

single-site DBMS platforms provide isolation for

transactions using a multiversion mechanism called

Snapshot Isolation. This does not have exactly the

properties of Serializability, but it avoids most of the

known bad concurrency problems, and it seems to

satisfy most application programmers. The key to this

isolation level is that when a transaction reads an item,

it sees the value which reflects all writes by other

transactions which committed before the reading

transaction started, but it does not see any effects of

concurrent transactions.

When replicating data stored in platforms that

offer Snapshot Isolation, a natural strong consistency

model is to transparently appear like an unreplicated

system running on the same sort of platform. This is
the consistency model known as ‘‘1-copy-SI’’ [10].

Here is an example with concurrent client transactions

T3,C and T4,D, each of which reads two logical data

items and increments one of them. The sequence (5)

is something that a client could see in 1-copy-SI, but

not in a system offering 1-copy-serializable consistency,

because the values read are not the same as the serial

order T3,C then T4,D (where T4,D would read y = 21),

nor are they as in T4,D followed by T3,C (where T3,C

would read x = 11).

b4;D r4;D½x; 10
 r4;D½y; 20
 b3;C r3;C ½x; 10

r3;C ½y; 20
w4;D½x; 11
w3;C ½y; 21
 c3;C c4;D ð5Þ

As the definition of Snapshot Isolation says that a read

sees the effects of all transactions that commit before

the reader’s transaction started, this definition implic-

itly includes an external consistency session property.

To allow more efficient replica control algorithms,

some researchers have built systems which provide

more permissive consistency models. For example, in

Generalized Snapshot Isolation [6], for each transac-

tion there is a snapshot-time, which could be somewhat

before the transaction starts, and the transaction’s reads

see exactly the effects of those transactions that com-

mitted before the reader’s snapshot-time. This allows the

strange inversions where a client submits a transaction,

learns of its success, and then submits another transac-

tion that does not run in the expected state. Thus, an

intermediate consistency model is Strong Session Snap-

shot Isolation [5], where inversions are allowed between

non-concurrent transactions from different clients, but

the snapshot-time for a transaction must be later than

the commit of any previous transaction submitted by the

same client.
Key Applications
1-copy serializability is most often provided through

eager or synchronous propagation of updates among

machines that are all in a single cluster. Some database

engines provide options for replication internally,

whereas others rely on replication tools that run along

side the DBMS engine. So far, the model of 1-copy

serializability with lazy propagation of updates, or the

model of replicated snapshot isolation, are offered in

research prototypes rather than among commercial

products.

Structure Indexing S 2857

S

Future Directions
The algorithms known for replicated snapshot isola-

tion may be attractive for practical use, since they can

offer substantially higher performance than the algo-

rithms for 1-copy serializability, and since program-

mers seem able to work with snapshot isolation in a

single DBMS. Thus, this strong consistency model will

probably become more widespread in the future.

Cross-references
▶Data Replication

Recommended Reading
1. Attar R., Bernstein P.A., and Goodman N. Site initialization,

recovery, and backup in a distributed database system. IEEE

Trans. Software Eng., 10(6):645–650, 1984.

2. Bernstein P.A. and Goodman N. Serializability theory for repli-

cated databases. J. Comput. Syst. Sci., 31(3):355–374, 1985.

3. Breitbart Y., Komondoor R., Rastogi R., Seshadri S., and Sil-

berschatz A. Update propagation protocols for replicated data-

bases. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1999.

4. Chundi P., Rosenkrantz D.J., and Ravi S.S. Deferred updates and

data placement in distributed databases. In Proc. 12th Int. Conf.

on Data Engineering, 1996, pp. 469–476.

5. Daudjee K. and Salem K. Lazy database replication with snap-

shot isolation. In Proc. 32nd Int. Conf. on Very Large Data

Bases, 2006, pp. 715–726.

6. Elnikety S., Zwaenepoel W., and Pedone F. Database replication

using generalized snapshot isolation. In Proc. 22nd Symp. on

Reliable Distributed Syst., 2005, pp. 73–84.

7. Gray J., Helland P., O’Neil P.E., and Shasha D. The dangers

of replication and a solution. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1996, pp. 173–182.

8. Herlihy M. A quorum-consensus replication method for abstract

data types. ACM Trans. Comput. Syst., 4(1):32–53, 1986.

9. Lin Y., Kemme B., Patiño-Martı́nez M., and Jiménez-Peris R.

Middleware based data replication providing snapshot isolation.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2005, pp. 419–430.

10. Plattner C. and Alonso G. Ganymed: Scalable replication

for transactional web applications. In Proc. ACM/IFIP/USENIX

Int. Middleware Conf., 2004, pp. 155–174.

11. Terry D.B., Demers A.J., Petersen K., Spreitzer M., Theimer M.,

and Welch B.B. Session guarantees for weakly consistent repli-

cated data. In Proc. Int. Conf. on Parallel and Distributed

Information Systems, 1994, pp. 140–149.
Strong Coupling

▶Tight Coupling
Strong Memory Consistency

▶ Strong Consistency Models for Replicated Data
Structural Index

▶ Structure Indexing
Structural Summary

▶ Structure Indexing
Structure Indexing

MARIANO P. CONSENS

University of Toronto, Toronto, ON, Canada

Synonyms
Structural index; Structural summary; Path index;

Dataguide; Synopsis; Sketch

Definition
Structure indexing creates summaries of the structure

present in semi-structured data collections by group-

ing data items with similar structure, providing a

mechanism to index such items. Since semi-structured

data models are commonly represented by labeled

graphs or trees (the XML data model being a prime

example), structural indexes or summaries are natural-

ly described as graphs where nodes represent sets of

data items (called extents), and where edges represent

structural relationships between the corresponding

extents derived from the instance data. A concrete

physical index can be created by selecting appropriate

data structures to store the graph and the extents.

Structure indexing helps to find data items that

satisfy structural constraints in queries by locating

nodes in the structural summary graph that satisfy

the query conditions (expecting far less summary

nodes than data items), and then limiting query evalu-

ation to data items in the relevant extents.

Structural summaries also provide a description of

the structure present in the instance. This is in contrast

2858S Structure Indexing
with schemas, which prescribe structures that may or

may not occur in an instance, but without giving an

indication of the metadata that is actually present in a

given collection. Note that it is possible to create a

structural summary from an instance even when the

instance does not conform to any schema.

Additional information can be attached to summa-

ries (such as statistics related to nodes and relation-

ships, and distributions of values associated with the

extents), with applications in selectivity estimation and

query optimization.

Historical Background
Structure indexing mechanisms were proposed as

soon as the database community turned its attention

to the problem of managing semi-structured data.

Region Inclusion Graphs (RIG) and Region Order

Graphs (ROG) [3] were proposed to help optimize

the evaluation of region algebras (see [14]).

Representative Objects (RO) [10] and Dataguides

[6] were motivated by a desire to describe the meta-

data present in semi-structured databases (modeled as

labeled graphs), as well as to help in query optimiza-

tion. The representative object of length 1 (1-RO)

coincides with a RIG; both summaries group data

items in the instance (nodes or regions, respectively)

based on the label of an item. Representative objects of

length k (k-RO) group instance nodes by the labels in

the incoming paths of length k (or paths of arbitrary

length in the case of a full representative object, or

FRO). Dataguides create a summary of the path struc-

ture of a labeled graph database instance in which

every label path starting at the root appears exactly

once. Construction of a Dataguide is analogous to

the conversion of a non-deterministic finite auto-

maton (describing the language of the labels occurring

in the instance) to a deterministic one. This construc-

tion is not unique, but a strong Dataguide is defined to

be suitable as an index. For arbitrary graph data, Data-

guides can in the worse case become exponentially

larger than the actual instance. When instances are

trees, as is the case for XML documents when links

(such as IDREF) are not considered, the Dataguide size

is bounded by the size of the instance.

The concept of bisimulation was introduced in the

context of structural summaries by the T-index family

[9]. In particular, the 1-index defines extents via par-

titioning the nodes of the instance using labeled
bisimulation on the incoming paths. By creating a

partition, bisimulation based summaries have a size

bounded by the size of the instance. The F&B-Index

[7] generalized the notion of bisimulation-based sum-

maries to consider partitions created by both incoming

and outgoing paths. AxPRE summaries [4] introduced

a language for defining the neighborhood of interest

to the bisimulation-based partitioning criteria. Depen-

ding on the axis path regular expression (AxPRE) used,

all of the previously proposed bisimulation-based sum-

maries can be defined (as well as entirely new ones).

There are also proposals that augment structural

summaries with statistical information of the instance

for selectivity estimation, including path/branching

distribution and value distributions (e.g., XSketch

[11], StatiX [5]).

Most of the existing summary proposals define all

the extents using the same criteria, hence creating

homogeneous summaries. These summaries are based

on common element paths (in some cases limited to

length k), including incoming paths (e.g., representa-

tive objects [10], dataguides [6], 1-index [9], ToXin

[13], A(k)-index [8]), both incoming and outgoing

paths (e.g., F&B-Index [7]), or sequences of outgoing

paths (e.g., Skeleton [1]). There are also heterogeneous

summaries where summary nodes adapt their criteria

to query workloads (APEX [2], D(k)-index [12]), or to

statistics from the instance (XSketch [11]), or where the

criteria can be given explicitly (AxPRE summaries [4]).

Foundations
A suitable graph-based model for semi-structured

instances is introduced below and then partition-based

structural summaries are defined. The discussion then

generalizes this definition to AxPRE summaries and

then presents a lattice with several bisimulation-based

summaries in the literature.

Semi-structured Data Example

Consider an example XML instance that consists of

two RSS documents, represented as two labeled graphs

in Fig. 1. RSS documents are used to encode feeds that

publish frequently updated Web content such as news

headlines, blog entries, and podcasts. The feeds are

organized into channels, which in turn contain a list

of items. A number of elements (such as title, link,

description, pubDate) can optionally appear within

channels and/or items. The items may have content,

Structure Indexing. Figure 1. Sample XML instance with two RSS feeds.

Structure Indexing S 2859
appearing within groups, that refers to multimedia files

(e.g., an audio file in a podcast). The labels in the XML

nodes (which are numbered for ease of reference)

identify the element, and the labels in the edges the

relationship (or axis in the XPath data model) between

the XML nodes. The edge from node 6 to 7 labeled c

means that 7 is the child of 6 (or, considering the

inverse relationship, that 6 is the parent of 7). Similarly,

the edge from node 29–28 labeled ps means that 28

is the preceding sibling of 29 (another XPath axis

that provides information about the XML document

order among siblings).
S

Axis Graph Definition

An axis graph is defined to represent XML instances.

The definition can be easily applied to other semi-

structure data models where instances are represented

by labeled graphs.

An axis graph A ¼ ðInst ;Axes; Label; lÞ is a struc-

ture where Inst is a finite set of nodes, Axes is a set of

binary relations {E1,...,En} in Inst� Inst, Label is a finite

set of node names, and l is a function that assigns

labels in Label to nodes in Inst. Edges in A are labeled

by the name of the axes relations.
Structural Summary Definition

A structural summary of an axis graph A is another

axis graph SðAÞ ¼ ðSum;AxesS; Label; lSÞ where

summary nodes correspond to a partition of the

nodes in A and summary edges are induced from

the axes in A. Each node s 2 Sum with lSðsÞ ¼ l

corresponds to a subset (called extent) in a partition-

ing of Inst, such that all the nodes in the extent have

the same label l 2 Label. Also, for every edge Ei(n,m)

with n,m 2 Inst and Ei 2 Axes there is E0i(ns,ms) with ns,
ms 2 Sum and E0
i 2 AxesS , such that ns (respectively,

ms) is the summary node that has XML node n

(respectively, m) in its extent.

Sample Structural Summaries Figure 2 shows three

different structural summaries of the twoRSS documents

depicted in Fig. 1. The first summary, in Fig. 2a, is

constructed by a partition of the XML instance nodes

based solely on their labels, and as such there is a single

summary node for each label in the instance. As such,

the extent of the summary node s9 labeled description

consists of the subset {5,8,23,32} of all the XML nodes

labeled description in the instance. Note that there are

two edges labeled c incoming into the summary node

s9 since description appears both in channels and items.

The second summary, in Fig. 2b, is constructed

from a partition that groups together XML nodes

with the same ancestor elements. Note that there are

two summary nodes (s5 and s10) labeled description,

corresponding the two possible paths of labels to the

root (channel, RSS, and item, channel, RSS). Observe

that, for the specific instance in the example, grouping

together nodes with just the same parents would pro-

duce the same summary. However, grouping together

nodes with the same children would produce a differ-

ent summary (e.g., there would be two summary nodes

for item, since the item nodes in the XML instance

would be partitioned into the sets {6,30} and {12,24}

each with the same sets of children).

The third summary, in Fig. 2c, contains an hetero-

geneous summary, where subsets in the partition

group XML nodes with different criteria. While most

the summary nodes in the figure have extents contain-

ing XML nodes that use the same criteria as above

(having the same ancestor elements), the summary

nodes corresponding to content elements are

Structure Indexing. Figure 2. Summaries of the two RSS feeds; (a) label, (b) ancestors, (c) heterogeneous.

2860S Structure Indexing
partitioned according to the previous siblings (the

edges labeled ps in the instance) and the group elements

are partitioned according to the partition of their con-

tent children. So there are three summary nodes s14,s15,

and s16 that group the first, second, and third content

node siblings in the instance, and there are two sum-

mary nodes s12 and s13 corresponding, respectively, to

those group elements that have a first and second

content node as children, or those that have a first,

second, and third content node as children.
AxPRE Summary Definition

An axis path regular expression (AxPRE) is a regular

expression on the vocabulary of the names of the axes
relations. The AxPRE Neighborhood N aðvÞ of an in-

stance node v 2 Inst is the subgraph obtained by

intersection with the prefix closed finite automaton

corresponding to the AxPRE a.
A labeled bisimulation between two subgraphs

G1 and G2 of an axis graph A is a symmetric

relation � such that for all v 2 InstG1 , w 2 InstG2 ,

EG1

i 2 AxesG1 , and EG2

i 2 AxesG2 : (i) if v � w, then

l(v) = l(w); (ii) if v � w, and hv; v0i 2 EG1

i , then

hw;w 0i 2 EG2

i and v 0� w 0.

An AxPRE summary is a structural summary where

the partition is defined as follows: two nodes v,w 2 Inst

belong to the same partition block iff there exists a

labeled bisimulation � between N aðvÞ and N aðwÞ
such that v � w.

Structure Indexing. Figure 3. Summary lattice.

Structure Indexing S 2861

S

Sample AxPRE Summaries

The summary in Fig. 2a corresponds to the AxPRE

summary with an empty AxPRE, where only condition

(i) in the definition of labeled bisimulation applies and

the result is a partition of the instance nodes according

to their labels only.

The summary in Fig. 2b corresponds to the AxPRE

summary with an AxPRE p∗, which is the AxPRE that

creates node neighborhoods that consists of all the

ancestors of the node. As discussed earlier, for the

specific instance in the example, the AxPRE could

also be p, but it can not be c.

The summary in Fig. 2c is an heterogeneous sum-

mary where most summary nodes have the partition

defined according to the AxPRE p∗, but the summary

nodes labeled content use p∗jps∗ and those labeled

group use p∗jc.ps∗.

Summary Lattice

Figure 3 shows a lattice with relationships among sev-

eral AxPRE summaries that capture bisimilarity-based

proposals mentioned earlier. The lattice represents the

partition refinement relationship between the summa-

ries. Each node in the lattice of Fig. 3 corresponds to a

homogeneous summary defined by the AxPRE label,

with an additional textual label for the corresponding

summary name. A node is also used to represent an

homogeneous AXPRE summary based on the AxPRE

p∗jc.ps∗, which applied to only some of the summary

nodes in the example in Fig. 2c.

Key Applications
Indexing, metadata description, query processing and

optimization, selectivity estimation.
Future Directions
Structure indexing techniques can be extended to sup-

port additional data models and their associated query

languages, and to further refine their adaptability to

different workloads.
Cross-references
▶Bisimulation

▶ Indexing

▶Query Processing and Optimization in Object Rela-

tional Databases

▶ Selectivity Estimation

▶ Semi-structured Data

▶ Statistical Summaries

▶XML

▶XPath Data Model

▶XPath/XQuery
Recommended Reading
1. Buneman P., Choi B., Fan W., Hutchison R., Mann R., and

Viglas S. Vectorizing and querying large XML repositories.

In Proc. 21st Int. Conf. on Data Engineering, 2005, pp. 261–272.

2. Chung C.-W., Min J.-K., and Shim K. APEX: an adaptive

path index for XML data. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 2002, pp. 121–132.

3. Consens M.P. and Milo T. Optimizing queries on files. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1994, pp.

301–312.

4. Consens M.P., Rizzolo F., and Vaisman A.A. AxPRE summaries:

exploring the (semi-)structure of XML web collections. In Proc.

24th Int. Conf. on Data Engineering, 2008, pp. 1519–1521.

5. Freire J., Haritsa J.R., Ramanath M., Roy P., and Simeon J.

StatiX: making XML count. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 2002, pp. 181–191.

6. Goldman R. and Widom J. Dataguides: enabling query

formulation and optimization in semistructured databases.

In Proc. 23th Int. Conf. on Very Large Data Bases, 1997,

pp. 436–445.

7. Kaushik R., Bohannon P., Naughton J.F., and Korth H.F.

Covering indexes for branching path queries. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2002, pp. 133–

144.

8. Kaushik R., Shenoy P., Bohannon P., and Gudes E. Exploiting

local similarity for indexing paths in graph-structured data.

In Proc. 18th Int. Conf. on Data Engineering, 2002, pp. 129–140.

9. Milo T. and Suciu D. Index structures for path expressions.

In Proc. 7th Int. Conf. on Database Theory, 1999, pp. 277–295.

10. Nestorov S., Ullman J.D., Wiener J.L., and Chawathe S.S.

Representative objects: concise representations of semistruc-

tured, hierarchial data. In Proc. 13th Int. Conf. on Data Engi-

neering, 1997, pp. 79–90.

11. Polyzotis N. and Garofalakis M.N. XSketch synopses for XML

data graphs. ACM Trans. Database Syst., 31(3):1014–1063, 2006.

2862S Structure of Truth Values
12. Qun C., Lim A., and Ong K.W. D(k)-index: an adaptive struc-

tural summary for graph-structured data. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2003, pp. 134–144.

13. Rizzolo F. and Mendelzon A.O. Indexing XML data with

ToXin. In Proc. of Fourth Int. Workshop on the Web and

Databases, 2001, pp. 49–54.

14. Young-Lai M. and Tompa F.W. One-pass evaluation of

region algebra expressions. Inform. Syst., 28(3):159–168, 2003.
Structure of Truth Values

▶Residuated Lattice
Structure Weight

MOUNIA LALMAS

University of London, London, UK

Definition
In structured text retrieval, the structure of

a text component may be used to estimate the rele-

vance of that component. This is done by associating

a weight to the structure reflecting its significance

when estimating the relevance of the component for

a given query.

Key Points
Associating weight to the structure of a component in

itself is not new, and several investigations have been

reported for whole document retrieval. This entry is

concerned with structure weights in the context of

structured text retrieval, where the aim is to exploit

the document structure to return document compo-

nents, instead of whole documents.

In structured text retrieval, not all document com-

ponents will trigger the same user satisfaction when

returned as answers to queries. In the context of

structured documentsmark-up inXML, somedocument

components, i.e., XML elements, may not be appropriate

to return because they are too small, or a tag type that

does not contain informative content, nested too deep in

the document logical structure, or for other reasons.

When ranking XML elements, their structure (size, tag

type, path, depth, etc.)may prove important. The impor-

tance of the element structure is captured through a

weight, which can be binary.
Using binary weights means that an element is

(value one) or is not (value zero) considered for

indexing and retrieval. The decision can be made by

looking at the DTD (document type definition) of

the collection, past relevance data, and/or the require-

ments of the application and user scenario. In the

selective indexing strategy [3], only elements of types

that were found to contain relevant content for previ-

ous query sets (relevance data) are considered. Any

elements with a length size less than a given threshold

can also be ignored.

Weights can be assigned to characteristics of

elements, such as length, depth, location in the docu-

ment logical structure, and so on. For instance, with-

in the language modelling framework, length has

been used as a normalization parameter (weight)

incorporated through a prior probability in the rank-

ing formula [2].

With statistical approaches, the weights are esti-

mated based on training data, such as past relevance

data. The weights can be determined using machine

learning, and then used in the ranking function. They

can also be directly calculated based on the distribution

of element characteristics. For example, in [1], the

distribution of tag types is used in a way similar to

the binary independence retrieval model (investigating

the ‘‘presence’’ of tags in relevant and non-relevant

elements) to estimate the element weights.
Cross-references
▶ Indexing Units

▶ Logical Structure

▶Relationships in Structured Text Retrieval

▶XML Retrieval
Recommended Reading
1. Gery M., Largeron C., and Thollard F. Probabilistic document

model integrating XML structure. In Proc. 6th Int. Workshop

of the Initiative for the Evaluation of XML Retrieval, 2007,

pp. 139–149.

2. Kamps J., de Rijke M., and Sigurbjörnsson B. Length normaliza-

tion in XML retrieval. In Proc. 30th Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

2004, pp. 80–87.

3. Mass Y. and MandelbrodM. Component ranking and automatic

query refinement for XML retrieval. In Advances in XML Infor-

mation Retrieval, Proc. 3rd Int. Workshop of the Initiative for

the Evaluation of XML Retrieval, 2004, Revised Selected Papers,

2005, pp. 73–84.

Structured Data in Peer-to-Peer Systems S 2863
Structured Data in Peer-to-Peer
Systems

KAI-UWE SATTLER

Technical University of Ilmenau, Ilmenau, Germany

Synonyms
Peer data management; Peer database management;

P2P database
Definition
A peer database management system is a peer-to-peer

(P2P) system that manages structured data. Each node

in such a system maintains data which conforms to

user- or application-defined structures and can be

accessed and retrieved efficiently. Examples of data

structures are relations as set of tuples and hierarchical

or tree-organized data such as XML data and docu-

ments. In contrast to unstructured data (e.g., text and

binary objects) structured data can be retrieved by

specifying logical conditions and further processed

by operations such as set operations, aggregations

and joins.
S

Historical Background
One of the origins of coordinator-free distributed data

management were scalable distributed data structures

(SDDS). One of these approaches called LH* [7] is an

extension of linear hashing to distributed nodes, and

supports key search as well as parallel operations like

hash joins and scans.

Distributed hashtables (DHT) [2] for managing

key/object pairs in very large and changing networks

were introduced around 2001, e.g., Chord, CAN or

P-Grid. Based on these DHTs several approaches for

supporting more database-like functionality (e.g.,

multi-attribute queries, join and aggregation queries)

have been developed. One of the first systems was PIER

[5], other examples are RDFPeers [3] as well as the

work by Triantafillou and Pitoura [12].

The idea of exploiting the P2P paradigm for data

integration in Peer Data Management Systems

(PDMS) was first presented in 2002/2003 by systems

like Edutella [8], that uses RDF/RDFS as schema lan-

guage and an own RDF-based query language, and

Piazza [4] which is based on XML and XQuery.
Foundations
A widely accepted classification of P2P systems distin-

guishes between unstructured and structured systems.

In the following, techniques for managing and query-

ing structured data in each of these two classes of

systems are described.

Unstructured P2P Systems

In an unstructured P2P system peers do not maintain

information about the resources managed by other

peers. This means that for answering a query the re-

quest has to be forwarded to its neighbors. Despite

rather simple approaches with fixed schema (e.g., file-

sharing systems) a typical example of an unstructured

P2P system is a peer data integration system also called

PDMS (Peer Data Management System).

A query in a PDMS can be issued at each peer. The

peer processes the query locally but has to forward it

(or portions of this query) to the neighbor peers which

provide relations relevant to this query. For this pur-

pose, the query is rewritten using the correspondence

mappings. Depending on the formalism of mappings

this is implemented by query unfolding (in case of

GaV) or by techniques for answering queries using

views (in case of LaV) known from data integration

techniques. As long as the rewritten queries still con-

tain views or subgoals instead of only base relations the

query has to be further rewritten by the neighbor peer

and to be forwarded to its neighbors. The remaining

steps of optimization and execution follow the basic

principle of distributed query processing. However,

there are several ways for further optimizations, e.g.,

for query routing by using routing indexes or by

exploiting transitivities of the correspondence paths.

Structured P2P Systems

In a structured P2P system each peer maintains infor-

mation about the resources stored at other peers, e.g.,

in the form of a routing table. A typical example of a

structured P2P system is a distributed hashtable

(DHT) – a system where a logical key space is parti-

tioned among all peers in order to manage key-object

pairs hk, vi.
In order to manage structured data comprising

more than a key and a value component a mapping

between the schema of a database relation or XML

document and the hk, vi pair is needed. In the follow-

ing, three possible alternatives are presented.

2864S Structured Data in Peer-to-Peer Systems
In the horizontal or tuple-based approach, each

tuple is identified and inserted into the DHT by a re-

source identifier (or primary key) oid. The remaining

attributes Ai with the values vi are treated as a single

object:

hoid;A1 : v1;A2 : v2;:::;An : vni)
hhðoidÞ; ½A1 : v1;A2 : v2;:::;An : vn
i

This data organization scheme allows to retrieve tuples

by their resource identifier. Note, that the individual

attribute values are still available, but cannot be

accessed directly using the DHT lookup feature. In

this way, the DHT can be seen as an index structure

for the database relation.

If efficient access to the other attributes Ai is need-

ed, too, additional indexes have to be constructed by

inserting additional pairs h[Ai : vi], oidi into the DHT.

Instead of using the oid as value it is also possible to

store the whole tuple.

Furthermore, this approach can be easily exten-

ded to more than one relation by adding a name

space or relation prefix to the resource identifier. An

example system following the horizontal approach

is the PIER system [5] which is based on the Bamboo

DHT.

An alternative approach is a vertical data organiza-

tion where each tuple is represented by a set of triples:
hoid;A1 : v1;A2 : v2;:::;An : vni) fhhðoidÞ;A1; v1i;
hhðoidÞ;A2; v2i;:::hhðoidÞ;An; vnig

In order to be able to query all attributes each of these

triples is inserted into the DHT using the resource

identifier, the attribute and eventually the value com-

ponent as key, i.e., hh(oid), [Ai : vi]i, hh(Ai), oidi, hh(vi),
oidi. If the DHTsupports prefix search, the concatena-

tion of Ai # vi can be used as key to allow queries

both for Ai as well as Ai = vi. Advantages of this vertical

data organization are first, that triples with similar

values are stored at the same peer or at least in the

neighborhood which simplifies joins and – in combi-

nation with an order-preserving hash function – range

queries, and similarity queries. Second, there is no

fixed schema for a given relation. Users can extend

the schema to their needs by simply adding new triples

for a given tuple. The disadvantage is the required

storage overhead.

This approach is not restricted to relational data.

RDF data which can be represented using triples of
subject, predicate, and object can be directly mapped

to this scheme. Examples of systems following this idea

are RDFPeers [3] based on MAAN a multidimensional

extension of Chord, and UniStore [6] which is built on

top of P-Grid.

Assuming a P2P system for storing and querying

XML documents instead of relations a third possible

approach is to exploit the idea of path indexing [11].

A standard technique for indexing XML documents is

suffix indexing of XML paths. Given a document iden-

tified by a URI and an XML path P in this document

consisting of the elements P = e1 ∕e2 ∕... ∕en the following
n suffixes can be derived

s1 ¼ e1=e2=e3=:::=en

s2 ¼ e2=e3=:::=en

si ¼ :::

sn ¼ en

Now, based on these subpaths the keys for the DHTare

calculated and the following pairs are inserted: hh(s1),
[s1,URI]i, hh(s2),[s2,URI]i, etc.

Note, that this requires a DHT supporting prefix

search.

An important question affecting the choice of the

hash function is how to fragment a relation or docu-

ment collection. A viable solution has to be found

between the two extreme cases:

� Distribute tuples according to their relation identi-

fier, i.e., each relation is completely stored at exactly

one peer.

� Distribute tuples according to their resource iden-

tifier (oid) such that tuples are partitioned among a

set of peers. However, in this case tuples of the same

relation or with similar values of indexed attributes

should be stored at neighboring peers in order to

support range and nearest neighbor queries

efficiently.

Appropriate fragmentation schemes are based on

space-filling curves [1] and order preserving hash

functions.

For querying structured data in a DHT both basic

processing strategies data shipping and query shipping

can be used. With data shipping the DHT is used only

as a data storage: data are retrieved from the responsi-

ble peers which are identified by applying the hash

functions to the value in the query predicate similarly

to an index lookup or index scan in a classical DBMS.

Structured Data in Peer-to-Peer Systems S 2865
Obviously, this also works for the path indexing

approach, where the keys for the lookup operation

are calculated from the path expression given in an

XPath query. As an example consider a peer asking a

path query A ∕∕ B ∕C ∕D ∕∕E. By computing the longest

subpath containing only the child axes (in this case

B ∕C ∕D), the peers responsible for this key region can

be identified and contacted for evaluating the remain-

ing query locally.

This approach can be extended to process more com-

plex queries including joins. Based on the retrieved tuples

of the first relation, the matching tuples of the second

relation are retrieved from the DHT by applying the hash

function to the join values. However, data shipping

becomes inefficient if the query operators are not very

selective. In this case, very expensive scans of many peers

are needed which is impractical in large-scale systems.

For query shipping in a DHT each peer has to

provide distributed query processing capabilities rath-

er than only the put/get operations. A query is routed

to the peer that is responsible for the data addressed by

the operator that is to be executed next. These peers are

determined by applying the hash function to the cur-

rent intermediate results. In this way, the DHT is used

both as a hash table for indexing and storing tuples as

well as a content-addressable network for routing

tuples and/or operators by values.

This idea was exploited in PIER for implementing

different join strategies. A first strategy presented in [5]

is a variant of the symmetric hash join between two

relations R and S. Here, each peer storing tuples of

R and S scans its local data and insert these tuples into

a temporary table of the DHT. The peers responsible
Structured Data in Peer-to-Peer Systems. Figure 1. Mutant
for the key space of this table execute the probing phase

by joining the received tuples locally. A second strategy

developed in PIER is a fetch matches variant which can

be used if one of the relation is already hashed on the

join attribute. In this case, the peers storing tuples of

the second relation perform a local scan and retrieve

the possibly matching tuples using the get operation

of the DHT.

Further improvements can be achieved by applying

the idea of symmetric semijoin, i.e., perform a local

projection on the join attribute of both relations,

followed by a symmetric hash join and feed the results

into a fetch matches join to retrieve the remain-

ing attribute values of the original relations. Finally,

bloom filters can be used, too. Here, bloom filters are

created by each peer responsible for R and S and

inserted into temporary DHT table. The received filters

are combined and sent to all peers storing the opposite

relation. The experiments presented in [5], show that

these strategies help to reduce the bandwidth con-

sumption and response time particularly in case of

low selectivity values.

In case of more complex queries consisting of

sequences of operators query shipping may result in

multiple instances of the plan that ‘‘travel’’ through

the network, because a single query operator might

involve tuples from different peers. This approach,

which was initially proposed as mutant query plans

[9] is illustrated in Fig. 1. Given a relation R(A,B)

stored at peers p1, p2, p3 and a relation S(B,C) stored

atpeersp4, p5. Peer p0 submits the query s1<A<6(R)⋈ S.

The query is sent to p1...p3 which are identified

by applying the hash function to the selection
query plans in query shipping.

S

2866S Structured Data in Peer-to-Peer Systems
predicate. These peers evaluate the first part of the

query (s1<A<6(R)) locally and replace this expression

in the plan by the intermediate result. The modified

plan is sent to the S-peers which are identified by

applying the hash function on the B values of the

intermediate result. Finally, p4 and p5 evaluate the

remaining parts of the query and send the result back

to the initiator.

The benefits of query shipping are exploiting com-

puting resources of the peers as well as avoiding trans-

fer of large datasets. However, query planning and

execution is more difficult because the state of a pro-

cessed query is spread over multiple peers.

Key Applications
A major application for DHT-based P2P database

systems is public data management where information

of a general interest, its structure and semantics

is controlled by a large number of participants. Fur-

thermore, the costs for providing the infrastructure

should often be shared by the users in a fair manner.

Examples of such applications are the management of

public datasets in e-Sciences, e.g., genome data or

data in astronomy, metadata and index data for the

Semantic Web as well as specialized search engines,

naming and directory services as well as social applica-

tions such as file/picture sharing, recommender sys-

tems or friend-of-a-friend networks. Note, that in

these applications it is often not necessary to store

the actual data itself in the DHT, but instead metadata

or index data required for answering queries are pub-

lically managed.

Themainapplicationofunstructuredpeerdataman-

agement system is data integration in large-scale, loosely-

coupled scenarios.

Future Directions
Managing and querying structured data in P2P systems

is a relatively new research area which raises several

new challenges to established techniques, e.g., known

from distributed database systems.

The first challenge is scalability, meaning the sup-

port of efficient query processing in networks of ten

thousands or more nodes. Most of the research systems

presented so far are based on simulation environments

or a relatively small number of peers, e.g., in PlanetLab

or similar platforms.

A second problem in P2P systems is the dynamic of

the network (joining and leaving peers) as well as the
unreliability of peers. Most existing approaches are

best effort solutions which are unable to give guarantees

wrt. result completeness, freshness or response time.

Thus, an open issue is to estimate completeness of results

in case of partial answers or to guarantee a certain

quality of service.

Finally, in large P2P systems where no peer knows

all other peers in the network trustworthiness are a

further challenge. Particularly, if data are redistributed

to other nodes in the network the original data pro-

ducer wants to make sure that its data are not manipu-

lated by the hosting peer. Furthermore, in order to

achieve a fair balancing of load and avoiding over-

loaded peers the problem of rejecting requests and

free riding by malicious peers has to be addressed,

e.g., by incentive mechanisms.

Cross-references
▶Distributed Join

▶Distributed Query Processing

▶ P2P Data Integration

▶ P2P Overlay Networks

Recommended Reading
1. Andrzejak A. and Xu Z. Scalable, Efficient range queries for grid

information services. In Proc. of Second IEEE Int. Conf. on Peer

to Peer Computing, 2002, pp. 33–40.

2. Balakrishnan H., Kaashoek M.F., Karger D., Morris R., and

Stoica I. Looking up Data in P2P Systems. Commun. ACM,

46(2):43–48, 2003.

3. Cai M. and Frank M. RDFPeers: a scalable distributed

RDF repository based on a structured peer-to-peer network.

In Proc. 12th Int. World Wide Web Conference, 2004,

pp. 650–657.

4. Halevy A., Ives Z., Mork P., and Tatarinov I. Piazza: data man-

agement infrastructure for semantic web applications. In Proc.

12th Int. World Wide Web Conference, 2003, pp. 556–567.

5. Huebsch R., Hellerstein J.M., LanhamN., Thau Loo B., Shenker S.,

and Stoica I. Querying the Internet with PIER. In Proc. 29th Int.

Conf. on Very Large Data Bases, 2003, pp. 321–332.

6. Karnstedt M., Sattler K., Richtarsky M., Müller J., Hauswirth M.,

Schmidt R., and John R. UniStore: Querying a DHT-based Uni-

versal Storage. In Proc. 23rd Int. Conf. on Data Engineering, 2007,

pp. 1503–1504.

7. Litwin W., Neimat M.-A., and Schneider D. LH* – a scalable,

distributed data structure. ACM Trans. Database Syst., 21(4):

480–525, 1996.

8. NejdlW.,WolfB.,QuC.,Decker S., SintekM.,NaeveA.,NilssonM.,

Palmer M., and Risch T. Edutella: a P2P networking infrastructure

based on RDF. In Proc. 11th Int. World Wide Web Conference,

2002, pp. 604–615.

9. Papadimos V. and Maier D. Mutant query plans. Inform. Soft-

ware Technol., 44(4):197–206, 2002.

Structured Document Retrieval S 2867
10. Risson J. and Moors T. Survey of Research towards Robust Peer-

to-Peer Networks: Search methods. Comput. Networks, 50(17):

3485–3521, 2006.

11. Skobeltsyn G., Hauswirth M., and Aberer K. Efficient processing

of XPath queries with structured overlay networks. In Proc. Int.

Conf. on Cooperative Inf. Syst., 2005, pp. 1243–1260.

12. Triantafillou P. and Pitoura T. Towards a unifying framework for

complex query processing over structured peer-to-peer data net-

works. In Proc. of Int. Workshop on Databases, Information

Systems, and Peer-to-Peer Computing, 2003, pp. 169–180.
Structured Document Retrieval

MOUNIA LALMAS
1, RICARDO BAEZA-YATES

2

1University of London, London, UK
2Yahoo! Research, Barcelona, Spain

Synonyms
Structured text retrieval; Querying semi-structured

data; Passage retrieval; XML retrieval; Focused retrieval
Definition
Structured document retrieval is concerned with the

retrieval of document fragments. The structure of the

document, whether explicitly provided by a mark-up

language or derived, is exploited to determine the most

relevant document fragments to return as answers to a

given query. The identified most relevant document

fragments can themselves be used to determine the

most relevant documents to return as answers to the

given query.
S

Key Points
The aim of this entry is to clarify different termi-

nologies that have been used to refer to or are strongly

related to structured retrieval and semi-structured data.

The term ‘‘structured document retrieval,’’ which

was introduced in the early tomid 1990s in the informa-

tion retrieval community, refers to ‘‘passage retrieval’’

and ‘‘structured text retrieval.’’ In passage retrieval,

documents are first decomposed into passages

(e.g., fixed-size text-windows of words, fixed discourses

such as paragraphs, or topic segments through the ap-

plication of a topic segmentation algorithm). Passages

could themselves be retrieved as answers to a query, or be

used to rank documents as answers to the query.
Structured text retrieval is concerned with the de-

velopment of models for querying and retrieving from

structured text, where the structure is usually encoded

with the use of mark-up languages, such as SGML, and

now predominantly XML. Indeed, text documents

often display structural information. For example, a

scientific article will have a so-called logical structure,

such as an abstract, several sections, and subsections,

each of which is composed of paragraphs. A book will

have a so-called layout structure, such as pages and

columns.

Structured text retrieval is to be contrasted to tradi-

tional text retrieval, where the latter is concerned with

the retrieval of unstructured text – so-called ‘‘raw text’’

or ‘‘flat text.’’ The use of the term ‘‘structured’’ in

‘‘structured text retrieval’’ is there to emphasize the

interest in the structure. Furthermore, structured text

retrieval aims to exploit the available structural infor-

mation to return text fragments (e.g., XML elements) as

opposed to entire text documents.

The term ‘‘semi-structured’’ comes mainly from

the database community. Traditional database technol-

ogies, such as relational databases, have been con-

cerned with the querying and retrieval of highly

structured data (e.g., from a student table, find the

names and addresses of those with a grade over 80 in

a particular subject). Text documents marked-up, for

instance, in XML are made of a mixture of highly

structured components (e.g., year, author name) typi-

cal of database records, and loosely structured compo-

nents (e.g., abstract, section). Database technologies

are being extended to query and retrieve such loosely

structured components, called semi-structured data.

Databases that support this kind of data, mainly in

the form of text with mark-up, are referred to as

semi-structured databases, to emphasize the loose

structure of the data and use ‘‘querying data’’ instead

of ‘‘data retrieval.’’

From a terminology point of view, structured text

retrieval and querying semi-structured data, in terms

of end goals, are the same. The difference comes from

the fact that in information retrieval, the structure

is added, and in database, the structure is loosened.

It should, however, be pointed out that research in

information retrieval and databases with respect to

accessing structured text (or semi-structured data in

the form of text) have been concerned, because of

historical reasons, with different aspects of the access

process, e.g., ranking in information retrieval versus

2868S Structured Query Language
efficiency in databases. Nowadays, there is a conver-

gence trend between the two areas (e.g., [1]).

In the late 1990s, the interest in structured document

retrieval grew significantly due to the introduction of

XML in 1998, which has now became the de-facto for-

mat standard for structured documents (or structured

text, semi-structured data). Research on XML retrieval

was further boosted with the set-up of INEX in 2002, the

Initiative for the Evaluation of XML Retrieval, which

allowed researchers to compare and discuss the effective-

ness of models specifically developed for XML retrieval

[2]. Nowadays, XML retrieval is almost a synonym for

structured document retrieval, structured text retrieval,

and querying semi-structured data.

Structured document retrieval, passage retrieval,

structured text retrieval, querying semi-structured

data, XML retrieval, all belong to what has recently

been called ‘‘focused retrieval’’ [3]. Focused retrieval

is concerned with returning the most focused results

to a given query. Such focused results include passages,

XML elements, and factoid answers (e.g., London

being the capital of the UK).
Cross-references
▶Document Databases

▶ INitiative for the Evaluation of XML Retrieval

▶ Integrated DB&IR Semi-Structured Text Retrieval

▶ Semi-Structured Data

▶ Structured Text Retrieval Models

▶XML Retrieval
Recommended Reading
1. Amer-Yahia S., Case P., Rölleke T., Shanmugasundaram J., and

Weikum G. In Report on the DB/IR panel at SIGMOD 2005.

ACM SIGMOD Rec., 34(4):71–74, 2005.

2. Kazai G., Gövert N., Lalmas M., and Fuhr N. The INEX

Evaluation Initiative. In Intelligent Search on XML Data,

Applications, Languages, Models, Implementations, and Bench-

marks. Springer, New York, NY, 2003, pp. 279–293.

3. Trotman A., Geva S., and Kamps J. Report on the

SIGIR 2007 workshop on focused retrieval. SIGIR Forum,

41(2):97–103, 2007.
Structured Query Language

▶ SQL
Structured Text Retrieval

▶ Structured Document Retrieval

▶XML Retrieval
Structured Text Retrieval Models

DJOERD HIEMSTRA
1, RICARDO BAEZA-YATES

2

1University of Twente, Enschede, The Netherlands
2Yahoo! Research, Barcelona, Spain

Synonyms
Retrieval Models for Text Databases

Definition
Structured text retrieval models provide a formal

definition or mathematical framework for querying

semi-structured textual databases. A textual database

contains both content and structure. The content is the

text itself, and the structure divides the database into

separate textual parts and relates those textual parts by

some criterion. Often, textual databases can be repre-

sented asmarked up text, for instance as XML, where the

XML elements define the structure on the text content.

Retrieval models for textual databases should comprise

of three parts: (i) a model of the text, (ii) a model of the

structure, and (iii) a query language [4]: The model of

the text defines a tokenization into words or other se-

mantic units, as well as stop words, stemming, syno-

nyms, etc. The model of the structure defines parts of

the text, typically a contiguous portion of the text called

element, region, or segment, which is defined on top of

the text model’s word tokens. The query language typi-

cally defines a number of operators on content and

structure, such as set operators and operators like ‘‘con-

taining’’ and ‘‘contained-by’’ to model relations between

content and structure, as well as relations between the

structural elements themselves. Using such a query lan-

guage, the (expert) user can, for instance, formulate

requests like ‘‘I want a paragraph discussing formal

models near to a table discussing the differences between

databases and information retrieval.’’ Here, ‘‘formal

models’’ and ‘‘differences between databases and infor-

mation retrieval’’ should match the content that needs

to be retrieved from the database, whereas ‘‘paragraph’’

and ‘‘table’’ refer to structural constraints on the units

to retrieve. The features, structuring power, and the

Structured Text Retrieval Models S 2869

S

expressiveness of the query languages of several models

for structured text retrieval are discussed below.

Historical Background
The STAIRS system (Storage and Information Retriev-

al System), which was developed at IBM in the late

1950’s, allowed querying of both content and structure.

Much like today’s On-line Public Access Catalogues, it

was used to store bibliographic data in records with

fields such as keywords and title, providing structured

search, but no overlapping or hierarchical structures

nor full text search. At the end of the 1980s, researchers

at the University of Waterloo in Canada persued data-

base support for the creation of an electronic version of

the Oxford English Dictionary. This resulted in a num-

ber of models for querying and manipulating content

and hierarchical structure such as the parsed strings

model [10], PAT expressions [15], the containment

model [5] and generalized concordance lists model

[7]. Similar approaches were developed elsewhere,

such as the proximal nodes model [13] and the nested

region model [11]. The interest in structured text re-

trieval models has grown since the introduction of

XML in 1998, and the emergence of standard data

retrieval query languages for XML data. One might

argue that the structured text retrieval approaches

such as PAT expressions and proximal nodes men-

tioned above are predecessors of XPath. The success

of XML in turn has influenced the work on structured

retrieval models: XIRQL was proposed in 2000 [9] as

an information retrieval extension of XML query lan-

guages (XIRQL is an extension of XQL, a predecessor

of XPath). More recently, in 2004, NEXI and XQuery

and XPath Full-Text have been proposed as query

languages for structured text retrieval, as well as exam-

ples of structured text retrieval models for the respec-

tive query languages [2,12].

Foundations
There are several models of structured text retrieval.

Since there is no consensus on how to structure a

textual database, this entry addresses several modeling

decisions following the taxonomy presented in [4]. The

entry only addresses models for text databases, and not

text retrieval models in relational databases as for in-

stance provided by SQL/MM. Due to the success of

XML, today XML retrieval is almost a synonym for

structured text retrieval, although XML retrieval only

addresses the explicit, single hierarchy case below.
Explicit vs. Implicit Structure

Most models use explicit structure, i.e., they define

unambiguously what parts of the textual database are

for instance ‘‘sections.’’ These models require the data-

base to be structured explicitly and unambiguously,

or using terminology from markup languages: the

models require the database to be well-formed. This

allows easy modeling of nested regions, and powerful

structural relationships such as the direct ancestor rela-

tionship (i.e., child and parent axis in XPath). The

following query might be used in an explicit structure

approach to retrieve sections that contain the word

‘‘databases’’:

section CONTAINING "databases"

Explicit structure is assumed by amongst others the

proximal nodes model [13] and the full match model

[2]. In systems that use implicit structure, however,

structure is not explicitly distinguished from content.

In these approaches the database is modeled as a se-

quence of tokens without distinguishing a word token

from a markup token. A structural element should,

therefore, be constructed at runtime by looking up

the opening markup tokens, the closing tokens, and

to return those regions starting with a opening token

and ending with a closing token. The query above

would then be formulated as [11] (here, the operator

‘‘..’’ would be pronounced as ‘‘following’’):

("<section>" .. "</section>") CONTAIN-

ING "databases"

So, the section element only exists at querying

time. Semantically, the query is not different from a

content-only query. For instance the query("all" ..

"equal") CONTAINING "created" retrieves regions

that start with the word ‘‘all,’’ that end with the word

‘‘equal’’ and that contain the word ‘‘created,’’ match-

ing for instance the phrase ‘‘all men are created

equal.’’ Nested elements, or unbalanced tags are han-

dled differently by several approaches. In the Genera-

lized Concordance Lists (GCL) approach [7], nested

sections will not be recognized by the system (instead

two partially overlapped sections will be returned).

In thenested region algebra approach [11] nested ele-

ments are returned properly. The approach is implemen-

ted as sgrep (structured grep) (http://www.cs.helsinki.

fi/�jjaakkol/sgrep.html). The GCL approach was re-

cently implemented in a research system calledWumpus

(http://www.wumpus-search.org).

2870S Structured Text Retrieval Models
Static vs. Dynamic Structure

The use of implicit structure also implies the use of

dynamic structure. A system that uses dynamic struc-

ture allows operations that define new elements or

regions, i.e., elements or regions that were not previ-

ously in the database. In XQuery, this is done by

element construction, but in some approaches dynam-

ic structure is a natural consequence of the model. As

an early example of dynamic structure consider the

following bibliographic entry:

John Doe, "Crime," Police 6, 2028.

The entry is explicitly structured by the following

grammar that functions as a database schema [10]:

entry := author ’, ’ title ’, ’ journal ’, ’ year ’.’ ;

author := text ;

title := ’ ‘‘’ text ’ ’’’ ;

journal := text digit+ ;

year := digit digit digit digit;

text := (letter j ’ ’) + ;

A valid database instance contains data that conforms to

the grammar. The instance takes the form of a parsed

string or ‘‘p-string.’’ Note that the schema does not

distinguish the author’s first name(s) from his surname,

but this might be done at query time by introducing a

small grammar fragment NameG that parses the author

strings into given names and surnames:

NameG := { name := (givenname ’ ’)+ surname ;

givenname := letter + ;

surname := letter + ; }

The p-strings model provides a simple query language

for adding additional grammar fragments. Suppose the

bibliographic entry above is E, then the following

query returns a p-string containing the author element

with given name and surname explicitly identified.

(author in E) reparsed by NameG

The construct might be used to search for all authors

with surname ‘‘Doe’’ that wrote a journal paper that

mentions ‘‘grammar’’ in the title. The p-strings model

uses regular expression matching as a core language

primitive, and as such dynamic structure is more easily

added than in for instance XQuery or XQuery Full-Text.

Single Hierarchy vs. Multiple Hierarchies

Although some fielded search methods use a flat struc-

ture to model text, the approaches considered here

assume a hierarchical structure of the text database.
The systems that use implicit structure introduced

above assume a single hierarchy. Interestingly, many

approaches assume multiple structural hierarchies on

the same textual database. Each hierarchy might serve a

different purpose. For instance, one hierarchy might

represent the logical structure of the text, dividing it in

chapters, sections, subsections, etc., whereas a second

hierarchy might represent the lay-out structure in col-

umns and pages; and a third layer might represent the

results of a part-of-speech tagger, etc. Inside a single

hierarchy, the structural elements are either disjoint or

nested inside each other, but across hierarchies ele-

ments may partially overlap, i.e., a subsection might

start half way a page, and end on the following page.

Some approaches relate single views in one query

[13]. An interesting approach is suggested by Alink [1],

who introduces additional XPath steps (select-narrow

and select-wide) that navigate from one hierarchy

to another. For instance, the following XQuery Full-

Text-like query fragment navigates from the paragraph

elements to another hierarchy with a Verb element

that contains ‘‘killed,’’ and to a hierarchy with a per-

son element that contains ‘‘Abraham Lincoln’’:

$doc//paragraph[./select-narrow::Verb

ftcontains "killed" and ./select-narrow::

person ftcontains "Abraham Lincoln"]

The need for multiple hierarchies is for instance,

addressed in the containment model [5], and the prox-

imal nodes model [13]. In several publications, the

hierarchies are called ‘‘stand-off annotation’’ or ‘‘offset

annotation’’ to stress that the structural information

(or annotations) are modeled separately from the tex-

tual data.

Exact Matching vs. Ranking

Many of the early structured text retrieval models do

not consider ranked retrieval results, or if they do only

as an afterthought, i.e., by ranking the retrieval results

using a text-only query disregarding the structural

conditions in the query [5]. A simple but powerful

way to take the structure of the results into account is

to apply a standard information retrieval model to the

retrieved content, and then propagate element scores

or aggregate term weights based on the text structure.

In several of these approaches to ranking, propagation

or aggregation is guided by weighting the paths to

elements by so-called augmentation weights [9] or

interpolation parameters [14], to model for instance

that a title element is more likely to contain important

Subject Spaces S 2871
information than a bibliography element. Instead of

propagating or aggregating the scores from the leaf

nodes, algebraic approaches include the ranking func-

tionality inside each operator of the query language

[2,12]. Ranking might also include relaxation of the

query’s structural conditions, for instance by relaxing

complex queries step-wise to simpler queries [3].

In 2002, Fuhr and Lalmas [8] organized the first

workshop of the Initiative for the Evaluation of XML

Retrieval. The goal of INEX is to evaluate the quality of

the retrieved results, and as such the quality of the rank-

ing provided by the system taking both content and

structure into account. The initiative provides a large

testbed, consisting of XML documents, queries and rele-

vance judgments on the data, where the relevance judg-

ments are human judgments that define if an XML

element is relevant to the query or not. With XML

databases and extensions of XML query languages be-

coming a de-facto standard for structured text retrieval,

ranking is one of themain remaining research challenges.
Key Applications
Systems based on structured text retrieval models can

be applied to any problem that involves semi-

structured text databases. Key applications of the

approaches described in this section include: Manag-

ing and searching electronic dictionaries such as the

Oxford English Dictionary [10,15], managing and

searching electronic journals such as the journals of

the IEEE [12,8,6], searching stageplays such as the

collected works of William Shakespeare [7], and

searching hard drives for digital forensics [1].
S
Cross-references
▶Aggregation-based Structured Text Retrieval

▶ Information Retrieval Models

▶NEXI

▶ Propagation-based Structured Text Retrieval

▶XPath/XQuery

▶XQuery Full-Text

Recommended Reading
1. Alink W. XIRAF: an XML information retrieval approach to

digital forensics. Master’s thesis, University of Twente, 2005.

2. Amer-Yahia S., Botev C., and Shanmugasundaram J. TeXQuery:

a full-text search extension to XQuery. In Proc. 12th Int. World

Wide Web Conference, 2004.

3. Amer-Yahia S., Lakshmanan L.V.S. and Pandit S. FleXPath: flex-

ible structure and full-text querying for XML. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2004.
4. Baeza-Yates R.A. and Navarro G. Integrating contents and struc-

ture in text retrieval. ACM SIGMOD Rec., 25(1):67–79, 1996.

5. Burkowski F.J. Retrieval activities in a database consisting of

heterogeneous collections of structured text. In Proc. 15th An-

nual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 1992, pp. 112–124.

6. Carmel D., Maarek Y.S., Mandelbrod M., Mass Y., and Soffer A.

Searching XML documents via XML fragments. In Proc. 26th

Annual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 2003, pp. 151–158.

7. Clarke C.L.A., Cormack G.V., and Burkowski F.J. An algebra for

structured text search and a framework for its implementation.

Comput. J., 38:43–56, 1995.

8. Fuhr N., Gövert N., Kazai G., and Lalmas M. (eds.). In Proc. 1st

Int. Workshop of the Initiative for the Evaluation of XML

Retrieval, 2002.

9. Fuhr N. and Grossjohann K. XIRQL: a query language for

information retrieval in XML. In Proc. 24th Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2001, pp. 172–180.

10. Gonnet G.H. and Tompa F.W. Mind your grammar: a

new approach to modelling text. In Proc. 13th Int. Conf. on

Very Large Data Bases, 1987, pp. 339–346.

11. Jaakkola J. and Kilpeläinen P. Nested text-region algebra. Tech-

nical report, University of Helsinki, 1999.

12. Mihajlovic V., Blok H.E., Hiemstra D., and Apers P.M.G. Score

region algebra: building a transparent XML-IR database. In

Proc. Int. Conf. on Information and Knowledge Management,

2005, pp. 12–19.

13. Navarro G. and Baeza-Yates R.A. Proximal nodes: a model to

query document databases by content and structure. ACM

Trans. Inf. Syst., 15:400–435, 1997.

14. Ogilvie P. and Callan J. Hierarchical language models for XML

component retrieval. In Advances in XML Information Retriev-

al, Lecture Notes in Computer Science 3493. Springer, 2005,

pp. 224–237.

15. Salminen A. and Tompa F.W. PATexpressions: an algebra for text

search. In Proc. COMPLEX 92, 1992, pp. 309–332.
Structured Text Retrieval Tasks

▶ Presenting Structured Text Retrieval Results
Subject Spaces

HANS-ARNO JACOBSEN

University of Toronto, Toronto, Ontario, Canada

Definition
Subject spaces are a model to formalize publish/

subscribe-style interactions and generalize the publish/

subscribe concept. Subject spaces subsume existing

2872S Subject Spaces
publish/subscribe models, such as the channel-based,

the topic-based, the type-based, and the content-based

publish/subscribe models. Subject spaces go beyond

these models by permitting the treatment of publica-

tions and subscriptions symmetrically, extending pub-

lications to also include expressive filter predicates,

introducing the notion of selective publishing, inter-

preting publications and subscriptions as either stateless

or stateful, and generalizing matching to encompass a

wide range of possible matching semantics.

Key Points
The subject spaces model is a unifying formal frame-

work to specify, describe and analyze the publish/

subscribe concept. Subject spaces encompass existing

publish/subscribe models and allow the modeling of

new aspects of publish/subscribe-style interactions. In-

formally, a subject space is the set of values a publisher

can publish and a subscriber can subscribe to. The

plurality of spaces refers to all sets of values, possibly

overlapping, that publishers and subscribers publish

and subscribe to in one particular instantiation of the

model, respectively.

Subject spaces treat publications and subscriptions as

symmetric constructs. That is, a publicationmust not be

distinguished from a subscription and both are equally

expressive. Thus, publications also contain predicates,

such as range predicates, equality predicates, non-equal-

ity predicates, and string predicates found only in sub-

scriptions in other models. The implications are that in

subject spaces, both publications and subscriptions spec-

ify sets of values that can be interpreted as regions in

space. Traditionally, only subscriptions specify regions in

space, while publications are points in space.

In contrast to the content-based model, in subject

spaces publications and subscriptions consist of pre-

dicates and attribute-value pairs, both of which are

optional allowing one to model the respective counter-

part in the content-based model.

Moreover, subject spaces treat publications and sub-

scriptions as stateful entities. A publication, once pub-

lished, is persisted in its associated subject space until

explicitly revoked. Subsequent publish operations are

updates to the previously published value. A sequence

of publish operations can be interpreted as moving the

published value through space. Subscriptions are inter-

preted in the same fashion.

Subject spaces generalize the matching of publica-

tions against subscriptions. Since both contain
predicates and attribute-value pairs, a match between

a publication and a subscription exists, if the attribute-

value pairs of the publication satisfy the predicates of

the subscription and the attribute-value pairs of the

subscription satisfy the predicates of the publication.

In addition, the interpretation of publications and

subscriptions as regions in space enables a generaliza-

tion of matching to encompass additional matching

semantics such as overlap, containment, or closeness

of publication and subscription regions in the space.

The symmetric treatment of publications and

subscriptions enables a notion of selective publishing,

whereby a publisher specifies predicates to declaratively

specify a subset of potential receivers of published

messages. This is in contrast to content-based publish/

subscribe, where a publication is delivered to all sub-

scribers with matching subscriptions. The symmetric

treatment of publications and subscriptions further

extends the conventional interpretation of publication,

as mere data points, to ranges, regions in space, or other

structures. This increases the expressiveness of the sub-

ject spaces model substantially, as opposed to other

publish/subscribe models.

The state-persistent nature of publications and

subscriptions avoids the problem of redundant notifica-

tions. This is because subject spaces distinguish between

inserting a publication and updating the previously

published value. A match occurs if the publication

satisfies the subscription, but not at each update of

the published values. Existing content-based publish/

subscribe systems cannot model this difference and

are therefore susceptible to the redundant notification

problem. Subject spaces can model both state-persistent

and stateless publish/subscribe. The subject spaces model

can be used to formalize and model publish/subscribe-

style interactions. Applications of concrete realizations of

the subject spaces model are similar to applications of

publish/subscribe. The increased expressiveness offered

by subject spaces will likely enable new applications.

For a more detailed treatment of the subject see for

example the work by Leung and Jacobsen [1,2].

Cross-references
▶Channel-Based Publish/Subscribe

▶Content-Based Publish/Subscribe

▶ Publish/Subscribe

▶ State-Based Publish/Subscribe

▶Topic-Based Publish/Subscribe

▶Type-Based Publish/Subscribe

Subspace Clustering Techniques S 2873
Recommended Reading
1. Leung H.K.Y. Subject space: a state-persistent model for publish/

subscribe systems. In Proc. Conf. of the IBM Centre for Ad-

vanced Studies on Collaborative Research, 2002, p. 7.

2. Leung H.K.Y. and Jacobsen H.-A. Efficient matching for state-

persistent publish/subscribe systems. In Proc. Conf. of the IBM

Centre for Advanced Studies on Collaborative Research, 2003,

pp. 182–196.
Subject-based Publish/Subscribe

▶Topic-Based Publish/Subscribe
Subspace Clustering Techniques

PEER KRÖGER, ARTHUR ZIMEK

Ludwig-Maximilians University of Munich, Munich,

Germany

Synonyms
Projected clustering; Oriented clustering; Correlation

clustering; Bi-clustering; Co-clustering; Pattern based

clustering
S

Definition
Cluster analysis aims at finding a set of subsets (i.e., a

clustering) of a data set. A meaningful clustering reflects

a natural grouping of the data. In high-dimensional data,

irrelevant attributes and correlated attributes make any

natural grouping hardly detectable. Specialized techni-

ques aim at finding clusters in subspaces of a high-

dimensional data space.
Historical Background
While different weighting of attributes was in use since

clusters were derived by hand, the problem of finding a

cluster based on a subset of attributes and a specialized

solution was first described in 1972 by Hartigan [8].

However, triggered by modern capabilities of massive

acquisition of high-dimensional data in many scientific

and economic domains, and the first general approaches

to the problem [2–4], research did not focus on the

problem until 1998. An illustrative problem description

and sketches of some earlier algorithms can be found in

[12]. The more special topic of pattern-based clustering
is covered in [11]. A general up-to-date overview is pre-

sented in [10].
Foundations

Different Challenges: The ‘‘Curse of Dimensionality’’

High-dimensional data confronts cluster analysis with

several problems. A bundle of problems is commonly

addressed as the ‘‘curse of dimensionality’’. Aspects of

this ‘‘curse’’ most relevant to the clustering problem

are: (i) In general, any optimization problem becomes

increasingly difficult with an increasing number of

variables (attributes) [5]. (ii) The relative contrast of

the farthest point and the nearest point converges to

0 with increasing data dimensionality [6,9], i.e., the

discrimination between the nearest and the farthest

neighbor becomes rather poor in high dimensional

data spaces. (iii) Capabilities of automated data acqui-

sition in many application domains leads to the collec-

tion of as many features as possible in the expectation

that many of these features may sometimes provide

useful insights. So, for the task at hand, in many pro-

blems there exist many irrelevant attributes in a data set.

Since groups of data are defined by some of the attri-

butes only, the remaining irrelevant attributes (‘‘noise’’)

may heavily interfere with the efforts to find these

groups. (iv) Similarly, in a data set containing many

attributes, some attributes will most probably exhibit

correlations among each other (in varying complexity).

Many approaches try to alleviate the ‘‘curse of

dimensionality’’ by applying feature reduction meth-

ods prior to cluster analysis. However, the second main

challenge for cluster analysis of high dimensional

data is the possibility, and even high probability, that

different subsets or combinations of attributes may

be relevant for different clusters. Thus, a global feature

selection or dimensionality reduction method cannot

be applied. Rather, it becomes an intrinsic problem of

the clustering approach to find the relevant subspaces

and to find clusters in these relevant subspaces. Fur-

thermore, although correlation among attributes is

often the basis for a dimension reduction, for many

application domains it is a main part of the interesting

information what correlations exist among which

attributes for which subset of objects. As a conse-

quence of this second challenge, the first challenge

(i.e., the ‘‘curse of dimensionality’’) generally cannot

be alleviated for clustering high dimensional data.

2874S Subspace Clustering Techniques
Different Solutions: Categories of Subspace Clustering

Techniques

Subspace clustering techniques can be divided into

three main families. In view of the challenges sketched

above, any arbitrarily oriented subspace may be inter-

esting for a subspace clustering approach. The most

general techniques (‘‘(arbitrarily) oriented clustering’’,

‘‘correlation clustering’’ (Note that the name ‘‘correla-

tion clustering’’ relates to a different problem within

the machine learning community.)) tackle this infinite

search space. Yet most of the research in this field

assumes the search space to be restricted to axis-paral-

lel subspaces. Since the search space of all possible axis-

parallel subspaces of a d-dimensional data space is still

in O(2d), different search strategies and heuristics are

implemented. Axis-parallel approaches mainly split

into ‘‘subspace clustering’’ and ‘‘projected clustering’’.

In between these twomain fields a group of approaches

is known as ‘‘pattern-based clustering’’ (also: ‘‘biclus-

tering’’ or ‘‘co-clustering’’). For these approaches, the

search space is not necessarily restricted to axis-parallel

subspaces, but on the other hand does not contain all

arbitrarily oriented subspaces. The restrictions on the

search space differ substantially between different

approaches in this group.

Axis-Parallel Subspaces

To navigate through the search space of all possible

axis-parallel subspaces and to find clusters in sub-

spaces, mainly two strategies are implemented: the

top-down approach and the bottom-up approach.

Following the top-down approach, an algorithm

derives a cluster approximately based on the full-

dimensional space, and refines the cluster by adapting

thecorrespondingsubspacebasedonthecurrentselection

of points. This means, a lower dimensional projection

is sought for where the (iteratively refined) set of points

clusters best. Thus, algorithms pursuing this approach

are called ‘‘projected clustering algorithms’’ and, usually,

assign each point to at most one subspace cluster.

Thefirst approachof this category is proposed in [2].

Bottom-up approaches start by single dimensions

and search primarily for all interesting subspaces (i.e.,

subspaces containing clusters) as combinations of

lower dimensional interesting subspaces (often this

combination is translated to the frequent item set

problem and, thus, based on the A priori property).

Most of these approaches are therefore ‘‘subspace clus-

tering algorithms’’, and can usually assign one point to
different clusters simultaneously (i.e., subspace clusters

may overlap). Their aim is to find all clusters in all

subspaces. There are also ‘‘hybrid algorithms’’ follow-

ing the projected clustering approach but allowing

points to belong to multiple clusters simultaneously

or, on the other hand, following the subspace cluster-

ing approach but not computing all clusters in all

subspaces. The first approach in this category is pro-

posed in [4].

In summary, approaches to axis-parallel subspace

clustering handle the problem of irrelevant attributes

(aspect (iii) of the ‘‘curse of dimensionality’’). Bottom-

up-approaches, additionally, tackle mostly the prob-

lem of poor discrimination of nearest and farthest

neighbor (aspect (ii)).

Pattern-Based Clustering

Pattern-based clustering algorithms seek subsets of

objects exhibiting a certain pattern on a subset of attri-

butes. In the most-spread algorithms, this pattern is an

additive model of the cluster, meaning, each attribute

value within a cluster and within the relevant subset of

attributes is given by the sum of a cluster mean value,

and an adjustment value for the current object and an

adjustment value for the current attribute. In general,

covering a cluster with such an additive model is possi-

ble if the contributing attributes exhibit a simple linear

positive correlation among each other. This excludes

negative or complex correlations, thus restricting the

general search space. Cluster objects reside sparsely on

hyperplanes parallel to the irrelevant axes. Projected

onto the relevant subspace, the clusters appear as in-

creasing one-dimensional lines. In comparison to axis-

parallel approaches, the generalization consists mainly

in allowing the axis-parallel hyperplane to be sparse.

Also the cluster in the projection subspace may remain

sparse. The unifying property of all cluster members

is the common pattern. This model has basically been

introduced in [7].

Allowing sparseness in the spatial patterns is an

interesting feature of this family of approaches, since

this also alleviates aspects (ii) and (iii) of the ‘‘curse of

dimensionality’’. Aspect (iv) is addressed partially.

Correlation Clustering

Correlation clustering approaches follow the most gen-

eral model: Points forming a cluster can be located on

an arbitrarily oriented hyperplane (i.e., subspace).

These patterns occur if some attributes follow linear,

Success at n S 2875

S

but complex correlations among each other (i.e., one

attribute may be the linear combination of several

other attributes). The main point addressed by these

approaches is therefore aspect (iv) of the ‘‘curse of

dimensionality’’. The most widespread technique is

the application of principal component analysis

(PCA) on locally selected sets of points. Other techni-

ques are the concept of the fractal dimension or apply-

ing the Hough transform on the data set. The first

approach is proposed in [3]. The general model for

this family of approaches is described in [1].

Key Applications
In many scientific and economic fields (like astronomy,

physics, medicine, biology, archaeology, geology, geog-

raphy, psychology, and marketing) vast amounts of

high dimensional data are collected. To gain the full

potential out of the gathered information, subspace

clustering techniques are useful in all these domains.

Pattern-based approaches are especially popular in

microarray data analysis.

Future Directions
The different groups of subspace clustering techniques

(subspace clustering, projected clustering, pattern-based

clustering, correlation clustering) tackle different sub--

problems of the ‘‘curse of dimensionality’’. There remain

challenges for each of these problems. However, as a next-

generation-type of approach, algorithms to tackle more

and more aspects simultaneously can be expected.

Cross-references
▶Apriori Property and Breadth-First Search Algo-

rithms

▶Clustering Overview and Applications

▶Curse of Dimensionality

▶Data Mining

▶Dimensionality Reduction

▶ Feature Selection for Clustering

Recommended Reading
1. Achtert E., Böhm C., Kriegel H.-P., Kröger P., and Zimek A.

Deriving quantitative models for correlation clusters. In Proc.

12th ACM SIGKDD Int. Conf. on Knowledge Discovery and

Data Mining, 2006.

2. Aggarwal C.C., Procopiuc C.M., Wolf J.L., Yu P.S., and Park J.S.

Fast algorithms for projected clustering. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1999.

3. Aggarwal C.C., and Yu P.S. Finding generalized projected clus-

ters in high dimensional space. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2000.
4. Agrawal R., Gehrke J., Gunopulos D., and Raghavan P. Automat-

ic subspace clustering of high dimensional data for data mining

applications. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1998.

5. Bellman R. Adaptive Controll Processes. A Guided Tour. Prince-

ton University Press, 1961.

6. Beyer K., Goldstein J., Ramakrishnan R., and Shaft U. When

is ‘‘nearest neighbor’’ meaningful? In Proc. 7th Int. Conf. on

Database Theory, 1999.

7. Cheng Y. and Chruch G.M. Biclustering of expression data. In

Proc. 8th Int. Conf. Intelligent Systems for Molecular Biology,

2000.

8. Hartigan J.A. Direct clustering of a data matrix. J. Am. Stat.

Assoc., 67(337):123–129, 1972.

9. Hinneburg A., Aggrawal C.C., and Keim D.A. What is the

nearest neighbor in high dimensional spaces? In Proc. 26th Int.

Conf. on Very Large Data Bases, 2000.

10. Kriegel H.P., Kröger P., and Zimek A. Clustering high dimen-

sional data: A survey on subspace clustering, pattern-based

clustering, and correlation clustering. ACM Trans. Knowl. Dis-

cov. Data, 3(1), 2009.

11. Madeira S.C. and Oliveira A.L. Biclustering algorithms for

biological data analysis: A survey, IEEE Trans. Comput. Biol.

Bioinf., 1(1):24–45, 2004.

12. Parsons L., Haque E., and Liu H. Subspace clustering for

high dimensional data: A review. SIGKDD Explorations,

6(1):90–105, 2004.
Subspace Selection

▶Dimension Reduction Techniques for Clustering
Subsumed by Windows
Communication Framework

▶ .NET Remoting
Success at n

NICK CRASWELL

Microsoft Research, Cambridge, UK

Synonyms
S@n

Definition
Success at n is an information retrieval relevance mea-

sure, equal to 1 if the top-n documents contain a

2876S Succinct Constraints
relevant document and 0 otherwise. When averaged

across multiple queries, the success rate at n indicates

how often something relevant was retrieved within the

top-n.

Key Points
A system with a high success rate will be one that rarely

retrieves zero relevant documents. Therefore, success

rate can be employed to monitor failure. The success

rate of two systems may differ even if they have the

same mean precision at n, because one system has

higher variance than the other. Success at n models

the satisfaction of a user who does not need to see

many relevant documents, is prepared to view up to

n results and is disappointed by a completely irrelevant

top-n.

Cross-references
▶ Precision at n

▶ Precision-Oriented Effectiveness Measures
Succinct Constraints

CARSON KAI-SANG LEUNG

University of Manitoba, Winnipeg, MB, Canada

Definition
Let Item be the set of domain items. Then, an itemset

SSj
Item is a succinct set if SSj can be expressed as a

result of selection operation sp(Item), where s is the

usual selection operator and p is a selection predicate.

A powerset of items SP
 2Item is a succinct powerset if

there is a fixed number of succinct sets SS1,...,SSk

Item such that SP can be expressed in terms of the

powersets of SS1,...,SSk using set union and/or set dif-

ference operators. A constraint C is succinct provided

that the set of itemsets satisfying C is a succinct

powerset.

Key Points
Succinct constraints [1,2] possess the following nice

properties. For any succinct constraint C, there exists

a precise ‘‘formula’’ – called a member generating func-

tion (MGF) – to enumerate all and only those itemsets

that are guaranteed to satisfy C. Hence, if C is succinct,

then C is pre-counting prunable. This means that one

can directly generate precisely the itemsets that satisfy
C – without looking at the transaction database TDB

and even before counting the support (or frequency) of

itemsets. In other words, whether an itemset S satisfies

C or not can be determined based on the selection of

items from the domain. Examples of succinct constraints

include max(S.Price)�$120 and max(S.Price)�$80,

which express that the maximum price of all items in

an itemset S is at most $120 and at least $80 respec-

tively. The set of itemsets satisfying the former can

be expressed as 2sPrice�$120 (Item); these itemsets can be

enumerated by using only the items having prices at

most $120 – via the MGF {X j X
 sPrice�$120(Item),

X 6¼ ;}. Similarly, the set of itemsets satisfying the

second constraint max(S.Price)�$80 can be expressed

as 2Item � 2sPrice<$80 (Item); these itemsets can be enum-

erated by using the items having prices at least $80 (i.e.,

mandatory items) and other items (i.e., optional

items) – via the MGF {Y [Z jY
sPrice�$80(Item),

Y 6¼ ; ,Z
sPrice<$80(Item)}.

Cross-references
▶ Frequent Itemset Mining with Constraints

Recommeded Reading
1. Lakshmanan L.V.S., Leung C.K.-S., and Ng R.T. Efficient

dynamic mining of constrained frequent sets. ACM Trans.

Database Syst., 28(4):337–389, 2003.

2. Ng R.T., Lakshmanan L.V.S., Han J., and Pang A. Exploratory

mining and pruning optimizations of constrained associations

rules. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1998, pp. 13–24.
Suffix Stripping

▶ Stemming
Suffix Tree

MAXIME CROCHEMORE
1,2, THIERRY LECROQ

3

1King’s College London, London, UK
2University of Paris-East, Paris, France
3University of Rouen, Rouen, France

Synonyms
Compact suffix tries

Suffix Tree S 2877

S

Definition
The suffix tree SðyÞ of a non-empty string y of length n

is a compact trie representing all the suffixes of the

string.

The suffix tree of y is defined by the following

properties:

1. All branches of SðyÞ are labeled by all nonempty

suffixes of y t.

2. Edges of SðyÞ are labeled by strings.

3. Internal nodes of SðyÞ have at least two children.

4. Edges outgoing an internal node are labeled by

segments starting with different letters.

5. The segments are represented both by their starting

position on y and their lengths.

The space sign t appended at the end of y avoids

marking nodes, and implies that SðyÞ has exactly n

leaves (number of non-empty suffixes).

All the properties then imply that the total size of

SðyÞ is O(n), which makes it possible to design a

linear-time construction of the suffix tree.

Historical Background
The first linear time algorithm for building a suffix tree

of a string of length n is from Weiner [15], but it

requires quadratic space: O(n � s) where s is the size

of the alphabet. The first linear time and space algo-

rithm for building a suffix tree is fromMcCreight [13].

It works ‘‘off-line,’’ inserting the suffixes from the lon-

gest one to the shortest one. A strictly sequential ver-

sion of the suffix tree construction was described by

Ukkonen [14]. When the alphabet is potentially infi-

nite, the optimal construction algorithms of the suffix

tree can be implemented to run in time O(n log s),
since they imply an ordering on the letters of the alpha-

bet. On particular integer alphabets, Farach [5] showed

that the construction can be done in linear time.

The minimization in the sense of automata theory

of the suffix trie gives the suffix automaton. The suffix

automaton of a string is also known under the name of

DAWG, for Directed Acyclic Word Graph. Its linearity

was discovered by Blumer et al. (see [1]), who gave a

linear construction (on a fixed alphabet). The minim-

ality of the structure as an automaton is from Cro-

chemore [2], who showed how to build the factor

automaton of a text with the same complexity.

The compaction of the suffix automaton gives the

compact suffix automaton (see [1]). The compaction

consists of removing all internal nodes with only one
child and concatenating remaining successive edge

labels. A direct construction algorithm of the compact

suffix automaton was presented by Crochemore and

Vérin [4]. The same structure arises when minimizing

the suffix tree.

The suffix array of the string y consists of both the

permutation of positions on the text that gives the

sorted list of suffixes, and the corresponding array

of lengths of their longest common prefixes (LCP).

The suffix array of a string with the associated search

algorithm based on the knowledge of the common

prefixes is from Manber and Myers [12]. The suffix

array can be built in linear time on integer alphabets

(see [8–10]).

For the implementation of index structures in ex-

ternal memory, the reader can refer to Ferragina and

Grossi [6].
Foundations

Suffix Trees

The suffix tree SðyÞ of the string y = ababbbt is

presented in Fig. 1. It can be seen as a compaction of

the suffix trie T ðyÞ of y given in Fig. 2.

Nodes of SðyÞ and T ðyÞ are identified with seg-

ments of y. Leaves of SðyÞ and T ðyÞ are identified with

suffixes of y. An output is defined, for each leaf, which

is the starting position of the suffix in y.

The two structures can be built by successively

inserting the suffixes of y from the longest to the

shortest.

In the suffix trie T ðyÞ of a string y of length n there

exist n paths from the root to the n leaves: each path

spells a different non-empty suffix of y. Edges are

labeled by exactly one symbol. The suffix trie can

have a quadratic number of nodes, since the sum of

the lengths of all the suffixes of y is quadratic.

To get the suffix tree from the suffix trie, internal

nodes with exactly one successor are removed. Labels

of edges between remaining nodes are then concate-

nated. Edges are now labeled with strings. This gives a

linear number of nodes, since there are exactly n leaves

and since every internal node (called a fork) has at least

two successors; there can be at most n � 1 forks. This

also gives a linear number of edges.

Now, in order that the space requirement becomes

linear, since the labels of the edges are all segments of y,

a segment y[i .. i + ‘ � 1] is represented by the pair

Suffix Tree. Figure 1. Suffix tree SðyÞ of ababbb. Nodes are numbered in the order of creation. The small number close

to each leaf corresponds to the position of the suffix associated with the leaf.

Suffix Tree. Figure 2. Suffix trie T ðyÞ of ababbb. Nodes are numbered in the order of creation. The small number close

to each leaf corresponds to the position of the suffix associated with the leaf.

2878S Suffix Tree
(i, ‘). Thus, each edge can be represented in constant

space. This technique requires having y residing in the

main memory.

Overall, there is a linear-number of nodes and a

linear number of edges, each node and each edge can

be represented in constant space, thus, the suffix tree

requires linear space.

There exist several direct linear-time-construction

algorithms of the suffix tree that avoid the construction

of the suffix trie followed by its compaction.

The McCreight’s algorithm [13] directly constructs

the suffix tree of the string y by successively inserting
the suffixes of y from the longest one to the shortest one.

The insertion of the suffix of y beginning at position i

(i.e., y[i .. n � 1]) consists first of locating (creating

it if necessary) the fork associated with the longest

prefix of y[i..n � 1] common with a longer suffix of

y: y[0..n � 1],y[1..n � 1],..., or y[i � 1..n � 1]. Let

us call the head u this longest prefix and call the tail

v the remaining part of the suffix such that y[i..n � 1]

= uv. Once the fork p associated with u has been

located, it is enough to add a new leaf q labeled by

i and a new edge labeled by (i + juj,jvj) from p to q

to complete the insertion of y[i..n � 1] into the

Suffix Tree S 2879

S

structure. The reader can refer to [3] or [7] for further

details.

The linear time of the construction is achieved by

using a function called suffix link, defined on the forks

as follows: if fork p is identified with segment av, a 2 A

and v 2 V∗, then sy(p) = q where fork q is identified

with v.

Suffix links are represented by dotted arrows in

Fig. 1.

The suffix links create shortcuts that are used to

accelerate head computations. If the head of y[i � 1 ..

n � 1] is of the form au (a 2 A, u 2 V∗) then u is a

prefix of the head of y[i .. n � 1]. Therefore, using

suffix links, the insertion of the suffix y[i .. n � 1]

consists first of finding the fork corresponding to the

head of y[i .. n � 1] (starting from suffix link of the

fork associated with au), and then in inserting the tail

of y[i .. n � 1] from this fork.

Ukkonen algorithm [14] works on-line, i.e., it

builds the suffix tree of y processing the symbols of y

from the first to the last. It also uses suffix links to

achieve a linear-time computation.

Weiner, McCreight and Ukkonen algorithms work

in O(n) time whenever O(n � s) space is used. If only
O(n) space is used then theO(n) time bound should be

replaced by O(n � log min{n, s}). This accounts for
the time to access a specific edge stored in each nodes.

The reader can refer to [11] for specific optimized

implementations of suffix trees.

For particular integer alphabets, when the alphabet

of y is in the interval [1 .. nc] for some constant c,

Farach [5] showed that the construction can be done

in linear time.

Generalized suffix trees are used to represent all

the suffixes of all the strings belonging to a set of

strings.

Indexes

The suffix tree serves as a full index on the string: it

provides a direct access to all segments of the string,

and gives the positions of all their occurrences in the

string. An index on y can be considered as an abstract

data type whose basic set is the set of all the segments

of y, and that possesses operations giving access to

information relative to these segments. The utility

of considering the suffixes of a string for this kind

of application comes from the obvious remark that

every segment of a string is the prefix of a suffix of

the string.
Once the suffix tree of a text y is built, searching for

x in y remains to spell x along a branch of the tree. If

this walk is successful, the positions of the pattern can

be output. Otherwise, x does not occur in y.

Any kind of trie that represents the suffixes of a

string can be used to search it. However, the suffix tree

has additional features which imply that its size is

linear.

We consider four operations relative to the seg-

ments of a string y: membership, first position, num-

ber of occurrences and list of positions.

The first operation on an index is the membership

of a string x to the index, that is to say the question

to know whether x is a segment of y. This question can

be specified in two complementary ways according to

whether x is a segment of y or not. If x does not occur

in y, it is often interesting in practice to know the

longest beginning of x that is a segment of y. This is

the type of usual answer necessary for the sequential

search tools in a text editor.

The methods produce without large modification

the position of an occurrence of x, and even the posi-

tion of the first or last occurrence of x in y.

Knowing that x is in the index, other relevant

information is constituted by its number of occur-

rences in y. This information can differently direct

the ulterior searches.

Finally, with the same assumption as previously,

complete information on the localization of x in y is

supplied by the list of positions of its occurrences.

Suffix trees can easily answer these questions. It is

enough to spell x from the root of SðyÞ. If it is not
possible, then x does not occur in y. Whenever x occurs

in y, let w be the shortest segment of y that is such x is a

prefix of w and w is associated with a node p of SðyÞ.
The number of leaves of the subtree rooted in the

node p then gives the number of occurences of x in y.

All these numbers associated with nodes of the tree can

be precomputed in linear time. The smallest (respec-

tively largest) of these leaves gives the position of the

first (resp. last) position of x in y. The list of leaves

numbers gives the list of the position of x in y (see [3]).
Key Applications
Suffix trees are used to solve string searching pro-

blems, mainly when the text into which several pat-

terns have to be found is fixed. It is also used in other

string related problems such as Longest Repeated

2880S Suffixing
Substring, Longest Common Substring. It can be used

to perform text compression. Word suffix trees can be

used when processing natural languages, in order to

represent only suffixes starting after separators such

as space or line feed. Gusfield [7] gives many applica-

tions of suffix trees in computational biology.

Cross-references
▶Tries

Recommended Reading
1. Blumer A., Blumer J., Ehrenfeucht A., Haussler D., Chen M.T.,

and Seiferas J. The smallest automaton recognizing the subwords

of a text. Theor. Comput. Sci. 40(1):31–55, 1985.

2. Crochemore M. Transducers and repetitions. Theor. Comput.

Sci. 45(1):63–86, 1986.

3. Crochemore M., Hancart C., and Lecroq T. Algorithms on

Strings. Cambridge University Press, Cambridge, UK, 2007.

4. Crochemore M. and Vérin R. On compact directed acyclic word

graphs. In Structures in Logic et Computer Science, LNCS 1261:

192–211, 1997.

5. Farach M. Optimal suffix tree construction with large alphabets.

In Proc. 38th IEEE Annual Symp. on Foundations of Computer

Science, 1997, pp. 137–143.

6. Ferragina P. and Grossi R. The string B-tree: A new data struc-

ture for string search in external memory et its applications.

J. Assoc. Comput. Mach., 46:236–280, 1999.

7. Gusfield D. Algorithms on strings, trees and sequences.

Cambridge University Press, Cambridge, UK, 1997.

8. Kärkkäinen J. and Sanders P. Simple linear work suffix array

construction. In Proc. 30th Int. Colloquium on Automata, Lan-

guages, and Programming, 2003, pp. 943–955.

9. Kim D.K., Sim J.S., Park H., and Park K. Linear-time construc-

tion of suffix arrays. In Proc. 14th Annual Symp. Combinatorical

Pattern Matching, 2003, pp. 186–199.

10. Ko P. and Aluru S. Space efficient linear time construction

of suffix arrays. In Proc. 14th Annual Symp. Combinatorical

Pattern Matching, 2003, pp. 200–210.

11. Kurtz S. Reducing the space requirement of suffix trees. Softw.,

Pract. Exp. 29(13):1149–1171, 1999.

12. Manber U. and Myers G. Suffix arrays: a new method for on-line

string searches. SIAM J. Comput. 22(5):935–948, 1993.

13. McCreight E.M. A space-economical suffix tree construction

algorithm. J. Algorithms 23(2):262–272, 1976.

14. Ukkonen E. On-line construction of suffix trees. Algorithmica

14(3):249–260, 1995.

15. Weiner P. Linear pattern matching algorithm. In Proc. 14th

Annual IEEE Symp. on Switching et Automata Theory.

Washington, DC, 1973, pp. 1–11.
Suffixing

▶ Stemming
Summarizability

ARIE SHOSHANI

Lawrence Berkeley National Laboratory, Berkeley,

CA, USA

Synonyms
Summarization correctness; Statistical correctness

Definition
Summarizability is a property that assures the correct-

ness of summary operations over On-Line Analytical

Processing (OLAP) databases, which are akin to Statis-

tical Databases [10]. Such databases are generally

referred to as ‘‘summary databases,’’ and have a data

model based on one or more measures defined over the

cross product of dimensions. For example, a bookstore

company may have multiple stores in many cities.

Assume that there is a database containing the stores

revenues for books sold per day over the last three

years. In such a database, ‘‘revenue’’ is a measure, and

‘‘book,’’ ‘‘store,’’ ‘‘day’’ are the dimensions that define

the cross product over which the measure revenue

is defined. A dimension in a summary database is

said to be summarizable relative to a measure, if a

summary statistic (sum, average, etc.) applied over

the dimension produces correct results. For example,

if summarization over all the books sold to obtain

‘‘total_revenues per store, per day’’ yields correct

results, the dimension ‘‘book’’ is considered sum-

marizable relative to the measure ‘‘revenue.’’ There

are certain conditions that have to hold in order to

get correct results, which are discussed in the next

section. Often, dimensions are organized into a hierar-

chy of categories. For example, days can naturally

be organized into months, and months into years.

Similarly, books can be organized by book-types

(e.g., cooking, fiction, etc.). Summarization can then

be applied to categories, such as summarizing over

books and days to get ‘‘revenue per book-type, per

store, per year.’’ In such cases the summarizability

property must apply to each category level of the

category hierarchy of a dimension, for that dimension

to be considered summarizable.

Historical Background
Statistical Databases, whichwere introduced in the 1980s

[2], andOLAPdatabases, introduced in the 1990s [1,3,4]

Summarizability. Figure 1. Revenue of books sold in a

particular store on a particular day.

Summarizability. Figure 2. Books organized by

book_type.

Summarizability S 2881

S

have a similar data model [1], but the issue of summar-

izability was not introduced until 1990 [9] and studied

carefully until 1997 [7]. After that time, several authors

have treated summarizability formally [5,6,8].

Foundations
Next, examples that violate summarizability are pre-

sented, and using these examples the conditions for sum-

marizability are stated. There are three such conditions

that must hold in order for a dimension to be summariz-

able. Two of the conditions refer to the category levels in a

dimension, and the third is a condition of the dimension

relative to the measure. Next, the basic notation used

throughout this document is introduced.

Notation

Consider, again, the example above of revenues per

book, store, and day. Using a notation commonly used

for such databases, this example database can be repre-

sented as ‘‘revenue (book, store, day).’’ For the category

hierarchies of dimensions, the notation [C1 -> C2 -> ...

Ci -> Ci + 1, ... Cn] is used to represent a category

hierarchy of a dimension of height n, starting from

the more detailed level towards higher levels. Thus, for

the example above, where the two hierarchies men-

tioned above are over the dimensions book and day,

the database will be represented as:

‘‘revenue ([book-> book-type], store, [day ->

month -> year]).’’

These concepts and notation are shown graphically

in Fig. 1, where the letters M, C, and X represent Mea-

sure, Category-level, and X-product (cross-product),

respectively.

The ‘‘Disjointness’’ Condition

Consider the revenue database above. Suppose that

the book-type set is (cooking, fiction, adventure,

science, etc.). Most of the books will usually belong

to a single book_type, but some could be categorized

under two or more types. This is shown graphically in

Fig. 2, for sales in a particular day for a particular store.

As can be seen, there in one book, b4, which is classi-

fied under the categories ‘‘fiction’’ and ‘‘adventure.’’ If

the revenues by book_type are added to generate ‘‘rev-

enue (book-type, store, day),’’ the totals will be incor-

rect, because if the revenues for all book-types are

added, the revenue for book b4 is added twice. The

reason is, of course, that book b4 belongs to two parent

categories.
The disjointness condition states: given two con-

secutive category-levels C_low and C_high in a dimen-

sion, where [C_low -> C_high], the sets of lower-level

categories elements that belong to each category ele-

ment of the higher-level, must be disjoint. This condi-

tion can also be expressed as requiring that the

category elements of the category levels form a ‘‘strict’’

hierarchy [8]. Yet another way to state this condition is

to say that there must be a one-to-many relationship

from C_high to C_low.

This seemingly simple observation is the source of

incorrect statistics in many systems that do not enforce

summarizability conditions. Under such conditions,

summarization is still possible by special treatment,

such as choosing to assign revenues equally to shared

2882S Summarizability
nodes (in the example above assigning half the revenue

for book b4 to each of the ‘‘fiction’’ and ‘‘adventure’’

book types). However, this is not usually done. Note

that summarization of book revenues to get, for exam-

ple, ‘‘revenues (store, day)’’ will yield a correct result,

since the category book_type is not involved.

The ‘‘Completeness’’ Condition

Completeness is a condition that holds if all the children

of higher-level category elements exist. If some of the

children are missing, then the summary to the higher

level may be incorrect. Consider, for example, a data-

base that contains ‘‘population (city, year, race, sex).’’

Suppose further that cities are organized by states, as

shown in Fig. 3. In this database, if the population

is summarized to the ‘‘state’’ level, the result of popu-

lations is obviously incorrect, since only populations

of cities are taken into account and not populations of

villages and small towns. However, if the measure was

stated as ‘‘populations_in_cities’’ then the [city ->

state] category mapping would be summarizable.

This example shows that the second condition of com-

pleteness is relative to the measure semantics.

One way to overcome the ‘‘incompleteness’’ condi-

tion is to add instances that account for the missing

elements in the category. In the population example,

one can add for each state, in addition to the cities in

the state, an instance that accounts for the population

in all areas other than cities. Such a node can be labeled

‘‘other_areas’’ for example. If this is done,
Summarizability. Figure 3. The population database is

not summarizable to the ‘‘state’’ level.
summarization to the state level would yield the cor-

rect summary population.

Another way to determine if a category level satisfies

the completeness condition can often be based on exter-

nal knowledge. For example, suppose that the dimension

‘‘age’’ in Fig. 3 is organized into age_groups: (0–10)

(10–20), ... ,(90–100). Is summarization to the

age_group level correct in this case? It is only correct

if there is external knowledge that this database does

not contain people older that 100. Otherwise, a cate-

gory (>100) has to be added in order to satisfy the

completeness condition.

The ‘‘Measure Type’’ Condition

Consider the database in Fig. 3 again, where a higher

category level is added to the dimension year: [year ->

decade]. Obviously, population cannot be summarized

to the decade level, since adding the yearly populations

does not yield a meaningful measure for the decade.

However, if the measure was ‘‘average population’’ per

year (and ‘‘counts’’ were also recorded), the average pop-

ulation per decade could be calculated. Why is that? As

another example, consider the book revenues database in

Fig. 1. Obviously, the revenues can be summarized from

days, to months, to years. However, if the measure was

‘‘number_of_unsold _books,’’ this cannot be summar-

ized (added) over the time dimension. The reason stems

from the semantic behavior of ‘‘temporal aggregation.’’

In statistics the term ‘‘temporal aggregation’’ is used

to describe the behavior of measures when aggregating

over the time domain. The measures are classified into

three types: ‘‘stock,’’ ‘‘flow,’’ and ‘‘value-per-unit.’’ It

turns out that these types behave differently when sum-

marized over time, depending on the summary statistics

used. In particular, a measure of ‘‘stock’’ type cannot be

summed over the time domain, whereas a measure of

‘‘flow’’ type can be summed over the time domain. In

the example discussed above, ‘‘population’’ is of type

stock, and so is ‘‘number_of_unsold _books,’’ and there-

fore they cannot be summed over the time dimension.

In contrast, ‘‘book_revenues’’ is of type ‘‘flow,’’ and

therefore can be summed.

In general, measures of type ‘‘stock’’ refer to a state

of the measure recorded at a particular point in time

(such as inventory), while measures of type ‘‘flow’’

record values of events over a period of a time (such

as sales). A measure of the type ‘‘value-per-unit’’ is

similar to ‘‘stock’’ in that it is recorded at a particular

point in time, but it has a per-unit value (such as the

Summarizability S 2883

S

cost of a book). In [7] a table is given for temporal

summarizability for each measure type for five common

aggregation operators: min, max, sum, avg, and range.

The table is reproduced in Fig. 4. As can be seem only

the operator ‘‘sum’’ is not summarizable for the types

‘‘stock’’ and ‘‘value-per-unit.’’ It turns out that ‘‘value-

per-unit’’ is also not summarizable for non-temporal

aggregation in the case of ‘‘sum,’’ but all other cases are

summarizable for non-temporal aggregation [7].

Summary

The conditions that are necessary to ensure correctness

of aggregation operations over statistical and OLAP

databases were presented. Such conditions are referred

to as ‘‘summarizability conditions.’’ Summarizability

conditions apply to the dimensions of multidimensional

data structures and to the category hierarchies in each

dimension. Such conditions depend on the summary

measure type, and whether the summarization is over

the time domain. Note that the summarizability of each

category level in a hierarchy is independent of the others;

that is, some category levels can be summarizable while

others are not.

Summarizability conditions are applicable to any

database system that supports aggregation operations.

While these conditions were described here in the con-

text of the OLAP data model, these conditions apply to

other models that do not express the multidimensional

structures explicitly. In particular, it is possible to repre-

sent an OLAP schema as a relational schema, where the

semantics of multidimensionality and category hierar-

chies are not explicit. In order to achieve correct results

in aggregation operations from such relational data-

bases, it is necessary to identify these (multidimension-

ality and category hierarchies) structures, and to make

sure that the summarizability conditions hold. If all the

conditions do not hold, aggregation operations should

be avoided and/or refused.
Summarizability. Figure 4. Temporal summarizability by

measure type and function type.
Key Applications
It is often claimed that statistical operations can be

inaccurate for various reasons. The better-known rea-

son is summarization over null values. For example,

taking an average over a set of values where some are

null, will produce the wrong result if the null elements

are represented as zeros, or if they are not discounted

in the computation. Summarizability conditions are

just as important, but are more subtle, semantically

based, and are often overlooked. It is essential that such

conditions are checked in any database that provides

aggregation operators, including OLAP and relational

database systems.

Future Directions
The three conditions described above for ensuring sum-

marizability are necessary conditions. However, while it

is believed that these conditions are also sufficient, this

was not shown formally so far. Another aspect of future

work is adding annotations to schemas as to whether

summarizability conditions hold, and how to automate

the checking of summarizability conditions dynamically

in a database as data instances are entered into (or

modified in) the database. Once summarizability is

made part of the data model, it is necessary to enhance

the aggregation operators to avoid summarization over

non-summarizable data.

Cross-references
▶Dimension

▶Hierarchy

▶Measure

▶Multidimensional Modeling

▶On-Line Analytical Processing

▶Quality of Data Warehouses

▶Query Processing in Data Warehouses

▶ Scientific Databases

Recommended Reading
1. Agrawal R., Gupta A., and Sarawagi S. Modeling multidimen-

sional databases. In Proc. 13th Int. Conf. on Data Engineering,

1997, pp. 232–243.

2. Chan P. and Shoshani A. Subject: a directory driven system for

organizing and accessing large statistical databases. In Proc. 7th

Int. Conf. on Very Data Bases, 1981, pp. 553–563.

3 Codd E.F., Codd S.B., and Salley C.T. Providing olap (online

analytical processing) to user-analysts: An IT mandate, Codd

and Associates technical report, 1993.

4. Gray J., Bosworth A., Layman A., and Pirahesh H. Data cube: a

relational aggregation operator generalizing group-by, cross-tabs

2884S Summarization
and sub-totals. In Proc. 12th Int. Conf. on Data Engineering,

1996, pp. 152–159.

5. Hurtado C.A., Gutiérrez C., and Mendelzon A. Capturing sum-

marizability with integrity constraints in OLAP. ACM Trans.

Database Syst., 30(3):854–886, 2005.

6. Hurtado C.A. and Mendelzon A.O. Reasoning about summariz-

ability in heterogeneous multidimensional schemas. In Proc. 8th

Int. Conf. on Database Theory, 2001, pp. 375–389.

7. Lenz H-J. and Shoshani A. Summarizability in OLAP and statis-

tical data bases. In Proc. 9th Int. Conf. on Scientific and Statisti-

cal Database Management, 1997, pp. 132–143.

8. Pedersen T.B. and Jensen C.S. Multidimensional data modeling

for complex data. In Proc. 15th Int. Conf. on Data Engineering,

336–345, 1999.

9. Rafanelli M. and Shoshani A. STORM: a statistical object repre-

sentation model. In Proc. 2nd Int. Conf. on Scientific and

Statistical Database Management, 1990, pp. 14–29.

10. Shoshani A. OLAP and statistical databases: similarities and

differences. In Proc. 16th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 1997, pp. 185–196.
Summarization

JIMMY LIN

University of Maryland, College Park, MD, USA

Synonyms
Text/document summarization; Automatic abstract-

ing; Distillation; Report writing

Definition
Summarization systems generate condensed outputs

that convey important information contained in one

or more sources for particular users and tasks. In

principle, input sources and system outputs are not

limited to text (e.g., keyframe extraction for video

summarization), but this entry focuses exclusively on

generating textual summaries from textual sources.

Historical Background
Summarization has a long history dating back to the

1960s, when researchers first started developing com-

puter systems that processed natural language [6,12].

Following a number of decades with comparatively few

publications, summarization research entered a new

phase in the 1990s. A revival of interest was spurred

by the growing availability of text in electronic formats

and later the World Wide Web. The enormous quan-

tities of information people come into contact with on

a daily basis created a need for applications that help
users cope with the proverbial information overload

problem. Summarization systems attempt to address

this need.

Foundations
Summarization is a broad and diverse field. Traditio-

nally, it is considered a sub-area of natural language

processing, but a significant number of innovations

have their origins in information retrieval. This entry is

organized as follows: first, various summarization fac-

tors are discussed. Next, a tripartite processingmodel for

summarization systems is presented, which provides a

basis for discussing general issues. Finally, selected sum-

marization techniques are briefly overviewed.

Summarization Factors

To better understand summarization, it is helpful to

enumerate its many dimensions – what Sparck Jones

[19] calls ‘‘factors’’. These factors provide a basis for

understanding various automatic methods, and can be

grouped into three broad categories: input, purpose, and

output. What follows is meant to be an overview of

important factors, and not intended to be exhaustive.

Input factors characterize the source of the

summaries:

1. Single versus multiple sources. For example, one

versus multiple reports of the same event.

2. Genre (categories of texts) and Register (different

styles of writing). For example, dissertations versus

blogs.

3. Written versus spoken. For example, newspaper arti-

cles versus broadcast news.

4. Language. Sources may be in multiple language.

5. Metadata. Sources may be associated with con-

trolled vocabulary keywords, human-assigned cat-

egory labels.

6. Structure. Source structure may be relatively

straightforward (e.g., headings and sub-headings)

or significantly more complex (e.g., email threads).

Purpose factors characterize the use of summaries

(i.e., why they were created):

1. Indicative versus informative versus evaluative. In-

dicative summaries are meant to guide the selection

of sources for more in-depth study, whereas infor-

mative summaries cover salient information in the

sources at some level of detail (and is often meant

to replace the original). Evaluative summaries

Summarization S 2885

S

assess the subject matter of the source and the

quality of the work (e.g., a review of a movie).

2. Generic versus focused. A generic summary places

equal emphasis on different information contained

in the sources and provides balanced coverage.

Alternatively, a summary might be focused on

an information need, i.e., created to answer a

question.

3. Task. What will the summary be used for? For

example, to help write a report or to make a

decision.

4. Audience. Whom is the summary intended for? For

example, experts, schoolchildren, etc.

Output factors characterize system output (note that

the input factors are relevant here also, but not

repeated):

1. Extractive versus abstractive. Extractive summaries

consist of text copied from the source material;

typically, such approaches are based on shallow

analysis. Abstractive summaries contain text that

is system-generated, usually based on deeper anal-

ysis. Note that these approaches define a continu-

ous spectrum, as many systems employ hybrid

methods.

2. Reduction, coverage, and fidelity. Reduction, usually

measured as a ratio between summary length and

source length, is often inversely related to coverage,

how much information of interest is preserved in

the summary. The summary should also preserve

source information accurately.

3. Coherence. Does the summary read fluently and

grammatically, both syntactically and at the dis-

course level? For summaries not intended to be

fluent prose (e.g., bullets), this factor is less

important.

Input, purpose, and output factors together charac-

terize the many dimensions of summarization and

provide a basis for subsequent discussions. Note, how-

ever, that not all factors figure equally in current sum-

marization systems – for a variety of reasons, the field

has focused on some more than others.
Summarization. Figure 1. A tripartite processing model

for summarization.
Processing Model

Sparck Jones characterizes the process of summariza-

tion as a reductive transformation of source text to

summary text through content condensation by selec-

tion and/or generalization of what is important in
the source [19]. She proposes a tripartite processing

model, shown in Figure 1, that serves as a framework

for understanding how various summarization techni-

ques fit together (see also [15] for a similar model).

Systems first convert source text into the source repre-

sentation, which is then transformed into the summary

representation. Finally, the summary representation is

realized as natural language text. Note that these stages

do not necessarily map to system components, as the

processing model only describes abstract processing

tasks. Since this model does not prescribe specific

representations or particular processing methods, it is

sufficiently general to describe a wide variety of sum-

marization systems while at the same time highlighting

important differences.

As previously discussed, input may come from one

or multiple sources (the term ‘‘documents’’ is used

generically, recognizing that sources may also be

speech, email, etc.). Single-document summarization

is challenging because simple baselines are often very

difficult to improve upon. For example, since news

articles are typically written in the ‘‘inverse pyramid’’

style (most important information first), the first

sentence or paragraph makes an excellent summary.

Frequently, longer documents (e.g., reports) contain

‘‘executive summaries’’, which nicely capture important

information in the documents. Multi-document sum-

marization faces a different set of challenges, the most

salient of which is the possibility of redundant infor-

mation in the sources (e.g., multiple news articles

2886S Summarization
about the same event). Frequently, the redundancy

is not superficially obvious, but involves paraphrase

(different syntactic structures, word choices, etc.).

More complex are cases where the information par-

tially overlaps or appears contradictory (e.g., different

reports of death tolls). More generally, multi-document

summarization requires systems to detect similarities

and differences in text.

It is generally assumed that a summarization system

is provided the source text. In cases where this is as-

sumption is not met, information retrieval techniques

may be used to first select the set of documents to

summarize (from a larger collection of documents).

However, since most systems assume that input sources

are more or less relevant to the task at hand, they may

not adequately cope with imperfect retrieval results.

The use of ‘‘representation’’ does not necessarily

imply deep linguistic analysis or processing. In fact,

most extractive summarization systems adopt a ‘‘bag of

words’’ representation at both the source and summary

end – that is, text is represented as a vector that has a

feature for each word. This representation makes the

obviously false assumption that word occurrences are

independent and ignores the rich linguistic relationships

present in text. Nevertheless, extractive techniques have

proven to be effective in various summarization tasks.

With extractive techniques, generation is trivial

since systems simply copy material from the source.

However, pure extraction often leads to problems in

overall coherence of the summary – a frequent issue

concerns ‘‘dangling’’ anaphora. Sentences often con-

tain pronouns, which lose their referents when

extracted out of context. Worse yet, stitching together

decontextualized extracts may lead to a misleading

interpretation of anaphors (resulting in an inaccurate

representation of source information, i.e., low fidelity).

Similar issues exist with temporal expressions. Note

that these problems become more severe in the

multi-document case, since extracts are drawn from

different sources. A general approach to addressing

these issues involves post-processing extracts, for ex-

ample, replacing pronouns with their antecedents,

replacing relative temporal expression with actual

dates, etc. Such techniques, however, can not be con-

sidered purely extractive (hence the observation that

most systems are, in fact, hybrid).

In general, extractive systems can be characterized

as ‘‘knowledge-poor’’, which is contrasted against

‘‘knowledge-rich’’ approaches. While not synonymous,
abstractive methods tend to be associated with

‘‘knowledge-rich’’ approaches. They involve one or

more of the following: detailed linguistic analysis on

source text to produce richly annotated structures,

incorporation of world knowledge to support the

transformation process, or generation of fluent natural

language text from abstract representations.

A canonical example of abstractive summarization

involves integration with information extraction (IE)

systems. Information extraction concerns the auto-

matic identification and creation of template instances

from natural language text based on some pre-defined

structure. For example, a template for natural disasters

might contain ‘‘slots’’ for type, damage, death toll, etc.

An IE system would analyze text sources and automat-

ically extract information to fill these templates, in

effect, populating a structured database from free

text. This process can be viewed as the interpretation

stage in the summarization processing model, and the

templates themselves can serve as the source represen-

tation. A summarization system can then combine

information from multiple templates to generate a

fluent summary (e.g., [18]).

Abstractive techniques face a number of major

challenges, the biggest of which is the representation

problem. Systems’ capabilities are constrained by the

richness of their representations and their ability to

generate such structures – systems cannot summarize

what their representations cannot capture. In limited

domains, it may be feasible to devise appropriate struc-

tures, but a general-purpose solution depends on

open-domain semantic analysis. Systems that can

truly ‘‘understand’’ natural language are beyond the

capabilities of today’s technology.

Finally, coherence of system-generated text is one

important output factor in summarization. Coherence

is usually taken to mean fluent, grammatically correct

prose that ‘‘reads well’’. This is a tall order, mainly

because coherence is very difficult to operationalize.

While humans can easily identify incoherent text, they

have much more difficulty defining what makes a piece

of text coherent. To make matters worse, multiple

arrangements of segments might be equally coherent

to a human. For extractive techniques, systems must

devise an ordering of extracted segments and deal with

‘‘out-of-context’’ issues discussed above. For abstrac-

tive techniques, generation of fluent output from an

abstract representation is sufficiently difficult that it is

considered another sub-area in natural language

Summarization S 2887

S

processing. Although output coherence is a require-

ment in both single- and multi-document summariza-

tion, the latter presents more problems (particularly

for extractive systems) given the variety of sources

extracts.

Overview of Selected Techniques

Due to relatively easy access to corpora, most research

in summarization over the past two decades has

been on written news. As most summarization systems

today are primarily extractive, these methods will

occupy the bulk of this discussion.

Extractive techniques first segment source text into

smaller segments (sentences, paragraphs, etc.), which

are then scored according a variety of features, e.g.,

position in the text [6], term and phrase frequencies

[12], lexical chains (degree of lexical-connectedness

between various segments) [1], topics present in the

text [16], or discourse prominence [14]. A widely

adopted approach is to use machine learning techni-

ques to determine the relative importance of various

features (the earliest example being [10]).

The features discussed above are relevant for both

single- and multi-document summarization, although

their relative importance varies with the task. Histori-

cally, the summarization field focused on the single-

document case first, and then subsequently moved on

to multi-document summarization. This move re-

quired systems to explicitly model similarities and

differences in text to address redundancy, paraphrase,

entailment, contradiction, and related linguistic issues.

One general approach involves clustering, as exempli-

fied by the MEAD framework [16]. Documents are

first clustered to find topics present in the sources.

Clusters are represented by their centroids, which are

used to rank extracts (along with other features).

Maximal Marginal Relevance (MMR) [7] is another

effective algorithm, specifically designed for query-

focused summaries (i.e., summaries that address an

information need). It iteratively selects candidate

segments to include in the final summary, balancing

relevance and redundancy at each iteration. Redun-

dancy is computed by content similarity between

each candidate and the current summary state (using

cosine similarity) – thus, candidates containing words

already in the summary are penalized. Note that nei-

ther MEAD nor MMR explicitly deals with linguistic

relationships such as paraphrase, but that issue has

been specifically addressed in other work [8].
After scoring and selecting segments from source

documents, extractive systems must decide on an or-

dering in the final system output. Ideally, the output

should constitute a coherent piece of text. Simple base-

lines for ordering segments include extraction order

(i.e., by score), temporal order (based on metadata or

temporal expressions), and order in source document

(preserving source structure). While simple to imple-

ment, these techniques frequently yield disfluent sum-

maries. Coherence can be improved by applying

computational models of content and discourse [2].

Nevertheless, text structuring is a relatively under-

explored area of summarization, particularly due to

difficulty in evaluation. As a final note, one possible

alternative is to abandon the assumption of summaries

as fluent prose, and instead present users with a

bulleted list of extracts.

Although open-domain abstractive summarization

using deep semantic representations is beyond the

current state of the art, a variety of successful abstrac-

tive techniques operating on syntactic structures have

been developed. Most of these techniques involve

parsing source documents and manipulating the

resulting parse trees. One popular approach involves

‘‘trimming’’, or removing inessential structures from

the parse tree [9,20] – for example, removing adjunct

clauses that do not contribute much information.

Other successful techniques include ‘‘splicing’’ frag-

ments from multiple sentences (sometimes across

multiple documents) – for example, embedding a sim-

ple sentence as a relative clause inside another [3,13].

Of course, these operations are not mutually exclusive.

Syntactic manipulations are particularly helpful in

multi-document summarization since sentences from

different sources might partially overlap, e.g., a sen-

tence contains both redundant and new information.

In this case, syntactic operations can potentially deliver

the best of both worlds, by eliminating redundant

information and preserving new information. How-

ever, as Sparck Jones recently noted [19], there has

been comparatively little work on abstractive summa-

rization over the last decade.

Additional Readings

Beyond this entry, a number of additional sources are

recommended for further reading: slides from a tuto-

rial presentation at SIGIR 2004 [15] provide a good

starting point. Special issues of the journal Information

Processing and Management [19] and Computational

2888S Summarization
Linguistics [17] contain in-depth articles on selected

topics. For details on specific summarization techni-

ques, a good place to look is the online proceedings

of the Document Understanding Conferences [4], an

annual evaluation of summarization systems. A note

on references in this entry: since a comprehensive

bibliography is impossible due to space limitations,

either representative early articles or recent ones are

cited (in the latter case, the assumption is that the

reader can trace citations backwards).
Key Applications
Summarization technology has a number of applica-

tions, many of which are outlined below:

Search result summarization. Search engines typi-

cally retrieve thousands of hits (if not more) in re-

sponse to a user’s query. Summarization systems can

provide users with an overview of results to support

information seeking.

Tools for analytical support. Summarization can be

applied to support intelligence analysis, e.g., ‘‘prepare a

report on recent insurgent activities in Basra’’, as well as

similar activities such as investigative journalism and

business intelligence.

Personal information agent. A personal information

agent maintains a profile of the user’s interest and

proactively seeks out information (e.g., retrieving and

summarizing relevant news items on a continuous

basis).

Accessibility assistance. For example, a visually im-

paired person might make use of a screen reader aug-

mented with summarization technology for greater

efficiency.

Support for handheld devices. Handheld devices

such as cell phones and PDAs with small screens

could benefit from more condensed information.

Medical applications. Physicians struggle to keep

current with the ever-increasing volume of medical

literature. Summarization systems can be deployed to

assist physicians, e.g., provide an overview of treatment

options for a particular disease.

Summarization of meetings. Summarization tech-

nology can be coupled with speech recognizers to

automatically generate ‘‘meeting minutes’’.
Future Directions
Current research in summarization can be character-

ized by three broad trends:
Increasing linguistic sophistication. Extractive tech-

niques can benefit from richer features to characterize

the appropriateness of a segment for inclusion in the

summary – these features come from increasingly de-

tailed linguistic analysis, enabled by advances in lan-

guage processing technology. Of particular interest is

the modeling of linguistic relations such as paraphrase,

entailment, and contradiction. Separately, this task has

been captured in the PASCAL recognizing textual en-

tailment evaluations.

As discussed above, limitations of extractive meth-

ods can be addressed by incorporating abstractive

techniques, e.g., manipulation of parse trees. Future

developments appear to follow this trend, with increas-

ingly richer representations (enabled by improvements

in syntactic, semantic, discourse, and pragmatic analy-

sis). In other words, abstractive summarization will

likely be arrived at by successive approximations with

hybrid techniques.

Exploration of different genres and domain-specific

applications. Recently, researchers have become inter-

ested in ‘‘informal’’ text – a broad genre that includes

emails, conversational speech, blogs, chat, SMS mes-

sages, etc. They are important because an increasing

portion of our society’s knowledge is captured in these

channels. Furthermore, informal text push the fron-

tiers of summarization technology by forcing research-

ers to develop more general and robust algorithms.

Integration with other language processing compo-

nents. As technology matures, it becomes feasible to

integrate summarization with other components to

create more powerful applications. A few examples:

integration with speech recognition to summarize TV

broadcasts and meetings; integration with machine

translation to summarize documents from multiple

languages; integration with information retrieval and

question answering to produce responses that answer

complex questions.

Experimental Results
Summarization is fundamentally experimental in na-

ture, as the effectiveness of different techniques cannot

be derived from first principles. Thus, tools for asses-

sing summary quality are critical to ensuring progress,

and evaluation methods themselves represent an active

area of research.

Methodologies for evaluating system output can be

broadly classified into two categories: intrinsic and

extrinsic. In an intrinsic evaluation, system output is

Summary S 2889

S

directly evaluated in terms of a set of norms – for

example, fluency, coverage of key ideas, or similarity

to an ‘‘ideal’’ summary (see [19] for an overview). In

particular, the last criteria has been operationalized

in ROUGE [11], a commonly used automated metric

that compares system output to a number of human-

generated ‘‘reference’’ summaries. In contrast, extrinsic

evaluations attempt to measure how summarization

impacts some other task, for example, helping users

determine if a document is relevant (see [5] and refer-

ences therein). While more informative, extrinsic eva-

luations are much more difficult to conduct, since it

often involves constructing realistic scenarios for sum-

marization systems.

One of the most important driving forces behind

summarization research is the existence of annual eva-

luations that provide a community-wide benchmark

to assess progress. Two such evaluations are the Docu-

ment Understanding Conferences [4] sponsored by the

U.S. National Institute of Standards and Technology

(NIST), and the NTCIR Project sponsored by Japan’s

National Institute of Informatics. Starting in 2008,

DUC is replaced by the newly created Text Analysis

Conference, also sponsored by NIST.

Data Sets
Instructions for obtaining data from the DUC and

NTCIR evaluations can be found on their respective

websites.

Cross-references
▶ Information Extraction

▶ Information Retrieval

Recommended Reading
1. Barzilay R. and Elhadad M. Using lexical chains for text summa-

rization. In Proc. ACL/EACL Workshop on Intelligent Scalable

Text Summarization, 1997.

2. Barzilay R. and Lee L. Catching the drift: Probabilistic content

models, with applications to generation and summarization.

In Proc. 2004 Human Language Technology Conf., 2004,

pp. 113–120.

3. Barzilay R. and McKeown K.R. Sentence fusion for multidocu-

ment news summarization. Computat. Linguist., 31(3):297–327,

2005.

4. Document Understanding Conferences. http://duc.nist.gov/.

5. Dorr B.J., Monz C., President S., Schwartz R., and Zajic D. A

methodology for extrinsic evaluation of text summarization:

Does ROUGE correlate? In Proc. ACL 2005 Workshop on In-

trinsic and Extrinsic Evaluation Measures for MT and/or Sum-

marization, 2005.
6. Edmundson H.P. New methods in automatic extracting. J. ACM,

16(2):264–285, 1969.

7. Goldstein J., Mittal V., Carbonell J., and Callan J. Creating and

evaluating multi-document sentence extract summaries. In

Proc. Int. Conf. on Information and Knowledge Management,

2000, pp. 165–172.

8. Hatzivassiloglou V., Klavans J.L., and Eskin E. Detecting text

similarity over short passages: Exploring linguistic feature com-

binations via machine learning. In Proc. Joint SIGDAT Conf.

on Empirical Methods in Natural Language Processing and Very

Large Corpora, 1999.

9. Knight K. and Marcu D. Statistics-based summarization – step

one: Sentence compression. In Proc. 12th National Conf. on AI,

2000, pp. 703–710.

10. Kupiec J., Pedersen J.O., and Chen F. A trainable document sum-

marizer. In Proc. 31st Annual Int. ACM SIGIR Conf. on Research

and Development in Information Retrieval, 1995, pp. 68–73.

11. Lin C.Y. and Hovy E. Automatic evaluation of summaries using

n-gram co-occurrence statistics. In Proc. 2003 Human Language

Technology Conf., 2003, pp. 71–78.

12. Luhn H.P. The automatic creation of literature abstracts. IBM J.

Res. Develop., 2(2):159–165, 1958.

13. Mani I., Gates B., and Bloedorn E. Improving summaries by

revising them. In Proc. 27th Annual Meeting of the Assoc. for

Computational Linguistics, 1999, pp. 558–565.

14. Marcu D. The Rhetorical Parsing, Summarization, and

Generation of Natural Language Texts. PhD Thesis, University

of Toronto, 1997.

15. Radev D.R. Text summarization. In Tutorial Presentation at the

27th Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 2004.

16. Radev D.R., Blair-Goldensohn S., and Zhang Z. Experiments in

single and multi-document summarization using MEAD. In

Proc. 2001 Document Understanding Conf., 2001.

17. Radev D.R., Hovy E., and McKeown K. Introduction to

the special issue on summarization. Computat. Linguist.,

28(4):399–408, 2002.

18. Radev D.R. and McKeown K. Generating natural language sum-

maries from multiple on-line sources. Computat. Linguist.,

24(3):469–500, 1998.

19. Sparck Jones K. Automatic summarising: The state of the art.

Inf. Process. Manage., 43(6):1449–1481, 2007.

20. Zajic D., Dorr B., Lin J., and Schwartz R. Multi-Candidate

Reduction: Sentence compression as a tool for document sum-

marization tasks. Inf. Process. Manage., 43(6):1549–1570, 2007.
Summarization Correctness

▶ Summarizability
Summary

▶Data Sketch/Synopsis

2890S Supervised Learning
Supervised Learning

▶Classification
Support Vector Machine. Figure 1. Linear classifiers

(hyperplane) in two-dimensional spaces.
Support Vector Machine

HWANJO YU

University of Iowa, Iowa City, IA, USA

Synonyms
SVM

Definition
Support vector machines (SVMs) represent a set of

supervised learning techniques that create a function

from training data. The training data usually consist of

pairs of input objects (typically vectors) and desired

outputs. The learned function can be used to predict

the output of a new object. SVMs are typically used for

classification where the function outputs one of finite

classes. SVMs are also used for regression and prefer-

ence learning, for which they are called support vector

regression (SVR) and ranking SVM, respectively.

SVMs belong to a family of generalized linear classifier

where the classification (or boundary) function is a

hyperplane in the feature space. Two special properties

of SVMs are that SVMs achieve (i) high generalization

(Generalization denotes the performance of the

learned function on testing data or ‘‘unseen’’ data

that are excluded in training.) by maximizing the mar-

gin (Margin denotes the distance between the hyper-

plane and the closest data vectors in the feature space.),

and (ii) support efficient nonlinear classification by

kernel trick (Kernel trick is a method for converting a

linear classifier into a non-linear one by using a non-

linear function to map the original observations into a

higher-dimensional space; this makes a linear classifi-

cation in the new space (or the feature space) equiva-

lent to non-linear classification in the original space

(or the input space).).

Historical Background
Vapnik developed the related concepts at 1979 and

published an article in Russian that was translated to

English at 1982. The first book introducing SVMs

(written by him) were published at 1995. Since then,

numerous literatures have been published including

tutorials, journal articles, and books.
Foundations
SVMs were initially developed for classification [1] and

have been extended for regression [4] and preference

learning [3,5]. The initial form of SVMs are a binary

classifier where the output of learned function is either

positive or negative. A multiclass classification can be

implemented by combining multiple binary classifiers

using pairwise coupling method [2]. This section

explains the motivation and formalization of SVM as

a binary classifier, and the two key properties – margin

maximization and kernel trick.

Motivation

Binary classification is to classify data objects into

either positive or negative class. Each data object (or

data point) is represented by a n-dimensional vector.

Each of these data points belongs to only one of

two classes. A linear classifier separates them with an

‘‘n minus 1’’ dimensional hyperplane. For example,

Figure 1 shows two groups of data and separating

hyperplanes that are lines in a two-dimensional space.

There are many linear classifiers that correctly classify

(or divide) the two groups of data such as L1, L2 and

L3 in Fig. 1. In order to achieve maximum separation

between the two classes, An SVM pick the hyperplane

so that the margin, or the distance from the hyperplane

to the nearest data point, is maximized. Such a hyper-

plane is likely to generalize better, meaning that the

hyperplane not only correctly classify the given or

training data points, but also is likely to correctly

classify ‘‘unseen’’ or testing data points.

Support Vector Machine. Figure 2. SVM classification

function: the hyperplane maximizing the margin in a two-

dimensional space.

Support Vector Machine S 2891

S

Formalization

The data points D in Fig. 1 (or training set) can be

expressed mathematically as follows:

D ¼ fð~x1; y1Þ; ð~x2; y2Þ;:::;ð~xm; ymÞg; ð1Þ

where ~xi is a n-dimensional real vector, yi is either

1 or �1 denoting the class to which the point ~xi
belongs. The SVM classification function Fð~xÞ takes

the form

Fð~xÞ) ~w �~x � b: ð2Þ

~w is the weight vector and b is the bias, which will be

computed by SVM in the training process.

First, to correctly classify the training set, F(�) (or ~w
and b) must return positive numbers for positive data

points and negative numbers otherwise, that is, for

every point~xi in D,

~w �~xi � b > 0 if yi ¼ 1; and

~w �~xi � b < 0 if yi ¼ �1

These conditions can be revised into:

yið~w �~xi � bÞ > 0; 8ð~xi; yiÞ 2 D: ð3Þ

If such a linear function F that correctly classifies every

point in D or satisfies(3) exists, D is called linearly

separable.

Second, F (or the hyperplane) needs to maximize

themargin. Margin is the distance from the hyperplane

to the closest data points. An example of such hyper-

plane is illustrated in Fig. 2. To achieve this, (3) is

revised into the following (4).

yið~w �~xi � bÞ � 1; 8ð~xi; yiÞ 2 D: ð4Þ

Note that (4) includes equality sign, and the right side

becomes 1 instead of 0. If D is linearly separable, or

every point in D satisfies (3), then there exists such

a F that satisfies (4). It is because, if there exist such ~w

and b that satisfy (3), they can be always rescaled to

satisfy (4).

The distance from the hyperplane to a vector ~xi is

formulated as
jFð~xiÞj
jj~wjj . Thus, the margin becomes

margin ¼ 1

jj~wjj : ð5Þ

because when~xi are the closest vectors, Fð~xÞwill return
1 according to (4). The closest vectors, that satisfy (4)

with equality sign, are called support vectors.
Maximizing the margin becomes minimizing jj~wjj.
Thus, the training problem in SVM becomes a con-

strained optimization problem as follows:

minimize :
1

2
jj~wjj2; ð6Þ

subject to : yið~w �~xi � bÞ � 1; 8ð~xi; yiÞ 2 D: ð7Þ

The factor of 1
2
is used for mathematical convenience.

However, the optimization problem will not

have a solution if D is not linearly separable. To

deal with such cases, soft margin SVM allows mislabeled

data points while still maximizing the margin. The

method introduces slack variables, x, which measure

the degree of misclassification. The following is the

optimization problem for soft margin SVM.

minimize : L1ðw; b; xÞ ¼
1

2
jj~wjj2 þ C

X
i

xi; ð8Þ

subject to : yið~w �~xi � bÞ � 1� xi;

8ð~xi; yiÞ 2 D:
ð9Þ

x � 0 ð10Þ

Due to the x in (9), data points are allowed to be

misclassified, and the amount of misclassification or

error will be minimized as well as the margin according

to the objective function (8). C is a parameter that

determines the tradeoff between the margin size and

the amount of error in training.

2892S Supporting Transaction Time Databases
This optimization problem is called quadratic pro-

gramming (QP) problem, and it is the primal form of

the QP. The primal form can be changed to the follow-

ing dual form using the Lagrange multipliers.

minimize : L2ðaÞ¼
X
i

ai�
X
i

X
j

aiajyiyjK ð~xi;~xjÞ;ð11Þ

subject to :
X
i

aiyi ¼ 0 ð12Þ

C � a � 0 ð13Þ

a constitute a dual representation for the weight vector

such that

~w ¼
X
i

aiyi~xi: ð14Þ

K ð~xi;~xjÞ in (11) is originally a dot product of the two

vectors, that is,~xi �~xj . However, the dot product can be

replaced by a non-linear kernel function, which allows

the algorithm to fit the maximum-margin hyperplane

in the transformed feature space. The transformed

feature space is usually high dimensional, and the hy-

perplane (or linear classifier) in the high-dimensional

space becomes non-linear in the original input space.

Computing the kernel function K is often done as

fast as computing a dot product. In this way, the

complexity of computing a non-linear function

becomes the same as that of computing a linear func-

tion in SVM. This method for computing a non-linear

function is called kernel trick. The following are popu-

larly used non-linear kernels.

1. Radial basis function (RBF): K(a, b) = exp(�gjja �
bjj2)

2. Polynomial: K(a, b) = (a � b + 1)d

3. Sigmoid: K(a, b) = tanh(ka � b + c)

Once a is learned from the dual form, the linear

function F in (2) becomes the following non-linear

function.

Fð~xÞ) ~w �~x � b)
X
i

aiyiKð~xi;~xÞ � b ð15Þ

Key Applications
SVMs have been widely applied for object classification

and pattern recognition such as text categorization,

face detection in images, and handwritten digit

recognition.
Cross-references
▶Classification

▶Regression

Recommended Reading
1. Burges C.J.C. A tutorial on support vector machines for

pattern recognition. Data Min. Knowl. Discovery, 2:121–167,

1998.

2. Hastie T. and Tibshirani R. Classification by pairwise coupling.

In Advances in Neural Information Processing Systems, 1998.

3. Herbrich R., Graepel T., and Obermayer K. (eds.) Large margin

rank boundaries for ordinal regression. MIT Press, Cambridge,

MA, 2000.

4. Smola A.J. and Scholkopf B. A tutorial on support vector regres-

sion. Technical Report, NeuroCOLT2 Technical Report NC2-

TR-1998-030, 1998.

5. Yu H. SVM selective sampling for ranking with application to

data retrieval. In Proc. 11th ACM SIGKDD Int. Conf. on Knowl-

edge Discovery and Data Mining, 2005.
Supporting Transaction Time
Databases

DAVID LOMET

Microsoft Research, Redmond, WA, USA

Synonyms
Temporal database; Multi-version database

Definition
The temporal concepts glossary maintained at http://

www.cs.aau.dk/�csj/Glossary/ defines transaction time

as: ‘‘The transaction time of a database fact is the time

when the fact is current in the database and may be

retrieved.’’ A transaction time database thus stores

versions of database records or tuples, each of which

has a start time and an end time, delimiting the time

range during which they represent the current versions

of database facts. As each version is the result of trans-

actions, the times associated with the version are the

times for the transaction starting the version (the start

time) and for the transaction ending the version (the

end time). These transaction times are required to

agree with the serialization order of the transaction,

so that the database can present a transaction consis-

tent view of the facts being stored.

Historical Background
Postgres was the first database system that supported

transaction time databases [13]. It implemented a

Supporting Transaction Time Databases S 2893

S

prototype relational database system using a version-

ing approach for recovery. This was then augmented

with a version store based on the R-tree [4]. Subse-

quently, the TSB-tree was introduced [7], based on the

WOB-tree time splitting [3], which provided an

integrated approach to storing both current and his-

torical data.

Commercially, Oracle and Rdb [5] database sys-

tems both support multi-version concurrency control,

now called snapshot isolation. Oracle subsequently

added a Flashback [11] feature that permitted access

to historical versions, based on saving a linear history

of their recovery versions. While this permits access to

historical versions, it is mostly intended as an efficient

means of providing an online backup for ‘‘point-in-

time’’ recovery, a form of ‘‘media’’ recovery in which

the database is recovered to a point just preceding a

bad user transaction.

Temporal databases have been extensively studied

[14], including not only transaction time but also valid

time. Included as well are bi-temporal databases, where

both valid and transaction time are supported. This

work has clarified the conceptual issues and provided a

common vocabulary of terms for describing work in

the field.

Foundations
Transaction time databases usually offer the full range

of database functionality that one would expect of

a database storing only current facts, which is called a

current time database. In addition, a transaction time

database provides access to all prior facts as represented

by versions of records that existed at some prior time.

Several types of functionality can be envisioned.

1. Access to database facts ‘‘as of ’’ some past time,

which are called ‘‘as of ’’ queries

2. Access to versions of a database fact in some time

range, which are called ‘‘time travel’’ queries

3. Access to collections of database facts in some time

range, i.e., ‘‘general transaction time queries’’

The functionality provided by transaction time data-

bases is important for applications such as time series

data, regulatory compliance, repeatability of scientific

experiments, etc. Further, a transaction time database

can provide valuable system capabilities such as

snapshot isolation concurrency control, recovery

from bad user transactions, and recovery from media

failure.
To support transaction time functionality, one needs

to change the semantics of the datamanipulation opera-

tions ‘‘update’’ and ‘‘delete.’’ An update creates an addi-

tional version instead of overwriting the prior state,

retaining both new and old versions of the data. A delete

is strictly logical, providing an end time for the previ-

ously current version. In this way, the prior version

persists so that queries about the database while this

version was alive can be answered.

Database systems supporting transaction time data

have been built that are based on the relational data

model, though this is not a fundamental limitation,

simply a pragmatic choice.

Implementation Approaches

There are two generic approaches to implementing

transaction time databases, which are described here.

Layered Approach The premise of the layered ap-

proach is that application programmers cannot wait

for vendors to build transaction time functionality into

database products [15]. Rather, a middleware layer

(MWL) is implemented that provides this functional-

ity. The MWL processes data definition statements,

adding timestamp fields to each record, processes

data manipulation statements (queries plus updates)

written in a language that exposes temporal function-

ality and translates them into equivalent ordinary SQL

queries. Typically, start time and end time are added to

each record of a transaction time table. The table may

be organized by a clustering key that includes (user

defined primary key, start time, end time). Thus, a

record with a given user defined primary key is clus-

tered next to its earlier versions, which makes ‘‘time

travel’’ queries efficient, while implying that ‘‘as of ’’

queries will have relatively poor performance. Group-

ing by time does not help much with ‘‘as of ’’ perfor-

mance, and usually compromises ‘‘time travel’’

performance.

Built-In Approach The built-in approach requires the

ability to modify the database engine to provide trans-

action time support. While a significant barrier, build-

ing transaction time support into a database system

can greatly improve performance, bringing it close to

current time database performance. This improved

performance is the result of optimizations that are

possible (i) for update, when the timestamps need to

be added to versions, (ii) for storage with simple forms

2894S Supporting Transaction Time Databases
of version compression, and (iii) for query, because

specialized indexing is possible that improves data

clustering. The rest of this article discusses the issues

of built-in support and how to make this support

perform well.

Managing Versions

Transaction time functionality requires dealing with

the multiple versions of database facts that exist to

express the states of the database over time. The

built-in approach has more freedom than the MWL

approach in how to achieve efficiency and perfor-

mance. There are a number of issues, the more impor-

tant ones being:

Timestamps Each historical version stored in a trans-

action time database has a begin time, at which it first

became the current version, and an end time, at which

it was either replaced by another version or deleted.

Current versions have the usual start time, but have a

special end time called ‘‘now’’ [2]. An MWL approach

usually includes both start and end times with each

version so that the SQL queries resulting from trans-

lating temporal queries are simple and efficient. With

built-in support, most systems [6,13] store only the

start time with each version, the end time being

derived from the start time of the subsequent version.

For a deletion, this next version can be a special ‘‘delete

stub’’ version. For a query ‘‘as of ’’ time T, the system

then looks for the version of each record with the

largest start time � T.

Storing Versions on a Page The common approach

for organizing pages for current time databases is

called a slotted array. Each array element points to a

record on the page. For B-trees, these records are

maintained in B-tree key order. When adding temporal

support to a current time database system, it is conve-

nient to minimize the change required for current time

functionality. This argues for retaining the slotted

array, and back-linking versions where each version is

augmented with a pointer to its preceding version.

Then for each record accessed in a query, the system

follows this backward chain to the first version with a

timestamp � T, the ‘‘as of ’’ time requested.

Indexing Versions Being able to index historical ver-

sions by time is essential to avoid increasing costs for

ever earlier query times [12]. Postgres [13] used the R-

tree [4] for this. The TSB-tree [7] is a more specialized
index that can, with an appropriate page splitting

policy [1] provide guarantees about the performance

of ‘‘as of ’’ queries. Its special feature is the introduction

of a time split [3] where the time interval of a full

database page is partitioned, with record versions

being assigned to the resulting pages whenever their

lifetimes intersect the time interval of a resulting page.

Thus, a version whose lifetime intersects both resulting

pages will be replicated in both pages. The result is

that, when combined with ordinary B-tree key

splitting, each TSB-tree page contains all versions

within a key-time rectangle of the search space. This

enables identifying exactly which pages can contain

answers to a temporal query. Despite the need for

replicating versions, the space required for the versions

remains linear in the number of unique versions.

Compressing Versions The way that versions are

stored on a page and indexed makes compressing ver-

sions simple. Usually, an update changes only a small

part of a record, perhaps only a single attribute. Thus,

delta compression, where the compressed version

represents the difference between one version and an-

other that is adjacent in time order, can be very effec-

tive. Only the updated attribute together with location

information and timestamp needs to appear in the

compressed version. Backward delta’s are to be pre-

ferred because this leaves the current time data uncom-

pressed and hence unchanged, important both for

compatibility and current time performance. Because

time splits in the TSB-tree always replicate versions

spanning the split time, and because splitting at cur-

rent time is convenient, the last version in each page is

always uncompressed, and this is preserved during a

time split. Decompressing a version never needs infor-

mation from any other page than the page upon which

the version is stored.

Dealing with Timestamps

In a transaction time database, for a record identified

in some way, its versions are distinguished by time-

stamps. The nature of timestamps, when they are cho-

sen and included, how to optimize this process, and

how to deal with user requests for transaction time are

discussed below.

Nature of Timestamps Several forms of timestamp

have been used for temporal support. Some systems

use transaction identifiers (XIDs) instead of time, some-

times maintaining a separate table that maps XID to

Supporting Transaction Time Databases S 2895

S

time. When versioning is limited, e.g., to only support

multiversion concurrency control, an active transac-

tion’s XID may be mapped to a list of transactions

(their XIDs) that committed before them, hence deter-

mining which transactions have updates that should be

visible to the active transaction [5]. However, for more

general functionality, system time is usually used. It may

need to be augmented with a sequence number because

its granularity may not be sufficient to completely dis-

tinguish every transaction’s updates.

When to Timestamp A timestamp for a version must

enable ‘‘as of ’’ queries to always see a transaction

consistent view of the data. This can be achieved

when timestamp order agrees with the serialization

order of transactions. If one chooses timestamps prior

to updating, the timestamp can be added immediately

to versions generated by the updating. However, early

timestamp choice means that transactions that serialize

differently must be aborted. Most implementations of

transaction time functionality thus choose timestamps

at commit, where the commit order is the same as the

serialization order for the transactions. This means,

however, that the timestamp is not available at time

of update, and must be added later.

Lazy Timestamping When a transaction’s timestamp

is determined late in the transaction, e.g., at commit

time, preceding updated records need to be revisited to

add the timestamp. Typically, an XID is placed in an

updated record at update time, to be replaced later by

the system time. Eager timestamping replaces XID

with time prior to transaction commit, logging this

activity as another update. This can be costly, so a

lazy approach is generally preferred in which XID is

replaced by time after the transaction commits. The

mapping from XID to system time must be maintained

persistently, at least until the timestamping is com-

plete, to ensure that replacing XID with time can

continue after a possible system crash.

Impact of User Requested Time The SQL language

supports a user’s request for current (transaction) time

within a query. It is essential that the user see a time that

is consistent with the transaction timestamp used for

updates of the transaction. Providing the user with a

time for the transaction while the transaction is execut-

ing constrains the choice of timestamp when the trans-

action is committed [9]. A transactionmust be aborted if

a timestamp cannot be chosen that is consistent with the
time provided to the user. To provide this, the system can

exploit the fact that the user time request is usually not

for the full precision of the timestamp, e.g., SQL DATE

constrains only the date part of the timestamp. Further,

remembering the largest timestamp on data that is seen

by the transaction provides a lower bound for a possibly

non-empty interval for timestamp choice.

Additional Uses

The versions maintained by a transaction time data-

base can support a variety of other system uses.

Snapshot Isolation Recent versions can be used to

provide snapshot isolation. With snapshot isolation

(the default concurrency provided by Oracle), a trans-

action reads not the current data (which would be used

for a serializable transaction) but a snapshot (version)

current as of the start of the transaction or as of the

first data read by the transaction. A transaction time

database keeps these versions as well as possibly older

versions. Thus, efficiently providing transaction time

support also provides efficient snapshot isolation. The

system may choose to garbage collect older versions

more quickly when they are only used for concurrency

control purposes.

Online Backup A database backup is simply an earlier

state of the database. Transaction time databases make

all earlier states accessible and queryable. To use an

earlier transaction time database state as a backup for,

e.g., media recovery for the current state, requires two

things: (i) the earlier state needs to be on a separate

medium than the current state; and (ii) the media

recovery log needs to include all updates from the

earlier state forward to the current state and itself be

on a separate device. A transaction time database sys-

tem can use time splits (which it would use in a TSB-

tree) to move versions to separate backup media, and it

can do this incrementally as well [8].

Bad User Transactions Occasionally, erroneous trans-

actions commit, compromising the correctness of a da-

tabase. Point-in-time recovery, where the database state

is reset to an earlier time, just prior to the bad transac-

tion, is the usual way of dealing with this. Conventional

database backups used for this incur a long restore time

followed by a roll forward to the just earlier time. A

transaction time database lends itself greatly shortening

the outage caused by this problem because earlier

versions of the database are already maintained online.

2896S Surfing
Oracle Flashback [11] implements point-in-time recov-

ery in this way. One can further limit the outage by

identifying exactly which transactions should be

removed from the database by tracking transaction

read dependencies [10].

Key Applications
In addition to the system uses just described, transac-

tion time databases are valuable for several applica-

tions, e.g., time series analysis, repeating experiments

or analysis on historical data, and auditing and legal

compliance.

Future Directions
Data stream processing is a new functionality that has

several important applications requiring fast reaction

to sequences of events, e.g., stock market data. This

data may also be stored and more carefully analyzed. It

is quite natural to think about stream data as transac-

tion time data, and ask temporal queries of it.

Cross-references
▶Concurrency Control

▶Multi-Version Database

▶Temporal Database

▶Temporal Strata

▶Transaction

▶Transaction-Time Indexing

Recommended Reading
1. Becker B., Gschwind S., Ohler T, Seeger B., and Widmayer P.

An asymptotically optimal multiversion B-tree. VLDB J.,

5(4):264–275, 1996.

2. Clifford J., Dyreson C., Isakowitz T., Jensen C.S., and Snodgrass

R.T. ‘‘On the semantics of ‘‘now’’ in databases,’’ ACM Trans.

Database Syst., 22(2):171–214, 1997.

3. Easton M. Key-sequence data sets on inedible storage. IBM

J. Res. Dev., 30(3):230–241, 1986.

4. Guttman A. R-trees: a dynamic index structure for spatial

searching. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1984, pp. 47–57.

5. Hobbs L. and England K. Rdb: A Comprehensive Guide. Digital,

1995.

6. Lomet D.B., Barga R., Mokbel M., Shegalov G., Wang R., and

Zhu Y. Transaction time support inside a database engine. In

Proc. 22nd Int. Conf. on Data Engineering, 2006, p. 35.

7. Lomet D.B. and Salzberg B. Access methods for multiversion

data. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1989, pp. 315–324.

8. Lomet D.B. and Salzberg B. Exploiting a history database for

backup. In Proc. 19th Int. Conf. on Very Large Data Bases, 1993,

pp. 380–390.
9. Lomet D.B., Snodgrass R.T., and Jensen C.S. Using the lock

manager to choose timestamps. In Proc. Int. Conf. on Database

Eng. and Applications, 2005, pp. 357–368.

10. Lomet D.B., Vagena Z., and Barga R. Recovery from ‘‘bad’’ user

transactions. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2006, pp. 337–346.

11. Oracle.Oracle FlashbackTechnology (2005)http://www.oracle.com/

technology/deploy/availability/htdocs/Flashback_Overview.htm

12. Salzberg B. and Tsotras V.J. A comparison of access methods for

time-evolving data. ACM Comput. Surv., 31(2):158–221, 1999.

13. Stonebraker M. The design of the POSTGRES storage system.

In Proc. 13th Int. Conf. on Very Large Data Bases, 1987,

pp. 289–300.

14. Tansel U., Clifford J., Gadia S.K., Segev A., and Snodgrass R.T.

Temporal databases: theory, design, and implementation.

Benjamin/Cummings, 1993.

15. Torp K., Snodgrass R.T., and Jensen C.S. Effective timestamping

in databases. VLDB J., 8(4):267–288, 2000.
Surfing

▶Browsing in Digital Libraries
SVD Transformation

▶ Singular Value Decomposition
SVM

▶ Support Vector Machine
Switch

▶OR-Split
Symbol Graph

▶ Symbolic Representation
Symbol Plot

▶ Symbolic Representation

Symmetric Encryption S 2897
Symbolic Graphic

▶ Symbolic Representation
S

Symbolic Representation

HANS HINTERBERGER

ETH Zurich, Zurich, Switzerland

Synonyms
Symbolic graphic; Symbol graph; Symbol plot

Definition
A written character or mark used to represent some-

thing; a letter, figure, or sign conventionally standing for

some object, process etc. (Oxford English Dictionary).

Examples are the figures denoting the planets, signs of

the zodiac, etc. in astronomy; the letters and other

characters denoting elements, etc. in chemistry, quan-

tities, operations, etc. in mathematics, the faces of a

crystal in crystallography.

In data visualization, the use of symbols allows

the representation of multivariate data items, where

each variate contributes to the symbol. The set of

symbols may be displayed in an array, superimposed

on coordinates to put extra information on a point

plot or, if appropriate, on a geographical map.

When symbolic representations of information is

used as a tool for thought or a form of communica-

tion, one distinguishes between abstract symbols

where the graphical units are shapes formed by lines,

and areas and depictive symbols (pictograms) where

the graphical units are pictorial representations of

objects and scenes.

Key Points
Symbols have considerable potential as an aid to sup-

port human cognition and as a medium for communi-

cation. To what extent symbols can successfully convey

specific information and what their inherent limita-

tions as a medium of communication are is far from

being understood. There is nevertheless a useful and

accumulating body of research dealing with the sys-

tematic application of symbolic representations.

One of the earliest researchers to treat symbolic

representations in a theoretical context is the French

cartographer Jacques Bertin. With his Semiology of
Graphics [1] he organized the visual and perceptual

elements of graphics according to the features and

relations in data, distinguishing primarily between dia-

grams, networks, maps and symbols.

Among the first efforts to relate visual and percep-

tual research to the practical problems of designing

information displays was the NATO Conference on

Visual Presentation of Information in 1978. The con-

tributions to this conference are published in [2], a

book that deals with basic psychological issues as well

as methods of evaluation of information design, with

much room given to the use of symbols.

For a classification of symbols as used for data

visualization and an overview for what type of func-

tions different symbols are used the reader is referred to

[3]. Tufte, in his series of books on information visuali-

zation, discusses with exemplary images and diagrams a

wide range of different styles and techniques, good and

bad, for the use of symbols, [4] is a starting point.

Cross-references
▶Data Visualization

▶Graph

▶Table

▶Thematic Map

Recommeded Reading
1. Bertin J. Semiology of Graphics (translation by W.J. Berg),

University of Wisconsin Press, Madison, WI, 1983.

2. Easterby R. and Zwaga H. (eds.). Information Design, The

Design and Evaluation of Signs and Printed Material, Wiley,

London, 1984.

3. Harris R.L. Information Graphics: A Comprehensive Illustrated

Reference, Oxford University Press, New York, 1999.

4. Tufte E.R. The Visual Display of Quantitative Information.

Graphics Press, Cheshire, CT, 1983.
Symmetric Encryption

NINGHUI LI

Purdue University, West Lafayette, IN, USA

Synonyms
Secret-key encryption

Definition
Symmetric encryption, also known as secret key en-

cryption, is a form of data encryption where a single

secret key is used for both encryption and decryption.

2898S Synchronization Component
Key Points
Modern symmetric encryption algorithms are often clas-

sified into stream ciphers and block ciphers. In a stream

cipher, the key is used to generate a pseudo-random key

stream, and the ciphertext is computed by using a simple

operation (e.g., bit XOR or modular addition) to com-

bine the plaintext bits and the key stream bits. Many

stream ciphers implemented in hardware are con-

structed using linear feedback shift registers (LFSRs).

The use of LFSRs on their own, however, is insufficient

to provide good security. Additional variation and en-

hancement are needed to increase the security of LFSRs.

RC4 is the most widely-used software stream cipher and

is used in popular protocols such as Secure Sockets Layer

(SSL) (to protect Internet traffic) and WEP (to secure

wireless networks).

A block cipher operates on large blocks of digits

with a fixed, unvarying transformation. The Data En-

cryption Standard (DES) [1] algorithm uses blocks of

64 bits; the Advanced Encryption Standard (AES) [2]

algorithm uses 128-bit blocks. When using a block

cipher to encrypt a message, one needs to choose an

encryption mode. Commonly used modes include the

Electronic Codebook (ECB), Cipher-block chaining

(CBC), Cipher feedback (CFB), Output feedback

(OFB), and Counter (CTR).

Cross-references
▶Asymmetric Encryption

▶Data Encryption

Recommended Reading
1. Federal information processing standards publication 46-3:

Data encryption standard (DES), 1999.

2. Federal information processing standards publication 197:

Advanced encryption standard, November 2001.
Synchronization Component

▶Concurrency Control Manager
Synchronization Join

▶Workflow Join
Synchronizing Distributed
Transactions

▶Distributed Concurrency Control
Synchronous Join

▶OR-Join
Synchronous Pipelines

▶ Iterator
Synopsis

▶ Structure Indexing

▶ Synopsis Structure
Synopsis Structure

PHILLIP B. GIBBONS

Intel Labs Pittsburgh, Pittsburgh, PA, USA

Synonyms
Synopsis

Definition
A synopsis structure for a dataset S is any summary of

S whose size is substantively smaller than S. Formally,

its size is at most O(jSje), where jSj is the size (in bytes)

of S, for some constant e < 1.

Key Points
Synopsis structures are small, often statistical summa-

ries of a data set. The term serves as an umbrella for any

summarization structure of sufficiently small size, such

as random samples, histograms, wavelets, sketches,

top-k summaries, etc.

Synopsis structures are most commonly used in con-

junction with data streams. The goal is to construct, in

one pass over the data stream, a synopsis structure that

can be used to answer any query froma prespecified class

of queries. That is, at any point, a user may pose a query

Synthetic Microdata S 2899

S

Q on the data stream thus far, and a (typically approx-

imate) answer to Q must be produced using only the

current synopsis structure. Two key advantages of

using a synopsis structure to answer queries are that

the space overhead is low (a massive dataset can be

summarized using only a small amount of space) and

the response time is fast (e.g., disk accesses can be

avoided altogether). Moreover, in the common setting

of queries comparing or aggregating over a distributed

collection of streams, only the small synopsis struc-

tures (and not the massive data streams) need to be

communicated between the collection points in order

to answer the query.

Synopsis structures are also used within relational

and XML databases, both for query optimization and

for approximate query answering.

Common metrics for evaluating a synopsis struc-

ture include (i) Coverage: the range and importance of

the class of queries supported; (ii) Answer quality: the

accuracy and confidence of its (approximate) answers;

(iii) Space footprint: its size, where smaller is better

and often polylog space is desired (i.e., space that is

O(logk(jSj)) for some constant k � 1); (iv) Per-item

processing time: the total time to process the dataset,

normalized to the number of items in the dataset; and

(v) Query time: the time to answer a query from the

synopsis structure [1].

Sometimes sketch is used interchangeably with syn-

opsis structure, but more typically ‘‘sketch’’ is restrict-

ed to synopses based on random projections.

The term was coined by Gibbons and Matias in

1995.

Cross-references
▶Data Stream

▶Histogram

▶Random Sample

▶ Sketch

▶Wavelets on Streams

Recommeded Reading
1. Gibbons P.B. and Matias Y. Synopsis data structures for massive

data sets. DIMACS Series in Discrete Mathematics and Theoret-

ical Computer Science: External Memory Algorithms, 1999.
Synthetic Data

▶Matrix Masking
Synthetic Image

▶ Image
Synthetic Microdata

JOSEP DOMINGO-FERRER

Universitat Revira i Virgili, Tarragona, Catalonia

Synonyms
Imputed data; Simulated data; Multiple imputation

Definition
Publication of synthetic – i.e., simulated – data is an

alternative to masking for statistical disclosure control

of microdata. The idea is to randomly generate data

with the constraint that certain statistics or internal

relationships of the original dataset should be

preserved.

Key Points
The operation of the original proposal by Rubin [2] is

next outlined. Consider an original microdata set X of

size n records drawn from a much larger population of

N individuals, where there are background attributes

A, non-confidential attributes B and confidential attri-

butes C. Background attributes are observed and avail-

able for all N individuals in the population, whereas B

and C are only available for the n records in the sample

X. The first step is to construct from X a multiply-

imputed population of N individuals. This population

consists of the n records in X and M (the number

of multiple imputations, typically between 3 and 10)

matrices of (B,C) data for the N � n non-sampled

individuals. The variability in the imputed values

ensures,theoretically,thatvalidinferencescanbeobtained

on the multiply-imputed population. A model for pre-

dicting (B,C) from A is used to multiply-impute (B,C)

in the population. The choice of the model is a non-

trivial matter. Once the multiply-imputed population

is available, a sample Z of n0 records can be drawn from

it whose structure looks like the one of a sample of n0

records drawn from the original population. This can

be doneM times to createM replicates of (B,C) values.

The results areMmultiply-imputed synthetic datasets.

To make sure no original data are in the synthetic

datasets, it is wise to draw the samples from the

2900S System Catalog
multiply-imputed population excluding the n original

records from it.

There are other approaches to synthetic data gen-

eration based on bootstrap, Latin Hypercube sampling,

Cholesky decomposition, etc. More information can

be found in [1].

Cross-references
▶ Inference Control in Statistical Databases

▶Microdata

Recommeded Reading
1. Hundepool A., Domingo-Ferrer J., Franconi L., Giessing S.,

Lenz R., Longhurst J., Nordholt E.S., Seri G., and De Wolf P.-P.

Handbook on Statistical Disclosure Control. CENEX SDC

Project, November 2006 (manuscript version 1.0). http://neon.

vb.cbs.nl/CENEX/.

2. Rubin D.B. Discussion of statistical disclosure limitation. J. Off.

Stat., 9(2):461–468, 1993.
System Catalog

▶Data Dictionary
System R (R*) Optimizer

MOUNA KACIMI, THOMAS NEUMANN

Max-Planck Institute for Informatics, Saarbrücken,

Germany

Definition
The System R Optimizer is the cost-based query opti-

mizer of System R. It pioneered several optimization

techniques, including using dynamic programming

for bottom-up join tree construction, and the concept

of interesting orderings for exploiting ordering in in-

termediate results. Later, it was generalized for dis-

tributed database systems in System R*.

Historical Background
System R is a database management system based on a

relational data model that was proposed by E. F. Codd

[4] in 1970. The system offers data independence by

providing a high-level user interface through which the

end user deals with data content rather than the un-

derlying storage structures. In other words, users do

not need to know how the tuples are physically stored
and which access paths are available to write queries.

Thus, data storage structures may change over time

without users being aware of it, providing a high level

of data independence and user productivity. Moreover,

System R offers capabilities for database management

in realistic and operational environments. Particularly,

it supports multiple users concurrently accessing data,

provides means for system recovery after hardware or

software failures, supports different types of database

use including ad hoc queries, programmed transac-

tions and report generation. System R has been devel-

oped at the San Jose IBM Research Laboratory during

three phases. First, Phase Zero of the project started in

1974 and ended in 1975. It involved the development

of a high-level relational user language, called SQL.

During this phase, a subset of SQL was implemented

for one user at a time. One of the most challenging

tasks of Phase Zero was the design of optimizer algo-

rithms for efficient query processing. Second, Phase

One took place from 1976 to 1977. It involved the

development of a full-function multi-user version of

System R. The multi-user prototype contained new

subsystems, such as locking subsystems that prevent

conflict of concurrent user accesses. Finally, Phase Two

focused on evaluating the System R during 1978 and

1979. It was mainly composed of two parts: (i) evalua-

tion of the system at the San Jose research Laboratory,

and (ii) evaluation of the actual use of the system at a

number of internal sites of IBM.
Foundations
This section is organized as follows. First, it starts by

describing the role of the optimizer in processing SQL

statements. Then, it describes the storage components

used to access paths on the different relations. Next, it

presents optimization techniques for single relations

and joins in System R. Finally, it describes how these

techniques are generalized to the distributed case of

System R*.
SQL Query Processing

An SQL statement is composed of one or multiple

query blocks depending on whether the operands of

the used predicates are simple values (of the from

‘‘column operator value’’) or queries (of the from ‘‘col-

umn operator query’’). A query block is represented by:

(i) a SELECT list containing the list of items to be

retrieved, (ii) a FROM list containing the relation(s)

System R (R*) Optimizer S 2901
references and (iii) aWHERE tree containing the bool-

ean combination of simple predicates specified by the

user. Processing SQL statements requires four main

phases namely: parsing, optimization, code generation

and execution. During the first phase, each SQL state-

ment is sent to the Parser to check its syntax. If no

errors are detected, the optimizer component is called

in the second phase. Using the System R catalogs, the

optimizer verifies the existence of all the relations and

columns referenced, and collects information about

them. It gets from the catalog the datatype and the

length of each column, and use these information to

check the semantic errors and type compatibility in

both expressions and predicate comparisons of the

SQL statement. In addition, the optimizer obtains,

from the catalogs, statistics about the referenced rela-

tions and the access paths available on each of them

and use these information for access path selection

process. Then, the optimizer chooses a query plan,

from a tree of alternate path choices, that is a minimum

cost solution. This chosen plan is a tree represented in

the Access Specification Language (ASL) [7]. In the

third phase, the Code generator translates ASL trees

into machine language code to finally execute the plan

chosen by the optimizer in the fourth phase. When the

code is executed, it accesses the Relational Storage

System (RSS), via the Storage System Interface (RSI),

to scan each of the query relations using the access

paths chosen by the optimizer. Even though the RSS

may be used for different purposes, here, we focus on

its use for computing cost formulas and executing the

code generated by the query processing in System R.
System R (R*) Optimizer. Figure 1. Example of B-tree index
Relational Storage System

The Relational Storage System (RSS) provides under-

lying storage support for System R. Relations in the

RSS are stored as a collection of tuples whose columns

are physically contiguous. The storage space is logically

organized into segments. Each relation resides within a

single segment, however, a segment may contain one or

more relations. A segment is composed of a set of

equal-sized pages. Each tuple of a relation is stored

within a single page and is assigned an identification

of the relation to which it belongs. Note that a page

may contain tuples from one or more relations.

To access tuples in a relation, an RSS scan is used.

Along a given access path, a scan returns one tuple at a

time. Two different types of scans can be distinguished.

First, Segment scans find all the tuples of a given rela-

tion by examining the segment that contains the

relation. All the non-empty pages of the segment are

touched and the tuples belonging to the given relation

are returned. Second, Index scans access a relation in

value order using an index. An index is created on one

or more columns of a relation. It is composed of one or

more pages within the segment containing the relation.

The pages of the index are separated from the pages

containing the relation tuples. They are organized into

a B-tree structure as shown in Fig. 1. Each page is a

node of the B-tree that contains an ordered sequence of

index entries. An entry of a non-leaf node consists of

a ≺ key, pointer � pair, where the pointer address

another page in the same tree. Leaf pages contain sets

of ≺ key, identifier � pairs, where identifier indicates

the tuple that contains the corresponding key. An
structure.

S

2902S System R (R*) Optimizer
index scan does a sequential read along the leaf pages

to get the tuple identifiers matching a given key. These

identifiers are used to find and return the data tuples to

the user in key value order.

When an index scan examines a relation, each page

of the index is touched only once, but a data page may

be touched more than once. This case may happen if a

page contains tuples which are not close in the index

ordering. An index is said to be clustered when the

physical proximity of tuples in the same data page

corresponds to the index key value. Therefore, not

only each index page, but also each data page will

be touched only once in a scan on that index. Addi-

tionally, to reduce the number of touched pages, start-

ing and stopping key values can be specified when

scanning tuples. Thus, only the tuples whose keys

belong to the predefined interval are returned. Both

index and segment scans may use a set of predicates,

called also search arguments or SARGS. These predi-

cates are of the form (‘‘column operator value’’). They

are applied to tuples before they are returned to the RSI

caller. Sargable predicates play an important role in

reducing the cost by eliminating unnecessary RSI calls

for tuples which can be rejected within the RSS.

Access Path Selection for Single Relations

This section describes how the optimizer chooses a

query plan accessing a single relation. As presented pre-

viously, the optimizer gets from the System R catalog the

access paths available on the relation referenced by the

query. The cheapest access path is obtained by evaluating

the cost for each available access path, i.e., each index on

the relation plus a segment scan. The optimizer formu-

lates a cost prediction given by the following formula:

Cost ¼ Page Fetches þW � ðRSI callsÞ

where Page Fetches represent I/O requirement com-

puted by the number of index pages fetched plus

number of data pages fetched. RSI calls indicate the

predicted number of tuples returned from the RSS.

This number is a good approximation of CPU utiliza-

tion since most of System R’s CPU time is spent in RSS.

The parameter W is an adjustable weighting factor

between I/O and CPU.

To find the cheapest access plan for a single relation

query, the optimizer needs to examine the cheapest

unordered access path and the cheapest access path

producing tuples in each interesting order. Unordered

access path may produce tuples in some order, but
the order is not interesting. In this case, the optimizer

simply chooses the cheapest access path as query plan.

By contrast, a tuple order is an interesting order if that

order is specified by the query block using GROUP

BY or ORDER BY clauses. In this case, the optimizer

compares the cost of producing that interesting order

to the cost of the cheapest unordered path plus the cost

of sorting QCARD tuples into the proper order, where

QCARD represents the query cardinality. The cheapest

of these alternatives is chosen as the plan for the query

block. In the following, a description is given of how

the query cardinality (QCARD) and RSI calls are com-

puted by the query optimizer.

During the query processing, the optimizer gets

statistics on the relations of the query and access paths

available on each relation. These statistics include the

cardinality of the query relations, the number of seg-

ments holding the relevant relations and the fraction of

their contained pages, the number of distinct keys and

the number of pages of each index. The statistics are

used by the optimizer to assign a selectivity factor F to

each predicate of the WHERE tree. This selectivity

factor indicates the expected fraction of tuples which

will satisfy the predicate. More details on statistics and

selectivity factors are given in [8]. The optimizer com-

putes the query cardinality (QCARD) as the product of

the cardinalities of every relation in the query block’s

FROM list times the product of all the selectivity fac-

tors of that query block’s predicates. The number of

RSI calls (RSICARD) is the product of the relation

cardinalities times the selectivity factors of the sargable

predicates, since the sargable predicates filter out tuples

without returning across the RSS interface.
Access Path Selection for Joins

A join query in SQL combines tuples from more than

one relation. Two join methods have been identified as

optimal or nearly optimal in most cases. For simplicity,

a description of how to join two relations is given,

then, it is extended to n relations. A two-way join

involves two relations respectively called outer relation

and inner relation. A predicate that relates columns of

two relations to be joined is called join predicate. The

columns referenced in a join predicate are called join

columns. Consider the following example:

SELECT Name, Location

FROM STUDENT, DEPARTMENT

WHERESTUDENT.Department=DEPARTMENT.Num

System R (R*) Optimizer S 2903

S

In this example, the outer and inner relations

are respectively ‘‘STUDENT ’’ and ‘‘DEPARTMENT’’.

There is one join predicate that is ‘‘STUDENT.Depar-

tement = DEPARTMENT.Num.’’ The join columns of

this query are ‘‘STUDENT.Department’’ and ‘‘DE-

PARTMENT.Num’’.

The first supported join method is called nested

loops. This method scans the outer and the inner rela-

tions in any order. The scan on the outer relation is

opened and for each outer tuple obtained, a scan is

opened on the inner relation to retrieve, one at a time,

all the tuples of the inner relation that satisfy the join

predicate. The cost of a nested loop join is computed

from the costs of scans on single relations defined in

the previous section and is given by the following

formula:

C-nested-loop-join ðpath1; path2Þ
¼ C-outerðpath1Þ þN� C-innterðpath2Þ

where C-outer(path1) indicates the cost of scanning the

outer relation via path1, C-inner(path2) indicates the

cost of scanning the inner relation, applying all appli-

cable predicates, and N is the (product of the cardin-

alities of all relations R of the join so far)� (product of

the selectivity factors of all applicable predicates).

The second supported join method is called merg-

ing scans. It requires the outer and the inner relations

to be scanned in join column order. This means that

join columns define interesting orders in addition of

columns mentioned in GROUP BY and ORDER BY

clauses. In case the join query contains more than one

predicate, one of them is used as join predicate and the

others are treated as ordinary predicates. If a relation

has no index on the join column, it has to be sorted

into a temporary list ordered by join column. By using

ordering on join columns, the merging scan method

avoids rescanning the entire inner relation for each

tuple of the outer relation. The merging scan synchro-

nizes the inner and the outer scans by matching join

columns. In addition, it may take advantage of cluster-

ing on join column of the inner relation. Thus, the

merging scan can remember where matching join

groups are located since tuples having the same values

on a join column are physically close to each other. The

cost of a merge scan join can be divided into the cost of

actually doing the join plus the cost of sorting the outer

or inner relation if required. The cost of doing the

merge is given by:
C-merge ðpath1; path2Þ ¼ C-outerðpath1Þ
þ N� C-innterðpath2Þ

In case the inner relation is sorted into a temporary

relation, the merging scans do not scan the entire

relation looking for a match. Therefore, the cost of

the inner scan can be significantly reduced comparing

to nested-loop joins. The cost of the inner scan, in this

case, is given by the following formula:

C-innerðsorted listÞ ¼ TEMPPAGES=N

þW� RSICARD

where TEMPPAGES is the number of pages required to

hold the inner relation. RSICARD is the number of RSI

calls and W is an adjustable weighting factor between

I/O and CPU.

When optimizing larger queries, these join meth-

ods are used as building blocks. The System R optimiz-

er only considers linear join trees, where join operators

may occur only on one side of other join operators. Join

trees with more than two relations are therefore con-

structed by adding a new relation to an already existing

join tree. For applying the methods described above,

the join tree, which is treated like a composite relation,

represents the outer relation and the relation being

added to the join tree represents the inner relation.

The optimizer uses a dynamic programming (DP)

strategy (sketched in Fig. 2) to reduce the runtime

complexity for join tree construction. It organizes the

optimization by the size of the join tree, initializing

the DP table with single relations and then construct-

ing larger join trees by combining smaller join trees (Sl)

with new relations (Rr). For each combination of rela-

tions the best join tree found so far is stored in the

DP table, which reduces the search space fromO(n!) to

O(n2n). Further, the System R optimizer considers only

join trees where a join predicate between the smaller

join tree and the new relation exists (i.e., it avoids

cross-products). This further reduces the search

space, for example to O(n3) when the relations are

simply joined in a sequence.

An important aspect of this optimization strategy is

the consideration of interesting orders. To find solu-

tions for joining pairs of relations, the optimizer first

finds access paths for each single relation in each inter-

esting and non-interesting tuple ordering. Recall that

interesting orders are defined by GROUP BY and

System R (R*) Optimizer. Figure 2. Dynamic programming strategy for join tree construction.

2904S System R (R*) Optimizer
ORDER BY clauses and also by every join column.

Next, the optimizer finds the best way for joining any

two relations, and starts building larger join trees. For

each join tree the order of the composite result is saved

to allow for merge joins that would not require sorting

the composite result. As the ordering can affect later

operators, a plan can only be safely pruned if a cheaper

one, which satisfies the same interesting ordering, is

found. After join trees for all n relations have been

constructed, the optimizer chooses the cheapest solu-

tion that gives the required order specified by the

query. Consider an example of three relations R1, R2,

R3 in a query and the following join predicates R1.x =

R2.x and R2.x = R3.x. Assume that the costs of nested-

loop and merge scan for the subquery {R1, R2} are

respectively C1 and C2, where C1 is lower than C2.

Intuitively, when the optimizer looks for the best plan

for {R1, R2, R3}, it could consider the nested-loop

method to join {R1, R2} since it is the cheapest alterna-

tive. However, if the optimizer considers a merge scan

to join {R1, R2} , the composite result will be sorted on

x which may significantly reduce the cost of the join

with R3. Thus, the optimizer has to keep track of tuple

orderings that can affect the execution plans for the

given query to find the optimal join tree.

R* Optimizer

The optimization algorithms described previously

have been extended to efficiently process queries in a

distributed database management system (R*). In such

environment, data needed by queries are stored in

multiple sites. Two main factors distinguish query

processing in System R from processing query in Sys-

tem R* [6]. First, the communication delays, and sec-

ond, the possibility of concurrent processing on

multiple sites. These two factors raise the importance

of developing an R* optimizer to deal with increasing

complexity of distributed query processing.
The distribution unit in R* is a relation and each

relation is stored at one site. Figure 3 shows two rela-

tions STUDENT and DEPARTMENT stored in two

different sites A and B. A query is called distributed if

it refers to relations at sites other than the query site.

The simplest form of a distributed query is a query that

accesses a single relation at a remote site. To execute the

query, a process at the remote site accesses the relation

locally and ships the query result back to the query site.

In case of a join query, the R* optimizer needs to chose

a set of local and distributed parameters. The local

parameters are the same as the one considered by

the System R optimizer including the join method

(nested-loop or merge scan), the order in which rela-

tions must be joined and the access path for each

relation (index or segment scan). The distributed

parameters include the choice of the join site, i.e.,

the site at which the join will take place, and the

method for transferring a copy of the inner table to

the join site, in case the inner table is not stored in

the chosen join site.

R* optimizer can use different methods to transfer

tuples from a site to another one. A straightforward

strategy is to ship the entire relation to the join site

and store it there in a temporary table. Alternatively,

the R* optimizer can use other join methods such

as semijoins, joins using hashing (Bloom) filters and

joins using dynamically-created index. Semijoins, for

example, help in reducing the number of transferred

tuples by limiting the relevant domain. Specifically,

only the tuples that could potentially match the join

predicates are shipped to the join site. Figure 3 shows

an example of semijoin procedure. First, it projects

the outer relation to the join column and ships the

results to the site of the inner relation. Second, it

finds tuples from the inner relation that match the

values received from the outer relation. Third, it

ships a copy of the projected inner tuples to the join

System R (R*) Optimizer. Figure 3. Example of semijoin.

System Recovery S 2905
site. Last, it joins the received tuples to the outer

relation.
S

Key Applications
The System R optimizer inspired many later optimizers,

including the well known Starburst optimizer. Starburst

uses a similar (though much more generalized) bottom-

up constructive optimization technique, and eventually

become the commercial database system DB2.

Cross-references
▶Query Optimization (in Relational Databases)

Recommended Reading
1. Astrahan M.M., Blasgen M.W., Chamberlin D.D., Eswaran K.P.,

Gray J., Griffiths P.P., III W.F.K., Lorie R.A., McJones P.R., Mehl

J.W., Putzolu G.R., Traiger I.L., Wade B.W., and Watson V.

System R: Relational approach to database management. ACM

Trans. Database Syst., 1(2):97–137, 1979.

2. Chamberlin D.D., Astrahan M.M., Blasgen M.W., Gray J.,

III W.F.K., Lindsay B.G., Lorie R.A., Mehl J.W., Price T.G.,

Putzolu G.R., Selinger P.G., Schkolnick M., Slutz D.R., Traiger
I.L., Wade B.W., and Yost R.A. A history and evaluation of

system R. Commun. ACM, 24(10):632–646, 1981.

3. Chamberlin D.D. and Boyce R.F. SEQUEL: A Structured

English Query Language. In Proc. SIGMOD Workshop, Vol. 1.

1974, pp. 249–264.

4. Codd E.F. A relational model of data for large shared data banks.

Commun. ACM, 13(6):377–387, 1970.

5. Gray J. Notes on data base operating systems. In Advanced

Course: Operating Systems, 1978, pp. 393–481.

6. Lohman G.M., Mohan C., Haas L.M., Daniels D., Lindsay B.G.,

Selinger P.G., and Wilms P.F. Query processing in R*. In Query

Processing in Database Systems, Springer, 1985, pp. 31–47.

7. Lorie R.A. and Nilsson J.F. An access specification language for a

relational data base system. IBM J. Res. Dev., 23(3):286, 1979.

8. Selinger P.G., Astrahan M.M., Chamberlin D.D., Lorie R.A., and

Price T.G. Access path selection in a relational database manage-

ment system. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1979, pp. 23–34.
System Recovery

▶Crash Recovery

T

Table

HANS HINTERBERGER

ETH Zurich, Zurich, Switzerland

Synonyms
Table; List; Matrix
Definition
A data structure to organize the tuples of a relation:

{<valueix, valueiy ,...>, <valuejx, valuejy ,...>, ...} in a

structured way.

An arrangement of numbers, words, symbols or

items of any kind, in columns and rows.

One-way table. The values of one or more variables

(sets of data) are displayed either horizontally or verti-

cally as a list. Each row or each column represents one

data item.

Two-way table. Also known as a contingency

table or cross tabulation (cross tab). The rows are

labeled with values of one of two variables and the

columns with values of the other. The cell at each row

and column intersection displays the value of a char-

acteristic of the data that is shared by the two variables

when they have the value displayed in the row and

column headings.

Multi-way table. The general idea of cross tabula-

tion extended to more than two variables. The rows or

columns or both are grouped by values of additional

variables.
Key Points
In database terminology a (one-way) table is the data

structure used to represent data that are organized with

the relational model.

Two-way and multi-way tables are widely used tools

to explore data by examining frequencies of observa-

tions that belong to specific categories on more than

one variable.
2009 Springer ScienceþBusiness Media, LLC
In the context of data visualization, tables are an

effective way to show exact numerical values and are

usually better suited than graphicalmethods to represent

small data sets. They assist users in making compar-

isons and provide them with a convenient way of

storing data for rapid reference. Tables can be format-

ted in many different ways to suit the type of data, the

purpose of the table and its intended use.

Ehrenberg [3] discusses tables in the context of

readability, Bertin [1] considers tables as part of an

information processing system, Card et al. [2] use them

as a step in the process of mapping data to visual form

while Harris [4] lists terms and key elements used in the

design of tables.

The terminology for tables has also been influenced

by the widespread use of table-based spreadsheet pro-

grams. One example is the notion of a pivot table, a

practical feature to reorganize lists as user specified

tables, particularly useful for cross tabulations.

Cross-references
▶Chart

▶Data Visualization

▶Tabular Data
Recommended Reading
1. Bertin J. Graphics and Graphic Information-Processing. Walter

de Gruyter, Berlin, New York, 1981.

2. Card S.K., MacKinlay J.D., and Shneiderman B. Readings in

Information Visualization: Using Vision to Think. Morgan

Kaufmann, San Francisco, CA, 1999.

3. Ehrenberg A.S.C. A Primer in Data Reduction. Wiley,

Chichester, UK, 1982.

4. Harris R.L. Information Graphics: A Comprehensive Illustrated

Reference, Oxford University Press, New York, 1999.
Table Design

▶ Physical Database Design for Relational Databases

2908T Table Normalization
Table Normalization

▶ Physical Database Design for Relational Databases
Tabular Data

JOSEP DOMINGO-FERRER

Universitat Rovira i Virgili, Tarragona, Catalonia

Synonyms
Table

Definition
From microdata, tabular data can be generated by

crossing one or more categorical attributes. Formally,

a table is a function

T : DðV i1Þ � DðVi2Þ � � � � � DðVilÞ ! R or N

where l � t is the number of crossed categorical attri-

butes V_{ij} and D(V_{ij}) is the domain of attribute

V_{ij}.

Key Points
There are two kinds of tables: frequency tables that dis-

play the count of respondents at the crossing of the

categorical attributes (in N) and magnitude tables that

display information on a numerical attribute at the

crossing of the categorical attributes (inR). For exam-

ple, given some census microdata containing attributes

“Job” and “Town,” one can generate a frequency table

displaying the count of respondents doing each job

type in each town. If the census microdata also contain

the “Salary,” attribute, one can generate a magnitude

table displaying the average salary for each job type

in each town. The number n of cells in a table is

normally much less than the number r of respondent

records in a microdata file. However, tables must satis-

fy several linear constraints: marginal row and column

totals. Additionally, a set of tables is called linked

if they share some of the crossed categorical attributes:

for example “Job” � “Town” is linked to “Job” �
“Gender.”
Cross-references
▶ Inference Control in Statistical Databases

▶Microdata
Tamper-Proof Hardware

▶Trusted Hardware
Tape Libraries

▶ Storage Devices
Tapes

▶ Storage Devices
Task

▶Activity
Taxonomies

▶ Lightweight Ontologies
Taxonomy: Biomedical Health
Informatics

VIPUL KASHYAP

Partners Healthcare System, Wellesley, MA, USA

Synonyms
Health informatics; Healthcare informatics; Biomedi-

cal informatics

Definition
Health informatics or medical informatics is the inter-

section of information science, computer science, and

health care [2]. It deals with the resources, devices,

and methods required to optimize the acquisition, stor-

age, retrieval, and use of information in health and

biomedicine. Health informatics tools include not only

computers but also clinical guidelines, formal medical

terminologies, and information and communication

systems. Subdomains of (bio) medical or health care

informatics include: clinical informatics, nursing

Taxonomy: Biomedical Health Informatics T 2909
informatics, imaging informatics, consumer health in-

formatics, public health informatics, dental informatics,

clinical research informatics, bioinformatics, veterinary

informatics, pharmacy informatics, and healthcare

management informatics. An alternative characteriza-

tion refers to this field as biomedical informatics [1]

takes a broader perspective including the application of

computer and information science, informatics, cogni-

tive science and human computer interaction in the

practice of biological research, biomedical science, med-

icine and healthcare [3].
T

Foundations
This field is now characterized by means of a taxonomy

comprising of the various subdomains identified

above. The key sub domains are:

1. Clinical Informatics focuses on computer applica-

tions that address medical data (collection, analy-

sis, representation), and is a combination of

information science, computer science, and clinical

science designed to assist in the management and

processing of data, information and knowledge to

support the practice and delivery of clinical care.

Key activities covered by this area include Electron-

ic Medical Records (EMRs), Decision Support Sys-

tems, Medical Data Mining, Hospital Information

Systems and Laboratory Information Systems.

2. Nursing Informatics is the multidisciplinary scientif-

ic endeavor of analyzing, formalizing, and modeling

how nurses collect and manage data, process data

into information and knowledge, make knowledge-

based decisions and inferences for patient care, and

use this empirical and experiential knowledge in

order to broaden the scope and enhance the quality

of their professional practice. The scientific meth-

ods central to nursing informatics are focused on:

(i) Using a discourse about motives for computer-

ized systems, (ii) Analyzing, formalizing and mod-

eling nursing information processing and nursing

knowledge for all components of nursing practice:

clinical practice, management, education and re-

search, (iii) Investigating determinants, conditions,

elements, models and processes in order to design,

and implement as well as test the effectiveness and

efficiency of computerized information, (tele)com-

munication and network systems for nursing prac-

tice, and (iv) Studying the effects of these systems

on nursing practice.
3. Imaging Informatics combines knowledge and cap-

abilities from the fields ofmedicine, medical imaging

(also known as diagnostic radiology), biomedical

informatics and Information Technology. Imaging

informatics includes the mining of information or

knowledge frommedical image databases, the use of

technology to enhance the medical image interpreta-

tion process, and the utility of computer software

to digitize medical imaging. The more commonly

recognized areas of Imaging Informatics include

Picture Archiving and Communications Systems

(PACS), Radiology Information Systems (RIS), and

Computer-Aided Detection and Diagnosis (CAD).

4. Consumer Health Informatics has been defined as a

branch of medical informatics that analyses consu-

mers’ needs for information; studies and imple-

ments methods of making information accessible

to consumers; and models and integrates consu-

mers’ preferences into medical information systems.

5. Public Health Informatics has been defined as the

systematic application of information and comput-

er science and technology to public health practice,

research, and learning. It is distinguished from

healthcare informatics by emphasizing data about

populations rather than that of individuals. The

activities of public health informatics can be broad-

ly divided into the collection, storage, and analysis

of data related to public health.

6. Dental Informatics is the understanding, skills

and tools that enable the sharing and use of infor-

mation to promote oral health and improve

dental practice, research, education, and manage-

ment. It encompasses electronic health records,

CAD/CAM technology, diagnostic digital imaging

and administrative information for all dentistry

disciplines.

7. Clinical Research Informatics is concerned with the

application of informatics theory and methods

to design, conduct and improve clinical research

and disseminate the knowledge gained. It overlaps

considerably with the related rapidly developing

domain of Translational Research Informatics.

Clinical research is defined by the National Insti-

tutes of Health (NIH) as being comprised of studies

and trials in human subjects that fall into the three

sub-categories: (i) Patient-oriented research con-

ducted with human subjects (or on material of

human origin such as tissues, specimens and cog-

nitive phenomena) for which an investigator (or

2910T Taxonomy: Biomedical Health Informatics
colleague) directly interacts with human subjects.

It includes research on mechanisms of human dis-

ease, therapeutic interventions, clinical trials, or

development of new technologies; (ii) Epidemio-

logic and behavioral studies; and (iii) Outcomes

research and health services research.

8. Translational Research Informatics as defined by the

NIH includes two areas of translation. One is the

process of applying discoveries generated during

research in the laboratory, and in preclinical stud-

ies, to the development of trials and studies in

humans. The second area of translation concerns

research aimed at enhancing the adoption of best

practices in the community. Cost-effectiveness of

prevention and treatment strategies is also an im-

portant part of translational science.

9. Bioinformatics and Computational Biology involves

the use of techniques including applied mathemat-

ics, informatics, statistics, computer science, artifi-

cial intelligence, chemistry, and biochemistry to

solve biological problems usually on the molecular

level. The core principle of these techniques is

the use of computing resources in order to solve

problems on scales of magnitude far too great

for human discernment. Research in computation-

al biology often overlaps with systems biology.

Major research efforts in the field include sequence

alignment, gene finding, genome assembly, protein

structure alignment, protein structure prediction,

prediction of gene expression and protein-protein

interactions, and the modeling of evolution.

10. Pharmacy Informatics is the application of compu-

ters to the storage, retrieval and analysis of drug

and prescription information. Pharmacy informa-

ticists work with pharmacy information manage-

ment systems that help the pharmacist make

excellent decisions about patient drug therapies

with respect to medical insurance records, drug

interactions, as well as prescription and patient

information. Pharmacy informatics is the study of

interactions between people, their work processes

and engineered systems within health care with

a focus on pharmaceutical care and improved

patient safety.

Key Applications
This field is characterized by the key aspects and appli-

cations, some of which are discussed in more detail

through cross-referenced encyclopedia entries:
� Systems and architectures for electronic medical

records.

� Health information systems used for billing, sched-

uling and other financial operations.

� Information systems used for biomedical and clin-

ical research.

� Decision support systems in healthcare, including

clinical decision support systems.

� Standards (e.g., DICOM, HL7) and integration

profiles (e.g., Integrating the Healthcare Enter-

prise) to facilitate the exchange of information

between healthcare information systems.

� Information Models such as the HL7/RIM and the

openEHR for storage and representation of clinical

data in a standardized manner.

� Controlled medical vocabularies (CMVs) such as the

Systematized Nomenclature of Medicine, Clinical

Terms (SNOMED CT), Logical Observation Identi-

fiers Names and Codes (LOINC), OpenGALEN

Common Reference Model or the highly complex

UMLS used to allow a standardized way of character-

izing medication, laboratory results, and clinical

findings.

� Use of hand-held or portable devices to assist pro-

viders with data entry/retrieval or medical deci-

sion-making, sometimes called mHealth.
Cross-references
▶Biomedical Data/Content Acquisition, Curation

▶Biomedical Image Data Types and Processing

▶Biomedical Scientific Textual Data Types and

Processing

▶Clinical Data Acquisition, Storage and Management

▶Clinical Data and Information Models

▶Clinical Data Quality and Validation

▶Clinical Decision Support

▶Clinical Document Architecture

▶Clinical Event

▶Clinical Knowledge Repository

▶Clinical Observation

▶Clinical Order

▶Computerized Physician Order Entry

▶Data Privacy and Patient Consent

▶Data, Text, and Web Mining in Healthcare

▶ Electronic Health Record

▶ Enterprise Terminology Services

▶ Evidence Based Medicine

▶ Executable Knowledge

Telic Distinction in Temporal Databases T 2911
▶ Implications of Genomics for Clinical Informatics

▶ Interface Engines in Healthcare

▶Quality and Trust of Information Content and

Credentialing

▶Reference Knowledge

▶ Storage Management

Recommended Reading
1. Biomedical Informatics, http://en.wikipedia.com/wiki/

Biomedical_informatics

2. Health Informatics, http://en.wikipedia.org/wiki/Health_

informatics

3. Shortliffe E.H. and Cimino J.J. eds. Biomedical Informatics:

Computer Applications in Health Care and Biomedicine, 3rd

edn. Springer, New York, 2006.
T

Telic Distinction in Temporal
Databases

VIJAY KHATRI
1, RICHARD T. SNODGRASS

2, PAOLO

TERENZIANI
3

1Indiana University, Bloomington, IN, USA
2University of Arizona, Tucson, AZ, USA
3University of Turin, Turin, Italy

Synonyms
Point-versus period-based semantics

Definition
In the context of temporal databases, telic (atelic) data

are used to store telic (atelic) facts, and the distinction

between telic and atelic data are drawn using the prop-

erties of downward and upward inheritance.

� Downward inheritance. The downward inheritance

property implies that one can infer from temporal

data d that holds at valid time t (where t is a time

period) that d holds in any sub-period (and sub-

point) of t.

� Upward inheritance. The upward inheritance prop-

erty implies that one can infer from temporal data

d that holds at two consecutive or overlapping time

periods t1 and t2 that d holds in the union time

period t1 [t2.

In temporal databases, the semantics of atelic data

implies that both downward and upward inheritance
holds; on the other hand, neither downward nor up-

ward inheritance holds for telic data.

Historical Background
The distinction between telic and atelic facts dates

back to Aristotle’s categories [2] and has had a deep

influence in the Western philosophical and linguistic

tradition. In particular, the distinction between differ-

ent classes of sentences (called aktionsart classes)

according to their linguistic behavior and temporal

properties is at the core of the modern linguistic tradi-

tion (consider, e.g., the milestone categorization by

Vendler [11]). For instance, the upward and downward

inheritance properties were used (without adopting

terminology, which is imported from Shoham [7]

and, more generally, from the artificial intelligence

tradition) by Dowty [4] in order to distinguish be-

tween Vendler’s accomplishments (telic facts) and

states along with processes (atelic facts). Starting

from the pioneering work by Bennet and Partee [3],

several linguistic approaches have pointed out that the

traditional point-based semantics, in which facts can

be evaluated at each time point, properly applies only

to atelic facts, while a period-based semantics is needed

in order to properly cope with telic facts. Starting from

Allen’s milestone approach [1], the telic/atelic dichoto-

my has also played a major role in the area of artificial

intelligence. In the field of temporal databases, the point-

based vs. period-based dichotomy was initially related

to representation and query evaluation issues (rather

than to data semantics); later the connection was made

between Aristotle’s categories and the telic/atelic data

semantics [9,10]. It is the emphasis on data semantics

that renders “telic” and “atelic” the preferred term.

Foundations
The distinction between telic and atelic data regards

the time when facts hold or occur, i.e., their valid time.

The following discussion focuses on the temporal

semantics of data and queries, independent of the rep-

resentation that is used for time. Moreover, while in

several database approaches the semantics of data is

not distinguished from the semantics of the query,

this presentation follows the logical tradition, stating

that data has its own semantics independently of

any query language and operators just in the same

way in which a knowledge base of logical formulæ

have their own semantics – usually expressed in

model-theoretic terms.

2912T Telic Distinction in Temporal Databases
Data Semantics

In the linguistic literature, most approaches classify

facts (or sentences describing facts) according to their

temporal properties. In particular, most approaches dis-

tinguish between telic and atelic facts, and prior research

(see, e.g., [3]) points out that, while the point-based

semantics is useful to cope with atelic facts, it is

not suitable for telic ones, for which a period-based

semantics is needed.

Point-based semantics of data: The data in a tempo-

ral relation is interpreted as a sequence of states (with

each state a conventional relation, i.e., a set of tuples)

indexed by points in time. Each state is independent

of every other state.

Such temporal relations can be encoded in many

different ways (data language). For example the

following are three different encodings of the same

information, within a point-based semantics, of John

being married to Mary in the states indexed by the

times 1, 2, 7, 8, and 9:

ðiÞ < John; Maryjjf1; 2; 7; 8; 9g >2 R

ðiiÞ < John; Maryjjf½1� 2�; ½7� 9�g >2 R

ðiiiÞ < John; Maryjj½1� 2� >2 R and

< John;Maryjj½7� 9� >2 R

Independently of the representation, the point-

based semantics implies that the fact denoted by

<John, Mary> includes 5 individual states as

follows:

1! f< John; Mary >g
2! f< John;Mary >g
7! f< John;Mary >g
8! f< John;Mary >g
9! f< John;Mary >g

Notice that the point-based semantics naturally

applies to atelic facts, since both downward and up-

ward inheritance are naturally supported.

Period-based semantics of data: Each tuple in a

temporal relation is associated with a multiset of time

periods, which are the temporal extents in which the

fact described by the tuple occur. In this case, time

periods are atomic primitive entities in the sense that

they cannot be decomposed. Note, however, that time

periods can overlap, unlike time points.
For example, let <John || {[10–20]}> represent the

fact that John started to build a house at time 10 and

finished at time 20. If a period-based semantics is

adopted, the period [10–20] is interpreted as an atomic

(indivisible) one.

½10; 20� ! f< John >g

Note that a period-based semantics does not imply

that John built the house in [12–15], or at the time

point 12, or at any other time period other than

[10–20]. As a consequence, the period-based semantics

is naturally suited to cope with telic facts, for which

(by definition) neither downward nor upward inheri-

tance hold.

Although several query and data representation

languages include time periods, most temporal data-

base approaches adopt, explicitly or implicitly, the

point-based semantics, interpreting a temporal data-

base as a set of conventional databases, each one hold-

ing at a specific snapshot of time. This is the approach

followed, e.g., by the Bitemporal Conceptual Data

Model (BCDM) [5], a model that has been proven to

capture the semantic core of many prior approaches in

the temporal database literature, including the TSQL2

“consensus” approach [8]. While point-based seman-

tics works perfectly when coping with atelic data, the

problem with using it to cope with telic fact is illu-

strated by the following example.
Example

Phone calls are durative telic facts. For instance, if John

made a call to Mary from time 10 to time 12, he didn’t

make it from 10 to 11. Similarly, two consecutive calls,

one from 10 to 12 (inclusive) and the other from 13 to

15 (inclusive), are clearly different from a single call

from 10 to 15. However, such a distinction cannot

be captured at the semantic level, if the point-based

semantics is used. In fact, the point-based semantics

for the two phone calls of John is as follows:

10! f< John;Mary >g
11! f< John;Mary >g
12! f< John;Mary >g

13! f< John;Mary >g
14! f< John;Mary >g
15! f< John;Mary >g

Telic Distinction in Temporal Databases T 2913

T

Based on point-semantics, there is no way of grasp-

ing that two different calls were made. In other words,

there is a loss of information. Note that such a loss of

information is completely independent of the repre-

sentation language used to model data. For instance,

the above example could be represented as

ðiÞ < John; Maryjjf10; 11; 12; 13; 14; 15g >2 R

ðiiÞ < John;Maryjjf½10� 12�; ½13� 15�gg >2 R

ðiiiÞ < John; Maryjj½10� 12� >2 R and

< John;Maryjj½13� 15� >2 R

But, as long as the point-based semantics is used, the

data semantics is the one elicited above.

On the other hand, independently of the represen-

tation formalism being chosen, the semantics of telic

facts such as phone calls is properly coped with if the

period-based semantics is used. For instance, in the

phone example, the semantics

½10� 12� ! f< John;Mary >g
½13� 15� ! f< John;Mary >g

correctly expresses the distinction between the two

consecutive phone calls.

In an analogous way, period-based semantics is not

suitable tomodel atelic facts. In short, both upward and

downward inheritance holds for them, and the period-

based semantics does not support such properties.

Terenziani and Snodgrass have proposed a two-

sorted data model, in which telic data can be stored

in telic relations (i.e., relations to be interpreted using

a period-based semantics) and atelic data in atelic

relations (i.e., relations to be interpreted using a

point-based semantics) [9].

Query Semantics

It is interesting that the loss of information due to the

treatment of telic data in a point-based (atelic) frame-

work is even more evident when queries are consid-

ered. Results of queries should depend only on the

data semantics, not on the data representation. For

instance, considering the phone example above (and

independently of the chosen representation), queries

about the number or duration of phone calls would

not provide the desired answers. For instance, the

number of calls from John to Mary would be one,

and a call from John to Mary would (incorrectly) be
provided to a query asking for calls lasting for at least

five consecutive units.

In order to cope with a data model supporting both

telic and atelic relations, temporal query languages must

be extended. Specifically, queries must cope with atelic

relations, telic relations, or a combination of both.

Furthermore, linguistic research suggests a further

requirement for telic/atelic query languages: flexibility.

It is widely accepted within the linguistic community

that while basic facts can be classified as telic or atelic,

natural languages provides several ways to switch be-

tween the two classes. For instance, given a telic fact

(such as “John built a house”), the progressive form

(e.g., “John was building a house”) coerces it into an

atelic one, stripping away the culmination (and, in fact,

“John was building a house” does not imply that “John

built a house,” i.e., that he finished it) [6]. For the sake

of expressiveness, it is desirable that a database query

language provides the same flexibility.

Queries About Atelic Data

As already mentioned above, most database approaches

are interpreted (implicitly or explicitly) on the basis of

the point-based semantics. Therefore, the corresponding

algebraic operators already cope with atelic data. As an

example, in BCDM, the union of two relations is simply

obtained by taking the tuples of both relations, and

“merging” the valid time of value equivalent tuples

performing the union of the time points in their valid

time. This definition is perfectly consistent with the

“snapshot-by-snapshot” view enforced by the underly-

ing point-based (atelic) semantics.

However, the algebrae in the literature also contain

operators which contrast with such a “snapshot-by-

snapshot” underlying semantics. Typical examples are

temporal selection operators. For instance, whenever a

duration is asked for (e.g., “retrieve all persons married

for at least n consecutive time units”), the query

implicitly relies on a telic view of data, in which snap-

shots are not taken into account independently of

each others.

Queries About Telic Data

Algebraic operators on telic data can be easily defined

by paralleling the atelic definitions, and considering

that, in the telic case, the basic temporal primitives

are not time points, but time periods [9]. For instance,

telic union is similar to atelic one, except that the

2914T Telos
merging of valid times of value-equivalent tuples is

performed by making the union of multisets of time

periods, considered as primitive entities, e.g.,

f½10� 12�; ½13� 15�g [f½10� 14�; ½13� 18�g
¼ f½10� 12�; ½13� 15�; ½10� 14�; ½13� 18�g

Note that temporal selection operators perfectly fit

with the telic environment. On the other hand, alge-

braic operators that intuitively involve a snapshot-by-

snapshot view of data (e.g., Cartesian product, involv-

ing a snapshot-by-snapshot intersection between valid

times) have an awkward interpretation in the telic

context; for this reason, difference and “standard”

Cartesian product have not been defined in the telic

algebra in [9].
Queries Combining Telic and Atelic Data

In general, if a two-sorted data model is used, queries

combining relations of both kinds are needed. In gen-

eral, such queries involve the (explicit or implicit)

coercion of some of the relations, to make the sort of

the relations consistent with the types of the operators

being used. For instance, the following query utilizes

the example atelic relation modeling marriages and the

telic one considering phone calls: Who was being

married when John was calling Mary?

In such a case, the English clause “when” demands

for an atelic interpretation: the result can be obtained

by first coercing the relation about phone calls into an

atelic relation, and then by getting the temporal inter-

section through the application of the atelic Cartesian

product.

On the other hand, the query “list the marriage

ceremonies that had a duration of more than 3

hours” requires a coercion of marriages into a telic

relation, so that the whole valid time is considered as

(a set of) time periods (instead as a set of independent

points, as in the atelic interpretation), and the telic

temporal selection operator can be applied.

In general, two coercion operators need to be pro-

vided [9]. Coercion from telic to atelic is easy: each

timeperiod constituting the (semantics of the) valid time

is converted into the set of time points it contains,

e.g., to-atelic({[10–12],[13–15]}) = {10,11,12,13,14,15}.

Of course, since multisets of time periods are more

expressive than sets of time points, such a conver-

sion causes a loss of information. On the other

hand, coercion from atelic to telic demands the

formation of time periods out of sets of points: the
output is the set of maximal convex time periods

exactly covering the input set of time points, e.g.,

to-telic({10,11,12,13,14, 15}) = {[10–15]}.

Key Applications
Most applications involve differentiating between telic

and atelic data.

Cross-references
▶Atelic Data

▶ Period-Stamped Temporal Models

▶ Point-Stamped Temporal Models

▶Temporal Query Languages

Recommended Reading
1. Allen J.F. Towards a general theory of action and time. Artif.

Intell., 23:123–154, 1984.

2. Aristotle. The Categories, on Interpretation. Prior Analytics.

Harvard University Press, Cambridge, MA, 1938.

3. Bennet M. and Partee B. Tense and Discourse Location in

Situation Semantics. Indiana University Linguistics Club,

Bloomington, 1978.

4. Dowty D. The effects of the aspectual class on the temporal

structure of discourse, tense and aspect in discourse. Linguist.

Philos., 9(1):37–61, 1986.

5. Jensen C.S. and Snodgrass R.T. Semantics of time-varying

Iinformation. Inf. Syst., 21(4):311–352, 1996.

6. Moens M. and Steedman M. Temporal ontology and temporal

reference. Comput. Linguist., 14(2):15–28, 1998.

7. Shoham Y. Temporal logics in AI: semantical and ontological

considerations. Artif. Intell., 33:89–104, 1987.

8. Snodgrass R.T. (ed.). The Temporal Query Language TSQL2.

Kluwer, Norwell, MA, 1995.

9. Terenziani P. and Snodgrass R.T. Reconciling point-based and

interval-based semantics in temporal relational databases: a

proper treatment of the Telic/Atelic distinction. IEEE Trans.

Knowl. Data Eng., 16(4):540–551, 2004.

10. Terenziani P., Snodgrass R.T., Bottrighi A., Torchio M., and

Molino G. Extending temporal databases to deal with Telic/

Atelic medical data. Artif. Intell. Med., 39(2):113–126, 2007.

11. Vendler Z. Verbs and times. In Linguistics in Philosophy. Cornell

University Press, New York, NY, 1967, pp. 97–121.
Telos

MANOLIS KOUBARAKIS

University of Athens, Athens, Greece

Definition
Telos (From the Greek word t�loςτΘ which means

end; the object aimed at in an effort; purpose.) is a

Telos T 2915

T

knowledge representation language designed especially

to support the development of information systems.

Telos is based on the premise that information system

development is knowledge-intensive and that the main

design goal of any language intended for the task

should be to formally represent the relevant knowledge.

Telos is founded on core concepts from data modeling

and knowledge representation, and shares ideas with

semantic networks and frame systems, semantic and

object-oriented data models, logic programming and

deductive databases. The main features of Telos include:

a structurally object-oriented frameworkwhich supports

aggregation, generalization and classification; a novel

treatment of attributes as first class citizens in the lan-

guage; a powerful way of defining meta-classes; an ex-

plicit representation of time; and facilities for specifying

integrity constraints and deductive rules.

Historical Background
The research on Telos follows the paradigm of a num-

ber of software engineering projects initiated around

the 1990s with the premise that software development

is knowledge-intensive and that the primary responsi-

bility of any language intended to support this task is

to be able to formally represent the relevant knowledge.

Thus, Telos was designed as a knowledge representa-

tion language that is intended to support software

engineers in the development of information systems

throughout the software lifecycle.

Telos has evolved from RML (a requirements mod-

eling language developed in Sol Greenspan’s Ph.D. the-

sis), and later CML (presented in the Master thesis of

Martin Stanley at the University of Toronto). The main

difference between RML and CML is that CML adopts a

more sophisticated model for representing knowledge,

and supports the representation of temporal knowledge

and the definition of meta-classes. Telos is essentially a

“cleaned-up” and improved version of CML which was

originally defined and implemented in the Master thesis

of Manolis Koubarakis at the University of Toronto. The

original paper on Telos is [7]. Ontological and semanti-

cal issues for Telos are discussed in [10]. The history of

knowledge representation languages for information

systems development related to Telos is surveyed in

[3]. An important dialect of Telos is O-Telos defined

in the Ph.D. thesis of Manfred Jeusfeld at the University

of Passau, and implemented in the ConceptBase system

[4]. Since ConceptBase is the most mature implementa-

tion of Telos available today, this entry uses the

ConceptBase syntax for Telos.
Foundations
The main (and essentially the only) concept of Telos

is the proposition. Propositions are used to model any

aspect of the application domain. Propositions have

unique identities and are distinguished into individuals

and attributes. Individuals are intended to represent

entities in the application domain (concrete ones

such as John Doe, or abstract ones such as the class

of all persons). Attributes represent binary relation-

ships between entities (concrete or abstract). Two

special kinds of attribute propositions exist: instan-

tiation propositions and specialization propositions.

The proposition abstraction gives great flexibility to

Telos users. Everything in the application domain that

is represented by a proposition (e.g., an entity or a

relationship) immediately becomes a first-class citizen

of the knowledge base.

Propositions

Every proposition p consists of an identifier, a source,

a label and a destination, denoted by the functions

id(p), from(p), label(p) and to(p). For exam-

ple, the following are propositions:

P1: [. . ., Martin, . . .]

P2: [. . ., "21 Elm Avenue," . . .]

P3: [Martin, homeAddress, "21 Elm

Avenue"]

P4: [. . ., Person, . . .]

P5: [. . ., GeographicLocation, . . .]

P6: [Person, address,

GeographicLocation]

Propositions in Telos are what objects are in object-

oriented formalisms but also what statements are in

logic-based formalisms. Thus, an application can use

the above propositions to represent the following

pieces of knowledge:

� P1: There is somebody called Martin.

� P2: There is something called “21 Elm Avenue.”

� P3: Martin lives in 21, Elm Avenue.

� P4: There is an abstract concept, the class of all

persons.

� P5: There is an abstract concept, the class of all

geographic locations.

� P6: Persons have addresses that are geographic

locations.

P1, P2, P4 and P5 are individual propositions

while P3 and P6 are attribute propositions. The

source and destination components of an individual

2916T Telos
proposition are not important, thus they are shown

as “. . .”. Notice that while P1 and P2 represent concr-

ete individuals, P4 represents an abstract one, the

class of all persons. Similarly, P3 represents a concr-

ete relationship (relating Martin with his address)

while P6 represents an abstract one (relating the

class of all persons with the class of all geographic

locations).

Following are some examples of special

propositions:

P7: [P1, *instanceOf, P4]

P8: [P3, *instanceOf, P6]

P9: [. . ., Employee, . . .]

P10:[P9, *isA, P4]

P7 and P8 are instantiation propositions. P7 represents

the fact that Martin is a member of the class of all

persons. P8 represents the fact that the concrete rela-

tionship relating Martin with his address is an instance

of the abstract relationship relating the class of all

persons with the class of all geographic locations. Fi-

nally, P10 is a specialization proposition asserting that

every employee is a person.

A graphical view of some of the above propositions

is given in Fig. 1.

Organizing Propositions

Propositions (individual or attribute ones) can be

organized along three dimensions: decomposition/

aggregation, instantiation/classification and specializa-

tion/generalization.
Telos. Figure 1. A graphical view of a set of Telos propositio
The aggregation dimension enables one to see an

entity of the application domain as a collection of

propositions with a common proposition as source.

For example, individual Martin can be seen to be the

following aggregation:

{Martin,

[Martin, age, 35],

[Martin, homeAddress, "21 Elm

Avenue"],

[Martin, workAddress, "10 King’s

College Road"] }

The classification dimension calls for each proposition

to be an instance of one or more generic propositions

or classes. Classes are themselves propositions, and

therefore instances of other, more abstract classes. For

example, Person is a class and Martin is an instance

of this class. Similarly,

[Person, address, GeographicLocation]

is a class and

[Martin, homeAddress, "21 Elm Avenue"]

is an instance of this class.

With respect to the classification dimension, pro-

positions can be distinguished into:

� Tokens: propositions having no instances and

intended to represent concrete entities in the appli-

cation domain.

� Simple classes: propositions having only tokens as

instances.
ns.

Telos T 2917

T

� Meta-classes: propositions having only simple

classes as instances.

� Meta-meta-classes: propositions having only meta-

classes as instances.

� . . .

Thus, classification in Telos defines an unbounded linear

order of planes of ever more abstract propositions.

Implementations restrict this unbounded hierarchy

(e.g., ConceptBase restricts it to four levels: tokens to

meta-meta-classes). There are also o-classes with

instances along more than one plane:

� Proposition. Contains all propositions as

instances.

� Class. Contains all classes as instances.

� Token. Contains those individuals that may never

have instances themselves.

� SimpleClass. Contains individuals that may have

instances which are tokens.

� MetaClass. Contains individuals that may have

simple classes as instances.

� MetametaClass. Contains individuals that may

have meta-classes as instances.

� . . .

Classification in Telos is a form of weak typing:

the classes of which a structured object is an instance

determine the kinds of attributes it can have optionally,

and the properties it must satisfy. For example, by

virtue of being an instance of Person, Martin

can have attributes that are instances of the attribute

class

[Person,address,GeographicLocation].

These zero or more attributes can have arbitrary labels,

e.g., homeAddress and workAddress, but their

values must be instances of GeographicLocation.

Finally, classes in Telos can be specialized along gener-

alization or ISA hierarchies. For example, Person

may have subclasses such as Professor, Student,

and TeachingAssistant. Classes may form a par-

tial order, rather than a tree (i.e., multiple inheritance is

supported). Non-token attributes of a class are inherited

by more specialized ones and can be refined. Inheritance

in Telos is strict rather than default.
Interacting with Telos Knowledge Bases

A few examples of Telos are now given. The example

application considered is the development of an
information system to support organizing internation-

al scientific conferences. The knowledge to be repre-

sented in this case is about entities such as papers,

authors, conferences etc.

The original definition of Telos in [7] defines the

operations TELL, UNTELL, RETELL and ASK for

interacting with a Telos knowledge base. These opera-

tions can be used to add new knowledge, discard

existing knowledge, update existing knowledge and

query a knowledge base, respectively. Implementations

such as ConceptBase have followed the original

definition and offer these (and other) operations.

The above operations have Telos statements such as

the following as their means of interaction with a

knowledge base:

Individual p133 in Token, Paper with

author

firstAuthor: Stanley;

secondAuthor: LaSalle;

thirdAuthor: Wong

title

called: "The language Telos"

end

The above statement introduces an individual with

name p133. The in clause specifies the classes

of which p133 is an instance (in this case, the prede-

fined class Token and the application class Paper).

The with clause introduces p133’s attributes. The first

attribute of p133 has label firstAuthor and is

an instance of an attribute class which has source

Paper and label author (the latter is deno-

ted by the attribute category author). Before introdu-

cing individual paper p133, one might have

defined the class of all papers using the following

statement:

Individual Paper in SimpleClass with

attribute

author: Person;

referee: Person;

title: String;

pages: Integer

end

A class definition prescribes the attributes that can

be associated with its instances: p133 can have

author, referee, title and page attributes

as seen previously, because it is an instance of class

Paper that has these attribute classes. Moreover,

2918T Telos
[p133,firstAuthor,Stanley]

is an instance of attribute class

[Paper,author,Person]

in exactly the same sense that p133 is an instance of

Paper.

Once Paper has been defined, one can introduce

specializations such as InvitedPaper using the isA

clause of class definitions:

Individual AcceptedPaper in

SimpleClass isA Paper with

attribute

session: ConfProgrammeSession

end

AcceptedPaper inherits all attributes from Paper

and adds a session attribute, to indicate the

programme session during which the accepted paper

will be presented.

Metaclasses

Metaclasses are a very powerful concept for modeling

power and extensibility in Telos. It is the metaclass

mechanism combined with its other features that

makes Telos a powerful modeling language (one might

wonder about this, since Telos offers only very simple

primitives). From a modeling point of view, one can use

Telos metaclasses in the following situations:

� To define concrete attributes of classes e.g., cardi-

nality of a class. This is exactly the same to what a

simple class does for its instances (tokens).

� To group together semantically similar classes of a

domain in a generic way. For example, in the conf-

erence organization example, the classes Paper,

Announcement, Letter, Memo could be grou-

ped under the metaclass DocumentClass.

� To define concepts that are built-in in other frame-

works e.g., necessary attributes, single-valued attri-

butes etc.

� To do other forms of meta-level logical reasoning

(again, for language expressibility).

The conference organization example is now revisited

and defined:

DocumentClass in MetaClass with

attribute

source: AgentClass;

content: SimpleClass;
destination: AgentClass;

cardinality: Integer

end

The class Paper can now be defined as follows:

Paper in DocumentClass with

source

author: Person;

content

title: String;

abstract: String

cardinality

how_many: 120

end

Note that attribute categories such as source intro-

duced in metaclass DocumentClass are then used to

define attributes for the instance class Paper (this

mechanism is the same along the instantiation

hierarchy).

Integrity Constraints and Deductive Rules

Telos borrows the notions of integrity constraints

and deductive rules from logic-based formalisms such

as deductive databases. Integrity constraints are formu-

las that express conditions that knowledge bases

should satisfy. They are used to express rich language

or application semantics that cannot possibly be

expressed only by the structural framework of Telos.

Deductive rules are formulas that can be used to derive

new knowledge. Integrity constraints and deductive

rules in Telos are expressed in appropriately defined

assertional languages that are subsets of first-order

logic [4,7].

Integrity constraints and rules are defined as attri-

butes of Telos classes that are instances of the built-in

object Class. For example, the following Telos state-

ment defines well-understood constraints and rules

regarding employees, their managers and their respec-

tive salaries.

Class Employee with

rule

BossRule: $ forall e/Employee

m/Manager(exists d/Department

(e dept d) and (d head m))

==> (e boss m) $

constraint

SalaryBound: $ forall e/Employee

b/Manager x,y/Integer(e boss b)

Telos T 2919

T

and (e salary x) and (b salary y)

==> x <= y $

end

Language Extensibility Through Metaclasses and

Integrity Constraints

In Telos, one can use integrity constraints together with

the metaclass mechanism to define concepts that are

built-in in other representational frameworks. For

example, in many object-oriented models one can

constrain an attribute to be single-valued using some

built-in construct of the model. In Telos, one can do this

by using only the primitive mechanisms of the language

as follows. First, one defines the class Single: (The

syntax of this statement is from the original paper of

Telos [7] (O-Telos allows one to specify the same thing

in a slightly more complex way).)

Class Single

components [Class, single, Class]

in AttributeClass, MetaClass with

integrityConstraint

: $ forall u/Single

p,q/Proposition(p in u) and

(q in u) and from(p)=from(q)

==> p=q $

end

Then, one uses attribute class Single in the definition

of class Paper:

Individual Paper in SimpleClass with

attribute

author: Person;

referee: Person

single

title: String;

pages: Integer

end

Now in every instance of Paper, a title attribute is

constrained to be single-valued due to the integrity

constrain and the instantiation relationships intro-

duced by the above Telos statements.

Query Languages for Telos

The papers [4,7,11] give various query languages

for Telos knowledge bases ranging from ones based

purely on first-order logic [7] to ones exploiting the

structurally object-oriented features of the language as

well [4,11].
The paper [8] presents work on a knowledge base

management system based on Telos.

Temporal Knowledge in Telos

The original paper of Telos [7] presents a powerful

framework for representing and reasoning about tem-

poral knowledge. In Telos, the history of an application

domain is modeled by augmenting propositions with a

history time i.e., an interval representing the time dur-

ing which these facts are true in the application do-

main. Historical knowledge in Telos is allowed to be

incomplete and a modification of Allen’s interval alge-

bra [1] is used to capture the relevant knowledge.

A knowledge base records essentially the beliefs of

the system, which may be distinct from the actual state

of the world at that time. So, for example, the title of

a paper might have been changed in March, but the

knowledge base is only told of it in May. Or one may

make a correction to some previously told fact. Just

like it represents the full history of an application

domain, Telos also records the full history of its beliefs.

For this reason, Telos represents belief times; these are

intervals associated with every proposition in the

knowledge base, which commence at the time when

the operation responsible for the creation of the

corresponding proposition was committed.

For efficiency reasons, implementations of Telos

such as ConceptBase [4] have restricted the kinds of

temporal knowledge that can be represented.

Telos and RDF

Telos is probably the pre-Web knowledge representa-

tion language most closely related to the Resource De-

scription Framework (RDF) and the RDF Vocabulary

Description Language or RDF Schema proposed by the

W3C for representing knowledge about Web resources

(see e.g., http://www.w3.org/TR/rdf-primer/). This re-

lationship has been exploited by the prominent RDF

query language RQL defined by ICS-FORTH [6] but

also in the O-Telos-RDF proposal [9].

Key Applications
Telos was designed as a knowledge representation lan-

guage that is intended to support software engineers in

the development of information systems throughout

the software lifecycle [7]. The strengths of the language

made it the choice of many prominent research pro-

jects in Europe and North America including DAIDA

[5], ITHACA [2] and others.

2920T Temporal Access Control
URL to Code
The most mature implementation of Telos is the Con-

ceptBase system available at http://conceptbase.cc/.

Cross-references
▶Meta Model

▶Object Data Models

▶RDF Schema

▶ Semantic Data Models

Recommended Reading
1. Allen J. Maintaining knowledge about temporal intervals.

Commun. ACM, 26(11):832–843, 1983.

2. Constantopoulos P., Jarke M., Mylopoulos J., and Vassiliou Y.

The software information base: A server for reuse. VLDB J.,

4(1):1–43, 1995.

3. Greenspan S.J., Mylopoulos J., and Borgida A. On formal

requirements modeling languages: RML revisited. In Proc.

16th Int. Conf. on Software Eng., 1994, pp. 135–147.

4. Jarke M., Gallersdörfer R., Jeusfeld M.A., and Staudt M.

ConceptBase – A deductive object base for meta data manage-

ment. J. Intell. Inf. Syst., 4(2):167–192, 1995.

5. Jarke M., Mylopoulos J., Schmidt J.W., and Vassiliou Y. DAIDA:

An environment for evolving information systems. ACM Trans.

Inf. Syst., 10(1):1–50, 1992.

6. Karvounarakis G., Alexaki S., Christophides V., Plexousakis D.,

and Scholl M. RQL: A declarative query language for RDF. In

Proc. 11th Int. World Wide Web Conference, 2002.

7. Mylopoulos J., Borgida A., Jarke M., and Koubarakis M. Telos: A

language for representing knowledge about information sys-

tems. ACM Trans. Inf. Syst., 8(4):325–362, 1990.

8. Mylopoulos J., Chaudhri V.K., Plexousakis D., Shrufi A., and

Topaloglou T. Building knowledge base management systems.

VLDB J., 5(4):238–263, 1996.

9. Nejdl W., Dhraief H., and Wolpers M. O-Telos-RDF: A resource

description format with enhanced meta-modeling functionalities

based on O-Telos. In Proc. Workshop on Knowledge Markup and

Semantic Annotation at the 1st Int. Conf. on Knowledge Capture,

2001.

10. Plexousakis D. Semantical and ontological consideration in

Telos: A language for knowledge representation. Comput. Intell.,

9:41–72, 1993.

11. Staudt M., Nissen H.W., and Jeusfeld M.A. Query by class, rule

and concept. Appl. Intell., 4(2):133–156, 1994.
Temporal Access Control

YUE ZHANG, JAMES B. D. JOSHI

University of Pittsburgh, Pittsburgh, PA, USA

Synonyms
Time-based access control
Definition
Temporal access control refers to access control service

that restricts granting of authorization based on time.

The authorization may be given to a subject for a

particular interval or duration of time or based on

the temporal characteristics of the objects being acces-

sed. Such a need arises from the fact that a subject’s

need to access a resource and the sensitivity (and

hence the protection requirement) of the objects

being accessed may change with time.

Historical Background
Work related to temporal access control has only a brief

history and goes back to early 1990s. In many real-

world situations, access to information and resources

may have to be restricted based on time as the subject

and object characteristics may change and so can the

need for the subject to access the object. For example, in

a hospital, the head of the hospital may need to grant

the permissions related to a part-time doctor only

during certain time intervals. Similarly, an external

auditor may need to be given access to sensitive com-

pany data for a specific duration only.

Bertino et al.’s Temporal Authorization Model

(TAM) is the first known access control model to

support the time-based access control requirements

in a discretionary access control (DAC) model [2].

TAM associates a periodicity constraint with each au-

thorization indicating the valid time instants of the

authorization. TAM also defines three derivation

rules that allow an authorization to be derived based

on another authorization. The TAM model, however,

is limited to specifying the temporal interval for an

entire authorization and does not consider the tempo-

ral characteristics of data/objects [1]. For example,

there may be a need for be an authorization such as

“a subject s is allowed to read object o one month after

it has been created/written.” Furthermore, the states of

an object can change with time and access to such

different object-states may need to be carefully speci-

fied. Atluri et al. propose a Temporal and Derived Data

Authorization Model (TDAM) for a Web information

portal [1]. An information portal mainly aims to pro-

vide access to data from different sources and hence the

temporal characteristics of such data need to be prop-

erly captured in an access control policy [1]. TDAM

uses a logic formula to capture time-related conditions

to specify authorization rules and address the consis-

tency issues.

Temporal Access Control T 2921

T

Another significant work related to temporal access

control can be seen within the context of the Role

Based Access Control (RBAC) model. Bertino et al.

proposed the Temporal Role Based Access Control

Model (TRBAC) model by extending the existing

RBAC model [3]. The TRBAC model supports the

periodicity/interval constraints on the role enabling/

disabling and uses triggers to define dependencies that

may exist among basic role related events such as

“enable role” and “disable role.”

One limitation of the TRBAC model is that it only

supports specification of a set of temporal intervals

on the role enabling/disabling events. For example,

the user-role and the role-permission assignments are

not time-constrained in TRBAC, neither are the role

activations. Joshi et al. proposed a General Temporal

RBAC (GTRBAC) model to allow specification of

more fine-grained temporal access control policies [5].

The GTRBAC model allows the interval and duration

constraints on user-role assignment, role-permission

assignment, and role enabling events. It also defines

the duration and cardinality constraints on role activa-

tion. GTRBAC uses constraint enabling events to trig-

ger the duration constraints and uses run-time requests

to allow dynamic changes in the authorization states by

administrators and users. GTRBAC uses triggers, first

introduced in the TRBACmodel, to support the depen-

dencies among events. The other features of the

GTRBAC include the temporal hybrid hierarchy and

Separation of Duty (SoD) constraints.

More recently, work on access control approaches

based on the location context and the integration of

temporal and location based access control has

emerged. Such work includes the GEO-RBAC model,

the spatial-temporal access control model [4], the

spatial-temporal RBAC model [7], the LRBAC model

[6], and the location and time-based RBAC (LoT-

RBAC) model.

Foundations
In this section, the existing time-based access control

models mentioned above are reviewed in more detail,

namely TAM, TDAM, the TRBAC model, and the

GTRBAC model. The major features of each model

are discussed below.

TAM: Temporal Authorization Model

TAM models the temporal context as a periodicity

constraint. A periodicity constraint is of the form
<[begin, end], P>; here, P represents a recurring set

of intervals and the entire expression indicates every

time instant in P between “begin” and “end.” For

example, “[1/1/1994, 1], Monday” indicates every

Monday starting 1/1/1994. The model uses the symbol

∞ in place of P to indicate all time instants. The

temporal authorization in TAM associates such a peri-

odicity constraint with a normal discretionary autho-

rization. The authorization is valid at any time instant

specified in the periodicity constraint. At any given

time instant, if there are two authorization rules that

try to grant and deny an operation on the same object,

a conflict is said to occur. In such a case, the model uses

the “denials-take-precedence” principle to favor nega-

tive authorizations.

It is possible that several authorizations have tem-

poral dependencies among them. For example, suppose

user u1 grants a permission p to u2 (authorization A1),

and u2 further grants p to u3 (authorization A2). It is

easy to see that A2 can only be valid after A1 becomes

valid. Therefore, a requirement such as “u2 is allowed

to grant p to u3 whenever he/she acquires p from u1,”

can be specified as a derivation rule “A2 WHENEVER

A1.” TAM uses three such derivation rules to capture

various relationships among different authorizations.

The derivation rules are of the form “[begin, end], P,

A <op>, A”, where, A is an authorization, A is a

boolean expression on authorizations, and <op> is

one of the following: WHENEVER, ASLONGAS,

UPON. A is true at time instant t, if A evaluates to

true by substituting each authorization in it by true if

it is valid at t, and by false if not valid. For example,

A = ¬ (A1 and A2) is true at time t if either or both of

A1 and A2 is false at time t. ([begin, end], P, AWHEN-

EVER A) specifies that one can derive A for each

instant in P(P)\{[tb, te]} (here, P(P) is the set of all

time instants in P) for which A is valid. ([begin, end], P,

A ASLONGAS A) specifies that one can derive A for

each instant in P(P)\{[tb, te]} such that A is valid

for each time instant in P(P) that is greater than or

equal to tb and lesser than or equal to te. ([begin, end],

P, A UPON A) specifies that A holds true for each

instants in P(P)\{[tb, te]} if there exists an instant

t’eP(P) that is greater than or equal to tb and lesser

than or equal to te such that A is valid at time t’ in. The

difference between WHENEVER and ASLONGAS is

that the former only evaluates the authorization state

for a time instant while the latter evaluates the history

of the authorization states in a given time interval. The

2922T Temporal Access Control
difference between ASLONGAS and UPON is that the

former evaluates the authorization state for the entire

time interval in the history while the latter only evaluates

the authorization states at a time instant in the history.

Given a set of initial authorizations and rules, the

derived authorizations may depend on the order in

which the rules are evaluated. This is due to the exis-

tence of both positive and negative authorizations and

the denials-take-precedence rule. To analyze this prob-

lem, the authors define the unique set of valid author-

izations using the notion of critical set and propose

a Critical Set Detection (CSD) algorithm to verify that

a given set is critical [2].

TDAM: Temporal and Derived data Authorization Model

The TDAM model, as mentioned earlier, focuses on

the temporal characteristics of data/objects. This is

achieved by associating a formula t instead of a sim-

ple temporal interval to each authorization. At any

time instant, if t is evaluated to be true, then the

corresponding authorization is valid. By carefully

designing the formula t, the model can support speci-

fication of a fine-grained temporal access control poli-

cy. It is possible to use the temporal context of a single

data item by making it a variable in t. For example,

assume a company maintains a database including the

current and future predicted price for some goods;

now, let each price of a data item d be associated with

a time interval [tb, te] to indicate the temporal interval

the specified price is predicted for. It is also possible to

restrict a subject to read the current price only by

specifying t as “tb� t �te” where t is the current time.

Similarly, the temporal dependency can also be indi-

cated by t. For example, consider the policy “a subject

s is allowed to read object o one month after it has

been created/written.” Such a requirement can be spe-

cified by including t as “t � tw + 1 month” where tw
indicates the time when the object o is created/written

and t is the current time.

TRBAC: Temporal Role Based Access Control Model

The TRBACmodel allows the specification of temporal

constraints to specify when a role can be enabled or

disabled, and triggers to capture possible temporal

dependencies among role events. The TRBAC model

also uses periodic time expression instead of simple

time interval to represent the periodicity constraint. In

RBAC, the users can acquire the permissions only by

activating enabled roles within a session; the model
associates the periodic time expressions with role

enabling/disabling events to define periodicity

constraints.

Triggers constitute an important part of the TRBAC

model, and they are used to capture temporal depen-

dencies among RBAC authorization states. A trigger

simply specifies that if some events occur and/or some

role status predicates are evaluated to true then another

event can occur, with a possible time delay. For exam-

ple, assume that a hospital requires that when a part-

time doctor is on duty a part-time nurse can also be

allowed to log on to help the part-time doctor. Here,

the trigger “enable part-time doctor! enable part-time

nurse” can be used to capture such a requirement.

Bertino et al. introduces a soft notion of safety to

formally characterize the efficiency and practicality

of the model. In essence, because of triggers and

other periodicity constraints, ambiguous semantics

can be generated. They propose an efficient graph

based analysis technique to identify such ambiguous

policies so that a unique execution model can be

guaranteed by eliminating any ambiguous specifi-

cation. When such a unique execution model is

ensured the policy base is said to be safe. Conflicts

could also occur because of the opposing enable and

disable role events. The TRBAC model uses denial-

takes-precedence in conjunction with priority to resolve

such conflicts.

GTRBAC: Generalized Temporal Role Based Access

Control Model

Joshi et al. have proposed the GTRBAC model by

extending the TRBAC model to incorporate more

comprehensive set of periodicity and duration con-

straints and time-based activation constraints. The

GTRBAC model introduces the separate notion of

role enabling and role activation, and introduces role

states. An enabled role indicates that a valid user can

activate it, whereas a disabled role indicates that the

role is not available for use. A role in active state

indicates that at least one user has activated it. Such a

distinction makes the semantics and implementation

of any RBAC compatible system much clearer. Besides

events related to user-role assignment, permission-role

assignment and role enabling, the GTRBAC model

also includes role activation/deactivation events. The

model associates the temporal constraints with every

possible event in the system. In particular, it uses the

periodicity constraint to constrain the validity of role

Temporal Access Control T 2923

T

enabling events, user-role assignment events as well

as the permission-role assignment events. As the role

activation events are initiated by the users at their

discretion, GTRBAC does not associate temporal

constraints with activation events. Besides the periodic

temporal constraints, GTRBAC also supports duration

constraints. A duration constraint specifies how long

should an event be valid for once it occurs. For

example, one duration constraint could specify that

once a role r has been enabled it should be in the

enabled state for 2 hours. Note that the duration

constraint has a non-deterministic start time and

requires some other actions to initiate the start of the

duration. For example, consider a duration constraint

(2 hours, enable r). Here, when the “enable r” event

occurs because of a trigger, the event becomes valid for

2 hours because of this constraint. At times, one

may need to also enable duration or activation

constraints – GTRBAC uses constraint enabling events

to facilitate that.

The GTRBACmodel also supports the temporal and

cardinality constraints on role activation. Cardinality

constraints have often been mentioned in the litera-

ture but have not been addressed much in the existing

models. A cardinality constraint simply limits the num-

ber of activations (applies for assignments aswell) within

a given period of time. For example, GTRBAC supports

limiting the total number of activations of a role or

the maximum concurrent number of activations of

a role in a given interval or duration. Furthermore,

GTRBAC allows the activation constraint to be applied

to all the activations of a role (per-role constraint) or

applied to each activation of a role by a particular user

(per-user constraint). The model uses the trigger frame-

work introduced in the TRBAC model. In addition

to these, the GTRBAC model also extends work on

role hierarchy and constraints, and introduces hybrid

hierarchy and time-based SoD constraints.

The GTRBAC model uses three conflict types

(Type-1, Type-2, and Type-3) to categorize the differ-

ent types of conflicting situations that may arise

and provides a resolution technique using a combina-

tion of the following approaches: (i) priority-based,

(ii) denial-takes precedence, and (iii) more specific

constraint takes precedence.

Suroop et al. have recently proposed the LoTRBAC

model by extending the GTRBAC model to address

both time and location for security of mobile

applications.
Key Applications
Temporal access control models are suitable for the

applications where temporal constraints and temporal

dependencies among authorizations are important

protection requirements. One example is workflow

systems that often have timing constraints on tasks

and their dependencies. In particular, TAM is suitable

for the system implementing the discretionary access

control policies. TDAM is suitable for access control

for data dissemination systems such as a web informa-

tion portal where data have different states at different

times. TRBAC and GTRBAC are suitable for large scale

systems that have very fine-grained time-based access

requirements.
Future Directions
With the development of networking and mobile tech-

nologies, context based access control is becoming

very crucial. Time is very crucial context information,

as is location. Hence, the work on temporal access

control have provided a basis for looking at the intri-

cacies of the context parameters that need to be used

to restrict authorization decisions. In addition to

context-based access, content-based access control is

also becoming significant issues because of the grow-

ing need to dynamically identify content and make

authorization decisions based on its semantics. Again,

the work on temporal access control has provided

a basis for capture the dynamic feature of the object

content. Authorization models that capture context

and content parameters using temporal access control

are being pursued to develop more fine-grained access

control models.
Cross-references
▶Role Based Access Control

Recommended Reading
1. Atluri V. and Gal A. An authorization model for temporal and

derived data: securing information portals. ACMTrans. Inf. Syst.

Secur., 5(1):62–94, 2002.

2. Bertino E., Bettini C., Ferrari E., and Samarati P. An

access control model supporting periodicity constraints and

temporal reasoning. ACM Trans. Database Syst., 23(3):

231–285, 1998.

3. Bertino E., Bonatti P.A., and Ferrari E. TRBAC: a temporal role-

based access control model. ACM Trans. Inf. Syst. Secur.,

4(3):191–233, 2001.

4. Fu S. and Xu C.-Z. A coordinated spatio-temporal access control

model for mobile computing in coalition environments. In Proc.

2924T Temporal Aggregation
19th IEEE Int. Parallel and Distributed Processing Sym. – Work-

shop 17, vol. 18, 2005, p.289.2.

5. Joshi J.B.D., Bertino E., Latif U., and Ghafoor A. A generalized

temporal role-based access control model. IEEE Trans. Knowl.

Data Eng., 17(1):4–23, 2005.

6. Ray I., Kumar M., and Yu L. LRBAC: a location-aware role-

based access control model. In Proc. 2nd Int. Conf. on Informa-

tion Systems Security, 2006, pp. 147–161.

7. Ray I. and Toahchoodee M. A spatio-temporal role-based access

control model. In Proc. 21st Annual IFIP WG 11.3 Working

Conf. on Data and Applications Security, 2007, pp. 420–431.
Temporal Aggregation

JOHANN GAMPER
1, MICHAEL BÖHLEN

1, CHRISTIAN S.

JENSEN
2

1Free University of Bozen-Bolzano, Bolzano, Italy
2Aalborg University, Aalborg, Denmark

Definition
In database management, aggregation denotes the pro-

cess of consolidating or summarizing a database in-

stance; this is typically done by creating so-called

aggregation groups of elements in the argument data-

base instance and then applying an aggregate function

to each group, thus obtaining an aggregate value for

each group that is then associated with each element

in the group. In a relational database context, the

instances are relations and the elements are tuples.

Aggregation groups are then typically formed by par-

titioning the tuples based on the values of one or more

attributes so that tuples with identical values for these

attributes are assigned to the same group. An aggregate

function, e.g., sum, avg, or min, is then applied to

another attribute to obtain a single value for each

group that is assigned to each tuple in the group as a

value of a new attribute. Relational projection is used

for eliminating detail from aggregation results.

In temporal relational aggregation, the arguments

are temporal relations, and the tuples can also be

grouped according to their timestamp values. In tem-

poral grouping, groups of values from the time domain

are formed. Then an argument tuple is assigned to each

group that overlaps with the tuple’s timestamp, this

way obtaining groups of tuples. When aggregate func-

tions are applied to the groups of tuples, a temporal

relation results. Different kinds of temporal groupings

are possible: instantaneous temporal aggregation
where the time line is partitioned into time instants/

points; moving-window (or cumulative) temporal ag-

gregation where additionally a time period is placed

around a time instant to determine the aggregation

groups; and span aggregation where the time line is

partitioned into user-defined time periods.

Historical Background
Aggregate functions assist with the summarization of

large volumes of data, and they were introduced in

early relational database management systems such as

System R and INGRES. During the intensive research

activities in temporal databases in the 1980s, aggregates

were incorporated in temporal query languages, e.g., the

Time Relational model [1], TSQL [8], TQuel [9], and a

proposal by Tansel [10]. The earliest proposal aimed at

the efficient processing of (instantaneous) temporal

aggregates is due to Tuma [12]. Following Tuma’s pio-

neering work, research concentrated on the develop-

ment of efficient main-memory algorithms for the

evaluation of instantaneous temporal aggregates as the

most important form of temporal aggregation [6,7].

With the diffusion of data warehouses and OLAP,

disk-based index structures for the incremental com-

putation and maintenance of temporal aggregates

were investigated by Yang and Widom [14] and ex-

tended by Zhang et al. [15] to include non-temporal

range predicates. The high memory requirements of

the latter approach were addressed by Tao et al. [11],

and approximate solutions for temporal aggregation

were proposed. More recently, Vega Lopez et al. [13]

formalized temporal aggregation in a uniform frame-

work that enables the analysis and comparison of

the different forms of temporal aggregation based on

various mechanisms for defining aggregation groups.

In a similar vein, Böhlen et al. [3] develop a new

framework that generalizes existing forms of temporal

aggregation by decoupling the partitioning of the

time line from the specification of the aggregation

groups.

It has been observed that expressing queries on

temporal databases is often difficult with SQL, in par-

ticular for aggregation. As a result, temporal query

languages often include support for temporal aggrega-

tion. A recent paper [2] studies the support for

temporal aggregation in different types of temporal

extensions to SQL. A subset of the temporal aggregates

considered in the entry are also found in non-relation-

al query languages, e.g., tXQuery [5].

Temporal Aggregation T 2925

T

Foundations
A discrete time domain consisting of a totally ordered

set of time instants/points is assumed together with an

interval-based, valid-time data model, i.e., an interval

timestamp is assigned to each tuple that captures the

time when the corresponding fact is true in the modeled

reality. As a running example, the temporal relation

CheckOut in Fig. 1 is used, which records rentals of

video tapes, e.g., customer C101 rents tape T1234

from time 1 to 3 at cost 4.

Defining Temporal Aggregation

Various forms of temporal aggregation that differ in

how the temporal grouping is accomplished have been

studied. In instantaneous temporal aggregation (ITA)

the time line is partitioned into time instants and an

aggregation group is associated with each time instant

t that contains all tuples with a timestamp that inter-

sects with t. Then the aggregate functions are evaluated

on each group, producing a single aggregate value at

each time t. Finally, identical aggregate results for con-

secutive time instants are coalesced into so-called con-

stant intervals that are maximal intervals over which all

result values remain constant. In some approaches, the

aggregate results in the same constant interval must

also have the same lineage, meaning that they are

produced from the same set of argument tuples. The

following query, Q1, and its result in Fig. 2a illustrate

ITA:What is the number of tapes that have been checked

out?Without the lineage requirement, the result tuples

(1,[17,18]) and (1,[19,20]) would have been coalesced

into (1,[17,20]). While, conceptually, the time line is

partitioned into time instants, which yields the most

detailed result, the result tuples are consolidated so

that only one tuple is reported for each constant inter-

val. A main drawback is that the result relation is

typically larger than the argument relation and can be

up to twice the size of the argument relation.

With moving-window temporal aggregation

(MWTA) (first introduced in TSQL [8] and later also

termed cumulative temporal aggregation [9,14]), a time
Temporal Aggregation. Figure 1. Tabular representation an
window is used to determine the aggregation groups.

For each time instant t, an aggregation group is defined

as the set of argument tuples that hold in the interval

[t�w, t], where w � 0 is called a window offset. In

some work [13], a pair of offsets w and w 0 is used,

yielding a window [t�w, t+w 0] for determining the

aggregation groups. After computing the aggregate

functions for each aggregation group, coalescing is

applied similarly to how it is done for ITA to obtain

result tuples over maximal time intervals. The follow-

ing query,Q2, and its result in Fig. 2b illustrate MWTA:

What is the number of tapes that have been checked out

in the last three days? To answer this query, a window is

moved along the time line, computing at each time

point an aggregate value over the set of tuples that are

valid at some point during the last three days. While

both ITA and MWTA partition the time line into time

instants, the important difference is in how the aggre-

gation groups for each time instant are defined.

Next, for span temporal aggregation (STA), the time

line is first partitioned into predefined intervals that

are defined independently of the argument relation.

For each such interval, an aggregation group is then

given as the set of all argument tuples that overlap the

interval. A result tuple is produced for each interval by

evaluating an aggregate function over the corresponding

aggregation group. The following query, Q3, and its

result in Fig. 2c illustrate STA: What is the weekly

number of tapes that have been checked out? The time

span is here defined as a period of seven days. Unlike in

ITA and MWTA, in STA the timestamps of the result

tuples are specified by the application and are indepen-

dent of the argument data. Most approaches consider

only regular time spans expressed in terms of granula-

rities, e.g., years, months, and days.

The multi-dimensional temporal aggregation

(MDTA) [3] extends existing approaches to temporal

aggregation, by decoupling the definition of result

groups and aggregation groups. A result group specifies

the part of a result tuple that is independent of

the actual aggregation (corresponds to the group by
d graphical representation of temporal relation CheckOut.

Temporal Aggregation. Figure 2. Results of different forms of temporal aggregation.

2926T Temporal Aggregation
attributes in SQL). Each result group has an associated

aggregation group, namely the set of tuples from which

the aggregated value is computed. In general, the group-

ing attributes of the tuples in an aggregation group

might differ from the grouping attributes of the result

group. For the specification of the result groups, two

different semantics are supported: constant-interval se-

mantics that covers ITA and MWTA and fixed-interval

semantics that covers STA. The fixed-interval semantics

supports the partitioning of the time line into arbitrary,

possibly overlapping time intervals. The following

query, Q4, and its result in Fig. 2d illustrate some of

the new features of MDTA: For each week, list the

number of expensive and the number of cheap checkouts

during the preceding week? (expensive being defined as

a cost equal or greater than 4 and cheap as a cost equal

or smaller than 2). The result groups are composed of a

single temporal attribute that partitions the time line,

the tuples in the associated aggregation groups do not

have to overlap the timestamp of the result group, and

two aggregates over different aggregation groups are

computed for each result group.

Temporal Aggregation Processing Techniques

The efficient computation of temporal aggregation poses

new challenges, most importantly the computation of

the time intervals of the result tuples that depend on the

argument tuples and thus are not known in advance.

Two Scans The earliest proposal for computing ITA

was presented by Tuma [12] and requires two scans of

the argument relation – one for computing the con-

stant intervals and one for computing the aggregate

values over these intervals. The algorithm has a worst

case running time of O(mn) for m result tuples and

n argument tuples.
Following Tuma’s pioneering work, research con-

centrated on algorithms that construct main-memory

data structures that allow to perform both steps at

once, thus requiring only one scan of the argument

relation.

Aggregation Tree The aggregation tree algorithm for

ITA by Kline and Snodgrass [6] incrementally con-

structs a tree structure in main memory while scanning

the argument relation. The tree stores a hierarchy of

intervals and partial aggregation results. The intervals

at the leaf nodes encode the constant intervals. Accu-

mulating the partial results in a depth-first traversal of

the tree yields the result tuples in chronological order.

Figure 3a shows the tree for Query Q1 after scanning

the first two argument tuples. The path from the root

to the leaf with time interval [3,3] yields the result

tuple (2,[3,3]). The algorithm is constrained by the

size of the available main memory, and it has a worst

case time complexity of O(n2) for n argument tuples

since the tree is not balanced.

An improvement, although with the same worst

case complexity, is the k-ordered aggregation tree [6],

which requires the argument tuples to be chronological-

ly ordered to some degree. This allows to reduce the

memory requirements by garbage collecting old nodes

that will not be affected by any future tuples. Gao et al.

[4] describe a number of parallel temporal aggregation

algorithms that are all based on the aggregation tree.

Balanced Tree Moon et al. [7] propose the balanced

tree algorithm for the main memory evaluation of ITA

queries involving sum, count, and avg. As the argument

tuples are scanned, their start and end times are stored

in a balanced tree together with two values for each

aggregate function being computed, namely the partial

Temporal Aggregation. Figure 3. Different forms of tree structures for temporal aggregation.

Temporal Aggregation T 2927

T

aggregate result over all tuples that start and end here,

respectively. An in-order traversal of the tree combines

these values to compute the result relation. Whenever a

node, v, is visited, a result tuple is produced over the

interval that is formed by the time point of the previ-

ously visited node and the time point immediately

preceding v. Figure 3b shows the balanced tree for

Query Q1. The aggregate value of the result tuple

(2,[3,3]) is determined as 1 + (1� 0) = 2. Although the

balanced tree requires less memory than the aggregation

tree, it is constrained by the amount of availablememory.

For themin and max functions a merge-sort like algo-

rithm is proposed. Both algorithms have O(n log n)

time complexity for n argument tuples. To overcome

the memory limitation, a bucket algorithm is pro-

posed, which partitiones the argument relation along

the time line and keeps long-lived tuples in a meta-

array. Aggregation is then performed on each bucket

in isolation.

SB-Tree Yang and Widom [14] propose a disk-based

index structure, the SB-tree, together with algorithms

for the incremental computation and maintenance of

ITA and MWTA queries. It combines features from the

segment tree and the B-tree and stores a hierarchy of

time intervals associated with partially computed

aggregates. To find the value of an aggregate at a time

instant t, the tree is traversed from the root to the leaf

that contains t and the partial aggregate values asso-

ciated with the time intervals that contain t are com-

bined. Figure 3c shows the SB-tree for Query Q1. The

value at time 8 results from adding 0 and 1 (associated

with [10,11] and [7,11], respectively). The time com-

plexity of answering an ITA query at a single time point

is O(h), where h is the height of the tree, and O(h + r)

for retrieving the result over a time interval, where r is

the number of leaves that intersect with the given time

interval. The same paper extends the basic SB-tree to
compute MWTA. For a fixed window offset w, the

timestamps of the argument tuples are extended by

w to account for the tuples’ contributions to the results

at later time points. For arbitrary window offsets, a

pair of SB-trees is required.

MVSB-Tree With the SB-tree, aggregate queries are

always applied to an entire argument relation. The

multi-version SB-tree (MVSB-tree) by Zhang et al. [15]

tackles this problem and supports temporal aggrega-

tion coupled with non-temporal range predicates that

select the tuples over which an aggregate is computed.

The MVSB-tree is logically a sequence of SB-trees, one

for each timestamp. The main drawbacks of this ap-

proach are: the tree might be larger than the argument

relation, the range restriction is limited to a single non-

timestamp attribute, and the temporal evolution of the

aggregate values cannot be computed. Tao et al. [11]

present two approximate solutions that address the

high memory requirements of the MVSB-tree. They

use an MVB-tree and a combination of B- and R-trees,

respectively. These achieve linear space complexity in

the size of the argument relation and logarithmic query

time complexity.

MDTA Böhlen et al. [3] provide two memory-based

algorithms for the evaluation of MDTA queries.

The algorithm for fixed-interval semantics keeps in

a group table the result groups that are extended with

an additional column for each aggregate being com-

puted. As the argument relation is scanned, all aggre-

gate values to which a tuple contributes are updated.

The group table contains then the result relation. The

memory requirements only depend on the size of

the result relation. With an index on the group table,

the average runtime is n log m for n argument tuples

and m result groups, the worst case being O(nm) when

each argument tuple contributes to each result tuple.

2928T Temporal Aggregation
The algorithm for constant-interval semantics process-

es the argument tuples in chronological order and

computes the result tuples as time proceeds. An end-

point tree maintains partial aggregate results that are

computed over all argument tuples that are currently

valid, and they are indexed by the tuples’ end points.

Figure 3d shows the endpoint tree for Query Q1

after processing the first two argument tuples. When

the third argument tuple is read, the result tuples

(2,[3,3]) and (1,[4,5]) are generated by accumulating

all partial aggregate values; the nodes are then removed

from the tree. The size of the tree is determined by the

maximal number of overlapping tuples, no. The aver-

age time complexity of the algorithm is nno. The

worst-case complexity is O(n2), when the start and

end points of all argument tuples are different and all

tuples overlap.
Key Applications
Temporal aggregation is used widely in different

data-intensive applications, which become more and

more important with the increasing availability of

huge volumes of data in many application domains,

e.g., medical, environmental, scientific, or financial

applications. Prominent examples of specific applicati-

ons include data warehousing and stream processing.

Time variance is one of four salient characteristics

of a data warehouse, and there is general consensus

that a data warehouse is likely to contain several years

of time-referenced data. Temporal aggregation is a key

operation for the analysis of such data repositories.

Similarly, data streams are inherently temporal, and

the computation of aggregation functions is by far the

most important operation on such data. Many of the

ideas, methods, and technologies from temporal aggre-

gation have been and will be adopted for stream

processing.
Future Directions
Future research work is possible in various directions.

First, it may be of interest to study new forms of

temporal aggregation. For example, a temporal aggre-

gation operator that combines the best features of

ITA and STA may be attractive. This operator should

follow a data-driven approach that approximates the

precision of ITA while allowing to limit the size of the

result. Second, it is relevant to study efficient evalua-

tion algorithms for more complex aggregate functions
beyond the five standard functions for which most

research has been done so far. Third, the results

obtained so far can be adapted for and applied in

related fields, including spatio-temporal databases

where uncertainty is inherent as well as data streaming

applications.

Cross-references
▶Bi-Temporal Indexing

▶Query Processing (in relational databases)

▶Temporal Coalescing

▶Temporal Data Mining

▶Temporal Database

▶Temporal Query Languages

▶Temporal Query Processing
Recommended Reading
1. Ben-Zvi J. The Time Relational Model. Ph.D. thesis, Computer

Science Department, UCLA, 1982.

2. Böhlen M.H., Gamper J., and Jensen C.S. How would you like

to aggregate your temporal data? In Proc. 13th Int. Symp. on

Temporal Representation and Reasoning, 2006, pp. 121–136.

3. Böhlen M.H., Gamper J., and Jensen C.S. Multi-dimensional

aggregation for temporal data. In Advances in Database Tech-

nology, Proc. 10th Int. Conf. on Extending Database Techno-

logy, 2006, pp. 257–275.

4. Gao D., Gendrano J.A.G., Moon B., Snodgrass R.T., Park M.,

Huang B.C., and Rodrigue J.M. Main memory-based algorithms

for efficient parallel aggregation for temporal databases. Distrib.

Parallel Dat., 16(2):123–163, 2004.

5. Gao D. and Snodgrass R.T. Temporal slicing in the evaluation of

XML queries. In Proc. 29th Int. Conf. on Very Large Data Bases,

2003, pp. 632–643.

6. Kline N. and Snodgrass R.T. Computing temporal aggregates.

In Int. Conf. on Data Engineering, 1995, pp. 222–231.

7. Moon B., Vega Lopez I.F., and Immanuel V. Efficient algorithms

for large-scale temporal aggregation. IEEE Trans. Knowl. Data

Eng., 15(3):744–759, 2003.

8. Navathe S.B. and Ahmed R. A temporal relational model and a

query language. Inf. Sci., 49(1–3):147–175, 1989.

9. Snodgrass R.T., Gomez S., and McKenzie L.E. Aggregates in the

temporal query language TQuel. IEEE Trans. Knowl. Data Eng.,

5(5):826–842, 1993.

10. Tansel A.U. A statistical interface to historical relational data-

bases. In Proc. Int. Conf. on Data Engineering, 1987, pp. 538–

546.

11. Tao Y., Papadias D., and Faloutsos C. Approximate temporal

aggregation. In Proc. 20th Int. Conf. on Data Engineering, 2004,

pp. 190–201.

12. Tuma P.A. Implementing Historical Aggregates in TempIS. M.Sc.

thesis, Wayne State University, 1992.

13. Vega Lopez I.F., Snodgrass R.T., and Moon B. Spatiotemporal

aggregate computation: a survey. IEEE Trans. Knowl. Data Eng.,

17(2):271–286, 2005.

Temporal Algebras T 2929
14. Yang J. and Widom J. Incremental computation and mainte-

nance of temporal aggregates. VLDB J., 12(3):262–283, 2003.

15. Zhang D., Markowetz A., Tsotras V., Gunopulos D., and

Seeger B. Efficient computation of temporal aggregates with

range predicates. In Proc. 20th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2001,

pp. 237–245.
T

Temporal Algebras

ABDULLAH UZ TANSEL

Baruch College – CUNY New York, NY, USA

Synonyms
Historical algebras; Valid-time algebras; Transaction-

Time algebras; Bitemporal algebras

Definition
Temporal algebra is a generic term for an algebra defined

for a data model that organizes temporal data. A tempo-

ral data model may support Valid-time (the time over

which a data value is valid), Transaction-time (time

when a data value is recorded in the database), or both

(Bitemporal). So an algebra can be defined for each case,

a Valid-time relational algebra, a Transaction-time rela-

tional algebra, or a Bitemporal relational algebra, respec-

tively. Temporal algebras include the temporal versions

of relational algebra operations in addition to new

operations for manipulating temporal data like Time-

slice, Rollback, Temporal Coalesce, temporal restructur-

ing operations, and others. For a Temporal algebra, it is

desirable to be closed (common algebras are closed), a

consistent extension of the relational algebra and to

reduce to relational algebra when only current data are

considered.
Historical Background
Temporal algebraic languages first appeared as exten-

sions to the relational algebra in early 1980s, mostly

Valid–time or Transaction-time algebras, followed by

Bitemporal algebras. These extensions differed accord-

ing to their operations and how temporal data are

represented. McKenzie and Snodgrass surveyed tem-

poral algebras and identified desirable criteria that are

needed in a temporal algebra [10]. However, some of

these criteria are conflicting.
Foundations

Temporal Algebra Basics

Let T represent the time domain which has a linear

order under “�”. A time point (instant) is any element

of T. A period is a consecutive sequence of time points.

A temporal element is a set of disjoint maximal periods

[6], and a temporal set is any set of time points. Any of

these time constructs can be used to timestamp data

values. A Bitemporal atom, <Valid-Time, Transaction-

time, Data> asserts that data are valid during Valid-

time and is recorded during Transaction-time. Either

Valid-time or Transaction-time may be omitted and

the result is a Valid-time Atom, or a Transaction-time

atom, respectively.

A temporal relational algebra is closely related to

how the temporal data (temporal atoms) are repre-

sented, i.e., the type of timestamps used, where they are

attached (relations, tuples, or attribute values), and

whether temporal atoms are kept atomic or broken

into their components. In other words, time specifica-

tion may be explicit or implicit. This in turn deter-

mines possible evaluation (semantics) of temporal

algebra expressions. There are two commonly adopted

approaches: (i) Snapshot (Point or Sequenced [1])

evaluation that manipulates the snapshot relation

at each time point, like Temporal Logic [6,11,17];

(ii) Traditional (Nonsequenced [1]) evaluation that

manipulates the entire temporal relation much like

the traditional relational algebra. It is also possible

to mix these approaches.The syntax and the operations

of a temporal algebra are designed to accommodate

a desired type of evaluation. Moreover, specifying

temporal algebra operations at an attribute level, in-

stead of tuples keeps the tuple structure intact after the

operation is executed, so preserving the rest of a tem-

poral relation that is beyond the scope of operation

applied.

Let Q(A, B, C), R(A, D) and S(A, D) be temporal

relations in attribute timestamping, whose attribute

values are sets of temporal atoms except attribute A

which has constant values. It is possibly a temporal

grouping identifier [4] (or a temporal key). For the

sake of simplicity, attributes B, C, and D are assumed

to have one temporal atom in each tuple, i.e., they are

already flattened. Qt stands for the snapshot of tempo-

ral relation Q at time t. Temporal Algebras generally

include temporal equivalents of traditional relational

algebra operations. The five basic Temporal Algebra

2930T Temporal Algebras
operations, [t, -t, pt, st, and �t in snapshot evaluation

are [2,4,5]:

� R [t St is Rt [St for all t in T

� R -t St is Rt – St for all t in T

� ptA1,A2,...,An (R) is pA1,A2,...,An (Rt) for all t in T

� st
F (R) is sF(Rt) for all t in T; Formula F includes

traditional predicates and temporal predicates like

Before, After, Overlaps, etc

� R �t Q is Rt � Qt for all t in T

An important issue in Snapshot Evaluation is the

homogeneity of the temporal relations. A temporal

relation is homogenous if each tuple is defined on the

same time, i.e., in a tuple, all the attributes have the

same time reference [6]. If attributes in a tuple have

different time references then a snapshot may have null

values leading to complications. Thus, a Temporal

Algebra may be homogenous, depending on the rela-

tions scheme on which it is defined.

In Temporal Algebras that use traditional evalua-

tion, [t, -t, pt, st, and �t may be defined exactly the

same as the relational algebra operations or they have

temporal semantics incorporated in their definitions.

The temporal set operations may specially be defined

by considering the overlapping timestamps in tuples.

Two temporal tuples are value equivalent if their value

components are the same, but their timestamps may

be different. Let {(a1,<[2/07,11/07), d1>)} and {(a1,

<[6/07,8/07), d1>)} be tuples in R and S, respectively.

These two tuples are value equivalent. In case of RUt S,

value equivalent tuples are combined into one if their

timestamps overlap. Considering the former tuples the

result is {(a1,<[2/07,11/07), d1>)}. In case of R –t S,

the common portion of the timestamps for the value

equivalent tuples is removed from the tuples of R. For

the above tuples the result is {a1, <[2/07,6/07), d1>),

(a1, <[8/07,11/07), d1>)}. Existence of value equiva-

lent tuples makes query specification more complex

but, query evaluation is less costly. On the other

hand, eliminating them is also more costly. Temporal

Coalescing operation combines value equivalent tuples

into one tuple [2]. Temporal algebras may include

aggregates.

The definition of Temporal Projection (pt) is

straightforward. However, it may generate value equiv-

alent tuples much like the traditional projection oper-

ation creates duplicate tuples. Moreover, the projection

operation may also be used to discard the time of a

relation if it is explicitly specified. In the case of
implicit time specification, it needs to be converted

to an explicit specification before applying the projec-

tion operation. The formula F in the Selection opera-

tion (st
F(Q)) may include time points, the end points

of periods, and periods in temporal elements, or tem-

poral predicates like Before, After, Overlaps, etc. It is

possible to simulate the temporal predicates by condi-

tions referring to time points or end points of periods.

Other temporal algebra operations such as Tempo-

ral Set Intersection or Temporal Join are similarly

defined. There are different versions of Temporal

Join. Intersection join is computed over the common

time of operand relations (see the entry on temporal

joins). For instance, if {(a1, <[1/07, 5/07), b1>, <[1/

07, 4/07), c1>)} is a tuple in Q, the natural join (Q ffl
R) contains the tuple {(a1, <[1/07, 5/07), b1>, <[1/

07, 4/07), c1>, <[2/07,11/07), d1>)}. If this were an

intersection natural join, times of the attributes in this

tuple would be restricted to their common time period

[2/07, 4/07). It is also possible to define temporal outer

joins [11].

Temporal algebra operations are defined indepen-

dent of time granularities. However, if operand rela-

tions are defined on different time granularities, a

granularity conversion is required as part of processing

the operation.

Algebras for Tuple Timestamping

In tuple timestamping relations are augmented with

one column to represent time points, periods or tem-

poral elements, or two columns to represent periods.

Relation Q is represented as Q1(A, B, From, To) and

Q2(A, C, From, To) where From and To are the end

points of periods. Similarly, R(A, D, From, To) and

S(A, D, From, To) correspond to the relations R and S,

respectively. The tuple of Q given above is represented

as the following tuples: (a1, b1, 1/07, 5/07) in Q1 and

(a1, c1, 1/07, 4/07) in Q2. For accessing time points

within a period snapshot evaluation may be used

[6,17] or in case of Traditional Evaluation, attributes

representing the end points of periods may be specified

in operations. Another path followed is to define tem-

poral expansion and contraction operations [9]. A

period is expanded to all the time points included in

it by temporal expansion and temporal contraction

does the opposite, converts a sequence of time points

to a period. Relation instances indexed by time points

are used to define a temporal algebra by Clifford,

Croker, and Tuzhilin [17].

Temporal Algebras T 2931

T

Algebras for Attribute Timestamping

Timestamps are attached to attributes and N1NF rela-

tions are used and the entire history of an object is

represented as a set of temporal atoms in one tuple.

These temporal relations are called temporally grouped

in contrast to temporally ungrouped relations that are

based on tuple timestamping [17]. Naturally, tempo-

rally grouped algebras are more expressive than tem-

porally ungrouped algebras and the former is more

complex than the latter [17]. A temporal algebra that

is based on snapshot evaluation and allows set theoret-

ic operations on temporal elements is given in [6]. For

the algebra expression e, the construct [[e]] returns the

time over which e’s result is defined [6] and it can

further be used in algebraic expressions. An algebra,

based on time points and lifespans, that uses snapshot

evaluation is proposed in [3,5]. The nest and unnest

operations for the transformations between 1NF and

N1NF relations and operations which form and break

temporal atoms are included in a temporal algebra

[5,12,13]. N1NF Temporal relations and their algebras

may or may not be homogonous [6,12,13].

Valid-time and Transaction-time Algebras

Most of the algebras mentioned above are Valid-time

Relational Algebras. A Valid-time Relational Algebra

includes additionally a Slice operation (ςτΘ) that is a
redundant, but very useful operation. Let R be a Valid-

time Relation and t be a time point (period, temporal

element, or temporal set). Then, ςτΘt (R) cuts a slice

from R, the values that are valid over time t and returns

them as a relation [1,5,12,13]. Common usage of the

Slice operation is to express the “when” predicate in

natural languages. Slice may also be incorporated into

the selection operation or the specification of a relation

to restrict the time of a temporal relation by a temporal

element, i.e., R[t] [6]. Slice may be applied at an

attribute level to synchronize time of one attribute by

another attribute [5,12,13]. For instance, ςτΘB,C (Q)

restricts the time of attribute B by the time of attribute

C. Applying the Slice operation on all the attributes by

the same time specification returns a snapshot at the

specified time.

A Transaction-time relational algebra includes a

Rollback operation (t), another form of Slice for roll-

ing back to the values recorded at a designated time.

Let R be a Transaction-time relation and t be a time

point (period, temporal element, or temporal set).

Then, tt (R) cuts a slice from R, the values that were
recorded over time t and returns them as a relation

[1,5,8]. Note the duality between the Valid-time rela-

tional algebra and the Transaction-time relational

algebra; each has the same set of operations and an

appropriate version of the slice operation.
Bitemporal Relational Algebras

Bitemporal algebra operations are more complicated

than temporal algebras that support one time dimen-

sion only [1,8,15]. A Bitemporal algebra includes both

forms of the Slice operation in addition to other alge-

braic operations. A Bitemporal query has a context

that may or may not imply a Rollback operation [15].

However, once a Rollback operation is applied on

a Bitemporal relation, Valid-time algebra operations

can be applied on the result. It is also possible to

apply Bitemporal Algebra operations on a bitemporal

relation before applying a Rollback operation. In this

case, the entire temporal relation is the context of

the algebraic operations. In coalescing Bitemporal

tuples, starting with Valid-time or Transaction-time

may result in different coalesced tuples [8]. For the

data maintenance queries, Valid-time needs to be coa-

lesced within the Transaction-time.
Key Applications
Use of temporal algebra includes query language design

[14], temporal relational completeness [16,17], and query

optimization [14]. Some Relational algebra identities di-

rectly apply to temporal relational algebra whereas other

identities donot hold due to the composite representation

or semantics of temporal data [10]. Naturally, identities

for the new temporal algebra operations and their inter-

action with the operations borrowed from the relational

algebra need to be explored as well [5,7].

Cross-references
▶Bitemporal Interval

▶BitemporalRelation

▶NonsequencedSemantics

▶RelationalAlgebra

▶RelationalModel

▶ SequencedSemantics

▶ SnapshotEquivalence

▶TemporalAggregates

▶TemporalCoalescing

▶TemporalConceptualModels

▶TemporalDataModels

2932T Temporal Assignment
▶TemporalElement

▶TemporalQueryLanguages

▶TemporalExpression

▶TemporalHomogeneity

▶Temporal Joins

▶TemporalObject-OrientedDatabases

▶TemporalProjection

▶TemporalQueryOptimization

▶TemporalQueryProcessing

▶TimeDomain

▶Time Interval

▶TimePeriod

▶TimeSlice

▶TransactionTime

▶ValueEquivalence

▶ValidTime
Recommended Reading
1. Böhlen M.H., Jensen C.S., and Snodgrass R.T. Temporal state-

ment modifiers. ACM Trans. Database Syst., 25(4):407–456,

2000.

2. Böhlen M.H., Snodgrass R.T., and Soo M.D. Coalescing in tem-

poral databases. In Proc. 22th Int. Conf. on Very Large Data

Bases, 1996, pp. 180–191.

3. Clifford J. and Croker A. The historical relational data model

(HRDM) and algebra based on lifespans. In Proc. 3th Int. Conf.

on Data Engineering, 1987, pp. 528–537.

4. Clifford J., Croker A., and Tuzhilin A. On completeness

of historical data models. ACM Trans. Database Syst., 19

(1):64–116, 1993.

5. Clifford J. and Tansel A.U. On an algebra for historical relational

databases: two views. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1985, pp. 247–265.

6. Gadia S.K. A homogeneous relational model and query

languages for temporal databases. ACM Trans. Database Syst.,

13(4):418–448, 1988.

7. Gadia S.K. and Nair S.S. Algebraic identities and query optimi-

zation in a parametric model for relational temporal databases.

IEEE Trans. Knowl. Data Eng., 10(5):793–807, 1998.

8. Jensen C.S., Soo M.D., and Snodgrass R.T. Unifying temporal

data models via a conceptual model. Inf. Syst., 19(7):513–547,

1994.

9. Lorentzos N.A. and Johnson R.G. Extending relational algebra to

manipulate temporal data. Inf. Syst., 13(3):289–296, 1988.

10. McKenzie E. and Snodgrass R.T. Evaluation of relational algebras

incorporating the time dimension in databases. ACM Comput.

Surv., 23(4):501–543, 1991.

11. Soo M.D., Jensen C., and Snodgrass R.T. 1An algebra for TSQL2.

In TSQL2 Temporal Query Language, R.T. (ed.). R.T. Snodgrass

(ed.). Kluwer Academic, Norwell, MA, 1995, pp. 505–546.

12. Tansel A.U. Adding time dimension to relational model and

extending relational algebra. Inf. Syst., 11(4):343–355, 1986.

13. Tansel A.U. Temporal relational data model. IEEE Trans. Knowl.

Database Eng., 9(3):464–479, 1997.
14. Tansel A.U., Arkun M.E., and Ozsoyoglu G. Time-by-example

query language for historical databases. IEEE Trans. Softw. Eng.,

15(4):464–478, 1989.

15. Tansel A.U. and Eren-Atay C. Nested bitemporal relational alge-

bra. In Proc. 21st Int. Symp. on Computer and Information

Sciences, 2006, pp. 622–633.

16. Tansel A.U. and Tin E. Expressive power of temporal relational

query languages. IEEE Trans. Knowl. Data Eng., 9(1):120–134,

1997.

17. Tuzhilin A. and Clifford J. A temporal relational algebra as basis

for temporal relational completeness. In Proc. 16th Int. Conf. on

Very Large Data Bases, 1990, pp. 13–23.
Temporal Assignment

▶Temporal Projection
Temporal Association Mining

▶Temporal Data Mining
Temporal Coalescing

MICHAEL BÖHLEN

Free University of Bozen-Bolzano, Bolzano, Italy

Definition
Temporal coalescing is a unary operator applicable

to temporal databases that is similar to duplicate elim-

ination in conventional databases. Temporal coalescing

merges value-equivalent tuples, i.e., tuples with over-

lapping or adjacent timestamps and matching explicit

attribute values. Tuples in a temporal relation that

agree on the explicit attribute values and that have

adjacent or overlapping timestamps are candidates

for temporal coalescing. The result of operators may

change if a relation is coalesced before applying the

operator. For instance, an operator that counts the

number of tuples in a relation or an operator that

selects all tuples with a timestamp spanning at least

3 months are sensitive to temporal coalescing.

Historical Background
Early temporal relational models implicitly assumed that

the relations were coalesced. Ben Zvi’s Time Relational

Model [13, Chap. 8], Clifford and Croker’s Historical

Temporal Coalescing T 2933

T

Relational DataModel (HRDM) [13, Chap. 1], Navathe’s

Temporal Relational Model (TRM) [13, Chap. 4], and

the data models defined by Gadia [13, pp. 28–66], Sade-

ghi [9] and Tansel [13, Chap. 7] all have this property.

The term coalesced was coined by Snodgrass in his

description of the data model underlying TQuel,

which also requires temporal coalescing [10]. Later

data models, such as those associated with HSQL [13,

Chap. 5] and TSQL2 [11], explicitly required coalesced

relations. The query languages associated with these

data models generally did not include explicit con-

structs for temporal coalescing. HSQL is the exception;

it includes a COALESCE ON clause within the select

statement, and a COALESCED optional modifier imme-

diately following SELECT [13, Chap. 5]. Some query

languages that do not require coalesced rela-

tions provide constructs to explicitly specify temporal

coalescing; VT-SQL [8] and ATSQL [2] are examples.

Navathe and Ahmed defined the first temporal

coalescing algebraic operator; they called this COM-

PRESS [13, Chap. 4]. Sarda defined an operator called

COALESCE [13, Chap. 5], Lorentzos’ FOLD operator

includes temporal coalescing [13, Chap. 3], Leung’s sec-

ond variant of a temporal select join operator TSJ2
[13, Chap. 14] can be used to effect temporal coalesc-

ing, and TSQL2’s representational algebra also includ-

ed a coalesce operator [11].

In terms of performance and expressiveness

Leung and Pirahesh provided amapping of the coalesce

operation into recursive SQL [6, p. 329]. Lorentzos and

Johnson provided a translation of his FOLD operator

into Quel [7, p. 295]. Böhlen et al. [3] show how

to express temporal coalescing in terms of standard

SQL and compare different implementations. SQL-

based solutions to coalescing have also been proposed

by Snodgrass [12] and Zhou et al. [14].

Foundations
Temporal databases support the recording and retriev-

al of time-varying information [13] and associate with

each tuple in a temporal relation one or more
Temporal Coalescing. Figure 1. Uncoalesced (Bonus1) and
timestamps that denote some time periods. The discus-

sion assumes that each tuple is associated with a valid

time attribute VT. This attribute is called the time-

stamp of the tuple. The timestamps are half open

time periods: the start point is included but the end

point is not. The non-timestamp attributes are referred

to as the explicit attributes.

In a temporal database, tuples are uncoalesced when

they have identical attribute values and their timestamps

are either adjacent in time (“meet” in Allen’s taxonomy

[1]) or have some time in common. Consider the rela-

tions in Fig. 1. The relation records bonus payments

that have been given to employees. Ron received

two 2K bonuses: one for his performance from January

1981 to April 1981 and another one for his perfor-

mance from May 1981 to September 1981. Pam

received a 3K bonus for her performance from April

1981 to May 1981. Bonus1 is uncoalesced since the

tuples for Ron have adjacent timestamps and can be

coalesced. Bonus2 is coalesced. Coalescing Bonus1

yields Bonus2.

As with duplicate elimination in nontemporal data-

bases, the result of some operators in temporal databases

changes if the argument relation is coalesced before

applying the operator [11]. For instance an operator

that counts the number of tuples in a relation or an

operator that selects all tuples with a timestamp span-

ning at least 3 months are sensitive to temporal

coalescing.

In general, two tuples in a valid time relation

are candidates for temporal coalescing if they

have identical explicit attribute values (see value equiv-

alence [10]) and have adjacent or overlapping time-

stamps. Such tuples can arise in many ways. For

example, a projection of a coalesced temporal relation

may produce an uncoalesced result, much as duplicate

tuples may be produced by a duplicate preserving

projection on a duplicate-free nontemporal relation.

In addition, update and insertion operations may not

enforce temporal coalescing, possibly due to efficiency

concerns.
coalesced (Bonus2) valid time relations.

2934T Temporal Coalescing
Thus, whether a relation is coalesced or not makes

a semantic difference. In general, it is not possible

to switch between a coalesced and an uncoalesced repre-

sentation without changing the semantics of programs.

Moreover, as frequently used database operations (pro-

jection, union, insertion, and update) may lead to

potentially uncoalesced relations and because many

(but not all) real world queries require coalesced rela-

tions, a fast implementation is imperative.

Temporal coalescing is potentially more expensive

than duplicate elimination, which relies on an equality

predicate over the attributes. Temporal coalescing also

requires detecting if the timestamps of tuples overlap,

which is an inequality predicate over the timestamp

attribute. Most conventional DBMSs handle inequality

predicates poorly; the typical strategy is to resort to

exhaustive comparison when confronted with such

predicates [5], yielding quadratic complexity (or

worse) for this operation.

Implementing Temporal Coalescing

Temporal coalescing does not add expressive power to

SQL. Assuming that time is linear, i.e., totally ordered,

it is possible to compute a coalesced relation instance

with a single SQL statement (see also [4, p. 291]). The

basic idea is to use a join to determine the first (f) and

last (l) time period of a sequence of value equivalent

tuples with adjacent or overlapping timestamps as

illustrated in Fig. 2.

The SQL code assumes that the time period is

represented by start (S) and end (E) point, respectively.

Besides start and end point there is an explicit attribute

c. This yields a relation with schema R(S, E, c). Two

subqueries are used to ensure that there are no tempo-

ral gaps (for example between l and f ’ is a temporal

gap) and that the sequence is maximal (there is no tuple

with a time period that starts before the start point of f

and that temporally overlaps with f; there is no tuple with

a time period that ends after the end point of l and that

temporally overlaps with l), respectively.
Temporal Coalescing. Figure 2. Illustration of temporal coa
SELECT DISTINCT f.S, l.E, f.c
FROM r AS f, r AS l
WHERE f.S < l.E
AND f.c = l.c
AND NOT EXISTS (SELECT *

FROM r AS m
WHERE m.c = f.c
AND f.S < m.S AND
m.S < l.E

AND NOT EXISTS (SELECT *
FROM r AS a1
WHERE a1.c = f.c
AND a1.S < m.S AND m.S
<= a1.E))

AND NOT EXISTS (SELECT *
FROM r AS a2
WHERE a2.c = f.c
AND (a2.S< f.S AND f.S
<= a2.E OR

a2.S<= l.E AND l.E
< a2.E))

The above SQL statement effectively coalesces a rela-

tion. However, current database systems cannot evalu-

ate this statement efficiently. It is possible to exploit the

fact that only the maximal time periods are relevant.

Rather than inserting a new tuple (and retaining the

old ones) it is possible to update one of the tuples that

was used to derive the new one. This approach can be

implemented by iterating an update statement. The

statement is repeated until the relation does not change

anymore, i.e., until the fixpoint with respect to tempo-

ral coalescing is reached.

repeat

UPDATE r l
SET (l.E) =

(SELECT MAX(h.E)
FROM r h
WHERE l.c = h.c
ANDl.S<h.S ANDl.E>=h.S ANDl.
E<h.E)
lescing.

Temporal Coalescing T 2935

T

WHERE EXISTS (
SELECT *
FROM r h
WHERE l.c = h.c
AND l.S < h.S AND l.E >= h.S AND
l.E < h.E)

until fixpoint(r)

One means to further improve the performance is to

use the DBMS as an enhanced storage manager and to

develop main memory algorithms on top of it. Essen-

tially, this means to load the relation into main mem-

ory, coalesce it manually, and then store it back in the

database. If tuples are fetched ordered primarily by

explicit attribute values and secondarily by start points

it is possible to coalesce a relation with just a single

tuple in main memory. The core of the C code of the

temporal coalescing algorithm is displayed below. It

uses ODBC to access the database.

SQLAllocEnv(&henv);
SQLAllocConnect(henv, &hdbc);
SQLConnect(hdbc,"Ora10g",
SQL_NTS,"scott",SQL_NTS,"tiger",
SQL_NTS;
SQLAllocHandle(SQL_HANDLE_STMT,
hdbc, &hstmt1)
SQLAllocHandle(SQL_HANDLE_STMT,
hdbc, &hstmt2)

/* initialize buffer curr_tpl (a one
tuple buffer) */
SQLExecDirect(hstmt1, "SELECT S, E, c
FROM r ORDER BY c, S", SQL_NTS))
curr_tpl.S = next_tpl.S;
curr_tpl.E = next_tpl.E;
curr_tpl.c = next_tpl.c;

/* open a cursor to store tuples back
in the DB */
SQLPrepare(hstmt2, "INSERT INTO
r_coal VALUES (?,?,?)", SQL_NTS)

/* main memory temporal coalescing */
while (SQLFetch(hstmt1) !=
SQL_NO_DATA) {/* fetch all tuples */

if (curr_tpl.c == next_tpl.c &&
next_tpl.S <= curr_tpl.E) {

/* value-equivalentand
overlapping*/
if (next_tpl.E>curr_tpl.E)
curr_tpl.E=next_tpl.E;

}else{
/* not value-equivalent or non-
overlapping */
SQLExecute(hstmt2) /* store back
current tuple */
curr_tpl.S = next_tpl.S;
curr_tpl.E = next_tpl.E;
curr_tpl.c = next_tpl.c;

}
}
SQLExecute(hstmt2) /* store back cur-
rent tuple */

Key Applications
Temporal coalescing defines a normal form for tempo-

ral relations and is a crucial and frequently used oper-

ator for applications that do not want to distinguish

between snapshot equivalent relations. Applications

that allow to distinguish between snapshot equivalent

relations have temporal coalescing as an explicit oper-

ator similar to duplicate elimination in existing data-

base systems.
Cross-references
▶ Snapshot Equivalence

▶Temporal Database

▶Temporal Data Model

▶Time Domain

▶Time Interval

▶Time Period

▶Valid Time
Recommended Reading
1. Allen J.F. Maintaining knowledge about temporal intervals.

Commun. ACM, 16(11):832–843, 1983.

2. Böhlen M.H., Jensen C.S., and Snodgrass R.T. Temporal state-

ment modifiers. ACM Trans. Database Syst., 25(4):48, 2000.

3. Böhlen M.H., Snodgrass R.T., and Soo M.D. Coalescing in

temporal databases. In Proc. 22th Int. Conf. on Very Large

Data Bases. 1996, pp. 180–191.

4. Celko J. SQL for Smarties: Advanced SQL Programming.

Morgan Kaufmann, 1995.

5. Leung C. and Muntz R. Query Processing for Temporal Data-

bases. In Proc. 6th Int. Conf. on Data Engineering, 1990,

pp. 200–208.

6. Leung T.Y.C. and Pirahesh H. Querying Historical Data in IBM

DB2 C/S DBMS Using Recursive SQL. In J. Clifford, A. Tuzhilin

(eds.). Recent Advances in Temporal Databases, Springer, 1995.

2936T Temporal Compatibility
7. Lorentzos N. and Johnson R. Extending relational algebra to

manipulate temporal data. Inf. Syst., 15(3), 1988.

8. Lorentzos N.A. and Mitsopoulos Y.G. Sql extension for interval

data. IEEE Trans. Knowl. Data Eng., 9(3):480–499, 1997.

9. Sadeghi R., Samson W.B., and Deen S.M. HQL – A Historical

Query Language. Technical report, Dundee College of Technol-

ogy, Dundee, Scotland, September 1987.

10. Snodgrass R.T. The temporal query language TQuel. ACM

Trans. Database Syst., 12(2):247–298, June 1987.

11. Snodgrass R.T. (ed.). The TSQL2 Temporal Query Language.

Kluwer Academic, Boston, 1995.

12. Snodgrass R.T. Developing Time-Oriented Database Applica-

tions in SQL. Morgan Kaufmann, 2000.

13. Tansel A., Clifford J., Gadia S., Jajodia S., Segev A., and

Snodgrass R.T. 1Temporal Databases: Theory, Design, and

Implementation.Benjamin/Cummings,Redwood City, California,

1993.

14. Zhou X., Wang F., and Zaniolo C. Efficient Temporal Coalescing

Query Support in Relational Database Systems. In Proc. 17th

Int. Conf. Database and Expert Syst. Appl., 2006, pp. 676–686.
Temporal Compatibility

MICHAEL H. BÖHLEN
1, CHRISTIAN S. JENSEN

2, RICHARD

T. SNODGRASS
3

1Free University of Bozen-Bolzano, Bozen-Bolzano,

Italy
2Aalborg University, Aalborg, Denmark
3University of Arizona, Tucson, AZ, USA

Definition
Temporal compatibility captures properties of temporal

languages with respect to the nontemporal languages

that they extend. Temporal compatibility, when satis-

fied, ensures a smooth migration of legacy applica-

tions from a non-temporal system to a temporal

system. Temporal compatibility dictates the semantics

of legacy statements and constrains the semantics of

temporal extensions to these statements, as well as

the language design.
Historical Background
Since the very early days of temporal database research,

the compatibility with legacy languages and systems

has been considered, but the first comprehensive inves-

tigation was reported by Bair et al. [2]. Compatibility

issues are common for work done in the context

of systems and commercial languages, such as SQL or
Quel. Theoretical or logic-based approaches usually

do not explore compatibility notions since they tend to

strictly separate temporal from nontemporal structures.

Foundations

Motivation

Most data management applications manage time-

referenced, or temporal, data. However, these applications

typically run on top of relational or object-relational

database management systems (DBMSs), such as DB2,

Oracle, SQL Server, and MySQL, that offer only little

built-in support for temporal data management. Orga-

nizations that manage temporal data may benefit from

doing so using a DBMS with built-in temporal

support. Indeed, it has been shown that using a

temporal DBSM in place of a non-temporal DBMS

may reduce the number of lines of query language

code by a factor of three, with the conceptual com-

plexity of application development decreasing even

further [13].

Then, what hinders an organization from adopting

a temporal DBMS? A key observation is that an organi-

zation is likely to already have a portfolio of data man-

agement applications that run against a non-temporal

DBMS. In fact, the organization is likely to have made

very large investments in its legacy systems, and it

depends on the functioning of these systems for the

day-to-day operation of its business.

It should be as easy as possible for the organization

to migrate to a temporal DBMS. It would be attractive

if all existing applications would simply work without

modification on the temporal DBMS. This would help

protect the organization’s investment in its legacy

applications. The opposite, that of having to rewrite

all legacy applications, is a daunting proposition.

However, this type of compatibility is only the first

step. The next step is to make sure that legacy applica-

tions can coexist with new applications that actually

exploit the enhanced temporal support of the new

DBMS. These applications may query and modify the

same (legacy) tables. It should thus be possible to add a

new temporal dimension to existing tables, without this

affecting the legacy applications that use these tables.

Next, the organization maintains a large invest-

ment in the skill set of its IT staff. In particular, the

staff is skilled at using the legacy query language, typi-

cally SQL. The new, temporal query language should

leverage this investment, by making it easy for the

Temporal Compatibility T 2937
application programmers to write temporal queries

against temporal relations.

Next four specific compatibility properties that

aim to facilitate the migration from a non-temporal

DBMS to a temporal DBMS are considered.

Upward Compatibility

The property of upward compatibility states that all

language statements expressible in the underlying non-

temporal query language must evaluate to the same

result in the temporal query language, when evaluated

on non-temporal data.

Figure 1 illustrates this property. In the figure,

a conventional table is denoted with a rectangle. The

current state of this table is the rectangle in the upper-

right corner. Whenever a modification is made to this

table, the previous state is discarded; hence, at any

time, only the current state is available. The discarded

prior states are denoted with dashed rectangles; the

right-pointing arrows denote the modifications that

took the table from one state to the next.

When a query q is applied to the current state of a

table, a resulting table is computed, shown as the

rectangle in the bottom right corner. While this figure

only concerns queries over single tables, the extension

to queries over multiple tables is clear.

As an example, consider a hypothetical temporal

extension of the conventional query language SQL

[9]. Upward compatibility states that (i) all instances

of tables in SQL are instances of tables in this exten-

sion, (ii) all SQL modifications to tables result in

the same tables when the modifications are eval-

uated according to the semantics of the extension,

and (iii) all SQL queries result in the same tables

when the queries are evaluated according to the

extension.
Temporal Compatibility. Figure 1. Upward compatible

queries.
By requiring that a temporal extension to SQL is

a strict superset (i.e., only adding constructs and se-

mantics), it is relatively easy to ensure that the exten-

sion is upward compatible with SQL. TOSQL [1],

TSQL [10], HSQL [11], IXSQL [7], TempSQL [5],

and TSQL2 [12] were designed to satisfy upward

compatibility.

While upward compatibility is essential in ensuring

a smooth transition to a new temporal DBMS, it does

not address all aspects of migration. It only ensures the

operation of existing legacy applications and does not

address the coexistence of these with new applications

that exploit the improved temporal support of the

DBMS.

Temporal Upward Compatibility

The property of temporal upward compatibility (TUC)

addresses the coexistence of legacy and new applications.

Assume an existing or new application needs support

for the temporal dimension of the data in one or more

of the existing tables that record only the current

state. This is best achieved by changing the snapshot

table to become a temporal table. It is undesirable to be

forced to change the application code that accesses the

snapshot table when that table is made temporal.

TUC states that conventional queries on temporal data

yield the same results as do the same queries on a

conventional database formed by taking a timeslice at

“now.” TUC applies also to modifications, views, asser-

tions, and constraints [2].

Temporal upward compatibility is illustrated in

Fig. 2. When temporal support is added to a table,

the history is preserved and modifications over time

are retained. In the figure, the rightmost dashed state

was the current state when the table was made tempo-

ral. All subsequent modifications, denoted again by
Temporal Compatibility. Figure 2. Temporal upward

compatibility.

T

2938T Temporal Compatibility
arrows, result in states that are retained, and thus

are represented by solid rectangles. Temporal upward

compatibility ensures that the states will have identical

contents to those states resulting from modifications

of the snapshot table. The query q is a conventional

SQL query. Due to temporal upward compatibility, the

semantics of this query must not change if it is applied

to a temporal table. Hence, the query only applies to

the current state, and a snapshot table results.

Most temporal languages were not designed with

TUC in mind, and TOSQL [1], TSQL [10], HSQL

[11], IXSQL [7], and TSQL2 [12] do not satisfy TUC.

The same holds for temporal logics [4]. TempSQL [5]

introduces a concept of different types of users, classical

and system user. TempSQL satisfies TUC for classi-

cal users. ATSQL [3] was designed to satisfy TUC.

Snapshot Reducibility

This third property states that for each conventional

query, there is a corresponding temporal query that,

when applied to a temporal relation, yields the same

result as the original snapshot query when applied

separately to every snapshot state of the temporal

relation.

Graphically, snapshot reducibility implies that for

all conventional query expressions q in the snapshot

model, there must exist a temporal query qt in the

temporal model so that for all dbt and for all c, the

commutativity diagram shown in Fig. 3 holds.

This property requires that each query q (or opera-

tor) in the snapshot model has a counterpart qt in the

temporal model that is snapshot reducible with respect

to the original query q. Observe that qt being snapshot

reducible with respect to q poses no syntactical restric-

tions on qt. It is thus possible for qt to be quite different

from q, and qt might be very involved. This is undesir-

able: the temporal model should be a straightforward

extension of the snapshot model.
Temporal Compatibility. Figure 3. Snapshot reducibility.
Most languages satisfy snapshot reducibility,

but only because corresponding non-temporal and

temporal statements do not have to be syntactically

similar. This allows the languages to formulate for

each nontemporal statement a snapshot reducible tem-

poral statement, possibly a very different and complex

statement.

Sequenced Semantics

This property addresses the shortcoming of snapshot

reducibility: it requires that qt and q be syntactically

identical, modulo an added string.

Figure 4 illustrates this property. This figure depicts

a temporal query, q 0, that, when applied to a temporal

table (the sequence of values across the top of the

figure), results in a temporal table, which is the se-

quence of values across the bottom.

The goal is to ensure that an application programmer

who is familiar with the conventional query language

is able to easily formulate temporal generalizations of

conventional queries using the temporal query language.

This is achieved if a query q can be made temporal by

simply adding a string to it. The syntactical similarity

requirement of sequenced semantics makes this possi-

ble. Specifically, the meaning of q 0 is precisely that of

applying the analogous non-temporal query q on each

value of the argument table (which must be temporal),

producing a state of the result table for each such

application.

Most temporal languages do not offer sequenced

semantics. As an exception, ATSQL [3] prepends the

modifier SEQUENCED, together with the time dimen-

sion (valid time or transaction time, or both), to non-

temporal statements to obtain their snapshot reducible

generalizations. Temporal Logic [4] satisfies sequenced

semantics as well: the original nontemporal statement

yields sequenced semantics when evaluated over a

corresponding temporal relation.

Temporal Compatibility. Figure 4. Sequenced

semantics.

Temporal Compatibility T 2939

T

Key Applications
Temporal compatibility properties such as those covered

here are important for the adoption of temporal database

technology in practice. The properties are important

because temporal technology is likely to most often be

applied in settings where substantial investments have

already been made in database management staff and

applications. The properties aim at facilitating the intro-

duction of temporal database technology in such settings.

Properties such as these are easily as crucial for the

successful adoption of temporal database technology

as is highly sophisticated support for the querying of

time-referenced data.

Given the very significant decrease in code size and

complexity for temporal applications that temporal

database technology offers, it is hoped that other

DBMS vendors will take Oracle’s lead and incorporate

support for temporal databases into their products.

Future Directions
Further studies of compatibility properties are in

order. For example, note that temporal upward com-

patibility addresses the case where existing tables are

snapshot tables that record only the current state.

However, in many cases, the existing tables may already

record temporal data using a variety of ad-hoc formats.

The challenge is then how to migrate such tables to real

temporal tables while maintaining compatibilities.

Next, it is felt that much could be learned from

conducting actual case studies of the migration of real-

world legacy applications to a temporal DBMS.
Cross-references
▶ Period-Stamped Temporal Models

▶ Point-Stamped Temporal Models
▶ Sequenced Semantics

▶ Snapshot Equivalence

▶Temporal Database

▶Temporal Data Models

▶Temporal Element

▶Temporal Query Languages

▶Time Domain

▶Time Interval

▶Time Period

▶Valid Time
Recommended Reading
1. Ariav G. A temporally oriented data model. ACM Trans. Data-

base Syst., 11(4):499–527, December 1986.

2. Bair J., Böhlen M., Jensen C.S., and Snodgrass R.T. Notions of

upward compatibility of temporal query languages. Bus. Inform.

(Wirtschafts Informatik), 39(1):25–34, February 1997.

3. Böhlen M.H., Jensen C.S., and Snodgrass R.T. Temporal state-

ment modifiers. ACM Trans. Database Syst., 25(4):407–456,

December 2000.

4. Chomicki J., Toman D., and Böhlen M.H. Querying ATSQL

databases with temporal logic. ACM Trans. Database Syst.,

26(2):145–178, June 2001.

5. Gadia S.K. and Nair S.S. Temporal databases: A prelude to

parametric data. In Temporal Databases: Theory, Design, and

Implementation, A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A.

Segev, R.T. Snodgrass (eds.). Benjamin/Cummings, Redwood

City, CA, USA, 1993, pp. 28–66.

6. Jensen C.S., Soo M.D., and Snodgrass R.T. Unifying temporal

data models via a conceptual model. Inf. Syst., 19(7):513–547,

December1994.

7. Lorentzos N.A. and Mitsopoulos Y.G. SQL extension for

interval data. IEEE Trans. Knowl. Data Eng., 9(3):480–499,

1997.

8. McKenzie E. and Snodgrass R.T. An evaluation of relational

algebras incorporating the time dimension in databases. ACM

Comput. Surv., 23(4):501–543, December 1991.

9. Melton J. and Simon A.R. Understanding the New SQL: A

Complete Guide. Morgan Kaufmann, San Mateo, CA, USA,

1993.

10. Navathe S. and Ahmed R. Temporal extensions to the relational

model and SQL. In Temporal Databases: Theory, Design, and

Implementation, A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A.

Segev, R.T. Snodgrass (eds.). Benjamin/Cummings, Redwood

City, CA, USA, 1993, pp. 92–109.

11. Sarda N. HSQL: A historical query language. In Temporal Data-

bases: Theory, Design, and Implementation, A. Tansel,

J. Clifford, S. Gadia, S. Jajodia, A. Segev, R.T. Snodgrass (eds.).

Benjamin/Cummings, Redwood City, CA, USA, 1993,

pp. 110–140.

12. Snodgrass R.T. The TSQL2 Temporal Query Language. Kluwer,

Boston, USA, 1995.

13. Snodgrass R.T. Developing Time-Oriented Database Applica-

tions in SQL. Morgan Kaufmann, San Francisco, CA, USA,

July 1999.

2940T Temporal Conceptual Models
Temporal Conceptual Models

VIJAY KHATRI

Indiana University, Bloomington, IN, USA

Definition
A conceptual model provides a notation and formalism

that can be used to construct a high-level, implemen-

tation-independent description of selected aspects of

the “real world,” termed a miniworld. This process

is called conceptual modeling, and the resulting de-

scription is referred to as a conceptual schema. Concep-

tual modeling is an important part of systems analysis

and design. A temporal conceptual model provides

a notation and formalism with built-in support for

capturing temporal aspects of a miniworld during

conceptual design.

Historical Background
Temporal applications need to represent data semantics

not only related to “what” is important for the appli-

cation, but also related to “when” it is important.

The history of temporal conceptual models can be

viewed in terms of two generations. The first generation

temporal conceptual models, e.g., [2,14], provide sup-

port for only user-defined time; see Fig. 1a for an

example. In contrast to the first generation, the second

generation temporal conceptual models, e.g., [5,9,16],

provide varying degree of support for temporal

aspects; see Fig. 1b for an example. Because the first

generation temporal conceptual models provide sup-

port for representation of only user-defined time, they

may be thought of as “almost” time-agnostic conceptual

models; on the other hand, second generation temporal

conceptual models that support temporal semantics,

e.g., event, state, valid time, transaction time, may be

construed as time-aware conceptual models.

Foundations
To highlight core concepts developed in the research

related to temporal conceptual models, a framework of

linguists is adopted that studies symbols with respect

to three dimensions: syntactics, semantics and prag-

matics [13]. The syntactics dimension includes formal

relation between symbols, the semantics dimension

involves the study of symbols in relation to the desig-

natum (i.e., what the sign refers to) and the pragmatics

dimension includes the relation between symbols and

the interpreter.
In the following, a motivating example is employed

to differentiate between first and second generation

temporal conceptual models. Core concepts related

to temporal conceptual models are described using

syntactics, semantics and pragmatics.

Motivating Example

Figure 1a (first generation temporal conceptual model)

provides an example of an ER schema that requires

preserving the history of “prices” (of PRODUCT). Ad-

ditionally, there is another entity type, CUSTOMER,

whose existence needs to be modeled; the existence

history needs to take into account both when the cus-

tomer exists in the real world (Existence_history) and

when the customer was added to the database (Trans-

action_history). Further, a CUSTOMER “reviews”

PRODUCTs and the Effective_date on which the

PRODUCT was reviewed needs to be captured as well.

Because the first generation conceptual models do not

provide a mechanism to represent temporal concepts,

e.g., valid time, transaction time, event and state, these

are all represented using only user-defined time. For

example, the schema cannot differentiate Existence_his-

tory from Transaction_history, which are both repre-

sented simply as multi-valued attributes (double-lined

ellipse). Additionally, the database analyst needs tomake

ad-hoc decisions related to granularity of a user-defined

attribute such as Transaction_history. Start_date during

implementation. As a result of the lack of a mechanism

for directly mapping theminiworld to its representation,

database designers are left to discover, design, and im-

plement the temporal concepts in an ad-hoc manner.

The second generation temporal conceptual sche-

ma, referred to as the ST USM (geoSpatio-Temporal

Unifying Semantic Model) schema [9] shown in

Fig. 1b employs a textual string to represent temporal

semantics. For example, “Price” is associated with

valid time, which is represented as state (“S”) with

granularity of “min”(ute); further, the transaction

time related to price is not relevant (“–”). The tem-

poral semantics associated with “Price” are therefore

represented by a textual string of valid time state

(“S”), followed by a slash (“/”), followed by the speci-

fication of transaction time (“–”): “S (min)/–”. Be-

cause both the existence (or valid) time and

transaction time need to be recorded for the entity

type, CUSTOMER, the annotation string for CUS-

TOMER is specified as “S(day)/T”. Note that the

granularity of transaction time is not specified

Temporal Conceptual Models. Figure 1. Examples of the two generations of temporal conceptual models.

Temporal Conceptual Models T 2941

T

because it is system-defined. A CUSTOMER

“reviews” a PRODUCT at a certain point in time

(event, E), captured to the granularity of day (“E

(day)/–”).

In summary, while the first generation temporal

conceptual models provide a mechanism to represent

only user-defined time, the second generation temporal

conceptual models provide a mechanism to represent

temporal data semantics. The readers are referred to

Gregersen and Jensen [6] for a survey on various tem-

poral conceptual models of the second generation.

Syntactics

Prior research has employed both graphical (see, for

example, the TimeER Model [6]) and textual (see,

for example, the Temporal Entity Relationship Model,
TERM [11]) syntax to represent the temporal data

semantics.

While some of graphical temporal conceptual

models have changed the semantics of the constructs

of conventional conceptual models (see, for example,

[2]), others have proposed a new formalism for repre-

senting temporal aspects. The Temporal EER (TEER)

Model [3] gave new meaning to extant ER modeling

constructs such as the entity type, the attribute and the

relationship; for example, each entity of an entity type

is associated with a temporal element that represents

the lifespan of the entity, i.e., the semantics of an entity

type in a conventional conceptual model was changed.

On the other hand, most of the graphical temporal

conceptual models propose new constructs that repre-

sent the temporal aspects.

Temporal Conceptual Models. Figure 2. Internal

representation of human knowledge. (Adapted from HAM

Model [1].)

2942T Temporal Conceptual Models
Prior research has employed two ways to graphi-

cally represent temporal aspects using new constructs;

they are referred to as augmented (see, for example, the

TimeER Model [6] and ST USM [9]) and standalone

(see, for example, the Relationships, Attributes, Keys

and Entities (RAKE) Model [4]). The augmented

approaches construe second generation conceptual

schemas as “constrained” first generation schemas.

For example, ST USM employs a “shorthand” for

temporal semantics that is represented as annotations

(see, for example, Fig. 1b); however, the semantics of a

second generation schema (ST USM schema) can be

“unwrapped” using a first generation schema (USM

schema) and a set of constraints. The readers are re-

ferred to [9] for examples of and procedure for

“unwrapping” of the semantics of an annotated sche-

ma. In contrast, the standalone approaches suggest new

constructs for representing the temporal aspects. The

augmented approaches provide a mechanism for cap-

turing temporal data semantics at the second level of

abstraction; such approaches deliberately defer elicita-

tion of the temporal data semantics (“when”) from

the first level of abstraction that focuses on “what” is

important for the application. In contrast, the standa-

lone approaches provide a single level of abstraction for

representing both “what” and “when.”

Having outlined different syntax adopted by vari-

ous conceptual models, the temporal semantics that

need to be captured in a temporal conceptual model

are described next.

Semantics

Based on [8], definitions of different temporal aspects

that need to be represented in a temporal conceptual

model are outlined below.

An event occurs at a point in time, that is, it has no

duration (for example, a special promotion for a prod-

uct is scheduled on Christmas Eve this year (2007–12–

24)), while a state has duration (for example, a certain

price for a product is valid from 5:07 P.M. on 2005–11–

11 to 5:46 P.M. on 2007–1–11).

Facts can interact with time in two orthogonal

ways, resulting in transaction time and valid time.

Transaction time links a fact to the time that it becomes

current in the database, and implies the storage of

versions of data. The data semantics of transaction

time associated with a fact require that the fact can

exist in certain time periods in the past until now

(state). Valid time is used to record the time at which
a particular fact is true in the real world and implies the

storage of histories related to facts. The data semantics

of valid time associated with a fact imply that the fact

can exist at certain points in time (events) or in certain

time periods (states), in the past, the present, or the

future.

Granularities, which are intrinsic to temporal data,

provide a mechanism to hide details that are not

known or not pertinent for an application. Day,

minute, and second are examples of temporal granula-

rities related to the Gregorian calendar. The price

history for a manufacturing application may, for exam-

ple, be associated with a temporal granularity of “day,”

while the representation of price history for a stock

market application may require a temporal granularity

of “minute” or even “second.”

Pragmatics

Prior research suggests that “effective exchange of in-

formation between people and machines is easier if the

data structures that are used to organize the informa-

tion in the machine correspond in a natural way to

the conceptual structures people use to organize the

same information” [12]. Three criteria play a role in

how an “interpreter” (users) interacts with “symbols”

(conceptual schema): (i) “internal” representation;

(ii) snapshot reducibility; (iii) upward compatibility.

While snapshot reducibility and upward compatibility

may be rooted in syntactics and semantics, they affect

the pragmatic goal, comprehension.

Internal Representation All human knowledge is

stored as abstract conceptual propositions. Based on

propositions, Anderson and Bower’s [1] Human Asso-

ciative Model (HAM) represents information in the

long-term memory as shown in Fig. 2. A proposition

Temporal Conceptual Models T 2943
is an assertion about the real world that is composed

of a fact and context (associated with the fact). A subject

and predicate correspond with a topic and a comment

about the topic. For some applications, the context in

which the fact is true can be the key to reasoning about

the miniworld. This context in turn, is composed of

time and location associated with the fact. Note that the

“context” element is orthogonal to the “fact” element

and specifies the temporal reality for which the fact is

true. (This entry does not cover spatial aspects; see [9]

for details on a spatio-temporal conceptual model.) An

augmented approach that segregates “what” from

“when” corresponds with the way humans naturally

organize temporal information and should, thus, sup-

port comprehension of the schema.

Snapshot Reducibility Snapshot reducibility implies

a “natural” generalization of the syntax and semantics

of extant conventional conceptual models, e.g., the

ER Model [2], for incorporating the temporal
Temporal Conceptual Models. Table 1. Summary of a sam

models

Syntactics Semantics

Syntax

User-
defined
time

Valid time
and

transaction
time

Event
and
state Gra

First Generation

ER
Model
[2]

� “What”:
Graphical
� “When”:
NA

Yes No No No

Second Generation

TERM
[11]

� “What”:
Textual
� “When”:
Textual

Yes Valid time
only

Both Yes

TERC+
[16]

� “What”:
Graphical
� “When”:
Graphical

Yes Valid time
only

Both No

TimeER
[5]

� “What”:
Graphical
� “When”:
Textual

Yes Both Both No

ST USM
[9]

� “What”:
Graphical
� “When”:
Textual

Yes Both Both Yes
extension. Snapshot reducibility ensures that the se-

mantics of a temporal model are understandable “in

terms of” the semantics of the conventional conceptual

model. Here, the overall objective is to help ensure

minimum additional investment in a database analyst

training.

For example, in a “conventional” conceptual model

a key attribute uniquely identifies an entity (at a point

in time). A temporal key implies uniqueness at each

point in time. As may be evident, the semantics of a

temporal key here are implied by the semantics of a key

in a “conventional” conceptual model.

Upward Compatibility Upward compatibility refers

to the ability to render a conventional conceptual

schema temporal without impacting or negating that

legacy schema, thus, protecting investments in the

existing schemas. It also implies that both the legacy

schemas and the temporal schemas can co-exist. Up-

ward compatibility requires that the syntax and
ple of first and second generation temporal conceptual

Pragmatics

nularity

Consideration of
internal

representation
Upward

compatibility
Snapshot
reducibility

NA NA NA

No No No

No Yes Yes

No Yes Yes

Yes Yes Yes

T

2944T Temporal Conceptual Models
semantics of the traditional conceptual model remain

unaltered. An augmented approach that extends con-

ventional conceptual models would ensure upward

compatibility.
Summary

Because one of the important roles of conceptual mod-

eling is to support user-database analyst interaction,

the linguistics-based framework of evaluation is

broader: it not only includes syntactics and semantics

but also includes cognitive aspects in conceptual design

(pragmatics). Table 1 summarizes the evaluation of a

first generation and a few second generation temporal

conceptual models.
Key Applications
There are several applications of this research, both for

researchers and practitioners. (i) A temporal concep-

tual model can help support elicitation and represen-

tation of temporal data semantics during conceptual

design. (ii) A temporal conceptual schema can, thus,

be the basis for the logical schema and the database.

(iii) A temporal conceptual modeling approach can be

used as the basis for developing a design-support envi-

ronment. Such a design support environment can be

integrated with tools such as ERWin. (http://www.ca.

com/us/products/product.aspx?id=260)
Future Directions
Future research should explore how the temporal sche-

ma can be used as the canonical model for information

integration of distributed temporal databases. A tem-

poral conceptual model should also be extended to

incorporate schema versioning.

While an initial user study has been conducted

[10], future research should further evaluate temporal

conceptual modeling using, e.g., protocol analysis.

Studies that address how problem solving occurs

focus on “opening up the black box” that lies between

problem-solving inputs and outputs; that is, such

studies investigate what happens during individual

problem solving (isomorphic approach) rather than

simply observing the effects of certain stimuli averaged

over a number of cases, as in traditional studies (para-

morphic approach) [7]. The most common approach to

opening up the black box is to examine the character-

istics of the problem-solving process using protocol

analysis.
Experimental Results
To evaluate the augmented temporal conceptual design

approach, a user experiment [10] views conceptual

schema comprehension in terms of matching the

external problem representation (i.e., conceptual sche-

ma) with internal task representation, based on the

theory of HAM and the theory of cognitive fit [15].

The study suggests that the similarity between anno-

tated schemas (external representation) and the HAM

model of internal memory results in cognitive fit, thus,

facilitating comprehension of the schemas.
Cross-references
▶Now in Temporal Databases

▶ Schema Versioning

▶ Sequenced Semantics

▶ Supporting Transaction Time Databases

▶Temporal Data Models

▶Temporal Granularity
Recommended Reading
1. Anderson J.R. and Bower G.H. Human Associative Memory.

Washington, D.C.: V. H. Winston & Sons, 1973.

2. Chen P.P. The entity-relationship model – toward a unified view

of data. ACM Trans. Database Syst., 1(1):9–36, 1976.

3. Elmasri R., Wuu G., and Kouramajian V. A temporal model and

query language for EER databases. In Temporal Databases: The-

ory, Design and Implementation, A. Tansel (ed.). Benjamin/

Cummings, Menlo Park, CA, 1993, pp. 212–229.

4. Ferg S. Modeling the time dimension in an entity-relationship

diagram. In Proc. 4th Int. Conf. on Entity-Relationship Ap-

proach, 1985, pp. 280–286.

5. Gregersen H. and Jensen C. Conceptual Modeling of Time-

Varying Information. TIMECENTER Technical Report TR-35,

September 10, 1998.

6. Gregersen H. and Jensen C.S. Temporal entity-relationship mod-

els-A survey. IEEE Trans. Knowl. Data Eng., 11(3):464–497, 1999.

7. Hoffman P.J. The paramorphic representation of clinical judg-

ment. Psychol. Bull., 57(2):116–131, 1960.

8. Jensen C.S., Dyreson C.E., Bohlen M., Clifford J., Elmasri R.,

Gadia S.K., Grandi F., Hayes P., Jajodia S., Kafer W., Kline N.,

Lorentzos N., Mitsopoulos Y., Montanari A., Nonen D., Peresi E.,

Pernici B., Roddick J.F., Sarda N.L., Scalas M.R., Segev A.,

Snodgrass R.T., Soo M.D., Tansel A., Tiberio R., and Wieder-

hold G. A consensus glossary of temporal database concepts –

February 1998 Version. In Temporal Databases: Research and

Practice, O. Etzion, S. Jajodia, and S. Sripada (eds.). Springer

Berlin, 1998.

9. Khatri V., Ram S., and Snodgrass R.T. Augmenting a conceptual

model with geospatiotemporal annotations. IEEE Trans. Knowl.

Data Eng., 16(11):1324–1338, 2004.

10. Khatri V., Vessey I., Ram S., and Ramesh V. Cognitive fit between

conceptual schemas and internal problem representations: the

Temporal Constraints. Table 1. Consistency for

conjunctions of temporal constraints

Case Temporal constraints Integers Rationals

1. After, Before, Equal,
Inequal, AoE, BoE

O(v + e) O(v + e)

2. Addition O(ve) O(v + e)

3. Inequal, Difference NP-complete O(v3)

Temporal Constraints T 2945
case of geospatio-temporal conceptual schema comprehension.

IEEE Trans. Profession. Commun., 49(2):109–127, 2006.

11. Klopprogge M.R. TERM: an approach to include the time di-

mension in the entity relationship model. In Proc. 2nd Int. Conf.

on Entity-Relationship Approach, 1981, pp. 473–508.

12. Moens M. and Steedman M. Temporal ontology and temporal

reference. Comput. Linguist., 14(2):15–28, 1988.

13. Morris C.W. Foundations of the theory of signs. In Int. Encyclo-

pedia of Unified Science, vol. 1, 2nd edn. University of Chicago

Press, 1955.

14. Ram S. Intelligent database design using the unifying semantic

model. Inform. Manage., 29(4):191–206, 1995.

15. Vessey I. Cognitive fit: a theory-based analysis of graphs vs.

tables literature, Decision Sci., 22(2):219–240, 1991.

16. Zimanyi E., Parent C., Spaccapietra S., and Pirotte A. TERC+: a

temporal conceptual model. In Proc. Int. Symp. Digital Media

Information Base, 1997.
T

Temporal Constraints

PETER REVESZ

University of Nebraska-Lincoln, Lincoln, NE, USA

Definition
Temporal Constraints describe relationships among

variables that refer somehow to time. A set of temporal

constraints can be stored in a temporal database, which

is queried by temporal queries during problem solving.

For example, a set of temporal constraints may form

some requirements, all of which must be satisfied dur-

ing some scheduling problem.

Most interesting temporal constraints derive from

references to time in natural language. Such references

typically compare two time points, two sets of time

points, or two time intervals. The literature on temporal

constraints and this entry focuses on the study of these

types of comparative or binary constraints.

Historical Background
The seminal work on temporal intervals is by Allen [1].

Difference Bounded Matrices (see the Section on Sci-

entific Fundamentals) were introduced by Dill [3]. A

graph representation of difference constraints and effi-

cient constraint satisfaction problem-based solutions

for consistency of difference constraints were presented

by Dechter et al. [2]. A graph representation of gap-

order constraints and an efficient algebra on them is

presented by Revesz [11]. A graph representation of

set order constraints and algebra on them is described

in [12]. Addition constraints are considered in [12].
The complexity of deciding the consistency of con-

junctions of integer addition constraints in Table 1 is

from [9].

Periodicity constraint within query languages are

considered by Kabanza et al. [4] and Toman and

Chomicki [15]. Constraint databases [12,8] were

introduced by Kanellakis et al. [5] with a general

framework for constraints that includes temporal

constraints. Indefinite temporal constraint databases

were introduced by Koubarakis [6]. Linear cardinality

constraints on sets were considered by Kuncak et al.

[7] and Revesz [13].

Deciding the consistency of conjunctions of ratio-

nal (or real) difference and inequality constraints

was proven tractable by Koubarakis, but theO(v3) com-

plexity result in Table 1 is from Péron and Halbwachs

[10]. The NP-completeness result in Table 1 follows

from [14].

Foundations
Temporal constraints on time points express temporal

relationships between two time points, which are called

also time instances. More precisely, let x and y be

integer or rational variables or constants representing

time points, and let b be an integer constant. Then

some common temporal constraints on time points

include the following:

After : x > y

Before : x < y

Equal : x ¼ y

Inequal : x 6¼ y

After or Equal ðAoEÞ : x � y

Before or Equal ðBoEÞ : x � y

After by at least b ðGap�OrderÞ :
x � y � b where b � 0

Difference : x � y � b

Potential : x � y � b

Addition :
x
 y � b

Scheduling_Requirements

Second_Event First_Event After_By

0 e1 5

0 e2 2

e1 e3 �2
e1 e5 �9
e2 e1 �6
e3 e2 3

e3 e4 �3
e4 e3 �5
e5 e4 3

e5 e6 3

e6 0 1

2946T Temporal Constraints
In the above table, the first six constraints are called

qualitative constraints, and the last four constraints

are called metric constraints because they involve a

measure b of time units. For example, “a copyright

form needs to be filled out before publication” can

be expressed as tcopyright < tpublication, where tcopyright is

the time point when the copyright form is filled

out and tpublication is the time point when the paper

is printed. This constraint could be just one of the

requirements in a complex scheduling problem, for

example, the process of publishing in a book a

collection of research papers. Another temporal

constraint may express that “the publication must

be at least 30 days after the time of submission,”

which can be expressed by the constraint tpublication �
tsubmission � 30.

Temporal constraints on sets of time points express

temporal relationships between two sets of time points.

The domain of a set X is usually assumed to be the

finite and infinite subsets of the integers. Common

temporal constraints between sets of time points in-

clude the following:

Equal : X ¼ Y

Inequal : X 6¼ Y

Contains ðSet OrderÞ : X � Y

Disjoint : X \ Y ¼ ;
Overlap with b elements :

jX \ Y j ¼ b

where X and Y are set variables or constants, ; is

the empty set, b is an integer constant, and jj is the
cardinality operator. For example, “The Database

Systems class and the Geographic Information Systems

class cannot be at the same time” can be expressed as

TDatabase \ TGIS = ;, where TDatabase is the set of time

points (measured in hour units) the Database

System class meets, and TGIS is the set of time points

the Geographic Information Systems class meets.

Temporal constraints on time intervals express tem-

poral relationships between two time intervals. These

types of temporal constraints are known as Allen’s

Relations [Allen’s Relations] because they were studied

first by J. F. Allen [1].

Other types of temporal constraints: The various

other types of temporal constraints can be grouped

as follows:

� n-ary temporal constraints. These generalize the

binary temporal constraints to n number of
variables that refer to time. While temporal data-

bases typically use binary constraints, constraint

databases [5] use n-ary constraints [Constraint

Databases], for example linear and polynomial

constraints on n time point variables.

� Temporal periodicity constraints. Periodicity con-

straints [4,15] occur in natural language in phrases

such as “every Monday.” These constraints are

discussed separately in [Temporal Periodicity

Constraints].

� Indefinite temporal constraints. The nature of a

temporal constraint can be two types: definite

and indefinite. Definite constraints describe events

precisely, while indefinite constraints describe

events less precisely leaving several possibilities.

For example, “Ed had fever between 1 P.M. and

9 P.M. but at no other times” is a definite constraint

because it relays each time instance whether Ed

had a fever or not. On the other hand, “Ed had

fever for some time during 1 P.M. and 9 P.M.” is

an indefinite constraint because it allows the

possibility that Ed had fever at 5 P.M. and at no

other times, or another possibility that he had

fever between 1 P.M. and 4 P.M. and at no other

times. Hence it does not relay whether Ed had

fever at 5 P.M. Conjunctions of temporal con-

straints can be represented in a number of ways.

Consider a scheduling problem where one needs to

schedule the events e1,...,e6. Suppose that there are

some scheduling requirements of the form “some

(second) event occurs after another (first) event

by at least b days.” For example, each row of the

following table, which is a temporal database rela-

tion, represents one such scheduling constraint.

Temporal Constraints T 2947
Many queries are easier to evaluate on some

alternative representation of the above temporal

database relation. Some alternative representations

that may be used within a temporal database system

are given below.

Conjunctions of Constraints

Let x1,...,x6 represent,respectively, the times when

events e1,...,e6 occur. Then the Scheduling_Require-

ments relation can be represented also by the following

conjunction of difference constraints:

0� x1 � 5;

0� x2 � 2;

x1 � x3 � �2; x1 � x5 � �9; x2 � x1 � �6; x3�
x2 � 3; x3 � x4 � �3; x4 � x3 � �5; x5 � x4 � 3;

x5 � x6 � 3;

x6 � 0 � 1

Labeled Directed Graphs

In general, the graph contains n + 1 vertices represent-

ing all the n variables and 0. For each difference con-

straint of the form xi� xj� b, the graph contains also a

directed edge from the vertex representing xj to the

vertex representing xi. The directed edge is labeled by b.

Difference Bound Matrices

Conjunctions of difference constraints can be repre-

sented also by difference bound matrices (DBMs) of size

(n + 1) � (n + 1), where n is the number of variables.

For each difference constraint of the form xi � xj � b,

the DBM contains the value b in its (j, i)th entry.

The default value is �1. For example, above set

of difference constraints can be represented by the

following DBM:
0 x1 x2 x3 x4 x5 x6

0 �1 �1 �1 �1 �1 �1 1

x1 5 �1 � 6 �1 �1 �1 �1
x2 2 �1 �1 3 �1 �1 �1
x3 �1 � 2 �1 �1 � 5 �1 �1
x4 �1 �1 �1 � 3 �1 3 �1
x5 �1 � 9 �1 �1 �1 �1 �1
x6 �1 �1 �1 �1 �1 3 �1

T

A major question about temporal constraint formu-

las is whether they are consistent or satisfiable. A formula
is consistent or satisfiable if and only if it has at least

one substitution for the variables that makes the for-

mula true. Otherwise, it is called inconsistent or unsa-

tisfiable. For example, if the conjunction of difference

constraints that describe the Scheduling_Requirements

table is inconsistent, then there is no schedule of

the events e1,...,e6 such that all the requirements

are satisfied.

Table 1 summarizes some computational complex-

ity results, in terms of v the number of vertices and

e the number of edges in the graph representation.

Most complexity results translate deciding the

consistency to classical problems on graphs with effi-

cient and well-known solutions. Decher et al. [2] pro-

vides a translation to constraint satisfaction problems,

which use efficient search heuristics for large sets

of constraints. Many operations on DBMs can be de-

fined. These operators include conjunction or merge

of DBMs, variable elimination or projection of a vari-

able from a DBM, testing implication of a DBM by

a disjunction of DBMs, and transitive closure of a

DBM [12].

Temporal Constraints on Time Intervals.

In general, deciding the consistency of a conjunc-

tion of temporal constraints on intervals is NP-

complete. Many computational complexity results for

temporal constraints on time intervals follow from the

complexity results for temporal constraint on time

points. In particular, any conjunction of pointisable

temporal constraints on time intervals can be translat-

ed to a conjunction of temporal constraints on time

points. After the translation, the consistency can be

tested as before.
Key Applications
Temporal constraints are used in scheduling, planning,

and temporal database querying [Temporal Databases

Queries]. Temporal database queries usually take the

form of SQL or Datalog combined with temporal

constraints. Examples include Datalog with gap-order

constraints [11] and Datalog with periodicity con-

straints [15].
Future Directions
There are still many open problems on the use of

temporal constraints in temporal database query lan-

guages. An important problem is finding efficient

indexing methods for conjunctions of temporal

2948T Temporal Data Mining
constraints. The combination of temporal constraints

with spatial constraints is an interesting area within

spatiotemporal databases [Spatiotemporal Databases]

and constraint databases [12].
Cross-references
▶Database Query Languages

▶ Indexing

▶Temporal Dependencies

▶Temporal Integrity Constraints

▶Temporal Periodicity

Recommended Reading
1. Allen J.F. Maintaining knowledge about temporal intervals.

Commun. ACM, 26(11):832–843, 1983.

2. Dechter R., Meiri I., and Pearl J. Temporal constraint networks.

Artif. Intell., 49(1-3):61–95, 1991.

3. Dill D.L. Timing assumptions and verification of finite-state

concurrent systems. In Proc. Automatic Verification Methods

for Finite State Systems, 1989, pp. 197–212.

4. Kabanza F., Stevenne J.-M., and Wolper P. Handling infinite

temporal data. J. Comput. Syst. Sci., 51(1):1–25, 1995.

5. Kanellakis P.C., Kuper G.M., and Revesz P. Constraint query

languages. J. Comput. Syst. Sci., 51(1):26–52, 1995.

6. Koubarakis M. The complexity of query evaluation in

indefinite temporal constraint databases. Theor. Comput. Sci.,

171(1-2):25–60, 1997.

7. Kuncak V., Nguyen H.H., and Rinard M.C. An algorithm

for deciding BAPA: Boolean Algebra with Presburger Arithme-

tic. In Proc. 20th Int. Conf. on Automated Deduction, 2005,

pp. 260–277.

8. Kuper G.M., Libkin L., and Paredaens J. (eds.). Constraint

Databases. Springer, Berlin Heidelberg New York, 2000.

9. Lahiri S.K. and Musuvathi M. An efficient decision procedure

for UTVPI constraints. In Proc. 5th Int. Workshop on Frontiers

of Combining Systems, 2005, pp. 168–183.

10. Péron M. and Halbwachs N. An abstract domain extending

difference-bound matrices with disequality constraints. In

Proc. 8th Int. Conf. on Verification, Model Checking, and Ab-

stract Interpretation, 2007, pp. 268–282.

11. Revesz P. A closed-form evaluation for Datalog queries with

integer (gap)-order constraints. Theor. Comput. Sci., 116

(1):117–49, 1993.

12. Revesz P. Introduction to Constraint Databases. Springer, Berlin

Heidelberg New York, 2002.

13. Revesz P. Quantifier-elimination for the first-order theory of

Boolean algebras with linear cardinality constraints. In Proc.

8th Conf. on Advances in Databases and Information Systems,

2004, pp. 1–21.

14. Rosenkrantz D.J. and Hunt H.B. Processing conjunctive

predicates and queries. In Proc. 6th Int. Conf. on Very Data

Bases, 1980, pp. 64–72.

15. Toman D. and Chomicki J. Datalog with integer periodicity

constraints. J. Logic Program., 35(3):263–290, 1998.
Temporal Data Mining

NIKOS MAMOULIS

University of Hong Kong, Hong Kong, China

Synonyms
Time series data mining; Sequence data mining;

Temporal association mining
Definition
Temporal data mining refers to the extraction of im-

plicit, non-trivial, and potentially useful abstract infor-

mation from large collections of temporal data.

Temporal data are sequences of a primary data type,

most commonly numerical or categorical values and

sometimes multivariate or composite information.

Examples of temporal data are regular time series

(e.g., stock ticks, EEG), event sequences (e.g., sensor

readings, packet traces, medical records, weblog data),

and temporal databases (e.g., relations with time-

stamped tuples, databases with versioning). The com-

mon factor of all these sequence types is the total

ordering of their elements. They differ on the type of

primary information, the regularity of the elements in

the sequence, and on whether there is explicit temporal

information associated to each element (e.g., time-

stamps). There are several mining tasks that can

be applied on temporal data, most of which direc-

tly extend from the corresponding mining tasks on

general data types. These tasks include classification

and regression (i.e., generation of predictive data mod-

els), clustering (i.e., generation of descriptive data

models), temporal association analysis between events

(i.e., causality relationships), and extraction of temporal

patterns (local descriptive models for temporal data).
Historical Background
Analysis of time series data has been an old problem

in statistics [4], the main application being forecasting

for different applications (stock market, weather, etc.)

Classic statistical models for this purpose include auto-

regression and hidden Markov models. The term tem-

poral data mining came along as early as the birth

of data mining in the beginning of the 1990s. Soon

after association rules mining in large databases [1]

has been established as a core research problem, several

researchers became interested in association analysis in

Temporal Data Mining T 2949
long sequences and large temporal databases (see [12]

for a survey). One big challenge in temporal data

mining is the large volume of the data, which make

traditional autoregression analysis techniques inapplica-

ble. Another challenge is the nature of the data which is

not limited to numerical-valued time series, but

includes sequences of discrete, categorical, and compos-

ite values (e.g., sets). This introduces new, interesting

types of patterns, like causality relationships between

events in time, partial periodic patterns, and calendric

patterns.
Foundations
Classic data mining tasks, like classification, clustering,

and association analysis can naturally be applied on

large collections of temporal data. Special to temporal

databases, are the extraction of patterns that are fre-

quent during specific temporal intervals and the iden-

tification of temporal relationships between values or

events in large sequences. In the following, the above

problems are discussed in more detail.
T

Classification and Clustering

Classification of time series is often performed by

nearest neighbor (NN) classifiers [13]. Given a time

series~s of unknown label and a database D of labeled

samples, such a classifier (i) searches in D for the k

most similar time series to~s and (ii) gives~s the most

popular label in the set of k returned time series. This

process involves two challenges: definition of an

appropriate similarity function to be used by the NN

classifier and scalability of classification. The dissimi-

larity (distance) between two time series is typically

quantified by their Euclidean distance or the dynamic

time warping (DTW) distance. Like classification, clus-

tering of time series can be performed by applying an

off-the-shelf clustering algorithm [7] (e.g., k-means),

after defining an appropriate distance (i.e., dissimilari-

ty) function.

For sequences of categorical data, Hidden Markov

Models (HMM) can be used to capture the behavior of

the data. HMM can be used for classification as fol-

lows. For each class label, a probabilistic state transi-

tion model that captures the probabilities of seeing

one symbol (state) after the current one can be built.

Then a sequence is given the label determined by the

HMM that describes its behavior best.
Prediction

For continuous-valued sequences, like time series, regres-

sion is an alternative to classification. Regression does not

use a fixed set of class labels to describe each sequence, but

models sequences as functions, which are more appropri-

ate for predicting the values in the future. Autoregression

is a special type of regression, where future values are

predicted as a linear combination of recent previous

values, assuming that the series exhibits a periodic behav-

ior. Formally, an autoregressive model of order p for a

time series~s ¼ fs1; s2;:::g can be described as follows:

si ¼ ei þ
Xp
j¼1

fj si�j ;

where fj(1 � j � p) are the parameters of autoregres-

sion, and ei is an error term. The error terms are

assumed to be independent identically-distributed

random variables (i.i.d.) that follow a zero-mean nor-

mal distribution. The main trend of a time series is

commonly described by a moving average function,

which is a smoothed abstraction of the same length.

Formally, the moving average of order q for a time

series~s ¼ fs1; s2;:::g can be described as follows:

MAð~sÞi ¼ ei þ
Xq
j¼1

cj ei�j ;

where cj(1 � j � q) are the parameters of the model.

By combining the above two concepts, a time series~s

can be described by an autoregressive moving average

(ARMA) model:

si ¼ ei þ
Xp
j¼1

fj si�j þ
Xq
j¼1

cj ei�j ;

Autoregressive integrated moving average (ARIMA) is

a more generalized model, obtained by integrating an

ARMA model. In long time series, periodic behaviors

tend to be local, so a common practice is to segment

the series into pieces with constant behavior and gen-

erate an autoregression model at each piece.

Association Analysis and Extraction of Sequence

Patterns

Agrawal and Srikant [3] proposed one of the first

methods for association analysis in timestamped trans-

actional databases. A transactional database records

timestamped customer transactions (e.g., sets of books

2950T Temporal Data Mining
bought at a time) in a store (e.g., bookstore) and the

objective of the analysis is to discover causality relation-

ships between sets of items bought by customers. An

example of such a sequential pattern (taken from the

paper) is “5% of customers bought ‘Foundation,’ then

‘Foundation and Empire,’ and then ‘Second Founda-

tion,’ ” which can be represented by {(Foundation),

(Foundation and Empire),(Second Foundation)}. In

general, sequential patterns are total orders of sets of

items bought in the same transaction. For example,

{(Foundation,Life),(Second Foundation)} models the

buying of “Foundation” and “Life” at a single transac-

tion followed by “Second Foundation” at another

transaction. The patterns can be extracted by dividing

the database that records the transaction history of the

bookstore into groups, one per customer, and then

treat each group as an ordered sequence. For example,

the transactional database shown in Fig. 1a is trans-

formed to the grouped table of Fig. 1b.

The algorithm for extracting sequential patterns

from the transformed database is reminiscent to the

Apriori algorithm for frequent itemsets in transaction-

al databases [2]. It takes as input a minimum support

threshold min-sup and operates in multiple passes. In

the first pass, the items that have been bought by at

least min-sup of the customers are put to a frequent

items set L1. Then, orderings of pairs of items in L1
form a candidate set C2 of level-2 sequential patterns,

the supports of which are counted during the second

pass of the transformed database and the frequent ones

form L2. A sequence adds to the support of a pattern if

the pattern is contained in it. For example, the se-

quence {(A, C),(B, E),(F)} of customer C2 in Fig. 1

adds to the support of pattern {(A),(F)}. In general,

after Lk has been formed, the algorithm generates and

counts candidate patterns of k + 1 items. These
Temporal Data Mining. Figure 1. Transformation of a times
candidates are generated by joining pairs (s1, s2) of

frequent k-sequences, such that the subsequence

obtained by dropping the first item of s1 is identical to

the one obtained by dropping the last item of s2. For

example, {(A, B),(C)} and {(B), (C, D)} generate {(A,

B), (C, D)}. Candidates resulting from the join phase

are pruned if they have a subsequence that is not

frequent.

Agrawal and Srikant also considered adding con-

straints when counting the supports of sequential pat-

terns. For example, if “Foundation and Empire” is

bought 3 years after “Foundation,” these two books

may be considered unrelated. In addition, they consid-

ered relaxing the rigid definition of a transaction by

unifying transactions of the same customer that took

place close in time. For example, if a customer buys a

new book minutes after her previous transaction, this

book should be included in the previous transaction

(i.e., the customer may have forgotten to include it in

her basket before). Parallel to Agrawal and Srikant,

Mannila et al. [9] studied the extraction of frequent

causality patterns (called episodes) in long event

sequences. The main differences of this work are

(i) the input is a single very long sequence of events

(e.g., a stream of sensor indications), (ii) patterns

are instantiated by temporal sliding windows along

this stream of events, and (iii) patterns can contain

sequential modules (e.g., A after B) or parallel modules

(e.g., A and B in any order). An example of such an

episode is “C first, then A and B in any order, then D”.

To compute frequent episodes Mannila et al. [9] pro-

posed adaptations of the classic Apriori technique [2].

A more efficient technique for mining sequential pat-

terns was later proposed by Zaki [14].

Han et al. [6] studied the problem of mining partial

periodic patterns in long event sequences. In many
tamped transactional database.

Temporal Data Mining T 2951

T

applications, the associations between events follow a

periodic behavior. For instance, the actions of people

follow habitual patterns on a daily basis (i.e., “wake-up,”

then “have breakfast,” then “go to work,” etc.). Given a

long event sequence (e.g., the actions of a person over a

year) and a time period (e.g., 24 h), the objective is to

identify patterns of events that have high support over

all the periodic time intervals (e.g., days). For this pur-

pose, all subsequences corresponding to the activities of

each periodic interval can be extracted from the long

sequence, and a sequential pattern mining algorithm [3]

can be applied. Based on this idea, an efficient technique

for periodic pattern mining, which is facilitated by the

use of a sophisticated prefix tree data structure, was

proposed by Han et al. [6]. In some applications, the

time period every when the patterns are repeated

is unknown and has to be discovered from the data.

Towards this direction, Cao et al. [5] present a data

structure that automatically identifies the periodicity

and discovers the patterns at only a small number of

passes over the data sequence.

Temporal, Cyclic, and Calendric Association Rules

An association rule in a transactional database may not

be strong (according to specific support and confide-

nce thresholds) in the whole database, but only when

considering the transactions in a specified time interval

(e.g., during the winter of 2005). An association rule

bound to a time interval, where it is strong, is termed

temporal association rule [12]. Identification of such a

rule can be performed by starting from short time inter-

vals and progressively extending them to the maximum

possible length where the rule remains strong.

Özden et al. [10] noticed that association rules in

transactional databases (e.g., people who buy turkey they

also buy pumpkins) may hold only in particular tempo-

ral intervals (e.g., during the last week of November every

year). These are termed cyclic association rules, because

they are valid periodically, at a specific subinterval of

a cycle (e.g., year). Such rules can be discovered by

identifying the periodic intervals of fixed granularity

(e.g., week of the year), which support the associations.

Cyclic rules are assumed to be supported at exact

intervals (e.g., the last day of January), and at every

cycle (e.g., every year). In practice, a rule may be

supported with some mismatch threshold (e.g., the

last weekday of January) and only at the majority of

cycles (e.g., 80% of the cycles). Accordingly, the
“cyclic” rule concept was extended by Ramaswamy

et al. [11] to the more flexible calendric association

rule. A calendar is defined by a set of time intervals

(e.g., the last 3 days of January, every year). For a

calendric rule to be strong, it should have enough

support and confidence in at least min-sup% of the

time units included in the calendar. An algerbra for

defining calendars and a method for discovering calen-

dric association rules referring to them can be found in

Ref. [11].

Li et al. [8] proposed a more generalized frame-

work for calendric association rules. Instead of search-

ing based on a predetermined calendar, they

automatically identify the rules and their supporting

calendars, taken from a hierarchy of calendar concepts.

The hierarchy is expressed by a relation of temporal

generalizations of varying granularity, e.g., R(year,

month, day). A possible calendric pattern is expressed

by setting to each attribute, either a specific value of

its domain, or a wildcard value “∗.” For example,

pattern (∗, Jan, 30) means the 30th of January each

year, while (2005, ∗, 30) means the the 30th day of

each month in year 2005. By defining containment

relationships between such patterns (e.g., (∗, ∗, 30)

contains all the intervals of (2005, ∗, 30)) and observ-

ing that itemset supports for them can be computed

constructively (e.g., the support of an itemset in (∗,∗,

30) can be computed using its support in all (y, ∗, 30)

for any year y), Li et al. [8] systematically explore the

space of all calendric patterns using the Apriori princi-

ple to prune space (e.g., an itemset is not frequent in

(∗, ∗, 30) if it is infrequent in all (y, ∗, 30) for every

year y).
Key Applications

Weather Forecasting

Temporal causality relationships between events can as-

sist the prediction of weather phenomena. In fact, such

patterns have been used for this purpose since the an-

cient years (e.g., “if swallows fly low, it is going to rain

soon”).
Market Basket Analysis

Extension of classic association analysis to consider

temporal information finds application in market anal-

ysis. Examples include, temporal relationships between

2952T Temporal Data Models
products that are purchased within the same period by

customers (“5% of customers bought ‘Foundation,’

then ‘Foundation and Empire’ ”) and calendric associa-

tion rules (e.g., turkey is bought together with pumpkin

during the last week of November, every year).

Stock Market Prediction

Time-series classification and regression is often used

by financial analysts to predict the future behavior of

stocks. The structure of the time series can be com-

pared with external factors (such as pieces of news) to

derive more complex associations that result in better

accuracy in prediction.

Web Data Mining

The World Wide Web can be viewed as a huge graph

where nodes correspond to web pages (or web sites)

and edges correspond to links between them. Users

navigate through the web defining sequences of page

visits, which are tracked in weblogs. By analyzing these

sequences one can identify frequent sequential patterns

between web pages or even classify users based on their

behavior (sequences of sites they visit and sequences of

data they download).

Cross-references
▶Association rules

▶ Spatial and Spatio-Temporal Data Models and

Languages

▶Temporal Periodicity

▶Time Series Query
Recommended Reading
1. Agrawal R., Imielinski T., and Swami A.N. Mining association

rules between sets of items in large databases. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1993,

pp. 207–216.

2. Agrawal R. and Srikant R. Fast algorithms for mining association

rules in large databases. In Proc. 20th Int. Conf. on Very Large

Data Bases, 1994, pp. 487–499.

3. Agrawal R. and Srikant R. Mining sequential patterns. In Proc.

11th Int. Conf. on Data Engineering, 1995, pp. 3–14.

4. Box G.E.P. and Jenkins G. Time Series Analysis, Forecasting and

Control. Holden-Day, 1990.

5. Cao H., Cheung D.W., and Mamoulis N. Discovering partial

periodic patterns in discrete data sequences. In Advances in

Knowledge Discovery and Data Mining, 8th Pacific-Asia Conf.,

2004, pp. 653–658.

6. Han J., Dong G., and Yin Y. Efficient mining of partial periodic

patterns in time series database. In Proc. 15th Int. Conf. on Data

Engineering, 1999, pp. 106–115.
7. Han J. and Kamber M. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2000.

8. Li Y., Ning P., Wang X.S., and Jajodia S. Discovering

calendar-based temporal association rules. Data Knowl. Eng.,

44(2):193–218, 2003.
9. Mannila H., Toivonen H., and Verkamo A.I. Discovery of

frequent episodes in event sequences. Data Min. Knowl. Discov.,

1(3):259–289, 1997.

10. Özden B., Ramaswamy S., and Silberschatz A. Cyclic association

rules. In Proc. 14th Int. Conf. on Data Engineering, 1998,

pp. 412–421.

11. Ramaswamy S., Mahajan S., and Silberschatz A. On the discov-

ery of interesting patterns in association rules. In Proc. 24th Int.

Conf. on Very Large Data Bases, 1998, pp. 368–379.

12. Roddick J.F. and Spiliopoulou M. A survey of temporal knowl-

edge discovery paradigms and methods. IEEE Trans. Knowl.

Data Eng., 14(4):750–767, 2002.

13. Wei L. and Keogh E.J. Semi-supervised time series classification.

In Proc. 12th ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining, 2006, pp. 748–753.

14. Zaki M.J. Spade: an efficient algorithm for mining frequent

sequences. Mach. Learn., 42(1/2):31–60, 2001.
Temporal Data Models

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Valid-time data model; Transaction-time data model;

Bitemporal data model; Historical data model

Definition
A “data model” consists of two components, namely

a set of objects and a language for querying those

objects [4]. In a temporal data model the objects vary

over time, and the operations in some sense “know”

about time. Focus has been on the design of data

models where the time references capture valid time,

or transaction time, or a combination of both (for

bitemporal data).

Historical Background
Almost all real-world databases contain time-referenced

data. Few interesting databases are entirely stagnant,

and when the modeled reality changes, the database

must be updated. Usually at least the start time of cur-

rently valid data are captured, though most databases

also retain previous data.

Temporal Data Models T 2953

T

Two decades of research into temporal databases

have unequivocally shown that a time-referencing table,

containing certain kinds of time-valued columns that

capture one or more temporal aspects of data recorded

in other columns, is completely different from this

table, without the time-valued columns. Effectively

designing, querying, and modifying time-referencing

tables requires a different set of approaches and tech-

niques. It is possible to handle such data within stan-

dard data models, generally at the expense of high

data redundancy, awkward modeling, and unfriendly

query languages. An alternative is a data model, prob-

ably an extension of an extant, non-temporal data

model, that explicitly incorporates time, making it

easier to express queries, modifications, and integrity

constraints.

As an example, consider a primary key of the

following relation, which records the current positions

of employees, identified by their social security num-

bers: EMP(EmpID, POSITION). The primary key is

obviously EmpID. Now add STARTTIME and STOP-

TIME attributes. While a primary key of (EmpID,

STARTTIME) seems to work, such a primary key will

not prevent overlapping periods, which would allow

an employee to have two positions at a point of time,

which is problematic. Stating the primary key con-

straint properly requires a complex assertion contain-

ing a dozen lines of code with multiple sub-queries [3].

Referential integrity is even more challenging.

The last two decades have seen the introduction

of a great many temporal data models, not just in

the context of relational data, as in the above example,

but also with object-oriented, logic-based, and semi-

structured data.

Foundations

Levels of Abstraction

Temporal data models exist at three abstraction levels:

the conceptual level, in which the data models are gen-

erally extensions of the Entity-Relationship Model,

the logical level, in which the data models are generally

extensions of the relational data model or of an object-

oriented data model, and, infrequently, the physical

level, in which the data model details how the data

are to be stored. In terms of prevalence, models at the

logical level are by far the most numerous. However, it

has been shown that several of the models that were

originally proposed as logical data models are actually
equivalent to the BCDM logical model, and should

more properly be viewed as physical data models [2].

This entry is restricted to logical models, focusing on

the objects that are subject to querying rather than

the query languages. First examined is the association

of time with data, as this is at the core of temporal

data management.

Temporal Aspects of Data

A database models and records information about a

part of reality, termed the modeled reality. Aspects

of the modeled reality are represented in the database

by a variety of structures, termed database entities.

In general, times are associated with database entities.

The term “fact” is used for any (logical) statement

that can meaningfully be assigned a truth value, i.e.,

true or false.

The facts recorded by database entities are of fun-

damental interest, and a fundamental temporal aspect

may be associated with these: the valid time of a fact is

the times when the fact is true in the modeled reality.

While all facts have a valid time by definition, the valid

time of a fact may not necessarily be recorded in the

database. For example, the valid time may not be

known, or recording it may not be relevant. Valid

time may be used for the capture of more applica-

tion-specific temporal aspects. Briefly, an application-

specific aspect of a fact may be captured as the valid

time of another, related fact.

Next, the transaction time of a database entity is the

time when the entity is current in the database. Like

valid time, this is an important temporal aspect. Trans-

action time is the basis for supporting accountability

and “traceability” requirements. Note that transaction

time, unlike valid time, may be associated with any

database entity, not only with facts. As for valid time,

the transaction-time aspect of a database entity may or

may not be captured in the database. The transaction-

time aspect of a database entity has a duration: from

insertion to deletion. As a consequence of the seman-

tics of transaction time, deleting an entity does not

physically remove the entity from the database; rather,

the entity remains in the database, but ceases to be part

of the database’s current state.

Observe that the transaction time of a database

fact, say f, is the valid time of the related fact, “f is

current in the database.” This would indicate that

supporting transaction time as a separate aspect is

redundant. However, both valid and transaction time

2954T Temporal Data Models
are aspects of the content of all databases, and record-

ing both of these is essential in many applications. In

addition, transaction time, due to its special semantics,

is particularly well-behaved and may be supplied auto-

matically by the DBMS. Specifically, the transaction

times of a fact stored in the database is bounded

by the time the database was created at one end of

the time line and by the current time at the other end.

The above discussion suggests why temporal data

models generally offer built-in support for one or both

of valid and transaction time.
Representation of Time

The valid and transaction time values of database enti-

ties are drawn from some appropriate time domain.

There is no single answer to how to perceive time in

reality and how to represent time in a database, and

different time domains may be distinguished with

respect to several orthogonal characteristics. First, the

time domain may or may not stretch infinitely into the

past and future. Second, time may be perceived as

discrete, dense, or continuous. Some feel that time is

really continuous; others contend that time is discrete

and that continuity is just a convenient abstraction

that makes it easier to reason mathematically about

certain discrete phenomena. In databases, a finite and

discrete time domain is typically assumed, e.g., in the

SQL standards. Third, a variety of different structures

have been imposed on time. Most often, time is

assumed to be totally ordered.

Much research has been conducted on the seman-

tics and representation of time, from quite theoretical

topics, such as temporal logic and infinite periodic

time sequences, to more applied questions such as

how to represent time values in minimal space. Sub-

stantial research has been conducted that concerns the

use of different time granularities and calendars in

general, as well as the issues surrounding the support

for indeterminate time values. Also, there is a signifi-

cant body of research on time data types, e.g., time

instants, time intervals (or “periods”), and temporal

elements.
Temporal Data Models. Figure 1. Point model.
Data Model Objects

The management of temporal aspects has been

achieved by building time into the data model objects.

Here, the relational model is assumed, with a focus on

valid time. One approach is to timestamp tuples with
time instants, or points. Then a fact is represented by

one tuple for each time point during which the fact

is valid. An example instance for the EMP relation

example is shown in Fig. 1.

A distinguishing feature of this approach is that

(syntactically) different relations have different informa-

tion content. Next, timestamps are atomic values that

can be easily compared. Assuming a totally ordered time

domain, the standard set of comparison predicates, =, 6¼,
<, >, �, and �, is sufficient to conveniently compare

timestamps. The conceptual simplicity of time points

comes at a cost, though. The model offers little support

for capturing, e.g., that employee 2 was assigned to Sales

during two contiguous periods [4,5] and [6,7], instead

of during a single contiguous period [4,7].

It is important to note that the point model is not

meant for physical representation, as for all but the

most trivial time domains, the space needed when

using the point model is prohibitive. The combination

of conceptual simplicity and low computational com-

plexity has made the point model popular for theoreti-

cal studies.

Another type of data model uses time periods as

timestamps. This type of model associates each fact

with a period that captures the valid time of the fact.

Multiple tuples are needed if a fact is valid over disjoint

periods. Figure 2 illustrates the approach.

The notion of snapshot equivalence, which reflects

a point-based view of data, establishes a correspon-

dence between the point-based and period-based mod-

els. Imagine that the last two tuples in the relation in

Fig. 2 were replaced with the single tuple (2, Sales,

[4,7]) to obtain a new relation. The resulting two

relations are different, but snapshot equivalent.

Temporal Data Models T 2955
Specifically, the new relation is a coalesced version of

the original relation.

In some data models, the relations are taken to con-

tain the exact same information. These models adopt a

point-based view and are only period-based in the weak

sense that they use time periods as convenient represen-

tations of (convex) sets of time points. It then also makes

sense for such models to require that their relation

instances be coalesced. This requirement ensures that

relation instances that are syntactically different are

also semantically different, and vice versa. In such

models, the relation in Fig. 2 is not allowed.

In an inherently period-based model, periods carry

meaning beyond denoting a set of points. In some

situations, it may make a difference whether an em-

ployee holds a position for two short, but consecutive

time periods versus for one long time period. Period-

based models do not enforce coalescing and capture

this distinction naturally.

Next, a frequently mentioned shortcoming of per-

iods is that they are not closed under all set operations,

e.g., subtraction. This has led to the proposal that

temporal elements be used as timestamps instead.

These are finite unions of periods.

With temporal elements, the same two semantics as

for periods are possible, although models that use

temporal elements seem to prefer the point-based

semantics. Figure 3a and Figure 3b uses temporal

elements to capture the example assuming the peri-

od-based semantics and point-based semantics,
Temporal Data Models. Figure 3. Temporal element model

Temporal Data Models. Figure 2. Period (or interval)

model.

T

respectively. (As [4,5] [[6,7] = [4,7], this latter period

could have been used instead of [4,5] [[6,7].)

Note that the instance in Fig. 3b exemplifies the

instances used by the point-based bitemporal conceptu-

al data model (BCDM) when restricted to valid time.

This model has been used for TSQL2. The BCDM time-

stamps facts with values that are sets of time points. This

is equivalent to temporal elements because the BCDM

adopts a discrete and bounded time domain.

Because value-equivalent tuples are not allowed (this

corresponds to the enforcement of coalesced relations as

discussed earlier), the full history of a fact is contained in

exactly one tuple, and one tuple contains the full history

of exactly one fact. In addition, relation instances that are

syntactically different have different information con-

tent, and vice versa. This design decision reflects the

point-based underpinnings of the BCDM.

With temporal elements, the full history of a fact is

contained in a single tuple, but the information in a

relation that pertains to some real-world object may still

be spread across several tuples. To capture all information

about a real-world object in a single tuple, attribute value

timestamping has been introduced. This is illustrated

in Fig. 4, which displays the sample instance using a

typical attribute-value timestamped data model.

The instance records information about employees

and thus holds one tuple for each employee, with a

tuple containing all information about an employee.

An obvious consequence is that the information about

a position cannot be contained in a single tuple. An-

other observation is that a single tuple may record

multiple facts. In the example, the first tuple records

two facts: the position type for employee 1 for the two

positions, Sales and Engineering.

It should also be noted that different groupings

into tuples are possible for this attribute-value time-

stamping model. Figure 5 groups the relation instance

in Fig. 4 on the POSITION attribute, indicating that it

is now the positions, not the employees, that are the

objects in focus.
.

Temporal Data Models. Figure 4. Attribute-value

timestamped model.

Temporal Data Models. Figure 5. Attribute-value

timestamped model, grouped on POSITION.

Temporal Data Models. Figure 6. Attribute-value

timestamped model, temporally grouped.

2956T Temporal Data Models
Data models that timestamp attribute values may

be temporally grouped. In a temporally grouped

model, all aspects of a real-world object may be cap-

tured by a single tuple [1].

At first sight, that attribute-value timestamped

model given above is temporally grouped. However,

with a temporally grouped model, a real-world object

is allowed to change the value for its key attribute. In

the example, this means that the instance in Fig. 6

should be possible. Now observe that when grouping

this instance on EmpID or POSITION, or both, it is not

possible to get back to the original instance. Thus,

temporally grouped tuples are not well supported.

Clifford et al. [1] explore the notion of temporally

grouped models in considerable depth.

Query Languages

Having covered the objects that are subject to query-

ing, the last major aspect of a logical data model is the

query language associated with the objects. Such lan-

guages come in several variants.

Some are intended for internal use inside a tempo-

rally enhanced database management system. These

are typically algebraic query languages. However, alge-

braic languages have also been invented for more the-

oretical purposes. For example, an algebra may be used

for defining the semantics of a temporal SQL exten-

sion. A key point is that an algebra is much simpler

than is such an extension. Little is needed in terms of
language design; only a formal definition of each oper-

ator is needed.

Other query languages are targeted at application

programmers and are thus typically intended to re-

place SQL. The vast majority of these are SQL exten-

sions. Finally, languages have been proposed for

the purpose of conducting theoretical studies, e.g., of

expressive power.

Key Applications
Virtually all databases contain temporal information,

and so virtually all database applications would benefit

from the availability of data models that provide natu-

ral support for such time-varying information.

Future Directions
Rather than come up with a new temporal data model,

it now seems better to extend, in an upward-consistent

manner, existing non-temporal models to accommo-

date time-varying data.

Cross-references
▶ Period-Stamped Temporal Models

▶ Point-Stamped Temporal Models

▶ Probabilistic Temporal Databases

▶ Supporting Transaction Time Databases

▶Temporal Access Control

▶Temporal Compatibility

▶Temporal Concepts in Philosophy

▶Temporal Conceptual Models

▶Temporal Constraints

▶Temporal Database

▶Temporal Indeterminacy

▶Temporal Logical Models

▶Temporal Object-Oriented Databases

▶Temporal Query Languages

▶Temporal XML

▶Transaction Time

▶Valid Time

Temporal Database T 2957
Recommended Reading
1. Clifford J., Croker A., and Tuzhilin A. On completeness of

historical relational query languages. ACM Trans. Database

Syst., 19(1):64–16, March 1994.

2. Jensen C.S., Soo M.D., and Snodgrass R.T. Unifying temporal

data models via a conceptual model. Inf. Syst., 19(7):513–547,

December 1994.

3. Snodgrass R.T. Developing Time-Oriented Database App-

lications in SQL, Morgan Kaufmann, San Francisco, CA,

July 1999.

4. Tsichritzis D.C. and Lochovsky F.H. Data Models. Software

Series. Prentice-Hall, 1982.
Temporal Data Warehousing

▶Data Warehouse Maintenance, Evolution and

Versioning
T

Temporal Database

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Historical database; Time-oriented database

Definition
A temporal database is a collection of time-referenced

data. In such a database, the time references capture

some temporal aspect of the data; put differently, the

data are timestamped. Two temporal aspects are prev-

alent. The time references may capture either the past

and current states of the database, yielding a transac-

tion-time database; they may capture states of the

reality being modeled by the data, yielding a valid-

time database; or they may capture both aspects of

the data, yielding a bitemporal database.
Historical Background
“Time” is a fundamental concept that pervades all

aspects of daily life. As one indicator, a recent study

by Oxford University Press found that the word “time”

is the most commonly used noun in the English
language. The nouns “year” and “day” rank third and

fifth in the study.

Moving to a database context, the capture and

representation of time-varying information go back

literally thousands of years. The Egyptians and Syrians

carved records into stone walls and pyramids of inven-

tories of grain over many years. But it has been only in

the last few decades that the advent of increasingly

inexpensive and voluminous digital storage has en-

abled the computerized management of increasingly

large volumes of time-referenced data.

Temporal databases have been the subject of

intense study since the early 1980s. A series of bib-

liographies on temporal databases enumerates the

thousands of refereed papers that have been written

on the subject (the series started with Boulour’s paper

[3]; the most recent in the series is by Wu et al. [17]).

There have also been more specialized bibliographies

[2,9,13].

The first temporal database conference was held in

Sofie Antipolis, France in 1987 [1]. Two workshops,

the Temporal Database Workshop in Arlington, Texas

in 1993 and in Zürich, Switzerland in 1995 [8], were

held subsequently. The premier conferences on the

topic are the International Symposium on Temporal

Representation and Reasoning (TIME) (held annually

since 1994), the International Symposium on Spatial

and Temporal Databases (SSTD) (held biannually),

and the Spatio-Temporal Database Management

(STDBM) series (three up through 2006).

A seminal book collecting important results to date

in this field appeared in 1993 [16]. Several surveys have

been written on the topic [4–7, 10–12, 14, 15]. Tempo-

ral databases were covered in detail in an advanced

database textbook [18].

Foundations
Time impacts all aspects of database technology, includ-

ing database design (at the conceptual, logical, and

physical levels) and the technologies utilized by a data-

base management system, such as query and modifica-

tion languages, indexing techniques and data structures

query optimization and query evaluation techniques,

and transaction processing.

The entries related to temporal databases go into

more detail about these aspects. The following pro-

vides an organization on those entries (which are indi-

cated in italics).

2958T Temporal Database
General Concepts

� Philosophers have thought hard about time (tem-

poral concepts in philosophy).

� Two general temporal aspects of data attract special

attention: valid time and transaction time.

� The time domain can be differentiated along several

aspects: its structure, e.g., linear or branching; dis-

crete versus continuous; bounded or infinite.

� Just as multiple versions of data may be stored,

independently, the schemas can be versioned

(schema versioning).

� The concept of “now” is important (now in tempo-

ral databases).

Temporal Data Models

� Temporal conceptual models generally extend an

existing conceptual model, such as one of the var-

iants of the Entity-Relationship model.

� Temporal logical models generally extend the rela-

tional model or an object-oriented model (temporal

object-oriented models) or XML (temporal XML).

� Data can be associatedwith time in several ways: with

time points (point-stamped temporal models) or

time periods (period-stamped temporal models);

these may capture valid and/or transaction time;

and the associations of the data with the time values

may carry probabilities (temporal probabilistic

models).

� The time values associated with the data are char-

acterized by their temporal granularity, and they

may possess temporal indeterminacy and temporal

periodicity.

� Data models incorporate temporal constraints,

temporal integrity constraints, and temporal

dependencies.
Temporal Query Languages

� Most temporal query languages are based on the

relational algebra or calculus. Not surprisingly,

much attention has been given to the design of

user-level temporal query languages, notably SQL-

based temporal query languages. For such languages,

different notions of temporal compatibility have

been an important design consideration.

� Qualitative temporal reasoning and temporal logic in

database query languages provide expressive query

facilities.
� Temporal vacuuming provides a way to control the

growth of an otherwise append-only transaction-

time database.

� TSQL2 and its successor SQL/Temporal provided a

way for many in the temporal database community

to coordinate their efforts in temporal query lan-

guage design and implementation.

� Temporal query processing involves disparate archi-

tectures, from temporal strata outside the conven-

tional DBMS to adding native temporal support

within a DBMS.

� Supporting transaction time in an efficient manner

in the context of transactions is challenging and

generally requires changes to the kernel of a DBMS.

� Temporal algebras extend the conventional relation-

al algebra. Some specific operators (e.g., temporal

aggregation, temporal coalescing, temporal joins)

have received special attention.

� Temporal storage structures and indexing techni-

ques have also received a great deal of attention

(temporal indexing).

� Temporal visual languages have also been designed

that present graphical user interfaces, as contrasted

with the textual form of the temporal query lan-

guages mentioned previously.

Temporal Applications

� Temporal access control uses temporal concepts in

database security.

� Temporal data mining has recently received a lot of

attention.

� Time series has also been an active area of research.

� Other applications include temporal constraint sat-

isfaction, support for planning systems, and natural

language disambiguation.

The concepts of temporal databases are also making

their way into research on data warehousing, OLAP,

and data streams.

Key Applications
As storage costs decrease, more databases are retaining

historical data. The dual of such a decrease is that the

cost of deletion is effectively increasing, as the applica-

tion then has to explicitly make the decision on what to

retain and what to delete, and the DBMS has to revisit

the data on disk in order to move it. Some have

asserted that it may be simpler to simply disallow

deletion (except for purging of unneeded records,

Temporal Database T 2959
termed temporal vacuuming) within a DBMS, render-

ing all databases by default temporal databases.

Commercial products are starting to include tem-

poral support. Most notably, the Oracle database man-

agement system has included temporal support from

its 9i version. Lumigent’s LogExplorer product pro-

vides an analysis tool for Microsoft SQLServer logs,

to allow one to view how rows change over time (a

nonsequenced transaction-time query) and then to

selectively back out and replay changes, on both rela-

tional data and the schema (it effectively treats the

schema as a transaction-versioned schema). aTempo’s

Time Navigator is a data replication tool for DB2,

Oracle, Microsoft SQL Server, and Sybase that extracts

information from a database to build a slice repository,

thereby enabling image-based restoration of a past

slice; these are transaction time-slice queries. IBM’s

DataPropagator can use data replication of a DB2 log

to create both before and after images of every row

modification to create a transaction-time database that

can be later queried.
T

Future Directions
While much progress has been made in all of the

above listed areas, temporal database concepts and

technologies have yet to achieve the desired levels of

simplification and comprehensibility. While many of

the subtleties of temporal data and access and storage

thereof have been investigated, in many cases quite

thoroughly, a synthesis is still needed of these con-

cepts and technologies into forms that are usable by

novices.

Given the simplifications of data management

afforded by built-in support of time in database man-

agement systems, it is hoped that DBMS vendors will

continue to enhance the temporal support in their

products.
Cross-references
▶Bi-Temporal Indexing

▶Now in Temporal Databases

▶ Period-Stamped Temporal Models

▶ Point-Stamped Temporal Models

▶ Probabilistic Temporal Databases

▶Qualitative Temporal Reasoning

▶ Schema Versioning

▶ SQL-Based Temporal Query Languages
▶ Supporting Transaction Time Databases

▶Temporal Access Control

▶Temporal Aggregation

▶Temporal Algebras

▶Temporal Coalescing

▶Temporal Compatibility

▶Temporal Concepts in Philosophy

▶Temporal Conceptual Models

▶Temporal Constraints

▶Temporal Database

▶Temporal Data Mining

▶Temporal Data Models

▶Temporal Dependencies

▶Temporal Granularity

▶Temporal Indeterminacy

▶Temporal Integrity Constraints

▶Temporal Joins

▶Temporal Logic in Database Query Languages

▶Temporal Logical Models

▶Temporal Object-Oriented Databases

▶Temporal Periodicity

▶Temporal Query Languages

▶Temporal Query Processing

▶Temporal Strata

▶Temporal Vacuuming

▶Temporal Visual Languages

▶Temporal XML

▶Time Domain

▶Time Series

▶TSQL2
Recommended Reading
1. Rolland C., Bodart F., and Leonard M. (eds.). In Proc. Conf. on

Temporal Aspects in Information Systems. North-Holland/

Elsevier, 1987.

2. Al-Tara K.K., Snodgrass R.T., and Soo M.D. A bibliography on

spatio- temporal databases. Int. J. Geogr. Inf. Syst., 8(1):95–103,

January–February 1994.

3. Boulour A., Anderson T.L., Dekeyser L.J., and Wong H.K.T. The

role of time in information processing: a survey. ACM SIGMOD

Rec., 12(3):27–50,April 1982.

4. Böhlen M.H., Gamper J., and Jensen C.S. Temporal databases. In

Handbook of Database Technology, J. Hammer, M. Schneider

(eds.). Computer and Information Science Series. Chapman and

Hall, to appear.

5. BöhlenM.H. and Jensen C.S. Temporal data model and query

language concepts. In Vol. 4.Encyclopedia of Information Sys-

tems, Academic, New York, NY, USA, 2003, pp. 437–453.

6. Chomicki J. Temporal query languages: A survey. In Proc. 1st

Int. Conf. on Temporal Logic, 1994, pp. 506–534.

2960T Temporal Dependencies
7. Chomicki J. and Toman D. Temporal databases. In Handbook of

Time in Artificial Intelligence, M.’ Fisher et al. (eds.). Elsevier,

Amsterdam, The Netherlands, 2005.

8. Clifford J. and Tuzhilin A. (eds.). In Proc. International Work-

shop on Temporal Databases: Recent Advances in Temporal

Databases, 1995.

9. Grandi F. Introducing an annotated bibliography on temporal

and evolution aspects in the World Wide Web. ACM SIGMOD

Rec., 33(2):84–86, June 2004.

10. Jensen C.S. and Snodgrass R.T. Temporal data management.

IEEE Trans. Knowl. Data Eng., 11(1):36–44, January/February

1999.

11. López I.F.V., Snodgrass R.T., and Moon B. Spatiotemporal ag-

gregate computation: A survey. IEEE Trans. Knowl. Data Eng.,

17(2):271–286, February 2005.

12. Özsoyoǧlu G. and Snodgrass R.T., Temporal and real-time data-

bases: A survey. IEEE Trans. Knowl. Data Eng., 7(4):513–532,

August 1995.

13. Roddick J.F. and Spiliopoulou M. A bibliography of temporal,

spatial and spatio-temporal data mining research. SIGKDD

Explor., 1(1):34–38, January 1999.

14. Snodgrass R.T. Temporal databases: Status and research direc-

tions. ACM SIGMOD Rec., 19(4):83–89, December 1990.

15. Snodgrass R.T. Temporal databases. In Proc. Int. Conf. on GIS:

From Space to Territory, 1992, pp, 22–61.

16. Tansel A., Clifford J., Gadia S., Jajodia S., Segev A., and Snod-

grass R.T. (eds.). Temporal databases: Theory, design, and

implementation. Database Systems and Applications Series.

Benjamin/Cummings, Redwood City, CA, USA, March 1993,

pp. 633+xx.

17. Wu Y., Jagodia S., and Wang X.S. Temporal database bibliogra-

phy update. In Temporal Databases – Research and Practice.

D. Etzion, S. Jajodla and S. Sripada (eds.). Springer, Berlin,

1998, pp. 338–367.

18. Zaniolo C., Ceri S., Faloutsos C., Snodgrass R.T., Subrahmanian

V.S., and Zicari R. Advanced Database Systems. Morgan

Kaufmann, San Francisco, CA, 1997.
Temporal Dependencies

JEF WIJSEN

University of Mons-Hainaut, Mons, Belgium

Definition
Static integrity constraints involve only the current

database state. Temporal integrity constraints involve

current, past, and future database states; they can be

expressed by essentially unrestricted sentences in tem-

poral logic. Certain syntactically restricted classes of

temporal constraints have been studied in their own

right for considerations of feasibility or practicality;
they are usually called temporal dependencies. Most

temporal dependencies proposed in the literature are

dynamic versions of static functional dependencies.

Historical Background
Static dependencies (functional, multivalued, join,

and other dependencies) have been investigated in

depth since the early years of the relational model.

Classical problems about dependencies concern logical

implication and axiomatization. The study of a partic-

ular dependency class is often motivated by its practi-

cal importance in databases. This is undeniably the

case for the notion of functional dependency (FD),

which is fundamental in database design. A dynamic

version of functional dependencies was first proposed

by Vianu [7]. Since the mid 1990’s, several other tem-

poral variants of the notion of FD have been

introduced.

Foundations
This section gives an overview of several temporal

dependency classes proposed in the literature. With

the exception of the notion of dynamic algebraic depen-

dency (DAD) [2], all temporal dependencies here pre-

sented can be seen as special cases of the notion of

constraint-generating dependency (CGD) [1]. The for-

malism of CGD, presented near the end, thus allows to

compare and contrast different temporal dependency

classes.

Functional Dependencies Over Temporal Databases

Since the semantics of temporal versions of FDs will be

explained in terms of static FDs, the standard notion of

FD is recalled next. All the following definitions are

relative to a fixed set U = {A1,...,An} of attributes.

Definition A tuple overU is a set t = {A1 : c1,...,An : cn},

where each ci is a constant. If X � U, then t[X] denotes

the restriction of t to X. A relation over U is a finite set of

tuples over U.

A functional dependency (FD) over U is an expres-

sion X! Y where X,Y � U. A relation I over U satisfies

the FD X! Y if for all tuples s,t 2 I, if s[X] = t[X], then

s[Y] = t[Y].

When evaluating FDs over temporal relations, one

may want to treat timestamp attributes different from

other attributes. To illustrate this, consider the temporal

relation EmpInterval with its obvious meaning.

Temporal Dependencies T 2961
EmpInterval
Name Sex Sal Project From To

Ed M 10K Pulse 1 3

Ed M 10K Wizard 2 3

Ed M 12K Wizard 4 4

‘ old a ‘ new a
Nǎme Sěx Měrit Sǎl Nâme Sêx Mêrit Sâl

John
Smith

M Poor 10K John
Smith

M Good 12K

An Todd F Fair 10K An Todd F Good 12K

Ed Duval M Fair 10K Ed Duval M Fair 10K
An employee has a unique sex and a unique salary,

but can work for several projects. The salary, unlike

the sex, may change over time. The relation EmpIn-

terval is “legal” with respect to these company rules,

because for any time point i, the snapshot relation

{t[Name, Sex,Sal, Project] j t 2 EmpInterval, t(From)

� i � t(To)} satisfies Name !Sex and Name ! Sal.

Note that the relation EmpInterval violates the FD

Name ! Sal, because the last two tuples agree on

Name but disagree on Sal. However, since these tuples

have disjoint periods of validity, they do not go against

the company rules.

Hence, the intended meaning of an FD expressed

over a temporal relation may be that the FD must be

satisfied at every snapshot. To indicate that Name

!Sal has to be evaluated on snapshots, Jensen et al.

[6] use the notation Name !T Sal. The FD Name

!Sex needs no change, because the sex of an employee

should be unique not only at each snapshot, but also

over time.

Chomicki and Toman [3] note that no special

syntax is needed if tuples are timestamped by time

points. For example, given the following point-

stamped temporal relation, one can simply impose

the classical FDs Name!Sex and Name, T!Sal.

EmpPoint
Name Sex Sal Project T

Ed M 10K Pulse 1

Ed M 10K Pulse 2

Ed M 10K Pulse 3

Ed M 10K Wizard 2

Ed M 10K Wizard 3

Ed M 12K Wizard 4

T

Vianu’s Dynamic Functional Dependency [7]

Consider an employee table with attributes Name, Sex,

Merit, and Sal, with their obvious meanings. The
primary key is Name. Assume an annual companywide

update of merits and salaries. In the relation shown

next, every tuple is followed by its updated version.

Old values appear in columns with a caron (∨), new

values in columns with a caret (∧). For example, John

Smith’s salary increased from 10 to 12K. Such a rela-

tion that juxtaposes old and new values is called action

relation.
The company’s policy that “Each new salary is

determined solely by new merit and old salary” can be

expressed by the classical FD Sǎl, Mêrit !Sâl on the

above action relation. In particular, since John Smith

and An Todd agree on old salary and new merit, they

must have the same new salary. Such FDs on action

relations were introduced by Vianu [7] and called

dynamic functional dependencies.
Definition For each Ai 2 U, assume that Ǎi and

Âi are new distinct attributes. Define Ǔ = {Ǎ1,...,

Ǎn} and Û = {Â1,...,Ân}. For t = {A1 : c1,...,An : cn},

define:

�t ¼ �A1 : c1;:::;�An : cn
� �

; a tuple over �U ; and

t̂ ¼ Â1 : c1;:::;Ân : cn
� �

; a tuple over Û

A Vianu dynamic functional dependency (VDFD)

over U is an FD X ! Y over �UÛ such that for each

A 2 Y , XA contains at least one attribute from Ǔ and

one attribute from Û.

An update over U is a triple hI, m, Ji, where I and J

are relations over U and m is a bijective mapping from I

to J. The update hI, m, Ji satisfies the VDFD X ! Y if

the action relation {ť [ŝj t 2 I, s = m(t)} satisfies the FD
X! Y.

The notion of VDFD directly extends to sequences

of database updates. The interaction between dynamic

VDFDs and static FDs is studied in [7].

Name City Merit Sal From To

Ed Paris Poor 10K 1 2

Ed London { 10K 3 4

2962T Temporal Dependencies
Temporal Extensions of Functional Dependency

Proposed by Wijsen [9, 10, 11, 12]

Instead of extending each tuple with its updated ver-

sion, as is the case for VDFDs, one can take the union

of the old relation and the new relation:
The company’s policy that “Every change in merit

(promotion or demotion) gives rise to a salary change,” is

expressed by Name, Sal!� Merit and means that the

FD Name, Sal !Merit must be satisfied by the union

of the old and the new relation. In particular, since

Ed Duval’s salary did not change, his merit cannot have

changed either. Likewise, “The sex of an employee can-

not change” is expressed byName!� Sex. The construct

!� naturally generalizes to database histories that in-

volve more than two database states.

Definition AWijsen dynamic functional dependency

(WDFD) over U is an expression of the form X!� Y ,

where X, Y � U.

A database history is a sequence hI1,I2,I3,...i, where
each Ii is a relation over U. This history satisfies X!

�
Y if

for every i 2 {1,2,...}, Ii [Ii+1 satisfies X! Y.

Although Ii+1 can be thought of as the result of an

update performed on Ii, there is no need to model a

one-one relationship between the tuples of both rela-

tions, as was the case for VDFDs. VDFDs and WDFDs

capture different types of constraints, even in the pres-

ence of some attribute that serves as a time-invariant

tuple-identifier. This difference will be illustrated

later on in the discussion of constraint-generating

dependencies.

In practice, database histories will be be stored in

relations with timestamped tuples. Like FDs, WDFDs

can result in predictable (i.e., redundant) values. For

example, if the following relation has to satisfy Name,

Sal!� Merit , then the value for the placeholder { must

be equal to “Poor.”Wijsen [9] develops temporal variants

of 3NF to avoid data redundancy caused by WDFDs.

WDFDs can be naturally generalized as follows:

instead of interpreting FDs over unions of successive

database states, the syntax of FD is extended with a
binary relation on the time domain, called time acces-

sibility relation, that indicates which tuple pairs must

satisfy the FD.

Definition A time accessibility relation (TAR) is a

subset of {(i,j) j 1 � i � j}. A generalized WDFD over

U is an expression X!aY , where X,Y � U and a is a

TAR. This generalized WDFD is satisfied by database

history hI1,I2,I3,...i if for all (i,j) 2 a, s 2 Ii, t 2 Ij, if

s[X] = t[X], then s[Y] = t[Y].

If the TAR Next is defined by Next ={(1,1),(1,2),

(2,2),(2,3),(3,3),(3,4),...}, then X!NextY and X!� Y

are equivalent. TARs can also capture the notion of

time granularity. For example, MonthTAR can be

defined as the TAR containing (i, j) whenever i � j

and time points i, j belong to the same month. Then,

Name!MonthTAR Sal expresses that the salary of an

employee cannot change within a month.

The temporal functional dependencies proposed

in [11] extend this formalism with a notion of identity,

denoted by l, similar to object-identity. The identity

is time-invariant and allows to relate old and new

versions of the same object. For example, Emp:

l!NextName means that the name of an employee

object cannot change from one time to the next.

Trend dependencies [10,12] extend generalized

WDFDs in still another way by allowing both equali-

ties and inequalities. They can be seen as a temporal

extension of the concept of order dependency intro-

duced by Ginsburg and Hull [4]. For example,

(Name,=) !Next(Sal,�) expresses that the salary of

an employee cannot decrease. Technically, it is

satisfied by a database history hI1,I2,I3,...i if for all

(i, j) 2 Next, if s 2 Ii and t 2 Ij and s(Name) = t

(Name), then s(Sal) � t(Sal).
Wang et al.’s Temporal Functional Dependency [8]

The dynamic versions of FDs introduced by Vianu and

Wijsen can impose constraints on tuples valid

at successive time points. Wang et al.’s notion of tem-

poral functional dependency (TFD) concentrates on

temporal granularity and compares tuples valid during

the same granule of some temporal granularity. The

Name Sal T : Month

Ed 10K Nov-2007

Ed 11K Dec-2007

Ed 12K Jan-2008

Name Position T : Year

Temporal Dependencies T 2963
main idea is captured by the following definitions that

are simplified versions of the ones found in [8].

Definition Assume a linear time domain (D, <). Every

nonempty subset of D is called a granule. Two distinct

granules G1 and G2 are said to be non-interleaved if each

point of either granule is smaller than all points of the

other granule (i.e., either 8d1 2 G18d2 2 G2(d1 < d2) or

8d1 2 G18d2 2 G2(d2 < d1)). A granularity is a set G of
pairwise non-interleaved granules.

Other granularity notions found in the literature

often assume that granules are indexed by integers.

Such index has been omitted here to simplify the

formalism.

Common granularities are Month and Year. If

granularity G is associated with temporal relation I,

then all tuples of I must be timestamped by granules

of G. For example, all tuples in the following rela-

tion are timestamped by months. Practical labels, like

Nov-2007, are used to denote granules of time points.

EmpMonth
Name Sal Position T : Month

Ed 10K Lecturer Nov-2007

Ed 11K Lecturer Dec-2007

Ed 12K Professor Jan-2008

Ed Lecturer 2007

Ed Professor 2008

T

Definition Assume a set U = {A1,...,An} of attributes

and a timestamp attribute T =2 U. A timestamped tuple

with granularity G (or simply G-tuple) over U is a set

{A1: c1,...,An : cn,T : G}, where each ci is a constant

and G 2 G. If t = {A1 : c1,...,An : cn,T : G}, then define

t[U] ¼ {A1 : c1,...,An : cn} and t(T) = G. A timestamped

relation with granularity G (or simply G-relation) over
U is a finite set of G-tuples over U.

The TFD Name!MonthSal expresses that the salary

of an employee cannot change within a month. Like-

wise, Name!YearPosition expresses that the position of

an employee cannot change within a year. Both depen-

dencies are satisfied by the relation EmpMonth shown

above. To check Name!YearPosition, it suffices to verify

whether for each year, the FD Name !Position is

satisfied by the set of tuples whose timestamps fall in

that year. For example, for the year 2007, the relation

{t[Name, Sal, Position] j t 2EmpMonth,t(T) � 2007}

must satisfy Name !Position. This is captured by the

following definition.
Definition A temporal functional dependency (TFD)

over U is an expression X!HY , where X,Y� U andH is

a granularity. A G-relation I over U satisfies X!HY if for

each granule H 2 H, the relation {t[U] j t 2 I,t(T)�H}

satisfies the FD X! Y .

Wang et al. extend classical normalization theory to

deal with data redundancy caused by TFDs. For

example, since positions cannot change within a year,

Ed must necessarily occupy the same position in

Nov-2007 and Dec-2007. To avoid this redundancy,

the information on positions must be moved into a

new relation with time granularity Year, as shown

above. After this decomposition, Ed’s position in

2007 is only stored once.
Constraint-Generating Dependencies [1]

Classical dependency theory assumes that each attri-

bute of a relation takes its values in some uninterpreted

domain of constants, which means that data values can

only be compared for equality and disequality. The

notion of constraint-generating dependency (CGD)

builds upon the observation that, in practice, certain

attributes take their values in specific domains, such

as the integers or the reals, on which predicates and

functions, such as� and +, are defined. CGDs can thus

constrain data values by formulas in the first-order

theory of the underlying domain.

A constraint-generating k-dependency takes the fol-

lowing form in tuple relational calculus:

8t18t2:::8tkððR1ðt1Þ^ ::: ^ Rkðt kÞ ^ C½t1;:::; t k�Þ
¼)C 0½t1;:::; t k�Þ

where C and C 0 are arbitrary constraint formulas

relating the values of various attributes in the tuples

t1,...,tk.

CGDs naturally arise in temporal databases: time-

stamp attributes take their values from a linearly

2964T Temporal Dependencies
ordered time domain, possibly equipped with arithme-

tic. Baudinet et al. [1] specifically mention that the

study of CGDs was inspired by the work of Jensen

and Snodgrass on temporal specialization and general-

ization [5]. For example, assume a relation R with two

temporal attributes, denoted VT and TT. Every tuple

t 2 R stores information about some event, where

t(TT) is the (transaction) time when the event was

recorded in the database, and t(VT) is the (valid)

time when the event happened in the real world. The

following CGD expresses that every event should be

recorded within c time units after its occurrence:

8tðRðtÞ¼)ðtðVTÞ < tðTTÞ ^ tðTTÞ � tðVTÞ þ cÞÞ:

Given appropriate first-order theories for the underly-

ing domains, CGDs can capture the different tem-

poral dependencies introduced above. Assume a

point-stamped temporal relation Emp(Name, Merit,

Sal,VT) with its obvious meaning. Assume that Name

provides a unique and time-invariant identity for each

employee. Then, the VDFD Sǎl,M̂erit !Ŝal can be

simulated by the following constraint-generating

4-dependency. In this formula, the tuples s and

s0 concern the same employee in successive database

states (likewise for t and t0).

8s8s08t8t 0

EmpðsÞ^Empðs0Þ

^sðNameÞ¼ s0ðNameÞ

^s0ðVTÞ¼ sðVTÞþ1

^EmpðtÞ^Empðt 0Þ

^ tðNameÞ¼ t 0ðNameÞ

^ t 0ðVTÞ¼ tðVTÞþ1

^sðSalÞ¼ tðSalÞ

^s0ðMeritÞ¼ t 0ðMeritÞ

^sðVTÞ¼ tðVTÞ

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

) s0ðSalÞ¼

t 0ðSalÞÞ

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

The WDFD Name, Sal!� Merit can be expressed as a

constraint-generating 2-dependency:

8t8t 0

EmpðtÞ^Empðt 0Þ
^tðNameÞ¼ t 0ðNameÞ
^tðSalÞ¼ t 0ðSalÞ
^ðt 0ðVTÞ¼ tðVTÞ_ t 0ðVTÞ

¼ tðVTÞþ1Þ

0
BBBBBBB@

1
CCCCCCCA
)

tðMeritÞ¼
t 0ðMeritÞ

0
BBBBBBB@

1
CCCCCCCA
Assume a binary predicate Month on the time

domain such that Month(t1, t2) is true if t1 and t2
are two time instants within the same month.

Then, Name!MonthSal can be expressed as a con-

straint-generating 2-dependency:

8t8t 0
EmpðtÞ^Empðt 0Þ
^ tðNameÞ¼ t 0ðNameÞ
^MonthðtðVTÞ; t 0ðVTÞÞ

0
B@

1
CA) tðSalÞ¼

t 0ðSalÞ

0
B@

1
CA

Dynamic Algebraic Dependencies [2]

Consider a database schema containing Emp(Name,

Merit, Sal) and WorksFor(Name, Project). A company

rule states that “The Pulse project only recruits employ-

ees whose merit has been good at some past time.” The

relational algebra expression E0 shown below gets the

workers of the Pulse project; the expression F0 gets

the good workers. In a consistent database history,

if the tuple t is in the answer to E0 on the current

database state, then t is in the answer to F0 on some

(strict) past database state.

E0 ¼ pNameðsProject¼‘‘Pulse}WorksForÞ
F0 ¼ pNameðsMerit¼‘‘Good00EmpÞ

Definition A relational algebra query E is defined as

usual using the named relational algebra operators {s,p,
⋈,r,[,�}. A dynamic algebraic dependency (DAD) is

an expression of the form EF, where E and F are relation-

al algebra queries over the same database schema and

with the same output schema. A finite database history

hI0,I1,...,Ini, where I0 ¼ {}, satisfies the DAD EF if

for each i 2 {1,...,n}, for each t 2 E(Ii) , there exists

j 2 {1,...,i � 1} such that t 2 F(Ij).

The preceding definition uses relational algebra.

Nevertheless, every DAD EF can be translated into

temporal first-order logic in a straightforward way.

Let Nowð~xÞ and Pastð~xÞ be safe relational calculus

queries equivalent to E and F respectively, with the

same free variables ~x. Then the DAD EF is equivalent

to the closed formula:

8~xðNowð~xÞ) ¨Pastð~xÞÞ:

It seems that the expressive power of DADs relative

to other dynamic constraints has not been studied in

depth. Notice that the simple DAD 8x(R(x)) ♦S(x))

Name Sex Sal Project Day Month Year

Ed M 10K Pulse 29-Aug-2007 Aug-2007 2007

Ed M 10K Pulse 30-Aug-2007 Aug-2007 2007

Ed M 10K Pulse 31-Aug-2007 Aug-2007 2007

Ed M 10K Wizard 30-Aug-2007 Aug-2007 2007

Ed M 10K Wizard 31-Aug-2007 Aug-2007 2007

Ed M 12K Wizard 1-Sep-2007 Sep-2007 2007

Temporal Dependencies T 2965

T

is tuple-generating, in the sense that tuples in R require

the existence of past tuples in S. The other temporal

dependencies presented in this entry are not tuple-

generating.

Bidoit and De Amo [2] study the existence of an

operational specification that can yield all and only the

database histories that are consistent. The operational

specification assumes that all database updates are

performed through a fixed set of update methods,

called transactions. These transactions are specified in

a transaction language that provides syntax for concat-

enation and repetition of elementary updates (insert a

tuple, delete a tuple, erase all tuples).

Key Applications
An important motivation for the study of FDs in

database courses is schema design. The notion of

FD is a prerequisite for understanding the principles

of “good” database design (3NF and BCNF). In the

same line, the study of temporal functional de-

pendencies has been motivated by potential applica-

tions in temporal database design. It seems, however,

that one can go a long way in temporal database

design by practicing classical, non-temporal normaliza-

tion theory. As suggested in [3,8], one can put time-

stamp attributes on a par with ordinary attributes, write

down classical FDs, and apply a standard 3NF decom-

position. For example, assume a database schema

{Name, Sex, Sal, Project, Day, Month, Year}.

The following FDs apply:

Name ! Sex

Name;Month ! Sal

Day ! Month

Month ! Year

The latter two FDs capture the relationships that exist

between days, months, and years. The standard

3NF synthesis algorithm finds the following
decomposition – the last two components may be

omitted for obvious reasons:

fName; Project ;Dayg
fName; Sexg
fName; Sal;Monthg
fDay;Monthg
fMonth;Yearg

This decomposition, resulting from standard normaliza-

tion, is also “good” from a temporal perspective.

In general, the “naive” approach seems to prevent data

redundancy in all situations where relationships between

granularities can be captured by FDs. It is nevertheless

true that FDs cannot capture, for example, the relation-

ship between weeks and months. In particular, Week

!Month does not hold since certain weeks contain

days of two months. In situations where FDs fall short

in specifying relationships among time granularities,

there may be a need to timestamp by new, artificial time

granularities in order to avoid data redundancy [8].
Cross-references
▶Temporal Granularity

▶Temporal Integrity Constraints
Recommended Reading
1. Baudinet M., Chomicki J., and Wolper P. Constraint-generating

dependencies. J. Comput. Syst. Sci., 59(1):94–115, 1999.

2. Bidoit N. and de Amo S. A first step towards implementing

dynamic algebraic dependences. Theor. Comput. Sci., 190

(2):115–149, 1998.

3. Chomicki J. and Toman D. Temporal databases. In M. Fisher,

D.M. Gabbay, L. Vila (eds.). Handbook of Temporal Reasoning

in Artificial Intelligence. Elsevier Science, 2005.

4. Ginsburg S. and Hull R. Order dependency in the relational

model. Theor. Comput. Sci., 26:149–195, 1983.

5. Jensen C.S. and Snodgrass R.T. Temporal specialization and

generalization. IEEE Trans. Knowl. Data Eng., 6(6):954–974,

1994.

2966T Temporal Domain
6. Jensen C.S., Snodgrass R.T., and Soo M.D. Extending existing

dependency theory to temporal databases. IEEE Trans. Knowl.

Data Eng., 8(4):563–582, 1996.

7. Vianu V. Dynamic functional dependencies and database aging.

J. ACM, 34(1):28–59, 1987.

8. Wang X.S., Bettini C., Brodsky A., and Jajodia S. Logical design

for temporal databases with multiple granularities. ACM Trans.

Database Syst., 22(2):115–170, 1997.

9. Wijsen J. Design of temporal relational databases based on

dynamic and temporal functional dependencies. In Temporal

Databases. J. Clifford A. Tuzhilin (eds.). Springer, Berlin, 1995,

pp. 61–76.

10. Wijsen J. Reasoning about qualitative trends in databases. Inf.

Syst., 23(7):463–487, 1998.

11. Wijsen J. Temporal FDs on complex objects. ACM Trans. Data-

base Syst., 24(1):127–176, 1999.

12. Wijsen J. Trends in databases: Reasoning and mining. IEEE

Trans. Knowl. Data Eng., 13(3):426–438, 2001.
Temporal Domain

▶ Lifespan

▶Time Domain
Temporal Element

CHRISTIAN S. JENSEN
1, RICHARD SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Time period set

Definition
A temporal element is a finite union of n-dimensional

time intervals. Special cases of temporal elements in-

clude valid-time elements, transaction-time elements,

and bitemporal elements, which are finite unions of

valid-time intervals, transaction-time intervals, and

bitemporal intervals, respectively.

Key Points
Assuming an n-dimensional time domain, an interval

is the product of n convex subsets drawn from each of

the constituent dimensions.

Given a finite, one-dimensional time domain, a

temporal element may be defined equivalently as a
subset of the time domain. If the time domain is

unbounded and thus infinite, some subsets of the

time domain are not temporal elements. These subsets

cannot be enumerated in finite space. For non-discrete

time domains, the same observation applies.

Temporal elements are often used as timestamps.

Unlike time periods, they are closed under the set

theoretic operations of union, intersection, and com-

plement, which is a very desirable property when for-

mulating temporal database queries.

The term “temporal element” has been used to

denote the concept of a valid-time interval. However,

“temporal” is generally used as generic modifier, so

more specific modifiers are adopted here for

specific kinds of temporal elements. The term “time

period set” is an early term for a temporal element.

The adopted term has been used much more

frequently.
Cross-references
▶Bitemporal Interval

▶Temporal Database

▶Time Interval

▶Time Period

▶Transaction Time

▶Time Domain

▶Temporal Query Languages

▶Valid Time
Recommended Reading
1. Gadia S.K. Temporal element as a primitive for time in

temporal databases and its application in query optimization.

In Proc. 13th ACM Annual Conf. on Computer Science, 1986,

p. 413.

2. Gadia S.K. A homogeneous relational model and query

languages for temporal databases. ACM Trans. Database Syst.,

13(4):418–448, December 1988.

3. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary

of temporal database concepts – February 1998 version.

In Temporal Databases: Research and Practice, O. Etzion, S.

Jajodia, S. Sripada (eds.), Springer-Verlag, Berlin, 1998,

pp. 367–405.
Temporal Evolution

▶History in Temporal Databases

Temporal Generalization T 2967
Temporal Expression

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Definition
A temporal expression is a syntactic construct used, e.g.,

in a query that evaluates to a temporal value, i.e., an

instant, a time period, a time interval, or a temporal

element.
T

Key Points
Advanced by Gadia [1], a temporal expression is a

convenient temporal query language construct.

First, any temporal element is considered a tempo-

ral expression. As Gadia uses a discrete and bounded

time domain, any subset of the time domain is then a

temporal expression. Next, an attribute value of a tuple

in Gadia’s data model is a function from the time

domain to some value domain. Likewise, the attribute

values of a tuple are valid during some temporal ele-

ment. To illustrate, consider an (ungrouped) relation

with attributes Name and Position. An example

tuple in this relation is:

ðh½4;17� Billi;
h½4;8�Assistant ;
½9;13� Associate; ½14;17�FulliÞ

Now let X be an expression that returns a function

from the time domain to some value domain, such as

an attribute value, a tuple, or a relation. Then the

temporal expression [[X]] returns the domain of X.

Using the example from above, the temporal expres-

sion [[Position]] evaluates to [4,17] and the tempo-

ral expression [[Position <> Associate]] evaluates

to [4,8] [[14,17].

The terms “Boolean expression” and “relational

expression” may be used for clearly identifying expres-

sions that evaluate to Boolean values and relations.
Cross-references
▶ SQL-Based Temporal Query Languages

▶Temporal Database

▶Temporal Element

▶Time Instant
▶Time Interval

▶Time Period

Recommended Reading
1. Gadia S.K. A homogeneous relational model and query lan-

guages for temporal databases. ACM Trans. Database Syst.,

13(4):418–448, December 1988.

2. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Tempo-

ral Databases: Research and Practice, O. Etzion, S. Jajodia,

S. Sripada (eds.), Springer-Verlag, Berlin, 1998, pp. 367–405.
Temporal Generalization

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Definition

Temporal generalization comes in three guises. Con-

sider a temporal database in which data items are

timestamped with valid and transaction time. Tempo-

ral generalization occurs when weakening constraints

hitherto applied to the timestamps. Used in this sense,

temporal generalization is the opposite of temporal

specialization.

Next, a temporal relation is generalized when new

timestamps are being associated with its tuples. In

larger information systems where data items flow be-

tween multiple temporal relations, items may accumu-

late timestamps by keeping their previous timestamps

and gaining new timestamps as they are entered into

new temporal relations. Thus, a tuple in a particular

relation has multiple timestamps: a valid timestamp, a

primary transaction timestamp, which records when

the tuple was stored in this relation, one or more

inherited transaction timestamps that record when

the tuple was stored in previous relations, and one or

more additional timestamps that record when the

tuple was manipulated elsewhere in the system.

Finally, a more involved notion of temporal gener-

alization occurs when a derived relation inherits

the transaction timestamps from the relation(s) it is

derived from.

By describing the temporal generalization that occurs

in an information system, important semantics are

2968T Temporal Granularity
captured that may be utilized for a variety of purposes.

For example, a temporal relation may be queried, with

specific restrictions, from a temporal relation that

receives tuples with some delay from that relation.

Another use is to increase the efficiency of query

processing.

Key Points
The first notion of temporal generalization is simply

the opposite of temporal specialization.

As an example of the second notion of temporal

generalization, consider the following complex yet real-

istic scenario of a collection of temporal relations main-

tained by the transportation department of a state

government. An employee relation is maintained on

the workstation of each manager in this department,

recording schedules, budgets, and salary levels for the

employees under that manager. For the entire depart-

ment, a single personnel relation is maintained on

the administrative computer under the data processing

group, which also maintains a financial relation. The

bank, responsible for salary payments, maintains

an accounts relation. Data items in the form of time-

stamped tuples move from the employee relation to the

personnel relation and then to the financial relation

and ultimately to the accounts relation, accumulating

transaction timestamps each time they enter a new

database. Each timestamp has a relationship with the

other transaction timestamps and with the valid time-

stamp. These can be stated in the schema and utilized

during querying to ensure accurate results.

As an example of the third notion of temporal gen-

eralization, consider process control in a manufacturing

plant. Values from sensors that capture process charac-

teristics such as pressure and temperature may be stored

in temporal relations. This data may subsequently be

processed further to derive new data that capture rele-

vant aspects of the process being monitored at a higher

level of abstraction. The original data, from which

the new data was derived, may be stored together with

the new data, to capture the lineage, or provenance, of

that data. As a result, the new data inherits timestamps

from the original data.

Cross-references
▶Data Stream

▶Temporal Database

▶Temporal Specialization
▶Transaction Time

▶Valid Time

Recommended Reading
1. Jensen C.S. and Snodgrass R.T. Temporal specialization and gen-

eralization. IEEE Trans. Knowl. Data Eng., 5(6):954–974,

December 1994.
Temporal Granularity

CLAUDIO BETTINI
1, X. SEAN WANG

2, SUSHIL JAJODIA
3

1Università degli Studi di Milano, Milan, Italy
2University of Vermont, Burlington, VT, USA
3George Mason University, Fairfax, VA, USA

Synonyms
Time granularity; Temporal type

Definition
In the context of databases, a temporal granularity

can be used to specify the temporal qualification of a

set of data, similar to its use in the temporal qualifica-

tion of statements in natural languages. For example,

in a relational database, the timestamp associated

with an attribute value or a tuple may be interpreted

as associating that data with one or more granules of a

given temporal granularity (e.g., one or more days). As

opposed to using instants from a system-specific time

domain, the use of user-defined granularities enables

both more compact representations and temporal qua-

lifications at different levels of abstraction. Temporal

granularities include very common ones like hours,

days, weeks, months, and years, as well as the evolution

and specialization of these granularities for specific

contexts or applications: trading days, banking days,

academic semesters, etc.. Intuitively, a temporal granu-

larity is defined by grouping sets of instants from a

time domain into so-called granules in a rather flexible

way with some mild conditions. For example, the

granularity business days is defined as the infinite set

of granules, each including the time instants compos-

ing one working day. A label, for example a date for a

day granule, is often used to refer to a particular

granule of a granularity. Answering queries in terms

of a granularity different from the one used to store

Temporal Granularity T 2969

T

data in a database is not simply a matter of syntactic

granularity conversion, but it involves subtle semantics

issues.

Historical Background
Temporal granularities have always had a relevant

role in the qualification of statements in natural lan-

guages, and they still play a major role according

to a 2006 study by Oxford University. The study

includes words “day,” “week,” “month,” and “year”

among the 25 most common nouns in the English

language. Temporal granularities have also been used

for a long time in computer applications, including

personal information management, project manage-

ment, scheduling, and more. Interestingly, in many

situations, their use is limited to a very few common

ones, their semantics is often simplified and sometimes

confusing, and their management is hard-coded in

applications with ad-hoc solutions. The database com-

munity seems to be a major driver in formalizing

temporal granularities. One of the earliest formaliza-

tions was proposed in [5]. At the same time the AI

community was investigating formalisms to represent

calendar unit systems [9,10]. In the early 1990s, the

relevant role played by time granularity and calendars

in temporal databases, as well as the need to devise

algorithms to manage granular data, became widely

recognized by the research community, and some sig-

nificant progress has been made [4, 11, 13, 15]. Some

support for granularities was also included in the de-

sign of the temporal query language TSQL2. A com-

prehensive formal framework for time granularities to

be applied in several areas of database research

emerged in the mid-1990s, and has been progressively

refined in the following years through the investigation

of its applications in data mining, temporal database

design, query processing, and temporal constraint

reasoning [3]. This framework is based on a set-theo-

retic approach (partly inspired by [5]) and on an

algebraic representation, and it includes techniques to

compute basic as well as more complex operations on

granules and granularities. The basic notions found a

large consensus in the database community [1]. The

use of logic to specify formal properties and to reason

about granularities as defined in the above framework

was investigated in [6]. Programming oriented support

for integrating multiple calendars was provided in

[12]. In the logic community, an independent line of
research on representation and reasoning with multi-

ple granularities investigated classical and non-classical

logic extensions based on multi-layered time domains,

with applications to the specification of real-time reac-

tive systems. This approach is extensively described in

[8]. More recently, the use of automata to represent

granularities and to perform basic operations on them

has been proposed [7]. This work, partly inspired by

previously proposed string-based representation of

granularities [15], has the benefit of providing compact

representation of granularities. Moreover, decision

procedures for some basic problems, such as granula-

rity equivalence and minimization, can be applied

directly on that representation.
Foundations
What follows is an illustration of the main formal defi-

nitions of temporal granularities and their relationships

according to the set-theoretic, algebraic approach.
Definitions

A temporal granularity can be intuitively described as

a sequence of time granules, each one consisting of a

set of time instants. A granule can be composed of

a single instant, a set of contiguous instants (time-

interval), or even a set of non-contiguous instants. For

example, the September 2008 business-month,

defined as the collection of all the business days in

September 2008, can be used as a granule. When used

to describe a phenomena or, in general, when used to

timestamp a set of data, a granule is perceived as a non-

decomposable temporal entity. A formal definition of

temporal granularity is the following.

Assume a time domain T as a set of totally ordered

time instants. A granularity is a mapping G from the

integers (the index set) to the subsets of the time

domain such that:

(1) If i< j and G(i) and G(j) are non-empty, then each

element inG(i) is less than all the elements in G(j).

(2) IIf i< k< j and G(i) and G(j) are non-empty, then

G(k) is non-empty.

Each non-empty set G(i) in the above definition

is called granule.

The first condition in the granularity definition

states that granules in a granularity do not overlap and

that their index order is the same as their time domain

2970T Temporal Granularity
order. The second condition states that the subset of

the index set for the granules is contiguous. Based

on the above definition, while the time domain can be

discrete, dense, or continuous, a granularity defines a

countable set of granules; each granule is identified by

an integer. The index set can thereby provide an “encod-

ing” of the granularity in a computer. Two granules G(i)

and G(j) are contiguous if there does not exist t 2 T such
that 8s 2 G(i)(s < t) and 8s 2 G(j)(s > t). Indepen-

dently, there may be a “textual representation” of each

non-empty granule, termed its label, that is used for

input and output. This representation is generally a

string that is more descriptive than the granule’s index.

An associated mapping, the label mapping, defines for

each label a unique corresponding index. This mapping

can be quite complex, dealing with different languages

and character sets, or can be omitted if integers are used

directly to refer to granules. For example, “August 2008”

and “September 2008” are two labels each referring

to the set of time instants (a granule) corresponding to

that month.

A granularity is bounded if there exist lower

and upper bounds k1 and k2 in the index set such

that G(i) = ; for all i with i < k1 or k2 < i.

The usual collections days, months, weeks and

years are granularities. The granularity describing all

years starting from 2000 can be defined as a mapping

that takes an arbitrary index i to the subset of the time

domain corresponding to the year 2000, i þ 1 to the

one corresponding to the year 2001, and so on, with all

indexes less than i mapped to the empty set. The years

from 2006 to 2010 can also be represented as a granu-

larity G, with G(2006) identifying the subset of

the time domain corresponding to the year 2006,

G(2007) to 2007, and so on, with G(i) = ; for each

i < 2006 and i >2010.

The union of all the granules in a granularity G

is called the image of G. For example, the image of

business-days-since-2000 is the set of time

instants included in each granule representing a busi-

ness-day, starting from the first one in 2000. The single

interval of the time domain starting with the great-

est lower bound of the image of a granularity G and

ending with the least upper bound (�1 and þ1 are

considered valid lower/upper bounds) is called the

extent of G. Note that many commonly used granula-

rities (e.g., days, months, years) have their image

equal to their extent, since each granule is formed by a

set of contiguous elements of the time domain and
each pair of contiguous indexes is mapped to contigu-

ous granules.

Granularity Relationships

In the following, some commonly used relationships

between granularities are given.

A granularity G groups into a granularity H,

denoted G ⊴ H, if for each index j there exists

a (possibly infinite) subset S of the integers such that

H(j) = [i2SG(i). For example, days groups into

weeks, but weeks does not group into months.

A granularity G is finer than a granularity H,

denoted G
 H, if for each index i, there exists an

index j such that G(i) � H(j). If G ⪯ H, then H is

coarser than G (H � G).

For example, business-days is finer than weeks,

while business-days does not group into weeks;

business-days is finer than years, while weeks is

not.

A granularity G groups periodically into a granu-

larity H if:

1) G ⊴ H.

2) There exist n, m 2 Zþ, where n is less than

the number of non-empty granules of H,

such that for all i 2 Z, if H(i) = [kr=0G(jr) and
H(i þ n) 6¼ ;, then H(i þ n) = [kr=0G(jr þ m).

The groups periodically into relationship is a special

case of groups into characterized by a periodic repeti-

tion of the “grouping pattern” of granules of G into

granules of H. Its definition may appear complicated,

but it is actually quite simple. Since G groups into H,

any non-empty granule H(i) is the union of some

granules of G; for instance, assume it is the union of

the granules G(a1), G(a2),...,G(ak). The periodicity

property (condition 2 in the definition) ensures that

the nth granule after H(i), i.e., H(i þ n), if non-empty,

is the union of G(a1 þ m), G(a2 þ m),...,G(ak þ m).

This results in a periodic “pattern” of the composition

of n granules of H in terms of granules of G. The

pattern repeats along the time domain by “shifting”

each granule of H by m granules of G. Many common

granularities are in this kind of relationship. For exam-

ple, days groups periodically into business-days,

withm = 7 and n = 5, and also groups periodically into

weeks, with m = 7 and n = 1; months groups periodi-

cally into years with m = 12 and n = 1, and days

groups periodically into years with m = 14,697 and

n = 400. Alternatively, the relationship can also be

Temporal Granularity T 2971

T

described, by saying, for example, years is periodic

(or 1-periodic) with respect to months, and years is

periodic (or 400-periodic) with respect to days. In

general, this relationship guarantees that granularity

H can be finitely described in terms of granules of G.

More details can be found in [3].

Given a granularity order relationship g-rel and a

set of granularities, a granularity G in the set is a

bottom granularity with respect to g-rel, if G g-rel H

for each granularity H in the set.

For example, given the set of all granularities de-

fined over the time domain (R;�), and the granula-

rity relationship ⪯ (finer than), the granularity

corresponding to the empty mapping is the bottom

granularity with respect to ⪯. Given the set of all

granularities defined over the time domain (Z;�),
and the granularity relationship ⊴ (groups into),

the granularity mapping each index into the

corresponding instant (same integer number as the

index) is a bottom granularity with respect to ⊴.

An example of a set of granularities without a bottom

(with respect to ⪯ or ⊴) is {weeks, months}.

Calendars are typically used to describe events

or time-related properties over the same span of

time using different granularities. For example, the

Gregorian calendar comprises the granularities days,

months, and years. Considering the notion of

bottom granularity, a formal definition of calendar

follows.

A calendar is a set of granularities that includes a

bottom granularity with respect to ⊴ (groups into).

Defining New Granularities through Algebraic

Operators

In principle, every granularity in a calendar can be

defined in terms of the bottom granularity, possibly

specifying the composition of granules through the

relationships defined above. Several proposals have

appeared in the literature for a set of algebraic opera-

tors with the goal of facilitating the definition of new

granularities in terms of existing ones. These algebras

are evaluated with respect to expressiveness, user

friendliness, and ability to compute operations on

granularities directly on the algebraic representation.

Some of the operations that are useful in applications

are inter-granule conversions; for example, to compute

which day of the week was the k-th day of a particular

year, or which interval of days was r-th week of that

year, as well as conversions involving different
calendars. In the following, the main operators of one

of the most expressive calendar algebras [3] are briefly

described. Two operators form the backbone of

the algebra:

1. The grouping operator systematically combines a

few granules of the source granularity into one

granule in the target granularity. For example,

given granularity days, granularity weeks can be

generated by combining 7 granules (corresponding

to Monday – Sunday) week = Group7(day) if we

assume that day(1) corresponds to Monday, i.e.,

the first day of a week.

2. The altering-tick operator deletes or adds granules

from a given granularity (via the help of a second

granularity) to form a new one. For example, as-

sume each 30 days are grouped into a granule,

forming a granularity 30-day-groups. Then, an

extra day can be added for each January, March,

and so on, while two days are dropped from Febru-

ary. The February in leap years can be similarly

changed to have an extra day, hence properly repre-

senting month.

Other auxiliary operators include:

– Shift shifts the index forward or backward a few

granules (e.g., the granule used to be labeled 1 may

be re-labeled 10) in order to provide proper align-

ment for further operations.

– Combine combines all the granules of one granu-

larity that fall into (using finer-than relationship)

a second granularity. For example, by combining

all the business days in a week, business-week

is obtained.

– Subset generates a new granularity by selecting an

interval of granules from a given granularity. For

example, choosing the days between year 2000 and

2010, leads to a granularity that only contains days

in these years.

– Select generates new granularities by selecting gran-

ules from the first operand in terms of their rela-

tionship with the granules of the second operand.

For example, selecting the first day of each week

gives the Mondays granularity.

More details, including other operators, conditions of

applicability, as well as comparison with other algebra

proposals can be found in [3]. The algebra directly

supports the inter-granule and inter-calendar conver-

sions mentioned above. Some more complex

2972T Temporal Granularity
operations on granularities (e.g., temporal constraint

propagation in terms of multiple granularities) and the

verification of formal properties (e.g., equivalence of

algebraic granularity representations) require a conver-

sion in terms of a given bottom granularity. An effi-

cient automatic procedure for this conversion has been

devised and implemented [2]. The automaton-based

approach may be a valid alternative for the verification

of formal properties.

Key Applications
Temporal granularities are currently used in several

applications, but in most cases their use is limited to

very few standard granularities, supported by system

calendar libraries and ad-hoc solutions are used to

manipulate data associated with them. This approach

often leads to unclear semantics, hidden mistakes,

low interoperability, and does not take advantage of

user-defined granularities and complex operations.

The impact of a formal framework for temporal

granularities has been deeply investigated for a num-

ber of application areas among which logical design

of temporal databases, querying databases in terms

of arbitrary granularities, data mining, integrity con-

straint satisfaction, workflows [3]. For example,

when temporal dependencies in terms of granulari-

ties can be identified in the data (e.g., “salaries of

employees do not change within a fiscal year”),

specific techniques have been devised for the logical

design of temporal databases that can lead to signif-

icant benefits. In query processing, it has been

shown how to support the retrieval of data in

terms of temporal granularities different from the

ones associated to the data stored in the database,

provided that assumptions on the data semantics are

formalized, possibly as part of the database schema.

Time distance constraints in terms of granularities

(e.g., Event2 should occur within two business days

after the occurrence of Event1) have been extensively

studied, and algorithms proposed to check for con-

sistency and solutions. Applications include the

specification of classes of frequent patterns to be

identified in time series, the specification of integrity

contraints in databases, and the specification of con-

straints on activities durations and on temporal dis-

tance between specific events in workflows.

Temporal granularities also have several applica-

tions in other areas like natural language processing,

temporal reasoning in AI, including scheduling and
planning, and in computer logic, where they have

been mainly considered for program specification

and verification.

Future applications may include advanced personal

information management (PIM). Time and location-

aware devices coupled with advanced calendar applica-

tions, supporting user-defined granularities, may offer

innovative personalized scheduling and alerting

systems.

Experimental Results
Several systems and software packages dealing with

temporal granularities have been developed, among

which MultiCal, Calendar algebra implementation,

GSTP Project, and TauZaman. Information about

these systems can be easily found online.

Cross-references
▶Temporal Constraints

▶Temporal Data Mining

▶Temporal Dependencies

▶Temporal Periodicity

▶Time Domain

▶TSQL2

▶Time Instant

Recommended Reading
1. Bettini C., Dyreson C.E., Evans W.S., Snodgrass R.T., and Wang

X. A glossary of time granularity concepts. In Temporal Data-

bases: Research and Practice. O. Etzion, S. Jajodia, S. Sripada

(eds.), 1998, pp. 406–413.

2. Bettini C., Mascetti S., and Wang X. Supporting temporal

reasoning by mapping calendar expressions to minimal periodic

sets. J. Artif. Intell. Res., 28:299–348, 2007.

3. Bettini C., Wang X.S., and Jajodia S. Time Granularities in

Databases, Data Mining, and Temporal Reasoning. Springer,

Berlin Heidelberg New York, 2000.

4. Chandra R., Segev A., and Stonebraker M. Implementing

calendars and temporal rules in next generation databases. In

Proc. 10th Int. Conf. on Data Engineering, 1994, pp. 264–273.

5. Clifford J. and Rao A. A simple, general structure for temporal

domains. In Proc. IFIP TC 8/WG 8.1 Working Conf. on Tempo-

ral Aspects in Inf. Syst., 1987, pp. 23–30.

6. Combi C., Franceschet M., and Peron A. Representing and

reasoning about temporal granularities. J. Logic Comput.,

14(1):51–77, 2004.

7. Dal Lago U., Montanari A., and Puppis G. Compact and

tractable automaton-based representations of time granularities.

Theor. Comput. Sci., 373(1–2):115–141, 2007.

8. Euzenat J. and Montanari A. Time granularity. In M. Fisher, D.

Gabbay, L. Vila (eds.). Handbook of Temporal Reasoning in

Artificial Intelligence. Elsevier, 2005.

Temporal Indeterminacy T 2973
9. Ladkin P. The completness of a natural system for reasoning

with time intervals. In Proc. 10th Int. Joint Conf. on AI, 1987,

pp. 462–467.

10. Leban B., McDonald D., and Forster D. A representation

for collections of temporal intervals. In Proc. 5th National

Conf. on AI, 1986, pp. 367–371.

11. Lorentzos N.A. DBMS support for nonmetric measurement

systems. IEEE Trans. Knowl. Data Eng., 6(6):945–953, 1994.

12. Urgun B., Dyreson C.E., Snodgrass R.T., Miller J.K., Kline N.,

Soo M.D., and Jensen C.S. Integrating multiple calendars using

tau-ZAMAN. Software Pract. Exp., 37(3):267–308, 2007.

13. Wang X., Jajodia S., and Subrahmanian V.S. Temporal modules:

an approach toward federated temporal databases. Inf. Sci.,

82:103–128, 1995.

14. Weiderhold G., Jajodia S., and Litwin W. Integrating temporal

data in a heterogeneous environment. In Temporal Databases:

Theory, Design, and Implementation, Benjamin/Cummings,

1993, pp. 563–579.

15. Wijsen J. A string-based model for infinite granularities.

In Spatial and Temporal Granularity: Papers from the AAAI

Workshop. AAAI Technical Report WS-00-08, AAAI, 2000,

pp. 9–16.
T

Temporal Homogeneity

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Definition
Assume a temporal relation where the attribute values

of tuples are (partial) functions from some time

domain to value domains. A tuple in such a relation

is temporally homogeneous if the domains of all its

attribute values are identical. A temporal relation is

temporally homogeneous if all its tuples are temporally

homogeneous. Likewise, a temporal database is tem-

porally homogeneous if all its relations are temporally

homogeneous.

In addition to being specific to a type of object

(tuple, relation, database), homogeneity is also specific

to a time dimension when the time domain is multi-

dimensional, as in “temporally homogeneous in the

valid-time dimension” or “temporally homogeneous

in the transaction-time dimension.”
Key Points
The motivation for homogeneity arises from the fact

that no timeslices of a homogeneous relation produce

null values. Therefore, a homogeneous relational model
is the temporal counterpart of the snapshot relational

model without nulls. Certain data models assume tem-

poral homogeneity, while other models do not.

A tuple-timestamped temporal relation may be

viewed as a specific attribute-value timestamped rela-

tion. An attribute value a of a tuple with timestamp

t is represented by a function that maps each value in

t to a. Thus, models that employ tuple timestamping

are necessarily temporally homogeneous.

Cross-references
▶ Lifespan

▶ SQL-Based Temporal Query Languages

▶Temporal Database

▶Time Domain

▶Transaction Time

▶Valid Time

Recommended Reading
1. Gadia S.K. A homogeneous relational model and query lan-

guages for temporal databases. ACM Trans. Database Syst.,

13(4):418–448, December 1988.

2. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary

of temporal database concepts – February 1998 version. In

Temporal Databases: Research and Practice, O. Etzion,

S. Jajodia, S. Sripada (eds.), Springer-Verlag, Berlin, 1998,

pp. 367–405.
Temporal Indeterminacy

CURTIS DYRESON

Utah State University, Logan, UT, USA

Synonyms
Fuzzy time; Imprecise time

Definition
Temporal indeterminacy refers to “don’t know when”

information, or more precisely, “don’t know exactly

when.” The modifier ‘temporally indeterminate’ indi-

cates that the modified object has an associated time,

but that the time is not known precisely. The time

when an event happens, when a time interval begins

or ends, or even the duration of a period may be

indeterminate. For example, the event of a car accident

might be “sometime last week,” the interval an airplane

flight takes may be from “Friday to Saturday,” or the

duration a graduate student takes to write a disserta-

tion may be “four to fifteen years.”

2974T Temporal Indeterminacy
The adjective ‘temporal’ allows parallel kinds of

indeterminacy to be defined, such as spatial indetermi-

nacy. There is a subtle difference between indetermi-

nate and imprecise. In this context, indeterminate is

a more general term than imprecise since precision is

commonly associated with making measurements.

Typically, a precise measurement is preferred to an

imprecise one. Imprecise time measurements, howev-

er, are just one source of temporally indeterminate

information.

Historical Background
Despite the wealth of research on adding incomplete

information to databases, there are few efforts that

address incomplete temporal information [6]. Much

of the previous research in incomplete information

databases has concentrated on issues related to null

values, the applicability of fuzzy set theory, and the

integration of various combinations of probabilistic

reasoning, temporal reasoning, and planning.

In the earliest work on temporal indeterminacy, an

indeterminate instant was modeled with a set of possi-

ble chronons [12]. Dutta next introduced a fuzzy set

approach to handle events that can be interpreted to

have multiple occurrences [5]. For example the event

“Margaret’s salary is high” may occur at various times

as Margaret’s salary fluctuates to reflect promotions

and demotions. The meaning of “high” is incomplete,

it is not a crisp predicate. In Dutta’s model all the

possibilities for high are represented in a generalized

event and the user selects some subset according to his

or her interpretation of “high.” Generalized bitemporal

elements were defined somewhat differently in a later

paper by Kouramajian and Elmasri [11]. Bitemporal

elements combine transaction time and valid time in

the same temporal element, and can include a non-

contiguous (i.e., indeterminate) set of noncontiguous

possible times. Gadia et al. proposed an interesting

model that intertwines support for value and temporal

incompleteness [8]. By combining the different kinds

of incomplete information, a wide spectrum of attri-

bute values are simultaneously modeled, including

values that are completely known, values that are un-

known but are known to have occurred, values that are

known if they occurred, and values that are unknown

even if they occurred. Dyreson and Snodgrass pro-

posed using probabilistic events to model temporal

indeterminacy. In their model a time is represented as
a probability distribution [7]. Probabilistic times were

also comprehensively addressed by Dekhtyar et al. [4].

Reasoning with incomplete information can be com-

putationally expensive. Koubarakis was the first to focus

attention on the issue of cost [9,10]. He showed that by

restricting the kinds of constraints allowed in represent-

ing the indeterminacy, polynomial time algorithms can

be obtained. Koubarakis proposed a temporal data

model with global and local inequality constraints on

the occurrence time of an event. Another constraint-

based temporal reasoner is LaTeR, which has been suc-

cessfully implemented [2]. LaTeR similarly restricts the

kinds of constraints allowed (to conjunctions of linear

inequalities), but this class of constraints includes

many of the important temporal predicates [3].

Temporal indeterminacy has also been addressed in

non-relational contexts, for instance in object-oriented

databases [1].

Foundations
There are (at least) three possible sources of indeter-

minacy in a statement with respect to time: (i) a

discrepancy between the granularity of the temporal

qualification and the occurrence time; (ii) an under-

specification of the occurrence time when the granula-

rities of the temporal qualification and the occurrence

time coincide; and (iii) relative times.

As a first approximation, a statement is temporally

indeterminate if the granularity of its reference to time

(in the examples, the granularity of days) is coarser

than the granularity of the time at which the denoted

event(s) occur. Temporal indeterminacy as well as rel-

ativity of reference to time is mainly a qualification of a

statement rather than of the event it denotes (that is,

temporal indeterminacy characterizes the relationship

between the granularity of the time reference of a

statement and the granularity of an event’s occurrence

time). It does not depend on the time at which the

statement is evaluated. The crucial and critical point is

the determination of the time granularity of the event

occurrence time.

Generally, a statement whose reference to time has

a granularity (e.g., days) which is temporally determi-

nate with respect to every coarser granularity (e.g.,

months) and temporally indeterminate with respect

to every finer granularity (e.g., seconds). But this gen-

eral rule has exceptions since it does not take into

account information about the denoted occurrence

Temporal Indeterminacy T 2975

T

time. In particular, for a macro-event there exists a

(finest) granularity at which its occurrence time can

be specified, but with respect to finer granularities, the

event as a whole does not make sense, and must, if

possible, be decomposed into a set of components.

But not all cases of temporally indeterminate infor-

mation involve a discrepancy between the granularity

of the reference to time and the granularity of the

occurrence time. Consider the sentence: “The shop

remained open on a Sunday in April 1990 all day

long.” ‘Days’ is the granularity of both the time refer-

ence and the occurrence time. Nevertheless, this state-

ment is temporally indeterminate because the precise

day in which the shop remained open is unknown (it is

known only that it is one of the Sundays in April 1990).

Statements that contain a relative reference to time

are also temporally indeterminate, but the reverse does

not hold: temporally-indeterminate statements can

contain relative as well as absolute references to time.

The statements “Jack was killed sometime in 1990” and

“Michelle was born yesterday” contain absolute and

relative references to time, respectively, but they are

both temporally indeterminate.

The following example illustrates how temporal

indeterminacy can be represented in a relational data-

base. Consider the employment relation shown in

Fig. 1 which is cobbled together from the (somewhat

hazy) memories of several employees. Each tuple

shows a worker’s name, salary, department, and time

employed (i.e., the valid time). The first tuple repre-

sents Joe’s employment in Shoes. It is temporally inde-

terminate since the exact day when Joe stopped

working in Shoes is not known precisely; the ending

valid time is recorded as sometime in January 2005 and

represented as the indeterminate event “1 Jan
2005~31 Jan 2005.” Joe then went to work in

Admin, which is also temporally indeterminate. Joe

started working in Admin “After leaving Shoes”

which is a temporal constraint on an indeterminate
Temporal Indeterminacy. Figure 1. A relation with tempora
time. The third tuple represents Sue’s employment

history. She began working in Shoes sometime in the

first half of January 2005 (“1 Jan 2005~15 Jan
2005”) with a uniform probability for each day in

that range (which is more information than is known

about Joe’s termination in Shoes, the probability is

missing from that indeterminate event). Finally, Eve

began working in Admin on some Monday in January

2005, but it is not known which Monday.

Querying temporal indeterminacy is more chal-

lenging than representing it. The two chief challenges

are efficiency and expressiveness. Consider a query to

find out who was employed on January 10, 2005 as

expressed in a temporal version of SQL (e.g., TSQL2)

below.

SELECT Name
FROM Employee E
WHERE VALID(E) overlaps “10 Jan 2005”

There are two well-defined limits on querying

incomplete information: the definite and the possible.

The definite answer includes only information that is

known. On a tuple-by-tuple basis, determining which

employment tuple definitely overlaps January 10, 2005

is straightforward: none definitely do. In contrast, every

tuple possibly overlaps that day. It is efficient to com-

pute both bounds on a tuple-by-tuple basis, but not

very expressive. It would be more expressive to be able

to find other answers that lie between the bounds.

Probabilistic approaches seek to refine the set of

potential answers by reasoning with probabilities.

For instance, can it be computed who was probably

employed (exceeding a probability of 0.5)? The proba-

bility that Sue began working before January 10, 2005

is 0.67 (the probability mass is uniformly distributed

among all the possibilities). Since the probability mass

function for Joe’s termination in Shoes is missing, he

can not be included in the employees who were proba-

bly employed.
l indeterminacy.

2976T Temporal Information Retrieval
Most of the existing approaches have focused on

improving the efficiency of computing probabilistic

answers; the usability of probabilistic approaches has

not yet been determined. It might be very difficult

for users to interpret and use probabilities (should

a user interpret “probably” as exceeding 0.75 or 0.5)

so other approaches (e.g., fuzzy set approaches) may

be needed to improve usability. A second research

issue concerns reasoning with intra-tuple constraints.

The definite answer given above is inaccurate. Even

though it is not known exactly when Joe stopped

working in Shoes or started working in Admin, it

is known that he was employed in one or the other

on January 10, 2005. The intra-tuple constraint in

the second tuple represents this knowledge. Though

intra-tuple constraints provide greater reasoning

power, reasoning with them often has high compu-

tational complexity. Research continues in defining

classes of constraints that are meaningful and com-

putationally feasible. Finally, temporal indeterminacy

has yet to be considered in new kinds of queries (e.g.,

roll-up in data warehouses and top-k queries) and

new temporal query languages (e.g., tXQuery and

TOWL).
Key Applications
The most common kinds of temporal indeterminacy

are valid-time indeterminacy and user-defined time

indeterminacy. Transaction-time indeterminacy is

rarer because transaction times are always known ex-

actly. Temporal indeterminacy can occur in logistics,

especially in planning scenarios where project comple-

tion dates are typically inexact. In some scientific fields

it is quite rare to know an exact time, for instance,

archeology is replete with probabilistic times generated

by radio-carbon dating, tree-ring analyses, and by the

layering of artifacts and sediments. Indeterminacy can

arise even when precise clocks are employed. In a

network of road sensors, an “icy road” has an indeter-

minate lifetime as the change from non-icy to icy is

gradual rather than instantaneous; “icy road” has a

fuzzy starting and ending time.
Cross-references
▶ Probabilistic Temporal Databases

▶Qualitative Temporal Reasoning

▶Temporal Constraints

▶Temporal Granularity
Recommended Reading
1. Biazzo V., Giugno R., Lukasiewicz T., and Subrahmanian V.S.

Temporal probabilistic object bases. IEEE Trans. Knowl. Data

Eng., 15(4):921–939, 2003.

2. Brusoni V., Console L., Terenziani P., and Pernici B. Extending

temporal relational databases to deal with imprecise and quali-

tative temporal information. In Proc. Int. Workshop on Tempo-

ral Databases, 1995, pp. 3–22.

3. Brusoni V., Console L., Terenziani P., and Pernici B. Qualitative

and quantitative temporal constraints and relational databases:

theory, architecture, and applications. IEEE Trans. Knowl.

Data Eng., 11(6):948–968, 1999.

4. Dekhtyar A., Ross R., and Subrahmanian V.S. Probabilistic

temporal databases, I: algebra. ACM Trans. Database Syst.,

26(1):41–95, 2001.

5. Dutta S. Generalized events in temporal databases. In Proc. 5th

Int. Conf. on Data Engineering, 1989, pp. 118–126.

6. Dyreson C. A bibliography on uncertainty management in in-

formation systems. In Uncertainty Management in Information

Systems: From Needs to Solutions. Kluwer Academic, Norwell,

MA, 1997, pp. 415–458.

7. Dyreson C. and Snodgrass R.T. Supporting valid-time indeter-

minacy. ACM Trans. Database Syst., 23(1):1–57, 1998.

8. Gadia S.K., Nair S.S., and Poon Y.-C. Incomplete information in

relational temporal databases. In Proc. 18th Int. Conf. on Very

Large Data Bases, 1992, pp. 395–406.

9. Koubarakis M. Representation and querying in temporal data-

bases: The power of temporal constraints. In Proc. 9th Int. Conf.

on Data Engineering, 1993, pp. 327–334.

10. Koubarakis M. The complexity of query evaluation in indefi-

nite temporal constraint databases. Theor. Comput. Sci.,

171(1–2):25–60, 1997.

11. Kouramajian V. and Elmasri R. A generalized temporal model.

In Proc. Uncertainty in Databases and Deductive Systems Work-

shop, 1994.

12. Snodgrass R.T. Monitoring Distributed Systems: A Relational

Approach. PhD thesis, Computer Science Department, Carnegie

Mellon University, Pittsburgh, PA, 1982.
Temporal Information Retrieval

▶Time and Information Retrieval
Temporal Integrity Constraints

JEF WIJSEN

University of Mons-Hainaut, Mons, Belgium

Synonyms
Dynamic integrity constraints

Operator Meaning

●p

rp
sp

ep

Property p was true at the previous time
instant.
Property p was true sometime in the past.
Property p will be true at the next time
instant.
Property pwill be true sometime in the future.

Temporal Integrity Constraints T 2977

T

Definition
Temporal integrity constraints are integrity constraints

formulated over temporal databases. They can express

dynamic properties by referring to data valid at differ-

ent time points. This is to be contrasted with databases

that do not store past or future information: if integrity

constraints can only refer to data valid at the current

time, they can only express static properties. Languages

for expressing temporal integrity constraints extend

first-order logic with explicit timestamps or with tem-

poral connectives. An important question is how to

check and enforce such temporal integrity constraints

efficiently.

Historical Background
The use of first-order temporal logic for expressing

temporal integrity constraints dates back to the early

1980s (see for example [2]). Since the late 1980s, prog-

ress has been made in the problem of checking tempo-

ral integrity [3, 9, 11] without having to store the entire

database history. This entry deals with general tempo-

ral integrity constraints.

Foundations
Integrity constraints, whether they are temporal or not,

are an important component of each database schema.

They express properties that, ideally, must be satisfied

by the stored data at all times. If a database satisfies all

the integrity constraints, it is called consistent. Integrity

constraints are commonly expressed in a declarative

way using logic. Declarative integrity constraints gen-

erally do not specify how to keep the database consis-

tent when data are inserted, deleted, and modified. An

important task is to develop efficient procedures for

checking and enforcing such constraints.

Temporal databases store past, current, and future

information by associating time to database facts.

An integrity constraint can be called “temporal” if it is

expressed over a temporal database. By relating facts

valid at different points in time, temporal integrity con-

straints can put restrictions on how the data can change

over time. This is to be contrasted with databases that do

not store past or future facts: if integrity constraints can

only refer to a single database state, they cannot capture

time-varying properties of data.

1. Defining Temporal Integrity

While temporal integrity constraints can in principle

be expressed as Boolean queries in whichever temporal
query language, it turns out that temporal logic on

timepoint-stamped data are the prevailing formalism

for defining and studying temporal integrity.

1.1 Temporal, Transition, and Static Constraints Since

first-order logic is the lingua franca for expressing

non-temporal integrity constraints, it is natural to

express temporal integrity constraints in temporal

extensions of first-order logic. Such temporalized

logics refer to time either through variables with a

type of time points, or by temporal modal operators,

such as:
Satisfaction of such constraints by a temporal da-

tabase can be checked if the question “Does (did/will)

R(a1,...,am) hold at t ?” can be answered for any fact R

(a1,...,am) and time instant t. Alternatively, one can

equip facts with time and ask: “Is R(a1,...,am j t)
true?”. Thus, one can abstract from the concrete tem-

poral database representation, which may well contain

interval-stamped facts [7]. Every time point t gives rise

to a (database) state containing all facts true at t.

The following examples assume a time granularity

of days. The facts WorksFor(John Smith, Pulse) and

Earns(John Smith, 20K), true on 10 August 2007,

express that John worked for the Pulse project and

earned a salary of 20K at that date. The alternative

encoding is WorksFor(John Smith, Pulse j 10 Aug

2007) and Earns(John Smith, 20K j 10 Aug 2007).

Although temporal integrity constraints can gener-

ally refer to any number of database states, many

natural constraints involve only one or two states. In

particular, transition constraints only refer to the cur-

rent and the previous state; static constraints refer only

to the current state.

The first-order temporal logic (FOTL) formulas

(1)–(4) hereafter illustrate different types of integrity

constraints. The constraint “An employee who is

dropped from the Pulse project cannot work for that

project later on” can be formulated in FOTL as follows:

2978T Temporal Integrity Constraints
:9xðWorksFor x;Pulseð Þ ^ rð:WorksFor x;Pulseð Þ^
�WorksFor x;Pulseð ÞÞÞ

ð1Þ

This constraint can be most easily understood by

noticing that the subformula ♦(¬WorksFor(x, Pulse)

∧●WorksFor(x, Pulse)) is true in the current database

state for every employee x who was dropped from the

Pulse project sometime in the past (this subformula will

recur in the discussion of integrity checking later on).

This constraint can be equivalently formulated in a two-

sorted logic, using two temporal variables t1 and t2:

:9x9t19t2ð t1 < t2ð Þ ^WorksFor x;Pulsejt2ð Þ
^ :WorksFor x; Pulsejt1ð Þ ^WorksFor x; Pulsejt1 � 1ÞÞð

The constraint “Today’s salary cannot be less than yes-

terday’s” is a transition constraint, and can be formu-

lated as follows:

:9x9y9z Earns x; yð Þ ^ � Earns x; zð Þ ^ y < zð Þð Þ ð2Þ

Finally, static constraints are illustrated. The most fun-

damental static constraints in the relational data model

are primary keys and foreign keys. The constraint “No

employee has two salaries” implies that employee names

uniquely identify Earns-tuples in any database state; it

corresponds to a standard primary key. The constraint

“Every employee in the WorksFor relation has a salary”

means that in any database state, the first column of

WorksFor is a foreign key that references (the primary

key of) Earns. These constraints can be formulated in

FOTL without using temporal connectives:

8x8y8z Earns x; yð Þ ^ Earns x; zð Þ ! y ¼ zð Þ ð3Þ

8x8y WorksFor x; yð Þ ! 9zEarns x; zð Þð Þ ð4Þ

Formulas (3) and (4) show a nice thing about using

FOTL for expressing temporal integrity: static con-

straints read as non-temporal constraints expressed in

first-order logic.

1.2 Different Notions of Consistency The syntax and

semantics of the temporal logic used in the previous

section are defined next. Different notions of temporal

constraint satisfaction are discussed.

Assume a countably infinite set dom of constants.

In the following syntax, R is any relation name and

each si is a variable or a constant:
C;C 0 ::¼ R s1;:::;smð Þjs1 ¼ s2

jC ^ C 0j:Cj9x Cð ÞjsCjeCj�CjrC

The connectives ● and ♦ are called past operators; s and

e are future operators. A past formula is a formula

without future operators; a future formula is a for-

mula without past operators. Other modal operators,

like the past operator since and the future operator

until, can be added to increase expressiveness. The set

of time points is assumed to be infinite, discrete and

linearly ordered with a smallest element. Thus, the

time scale can be depicted as follows:

Discreteness of time is needed in the interpretation

of the operators s and �. Formulas are interpreted

relative to an infinite sequence H =hH0, H1, H2,...i,
where each Hi is a finite set of facts formed from

relation names and constants of dom. Intuitively, Hi

contains the facts true at time ti. Such a sequence H is

called an infinite (database) history and each Hi a

(database) state. The following rules define inductively

what it means for a closed formula C to be satisfied by

H, denoted H⊨inf C.

Note that the truth of each subformula is expressed

relative to a single “reference” time point i (along with

H). This characteristic allows efficient techniques for

integrity checking [6] and seems crucial to the success

of temporal logic. Finally:

H �inf C iff H ; j �inf C for each j � 0

Consistency of infinite database histories is of theo-

retical interest. In practice, only a finite prefix of H

will be known at any one time. Consider, for example,

the situation where H0 is the initial database state, and

for each i � 0, the state Hiþ1 results from applying an

update to Hi. Since every update can be followed by

Temporal Integrity Constraints T 2979

T

another one, there is no last state in this sequence.

However, at any one time, only some finite history

hH0,...,Hni up to the most recent update is known,

and it is of practical importance to detect con-

straint violations in such a finite history. It is rea-

sonable to raise a constraint violation when the

finite history obtained so far cannot possibly be

extended to an infinite consistent history. For ex-

ample, the constraints

:9x Hire xð Þ ^ :} Promote xð Þ ^ }Retire xð Þð Þð Þ
:9x Retire xð Þ ^ }Retire xð Þð Þ

express that all hired people are promoted before they

retire, and that no one can retire twice. Then, the finite

history h{Hire(Ed)},{Hire(An)},{Retire(Ed)}i is incon-
sistent, because of the absence of Promote(Ed) in

the second state. It is assumed here that the database

history is append-only and that the past cannot be

modified.

Two different notions, denoted ⊨pot and ⊨fin, of

satisfaction for finite histories are as follows:

1. hH0,...,Hni ⊨potC if hH0,...,Hni can be extended to

an infinite historyH =hH0,...,Hn,Hnþ1,...i such that
H ⊨inf C.

2. hH0,...,Hni ⊨finC if hH0,...,Hni can be extended to

an infinite historyH =hH0,...,Hn, Hn+1,...i such that

H, i ⊨inf C for each i 2{0, 1,...,n}.

Obviously, the first concept, called potential satisfac-

tion, is stronger than the second one: hH0,...,Hni⊨potC

implies hH0,...,Hni ⊨finC. Potential satisfaction is the

more natural concept. However, Chomicki [3] shows

how to construct a constraint C, using only past opera-

tors (● and ♦), for which ⊨pot is undecidable. On the

other hand, ⊨fin is decidable for constraints C that use

only past operators, because the extra states Hnþ1,

Hnþ2,... do not matter in that case. It also seems that

for most practical past formulas, ⊨pot and ⊨fin coin-

cide [6]. Chomicki and Niwiński [4] define restricted

classes of future formulas for which ⊨pot is decidable.

1.3 Expressiveness of Temporal Constraints The only

assumption about time used in the constraints shown

so far, is that the time domain is discrete and linearly

ordered. Many temporal constraints that occur in

practice need additional structure on the time domain,

such as granularity. The constraint “The salary of an

employee cannot change within a month” assumes a
grouping of time instants into months. It can be

expressed in a two-sorted temporal logic extended

with a built-in predicate month(t1, t2) which is true if

t1 and t2 belong to the same month:

:9x9y19y29t19t2ðmonth t1; t2ð Þ ^ Earns x; y1jt1ð Þ
^ Earns x; y2jt2ð Þ ^ y1 6¼ y2Þ:

Arithmetic on the time domain may be needed to

capture constraints involving time distances, dura-

tions, and periodicity. For example, the time domain

0, 1, 2,... may be partitioned into weeks by

the predicate week(t1, t2) defined by: week(t1, t2) if

t1∖7 = t2∖7, where ∖ is the integer division operator. If

0� t2� t1� 7, then one can say that t2 is within a week

from t1 (even though week(t1, t2) may not hold).

Temporal databases may provide two temporal

dimensions for valid time and transaction time. Valid

time, used in the preceding examples, indicates when

data are true in the real world. Transaction time

records the history of the database itself. If both time

dimensions are supported, then constraints can explic-

itly refer to both the history of the domain of discourse

and the system’s knowledge about that history [10].

Such types of constraints cannot be expressed in form-

alisms with only one notion of time.

Temporal logics have been extended in different

ways to increase their expressive power. Such exten-

sions include fixpoint operators and second-order

quantification over sets of timepoints. On the other

hand, several important problems, such as potential

constraint satisfaction, are undecidable for FOTL and

have motivated the study of syntactic restrictions to

achieve decidability [4].

This entry focuses on temporal integrity of data-

bases that use (temporal extensions of) the relational

data model. Other data models have also been extend-

ed to deal with temporal integrity; time-based cardi-

nality constraints in the Entity-Relationship model are

an example.
1.4 Constraints on Interval-stamped Temporal Data

All constraints discussed so far make abstraction of

the concrete representation of temporal data in a (re-

lational) database. They only assume that the database

can tell whether a given fact holds at a given point in

time. The notion of finite database history (let alone

infinite history) is an abstract concept: in practice, all

2980T Temporal Integrity Constraints
information can be represented in a single database in

which facts are timestamped by time intervals to indi-

cate their period of validity. An interval-stamped rela-

tion is shown below.
Emp Sal FromTo

John Smith 10K [1 May 2007, 31 Dec 2007]

John Smith 11K [1 Jan 2008, 31 Dec 2008]
Following [10], constraints over such interval-stamped

relations can be expressed in first-order logic extended

with a type for time intervals and with Allen’s interval

relations. The following constraint, stating that “Sal-

aries of employees cannot decrease,” uses temporal vari-

ables i1, i2 that range over time intervals:

8x8y8z8i18i2ðEarns x; yji1ð Þ ^ Earns x; zji2ð Þ
^ before i1; i2ð Þ) y � zÞ:

Nevertheless, it seems that many temporal integrity con-

straints can be most conveniently expressed under an

abstract, point-stamped representation. This is definitely

true for static integrity constraints, like primary and

foreign keys. Formalisms based on interval-stamped

relations may therefore provide operators like timeslice

or unfold to switch to a point-stamped representation.

Such “snapshotting” also underlies the sequenced

semantics [8], which states that static constraints

must hold independently at every point in time.

On the other hand, there are some constraints that

concern only the concrete interval-stamped represen-

tation itself. For example, the interval-stamped rela-

tion Earns shown below satisfies constraint (3), but

may be illegal if there is a constraint stating that tem-

poral tuples need to be coalesced whenever possible.
Emp Sal FromTo

John Smith 10K [1 May 2007, 30 Sep 2007]

John Smith 10K [1 Oct 2007, 31 Dec 2007]

John Smith 11K [1 Jan 2008, 31 Dec 2008]
2. Checking and Enforcing Temporal Integrity

Consider a database history to which a new state is

added whenever the database is updated. Consistency

is checked whenever a tentative update reaches the

database. If the update would result in an inconsistent
database history, it is rejected; otherwise the new data-

base state is added to the database history. This scenar-

io functions well if the entire database history is

available for checking consistency. However, more effi-

cient methods have been developed that allow checking

temporal integrity without having to store the whole

database history.

To check integrity after an update, there is generally

no need to inspect the entire database history. In par-

ticular, static constraints can be checked by inspecting

only the new database state; transition constraints can

be checked by inspecting the previous and the new

database state. Techniques for temporal integrity

checking aim at reducing the amount of historical

data that needs to be considered after a database up-

date. In “history-less” constraint checking [3,9,11], all

information that is needed for checking temporal in-

tegrity is stored, in a space-efficient way, in the current

database state. The past states are then no longer need-

ed for the purpose of integrity checking (though they

may be needed for answering queries).

The idea is similar to Temporal Vacuuming and can

be formalized as follows. For a given database schema

S, let FIN_HISTORIES(S) denote the set of finite da-

tabase histories over S and STATES(S) the set of states

over S. Given a database schema S and a set C of

temporal constraints, the aim is to compute a schema

T and a computable function E : FIN_HISTORIES(S)

! STATES(T), called history encoding, with the follow-

ing properties:

� for every H 2 FIN_HISTORIES(S), the consistency

ofH with respect to Cmust be decidable from E(H)

and C. This can be achieved by computing a new set

C0 of (non-temporal) first-order constraints over T

such that for every H 2 FIN_HISTORIES(S),

H⊨tempC if and only if E(H)⊨C0, where ⊨temp is

the desired notion of temporal satisfaction (see the

section on “Different Notions of Consistency”).

Intuitively, the function E encodes, in a non-

temporal database state over the schema T, all in-

formation needed for temporal integrity checking.

� E must allow an incremental computation when

new database states are added: for every hH0,...,

Hni 2 FIN_HISTORIES(S), the result E(hH0,...,

Hni) must be computable from E(hH0,...,Hn�1i)
and Hn. In turn, E(hH0,...,Hn�1i) must be

computable from E(hH0,...,Hn�2i) and Hn�1. And

so on.

Temporal Integrity Constraints T 2981

T

Formally, there must be a computable function

D : STATES(T) � STATES(S) ! STATES(T) and

an initial database state Jinit 2 STATES(T) such

that E(hH0i) = D(Jinit, H0) and for every n > 0,

E(hH0,...,Hni) = D(E(hH0,...,Hn�1i), Hn). The

state Jinit is needed to get the computation off

the ground.

Note that the history encoding is fully determined

by the quartet (T, Jinit, D,C0), which only depends on

S and C (and not on any database history).

Such history encoding was developed by Chomicki

[3] for constraints expressed in Past FOTL (including

the sincemodal operator). Importantly, in that encod-

ing, the size of E(H) is polynomially bounded in the

number of distinct constants occurring in H, irrespec-

tive of the length of H. Chomicki’s bounded history

encoding can be illustrated by constraint (1), which

states that an employee cannot work for the Pulse

project if he was dropped from that project in the

past. The trick is to maintain an auxiliary relation

(call it DroppedFromPulse, part of the new schema T)

that stores names of employees who were dropped

from the Pulse project in the past. Thus,DroppedFrom-

Pulse(x) will be true in the current state for every

employee name x that satisfies ♦(¬WorksFor(x, Pulse)

∧●WorksFor(x, Pulse)) in the current state. Then, con-

straint (1) can be checked by checking ¬∃x(WorksFor

(x, Pulse) ∧DroppedFromPulse(x)), which, syntactical-

ly, is a static constraint. Note incidentally that the label

“static” is tricky here, because the constraint refers to

past information stored in the current database state.

Since history-less constraint checking must not rely

on past database states, the auxiliary relation Dropped-

FromPulse must be maintained incrementally (the

function D): whenever an employee named x is

dropped from the Pulse project (i.e., whenever the

tuple WorksFor(x, Pulse) is deleted), the name x must

be added to the DroppedFromPulse relation. In this

way, one remembers who has been dropped from

Pulse, but forgets when.

History-less constraint checking thus reduces dy-

namic to static constraint checking, at the expense of

storing in auxiliary relations (over the schema T) his-

torical data needed for checking future integrity.

Whenever a new database state is created as the result

of an update, the auxiliary relations are updated as

needed (using the function D). This technique is suited
for implementation in active database systems [5,11]: a
tentative database update will trigger an abort if it

violates consistency; otherwise the update is accepted

and will trigger further updates that maintain the

auxiliary relations.

The approach described above is characterized by

ad hoc updates. A different approach is operational:

the database can only be updated through a predefined

set of update methods (also called transactions). These

transactions are specified in a transaction language that

provides syntax for embedding elementary updates

(insertions and deletions of tuples) in program control

structures. Restrictions may be imposed on the possi-

ble execution orders of these transactions. Bidoit and

de Amo [1] define dynamic dependencies in a declara-

tive way, and then investigate transaction schemes that

can generate all and only the database histories that are

consistent.

Although it is convenient to use an abstract tempo-

ral representation for specifying temporal constraints,

consistency checks must obviously be performed on

concrete representations. Techniques for checking stat-

ic constraints, like primary and foreign keys, need

to be revised if one moves from non-temporal to

interval-timestamped relations [8]. Primary keys can

be enforced on a non-temporal relation by means of

a unique-index construct. On the other hand, two

distinct tuples in an interval-timestamped relation

can agree on the primary key without violating consis-

tency. For example, the consistent temporal relation

shown earlier contains two tuples with the same

name John Smith.

Key Applications
Temporal data and integrity constraints naturally

occur in many database applications. Transition con-

straints apply wherever the legality of new values after

an update depends on the old values, which happens

to be very common. History-less constraint checking

seems particularly suited in applications where tempo-

ral conditions need to be checked, but where there

is no need for issuing general queries against past

database states. This may be the case in monitor and

control applications [12].
Cross-references
▶ Interval-based Temporal Models

▶ Point-stamped Temporal Models

▶Temporal Constraints

2982T Temporal Joins
▶Temporal Dependencies

▶Temporal Logic in Database Query Languages

▶Temporal Vacuuming
Recommended Reading
1. Bidoit N. and de Amo S. A first step towards implementing

dynamic algebraic dependences. Theor. Comput. Sci., 190(2):

115–149, 1998.

2. de Castilho J.M.V., Casanova M.A., and Furtado A.L. A temporal

framework for database specifications. In Proc. 8th Int. Conf. on

Very Data Bases, 1982, 280–291.

3. Chomicki J. Efficient checking of temporal integrity constraints

using bounded history encoding. ACM Trans. Database Syst.,

20(2):149–186, 1995.

4. Chomicki J. and Niwinski D. On the feasibility of checking

temporal integrity constraints. J. Comput. Syst. Sci., 51(3):

523–535, 1995.

5. Chomicki J. and Toman D. Implementing temporal integrity

constraints using an active DBMS. IEEE Trans. Knowl. Data

Eng., 7(4):566–582, 1995.

6. Chomicki J. and Toman D. Temporal logic in information

systems. In Logics for Databases and Information Systems.

J. Chomicki and G. Saake (eds.). Kluwer, Dordecht, 1998,

pp. 31–70.

7. Chomicki J. and Toman D. Temporal databases. In M. Fisher, D.

M. Gabbay, and L. Vila (eds.). Handbook of Temporal Reasoning

in Artificial Intelligence. Elsevier Science, 2005.

8. Li W., Snodgrass R.T., Deng S., Gattu V.K., and Kasthurirangan

A. Efficient sequenced integrity constraint checking. In Proc.

17th Int. Conf. on Data Engineering, 2001, pp. 131–140.

9. Lipeck U.W. and Saake G. Monitoring dynamic integrity con-

straints based on temporal logic. Inf. Syst., 12(3):255–269, 1987.

10. Plexousakis D. Integrity constraint and rule maintenance in

temporal deductive knowledge bases. In Proc. 19th Int. Conf.

on Very Large Data Bases, 1993, pp. 146–157.

11. Sistla A.P. and Wolfson O. Temporal conditions and integrity

constraints in active database systems. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1995, pp. 269–280.

12. Sistla A.P. and Wolfson O. Temporal triggers in active databases.

IEEE Trans. Knowl. Data Eng., 7(3):471–486, 1995.
Temporal Joins

DENGFENG GAO

IBM Silicon Valley Lab, San Jose, CA, USA

Definition
A temporal join is a join operation on two temporal

relations, in which each tuple has additional attributes

indicating a time interval. The temporal join predicates

include conventional join predicates as well as a
temporal constraint that requires the overlap of the

intervals of the two joined tuples. The result of a

temporal join is a temporal relation.

Besides binary temporal joins that operate on

two temporal relations, there are n-ary temporal joins

that operate on more than two temporal relations.

Besides temporal overlapping, there are other temporal

conditions such as “before” and “after” [1]. This entry

will concentrate on the binary temporal joins with

overlapping temporal condition since most of the pre-

vious work has focused on this kind of joins.
Historical Background
In the past, temporal join operators have been defined

in different temporal datamodels; at times the essentially

same operators have even been given different names

when defined in different data models. Further, the

existing join algorithmshave also been constructedwith-

in the contexts of different data models. Temporal join

operators were first defined by Clifford and Croker [4].

Latermany papers studiedmore temporal join operators

and the evaluation algorithms. To enable the comparison

of join definitions and implementations across data

models, Gao et al. [7] proposed a taxonomy of temporal

joins and then use this taxonomy to classify all previously

defined temporal joins.
Foundations
Starting from the core set of conventional relational

joins that have long been accepted as “standard” [11]:

Cartesian product (whose “join predicate” is the con-

stant expression TRUE), theta-join, equijoin, natural

join, left and right outerjoin, and full outerjoin, a

temporal counterpart that is a natural, temporal gen-

eralization of the set can be defined. The semantics of

the temporal join operators are defined as follows.

To be specific, the definitions are based on a single

data model that is used most widely in temporal data

management implementations, namely the one that

timestamps each tuple with an interval. Assume that

the time-line is partitioned into minimal-duration

intervals, termed chronons [5]. The intervals are

denoted by inclusive starting and ending chronons.

Two temporal relational schemas, R and S, are

defined as follows.

R ¼ ðA1;:::;An;Ts;TeÞ
S ¼ ðB1;:::;Bm;Ts;TeÞ

Temporal Joins T 2983
The Ai, 1 � i � n, and Bi, 1 � i � m, are the explicit

attributes that are found in corresponding snapshot

schemas, and Ts and Te are the timestamp start and

end attributes, recording when the information

recorded by the explicit attributes holds (or held or

will hold) true. T will be used as a shorthand for the

interval [Ts, Te], and A and B will be used as a short-

hand for {A1,...,An} and {B1,...,Bn}, respectively. Also,

r and s are defined to be instances of R and S,

respectively.

Consider the following two temporal relations. The

relations show the canonical example of employees, the

departments they work for, and the managers who

supervise those departments.
Employee

EmpName Dept T

Ron Ship [1,5]

George Ship [5,9]

Ron Mail [6,10]

Manages

Dept MgrName T

Load Ed [3,8]

Ship Jim [7,15]

Employee � T Manages

EmpName Dept Dept MgrName T

Ron Ship Load Ed [3,5]

George Ship Load Ed [5,8]

George Ship Ship Jim [7,9]

Ron Mail Load Ed [6,8]

Ron Mail Ship Jim [7,10]

T

Tuples in the relations represent facts about the

modeled reality. For example, the first tuple in the

Employee relation represents the fact that Ron worked

for the Shipping department from time 1 to time 5,

inclusive. Notice that none of the attributes, including

the timestamp attributes T, are set-valued – the rela-

tion schemas are in 1NF.

Cartesian Product

The temporal Cartesian product is a conventional Car-

tesian product with a predicate on the timestamp

attributes. To define it, two auxiliary definitions are

needed.

First, intersect (U,V), where U and V are inter-

vals, returns TRUE if there exists a chronon t such

that t 2 U ∧ t 2 V , and FALSE otherwise. Second,

overlap (U,V) returns the maximum interval contained

in its two argument intervals. If no non-empty inter-

vals exist, the function returns. To state this
more precisely, let first and last return the smallest

and largest of two argument chronons, respectively.

Also let Us and Ue denote the starting and ending

chronons of U, and similarly for V.

overlapðU ;V Þ¼
½lastðUs; VsÞ; firstðUe ; VeÞ� if lastðUs; VsÞ

� firstðUe; VeÞ
; otherwise:

8><
>:
The temporal Cartesian product, r � Ts, of two

temporal relations r and s is defined as follows.

r � Ts ={z(n+m+2)j∃x 2 r ∃y 2 s (intersect (x[T],

y[T])∧z[A] = x[A]∧z[B] = y[B]∧
z[T] = overlap(x[T],y[T]) ∧ z[T]6¼f)}

The first line of the definition ensures that matching

tuples x and y have overlapping timestamps and sets

the explicit attribute values of the result tuple z to the

concatenation of the explicit attribute values of x and y.

The second line computes the timestamp of z and

ensures that it is non-empty. The intersect predicate is

included only for later reference – it may be omitted

without changing the meaning of the definition.

Consider the query “Show the names of employees

and managers where the employee worked for the

company while the manager managed some depart-

ment in the company.” This can be satisfied using the

temporal Cartesian product.
The overlap function is necessary and sufficient to

ensure snapshot reducibility, as will be discussed in

detail later. Basically, the temporal Cartesian product

acts as though it is a conventional Cartesian pro-

duct applied independently at each point in time.

When operating on interval-stamped data, this seman-

tics corresponds to an intersection: the result will be

2984T Temporal Joins
valid during those times when contributing tuples from

both input relations are valid.

Theta-Join

Like the conventional theta-join, the temporal theta-

join supports an unrestricted predicate P on the explic-

it attributes of its input arguments. The temporal

theta-join, r ⋈P
Ts, of two relations r and s selects

those tuples from r �Ts that satisfy predicate P(r[A],s

[B]). Let s denote the standard selection operator.

The temporal theta-join, r ⋈P
Ts, of two temporal

relations r and s is defined as follows.

r fflT
Ps ¼ sPðr½A�;s½B�Þðr�TsÞ

Equijoin

Like snapshot equijoin, the temporal equijoin operator

enforces equality matching between specified subsets

of the explicit attributes of the input relations.

The temporal equijoin on two temporal relations r

and s on attributes A0� A and B0� B is defined as the

theta-join with predicate P � r[A0] = s[B0]:

r fflT
r½A0 �¼s½B0 �s :

Natural Join

The temporal natural join bears the same relationship

to the temporal equijoin as does their snapshot coun-

terparts. Namely, the temporal natural join is simply a

temporal equijoin on identically named explicit attri-

butes, followed by a subsequent projection operation.

To define this join, the relation schemas are aug-

mented with explicit join attributes, Ci, 1 � i � k,

which are abbreviated by C.

R ¼ ðA1;:::;An;C1;:::;Ck;Ts;TeÞ
S ¼ ðB1;:::;Bm;C1;:::;Ck;Ts;TeÞ

The temporal natural join of r and s, r ⋈Ts, is defined

as follows.

r ⋈ Ts ={z(n+m+k+2)j∃x 2 r∃y 2 s(x[C] = y[C]∧
z[A] = x[A] ∧ z[B] = x[B] ∧ z[C] = y[C]∧
z[T] = overlap(x[T],y[T]) ∧ z[T]6¼f)}

The first two lines ensure that tuples x and y agree on

the values of the join attributes C and set the explicit

attribute of the result tuple z to the concatenation of

the non-join attributes A and B and a single copy of

the join attributes, C. The third line computes the
timestamp of z as the overlap of the timestamps of

x and y, and ensures that x[T] and y[T] actually

overlap.

The temporal natural join plays the same impor-

tant role in reconstructing normalized temporal rela-

tions as does the snapshot natural join for normalized

snapshot relations [10]. Most previous work in tempo-

ral join evaluation has addressed, either implicitly or

explicitly, the implementation of the temporal natural

join (or the closely related temporal equijoin).
Outerjoins and Outer Cartesian Products

Like the snapshot outerjoin, temporal outerjoins and

Cartesian products retain dangling tuples, i.e., tuples

that do not participate in the join. However, in a

temporal database, a tuple may dangle over a portion

of its time interval and be covered over others; this

situation must be accounted for in a temporal out-

erjoin or Cartesian product.

The temporal outerjoin may be defined as the

union of two subjoins, analogous to the snapshot out-

erjoin. The two subjoins are the temporal left outerjoin

and the temporal right outerjoin. As the left and right

outerjoins are symmetric, only the left outerjoin is

defined here.

Two auxiliary functions are needed. The coalesce

function collapses value-equivalent tuples – tuples

with mutually equal non-timestamp attribute values

[9] – in a temporal relation into a single tuple with the

same non-timestamp attribute values and a timestamp

that is the finite union of intervals that precisely

contains the chronons in the timestamps of the

value-equivalent tuples. *(Finite unions of time inter-

vals are termed temporal elements [6].)* The definition

of coalesce uses the function chronons that returns the

set of chronons contained in the argument interval.

coalesce(r) ={z(n+2)j∃x 2 r(z[A] = x[A]) chronons

(x[T]) � z[T]∧
8x002 r (x[A] = x00[A]) (chronons(x00[T]) �

z[T])))∧
8t 2 z[T]∃x00 2 r(z[A] = x00[A] ∧ t 2 chronons

(x00[T]))}

The first two lines of the definition coalesce all value-

equivalent tuples in relation r. The third line ensures

that no spurious chronons are generated.

Now a function expand is defined that returns the set

ofmaximal intervals contained in an argument temporal

Temporal Joins. Table 1. Temporal join operators

Operator
Initial
Citation

Taxonomy
Operator Restrictions

Y-JOIN [2] Theta-join None

EQUIJOIN [2] Equijoin None

NATURAL-JOIN [2] Natural Join None

TIME-JOIN [2] Cartesian
Product

1

T-join [8] Cartesian
Product

None

Cartesian
product

[3] Outer
Cartesian
Product

None

TE-JOIN [13] Equijoin 2

TE-OUTERJOIN [13] Left
Outerjoin

2

EVENT-JOIN [13] Outerjoin 2

Valid-Time
Theta-Join

[14] Theta-join None

Valid-Time
Left Join

[14] Left
Outerjoin

None

GTE-Join [15] Equijoin 2, 3

Restrictions:

1 = restricts also the valid time of the result tuples

2 = matching only on surrogate attributes

3 = includes also intersection predicates with an argument surro-

gate range and a time range

Temporal Joins T 2985

T

element, T. Prior to defining expand an auxiliary func-

tion intervals is defined that returns the set of intervals

contained in an argument temporal element.

intervals(T) ={[ts,te]jts 2 T ∧ te 2 T∧
8t 2 chronons([ts,te])(t 2 T)}

The first two conditions ensures that the beginning

and ending chronons of the interval are elements of T.

The third condition ensures that the interval is contig-

uous within T.

Using intervals, expand is defined as follows.

expand(T) ={[ts,te]j[ts,te] 2 intervals(T)∧
¬∃[ts0,te0] 2 intervals(T)(chronons([ts,te]) �

chronons([ts
0,te
0]))}

The first line ensures that a member of the result is an

interval contained in T. The second line ensures that

the interval is indeed maximal.

The temporal left outerjoin is now ready to be

defined. Let R and S be defined as for the temporal

equijoin. A0� A and B 0� B are used as the explicit join

attributes.

The temporal left outerjoin, r r[A0]=s[B 0]s of two

temporal relations r and s is defined as follows.

r r[A0]=s[B0] s ={z
(n+m+2)j∃x 2 coalesce(r)∃y 2 coa-

lesce(s)

(x[A0] = y[B0] ∧ z[A] = x[A] ∧ z[T]6¼ f∧
((z[B] = y[B] ∧ z[T] 2 {expand(x[T] \ y[T])})∨
(z[B] = null ∧ z[T] 2 {expand(x[T]) � expand

(y[T])})))∨
∃x 2 coalesce(r)8y 2 coalesce(s)

(x[A0] 6¼ y[B0]) z[A] = x[A] ∧ z[B] = null∧
z[T] 2 expand(x[T]) ∧ z[T]6¼ f)}

The first four lines of the definition handle the case

where, for a tuple x deriving from the left argument, a

tuple y with matching explicit join attribute values is

found. For those time intervals of x that are not shared

with y, tuples with null values in the attributes of y are

generated. The final three lines of the definition handle

the case where no matching tuple y is found. Tuples

with null values in the attributes of y are generated.

The temporal outerjoin may be defined as simply

the union of the temporal left and the temporal right

outerjoins (the union operator eliminates the duplicate

equijoin tuples). Similarly, a temporal outer Cartesian

product is a temporal outerjoin without the equijoin

condition (A0 = B0 = f).
Table 1 summarizes how previous work is repre-

sented in the taxonomy. For each operator defined in

previous work, the table lists the defining publication,

researchers, the corresponding taxonomy operator,

and any restrictions assumed by the original operators.

In early work, Clifford [4] indicated that an IN-

TERSECTION-JOIN should be defined that represents

the categorized non-outer joins and Cartesian pro-

ducts, and he proposed that an UNION-JOIN be de-

fined for the outer variants.
Reducibility

The following shows how the temporal operators re-

duce to snapshot operators. Reducibility guarantees

that the semantics of snapshot operator is preserved

in its more complex, temporal counterpart.

For example, the semantics of the temporal natural

join reduces to the semantics of the snapshot natural

join in that the result of first joining two temporal

Temporal Joins. Figure 1. Reducibility of temporal natural join to snapshot natural join.

2986T Temporal Joins
relations and then transforming the result to a snapshot

relation yields a result that is the same as that obtained

by first transforming the arguments to snapshot

relations and then joining the snapshot relations. This

commutativity diagram is shown in Fig. 1 and stated

formally in the first equality of the following theorem.

The timeslice operation t T takes a temporal rela-

tion r as argument and a chronon t as parameter. It

returns the corresponding snapshot relation, i.e., with

the schema of r, but without the timestamp attributes,

that contains (the non-timestamp portion of) all

tuples x from r for which t belongs to x[T]. It follows

from the next theorem that the temporal joins defined

here reduce to their snapshot counterparts.
Theorem 1

Let t denote a chronon and let r and s be relation

instances of the proper types for the operators they

are applied to. Then the following hold for all t:

tTt ðr fflTsÞ ¼ tTt ðrÞ ffl tTt ðsÞ
tTt ðr �TsÞ ¼ tTt ðrÞ � tTt ðsÞ
tTt ðr fflT

PsÞ ¼ tTt ðrÞ ffl P tTt ðsÞ
tTt ðr

u fflTsÞ ¼ tTt ðrÞ

u ffl tTt ðsÞ
tTt ðr ffl uTsÞ ¼ tTt ðrÞ ffl u tTt ðsÞ

Due to the space limit, the proof of this theorem

is not provided here. The details can be found in the

related paper [7].
Evaluation Algorithms Algorithms for temporal join

evaluation are necessarily more complex than their snap-

shot counterparts. Whereas snapshot evaluation algori-

thms match input tuples on their explicit join attributes,
temporal join evaluation algorithms typically must in

addition ensure that temporal restrictions are met. Fur-

thermore, this problem is exacerbated in twoways. Time-

stamps are typically complex data types, e.g., intervals,

requiring inequality predicates, which conventional

query processors are not optimized to handle. Also, a

temporal database is usually larger than a corresponding

snapshot database due to the versioning of tuples.

There are two categories of evaluation algorithms.

Index-based algorithms use an auxiliary access path,

i.e., a data structure that identifies tuples or their loca-

tions using a join-attribute value. Non-index-based

algorithms do not employ auxiliary access paths. The

large number of temporal indexes have been proposed

in the literature [12]. Gao et al. [7] provided a taxono-

my of non-index-based temporal join algorithms.
Key Applications
Temporal joins are used to model relationships between

temporal relations with respect to the temporal dimen-

sions. Datawarehouses usually need to store and analyze

historical data. Temporal joins can be used (alone or

together with other temporal relational operators) to

perform the analysis on historical data.
Cross-references
▶Bi-Temporal Indexing

▶Temporal Algebras

▶Temporal Data Models

▶Temporal Database

▶Temporal Query Processing

Recommended Reading
1. Allen J.F. Maintaining knowledge about temporal intervals.

Commun. ACM, 26(11):832–843, November 1983.

Temporal Logic in Database Query Languages T 2987
2. Clifford J. and Croker A. The historical relational data model

(HRDM) and algebra based on lifespans. In Proc. 3th Int. Conf.

on Data Engineering, 1987, pp. 528–537.

3. Clifford J. and Croker A. The historical relational data model

(HRDM) revisited. In Temporal Databases: Theory, Design,

and Implementation, Chap. 1, A. Tansel, J. Clifford, S. Gadia,

S. Jajodia, A. Segev, R.T. Snodgrass (eds.). Benjamin/Cummings,

1993, pp. 6–27.

4. Clifford J. and Tansel A.U. On an algebra for historical relational

databases: two views. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1985, pp. 1–8.

5. Dyreson C.E. and Snodgrass R.T. Timestamp semantics and

representation. Inf. Syst., 18(3):143–166, 1993.

6. Gadia S.K. A homogeneous relational model and query

languages for temporal databases. ACM Trans. Database Syst.,

13(4):418–448, 1988.

7. Gao D., Snodgrass R.T., Jensen C.S., and Soo M.D. Join

operations in temporal databases. VLDB J., 14(1):2–29, 2005.

8. Gunadhi H. and Segev A. Query processing algorithms

for temporal intersection joins. In Proc. 7th Int. Conf. on Data

Engineering, 1991, pp. 336–3.

9. Jensen C.S. (ed.) The consensus glossary of temporal database

concepts – February 1998 version. In Temporal Databases:

Research and Practice. O. Etzion, S. Jajodia, S. Sripadi (eds.).

Springer, Berlin Heidelberg New York, 1998, pp. 367–405.

10. Jensen C.S., Snodgrass R.T., and Soo M.D. Extending existing

dependency theory to temporal databases. IEEE Trans. Knowl.

Data Eng., 8(4):563–582, August 1996.

11. Mishra P. and Eich M. Join processing in relational databases.

ACM Comput. Surv., 24(1):63–113, March 1992.

12. Salzberg B. and Tsotras V.J. Comparison of access methods

for time-evolving data. ACM Comput. Surv., 31(2):158–221,

June 1999.

13. Segev A. and Gunadhi H. Event-join optimization in temporal

relational databases. In Proc. 15th Int. Conf. on Very Large Data

Bases, 1989, pp. 205–215.

14. Soo M.D., Jensen C.S., and Snodgrass R.T. 1An algebra

for TSQL2. In the TSQL2 Temporal Query Language, Chap.

27, R.T. Snodgrass (ed.). Kluwer, Hingham, MA, 1995,

pp. 505–546.

15. Zhang D., Tsotras V.J., and Seeger B. Efficient temporal join pro-

cessing using indices. In Proc. 18th Int. Conf. onData Engineering,

2002, pp. 103.
T

Temporal Layer

▶Temporal Strata
Temporal Logic

▶Time in Philosophical Logic
Temporal Logic in Database Query
Languages

JAN CHOMICKI
1, DAVID TOMAN

2

1State University of New York at Buffalo, Buffalo,

NY, USA
2University of Waterloo, Waterloo, ON, Canada

Definition
The term “temporal logic” is used in the area of formal

logic, to describe systems for representing and reasoning

about propositions and predicates whose truth depends

on time. These systems are developed around a set of

temporal connectives, such as sometime in the future or

until, that provide implicit references to time instants.

First-order temporal logic is a variant of temporal logic

that allows first-order predicate (relational) symbols,

variables and quantifiers, in addition to temporal con-

nectives. This logic can be used as a natural temporal

query language for point-stamped temporal databases.

A query (a temporal logic formula) is evaluated with

respect to an evaluation point (time instant). Each

such point determines a specific database snapshot

that can be viewed as a relational database. Thus,

the evaluation of temporal logic queries resembles the

evaluation of first-order (relational calculus) queries

equipped with an additional capability to “move” the

evaluation point using temporal connectives. In this

way, it becomes possible to refer in a single query

to multiple snapshots of a given temporal database.

The answer to a temporal logic query evaluated with

respect to all time instants forms a point-stamped

temporal relation.
Historical Background
Temporal logic was developed (originally under

the name of tense logic by Arthur Prior in the late

1950s), for representing and reasoning about natural

languages. It was introduced to computer science by

Amir Pnueli [8] as a tool for formal verification of

software systems. The first proposal for using a tempo-

ral logic in the database context was by Sernadas [9].

Subsequently, de Castilho et al. [3] initiated the

study of temporal-logic integrity constraints in rela-

tional databases. Tuzhilin and Clifford [12] considered

temporal logic as a query language for temporal

databases.

2988T Temporal Logic in Database Query Languages
Foundations
Temporal Logic is a variant of modal logic, tailored to

expressing statements whose truth is relative to an

underlying time domain which is commonly a linearly

ordered set of time instants. The modalities are

expressed using natural-language statements of the

form sometime in the future, always in the future, etc.

and are captured in the syntax of the logic using tem-

poral connectives.

Temporal logics are usually rooted in propositional

logic. However, for the purposes of querying (single-

dimensional, valid time) point-stamped temporal

databases, linear-time first-order temporal logic

(FOTL), an extension of first-order logic (relational

calculus) with temporal connectives, is used. More for-

mally, given a relational schema r (of a snapshot of a

point-stamped temporal database), the syntax of FOTL

queries is defined as follows:

Q ::¼ rðxi1 ;:::; xik Þ j xi ¼ xj j Q ^ Q j :Q j
9x:Q j Q since Q j Q until Q

for r 2 r. The additional since and until connectives

are the temporal connectives. The connectives comp-

letely encapsulate the structure of time: FOTL only

refers to time implicitly using these connectives. In

contrast, temporal relational calculus (TRC) uses

explicit temporal variables and attributes to refer to

time. Note that there are no restrictions on the nesting

of the temporal connectives, the Boolean connectives,

and the quantifiers.

The meaning of all temporal logic formulas is de-

fined relative to a particular time instant called the

evaluation point. Intuitively, the evaluation point can

be viewed as representing the current instant or now.

The standard first-order parts of FOTL formulas are

then evaluated in the snapshot of the temporal data-

base determined by the evaluation point. The temporal

connectives make it possible to change the evaluation

point, i.e., to “move” it to the past or to the future. In

this way the combination of first-order constructs

and temporal connectives allows to ask queries that

refer to multiple snapshots of the temporal database.

For example the query Q1 since Q2 asks for all answers

that make Q2 true sometime in the past and Q1 true

between then and now. Similarly, queries about

the future are formulated using the until connective.

More formally, answers to FOTL queries are defined

using a satisfaction relation that, for a given FOTL
query, links a temporal database and an evaluation

point (time instant) with the valuations that make

the given query true with respect to the snapshot of

that database at that particular evaluation point. This

definition, given below, extends the standard definition

of satisfaction for first-order logic.

Definition [FOTL Semantics] Let DB be a point-

stamped temporal database with a data domain D,

a point-based time domain TP , and a (snapshot)

schema r.
The satisfaction relation DB; y; t � Q, where Q is

an FOTL formula, y a valuation, and t 2 TP , is defi-

ned inductively with respect to the structure of the

formula Q: as shown in Figure 2. where r
DBðtÞ
j is the

instance of the relation rj in the snapshot DB(t) of

the database DB at the instant t.

The answer to an FOTL query Q over DB is the set

of tuples:

QðDBÞ :¼ fðt ; yðx1Þ;:::; yðxkÞÞ : DB; y; t � Qg;

where x1,...,xk are the free variables of Q.

Note that answers to FOTL queries are (valid-time)

point-stamped temporal relations.

Other commonly used temporal connectives, such

as e (sometime in the future), u (always in the future),

r (sometime in the past), and j (always in the past) can

be defined in terms of since and until as follows:

eX1 :¼ true until X1 rX1 :¼ true since X1

uX1 :¼ :e:X1 jX1 :¼ :r:X1

For a discrete linear order, the s (next) and d (previ-

ous) operators are defined as follows:

sX1 :¼ false until X1 dX1 :¼ false since X1

The connectives since, r, j, and d are called past

temporal connectives (as they refer to the past) and

until, e, u, and s future temporal connectives.

Example. The sensor information about who

enters or exits a room is kept in the relations Entry

(Fig.1a) and Exit (Fig.1b). Consider the queryQa: “For

every time instant, who is in the room Bell 224 at that

instant?” It can be written in temporal logic as:

9r: ð:Exitðr; pÞÞ since Entryðr; pÞð Þ ^ r ¼ 00Bell 22400

The answer to Qa in the given database is presented in

Fig.1c, under the assumption that time instants corre-

spond to minutes.

Temporal Logic in Database Query Languages. Figure 1. The Entry, the Exit, and the Who is in Bell 224 relations.

Temporal Logic in Database Query Languages. Figure 2. The satisfaction relation for FOTL.

Temporal Logic in Database Query Languages T 2989

T

Extensions

Several natural extensions of FOTL are obtained by

modifying various components of the language:

Multiple temporal contexts (multi-dimensional

TLs). Standard temporal logics use a single evaluation

point to relativize the truth of formulas with respect to

time. However, there is no principled reason to not use

more than one evaluation point simultaneously. The

logics taking this path are calledmultidimensional tem-

poral logics or, more precisely, n-dimensional temporal

logics (for n � 1). The satisfaction relation is extended,

for a particular n, in a natural way, as follows:

DB; y; t1;:::;tn � Q

where t1,...,tn are the evaluation points. In a similar

fashion the definitions of temporal connectives are ex-

tended to this setting. Two-dimensional connectives,

for example, seem to be the natural basis for temporal

logic-style query language for the bitemporal data

model. Unfortunately, there is no consensus on the

selection of two-dimensional temporal operators.

An interesting variant of this extension are interval

temporal logics that associate truth with intervals – these,

however, can be considered pairs of time points [5,13].

More complex time domains. While most temporal

logics assume that the time domain is equipped with

a linear order only, in many practical settings the

time domain has additional structure. For example,
there may be a way to refer to duration (the distance of

two time points). The linear-order temporal connectives

are then generalized to metric temporal connectives:

DB; y; t � Q1 since�m Q2 if 9 t2:t� t2 � m

and

DB; y; t2 � Q2

and

ð8t1:t2 < t1 < t implies DB; y; t1 � Q1Þ

DB; y; t � Q1 until�m Q2 if 9 t2:t2 � t � m

and

DB; y; t2 � Q2

and

ð8t1:t2< t1 < t implies DB; y; t1 � Q1Þ

for �2{<,�, = ,� ,>}. Intuitively, these connectives

provide means of placing constraints on how far in the

past/future certain subformulas must be true. The

resulting logic is then the Metric First-order Temporal

Logic, a first-order variant ofMetric Temporal Logic [7].

Example. To demonstrate the expressive power of

Metric Temporal Logic, consider the query Qb: “For

every time instant, who has been in the room Bell 224 at

that instant for at least 2 hours?”:

9r: ðð:Exitðr; pÞÞ since�2:00
Entryðr; pÞÞ ^ r ¼ 00Bell 22400

2990T Temporal Logic in Database Query Languages
More powerful languages for defining temporal connec-

tives. Another extension introduces a more powerful

language for specifying temporal connectives over the

underlying linearly-ordered time domain. Vardi and

Wolper show that temporal logics with connectives de-

fined using first-order formulas cannot express various

natural conditions such as “every other day”. To remedy

this shortcoming, they propose temporal connectives

defined with the help of regular expressions (ETL [15])

or fixpoints (temporal m-calculus [14]). Such exten-

sions carry over straightforwardly to the first-order

setting.

More complex underlying query languages. Last, in-

stead of relational calculus, temporal connectives can be

added to amore powerful language, such asDatalog. The

resulting language is called Templog [2]. With suitable

restrictions, query evaluation in this language is decidable

and the language itself is equivalent to Datalog1S [2].

Expressive Power

The since and until temporal connectives can be

equivalently defined using formulas in the underlying

theory of linear order as follows:

X1 since X2 :¼ 9t2:t0 > t2 ^ X2 ^ 8t1
ðt0 > t1 > t2 ! X1Þ

X1 until X2 :¼ 9t2:t0 < t2 ^ X2 ^ 8t1
ðt0 < t1 < t2 ! X1Þ

where X1 and X2 are placeholders that will be substi-

tuted with other formulas to be evaluated at the time

instants t1 and t2, respectively. This observation indicates

that every FOTL query can be equivalently expressed

in TRC. The explicit translation parallels the inductive

definition of FOTL satisfaction, uniformly para-

meterizing the formulas by t0. In this way, an

atomic formula r(x1,...,xk) (where r is a non-temporal

snapshot relation) becomes R(t0, x1,...,xk) (where R

is a point-timestamped relation), and so on. For a

particular t0, evaluating r(x1,...,xk) in DB(t0), the snap-

shot of the database DB at t0, yields exactly the same

valuations as evaluating R(t0, x1,...,xk) in DB. The

embedding of the temporal connectives uses the defi-

nitions above. For example, the embedding of the since

connective looks as follows:

EmbedðQ1 since Q2Þ ¼ 9t2ðt0 > t2^
8t0ðt2 ¼ t0! EmbedðQ2ÞÞ^
8t1ðt0 > t1 > t2!8t0ðt1 ¼ t0! EmbedðQ1ÞÞÞÞ:
Note that t0 is the only free variable in Embed(Q1),

Embed(Q2), and Embed(Q1 since Q2). Thus, in addi-

tion to applying the (first-order) definition of the

temporal connective, the embedding performs an ad-

ditional renaming of the temporal variable denoting

the evaluation point for the subformulas, because the

only free variable outside of the expanded temporal

connectives must be called t0.

Additional temporal connectives can be defined

using the same approach, as formulas in the underly-

ing theory of the temporal domain. However, for linear

orders – the most common choice for such a theory –

Kamp [6] has shown that all the connectives that are

first-order definable in terms of linear order can be

readily formulated using since and until.

In addition, it is easy to see on the basis of the above

embedding that all FOTL queries (and their subqueries)

define point-stamped temporal relations. This closure

propertymakes FOTL amenable to specifying operators

for temporal relational algebra(s) over the point-

stamped temporal model. On the other hand, many,

if not most, other temporal query languages, in partic-

ular various temporal extensions of SQL, are based on

TRC and use temporal variables and attributes to ex-

plicitly access timestamps. These languages do not

share the above closure property. Surprisingly, and in

contrast to the propositional setting, one can prove

that query languages based on FOTL are strictly weaker

than query languages based on TRC [1,11]. The query

SNAPSHOT EQUALITY: “are there two distinct

time instants at which a unary relation R contains

exactly the same values?”

cannot be expressed in FOTL. On the other hand,

SNAPSHOT EQUALITY can be easily expressed in

TRC as follows:

9t1; t2:t1 < t2 ^ 8x:Rðt1; xÞ , Rðt2; xÞ:

Intuitively, the subformula “8x.R(t1, x) , R(t2, x)”

in the above query requires the simultaneous use of

two distinct evaluation points t1 and t2 in the scope of a

universal quantifier, which is not possible in FOTL.

The result can be rephrased by saying that FOTL and

other temporal query languages closed over the point-

stamped temporal relations fail to achieve (the tempo-

ral variant of) Codd’s completeness. In particular,

there cannot be a temporal relational algebra over the

(single-dimensional) point-stamped temporal model

that can express all TRC queries.

Temporal Logic in Database Query Languages T 2991

T

In addition, this weakness is inherent to other lan-

guages with implicit access to timestamps, provided the

underlying time domain is a linear order. In particular:

1. Adding a finite number of additional temporal

connectives defined in the theory of linear order

(including constants) is not sufficient for expres-

sing SNAPSHOT EQUALITY [11];

2. Introducing multidimensional temporal connectives

[4], while sufficient to express SNAPSHOT EQUAL-

ITY, is still not sufficient to express all TRC queries

[10]. This also means that in the bitemporal model,

the associated query languages cannot simultane-

ously preserve closure with respect to bitemporal

relations and be expressively equivalent to TRC;

3. Using temporal connectives that are defined by fix-

points and/or regular expressions (see the earlier

discussion) is also insufficient to express SNAP-

SHOT EQUALITY. Due to their non-first-order

nature, the resulting query language(s) are incompa-

rable, in terms of their expressive power, to TRC [1].

The only currently known way of achieving first-order

completeness is based on using temporal connectives

defined over a time domain whose structure allows

the definition of pairing and projections (e.g., integer

arithmetic). In this way temporal connectives can use

pairing to simulate an unbounded number of variables

and in turn the full TRC. However, such a solution is

not very appealing, as the timestamps in the interme-

diate temporal relations do not represent time instants,

but rather (encoded) tuples of such instants.

Key Applications
The main application area of FOTL is in the area of

temporal integrity constraints. It is based on the obser-

vation that a sequence of relational database states

resulting from updates may be viewed as a snapshot

temporal database and constrained using Boolean

FOTL formulas. Being able to refer to the past states

of the database, temporal logic constraints generalize

dynamic constraints. Temporal logic is also influential

in the area of design and analysis of temporal query

languages such as temporal relational algebras.

Cross-references
▶Bitemporal Data Model

▶Datalog

▶ Point-Stamped Temporal Models
▶Relational Calculus

▶Temporal Algebras

▶Temporal Integrity Constraints

▶Temporal Query Languages

▶Temporal Relational Calculus

▶Time Domain

▶Time Instant

▶TSQL2

▶Valid Time
Recommended Reading
1. Abiteboul S., Herr L., and Van den Bussche J. Temporal versus

first-order logic to query temporal databases. In Proc. 15th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1996, pp. 49–57.

2. Baudinet M., Chomicki J., and Wolper P. Temporal deductive

databases. In Temporal Databases: Theory, Design, and

Implementation, Chap. 13, A. Tansel, J. Clifford, S. Gadia,

S. Jajodia, A. Segev, R.T. and Snodgrass (eds.). Benjamin/

Cummings, Reading, MA, 1993, pp. 294–320.

3. de Castilho J.M.V., Casanova M.A., and Furtado A.L. A temporal

framework for database specifications. In Proc. 8th Int. Conf. on

Very Data Bases, 1982, pp. 280–291.

4. Gabbay D., Hodkinson I., and Reynolds M. Temporal Logic:

Mathematical Foundations and Computational Aspects. Oxford

University Press, New York, 1994.

5. Goranko V., Montanari A., and Sciavicco G. A road map of

interval temporal logics and duration calculi. J. Appl. Non-

Classical Logics, 14(1–2):9–54, 2004.

6. Kamp J. Tense Logic and the Theory of Linear Order. PhD

Thesis, University of California, Los Angeles, 1968.

7. Koymans R. Specifying real-time properties with metric tempo-

ral logic. Real-Time Systems, 2(4):255–299, 1990.

8. Manna Z. and Pnueli A. The Temporal Logic of Reactive and

Concurrent Systems. Springer-Verlag, Berlin, 1992.

9. Sernadas A. Temporal aspects of logical procedure definition.

Inf. Syst., 5:167–187, 1980.

10. Toman D. On incompleteness of multi-dimensional first-order

temporal logics. In Proc. 10th Int. Symp. Temporal Representa-

tion and Reasoning/4th Int. Conf. Temporal Logic, 2003,

pp. 99–106.

11. Toman D. and Niwinski D. First-order queries over temporal

databases inexpressible in temporal logic. In Advances in Data-

base Technology, Proc. 5th Int. Conf. on Extending Database

Technology, 1996, pp, 307–324.

12. Tuzhilin A. and Clifford J. A temporal relational algebra as a

basis for temporal relational completeness. In Proc. 16th Int.

Conf. on Very Large Data Bases, 1990, pp. 13-23.

13. van Benthem J. The Logic of Time. D. Reidel, 2nd edn., 1991.

14. Vardi M.Y. A temporal fixpoint calculus. In Proc. 15th ACM

SIGACT-SIGPLAN Symp. on Principles of Programming

Languages, 1988, pp. 250–259.

15. Wolper P. Temporal logic can be more expressive. Inf. Contr.,

56:72–99, 1983.

2992T Temporal Logical Models
Temporal Logical Models

ARIE SHOSHANI

Lawrence Berkeley National Laboratory, Berkeley,

CA, USA

Synonyms
Historical data models

Definition
Temporal logical models refer to the logical structure

of data that captures the temporal behavior and opera-

tions over such structures. The term “logical” is used to

distinguish such temporal structures form the physical

storage organization and implementation. For exam-

ple, the behavior of temporal events and operations

over them can be described logically in a way that is

independent of the physical structure (e.g., linked lists)

or indexing of the events. Temporal logical models

include concepts of data values that are collected or

are changed over time, such as continuous physical

phenomena, a series of discrete events, and interval

data over time. The challenge is one of having a single

comprehensive model that captures this diversity

of behavior.

Historical Background
In the 1980s, several researchers focused on dealing with

temporal data, both on the modeling concepts and on

physical organization and indexing of temporal data.
Temporal Logical Models. Figure 1. Continuous behavior o
This led to the temporal database field to be established,

and several books were written or edited on the subject

(for example [4,5,12]). Since then, the subject continues

to appear in specific application domains, or in combi-

nation with other concepts, such as spatio-temporal

databases, and managing streaming data.
Foundations

The Treatment of Time in Database Systems

Time is a natural part of the physical world and an

indispensable part of human activity, yet many database

models treat temporal behavior as an afterthought.

For example, weather (temperature, clouds, and storms)

is a continuous phenomenon in time, yet it is treated as

discrete events per day or per hour. In contrast, some

human activities are fundamentally discrete events, such

as salary which may change annually, but are treated as

continuous concepts, where the salary is the same for the

duration between the discrete events of salary changes.

Themain reason for the inconsistent treatment of time is

that temporal objects and their semantics are not explicit

in the data model. Consider for example, temperature

measurements at some weather station as shown in

Fig. 1. These are represented in conventional database

systems (such as relational data models) as a two-part

concept of time-of-measurement and value-of-measure-

ment attributes, but the fact that the measurements

are taken at evenly spaced intervals (e.g., every half an

hour) and that the temperature represents a continuous
f temperature measurements.

Temporal Logical Models T 2993
phenomenon is not captured. Consequently, if one

asks what the temperature was at 12:35A.M, no such

value exists. Furthermore, the interpolation function

associated with getting this value is unknown. It could

be a simple weighted averaging of the two nearest

values, or a more sophisticated curve interpolation

function.

Temporal Data Behavior

Temporal logical models are models designed to cap-

ture the behavior of temporal data sequences. First,

some examples that illustrate the concepts that need

to be captured by the model are presented.

Example 1: wind velocity. Usually, the measure-

ments of wind velocity are taken by devices at regular

time periods, for example every hour. These are re-

ferred to as “time series.” In this example, the measured

quantity is not a single value, but has a more complex

structure. It measures the direction of the wind and the

velocity of the wind, which can be represented as a

three-dimensional vector. The measured phenomenon

is continuous, of course, but for this application it is

determined by the database designers that a certain

time granularity for queries is desired, such as values

by minutes. Since the values are collected only hourly,

an interpolation function must be provided and asso-

ciated with this time sequence. The behavior is similar

to the temperature behavior shown in Fig. 1, except

that the measured values are three-dimensional vectors

for each time point.

Example 2: bank account. The amount of money in

the bank account changes when transactions take

place. Money can be added or taken out of the account

at irregular times. The value of the account is the same

for the duration of time between transactions. This is

shown in Fig. 2, where the granularity of the time
Temporal Logical Models. Figure 2. Step-wise constant beh
points is in minutes. Note that the days shown should

have precise dates in the database. Another aspect

in this example is that in the case of a deposit of a

check, funds may not be available until the check

clears. Thus, there are two times associated with the

deposit, the time of the transaction, and the time when

funds are made available.

Example 3: hospitalization visits. Hospital visits of

an individual occur typically at irregular times, and

each can last a period of time, usually measured in

days. The value associated with the hospital visit time

sequence is Boolean; that is, only the fact that a visit

took place or did not. This is an example where the

concept of an interval must be represented in the data

model. This is shown in Fig. 3, where the granularity is

a day, and the interval durations span days. Here again,

the days shown will have to have precise dates in

the database.

Example 4: store revenue. Suppose that a store

owner wishes to keep in a database the total revenue

per day. The time sequence is regular, i.e., a time series

(not counting days when the store is closed). The

values per day do not represent continuous phenome-

na, but rather they are discrete in time, collected every

day at the end of that day. This is the same as repre-

senting discrete events, such as the time of an accident,

etc. In general, it does not make sense to apply inter-

polation to such a time sequence. However, if some

data are missing, an interpolation rule could be used to

infer the missing values. This is shown in Fig. 4. This is

a time series, because only the days of business are

shown (Monday – Friday).

In the example above, only a single time sequence is

shown, but there could be a collection of related time

sequences. For example, time sequences of the quantity

of each item sold in a store. For each item, there is a
avior of a bank account.

T

Temporal Logical Models. Figure 3. Interval behavior of hospital visits.

Temporal Logical Models. Figure 4. Discrete behavior of store revenues.

2994T Temporal Logical Models
time sequence. However, all time sequences in this case

have the same behavior, and they are collected in

tandem per day. Such groups of related time sequences

are referred to as “time sequence collections” [11]. As

is discussed later, this concept is important for opera-

tions performed over collections of time sequences.

Behavioral Properties of Temporal Sequences

As is evident from the above examples, there are cer-

tain properties that can be specified to capture the

logical behavior of temporal sequences. If such proper-

ties were supported by database systems, it is only

necessary in such systems to store temporal data as

time-value pairs in the general case, or simply ordered

sequences of values for time series. These properties

are discussed next, along with the possible category

values they can assume.
Time-granularity: value and unit

The time-granularity indicates the time points for

which data values can exist in the model. It is the

smallest unit of time measure between time points in

the time sequence. For example, if deposits and with-

drawals to a bank account can be recorded with a

minute precision, then the time granularity is said

to be a minute. However, in cases where data values

can be interpolated, an interpolation-granularity needs

to be specified as well. For example, the temperatures

shown in Fig. 1 are recorded every half an hour,

and therefore the time granularity is 30 minutes, but

given that values can be interpolated up to a

minute precision, it is necessary to specify that the

interpolation-granularity is a minute. This point is

discussed further below in the section on “interpola-

tion rule.” Note that for regular time sequences (time

Temporal Logical Models T 2995

T

series), it is often necessary to describe the origin of the

time sequence, and the time granularity is relative to

that origin. A formal treatment of time granularity can

be found in [1].

1) Regularity: regular (time series), irregular

As mentioned above time series are regular

sequences. They can be described by specifying the

“time-step” between the time points. The time-step

together with the “life span” (described next) specify

fully the time points for which data values are expected

to be provided. Because of its regular nature, it is not

necessary to store the time points in the databases –

these can be calculated. However, this is a physical

implementation choice of the system, and the time

values can be stored explicitly to provide faster access.

Time series are prevalent in many applications, such as

statistics gathering, stock market, etc.

Irregular time sequences are useful for event data that

occurs in unpredictable patterns, such as bank withdra-

wals, visits to the library, or making a phone call. A

typical phenomena in such sequences, is that most of

the time points have no values associated with them. For

example, suppose that the time granularity for recording

phone calls is aminute. The time sequence of phone calls

will typically be mostly empty (or null). For this reason,

irregular time sequences are usually represented as time-

value pairs in the database.

Life span: begin-time, end-time

The life span indicates for what period of time

the time sequence is valid. The begin-time is always

necessary, and has to be specified with the same preci-

sion of the time granularity. For example, if for the

temperature time series in Fig. 1, the begin-time was

January 1, 1:15 A.M, and the granularity was 30 min-

utes, then the time points will be 1:15 A.M, 1:45 A.M,

2:15 A.M, etc.

The life span end-time can be specified as “open-

ended.” That means that this time series is active.

Behavior type: continuous, step-wise-constant, in-

terval, discrete.

These types were illustrated in the examples of the

previous section. For example 1, on wind velocity, the

type is continuous. For example 2, the amount available

in a bank account, the type is step-wise-constant. For

example 3, of hospital visits, the type is interval.

For example 4, the store revenues per day, the type is

discrete. Note that the interval type can be considered

as a special case of step-wise-constant type having the

Boolean values (0 or 1). Another thing worth noting is
that discrete time sequences cannot be associated with

an interpolation rule. The interpolation rules for the

other types are discussed next.

Interpolation rule: interpolation-granularity, inter-

polation-function.

The interpolation-granularity has to be specified

in order for the underlying system to enforce the data

points for which interpolation can be applied in response

to queries. Note that the interpolation-granularity has to

be in smaller units than the time-granularity, and the

number of interpolation-granularity points in a time-

granularity unit must be an integer. For example, while

temperature in the example of Fig. 1 has time-granulari-

ty of 30 minutes, the interpolation-granularity can be

5 minutes.

The interpolation-function for the step-wise-

constant and interval types are straightforward, and

are implied by the type. But, for a continuous type, an

interpolation-function must be specified. It should

be possible to provide the system with such a function

for each continuous time sequence. If no interpolation-

function is provided, the system can use a default

function.

Value type: binary, numeric, character, multi-

valued, etc.

This property of temporal sequences is no differ-

ent from specifying attribute types in conventional

database systems. The case of a binary type is special to

interval events, and is not always supported by conven-

tional system. Also, multi-valued or multi-component

attributes are special requirements for more sophisticat-

ed time sequences that exist in scientific data, such as the

wind velocity in example 2.

Transaction vs. valid time: transaction, valid

Similar to the bank account in example 2 where the

deposit time was different from the time when funds

are available, there are many examples where temporal

data are recorded in the database before the data values

are valid. This concept was explored extensively in

[13], and referred to as “transaction time” and “valid

time.” Actually, there are situations where the transac-

tion time can occur after the valid time for retroactive

cases. For example, a salary raise can be added to a

database in March of some year, but is retroactive to

January of that year. This concept has led to an exten-

sive literature on representing it as an extension of

query languages, including a temporal extension

to the SQL query language, referred to as TSQL [12].

It is worth noting that other concepts of multiple

2996T Temporal Logical Models
temporal dimensions were also introduced in the liter-

ature, in addition to transaction and valid times.

For example, [3] introduced the concept of “event

time” – times of the events that initiates and terminates

the interval validity, and “availability time” – the

time interval during which facts are available.

If multiple temporal dimensions are needed in the

model, they can be thought of as multiple correlated

time sequences. However, in general, each time dimen-

sion can have different properties. For example, the

transaction time sequence for bank deposits can have a

granularity of a minute, while the valid time for the

available funds can be daily.

Operation over Temporal Data

Because of the inherent time order of temporal data,

operations over them, such as “when,” “preceding,” “fol-

lowing,” etc. are based on the time order. Similarly,

the concept of a “time window” is natural. Various

researchers have developed precise semantics to query

languages by adding temporal operators to existing

query languages, including relational query languages,

such as SQL, relational algebras, such as QUEL, func-

tional query languages, such as DAPLEX, deductive

query languages, such a Datalog, and entity-relationship

languages. Many such examples can be found in the

books on temporal databases [4,5]. In order to explain

the various operators, they are classified into the fol-

lowing four categories.

Predicate Operators Over Time Sequences Predicate

operators refer to either specific times or a time inter-

val. For specific times, the obvious predicates include

“before,” “after,” “when,” etc. But, in addition, there are

operators that refer to the life span, such as “first, and

“last.” For time intervals, operators such as “during” or

“interval” are used. Also, when specifying an interval,

the keyword “now” is used to refer to time sequences

that are active, such as “interval” (Jan 01, 2007, now).

Note that the time values used must be expressed at the

granularity of the time sequence (or the interpolation-

granularity if interpolation is allowed). In some time

sequences, it is useful to use an integer to refer to the

nth time instance, such as t-33 to mean the 33rd time

point in the time sequence. However, this is not in-

cluded in most proposed query languages.

Another purpose of predicate operators is to get

back the time periods where some condition on the
data values hold. For example, suppose that a time

sequences represents temperature at some location.

The query “get periods where temperature >100”

(the units are Prof.F) will return a (Boolean) interval

time sequence, where the temperature was greater than

100. Note that “periods” is treated as a keyword.

Aggregation Operators Over Time Windows The usual

statistical operators supported by database systems

(sum, count, average, min, max) can be applied to a

specific time window (t_begin, t_end), to the entire

time sequence (first, last), or to the combinations

(first, t_end), (t_begin, last). In general, “first” or

“last” can be substituted by an instance number, such

as “t-33” mentioned above. Here, again, the time has to

be specified in the granularity of the time sequence.

Another way to apply operators over windows is to

combine that with the “group by” concept. This is

quite natural for temporal sequence that involve calen-

dar concepts of month, day, minute, second, etc. For

example, suppose that a time sequence represents daily

sales. One can have a query “sum sales by month.” This

is the same as asking for multiple windows, each over

the days in each month.

Aggregation Operators Over Time Sequence

Collections In a typical database, time sequences are

defined over multiple object instances. For example,

one can have in an organization the salary history of all

of its employees. Asking for the “average salary over all

employees” over time requires the average operation to

be applied over the entire collection of time sequences.

This operation is not straight forward if all salary raises

do not occur at the same time. This operation will

generate a time sequence whose time points are the

union of all the time points of the time sequences,

where the average values are performed piecewise on

the resulting intervals.

Similar to the case of aggregation over timewindows,

where the “group by” operation can be applied, it is

possible to group by object instances in this case. For

example, if employees are organized by departments,

one can ask for “average salary over all employees per

department.”

Composition of Time Sequences Composition refers

to algebraic operations over different time sequences.

For example, suppose that in addition to salary history

Temporal Logical Models T 2997

T

recorded for each employee in an organization, the

history of commissions earned is recorded. In order

to obtain “total income,” the salary and the commis-

sion time sequences have to be added for each employ-

ee. This amounts to the temporal extension of

algebraic operations on multiple attributes in non-

temporal query languages.

Combinations of the Above Operators It is concep-

tually reasonable to combine the above operators in

query languages. For example, it should be possible to

have the aggregation and composition operators ap-

plied only to a certain time window, such as getting the

“average salary over all employees for the last three

years.” Furthermore, it should be possible to apply a

temporal operator to the result of another temporal

operator. This requires that the result of operations

over time sequences is either a time sequence or a

scalar. If it is a time sequence, temporal operators can

be applied. If it is a scalar (a single value) it can be

applied as a predicate value. This requirement is con-

sistent with other languages, such as the relational

language, where the operation on relations always gen-

erates a relation or a scalar.

Additional Concepts There are many concepts intro-

duced in the literature that capture other logical

aspects of temporal operations and semantics. This

broad literature cannot be covered here; instead, sever-

al concepts are mentioned next. Temporal specializa-

tion and generalization are explored in [6]. Unified

models for supporting point-based and interval-

based semantics are developed in [2,14]. It is argued

in [8] that temporal data models have to include ex-

plicitly the concept of ordered data, and a formal

framework for that is proposed. A single framework

for supporting both time series and version-based

temporal data are developed in [9]. There are also

many papers that discuss how to efficiently support

temporal operations (such as aggregation), see for

example [7,10]. Finally, in the context of streaming

data, temporal aggregation operations on time win-

dows have in explored – see entries on “stream data

management” and “stream mining.”

Key Applications
Temporal data are ubiquitous. It naturally exists in

applications that have time series data, such as stock
market historical data, or history of transactions in

bank accounts. In addition, it is a basic requirement

of scientific databases collecting data from instruments

or performing simulation over time steps. In the past,

many databases contained only the current (most

updated) data, such as current salary of employees,

current inventories in a store or a warehouse, etc. The

main reason for that was the cost of storage and effi-

ciency of processing queries. One could not afford

keeping all the historical data. More recently, as the

cost of storage is plummeting, and compute engines

are faster and can operate in parallel, historical data are

routinely kept. While it is still worth keeping a version

of current data for some applications for efficiency of

access, many applications now use historical data for

pattern and trend analysis over time, especially in data

warehouse applications.
Future Directions
While a lot of research was done on temporal data, the

concepts and operations over such data are only par-

tially supported, if at all, in commercial and open

source database system. Some support only the con-

cept of date_time (it is complex enough, crossing time

zones and century boundaries), but the support for

properties of time sequences and operations over them

are still not generally available. Building such database

systems is still a challenge.
Cross-references
▶Data Models

▶Data Warehouse

▶Database Design

▶Query Language

▶ Spatial Network Databases

▶ Stream Data Analysis

▶ Stream Mining
Recommended Reading
1. Bettini C, Wang X.S., and Jajodia S., A general framework for

time granularity and its application to temporal reasoning. Ann.

Math. Artif. Intell., 22(1–2):29–58, 1998.

2. Chen C.X., and Zaniolo C. Universal temporal extensions for

database languages. In Proc. 15th Int. Conf. on Data Engineer-

ing, 1999, pp. 428–437.

3. Combi C., and Montanari A. Data models with multiple tempo-

ral dimensions: completing the picture. In Proc. 13th Int. Conf.

on Advanced Information Systems Eng., 2001, pp. 187–202.

2998T Temporal Middleware
4. Etzion O, Jajodia S, and Sripada S.M., (eds.). Temporal Data-

bases: Research and Practice. Springer, Berlin Heidelberg, 1998.

5. Tansel A.U., Clifford J., Gadia S.K., Jajodia S., Segev A., and

Snodgrass R.T. Temporal Databases: Theory, Design, and Imple-

mentation. Benjamin/Cummings, Redwood City, CA, 1993.

6. Jensen C.S., and Snodgrass R.T. Temporal specialization and

generalization. IEEE Trans. Knowl. Data Eng., 6(6):954–974,

1994.

7. Kang S.T., Chung Y.D., and Kim M.-Y., An efficient method for

temporal aggregation with range-condition attributes. Inf. Sci.,

168(1–4):243–265, 2004.

8. Law Y.N., Wang H., and Zaniolo C. Query languages and data

models for database sequences and data streams. In Proc. 30th

Int. Conf. on Very Large Data Bases, 2004, pp. 492–503.

9. Lee J.Y., Elmasri R., and Won J. An integrated temporal data

model incorporating time series concept. Data Knowl. Eng., 24

(3):257–276, 1998.

10. Moon B., López I.F.V., and Immanuel V. Efficient algorithms for

large-scale temporal aggregation. IEEE Trans. Knowl. Data Eng.,

15(3):744–759, 2003.

11. Segev A, and Shoshani A. Logical modeling of temporal data. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1987,

pp. 454–466.

12. Snodgrass R.T. The TSQL2 Temporal Query Language. Kluwer,

Norwell, MA, 1995.

13. Snodgrass R.T., and Ahn I. Temporal databases. IEEE Comput.,

19(9):35–42, 1986.

14. Terenziani P., and Terenziani R.T. Reconciling point-based and

interval-based semantics in temporal relational databases: a

treatment of the Telic/Atelic distinction. IEEE Trans. Knowl.

Data Eng., 16(5):540–551, 2004.
Temporal Middleware

▶Temporal Strata
Temporal Object-Oriented
Databases

CARLO COMBI

University of Verona, Verona, Italy

Definition
In a strict sense, a temporal object-oriented database is

a database managed by an object-oriented database

system able to explicitly deal with (possibly) several

temporal dimensions of data. The managed temporal

dimensions are usually valid and/or transaction times.

In a wider sense, a temporal object-oriented database

is a collection of data having some temporal aspect and

managed by an object-oriented database system.
Historical Background
Research studies on time, temporal information,

and object-oriented data started at the end of 1980s

and continued in the 1990s. From the seminal work by

Clifford and Croker on objects in time [4], several

different topics have been discussed. Segev and Rose

studied both the modeling issues and the definition of

suitable query languages [12]; Wuu and Dayal showed

how to use an object-oriented data model to prop-

erly represent several temporal aspects of data [14];

Goralwalla et al. studied the adoption and extension

of an object-oriented database system, TIGUKAT, for

managing temporal data, and finally proposed a

framework allowing one to classify and define different

temporal object-oriented data models, according to

the choices adopted for representing time concepts

and for dealing with data having temporal dimensions

[8]. Schema evolution in the context of temporal ob-

ject-oriented databases has been studied by Goralwalla

et al. and by Edelweiss et al. [6,9]. Bertino et al. studied

the problem of formally defining temporal object-

oriented models [1] and, more recently, they proposed

an extension of the ODMG data model, to deal with

temporalities [2]. Since the end of 1990s, research has

focused on access methods and storage structures, and

on temporalities in object relational databases, which,

in contrast to object-oriented databases, extend the

relational model with some object-oriented features

still maintaining all the relational structures and the

related, well studied, systems. As for the first research

direction, for example, Norvag studied storage struc-

tures and indexing techniques for temporal object

databases supporting transaction time [10]. Recently,

some effort has been done on extending object-

relational database systems with some capability to

deal with temporal information; often, as in the case

of the work by Zimanyi and colleagues, studies on

temporalities in object-relational databases are faced

in the context of spatio-temporal databases, where

temporalities have to be considered together with

the presence of spatial information [15]. In these

years, there were few survey papers on temporal

object-oriented databases, even though they were con-

sidered as a part of survey papers on temporal databases

[11,13]. Since the 1990s, temporal object-oriented data-

bases have also been studied in some more application-

oriented research efforts: among them are temporal

object models and languages for multimedia and for

medical data, as, for example, in [5,7].

Temporal Object-Oriented Databases T 2999

T

Foundations
Object-oriented (OO) methodologies and technologies

applied to the database field have some useful features –

abstract data type definition, inheritance, complex

object management – in modeling, managing, and stor-

ing complex information, as that related to time and to

temporal information. Objects and times have, in some

sense, a twofold connection: from a first point of view,

complex, structured types could be suitably defined

and used to manage both complex time concepts and

temporal dimensions of the represented information;

on the other side, object-oriented data models and

languages may be suitably extended with some built-in

temporal features. In the first case, the object-oriented

technology is performed to show that complex concepts,

as those related to time and temporal information, can

be suitably represented and managed through types,

generalization hierarchies, and so on. In the second

case, the focus is slightly different and is on extending

object-oriented models and languages to consider time-

related concepts as first-class citizens: so, for example,

each object, besides an object identifier, will have a life-

span, managed by the system.

Even though different approaches and proposals

in the literature do not completely agree on the mean-

ing of different terms used by the “object-oriented”

community, there is a kind of agreement on the basic

concepts of any object-oriented data model. An object

may represent any entity of the real world, e.g., a

patient, a therapy, a time interval. The main feature

of an object is its identity, which is immutable, persists

during the entire existence of the object, and is usually

provided by the database system through an identifier,

called OID (Object IDentifier). An object is character-

ized by a state, described by properties (attributes and

associations with other objects) and by a behavior,

defined by methods, describing modalities, by which

it is possible to interact with the object itself. Objects

are created as instances of a type; a class is the collection

(also named extent) of all the objects of a given type

stored into the database at a certain moment. A type

describes (i) the structure of properties through attri-

butes and associations, and (ii) the behavior of its

instances through methods applicable to objects

instances of that type.

To introduce the faced topics, a simple clinical data-

base is used, storing data on symptoms and therapies

of patients and will graphically represent its schema

through the well-known UML notation for class
diagrams, adopting the primitive types provided by the

ODMG data model [3].

Time and Abstract Data Types

Through suitable abstract data types (ADTs), it is pos-

sible to represent several and different features of time

primitives; more specifically ADTs can be suitably

used to represent anchored (i.e., time points and time

periods) and unanchored (i.e., durations) temporal

primitives. Usually, any OO database system allows

one to define ADTs, which can be possibly used to

represent complex temporal concepts; moreover, any

database system usually provides several built-in prim-

itive and complex data types, allowing the user to

represent the most usual time concepts.

Considering, for example, the clinical database

depicted in Fig. 1, it is possible to observe different

data types for time; according to the ODMG data

model, the types Date and Timestamp represent time

points corresponding to days and to seconds, respec-

tively, while the type Interval stands for spans of time,

i.e., distances between two time points.

According to this approach, as underlined by

Wuu and Dayal [14], different types of time could be

defined, starting from some general concept of time,

through aggregation and generalization. For example,

the ODMG type Timestamp could be viewed as a spe-

cialization of a supertype Point, having two opera-

tions defined, i.e., those for comparisons (= and >), as

its behavior. Various time types can be defined as

subtypes of Point. The two operations defined for

Point are inherited, and could be suitably redefined for

different subtypes. Indeed, properties of specific order-

ing relationships determine different time structures,

e.g., total vs. partial, or dense vs. discrete. Moreover,

through the basic structured types provided by the

model, it is possible to build new types for time con-

cepts. As an example, it could be important to specify a

type allowing one to represent periods of time; this way,

it is possible to represent in a more compact and pow-

erful way the periods over which a therapy has been

administered, a symptom was holding, a patient was

hospitalized. Thus, in the database schema a new type

Period will be used as part of types Patient, Th_admin,

and Symptom, as depicted in Fig. 2.

ADTs may be used for managing even more com-

plex time concepts [5], allowing one to deal with times

given at different granularities or with indeterminacy

in a uniform way.

Temporal Object-Oriented Databases. Figure 1. Object-oriented schema of the database about patients’ symptoms

and therapies, using ODMG standard time types.

3000T Temporal Object-Oriented Databases
Temporal Object Data Models

Up to this point, the proposed solutions just use ADTs

to represent complex time concepts; the sound associ-

ation of time to objects for representing temporal

data, i.e., time evolving information, according to

the well-known temporal dimensions, such as valid

and/or transaction times, is left to the user. Focusing,

without loss of generality, on valid time, in the given

example the semantics of valid time must be properly

managed by the application designer, to check that

symptoms occurred and therapies were administered

when the patient was alive, that therapies related to

symptoms were administered after that symptoms

appeared, that there are no different objects describing

the same symptom with two overlapping periods, and

so on.

Managing this kind of temporal aspects in object

databases has been the main focus of several research

studies [13]: the main approaches adopted in dealing
with the temporal dimension of data in object-

oriented data models are (i) the direct use of an

object-oriented datamodel (sometimes already extend-

ed to deal with other features as version management),

and (ii) the modeling of the temporal dimensions of

data through ad-hoc data models. The first approach is

based on the idea that the rich (and extensible) type

system usually provided byOO database systems allows

one to represent temporal dimensions of data as re-

quired by different possible application domains. The

second approach, instead, tries to provide the user with

a data model where temporal dimensions are first-class

citizens, avoiding the user the effort of modeling from

scratch temporal features of data for each considered

application domain.

General OO Models Using OO Concepts for Modeling

Temporal Dimensions Among the proposed object-

oriented systems able to deal with temporal

Temporal Object-Oriented Databases. Figure 2. Object-oriented schema of the database about patients’ symptoms

and therapies, introducing the type Period.

Temporal Object-Oriented Databases T 3001

T

information, OODAPLEX and TIGUKAT adopt the

direct use of an object-oriented data model [7,14]. In

these systems suitable data types allow the database

designer to model temporal information. For example,

TIGUKATmodels the valid time at the level of objects

and of collections of objects. More particularly, for

each single application it is possible to use the rich

set of system-supported types, to define the real se-

mantics of valid (or transaction) time.

According to this approach, the example database

schema could be modified, to manage also the valid

time semantics: as depicted in Fig. 3, objects having

the valid time dimension are explicitly managed

through the type VT_Obj, the supertype of all types

representing temporal information, while the type

Sym_History, based on the (template) type T_valid

History is used to manage the set of objects represent-

ing symptoms.
OO Models Having Explicit Constructs for Temporal

Dimensions of Data Besides the direct use of an OO

data model, another approach which has been widely

adopted in dealing with the temporal dimension of

data by object-oriented data models consists of

temporally-oriented extensions, which allow the user

to explicitly model and consider temporal dimensions

of data. As an example of this approach, Fig. 4 depicts

the schema related to patients’ symptoms and thera-

pies: the temporal object-oriented data model under-

lying this schema allows one to manage the valid

time of objects, often referred to as lifespan in the

object-oriented terminology (this aspect is represented

through the stereotype temporal and the operation

lifespan() for all types); moreover, the temporal

model allows the designer to specify that attributes

within types can be time-varying according to different

granularities: for example, the intensity of a symptom

Temporal Object-Oriented Databases. Figure 3. Object-oriented schema of the database about patients’ symptoms

and therapies, modeling temporal dimensions through suitable types.

3002T Temporal Object-Oriented Databases
may change over time. Finally, temporalities can be

represented even for associations, specifying the gran-

ularity to consider for them. Several constraints can

be defined, and implicitly verified, when defining a

temporal object-oriented data model. For example, in

this case, any object attribute could be constrained to

hold over some subinterval of the lifespan of the con-

sidered object: 8o 2 Symptom (o.intensity.VT() � o.

lifespan()), where VT() returns the overall period over

which the (varying) values of a temporal attribute

have been specified. In a similar way, a temporal rela-

tionship is allowed only when both the related objects

exist. As for the inheritance, objects could be allowed

to move from some supertype to a subtype during

their existence; the constraint here is that their lifespan

as instances of a subtype must be a subinterval of their
lifespan as instances of a supertype: 8o 2 Patient

(o.lifespan() � ((Person)o).lifespan())

Temporal Object Query Languages

According to the approaches for object-oriented data

models dealing with temporal information, even when

querying temporal data, it is possible to either adopt a

generic object-oriented query language and use direct-

ly its constructs for temporal data or extend an (atem-

poral) query language with some ad-hoc keywords and

clauses to deal with temporal data in a more powerful

and expressive way [3,5,12]. For both the approaches,

the main focus is on querying data: data definition

and data manipulation are usually performed through

the object-oriented language provided by the database

system [5].

Temporal Object-Oriented Databases. Figure 4. The temporal object-oriented schema of the database about patients

symptoms and therapies.

Temporal Object-Oriented Databases T 3003
Temporal Object-Oriented Database Systems

Usually, temporal object-oriented database systems,

offering a temporal data model and a temporal query

language, are realized on top of object-oriented data-

base systems, through a software layer able to translate

temporalities in data and queries into suitable data

structures and statements of the underlying OO system

[5]. According to this point of view, only recently some

studies have considered technical aspects at the physi-

cal data level; among them it is worth mentioning here

the indexing of time objects and storage architectures

for transaction time object databases [10].
T

Key Applications
Clinical database systems are among the applications of

temporal object-oriented databases, i.e., the real world

databases where the structural complexity of data needs

for the object-oriented technology. Indeed, clinical da-

tabase systems have to manage temporal data, often

with multimedia features, and complex relationships

among data, due both to the healthcare organization

and to the medical and clinical knowledge. Attention in

this field has been paid on the management of clinical

data given at different granularities and with indeter-

minacy [5,7]. Another interesting application domain
’

is that of video database systems, where temporal

aspects of object technology have been studied for the

management of temporal aspects of videos. Complex

temporal queries have been studied in this context,

involving spatio-temporal constrains between moving

objects.

Future Directions
New and more intriguing topics have attracted the

attention of the temporal database community in

these last years; however, the results obtained for tem-

poral object-oriented databases could be properly

used in different contexts, such as that of temporal

object-relational databases, which seem to attract also

the attention of the main companies developing com-

mercial database systems, and that of semi-structured

temporal databases, where several OO concepts could

be studied and extended to deal with temporalities for

partially structured information (as that represented

through XML data).

Cross-references
▶Object-Oriented Data Model

▶Object Query Language

▶Object-Relational Data Model

▶ Spatio-temporal Data Models

3004T Temporal Periodicity
▶Temporal Granularity

▶Temporal Indeterminacy

▶Temporal Query Languages
Recommended Reading
1. Bertino E., Ferrari E., and Guerrini G. A formal temporal object-

oriented data model. In Advances in Database Technology,

Proc. 5th Int. Conf. on Extending Database Technology, 1996,

pp. 342–356.

2. Bertino E., Ferrari E., Guerrini G., and Merlo I. T-ODMG: an

ODMG compliant temporal object model supporting multiple

granularity management. Inf. Syst., 28(8):885–927, 2003.

3. Cattel R.G.G. and Barry D.K. (eds.). The Object Data Standard:

ODMG 3.0. Morgan Kaufmann, Los Altos, CA, 2000.

4. Clifford J. and Croker A. Objects in time. IEEE Data Eng. Bull.,

11(4):11–18, 1988.

5. Combi C., Cucchi C., and Pinciroli F. Applying object-oriented

technologies in modeling and querying temporally-oriented

clinical databases dealing with temporal granularity and indeter-

minacy. IEEE Trans. Inf. Tech. Biomed., 1:100–127, 1997.

6. Galante R.M., dos Santos C.S., Edelweiss N., and Moreira A.F.

Temporal and versioning model for schema evolution in object-

oriented databases. Data Knowl. Eng., 53(2):99–128, 2005.

7. Goralwalla I.A., Özsu M.T., and Szafron D. Modeling medical

trials in pharmacoeconomics using a temporal object model.

Comput. Biol. Med., 27:369–387, 1997.

8. Goralwalla I.A., Özsu M.T., and Szafron D. An object-oriented

framework for temporal data models. In Temporal Databases:

Research and Practice. O. Etzion, S. Jajodia, S. Sripada (eds.),

Springer, 1998, pp. 1–35.

9. Goralwalla I.A., Szafron D., Özsu M.T., and Peters R.J. A tempo-

ral approach to managing schema evolution in object database

systems. Data Knowl. Eng., 28(1):73–105, 1998.

10. Nørvåg K. The vagabond approach to logging and recovery in

transaction-time temporal object database systems. IEEE Trans.

Knowl. Data Eng., 16(4):504–518, 2004.

11. Ozsoyoglu G. and Snodgrass R.T. Temporal and real-time data-

bases: a survey. IEEE Trans. Knowl. Data Eng., 7(4):513–32,

1995.

12. Rose E. and Segev A. TOOSQL – A Temporal Object-Oriented

Query Language. In Proc. 12th Int. Conf. on Entity-Relationship

Approach, 1993, pp. 122–136.

13. Snodgrass R.T. Temporal Object-Oriented Databases: A Critical

Comparison. In Modern Database Systems: The Object Model,

Interoperability and Beyond. W. Kim (ed.). Addison-Wesley,

1995, pp. 386–408.

14. Wuu G.T.J. and Dayal U. A Uniform Model for Temporal and

Versioned Object-oriented Databases. In Temporal Databases.

A.U. Tansel, J. Clifford, S.K. Godia, A. Segev, R. Snodgrass (eds.),

1993, pp. 230–247.

15. Zimányi E. and Minout M. Implementing conceptual spatio-

temporal schemas in object-relational dbmss. In OTM Work-

shops (2). LNCS, Vol. 4278, R. Meersman, Z. Tari, P. Herrero

(eds.), 2006, pp. 1648–1657.
Temporal Periodicity

PAOLO TERENZIANI

University of Turin, Turin, Italy

Definition
Informally, periodic events are events that repeat regu-

larly in time (e.g., each Tuesday), and temporal period-

icity is their temporal periodic pattern of repetition.

A pattern is periodic if it can be represented by specify-

ing a finite portion of it, and the duration of each

repetition. For instance, supposing that day 1 is a

Monday, the pair <‘day 2,’ ‘7 days’> may implicitly

represent all Tuesdays.

A useful generalization of periodic patterns are

eventually periodic ones, i.e., patterns that can be

expressed by the union of a periodic pattern and a

finite non-periodic one.

The above notion of periodic events can be further

extended. For instance, Tuzhilin and Clifford [14] dis-

tinguish between “strongly” periodic events, that occur

at equally distant moments in time (e.g., a class, sched-

uled to meet once a week, on Wednesday at 11A.M),

“nearly periodic” events, occurring at regular periods,

but not necessarily at equally distant moments of time

(e.g., a meeting, that has to be held once a week, but

not necessarily on the same day), and “intermittent”

events, such that if one of them occurred then the next

one will follow some time in the future, but it is not

clear when (e.g., a person visiting “periodically” a

pub). Most of the approaches discussed in the follow-

ing cope only with “strongly” periodic events.

Finally, it is worth highlighting that “(periodic)

temporal granularity,” “calendar,” and “calendric

system” are notions closely related to temporal

periodicity.

Historical Background
Temporal periodicity is pervasive of the world all

around us. Many natural and artificial phenomena

take place at periodic time, and temporal periodicity

seems to be an intrinsic part of the way humans

approach reality. Many real-world applications, inclu-

ding process control, data access control, data broad-

casting, planning, scheduling, multimedia, active

databases, banking, law and so on need to deal with

periodic events. The problem of how to store and query

Temporal Periodicity T 3005

T

periodic data has been widely studied in the fields of

databases, logic, and artificial intelligence.

In all such areas it is widely agreed that, since many

different data conventions exist, a pre-defined set of

periodicities would not suffice. For instance, Snod-

grass and Soo [12] have emphasized that the use of a

calendar depends on the cultural, legal, and even busi-

ness orientation of the users, and listed many exam-

ples of different calendric systems. As a consequence,

many approaches to user-defined temporal periodicity

have been proposed. The core issue is the definition of

expressive formal languages to represent and query

user-defined temporal periodicity. In particular, an

implicit representation [2] is needed, since it allows

one to cope with data holding at periodic times in a

compact way instead of explicitly listing all the

instances (extensions) of the given periodicity (e.g.,

all “days” in a possibly infinite frame of time). Addi-

tionally, also the set-theoretic operations (intersection,

union, difference) on definable periodicities can be

provided (e.g., in order to make the formalism a suit-

able candidate to represent periodic data in temporal

databases). Operationally, also mapping functions be-

tween periodicities are an important issue to be taken

into account.

Within the database community, the problem of

providing an implicit treatment of temporal periodici-

ty has been intensively investigated since the late 1980s.

Roughly speaking, such approaches can be divided

into three mainstreams (the terminology is deri-

ved from Baudinette et al. [2] and Niezette and

Stevenne [9]):

(1) Deductive rule-based approaches, using deductive

rules. For instance, Chomicki and Imielinsky [4]

dealt with periodicity via the introduction of the

successor function in Datalog;

(2) Constraint-based approaches, using mathematical

formulae and constraints (e.g., [6]);

(3) Symbolic approaches, providing symbolic formal

languages to cope with temporal periodicity in

a compositional (and hopefully natural and

commonsense) way (consider, e.g., [9,8]).

Tuzhilin and Clifford [14] have proposed a compre-

hensive survey of many works in such mainstreams,

considering also several approaches in the areas of

logics and of artificial intelligence.
Foundations
In the following, the main features of the three main-

streams mentioned above are analyzed.

Deductive Rule-Based Approaches

Probably the first milestone among deductive rule-

based approaches is the seminal work by Chomicki

and Imielinski [4], who used Datalog1S to represent

temporal periodicity. Datalog1S is the extension to

Datalog with the successor function. In their approach,

one temporal parameter is added to Datalog1S predi-

cates, to represent time. For instance, in their ap-

proach, the schedule of backups in a distributed

system can be represented by the following rules:

backup Tþ 24;Xð Þ backup T;Xð Þ

backup T;Yð Þ dependent X;Yð Þ; backup T;Xð Þ

The first rule states that a backup on amachine should be

taken every 24 hours. The second rules requires that all

backups should be taken simultaneously on all depen-

dent machines (e.g., sharing files). Of course, Datalog1S
programs may have infinite least Herbrand models, so

that infinite query answers may be generated. Howev-

er, in their later works Chomicki and Imielinski have

provided a finite representation of them.

Another influential rule-based approach is based

on the adoption of Templog, an extension of logic

programming based on temporal logic. In this lan-

guage, predicates can vary with time, but the time

point they refer to is defined implicitly by temporal

operators rather than by an explicit temporal argu-

ment [2]. Specifically, three temporal operators are

used in Templog: next, which refers to the next time

instant, always, which refers to the present and all the

future time instants, and eventually, which refers to the

present or to some future time instant.

Constraint-Based Approaches

While deductive rule-based approaches rely on deduc-

tive database theory, the approaches of the other

mainstreams apply to relational (or object-oriented)

databases.

Kabanzaet al. [6]havedefineda constraint-based for-

malism based on the concept of linear repeating points

(henceforth lpr’s). A lrp is a set of points {x(n)}

defined by an expression of the form x(n) = c + kn

3006T Temporal Periodicity
where k and c are integer constants and n ranges over

the integers.

A generalized tuple of temporal arity k is a tuple

with k temporal attributes, each one represented by a

lrp, possibly including constraints expressed by linear

equalities or disequalities between temporal attributes.

Semantically, a generalized tuple denotes a (possibly

infinite) set of (ordinary) tuples, one tuple for each

value of the temporal attributes satisfying the lrp’s

definitions and the constraints. For instance, the

generalized tuple

a1;:::; anj 5þ 4n1; 7þ 4n2½ �LX1 ¼ X2 � 2ð Þ

(with data part a1,...,an) represents the infinite set of

tuples with temporal attributes X1 and X2, such that

X1 = 5 + 4n1, X2 = 7 + 4n2, X1 = X2–2, for some

integers n1 and n2, i.e.,

. . . a1;:::;anj½1; 3ð �f Þ; a1;:::;anj 5; 7½ �ð Þ;
a1;:::;anj 9; 10½ �ð Þ;:::g

A generalized relation is a finite set of generalized tuples

of the same schema.

In Kabanza et al. [6], the algebraic operations (e.g.,

intersection) have been defined over generalized rela-

tions as mathematical manipulations of the formulae

coding lrp’s.

A comparative analysis of deductive rule-based and

constraint-based approaches has been provided, e.g.,

by Baudinet et al. [2], showing that they have the same

data expressiveness (i.e., the set of temporal databases

that can be expressed in such languages is the same).

Specifically, as concerns the temporal component,

they express eventually periodic sets of points (which

are, indeed, points that can be defined by Presburger

Arithmetics – see below). In such an approach, the

query expressiveness and the computational complexi-

ty of such formalisms have also been studied.

Symbolic Approaches

In constraint-based approaches, temporal periodicity

is represented through mathematical formulae. Several

authors have suggested that, although expressive, such

approaches do not cope with temporal periodicity in a

“commonsense” (in the sense of “human-oriented”)

way, arguing in favor of a symbolic representation, in

which complex periodicities can be compositionally

built in terms of simpler ones (see, e.g., the discussions

in [9,13]). A milestone in the area of symbolic
approaches to temporal periodicity is the early ap-

proach by Leban et al. [8]. In Leban’s approach, collec-

tions are the core notion. A collection is a structured

set of intervals (elsewhere called periods). A base col-

lection, partitioning the whole timeline (e.g., the col-

lection of seconds), is used as the basis of the

construction. A new partition P’ of the timeline (called

calendar in Leban’s terminology) can be built from

another partition P as follow:

P0 ¼< P; s0; . . . sn�1 >

where s0,...,sn-1 are natural numbers greater than 0.

Intuitively, s0,...,sn-1 define the number of periods

of P whose unions yield periods of P0, intending

that the union operation has to be repeated cyclically.

For example, Weeks = {Days;7} defines weeks as

aggregations of seven days. Analogously, months

(not considering leap years for the sake of brevity)

can be defined by the expression Months = {Days;

31,28,31,30,31,30,31,31,30,31,30,31}.

Two classes of operators, dicing and slicing, are

defined in order to operate on collections.

The dicing operators provide means to further

divide each period in a collection within another col-

lection. For example, given the definitions of Days and

Weeks, Day:during:Weeks breaks up weeks into the

collection of days they contain. Other dicing operators

are allowed (taken from a subset of Allen’s relations

[1]). Slicing operators provide a way of selecting per-

iods from collections. For instance, in the expression

2/Day:during:Weeks the slicing operator “2/” is used in

order to select the second day in each week. Different

types of slicing operators are provided (e.g., -n/selects

the n-th last interval from each collection).

Collection expressions can be arbitrarily built by

using a combination of these operators (see, e.g., The

examples in Figure 1).

While Leban’s approach was mainly aimed to rep-

resent periodicity within knowledge bases (i.e., in arti-

ficial intelligence contexts), later on it has played an

increasingly important role also in the area of temporal

databases. Recently, Terenziani [8] has defined a tem-

poral extension to relational databases, in which the

valid time of periodic tuples can be modeled through

(an extension of) Leban’s language, and symbolic ma-

nipulation is used in order to perform algebraic opera-

tions on the temporal relations.

Another early symbolic approach which has been

widely used within the database and artificial

Temporal Periodicity. Figure 1. Operators in Leban’s language.

Temporal Periodicity T 3007

T

intelligence areas is the one by Niezette and Stevenne

[9], who provided a formalism as well as the algebraic

operations on it, mostly as an upper layer built upon

linear repeating points [6]. A comparison between such

a formalism and Leban’s one, as well as an analysis of

the relationships between the periodicities defined by

such languages and periodic granularities has been

provided by Bettini and De Sibi [3]. A recent influen-

tial symbolic approach, based on the notion of period-

ic granularities, has been proposed by Ning et al. [10].

An important issue concerns the formal analysis of

the expressiveness (and of the semantics) of the im-

plicit representation formalisms proposed to cope with

temporal periodicity. Presburger Arithmetics, i.e., the

first-order theory of addition and ordering over inte-

gers, is a natural reference to evaluate the expressive-

ness (and semantics) of such languages, because of its

simplicity, decidability, and expressiveness, since it

turns out that all sets definable in Presburger Arith-

metics are finite, periodic, or eventually periodic.

A recent comparison of the expressiveness of several

constraint-based and symbolic approaches, based on

Presburger Arithmetics, has been provided by Egidi

and Terenziani [15].

While the above-mentioned approaches in [9,6,13]

mainly focused on extending the relational model to

cope with temporal periodicity, Kurt and Ozsoyoglu

[7] devoted more attention to the definition of a peri-

odic temporal object oriented SQL. They defined the

temporal type of periodic elements to model strictly

periodic and also eventually periodic events. Periodic

elements consist of both an aperiodic part and a

periodic part, represented by the repetition pattern

and the period of repetition. They also defined the

set-theoretic operations of union, intersection, com-

plement and difference, which are closed with respect

to periodic elements.

Moreover, in the last years, periodicity has also

started to be studied in the context of moving objects.
In particular, Revesz and Cai [11] have taken into

account also periodic (called cyclic periodic) and even-

tually periodic (called acyclic periodic) movements of

objects. They have proposed an extended relational

data model in which objects are approximated by

unions of parametric rectangles. Movement is coped

with by modeling the x and y dimensions of rectangles

through functions of the form f(t mod p), where

t denotes time, p the repetition period, and mod the

module function. Revesz and Cai have also defined the

algebraic operations on the data model.

Key Applications
Temporal periodicity plays an important role in many

application areas, including process control, data ac-

cess control, office automation, data broadcasting,

planning, scheduling, multimedia, active databases,

banking, and so on. Languages to specify user-defined

periodicities in the queries have been already supported

by many approaches, including commercial ones. For

instance, Oracle provides a language to specify period-

icity in the queries to time series (e.g., to ask for the

values of IBM at the stock exchange each Monday).

Even more interestingly, such languages can be used

in the data, in order to express (finite and infinite)

periodic valid times in an implicit and compact way.

However, such a move involves an in-depth revision

and extension of “standard” database theory and tech-

nology, which have been partly addressed within the

temporal database research community, but have not

yet been fully implemented in commercial products.

Cross-references
▶Allen’s Relations

▶Calendar

▶Calendric System

▶Temporal Granularity

▶Time Series Query

▶Valid Time

3008T Temporal Projection
Recommended Reading
1. Allen J.F. Maintaining knowledge about temporal intervals.

Commun. ACM, 26(11):832–843, 1983.

2. Baudinet M., Chomicki J., and Wolper P. Temporal deductive

databases. In Temporal Databases, A. Tansel, J. Clifford,

S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass (eds.).

Benjamin/Cummings, 1993, pp. 294–320.

3. Bettini C. and De Sibi R. Symbolic representation of user-

defined time granularities. Ann. Math. Artif. Intell.,

30(1–4):53–92, 2000.

4. Chomicki J. and Imielinsky T. Temporal deductive databases

and infinite objects. In Proc. 7th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 1988,

pp. 61–73.

5. Egidi L. and Terenziani P. A mathematical framework for the

semantics of symbolic languages representing periodic time.

Ann. Math. Artif. Intell., 46:317–347, 2006.

6. Kabanza F., Stevenne J.-M., and Wolper P. Handling infinite

temporal data. In Proc. 9th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 1990, pp. 392–403.

7. Kurt A. and Ozsoyoglu M. Modelling and querying peri-

odic temporal databases. In Proc. 6th Int. Conf. and Work-

shop on Database and Expert Systems Applications, 1995,

pp. 124–133.

8. Leban B., McDonald D.D., and Forster D.R. A representation

for collections of temporal intervals. In Proc. 5th National Conf.

on AI, 1986, pp. 367–371.

9. Niezette M. and Stevenne J.-M. An efficient symbolic represen-

tation of periodic time. In Proc. Int. Conf. on Information and

Knowledge Management, 1992.

10. Ning P., Wang X.S., and Jajodia S. An algebraic representation

of calendars. Ann. Math. Artif. Intell., 36(1–2):5–38, 2002.

11. Revesz P. and Cai M. Efficient querying and animation of peri-

odic spatio-temporal databases. Ann. Math. Artif. Intell.,

36(4):437–457, 2002.

12. Snodgrass R.T. and Soo M.D. 1Supporting multiple calendars.

In The TSQL2 Temporal Query Language, R.T. (ed.).

R.T. Snodgrass (ed.). Kluwer, Norwell, MA, 1995, pp. 103–121.

13. Terenziani P. Symbolic user-defined periodicity in temporal

relational databases. IEEE Trans. Knowl. Data Eng., 15(2):

489–509, 2003.

14. Tuzhilin A. and Clifford J. On periodicity in temporal databases.

Inf. Syst., 20(8):619–639, 1995.
Temporal Projection

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Temporal assignment
Definition
In a query or update statement, temporal projection

pairs the computed facts with their associated times,

usually derived from the associated times of the under-

lying facts.

The generic notion of temporal projection may be

applied to various specific time dimensions. For exam-

ple, valid-time projection associates with derived facts

the times at which they are valid, usually based on the

valid times of the underlying facts.
Key Points
While almost all temporal query languages support

temporal projection, the flexibility of that support

varies greatly.

In some languages, temporal projection is implicit

and is based the intersection of the times of the under-

lying facts. Other languages have special constructs to

specify temporal projection.

The term “temporal projection” has been used

extensively in the literature. It derives from the

retrieve clause in Quel as well as the SELECT clause

in SQL, which both serve the purpose of the relational

algebra operator (generalized) projection, in addition

to allowing the specification of derived attribute

values.

The related concept called “temporal assignment”

roughly speaking is a function that maps a set of time

values to a set of values of an attribute. One purpose

of a temporal assignment would be to indicate when

different values of the attribute are valid.
Cross-references
▶ Projection

▶ SQL

▶ SQL-Based Temporal Query Languages

▶Temporal Database

▶Temporal Query Languages

▶TSQL2

▶Valid Time
Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary

of temporal database concepts – February 1998 version.

In Temporal Databases: Research and Practice, O. Etzion, S.

Jajodia, S. Sripada (eds.), Springer-Verlag, Berlin, 1998,

pp. 367–405.

Temporal Query Languages T 3009
Temporal Query Languages

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1University of Aalborg, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Historical query languages

Definition
A temporal query language is a database query lan-

guage that offers some form of built-in support for the

querying and modification of time-referenced data, as

well as enabling the specification of assertions and

constraints on such data. A temporal query language

is usually quite closely associated with a temporal data

model that defines the underlying data structures to

which the language applies.
T

Historical Background
When the relational data model was proposed by Codd,

he also proposed two query languages: the relational

calculus and the relational algebra. Similarly, temporal

data models are closely coupled with temporal query

languages.

Most databases store time-referenced, or tempo-

ral, data. The ISO standard Structured Query Lan-

guage SQL [4] is often the language of choice when

developing applications that utilize the information

captured in such databases. In spite of this, users

realize that temporal data management is often chal-

lenging with SQL. To understand some of the diffi-

culties, it is instructive to attempt to formulate the

following straightforward, realistic queries, asser-

tions, and modifications in SQL. An intermediate

SQL programmer can express all of them in SQL for

a database without time-referenced data in perhaps 5

minutes. However, even SQL experts find these same

queries challenging to do in several hours when the

data are time-referenced [6].

� An Employee table has three attributes: Name,
Manager, and Dept. Temporal information is
retained by adding a fourth attribute, When, of
data type PERIOD. Attribute Manager is a foreign
key for Employee.Name. This means that at each
point in time, the Manager value of a tuple also
occurs as a Name value (probably in a different
tuple). This cannot be expressed via SQL’s for-
eign-key constraint, which fails to take time into
account. Formulating this constraint as an assertion
is challenging.

� Consider the query “List those employees who are

not managers.” This can easily be expressed in SQL,

using EXCEPT or NOT EXISTS, on the original,
non-temporal relation with three attributes. Things
are just a little harder with the When attribute; a
WHERE predicate is required to extract the current
employees. To formulate the query “List those
employees who were not managers, and indicate
when,” EXCEPT and NOT EXISTS do not work
because they do not consider time. This simple
temporal query is hard to formulate, even for SQL
experts.

� Consider the query “Give the number of employees

in each department.” Again, this is a simple

SQL query using the COUNT aggregate when for-
mulated on non-temporal data. To formulate the
query on temporal data, i.e., “Give the history of

the number of employees in each department,” is

very difficult without built-in temporal support in

the language.

� The modification “Change the manager of the

Tools department for 2004 to Bob” is difficult in

SQL because only a portion of many validity peri-

ods are to be changed, with the information outside

of 2004 being retained.

Most users know only too well that while SQL is an

extremely powerful language for writing queries on the

current state, the language provides much less help

when writing temporal queries, modifications, and

assertions and constraints.

Hence there is a need for query languages that

explicitly “understand” time and offer built-in support

for the management of temporal data. Fortunately, the

outcomes of several decades of research in temporal

query languages demonstrate that it is indeed possible

to build support for temporal data management into

query languages so that statements such as the above

are easily formulated.
Foundations
Structure may be applied to the plethora of temporal

query languages by categorizing these languages

according to different concerns.

3010T Temporal Query Languages
Language Extension Approaches

One attempt at bringing structure to the diverse col-

lection of temporal query languages associates these

languages with four approaches that emphasize how

temporal support is being added to a non-temporal

query language [1].

Abstract Data Types for Time From a design and im-

plementation perspective, the simplest approach to

improving the temporal data management capabilities

of an existing query language is to introduce time data

types with associated predicates and functions. This

approach is common for query languages associated

with temporal object-oriented databases [7].

Data types for time points, time intervals (periods),

and for durations of time may be envisioned, as may

data types for temporal elements, i.e., finite unions of

time intervals. The predicates associated with time-in-

terval data types are often inspired by Allen’s 13 interval

relationships. With reference to these, different sets of

practical proposals for predicates have been proposed.

However, while being relatively easy to achieve, the

introduction of appropriate time data types results

only in modest improvements of the temporal data

management capabilities of the query language.

Use of Point Timestamps An interval timestamp asso-

ciated with a tuple in a temporal relational data model is

often intended to capture the fact that the information

recorded by the tuple is valid at each time point

contained in the interval. This way, the interval is simply

a compact representation of a set of time points. Thus,

the same information can be captured by a single tuple

timestamped with an interval and a set of identical

tuples, each timestamped with a different time point

from the interval (with no time points missing).

One attraction of intervals is that their representing is

of fixed size. Another is that they appear to be very

intuitive to most users — the notion of an interval is

conceptually very natural, and people use it frequently in

their daily thinking and interactions. In some respects, the

most straightforward and simplest means of capturing

temporal aspects is to use interval-valued timestamps.

However, the observation has also been advanced

that the difficulty in formulating temporal queries on

relations with interval-timestamped tuples stem exactly

from the intervals – Allen has shown that there are 13

possible relations between a pair of intervals. It has been

argued that a language such as SQL is unprepared to
support something (an interval) that represents some-

thing (a convex set of time points) that it is not.

Based on this view, it is reasonable to equip an SQL

extended with interval-valued timestamps with the

ability to unfold and fold timestamps. The unfold func-

tion maps an interval-stamped tuple (or set of tuples) to

the corresponding set of point-stamped tuples (set of

tuples), and the fold function collapses a set of point-

stamped tuples into the corresponding interval-stamped

tuple(s). This way, it is possible to manipulate both

point- and interval-stamped relations in the same lan-

guage. If deemed advantageouswhen formulating a state-

ment, one can effectively avoid the intervals by first

unfolding all argument relations. Then the statement is

formulated on the point-stamped relations. At the end,

the result can be folded back into an interval-stamped

format that lends itself to presentation to humans.

A more radical approach to designing a temporal

query language is to completely abandon interval time-

stamps and use only point timestamps. This yields a

very clean and simple design, although it appears that

database modification and the presentation of query

results to humans must still rely on intervals and thus

are “outside” the approach.

The strength of this approach lies in its generaliza-

tion of queries on non-temporal relations to

corresponding queries on corresponding temporal

relations. The idea is to extend the non-temporal

query with equality constraints on the timestamp at-

tribute of the temporal relation, to separate different

temporal database states during query evaluation,

thereby naturally supporting sequenced semantics.

Syntactic Defaults This approach introduces what may

be termed syntactic defaults along with the introduction

of temporal abstract data types, the purpose being to

make the formulation of common temporal queries

more convenient. Common defaults concern the access

to the current state of a temporal relation and the

handling of temporal generalizations of common non-

temporal queries, e.g., joins. The temporal generalization

of a non-temporal join is one where two tuples join if

their timestamps intersect and where the timestamp of

the result tuple is the intersection of the timestamps.

Essentially, the non-temporal query is computed for

each point in time, and the results of these queries are

consolidated into a single result. The nature of the con-

solidation depends on the data type of the timestamps; if

intervals are used, the consolidation involves coalescing.

Temporal Query Languages T 3011

T

The most comprehensive approach based on syn-

tactic defaults is the TSQL2 language [5], but many of

the earlier query languages that the creators of this

language were attempting to consolidate also follow

this approach. As an example, TSQL2 includes a de-

fault valid clause that computes the intersection of the

valid times of the tuples in the argument relations

mentioned in a statement’s from clause, which is then

returned in the result. So as explained above, the time-

stamp of a tuple that results from joining two relations

is the intersection of the timestamps of the two argu-

ment tuples that produce the tuple. When there is only

one argument relation, the valid clause produces the

original timestamps.

Such defaults are very effective in enabling the

concise formulation of common queries, but they

also tend to complicate the semantics of the resulting

temporal query language.

Semantic Defaults The use of semantic defaults is

motivated in part by the difficulties in systematically

extending a large and unorthogonal language such as

SQLwith syntactic defaults that are easy to understand

and that do not interact in unintended ways. With this

approach, so-called statement modifiers are added to a

non-temporal query language, e.g., SQL, in order to

obtain built-in temporal support [8].

It was argued earlier that statements that are easily

formulated in SQL on non-temporal relations can be

very difficult to formulate on temporal relations. The

basic idea is then tomake it easy to systematically formu-

late temporal queries from non-temporal queries. With

statementmodifiers, a temporal query is then formulated

by first formulating the “corresponding” non-temporal

query (i.e., assuming that there are no timestamp attri-

butes on the argument relations) and then applying a

statement modifier to this query.

For example, to formulate a temporal join, the first

step is to formulate the corresponding non-temporal

join. Next, a modifier is placed in front of this query to

indicate that the non-temporal query is to be rendered

temporal by computing it at each time point. The

modifier ensures that the argument timestamps overlap

and that the resulting timestamp is the intersection of

the argument intervals. The attraction of using state-

ment modifiers is that these may be placed in front of

any non-temporal query to render that query temporal.

Statement modifiers are capable of specifying the

semantics of the temporal queries unambiguously,
independently of the syntactic complexity of the

queries that the modifiers are applied to. This renders

semantic defaults scalable across the constructs of the

language being extended. With modifiers, the users

thus need not worry about which predicates are needed

on timestamps and how to express timestamps to be

associated with result tuples. Further, the use of state-

ment modifiers makes it possible to give more meaning

to interval timestamps; they need no longer be simply

compact representations of convex sets of time points.

Additional Characterizations of Temporal Query

Languages

Several additional dimensions exist on which temporal

query languages can be characterized. One is abstract-

ness: is the query language at an abstract level or at a

concrete level. Examples of the former are Temporal

Relational Calculus and First-order Temporal Logic; an

example of the latter is TSQL2.

Another dimension is level: is the query language at

a logical or a physical level? A physical query language

assumes a specific representation whereas a logical

query language admits several representations. Exam-

ples of the former are examined in McKenzie’s survey

of relational algebras [3]; an example of the latter is the

collection of algebraic operators defined on the Bitem-

poral Conceptual Data Model [2], which can be

mapped to at least five representational models.

A third dimension is whether the query language

supports a period-stamped temporal model or a point-

stamped temporal model.

Other entries (indicated in italics) examine the long

and deep research into temporal query languages in a

more detailed fashion. Qualitative temporal reasoning

and temporal logic in database query languages provide

expressive query facilities. Temporal vacuuming pro-

vides a way to control the growth of a database.

TSQL2 and its successor SQL/Temporal provided a

way for many in the temporal database community

to coordinate their efforts in temporal query language

design and implementation. Temporal query processing

involves disparate architectures, from temporal strata

outside the conventional DBMS to adding native tem-

poral support within the DBMS. Supporting transac-

tion time generally requires changes within the

kernel of a DBMS. Temporal algebras extend the con-

ventional relational algebra. Some specific operators

(e.g., temporal aggregation, temporal coalescing, tempo-

ral joins) have received special attention. Finally, the

3012T Temporal Query Processing
Oracle database management system includes support

for valid and transaction time, both individually and in

concert, in its extension of.

Future Directions
Given the substantial decrease in code size (a factor of

three [6]) and dramatic decrease in conceptual com-

plexity of temporal applications that temporal query

languages offer, it is hoped that DBMS vendors will

continue to incorporate temporal language constructs

into their products.

Cross-references
▶Abstract Versus Concrete Temporal Query

Languages

▶Allen’s Relations

▶Now in Temporal Databases

▶ Period-Stamped Temporal Models

▶ Point-Stamped Temporal Models

▶Qualitative Temporal Reasoning

▶ Schema Versioning

▶ Sequenced Semantics

▶ Supporting Transaction Time Databases

▶Temporal Aggregation

▶Temporal Algebras

▶Temporal Coalescing

▶Temporal Database

▶Temporal Data Models

▶Temporal Joins

▶Temporal Logic in Database Query Languages

▶Temporal Object-Oriented Databases

▶Temporal Query Processing

▶Temporal Strata

▶Temporal Upward Compatibility

▶Temporal Vacuuming

▶Temporal Visual Languages

▶Temporal XML

▶TSQL2

Recommended Reading
1. Böhlen M.H., Gamper J., and Jensen C.S. How would you like to

aggregate your temporal data?. In Proc. 10th Int. Symp. Tempo-

ral Representation and Reasoning/4th Int. Conf. Temporal

Logic, 2006, pp. 121–136.

2. Jensen C.S., Soo M.D., and Snodgrass R.T. Unifying temporal

data models via a conceptual model. Inf. Syst., 19(7):513–547,

December 1994.

3. McKenzie E. and Snodgrass R.T. An evaluation of relational

algebras incorporating the time dimension in databases. ACM

Comput. Surv., 23(4):501–543, December 1991.
4. Melton J. and Simon A.R. Understanding the New SQL: A

Complete Guide. Morgan Kaufmann, San Mateo, CA, 1993.

5. Snodgrass R.T. (ed.). The TSQL2 Temporal Query Language.

Kluwer, Boston, MA, USA, 1995.

6. Snodgrass R.T. Developing Time-Oriented Database Applica-

tions in SQL. Morgan Kaufmann, San Francisco, CA, USA, 1999.

7. Snodgrass R.T. Temporal Object Oriented Databases: A Critical,

Comparison, Chapter 19 in Modern Database System: The Ob-

ject Model, Interoperability and Beyond, W. Kim, editor,

Addison-Wesley/ACM Press, 1995, pp. 386–408.

8. Böhlen M.H., Jensen C.S., and Snodgrass R.T. Temporal State-

ment Modifiers, ACM Transactions on Database Sytems, 25(4):

407–456.
Temporal Query Processing

MICHAEL BÖHLEN

Free University of Bolzano-Bozen, Bolzano, Italy

Definition
Temporal query processing refers to the techniques

used by database management system to process tempo-

ral statements. This ranges from the implementation

of query execution plans to the design of system archi-

tectures. This entry surveys different system architec-

tures. It is possible to identify three general system

architectures that have been used to systematically offer

temporal query processing functionality to applications

[6]: The layered approach uses an off-the-shelf database

system and extends it by implementing the missing

functionality in a layer between the database system

and the applications. The monolithic approach inte-

grates the necessary application-specific extensions

directly into the database system. The extensible

approach relies on a database system that allows to

plug user-defined extensions into the database system.

Historical Background
In order to deploy systems that offer support for tem-

poral query processing new systems must be designed

and implemented. Temporal extensions of database

systems are quite different from other database system

extensions. On the one hand, the complexity of the

newly added types, often an interval, is usually quite

low. Therefore, existing access structures and query

processing techniques are often deemed sufficient to

manage temporal information [7,8,11]. On the other

hand the temporal aspect is ubiquitous and affects

all parts of a database system. This is quite different

Temporal Query Processing T 3013
if extensions for multimedia, geographical or spatio-

temporal data are considered. Such extensions deal

with complex objects, for example, objects with com-

plex boundaries, moving points, or movies, but their

impact on the various components of a database sys-

tem is limited.

A first overview of temporal database system imple-

mentations appeared in 1996 [2]. While the system

architecture was not the focus, the overview describes

the approached followed by the systems. Most systems

follow the layered approach, including ChronoLog,

ARCADIA, TimeDB, VT-SQL, and Tiger. A comprehen-

sive study of a layered query processing architecture

was done by Slivinskas et al. [10]. The authors use the

Volcano extensible query optimizer to optimize and

process queries. A monolithic approach is pursued by

HDBMS, TDBMS, T-REQUIEM, and T-squaredDBMS.

A successful implementation of an index structure for

temporal data has been done with the help of Informix’s

datablade technology [1].
Foundations
Figure 1 provides an overview of the different archi-

tectures that have been used to systematically provide

temporal database functionality: the layered, mono-

lithic, and extensible architectures. The gray parts

denote the temporal extensions. The architecture bal-

ances initial investments, functionality, performance

and lock-ins.
Functionalities

The different operators in a temporal database sys-

tem have different characteristics with respect to

query processing.
Temporal Query Processing. Figure 1. Illustration of archite
Temporal selection, temporal projection and tem-

poral union resemble their non-temporal counterparts

and they do not require dedicated new database func-

tionality. Note though that this only holds if the opera-

tors may return uncoalesced relation instances [3] and

if no special values, such as now, are required. If the

operators must returned coalesced relations or if now

must be supported the support offered by conventional

database systems is lacking.

Temporal Cartesian product (and temporal joins)

are also well supported by standard database systems.

In many cases existing index structures can be used to

index interval timestamps [7].

Temporal difference is more subtle and not well-

supported by traditional database systems. It is possi-

ble to formulate temporal difference in, e.g., SQL, but

it is cumbersome to do so. Algebraic formulations and

efficient implementations have been studied by Dunn

et al. [4].

Temporal aggregation is even worse than temporal

difference. Formulating a temporal aggregation in SQL

is a challenge for even advanced SQL programmers and

yields a statement that current database systems cannot

evaluate efficiently [11].

Temporal coalescing and temporal integrity

constraints [11] are other examples of operations that

current database system do not handle efficiently. Tem-

poral coalescing is an algebraic operator and a declara-

tive SQL implementation is inefficient.

The Layered Architecture

A common approach to design an extended database

systems with new data types and operations for time-

referenced data are to use an off-the-shelf database sys-

tem and implement a layer on top providing data types
ctural choices for temporal database systems

T

3014T Temporal Query Processing
and services for temporal applications. The database

system with such a component is then used by different

applications having similar data type and operation

requirements. Database systems enhanced in this way

exploit the standard data types and data model, often

the relational model, as a basis. They define new data

types and possibly a new layer that provides application

specific support for data definition and query language,

query processing and optimization, indexing, and trans-

actionmanagement. Applications are written against the

extended interface.

The layered approach has the advantage of using

standard components. There is a clear separation of

responsibilities: application-specific development can

be performed and supported independent of the

database system development. Improvements in the

database system component are directly available in

the whole system with almost no additional effort.

On the other hand, the flexibility is limited. Develop-

ment not foreseen in the database system component

has to be implemented bypassing the database system.

The more effort is put into such an application-specific

data management extension, the more difficult it

gets to change the system and take advantage of data-

base system improvements. Also (legacy) applications

might access the database system over different inter-

faces. For such applications accessing the extended

database system through a special purpose layer is

not always an option.

The reuse of a standard database system is an

advantage but at the same time also a constraint. The

layer translates and delegates temporal requests to

sequences of nontemporal request. If some of the

functionality of the database systems should be extend-

ed or changed, e.g., a refined transaction processing

for transaction time, this cannot be done easily with a

layered approach. For the advanced temporal func-

tionality the layered architecture might not offer satis-

factory performance.

The Monolithic Architecture

Many systems that use a monolithic architecture have

originally been designed as stand-alone applications

without database functionality. The designers of a

monolithic architecture then extend their system with

database system functionality. They add query func-

tionality, transaction management, and multi-user

capabilities, thereby gradually creating a specialized

database system. The data management aspects
traditionally associated with database system and the

application-specific functionality are integrated into

one component.

Instead of adding general database system func-

tionality to an application it is also possible to incor-

porate the desired application domain semantics into

the database system. Typically, this is done by database

companies who have complete control over and

knowledge of their source code or by open source

communities.

Because of the tight integration of the general

data management aspects and the application specific

functionality, monolithic systems can be optimized for

the specific application domain. This results in good

performance. Standard and specialized index struc-

tures can be combined for good results. Transaction

management can be provided in a uniform way for

standard as well as new data types. However, imple-

menting a monolithic system is difficult and a big

(initial) effort, since all aspects of a database system

have to be taken into account. Another drawback

is that enterprises tend to be reluctant to replace their

database system, which increases the threshold for

the adoption of the temporal functionality. With

monolithic systems, there is is a high risk of vendor

lock-ins.

The Extensible Architecture

Extensible database systems can be extended with

application-specificmodules. Traditional database fun-

ctionality like indexing, query optimization, and trans-

action management is supported for new data types

and functions in a seamless fashion.

The first extensible system prototypes have been

developed to support non-standard database system

applications like geographical, multimedia or engi-

neering information systems. Research on extensible

systems has been carried out in several projects, e.g.,

Ingres [12], Postgres[13], and Volcano [5]. These pro-

jects addressed, among other, data model extensions,

storage and indexing of complex objects as well as

transaction management and query optimization

in the presence of complex objects. Today a number

of commercial approaches are available, e.g., data-

blades from Informix, cartridges from Oracle, and

extenders from DB2. A limitation is that the extensions

only permit extension that were foreseen initially.

A comprehensive temporal support might require sup-

port that goes beyond data types and access structures.

Temporal Relational Calculus T 3015
The SQL99 standard [9] specifies new data

types and type constructors in order to better support

advanced applications.

The extensible architecture balances the advantages

and disadvantages of the layered and monolithic

architectures, respectively. There is a better potential

to implement advanced temporal functionality with

a satisfactory performance than in the layered architec-

ture. However, functionality not foreseen by the

extensible database system might still be difficult to

implement.
Key Applications
All applications that want to provide systematic sup-

port for time-varying information must choose one of

the basic system architectures. The chosen architecture

balances (initial) investments, future lock-ins, and

performance.
Future Directions
The architecture determines the initially required

effort to provide support for time-varying informa-

tion and may limit functionality and performance.

Changing from one architecture to another is not

supported. Such transitions would be important to

support the graceful evolution of temporal database

applications.
T

Cross-references
▶Temporal Data Model

▶Temporal Database

▶Temporal Strata

Recommended Reading
1. Bliujute R., Saltenis S., Slivinskas G., and Jensen C.S. Developing

a datablade for a new index. In Proc. 15th Int. Conf. on Data

Engineering, 1999, pp. 314–323.

2. Böhlen M.H. Temporal database system implementations. ACM

SIGMOD Rec., 24(4):16, December 1995.

3. Böhlen M.H., Snodgrass R.T., and Soo M.D. Coalescing

in temporal databases. In Proc. 22th Int. Conf. on Very Large

Data Bases, 1996, pp. 180–191

4. Dunn J., Davey S., Descour A., and Snodgrass R.T. Sequenced

subset operators: definition and implementation. In Proc. 18th

Int. Conf. on Data Engineering, 2002, pp. 81–92.

5. Graefe G. and McKenna W.J. The volcano optimizer generator:

extensibility and efficient search. In Proc. 9th Int. Conf. on Data

Engineering, 1993, pp. 209-218.

6. Koubarakis M., Sellis T.K., Frank A.U., Grumbach S.,

Güting R.H., Jensen C.S., Lorentzos N.A., Manolopoulos Y.,
Nardelli E., Pernici B., Schek H., Scholl M., Theodoulidis B.,

and Tryfona N. (eds.). Spatio-Temporal Databases: The

CHOROCHRONOS Approach. Springer, Berlin, 2003.

7. Kriegel H.-P., Pötke M., and Seidl T. Managing intervals

efficiently in object-relational databases. In Proc. 26th Int.

Conf. on Very Large Data Bases, 2000, pp. 407-418.

8. Leung T.Y.C. andMuntz R.R. Stream processing: temporal query

processing and optimization. In Tansel A., Clifford J., Gadia S.,

Jajodia S., Segev A., Snodgrass R.T. (eds.). Temporal Databases:

Theory, Design, and Implementation, Benjamin/Cummings,

1993, pp. 329-355.

9. Melton J. and Simon A.R. Understanding the New SQL:

A Complete Guide. Morgan Kaufmann, Los Altos, CA, 1993.

10. Slivinskas G., Jensen C.S., and Snodgrass R.T. Adaptable

query optimization and evaluation in temporal middleware.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2001, pp. 127–138.

11. Snodgrass R.T. Developing Time-Oriented Database Applica-

tions in SQL. Morgan Kaufmann, Los Altos, CA, 1999.

12. Stonebraker M. (ed.). The INGRES Papers: Anatomy of

a Relational Database System. Addison-Wesley, Reading,

MA, 1986.

13. The Postgresql Global. POSTGRESQL developer’s guide.
Temporal Relation

▶Bitemporal Relation
Temporal Relational Calculus

JAN CHOMICKI
1, DAVID TOMAN

2

1State University of New York at Buffalo, Buffalo,

NY, USA
2University of Waterloo, Waterloo, ON, Canada

Synonyms
Two-sorted first-order logic
Definition
Temporal Relational Calculus (TRC) is a temporal

query language extending the relational calculus. In

addition to data variables and quantifiers ranging

over a data domain (a universe of uninterpreted con-

stants), temporal relational calculus allows temporal

variables and quantifiers ranging over an appropriate

time domain [1].

3016T Temporal Relational Calculus
Key Points
A natural temporal extension of the relational calculus

allows explicit variables and quantification over a given

time domain, in addition to the variables and quanti-

fiers over a data domain of uninterpreted constants. The

language is simply the two-sorted version (variables and

constants are temporal or non-temporal) of first-order

logic over a data domain D and a time domain T.

The syntax of the two-sorted first-order language

over a database schema r ={R1,...,Rk} is defined by the

grammar rule:

Q ::¼Rðt i; xi1 ;:::; xik Þ j t i < t j j xi ¼ xj j
Q ^ Q j :Q j 9xi:Q j 9t i:Q

In the grammar, ti’s are used to denote temporal

variables and xi’s to denote data (non-temporal) vari-

ables. The atomic formulae ti < tj provide means to

refer to the underlying ordering of the time domain.

Note that the schema r contains schemas of time-

stamped temporal relations.

Given a point-timestamped database DB and a

two-sorted valuation y, the semantics of a TRC query

Q is defined in the standard way (similarly to the

semantics of relational calculus) using the satisfaction

relation DB, y⊨Q:

DB; y⊨Rjðt i; xi1 ;:::; xik Þ if Rj 2 r and ðyðtiÞ;
yðxi1Þ;:::; yðxik ÞÞ 2 RDB

j

DB; y⊨t i < t j if yðt iÞ < yðt jÞ
DB; y⊨xi ¼ xj if yðxiÞ ¼ yðxjÞ
DB; y⊨Q1 ^ Q2 ifDB; y⊨Q1 and

DB; y⊨Q2

DB; y⊨:Q1 if notDB; y⊨Q1

DB; y⊨9t i:Q1 if there is s 2 T such

thatDB; y½t i 7! s�⊨Q1

DB; y⊨9xi:Q1 if there is a 2 D such

that DB; y½xi 7! a�⊨Q1

where Rj
DB is the interpretation of the predicate sym-

bol Rj in the database DB.

The answer to a query Q over DB is the set Q(DB)

of valuations that make Q true in DB. Namely,

Q(DB) :={yjFV (Q) : DB, y ⊨Q} where yjFV (Q) is the

restriction of the valuation y to the free variables of Q.

In many cases, the definition of TRC imposes addi-

tional restrictions on valid TRC queries:

Restrictions on free variables: Often the number of

free temporal variables in TRC queries can be restricted

to guarantee closure over the underlying data model

(e.g., a single-dimensional timestamp data model or
the bitemporal model). Note that this restriction

applies only to queries, not to subformulas of queries.

Range restrictions: Another common restriction is to

require queries to be range restricted to guarantee

domain independence. In the case of TRC (and many

other abstract query languages), these restrictions de-

pend crucially on the chosen concrete encoding of tem-

poral databases. For example, no range restrictions are

needed for temporal variables when queries are evalu-

ated over interval-based database encodings, because

the complement of an interval can be finitely repre-

sented by intervals.

The schemas of atomic relations, Rjðt i; xi1 ;:::; xik Þ, typi-
cally contain a single temporal attribute/variable, often

in fixed (e.g., first) position: This arrangement simply

reflects the choice of the underlying temporal data

model to be the single-dimensional valid time model.

However, TRC can be similarly defined for multidi-

mensional temporal data models (such as the bitem-

poral model) or for models without a predefined

number of temporal attributes by appropriately mod-

ifying or relaxing the requirements on the structure of

relation schemas.

An interesting observation is that a variant of TRC,

in which temporal variables range over intervals and

that utilizes Allen’s interval relations as basic compar-

isons between interval values, is equivalent to TRC

over two-dimensional temporal relations, with the

two temporal attributes standing for interval

endpoints.
Cross-references
▶Abstract Versus Concrete Temporal Query Languages

▶Point-Stamped Temporal Models

▶Relational Calculus

▶Relational Model

▶Temporal Logic in Database Query Languages

▶Temporal Query Languages

▶Temporal Relation

▶Time Domain

▶Time Instant

▶TSQL2

▶Valid Time
Recommended Reading
1. Chomicki J. and Toman D. Temporal databases. In Handbook of

Temporal Reasoning in Artificial Intelligence. M. Fischer, D.

Gabbay, and L. Villa Foundations of Artificial Intelligence.

Elsevier, New York, NY, USA, 2005, pp. 429–467.

Temporal Specialization T 3017
Temporal Restriction

▶Temporal Specialization
Temporal Semi-Structured Data

▶Temporal XML
Temporal Specialization

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Temporal restriction
Temporal Specialization. Figure 1. Temporal Specialization

timestamp relative to the transaction timestamp. Adapted fro
Definition
Temporal specialization denotes the restriction of the

interrelationships between otherwise independent

(implicit or explicit) timestamps in temporal relations.

An example is a relation where tuples are always

inserted after the facts they record were valid in reality.

In such a relation, the transaction time of a tuple

would always be after the valid time. Temporal special-

ization may be applied to relation schemas, relation

instances, and individual tuples.
Key Points
Data models exist where relations are required to be

specialized, and temporal specializations often consti-

tute important semantics about temporal relations that

may be utilized for, e.g., improving the efficiency of

query processing.

Temporal specialization encompasses several kinds

of specialization. One is based on the relationships
based on isolated events – restrictions on the valid

m Jensen and Snodgrass (1994).

T

3018T Temporal Strata
between isolated events, and one based on inter-event

relationships. Two additional kinds consider intervals

instead of events, and one is based on the so-

called completeness of the capture of the past database

states.

The taxonomy based on isolated events, illustrated

in Fig. 1, considers the relationship between a single

valid time and a single transaction time. For example,

in a retroactive relation, an item is valid before it is

operated on (inserted, deleted, or modified) in the

database. In a degenerate relation, there is no time

delay between sampling a value and storing it in the

database. The valid and transaction timestamps for the

value are identical.

The interevent-based taxonomy is based on the

interrelationships among multiple event timestamped

items, and includes non-decreasing, non-increasing,

and sequential. Regularity is captured through the

categories of transaction time event regular, valid

time event regular, and temporal event regular, and

strict versions of these. The interinterval-based taxon-

omy uses Allen’s relations.

To understand the last kind of specialization, which

concerns the completeness of the capture of past states,

recall that a standard transaction — time database

captures all previously current states – each time a

database modification occurs, a new previously current

state is created. In contrast a valid-time database cap-

tures only the current database state. In-between these

extremes, one may envision a spectrum of databases

with incomplete support for transaction time. For

example, consider a web archive that takes a snapshot

of a collection of web sites at regular intervals, e.g.,

every week. If a site was updated several times during

the same week, states would be missing from the data-

base. Such incomplete databases are considered specia-

lizations of more complete ones.

Concerning the synonym, the chosen term is more

widely used than the alternative term. The chosen term

indicates that specialization is done with respect to the

temporal aspects of the data items being timestamped.

It is natural to apply the term temporal generalization

to the opposite of temporal specialization. “Temporal

restriction” has no obvious opposite term.

Cross-references
▶Allen’s Relations

▶Bitemporal Relation

▶Temporal Database
▶Temporal Generalization

▶Transaction Time

▶Valid Time
Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Tempo-

ral Databases: Research and Practice, O. Etzion, S. Jajodia, S.

Sripada (eds.). LNCS 1399, Springer-Verlag, Berlin, 1998,

pp. 367–405.

2. Jensen C.S. and Snodgrass R.T. Specialized temporal relations.

In Proc. 8th Int. Conf. on Data Engineering, 1992, pp. 594–603.

3. Jensen C.S. and Snodgrass R.T. Temporal specialization and

generalization. IEEE Trans. Knowl. Data Eng., 5(6):954–974,

1994.
Temporal Strata

KRISTIAN TORP

Aalborg University, Aalborg, Denmark

Synonyms
Temporal layer; Layered architecture; Temporal mid-

dleware; Wrapper

Definition
A temporal stratum is an architecture for implement-

ing a temporal DBMS. The stratum is a software layer

that sits on top of an existing DBMS. The layer trans-

lates a query written in a temporal query language into

one or more queries in a conventional query language

(typically SQL). The translated queries can then be

executed by the underlying DBMS. The DBMS returns

the result of the query/queries to the user directly

or via the stratum. The core idea of the stratum is to

provide new temporal query functionality to the users

without changing the underlying DBMS. A temporal

stratum can be implemented as a simple translator

(temporal SQL to standard SQL) or as an advanced

software component that also does part of the query

processing and optimization. In the latter case, the

temporal stratum can implement query processing

algorithms that take the special nature of temporal

data into consideration. Examples are algorithms for

temporal join, temporal coalescing, and temporal

aggregation.

Temporal Strata T 3019

T

Historical Background
Applications that store and query multiple versions of

data have existed for a very long time. These applica-

tions have been implemented using, for example, trig-

gers and log-like tables. Supporting multiple versions

of data can be time consuming to build and computa-

tionally intensive to execute, since the major DBMS

vendors only have limited temporal support. See [8]

for details.

Parallel to the work in the software industry the

research community has proposed a large number of

temporal data models and temporal query languages.

For an overview see [7]. However, most of this research

is not supported by implementations. A notable excep-

tion to this is the Postgres DBMS that has built-in

support for transaction time [6]. Postgres has later

evolved into the popular open-source DBMS Post-

greSQL that does not have transaction-time support.

Most recently, the Immortal DB research prototype [2]

has looked at how to built-in temporal support in the

Microsoft SQL Server DBMS.

The DBMS vendors have not been interested in

implementing the major changes to the core of their

DBMSs that are needed to add temporal support to the

existing DBMSs. In addition, the proposal to add tem-

poral support to SQL3, called “SQL/Temporal” part 7

of the ISO SQL3 standard, has had very limited sup-

port. The temporal database research community has

therefore been faced with a challenge of how to experi-

mentally validate their proposals for new temporal

data models and temporal query languages since it is

a daunting task to build a temporal DBMS from

scratch.

To meet this challenge it has been proposed to

implement a temporal DBMS as a software layer on

top of an existing DBMS. This has been termed a

temporal stratum approach. Some of the first propo-

sals for a temporal stratum mainly consider translating
Temporal Strata. Figure 1. (a) The Bitemporal Table emp (b)
a query in a temporal query language to one or more

queries in SQL [9].

The temporal database research community has

shown that some temporal queries are very inefficient

to execute in plain SQL, either formulated directly in

SQL or translated via a simple temporal stratum from

a temporal query language to SQL. For this reason it

has be researched how to make the temporal stratum

approach more advanced such that it uses the under-

lying DBMS when this is efficient and does the query

execution in the layer when the underlying DBMS is

found to be inefficient [5,4].

Scientific Fundamentals
A bitemporal database supports both valid time and

transaction time. In the following it is assumed that all

tables have bitemporal support. Figure 1a shows the

bitemporal table emp. The table has two explicit col-
umns, name and dept, and four implicit timestamp
columns: VTS, VTE, TTS, and TTE. The first row in the
table says that Jim was in the New York department
from the third (assuming the month of September 2007)
and is still there, indicated by the variable now. This

information was also entered on the third and is still

considered to be the best valid information, indicated

by the variable uc that means until changed.

It is straightforward to implement a bitemporal

table in a conventional DBMS. The implicit attributes

are simply made explicit. For the emp table an SQL table
with six columns are created. This is shown in Fig. 1b.

Existing DBMSs do not support variables and there-

fore the temporal stratum has to convert the variables

now and uc to values in the domain of columns VTE
and TTE. It has been shown that it is the most convenient
to use the maximum value (9999-12-31) in the date
domain for both now and uc [10].

Primary key and unique key constraints are quite

complicated to implement in a temporal stratum.
SQL Implementation.

3020T Temporal Strata
A temporal query language such as ATSQL [1] has to

be temporal upwards compatible, i.e., all non-tempo-

ral SQL statements have to work as before. For primary

keys this means that a primary key on a bitemporal

table cannot be directly mapped to a primary key in the

underlying DBMS. As an example, if the emp only has
to store the current version of where employees are, the
name column can be used as a primary key. However,
since emp has bitemporal support there are now three
rows in the example table where the name is “Joe.” Due
to space constraints, an example is not listed here.
Please see [8] for a concrete example.

To look at how modifications are handled in a tem-

poral stratum, first consider the temporal insert state-

ment shown in Fig. 2a. This is a temporal upward

compatible insert statement (it looks like a standard

SQL statement). The mapping to SQL is shown in

Fig. 2b. The columns vts and tts are set to the
current date (fourth of September 2007). The now and

uc variables are set to the maximum date. The result is
the second row in Fig. 1a.

At time 11 Joe is updated from being in the LA

department to the UK department. The temporal up-

wards compatible update statement for this is shown in

Fig. 3a. This update statement is mapped to an SQL

update of the existing row and two SQL insert
Temporal Strata. Figure 2. (a) Temporal Insert (b) Mapping

Temporal Strata. Figure 3. (a) temporal update (b) mapping
statements. The update ends the current belief by

updating the TTE column to the current date. The
first SQL insert statement stores for how long it was
believed that Joe was in the LA department. The second
SQL insert statement stores the new belief that Joe is in
the UK department. The temporal update corresponds
to the updated second row plus the third and fourth row
in Fig. 1a. A delete statement is mapped like the SQL

update statement and the first SQL insert statement in

Fig. 3b. In Fig. 1a a temporal insert of Sam at time 12

and a temporal delete of Sam at time 14 are shown as

rows number 5 and 6. Note that the SQL delete state-

ment is never used for mapping temporal modification

statements. For a complete coverage of implementing

temporal modification statements in a temporal stra-

tum, please see [10].

It is possible to see past states of the database. In

particular the following will look at the emp table as of
the 13th. This is called a time slicing, i.e., the database
is rewound to 13th to see the content of the database as
of this date.

The ATSQL query in Fig. 4a is a sequenced query

that selects the explicit attribute and the valid-time

attributes (vts and vte). The equivalent SQL query
translated by a temporal stratum is shown in Fig. 4b.

The result of the query is shown in Fig. 4c (using now
to SQL.

to SQL.

Temporal Strata. Figure 4. Transaction-time slicing.

Temporal Strata. Figure 5. Visual representation of the

content in Fig. 4c.

Temporal Strata. Figure 6. Temporal aggregation

Temporal Strata T 3021

T

instead of the maximum date). The temporal SQL

query is only slightly simpler than the equivalent stan-

dard SQL query.

To see the benefits of a temporal stratum it is

necessary to look at more complicated queries. In the

following, the focus is on temporal aggregation

queries. Alternative complicated queries are temporal

join or temporal coalescing.

Assume that a boss wants to see how many employ-

ees a company has had over (valid) time looking at the

database as of the 13th. The result shown in Fig. 4c is

used as an input for this query. For convenience it is

assumed that this timeslice query is converted to a view

call empAt13.
The content of the database is illustrated in Fig. 5,

where the vertical dotted lines indicates the time where

the result has to be split. The temporal query that

expresses this is shown in Fig. 6a and the result of the

query is shown in Fig. 6b. Note that the result is not

coalesced.

To execute this query the temporal stratum has to

find the constant periods, i.e., the periods where the

count is the same. Here the temporal stratum can do

either direct conversion to standard SQL or do part of

the query processing in the stratum. The direct con-

verted query is listed in Fig. 7. The standard SQL is
very complicated compared to the equivalent temporal

SQL query in Fig. 6a. The benefit for the user should be

obvious. In line 1 of Fig. 7, the count and the valid-

time start and end associated with the count are select-

ed. In line 2 the view empat13 from Fig. 4b is used. In

addition, the const_period is introduced in lines
2–39. In line 40, only those periods that overlap the
group currently being considered are included. In line
41, the groups are formed based on the valid-time start
and valid-time end. Finally, in line 42 the output is
listed in the valid-time start order.

The next question is then the efficiency of executing

the query in the underlying DBMS or doing part of the

query processing in the temporal stratum. It has been

experimentally shown that for temporal aggregation, it

can be up to ten times more efficient to do part of the

query processing in a temporal stratum [5].

A different approach to adding temporal support

to an existing DBMS is to use an extensible DBMS such

as IBM Informix, Oracle, or DB2. This is the approach

taken in [11]. Here temporal support is added to IBM

Informix. Compared to a stratum approach it is not

possible in the extension approach to use a new tem-

poral SQL. The temporal extension are accessed by the

user via new operators or function calls.

Key Applications
There is no support for valid-time or transaction-time

in existing DBMSs. However, in Oracle 10g there is a

flashback option [3] that allows a user to see the state

Temporal Strata. Figure 7. Temporal aggregation in standard SQL.

Temporal Strata. Figure 8. A flashback in the Oracle DBMS.

3022T Temporal Strata
of the entire database or a single table as of a previous

instance in time. As an example, the flashback query in

Fig. 8 will get the state of the emp table as of the 1st of
September 2007 at 08.00 in the morning. The result can
be used for further querying.

Future Directions
The Sarbanes-Oxley Act is a US federal law that

requires companies to retain all of there data for a
period of five or more years. This law may spur addi-

tional research with temporal databases and in partic-

ular temporal database architecture such as a temporal

stratum.

Cross-references
▶Databases

▶ Supporting Transaction Time

▶Temporal Data Model

Temporal Vacuuming T 3023
▶Temporal Query Languages

▶Temporal Query Processing

Recommended Reading
1. Böhlen M.H., Jensen C.S., and Snodgrass R.T. Temporal state-

ment modifiers. ACM Trans. Database Syst., 25(4):407–456,

2000.

2. Lomet D., Barga R., Mokbel M.F., Shegalov G., Wang R., and

Zhu Y. Transaction time support inside a database engine. In

Proc. 22nd Int. Conf. on Data Engineering, 2006.

3. Oracle Corp. Oracle Flashback Technology. http://www.oracle.

com/technology/deploy/availability/htdocs/Flashback_Over

view.htm, as of 4.9.2007.

4. Slivinskas G. and Jensen C.S. Enhancing an extensible query

optimizer with support for multiple equivalence types. In Proc.

5th East European Conf. Advances in Databases and Informa-

tion Systems, 2001, pp. 55–69.

5. Slivinskas G., Jensen C.S., and Snodgrass R.T. Adaptable

query optimization and evaluation in temporal middleware. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2001,

pp. 127–138.

6. Stonebraker M. and Rowe L.A. The design of POSTGRES. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1986,

pp. 340–355.

7. Snodgrass R.T. The TSQL2 Temporal Query Language. Kluwer

Academic, Dordrecht, 1995.

8. Snodgrass R.T. Developing Time-Oriented Database Applica-

tions in SQL. Morgan Kaufmann, 1999.

9. Torp K., Jensen C.S., and Snodgrass R.T. Stratum approaches to

temporal DBMS implementation. In Proc. Int. Conf. on Data-

base Eng. and Applications, 1998, pp. 4–13.

10. Torp K., Jensen C.S., and Snodgrass R.T. Effective timestamping

in databases. VLDB J., 8(3–4):267–288, 2000.

11. Yang J., Ying H.C., and Widom J. TIP: a temporal extension to

informix. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2000.
T

Temporal Structure

▶Time Domain
Temporal Type

▶Temporal Granularity
Temporal Upward Compatibility

▶Current Semantics
Temporal Vacuuming

JOHN F. RODDICK
1, DAVID TOMAN

2

1Flinders University, Adelaide, SA, Australia
2University of Waterloo, Waterloo, ON, Canada

Synonyms
Data expiration

Definition
Transaction-time temporal databases are inherently

append-only resulting, over time, in a large historical

sequence of database states. Data vacuuming allows for

a strategic, and irrevocable, deletion of obsolete data.

Historical Background
The term vacuuming was first used in relation to data-

bases in the Postgres database system as a mechanism

for moving old data to archival storage [10]. Itwas later

refined by Jensen and Mark in the context of temporal

databases to refer to the removal of obsolete information

[4] and subsequently developed into a comprehensive

and usable adjunct to temporal databases [6,8,11].

Data expiration has also been investigated in the context

of data warehouses by Garcia-Molina et al. [2] and

others [9].

Foundations
In many applications, data about the past needs be

retained for further use. This idea can be formalized, at

least on the conceptual level, in terms of an append-only

transaction-time temporal database or a history. How-

ever, a naive and unrestricted storage of all past data

inevitably leads to unreasonable demands on storage

and subsequently impacts negatively on efficiency of

queries over such histories. Hence techniques that allow

selective removal of no longer needed data have been

developed and, at least in prototype systems, deployed.

The parts of the historical data that are to be

retained/deleted are specified in terms of vacuuming

specifications. These specifications state, for example,

that data beyond certain absolute or relative time point

is obsolete (as opposed to merely superceded) and thus

can be removed. For example, the regulation

" “Taxation data must be retained for the last 5 years”

can be considered a specification of what data indivi-

duals must retain concerning their taxation returns

and what can be discarded. However, one must be

3024T Temporal Vacuuming
careful when designing such specifications as once a

part of the history is deleted, it can no longer be

reconstructed from the remaining data. Consider the

alternative regulation

" “Taxation data must be retained for past years, except

for the last year.”

While this specification seems to suggest that the data

of the last year can be discarded, doing so would lead to

a problem in the following year (as this year’s return

won’t be the last one any more). Hence, this specifica-

tion is intuitively not well formed and must be

avoided. Vacuuming specifications can be alternatively

phrased in terms of what may be deleted, rather than

what should be retained. For example, rather than

" “Taxation data must be retained for the last 5 years”

it would be better to rephrase it as

" “Taxation data over 5 years old may be deleted.”

The reason for this is that vacuuming specifications

indicate specific deletion actions and there is thus less

chance of misinterpretation.

Another issue with vacuuming specifications

relates to the granularity of data that is removed from

the history. For example, if data items (such as tax

receipts) are temporally correlated with other items

that may appear in different, perhaps much older,

parts of the history (such as investments), those parts

of the history may have to be retained as well. Such

considerations must be taken into account when de-

ciding whether the specifications are allowed to refer to

the complete history or whether selective vacuuming

of individual data items is permitted. In both cases,

issues of data integrity need to be considered.

Formal Vacuuming Specifications

A transparent way to understand the above issues is to

consider the result of applying a vacuuming specifica-

tion to a history (i.e., the retained data) to be a view

defined on the original history.

Definition. Let H =hS0,S1,...,Ski be a history. The

instances Si represent the state of the data at time i

and all states share a common fixed schema. TH and

DH are used to denote the active temporal and data

domains of H, respectively. A vacuuming specification

is a function (a view) E : H ! H 0, where H 0 is called

the residual history (with some, potentially different

but fixed schema).
The idea behind this approach is that the instance

of the view represents the result of applying the

vacuuming specification to the original history and it

is this instance that has to be maintained in the system.

While such view(s) usually map histories to other

histories (sometimes called the residual histories), in

principle, there is no restriction on the schema of these

views nor on the language that defines the view. This

approach allows us to address the two main questions

concerning a vacuuming specification:

� Is a given specification well formed? The first

question relates to anomalies such as the one out-

lined in the introductory example. Since only the

instance of the view and not the original history

itself is stored, a new instance of the view must be

definable in terms of the current instance of the

view E(H) whenever a new state of the history S is

created by progression of time. This condition can

be formalized by requiring:

EðH ; SÞ ¼ DðEðHÞ; SÞ
for some function (query) D where H;S is the ex-

tension of H with a new state S. To start this

process, a constant, ;, is technically needed to rep-

resent the instance of the view in the beginning

(i.e., for an empty initial history). The condition

above essentially states that the view Emust be self-

maintainable in terms of the pair (;,D). The pair

(;,D) is called a realization of E.
� What queries does a specification support? The

second question concerns which queries can be

correctly answered over the residual histories.

Again, for a query Q to be answerable, it must be

the case that

QðHÞ ¼ Q0ðEðHÞÞ
for some function (query) Q 0 and all histories H.

Q 0 is a reformulation of Q with respect to E. This

requirement states that queries preserved by the

vacuuming process are exactly those that can be

answered only using the view E.
In addition, for the approach to be practical, the con-

struction of D and ; from E and of Q 0 from Q and E,

respectively, must be effective.

Definition. A vacuuming specification represented

by a self-maintainable view E is a faithful history

encoding for a query Q if Q is answerable using the

view E.

Temporal Vacuuming T 3025

T

Given a vacuuming specification E over a history H

that is self-maintainable using (;,D) and a query Q 0

that answers Q using E; the triple (;,D,Q 0) is then

called the expiration operator of Q for H.

Space/Storage Requirements

Understanding vacuuming specifications in terms

of self-maintainable materialized views also provides

a natural tool for comparing different specifications

with respect to how well they remove unnecessary

data. This can be measured by studying the size of

the instances of E with respect to several parameters

of H:

� The size of the history itself, jHj,
� The size of the active data domain, jDHj, and
� The length of the history, jTHj.

In particular, the dependency of jE(H)j on jTHj is
important as the progression of time is often

the major factor in the size of H. It is easy to see

that vacuuming specification with a linear bound in

terms of TT always exists: it is, e.g., the identity used

to define both E and Q 0. However, such a specification

is not very useful and better results can be proba-

bly achieved using standard compression algorithms.

Therefore the main interest is in two main cases

defined in terms of jTHj:

1. Specifications bounded by O(1), and

2. Specifications bounded by O(log(jTHj)).

In the first case the vacuuming specification provides a

bounded encoding of a history. Note that in both cases,

the size of E(H) will still depend on the other para-

meters, e.g., jDHj. This, however, must be expected, as

intuitively, the more H refers to different constants

(individuals), the larger E(H) is likely to be (for exam-

ple, to store the names of the individuals).

Vacuuming in Valid-Time Databases. In contrast

to transaction-time temporal databases (or histories),

valid-time temporal databases allow arbitrary updates

of the temporal data. Hence information about future

can be recorded and data about the past can be mod-

ified and/or deleted. This way, vacuuming specifica-

tions reduce to appropriate updates of the valid time

temporal database.

Moreover, when allowing arbitrary updates of the

database, it is easy to show that the only faithful history

encodings are those that are lossless (in the sense that H

can be reconstructed from the instance of E).
Example. Consider a valid time temporal database H

with a schema {R} and a query Q asking “return the

contents of the last state of R recorded in H.” Then, for a

vacuuming specification E to be a faithful encoding of

H (w.r.t. Q), it must be possible to answer Q using only

the instance of E after updating of H. Now consider a

sequence of updates of the form “delete the last state of

R in H.” These updates, combined with Q, can recon-

struct the contents of R for an arbitrary state of H. This

can only be possible if E is lossless.

This, however, means that any such encoding must

occupy roughly the same storage as the original data-

base, making vacuuming useless. Similar results can be

shown even for valid time databases in which updates

are restricted to insertions.

Approaches to Vacuuming

The ability to vacuum data from a history depends on

the expressive power of the query language in which

queries over the history are formulated and on the num-

ber of the actual queries. For example, allowing an arbi-

trary number of ad-hoc queries precludes any possibility

effective vacuuming of data, as finite relational struc-

tures can be completely characterized by first-order

queries. Thus, for common temporal query languages,

this observation leaves us with two essential options:

1. An administrative solution is adopted and a given

history is vacuumed using a set of policies indepen-

dent of queries. Ad-hoc querying of the history can

be allowed in this case. However, queries that try to

access already expired values (i.e., for which the

view is not faithful history encoding) have to fail

in a predefined manner, perhaps by informing the

application that the returned answer may be only

approximate, or

2. A query driven data expiration technique is used.

Such a technique, however, can only work for a

fixed set of queries known in advance.

Administrative Approaches to Vacuuming

One approach to vacuuming data histories, and, in

turn, to defining expiration operators, can be based

on vacuuming specifications that define query/applica-

tion-independent policies. However, when data are

removed from a history in such a way, the system

should be able to characterize queries whose answers

are not affected. A particular way to provide vacuum-

ing specifications (such as through the ideas of Skyt

et al. [6,8]) is using deletion (r) and keep (k)

3026T Temporal Vacuuming
expressions. These would be invoked from time to

time, perhaps by a vacuuming daemon. The complete

specification may contain both deletion and keep spe-

cifications. For example:

rðEmpDepÞ : sTTend�NOW�1yrðEmpDepÞ
k(EmpDep) : sEmpStatus=0Retain0(EmpDep)
rðEmpDepÞ : sVTend�NOW�7yrsðEmpDepÞ

This specification states that unless the Employee

has a status of “Retain,” all corrected data should be

vacuumed after 1 year and all superceded data

vacuumed after 7 years. For safety, keep specifications

always override delete specifications (note that the

ordering of the individual deletion and keep expres-

sions is significant).

Vacuuming in Practice. Vacuuming specifications

are generally given as either part of the relation definition

or as a stand-alone vacuuming specification. In TSQL2,

for example, a CREATE TABLE command such as:

CREATE TABLE EmpDep (

Name CHAR(30) NOT NULL,

Dept CHAR(30) NOT NULL,

AS TRANSACTION YEAR(2) TO DAY

VACUUM NOBIND (DATE ‘now - 7 days’);

specifies inter alia that only queries referencing data

valid within the last 7 days are permissible [3] while

CREATE TABLE EmpDep (...)

VACUUM DATE ‘12 Sep 2007’;

specifies that only query referencing any data entered on

or after 12 September 2007 are permissible. The VACUUM

clause provides a specification of what temporal range

constitutes a valid query with the NOBIND keyword

allowing DATE to be the date that the query was executed

(as opposed to the date that the table was created).
Temporal Vacuuming. Figure 1. Space bounds for residual
An alternative is to allow tuple-level expiration of

data. In this case, the expiration date of data are spe-

cified on insert. For example, in the work of Schmidt

et al. [5] users might enter:

INSERT INTO EmpDep

VALUES (‘Plato’, ‘Literature’, ...)

EXPIRES TIMESTAMP ‘2007-09-12 23:59:59’;

to indicate that the tuple may be vacuumed after the

date specified.

Application/Query-Driven Approaches

There are many applications that collect data over time

but for which there are no natural or a priori given

vacuuming specifications. However, it is still impor-

tant to control the size of the past data needed. Hence,

it is a natural question whether appropriate specifica-

tions can be derived from the (queries in the) applica-

tions themselves (this requires an a priori fixed finite set

of queries – in the case of ad-hoc querying such a

specification cannot exist. Formally, given a query lan-

guage L, a computable mapping of queries Q 2 L to

triples (;,D,Q 0), such that (;,D,Q 0) is an expiration

operator for Q over H, has to be constructed. Figure 1

summarizes the results known for various temporal

query languages and provides references to the actual

techniques and proofs.

Key Applications
The major application domains for vacuuming are

historical databases (that, being append only, need a

mechanism to limit their size), logs (particularly those

collected for more than one purpose with different

statutes and business processes), monitoring applica-

tions (with rollback requirements) and garbage collec-

tion (in programming languages). Also, as data streams

are essentially histories, the techniques and results
histories.

Temporal Visual Languages T 3027

T

developed for vacuuming and data expiration can be

applied to query processing over data streams. In par-

ticular, expiration operators for a given query yield

immediately a synopsis for the same query in a stream-

ing setting. This observation also allows the transfer of

the space complexity bounds.

Future Directions
Most approaches have concentrated on specifying what

data to retain for given queries to continue to be

answered perfectly. There are two other possibilities:

� Given a particular vacuuming specification and a

query that is not supported fully by this specifica-

tion, can the degree can this query be answered by

the residual history be determined? Some sugges-

tions are given by Skyt and Jensen [7] who propose

that queries that may return results affected by

vacuuming should also provide suggestions for an

alternative, similar query.

� Given a requirement that certain queries should

not be answered (e.g., for legal reasons), what

would be the vacuuming specifications that would

guarantee this, in particular in the conjunction

with the issue of approximate answers above?

Both of these are areas for further research. Finally,

most vacuuming research assumes a static schema

definition (or at least, an overarching applicable sche-

ma definition). Having the versioning of schema while

also handling the vacuuming of data is also an open

problem.

Cross-references
▶ Point-Stamped Temporal Models

▶Query Rewriting Using Views

▶ Schema Versioning

▶ Self-Maintenance of Views

▶ Synopses for Data Streams

▶Temporal Query Languages

Recommended Reading
1. Chomicki J. Efficient checking of temporal integrity constraints

using bounded history encoding. ACM Trans. Database Syst.,

20(2):149–186, 1995.

2. Garcia-Molina H., Labio W., and Yang J. Expiring data in a

warehouse. In Proc. 24th Int. Conf. on Very Large Data Bases,

1998, pp. 500–511.

3. Jensen C. Vacuuming. In The TSQL2 Temporal Query Language,

Chapter 23, R. Snodgrass (ed.). Kluwer, New York, 1995,

pp. 451–462.
4. Jensen C.S. and Mark L. A framework for vacuuming temporal

databases. Tech. Rep. CS-TR-2516, University of Maryland at

College Park, 1990.

5. Schmidt A., Jensen C., and Saltenis S. Expiration times for data

management. In Proc. 22nd Int. Conf. on Data Engineering,

2006, p. 36.

6. Skyt J. Specification-Based Techniques for the Reduction of

Temporal and Multidimensional Data. Ph.D thesis, Aalborg

University, Aalborg, Denmark, 2001.

7. Skyt J. and Jensen C.S. Vacuuming temporal databases. Time-

Center technical report TR-32, Aalborg University, 1998.

8. Skyt J., Jensen C.S., and Mark L. A foundation for vacuuming

temporal databases. Data Knowl. Eng., 44(1):1–29, 2003.

9. Skyt J., Jensen C.S., and Pedersen T.B. Specification-based data

reduction in dimensional data warehouses. In Proc. 18th Int.

Conf. on Data Engineering, 2002, p. 278.

10. Stonebraker M. and Rowe L. The design of POSTGRES. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1986,

pp. 340–355.

11. Toman D. Expiration of historical databases. In Proc. 8th

Int. Symp. Temporal Representation and Reasoning, 2001,

pp. 128–135.

12. Toman D. Logical data expiration for fixpoint extensions of

temporal logics. In Proc. 8th Int. Symp. Advances in Spatial

and Temporal Databases, 2003, pp. 380–393.

13. Toman D. On incompleteness of multi-dimensional first-

order temporal logics. In Proc. 10th Int. Symp. Temporal Repre-

sentation and Reasoning/4th Int. Conf. Temporal Logic, 2003,

pp. 99–106.

14. Toman D. On construction of holistic synopses under the dupli-

cate semantics of streaming queries. In Proc. 14th Int. Symp.

Temporal Representation and Reasoning, 2007, pp. 150–162.
Temporal Value

▶History in Temporal Databases
Temporal Visual Interfaces

▶Temporal Visual Languages
Temporal Visual Languages

ULRICH SCHIEL
1, SONIA FERNANDES SILVA2

1Federal University of Campina Grande,

Campina Grande, Brazil
2Etruria Telematica Srl, Siena, Italy

Synonyms
Temporal visual queries; Temporal visual interfaces

3028T Temporal Visual Languages
Definition
Database technology has evolved in order to be typically

oriented towards a large set of non-expert users. While

attempting to meet this need, textual query languages,

such as SQL, have been replaced by visual query lan-

guages, which are based on visual representations of the

database and direct manipulation mechanisms. More-

over, data characterized by the temporal dimension play

an important role in modern database applications.

Temporal Visual Languages are user-oriented langua-

ges that meet the specific requirements of querying

and visualizing temporal data in an interactive and

easy-to-use visual form.

Historical Background
The availability of graphical devices at low cost and the

advent of the direct manipulation paradigm [10] have

given rise in the last years to a large diffusion of visual

user interfaces. Regarding the database area, data-

bases are designed, created, and possibly modified by

experts, but there are different kinds of users whose job

requires access to databases, specifically for extracting

information. However, traditional query languages for

databases, such as SQL, are not very approachable for

these users, for both their intrinsic syntactical com-

plexity and the lack of a global view of the data of

interest together with their interrelationships. Thus,

visual interfaces for databases, in particular, the so-

called Visual Query Systems (VQS) [4], have arisen

as an evolution of the traditional query languages.

VQS include both a language to express queries in a

visual form and a query strategy. They are oriented to a

wide spectrum of users who generally ignore the inner

structure of the accessed database and are character-

ized by several notable features, such as the availability

of interactive visual mechanisms that facilitate the

typical process of query formulation and refinement,

without requiring users to have a previous knowledge

of the database schema and to learn the syntax and

semantics of a query language.

Moreover, it has been pointed out that modern

database applications deal with temporal data such as

banking, medical records, airline reservations, finan-

cial data, decision support systems, etc. Several propo-

sals of temporal query languages have been carried out

in the past years, where special clauses and predicates

are added to the original language in order to deal with

the temporal aspects. These languages increase the

usability problems of the originating query languages,
including quite complex syntax and a steep learning

curve. For instance, considering specifically the tempo-

ral relational languages, the user must be familiar with

concepts such as tuple and attribute time-stamping,

temporal joins, as well as syntax and semantics of

temporal predicates. As efforts were made to find

new visual query mechanisms for accessing conven-

tional databases, this should also be done for temporal

databases.

In order to address this need, some proposals of

temporal visual query languages have arisen in the last

years. Initial proposals have mainly concentrated on the

activity of query formulation, where temporal visual

operators are interactively applied over diagrammatic

representations of the database schemas exhibiting tem-

poral features. However, most of these visual languages

are not provided with formal syntax and semantics [13]

and do not address the visual interaction with the query

result. Trying to overcome this limitation, a variety of

techniques for visualizing time-oriented data have been

proposed [12], but they do not support query capabil-

ities for extracting further information. In recent years,

research efforts have been made in order to develop

temporal visual interfaces in which the end-user could

apply visual mechanisms for querying and visualizing

temporal data in a single structure.

Foundations
Elements in temporal databases such as objects and

their attributes may be temporal, meaning that the

history of the successive values of a property is

recorded or that the history of an object as a whole

may be kept in the database. The valid time of a data

element may be a single instant, a time interval or a set

of disjoint time intervals.

The process of visual query formulation can be

seen as constituted by three phases [13]: the user selects

the part of the database he wants to operate on (loca-

tion phase); then, he defines the relations/restrictions

within the selected part in order to produce the query

result (manipulation phase); finally, he operates on the

query result (visualization phase). The same phases

apply to a visual temporal query formulation.

In the location phase the goal is the precise defini-

tion of the fragment of the database schema involved

in the query, known as query subschema. Many app-

roaches of temporal visual languages adopt the visual-

ization of the database schemas as Entity-Relationship

(ER) diagrams extended with temporal entities

Temporal Visual Languages T 3029
(classes) and temporal relationships. Following this

approach, the selection of the subschema of interest

may be done by selecting the classes, attributes, and

relationships of interest [10], including the temporal

ones. As an evolution of this ER-based approach

a direct manipulation strategy has been proposed

in [13], which adopts a “graphical notebook” meta-

phor for interacting with the database schema. Usabil-

ity tests showed that this approach was enjoyed by the

users, since they prefer to interact with something

more familiar.

In the manipulation phase, the query subschema

can be manipulated in several ways, according to the

available query operators on which the detailed condi-

tions of the query must be specified. A database query

has two orthogonal components: selection and projec-

tion. In an analogy to a SQL SELECT-FROM-WHERE

statement, the SELECT clause gives the data projection

of the query result, the FROM clause states the query

subschema of the location phase and the WHERE

clause establishes the selection conditions on the data-

base in order to retrieve the required data. Temporal

queries encompass the possible combinations of cur-

rent/temporal selection and current/temporal projec-

tion over time and data, resulting into nine different

combinations beginning from data selection/data pro-

jection up to mixed selection/mixed projection [13].

For instance a query ‘when did the employee Joseph

move from department 1 to department 2, and what

salary did he get at the new job? ’ is a data selection
Temporal Visual Languages. Figure 1. Point/Interval relatio
(Joseph and the two departments) and mixed projec-

tion (date of movement – time; new salary – data).

The question in temporal query processing is

how to relate the (temporal-) data of the query to

(temporal-) data of the database. This relationship

is stated by comparing time-spans of the data life-

time that has been specified in the query with the

corresponding lifetimes of objects or attributes in the

database. This comparison may include special forms

for expressing temporal restrictions or relations be-

tween the query and the database.

Temporal visual languages can use a set of visual

representations for time and temporal relations,

depending on the type of request: snapshot or slice

[14]. Snapshot queries deal with facts that were valid

at a particular time instant, whereas slices queries

return facts that were valid over some period of time.

Regarding snapshot queries, instants are visually repre-

sented as circles or small vertical bars. If p is a time

instant (point) of the query and t is the valid time of an

object (or attribute), the temporal relations between

them can be visually represented as icons (Fig. 1).

Regarding slice queries, the temporal relations be-

tween time intervals are based on Allen’s Calculus of

temporal intervals [3], which gives a complete set of

possible relations between two (temporal) intervals. If

both the database time tv and the query time p are

intervals, the relational primitives of Allen can be visu-

ally represented as icons (Fig. 2). Instead of using icons

for expressing temporal relations, a more intuitive
ns as icons [5].

T

Temporal Visual Languages. Figure 2. Interval icons.

Temporal Visual Languages. Figure 3. Mobile slider [13].

3030T Temporal Visual Languages
form of expressing such relations is to visually repre-

sent intervals as horizontal slide bars in order to dyna-

mically specify the predicates of Allen. For instance,

Silva et al. [13] have proposed a mobile slider, as

illustrated in Fig. 3.

However, one of the most difficult problems in

designing a temporal visual language is to achieve

both high expressive power and ease-of-use. For exam-

ple, the two representations illustrated above cannot

deal with situations involving more than two intervals.

In this case, the logical expressions between temporal

relations (involving conjunctions and disjunctions)

should be addressed in this manipulation phase.

Some proposals address such a need by adopting visual

metaphors for complex representation of temporal

relations [6, 8] in a temporal query formulation. Con-

sidering that the endpoints may be imprecise or vari-

able, Chittaro and Combi [6] propose three alternative
visual representations of flexible temporal intervals

in order to deal with variable endpoints. Hibino

and Rudensteiner [8] propose a bar with alternative

endpoints, e.g., for specifying the temporal relation

between two intervals starting at the same time but

without restriction on the end, giving rise the logical

expression begins(A,B) ∨ equals(A,B) ∨ begins(B,A).

Moreover, other complex temporal relations such

as temporal patterns should be also addressed. For

instance, users might be interested in data related to

events of arbitrary duration or events separated by

arbitrary time gaps. The temporal visual language de-

fined in [7] address such a need by presenting visual

metaphors for expressing event-based queries, where

constraints on events and inter-event time-spans are

visually specified in different ways.

Finally in the visualization phase, the historical data

retrieved from the query result is visualized for

Temporal Visual Languages. Figure 4. History with “TimeBox” [9].

Temporal Visual Languages T 3031

T

interactive exploration and analysis. The most widely

known visualization technique of time-oriented data

are the interactive timeline [12], where the time is

regarded as an ordinal axis in a bi-dimensional (2D)

visualization and data are located at different positions

along this time axis. Timelines and other visualization

techniques can be categorized according to the generic

criteria that address ontologies about the time, such

as the temporal primitives that make up the time

axis (time points and intervals), the temporal order

(linear, cyclic or branching), etc. For instance, timeline

visualization takes advantage of the linear orderednature

of time. An additional criterion is if time-oriented visu-

alization supports the snapshot or slice views [12]. Other

relevant criterion is the data tied to time axis [2], such as

the data type which indicates if the data are abstract or

spatial; the number of involved variables (univariate or

multivariate) related to the data (temporal attributes

and relationships); and its abstraction level (e.g., raw

vs. aggregated data).

It is worth noting that for an effective exploration

of data, visual techniques must be integrated with

suitable interaction techniques, following the principle

of visualization information mantra, defined in [11]:

overview first, zoom and filter, then details-on-demand,

where visual tools exploring the dynamic query ap-

proach [1] are well-known implementations of this

principle. This means that starting from an overview of

a large dataset, one may zoom and filter this overview to

extract a data subset. Then, more details can be obtained

from the selected data subset. In dynamic queries, the

manipulation and visualization phases proceed iterative-

ly in a visual query formulation. This means that, after

visualization of a preliminary result, the user may inter-

act with this result in order to refine the query.

Within this context, the visualization phase in tem-

poral visual languages focuses on visual query and

exploration of temporal trends and patterns within
historical results from a preliminary query by using

suitable interactive visualization techniques. When ex-

ploring such data, suitable interaction techniques such

as the direct manipulation and brushing can be

integrated with visual query capabilities. For instance,

TimeSearcher [9] allow users to visually query and

explore patterns in time-series data by using visual

widgets for data filtering called “TimeBoxes.” Time-

Boxes are rectangular query locators that specify the

region(s) in which the users are interested. They are

placed and directly manipulated on a 2D timeline,

with the region boundaries providing the query para-

meters, as illustrated in Fig. 4. The extent of the Time-

box on the time (x) axis specifies the time period of

interest, while the extent on the value (y) axis specifies

a constraint on the range of data values of interest.

In this case, a query is dynamically created by drawing

a box on the timeline. Multiple timeboxes can be

combined to specify conjunctive queries. Only data

sets that match all of the constraints implied by the

timeboxes are visualized.

Key Applications
Temporal Visual Languages may be integrated with

Spatial Visual Languages for Geographic Information

Systems. Other typical applications are virtual reality,

moving objects, or multimedia systems, such as video

and audio data. It can be also an important concern in

Visual Analytics.

In the medical field, there are many different appli-

cations needing temporality of patient records, images,

examination events, and so on.

The classic application fields of Temporal Databases

are systems of planning data, or systems of historic data,

such as banking account, economic data, meteorological

data, business histories, and many others. Also in Deci-

sion Support Systems, such as OLAP – Online Analyti-

cal Processing, time is the most important dimension.

3032T Temporal Visual Queries
Another promising application is related to the

document management, which is based on time-

changing texts, such as legal data or instructional

texts. For instance, a judgment support system based

on jurisprudence must consider the temporal context

of past judgments.
Cross-references
▶Data Visualization

▶ Lifespan

▶Temporal Database

▶Temporal Query Languages

▶TSQL2

▶Visual Interaction

▶Visual Interfaces

▶Visual Query Language
Recommended Reading
1. Ahlberg C. and Shneiderman B. Visual information seeking:

tight coupling of dynamic query filters with starfield displays.

In Proc. SIGCHI Conf. on Human Factors in Computing Sys-

tems, 1994, pp. 313–317.

2. Aigner W. et al. Visualizing time-oriented data – A systematic

view. Comput. Graph., 31(3):401–409, 2007.

3. Allen J.F. Maintaining knowledge about temporal interval.

Commun. ACM, 26(1):832–843, 1983.

4. Catarci T . et al. Visual query systems: analysis and comparison.

J. Vis. Lang. Comput., 8(2):215–260, 1997.

5. Cavalcanti V.M.B., Schiel U., and Baptista C.S. Querying spatio-

temporal databases using a visual environment. In Proc. Work-

ing Conf. on Advanced Visual Interfaces, 2006, pp. 412–419.

6. Chittaro L. and Combi C. Representation of temporal intervals

and relations: information visualization aspects and their evalu-

ation. In Proc. 8th Int. Symp. Temporal Representation and

Reasoning, 2001, pp. 13–20.

7. Fails J.A., Karlson A., and Shahamat L. Visual Query of

Multi-Dimensional Temporal Data. http://www.cs.umd.edu/

class/spring2005/cmsc838s/assignment-projects/visual-query-of-

temporal-data/Final-Paper-06.pdf.

8. Hibino S. and Rundensteiner E.A. User interface evaluation of a

direct manipulation temporal query language. In Proc. 5th ACM

Int. Conf. on Multimedia, 1997, pp. 99–107.

9. Hochheiser H. and Shneiderman B. Dynamic query tools for

time series data sets, timebox widgets for interactive exploration.

Inf. Vis., 3(1):1–18, 2004.

10. Shneiderman B. Direct manipulation, a step beyond program-

ming languages. IEEE Comput., 16(8):57–69, 1983.

11. Shneiderman B. The eyes have it: a task by data type taxonomy

for information visualizations. In Proc. IEEE Symp. on Visual

Languages, 1996, pp. 336–343.

12. Silva S.F. and Catarci T. Visualization of linear time-oriented

data: a survey. In Proc. 1st Int. Conf. on Web Information

Systems Eng., 2000, pp. 310–319.
13. Silva S.F., Catarci T., and Schiel U. Formalizing visual interaction

with historical databases. Inf. Syst., 27(7):487–521, 2002.

14. Silva S.F., Schiel U., and Catarci T. Visual query operators for

temporal databases. In Proc. 4th Int. Workshop Temporal Rep-

resentation and Reasoning, 1997, pp. 46–53.
Temporal Visual Queries

▶Temporal Visual Languages
Temporal XML

CURTIS DYRESON
1, FABIO GRANDI

2

1Utah State University, Logan, UT, USA
2University of Bologna, Bologna, Italy

Synonyms
Temporal semi-structured data

Definition
Temporal XML is a timestamped instance of an XML

datamodel or,more literally, anXMLdocument inwhich

specially-interpreted timestamps are present. In general,

an XML data model instance is a tree or graph in which

each node corresponds to an element, attribute, or value,

and each edge represents the lexical nesting of the child in

the parent’s content. In temporal XML, a timestamp is

added to some nodes or edges in the instance. The time-

stamp represents the lifetime of the node or edge in one

or more temporal dimensions, usually valid time or

transaction time. As an example, Fig. 1 shows a fragment

of a temporal XML data model. The bibliographic data

in the figure contains information about publishers,

books, and authors. The figure also has timestamps

that represent when each piece of data was entered

into the data collection (i.e., the timestamps represent

the transaction-time lifetime of each element). The bib-

liography began on Dec 21. 2001, and remains current

(until now). Information about the Butterfly Books

publisher was entered on Jan 1, 2004, and it started

publishing a book by Jane Austen on Feb 2, 2004. The

title of that book was originally misspelled, but was

corrected on May 29, 2005. Alternatively, temporal

XML is literally an XML document or data collection

in which specially-interpreted timestamps, formatted

Temporal XML. Figure 1. A temporal XML fragment.

Temporal XML T 3033

T

in XML, are included. Such a document yields a tem-

poral XML data model instance when parsed.

Historical Background
XML is becoming an important language for data -

representation and exchange, especially in web appli-

cations. XML is used to “mark-up” a data collection

or document adding meaning and structure. The

mark-up consists of elements inserted into the data.

Usually an XML document is modeled as a tree in

which each interior node corresponds to an element

in the document and each leaf to a text value, attribute,

or empty element. Temporal XML adds timestamps

to the nodes and/or edges in the data model instance.

The timestamps represent the lifetime of the nodes

(edges).

Grandi has created a good bibliography of research

in this area [8]. Chawathe et al. were the first to study

time in an XML-like setting [2]. They encoded times in

edge labels in a semi-structured database and extended

the Lorel query language with temporal constructs.

Dyreson et al. extended their research with collapsing

and coalescing operators [5]. Grandi and Mandreoli

presented techniques for adding explicit valid-time

timestamps in an XML document [9]. Amagasa et al.

next developed a temporal extension of the XML data

model [1]. Following that, a range of temporal XML

topics was investigated, from storage issues and

indexing [3,11,12,13,14] to querying [6,7,12]. The

timestamping of XML documents (or parts thereof)

has also been considered in the more general context of
versioning of XML documents [11,15]. Finally,

schemes for validating and representing times in

XML documents have also been considered [4,10].

Foundations
It is important to distinguish between “the representa-

tion in XML of a time” and “temporal XML.” Times

are common in many XML documents, especially

documents that record the history of an enterprise.

There is nothing special about the representation or

modeling of these times. They would be modeled just

the same as any other snippet of XML, e.g., represented

within a <time> element. Temporal XML, on the

other hand, is different. It models both the compo-

nents within a document or data collection and their

lifetimes. An instructive way to think about the differ-

ence is that temporal XML weds metadata in the form

of timestamps to data contained in a document, i.e.,

to the elements or parts of the document that are

annotated by the timestamps. Research in temporal

XML builds on earlier research in temporal (relational)

databases. Though many of the concepts and ideas

carry over to temporal XML research, the ideas have

to be adapted to the tree-like model of XML.

Many temporal XML data models impose a

transaction-time constraint on the times along every

path in a model instance: the timestamp of a child

must be during (inclusive) the timestamp of its parent

[1,4]. Said differently, no child may outlive its parent

in transaction time. The reason for this constraint is

that every snapshot of a temporal data model instance

3034T Temporal XML
must be a single, complete, valid non-temporal XML

data model instance. A non-temporal instance has

a single root. But if in a temporal instance a child

outlives its parent then, in some snapshot(s), the

child represents a second root since it has no parent,

thus violating a model property. In valid time it is

more common to relax this constraint and model a

temporal data collection as a sequence of forests where

a child that outlives its parent is interpreted to mean

that the child is the root in some snapshot(s) of some

tree in the forest [10]. For instance, the valid time of

Jane Austen’s book Pride and Prejudice would extend

from its time of publication (1813) to now, far exceed-

ing the lifetime of its publication by Butterfly Books.

Another interesting situation is when a child moves

among parents over time (for instance, in the data

collection shown in Fig. 1 if the book Pride and Preju-

dice were published by two different publishers).

A directed graph data model is better suited to model-

ing such movement as a node (e.g., the book) can

have multiple incoming edges (e.g., an edge from

each publisher) [5]. Various constraints have been

proposed for relationships among the timestamps on

nodes and edges in the graph.

Timestamps on nodes/edges in a data model in-

stance changes query evaluation. At the core of all

XML query languages (and different from SQL or

relational query languages) are path expressions that

navigate to nodes in a data model instance. In a tem-

poral data model instance, a query has to account

for the timestamps along each path that it explores.

In general, a node is only available during the intersec-

tion of times on every node and edge in the path to it

(though a node in a graph data model can be reached

along multiple paths). Temporal XML queries can

be evaluated using a sequenced semantics [7], that

is, simultaneously evaluated in every snapshot or non-

sequenced [6,14] where differences between versions

can be extracted and paths between versions are directly

supported by the data model.

Key Applications
Temporal XML can be used to model an evolving

document or data collection. In many situations,

“old” documents or document versions are still of

use. For instance, in an industrial domain an airplane

parts manufacturer has to retain part plan histories

to produce parts for older planes, while in the legal
domain a tax firm has to keep a complete history of

tax laws for audits. Currently, the de facto method

for storing old documents is an archive. An archive

is a warehouse for deleted or modified documents.

Archives can be site-specific or built for a number of

sites, e.g., the Internet Archive. But the method to

retrieve documents from an archive varies widely

from site to site, which is problematic because then

queries also have to vary. Moreover, archives typically

only support retrievals of entire document versions,

not a full range of temporal queries or version histories

of individual elements. In contrast, temporal XML

provides a basis for supporting a full range of temporal

queries. Temporal XML can also be explicitly used

to represent, store or view historical data, including

structured data, or to encode multi-version docu-

ments. Multi-version documents are compact repre-

sentations of XML documents which maintain their

identity through modifications and amendments.

A temporally consistent individual version or range

of consecutive versions (timeslice) can be extracted

by means of a temporal query. Temporal XML has

also been proposed as a medium of communication

with temporal relational databases in the context of

traditional enterprise applications.

Future Directions
The future of temporal XML is tied to the continued

growth of XML as an important medium for data

storage and exchange. Currently, many sites pro-

mote XML by publishing data formatted in XML

(e.g., genomic and proteomic data can be obtained in

three, different XML formats from the National Center

for Biotechnology Information (NCBI)). Building a

temporal XML data collection by accumulating snap-

shots gathered from these sites is vital to answering

queries such as “What new data has emerged over

the past six months?” As search engines become

more XML-aware, they could also benefit enormously

from making time a relevant component in ranking

resources, e.g., a search for “mp3 players” should lower

the ranking of discontinued products. The growth of

the Semantic Web may lead to XML being supplanted

by new languages for knowledge representation such as

the Ontology Web Language (OWL). Temporal exten-

sions of these languages will not be far behind. OWL

already has one such extension: the Time-determined

Ontology Web Language (TOWL).

Term Processing T 3035
Cross-references
▶Temporal Database

▶Temporal Queries

▶XML
T

Recommended Reading
1. Amagasa T., Yoshikawa M., and Uemura S. A data model

for temporal XML documents. In Proc. 11th Int. Conf. Database

and Expert Syst. Appl., 2000, pp. 334–344.

2. Chawathe S.S., Abiteboul S., and Widom J. Representing and

querying changes in semistructured data. In Proc. 14th Int. Conf.

on Data Engineering, 1998, pp. 4–13.

3. Chien S.-Y., Tsotras V.J., and Zaniolo C. Efficient schemes

for managing multiversion XML documents. VLDB J.,

11(4):332–353, 2002s.

4. Currim F., Currim S., Dyreson C., and Snodgrass R.T. A tale

of two schemas: creating a temporal XML schema from a

snapshot schema with t XSchema. In Advances in Database

Technology, Proc. 9th Int. Conf. on Extending Database Tech-

nology, 2004, pp. 348–365.

5. Dyreson C., Böhlen M.H., and Jensen C.S. Capturing and

querying multiple aspects of semistructured data. In Proc.

25th Int. Conf. on Very Large Data Bases, 1999, pp. 290–301.

6. Dyreson C.E. Observing transaction-time semantics with

TTXPath. In Proc. 2nd Int. Conf. on Web Information Systems

Eng., 2001, pp. 193–202.

7. Gao D. and Snodgrass R.T. Temporal slicing in the evaluation

of XML queries. In Proc. 29th Int. Conf. on Very Large Data

Bases, 2003, pp. 632–643.

8. Grandi F. Introducing an annotated bibliography on temporal

and evolution aspects in the World Wide Web. ACM SIGMOD

Rec., 33(2):84–86, 2004.

9. Grandi F. and Mandreoli F. The valid web: an XML/XSL infra-

structure for temporal management of web documents.

In Proc. 1st Int. Conf. Advances in Information Systems, 2000,

pp. 294–303.

10. Grandi F., Mandreoli F., and Tiberio P. Temporal modelling

and management of normative documents in XML format.

Data Knowl. Eng., 54(3):327–254, 2005.

11. Mitakos T., Gergatsoulis M., Stavrakas Y., and Ioannidis E.V.

Representing time-dependent information in multi-

dimensional XML. J. Comput. Inf. Technol., 9(3):233–238,

2001.

12. Rizzolo F. and Vaisman A.A. Temporal XML: modeling,

indexing and query processing. VLDB J., 2007.

13. Wang F. and Zaniolo C. X-BiT: An XML-based Bitemporal

Data Model. In Proc. 13th Int. Conf. on Entity-Relationship

Approach, 2004, pp. 810–824.

14. Wang F. and Zaniolo C. An XML-based approach to publishing

and querying the history of databases. World Wide Web,

8(3):233–259, 2005.

15. Wong R.K., Lam F., and Orgun M.A. Modelling and manipulat-

ing multidimensional data in semistructured databases. World

Wide Web, 4(1–2):79–99, 2001.
Temporally Indeterminate
Databases

▶ Probabilistic Temporal Databases
Temporally Uncertain Databases

▶ Probabilistic Temporal Databases
Temporally Weak

▶ Snapshot Equivalence

▶Weak Equivalence
Term Expansion

▶Query Expansion for Information Retrieval
Term Expansion Models

▶Query Expansion Models
Term Frequency by Inverse
Document Frequency

▶TF*IDF
Term Frequency Normalization

▶Document Length Normalization
Term Processing

▶ Lexical Analysis of Textual Data

3036T Term Proximity
Term Proximity

VASSILIS PLACHOURAS

Yahoo! Research Barcelona, Spain

Synonyms
Lexical affinities; Lexical relations

Definition
Term proximity is a form of term dependence based

on the distance of terms in a document. A retrieval

system using term proximity assigns a higher score

to documents in which the query terms appear close

to each other.

Key Points
Term proximity is a feature that partially captures the

dependence of terms in documents. Information

retrievals models are often based on the assumption

that terms occur independently of other terms in a

document. This assumption is only an approximation

to allow the simple mathematical development of

retrieval models. There have been, however, several

efforts to introduce dependence of terms [4]. Most of

the efforts to use term proximity in the past did not

result in substantial improvements. Metzler and Croft

[2] argued that this can be attributed to the small size

of the test collections used in the past, as well as to the

fact that previous models required estimating term

dependencies for both the classes of relevant and

non-relevant documents.

Metzler and Croft [2] proposed a model based on

Markov Random Fields for term dependence using term

proximity. They modeled full independence, sequential

dependence that is equivalent to phrase search, and

full dependence, where the dependence between any

pair of query terms is computed. Mishne and de Rijke

[3] also proposed a model in which every n-gram of the

query is considered as a phrase, and it is evaluated on an

index consisting of single terms. Their results show

that improvements in early precision are obtained in

the setting of Web search. In both models, term proxim-

ity is based on lexical relations [1]. Terms are said to be

in a lexical relation if they appear often within a certain

number of tokens of each other.

Cross-references
▶ Information Retrieval Models

▶N-Gram Models
Recommended Reading
1. Maarek Y.S. and Smadja F.Z. Full text indexing based on lexical

relations an application: software libraries. In Proc. 12th Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 1989, pp. 198–206.

2. Metzler D. and Croft B. A Markov random field model for

term dependencies. In Proc. 31st Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

2005, pp. 472–479.

3. Mishne G. and de Rijke M. Boosting Web retrieval through

query operations. In Proc. 27th European Conf. on IR Research,

2005, pp. 502–516.

4. Yu C.T., Buckley C., Lam K., and Salton G. A generalized

term dependence model in information retrieval. Inform.

Technol. R&D, 2:129–154, 1983.
Term Statistics for Structured Text
Retrieval

MOUNIA LALMAS

Queen Mary, University of London, London, UK

Synonyms
Within-element term frequency; Inverse element

frequency

Definition
Classical ranking algorithms in information retrieval

make use of term statistics, the most common (and

basic) ones being within-document term frequency, tf,

and document frequency, df. tf is the number of occur-

rences of a term in a document and is used to reflect

how well a term captures the topic of a document,

whereas df is the number of documents in which a

term appears and is used to reflect how well a term

discriminates between relevant and non-relevant

documents. df is also commonly referred to as inverse

document frequency, idf, since it is inversely related to

the importance of a term. Both tf and idf are obtained

at indexing time. Ranking algorithms for structured

text retrieval, and more precisely XML retrieval, re-

quire similar terms statistics, but with respect to

elements.

Key Points
To calculate term statistics for elements, one could

simply replace documents by elements and calculate

so-called within-element term frequency, etf, and

Term Weighting T 3037

T

inverse element frequency, ief. This however raises an

issue because of the nested nature of XML documents

in particular. For instance, suppose that a section ele-

ment is composed of two paragraph elements. The fact

that a term appears in the paragraph necessitates that it

also appears in the section. This overlap can be taken

into account when calculating the ief value of a term.

In structured retrieval, in contrast to “flat” docu-

ment retrieval, there are no a priori fixed retrieval

units. The whole document, a part of it (e.g., one of

its section), or a part of a part (e.g., a paragraph in the

section), all constitute potential answers to queries.

The simplest approach to allow the retrieval of ele-

ments at any level of granularity is to index all

elements. Each element thus corresponds to a docu-

ment, and etf and ief for each element are calculated

based on the concatenation of the text of the element

and that of its descendants (e.g., [4]).

With respect to the calculation of the inverse element

frequency, ief, the above approach ignores the issue of

nested elements. Indeed, the ief value of a term will

consider both the element that contains that term and

all elements that do so in virtue of being ancestors of

that element. Alternatively, ief can be estimated across

elements of the same type (e.g., [3]) or across docu-

ments (e.g., [1]). The former greatly reduces the im-

pact of nested elements on the ief value of a term, but

does not eliminate it as elements of the same type can

be nested within each other. This approach can be

extended to consider the actual path of an element,

leading to so-called inverted path frequency. For exam-

ple, in [2], this is defined as the combination of the ief

values (as above calculated) with respect to each of the

element types forming the path. The latter case, i.e.,

calculating ief across documents, is the same as using

inverse document frequency, which completely elimi-

nates the effect of nested elements.

Cross-references
▶XML Retrieval

▶ Indexing Units

▶ Structure Weight

▶Relationships in Structured Text Retrieval
Recommended Reading
1. Clarke C.L.A. Controlling overlap in content-oriented XML

retrieval. In Proc. 31st Annual Int. ACM SIGIR Conf. on Re-

search and Development in Information Retrieval, 2005,

pp. 441–448.
2. Grabs G. and Schek H.-S. ETH Zürich at INEX: flexible

information retrieval from XML with PowerDB-XML. In Proc.

1st Int. Workshop of the Initiative for the Evaluation of XML

Retrieval, 2002, pp. 141–148.

3. Mass Y. and MandelbrodM. Component ranking and automatic

query refinement for XML retrieval. In Proc. 4th Int. Workshop

of the Initiative for the Evaluation of XML Retrieval, 2005,

pp. 73–84.

4. Sigurbjörnsson B., Kamps J., and de Rijke M. An element-based

approach to XML retrieval. In Proc. 2nd Int. Workshop of the

Initiative for the Evaluation of XML Retrieval, 2003, pp. 19–26.
Term Weighting

IBRAHIM ABU EL-KHAIR

Minia University, Minia, Egypt

Definition
Term weighting is a procedure that takes place during

the text indexing process in order to assess the value of

each term to the document. Term weighting is the

assignment of numerical values to terms that represent

their importance in a document in order to improve

retrieval effectiveness [8]. Essentially it considers the

relative importance of individual words in an informa-

tion retrieval system, which can improve system effec-

tiveness, since not all the terms in a given document

collection are of equal importance. Weighing the terms

is the means that enables the retrieval system to deter-

mine the importance of a given term in a certain

document or a query. It is a crucial component of

any information retrieval system, a component that

has shown great potential for improving the retrieval

effectiveness of an information retrieval system [7].

Historical Background
The use of word frequency dates back to G. K. Zipf and

his well known law [14] for word distribution. The law

indicates that there is a correlation between the fre-

quency of a word and its rank, and their product is a

constant.

r�f ¼ c

where: r is the rank of the word

f is the frequency of the word

c is a parameter/constant that depends on the text

being analyzed.

3038T Term Weighting
Zipf indicates that this law is a way to express the

within-document frequency weighting.

The use of word frequency as an indication of its

significance in a given document was established al-

most 10 years later based on observations made by

Luhn [4] when he was conducting an explanatory

research on creating automatic abstracts in scientific

documents. Based on these observations, Luhn pro-

posed that the frequency of word occurrence in a

document can be considered a useful measure of the

word’s significance in that document. The premise is

that the author of a certain document repeats certain

words as he/she presents his/her argument elaborating

the subject of the document.

Looking at the word distribution in any given doc-

ument shows that there are significant words and in-

significant words. Luhn used Zipf ’s law as his null

hypothesis [14] to enable him to specify two cut-off

points to exclude all insignificant words, an upper

point and a lower point. The upper cut-off eliminated

the commonwords, and the lower point eliminated the

rare words; both of which he considered extraneous in

the document content. After Luhn excluded words

above and below these two cut off points, the most

useful range of words remained.

The 1960’s saw several key developments in the

field of information retrieval in general and the most

notable were related to the development of the SMART

system by Gerard Salton and his students, first at

Harvard University and later at Cornell University.

This system utilized weights for index terms based on

their frequency [10]. The probabilistic approach to

retrieval, with term weights based on probability of

relevance, appeared in 1960 and since then it has

been tested heavily with many variations [12].

The decade of the 1970’s saw a breakthrough

in the calculation of term weights used in retrieval

systems. By then, it was confirmed that the signif-

icance of a certain term in a given document is

determined using the term frequency of that term in

the document. Sparck Jones [11] argued that the term

frequency by itself is not sufficient enough to mea-

sure the importance of a term in a collection of

documents. She suggested correlating the term fre-

quency with its relative collection frequency, making

the collection frequency a variable in retrieval. A sig-

nificant development in the probabilistic based retriev-

al was also achieved in 1976 by Robertson and

Sparck Jones [6].
Foundations
Storing, organizing, and retrieving information are the

main functions of an information retrieval system.

With the vast amounts of electronic information now

available it is very hard to find the ideal information

retrieval system that enables users to get what they

want from a specific collection of documents. A con-

siderable amount of research has addressed improve-

ment in the effectiveness of retrieval systems, most of

which is focused on finding appropriate indexing tech-

niques. The indexing process in any retrieval system

deals with assigning a set of index terms that represents

the content of each document within a collection.

Choosing the proper index terms is a primary issue

in information retrieval systems, as they should be

indicative of the content of a given document.

One of the most important procedures in the

indexing process is assigning a value, or weight, to an

index term in a document. It is a crucial component of

any retrieval system, and one that has shown great

potential for improving retrieval effectiveness [7]. By

assigning a numerical value to a term representing its

importance in the document, retrieval effectiveness

can be improved [8]. Term weighting indicates how

important each individual word is to the document

and within the document collection.

The process of assigning term weights is affected by

three major factors: term frequency, inverse document

frequency, and document length.

Term Frequency

Following Luhn’s observations [4], it is known that the

significance of a certain term in a given document can

be represented by the term frequency of that term in

the document. Simply, if there is a document in which

the word “database” occurs a hundred times, that

document would potentially be more useful in re-

sponse to a query containing “database” as a query

term than a document in which the word appears

only one or two times. Of course, the use of this factor

alone in calculating the term weights in a collection of

documents does not guarantee adequate retrieval per-

formance. For example, there are very common words,

sometimes referred to as stop words, which appear in

the text but carry little meaning, serving only a syntac-

tic function but not indicating subject matter [3]. They

have a very high frequency and tend to diminish the

impact of frequency differences among less common

words, affecting the weighting process [2].

Term Weighting T 3039

T

Inverse Document Frequency

The term frequency indicates the importance of the

term in a given document, but knowing the term

importance in a collection of documents is also signif-

icant. Term frequency was criticized as a method of

determining term significance because in its simplest

form, it treats all terms equally based on raw count,

which does not take into account the term’s discrimi-

nating power. To resolve this problem Sparck Jones

[11] suggested the use of the relative collection fre-

quency or inverse document frequency (IDF), making

the frequency of the term in the collection as a whole a

variable in retrieval. IDF places greater emphasis on the

value of a term as a means of distinguishing one

document from another than on its value as an indica-

tion of the content of the document itself.

Document Length

With the presence of long documents in the document

collection handled by any retrieval system, it became

harder to determine the importance of a term based

only on the term frequency or the inverse document

frequency or both. Even though the combination of

them is a good weighting function, it overlooks the

document length factor. Longer documents will have

higher term frequencies because the terms tend to be

repeated several times in the document, and thus will

be high in the ranking during the retrieval process.

Long documents are also likely to contain more unique

terms which may affect the retrieval as well. More

terms in a given document increases the possibility of

matching between this document and multiple queries

[7]. Applying a good normalization technique reduces

the effect of long documents and makes the weighting

function more effective. Another element to be taken

into consideration with the document length factor is

the removal of stop words, which changes the docu-

ment length and subsequently affects the weighting

process [2].

Term Weighting Schemes

The following is a brief and basic explanation of

some of the major term weighting schemes available.

It should be noted that each scheme has many varia-

tions and modifications that are not discussed.

TF*IDF A weighting function that depends on the

term frequency (TF) in a given document calculated

with its relative collection frequency or inverse
document frequency (IDF). The term frequency

emphasizes term significance in a given document,

and inverse document frequency emphasizes term sig-

nificance in the collection as a whole (TF*IDF).

BM25 A weighting function based on the traditional

Probabilistic Retrieval Model. The basic principle is that

a specific document could be judged relevant to a

specific query, based on the assumption that the

terms are distributed differently and independently in

relevant and non relevant documents. The weight of a

given term is calculated on the basis of the presence or

absence of query terms in each document in the col-

lection. Terms that have appeared in previously re-

trieved relevant documents for a given query should

be given a higher weight than if they had not appeared

in those relevant documents [12].

Language Modeling Language modeling (LM) is an

extension of the probabilistic retrieval approach. It is a

probabilistic mechanism for generating text, first ap-

plied by Andrei Markov at the beginning of the twen-

tieth century to model letter sequences in works of

Russian literature. It was also used by Claude Shannon

in his models of letter sequences and word sequences,

which he used to illustrate the implications of coding

and information theory. At the end of the 1970’s, LM

was used successfully in speech recognition, which was

its main application for many years [1]. In 1998 Ponte

and Croft [5] were the first to apply language modeling

to information retrieval. Their approach was to infer a

language model for each document and estimate the

probability of generating the query according to each

of these models, and then rank the documents accord-

ing to these probabilities. The results indicated an

improvement in retrieval over the traditional TF*IDF,

and there was further improvement when they used a

smoothing function with their new approach.

Key Applications
Term weighting is a key process in any information

retrieval system. It is the means that enables the system

to determine the importance of any term in a certain

document or a query.

Experimental Results
Experimentation in information retrieval has been an

active area for over 40 years, and much of this research

3040T Term-Document Matching Function
has focused on term weighting. Different schemes and

variations with different retrieval models have been

tested in order to find weighting schemes that perform

effectively. In general, the schemes above and their

variations have been tested extensively and evaluated

(see the corresponding references). Many other weigh-

ting schemes were developed and used but without

becoming widely adopted, either because the results

were not effective enough or because of the complexity

of the calculations or both. The Term Discrimina-

tion Value (TDV) model of indexing [9] is an example

which is now seldom used because of its complexity

and weak results.

Until the 1990s, experiments in the field of infor-

mation retrieval in general and term weighting in

particular were conducted on relatively small collec-

tions. With the beginning of TREC (http://trec.nist.

gov) (Text REtrieval Conference) in 1992, large test

collections became available for use by the IR commu-

nity, making the results of experiments more credible

and generalizable. Research in term weighting bene-

fited, establishing the effectiveness of term weighting

schemes such as BM25.

Cross-references
▶BM25

▶ Information Retrieval

▶ Language Models

▶ Lexical Analysis of Textual Data

▶TF*IDF

▶Text Indexing Techniques
Recommended Reading
1. Hiemstra D. and de Vries A. Relating the New Language Models

of Information Retrieval to the Traditional Retrieval Models

(No. TR-CTIT-00-09). Centre for Telematics and Informat-

ion Technology (CTIT), University of Twente, Amsterdam,

Netherlands, 2000.

2. Korfhage R.R. Information Storage and Retrieval. John Wiley,

New York, 1997.

3. Lancaster F.W. Indexing and Abstracting in Theory and Practice

(2nd edn.). University of Illinois, Graduate School of Library

and Information Science, Champaign, IL, 1998.

4. Luhn H.P. The automatic creation of literature abstracts. IBM J.

Res. Dev., 2(2):159–165, 1958.

5. Ponte J.M. and Croft W.B. A language modeling approach to

information retrieval. In Proc. 21st Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1998, pp. 275–281.

6. Robertson S.E. and Sparck-Jones K. Relevance weighting of

search terms. J. Am. Soc. Inf. Sci., 27(3):129–146, 1976.
7. Salton G. and Buckley C. Term-weighting approaches in auto-

matic text retrieval. Inf. Process. Manage., 24(4):513–523, 1988.

8. Salton G. and McGill M. Introduction to Modern Information

Retrieval. McGraw-Hill Book Company, New York, NY, 1983.

9. Salton G., Yang, C.S., and Yu, C.T. A theory of term importance

in automatic text analysis. J. Am. Soc. Inf. Sci. Technol.,

26(1):33–44, 1975.

10. Singhal A. Modern information retrieval: a brief overview. Bull.

IEEE Comput. Soc. Tech. Comm. Data Eng., 24(4):35–43, 2001.

11. Sparck Jones K. A statistical interpretation of term specificity

and its application in retrieval. J. Doc., 28:11–20, 1972.

12. Sparck Jones K., Walker S., and Robertson S.E. A probabilistic

model of information retrieval: development and comparative

experiments: Part I. Inf. Process. Manage., 36:779–808, 2000.

13. van Rijsbergen C.J. Information Retrieval (2nd edn.).

Butterworths, London, 1979.

14. Zipf G.K. Human Behavior and Principle of Least Effort. Addi-

son Wesley, Cambridge, MA, 1949.
Term-Document Matching Function

▶ Information Retrieval Models
Terminologic Languages

▶Description Logics
Terminological Database

▶ Electronic Dictionary
Test Collection

BEN CARTERETTE

University of Massachusetts Amherst, Amherst, USA

Synonyms
Corpus

Definition
A test collection is a standard set of data used to

measure search engine performance. It comprises a

set of queries, ideally randomly sampled from some

space, a set of documents to be searched, and a set of

judgments indicating the relevance of each document

to each query in the set.

Text Categorization T 3041
Key Points
The use of test collections for performance evaluation

began with Cleverdon and Mills [1] and is today

known as the Cranfield methodology. Test collections

today are much larger than Cleverdon’s Cranfield col-

lection, consisting of millions of documents and tens

of thousands of relevance judgments. The advantage of

having standardized test collections is that experimen-

tal results can be compared across research groups and

over time.

The National Institute of Standards and Technolo-

gy (NIST), through their annual Text REtrieval Con-

ferences (TREC), has led the way in providing test

collections for information retrieval research. NIST

has assembled large-scale test collections for many

different retrieval tasks and types of documents and

made these available to researchers so that the state of

the art in retrieval can be constantly improved.

Cross-references
▶Document Databases

Recommended Reading
1. Voorhees E.M. and Harman D.K. (eds.). TREC: Experiment and

Evaluation in Information Retrieval. MIT, Cambridge, MA,

USA, 2005.
Text Analytics

▶Web Information Extraction
T

Text Categorization

DOU SHEN

Microsoft Corporation, Redmond, WA, USA

Synonyms
Text classification

Definition
Text classification is to automatically assign textual

documents (such as documents in plain text and Web

pages) into some predefined categories based their

content. Formally speaking, text classification works

on an instance space X where each instance is a docu-

ment d and a fixed set of classes C = {C1,C2,...,CjCj}
where jCj is the number of classes. Given a training set

Dl of training documents hd,Cii where hd,Cii 2 X � C,

using a learning method or learning algorithm, the

goal of document classification is to learn a classifier

or classification function g that maps instances to

classes: g : X! C [7].

Historical Background
Text classification, which is to classify documents into

some predefined categories, provides an effective way

to organize documents. Text classification dates back

to the early 1960s, but only in the early 1990s did it

become a major subfield of the information systems

discipline. Recently, with the explosive growth of on-

line textual data, text classification attracts more and

more attention. A knowledge engineering approach

is one of the most popular solutions before the late

1980s, which relies on manually defined rules encoding

expert knowledge on how to classify documents under

the given categories. After that, machine learning based

methods became pervasive. These methods automati-

cally build some automatic text classifiers by learning

from a set of manually classified documents. The fol-

lowing sections will focus on machine learning based

methods.

Foundations
Text categorization consists of several important

components including document representation, di-

mensionality reduction, classification algorithms and

performance evaluation, which are to be introduced

in the followings sections. Readers are referred to [11]

for more details.

Document Representation

Documents or Web pages cannot be directly inter-

preted by a classifier. Therefore, a proper representa-

tion approach is necessary to represent documents.

Generally, a document d is usually represented as a

vector of term weights d = hw1,w2,...,wjV ji, where V is

the set of terms (sometimes called features) that occur

at least once in the training document set Dl. This way

is known as Vector Space Model (VSM) [7]. Different

representation approaches vary in two issues: (i) dif-

ferent ways of understanding what a term is;

(ii) different ways of computing term weights. For

issue (i), a straightforward way is to identify terms

with words. This is often called either the set-of-

words or the bag-of-words approach to document

3042T Text Categorization
representation, depending on whether weights are bi-

nary or not [11]. Although some previous work has

found that representations more sophisticated than

this are not significantly more effective [1], researchers

still struggle to find better ways in the following four

directions: (i) Represent a document by phrases [6];

(ii) Use the senses of words to represent a document

[4]; (ii) Augment document representation by hidden

concepts in a document; (iv) Employ language models,

such as n-gram models [9], multigram models. For

issue (ii), the weight can be binary (1 denoting pres-

ence and 0 absence of the term in the document) or

nonbinary. For the nonbinary value of a term t, it can

be either the Term Frequency (TF) of the term in a

document or TFDIF as computed according to the

following equation where N(t,d) is the number of

times the word t appears in d, jDj is the size of the

corpus, nt,D is the number of documents in D contain-

ing the word t:

wt ¼ Nðt ; dÞ�logðjDj=nt ;DÞ

Sometimes, the document vectors are normalized by

cosine normalization [11]. Using either binary or non-

binary values, either normalized or the original values

depends on the classifier learning algorithm.

Generally, the bag-of-words representation is built

based on the text in each document alone. However, it

is not uncommon that some documents have certain

relationships among them so that the text in one doc-

ument can help enrich the text of its related documents

to improve the classification results. The relationships

among documents are quite obvious in the context of

Web-page classification. For example, in [2], Glover

et al. enrich Web pages by considering inbound links

and words surrounding them. They come to the con-

clusion that the full-text of a Web page is not good

enough for representing the Web pages for classifica-

tion. They create virtual documents by incorporating

anchor text and extended anchor text. The experimen-

tal results demonstrate that the virtual documents,

especially when constructed through extended anchor

text are of great help. In [13], the authors enhance the

notion of virtual documents by complementing hyper-

links with implicit links which are extracted from

query logs. Besides utilizing the links among docu-

ments, there are also works enriching documents by

inserting features extracted from an existing knowl-

edge base.
Dimensionality Reduction

In document classification, it is unavoidable to face

the problem of high dimensionality. The original fea-

ture space consisting of the unique terms that occur

in a moderate-sized document collection can reach

hundreds of thousands of terms. Such high dimension-

ality prohibits the application of many classification

algorithms such as neural networks and Bayes belief

models [15]. Furthermore, some features in the native

space do not contribute much to the document classi-

fication. Therefore, it is beneficial to conduct di-

mensionality reduction (DR). DR techniques consist

of two groups, term selection and term generation.

Term selection methods select a subset of terms from

the native space while term generation methods obtain

new features by combining or transforming the ori-

ginal ones. The methods belonging to the former

group include Document Frequency (DF), Mutual In-

formation (MI), Chi-Square and so on. The latter

group of methods include Term Clustering, and Latent

Semantic Indexing (LSI). A detailed analysis and com-

parison of these methods is presented in [11,15].

Related to feature selection, some works have tried

to remove noise from documents. It is easy to imagine

that some text in a document, especially in a Web page,

is not related to the main topic of the documents.

When judging the category of a document, only the

main topic of the document should be considered and

the irrelevant text should be removed. These works are

different from conventional feature selection in that

they process each document independently and the

resultant feature space can still have high dimensional-

ity. For example, in [5], Kolcz et al. use summarization

as a feature selection method and apply a simple ex-

traction-based technique with several heuristic rules.

Different from Kolcz et al’s work on pure-text docu-

ment classification, [12] proposes to improve the Web-

page classification performance by removing the noise

through some summarization techniques.

Classification Algorithms

During the past few decades, a large number of cate-

gorization algorithms have been proposed for docu-

ment classification such as naı̈ve bayes [8], k-nearest

neighbor, decision trees, regression models, neural net-

works, support vector machines [3], boosting and rule

learning algorithms. The authors of [14] made a thor-

ough comparison among these classifiers. In this

Text Categorization T 3043

T

section, two widely used text classification algorithms,

Naive Bayes (NB) and Support Vector Machine (SVM)

are briefly introduced.

Naı̈ve Bayesian Classifier (NB) The Naı̈ve Bayesian

Classifier (NB) is a simple but effective text classifica-

tion algorithm which has been shown to perform very

well in practice [8]. The basic idea of NB is to use the

joint probabilities of words and categories to estimate

the probabilities of categories given a document. As

described in [8], most researchers employ NB method

by applying Bayes’ rule:

PðCj jdi; ŷÞ ¼
PðCj jŷÞ

QjV j
k¼1PðwkjCj ; ŷÞ

Nðwk ;diÞ

PjCj
r¼1PðCr jŷÞ

QjV j
k¼1PðwkjCr ; ŷÞ

Nðwk ;diÞ

where PðCj jŷÞ can be calculated by counting the fre-

quency with each category Cj occurring in the training

data; jCj is the number of categories; p(wijCj) stands

for probability that word wi occurs in class Cj which

may be small in training data, so the Laplace smooth-

ing is chosen to estimate it; N(wk,di) is the number

of occurrences of a word wk in di; jV j is the number of

words in the training data.

Support Vector Machine (SVM) SVM is well founded

in terms of computational learning theory and has

been successfully applied to text categorization [3].

SVM operates by finding a hyper-surface in the space

of possible inputs. The hyper-surface attempts to split

the positive examples from the negative examples by

maximizing the distance between the nearest of the

positive and negative examples to the hyper-surface.

Intuitively, this makes the classification correct for

testing data that is near but not identical to the training

data. There are various ways to train SVMs. The

SVMlight system provided by Joachims [3] is one of

the widely adopted and efficient implementations.

Performance Measures

Precision, recall and F1-measure are the most popular

measures to evaluate the performance of document

classification [10]. Precision (P) is the proportion of

actual positive class members returned by the system

among all predicted positive class members returned

by the system. Recall (R) is the proportion of predicted

positive members among all actual positive class mem-

bers in the data. F1 is the harmonic average of preci-

sion and recall as shown below:
F1 ¼ 2� P � R=ðP þ RÞ

To evaluate the average performance across multiple

categories, there are two conventional methods: micro-

average and macro-average. Micro-average gives equal

weight to every document; while macro-average

gives equal weight to every category, regardless of its

frequency [14].

Key Applications
Text classification has many applications [9], including

email classification, text genre classification, topic

identification, subjective sentiment classification and

Web query classification.

Data Sets
There are several open data sets for text categorization.

See the following for details:

20 Newsgroups: http://kdd.ics.uci.edu/databases/

20newsgroups/20newsgroups.html

Reuters-21578: http://kdd.ics.uci.edu/databases/

reuters21578/reuters21578.html

RCV1: http://www.daviddlewis.com/resources/

testcollections/rcv1

Enron Email Dataset: http://www.cs.cmu.edu/ enron/

Query Classification Dataset: http://www.sigkdd.

org/kddcup/index.php?section=2005&method=data

Cross-references
▶Classification

▶ Information Retrieval (IR)

▶Text Clustering

Recommended Reading
1. Dumais S., Platt J., Heckerman D., and Sahami M. Inductive

learning algorithms and representations for text categorization.

In Proc. Int. Conf. on Information and Knowledge Mangement,

1998, pp. 148–155.

2. Glover E.J., Tsioutsiouliklis K., Lawrence S., Pennock D.M., and

Flake G.W. Using web structure for classifying and describing

web pages. In Proc. 11th Int. Conf. World Wide Web Confer-

ence. 2002, pp. 562–569.

3. Joachims T. Text categorization with support vector machines:

learning with many relevant features. In Proc. 10th European

Conf. on Machine Learning, 1998, pp. 137–142.

4. Kehagias A., Petridis V., Kaburlasos V.G., and Fragkou P. A

comparison of word- and sense-based text categorization

using several classification algorithms. J. Intell. Inf. Syst.,

21(3):227–247, 2003.

5. Kolcz A., Prabakarmurthi V., and Kalita J.K. String match

and text extraction: summarization as feature selection for

3044T Text Classification
text categorization, In CIKM’01: Proc. 10th ACM Int. Conf. on

Information and Knowledge Management, 2001, pp. 365–370.

6. Lewis D.D. Representation quality in text classification: An

introduction and experiment. In Proc. Workshop on Speech

and Natural Language, 1990, pp. 288–295.

7. Manning C.D., Raghavan P., and SchÜZe H. Introduction

To Information Retrieval. Cambridge University Press, 2007.

8. Mccallum A. and Nigam K. A comparison of event models for

naive bayes text classication. In Proc. AAAI-98 Workshop on

Learning for Text Categorization, 1998.

9. Peng F., Schuurmans D., and Wang S. Augmenting naive

bayes classifiers with statistical language models. Inf. Retr.,

7(3–4):317–345, 2004.

10. Rijsbergen C.V. Information Retrieval, 2nd edn. Butterworths,

London, 1979.

11. Sebastiani F. Machine learning in automated text categorization

ACM Comput. Surv., 34(1):1–47, 2002.

12. Shen D., Chen Z., Yang Q., Zeng H.-J., Zhang B., Lu Y.,

and Ma W.-Y. Web-page classification through summarization.

In Proc. 30th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2004, pp. 242–249.

13. Shen D., Sun J.-T., Yang Q., and Chen Z. A comparison of

implicit and explicit links for web page classification. In Proc.

15th Int. World Wide Web Conference, 2006, pp. 643–650.

14. Yang Y. An evaluation of statistical approaches to text cate-

gorization. Inf. Retr., 1(1–2):69–90,1999.

15. Yang Y. and Pedersen J.O. A comparative study on feature

selection in text categorization. In Proc. 14th Int. Conf. on

Machine Learning, 1997, pp. 412–420.
Text Classification

▶Text Categorization
Text Clustering

HUA LI

Microsoft Research Asia, Beijing, China

Definition
Text clustering is to automatically group textual docu-

ments (for example, documents in plain text, web pages,

emails and etc) into clusters based on their content

similarity. The problem of text clustering can be defined

as follows. Given a set of n documents noted asDS and a

pre-defined cluster number K (usually set by users),DS

is clustered into K document clustersDS1;DS2;:::;DSk ,

(i:e; fDS1;DS2;:::;DSkg ¼ DS) so that the documents

in a same document cluster are similar to one
another while documents from different clusters are

dissimilar [14].
Historical Background
Text clustering was initially developed to improve the

performance of search engines through pre-clustering

the entire corpus [2]. Text clustering later has also been

investigated as a post-retrieval document browsing

technique [1,2,7].
Foundations
Text clustering consists of several important compo-

nents including document representation, text cluster-

ing algorithms and performance measurements. The

readers should refer to [6,8,13] for more details.

Document Representation

The original representation of textual documents (like

plain texts, web pages, emails and etc) could not be

interpreted by text clustering algorithms directly. A

proper document representation method is necessary

for any text clustering algorithms. Vector Space Model

[6] is generally used to represent a document d as a

vector of term weights d ¼< w1;w2;:::;wjV j >; where

V is the set of terms (also named as features some-

times) that occur at least once in the document set DS.

Different representation approaches vary in two issues:

(i) different ways of understanding what a term is; (ii)

different ways of computing term weights. For issue

(i), a straightforward way is to identify terms with

words. This is often called either the set-of-words or

the bag-of-words approach to document representa-

tion, depending on whether weights are binary or not

[11]. Some previous work has found that representa-

tions more sophisticated than this are not significantly

more effective [5]. For issue (ii), the weight can be

binary (1 denoting the presence and 0 absence of the

term in the document) or non-binary. For the non-

binary value, it can be either the Term Frequency (TF)

of the term in a document or TFIDF as computed

according to the following equation where N(t, d)

is the number of the times the word t appears in

d, jDj is the size of the document corpus, nt ;D is

the number of documents in D containing the term t:

wt ¼ Nðt ; dÞ � logðjDj=nt ;DÞ

Cosine normalization is sometimes used to normalize

the document vectors [11]. It would depend on the

Text Clustering T 3045
text clustering algorithms to choose proper term

weight strategies.
Text Clustering Algorithms

Two categories can be used to organize all various

clustering algorithms (most of the general clustering

algorithms could be applied to text clustering tasks)

developed in the past a few years: hierarchical and

parititional approaches. The hierarchical algorithms

generate successive clusters in a nested sequence. The

partitional ones produce all clusters at one time.

In the following section, three popular cluster-

ing algorithms would be briefly introduced for read-

ers to get primary impressions of basic clustering

algorithms. Single-Link clustering [3] is one basic

approach among hierarchical clustering algorithms

category (http://en.wikipedia.org/wiki/Cluster_analy-

sis). K-Means clustering [9] is one of the typical parti-

tional algorithms which minimizes square error to

generate clusters. Co-clustering [4] is a graphic theory

based partitional clustering approach which is very

popular in recent years. For more clustering algo-

rithms, the readers can refer to [6].
T

Single-Link Clustering In the Single-Link clustering,

the distance between two clusters is defined as the

minimum of the distances of all linkages drawn from

the two clusters, where the linkage is the criterion to

determine the distance of pairs of patterns/points be-

tween two clusters while patterns/points are associated

with them. One shortcoming of the Single-Link clus-

tering is that it would suffer from a chaining effect [10]

which has a tendency to produce clusters that are

straggly or elongated [6].

The three main steps of Single-Link Clustering

algorithm are as follows [6]:

1. With each pattern/point in its own cluster, con-

struct a list of inter-pattern/point distances for all

distinctN ordered pairs of patterns/points, and sort

this list in ascending order.

2. Step through the sorted list of distances, forming

for each distinct dissimilarity value dk a graph on

the patterns where pairs of patterns closer than dk
are connected by a graph edge.

a If all the patterns are members of a connected

graph, stop.

b Otherwise, repeat 2.
3. The output of the algorithm is a nested hierarchy of

graphs which can be cut at a desired dissimilarity

level to form a clustering. The clusters would be

identified by simply connected components in the

corresponding graph.

K-Means Clustering K-Means clustering algorithm is

one of the simple but very efficient clustering algo-

rithms, which allows it to run through large datasets.

The main advantages of K-Means are (i) simplicity

and efficiency; (ii) does not yield the same result with

different run as the resulting clusters depend on the initial

random assignments. The main disadvantage is that as

it minimizes intra-cluster variance, K-means does not

ensure the result has a global minimum of variance

(http://en.wikipedia.org/wiki/Cluster_analysis).

K-Means algorithm is to cluster n objects (here

textual documents) based on attributes (the document

representation as vector space model) into K (K < n)

partitions. It assigns each object to the cluster which

has the nearest center. The center is defined as the

average of all the objects in the cluster, which starts

from a set of random initial centers. It assumes that the

object attributes form a vector space and the objective

for the algorithm to achieve is to minimize total intra-

cluster variance or, the squared error function (http://

en.wikipedia.org/wiki/Cluster_analysis):

V ¼
Xk
i¼1

X
xj2Si
ðxj � miÞ

2

where Si; i ¼ 1; 2;:::;k are K clusters and mi is the center
of cluster Si.

The main steps of K-Means clustering algorithm

are as follows [9]:

1. Setup the cluster number K;

2. Randomly generate K clusters and calculate the

cluster centers, or directly generate K random

points as cluster centers;

3. Assign each other points to the nearest cluster center;

4. Recalculate the new cluster centers after new points

are clustered into the clusters;

5. Repeat 3 and 4 until some convergence criterion is

met;

Co-Clustering In Co-Clustering method, the docu-

ment collection would be modeled as a bipartite

graph between document and words. That makes the

3046T Text Compression
clustering problem could be posed as a graph parti-

tioning problem. Then Co-Clustering is developed as a

spectral algorithm which could simultaneously yield a

clustering of documents and words based on this doc-

ument and word graph. The Co-Clustering algorithm

uses the second left and right singular vectors of an

appropriately scaled word-document matrix to yield

good bipartitionings [4].

Performance Measurements

There are generally two types of measurements used to

evaluate the performance of different text clustering

algorithms. One is internal quality measure and the

other is external quality measure. The authors of [12]

had made a thorough introduction of various clustering

algorithms measurements. The readers could refer to

their work for more details. Here a brief introduction

for both internal and external quality measurements

would be introduced in the following.

Internal Quality Measure The internal quality mea-

sure is used to compare different sets of clusters with-

out referring to external knowledge (like human

labeled/known classes/categories). One approach of

this kind of internal quality measurement is to calcu-

late the “overall similarity” based on the pair-wise

similarity of documents in a cluster [12].

External Quality Measure The external quality mea-

sure as naming is to leverage external knowledge as

known classes (categories) to make comparisons with

the generated clusters from the clustering algorithms.

Entropy [12] is one external measure which provides a

measure of “goodness” for un-nested clusters or for the

clusters at one level of a hierarchical clustering. F-

measure is another good example of external quality

measure, which is more oriented toward measuring the

effectiveness of a hierarchical clustering.

The readers should be aware that there are still

many other different quality measures than those

ones introduced here. The more important thing is

that the performance of different clustering algorithms

could vary substantially depending on which measure

is applied [12].

Key Applications
Text clustering has many applications, including search

results clustering, topic detection and tracking, email

clustering, and etc.
Cross-references
▶Document Clustering

▶ Information Retrieval

▶Text Classification

Recommended Reading
1. Croft W.B. Organizing and Searching Large Files of Documents.

Ph.D. Thesis, University of Cambridge, 1978.

2. Cutting D.R., Karger D.R., Pedersen J.O., and Tukey J.W. Scatter/

gather: a cluster-based approach to browsing large document

collections. In Proc. 15th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1992,

pp. 318–329.

3. DayW.H. and Edelsbrunner H. Efficient algorithms for agglom-

erative hierarchical clustering methods. J. Classification, 1:1–24,

1984.

4. Dhillon I.S. Co-clustering documents and words using bipartite

spectral graph partitioning, UT CS Technical Report #TR. De-

partment of Computer Sciences, University of Texas, Austin,

TX, 2001.

5. Dumais S., Platt J., Heckerman D. and Sahami M. Inductive

learning algorithms and representations for text categorization.

In Proc. 7th Int. Conf. on Information and Knowledge Manage-

ment, 1998, pp. 148–155.

6. Jain A.K., Murty M.N., and Flynn P.J. Data clustering: a review.

ACM Comput. Surv., 31(3):264–323, 1999.

7. Leouski A.V., and Croft W.B. An evaluation of techniques for

clustering search results. Technical Report IR-76. Department of

Computer Science, University of Massachusetts, Amherst, 1996.

8. Lewis D.D. Representation quality in text classification: an in-

troduction and experiment. In Proc. Workshop on Speech and

Natural Language, 1990, pp. 288–295.

9. MacQueen J.B. Some methods for classification and analysis

of multivariate observations. In Proc. 5th Berkeley Symp. on

Mathematical Statistics and Probability, 1967, pp. 281–297.

10. NAGY G. State of the art in pattern recognition. Proc. IEEE.,

56:836–862, 1968.

11. Sebastiani F. Machine learning in automated text categorization.

ACM Comput Surv., 34(1):147, 2002.

12. Steinbach M., Karypis G., and Kumar V. A comparison of docu-

ment clustering techniques. Technique Report, University of

Minnesota – Computer Science and Engineering, 2000.

13. van Rijsbergen C.J. Information Retrieval, 2nd edn. Butter-

worths, London, 1979.

14. Yoo I. and Hu X.H. A comprehensive comparison study of docu-

ment clustering for a biomedical distal library Medline. In Proc.

ACM/IEEE Joint Conf. on Digital Libraries, 2006, pp. 220–229.
Text Compression

PAOLO FERRAGINA, IGOR NITTO

University of Pisa, Pisa, Italy

Synonyms
Lossless data compression

Text Compression T 3047

T

Definition
Text Compression involves changing the representation

of a file so that the (binary) compressed output takes

less space to store, or less time to transmit, but still the

original file can be reconstructed exactly from its com-

pressed representation.

Key Points
The benefit of compressing texts in computer

applications is threefold: it reduces the amount of

memory to store a text, it reduces the time for trans-

mitting the text over a computer network and, re-

cently, it has been deployed to speed up algorithmic

computations because they can better exploit the

memory hierarchy available in modern PCs by reduc-

ing the disk access time, by increasing virtually the

bandwidth and size of disk (or memory, cache), and

by coming at a negligible cost because of the signifi-

cant speed of current CPUs.

A text in uncompressed format, also called raw or

plain text, is a sequence of symbols drawn from an

alphabet S and represented in dlog2jSje bits each. Text
compressors aim at storing a text in space less than its

raw encoding by exploiting the redundancies possibly

contained in it. Such redundancies might occur in the

form of repetitions or frequently occurring patterns,

which are not unlikely in texts generated by humans.

Text compression is a lossless process because it allows

restoring the original text from its compressed form by

means of a proper decompression algorithm. Most of

current approaches in text compression [4] can be

classified into: symbolwise, dictionary-based and trans-

form-based.

Symbolwise compressors encode the text one-

symbol at time, by emitting a (variable length) code-

word per individual symbol. They are further divided

into two sub-families: statistical and symbol-ranking.

Statistical compressors include some of the best com-

pressors currently known, like PPM and DMC. They rely

on two basic tools for the encoding task: a statistical

model of the text and a statistical encoder. The statisti-

cal model serves to predict the probability of the next

symbol given the previous portion of the text. If the

prediction is conditioned on the last k occurred sym-

bols, for some fixed constant k (typically ranging from

5 to 10), the model is said of order k. The model can be

static, semi-static, or dynamic, according to the way the

symbol probabilities are estimated from the scanning

of the input text. The static construction assumes a

fixed probability distribution for every input text. This
is the simplest form of model construction but, since

the model is independent of the input, it may poorly

predict its symbols. The semi-static construction

avoids this limitation by building the model via a

preliminary scan of the input text. Unfortunately, a

semi-static model must be passed to the decompressor

as a part of the compressed file, thus increasing its size.

As a result, statistical models are typically dynamic in

that they are constructed adaptively as the input text

is processed. This shares with the semi-static approach

the advantage of being tailored on the input, but it

additionally avoids the need of passing the model

to the decompressor. The probability distribution

provided by the model, whichever construction process

is adopted, is eventually passed to the statistical encoder

that determines the bit codeword associated to the next

symbol. The principle used by all statistical encoding

methods is to assign shorter codewords (even fraction

of bits) to most probable symbols in order to minimize

the average length of a codeword (this is typically called

the golden rule). This is the essence of Huffman and

Arithmetic encodings, also known as entropy encoders

for their dependence on the entropy of symbols fre-

quencies, a theoretical lower-bound on the number of

bits emitted by any statistical encoder. The concatena-

tion of all generated codewords gives the final com-

pressed file of a statistical compressor.

Symbol-ranking compressors are still based on sta-

tistical prediction but, rather than estimating the prob-

ability distribution of the next symbol, they maintain

the alphabet in a dynamic list, where symbols are

sorted by decreasing likelihood of occurrence. Each

symbol of the text is encoded with its rank in the list.

If the prediction process is accurate enough, the distri-

bution of ranks will be skewed around small values,

and the resulting sequence will be well compressible

through a statistical encoder. Symbol-ranking techni-

ques have been rarely used as “stand-alone” compres-

sion methods but, like the well-known Move-To-Front

(MTF) and Inversion Frequency encodings, they are

often employed as a fundamental stage of more sophis-

ticated compressors like the Wheeler-Burrows Trans-

form (BWT), below.

While symbolwise compressors can encode only

one symbol at a time, dictionary-based compressors

can represent a group of symbols with one unique

codeword. These compressors maintain a dictionary

of strings, called phrases, each one identified by a

distinct codeword. The input text is parsed into dictio-

nary phrases which are then replaced by their

3048T Text Data Mining
corresponding (shorter) codewords. As for statistical

models, dictionary construction schemes can also be

classified into static, semi-static and dynamic; but the

most significant difference is that, in the semi-static

case, deciding which phrases to include in the dictio-

nary is computationally difficult: in fact, computing

the dictionary that maximizes compression is an NP-

hard problem. An example of static dictionary is the

Run-Length-Encoding method (RLE), in which the

phrases are all possible runs of equal symbols, typically

adopted in FAX transmissions and as a fundamental

stage of the BWT-based compressors. An example of

semi-static dictionary is the Huffword compressor, in

which the dictionary is formed by all tokens extracted

from an input text and phrases are Huffman-encoded

according to their frequency of occurrence. Examples

of dynamic-dictionary methods are the well-known

LZ77 and LZ78 compressors which are implemented

in many commercial softwares like winzip, pkzip,

ARJ, the .GIF image format, etc..

The last class of compression algorithms consid-

ered is the one that transforms the input text in order

to make it easier to compress by simpler coding

schemes. The transformation must be reversible, loss-

less (e.g., a permutation of the input symbols), and

efficiently computable and invertible. One notable ex-

ample is the Burrows-Wheeler transform (BWT),

which can be built and inverted in time linear in the

length of the input text. The output of the BWT is a

string in which symbols following the same context are

grouped together, giving raise to clusters of nearly

identical symbols. This feature makes redundancy in

the input more accessible to simple coding schemes.

The famous compression utility bzip2, currently

available on most Linux distributions, is indeed based

on the BWT and uses a proper combination of MTF, RLE

and a statistical encoder to significantly squeeze the

BWT-output. Besides its usage in pure text compres-

sion, the BWT has three other remarkable properties: it

can be used to design a compression booster [1], that is,

a tool for improving the performance of other com-

pressors in a well-defined and measurable way; it can

be used to derive novel and powerful transform-based

compressors for various other data types [2,3], like

XML, dictionaries and graphs (just to cite a few); and

it is at the core of modern Compressed Full-text

Indexes [3], that is, compressed representations of

the input string which are efficiently searchable via

arbitrary patterns.
Cross-references
▶Data Compression in Sensor Networks

▶ Indexing Compressed Text

▶XML Compression
Recommended Reading
1. Ferragina P., Giancarlo R., Manzini G., Sciortino M. Boosting

textual compression in optimal linear time. J. ACM, 52(4):

688–713, 2005.

2. Ferragina P., Luccio F., Manzini G., Muthukrishnan S. Compres-

sing and searching XML data via two zips. In Proc. 15th Int.

World Wide Web Conference, 2006, pp. 751–760.

3. Navarro G., Mäkinen V. Compressed full-text indexes. ACM

Comput. Surv., 39(1), Article no. 2, 2007.

4. Salomon D., Data Compression: The Complete Reference,

4th edn., Springer, London 2007.
Text Data Mining

▶Data, Text, and Web Mining in Healthcare

▶Text Mining
Text Databases

▶Document Databases
Text Extraction

▶Biomedical Scientific Textual Data Types and

Processing
Text Generation

LI ZHANG
1, JIAN-TAO SUN

2

1Peking University, Beijing, China
2Microsoft Research Asia, Beijing, China

Synonyms
Natural language generation (NLG)

Text Generation. Figure 1. A classical architecture for

text generation.

Text Generation T 3049

T

Definition
Text generation is a subfield of natural language pro-

cessing. It leverages knowledge in computational lin-

guistics and artificial intelligence to automatically

generate natural language texts, which can satisfy cer-

tain communicative requirements.

Historical Background
Research work in the text generation field first

appeared in the 1970s. Goldman’s work on natural

language generation from a deep conceptual base

appeared in [2]. In the 1980s, more significant work

was contributed in this field: McDonald saw text gener-

ation as a decision making problem [6], Appelt on

language planning (1981), McKeown [8]. In the 1990s,

a generic architecture for text generation was discussed,

Reiter [10], Hovy [3]. Still today, variations on the

generic architecture is a still a widely discussed question,

Mellish et al. [9].

Foundations
Text Generation, or Natural language generation (NLG),

is usually compared with another subfield of natural

language processing – natural language understanding

(NLU), which is generally considered as the inverse

process of the former. Because in a highly abstract level,

NLG task synthesizes machine representation of infor-

mation into natural language texts, while NLU task

parses and maps natural language texts into machine

representations. However, upon inspection at a more

concrete level, they can hardly be seen as “opposite,”

because they are very different in problem sets, and by

internal representations.

Text Generation System Architecture

Input and Output The input of text generation system

is information represented in non-linguistic format,

such as numerical, symbolical, graphical, etc. The out-

put is understandable natural language in text format,

such as messages, documents, reports, etc.

Architectures

The Generic Architecture Despite difference in ap-

plication backgrounds and realization details, many of

the current text generation systems followed a general

architecture, which is known as the Pipelined Architec-

ture or Consensus Architecture, usually described as in

Fig. 1([11]; Edward Hovy also had a similar represen-

tation for this architecture).
As seen in the Fig. 1, the “Pipelined Architecture”

describes a general strategy of tackling text generation

problem from macro to micro, from inner struc-

ture organization to outer surface realization. Thus,

language components such as paragraphs, sentences,

and words will be coherently arranged together to meet

certain communicative requirements.

The following are the detailed descriptions of the

above stages:

Stage 1: Document Planning

Also known as Text Planning, Discourse Planning

or Macro Planning). This includes:

� Content determination: Also know as content se-

lection and organization, which is to discover and

determine the major topics the text should cover,

given a set of communicative goals and representa-

tions of information or knowledge.

� Document structuring: Determining the overall

structure of the text/document. This structure cate-

gorizes and organizes sentence-leveled language

components into clusters. The relationship

3050T Text Generation
between different components inside a cluster can

be explanatory, descriptive, comparative, causal,

sequential, etc.

Stage 2: Micro Planning

Also know as Sentence Planning. This is to convert a

document plan into a sequence of sentence or phrase

specifications, including:

� Aggregation: To combine several linguistic struc-

tures (e.g., sentences, paragraphs) into a single

and coherent structure. An example: Tomorrow

will be cold. Tomorrow will be windy.
!Tomorrow will be cold and windy.
� Lexicalization: To choose appropriate words from

possible lexicalizations based on the communica-

tive background. Examples: (i) buy, purchase, take,

etc, (ii) a lot of, large amounts of, etc.

� Referring expression generation: To choose or in-

troduce different means of reference for sentences,

such as pronouns (pronominalization). There is

usually more than one way to identify a specific

object, for example: “Shakespeare, ” “the poet and

playwright, ” “the Englishman, ”and “he/him” can

all point to the same object. Example: Andrew

wanted to sing at the birthday party.
!He wanted to sing at the birthday party.

!The boy wanted to sing at the birthday party.
Stage 3: Surface realization

Also know as Speech Synthesis. This is to finally syn-

thesize the text according the text specifications made

in the previous stages.

� Structure realization: To mark up the text’s surface

structure, such as an empty line, or the boundaries

between paragraphs, etc.

� Linguistic realization: To smooth the text by insert-

ing function words, reorder word sequences, and

select appropriate inflections and tenses of words, etc.

Other Architectures: Although the Pipelined Archi-

tecture provides a considerably articulate routine for

text generation, it also provides predetermined restric-

tions for each stage in the process. Thus, the flexibility

it can provide is limited, and is especially true for those

sub-tasks in micro planning and surface realization

stages. For example, the need for lexical selection can

happen at any stage of the process. Thus, variations of

the generic architecture and other methodologies have
been discussed by many researchers (a recent discus-

sion, Chris Mellish et al. [9]).
Key Applications
1. Routine documentation or information genera-

tion: examples of information are weather forecast

descriptions, transportation schedules, accounting

spreadsheets, expert system knowledge bases, etc.

Examples of documentation are technical reports

and manuals, business letters, medical records,

doctor prescriptions, etc.

2. Literary writing: such as stories, poems, lyrics, cou-

plets, etc. (Chinese couplet writer: generating a

couplet sentence according to a given one. http://

duilian.msra.cn).
Cross-references
▶Text Summarization

▶Text Representation

▶Text Normalization

▶Text Segmentation

▶Text Analytics

▶Text semantic Explanation
Recommended Reading
1. Dale R. Introduction to the special issue on natural language

generation. Comput. Linguistics, 24 (3):346–353, 1998.

2. Goldman N.M. Computer Generation of Natural Language

from a Deep Conceptual Base. Ph.D. thesis, Stanford University,

CA, 1974.

3. Hovy E.H. Language generation, Chapter 4. In Survey of the

State of the Art in Human Language Technology, G.B.Varile, A.

Zampolli (eds.). Cambridge University Press, Cambridge, 1997,

pp. 139–163.

4. Hovy E.H. Natural language generation. Entry for MIT Encyclo-

pedia of Computer Science. MIT Press, Cambridge, MA, 1998,

pp.585–588

5. Hovy E.H. Language generation. Entry for Encyclopedia of

Cognitive Science, article 86. McMillan, London, 2000.

6. McDonald D.D. Natural Language Production as a Process of

Decision Making Under Constraint. Ph.D. thesis, MIT Artificial

Intelligence Laboratory, Cambridge, MA, 1980.

7. McDonald D.D. 1Natural language generation, Chapter 7. In

Handbook of Natural Language Processing, Dale, R. H.

Moisl, H. (eds.). Somers Marcel Dekker, New York, NY, 2000,

pp. 147–180.

8. McKeown K.R. Text Generation: Using Discourse Strategies

and Focus Constraints to Generate Natural Language Text.

Cambridge University Press, Cambridge, 1985.

9. Mellish C, et al. A reference architecture for natural language

generation systems. Nat. Lang. Eng., 12(1):1–34, 2006.

Text Index Compression T 3051
10. Reiter E. Has a consensus NL generation architecture appeared

and is it psycholinguistically plausible? In Proc. 7th Int. Conf. on

Natural Language Generation, 1994, pp. 163–170.

11. Reiter E. and Dale R. Building Natural Language Generation

Systems. Cambridge University Press, Cambridge, 2000.
Text Index Compression

GONZALO NAVARRO

University of Chile, Santiago, Chile

Synonyms
Inverted index; List; File compression
T

Definition
Text index compression is the problem of designing a

reduced-space data structure that provides fast search of

a text collection, seen as a set of documents. In Infor-

mation Retrieval (IR) the searches to support are usually

for whole words or phrases, either to retrieve the list

of all documents where they appear (full-text searching)

or to retrieve a ranked list of the documents where

those words or phrases are most relevant according to

some criterion (relevance ranking). As inverted indexes

(sometimes also called inverted lists or inverted files)

are by far the most popular type of text index in IR,

this entry focuses on different techniques to compress

inverted indexes, depending on whether they are orien-

ted to full-text searching or to relevance ranking.

Historical Background
Text indexing techniques have been known at least

since the 1960’s (see, for example, the book Automatic

Information Organization and Retrieval, 1968, by

Gerard Salton, one of the pioneers in the area). Initially

departing from the analog manual indexing process,

where a short list of keywords was associated to each

document from a collection, the increase in computa-

tional and storage capabilities quickly led to the so-

called “full-text model”, where every text word would

be searchable (except for a few so-called “stopwords”,

which are too frequent and do not carry any meaning

nor discriminative power, e.g., articles and preposi-

tions). The so-called “inverted indexes” (or inverted

lists, or inverted files), which are also modeled upon the

traditional inverted index found at the end of books,
have been since then the canonical model for indexing

text collections. Most of the indexes used nowadays in

Information Retrieval (IR) are variants of the inverted

index. These mainly differ depending on the precise

type of task that is to be carried out: Sometimes the

application needs to find all the documents (and even

exact positions within them) where some search terms

appear; sometimes only a few “good” documents are

wanted because the end user is a human.

Depending on the type of inverted index, it might

take as little as 10% of extra space over the text size, or as

much as 100% and even more. Nowadays the space, at

least in secondary storage media, is extremely cheap and

virtually unlimited. However, there are also extremely

large text collections (for example the Web) where pay-

ing a significant amount of extra space for the index is

not irrelevant. However, the most compelling reason to

reduce the index size is the large gaps in the memory

hierarchy: It is several orders of magnitude faster to

transfer data from the main memory than from second-

ary storage. Hence, a reduction in space translates into

an almost proportional increase in throughput at query

processing, as the extra processing time for decompres-

sion is almost negligible. In networked environments,

which are also becoming common to cope with the large

demands in storage space and processing power, the

same considerations apply with respect to network

transfer time. For decades, CPU speeds have been

increasing at an exponential rate, whereas disk speeds

have not improvedmuch.Moreover, newmemory levels

(caches) have appeared between the CPU and the main

computer memory. This has only made it more and

more attractive to design text indexes that fit in little

space, even at the expense of needingmore sophisticated

decompression mechanisms. See [14,15] for a recent

exhaustive coverage of the topic.

Foundations
An inverted index is formed by two main parts:

1. Vocabulary. Is the set of all the different words in the

collection. The definition of what is a word may

depend on the application. Not only does it involve

delimiting them, but also determining which nor-

malization processes will be carried out on them,

e.g., upper/lower case conversion, removal of stop-

words, stemming, etc. Once defined, the word

becomes the unit of retrieval: one can search for

words or for sequences of words (phrases), but not

3052T Text Index Compression
for, say, a part of the word (although there are some

exceptions in text retrieval systems offering extend-

ed functionalities which are not covered here,

see e.g., [3]).

2. Postings. Is a list of “occurrences” of each vocabu-

lary word in the collection. Depending on the ap-

plication, the index might store the list of

document identifiers where the word appears, or

the list of exact positions (byte offsets or word

offsets), or the list of document identifiers plus a

“weight” associated to it, which computes accord-

ing to some formula the importance of the word in

that document, or the list of word positions plus

data on the field where the word appears, or even

color or font size of each occurrence.

For concreteness, this entry will assume that a policy

for defining and normalizing words has been fixed, and

will focus on the two most important type of posting

lists: one storing exact word positions within docu-

ments (useful for full-text retrieval), and another stor-

ing document identifiers and weights (useful for

relevance ranking). Because of the different processing

needs, these lists might be stored in different orders.

This is relevant because ordering is the key to inverted

list compression.

A widely accepted statistical rule in IR [6] estab-

lishes that the vocabulary grows sublinearly with the

collection size, more precisely as v = O(nb) for some

0 < b < 1 that depends on the collection. Different

experiments show that b is actually around 0.5 [3],

which means in practice that, even for very large col-

lections, it is feasible to maintain the vocabulary in the

main memory of the computer. For this reason, most

of the efforts in index compression have focused on

compressing the postings.
Inverted Indexes for Full-Text Retrieval

In full-text retrieval, queries are words or phrases and

the task is to find all the documents where the word

or phrase appears, possibly giving also the position(s)

of the occurrences within each retrieved document.

The most convenient index organization for word

queries is a scheme storing basically all the answers to

all the v possible queries: For each vocabulary word,

the list of all the documents where it appears is stored

in increasing order of document identifier. If exact

occurrence positions are desired, and one does not

want to sequentially scan the retrieved documents in
order to find them, then the index must also store all

the occurrence positions of each word within each

document, also in increasing order. Because of the

other types of queries that are usually necessary to

support, it is usually advantageous to store the list of

document identifiers contiguously and separated from

the list of positions, so that the document identifiers

alone can be retrieved with fewer disk accesses.

The important point is that the postings consist of

lists of increasing numbers (document identifiers or

occurrence positions). Moreover, for word queries,

those lists are accessed from the beginning to the end.

An obvious idea is to encode the differences between

consecutive entries in the list. The longer the list, the

smallest the differences between consecutive values.

Because the number of occurrences of vocabulary

words is usually highly skewed [3] (following a Zipf–

Mandelbrot distribution [8]), there will be very long

(and thus very compressible) lists and many short lists,

where the long lists will contain a significant fraction of

the whole data. Hence, a technique that represents

those differences in a way that smaller numbers use a

shorter representation should achieve compression.

This requires that a different amount of bits is used

to represent different numbers, as opposed to the clas-

sical data representation where a fixed number of bits is

allocated for every possible number.

A first idea would be to use exactly the bits that the

number uses, for example the binary representation of

9 is 10012, and hence one would like to represent it

using 4 bits. The problem, of course, is that one cannot

decode the individual numbers from the concatena-

tion of their representations if one uses this method.

For example, 10011101 could be 9,1,5 or 9,13. A large

part of the research in inverted index compression

refers to the design of self-delimiting codes, which

(i) can be uniquely decoded from the concatenation

of the codes, (ii) give shorter codes to smaller numbers,

(iii) preferably can be efficiently decoded.

Several self-delimiting coding schemes are de-

scribed in the book Managing Gigabytes [14], one

of the best references on text index compression. Let

x> 0 be a number to encode and jxj the number of bits

needed to code it (i.e., the highest bit set in the binary

representation of x is at position jxj). Some of the most

famous codes are described next.

1. Elias’ g-code emits jxj� 1 0’s followed by the

jxj bits representing x. For example, the code for

Text Index Compression T 3053

T

x = 23 = 101112 is 0000 10111 (which are here

artificially separated in two parts). To decode the

first number from a bit stream, one finds the next 1,

and if one skipped ‘ � 1 0’s before it, on reads the

next ‘ bits starting from that 1. Those ‘ bits form x.

This works because the representation of x always

starts with a 1 (i.e., its most significant bit). Elias’ g
representation of x takes 2jxj� 1 = 1 + 2blog2xc
bits. The representations of the first numbers are as

follows: 1 = 12! 1, 2 = 102! 010, 3 = 112! 011,

4 = 1002! 00100,...

2. Elias’ d-code first codes jxj using Elias’ g-code, and
then emits the jxj� 1 least significant bits of x (as

one knows that the most significant bit is a 1). For

example, the code for x = 23 = 101112, jxj = 5 =

1012, is 00 101 0111. The length of the d-code of x is
2jjxjj� 1 + jxj� 1 = 1 + 2blog2(1 + blog2xc)c +
blog2xc. These codes are theoretically appealing be-

cause the space they require is log2 x + O(log log x),

which is asymptotically the same as just writing x.

For example, it is not hard to prove that, using this

scheme to encode all the word offsets of the occur-

rences, the whole index needs nH0 + O(n log log n)

bits, where n is the number of words in the text

collection and H0 is its zero-order entropy seen as a

sequence of words [9]. Thus the space is similar to

that obtained when compressing the text using a

good word-based zero-order compressor [4].

3. Rice codes are parameterized by a value r. The

lowest r bits of x are represented in binary form

(even if jxj < r), preceded by the unary representa-

tion of bx ∕ 2rc. A different r value (the one yielding

least space) can be chosen for each inverted list. An

extension are Golomb codes, where instead of the

quotient and remainder of the division by 2r, any

divisor d can be used. These are usually reported to

achieve the least space consumption [14].

There are many other self-delimiting codes, such as

Fibonacci codes [7], variable-byte codes [13], Dense

codes [4], Simple codes [2], and many others. Some

tradea slight loss in space for a largegain indecoding time.
Searching for Phrases Using Inverted Indexes

The described encodings of inverted lists must be

decoded from the beginning, which as explained is

appropriate to answer queries consisting of a single

word. Phrase queries, however, are more complicated

to deal with. If the index stores only document
identifiers, all it can do is to intersect the list of

documents of the different words, and then it is neces-

sary to sequentially search the candidate documents

for the exact phrases. If the index, instead, stores oc-

currence positions, it can look for the consecutive

occurrences of the involved words within the same

document. (This is especially convenient if the index

stores word offsets rather than byte offsets of occur-

rences. Storing byte offsets, on the other hand, is more

convenient to highlight the occurrences in the text.)

In both cases, a list intersection-like capability is

necessary. Incidentally, note that another popular op-

eration in inverted indexes is the conjunctive query,

that is, find the documents where all the query words

appear. Those are obviously solved by intersecting the

lists of document identifiers as explained. Disjunctive

queries (find the documents where some of the words

appear) are solved by merging lists of document iden-

tifiers. Although there is not an especially clever way

of merging lists other than traversing them all sequen-

tially, much research has been done on the problem

of efficiently intersection increasing lists of numbers.

Although sequential intersection is an option as well,

one can do better when one list is much shorter than

the other, as it is frequently the case of the highly

skewed length distributions that arise in natural lan-

guage text collections [8].

Describing those techniques is not in the scope of this

entry. A recent example of this research, which indeed

takes compression into account, can be seen in [12]. In

all cases the main idea is that one can search the longer

list for the elements in the shorter list. This implies that

some degree of random access is necessary in the

encoded lists. For this sake, the natural choice [14] is to

insert some absolute list values at regular intervals in the

compressed list data, so that the search can be first

carried out on those sampled values and only one

chunk between consecutive samples must be decom-

pressed. There is also some recent research on how

those absolute values should be physically organized

[5], as it turns out to be more convenient to store all

the samples in contiguous form.

Note that, independently of the encoding tech-

nique used, the success of the compression depends

on what is indexed. If one indexes the occurrences of all

the text words, the space used by the index will be at

best around 40% of that of the original (uncom-

pressed) text, which can be reduced to around 20%

by removing the stopwords. If only document

3054T Text Index Compression
identifiers are recorded, the space can be typically

10–20% depending on the size of the documents.

A technique to achieve even less space, at the expense

of higher time to solve queries, is called block addres-

sing [10]. The idea is to cut the text into blocks, so that

the index stores the blocks where each word appears.

The index is used to filter out some blocks upon

queries, and the others have to be sequentially tra-

versed. Hence, the block size yields a space/time trade-

off, where reasonable performance on moderate-sized

collections can be achieved with as little as 5% of index

space overhead.

Finally, it is interesting to mention that there exist

compressed indexes for what is (also) called “full-text

searching”, in the sense that the text is seen as a se-

quence of symbols and the index is able of retrieving

any text substring (not only words or phrases) [9].

Those indexes were classically much larger than the

text, and recent developments have shown that they

can be compressed to sizes competitive to those of

inverted indexes for word and phrase retrieval. Their

search times are still larger than those for inverted

indexes, although research is being carried out on

applying them over a text regarded as a sequence of

words (not letters). In this case they can also search

only for words and phrases, but their space becomes

even better than using inverted indexes, and perfor-

mance for phrase searching is competitive.

Inverted Indexes for Relevance Ranking

Inverted indexes are also used to rank documents by

“relevance” to a given query, so as to return a small set

of those ranking higher. There are many formulas for

computing relevance [3], yet the most popular ones

build on two components: one is the term frequency

tfw,d, which is the number of times word w appears in

document d, and the other is the inverse document

frequency idfw , which is the logarithm of the inverse

of the fraction of the documents where wordw appears.

Note that, while idfw is just one value per vocabulary

word (and hence easy to maintain in main memory

with the vocabulary), there is one tfw, d value per

entry in the inverted index: For each word, the index

stores the documents where it appears and the asso-

ciated term frequency for each.

Because the relevance formula gives more weight to

terms with higher term frequency, it is sensible to store

the document identifiers of each word by decreasing
term frequency value, rather than by increasing docu-

ment identifier. This enables efficient algorithms that

examine only a short prefix of the inverted lists [11].

The problem is that, although the decreasing term

frequencies can be stored differentially, this is not

possible anymore with the document identifiers

accompanying them. Fortunately, because of Zipf–

Mandelbrot law [8], it turns out that many of the

term frequencies are small values, and therefore there

are long runs of equal term frequencies, especially at

the tail of the lists. Within those runs, one can still

reorder the documents by increasing document iden-

tifier and encode them differentially. Recently, it has

been shown that reducing the precision of the exact

term frequency values is not only advantageous for

compression purposes (which is obvious) but also

for retrieval effectiveness [1].

Key Applications
Any application managing natural language text col-

lections that have to be searched, and which are mas-

sive enough to discard sequential search as a solution,

needs some kind of index. Index compression not only

saves space, but more importantly, disk and network

transfer time. A canonical example application areWeb

search engines.

Future Directions
Inverted index technology, even including compres-

sion, is rather mature. Still, it faces enormous efficiency

challenges, especially those coming from Web search

engines. The most active research fields related to

inverted index compression are on encodings that per-

mit fast decoding (e.g., [2]), and the interactions be-

tween information discarded to boost compression and

the resulting retrieval quality of the index (e.g., [1]).

The possibility of applying “true full-text indexes” [9]

to natural language text is also extremely interesting,

as it brings in radically new compression methods as

well as algorithms for solving phrase queries. Yet,

this trend is rather preliminary, and much research is

needed to compete with inverted indexes in secondary

memory scenarios.

Other challenges in inverted indexes, only mildly

related to compression, are distributed indexes (how to

split the collection and/or the indexes across multiple

machines to boost performance), dynamic indexes

(how to efficiently update the index when the

Text Indexing and Retrieval T 3055
collection changes), and extensions (how to cope with

more complex queries, for example allowing approxi-

mate searches).
Experimental Results
Experiments can be found in the most recent cited

papers, as most of them are of practical nature.
URL to Code
Probably the best known public domain implementa-

tion of compressed indexes was theMG System (http://

www.cs.mu.oz.au/mg), closely related to the book

Managing Gigabytes [14]. This system is now almost

10 years old, and is being replaced by its successor,

Zettair (http://www.seg.rmit.edu.au/zettair).
Cross-references
▶ Inverted Indexes
T

Recommended Reading
1. Anh V. and Moffat A. Simplified similarity scoring using term

ranks. In Proc. 31st Annual Int. ACM SIGIR Conf. on Research

and Development in Information Retrieval, 2005, pp. 226–233.

2. Anh V. and Moffat A. Improved word-aligned binary compres-

sion for text indexing., IEEE Trans. Knowl. Data Eng., 18(6):

857–861, 2006.

3. Baeza-Yates R. and Ribeiro-Neto B. Modern Information Re-

trieval. Addison-Wesley, Reading, MA, 1999.

4. Brisaboa N., Fariña A., Navarro G., and Paramá J. Lightweight

natural language text compression., Inf. Retriev., 10:1–33, 2007.

5. Culpepper S. and Moffat A. Compact set representation for

information retrieval. In Proc. 14th Int. Symp. String Processing

and Information Retrieval, 2007, pp. 137–148.

6. Heaps H. Information Retrieval – Computational and Theoreti-

cal Aspects. Academic Press, New York, 1978.

7. Kautz W. Fibonacci codes for synchronization control. IEEE

Trans. Inf. Theor., 11:284–292, 1965.

8. Mandelbrot B. An informational theory of the statistical struc-

ture of language. In Proc. Symp. on Applications of Communi-

cation Theory, 1952, pp. 486–500.

9. Navarro G. and Mäkinen V. Compressed full-text indexes. ACM

Comput. Surv., 39(1):article 2, 2007.

10. Navarro G., Moura E., Neubert M., Ziviani N., and Baeza-

Yates R. Adding compression to block addressing inverted

indexes.. Inf. Retriev., 3(1):49–77, 2000.

11. Persin M., Zobel J., and Sacks-Davis R. Filtered document re-

trieval with frequency-sorted indexes. J. Am. Soc. Inf. Sci., 47

(10):749–764, 1996.

12. Sanders P. and Transier F. Intersection in integer inverted

indices. In Proc. Workshop on Algorithm Engineering and

Experiments, 2007.
13. Scholer F., Williams H., Yiannis J., and Zobel J. Compression of

inverted indexes for fast query evaluation. In Proc. 25th Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 2002, pp. 222–229.

14. Witten I., Moffat A., and Bell T. Managing Gigabytes. 2nd edn.

Van Nostrand Reinhold, New York, 1999.

15. Zobel J. and Moffat A. Inverted files for text search engines.

ACM Comput. Surv., 38(2), 2006.
Text Indexing and Retrieval

HAODA HUANG, BENYU ZHANG

Microsoft Research Asia, Beijing, China

Synonyms
Document index and retrieval

Definition
Text indexing is a preprocessing step for text retrieval.

During the text indexing process, texts are collected,

parsed and stored to facilitate fast and accurate text

retrieval. Text retrieval (also called document retrieval)

is a branch of information retrieval in which the infor-

mation is stored primarily in the form of text. Text

retrieval is defined as the matching of some stated

user query against a set of texts. As the result of text

retrieval, texts are ranked and presented to the user

according to their relevance with user query. User

queries can range from a few words to multi-sentence

full descriptions, which represent the user’s informa-

tion need.

Historical Background
Text indexing is the most fundamental part of a

retrieval system. Over the past two decades, the corpus

size of typical retrieval system has increased dramati-

cally. The Text REtrieval Conference (TREC) (http://

trec.nist.gov/) that started in 1992 only provides docu-

ment collection consisting of less than 1 million texts

in the 1990s. Today, the largest TREC test collection,

named GOV2, is a 2004 crawl of the.gov top-level

domain. GOV2 consists of approximately 25 million

web pages (428GB of text). Moreover, a web search

engine is believed to have far more items in its index.

For example, in 2005, Yahoo claimed to have more

than 20 billion items in its index, which is several

3056T Text Indexing and Retrieval
orders larger than GOV2. The retrieval system is often

required to return relevant document/text for a user

query in a few seconds. Without an index, it is impos-

sible for a retrieval system to achieve this task.

There are many indexing techniques. Among them,

inverted index, suffix array, and signature are three

typical examples. Signature files were popular in the

1980s, but since this scheme is inferior to inverted files

in terms of speed, size and functionality, it is used less

nowadays. Suffix trees are faster for phrase searches,

but they are not easy to build and maintain. Finally,

due to its simplicity and efficiency, inverted index

is currently the most popular indexing scheme and is

used for many applications.

Text retrieval is the core part of a retrieval sys-

tem. There have been several decades of research on

text retrieval, which has resulted in a fruitful range

of beautiful, effective text retrieval models, such as

Boolean model, vector model, and probabilistic model.

The Boolean model is one of the earliest models.

Despite its simplicity, the Boolean retrieval model

was popular among many large commercial informa-

tion providers until the early 1990s. A noticeable ad-

vantage of the Boolean model is that in Boolean

models, queries are represented in the form of a

Boolean expression of terms, that is, an expression in

which terms are combined with the operators AND,

OR, and NOT. Many users prefer the Boolean query

model because Boolean queries are precise and offer

users greater control and transparency over the re-

trieved text. But the Boolean model also suffers from

some major drawbacks. For example, the Boolean

model judges a document to be either relevant or

non-relevant in respect to a given query without any

notion of grading scale, which does not achieve good

performance in practice.

Different from the Boolean model, the vector

model largely uses free text queries, which consist of

one or more words but do not use operators to build

up the query expressions. Query and documents are

presented as a weighted vector over a fixed dictionary,

and the documents are ranked by their Cos similarity

with query. The vector model is better than Boolean

model in that it is able to deal with cases in which

documents only partially match the query. The famous

tf-idf scheme for the vector model is very influential in

the research of text retrieval.

Besides the simple Boolean model and vector

model, probabilistic models have achieved great
success regarding the text retrieval task. Probabilistic

models are mainly guided by Probability Ranking Pri-

nciple (PRP): “If a reference retrieval system’s response

to each request is a ranking of the documents in

the collection in order of decreasing probability of

relevance to the user who submitted the request,

where the probabilities are estimated as accurately as

possible on the basis of whatever data have been made

available to the system for this purpose, the overall

effectiveness of the system to its user will be the best

that is obtainable on the basis of those data.”

The Binary Independence Retrieval (BIR) model

is one of the earliest probabilistic models for text

retrieval. The model has other names, such as the

Okapi model and the classical probabilistic model.

Similar to the Boolean model, the BIR model docu-

ments are represented as binary vectors indexed over a

fixed vocabulary. The representation ignores the num-

ber of times the term occurs, and is only able to

capture whether or not a term occurs in a document.

The 2-Poisson model was proposed to overcome this

limitation. Under this model, documents are repre-

sented as vectors of term frequencies. Probabilistic

models are not only solid from theoretical perspective,

but also perform well in practice. An empirical, hand-

crafted approximation of the 2-Poisson model, called

BM25, showed good performance over many data

collections. It was first introduced at TREC in 1995,

and is still a strong baseline for current text retrieval

research.

The probabilistic language model, which was first

applied to speech recognition and machine translation,

has also been successfully applied to information

retrieval in 1998 [4]. Since then, research to improving

the language model has been an active area. Also,

the probabilistic language model is a state-of-the-art

text retrieval models for its robust, highly effective

performance in the practice.

In all these models, documents are represented as a

bag of words, where the exact ordering of the terms in

a document is ignored but the number of occurrences

of each term is material.

There are other models that go beyond the bag

of words assumption, such as the Markov Random

Field model, n-Gram language models, and the Indri

Inference network model. The Markov Random Field

model [2,3] for information retrieval, which was

proposed in 2005 and improved in 2007, is demon-

strated to be consistently and significantly better than

Text Indexing and Retrieval T 3057

T

probabilistic language model in several document

collections, which shows that it is beneficial to incor-

porate dependency and features into text retrieval

model.

Foundations
Among many text indexing schemes, the inverted

index is the most popular. It could well support

bag of words based text retrieval methods, like the

tf-idf vector model, the BM25 model, and probabili-

stic language model. The process of building an

inverted index is briefly described here. The major

steps include:

1. Collecting the interested texts to form the text

collection. For example, if the interested texts are

the web pages on the internet, web pages should

be crawled to form the text collection.

2. Tokenizing the text, which turns each document

into a list of tokens. Generally, a text is represented

as a continuous character stream. In this step, text

is parsed and segmented into terms, digits, and

email address and punctuations, such as “,”, “.”, “!”,

“?” and “-”, are removed.

3. Doing linguistic preprocessing, which typically

includes removing stemming and stop words, and

then producing a list of indexing terms. Stemming

refers to the process of reducing terms to their

stems or root variants. For example, “computer,”

“computing,” “compute” are reduced to “comput.”

For English, the most popular stemmer is Martin

Porter’s stemming algorithm. Stop words removal

eliminates stop words from the documents. Com-

mon stop words include “a,” “the,” “of,” “is” etc.

4. Creating the inverted index, whichmainly consists of

a dictionary and postings. The dictionary includes

all the terms and the number of times they appear in

the text collection. The postings include the text in

which the terms appear. Thus the postings of a query

could be obtained through the intersection operator

of the query terms’ postings.

With the support of the inverted index, many

text retrieval models could be implemented efficiently.

Here, the tf-idf vector model and probabilistic lan-

guage model are taken as examples:

In the tf-idf vector model, either the query or

document is represented as the weighted vector, with

each component calculated as the product of term

frequency (TF) and inverse document frequency
(IDF) of the corresponding term. Term frequency is

the number of times the term appears in a query or a

document. The inverse document frequency of the

term t is defined as

idf ðtÞ ¼ log
N

nt

� �

where N is the total number of texts in the

collection and nt is the number of documents

with term t. The query vector is represented as

q ¼ ðtfaðt1Þ � idf ðt1Þ; tfaðt2Þ � idf ðt2Þ;:::; tfaðtnÞ � idf ðtnÞÞ,
and the document vector is represented as

d ¼ ðtfdðt1Þ � idf ðt1Þ; tfdðt2Þ � idf ðt2Þ;:::; tfdðtnÞ � idf ðtnÞÞ.
Then, documents are ranked by their Cos similarity

with the query. The Cos similarity between the query

and document is calculated as below:

simðq; dÞ ¼
Pn

i¼1 qi � diffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 q

2
i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 d

2
i

q

The TF and IDF together discriminate along two

dimensions – informativeness (IDF) and aboutness

(TF). The IDF component is used to discriminate

between informative and non-informative query terms.

Terms with high IDF occur rarely in the collection,

and thus are considered more informative. The incor-

poration of TF component is based on the intuition

that documents that contain more mentions of a term

are more “about” this term.

The probabilistic language model for information

retrieval is based upon the idea that a document is a

good match to a query if the document model is likely

to generate the query. Therefore, language model

documents are ranked by query generation probability

pðq dj Þ. There are several variant realizations for the

language model. Among them, the query likelihood

model [4] is the original and basic method for using

language models in IR. The most common way to

evaluate query generation probability pðq dj Þ is using
the multinomial unigram language model. Under this

model, pðq dj Þ is approximated as

pðq dj Þ ¼
Y
w2q

pðw dj Þ

Due to the data sparseness, the generation probability of

query term absent in the document will be zero. Gener-

ally a smoothing technique is applied to overcome this

problem. Please refer [6] for more details.

3058T Text Indexing Techniques
Key Applications
Text retrieval has many applications. It is used in digi-

tal libraries to help people quickly find desired books

or articles. It could also be used in desktop search

to help people instantly find documents, such as

e-mail or other files, in a computer. Moreover, it is

the fundamental basis of all internet search engines.

Future Directions
Most past research on text retrieval is based on the

bag of words assumption, which has resulted in very

fruitful models. These models have achieved rather

good performance in the past, but appear to have

reached a plateau; thus, their improvement has dwin-

dled for several years. Recently, some text retrieval

models (for example, Markov Random Field model

for information retrieval) have tried to go beyond the

bag of words assumption, and have achieved consistent

and significant improvement. This indicates that it

would be beneficial to incorporate dependency and

features of documents into the text retrieval model;

thus, more dedicated models may be developed in the

future to improve retrieval performance further.

Data Sets
For testing the effectiveness of text indexing and retri-

eval strategies, TREC text datasets (http://trec.nist.gov/)

are commonly used in the research community.
Cross-references
▶ Indexing

▶ Information Retrieval

▶ Inverse Document Frequency

▶Term Frequency

Recommended Reading
1. Manning C.D., Raghavan P., and Schütze H. Introduction to

Information Retrieval. Cambridge University Press, Cambridge,

MA, 2008.

2. Metzler D. and Croft W.B. A Markov random field model for

term dependencies. In Proc. 31st Annual Int. ACM SIGIR Conf.

on Research and Development in Information Retrieval, 2005,

pp. 472–479.

3. Metzler D.A. Beyond bags of words: effectively modeling

dependence and features in information retrieval, Ph.D. thesis,

University of Massachussetts, 2007.

4. Ponte J. and Croft W.B. A language modeling approach to

information retrieval. In Proc. 21st Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1998, pp. 275–281.
5. Ricardo B.-Y. and Berthier R.-N. Modern Information Retrieval.

Addison Wesley Longman, New York, NY, 1999.

6. Zhai C. and Lafferty J. A study of smoothing methods

for language models applied to ad hoc information retrieval.

In Proc. 24th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2001, pp. 334–342.
Text Indexing Techniques

EDLENO SILVA DE MOURA

Federal University of Amazonas, Manaus, Brazil

Definition
Text indexing is the act of processing a text in order

to extract statistics considered important for represent-

ing the information available and/or to allow fast

search on its content. Text indexing operations can be

performed not only on natural language texts, but

virtually on any type of textual information, such as

source code of computer programs, DNA or protein

databases and textual data stored in traditional data-

base systems.
Historical Background
Efforts for indexing electronic texts are found in liter-

ature since the beginning of computational systems.

For example, descriptions of Electronic Information

Search Systems that are able to index and search text

can be found in the early of 1950s [3].

In a seminal work, Gerard Salton wrote, in 1968, a

book containing the basis for the modern information

retrieval systems [5], including a description of a

model largely adopted up to now for indexing texts,

known as Vector SpaceModel. Other successful models

for indexing texts were proposed since then, such as,

for instance, Probabilistic Models and Language Mod-

els, which are discussed in detail in [2].

Text indexing operations have also received atten-

tion in the last decades as a basic operation in a large

variety of applications. They are used in several basic

algorithms related to data management, such as data

integration and data disambiguation. Bioinformatics

is another area where text indexing has been largely

applied. In these cases, biological databases containing

data such as DNA or protein information are indexed

as texts in order to provide fast access to their content.

Text Indexing Techniques T 3059

T

Foundations
The implementation of text indexing operations

requires data structures for allowing fast access to the

indexed information. The most used data structure

for this purpose is known as inverted index or inverted

file. An inverted index is a data structure composed of:

(i) a vocabulary that contains all the distinct words

indexed found in the text and (ii), for each word t of

the vocabulary, a list that contains statistics about the

occurrences of t in the text. Such list is known as

the inverted list of t.

Inverted indexes allow fast search for statistics

related to the distinct words found in a text. They are

designed for using words as the search unit, which

restricts their use in applications where words are not

clearly defined or in applications where the system

does not use words as the search unit. The statistics

stored in an inverted index may vary according to the

target application. Two non-exclusive alternatives usu-

ally found in literature are to record the position of all

word occurrences in the text and to record general

statistics about the word occurences in text units.

Indexing all the word occurrences is useful in applica-

tions where positional information should be taken

into account, such as when it is necessary to allow

search for phrases or proximity queries. Inverted in-

dexes that store word statistics are usually deployed in

systems that adopt information retrieval models, such

as the Vector Space Model, and in this case the text is

divided into units of information, usually doucments.

For instance, in web search engines, these units are the

pages crawled from the web, while the whole set of

pages compose the indexed text.

A third alternative to produce inverted indexes with

intermediate space overhead and allow search for

phrases and positional queries is to use a scheme

known as block addressing [4]. Block addressing is a

technique to reduce the space requirements of an

inverted index. It was first proposed in a system called

Glimpse [4]. The idea is that the text is logically divided

into blocks, and the occurrences do not point to exact

word positions but only to the blocks where the word

appears. Space is saved because there are less blocks than

text positions (and hence the pointers are shorter), and

also because all the occurrences of a given word in a

single text block are referenced only once.

Searching in a block addressing index is similar to

search in a full inverted one. The pattern is searched in
the vocabulary and a list of blocks where the pattern

appears is retrieved. However, to obtain the exact pat-

tern positions in the text, a sequential search over the

qualifying blocks becomes necessary. The index is

therefore used as a filter to avoid a sequential search

over some blocks, while the others need to be checked.

Hence, the reduction in space requirements is obtained

at the expense of higher search costs.

The use of a block addressing scheme when

indexing texts results in a tradeoff between index size

and the computational costs for processing queries.

The larger are the block units, the smaller is the final

index overhead in terms of space. On the other hand,

the larger are the block units, the larger are the por-

tions of text that should be sequentially traversed when

searching for a pattern in the text.

Although this combination of sequential search

and index seems to produce less efficient search sys-

tems at first, block addressing indexes may achieve

interesting combinations of cost for search time and

space overhead. Block addressing was analyzed in [1],

where it is analytically proved and experimentally ver-

ified that a block addressing index may yield sub-linear

space overhead and, at the same time, sub-linear query

time. Traditional inverted indexes pointing to words or

documents achieve only the second goal. Empirical

experiments performed in [?] indicate that in practice,

O(n0.85) space and query time can be obtained for

exact queries in natural language texts.

Other data structures also adopted for indexing

texts with the goal of allowing fast access to them are

signature files and suffix trees [2,7]. Signature files

are indexes that use a hash function to map the

words found in a text to bit masks. The text is divided

into blocks, and each block b is indexed by storing

the result of a bit-wise OR operation over all the

masks of the words that occur in b. This final mask

represents the block in the signature file index. The

search operation is performed through a bit-wise AND

between the searched word and each block mask in the

collection. Potential matches are reported whenever

the bit-wise AND operation results in a number

equal to the mask of the searched word. Note that

false matches may arise, and thus the matched blocks

should be inspected for confirming the occurrence of

the word or not. Therefore, the signature file works as a

filter for reducing the amount of text traversed in

search operations.

Text Indexing Techniques. Table 1. Suffixes found in the

text fragment “abadabadaba”

Suffix Suffix ID

“abadabadaba” 1

“badabadaba” 2

“adabadaba” 3

“dabadaba” 4

“abadaba” 5

“badaba” 6

“adaba” 7

“daba” 8

“aba” 9

“ba” 10

“a” 11

Text Indexing Techniques. Figure 1. Suffix tree for the

text fragment “abadabadaba”.

3060T Text Indexing Techniques
The search in signature files is usually less efficient

than the search when using inverted indexes. Further,

inverted indexes support a larger set of search operations

than signature files. For typical document indexing

applications, signature files do not perform well com-

pared to inverted indexes, being much larger and they

are more expensive to build and update [8]. Thus, the

use of inverted indexes in text indexing operations is

more frequent than the use of signature files.

Another approach for indexing text databases

regards the text as a long string. Suffix trees can index

the text as a set of symbols according to the desired

granularity of the search operations. For instance, by

using suffix trees, it is possible to take all the characters

of the text as index entries. This flexibility allows

indexing texts that are written in languages where the

words are not clearly separated from each other, such

as it happens in some Asian languages, or even in texts

where the concept of word does not exist, such as in

DNA or protein databases.

Each position in the text is called a suffix. A suffix is

defined by a starting position and extends to the right

as far as needed or to the end of the text. Depending on

the character sequences that are to be searched, the

user must define the index points, i.e., which positions

of the text will be indexed. In text databases, it is

customary to index only word beginnings, but in

many applications for text indexing it is necessary to

index all the characters of the text. Suffix trees are data

structures designed for indexing text using the suffix

model, thus considering each entry point indexed in

the text as a suffix of the whole text. In the suffix trees,

each distinct path from the root to a leaf represents a

unique suffix. For instance, consider the text fragment:

“abadabadaba”, which contains the suffixes described

in Table 1.

Each suffix found in this example finishes with an

implicit special symbol, marking the end of the text.

Figure 1 describes the suffix tree for storing all the

eleven suffixes of this text fragment. The circles in the

trees contain internal nodes and their numbers indi-

cate the position in the text where their children differ

from each other. The square nodes are the leaves of the

suffix tree and their numbers represent suffix ids (suf-

fixes are usually represented by their position in the

text). The letters marking each node in the tree indi-

cate the value found on the positions where the node

differ from their siblings nodes. The “eof” represents

the end of the text is this example.
For instance, in the root node, the number 1 indi-

cates that the suffixes are different in their first

position. At this position, the suffixes may have value

‘a’, ‘b’ or ‘c’. When searching for a suffix starting

with an ‘a’, then the left most sub-tree should be

taken in order to continue the search. In this case, the

next comparison position to continue the search is

position 2. The search continues until the current

search position is longer than the search pattern,

which means all the patterns in the sub-tree contain

the search key; or until the current position in the

search key does not match any child of the current

node, which means the search key is not in the text.

Using this structure, it is possible to perform a

variety of complex search operations at a relatively

Text Mining T 3061
low computational cost. One of the drawbacks of using

a suffix tree is the space required to store the index. If

the space is a restriction, a more compact structure

known as suffix array can be adopted. A suffix array is

an array of pointers to each suffix indexed in the text.

This array is sorted in the alphabetical order of the

suffixes it represents and can then be used to perform

search tasks. The use of suffix arrays increases the cost

of search operations when compared to suffix trees.

For instance, a given search pattern can be found in a

suffix array at cost O(log(n)), where n is the number of

suffixes in the text, while the cost for searching a simple

pattern in a suffix tree is O(m), where m is the size of

the searched pattern, and is not affected by the number

of suffix in the text.

A practical problem when using suffix trees or

suffix arrays is the cost to build and maintain the

indexes. Further, when searching for words inverted

indexes are usually faster than suffix trees and suffix

arrays. Exceptions may occur when it is necessary to

process complex queries, such as regular expression

patterns and search for word fragments.
T

Key Applications
Text indexing techniques have important practical

applications, being of great importance in the con-

struction of Web Search Engines, Web Directories

and Enterprise Search systems. These techniques are

also useful for allowing fast search on DNA or protein

databases, which can also be treated as texts. In these

cases, the text indexing techniques are adopted to

accelerate more complex operations performed over

the databases, such as the comparison of DNA frag-

ments allowing small differences between them. Text

indexing operations have also played an important role

in several algorithms related to data management, such

as data integration and data disambiguation.
Cross-references
▶ Inverted Files

▶ IR Retrieval Models

▶ Suffix Trees

▶Text Retrieval
Recommended Reading
1. Baeza-Yates R. and Navarro G. Block-addressing indices for

approximate text retrieval. J. American Soc. for Inf. Sci., 51(1):

69–82, 2000.
2. Baeza-Yates R. and Ribeiro-Neto B. Modern Information

Retrieval. Addison Wesley, Reading, MA, 1999.

3. Luhn H.P. A statistical approach to mechanized encoding

and searching of literary information. IBM Journal of Research

and Development, 1(4):309–317, October 1957.

4. Manber U. and Wu S. GLIMPSE: A tool to search through entire

file systems. In Proc. USENIX Winter 1994 Technical Conf.,

1994, pp. 23–32.

5. Salton G. Automatic Information Organization and Retrieval.

McGraw-Hill, New York, NY, 1968.

6. Salton G., Won A., and Yang C.S. A vector space model for

automatic indexing.Inf. Retriev. Lang. Process., 18(11):613–620,

November 1975.

7. Witten I., Moffat A., and Bell T. Managing Gigabytes, 2nd edn.

Morgan Kaufmann, Los Altos, CA, 1999.

8. Zobel J., Moffat A., and Ramamohanarao K. Inverted files versus

signature files for text indexing ACM Trans. Database Syst.,

23(4):453–490, December 1998.
Text Mining

YANLI CAI
1, JIAN-TAO SUN

2

1Shanghai Jiao Tong University, Shanghai, China
2Microsoft Research Asia, Beijing, China

Synonyms
Knowledge discovery in text (KDT)
Definition
Text mining is the art of data mining from text

data collections. The goal is to discover knowledge

(or information, patterns) from text data, which are

unstructured or semi-structured. It is a subfield of

Data Mining (DM), which is also known as Knowledge

Discovery in Databases (KDD). KDD is to discover

knowledge from various data sources, including text

data, relational databases, Web data, user log data,

etc. Text Mining is also related to other research

fields, including Machine Learning (ML), Information

Retrieval (IR), Natural Language Processing (NLP),

Information Extraction (IE), Statistics, Pattern Recog-

nition (PR), Artificial Intelligence (AI), etc.
Historical Background
The phrase of Knowledge Discovery in Databases

(KDD) was first used at 1st KDD workshop in 1989.

Marti Hearst [4] first used the term of text data

3062T Text Mining
mining (TDM) and differentiated it with other con-

cepts such as information retrieval and natural lan-

guage processing.

Foundations
Typical steps of knowledge discovery in databases can

be found in [7] by Usama Fayyad et al. The process of

knowledge discovery in text data collections is similar,

as shown in Fig. 1. Given one collection of text data

as input, the goal is to extract patterns/knowledge

from them. As the first step, data selection is to select

proper data that will be processed and analyzed in the

following steps. In the data preprocessing step, the task is

to filter out noisy information and do some preliminary

processes to facilitate the following steps, e.g., extracting

name entities from the text data or part-of-speech tag-

ging of the text data. In the data transformation step, the

text data are converted to the format that is easy to be

processed by mining algorithms, e.g., the format of

vectors, sequences or inverted index tables. Text mining

is to apply mining algorithms to find candidate patterns.

In the interpretation/evaluation step, the candidate pat-

terns produced in the former step are evaluated and

the interesting ones are outputted as final knowledge.
Text Mining. Figure 1. Steps of knowledge discovery

from text data.
Text preprocessing strongly affects the success of

the outcome of text mining. Tokenization, or splitting

the input into words, is an important first step that

seems easy but is fraught with small decisions: how to

deal with apostrophes and hyphens, capitalization,

punctuation, numbers, alphanumeric strings, whether

the amount of white space is significant, whether to

impose a maximum length on tokens, what to do

with non-printing characters, and so on [9]. It may

be beneficial to perform some rudimentary morpho-

logical analysis on the tokens such as removing suffixes

or representing them as words separate from the stem.

Tokens may be standardized by using a dictionary to

map different, but equivalent, variants of a term into a

single canonical form. Once the input is tokenized,

some level of syntactic processing is usually required.

One operation is to remove stop words. Another is

to identify common phrases and map them into sin-

gle features. Tokenizing a document and discarding

all sequential information yields the “bag of words.”

Additional linguistic preprocessing may also be needed

[1]. Part-of-speech tagging (POS) determines the part

of speech tag for each word, e.g., noun, verb, adjective.

Text chunking aims at grouping adjacent words of a

sentence. Word Sense Disambiguation (WSD) tries to

resolve the ambiguity for individual words or phrases.

Parsing produces a full parse tree for a sentence, which

can identify the relation of each word in the sentence to

all the others, and typically also its function in the

sentence, e.g., subject, object.

Various statistical techniques and learning meth-

ods have been employed in text mining, including

Naive-Bayes methods, support vector machines (SVM),

decision trees, hidden Markov models (HMM), neural

networks, etc. Major ways in which text is mined [1,9]

are discussed in the following subsections.

Text Classification

Text classification is the assignment of text documents

to predefined categories according to their contents.

The pre-defined categories are symbolic labels with no

additional semantics. When classifying a document,

no information is used except for the document’s con-

tent itself. A large number of feature selection and

machine learning techniques have been applied to

text classification. Typical approaches extract features

from each document, and use the feature vectors as

input to a scheme that learns how to classify docu-

ments. Using words as features and word occurrence

Text Mining T 3063

T

frequencies as feature values, a model is built for each

category. The documents in that category are positive

examples and the remaining documents are negative

ones. The model predicts whether or not that category

is assigned to a new document based on the words in it,

and their occurrence counts. Given a new document,

each model is applied to determine which categories

to assign. Automatic text classification has many prac-

tical applications, including indexing for document

retrieval, automatically extracting metadata, word sense

disambiguation by detecting the topics a document

covers, and organizing and maintaining large catalogues

of Web resources.

Text Clustering

Text clustering is unsupervised learning in which

there is no predefined category or class, but groups

of documents that belong together are sought. Clus-

tering schemes not require training data to be pre-

classified, and the algorithms themselves are generally

far more computation-intensive than supervised

schemes. Usually the quality of clustering is consid-

ered better if the contents of the documents within

one cluster are more similar and between the clusters

more dissimilar.

Information Extraction

Information extraction is used to refer to the task

of filling templates from natural language input,

one of the principal subfields of text mining. A tem-

plate is a composite structure with slots that are filled

by individual pieces of structured information. A com-

monly-cited domain is that of terrorist events,

where the template may include slots for the perpetra-

tor, the victim, type of event, where and when it

occurred, etc.

Machine learning has been applied to the informa-

tion extraction task by seeking pattern-match rules

that extract fillers for slots in the template. The rules

can be expressed in pattern-action form, and the pat-

terns comprise constraints on words in the surround-

ing context and the slot-filler itself. These constraints

involve the words included, their part-of speech tags,

and their semantic classes. An application of infor-

mation extraction is extracting information from job

ads such as those posted on Internet newsgroups.

The extracted information by information extrac-

tion can also be used in a subsequent step to learn

rules that characterize the content of the text itself.
Document Summarization

A text summarizer strives to produce a condensed

representation of its input, intended for human con-

sumption. Useful distinctions can be made between

different kinds of summaries: an extract picks certain

key sentences scattered throughout the document. In

contrast, an abstract contains material that is not pres-

ent in the input, or at least expresses it in a different

way. An indicative summary’s main purpose is to

suggest the contents of the article without giving

away details of the article content. It can serve to entice

the user into retrieving the full form [5]. Book jackets,

card catalog entries and movie trailers are examples of

indicative summaries. An informative summary is

meant to represent the original document. Therefore

it must contain all the pertinent information necessary

to convey the core information and omit ancillary in-

formation. Another distinction is between a generic

summary, aimed at a broad readership, and a topic-

focused one, tailored to the requirements of a parti-

cular group of users. Summaries may also be produced

from a single document or multiple documents [3].

In single-document summarization, features like word

frequency, key phrases, sentence position, sentence

length and uppercase words are used. Multi-document

summarization extracts a single summary frommultiple

documents, and is used in the domain of news articles.

It departs from single-document summarization since

the problem involves multiple sources of information

that overlap and supplement each other, being contra-

dictory at occasions. So the key tasks are not only

identifying and coping with redundancy across docu-

ments, but also recognizing novelty and ensuring that

the final summary is both coherent and complete.

Key Phrase Extraction

Keywords and key phrases are attached to documents

to give a brief indication of what they are about.

Key phrases are a useful form of metadata because

they condense documents into a few pithy phrases

that can be interpreted individually and independent-

ly of each other. In key phase extraction, all the

phrases that occur in the document are listed and

information retrieval heuristics are used to select

those that seem to characterize it best. Most key

phrases are noun phrases, and syntactic techniques

may be used to identify these and ensure that the set

of candidates contains only noun phrases. The heur-

istics used for selection range from simple ones such

3064T Text Mining
as the position of the phrase’s first occurrence in the

document to more complex ones such as the occur-

rence frequency of the phrase in the document versus

its occurrence frequency in a corpus of other docu-

ments in the subject area.
Topic Detection and Tracking (TDT)

Topic Detection and Tracking (TDT) [8] refers to a

variety of automatic techniques for discovering and

threading together topically related material in streams

of data such as newswire and broadcast news. The TDT

research applications keep track of topics or events

of interest, in a constantly expanding collection of

multimedia stories. There are five research applications

defined in the TDT Program. Story Segmentation

detects changes between topically cohesive sections.

Topic Tracking keeps track of stories similar to a

set of example stories. Topic Detection builds clusters

of stories that discuss the same topic. First Story

Detection detects if a story is the first story of a new,

unknown topic. Link Detection detects whether or not

two stories are topically linked. Shared resources, such

as TDT corpora, language resources and evaluation

software, provide the necessary tools to build a TDT

application. The TDT corpora consist of broadcast

news and newswire texts sampled daily during most

of 1998. The Linguistic DataConsortium (LDC) exhaus-

tively annotated the corpora by identifying which stories

discuss a predefined set of topics.
Opinion Mining

Opinion mining [8] refers to the research work of

mining user opinion data. It is also known as senti-

ment analysis. Typical research problems include:

(i) subjectivity/objectivity classification is to identify

if the text data contains user opinion; (ii) sentiment

classification is to predict the polarity of user sentiment

(e.g., positive or negative); (iii) opinion summarization

is to provide a condensed representation for a set of user

opinion texts; (iv) opinion anti-spamming is to detect

if the opinion data are written by review spammers.

Key Applications

Bioinformatics

Bioinformatics is the study of the information content

and information flow in biological systems and pro-

cesses [6]. Text mining can be applied to bioinformatics
literatures for named entity recognition and relationship

extraction. Named entity recognition identifies entities

such as drugs, receptors, enzymes, toxins, genes and their

features (box, chain, sequence, subunit, etc.). Relation

extraction detects the relationship between a pair of

entities such as the relationship between genes, protein,

or other biological entities.
Email Spam Filtering

The explosive growth of unsolicited emails, more com-

monly known as spam, has been undermining con-

stantly the usability of emails. One solution is provided

by spam filters. Some spam filters use black lists and

hand-crafted rules, which are not easy to adapt to

new types of spam. On the other hand, the success

of machine learning methods in text classification pro-

vides the possibility to compete with rule-based filters

and quickly adapt to new types of spam. Many spam

filters based on machine learning are using Naive-

Bayes classifiers. A prominent example is Mozilla’s

email client. Different classifier methods such as SVM

are also used.

Business Intelligence

Business intelligence (BI) is a broad category of appli-

cations and technologies for gathering, storing, analyz-

ing, and providing access to data to help enterprise

users make better business decisions. BI applications

include decision support systems, query and repor-

ting, online analytical processing, statistical analysis,

forecasting, and data mining. People express their

opinions and post reviews of products on the Web.

Opinion mining [3] identifies whether users like or

dislike a product and products summary from the

reviews. Opinion mining can help manufactures to

identify problems in their products, and also provides

valuable information for placing advertisements in

Web pages.
URL to Code
Tools for basic processes of text mining: http://nlp.

stanford.edu/links/statnlp.html

Cross-references
▶Biomedical Scientific Textual Data Types and

Processing

▶Data Cleaning

▶Data Mining

Text Mining of Biological Resources T 3065
▶ Information Extraction

▶ Information Retrieval

▶Opinion Mining

▶Text Categorization

▶Text Clustering

▶Text Summarization
Recommended Reading
1. Andreas H., Andreas N., and Gerhard P. A brief survey of

text mining. J. Computat. Linguistics Lang. Technol., 20(1):

19–62, 2005.

2. Bing L. Web Data Mining: Exploring Hyperlinks, Contents and

Usage Data. Springer, Berlin, 2007, pp. 411–447.

3. Dipanjan D. and Martins A.F.T. A Survey on Automatic

Text Summarization. Literature Survey for the Language

and Statistics II course at Carnegie Mellon University,

November, 2007.

4. Hearst M. Untangling text data mining. In Proc. 27th Annual

Meeting of the Assoc. for Computational Linguistics, 1999.

5. Informative and indicative summarization. Available at: http://

www1.cs.columbia.edu/~min/papers/sigirDuc01/node2.html

6. Liebman M. Bioinformatics: an editorial perspective. Available

at: (http://www.netsci.org/Science/Bioinform/feature01.html)

7. Usama F., Gregory P.-S., and Padhraic S. From data mining to

knowledge discovery in databases. AI Mag., 17(3):37–54, 1996.

8. Wayne C.L. Multilingual topic detection and tracking: successful

research enabled by corpora and evaluation. In Proc. Conf. on

Language Resources and Evaluation, 2000.

9. Witten I.H. Text mining. In Practical Handbook of Internet

Computing, M.P. Singh (eds.). Chapman and Hall/CRC Press,

Boca Raton, FL, 2005, pp. 14-1–14-22.
T

Text Mining of Biological Resources

PADMINI SRINIVASAN

The University of Iowa, Iowa City, IA, USA

Synonyms
Knowledge discovery from biological resources;

Hypothesis generation and exploration from bio-

logical resources; Literature-based discovery from

biological resources

Definition
Textmining is about automatically or semi-automatically

exploring hypotheses or new ideas from a set of

resources. The mined hypotheses require further tests

with methods native to the discipline, in this case with

scientific methods in biomedicine. An overall goal in

text mining is to support the intellectual activities of
biomedical scientists as they explore new ideas using a

collection of resources. Text mining is similar to data

mining. But instead of mining a collection of well-

structured data, text mining operates off semi-

structured text collections. Current text mining efforts

in biomedicine increasingly involve more structured

data sources such as the Entrez Gene database main-

tained by the National Library of Medicine (NLM).

There is some diversity of opinion on the kinds

of research that fall within the realm of text mining.

As an example, some include text classification,

which is about building models to predict one or

more topical categories for a text. Still others include

information extraction goals such as in research on

identifying named entities, definitions and expansions

of abbreviations in texts. Some go so far as to include

text retrieval, i.e., research on finding documents

relevant to a user query. Despite these diverse view-

points, there is wide agreement that a core focus of

text mining is on hypothesis generation and explora-

tion based upon implicit connections present in the

sources. Consistent with this viewpoint, Blagosklonny

and Pardee [1] refer to text mining as conceptual

biology, a field that fuels hypothesis-driven biomedical

exploration. These hypotheses typically postulate rela-

tionships between at least two entities (or more gener-

ally concepts). The emphasis is also on novelty at least

in the context of the mined sources. Note also that

novelty itself eludes definition as it is difficult to pin-

point when and how an idea acquires the status of

being known.

Historical Background
The motivation underlying biomedical text mining

with its focus on hypothesis generation and explora-

tion is that it is difficult for any one scientist or even a

group of collaborators to keep abreast with research

developments. This difficulty becomes compounded

many times given the increasing importance of inter-

disciplinary perspectives to solve biomedical problems.

Another motivation comes from the serendipitous na-

ture of many scientific discoveries. Serendipity may be

influenced by several intangibles, such as researcher

intuition, prior experience and knowledge, including

also the ability to creatively scan and combine the

literature of multiple disciplines. With the biomedical

literature growing at an astounding pace, there is a

definite need for text mining tools to assist bioscien-

tists gauge new ideas against prior research.

3066T Text Mining of Biological Resources
Text mining has its origins in the work of Swanson

conducted during the mid 1980’s. In 1986, Swanson

mined the MEDLINE bibliographic database and

proposed that fish oils may be used to treat Raynaud’s

disease [13]. Swanson observed from the literature that

Raynauds is exacerbated by platelet aggregability, vaso-

constriction, and blood viscosity. He also observed that

fish oils reduce these phenomena. Combining these

observations he postulated that fish oilsmay be beneficial

for persons with Raynauds which was later corroborated

by other scientists. The decade from themid-1980’s to the

mid-1990’s is marked by a series of papers by Swanson

and his collaborator Smalheiser on using text mining to

propose a variety of other hypotheses such as connections

between estrogen and Alzheimer’s disease [10]. These

papers created a fertile for textmining research, especially

in the context of MEDLINE. Remarkably, it was only in

the mid-1990’s that other researchers became seriously

attracted to biomedical text mining. The first few papers

were on automating several of the text mining steps in

Swanson and Smalheiser’s methodology [5,11]. Since

then researchers have proposed other hypotheses such

as viruses that may be used as bioweapons [14], possible

therapeutic uses for substances such as thalidomide [16]

and for turmeric (Curcumin Longa) [12], possible func-

tional connections between genes as well as between

genes and diseases [9]. Now past the 20 year mark, the

text mining field is a fertile ground for research and

development. It is mature to the point that several annual

workshops affiliated with major conferences have been

established. There is also a Journal of Biomedical Discov-

ery and Collaboration that is dedicated to the field and

finally there are recent reviews as for example on bio-

medical text mining tools [15].

Foundations

Resources

A central aspect to text mining in biomedicine is the

use of MEDLINE, the bibliographic database produced

by the National Library of Medicine. MEDLINE

records contain a variety of fixed and variable length

fields such as publication date, title, abstract, authors

and author affiliations, chemical terms and subject

representations in the form of assigned phrases.

Phrases assigned to a record are selected from the

MeSH (Medical Subject Headings) controlled vocabu-

lary by trained indexers. Text mining systems
sometimes differ in the MEDLINE field(s) used.

Some methods use the free-text fields such as title

and abstract [5] while others are based on controlled

vocabulary fields such as MeSH and chemical terms

(e.g., [11]). Systems using controlled vocabularies have

the advantage of more precise vocabulary. But they

take the risk of missing important information that

may be present in the free-text alone. Systems using the

free-text fields usually involve procedures for informa-

tion extraction to identify key concepts that occur in

the texts such as gene, protein, disease and drug name.

In this regard research on natural language processing

in the biomedical domain has had a huge influence on

text mining. This direction is of increasing importance

as other forms of textual collections such as patient

records are brought into the fold of text mining.

Many text mining approaches also avail of allied

vocabulary resources such as the UMLS (Unified Med-

ical Language System) also produced by the NLM. The

UMLS offers a rich variety of conceptual and linguistic

details and it also offers interconnections between

the many general and specialized vocabularies arising

from different subfields of biomedicine. Other core

resources seen, especially in applications targeting bio-

informatics, are Entrez Gene [3] and Gene Ontology

[4]. Information about annotation links between GO

terms and genes frequently accompanied by the MED-

LINE records providing supporting evidence, are uti-

lized in text mining. Beyond these core resources

several others have been used for text mining such as

DIP, the Database of Interacting Proteins [2].

Methods

There is a growing variety of text mining methods,

orientations and applications. In general, methods ap-

pear to be selected or designed to fit the problem at

hand. And since the space of text mining problems is

broad (and growing), there is an almost bewildering

array of text mining solutions. While this situation

offers almost free rein to researchers and developers,

it also makes it challenging to determine what methods

(or aspects about methods) are most successful or

most appropriate for a given problem or in a specific

domain. Seemingly similar problems are sometimes

addressed using significantly different approaches

while certain approaches exhibit broader appeal.

Two established text mining approaches derive

from Swanson and Smalheiser’s early research. These

Text Mining of Biological Resources T 3067
are generally referred to as open discovery and closed

discovery. The open discovery process is initiated with

a single concept (A) and the goal is to identify one or

more concepts (C) that are connected but only indi-

rectly with A, i.e., through other intermediate con-

cepts. In closed discovery, two concepts A and C are

provided as input and the idea is to seek out novel

connections between them.

Figure 1 displays these strategies. An example of

open discovery represented by the figure is where the

starting A concept is a specific drug and the user is

interested in novel connections with C concepts repre-

senting diseases. Moreover, the intermediate (B) con-

cepts could be constrained to concepts of particular

types such as functions of different kinds, molecular,

tissue etc. Or, they may be constrained to concepts

designating genes already known to be associated

with the disease. The novelty aspect is satisfied by

ensuring that the A drug and the identified C disease

have not yet been studied together. A typical approach

implemented to satisfy this requirement is that the A-B

concept(s) and B concept(s)-C connections should be

found in disjoint portions of the literature collection or

that the A-C connection is not recorded in an appro-

priate knowledge source. For closed discovery an ex-

ample illustrated by the figure is where the user inputs

both a specific drug (A) and a disease (C). The algo-

rithm then looks for new connections, i.e., B concepts

that tie the two together. Now it may be the case that

no connections between the drug and the disease are
Text Mining of Biological Resources. Figure 1. Open

and closed discovery.

T

known thus far or it may be that some connections are

known and other novel ones are being sought. In all of

these it can be seen that investigator participation is of

value not only to specify the inputs but also to specify

the kinds of outputs and to constrain the intermediate

connection types of interest. Typically when multiple

novel C concepts are discovered through open discov-

ery or multiple B concepts discovered with closed these

are ranked by some estimate of confidence.

Many variations of these two basic strategies have

been explored. One type of variation extends the transi-

tive nature of these methods to allow for implicit con-

nections ranging over longer distances, i.e., with longer

connecting path lengths. For example in G2D [7]

researchers start by connecting a disease to its pathologi-

cal conditions and then to their co-occurring chemical

terms inMEDLINE. These are in turn connected through

co-occurrence with terms representing protein function

from Gene Ontology (GO). These GO terms are then

used to identify RefSeq [8] sequences through annotation

links. Homology is then used to connect these with

candidate sequences that are then constrained to those

mapping to the same chromosomal region where the

disease is mapped. Another key distinguishing feature

across implementations of these text mining algorithms

is that confidence estimates may be made in different

ways. There is certainly variability in the particular

confidence estimation functions used. But more gen-

erally, some utilize weights along the single best path

while others utilize some function (such as a mean or

median) computed over all the connecting paths. Still

others, inspired by association rules, adopt the dual

notions of confidence and support while several utilize

symmetric measures exploiting concept co-occurrence

based statistics.

Besides open and closed discovery, there are other

text mining methods that rely on exploring graph

properties. A graph may be constructed where the

nodes represent biomedical objects and the links rep-

resent their interconnections. For example, gene net-

works have been studied by many researchers. Here

links between pairs of genes may be directed to indicate

influence of one gene over another and weighted by

some estimate of degree of influence. Or, these may be

undirected with link weight being a function of co-

appearance in MEDLINE records. Such graphs may

be studied for their structural properties including

to identify core groups of objects (here genes).

3068T Text Mining of Biological Resources
Unexpected members of such groups may suggest

ideas and lead to specific hypotheses and further

research.

A recent trend is to embed text mining functions in

systems designed with larger scope. iHOP is an exam-

ple of such a system [6]. In such systems hypothesis

generation becomes one of several sub goals. Wide

ranging functions are offered by such systems such as

easy connections between records of different data-

bases and knowledge sources, literature retrieval and

ranking as well as syntactic analysis of the text sen-

tences to extract entities and relationships.
Key Applications
For pointers to current text mining applications the

reader may explore sources such as the Application

Notes sections of Bioinformatics (Data and Text

Mining subsection); the Software and Database sec-

tions of BMC Bioinformatics; the Web Server issue of

Nucleic Acid Research and similar sections of other

biomedical journals.
Future Directions
Biomedical text mining is at a highly creative age with

its scientific basis still in infancy. The area has been

heavily influenced by research and development in

several fields such as text retrieval, machine learning

and computational linguistics. The rapid growth in

terms of research papers is a strong indicator of its

perceived potential.

There are several open problems in text mining.

Certainly the relative merits of alternative methods,

their generalizability and criteria for gauging relevance

to specific application contexts are still open. There is

also a need to obtain a deeper understanding of what is

meant by a novel idea or hypothesis, as this is a key

motivation for text mining research. Methods for eval-

uating text mining systems is also an open problem.

Evaluations tend to be somewhat subjective and non

standardized. A common strategy is to see if the algo-

rithms can discover knowledge that is already recorded

in sources such as the Database of Interacting Proteins

[2]. Another strategy is to obtain the opinion of do-

main specialists on the connections found. Both stra-

tegies have their limitations. Also important is research

on how to successfully integrate text mining systems

into the work patterns of bioscientists. This will require
a better understanding of research strategies used by

bioscientists. Overall it remains to be seen how well

text mining will address the needs of the biomedical

research community. For the moment, at the very least,

it is clear that text mining has significantly extended

the frontiers of text based applications in biomedicine.
Cross-references
▶Data Mining

▶NLP Techniques for Biomedical Text Analysis and

Mining

▶Text Mining
Recommended Reading
1. Blagosklonny M.V. and Pardee A.B. Unearthing the gems. Na-

ture, 416, 373, 2002.

2. Database of Interacting Proteins: http://dip.doe-mbi.ucla.edu/

3. Entrez Gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene

4. Gene Ontology: http://www.geneontology.org/

5. Gordon M.D. and Lindsay R.K. Toward discovery support sys-

tems: A replication, reexamination, and extension of Swansons

work on literature-based discovery of a connection between

Raynauds and fish oil. J. Am. Soc. Inf. Sci., 47, 116–128, 1996.

6. iHOP: http://www.ihop-net.org/UniPub/iHOP/

7. Perez-Iratxeta C., Bork P., and Andrade M.A. Association of

genes to genetically inherited diseases using data mining. Nat.

Gene., 31(3):316–319, 2002.

8. RefSeq, http://www.ncbi.nlm.nih.gov/RefSeq/

9. Seki K. and Mostafa J. Discovering implicit associations be-

tween genes and hereditary diseases. Pacific Symp. Biocomput.,

12:316–327, 2007.

10. Smalheiser N.R. and Swanson D.R. Linking estrogen to

Alzheimers disease: an informatics approach. Neurology,

47:809–810, 1996.

11. Srinivasan P. Text mining: generating hypotheses from MED-

LINE. J. Am. Soc. Inf. Sci. Technol., 55:396–413, 2004.

12. Srinivasan P. and Libbus B. Mining MEDLINE for Implicit

Links between Dietary Substances and Diseases. Bioinformatics,

20 (Suppl 1):I290–I296, August 2004.

13. Swanson D.R. Fish oil, Raynauds syndrome, and undiscovered

public knowledge. Persp. Biol. Med., 30:7–18, 1986.

14. Swanson D.R., Smalheiser N.R., and Bookstein A. Informa-

tion discovery from complementary literatures: categorizing

viruses as potential weapons. J. Am. Soc. Inf. Sci. Technol.,

52:797–812, 2001.

15. Weeber M., Kors J.A., and Mons B.Online tools to support

literature-based discovery in the life sciences. Brief. Bioinform.,

6(3):277–286, 2005; doi:10.1093/bib/6.3.277

16. Weeber M., Vos R., Klein H., de Jong-Van den Berg L.T.W.,

Aronson A., and Molema G. Generating hypotheses by dis-

covering implicit associations in the literature: a case report for

new potential therapeutic uses for Thalidomide. J. Am. Med.

Inform. Assoc., 10:252–259, 2003.

Text Representation T 3069
Text Representation

JUN YAN

Microsoft Research Asia, Haidian, China

Definition
Text representation is one of the fundamental pro-

blems in text mining and Information Retrieval (IR).

It aims to numerically represent the unstructured text

documents to make them mathematically computable.

For a given set of text documents D = {di, i=1, 2,...,n},

where each di stands for a document, the problem of

text representation is to represent each di of D as a

point si in a numerical space S, where the distance/

similarity between each pair of points in space S is well

defined.
T

Historical Background
Mining the unstructured text data has attracted much

attention of researchers in different areas due to its

great industrial and commercial application potentials.

A fundamental problem of text mining is how to repre-

sent the text documents to make them mathematically

computable. Various text representation strategies have

been proposed in the past decades for different applica-

tion purposes such as text categorization, novelty detec-

tion and Information Retrieval (IR) [5]. This entry

focuses on the text representation strategies specifically

for IR applications.

Nowadays, the most commonly used text repre-

sentation model in the area of Information retrieval is

called as the Vector Space Model (VSM) [4,5]. It aims

representing each text document by a numerical vec-

tor such that the similarity between vectors (docu-

ments) can be computed by different kernels. A

simple and commonly used kernel is their normalized

inner product, which is also known as the Cosine

similarity. One of the commonly used VSM is the

Bag of Words model (BOW). It uses all words

appeared in the given document set D as the index

of the document vectors. Under the BOWmodel, dif-

ferent term weighting schema give different text repre-

sentation results. The simplest case of BOW is the

Boolean model. It utilizes the binary vectors to repre-

sent text documents. In other words, if a term appears

in a document, there has a “1” in the position, which

corresponds to this term, in the document vector.
Otherwise, the term weight is “0”. As an extension of

the Boolean model, Term Frequency Inversed Docu-

ment Frequency (TFIDF) model was proposed. It uses

real values which capture the term distribution among

documents to weight terms in each document vector.

However, there are many limitations in the traditional

BOW text representation model. For example, (i)

BOW ignores the within document term correlation

such as the order of terms in a given document; (ii) the

polysemy and synonymy problems can greatly decrease

the IR performance in the TFIDF text representation

model; and (iii) the TFIDF model cannot capture the

semantics of documents for IR.

To solve the limitations of BOW model, various

advanced text representation strategies have been pro-

posed. The N-gram statistical language models [2]

were proposed to capture the term correlation within

document. However, the exponentially increasing data

dimension with the increase of N limits the application

of N-gram models. The Latent Semantic Indexing

(LSI) [3] was proposed to reduce the polysemy and

synonym problems. At the same time, LSI can also

represent the semantics of text documents through

the linear combination of terms, which is computed

by the Singular Value Decomposition (SVD). However,

the high complexity of SVD [1] make LSI seldom used

in real IR tasks. In addition, some external resources

such as the Wordnet and Wikipedia are recently used

for solving the polysemy and synonym problems in

text representation. Since the effectiveness of these

external resources for text representation can only

be learned in research papers and there still has no

evidence to show their power in real IR applications,

this article will not introduce their details. Motivated

by the LSI, the Probabilistic Latent Semantic Indexing

(PLSI) [6] is also proposed for representing the seman-

tics of text documents. However, it is still limited

by the computation complexity due to the increasing

scale of Web data. As a summary, though various app-

roaches have been proposed for solving the limitations

of BOW, the BOW with TFIDF term weighting schema

is still one of the most commonly used text represen-

tation strategies in real IR applications.

Beyond VSM, many propose to represent text docu-

ments in other formats instead of vectors or represent

text documents through their meta-information. For

instance, the text documents can be represented

through neural network, through graphs and in tensor

3070T Text Representation
space model. The text documents in Web pages can be

semantically represented by the search queries which

have clicked these pages, the social bookmarks which

have annotated these pages. However, most of them are

used for solving specific text mining problems or used

to enhance performance of some special IR tasks. In the

next Section of this article, the details for text represen-

tation in two parts will be given, which are the tradi-

tional BOW text representation model with TFIDF term

weighting schema and the semantic text representation

through LSI.

Foundations
In the bag of words (BOW) model, a text document

is represented as a collection of unordered terms.

Given the document collection D={di, i=1, 2,...,n},

suppose there are m unique terms appeared in this

collection (The stop words removal and stemming

will be introduced later). Mathematically, this corpus

of documents can be represented by a m by n matrix

S 2 Rm�n. Each text document is denoted by a column

vector si; i ¼ 1; 2;:::;n and each term is denoted

by a row vector. The jth entry of si is denoted by

sji; j ¼ 1; 2;:::;m. As an example, suppose the docu-

ment collection D implies two documents,

d1: He investigates the text representation approaches.

d2: What is the meaning of text representation app-

roach for text documents?

There are a list of 13 unique terms, which are,

“He, investigates, the, text, representation, appro-

aches, What, is, meaning, of, approach, for, documents”.

The list of terms roughly represents the two docu-

ments by a 13 by 2 matrix. The problem is how to

weight each entry of this matrix. Considering the sim-

ple Boolean model first. If a term appears in a docu-

ment, its corresponding weight is 1; otherwise, it is 0.

The transform of the matrix for the collection D is,

ST ¼ 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 1 1 1 0 1 1 1 1 1 1 1

� �

where the order of term index is the same as the term

list given above, i.e., the first term is “He” and the last

term is “documents.” There are three obvious pro-

blems in this text representation strategy: (i) not all

terms have the physical meaning in representing text

documents such as “the,” “is” etc; (ii) some terms such

as “approach” and “approaches” are actually the same;
and (iii) the importance of all the terms is treated as

the same in this strategy. Can the difference of the term

importance be reflected in text representation? The

answers for these three questions correspond to three

key steps in text representation, which are stop words

removal, stemming and TFIDF indexing.

The stop words (or stopwords) is the name of

the terms that should be filtered out before text

documents indexing or natural language processing.

There has no fixed stop words list for all text pro-

cessing applications. Generally the stop words list

will include the terms like “a,” “the,” “an,” etc. After

removing the stop words, a stemming procedure is

applied before the TFIDF indexing. The stemming aims

at reducing inflected words to their stem. For example,

“approaches” is stemmed to “approach,” “investigates” is

stemmed to “investigate” and “representation” is

stemmed to “represent.” Thus in the above example, the

list of terms is reduced to,

“He, investigate, text, represent, approach, what,

mean, document.”

Thus the two documents d1 and d2: can be represented

by an 8 by 2 matrix. The transpose of it is,

ST ¼ 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1

� �

Until now, the problems (i) and (ii) have been solved.

The last problem is how to tell the importance of differ-

ent terms in text representation. One of the commonly

used approaches is called as the TFIDF indexing. The

TFIDF aims to assign a weight to each term according to

a document in a collection or corpus. In other words,

TFIDF aims to assign different weights for all entries sji
in matrix S. An intuition is that the more times a term

appears in a document, the more important is this

term to this document. Thus the weight should in-

crease proportionally to the number of times a term

appears in the document. On the other hand, if a

word appears in many documents in the corpus, the

discriminative power of the term will be weak. Thus

the weight is offset by the frequency of the word in the

corpus. The former step is called the Term Frequency

(TF). It can be counted directly from the documents.

As an example, the TF of term stext” in d2 is 2. A

normalizing factor is always used for calculating the

TF of a term in a document. Since in d2 there are 7

terms after stop words removal and stemming. Among

Text Representation T 3071

T

them, 2 of them are “text.” Thus the TF for term “text”

in d2 is 2/7. The latter step is called the Inverse Docu-

ment Frequency (IDF). It is a log function. The IDF

for term t is,

log
n

#document involve term t

Thus the TFIDF weighting schema can be as simple as

TF*IDF. There are various variations of TFIDF text

indexing. The major differences are how to normalize

and smooth the weighting equation.

In the BOWmodel, the TFIDF indexing gives a way

to weight the terms for text documents. However, this

kind of term frequency based approaches cannot dis-

cover the semantics of the text documents. In the

following several paragraphs, the Latent Semantic

Indexing (LSI) is briefly introduced, which aims to

discover the text semantics through linear combina-

tion of term weights. As introduced above, the term by

document matrix is a sparse matrix whose rows corre-

spond to terms and columns correspond to docu-

ments. LSI aims to transform the matrix S into a

reduced matrix which can reflect the relation between

the documents and some concepts. Thus the terms and

documents are indirectly related through the concepts.

Mathematically, LSI aims to find a projection

matrix W 2 Rm�p such that the linear projection

yi ¼ WTsi 2 Rp; i ¼ 1; 2;::::;n can reflect the p se-

mantic concepts implied by document di, where

p<<m. In other words, LSI assumes that the linear

combination of terms can reflect the concepts in text

documents. W 2 Rm�p can give p different linear

combinations for term weights vector si. Through

the linear projection matrix W, the text document

di which is represented by m terms’ weights in vector

si is represented by p concepts’ weights in vector yi. The

problem left is how to get the projection matrix W,

i.e., how to get the weights for the linear combina-

tion of terms, from the matrix S. The calculating of

W can be formulated from different perspectives. For

example, it can be formulated as optimization problem

through the essential relationship between LSI and

Principal Component Analysis (PCA). It can also be

formulated as the best low rank matrix approxima-

tion problem. Intuitively, LSI is computed through

the matrix decomposition. Given the term by docu-

ment matrix S, where sji stands for the weight of term

j in document i. Assume that there exists a
decomposition of matrix S=USVT, where U and V are

orthogonal matrices and S is a diagonal matrix. This

matrix decomposition is called as the Singular Value

Decomposition (SVD). If preserve only the first p col-

umns of U, it is the projection matrix W 2 Rm�p for

LSI. For details for LSI please refer to [3].

Key Applications
The text representation is the fundamental work for IR

and text mining. Besides IR, it can also be used for text

categorization, text clustering, topic detection and

novelty detection etc.

Future Directions
The future directions of text representation problem

can be roughly classified into two categories. The first

is the large scale computation and the second is the

semantic text representation. For the former, the goal

is to make the text representation strategies which have

high cost to be usable in real IR tasks. For example, one

can develop the distributed infrastructure for N-gram

model which can be used to enrich the BOWmodel if

the computation of N-gram model is efficient enough.

One can develop the incremental approximation or

distributed computation algorithms for large scale

LSI which can discover the semantic of documents in

large scale IR systems. For the latter, besides LSI and

PLSI, some semantic Web related research works give

good information sources about how to discover the

semantics of text documents.

Data Sets
For testing the effectiveness of text representation stra-

tegies, there are many commonly used text datasets in

different scales. As some examples, the Reuters-21578

(http://www.daviddlewis.com/resources/testcollections/

reuters21578/), RCV1 (http://jmlr.csail.mit.edu/papers/

volume5/lewis04a/lewis04a.pdf), 20 Newsgroup (http://

people.csail.mit.edu/jrennie/20Newsgroups/), Open Di

rectory Project (ODP) (http://rdf.dmoz.org/) and the

TREC text datasets (http://trec.nist.gov/data.html) are

all commonly used for text mining or IR research.

Cross-references
▶ Stemming Algorithms

▶Term Statistics

▶Term Weighting

▶Text Analytics

3072T Text Retrieval
▶Text Indexing & Retrieval

▶Text Indexing Techniques

▶Text Normalization

▶Text Representation

▶Text Semantic Explanation

▶Tfxidf

Recommended Reading
1. Alter O., Brown PO., and Botstein D. Singular value decom-

position for genome-wide expression data processing and

modeling. In Proc. Natl. Acad. Sci. USA., 97:10101–10106.

2. Daniel J. and James H.M. Speech and Language Processing: An

introduction to Natural Language Processing, Computational

Linguistics, and Speech Processing. Prentice-Hall, Englewood

Cliffs, NJ, 2000.

3. Deerwester S., Dumais S.T., Landauer T.K., Furnas G.W., and

Harshman R.A. Indexing by latent semantic analysis. J. Soc. Inf.

Sci., 41(6):391–407.

4. Gerard S.A. Theory of Indexing. Society for Industrial

Mathematics, Philadelphia, PA, 1987.

5. Gerard S. and Michael J. Introduction to Modern Information

Retrieval. McGraw-Hill, New York, 1983.

6. Thomas H. Probabilistic latent semantic indexing. In Proc.

22nd Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 1999, pp. 50–57.
Text Retrieval

▶ Information Retrieval
Text Segmentation

HAODA HUANG, BENYU ZHANG

Microsoft Research Asia, Beijing, China

Synonyms
Document segmentation
Definition
Text segmentation is a precursor to text retrieval, auto-

matic summarization, information retrieval (IR); lan-

guage modeling (LM) and natural language processing

(NLP). In written texts, text segmentation is the pro-

cess of identifying the boundaries between words,

phrases, or some other linguistic meaningful units,

such as sentences or topics. The term separated from

such processing is useful to help humans reading texts,
and are mainly used to assist computers to do some

artificial processes as fundamental units, such as NLP,

and IR.

Historical Background
Natural language processing (NLP) is an important

research field. Its primary problem is how to segment

text correctly. Various segmentation methods have

emerged in the past decades for different kinds of

language and applications. Text segmentation is

language dependent (different language has its own

special problems, which would be introduced later),

corpus dependent, character-set dependent, and appli-

cation dependent. Most existing text segmentation

systems are language specific and corpus dependent.

This entry mainly focuses on traditional English

and some Chinese text segmentation strategies. To do

such segmentations, there are two major approaches:

(i) Manually analyzing the characters of text to get

some heuristic approaches; (ii) Doing annotations for

the sample corpus with boundary information, then

adopting some machine learning (ML) methods to

learn from annotated corpus, and finally doing auto-

matic text segmentation.

The problem of word segmentation (also known as

tokenization), which is the process of dividing the

sequence of characters into words by locating words

boundaries, does not appear to be difficult for written

languages that have explicit word boundary markers,

such as English in which words are separated by white

spaces. When such clues are not consistently retained

in written languages, such as Chinese, in which sen-

tences can be considered to be a character string, doing

word segmentation should be the most important and

essential part of text segmentation. On the contrary,

sentence segmentation (which also can be referred to

as sentence boundary detection, sentence boundary

disambiguation (SBD), or sentence boundary recogni-

tion) is more difficult in English text segmentation,

which must disambiguate punctuations that might

denote sentence boundaries.

Based on previous analysis, for English text seg-

mentation, words can be isolated by white spaces. So,

the main problem of this kind of segmentation is

how to recognize the boundaries of sentences, which

involves resolving the use of ambiguous punctuation,

such as periods, commas, and semicolons. Some

recognizable tokens contain ambiguous punctuation,

Text Segmentation T 3073

T

such as numbers (e.g., 1,236.78), dates (e.g., 02/05/96),

acronyms (e.g., AT&T), and abbreviations (e.g., U.S.).

Some example sentences containing ambiguous punc-

tuations follow:

1. Clairson International Corp. said it expects to report

a net loss for its second quarter ended March 26 and

doesn’t expect to meet analysts’ profit estimates of

$3.0 to $4 million, or 1,276 cents a share to 1,279

cents a share, for its year ending Sept. 24. (From the

Wall Street Journal (1988))

2. The contemporary viewer may simply ogle the vast

wooded vistas rising up from Saguenay River and Lac

St. Jean, standing in for the St. Lawrence River.

(From the Wall Street Journal (1991))

3. The firm said it plans to sublease its current head-

quarters at 55 Water St. A spokesman declined to

elaborate. (From the Wall Street Journal (1987))

As can be seen, periods have been used three different

ways in the first example - within a decimal ($3.0), in

abbreviations (Corp. and Sept.), and at the end of the

sentence. A comma is used in a number (1,276 and

1,279). Consider the second and third examples in

which “St.” appears three times. The first two instances

of “St.” do not denote the boundary of the sentence,

whereas the last one delimits the sentence. At the same

time, it is also essential to do word segmentation in

English text segmentation. It is necessary to recognize

whether a period within a number ($3.0) should be a

part of decimal or the end of a sentence – that is,

should $3.0 be parsed as a word “/$3.0/” or be parsed

as “/$3/. /0/ ”. The comma used in the number (1,276

and 1,279) also should be recognized as a part of

number rather than a break of a sentence – that is,

whether “1,276” should be broken to “/1,276/” rather

than “/1/, /276/”. Taking the third and first example

sentences above, the first two “St.” should be segment-

ed to “/St./”. Though the last “St.” is also supposed to

be segmented to “/St./”, one must always realize that

this period also stands for the end of sentence.

If there were a dictionary containing all kinds of

words and including all the acronyms and abbrevia-

tions, it would be much easier to recognize words

and do tokenization. In actuality, however, acronyms

and abbreviations are emerging continuously and

will never stop. In order to solve this problem,

many approaches have been proposed. There are

mainly two approaches: First, manual analysis often
uses regular expression grammars and lexicon to

solve those problems. The systems based on such

methods are always called rule-based systems. In

such systems, Lexicon is used to obtain the informa-

tion of words, such as capitalization, spelling, and

suffixes, to determine whether a word followed with

a period should be a common word or a boundary

signal of a sentence. Regular expressions are estab-

lished for detecting special kinds of words, such as

numbers and dates. Another way of performing sen-

tence boundary disambiguation (SBD) is to use ma-

chine learning (ML) techniques, such as decision tree

classifier, maximum entropy modeling, and neural

network. The most essential information for Machine

Learning systems to obtain are good features, such as

word spelling, suffix, capitalization, and word classes.

The difficulty is how to obtain a well annotated

sample corpus with labels of word boundaries and

sentence boundaries.

For Chinese text segmentation, sentences are al-

ways isolated by non-ambiguous punctuations, but

words are character strings without explicit boundary

markers. So, the main problem of Chinese text seg-

mentation is how to recognize the boundaries of

words. All the same, Word Sense Disambiguation is

the primary issue in word segmentation. Three types of

ambiguity string are present in Chinese text segmenta-

tion: overlapping ambiguity string, combinatorial am-

biguity string, and hybrid ambiguity string. To solve

those problems, various approaches have been pro-

posed. The most typical solution is using forwards

maximum matching (FMM) and backwards maxi-

mum matching (BMM) based on a dictionary.

Except for these two typical languages, there are

still other types of languages with many different fea-

tures of written text. Many more difficulties for each

language have appeared.

In addition to language-dependent word segmen-

tation and sentence segmentation, there is another

segmentation that has emerged: topic segmentation,

since a document always contains several topics

and even one topic may have different aspects. Topic

segmentation is much harder than word and sentence

segmentation due to difficulties in detecting semantic

units and dividing them into topics. Many approaches

have been tried to deal with such problems [1,4].

Applications based on topic segmentation are

Translation (MT), Natural Language Processing,

3074T Text Segmentation
abundant, such as document summarization, text pro-

cessing, and NLP.

Foundations
Using regular expression grammars and lexicon to

solve ambiguous punctuation is classic and to some

extend useful. Different regular expressions have been

defined for all kinds of tokens containing ambiguous

punctuation. First, lexicon is used to find if a token

exists in the dictionary or not. If it does not exist, a

regular expression is used.

1. Numbers. Take “123,456.789%” as an example.

The regular expression should be ((0–9]+,)*[0–9]

+(.(0–9]+)*%? (ab means matching a, and then

matching b.

a + means one or more a would be matched.

a* means zero or more a would be matched.

a? means zero or one a would be matched.). Once

this expression is used to recognize numbers, per-

iods, commas and percent within a number, those

ambiguous punctuations will not be parsed falsely

as a boundary of a sentence.

2. Dates, such as “05/11/95”. Heuristic regular expres-

sion would be [0–9][0–9]/[0–9][0–9]/[0–9][0–9].

3. Acronyms and Abbreviations, typically “U.S.,

St., Ash., and Corp.” Regular Expression [A–Z]

+[A–Za-z0–9]*.([A–Za–z0–9].)* will be used to

find those acronyms and abbreviations. It should

be noted that when an acronym or abbreviation is

located at the end of a sentence, after the expression

mentioned above has been used to parse such kind

of sentences, an error would occur. For example,

the sentence “The firm said it plans to sublease its

current headquarters at 55 Water St. A spokesman

declined to elaborate.” would be parsed to one sen-

tence, although it should actually be split into two

sentences “/The firm said it plans to sublease its

current headquarters at 55 Water St./” and “/A

spokesman declined to elaborate./”.

Three typical kinds of tokens have been presented

above. There are still many other types of words con-

taining ambiguous punctuations. Many more regular

expressions are required to deal with all of them. The

set of expressions would be extremely huge. It is im-

portant to mention that these typical kinds of tokens

are language dependent. This implies that different

regular expression sets for each language would need

to be established, which is a labor consuming
enterprise. Also, the expressions are usually corpus

related, which makes those rules unable to be ported

across domains.

Because there are so many limitations in using regu-

lar expressions to segment words and sentences, as

mentioned above, machine learning (ML) techniques

have been taken into this field. These techniques can

be retrained quickly for a new domain, a new corpus, a

new language only if a well-annotated sample corpus

has been given. Some systems also use part-of-speech

(POS) information to improve performance [3].

In order to discuss how to deal with Chinese text

segmentation, first, three kinds of ambiguity string

should be introduced. (i) Overlapping Ambiguity

String. It is defined as follows: ABC can be segmented

into A/BC and AB/C, such as “和/平等” could be

segmented into“和/平等” and “和平等” in different

situations. In sentence “独立/自主/和/平等/独立/

的/原则” and “讨论/战争/与/和平/等/问题”, the

segmentation of “和平等” is different. (ii) Combina-

torial Ambiguity String. It is defined as follows: AB

can be segmented into AB and A/B, such as “马上”

should be segmented into “马上” in sentence “马上/

过来” and should be “马/上” in sentence “他/骑/在/

马/上”. (iii) Hybrid Ambiguity String. It combines

overlapping and combinatorial ambiguity. To figure

out the first kind of ambiguity string problem, for-

wards maximum matching (FMM) and backwards

maximum matching (BMM) are used to segment sen-

tence separately. Such as sentence “独立/自主/和/平

等/独立/的/原则”, with FMM, it should be segment-

ed into “独立/自主/和平/等/独立/的/原则”; with

BMM, it should be “独立/自主/和/平等/独立/的/

原则”. When the result of segmentation with FMM and

BMM is different, syntax, semantic, pragmatic infor-

mation will be added to determine which segmenta-

tion should be chosen. To solve the combinatorial

ambiguity string problem, FMM and Backwards Mini-

mum Matching are adopted. For example with FMM,

the sentence “他骑在马上” should be segmented into

“他/骑/在/马上”; with BMM, it should be “他/骑/

在/马/上”. The following processing is the same as

overlapping ambiguity string segmentation.

Key Applications
Text segmentation is an important aspect in develop-

ing text processing applications, such as Informa-

tion Extraction, Document Summarization, Machine

Text Semantic Representation T 3075
Information Retrieval, Language Modeling, and

Speech Recognition.
Future Directions
There are roughly two directions for text segmentation

in the future. One is text segmentation based on spe-

cific language. Another is its use in other fields, such as

the rich transcription field. For the former, there are

more than 200 languages in the world. Each has its own

difficulties in doing text segmentation, such as word

segmentation in Chinese text segmentation. These

problems are do not have ideal solutions. For the

latter, sentence boundary disambiguation (SBD) has

attracted increased attention recently as a way to im-

prove speech recognition output for better readability

and downstream natural language processing and

some subsequent tasks, such as speech translation

and speech summarization.
Data Sets
Two main data sets are typically used for testing, eval-

uation and development in large amount of text seg-

mentation and text processing tasks: Brown Corpus

and the Wall Street Journal (WSJ) corpus – containing

the Penn Treebank (Marcus, Marcinkiewicz, and San-

torini, 1993). Texts in those corpora are all split into

documents, paragraphs, and sentences and are anno-

tated with POS information. The above information is

necessary to develop and evaluate text segmentation

systems.

Other data sets on Rich Transcription can be used

to perform sentence boundary disambiguation, such as

the Rich Transcription data sets provided by National

Institute of Standards and Technology (NIST).
T

Cross-references
▶Column Segmentation

▶Text Retrieval

▶Text Summarization

▶Text Representation
Recommended Reading
1. Beeferman D., Berger A., and Lafferty J. Statistical models for

text segmentation. Mach. Learn., 34(1–3):177–210, 1999.

2. Grefenstette G. and Tapanainen P. What is a word, what is a

sentence? Problems of tokenization. In Proc. 3rd Conf. on

Computational Lexicography and Text Research, 1994, pp. 7–10.
3. Mikheev A. Tagging sentence boundaries. In Proc. 1st Conf. on

North American Chapter of the Association for Computational

Linguistics, 2000, pp. 264–271.

4. Reynar J.C. and Marcus M.P. Topic segmentation: algorithms

and applications. Ph.D. Thesis, University of Pennsylvania,

Philadelphia, PA, 1998.
Text Semantic Representation

JUN YAN, JIAN HU

Microsoft Research Asia, Haidian, China

Definition
The classical text representation strategies aim to nu-

merically represent the unstructured text documents to

make them mathematically computable. With the rapid

growth of information retrieval and text data mining

research, the semantic text representation is attracting

more and more attention. The problem is how to rep-

resent the text documents by explicit or implicit seman-

tics instead of word occurrence in the document. The

goals of semantic text representation are to improve

the text clustering, classification, information retrieval

and other text mining problems’ performance.
Historical Background
In the past decades, semantic text representation

has attracted much attention in the area of informa-

tion retrieval and text data mining research. There have

different ways for categorizing various semantic text

representation strategies. This entry generally classifies

the previous efforts for this problem into two cate-

gories: explicit semantic text representation and im-

plicit semantic text representation.

The explicit semantic text representation aims to

represent text documents by explicit readable sen-

tences, key phrases or keywords, which can semantically

describe the main topic of the given text documents.

The related approaches can be further classified into

automatic approaches and manual approaches. From

the automatic approaches’ perspective, the Text Summa-

rization technologies aim at learning one or more sen-

tences to represent a given text document; the

Information Extraction technologies aim at extracting

one or more key phrases for describing the semantic of a

given text document. In addition, many previous works

propose to annotate the Web pages, which is a special

type of text documents, by search engine click through

3076T Text Semantic Representation
logs. With the rapid growth of Semantic Web (http://

infomesh.net/2001/swintro/#furtherReading) in recent

years, the automatic web page annotation and ontology

learning, etc can all be utilized for automatically repre-

sent Web pages semantically. As some examples, the

WordNet and Wikipedia have both been utilized for

semantically enhance the text representation for various

applications. From the manual approaches’ perspective,

there are many commercial systems target at semantic

text representation by key phrases or key words. Two of

the most representative examples of these commercial

systems are delicious and flicker. Both of them aim to

semantically represent the Web pages through manually

assigned social annotation to a large number of Web

pages.

To date, the work on integrating semantic back-

ground knowledge into text representation is quite

few and the results are not good enough. Buenaga

Rodriguez et al. and Urena Loez et al. successfully

integrated the WordNet resource for a document cate-

gorization task. They improved classification results of

Rocchio and Widrow-Hoff algorithms on Reuters cor-

pus. In contrast some work utilized WordNet in a

supervised scenario without employing WordNet rela-

tions such as hypernyms and associative relations.

Meanwhile, they built the term vectors manually.

Dave et al. has utilized WordNet synsets as features

for document representation and subsequent cluster-

ing. That work did not perform word sense disambig-

uation and found that WordNet synsets decreased

clustering performance in the experiments. Hotho

et al. integrated WordNet knowledge into text clus-

tering, and investigated word sense disambiguation

strategies and feature weighting schema through con-

sidering the hypernym relations from WordNet. The

experimental results on Reuters corpus show improve-

ments compared with the best baseline. However,

considering the few word usage contexts provided by

WordNet, the word sense disambiguation effect is quite

limited. Meanwhile, the enrichment strategy which

appends or replaces document terms with their hyper-

nym and synonym is overly simple. To solve the limita-

tions of many previous work, Hu et al. proposed to

enhance the text representation by Wikipedia.

On the other side, one of the most classical implicit

semantic text representation approaches is known

as the Latent Semantic Indexing (LSI) [2]. Nowadays,

the most commonly used text representation model is

called as the Vector Space Model (VSM) [3]. It aims to
represent each text document by a numerical vector

such that the similarity between vectors (documents)

can be computed by different kernels. Latent Semantic

Indexing (LSI) was originally proposed for dealing

with the problem of synonymy and polysemy in the

vector space model. In VSM, LSI represents the seman-

tics of text documents through the linear combination

of terms, which is computed by the Singular Value

Decomposition (SVD) [1]. The reason why LSI is

known as the implicit semantic text representation

strategy is that the linear combination of keywords,

which are semantics of the text documents, cannot be

explained intuitively. A variety of tests and applications

have been developed to validate its power in text rep-

resentation. Special interests have been paid to inves-

tigate its ability in improving the IR performance.

Besides general IR tasks, LSI has also been successfully

applied for the cross-language retrieval and distribu-

ted information retrieval tasks. However, classical LSI

suffers from the high computational cost involved in

the Singular Value Decomposition (SVD), especially

when applied to large scale text corpus. To avoid the

costly computation, it has been proposed to use other

strategies such as Semi-Discrete matrix Decomposition

(SDD) and Concept Indexing (CI) instead of LSI for

implicitly and semantically representing text docu-

ments. There are many variances of the classical LSI,

the Probabilistic Latent Semantic Indexing (PLSI) [4]

and the Supervised LSI are some of the examples.

Foundations
This entry mainly introduces one classical algorithm in

each algorithm category. In the explicit semantic text

representation category, the Wikipedia for text enrich-

ment is introduced. On the other hand, in the implicit

semantic text representation category, the traditional

latent semantic indexing is introduced.

Wikipedia is a dynamic and fast growing resource –

articles about newsworthy events are often added within

few days of their occurrence. Each article in Wikipedia

describes a single topic; its title is a succinct, well-formed

phrase that resembles a term in a conventional thesau-

rus. Meanwhile, each article must belong to at least

one category of Wikipedia. Hyperlinks between articles

keep many of the same semantic relations as defined in

international standard for thesauri, such as equivalence

relation (synonymy), hierarchical relation (hypernym)

and associative relation. However, as an open resource,

it inevitable includes much noise. To make it a clean

Text Semantic Representation T 3077

T

and easy-to-use as a thesaurus, a recent work proposed

by Hu et al. first preprocess theWikipedia data to collect

Wikipedia concepts, and then explicitly derive relation-

ships between Wikipedia based on the structural knowl-

edge of Wikipedia.

Each title of a Wikipedia article describes a topic,

and they are denoted as a concept. After process the

Synonymy, Polysemy and Hypernymy, since each

Wikipedia article contains a lot of hyperlinks, which

express relatedness between them, The cosine similari-

ty of article pairs in Wikipedia may reflect the related-

ness between the two concepts. However the drawback

of this measurement is the same as that of BOW

approach, since it only considers terms appeared in

text documents which have no semantic information.

Another method to measure the relatedness between a

pair of Wikipedia articles is to compare the similarity

between outlinked categories of the two articles. It can

be observed that if two articles share some out-linked

categories, the concepts described in these two articles

are most likely related. To get an overall relatedness

of two Wikipedia concepts, the above two measures

are linearly combined.

As introduced above, to represent text documents

semantically, many previous approaches enriched text

representation with external resources such as Word-

Net and ODP. The same to them, for the Wikipedia,

first, the algorithm generates new features for each

document in the dataset. The features can be synonym

or hypernym for document terms or expanded fea-

tures for terms, sentences and documents. Second,

the generated new features replace or append to origi-

nal document representation and construct new vector

representation.

On the other hand, the classical LSI due to its effec-

tiveness in the area of text data mining and informa-

tion retrieval research. More details about other related

approaches please refer to the recommended readings.

In the bag of words (BOW) model, a text document

is represented as a collection of unordered terms. Given

the document collection D = {di, i = 1, 2,...,n}, suppose

there are m unique terms appeared in this collection.

Mathematically, this corpus of documents can be repre-

sented by a m by n matrix. S 2 Rm�n Each text docu-

ment is denoted by a column vector si; i ¼ 1; 2;:::;n

and each term is denoted by a row vector. The jth

entry of si is denoted by sji; j ¼ 1; 2;:::;m.

Mathematically, LSI aims to find a projection

matrix W 2 Rm�p such that the linear projection
yi ¼ WTsi 2 Rp; i ¼ 1; 2;:::;n can reflect the p semantic

concepts implied by document di, where p < < m. In

other words, LSI assumes that the linear combination

of terms can reflect the concepts in text documents.

W 2 Rm�p can give p different linear combinations

for term weights vector si. Through the linear projec-

tion matrix W, the text document di which is repre-

sented by m terms?’ weights in vector si is represented

by p concepts?’ weights in vector yi. The problem left is

how to get the projection matrix W, i.e., how to get

the weights for the linear combination of terms, from

the matrix S. The calculating of W can be formulated

from different perspectives. For example, it can be

formulated as optimization problem through the es-

sential relationship between LSI and Principal Compo-

nent Analysis (PCA). It can also be formulated as the

best low rank matrix approximation problem. Intui-

tively, LSI is computed through the matrix decompo-

sition. Given the term by document matrix S, where sji
stands for the weight of term j in document i. Assume

that there exists a decomposition of matrix S = USVT,

where U and V are orthogonal matrices and S is a

diagonal matrix. This matrix decomposition is called

as the Singular Value Decomposition (SVD). If pre-

serve only the first p columns of U, it is the projection

matrix W 2 Rm�p for LSI.
Key Applications
The semantic text representation has various different

applications. Generally speaking, it is very important

for the traditional text clustering, text categorization

and information retrieval tasks. As some detailed

examples, the LSI is generally used for relevance

based information retrieval and text clustering. Docu-

ments summarization can be used for search results

snippet generation. Key word extraction can be used as

a component of the ontology learning of semantic

Web. The social annotation is a fundamental work

for semantic Web. As a summary, the semantic text

representation is a fundamental problem for text

mining and analysis.
Future Directions
The future directions of semantic text representation

problem can be roughly classified into threefold. The

first is how to develop novel semantic text representa-

tion approaches by designing novel algorithms and

leveraging other meta-information. In more details,

3078T Text Streaming Model
the Wordnet was first proposed to enhance the seman-

tic text representation. Simultaneously, the search en-

gine click-through log was proposed to enhance the

text representation. Recently, the Wikipedia and social

annotation were widely studied as the meta-informa-

tion of text documents for semantic text representa-

tion. The remaining problem is whether other better

data sources for text enrichment will be found. The

second is the scalability issue for current strategies. For

example, the SVD computation for LSI is highly ex-

pensive. A big problem is how to design scalable algo-

rithm for LSI to deal with large scale data. The

advanced algorithm could be approximated LSI, paral-

lel computation and incremental computation etc. The

third direction is how to apply the semantic text rep-

resentation strategies for pushing the progress of se-

mantic Web and other applications of semantic text

representation. For example, one problem is how to

enhance the text clustering or classification by seman-

tic text representation.

Data Sets
For testing the effectiveness of semantic text rep-

resentation strategies, there are many commonly used

text datasets in different scales. As some examples, the

Reuters-21578 (http://www.daviddlewis.com/resources/

testcollections/reuters21578/), RCV1 (http://jmlr.csail.

mit.edu/papers/volume5/lewis04a/lewis04a.pdf), 20

Newsgroup (http://people.csail.mit.edu/jrennie/20News,

groups/), Open Directory Project (ODP) (http://rdf.

dmoz.org/) and the TREC text datasets (http://trec.nist.

gov/data.html) are all commonly used for text mining or

IR research.

Cross-references
▶ Semantic Web

▶Text Categorization

▶Text Retrieval
Recommended Reading
1. Alter O., Brown PO., and Botstein D. Singular value decom-

position for genome-wide expression data processing and mod-

eling. In Proc. Natl. Acad. Sci. USA., 97:10101–10106.

2. Deerwester S., Dumais S.T., Landauer T.K., Furnas G.W., and

Harshman R.A. Indexing by latent semantic analysis. J. Soc. Inf.

Sci., 41(6):391–407.

3. Gerard S. and Michael J. Introduction to Modern Information

Retrieval. McGraw-Hill Companies, 1983.

4. Thomas H. Probabilistic latent semantic indexing. In Proc. 22nd

Annual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 1999, pp. 50–57.
Text Streaming Model

NING LIU

Microsoft Research Asia, Beijing, China

Definition
Text streaming model (TSM) is one of the fundamental

problems in streaming model and text mining. It aims

to process a sequence of text data that comes at a rate. In

this model, text data does not take the form of arriving

in multiple, continuous, rapid, time-varying data

streams. Input text streaming D1, D2, ... arrives sequen-

tially, one by one, and the aim of TSM is to analysis the

streaming text data.

Historical Background
Mining the streaming data has attracted much atten-

tion of researchers in different areas due to its great

industrial and commercial application potentials. Spe-

cifically, text streaming data models are of interest to

the machine learning and data mining community.

The world wide web has many text data, such as web

pages, news-feeds, emails and blogs. And most of them

are classical text streaming data. Then, how to model

text streaming data is important.

Traditional text data model is Vector Space Model

(VSM). One of the commonly used VSM is the Bag of

Words model (BOW), which index the document as a

set of terms. This set of terms defines a space such that

each distinct term represents the entries in that space.

Since VSM represents the documents as a set of terms,

this space can be viewed as a “document space.” A

numeric weight can then be assigned to each term in

a given document, representing an estimate of the

usefulness of the given term as a descriptor of the

given documents. The weights assigned to the terms

in a given documents can then be interpreted as the

coordinates of the document in the documents space.

Then, Term Frequency Inversed Document Frequency

(TFIDF) model was proposed. It uses real values,

which capture the term distribution among documents

to weight terms in each document vector. Moreover,

the N-gram statistical language model was proposed to

model text data with VSM.

However, there are two challenges in the traditional

VSM for text streaming data.

1. Update the data automatically

2. Do analyses of updated streaming data in accept-

able time

Text Summarization T 3079

T

Foundations
In the bag of words (BOW) model, a text document

is represented as a collection of unordered terms. Given

the document collection D = {di, i = 1, 2,...,n},

suppose there are m unique terms appeared in this

collection (stop words removal and stemming are

introduced later). Mathematically, this corpus of docu-

ments can be represented by am by nmatrix S 2 Rm�n.

Each text document is denoted by a column vector

si; i ¼ 1; 2;:::;n and each term is denoted by a row vec-

tor. The jth entry of si is denoted by sji; j ¼ 1; 2;:::;m. As

an example, suppose the document collection D

implies two documents,

– d1: He investigates the text representation

approaches.

– d2: What is the meaning of text representation

approach for text documents?

There is a list of 13 unique terms, which are,

" “He, investigates, the, text, representation, approaches,

What, is, meaning, of, approach, for, documents.”

Thus, one roughly represents the two documents by a

13 by 2 matrix. Consider the simple Boolean model

first. In other words, if a term appears in a document,

its corresponding weight is 1; otherwise, it is 0. The

transform of the matrix for collection D is,

ST2 ¼
1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 1 1 1 0 1 1 1 1 1 1 1

� �

where the order of term index is the same as the term

list given above, i.e., the first term is “He” and the last

term is “documents.”

For text streaming data, a new text is coming,

– d3: Text mining is important in IR.

Now, the term list of d1and d2 should be changed. The

problem is how the model streaming text data, which is

how to update the indexing matrix.

STs ¼
ST2 0 0

0 s3i 0

� �
Key Applications
The streaming text model is the fundamental work for

IR and text mining. Besides IR, it can also be used for

news categorization and RSS clustering etc.
Data Sets
For testing the effectiveness of text representation stra-

tegies, there are many commonly used text datasets in

different scales. As some examples, the Reuters-21578,

RCV1, 20 Newsgroup, Open Directory Project (ODP)

and the TREC text datasets are all commonly used for

streaming text model.

Recommended Reading
1. Abadi D., Carney D., Çetintemel U., Cherniack M., Convey C.,

Erwin C., Galvez E., Hatoun M., Maskey A., Rasin A., Singer A.,

Stonebraker M., Tatbul N., Xing Y., Yan R., and Zdonik S.

Aurora: a data stream management system. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2003, pp. 666.

2. Babcock B., Babu S., Datar M., Motwani R., and Widom J.

Models and issues in data stream systems. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2002, pp. 1–16.
Text Summarization

DOU SHEN

Microsoft Corporation, Redmond, WA, USA

Synonyms
Document summarization

Definition
Text summarization is the process of distilling the

most important information from a text to produce

an abridged version for a particular task and user [9].

Historical Background
With more and more digitalized text being available,

especially with the development of the Internet, people

are being overwhelmed with data. How to help people

effectively and efficiently capture the information

from the data becomes extremely important. Many

techniques have been proposed for this goal and text

summarization is one of them.

Text summarization in some form has been in

existence since the 1950s [8]. Two main influences

have dominated the research in this area, as summar-

ized by Mani in [10]. Work in library science, office

automation, and information retrieval has resulted in a

focus on methods for producing extracts from scien-

tific papers, including the use of “shallow” linguistic

analysis and the use of term statistics. The other

3080T Text Summarization
influence has been research in artificial intelligence,

which has explored “deeper” knowledge-based meth-

ods for condensing information. While there are a

number of problems remaining to be solved, the field

has seen quite a lot of progress, especially in the last

decade, on extraction-based methods. This progress

has been greatly accelerated by the rather spectacular

advances in shallow natural language processing, and

the use of machine learning methods which train

summarization systems from text corpora consisting

of source documents and their summaries. In the fol-

lowing sections, a brief introduction of different kinds

of text summarization will be introduced, which is

followed by an overview of the existing algorithms.

Foundations
Text summarization can be categorized along two

different dimensions: abstract-based and extract-

based. An extract-summary consists of sentences

extracted from the document while an abstract-sum-

mary may employ words and phrases that do not

appear in the original document but that are seman-

tically meaningful [9]. The summarization task can

also be categorized as either generic or query-orient-

ed. A query-oriented summary presents the informa-

tion that is most relevant to the given queries, while a

generic summary gives an overall sense of the docu-

ments content [4]. In addition to single document

summarization, which has been first studied in this

field for years, researchers have started to work on

multi-document summarization whose goal is to gen-

erate a summary from multiple documents that cover

related information.

Most current text summarizers are extractive, since

extraction is widely used, such as the snippets generated

by search engines, while it is much easier than abstract-

ing. Therefore, this entry focuses on extraction. For

extractive summarizers (either for single-document

summarization or multi-document summarization),

they usually need to solve three problems: (i) Content

selection, that is what should be selected from the text to

form the summaries, which are most in the form of

sentences or phrases; (ii) Information ordering, that

is how to order the extracted sentences or phrases;

(iii) Sentence realization, that is what kind of clean up

to perform on the extracted sentences or phrases so

they form a coherent summary. It is clear that the first

problem is the critical one for extractive summarizers.
The algorithms for this problem can be categorized as

either unsupervised methods, or supervised methods.

Unsupervised methods do not need any training data

(pairs of a texts and the corresponding summaries).

They calculate the importance of a sentence by consider-

ing the position of the sentence, the contained terms

or phrases, the discourse centrality and so on. Supervised

methods rely on a set of training data, which designs

some features to capture the importance of sentences

and a model can be learned from the training data to

predict the importance of sentences. With this model,

the most important sentences can be selected to form a

summary.

Extractive Summarization Algorithms

Unsupervised Methods The simplest and straightfor-

ward way to select sentences is based on the sentences’

locations. Generally speaking, certain locations of the

text (titles, headings, the first sentence in each para-

graph, etc.) tend to contain important information.

Therefore, by simply taking sentences in these loca-

tions, a summary can be constructed, which forms a

strong baseline, even better than other methods [2].

Besides locations of sentences, the importance of a

sentence is indicated by cue phrases. For example, once

a sentence contains the phrases like “To sum up,” “In

summary,” it ismore likely to be extracted as an summary

sentence. On the contrary, some other phrases like

“specifically,” “in details” indicate that the sentence

is not “abstract” enough to be a summary sentence.

In [15], Teufel and Moens manually built a list of

1,423 cure phrases in a genre of scientific texts and

each cue phrase has a (positive or negative) “goodness

score,” also assigned manually.

There are also some methods calculating the

importance of sentences based term importance and

the term importance can be estimated by its frequency.

The system of Luhn [8] is an typical example of this

kind. In Luhn’s method, every sentence is assigned

with a significance factor, and the sentences with the

highest significance factor are selected to form the

summary. In order to compute the significance factor

of a sentence, it is necessary to build a “significant

words pool” which is defined as those words whose

frequency is between high-frequency cutoff and low-

frequency cutoff that can be tuned to alter the char-

acteristics of the summarization system. After this is

done, the significant factor of a sentence can be

Text Summarization T 3081

T

computed in the following way: (i) set a limit L for the

distance at which any two significant words could be

considered as being significantly related. (ii) find out a

portion in the sentence that is bracketed by significant

words not more than L non-significant words apart.

(iii) count the number of significant words contained

in the portion and divide the square of this number

by the total number of words within the portion.

In the above mentioned unsupervised methods,

the sentences in a text are treated independently. In

the following part, several more unsupervised methods

are introduced, which exploit the relationship among

sentences to some extent. The first one, as presented

in [5], organizes the sentences in a text into a matrix

and then apply a technique named Latent Semantic

Analysis (LSA) [1] to derive the importance of sen-

tences. A brief overview of LSA can make it easier to

understand the LSA-based summarization method.

LSA is based on singular value decomposition (SVD),

a mathematical matrix decomposition technique that

is applicable to text corpora as known by people. Given

an m*n matrix A = [A1, A2,...,An], with each column

vector Ai representing the weighted term-frequency

vector of sentence i in the document under consider-

ation, the SVD is defined as:

A ¼ USVT

where U = [uij] is an m*n column-orthonormal

matrix whose columns are called left singular vectors;

S = diag (s1,s1,...,sn) is an n � n diagonal matrix

whose diagonal elements are non-negative singular

values sorted in descending order. V = [vij] is an

n � n othonormal matrix whose columns are called

right singular vectors.

As noted in [1], LSA is applicable in summariza-

tion for two reasons. First, LSA is capable of capturing

and modeling interrelationships among terms by

semantically clustering terms and sentences. Second,

LSA can capture the salient and recurring word com-

bination pattern in a document which describes a

certain topic or concept. In LSA, concepts are repre-

sented by one of the singular vectors where the magni-

tude of the corresponding singular value indicates the

importance of this pattern within the document. Any

sentence containing this word combination pattern

will be projected along this singular vector. The sen-

tence that best represents this pattern will have the

largest index value with this vector. Therefore, a
summary can be constructed by collecting the sen-

tences having largest index values over all concepts.

In [12], Mihalcea explicitly models the relationship

among sentences by building a graph. In the graph,

each node corresponds to a sentence and the weight

of the edge linking two nodes is the similarity between

the corresponding sentences. The direction of the edges

can be decided by the appearance order of the

sentences. After constructing the graph, Mihalcea

employed some graph-based ranking algorithms like

HITS and PageRank to decide the importance of a

vertex (sentence) which can take into account the

global information recursively computed from the en-

tire graph. Finally, the sentences with highest ranking

scores are selected to form a summary.

The third kind of summarization methods of

exploiting sentence relationship is based on coherence

relations. One example for the coherence relations is

RST (rhetorical structure theory) relations. The RST

relations are often expressed in terms of a satellite and

a nucleus and nucleus sentences are more likely to be

a summary sentence. More details of using RST for

summarization can be found in [11].
Supervised Methods In the above mentioned unsu-

pervised methods, each method estimates the impor-

tance of sentences based on some evidences from a

certain aspect and then generate summaries based on

the estimated importance. Therefore, a proper combina-

tion of these evidences may improve the generated sum-

maries. Some supervised machine learning methods

have been exploited for this goal. Among these methods,

most of them treat the summarization task as a two-

class classification problem at the sentence level, where

the summary sentences are positive samples while the

non-summary sentences are negative samples. After

representing each sentence by a vector of features, a

classification function such as Naive Bayes and Support

Vector Machine can be trained [6]. Then for a new text,

the trained classification function can be applied on each

sentence in the text and decide whether it is a summary

sentence. Although such methods are effective in most

cases, they assume that the sentences are independent

and classify each sentence individually without lever-

aging the relation among the sentences.

In order to address this shortcoming, some meth-

ods based on Hidden Markov Model (HMM) are

exploited [3]. In Conroy et al.’s work [3], there are

3082T Text Summarization
two kinds of states, where one kind corresponds

to the summary states and the other corresponds to

non-summary states. The observations are sentences

that are represented by a vector of three features. Given

the training data, the state-transition probabilities and

the state-specific observation probabilities can be esti-

mated by the Baum-Welch algorithm or an EM algo-

rithm. Given a new document, the probability that a

sentence corresponds to a summary state can be calcu-

lated. Finally, the trained model can be used to select

the most likely summary sentences.

It is clear that such approaches can handle the posi-

tional dependence and feature dependence when the

feature space is small by taking some special assump-

tions. However, theHMMbasedmethods have two open

problems. Firstly, when the feature space is large and

the features are not independent or are even overlapping

in appearance, the training process will become intra-

ctable. Therefore this approach cannot fully exploit the

potential useful features for the summarization task due

to the computational inefficiency. Secondly, the HMM

based methods set the HMM parameters to maximize

the likelihood of the observation sequence. By doing so,

the approach fails to predict the sequence labels given the

observation sequences in many situations because they

inappropriately use a generative joint-model in order to

solve a discriminative conditional problem when obser-

vations are given. In [14], the authors use Conditional

Random Fields (CRF) to replace HMM for text summa-

rization which avoids these problems.

Evaluation

For extractive summarization methods, there are two

popular evaluation measurements. The first one is by

Precision, Recall and F1 which are widely used in

Information Retrieval. For each document, the manu-

ally extracted sentences are considered as the reference

summary (denoted by Sref). This approach compares

the candidate summary (denoted by Scand) with the

reference summary and computes the precision, recall

and F1 values as shown in the following equation:

p ¼ jSref
T
Scand j

Scand
r ¼ jSref

T
Scand j

Sref
F1 ¼

2pr

p þ r

A second evaluation method is by the ROUGE toolkit,

which is based on N-gram statistics [7]. This tool is

adopted by DUC for automatic summarization evalu-

ation that was found to highly correlate with human

evaluations.
Key Applications
Text summarization has been applied inmany fields. For

example, the snippets generated by search engines such

as Google, Live Search are successful examples. Another

example is to generate summaries for hand-held devices,

whose screens are usually small [10]. Besides these, text

summarization has also been used as a preprocessing

step for some text mining tasks such as Web-page clas-

sification, which is expected to catch themain content of

the Web pages while removing the noises [13].
Data Sets
Document Understanding Conferences (2001–2007)

provide an open data source for different kinds of

summarization tasks: http://duc.nist.gov/. More useful

URLs are at http://www.summarization.com/.
Cross-references
▶Text Mining

▶Text Generation

▶Text Classification

▶ Summarization

▶Topic Detection and Tracking
Recommended Reading
1. Berry M.W., Dumais S.T., and O’Brien G.W. Using linear

algebra for intelligent information retrieval. SIAM Rev., 37(4):

573–595, 1995.

2. Brandowa R., Mitzeb K., and Rauc L.F. Automatic condensation

of electronic publications by sentence selection. Inform. Process.

Manage., 41(6):675–685, 1995.

3. Conroy J.M. and O’leary D.P. Text summarization via hidden

markov models. In Proc. 24th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2001,

pp. 406–407.

4. Goldstein J., Kantrowitz M., Mittal V., and Carbonell J.

Summarizing text documents: sentence selection and evaluation

metrics. In Proc. 22nd Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1999,

pp. 121–128.

5. Gong Y. and Liu X. Generic text summarization using relevance

measure and latent semantic analysis. In Proc. 24th Annual Int.

ACM SIGIR Conf. on Research and Development in Informa-

tion Retrieval, 2001, pp. 19–25.

6. Kupiec J., Pedersen J., and Chen F. A trainable document

summarizer. In Proc. 18th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1995,

pp. 68–73.

7. Lin C.-Y. and Hovy E. Automatic evaluation of summaries using

n-gram co-occurrence statistics. In Proc. Human Lang. Tech.

Conf. of the North American Chapter of Assoc. Comput. Lin-

guistics, 2003, pp. 71–78.

Text Visualization T 3083
8. Luhn H.P. The automatic creation of literature abstracts. IBM J.

Res. Dev., 2(2), 1958.

9. Mani I. Advances in Automatic Text Summarization. MIT,

Cambridge, MA, USA, 1999.

10. Mani I. Recent developments in text summarization. In Proc.

10th Int. Conf. on Information and Knowledge Management,

2001, pp. 529–531.

11. Marcu D. From discourse structures to text summaries. In Proc.

ACL Workshop on Intelligent Scalable Text Summarization,

1997, pp. 82–88.

12. Mihalcea R. Language independent extractive summarization.

In Proc. 20th National Conf. on AI and 17th Innovative Appli-

cations of AI Conf., 2005, pp. 1688–1689.

13. Shen D., Chen Z., Yang Q., Zeng H.-J., Zhang B., Lu Y., and

Ma W.-Y. Web-page classification through summarization. In

Proc. 30th Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2004, pp. 242–249.

14. Shen D., Sun J.-T., Li H., Yang Q., and Chen Z. Document

summarization using conditional random fields. In Proc. 20th

Int. Joint Conf. on AI, 2007, pp. 2862–2867.

15. Teufel S. and Moens M. Sentence extraction as a classification

task. In Proc. ACLWorkshop on Intelligent Text Summarization.

1997, pp. 58–65.
T

Text Visualization

HAODA HUANG, BENYU ZHANG

Microsoft Research Asia, Beijing, China

Synonyms
Document visualization

Definition
Text visualization is a subarea of information visuali-

zation. The definition of information visualization is as

follows: The use of computer-supported, interactive,

visual representations of abstract data to amplify cog-

nition [2]. Thus, the definition of text visualization is

analogous: The use of computer-supported, interac-

tive, visual representations of abstract text to amplify

cognition. A more comprehensive and user-friendly

definition is similar: The visual representation of text

and its relationships.

Historical Background
In the early years, information such as texts and pic-

tures were organized linearly: they were put in order

and searched from beginning to end. But this is obvi-

ously not the most efficient way to organize informa-

tion. It is well known that “A picture is worth a
thousand words.” People like to see news along with

pictures, music, and even videos, rather than see purely

raw text. Various technologies are also developed to

help people graphically and visually represent their

ideas, problems, challenges, solutions, and results.

Today, information is not only presented one-dimen-

sionally as in previous centuries, but also presented

in two and more dimensions to help people under-

stand the underlying idea clearly and thoroughly.

Putting the right data in the right location and right

format will greatly facilitate people seeking and under-

standing the information.

The history of text visualization is not very long.

It started in the 1980s, when bandwidth and storage

was very expensive. At that time, it was a luxury to

play with advanced and real-time interactive graphics

and visual effects. But with the rapid developments

during the past several years, the standard PC platform

provides high performance for processing videos

and graphics and can present many advanced visual

effects to users now. The 3D graphic interface has

gradually dominated the gaming area, and 2D and

3D information visualization will become the main-

stream of search engine retrieval and many other

services.

Today, people are not satisfied with simply interact-

ing with information in one dimension. Instead, they

are more willing to search and manipulate their ideas

and contents in multiple dimensions. This is becoming

the main trend today and is also presenting a great

challenge to traditional information organizations,

such as libraries and museums. They are required to

develop advanced 2D and 3D text visualization technol-

ogies to maintain their market share.

Foundations
Text visualization is about representing the underlying

structure of a text or a group of texts. Text visualization

offers several benefits for users. With text visualization,

for example, users could have a view of texts in differ-

ent levels of abstraction, could have a better view of the

relationships between texts, and could have a high-

level view of the topics in the text collection.

Generally, the ideas of many text visualization algo-

rithms are borrowed from data analysis research areas

while accounting for the specific properties of texts.

These properties include the following [6,8]: “(i) High

data dimensionality when using typical bag-of-words

representation, where each word and each phrase

3084T Text Visualization
represents on dimension in the data space. (ii) High

redundancy, meaning that many dimensions can be

easily merged into one dimension without losing

much information. This is caused by the two proper-

ties of words, namely synonymy (different surface

word forms having the same meaning – e.g., singer,

vocalist) and hyponymy (one word denotes a subclass

of an another – e.g., breakfast, is a subclass of a meal).

(iii) Ambiguity between words in the cases where

the same surface form of the word has different mean-

ings (homonomy – e.g., the word “bank” can mean

“river bank” or “financial institution”) or in the cases

where the same form has related meaning (polysemy –

e.g., “bank” can mean “blood bank” or “financial

institution”). (iv) Frequency of words (and phrases)

follows power distribution. Appropriate weighting

schemas (e.g., most popular being TFIDF) are used

to normalize importance of the words to be able to

work with the standard data analytic techniques.”

Meanwhile, there are many types of texts, such as

web documents, emails and news group postings, lit-

erature, and legal documents. In developing a text

visualization algorithm or a system for a special type

of text, the properties of the type of text also needs to

be considered. For example, to visualize news articles,

[8] have considered the following properties in their

approach: (i) shorter documents; (ii) written by pro-

fessionals; (iii) low number of mistakes; (iv) having

good rhetorical structure; (v) rich information about

people, companies, or phrase; and (vi) single docu-

ments as pieces of larger stories spanning over several

documents.

Many text visualization algorithms adopt bag-of-

words text representation, where text is viewed as a bin

of independent words with term dependencies and

with any other positional information of terms ig-

nored. This simplification appears to be reasonable,

since in many cases the efficiency of solving relevant

problems does not degrade much. In the bag-of-words

representation, each word is represented as a separate

variable with a numeric weight. This numeric weight is

often calculated using the famous TFIDF weighting

schema: the weight is the multiply of term frequency

and the inverse document frequency. The idea of TFIDF

is very intuitive: if the word appears more times in a

text, it would be more important; and if the word

appears in fewer texts in the text corpus, it would be

more important. In the bag-of-words representation, a
text is represented as high-dimensional sparse vector, so

it cannot be directly visualized. A clustering algorithm

needs to be applied to indentify the relationships be-

tween texts and then to map them into 2D or 3D space.

The cosine similarity measure is widely used to evaluate

relationship between texts. There are also some other

typical ways of text visualization using graphs or trees to

present frequent co-occurrences of words and phrases.

Typical visualization algorithms include graph based

visualization and tiling based visualization as intro-

duced in [4]:

Graph-based visualization has the following algo-

rithm sketch: (i) First, documents are transformed into

the bag-of-words sparse-vectors representation. Words

in the vectors are weighted using TFIDF. (ii) Then,

K-Means clustering algorithm is used to split the docu-

ments into K groups. Each group consists of similar

documents and these are compared using cosine simi-

larity. The K groups form a graph with groups

corresponding to graph nodes and similar groups linked.

Each group is represented by characteristic keywords.

(iii) Finally, simulated annealing is used to draw a graph.

Tiling-based visualization has the following algo-

rithm sketch: (i) First, documents are transformed into

the bag-of-words sparse-vectors representation. Words

in the vectors are weighted using TFIDF. (ii) Then,

hierarchical top-down two-wise K-Means clustering

algorithm is used to build a hierarchy of clusters. The

hierarchy is an artificial equivalent of hierarchical sub-

ject index just like Yahoo. (iii) Finally, the leaf nodes of

the hierarchy (bottom level) are used to visualize the

documents. Each leaf is represented by characteristic

keywords and each hierarchical splits the rectangular

area into two sub-areas recursively.

Key Applications
WebSom [7] gives self-organizing Maps for Internet

Exploration. An ordered map of the information space

is provided: similar documents lie near each other

on the map. The algorithm automatically organizes

the documents onto a two-dimensional grid so that

related documents appear close to each other.

ThemeScape [3] graphically displays images based

on word similarities and themes in text. Themes within

the document spaces appear on the computer screen as

a relief map of natural terrain. The mountains indicate

where themes are dominant, valleys indicate weak

themes. Themes close in content will be close visually

TF*IDF T 3085

T

based on the many relationships within the text spaces.

The algorithm is based on K-means clustering.

ThemeRiver [5] helps users identify time-related

patterns, trends, and relationships across a large collec-

tion of documents. The themes in the collection are

represented by a “river” that flows left to right through

time. The theme currents narrow or widen to indicate

changes in individual theme strength at any point

in time.

The text representation is the fundamental work

for IR and text mining. Besides IR, it can also be used

for text categorization, text clustering, topic detection

and novelty detection etc.

Future Directions
Although there have been many text visualization sys-

tems that have achieved much success in the past, there

still exists many ways to improve them. One is to use

natural language processing tools to do more detailed

analysis or to improve the text summarization. Another

may be to design more and better interaction tools for

users to manipulate the texts. Advanced 2D and 3D

graphics techniques may also be used to make the user

interfaces friendlier.

Cross-references
▶Data Mining

▶ Information Retrieval

▶Text Segmentation

Recommended Reading
1. Baeza-Yates R. and Ribeiro-Neto B. Modern Information

Retrieval. ACM Press, NewYork, NY, 1999.

2. Card S., Mackinlay J., and Shneiderman B. Readings in Infor-

mation Visualization: Using Vision to Think. Academic Press,

1997.

3. Cartia. ThemeScape Product Suite. Available at: http://www.

cartia.com/products/index.html

4. Grobelnik M. Text Visualization Tutorial.

5. Havre S., Hetzler E., Whitney P., and Nowell L. ThemeRiver:

Visualizing thematic changes in large document collections.

IEEE Trans. Vis. Comput. Graph., 8(1):9–20, 2002.

6. Jurafsky D. andMartin J.H. Speech and Language Processing: An

Introduction to Natural Language Processing, Computational

Linguistics and Speech Recognition. Prentice Hall, 2000.

7. Lagus K., Kaski S., and Kohonen T. Mining massive docu-

ment collections by the WEBSOM method. Inf. Sci., 163

(1–3):135–156, 2004.

8. Marko G. and Dunja M. Visualization of news articles. In

SIKDD 2004 at Multiconference IS. Ljubljana, Slovenia, 2004,

pp. 12–15.
Text/Document Summarization

▶ Summarization
Text-based Image Retrieval

▶Annotation-based Image Retrieval
TF*IDF

IBRAHIM ABU EL-KHAIR

Minia University, Minia, Egypt

Synonyms
Term frequency by inverse document frequency

Definition
A weighting function that depends on the term fre-

quency (TF) in a given document calculated with

its relative collection frequency (IDF). This weighting

function is calculated as follows [1] Assuming that term

j occurs in at least one document d (dj ≠ 0), the inverse

document frequency (idf) would be

Log2 N
	
dj

 �
þ 1 ¼ log2 N� log2dj

The ratio dj/N is the fraction of documents in the

collection that contain the term. The term frequency-

inverse document frequency weight (TF*IDF) of term j

in document i is defined by multiplying the term

frequency by the inverse document frequency:

Wij ¼ f ij*½log2 N� log2dj �
Where

N: number of documents in the collection

dj: number of documents containing term j

fij: frequency of term j in document i

Wij: is the weight of term j in document i

The use of the logarithm in the formula rather than

the actual values of N and Dk moderates the effect of

increasing the collection size and the effect of a high

term frequency.

3086T tgd
Key Points
The significance of a certain term in a given docu-

ment is determined using the term frequency (TF) of

that term in the document. Unfortunately, while term

frequency is a good measure for term significance in

one document, it is not an adequate measure for its

significance in a collection of documents. The use of

this factor alone in calculating the term weights in a

collection of documents does not guarantee adequate

retrieval performance. Some high frequency terms

are not concentrated in a few particular documents,

they are common in the whole collection which

means that all these documents will be retrieved,

affecting the performance of the information retrieval

system.

The solution for this problem [4] is correlating the

term frequency with its relative collection frequency

(IDF), making the collection frequency a variable in

retrieval. The use of collection frequency places a great-

er emphasis on the value of a term as a means of

distinguishing one document from another than its

value as an indication of the content of the document

itself. Combining the two factors, TF and IDF enables

the information retrieval system to exploit the good

features of both. TF emphasizes term significance in a

given document, and IDF emphasizes term signifi-

cance in the collection as a whole; i.e., if the term was

common in a document and rare in the collection

it would be heavily weighted in both schemes. This

way a term can distinguish certain documents from

the remainder of the collection.

Even though this weighting function is a good

indication of the term importance in a given set of

documents it overlooks an important factor which is

the document length. This problem may affect the

weighting process because in real life documents have

different lengths, and longer documents may have

higher frequencies for a given term because it is repeat-

ed several times in the document. This increases the

weight of the term and increases the possibility of

retrieving these documents because of the higher

weight of terms in them. Long documents also may

have more different terms them which may affect the

retrieval as well. More terms in a given document

increases the possibility of matching between this doc-

ument and multiple queries [3]. A possible way to

overcome this problem is to incorporate a normaliza-

tion factor for the document length to reduce its effect
and make the weighting function more effective. A

number of variant formulae for tf*idf weighting are

given in [2].
Cross-references
▶BM25

▶ Information Retrieval

▶Term Weighting

▶Text Indexing Techniques
Recommended Reading
1. Korfhage R.R. Information Storage and Retrieval. Wiley,

New York, USA, 1997.

2. Manning C.D., Raghavan P., and Schütze H. Introduction to

Information Retrieval. Cambridge University Press, Cambridge,

UK, 2008.

3. Salton G. and Buckley C. Term-weighting approaches in auto-

matic text retrieval. Inf. Process. Manage., 24(4):513–523, 1988.

4. Sparck J.K. A statistical interpretation of term specify and its

application in retrieval. J. Doc., 28:11–20, 1972.
tgd

▶Tuple-Generating Dependencies
Thematic Map

HANS HINTERBERGER

ETH Zurich, Zurich, Switzerland

Synonyms
Thematic map; Data map; Chart

Definition
The graphical representation of quantitative data

or qualitative data for a given geographic area (e.g.,

regional unemployment rate or type of crops grown).

The many different methods that cartographers

apply to create thematic maps are used to define a

thematic map more precisely. The following five are

found most often.

1. Coropleth maps. In coropleth maps the areas of

the map are shaded or patterned in proportion

Third Normal Form T 3087
to the value of the data to be displayed for a

particular area.

2. Dot maps. These maps use equal sized dots to show

the presence of a feature at a particular geographic

location and thus display spatial distributions.

A dot need not be restricted to a single occurrence;

it may indicate any number of entities.

3. Proportional symbol maps. When drawing propor-

tional symbol maps, a cartographer selects a sym-

bol (e.g., a circle or a bar), places it at the spot on

the map to which the data apply and varies the

symbol’s size from place to place in proportion

to the value of the variable that the symbol

represents.

4. Isarithmic maps. These maps use contour lines to

join points of equal value. Examples are barometric

pressure lines in weather maps or elevation above

sea level in topographic maps.

5. Dasymetric maps. These maps divide a geographic

region with contour lines and shade or pattern the

resulting regions in proportion to the value that

applies to the region bounded by a contour line.

Topographic maps that provide reference to geographic

features (political boundaries, roads, lakes, mountains)

are generally not categorized as thematic maps.
T

Key Points
History. Edmund Halley (famous for discovering the

comet bearing his name) is recognized as the author of

the first thematic map. Drawn in 1686, it shows the

direction of trade winds on a world map. Probably the

best known example of using thematic maps for data

analysis is John Snow’s cholera map of 1855, a data

display based on principles still applied in today’s

geographic information systems. These and more

historical notes are summarized in [3]).

Usage. Thematic maps display the spatial distribu-

tion of data for a specific subject or a specific purpose.

They represent information about particular locations

in such a way that spatial patterns emerge. Frequently

thematic maps are used to compare patterns on two or

more maps. Examples are election results, occurrence

of particular types of diseases, usage of agricultural

land, climatic change over time and so on. Major

contributions to thematic mapping come from the

French cartographer Jacques Bertin ([1]). A more

modern treatment of the topic can be found in [2].
Cross-references
▶Data Visualization

▶Chart
Recommended Reading
1. Bertin J. Graphics and Graphic Information-Processing. Walter

de Gruyter, Berlin, New York, 1981.

2. Slocum T.A., McMaster R.B., Kessler F.C., and Howard H.H.,

Thematic Cartography and Geographic Visualization, 2nd edn.

Pearson-Prentice Hall, Upper Saddle River, NJ, 2005.

3. Tufte E.R., The Visual Display of Quantitative Information.

Graphics Press, Cheshire, CT, 1983.
Theme Algebra

▶ Spatial Operations and Map Operations
Thesauri Business Catalogues

▶ Lightweight Ontologies
Thiessen Polygons

▶Voronoi Diagram
Third Normal Form

MARCELO ARENAS

Pontifical Catholic University of Chile, Santiago, Chile

Definition
Let R(A1,...,An) be a relation schema and S a set of

functional dependencies over R(A1,...,An). An attri-

bute Ai (i 2{1,...,n}) is a prime attribute if Ai is an

element of some key of R(A1,...,An). Then specifica-

tion (R, S) is said to be in Third Normal Form (3NF) if

3088T Thread Lifecycle
for every nontrivial functional dependency X ! A

implied by S, it holds that X is a superkey for R or A

is a prime attribute [2].

Key Points
In order to avoid update anomalies in database

schemas containing functional dependencies, 3NF

was introduced by Codd in [2]. This normal form is

defined in terms of the notions of prime attribute and

key as shown above. For example, given a relation

schema R(A, B, C) and a set of functional dependencies

S = {AB! C,C! B}, it holds that (R(A, B, C), S) is in
3NF since AB is a superkey and C is a prime attribute

(given that AC is a key for R). On the other hand,

(S(A, B, C), G) is not in 3NF if G = {A ! B}, since

A is not a superkey for S and B is not a prime attribute.

For every normal form two problems have to be

addressed: how to decide whether a schema is in that

normal form, and how to transform a schema into an

equivalent one in that normal form. On the positive

side, for every relation schema S there exists a database

schema S 0 such that, S 0 is in 3NF and S 0 is a lossless and

dependency preserving decomposition of S. Further-

more, schema S 0 can be generated efficiently by using

the synthesis approach proposed in [1]. On the nega-

tive side, it is expensive to check whether a schema is in

3NF. It was shown by Jou and Fischer that this problem

is NP-complete [3].

Cross-references
▶Boyce-Codd Normal Form

▶ Fourth Normal Form

▶Normal Forms and Normalization

▶ Second Normal Form (2NF)

Recommended Reading
1. Biskup J., Dayal U., and Bernstein P. Synthesizing independent

database schemas. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 1979, pp. 143–151.

2. Codd E.F. Further normalization of the data base relational

model. In Proc. Data Base Systems. Prentice-Hall, Englewood

Cliffs, NJ, USA, 1972, pp. 33–64.

3. Jou J. and Fischer P. The complexity of recognizing 3NF relation

schemes. Inf. Process. Lett., 14(4):187–190, 1982.
Thread Lifecycle

▶ Process Life Cycle
Three-Dimensional GIS and
Geological Applications

MARTIN BREUNIG

University of Osnabrueck, Osnabrueck, Germany

Synonyms
Spatial information system; Geoscientific information

system
Definition
An information system for the in-/output, modeling,

management, processing, analyzing and visualization

of geoscientific data including geo-referenced three-

dimensional geometric, topological and attribute data.

The three-dimensional geometric data may consist of

points/vertices (x,y,z-coordinates), curves, surfaces and

polyhedra, respectively. The topological data may con-

sist of nodes, edges, faces and solids, respectively. Typical

attribute data are descriptions of geological strata, i.e.,

properties of strata such as “geological age,” “soil type,”

“main components of the stratum” etc.

The implementation of a three-dimensional GIS

provides data types, spatial access structures includ-

ing geometric/topological algorithms and a spat-

ial or visual query language for the modeling,

management and analysis of geo-referenced three-

dimensional data.
Historical Background
Three-dimensional GIS have two roots in the history

of information systems. The first has its origin in the

field of 3D modeling and visualization. 3D modeling

and visualization systems usually provide a large col-

lection of geometric and topological 3D algorithms.

An example is the Discrete Smooth Interpolation

(D.S.I.) algorithm of Jean-Laurent Mallet and others

[12,13] used for creating and editing triangulated

surfaces. Given an arbitrary mesh with an arbitrary

set of vertices fixed by the user, D.S.I. assigns coordi-

nates to the other nodes of the mesh, enabling the

fixed vertices to be interpolated smoothly [12]. The

second root has its origin in the field of Geographical

Information Systems (GIS). GIS are inherently using

both, spatial and attribute data, in their data manage-

ment. However, standard Geographical Information

Systems usually are not prepared to manage and

Three-Dimensional GIS and Geological Applications T 3089

T

process real 3D data. They only allow the visualization

of 2.5D data representation such as digital elevation

models. However, in this representation every (x,y)-

coordinate may only have one z-coordinate. That is

why Geographical Information Systems cannot be used

to solve 3D geological problems. In particular, polyhe-

dra and solids cannot be treated in Geographical

Information Systems. In today’s Geographical Infor-

mation Systems, the third dimension is only treated as

a thematic attribute such as the height value of an

isoline map.

Relevant work in the field of three-dimensional GIS

has been published by [2,5–7, 13,16,18,–20,22], and by

other authors. For example, theoretical work on three-

dimensional GIS and topological data models has been

worked out by [15]. Literature about spatial database

systems can be found in [8]. Spatial database systems

can be extended for the management of three-

dimensional GIS data. For example, an R-Tree can be

used to access 3D data.

The term “three-dimensional GIS” (3D GIS) is not

yet used in a standardized way. Unfortunately, the term

“3D GIS” or “3D city model” is often used for infor-

mation systems that only deal with surface and face

data, but not with polyhedra and solids. Correctly,

such information systems should be called “2.5D

GIS,” because they only allow to represent surfaces

with the following property, valid for all of their points

P(x, y, z): z = f (x, y). i.e., every point (x, y) of the

surface has a different z-value.

First standardization efforts for the exchange of

data between 3D GIS have been undertaken by the

Open Geospatial Consortium [14] within the Geogra-

phy Markup Language (GML).

Foundations
Spatial planning processes and the study of geoscientific

processes often require three-dimensional information.

This digital information must be modeled, managed,

visualized and analyzed. A three-dimensional GIS is an

information system that accomplishes these require-

ments. To work adequately, it needs 3D data types, 3D

spatial access structures, and 3D geometric and topolog-

ical algorithms tomanage and process three-dimension-

al data of these applications. Furthermore, a user

interface with a query language is required. A spatial

database system may be embedded into a 3D GIS to

support these requirements.
In a 3D GIS, objects of different dimension d

(0 � d � 3) have to be processed. The 3D geometry

of a geological object can be composed of sets of

points, lines, surfaces and volumes, respectively. As a

reference model for 3D geometric data types in three-

dimensional GIS, Simplicial Complexes may be used:

points, polylines, triangle nets and tetrahedron nets in

three-dimensional space. They are often used in geo-

logical applications, because they well approximate 3D

solids and surfaces formed by nature.

In a 3D topology model of a 3D GIS, the compo-

nents of the objects are interpreted as a mesh of nodes,

edges, faces, and solids that describes both the inter-

ior structure of the geological objects and their mut-

ual neighborhood relationships in 3D space. As a

reference model for 3D topological data types in

three-dimensional GIS, cellular complexes [4,13] and

Generalized Maps [10,11,13] respectively, may be used.

They provide a general topological model treating 2D,

2.5D and 3D objects in a uniform way. Furthermore,

they are based on the clear mathematical theory of

algebraic topology.

To access 3D data, existing spatial access structures

such as the R-Tree [9] or R*-Tree [3] may be applied.

The spatial access structures can also be used internally

within the processing of geometric 3D algorithms

as a first filter step to compute on approximated

geometries – 3D boxes are used most – to achieve

better performance, for example to support the inter-

section of very large geometries such as sets of tetra-

hedron nets. For the analysis of 3D data, 3D GIS are

using geometric and topological algorithms, e.g., for

computing the distance between two objects, the inter-

section between two polyhedra, or the neighbor objects

of a given geological object.

Three-dimensional GIS are subject of current

research [1,21]. Concepts and prototypical software

considering aspects of three-dimensional GIS such as

architectural issues, spatial data modeling with con-

straints, efficient spatial data access and geological

applications have been described in detail by many

authors of the GIS and database communities (see

Recommended Reading). First 3D GIS prototype sys-

tems are already used in some application domains of

three-dimensional GIS such as geology, geophysics,

archaeology, and early diagnosis of natural disasters.

Also database vendors are integrating first simple 3D

data types and operations in their products.

3090T Three-Dimensional GIS and Geological Applications
Key Applications
One of the most relevant applications of three-

dimensional GIS is geology. In geology, the starting

point of the examinations is the present condition

of the earth’s structure. Hence the three-dimensional

geometric analysis of recent geological strata and solids

is the key for further investigations concerning the

interaction of former geological structures and pro-

cesses [19]. Furthermore, consistent geometric 3D

models and the use of GIS are the precondition for

the production of digital geological maps. For exam-

ple, the 3D models can be intersected with digital

elevation models to improve maps or to define bound-

ary conditions for 3D models. The computational ex-

pense of GIS, however, is high, because the third

dimension is included.

Some of the relevant data in geological applications

are sections, stratigraphic boundaries, and faults. Sec-

tions describe a mostly vertical intersection through

the geological structure of an examination area, i.e., an

estimation of the geological surfaces and solids includ-

ing geological faults. A cross section through the series

of sediments consists of a set of stratigraphic lines.

Their geometry is mostly given by a point set in

three-dimensional space.

The geometry of stratigraphic boundaries is based

on stratigraphic lines in the sections where the stratum
Three-Dimensional GIS and Geological Applications. Figure

Rhine Basin, managed by a three-dimensional GIS (figure con

with the GOCAD Software, Nancy, now distributed by Paradig
occurs. The stratigraphic surfaces are spread between

the cross sections. Triangle nets in three-dimensional

space can result from the triangulation of the surfaces

between the point sets of the cross sections. Con-

cerning topology, on each cross section the underlying

and hanging stratum of each stratigraphic line can be

identified.

Faults are modeled as surfaces, along which

the tectonic deformation of the sediments took

place. Usually the geometry of a fault consists of a

triangle net in three-dimensional space. The modeling

of strata and faults from cross section to cross section

is an interpolation of new geometries from the

sections.

Figure 1 shows an example of geological data

managed by a three-dimensional GIS. During the

modeling process of geologically defined geometries,

a large amount of data are accumulated. Thus the

handling of three-dimensional data in a spatial data-

base system [8] is recommended for 3D GIS. for

example, the efficient spatial access on a large set of

geological objects is necessary to compute intersec-

tions between single strata and faults with different

thematic attributes, respectively. Therefore, the imple-

mentation of efficient three-dimensional geometric

algorithms has to be provided by the three-dimension-

al GIS. Checking the consistency of geometric
1. Example of geological data in the Lower

structed in the group of Agemar Siehl, University of Bonn,

m, UK).

Three-Phase Commit T 3091
3D models is essential for the geometric 3D recon-

struction of geological structures and geological

processes [19].
Cross-references
▶Digital Elevation Models

▶Geography Markup Language

▶ Simplicial Complex

▶ Spatial Network Databases
T

Recommended Reading
1. Abdul-Rahman A., Zlatanova S., and Coors V. (eds.). Innova-

tions in 3D Geoinformation Systems, Lecture Notes in Geoin-

formation and Cartography, Springer, Heidelberg, 2006.

2. Balovnev O., Bode T., Breunig M., Cremers A.B., Müller W.,

Pogodaev G., Shumilov S., Siebeck J., Siehl A., and Thomsen A.

The story of the GeoToolKit – an object-oriented geodatabase

kernel system. Geoinformatica, 8(1):5–47, 2004.

3. Beckmann N., Kriegel H.-P., Schneider R., and Seeger B. The R*-

tree: an efficient and robust access method for points and rec-

tangles. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1990, pp. 322–331.

4. Brisson E. Representing geometric structures in d dimensions:

topology and order. In Proc. 5th Annual Symp. on Computa-

tional Geometry, 1989, pp. 218–227.

5. Coors V. and Zipf A (eds.). 3D-Geoinformationssysteme, Grun-

dlagen und Anwendungen. Wichmann – Hüthig, Heidelberg,

2004.

6. GOCAD. http://www.gocad.org.

7. Götze H.J. and Lahmeyer B. Application of three-dimensional

interactive modelling in gravity and magnetics. Geophysics,

53(8), 1988, pp. 1096–1108.

8. Güting R.H. Anintroductiontospatialdatabasesystems.VLDBJ.,

3(4):357–399, 1994.

9. Guttman A. R-Trees: a dynamic index structure for spatial

searching. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1984, pp. 47–57.

10. Lienhardt P. Subdivision of n-dimensional spaces and

n-dimensional generalized maps. In Proc. 5th Annual Symp.

on Computational Geometry, 1989, pp. 228–236.

11. Lienhardt P. N-dimensional generalized combinatorial maps

and cellular quasi-manifolds. J. Comp. Geom. App., 4(3):

275–324, 1994.

12. Lévy B. and Mallet J.-L. Discrete Smooth Interpolation: Con-

strained Discrete Fairing for Arbitrary Meshes, ISA-GOCAD

(Inria Lorraine/CNRS), ENSG, Vandoeuvre Nancy, http://www.

earthdecision.com/news/white_papers/DSI.pdf.

13. Mallet J.L. Geomodelling. Oxford University Press, New York,

NY, 2002.

14. OGC. http://www.opengeospatial.org.

15. Pigot S. A topological model for a 3D spatial information sys-

tem. In Proc. 5th Int. Symp. on Spatial Data Handling, 1992,

pp. 344–360.

16. Raper J. (Ed.). Three dimensional applications in geographical

information systems. Taylor & Francis, London, 1989.
17. Samet H. The design and analysis of spatial data structures,

Addison-Wesley, Reading, 1990.

18. Schaeben H., Apel M., v.d. Boogart G., Kroner U. GIS 2D, 3D,

4D, nD. Informatik-Spektrum, 26(3), 2003, pp. 173–179.

19. Siehl A. Construction of geological maps based on digital spatial

models. Geol. Jb. A., 104:253–261, 1988.

20. Turner A.K. (ed.) Three-dimensional modeling with geoscienti-

fic information systems, Kluwer Academic, Dordrecht, 1991.

21. van Oosterom P., Zlatanova S., Penninga F., and Fendel E. (eds.)

Advances in 3D geoinformation systems, Lecture Notes in

Geoinformation and Cartography. Springer, Heidelberg, 2007.

22. Vinken R. Digital geoscientific maps – a research project of

the DFG. In Proc. Int. Colloquium at Dinkelsbühl, Geolog.

Jahrbuch A104, 1988, pp. 7–20.
Three-Dimensional Similarity Search

▶ Feature-Based 3D Object Retrieval
Three-Phase Commit

YOUSEF J. AL-HOUMAILY
1, GEORGE SAMARAS

2

1Institute of Public Administration, Riyadh,

Saudi Arabia
2University of Cyprus, Nicosia, Cyprus

Definition
Three-phase commit (3PC) is a synchronization pro-

tocol that ensures global atomicity of distributed trans-

actions while alleviating the blocking aspect of 2PC

(Two-Phase Commit) in the events of site failures.

That is, 3PC never requires operational sites to wait

(i.e., block) until a failed site has recovered.

Historical Background
3PC was one of the first attempts to resolve the blocking

aspects of 2PC [6]. The main purpose of the protocol is

to allow operational sites to continue transaction pro-

cessing and reach agreement about the final status of

transactions in spite of the presence of site failures. 3PC

can tolerate any number of site failures (except for total

sites’ failures), assuming a highly reliable network (i.e., a

network that never causes operational sites to be parti-

tioned into more than one set of communicating sites,

implying a network that never fails).

3092T Three-Phase Commit
Foundations
In 2PC, a participant is blocked if it fails to communi-

cate with the coordinator of a transaction while in a

prepared-to-commit state. Blocking means that the

participant cannot determine the final status of the

transaction in the presence of a failure, rendering all

resources held by the prepared-to-commit transaction

at its site unusable by any other transaction until the

final status of the transaction is resolved, i.e., the

transaction is either committed or aborted. Blocking

is inevitable in 2PC and it may occur either because of

(i) a communication (link) failure or (ii) a coordina-

tor’s system crash. These two types of failures lead

to blocking, in 2PC, even under the assumption that

all participants remain operational and can communi-

cate collaboratively to resolve the status of the

prepared-to-commit transaction. For example, if a co-

ordinator fails after all participating sites in a transac-

tion’s execution have entered their prepared-to-

commit states; the participants (collectively) can nei-

ther commit nor abort the transaction. This is because

the operational participants cannot be sure whether

the coordinator had received all their votes and made

a commit final decision just before it failed or it had

received only some votes and did not have the chance

to make the final decision before its failure and the

transaction will be aborted by the coordinator when it
Three-Phase Commit. Figure 1. The three-phase commit pr
recovers. Thus, the participants are blocked until the

coordinator recovers.

The negative impact of blocking on the (i) overall

system performance and (ii) availability of critical data

on other transactions motivated the design of non-

blocking atomic commit protocols (ACPs). In 3PC, an

extra (buffering) phase is inserted between the two

phases of 2PC to capture all the participants’ inten-

tions to commit, as shown in Fig. 1.

Dynamics of Three-Phase Commit

The basic idea behind the insertion of the buffering

phase is to place the two (possible) reachable final

states (i.e., the commit and the abort states) for a trans-

action apart from each other such that they cannot be

reached from the same state. That is, if a final state can

be reached from the current state of a site, then, the

reachable final state can be either the commit or the

abort state but not both. In 2PC, when a participant is

in a prepared-to-commit state, both final states can be

reached. Hence, if the coordinator fails, the participant

cannot determine the final state for the transaction

without any possible conflict in its decision with the

coordinator. For this reason, the protocol is blocking.

On the contrary and as shown in Fig. 1, the commit

final state for a site (whether it is the coordinator or a

participant), in 3PC, cannot be reached from the same
otocol.

Three-Phase Commit T 3093

T

state as the abort final state. In the former case, the

commit state can be reached from the pre-commit state

whereas, in the latter case, the abort state can be

reached from the prepared state.

When a site is in a pre-commit state, it means that

each of the other sites is at least in a prepared-to-

commit state (Notice that the other sites might lag in

their states because of system’s delays such as queuing

and network delays.). Thus, the pre-commit state is

called a committable state since it implies that all parti-

cipants have voted “yes” and the coordinator agreed on

the commitment of the transaction. In 3PC, a non-

committable state, i.e., a state that does not imply that

all the participants have voted “yes,” is not placed

adjacent to a commit state. This is not the case in

2PC as the prepared state, which non-committable, is

placed adjacent to a commit state.

The insertion of the buffering state makes the struc-

ture of 3PC to satisfy the two necessary and sufficient

conditions for the construction of synchronous non-

blocking ACPs within one state transaction, i.e., a struc-

ture where neither the coordinator nor any participant

leads each other by more than one state transition

during its execution of the protocol. That is, 3PC is

synchronous within one state transaction that (i) does

not contain a state that is adjacent to both a commit

and an abort state, and (ii) it does not contain a non-

committable state that is adjacent to a commit state.

Based on the above, if the coordinator of a transac-

tion fails at any point during the execution of the

protocol, the operational participants can collectively

and deterministically decide the final status of the

transaction. The decision is commit if any of the par-

ticipants is in at least a pre-commit state (because it is

not possible for the coordinator to have decided to

abort). Otherwise, the decision is abort (because it

could be possible for the coordinator to have decided

to abort but not to commit). To reach an agreement on

the final status of a transaction, there is a need for a

termination protocol which is invoked when the coor-

dinator fails.

Recovery in Three-Phase Commit

When a participant times out while waiting for a

message from the coordinator, it means that the coor-

dinator must have failed (or it is perceived as a coordi-

nator failure). In this case, the participant initiates an

election protocol to determine a new coordinator. One

way to determine the new coordinator is based on sites’
identification numbers such that the participant with

the highest (or the lowest) number becomes the new

coordinator. Once a new coordinator is elected, the

participants exchange status information about

the transaction. If the new coordinator finds the trans-

action in at least a pre-commit state at any participant,

it commits (in its local log) the transaction; otherwise,

it aborts the transaction. Then, this new coordinator

proceeds to complete the 3PC for the transaction in all

the other participants. If the new coordinator fails, the

election process is repeated again.

When a participant starts recovering from a failure,

it needs to determine the status of each prepared or pre-

committed transaction as recorded in its log. Notice that

a recovering participant cannot commit a transaction

even if the participant is in a pre-commit state with

respect to the transaction. This is because the operation-

al sites might have decided to abort the transaction after

the participant had failed if none of them was in a

pre-commit state. In this case, the participant must

ask the other sites about the final status of the

transaction.

A final note on 3PC is about total sites’ failure

where there is a need to determine the last participant

to have failed. This is because such participant is the

only one which can decide the status of the transaction

for the other participants. Determining the last partic-

ipant that has failed could be implemented by main-

taining an “UP” list at each participating site. This list

contains the identities of operational participants as

seen by the participant that is maintaining the list and

is stored (in a non-forced or asynchronous manner)

onto the stable log of the participant. Thus, the “UP”

lists allow a set of participants to determine, upon their

recovery from the total failure, whether they contain

among themselves the last participant to have failed,

reducing the number of participants that needs to

recover before the transaction status can be resolved.

Alternatively, all participants should recover and be-

come operational again before the status of the trans-

action can be resolved.

Non-Blocking Commit Protocol Variants

As discussed above, blocking occurs in 2PC when the

coordinator of a transaction crashes while the transac-

tion is in its prepared-to-commit state at a participating

site. In such a case, the participant is blocked until the

coordinator of the transaction recovers. In general, all

ACPs are susceptible to blocking. They just differ in the

3094T Three-Phase Commit
size of the window during which a site might be

blocked and the type of failures that cause their block-

ing. Several ACPs have been designed to eliminate

some of the blocking aspects of 2PC, besides 3PC, by

adding extra coordination messages and forced log

writes. These protocols can be classified into whether

they preserve the prepared-to-commit state, such as

cooperative 2PC, or allow unilateral or heuristic deci-

sions in the presence of unbearable delays, such as

IBM’s presumed nothing (IBM-PrN).

The cooperative 2PC (1981) reduces the likelihood

of blocking in case of a coordinator’s failure. In the

cooperative 2PC, the identities of all participants are

included in the prepare-to-commit message so that

each participant becomes aware of the other partici-

pants. In the case of a coordinator’s or a communica-

tion’s failure, a participant does not block waiting until

it reestablishes communication with the coordinator.

Instead, it inquires the other operational participants

in the transaction’s execution about the final decision

and if any of them has already received the final deci-

sion prior to the failure, it informs the inquiring par-

ticipant accordingly.

The IBM-PrN (1990) is a 2PC variant that allows

blocked participants to unilaterally commit or abort

a transaction and detects atomicity violations due to

conflicting heuristic decisions. In the event of atom-

icity violations, it reports any damage on transactions

and data, simplifying the task of identifying problems

that must be fixed. Generalized presumed abort (1994)

is another IBM protocol that behaves like IBM-PrN

when complete confidence in the final outcome and

recognition of heuristic decisions is required and

behaves like PrA during normal processing. Recent
Three-Phase Commit. Figure 2. Some significant steps in the
efforts to enhance commit protocols with heuristic

decision processing resulted in the allow-heuristics pre-

sumed nothing (1996) commit protocol.

Other Atomic Commit Protocol Variants and

Optimizations

Figure 2 shows some of the significant steps in the

evolution of ACPs including the two most notable

2PC variants which are presumed abort (PrA) and

presumed commit (PrC) [2]. The new PrC (NPrC)

(1993) and rooted PrC (RPrC) (1997) protocols were

proposed to reduce the log complexity of PrC further

at the cost of slower recovery in the presence of failures.

NPrC eliminates the initiation log record at the coor-

dinator’s site whereas RPrC eliminates the initiation

log record at each cascaded coordinator when the tree-

of-processes (or multi-level transaction execution)

model is used.

In contrast to PrA and PrC variants, other 2PC

variants have been proposed for specific environments.

The common characteristic of these protocols is that

they exploit the semantics of the communication net-

works, the database management systems and/or the

transactions to enhance the performance of 2PC. For

example, the linear 2PC (L2PC) reduces message com-

plexity at the expense of time complexity compared to

2PC by assuming token-ring like networks. In L2PC,

the participants are linearly ordered with the coordi-

nator being the first in the linear order. The coordina-

tor initiates the voting and each participant sends its

“yes” vote to its successor in the linear order. The last

participant in the order makes the decision and sends

it to its predecessor and so on. In this way, L2PC

maintains the same log complexity as 2PC, reduces
evolution of ACPs.

Three-Phase Commit T 3095

T

the message complexity of 2PC from “3” to “2n” while

increasing the time complexity of 2PC from “3” to

“2n” rounds, where n is the number of participants.

In contrast to L2PC, decentralized 2PC (D2PC) reduces

time complexity at the expense of message complexity

which is n2 + nmessages. In D2PC, the interconnecting

communication network is assumed to be fully

connected and efficiently supports the broadcasting

of messages. In D2PC, two rounds of messages are

required for each individual participant to make a

final decision. During the first round, the coordinator

broadcasts its vote (implicitly initiating commit pro-

cessing) whereas, during the second one, all the parti-

cipants broadcast their votes. Thus, each participant

receives the votes of all the other participants, as well as

the coordinator, and thereby, is able to independently

conclude the final decision. By reducing the time com-

plexity to two rounds, it becomes less likely for a partici-

pant, in D2PL, to be blocked during commit processing

in the case of a coordinator’s failure.

There are four transaction type specific 2PC proto-

cols, all of which, when applicable, improve both the

message and time complexities of 2PC by eliminating

the explicit voting phase of 2PC. The unsolicited-vote

protocol (UV) (1979) shortens the voting phase of 2PC

assuming that each participant knows when it has

executed the last operation for a transaction. In this

way, a participant sends its vote on its own initiative

once it recognizes that it has executed the last opera-

tion for the transaction. When the coordinator receives

the votes of the participants, it proceeds with the

decision phase. The early prepare protocol (EP)

(1990) combines UV with PrC without assuming that

a participant can recognize the last operation of a

transaction. Every operation is, therefore, treated as if

it is the last operation executing at the participant and

its acknowledgment is interpreted as a “yes” vote. This

means that a participant has to force write its log each

time it executes an operation so that it can preserve the

global atomicity of the transaction after a system crash.

In contrast to EP which reduces time and message

complexities at the expense of log complexity, the

coordinator log (CL) and implicit yes-vote (IYV) proto-

cols do not require force writing the log records, at the

participants’ sites, after the execution of each opera-

tion. Instead, they replicate the participants’ logs at the

coordinators’ site. Hence, reducing log complexity

compared to EP at the expense, however, of slower

recovery. In CL, a participant does not maintain a
local stable log and, therefore, it has to contact all

coordinators in the system in order to recover after a

failure. Moreover, a participant may need to contact

the coordinator of a transaction during normal proces-

sing to maintain write-ahead logging (WAL) or to undo

the effects of an aborting transaction. This is because

the log of a participant is scattered across the coordi-

nators’ sites. In contrast, the log of a participant in IYV

is partially replicated across the coordinators’ sites.

That is, only the redo records are replicated at the

coordinators’ sites while the undo records are stored

locally. Thus, a participant, in IYV, never communi-

cates with any coordinator to maintain WAL or to

undo the effects of aborting transactions. Thus, in

IYV, the replicated records are used only to recover a

participant after a system’s crash. Furthermore, IYV is

based on PrA while CL is derived from PrC.

Existing 2PC variants are incompatible with each

other and need to be made to interoperate in order to

be integrated in (heterogeneous) multidatabase sys-

tems and the Internet. Thus, the continued research

for more efficient ACPs has expanded to include the

investigation of integrated ACPs. Efforts in this direc-

tion include the Harmony prototype system that inte-

grates centralized participants that use centralized

(asymmetric) ACPs with centralized participants that

use decentralized (symmetric) ACPs (1991), the inte-

gration of distributed participants that use symmetric

ACPs with distributed participants that use asymmetric

ACPs (1994), and the presumed any protocol (1996)

that integrates participants that use 2PC, PrA, or PrC.

Besides that, recent efforts are targeted towards under-

standing the sources of incompatibilities [1] and the

integration of ACPs in an adaptive manner to achieve

higher system performance [8].

Several optimizations have been proposed that can

reduce the costs associated with ACPs [5,2]. These

include the read-only, last agent, group commit, sharing

the log, flattening the transaction tree and optimistic

optimizations. The read-only optimizations can be

considered as the most significant ones, given that

read-only transactions are the majority in any general

database system. In fact, the performance gains allowed

by the traditional read-only optimization provided the

argument in favor of PrA to become the current choice

of ACPs in the ISO OSI-TP (1998) and X/Open DTP

(1996) distributed transaction processing standards,

and commercial systems. The basic idea behind the

read-only optimizations is that a read-only participant,

3096T Three-Phase Commit
a participant that has not performed any updates on

behalf of a transaction, can be excluded from the

decision phase of the transaction. This is because it

does not matter whether the transaction is finally

committed or aborted at a read-only participant to

ensure the transaction’s atomicity. In the traditional

read-only optimization [4], a read-only participant

votes “read-only” instead of a “yes” and immediately

releases all the resources held by the transaction with-

out writing any log records. A “read-only” vote allows

a coordinator to recognize and discard the read-only

participant from the rest of the protocol. The unsolic-

ited update-vote (1997) is another read-only optimiza-

tion that further reduces the costs associated with read-

only participants. Not only that, but it incurs the same

costs when used with both PrA and PrC, supporting

the arguments for PrC to be also included in the

standards.

The last agent optimization has been implemented

by a number of commercial systems to reduce the cost

of commit processing in the presence of a single remote

participant. In this optimization, a coordinator first

prepares itself and the nearby participants for commit-

ment (fast first phase), and then delegates the respon-

sibility of making the final decision to the remote

participant. This eliminates the voting phase involving

the remote participant. This same idea of delegating

part of commitment (i.e., transferring the commit

responsibilities) from one site to another has been

also used to reduce blocking, for example, in open

commit protocols (1990) and IYV with a commit

coordinator (1996).

The group commit optimization has been also

implemented by a number of commercial products to

reduce log complexity. In the context of centralized

database systems, a commit record pertaining to a

transaction is not forced on an individual basis. In-

stead, a single force write to the log is performed when

a number of transactions are to be committed or when

a timer has expired. In the context of distributed data-

base systems, this technique is used at the participants’

sites only for the commit records of transactions dur-

ing commit processing. The lazy commit optimization

is a generalization of the group commit in which not

only the commit records at the participants are forced

in a group fashion, but all log records are lazily forced

written onto stable storage during commit processing.

Thus, the cost of a single access to the stable log is

amortized among several transactions. The sharing of
log between the transaction manager and data man-

agers [5] at a site is another optimization that takes

advantage of the sequential nature of the log to elimi-

nate the need of force writing the log by the data

managers.

The flattening of the transaction tree optimization is

targeted for the tree-of-processes transaction model

and is a big performance winner in distributed trans-

actions that contain deep trees. It can reduce both the

message and log complexities of an ACP by transform-

ing the transaction execution tree of any depth into a

two-level commit tree at commit initiation time. In

this way, the root coordinator sends coordination mes-

sages directly to, and receives messages directly from,

any participant. Thus, avoiding propagation delays

and sequential forcing of log records. Restructuring-

the-commit-tree-around-update-participants (RCT-

UP) is an enhancement to the flattening technique

that flattens only update participants (participants

that have executed update operations on behave

of the transaction), thereby, connecting them directly

to the coordinator while leaving read-only participants

connected in a multi-level manner. This is to reduce

the effects of the communication delays on the overall

system performance in systems that do not support

simultaneous message multicasting to all participants.

Another optimization is optimistic (OPT) (1997)

which can enhance the overall system performance by

reducing blocking arising out of locks held by prepared

transactions. OPT shares the same assumption as PrC,

that is, transactions tend to commit when they reach

their commit points. Under this assumption, OPT

allows a transaction to borrow data that have been

modified by another transaction that has entered a

prepared-to-commit state and has not committed. A

borrower is aborted if the lending transaction is finally

aborted.

Key Applications
3PC has never been implemented in any commercial

database system due to its cost, during normal trans-

action processing, compared to the other ACPs. This is

besides its implementation complexity and, especially,

the complexity of its termination protocol. Even with

the added implementation complexity and cost, 3PC

does not completely eliminate blocking since it is still

susceptible to blocking in case of network partitioning.

In fact there is no ACP that is non-blocking in the case

of site as well as communication failures. This is an

Time Aggregated Graphs T 3097
inherent characteristic of the Byzantine Generals Prob-

lem, the more general problem of atomic commitment.

However, the protocol remains an instrumental theo-

retical result for understanding the behavior of

ACPs and the limitations in solving the atomic com-

mitment problem.

Cross-references
▶Atomicity

▶Distributed Database Systems

▶Distributed Recovery

▶Distributed Transaction Management

Recommended Reading
1. Al-Houmaily Y. Incompatibility dimensions and integration of

atomic commit protocols. Int. Arab J. Inf. Technol., 5(4):2008.

2. Chrysanthis P.K., Samaras G., and Al-Houmaily Y. Recovery and

performance of atomic commit processing in distributed data-

base systems, Chapter 13. In Recovery Mechanisms in Database

Systems, V. Kumar, M. Hsu (eds.). Prentice Hall, Upper Saddle

River, NJ, 1998, pp. 370–416.

3. Lamport L., Shostak R., and Pease M. The byzantine generals

problem. ACM Trans. Programming Lang. Syst., 4(3):382–401,

1982.

4. Mohan C., Lindsay B., and Obermarck R. Transaction Manage-

ment in the R* Distributed Data Base Management System.

ACM Trans. Database Syst., 11(4):378–396, 1986.

5. Samaras G., Britton K., Citron A., and Mohan C. Two-phase

commit optimizations in a commercial distributed environ-

ment. Distrib. Parall. Databases, 3(4):325–361, 1995.

6. Skeen D. Non-blocking Commit Protocols. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1981, pp. 133–142.

7. Skeen D. and Stonebraker M. A Formal model of crash recovery

in a distributed system. IEEE Trans. Softw. Eng., 9(3):219–228,

1983.

8. Yu W. and Pu C. A Dynamic two-phase commit protocol for

adaptive composite services. Int. J. Web Serv. Res., 4(1), 2007.
T

Thresholding

▶ Image Segmentation
Tight Coupling

SERGUEI MANKOVSKII

CA Labs, CA Inc., Thornhill, ON, Canada

Synonyms
Strong coupling
Definition
Tight coupling indicates strong dependency between

software components. The dependency is strong in the

sense that two or more components have multiple and

complex dependencies between internal states, data

and functions of the components.

Key Points
Tight coupling often achieves high performance charac-

teristics at the expense of flexibility and ease of mainte-

nance. It is often justified for systems that are going to be

used as a black box, with no expectation of ongoing

maintenance or upgrade. The smaller a systems is, the

more congruent its function is, the more likely it would

justify tight coupling as a design principle. This is why

one can find tight coupling in the components of larger

systems. In this situation a number of tightly coupled

components might be interacting using loosely coupled

approach. This type of systems leads to robust designs

where maintainability and flexibility is achieved by sim-

ply replacing one ormore components. At the same time,

each component performs in the best possible way be-

cause of tight coupling inside of it. This is the idea behind

Service Oriented Architectures (SOA). This way SOA

achieves balance between performance and flexibility.

However it is not of the case for other architectures

and because of that it is often beneficial to evaluate trade-

offs of both approaches during system design.

Cross-references
▶ Loose Coupling

▶ SOA

▶Tight Coupling
Time Aggregated Graphs

BETSY GEORGE, SHASHI SHEKHAR

University of Minnesota, Minnesota, Minneapolis,

MN, USA

Synonyms
Spatio-temporal graphs; Time-dependent graphs;

Time-dependent networks

Definition
A time aggregated graph [1,2] is a model that can be

used to represent a spatio-temporal network. The

topology and the attributes in a spatio-temporal

3098T Time and Information Retrieval
network are typically time-dependent. Time aggre-

gated graphs aggregate the time-dependent attributes

over edges and nodes. This model facilitates the com-

putation of path queries on a network accounting for

the time-dependence of network parameters.

Key Points
Graphs have been extensively used to model spatial

networks; weights assigned to nodes and edges are

used to encode additional information. For example,

the travel time between two intersections in a road

network can be represented by the weight of the edge

connecting the nodes that represent the intersections.

In a real world scenario, it is not uncommon for these

network parameters to be time-dependent. A time

aggregated graph is a model that can capture the

time-dependence of network parameters. In addition,

the model captures the possibility of edges and nodes

being absent during certain instants of time.

The model represents the time-variance of attri-

butes by modeling them as time series.

Spatio-temporal networks have critical applica-

tions in domains such as transportation science.

Developing storage efficient models for such networks

that support the design of efficient query processing

algorithms is important. Time aggregated graphs pro-

vide a means to model spatio-temporal networks and

formulate algorithms that honor the time dependence

of spatial networks.

Cross-references
▶ Spatio-Temporal Graphs

▶ Spatio-Temporal Networks

Recommended Reading
1. George B. and Shekhar S. Time-aggregated graphs for modeling

spatio-temporal networks – an extended abstract. In Proc. Work-

shops at Int. Conf. on Conceptual Modeling, 2006, pp. 85–93.

2. George B. Kim S. and Shekhar S. Spatio-temporal network

databases and routing algorithms: a summary of results. In

Proc. 10th Int. Symp. Advances in Spatial and Temporal Data-

bases, 2007, pp. 460–477.
Time and Information Retrieval

OMAR ALONSO, MICHAEL GERTZ

University of California at Davis, Davis, CA, USA

Synonyms
Temporal information retrieval
Definition
Traditional information retrieval (IR) is concerned

with models, algorithms, and architectures for the

retrieval and ranking of documents from a document

collection based on their relevance to search queries.

In temporal information retrieval, expressions (words

or phrases) that relate to instants in time, events, time

periods, or other temporal descriptions are extracted

from documents and handled in a special way to rank

(and optionally group) the documents returned for a

search query. Thus, in temporal information retrieval,

temporal expressions extracted from documents play

a special role in the overall relevance and in the orga-

nization and exploration of search results along

timelines.

Historical Background
Research on using time information for retrieval and

browsing activities is fairly recent. From a search per-

spective, there is previous work on placing search

results in a timeline to facilitate the exploration of

information [2,3,10]. A general overview of the basic

idea of search result clustering using temporal docu-

ment annotations obtained through a named-entity

extraction approach has been outlined by Alonso and

Gertz [4].

Research on temporal annotations has gained a lot

of attention lately, and it is covered in great depth in

the book edited by Mani et al. [8]. The work also

includes discussions about tense and structural analy-

sis and temporal reasoning techniques. The special

issue on temporal information processing shows a

wide range of current research directions and applica-

tions like question-answering and summarization [9].

News in particular have been the preferred infor-

mation source for most of the related work in temporal

information retrieval. Swan and Allan combine

news topic detection and tracking with timelines as a

browsing interface [14]. Automatic assignment of doc-

ument event-time periods and automatic tagging

of news messages using entity extraction is presented

by Schilder and Habel in [11]. Their work also presents

a temporal tagger along with its evaluation. There is

very interesting work on adding time to applications

like news for presenting temporal summaries as intro-

duced by Allan et al. [1]. The work by Shaparenko et al.

[12] concentrates on analyzing the development

of a document collection over time and identifying

temporal pattern. The work by Koen and Bender

in Time Frames is one approach to augment news

Time and Information Retrieval T 3099

T

articles by extracting time information [7]. Recently,

new research has emerged for future retrieval pro-

posed by Baeza-Yates [5] where the idea of exploiting

temporal information is developed for searching the

future.

Foundations

Overview and Motivation

Time is an important dimension of any information

space and can be very useful in information retrieval.

Time and time measurements can help in outlining a

particular historical period or establishing the context

of a document. As an alternative to document ranking

techniques like those based on popularity, time can be

valuable for placing search results in a timeline for

document exploration purposes. Current information

retrieval systems and applications, however, do not

take advantage of all the time information available

within documents to provide better search results and

thus to improve the user experience.

A quick look at any of the current search engines

and information retrieval systems shows that the tem-

poral viewpoint is restricted to sorting the search

result represented in a hit list by date only. The date

attribute is mainly the creation or last modified date

of a Web page or document. In some cases it can be

misleading, because the timestamp provided by a Web

server or any other document management system

may not be accurate. Other search applications pro-

vide a range date search as part of the advanced search

options. Still, the search results are filtered based on

the date attribute. For search purposes, the time axis

is mainly constructed using that type of document

metadata.

Even simple queries against Web search engines

show that oftentimes organizing the documents in a

hit list along some timeline can be helpful. For exam-

ple, a query for “soccer world cup” against search

engines now returns mostly pointers to documents

that cover the recent event in Germany. But every

soccer fan knows that this event happens every four

years. Another example is “Iraq war;” here, results are

primarily related to the latest events with little from the

1990’s war. Clearly, it would be useful if a tool on top of

a traditional retrieval system is more aware of the

temporal information embedded in the documents

and allows the user to have search results presented

in different ways based on the temporal information.

For this, it is essential to extract temporal information
from documents and associate documents with points

in time along well-defined timelines.

Time and Timelines

As the basis for associating points in time with docu-

ments, it is customary to assume a discrete representa-

tion of time based on the Gregorian Calendar, with a

single day being an atomic time interval called a

chronon. A base timeline, denoted Td, is an interval of

consecutive day chronons. For example, the sequence

“March 12, 2002; March 13, 2002; March 14, 2002” is a

contiguous subsequence of chronons in Td. Contigu-

ous sequences of chronons can be grouped into larger

units called granules, such as weeks, months, years, or

decades. A grouping based on a granule results in a

more coarse-grained timeline, such as Tw based on

weeks, Tm based on months, or Ty based on years.

Examples of week chronons in Tw are “3rd week of

2005” or “last week of 2006.” Depending on the type

of underlying calendar, base timeline, and grouping of

chronons, timelines of different time granularity can be

constructed. Chronons from two timelines then can

also be compared. For example, “March 18, 2002”

(chronon in Td) lies before “December 2006” (chronon

in Tm). Timelines constructed in this way then serve as

the basis to have temporal expressions in documents

refer to chronons in one or more timelines.

Temporal Expressions

There is quite a lot of temporal information in any

corpus of documents. For example, financial news tend

to be rich in describing near future events; resume

documents contain several references to the past in a

very precise way; and project documentation involves

phase milestones that are captured in time. However,

what types of temporal information (besides a simple

document timestamp) are there and how do they relate

to timelines?

In general, with the textual content of a document,

a set of temporal entities can be associated. A temporal

entity describes a point in time, event, or time period

at a conceptual level. The identification of such entities

involves a linguistic analysis of the document, where

approaches based on named-entity extraction deter-

mine so-called temporal expressions. A temporal ex-

pression is basically a sequence of tokens that

represent an instance of a temporal entity. Contrary

to other entities such as names and places, temporal

entities can be represented as temporal expressions that

are sequences of not necessarily contiguous tokens or

3100T Time and Information Retrieval
words. Expressions can be mapped to temporal entities

that are defined in some time ontology. Similar to the

approach by Schilder and Habel [11], this discussion

distinguishes between explicit, implicit, and relative

temporal expressions. Explicit temporal expressions di-

rectly describe entries in some timeline, such as an exact

date or year. For example, the token sequences “Decem-

ber 2004” or “September 12, 2005” in a document are

explicit temporal expressions and can be mapped di-

rectly to chronons in a timeline (here Tm and Td,

respectively).

Depending on the underlying time ontology and cap-

abilities of the named-entity extraction approach, even

apparently imprecise temporal information, such as

names of holidays or events can be anchored in a timeline.

For example, the token sequence “Columbus Day 2006”

in the text of a document can be mapped to the expres-

sion “October 12, 2006,” or the sequence “Labor Day

2008” can be mapped to “September 1, 2008.” Such

types of temporal expressions whose mapping to entities

relies on the capability of the underlying time ontology

are called implicit temporal expressions.

Relative temporal expressions represent temporal

entities that can only be anchored in a timeline in

reference to another explicit or implicit, already an-

chored temporal expression (which, in the worst case,

is the document timestamp). For example, the expres-

sion “today” alone cannot be anchored in any timeline.

However, it can be anchored if the document is known

to have a creation date. This date therefore can be used

as a reference for that expression, which then can be

mapped to a chronon. There are many instances of

relative temporal expressions, such as the names of

weekdays (e.g., “on Thursday”) or months (e.g., “in

July”) or references to such points in time like “next

week” or “last Friday.”

Given a document collection D, the temporal

expressions that have been determined for each docu-

ment d 2 D can be represented in the form of a tem-

poral document profile. For example, a profile then

records for each type of expression the token sequence,

position of the sequence in the document d, and the

chronon to which the expression has been mapped.

With a document, several expressions of different types

and corresponding chronons (in different timelines)

can be associated. The same expression and chronon

can even appear several times in the same document,

but then at different positions in the document. Each
document at least has one explicit temporal expres-

sion, which is assumed to be the document timestamp.

Next, an extraction approach for temporal expressions

using existing tools is outlined.

Temporal Processing Pipeline

Given a document collection D, the identification

of the temporal expressions in each document d 2 D
is realized through a document processing pipeline,

which includes a sequence of operations as follows.

The first step is to extract the timestamp from the

document. This can be the creation or last modified

date for a file. In case of aWeb page, one can rely on the

information provided by the Web server. The second

step is to run a part of speech tagger (POS tagger) on

every document. A POS tagger returns the document

with parts of speech assigned to each word/token

like noun, verb etc. The tagger also tags sentence deli-

miters that later are needed for extracting the temporal

expressions. The third step is to run a temporal expres-

sion tagger on the POS-tagged version of the docu-

ment, which recognizes the extents and normalized

values of temporal expressions [6]. This step extracts

temporal expressions based on the TimeML standard

and produces an XML document. The TimeML speci-

fication for temporal annotations seems to be a suit-

able approach here, because it has emerged as the

standard markup language for events and temporal

expressions in natural language [15]. The resulting

XML document is the original document annotated

by various information about the temporal expressions

that have been determined for the original document.

This information then can be used to construct the

temporal document profile for the document, which,

in turn, can be used for different time-centric docu-

ment information retrieval and exploration

approaches.

Document Retrieval

A fundamental property of any information retrieval

system is the ability to help users find documents that

satisfy their information needs. At a first glance, this

looks pretty obvious but it is not, because users are not

very expressive in describing what information they

want. Furthermore, the information needs they specify

can be ambiguous, making the retrieval task even

harder. A user will judge whether or not a query result

satisfies her information needs based on whether she

Time and Information Retrieval T 3101

T

considers the result to the search query relevant. The

central idea underlying a temporal information re-

trieval approach is to utilize the temporal expressions

that have been determined for each document in a

given document collection D in order to group and/

or rank search results based on the temporal informa-

tion embedded in the documents. By using this ap-

proach, time plays a central role in the overall quality

of the search results. Assume a standard information

retrieval or search application that returns a hit list of n

documents Lq = hd1,...,dni for a search query q. The

search application retrieves the result based on the

relevance of the documents with respect to q using

traditional metrics based on tf/idf and the distance of

the query terms to the first token of temporal expres-

sions in the documents. After all, tense happens at the

sentence level so it is important to detect these

“boundaries” with respect to the query q. There are

several ways in which the temporal expressions in the

documents in Lq can be used to group the documents

using temporal aspects. In the following, only the

general idea of these approaches is illustrated. For

example, the following algorithm outlines how the

usage of temporal expressions can help to group search

results based on the temporal expressions determined

from the documents in Lq.

1. Determine the document hit list Lq = hd1,...,dni that
satisfies the search query q, sorted by relevance of

the documents.

2. Determine the temporal expressions T = {te1,...,tem}

for all the n documents in the hit list. Note that a

document di 2 Lq can have several temporal expres-

sions, represented in di’s temporal document

profile.

3. Choose a type of time granule g (e.g., year or

month). Sort the temporal expressions in T using

that granule as key. For example, the expression

“September 1, 2007” then comes before the expres-

sion “August 2007,” assuming a descending order.

4. For each granule of type g (e.g., a particular year or

month), take all those documents from Lq that

contain a temporal expression covered by that

granule. Rank these documents using the distance

between the query terms in q to the temporal

expressions.

5. Display document groups using the granule type g

as label in a timeline fashion in descending order.
For example, if the granule type year has been

chosen, for each year, there is a group of documents

that contain a temporal expression related to that

year (perhaps at a finer level of granularity). Note

that instances of the granule type are based on a

timeline.

If a document d 2 Lq contains several temporal expres-

sions, this document can end up in different groups

and at a different rank in each group. In general, the

above approach organizes documents from a hit list

along a timeline based on a time granule type. A group

of documents related to a particular instant of a gran-

ule then can be organized further, i.e., based on a more

fine-grained time granule.
Key Applications
Recently, exploratory search system have emerged as a

specialization of information exploration to support

serendipity, learning, and investigation, and, more gen-

erally, to allow users to browse available information.

For such systems, taking advantage of temporal expres-

sions embedded in the documents leads to a much

richer framework for exploration. This is an important

ingredient for the information forager who is trying to

see the profit in terms of the interaction cost required to

gain useful information from an information source.

Users tend to prefer sources, in this case search engines,

that are richer in good results. These good results in-

volve adding important nuggets such as temporal infor-

mation and relationships. The news domain is another

area where search, presentation, and filtering can be

greatly improved by using more temporal information.

As an example, financial news about a company’s Q4

earnings has a very precise meaning in a time-related

context. Exploring and analyzing news by these types of

temporal expressions can be very useful for particular

application domains, for example, in the area of finan-

cial analysis.
Timeline-Based Exploration

Current interfaces to search engines typically present

search results sorted by the relevance of documents

from a document collection to a search query. For

this, the freshness of the information is considered an

important part of the quality of the result. Temporal

attributes in Web pages or documents such as date,

3102T Time and Information Retrieval
however, are just viewed as some structured criteria to

sort the result in descending order of relevance. At the

time of this writing there is a new experimental feature

for timelines as part of Google (view:timeline).

Another exploratory search prototype outlined in

the following is a Web-based application that uses the

SIMILE timeline toolkit for visualization and explora-

tion purposes [13], here with respect to a document

collection of journal articles from DBLP (http://

www.informatik.uni-trier.de/~ley/db/). The

interface is organized as follows. The main section

takes half of the screen and contains the search box

and the timeline. The timeline consists of two bands

that represent different time scales (types of granules):

decade and year. Both bands are synchronized such

that panning one band also scrolls the other. The

lower band (decade) is much smaller since the goal

is to show the activity in a decade. The upper band

shows all articles in a given year. Figure 1 shows the
Time and Information Retrieval. Figure 1. Exploring researc
exploratory search interface in action for the query

“compiler” against the collection. The system retrieves

all journal articles that contain the term “compiler” in

the title and returns a hit list clustered by year (in which

the article appeared). Search results are anchored in the

timeline, that is, documents (or rather the embedded

temporal expressions) are linked to instants in time. If

more than one article falls within a year, the order of the

documents in such a group is based on each docu-

ment’s relevance to the query. Obviously, such an in-

formation exploration and visualization approach and

tool on top of a more traditional search application can

be extremely valuable in the context of temporal infor-

mation retrieval.

Future Directions
Evaluations of the impact of temporal attributes for

search and retrieval are needed to asses the importance

of these techniques. This, of course, can only be
h articles using the SIMILE timeline toolkit.

Time Domain T 3103
applied to those applications where the usage of time

information has some (expected) benefit.
Cross-references
▶Document Clustering

▶ Information Extraction

▶ Information Retreival

▶ Structured Document Retrieval

▶Web Search Relevance Ranking
T

Recommended Reading
1. Allan J., Gupta R., and Khandelwal V. Temporal summaries of

news topics. In Proc. 24th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2001,

pp. 10–18.

2. Allen R.B. A focus-context browser for multiple timelines.

In Proc. ACM/IEEE Joint Conf. on Digital Libraries, 2005,

pp. 260–261.

3. Alonso O., Baeza-Yates R., and Gertz M. Exploratory search

using timelines. In Proc. SIGCHI 2007 Workshop on Explorato-

ry Search and HCI Workshop, 2007.

4. Alonso O. and Gertz M. Clustering of search results using

temporal attributes. In Proc. 32nd Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

2006, pp. 597–598.

5. Baeza-Yates R. Searching the future. In ACM SIGIR 2005

Workshop on Mathematical/Formal Methods in Information

Retrieval, 2005.

6. GUTime. Available at: http://complingone.georgetown.edu/

~linguist

7. Koen D.B. and Bender W. Time frames: temporal augmentation

of the news. IBM Syst. J., 39(3–4):597–616, 2000.

8. Mani I., Pustejovsky J., and Gaizauskas R. (eds.). The

Language of Time. Oxford University Press, New York, NY,

USA, 2005.

9. Mani I., Pustejovsky J., and Sundheim B. Introduction to the

Special Issue on Temporal Information Processing. ACM Trans.

Asian Lang. Inform. Process., 3(1):1–10, March 2004.

10. Ringel M., Cutrell E., Dumais S.T., and Horvitz E. Milestones in

time: the value of landmarks in retrieving information from

personal stores. In Proc. IFIP TC13 Int. Conf. on Human-

Computer Interaction, 2003, pp. 184–191.

11. Schilder F. and Habel C. From temporal expressions to temporal

information: semantic tagging of news messages. In Proc. ACL

2001 Workshop on Temporal and Spatial Information Proces-

sing, 2001.

12. Shaparenko B., Caruana R., Gehrke J., and Joachims T.

Identifying temporal patterns and key players in document

collections. In Proc. IEEE ICDM Workshop on Temporal

Data Mining: Algorithms, Theory and Applications, 2005, pp.

165-174.

13. SIMILE Timeline toolkit. Available at: http://simile.mit.edu/

timeline/
14. Swan R. and Allan J. Automatic generation of overview

timelines. In Proc. 23rd Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2000,

pp. 49–56.

15. TimeML, markup language for temporal and event expressions.

Available at: http://www.timeml.org/
Time Dependent Geometry

▶Moving Object
Time Distance

▶Time Interval

▶Time Span
Time Domain

ANGELO MONTANARI
1, JAN CHOMICKI

2

1University of Udine, Udine, Italy
2State University of New York at Buffalo, Buffalo,

NY, USA

Synonyms
Temporal domain; Temporal structure

Definition
In its full generality, a time domain can be defined as

a set of temporal individuals connected by a set of

temporal relations. Different choices for the temporal

individuals and/or the temporal relations give rise to

different temporal ontologies.

In the database context, the most common tem-

poral ontology takes time instants (equivalently, points

or moments) as the temporal individuals and a linear

order over them as the (unique) temporal relation [5].

In addition, one may distinguish between discrete and

dense, possibly continuous, time domains and between

bounded and unbounded time domains. In the dis-

crete case, one may further consider whether the time

domain is finite or infinite and, in the case of

3104T Time Domain
unbounded domains, one can differentiate between

left-bounded, right-bounded, and totally unbounded

domains. Moreover, besides linear time, one may con-

sider branching time, where the linear order is replaced

with a partial one (a tree or even a directed acyclic

graph), or circular time, which can be used to represent

temporal periodicity.

As for temporal individuals, time instants can be

replaced with time intervals (equivalently, periods or

anchored stretches of time) connected by (a subset of)

Allen’s relations before, meets, overlaps, starts,

during, equal, and finishes, and their inverses or

suitable combinations [7]. As in the case of instant-

based domains, one may distinguish between discrete

and dense domains, bounded and unbounded domains,

linear, branching, and circular domains, and so on.

Finally, as most temporal database applications

deal with both qualitative and quantitative temporal

aspects, instant-based time domains are usually as-

sumed to be isomorphic to specific numerical struc-

tures, such as those of natural, integer, rational, and

real numbers, or to fragments of them, while interval-

based ones are obtained as suitable intervallic con-

structions over them. In such a way, time domains

are endowed with metrical features.

Historical Background
The nature of time and the choice between time instants

and time intervals as the primary objects of a temporal

ontology have been a subject of active philosophical

debate since the times of Zeno and Aristotle. In the

twentieth century, major contributions to the investiga-

tion of time came from a number of disciplines. A

prominent role was played by Prior who extensively

studied various aspects of time, including axiomatic

systems of tense logic based on different time domains.

Nowadays, besides physics, philosophy, and ling-

uistics, there is a considerable interest in temporal struc-

tures in mathematics (theories of linear and branching

orders), artificial intelligence (theories of action and

change, representation of and reasoning with temporal

constraints, planning), and theoretical computer science

(specification and verification of concurrent and

distributed systems, formal analysis of hybrid temporal

systems that feature both discrete and continuous com-

ponents). A comprehensive study and logical analysis of

instant-based and interval-based temporal ontologies,

languages, and logical systems can be found in [2].
As for temporal databases, the choice of the time

domain over which temporal components take their

value is at the core of any application. In most cases, a

discrete, finite, and linearly ordered (instant-based)

time domain is assumed. This is the case, for instance,

with SQL standards [9]. However, there is no single

way to represent time in a database, as witnessed by

the literature in the field. To model when something

happened, time instants are commonly used; validity

of a fact over time is naturally represented by the

(convex) set of time instants at which the fact holds,

the time period of validity in the temporal database

terminology; finally, to capture processes as well as

some kinds of temporal aggregation, time intervals

are needed.

Foundations

Basics

The choice between time instants and time intervals

as the basic time constituents is a fundamental decision

step that all temporal systems have in common. Inmath-

ematics, the choice of time instants, that is, points in

time without duration, is prevalent. Although quite

abstract, such an solution turned out extremely fruitful

and relatively easy to deal with in practice. Incomputer

science, additionalmotivations for this choice come from

the natural description of computations as possibly infi-

nite sequences of instantaneous steps.

The alternative option of taking time intervals, that

is, anchored stretches of time with duration, as temporal

individuals seems to better adhere to the concrete expe-

rience of people. Physical phenomena as well as natural

language expressions involving time can be more easily

described in terms of time intervals instead of time

instants. Nevertheless, the complexity of any systematic

treatment of time intervals prevents many systems from

the adoption of an interval-based ontology.

The instant and the interval ontologies are system-

atically investigated and compared in [2]. The author

identifies the conditions an instant-based (resp., interval-

based) structure must satisfy to be considered as an

adequate model of time. Then, through an axiomatic

encoding of such conditions in an appropriate lang-

uage, he provides a number of (first-order and higher

order) logical theories of both instant-based and

interval-baseddiscrete,dense,andcontinuousstructures.

Finally, he illustrates the strong connections that link the

Time Domain T 3105

T

two timeontologies. Inparticular,he showshow interval-

based temporal structures can be obtained from instant-

based ones through the standard process of interval

formation and how instant-based temporal structures

canbederived frominterval-basedonesbya (non-trivial)

limiting construction.

A metric of time is often introduced to allow one to

deal with time distance and/or duration. In particular,

a time metric is needed to define calendar times, such

as those based on the commonly used Gregorian

calendar.

Temporal Models and Query Languages

The choice of the time domain has an impact on

various components of temporal databases. In partic-

ular, it influences temporal data models and temporal

query languages.

As for temporal data models, almost all of them

adopt an instant-based time ontology. Moreover,

most of them assume the domain to be linear, dis-

crete and finite. However, many variants of this basic

structure have been taken into consideration [8].

Right-unbounded domains have been used to record

information about the future. Dense and continuous

domains have been considered in the context of tem-

poral constraint databases, that allow one to represent

large, or even infinite, sets of values, including time

values, in a compact way. Branching time has been

exploited in applications where several alternatives

have to be considered in the future and/or past evolu-

tion of temporal data.

Many data models distinguish between absolute

(anchored) and relative (unanchored) time values.

Absolute time values denote specific temporal indivi-

duals. In general, they are associated with a time met-

ric, such as that of calendar times. As an example, the

14th of September 2007 is an absolute time value that

denotes a specific element of the domain of days in

the Gregorian calendar. Relative time values specify the

distances between pairs of time instants or the dura-

tions of time intervals. Absolute and relative time

values can also be used in combination. As an example,

the expression 7 days after the 14th of September 2007

denotes the 21st of September 2007.

As for temporal query languages, they typically

assume that time is isomorphic to natural numbers. This

is in agreement with themost common, linear-time dia-

lect of temporal logic. In temporal constraint
databases, however, the use of classical query languages

like relational calculus or algebra accommodates a varie-

ty of time domains, including dense and continuous

ones.

Time Domain and Granularity

Despite its apparent simplicity, the additionof the notion

of time domain to temporal databases presents various

subtleties. The main ones concern the nature of the ele-

mentsof thedomain.Assoonascalendar timescome into

play, indeed, the abstract notion of instant-based time

domainmust be contextualized with respect to a specific

granularity [3,4]. Any given granularity can be viewed

as a suitable abstraction of the real time line that

partitions it into a denumerable sequence of homoge-

neous stretches of time. The elements of the partition,

granules in the temporal database terminology, be-

come the individuals (non-decomposable time units)

of a discrete time domain. With respect to the consid-

ered granularity, these temporal individuals can be

assimilated to time instants. Obviously, if a shift to a

finer granularity takes place, e.g., if one moves from

the domain of months to the domain of days, a single

granule must be replaced with a set of granules. In such

a way, being instantaneous is not more an intrinsic

property of a temporal individual, but it depends on

the time granularity one refers to. A detailed analysis of

the limitations of the temporal database management

of instant-based time domains can be found in [9].

The Association of Time with Data

The association of the elements of the time domain with

data is done by timestamping. A timestamp is a time

value associated with a data object. In the relational

setting, one distinguishes between attribute-time-

stamped data models, where timestamps are associated

with attribute values, and tuple-timestamped data

models, where timestamps are associated with tuples

of values. As a third possibility, a timestamp can be

associated with an entire relation/database.

Timestamps can be single elements as well as sets

of elements of the time domain. Time instants are

usually associated with relevant events, e.g., they can

be used to record the day of the hiring or of the

dismissal of an employee. (Convex) sets of time

instants are associated with facts that hold over time.

As an example, if a person E works for a company C

from the 1st of February 2007 to the 31st of May 2007,

3106T Time Domain
one keeps track of the fact that every day in between

the 1st of February 2007 and the 31st of May 2007,

endpoints included, E is an employee of C.

Time intervals are needed to deal with situations

where validity over an interval cannot be reduced

to validity over its subintervals (including point sub-

intervals) [10]. This is the case with processes that

relate to an interval as a whole, meaning that if a

process consumes a certain interval it cannot possibly

transpire during any proper subinterval thereof. Exam-

ples are the processes of baking a cake or of flying from

Venice to Montreal. This is also the case when validity

of a fact at/over consecutive instants/intervals does not

imply its validity over the whole interval. As an exam-

ple, two consecutive phone calls with the same values

are different from a single phone call over the whole

period. The same happens for some kinds of temporal

aggregation [4]. Finally, the use of time intervals is

common in several areas of AI, including knowledge

representation and qualitative reasoning, e.g., [1].

It is important to avoid any confusion between

this latter use of intervals as timestamps and their use

as compact representations of sets of time points (time

periods in the temporal database literature). Time inter-

vals are indeed often used to obtain succinct represen-

tations of (convex) sets of time instants. In such a case,

validity over a time period is interpreted as validity at

every time instant belonging to it. As an example, the fact

that a person E worked for a company C from the 1st

of February 2007 to the 31st of May 2007 can be repre-

sented by the tuple (E, C, [2007/02/01, 2007/05/31])

meaning that E worked for C every day in the closed

interval [2007/02/01, 2007/05/31].

Key Applications
As already pointed out, the time domain is an essential

component of any temporal data model, and thus its

addition to SQL standards does not come as a surprise.

In SQL, time domains are encoded via temporal

data types (they have been introduced in SQL-92 and

preserved in SQL:1999). In SQL-92, five (anchored) time

instant data types, three basic forms and two variations,

are supported (DATE, TIME, TIMESTAMP, TIME

WITH TIME ZONE, TIMESTAMP WITH TIME

ZONE). In addition, SQL-92 features two (unanchored)

data types that allow one to model positive (a shift from

an instant to a future one) and negative (a shift from an

instant to a past one) distances between instants. One can

be used to specify distances in terms of years andmonths
(the YEAR-MONTH INTERVAL type), the other to

specify distances in terms of days, hours, minutes, sec-

onds, and fractions of a second (the DAY-TIME INTER-

VAL type). As a matter of fact, the choice of using

the word interval to designate a time distance instead of

a temporal individual – in contrast with the standard

use of this word in computer science – is unfortunate,

because it confuses a derived element of the time domain

(the interval) with a property of it (its duration). An

additional (unanchored) temporal data type, called

PERIOD, was included in the SQL/Temporal proposal

for the SQL3 standard, which was eventually withdrawn.

A period is a convex sets of time instants that can

be succinctly represented as a pair of time instants,

namely, the first and the last instants with respect to the

given order.

SQL also provides predicates, constructors, and

functions for the management of time values. General

predicates, such as the equal-to and less-than predicates,

can be used to compare pairs of comparable values of

any given temporal type; moreover, the specific overlap

predicate can be used to check whether two time periods

overlap. Temporal constructors are expressions that re-

turn a temporal value of a suitable type. It is possible to

distinguish datetime constructors, that return a time

instant of one of the given data types, and interval con-

structors, that return a value of YEAR-MONTH INTER-

VAL or DAY-TIME INTERVAL types. As for functions,

they include the datetime value functions, such as the

CURRENT_DATE function, that return an instant of

the appropriate type, the CAST functions, that convert

a value belonging to a given (temporal or non temporal)

source data type into a value of the target temporal

data type, and the extraction functions, that can be

used to access specific fields of instant or interval time

values.

Future Directions
Despite the strong prevalence of instant-based datamod-

els in current temporal databases, a number of interesting

problems, such as, for instance, that of temporal aggrega-

tion, motivate a systematic study and development of

interval-based data models. Moreover, in both instant-

based and interval-based data models intervals are de-

fined as suitable sets of elements of an instant-based

time domain. The possibility of assuming time intervals

as the primitive temporal constituents of the temporal

domain is still largely unexplored. Such an alternative

deserves a serious investigation.

Time in Philosophical Logic T 3107
Cross-references
▶Now in Temporal Databases

▶ Period-Stamped Temporal Models

▶ Point-Stamped Temporal Models

▶Temporal Algebras

▶Temporal Constraints

▶Temporal Data Models

▶Temporal Granularity

▶Temporal Indeterminacy

▶Temporal Periodicity

▶Temporal Query Languages
T

Recommended Reading
1. Allen J. and Ferguson G. Actions and events in interval temporal

logic. J. Logic Comput., 4(5):531–579, 1994.

2. van Benthem J. The Logic of Time. A Model-Theoretic Investi-

gation into the Varieties of Temporal Ontology and Temporal

Discourse, 2nd edn. Kluwer, Dordrecht, Holland, 1991.

3. Bettini C., Jajodia S., and Wang X.S. Time Granularities in

Databases, Data Mining, and Temporal Reasoning. Springer,

NJ, USA, 2000.

4. Böhlen M.H., Gamper J., and Jensen C.S. How would you like

to aggregate your temporal data? In Proc. 13th Int. Symp.

Temporal Representation and Reasoning, 2006, pp. 121–136.

5. Chomicki J. and Toman D. Temporal databases. In Chapter 14 of

the Handbook of Temporal Reasoning in Artificial Intelligence,

M. Fisher, D. Gabbay, L. Vila (eds.). Elsevier B.V., Amsterdam,

The Netherlands, 2005, pp. 429–467.

6. Euzenat J. and Montanari A. Time granularity. In Chapter 3 of

the Handbook of Temporal Reasoning in Artificial Intelligence,

M. Fisher, D. Gabbay, L. Vila (eds.). Elsevier B.V., Amsterdam,

The Netherlands, 2005, pp. 59–118.

7. Goranko V., Montanari A., and Sciavicco G. A road map

of interval temporal logics and duration calculi. J. Appl. Non-

Class. Logics, 14(1-2):9–54, 2004.

8. Montanari A. and Pernici B. Temporal reasoning. In Chapter 21

of Temporal Databases: Theory, Design and Implementation,

A. Tansell, J. Clifford, S. Gadia, S. Jajodia, A. Segev, R. Snodgrass

(eds.). Database Systems and Applications Series. Benjamin/

Cummings, Redwood City, CA, USA, 1993, pp. 534–562.

9. Snodgrass R.T. Developing time-oriented database applications

in SQL. In Chapter 3 of Instants and Intervals. Morgan

Kauffman, San Francisco, CA, USA, 2000, pp. 24–87.

10. Terenziani P. and Snodgrass R.T. Reconciling point-based

and interval-based semantics in temporal databases: a treatment

of the telic/atelic distinction. IEEE Trans. Knowl. Data Eng.,

16(5):540–551, 2004.
Time Granularity

▶Temporal Granularity
Time in Philosophical Logic

PETER ØHRSTRØM, PER F. V. HASLE

Aalborg University, Aalborg, Denmark

Synonyms
Temporal logic; Logic of time

Definition
The aim of the study of time in philosophical logic is

to provide a conceptual framework for an interdisciplin-

ary study of the nature of time and to formalize and

study various conceptions and systems of time. In addi-

tion, the introduction of time into logic has led to the

development of formal systems, which are particularly

well suited to represent and study temporal phenomena

such as program execution, temporal databases, and

argumentation in natural language.
Historical Background
The philosophy of time is based on a long tradition,

going back to ancient thought. It is an accepted wis-

dom within the field that no attempt to clarify the

concept of time can be more than an accentuation of

some aspects of time at the expense of others. Plato’s

statement that time is the “moving image of eternity”

and Aristotle’s suggestion that “time is the number of

motion with respect to earlier and later” are no excep-

tions (see [17]). According to St. Augustine (354–430)

time cannot be satisfactorily described using just one

single definition or explanation: “What, then, is time?

If no one asks me, I know: if I wish to explain it to one

that asketh, I know not.” [5, p. 40] Time is not defin-

able in terms of other concepts. On the other hand,

according to the Augustinian insight, all human beings

have a tacit knowledge of what time is. In a sense, the

endeavor of the logic of time is to study important

manifestations and structures of this tacit knowledge.

There were many interesting contributions to the

study of time in Scholastic philosophy, e.g., the analysis

of the notions of beginning and ending, the duration of

the present, temporal ampliation, the logic of “while,”

future contingency, and the logic of tenses. Anselm

of Canterbury (ca. 1033–1109), William of Sherwood

(ca. 1200–1270), William of Ockham (ca. 1285–1349),

John Buridan (ca. 1295–1358), and Paul of Venice

(ca. 1369–1429) all contributed significantly to the de-

velopment of the philosophical and logical analysis of

3108T Time in Philosophical Logic
time. With the Renaissance, however, the logical ap-

proach to the study of time fell into disrepute, although

it never disappeared completely from philosophy.

However, the twentieth century has seen a very

important revival of the philosophical study of time.

The most important contribution to the modern phi-

losophy of time was made in the 1950s and 1960s by

A. N. Prior (1914–1969). In his endeavors, A. N. Prior

took great inspiration from ancient and medieval thin-

kers and especially their work on time and logic.

The Aristotelian idea of time as the number of

motion with respect to earlier and later actually unites

two different pictures of time, the dynamic and the

static view. On the one hand, time is linked to motion,

i.e., changes in the world (the flow of time), and on

the other hand time can be conceived as a stationary

order of events represented by numbers. In his works,

A. N. Prior logically analyzed the tension between the

dynamic and the static approach to time, and devel-

oped four possible positions in regard to this tension.

In particular, A. N. Prior used the idea of branching

time to demonstrate that there is a model of time

which is logically consistent with his ideas of free

choice and indeterminism. (See [8, 189 ff.].)

After A. N. Prior’s development of formalised tem-

poral logic, a number of important concepts have been

studied within this framework. In relation to temporal

databases the studies of the topology of time and dis-

cussions regarding time in narratives are particularly

interesting.

Foundations
In the present context, the following four questions

regarding time in philosophical logic seem to be espe-

cially important:

1. What is the relation between dynamic and static

time?

2. What does it mean to treat time as “branching”?

3. What is the relation between punctual and dura-

tional time (i.e., instants and durations)?

4. What is the role of time in storytelling (narratives)?

In the following, a brief introduction to each of these

issues will be given.

Dynamical and Static Time: A-Theory vs. B-Theory

The basic set of concepts for the dynamic understand-

ing of time are past, present, and future. In his very

influential analysis of time the philosopher John Ellis
McTaggart (1866–1925) suggested to call these con-

cepts (i.e., the tenses) the A-concepts. The tenses are

well suited for describing the flow of time, since the

future will become present, and the present will be-

come past, i.e., flow into past. The basic set of concepts

for the static understanding of time are before/after

and “simultaneous with.” Following McTaggart, these

are called the B-concepts, and they seem especially apt

for describing the permanent and temporal order of

events. The two kinds of temporal notions can give rise

to two different approaches to time. First, there is the

dynamic approach (the A-theory) according to which

the essential notions are past, present and future. In

this view, time is seen “from the inside.” Secondly,

there is the static view of time (the B-theory) according

to which time is understood as a set of instants (or

durations) ordered by the before-after relation. Here

time is seen “from the outside.” It may be said to be a

God’s eye-perspective on time.

There is also an ontological difference between the

two theories. According to the A-theory the tenses are

real whereas the B-theorists consider them to be sec-

ondary and unreal. According to the A-theory the Now

is real and objective, whereas the B-theories consider

the Now to be purely subjective.

The debate between proponents of the two theories

received a fresh impetus with A. N. Prior’s formal anal-

ysis of the problem. (See [9, 216 ff.]). According to the

B-theory, time is considered to be a partially ordered

set of instants, and propositions are said to be true or

false at the instants belonging to the set. According to

the A-theory, time is conceived in terms of the opera-

tors P (Past) and F (Future), which are understood as

being relative to a “Now.” A. N. Prior suggested a

distinction between four possible grades of tenselogical

involvement corresponding to four different views of

how to relate the A-notions (past, present and future)

to the B-notions (“earlier than”/“later than,” “simulta-

neous with”):

1. The B-notions are more fundamental than the

A-notions. Therefore, in principle, the A-notions

have to be defined in terms of the B-notions.

2. The B-notions are just as fundamental as the

A-notions. The A-notions cannot be defined in

terms of the B-notions or vice versa. The two sets

of notions have to be treated on a par.

3. The A-notions are more fundamental than the

B-notions. All B-notions can be defined in terms

Time in Philosophical Logic T 3109
of the A-notions and a primitive notion of tempo-

ral possibility.

4. The A-notions are more fundamental than the

B-notions. Therefore, in principle the B-notions

have to be defined in terms of the A-notions. Even

the notion of temporal possibility can be defined

on terms of the A-notions.

A. N. Prior’s four grades of tense-logical involve-

ment represent four different views of time and also

four different foundations of temporal logic. In fact,

theory 1 is the proper B-theory and theory 3 and 4 are

versions of the proper A-theory. Theory 2 is a kind of

intermediate theory.

In theory 1, the tense operators, P (past) and F

(future), can be introduced in the following way:
Time in Philosophical Logic. Figure 1. An Ockhamistic

model of branching time. At every branching point there

will be one possible future which is the true future.

T

Tðt ; FqÞ� def 9t1 : t < t1 ^ Tðt1; qÞ

Tðt ; PqÞ� def 9t1 : t1 < t ^ Tðt1; qÞ

where T(t, q) is read “q is true at t,” and t < t1 is read

“t is before t1.”

In theory 3 and 4, A. N. Prior has shown how

instants can be introduced as maximally consistent

sets of tense-logical propositions and how the before-

after relation can be consistently defined in terms of

tense-logical concepts (i.e., A-notions).

From a B-theoretical viewpoint, at any instant,

an infinite number of propositions, including tensed

ones, will be true about that instant. But from the

A-theoretical point of view, precisely the infinite con-

junction of the propositions in this set is a construction

which, when called an “instant,” makes the B-theoretical

notion of “instant” secondary and derivable.

It should be noted, that whereas the A-theorist

(theory 3 or 4) can translate any B-statement into his

language, many A-statements cannot be translated into

the B-language. For instance, there is no way to trans-

late the A-statement “it is raining now in Aalborg” into

the B-language. The “now” cannot be explained in

terms of the B-language consisting of an ordered set

of instants and the notion of a proposition being true

at an instant. This asymmetry seems to be a rather

strong argument in favor of the A-theory (i.e., A. N.

Prior’s theory 3 or 4).

Linear vs. Branching Time

The idea of formalised branching time was first brought

forward by Saul Kripke in a letter to A. N. Prior in
1958 [8, pp. 189–90]. Kripke’s later development of

the semantics for modal logics is well-known within

computer science. But it has in fact been shown by

Jack Copeland [3] that the kernel of the ideas published

by Kripke were in fact present already in the work of

Meredith and A. N. Prior in 1956.

The difference between A. N. Prior’s theory 3 and 4

is important if time is considered to be branching. In

theory 3, the notion of possibility is primitive. In

theory 4, this notion can be derived from the tenses.

But then it turns out to be very difficult to distinguish

between the possible future, the necessary future and

the “plain” future — e.g., between “possibly tomorrow,”

and “necessarily tomorrow” and just “tomorrow.” In

all obvious models constructed in accordance with

A. N. Prior’s theory 4, “tomorrow” is conflated either

with “possibly tomorrow” or with “necessarily tomor-

row.” On the basis of theory 3, there is no difficulty in

maintaining a difference between the three kinds of

notions discussed. In a theory 3 model, one can refer

not only to what happens in some possible future, ◊ Fq,

and to what happens in all possible futures, □Fq, but

one can also refer to what is going to happen in the

future, Fq, as something different from the possible as

well as the necessary future. A branching time model

with this property is said to be Ockhamistic, whereas a

branching time model in which Fq is identified with

□Fq is said to be Peircean. Graphically, the two kinds

of branching time models can be presented as in Figs. 1

and 2 respectively.

Time in Philosophical Logic. Figure 2. A Peircean model

of branching time. There is no difference between the

status of the possible futures at any branching point.

3110T Time in Philosophical Logic
Punctual vs. Durational Time

The notion of a “duration” is important within the

study of time. Several logicians have tried to formul-

ate a logic of durations. The medieval logician John

Buridan (ca. 1295–1358) regarded the present as a

duration and not as a point in time. One example

which he considered was the sentence: “If a thing is

moving, then it was moving.” In his analysis Buridan

suggested that the logic of tenses can be established in

two different ways based on the durational structure of

time. Either the tenses can be taken absolutely, in the

sense that no part of the present time is said to be

past or future. Or the tenses can be taken in the

relative sense, according to which “the earlier part of

the present time is called past with respect to the later,

and the later part is called future with respect to the

earlier.” Buridan pointed out that if a thing is moving

now, then there is a part of the present during which it

is moving, and hence, it is moving in some part of the

present, which is earlier than some other part of

the present. Therefore, if the thing is moving, then it

was moving (if the past is taken in the relative sense),

i.e., moving(x)) P(moving(x)). For this reason, the

above sentence must be accepted if the past is under-

stood relatively, whereas it has to be rejected if the

past tense is understood absolutely. The reason is that

one could in principle imagine a beginning of a process

of motion. (Details can be found in [8, 43 ff.].)

The first modern logician to formulate a kind of

durational calculus was Walker [15]. Walker suggested
a model according to which time is considered as a

structure (S, <), where S is a non-empty set of periods

(also called “durations” or “intervals”). The “a < b”-

relation is to be considered as “strict” in the sense that

no overlap between a and b is permitted, and the

ordering is assumed to be irreflexive, asymmetrical,

and transitive. In addition, he considered the notion

of overlap, which can be defined as:

ajb � def :ða < b _ b < aÞ

Walker formulated an axiomatic system using the fol-

lowing two axioms:

Definition
(W1)aja
(W2)(a < b ∧ bjc ∧ c < d)) a < d

Using a set-theoretic method, Walker demonstrated

that it is possible to define instants in terms of dura-

tions, thusmaking it possible to view a temporal instant

as a “secondary” construct from the logic of durations.

In 1972 Charles Hamblin [6] independently also

put forth a theory of the logic of durations. He

achieved his results using a different technique involv-

ing the relation:
ameets b � def a < b ^ :ð9c : a < c ^ c < bÞ

A decade later, James Allen [1], in part together with

Patrick Hayes [2], showed that two arbitrary durations

(in linear time) can be related in exactly 13 ways. It has

been shown that all these durational theories are equiv-

alent when seen from an ontological point of view.

They all show that just as durations (temporal inter-

vals) can be set-theoretically constructed from an in-

stant-logic, it is also possible to construct instants

mathematically from durations. In fact, all the dura-

tional theories put forth so far appear to give rise to the

same ontological model.

The theories formulated by Walker, Hamblin, and

Allen can all be said to be B-theoretical. But Buridan’s

studies already suggested that it is possible to take an

A-theoretical approach to durational logic. In modern

durational logic an idea similar to Buridan’s absolute/

relative distinction was introduced in 1980 by Peter

Röper [13] and others (see [8, 312 ff]).

Time and Narratives

A narrative is a text which presupposes a kind of event

structure, i.e., a story. The temporal order of the story

Time in Philosophical Logic T 3111

T

is often called “told time.” In many cases the story can

be represented as a linear sequence of events. However,

even if the event structure of the system is linear, the

discourse structure can be rather complicated, since

the reader (user) can in principle be given access to

the events in any order. The order in which the events

are presented is often referred to as “telling time.”

Keisuke Ohtsura and William F. Brewer [10] have

studied some interesting aspects regarding the relation

between the event structure (told time) and the dis-

course structure (telling time) of a narrative text.

Key Applications
The philosophy of time has typically been carried out for

its own sake. In many cases philosophers and logicians

have seen the study of time as intimately related to

essential aspects of human existence as such. For this

reason, the study of time within philosophical logic has

been motivated by a fundamental interest in the con-

cepts dealing with time themselves and not by the search

for a possible application. Nevertheless, such fundamen-

tal studies of time have turned out to give rise to theories

andmodels which are useful inmany ways. For instance,

A. N. Prior’s analysis of the systematic relation between

the dynamic and the static approach to time led him to

the invention of what is now called hybrid logic (http://

hylo.loria.fr). In general, temporal logic has turned out

to be very useful in artificial intelligence and in other

parts of computer science.

A. N. Prior’s tense logic seems especially relevant

for a proper description of the use of interactive sys-

tems. A description of such systems from a B-logical

point of view alone cannot be satisfactory, since that

would ignore the user’s “nowness” which is essential in

relation to the user’s choices and thus to the very

concept of interactivity. On the other hand, if a con-

ceptual start is made from A. N. Prior’s tense logic (i.e.,

the A-logical point of view), all B-logical notions can

be defined in terms of the A-language.

The need for an A-logical description becomes

even clearer when turning to a temporal analysis of

systems which are non-linear even from a B-logical

perspective, for instance a game-like multimedia sys-

tem. In her studies of narratives and possible-world

semantics, Marie-Laure Ryan [14] has made it clear

that such a system is not to be viewed as a static

representation of a specific state of affairs. Rather, it

contains many different narrative lines which thread
together many different states of affairs. Thus it is

the choices of the user which will send the history in

case on its specific trajectory.

Cross-references
▶Allen’s Relations

▶Now in Temporal Databases

▶Qualitative Temporal Reasoning

▶Temporal Database

▶Temporal Granularity

▶Temporal Logic in Database Query Languages

▶Temporal Logical Models

▶Temporal Object-Oriented Databases

▶Time Domain
Recommended Reading
1. Allen J.F. Maintaining knowledge about temporal intervals.

Commun. ACM, 26:832–843, 1983.

2. Allen J.F. and Hayes J.P. A common-sense theory of time. In

Proc. 9th Int. Joint Conf. on AI, 1985, pp. 528–531.

3. Copeland J. Meredith, Prior, and the history of possible world

semantics. Synthese, 150(3):373–397, 2006.

4. Fraser J.T., Haber F.C., and Müller G.H. (eds.). The Study of

Time, Vol. I. Springer, Berlin 1972.

5. Gale R., (ed.). The Philosophy of Time. Prometheus Books,

New Jersey, 1968.

6. Hamblin C.L. Instants and intervals. In J.T. Fraser, F.C. Haber,

G.H. Müller (eds.). The Study of Time, Vol. I. Springer, Berlin

1972, pp. 324–331.

7. Hasle P. and Øhstrøm P. Foundations of Temporal Logic – the

WWW-site for Prior-studies. http://www.prior.aau.dk.

8. Øhrstrøm P. and Hasle P. Temporal Logic. From Ancient Ideas to

Artificial Intelligence. Kluwer Academic, Dordrecht, 1995.

9. Øhrstrøm P. and Hasle P. The flow of time into logic and

computer science. Bull. Eur. Assn. Theor. Comput. Sci.,

(82):191–226, 2004.

10. Ohtsuka K. and Brewer W.F. Discourse organization in the

comprehension of temporal order in narrative texts. Discourse

Processes, 15:317–336, 1992.

11. Prior A.N. Past, Present and Future. Oxford University Press,

Oxford, 1967.

12. Prior A.N. Papers on Time and Tense, 2nd edn. Oxford

University Press, Oxford, 2002.

13. Röper P. Intervals and tenses. J. Phil. Logic, 9:451–469, 1980.

14. Ryan M.-L. Possible Worlds, Artificial Intelligence, and Narra-

tive Theory. Indiana University Press, 1991.

15. Walker A.G. Durées et instants. La Revue Scientifique,

(3266):131 ff., 1947.

16. Whitrow G.J. Reflections on the concept of time. In The Study of

Time, Vol. I. J.T. Fraser, F.C. Haber, G.H. Müller (eds.). Springer,

Berlin, 1972, pp. 1–11.

17. Whitrow G.J. The Natural Philosophy of Time, 2nd edn. Oxford

University Press, Oxford, 1980.

3112T Time Instant
Time Instant

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Event; Moment; Time point

Definition
A time instant is a single, atomic time point in the time

domain.

Key Points
Various models of time have been proposed in the

philosophical and logical literature of time. These

view time, among other things, as discrete, dense, or

continuous.

Instants in the dense model of time are isomorphic

to the rational numbers: between any two instants

there is always another. Continuous models of time

are isomorphic to the real numbers, i.e., they are dense

and also, unlike the rational numbers, without “gaps.”

A discrete time domain is isomorphic to (a possibly

bounded subset of) the natural numbers, and a specific

instant of such a domain then corresponds to some

natural number.

The elements of a discrete time domain are often

associated with some fixed duration. For example, a

time domain can be used where the time elements are

specific seconds. Such time elements are often called

chronons. In this way, a discrete time domain can

approximate a dense or continuous time domain.

A time domain may be constructed from another

time domain by mapping its elements to granules. In

this case, multiple instants belong to the same granule,

and the same granule may therefore represent different

instants. For example, given a time domain of seconds,

a time domain of day-long granules can be constructed.

Concerning the synonyms, the term “event” is

already used widely within temporal databases, but

is often given a different meaning, while the term

“moment” may be confused with the distinct terms

“chronon” or “granule.”
Cross-references
▶Chronon

▶ Event
▶Temporal Database

▶Temporal Domain

▶Time Domain

▶Time Granularity

▶Time in Philosophical Logic

Recommended Reading
1. Bettini C., Dyreson C.E., Evans W.S., Snodgrass R.T., and Wang

X.S. A glossary of time granularity concepts. In Temporal Data-

bases: Research and Practice, O. Etzion, S. Jajodia, S. Sripada

(eds.). LNCS 1399, Springer, Berlin, 1998, pp. 406–413.

2. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Tempo-

ral Databases: Research and Practice, O. Etzion, S. Jajodia,

S. Sripada (eds.). LNCS 1399, Springer-Verlag, Berlin, 1998,

pp. 367–405.
Time Interval

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Duration; Span; Time distance; Time period

Definition
Definition 1:

A time interval is a convex subset of the time do-

main. A time interval may be open or closed (at either

end) and can be defined unambiguously by its two

delimiting time instants. In a system that models the

time domain using granules, an interval may be repre-

sented by a set of contiguous granules.

Definition 2:

An interval is a directed duration of time. A dura-

tion is an amount of time with known length, but no

specific starting or ending instants. For example, the

duration “1 week” is known to have a length of 7 days,

but can refer to any block of seven consecutive days. An

interval is either positive, denoting forward motion of

time, or negative, denoting backwards motion in time.

Key Points
Unfortunately, the term “time interval” is being used

in the literature with two distinct meanings: as the time

between two instants, in the general database research

Time Sequence Query T 3113
literature and beyond, and as a directed duration of

time, in the SQL database language. The term “time

period” is associated with the first definition above.

Definition 1 is recommended for non-SQL-related

scientific work. Definition 2 is recommended for SQL-

related work.

Concerning the synonyms, the unambiguous term

“span” has been used previously in the research litera-

ture, but its use seems to be less widespread than

“interval.” While precise, the term “time distance” is

also less commonly used. A “duration” is generally

considered to be non-directional, i.e., always positive.

Cross-references
▶Temporal Database

▶Temporal Granularity

▶Time Domain

▶Time Instant

▶Time Period

▶Time Span

Recommended Reading
1. Bettini C., Dyreson C.E., Evans W.S., Snodgrass R.T., and Wang

X.S. A glossary of time granularity concepts. In Temporal Data-

bases: Research and Practice, O. Etzion, S. Jajodia, S. Sripada

(eds.). LNCS 1399, Springer, Berlin, 1998, pp. 406–413.

2. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary

of temporal database concepts – February 1998 version.

In Temporal Databases: Research and Practice, O. Etzion,

S. Jajodia, S. Sripada (eds.). LNCS 1399, Springer-Verlag, Berlin,

1998, pp. 367–405.

3. Lorentzos N.A. and Mitsopoulos Y.G. SQL extension for interval

data. IEEE Trans. Knowl. Data Eng., 9(3):480–499, 1997.
T

Time Period

NIKOS A. LORENTZOS

Agricultural University of Athens, Athens, Greece

Synonyms
Time interval

Definition
If the time domain is a totally ordered set T = {t1, t2,

t3...} then a time period over T is defined as a convex

subset of elements from T.

Example: If T = {d1, d2, d3,...}, where di are consec-

utive dates, then [d10, d20] and [d30, d80] represent two

time periods over T.
Key Points
In the area of temporal databases, a time period over

T is usually defined as a distinct data type. Some

researchers define a time period data type of the form

[tp, tq]. Some others define such a data type of the

form [tp, tq), i.e., its right end is closed.

Note that, initially, the term time interval was

used instead of time period. This was later abandoned

in order to avoid confusion, given that interval is a

reserved word in SQL. Instead, time interval in today

used with a different meaning (see time interval).

Cross-references
▶Absolute Time

▶Chronon

▶ Period-Stamped Temporal Models

▶Time Domain

▶Time Interval

▶Temporal Granularity
Time Period Set

▶Temporal Element
Time Point

▶Time Instant
Time Quantum

▶Chronon
Time Sequence

▶History in Temporal Databases
Time Sequence Query

▶Time Series Query

3114T Time Sequence Search
Time Sequence Search

▶Time Series Query
Time Series

▶History in Temporal Databases
Time Series Data Mining

▶Temporal Data Mining
Time Series Database Querying

▶Query by Humming
Time Series Query

LIKE GAO
1, X. SEAN WANG

2

1Teradata Corporation, San Diego, CA, USA
2University of Vermont, Burlington, VT, USA

Synonyms
Time sequence query; Time series search; Time

sequence search

Definition
A time series query refers to one that finds, from a set

of time series, the time series or subseries that satisfy

a given search criteria. Time series are sequences of data

points spaced at strictly increasing times. The search

criteria are domain specific rules defined with time

series statistics or models, temporal dependencies,

similarity between time series or patterns, etc. In par-

ticular, similarity queries are of great importance for

many real world applications like stock analysis,

weather forecasting, network traffic monitoring, etc.,

which often involve high volumes of time series data

and may use different similarity measures or pattern

descriptions. In many cases, query processing consists
of evaluating these queries in real-time or quasi-real

time by using time series approximation techniques,

indexing methods, incremental computation, and

specialized searching strategies.

Historical Background
Time series queries play a key role in temporal data

mining applications such as time series analysis and

forecasting. It was in the recent years that these applica-

tions with massive time series data became possible due

to the rapidly emerging query processing techniques,

especially those for similarity queries. In 1993, Rakesh

Agrawal et al. [1] proposed an indexing method for

processing similarity queries in sequence databases.

The keywas tomap time series to a lower dimensionality

space by only using the first few Fourier coefficients of

the time series, and building R*-trees to index the time

series. This work laid out a general approach of using

indexes to answer similarity queries with time series. In

1994, Christos Faloutsos et al. [6] extended this work to

subsequence matching and proposed the GEMINI

framework for indexing time series. In 1997, Davood

Rafiei and Alberto Mendelzon [12] proposed a set of

linear transformations on the Fourier series representa-

tion of a time series that can be used as the basis for

similarity queries. Subsequent works have focused on

new dimensionality reduction techniques [2,9,10], new

similarity measures [4,5,14], and queries over streaming

time series [3,7,15].

Foundations

Basic Concepts

A time series x is a sequence of data points spaced at

strictly increasing times. The number of elements in the

sequence is called the length of the time series. The data

points are often real numbers, and therefore x can

often be represented as a vector of real numbers,

xðnÞ ¼ hxt1 ;:::;xtni, where n is the length of x, and

each ti is the timestamp associated with the data

point with ti< ti+1 for i = 1,...,n� 1. The time intervals

between successive data points are usually, but not

always, assumed uniform, and hence ti+1 � ti is

often assumed a constant for i = 1,...,n � 1. When

the specific ti values are irrelevant but only signify

the temporal order, x is also represented as

xðnÞ ¼ hx1;:::; xni. A subsequence of x that consists

of consecutive elements is called a subseries or segment

Time Series Query T 3115

T

of x. Time series normally refer to those finite

sequences of static elements. If the sequence has new

elements continuously appended over time, they are

specially called streaming time series [7].

Raw time series often need pre-processing to fit the

application needs. It is possible to perform the follow-

ing pre-processing to remove irregularities of time

series. Time regulation is to convert a non-uniform

time series to a uniform one with interpolation func-

tions to obtain the elements at uniform time intervals.

Normalization is to make the distance between two

time series invariant to offset shifting and/or ampli-

tude scaling. For example, given time series x, its mean

�x and standard deviation sx, the normalization func-

tion can be either ~x ¼ ðx � �xÞ or ~x ¼ ðx � �xÞ=sx. Lin-
ear trend reduction is to remove the seasonal trend

impact on time series, e.g., ~xti ¼ xti � ða�t i þ bÞ for
all i. To reduce data noise, smoothing techniques such

as moving average can also be applied.

Similarity is the degree of resemblance between

two time series, and the choice of similarity measure

is highly domain dependent. For applications without

value scaling and time shifting concerns, a simple

Lp-norm Distance, of which L1 and L2 are the well

known Manhattan and Euclidean Distances, respec-

tively, is sufficient. For other applications, more robust

similarity measures may be needed, such as scale in-

variant distances (such as correlation), warping dis-

tances that allow an elastic time shifting (such as

DTW or Dynamic Time Warping, Longest Common

Subsequence and Spatial Assembling Distances [3]),

Edit Distance With Real Penalty (ERP) [4], and

model based and histogram based distances. Since

most similarity measures are defined non-negative,

and the smaller the values, the closer the time series,

the notions of similarity and distance are often used

interchangeably.

Example 1 (Lp-norm Distances, a.k.a. Min-

kowski Distance): Given time series x(n) and y(n),

and positive integer p, let

Lpðx; yÞ ¼
ffiXn

i¼1jxi � yij
pp

q
:

A special case is given as L1(x, y) = max{jxi � yij,
i = 1,...,n}. Note when p!1, Lp(x, y) = L1(x, y).

Example 2 (DTW Distance): Given time series

x(m) and y(n), then recursively, for all 1 � i � m and

1 � j � n
DTW ðxðiÞ; yðjÞÞ ¼ dðxi; yjÞ þminfDTW ðxði � 1Þ;
yðj � 1ÞÞ;DTW ðxði � 1Þ; yðjÞÞ;
DTW ðxðiÞ; yðj � 1ÞÞg;

where d() is a distance function defined on two ele-

ments xi and yj, and x(i) and y(j) denote the prefixes

of the time series x(m) and y(n) of lengths i and j,

respectively. The base case of the above is when i = j = 1

in which case DTW(x(1),y(1)) = d(x1, y1). When both

i and j are 0, DTW(x(0),y(0)) is defined as 0. Other-

wise, when either i or j is out of range, DTW(x(i),y(j))

is defined as + 1. DTW is usually accompanied with

one of the following global constraints, in regard to the

two prefix lengths i and j.

Sakoe-Chiba Band: The allowed range of i

and j in the definition above satisfies jj � ij� r for

some r � 0.

Itakura Parallelogram: Use the constraint

g(i) � j � i � f (i) for i and j, where f and g are

functions of i such that the allowed region for j�i
given by the constraint shows a parallelogram shape

with two opposing corners at (0,0) and (m,n),

respectively.

Example 3 (Edit Distance With Real Penalty

[4]): Given time series x(m) and y(n), recursively for

all i � m and j � n, let

ERPðxðiÞ; yðjÞÞ ¼

min

ERPðxði � 1Þ; yðj � 1ÞÞ þ dðxi; yjÞ
ERPðxði � 1Þ; yðjÞÞ þ dðxi; gÞ
ERPðxðiÞ; yðj � 1ÞÞ þ dðg ; yjÞ

8><
>:

In the above, g is a constant value (and can be 0), x(i) =

y(j) = hgi (i.e., a time series of length 1) is assumed for

all i � 0 and j � 0, and d(a, b) = ja � bj. The base case
of the above is when both argument time series are of

length 1 in which case ERP(x, y) = d(x1, y1). Intuitively,

the constant g is used to fill a gap referring to an added

element.

Time Series Query

Many forms of time series queries have been proposed

over the years. Among them, one of the mostly used is

similarity search, defined as follows: Given a set of

candidate time series X, a similarity measure D, and

a query series y, (i) find all the series in X whose

distances to y are within a given threshold (near neigh-

bor query), and (ii) find k series in X that are closest to

3116T Time Series Query
y (k-nearest neighbor query). Other queries are also

possible, e.g., all pairs query that finds, in X, all pairs of

series with distance below a given threshold. Besides

similarity search, other types of queries include detect-

ing elastic burst over streaming time series, retrieving

values at any arbitrary time [13], etc. In the following,

time series query refers to similarity search.

The time series query can be either whole series

matching or subseries matching. The former refers to

the query that concerns the whole time series, both

for the query series y and each candidate series x in

X. The latter concerns the subseries of all x in X.

For example, given time series y(l), for each x(n) 2 X,

the latter query may need to consider x(i + 1,i + l) =

hxi+1,...,xi+li for all 0 � i � n � l.

In the above definition, if the query object is a set of

patterns, the query is called pattern matching. A pattern

is an abstract data model of time series, often seen as a

short sequence, representing a class of time series that

have the same properties. For pattern matching, all the

involved time series may be mapped to the space in

which the patterns and the similarity measure are

defined.

Like the notion of time series, time series queries by

default refer to those with static time series. In case of

streaming time series, the queries are often monitoring

the subseries within a sliding widows, and need to be

evaluated periodically or continually to identify the

similar series or those with the given patterns [7,15].

Query Processing: Index-based Methods for Similarity

Search

Due to large volumes of data and the complexity of

similarity measures, directly evaluating time series

queries is both I/O and CPU intensive. There are

many approaches to process these queries efficiently.

Among them, one is to convert time series to other data

types (e.g., strings and DNA sequences), so that the

corresponding search techniques (e.g., string matching

and DNA sequence matching) can be applied. Another

approach is to index time series based on their approx-

imations (or features), which is detailed in the

following.

Time series x of length n can be viewed as a point in

an n-dimensional space. However, spatial access meth-

ods such as kd-tree and R-tree cannot be used to index

the time series directly. The problem is due to the

dimensionality curse – the performance of spatial access

methods degrades rapidly once the dimensionality is
above 16, while n is normally much larger than this

number.

The general solution is to map time series to points

in a lower N-dimensional space (N << n) and then

construct the indexes in this space. The mapped points

are called the time series approximation. Each dimen-

sion of the N-dimensional space represents one char-

acteristic of the time series, such as mean, variance,

slope, peak values, or a Fourier coefficient, at some

coarse levels of time granularity and possibly within

a shifted time window. Further, the domain of the

N-dimensional space can be nominal so the time series

approximation can be represented as a symbolic

sequence [11].

Example 4 (Piecewise Aggregate/Constant

Approximation [14,8]): Time series x of length mN

can be mapped to a point in the N-dimensional space:

�x ¼ ð�x1;:::; �xN Þ where the value in the ith dimension

is the mean over the ith segment of x,

�xi ¼ 1
m

Pmi
j¼mði�1Þþ1xj .

Example 5 (Line Fitting Approximation

[11]): Given an alphabet A{“up”, “down”, “flat”},

define a mapping function sðzÞ 2 A where z is a time-

series of length m. Time series x of length mN can be

mapped to a length-N symbolic sequence, hs(x1,...,xm),
s(xm+1,...,x2m),..., s(x(N�1)m+1,...,xmN)i, e.g., h“up”, “up”,
...,“down”i. Function s can be line fitting and, based on

the slope of the fitting line, decides if the value is “up”

or “down” etc.

A multi-step algorithm can be used to process a

query. Take the k-nearest neighbor search as an exam-

ple. First step: find k-nearest neighbors in the lower-

dimensional index structure. Find the actual distance

between the query series and the kth nearest neighbor.

Second step: use this actual distance as a range query

to find (in the lower-dimensional index) all the data-

base points. Third step: calculate the actual distances

found in step 2 and obtain the actual k-nearest neigh-

bors. An improvement to this algorithm is to incremen-

tally obtain nearest neighbors in the lower-dimensional

approximation, and each time an actual distance

is obtained, it is used to remove some database points

that are returned by the range query (second step

above).

The index-based methods need to guarantee

soundness (no false alarms) and completeness (no

false dismissals) in the query result. Soundness can be

guaranteed by checking the original data as in step 3.

The completeness can be guaranteed only if the chosen

Time Series Query T 3117

T

approximation method has the lower-bounding pro-

perty [6]. That is, given a similarity measure D, for

any candidate time series x and query time series y,

let �x and �y be their lower-dimensional approximations

and D
0
be the distance defined on �x and �y, then D

0ð�y; �xÞ
� D(y, x) must hold for any x and y.

Example 6 (Lower Bounding Approximation

for Euclidian Distance): Method (1): apply an

orthonormal transform (Fourier transform, Wavelet

transform, and SVD) to both query and candidate

time series and ignore many “insignificant” axes after

the transform. The distance defined on the remaining

axes gives the lower bounding approximation for Eu-

clidian Distance [1]. Method (2): apply segmented

mean approximation to both query and candidate

time series. It is easy to see
ffiffiffiffi
mp
p

Lpð�x; �yÞ � Lpðx; yÞ for
all p, while m is the factor of dimensionality reduction,

i.e., x’s length divided by �x’s. Since this lower-bounding

approximation works for all p, one index tree can

be used for all Lp-norm distances [8,14].

Example 7 (Lower Bounding Approximation

for DTW Distance [9]): To derive a lower bounding

approximation for DTW, approximate the candidate

time series x using segmented mean approximation,

and approximate the query time series y as follows.

Let y =hy1,...,ymNi. Define U =hU1,...,UmNi and

L =hL1,...,LmNi where Ui = max(yi�r ,...,yi+r) and Li =

min(yi�r ,...,yi+r) (r is the allowed range for m � n

in Sakoe-Chiba Band or Itakura Parallelogram).

Sequences U and L form a bounding envelope that

encloses y from above and below. Then reduce

U and L to a lower dimension N, define

Û ¼ hÛ 1;:::;ÛN i and L̂ ¼ hL̂1;:::; L̂N i, where

Û i ¼ maxðU ði�1Þmþ1;:::;UimÞ and L̂i ¼ min

ðLði�1Þm;:::;LimÞ, that is, Û and L̂ are piecewise constant

functions that bound U and L, respectively. Let

LB PAAðy; �xÞ ¼

ffi
m
XN
i¼1

ð�xi � Û iÞ
2

if �xi > Ûi;

ð�xi � L̂iÞ
2

if �xi < L̂i;
0 otherwise:

8<
: ;

vuuut

then LB_PAA(y, �x) � DTW(y, x).

Query Processing: Similarity Search over Streaming

Time Series

These queries are different from those with static time

series, in that (i) having a sliding window or windows

of multiple lengths at the same time; (ii) continuous

monitoring; and (iii) incremental evaluation. In the
following, consider the two problems: Euclidean dis-

tance or correlation monitoring among pairs of

streams, and Euclidean distance or correlation moni-

toring between a stream time series and a time series

database.

The first query problem is, given many streaming

time series, how to find pairs of time series that have

strong (positive or negative) correlations in the last

sliding window [15].

The idea is to use the notion of “basic windows,”

similar to segmented mean application. Instead of

mean, the coefficients of the Fourier transform of

each segment is used to approximate the time

series. Given x =hx1,...,xbi and y =hy1,...,ybi , where b

is the size of the basic window. If xi ¼
PN�1

m¼0 C
x
m fmðiÞ

and yi ¼
PN�1

m¼0 C
y
m fmðiÞ is a family of orthogonal

functions, then the inner product of x and y,

x�y ¼
Xb
i¼1

xiyi

¼
Xb
i¼1
ð
XN�1
m¼0

Cx
m f mðiÞ

XN�1
p¼0

Cy
p f pðiÞÞ

¼
XN�1
m¼0

XN�1
p¼0

Cx
mC

y
pð
Xb
i¼1

f mðiÞf pðiÞÞ:

Note
Pb

i¼1 fmðiÞfpðiÞ does not depend on x and y and

can be pre-computed. From this, the inner product of

two time series can be computed for each sliding win-

dow aligned with the basic windows (i.e., a sliding

window must be the union of some basic windows).

Fourier bases can be used as the f functions, and

discrete Fourier transform (DFT) can compute the

coefficients efficiently in an incremental way.

By only taking a few Fourier coefficients (small N),

the approximate inner products and hence the Euclid-

ean distance can be evaluated efficiently. To compute

correlations, the normalized series of x̂i ¼ ðxi � �xÞ=sx
need only be considered, where �x and sx are the mean

and standard deviation of x over the sliding window.

A step further: since two series are highly correlated

if their DFT coefficients are similar, an indexing struc-

ture can help to store the coefficients and look for

series with high correlation only in series with similar

coefficients.

The second query problem is, given a database of

pattern time series, a streaming time series, and win-

dow size N, how to find the nearest neighbor of the

3118T Time Series Query
streaming time series (using the last N values) in the

database, at each time position [7].

The idea is a batch processing that uses fast Fourier

transform (FFT) and its inverse to calculate the cross

correlation of streaming time series and patterns

at many time positions. Given x =hx1,...,xNi and

y =hy1,...,yNi , the circular cross correlation sequence

is defined as

CirCCorr
x;y
d ¼

XN
i¼1

xðdþi�1Þ mod Nyi; d ¼ 1; 2;:::;N ;

where d is the time lag. Let ẋ and ẏ be the DFT trans-

forms of x and y respectively, then sequence hẋ1ẏ∗1,...,

ẋN ẏN
∗i is the result of DFT transform of CirCCorrx,y.

Here ẏ∗i is the conjugate of ẏi.

With the CirCCorr, calculation of the Euclidean dis-

tances of a number of time positions can be done in a

batchmode. This is faster than calculating the individual

distances, as the batch process has time complexity

O(NlgN), as compared to the direct computing of

O(Nl), where l (l < N) is the number of time positions

covered by one batch processing. So it is profitable to

wait for a few time steps and then find the nearest

neighbors for these time steps all together. The longer

the wait is, the more computation time saved. How-

ever, this causes a lengthening of the response time, i.e.,

a loss of the chance of finding the answer as early as

possible. To overcome this, one may use a certain

model to roughly predict the future values of the

time series and apply the batch processing to compute

all the Euclidean distance (or correlations) of many

future time positions. When the actual values come,

triangular inequality can filter out a lot of time series in

the database that are not the nearest neighbor [7].
Key Applications
Market data analysis and trend predication, network

traffic control, intrusion detection, temporal data

mining.
Data Sets
1. UCR Time Series Classification/Clustering Page:

http://www.cs.ucr.edu/�eamonn/time_series_data/

2. PhysioBank: Physiologic Signal Archives for Bio-

medical Research (including ECG and synthetic

time series with known characteristics): http://

www.physionet.org/physiobank/
URL to Code
1. Above URL 1.

2. ANN: A Library for Approximate Nearest Neighbor

Searching: http://www.cs.umd.edu/�mount/ANN/

Cross-references
▶Curse of Dimensionality

▶Dimensionality Reduction

▶Discrete Wavelet Transform and Wavelet Synopses

▶High Dimensional Indexing

▶ Indexing and Similarity Search

▶Nearest Neighbor Query

▶Range Query

▶R-tree (and Family)

▶ Sequential patterns

▶ Singular Value Decomposition

▶ Stream Similarity Mining

▶Temporal data mining

▶Top-K Selection Queries on Multimedia Datasets
Recommended Reading
1. Agrawal R., Faloutsos C., and Swami A.N. Efficient

similarity search in sequence databases. In Proc. 4th Int.

Conf. on Foundations of Data Organization and Algorithms,

1993, pp. 69–84.

2. Chan K.P. and Fu A.W.-C. Efficient time series matching by

wavelets. In Proc. 15th Int. Conf. on Data Engineering, 1999,

pp. 126–133.

3. Chen Y., Nascimento M.A., Ooi B.C., and Tung A.K.H. Spade:

on shape-based pattern detection in streaming time series.

In Proc. 23rd Int. Conf. on Data Engineering, 2007, pp. 786–795.

4. Chen L. and Ng R. On the marriage of lp-norms and edit

distance. In Proc. 30th Int. Conf. on Very Large Data Bases,

2004, pp. 792–803.

5. Das G., Gunopulos D., and Mannila H. Finding similar time

series. In Principles of Data Mining and Knowledge Discovery,

1st European Symp., 1997, pp. 88–100.

6. Faloutsos C., Ranganathan M., and Manolopoulos Y. Fast sub-

sequence matching in time-series databases, In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1994, pp. 419–429.

7. Gao L. and Wang X.S. Continuous similarity-based queries

on streaming time series. IEEE Trans. Knowl. Data Eng.,

17(10):1320–1332, 2005.

8. Keogh E.J. and Pazzani M.J. Scaling up dynamic time

warping for datamining applications. In Proc. 6th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,

2000, pp. 285–289.

9. Keogh E.J. and (Ann) Ratanamahatana C. Exact indexing of

dynamic timewarping. Knowl. Inform. Syst., 7(3):358–386, 2005.

10. Korn F., Jagadish H.V., and Faloutsos C. Efficiently supporting

ad hoc queries in large datasets of time sequences. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1997,

pp. 289–300.

Time-Dependent Networks T 3119
11. Qu Y., Wang C., Gao L., and Wang X.S. Supporting movement

pattern queries in user-specified scales. IEEE Trans. Knowl. Data

Eng., 15(1):26–42, 2003.

12. Rafiei D. and Mendelzon A. Similarity-based queries for time

series data. In Proc. ACM SIGMOD Int. Conf. on Management

of Data. 1997, pp. 13–25.

13. Revesz P., Chen R., and Ouyang M. Approximate query evalua-

tion using linear constraint databases. In Proc. 8th Int. Symp.

Temporal Representation and Reasoning, 2001, pp. 170–175.

14. Yi B.-K. and Faloutsos C. Fast time sequence indexing for arbi-

trary LP norms. In Proc. 26th Int. Conf. on Very Large Data

Bases, 2000, pp. 385–394.

15. Zhu Y. and Shasha D. Statstream: statistical monitoring of

thousands of data streams in real time. In Proc. 28th Int. Conf.

on Very Large Data Bases, 2002, pp. 358–369.
Time Series Search

▶Time Series Query
T

Time Span

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tuscon, AZ, USA

Synonyms
Time interval; Time distance

Definition
A span is a directed duration of time. A duration is an

amount of time with known length, but no specific

starting or ending instants. For example, the duration

“1 week” is known to have a length of 7 days, but can

refer to any block of seven consecutive days. A span is

either positive, denoting forward motion of time, or

negative, denoting backwards motion in time.

Key Points
Concerning the synonyms, the terms “time interval” is

generally understood to denote an anchored span in

the general community of computer science. Only in

the SQL language does “time interval” denote a span.

The term “span,” which has only one definition, is thus

recommended over “time interval” for works not

related to the SQL language. This use is unambiguous.

A “duration” is generally considered to be non-

directional, i.e., always positive. The term “time dis-

tance” is precise, but is longer.
Cross-references
▶ Fixed Span

▶Temporal Database

▶Time Instant

▶Time Interval

▶Variable Span

Recommended Reading
1. Bettini C., Dyreson C.E., Evans W.S., Snodgrass R.T., and

Wang X.S. A glossary of time granularity concepts. In Temporal

Databases: Research and Practice, O. Etzion, S. Jajodia,

and S. Sripada (eds.). LNCS 1399, Springer, Berlin, 1998,

pp. 406–413.

2. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Tempo-

ral Databases: Research and Practice, O. Etzion, S. Jajodia, and

S. Sripada (eds.). LNCS 1399, Springer Verlag, Berlin, 1998,

pp. 367–405.
Time Unit

▶Chronon
Time-based Access Control

▶Temporal Access Control
Time-based Window

▶Windows
Time-Constrained Transaction
Management

▶Real-Time Transaction Processing
Time-Dependent Graphs

▶Time Aggregated Graphs
Time-Dependent Networks

▶Time Aggregated Graphs

3120T Time-Line Clock
Time-Line Clock

CURTIS DYRESON

Utah State University, Logan, UT, USA

Synonyms
Clock; Base-line clock; Time-segment clock

Definition
In the discrete model of time, a time-line clock is

defined as a set of physical clocks coupled with some

specification of when each physical clock is authori-

tative. Each chronon in a time-line clock is a chronon

(or a regular division of a chronon) in an identified,

underlying physical clock. The time-line clock switches

from one physical clock to the next at a synchronization

point. A synchronization point correlates two, distinct

physical clock measurements.
Key Points
A time-line clock is the clock for (concrete) times

stored in a temporal database. A time-line clock glues

together a sequence of physical clocks to provide a

consistent, clear semantics for a time-line. Since the

range of most physical clocks is limited, a time-line

clock is usually composed of many physical clocks.

For instance, a tree-ring clock can only be used to

date past events, and the atomic clock can only be

used to date events since the 1950s. Though several

physical clocks might be needed to build a time-line, in

some cases a single physical clock suffices. For instance

SQL2 uses the mean solar day clock – the basis of the

Gregorian calendar – as its time-line clock.
Cross-references
▶Chronon

▶ Physical Clock

▶Time Instant
Recommended Reading
1. Dyreson C.E. and Snodgrass R.T. Timestamp semantics and

representation. Inf. Syst., 18(3):143–166, 1993.

2. Dyreson C.E. and Snodgrass R.T. The baseline clock. The

TSQL2 Temporal Query Language. Kluwer, Norwell, MA,

1995, pp. 73–92.

3. Fraser J.T. Time: The Familiar Stranger. University of

Massachusetts Press, Amherst, MA, 1987, p. 408.
Time-Oriented Database

▶Temporal Database
Time-Segment Clock

▶Time-Line Clock
Timeslice Operator

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Rollback operator; State query

Definition
The valid-timeslice operator may be applied to any

temporal relation that captures valid time. Given also

a valid-time element as a parameter, it returns the

argument relation reduced in the valid-time dimen-

sion to just those time(s) specified by the valid-time

element. The transaction timeslice operator is defined

similarly, with the exception that the argument relation

must capture transaction time.
Key Points
Several types of timeslice operators are possible. Some

may restrict the time parameter to intervals or instants.

Some operators may, given an instant parameter,

return a conventional relation or a transaction-time

relation when applied to a valid-time or a bitemporal

relation, respectively; other operators may always re-

turn a result relation of the same type as the argument

relation.

Oracle supports timeslicing through its flash-

back queries. Such queries can retrieve all the versions of

a row between two transaction times (a key-transaction-

time-range query) and allows tables and databases

toberolledbacktoaprevioustransactiontime,discarding

all changes after that time.

Concerning the synonyms, “rollback operator” is

an early term that has since been abandoned. This

term indicates that the result of a timeslice is a

Topic Detection and Tracking T 3121
relation obtained by moving backwards in time, pre-

sumably from the current transaction time. This kind

of result is less general than those that may be obtained

using a timeslice operator. Specifically, this kind of

result assumes a time parameter that extends from

the beginning of the time domain to some past time

(with respect to the current time). Similarly, “state

query” suggests a less general functionality than what

is actually offered by timeslice operators.

Cross-references
▶Bitemporal Relation

▶Temporal Database

▶Temporal Element

▶Temporal Query Languages

▶Time Instant

▶Time Interval

▶Transaction Time

▶TSQL2

▶Valid Time

Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Tempo-

ral Databases: Research and Practice, O. Etzion, S. Jajodia,

S. Sripada (eds.). LNCS 1399, Springer-Verlag, Berlin, 1998,

pp. 367–405.
TIN

▶Triangulated Irregular Networks
T

Tiny Aggregation (TAG)

▶ In-Network Query Processing
TinyDB

▶ In-Network Query Processing
TinySQL

▶Database Languages for Sensor Networks
t-Norm

▶Triangular Norms
Topic Detection and Tracking

NING LIU

Microsoft Research Asia, Haidian, China

Definition
According to the definition at http://projects.ldc.

upenn.edu/TDT/, Topic Detection and Tracking

(TDT) is a multi-site research project to develop core

technologies for a news understanding systems. Specif-

ically, TDT systems discover the topical structure in

unsegmented streams of news reporting as it appears

across multiple media and in different languages. Some

terms are defined below before the TDT problem is

fully understood (The definitions are borrowed from

Omid Dadgar’s work).

1. Event – An event is something that happens at

some specific time and place, and the unavoidable

consequences. Specific elections, accidents, crimes

and natural disasters are examples of events.

2. Activity – An activity is a connected set of actions

that have a common focus or purpose. Specific

campaigns, investigations, and disaster relief efforts

are examples of activities.

3. Story – A story is a newswire article or a segment of

a news broadcast with a coherent news focus. They

must contain at least two independent, declarative

clauses.

4. Topic – The topic is defined as a seminal event or

activity, along with all directly related events and

activities.

With the definition of topic, the Topic Detection

and Tracking can be known as to investigate the

state of the art in finding and following new events in

a stream of broadcast news stories. According to the

Pilot-study, the original TDT problem consists of three

major tasks: (i) segmenting a stream of data, especially

recognized speech, into distinct stories; (ii) identifying

those news stories that are the first to discuss a new

event occurring in the news; and (iii) given a small

3122T Topic Detection and Tracking
number of sample news stories about an event, finding

all following stories in the data stream.

Historical Background
The TDT study starts from 1996 through a Pilot-study

[2] which aims to explore the approaches and perfor-

mance baselines. After that, it quickly attracted much

attention. Followed by the TDT2, TDT3 etc, increasing

number of research works are focusing on the TDT

problem. TDT2 in 1998 was the first major step in

TDT after the pilot study since it established the foun-

dation for the following works. It addresses the

same three problems, which are segmentation, detec-

tion, and tracking with the original Pilot study.

The evaluation procedures were modified and the

volume and variety of data and the number of tar-

get topics were expanded. TDT2 attacked the probl-

ems introduced by imperfect, machine-generated

transcripts of audio data. The TDT3 was used for the

year 1999, 2000 and 2001 test. The TDT4 and TDT5

are used for the year 2002, 2003 and 2004 test

respectively.

From the algorithms’ perspective, start from the

Pilot-study, many algorithms and applications about

TDT have been proposed [1]. As some examples, in the

Pilot-study, the Dragon approach, UMass approach

and CMU approach were introduced for text segmen-

tation. The same three approaches are used for new

event detection. They are finally utilized for event

tracking. As some recent progresses, Masaki et al. pro-

posed the Topic Detection and Tracking for News

Web Pages by cluster and SuffixTree [4]. He et al.

proposed to conduct the topic detection and Tracking

by topic sensitive language model [5]. Makkonen et al.

proposed to utilizing the temporal information for

topic detection and tracking. In the next section, the

TDT problems is considered as several sub-problems.

Some algorithms are summarized to address the sub-

problems of TDT.

Foundations
According to the Pilot study [1], the TDT problem

has the following several sub-problems (the major

contents of this section is borrowed from the Pilot

study).

The Segmentation Task

The segmentation task is defined to be the task of

segmenting a continuous stream of text (including
transcribed speech) into its constituent stories. To sup-

port this task the story texts from the study corpus will

be concatenated and used as input to a segmenter. This

concatenated text stream will include only the actual

story texts and will exclude external and internal tag

information. The segmentation task is to correctly

locate the boundaries between adjacent stories, for all

stories in the corpus.

The Detection Task

The detection task is characterized by the lack of

knowledge of the event to be detected. In such a case,

one may wish to retrospectively process a corpus of

stories to identify the events discussed therein, or one

may wish to identify new events as they occur, based on

an on-line stream of stories. Both of these alternatives

are supported under the detection task.

Retrospective Event Detection

The retrospective detection task is defined to be the

task of identifying all of the events in a corpus of

stories. Events are defined by their association with

stories, and therefore the task is to group the stories

in the study corpus into clusters, where each cluster

represents an event and where the stories in the cluster

discuss the event. It will be assumed that each story

discusses at most one event. Therefore each story may

be included in at most one cluster.

Online New Event Detection

The on-line new event detection task is defined to

be the task of identifying new events in a stream of

stories. Each story is processed in sequence, and a

decision is made whether or not a new event is dis-

cussed in the story, after processing the story but

before processing any subsequent stories). A decision

is made after each story is processed. The first story

to discuss an event should be flagged YES. If the

story doesn’t discuss any new events, then it should

be flagged NO.

The Tracking Task

The tracking task is defined to be the task of associating

incoming stories with events known to the system. An

event is defined (“known”) by its association with

stories that discuss the event. Thus each target event

is defined by a list of stories that discuss it.

To solve these sub-problems, various algorithms

have been proposed. For the segmentation, as

Topic Detection and Tracking T 3123

T

addressed by the Pilot study, there is a relatively small

but varied body of previous work that has addressed

the problem of text segmentation. This work includes

methods based on semantic word networks, vector

space techniques from information retrieval and deci-

sion tree induction algorithms. As for some classical

algorithms, the Dragon’s approach to segmentation is

to treat a story as an instance of some underlying topic,

and to model an unbroken text stream as an unlabeled

sequence of these topics. In this model, finding story

boundaries is equivalent to finding topic transitions.

Given a text stream, a probability can be attached to

any particular hypothesis about the sequence and seg-

mentation of topics in the following way:

1. Transition from the start state to the first topic,

accumulating a transition probability.

2. Stay in topic for a certain number of words or

sentences, and, given the current topic, accumulate

a selfloop probability and a language model proba-

bility for each.

3. Transition to a new topic, accumulating the transi-

tion probability. Go back to step 2.

A search for the best hypothesis and corresponding

segmentation can be done using standard HMM tech-

niques and standard speech recognition tricks.

After the segmentation work, Event detection is the

problem of identifying stories in several continuous

news streams that pertain to new or previously uniden-

tified events. Using the same Dragon approach as ex-

ample, Dragon’s online and retrospective detection

systems are applications of the clustering technology

used to train background models for the segmenter.

This technology is an implementation of a k-means

clustering algorithm. The next step after event detec-

tion is the event tracking.

The TDTevent tracking task is fundamentally sim-

ilar to the standard routing and filtering tasks of Infor-

mation Retrieval (IR). Given a few sample instances of

stories describing an event (i.e., stories that provide a

description of the event), the task is to identify any and

all subsequent stories describing the same event. Event

tracking is different from those IR tasks in that events

rather than queries are tracked, and in that events have

a temporal locality that more general queries lack.

These differences shift the nature of the problem

slightly but at the same time shift the possible solutions

significantly. The narrowing of the scope of informa-

tion filtering encourages modifications to existing
approaches and invites entirely new approaches that

were not feasible in a more general query centric

setting.

Dragon’s event tracker is an adaptation of its seg-

menter. As discussed there, the segmentation algo-

rithm does segmentation and topic assignment

simultaneously. In general, the topic labels assigned

by the segmenter are not useful for classification, as

they are few in number and do not necessarily corre-

spond to categories a person would find interesting.

However, by supplementing the background topic

models with a language model for a specific event of

interest, and allowing the segmenter to score segments

against this model, it becomes possible for the segmen-

ter to output a notification of an occurrence of that

event in the news stream whenever it assigns that event

model’s label to a story. In this implementation, the

topic models have the role of determining the back-

ground against which the event model must score

sufficiently well to be identified.

Key Applications
TDT techniques have wide range of applications espe-

cially on the Web documents. As for the key applica-

tions, the major goal of TDT is to finding and

following new events in a stream of broadcast news

stories.

Future Directions
The future directions of TDT are in several fold. The

first is to propose more effective algorithms for some

classical problems such as monitoring streams of news

in multiple languages (e.g., Mandarin) and media –

newswire, radio, television, web sites or some future

combination. On the other hand, due to the rapid

growth of World Wide Web, the scale of the data for

topic detection and tracking is getting larger and larg-

er, thus more scalable algorithms are highly desired.

Another direction for exploring is to find new online

applications of the TDT problem.

Data Sets
The most commonly used corpus for TDT study start

from the Pilot-study. And then the TDT2, TDT3,

TDT2000, TDT2001, TDT4 and TDT5 were released.

The details about the datasets, tasks and evaluation

metrics can be found at http://projects.ldc.upenn.

edu/TDT/. LDC is the provider of the corpus for the

second phase of TDT and is currently developing the

3124T Topic Hierarchies
phase three corpus. As an example, some details about

TDT2 are introduced.
Recommended Reading
1. Allan J. Topic Detection and Tracking. Kluwer, Norvell, MA,

2002.

2. Allan J., Carbonell J., Doddington G., Yamron J., and Yang Y.

Topic detection and tracking pilot study final report. In Proc.

DARPA Broadcast News Transcription and Understanding

Workshop, 1998, pp. 194–218.

3. Makkonen J. and Ahonen-Myka H. Utilizing Temporal Expres-

sions in Topic Detection and Tracking. In Proc. 7th European

Conf. Research and Advanced Technology for Digital Libraries,

2003, pp. 393–404.

4. Mori M., Miura T., and Shioya I. Topic detection and tracking

for news web pages. In Proc. 2006 IEEE/WIC/ACM Int. Conf. on

Web Intelligence, 2006, pp. 338–342.

5. Ruifang H., Bing Q., Ting L., and Sheng L. The topic detec-

tion and tracking with topic sensitive language model. In

Proc. Int. Conf. on Mutilingual Information Processing, 2005,

pp. 324–327.
Topic Hierarchies

▶ Lightweight Ontologies
Topic Maps

JAMES CAVERLEE

Texas A&M University, College Station, TX, USA

Definition
Topic Maps provide a standardized way to represent

and interchange knowledge through the modeling of

abstract concepts (called topics), the relationships

among topics (called associations), and the connection

between abstract concepts and real-world resources

(called occurrences). By distinguishing the high-level

topic space from real-world resources, Topic Maps

may be used both as a semantic map among related

concepts (in the topic space) and as a way to describe

real-world resources (through occurrence mapping

from the topic space into the resource space). Topic

Maps have been formally standardized by the interna-

tional standards body ISO.
Historical Background
The pre-cursors of what are now known as Topic Maps

began in the early 1990s with an effort to merge inde-

pendently created and maintained indexes for infor-

mation sharing. This early work motivated the need for

a more general and more useful knowledge description

meta framework. By 1999, the original ISO standard

for Topic Maps was published as ISO/IEC 13250 based

primarily on SGML and the hypermedia linking lan-

guage HyTime.

Foundations
Topic Maps support the modeling and exchange of

knowledge based on a standardized framework cen-

tered around topics, occurrences, and associations

[1,3,4]. These constructions serve as n-ary connections

between items that express overarching semantics.

Using Topic Maps

According to the ISO standard, Topic Maps [2] are

designed to facilitate knowledge representation and

interchange by:

� Providing an abstract layer of topic-centered meta-

data over information resources for supporting

navigational tools like indexes, glossaries, and cita-

tion systems.

� Linking topics in a clearly defined fashion so that

users can navigate between them. Such linking can

support thesaurus-like interfaces to disparate infor-

mation stores.

� Supporting different “views” over a set of informa-

tion resources by filtering information resources

based on the metadata described in Topic Maps.

� Adding a structured layer over unstructured infor-

mation resources in the form of a markup that is

completely external to the original resources.

The Basics of Topic Maps

To represent and interchange knowledge in a standar-

dized way, Topic Maps rely on three key concepts:

(i) topics, which represent abstract concepts; (ii) asso-

ciations, which model relationships among topics; and

(iii) occurrences, which connect topics to real-world

resources.

The most basic element in a topic map is a topic. In

general, a topic is an abstract concept or subject of

concern within the framework of Topic Maps. A topic

Topic Maps T 3125

T

can be used to represent people, places, events, organi-

zations,Web pages, documents, or any other reasonable

unit of interest. In an example universe of discourse, it

may be appropriate to represent the author Jane Austen

as a topic, as well as the concepts of author, person,

novel, and so on. A topic may be associated with one or

more names; in the running example, Jane Austen the

topic may be referred to by multiple names, including

Austen, Jane Austen, and jane-austen.

Using XTM, the topic for novel and the topic for

Jane Austen (as an instance of a Writer) can be

expressed as:

<topic id="novel">

<baseName>

<baseNameString>Novel

</baseNameString>

</baseName>

</topic>

<topic id="jane-austen">

<instanceOf><topicRef xlink:href=

"#writer"/></instanceOf>

<subjectIdentity>

<subjectIndicatorRef xlink:href=

"{http://en.wikipedia.org/wiki/

Jane_Austen}"/>

<subjectIdentity>

<baseName>

<baseNameString>Austen, Jane 1775-

1817</baseNameString>

</baseName>

</topic>

Note that the Jane Austen topic includes a special

subject indicator syntax that refers to the Wikipedia

entry for Jane Austen. A subject indicator is a guideline

for a human consumer of the topic map that, although

Jane Austen the writer cannot be directly addressed by

a URL, the Wikipedia article uniquely identifies her. In

this way, the subject indicator serves as a subject identi-

fier for the topic Jane Austen. By construction, two

topics that have the same subject identifier must refer

to the same abstract concept.

The second key component of Topic Maps is an

association. An association is a relationship between

topics in a topic map. For example, a topic for the

author Jane Austen and a topic for the novel Pride and

Prejudice (which was written by Jane Austen) could be
linked by the association “written-by” which links an

instance of an Author with an instance of a Novel.

These instances serve as roles in the association. Since

associations imply no directionality, the “written-by”

association implicitly has a dual association “wrote.”

There are no limits on the number and nature of

associations in a Topic Map, so the Topic Maps para-

digm may be used to model complex and sophisticated

domains, as well as simpler domains as in the Jane

Austen example.

<association>

<instanceOf><topicRef xlink:href="#

written-by"/></instanceOf>

<member>

<roleSpec><topicRef xlink:

href="#author"/> </roleSpec>

<topicRef xlink:href="#jane_

austen"/>

</member>

<member>

<roleSpec><topicRef xlink:

href="#novel"/> </roleSpec>
<topicRef xlink:href="#pride_and_

prejudice"/>

</member>

</association>

Finally, an occurrence is a real representations of a

topic. For example, a Web-accessible file of the book

Pride and Prejudice is an occurrence of the topic of the

same name. Similarly, the Pride and Prejudice topic may

also occur in a scholarly article discussing the role of

women in British literature that happens to mention

Pride and Prejudice. In an XTM topic map, an occur-

rence must be a resource that is addressable using a

Uniform Resource Identifier (URI) or may be placed

inline as character data. Hence, an occurrence of Jane

Austen could be an external resource like a Web page

or an image, or a brief in-line description of the author.

In the following example, two of Jane Austen’s

works are referenced as occurrences:

<topic id="pride_and_prejudice">

<instanceOf><topicRef xlink:href="#

novel"/> </instanceOf>

<baseName><baseNameString>Pride

and Prejudice</baseNameString>

</baseName>

3126T Topical-Hierarchical Relevance
<occurrence>

<instanceOf><topicRef xlink:href=

"#pdf-format"/></instanceOf>

<resourceRef xlink:href="http://

www.gutenberg.org/dirs/etext98/

pandp12p2.pdf"/>

</occurrence>

</topic>

<topic id="sense_and_sensibility">

<instanceOf><topicRef xlink:href="

#novel"/> </instanceOf>

<baseName><baseNameString>Sense and

Sensibility</baseNameString>

</baseName>

<occurrence>

<instanceOf><topicRef xlink:href=

"#pdf-format"/></instanceOf>

<resourceRef xlink:href="http://

www.gutenberg.org/dirs/etext94/

sense11p.pdf"/>

</occurrence>

</topic>

Extending the Basic Model

Topic Maps can be further refined through the use of

types and scope.

A type is fundamentally a special kind of associa-

tion between topics, used to indicate that one topic is

an “instance-of” another topic. For example, since

Pride and Prejudice is a book, there may also exist

in the topic map an “instance-of” association between

the topic Pride and Prejudice and a topic representing

the concept of a book. A topic may have multiple types.

A scope provides additional contextual information

about the elements of a Topic Map. Scope allows for the

same topic map to exist at different levels of specification.

Users of the topic maps can then decide if they are

interested in things from any scope or only from one

particular scope or subset of scopes. For example, scope

can be used to provide localized names for topics – one

name for English, one for Spanish, and one for French.

Merging Topic Maps

Since Topic Maps may be developed in a distributed or

independent environment, one of the key features of

Topic Maps is the notion of merging. Merging means

that two topic maps with identical topics can have their

associations and occurrences combined together to build
a richer semantic model. In particular, two topics can be

combined (or “merged”) into a single topic containing

the union of the types, the names, and the occurrences of

the original two topics. This merged topic replaces the

original two topics wherever they participate as a role in

an association or serve as a topic type.

Using Topic Maps

The Topic Maps standard provides a reference point for

the appropriate syntax and functionality of topic maps,

leaving the implementation details of a topic maps

processing engine to commercial and non-commercial

applications and tools. Currently, there are topic map

processing libraries inmost popular languages like Java,

C, Perl, and Python. In an effort to provide a uniform

programmatic interface to topic maps, regardless of the

particular language and platform, the Common Topic

Map Application Programming Interface (TMAPI) has

been recently developed. The TMAPI specification

provides a base set of core interfaces for accessing and

manipulating topic maps.

Key Applications
Web, Semantic Web, digital libraries, business-to-

business exchange.
Cross-references
▶Conceptual Schema Design

▶RDF

▶ Semantic Web
Recommended Reading
1. Garshol L. Metadata? Thesauri? Taxonomies? Topic maps!

Making sense of it all. J. Inf. Sci., 30(4):378–391, 2004.

2. International Organization for Standardization. ISO 13250-2003

Information technology – SBML applications – Topic maps.

Available at: http://www.iso.org/iso/iso_catalogue/catalogue_tc

/catalogue_detail.htm?csnumber=38068

3. Park J. and Hunting S. (eds.). XMLTopic Maps. Addison-Wesley,

Boston, MA, USA, 2002.

4. Pepper S. The TAO of topic maps: finding the way in an age of

infoglut. In Proc. XML Europe Conf., 2000.
Topical-Hierarchical Relevance

▶Relevance

Topic-based Publish/Subscribe T 3127
Topic-based Publish/Subscribe

HANS-ARNO JACOBSEN

University of Toronto, Toronto, ON, Canada

Synonyms
Subject-based publish/subscribe

Definition
Topic-based publish/subscribe is a communication

abstraction that supports selective message dissemina-

tion among many sources and many sinks. Messages

are associated with topics and are selectively routed to

destinations with matching topic interests. Data sinks

specify interest in receiving messages of a given topic

and data sources publish messages on different topics.

Topic-based publish/subscribe is an instance of the

more general publish/subscribe concept.
T

Key Points
Topic-based publish/subscribe is an instance of the

more general publish/subscribe concept. In the topic-

based publish/subscribe model, a data source submits

publication messages associated with a topic to the

publish/subscribe system, while a data sink subscribes

its interest in receiving messages of certain topics by

submitting subscription expressions on available topics

to the system. The kind of topics to publish or subscribe

that exist is either out of band information andmust be

know to clients, or is dynamically discoverable by cli-

ents based on additional support provided by the sys-

tem. For example, by subscribing to control channel

topics, where the creation of new topics is announced.

Topics are an integral part of themessages disseminated

through the publish/subscribe system. The publish/

subscribe system only knows how to interpret the

topics, but not the rest of the publication message,

which remains opaque to the system.

A publication message published to the topic-based

publish/subscribe system is delivered to all subscribers

with matching subscriptions. A subscription matches a

publication if the topic associated with the publication

message matches the subscription expression. In very

simple realizations of this model, a topic is simply a

string that represents a name, a subject, or a topic

according to which messages are classified. In more

sophisticated realizations, topics draw from a hierarchi-

cal topic space. The topic space is used to categorize
messages. For example, in a market data dissemination

scenario, messages may be classified according to

the stock exchange, the traded commodity, and the

kind of information disseminated. A message could for

instance be associated with the following topic: /NAS-

DAQ/ABC-Inc/AskingPrice. A subscriber can

express interest in receiving messages of a specific

topic, such as by subscribing to /NASDAQ/ABC-Inc/

AskingPrice, or by defining a set of messages it is

interested in, such as /NASDAQ/ABC-Inc/*, which

indicates that the subscriber would like to receive any

message published with topic NASDAQ and ABC-Inc.

As in the other publish/subscribe models, the

topic-based publish/subscribe model decouples the

interaction among publishing data sources and sub-

scribing data sinks. The same decoupling characteris-

tics as discussed under the general publish/subscribe

concept apply here as well. Specific realizations of this

model found in practice vary in the exact decoupling

offered. To properly qualify as publish/subscribe, at

least the anonymous communication style must exist.

That is publishing clients must not be aware of who the

subscribing clients are and how many subscribing cli-

ents exist, and vice versa. Thus, topic-based publish/

subscribe enables the decoupled interaction of n

sources with m sinks for n, m � 1.

In topic-based publish/subscribe, the publication

data model is defined by the topics that can be asso-

ciated with messages. Simplistic models allow the ap-

plication developer to categorize messages by defining

a flat topic space, simply a collection of topics. More

sophisticated approaches allow the application devel-

oper to select topics from a hierarchical topic space.

Whether flat or hierarchical, topics are often strings,

possibly structured with separators for the hierarchical

case. Some approaches additionally type the various

levels of a hierarchical topic space allowing the appli-

cation developer to use various operators supported by

the type for expressing subscriptions. For example, in

he above example, AskingPrice could be defined as

Integer, to allow the subscriber to express a relation-

al condition on the messages returned. This approach

is close in expressiveness to the capabilities of content-

based or type-based publish/subscribe, as the matching

mechanism now also inspects the message content, i.e.,

the value associated with AskingPrice.

The subscription language model depends on the

publication data model. A subscription expression

defines the subscriber’s interest in receiving messages.

3128T Topic-based Publish/Subscribe
Given a flat publication data model, subscribers can

express interest in receiving messages of a given topic

by specifying the exact topic or by specifying a regular

expression that defines interest in a set of possible

topics. For a hierarchical publication data model, any

part of the hierarchy can be specified as interest by a

subscriber in using a wildcard notation to select all

messages published by the specified topics.

The publish/subscribe matching problem has the

standard interpretation and is defined as determin-

ing the set of subscribers based on their subscription

expression for a given publication message. This prob-

lem is solved over the topic space, which is much

simpler than its content-based counter part.

Topic-based publish/subscribe systems are distin-

guished by the qualities of service the system offers

to its clients, such as various degrees of reliability,

topic persistence, message ordering constraints, mes-

sage delivery guarantees, and message delivery laten-

cies constraints. Topic-based publish/subscribe relates

to channel-based publish/subscribe in that publishing

a message to a channel is similar to associating a

message with a topic, which could be the name or

identity of the channel. However, in topic-based pub-

lish/subscribe this association is reflected in the mes-

sage itself, while in channel-based publish/subscribe

the association is indirect, reflected by selecting a chan-

nel, which must not be represented in the message.

Topic-based publish/subscribe has more limited filter-

ing capabilities than content-based publish/subscribe,

as the message is opaque to the system, while in con-

tent-based publish/subscribe the message structure

and content is used for determining the set of recipi-

ents of a message.

Examples that follow the topic-based publish/sub-

scribe model are the information bus [3], TIBCO’s

RendezVous product [5], and the series of Web services

standards: WS Topics, WS Base Notifications, WS

Brokered Notifications [1]. Elements of channel-based

publish/subscribe can also be found in the Java Messag-

ing Service [2], the OMG Data Dissemination Service

[4], and other messaging middleware. However, these

systems are not directly following the topic-based model

as described above; rather these approaches are enriched

with elements of message queuing, channel-based pub-

lish/subscribe, and content-based publish/subscribe.

Topic-based publish/subscribe is intended to sup-

port applications that need to selectively disseminate

messages from one or more data source to several data
sinks, where the mapping of sources to sinks changes

dynamically. That is not all sources always communi-

cate with the same sinks. The mapping of which source

communicates with which sink is represented through

associating topics with messages and subscribing to

topics. Most existing systems allow the application

to dynamically change subscriptions to topics. Also,

applications of topic-based publish/subscribe exist that

use the topic as a message log. For these applications

the filtering capabilities of the topic-based model is not

so important, but message order guarantees, reliability

of the queues underlying each topic, and low message

delivery latencies are crucial. There are many applica-

tions that follow these characteristics. Examples include

system integration, selective information dissemination,

system management, and database replication.

The term topic-based publish/subscribe is not

used uniformly. Abstractions that exhibit the above

described functionality are also often referred to as

subject-based publish/subscribe systems that offer sub-

ject-based addressing to the applications using the

system. Subject-based addressing means that interact-

ing applications address each other by publishing

messages associated with subjects and by subscribing

to subjects of interest. The term subject and topic

are used synonymously. Based on the subscriptions

registered with the system, the system determines the

set of recipients for a given message, without needing

explicit address information that identifies that a

given message is to be sent to a given destinations.

Also, many messaging systems exhibit part of the above

described functionality and are simply referred to as

messaging systems, message-oriented middleware, or

message queuing systems.
Cross-references
▶Channel-Based Publish/Subscribe

▶ Publish/Subscribe

▶Type-Based Publish/Subscribe
Recommended Reading
1. Chappell D. and Liu L. (ed). Web Services Brokered Notification

1.2 (WS-BrokeredNotification), working draft 01 edition,

July 2004.

2. Hapner M., Burridge R., and Sharma R. Java Message Service.

Sun Microsystems, version 1.0.2 edition, November 9th 1999.

3. Oki B., Pfluegl M., Siegel A., and Skeen D. The information bus:

an architecture for extensible distributed systems. In Proc. 14th

ACM Symp. on Operating System Principles, 1993, pp. 58–68.

Top-K Selection Queries on Multimedia Datasets T 3129
4. OMG. Data Distribution Service for Real-time Systems, version

1.2, formal/07-01-01 edition, January 2007.

5. TIBCO. TIBCO Rendezvous, software release 8.1 edition,

April 2008.
Topic-Directed Web Crawling

▶ Focused Web Crawling
Top-k Queries in P2P Systems

▶Approximate Queries in Peer-to-Peer Systems
T

Top-K Selection Queries on
Multimedia Datasets

AMÉLIE MARIAN

Rutgers University, Piscataway, NJ, USA

Synonyms
Ranked multimedia retrieval; Aggregation algorithms

for middleware systems; Evaluation of fuzzy queries

over multimedia systems

Definition
Traditionally, queries over structured (e.g., relational)

data identify the exact matches for the queries. This

exact-match query model is not appropriate for a

multimedia dataset scenario where queries are inher-

ently fuzzy – often expressing user preferences and not

hard Boolean constraints – and are best answered with

a ranked, or “top-k,” list of the best matching objects.

Efficient top-k query algorithms for such applications

must take into account the specific challenges in acces-

sing multimedia data. In particular, the query model

should consider the access interfaces available to re-

trieve object attribute information, as well as the cost

of retrieving this attribute information.

Historical Background
Content management in multimedia repositories is

an important problem as more and more multimedia

applications are developed. For example, digitization of

photo and art collections is increasingly popular, multi-

media mail and groupware applications are becoming
widely available, and satellite images are being used for

weather predictions. To access such large repositories

efficiently, multimedia objects need to be queried via

their attribute values, such as the date the multimedia

object was authored, a free-text description of the ob-

ject, and features like color histograms.

There are at least three major ways in which

accesses to a multimedia repository differ from that

of a structured database (e.g., a relational database).

First, the data are inherently fuzzy: rarely does a user

expect an exact match with the features of a multime-

dia object (e.g., color histogram). Rather, an object

does not either satisfy or fail a condition, but has

instead an associated grade of match [3,5]. Thus, an

atomic query condition will not be a filter testing for

an equality between two values (e.g., between a given

color c and the color O.c of an object O) as is usually

the case in an exact query model scenario, but instead

will assign a score representing the grade of match

between the two values (e.g., GradeColor(c,O.c)).

Next, every condition on an attribute of a multimedia

object may only be separately evaluated through calls

to a system or index that handles that particular attri-

bute. This is in contrast to a traditional database where,

after accessing a tuple, all selection predicates can be

evaluated on the tuple. Finally, the process of querying

and browsing over a multimedia repository is likely to

be interactive, and users will tend to ask for only a few

best matches according to a ranking criterion.

Foundations
Existing query processing techniques for relational

data cannot efficiently be applied to multimedia sce-

narios as object attribute information is often kept

separate, possibly in different subsystems, and is typi-

cally expensive to retrieve. In addition, the fuzzy nature

of the queries means that users are only interested in

the best matches, making it unnecessary to evaluate

every object.

Query Model

Consider a collection C of objects with attributes A1,...,

An. A top-k query over collection C simply specifies

target values for each attribute Ai. Therefore, a top-k

query q is an assignment of values {A1 = q1,...,An = qn}

to the attributes of interest. The answer to the top-k

query q = {A1 = q1,...,An = qn} over a collection of

objects C and for a scoring function is a list of the k

objects in the collection with the highest score for

3130T Top-K Selection Queries on Multimedia Datasets
the query. The final score that each object t in C

receives for q is generally a function of a score for

each individual attribute Ai of t. Typically, the scoring

function that is associated with each attribute Ai is

application-dependent. Top-k algorithms presented in

the literature can be applied to a variety of aggregate

scoring functions as long as they satisfy some mono-

tonicity requirements [1,4,5,8].

Typically, multimedia attribute values (or scores)

can only be accessed through specific interfaces. Two

types of access to data, along with their associated

costs, can be distinguished. The first type of access is

sorted (or sequential) access, which allows retrieving

objects through a list sorted by the objects’ attribute

scores (for instance, all images stored by degree of

redness). The second type of access is random access,

which allows to directly access the attribute score of a

given object. A sorted access is usually cheaper than a

random access as it can make use of sequential access

to precomputed index structures. However, sorted ac-

cess does require to access every object in the attribute’s

score order. The multimedia system may allow either

sorted- or random-access, or both, for each attribute

score, depending on the underlying subsystems.

Top-k Query Evaluation Algorithms

A naive brute-force top-k query processing strategy

would consist of computing the score for the query for

every object to identify and return k objects with the

best scores. For large collections of objects, it is easy to

see that this brute-force evaluation could be prohibi-

tively expensive. Fortunately, the top-k query model

provides the opportunity for efficient query processing,

as only the best k objects need to be returned. Objects

that are not part of the top-k answer, therefore, might

not need to be processed. The challenge faced by top-k

query processing techniques is then to identify the top-

k objects efficiently, to limit the amount of processing

done on non-top-k objects. To this end, various top-k

query processing strategies have been presented.

The Threshold Algorithm

To process queries involving multiple multimedia

attributes, Fagin et al. proposed a family of algorithms

[3,4,5], developed as part of IBM Almaden’s Garlic

project. These algorithms can evaluate top-k queries

that involve several independent multimedia “subsys-

tems,” each producing scores that are combined using

arbitrary monotonic aggregation functions. The initial

FA algorithm [3] was followed by “instance optimal”
query processing algorithms over sources that allow

for sorted accesses and possibly random accesses (TA

algorithm) or only for sorted accesses (NRA algo-

rithm) [4]. In later work, Fagin et al. [5] introduced

the TAz algorithm, a variation of TA that also handles

sources that only provide random-access interfaces.

These algorithms rely on making dynamic choices for

scheduling index lookups during query execution in

order to prune low-scoring candidate items as early as

possible. TA does not need an unbounded buffer, and

dynamically considers object grades to decide when

to stop retrieving new objects. Specifically, TA stops

retrieving new objects when it finds a threshold grade

G such that (1) at least k objects with grade G or higher

have been identified and (2) no unretrieved object

can have a grade greater than G.

Nepal and Ramakrishna [10] and Güntzer et al. [6]

presented variations of Fagin et al.’s TA algorithm [4]

for processing queries over multimedia databases. In

particular, Güntzer et al. [6] reduce the number of ran-

dom accesses through the introduction of more stop-

condition tests and by exploiting the data distribution.

While these algorithms are proved “instance opti-

mal,” i.e, the consider the minimum number of objects

needed to correctly identify the top-k answer, they

completely evaluate each object they consider.

Algorithms based on Expensive Predicates Evaluation

Some works have built upon the TA family of algo-

rithms to further improve query processing efficiency

by reducing the number of expensive random accesses.

Marian et al.’s Upper algorithm [8] picks the most

promising object-attribute pair to process at any given

time based on the result of previous accesses. The

Upper algorithm requires keeping track of partially

evaluated object score bounds. By interleaving the pro-

cessing of objects, and discarding objects that are not fully

evaluated, Upper results in significant savings in ran-

dom access costs. Marian et al. also proposed TA-EP, an

optimization of TA that exploits existing techniques

for processing selections with expensive predicates. In

addition, Marian et al. [8] proposes extending the

Upper algorithm to efficient parallel evaluation.

Chang and Hwang [1] presented MPro, an algo-

rithm that relies on identifying necessary probes to

optimize the execution of expensive predicates for

top-k queries. Unlike Upper, MPro always evaluate

attributes in the same order for every object. Chang

and Hwang also briefly discussed parallelization

Top-K Selection Queries on Multimedia Datasets T 3131

T

techniques for MPro and proposed the Probe-Parallel-

MPro algorithm.

Filter/Restart Method

Algorithms based on Fagin et al.’s TA dynamically

refine a threshold value G based on the status of eval-

uated objects. As a result, these algorithms can be pro-

cessed continuously, until a solution is reached. In

contrast, some techniques have focused on translating

top-k queries into standard selection queries. While this

approach allows using existing query evaluation and

optimization implementations, it may require to “restart”

a query, if the translation does not return at least k

results.

In particular, Chaudhuri et al. built on Fagin’s

original FA algorithm and proposed a cost-based ap-

proach for optimizing the execution of top-k queries

over multimedia repositories [2]. Their strategy trans-

lates a given top-k query into a selection (filter) query

that returns a (hopefully tight) superset of the actual

top-k tuples using data distribution information to

estimate the value G that is expected to be the score

of the kth object. Ultimately, the evaluation strategy

consists of retrieving the top-k 0 tuples from as few

sources as possible, for some k 0 � k, and then probing

the remaining sources by invoking existing strategies

for processing selections with expensive predicates.

Using Pre-computed Views

Another approach to top-k query evaluation is to use

precomputed top-k query indexes. Various top-k

queries, with different scoring functions, are evaluated

to create indexes, which are used whenever a new top-k

query is entered. A challenge of such an approach is to

correctly identify the most efficient index for the new

query. The PREFER system [7] uses pre-materialized

views to efficiently answer ranked preference queries

over commercial DBMSs. PREFER precomputes a set

of materialized views that provide guaranteed query

performance and, for any new top-k query, selects a

near optimal set of views under space constraints.

Handling Joins

Top-k query evaluation algorithms over arbitrary

joins have been presented for multimedia applications

[1,9]. They use a ranking function that combines indi-

vidual tuple scores. These algorithm handle the possi-

ble explosion in the number of results resulting from

the join operation.
Key Applications

Multimedia Search

Typical search queries in multimedia systems require

for fuzzy matches on predicates that are expensive to

evaluate as the corresponding information is not

stored in indexes (e.g., similarity to a user-specified

image). Top-k algorithms are designed to minimize the

number of accesses to the data, only focusing on those

that are needed to identify the best query answers.

Information Integration

In scenarios where many sources may be accessed to

answer a query (e.g., web databases, legacy systems),

using algorithms that are designed to minimize the

number of these expensive remote accesses is an im-

portant aspect of query processing efficiency.
Future Directions
Research on top-k query processing in multimedia

scenarios has so far focused mostly on efficiency. Rela-

tively little attention has been devoted to evaluating the

quality and usefulness of the resulting top-k answers.

In contrast, the design of good scoring functions

for (relatively unstructured) text documents has been

the main focus of the IR community for the last few

decades. Many lessons and techniques from IR can be

applied to a more structured multimedia scenario.
Cross-references
▶Multimedia Information Retrieval Model

▶Multimedia Retrieval Evaluation

▶ Similarity and ranking operations
Recommended Reading
1. Chang K.C.-C. and Hwang S. Minimal probing: supporting

expensive predicates for top-k queries. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2002, pp. 346–357.

2. Chaudhuri S., Gravano L., and Marian A. Optimizing top-k

selection queries over multimedia repositories. IEEE Trans.

Knowledge and Data Eng., 16(8):992–1009, August 2004.

3. Fagin R. Combining fuzzy information from multiple systems.

In Proc. 15th ACM SIGACT-SIGMOD-SIGART Symp. on Prin-

ciples of Database Systems, 1996, pp. 216–226.

4. Fagin R., Lotem A., and Naor M. Optimal aggregation algo-

rithms for middleware. In Proc. 20th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2001,

pp. 102–113.

3132T Top-k XML Query Processing
5. Fagin R., Lotem A., and Naor M. Optimal aggregation algo-

rithms for middleware. J. Comput. Syst. Sci., 66(4), 2003.

6. Güntzer U., Balke W.-T., and Kießling W. Optimizing multi-

feature queries for image databases. In Proc. 26th Int. Conf. on

Very Large Data Bases, 2000, pp. 419–428.

7. Hristidis V., Koudas N., and Papakonstantinou Y. PREFER: a

system for the efficient execution of multi-parametric ranked

queries. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2001, pp. 259–270.

8. Marian A., Bruno N., and Gravano L. Evaluating top-k queries

over web-accessible databases. ACM Trans. Database Syst.,

29(2):319–362, 2004.

9. Natsev A., Chang Y.-C., Smith J.R., Li C.-S., and Vitter J.S.

Supporting incremental join queries on ranked inputs. In Proc.

27th Int. Conf. on Very Large Data Bases, 2001, pp. 281–290.

10. Nepal S. and Ramakrishna M.V. Query processing issues

in image (multimedia) databases. In Proc. 15th Int. Conf. on

Data Engineering, 1999, pp. 22–29.
Top-k XML Query Processing

▶Ranked XML Processing
Topological Data Models

ERIK HOEL

Environmental Systems Research Institute, Redlands,

CA, USA

Synonyms
Topology; Topological fabric; Topological data

structure

Definition
Topology is defined as a mathematical model used to

define the location of and relationships between geo-

graphical phenomena. These topological relationships

are independent of distance or direction. Topology

may depict connectivity of one entity to another; for

example, an edge will have topological relationships to

it’s from and to nodes.

Topology is useful with spatial data because many

spatial modeling or geoprocessing operations do not

require geometric coordinate values. For example, to

find the shortest path between two nodes requires a list
of which edges connect to each other and the cost of

traversing along each edge. Geometric coordinates are

only necessary to draw the shortest path after it is

calculated.

More generally, topology, in the context of spatial

data, can have several other meanings:

� A mathematical model of features in space (e.g.,

nodes, edges, and faces).

� A physical data model for efficient representation

of feature data.

� A mechanism that can be used to ensure data

quality (e.g., no gaps or overlaps between

polygons).

� A mechanism that allows the management of

shared geometry.

� A mechanism that facilitates navigation between

features using topological relationships (e.g.,

equal, disjoint, intersects, touches, crosses, within,

contains, overlaps, and relate – the nine topological

relationships in the dimensionally extended nine-

intersection model [5]).

A topological data model is used to represent collec-

tions of features that are assembled into a topology (or

topological fabric). Topological data models come in

many different variants (as described in the following),

but the central theme for each of the models is the

storage and representation of spatial data that forms a

topological fabric.
Historical Background
Topological data structures have been used to represent

geographic information for over 40 years [3,14]. The

topological model has been the basis of a number of

operational systems (see, for example DIME [3],

GIRAS [11], ODYSSEY [13], ARC/INFO [1], TIGRIS

[7], and TIGER [9]). Many of these systems have been

based on binary file and in-memory data structures

and supported a single-writer editing model on geo-

graphic libraries organized as a set of individual map

sheets or tiles.

Topology has historically been viewed as a spatial

data structure used primarily to ensure that the asso-

ciated data forms a consistent and clean topologi-

cal fabric. Topology is used most fundamentally to

ensure data quality (e.g., no gaps or overlaps between

polygons representing land parcels) and allow a GIS

Topological Data Models T 3133
to more realistically represent geographic features.

Topology allows one to control the geometric relation-

ships between features and maintain their geometric

integrity.

Foundations
Topological data structures for representing geographic

information are a standard topic in geographic infor-

mation science (see [6], for example, for an excellent

definition of the mathematical theory underlying this

information model). In general, the topological data

model represents spatial objects (point, line, and area

features) using an underlying set of topological primi-

tives. These primitives, together with their relation-

ships to one another and to the features, are defined

by embedding the feature geometries in a single planar

graph. Such datasets are said to be “topologically

integrated.”

The model associates one or more topological pri-

mitives (i.e., nodes, edges, and faces; or 0-cells, 1-cells,

and 2-cells in the TIGER parlance) with spatial objects

of varying geometry type (i.e., points, lines, and poly-

gons respectively). More specifically, a feature with

point geometry is associated with a single node element,

a feature with line geometry is associated with one or

more edge elements, and a feature with polygon geom-

etry is associated with one or more face elements. This is

depicted in Fig. 1 as the generic topology model.

There are additional relationships between the

topological elements themselves as is also shown in

Fig. 1. A node element may or may not be associated

with a collection of edge elements. A face element

may be associated with one or more edge elements.
Topological Data Models. Figure 1. Generic topology

model.
Finally, an edge element is associated with two node

elements and two face elements. The relationships be-

tween nodes and faces may either be implicit or

explicit.

The common representation of a topology is as a

collection of topological primitives – i.e., nodes, arcs,

and faces, with explicit relationships between the pri-

mitives themselves. For example, an arc would have a

relationship to the face on the left, and the face on the

right. With advances in GIS development, an alterna-

tive view of topology has evolved. Topology can be

modeled as a collection of rules and relationships

that, coupled with a set of editing tools and techniques,

enables a GIS to more accurately model geometric

relationships found in the world.

Topology, implemented as feature behavior and

user specified rules, allows a more flexible set of geomet-

ric relationships to be modeled than topology imple-

mented as a data structure. For example, older data

structure based topology models enforce a fixed collec-

tion of rules that define topological integrity within a

collection of data. The alternative approach (feature

behavior and rules) allows topological relationships to

exist between more discrete types of features within a

feature dataset. In this alternative view, topology may

still be employed to ensure that the data forms a clean

and consistent topological fabric, but also more broadly,

it is used to ensure that the features obey the key geo-

metric rules defined for their role in the database.

Topological data structures, beginning with DIME

in 1967 [3] have been used to represent features assem-

bled into a topological fabric in a number of different

ways over the past 40 years. In the following, the seven

or so significant variants that have emerged during this

period are described.
T
DIME Files

The US Census Bureau, as part of the New Haven

Census Use Study of 1967, undertook the development

of an explicit topological data model for their geo-

graphic data [3]. This system was called DIME (for

Dual Independent Map Encoding) and was intended

to facilitate the automation of detecting topological

errors in the base geographic data. DIME files were

based upon planar line segments defined by two end-

points. The line segments correspond to the Street

Segment records as shown in Fig. 1. Each street

3134T Topological Data Models
segment was associated with a start and end node

identifier (endpoint), left and right side block and

tract identifiers, as well as an address range. Drawbacks

of the DIME model include the need to perform

searches in order to assemble polygons from the street

segment records, or to determine all the segments

sharing a given node.

In Fig. 2, Main Street is represented as a collection

of four records in the Street Segment Records. Each

(line) segment is defined by two end points (there are

no midspan shape points for the segment). The seg-

ment is associated with the start and end node, identi-

fiers for the blocks and tracts on the left and right sides

of the segment, as well as the low and high address

ranges for each side of the segment. In addition, it is

assumed that the segments are planar – segments may

not cross each other.

The “dual independent” portion of the DIME

model reflects the redundant nature of how the topol-

ogy is represented. Topological fabrics can be repre-

sented using the collection of relationships between

edges and nodes, or nodes and faces, or faces and

edges. With DIME, the topological correctness may

be verified using either block chaining or node chain-

ing. Block chaining involves finding all the segment

records that have a given block on the left or right

side. By rearranging the from/to orientations of each

segment (and the associated left/right oriented attri-

butes) such that the block is on the right side of each

segment, it is possible to chain the nodes. This involves
Topological Data Models. Figure 2. Example of the DIME a
walking from the “to node” of one segment to the

“from node” of another segment, continuing until

all segments are visited. If there is a topological prob-

lem, it will not be possible to chain the blocks in

this manner [2].

Due to the dual nature of DIME, it is also possi-

ble to chain the nodes in order to find topological -

problems. Specifically, for a given node, select all

segments that have it as a “to” or “from” node. Then,

after rearranging the from/to orientations of each

segment such that the node is always in the “to

node” position, one may chain all the blocks surround-

ing the node (moving from the “block right” rec-

ord in one segment to the “block left” record

in another segment). Thus, because of the dual

independent encoding of DIME, one may use two

independent mechanisms to detect topological

problems.

POLYVRT

The Harvard Laboratory for Computer Graphics and

Analysis developed a topological data structure,

termed POLYVRT, that was intended to serve as a

data structure to facilitate interchange between various

other data models [14]. POLYVRTextended the repre-

sentational capabilities of DIME to allow planar seg-

ment chains to exist between nodes. This allowed line

detail to be efficiently handled. In addition, POLYVRT

enables the user to readily flip between segment chains

and polygons.
pproach to storing topology (adapted from [3]).

Topological Data Models. Figure 3. Example of the POLYVRT approach to storing topology.

Topological Data Models T 3135

T

Figure 3 contains an analogous example as shown

in Fig. 2 but using the POLYVRT representation as

well as adding shape points to various segments

(e.g., segments 344, 399, and 433). A POLYVRT chain

record contains a unique identifier, a pointer to the

shape points (termed Points), identifiers of the from

and to nodes, and identifiers of the polygons on the left

and right sides. Records in the nodes table contain a

unique identifier and an (x, y) coordinate value. Entries

in the Polygons table have a unique identifier and a

pointer to a list of all associated chains that compose

the boundary of the polygon (e.g., for polygon 4, the

list contains chains 344, 222, 399, 433, and 446).

GIRAS

GIRAS (Geographical Information Retrieval and

Analysis System) was developed by the US Geological

Survey the mid 1970s [11]. The GIRAS topological

data structure was motivated by the need to represent

polygonal data. In addition, it was determined that it

was more efficient to store certain types of data rather

than recompute it. As a consequence, a large amount

of ancillary data such as polygon perimeter and area

was explicitly stored in the data structure. The data

structure was based upon arcs and was considered a

direct descendent of DIME and POLYVRT due to its

topological similarities.

Figure 4 contains the same example dataset as shown

in Figs. 2 and 3 except using the GIRAS topology
model. The GIRAS model differs from DIME and

POLYVRT as various attributes unrelated to storing

the topology are maintained. This includes the length

as well as bounding rectangle information for the Arc

records (Length, MinXY, and MaxXY). In addition, the

Arc records store the attribute codes of the left and

right polygons (this is not represented in the figure).

The Polygon records similarly store the area and pe-

rimeter of the polygon, the bounding rectangle infor-

mation, as well as the attribute code and the island

count (number of islands found within the polygon).

Note depicted in the figure is the identifier of the

enclosing polygon if the polygon serves as an island

to another polygon. Finally, there are structures for

representing the vertex coordinates of the arcs

(e.g., LastCoord in the Arc Records table), as well as

another structure that maps arcs to polygons (the FAP

file in GIRAS).

TIGER

TIGER (Topologically Integrated Geographic Encod-

ing and Referencing) was developed by the US Census

Bureau during the 1980s as an evolution of the earlier

DIME-file model [9]. New features and capabilities

were added (e.g., curve points for linear features) to

the model in order to create a comprehensive system

that could support all of the various censuses. TIGER

was first used for the 1990 Census of Population and

Housing.

Topological Data Models. Figure 4. Example of the GIRAS approach to storing topology.

3136T Topological Data Models
The topology model within TIGER was based upon

the two dimensional network model of Corbett [6].

This model used three topological primitives termed

0, 1, and 2-cells (analogous to nodes, edges, and faces

in other topological data models).

Figure 5 contains the same example dataset as

shown in Figs. 2–4 except using the TIGER topology

model (note – some liberty has been taken as in reality,

the entries in the list tables are all consecutively

numbered – this is not necessarily shown here; e.g.,

the file position in the C1RALS table). Within TIGER,

0 and 2-cells may be accessed via a directory mecha-

nism. In the figure, the directory for 0-cells is shown

(termed C0DIR). This directory contains a record for

each 0-cell in the 0-cell List table (C0RALS). The

directory entries are sorted by a simple Peano key (an

alternating bit merging of longitude and latitude values

for the associated point); this enables nearest point

queries, etc. Each record in the directory table refer-

ences a 0-cell in the 0-cell List table. The 0-cell List

table is not geographically sorted. The 0-cell entries

contain the x, y coordinate value of the point, and

a pointer to the 1-cell List table (C1RALS) for the

lowest value 1-cell (according to the file position)

that is associated with the 0-cell at an endpoint. The

entries in the 1-cell List table contain back-pointers to

the from and to 0-cells, as well as threading pointer to

other 1-cell records that enable a counter-clockwise
traversal of all 1-cells associated with a given 0-cell

(note that the last record in the thread contains

a terminator – “EOT” in the figure). The 1-cell records

also contain references to the 2-cells (faces) on the left

and right sides as well as threading pointers to other

1-cells that enable the traversal of all 1-cells associated

with a 2-cell. Finally, the 2-cell List (or C2RALS) table

contains an entry for each 2-cell. Each entry contains a

reference to the first 1-cell found in the C1RALS table

that is associated with the 2-cell.

ARC/INFO Coverages

The motivating requirements behind the development

of the ARC/INFO Coverage model were a model that

had a strong theoretical basis (topology), as well as

simplicity and efficiency (e.g., ability to support effi-

cient geoprocessing functions such as polygon overlays

and dissolves) [12].

The Coverage topological data model uses a collec-

tion of tables. End users are responsible for populating

the ARC and LAB files. The entries in the ARC file

correspond to line segments with optional attributes.

In Fig. 6, the shaded portions of the ARC file

correspond to system generated fields. Thus, the user

specifies the user id field along with the shape (geome-

try) as well as any attributes. End users are also

responsible for populating entries in the LAB (for

label) file. Each label is used to specify the attributes

Topological Data Models. Figure 5. Example of the TIGER approach to storing topology.

Topological Data Models. Figure 6. Example of the

Coverage approach to storing topology (simplified).

Topological Data Models T 3137

T

that will be associated with a polygon in the topology.

Following the population of the ARC and LAB files,

the user will perform a topological integration and

structuring of the data. The result of this is the
population of the Arc Attribute Table (AAT) and the

Polygon Attribute Table (or PAT). In addition, other

fields in the ARC file are populated (i.e., the FNODE,

TNODE, LPOLY, and RPOLY). There are other tables

that form the Coverage data model that are not depicted

in Fig. 6 (e.g., the Polygon Arc List, or PAL file) that

provide additional explicit topological relationships.

Relational

Many topological data models stored in relational

databases utilize a storage representation that relies

upon a fixed length record. The winged-edge data

structure [1], a fixed-length storage representation

for representing the relationships between nodes,

edges, and faces, simplified the task of representing

Topological Data Models. Figure 7. Example of an edge and its four wings in the winged-edge data structure of

Baumgart.

3138T Topological Data Models
explicit topological data models within a relational da-

tabase system. The edge record is the primal structure in

this representation. For each edge, the identifiers of the

start and end nodes (termed nodeprev and nodenext in

Fig. 7), and the two faces, one in the clockwise traversal

orientation (facecw), and the other in the counter-

clockwise orientation (faceccw) are represented. Finally,

identifiers of four connected edges, two at each node,

are stored. The four edges correspond to the previous

and next edges found when traversing the two adjacent

polygons in the clockwise (edgepcw and edgencw) and

counterclockwise (edgepccw and edgenccw) orientations.

A topological data model can be stored in a relation-

al database. The topology model is represented using

three tables – an edge table, a node table, and a face table.

The edge table is essentially encoding the winged-edge

data structure in addition to the geometry of the portion

of the feature associated with the edge. The edge table

utilizes negative identifiers to encode the orientation of

the four edges found at the start or end nodes.

ArcGIS Geodatabase

The ArcGIS Geodatabase approach to modeling topol-

ogy represents it as a collection of rules and relation-

ships, coupled with a set of editing tools and techniques

[8]. With the standard models (e.g., TIGER, Relational,

etc.), it is possible to obtain topological primitives from
feature geometry; similarly, it is possible to obtain fea-

ture geometry from topological primitives. Effectively,

the geometry found in features is a dual representation

of the geometry that would be found on the topological

primitives. This topology model simplifies the generic

explicit topology model and does not need to make

both representations persistent. The process of topolog-

ical integration (validation) results in vertex equality

where features share underlying topological primitives.

Given vertex equality, reconstruction of topological pri-

mitives is straightforward. Vertices on feature geome-

tries in this scheme play the same role as that assigned to

embedded foreign keys in data structures that explicitly

model topological primitives.

Topological primitives and relationships are only

instantiated during the process of topological valida-

tion or when required by the client application (this is

similar to Intergraph’s MGE where topology is selec-

tively built but the topological primitives are not per-

sisted in the RDBMS). The primary reason for this

alternative approach is that it is easier (faster, more

scalable) to recreate an index (e.g., the topological

primitives) than to do all the bookkeeping necessary

to make the topological primitives persistent and re-

trieve the primitives from the database while preserv-

ing the database transaction model. Additionally, it is

frequently the case that the portion of the topological

Topological Data Models T 3139

T

primitives necessary for an operation is small relative

to the entire topology (e.g., editing a few block groups

in a localized area within TIGER).

In order for this approach to be viable from a

performance standpoint, it is critical that there exists

a high performance topology engine that validates the

portion of the topology in question as well as instanti-

ate the topological primitives for the given collection

of features within the topology [15].

At a high level, this topology model consists of a

collection of feature classes (homogeneous collections

of features), topology rules, and other metadata used

to support the validation model. This metadata

includes dirty areas (areas that have not been validated

following updates or edits), topology errors, and the

cluster tolerance (i.e., the distance range in which

vertices and boundaries are considered identical or

coincident). Topological integrity is defined with re-

spect to a collection of topology rules. Topology rules

are used to define constraints on the permissible topo-

logical relationships between features in one or more

feature classes that participate in the topology. The

collection of topology rules that are associated with

the topology are selected on the basis of which topo-

logical relationships are important for the user’s

model.

The validation process is a fundamental operation

on a topology performed by a topology engine. The

validation process on a topology is responsible for

ensuring that the first three of Milenkovic’s five nor-

malization rules [10] on all spatial objects participating

in the topology are respected:

1. No two vertices are closer than e.
2. No vertex is closer than e to an edge of which it is

not an endpoint.

3. No two edges intersect except at their endpoints.

In addition, the validation process is responsible

for checking all specified topology rules and generating

topology errors at locations where rules are violated.

Topology rules are checked when the topology is

validated. When a topology rule is violated, a topolo-

gy error object is generated. This topology error may

be represented as a special type of feature that may

itself be persisted. At a later point following the vali-

dation, the user may then review the topology error

objects, and the error conditions may be corrected.

Topology rule violations do not prevent the valida-

tion operation from completing successfully.
Examples of topological rules that may be applied to

polygon features include:

� The interiors of polygons in a feature class must not

overlap (they may however share edges or vertices).

� Polygons must not have voids within themselves or

between adjacent polygons (they may share edges,

vertices, or interior areas).

� Polygons of one feature class must share all their

area with polygons in another feature class (i.e.,

they must cover each other).

Key Applications
Cadastral databases, land use information systems,

overlay processing, geoprocessing, topological analysis,

dataset quality assurance/quality control (QA/QC).
Cross-references
▶Geographic Information System

▶Geographical Information Retrieval

▶Network Data Model

▶ Spatial Data Analysis

▶ Spatial Data Types

▶ Spatial Network Databases

▶ Spatial Operations and Map Operations

▶Topological Relationships
Recommended Reading
1. Baumgart B. A polyhedron representation for computer vision. In

National Computer Conf., 1975, pp. 589–596.

2. Census Bureau. The DIME Geocoding System. Report No. 4,

Census Use Study, US Department of Commerce, Bureau of the

Census, 1970.

3. Cooke D. and Maxfield W. The development of a geographic

base file and its uses for mapping. In Proc. 5th Annual Conf.

Urban and Regional Information System Association, 1967,

pp. 207–218.

4. Corbett J. Topological Principles in Cartography. Technical

Paper 48. Bureau of the Census, Washington, DC, 1979.

5. Egenhofer M., Clementini E., and Di Felice P. Topological rela-

tions between regions with holes. Int. J. Geograph. Inform.

Syst., 8(2):129–142, 1994.

6. Güting R. and Schneider M. Realm-based spatial data types: the

ROSE algebra. VLDB J., 4(2):243–286, 1995.

7. Herring J. TIGRIS: topologically integrated geographic informa-

tion system. In Proc. 8th Int. Symp. on Computer Assisted

Cartography, 1987, pp. 282–291.

8. Hoel E., Menon S., and Morehouse S. Building a robust rela-

tional implementation of topology. In Proc. 8th Int. Symp.

Advances in Spatial and Temporal Databases, 2003, pp. 508–524.

9. Marx R. The TIGER system: automating the geographic

structure of the United States. In Introductory Readings in

3140T Topological Data Structure
Geographic Information Systems. Peuquet Marble Taylor &

Francis, London, 1990.

10. Milenkovic V. Verifiable implementations of geometric

algorithms using finite precision arithmetic. Artif. Intell.,

37(1–3):377–401, 1988.

11. Mitchell W., Guptill S., Anderson K., Fegeas R., and Hallam C.

GIRAS: A geographic information retrieval and analysis system

for handling land use and land cover data: US Geological Survey

Professional Paper 1059, GPO, Washington, DC, 1977.

12. Morehouse S. ARC/INFO: a geo-relational model for spatial

information. In Proc. 7th Int. Symp. on Computer Assisted

Cartography, 1985, pp. 388–397.

13. Morehouse S. and Broekhuysen M. ODYSSEY User’s Manual.

Laboratory for Computer Graphics and Spatial Analysis,

Harvard Graduate School of Design, Cambridge, MA, 1982.

14. Peucker T. and Chrisman N. Cartographic data structures. Am.

Cartograph., 2(1): 55–69, 1975.

15. van Roessel J. A new approach to plane-sweep overlay: topolog-

ical structuring and line-segment classification. Cartograph.

Geograph. Inform. Syst., 18(1), 1991.
Topological Data Structure

▶Topological Data Models
Topological Fabric

▶Topological Data Models
Topological Relationships

PAOLINO DI FELICE, ELISEO CLEMENTINI

University of L’Aguila, L’Aguila, Italy

Definition
Topological relationships describe qualitative proper-

ties that characterize the relative position of spatial
Topological Relationships. Figure 1. Examples of binary top

(the biggest): (a) <A, disjoint, B>, (b) <A, meet, B>, (c) <A, ov
objects. disjoint, meet, overlap, and inside are few exam-

ples (Fig. 1).

Topology is considered the most primitive kind

of spatial information, since a change in topology

implies a change in other geometric aspects, while the

opposite is not true. Generally speaking, topological

properties are those that do not change after transfor-

mations like rotation, translation, scaling, and rubber

sheeting.
Historical Background
Topological relationships have been studied exten-

sively in a number of diverse disciplines since the

beginning of the 1990s, achieving theoretical results

which have constituted the basis for the definition of

most of the topological operators today being part of

the SQL dialects supported by commercial DBMSs

(e.g., IBM-DB2, Oracle, PostGIS/PostgreSQL, . . .).

The implementations are all based on the OpenGIS

Consortium specifications [8] and ISO/TC 211

standard.

Foundations
The mathematical background behind the published

contributions about topological relationships is consti-

tuted either by the point set topology or spatial logic.

The study of topological relationships also depends

on the embedding space, prevalently assumed to be

the two-dimensional Euclidean space.

The major results that appeared in the literature

can be clustered in the three main groups briefly

discussed below.

Topological Relationships for Simple Objects

At the conceptual level, spatial objects can be modeled

as points, lines, and areas. Simple lines are one-

dimensional, continuous features embedded in the

plane with two end points; simple areas are two-

dimensional point sets topologically equivalent to a

closed disc (Fig. 2).
ological relationships between objects A and B

erlap, B>, and (d) <A, inside, B>.

Topological Relationships T 3141
The two conceptual approaches, upon which

almost all publications in this field have been based,

are the 9-Intersection model [5] and the RCCmodel [3].

Despite rather different foundations (the former

relies on point set topology [6], the latter on spatial

logic), both methods come to very similar results.

Further relevant contributions belonging to this

group are: [1,2,4].

The model proposed, in 1991, by Egenhofer and

Franzosa, [4], for classifying topological relationships

between pairs of 2D area features represents the start-

ing point of the research in the field and the basis

for the efficient implementation of the theory on top

of commercial query languages [10]. Their classifica-

tion is based on the cross intersection of the bound-

aries and interiors of the two features. The four values

are collected into a two-by-two matrix, called the

4-intersection; while the approach is called the

4-IntersectionMethod (4IM).

Topological Relationships for Complex Objects

An important advancement of the results about topolog-

ical relationships, with respect to those based on

the assumptionof simple objects,was achievedbyextend-

ing the definitions of point, line, and area, in order to take

into account finite sets of isolated points as a single com-

plex point feature, lines having separations, more than

two end-points, and possibly self-intersections, and,

finally, complex areas having both separations and holes

(Fig. 3). In the reality, complex features are far more

common than simple ones: [1,11].
Topological Relationships. Figure 2. Examples of a

simple point, a simple line, and a simple area.

Topological Relationships. Figure 3. Examples of a complex
Topological Relationships for Objects with Vague

Boundary

The models belonging to the previous two groups

are applicable only to features whose geometry is

exactly known (often called crisp spatial objects).

Examples of crisp objects are mainly man-made arti-

facts like land parcels, buildings, and roads. But the

reality reveals that the boundaries and extent of most

spatial objects cannot be precisely determined. Exam-

ples of non-crisp features are: population density, veg-

etation, oceans, clouds, soil type, Spanish speaking

areas, etc.

Three main alternatives have been proposed to

model non-crisp spatial objects:

1. Models based on fuzzy sets. They allow a fine-

grained modeling of vague spatial objects but are

computationally rather expensive with respect to

data structures and algorithms.

2. Models based on rough sets. They work with lower

and upper approximations of spatial objects.

3. Models based on crisp spatial objects. They extend

data models, type systems, and concepts for crisp

spatial objects to vague spatial objects.

A discussion of the differences of these approaches can

be found in [9], together with links to pertinent

references.

Table 1 summarizes the different subfields in the

study of topological relationships discussed above.
Key Applications
The following applications are some examples among

the many that benefit from dealing with topological

relationships.
T
Geographic Information Systems (GISs)

Topological queries are relevant when dealing with spa-

tial data. Today’s GIS applications use a huge amount of

spatial data. Formal models and efficient algorithms are

of primary importance to reach optimal solutions.
point, a complex line, and a complex area.

Topological Relationships. Table 1. The different

subfields behind the study of topological relationships

Geometry Boundary

Simple Crisp

Vague

Complex Crisp

Vague

Geometry
type WKT representation Comment

Point point(10,20) A 2D point

Polygon polygon((0 0,0 40,40
40,40 0,0 0))

A 2D polygon

3142T Topological Relationships
Qualitative Spatial Reasoning (QSR)

Topological relations capture the everyday common-

sense knowledge of space. QSR makes this knowledge

explicit, so that, given appropriate reasoning techni-

ques, a computer can make predictions about spatial

relations in a qualitative manner, without recourse to

an intractable or unavailable quantitative model [3].

Geospatial Semantic Web (GSW)

The Geospatial Semantic Web has become one of

the most prominent research themes in geographic

information science. In fact, the wide availability of

geo-referenced data on the web would make it possible

to index and query information based on the spatial

attributes. This approach would be facilitated by using

qualitative spatial relations, such as topological rela-

tions, since people are much more inclined to query

web pages through natural language, instead of metric

measurements.

Future Directions
Despite of the huge amount of theoretical studies

about topological relationships done so far, there is

still a lot of work to be done.

For example, the mapping of the topological rela-

tionships into operators to be included in future

releases of spatial query languages, as well as the devel-

opment of processing strategies for their efficient eval-

uation are still open issues. A notable contribution in

this direction is constituted by a very recent paper by

Praing and Schneider, [10].

Furthermore, major attention needs to be paid

with respect to complex objects characterized by un-

certainty in order to: a) identify suitable spatial data

types for their modeling, b) design a minimal set of

operations and predicates defined on top of them,

and c) proceed to their integration into the query

language of existing DBMSs.
Experimental Results
The IBMDB2 UDB system supports the modelling and

the management of spatial data through the so-called

Spatial Extender (briefly, SE) subsystem [7] which is

fully conformant with the OGC Simple Features Spec-

ification for SQL [8], starting with version 8.2.

DB2 SE supports four different spatial data for-

mats: a) Well-known text (WKT) representation,

b) Well-known binary (WKB) representation, c) Shape

representation, and d) Geography Markup Language

(GML) representation.

Table below provides two examples according to

the WKT text representation (the numerical values

represent X-Y coordinates).
{ST_Geometry, ST_Point, ST_LineString,

ST_Polygon, ST_GeometryCollection, ST_Mul-

tiLineString,ST_MultiPolygon ST_Multi-

Point} is the set of geometric data types being part

of the SQL/DDL language running under DB2 SE.

DB2 SE implements a long list of spatial functions

conceptually grouped into five macro-categories: a)

data exchange format functions, b) comparison func-

tions, c) functions that return information about

properties of geometries, d) functions that derive new

geometries from existing ones, and e) miscellaneous

functions. The comparison functions implement the

topological operators.

In order to give the flavour of how they look like

and how easily they can be called as part of SQL

statements, a spatial database storing descriptive and

spatial data about sites of interest and counties is taken

into account.

The SQL/DDL scripts below provide the definition

of the corresponding tables according to the DB2 SE

syntax:

CREATE TABLE sitesOf_interest (id SMAL-

LINT, geometry ST_POINT);

CREATE TABLE counties (id SMALLINT, geom-

etry ST_POLYGON);

TP T 3143

T

The SQL/DML scripts below insert 1 and 2 tuples

into the previous tables, respectively:

INSERT INTO sitesOf_interest (id,

geometry)

VALUES (1, ST_Point(10,20,1)), (2,

ST_Point(41,41,1));

INSERT INTO counties (id, geometry)

VALUES (100, ST_Polygon(‘polygon ((0 0,0

40,40 40,40 0,0 0))’, 1));

INSERT INTO counties (id, geometry)

VALUES (200, ST_Polygon(‘polygon ((1 1,1

40,40 40,40 1,1 1))’, 1));

Notice that 1 identifies the spatial reference system for

the resulting geometry.

The (incomplete) list of available topological opera-

tors are:

ST_Disjoint, ST_Touches, ST_Equals,

ST_Contains, ST_Overlaps, ST_Crosses, etc.

An example of SQL usage of ST_Contains follows:

Syntax:

ST_Contains(geometry1,geometry2)

Meaning:

ST_Contains returns 1 if geometry1 contains

geometry2, 0 otherwise.

The query: Determine the counties where the points of

interest are located in.

SELECT poly.id AS polygon_id, pts.id AS

point_id

FROM sitesOf_interest pts, counties poly

WHERE ST_Contains (poly.geometry, pts.

geometry)

In summary, RDBMSs with spatial extensions like

those featured by the IBM DB2 SE are:

� Reach of data types and functions to deal with

geometry. This extends significantly the expressive-

ness of the relational data model and of SQL. It

follows that writing ad hoc applications in high

level programming languages, to make spatial anal-

ysis, is much easier than before

� Not problematic to be used for people accustomed

to use SQL

Cross-references
▶Dimension-Extended Topological Relationships

▶ Spatial Data Types

▶ SQL
Recommended Reading
1. Clementini E. and Di Felice P. A model for representing topo-

logical relationships between complex geometric features in

spatial databases. Inf. Sci., 90(1–4):121–136, 1996.

2. Clementini E., Di Felice P., and van Oosterom P. A small set of

formal topological relationships suitable for end-user interac-

tion. In Proc. 3rd Int. Symp. Advances in Spatial Databases,

1993, pp. 277–295.

3. Cohn A.G., Bennett B., Gooday J., and Gotts N. RCC: a calculus

for region based qualitative spatial reasoning. GeoInformatica,

1:275–316, 1997.

4. Egenhofer M.J. and Franzosa R. Point-set topological spatial

relations. Int. J. Geogr. Inf. Syst., 5(2):161–174, 1991.

5. Egenhofer M.J. and Herring J. Categorizing binary topological

relationships between regions, lines, and points in geographic

databases. Technical report, Department of Surveying Engineer-

ing, University of Maine, 1991.

6. Gaal S. Point Set Topology. Academic Press, New York, NY, 1964.

7. IBM DB2. Spatial extender user’s guide and reference (Vers. 8).

2004.

8. Open Geospatial Consortium. OpenGIS simple features specifi-

cation for SQL. OpenGIS Project Document, 99–049, 1999.

9. Pauly A. and Schneider M. Topological predicates between vague

spatial objects. In Proc. 9th Int. Symp. Advances in Spatial and

Temporal Databases, 2005, pp. 418–432.

10. Praing R. and Schneider M. Efficient implementation techniques

for topological predicates on complex spatial objects. GeoInfor-

matica, 2007.

11. Schneider M. and Behr T. Topological relationships between

complex spatial objects. ACM Trans. Database Syst., 31(1):

39–81, 2006.
Topology

▶Topological Data Models
Toponyms

▶Gazetteers
Tour

▶Dynamic Graphics
TP

▶XMLTree Pattern, XMLTwig Query

3144T TP Monitor
TP Monitor

▶Transactional Middleware
TPQ

▶XMLTree Pattern, XMLTwig Query
Traditional Concurrency Control for
Replicated Databases

BETTINA KEMME

McGill University, Montreal, QC, Canada

Synonyms
Traditional replica and concurrency control strategies;

Traditional data replication

Definition
Since the beginnings of distributed computing, the

database community has developed strategies for repli-

cated data management. The basic idea is that each

“logical” data item has one or more physical data

copies, also called replicas, that are distributed across

the database servers in the system. Early work on data

replication provided a framework to describe transac-

tions in a replicated environment and developed con-

currency control mechanisms to control their

execution. The formalism and the techniques devel-

oped in this early work have been the foundations for

much of the further research on database replication. It

considered strong consistency requirements where the

replicated system behaves similar to a non-replicated

system. Replica control was introduced as the task of

translating the read and write operations of transac-

tions on logical data items into operations on the

physical data copies. One-copy-serializability was de-

veloped as a first – and very strong – correctness

criterion defining when the concurrent execution of

transactions in a replicated system is equivalent to a

serial execution of these transactions over a single

logical copy of the database. Replica control was com-

bined with concurrency control mechanisms in order to

provide one-copy-serializable transaction execution.
Historical Background
Replication became a hot topic in the early 1980s.

In their book “Concurrency Control and Recovery in

Database Systems” [2], Bernstein et al. presented a

thorough formalism to reason about the correctness of

transaction execution and concurrency control mechan-

isms in central, distributed and replicated database

systems. Their definitions of serializability and one-

copy-serializability (1SR) are still used to reason about

the correctness of transactional systems. Early work on

replication took as baseline concurrency control strate-

gies used in non-replicated or distributed databases,

extended them and combined themwith replica control

in order to provide one-copy-serializability [2,3]. Fur-

thermore, the correctness of execution despite site or

communication failures has been analyzed thoroughly

[1,4]. Work done in this early phase is very visible in

textbooks on database systems and distributed systems

[6], and builds part of the foundations of academic

education in this area. In 1996, Gray et al. [5] indicated

that these traditional approaches provide poor perfor-

mance and do not scale as they commit transactions only

if they have executed all their operations on all (avail-

able) physical data copies. Many advanced replication

schemes have been developed since then. Nevertheless,

they reuse many of the base techniques developed in the

traditional replication algorithms.

Foundations

Transactions in a Non-Replicated System

The formalism that describes transactions and their

execution in a replicated database is derived from

the transaction model in a non-replicated system. In

a non-replicated system, a database consists of a set

of data items x,y,... . A transaction Ti is a sequence of

read operations ri(x) and write operations wi(x) on

data items that build a logical unit. The database sys-

tem should provide the transactional properties atom-

icity, consistency, isolation and durability (see the

entry ACID properties). Among them, atomicity and

isolation require actions in a replicated system that go

beyond the tasks in a non-replicated system.

Atomicity means that a transaction Ti either termi-

nates with a commit operation (indicated as ci) and

all its write operations remain effective in the database,

or with an abort operation (indicated as ai), in which

case all already executed write operations are undone

before the transaction terminates.

Traditional Concurrency Control for Replicated Databases T 3145
Isolation requires that even if transactions execute

concurrently in the system, each transaction should

have the impression it executes isolated on the data.

In particular, when two operations conflict, i.e., they

are from different transactions, want to access the same

data item and at least one is a write, the execution

order matters. Given a set of transactions, a history

describes the order in which the database server

executes the operations of these transactions. The tra-

ditional correctness criterion in a non-replicated

system is serializability. It requires a history to be

equivalent to a serial history where the same transac-

tions are executed serially one after the other. Equiva-

lence typically refers to executing all conflicting

operations in the same order.

The execution of transactions is controlled by several

components of the database system (see Fig 1). The

client starts a transaction and then submits the indi-

vidual operations of the transaction (including a final

commit or abort request). These requests are inter-

cepted by the transaction manager which keeps track
Traditional Concurrency Control for Replicated

Databases. Figure 1. Transaction components in non-

replicated database systems.
of active transactions. The individual read and write

operations are forwarded to the concurrency control

module that controls when operations are executed

by the data manager in order to provide serializability.

The recovery manager makes changes persistent at

commit time or triggers undo operations in case of

abort. In real database systems, clients submit SQL

statements that can access and manipulate many

records of different tables. However, the abstraction

into simple read and write operations on data items

allows for a clear and powerful reasoning framework.
Transaction Execution in a Replicated System

In a replicated database, there is a set of database

servers A, B,..., also referred to as sites, and each logical

data item x has a set of physical copies xA, xB, ... where

the index refers to the server on which the copy resides.

In full replication, each data item has a copy on each

server, while using partial replication, it has only copies

on a subset of the servers.
T

Execution Model As replication should be transparent

to clients they continue to submit operations on the

logical data items. Replica control has to map an oper-

ation oi(x), oi 2{r,w}, of transaction Ti into operations

on the physical copies of x, e.g., oi(x
A),oi(x

B), Given

the mapping for a set of transactions, when executing

these transactions in the replicated system each data-

base server A produces a local history showing the

execution order of all the operations performed on

the copies maintained by A.

The most common execution model for transac-

tions in a replicated environment is to perform a read

operation on one data copy while write operations

update all copies. This is referred to as ROWA (or read-

one-write-all). As most database applications typically

have more read than write operations is makes sense

to provide fast read access and only penalize write

operations.

A problem of ROWA is that if one copy is not

accessible, write operations cannot be performed any-

more on the data item. In order to be able to continue

even if failures occur, ROWAA (read-one-write-all-

available) needs to be used. It does not require

to perform updates on copies that are currently not

available. An alternative are quorum protocols that

require both read and write operations to access a

quorum of copies.

3146T Traditional Concurrency Control for Replicated Databases
Isolation One-copy-serializability was the first cor-

rectness criterion for replicated histories. The execu-

tion of a set of transactions in a replicated environment

is one-copy-serializable if it is equivalent to a serial

execution over a single, non-replicated (logical) data-

base. Defining equivalence is not straightforward since

the replicated system executes on physical copies while

the non-replicated on the logical data items. The

handling of failures further complicates the issue.

Atomicity Guaranteeing atomicity in a replicated

system requires that all sites that have performed

operations on behalf of a transaction agree on the

outcome (commit or abort) of a transaction. Tradi-

tional replication solutions typically achieve atomicity

by running a commit protocol at the end of a trans-

action. Commit protocols, such as the Two-Phase-

Commit Protocol, are a special form of agreement

protocol in a distributed system. The challenge here

is to define a protocol that works correctly in the

presence of crash and network failures.

This entry does not further look at failures but

focuses on providing isolation in a ROWA system.

Replica and Concurrency Control in a Replicated System

There are many ways to distribute concurrency and

replica control tasks across the system. Figure 2a shows

a centralized architecture. Each individual server is

only responsible for data and recovery management.

Additionally, there is one central transaction manager,

one concurrency control module and one replica con-

trol module in the system. Together, they control the

execution of all operations in the system. They could

be all located in one of the data servers, or, as shown

in the figure, in a special middleware. Figure 2b shows

a distributed architecture where each site has its own

transaction manager, concurrency and replica control

modules. Decisions on where and when to execute

operations are made locally at each site. A hybrid

approach is shown in Fig 2c. Each database server has

its traditional transaction and concurrency control

modules. A middleware layer controls transactions

globally and performs replica control. It relies partially

on the concurrency control modules of the individual

servers. As this might not be enough for a globally

correct execution, the middleware performs some ad-

ditional scheduling. Other combinations of distribu-

tion are also possible.

Given a concurrency control mechanism developed

for a non-replicated system, there exist many ways to
extend it to a replicated system. The following depicts

a few examples.

Strict Two-Phase Locking (S2PL) is probably the best

known concurrency control mechanism. In this case,

the concurrency control module implements a lock

manager. Using S2PL, a transaction has to acquire a

shared lock on data item x before performing a read on

x, and an exclusive lock on x before writing x. An

exclusive lock on x conflicts with other shared and

exclusive locks on x. If a transaction requests a lock

and another transaction holds a conflicting lock, the

requesting transaction has to wait. Only when a trans-

action terminates it releases all its locks, which then

can be granted to waiting transactions. S2PL guaran-

tees serializability because the order in which locks are

granted for the first pair of conflicting operations

between two transactions determines the serialization

order. Deadlocks can occur. A deadlock involving two

transactions can happen if the transactions have two

pairs of conflicting operations and execute them in

different order.

Applying S2PL in a replicated system with a

centralized architecture (Fig 2a), clients submit their-

operations to the global transaction manager. The

transaction manager gets the appropriate lock via

the lock manager and then the replica control module

transfers each read operation to one database

server with a copy of the data item, and write opera-

tions to all servers with copies. In the distributed

architecture (Fig 2b), a client connects to any site.

The execution of individual operations is illustrated

in Fig 3a. The figure shows the message exchange

between a client and two sites. When the client submits

a read operation on logical data item x to the local

server A, a local shared lock is acquired on the local

physical copy (sl(x A)) and the read operation executes

locally. If it is a write operation, an exclusive lock (xl

(x A)) is acquired locally and the operation executes

locally. At the same time, the operation is forwarded to

the server B. B, upon receiving the request, acquires a

lock on the local copy, performs the operation, and

sends a confirmation back to A. When A has received

all confirmations, it sends the confirmation back to

the client.

Architectural Comparison Comparing how well S2PL

maps to the two architectures reflects well the principle

trade-offs between a centralized and a decentralized

architecture.

Traditional Concurrency Control for Replicated Databases T 3147
In favor of a centralized architecture. In principle,

a central component makes the design of coordination

algorithms often simpler. It directs the flow of execu-

tion, and has the global knowledge of where copies are

located. One central concurrency control module seri-

alizes all operations. In the distributed architecture,

the flow of execution is more complex as no single

component has the full view of what is happening in

the system.

While the centralized architecture acquires one

lock per each operation on a logical data item, the
Traditional Concurrency Control for Replicated Databases.

Architecture.
distributed architecture acquires locks per data copies.

Thus, a write operation involves many exclusive locks,

adding to the complexity. The distributed architecture

has the additional disadvantage of potential distributed

deadlocks: there is no deadlock at any site locally but

globally, a deadlock has occurred. Figure 3b depicts an

example execution where a distributed deadlock occurs

although the transactions both only access a single data

item (something not even possible with the centralized

architecture). T1 first acquires the lock on server A

which forwards the request to server B. Concurrently,
Figure 2. Concurrency Control and Replica Control

T

Traditional Concurrency Control for Replicated Databases. Figure 3. Distributed Transaction Execution.

3148T Traditional Concurrency Control for Replicated Databases
T2 acquires the lock first on B and then requests it on

A. At A, T2 has to wait for T1 to release the lock, on B,

T1 waits for T2. The deadlock is distributed since no

single server observes a deadlock. Such deadlocks need

to be resolved via timeout or a deadlock detection

mechanism, which in turn, could be implemented

centrally or distributed.

In favor of a decentralized architecture. A central

middleware is a potential bottleneck and a single point

of failure. In contrast, in the distributed architecture,

if ROWAA is used, the system can continue executing

despite the failure of individual sites.

Furthermore, themiddleware approach has an extra

level of indirection. In the above example algorithm,

this leads to four messages per read operation (a pair

of messages between clients and middleware, and a

pair between middleware and one database server). In

contrast, the distributed architecture has two messages

(between the client and one database server).

A further disadvantage is that the global controller

does not have access to the data manager modules of

the database servers. For example, assume clients sub-

mit SQL statements. The middleware cannot know

what records will actually be accessed by simply look-

ing at the SQL statement. Such information is only

available during the execution. Thus, the central lock

manager might need to set locks on the entire relation.

In contrast, the distributed architecture can execute an

SQL statement first locally, lock only the tuples that are
updated, and then forward the update requests on the

specific records to the other servers, allowing for a

finer-grained concurrency control. Generally, a tighter

coupling often allows for a better optimization.

Optimistic Concurrency Control A last example looks

at optimistic concurrency control (OCC) [7]. In a non-

replicated system, a write operation on x generates a

local copy of x. A read on x either reads the local

copy (if the transaction has previously written x) or

the last committed version of x. At commit time of a

transaction Ti, validation is performed. If validation

succeeds, a write phase turns Ti’s local copies into

committed versions and Ti commits. Otherwise, Ti
aborts. In the simplest form of OCC, validation and

write phase are executed in a critical section. The

validation order determines the serialization order.

Therefore, validation of Ti fails if there is a committed

transaction Tj that is concurrent to Ti (committed after

Ti started), and Tj’s writeset (data items written by Tj)

overlaps with Ti’s readset (data items read by Ti). As Ti
validates after Tj it should be serialized after Tj, and

thus, read what Tj has written. In the concurrent exe-

cution, however, it might have read an earlier version.

Therefore, it needs to be aborted. Optimistic execution

assumes conflicts are rare, and thus, it is sufficient to

detect them at the end of transaction.

One possible implementation of OCC in a system

using full replication uses the hybrid architecture of

Traditional Replica and Concurrency Control Strategies T 3149
Fig 2c. Upon the first operation of a transaction, the

middleware starts a transaction and then executes all

operations at one of the database servers. The local

OCC of the server retrieves the latest committed ver-

sions and keeps track of local copies. At commit time

the middleware retrieves the read- and writesets from

the server at which the transaction executed, and per-

forms validation. For that, it has to keep track of the

writesets of previously committed transactions and use

some timestamping mechanism to determine concur-

rent transactions. If validation succeeds, the write

phase is triggered at all database servers with copies.

Concurrency control is distributed: the middleware

performs validation and ensures execution within a

critical section while the local concurrency control is

needed for the generation of local copies.

A distributed OCC strategy is proposed in [3].

It integrates validation into the commit protocol per-

formed for atomicity. Therefore, a transaction can first

execute completely locally at one database server and

only at commit time communication takes place. This

reduces the message overhead considerably.
Key Applications
Although the exact algorithms developed in this early

phase of research are barely found in any system, the

fundamental techniques behind the coordinated exe-

cution are used widely. For example, although few

commercial solutions actually provide one-copy-

serializability, the concept of ordering conflicting opera-

tions to some degree is common. Locking, timestamp-

ing, multi-version management, OCC, and distributed

and centralized solutions are common place in the man-

agement of replicated data.
T
Experimental Results
Gray et al. [5] show that traditional approaches do

not scale well. They analyzed the distributed locking

approach and determined that the potential of dead-

lock increases quickly with the number of replicas in

the system, the message overhead becomes too high,

and transaction response times become too long. The

goal of more recent research into replica and concur-

rency control has aimed at reducing the overhead by

either providing lower levels of correctness or by

developing more efficient ways to control the flow of

execution in the system.
Cross-references
▶ACID Properties

▶Concurrency Control – Traditional Approaches

▶Distributed Concurrency Control

▶One-Copy-Serializabilty

▶Replica Control

▶Replicated Database Concurrency Control

▶Replication based on Group Communication

▶Replication for High Availability

▶Replication for Scalability

▶Transaction Models – the Read/Write Approach

▶Two-Phase Locking
Recommended Reading
1. Bernstein P.A. and Goodman N. An algorithm for concurrency

control and recovery in replicated distributed databases. ACM

Trans. Database Syst., 9(4):596–615, 1984.

2. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison Wesley,

Reading, MA, USA, 1987.

3. Carey M.J. and Livny M. Conflict detection tradeoffs for

replicated data. ACM Trans. Database Syst., 16(4):703–746,

1991.

4. El Abbadi A. and Toueg S. Availability in partitioned replicated

databases. In Proc. 5th ACM SIGACT-SIGMOD Symp. on Prin-

ciples of Database Systems, 1986, pp. 240–251.

5. Gray J., Helland P., O’Neil P., and Shasha D. The dangers of

replication and a solution. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1996, pp. 173–182.

6. Kindberg T., Coulouris G.F., and Dollimore J. Distributed

Systems: Concepts and Design, 4th edn. Addison Wesley,

Reading, MA, USA, 2005.

7. Kung H.T. and Robinson J.T. On optimistic methods for

concurrency control. ACM Trans. Database Syst., 6(2):213–226,

1981.
Traditional Data Replication

▶Traditional Concurrency Control for Replicated

Databases
Traditional Replica and Concurrency
Control Strategies

▶Traditional Concurrency Control for Replicated

Databases

3150T Trajectory
Trajectory

RALF HARTMUT GÜTING

University of Hagen, Hagen, Germany

Synonyms
Trajectory; Moving point

Definition
Representation of a time dependent position observed

over some period of time. Usually represented as a

polyline in a 3D (2D + time) space for an object

moving in the 2D plane.

Key Points
Trajectories describe complete histories of movement;

they are stored in moving objects databases, sometimes

called trajectory databases in the literature.

When operations are included, a trajectory corre-

sponds to a value of a moving point data type. Queries

on databases containing trajectories can be formulated

usingmoving object languages. When uncertainty about

an object’s precise position is taken into account, an

uncertain trajectory [3] results which can be viewed as

a kind of cylindrical volume in the 2D + time space.

There exists a lot of work on indexing trajectories [2].

Querying for trajectories similar to a given one is also

an important research area [1].

Cross-references
▶Moving Objects Databases and Tracking

▶ Spatio-Temporal Data Types

References
1. Chen L., Özsu M.T., and Oria V. Robust and fast similarity

search for moving object trajectories. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2005, pp. 491–502.

2. Mokbel M.F., Ghanem T.M., and Aref W.G. Spatio-temporal

access methods. Bull. TC Data Eng., 26(2):40–49, 2003.

3. Trajcevski G., Wolfson O., Hinrichs K., and Chamberlain S.

Managing uncertainty in moving objects databases. ACM

Trans. Database Syst., 29(3):463–507, 2004.
Trajectory Databases

▶Moving Objects Databases and Tracking
Trajectory Indexing

▶ Indexing Historical Spatio-Temporal Data
Transaction

GOTTFRIED VOSSEN

University of Münster, Münster, Germany

Synonyms
Transaction; ACID transaction

Definition
A transaction is a tool for application programmers

to delegate the responsibility for preventing damage to

data from threats such as concurrent execution, partial

execution, or system crashes to the database system

software; at the same time, application programmers

retain the obligation to think about the impact on data

consistency of the code they are writing, when executed

alone and without failures. From a programmer’s per-

spective, the power of the transaction paradigm hence

lies in the fact that it reduces the task of concurrent

failure-aware programming of the entire system to that

of correct sequential programming of each application

program separately. The transaction concept offers

the ACID properties (short for atomicity, consistency

preservation, isolation, and durability) and materializes

through concurrency control and recovery. It is nowa-

days used beyond database systems.

Key Points
Database transactions go back to the work of Gray et al.

[3,4] in the mid-1970s. Their development has been

driven by applications where programs run against

data stored in a single database system or a collection

of such systems. There are many threats to the overall

dependability of a system formed as a combination of

databases and application programs; database transac-

tions deal with the threats from concurrent execution,

from incomplete execution (e.g., due to crashes or

cancelations), and from system crashes that lose infor-

mation from volatile buffers that has not yet been

saved. The problem itself has not only been recognized

in the context of database applications [1], yet has

finally been solved by the notion of a transaction.

Transaction Chopping T 3151

T

The key point of a transaction is that it comes

with system-guaranteed properties collectively known

as the ACID properties which considerably simplify the

development of OLTP applications in that application

programs can safely ignore a major portion of the

system complexity. In particular, application programs

are completely freed up from taking care of the issues

of concurrency, i.e., effects that may result from con-

current or even parallel program executions and espe-

cially data accesses, and of failures, i.e., effects that

would result from program executions being inter-

rupted at random points due to process or computer

failures.

In order to make this work, database systems

offer the transaction concept as well as transaction

management, commonly broken down into concurren-

cy control for the synchronization of concurrent access

to common data objects from multiple transactions, as

well as into recovery for being able to restore a consis-

tent state of the database after a crash. From a concep-

tual point of view, transactions can be modeled in

various ways, which essentially boil down to the page

model as well as the object model [5], and they have

evolved from an abstraction concept into a system

mechanism nowadays offered beyond database systems

[2]. The page model considers transactions and trans-

action management at the syntactic level of disk pages

that can either be read or written, while the object

model considers them at a level where the semantics

of operations on database objects can be taken into

account.

Transactions are executed in interleavings called

schedules or histories, which need to satisfy a correct-

ness criterion that commonly comes in a form of

serializability. Serializability is based on the perception

that serial executions are correct and hence tries to

make a non-serial execution “look” as if it was run

serially. Similar approaches can be applied to both

page-model as well as object-model transactions.

Cross-references
▶ACID Properties

▶Concurrency Control

▶Crash Recovery

▶ Extended Transaction Models

▶ Serializability

▶Transaction Management

▶Transaction Manager

▶Transaction Models – The Read/Write Approach
Recommended Reading
1. Davies C.T. Data processing spheres of control. IBM Syst. J.,

17:179–198, 1978.

2. Elmagarmid A.K. Database Transaction Models for Advanced

Applications. Morgan Kaufmann, San Francisco, CA, 1992.

3. Eswaran K.P., Gray J., Lorie R.A., and Traigerv I.L. The notions

of consistency and predicate locks in a database system.

Commun. ACM, 19:624–633, 976.

4. Gray J., Lorie R.A., Putzolu G.R., and Traiger I.L. Granularity

of locks in a large shared data base. In Proc. 1st Int. Conf. on

Very Large Data Bases, 1975, pp. 428–451.

5. Weikum G. and Vossen G. Transactional Information Systems –

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, San Francisco, CA, 2002.
Transaction Chopping

DENNIS SHASHA

New York University, New York, NY, USA

Definition
Transaction chopping is a technique for improving

the concurrent performance of a database system by

reducing the time locks are held. The idea is to break

up each transaction into smaller “pieces,” such that

each piece executes as a transaction, but the effect is

as if the original transactions executed serializably.

Key Points
Imagine an application that locks the entire database

and then accesses a few rows in a table that does not

fit into memory. If one looked at the resource statis-

tics, one would find low CPU consumption and low

disk utilization, yet the throughput would be very

bad. For example, if ten pages were accessed even at

1 ms per page, then throughput would be only 100

transactions per second. The point is that it is possible

to slow down performance greatly just because of

a poor locking strategy, even if there are plenty of

resources.

One might consider a less extreme case: a transac-

tion that processes an order. The transaction might

check whether there is sufficient cash available, then

add the appropriate quantities to inventory, subtract

the value from cash, and commit the transaction.

Because any application that invokes this transaction

will access the “cash” data item, that data item may

become a bottleneck. Transaction chopping is a tech-

nique for circumventing such bottlenecks by dividing

3152T Transaction Commit Time
transactions into smaller transactional pieces that will

hold locks for only a short time, yet still preserve the

serializability of the original transactions.

Assumptions

Transaction chopping makes the following main

assumptions: (i) One can characterize all the transac-

tions that will run in some time interval. The charac-

terization may be parameterized. For example, one

may know that some transactions update account

balances and branch balances, whereas others check

account balances. However, one need not know exactly

which accounts or branches will be updated. (ii) The

goal is to achieve the guarantees of serializability, while

obtaining as much concurrency as possible. That is,

one would like either to use degree 2 isolation, snap-

shot isolation, or to chop transactions into smaller

pieces. The guarantee should be that the resulting

execution be equivalent to one in which each original

transaction executes serializably. (iii) If a transaction

makes one or more calls to rollback, one knows when

these occur and can arrange the transaction to move

them towards the beginning.

Basic Definitions

A chopping partitions each Ti into pieces ci1 ; ci2 ;:::cik .

Every database access performed by Ti is in exactly one

piece. A chopping of a transaction T is said to be

rollback-safe if either T has no rollback statements or

all the rollback statements of T are in its first piece. The

first piece must have the property that all its statements

execute before any other statements of T. This will

prevent a transaction from half-committing and then

rolling back. All transactions should be rollback-safe.

Each piece will act like a transaction in the sense

that each piece will acquire locks according to some

standard method that guarantees the serializability of

the piece.

For example, suppose Tupdates an account balance

and then updates a branch balance. Each update

might become a separate piece, acting as a separate

transaction.

Correct Choppings

One may characterize the correctness of a chopping

with the aid of an undirected graph having two kinds

of edges. (i) C edges: C stands for conflict. Two pieces

p and p0 from different original transactions conflict if

there is some data item x that both access and at least
one modifies. In that case, one draws an edge between

p and p0 and label the edge C. (ii) S edges: S stands for

sibling. Two pieces p and p0 are siblings if they come

from the same transaction T. In this case, draw an edge

between p and p0 and label the edge S.

The resulting graph is called the chopping graph.

(Note that no edge can have both an S and a C label.)

A chopping graph has an SC-cycle if it contains a

simple cycle that includes at least one S edge and at

least one C edge. A chopping of T1,T2,...,Tn is correct if

any execution of the chopping is equivalent to some

serial execution of the original transactions. “Equiva-

lent” is in the sense of the serializability entry.

Theorem 1: A chopping is correct if it is rollback-safe

and its chopping graph contains no SC-cycle.

Theorem 1 shows that the goal of any chopping of a

set of transactions should be to obtain a rollback-safe

chopping without an SC-cycle.

Conclusion

Transaction chopping is a method to enhance concur-

rency by shortening the time a bottleneck resource is

held locked. It works well in practice and the theory

extends naturally to snapshot isolation as well as read

committed isolation levels.

Cross-references
▶Concurrency Control

▶ Locking

▶Transaction Execution

Recommended Reading
1. Fekete A., Liarokapis D., O’Neil E., O’Neil P., and Shasha D.

Making Snapshot Isolation Serializable. ACM Trans. Database

Syst., 30(2):492–528, 2005.

2. Shasha D. and Bonnet P. Database Tuning : Principles Experi-

ments and Troubleshooting Techniques. Morgan Kaufmann,

2002.
Transaction Commit Time

▶Transaction Time
Transaction Execution

▶Concurrency Control – Traditional Approaches

Transaction Management T 3153

T

Transaction Management

GOTTFRIED VOSSEN

University of Münster, Münster, Germany

Synonyms
Concurrency control and recovery; Transaction sched-

uling; Transaction processing

Definition
Transaction management [2,6] refers to the tasks of

processing multiple transactions issued by various cli-

ents of a database server in such a way that the ACID

contract can be fulfilled, that is, the properties of atom-

icity, consistency preservation, isolation, and durability

of each individual transaction can be guaranteed.

Transaction management is generally understood as

requiring serializability-based concurrency control as

well as recovery from failures. Concurrency control is

the task of scheduling transactions such that their

serializability can be guaranteed, while recovery has

to restore a consistent database state after a system or

media failure. Assuming that the database server is in

charge of the “C,” the former guarantees the “I” in

ACID, the latter the “A” and “D” properties. Transac-

tion management has to be highly efficient, as modern

transaction servers need to accommodate thousands of

transactions per minute. This is achieved by a compre-

hensive combination and interplay of theoretical re-

search and practical developments.

Historical Background
Transaction management emerged in the 1970s in early

database management systems [5], and has become an

indispensable part of a database server [1,3]. Its goal

is to devise efficient algorithms for handling transac-

tions, the essential “contract” between an application

program and transactional server that combines a

number of requests to the server into a logical unit.

Over the years, transaction management has received

theoretical underpinnings as well as system implemen-

tations in various ways, the former of which have

allowed it to extend beyond simple database objects

(pages) [7]. Indeed, transaction management can essen-

tially be “positioned” at any level of abstraction within

the functional layers of a data server, where the price to

pay for expressiveness typically is efficiency. Neverthe-

less, transaction management has also been extended
into areas beyond database management, among them

operating systems and, more recently, programming

languages.
Foundations
To recognize the essence of what transaction manage-

ment is about, consider the operation of a bank that

uses a relational database to keep track of its account

business. The database may contain a table Accounts

which describes bank accounts in terms of their

account id, associated customer name, identification

of the respective bank branch, balance, and possibly

other data. Transactions in the bank are either with-

drawals or deposits (debit/credit transactions) applied

to Accounts, and these operations are often combined

into funds transfers, i.e., withdrawals from one account

and immediate deposit into another. With a huge

number of clients potentially issuing simultaneous

requests to the bank’s database server, a concurrent

execution of multiple debit/credit transactions is man-

datory in order to exploit the server’s hardware

resources and to achieve processing speeds acceptable

to clients. Concurrently executing transactions are typ-

ically modifying the underlying database of the bank-

ing application (table Accounts) frequently. In order to

be able to ignore the potential fallacies of this concur-

rency, each transaction would ideally be executed as if

there were no other transactions, but that would mean

no concurrency. This tradeoff between concurrency for

the sake of performance on the one hand, and potential

sequential execution for the sake of correctness on the

other, is one aspect of transaction processing, formally

captured through notions of serializability and recon-

ciled by the concurrency control techniques of a transac-

tional server.

Figure 1 illustrates that concurrency may indeed be

tricky, since it may have a disastrous impact on the

consistency of the underlying data. Consider two debit/

credit transactions t1 and t2 that are concurrently exe-

cuted and that are both operating on the same account

x (which could be the account id). To distinguish the

two different instances of the local variable “balance”

that temporarily holds the value of the account bal-

ance, they can be referred to as “balance1” for transac-

tion t1 and “balance2” for t2. The first transaction then

intends to withdraw $30, the second transaction

intends to deposit $20, and it is assumed that the initial

account balance is $100. The table in Fig. 1 shows those

Transaction Management. Figure 1. Concurrent transactions requiring concurrency control.

3154T Transaction Management
parts of the two transactions that read and modify the

account record. Upon completion of the execution, the

balance of account x, as recorded in the persistent

database, will be $120, although it should be $90

after execution of the two transactions. Thus, the

recorded data are incorrect, a kind of “anomaly”

must be prevented, and concurrent executions must

be treated with care. Similar anomalies can arise from

transaction failures.

A second fundamentally important point is that the

various accesses a transaction has to perform need to

occur in conjunction: Once a transaction has begun

execution, its data accesses should look to the outside

world as an atomic operation which is either executed

completely or not at all. This property of atomicity

should be guaranteed even in a failure-prone environ-

ment where individual transactions or the entire data-

base server may fail at an arbitrary point in time. To

this end, a transactional server needs to provide recov-

ery techniques to cope with failures. In addition to

ensuring transaction atomicity, these techniques also

serve to ensure the durability of a transaction’s effects

once the transaction is completed. The scenario

shown in Fig. 2 illustrates this. It shows a program

which transfers a given amount of money between

two accounts, by first withdrawing it from a source

account and then depositing it in a target account.
The program is described in terms of SQL statements

embedded into a C program. It is assumed that the

funds transfer program has started executing and has

already performed the withdraw operation (i.e., the

first SQL Update). If there is a hardware or software
failure that interrupts the program’s execution at this
point, the remaining second update operation will not
be performed. Thus, the target account will not receive
themoney.

A recovery procedure, to be invoked after the

system is restarted, will try to find out which updates

were already made by ongoing transaction program

executions and which ones were not yet done, and

will try to fix the situation. However, implementing

recovery procedures on a per-application case basis is a

difficult task that is itself error prone because of its

sheer complexity, especially because multiple transac-

tions issued by different programs may have accessed

the data at the time of the failure. So rather than

programming recovery in an ad hoc manner for each

application separately, a systematic approach is needed,

as described, for example, in [9,2]. System-provided

recovery ensures the atomicity of transactions and

simplifies the understanding of the post-failure state

of the data and the overall failure handling on the

application side. In the sample scenario of Fig. 2, rather

than being left with the inconsistent state in the middle

Transaction Management. Figure 2. Sample funds transfer that needs atomicity.

Transaction Management T 3155

T

of the transaction, the system recovery will restore

the state as of before the transaction began. On the

other hand, if the transaction had already issued its

“commit transaction” call, then the systemwould guar-

antee the durability of the transaction’s complete funds

transfer.

Guaranteeing the ACID properties of a transaction,

which allow application developers to disregard con-

currency and failures, are the major goal of transaction

management; the means to accomplish this are con-

currency control and recovery. These cornerstones for

building highly dependable information systems can

also be successfully applied outside the scope of online

transaction processing (OLTP) applications.

Key Applications
Figure 3 shows the layered architecture shared by

essentially all database servers in one form or another.

When a client request arrives at the server, the server

executes code that transforms the request into one or

more operations at each of the underlying layers, ulti-

mately arriving at a sequence of disk accesses (unless

caching avoids the disk access). The language and in-

terface layermakes various kinds of interfaces available

to the application developer, usually in the form of

APIs (e.g., SQL and ODBC). The query decomposition

and optimization layer works on an internal, tree based

representation of a request and is concerned with the

further decomposition of the request into smaller units
that can be directly executed; this is the level where also

optimizations are carried out. The execution plan cho-

sen is often represented as an operator tree where each

operator can be directly mapped to a piece of server

code. This code is provided by the query execution layer.

Next, index structures and also the capabilities for

accessing and manipulating data records are provided

by the access layer. Finally, the storage layer is responsi-

ble for managing the pages of a database, including

disk I/O and caching.

The layered architecture in Fig. 3 does not explicitly

mention transaction management, for the simple rea-

son that the functionality of transactional concurrency

control and recovery can be tied to any of the five layers

shown. For many applications that run simple transac-

tions, each of which accesses a small portion of the data

only, transaction management is commonly integrated

into the access and storage layers. Applications in this

category include classical OLTP scenarios such as

banking (see above) or reservation systems, where

high availability, high throughput, and high reliability

are of utmost importance. However, transactions in

electronic commerce applications, where client req-

uests may span multiple databases as well as other

information sources across enterprise boundaries, or

transactions arising from an execution of business

processes which typically take some form of semantic

information (stemming from higher-level, for example

SQL-type operations) into account can also benefit

Transaction Management. Figure 3. Functional database system layers.

3156T Transaction Management
from transaction concepts. Through appropriate trans-

action models and an appropriate adaptation of the

relevant concurrency control and recovery algorithms

to these models, transaction management can be ap-

plied in almost any area that needs to handle concur-

rent requests to shared resources in such a way that the

ACID properties can be guaranteed [9].

Future Directions
With constant changes in network-centric computing,

including the proliferation ofWeb services, long-running

processes across organizational boundaries, large scale

peer-to-peer publish-subscribe and collaboration plat-

forms, and ambient-intelligence environments with

large numbers of mobile and embedded devices, support

for handling or even masking concurrency and compo-

nent failures is critical inmanymodern application areas,

but can no longer use traditional atomicity concepts

alone. In open systems applications are constructed

from pre-existing components, and these components

and their configurations are not known in advance

and they can change on the fly. Thus, it is crucial

that atomicity properties of components become

composable and allow for reasoning about the behavior

of the resulting system. Transaction management will

thus continue to require research for the foreseeable

future.
Experimental Results
Since transaction management typically has to meet

high efficiency requirements, experimental evaluation

and comparison of algorithmic approaches to concur-

rency control and recovery has always been crucial, as is

tuning of the transaction management component of a

database server for the system administrator. Prominent

references including implementation recipes as well as

experimental evaluations are [4,8].

Cross-references
▶Control

▶Crash Recovery

▶Database Server

▶ Performance Analysis of Transaction Processing

Systems

▶Transaction

▶Two-Phase Locking

Recommended Reading
1. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison-Wesley,

Reading, MA, 1987.

2. Bernstein P.A. and Newcomer E. Principles of Transaction Pro-

cessing for the Systems Professional. Morgan Kaufmann, San

Francisco, CA, 1997.

3. Cellary W., Gelenbe E., and Morzy T. Concurrency Control n

Distributed Database Systems. North–Holland, Amsterdam, 1988.

Transaction Model T 3157
4. Gray J. (ed.). The Benchmark Handbook for Database and

Transaction Processing Systems. 2 edn. Morgan Kaufmann, San

Francisco, CA, 1993.

5. Gray J., Lorie R.A., Putzolu G.R., and Traiger I.L. Granularity of

locks in a large shared data base. In Proc. 1st Int. Conf. on Very

Data Bases, 1975, pp. 428–451.

6. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1993.

7. Lynch N., Merritt M., Weihl W., and Fekete A. Atomic Transac-

tions. Morgan Kaufmann, San Francisco, CA, 1994.

8. Shasha D. and Bonnet Ph. Database Tuning: Principles Experi-

ments and Troubleshooting Techniques. Morgan Kaufmann, San

Francisco, CA, 2002.

9. Weikum G. and Vossen G. Transactional Information Systems –

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, San Francisco, CA, 2002.
Transaction Management in
Distributed Database Systems

▶Distributed Transaction Management
T

Transaction Manager

ANDREAS REUTER
1,2

1EML Research gGmbH, Villa Bosch, Heidelberg,

Germany
2Technical University Kaiserslautern, Kaiserslautern,

Germany

Definition
The transaction manager (TxM) is a special resource

manager that implements the resource type “transac-

tion.” It handles all the state transitions that a tran-

saction can perform. For simple ACID transactions

these are: begin, savepoint, rollback, abort, prepare

commit; for more refined transaction models there

will be additional states. The resource managers regis-

ter with the TxM when they get employed by a trans-

action for the first time. Thus, the TxM keeps a record

for each transaction of which resource managers have

been involved with it. In the same vein, it stores which

sessions each transaction has used in case it has per-

formed operations on other nodes in a distributed

system. The TxM closely interacts with the concurren-

cy control manager who can make transaction wait for

other transactions in case of access conflicts. It also
interacts with the logging and recovery subsystem and

the communications manager.

Key Points
The TxM keeps track of all active transactions. When a

transaction starts, it is assigned a transaction ID that is

unique across any distributed system and will never

repeat. For each transaction the TxM stores which

resource managers and which sessions are associated

with it; for sessions the polarity (outgoing/incoming) is

also important. For each state transition of a transac-

tion, the TxM will orchestrate the proper protocol. The

most important of these protocols is the two-phase

commit (2PC) protocol. Depending on the structure

of a transaction, the TxM will act as a coordinator or a

participant – or both. Using the information about the

participating resource managers and communication

sessions, the TxM calls them at their proper callback

entries to perform all the necessary actions to go, for

example, into the prepared state. TxMs are often imple-

mented as interpreters of the formal description of a

state machine, so they can dynamically switch between

different (optimizations of) commit protocols.

Upon recovery, the TxM is the first resource man-

ager that is reconstructed by the recovery manager.

When the recovery manager has completed its initial

backward scan of the online log, the table of active

transactions is completely recovered. If there are any

in-doubt transactions left, the TxM starts handling

that particular part of the 2PC in order to resolve

those transactions.

Cross-references
▶Communications Manager

▶Concurrency Control Manager

▶ Logging/Recovery Subsystem

▶ Storage Resource Management

▶Transactional Middleware

Recommended Reading
1. Gray J. and Reuter A. Transaction Processing – Concepts and

Techniques; Morgan Kaufmann, San Mateo, CA, 1993.
Transaction Model

▶Transaction Models – The Read/Write Approach

3158T Transaction Models – the Read/Write Approach
Transaction Models – the Read/Write
Approach

GOTTFRIED VOSSEN

University of Münster, Münster, Germany

Synonyms
Transaction model; Page model; Read/write model

Definition
The transaction concept essentially establishes an

“ACID contract” in data-processing situations, and a

transaction model is an abstraction concept that makes

this concept amenable to realizations. Two fundamen-

tal models are the page model as well as the object

model, where the former is an execution model and

the latter is more a conceptual model. The page model

is based on the perception that database operations

ultimately are read or write operations on pages that

need to be transferred between secondary storage and

main memory or the database buffer. The model allows

making all relevant notions (in particular interleavings

of multiple transactions and schedule correctness) pre-

cise in a syntactic manner, and it forms the basis for

verifying a variety of concurrency control algorithms

that can be used in database management as well as

other systems.

Historical Background
The read/write or page model of transactions goes back

to the work of Jim Gray [5,6] and Kapali Eswaran et al.

[4]. Related notions of atomic actions have been dis-

cussed by others around the same time, the mid- to

late-1970s, including [8,9]. The page-model transac-

tion concept became the subject of intensive theoreti-

cal studies, in particular in the work of Christos

Papadimitriou and, independently, Phil Bernstein

et al. around 1980 [2,3,10,11]. It is essentially valid in

its original form until today, yet has received a number

of extensions and variations over the years [13].

Foundations
The read/write model of database transactions is moti-

vated by the observation that all operations on data

(i.e., queries as well as updates) are eventually mapped

into indivisible read and write operations on disk

pages or on a page cache in main memory. Thus, to

study the effects of concurrent executions, it essentially
suffices to inspect the interleavings of the resulting

page operations. The abstraction from higher-level

data operations, such as SQL commands or method

invocations on business objects, down to the view that

a resulting transaction consists of reads and writes only

is a strong one, yet suffices for many practical pur-

poses. In fact, a comprehensive theory of concurrency

control and of recovery can be built on it, which is

directly applicable to real-world systems, albeit with

some performance limitations.

Definition of a Transaction

To define the model of read/write transactions forma-

lly, a database is assumed to contain a (finite) set

D = {x,y, z,. . .} of (indivisible and disjoint) items

(pages) with indivisible read and write operations.

Data items are often denoted by small letters from

the end of the alphabet, where indices are used if

necessary (e.g., x1,y4). A transaction can then be de-

fined as a total or a partial order of steps; for total

orders, a formal definition is as follows: A transactiont

is a (finite) sequence of steps (actions) of the form r(x)

or w(x), written t = p1...pn, where n < 1, pi 2 {r(x),

w (x)} for 1 � i � n, and x 2 D for a given database D.

Here, r stands for “read” and w for “write.” Thus, a

transaction abstracts from the details of a program

execution and instead focuses on the sequence of

read and write operations that results from that

execution.

Each step occurring in a transaction can be uniquely

identified so that two distinct transactions do not have

steps in common. Let pj denote the jth step of a given

transaction, and let pij denote the jth step of transac-

tion i in the presence of multiple transactions. Then

the following terminology is common: If pj = r(x), the

interpretation is that step j reads data item x; if pj = w

(x), the interpretation is that step j writes data item x.

A transaction is hence a purely syntactic entity whose

semantics or interpretation is unknown. In the absence

of information on the semantics of the program that

launches a transaction, however, the best that can be

done is to devise a Herbrand semantics, i.e., a “syntac-

tic” interpretation of the steps of a transaction that is as

general as possible: (i) In case pj = r(x), the current

value of x is assigned to a local variable vj. (ii) In case

pj = w(x), a possibly new value, computed by the

respective program, is written into x. Each value writ-

ten by a transaction t potentially depends on the values

of all data items that t has previously read; if t writes x,

Transaction Models – the Read/Write Approach T 3159

T

x is the return value of an arbitrary but unknown

function fj applied to all values read before the respec-

tive write step. The Herbrand semantics of a read/write

transaction thus is a technical vehicle, only useful for

making various correctness notion for transaction

interleavings precise.

The total ordering requirement to the steps of a

transaction can be relaxed into a partial ordering;

thus, a transaction t becomes a partial order of steps

(actions) of the form r(x) or w(x), where x 2 D and

reads and writes as well as multiple writes applied to

the same data item are ordered. More formally, a

transaction is a pair t = (op, <), where op is a finite

set of steps of the form r(x) or w(x), x 2 D, and < �
op � op is a partial order on set op for which the

following holds: If {p, q} � op s.t. p and q both access

the same data item and at least one of them is a write

step, then p < q ∨ q < p. In other words, in the partial

ordering of a transaction’s steps, a read and write

operation on the same data item or two write opera-

tions on the same data item need to be ordered. With

“conflicting” steps inside a transaction being ordered,

the “semantics” outlined above for totally ordered

transactions carries over to partially ordered ones.

For simplicity, however, most discussions of correct-

ness criteria in the literature stick to total orders.

Although read/write transactions are considered syn-

tactic entities only, it is an advantage of this model that

its theory can be developed in the absence of semantic

information and hence can be used for every possible

interpretation of the transactions. In other words, the

read/write page model is fairly general despite its sim-

ple structure.

The model as described above allows a transaction

to read or write the same data item more than once, as

it is the case in the example t = r(x)w(x)r(y)r(x)w(x).

Here t reads and writes x twice, although it is reason-

able to assume that the value of x remains available,

after having been read the first time, in the local vari-

ables of the underlying program for as long as it is

needed by t, and that only the last write step deter-

mines the final value of x produced by this transaction.

To exclude “redundancies” of this kind, it is common

to assume that (i) in each transaction each data item is

read or written at most once, and (ii) no data item is

read (again) after it has been written. The latter condi-

tion does not exclude the possibility of “blind writes,”

which is a write step on a data item that is not preceded

by a read of that data item.
Schedules and Histories

The distinction between partial and total orderings is

also appropriate for interleavings of transactions, i.e.,

for schedules and histories: Let T = {t1,...,tn} be a

(finite) set of transactions, where each ti 2 T has the

form ti = (opi, < i), with opi denoting the set of

operations of ti and < i denoting their ordering, 1 � i

� n. A history for T is a pair s = (op(s),< s) s.t. (i) op(s)

� Un
i¼1 opi [Un

i¼1 {ai, ci} and Un
i¼1 opi � op(s), i.e.,

s consists of the union of the operations from the given

transactions plus a termination operation, which is

either a ci (commit) or an ai (abort), for each ti 2 T,

(ii) (8i, 1� i� n) ci 2 op(s), ai =2 op(s), i.e., for each
transaction, there is either a commit or an abort in s,

but not both, (iii) Un
i¼1 < i � < s, i.e., all transaction

orders are contained in the partial order given by s,

(iv) (8i,1 � i � n)(8p 2 opi)p < s ai or p < s ci, i.e.,

the commit or abort operation always appears as the

last step of a transaction, and (v) any pair of operations

p,q 2 op(s) from distinct transactions accessing the

same data item s.t. at least one is a write operation is

ordered in s in such a way that either p < s q or q < s p.

A schedule is a prefix of a history. A history s is serial if

for any two transactions ti and tj in it, where i 6¼ j, all

operations from ti are ordered in s before all operations

from tj or vice versa. Thus, a history (for partially

ordered transactions) has to contain all operations from

all transactions (i), needs a distinct termination opera-

tion for every transaction (ii), preserves all orders within

the transactions (iii), has the termination steps as final

steps in each transaction (iv), and orders “conflicting”

operations (v). The view that two operations which ac-

cess the same data item and of which at least one is awrite

operation are in conflict is identical to the notion of

conflict that will shortly be used as the basis for a notion

of serializability. The notions “schedule” and “history”

are not always used in the sense defined here in the

literature, but are often used as synonyms.

Schedule Correctness

For transaction executions, it is important to not only

have a model of interleavings and their constituents,

but also to fix a notion of schedule or history correct-

ness. To this end, conflict serializability (CSR) is the

notion which is most important for the practice of

transactional information systems, in particular for

designing scheduling algorithms and for building sche-

dulers. CSR is computationally easy to test, and it has

a number of interesting theoretical properties which

3160T Transaction Models – the Read/Write Approach
can justify an exploitation of this concept in practice

in a variety of ways. Finally, it can be generalized to

other transaction models and different data settings.

Conflict serializability is based on a simple notion of

conflict which was mentioned already in connection

with partially ordered histories, and which is appropri-

ate for the syntactical nature of read/write transactions.

Two data operations from distinct transactions are in

conflict in a schedule if they access the same data item

and at least one of them is a write. The notion of con-

flict gives rise to a notion of serializability: A history is

conflict serializable if there exists a serial history with

the same conflicts.

Commutativity of Operations

Conflict serializability can be characterized via acyclic

conflict graphs, which gives rise to efficient testability.

It is can also be characterized via commutativity rules

for page model data operations. In these rules “�”
means that the ordered pair of actions on the left-

hand side can be replaced by the right-hand side, and

vice versa: (C1) ri(x)rj(y) � rj(y)ri(x) if i 6¼ j, i.e., two

read steps ri(x) and rj(y), i 6¼ j, which occur in a

schedule in this order and are adjacent (with no

other operation in between), may be commuted. (C2)

ri(x)wj(y) � wj(y)ri(x) if i 6¼ j, x 6¼ y, i.e., a read and

write step can be exchanged if they are from distinct

transactions and access different data items. (C3) wi(x)

wj(y) � wj(y)wi(x) if i 6¼ j, x 6¼ y, i.e., two write steps

can be commuted if they refer to different data items.

These commutativity rules can be applied to a given

schedule or history in a stepwise fashion, for example

to transform s = w1(x)r2(x)w1(y)w1(z)r3(z)w2(y)w3(y)

w3(z) into w1(x)w1(y)w1(z)r2(x)w2(y)r3(z)w3(y)w3(z),

thereby proving it equivalent to the serial history

t1t2t3. The above transformations have implicitly

assumed that operations in a schedule are totally or-

dered. With partial orders, one may need an additional

transformation rule which simply states that two un-

ordered operations can be arbitrarily ordered if they

are non-conflicting.

The commutativity rules can be used for introdu-

cing another relation on schedules: Let s and s 0 be two

schedules s.t. op(s) = op(s0). Define s � s 0 if s 0 can be

obtained from s by a single application of the commu-

tativity rules to the steps of the schedule. Let “��”
denote the reflexive and transitive closure of “�,” i.e.,

s �� s0 if s0 can be obtained from s by a finite number of
applications of the rules. It turns out that “��” is an

equivalence relation on the set of all schedules for a

given set of transactions, and that finitely many appli-

cations of the rules may transform a given history into

a serial one, as in the example above. More formally,

a history s is commutativity based reducible if there is a

serial history s0 s.t. s �� s
0, i.e., s can be transformed into

s 0 through a finite number of allowed transformation

steps according to the commutativity rules. Therefore,

a history s is commutativity based reducible iff s is

CSR. An important application of this alternative char-

acterization of schedule correctness is that it can imme-

diately be generalized. Indeed, it is irrelevant to know of

a schedule whether a step reads or writes or which data

item it accesses, as long as it is known which steps of the

schedule are in conflict. The latter suffices for deciding

about the correctness of the schedules, even without any

knowledge about the meaning of the operations [11].

Thus, the steps of a schedule or history to which a

commutativity argument is applied may be of a

completely different type, such as increment and decre-

ment on a counter object, push and pop on a stack

object, or enqueue and dequeue on a queue object.

This observation can be exploited in the context of

extended transaction models, where notions of serial-

izability can be established that are based on semantic

information.

The page model of transactions can also be extended

to accommodate transaction recovery. Indeed, when a

transaction aborts, the intuitive reaction of the underly-

ing system is to “undo” the effects of that transaction,

which can adequately be captured by inverse write

operations. To execute an abort operation, the system

would have to execute inverse writes in reverse order of

their occurrence [1].
Key Applications
Key applications for transactions started out from

debit/credit scenarios in banks and financial institu-

tions, where multiple customer activities against

shared accounts need to be synchronized, yet executed

at a high throughput rate. In a debit/credit transaction,

the activities are either withdrawals or deposits, and

these are often combined into funds transfers. The

typical structure of a debit/credit program is shown

below, using SQL commands embedded into a C pro-

gram. Note the distinction between local variables of

Transaction Models – the Read/Write Approach T 3161

T

the invoked program and the data in the underlying

database that is shared by all programs.

/* debit/credit program */

void main()

{EXEC SQL BEGIN DECLARE SECTION;

int accountid, amount;

/* input variables */

int balance; /* intermediate variable */

EXEC SQL END DECLARE SECTION;

/* read user input */

printf("Enter Account ID, Amount for

deposit (positive) or withdrawal (nega-

tive): ");

scanf("%d %d", &accountid, &amount);

/* determine current balance of the ac-

count, reading it into a local variable

of the program */

EXEC SQL

Select Account_Balance Into :balance

From Accounts

Where Account_Id = :accountid;

/* add amount (negative for withdrawal) */

balance = balance þ amount;

/*updateaccountbalanceinthedatabase*/

EXEC SQL Update Accounts

Set Account_Balance = balance

Where Account_Id = :accountid;

EXEC SQL Commit Work; }

The crucial situation is that, say, two transactions access

the same account, where one makes a withdrawal and

the other a deposit, i.e., both transactions write new

values of the account balance. If unsynchronized, these

transaction could overwrite each other’s results, there-

by leaving the account in an inconsistent state. Another

crucial situation is that a transaction makes a with-

drawal from one account and a deposit into another

(i.e., a transfer); if this transaction crashes in the mid-

dle, i.e., after the withdrawal but before the deposit,

money would be lost if the system is not capable of

restoring the state prior to the withdrawal. The read/

write model allows for a straightforward formaliza-

tion of these situations, and efficient concurrency

control as well as recovery procedures can be devised

to handle them.

For scenarios like the one just sketched (in particu-

lar transfers that need to appear atomic to the outside

world), there are numerous applications in today’s
information systems landscape of electronic business

over the Internet, where client requests are rarely re-

stricted to single data servers, but often span multiple

databases and other information sources across enter-

prise boundaries, yet the mutual consistency of all this

data is crucial and thus important to maintain. Then,

the resulting transactions operate in a distributed sys-

tem that consists of multiple servers, often with het-

erogeneous software. To go one step further, a business

process is a set of activities (or steps) that belong to-

gether in order to achieve a certain business goal.

Business processes are also at the heart of advanced,

business-to-consumer (B2C) or business-to-business

(B2B) services on the Internet, for example, electronic

auctions (B2C) or supply chains (B2B). Typical exam-

ples would be the processing of a credit request or an

insurance claim in a bank or insurance company, re-

spectively, the administrative procedures for real estate

purchase, or the “routing” of a patient in a hospital.

Future Directions
Transactions have originally been developed in the

database system community, but their usage and po-

tential benefits are by no means limited to database

management. Not surprisingly, the transaction concept

is also being explored in the operating systems and

programming languages communities. Recent trends

include, for example, enhancing the Java language with

a notion of atomic blocks that can be defined for

methods of arbitrary classes. This could largely simpli-

fy the management of concurrent threads with shared

objects, and potentially also the handling of failures

and other exceptions. The run-time environment

could be based on an extended form of software trans-

actional memory. Another important direction in on-

going research is to design and reason about guarantees

that resemble transactions but are weaker than the

ACID properties, especially with regard to the notion

of isolation. A model that is widely deployed in indus-

trial data management systems is snapshot isolation

(based on keeping a versioned history of data items).

Experimental Results
The read/write model of transactions has in part been

so successful since it allows for highly efficient imple-

mentations of concurrency control and recovery meth-

ods, and it allows for tuning a system on the fly.

Surveys are provided by [7] and in particular [12].

3162T Transaction Processing
Cross-references
▶Atomicity

▶Concurrency Control

▶ Extended Transaction Models

▶ Logging and Recovery

▶Multi-version Serializability and Concurrency Control

▶ Serializability

▶ Software Transactional Memory

▶Transaction

▶Transaction Chopping

Recommended Reading
1. Alonso G., Vingralek R., Agrawal D., Breitbart Y., El Abbadi A.,

Schek H.-J., and Weikum G. Unifying concurrency control and

recovery of transactions. Inform. Syst., 19:101–115, 1994.

2. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison-Wesley,

Reading, MA, 1987.

3. Bernstein P.A., Shipman D.W., and WongW.S. Formal aspects of

serializability in database concurrency control. IEEE Trans. Soft-

ware Eng., SE-5:203–216, 1979.

4. Eswaran K.P., Gray J., Lorie R.A., and Traiger I.L. The notions of

consistency and predicate locks in a database system. Commun.

ACM, 19:624–633, 1976.

5. Gray J. Notes on database operating systems. In: Operating

Systems: An Advanced Course, LNCS, Vol. 60, R. Bayer, M.R.

Graham, G. Seegmüller (eds.). Springer, Berlin Heidelberg

New York, 1978, pp. 393–481.

6. Gray J. The transaction concept: virtues and limitations. In Proc.

7th Int. Conf. on Very Data Bases, 1981, pp. 144–154.

7. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1993.

8. Lampson B.W. Atomic transactions. In: Distributed Systems –

Architecture and Implementation: An Advanced Course, LNCS,

Vol. 105, B.W. Lampson, M. Paul, H.J. Siegert (eds.). Springer,

Berlin Heidelberg New York, 1981.

9. Lomet D.B. Process structuring, synchronization, and recovery

using atomic actions. ACM SIGPLAN Notices, 12(3):128–137,

1977.

10. Papadimitriou C.H. The Serializability of concurrent database

updates. J. ACM, 26:631–653, 1979.

11. Papadimitriou C.H. The Theory of Database Concurrency Con-

trol. Computer Science, Rockville, MD, 1986.

12. Shasha D., Bonnet Ph. Database Tuning – Principles, Experi-

ments, and Troubleshooting Techniques. San Francisco, CA,

Morgan Kaufmann, 2003.

13. Weikum G. and Vossen G. Transactional Information Systems –

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, San Francisco, CA, 2002.
Transaction Processing

▶Application Recovery

▶Transaction Management
Transaction Scheduling

▶Transaction Management
Transaction Service

▶Transactional Middleware
Transaction Time

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Registration time; Extrinsic time; Physical time; Trans-

action commit time; Belief time

Definition
A database fact is stored in a database at some point in

time, and after it is stored, it remains current, or part of

the current database state, until it is logically deleted.

The transaction time of a database fact is the time when

the fact is current in the database. As a consequence,

the transaction time of a fact is generally not a time

instant, but rather has duration.

The transaction time of a fact cannot extend into the

future. Also, as it is impossible to change the past, mean-

ing that (past) transaction times cannot be changed.

In the context of a databasemanagement system that

supports user transactions, the transaction times of facts

are consistent with the serialization order of the tran-

sactions that inserted or logically deleted them. Transac-

tion times may be implemented using transaction

commit times, and are system-generated and -supplied.

Key Points
A database is normally understood to contain state-

ments that can be assigned a truth value, also called

facts, that are about the reality modeled by the database

and that hold true during some non-empty part of the

time domain. Transaction times, like valid times, may be

associated with such facts. It may also be noted that it

is possible for a database to contain the following differ-

ent, albeit related, facts: a non-timestamped fact and that

fact timestamped with a valid time. The first would

belong to a snapshot relation, and the second would

Transactional Middleware T 3163

T

belong to a valid-time relation. Both of these facts may

be assigned a transaction timestamp. The resulting facts

would then be stored in relations that also support

transaction time.

A transaction time database is append-only and

thus ever-growing. To remove data from such a data-

base, temporal vacuuming may be applied.

The term “transaction time” has the advantage

of being almost universally accepted and it has no con-

flicts with the other important temporal aspect of data,

valid time.

The Oracle DBMS explicitly supports transaction

time. Applications can access prior transaction-time

states of their database, by means of transaction time-

slice queries. Database modifications and conventional

queries are temporally upward compatible.

Concerning the alternatives, the term “registration

time” seems to be straightforward. However, this term

may leave the impression that the transaction time is

only the time instant when a fact is inserted into the

database. “Extrinsic time” is rarely used. “Physical time”

is also used infrequently and seems vague. “Transaction

commit time” is lengthy, butmore importantly, the term

appears to indicate that the transaction time associated

with a fact must be identical to the time when that fact

is committed to the database, which is an unnecessary

restriction. The term is also misleading because the

transaction time of a fact is not a single time instant as

implied. The term “belief time” stems from the view

that the current database state represents the current

belief about the aspects of reality being captured by the

database. This term is used infrequently.

Cross-references
▶ Supporting Transaction Time Databases

▶Temporal Compatibility

▶Temporal Database

▶Temporal Generalization

▶Temporal Specialization

▶Temporal Vacuuming

▶Time Domain

▶Timeslice Operator

▶Transaction

▶Transaction-Time Indexing

▶User-Defined Time

▶Valid Time

Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary

of temporal database concepts – February 1998 version.

Springer-Verlag, Berlin, 1998, pp. 367–405.
2. Snodgrass R.T. and Ahn I. A taxonomy of time in databases.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

1985, pp. 236–246.

3. Snodgrass R.T. and Ahn I. Temporal databases. IEEE Comput.,

19(9):35–42, September 1986.
Transactional Business Processes

▶Transactional Processes

▶Workflow Transactions
Transactional Consistency in a
Replicated Database

▶One-Copy-Serializability
Transactional Middleware

GUSTAVO ALONSO

ETH Zurich, Zurich, Switzerland

Synonyms
TP monitor; Object monitor; Application server;

Transaction manager; Transaction service

Definition
Transactional Middleware is a generic term used to

refer to the IT infrastructure that supports the execu-

tion of electronic transactions in a distributed setting.

The best known form of transactional middleware is

Transaction Processing Monitors (TP Monitors or

TPM), which have been around for more than 3 decades

(e.g., CICS of IBM). Today, TPMonitors are at the heart

of most application servers and are a key component of

any enterprise computing architecture. The main role of

these systems is to run transactions, i.e., to support the

illusion that certain distributed operations are executed

atomically. This makes the design of complex systems

easier for the programmer, who does not need to im-

plement this functionality but can rely on the transac-

tional middleware to ensure that groups of operations

are executed in their entirety or not all, with the trans-

actional middleware taking care of all the work neces-

sary to do so. Historically, transactional middleware has

often provided much more functionality than just

3164T Transactional Middleware
transactions and, in many ways, they were some of

the earliest forms of middleware. They were already

used in early mainframes to connect different

applications.

Historical Background
The background for transactional middleware is TP

Monitors. TP Monitors originated with the first com-

mercial applications running on mainframes and the

need to provide additional functionality not provided

by the operating system. As the needs of applications

and developers flourished, so did the capabilities

and features of TP Monitors. This is how TP Monit-

ors became a general term to refer to complex infra-

structure and collection of tools that provide not only

transactional support but also specialized networking

capabilities, batch jobs, job control languages, multi-

threading, transactional extensions to programming lan-

guages, load-balancing capabilities, transactionalmessage

queues,etc.Whenenterpriseapplicationsbrokeawayfrom

the mainframe and started running on mixed environ-

ments (e.g., a large database in the mainframe, worksta-

tions forprocessing, andPCs for the clients),TPMonitors

proved to be the ideal platform to develop and operate

such distributed systems. During the 1990s, TPMonitors

dominated the middleware arena and were not only

the most prominent but also the clearly dominant form

of middleware in themarket.

The conventional TP Monitors with extensive

functionality were called TP-Heavy. These were stan-

dalone products were intended for the development of

distributed, transactional applications with high per-

formance requirements. A simpler form of TPMonitor

was the so called TP-Light systems. Typically, these

were extensions to database engines to support inter-

actions with the database through RPC calls and the

addition of some basic data processing capabilities to

the database engine without having to resort to a full

middleware layer such as that required by TP-Heavy

approaches. The dominance and importance of TP-

Monitors is illustrated by the struggles of CORBA

systems to implement the Object Transactional Ser-

vices described in the CORBA specification. Object

Transactional Services are exactly the transactional

functionality provided by a TP-Monitor and in many

commercial systems it was implemented by using an

already existing TP Monitor. Such combined systems

enjoyed a short period of popularity under the name of

Object Monitors or Object Transaction Monitors.
TP Monitors today are still widely used although

the name TP Monitor has been replaced by others,

more all-encompassing terms. For instance, applications

servers have a TP Monitor as one of the central com-

ponents. Platforms like .NETo J2EE also rely heavily on

TP Monitor functionality. Hence, today these systems

are collectively referred to as transactional middleware.

Foundations
To understand transactional middleware, one needs to

understand that it is not just about transactions (or, at

least, historically it was not just about transactions).

Nevertheless, the core functionality of transactional

middleware is to run distributed transactions in an

efficient manner. Thus, the discussion starts by cover-

ing this aspect of transactional middleware and post-

pone the system issues till later.

Transactions are an abstraction used in database

engines to implement the so called ACID properties

(Atomicity, Consistency, Isolation, and Durability).

Unlike what is commonly found in many textbooks,

the vast majority of transactional middleware systems

are not there to support the four ACID properties but

only one: atomicity in distributed transactions and in

the interaction between applications and databases. To

the extent that records of the transaction executed are

kept, transactional middleware can also provide dura-

bility but in a different sense than database durability

and not as one of its main operational features. Some

systems also supported isolation (e.g., Encina), but

such systems run into the same difficulties that all

other solutions for concurrent programming have

faced and are still facing today.

Atomicity in the context of transactional middle-

ware translates into running a 2 Phase Commit proto-

col among all the entities involved in executing parts of

a transaction. The interactions and interfaces required

to do so were standardized in the early 1990s as part of

the X/Open models for transactions and distributed

transactions, which also defined the XA interface. The

XA interface describes how a transaction manager (the

transactional middleware) interacts with a resource

manager (e.g., a database) to run a 2 Phase Commit

protocol. Once standardized, the XA interface allowed

TP Monitors to execute transactions across heteroge-

neous systems, greatly simplifying the task of writing

code integrating several systems.

The standard and generic procedure for running a

transaction in a transactional middleware platform

Transactional Middleware T 3165

T

involves invoking some primitive that tells the middle-

ware that a transaction needs to be started. This prim-

itive typically hides a call to a transaction manager that

records the transaction and return and identifier and a

context for the transaction. The application then pro-

ceeds to make calls as part of this transaction. Each call

is augmented with the transaction identifier and con-

text, which allows the recipient of the call to realize that

its execution has become part of a transaction and tells

it of which one. The recipient of the call uses the

transactional context it has received to register with

the transactional manager. Part of this registration

procedure also involves telling the transaction manager

where the actual transaction will be executed (typically

the part of the system that supports the XA interface).

After registration, the transaction manager knows who

is involved in running parts of the transaction, infor-

mation that maintains in a transaction record that

contains all participants in that transaction. When

the original application invokes a commit on the trans-

action, the transaction manager uses the transaction

record to start a 2 Phase Commit protocol between all

the participants that have registered for this transac-

tion. At the end of the protocol, the transaction man-

ager informs the original application of the success or

failure of the commit. If the commit was successful, the

original application has the guarantee that the transac-

tion has been executed and completed at all sites where

it was invoked. If the commit fails, the original appli-

cation has the guarantee that all side effects and

changes made by the transaction have been rolled

back. Of course, these guarantees hold only if the

code that is being invoked does not cause any side

effects or persistent changes outside the transaction

(e.g., on a sub-system that does not support the XA

interface) as those changes will not be rolled back for

obvious reasons.

The system side of transactional middleware

involves all the machinery necessary to run transactions

plus a great deal of additional functionality to cope with

distribution. Historically, transactional middleware also

had to provide a wide range of functionality to compen-

sate for the lack of support at the operating system level.

A good example is support for multi-threading, which is

necessary to allow the system to cope with concurrent

requests to the same service. Other examples include

name and directory services, load balancing, life cycle

management for services, logging, domain definition,

and authentication. For performance reasons, many
commercial products also supported specializednetwork

interfaces (e.g., to communicate with a mainframe)

and provided additional sub-systems such as message

queuing or transactional file systems. Providing such a

wealth of functionality made transactional middleware,

especially TP Monitors, very generic tools where some-

timesthesupportfortransactionmanagementwasnotthe

primary reason to use the system. To a large extent, espe-

cially during the 1980s and the first half of the 1990s,

transactional middleware was the most efficient way to

build a distributed system and TPMonitors became not

only middleware but also development platforms for

distributed applications. A good example of this was

Encina (the commercial version of Camelot [2]), which

provided its own versions or C or C++ (Transactional C

andTransactionalC++).
Key Applications
High performance transaction processing (financial,

on line trading, banking).

Application servers (web shops, multi tier systems).

Future Directions
TP Monitors are and will remain a key component of

any enterprise computing solution. As the key func-

tionality of TP Monitors (the ability to efficiently pro-

cess large volumes of transactions) is embedded deeper

and deeper within larger systems, some of the addi-

tional functionality that conventional TP Monitors

always provided has migrated to other platforms

(e.g., application servers) or become independent

systems on their own (e.g., message brokers). Hence

the generic name of transactional middleware when

referring to such systems. A challenge in the future

will be providing similar transactional semantics on

Service Oriented Architectures where the interactions

might be based on asynchronous messages instead of

through blocking calls (RPC/RMI). What the proper

transactional semantics are for an asynchronous enter-

prise bus or an event based architecture is a topic that

is still open and needs attention.
Cross-references
▶ACID Properties

▶Advanced Transaction Models

▶Transaction

▶Transaction Tuning

▶Two-Phase Commit

3166T Transactional Processes
Recommended Reading
1. Bernstein P.A. and Newcomer E. Principles of Transaction Pro-

cessing. Morgan Kaufmann, Los Altos, CA, 1997.

2. Eppinger J.L., Mummert L.B., and Spector A.Z (eds.). Camelot

and Avalon. Morgan Kaufmann, Los Altos, CA, 1991.

3. Özsu M.T. and Valduriez P. Principles of Distributed Database

Systems, (3rd edn.). Prentice Hall, Englewood Cliffs, NJ, 2009.

4. Reuter A. and Gray J. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, Los Altos, CA, 1993.

5. Weikum G. and Vossen G. Transactional Information Systems.

Morgan Kaufmann, Los Altos, CA, 2001.
Transactional Processes

HEIKO SCHULDT

University of Basel, Basel, Switzerland

Synonyms
Transactional workflows; Transactional business

processes

Definition
A Transactional Process is a partially ordered sequence

of activities which is executed in a way that guarantees

transactional consistency for all activities or a subset of

them. Activities can be either transactional (e.g., they

are again transactional processes or conventional data-

base transactions) or non-transactional (e.g., invoca-

tions of application services). Activities are ordered by

means of control flow and data flow dependencies.

Key Points
In most cases, transactional consistency for processes

focuses on notions of atomicity which go beyond the

“all-or-nothing” semantics of ACID database transac-

tions. This is done by supporting a process designer in

explicitly specifying how consistency has to be

achieved. Models for transactional processes include

support for failure handling which can either be

integrated into control flow dependencies (i.e., distin-

guishing between regular execution and alternative

executions in case of failures) or, in a rather program-

matic style, as exception handlers. Failure handling

also needs to take into account that certain activities

can neither be compensated after having been success-

fully executed (i.e., to semantically undo their effects)

nor be deferred until the end of a process, due to
control flow dependencies. For this, backward recovery

(partial compensation in case of failures) and forward

recovery (alternative executions) need to be combined.

Forward recovery also requires to make the state of a

process persistent during execution so that it can be

resumed in case of system failures. For applications in

which also concurrent executions of transactional pro-

cesses need to be controlled, isolation and atomicity

can be jointly considered.

Commercial tools for transactional processes distin-

guish between microflows (short running processes

where all activities are transactional) and macroflows

(long-running processes). The former can actually be

considered conventional database transactions and are

executed using protocols such as two phase commit

(2PC) while the latter have to be treated as transactional

processes. Several Web services standards define proto-

cols that allow to execute Web services in a transactional

context and thus facilitate their integration into transac-

tional processes.

Cross-references
▶Distributed Transaction Management

▶Generalization of ACID Properties

▶Multilevel Transactions and Object-Model Transac-

tions

▶Transactional Middleware

▶Workflow Transactions

Recommended Reading
1. Alonso G. Transactional business processes. In Process-Aware

Information Systems. M. Dumas, W. Aalst, and van der A. ter

Hofstede (eds.), Wiley, New York, 2005, pp. 257–278.

2. Leymann F. Supporting business transactions via partial back-

ward recovery in workflow management systems. In Proc.

Datenbanksysteme in Büro, Technik und Wissenschaft

(BTW’95), Informatik Aktuell, Dresden, Germany, March

1995. Springer Verlag, Berlin, 1995, pp. 51–70.

3. Schuldt H., Alonso G., Beeri C., and Schek H.-J. Atomicity

and isolation in transactional processes. ACM Trans. Database

Syst., 27(1):63–116, March 2002.

4. Zhang A., Nodine M., and Bhargava B. Global scheduling

for flexible transactions in heterogeneous distributed database

systems. IEEE Trans. Knowl. Data Eng., 13(3):439–450, 2001.
Transactional Workflows

▶Transactional Processes

▶Workflow Transactions

Transaction-Time Indexing T 3167
Transaction-Time Access Methods

▶Transaction-Time Indexing
Transaction-Time Algebras

▶Temporal Algebras
Transaction-Time Data Model

▶Temporal Data Models
T

Transaction-Time Indexing

MIRELLA M. MORO
1, VASSILIS J. TSOTRAS

2

1The Federal University of Rio Grande do Sol, Porte

Alegre, Brazil
2University of California-Riverside, Riverside,

CA, USA

Synonyms
Transaction-time access methods

Definition
A transaction-time index is a temporal index that

enables fast access to transaction-time datasets. In a

traditional database, an index is used for selection

queries. When accessing transaction-time databases,

selection queries also involve the transaction-time

dimension. The characteristics of the transaction-

time axis imply various properties that such temporal

index should have to be efficient. As with traditional

indices, the performance is described by three costs:

(i) storage cost (i.e., the number of pages the index

occupies on the disk), (ii) update cost (the number of

pages accessed to perform an update on the index; for

example when adding, deleting or updating a record),

and (iii) query cost (the number of pages accessed

for the index to answer a query).
Historical Background
Most of the early work on temporal indexing has con-

centrated on providing solutions for transaction-time

databases. A basic property of transaction-time is that

it always increases. This is consistent with the serializa-

tion order of transactions in a database system. Each

newly recorded piece of data are time-stamped with a

new, larger, transaction time. The immediate implica-

tion of this property is that previous transaction times

cannot be changed (since every new change must be

stamped with a new, larger, transaction time). This is

useful for applications where every action must

be registered and maintained unchanged after reg-

istration, as in auditing, billing, etc. Note that a

transaction-time database records the history of a

database activity rather than “real” world history. As

such it can “rollback” to, or answer queries for, any of

its previous states.

Consider, for example, a query on a temporal rela-

tion as it was at a given transaction time. There are two

obvious but inefficient approaches to support this query,

namely the “copy” and “log” approaches. In the “copy”

approach, the whole relation is “flushed” (copied) to

disk for every transaction for which a new record is

added or modified. Answering the above rollback

query is simple: the system has to then query the copy

that has the largest transaction-time less or equal to

the requested time. Nevertheless, this approach is ineffi-

cient for its storage and update costs (the storage

can easily become quadratic to the number of records

in the temporal database and the update is linear, since

the whole temporal relation needs to be flushed to disk

for a single record update). In contrast, the “log” solu-

tion simply maintains a log of the updates to the tempo-

ral database. Clearly, this approach uses minimal space

(linear to the number of updates) and minimal update

cost (simply add an update record at the end of the log),

but the query time is prohibitively large since the

whole log may need to be traversed for reconstructing a

past state of the temporal database. Various early works

on transaction-time indexing behave asymptotically like

the “log” or the “copy” approaches. For a worst-case

comparison of these methods see [7]. Later on, two

methodologies were proposed to construct more effi-

cient transaction-time indices, namely the (i) overlap-

ping [3,10] and (ii) (partially) persistent approaches

[1,6,9,]. These methodologies attempt to combine the

benefits of the fast query time from the “copy”

3168T Transaction-Time Indexing
approach with the low space and update costs of the

“log” approach.

Foundations
The distinct properties of the transaction-time dimen-

sion and their implications to the index design are

discussed through an example; this discussion has

been influenced by [8]. Consider an initially empty

collection of objects. This collection evolves over time

as changes are applied. Time is assumed discrete and

always increasing. A change is the addition or deletion

of an object, or the value change of an object’s attri-

bute. A real life example would be the evolution of the

employees in a company. Each employee has a surro-

gate (ssn) and a salary attribute. The changes include

additions of new employees (as they are hired or

re-hired), salary changes or employee deletions (as

they retire or leave the company). Each change is

time-stamped with the time it occurs (if more than

one change happen at a given time, all of them get the

same timestamp). Note that an object attribute value

change can be simply “seen” as the artificial deletion

of the object followed by the simultaneous rebirth (at

the same time instant) of this object having the mod-

ified attribute value. Hence, the following discussion

concentrates only on object additions or deletions.

In this example, an object is called “alive” from the

time that it is added in the collection until (if ever) it is

deleted from it. The set s(t), consisting of all alive

objects at time t, forms the state of the evolving collec-

tion at t. Figure 1 illustrates a representative evolution

shown as of time t = 53. Lines ending to “>” corre-

spond to objects that have not yet been deleted at

t = 53. For simplicity, at most one change per time

instant is assumed. For example, at time t = 10 the state
Transaction-Time Indexing. Figure 1. An example of a trans
is s(10) = {u, f, c}. The interval created by the consecu-

tive time instants an object is alive is the “lifetime”

interval for this object. Note that the term “interval” is

used here to mean a “convex subset of the time do-

main” (and not a “directed duration”). This concept

has also been named a “period” in this discussion

however, only the term “interval” is used. In Fig. 1,

the lifetime interval for object b is [2,10). An object can

have many non-overlapping lifetime intervals.

Note that in the above evolving set example,

changes are always applied to the current state s(t),

i.e., past states cannot be changed. That is, at time

t = 7, the deletion of object d is applied to

s(16) = {u, f, c, d, g} to create s(17) = {u, f, c, g}. This

implies that, at time t = 54, no object can be retro-

actively added to state s(5), neither the interval of

object d can be changed to become [15,25]. All such

changes are not allowed as they would affect previous

states and not the most current state s(53).

Assume that all the states s(t) of the above evolu-

tion need to be stored in a database. Since time is

always increasing and the past is unchanged, a transac-

tion time database can be utilized with the implicit

updating assumption that when an object is added or

deleted from the evolving set at time t, a transaction

updates the database system about this change at the

same time, i.e., this transaction has commit timestamp t.

When a new object is added in the collection at time t,

a record representing this object is stored in the data-

base accompanied by a transaction-time interval of the

form [t, UC). In this setting, UC (Until Changed) is

a variable representing the fact that at the time the

object is added in the collection, it is not yet known

when (if ever) it will be deleted from it. If this object is

later deleted at time t’, the transaction-time interval
action-time evolution.

Transaction-Time Indexing T 3169

T

of the corresponding record is updated to [t, t’). A real-

world object deletion is thus represented in the data-

base as a “logical” deletion: the record of the deleted

object is still retained in the database, accompanied

by an appropriate transaction-time interval. Since

the past is kept, a transaction-time database concep-

tually stores, and can thus answer queries about, any

past state s(t).

Based on the above discussion, an index for a

transaction-time database should have the following

properties: (i) store past logical states, (ii) support

addition/deletion/modification changes on the objects

of the current logical state, and (iii) efficiently access

and query any database state.

Since a fact can be entered in the database at a

different time than when it happened in reality, the

transaction-time interval associated with a record is

actually related to the process of updating the database

(the database activity) and may not accurately repre-

sent the times the corresponding object was valid in

reality. Note that a valid-time database has a different

abstraction, which can be visualized as a dynamic

collection of “interval-objects.” The term interval-

object is used to emphasize that the object carries a

valid-time interval to represent the temporal validity of

some object property. Reality is more accurately repre-

sented if both time dimensions are supported. A bi-

temporal database has the characteristics of both

approaches. Its abstraction maintains the evolution

(through the support of transaction-time) of a dynamic

collection of (valid-time) interval-objects.

Traditional indices like the B+-tree or the R-tree are

not efficient for transaction-time databases because

they do not take advantage of the special characteristics

of transaction time (i.e., that transaction time is

always increasing and that changes are always applied

on the latest database state). There are various index

proposals that are based on the (partially) persistent

data-structure approach; examples are the Time-Split

B-tree (TSB) [6], the Multiversion B-tree (MVBT) [1],

the Multiversion Access Structure [11], the Snapshot

Index [9], etc. It should be noted that all the above

approaches facilitate “time-splits”: when a page gets

full, current records from this page are copied to a new

page (this operation is explained in detail below).

Time-splits were first introduced in the Write-Once

B-tree (WOBT), a B-tree index proposed for write-

once disks [5]. Later, the Time-Split B-tree used

time-splits for read-write media and also introduced
other splitting policies (e.g., splitting by other than the

current time, key splits etc.) Both the WOBT and TSB

use deletion markers when records are deleted and do

not consolidate pages with few current records. The

MVBT uses the time splitting approach of the WOBT,

drops the deletion markers and consolidated pages

with few current records. It thus achieves the best asym-

ptotic behavior and it is discussed in detail below.

Among the index solutions based on the overlapping

data-structure approach [2], the Overlapping B-tree

[10] is used as a representative and discussed further.

For the purposes of this discussion, the so-called

range-timeslice query is considered, which provides a

key range and a specific time instant selection. For

example: “find all objects with keys in range [K1, K2]

whose lifetimes contain time instant t.” This corre-

sponds to a query “find the employees with ids in

range [100,..,500] whose entries were in the database

on July 1, 2007.” Let n be the total number of updates

in a transaction-time database; note that n corresponds

to the minimal information needed for storing the

whole evolution. [7] presents a lower bound for an-

swering a range-timeslice query. In particular, any

method that uses linear space (i.e, O(n/B) pages,

where B is the number of object records that fit in a

page) would need O(logBn + s/B) I/O’s to answer such

a query (where an I/O transfers one page, and s corre-

sponds to the size of the answer, i.e., the number of

objects that satisfy the query).

The Multiversion B-tree (MVBT): The MVBT

approach transforms a timeslice query to a partial

persistence problem. In particular, a data structure is

called persistent [4] if an update creates a new version

of the data structure while the previous version is still

retained and can be accessed. Otherwise, if old versions

of the structure are discarded, the structure is termed

ephemeral. Partial persistence implies that only the

newest version of the structure can be modified to

create a new version.

The key observation is that partial persistence

“suits” nicely transaction-time evolution since these

changes are always applied on the latest state s(t) of

the evolving set (Fig. 1). To support key range queries

on a given s(t), one could use an ordinary B+-tree to

index the objects in s(t) (that is, the keys of the objects

in s(t) appear in the data pages of the B+-tree). As s(t)

evolves over time through object changes, so does its

corresponding B+-tree. Storing copies of all the states

that the B+-tree took during the evolution of s(t)

3170T Transaction-Time Indexing
is clearly inefficient. Instead, one should “see” the

evolution of the B+-tree as a partial persistence prob-

lem, i.e., as a set of updates that create subsequent

versions of the B+-tree.

Conceptually, the MVBT stores all the states assu-

med by the B+-tree through its transaction-time evo-

lution. Its structure is a directed acyclic graph of pages.

This graph embeds many B+-trees and has a number of

root pages. Each root is responsible for providing ac-

cess to a subsequent part of the B+-tree’s evolution.

Data records in the MVBT leaf pages maintain the

transaction-time evolution of the corresponding B+-

tree data records (that is, of the objects in s(t)). Each

record is thus extended to include an interval [inser-

tion-time, deletion-time), representing the transaction-

times that the corresponding object was inserted/de-

leted from s(t). During this interval the data-record is

termed alive. Hence, the MVBT directly represents

object deletions. Index records in the non-leaf pages

of the MVBT maintain the evolution of the

corresponding index records of the B+-tree and are

also augmented with insertion-time and deletion-

time fields.

Assume that each page in the MVBT has a capacity

of holding B records. A page is called alive if it has not

been time-split (see below). With the exception of root

pages, for all transaction-times t that a page is alive, it

must have at least q records that are alive at t (q < B).

This requirement enables clustering of the alive objects

at a given time in a small number of pages, which in

turn will minimize the query I/O. Conceptually, a data

page forms a rectangle in the time-key space; for any

time in this rectangle the page should contain at least

q alive records. As a result, if the search algorithm

accesses this page for any time during its rectangle, it

is guaranteed to find at least q alive records. That is,

when a page is accessed, it contributes enough records

for the query answer.

The first step of an update (insertion or deletion) at

the transaction time t locates the target leaf page in a

way similar to the corresponding operations in an

ordinary B+-tree. Note that, only the latest state of

the B+-tree is traversed in this step. An update leads

to a structural change if at least one new page is created.

Non-structural are those updates which are handled

within an existing page.

After locating the target leaf page, an insert opera-

tion at the current transaction time t adds a data record

with a transaction interval of [t, UC) to the target
leaf page. This may trigger a structural change in the

MVBT, if the target leaf page already has B records.

Similarly, a delete operation at transaction time

t finds the target data record and changes the record’s

interval to [insertion-time, t). This may trigger a struc-

tural change if the resulting page ends up having less

than q alive records at the current transaction time.

The former structural change is called a page overflow,

and the latter is a weak version underflow [1]. Page

overflow and weak version underflow need special

handling: a time-split is performed on the target leaf-

page. The time-split on a page x at time t is performed

by copying to a new page y the records alive in page x

at t. Page x is considered dead after time t. Then

the resulting new page has to be incorporated in the

structure [1].

Since updates can propagate to ancestors, a root

page may become full and time-split. This creates a

new root page, which in turn may be split at a later

transaction time to create another root and so on. By

construction, each root of the MVBT is alive for a

subsequent, non-intersecting transaction-time inter-

val. Efficient access to the root that was alive at time

t is possible by keeping an index on the roots, indexed

by their time-split times. Since time-split times are in

order, this root index is easily kept (this index is called

the root* in [1]). In general, not many splits propagate

to the top, so the number of root splits is small and the

root* structure can be kept in main memory. If this is

not the case, a small index can be created on top of

the root* structure.

Answering a range-timeslice query on transaction

time t has two parts. First, using the root index, the

root alive at t is found. This part is conceptually equiv-

alent to accessing s(t) or, more explicitly, accessing the

B+-tree indexing the objects of s(t). Second, the answer

is found by searching this tree in a top-down fashion as

in a B+-tree. This search considers the record transac-

tion interval. The transaction interval of every record

returned or traversed should include the transaction

time t, while its key attribute should satisfy the key

query predicate. A range-timeslice query takes

O(logBn + s/B) I/O’s while the space is linear to n

(i.e., O(n/B)). Hence, the MVBT optimally solves the

range-timeslice query. The update processing is

O(logBm) per change, where m is the size of s(t)

when the change took place. This is because a change

that occurred at time t traverses what is logically a

B+-tree on the m elements of s(t).

Transaction-Time Indexing. Figure 2. The Overlapping

B-tree.

Transaction-Time Indexing T 3171

T

The Overlapping B-tree: Similar to the MVBT ap-

proach, the evolving set s(t) is indexed by a B+-tree.

The intuition behind the Overlapping B-tree [2,10] is

that the B+-trees of subsequent versions (states) of s(t)

will not differ much. A similar approach was taken in

the EXODUS DBMS [3]. The Overlapping B-tree is

thus a graph structure that superimposes many ordi-

nary B+-trees (Fig. 2). An update at some time t creates

a new version of s(t) and a new root in the structure. If

a subtree does not change between subsequent ver-

sions, it will be shared by the new root. Sharing com-

mon subtrees among subsequent B+-trees is done

through index nodes of the new B+-tree that point to

nodes of previous B+-tree(s). An update will create a

new copy of the data page it refers to. This implies that

a new path is also created leading to the new page; this

path is indexed under the new root.

To address a range-timeslice query for a given

transaction time t, the latest root that was created

before or at t must be found. Hence, roots are time-

stamped with the transaction time of their creation.

These timestamps can be easily indexed on a separate

B+-tree. This is similar to the MVBT root* structure;

however, the Overlapping B-tree creates a new root per

version. After the appropriate root is found, the search

continues traversing the tree under this root, as if an

ordinary B+-tree was present for state s(t).

Updating the Overlapping B-tree involves travers-

ing the structure from the current root version and

locating the data page that needs to be updated. Then a

copy of the page is created as well as a new path to this

page. This implies O(logBm) I/O’s per update, wherem

is the current size of the evolving set. An advantage of

the Overlapping structure is in the simplicity of its

implementation. Note that except the roots, the other

nodes do not involve any time-stamping. Such time-

stamping is not needed because pages do not have to

share records from various versions. Even if a single
record changes in a page, the page cannot be shared by

different versions; rather a new copy of the page is

created. This, however, comes at the expense of the

space performance. The Overlapping B-tree occupies

O(n logBn) pages since, in the worst case, every version

creates an extra tree path. Further performance results

on this access method can be found in [10].

Key Applications
The characteristics of transaction-time make such

databases ideal for applications that need to maintain

their past; examples are: billing, accounting, tax-

related etc.

Cross-references
▶Bi-Temporal Indexing

▶B+-Tree

▶Temporal Database

▶Transaction Time

▶Valid Time

▶Valid-Time Indexing

Recommended Reading
1. Becker B., Gschwind S., Ohler T., Seeger B., and Widmayer P.

An asymptotically optimal multiversion B-tree. VLDB J.,

5(4):264–275, 1996.

2. Burton F.W., Huntbach M.M., and Kollias J.G. Multiple

generation text files using overlapping tree structures. Comput.

J., 28(4):414–416, 1985.

3. Carey M.J., DeWitt D.J., Richardson J.E., and Shekita E.J.

Object and file management in the EXODUS extensible database

system. In Proc. 12th Int. Conf. on Very Large Data Bases, 1986,

pp. 91–100.

4. Driscoll J.R., Sarnak N., Sleator D.D., and Tarjan R.E.

Making data structures persistent. J. Comput. Syst. Sci.,

38(1):86–124, 1989.

5. Easton M.C. Key-sequence data sets on inedible storage. IBM

J. Res. Dev., 30(3):230–241, 1986.

6. Lomet D. and Salzberg B. Access methods for multiversion data.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

1989, pp. 315–324.

7. Salzberg B. and Tsotras V.J. A comparison of access methods

for time-evolving data. ACM Comput. Surv., 31(2):158–221,

1999.

8. Snodgrass R.T. and Ahn I. Temporal databases. IEEE Comput.,

19(9):35–42, 1986.

9. Tsotras V.J. and Kangelaris N. The snapshot index: an

I/O-optimal access method for timeslice queries. Inf. Syst.,

20(3):237–260, 1995.

10. Tzouramanis T., Manolopoulos Y., and Lorentzos N.A.

Overlapping B+-trees: an implementation of a transaction time

access method. Data Knowl. Eng., 29(3):381–404, 1999.

11. Varman P.J. and Verma R.M. An efficient multiversion access

structure. IEEE Trans. Knowl. Data Eng., 9(3):391–409, 1997.

3172T Transcriptional Networks
Transcriptional Networks

▶Biological Networks
Transformation

▶Mediation
Transformation Engines

▶ Interface Engines in Healthcare
Translation Lookaside Buffer (TLB)

▶ Processor Cache
Translingual Information Retrieval

▶Cross-Language Mining and Retrieval
Tree Drawing

▶Visualizing Hierarchical Data
Tree Pattern Queries

▶XMLTree Pattern, XMLTwig Query
Tree-based Indexing

YANNIS MANOLOPOULOS
1, YANNIS THEODORIDIS

2,

VASSILIS J. TSOTRAS
3

1Aristotle University of Thessaloniki, Thessaloniki,

Greece
2University of Piraeus, Piraeus, Greece
3University of California-Riverside, Riverside,

CA, USA

Synonyms
Index Sequential Access Method (ISAM); B+-tree;

R-tree
Definition
Consider a relation R with some numeric attribute A

taking values over an (ordered) domain D. A range

query retrieves all tuples in R whose attribute A has

values in the interval [low, high]. That is, low � R.A �
high. To enable fast processing of range selection

queries, an access method that maintains order is

needed. Such an index has the form of a tree, where

each node corresponds to a page. Leaf nodes contain

(or index) the actual values of A, while index nodes

provide ordered access to the nodes underneath.

Examples of tree-based indexing are the B+-tree and

the R-tree (for single- and multi-dimensional ranges,

respectively).

Key Points
A major performance goal of a database management

system is to minimize the number of I/O’s (i.e., blocks

or pages transferred) between the disk and main mem-

ory. One way to achieve this goal is to minimize the

number of I/O’s when answering a query. Consider for

example relation Employee (ssn, name, salary, dept,

address); the query: “Find the employees who reside

in Santa Monica” references only a fraction of Employee

records. It would be very inefficient to have the data-

base system sequentially read all the pages of the Em-

ployee file and check the address field of each employee

record for the value “Santa Monica.” Instead the sys-

tem should be able to locate the pages with “Santa

Monica” employee records directly.

To allow such fast access additional data structures

called access methods (or indices) are designed per

database file. The term search-key is used to identify

the attribute(s) on which the access method is built.

There are two fundamental access methods, namely

tree-based and hash-based indexing. They differ

on the kind of queries that they can efficiently address.

Tree-based indexing maintains the order of the search-

key values. It is thus applicable to attributes that are

numeric and hence it can be used to address range

queries (and also equality queries, when the range

query interval is reduced to one value). Hash-based

indexing on the other hand does not assume any

ordering; rather it is based on mapping the search-

key values on a collection of buckets. Therefore it can

only address equality (or membership) queries. Since a

tree-based index maintains the order of the indexed

values in its leaf pages, a (one-dimensional) range

query is implemented as a search for the leaf page

Treemaps. Figure 1. Rendition of a rooted tree as a node-

link diagram on the left and as a Treemap on the right.

Treemaps T 3173

T

with the lower value of the range interval, followed by

the accessing of sibling pages until a page that contains

the higher value of the range interval is reached.

Tree-based indices are further categorized by

whether their search-key ordering is the same with

the file’s logical order (if any). Note that a file may or

may not be ordered according to the value of an

(a sequence of) attribute(s). A file stored without any

logical order is called an unordered file or heap. If the

search-key of a tree-based index is the same as the

ordering attribute of a (ordered) file then the index is

called primary. Since such an index also clusters the

values of the file, the term clustering index has also

been used. The search-key of a primary index is usually

the file’s primary key, however this is not necessary. An

index built on any non-ordering attribute of a file is

called secondary. A relation can have several indices,

on different search-keys; among them, at most one is

primary (clustering) index and the rest are secondary

ones (obviously, a file can have at most a single logical

order since it is physically stored once).

Historically, the first tree-based index used in

relational databases was the ISAM file (a static tree).

Currently, the most widely used tree-based index is the

B+-tree which is a dynamic structure (i.e., its size

increases or decreases as the size of the indexed file

changes by record insertions/deletions). As with any

data structure, the performance of an access method

is characterized by three costs, namely: query time,

update time and space. Query time corresponds to

the number of page accesses (I/O’s) needed to answer

a query. Update time counts the number of I/O’s

needed for updating the method when a record is

updated, inserted or deleted. Space measures the

number of pages occupied by the method’s data struc-

tures. The B + -tree uses logarithmic update and query

costs while its space requirements are linear to the

size of the indexed file.

Cross-references
▶Access Path

▶Hash-based Indexing

▶ Index Creation and File Structures

▶ Primary Index

▶ Secondary Index

▶ Signature Trees

▶ Spatial Indexing Techniques

▶ Suffix Tree

▶Text Indexing Techniques
Recommended Reading
1. Elmasri R.A., and Navathe S.B. Fundamentals of Database

Systems (5th edn.). Addisson-Wesley, Reading, MA, 2007.

2. Manolopoulos, Theodoridis Y., Tsotras. Y., and Vassilis. J.,

Advanced Database Indexing. Kluwer, Dordecht, 1999.

3. Ramakrishnan R. and Gehrke J. Database Management Systems

(3rd edn.). McGraw-Hill, NY, 2003.
Treemaps

JEAN-DANIEL FEKETE

INRIA, LRI University Paris Sud, Orsay Cedex, France

Definition
Treemaps [5] have been designed to visualize rooted

trees using containment to express the hierarchy (Fig. 1

right). It is a space-filling technique and uses all the

available space to render the tree. One important feature

of Treemaps is their use of surface to represent an attri-

bute value that adds up with the hierarchy. The number

of leaves under a node is the simplest of these attributes.

This number is one for a leaf and, for an interior node, it

is the sum of the number of leaves of all its children.

This additive property is frequent on real trees. In

an organizational chart, the salary of employees adds

up, in an administrative geographical decomposition

such as the one used by the census, population adds

up, as well as income.

The traditional visual representation of rooted trees

is called a node-link diagram (Fig. 1 left). Treemaps are

not as good as standard node-link diagrams to repre-

sent the hierarchy depth on the tree; if an important

task on the tree is to compare the depth of two nodes,

node-link diagrams are more appropriate.

However, Treemaps can be applied on trees ranging

from tens to hundred-thousands of nodes, much more

3174T Treemaps
than standard node-link diagrams. Computing the

layout of Treemaps is fast and their reading is easy

with some training.

Historical Background
Treemaps were introduced by Shneiderman in 1992

[5]. They are restrictions of Euler diagrams to repre-

sent inclusion. Furthermore, when Euler diagrams are

usually drawn with circles, ellipses, or curved shapes,

Treemaps are drawn with rectangles to better use the

screen real-estate.

The original Treemap algorithm is called “Slice and

Dice” because at each level in the hierarchy, the chil-

dren of a node cut the node’s rectangle in slices hori-

zontally or vertically, flipping direction at each level.

Further refinements of Treemaps have tried to improve

two main features: the aspect ratio of the rectangles

and their order.

With the original “Slice and Dice” algorithm, the

ratio between width and height of nodes can vary

widely in the same Treemap. Some slices can become

very thin while others can be almost square. Compar-

ing visually the surface of rectangles with different

aspect ratio is difficult for the human vision so one

important improvement was to try to create nodes as

square as possible. The most popular algorithm for

achieving this property is due to van Wijk and is

called “Squarified Treemap” [3].
Neither the “slice and Dice,” nor the squarified

algorithm maintains the order of children visually.

When the leaf order is important, Bederson et al. have

compared several algorithms and found that a simple

variant of the squarified algorithm called “Ordered

Treemaps” provided a good tradeoff between complex-

ity and performance [2].

Further research have been conducted to study the

limits of Treemaps in term of tree size and density [4] or

to enhance their readability. Variant layouts have also

been proposed, such as circular Treemaps (not space

efficient) and Voronoı̈ Treemaps [1] that are space

efficient but costly to compute.

Foundations
As in all the visualization techniques, Treemaps visuali-

zations consist in computing a layout for the tree – here

a rectangle associated with each node – and drawing

these rectangles using adequate visual attributes.

A rooted treeT is defined as a set of nodes n 2 Tand
three functions root , parent and children . It is conve-

nient to define the element NIL to represent an unde-

fined node. A rooted tree verifies the following axioms:

parentðT ; nÞ 2 T [fNILg
parentðT ; nÞ ¼ NIL, n ¼ rootðTÞ
childrenðT ; nÞ ¼ fc1; c2;:::ckg 2 Tk

parentðT ; nÞ ¼ p , n 2 childrenðT ; pÞ

Treemaps. Figure 2. SequoiaView using the Cushion Treemap rendition technique for a large file hierarchy.

Treemaps. Figure 3. A Treemap of a one million file Web server, using intensity for depth perception and smooth

shading to render the rectangles.

Treemaps T 3175

T

3176T Treemaps
For convenience, define the degree of a node deg(T,n)

to be the number of nodes in its children set and the is

Leaf(T, m) predicate is deg(T, n) = 0.

Drawing a Treemap requires a positive function

weight on the tree such that:

weightðT ; nÞ ¼
X

c 2 childrenðT ;nÞ
weightðT ; cÞ ^

weightðT ; nÞ > 0

ð1Þ

A rectangular portion of the screen is used to display

the whole tree. The layout algorithm is recursive and

uses theweight function to allocate space. The algorithm

for “Slice and Dice” is simple (Algorithm 1). The “flip”

function and the accessor function for the rectangle type

should be self explanatory.
The squarified algorithm is more complex. It tries to

assign a rectangle to each node with the ratio w ∕h close

to 1. Computing the optimal configuration is equiva-

lent to bin-packing and is known to be NP-complete so

it uses a simple heuristics. It sorts the children by

decreasing weights and fills the parent rectangle with

strips of children. Each node rectangle is added to the

strip until adding the next rectangle decreases the

quality of the rectangles already in the strip. Then a

new strip is created (see Algorithm 2). The quality is

usually the worst aspect ratio of the rectangles in the

strip. It is computed as follows: given R a list of areas

and s their total sum:

worstðR;wÞ¼ max
r2R
ðmaxðw2r=s2; s2=ðw2rÞÞ

Triangular Norms T 3177
In the algorithm 2, a scale argument is passed to the

function worst to transform the weights in surfaces

since in the definition (equation 1), the weights are

in arbitrary units. The computation of strips can be

done incrementally as described in [3].

Sorted Treemaps only change two lines to the

Algorithm 2: line 7 is removed so the nodes are in

their natural order and line 9 is removed so the strips

are always horizontal.

Key Applications
Treemaps have been used on any kinds of trees. They

became visible to a large audience when the company

SmartMoney used Treemaps to visualize a “map of

the market” (still visible at www.smartmoney.com/

mapofthemarket. Other applications include browsers

for file systems where one can visualize the whole hierar-

chy and navigate on it by file sizes and using sophisticated

color rendition for the rectangles, such as “cushion” (Fig.

2) or “smooth shading” (Fig. 3).

They are also very useful to visualize data tables

using a flexible hierarchy. A set of column is chosen

and ordered. The first level of the tree consists in

creating a node for each values of the first column

(partitioning according to the first column). The sec-

ond level is built by sub-partitioning by values of the

second column etc. This method is well suited to

OLAP databases where the partitioning is already

available. By interactively changing the column order,

different Treemap views of the table can be explored.
T

Cross-references
▶Data Visualization

▶Dense Pixel Displays

▶Graphic Information Processing

▶Graphical Perception

▶Hierarchical Data Model

▶Hierarchy

▶Human-Computer Interaction

▶Visual Analytics

▶Visual Data Mining

▶Visual Representation

▶Visualization for Information Retrieval

▶Visualizing Hierarchical Data

Recommended Reading
1. Balzer M. and Deussen O. Voronoi treemaps. In Proc. IEEE

Symp. on Information Visualization. 2005, pp. 48–56.
2. Bederson B.B., Shneiderman B., and Wattenberg M. Ordered

and quantum treemaps: Making effective use of 2D space to

display hierarchies. ACM Trans. Graph., 21(4):833–854, 2002.

3. Bruls M., Huizing K., and van Wijk J.J. Squarified treemaps. In

Data Visualization 2000, Proceedings of the Joint Eurographics

and IEEE TCVG Symposium on Visualization, W. de Leeuw and

R. van Liere (eds.). Springer, Vienna, 2000, pp. 33–42.

4. Fekete J.D. and Plaisant C. Interactive information visualization

of a million items. In Proc. IEEE Symp. on Information Visuali-

zation, 2002, pp. 117–124.

5. Shneiderman B. Tree visualization with tree-maps: 2-d space-

filling approach. ACM Trans. Graph., 11(1):92–99, 1992.
Tree-Structured Classifier

▶ Scalable Decision Tree Construction
Triangular Norms

VILÉM NOVÁK

University of Ostrava, Ostrava, Czech Republic

Synonyms
t-Norm

Definition
Triangular norms (briefly t-norms) are special binary

operations T : [0,1]2![0,1]. They are interesting for

fuzzy logic because they preserve the fundamental

properties of the logical conjunction “and” (to hold

at the same time), namely commutativity, monotonic-

ity, associativity, and boundedness and thus, they serve

as a natural generalization of the classical conjunction

in many-valued logical systems.

A concept associated with the t-norm is the trian-

gular conorm (t-conorm) S : [0,1]2![0,1]. This

corresponds to the behaviour of truth values when

joined by the logical connective “or.”

Key Points
A t-norm is a binary operation T : [0,1]2![0,1]

such that the following axioms are satisfied for all

a, b, c 2 [0,1]:

ðcommutativityÞ a T b ¼ b T a;

ðassociativityÞ a Tðb T cÞ ¼ ða T bÞT c;

ðmonotonicityÞ a � b implies a T c � b T c;

ðboundary conditionÞ 1 T a ¼ a:

3178T Triangulated Irregular Network
The most important t-norms are minimum, product

and Łukasiewicz conjunction defined by

a TLb ¼ maxf0; a þ b � 1g:

A t-conorm is a binary operation S : [0,1]2![0,1],

which is commutative, associative, monotone, and

for all a 2 [0,1] it fulfils the following boundary

condition:

0 S a ¼ a:

The most important t-conorms are maximum, proba-

bilistic sum

a SP b ¼ a þ b � ab

and Łukasiewicz disjunction

a SLb ¼ minf1; a þ bg:

A t-conorm is dual to the given t-norm T if a S b ¼1�
(1�a) T (1�b) holds for all a, b 2 [0,1]. There are

many classes of t-norms and their structure is extreme-

ly complicated.

Cross-references
▶Approximate Reasoning

▶ Fuzzy IF-THEN Rules

▶ Fuzzy Relation

▶ Fuzzy Set

▶Residuated Lattice

Recommended Reading
1. Klement E.P., Mesiar R., and Pap E. Triangular Norms. Kluwer,

Dordrecht, 2000.
Triangulated Irregular Network

LEILA DE FLORIANI, PAOLA MAGILLO

University of Genova, Genova, Italy

Synonyms
Triangulated terrains; TIN
Definition
A Triangulated Irregular Network (TIN) is a special

case of a Digital Elevation Model (DEM).

A terrain can be mathematically modeled as a func-

tion z = f (x, y) mapping a point (x, y) in a domain D in
the plane to its elevation value f (x, y). In practice, the

value of function f is known at a finite set S of points

within D. A DEM provides an estimated value for

function f at any point (x, y) of the domain, based

on the values at the points of S. A DEM consists of a

subdivision of the domain into cells and of a piece-wise

interpolating function defined on such cells.

A TIN is a DEM in which the domain subdivision

is a triangle mesh, i.e., a set T of triangles such that:

(i) the set of vertices of T is S, (ii) the interiors of any

two triangles of T do not intersect, (iii) if the bound-

aries of two triangles intersect, then the intersection

is either a common vertex, or a common edge.

Usually, a linear interpolating function is defined on

the triangles of T, thus providing a continuous terrain

approximation. Given a triangle t = P1P2P3 and a

point P = (x,y) inside triangle t, the following function

estimates the elevation value z at P. Let P1 = (x1,y1,z1)

P2 = (x2,y2,z2) and P3 = (x3,y3,z3) be the coordinates

of the three vertices of t. Then,

z = z1 � (a(x � x1) + b(y � y1)) ∕c,
where (a,b,c) are the components of the normal vector

to the triangle P1P2P3 in 3D space:

a = (y1 � y2)(z1 � z3) � (z1 � z2)(y1 � y3)

b = (z1 � z2)(x1 � x3) � (x1 � x2)(z1 � z3)

c = (x1 � x2)(y1 � y3) � (y1 � y2)(x1 � x3)
Key Points
TINs have been extensively studied in Geographic In-

formation Systems (GISs), in Computational Geome-

try, and in Computer Graphics. Several data structures

and algorithms for representing, constructing and

manipulating triangle meshes have been proposed.

The quality of the terrain approximation provided

by a TIN depends on the underlying triangle mesh.

Note that a point set S does not define a unique

triangle mesh. The most widely used triangle mesh is

the Delaunay one, in which the circumcircle of each

triangle does not contain any data point in its interior.

This means that the triangles of a Delaunay mesh are as

much equiangular as possible. It has also been proven

that the use of a Delaunay mesh as the basis of a TIN

improves the quality of the terrain approximation and

enhances numerical stability in computations. Other

triangulation criteria have been proposed which con-

sider the triangles of the mesh in 3D space.

Often, not only points, but also lines need to

be included in a TIN. Such lines may represent

Trie T 3179
morphological terrain features (coast lines, rivers,

ridges), man-made structures (roads, railways, gas

lines), political or administrative boundaries, or contour

lines. The Delaunay criterion has been modified to deal

with lines in two different ways: (i) in the constrained

Delaunay triangulation, the lines appear as triangle

edges (but it may present sliver triangles); (ii) in the

conforming Delaunay triangulation, each line is discre-

tized by adding points on it (but a large number of

points may need to be added).

TINs are used in multiresolution terrain modeling.
Cross-references
▶Regular Entry on Digital Elevation Models (DEM)

▶Regular Entry on Multiresolution Terrain Modeling

Recommended Reading
1. de Berg M., van Kreveld M., Overmars M., and Schwarzkopf O.

Computational Geometry – Algorithms and Applications.

2nd ed. Springer-Verlag, Berlin, 2000.

2. De Floriani L., Magillo P., and Puppo E. Applications of com-

putational geometry to Geographic Information Systems. Chapter

7 in Handbook of Computational Geometry, J.R. Sack, J. Urrutia

(eds.). Elsevier Science, 1999, pp. 333–388.

3. van Kreveld M. Digital elevation models and TIN algorithms. In

Algorithmic Foundations of Geographic Information Systems,

M. van Kreveld, J. Nievergelt, T. Roos, P. Widmayer (eds.).

Springer-Verlag, Berlin, 1997, pp. 37–78.
Triangulated Terrains

▶Triangulated Irregular Networks (TIN)
T

Trie

MAXIME CROCHEMORE
1,2, THIERRY LECROQ

3

1King’s College London, London, UK
2University of Paris-East, Paris, France
3University of Rouen, Rouen, France

Synonyms
Prefix tree

Definition
A trie is a rooted tree used for storing associative arrays

where keys are usually strings. Edges are often labeled by

individual symbols. Then common prefixes are
factorized. Each node of the trie is associated with a

prefix of a string of the set of strings: concatenation of

the labels of the path from the root to the node. The

root is associated with the empty string. Strings of the

set are stored in terminal nodes (leaves) but not in

internal nodes. A trie can be seen as a Deterministic

Finite Automaton.

Tries can be compacted. To get a compact trie from

a trie, internal nodes with exactly one successor are

removed. Then labels of edges between remaining

nodes are concatenated. Thus:

� Edges are labeled by strings.

� Internal nodes have at least two children.

� Edges outgoing an internal node are labeled by

strings starting with different symbols.

Historical Background
Tries were first recommended by de la Briandais [1]. The

word “trie” comes from information retrieval and was

suggested by Fredkin [3]. Tries enable to store and

retrieve information that consists of key-element

pairs. Fredkin suggested, in 1960, that it is an alterna-

tive way of storage to unordered lists, ordered lists or

pigeonholes. The reader can refer to [6] for further

details on tries.

Foundations
In binary search trees, keys are stored in all the nodes of

the tree and the search method is based on comparison

between keys. In tries, keys are stored in the leaves and

the search method involves left-to-right comparison of

prefixes of the keys.

The trie of the set of strings X = {in, integer,

interval, string, structure} is presented Fig. 1.

Note that the space sign t has been added at the end of

each of the strings of X so that no string of X is a prefix

of another string of X. Then each string of X

is associated with a leaf of the trie (not with an internal

node). The trie for the set X can be implemented in

linear space with respect to the total length of the

strings in X. The compact trie for the set X can be

implemented in linear space with respect to the total

number of the strings in X, which dramatically reduces

the size of the structure.

Consider that the strings are build over an alphabet

of size s.
Flajolet and Sedgewick [8] provide an average case

analysis of tries.

Trie. Figure 1. Trie of X = {in, integer, interval, string, structure}.

Trie. Figure 2. Algorithm that builds the trie containing

of the string of a set X.

Trie. Figure 3. Algorithm that enables to test if a string x

belongs to a trie.

3180T Trie
Construction

The algorithm TRIE(X) shown in Fig. 2, builds the trie

containing all the strings in the set X. It uses a function

TARGET(p, a) that gives the successor of a node p for a

symbol a or the value special NIL if such a node does

not exist. It works by inserting all the strings of

X successively in the trie starting with the tree consist-

ing with a single node (the root). Then for each string

x 2 X it spells the longest prefix of x corresponding

to an existing path from the root of the trie. When

this longest prefix is found, it creates the nodes and

the edges of the remaining suffix of x.

The sum of the lengths of all the strings of X is

denoted byM. Then, the algorithm TRIE(X) run in time

O(M) when the branching time from a node with

a given symbol is constant or O(M � log s) when

the branching time depends on the alphabet size (see

Implementation below).

Searching

The algorithm ISINTRIE(root, x), see Fig. 3, tests if the

string x is present in the trie and consequently if

the string x is a prefix of strings represented by the

trie. It works, similarly to the creation of the trie, by

spelling, from the root of the trie, the longest prefix of x

corresponding to a branch in the trie. If this longest

prefix is x itself, then the algorithm returns TRUE and

the string x belongs to the trie, otherwise the algorithm

returns FALSE and the string is not a prefix of any string in

the set. The algorithm ISINTRIE(root, x) works in time O

(jxj) or O(jxj� log s) depending on the branching

time.
Sorting

A trie can be used to sort a set of strings by doing the

following: insert all the strings in the trie and output

them in lexicographically increasing order by applying a

pre-order traversal of the trie (respectively lexicographi-

cally decreasing order by applying a post-order traversal

of the trie).

Trie. Figure 4. Compact trie of X = {inF, integerF,
intervalF, stringF, structureF}.

Trie T 3181

T

Implementation

There exist different possible representations of a trie,

each with different branching times. It is possible to

use a transition table whose size is the product of the

number of nodes times the size of the alphabet. A trie

can then be implemented in linear space with respect

to the total length of all the strings it represents. The

branching time, for finding the successor of a given

node with a given symbol, is then constant.

The use of adjacency lists has the advantage to

minimize the required space but the branching time

depends on the alphabet size. It can be as low as log(s)
if the alphabet is ordered and outgoing edges are stored

in a balanced search tree. A representation by binary

tree is achieved by using a “first child – right sibling”

representation of the trie.

Hashing techniques can be used as a good trade-off

between transition tables and adjacency lists. The

branching time is then constant on average.

A mixed technique known as the “deep shallow”

technique consists of representing the nodes up to a

certain level k with a transition table and to use adja-

cency lists for the nodes with level greater than k. Most

of the times nodes with small level have many succes-

sors while nodes with large level have only one

successor.

However when storage space is an issue and tries do

not entirely fit into the central memory, it is possible to

use compact tries as described below. Accesses to indi-

vidual edges are only a bit more involved than in non-

compact tries.

Compact Tries

The compact trie of the set of strings X = {in, inte-

ger, interval, string, structure} is presented

Fig. 4. It is obtained from the trie of Fig. 1 by removing

internal nodes with exactly one successor. Then labels

of edges between remaining nodes are concatenated.

Patricia Trees

Morrison [7] designed specific compact tries known

as PATRICIA trees. PATRICIA trees are efficient espe-

cially for extremely long variable-length strings. The

PATRICIA tree of the set of strings X = {int,

integert, intervalt, stringt, structuret} is

presented Fig. 5. PATRICIA trees are binary trees that

consider the binary encoding of the strings. In Fig. 5

nodes 0, 1 and 3 actually point to int, nodes 4 and 7

point to integert, node 8 points to intervalt,
nodes 2 and 5 point to stringt and node 6 points

to structuret. Small numbers close to the nodes are

skip numbers, they indicate on which bit the branching

has to be decided. The skip number of node 0 is 1:

it corresponds to bit at position 1 (bolded in columns 1,

18, 26, and 34 on Fig. 5), which is the leftmost differ-

ence in the bit strings representing the strings of X.

The three strings int, integert and intervalt
possess a 0 so they are on the left and stringt and

structuret possess a 1 so they are on the right. The

skip number of node 1 is 18: it corresponds to bit at

position 18 (bolded on Fig. 5), where is the leftmost

difference in the bit strings representing the three

strings int, integert and intervalt. The string

int has a 0 so it is on the left and integert and

intervalt possess a 1 so they are on the right. The

skip number of node 2 is 26: it corresponds to bit at

position 26, (bolded on Fig. 5), where is the leftmost

difference in the bit strings representing the two strings

stringt and structuret. The string stringt has a

0 so it is on the left and structuret possesses a 1 so it

is on the right. The skip number of node 4 is 34: it

corresponds to bit at position 34 (bolded on Fig. 5),

where is the leftmost difference in the bit strings repre-

senting the two strings integert and intervalt.

The string intervalt has a 0 so it is on the left and

integert possesses a 1 so it is on the right.

The skip number of a node (different from the

root) in a PATRICIA tree is never larger than its parent

skip number.

Trie. Figure 5. PATRICIA tree of X = {inF, integerF, intervalF, stringF, structureF}.

3182T Triggers
The reader can refer to [4] for further details on

PATRICA trees.

Key Applications
Tries are used for dictionary representation including

spell checking systems or predictive text for mobile

phones (T9 system for instance). They are used for text

compression (Ziv and Lempel compression schemes),

multiple string matching (or multi key search). They are

at the basis of the Burstsort for sorting large sets of

strings. Also, it should be mentioned that when X is

the set of suffixes of a string, the structures that are

then called Suffix Trie or Suffix Tree are intensively

used for Pattern Matching [2,5].

Cross-references
▶Data Dictionary

▶ Suffix Tree

▶Text Compression

Recommended Reading
1. de la Briandais R., File searching using variable length keys. In

Proc. Western Joint Computer Conference., 1959, pp. 295–298.

2. Crochemore M., Hancart C., and Lecroq T. Algorithms on

Strings. Cambridge University Press, Cambridge, 2007.
3. Fredkin E. Trie memory. Commun. ACM, 3(9):490–499, 1960.

4. Gonnet G.H. and Baeza-Yates R. Handbook of Algorithms and

Data Structures – In Pascal and C, 2nd edn. Addison-Wesley,

1991.

5. Gusfield D. Algorithms on strings, trees and sequences.

Cambridge University Press, Cambridge, 1997.

6. Knuth D.E. The Art of Computer Programming, Volume 3:

Sorting and Searching, 3rd edn. Addison-Wesley, 1997, Section

6.3: Digital Searching, pp. 492–512.

7. Morrison D.R. PATRICIA – Practical Algorithm to Retrieve Infor-

mation Coded in Alphanumeric, J. ACM, 15(4):514–534, 1968.

8. Sedgewick R. and Flajolet Ph. An Introduction to the Analysis of

Algorithms, Addison-Wesley, 1996.
Triggers

▶Database Trigger

▶ ECA Rules
True Answer (Maybe Answer)

▶Certain (and Possible) Answers

Trust and Reputation in Peer-to-Peer Systems T 3183
Trust and Reputation in Peer-to-Peer
Systems

ZORAN DESPOTOVIC

NTT DoCoMo Communications Laboratories Europe,

Munich, Germany

Synonyms
Feedback systems; Word of mouth
T

Definition
Trust means reliance on something or someone’s ac-

tion. As such, it involves risks on the side of the subject

of trust, i.e., trustor. Reducing these risks is the main

goal of a trust management system. A possible way to

do this is through reputation management, i.e., repu-

tation systems.

In a typical large scale online setting, be it on

the Web or in P2P networks, it is necessary to learn

more about prospective transaction partners prior to

engaging in a transaction with them. The size of such

systems makes it highly improbable to meet the same

partner repeatedly, so own experience is of little use.

The types of the performed transactions are often such

that well-established forms of quality assurance (e.g.,

contracts) are highly inefficient. Under such circum-

stances, reputation systems (“word of mouth” [3]) turn

out to be the only viable mechanism to encourage

trustworthy behavior and guide people to decide

whom to trust and towhat degree. They do this through

collecting, distributing, and aggregating feedback

about the participants past behavior,” as Resnick et al.

[8] explain. The key presumptions of a reputation

system are that the participants of the considered

online community engage in repeated interactions

and that the information about their past doings is

informative of their future performance and as such

will influence it. Thus, collecting, processing, and dis-

seminating the feedback about the participants’ past

behavior is expected to boost their trustworthiness.

Historical Background
The concept of reputation is almost as old as human

society. It was present in ancient times as a key enabler

of trade and a broad range of other activities [3]. In the

millennia to come, a new form of interaction between

interested parties emerged, involving contractual

agreements. When necessary, they are enforced by
third parties, be it a local feudal sovereign in the

medieval time or state, as nowadays. But the need for

reputation did not disappear. Quite often, it is not

possible to foresee what can go wrong, so that it can

be specified in a contract. More important, binding

contracts incur transaction costs which sometimes

offset the prospective benefits from the interaction. In

such cases, people resort to streamlining their inter-

actions in informal ways, one of them being the use of

reputation.

Reputation has long been a subject of study in

economics. Economists find it vital. Many markets

would not exist or they would be highly inefficient

without reputation. Consider a market in which sellers

sell goods of different qualities. Buyers cannot observe

the quality of any good. Thus, they tend to undervalue

high quality goods, as they may end up purchasing low

quality. But then high quality sellers cannot achieve

good prices and may withdraw from the market. So

only low quality goods will be traded. This is what

George Akerlof calls the “market for lemons” [1]. In-

formation asymmetry between sellers and buyers

is critical here. A mechanism to break it is needed.

Reputation systems may be such a mechanism.

Today’s perception of the P2P systems are old about

eight years as of this writing. But that is quite enough

for a turbulent history, which demonstrated the need

for reputation management, among others. There were

numerous reports of viruses spreading through well

known P2P file sharing applications such as Gnutella

or Kazaa. A quick inspection in Google reveals millions

of entries returned to the query (Gnutella OR

Kazaa) AND virus. As an example, Wired reports as

of September 2004 that “forty-five percent of the exe-

cutable files downloaded through Kazaa, the most

popular file-sharing program, contain malicious code

like viruses and Trojan horses, according to a

new study.”

Although these examples illustrate the point, they

are benign in the sense that one can select different

ways to download content, e.g., through well known

web sites. But the P2P paradigm does not coincide

with simple file swapping. It aims at making a more

serious impact on the online world through offering a

range of useful applications. No matter what these

applications are, they will need reputation manage-

ment. The reason is that P2P applications must be

implemented through cooperation of their users,

which can be unskilled or dishonest.

Trust and Reputation in Peer-to-Peer Systems. Figure 1. A trust graph.

3184T Trust and Reputation in Peer-to-Peer Systems
Foundations
The core of any P2P reputation system is how it solves

the following problem: how can a peer use the infor-

mation on experiences between the peers to evaluate

the trustworthiness of any other peer? A possible strat-

egy might be as follows. The peer (call it also trustor)

can ask its friends to report on their experiences with

the unknown peer (trustee). However, the friends

might not have any experience with the peer in ques-

tion. This happens quite frequently in large scale sys-

tems, in which virtually every interaction is with a new

peer, not seen before. As a result, the peer may search

for some other unknown peers which happened to

interact with the trustee. Their opinion might help.

However, they might lie for whatever reason. So the

problem is now how to assess the credibility of their

reports. A possible solution is to continue with the

search, this time looking for peers who interacted

with the feedback providers and so on until enough

peers are found with whom the trustor had enough

experiences so that it knows their credibility. The

whole process is depicted in Figure 1. The figure

shows a set of peers, which are shown as vertices in

the graph. The arcs represent the interactions among

them, i.e., services they provide to each other. For

example, peer b provided three services to peer a. The

weights next to the arcs represent the level of satisfac-

tion of the service consumer with the provided service.

The structure that is formed in this way is called a

trust graph.

There are two classes of reputation systems: signal-

ing and sanctioning reputation systems [3]. They make

different assumptions on the underlying behavior and

also use different amounts of available reputation data,
i.e., different fractions of the trust graph. In a signaling

reputation system, the interacting entities are pre-

sented with signals of what can go wrong in the inter-

actions if they behave in specific ways. Having

appropriate signals, the entities should decide what

behavior is most appropriate for them. An important

assumption of the signaling reputation systems is that

the involved entities do not change their behavior in

response to a change of their reputation. As an exam-

ple, the system may just provide a prospective buyer

with indications of the probability that the seller will

fail to deliver a purchased item. This probability is

the main property of the seller. It can change with

time, but independently of the seller’s reputation.

The other possibility is sanctioning reputation sys-

tems. The main assumption they make is that the

involved entities are aware of the effect the reputation

has on their benefits and thus adjust their behavior

dynamically as their reputation changes. The main task

of a reputation system in this case is to sanction mis-

behavior through providing correlation between the

feedback the agent receives and the long-run profit

made. The distinction between signaling and sanction-

ing reputation systems is made explicit in the following

discussion.

A typical signaling approach involves the following

three-step procedure: (i) enumerating all paths from

the trustor to the trustee, (ii) aggregating the feedback

along the paths and (iii) merging the obtained values.

There is a nice theory developed on this subject.

It is due to Richardson et al. [9]. Consider a trust

graph and assume that there is only one directed arc

from i to j, for any pair of vertices i and j. Multiple

arcs have been merged somehow. It is not important

Trust and Reputation in Peer-to-Peer Systems T 3185

T

how exactly this merging is done. Consider the matrix

M � ½Mij �Ni; j ¼ 1 (N is the number of the peers) corres-

ponding to the trust graph and assume that it has

been normalized so that for any 1 � i, j � N: 0 � Mij

� 1 and
PN

k¼1 Mik ¼ 1.

Define two binary operators: trust concatenation,

the symbol � will be used to denote it, and trust

aggregation, denoted by e. The former is applied on

two consecutive edges in a chain of trust, while the

latter applies to two chains. Simple multiplication and

addition are good examples of these operators. Define

now a matrix “multiplication” operation � as C = A � B
such that Cij =e(8k : Aik � Bkj). If A = B�M, whereM

is the matrix representation of a given trust graph, then

the interpretation of Cij is aggregated trust that i puts

on j over all chains of length 2. Again, if � and e are

ordinary multiplication and addition then � becomes

the ordinary matrix multiplication. This is what [6]

proposes.

Now, the most interesting result is that if e is

commutative and associative and � is associative and

distributes over e then the aggregated value of all

paths (of any length) between any pair of users can

be obtained by the following simple algorithm:

Qð0Þ ¼ M ;QðkÞ ¼ M � Qðk�1Þ until QðkÞ ¼ Qðk�1Þ:

ð1Þ

The computation will converge after a finite number of

steps if the matrixM (or the trust graph) is irreducible

and aperiodic. It is important to see that the computa-

tion can be performed locally, after each iteration k all

the peers can retrieve from their neighbors the current-

ly computed opinions of those neighbors about all

other peers and then do the computation of the step

k + 1. It turns out that this algorithm requires at

most O(N3) computations per peer.

In a similar vein, Xiong and Liu [10] compute

the trustworthiness of a given peer as the average

feedback about it weighted by the trustworthiness

of the feedback originators themselves. This can be

expressed by the formula:

t j ¼
X

e2incomingðjÞ
we �

t sourceðeÞP
f 2incomingðjÞt sourceðf Þ

;

where incoming(j) is the set of all edges ending at node

j, we is the feedback belonging to the edge e and tsource(e)
the trustworthiness of the originator of this feedback.
The formula can be computed by using an iterative

computation, similar to (1).

[4] makes explicit the assumption about the peer

behavior. The gain is a more efficient algorithm. There

is a loss as well; the mechanism is not as robust as [10].

Assume that a peer can perform trustworthy or un-

trustworthy (1 or 0) in its interactions with others.

More precisely, each peer’s behavior is modeled as

two Bernoulli random variable, i.e., each peer has

innate probabilities of performing trustworthy when

serving other peers (denote this probability yk for peer
pk) and reporting truthfully its experiences with other

peers (let lk be the probability for peer pk). The dis-

tributions of these variables are independent across

peers. Consider a peer pj that interacted with peers

p1,...,pn and its performances in these interactions

were x1,...,xn, where xi 2 {0,1}. When asked to report

on peer pj’s performances witnesses p1, p2,...,pn may

misreport. This happens with their associated mis-

reporting probabilities. The probability of observing

report yk from peer pk can be calculated as:

P½Y k ¼ yk� ¼ ½lkð1� yjÞ
þð1� lkÞyj �yk ½lkyj þ ð1� lkÞð1� yjÞ�1�yk :

ð2Þ

Given a sample of independent reports y1,y2,...,yn, the

likelihood function of the sample is computed:

LðyjÞ ¼ P½Y 1 ¼ y1� � P½Y 2 ¼ y2� � � � P½Yn ¼ yn�: ð3Þ

The final step is finding yj that maximizes this expres-

sion, i.e., the maximum likelihood estimate of the

unknown probability. To do this, one needs to know

lk’s in (1.3). [4] proposes a simple method to appro-

ximate them. Peer pi deduce them from its own per-

formances, by comparing own performances with the

reports about them. If peer pi has sufficiently many

experiences with peers p1, p2,...,pn as reporters of its

performances then it can use them to estimate the

misreporting probabilities of those peers. If not, then

it can opt to estimate the misreporting probability at

the level of the entire network. In this case, all lk’s

have the same approximate value, denote it by l, and

the maximum likelihood estimate of yj becomes
�y�l
1�2l ,

where �y ¼ y1þ���yn
n

.

[10] and [6] on the one hand and [4], on the other,

represent different tradeoffs between the computation

efficiency and robustness.

So far, an important assumption was that the

peer behavior is static. The peers were characterized

Trust and Reputation in Peer-to-Peer Systems. Table 1.

The ”leading eight” in the evolutionary indirect reciprocity

game. G and B stand for good and bad reputation labels

respectively. C and D stand for cooperation and defection.

The GG, GB, BG, BB encode four possible states of the

labels (of the two players). The three asterisks in the

assessment function can take any value, hence eight

possible assessment functions are possible (The value at

the asterisk in the action function is uniquely determined

given the choice of one of the eight assessment functions.)

3186T Trust and Reputation in Peer-to-Peer Systems
by probability distributions whose parameters never

change. This is an unrealistic assumption. It is dropped

in sanctioning reputation systems. As a special case of

these systems, game theoretic models of reputation go

to the other extreme with respect to the peer behavior.

They assume that the involved agents maximize their

utilities across their entire lifetime. This means that,

at any time instant, the agents condition their actions

by the histories of previous play, both theirs and

their opponents. The concept of repeated games deals

with such long term interactions. However, the game-

theoretic models of reputation need one more in-

gredient. Players are associated with different types

(normally, every type assumes a different utility func-

tion of a player). Every player knows his type but the

others are uncertain about which types of their oppo-

nents they face. The game-theoretic tool for modeling

such uncertainties is that of games with incomplete

information (Bayesian games). Fudenberg and Tirole

[5] offer an extensive introduction to the subject.

There are a number of problems with a potential

application of game-theoretic reputation models to

P2P systems. One deals with human behavior. There

are evidences that humans do not behave as utility max-

imizers (or if they do, it is hard to grasp their utilities

within simple economic models). The other one is

related to the complexity of game-theoretic models.

The problem is that feedback has to be processed by

the peers themselves. This leads to enlarged strategy

spaces of the peers and complicates the task substantially.

Reputation models of evolutionary game theory

present another area of active research. Their assump-

tions are as follows. A game, most often the celebrated

Prisoner’s dilemma, is played repeatedly among the

players. The play is divided into epochs. In each

epoch the players make a choice of (repeated game)

strategies. When going to the next epoch, the choice of

the players’ strategies is biased by their scores in the

previous epoch. Hence the name “evolutionary mod-

els.” Axelrod [2] performed experiments in which he

found that one strategy performs particularly well for

the Prisoner’s dilemma game. He called it “tit-for-tat” -

a- it plays at any round whatever the opponent played

in the previous round (and starts with cooperation).

The setting for his experiments was that in each epoch

the same two players played against each other. The

question is how much his result extends to setting

where the opponents are matched randomly, i.e.,

their interactions within an epoch are one-shot rather
than long-term. Ohtsuki and Ywasa [7] offer an answer

in which reputation data plays a critical role. They

assume that a public label is associated with each

player. All players can read the label, and all players

except the owner of the label are allowed to change it.

When a pair of players interacts, their labels are mod-

ified according to their actions. The behavior of a

player can be described with two functions: the action

function and the assessment function. The action func-

tion takes the label of self and the opponent and

produces the decision to either cooperate or defect.

The assessment function is executed after the actions

of both agents have taken place. The assessment func-

tion takes the label of self, the label of the opponent

and the action of the opponent and produces the new

value for the opponent’s label. There are 16 possible

action functions and 256 possible assessment func-

tions. This gives 4096 possible behaviors. [7] per-

formed a systematic experimental study of these

behaviors and found 8 of them (termed “the leading

eight”) evolutionary stable, see Table 1.

A population of agents using one of these strategies

is able to sustain cooperation and drive out of existence

any small population of defectors and/or reputation

liars (i.e., players that set the labels to ”bad” value even

though their opponent cooperated).

Interestingly, there is a remarkable similarity be-

tween tit-for-tat and the leading eight strategies. The

leading eight strategies exhibit all the properties

of tit-for-tat, found to be important in Axelrod’s

experiments.

One cannot apply the above reasoning to P2P sys-

tems directly. There is a serious problem to solve.

Trust in Blogosphere T 3187

T

How to maintain the reputation data when there is no

trusted third party to do that, i.e., how to enforce

the specific reputation aggregation strategy in a

decentralized system? Problems like this constitute an

active research area.

Key Applications
P2P applications are provided by participating peers

collaboratively. For example, in a file sharing applica-

tions, any peer may provide a file that others can down-

load. In a publish-subscribe application, anyone can act

as supplier of information that the other peers can use.

At the same time, peers are not well established and

reputable institutionswhose trustworthiness is not ques-

tionable. Most often, they are unknown individuals

hidden behind meaningless identifiers. This means that

reputation management is a natural need in P2P sys-

tems. Different P2P applications have varying degrees

of need for reputation management, but literally all of

them need it.

Interestingly, the operation of core P2P protocols

can also benefit from reputation management. When

routing messages, peers can take reputation of their

neighbors into account and select only those which do

not drop messages. This way, reputation management

improves routing performance.

Cross-references
▶Distributed Hash Table

▶ P2P Database

▶ Peer-to-Peer System

▶ Similarity and Ranking Operations

▶ Social Networks

▶Trust in Blogosphere

Recommended Reading
1. Akerlof G. The market for “lemons”: quality uncertainty and

the market mechanism. Quart. J. Econom., 84:488–500, 1970.

2. Axelrod R. The Evolution of Cooperation. Basic Books,

New York, 1984.

3. Dellarocas C. The digitization of word-of-mouth: promise

and challenges of online reputation systems. Manage. Sci.,

49(10):1407–1424, October 2003.

4. Despotovic Z. and Aberer K. Probabilistic prediction of

peers performances in P2P networks. Int. J. Eng. Appl. Artif.

Intell., 18(7):771–780, Elsevier, October 2005.

5. Fudenberg D. and Tirole J. Game Theory. MIT, Cambridge,

MA, USA, 1991.

6. Kamvar S., Schlosser M., and Garcia-Molina H. EigenRep:

reputation management in P2P networks. In Proc. 12th Int.

World Wide Web Conference, 2003, pp. 640–651.
7. Ohtsuki H. and Iwasa Y. How should we define goodness? –

reputation dynamics in indirect reciprocity. J. Theor. Biol.,

231:107–120, 2004.

8. Resnick P., Zeckhauser R., Friedman E., and Kuwabara K.,

Reputation systems. Commun. ACM, 43(12):45–48, 2000.

9. Richardson M., Agrawal R., and Domingos P. Trust manage-

ment for the semantic web. In Proc. 2nd Int. Semantic Web

Conf. SanibelIsland, FL, 2003, pp. 351–368.

10. Xiong L. and Liu L. Peertrust: supporting reputation-based

trust in peer-to-peer communities. IEEE Trans. Knowl. Data

Eng., 16(7):843–857, 2004.
Trust in Blogosphere

NITIN AGARWAL, HUAN LIU

Arizona State University, Tempe, AZ, USA

Synonyms
Reputation; Relationship of reliance

Definition
Trust can be defined as the relationship of reliance

between two parties or individuals. Alice trusts Bob

implies Alice’s reliance on the actions of Bob, based

on what they know about each other. Trust is basically

prediction of an otherwise unknown decision made by

a party or an individual based on the actions of anoth-

er party or individual. Trust is always directional and

asymmetric. Alice trusts Bob does not imply Bob also

trusts Alice.

From a sociological perspective, trust is the mea-

sure of belief of one party in another’s honesty, benev-

olence, and competence. Absence of any of these

properties causes failure of trust. From a psychological

perspective, trust can be defined as the ability of a party

or an individual to influence the other. The more

trusting someone is the more easily (s)he can be

influenced.

The past several years witnessed significant changes

in the interactions between the individuals and groups.

Individuals flock on the Internet and engage in com-

plex social relationships, termed as social networks.

Social networking has changed the paradigm of inter-

actions and content generation. Former information

consumers are now producers (or, Prosumers). Social

networking has given a humongous thrust to online

communities, like Blogosphere. Blogosphere is the uni-

verse of all the blog sites which contains blog posts in

3188T Trust in Blogosphere
reverse chronological order. Each blog post is a dis-

course of an individual’s opinions, ideas, thoughts on

some subject matter. These could be journals of per-

sonal experiences. Nonetheless, blog posts could be

easily considered as a collection of semi-structured

text. This opens up many research opportunities for

existing text mining techniques to be adapted for this

domain. Trust is highly important in a virtual world

because of its low barriers to credibility. Profiles and

identities could be easily faked and trust could be com-

promised, leading to severely critical losses, physical

and/or mental.

Historical Background
Many existing works have identified the need for

handling the trust aspect in social networks. Social

networks can be further divided into friendship net-

works and the blogosphere. In social friendship

networks it is important not only to detect the influ-

ential members or experts in case of knowledge sharing

communities but also to assess to what extent some of

the members are recognized as experts by their collea-

gues in the community. This leads to the estimation of

trust and reputation of these experts. Some social

friendship networks like Orkut allow users to assign

trust ratings as a more explicit notion of trust. Whereas

some websites have an implicit notion of trust where

creating a link to a person on a webpage implies some

amount of business trust for the person. In other cases,

Trust and reputation of experts could be typically

assessed as a function of the quality of their response

to other members’ knowledge solicitations. Pujol et al.

[5] proposed a NodeMatching algorithm to compute

the authority or reputation of a node based on its

location in the social friendship network. A node’s

authority depends upon the authority of the nodes

that relate to this node and also on other nodes that

this node relates to. The basic idea is to propagate the

reputation of nodes in the social friendship network.

This is very similar to the PageRank and HITS algo-

rithm in the traditional web search. However, authors

point out the differences between their algorithm and

Pagerank and HITS. For PageRank and HITS the tran-

sition probability matrix and variance-covariance

matrix respectively have to be known previously, un-

like NodeMatching algorithm. This becomes infeasible

for very large graphs. Moreover, PageRank assumes a

fixed graph topology by stratifying the range of transi-

tion probability which is different in NodeMatching
which can automatically adapt to the topology since

it depends upon the authority of the related nodes.

While Pujol et al. [5] proposed an approach to

establish reputation based on the position of each

member in the social friendship network [8], devel-

oped a model for reputation management based on the

Dampster-Shafer theory of evidence in the wake of

spurious testimonies provided by malicious members

of the social friendship network. Each member of a

social friendship network is called an agent. Each

agent has a set of acquaintances a subset of which

forms its neighbors. Each agent builds a model for its

acquaintances to quantify their expertise and sociabili-

ty. These models are dynamic and change based on the

agent’s direct interactions with the given acquaintance,

interactions with agents referred to by the acquain-

tance, and on the ratings this acquaintance received

from other agents. The authors point out a significant

problem with this approach which arises if some

acquaintances or other agents generate spurious ratings

or exaggerate positive or negative ratings, or offer tes-

timonies that are outright false. Yu and Singh [8] study

the problem of deception using the Dampster-Shafer

belief functions so as to capture uncertainty in the

rankings caused by malicious agents. A variant of ma-

jority weighted function is applied to belief functions

and simple deception models were studied to detect

deception in the ratings.

Sabater and Sierra [6] propose a combination of

reputation scores on three different dimensions. They

combined reputation scores not only through social

relations governed by a social friendship network,

termed as social dimension but also past experiences

based on individual interactions, termed as individ-

ual dimension and reputation scores based on other

dimensions, termed as ontological dimension. For

large social friendship networks it is not always possi-

ble to get reputation scores based on just the individual

dimension, so they can use the social dimension and

ontological dimension would enhance the reputa-

tion estimation by considering different contexts. The

ontological dimension is very similar to the work pro-

posed in [7], where the authors recommend collabora-

tion in social friendship networks based on several

factors. They explain the importance of context in

recommending a member of social friendship network

for collaboration.

In [2], authors consider those social friendship

networking sites where users explicitly provide trust

Trust in Blogosphere T 3189

T

ratings to other members. However, for large social

friendship networks it is infeasible to assign trust rat-

ings to each and every member so they propose an

inferring mechanism which would assign binary trust

ratings (trustworthy/non-trustworthy) to those who

have not been assigned one. They demonstrate the

use of these trust values in email filtering application

domain and report encouraging results. Authors also

assume three crucial properties of trust for their ap-

proach to work: transitivity, asymmetry, and persona-

lization. These trust scores are often transitive,

meaning, if Alice trusts Bob and Bob trusts Charles

then Alice can trust Charles. Asymmetry says that for

two people involved in a relationship, trust is not

necessarily identical in both directions. This is contrary

to what was proposed in [8]. They assume symmetric

trust values in the social friendship network between

two members. Personalization of trust means that a

member could have different trust values with respect

to different members. Trust of a member is absolutely a

personal opinion. Consolidating the trust scores for

a member might not give a reasonable estimation, so

authors propose trust propagation mechanism. Authors

define source as the node which is seeking trust value of

another node called sink. If there is a direct edge

between source and sink then the value is directly

transferred, otherwise the trust value is inferred based

on the source’s neighbors. Source polls each of its

neighbors whom it has given a positive trust rating.

The neighbors also use this procedure to compute the

trust rating of the sink. Hence gradually sink’s trust

scores propagate to the source. They demonstrate

the trust rating in filtering emails with the help of a

prototype TrustMail and using Enron email dataset.

(http://www.cs.cmu.edu/�enron/). Guha et al. [3] pro-
posed another trust propagation scheme in social

friendship networks based on a series of matrix opera-

tions but they included the element of distrust along

with the trust scores.

The works discussed above rely on one or the other

form of network centrality measures (like degree central-

ity, closeness centrality, betweenness centrality, eigenvec-

tor centrality) to evaluate trustworthy nodes and how

trust propagates in the network. Nonetheless, blog net-

works have very sparse trust information between differ-

ent pairs of nodes. Using trust propagation approaches

for such a sparse network would be highly inaccurate and

unreliable. Although not much research has been pub-

lished that exploits text mining to evaluate trust in
Blogosphere, authors in [4] have proposed to use senti-

ment analysis of the text around the links to other blogs

in the network. They study the link polarity and label the

sentiment as “positive,” “negative,” or “neutral.” This

information mined from the blogs is coupled with

Guha et al.’s [3] trust and distrust propagation approach

to derive trust values between node pairs in the blog

network. They further use this model to identify trust-

worthy nodes in the blog network and also identify

clusters of like-minded blogs.

Foundations
Quantifying and computing trust in social networks is

hard because concepts like trust are fuzzy, and is being

expressed in a social way. The definitions and proper-

ties are not mathematical formalisms but social ones.

The two main components of defining trust are belief

and commitment. The extent to which someone trusts

another is illustrated by the belief and trusted indivi-

duals maintain that with their commitment. Note that

trust is highly subjective, nevertheless some character-

istic properties are pointed:

Transitivity: Trust can propagate through different

nodes following transitive property. However, the degree

of trust does not remain same. It may decrease as the

path length through which trust propagates increases.

Asymmetry: Trust is asymmetric, in the sense that if A

trusts B then it is not necessary that B also trusts A.

Some existing works relax this assumption and consid-

er trust as symmetric.

Personalization: Trust is a personalized concept. Every-

one has a different conception of trust with respect to

some other individual. Assigning a global trust value to

an individual is highly unrealistic. Trustworthiness of an

individual is always evaluated with respect to some other

individual.

Trust can be considered as binary-valued with 1

indicating trust and 0 indicating “not-trusted.” Trust

can also be evaluated as continuous-valued. Moreover,

binary-valued trust is little more complicated than

meets the eye. A value of 0 could be a little vague as it

could represent both “no-opinion” or “distrust.” To

qualify this notion, often researchers use � 1 to repre-

sent distrust and 0 as missing value or “no-opinion.”

Researchers model the propagation of distrust the

same way as the propagation of trust. Propagation of

trust (T) and distrust (D) could be governed by the set

of rules illustrated in Table 1. Here A, B, and C are

Trust in Blogosphere. Table 1. Rules for trust and distrust propagation

Propagation Scheme Outcome Comments

A !T B!T C A!T C Transitivity

A !T B!D C A!D C Don’t trust someone who is distrusted by a person you trust.

A !D B!T C A!D C Don’t trust someone who is trusted by a person you don’t trust.

A !D B!D C (1) A!T C Enemy of yopur enemy is your friend.

(2) A!D C Don’t trust someone who is not trusted by a person you don’t trust.

3190T Trust in Blogosphere
different individuals and trust or distrust relationship

between A–B and B–C is known. These rules help in

inferring trust or distrust between A–B. Propagation of

distrust is a little intricate. As shown in the Table 1, if A

distrusts B and B distrusts C then A has reasons for

either trusting C (enemy of enemy is a friend) or

distrusting C (do not trust someone who is not trusted

by someone else that is not trusted).

In case the link between A and C, like B is missing,

which can be used to infer the trust between A–C, a

different strategy could be used. Trust only if someone is

trusted by k people, i.e., if C is trusted by a k number of

people then A could trust C. Do not trust anyone who

is distrusted by k 0 people, i.e., if C is distrusted by k 0

number of people then A could distrust C. Note that

the thresholds k and k 0 could be learned from the data.

Key Applications
Trust in social networks has several applications. Trust

and reputation based spam email filters have become

popular after naı̈ve spam email filters. The social network

information of senders and recipients could be exploited

to study trust among them and filter emails based on

these values. Trust acts as lubricant that improves infor-

mation flow and promotes frankness and honesty. Trust

can also be helpful in online discussion forums where

users look for informative and trustworthy answers to

their questions. Giving trustworthy recommendations

could also improve the customer retention policies.

Future Directions
Trust is a promising area of research in social networks,

especially the blogosphere, where most of the assump-

tions from friendship networks are absent.

1. Social friendship networks assume initial trust

values are assigned to the nodes of the network.
Unless some social networking websites allow their

members to explicitly provide trust ratings for

other members, it is a topic of research and explo-

ration to compute initial trust scores for the mem-

bers. Moreover, in Blogosphere it is even harder to

implicitly compute initial trust scores.

2. Social friendship networks assume an explicit rela-

tionship between members of the network. How-

ever, in Blogosphere there is no concept of explicit

relationship between bloggers. Many times, these

relationships have to be anticipated using link

structure in the blogs or blogging characteristics

of the bloggers.

3. Existing works of trust propagation algorithms as-

sume an initial starting point. In Blogosphere,

where both network structure and initial ratings

are not explicitly defined, it is challenging to tackle

the trust aspect. A potential approach could be to

use influential members [1] of a blog community as

the seeds for trustworthy nodes.

4. Since text mining has not been sufficiently exploited

in Blogosphere domain, several promising research

opportunities can be explored.

Data Sets
The following datasets are widely used by many

researchers in this area:

A website (http://www.epinions.com/) that main-

tains trust values for all the available products/services

provided by the customers.
Epinions: Movie Recommendation: Netflix (http://

www.netflixprize.com/) provides movie recommenda-

tion dataset and what recommendations were followed

by the customers. Research works have engineered this

dataset to evaluate trust among customers.

Enron Email Dataset: A collection of emails that

contains both genuine and spam emails. Researchers

Trusted Hardware T 3191
constructed social network between senders and reci-

pients of the email and studied trust aspect.

Cross-references
▶Actors/Agents/Roles

▶ Social Networks

▶Trust and Reputation in Peer-to-Peer Systems
Recommended Reading
1. Agarwal N., Liu H., Tang L., and Yu P.S. Identifying the influen-

tial bloggers in a community. In Proc. Int. Conf. Web Search and

Web Data Mining, 2008, pp. 207–218.

2. Golbeck J. and Hendler J. Inferring binary trust relationships

in web-based social networks. ACM Trans. Inter. Tech.,

6(4):497–529, 2006.

3. Guha R., Kumar R., Raghavan P., and Tomkins A. Propagation of

trust and distrust. In Proc. 12th Int. World Wide Web Confer-

ence, 2004, pp. 403–412.

4. Kale A., Karandikar A., Kolari P., Java A., Finin T., and Joshi A.

Modeling trust and influence in the blogosphere using link

polarity. In Proc. 1st Int.’l AAAI Conf. on Weblogs and Social

Media, 2007.

5. Pujol J.M., Sangesa R., and Delgado J. Extracting reputation in

multi agent systems by means of social network topology.

In Proc. 1st Int. Joint Conf. on Autonomous Agents and Mul-

tiagent Systems, 2002, pp. 467–474.

6. Sabater J. and Sierra C. Reputation and social network analysis

in multi-agent systems. In Proc. 1st Int. Joint Conf. on Autono-

mous Agents and Multiagent Systems, 2002, pp. 475–482.

7. Terveen L. and McDonald D.W. Social matching: a framework

and research agenda. ACM Trans. Comput.-Hum. Interact.,

12(3):401–434, 2005.

8. Yu B. and Singh M.P. Detecting deception in reputation man-

agement. In Proc. 2nd Int. Joint Conf. on Autonomous Agents

and Multiagent Systems, 2003, pp. 73–80.
T

Trusted Database Systems

▶Multilevel Secure Database Management Systems
Trusted Hardware

RADU SION

Stony Brook University, Stony Brook, NY, USA

Synonyms
Tamper-proof hardware; Secure hardware
Definition
Trusted Hardware is a broad term used to denote any

hardware that has been certified to perform according

to a certain set of requirements. Most often however,

“trusted hardware” is discussed in adversarial contexts.

The term has thus been somewhat hijacked to mean

“tamper-proof” hardware, i.e., hardware designed to

resist direct physical access adversaries. Often trusted

hardware encompasses some cryptographic abilities,

i.e., performing encryption and data authentication.

Key Points
Certification. The National Institute of Standards has

established a set of standards for security requirements

of cryptographic modules and specifically for physical

properties and tamper-resistance thereof [2]. The FIPS

140–2 Level 4 certification is at present the highest-attain-

able hardware security in sensitive, non-classified

domains. While a plethora of devices have undergone

FIPS certification, the most common types of trusted

hardware in use today are TPM micro-controllers

and secure CPUs: TPM. The Trusted Platform Mod-

ule (TPM) specifications of the Trusted Computing

Group [3] define a micro-controller that stores keys,

passwords and digital certificates. In actual instances

TPMs are connected to the main circuitry of com-

puting devices (such as PC motherboards) and ensure

that the stored data are secure from external software

attacks. It is important to note however, that a TPM

“can only act as a ‘lave’ to higher level services and

applications by storing and reporting pre-runtime

configuration information. [. . .]. At no time can the

TCG building blocks ‘control’ the system or report

the status of applications that are running.” This

passive nature limits the TPM’s utility in security para-

digms that require active processing.

SCPUs. Secure CPUs (SCPUs) are a term used to

denote general-purpose CPUs deployed in a certified

tamper-proof enclosure. Instances include the IBM

4758 PCI and the newer IBM 4764 PCI-X cryptographic

coprocessors [1]. The IBM 4764 is a PowerPC-based

board and runs embedded Linux. The 4758 is based

on a Intel 486 architecture and is preloaded with a

compact runtime environment that allows the loading

of arbitrary external certified code. The CPUs can be

custom programmed. Moreover, they (4758 models

2 and 23 and 4764 model 1) are compatible with the

IBM Common Cryptographic Architecture (CCA) API.

The CCA implements common cryptographic services

3192T TSQL2
such as random number generation, key management,

digital signatures, and encryption (DES/3DES, RSA). If

physically attacked, the devices destroy their internal

state (in a process powered by internal long-term bat-

teries) and shut down in accordance with their FIPS

140-2 certification. It is important to note that SCPUs

are generally one order of magnitude slower than main

processors mainly due to heat dissipation constraints

limiting the maximum allowable gate-density within the

tamper-proof enclosure.
Cross-references
▶Regulatory Compliance in Data Management
Recommended Reading
1. IBM Cryptographic Hardware. Online at http://www-03.ibm.

com/security/products/, 2007.

2. NIST Federal Information Processing Standards. Online at

http://csrc.nist.gov/publications/fips/, 2007.

3. Trusted Computing Group. Online at http://www.

trustedcomputinggroup.org/, 2007.
TSQL2

RICHARD T. SNODGRASS

University of Arizona, Tucson, AZ, USA

Definition
TSQL2 (Temporal Structured Query Language) is a

temporal extension of SQL-92 designed in 1993–1994

by a committee comprised of Richard T. Snodgrass,

Ilsoo Ahn, GadAriav, Don Batory, James Clifford, Curtis

E. Dyreson, Ramez Elmasri, Fabio Grandi, Christian S.

Jensen, Wolfgang Käfer, Nick Kline, Krishna Kulkarni,

T. Y. Cliff Leung, Nikos Lorentzos, John F. Roddick, Arie

Segev, Michael D. Soo and Suryanarayana M. Sripada.

The goal of this language design committee was to

consolidate past research on temporal query languages,

by the committee members as well as many others, by

developing a specification for a consensus language that

could form a common core for research.

Historical Background
Temporal databases have been an active research topic

since 1980. By the early 1990’s, several dozen temporal
query languages had been proposed, and many tempo-

ral database researchers felt that the time had come to

consolidate approaches to temporal data models and

calculus-based query languages to achieve a consensus

query language and associated data model upon which

future research could be based.

In April 1992, Richard Snodgrass circulated a

white paper that proposed that a temporal extension

to SQL be produced by the research community.

Shortly thereafter, the temporal database community

organized the ARPA/NSF International Workshop

on an Infrastructure for Temporal Databases, held

in Arlington Texas in June 1993 [3]. Discussions at

that workshop indicated that there was substantial

interest in a temporal extension to the conventional

relational query language SQL-92 [2]. A general invi-

tation was sent to the community, and about a dozen

people volunteered to develop a language specification.

Several people later joined the committee. The goal

of this language design committee was to develop a

specification for a consensus extension to SQL-92,

termed the Temporal Structured Query Language, or

TSQL2.

The group corresponded via electronic mail from

early July 1993, submitting, debating, and refining pro-

posals for the various aspects and elements of the lan-

guage. In September 1993, the first draft specification,

accompanied by 13 commentaries, was distributed to the

committee. In December 1993, a much enlarged draft,

accompanied by some 24 commentaries, was distributed

to the committee. A preliminary language specification

was made public inMarch 1994 [6], and a tutorial of the

language appeared in September 1994 [7]. The final

language specification and 28 commentaries were also

made available via anonymous FTP in early October

2004. The final specification and commentaries app-

eared in a book [4] that was distributed at a temporal

database workshop in summer of 1995, less than 2 years

after the committee had been founded. TSQL2 is

remarkable, and perhaps unique, in that it was designed

entirely via electronic mail, by a committee that never

met physically (in fact, no one on the committee hasmet

every other committee member).

Work then commenced to incorporate elements

and underlying insights of TSQL2 into SQL3. The

first step was to propose a new part to SQL3, termed

SQL/Temporal. This new part was accepted at the

Ottawa meeting in January, 1995 as Part 7 of the

TSQL2 T 3193

T

SQL3 specification [11]. A modification of TSQL2’s

PERIOD data type is included in that part.

The focus at that point changed to adding valid-time

and transaction-time support to SQL/Temporal. Two

change proposals, one on valid-time support and one

on transaction-time support, were unanimously accept-

ed by ANSI and forwarded to ISO [8,9]; a summary

appeared shortly thereafter [10]. A comprehensive set

of case studies [5] showed that while SQL-92 required

1,848 lines, only 520 lines of SQL/Temporal were

required to achieve exactly the same functionality.

These case studies showed that, over a wide range of

data definition, query, and modification fragments, the

SQL-92 version is three times longer in numbers of lines

than the SQL/Temporal version, and many times more

complex. In fact, very few SQL/Temporal statements

were more than ten lines long; some statements in

SQL-92 comprised literally dozens of lines of highly

complex code. Due to disagreements within the ISO

committee as to where temporal support in SQL

should go, the project responsible for temporal sup-

port was canceled near the end of 2001. Nevertheless,

concepts and constructs from SQL/Temporal have

been implemented in the Oracle database management

system, and other products have also included tempo-

ral support.

Oracle 9i includes support for transaction time.

Its flashback queries allow an application to access

prior transaction-time states of its database; they

are transaction timeslice queries. Database modifica-

tions and conventional queries are temporally up-

ward compatible. Oracle 10g extends flashback

queries to retrieve all the versions of a row between

two transaction times (a key-transaction-time-range

query) and allows tables and databases to be rolled

back to a previous transaction time, discarding all

changes after that time. The Oracle 10g Workspace

Manager includes the period data type, valid-time

support, transaction-time support, support for

bitemporal tables, and support for sequenced prima-

ry keys, sequenced uniqueness, sequenced referential

integrity, and sequenced selection and projection,

in a manner quite similar to that proposed in

SQL/Temporal.

Foundations
The goals that underpinned the process that led

to the TSQL2 language design are first considered,
then the language concepts underlying TSQL2 are

reviewed.

Design Goal for TSQL2

TSQL2 is a temporal query language, designed

to query and manipulate time-varying data stored in

a relational database. It is an upward-compatible

extension of the international standard relational

query language SQL-92.

The TSQL2 language design committee started

their work by establishing a number of ground rules

with the objective of achieving a coherent design.

� TSQL2 will be a language design.

� TSQL2 is to be a relational query language, not an

object-oriented query language.

� TSQL2 should be consistent with existing stan-

dards, not another standard.

� TSQL2 should be comprehensive and should reflect

areas of convergence.

� The language will have an associated algebra.

The committee enumerated the desired features of

TSQL2; these guided the design of the language. The

first batch concerned the data model itself.

� TSQL2 should not distinguish between snapshot

equivalent instances, i.e., snapshot equivalence

and identity should be synonymous.

� TSQL2 should support only one valid-time

dimension.

� For simplicity, tuple timestamping should be

employed.

� TSQL2 should be based on homogeneous tuples.

� Valid-time support should include support for

both the past and the future.

� Timestamp values should not be limited in range or

precision.

The next concerned the language proper.

� TSQL2 should be a consistent, fully upwardly

compatible extension of SQL-92.

� TSQL2 should allow the restructuring of tables

on any set of attributes.

� TSQL2 should allow for flexible temporal projec-

tion, but TSQL2 syntax should reveal clearly when

non-standard temporal projections are being done.

� Operations in TSQL2 should not accord any explic-

it attributes special semantics. For example, opera-

tions should not rely on the notion of a key.

3194T TSQL2
� Temporal support should be optional, on a per-

table basis. Tables not specified as temporal should

be considered as snapshot tables. It is important to

be an extension of SQL-92’s data model when pos-

sible, not a replacement. Hence, the schema defini-

tion language should allow the definition of

snapshot tables. Similarly, it should be possible to

derive a snapshot table from a temporal table.

� User-defined time support should include instants,

periods, and intervals.

� Existing aggregates should have temporal analo-

gues in TSQL2.

� Multiple calendar and multiple language support

should be present in timestamp input and output,

and timestamp operations. SQL-92 supports only

one calendar, a particular variant of the Gregorian

calendar, and one time format. The many uses of

temporal databases demand much more flexibility.

� It should be possible to derive temporal and non-

temporal tables from underlying temporal and

non-temporal tables.

Finally, the committee agreed upon three features

aimed at ease of implementation.

� TSQL2 tables should be implementable in terms of

conventional first normal form tables. In particular,

the language should be implementable via a data

model that employs period-timestamped tuples.

This is the most straightforward representation, in

terms of extending current relational technology.

� TSQL2 must have an efficiently implementable al-

gebra that allows for optimization and that is an

extension of the conventional relational algebra, on

which current DBMS implementations are based.

The temporal algebra used with the TSQL2 tempo-

ral data model should contain temporal operators

that are extensions of the operations in the rela-

tional algebra. Snapshot reducibility is also highly

desired, so that, for example, optimization strate-

gies will continue to work in the new data model.

� The language datamodel should accept implementa-

tion using other models, such as models that time-

stamp attribute values. The language data model

should allow multiple representational data models.

In particular, it would be best if the data model

accommodated themajor temporal datamodels pro-

posed to date, including attribute timestamped

models.
Language Concepts in TSQL2

The following is a brief outline of the major concepts

behind TSQL2.

Time Ontology The TSQL2 model of time is bounded

on both ends. The model refrains from deciding

whether time is ultimately continuous, dense, or dis-

crete. Specifically, TSQL2 does not allow the user to ask

a question that will differentiate the alternatives. In-

stead, the model accommodates all three alternatives

by assuming that an instant on a time-line is much

smaller than a chronon, which is the smallest entity

that a timestamp can represent exactly (the size of a

chronon is implementation-dependent). Thus, an in-

stant can only be approximately represented. A discrete

image of the represented times emerges at run-time as

timestamps are scaled to user-specified (or default)

granularities and as operations on those timestamps

are performed to the given scale.

An instant is modeled by a timestamp coupled

with an associated scale (e.g., day, year, month). A period

is modeled by a pair of two instants in the same scale,

with the constraint that the instant timestamp that

starts the period equals or precedes (in the given scale)

the instant timestamp that terminates the period.

Base Line Clock A semantics must be given to each

time that is stored in the database. SQL-92 specifies

that times are given in UTC seconds, which are, how-

ever, not defined before 1958, and in any case cannot

be used to date prehistoric time, as UTC is based

in part on solar time. TSQL2 includes the concept of

a baseline clock, which provides the semantics of time-

stamps. The baseline clock relates each second to phys-

ical phenomena and partitions the time line into a set

of contiguous periods. Each period runs on a different

clock. Synchronization points delimit period bound-

aries. The baseline clock and its representation are

independent of any calendar.

Data Types SQL-92’s datetime and interval data types

are augmented with a period datetime, of specifiable

range and precision. The range and precision can be

expressed as an integer (e.g., a precision of 3 fractional

digits) or as an interval (e.g., a precision of a week).

Operators are available to compare timestamps and

to compute new timestamps, with a user-specified

precision. Temporal values can be input and output

TSQL2 T 3195

T

in user-specifiable formats, in a variety of natural lan-

guages. Calendars and calendric systems permit

the application-dependent semantics of time to be

incorporated.

A surrogate data are introduced in TSQL2. Surro-

gates are unique identifiers that can be compared for

equality, but the values of which cannot be seen by the

users. In this sense, a surrogate is “pure” identity and

does not describe a property (i.e., it has no observable

value). Surrogates are useful in tying together repre-

sentations of multiple temporal states of the same

object; they are not a replacement for keys.

Time-Lines Three time-lines are supported in TSQL2:

user-defined time, valid time, and transaction time.

Hence values from disparate time-lines can be com-

pared, at an appropriate precision. Transaction-time

is bounded by initiation, the time when the

database was created, and until changed. In addition,

user-defined and valid time have two special values,

beginning and forever, which are the least and greatest

values in the ordering. Transaction time has the special

value until changed.

Valid and user-defined times can be indeterminate.

In temporal indeterminacy, it is known that an

event stored in a temporal database did in fact occur,

but it is not known exactly when that event occurred.

An instant (interval, period) can be specified as

determinate or indeterminate; if the latter then the

possible mass functions, as well as the generality of

the indeterminacy to be represented, can be specified.

The quality of the underlying data (termed its credibil-

ity) and the plausibility of the ordering predicates

expressed in the query can be controlled on a per-

query or global basis.

Finally, instant timestamps can be now-relative. A

now-relative time of “now – 1 day,” interpreted when

the query was executed on June 12, 1993, would have

the bound value of “June 11, 1993.” The users can

specify whether values to be stored in the database

are to be bound (i.e., not now-relative) or unbound.

Aggregates The conventional SQL-92 aggregates

are extended to take into account change across time.

They are extended to return time-varying values and

to permit grouping via a partitioning of the underlying

time line, termed temporal grouping. Values can be

weighted by their duration during the computation of
an aggregate. Finally, a new temporal aggregate,

RISING, is added. A taxonomy of temporal aggregates

[4, Chap. 21] identifies 14 possible kinds of aggregates;

there are instances of all of these kinds in TSQL2.
Valid-Time Tables The snapshot tables supported by

SQL-92 continue to be available in TSQL2, which, in

addition, supports state tables, where each tuple is

timestamped with a temporal element that is a union

of periods. As an example, the Employee table with

attributes Name, Salary, and Manager could contain

the tuple (Tony, 10,000, LeeAnn). The temporal ele-

ment timestamp would record the maximal (non-con-

tiguous) periods in which Tony made $10,000 and had

LeeAnn as his manager. Information about other

values of Tony’s salary or other managers would be

stored in other tuples. The timestamp is implicitly

associated with each tuple; it is not another column

in the table. The range, precision, and indeterminacy

of a temporal element can be specified.

Temporal elements are closed under union, differ-

ence, and intersection. Timestamping tuples with

temporal elements is conceptually appealing and can

support multiple representational data models. Depen-

dency theory can be extended to apply in full to this

temporal data model.

TSQL2 also supports event tables, in which each

tuple is timestamped with an instant set. As an exam-

ple, a Hired table with attributes Name and Position

could contain the tuple (LeeAnn, Manager). The in-

stant set timestamp would record the instant(s) when

LeeAnn was hired as a Manager. (Other information

about her positions would be stored in separate tables.)

As for state tables, the timestamps are associated

implicitly with tuples.
Transaction-Time and Bitemporal Tables Orthogonal-

ly to valid time, transaction time can be associated

with tables. The transaction time of a tuple, which is

a temporal element, specifies when that tuple was

considered to be part of the current database state. If

the tuple (Tony, 10,000, LeeAnn) was stored in the

database on March 15, 1992 (say, with an APPEND

statement) and removed from the database on June 1,

1992 (say, with a DELETE statement), then the trans-

action time of that tuple would be the period from

March 15, 1992 to June 1, 1992.

3196T TSQL2
Transaction timestamps have an implementation-

dependent range and precision, and they are

determinate.

In summary, there are six kinds of tables: snapshot

(no temporal support beyond user-defined time),

valid-time state tables (timestamped with valid-time

elements), valid-time event tables (timestamped with

valid-time instant sets), transaction-time tables (time-

stamped with transaction-time elements), bitemporal

state tables (timestamped with bitemporal elements),

and bitemporal event tables (timestamped with bitem-

poral instant sets).

Schema Specification The CREATE TABLE and

ALTER statements allow specification of the valid-

and transaction-time aspects of temporal tables. The

scale and precision of the valid timestamps can also

be specified and later altered.

Restructuring The FROM clause in TSQL2 allows

tables to be restructured so that the temporal elements

associated with tuples with identical values on a subset

of the columns are coalesced. For example, to deter-

mine when Tony made a Salary of $10,000, indepen-

dent of who his manager was, the Employee table

could be restructured on the Name and Salary col-

umns. The timestamp of this restructured tuple

would specify the periods when Tony made $10,000,

information which might be gathered from several

underlying tuples specifying different managers.

Similarly, to determine when Tony had LeeAnn as

his manager, independent of his salary, the table would

be restructured on the Name andManager columns. To

determine when Tony was an employee, independent of

how much he made or who his manager was, the table

could be restructured on only the Name column.

Restructuring can also involve partitioning of the

temporal element or instant set into its constituent

maximal periods or instants, respectively. Many

queries refer to a continuous property, in which maxi-

mal periods are relevant.

Temporal Selection The valid-time timestamp of a

table may participate in predicates in the WHERE

clause by via VALID() applied to the table (or corre-

lation variable) name. The transaction-time of a table

can be accessed via TRANSACTION(). The operators

have been extended to take temporal elements and

instant sets as arguments.
Temporal Projection Conventional snapshot tables,

as well as valid-time tables, can be derived from under-

lying snapshot or valid-time tables. An optional VALID

or VALID INTERSECT clause is used to specify

the timestamp of the derived tuple. The transaction

time of an appended or modified tuple is supplied by

the DBMS.

Update The update statements have been extended in

a manner similar to the SELECT statement, to specify

the temporal extent of the update.

Cursors Cursors have been extended to optionally

return the valid time of the retrieved tuple.

Schema Versioning Schema evolution, where the

schema may change, is already supported in SQL-92.

However, old schemas are discarded; the data are al-

ways consistent with the current schema. Transaction

time support dictates that previous schemas be acces-

sible, which calls for schema versioning. TSQL2 sup-

ports a minimal level of schema versioning.

Vacuuming Updates, including (logical) deletions, to

transaction time tables result in insertions at the phys-

ical level. Despite the continuing decrease in cost of

data storage, it is still, for various reasons, not always

acceptable that all data be retained forever. TSQL2

supports a simple form of vacuuming, i.e., physical

deletion, from such tables.

System Tables The TABLE base table has been ex-

tended to include information on the valid and trans-

action time components (if present) of a table. Two

other base tables have been added to the definition

schema.

SQL-92 Compatibility All aspects of TSQL2 are

pure extensions of SQL-92. The user-defined time

in TSQL2 is a consistent replacement for that of

SQL-92. This was done to permit support of mul-

tiple calendars and literal representations. Legacy

applications can be supported through a default

SQL92_calendric_system.

The defaults for the new clauses used to support

temporal tables were designed to satisfy snapshot re-

ducibility, thereby ensuring that these extensions con-

stitute a strict superset of SQL-92.

Tug-of-War Sketch T 3197

T

Implementation During the design of the language,

considerable effort was expended to ensure that the

language could be implemented with only moderate

modification to a conventional, SQL-92-compliant

DBMS. In particular, an algebra has been demon-

strated that can be implemented in terms of a period-

stamped (or instant-stamped, for event tables) tuple

representational model; few extensions to the conven-

tional algebra were required to fully support the

TSQL2 constructs. This algebra is snapshot reducible

to the conventional relational algebra. Support for

multiple calendars, multiple languages, mixed preci-

sion, and indeterminacy have been included in proto-

types that demonstrated that these extensions have

little deleterious effect on execution performance.

Mappings from the data model underlying TSQL2,

the bitemporal conceptual data model [1], to various

representational data models have been defined [4].

Key Applications
TSQL2 continues to offer a common core for temporal

database research, as well as a springboard for change

proposals for extensions to the SQL standard.

Future Directions
Given the dramatic decrease in code size and complex-

ity for temporal applications that TSQL2 and SQL/

Temporal offers, it is hoped that other DBMS vendors

will take Oracle’s lead and incorporate these proposed

language constructs into their products.

Url to Code
http://www.cs.arizona.edu/people/rts/tsql2.html This

web page includes links to the ISO documents.

http://www.sigmod.org/dblp/db/books/collections/

snodgrass95.html

Cross-references
▶Applicability Period

▶ Fixed Time Span

▶Now in Temporal Databases

▶ Period-Stamped Temporal Models

▶ Span

▶ Schema Versioning

▶Temporal Aggregation

▶Temporal Algebras

▶Temporal Compatibility

▶Temporal Integrity Constraints

▶Temporal Joins
▶Temporal Logical Models

▶Temporal Query Languages

▶Temporal Vacuuming

▶Time-Line Clock

▶Transaction Time

▶TUC

▶Until Changed

▶Valid Time

▶Value Equivalence

Recommended Reading
1. Jensen C.S., Soo M.D. and Snodgrass R. T. Unifying Temporal

Data Models via a Conceptual Model. Inf. Syst., 19(7):513–547,

December 1994.

2. Melton J. and Simon A.R. Understanding the New SQL: A

Complete Guide. Morgan Kaufmann, San Mateo, CA, 1993.

3. Snodgrass R.T. (ed.). In Proc. Int. Workshop on an Infrastruc-

ture for Temporal Databases, 1993.

4. Snodgrass R.T. (ed.). The TSQL2 Temporal Query Language.

Kluwer Academic, 1995.

5. Snodgrass R.T. Developing Time-Oriented Database Appli-

cations in SQL. Morgan Kaufmann, San Francisco, CA, July

1999.

6. Snodgrass R.T., Ahn I., Ariav G., Batory D.S., Clifford J.,

Dyreson C.E., Elmasri R., Grandi F., Jensen C.S., Käfer W.,

Kline N., Kulkarni K., Leung T.Y.C., Lorentzos N., Roddick J.F.,

Segev A., Soo M.D., and Sripada S.M., TSQL2 Language Specifi-

cation. ACM SIGMOD Rec., 23(1):65–86, March 1994.

7. Snodgrass R.T., Ahn I., Ariav G., Batory D., Clifford J., Dyreson

C.E., Elmasri R., Grandi F., Jensen C.S., Käfer W., Kline N.,

Kulkarni K., Leung T.Y.C., Lorentzos N., Roddick J.F., Segev A.,

Soo M.D., and Sripada S.M. A TSQL2 tutorial. ACM SIGMOD

Rec., 23(3):27–33, September 1994.

8. Snodgrass R.T., Böhlen M.H., Jensen C.S. and Steiner A. Adding

Transaction Time to SQL/Temporal. Change proposal, ANSI

X3H2-96-502r2, ISO/IEC JTC1/SC21/ WG3 DBL MAD-147r2,

November 1996.

9. Snodgrass R.T., Böhlen M.H., Jensen C.S. and Steiner A. Adding

Valid Time to SQL/Temporal. change proposal, ANSI X3H2-96-

501r2, ISO/IEC JTC1/SC21/ WG3 DBL MAD-146r2, November

1996.

10. Snodgrass R.T., Böhlen M.H., Jensen C.S., and Steiner A., Tran-

sitioning Temporal Support in TSQL2 to SQL3. In Temporal

Databases: Research and Practice, O. E.zion, S. Jajodia, S.M.

Sripada (eds.). Springer, Berlin, 1998, pp. 150–194.

11. Snodgrass R.T., Kulkarni K., Kucera H., and Mattos N. Proposal

for a new SQL Part – Temporal. ISO/IEC JTC1/SC21 WG3 DBL

RIO-75, X3H2-94-481, November 2, 1994.
Tug-of-War Sketch

▶AMS Sketch

3198T Tuning Concurrency Control
Tuning Concurrency Control

PHILIPPE BONNET
1, DENNIS SHASHA

2

1University of Copenhagen, Copenhagen, Denmark
2New York University, New York, NY, USA

Synonyms
Lock tuning

Definition
Database systems implement concurrency control

to give users the illusion that each transaction executes

correctly, in isolation from all others. The concurrency-

control algorithm in predominant use is two-phase

locking. Tuning concurrency control consists in im-

proving the performance of concurrent operations by

reducing the number, duration and scope of the con-

flicts due to locking.
Historical Background
In 1976, Jim Gray et al. identified the fundamental

concurrency control trade-off between correctness

and performance. They discussed different lock gran-

ularities and introduced the notion of degrees of

consistency.
Foundations
Database systems attempt to give users the illusion

that each transaction executes in isolation from all

others. The ANSI SQL standard, for example, makes

this explicit with its concept of degrees of isolation.

Full isolation or serializability is the guarantee that

each transaction that completes will appear to execute

one at a time, except that its performance may be

affected by other transactions. Choosing a lower level

of isolation will benefit performance, possibly at the

cost of correctness. The value of serializability experi-

ment (see below in experimental results) illustrates this

performance/correctness trade-off. This entry dis-

cusses basic concurrency tuning techniques.

Leveraging Application Semantics

Efficient tuning often entails understanding applica-

tion semantics. A frequently required feature is to

assign consecutive key values to consecutive records

(e.g., customer numbers, purchase order numbers).

Consider a straightforward implementation.
In the following example, the COUNTER table

contains the next value which is used as a key when

inserting values in the ACCOUNT table.

begin transaction
NextKey:=select nextkey from COUNTER;

insert into ACCOUNT values (nextkey, 100, 200);

update COUNTER set nextkey=NextKey+1;
end transaction

When the number of such transactions issued

concurrently increases, COUNTER becomes a bottle-

neck because all transactions read and write the value

of nextkey.

An alternative approach is to use the facilities that

many systems offer that reduce the length of time

counter locks are held. These facilities (sequences in

Oracle, autoincrement in MySQL and identity in SQL

Server, DB2 UDB and Sybase Adaptive Server) enable

transactions to hold a latch (see the latch definitional

entry) on the counter only while accessing the counter,

rather than until the transaction completes. This elim-

inates the counter as a bottleneck but may introduce a

small problem.

Consider an insert transaction T that increments the

counter then aborts. Before T aborts, a second transac-

tion T’ may increment the counter further. Thus, the

counter value obtained by Twill not be associated with

any data item. That is, there may be gaps in the counter

values. Most applications can tolerate such gaps, but

some cannot for legal reasons, e.g., tax authorities prefer

that invoice numbers have no gaps.

Living Dangerously

Many applications live with less than full isolation

due to the high cost of holding locks during user

interactions. Consider the following full-isolation

transaction from an airline reservation application:

Airline Reservation Transaction

Begin transaction
Retrieve list of seats available;

Reservation agent talks with customer regarding

availability;

Secure seat.
End transaction

The performance of a system built from such transac-

tions would be intolerably slow, because each customer

would hold a lock on all available seats for a flight

Tuning Concurrency Control T 3199
while chatting with the reservations agent. This solu-

tion does, however, guarantee two conditions: (i) no

two customers will be given the same seat, and (ii) any

seat that the reservation agent identifies as available in

view of the retrieval of seats will still be available when

the customer asks to secure it.

Because of the poor performance, however, the

following is done instead:

Loosely Consistent Airline Reservation

Begin transaction
Retrieve list of seats available;

Reservation agent talks with customer regarding

availability;

Secure seat.
T

End transaction

This design relegates lock conflicts to the secure

step, thus guaranteeing that no two customers will

be given the same seat. It does allow the possibility,

however, that a customer will be told that a seat is

available, will ask to secure it, and will then find out

that it is gone.

General Rules of Thumb

By looking at blocking and (more rarely) deadlock

statistics, an administrator or advanced application

user can infer the existence of a concurrency control

bottleneck. What should follow is careful analysis of

the application to see (i) whether transactions can be

redesigned to place accesses to hot items at the ends of

the transactions, (ii) whether system facilities may help

to reduce concurrency bottlenecks, (iii) or whether the

application semantics allow a lesser form of concur-

rency correctness guarantee for the sake of perfor-

mance. The general idea is to reduce the hold on

the few critical resources that cause the concurrency

bottleneck.

Key Applications
Concurrency control tuning is essential for appli-

cations having frequent modifications (inserts, deletes,

and/or updates), because those applications entail lock

conflicts.

Experimental Results

Value of Serializability

This experiment illustrates the correctness/performance

trade-off associated to the two isolation levels, i.e.,
serializable and read committed. Consider a table of

the form R(a int primary key, b int), on which an

application executes two types of transactions: (i) a

sum transaction that computes the sum of b values,

and (ii) swap transactions that swap b values. The

experiment consists in executing the two types of

transactions concurrently. The parameters of the

experiments are (i) the level of isolation, and (ii) the

number of concurrent threads executing the swap

transactions (note that the total number of transac-

tions is kept constant throughout the experiment).

Response time is measured for the total number of

transactions.

The results presented below were obtained with

MySQL SQL 6.0 (using InnoDB with a 1GB buffer

pool), running on a Linux server equipped with an

Intel Core 2 Duo processor (the cache is warm during

this experiment). The SQL code and the data used

for this experiment as well as the data set with the

measurements are available at the URL listed at the

end of this entry.

Interestingly, both the read committed and serial-

izable isolation levels yield 100% correct answer

regardless of the number of threads executing the

swap transactions. The reason is that MySQL (like

Oracle) implements snapshot isolation: the result of

the sum transaction is obtained on the R table as it

stood when that transaction began, i.e., the swap trans-

actions do not impact the result of the sum transaction.

When executed on database systems that do not im-

plement snapshot isolation (e.g., SQLServer or DB2),

only about 40% of the results were correct for the sum

transaction [3].

Figure 1 traces throughput (i.e., total number

of transactions/response time) for the serializable and

read committed level as a function of the number of

swap threads.

Read committed yields a higher throughput than

serializable. The reason is that in the serializable isola-

tion level, the sum transaction sets next-key locks while

scanning the table, whereas at the read committed

isolation level, the sum transaction relies on snapshot

isolation, i.e., no read locks are used.

Counters

This experiment illustrates the benefit of using a

system-defined counter as opposed to using an adhoc

method based on a counter table. The experiment

Tuning Concurrency Control. Figure 2. Counter experiment on MySQL 6.0.

Tuning Concurrency Control. Figure 1. Value of serializability experiment on MySQL 6.0.

3200T Tuning Concurrency Control
consists in running a fixed number of insert transac-

tions concurrently. The number of threads used to

run these transactions is the main parameter of this

experiment. The experiment measures response time

for the total number of transactions.

Figure 2 presents traces throughput (i.e., total

number of transactions/response time) for the ad hoc

and system implementation as a function of the num-

ber of swap threads. These results were obtained with

the configuration used for the Value of Serializability

experiment (see above). The SQL code and the data

used for this experiment are available at the URL listed

below.

In the experiment, the benefits of the system-based

counter become more significant as the number of
threads increases. The reason is that as the number

of threads increase, the counter table becomes a hot

spot and the benefits of using a latch released at the end

of the statement (system method) over a lock held

until the end of the transaction (ad hoc method)

becomes significant. Note that the performance of the

ad hoc method diminishes as the amount of processing

in the transaction increases (i.e., as the time during

which the lock is held increases).

URL to Code and Data Sets
Value of Serializability experiment: http://www.

databasetuning.org/?sec=valueofserializability

Counter experiment: http://www.databasetuning.

org/?sec=counter

Tuple-Generating Dependencies T 3201
Cross-references
▶Concurrency Control

▶ Isolation

▶ Latching

▶ Performance Monitoring Tools

▶ Snapshot Isolation

▶Transaction Chopping

▶Two-Phase Locking

Recommended Reading
1. Bernstein P., Hadzilacos V., and Goodman N. Concurrency

Control and Recovery in Database Systems. Addison-Wesley,

Boston, MA, 1987.

2. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1992.

3. Shasha D. and Bonnet P. Database Tuning: Principles, Experi-

ments and Troubleshooting Techniques. Morgan Kaufmann,

San Francisco, CA, 2002.

4. Weikum G. and Vossen G. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, San Francisco, CA, 2001.
Tuning the Application Interface

▶Application-Level Tuning
Tuple Relational Calculus

▶Relational Calculus
T

Tuple-Generating Dependencies

RONALD FAGIN

IBM Almaden Research Center, San Jose, CA, USA

Synonyms
Equality-generating dependency (egd)

Definition
Tuple-generating dependencies, or tgds, are one of the

two major types of database dependencies (the other

major type consists of equality-generating dependencies,

or egds).

To define tgds, the notion of an atomic formula is

first needed, which is a formula of the form P(x1,...,xk),
where P is a k-ary relational symbol, and x1,...,xk
are variables, not necessarily distinct.

Then tgds are formulas of the form

8x(f(x)!∃yc(x, y)), where

1. f(x) is a conjunction of atomic formulas, all with

variables among the variables in x.

2. every variable in x appears in f(x) (but not neces-
sarily in c(x, y)).

3. c(x, y) is a conjunction of atomic formulas, all

with variables among the variables in x and y.

If y is empty, so that there are no existentially-

quantified variables, then the tgd is called full.

Conditions (1) and (2) together are sometimes

replaced by the weaker condition that f(x) be an

arbitrary first-order formula with free variables exactly

those in x.

Key Points
An example of a tgd is the formula

8x18x2ðRðx1; x1; x2Þ ^ Sðx2Þ
! 9yðRðx1; yÞ ^ Tðx2; y; x1ÞÞ:

Historically, tgds were introduced for the purpose

of database normalization and design, with the first

example being multivalued dependencies [2,5]. Fagin

[3] defined the class of embedded implicational depen-

dencies, which includes both tgds and egds, but he

focused on the case where they are (i) unirelational

(so that all atomic formulas involve the same relation

symbol) and (ii) typed (so that no variable can appear

in both the ith and jth position of an atomic formula

if i 6¼ j). Beeri and Vardi [1] defined and named tgds

and egds.

In recent years, tgds have been used to define

schema mappings in data exchange [4], which describe

how data structured under one schema (the source

schema) is to be transformed into data structured

under a second schema (the target schema). In this

application, the atomic formulas in the premise f(x)
are all from the source schema, and the atomic for-

mulas in the conclusion c(x, y) are all from the target

schema.
Cross-references
▶Data Exchange

▶Database Dependencies

▶ Equality-Generating Dependencies

3202T Twigs
▶ Join Dependency

▶Multivalued Dependency

▶Normal forms and Normalization

▶ Schema Mapping

Recommended Reading
1. Beeri C. and Vardi M.Y. A proof procedure for data dependen-

cies. J. ACM, 31(4):718–741, 1984.

2. Fagin R. Multivalued dependencies and a new normal form for

relational databases. ACM Trans. Database Sys., 2(3):262–278,

1977.

3. Fagin R. Horn clauses and database dependencies. J. ACM,

29(4):952–985, 1982.

4. Fagin R., Kolaitis P.G., Miller R.J., and Popa L. Data exchange:

semantics and query answering. Theor. Comput. Sci., 2005,

pp. 89–124.

5. Zaniolo C. Analysis and Design of Relational Schemata for

Database Systems. 1976. Ph.D. Dissertation, UCLA.
Twigs

▶XMLTree Pattern, XMLTwig Query
Two-Dimensional Shape Retrieval

LEI CHEN

Hong Kong University of Science and Technology,

Kowloon, Hong Kong, China

Definition
Shape is an important image feature, it is the geomet-

rical information of an object after removing position,

scale and rotational effects [3]. A shape is often
Two-Dimensional Shape Retrieval. Figure 1. Examples of sh
represented by the contour map extracted from the

images. Given a query 2D shape, 2D shape retrieval

retrieves a ranked list of similar 2D shapes from a

collection of 2D polygonal models (contour points)

based on the shape characteristics.

Figure 1 gives an example object shapes, which are

represented by the extracted contour maps.

Historical Background
The study of shape retrieval can be traced back to

1980s. At that time, shape retrieval was treated as an

key technique in object recognition of robot vision.

Since then, shape retrieval has received much attention

in the database domain due to its various application

in biometrics, industry, medicine and anthropology.

Foundations
The shape retrieval problem is to retrieve shapes that are

visually similar to the query shape. There are two key

issues related to shape retrieval [6], shape representation

and similarity measure. Given a shape, it should be

represented in a form which is invariant to scaling,

translation and rotation. For similarity measures, vari-

ous measures are designed to meet application require-

ments. In fact, the two key issues are closely related to

each other. Based on the different shape representa-

tions, different similarity measures are applied. Exist-

ing works represent shape in various ways including:

1. Shape signature is one-dimensional vector derived

from the shape boundary coordinates. For exam-

ple, the Euclidean distance between centroid point

to the boundary points [8]. The shape of an object

is represented by a set of normalized Fourier coeffi-

cients of the shape signature and the inner product
ape of object represented by contour maps [4].

Two-Dimensional Shape Retrieval T 3203

T

of the Fourier coefficients is used to measure the

similarity between two shapes.

2. Grid descriptor is derived by overlaying the shapes

with a coarse grid and assigning an ‘1’ to a grid

cell if more than 15% of the cell is covered by the

shape, otherwise ‘0’ [5]. Two shapes are compared

by counting the number of different bits of cor-

responding normalized grid descriptors. The simi-

larity measure conforms to human similarity

perception, i.e., perceptually similar shapes have

high similarity measure.

3. Shape context captures the distribution of the

points relative to a reference point on the contour

of an object, thus it offers a globally discriminative

feature. Two shapes are similar if they have similar

shape contexts. Therefore, the similarity between

two shapes is computed by counting the number of

matching corresponding points [2].

4. Distance set uses N nearest neighbors to represent

each contour point [4]. The similarity between two

shapes are measure by the cost of the cheapest

correspondence relation of corresponding distance

sets, which is computed by evaluating theminimum

cost assignment in an associated bipartite graph.

5. Curvature scale space is formed by the positions of

inflection points (x-axis) on the contours on every

scale (y-axis) [7]. The shape representation is the

positions of the maxima on these curves. The shape

similarity is measures by relating the positions of

the maxima of the corresponding curves.

6. Symbolic features refers to a shape which is repre-

sented in terms of multi-interval valued type fea-

tures including shape centroid, extreme points, axis

of least inertia with slope angle, and feature points

on the axis of least inertia, etc. [1]. The similarity

between two shapes is defined on these symbolic

features as the average degree of similarity of all

corresponding feature vector pairs.

7. Shape space refers a single point (vector) in a high-

dimensional manifold. The vector is obtained by

normalizing the landmark vector of the origin

shape [9]. The similarity is measured as the geode-

sic distance between a shape and a model in the

shape space.

In addition to the shape representation and similarity

measure design, index structures should be built on the

shape representations to allow shape similarity queries

be answered efficiently.
Key Applications

Content Based Image Retrieval

Content-based image retrieval (CBIR), also known as

query by image content (QBIC) and content-based

visual information retrieval (CBVIR) is the application

of computer vision to the image retrieval problem, that

is, the problem of searching for digital images in large

databases.

Visual Surveillance

Visual surveillance in dynamic scenes is an active re-

search topics in computer vision. The aim of visual

surveillance is to make it possible that the computer

can watch or monitor a scene by automatic localiza-

tion, tracking and recognition.

Future Directions
Effective and robust similarity measures and efficient

indexing structures.

Cross-references
▶ Feature-Based 3D Object Retrieval

▶ Image Retrieval
Recommended Reading
1. Attalla E. and Siy P. Robust shape similarity retrieval based on

contour segmentation polygonal multiresolution and elastic

matching. Pattern Recognit., 38(12):2229–2241, 2005.

2. Belongie S., Malik J., and Puzicha J. Shape matching and object

recognition using shape contexts. IEEE Trans. Pattern Anal.

Mach. Intell., 24(4):509–522, 2002.

3. Dryden I.L. and Mardia K.V. Statistical Shape Analysis. Wiley,

New York, 1998.

4. Grigorescu C. and Petkov N. Distance sets for shape filters

and shape recognition. IEEE Trans. Image Process., 12(10):

1274–1286, 2003.

5. Lu G. and Sajjanhar A. Region-based shape representation and

similarity measure suitable for content-based image retrieval.

Multimedia Syst., 7(2):165–174, 1999.

6. Mehrotra R. and Gary J.E. Similar-shape retrieval in shape data

management. Computer, 28(9):57–62, 1995.

7. Mokhtarian F. and Bober M. Curvature Scale Space Representa-

tion: Theory, Applications, and MPEG-7 Standardization.

Kluwer, Norwell, MA, USA, 2003.

8. Zhang D. and Lu G. Evaluation of mpeg-7 shape descriptors

against other shape descriptors. Multimedia Syst., 9(1):15–30,

2003.

9. Zhang J., Zhang X., Krim H., and Walter G.G. Object represen-

tation and recognition in shape spaces. Pattern Recognit., 36(5):

1143–1154, 2003.

3204T Two-Phase Commit
Two-Phase Commit

YOUSEF J. AL-HOUMAILY
1, GEORGE SAMARAS

2

1Institute of Public Administration, Riyadh,

Saudi Arabia
2University of Cyprus, Nicosia, Cyprus

Definition
Two-phase commit (2PC) is a synchronization proto-

col that solves the atomic commitment problem, a spe-

cial case of the Byzantine Generals problem. Essentially,

it is used in distributed database systems to ensure

global atomicity of transactions in spite of site and

communication failures, assuming that a failure will

be, eventually, repaired and each site guarantees atom-

icity of transactions at its local level.

Historical Background
2PC is the simplest and most studied atomic commit

protocol (ACP). It was first published in [9] and [4].

Since then, the protocol has received much attention

from the academia and industry due to its importance

in distributed database systems, and the research has

resulted in numerous variants and optimizations for

different distributed database environments. These

environments include main memory databases (e.g.,

[10]), real-time databases (e.g., [5]), mobile database

systems (e.g., [12]), heterogeneous database systems

(e.g., [1]), Web databases (e.g., [15]), besides tradi-

tional (homogeneous) distributed database systems

(e.g., [13,3]).
Foundations
In a distributed database system, a transaction is

decomposed into a set of subtransactions, each of

which executes at a single participating database site.

Assuming that each database site preserves atomicity of

(sub)transactions at its local level, global atomicity

cannot be guaranteed without taking additional mea-

sures. This is because without global synchronization a

distributed transaction might end-up committing at

some participating sites and aborting at others due to a

site or a communication failure. Thus, jeopardizing

global atomicity and, consequently, the consistency of

the (distributed) database.

To achieve atomicity at the global level, there is a

need for a synchronization protocol that ensures a unan-

imous final outcome for each distributed transaction
and regardless of failures. Such a protocol is referred

to as an atomic commit protocol (ACP). An ACP ensures

that a distributed transaction is either committed

and all its effects become persistent across all partici-

pating sites, or aborted and all its effects are obliterated

as if the transaction had never executed at any site. This

is the essence of the two-phase commit (2PC) protocol.

Dynamics of Two-Phase Commit

In 2PC, each transaction is associated with a desig-

nated site called the coordinator (or master). Although

the coordinator of a transaction could be any of the sites

participating in the transaction’s execution, it is com-

monly the originating site of the transaction (i.e., the

site where the transaction is first initiated). The rest of

the sites are called participants, subordinates, cohorts or

slaves. Once a transaction finishes its execution and

indicates its termination point, through a commit prim-

itive, to its coordinator, the coordinator initiates 2PC.

As the name implies, 2PC consists of two phases,

namely a voting phase and a decision phase, as shown

Fig. 1. During the voting phase, the coordinator

requests all the sites participating in the transaction’s

execution to prepare-to-commit whereas, during the

decision phase, the coordinator either decides to com-

mit the transaction if all the participants are prepared

to commit (voted “yes”), or to abort if any participant

has decided to abort (voted “no”). On a commit deci-

sion, the coordinator sends out commit messages to all

participants whereas, on an abort decision, it sends out

abort messages to only those (required) participants

that are prepared-to-commit (voted “yes”).

When a participant receives a prepare-to-commit

message for a transaction, it validates the transaction

with respect to data consistency. If the transaction can

be committed (i.e., it passed the validation process),

the participant responds with a “yes” vote. Otherwise,

it responds with a “no” vote and aborts the transaction,

releasing all the resources held by the transaction.

If a participant had voted “yes”, it can neither

commit nor abort the transaction unilaterally and has

to wait until it receives a final decision from the coor-

dinator. In this case, the participant is said to be

blocked for an indefinite period of time called window

of uncertainty (or window of vulnerability) awaiting the

coordinator’s decision. When a participant receives the

final decision, it complies with the decision, sends back

an acknowledgement message (Ack) to the coordinator

and releases all the resources held by the transaction.

Two-Phase Commit. Figure 1. The two-phase commit protocol.

Two-Phase Commit T 3205

T

When the coordinator receives Acks from all the

participants that had voted “yes,” it forgets the transac-

tion by discarding all information pertaining to the

transaction from its protocol table that is kept in

main memory.

The resilience of 2PC to failures is achieved by

recording the progress of the protocol in the logs of

the coordinator and the participants. The coordinator

force writes a decision record prior to sending out its

decision to the participants. Since a forced write of a log

record causes a flush of the log onto a stable storage

that survives system failures, the decision is not lost if

the coordinator fails. Similarly, each participant force

writes a prepared record before sending its “yes” vote

and a decision record before acknowledging a decision.

When the coordinator completes the protocol, it writes

a non-forced end record in the volatile portion of its

log that is kept in main memory. This record indicates

that all (required) participants have received the deci-

sion and none of them will inquire about the transac-

tion’s status in the future. This allows the coordinator

to (permanently) forget the transaction, with respect

to 2PC, and garbage collect the log records of the

transaction when necessary.

Recovery in Two-Phase Commit

Site and communication failures are detected by time-

outs. When an operational site detects a failure, it

invokes a recovery manager to handle the failure.

In 2PC, there are four places where a communication
failure might occur. The first place is when a partici-

pant is waiting for a prepare-to-commit message

from the coordinator. This occurs before the partici-

pant has voted. In this case, the participant may

unilaterally decide to abort the transaction. The second

place is when the coordinator is waiting for the votes

of the participants. Since the coordinator has not made

a final decision yet and no participant could have

decided to commit, the coordinator can decide to

abort. The third place is when a participant had

voted “yes” but has not received a commit or an

abort final decision. In this case, the participant cannot

make any unilateral decision because it is uncertain

about the coordinator’s final decision. The participant,

in this case, is blocked until it re-establishes communi-

cation with the coordinator and, once re-established,

the participant inquires the coordinator about the final

decision and resumes the protocol by enforcing and,

then, acknowledging the coordinator’s decision. The

fourth place is when the coordinator is waiting for the

Acks of the participants. In this case, the coordinator

re-submits its final decision to those participants that

have not acknowledged the decision once it re-estab-

lishes communication with them. Notice that the co-

ordinator cannot simply discard the information

pertaining to a transaction from its protocol table or

its stable log until it receives Acks from all the (re-

quired) participants.

To recover from site failures, there are two cases to

consider: coordinator’s failure and participant’s failure.

3206T Two-Phase Commit
For a coordinator’s failure, the coordinator, upon its

restart, scans its stable log and re-builds its protocol

table to reflect the progress of 2PC for all the pending

transactions prior to the failure. The coordinator has

to consider only those transactions that have started

2PC and have not finished it prior to the failure (i.e.,

transactions that have decision log records without

corresponding end log records in the stable log). For

other transactions, i.e., transactions that were active at

the coordinator’s site prior to its failure without a

decision record, the coordinator considers them as

aborted transactions. Once the coordinator re-builds

its protocol table, it completes the protocol for each

of these transactions by re-submitting its final deci-

sion to all (required) participants whose identities

are recorded in the decision record and waiting for

their Acks. Since some of the participants might

have already received the decision prior to the failure

and enforced it, these participants might have already

forgotten that the transaction had ever existed. Such

participants simply reply with blind Acks, indicating

that they have already received and enforced the deci-

sion prior to the failure.

For a participant’s failure, the participant, as part

of its recovery procedure, checks its log for the exis-

tence of any transaction that is in a prepared-to-

commit state (i.e., has a prepared log record without

a corresponding final decision one). For each such

transaction, the participant inquires the transaction’s

coordinator about the final decision. Once the parti-

cipant receives the decision from the coordinator, it

completes the protocol by enforcing and, then,

acknowledging the decision. Notice that a coordinator

will be always able to respond to such inquires because

it cannot forget a transaction before it has received the

Acks of all (required) participants. However, there is

a case where a participant might be in a prepared-to-

commit state and the coordinator does not remember

the transaction. This occurs if the coordinator

fails after it has sent prepare-to-commit messages and

just before it has made its decision. In this case, the

coordinator will not remember the transaction after it

has recovered. If a prepared-to-commit participant

inquires about the transaction’s status, the coordinator

will presume that the transaction was aborted and

responds with an abort message. This special case

where an abort presumption is made about unremem-

bered transactions in 2PC motivated the design of the

presumed abort 2PC.
Underlying Assumptions

ACPs solve a special case of the problem of consensus

in the presence of faults, a problem that is known in

distributed systems as the Byzantine Generals problem

[7]. This problem is, in its most general case, not

solvable without some simplifying assumptions. In

distributed database systems, ACPs solve the problem

under the following general assumptions (among

others that are sometimes ACP specific):

1. Each site is sane : A site is fail stop where it never

deviates from its prescribed protocol. That is, a site

is either operational or not but never behaves

abnormally causing commission failures.

2. Eventual recovery : A failure (whether site or com-

munication) will be, eventually, repaired.

3. Binary outcome : All sites unanimously agree on a

single binary outcome, either commit or abort.

Performance Issues

There are three important performance issues that are

associated with ACPs, which are as follows [3]:

1. Efficiency During Normal Processing : This refers to

the cost of an ACP to provide atomicity in the

absence of failures. Traditionally, this is measured

using three metrics. The first metric is message

complexity which deals with the number of mes-

sages that are needed to be exchanged between

the systems participating in the execution of a

transaction to reach a consistent decision regarding

the final status of the transaction. The second

metric is log complexity which accounts for the

frequency at which information needs to be

recorded at each participating site in order to

achieve resiliency to failures. Typically, log com-

plexity is expressed in terms of the required num-

ber of non-forced log records which are written

into the log buffer (in main memory) and, more

importantly, the number of forced log records

which are written onto the stable log (on the

disk). The third metric is time complexity which

corresponds to the required number of rounds or

sequential exchanges of messages in order for a

decision to be made and propagated to the

participants.

2. Resilience to Failures : This refers to the types of

failures that an ACP can tolerate and the effects of

failures on operational sites. An ACP is considered

non-blocking if it never requires operational sites to

Two-Phase Commit T 3207

T

wait (i.e., block) until a failed site has recovered.

One such protocol is 3PC.

3. Independent Recovery : This refers to the speed of

recovery. That is, the time required for a site to

recover its database and become operational,

accepting new transactions after a system crash.

A site can independently recover if it has all

the necessary information needed for recovery

stored locally (in its log) without requiring any

communication with any other site in order to

fully recover.

Most Common Two-Phase Commit Variants

Due to the costs associated with 2PC during normal

transaction processing and the reliability drawbacks in

the events of failures, a variety of ACPs have been

proposed in the literature. These proposals can be,

generally, classified as to enhance either (i) the effi-

ciency of 2PC during normal processing or (ii) the

reliability of 2PC by either reducing 2PC’s blocking

aspects or enhancing the degree of independent

recovery. The most commonly pronounced 2PC var-

iants are presumed abort (PrA) [11] and presumed

commit (PrC) [11]. Both variants reduce the cost of

2PC during normal transaction processing, albeit for

different final decisions. That is, PrA is designed to

reduce the costs associated with aborting transactions

whereas PrC is designed to reduce the costs associated

with committing transactions.

In PrA, when a coordinator decides to abort a trans-

action, it does not force-write the abort decision in its

log as in 2PC. It just sends abort messages to all the

participants that have voted “yes” and discards all infor-

mation about the transaction from its protocol table.

That is, the coordinator of an aborted transaction does

not have to write any log records or wait for Acks. Since

the participants do not have to Ack abort decisions, they

are also not required to force-write such decisions. After

a coordinator’s or a participant’s failure, if the partici-

pant inquires about a transaction that has been

aborted, the coordinator, not remembering the trans-

action, will direct the participant to abort the transac-

tion (by presumption). Thus, as the name implies, if

no information is found in the log of the coordinator

of a transaction, the transaction is presumed aborted.

As opposed to PrA, in which missing information

about transactions at a coordinator’s site is interpreted

as abort decisions, in PrC, a coordinator interprets

missing information about transactions as commit
decisions when replying to inquiry messages. However,

in PrC, a coordinator has to force write a commit

initiation record for each transaction before sending

out prepare-to-commit messages to the participants.

This record ensures that missing information about a

transaction will not be misinterpreted as a commit

after a coordinator’s site failure without an actual

commit decision is made.

To commit a transaction, the coordinator force

writes a commit record to logically eliminate the initi-

ation record of the transaction and then sends out

commit messages. The coordinator also discards all

information pertaining to the transaction from its

protocol table. When a participant receives the deci-

sion, it writes a non-forced commit record and com-

mits the transaction without having to Ack the

decision. After a coordinator’s or a participant’s failure,

if the participant inquires about a transaction that has

been committed, the coordinator, not remembering the

transaction, will direct the participant to commit

the transaction (by presumption).

To abort a transaction, on the other hand, the

coordinator does not write the abort decision in its

log. Instead, the coordinator sends out abort messages

and waits for Acks before discarding all information

pertaining to the transaction. When a participant

receives the decision, it force writes an abort record

and then acknowledges the decision, as in 2PC. In the

case of a coordinator’s failure, the initiation record of

an interrupted transaction contains all needed infor-

mation for its recovery.

Table 1 summarizes the costs associated with the

three 2PC variants for the commit as well as the abort

case assuming a “yes” vote from each participant: “m”

is the total number of log records, “n” is the number of

forced log writes, “p” is the number of messages sent

from the coordinator to each participant and “q” is the

number of messages sent back to the coordinator.

For simplicity, these costs are calculated for the flat

(two-level) execution model in which, unlike the

multi-level execution model, a participant never initi-

ates (i.e., spawns) new (sub)transactions that execute

at other participants, forming a tree of communicating

participants.

Compatibility of 2PC Variants

ACPs are incompatible in the sense that they cannot be

used (directly) in the same environment without con-

flicts. This is true even for the simplest and most

Two-Phase Commit. Table 1. The costs for update transactions in 2PC and its most commonly known two variants

2PC Variant

Commit decision Abort decision

Coordinator Participant Coordinator Participant

m n p m n q m n p m n q

Basic 2PC 2 1 2 2 2 2 2 1 2 2 2 2

Presumed abort 2 1 2 2 2 2 0 0 2 2 1 1

Presumed commit 2 2 2 2 1 1 2 1 2 2 2 2

3208T Two-Phase Commit
closely related variants such as the basic 2PC, PrA and

PrC. The analysis of ACPs shows that incompatibilities

among ACPs could be due to (i) the semantics of the

coordination messages (which include both their

meanings as well as their existence), or (ii) the pre-

sumptions about the outcome of terminated transac-

tions in case of failures [1].

The presumed any (PrAny) protocol [2] interope-

rates the basic 2PC, PrA, and PrC. It was proposed in

the context of multidatabase systems, a special case of

heterogeneous distributed databases, to demonstrate

the difficulties that arise when one attempts to interop-

erate different ACPs in the same environment and, more

importantly, to introduce the “operational correctness

criterion” and the notion of “safe state.” Operational

correctness means that all sites should be able, not only

to reach an agreement but also, to forget the outcome

of terminated transactions. On the other hand, the

safe state means that, for any operationally correct

ACP, the coordinator should be able to reach a state

in which it can reply to the inquiry messages of the

participants, in a consistent manner, without having

to remember the outcome of terminated transactions

forever.

In PrAny, a coordinator talks the language of the

three 2PC variants and knows which variant is used by

which participant. Based on that, it forgets a com-

mitted transaction once all PrA and 2PC participants

Ack the commit decision, and forgets an aborted trans-

action once all PrC and 2PC participants Ack the abort

decision. This is because only commit decisions are

acknowledged in PrAwhereas, in PrC, only abort deci-

sions are acknowledged. However, unlike the other

2PC variants, in PrAny, a coordinator does not adopt

a single presumption about the outcome of all termi-

nated transactions. This is because, if it does so, the

global atomicity of some transactions might be vio-

lated. For example, if the coordinator adopts for

recovering purposes the abort presumption, it will
respond with an abort message to a recovering

PrC participant that inquires about a forgotten com-

mitted transaction. Similarly, if the coordinator adopts

the commit presumption, it will respond with a com-

mit message to a recovering PrA participant that

inquires about a forgotten aborted transaction. Instead

of using a single presumption, a coordinator in PrAny

adopts the presumption of the protocol used by the

inquiring participant. That is, if a participant inquires

about a forgotten committed transaction, the partici-

pant has to be a PrC participant. This is because only

PrC participants do not acknowledge commit deci-

sions. Thus, the coordinator will reply with a commit

message in accordance with PrC adopted by the

participant. On the other hand, if a participant

inquires about a forgotten aborted transaction, the

participant has to be a PrA participant. This is because

only PrA participants do not acknowledge abort deci-

sions. Thus, the coordinator will reply with an abort

message in accordance with PrA adopted by the par-

ticipant. Knowledge about the used protocols by the

participants could be recorded statically at the coordi-

nator’s site [2] or inferred dynamically by having a

participant declares its used protocol in each inquiry

message [15].

Key Applications
The use of 2PC (or one of its variants) is mandatory in

any distributed database system in which the tradition-

al atomicity property of transactions is to be preserved.

However, the basic 2PC has never been implemented

in any commercial database system due to its unneces-

sary costs compared to its two other most commonly

known variants. Instead, PrA is considered the de facto

standard in the industry and has been incorporated as

part of the current X/Open DTP [14] and ISO OSI-TP

[6] distributed transaction processing standards. PrA is

chosen instead of PrC because (i) the cost of PrC for

committing transactions is not symmetric with the

Two-Phase Commit Protocol T 3209

T

cost of PrA for aborting transactions (which is high-

lighted in Table 1) and, more importantly, (ii) PrA is

much cheaper to use with read-only transactions when

complementing it with the traditional read-only opti-

mization [13,3] (which is also part of the current

database standards).

The above two reasons that favor PrA have been

nullified with new 2PC variants and a read-only opti-

mization called unsolicited update-vote (UUV). Thus,

PrC is expected to become also part of future database

standards, especially that the two variants can be

incorporated in the same environment without any

conflicts [1,15].

Cross-references
▶Atomicity

▶Distributed Database Systems

▶Distributed Recovery

▶Distributed Transaction Management

Recommended Reading
1. Al-Houmaily Y. Incompatibility dimensions and integration

of atomic commit protocols. Int. Arab J. Inf. Technol., 5(4):2008.

2. Al-Houmaily Y. and Chrysanthis P. Atomicity with incompatible

presumptions. In Proc. 18th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 1999, pp. 306–315.

3. Chrysanthis P.K., Samaras G., and Al-Houmaily Y. Recovery and

performance of atomic commit processing in distributed data-

base systems, In Recovery Mechanisms in Database Systems, V.

Kumar, M. Hsu (eds.). Prentice Hall, Uppersaddle River, NJ,

1998, pp. 370–416.

4. Gray J.N. Notes on data base operating systems. In Operating

Systems – An Advanced Course. M.J. Flynn et al. (eds.), LNCS,

Vol. 60, Springer, London, 1978, pp. 393–481.

5. Haritsa J., Ramamritham K., and Gupta R. The PROMPT real-

time commit protocol. IEEE Trans. Parallel Distributed Syst.,

11(2):160–181, 2000.

6. ISO. Open systems interconnection – Distributed transaction

processing – Part 1: OSI TP Model. ISO/IEC, 10026–1, 1998.

7. Lamport L., Shostak R., and Pease M. The Byzantine generals

problem. ACM Trans. Programming Lang. Syst., 4(3):382–401,

1982.

8. Lampson B. and Lomet D. A new presumed commit optimiza-

tion for two phase commit. In Proc. 19th Int. Conf. on Very

Large Data Bases, 1993, pp. 630–640.

9. Lampson B. and Sturgis H. Crash recovery in a distributed data

storage system. Technical report, Computer Science Laboratory,

Xerox Palo Alto Research Center, CA, 1976.

10. Lee I. and Yeom H. A single phase distributed commit protocol

for main memory database systems. In Proc. 16th Int. Parallel

and Distributed Processing Symp., 2002, pp. 14–21.

11. Mohan C., Lindsay B., and Obermarck R. Transaction manage-

ment in the R* distributed data base management system. ACM

Trans. Database Syst., 11(4):378–396, 1986.
12. Nouali N., Drias H., and Doucet A. A mobility-aware two-phase

commit protocol. Int. Arab J. Inf. Technol., 3(1):2006.

13. Samaras G., Britton K., Citron A., and Mohan C. Two-phase

commit optimizations in a commercial distributed environ-

ment. Distrib. Parall. Databases, 3(4):325–361, 1995.

14. X/Open Company Limited. Distributed Transaction Proces-

sing: Reference Model. Version 3 (X/Open Document No.

504), 1996.

15. Yu W. and Pu C. A Dynamic Two-phase commit protocol for

adaptive composite services. Int. J. Web Serv. Res., 4(1):2007.
Two-Phase Commit Protocol

JENS LECHTENBÖRGER

University of Münster, Münster, Germany

Synonyms
XA standard

Definition
The Two-phase commit (2PC) protocol is a distributed

algorithm to ensure the consistent termination of a

transaction in a distributed environment. Thus, via

2PC a unanimous decision is reached and enforced

among multiple participating servers whether to com-

mit or abort a given transaction, thereby guaranteeing

atomicity. The protocol proceeds in two phases, namely

the prepare (or voting) and the commit (or decision)

phase, which explains the protocol’s name.

The protocol is executed by a coordinator process,

while the participating servers are called participants.

When the transaction’s initiator issues a request to

commit the transaction, the coordinator starts the

first phase of the 2PC protocol by querying – via

prepare messages – all participants whether to abort

or to commit the transaction. If all participants vote

to commit then in the second phase the coordinator

informs all participants to commit their share of the

transaction by sending a commit message. Otherwise,

the coordinator instructs all participants to abort their

share of the transaction by sending an abort message.

Appropriate log entries are written by coordinator as

well as participants to enable restart procedures in case

of failures.

Historical Background
Essentially, the 2PC protocol is modeled after general

contract law, where a contract among two or more

3210T Two-Phase Commit Protocol
parties is only established if all parties agree; hence, the

underlying idea is well-established in everyday life.

According to [3] the first known implementation in a

distributed system was performed by Nico Garzado for

the Italian social security system in the early 1970s,

while the protocol’s name arose in the mid 1970s.

Early scientific presentations are given by Gray [2]

and by Lampson and Sturgis [4]. Since then an API

for the 2PC protocol has been standardized under the

name XA within the X/Open Distributed Transaction

Processing (DTP) model [7], and this API has been

incorporated into several middleware specifications

and implemented in numerous software components.
Two-Phase Commit Protocol. Figure 1. Statechart for

coordinator (given N participants).
Foundations
The 2PC protocol as described and analyzed in detail

in [8] assumes that parts of a single (distributed)

transaction involve resources hosted by multiple

resource managers (e.g., database systems, file systems,

messaging systems, persistent programming environ-

ments), which reside on possibly different nodes of a

network and are called participants of the protocol. For

every transaction one coordinator process, typically

running on the node of that participant where the

transaction was initiated, assumes responsibility for

executing the 2PC protocol; alternative strategies for

selecting (and transferring) the coordinator are dis-

cussed in [8]. The states through which coordinator

and participants move in the course of the protocol are

illustrated in Figs. 1 and 2, resp., and explained in the

following. Such statecharts represent finite state auto-

mata, where ovals denote states, labeled arcs denote

state transactions, and arc labels of the form “precon-

dition/action” indicate that (i) the state transition is

only enabled if the precondition is satisfied and (ii) the

given action is executed when the state is changed.
Two-Phase Commit Protocol. Figure 2. Statechart for

participant I.
Basic Protocol

As long as a transaction is still executing ordinary

operations, coordinator as well as all participants op-

erate in the Initial state. When the coordinator is

requested to commit the transaction, it initiates the

first phase of the 2PC protocol: To capture the state of

the protocol’s execution (which needs to be available in

case of protocol restarts as explained below), the coor-

dinator first forces a begin log entry, which includes a

transaction identifier as well as a list of the transac-

tion’s participants, to a stable log. Afterwards, the
coordinator sends a prepare message to every partici-

pant, enters the Collecting state and waits for replies.

Upon receiving a prepare message, a participant

decides whether it is able to commit its share of the

Two-Phase Commit Protocol. Figure 3. Actions for

transaction commit in the basic protocol.

Two-Phase Commit Protocol T 3211

T

transaction. In either case, suitable log entries for later

recovery operations as well as a prepared log entry

indicating the vote (“Yes” or “No”) are forced to a

stable log, before a response message containing

the vote is sent back to the coordinator. In case of a

No-vote, the participant switches into the Aborted

state and immediately aborts the transaction locally.

In case of a Yes-vote, the participant moves into the

Prepared state. In the latter case the participant is said

to be in doubt or blocked as it has now given up its local

autonomy and must await the final decision from the

coordinator in the second phase (in particular, locks

cannot be released yet).

Once the coordinator has received all participants’

response messages it starts the second phase of the 2PC

protocol and decides how to complete the global trans-

action: The result is “Commit” if all participants voted

to commit and “Abort” otherwise. The coordinator

then forces a commit or abort log entry to the stable

log, sends a message containing the final decision to all

participants, and enters the corresponding state (Com-

mitted or Aborted).

Upon receipt of the decision message, a participant

commits or aborts the local changes of the transaction

depending on the coordinator’s decision and forces

suitable log entries for later recovery as well as a com-

mit or abort log entry to a stable log. Afterwards, it

sends an acknowledgment message to the coordinator

and enters the corresponding final state (Committed

or Aborted).

Once the coordinator has received all acknowledg-

ment messages it ends the protocol by writing an end

log entry to a stable log to enable later log truncation

and enters the final state, Forgotten. The actions de-

scribed for the overall process are summarized in Fig. 3

for the case of a transaction commit. (For multiple

participants, the actions simply have to be duplicated;

in case of abort, at least one of the participants votes

“No”, which implies that all occurrences of “commit”

are replaced with “abort”.)

Protocol Restart

The log entries seen so far are used to restart the 2PC

protocol after so-called soft crashes of coordinators or

participants, i.e., failures like process crashes which

lead to a loss of main memory but which leave second-

ary storage intact. In particular, as participants always

force log entries before sending replies, the coordinator

never needs to resend messages for which replies have
been received. Moreover, log truncation (garbage col-

lection) may occur once all acknowledgment messages

have arrived. Finally, every log entry uniquely deter-

mines a state, and the last log entry determines the

most recent state prior to a failure. Clearly, failures in

the final states (Forgotten for the coordinator and

Committed or Aborted for a participant) do not re-

quire any action. For the remaining states, restart pro-

cedures are as follows:

If the coordinator fails in the Initial or the Collect-

ing state, it simply restarts the protocol in the Initial

state. (Coordinators writing received votes into the log

could recover differently from the Collecting state.) If

it fails in the Committed or in the Aborted state, it re-

sends the decision message to all participants, and

continues waiting for acknowledgments in the previ-

ous state.

If a participant fails in the Initial state it did not yet

participate in the 2PC protocol and is free to decide

arbitrarily when asked later on. If it fails in the

Prepared state it either waits for the coordinator to

announce the decision or actively queries the coordi-

nator or other participants for the decision.

In addition to these restart procedures, coordina-

tor and participants also need to be able to recover

from message losses. To this end, standard timeout

Two-Phase Commit Protocol. Figure 4. Actions for

transaction abort in the presumed-abort variant.

3212T Two-Phase Commit Protocol
mechanisms are employed: Whenever a message is

sent, a timer starts to run. If the timer expires before

an appropriate answer is received, the message is

simply resent (assuming that either original message

or answer are lost; e.g., if the coordinator is missing

some votes in the Collecting state, it resends a prepare

message to every participant that did not answer in

time). Finally, if repeated timeouts occur in the Col-

lecting state the coordinator may decide to abort the

transaction globally (as if an “Abort” vote was

received), and a participant may unilaterally abort

the transaction in the Initial state if no prepare mes-

sage arrives.

Hierarchical and Flattened 2PC

New participants enter the 2PC protocol whenever

they receive requests (e.g., to execute SQL statements)

from already existing participants. In such a situation,

the new participant can be regarded as child node of

the requesting participant, and all such parent-child

relationships form a participant tree with the transac-

tion’s initiator as root node. To execute the 2PC proto-

col, that tree may either be used directly or flattened as

explained in the following.

For the flattened 2PC, one node in the participant

tree, e.g., the root node, is chosen as coordinator, and

this coordinator communicates directly with every

participant contained in the tree to execute the basic

2PC protocol as described above. In contrary, in case

of the hierarchical 2PC, the root node acts as global

coordinator, the leaf nodes are ordinary participants,

and the inner nodes are participants with respect to

their parents as well as sub-coordinators for their

children. Thus, when an inner node receives a 2PC

message from its parent, the inner node first has to

forward the message to its children before it responds

on behalf of the entire subtree. For example, a prepare

message is forwarded down the tree recursively, and an

inner node first waits for all votes of its children before

it decides, write a log entry, responds with a vote to the

parent, and makes a transition to the Prepared (if all

children voted to commit) or Aborted state.

Optimizations

As the 2PC protocol involves costly operations such as

sending messages and forcing log entries, several opti-

mizations of the basic protocol have been proposed. In

the following the most common variants based on
presumption are sketched; further details and techni-

ques such as real-only subtree optimization, coordina-

tor transfer, and three-phase commit (3PC) to reduce

blocking are presented in [8].

The key idea for presumption based optimizations

is to write less log entries and send fewer messages in a

systematic way such that in case of a failure the missing

information can be compensated for by suitable pre-

sumptions concerning the transaction’s state. As the

basic protocol described above is not based on any

presumptions, it is also called presumed-nothing proto-

col. In contrast, in the presumed-abort protocol, which

aims to optimize the case of aborted transactions, the

essential idea is to omit certain information con-

cerning transaction aborts. If that information is need-

ed but absent later on, abort is presumed. In fact, for

the presumed-abort protocol the following informa-

tion is omitted:

� The Coordinator’s begin and abort log entries are

omitted.

� The participants’ abort log entries are not forced.

� Participants do not send acknowledgment mes-

sages before entering the Aborted state.

The actions required in case of a transaction abort are

summarized in Fig. 4, which indicates significant

Two-Phase Commit Protocol T 3213
savings when compared with the actions for the basic

protocol shown in Fig. 3. In the presumed-abort vari-

ant, if a participant fails after receiving the abort deci-

sion from the coordinator and restarts without finding

a log entry, it queries the coordinator for the decision.

As the coordinator does not find the appropriate log

entry (which has never been written) it presumes that

the transaction should be aborted and informs the

participant accordingly, which leads to a globally con-

sistent decision.

Alternatively, in the presumed-commit protocol,

which aims to optimize the case of committed transac-

tions, the following information is omitted:

� The participants’ commit log entries are not forced.

� Participants do not send acknowledgment mes-

sages before entering the Committed state.

The actions required in case of a transaction commit

are summarized in Fig. 5, which again indicates signif-

icant savings in comparison to the basic protocol

shown in Fig. 3. In this variant, log entries of com-

mitted transactions can be garbage collected as missing

transactions are presumed to have committed. Thus, if

a participant fails after receiving the commit decision

from the coordinator and restarts without finding a log

entry, it queries the coordinator for the decision. If the

coordinator does not find any log entry it presumes
Two-Phase Commit Protocol. Figure 5. Actions for

transaction commit in the presumed-commit variant.
that the transaction has committed and informs the

participant accordingly, which leads to a globally con-

sistent decision.

Key Applications
While there is no single key application for the

2PC protocol, it is applicable wherever decentralized

data needs to be shared by multiple participants

under transactional guarantees, e.g., in e-commerce or

e-science settings. More specifically, the 2PC protocol

is widely implemented in database systems (commercial

as well as open source ones), TP monitors, and message

queue systems, where it is used in the background to

provide atomicity for distributed transactions. In addi-

tion, the XA interface [7] for the protocol,more precisely

for the hierarchical presumed-abort variant, has been

adopted in the CORBA Transaction Service specified

by the OMG [5] and is used as basis for the Java Trans-

action API (JTA) [6]. Furthermore, the 2PC protocol

is also part of the Web Services Atomic Transaction

specification [1] to enable the interoperable atomic com-

position of Web Service invocations.

Cross-references
▶ACID Properties

▶Distributed Transaction Management

▶ Logging and Recovery

▶Transaction

▶Transaction Management
T

Recommended Reading
1. Cabrera L.F. et al. Web services atomic transaction, 2005.

2. Gray J. Notes on database operating systems. In Operating

Systems: An Advanced Course. Lecture Notes in Computer

Science. R. Bayer, M.R. Graham, G. Seegmüller (eds.). 60,

Springer, Berlin Heidelberg New York, 1978, pp. 393–481.

3. Gray J. and Reuter A. Transaction processing: concepts and

techniques. Morgan Kaufmann, San Francisco, CA, 1993.

4. Lampson B.W. and Sturgis H. Crash recovery in distributed data

storage systems. Technical Report, Xerox Palo Alto Research

Center, Palo Alto, CA.

5. OMG Transaction Service, version 1.4. http://www.omg.org/

technology/documents/formal/transaction_service.htm, 2007.

6. Sun Microsystems. Java Transaction API (JTA). http://java.sun.

com/jta/; http://java.sun.com/jta/, 2007.

7. The Open GROUP Distributed Transaction Processing: The XA

Specification. X/Open Company Ltd, ISBN 1 872630 24 3, 1991.

8. Weikum G. and Vossen G. Transactional information systems –

theory, algorithms, and the practice of concurrency control and

recovery. Morgan Kaufmann, San Francisco, CA, 2002.

3214T Two-Phase Locking
Two-Phase Locking

GEORG LAUSEN

University of Freiburg, Freiburg, Germany

Synonyms
Locking protocol; Isolation; Conflict serializability;

Pessimistic scheduler

Definition
A locked transaction is a transaction which, in addition

to read and write actions, contains lock and unlock

operations to the data items. Lock and unlock opera-

tions enable a database system to control the order of

read and write actions of a concurrent set of transac-

tions. A locking policy is a set of rules which restrict the

possible ways to introduce lock and unlock operations

into a transaction. A locking policy is safe, if, whenever

all the transactions conform to the policy, any history

of the transactions is guaranteed to be serializable.

Two-Phase Locking is a safe locking policy which is

based on the simple rule saying a transaction is not

allowed to further lock a data item once it has already

unlocked some data item.

Historical Background
Two-Phase Locking was first described in [6]. Later

the basic policy has been extended into several direc-

tions. In [1] ordered sharing of locks is proposed

which allows more than one transaction to hold a

lock on a data item as long as the actions are performed

in the same order as the locks have been acquired.

Altruistic locking has been proposed by [10]. A trans-

action may allow other transactions to access data

items it has locked if it will not access these items

later again. This protocol is designated to situations

in which long and short transactions are running con-

currently. Two-Phase Locking taking old values of a

data item into account is described in [2]. Also hybrid

protocols have been proposed which allow to apply

other techniques than Two-Phase Locking simulta-

neously [5,8].
Foundations
Locking protocols are among the earliest mechanisms

which have been developed for controlling a set of

transactions to achieve serializability. The reason is
not surprising, as locking is a very intuitive means

to control transactions: the processing of an action

may be either immediately allowed or delayed. Using

locking, the critical actions for serializability are all

those, whose order of processing might influence the

effects of the transactions and thereby affect serial-

izability. Such actions are called conflicting. Read and

write actions are conflicting, whenever they refer to

the same data item and at least one of them is a write

action. The notion of serializability which is appli-

cable under these assumptions is called conflict-

serializability.

For the following, a database is a finite set D = {x, y,

z,...} of disjoint data items. A transaction t = (opt, <t)

consists of a set of steps opt which are assumed to be

totally ordered by <t. Read actions r(x) and write

actions w(x) are steps, where x is the data item on

which the respective action is processed. A history s of

a set T of concurrent transactions is a pair s = (ops,<s),

where ops = [t2Topt and <s is a total order on the steps

in ops which preserves <t for t 2 T. <s also is called an

interleaving of the transactions in T. For notational

simplicity, total orders <t and <s, t 2 T, s a history of

T, are also written as action sequences, where the total

order is defined by considering a sequence from left to

right. A history is called serializable, if it is equivalent to a

serial, i.e., not interleaved history of the same set of

transactions.

The decision whether or not a history is serializable

can be based on an analysis of a so called conflict graph

whose definition is based on the relative order of

conflicting actions. Let s = (ops, <s) be a history of a

set of transactions T. The conflict graph C(s) is a

directed graph with set of nodes T and edges ti ! tj,

i 6¼ j, whenever one of the following conditions is

fulfilled:

RW� conflict: riðxÞ 2 opi;wjðxÞ 2 opj ;riðxÞ<s wjðxÞ
and for all wkðxÞ 2 ops; i 6¼k; j 6¼k;
there either holds wkðxÞ<s r iðxÞ
or wjðxÞ<s wkðxÞ;

WR� conflict: wiðxÞ 2 opi;rjðxÞ 2 opj ; wiðxÞ<s r jðxÞ
and for all wkðxÞ 2 ops; i 6¼k; j 6¼k;
there either holds wkðxÞ<s wiðxÞ
or r jðxÞ<s wkðxÞ;

WW� conflict: wiðxÞ 2 opi; wjðxÞ 2 opj ; wiðxÞ<s wjðxÞ
and for all wkðxÞ 2 ops; i 6¼k; j 6¼k;
there either holds wkðxÞ<s wiðxÞ
or w jðxÞ<s wkðxÞ:

:

Two-Phase Locking T 3215

T

It is well known (e.g., [9,12]), whenever the conflict

graph of a history is acyclic, then the history is serial-

izable. However, this condition is not necessary, there

may exist histories whose conflict graph is cyclic and still

these histories are serializable. In practice, such histories

are considered to be not of interest and, as a conse-

quence, as correctness notion conflict-serializability

(CSR) is used:

CSR :A history is conflict� serializable if and

only if its conflict graph is acyclic:

To keep the terminology simple, instead of conflict-

serializability the notion of serializability will be used

in the sequel. The serializability of a history s = (ops,<s)

of a set of transactions T depends on the relative

ordering of the conflicting actions of the involved

transactions. Consider two transactions t, t’. Let t,

among others, contain actions p, q and t0actions p’, q’.

Now assume that p and p0are in conflict and q and q0as

well. Let further p <s p
0and q0<s q. s is not serializable

as the conflict graph C(s) contains the cycle t! t0! t.

This means that there cannot exist a serial schedule s∗

containing t and t0 with the same order on the

conflicting actions. For such a schedule s∗, either

p<s�p
0 and q<s�q

0, or p0<s�p and q0<s�q; both or-

derings are not compatible to <s. So why not enforce

q<s q
0once p<s p

0 has occurred? Thismeans to ask for a

transaction scheduler who is able to enforce certain

relative orderings of conflicting actions such that not

serializable orderings cannot occur. Two-Phase Locking,

which is called 2PL for brevity in the sequel, is the most

widely used technique which can be used to control the

concurrent execution of transactions in a way which

guarantees serializability.

To control a concurrent set of transactions 2PL

uses lock and unlock operations. A locked transaction

t = (opt, <t) is a transaction which, in addition to the

read and write actions, contains lock operations Lx and

unlock operations Ux, where Lx, Ux 2 opt and <t is a

total order as before, however now ordering locks and

unlocks as well. For a locked transaction t = (opt,<t),

whenever p 2 opt, p 2{ r(x), w(x)}, the following con-
ditions must hold: (i) Lx, Ux 2 opt, (ii) Lx <t Ux

and (iii) Lx <t p <t Ux.

Let t = r(x)w(x)r(y)w(y) be a transaction without

any lock and unlock operations. Under the above con-

ditions, there still exist many ways to insert lock
and unlock operations into t, as it is demonstrated

by the following examples:

ðaÞLx rðxÞ wðxÞ Ux Ly rðyÞ wðyÞ Uy;
ðbÞLx rðxÞ wðxÞ Ly Ux rðyÞ wðyÞ Uy;
ðcÞLx rðxÞ wðxÞ Ly rðyÞ wðyÞ Ux Uy;

ðdÞLx Ly rðxÞ wðxÞ Ux rðyÞ wðyÞ Uy;
ðeÞLx Ly rðxÞ wðxÞ rðyÞ wðyÞ Ux Uy:

ð1Þ

The idea of a lock operation Lx and the correspond-

ing unlock operation Ux is to grant a transaction t

the right of an exclusive access to data item x for the

interval defined by the time of the processing of the lock

and the processing of the succeeding unlock operation.

The decision whether or not a lock can be granted

typically is based on a so called lock table L. Starting
from an empty table L, a lock operation Lx can only

then be granted to a transaction t, if L does not contain

an entry with respect to x. In that case (x, t) is inserted

into L. Otherwise transaction t has to wait until the

condition is fulfilled. When later t processes the

corresponding unlock operation Ux, the entry (x, t)is

deleted from the lock table L. Therefore, for any history
s of locked transaction the following condition on

locks and unlocks (LUL) must hold, where t1, t2 2 T:

LUL : If L1 x<s L2 x; thenU1 x<s L2 x:

Locking by itself does not guarantee serializability.

Consider the two transactions t1, t2:

t1 : L1x r1ðxÞ w1ðxÞ U 1x L1y r1ðyÞ w1ðyÞ U 2y;

t2 : L2x L2y r2ðxÞ w2ðxÞ r2ðyÞ w2ðyÞ U 2x U 2y;

and a history s representing an interleaving of t1 and t2:

s :L1x r1ðxÞ w1ðxÞ U 1x L2x L2y r2ðxÞ
w2ðxÞ r2ðyÞ w2ðyÞ U 2x U 2y L1y r1ðyÞ w1ðyÞ U 1y:

This schedule is not serializable; w1(x) <s r2(x) and

w2(y) <s r1(y) force a cycle t1! t2! t1 in the conflict

graph which contradicts serializability. Therefore, rules

are needed which define how locks and unlocks should

be introduced into the single transactions such that,

whatever other transactions are running concurrently,

serializability is guaranteed. In other words, a locking

policy has to be introduced. The most widely used

locking policy is called Two-Phase Locking (2PL) and

is expressed by the surprisingly simple sentence:

3216T Two-Phase Locking
2PL :Whenever a transaction t has executed its

first operation;no further lock operations

of t are allowed:

All except the first transaction listed in (1) perfectly

obey 2PL. The remaining four locked versions (b) – (e)

implement different strategies for locking. Transaction

(b) unlocks x as early as possible and locks y as late as

possible. It therefore tries to minimize delay of other

transactions by keeping the intervals of locked data

items as small as possible. At a first glance, this seems

to be an attractive approach. However, because of the

early unlocking, another transaction may read

the value written of x before the transaction has fin-

ished. Reading values of data items from transactions

which have not yet reached their end is highly

problematic for recovery reasons. Only after a transac-

tion has executed its final commit successfully, a data-

base system guarantees that the effects of the respective

transactions are permanent and will survive system

and transaction failures. Version (c) behaves more

carefully and keeps all data items locked until the

end of the transaction. The remaining versions (d)

and (e) lock all data items in advance and unlock either

as early as possible, respectively at the end of the

transaction. Taking the possibility of failures into

account, only versions (c) and (e) are acceptable. In

practice, locks are kept until to the end of a transaction

giving rise to the notion of strict 2PL. The

following theorem states that 2PL indeed is a safe lock-

ing policy:

Theorem: Let T be a set of transactions. If all t 2 T

obey 2PL, then any history of the transactions in T is

serializable.

Proof: For any t 2 T, the lock point of t is defined as

t’s last lock operation. Now consider a history s of the

transactions in T such that all t 2 T obey 2PL. Under

the assumption, that s is not serializable, a contradic-

tion to 2PL can be derived thereby proving serializ-

ability of s which in turn proves the theorem.

If s is not serializable, then the conflict graph of <s

contains a cycle, which, without loss of generality, is of

the form t1 ! t2 !. . . ! tk ! t1. An edge t ! t0can

only then be part of the cycle, when there exists a data

item x such that t and t0perform conflicting actions on

x. As all transactions use locks, transaction t0can only

then execute its action on x, after t has processed the

unlock Ux. Before processing the respective action on
x, t0 has to lock x. Applying this observation on all edges

of the cycle the following restrictions on the order

<s can be concluded, where x1,...,xk are data items:

U 1x1<s L2x1;

..

.

Uk�1xk�1<s Lkxk�1;
Ukxk<s L1xk:

Let li be the lock point of transaction ti, 1� i� k. From

the structure of <s it follows l1 <s l2,...,lk�1 <s lk and lk
<s l1. Therefore it holds l1 <s l1, which is a contradic-

tion to the total order <s.

2PL is optimal in the sense that for any locked

transaction t1 which does not follow 2PL, a locked

transaction t2 can be constructed such that for T =

{t1,t2} there exists a history which is not serializable.

Consider the lock and unlock operations of t1 be

given by L1x<t1 U 1x<t1 L1y<t1U 1y and the lock

and unlock operations of t2 be given by

L2x<t2 L2y <t2 U 2y <t2 U 2x. t2 follows the 2PL policy,

however t1 does not. If both transactions are running

concurrently, then the following order of locks and

unlocks being part of a history s may happen:

L1x<s U 1x<s L2x<s L2y<s U 2y<s U 2x<s L1y<s U 1y:

Obviously, if between any pair of lock and unlock

operations Lx, Ux and Ly, Uy there exist read and

write actions to the respective data items, conflicts

happen and history s is not serializable. Therefore,

t1 has also to follow 2PL when serializability has

to be guaranteed for arbitrary sets of transactions T,

t1 2 T.

However, optimality in the above sense does not

imply that in every serializable history of transactions

without locks and unlocks, locks and unlocks can be

inserted according to 2PL in a way not violating LUL.

Consider a serializable history s of T = {t1,t2,t3} with

order of actions

r1ðxÞ<s r2ðxÞ<s w2ðxÞ<s r3ðyÞ<s w3ðyÞ<s w1ðyÞ:

It is impossible to insert lock and unlock opera-

tions into the transactions in T such that any t 2 T

obeys 2PL and s fulfills LUL. Because of r1(x) <s r2 (x)

it must hold U1x <s L2 x and because of 2PL it must

hold L1y <s U1 x. However, as w1(y) <s U1y, this

implies L1y <s r3(y) <s w3(y) <s U1y. Therefore, either

L3y<s L1y<s U3y, or L1y<s L3y<s U1y. Both orderings

Two-Phase Locking T 3217

T

contradict the basic locking condition LUL. Therefore,

2PL is a safe locking policy, however some serializable

histories of a set of transactions Tmay be excluded. In

other words, 2PL can only accept a strict subset of the

set of all serializable histories, in general.

The model for locking presented so far is overly

restrictive, as it does not distinguish between read

and write actions. Serializability of a history is only

then an issue, when some of the involved transactions

modify the database, i.e., perform write actions.

Therefore, when locking it should be possible to

distinguish between locks for read actions LRx and

locks for write actions LWx. If a transaction reads

and writes a data item x, then a single write lock is in

order. It should be possible that arbitrarily many trans-

actions may lock a data item for reading as long as

there is no concurrent transaction writing the

same data item. For any history s of locked transaction

t1,t2 2 T the following conditions on locks and unlocks

(LULRW) must hold, which do not impose any restric-

tions on the ordering of read locks L1
Rx and L2

Rx:

LULRW :
IfLR1 x <s L

W
2 x; then U1x <s L

W
2 x:

IfLW1 x <s L
R
2 x; then U1x <s L

R
2 x:

IfLW1 x <s L
W
2 x; then U1x <s L

W
2 x:

When locking is used, deadlocks may occur. Consider

transactions t1, t2 as follows: t1 = L1x r1(x) L1y w1(y)

U1x U1y and t2 = L2y r2(y) L2x w2(x) U2y U2x. A prefix

s0of a history s cannot be continued to a complete

history containing all the steps of t1 and t2, if, for

example, L1x <s’ L2y and s0does not contain U1x. To

complete the prefix, L2x and also L1y have to be con-

sidered for <s. However this is not possible, because

otherwise the condition LUL would be violated. The

problem of deadlocks is inherent to locking and practical

systems solve deadlocks by aborting one of the involved

transactions [12].

The transaction model abstracts away many aspects

of real transactions running in practical systems. In

particular, transactions are defined explicitly by a set

of steps and not by a program whose concrete execu-

tion on a certain state of the database will define the

transaction. Assume a program to process all data

items which fulfill a certain predicate p. A transaction

t resulting from executing the program will read all

data items for which p is true. To guarantee serial-

izability, in advance to reading such a data item, the

item has to be locked. If concurrently, however later
before t has finished, another transaction t0inserts a

new data item x into the database which also fulfills

predicate p, t has neither read nor locked x. In such

situations serializability cannot be guaranteed by 2PL

as described so far, because the relevant set of data

items has not been locked by t. This problem is

known as the phantom problem. Practical systems

have found ways to live with phantoms. Instead of

only locking data items, locking is applied on the

set of objects fulfilling a predicate, on complete rela-

tions or index intervals.

Key Applications
For organizations of any kind database systems have

become indispensable to maintain the operational

data. Applications in this context typically are domi-

nated by a potentially huge number of rather short

transactions. In such a setting, commonly called online

transaction processing (OLTP), reliable and efficient

processing of transactions is required. 2PL has become

a de facto standard in database systems for OLTP

applications. However, 2PL is based on blocking trans-

actions and therefore system throughput may be se-

verely affected by the locking protocol. Fortunately,

over the years several guidelines have been developed

[3,7,11] which help a database administrator to tune

the programming of the transactions and the imple-

mentation of 2PL in a way such that the requisite

efficiency of the overall system can be achieved.

Cross-references
▶ACID Properties

▶Concurrency Control – Traditional Approaches

▶ Locking Granularity and Lock Types

▶Multi-Version Serializability and Concurrency Control

▶ Serializability

▶ SQL Isolation Levels

▶Transaction Chopping

▶Transaction Models – The Read/Write Approach

Recommended Reading
1. Agrawal D. and Abbadi A.E. Constrained shared locks for

increased concurrency in databases. J. Comput. Syst., Sci.51:(1)

53–63, 1995.

2. Bayer R., Heller H., and Reiser A. Parallelism and recovery in

database systems. ACM Trans. Database Syst., 5:(2)139–156,

1980.

3. Bernstein P.A. and Newcomer E. Principles of Transaction

Processing for Systems Professionals. Morgan Kaufmann,

San Francisco, CA, 1996.

3218T Two-Poisson model
4. Bernstein P.A., Shipman D.W., and Wong W.S. Formal Aspects

of Serializability in Database Concurrency Control. IEEE Trans.

Software Eng., SE-5:203–215, 1979.

5. Boral H. and Gold I. Towards a Self-adapting Centralized Con-

currency Control Algorithm. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, 1984, pp. 18–32.

6. Eswaran K.P., Gray J.N., Lorie R.A., and Traiger I.L. The notion

of consistency and predicate locks in a database system. Com-

mun. ACM, 19:624–633, 1976.

7. Gray J. and Reuter A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, San Francisco, CA, 1993.

8. Lausen G. Concurrency Control in Database Systems: A Step

towards the Integration of Optimistic Methods and Locking.

In Proc. ACM Annual Conf., 1982, pp. 64–68.

9. Papadimitriou C.H. The Serializability of Concurrent Database

Updates. J. ACM, 26:631–653, 1979.

10. Salem K., Garcia-Molina H., and Shands J. Altruistic locking.

ACM Trans. Database Syst., 19:(1)17–165, 1994.

11. Shasha D. Database Tuning – A Principled Approach. Prentice-

Hall, USA, 1992.

12. Weikum G. and Vossen G. 1Transactional Information Systems –

Theory, Algorithms, and the Practice of Concurrency Control and

Recovery. Morgan Kaufmann, San Francisco, CA, 2002.
Two-Poisson model

GIAMBATTISTA AMATI

Ugo Bordoni Foundation, Rome, Italy,

Synonyms
Harter’s model; Probabilistic model of indexing

Definition
The 2-Poisson model is a mixture, that is a linear

combination, of two Poisson distributions:

ProbðX ¼ tfÞ ¼ a
ltfe�l

tf !
þ ð1� aÞ m

tfe�m

tf !
½0 � a � 1�

In the context of IR, the 2-Poisson is used to model the

probability distribution of the frequency X of a term in

a collection of documents.

Historical Background
The 2-Poisson model was given by Harter [5–7], al-

though Bookstein [2,1] and Harter had been exchang-

ing ideas about probabilistic models of indexing

during those years. Harter coined the word “elite” to

introduce his 2-Poisson model [5, pp. 68–74].
The origin of the 2-Poisson model can be traced

back through all Luhn, Maroon, Damerau, Edmund-

son and Wyllys [3,4,5,6]. The first accounts on Poisson

distribution modeling the stochastic behavior of

functional words were given by Stone, Rubinoff

and Damerau [3,11]. Stone, Rubinoff and Damerau

observed that the words that have only a functional

role in the text, can be modeled by a Poisson

distribution.
Foundations
The 2-Poisson model is a probabilistic model of

indexing, rather than a document retrieval model.

The purpose of Harter’s work is to identify the key-

words likely to be informative for an arbitrary docu-

ment that can be selected to build an index for a

collection. Such words are called specialty words by

Harter in contraposition to the other ones, the non-

specialty ones, which instead are considered to occur at

random in documents. In the works by Luhn, Maroon,

Damerau, Edmundson and Wyllys it was observed that

the divergence between the rare usage of a word across

the document collection and the contrasting relative

within-document frequency constitutes a revealing in-

dication of the informative status of a word. Damerau

suggests selecting the class of high status words of the

index by making the assumption that Poisson distri-

bution describes frequencies of words that are in the

complementary class. If the Poisson probability of a

term within a document is very small, then the word is

marked as an index term. Obviously, not all words

clearly fall either into one class or into the other. But

nonetheless, many word tokens occur randomly in

many documents while the same word tokens occur

more densely and nonrational in a few documents.

This set of documents called the Elite set of the term

t is very likely to be the set of documents which

extensively connects with the concept or the semantics

related to the term. The Elite set Et attracts the tokens

with an expected rate lEt . Tokens fall randomly into

the other documents with a lower rate lEt . The

final probability of occurrence of the term in any

document is given by the mixture of these two Poisson

distributions:

ProbðX ¼ tfÞ ¼a:
e�lEt ltfEt

tf!
þ ð1� aÞ:

e
�l

Etltf
Et

tf!
ð1Þ

Two-Poisson model T 3219

T

The probability of term t to appear tf times in a

document d belonging to the Elite set Et is given by

the conditional probability

Probðd 2 EtjX ¼ tfÞ ¼ ProbðX ¼ tf ; d 2 EtÞ
ProbðX ¼ tfÞ

¼
a � e

�lEt ltfEt
tf!

a � e
�lEt ltfEt
tf!
þ ð1� aÞ�

e
�l

Et ltf
Et

tf!

ð2Þ

Thus, in the case that the word belongs to the non-

specialty class:

Probðd 2 EtjX ¼ tfÞ ¼ 1

1þ b � e lEt�lEtð Þ l
Et

lEt

�
tf
ð3Þ

where b ¼ 1�a
a . The conditional probability of (3) is

used by Harter to generate a ranking of the most

informative words. However, the 2-Poisson model

requires the estimation of three parameters for each

word of the vocabulary, and this is a real drawback for

any direct practical application of his model to term

selection or term-weighting problems.

A last remark concerns the N-Poisson model, the

generalization of the 2-Poisson model. Any probability

distribution on (0,1) can be defined as a mixing dis-

tribution of Poisons [10]. Therefore, it is true that every

word follows a N-Poisson distribution for some N.

N-Poisson models thus have a practical application

only when N is small, that is the 2-Poisson model or

the 3-Poisson model.

The 2-Poisson is illustrated with an example. A

collection of ten documents contains a word t occur-

ring respectively 4, 5, 6, 0, 1, 2, 0, 0, 0, 0 times within

these ten documents, the first three documents having

the highest frequency of term in the collection. A useful

image for this configuration could be that the first

three documents constitute an elite or special subset

of documents for the term. Then, these data are fitted

to the 2-Poisson model using the Expectation Maximi-

zation (EM) algorithm. To set the initial values a0,
l0 and m0 for the first step of the EM algorithm

the assumption is that there is a Poisson distribution

generating the frequency in the elite set of the word,

with a mean term-frequency m̂0 ¼ 4þ5þ6
3
¼ 5, and a

second Poisson distribution generating the term-

frequency in the rest of the collection with
l̂0 ¼ 0þ1þ2þ0þ0þ0þ0
7

¼ 0:4287. Observe that the elite

set is 3
10
¼ 0:3333 of the entire collection, and thus

â0 ¼ 0:3333 is initially set. Finally, the EM algorithm

converges to the values â ¼ 0:35, m̂ ¼ 4:5 and l̂ ¼ 0:54

with a confidence of 0.99. The probability that a docu-

ment d belongs to the Elite set of a term occurring tf

times in d is

Probðd 2 EtjX ¼ tfÞ ¼ 1

1þ 1:86 � e3:960:12tf

Key Applications
The 2-Poisson model is at the basis of two types of

probabilistic models of IR: the BM25 model and the

Divergence From Randomness models.

Cross-references
▶BM25

▶Divergence from Randomness Models

Recommended Reading
1. Bookstein A. and Kraft D. Operations research applied to docu-

ment indexing and retrieval decisions. J. ACM, 24(3):418–427,

1977.

2. Bookstein A. and Swanson D. Probabilistic models for automatic

indexing. J. Am. Soc. Inform. Sci., 25:312–318, 1974.

3. Damerau F. An experiment in automatic indexing. Am. Doc.,

16:283–289, 1965.

4. Edmundson H.P. and Wyllys R.E. Automated abstracting and

indexing–survey and recommendations. Commun. ACM,

4(5):226–234, May 1961. Reprinted in Readings in Information

Retrieval, pp. 390-412. H. Sharp (ed.). New York, NY: Scarecrow;

1964.

5. Harter S.P. A probabilistic approach to automatic keyword

indexing. PhD thesis, Graduate Library, The University of

Chicago, Thesis No. T25146, 1974.

6. Harter S.P. A probabilistic approach to automatic keyword

indexing. part I: On the distribution of specialty words in a techni-

cal literature. J. American Soc. for Inf. Sci., 26:197–216, 1975.

7. Harter S.P. A probabilistic approach to automatic keyword

indexing. part II: An algorithm for probabilistic indexing.

J. American Soc. for Inf. Sci., 26:280–289, 1975.

8. Luhn H.P. A statistical approach to mechanized encoding and

searching of literary information. IBM Journal of Research and

Development, 1:309–317, 1957.

9. Maron M.E. Automatic indexing: an experimental inquiry.

J. ACM, 8:404–417, 1961.

10. Puri P.S. and Goldie C.M. Poisson mixtures and quasi-infinite

divisibility of distributions. J. Appl. Probab., 16(1):138–153,

1979.

11. Stone D. and Rubinoff B. Statistical generation of a technical

vocabulary. Am. Doc., 19(4):411–412, 1968.

3220T Two-Sorted First-Order Logic
Two-Sorted First-Order Logic

▶Temporal Relational Calculus
Type Theory

▶Data Types in Scientific Data Management
Type-based Publish/Subscribe

HANS-ARNO JACOBSEN

University of Toronto, Toronto, ON, Canada

Definition
Type-based publish/subscribe is an instance of the pub-

lish/subscribe concept, where publications are instances

of application-defined types, subscriptions express in-

terest in receiving publications of a specified type or

sub-type, and publish/subscribe matching amounts to

type conformance checking.

Key Points
The characterization of the type-based publish/sub-

scribe class originated in the programming languages

context with the objective of bridging the impedance

mismatch in the integration of publish/subscribe

abstractions into programming languages. For exam-

ple, the representation of subscriptions as strings that

are parsed, checked, and processed at runtime by the

underlying publish/subscribe implementation, are fre-

quent sources of errors that materialize too late

due to the inability to properly type check the sub-

scription string at the language level. To enable static
type checking, type-based publish/subscribe includes

subscriptions and publications as first class citizens

into the language.

Publications become instances of language types.

Arbitrary composite types, subject to the type definition

capabilities of the host language, can be used to model

application-defined events. Subscribers express interest

in receiving publications of a specified type. Matching of

publications against subscriptions amounts to type con-

formance checking. That is a publication matches a

subscription, if the type of interest specified by a sub-

scription conforms to the type of a publication, for some

definition of type conformance. Matching is based on

type determination, sub-type checking, and is-instance-

of type checks. This is similar to topic-based publish/

subscribe matching, except that a type is more general

than a topic. Moreover, types may support operations

that can model content-based predicates as tests on

the instances of types. In this sense, type-based publish/

subscribe can model content-based processing.

Several standards, such as the OMG Notification

Service [2] and the OMG Data Dissemination Service

[3] exhibit elements of type-based publish/subscribe,

but do not directly follow the prescription of the type-

based publish/subscribe model. The characterization

of type-based publish/subscribe can be found in [1].
Cross-references
▶ Publish/Subscribe

▶Topic-Based Publish/Subscribe
Recommended Reading
1. Eugster P. Type-based publish/subscribe: concepts and experi-

ences. ACM Trans. Program. Lang. Syst., 29(1):6, 2007.

2. MG. Notification Service Specification, version 1.1, formal/04–

10–11 edition, October 2004.

3. MG. Data Distribution Service for Real-time Systems, version

1.2, formal/07–01–01 edition, January 2007.

U

UML

▶Unified Modeling Language
Uncertain Databases

▶ Probabilistic Databases
Uncertain Information

▶ Incomplete Information
Uncertainty in Events

SEGEV WASSERKRUG

IBM Research, Haifa, Israel

Synonyms
Event uncertainty

Definition
Uncertainty in events is uncertainty regarding either

the occurrence of an event, or uncertainty regarding

the data values associated with an event. This uncer-

tainty is a result of a gap between the actual occur-

rences of events in the real world, and the availability of

knowledge regarding the events.

Historical Background
The first event-based systems were active databases, in

which automatic actions were carried out as a result of

database queries. This was done using the ECA (Event-

Condition-Action) paradigm. However, in many such
2009 Springer ScienceþBusiness Media, LLC
database applications, the events of interest were not

the results of single queries, (e.g., insertion or deletion

of data), but rather could be deterministically inferred

from several such queries. To facilitate such inferences,

event inference languages were defined. Initially such

languages were specific to active databases (e.g.,

SNOOP and ODE). However, more general languages

were developed suitable for implementing such deter-

ministic inferences in any event-based system. These

general languages resulted from the need to enable

event driven behavior in a wide variety of application

domains and became part of a wider area known as

Complex Event Processing (CEP). As event driven

applications became more complex, it became necessary

to handle uncertainty regarding the occurrence and

inference of events.
Foundations
For a system to implement event driven behavior, the

system must be able to recognize all events of interest.

However, in many cases, there is a gap between the

actual occurrences of events to which the system must

respond and the data generated by monitoring tools

regarding these events. This gap results in uncertainty.

To understand this, consider a thermometer that

generates an event whenever the temperature rises

above 37.5�C. The thermometer is known to be accu-

rate to within �0.2�C. Therefore, when the tempera-

ture measured by the thermometer is 37.6�C, there is

some uncertainty regarding whether the event has ac-

tually occurred.

Another gap between the actual occurrence of

events and the information available to the system is

caused by the following: The information regarding

the occurrence of some events (termed explicit events)

is signaled by event sources (e.g., monitoring tools

such as the thermometer described above), while

for other events, explicit notification is never sent

(non-explicit events). An example of a non-explicit

event is insider trading. Although insider trading

3222U Uncertainty in Events
either does or does not take place, no explicit signal

regarding such an event is generated.

For an event-based system to respond to non-explicit

events, in many cases the occurrence of these events must

be inferred based on the occurrence of other events.

(The events based on such inference are termed inferred

events.) To facilitate such inferences, several event

composition languages have been defined that make

it possible to infer non-explicit events based on a set

of complex temporal predicates. In many cases,

however, such inference cannot be carried out with

certainty. To see an example, consider again the case

of insider trading. While a single large sale of stock

may not be indicative of anything suspicious, such a

sale, together with a sharp change in stock prices of

the company due to an announcement in the press

may infer insider trading. However, such insider trad-

ing cannot always be said to have occurred whenever

a combination of a sale event and a stock decline

event occur.

Even when the inference rules may be deterministi-

cally stated, uncertainty associated with explicit events

may also propagate to inferred events. To see this

propagation of uncertainty, consider a rule (defined

in an event composition language) that states that

event e3 must be inferred whenever an event of type

e2 occurs after an event of type e1. Moreover, assume

that it is known that both an event of type e1 and an

event of type e2 have occurred, but there is uncertainty

about the exact time of their occurrence because

the occurrence of e1 is known to be between time

2 and time 5, and the occurrence of e2 is known to

be between time 3 and time 7. Note that even though

the rule is deterministic, the uncertainty regard-

ing the occurrence times of e1 and e2, and the fact

that the occurrence of e3 must be inferred based upon

these occurrence times, results in uncertainty with

regards to the occurrence of the event e3.
Dimensions of Event Uncertainty

It is useful to classify the uncertainty according to two

orthogonal dimensions: element uncertainty and origin

uncertainty.

Element uncertainty refers to the fact that event-

related uncertainty may involve one of two elements:

1. Uncertainty regarding event occurrence: Such uncer-

tainty is associated with the fact that although the
actual event occurrence is atomic, (i.e., the event

either did or did not occur) the event-based system

does not know whether or not this event has, in

fact, occurred. An example of this is insider trading.

At any point in time, insider trading either was or

was not carried out by some customer. However, an

event-driven system can probably never be certain

whether insider trading actually took place.

2. Uncertainty regarding event attributes: Even in

cases in which the event is known to have occurred,

there may be uncertainty associated with its

attributes. For example, while it may be known

that an event has occurred at some point in time,

its exact time of occurrence may not be precisely

known.

Origin uncertainty pertains to the two types of

events (explicit and inferred) that exist in an event-

based system. Due to these two types of events, there

are two possible origins for uncertainty:

1. Uncertainty originating at the event source: When an

event originates at an event source, there may be

uncertainty associated either with the event occur-

rence itself or the event’s attributes, due to a feature

of the event source. An example is the limited

precision thermometer described previously,

where uncertainty regarding an event occurrence

(i.e., the temperature being above 37�C) is caused

by the limited measuring accuracy of a thermome-

ter (i.e., the reading being accurate only to within

�0.2�C).

2. Uncertainty resulting from event inference: Due to

some events being inferred based on other events,

uncertainty can propagate to the inferred events.

This is demonstrated by the rule previously de-

scribed, which is used to infer events of type e3
based on events of types e1 and e2. In the aforemen-

tioned case, uncertainty regarding the occurrence

of event e3 resulted from uncertainty regarding the

time that events e1 and e2 occurred.

Based on the above two dimensions, it is possible to

define four types of event uncertainty. These are the

following:

1. Uncertainty regarding event occurrence originating

at an event source;

2. Uncertainty regarding event occurrence resulting

from inference;

Uncertainty in Events U 3223
3. Uncertainty regarding event attributes originating

at an event source; and

4. Uncertainty regarding event attributes resulting

from event inference.

These uncertainty types are depicted as quadrants

in Fig. 1.

Causes of Event Uncertainty

There are many possible causes for event uncertainty. In

addition, the uncertainty causes for explicit events are

different from the uncertainty causes of inferred events.

These are the sources of uncertainty for explicit

events:

1. An unreliable source: An event source may malfunc-

tion, indicating that an event has occurred even if it

has not. Similarly, the event source may fail to

signal the occurrence of an event which has, in

fact, occurred. A source may also transmit errone-

ous information regarding one (or more) of the

event’s attributes.

2. An imprecise event source: An event source may

operate correctly, but still fail to signal the occur-

rence of events due to limited precision (or may

signal events that did not occur). Such a source may

also be the cause of imprecision regarding an

event’s attributes.

3. Problematic communication medium between the

event source and the event-based system: Even if

the event source has full precision and operates

correctly 100% of the time, the communication

medium between the source and the event-based

system may drop indications of an event’s occur-

rence, generate indications of events that did not
Uncertainty in Events. Figure 1. Event uncertainty types.

U

occur, or alter information regarding the event’s

attributes.

4. Uncertainty due to estimates: In some cases, the

event itself (or its attributes) may be the result of a

statistical estimate. For example, it may be beneficial

to generate an event whenever a network Denial of

Service (DoS) event occurs, where the occurrence of

such a DoS event is generated based on some math-

ematical model. However, as the mathematical

model may produce erroneous results, this event

also has uncertainty associated with it.

5. Clock synchronization in distributed systems: This

is a cause of uncertainty regarding the occur-

rence time of events in a distributed system. This

is due to the fact that in distributed systems, the

clocks of various nodes are usually only guaran-

teed to be synchronized to within some inter-

val of a global system clock. Therefore, there

is uncertainty regarding the occurrence time of

events as measured according to this global

system clock.

These are possible causes of uncertainty of inferred

events:

1. Propagation of uncertainty: There are cases in which

an inferred event can be deterministically inferred

based on other events. Even in such cases, there

may be uncertainty regarding the inferred event,

resulting from uncertainty regarding the events

based on which the inference is carried out.

2. Uncertain inference: There are cases in which the

inference is inherently uncertain. One example of

this is insider trading, where events denoting sus-

picious purchases and sales of stock coupled with

rapid price changes only serve to indicate the pos-

sible occurrence of an insider trading event. In such

cases, an insider trading event cannot be inferred

with certainty based on such suspicious transac-

tions. An additional prominent example is when

the event driven application is required to predict

the occurrence of future events.

Note that for both explicit and inferred events,

uncertainty regarding a specific event may be caused

by a combination of factors. For example, for a specific

event, it is possible that both the event source and

communication medium simultaneously corrupt the

information sent regarding this event.

Uncertainty in Events. Figure 2. Elements of event

uncertainty handling framework.

3224U Uncertainty in Events
Handling Uncertainty in Events

There is a spectrum of possibilities by which such event

uncertainty may be handled. One end of this spectrum

has methods that explicitly or implicitly ignore the

presence of uncertainty. The other end is a complete

and formal treatment of such uncertainty. Details

about these two extremes are provided below. Obvi-

ously, solutions which lie between these two extremes

are also possible.

The methods that explicitly or implicitly ignore

such uncertainty usually rely on deterministic event

composition languages to enable the event driven

functionality required. In many cases, applications

that ignore the uncertainty rely on a human being

to make the final decision regarding whether or not

an event of interest occurred. An example of such

an application is credit card fraud detection. In

many such systems, the system is expected to recog-

nize suspicious patterns of credit card transaction

events that may indicate fraud. Such indications

are then used to alert a human operator, whose

role it is to establish whether such a fraud indeed

took place.

A full and formal treatment of such uncertainty

is required in applications where automatic actions

must be carried out as a result of events of interest.

In such cases, the framework for dealing with event

uncertainty must include the following components:

1. Mechanism for automatic decision making that can

take uncertainty into account

2. Mechanism for enabling uncertain inference

regarding events

3. Representation method of the uncertainty asso-

ciated with each event

A depiction of such a framework appears in Fig. 2.

Example of Event Uncertainty Handling Framework

This section provides an example of an uncertainty

handling framework that has the three components

described in Fig. 2.

Underlying any framework for handling uncertainty

in events is an uncertainty handling mechanism.

Many such formalisms exist, including Lower and

Upper Probabilities, Dempster-Shafer Belief Functions,

and Possibility Measures. The framework discussed in

this section is based on probability theory, which is

the most well known framework for quantitative rep-

resentation and reasoning about uncertainty.
In this framework, the uncertainty regarding an

event is represented as follows: the event may have

multiple sets of values associated with it. Each such

set of values corresponds to possible attribute values of

this event. The uncertainty is then quantified by prob-

abilities for this set of values. For example, consider

an event that either has not occurred, has occurred at

time 5, or has occurred at time 10. This event has

the set of values {notOccurred, 5, 10} associated with

it. Furthermore, if the probability of the event not

occurring is 0.5, the probability of the event having

occurred at time 5 is 0.3 and the event having occurred

at time 10 is 0.2. This is represented by {{notOc-

curred,0.5},{5,0.3},{10,0.2}}.

The framework enables uncertain inference by

using a language that can specify uncertain rules

together with an inference algorithm that enables the

probabilities of interest to be calculated. The uncertain

rules in the framework are of the form ‘‘If event e1
and event e2 occurred, then the probability of event e3
occurring is 0.7.’’ The inference framework ensures

that the probabilities of the inferred events are

taken into account in a manner consistent with proba-

bilistic dependencies and independencies between

the events.

The automatic decision making mechanism is

based on utility theory.

Key Applications
Event driven functionality is required in almost

all application domains. Therefore, the use of event-

based systems is widespread. Two prominent examples

of applications in which a complete treatment of

Uncertainty Management in Scientific Database Systems U 3225

U

uncertainty is required are security applications and

sensor network applications.

In security applications, the response time available

to respond to threats requires that automatic actions be

carried out. An example is network security applications

where it is important to respond quickly to Denial of

Service (DoS) attacks. There is a need to provide a quick

response (e.g., in milliseconds) to the threat, since wait-

ing too long to respondmay mean that the network may

already be too saturated for a response to be of use. On

the other hand, wrongly determining that a DoS attack

has occurred and carrying out measures such as shut-

ting down certain ports, may result in unjustifiable

denial of service to legitimate network traffic. In such

a case, an event driven framework for automatic deci-

sion making under uncertainty is required.

In sensor network applications, a large number of

sensors continuously transmit relatively rudimentary

data (in the form of events) to some central server. An

example may be a monitoring application, in which

sensors throughout a large office building constantly

transmit the temperature of each room in the build-

ing. An application may then be required to detect

the possibility of a fire occurring in the building

based on the individual readings or to aggregate the

individual readings.

Because of current technical limitations, each indi-

vidual sensor is unreliable. Therefore, it is quite possi-

ble that a temperature reading is not transmitted by the

sensor or that there is an error in the transmitted

reading. Due to this unreliability, an explicit treatment

of uncertainty is required in such domains.

Future Directions
While research in event-based systems and event driven

applications has been ongoing for several years, relati-

vely little research has been carried out on the explicit

treatment of uncertainty in events. Moreover, most such

research has been focused on specific domains such as

sensor networks and security application. Therefore,

much work remains in exploring new and formal

approaches to such treatment. An additional important

future direction is the implementation of a production

level system that enables event inference under uncer-

tainty in the general case.

Cross-references
▶Active and Real-time Data Warehousing

▶Atomic Event
▶Complex Event

▶Complex Event Processing

▶Composite Event

▶ Event

▶ Event and Pattern Detection over Streams

▶ Event Driven Architecture

▶ Event Prediction

▶ Explicit Event

▶ Implicit Event

Recommended Reading
1. Balazinska M., Khoussainova N., and Suciu D. PEEX: extracting

probabilistic events from rd data. In Proc. 24th Int. Conf. on

Data Engineering, 2008.

2. Halpern J.Y. Reasoning About Uncertainty. MIT Press,

Cambridge, MA, 2003.

3. Li C.-S., Aggarwal C., Campbell M., Chang Y.-C., Glass G.,

Iyengar V., Joshi M., Lin C.-Y., Naphade M., and Smith J.R.

Epi-spire: a system for environmental and public health activity

monitoring. In Proc. IEEE Int. Conf. on Multimedia and Expo.,

2003.

4. Luckham D. The Power of Events: An Introduction to Complex

Event Processing in Distributed Enterprise Systems. Addison-

Wesley, Reading, MA, 2002.

5. Patton N.W. Active Rules in Database Systems. Springer, Berlin,

1999.

6. Wasserkrug S., Gal A., and Etzion O. A model for reasoning with

uncertain rules in event composition systems. In Proc. 21st

Annual Conf. on Uncertainty in Artificial Intelligence, 2005.
Uncertainty Management in
Scientific Database Systems

NILESH DALVI

Yahoo! Research, Santa Clara, CA, USA

Definition
Scientific databases often deal with data that comes

from multiple sources of varying quality, is heteroge-

neous, incomplete and inconsistent, and ridden with

measurement errors. Uncertainty management deals

with a set of techniques for modeling and representing

the various uncertainties that arise in scientific data and

to enable users to query the data. This entry describes

the UII system [10] that addresses the issue of managing

uncertainty in integrating scientific databases.

Historical Background
Distributed data integration is becoming increasingly

popular in biomedical research and in scientific

3226U Uncertainty Management in Scientific Database Systems
research in general. Its popularity is based on the

realization that combining sources frequently lead to

novel scientific discoveries that cannot be concluded

from any single source in isolation. However, as more

and more scientific data is shared and as tools are built

to provide a common query interface for them, the

scientists face the major problem of dealing with infor-

mation overload [19]. There are several factors that

affect the quality of answers to the user queries: the

quality of the data sources themselves, the quality of

links across data sources, the alignment of data across

sources, and so on. The data sources have a large varia-

tion in the quality of their data, caused by the curation

method, provenance and the experimental protocols

used in data collection. Some databases are nicely linked,

with one containing foreign keys to other, while others

have to be linked by matching tuples over text fields. The

scientific data across sources is often not aligned, due to

experimental errors and lack of common standards.

Specialized algorithms exist to align scientific data, e.g.,

the BLAST [16] sequence alignment algorithm for align-

ing potentially similar proteins, but these algorithms are

speculative at best. As a consequence, the user is left with

the daunting task of searching for relevant answers

among a vast number of spurious results.

Uncertain data management [15] has seen a recent

renewed interest in the databases community. This

is because of the thrust from applications that span

not just scientific databases but several others that in-

clude exploratory queries in databases, novel IR-style

approaches to data integration, information extraction

from Web, sensor networks applications and data

privacy analysis. There are efforts to build general pur-

pose uncertain data management systems, e.g., MystiQ

[2] and Trio [18]. In parallel, there are several efforts in

the community to develop scientific data management

systems and tools to ease the tasks of scientists and

facilitating the process of sharing and reusing experi-

mental data. This entry describes the application of

uncertain data management techniques to scientific

databases. It gives several examples of specific uncertain-

ties that arise in managing scientific data and describes

the UII system [10] that addresses these issues.
Foundations
This section provides examples of data uncertainties

that arise in scientific data.
Uncertainties in Scientific Data

The uncertainties in scientific data can be classified

into two broad categories:

1. Inherent Data Uncertainties Inherent data uncer-

tainties are attributes of the data itself and not arti-

facts of its representation. Data generated from

laboratory experimental methods often have inher-

ent uncertainties. To illustrate an extreme case, two-

hybrid screening assays, which are used to detect

protein interactions, have error rates estimated to

be close to 50% [2]. Experimental data can also

be generated from computational experiments.

The BLAST algorithm [3] searches in a database

for sequences similar to a query sequence. The simi-

larity between any two sequences is measured by

the BLAST evalue, which is the degree to which the

pairing could occur by chance. Additionally, uncer-

tainties can be rooted in the ever-evolving nature

of biological knowledge itself. For example, GenBank

references sequences (RefSeqs) are assigned status

codes which refer to the amount of evidence and

expert curation attributed to a given sequence and

its function [4]. These codes range from ‘‘inferred’’

where there is little support for a given sequence, to

‘‘reviewed’’ where substantial evidence exists and

has been vetted by a biological domain expert. Status

codes for sequences change over time as evidence

for them accumulates.

2. Data Representation Uncertainties Data representa-

tion uncertainties result from the mapping of real

world information onto a computable representa-

tion of this information. At last count there were

over 600 online data sources in molecular biology

[5]. Unfortunately, for all the data that is available

there are no common standards for representing it

(in part due to the evolving nature of biomedical

knowledge). The result is the decentralized and het-

erogeneous nature of biological data sources which

is an underlying source of many data uncertainties.

For instance, there is no common identifier for a

biological object [6] which make it difficult to

query across data sources (manually or otherwise),

a task which is commonly performed. Linkages

between data records may then require string

matches on text fields rather than more reliable ‘‘for-

eign-key’’ relationships. Additionally, data sources

tend to represent data in idiosyncratic fashion. For

Uncertainty Management in Scientific Database Systems U 3227

U

example, GenBank uses RefSeq status codes to repre-

sent the level of evidence for a particular gene but

the Gene Ontology (GO) uses evidence codes [7].

Given evidence from both sources, it is sometimes

difficult to make comparisons, such as determining

which code provides the greater weight of evidence.

General Purpose Systems for Managing Uncertainty

The problem of managing uncertainty in databases has

a long history [1,3,6,9] with a recent renewed interest,

and several systems for managing uncertain data have

been proposed recently in the literature.

Trio The Trio [18] system being developed at Stanford

is a data management system that supports uncertainty

and lineage. The focus of the system is on the repres-

entation formalisms for uncertainty and lineage as well

as query languages over such data. Trio extends the

relational database model with (i) alternative values,

where tuple attributes may be assigned a set of possible

values rather than a single value, (ii) maybe (‘‘?’’)

annotations, specifying that a tuple may not exist,

(iii) optional numeric confidences attached to alterna-

tives and (iv) lineage, connecting tuple-alternatives to

other tuple alternatives from which they were deliv-

ered. The Trio query language extends SQL to support

querying based on tuple-alternatives as well as lineage.

MystiQ The MystiQ [2] system from University of

Washington is another general-purpose system which

supports various constructs for handling uncertainty

that include probabilities associated with tuples, ap-

proximate predicates in SQL queries and soft views

over uncertain data. The focus of the system is

on efficient query evaluation, and uses various tech-

niques like safe query plans [4] and Monte-carlo

approximations [11].

Other Systems The Orion system [14] at Purdue looks

at uncertainty given by continuous-valued probability

distributions. This is an important problem which is

specially relevant tomanaging uncertainty in sensor net-

works, where the actual sensor readings often have con-

tinuous-valued uncertainty associated with it. The work

looks at supporting aggregate queries over such data

items. There is also very interesting research [5,7,12]

being carried out on extending probabilistic databases

to represent correlated tuples and graphical models.
Similarly, there are several systems that exist for

Scientific datamanagement. However, several challenges

must bemet to combine the uncertain datamanagement

techniques with these systems. First, it requires

an analysis of various sources of uncertainties that

arise in Scientific data management, and a principled

way to quantify and represent these uncertainties.

Secondly, the uncertain data management systems

primarily use SQL queries over relational data. This

model is unsuitable [13] for scientific databases as the

scientists using the system are unfamiliar with the con-

cepts of databases and SQL queries and prefer a simpler

interface to browse and explore the data. The rest of this

entry describes the UII system[10] which is a specialized

scientific data management system with support for

uncertainty.

The UII System for Managing Uncertainty in Scientific

Data

UII is built on top of the BioMediator system [13,17],

which is a mediated-schema distributed data integra-

tion system being developed at the University of

Washington. The query model of BioMediator is

designed to address the need of biologists, which sup-

ports poorly specified, exploratory kind of queries.

A user begins by issuing a simple query, called

the seed query, which establishes the basic topic of

interest. The user can then browse these results and

explore any of the results further by finding informa-

tion about it in other sources, a process called query

expansion.

Figure 1 shows a sample seed query: Gene records

containing a Symbol attribute with value BRCA1. The

system determines which of the included data sources

contain Gene information and then queries these

sources for entries satisfying the specified constraints.

The result is shown as a graph that contains one query

node and several results node linked to it.

A user can expand a set of node by clicking them,

which causes them to join with tuples from other data

sources, using the information present in the nodes to

be expanded. Such informationmay include foreign keys

to other sources allowing direct look-ups. Often, in the

absence of unique foreign keys, the joins involve partial

matches over (multiple) free text fields. Figure 2 shows

an example of a single step of query expansion. The

one light node is expanded once resulting in two dark

nodes.

Uncertainty Management in Scientific Database Systems. Figure 2. A single step in query expansion.

Uncertainty Management in Scientific Database Systems. Figure 1. A seed query.

3228U Uncertainty Management in Scientific Database Systems
The browsing history of an user is abstracted in

terms of a browsing graph. A browsing graph is a direct-

ed graphwhose nodes are records fromdata sources, and

edges correspond to node expansions. It has a distin-

guished query node, which in the seed query used to

initiate the browsing. There can be multiple paths from

the start node to a give node, which corresponding to

multiple expansion paths to the same node.
Handling Uncertainty

The problem of searching for relevant query answers

is exemplified by Fig. 3, which shows a fragment of

browsing graph with over 5,000 results, derived by just

two complete expansion steps (where in each step all

the nodes are expanded) starting from the same seed

query shown in Fig. 1. However, not all the nodes in

the browsing graph are equally likely to be useful to the

user. A node may be of low quality because of the data

source that contributes that node. An expansion edge

may be of low quality because it was joined using a
partial match on a text field. The farther a node is from

the start node, the less likely it is to be relevant to the

user. The relevance of nodes to the user is assessed

in two steps. In the first step, the browsing graph is

annotated with uncertainty metrics, that describe the

quality of each node and each edge in the graph. In

the second step, these metrics are used to compute the

relevance of each node to the user. The two steps are

described below.
Uncertainty Metrics The following is a summary de-

scription of the four fundamental uncertainty metrics

that capture all types of uncertainty in the UII system:

Ps Measure: Ps is a measure defined at the schema

level. It is a quantification of user’s prior belief in the

quality of data records of a particular data type from a

particular data source (e.g., Genes from Entrez Gene,

Classifications from Entrez Gene, and Classifications

from GO, are each assigned Ps values). For example,

consider the comparison between proteins from

Uncertainty Management in Scientific Database Systems. Figure 3. A small portion of a large BioMediator result set.

The seed query plus two subsequent expansions produced over 5,000 results.

Uncertainty Management in Scientific Database Systems U 3229

U

SwissProt and TrEMBL. SwissProt is a manually and

carefully curated data source of protein functional infor-

mation whereas TrEMBL contains only computational

predictions which are deemed less reliable. The class of

protein records from SwissProt therefore are assigned a

higher Ps value than those from TrEMBL because Swis-

sProt protein records are generally trusted to a greater

degree.

Qs Measure:Qs is also defined at the schema level. It

is a quantification of user’s prior belief in the quality of

links between to data types in two different data sources

(e.g., Genes in Entrez Gene to Proteins in Entrez Pro-

tein). To elaborate, records in some sources, such as

Gene records from Entrez Gene, contain references to

records in another source, such as Protein records from
Entrez Protein. In this example, these references are in

the form of ‘‘accession’’ numbers which essentially cor-

respond to unique identifiers (foreign keys). Records

between other types and sources however may only be

connected by non-foreign keys, e.g., text-string simila-

rities such as is the case between Genes from Entrez

Gene and Genes in OMIM. In this example, the rela-

tionship between Genes in Entrez Gene and Proteins in

Entrez Protein is assigned a higher Qs value since these

links are better in general than those between Genes in

Entrez Gene and Genes in OMIM.

Pr Measure: This is defined at data level and is a

quantification of user’s belief in a particular data re-

cord. It is used to capture data uncertainties which

differ between records of the same type and source.

3230U Uncertainty Management in Scientific Database Systems
Gene records in Entrez Gene, for example, are attrib-

uted with a Refseq status code which ranges in value

from ‘‘inferred’’ to ‘‘reviewed.’’ These status codes cor-

respond to the amount of evidence for a given gene,

therefore ‘‘reviewed’’ are assigned a higher Pr value

than ‘‘inferred.’’

Qr Measure: Qr is also defined at the data level,

and is a quantification of user’s belief in a particular

cross-reference (link) between two data records. It

is dynamic (calculated at the time two linked re-

sults are returned by the system). For example, record

cross-references using unique identifiers always receive

a Qr of 1.0. Some records may reference others via

the use of comparison algorithms such as BLAST.

For BLAST cross-references, Qr scores are dynamically

computed by converting the e-value from the BLAST

algorithm into a numeric value between 0.0 and 1.0.

BLAST comparisons that correspond to better matches

between records (higher similarity) receive higher

Qr values.

Probabilistic Query Evaluation Each query in UII sys-

tem results in a set of nodes forming the browsing

graph for the query. The objective is to find the rele-

vance of each node in the browsing graph to the

original seed query. This can be posed as a network

reliability problem [8]. For each node in the graph, the

quantity Ps ∗ Pr is interpreted as the probability that

the node is correct. Similarly for each edge, Qr ∗ Qs is

interpreted as the score that the edge is correct. Finally,

the relevance of a node is simply the probability that

the node is reachable from the seed query node in the

browsing graph.

The exact relevance computation is an intract-

able problem [8]. However, the probabilities can be

efficiently approximated to arbitrary precision using

simulation algorithms. The following simulation algo-

rithm can be employed, which is well suited for the

needs of the problem. In a single pass, N trials (path

traversals in the graph) are simulated where nodes and

edges are included in the traversal with their associated

probabilities. This is done by first storing a random

N-bit vector with each node/edge, that denotes whether

the node is in or out in the corresponding experiment.

Finally, performing a single depth-first search and using

these bit vectors, a final bit vector for each node is

obtained that describes the trials where that node was

reachable from the start node. The relevance for a node

is then estimated using the quantity k ∕N, where k is the
number of set bits in the node’s final bit vector. The

choice of N influences the error in the estimation, the

larger the N the smaller the error. Also, for any fixed

value ofN, the larger the actual relevance of a node, the

better the approximation. Thus, the simulation will

correctly rank the most relevant answers, which the

user cares about most, while the poorest results may be

slightly out of order.

Key Applications
Uncertainty management techniques are fundamental

to Scientific Data Integration applications.

Future Directions
Uncertainty is a fundamental issue in scientific data-

bases, and there are several open and challenging pro-

blems which need to be addressed. One important

problem is to assign meaningful probability scores to

data in a principled way. While the current approach

requires domain experts to specify Ps, Pr, Qs and Qr

values, it would be more desirable to automatically

ascribe them using machine learning techniques.

Uncertainty management systems should also be able

to relearn and update these scores based on users’

feedback to query results. Another problem is to de-

velop highly scalable and efficient query answering

algorithms that go beyond the current simulation

based techniques. A potential approach in this direc-

tion is to use the uncertainty scores to enable a focused

expansion of the query rather than constructing

the whole browsing graph a priori and ranking

its nodes. Another important aspect of managing un-

certainty in scientific data is keeping track of data

provenance. As scientists use experimental data from

different sources and their own experimental data to

generate new data, it becomes important to track the

provenance of data through these computing processes.

The uncertainties in scientific data are often correlated

in ways dictated by their provenance, and managing

uncertainty along with the provenance information

is a challenging and important future direction.

Cross-references
▶Data Cleaning

▶Data Integration

▶Data Provenence

▶Data Quality Models

▶ Inconsistent Databases

▶ Probabilistic Databases

Unicode U 3231
▶ Provenence of Scientific Databases

▶Record Linkage

▶Record Matching
U

Recommended Reading
1. Barbará D., Garcia-Molina H., and Porter D. The management

of probabilistic data. IEEE Trans. Knowl. Data Eng.,

4(5):487–502, 1992.

2. Boulos J., Dalvi N., Mandhani B., Mathur S., Re C., and Suciu D.

Mystiq: a system for finding more answers by using probabilities.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2005, pp. 891–893.

3. Cavallo R. and Pittarelli M. The theory of probabilistic data-

bases. In Proc. 13th Int. Conf. on Very Large Data Bases, 1987,

pp. 71–81.

4. Dalvi N. and Suciu D. Efficient query evaluation on probabilistic

databases. In Proc. 26th Int. Conf. on Very Large Data Bases,

2004, pp. 864–875.

5. Deshpande A. and Sunita Sarawagi. Probabilistic graphical

models and their role in databases. In Proc. 33rd Int. Conf. on

Very Large Data Bases, 2007, pp. 1435–1436.

6. Dey D. and Sarkar S. A probabilistic relational model and alge-

bra. ACM Trans. Database Syst., 21(3):339–369, 1996.

7. Garofalakis M.N., Brown K.P., Franklin M.J., Hellerstein J.M.,

Wang D.Z., Michelakis E., Tancau L., Wu E., Jeffery S.R., and

Aipperspach R. Probabilistic data management for pervasive

computing: The data furnace project. IEEE Data Eng. Bull.,

29(1):57–63, 2006.

8. Karger D.R. A randomized fully polynomial time approximation

scheme for the all terminal network reliability problem. In Proc.

27th Annual ACM Symp. on Theory of Computing, 1995,

pp. 11–17.

9. Lakshmanan L.V.S., Leone N., Ross R., and Subrahmanian V.S.

Probview: a flexible probabilistic database system. ACM Trans.

Database Syst., 22(3):419–469, 1997.

10. Louie B., Detwiler L., Dalvi N., Shaker R., Tarczy-Hornoch P., and

Suciu D. Incorporating uncertainty metrics into a general-pur-

pose data integration system. In Proc. 19th Int. Conf. on Scientific

and Statistical Database Management, 2007, pp. 19–28.

11. Re C., Dalvi N., and Suciu D. Efficient top-k query evaluation on

probabilistic data. In Proc. 23rd Int. Conf. on Data Engineering,

2007, pp. 886–895.

12. Sen P. and Deshpande A. Representing and querying correlated

tuples in probabilistic databases. In Proc. 23rd Int. Conf. on

Data Engineering, 2007, pp. 596–605.

13. Shaker R., Mork P., Brockenbrough J.S., Donelson L., and

Tarczy-Hornoch P. The biomediator system as a tool for inte-

grating biologic databases on the web. In Proc. Workshop on

Information Integration on the Web, 2004.

14. Singh S., Mayfield C., Mittal S., Prabhakar S., Hambrusch S.,

and Shah R. Orion 2.0: native support for uncertain data. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2008,

pp. 1239–1242.

15. Suciu D. and Dalvi N. Foundations of probabilistic answers to

queries. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2005, pp. 963.
16. Tatusova T.A. and Madden T.L. Blast 2 sequences – a new tool

for comparing protein and nucleotide sequences. FEMS Micro-

biol. Lett., 174:247–250, 1999.

17. Wang K., Tarczy-Hornoch P., Shaker R., Mork P., and Brinkley J.

Biomediator data integration: Beyond genomics to neuroscience

data. In AMIA Fall 2005 Symposium Proceedings, 2005,

pp. 779–783.

18. Widom J. Trio: a system for integrated management of data,

accuracy, and lineage. In Proc. 2nd Biennial Conf. on Innovative

Data Systems Research, 2005.

19. Woods D.D., Patterson E.S., Roth E.M., and Christoffersen K.

Can we ever escape from data overload? a cognitive systems

diagnosis. Cogn. Technol. Work, 4(1):22–36, 2002.
Undo

▶ Logging and Recovery
Unicode

ETHAN V. MUNSON

University of Wisconsin-Milwaukee, Milwaukee,

WI, USA

Definition
Unicode is an international standard for representing text

characters. Unicode supports the scripts of most lan-

guages in wide use and has a flexible design that is capa-

ble of supporting all known human languages and all of

their variant scripts. The development of the Unicode

standard is coordinated by the Unicode Consortium.

Key Points
Unicode’s development is motivated by the need to

encode characters in all languages without conflicts

between the encodings for different languages. Obvi-

ously, the achievement of this goal is fraught with

technical and political complexities.

Unicode has several different encodings. The most

widely used is the 8-bit, variable-width UTF-8 encoding,

which permits the encoding of many European lan-

guages in an efficient one-byte form and is backward

compatible with both the ASCII and ISO-8859-1 char-

acter sets. UTF-16 is a 16-bit, variable-width encoding

that is more suitable to languages with many characters,

such as Chinese, Japanese and Korean. UTF-32 is a

3232U Unified Modeling Language
four-byte, fixed-width encoding that encompasses all

Unicode characters.

The Unicode Consortium is supported by many

well-known computer and software manufacturers. For

the members of the consortium, the system internation-

alization problem is of compelling importance.

Cross-references
▶Document

▶Document Representations (Inclusive Native and

Relational)

▶Unified Modeling Language (UML)

▶XML
Unified Modeling Language

MARTIN GOGOLLA

University of Bremen, Bremen, Germany

Synonyms
UML; Unified modeling language; Unified modeling

language

Definition
The Unified Modeling Language (UML) is a graphical

language for visualizing, specifying, constructing, and

documenting the artifacts of a software-intensive

system. UML offers a standard way to write a sys-

tem’s blueprints, including conceptual things such

as business processes and system functions as well as

concrete things such as programming language state-

ments, database schemas, and reusable software com-

ponents [8].

Historical Background
The UML is based on earlier software design app-

roaches, among them the Object Modeling Technique

(OMT) [9], Object-Oriented Analysis and Design

(OOAD) [1], and Object-Oriented Software Engineer-

ing (OOSE) [6] and other important techniques [5].

The UML was standardized in various versions by the

Object Modeling Group (OMG) [8]. Authors of the

predecessor techniques have published a comprehen-

sive description of the UML [10]. Questions strongly

related to UML are discussed at the UML and MOD-

ELS conferences [13]. Special issues with extended

papers from that conference and other works strongly

related to UML and modeling are published in [11].
UML is mainly a graphical language and offers

different diagram types. Among the most important

diagram types are the class, object, statechart, activity,

sequence, communication, and use case diagram. UML

includes the Object Constraint Language (OCL) which

is a textual language for navigation in class diagrams

and for expressing textual constraints like invariants,

pre- and postconditions, or guard conditions. Many

tools for UML, but fewer support for OCL is available,

see e.g., [3,12], among other interesting work.

Foundations

UML Class and Object Diagrams

The main purpose of class diagrams is to capture

the static structures and operations of a system. This

section briefly explains the most fundamental fea-

tures in class diagrams: classes and associations. More

advanced features are also discussed.

Classes: A class is a descriptor for a set of objects

sharing the same structure and behavior. In each

(database) system state, a class is manifested by a set

of objects. In the database context, concentration is

upon structural aspects, although behavioral aspects

may be represented in UML as well. Object properties

can be described by attributes classified by data types

like String or Boolean. Properties can also stem

from roles in associations which connect classes.

Example: Figure 1 shows the classes Supplier,

Project, and Part together with some basic attri-

butes including their data types, e.g., one identi-

fies Supplier::Name:String and Project::

Budget:Integer. In this contribution, the general

scheme for denoting properties (attributes and roles)

is Class::Property:PropertyType.

Associations: An association represents a connec-

tion among a collection of classes and may be given

a name. An association is manifested by a set of

object connections, so-called links, sharing the same

structure. A binary association can be defined bet-

ween two different classes; objects of the respective

classes play a particular role in the association. A bina-

ry association can also be defined on a single class;

then objects of the class can play two different roles;

such a binary association is called reflexive. A ternary

association involves three roles. The notion n-ary

association refers to a ternary or a higher-order

Unified Modeling Language U 3233
association. Binary associations are usually shown with

a simple line, and an n-ary association with a small

rhomb-shaped polygon.

Example: Fig. 1 shows the binary association Pro-

jectPart with roles project and part, the ternary

association SupplierProjectPart with roles sup-

plier, suppliedProject, and suppliedPart,

and the reflexive association Component with roles

parent and child.

Objects and Links: Structural aspects in UML can

also be represented in an object diagram showing

objects, links, and attribute values as manifestations of

classes, associations, and attributes. An object diagram

shows an instantiation of a class diagram and represents

the described system in a particular state. Underlining

for objects and links is used in object diagrams in order

to distinguish them clearly from class diagrams.

Example: Figure 2 shows an object diagram for the

class diagram from Fig. 1. Objects, links, and attribute

values correspond to the classes, associations, and

attributes. There are two Project objects, two Sup-

plier objects and five Part objects. Each Part object

represents a piece of a software controller (Ctrl) being

responsible for a particular portion of a car. The Com-

ponent links express part-of relationships, for exam-

ple, the Engine Code (engineCtrl) includes the

Battery Code (batteryCtrl) and the Motor

Code (motorCtrl).

Roles: Proper roles must be specified on a class

diagram in order to guarantee unique navigation. Navi-

gation in a class diagrammeans to fix two classes and to

consider a path from the first class to the second class by

using association roles. The roles on the opposite side of

a given class in an association also determine properties
Unified Modeling Language. Figure 1. Example UML class d
of the given class by navigating via the roles. Therefore,

in UML the opposite side roles must be unique. Recall

that properties can also come from attributes.

Example: Roles are captured on links. This is nec-

essary in reflexive associations and in other situations,

for example, if two associations are present between

two given classes. For example in Fig. 2, if one con-

siders the link between carCtrl and engineCrtl,

without roles one could not tell which object plays

the parent role and which one the child role. In

the class diagram in Fig. 1, the class Project has two

direct navigation possibilities to class Part: One via

association ProjectPart and the other one via asso-

ciation SupplierProjectPart. One obtains there-

fore two properties of class Project returning Part

objects: Project::part:Set(Part) from associa-

tion ProjectPart and Project::suppliedPart:

Set(Part) from association SupplierProject-

Part. In the object diagram one obtains, for example,

ford.part = Set{motorCtrl} as well as ford.

suppliedPart = Set{}. In order to distinguish be-

tween these two navigations, the role name part and

suppliedPart must be distinct.

Class Diagram versus Database Schema: In the

database context, it is interesting to remark that

the connection between a class diagram and its object

diagrams resembles the connection between a database

schema and its associated database states. The class

diagram in general induces a set of object diagrams

and the database schema determines a set of database

states. Object diagrams and database states follow the

general principles formulated in the class diagram and

database schema, respectively. Because example object

diagrams have to be displayed on a screen or on paper,
iagram 1.

U

Unified Modeling Language. Figure 2. Example object diagram 1.

3234U Unified Modeling Language
they tend to show less information than proper, large

database states. They may however explain the princi-

ples underlying a class diagram pretty well if the exam-

ples are well chosen.

UML Class Diagram Features for Conceptual Schemas

Some of the more advanced features of conceptual

database schemas in UML class diagrams are: object-

valued, collection-valued and compound attributes,

role multiplicities, association classes, generalizations,

aggregations, compositions, and invariants.

Object-Valued Attributes: Attributes in UML may

not only be data-valued as above, but the attribute type

may be a class as well which leads to object-valued

attributes. Like associations, object-valued attributes

also establish a connection between classes. However,

an object-valued attribute is only available in the class

in which it is defined. The information from that

attribute is not directly present in the attribute type

class. Thus an object-valued attribute may be regarded

as a unidirectional association without an explicit

name and where only one role is available.

Examples: The class diagram in Fig. 3 extends the

class diagram in Fig. 1 by introducing the new classes

Employee, Dependent, and ProjectWorker, and
the associations EmployeeDependent, ProjectMa-

nager, and ProjectWorker. The fact that Pro-

jectWorker is mentioned as a class as well as an

association will be explained below. The object dia-

gram in Fig. 4 shows an example state for the class

diagrams from Fig. 3.

As an example for an object-valued attribute and

as an alternative for the association ProjectMana-

ger, one could extend the class Project by an attri-

bute manager with type Employee. This could

be represented altogether as Project::manager:

Employee.

Collection-Valued Attributes: The collection

kinds set, bag, and sequence have already been intro-

duced. These collection kinds can be used as type

constructors on data types and classes. For building

attribute types, the constructors may be nested.

Examples: An attribute could possess a type like

Set(Project). As an alternative for the associa-

tion ProjectManager one could have one attribute

managedProject:Set(Project) in the class Em-

ployee and another attribute manager:Employee

in class Project. There is however a significant

difference between the model with the association

ProjectManager including the roles manager and

Unified Modeling Language. Figure 4. Example UML object diagram 2.

Unified Modeling Language. Figure 3. Example UML class diagram 2.

Unified Modeling Language U 3235

U

managedProject and the model with the two attri-

butes manager and managedProject. In the model

with the association, the roles managedProject and

manager represent the same set of object connections,

i.e., are inverse to each other:

Employee.allInstances->forAll(e|e.

managedProject->forAll(p|p.manager=e))

Project.allInstances->forAll(p|p.manag-

er.managedProject->includes(p))

This is not required to hold in the model possessing

the two attributes. In this case the two attributes man-

agedProject and manager are independent from
each other and may represent different sets of object

connections.

Another useful application of collection-valued

types are collections over the data types like the com-

plex type Set(Sequence(String)). A value for an

attribute typed in this way could be, for example, the

complex value Set{Sequence{’Rome’,’Euro’},

Sequence{’Tokyo’,’Yen’}}.

Compound Attributes: Apart from using the

collection constructors Set, Bag, and Sequence for

attributes, one can employ a tuple constructor Tuple.

A tuple has a set of components each possessing a

3236U Unified Modeling Language
component discriminator and a component type. The

collection constructors and the tuple constructor may

be nested in an orthogonal way.

Examples: The above value for the type Set(Se-

quence(String)) could be represented also with type

Set(Tuple(Town:String,Currency:String))

and with the corresponding value Set{Tuple

{Town:’Rome’, Currency:’Euro’}, Tuple

{Town:’Tokyo’, Currency:’Yen’}}.

As a further example of a compound attribute

using the Tuple constructor, one identifies in the

class diagram in Fig. 3 the attribute Name in class

Employee which is a compound attribute with type

Tuple(First:String, Last:String).

Role Multiplicities: Associations may be restricted

by specifying multiplicities. In a binary association,

the multiplicity on the other side of a given class

restricts the number of objects of the other class to

which a given object may be connected. In a simple

form, the multiplicity is given as an integer interval

low..high (with low �high) which expresses that

every object of the given class must be connected to at

least low objects and at most high objects of the

opposite class. The high specification may be given

as * indicating no higher bound. A single integer i

denotes the interval i..i and * is short for 0..*. The

multiplicity specification may consist of more than

one interval.

Examples: The multiplicity 1 on the role sup-

porter indicates that an object of class Dependent

must be linked to exactly one object of class Employee

via the association EmployeeDependent.

Association Classes: Associations may be viewed

again as classes leading to the concept of an association

class. Association classes are shown with a class rectan-

gle and are connected to the association (represented

by a line or a rhomb) with a dashed line. Association

classes open the possibility of assigning attributes to

associations.

Examples: The association ProjectWorker is

modeled also as a class: ProjectWorker is an associ-

ation class. This makes it possible to assign the attribute

PercentageOfTime to the association Project-

Worker. In the class diagram, ProjectWorker is

redundant as both the class name and the association

name; the specification as the class name would be

sufficient.

Generalizations: Generalizations are represented

in UML with directed lines having an unfilled small
triangle pointing to the more general class. Usually the

more specific class inherits the properties from the

more general class. Generalizations are known in

the database context also as ISA (IS-A) hierarchies.

In the programming language context often the notion

of inheritance shows up. Viewed from the more general

class its more specific classes are its specializations. In

general, a class may have many specializations, and a

class may have many generalizations. A set of general-

izations may be restricted to be disjoint and a set

of generalizations may be classified as complete.

The classification disjoint means that any two

specialized classes are not allowed to have a common

instance. The label complete means that every

instance of the general class is also an instance of at

least one more specialized class. The explicit keywords

overlapping and incomplete may be attached to

sets of generalizations for which no respective restric-

tion is made.

Examples: Figure 5 shows different specializations

of the class Employee. The subclasses Female-

Employee and MaleEmployee represent a disjoint

and complete classification. The subclasses Capri-

cornEmployee, AquariusEmployee, and Pisce-

sEmployee classify employees according to their

birthday (December 22–January 20, January 21–

February 19, February 20–March 20, respectively). This

classification is disjoint but incomplete. The sub-

classes GroundStaffEmployee and FlightStaf-

fEmployeein the context of an airline company are

labeled overlapping and complete, because each airline

employee either works on the ground or during a flight

and, for example, a flight accident is allowed to

work on the ground during boarding and of course

during the flight. The subclasses FrenchEmployee

and ItalianEmployee are overlapping because

employees may have two citizenships, but it is incom-

plete because, e.g., Swiss employees are not taken

into account.

Aggregations: Part-whole relationships are avail-

able in UML class diagrams in two forms [6]. The

first form represents a loose binding between the part

and the whole, the second form realizes a stronger

binding. Both forms can be understood as binary asso-

ciations with additional restrictions. The first form

called aggregation is drawn with a hollow rhomb on

the whole side and is often called white diamond. The

second form called composition is drawn with a filled

rhomb on the whole side and is often called black

Unified Modeling Language. Figure 6. Component as association, aggregation, and composition.

Unified Modeling Language. Figure 5. Different example generalizations and specializations in UML.

Unified Modeling Language U 3237

U

diamond. The links in an object diagram belonging to

a class diagram with a part-whole relationship must be

acyclic if one regards the links as directed edges going

from the whole to the part. This embodies the idea that

no part can include itself as a subpart. Such cyclic links

are allowed however for arbitrary associations. Part

objects from an aggregation are allowed to be shared

by two whole objects whereas this is forbidden for

composition.

Examples: The class diagrams in Fig. 6 show on the

left the association Component already introduced

and on the right two alternatives in which the associa-

tion is classified as an aggregation with a white dia-

mond and as a composition with a black diamond.

Recall that roles are essential in reflexive associations

and therefore in reflexive part-whole relationships.

Here the parent objects play the whole role and the

child objects play the part role. The two object dia-

grams in Fig. 7 explain the differences between associ-

ation, aggregation, and composition. The diamonds

are shown as grey diamonds, a symbol which does

not exist in the UML. If the grey diamond is substituted

by a white diamond, the left object diagram is forbid-

den, because there is a cycle in the part-whole links

which would mean that the object carCtrl is a part of
itself. This would also hold for the other two objects

on the cycle. Recall that if one would have a simple

association instead of the grey diamond, this object

diagram would be allowed. If the grey diamond is

replaced by a white diamond, the right object diagram

is an allowed object diagram. Here, the object

radioCtrl is shared by the objects carCtrl and

truckCtrl. Naturally, if the grey diamond would

become an association, the right object diagram is

allowed as well.

Compositions: Compositions pose further restric-

tions on the possible links in addition to the required

acyclicity. Part objects from a composition cannot be

shared by two whole objects. The table in Fig. 8 gives

an overview on the properties of associations, aggrega-

tions, and compositions.

Examples: The discussion now turns to what hap-

pens in Fig. 7 if the grey diamond is substituted by a

black diamond in order to represent compositions. If

the grey diamond is replaced by a black diamond, the

left object diagram is again forbidden, because there is

a cycle in the part-whole links. If the grey diamond is

replaced by a black diamond, the right object diagram

is a forbidden object diagram for compositions,

because sharing of objects is not allowed in that case.

Unified Modeling Language. Figure 8. Overview on

properties of associations, aggregations and

compositions.

Unified Modeling Language. Figure 7. Forbidden and allowed object diagrams for aggregation and composition.

3238U Unified Modeling Language
To show also a positive example for composition and

aggregation, if the link from motorCtrl to carCtrl

is removed in the left object diagram, it is a valid object

diagram for compositions and aggregations.

Data Types And Enumeration Types: UML offers

a collection of predefined data types with the usual

operations on them. The data types include Integer,

Real, String, and Boolean. Application dependent

enumeration types can also be defined in a class dia-

gram. The enumeration type name is followed by the

list of allowed enumeration literals. Enumeration types

can be used as attribute, operation-parameter or oper-

ation-return types.

Examples: Figure 9 shows two enumeration types

useful in the context of the running example. The type

Gender may represent the gender of an employee and

the type CivilStatus its civil status.

Invariants: OCL allows invariants to be specified,

i.e., conditions which must be true during the com-

plete lifetime of an object (or perhaps more precisely,

at least, in moments when no activity in the object

takes place). Such invariants are implicitly or explicitly
universally quantified OCL formulas introduced with

the keyword context.

Example: In order to require that employees are

atleast 18 years of age, one could state the following

invariant.

context Employee inv EmployeeAreAtLeast18:

Age>=18

This constraint has an implicit variable self of

type Employee and is equivalent to:

context self:Employee inv EmployeeAreAtLeast18:

self.Age>=18

Instead of self one could have used any other

name for the variable, e.g., the variable e. The invariant

Unified Modeling Language. Figure 9. Enumerations in

UML.

Union U 3239

U

corresponds to the following OCL formula which must

be true in all system states.

Employee.allInstances->forAll(self|self.age>=18)

Key Applications
UML class diagrams are widely used to describe structur-

al aspects for databases (see [7,14], among other relevant

papers). OCL constraints are applied for the specification

of database integrity. OCL may also be regarded as an

object-oriented navigation and query language.

Cross-references
▶Data Model

▶ ER Model

▶ Extended Entity-Relatioinship Model

▶Object Constraint Language

▶ Specialization and Generalization

Recommended Reading
1. Booch G. Object-Oriented Design with Applications. Benjamin-

Cummings, Menlo Park, CA, 1991.

2. Chen P.P. The Entity-Relationship Model – Toward a Unified

View of Data. ACM Trans. Database Syst., 1(1):9–36, 1976.

3. Gogolla M., Büttner F., and Richters M. USE: A UML-based

Specification Environment for Validating UML and OCL. Sci.

Comput. Program., 69:27–34, 2007.

4. Gogolla M. and Richters M. Expressing UML class diagrams

properties with OCL. In Advances in Object Modelling with

the OCL, T. Clark, J. Warmer (eds.). Springer, Berlin Heidelberg

New York, 2001, pp. 86–115.

5. Harel D. Statecharts: a visual formalism for complex systems.

Sci. Comput. Program., 8(3):231–274, 1987.

6. Jacobson I., Christenson M., Jonsson P., and Oevergaard G.

Object-Oriented Software Engineering: A Use Case Driven

Approach. Addison-Wesley, Reading, MA, USA, 1992.

7. Marcos E., Vela B., and Cavero J.M. A methodological approach

for object-relational database design using UML. Software Syst.

Model., 2(1):59–75, 2003.

8. OMG (ed.). OMG Unified Modeling Language Specification.

OMG, 2007. www.omg.org.
9. Rumbaugh J., Blaha M., Premerlani W., Eddy F., and Lorensen W.

Object-Oriented Modeling and Design. Prentice-Hall, Engle-

wood Cliffs (NJ), 1991.

10. Rumbaugh J., Booch G., and Jacobson I. The Unified Modeling

Language Reference Manual, 2nd edn. Addison-Wesley,

Reading, MA, USA, 2005.

11. SOSYM Editorial Board. Software and Systems Modeling.

Springer, Berlin Heidelberg New York, 2007.

12. Toval J.A., Requena V., and Fernandez J.L. Emerging OCL tools.

Software Syst. Model., 2(4):248–261, 2003.

13. UML and MODELS Steering Committee. International ACM/

IEEE Conference on Model Driven Engineering Languages and

Systems MODELS (previously ACM/IEEE International Confer-

ence on the Unified Modeling Language UML). http://www.

modelsconference.org/.

14. Urban S.D. and Dietrich S.W. Using UML class diagrams for a

comparative analysis of relational, object-oriented, and object-rela-

tional database mappings. In Proc. of 34th SIGCSE Technical

Symp. on Computer Science Education, 2003, pp. 21–25.
Uniform Resource Identifier

▶Resource Identifier
Union

CRISTINA SIRANGELO

University of Edinburgh, Edinburgh, UK

Synonyms
Union

Definition
The union of two relation instances R1 and R2 over the

same set of attributes U – denoted by R1 [R2 – is

another relation instance over U containing precisely

the set of tuples t such that t 2 R1 or t 2 R2.

Key Points
The union is one of the primitive operators of

the relational algebra. It is a natural extension of the

set union to relations; the additional restriction is

that it can be applied only to relations over the

same set of attributes. However the union of two

arbitrary relations having the same arity can be

obtained by first renaming the attributes of one of

the two relations.

3240U Uniqueness Constraint
As an example, consider a relation Students over

attributes (number, name), containing tuples {(1001,

Black), (1002, White)}, and a relation Employees over

attributes (number, name), containing tuples {(1001,

Black), (1003, Brown)}. Then the union Students [
Employees is a relation over attributes (number, name)

with tuples {(1001, Black), (1002, White), (1003,

Brown)}.

In the absence of attribute names, the union is

defined on two relations with the same arity. The output

is a relation with the same arity as the input, containing

the union of the sets of tuples in the two input relations.

The union operator is commutative and associa-

tive. The number of tuples in the output relation is

bounded by the sum of the number of tuples in the

input relations.

Cross-references
▶Relation

▶Relational Algebra

▶Renaming
Uniqueness Constraint

▶Key
Unnoticability

▶Unobservability
Unobservability

SIMONE FISCHER-HÜBNER

Karlstad University, Karlstad, Sweden

Synonyms
Unnoticability

Definition
Unobservability ensures that a user may use a resource

or service without others, especially third parties,

being able to observe that the resource or service

is being used [1].
A corresponding, but more general definition is

provided by [2]. Unobservability of an item of interest

(e.g., a subject, messages, action) means that all unin-

volved subjects cannot sufficiently distinguish whether

or not it exists. Besides, anonymity of subjects involved

in the item of interest is provided even against the

other subjects involved in that item of interest.
Key Points
Whereas anonymity and pseudonymity protect the

relationship of subjects to other items of interest (e.g.,

the fact that a specific user has sent a message), unob-

servability protects information about the very existence

of the item of interest against uninvolved parties (e.g.,

the fact that a message was sent). With respect to the

same attacker, if a subject’s action is unobservable, then

the user is also anonymous (see also [2]).
Cross-references
▶Anonymity

▶ Pseudonymity

▶ Privacy

▶ Privacy-Enhancing Technologies
Recommended Reading
1. Common Criteria Project, Common Criteria for Informa-

tion Technology Security Evaluation, Version 3.1, Part 2: Secu-

rity Functional Requirements, www.commoncriteriaportal.org,

September, 2006.

2. Pfitzmann A. and Hansen M. Anonymity, Unlinkability,

Unobservability, Pseudonymity, and Identity Management – A

Consolidated Proposal for Terminology, Version 0.29,

available at: http://dud.inf.tu-dresden.de/Anon_Terminology.

shtml (accessed on July, 2007).
Unsupervised Learning

▶Cluster and Distance Measure

▶Clustering Overview and Applications
Unsupervised Learning on
Document Datasets

▶Document Clustering

Updates and Transactions in Peer-to-Peer Systems U 3241
Until Changed

▶Now in Temporal Databases
Update Propagation in Peer-to-Peer
Systems

▶Updates and Transactions in Peer-to-Peer Systems
U

Updates and Transactions in
Peer-to-Peer Systems

ZACHARY IVES

University of Pennsylvania, Philadelphia, PA, USA

Synonyms
Consistency in peer-to-peer systems; Update propaga-

tion in peer-to-peer systems

Definition
In recent years, work on peer-to-peer systems has

started to consider settings in which data is updated,

sometimes in the form of atomic transactions, and

sometimes by parties other than the original author.

This raises many of the issues related to enforcing con-

sistency using concurrency control or other schemes.

While such issues have been addressed in many ways

in distributed systems and distributed databases, the

challenge in the peer-to-peer context is in performing

the tasks cooperatively, and potentially in tolerating

some variation among the instances at different nodes.

Historical Background
Early peer-to-peer systems focused on sharing or query-

ing immutable data and/or files. More modern uses of

peer-to-peer technology consider settings in which dy-

namic data and updates are being made in a distributed,

autonomous context. A question of significant interest

is how to define consistency in this model, while still

allowing at least some autonomy among the sites.

Foundations
The database community has only recently begun to

consider peer-to-peer architectures for applications

beyond query answering, with recent work in peer
data exchange [10] and collaborative data sharing

[16]. However, a popular model has been that of

distributed stream processing, in which streams of

data (usually interpreted as insertions of new data)

are processed in a distributed or peer-to-peer network

[1,7]. Additionally, work in the distributed systems

community, particularly on file systems, must consider

many issues related to distributed replication and con-

sistency with the granularity of updates typically being

at the level of the file, or custom to an application. (See

the entry on peer-to-peer storage.)

The work on updates and transactions in peer-to-

peer systems can be classified based onwho is allowed to

modify it, and how conflicting modifications are re-

solved. This can be divided into the following categories:

Single Owner/Primary Copy is a setting in which

each data item that originates from some source peer

p can only be modified by (or through) p – i.e., no

other peers are allowed to directly modify that data.

Owner-Resolver protocols allow multiple peers to

modify the data, and they typically rely on the owner

to resolve any conflicts. If resolution is impossible, they

‘‘branch’’ the data into fully independent instances.

Consensus protocols allow multiple peers to modify

the data, and some set of nodes works together to

determine how to arbitrate for consistency.

Partial Divergence schemes handle conflicts in a

way that results in multiple divergent copies of the

data, but they operate at a finer level of granularity

than divergent replica protocols, and they allow some

portions of the data instance to remain shared even

after ‘‘branching’’ two instances.

The remainder of this entry provides more detail

on the different approaches and their common

implementations.

Single-Owner/Primary Copy

In the simplest schemes, each data item is owned by

a single source, which may update that data. Many

other nodes may replicate the data but may not change

it (except, perhaps, by going through the primary copy

at the owner). This is sometimes referred to as the

single-writer, multiple readers problem. In this type of

scheme, the owner of the data uses a timestamp (logi-

cal or physical) to preserve the serial order of updates,

or to arbitrate among different verions of the data.

Since there is a single owner and a single clock, any

node can look at the data and deterministically choose

an ordering.

3242U Updates and Transactions in Peer-to-Peer Systems
In the database world, peer-to-peer stream proces-

sing or filtering systems, e.g., ONYX [7] and PIER

[11], can be considered systems in which each data

item (tuple or XML tree) has a single owner. When

new data arrives on the stream, this appends to or

replaces the previous data items from the same source.

P2P file systems have also employed a single-owner

scheme that provides very interesting properties. In

particular, CFS [5], PAST [8], and similar systems

build a filesystem layer over distributed hash tables

(DHash and Pastry, respectively), where every version

of the file is maintained in the distributed hash table.

In these approaches, a user must ask for a file by name

and version; the latest version can be obtained from the

file’s owner or from a trusted third party. This model is

exemplified by CFS, which retrieves the file as follows:

first, it cryptographically hashes the filename and

version, receiving a key from which the file’s current

block map can be fetched. This map contains an or-

dered list of keys corresponding to the individual

blocks in the requested version of the file. Each block

can be fetched using its key; the key actually represents

the hash of the block’s content. This content-based

hashing scheme for blocks has a two key benefits:

(i) if two files or file versions share a page with iden-

tical content, CFS will store only one copy of the

page and will use it in both files; (ii) CFS will employ

caching as blocks are requested, and the cache

lookup mechanism can be based on hashing, rather

than naming, content.

Owner-Resolver

Coda [12] relaxes the single-owner scheme described

above, in allowing data to be replicated throughout a

network, and for changes to be made to the replicas.

Coda’s focus is on allowing updates in the presence of

network partition: nodes might need to make changes

without having access to the primary copy. Once con-

nectivity is restored, the newly modified replica must be

reconciled with the original data and any other changed

replicas; Coda does this by sharing and replaying logs of

changes made to the different replicas. If Coda deter-

mines that multiple concurrent changes were made,

then activates an application-specific conflict resolver

that attempts to resolve the conflicts. In the worst

case, the data may need to be branched.

Bayou [9] uses a very similar scheme, except that

changes to replicas are propagated in pairwise fashion

across the network (an epidemic protocol) instead of
sent directly to each file’s owner. Nodes maintain logs

of the updates they know about, including other nodes’

updates; as they communicate, they exchange logs and

merge them in pairwise fashion (this is an epidemic

protocol). If conflicts occur, an application-specific

merge procedure is triggered. Eventually the logs reach

a primary node, which determines the final order of

updates.

Building even further on the notion of epidemic

protocols, work by Datta et al. [6] focuses on settings

in which conflicts are unlikely to arise at all. It adopts an

epidemic protocol that provides eventual consistency

across the network. In this model, a peer that makes

an update pushes a notification to subset of its neigh-

boring peers, who may in turn forward to additional

peers. This is likely to keepmany of the peers ‘‘relatively’’

up to date. When a peer has not received an update in a

while, or if it comes back online, it tries to determine the

latest state by executing a ‘‘pull’’ request.

Consensus

Coda and Bayou allowed for concurrent updates, but

relied on the holder of the primary copy to resolve

conflicts. An alternative is to reconcile conflicts through

some sort of voting or consensus scheme. Like Bayou,

Deno [4] uses an epidemic protocol, in which nodes

share information in pairwise fashion about new

updates. Here, updates are grouped into transactions

that are to be atomically committed or aborted. For

each transaction that is not blocked (i.e., waiting for

another transaction to complete), a distributed vote

is executed to determine whether the transaction

should be committed. Nodes gossip by exchanging

information about transactions and votes; ordering

information is maintained using version vectors [15].

If a majority of nodes vote for the transaction, rather

than any other transactions that have conflicting

updates, then the transaction is committed.

A number of filesystems, including BFS [3], Ocean-

Store [13], Farsite [2], make use of quorums of nodes

that manage the sequencing on updates: these nodes

essentially serve very similarly to the single owner

schemes described previously, in that they must be

contacted for each update in sequence, and they define

the serialization order of updates.

Partial Divergence

Two more recent works – one focused on filesystems,

and the other on database instances – enable a scheme

Updates and Transactions in Peer-to-Peer Systems U 3243

U

for managing inconsistency based on peers’ individual

trust policies.

Like CFS, Ivy [14] is a filesystem built over the

DHash distributed hash table. However, Ivy provides

NFS-like semantics including the ability to modify

files, and it does so in a novel way. Ivy has one update

log per peer, and such logs are made publicly available

through DHash. As a peer modifies a file, it writes these

changes to its own update log (annotating them with

version vectors [15] so sequencing can be tracked). As

the peer reads a file, it may consult all logs; but it may

also ignore some logs, depending on its local trust

policy. However, Ivy assumes that it is highly undesir-

able for each peer to get a different version of a file

(because this would prevent sharing); hence, sets of

peers share a view of the file system – all files in the

view have the same consistent version.

Finally, the Orchestra [16] collaborative data shar-

ing system focuses on sharing different database

instances in loose collaborations: here, multiple peers

wish to share updates with one another, but each peer

may selectively override the updates it receives from

elsewhere. Each peer may adopt its own trust policies

specifying (in a partial order) how much it trusts

the other peers. Orchestra is specifically motivated by

scientific data sharing: for instance, organizations

holding proteomics and genomics data wish to import

data from one another, and to refresh this imported

data; however, since the data is often unreliable, each

peer may wish to choose the version from the site it

trusts most, and then independently curate (revise,

correct, and annotate) the resulting data.

InOrchestra, as inDeno, all updates are grouped into

atomic transactions. Here, each peer uses its local trust

policies to choose among conflicting transactions –

such a transaction will be accepted by the peer, and all

conflicting transactions will be rejected. If a transaction

X from a particular peer is rejected, then all subsequent

transactions from that same peer that directly modified

theresultsofX are also transitively rejected. In this trust

model, the common case is that transactions come to a

target peer C from a trusted peer and does not conflict

with any others; hence they are immediately applied to

C. Otherwise, trust composes as follows: as a transaction

is propagated from peer A to peer B to peer C, it is only

applied at C if it is the most trusted transaction at each

step; if multiple conflicting transactions can be applied

at C, then the one most trusted by C is applied. Orches-

tra allows instances to ‘‘partially diverge’’ where there
are conflicts, while still maintaining sharing for portions

of the data where there are no conflicts.
Key Applications
Recent applications of peer-to-peer technologies in-

clude distributed network monitoring, distributed

stream processing, and exchange of data among colla-

borating organizations that host scientific databases. In

all of these settings, data may be frequently updated.
Future Directions
One of the most promising directions of future study is

the interaction between transactions and mappings or

conversion routines: in many real-world applications,

data is being shared between sites that have different

data representations. There is some work (e.g., that

related to view maintenance) that shows how to trans-

late updates across mappings; but there is no scheme

for mapping transactions.
Cross-references
▶Distributed Concurrency Control

▶Distributed Databases

▶ Epidemic Algorithms

▶ Peer-to-Peer Storage

▶Transaction

Recommended Reading
1. Balazinska M., Balakrishnan H., and Stonebraker M. Demon-

stration: Load management and high availability in the Medusa

distributed stream processing system. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2004.

2. Bolosky W.J., Douceur J.R., Ely D., and Theimer M. Feasibility

of a serverless distributed file system deployed on an existing set

of desktop PCs. In Proc. 2000 ACM SIGMETRICS Int. Conf. on

Measurement and Modeling of Comp. Syst., 2000.

3. Castro M. and Liskov B. Practical Byzantine fault tolerance

and proactive recovery. ACM Trans. Comput. Syst., 20(4): 2002.

4. Cetintemel U., Keleher P.J., Bhattacharjee B., and Franklin M.J.

Deno: a decentralized, peer-to-peer object-replication system for

weakly connected environments. IEEE Trans. Comput.,

52(7):943–959, Jul 2003.

5. Dabek F., Kaashoek M.F., Karger D., Morris R., and Stoica I.

Wide-area cooperative storage with CFS. In Proc. 18th ACM

Symp. on Operating System Principles, 2001.

6. Datta A., Hauswirth M., and Aberer K. Updates in highly unre-

liable, replicated peer-to-peer systems. In Proc. 23rd Int. Conf.

on Distributed Computing Systems, 2003.

7. Diao Y., Rizvi S., and Franklin M.J. Towards an Internet-Scale

XML Dissemination Service. In Proc. 30th Int. Conf. on Very

Large Data Bases, 2004.

3244U Updates through Views
8. Druschel P. and Rowstron A. PAST: A Large-Scale, Persistent

Peer-to-Peer Storage Utility. In Proc. 8th Workshop on Hot

Topics in Operating Systems, 2001.

9. Edwards W.K., Mynatt E.D., Petersen K., Spreitzer M.J.,

Terry D.B., and Theimer M.M. Designing and implementing

asynchronous collaborative applications with Bayou. In Proc. 10th

Annual ACM Symp. on User Interface Software and Technology,

1997.

10. Fuxman A., Kolaitis P.G., Miller R.J., and Tan W.C. Peer data

exchange. In Proc. 24th ACM SIGACT-SIGMOD-SIGART

Symp. Principles of Database Systems, 2005.

11. Huebsch R., Hellerstein J.M., Lanham N., Loo B.T., Shenker S.,

and Stoica I. Quering the Internet with PIER. In Proc. 29th Int.

Conf. on Very Large Data Bases, 2003.

12. Kisler J. and Satyanarayanan M. Disconnected operation in the

coda file system. ACM Trans. Comput. Syst., 10(1), 1992.

13. Kubiatowicz J., Bindel D., Chen Y., Czerwinski S., Eaton P.,

Geels D., Gummadi R., Rhea S., Weatherspoon H., Weimer W.,

Wells C., and Zhao B. OceanStore: an architecture for global-scale

persistent storage. In Proc. 9th Int. Conf. on Architectural Sup-

port for Programming Languages and Operating Systems, 2000.

14. Muthitacharoen A., Morris R., Gil T.M., and Chen B. Ivy: A

Read/Write Peer-to-Peer File System. In Proc. 5th USENIX

Symp. on Operating System Design and Implementation, 2002.

15. Parker Jr. D.S., Popek G.J., Rudisin G., Stoughton A., Walker B.J.,

Walton E., Chow J.M., Edwards D.A., Kiser S., and Kline C.S.

Detection of mutual inconsistency in distributed systems.

IEEE Trans. Software Eng., 9(3), 1983.

16. Taylor N.E. and Ives Z.G. Reconciling while tolerating dis-

agreement in collaborative data sharing. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2006.
Updates through Views

YANNIS VELEGRAKIS

University of Trento, Trento, Italy

Definition
Views are windows to a database. They provide access to

only a portion of the data that is either of interest or

related to an application. Views are relations without

independent existence, as is the case of database tables

created with the ‘‘create table’’ command. The contents

of the instance of a view are determined by the result of a

query on a set of database tables, typically referred to as

base tables. Applications deal with views the same way

they deal with any other relation. In fact, an application

is rarely aware of whether a relation it is accessing is a

base table or a view. This means that the applicationmay

issue updates on the view relation as it would have done

with any other database table. Since the view instance
depends on the instances of the base tables, to execute an

update on the view one needs to find a number of base

table modifications whose effect on the view instance

is the modification described by the update command.
Historical Background
Views are one of the oldest concepts in computer

science. They appeared almost at the same time with

queries. In the early 1980s, as database vendors were

moving towards the relational model, Codd intro-

duced twelve rules that need to be satisfied by a data-

base management system in order to be considered

relational. Rule number six was referring to the concept

of views and in particular, to the ability of the views

to be updated when they are theoretically updatable, a

concept that will be explained below.

The scientific literature contains different defini-

tions (and uses) of the term ‘‘view,’’ with two of them

being dominant. The first is that a view is a relation

whose instance depends (somehow) on the data of

its base tables, and the second is that a view is a

short-hand for a query. For query answering, those

two definitions are equivalent, but for the purpose

of updating, the definition that is considered makes

a difference. They have different consequences. Con-

sidering the view as a query, implies that at any given

point in time the instance of a view is fully specified

by the results of the view query over the data, i.e., the set

of possible instances of a view is the set of possible

relations that can be generated as a result of the view

query. A consequence of this is that the view might not

be theoretically updatable, which means that there are

updates on the view that cannot be translated to

updates on the base tables. Recently, Kotidis et al. [8]

have relaxed that requirement to accept views whose

instance may be different from the result of their view

query in order to allow arbitrary updates on the view.

Update propagation is one of the main issues in

view updates. When multiple views share the same

piece of data from the base tables, all these views

should have consistent instances. This means that

when some part of the data is updated, this change

must propagate accordingly to the base tables and the

other views. For the case of materialized views, and

updates on the base tables, this is a well-studied prob-

lem, namely the view maintenance [10]. View mainte-

nance has considered how to change the instances of

the views in response to base table modifications.

Updates through Views U 3245

U

However, updates on the views have not been studied

to the same extend.

Foundations
A database D = <S, I> is a collection of data along

with a description of its structure. The collection of

data is referred to as the database instance I and

the description of its data structures as the database

schema S. In the relational model, a database instance is

a set of relations, and the schema is the set of schemas

of these relations. The contents of a relation, i.e., its

instance, may be explicitly specified by a user or an

application, or they may be derived from the contents

of other relations. Relations of the first kind are those

constructed using the ‘‘create table’’ command and are

often referred to as base tables. Relations of the second

kind are referred to as views. A view is accompanied by

a query which is referred to as the view query and

specifies how its contents will be derived from the

contents of the base tables.

The term ‘‘update’’ on a relation implies an inser-

tion, a deletion, or a value modification of one or more

tuples. The literature often chooses to ignore modifi-

cations on the basis that a modification can be mod-

eled as a deletion followed by an insertion. The same

assumption is followed here.

Let U denote an update command on a relation R,

|R| the instance of R and |U| the tuple(s) that need to

be inserted in |R| (if U is an insert command) or

deleted from |R| (if U is a delete command).

The implementation of an update U on a relation R

is a new relation R0 such that:

� |R|0 = |R| – |U| if U is a delete command, and

� |R|0 = |U| [|R| if U is an insert command

In the case of a base table, the implementation of an

update is straight forward (it is done by directly mod-

ifying the contents of the base table instance according

to the update command). In the case of a view the

situation is different. Since the view instance depends

on the instances of its base tables an implementation is

performed by translating the view update command

into a series of updates on the base tables so that the

requested update is observed in the view instance.

Figure 1 provides a graphical representation of this

notion. Qv(I) denotes the application of the view

query Qv on the database instance I. The result of this

query is the instance |V| of the view V. Given an update

command U on the view V, the view update problem is
defined as the problem of finding an update W, re-

ferred to as the translation of U, on the instance I such

that when the view query is applied on the new mod-

ified instance W(I), the new view instance |V|0 = Qv(W

(I)) is an implementation of the update U.

For a given update U, there may be multiple possi-

ble translations. The following example illustrates such

a situation. Consider a database instance that consists

of a table Personnel (Department, Employee) with tuples

{[Administration, Smith], [HR, Smith], [Research,

Kole]} and the view

V1: select Department from Personnel where

Employee = ‘‘Smith’’

The instance of view V1 consists of the two tuples

[Administration, Smith] and [HR, Smith]. Let U1 be

an update command that requests the deletion of tuple

[Administration, Smith] from V1. There are many

possible changes that can be done on the instance of

Personnel in order to make tuple [Administration,

Smith] disappear from the instance of view V1. The

most obvious one is to simply delete tuple [Adminis-

tration, Smith] from Personnel. Alternatively, one

could update the value of its Employee attribute from

‘‘Smith’’ to null or to some value other than ‘‘Smith.’’

Even changing the Department attribute from ‘‘Admin-

istration’’ to some other value ‘‘Y’’ will have the desired

effect of removing tuple [Administration, Smith] from

the view. Thus, each of the aforementioned changes

constitutes an implementation of the view update U1.

They are not, however, equivalent. Each translation

may be considered appropriate in different situations.

The first translation, for instance, achieves the desired

result and only this by deleting only one tuple from the

database instance. The second achieves the result with-

out reducing the number of tuples in the database

instance, and the latter will cause the appearance of

the additional tuple [Y, Smith] in the view, which

makes the specific translation less appealing.

For the case of a view deletion, the first step in

finding a view update translation is to find the prove-

nance of the tuples that are to be deleted from the view,

i.e., the tuples in the base tables that are responsible for

the appearance in the view of the tuples that are to

be deleted [4,5]. Researchers have concentrated their

efforts in detecting the minimum number of changes

that need to be made on the base tables in order to

achieve the view update (source-side-effect). These

changes, as mentioned previously through the

3246U Updates through Views
example, may result in additional changes in the view

instance apart from the one requested by the

view update command. Thus, another important

desideratum is to find translations that minimize the

number of changes in the view (view-side-effect). In

certain cases, these two desiderata may conflict.

Finding a translation of a view deletion that mini-

mizes the changes in the base tables or/and the view is

in general an NP-hard problem, even with monotone

view queries. The complexity remains NP-hard even

for the very restrictive classes of views with select-

project-join or select-join-union view queries [4].

A different approach to the view update problem is

to deal with it at the semantic level. This approach has

been advocated by many early researchers [1]. Their

position is that at the moment of view definition, the

data administrator needs to specify how each update on

the view will be translated to updates on the base tables.

This is a safe approach that guarantees a semantically

correct translation. However, this approach may be

hard to apply in certain practical situations. One reason

is that views may have been defined at a point in which

updates were not of interest and the correct transla-

tion semantics may be difficult to infer. Furthermore,

even if the data designer is aware of the existence of

updates on the view, she may not be able to predict at

themoment of view definition all the different semantics

of the possible view update commands. For instance,

the deletion of the [Administration, Smith] tuple in

the example abovemay be simply because Smith stopped

working for the Administration department, or because

he moved from the Administration to another depart-

ment. Another reason why this approach is difficult to

implement is that views may have been introduced as

replacements of tables in cases of physical or logical data

reorganization, in which case again, more than one

alternative translation may be semantically correct.

Keller [7] has provided a detailed classification of

the different kinds of view update translations for
Updates through Views. Figure 1. The updates through

views problem.
projections, selections, select-project-join, and select-

project-join-union views. Through an interactive

procedure with the data administrator at the time of

the view definition, the system tries to infer the right

translation rules. At the other end, Dayal and Bernstein

[6] have studied the classes of views for which the

translation of an update is not ambiguous. For

the case of translation ambiguity or the case in which

it is possible to implement the update but with

more changes in the view instance than those the

view command requested, then the update may not

be allowed.

A different approach in finding a view update trans-

lation is to reduce it to a constraint satisfaction problem

[9]. Relational views can be represented as conditional

tables and a view update can be translated into a dis-

junction of a number of constraint satisfaction pro-

blems (CSPs). Solutions to the CSPs correspond to

possible translations. For the case of multiple candidate

translations, semantic information to resolve ambiguity

can be modeled as additional constraints.

The problem of updates through views appears

also in other models, such as the object views or

XML. Since most of the studies have been done for

the relational model, one way to deal with the problem

of updating object or XML views is to abstract it to the

relational case [2,3].

Key Applications
Information Integration Systems. IIS are used to pro-

vide a unified view of data that is stored in multiple

heterogeneous and physically distributed data sources.

The majority of such systems are read-only, since

data maintenance is considered to be an exclusive res-

ponsibility of the owner of each data source. This situa-

tion is gradually changing. Integrated views provide

an excellent opportunity for detecting errors and incon-

sistencies among the different data sources. Once these

inconsistencies are detected and corrected at the

view level, the data in the sources will have to be accord-

ingly updated.

Corporate Environments.Multiple different systems

may operate in different parts of an organization, but

centralized data management is crucial for decision

making and policy implementations. Views provide

the mean to propagate changes from the centralized

level to the individual systems of the organization.

P2P. P2P systems use views to describe the relation-

ships between the contents of one peer and its

Usability U 3247
acquaintances. When a modification takes place in one

of the peers, the views are used to determine its effects

(if any) on the contents of its adjacent peers.

Database Management Systems. View support has

been prevalent in Database Management Systems. They

provide physical data independence, i.e., decoupling

the logical schema from the physical design which is

usually driven by performance reasons. By controlling

access to the views, one can control access to different

parts of the data and implement different security poli-

cies. It is not uncommon the case of databases that

provide access to their data exclusively through views.

For them the ability to perform arbitrary updates on

the views is becoming a necessity since the only way

to update the stored information is by issuing updates

on the views.

WEB. The World Wide Web has evolved to be

the world’s largest database where organizations

and individuals publish their information and data.

Web users are then using applications and integration

engines to query and retrieve that information. Since

the users have no access to the individual sources, the

web in its current form is a read-only system, restricting

the potential of its million users. If the Web is to be

brought from its read-only status into a full-fledged

database, allowing updates on the web views to propa-

gate to the sources is a fundamental requirement.
Cross-references
▶ Provenance

▶ Side-Effect-Free View Updates

▶View Maintenance
U

Recommended Reading
1. Aaron B., Jeffrey A. Vaughan, and Benjamin C. Pierce. Relational

lenses: a language for updatable views. In Proc. 27th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2006, pp. 338–347.

2. Barsalou T., Siambela N., Keller A.M., and Wiederhold G.

Updating relational databases through object-based views. In

Proc. ACM SIGMOD Int. Conf. on Management of Data,

1991, pp. 248–257.

3. Braganholo V.P., Davidson S.B., and Heuser C.A. On the updat-

ability of XML views over relational databases. In Proc. 6th

Int. Workshop on the World Wide Web and Databases, 2003,

pp. 31–36.

4. Buneman P., Khanna S., and Tan W.C. On propagation of dele-

tions and annotations through views. In Proc. 21st ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 2002, pp. 150–158.
5. Cui Y., Widom J., and Wiener J.L. Tracing the lineage of view

data in a data warehousing environment. ACM Trans. Database

Syst., 25(2):179–227, 2000.

6. Dayal U. and Bernstein P. On the correct translation of update

operations on relational views. ACM Trans. Database Syst.,

8(3):381–416, 1982.

7. Keller A.M. Choosing a view update translator by dialog at view

definition time. In Proc. 12th Int. Conf. on Very Large Data

Bases, 1986, pp. 467–474.

8. Kotidis Y., Srivastava D., and Velegrakis Y. Updates through

views: a new hope. In Proc. 21st Int. Conf. on Dara Engineering,

2005.

9. Shu H. Using constraint satisfaction for view update translation.

In Proc. 21st Int. Conf. on Data Engineering, 2005.

10. Widom J. Research problems in data warehousing. In Proc. Int.

Conf. on Information and Knowledge Management, 1995,

pp. 25–30.
URI

▶Resource Identifier
Usability

NIGEL BEVAN

Professional Usability Services, London, UK

Synonyms
User centered design
Definition
Aproduct is usable if the intended users can achieve their

goals with effectiveness, efficiency and satisfaction in a

specified context of use [8]. Usability is achieved by

taking a user-centered approach to design, and thus

ensuring that the product incorporates characteristics

that support usability.
Historical Background
Usability was adopted as a technical term to replace

the phrase ‘‘user friendly,’’ which by the early 1980s had

acquired undesirably vague and subjective connota-

tions. It is a goal for product design in the scientific

fields of HCI, human factors and ergonomics. In 1985

3248U Usability
Gould and Lewis [5] described the central principles

of what became known as user-centered design [15]:

(i) early focus on users and tasks., (ii) empirical mea-

surement, (iii) iterative design.

Usability has since grown into an established dis-

cipline with the Usability Professionals Association

founded in 1991, and the landmark book by Nielsen on

Usability Engineering [13] published in 1993.

Although the field of usability overlaps with human

factors and ergonomics, it tends to be associated with

systems that have discretionary users. Human factors

and ergonomics have traditionally focused on how

human capabilities can be integrated into pre-defined

tasks and work systems. Usability is more typically

concerned with designing applications to support users

and tasks that are often not well-understood.
Foundations
The broad interpretation of usability is the user’s expe-

rience of the quality of the system in use [1]: to what

extent the user is successful in achieving their goals

(effectiveness), in an acceptable amount of time (effi-

ciency), without undesirable side-effects (safety), and

in a way that satisfies the user? While this interpreta-

tion is preferred by people working in the field, in

systems development usability is often interpreted

more narrowly as ease of use (as in the 1991 definition

of usability in ISO 9126 [10]). More recently it has

been appreciated that the prerequisites for achieving

usability as a goal include not only software and hard-

ware with appropriate functionality, reliability and

ease of use, but also usable data [12].

The broad interpretation of usability is thus a black

box view at the system level, measured in terms of

success in achieving goals for effectiveness, efficiency,

safety and satisfaction (Fig. 1). It is a result of the user’s
Usability. Figure 1. System usability.
interaction with the product, and is facilitated by app-

ropriate product characteristics.

In the context of databases, the major product

characteristics for usability are software and data.

Software Usability

There are many well-established design principles and

standards, both for general software usability, and for

web usability. At a high level they include heuristics

such as [13]:

� Use simple and natural dialogue, and speak the

users’ language.

� Minimize user memory load.

� Be consistent in screen and task design.

� Provide feedback in response to user input.

� Provide shortcuts and clearly marked exits.

� Prevent errors and provide informative error mes-

sages, help and documentation.

At a detailed level ISO 9241 [8] contains comprehen-

sive interface guidelines, and the US Government

has produced an authoritative and well-documented

set of web design guidelines [18].

Data Usability

ISO is developing a model for data quality [7]. Data

characteristics that contribute to overall system usabil-

ity include completeness, depth of information, accu-

racy and understandability. Poor data quality makes

it very difficult for users to achieve their goals, even if

the user interface is easy to use.

For example, an online train timetable will have

poor usability if the data is not usable, for example if:

� The destinations or types of ticket are incomplete.

� There is insufficient depth of information about the

destinations or types of ticket

Usability U 3249
� Any of the train times or ticket information are

inaccurate

� The user cannot understand the names used for

the destinations or types of ticket.

Key Applications

User Centered Design

A product will only be usable if the design and devel-

opment process is based on an in depth understanding

of the range and types of intended users, their task, and

the physical, technical and social environments of use.

Potential design solutions need to be continually eval-

uated from a user perspective from the earliest stages

of design. The activities necessary to achieve user cen-

tered design are described at a high level in ISO 13407

[9], and in more detail in ISO 18529 [9].

Key activities are illustrated in Fig. 2:

1. Planning. The nature and complexity of the user-

centered activities should depend on the importance

of usability, and a judgement on which particular

activities are necessary for project success.

2. Context of Use. Detailed information about the

context of use is an essential input to requirements,

and provides a basis for prioritizing testing.

3. User and Organizational Requirements. These

should be specified both at a high level in terms
Usability. Figure 2. User centered design process.
of user performance and satisfaction, and at a more

detailed level of user interface characteristics.

4. Early design solutions should be produced as

mock-ups, typically paper-based, simulations for

exploratory testing [17]. Later in development,

computer simulations can be used evaluate the

user interface.

5. Designs should be evaluated from a user perspec-

tive using both expert and user-based methods, to

obtain design feedback, and to establish whether

requirements have been met.

Context of Use

The characteristics of the users, tasks and the organi-

zational and physical environment define the context

in which the system is used. It is important to gather

and analyze information on the current context in

order to understand and then specify the context

that will apply in the future system. Analysis of exist-

ing or similar systems can provide information on a

whole range of context issues including needs, pro-

blems and constraints that might otherwise be

overlooked.

Methods for identifying the context range from

collecting information in a workshop attended by the

relevant stakeholders, to detailed field studies and task

analysis.
U

3250U Usability
User and Organizational Requirements

User needs should be identified in conjunction with

identifying the context of use. The system require-

ments should include criteria for user performance,

for minimization of adverse effects and for user

satisfaction. These are most easily set in relation

to baseline values for a comparable existing system.

More detailed requirements should be developed

iteratively incorporating feedback from early design

solutions.

Design Solutions

Using simulations, mock-ups or prototype allows

designers to communicate in a meaningful way what

the proposed design is/would be like to users and other

stakeholders. Paper prototypes can be very effective

ingathering feedback [17]. The design should be con-

sistent with established principles for software and data

usability [8,12].

Usability Evaluation

Usability evaluation will reveal the strengths and weak-

ness in the design solution and can indicate where the

design should be improved.

Feedback from usability evaluation is particularly

important because developers seldom have an intimate

understanding of the user’s perspective and work prac-

tices. Initial designs therefore very rarely fully meet

user requirements. The cost of rectifying any diver-

gence between the design and user needs increases

rapidly as development proceeds, which means that

user feedback should be obtained as early as possible.

Without proper usability evaluation, a project runs a

high risk of expensive rework to adapt a system to

actual user needs.

Evaluation of overall system usability and of detailed

product characteristics are complementary. Although a

user-based evaluation is the ultimate test of usability, it

is not usually practical to evaluate all permutations of

user types, tasks and operational conditions. Evaluation

of the detailed characteristics of the product or interac-

tive system can anticipate and explain potential usability

problems, and can be carried out before there is a

working system. However evaluation of detailed char-

acteristics alone can never be sufficient, as this does not

provide enough information to accurately predict the

eventual user behavior in every context.

The purpose of the evaluation may be primarily

to obtain design feedback to identify and fix any
obstacles to effective usability, or to validate the usabil-

ity of a system. The most useful validation data are

measures of user performance and satisfaction

obtained from measuring system usability.

When to Use Methods for Design Feedback The most

common type of usability evaluation is to improve a

product by identifying and fixing usability problems.

Evaluation of early mock-ups can also be used to obtain

a better understanding of user needs and to refine

requirements. An iterative process of repeated evalua-

tion of prototypes can be used to monitor how closely

the prototype designs match user needs. The feedback

can be used to improve the design for further testing.

Early evaluation reduces the risk of expensive rework.

Usability evaluation is most effective when it involves a

combination of expert and user-based methods.

When to Use Validation Methods In a more mature

design process evaluation to obtain design feedback

should be complemented by establishing usability

requirements and testing whether these have been

achieved by using a more formal method to validate

usability. This reduces the risk of delivering a product

that fails as a result of poor user performance.

Similar testing of an existing system can be used

to provide baseline measures that can form the basis

for usability requirements (i.e., objectives for human

performance and user satisfaction ratings). A Com-

mon Industry Specification for Usability Requirements

[14] has been developed to support iterative develop-

ment and sharing of such requirements.

Validation tests at the end of development should

have acceptance criteria derived from the usability

requirements. Validation methods can be elaborated

to also identify usability problems, but if prior itera-

tive rounds of usability testing are performed, then

typically there will be few usability surprises uncovered

during this late stage testing.

Validity Usability testing should be carried out care-

fully and systematically, otherwise the resulting data

may not be valid or reliable. O’Hara et al. [16] describe

the need for the following types of validity:

� External validity: extent to which the context of use

for the test is realistic.

� Construct validity: extent to which the measures are

representative of user performance and satisfaction.

User Centered Design U 3251

U

� Internal validity: extent to which the test is properly

designed.

� Statistical validity: extent to which the statistical

conclusions are valid.

Poor usability data may lead to poor design decisions

and ultimately an error-prone and unsafe product.

Therefore, usability testing protocols should be devel-

oped in collaboration with professional usability specia-

lists. Non-specialists under the direction and training of

professionals can handle the actual execution and

reporting of the testing.

Cost Benefits

The objective of user centered design is to ensure that

products can be used by real people to achieve

their tasks in the real world. This requires not only

easy-to-use interfaces, but also the appropriate func-

tionality and support for real business activities and

work flows. According to IBM [6], developing easy-to-

use products ‘‘makes business effective. It makes busi-

ness efficient. It makes business sense.’’

User centered design can reduce development and

support costs, increase utilization, and reduce staff

costs for employers [2]:

� Development costs can be reduced by fixing usa-

bility problems early in the development process,

avoiding unnecessary functionality and minimizing

documentation.

� Support costs can be reduced by minimizing help

line, maintenance and training costs.

� Utilization of the system by individuals and orga-

nizations can be increased as a result of higher user

success rates, productivity and satisfaction.

Usability of Digital Libraries

Digital libraries pose some particular challenges for

usability, as a result of the large amount of information

they contain, the difficult of determining what users

want, and the need to cater for browsing and searching.

Digital libraries demand more sophistication of query

formulation than web search engines. Skills acquired in

one library environment are often not easily transferred

to another [3].

Cross-references
▶Data Quality Dimensions

▶Human-Computer Interaction

▶ Information Quality Assessment
Recommended Reading
1. Bevan N. Quality in use: meeting user needs for quality. J. Syst.

Softw., 49(1):89–96, 1999.

2. Bevan N. Cost benefits framework and case studies. In

Cost-Justifying Usability: An Update for the Internet Age, R.G.

Bias, D.J. Mayhew (eds.). Morgan Kaufmann, San Francisco, CA,

2005.

3. Blandford A. and Buchanan G. Usability of digital libraries:

a source of creative tensions with technical developments.

IEEE-TCDL, Bulletin, 2003.

4. Dumas J.S. and Redish J.C. A Practical Guide to

Usability Testing. Ablex Publishing Corporation, Norwood, NJ,

1993.

5. Gould J.D. and Lewis C. Designing for usability: key princi-

ples and what designers think. Commun. ACM, 28(3):300–311,

1985.

6. IBM. Cost Justifying Ease of Use, 2000. Available at: www-03.

ibm.com/easy/page/23

7. ISO 13407. User centred design process for interactive systems.

ISO, 1998.

8. ISO 9241. Ergonomic requirements for office work with visual

display terminals (VDT)s (Pts 10–17). ISO, 1997–99.

9. ISO TR 18529. Human-centred lifecycle process descriptions.

ISO, 2000.

10. ISO/IEC 9126. Software product evaluation – Quality character-

istics and guidelines for their use. ISO, 1991.

11. ISO/IEC CD 25010. Software engineering – Software product

Quality Requirements and Evaluation (SQuaRE) – Quality

model. ISO, 2008.

12. ISO/IEC FCD 25012. Software engineering – Software product

quality requirements and evaluation (SQuaRE) – Data quality

model. ISO, 2008.

13. Nielsen J. Usability Engineering. Academic Press, San Diego,

CA, 1993.

14. NIST. Industry Usability Reporting, 2007. Available at: www.

nist.gov/iusr

15. Norman D.A. and Draper S.W. User Centered System Design

New Perspectives on Human–Computer Interaction. Lawrence

Erlbaum Associates, Mahwah, NJ, 1986.

16. O’Hara J., Stubler W., Higgins J., and Brown W. Integra-

ted System Validation: Methodology and Review Criteria

(NUREG/CR-6393), 1995. Available at: www.bnl.gov/human

factors/Publications.asp

17. Snyder C. Paper Prototyping the Fast and Easy Way to Define

and Refine User Interfaces. Morgan Kaufmann, San Francisco,

CA, 2003.

18. U.S. Department of Health and Human Sciences. Research-

Based Web Design & Usability Guidelines, 2006. Available at:

www.usability.gov/guidelines
User Centered Design

▶Usability

3252U User Classifications
User Classifications

▶ Lightweight Ontologies
User-Centred Design

▶Human-Computer Interaction
User-Defined Time

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Definition
The concept of user-defined time denotes time-valued

attributes of database items with which the data model

and query language associate no special semantics.

Such attributes may have as their domains all domains

that reference time, e.g., date and time. The domains

may be instant-, period-, and interval-valued. Example

user-defined time attributes include ‘‘birthday,’’ ‘‘hir-

ing date,’’ and ‘‘contract duration.’’ Thus, user-defined

time attributes are parallel to attributes that record,

e.g., salary, using domain ‘‘money,’’ and publication

count, using domain ‘‘integer.’’ User-defined time

attributes contrast transaction-time and valid-time

attributes, which carry special semantics.

Key Points
The valid time and transaction time attributes of a

database item are ‘‘about’’ the other attributes of the

database item. The valid time records when the infor-

mation recorded by the attributes is true in the

modeled reality, and the transaction time captures

when the data item was part of the current database

state. In contrast, user-defined time attributes are sim-

ply ‘‘other’’ attributes that may be used for the capture

of information with which valid time can be associated.

Conventional database management systems gen-

erally support a time and/or date attribute domain.
The SQL2 standard has explicit support for user-

defined time in its datetime and interval types.
Cross-references
▶Temporal Database

▶Transaction Time

▶Valid Time
Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Temporal

Databases: Research and Practice, O. Etzion, S. Jajodia, S. Sripada

(eds.). LNCS, vol. 1399, Springer-Verlag, Berlin, 1998, pp. 367–

405.

2. Snodgrass R.T. and Ahn I. A taxonomy of time in databases. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1985,

pp. 236–246.

3. Snodgrass R.T. and Ahn I. Temporal databases. IEEE Comput.,

19(9):35–42, September 1986.
User-Level Parallelism

▶ Inter-query parallelism
Using Efficient Database Technology
(DB) for Effective Information
Retrieval (IR) of Semi-Structured
Text

▶ Integrated DB&IR Semi-Structured Text Retrieval
Utility Computing

▶ Storage Grid
UUID

▶Resource Identifier

V

Valid Time

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Real-world time; Intrinsic time; Logical time; Data

time

Definition
The valid time of a fact is the time when the fact is true

in the modeled reality. Any subset of the time domain

may be associated with a fact. Thus, valid time-

stamps may be sets of time instants and time intervals,

with single instants and intervals being important special

cases. Valid times are usually supplied by the user.

Key Points
While other temporal aspects have been proposed,

such as ‘‘decision time’’ and ‘‘event time,’’ closer analy-

sis indicates that the decision and event time of a fact

can be captured as either a valid time or a transaction

time of some related fact.

For example, consider a valid-time Faculty table

with attributes Name and Position (that is, either

Assistant Professor, Associate Professor, or Professor)

that captures the positions of faculty members. The

valid time then captures when a faculty member held a

specific position.

The ‘‘decision time’’ of a faculty member holding a

specific position would be the time the decision was

made to hire or promote the faculty member into that

position. In fact, there are generally several decision times

for a promotion: recommendation by departmental

promotion and tenure committee, recommendation by

department chair, recommendation by college promo-

tion and tenure committee, recommendation by Dean,

and finally decision by Provost. Each of these decisions

may be modeled as a separate fact, with an (event) valid

time that captures when that decision was made.
2009 Springer ScienceþBusiness Media, LLC
Oracle explicitly supports valid time in its Work-

space Manager. The support includes sequenced prima-

ry keys, sequenced uniqueness, sequenced referential

integrity, and sequenced selection and projection.

The term ‘‘valid time’’ is widely accepted; it is short

and easily spelled and pronounced. Most importantly,

it is intuitive.

Concerning the alternatives, the term ‘‘real-world

time’’ derives from the common identification of the

modeled reality (opposed to the reality of the model) as

the real world. This term is less frequently used. ‘‘In-

trinsic time’’ is the opposite of extrinsic time. Choosing

intrinsic time for valid time would require one to

choose extrinsic time for transaction time. The terms

are appropriate: The time when a fact is true is intrinsic

to the fact; when it happened to be stored in a database

is clearly an extrinsic property. However, ‘‘intrinsic’’ is

rarely used. ‘‘Logical time’’ has been used for valid time

in conjunction with ‘‘physical time’’ for transaction

time. As the discussion of intrinsic time had to include

extrinsic time, discussing logical time also requires the

consideration of physical time. Both terms are used

much less frequently than valid and transaction time,

and they do not posses clear advantages over these.

The term ‘‘data time’’ is probably the most rarely used

alternative. While it is clearly brief and easily spelled

and pronounced, it is not intuitively clear that the

data time of a fact refers to the valid time as defined

above.
Cross-references
▶Nonsequenced Semantics

▶ Sequenced Semantics

▶Temporal Database

▶Temporal Generalization

▶Time Instant

▶Time Interval

▶Time Period

▶Transaction Time

▶User-Defined Time

▶Valid-Time Indexing

3254V Validity (Satisfiability)
Recommended Reading
1. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary

of temporal database concepts – February 1998 version. In

Temporal Databases: Research and Practice, O. Etzion, S. Jajodia,

S. Sripada (eds.). LNCS 1399, Springer-Verlag, Berlin, 1998,

pp. 367–405.

2. Snodgrass R.T. and Ahn I. A taxonomy of time in databases.

In Proc. ACM-SIGMOD Int. Conf. on Management of Data,

1985, pp. 236–246.

3. Snodgrass R.T. and Ahn I. Temporal databases. IEEE Comput.,

19(9):35–42, September 1986.
Validity (Satisfiability)

▶Certain (and Possible) Answers
Valid-Time Access Methods

▶Valid-Time Indexing
Valid-Time Algebras

▶Temporal Algebras
Valid-Time and Transaction-Time
Relation

▶Bitemporal Relation
Valid-Time Data Model

▶Temporal Data Models
Valid-Time Indexing

MIRELLA M. MORO
1, VASSILIS J. TSOTRAS

2

1Federal University of Rio Grande do Sol,

Porto Alegre, Brazil
2University of California-Riverside, Riverside,

CA, USA

Synonyms
Valid-time access methods
Definition
A valid-time index is a temporal index that enables

fast access to valid-time datasets. In a traditional data-

base, an index is used for selection queries. When acces-

sing valid-time databases such selections also involve the

valid-time dimension (the time when a fact becomes

valid in reality). The characteristics of the valid-time

dimension imply various properties that the temporal

index should have in order to be efficient. As traditional

indices, the performance of a temporal index is described

by three costs: (i) storage cost (i.e., the number of pages

the index occupies on the disk), (ii) update cost (the

number of pages accessed to perform an update on the

index; for example when adding, deleting or updating a

record), and (iii) query cost (the number of pages

accessed for the index to answer a query).

Historical Background
A valid-time database maintains the entire temporal

behavior of an enterprise as best known now [13]. It

stores the current knowledge about the enterprise’s past,

current or even future behavior. If errors are discovered

about this temporal behavior, they are corrected by

modifying the database. If the knowledge about the

enterprise is updated, the new knowledge modifies the

existing one. When a correction or an update is applied,

previous values are not retained. It is thus not possible

to view the database as it was before the correction/

update. This is in contrast to a transaction-time data-

base, which maintains the database activity (rather than

the real world history) and can thus rollback to a past

state. Hence, in a valid-time database the past can

change, while in a transaction-time database it cannot.

The problem of indexing valid-time databases can

be reduced to indexing dynamic collections of inter-

vals, where an interval represents the temporal validity

of a record. Note that the term ‘‘interval’’ is used here

to mean a ‘‘convex subset of the time domain’’ (and

not a ‘‘directed duration’’). This concept has also been

named a ‘‘period’’; in this discussion, however, only the

term ‘‘interval’’ is used.

To index a dynamic collection of intervals, one

could use R-trees or related dynamic access methods.

Relatively fewer approaches have been proposed for

indexing valid-time databases. There have been various

approaches proposed for the related problem of man-

aging intervals in secondary storage. Given the prob-

lem difficulty, the majority of these approaches have

focused on achieving good worst case behavior; as

a result, they are mainly of theoretical importance.

Valid-Time Indexing V 3255
For a more complete discussion the reader is referred

to a comprehensive survey [12].

Foundations
The following scenario exemplifies the distinct proper-

ties of the valid time dimension. Consider a dynamic

collection of ‘‘interval-objects.’’ The term interval-object

is used to emphasize that the object carries a valid-time

interval to represent the temporal validity of some

object property. (In contrast, and to emphasize that

transaction-time represents the database activity rather

than reality, note that intervals stored in a transaction

time database correspond to when a record was

inserted/updated in the database.)

The allowable changes in this environment are the

addition/deletion/modification of an interval-object.

A difference with the transaction-time abstraction

(the reader is referred to the Transaction-Time

Indexing entry for more details) is that the collection’s

evolution (past states) is not kept. An example of a

dynamic collection of interval-objects appears in Fig. 1.

Assume that collection Ca has been recorded in some

erasable medium and a change happens, namely object

Iz is deleted. This change is applied on the recorded

data and physically deletes object Iz. The medium now

stores collection Cb, i.e., collection Ca is not retained.

Note that when considering the valid time dimension,

changes do not necessarily come in increasing time

order (as is the case in transaction-time databases);

rather they can affect any object in the collection.

This implies that a valid-time database can correct

errors in previously recorded data. However, only a

single data state is kept, the one resulting after the

correction is applied.

As a real-life example, consider the collection

of contracts in a company. Each contract has an iden-

tity (contract_no) and an interval representing the
Valid-Time Indexing. Figure 1. Two valid-time databases.
contract’s duration or validity. In collection Ca, there

were four contracts in the company. But assume an

error was discovered: contract Iz was never a company

contract (maybe it was mistakenly entered). Then, this

information is permanently deleted from the collec-

tion, which now is collection Cb.

The notion of time is now related to the valid-time

axis. Given a valid-time instant, interval-objects can be

classified as past, future or current as related to this

instant, if their valid-time interval is before, after or

contains the given instant. Valid-time databases can be

used to correct errors anywhere in the valid-time do-

main (past, current or future) because the record of any

interval-object in the collection can be changed, inde-

pendently of its position on the valid-time axis. Note

that a valid-time database may store records with the

same surrogate but with non-intersecting valid-time

intervals. For example, another object with identity Ix
could be added in the collection at Cb as long as its

valid-time interval does not intersect with the valid-

time interval of the existing Ix object; the new collec-

tion will contain both Ix objects, each representing

object Ix at different times in the valid-time dimension.

From the above discussion, an index used for a

valid-time database should: (i) store the latest collec-

tion of interval-objects, (ii) support addition/deletion/

modification changes to this collection, and (iii) effi-

ciently query the interval-objects contained in the col-

lection when the query is asked. Hence, a valid-time

index should manage a dynamic collection of intervals.

Thus related is research on the interval manage-

ment problem. Early work in main memory data-

structures has proposed three separate approaches

into managing intervals, namely, the Interval Tree,

the Segment Tree and the Priority Search Tree [9].

Such approaches are focused on the ‘‘stabbing query’’

[6], i.e., given a collection of intervals, find all intervals
V

Valid-Time Indexing. Figure 2. An interval I = (x1,y1)

corresponds to a point in a 2-dimensional space.

3256V Valid-Time Indexing
that contain a given query point q. The stabbing query

is one of the simpler queries for a valid-time database

environment, since it does not involve any object key

attribute (rather, only the object intervals).

Various methods have been proposed for making

these main-memory structures disk-resident. Among

them are: the External Memory Interval Tree [1],

the Binary-Blocked Interval Tree [4], the External

Segment Tree [2], the Segment Tree with Path Caching

[11] and the External Memory Segment Tree [1], the

Metablock Tree [6], the External Priority Search Tree

[5], and the Priority Search Tree with Path Caching

[11]. Many of these approaches are mainly of theoreti-

cal interest as they concentrate on achieving a worst-

case optimal external solution to the 1-dimensional

stabbing query.

Recently, [8] presented the Relational Interval

Tree (RI-tree) which is based on the original Interval

Tree. In particular, the Interval Tree uses a backbone

balanced binary tree structure that organizes the values

of all the bounding points of the intervals. An interval

(l, r) is registered in the highest node w of the backbone

tree that it overlaps (that is, while descending the

backbone tree, the first node w for which l � w � r).

Each inner node w contains two sorted lists, one with

the lower bounding points and one with the upper

bounding points of the intervals assigned to this

node. A ‘‘stabbing’’ query is answered by traversing

one path of the backbone structure and accessing the

lists in the nodes of this path. The RI-tree uses plain

B+-trees to index these sorted lists, thus leading to fast

query time. For n intervals stored in the RI-tree, the

space used is linearO(n/B) where B is the page capacity

in records. If h corresponds to the height of the back-

bone structure, answering a stabbing query that

returns s intervals takesO(h logBn + s/B) page accesses.

Since intervals are 2-dimensional objects, a dynamic

multi-dimensional index like an R-tree may be used.

Moreover, the R-tree can also index other attributes of

the valid-time objects, thus enabling queries involving

non-temporal attributes as well. For example, ‘‘find con-

tracts that were active on time t and had contract-id in

the range (r1,r2).’’ While simple, the traditional R-tree

approach may not always be very efficient. The R-tree

will attempt to cluster intervals according to their

length, thus creating pages with possibly large over-

lapping. It was observed in [7] that for data with non-

uniform interval lengths (i.e., a large proportion of

‘‘short’’ intervals and a small proportion of ‘‘long’’
intervals), this overlapping is clearly increased, affect-

ing the query and update performance of the index.

This in turn decreases query and update efficiency.

Another straightforward approach is to transform

intervals into 2-dimensional points and then use a

Point Access Method (quad-tree, grid file, hB-tree,

etc.). In Fig. 2, interval I = (x1,y1) corresponds to a

single point in the 2-dimensional space. Since an inter-

val’s end-time is always greater or equal than its start-

time, all intervals are represented by points above the

diagonal x = y. Note that an interval (x,y) contains a

query time v if and only if its start-time x is less than or

equal to v and its end-time y is greater than or equal to

v. Then an interval contains query v if and only if its

corresponding 2-dimensional point lies inside the box

generated by lines x = 0, x = v, y = v, and y = 1 (the

shaded area in Fig. 2). This approach avoids the over-

lapping mentioned above. Long intervals will tend to

be stored together in pages with other long intervals

(similarly, for the short intervals). However, no worst

case guarantees for good clustering are possible.

A related approach (MAP21) is proposed in [11]. An

interval (l, r) is mapped to a point z = (l � 10s) + r,

where s is the maximum number of digits needed to

represent any point in the interval range. This is

enough to map each interval to a separate point. A

regular B+-tree is then used to index these points. An

advantage of this approach is that interval insertions/

deletions are easy using the B+-tree. To answer a stab-

bing query about q, the point closer but less than q is

found among the points indexed in the B+-tree, and

then a sequential search for all intervals before q is

performed. At worse, many intervals that do not inter-

sect q can be found (this approach assumes that in

Valid-Time Indexing V 3257
practice the maximal interval length is known, which

limits how far back the sequential search continues

from q).

Another approach is to use a combination of an

R-tree with Segment Tree properties. The Segment

R-tree (SR-tree) was proposed in [11]. The SR-tree is

an R-tree where intervals can be stored in both leaf and

non-leaf nodes. An interval I is placed to the highest

level node X of the tree such that I spans at least one of

the intervals represented by X’s child nodes. If I does

not span X, it spans at least one of its children but is

not fully contained in X, then I is fragmented. Figure 3

shows an example of the SR-tree approach. The top

rectangle depicts the R-tree nodes (root, A, B, C, D

and E) as well as the stored intervals. Interval L spans

the rectangle of node C, but is not contained in node A.

It is thus fragmented between nodes A and E.

Using this idea, long intervals will be placed in

higher levels of the R-tree. Hence, the SR-tree tends

to decrease the overlapping in leaf nodes (in the regular

R-tree, a long interval stored in a leaf node will
Valid-Time Indexing. Figure 3. An example of the

SR-tree approach.

V

‘‘elongate’’ the area of this node thus exacerbating the

overlap problem). However, having large numbers of

spanning records or fragments of spanning records

stored high up in the tree decreases the fan-out of the

index as there is less room for pointers to children. It is

suggested to vary the size of the nodes in the tree,

making higher-up nodes larger. ‘‘Varying the size’’ of

a node means that several pages are used for one node.

This adds some page accesses to the search cost.

As with the R-tree, if the interval is inserted at a leaf

(because it did not span anything) the boundaries of the

space covered by the leaf node in which it is placed may

be expanded. Expansions may be needed on all nodes

on the path to the leaf, which contains the new record.

This may change the spanning relationships since exist-

ing intervals may no longer span children, which have

been expanded. In this case, such intervals are reinserted

in the tree, possibly being demoted to occupants of

nodes they previously spanned. Splitting nodes may

also cause changes in spanning relationships as they

make children smaller – former occupants of a node

may be promoted to spanning records in the parent.

In contrast to the traditional R-tree, the space used

by the SR-tree is no longer linear. An interval may be

stored inmore than one non-leaf nodes (in the spanning

and remnant portions of this interval). Due to the use

of the segment-tree property, the space can be as much

as O(n logBn). Inserting an interval still takes logarith-

mic time. However, due to possible promotions,

demotions and fragmentation, insertion is slower

than in the R-tree. Even though the segment property

tends to reduce the overlapping problem, the (patho-

logical) worst case performance for the deletion and

query time remains the same as for the R-tree organi-

zation (that is, at worst, the whole R-tree may have to

searched for an interval). The average case behavior is,

however, logarithmic. Deletion is a bit more complex,

as all the remnants of the deleted interval have to be

deleted too. The original SR-tree proposal thus as-

sumed that deletions of intervals are not that frequent.

The SR-tree search algorithm is similar to that of

the original R-tree. It descends the index depth-first,

descending only those branches that contain the given

query point q. In addition, at each node encountered

during the search, all spanning intervals stored at

the node are added to the answer. To improve the

performance of the structure, the Skeleton SR-tree has

also been proposed [7], which is an SR-tree that pre-

partitions the entire domain into some number of

3258V Value Equivalence
regions. This pre-partition is based on some initial

assumption on the distribution of data and the num-

ber of intervals to be inserted. Then the Skeleton

SR-tree is populated with data; if the data distribution

is changed, the structure of the Skeleton SR-tree can be

changed too.

When indexing valid-time intervals, overlapping

may also incur if the valid-time intervals extend to the

ever-increasing now. One approach could be to use the

largest possible valid-time to represent the variable

now. In [3] the problem of addressing both the now

and transaction-time Until-Changed (UC) variables is

addressed by using bounding rectangles/regions that

increase as the time proceeds. A variation of the R-tree,

the GR-tree is presented. More details appear in [3].

Key Applications
The importance of temporal indexing emanates

from the many applications that maintain temporal

data. The ever increasing nature of time imposes the

need for many applications to store large amounts of

temporal data. Specialized indexing techniques are

needed to access such data. Temporal indexing has

offered many such solutions that enable fast access.

Cross-references
▶Bi-temporal Indexing

▶B+-Tree

▶Temporal Database

▶Transaction Time

▶Transaction-Time Indexing

▶Valid Time
Recommended Reading
1. Arge L. and Vitter J.S. Optimal dynamic interval management in

external memory. In Proc. 37th Annual Symp. on Foundations

of Computer Science, 1996, pp. 560–569.

2. Blankenagel G. and Gueting R.H. External segment trees. Algor-

ithmica, 12(6):498–532, 1994.

3. Bliujute R., Jensen C.S., Saltenis S., and Slivinskas G. R-tree

based indexing of now-relative bi-temporal data. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1998,

pp. 345–356.

4. Chiang Y.-J. and Silva C.T. External memory techniques for

isosurface extraction in scientific visualization, external memory

algorithms and visualization. In DIMACS Series in Disc-

rete Mathematics and Theoretical Computer Science, J. Abello,

J.S. Vitter (eds.). AMS, vol. 50, 1999, pp. 247–277.

5. Icking C., Klein R., and Ottmann T. Priority search trees in

secondary memory. In Proc. Int. Workshop on Graph Theoretic

Concepts in Computer Science, 1988, pp. 84–93.
6. Kanellakis P., Ramaswamy S., Vengroff D., and Vitter J.S.

Indexing for data models with constraint and classes. In Proc.

12th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 1993, pp. 233–243.

7. Kolovson C. and Stonebraker M. Segment indexes: dynamic

indexing techniques for multi-dimensional interval data. In

Proc. ACM SIGMOD Int. Conf. on Management of Data,

1991, pp. 138–147.

8. Kriegel H-P., Potke M., Seidl T. Managing intervals efficiently

in object-relational databases. In Proc. 26th Int. Conf. on Very

Large Data Bases, 2000.

9. Mehlhorn K. Data Structures and Efficient Algorithms, Vol. 3:

Multi-dimensional Searching and Computational Geometry.

EATCS Monographs, Springer, 1984.

10. Nascimento M.A. and Dunham M.H. Indexing valid time

databases via B+-Trees. IEEE Trans. Knowl. Data Eng.,

11(6):929–947, 1999.

11. Ramaswamy S. and Subramanian S. Path caching: a technique

for optimal external searching. In Proc. 13th ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems,

1994, pp. 25–35.

12. Salzberg B. and Tsotras V.J. A comparison of access methods for

time-evolving data. ACM Comput. Surv., 31(2):158–221, 1999.

13. Snodgrass R.T. and Ahn I. Temporal databases. IEEE Comput.,

19(9):35–42, 1986.
Value Equivalence

NIKOS A. LORENTZOS

Agricultural University of Athens, Athens, Greece

Definition
In temporal databases, the scheme of a temporal relation

S has the form S(E, I) where E and I represent two

disjoint sets of attributes, termed by some authors

explicit and implicit, respectively. Explicit are the attri-

butes in which ordinary data are recorded, such as

Employee_Id, Name, Salary etc. Implicit are the attri-

butes in which either valid time (one or more) or

transaction time is recorded. Given two tuples (e1, i1)

and (e2, i2) with the scheme of S, it is said that there is

a value equivalence between them if and only if e1 = e2.

Equivalently, it is said that (e1, i1) and (e2, i2) are value

equivalent.

Example: Consider one tuple, (Alex, 100, d400,

d799), with scheme SALARY(Name, Amount, Valid-

Time), indicating that Alex’s salary was 100 on each

of the dates d400, d401,...,d799. Let also another

tuple of the same scheme be (Alex, 100, d500, d899).

For the given scheme, E = {Name, Amount} and

Vector-Space Model V 3259
I = {ValidTime}. Given that both tuples have the same

value for Name and Amount, they are value equivalent.

Key Points
The term has been introduced in the context of

temporal databases, mainly in order to ease discussion

on issues such as temporal coalescing.

Cross-references
▶ Period-Stamped Temporal Models

▶Temporal Coalescing
V

Variable Time Span

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Moving span

Definition
A span is variable if its duration is dependent on the

assumed context.

Key Points
Given a specific setting, any span is either a fixed span

or a variable span. An obvious example of a variable

span is ‘‘1 month’’ in the Gregorian calendar. Its

duration may be any of 28, 29, 30, and 31 days,

depending on which particular month is intended.

The span ‘‘1 h’’ is fixed because it always has a duration

of 60 min.

Cross-references
▶ Fixed Time Span

▶Temporal Database

▶Temporal Granularity

▶Time Interval

▶Time Span
Recommended Reading
1. Bettini C., Dyreson C.E., Evans W.S., Snodgrass R.T., and Wang

X.S. A glossary of time granularity concepts. In Temporal Data-

bases: Research and Practice, O. Etzion, S. Jajodia, S. Sripada

(eds.). LNCS 1399, Springer, Berlin, 1998, pp. 406–413.
2. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Tempo-

ral Databases: Research and Practice, O. Etzion, S. Jajodia,

S. Sripada (eds.). LNCS 1399, Springer-Verlag, Berlin, 1998,

pp. 367–405.
VDM

▶Visual Data Mining
Vector-Space Model

MASSIMO MELUCCI

University of Padua, Padua, Italy

Synonyms
VSM

Definition
The Vector-Space Model (VSM) for Information Re-

trieval represents documents and queries as vectors of

weights. Each weight is a measure of the importance of

an index term in a document or a query, respectively.

The index term weights are computed on the basis of

the frequency of the index terms in the document, the

query or the collection. At retrieval time, the docu-

ments are ranked by the cosine of the angle between

the document vectors and the query vector. For each

document and query, the cosine of the angle is calcu-

lated as the ratio between the inner product between

the document vector and the query vector, and the

product of the norm of the document vector by the

norm of the query vector. The documents are then

returned by the system by decreasing cosine.

Historical Background
The use of vectors for modeling IR systems dates back to

the early days of IR, especially as a tool for describing

how a system should be designed and implemented. The

popularity of the VSM is due to the intuitive yet formal

view of indexing and retrieval – it should not come as a

surprise that the VSM has attracted many researchers

and newcomers since it was mentioned in [5], employed

for indexing and clustering in [9], used as a framework

for deciding whether a term should be stored in an

index [10], and formulated in a comprehensive way

in [6]. At the experimental level, the VSM has proved

3260V Vector-Space Model
an effective and sound framework in retrieving docu-

ments in different languages, on different subjects, of

different sizes, and of different media, thanks to a num-

ber of proposed and tested weighting schemes and

applications (see [8] for a comprehensive evaluation).

A perspective on the history of the VSM was illustrated

in [2].

Despite its apparent simplicity, the mathematical

properties of vector spaces can be used for advancing

IR modeling. The hypothesis that the term-document

frequency matrix contains information about the corre-

lation among terms and among documents was cited in

[7], stated in [13], developed in [6] and was further

exploited in [1] in defining Latent Semantic Indexing

(LSI). The latter is a technique based on Singular Value

Decomposition (SVD) which aims at decomposing the

term correlation matrix and at disclosing the principal

components used to represent fewer independent con-

cepts than many inter-dependent variables. A reconsid-

eration of the potential of the vector spaces was

presented in [12]. In that book, Hilbert’s vector spaces,

which is the mathematical tool of Quantum Mechanics,

are used to see documents as vectors, relevance as a

Hermitian operator, relevance statuses as the eigenvalues

of this operator, and the computation of the probability

of relevance of a document as the projection of the

document vector onto the subspace of the eigenvalue of

relevance. The idea of using the notion of basis of a vector

space for representing context was proposed in [4].

Foundations

Basic Definitions

The VSM represents documents and queries as vectors

of weights. A document vector is then

x ¼ ðx1;:::;xkÞ

where xi is the weight of index term i in the document

and k is the number of unique index terms in the

collection. Each weight is a measure of the importance

of an index term in a document. A great deal of

attention was paid in the past to the definition of the

index term weights to be used in document vectors. An

important example is

xi ¼ TFi

that is, the term frequency of i in the document. Of

course, TF depends on the document. Another example

is the binary weight,
xi ¼ 1 if index term i occurs in the document

0 otherwise

n

For an illustration of the term weighting schemes, see

[8]. A query is represented as a vector of weights, too,

for instance,

y ¼ ðy1;:::;ykÞ

where yi is the weight of index term i in the query. Each

weight is a measure of the importance of an index term

in a query – note that no Boolean operators are as-

sumed. Also for queries, a great deal of attention has

been paid in the past to the definition of the index term

weights. An important example is

yi ¼ IDFi

where IDF stands for Inverse Document Frequency

which is defined as

IDFi ¼ log N
ni

if i occurs in the query

0 otherwise

�

where ni is the number of documents indexed by i

and N is the total number of documents in the collec-

tion. The binary weighting scheme can also be applied

to queries.

At retrieval time, the documents are ranked by the

cosine of the angle between the document vectors and

the query vector. For each document and query, the

cosine of the angle is calculated as the ratio between

the inner product between the document vector and

the query vector, and the product of the norm of the

document vector by the norm of the query vector.

The documents are then returned by the system by

decreasing cosine. In a formal way,

cos ¼ x � y
jjxjj jjyjj

where

x � y ¼
Xk
i¼1

xi yi jjxjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

x2i

vuut

jjyjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

y2i

vuut

When the weights are binary, i.e., xi,yi 2{0, 1},

the vectors are representations of term sets and an

Vector-Space Model V 3261

V

alternative ranking function is Jaccard’s coefficient

defined as

Pk
i¼1

xi yi

Pk
i¼1

xi þ
Pk
i¼1

yi �
Pk
i¼1

xi yi

When term frequency and inverse document frequency

are used for weighting terms in the document and in

the query, respectively the inner product between doc-

ument and query vectors is

Xk
i¼1

TFi IDFi

where

TFi IDFi

is called TF-IDF weighting scheme. When different

documents are considered, the notations xn = (x1,n,...,

xk,n) and TFi,n IDFi are used for distinguishing docu-

ments n = 1,...,N.

Mathematical Development

The VSM for IR considers a document collection as a

vector space defined over the real field. The definition

of a vector is given with respect to a basis, namely, a set

of linearly independent vectors, called basis vectors – a

set of vectors is independent when no vector of this set

can be defined as a linear combination of the other

vectors in the same set. The dimension of the space is

the number of basis vectors. It is a fact from Linear

Algebra that every vector of a space of dimension k is a

linear combination of k basis vectors – for an intro-

duction to the vector spaces see, for example, [3].

The VSM represents a collection index as a basis of

a real vector space and a distinct index term is a basis

vector. Moreover, every object managed by an IR sys-

tem, e.g., document, query, sentence, cluster centroids,

or terms, is a vector of this space. As every vector is a

linear combination of a basis of the vector space, in the

VSM the vector of any object is a linear combination of

the basis vectors that represent the index terms. When

non-textual media are to be represented, the basis

vectors are a representation of content descriptors, yet

the philosophy of the model remains unchanged. A

basis plays an important role in expressing term corre-

lations and in Latent Semantic Indexing.
Since there are infinite bases in a space, every vector

has infinite numerical representations. To be precise,

let k be the dimension of the space and {t1,...,tk} be a

basis for this space. The representation of a document

or a query is then a vector x such that

x ¼
Xk
i¼1

ai ti:

where the ai are real numbers. The numerical repre-

sentations are provided by the ai’s with respect to the

basis {t1,...,tk}. This entails that a change of basis

determines a change of the numerical representation

of x; for example,

x ¼
Xk
i¼1

bi ui;

where {u1,...,uk} is a different basis and the bi’s provide

a different representation of x – it follows that a vector

can be assigned infinite representations, all being

equivalent.

According to the basic definitions, the ai’s are the

weights used for measuring the importance of the

index terms in documents and queries. Thus, TF-IDF

is a possible scheme for defining the ai’s.

The ranking function is based on the cosine of the

angle between the query vector y and a document

vector x. The documents are then ranked by (decreas-

ing) cosine with respect to the query. Formally, the

cosine of the angle between the two aforementioned

vectors is:
x> � y

jjxjj jjyjj

where (The vectors are assumed to be column vectors

and the symbol ⊤ denotes transposition from a column

(row) vector to a row (column) vector.):

x ¼
Xk
i¼1

ai ti y ¼
Xk
j¼1

cj tj x> � y ¼
Xk
l¼1

xl yl

After a few simple passages,

x> � y ¼
Xk
i¼1

Xk
j¼1

ai cj t
>
i � tj

where ti
⊤� tj is a measure of correlation between

the basis vectors. The cosine is used as ranking func-

tion instead of the inner product at the numerator

3262V Vector-Space Model
because the norms at the denominator of the formula

make document ranking independent of document

size. In contrast, the inner product would place long

documents at the top ranks, while relevant, short

documents would be penalized; however, see [11].

When the index terms are assumed to be uncorrelated,

the basis vectors are orthogonal, namely,

t>i � tj ¼ jjtijj2 i ¼ j

0 i 6¼ j

�

It is customary to assume that the basis vectors are

orthonormal, therefore,

t>i � tj ¼
1 i ¼ j

0 i 6¼ j

�

In practice, the basis is the canonical basis of a vector

space, that is,

t i;j ¼
1 i ¼ j

0 i 6¼ j

�

where ti,j is the jth element of ti. In other words, the

ith canonical basis vector has null elements except

the ith element, which is 1. It follows that

x ¼ ða1;:::;akÞ> y ¼ ðc1;:::;ckÞ> x> � y ¼
Xk
l¼1

al cl

when the canonical basis is used. Figure 1 gives a

pictorial description of the VSM. The orthonormal

basis (t1,t2) spans a two-dimensional spaces and every

vector is thena linear combination of the basis vectors.

In particular, x1 represents a document, x2 another

document and y represents a query. After computing

the cosine of the angle between the xi’s and y,
Vector-Space Model. Figure 1. A pictorial description of

the VSM.
y> � x1
jjyjj jjx1jj

¼ 0:86
y> � x2

jjyjj jjx2jj
¼ 0:89

If the basis is not orthogonal, for example, t1 = (1, 0)⊤

and t2 ¼ 1ffiffi
5

p ; 2ffiffi
5

p
� �>

, then, the numerical representation

of the vectors and the cosines change; for example, the

numerical representation of x1 is � 1
4
; 5
3

� �>
.

Non-orthogonality has been employed for model-

ing relationships between index terms; for example, ti
⊤�

tj > 0 for modeling that index term i is somehow

related to index term j such that when i occurs, j also

tends to occur – a negative value wouldmodel an inverse

relationship. As a special, important case, non-orthogo-

nality provides a principled way for modeling query

expansion. Indeed, the cosine of the angle between

x and y is in general affected by index term i when

ai 6¼ 0 or ci 6¼ 0 – when the basis is orthogonal, the

cosine is affected by i when ai 6¼ 0 or ci 6¼ 0 that is, when

the index term occurs both in the document and in the

query. Suppose, for example, k = 2 and the query con-

tains term 1 only, that is, c1 = 1 and c2 = 0. Therefore,

x> � y ¼ a1 t>1 � t1 þ a2 t>2 � t1

If t2
⊤� t1 = 0.5, that is, the terms are partially corre-

lated, the distance between the document and the

query is also affected by term 2, even though it does

not occur in the query.

Latent Semantic Indexing (LSI) is a technique

based on Singular Value Decomposition (SVD) which

aims at finding a basis alternative to the canonical

basis. The documents and the queries are then re-

expressed with respect to this new basis. The potential

of LSI is twofold. First, the document and the queries

are vectors of a new space whose dimension is greatly

reduced. Second, the new basis vectors no longer rep-

resent index terms, but sets of index terms that may be

called ‘‘concepts,’’ ‘‘clusters’’ or ‘‘aggregates’’ depending

on the application domain.

Key Applications
The VSM has been subjected to an extensive evaluation

and SMART is the best known experimental IR system.

Thanks to the excellent results confirmed by several

tests carried out within the Text Retrieval Conference

(TREC), this model is presently the reference model

for many applications whenever a best-match and

weighted retrieval is required. The applications ranges

in many tasks, including clustering, cross-language

Vertically Partitioned Data V 3263
retrieval, summarization and personalization to name

but a few. Salton and his colleagues’ bibliography gives

an idea of the broad range of applications.
Future Directions
The most challenging problem of Information Retriev-

al is to define a model that governs the complex inter-

actions between the various components of a systems

and the end users. An attempt in this direction has

been made in [12], which has paved the way toward a

new conception of the vector spaces and opened up

some connections to other sciences.
Cross-references
▶Boolean Model

▶Clustering for Post Hoc Retrieval

▶ Indexing Units

▶ Probabilistic Retrieval Models and Binary Indepen-

dence Retrieval (BIR) Model

▶Query Expansion Models

▶Relevance Feedback

▶ Singular Value Decomposition

▶Term Weighting
V

Recommended Reading
1. Deerwester S., Dumais S., Furnas G., Landauer T., and

Harshman R. Indexing by latent semantic analysis. J. Am. Soc.

Inform. Sci., 41(6):391–407, 1990.

2. Dubin D. The most influential paper Gerard Salton never wrote.

Libr. Trends, 52(4):748–764, 2004.

3. Halmos P. Finite-Dimensional Vector Spaces. Undergraduate

Texts in Mathematics, Springer, 1987.

4. Melucci M. A basis for information retrieval in context. ACM

Trans. Inform. Syst., 26(3), 2008.

5. Salton G. Associative document retrieval techniques using bib-

liographic information. J. ACM, 10440–457, 1963.

6. Salton G. Automatic Text Processing. Addison-Wesley, 1989.

7. Salton G. Mathematics and information retrieval. J. Doc.,

35(1):1–29, 1979.

8. Salton G. and Buckley C. Term Weighting Approaches in Auto-

matic Text Retrieval. Inform. Process. Manage., 24(5):513–523,

1988.

9. Salton G., Wong A., and Yang C. A vector space model for

automatic indexing. Commun. ACM, 18(11):613–620, 1975.

10. Salton G., Yang C., and Yu C. A theory of term importance in

automatic text analysis. J. Am. Soc. Inform. Sci., 26(1):33–44,

1975.

11. Singhal A., Buckley C., and Mitra M. Pivoted Document Length

Normalization. In Proc. 19th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1996.

pp. 21–29.
12. van Rijsbergen C. The Geometry of Information Retrieval.

Cambridge University Press, UK, 2004.

13. Wong S. and Raghavan V. Vector space model of information

retrieval – a reevaluation. In Proc. 7th Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1984, pp. 167–185.
Vertical Fragmentation

▶Distributed Database Design
Vertically Partitioned Data

JAIDEEP VAIDYA

Rutgers University, Newark, NJ, USA

Synonyms
Heterogeneously distributed data

Definition
Data is said to be vertically partitioned when several

organizations own different attributes of information

for the same set of entities. Thus, vertical partitioning

of data can formally be defined as follows: First, define

a dataset D in terms of the entities for whom the data

are collected and the information that is collected for

each entity. Thus, D � (E, I), where E is the entity set

for whom information is collected and I is the feature

set that is collected. Assume that there are k different

sites, P1,...,Pk collecting datasets D1 � (E1, I1),...,Dk �
(Ek,Ik) respectively. Therefore, data is said to be verti-

cally partitioned if E =
T

iEi = E1
T
...
T

Ek, and I =S
iIi = I1

S
...
S

Ik. In general, distributed data can be

arbitrarily partitioned. Vertical partitioning can also be

defined as a special case of arbitrary partitioning,

where all of the partitions consist of information

about the same set of entities.

Key Points
In general, data can be distributed in an arbitrary

fashion. This means that different parties may own

partial information about different sets of entities.

While such arbitrary partitioning is possible, in prac-

tice, it rarely happens. Data is said to be vertically

partitioned when different sites collect different

3264V Vertically Partitioned Data
features of data for the same set of entities. Integrating

the local datasets gives the global dataset. Vertically

partitioned data occurs naturally in many situations,

and mining it can lead to unexpected insights. For

example, consider the case of Ford and Firestone.

Ford collects information about vehicles manufac-

tured. Firestone collects information about tires man-

ufactured. Vehicles can be linked to tires. This linking

information can be used to join the databases. Why

bring this up? In 2001, numerous accidents due to

tread separation were reported. Initially both compa-

nies blamed each other. It turned out that it was only

Ford Explorers with Firestone tires from the Decatur,

Illinois plant, in specific situations that had these pro-

blems. If found out earlier, much loss could have been

avoided. While both companies individually collect a

lot of pertinent testing data, this was not shared due to

commercial concerns. Mining of the global database

had the potential to reveal this, which was otherwise

impossible only with the local data.

Figure 1 demonstrates another example of vertical

partitioning of data. There are two data sources – a

hypothetical hospital/insurance company and a wire-

less service provider. The hospital collects medical

records such as the type of brain tumor and diabetes

(none if the person does not suffer from the condi-

tion). On the other hand, the wireless provider might

collect other information such as the approximate

amount of airtime used everyday, the model of the

cellphone and the kind of battery used. Together,

merging this information for common customers and

running data mining algorithms might give completely

unexpected correlations (for example, a person with

Type I diabetes using a cell phone with Li/Ion batteries

for more than 3 hours per day is very likely to suffer
Vertically Partitioned Data. Figure 1. A vertically partitione
from primary brain tumors.). It would be impossible

to get such information by considering either database

in isolation. While this example is hypothetical, similar

situations abound in practice.

In general, when data is vertically partitioned, more

data significantly improves the quality of the models

built from the dataset. Overall, the data analysis results

are significantly more accurate and real. While this is

also true of horizontally partitioned data (more data is

always good), but it has a more critical impact with

vertically partitioned data. This is because data from

different parties give significantly different additional

information about the entities. This is especially true

with higher dimensional data.

The complexity of privacy-preserving data mining

is also significantly increased due to the vertical parti-

tioning of data. In contrast to horizontal partitioning

of data, vertical partitioning of data raises several

unique questions with respect to the way data is pro-

cessed, results are obtained and shared. For example,

consider the task of creating a decision tree classifier

from some given vertically partitioned dataset. An

immediate question is how is the final tree shared by

the different parties? Since each party has knowledge of

only some of the attributes, knowing the structure of

the tree, and especially, knowledge of an unknown

attribute and its breakpoints for testing – constitutes

a violation of the privacy of the individual parties.

Thus, completely revealing the tree is a bad idea from

the security standpoint.

Indeed, in the best case, for no leakage of informa-

tion, even the structure of the tree should be hidden,

with an oblivious protocol for classifying a new

instance. However, the cost associated with this is

typically unacceptable. A compromise may be to
d dataset with hypothetical knowledge inferred from it.

Video V 3265
cloak the attribute tests used in the tree while still

revealing the basic structure of the tree. This way

each site only need know the branch values for the

decisions it makes, and the classification of a new

instance would also have to be carried out in a

distributed fashion by jumping from site to site. In

general, it is necessary to carefully evaluate what may

be the intermediate and final results, and only reveal as

appropriate. Indeed, constructing the form of results is

one of the major challenges, especially when one con-

siders that multiple analyses may need to be carried

out. [1] provides more details on problems, solutions

and challenges in this area.
Cross-references
▶Horizontally Partitioned Data

▶ Privacy-Preserving Data Mining

▶ Secure Multiparty Computation Methods
Recommended Reading
1. Vaidya J., Clifton C., and Zhu M. Privacy-Preserving Data

Mining, 1st edn. Advances in Information Security 19,

Springer-Verlag, Berlin, 2005.
Video

YING LI

IBM T.J. Watson Research Center, Hawthorne,

NY, USA

Synonyms
Rich media; Multimedia
V

Definition
Video, which means ‘‘I see’’ in Latin, is an electronic

representation of a sequence of images or frames, put

together to simulate motion and interactivity. From the

producer’s perspective, a video delivers information

created from the recording of real events to be processed

simultaneously by a viewer’s eyes and ears. For most of

time, a video also contains other forms of media such

as audio.

Video is also referred to as a storage format for

moving pictures as compared to image, audio, graphics

and animation.
Historical Background
Video technology was first developed for television

systems, but it has been further developed in many

formats to allow for consumer video recordings. Gen-

erally speaking, there are two main types of video:

analog video and digital video. Analog videos are usu-

ally recorded as PAL (Phase Alternating Line) or NTSC

(National Television System Committee) electric sig-

nals following the VHS (Video Home System) stan-

dard, and stored in magnetic tapes. Digital videos, on

the contrary, are usually captured by digital cameras

and stored in digital video formats such as DVD (Dig-

ital Versatile Disc), QuickTime and MPEG-4 (Moving

Picture Experts Group).

Launched in September 1976, VHS became a stan-

dard format for consumer recording and viewing by the

1990s. Since then, it has dominated both home and

commercial video markets. In March 1997, the DVD

format was introduced to American consumers, which

gradually pulled consumers away fromVHS in following

years due to its much better quality. In June 2003, the

DVD’s market share exceeded that of the VHS for the

first time. Since then, it has been steadily expanding its

consumer market, and by July 2006, most major film

studios have stopped releasing new movie titles in VHS

format, opting for DVD-only releases. Now, VHS is

gradually disappearing fromboth rental and retail stores,

and DVD has dominated the whole commercial market.

Nevertheless, VHS is still popular for home recording of

television programs, due to the large installed base and

the lower cost of VHS recorders and tape.

For the last few decades, as video technology quickly

advances and the cost of storage devices rapidly de-

creases, digital videos have become widely available in

diverse application areas such as medicine, remote sens-

ing, entertainment, education and online information

services. This has thus led to very active researches in

various video-related areas.

Foundations
The last three decades have witnessed a significant

amount of research efforts on various aspects of video

technologies. Roughly speaking, they fall into the follow-

ing three general categories: video representation, video

content analysis, and video application. Specifically,

video representation deals with the way a video is repre-

sented, in another word, the file format. Video content

analysis, on the other hand, aims to automatically struc-

turize and ultimately understand the video by analyzing

3266V Video
its underlying content. Due to the difficult nature of this

problem, such process usually involves the analysis of

multiple media modalities including visual, audio and

text information. Finally, video application applies

what’s learned from the analysis engine, and facilitates

various types of content access including video brows-

ing, summarization and retrieval. A brief discussion on

each of these three research domains is given below.

Video Representation

A video sequence with accompanying sound track can

occupy a vast amount of storage space when repre-

sented in digital format. As estimated in [6], a 1-min

video clip could possibly occupy up to 448 MB. Con-

sequently, compression has been playing an important

role in modern schemes for video representation.

A wide variety of methods have been proposed to

compress video stream. Nevertheless, almost all of them

build their approaches upon the fact that video data

contains both spatial and temporal redundancy. Specif-

ically, to reduce the spatial redundancy, an intra-frame

compression is applied which registers differences be-

tween parts of a single frame. Such a task is more closely

related to image compression. Likewise, to reduce the

temporal redundancy, an inter-frame compression is

exploited which registers differences between neighbor-

ing frames. This involves discrete Cosine transform

(DCT), motion compensation and other techniques.

Some popular video compression mechanisms in-

clude H.261, H.263, H.264, MPEG-1, MPEG-2, MPEG-4

and MJPEG (Motion-Joint Photographic Experts

Group). Specifically, H.261 is a 1990 ITU-T (Telecommu-

nication Standardization Sector of International Telecom-

munication Union) video coding standard originally

designed for transmission over ISDN lines. Later on,

H.263 and H.264 which provide more capabilities and

mainly target at video-conferencing applications, were

standardized in 1995 and 2003, respectively.

In 1998, the Moving Picture Experts Group (MPEG)

was formed to establish an international standard for

the coded representation of moving pictures and asso-

ciated audio on digital storage media. Currently, there

have been three established MPEG standards from this

effort: MPEG-1, MPEG-2, and MPEG-4. Each of

them targets at different commercial applications. For

instance, MPEG-1 is usually used as the Video CD

(VCD) format, MPEG-2 for High Definition Television

(HDTV), andMPEG-4 for streaming video applications.
Finally, to facilitate mobile appliances such as digi-

tal cameras, MJPEG was developed in 1990s which uses

intra-frame coding technology that is very similar to

those used in MPEG-1 or MPEG-2. However, it does

not use inter-frame prediction, which on one hand,

results in a loss of compression capability, yet on the

other hand, it makes the degree of compression capa-

bility independent of the amount of motion in the

scene. Moreover, it also eases video editing as simple

edits can now be performed at any frame.
Video Content Analysis

Video is a type of rich media as it often consists of other

media types such as audio and text. Consequently,

research on video content analysis can be grouped into

three classes: visual content analysis, audio content anal-

ysis, and audiovisual content analysis. A general goal of

video content analysis is to extract the underlying video

structure so as to facilitate convenient and nonlinear

content access. Yet a more aggressive goal is to automat-

ically understand video semantics so as to support

applications such as video summarization and retrieval

that require an in-depth understanding of the video

content.
Visual Content Analysis

As the name implies, visual content analysis concen-

trates on processing the visual part of the video signal.

Most existing work in this area falls into two direc-

tions, with one focusing on analyzing the image or

frame content in the spatial domain, and the other

on exploiting the temporal relationships between

frames.

Visual feature extraction at different semantic levels

are usually the major focus of those work in the first

category. Popular features such as color, texture and

motion, are low-level features, which while easy to

extract, are not able to capture the video semantics.

Therefore, most of recent work focuses on extracting

mid to high level visual features, which can not only be

derived from lower level features, but also capable of

bridging the semantic gap by revealing the underlying

content semantics to a certain degree. Such features

include various types of video objects and semantic

concepts such as sports, military, explosion and sky.

Machine learning and content modeling are two pop-

ularly applied approaches to achieve such goal.

Video V 3267
On the other hand, there is also a significant amount

of work that attempts to capture both video syntax and

semantics by exploring its temporal structure. Specifical-

ly, video shot change detection is usually the very first

step towards this goal, where the entire video sequence

is segmented into a series of cascaded shots. Shot forms

the building block of a video sequence, and contains a set

of frames that are continuously taken. For a comprehen-

sive survey on various shot detection algorithms, readers

can refer to [3].

Based on the syntactic shot structure, higher-level

visual content analysis such as scene detection or ex-

traction, could be subsequently carried out. Figure 1

shows a typical video content structure, which is repre-

sented by a hierarchical tree. As shown, for an incom-

ing video stream, it is first segmented into a sequence

of shots. Then, one or more of its frames (called key-

frames) can be extracted to represent its underlying

content. The next step is to build semantic video scenes

upon the extracted shot structure. Specifically, a video

scene is defined as a collection of semantically related

and temporally adjacent shots that depicts and conveys

a high-level concept or story. Consequently, a common

solution to scene extraction is to group semantically

related shots into a scene [14]. This process is similar

to grouping words into sentences, where a sentence

starts conveying meanings to readers. Finally, there

could be one or more steps further from scene detec-

tion. One such effort is on event detection, where an

event is considered as important scenes that contain

particular thematic topics of interest such as dialogs,

actions or something abnormal [3,5].
Video. Figure 1. A hierarchical representation of video cont
Audio Content Analysis

Audio, which includes voice, music and various kinds

of environmental sounds, is an important type of

media. A general approach to audio content analysis

is to either classify or segment an audio clip into

different homogeneous fragments with each fragment

containing one particular audio type such as speech,

music or silence [2]. Audio features such as short-time

energy, short-time zero-crossing rate and short-time

fundamental frequency, are usually extracted for this

analysis purpose [15].

As a key ingredient of a video stream, the audio

source could represent the story in a much simpler

fashion than its pictorial counterpart. For instance, if

people are only allowed to listen to a TV program

without watching it, they can still get most of its mean-

ings. Yet on the other hand, if they are only allowed to

watch the programwithout listening to it, they may get

lost easily. This shows that the audio source, especially

the embedded speech cue, is critical to a human’s

content understanding. Moreover, audio is also essen-

tial to people’s enjoyment of the video content.

Audiovisual Content Analysis

As automatic video content understanding is a

very challenging task, thus most recent work tends to

exploit all possible media cues to achieve such a goal.

In particular, as audio and visual cues are two insepa-

rable parts of a video stream, and usually complement

with each other during the content creation, people

tend to integrate them together during the content

analysis.
ent.

V

3268V Video
A general solution to audiovisual content analysis

is to first perform individual visual or audio content

analysis to obtain two sets of analysis results, then

combine them together using certain fusion rules or

applying a probabilistic framework. Another popular

way of media integration is to employ different infor-

mation sources at different processing stages [4]. For

instance, the visual cue is first employed to generate

coarse-level results, then audio cues is introduced

to refine the results. However, when and how to effi-

ciently and effectively integrate multiple media sources

still remains to be an open issue, and needs further

study.

Video Application

Besides the large amount of research efforts on video

content analysis, there are also many attentions on

studying various video applications. After all, making

the bulky and unstructured video content convenient

and efficient to access, present, share, search and deliver

is the ultimate goal of the entire research community in

this area. Below, a brief introduction is given to three

major types of video applications, namely, video

indexing and browsing, video abstraction, and content-

based video retrieval.

Video Indexing and Browsing

As analog to indexing a book, video indexing aims at

facilitating non-linear access of the video content. It is

thus very critical for efficient video retrieval. For in-

stance, television and film archives usually contain a

vast amount of audiovisual materials. If these materials

are properly segmented and indexed, studios can conve-

niently produce a new video clip by finding and reusing

some pre-produced segments. Moreover, in audiovisual

libraries or family entertainment applications, it would

be very desirable if the needed video segments from

a large video collection could be quickly located.

Video browsing refers to the activity where a user

watches through a video to get quick ideas of its

underlying content [11]. Video browsing can also as-

sist users in query forming for video retrieval purpose.

For instance, when the user lacks a clear idea of what he

wants from a large video collection, he can gradually

conceptualize his needs by browsing through the video

clips to find the one that stimulates his desire. Once

such clip is located, he can further submit it as a query

seed to obtain more related clips.
Video Abstraction

Video abstraction, as the name implies, generates a

short summary for a long video document. Specifically,

a video abstract is a sequence of still or moving images,

representing the video content in a way such that the

target party is rapidly provided with concise informa-

tion about the content, while the essential message of

the original is well preserved [12]. Video abstraction is

primarily used for video browsing, and is an insepara-

ble part of a video indexing and retrieval system.

Theoretically, a video abstract can be generated both

manually and automatically, but due to the huge

volumes of video data and limited human power, it is

getting increasingly important to develop fully auto-

mated video analysis and processing tools so as to reduce

human involvement in the video abstraction process.

There are two fundamentally different kinds of

video abstracts: still- and moving-image abstracts.

The still-image abstract, also known as static story-

board or video summary, is a small collection of salient

images (also called keyframes) extracted or generated

from the underlying video source. The moving-image

abstract, also known as moving storyboard or video

skim, consists of a collection of image sequences, as

well as the corresponding audio abstract extracted

from the original sequence. Thus, it is itself a video

clip but is of a considerably shorter length.

There exist some significant differences between

video summary and video skim. First, a video summary

can be built much faster, since generally only visual

information is utilized and no handling of audio and

textual information is needed. Also, once composed, it

can be displayed more easily since there are no timing

or synchronization issues. Second, more salient images

such as mosaics could be generated to better represent

the underlying video content. Third, the temporal

order of all extracted representative frames can be dis-

played in a spatial order so that the users are able to

quickly grasp the video content. Finally, all extracted

stills could be easily printed out when needed.

There are also advantages in using video skim.

Compared to the still-image abstract, a moving-

image abstract usually makes more sense to users

since it preserves part of the original audio track.

Moreover, the possibly higher computational effort

during the abstracting process pays off during the

playback time: it is usually more natural and more

interesting for users to watch a trailer than watching

Video V 3269

V

a slide show, and in many cases, the motion is also

information-bearing.

A comprehensive survey of various video summa-

rization and video skimming techniques could be

found in [3].

Content-Based Video Retrieval

By definition, a content-based video retrieval system

(CBVRS) aims at assisting a human operator or user to

retrieve a video sequence within a potentially large col-

lection based on certain criteria. Generally speaking,

there are three major aspects regarding a CBVRS, name-

ly, query formation, feature space selection, and similari-

ty measurement. In particular, the query formation

deals with formulating a meaningful and clear query

which faithfully captures what the user is looking for.

Once the query is submitted, potential candidates will

be evaluated within certain feature space, and the sim-

ilarity between the query and candidate is measured.

Such a process usually results in a ranked list of re-

trieved sequences sorted from the most similar to the

least. Below gives a brief discussion on each of the

above three aspects.

To formulate a query, the user can either submit still

images (a.k.a. keyframes), short video sequence, textu-

al keywords, or a combination of the above as the

search seeds. Query formation is not as easy a task as

it appears to be. One major reason for this is due to the

semantic gap between the user’s true intention and the

constrained way of representing it. For instance, when

the user submits a video sequence as a query example,

he or she may mean to find some videos that present

similar color schemes, motion, events, or objects, yet

such intention is hard to be captured or understood by

the system as it is embedded in the query and is highly

subjective. To close such a semantic gap, one way is to

use textual keywords in queries that precisely describe

what the user is looking for. Nevertheless, this would

require a thorough and correct textual annotation of

the entire collection, which is not only very tedious but

in fact, impossible for humans to perform. Recently,

there have been some ongoing research efforts on

automatic video annotation [10], yet many challenging

issues still remain to be solved.

As another effort on bridging such a semantic gap,

people have been introducing the so-called relevance

feedback mechanism into the system, where the user

interacts with the system by giving negative or positive
feedback on the retrieved results [13]. The system then

performs an online learning of the user’s expectations

by possibly adjusting or updating the weights of differ-

ent features, the similarity metrics, and the learning

algorithms. While there has been an increasing amount

of work on this subject, how to design an efficient,

effective and user-friendly relevance feedback system

still deserves further study.

Once the query is formulated and submitted, the

next step is to measure the similarity between the

query example and possible candidates within certain

feature space. Undoubtedly, finding a good set of fea-

tures to represent the query is very critical to the success

of the search. So far, various features at different seman-

tic levels have been proposed including color, texture,

motion, audio, object, scene, event etc. in both spatial

and temporal domains [16].

Finally, a metric is required to measure the similar-

ity, which produces a distance that would account for

both the spatial and temporal differences between

the two video sequences. Ideally, such metric should

be jointly defined with the particular feature set that

is applied in the system for a better result [1].

In a word, while at a first glance, a content-based

video retrieval system is a natural extension of a

content-based image retrieval system, it is in fact, far

more complex due to the excessive dimensionality of

the search space induced by the inherent temporal

information in videos.

Key Applications
In October 1998, MPEG started a new work item called

the ‘‘Multimedia Content Description Interface,’’ or in

short ‘‘MPEG-7,’’ which aims to specify a standard set

of descriptors and description schemes that can be

used in describing various types of multimedia infor-

mation [9]. This description shall be associated with

the content itself, to allow fast and efficient search for

materials of users’ interests. The major objective of

MPEG-7 is to make audiovisual material as searchable

as text [8].

Various cases of professional and consumers appli-

cations have been identified and targeted by MPEG-7,

which can be categorized into either pull or push

applications [7]. Specifically, typical pull applications

that are more related to video include: (i) storage and

retrieval of video databases; (ii) delivery of pictures

and video for professional media production, and

3270V Video Abstraction
(iii) movie scene retrieval by memorable auditory

events. In contrast, push applications follow a para-

digm more akin to broadcasting and webcasting. Some

key applications include: (i) user agent driven media

selection and filtering; (ii) personalized television ser-

vices; (iii) intelligent multimedia presentation; (iv)

bio-medical applications; (v) remote sensing applica-

tions; (vi) semi-automated multimedia editing; (vii)

educational applications, and (viii) surveillance

applications.

Undoubtedly, with the amount of audiovisual in-

formation rapidly increasing and becoming widely

available from many sources around the world, a lot

more new applications will emerge so as to satisfy

various urgent needs related to important academic,

social and economic issues.

Cross-references
▶Audio Content Analysis

▶Content-Based Video Retrieval

▶ Image Retrieval

▶ Image Retrieval and Relevance Feedback

▶ Image Content Modeling

▶Mid-to-High-Level Image Content Analysis

▶Video Content Analysis

▶Video Content Modeling

▶Video Content Structure

▶Video Representation

▶Video Scene and Event Detection

▶Video Segmentation

▶Video Shot Detection

▶Video Summarization

▶Visual Content Analysis

Recommended Reading
1. Cheung S. and Zakhor A. Efficient video similarity measurement

with video signature. IEEE Trans. Circ. Syst. Video Tech.,

13(1):59–74, 2003.

2. Li Y. and Dorai C. SVM-based audio classification for instruc-

tional video analysis. In Proc. IEEE Int. Conf. on Acoustics,

Speech and Signal Processing, 2004.

3. Li Y. and Kuo C.-C. Video Content Analysis Using Multimodal

Information: for Movie Content Extraction, Indexing and Rep-

resentation. Kluwer, MA, USA, 2003.

4. Li Y., Narayanan S., and Kuo C.-C. Content-based movie analy-

sis and indexing based on audiovisual cues. IEEE Trans. Circ.

Syst. Video Tech., 14(8):1073–1085, 2004.

5. Mahmood T.S. and Srinivasan S. Detecting topical events in

digital video. In Proc. 8th ACM Int. Conf. on Multimedia,

2000, pp. 85–94.
6. Mitchell J., Pennebaker W., Fogg C., and LeGall D. MPEG Video

Compression Standard. Chapman & Hall, New York, NY, USA,

1992.

7. MPEG Requirements Group, MPEG-7 Applications Document

v.8, ISO/MPEG N2860, MPEG Vancouver Meeting, July 1999.

8. MPEG Requirements Group, MPEG-7 Context, Objectives and

Technical Roadmap, ISO/MPEG N2861, MPEG Vancouver

Meeting, July 1999.

9. MPEG Requirements Group, MPEG-7 Requirements Document

V.15, ISO/MPEG N4317, MPEG Sydney Meeting, July 2001.

10. Nock H., Adams W., Iyengar G., Lin C., Naphade M., Neti C.,

Tseng B., and Smith J. User-trainable video annotation using

multimodal cues. In Proc. 26th Annu. Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2003,

pp. 403–404.

11. Oh J. and Hua K. Efficient and cost-effective techniques for

browsing and indexing large video databases. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2000, pp. 415–426.

12. Pfeiffer S., Lienhart R., Fischer S., and Effelsberg W. Abstracting

digital movies automatically. J. Vis. Comm. Image Represent.,

7(4):345–353, 1996.

13. Yan R., Hauptmann A., and Jin R. Negative paeudo-relevance

feedback in content-based video retrieval. In Proc. 11th ACM

Int. Conf. on Multimedia, 2003, pp. 343–346.

14. Yeung M., Yeo B., and Liu B. Extracting story units from long

programs for video browsing and navigation. In Proc. Int. Conf.

on Multimedia Computing and Systems, 1996, pp. 296–305.

15. Zhang T. and Kuo C.-C. Audio content analysis for on-line

audiovisual data segmentation. IEEE Trans. Speech Audio Pro-

cess., 9(4):441–457, 2001.

16. Zheng W., Li J., Si Z., Lin F., and Zhang B. and Using high-

level semantic features in video retrieval. In Image and

Video Retrieval. Springer, Berlin Heidelberg, New York, 2006,

pp. 370–379.
Video Abstraction

▶Video Summarization
Video Analysis

▶Video Content Analysis
Video Annotation

▶Video Metadata

Video Content Analysis V 3271
Video Chaptering

▶Video Segmentation
Video Compression

▶Video Representation
V

Video Content Analysis

ALEXANDER HAUPTMANN

Carnegie Mellon University, Pittsburgh, PA, USA

Synonyms
Video analysis; Video content processing; Semantic

analysis of video

Definition
Video content analysis deals with the extraction ofmeta-

data from raw video to be used as components for

further processing in applications such as search, sum-

marization, classification or event detection. The pur-

pose of video content analysis is to provide extracted

features and identification of structure that constitute

building blocks for video retrieval, video similarity

finding, summarization and navigation. Video content

analysis transforms the audio and image stream into a set

of semantically meaningful representations. The ulti-

mate goal is to extract structural and semantic content

automatically, without any human intervention, at least

for limited types of video domains. Algorithms to per-

form content analysis include those for detecting objects

in video, recognizing specific objects, persons, locations,

detecting dynamic events in video, associating keywords

with image regions or motion patterns, identifying visi-

ble actions or behaviors, and labeling scenes, activities,

genres. The analysis may be performed on single frames

(images), sequences of frames indicating change or mo-

tion by the camera or the subject, audio analysis through

speech recognition and non-speech sound characteriza-

tion as well as any combinations of still image analysis,

image sequence analysis and audio analysis.
Historical Background
Digital video has proliferated dramatically since the

1990s, ranging from ever-growing personal video collec-

tions to professional news and documentary archives.

As bandwidth and disk space accessible to users is in-

creasing, video is becoming the most rapidly proliferat-

ing type of data on the Internet. Fueled by the popularity

of social media sharing in the Web 2.0 paradigm, there

has been exponential increase in videos available on the

internet. With the availability of large amounts of multi-

media data, there comes an urgent need for good video

content analysis.

The first attempts at image and video content anal-

ysis were made in the 1960s and 1970s, with applica-

tions mostly in video compression and videophones.

By the mid 1990s, a number of research systems that

could perform video content analysis on sequences

longer than a few minutes were introduced. With

the widespread introduction of fast computers in the

twenty-first century, digital video content analysis

has become common, but is frequently not accurate

enough for widespread commercial use, and the more

sophisticated approaches are still too computationally

complex to be applied to every frame in the video.

Video content analysis has become the only feasible

way to analyze larger video collections for search,

summarization, navigation, and re-use in other appli-

cations. Social media tagging has allowed collections

on the internet to be searchable through text tags and

comments, but these searches rely on precision, and

reasonable tagging, which is often not the case, espe-

cially for some of the less popular video files.

Foundations
Video content analysis algorithms are usually built with-

in a machine learning framework, where the system is

first provided with a set of training instances that repre-

sent the type of analysis to be performed (e.g., soccer goal

scoring), as well as negative training instances (normal

play) and any of a large set of machine learning techni-

ques is used to automatically determine which video

analysis features are useful to predict this higher level

analysis. However, the most impressive results in video

content analysis are achievedwhen judicious constraints,

rules or heuristics exploit the particular characteristics

of the analysis to be performed, limiting the number of

features that are considered and improving the accuracy

of the analysis or classification result.

Video Content Analysis. Figure 1. Integrated video

content analysis builds on Image, audio, motion and OCR

analysis.

3272V Video Content Analysis
Much of the most interesting video content analysis

is based on a fusion of analysis results at different levels

of the different modalities (image, audio, motion,

OCR). This type of content analysis has produced the

most interesting results in sports video analysis, where

the crowd and announcer noise indicates an interesting

event on the field, while the image and motion analysis

gives a clue to the type of event, and the OCR might

indicate the players involved as well as the score.

Similarly, for broadcast video, a combination of

image analysis for faces, audio analysis and camera

analysis can determine which shots contain interviews

with news subject, and OCR together with face recog-

nition provides the identify of the person in the news.

Video content analysis combining image similarity

based on duplicate detection, identification of news

studio shots and news anchor scenes can be used to

provide the building blocks for news story segmenta-

tion. In order to summarize and browse through

‘‘scenes’’ or stories quickly, it is convenient to assign

them to particular topic classes, which can again be

done be integrating the results of different components

of video content analysis.

Inmanyways, video content analysis fundamentally

builds on image content analysis. Each frame in a video

can be considered an image by itself, so all aspects of an

image retrieval system can be applied. Text annotations

may be available and can be searched as well. But video

offers additional challenges and opportunities.

Video consists of additional types of information

(e.g., audio sounds, human speech, motion) beyond

what one might find in pure still image data. While a

collection of a million images is considered quite large,

just 10 h of video at 30 frames per second would

provide a million frames (images). Of course, consec-

utive frames are often strongly related, providing high

similarity and numerous slightly different versions of

the same content in adjacent frames. However, the

large amount of data, puts the burden on video con-

tent analysis to provide effective abstractions. The pur-

pose of video content analysis is to provide extracted

features and identification of structure that constitute

building blocks for video retrieval, video similarity

finding, summarization and navigation (Fig. 1).

Broadcast video consists of edited programs, whose

structure can be exploited. Thus, news video consists

of anchors, news stories, reporters, advertisements, etc.

with each category providing context and constraint to

what might be of use in further analysis. Videos can
generally be partitioned temporally into keyframes,

scenes, stories, and programs.

Partitioning Video

One of the earliest and most successful applications of

video content analysis was the detection of shot bound-

aries. Shot boundary segmentation involves the identi-

fication of cuts, fades, and dissolves as typical editing

effects added to video. Most techniques use sudden

color, texture or edge changes and feature point tracks

over various window sizes to determine shot breaks. In

movie or television video, additional segmentation may

aggregate several related shots into a scene or video

paragraph, based on the similarity between sequences

of shots.

In the case of broadcast news video, it is usually

possible to segment a news story as a possible semantic

unit, based on consistency in the text transcript, detec-

tion of news anchors, audio speaker analysis, and sim-

ilarity in the news story footage. Special segmentation

techniques involving black frames and rapid scene

changes are used to identify commercial advertise-

ments. Program or station logos, special transition

effects, and recognition of distinctive backgrounds

such as weather maps can also help determine news

story boundaries.

Surveillance video has very different characteristics,

since there are no editing artifacts, such as shot bound-

aries. Here, keyframe extraction is still desirable, but

keyframes are usually selected from sections of video

that contain motion, detected objects and people. In

Video Content Analysis V 3273

V

surveillance video, the best representative keyframe

captures an unusual event or a person/object when it

is most clearly visible (largest) in the frame.

Audio Analysis

Audio analysis provides one component of video con-

tent analysis, supplementing visual analysis. From the

audio track, it is possible to automatically generate a

transcript to enable text-based retrieval from spoken

language documents. Audio analysis can also identify

changes in speakers and identify individual speakers.

Speech Recognition for Video Content Analysis and

Retrieval The consensus from a number of published

experiments in the area of automatic speech recogni-

tion for broadcast retrieval applications is that as long

as speech recognition has a word error rate less than

35%, then information retrieval from the transcripts

of spoken documents is only 3–10% worse than infor-

mation retrieval on perfect text transcriptions of the

same documents. The most accurate recognizers to

date produce a word error rate under 20% for broad-

cast news, suitable for very accurate text-based

retrieval.

Speaker and Audio Type Identification Another com-

ponent of video content analysis is the use of audio

features and speaker labeling. Many systems use audio

analysis techniques to automatically extract additional

metadata providing a description of the content of the

audio channel. Audio processing can be used to detect

music and other non-speech sounds, e.g., laughter and

applause. Audio processing techniques can also be used

to distinguish male versus female speakers, so that the

respective audio regions can be passed to more accu-

rately trained gender-specific speech recognizers. Exist-

ing audio analysis systems also identify well-known

speakers for which a significant amount of training

data is available, or group speakers across different

speaker turns. Thus, for example, the techniques could

identify the US President as well as most news anchors.

Infrequently appearing speakers can be tracked when

reappearing at different times within a video broadcast,

although not labeled by name. This speaker change

classification can be used to help break the video into

coherent segments, and in general to characterize the

audio channel of the data. Thus, video where one talker

speaks for a long time can be labeled as a ‘‘speech,’’

whereas an ‘‘interview’’ consists of two people switching
back and forth, while a ‘‘forum’’ discussion includes

many speakers. For broadcast data, it is possible to detect

which speaker remains present throughout the entire

audio data, thus identifying the anchor or narrator.

Content Analysis from Individual Image Frames

Most image content analysis for video usually happens

on extracted keyframes. The full palate of image content

analysis techniques can be applied, including low-level

image content analysis, mid/high-level content analysis,

image content modeling, image salient point extraction

and representation, image segmentation and images

similarity analysis, as described in the relevant sections.

Metadata Extraction Unique to Video

There are several types of content analyses that are

unique to video.

Motion Feature Analysis One additional feature type

not present in images is related to motion. There are

several types of motion estimators that can be extracted,

the motion blocks typically used in MPEG-style com-

pression, the overall kinetic energy in the image and a

fine-grained motion analysis based on optical flow.

MPEG motion vectors can be directly extracted from

the compressed result of an MPEG encoding process.

These motion vectors can be aggregated and used for

object and camera motion assessment. Kinetic energy

measures the pixel variation within the shot. Optical

flow algorithms typically warp one frame into another

frame. They estimate the movements of high intensity

interest points between two image frames as the motion

vectors.While expensive to compute, optical flow analy-

sis tends to provide the most refined estimates of object

motion.

Recognizing object motion in video sequences is

an important component in many applications. For

example, in computer vision systems it enables the

identification and tracking of the objects that make

up a scene; while in video data compression it provides

a means of reducing redundancy – knowing the mo-

tion of an object allows its position in successive

frames to be predicted, removing the need to retrans-

mit identical frame data and leading to a reduction in

the bit rate required to transmit the video. Other

applications include the generation of panoramic

images, and recovery of 3-dimensional structure.

Recovering detailed motion from video sequences

is a non-trivial effort. Factors such as the ambiguity

Video Content Analysis. Figure 2. Camera motion

analysis for camera pan/tilt versus object motion using

MPEG motion vectors.

3274V Video Content Analysis
resulting from 3-D action recorded as a 2-D projection

by the camera, poor contrast, and low spatial or tem-

poral resolution, require sophisticated techniques to

obtain reliable motion information. The range of

approaches used includes affine models to estimate

and track complex 2-D motions and techniques to

deal with multiple component motion regions.

It has become popular in sports motion analysis to

videotape subjects with markers placed on critical body

parts, joints or equipment. The markers are used in

each movement as references to the particular point

of interest. Typically, the camera is carefully calibrated

and distancemarkers placed in the field of view to allow

accurate estimates of motion distances and velocities.

This motion analysis allows customized systems to

create models of motion and performance analysis rel-

ative to a specific sports activity. The motion may be

translated into either 2-dimensional or 3-dimensional

models and compared to reference motions.

Camera Motion Analysis One facet of video content

analysis is concerned with analysis of camera motion,

which includes pan (left/right), tilt (up/down), and

zoommotions. More subtle analysis tries to distinguish

dolly and boommotion, where the camera is physically

moved from one place to another from the situation

where the camera stays in place. Even further refine-

ment of camera motion analysis tries to detect camera

‘‘shake,’’ used for image stabilization. In principle, cam-

era motion can also include rotation around a focal

point; however this is a relatively infrequent event.

Awide variety of techniques exist for estimating the

camera motion, most of which depend on the compar-

ison between adjacent frames, based either on all pixels

in the image or particularly salient pixels or regions.

Since these pixels or regions only move slightly from

frame to frame, their difference can be interpreted as

a ‘‘track.’’ From the overall patterns of tracks, models

can be built to estimate if the motion pattern is more

consistent with object motion, or camera shake, or

camera pan/tilt/zoom, etc.

Most methods approach the problem of camera

motion by deriving parameters proportional to the

zoom, pan, rotate and tilt given a set of motion tracks.

The methods usually determine an empirical threshold

that classifies the derived parameters as representative

for a particular camera motion. Optical flow analysis

methods computed between consecutive images rely on

tracking a large number of characteristic points across
adjacent frames. Other methods use the MPEGmotion

vectors which encode one quantized motion vector per

macro-block of pixels as an alternative to optical flow.

Though these motion vectors are not directly equiva-

lent to the true motion vectors of a particular pixel in

the frame, there are typically enough motion vectors to

robustly estimate camera motion parameters (Fig. 2).

Video OCR (VOCR) A somewhat different representa-

tion is derived by interpreting the text that is present in

video images using optical character recognition

(OCR). However, reading text present in the video

stream requires a number of processing steps in addi-

tion to mere character recognition (see Fig. 3). First the

text must be detected as present in a wide variety of

scenes and backgrounds. Then it must be extracted

from the image and finally converted into a binary

(black and white) representation, since the commer-

cially available OCR engines do not recognize colored

text on variably colored background. The video OCR is

further complicated because the text has very low

resolution, frequently only about 10 pixels of height

per character. Unlike text printed on white paper, the

background of the image tends to be complex, with the

character hue and brightness very near the background

values. Among the solutions to these problems are

Video Content Analysis V 3275
interpolation filters, the integration of images across

multiple frames and combinations of filters.

A text region detection is performed first, searching

for horizontal rectangular structures of clustered sharp

edges using variable orientation differential filtering

techniques. Text boxes are identified based on their

aspect ratio, absolute size and the fill factor of the

bounding boxes.

Once a text area is detected, enhancement takes

place. Multi-frame integration looks at the potential

bounding boxes over several frames and finds the min-

imal (white) pixel values across that range. Potential

text regions are sequentially filtered across consecutive

frames, effectively increasing the resolution of each

caption. Sub-pixel interpolation is performed to in-

crease resolution without incurring jagged edges as

artifacts (Fig. 4).

Adaptive thresholding on the gray-scale histogram

is then used to create binarized black on white text

before submitting it to an optical character recognition

package. Systems will run OCR on multiple
Video Content Analysis. Figure 3. Video OCR block

diagram consisting of text area detection, text area

preprocessing, and commercial OCR.

Video Content Analysis. Figure 4. Candidate text regions as

extracted individual text line.
consecutive frames where text was detected, obtaining

several nearly identical OCR results for a single occur-

rence of text on the screen that might last for a few

seconds. These results can then be merged together for

a single estimate. Once text is recognized, post-proces-

sing can correct some of the inevitable errors, e.g.,

using dictionary spelling correction.

Combination of Audio Analysis, Image Analysis, and

Motion Analysis for Semantic Content Analysis

Ultimately, video content analysis tries to achieve many

of the same goals as mid-level and high level image

analysis, except that the low level features available

come from any number of modalities (audio, image,

motion) and have already been performed at low, mid

or high levels for this modality. The main task for video

content analysis is then to fuse or combine these build-

ing blocks into a new characterization of the video.

Semantic Concepts as Mid or High-level Video

Features. The effectiveness of low-level image analysis

to represent image or video content is usually limited.

The representations typically result in the notorious

semantic gap between what users or applications ex-

pect and what content analysis systems can return, due

to the systems’ inability to capture the semantic mean-

ing of the video content.

To provide a more semantic content analysis in

video, an intermediate (mid to high-level) layer of

hundreds of semantic concepts has been introduced in

an effort to capture the semantic content of multimedia

documents. The typical concepts includes a wide range

of topics such as those related to people (face, anchor,

etc.), objects (cars, buildings, bridges, graphics), loca-

tion (outdoors, city, office setting), and genre (wed-

dings, meetings, sports). Beyond the semantic concepts

that are common to still image content analysis, seman-

tic concepts for video can include temporally defined
detected in a single frame of a video and some of the

V

3276V Video Content Description
events, such as an airplane landing, a vehicle stopping,

etc. The successes of automatic semantic concept de-

tection in recent years have demonstrated that a large

number of high-level semantic concepts can be derived

from the low-level multi-modal features with reason-

able detection accuracy.

Detectors or classifiers for such semantic features

are usually built off-line using large amounts of labeled

training data combined with a number of machine

learning approaches. Accuracy of the detectors depends

critically on the number of training examples available

as well as the difficulty of the semantic concept to be

detected, e.g., a ‘‘left thumb’’ would be much more

difficult to detect than a face. Face detection has

been most effective for image and video retrieval, and

significant added benefit can be gained from accurate

face recognition, depending on the quality of the

available images.

More recently, it has been proposed to combine

these intermediate level semantic concepts into an

ontology, which defines the relationships between con-

cepts, their taxonomic structures and constraints.

While researchers have shown some benefit to retrieval

accuracy when using ontologies for limited domains, it

is still unclear if a general-purpose ontology of visual

concepts can be built and successfully applied. Similar

efforts in the text analysis area have not yielded the

expected results so far.

Key Applications
Search, browsing and summarization in video archives,

real-time surveillance monitoring.

Cross-references
▶Audio

▶Audio Content Analysis

▶Audio Segmentation

▶ Image Content

▶ Image Content Modeling

▶ Image Salient Points and Features

▶ Image Segmentation

▶ Image Similarity

▶ Low-Level Image Content Analysis (Color, Texture,

Shape)

▶Mid-to High-Level Image Content Analysis

▶Video

▶Video Content Modeling

▶Video Content Structure

▶Video Metadata
▶Video Representation

▶Video Scene and Event Detection

▶Video Shot Detection
Recommended Reading
1. Chang S. and Sundaram H. Structural and semantic analysis of

video. In Proc. IEEE Int. Conf. on Multimedia and Expo, 2000,

pp. 687–690.

2. Hanjalic A. Content-Based Analysis of Digital Video. Kluwer

Academic, Boston, 2004.

3. Jay K.C. Video Content Analysis Using Multimodal Informa-

tion: for Movie Content Extraction, Indexing and Representa-

tion. Kluwer Academic, Norwell, MA, USA, 2003.

4. Marques O. and Furht B. Content-Based Image and Video

Retrieval. Kluwer Academic, Norwell, MA, USA, 2002.

5. Multimedia Image and Video Processing, L. Guan, S.Y. Kung,

J. Larsen (eds.) Multimedia Image and Video Processing, CRC,

Boca Raton, FL, USA, 1999.

6. Naphade M.R. and Smith J.R. On the detection of semantic

concepts at TRECVID. In Proc. 12th Annu. ACM Int. Conf. on

Multimedia, pp. 660–667.

7. Smeulders A.W., Worring M., Santini S., Gupta A., and Jain R.

Content-based image retrieval at the end of the early years. IEEE

Trans. Pattern Anal. Mach. Intell., 22(12):1349–1380, 2000.

8. Smith M.A. and Kanade T. Multimodal Video Characterization

and Summarization. Kluwer, 2005. Series in Video Computing,

Vol. 9.

9. Snoek C., Worring M., and Hauptmann A.G. Learning rich

semantics from news video archives by style analysis. ACM

Trans.Multimedia Comp., Comm., and Appl., 2(2):91–108, 2006.

10. The Informedia Digital Video project http://www.informedia.cs.

cmu.edu

11. Worring M. and Snoek C.G. Semantic indexing and retrieval of

video. In Proc. 14th Annu. ACM Int. Conf. on Multimedia,

pp. 13–13.
Video Content Description

▶Video Metadata
Video Content Modeling

LEI CHEN

Hong Kong University of Science and Technology,

Hong Kong, China

Synonyms
Video data modeling

Th

and

Video Content Modeling V 3277
Definition
Video Content Modeling refers to representing the con-

tent of video data for search later on. Specifically, the

content of video data includes the visual features,

the temporal features, the contained objects, and the

semantic concepts. With an effective modeling tech-

nique, people cannot only browse the video data, but

also search the video with the specific features. Video

content modeling is the basic for video data indexing

and retrieval.

Historical Background
Video, as a popular type of multimedia, has been widely

used by movie/TV industries and individuals. In the

earlier 90s, people started search video data through

annotated text information [20,21,23]. However, the

low efficiency of manual annotation techniques pre-

vents the text-based retrieval techniques applying to

video data on a large scale. Thus, content-based video

retrieval was proposed and studied. For the purpose

of conducting effective and efficient search, significant

works have been conducted on modeling video con-

tent. These techniques can be classified into three

categories:

Segmentation-based models [24,18,12,8].

Video are recursively broken down into scenes, shots

and frames. Key frames are extracted from shots and

scenes to represent them, and visual features are

extracted from key frames as indexes to key frames.

� Annotation-based models [20,23,22,14,3].
V

In this model, a content description (annota-

tion) layer is put on top of the video stream. Each

annotation can be associated with a logical video

sequence or physically segmented shots or scenes.

An annotation describes the events or semantics of

a video sequence.

� Salient object-based models [13,4,10,16,5,19].

Salient objects are extracted from video, and their

audio-visual features and spatio-temporal relation-

ships among them are described to express events

or concepts.

Foundations
� Segmentation-based video data modeling:
Modeling video data based on segmentation

can be divided into three steps. First, video is seg-

mented into shots (sometimes called clips); second,

key frames are selected to represent the shots;
finally, based on these shots, scenes or story units

are constructed. During the last step, keyframes

may also be selected to represent scenes and

story units. Usually,visual features are extracted

from the key frames as indexes to the video data.

A video data model based on video segmentation

possess a hierarchical structure (Fig. 1): a video

stream contains several scenes or story units,

each scene contains a set of shots and each shot

contains asequence of video frames. The shaded

frames in Fig. 1 are examples of key frames. The

definition of shots, key frames and scenes are as

follows [18]:

� A shot is an unbroken sequence of frames

recorded from a single camera.

� A key frame is the frame selected from a shot

which can represent the salient content of that

shot.

� A scene is a sequence of shots which conveys a

concept or story.

e techniques for shot detection, key frame selection

scene construction, as briefly reviewed, follows:

� Video shot detection

There are two basic types of video shot transi-

tions: abrupt and gradual [24]. Abrupt transitions

(cuts) occur when stopping and restarting cameras.

Gradual transitions are introduced when two shots

are artificially combined together by applying cine-

matic effects (fade-in, fade-out, dissolve, etc) [24].

Compared to the abrupt shot transitions, the grad-

ual shot transitions are much more difficult to

detect, because camera operations and big object

movements may cause temporal variance similar to

gradual shot transitions.

� Key frame selection

Key frames provide a suitable abstraction and

framework for video indexing, browsing and re-

trieval [1]. Users can get an overview of the video

by only browsing the key frames. Furthermore,

using key frames greatly reduces the amount of

data required in constructing higher level video

structure units (e.g., scenes, story units). Most of

the key frame selection techniques are based on

shot detection; in other words, key frames are

mainly defined at the shot level. In order to select

key frames, the video stream is first partitioned into

shots, and different techniques are applied to ex-

tract key frames for each shot [25].

Video Content Modeling. Figure 1. A hierarchy structure of video data.

3278V Video Content Modeling
� Scene construction from shots

Individual shots are fundamental representa-

tion units of a video. However, in a normal video

stream, there are thousands of shots, and usually a

single shot conveys very little semantics. Shots can

be grouped into higher-level segments to form

scenes, which can convey much more semantics

than shots [18]. All the scene construction algo-

rithms follow similar steps: (1) Shots are clustered

together based on the similarity which is computed

from some visual features (e.g., color, texture, edge,

etc.), (2) Clusters that are temporally close to each

other are grouped into scenes.

� Annotation-based video data modeling
Annotation-based video modeling techniques asso-

ciate annotations (keywords or free text) to video

sequences. These annotations describe the seman-

tics of the video sequences. Based on the structure

of annotations, an annotation-based video data

model can be classified into: a single value annota-

tion structure and an attribute-value pair structure.

� Single value annotation structure approach

In this model, annotations are associated to

logical [20,23] or physical [11] frame sequences

directly.
� Annotations to logical frame sequences.

Smith et al. [20] proposed a layered
annotation representation model called the

stratification model that segments the con-

textual information of the video. The strat-

ification model divides the video sequence

into a set of overlapping strata. A stratum

consists of descriptive information such as

title, keywords and the boundaries it repre-

sents. The strata may be contained in other

strata and may encompass a multitude of

other descriptions. The content informa-

tion is derived by examining the union of

all the contextual descriptions that are asso-

ciated with it. Each stratum is logically in-

dependent and will make its contribution to

the content when its descriptive informa-

tion meets the user requirements.

� Annotations to physical frame sequences
Different from the stratification systemwhich

directly links the logical video segment to the

raw video data at frame level, a generic video

model [11] is developed which incorporates

a segmentation-based video data model to

associate text to a well defined structure.

Hjelsvold’s model supports sharing and

reuse of the video data, temporal interval

operations and structure abstraction.

However, the arbitrary definition and

Video Con

Video Content Modeling V 3279
reuse of a frame sequence introduces com-

plicated relationships between structure

units and thematic annotations.
� Attribute-value pair structure approaches

Instead of using the single value for annota-

tions, attribute-value pairs are adopted to annotate

the logical video segments. Attributes define the

types, ranges and semantics of the values [17].

� Salient object-based video modeling
Events that happen in a video such as dialogs,

explosions, car chases are considered basic seman-

tic units that the video intends to express. Through

analysis of characteristics of video content, the

event can be expressed by describing spatio-tempo-

ral relationships among the video objects that ap-

pear in that video. The models of this category can

be further divided into motion segmentation-based

and spatio-temporal relationship-based.

� Motion segmentation-based approaches

Motion based approaches try to model video

data through investigating motion directions,

trajectories and velocities of video objects. These

motion parameters are extracted together with

video objects from video data and stored

together. Motion segmentation-based appro-

aches can befurther divided into graph-based

approaches andmotion vector-based approaches.
� Graph-based approaches
Approaches in this category use a graph to

describe moving objects, their trajectories

and spatio-temporal relations with other

moving video objects [9,13,15].
tent Modeling. Figure 2. VSDG representation of a clip.
� Motion vector-based approaches
Instead of using a graph, motion vector-

based approaches model moving video

objects with a set of motion vectors [6].
� Spatio-temporal relationship-based approaches

Motion segmentation-based approaches only

address motion parameters of video objects.

However, the spatial and temporal relation-

ships among video objects (not only moving

video objects [15,13]) possess many more

semantics. Several approaches have been pro-

posed and they can be classified into two

categories: spatio-temporal logic-based and

graph model-based.
� Spatio-temporal logic-based approaches
Del Bimbo et al. [4] propose a Spatial-Tem-

poral Logic (STL) language to describe the

spatio-temporal relationships among video

objects within image sequences.
� Graph model-based approaches
Different graphs are used in these approaches

to model the spatio-temporal relationships

among the video objects. From the point of

view of dealing with semantic heterogeneity

of video data, Day et al. [10] propose a Video

Semantic Directed Graph (VSDG), which is

used to construct users’ heterogeneous views

of the video data. VSDG is created to model

spatio-temporal interactions between video

objects. An example of a VSDG is shown in

Fig. 2. A video clip is composed of n video

segments, labelled V1,V2,...Vn. Each video
V

3280V Video Content Modeling
object (O11,O12,...Onn) has attributes that

describe the duration of its appearance in

the video segments and its motion vector.

Each rectangular node corresponds to an

event in the video clip whenever a new

physical object appears.
From the point of view of multimedia presentation,

two other approaches have been proposed to model

the spatio-temporal relationships among the video

objects. HPNs [2] use Hierarchical Petri nets to cap-

ture the multi-level content of video data, which

includes motion trajectories of moving objects and

spatial temporal relationships among video objects.

Chen et al. [7] model the salient objects, their content,

and their spatio-temporal relationships in a hierarchy

model and propose a video query language for users to

search related contents.

Key Applications

Content Based Video Retrieval
Content-based video retrieval (CVIR) is the the

problem of searching for videos that have similar

content to the query video in a large database.

Video Databases
With a proper video content modeling tech-

nique, the video data can be stored in a database

for efficient retrieval and analysis later on.

Cross-references
▶ Image Content Modeling

Recommended Reading
1. Aigrain P., Zhang H., and Petkovic D. Content-based represen-

tation and retrieval of visual media: A state-of-the-art review.

Multimed. Tool. Appl., 3(3):179–202, 1996.

2. Al-KhatibW. and Ghafoor A. An Approach for VideoMeta-Data

Modeling and Query Processing. In Proc. 7th ACM Int. Conf. on

Multimedia, 1999, pp. 215–224.

3. Bertini M., Bimbo A.D., and Torniai C. Automatic video

annotation using ontologies extended with visual information.

In Proc. 13th ACM Int. Conf. onMultimedia, 2005, pp. 395–398.

4. Bimbo A.D., Vicario E., and Zingoni D. Symbolic Description

and Visual Querying of Image Sequences Using Spatio-Temporal

Logic. IEEE Trans. Knowl. and Data Eng., 7(4):609–622, 1995.

5. Browne P. and Smeaton A.F. Video information retrieval using

objects and ostensive relevance feedback. In Proc. 2004 ACM

Symp. on Applied Computing, 2004, pp. 1084–1090.

6. Chang S.F., Chen W., Meng H.J., Urama H., and Zhong D. A

fully automated content-based video search engine supporting
spatiotemporal queries. IEEE Transaction on Circuits and

Systems for Video Technology, 8(5):602–615, 1998.

7. Chen L., Oria V., and Özsu M.T. Modeling Video Data for

Content Based Queries: Extending the DISIMA Image Data

Model. In Proc. 9th Int. Conf. on Multimedia Modeling, 2003,

pp. 169–189.

8. Cooper M. Video segmentation combining similarity analysis

and classification. In Proc. 12th ACM Int. Conf. on Multimedia,

2004, pp. 252–255.

9. Courtney J.D. Automatic video indexing via ojbect motion anal-

ysis. Pattern Recognition, 30(4):607–625, 1999.

10. Day Y.F., S.D., Iino M., Khokhar A., and Ghafoor A. Object-

oriented conceptual modeling of video data. In Proc. 11th Int.

Conf. on Data Engineering, 1995, pp. 401–408.

11. Hjelsvold R. and Midtstraum R. Modelling and Querying Video

Data. In Proc. 20th Int. Conf. on Very Large Data Bases, 1994,

pp. 686–694.

12. Lefèvre S., Holler J., and Vincent N. A review of real-time

segmentation of uncompressed video sequences for content-

based search and retrieval. Real-Time Imaging, 9(1):73–98, 2003.

13. Li J., Özsu M.T., and Szafron D. Modeling of moving objects in a

video databas. In Proc. Int. Conf. on Multimedia Computing

and Systems, 1997, pp. 336–343.

14. Martinez M. and Moran F. Authoring 744: Writing Descriptions

to Create Content. IEEE MultiMedia, 10(4):94–99, 2003.

15. Nabil M., Ngu A.H.H., and Shepherd J. Modeling Moving

Objects in Multimedia Database. In Proc. 8th Int. Conf. Data-

base and Expert Syst. Appl., 1997, pp. 67–76.

16. Naphade M.R. and Huang T.S. Extracting semantics from

audio-visual content: the final frontier in multimedia retrieva.

IEEE Transactions on Neural Networks, 13(4):793–810, 2002.

17. Oomoto E. and Tanaka K. Ovid: Design and implementation of

a video-object database system. IEEE Trans. Knowl. and Data

Eng., 4(5):629–643, 1993.

18. Rui Y., Huang T.S., and Mehrotra S. Exploring Video Structure

Beyond the Shots. In Proc. Int. Conf. on Multimedia Computing

and Systems, 1992, pp. 237–240.

19. Shibata T., Kato N., and Kurohashi S. Automatic object model

acquisition and object recognition by integrating linguistic and

visual information. In Proc. 15th ACM Int. Conf. onMultimedia,

2007, pp. 383–392.

20. Smith T.G.A. and Davenport G. The stratification System:

A Design Environment for Random Access Video. In Proc. Int.

Workshop on Networking and Operating System Support for

Digitial Audio and Video, 1992, pp. 250–261.

21. Smoliar S. and Zhang H. Content-based video indexing

retrieval. IEEE Multimedia, 1(2):62–72, 1994.

22. Vendrig J. and Worring M. Interactive Adaptive Movie Annota-

tion. IEEE MultiMedia, 10(3):30–37, 2003.

23. Weiss R., Duda A., and Gifford D.K. Composition and search

with a video algebra. IEEE Multimedia, 1(2):12–25, 1994.

24. Zhang H., Kankanhalli A., and Smoliar S. Automatic partition-

ing of full-motion video. Multimedia Systems, 1:10–28, 1993.

25. Zhang H.J., Low C.Y., Smoliar S.W., and Wu J.H. Video

parsing, retrieval and browsing: An integrated and content based

solution. In Proc. 3rd ACM Int. Conf. on Multimedia, 1995,

pp. 15–24.

Video Content Structure V 3281
Video Content Processing

▶Video Content Analysis
Video Content Structure

XIAN-SHENG HUA, MENG WANG

Microsoft Research Asia, Beijing, China

Synonyms
Video structuring; Video structure analysis
Definition
Mining video content structure is an elementary step

of video content analysis. Direct access to a video

without indexing is usually not an easy task, due to

its length and unstructured format. On the other hand,

analogous to text documents that can be decomposed

into chapters, paragraphs, sentences and words, videos

can be segmented into units like scenes, shots, and

keyframes. The analysis of video content structure

can be viewed as the process of hierarchically decom-

posing videos into units and building their relation-

ships. Through such a process, a table-of-content can

be constructed for each video, which facilitates the

access and manipulations of the video data. For exam-

ple, the keyframes extracted from the video can be used

as its entries for indexing and browsing.
V

Historical Background
More and more video data has become available to

ordinary users due to the advances in storage devices,

networks and compression techniques. However, the

efficient access to an unstructured video is a challenging

task due to the huge number of frames. Video structur-

ing is proposed to tackle this difficulty. In [14], Zhang

et al. first proposed the scheme that partitions videos

into shots, and then selects the first frame of each shot as

the keyframe for indexing. From 2001, the National

Institute of Standard and Technology (NIST) has estab-

lished video shot detection as a evaluation task in the

TREC Video Retrieval Evaluation (TRECVID) bench-

mark (http://www.itl.nist.gov/iaui/894.02/projects/trec-

vid/). In [10], Rui et al. proposed to group shots into
scenes, such that the video content can be structured at

a higher level. For several video genres, such as news and

movies, ‘‘story’’ is also widely applied as the unit for

content organization. Kim et al. [6] proposed a method

to further segment shots into subshots in order to

facilitate more detailed implementations. For each shot

or subshot, one or more keyframes can be extracted to

represent its content. Thus, as illustrated in Fig. 1,

generally a video can be structured in a hierarchical

form as ‘‘video ! scenes ! shots ! subshots ! key-

frames,’’ and it can also be segmented into stories if it

belongs to certain genres, such as news video. The

definitions of these terminologies are as follows:

Shot: a shot is an uninterrupted clip recorded by a

single camera. It is a physical entity and often forms

the building block of video content.

Scene: a scene is defined as a collection of semantically

related and temporally adjacent shots, depicting and

conveying a high-level concept or story. A scene usually

consists of a series of consecutive shots that are

recorded in the same location.

Story: a story is referred to as a clip that captures a

continuous action or a series of events, and it may be

composed of several scenes and shots. Note that the

story lines are usually only clear for rigidly structured

videos. Currently, most story identification methods

are developed for news videos. Thus, here only ‘‘news

story’’ is considered. A definition of a news story in

TRECVID is ‘‘a segment of a news broadcast with a

coherent news focus which contains at least two inde-

pendent, declarative clauses.’’

Subshot: subshot is a segment within a shot that cor-

responds to a unique camera motion. A shot can be

divided into one or more consecutive subshots accord-

ing to the movement of the camera.

Keyframe: a keyframe is the frame which best rep-

resents the content of a shot or a subshot. According

to the content complexity, one or more keyframes can

be extracted for each shot or subshot. Keyframes can be

used as the entries of the video data for manipulations,

such as indexing and browsing.

Foundations
As previously introduced, the analysis of video content

structure may involve five techniques, namely, shot

detection, scene grouping, story identification, subshot

segmentation, and keyframe extraction.

Video Content Structure. Figure 1. Hierarchical decomposition and representation of video content.

3282V Video Content Structure
Shot Detection

Shot detection is the process of identifying the bound-

aries between two consecutive shots, such that the frame

sequence can be grouped into a set of shots. According to

the transition style of the consecutive shots, the shot

boundaries can be mainly categorized into two types,

i.e., cut and gradual transitions. Cut indicates that the

change between the two shots is abrupt, whereas the

gradual transition means that there is a gradual special

effect in the transition of the two shots. Many different

shot detection methods have been proposed (including

the detection and categorization of gradual transitions),

and amost straightforward approach to shot detection is

to measure the change between every two consecutive

frames and a shot boundary can be declared if there is a

significant change. Yuan et al. have provided a
comprehensive survey on shot detection in [13], and

more details about this technique can be found in the

entry Video Shot Detection.

Scene Grouping

Scene grouping is usually implemented based upon the

results of shot detection. From a global point of view,

scene grouping can be viewed as a shot clustering task.

With an appropriate pairwise similar definition, many

different clustering algorithms can be applied to accom-

plish this task. Intuitively, two criteria should be consid-

ered in a scene grouping algorithm, namely, content

similarity and temporal continuity. Content similarity

means that the shots within the same scene should have

similar content, whereas the temporal continuity indi-

cates that these shots should be close to each other

Video Content Structure V 3283
temporally. The content similarity is usually defined

based on a low-level feature space, and many different

features can be applied, including visual, audio and text

features (the text features can be extracted by several

existing techniques such as ‘‘Automatic Speech Recogni-

tion’’ and ‘‘Optical Character Recognition’’).

Gu et al. [3] have categorized the existing scene

grouping methods into three approaches: merging-

based, splitting-based, and model-based. The merging-

based approach groups shots in a bottom-up way. In

[10], the scene grouping is implemented via a two-step

process: (i) assign the shots into groups according to

their visual similarities and temporal continuities; and

(ii) merge similar groups into a unified scene. Rasheed

et al. proposed another two-step scene grouping pro-

cess in [9]: (i) cluster shots according to Backward

Shot Coherence (BSC); and (ii) merge the clusters

into scenes based on an analysis of the shot length

and the motion content in the potential scenes.

As opposed to the merging-based approach,

splitting-based scene grouping methods are implemen-

ted in a top-down style, i.e., a video is split into a set of

coherent scenes in turn. In [8,12], two different graph-

based splitting methods are proposed. In these two

methods, a video is represented by a graph, in which

the vertices are denoted by the shots and the edges are

determined by the similarities of the shots and their

temporal localities. A graph is then partitioned into

several subgraphs and each subgraph can be regarded

as a scene. In [12], the graph is named as a Scene

Transition Graph (STG), and it is partitioned into

several subgraphs with the complete-link method,

whereas in [8] the graph is named as a Shot Similarity

Graph (SSG) and it is partitioned by the normalized

cuts method.

Different from the above two approaches, model-

based methods group shots into scenes with statistical

models. Tan et al. [11] implemented scene grouping

using the Gaussian Mixture Model (GMM), with each
Video Content Structure. Figure 2. A typical news story in a

and the story boundaries can be identified according to the a
Gaussian component indicating the distribution of a

scene, and the number of scenes can be determined by

the Bayesian Information Criterion (BIC) method.

Recently, Gu et al. [3] proposed an energy minimiza-

tion scheme, in which the constraints of time and

content of scene grouping are indicated by energy

items. It is able to take both the global and local

constraints into consideration, and the number of

scenes can be established by the Minimum Description

Length (MDL) principle.

Story Identification

Story identification needs more semantic understand-

ing of video content (Fig. 2), and it is usually only

applied for certain rigidly structured video genres such

as news video. In TRECVID 2003 and 2004, news story

identification was established as an evaluation task.

The existing story identification methods can be main-

ly classified into two categories, i.e., rule-based and

learning-based. The rule-based story identification

methods are usually based on certain domain knowl-

edge. For example, it has been observed that many news

stories begin with an anchorperson shot and end with

the start of another anchorperson shot. In [15], the

pattern of news stories has been analyzed, and the task

of story identification is accomplished via detecting

the shots of certain types, such as anchorperson shot.

However, such an approach highly depends on the

adopted knowledge, and can hardly handle diverse

video sources with different features and production

rules. The learning-based approach is able to tackle

this difficulty. In typical learning-based story identifica-

tion methods, a set of story boundary candidates is first

established (such as the shot boundaries and audio

pauses), and then each candidate is classified as ‘‘story

boundary’’ or not according to the model learned from

a training set [1]. More details about these story identi-

fication methods can be found in [1,15] and references

therein.
video. The keyframes of the video have been illustrated,

nchorperson analysis.

V

3284V Video Content Structure
Subshot Segmentation

Subshot is a sub segment within a shot. Generally, a

subshot is defined to contain a unique camera motion.

Thus, subshot segmentation can be accomplished

through camera motion detection. For example, consid-

er a shot in which the camera moves as follows: zoomed

out, then panned from left to right and zoomed in to a

specific object, and then stopped. This shot then com-

prises three subshots, including one zoom out, one pan

to right, and one zoom in. The camera motion between

two adjacent frames can be estimated based on a two-

dimensional affine model, in which the motion vector

(vx, vy) at pixel (x, y) can be expressed as
vx
vy

� 	
¼ a1

a4

� 	
þ a2 a3

a5 a6

� 	
x

y

� 	
ð1Þ

where ai(i = 1,2,...,6) denote the motion parameters.

The motion parameters can be represented by a more

meaningful set of terms as follows

pan ¼ a1
tilt ¼ a4
zoom ¼ a2þa6

2

rot ¼ a5�a3
2

hyp ¼ ja2�a6jþja3þa5j
2

8>>>><
>>>>:

ð2Þ

where pan corresponds to the pan movement

of camera, tilt corresponds to tilt and boom, zoom

corresponds to dolly and the change of focus, rot

corresponds to roll, and hyp indicates that object mo-

tion is predominant. For more details about video

motion analysis, please refer to [6].

Based on the analysis of camera motion, the sub-

shot segmentation can be implemented and each sub-

shot will be categorized into one of the following six

classes: pan, tilt, zoom, rot, objectmotion, and static. For

an individual frame, its motion category can be deter-

mined by thresholding the related terms in Eq. (2).

However, it is observed that generally a camera move-

ment will be maintained for a period of, say, at least a

half second [6]. Thus, a typical subshot segmentation

process consists of three steps, i.e., frame-level motion

detection, segment-level motion detection, and post-

processing. More details can be found in [6]. Figure 3

illustrates an example, in which the shot can be seg-

mented into seven subshots.

Keyframe Extraction

Keyframes are the frames in the video sequence that can

best preserve the content of shots or subshots. They can
be used as the entries of the videos for access. The most

widely-applied methods for this task can be categorized

into two approaches, i.e., analysis-based and clustering-

based. The analysis-based methods extract keyframes by

analyzing video content, such as the quality and the

attractiveness of frames. For example, in [7], Ma et al.

adopted an attention model, and the frames that attract

the most user attention are extracted as keyframes. In

the clustering-based approach, a clustering process is

carried out, and then the cluster centroids can be estab-

lished as keyframes. In [4], Hanjalic et al. adopted a

partitioning-based clustering method, and the number

of clusters (i.e., the number of keyframes) can be deter-

mined by a cluster-validity approach.

A recent development in keyframe extraction is to

formulate it as a learning task [5]. It is observed that

the representativeness of a video frame involves sev-

eral elements, such as its image quality, user attention,

and visual details. Thus, the frame representativeness

can be modeled through a training set that regards

these elements as features. This learning process is

able to simulate a human’s perception on keyframe

extraction. The method in [5] builds a model based

on four elements extracted from each frame, includ-

ing frame quality, visual details, content dominance

and attention measurement, and encouraging results

have been reported in both subjective and objective

evaluations.
Key Applications
As previously mentioned, analyzing video content

structure is the first step of video content analysis, and

it is thus a prerequisite for many video applications,

such as video abstraction, video summarization and

content-based video retrieval.
Future Directions
The existing video structuring methods are mainly

carried out based on low-level features. However,

from the above introduction it can be found that

several structuring techniques involve the understand-

ing of video content. For example, for scene grouping,

it is better to group shots with coherent semantic

concepts rather than those with close low-level fea-

tures. Thus, it is believed that better structuring per-

formance can be achieved by leveraging semantic

features in the existing algorithms. This can be

named as ‘‘semantic-based video structuring’’

Video Content Structure. Figure 3. An illustrative example of subshot segmentation.

Video Content Structure V 3285

V

approach. For details about the application of semantic

features (or semantic feature space), please refer to [2].

It is worth noting that structuring is currently always

regarded as an independent and preliminary step of

video semantic analysis. To use semantic features for

structuring, the semantic analysis and structuring may

have to be integrated or unified.

Experimental Results
Generally, for each presented method, there is an

accompanying empirical evaluation in the

corresponding reference. For shot detection and story

identification, the results achieved in TRECVID can be

found in the corresponding notebook papers which

can be downloaded from the TRECVID website

(http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.

org.html).
Cross-references
▶Clustering

▶Content-Based Video Retrieval

▶Video

▶Video Abstraction

▶Video Content Analysis

▶Video Shot Detection

▶Video Summarization
Recommended Reading
1. Chua T.-S., Chang S.-F., Chaisorn L., and Hsu W. Story

boundary detection in large broadcast news video archives -

techniques, experiences and trends. In Proc. 12th ACM Int.

Conf. on Multimedia, 2004.

2. Ebadollahi S., Xie L., Chang S.-F., and Smith J.R. Visual event

detection using multi-dimensional concept dynamics. In Proc.

IEEE Int. Conf. on Multimedia and Expo, 2006.

3286V Video Data Modeling
3. Gu Z., Mei T., Hua X.-S., Wu X., and Li S. EMS: Energy

minimization based video scene segmentation. In Proc. IEEE

Int. Conf. on Multimedia and Expo, 2007.

4. Hanjalic A. and Zhang H.-J. An integrated scheme for auto-

mated video abstraction based on unsupervised cluster-validaty

analysis. IEEE Trans. Circ. Syst. Video Tech., 9(8):1280–1289,

1999.

5. Kang H.-W. and Hua X.-S. To learn representativeness of

video frames. In Proc. 13th ACM Int. Conf. on Multimedia,

2005.

6. Kim J.-G., Chang H.S., Kim J., and Kim H.M. Efficient camera

motion characterization for MPEG video indexing. In Proc.

IEEE Int. Conf. on Multimedia and Expo, 2000.

7. Ma Y.F., Lu L., Zhang H.-J., and Li M. A user attention model for

video summarization. In Proc. 10th ACM Int. Conf. on Multi-

media, 2002.

8. Rasheed Z. and Shah M. Detection and representation of scenes

in videos. IEEE Trans. Multimed., 7(6):1097–1105, 2005.

9. Rasheed Z. and Shah M. Scene detection in holleywood movies

and tv shows. In Proc. Int. Conf. on Computer Vision and

Pattern Recognition, 2005.

10. Rui Y., Huang T.S., and Mehrotra S. Constructing table-of-

content for video. Multimed. Syst., 7:359–368, 1999.

11. Tang Y.-P. and Lu H. Model-based clustering and anal-

ysis of video scenes. In Proc. Int. Conf. Image Processing,

2002.

12. Yeung M., Yeo B., and Liu B. Segmentation of videos by cluster-

ing and graph analysis. Comput. Vis. Image Understand.,

71(1):94–109, 1998.

13. Yuan J., Wang H., Xiao L., ZhengW., Li J., Lin F., and Zhang B. A

formal study of shot boundary detection. IEEE Trans. Circ. Syst.

Video Tech., 17:168–186, 2007.

14. Zhang H.-J., Kankanhalli A., and Smoliar S.W. Auto-

matic paritioning of full-motion video. Multimed. Syst., 1:

10–28, 1993.

15. Zhang H.-J., Tan S.Y., and Smoliar S.W. Automatic parsing

and indexing of news video. Multimed. Syst., 2(6):256–265,

1995.
Video Data Modeling

▶Video Content Modeling
Video Format

▶Video Representation
Video Indexing

▶Video Sequence Indexing

▶Visual Content Analysis
Video Metadata

FRANK NACK

University of Amsterdam, Amsterdam,

The Netherlands

Synonyms
Video annotation; Video content description

Definition
Digital video is recorded in two different image capture

formats: interlaced and progressive scan. Interlaced

video establishes an image by recording alternating sets

of lines, where one set of odd or even lines is referred to

as a ‘‘field,’’ and a consecutive pairing of two fields of

opposite parity is called a frame. In a progressive digital

video each frame is recorded in a distinct manner, with

both fields being identical. Both operate at the same

number of frames per second, which is in NTSC roughly

29 images and in Pal around 25 images per second. As of

2007, the highest resolution demonstrated for digital

video generation is 33 megapixels (7,680 � 4,320) at

60 frames per second (‘‘UHDV’’).

Metadata is data about data of any sort in any

media, describing an individual datum, content item,

or a collection of data including multiple content

items. In that way, metadata facilitates the understand-

ing, characterization, use and management of data.

Video metadata is structured, encoded data that

describes content and representation characteristics

of information-bearing video entities to facilitate

the automatic or semiautomatic identification, discov-

ery, assessment, and management of the described enti-

ties, as well as their generation, manipulation, and

distribution.

Historical Background
In the late 1970s to the early 1980s of the twentieth

century the first digital video production equipment,

such as time base correctors (TBC) and digital video

effects (DVE) units, were developed. This type of

Video Metadata V 3287

V

equipment was, however, not part of the general produc-

tion flow, as the digitized and processed video still need-

ed to be converted back to standard analog video.

Digital video was first introduced commercially in

1986 with the Sony D-1 format, which recorded an

uncompressed standard definition component video

signal in digital form. Due to its costs, the D-1 was

primarily used by large television networks. Over the

years it was replaced by cheaper systems, such as Sony’s

Digital Betacam, which were still expensive so that

they were mainly used as a field recording format by

professional television producers.

Consumer digital video first appeared in 1991 in the

form of QuickTime, Apple’s framework for time-based

and streaming data. Shortly after, Microsoft’s AVI for-

mat followed and then MPEG-1, MPEG-2 andMPEG-4

(the basis of MPEG-4 was QuickTime) formats gained

popularity. The introduction of the DV tape in 1996

gave digital video another acceptance push as it allowed

recording directly to digital data and thus simplified the

editing process, allowing non-linear editing systems to

be deployed wholly on desktop computers (e.g., FAST

601, Softimage DS, Appel’s Final Cut line).

The work on video codec technology from the

early 1990s allowed a great deal of research directed on

computer environments that seek to interpret, mani-

pulate or generate digital video either in a manual,

semi-automatic, or automatic way [1–6]. In all these

research projects the description of video content in

form of metadata played a central role. The steady infil-

tration of those technological advances in everyday

production finally allowed the general public to really

include video into their everyday communication.

Examples of such infiltrated technologies are simple

non-linear video editing systems, environments for

new media authoring (e.g., Director/Shockwave,

Flash), and web authoring environments (e.g., Dream-

weaver, Frontpage, and SMIL).

The rapid growth of professionally created and

exploited video databases, as well as the slow but steady

growth of user-generated video material on the web

(the growth was much slower than the one of images),

forced research to address similar problems as those

already explored for digital image databases, namely

how to efficiently search and then exploit video data-

bases. Over the years a number of metadata standards

have been developed, which address various aspects

of video data, such as the Dublin Core Metadata
Initiative (http://www.dublincore.org/), the Society

for Motion Pictures and Television Engineering

(SMPTE) (http://www.smpte.org/home/), the Moving

Picture Expert Group (MPEG) (http://www.chiarigli

one.org/mpeg/), the TV-Anytime Consortium (http://

www.tv-anytime.org/), and the International Press Tele-

communications Council(IPTC) (http://www.iptc.org/

pages/index.php). The common definition language be-

tween all these languages has been in one way or another

the Extensible Markup Language (XML) [7], defined by

W3C.

The most relevant initiative for addressing seg-

mentation, indexing and content-based retrieval of

digital video based on low-level features, usually auto-

matically extracted from the content, is the TrecVid

series (http://trecvid.nist.gov).

The by far largest contribution to digital video was

provided by the three ISO standards MPEG-4 [8],

MPEG-7 [9] and MPEG-21 [10]. With MPEG-4 the

group entered the realm of media content, arisen

due to the growing need for content manipulation

and interaction. MPEG-4 expanded MPEG-1 to sup-

port video ‘‘objects,’’ 3D content, low bitrate encoding

and support for Digital Rights Management. Yet,

MPEG-4 lacked the means to identify video objects

on a semantic level – a necessary element for efficient

search in and the manipulation of video. Addressing

this problem, the MPEG-7 standard was started in the

late 1990s. One core part of MPEG-7 (Part 3: Video –

and also larger sections of Part 5: The Multimedia De-

scription Schemes) is devoted to video annotation only.

The beginning of the twenty-first century established an

even faster exchange of multimedia data via the web, as

higher bandwidth as well as access to high quality data

became a commodity. Media businesses, such as the film

industry, feared, due to peer-to-peer technology for their

markets and requested strict digital rights management

enforcement. MPEG reacted with MPEG-21, defined as

the multimedia framework.

Since 2005 the web saw an exploitation of video

content. The main reasons were:

� Easy access to digital video cameras

� The provision of Adobes Flash player, which can be

easily integrated into web pages

� Easy ways of sharing enabling technology, of which

YouTube (http://www.YouTube.com), among others,

is themostwell-knownexample

3288V Video Metadata
The relevance of YouTube is not so much grounded in

its technology advances (YouTube plays back videos

limited in size (320 � 240 pixel) and quality (a bitrate

of around 314 kbit/s with a frame rate depending on

the uploaded video), but rather on the distribution of

content. YouTube lets their clientèle act as they please,

without enforcing editorial decisions or odds and

ends such as copyright. As many Web2.0 applications

YouTube applies folksonomy tagging (also known as

collaborative tagging, social classification, social index-

ing, and social tagging) a method of collaboratively

creating and managing tags to annotate and categorize

content. In folksonomy tagging metadata is not only

generated by experts but mainly by creators and con-

sumers of the content, where a tag is a keyword or term

associated with or assigned to a piece of information

(a picture, a map, etc.), which enables keyword-based

classification and search. The advantage of tagging is

its ease of use – creating a vocabulary based on freely

chosen keywords instead of a controlled set of terms

and structures. This approach, though highly popular,

carries serious problems. Typically there is no informa-

tion about the semantics of a tag, no matter if it is a

single tag or a bag of tags. Additionally, different peo-

ple may use drastically different terms to describe the

same concept. This lack of semantic distinction can

lead to inappropriate connections.

The success of YouTube, which consumed in 2007

as much bandwidth as the entire Internet in 2000, and

similar sites let the W3C start a new video on

the web initiative in 2008, which will address the

access of video on the web (http://www.w3.org/2008/

WebVideo/Activity.html).
Foundations
The description of video content is to some extent very

similar to the one of images, simply because a video

is the representation of single images over time. The

following text, therefore, only addresses those issues

of video content representation that are not already

addressed in the ‘‘Image Metadata’’ entry of this ency-

clopedia. As applications like YouTube reestablished the

question of rights management on a large scale, this

section also addresses this problem in some detail.

The two essential aspects of video that enhance its

‘‘meaning making’’ over that of an image is the concept

of a shot and the sequence of shots, or time and structure

of time.
Shot Description

A shot is a single piece of film, however long or

short, without cuts, exposed continuously. The signifi-

cant additional element here is time, which provides

the basis for the understanding of action, distance and

the relationship among characters, based on the relation-

ship between frames within a shot and their rhythmical

variations. The compositional use of focus, for example,

through which the foreground, middle ground or

background are emphasized, is one way to guide the

perception of a shot. If all planes are represented in

focus, they are attributed with the same level of impor-

tance, whereas emphasis can be achieved by use of

focus for a part of a frame. Of even stronger impact

than focus is camera movement around the imaginary

vertical axis (pan), the horizontal axis (tilt), and the

longitudinal axis (distance from lens to the subject).

The tilt, for example, presents the eye-level from which

a scene is perceived and thus can affect the importance

ascribed to an object (for example, high-angle shots

may diminish the perceived importance of an object).

The tempo of a shot can also provide information.

The intense feeling of fast movement may excite,

while calm movement expressed, for example, through

the slow rolling of waves filmed from a static camera

position, may encourage feelings of relaxation. Related

to tempo, is the perceived duration of the shot. The

actual duration of a long shot full of people and action

may well be identical to one of the close-up of a

face, and yet the latter will be perceived as being longer.

Hence, the organization of perceived duration is more

complex than the actual duration of a shot.

There are, on the perceptional level, various auto-

matic methods to extract shot boundaries, namely the

border between two different shots, forms of transitions

between shots, as well as temporal or conceptual con-

cepts (color, shape or texture-based). A good summary

of these methods can be found in [11]. The advantage of

automatic extraction is its low costs. The disadvantage,

similar to the problems in automatic image indexing,

is that it is exclusively organized around the sensory

surface structures of media, i.e., the physical features,

which are able to grant access to the representation of

conceptual items but not to the higher semantics users

wishes to access. Detailed description of schemata, that

allow high-level semantic descriptions, namely for the

essential content categories actor, appearance (features

of a character), action (chronology of, or direction

of, the action) location, and cinematographic devices

Video Metadata V 3289
(e.g., camera and lens movement, camera position, etc)

are described in [3], which also establishes an icon based

annotation method, and [4]. Both approaches make

use of hierarchical schemata structures.

Important for all of these annotation forms, might

they be automatic, semi-automatic or manual, is a

proper representation of time. The current ways or

representing time are either based on:

� Physical time (full clock value (e.g., 7:45:23.76,

where the last two items present ms), partial clock

values (any sort of short base notation), time count

values (numbers with a additional type string,

e.g., 10S for ‘‘ten seconds’’), and time context values,

which are represented in three parts: a date field

(YYY:MM:DD), a time field, and a timezone field).

These descriptions allow the location of an annota-

tion based on the start- and end-frame.

� Logic descriptions, as best described by [12], which

are useful for a symbolic representation of a time
Video Metadata. Figure 1. Essential metadata concepts for
relation instantiation in a triple structure, as requested

by the Resource Description Framework (RDF) [13].

� Or as a hierarchical ontological description, that

describes time not on its physical form but rather

on its relevance for the shot content, e.g., The

presented epoch (e.g., seventeenth century), season

(e.g., Summer), or daytime (e.g., Midday) [3].

The essential concepts of video metadata are summar-

ized in Fig. 1. The upper left corner describes the

possibilities of interpretation of an image, the upper

right part outlines the structural elements of a story

(of which the visual information forms a subpart).

Both together form the schematic basis for the anno-

tation process, which can be performed in an auto-

matic, semi-automatic or manual fashion, as described

in the lower left part of Fig. 1, which are performed on

various instantiations of the same content material

in form of differently coded digital video, as outlined

in the lower right part.
the description of video content.

V

3290V Video Metadata
Sequence

The final level of generating meaning with video mate-

rial to be considered is the way in which content of a

shot can be affected by other shots.

� The meaning of a shot depends on the context in

which it is situated.

� A change in the order of shots within a scene

changes the meaning of the shot as well as the

meaning of the scene.

Important is that not every combination of shots cre-

ates a meaning, but there are restricted conventions

that can help create larger meaningful entities. The key

elements for creating meaning by joining shots are

assertions and associative cues [14].

An assertion is the relationship between two ele-

ments. There are many different types of such relation-

ships. For example, the description of an attribute

(such as red for a car) could be as important as a simple

action (two men shaking hands).

Associative cues result from the combinations of the

indicators that make the creation of meaning possible.

One essential cue was already discussed, namely human

action. The other one is surrounding space. Most human

activities, human roles or objects are associated with

specific locations. The conceptualization of space is,

therefore, an elementary principle of the analysis and

organization of video material. The sequential structures

built up through juxtaposition provide the complex and

intricate syntax for film narrative. The two essential

works for structural metadata concepts for video are

described by Aguierre Smith et al. [1] and in the

MPEG-7 part 5 [15].

Aguierre-Smith designed the Stratification System

to support an anthropological video study in the state

of Chiapas, Mexico. The idea was to provide a number

of researchers with random access to a video archive, in

which video could be annotated with complementary

or even contradictory descriptions. The video material

was stored on a laserdisc. The annotations used in the

Stratification System were keywords organized in hier-

archical classes which were implemented as directory

trees in UNIX. The novel feature introduced by

Aguierre-Smith was the multiple partially overlapping

annotation, where each annotation is related to a pre-

cise time index (begin and end frame). To provide a

visual representation of the distinct layers of the repre-

sentation, the Stratification System used a histogram,

where the keyword classes are displayed as buttons
along the y-axis and the time code (frame numbers

on the laserdisc) form the x-axis. Aguierre-Smith’s

stream-based content representation for video enables

the dynamic development of context while maintain-

ing the completeness of the original footage. The no-

tion of multiple partially overlapping annotations

establishes the Stratification System as a breakthrough

in the effective representation of video content, despite

its weaknesses, i.e., the keyword approach and the lack

of a true representation of the semantics of the video.

In MPEG-7’s Part 5: Multimedia Description

Schemes (MDS) the organization structure follows the

overall hierarchical document structure, which at the

end is instantiated as an XML schema file. Figure 2

visualizes description schemata that can be used to

describe real-life concepts or narratives, which include

objects, agent objects, events, concepts, states, places,

times, and narrative worlds, all depicted by or related

to video content. This means that the description

schemata can be used to annotate the narrative in the

video or the narrative world of the video, which then

can be linked to the video.

The most relevant description schemata in

Fig. 2 are:

� Semantic DS, which describes narrative worlds that

are depicted by or related to the video content.

� Object DS, which describes objects in a narrative.

� AgentObject DS, which describes objects that are

persons, organizations, or groups of people in a

narrative.

� Event DS, which describes events in a narrative.

� Concept DS, which describes abstract semantic

entities that cannot be described as abstractions of

any objects, events, times, places, or states.

� SemanticState DS, which describes states or para-

metric attributes of semantic entities and semantic

relations, at a given time or location in a narrative.

� SemanticPlace DS, which describes locations in a

narrative.

� SemanticTime DS, which describes times in a

narrative.

As often in MPEG-7, the description options are flexi-

ble, which allows the user to establish complex anno-

tation structures. Yet, the taken approach also carries a

number of problems, essentially:

� There are a great number of abstract elements,

which are used to establish class structure. However,

Video Metadata. Figure 2. Illustration of the relationships of the tools for describing the semantics of video content.

Video Metadata V 3291

V

abstract elements cannot appear in instantiations.

When an element is declared to be abstract, a mem-

ber of that element’s substitutable class must appear

in the instance document. To indicate that the

derived type is not abstract, the XML namespace

mechanism is used (xsi:type). Thus, a thorough

understanding of schemata development is re-

quired, which makes instant schemata development

for distinct domains hard, especially if the required

schemata should cover simple descriptions, where

the theoretical overhead is actually not required.

� The interlocked nature of schemata, providing an

ontology-like yet general set of schemata for

describing media semantics, makes it very difficult

for a user to identify the appropriate schemata and

to use them in isolation.

� Due to the lack of a fundamental data model the

structures provided show inconsistencies and

duplications, which makes manual schemata gener-

ation difficult.

There are, however, projects in real world domains,

such as the TVAnytime Forum, that give an indication

of how media-aware semantic structures, such as

those provided by MPEG-7, will be used in the future.

The TV Anytime Consortium (http://www.tvanytime.

org) developed specifications for services based on con-

sumer digital storage devices. The semantic structures,

all written inXMLSchema, are proprietary and cover the

essential aspects of media description, i.e., content de-

scription, content referencing and location, rights man-

agement and protection, systems and transport. Though
the TVAnytime schemata are similar to the equivalent

structures in MPEG-7, they are less complex in their

organizational structure. TV Anytime includes, for ex-

ample, theMPEG-7 schemata onuser-modeling, though

without incorporating the complete MPEG-7 organiza-

tional overhead. Rather, TVAnytime uses MPEG-7 as a

namespace and is thus able to incorporate only the

required schemata.

Rights Management

MPEG-21 [10] addresses, among others, two impor-

tant aspects when it comes to user interaction with

video content (in fact MPEG-21 describes that for

all types of multimedia): first the identification and

declaration of video items, and second the description

and protection of rights.

MPEG-21 is understood as a framework that

supports users to access, exchange, trade and consume

digital media. The basic unit for MPEG-21 is the

Digital Item (DI) which can be distributed and on

which transactions can be performed. The DI is defined

as a ‘‘virtual container’’ for metadata (created based

on MPEG-7) and content (in MPEG-1, MPEG-2 or

MPEG-4 format). The Digital Item Declaration (DID)

defines the resources (e.g., MPEG-4 files) and the related

metadata (e.g., Dublin Core) which the author identi-

fied to be part of the DI. The Digital Identification

framework then supports devices to uniquely identify

various objects and items of the DI.

The provision of DIs only makes sense if there

are mechanisms that allow to exploit those structures.

For that MPEG-21 developed the Rights Expression

3292V Video Partitioning
Language (REL), which is an XML-based machine-

readable language that allows the specification of specific

rights and conditions associated with the distribution

of say video content. REL does not aim for replacing

legal rights methods but rather specifies a grant speci-

fying that a ‘‘principal’’ has a ‘‘right’’ over a ‘‘resource’’

under certain ‘‘conditions.’’ REL is based on the Exten-

sible Rights Markup Language (XCML) 2.0 which was

selected by MPEG due to its expressiveness and unam-

biguaty. In addition MPEG-21 has designed the Rights

Data Dictionary (RDD), which contains the key terms

required to describe rights. Finally, the Intellectual

Property Management and Protection Component

(PMP) was established, which uses again metadata

to allow the inclusion of protected and governed con-

tent into a DI. This mechanism facilitates terminals to

process protected content. As MPEG-21 is at time of

writing still relatively new the future has to show if that

framework is functioning and thus will be accepted

by the public.
Key Applications
The annotation of video is useful for the retrieval,

reuse, manipulation, generation and distribution of

video for domains, such as medicine, entertainment,

distributed games, all sort of experience related appli-

cations and education.
Cross-references
▶ Image Metadata

▶Multimedia Metadata

Recommended Reading
1. Adams B. Mapping the Semantic Landscape of Film: Computa-

tional Extraction of Indices through Film Grammar. Ph.D.

thesis, Curtin University of Technology, Perth, 2003.

2. Aguierre Smith T.G. and Davenport G. The stratification system.

a design environment for random access video. In Proc. ACM

Workshop on Networking and Operating System Support for

Digital Audio and Video, 1992.

3. Allen J.F. Maintaining knowledge about temporal intervals.

Commun. ACM, 26(11):832–843, 1983.

4. Barry B. Mindfull documentary. Massachusetts Institute for

Technology. Ph.D. thesis, MIT, Boston, 2005.

5. Davis M. Media Streams: Representing Video for Retrieval and

Repurposing. Ph.D. thesis, MIT, Boston, 1995.

6. Extensible Markup Language (XML), http://www.w3c.org/

XML/.

7. Gregory J.R. Some Psychological Aspects of Motion Picture

Montage. Ph.D. University of Illinois, USA, 1961.
8. ISO MPEG-7 MDS Text of ISO/IEC 15938–5/FCD Information

Technology – Multimedia Content Description Interface –

Part 5: Multimedia Description Schemes, ISO/IEC JTC 1/SC

29/WG 11 N4242, 23/10/2001, 2001.

9. MPEG-4: ISO/IEC JTC1/SC29/WG11 N4668 March 2002,

http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.

htm.

10. MPEG-21: ISO/IEC JTC1/SC29/WG11/N5231 Shanghai,

October 2002, http://www.chiariglione.org/mpeg/standards/

mpeg-21/mpeg-21.htm.

11. MPEG-7: ISO/IEC JTC1/SC29/WG11N6828 Palma de Mallorca,

October 2004, http://www.chiariglione.org/mpeg/standards/

mpeg-7/mpeg-7.html.

12. Nack F. AUTEUR: The Application of Video Semantics and

Theme Representation in Automated Video Editing. Ph.D. the-

sis, Lancaster University, 1996.

13. Nack F. and Putz W. Designing annotation before it’s needed. In

Proc. 9th ACM Int. Conf. on Multimedia, 2001, pp. 251–260.

14. Resource description Framework (RDF), http://www.w3c.org/

RDF/.

15. Tonomura Y., Akutsu A., Taniguchi Y., and Suzuki G. Structured

video computing. IEEE MultiMedia, 1(3):34–43, 1994.
Video Partitioning

▶Video Segmentation
Video Querying

ICHIRO IDE

Nagoya University, Nagoya, Japan

Synonyms
Image Querying; Query by Example; Similarity in

Video; Near-duplicate Video Retrieval

Definition
Video querying is a way to issue a query for retrieving

video data from a database without explicitly expres-

sing the contents of the video-in-search by high-level

semantics, such as keywords. It, instead, expects that a

user issues a query as a video segment in hand. The

system will then search and retrieve similar video data

from the database. Since video data is composed of

sequences of still frame images, the search for similar

video data in a database necessarily requires a huge

computation cost when comparing the query with the

data in the database. Thus, the main issue when

Video Querying V 3293
processing a video query is to reduce both the com-

putation time for the search itself, and for the com-

parison of image sequences, to evaluate the similarity

of the video segments. Video querying is an efficient

way to issue a query when a user already has in hand

an exact or an extremely relevant segment of the video

in-search. For specific genres of video data, such as

those obtained from a fixed surveillance camera or

sports programs, querying based on certain motions,

gestures or trajectories can be useful. This kind of

querying can also be considered as a kind of video

querying in the sense that it handles a query as a time-

sequence transition of an interest point. In most other

cases, keyword-based querying can be more efficient

and realistic in general.

Historical Background
Although there are some academic works that make

use of video segments as queries [3], video querying is

still not widely employed for the purpose of video

retrieval in general. It has, however, been a key tech-

nology for some real-world problems.

Most early works that make use of video segments

as queries, aim to detect advertisements from a broad-

cast video stream; when a source video segment (an

advertisement) is given, the system returns where it

appears (repeatedly) in the archived long video stream

[4,6]. This is often used by commercial sponsors to

monitor if a television broadcaster has actually aired an

advertisement at specific hours and/or for specific

times, according to the contract.

Recently, the technology has started to be applied by

copyright holders for monitoring video data illegally

distributed on the internet. While the advertisement

monitoring task requires exact matching, this task

needs to handle near-duplicate video data, which are
Video Querying. Figure 1. Process flow of video querying.
almost identical but may have slightly changed from

the original data during the distribution process. The

changes may include size, frame rate, compression, edit-

ing (ex. insertion of captions and logos) and so on.

The easiest approach to compare a pair of video

data is to do so frame-by-frame. This approach is,

however, highly expensive in computation cost; not

only that the comparison needs to be done as many

times as the number of the frames, but also the cost to

compare each frame is itself relatively high compared to

audio or text data. Thus, the key to realize this technol-

ogy in a realistic speed is to reduce the size of the

feature, and also to reduce the times of comparison.
Foundations
Figure 1 shows the process flow of video querying.

A user issues a query in the form of a video segment

to a video database system. The query video segment

should be readily available at the users hand, but it can

also be provided externally through an interactive in-

terface with a search function. For specific purposes

such as action detection from fixed surveillance video,

sports video, and so on, querying by motion, gesture,

or trajectory [1, 2] can also be considered as a kind of

video querying.

In order to process a video query, evaluation of the

similarity between the query and the video data in the

database is necessary.

The first question here is how to represent a video

segment. Figure 2 shows an illustration of three repre-

sentations explained below.

The simplest representation of a video segment is as a

sequence of still frame images. Each image is represented

by a feature vector composed of raw pixel values of all

pixels in the frame image. It is, however, rarely the case
V

Video Querying. Figure 2. Representations of a video segment.

3294V Video Querying
that exact pixel values between two video sequences are

identical, due to noise, slight change of size / ratio, color

adjustment, and so on. To cope with this problem, the

image and the color resolutions are usually reduced,

which is also the case for the original frame image used

in the following two representations. Using raw pixel

values is accurate, but the size of a feature vector tends

to be large.

Since comparing large vectors is computationally

expensive, it is better to reduce the size of a feature

vector; the dimension of a feature space. Reduction of

the dimension of a feature space can be done in various

ways; from random sampling to hashing, signatures

and transformations that preserve the original feature

better by principal component analysis, and so on.

On the other hand, the feature used to represent a

frame can be more abstract features than the raw

pixel values, such as edge, color histogram, or combi-

nations of these features. In any case, representation in

the compressed feature space does not usually guaran-

tee the same distinguish ability as in the original fea-

ture space. When an identical result is needed,

comparison in the original feature space after obtain-

ing candidates in the compressed feature space is need-

ed as a post-process in order to eliminate false

positives. Note that in order to ensure that no false

negative (oversight) exists among the candidates, the

vector comparison method (distance measure) needs

to theoretically guarantee it.
While the above two representations consider the

feature of a video segment by a sequence of frame-wise

features, it is more natural to represent a video segment

by blocks of successive frames. In this case, image

features from a fixed number of multiple successive

frames represent a video segment. Ways to represent a

block of frames can be a simple concatenation of

frame-wise features (usually compressed afterwards),

or can be more sophisticated features that make use of

the redundancy of video data such as those used for

video compression (MPEG and so on). This represen-

tation usually makes the comparison more robust and

fast than the previous two representations, but it can-

not represent, and accordingly compare and retrieve

shorter segments than the block size.

The next question is how to compare the segments.

Figures 3–5 show illustrations of the comparison

methods explained below.

As shown in Fig. 3, the simplest method to com-

pare the query video segment to the video data in the

database (hereafter, ‘‘reference video’’) is to compare it

against all possible segments in the reference video. In

this case, the query video is compared by shifting it

frame by frame against the reference video until it

reaches the end. For each iteration of the comparison,

all frames are sequentially compared. This method is

not robust even against slight change in the frame

sequence; frame-rate, and editorial effects such as

slow-motioning or fast-forwarding.

Video Querying. Figure 3. Simple frame-by-frame comparison.

Video Querying. Figure 4. Frame-by-frame comparison by continuous dynamic time warping (DTW), also known as

DP-matching.

Video Querying V 3295

V

An improved version of this method that takes the

above-mentioned weak-point in consideration, is the

method that employs continuous Dynamic Time

Warping (DTW; also known as DP-matching). This

method allows the comparison of a query video

frame to multiple (usually a fixed number of frames

after the frame matched in the previous iteration)

reference video frames. As shown in Fig. 4, the method

could cope, to some extent, with temporal expansion

and contraction in both sides of the comparison.

Although there are many works on speeding-up the

above-mentioned methods, they essentially require

large computation costs due to the frame-by-frame

shift and comparison approach.

A different approach is to compare the video data

as blocks of sequential frames. It does not necessarily

have to be a simple concatenation of frame-wise fea-

tures, but can be an integrated feature that represents

the image features in the block. Block-wise compari-

son is robust to slight change of features in a frame

sequence. Although in practice, it can tolerate time-

wise expansion and contraction to some extent, it is
mainly not due to the nature of the method, but rather

due to the continuous nature of video contents. One of

the fastest algorithm that takes this approach for video

querying is the Time-Series Active Search method pro-

posed by Kashino et al. [4], which reduces the compu-

tational cost by skipping the comparison under certain

criteria.
Key Applications
As mentioned in the ‘‘Historical Background,’’ the

technology has been used by commercial sponsors of

television programs and copyright holders of video

contents.
Future Directions
Future applications include online retrieval of near-

duplicate video data available on the internet. This

application can be used not only for detecting illegal

posting of copyrighted video data on the internet, but

also for retrieval of web contents based on the video

querying technology.

Video Querying. Figure 5. Comparison by block.

3296V Video Representation
Another challenging task is to retrieve near-duplicate

video segments from a video query based on feature

points matching. This technology enables the retrieval

of video segments shooting the same target from a

different video camera, but current technology does

not allow such processing in realistic time.
Cross-references
▶Content-Based Video Retrieval

▶ Image Querying

▶Multimedia Data Querying

▶ Principal Component Analysis

Recommended Reading
1. Aghbari Z., Kaneko K., and Makinouchi A. Content-trajectory

approach for searching video databases. IEEE Trans. Multime.,

5(4):516–531, 2003.

2. Chang S.-F., Chen W., Meng H.J., Sundaran H., Zhong D.

VideoQ: An automated content based video search system

using visual cues. In Proc. 5th ACM Int. Conf. on Multimedia,

1997, pp. 313–324.

3. Dimitrova N. and Abdel-Mottaleb M. Content-based video re-

trieval by example video clip. In Proc. Storage and Retrieval for

Image and Video Database, 1997, pp. 59–70.

4. Kashino K., Kurozumi T., and Murase H. A quick search method

for audio and video signals based on histogram pruning. IEEE

Trans. Multime., 5(3):348–357, 2003.

5. Lienhart R., Effelsberg W., and Jain R. VisualGREP: a systematic

method to compare and retrieve video sequences, Multime. Tool

Appl., Kluwer, Hingham, MA, 10(1):47–72, 2000.

6. Lienhart R. Kuhmünch C., and Effelsberg W. On the detection

and recognition of television commercials. In Proc. Int. Conf. on

Multimedia Computing and Systems, 1997, pp. 509–516.
Video Representation

YING LI

IBM T. J. Watson Research Center, Hawthorne,

NY, USA

Synonyms
Video format; Video compression

Definition
Video representation, as the name implies, specifies a

way of representing a video. While some work refers to

video representation as the way to present or express

video content through some extracted or summarized

content units such as scenes or objects, the majority

regard it more as the way the video content is stored. In

other words, it is about video format which describes

the sequence, structure and content of frames that

create the moving video image, along with any possible

audio or text (closed caption) information.

Historical Background
A video can be represented in either analog or digi-

tal formats. Typical analog formats include NTSC

(National Television System Committee), PAL (Phase

Alternating Line) and SECAM (Séquentiel couleur à

mémoire, French for ‘‘Sequential Color with Mem-

ory,’’) which are commonly used in the domain of

commercial broadcast. On the other hand, due to the

rapid development of computer technologies, the

Video Representation V 3297

V

continuously improved transmission rate and the in-

creasing ubiquity of digital video capturing devices

such as digital cameras and camcorders, digital videos

have become widely available. This has entailed the

development of various kinds of digital video formats

suited for various purposes. Some of the most popu-

larly used ones are DVD (Digital Versatile Disc),

QuickTime, H.261, H.263, H.264, MPEG-1 (Moving

Picture Experts Group), MPEG-2, and MPEG-4.

Digital video was first introduced commercially in

1986 with the Sony D-1 format, which recorded an

uncompressed standard definition component video

signal in digital form instead of the high-band analog

forms that had been commonplace until then. Due to

the expense, D-1 was used primarily by large television

networks. It was eventually replaced by cheaper sys-

tems using compressed data.

Consumer digital video first appeared in the form

of QuickTime around 1990, which is Apple Compu-

ter’s architecture for time-based and streaming data

formats. Also around the same time, the ITU-T (Tele-

communication Standardization Sector of Interna-

tional Telecommunication Union) Video Coding

Experts Group (VCEG) developed H.261 standard

which aims for video transmission over ISDN

(Integrated Services Digital Network) lines whose

data rates are multiples of 64 kbit/s [6]. Based on the

experience from H.261, H.263 was developed, which is

a low-bitrate compressed format for video-conferenc-

ing [7]. Its first version was completed in 1995 and

provided a suitable replacement for H.261 at all

bit rates. The next enhanced compression mechanism

developed by ITU-T VCEG is the H.264 standard,

also known as AVC (Advanced Video Coding) and

MPEG-4 part 10. H.264 provides a significant im-

provement in capability beyond H.263 [8]. Now,

most new video-conferencing products include H.264

as well as H.263 and H.261 capabilities.

Along the same direction, but targeting at different

commercial applications, the Moving Picture Experts

Group (MPEG) was formed in 1998 to establish an

international standard for the coded representation of

moving pictures and associated audio on digital stor-

age media. So far, there have been three established

MPEG standards: MPEG-1, MPEG-2, and MPEG-4.

Specifically, MPEG-1 was originally designed to

achieve VHS-video quality at 1.5 Mbit/s data rate [2].

MPEG-1 video is usually used for the Video CD (VCD)

format. Compared to MPEG-1, MPEG-2 targets at a
very high bandwidth with up to 40 Mbits/s data rate,

and is widely used as the format of digital television

signals that are broadcast by terrestrial (over-the-air),

cable, and direct broadcast satellite TV systems [4].

It also specifies the format of movies and other pro-

grams that are distributed on DVD and similar disks.

In late 1998, an effort on MPEG-4 was initiated which

added many new features such as VRML (Virtual

Reality Modeling Language) support for 3D rendering,

object-oriented composite files (including audio, video

and VRML objects), support for externally-specified

Digital Rights Management (DRM) and various types

of interactivity, besides absorbing many features from

MPEG-1 and MPEG-2 [5]. Major MPEG-4 applica-

tions include streaming media on web, video-phone

and broadcast television.
Foundations

Basics of Video Representation

Frame is the fundamental building block of a video,

which is basically a rectangular image consisting of a

series of lines, known as scan lines. A scan line contains

a given number of pixels, and a pixel is represented by

a certain number of bits (a.k.a. bits per pixel or bpp). A

frame can consist of two or more fields, which are sent

sequentially and displayed over time to form a com-

plete frame. This kind of assembly is known as inter-

lace. An alternative way is to send the entire frame as a

single entity, which is known as a progressive

scan frame.

The basics that are needed to represent a video or

to define a video format is listed below.

� Video resolution, which equals the frame size

measured in pixels.

� Aspect ratio, which describes the dimensions of

video screens and video picture elements or pixels.

The screen aspect ratio of a traditional television

screen is 4:3, while a high definition television is

16:9. On the other hand, while pixels on computer

monitors are usually square, pixels used in digital

videos usually have non-square aspect ratios.

� Color space, which specifies the video’s color repre-

sentation. For instance, the YUV color model where

Y stands for the luma component (the brightness)

and U and V are the chrominance (color) compo-

nents, is used in the PAL, NTSC, and SECAM

composite color video standards. Other popularly

3298V Video Representation
used color models include RGB (Red, Green and

Blue components) and YCbCr (Y for luma compo-

nent, Cb and Cr for the blue and red chroma

components).

� Depth of color, which indicates the number of dis-

tinct colors that could be represented by a pixel.

This depends on the number of bits per pixel (bpp).

� Interlacing or progressive. Interlacing was invented

as a way to achieve good visual quality within the

limitations of a narrow bandwidth. The horizontal

scan lines of each interlaced frame are numbered

consecutively and partitioned into two fields:

the odd field (upper field) consisting of the odd-

numbered lines and the even field (lower field)

consisting of the even-numbered lines. NTSC,

PAL and SECAM all use interlaced formats. In

contrast, with progressive scan systems, each re-

fresh period updates all of the scan lines. This

results in a higher perceived resolution and a lack

of various artifacts that can make parts of a station-

ary picture appear to be moving or flashing.

� Frame rate, which indicates the number of frames

per time unit of the video. PAL and SECAM stan-

dards specify 25 frames per second (fps), while

NTSC specifies 29.97 fps. Film is shot at a slightly

lower frame rate of 24 fps. Generally speaking, the

minimum frame rate for achieving an illusion of

moving images is about 15 fps.

� Bit rate, which measures the rate of the information

content in a video stream. Bit rate is only defined for

digital videos, and is usually quantified in units of bit

per second (bit/s or bps) or Megabit per second

(Mbit/s or Mbps). A higher bit rate generally indi-

cates a better video quality. For instance, VCD has a

bit rate of about 1 Mbps while DVD, which has

a much better quality, has a bit rate of around 20

Mbps. Variable bit rate (VBR) is a strategy to maxi-

mize the video quality and minimize the bit rate. For

fast motion scenes, VBR uses more bits than it does

for slowmotion scenes of similar duration to achieve

a consistent visual quality. However, for real-time

and non-buffered video streaming applications

where the available bandwidth is fixed, e.g., for

video-conferencing delivered on channels of fixed

bandwidth, a constant bit rate (CBR) must be used.

Video Compression

A video can occupy a vast amount of storage space

when represented in digital form. For instance,
suppose the video frame is of size 360 pixels by 288

pixels, and each pixel uses three color primaries with

8-bit precision for each color component, then each

frame will occupy approximately 311 Kbytes. Further

assume that the video is sent uncompressed at 24

frames/s, then the raw data rate for the video will be

about 60 Mbps, which quickly amounts to 448 Mbytes

for a 1 min video clip [10]!

Undoubtedly, there is a need of some techniques

to compress or reduce the amount of video data so

that videos can be conveniently and efficiently sto-

red, transmitted and delivered, while retaining the

original video quality as much as possible. Many

research efforts on video compression started to

emerge in 1990s. However, while there have been vari-

ous kinds of compression techniques being proposed

and standardized for various different application

areas, most of them are based upon the same fact

that video data contains both spatial and temporal

redundancy. Specifically, to reduce the spatial redun-

dancy, an intra-frame compression is applied which

registers differences between parts of a single frame.

On the other hand, to reduce the temporal redun-

dancy, an inter-frame compression is exploited which

registers differences between neighboring frames.

Below the basic spatial and temporal compression

techniques that are applied inMPEG-1 video, are briefly

discussed. Many other popularly used video compres-

sion standards such as H.261, H.263, H.264, MPEG-2

and MPEG-4, are more or less built upon similar tech-

niques with certain improvements, extensions and

modifications so as to meet different application

requirements. These compression, together with the

corresponding decompression algorithms are generally

implemented in computer softwares as video codecs.

Frame Types in MPEG-1 There are basically three dif-

ferent types of frames in MPEG-1, namely, I-frame,

P-frame and B-frame. Specifically, I-frames, also

known as intra-coded frames, are coded independently

without reference to any other frames. In contrast,

P-frames (predictive-coded frames) obtain predictions

from temporally preceding I- or P-frames in the

sequence, which is known as forward prediction.

Between the I- and P-frames, there may be zero or

more bidirectionally predictive-coded frames, or

B-frames. B-frames are interpolated between the pre-

ceding and/or upcoming I- or P-frames in the se-

quence. Figure 1 shows a group of pictures consisting

Video Representation. Figure 1. A typical group of

pictures in display order in MPEG-1.

Video Representation. Figure 2. Zigzag scanning order

of DCT coefficients.

Video Representation V 3299

V

of one or more pictures of the three different types of

frames.

Two different compression techniques are thus de-

veloped to code these three different types of frames.

Specifically, intra-frame compression is applied to

code I-frames, while inter-frame technique is applied

to P- and B-frames. Both techniques are briefly dis-

cussed in the following sections.

Intra-Frame Compression Macroblock, which is a very

important concept in MPEG coding, forms the basic

building block of a coded frame. Specifically, a macro-

block consists of a 16 sample array of luminance (gray-

scale) samples together with one 8 � 8 block of

samples for each of two chrominance (color) compo-

nents. The 16 sample array of luminance samples is

actually composed of four 8 � 8 blocks of samples,

which form the units of data that are actually fed to the

compression models. Notice that a lower resolution is

used for the chrominance blocks because the human

eyes resolve high spatial frequencies in luminance bet-

ter than in chrominance.

At the heart of both intra-frame and inter-frame

coding in MPEG is a mathematical transform known

as discrete cosine transform (DCT). DCT transform is

a mapping function from time or space domain to

frequency domain. Given an 8 � 8 image block, a

DCT transform will convert it into 64 DCT coeffi-

cients. Among them, the first coefficient is called DC

coefficient or DC term, and the others, AC coefficients.

Specifically, the DC coefficient contains the block’s

average intensity, i.e., the low frequency information,

while the rest 63 AC coefficients contain high fre-

quency information. Figure 2 shows the zigzag order-

ing which approximately orders the DCT coefficients

in ascending spatial frequency.
The advantages of applying DCT in the compres-

sion models are twofold: i) it de-correlates the original

signal. That is, the 64 DCT coefficients are indepen-

dent of each other, thus they can be coded separately;

ii) it distributes the signal energy to only a small set of

coefficients. Generally speaking, after the transform,

many AC coefficients in high frequencies will be very

small, which may be discarded without, or with little,

loss of visual quality.

After each of the four 8 � 8 blocks of luminance

samples and two 8 � 8 blocks of chrominance samples

of a macroblock is processed by the DCT, a quantiza-

tion process is carried out on the obtained DCT coeffi-

cients, which aims to represent the coefficients of high

spatial frequencies with less precision. Specifically, it

divides and truncates each of the transformed coeffi-

cients by individual quantization values. These values

are usually given in a quantization matrix, which typi-

cally contains higher values towards the lower right,

thus giving several of the less important coefficients at

high spatial frequencies a zero value. This allows the

encoder to selectively discard non-important high fre-

quency activity that the human eye cannot readily

perceive.

The next step is to code the resulted DC and AC

coefficients. Specifically, as there could be some corre-

lation between the DC coefficients of neighboring

3300V Video Representation
blocks, the DC term is coded separately from the AC

terms using a predictive DPCM (differential pulse code

modulation) technique. As for AC terms, they are first

arranged qualitatively from low to high spatial fre-

quency following the zigzag scan order as shown in

Fig. 1. Such zigzag scan approximately orders the coef-

ficients according to their probability of being zero.

Finally, each nonzero AC coefficient is coded using a

so-called run-level symbol structure where run refers to

the number of zero coefficients before the next nonze-

ro coefficient, and level refers to the amplitude of the

nonzero coefficient. For more details on this part,

please refer to [10].

Inter-Frame Compression Compared to the intra-

frame compression, the inter-frame compression

codes the difference between a frame and its reference

frames, thereby exploiting the similarities or temporal

redundancy from one picture to the next.

The most important concept in inter-frame com-

pression is motion estimation. Specifically, motion esti-

mation refers to the determination of the motion

displacement between two frames which is expressed

by motion vectors. In real video scenes, motion can be

a complex combination of translation and rotation,

which could be very difficult to estimate and may

require large amount of processing. Nevertheless,

translational motion could be easily estimated and

has been successfully used for motion compensated

coding.
Video Representation. Figure 3. Block matching based mot
There are two main classes of motion estimation

techniques, namely, pel-recursion and block matching.

Pel-recursion techniques are used primarily for sys-

tems where the motion vectors can vary from pixel to

pixel. In contrast, in block matching techniques, there

is only one single motion vector applied to a block of

pixels. Due to its simple hardware realization and less

computational complexity, the block matching ap-

proach has been more popularly used.

Figure 3 shows the basic idea of the block matching

approach. Specifically, for each macroblock in the pres-

ent frame, it is matched against a candidate block

within a search area on the reference frame. If a good

match is found based on certain criterion such as MSE

(mean square error) and MAD (mean absolute distor-

tion), the current macroblock will be represented by a

motion vector pointing to the reference block, along

with the DCT-coded residual. Otherwise, the macro-

block will be intra-coded. Note that for B-frames, there

are even more options for coding a macroblock, it

could be forward predicted using the preceding I- or

P-frame as the reference, backward predicted using the

next I- or P-frame, and bidirectionally predicted using

both preceding and succeeding I- or P-frames. More-

over, to achieve an even higher compression ratio,

some macroblocks can be skipped.

Audio Compression

When a video stream also contains audio information,

some kind of audio compression algorithm is usually
ion estimation.

Video Representation V 3301

V

applied to condense the audio data, in addition to the

aforementioned video compression. Generally speaking,

many video codecs such as those introduced earlier

(MPEG-1, MPEG-2, H.263 and H.264) also have

corresponding specifications on encoding the embed-

ded audio signals. For instance, MPEG-1 has defined

three layers of audio coding in the ascending order of

coding complexity: MPEG-1 Audio Layer 1 (MP1),

Audio Layer 2 (MP2) and Audio Layer 3 (MP3) [3].

Below, a very high-level discussion on audio coding

is given.

As with image or video compression, both lossy

and lossless compression algorithms are used in audio

compression. In both cases, techniques such as coding,

pattern recognition and linear prediction are applied

to reduce the amount of redundant information within

the data. However, while lossless compression is good

for the archival purpose, it generally produces much

lower compression ratios due to the nature of audio

waveforms and the fast-changing values of audio sam-

ples. Consequently, the lossy audio compression is

much more popular. So far, it has found applications

in video DVDs, digital television, streaming media,

satellite and cable radio.

The key breakthrough in lossy audio compression

is to rely on psychoacoustic models to identify the

important audio signals that must be preserved, while

throwing away unimportant ones. For instance, signals

that can be perceived by the human auditory system

must be kept, while perceptually irrelevant sounds

could be ignored or coded with decreased accuracy as

they are anyway very hard to hear. Typical examples of

such sounds are those that have very high frequencies,

or those that occur at the same time with other much

louder sounds.

In particular, the following four human hearing

characteristics, as recognized by the psychoacoustic

model, are exploited in audio compression: human

hearing sensitivity, frequency masking, temporal mask-

ing and critical bands. Specifically, by carefully con-

ducting experiments, it is found that the general

range of human hearing is from 20 Hz to 20 kHz,

and the most sensitive range is from 2 kHz to 4 kHz.

By frequency masking, it refers to the phenomenon in

which a weak signal is made inaudible (i.e., masked) by

a simultaneously occurring stronger signal. In contrast,

the temporal masking indicates the phenomenon in

which a soft tone could not be heard immediately

when there is a loud sound nearby. Finally, critical
bands are obtained using a bandwidth classification

scheme such that within each band, the width of fre-

quency masking region is approximately uniform. As it

could be seen that, by relying on these four character-

istics, the compression algorithm could save bits on

signals that are either out of human hearing ranges,

temporally masked, or frequency masked within a

critical band. During the actual coding, specific mask-

ing thresholds will be calculated by the psychoacoustic

model to determine the audibility of each spectral

component within particular critical band.

There are two general types of audio coding

schemes, one in the frequency domain and the other,

the time domain. Transform coding and subband cod-

ing belongs to the first category, while PCM (pulse

code modulation), DPCM (differential pulse code

modulation) and ADPCM (adaptive differential pulse

code modulation) are in the second category.

Streaming Videos

Since the late 1990s, there have been some great

advances in computer networking such as a higher

network bandwidth, an increased access to networks,

especially, the Internet, a widely accepted use of stan-

dard protocols and formats including TCP/IP (trans-

mission control protocol/Internet protocol), HTTP

(hyper text transfer protocol), and HTML (hyper text

markup language), and the commercialization of the

Internet. These advances, combined with increasingly

powerful home computers and modern operating sys-

tems, have made streaming media practical and afford-

able for ordinary consumers.

By definition, streaming videos are the videos that

are continuously received by and displayed to the end-

users while the videos are being delivered from the

providers. The name ‘‘streaming’’ refers to the delivery

method of the medium rather than the medium itself.

A video stream can be either on demand or live. On

demand streams are stored on a server for a long

period of time, and are available to be transmitted at

a user’s request. Live streams are only available at one

particular time, such as the video stream of a live

sporting event.

Some popular streaming video and streaming media

technologies includeMicrosoftWindowsMedia, RealM-

edia from RealNetwork, Quicktime, MPEG-4, and

Adobe Flash. And some major streaming video content

providers include YouTube, Google Video, Netflix, Stage

6, and Metacafe.

3302V Video Representation
Key Applications
With the proliferation of videos across the world, how

to efficiently and effectively store, process, transmit,

deliver and present them to end users has become an

increasingly popular research topic. Video representa-

tion is undoubtedly one of these important issues. On

one hand, the wide availability of videos has motivated

the development of advanced video compression tech-

niques, yet on the other hand, accomplishment

achieved in the compression areas has made videos

further distributed.

The benefits brought by efficient video representa-

tion are significant. Some popular applications that

take advantage of advanced video compression techni-

ques include: (i) HDTV and mobile broadcast terres-

trial digital television (DTV); (ii) gaming consoles; (iii)

network database services such as video library and

video information provider; (iv) video on demand

(VOD); (v) digital storage media such as CD-ROM

videos, DVD movies and digital recorders; (vi) inter-

active communications such as two-way video phones,

video-conferencing and videotex; and (vii) video

surveillance.
Future Directions
Approximately every 3 to 4 years, a significantly new

standard on video compression is developed. The latest

generation is the MPEG-4 Part 10 advanced video cod-

ing (AVC). This is also known as the H.264 standard and

is developed to achieve broadcast-quality video at much

lower bit rates. The algorithm offers compression per-

centages that are twice as much as those offered by

MPEG-4 Part 2 with the same image quality. It is also

designed for a wide variety of consumer and pro AV

(audiovisual) applications including TV set-top boxes

and DVD players. MPEG-4 Part 10 (or H.264) improves

older compression schemes by using significantly more

sophisticated predictive coding, as well as variable

block-size motion compensation and variable block-

size integer discrete cosine transform [8]. However,

the not-so-good news about MPEG-4 AVC is that it

is extremely computation-intensive and requires a

very high horsepower hardware platform to correctly

implement it [9].

H.264 is now still in its preliminary stage in terms

of adoption, although many vendors and analysts be-

lieve that it will eventually grab a big market share. It is

expected that H.264 will be used by many digital video
delivery networks and the new DVD standards such as

high definition (HD)-DVD and Blu-Ray.

Another two directions to watch for future video

compression are object-based video coding and scal-

able video coding (SVC). The basic idea of object-

based video coding is to first segment a video scene

into objects, then code them separately. MPEG-4 has

actually explored such idea in its video codec, never-

theless, as object segmentation is a fairly challenging

task and remains to be an open research topic, such

object-based video coding still has a long way to go

before it can truly take off. As for the scalable video

coding, it is sort of a natural follow-on of H.264. In

particular, it aims to provide a better way for dealing

with wild cards such as disparate network types and

different endpoint abilities, including display resolu-

tion and processing power [1].

In a word, while the network bandwidth has con-

stantly increased in recent years, the emerging of high-

definition videos effectively cancels out some of these

gains. Moreover, considering the formidable high bit-

rate of raw video data, video compression techniques

are bound to be in great need for the future.

Cross-references
▶Audio Representation

▶ Image Representation

▶Video

Recommended Reading
1. International Standard ISO/IEC JTC1/SC29/WG11. N7315:

Introduction to SVC extension of advanced video coding, 2005.

2. International Standard ISO/IEC 11172-2. Information

technology – Coding of moving pictures and associated audio

for digital storage media at up to about 1.5 Mbit/s – Part 2:

Video, 1993.

3. International Standard ISO/IEC 11172-3. Information technol-

ogy – Coding of moving pictures and associated audio for digital

storage media at up to about 1.5 Mbit/s – Part 3: Audio, 1993.

4. International Standard ISO/IEC 13818-2. Information

technology – Generic coding of moving pictures and associated

audio information: Video, 2000.

5. International Standard ISO/IEC 14496-2. Information

technology – Coding of audio-visual objects – Part 2: Visual, 2004.

6. International Telecommunication Union, Telecommunication

Standardization Sector (ITU-T). ITU-T recommendation

H.261: Line transmission of non-telephone signals – Video

codec for audiovisual services at p � 64 kbits, March 1993.

7. International Telecommunication Union, Telecommunication

Standardization Sector (ITU-T). ITU-T recommendation

H.263: Line transmission of non-telephone signals – Video

coding for low bitrate communication, 2005.

Video Scene and Event Detection V 3303
8. International Telecommunication Union, Telecommunica-

tion Standardization Sector (ITU-T). ITU-T recommendation

H.264: Advanced video coding for generic audiovisual services,

2005.

9. Kridel T. The future of video compression.Downloadable at: http://

proav.pubdyn.com/Tech_Apps/Septemb912200532206PM.htm.

10. Mitchell J., Pennebaker W., Fogg C., and LeGall D. MPEG

video compression standard. Chapman and Hall, New York,

NY, USA, 1992.
Video Retrieval

▶Video Sequence Indexing
Video Scene

▶Video Scene and Event Detection
V

Video Scene and Event Detection

NOBORU BABAGUCHI, NAOKO NITTA

Graduate School of Engineering, Osaka University,

Osaka, Japan

Synonyms
Video scene and event extraction

Definition
A video scene, also called a Logical Story Unit [7] or

simply a story unit, can be defined as a semantically

related consecutive series of image frames that depicts

and conveys a high-level concept such as event, topic,

object, location, and action, which constitutes a story in

a video. Especially, an event can be defined as an

incident or situation, which occurs in a particular

place during a particular interval of time, for example

– homerun in a baseball game, actor’s entrance on

stage, car explosion on a highway, etc. Under these

definitions, video scene and event detection is to find

all video intervals corresponding to a specific event

from a given video.

Historical Background
Video scene and event detection has been an active

research area in the community of multimedia signal

processing and computer vision, and has attracted
much interest in many applications such as multime-

dia information retrieval, video archive indexing and

management, real-time adaptive streaming, and secu-

rity monitoring.

For example, in sports videos, various score event

scenes, e.g., touchdown in American football, home-

run in baseball, and 3-point shoot in basketball are

actually what viewers want to watch. Video retrieval

based on such events is a typical example of multime-

dia information retrieval. Real-time adaptive stream-

ing can also be achieved by transmitting only these

score event scenes with full motion audio-video,

while transmitting other irrelevant video segments

with less information such as only keyframes. In addi-

tion, annotations of each event scene about ‘‘Five Ws

and One H’’ – who, when, where, what, why, and how

– are of much importance because such data enables

efficient and effective video archive indexing and man-

agement. Event detection provides when and what

attributes, e.g., the homerun in the top of the 8th inning.

As another example, the security monitoring can be

realized by detecting unusual events in surveillance

videos in order to reduce the volume of data presented

to security personnel. As can be seen, video scene and

event detection is one of the most important tasks in

video content analysis.

Foundations
Video scene and event detection requires both video

scene detection and event detection. Here, note that

the target events can be categorized into two types:

known and unknown events. For both types of event,

shot detection, where a shot is defined as a set of

contiguously recorded image frames, is usually the

first step towards video scene and event detection.

For unedited continuously captured videos, this can

be realized by segmenting the video into fixed-length

units. After that, there are mainly two types of ap-

proach: i) detecting events and scenes simultaneously

based on heuristically/statistically determined rules,

and ii) detecting scenes first and then classifying the

detected scenes into predefined event classes. Both

approaches can be applicable to detect known events,

while the latter approach is usually used for detecting

unknown events. More details are discussed below.

The primary event detection approach is to detect

known event scenes based on heuristically determined

rules. An example of known events is homerun in a

baseball game. Broadcast baseball videos usually have

3304V Video Scene and Event Detection
well-defined structures, for example, a typical home-

run event usually consists of three or more shots,

which starts from a pitcher’s view, followed by a pan-

ning outfield and audience view in which the video

camera tracks the flying ball, and ends with a global or

close-up view of the player running to home base.

These elemental shots consist of characteristic low- to

mid-level image features such as color, texture, shape,

motion, object trajectories, and human faces. There-

fore, according to such domain knowledge, a series of

certain types of shots is heuristically predefined as the

temporal and spatial structures of the event scene, and

then a video is parsed to find the corresponding event

scenes as shown in Fig. 1.

It is noted that the approach discussed above

focuses on single modality of the video data, in this

case, the image stream. The single modality based

approaches have low computational load, but the ac-

curacy of event detection is low, as only using single

modality is not able to fully characterize the events.

For example, there are several cases for touchdown in

American football games, such as the touchdown by

pass, by running, and after turnover. It is not easy to
Video Scene and Event Detection. Figure 1. Heuristically de
construct a compact visual model that covers a number

of cases of concern.

Alternatively, great emphasis has been placed on

multimodality of the videos in recent years [2,3,8,

11,13]. As is well known, the video data is composed

of temporally synchronized multimodal streams: visual,

auditory, text, and graphics streams, which are closely

related to each other. The visual stream is a sequence of

image frames, and the auditory stream is a mixture of a

couple of auditory sources such as speech, music, and

sound. In addition, the closed caption (CC) text,

which is a transcript of the speech part of the auditory

stream, can be viewed as the text stream for broadcast

videos. The graphics stream is a sequence of overlays

or video captions that have rich information about the

content of the video data. The aim of multimodality

based approaches is to improve the reliability and

efficiency in analyzing the semantic content of videos.

Although the computation for analyzing the visual

stream is most costly, the use of other streams may be

capable of reducing it. It should also be added that

external metadata such as scenarios and web-cast game

statistics is often used as one of the multimodal
termined rule-based approach for known events.

Video Scene and Event Detection V 3305
streams [4]; however, since the metadata is generally

created independently from the video, it needs to be

synchronized with other streams according to the se-

mantic content at some point. Note that these multi-

modal streams are also used for other types of

approaches described later.

These traditional rule-based approaches, where

humans have to discover the domain knowledge and

encode it into a set of programming rules, are too

costly and incompetent for multimedia content analy-

sis because knowledge for recognizing high-level events

could be very complex, vague, or difficult to define.

Therefore, on alternative solution is to use statistical

models to learn the temporal and spatial structures of

the event scene from training data which is given

beforehand as shown in Fig. 2. Hidden Markov Models

(HMMs), being a popular choice for probabilistic rep-

resentation of sequences, are often used to learn these

structures of a specific event and to detect the

corresponding scenes from the video [15]. Several ef-

fective extensions to HMMs have been used to model
Video Scene and Event Detection. Figure 2. Statistical mod

segmentation).
more complex structures and to achieve better perfor-

mance; especially, the coupled HMM (CHMM) has

been developed to model interacting processes of mul-

timodal streams.

Now, there is a different type of solution for event

detection, which is to firstly detect scenes and then

classify the detected scenes into predefined event clas-

ses. In this case, semantically related shots are firstly

grouped into a scene under the assumption that se-

mantically related shots are usually temporally close

to each other and have visual/audio similar-

ity [7,9,10,12]. For example, if a person is talking

in different shots, his/her speeches in these shots

should present similar audio characteristics and

these shots can be grouped as a scene. Then, the

detected scenes are classified into a certain number

of event classes based on the statistical model of each

event [1]. More precisely, given a finite set of event

classes C = {1,2,...,K} and a scene s, probabilistic classi-

fication methods typically compute the probabilities P

(kjs) that s belongs to class k 2 C, and then classify
el-based approach for known events (with scene

V

3306V Video Scene and Event Detection
s into the class l that has the highest conditional prob-

ability l = argmaxk P(kjs). Figure 3 shows the schematic

diagram of this approach. In general, there are two

ways of learning P(kjs): generative and discriminative.

Discriminative models strive to learn P(kjs) directly

from the training set without the attempt to model

the observation s. Generative models, on the other

hand, compute P(kjs) by first modeling the class-con-

ditional probabilities P(sjk) as well as the class prob-

abilities P(k), and then applying the Bayes’ rule as

follows: P(kjs) / P(sjk)P(k). Popular generative mod-

els include HMMs, while representative discriminative

models include Support Vector Machines (SVMs) [6].

Although high classification accuracy can often be

achieved by these statistical model-based approach, the

drawback is that the model developed for one applica-

tion usually does not fit for others. For example, the
Video Scene and Event Detection. Figure 3. Statistical mod

segmentation).
homerun model developed for baseball games is obvi-

ously not suitable for detecting the 3-point shoot

scenes in basketball videos. Similarly, when detecting

unknown events, it is quite unnatural to have their

statistical models created from the training data since

there would be so much variety for unknown events.

Recently, much work has been done to detect unusual

events as unknown events. The basis of detecting un-

usual events is the notion of usual events and an

underlying distance/similarity metric. The existing

work mainly solves this problem by finding regular

patterns, which are typically found with clustering

operations on a given dataset, as usual events. Here,

unsupervised classification methods automatically

partition the given data set into the predefined number

of clusters. Some methods are even able to automati-

cally guess the optimal number of clusters into
el-based approach for known events (without scene

Video Scene and Event Detection. Figure 4. Statistical model-based approach for unknown events.

Video Scene and Event Detection V 3307

V

which the given data set should be partitioned. Then,

unusual events are detected by finding outliers that do

not fit the current set of usual event clusters [5] as

shown in Fig. 4.

Key Applications

Video Indexing Systems: are used to insert metadata

about events for the corresponding video scenes so that

they can be easily found at a later time.

Video Scene Retrieval Systems: are used to find one or

more media clips that match an event-based user

query, which can be specified in a variety of ways,

such as text and some media examples.

Video Summarization Systems: are used to represent

one media clip or a collection of clips in a condensed

form. The presentation style includes the storyboard,

where the representative images of all/important

events are displayed in the spatial layout, and skims,

where only the important event scenes are concate-

nated. Event metadata can help decide which part of

the content shall be presented or emphasized in a

concise and coherent manner.
Future Directions
Despite a great amount of research efforts, the success

of video scene and event detection methods is limited

due to the big semantic gaps between the low-level

features used by these systems and the high-level se-

mantics of events, that is, the low-level features such as

color, texture, and motion are insufficient to capture

the intrinsic nature of events even throughout the

videos of the same genre, mainly due to the differences

of their recorded situation. Therefore, a conclusion

that can be drawn here is that the key to the success

of video scene and event detection systems lies in the

degree to which the semantic gaps can be bridged.
Experimental Results
Common evaluation measures for event detection are:

precision ¼ the number of correctly detected events

the number of all detected events

recall ¼ the number of correctly detected events

the number of the events that should be

detected

:

3308V Video Search
In general, for most existing methods, there are accom-

panying experimental evaluations with these measures;

however, it is quite difficult to compare their per-

formances since a different dataset is used in these

experiments.

Data Sets
The TREC Video Retrieval Evaluation (TRECVID)

[14], sponsored by the National Institute of Standards

and Technology (NIST) and other U.S. government

agencies, has been used as a benchmark dataset to

encourage research in video content analysis. Although

video scene and event detection has not been expli-

citly stated as their tasks, there are some related

tasks, e.g., story segmentation can be considered as

the equivalence to scene detection and high-level fea-

ture extraction includes the detection of events such as

Monologue, Physical violence, People walking, and

Airplane takeoff. Further usage of such benchmark

datasets is expected for video scene and event detection

in order to create objective measurements of the

performance of each approach.

Cross-references
▶Content-based Video Retrieval

▶Video Content Analysis

▶Video Content Modeling

▶Video Content Structure

▶Video Segmentation

▶Video Sequence Indexing

▶Video Shot Detection, Video Summarization

Recommended Reading
1. Adams B., Amir A., Iyengar G., Lin C.-Y., Naphade M., Neti C.,

and Smith J.R. Semantic indexing of multimedia content using

visual, audio and text cues. EURASIP J. Appl. Signal Processing,

2:1–16, 2003.

2. Babaguchi N., Kawai Y., and Kitahashi T. Event based indexing

of broadcasted sports video by intermodal collaboration. IEEE

Trans. Multimedia, 4(1):68–75, 2002.

3. Babaguchi N. and Nitta N. Intermodal collaboration: a strategy

for semantic content analysis for broadcasted sports video. In

Proc. Int. Conf. Image Processing, 1:13–16, 2003.

4. Chua T.-S. and Xu H. Fusion of AV features and external

information sources for event detection in team sports video.

ACM Trans. Multimedia Comput. Commun. Appl., 2(1):44–67,

2006.

5. Goh K.-S., Miyahara K., Radhakrishan R., Xiong Z., and

Divakaran A. Audio-visual event detection based on mining

of semantic audio-visual labels. MERL, TR-2004-008, 2004.

6. Gong Y. and Xu W. Machine Learning for Multimedia Content

Analysis. Springer, Berlin, 2007.
7. Hanjalic A., Lagendijk R.L., and Biemond J. Automated high-

level movie segmentation for advanced video-retrieval systems.

IEEE Trans. Circ. Syst. Video Techn., 9(4):580–588, 1999.

8. Hauptmann A.G. and Smith M.A. Text, speech, and vision for

video segmentation: the informedia project. In Proc. AAAI

Symp. on Computational Models for Integrating Language and

Vision, 1995, pp. 90–95.

9. Li Y. and Kuo C.-C.J. Video content analysis using multimodal

information: for movie content exraction, indexing and repre-

sentation. Kluwer, Norwell, MA, USA, 2003.

10. Lienhart R., Pfeiffer S., and Effelsberg W. Video abstracting.

Commun. ACM, 40(12):55–62, 1997.

11. Merlino A., Morey D., and Maybury M. Broadcast news naviga-

tion using story segmentation. In Proc. 5th ACM Int. Conf. on

Multimedia, 1997, pp. 381–391.

12. Rui Y., Huang T.S., and Mehrotra S. Constructing table-

of-content for videos. ACM Multimed. Syst. J., 7(5):359–368,

1999.

13. SundaramH. and Chang S.-F. Computable scenes and structures

in films. IEEE Trans. Multimedia, 4(4):482–491, 2002.

14. The National Institute of Standards and Technology (NIST).

TREC video retrieval evaluation. 2001–2007, http://www-nlpir.

nist.gov/projects/trecvid/

15. Xie L., Xu P., Chang S.-F., Divakaran A., and Sun H. Structure

analysis of soccer video with domain knowledge and hidden

Markov models. Pattern Recogn. Lett., 25(7):767–775, 2004.
Video Search

▶Video Sequence Indexing
Video Segmentation

NEVENKA DIMITROVA, LALITHA AGNIHOTRI,

MAURO BARBIERI, HANS WEDA

Philips Research, Eindhoven, The Netherlands

Synonyms
Video partitioning; Scene change detection; Shot-

cut detection; Shot segmentation; Video shot-cut

detection; Video chaptering; Logical story unit

segmentation

Definition
Video (temporal) segmentation is the process of parti-

tioning a video sequence into disjoint sets of consecu-

tive frames that are homogeneous according to some

defined criteria. In the most common types of segmen-

tation, video is partitioned into shots, camera-takes, or

Video Segmentation V 3309
scenes. A camera take is a sequence of frames captured

by a video camera from the moment it starts capturing

to the moment it stops. During montage, camera takes

are trimmed, split, and inserted one after the other

to compose an edited version of a video. The basic

element of an edited video is called shot. A shot is a

contiguous sequence of frames belonging to a single

camera take in an edited video. Content-wise, shots

usually possess some degree of visual uniformity.

A scene is a group of contiguous shots that form a

semantically meaningful set.

If a video V is represented as a finite sequence

of frames V ¼ f1;:::; fnð Þ, the temporal segmentation

S(V) of a video is a partition of the video into non-

overlapping video segments n:

SðV Þ ¼ fv1; v2;:::;vmg;

with vi \ vj ¼ f and [vi ¼ V 8i; j 2 ½1;:::;m�,
where a video segment is a finite sequence of consecu-

tive frames v ¼ ðfp;:::;fqg 1 � p � q � n.
V

Historical Background
There have been many reports in the literature on

methods for video shot-cut detection. The first report

was published in 1992 (from a conference held in

1991) by Nagasaka et al., and described a way of

indexing video objects by first detecting video cuts

and then finding important objects in those frames

[6]. Some of the reported methods worked on various

ways of comparing pixel differences between frames.

The methods presented in [5–7] operated in the spatial

domain. In order to analyze an MPEG or motion JPEG

stream, the frames in the stream would have to be fully

decompressed, which was very computationally expen-

sive. Later, other techniques have been applied in the

compressed domain [2,12]. Some of these techniques

require images obtained from an uncompressed stream

to be fully compressed to take advantage of some of

their special features. A method that was introduced

by Swanberg et al. [7] actually went beyond the notions

at that time that ‘‘cutting’’ and boundaries have to be

at a consecutive frame level. The conceptual notion

of ‘‘video parsing’’ was introduced where ‘‘video’’ is a

multimedia language conveying more than the sum of

the individual pixels and signals.

A model driven approach to digital video segmenta-

tion is presented by Hampapur and his colleagues in [5].

The paper deals with extracting features that correspond
to cuts, spatial edits, and chromatic edits. The authors

present extensive formal treatment of shot boundary

identification based on models of video editing effects.

Arman et al. [1] have used a DCTapproach on both

JPEG and MPEG streams. For MPEG streams, only

I-frames are analyzed. This implementation employed

a two step approach. The first pass compares the

images based on using selected DCT coefficients from

selected blocks. Video frames are represented by a

vector of this subset of DCT coefficients. Then the

normalized inner product is subtracted from one

another and compared to a threshold. If a potential

cut is detected, the images can be decompressed for

further processing.

A similar multi-pass approach has been used by

Zhang et al. but their technique also analyzes the B

and P frames in an MPEG stream [12]. The first pass

compares the images based on DCT coefficients. The

DCT comparison is based on a pair-wise block

comparison algorithm which compares the DCT

coefficients of corresponding blocks of consecutive

video frames. For example, if block n in frame i has a

DCT coefficient Cn,k(i) where k is from 1 to 64 and

n depends on the frame size, then the difference

between two frames which are j frames apart is:

Diffn ¼
1

64

X64
k¼1

jCn;kðiÞ � Cn;kði þ jÞj
maxðCn;kðiÞ;Cn;kði þ jÞÞ

If Diffn is greater than some threshold t, then

the block is different between the two frames. If the

percentage of blocks changed is greater than some

threshold tb, it is considered to be a shot-cut. It is

reported that t tends not to vary across video sources

and can be easily experimentally determined. However,

tb is computed from the overall statistics for the values

of the percentage of blocks that have changed which

exceed the mean by approximately five standard devia-

tions. In the second pass the number ofmotion vectors is

compared to a threshold. If there are less motion vectors

than some threshold, a shot-cut is determined to occur.

This is based on the fact that if there are high residual

errors, then there are no motion vectors, consequently,

this block is sufficiently different and can not be pre-

dicted. If a large number of blocks can not be predicted,

than it probably is a shot-cut. The performance of this

method depends to a certain extent on the quality of the

encoding scheme. An encoder with poormotion estima-

tion may lead to poor shot-cut detection performances.

3310V Video Segmentation
Yeo et al. have investigated using only the DC

values of the DCT coefficients for comparing frames

in the compressed domain [9]. They sum the DC

difference between successive frames. If the difference

is the maximum and n times larger than the next

largest peak in a sliding window of frames, then it is a

cut. They also detect ‘‘gradual transitions’’ such as

dissolves and fades, by comparing each frame to the

subsequent k-th frame over some time interval.

An alternative shot segmentation method was pro-

posed by Zabih et al. in [11]. Their approach is based

on the observation that, during shot-cuts, new edges

appear far away from old ones, and old edges disappear

in locations far away from new ones. Shot-cuts are

detected by counting the number of edges entering

and exiting pixels in consecutive frames.

All of the above techniques have reported good

results for shot-cut detection. However, a comparison

of algorithms to detect shots boundaries has been per-

formed by Boreczky and Rowe [2]. They selected and

implemented someof the above algorithms. Their results

showed that the simplest algorithms outperformed the

more complicated methods and that DCT based algo-

rithms had the lowest precision for a given recall.
Video Segmentation. Figure 1. Example of a basic method
Foundations

Shot-Cut Detection

Video segmentation aims at finding the temporal boun-

daries that separate visually homogeneous sequences of

frames. The basic idea used by most methods for video

segmentation is to compare subsequent frames for

determining (based on some kind of threshold) when a

significant change in the content occurs. For this pur-

pose, it is necessary to define a metric for the compari-

son of subsequent frames and a thresholding method.

The key concept is visualized in Fig. 1. On the top of

the figure, five frames across a shot boundary are shown.

Below each frame, the corresponding luminance histo-

gram is plotted. The plot shows on the horizontal axis

the luminance values (from 0 to 255), and on the

vertical axis the fraction of the pixels (from 0 to 1) in

the frame image that have a particular luminance value.

In this case, the metric for comparing two subsequent

frames is the difference between the luminance histo-

grams. The value of such distance is plotted in the graph

at the bottom of the figure. As it can be seen in the

histogram difference plot, the distance between the his-

tograms of frames i and i+1 is considerably higher than
for shot cut detection.

Video Segmentation V 3311
the differences between the histograms of other pairs of

frames. The shot boundary located between the frames

i and i+1 is easily detectable by means of a threshold

located, for example, at 0.3.

A very simple metric for comparing frames is the

pixel-wise frame difference consisting in the absolute

difference of the intensity of the pixels between two

consecutive frames. If Y(x,y,n) and Y(x,y,m) indicate

the intensities of the pixels at position (x,y) in the

frames n and m, the pixel-wise frame difference Dn,m

is defined as follows:

Dn;m ¼
X
x; y

jY ðx; y; nÞ � Y ðx; y;mÞj;

where the summation extends to the whole frame.

The pixel-wise frame difference is sensitive to noise,

object and camera motion, and can lead to a high

number of false detections. Better performances can

be achieved by performing block-based differences

instead of comparing single pixels.

Even better performances can be achieved by

comparing image histograms. With respect to compar-

ing pixels of consecutive frames, the histogram of a

digital image increases robustness to noise, object and

camera motion and is rotation invariant. Although

image histograms do not retain any spatial informa-

tion, they represent a good compromise between

computational cost and performance for shot-cut

detection.

If H(i, n) represents the i-th histogram value for

frame n and H(i, m) represents the i-th histogram

value for frame m, a simple but effective comparison

metric is the bin-to-bin difference:

Dn;m ¼
X
i

jHði; nÞ � Hði;mÞj

Shot-cuts are detected whenever the bin-to-bin dif-

ference exceeds a threshold. Other comparison metrics

for histograms are the intersection, the chi-square test

and the correlation defined as follows:
Histograms
intersection

Dn;m ¼ 1�
P
i

minðHði;nÞ;Hði;mÞÞ

Chi-square test Dn; m ¼
P
i

½Hði;nÞ�Hði;mÞ�2

½Hði;nÞþHði;mÞ�2

Histograms
correlation Dn; m ¼ 1�

P
i

½Hði;nÞ�mn�½Hði;mÞ�mm �

snsm
where mn and sn represent the mean and the

standard deviation, respectively, of the histogram of

the frame n.

The choice of a thresholding method is critical

regardless of the comparison metric used. A too

low threshold may create a high number of false detec-

tions, while a too high threshold may lead to many

missed detections. A fixed threshold can be easily de-

termined experimentally for one video. However, dif-

ferent videos might require different threshold values.

To limit this problem, techniques have been proposed

that link the threshold value to the mean and standard

deviation of the distribution of frame differences

across the whole video. Other methods use running

averages in windows of multiple frames to detect

shot-cuts.
V

Scene Boundary Detection

The methods described above typically use the

differences in contiguous frames to detect shot bound-

aries. In order to detect scene boundaries, groups of

shots are determined that contain semantically related

information such as the same physical location, or the

same action. While a shot boundary is defined rather

unambiguously, scene boundaries are much more

difficult to capture. Different individuals tend to

identify scenes in videos in different ways. This

makes obtaining ground truth for the scenes a non-

trivial task.

An overview and a benchmark of different methods

for scene boundary detection are presented in [8].

Common techniques used for scene boundary detec-

tion use audio analysis and shot clustering [10].

One of the methods to automatically detect scene

boundaries is by means of superhistograms [3]. Using

this method, first the color histograms for individual

frames are computed, and then they are merged into

a single cumulative histogram called a family histogram

based on a comparison measure. As new frames are

added, the family histogram accumulates the new colors

from the respective frames. However, if the histogram of

a new frame is different from the previously constructed

family histograms, a new family is formed. In the end,

there are a few families of histograms to represent the

entire video. This set of families is ordered with respect

to the length of the temporal segment of video that they

represent. The ordered set of family histograms is called

superhistogram.

3312V Video Segmentation
When computing the family histograms there

are several dimensions to think about when making

comparisons between frames based on (i) the amount

of memory (time) (ii) contiguity of compared

families, (iii) the representative structure for a family.

Memory can be thought as one-dimension, that is,

how much history of the computed family histograms

is kept: a process that has ‘‘zero memory’’ and com-

pares only the current frame with a previous frame
Video Segmentation. Figure 2. Merging strategies for creat
histogram vs. a process with infinite memory that

compares the current frame with all the previous fam-

ily histograms. As shown in Fig. 2, the results can be

quite different. Another dimension is time, which

means whether contiguous or noncontiguous compar-

isons are made. The third dimension is the determina-

tion of a representative histogram for the family. This

can be the average histogram or the histogram of a

selected frame (e.g., the last frame). There are different
ing family histograms.

Video Segmentation V 3313

V

merging strategies [15]: contiguous vs. noncontiguous

comparison and comparison with a short term and

longer term memory:

1. Contiguous with zero memory: A new frame

histogram is compared with the previous frame

histogram. This strategy allows to keep a pan se-

quence in a single family as the addition of new

colors happens slowly and the difference between

consecutive frames (in case the last frame is com-

pared) is very small.

2. Contiguous with limited memory: Contiguous

families are produced by comparing the new

frame histogram only with the previous family

histogram. For commercial detection applications

such strategy needs to be used because, otherwise,

many families would be created during the com-

mercials when new colors are introduced with each

shot. This enables the differentiation of commer-

cials from regular programs where the families are

usually longer.

3. Noncontiguous with infinite memory with family

histogram comparison: This is useful to capture

the global colors of a complete program. For applica-

tions for characterization of videos for clustering

and retrieval, this strategy needs to be used as it

captures all the colors present in the video in

the least number of clusters possible. A new frame

histogram is compared with all previous family with-

in the same video.

4. Hybrid: First a new frame histogram is compared

using (3) above and then the generated family

histograms are merged using (1) or (2). This

enables the combination of global information

that is preserved when using the (3) strategy to

the local information that is achieved by combining

the families using strategies (1) or (2). In this

case, the family histograms that are produced

by (3) effectively become the frame histograms.

These are now merged with each other to generate

a hierarchical picture of the video. This enables to

cluster colors that are repeated at regular intervals

throughout the program while keeping pans etc.

together in a single family.

An example of the results obtained using these

four strategies is shown in Fig. 2 for a portion of a

news video program.
Key Applications
Video segmentation is usually the first step in content-

based automatic video indexing and retrieval. It is

also widely used for video browsing and automatic

video summarization. Additionally, another field of

application is the object-based video compression.

To correctly detect and track objects in video, a tempo-

ral segmentation step is in general needed.

Cross-references
▶Video Representation

▶Video Shot Detection

▶Video Summarization

Recommended Reading
1. Arman F., Hsu A., and Chiu M-Y. Image processing on encoded

video sequences. Multimed. Syst., 1(5):211–219, 1994.

2. Boreczky J.S. and Rowe L.A. Comparison of video shot

boundary detection techniques. In Proc. SPIE 1996 Int. Symp.

on Electrical Image Science and Technology. Storage and Re-

trieval for Image and Video Databases IV, vol. 2670, 1996,

pp. 170–179.

3. Dimitrova N., Martino J., Agnihotri L., and Elenbaas H. Super-

histograms for video representation. In Proc. Int. Conf. Image

Processing, 1999, pp. 314–318.

4. Dimitrova N., Agnihotri L., and Jainschi R. Temporal video

boundaries. In Video Mining, A. Rosenfeld, D. Doermann, and

D. Dementhon (eds.). Kluwer, Boston, 2003, pp. 61–90.

5. Hampapur A., Jain R., and Weymouth T., Digital Video

Segmentation. In Proc. 2nd ACM Int. Conf. on Multimedia,

1994, pp. 357–364.

6. Nagasaka A. and Tanaka Y. Automatic video indexing and

full-video search for object appearances. In Visual Database

Systems II, E. Knuth, L. Wegner (eds.). Elsevier, Amsterdam,

The Netherlands, 1992, pp. 113–127.

7. Swanberg D., Shu C.F., and Jain R. Knowledge guided parsing

and retrieval in video databases. In Proc. SPIE Storage and

Retrieval for Image and Video Databases, vol. 1908, 1993,

pp. 13–24.

8. Vendrig J. and Worring M. Systematic evaluation of logical story

unit segmentation. IEEE Trans. Multimed., 4:492–499, 2002.

9. Yeo B. and Liu B. A unified approach to temporal segmentation

of motion JPEG and MPEG compressed video. Multimed. Tools

Appl., 1(1):81–88, 1995.

10. Yeung M. and Yeo B.-L. Video visualization for compact pre-

sentation and fast browsing of pictorial content. IEEE Trans.

Circuits Syst. Video Technol., 7(5):771–785, 1997.

11. Zabih R., Miller J., and Mai K. A feature-based algorithm for

detecting and classifying scene breaks. In Proc. 3rd ACM Int.

Conf. on Multimedia, 1993, pp. 189–200.

12. Zhang H.J., Chien Y.L., and Smoliar S.W. Video parsing and

browsing using compressed data. Multimed. Tools Appl.,

1(1):89–111, 1995.

3314V Video Sequence Indexing
Video Sequence Indexing

HENG TAO SHEN

The University of Queensland, Brisbane, QLD,

Australia

Synonyms
Video retrieval; Video search; Video indexing

Definition
A video is usually defined as a sequence of high-

dimensional feature vectors. Video sequence indexing

consists of describing the content of video sequences

from a video database to allow effective and efficient

search and retrieval. Given a query video sequence,

video sequence indexing aims to find its similar video

sequences from a video database quickly. Typically, it

includes the following major components: effective

summarization of the high-dimensional sequence,

effective access method for indexing the obtained sum-

marization, and efficient query processing method.
Historical Background
Video feature extraction and content analysis have been

studied for several decades since the emergence of video

data. Recently, video sequence indexing has attracted

plenty of attention because of the huge amount of video

data. With ever more heavy usage of video devices and

advances in video processing technologies, the amount

of video data has grown rapidly and enormously for

various usages, such as filming, advertising, news video

broadcasting, personal video archive, medical video

data, and so on. Based on the statistics from Berkeley’s

‘‘How Much Information’’ project 2003, 5,660 motion

pictures are produced every year, amounting to almost

6,078 h. 21,264 television stations broadcast for about

16 h/day, producing 31 million hours of original pro-

gramming annually, and huge amount of personal and

organizational video data stocks are accumulating. In-

terestingly, the popularity of WWW enables enormous

video data to be published and shared. The mainstream

media is moving to the web. The media content online

and video streaming is growing aggressively. While the

pool of video data is super large, such as millions of

videos currently available in web, video search engines

provide users convenient ways for finding videos of their

interests. Consequently, video sequence indexing has

become a key part of the future of digital media [1].
The goal of video sequence indexing is to quickly find

the similar videos to a query, and a video is usually

represented by a sequence of high-dimensional frame

feature vectors at a frame rate of 25–30/s. Due to the

high complexity of video data, earlyworkmainly focused

on reducing the temporal redundancy of video data by

identifying the shot which is the basic unit in video data.

Shot detection is a fundamental task in video content

manipulation. Representing the video by a small number

of shots can reduce the data complexity in temporal

dimension significantly. One central task in annual

TRECVID evaluation is the shot boundary detection

[2]. Many shot detection methods have been proposed

and the field has matured [2,3]. Beside shot representa-

tion, recent work also considered the closeness of frames

within a video across different shots and summarized

similar frames into a compact representation [4,5]. Typ-

ically, temporal information is ignored for such aggres-

sive summarizations. As the amount of video data

increases explosively, there is also a trend to investigate

various high-dimensional indexing methods to effec-

tively manage and organize the video summaries for

fast retrieval [5,6].

Foundations
Figure 1 shows the generic architecture for video

sequence indexing. Given a collection of videos, their

visual frame features, such as colour, tensity, and texture,

is first extracted. Semantic features like objects and

motions can also be further extracted from frame fea-

tures. The sequence of frame features for each video is

further summarized into compact representations which

are indexed for fast retrieval. Given a query video, its

features are first extracted and used to generate compact

summarization. A similarity search is then performed on

the indexed summary collection. The video similarity is

approximated based on their compact representations.

To achieve efficient retrieval, most existing works

emphasize on the summarization step to reduce the

video data complexity and can be categorized into

content-based and semantic-based approach. Content-

based approach deals with frame visual features. In

literature, two types of summarization techniques have

been proposed: summarize the sequence as a statistical

distribution and summarize the sequence into fewer

representatives. The first type typically assumes that

the frames are distributed in a model like Gaussian, or

mixture of Gaussian [7]. In the second type, keyframe is

often used [8]. Video signature introduces a

Video Sequence Indexing. Figure 1. A generic architecture for video sequence indexing.

Video Sequence Indexing V 3315

V

randomized summarization method which randomly

selects a number of seed frames and assigns a small

collection of closest frames to each seed [4]. However,

the selection of seeds may sample non-similar frames

from two almost-identical sequences. Video Triplet

(ViTri) models a cluster of similar frames as a tightly

bounded hypersphere described by its position, radius,

and density [5]. The ViTri similarity is measured by the

volume of intersection between two hyper-spheres

multiplying the minimal density, i.e., the estimated

number of similar frames shared by two clusters. The

total number of similar frames is then estimated to

derive the overall similarity between two video

sequences.

The semantic-based approach typically handles the

motion trajectory of objects in a video sequence.

Motion trajectories suggest the temporal movement

of objects. Moving objects are first detected and seg-

mented, and the motion trajectories of objects are then

detected by analyzing inter-frame correspondences.

Videos are represented based on these raw motion

trajectories within a shot [8,9]. However, this approach

is limited by the accuracy of object detection and only

applicable so applications where the objects can be

clearly identified.

In content-based image retrieval, the similarity/

distance of two images is typically computed by the

Euclidean distance. When extending the distance func-

tion to video sequences, many proposals have been

proposed. One widely used video similarity measure

is the approximate percentage of similar frames shared

by two sequences [4,13]. Some studies also take tem-

poral information into consideration. In [5], a time

warping based approach is proposed to deal with

video temporal variations, including local shifting.

Hausdorff distance is used to measure the maximal
dissimilarity between two shots [2]. The Earth Mover’s

Distance was introduced in computer vision to better

approach human perceptual similarities. It models

similarity as the amount of changes necessary to trans-

form one image feature into another one. A tight and

computationally simple approximation of the Earth

Mover’s Distance was proposed for matching video

sequences [1]. Other measures widely used in time

series, such as Longest Common Subsequence [15],

Edit Distance and its extensions [3], can also be ex-

tended for comparing video sequences. However, all

these measures need to compare most, if not all, frames

pairwise. The full similarity computation requires stor-

age of the entire sequence and time complexity is

typically quadratic.

To index low-dimensional video trajectories, trajec-

tories are typically first split into segments which are

typically represented by Minimum Bounding Rectan-

gles (MBR) [11]. The obtained MBRs can then be

indexed by some tree structures like Trajectory Bundle

Tree (TB-tree) [10]. Efficient query processing typically

deploys the GEMINI-like framework which pruning the

search space by the established lower bound lemma.

When temporal information is not considered, existing

high-dimensional indexing structures and their query

processing methods can be directly applied [4,13].

Key Applications
There are many applications for video sequence

indexing. Typically applications include video search,

video monitoring, video copy detection, video anno-

tation, video digital library, etc.

Future Directions
The indexing structures that are used to manage high-

dimensional video sequences have not been well

3316V Video Shot Detection
explored in the database community. There is the also

an urgent need for online monitoring, indexing and

searching, as the media content online and video

streaming is growing aggressively.

Experimental Results
In general, for every presented method, there is an

experimental study in the corresponding reference.

Data Sets
TRECVID provides reasonably large video data sets for

testing and experimental purposes [14].

URL to Code
Published code for video sequence indexing is rather

limited in the database society.

Cross-references
▶ Indexing

▶ Similarity Measure

▶Time Series

▶Video Summarization

Recommended Reading
1. Assent I., Wenning A., and Seidl T. Approximation Techniques

for Indexing the Earth Mover’s Distance in Multimedia Data-

bases. In Proc. 22nd Int. Conf. on Data Engineering, 2006, p. 11.

2. Chang H., Sull S., and Lee S. Efficient video indexing scheme for

content-based retrieval. IEEE Trans. Circuits Syst. Video

Technol., 1999.

3. Chen L., ÖzsuM.T., and Oria V. Robust and Fast Similarity Search

forMovingObject Trajectories. In Proc. ACMSIGMOD Int. Conf.

on Management of Data, 2005, pp. 491–502.

4. Cheung S. and Zakhor A. Efficient video similarity measurement

with video signature. IEEE Trans. Circuits Syst. Video Technol-

ogy, 2003.

5. Chiu C.-Y., Li C.-H., Wang H.-A. Chen C.-S., and Chien L.-F. A

time warping based approach for video copy detection. In Proc.

18th Int. Conf. on Pattern Recognition, 2006, pp. 228–231.

6. Cotsaces C., Nikolaidis N., and Pitas I. Video shot detection and

condensed representation: a review. IEEE Signal Process. Magaz.,

23(2):28–37, 2006.

7. Iyengar G. and Lippman A. Distributional clustering for efficient

content-based retrieval of images and video. In Proc. Int. Conf.

Image Processing, 2000, pp. 81–84.

8. Keogh E.J., Palpanas T., Zordan V.B., Gunopulos D., and Cardle

M. Indexing large human-motion databases. In Proc. 30th Int.

Conf. on Very Large Data Bases, 2004, pp. 780–791.

9. Lee J., Oh J.-H., and Hwang S. STRG-index: spatio-temporal

region graph indexing for large video databases. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2005,

pp. 718–729.
10. Pfoser D., Jensen C.S., and Theodoridis Y. Novel Approaches in

Query Processing for Moving Object Trajectories. In Proc. 26th

Int. Conf. on Very Large Data Bases, 2000, pp. 395–406.

11. Rasetic S., Sander J., Elding J., and Nascimento M.A. A trajectory

splitting model for efficient spatio-temporal indexing. In Proc.

31st Int. Conf. on Very Large Data Bases, 2005, pp. 934–945.

12. Sarukkai R.R. Video search: opportunities and challenges. Key-

note Speech at ACM Multimedia Information Retrieval Work-

shop for ACM Multimedia Conference, 2005.

13. Shen H.T., Ooi B.C., Zhou X., and Huang Z. Towards

effective indexing for very large video sequence database. In

Proc. ACM SIGMOD Int. Conf. on Management of Data,

2005, pp. 730–741.

14. TRECVID. http://www-nlpir.nist.gov/projects/trecvid/. 2007.

15. Vlachos M., Hadjieleftheriou M., Gunopulos D., and Keogh E.

Indexing multi-dimensional time-series with support for multi-

ple distance measures. In Proc. 9th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, 2003, pp. 216–225.
Video Shot Detection

CHONG-WAH NGO

City University of Hong Kong, Hong Kong, China

Synonyms
Shot boundary detection; Camera break detection

Definition
Shot is a contiguous sequence of video frames with

smooth and continuous camera motion. Shot can

thus be viewed as an uninterrupted video frame

sequence of space, time, and graphical configuration.

The boundary between two shots is called a camera

break (or video edit). Based on the transitional proper-

ties of video edits, there are two major types of camera

breaks: cut and gradual transition. A camera cut is an

instantaneous change from one shot to another. The

gradual transition can further be categorized as wipe

and dissolve. Awipe is the moving transition of a frame

(or a pattern) across the screen that enables one shot to

gradually replace another. A dissolve superimposes two

shots, where one shot gradually appears while the other

fades out slowly. Fade-in and fade-out can be consid-

ered as the special cases of dissolve, by replacing one of

the shots as a constant image sequence (e.g., black

image sequence). In contrast to cut, wipe and dissolve

involve gradual transitions with no drastic changes

between two consecutive frames, and hence, are rela-

tively difficult to identify by computer.

Video Shot Detection V 3317

V

Historical Background
Shot is regarded as the elementary unit of video struc-

ture, often serving as the basic component for video

indexing, browsing and retrieval. Shot detection has

been extensively studied since the emergence of the

topic: content-based video retrieval in mid 1990. The

early researches are unified under the theme of video

structuring and representation, which targets for decom-

posing videos into smaller unit facilitating content anal-

ysis and understanding [15]. The scope of studies

includes the detection of cut and gradual transition

[15], detection efficiency [11], feasibility of thresholding

[10], compressed versus uncompressed domain [11],

and framework of detection [13].

Shot detection is mostly based on the analysis of

visual information, or more precisely the changes of

visual signal over time. For instance, an abrupt change

of signal between frames can imply a camera cut. To

date, there exist numerous approaches for shot detec-

tion which can be broadly classified according to the

visual features being used and the type of camera

breaks being analyzed. Based on feature, the existing

approaches can be categorized as pixel-based, block-

based, color-based, texture-based [14], motion-based

[2], and slice-based [8]. These approaches can operate

in either a compressed or uncompressed domain with

slight modification. Uncompressed domain detection

refers to the pixel-to-pixel processing of video frames

to extract the desired features for analysis. Compressed

domain detection refers to the direct processing of

compressed information without explicitly decom-

pressing video signals. The compressed features popu-

larly used are DCT coefficients and MPEG motion

vectors. Since the amount of information to be pro-

cessed is relatively small, compressed domain detection

has the advantage of speed efficiency. For instance, in

[15], DC images which are the thumbnail version of

original video frames are extracted directly from

MPEG videos for rapid shot detection. In [15], motion

vectors of P- and B- frames are extracted directly from

MPEG videos for analysis.

Compared to cut, gradual transition (GT) is diffi-

cult to detect due to the absence of sharp signal

changes. While cut normally involves only two frames,

GT involves a sequence of frames ranging from several

to even hundreds of frames. The first algorithm for GT

detection is twin-comparison [15], which utilizes two

thresholds to locate GTs. Another well-known algo-

rithm is based on the video production model
proposed in [1], which model the distribution of GT

signals for detection by reversing the linear equation

used to synthesized GTs in video production. GT de-

tection has also recently been cast as a pattern analysis

and learning problem. In [5–7,13], various classifiers

are learned to recognize different types of GTs.

TRECVID has been the rendezvous where research-

ers meet and compete their shot detection algorithms

since early 2000 [9]. The series of activities, over the

past few years, have led to several sophisticated frame-

works that perform reliably and excellently for the

detection of camera cuts and GTs [9,13]. Based on

the reported results, the best performing systems can

always achieve more than 80% of recall and precision

for cut and GT detection. Most systems also run faster

than real-time.

Foundations

Cut

Camera cut is the most common type of shot boundary.

In contrast to gradual transitions, most cuts involve no

transitional frame. Thus, direct comparison between two

frames is usually sufficient to attain satisfactory perfor-

mance. A straightforward approach is to compute the

mean absolute change of intensity between two frames at

time t and t + 1. This simple approach, however, is

sensitive to object and camera motion. An alternative

version is to compute the energy changes of DC frames,

which is the smaller and smoothed version of the original

frames, extracted fromMPEG videos to reduce the sensi-

tivity [11]. In [8], the sequence of DC frames is further

sub-sampled along the time dimension to form spatial-

temporal slices. This approach detects cuts by analyzing

the changes of temporal patterns in slices.

The most popular approach perhaps is via the

comparison of intensity or color histograms between

two contiguous frames. Color histogram quantizes the

color space and captures the ratio of color components

in a frame as a distribution. As a result, the histogram-

based approaches are more invariant to local and glob-

al motion changes. To also capture spatial information

in a color histogram, a more popular version is the

block-based histogram: divide frames into blocks and

compute a histogram for each block.

Other visual features being considered for cut de-

tection include edge information, which captures the

structural discontinuity of frames. In [14], edge change

ratio is used to model the discontinuity by

3318V Video Shot Detection
computing the number of edge pixels entering and

existing between two frames. In addition, motion dis-

continuity is also studied in [2]. The cut detection is

conducted by computing the global dominant motion

of frames and accounting the number of points that do

not fit the computed motion model. This approach can

also be used for detecting gradual transitions.
Dissolve

Some existing works on the detection of dissolve tran-

sitions are based on the video production model [1]:

f ðx; y; tÞ ¼ ð1� aðx; y; tÞÞgðx; y; tÞ
þ aðx; y; tÞhðx; y; tÞ ð1Þ

where f is a dissolved frame superimposed by two

frames g and h at time t. Typically, g and h are frames

from two different shots. The transition function a
characterizes, either linearly or non-linearly, how f is

dissolved over time as a result of mixing g and h.

Usually 0<a(x, y, t) < 1 with the condition a(x, y, t)
� a(x, y, t + 1). Since (1) is irreversible, apparently,

detecting and classifying dissolves is a difficult task. To

simplify the problem of detection, various assump-

tions have been made on (1). These assumptions can

lead to plateau a effect [11] and parabolic curve of

variance [1]. Take a(x, y, t) = a(t), g(x, y, t) = g(x, y)

and h(x, y, t) = h(x, y), (1) becomes

f ðx; y; tÞ ¼ ð1� aðtÞÞgðx; yÞ þ aðtÞhðx; yÞ ð2Þ

In other words, f is a dissolved sequence of two static

shots g and h in t = [t1, t2]. Let FðtÞ ¼ f ðx; y; tÞ, by
taking the frame difference, the following can be

derived:

FðtÞ � Fðt þ kÞ
Fðt � kÞ � FðtÞ ¼ bðt ; kÞ ð3Þ

where bðt ; kÞ ¼ aðtþkÞ�aðtÞ
aðtÞ�aðt�kÞ > 1 and t = [t1 + k, t2 � k].

If k > t2 � t1 + 1, plateau effect will be exhibited and

this effect can be exploited effectively for dissolve

detection [11].

Equation(2) can be further simplified by assuming

a(t) as a linear function, aðtÞ ¼ t�t1
t2�t1

for instance. This

terms leads to a formula in terms of variance:

sf ðtÞ ¼ ðsg þ shÞa2ðtÞ � 2sgaðtÞ þ sg ð4Þ

where sf(t), sg and sh are the variances of, g(x, y) and
h(x, y). Since sf(t) is a concave upward parabolic curve,
dissolves can be detected simply by locating parabolic

curves [1,8]. The limitations of (3) and (4) are mainly

due to the linearity assumption of a(t) and the static

sequence assumption of shots g and h. As a result, most

detectors are generally very sensitive to noise, camera

and object motions.

Recently, dissolve detection is also considered as a

pattern classification problem, and various machine

learning algorithms are brought in for this task [3]. For

instance, in [6], multiple independent FSM (finite state

machine) based detectors are used for detecting different

types of shot boundaries. Together with classifiers, multi-

resolution analysis is also adopted by [5,7,13]. In [7],

dissolve detection is reduced to the cut detection problem

by projecting the spatio-temporal slices to lower tempo-

ral resolution scale. The detected cuts at lower resolution

are further classified in the higher resolution space by

machine learning. In [13], multi-resolution features are

extracted for active learning of SVM (support vector

machines) to detect dissolves.

Wipe

Wipe is also a common shot boundary transition

frequently found, for example, in sport and news

videos. There are lots of fancy wipe transitions being

used by video editors today. Figure 1 shows a few

examples of wipe. As each transition exhibits its own

unique transition patterns, wipe patterns, compared to

dissolves, are relatively hard for machines to learn.

Early works are mostly based on frame differencing

and edge detection to trace the moving boundary

lines created by wipes. For instance, the works in [8]

detect the edge patterns formed by wipes in spatial-

temporal slices. The recent work in [4] analyzes the

independence and completeness properties of wipe

transitions. A cost function utilizing the MPEGmotion

vectors is derived to model these two properties for

reliable wipe detection.
General Challenges

As a fundamental building block to support other

video applications, shot detection has been extensive-

ly studied in the literature. The challenges that are not

completely solved for cut detection include abrupt

illumination change (e.g., flashlight) and large ob-

ject/camera movement, which could trigger abrupt

changes of video signal and generate false alarms.

For gradual transition (GT), on the other hand, the

Video Shot Detection. Figure 1. Various wipe transition.

Video Shot Detection V 3319
major difficulties are the slow evolution of signal that

is hard to observe. Furthermore, the temporal dura-

tion can vary greatly while the patterns could appear

similar to slow camera/object movement, making GT

detection a very challenging problem. For both cut

and GT detection, a fundamental issue is the thresh-

olding heuristic � mostly relying on empirical

setting. Over the years, the thresholding techniques

have also been evolved from simple global threshold

setting, to the adaptive thresholding [10] and

learning-based heuristics [3,5,13].
V

Key Applications
Shot detection is a fundamental task of video content

manipulation. Shots are often served as the basic unit

for video browsing, indexing and search. An interest-

ing application of shot detection is that, by knowing

the type, speed and frequency of shot transitions,

the pace, mood, style and highlight of the under-

lying video events can be modeled for affective

computing.
Experimental Results
The evaluations commonly used are recall and preci-

sion, defined as:
Precision ¼
Number of Transitions Correctly Detected

Number of Transitions Detected
ð5Þ

Recall ¼
Number of Transitions Correctly Detected

Number of Transitionsarray
ð6Þ

Precision and recall are in the interval of [0,1]. Low

precision hints the frequent occurrence of false

positives, while low recall indicates the frequent occur-

rence of false negatives. As gradual transition involves

multiple frames, frame precision and recall are also

used in order to evaluate the accurate localization of

transitions,

Frame Precision ¼
Number of Frames Correctly Located

in the Detected Transitions

Number of Frames Located in

the Detected Transitions

ð7Þ

Frame Recall ¼
Number of Frames Correctly Located

in the Detected Transitions

Number of Frames in the Transitions
ð8Þ

3320V Video Shot-Cut Detection
Data Sets
The popular datasets always experimented are TREC-

VID benchmarks [9].

Cross-references
▶ Scene Boundary Detection

▶ Sub-Shot Detection
Recommended Reading
1. Alattar A.M. Detecting and compressing dissolve regions in

video sequences with a DVI multimedia image compression

algorithm. Int. Symp. Circuits Syst., 1:13–16, 1993.

2. Bouthemy P., Gelgon M., and Ganansia F. A unified approach to

shot change detection and camera motion characterization,

IEEE Trans. Circuits Syst. Video Tech., 9(7):1030–1044, 1999.

3. Hanjalic A. Shot boundary detection: unraveled and resolved.

IEEE Trans. Circuits Syst. Video Tech., 12(2):90–105,

February 2002.

4. Li S. and Lee M.-C. Effective detection of various wipe transi-

tions. IEEE Trans. Circuits Syst. Video Tech., 17(6), June 2007.

5. Lienhart R. Reliable dissolve detection. In Proc. SPIE Storage

Retrieval Media Database, 2001.

6. Liu Z., Gibbon D., Zavesky E., Shahrary B., and Haffner P. AT&T

Research at TRECVID 2006. In Proc. TREC Video Retrieval

Evaluation, 2006.

7. Ngo C.W. A robust dissolve detector by support vector machine.

In Proc. 11th ACM Int. Conf. on Multimedia, 2003.

8. Ngo C.W., Pong T.C., and Chin R.T. Video partitioning by

temporal slice coherency. IEEE Trans. Circuits Syst. Video

Tech., 11(8):941–953, August 2001.

9. TREC-Video, http://www-nlpir.nist.gov/projects/trecvid/.

10. Vasconcelos N. and Lippman A. Statistical models of video

structure for content analysis and characterization. IEEE Trans.

Image Process., 9(1):3–19, January 2000.

11. Yeo B.L. and Liu B. Rapid scene analysis on compressed video.

IEEE Trans. Circuits Syst. Video Tech., 5(6):533–544, 1995.

12. Yu H. and Wolf W. A multi-resolution video segmentation

scheme for wipe transition identification. In Proc. IEEE Int.

Conf. on Acoustics, Speech and Signal Processing, 1998.

13. Yuan J., Wang H., Xiao L., Zheng W., Li J., Lin F., and Zhang B.

A formal study of shot boundary detection. IEEE Trans. Circuits

Syst. Video Tech., 17(2), 2007.

14. Zabih R., Miller J. Mai K., and Zabih R. et al., A feature-based

algorithm for detecting and classifying scene break. In Proc. 3rd

ACM Int. Conf. on Multimedia, 1995.

15. Zhang H.J., Kankanhalli A., Smoliar S., and Zhang H.J. et al.

Automatic partitioning of full-motion video. ACM Multimedia

Syst., 1(1):10–28, 1993.
Video Shot-Cut Detection

▶Video Segmentation
Video Skimming

▶Video Summarization
Video Structure Analysis

▶Video Content Structure
Video Structuring

▶Video Content Structure
Video Summarization

CHONG-WAH NGO, FENG WANG

City University of Hong Kong, Hong Kong, China

Synonyms
Video abstraction; Video skimming

Definition
Video summarization is to generate a short summary

of the content of a longer video document by selecting

and presenting the most informative or interesting

materials for potential users. The output summary is

usually composed of a set of keyframes or video clips

extracted from the original video with some editing

process. The aim of video summarization is to speed

up browsing of a large collection of video data, and

achieve efficient access and representation of the video

content. By watching the summary, users can make

quick decisions on the usefulness of the video. Depen-

dent on applications and target users, the evaluation of

summary often involves usability studies to measure

the content informativeness and quality of a summary.

Historical Background
Due to the advance of web technologies and the popu-

larity of video capture devices in the past few decades,

the amount of video data is dramatically increasing.

This creates a strong demand for efficient tools to

Video Summarization V 3321

V

browse, access, and manipulate large video collections.

The most straightforward and simplest way for quick

browsing of video content is to speed up the play of

video by frame dropping or re-encoding. As studied in

[6], the entire video could be watched in a shorter

amount of time by fast playback with almost no pitch

distortion using the time compression technology.

This kind of approach is easy to implement and pre-

serves most information while shortening the time of

watching videos. However, without comprehensive

understanding of the original video content, the selec-

tion of video materials is impossible, and thus almost

all redundant information still has to be watched. This

limits further shortening of summary duration and its

enjoyability. Meanwhile, the ratio of time compression

is also limited.

Since the 1990s, video content analysis has attracted

a lot of research attention. Different approaches

have been proposed for automatic structuring and

understanding of video content. This enables video

summarization by measuring and selecting the most

informative materials based on more comprehension

of the video content. Video summarization can be seen

as a general term of video abstraction and video

skimming. In some works, they are distinguished by

little difference in the composition of the output. For

instance, video skims are mainly composed of the

short clips skimmed from the original video. Video

summary and abstraction could be a set of keyframes,

clips or even other media (e.g., texts) created to

describe the video content. Nowadays, video summa-

rization has become the key tool to facilitate efficient

browsing and indexing of large video collections.

Foundations
In the past two decades, a lot of research efforts have

been devoted to video summarization. A systematic

review of these works can be found in [10]. According

to the definition, a summary should be as short or

concise as possible to support efficient video browsing.

On the other hand, it should be informative so that as

much interesting and useful materials as possible will

be included. Thus, the key of video summarization is

how to measure the importance of different video clips

and select the most useful ones so as to achieve both

elegancy and informativeness. For this purpose, there

are mainly two issues concerned: video content analysis

and summary generation by selecting appropriate

materials. Video content analysis enables the
understanding and comprehension of the original

video content. Different features are then extracted to

structure and describe the video. Based on video

content analysis, a shorter summary is generated by

selecting and presenting the most important materials

to users. Meanwhile, to cope with the characteristics

of different video domains, many algorithms are pro-

posed to achieve better results for the summarization

of specific video domains by employing domain-

specific knowledge.

Features for Content Analysis

Along with the advances in video content analysis, more

and more features are employed in video summariza-

tion. According to the features adopted for video con-

tent analysis, the algorithms can be categorized as shot

detection based [15], motion based [3], audio based

[9], and multi-modality based [4,11]. In recent years,

most algorithms tend to integrate multiple features to

better describe the video content. Besides the visual-

audio features, especially with the dramatic increasing

of web videos, the metadata, context, social, and log

information are being explored for video summariza-

tion of video corpus, e.g., the video clips that are

watched by the most users may be more important

and interesting. What features to use is usually depen-

dent on the requirements of specific applications.

Importance Measure for Summary Generation

How to decide the importance and usefulness of video

segments are essential for summary generation. During

the past two decades, different approaches have been

proposed. The first kind of approach is based on video

shot detection. Shot detection is one of the fundamental

techniques for video structuring. In each segmented

shot, one or several keyframes are selected and pre-

sented for users to effiently browse and index the video

content in order to find the interesting video segments

for further exploration. In [15], several keyframes are

extracted by detecting visual changes using color his-

togram inside each shot. In [2], to eliminate the possi-

ble redundancy among extracted keyframes, fuzzy

clustering and data pruning methods are employed

based on color information to obtain a set of non-

redundant keyframes as the summary of the video.

These approaches just employ limited low-level visual

features. For the selection of keyframes or video seg-

ments, the main idea is to reduce the redundancy and

maximize the visual difference in the generated

3322V Video Summarization
summary to show more information measure by low-

level features.

In the second kind of approach, importance

measure is based on some pre-defined rules. In [8], a

set of rules are defined to select the most useful frames

or video segments. For instance, images between simi-

lar scenes that are less than 5 seconds apart, are used

for summarization; short successive shots are consid-

ered to introduce a more important topic. With prior-

itized video frame from each shot, another set of high

order rules are then used to compose the selected clips

for summary generation. For instance, the duration

of each clip is at least 60 frames based on empirical

and user studies of visual comprehension in short

video sequences. Similar rules can also be used in

query-based or domain-specific video summarization.

For instance, given a soccer video, the users may be just

interested in the shots of goal. In this case, to make a

summary, the events of goal should be first detected

and then shown to the users. In this kind rule-based

approaches, the importance of video segment is man-

ually assigned by the predefined rules. This may be

useful for some specific video domains and appli-

cations. However, the rules are usually subjective.

Considering the variations of video content, to make

desirable summaries, more and more detailed rules are

required to cope with different scenarios. This becomes

almost impossible in general videos.

Today many approaches try to numerically mea-

sure the importance of video segments and model

video summarization in a computational way. In [4],

a user attention model utilizing a set of audio-visual

features is proposed. Attention is a neurobiological

conception. It implies the concentration of mental

powers upon an object by close or careful observing

or listening, which is the ability or power to concen-

trate mentally. When watching a video, human atten-

tion is always attracted by different information

elements such as face, text, object and camera motion,

and so on. In [4], attention models are first computed

based on different visual/audio features. A user atten-

tion curve is then generated by linear combination

fusion scheme. The crests of the curve are more likely

to attract the viewers’ attentions. Keyframes or video

skims are extracted from these crests. Similarly, in [14],

a perception curve that corresponds to human per-

ception changes is constructed based on a number of

visual features, including motion, contrast, special

scenes, and statistical rhythm. The frames
corresponding to the peak points of the perception

curve are extracted for summarization. This kind of

approach usually integrates multiple modalities from

video documents and human perception cue to depict

the curve of video importance numerically for summa-

rization. However, there are still manually defined rules

used such as the selection and the weights of different

modalities.

Domain-Specific Video Summarization

According to the target video domains, video summa-

rization can be categorized into general videos and

domain-specific videos, such as music video, news

video, sports video, and rushes video.

General video: The algorithms for general video

summarization employ features available in all types

of videos, and usually do not consider any domain-

specific knowledge. In [5], a video is represented as a

complete undirected graph and the normalized cut

algorithm is employed to partition the graph into

video clusters. The resulting clusters form a directed

temporal graph and a shortest path algorithm is pro-

posed to detect video scenes. The attention values are

computed and attached to the scenes, clusters, shots

and subshots. Thus, the temporal graph can describe

the evolution and perceptual importance of a video.

A video summary is generated from the temporal

graph to emphasize both content balance and percep-

tual quality. The advantage of this kind of approach is

that no prior knowledge is used and the algorithms can

work for most videos. However, when watching videos

of different domains, the users’ attentions are quite

different. By treating all videos in the same way, these

algorithms usually cannot produce satisfactory results

for videos of specific interest. Thus, a lot of works focus

on specific video domains and make use of domain-

specific knowledge in order to improve the summary

qualities.

Music video: In music video, the music plays the

dominant role. Thus, music video summarization is

mainly based on music analysis. In [13], the chorus is

detected and used as a thumbnail for music content.

The analysis of visual content such as shot classifica-

tion and text (lyrics) recognition are employed for

music-visual-text alignment so as to make a meaning-

ful and smooth music video summary.

Sports video: When watching sports videos, people

are more interested in the exciting moments and

great plays. Thus, the highlight detection and event

Video Summarization V 3323

V

classification are usually involved in order tomake a good

summary. In [1], a multi-level representation for sports

video is proposed. Based on low-level features, different

semantic shots (e.g., Audience, Player Close-up, and

Player Following) are classified at mid-level. For different

sports games, the corresponding interesting objects and

events (such as the football and a goal event in a soccer

video) are detected at high-level. The interesting events

can then be selected for summary generation.

News video: In daily news videos, a topic is usually

composed of a story chain during the topic evolution.

The dependencies among related stories are im-

portant to summarize a news topic. A feasible solution

for rapid browsing of news topics is by threading

and autodocumenting news videos [12]. In [12], the

duality between stories and textual-visual concepts is

first exploited to cluster the stories of the same topic.

The topic structure is then presented by exploring the

textual-visual novelty and redundancy of stories.

By pruning the peripheral and redundant news tories

in the topic structure, a main thread is extracted

for autodocumentary.

Rushes video: Rushes are the raw materials captured

during video production. Being unedited, rushes con-

tain a lot of redundant and junk information which is

intertwined with useful stock footage. In [11], stock

footage is first located by motion analysis, repetitive

shot detection, and shot classification. The most rep-

resentative video clips are then selected to compose a

summary based on object and event understanding.

Key Applications
Video summarization can be used in many

applications.

Multimedia Archives Indexing and Retrieval

Nowadays more and more video documents are being

digitized and archived worldwide. Video summariza-

tion can be used to index and retrieve a large video

collection, and thus facilitate efficient access of video

content. For instance, the online summarization can

support journalists when searching old video material,

or when producing documentaries. Another example is

the wide use of web videos, where the index could easily

be realized by automatically generated video summaries.

Movie Marketing

In the broadcasting and filmmaking industries, a lot

of raw footage (extra video, B-rolls footage) is used to
generate the final products such as TV programs and

movies. Twenty to forty times as much material may be

shot as actually becomes part of the finished product.

The ‘‘shoot-to-show’’ ratio, such as in BBC TV, ranges

from 20 to 40. The producers see these large amount of

raw footage as cheap gold mine. Video summarization

can be used to find the stock footage from the heavily

redundant materials for potential reuse.

Home Entertainment

For instance, one can easily have a brief overview of

what happened in a television series that may have

been missed.
Future Directions

Performance evaluation

Despite the advance achieved in video summarization, a

fundamental problem, i.e., performance evaluation, is

yet to be solved. Today, the evaluation is mainly carried

out by subjective scoring based on the users’ personal

judgment or few predefined criterions. This limits

effective comparison between different approaches.

Comprehensive understanding and modeling of

video content

In the existing approaches, neither the rule-based nor

computational models can fully grasp the content and

the storyline of the video. Besides more powerful

approaches for video content analysis, the modeling of

multimedia information is also essential for video

summarization.

From large-scale video summarization to

search and browsing

The existing works mainly focus on the summarization

of a single video document or a small video cluster,

where the information inside a video or dependency

between videos can be relatively easily modeled. With

the dramatic increasing of video data (e.g., web

videos), how to summarize a huge group of videos,

for instance, by structuring the relationship among the

diversity of videos is a big challenge. Besides video

content dependency, context and social information

are cues that could be explored for this type of sum-

marization in large-scale. In addition, the exploitation

of summarization for large-scale video search and

browsing remains an area yet to be studied.

3324V View Adaptation
Experimental Results
In TRECVID Workshop 2007 on Rushes Summariza-

tion [7], there were 22 runs submitted for evaluation on

the same benchmark. Different criteria such as IN (in-

clusion of groundtruth objects/events), EA (easy to un-

derstand), and RE (redundancy of the summary) were

assessed. Runs generated by CityUHK, NII, and LIP6

were verified by [7] as significantly better than two base-

lines from CMU. The baselines were generated by evenly

sampling frames and shot clustering, respectively.
Data Sets

Rushes Videos by TRECVID Workshop.

Since 2004, the annual TRECVIDWorkshop provides a

benchmark for rushes video exploitation and summa-

rization. The dataset is composed of 100 h’s raw video

materials produced during news video and film

production.
Cross-references
▶Video Content Analysis
References
1. Duan L.Y., Xu M., Chua T.S., Tian Q., and Xu C. A Mid-Level

Representation Framework for Semantic Sports Video Analysis.

In Proc. 11th ACM Int. Conf. on Multimedia, 2003.

2. Ferman A.M. and Tekalp A.M. Two-stage hierarchical video

summary extraction to match low-level user browsing preer-

ences. IEEE Trans. Multimedia, 5(2):244–256, 2003.

3. Liu T., Zhang H.J., and Qi F. A Novel Video Keyframe Extraction

Algorithm based on Perceived Motion Energy Model. IEEE

Trans. Circuits Syst. Video Tech., 13(10):1006–1013, 2003.

4. Ma Y.F., Lu L., Zhang H.J., and Li M. A user attention model for

video summarization. In Proc. 10th ACM Int. Conf. on Multi-

media, 2002.

5. Ngo C.W., Ma Y.F., and Zhang H.J. Video summarization and

scene detection by graph modeling. IEEE Trans. Circuits Syst.

Video Tech., 15(2):296–305, 2005.

6. Omoigui N., He L., Gupta A., Grudin J., and Sanocki E. Time-

compression: system concerns, usage, and benefits. In Proc.

SIGCHI Conf. on Human Factors in Computing Systems, 1999.

7. Over P., Smeaton A.F., and Kelly P. The TRECVID 2007 BBC

Rushes Summarization Evaluation Pilot. In TRECVIDBBCRushes

Summarization Workshop in ACMMultimedia, 2007.

8. Smith M.A. and Kanade T. Video skimming and characteriza-

tion through the combination of image and language under-

standing. In Proc. IEEE Int. Workshop on Content-Based Access

of Image and Video Database, 1998.

9. Taskiran C.M., Pizlo Z., Amir A., Ponceleon D., and Delp E.

Automated video program summarization using speech tran-

scripts. IEEE Trans. Multimedia. 8(4):775–791, 2006.
10. Truong B.T. and Venkatesh S. Video abstraction: a systematic

review and classification. ACM Trans. Multimedia Comput.

Commun. Appl., 3(1), 2007.

11. Wang F. and Ngo C.W. Rushes video summarization by

object and event understanding. In TRECVID Workshop

on Rushes Summarization in ACM Multimedia Conference

September 2007.

12. Wu X., Ngo C.W., and Li Q. Threading and autodocumenting

in news videos. IEEE Signal Process. mag., 23(2):59–68, 2006.

13. Xu C., Shao X., Maddage N.C., and Kankanhalli M.S. Automatic

music video summarization based on audio-visual-text analysis

and alignment. In Proc. 31st Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2005,

pp. 361–368.

14. You J., Liu G., Sun L., and Li H. A multiple visual models

based perceptive analysis framework for multilevel video sum-

marization. IEEE Trans. Circuits Syst. Video Tech., 17(3), 2007.

15. Zhang H.J., Wu J., Zhong D., and Smoliar S.W. An integrated

system for content-based video retrieval and browsing. Pattern

Recogn., 30(4):643–658, 1997.
View Adaptation

KENNETH A. ROSS

Columbia University, New York, NY, USA

Synonyms
Materialized view redefinition

Definition
Small changes to the definition of a materialized view

are often needed in database systems. View adaptation

is the process of keeping a materialized view up-

to-date when the definition of the view is changed.

View adaptation aims to leverage the previously mate-

rialized view to generate the new view, since the cost

of rebuilding the materialized view from scratch may

be expensive.

Key Points
View adaptation is related to the question of answering

queries using views. The new view can be thought of

as a query, with the old view available to help compute

it. However, view adaptation also admits in-place

changes that are not possible using a query-answering

approach. For example, if a redefined view contains

most but not all of the records from the original view,

then view adaptation could be achieved by deleting the

records that no longer qualify.

A variety of adaptation techniques are presented

in [2,3], allowing changes to the SELECT, FROM,

View Definition V 3325
WHERE, GROUPBY and HAVING clauses. UNION

and EXCEPT views are also considered. In some

cases, multiple changes to a view definition can be

handled in a single pass, without materializing inter-

mediate results for each change. Experimental results

show the value of adaptation, particularly the in-

place methods, relative to recomputation. Extensions

of view adaptation to more general contexts, such as

distributed databases, have also been proposed [1,4].

Data warehouses and decision support systems

often employ materialized views to speed up query

processing. Applications in which a user can change

queries dynamically and see the results fast, such as

data visualization, data archeology, and dynamic query

processing can also benefit from view adaptation.

Cross-references
▶Answering Queries using Views

▶ Incremental View Maintenance

▶Materialized Views

Recommended Reading
1. Bellahsene Z. View adaptation in the fragment-based approach.

IEEE Trans. Knowl. Data Eng., 16(11):1441–1455, 2004.

2. Gupta A., Mumick I.S., Rao J., and Ross K.A. Adapting

materialized views after redefinitions: techniques and a

performance study. Inf. Syst., 26(5):323–362, 2001.

3. Gupta A., Mumick I.S., and Ross K.A. Adapting materialized

views after redefinitions. In Proc. SIGMOD Conf. on Manage-

ment of Data. San Jose, CA, 1995, pp. 211–222.

4. Mohania M.K. and Dong G. Algorithms for adapting

materialized views in data warehouses. In Proc. Int. Symp. on

Cooperative Database Systems for Advanced Applications, 1996,

pp. 309–316.
V

View Definition

YANNIS KOTIDIS

Athens University of Economics and Business,

Athens, Greece

Synonyms
View expression

Definition
The definition of a view consists of the name of the

view and of a query, whose result is used to determine

the content of the view.
Key Points
A view is a virtual relation. Its content depends on the

evaluation of a query over a set of base tables or other

views in the database. This query is part of the view

definition and is, typically, recomputed every time the

view is referenced. In some cases, for efficiency, the

tuples of a view may be materialized as a separate table

in the database.

In relational systems, a view is defined using the

create view command:

create view < v > as < query expression >

The name of the view in the above example is< v> and

the schema and content of the view are derived on-

demand by the evaluation of < query expression >,

which should be a legal expression supported by the

database management system. Different vendor systems

may impose some constraints on the form of < query

expression >, for instance they may disallow references

to temporary tables. When the data in the table(s) men-

tioned in < query expression > changes, the data in

view < v > changes also.

Consider the following view definitions:

create view v1 as select Name, Age from Personnel where

Department = ‘‘Sales’’

create view v2 as select Wages.Name,Wages.Salary

from Personnel, Wages

where Personnel.Name = Wages.Name and Personnel.

Department = ‘‘Sales’’

The first expression defines a view termed v1 that

contains the name and age attributes from database

table Personnel. The instance of view v1 consists of the

subset of personnel data restricted to those working

at department Sales. View v2 defined by the second

expression, contains the result of the join between

tables Personnel and Wages for employees working at

the same department.
Cross-references
▶View Maintenance Aspects

▶View Unfolding

▶Views
Recommended Reading
1. Adiba M.E. and Lindsay B.G. Database snapshots. In Proc. 6th

Int. Conf. on Very Data Bases, 1980, pp. 86–91.

3326V View Maintenance
2. Dayal U. and Bernstein P. On the correct translation of update

operations on relational views. ACM Trans. Database Syst.,

8(3):381–416, 1982.

3. Gupta A., Jagadish H.V., and Mumick I.S. Data integration using

self-maintainable views. In Advances in Database Technology,

Proc. 5th Int. Conf. on Extending Database Technology, 1996,

pp. 140–144.

4. Gupta H., Harinarayan V., Rajaraman A., and Jeffrey D.U. Index

selection for OLAP. In Proc. 13th Int. Conf. on Data Engineer-

ing, 1997, pp. 208–219.

5. Kotidis Y. and Roussopoulos N. DynaMat: a dynamic view

management system for data warehouses. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1999, pp. 371–382.

6. Roussopoulos N. View indexing in relational databases. ACM

Trans. Database Syst., 7(2):258–290, 1982.

7. Roussopoulos N. An incremental access method for viewCache:

concept, algorithms, and cost analysis. ACM Trans. Database

Syst., 16(3):535–563, 1991.
View Maintenance

ALEXANDROS LABRINIDIS
1, YANNIS SISMANIS

2

1Department of Computer Science, University of

Pittsburgh, Pittsburgh, PA, USA
2IBM Almaden Research Center, Almaden, CA, USA

Synonyms
View update; Materialized view maintenance

Definition
View maintenance typically refers to the updating of a

materialized view (also known as a derived relation) to

make it consistent with the base relations it is derived

from. Such an update typically happens immediately,

with the transaction that updates the base relations

also updating the materialized views. However, such

immediate updates impose significant overheads on

update transactions that cannot be tolerated by many

applications. Deferred view maintenance, on the other

hand, allows the view to become inconsistent with its

definition, and a refresh operation is required to estab-

lish consistency. Typically, under deferred mainte-

nance, a view is incrementally updated only just

before data is retrieved from it (i.e., on-demand, just

before a query is performed on the view).
Historical Background
Early systems that supported views did so in their

‘‘pure form,’’ i.e., by storing just the view definition
and using query rewriting to take advantage of views in

other queries [11].

Incremental view maintenance is introduced in [1]

through a technique to efficiently detect relevant

updates to materialized views, thus streamlining their

maintenance.

Deferred view maintenance is introduced in [10] as

a scheme for materializing copies of views on work-

stations attached to a mainframe that maintains a

shared global database. The workstations update local

copies of the views while processing queries. In [7],

deferred view maintenance is defined as the application

of incremental view maintenance whenever desired,

unlike the immediate view maintenance, where any

database update triggers the incremental view main-

tenance algorithm. [5] has a nice survey of view

maintenance techniques.
Foundations
Algorithms and techniques for maintenance of materi-

alized views can be classified according to three differ-

ent criteria:

� Whether the view is recomputed from scratch or not:

recomputation versus incremental maintenance.

� Whether the view is updated whenever the base

data change or not: immediate versus deferred

maintenance.

� Whether queries can be executed while the view is

being updated or not: online versus offline

maintenance.

All the above dimensions are typically orthogonal. We

explain the different options below.
View Recomputation

Recomputing a materialized view from the base rela-

tions it is derived from is the most general technique of

updating. As such, it can be applied on any type of view,

regardless of the complexity of the query definition.

The disadvantage is that, in most cases, such recompu-

tation is costly, and, in many cases, the view can be

updated incrementally instead, at a fraction of the cost.
Incremental View Maintenance

It is possible to update a materialized view incrementally

for many types of view definitions (i.e., queries). One

such class is the general case of SPJ views (i.e., views

whose definition is just a select-project-join query).

View Maintenance V 3327

V

For example, assume that we have a view V defined

over two relations R and S through a natural join (i.e.,

V = R⋈ S; for simplicity of the presentation we ignore

the selection and projection operators). Further, let us

assume that we have a set of deleted tuples from rela-

tion R, denoted as RD; a set of inserted tuples into

relation R, denoted as RI (i.e., R
0
= R [RI � RD).

Also, assume a set of deleted tuples from relation S,

denoted as SD; and a set of inserted tuples into relation

S, denoted as SI (i.e., S
0
= S [SI � SD). We trivially

represent base relation updates as pairs of deletions

and insertions.

Given the above, the updated version of V , i.e., V
0
,

should be V
0
= R

0
⋈ S

0
= (R [RI � RD) ⋈ (S [SI �

SD). By expanding this further, and grouping all the

deletions from V as V D and all the insertions to V as

V I, we have that: V D = (RD⋈ (S [SI))⋈ ((R [RI)⋈
SD), and V I = (RI⋈ S) [(R⋈ SI) [(RI ⋈ SI), so that

V
0
= V [V I � V D. This, incrementally computed

formula, should be less costly to compute than recom-

puting the entire join from scratch.

The problem of incrementally updating materia-

lized views is difficult in the general case, but there are

additional classes of queries (i.e., besides SPJ views)

that it can be solved for [6].

Immediate View Maintenance

The default way of updating materialized views is to

do so immediately, i.e., batch together, in a single

transaction, the updating of the base relations and

the updating of the materialized views that are derived

from these relations. However, many applications can-

not tolerate this delay, especially if they are interactive

and users are expecting an answer at transaction

commit.

Deferred View Maintenance

Incremental deferred view maintenance requires

(i) techniques for checking what views are affected by

an update to the basic tables, (ii)auxiliary tables that

maintain certain information like updates and deletes

since the last view refresh and finally (iii) techniques

for propagating the changes from the base tuples to

the view tuples without fully recomputing the view

relation.

First, Buneman in [2], proposes a technique for the

efficient implementation of alerters and triggers that

checks each update operation prior to execution to see

whether it can cause a view to change. In [1], an
efficient method for identifying updates that cannot

possibly affect the views is described. Such irrelevant

updates are then removed from consideration while

differentially updating the views.

In [7], the hypothetical relations technique devel-

oped in [12] is adapted to the purpose of storing and

indexing the deltas to the base tables. The main idea is

to use a single table AD that stores deletions and

insertions for the base tables (updates can be modeled

as a deletion followed by an update). Whenever a view

is accessed, the base tables and the AD table need to be

accessed (in order to check for new or deleted tuples).

A bloom filter however, is used to check if a tuple from

the base relation exists in AD significantly reducing

irrelevant accesses to AD.

In [4], the authors demonstrate that the ordering of

the updates from the base tuples to the view tuples is

critical and call this phenomenon state bug. Typically,

an ‘‘incremental query’’ – during the refresh operation –

avoids recomputing the full view and only incremen-

tally computes the delta view to bring it up to date,

based on updates/deletes made to the base tables. Such

incremental queries can evaluated in two states: The

pre-update state, where the base table updates have not

been applied yet or the post-update state where changes

have been applied. In most techniques a pre-update

state is assumed which severely limits the class of

updates and views considered. The post-update state

allows for a much larger class of view to be deferred

maintained, however direct application of pre-update

techniques results in incorrect answers (state bug) and

new techniques are proposed.
Offline View Maintenance

Typically, maintaining materialized views is done off-

line, without allowing queries to the materialized view

to execute concurrently with the processing of the

materialized view updates. This simplifies the view

maintenance algorithms significantly, at the expense

of delaying queries. Traditionally, in data warehousing

environments [3], updates of materialized views are

performed at night, thus minimizing the possibility

of delaying user queries.
Online View Maintenance

The need of most companies for continuous operation

(especially in the presence of the Web), has precipi-

tated the need for online view maintenance, where

3328V View Maintenance Aspects
queries can be answered while the materialized views

are being updated.

In a centralized setting, this is typically achieved

through some sort of multi-versioning, either as hori-

zontal redundancy, where extra columns are added to

hold the different versions [9], or as vertical redundan-

cy, where extra rows are needed to hold the different

versions [8]. In a distributed setting, this is typically

achieved through determination of additional queries

to ask of the data sources [13].
Key Applications
Materialized views help speed up the execution of

frequently accessed queries, giving interactive response

times to even the most complex queries. The cost of

maintaining materialized views is typically amortized

over multiple accesses (i.e., queries to the view). This

has been utilized/transferred in many different appli-

cation domains, from data warehousing to web data

management. Beyond efficient algorithms and techni-

ques to update materialized views, special attention has

also been given to the view selection problem: how to

identify which views should be materialized, and also to

the issue of how to effectively use materialized views to

answer other queries (i.e., by utilizing subsumption or

caching).

Cross-references
▶Recursive View Maintenance

▶View Selection
Recommended Reading
1. Blakeley J.A., Larson P.Å., and Tompa F.W. Efficiently Updating

Materialized Views. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1986, pp. 61–71.

2. Buneman P. and Clemons E.K. Efficient Monitoring Relational

Databases. ACM Trans. Database Syst., 4(3):368–382, 1979.

3. Chaudhuri S. and Dayal U. An overview of data warehousing

and OLAP technology. ACM SIGMOD Rec., 26(1):65–74, 1997.

4. Colby L.S., Griffin T., Libkin L., Mumick I.S., and Trickey H.

Algorithms for deferred view maintenance. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1996, pp. 469–480.

5. Gupta A. and Mumick I.S. Maintenance of materialized

views: problems, techniques, and applications. IEEE Data Eng.

Bull., 18(2):3–18, 1995.

6. Gupta A., Mumick I.S., and Subrahmanian V.S. Maintaining

views incrementally. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1993, pp. 157–166.

7. Hanson E.N. A performance analysis of view materialization

strategies. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1987, pp. 440–453.
8. Labrinidis A. and Roussopoulos N. A performance evaluation

of online warehouse update algorithms. Tech. Rep. CS-TR-3954,

Department of Computer Science, University of Maryland,

1998.

9. Quass D. and Widom J. On-line warehouse view maintenance.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

1997, pp. 393–404.

10. Roussopoulos N. and Kang H. Principles and Techniques in

the Design of ADMS	. IEEE Comp., 19(12):19–25, 1986.

11. Stonebraker M. Implementation of integrity constraints

and views by query modification. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1975, pp. 65–78.

12. Woodfill J. and Stonebraker M. An implementation of hypothet-

ical relations. In Proc. 9th Int. Conf. on Very Data Bases, 1983,

pp. 157–166.

13. Zhuge Y., Garcia-Molina H., Hammer J., and Widom J.

View maintenance in a warehousing environment. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1995, pp.

316–327.
View Maintenance Aspects

ANTONIOS DELIGIANNAKIS

University of Athens, Athens, Greece

Definition
Database systems often define views in order to pro-

vide conceptual subsets of the data to different users.

Each view may be very complex and require joining

information from multiple base relations, or other

views. Aview can simply be used as a query modification

mechanism, where user queries referring to a particular

view are appropriately modified based on the definition

of the view. However, in applications where fast response

times to user queries are essential, views are often mate-

rialized by storing their tuples inside the database. This

is extremely useful when recomputing the view from

the base relations is very expensive. When changes

occur to their base relations, materialized views need to

be updated, with a process known as view maintenance,

in order to provide fresh data to the user.

Historical Background
The use of relational views has long been proposed in

relational database systems. The notion of materialized

views, or snapshots, was first proposed in [1]. A snap-

shot represents the state of some portion of the database

at the time when the snapshot was computed. Since the

publication of [1], a large number of mechanisms for

refreshing materialized views has been proposed. These

View Maintenance Aspects V 3329
mechanisms mainly involve either the time of refreshing

the materialized views, or how such a refresh operation

can be performed (i.e., through a re-computation of the

view, or in an incremental manner). While each policy

has its own advantages and drawbacks, ADMS was the

first system that realized the importance of having mul-

tiple maintenance policies within the same database

[11,12]. An excellent classification of the view mainte-

nance problem was presented in [4].

Foundations
Materialized views are used in order to provide faster

response times to user queries. Figure 1 depicts a

sample view-dependency graph of three materialized

views (namely, V1, V2 and V3) defined over three

base relations (denoted as B1, B2 and B3). If a view V

contains in its definition a reference to a base relation

(or another view) B, then there exists a directed edge in

the view-dependency graph from B to V. Given this

explanation, please note that V3 in the sample view-

dependency graph is expressed in terms of a base

relation (B3) and another materialized view (V2).

However, the ultimate set of base relations that are

used to derive V3 are B1, B2 and B3.

When the underlying data of the base relations

changes, the materialized views contain stale data, until

the materialized view is refreshed. The view maintenance

can be performed either through a re-computation of the

view or, if possible, through an incremental procedure.

An incremental update policy is often faster, and is thus
View Maintenance Aspects. Figure 1. An example of

a view-dependency graph.

V

in many cases desirable, if the base relations have been

modified only by a small portion. However, when a large

portion of some base relations is updated (i.e., most

tuples of a base relation are deleted), then a complete

re-computation may actually be faster. The process of

maintaining a materialized view can be classified based

on five main dimensions.

Time Dimension

Every update transaction incurs a time penalty, thus slow-

ing down queries performed during the update process.

On the other hand, some applications (i.e., applications

regarding stock data) cannot tolerate viewing stale data.

Depending on when a materialized view is updated,

three main policies for view maintenance can be

defined [2]:

1. Immediate Views: Upon an update to a base rela-

tion, the materialized view is updated immediately.

This is often accomplished using database triggers.

2. Deferred Views: Updating the materialized view is

deferred until the first time when the view is queried.

3. Snapshot Views: The view is updated periodically

(i.e., at daily intervals) by an asynchronous process.

Each of the aforementioned policies has some advan-

tages and drawbacks, and each may be the policy of

choice, depending on the characteristics of the targeted

application. Immediate views incur an update penalty

even if the updated tuples are never queried. Deferred

views incur this update cost only at the first time when

the view is queried after its base relations have been

updated. Thus, deferred views incur a lower update

overhead, but also worse query performance, since the

query evaluation process may have to wait for some views

to be updated, when compared to the immediate views

policy. The snapshot views policy leads to faster query

performance, since typically no updates are performed in

parallel to the user queries, and to better update perfor-

mance, since the updates are batched. Thus, snapshot

views represent an attractive choice when the application

may tolerate reading stale data.

Expressiveness of View Definition Language

Algorithms proposed for the maintenance of a materi-

alized view can often handle only views expressed as a

subset of SQL. For example, some techniques may only

be able to handle views defined as select-project-join

(SPJ) queries. However, a view definition may be much

more complex, as it may contain (amongst others)

3330V View Maintenance Aspects
duplicates, arithmetic operations, aggregate or ranking

functions, nested subqueries, set operations such as

calculating the union or difference amongst two sets,

outer-joins, recursion etc.

View maintenance algorithms often seek to derive

formulas for determining the update to a view, and

thus avoid recalculating the entire view from scratch,

based on the updates to its base relations. For example,

for the sample dependency graph presented in Fig. 1, let

view V 2 be calculated as: V 2 = B1 ⋈JC B2, where JC

denotes the join condition in the definition of V 2 be-

tween relations B1 and B2. If DB1 and DB2 represent

the inserted (deleted) tuples to relations B1 and B2,

then the inserted (deleted) tuples DV2 to view V2

can be calculated as:

DV2 ¼ ðDB1fflJCB2Þ [ðB1fflJCDB2Þ [ðDB1fflJCDB2Þ

Updates can be modeled as deletions followed by in-

sertions. Deriving such formulas for computing the

incremental update operations on a view typically

becomes harder, or even impossible, as the expressive-

ness of the view definition language is increased. Thus,

maintenance algorithms often first check whether a

view can be incrementally maintained, and then pro-

ceed to decide how to actually maintain it.
Available Information

Whenmaintaining amaterialized view, we do not always

have access to both the materialized view and its base

relations. For example, when one of the base relations

represents a data stream, as in the case of Chronicle

Views [7], the entire relation cannot be stored and is,

thus, unavailable during the maintenance process. Thus,

during the view maintenance process one may, or may

not, have access to the materialized view itself, to its base

relations, or to information regarding the presence of

keys and referential integrity constraints. Depending on

the amount of information available, different algo-

rithms can be used for maintaining a view.
Supported Modifications

The view maintenance algorithms can also be classified

based on types of modifications to the base relations

that they can handle. Not all algorithms handle both

insertions and deletions to base relations. Some algo-

rithms handle sets of modifications (i.e., insertions and

deletions) in a single pass, as in [6], while others

require one pass for each different modification set.
Some algorithms handle updates directly, while other

algorithms model them as deletions followed by inser-

tions. Finally, not all view maintenance algorithms can

handle more complex modifications, such as modifica-

tions to the view definition. Even when such modifica-

tions are handled, the viewmaintenance can be achieved

by different techniques that either recompute the view,

or try to adapt the view, so that the old view can be

used to materialize the new view [5].

Algorithm Applicability

View maintenance algorithms should be able to be

applied to all possible data stored in the database

tables, and to all instances of a particular modification

(i.e., insertion, deletion, update etc). Techniques that

operate correctly but only on specific database instances,

or on specific only modification instances are less

desirable.

Figure 2, originally presented in [4], summarizes

some areas of the problem space for three of the five

dimensions described above, namely for the expres-

siveness of the view definition language, for the avail-

able information and for the supported modifications

dimensions. The remaining two dimensions have been

omitted for ease of presentation.

Key Applications

Data Warehousing

Materialized views are frequently used in data ware-

houses to provide personalized behavior to users,

store frequently queried data derived from multiple

relations, and to encapsulate different views of local

or even remote data and databases. Materialization

allows for significantly better query performance [8],

while view maintenance, in the case of Immediate or

Deferred Views, allows users to access fresh data.

Data Streams

Banking, billing, networking and stock applications

often generate infinite streams of data. View mainte-

nance algorithms can help answer complex queries

over such infinite data streams without requiring

access to the entire stream.

Caching

Cached data can be refreshed quickly using techniques

developed for view maintenance when only a small

portion of the cache has become stale. The cached

View Maintenance Aspects. Figure 2. The problem space, as presented in [4].

View Maintenance Aspects V 3331

V

content may also involve dynamically generated web

page fragments. In this case, the notion of WebViews

[9,10] can be used to decide which such fragments

to materialize, and how to determine a schedule for

updating them.

Mobile Applications

If data needs to be transmitted in cases of bandwidth

constraints, as in applications of mobile clients holding

a cell phone or a GPS system, then only the data altered

between the last transmission needs to be transmitted.

Similar techniques that transmit only the changes in the

computed data can also be used in other bandwidth-

constrained applications as well, such as in transmitting

smaller amounts of data to/from sensor nodes [3].

Cross-references
▶Database Tuning and Performance

▶Deferred View Maintenance

▶ Incremental View Maintenance

▶Maintenance of Recursive Views

▶Maintenance of Materialized Views with Outer-Joins

▶Query Processing and Optimization in Object Rela-

tional Databases

▶View Maintenance

▶Viewcaches
Recommended Reading
1. Adiba B. and Lindsay B. Database snapshots. In Proc. 6th Int.

Conf. on Very Data Bases, 1980, pp. 86–91.
2. Colby L., Kawaguchi A., Lieuwen D., Mumick I.S., and Ross K.A.

Supporting multiple view maintenance policies. In Proc. ACM

SIGMOD Conf. on Management of Data, 1997, pp. 405–416.

3. Deligiannakis A., Kotidis Y., and Roussopoulos N. Processing

approximate aggregate queries in wireless sensor networks. Inf.

Syst., 31(8):770–792, December 2006.

4. Gupta A. and Mumick I.S. Maintenance of materialized views:

problems, techniques, and applications. IEEE Data Eng. Bull.,

Special Issue on Materialized Views and Data Warehousing,

18(2):3–19, June 1995.

5. Gupta A., Mumick I.S., Rao J., and Ross K.A. Adapting materi-

alized views after redefinitions: techniques and a performance

study. Inf. Syst., Special Issue on Data Warehousing,

16(5):323–362, July 2001.

6. Gupta A., Mumick I.S., and Subrahmanian V.S. Maintaining

views incrementally. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1993, pp. 157–166.

7. Jagadish H.V., Mumick I.S., and Silberschatz A. View mainte-

nance issues in the chronicle data model. In Proc. 14th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1995, pp. 113–124.

8. Kotidis Y. and Roussopoulos N. DynaMat: a dynamic view

management system for data warehouses. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1999, pp. 371–382.

9. Labrinidis A. and Roussopoulos N. WebView materialization.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2000, pp. 367–378.

10. Labrinidis A. and Roussopoulos N. Balancing performance and

data freshness in Web database servers. In Proc. 29th Int. Conf.

on Very Large Data Bases, 2003, pp. 393–404.

11. Roussopoulos N. The incremental access method of view cache:

concept, algorithms, and cost analysis. ACM Trans. Database

Syst., 16(3):535–563, September 1991.

12. Roussopoulos N. and Kang H. Principles and techniques in

the design of ADMS	. IEEE Comput., 19(2):19–25, December

1986.

3332V View Expression
View Expression

▶View Definition
View Update

▶View Maintenance
View-based Data Integration

YANNIS KATSIS, YANNIS PAPAKONSTANTINOU

University of California-San Diego, La Jolla, CA, USA

Definition
Data Integration (or Information Integration) is the

problem of finding and combining data from different

sources. View-based Data Integration is a framework

that solves the data integration problem for structured

data by integrating sources into a single unified view.

This integration is facilitated by a declarative mapping

language that allows the specification of how each

source relates to the unified view. Depending on the

type of view specification language used, view-based

data integration systems (VDISs) are said to follow the

Global as View (GAV), Local as View (LAV) or Global

and Local as View (GLAV) approach.

Historical Background
Data needed by an application are often provided by a

multitude of data sources. The sources often employ

heterogeneous data formats (e.g., text files, web pages,

XML documents, relational databases), structure the

data in different ways and can be accessed through

different methods (e.g., web forms, database clients).

This makes the task of combining information from

multiple sources particularly challenging. To carry it

out, one has to retrieve data from each source individ-

ually, understand how the data of the sources relate to

each other and merge them, while accounting for dis-

crepancies in the structure and the values, as well as for

potential inconsistencies.

The first to realize this problem were companies

willing to integrate their structured data within or

across organizations. Soon the idea of integrating the

data into a single unified view emerged. These systems,
to be referred to as view-based integration systems

(VDISs) would provide a single point of access to all

underlying data sources. Users of a VDIS (or applica-

tions) would query the unified view and get back

integrated results from all sources, whereas the task of

combining data from the sources and resolving incon-

sistencies would be handled by the system transparently

to the applications.

The VDISs made their first appearance in the form

of multidatabases and federated systems [11]. Subse-

quently, the research community dived into the prob-

lem of specifying the correspondence between the

sources and the unified view. The outcome were three

categories of languages to express the correspondence

(GAV, LAV and GLAV), together with several related

theoretical and system results. The industry also em-

braced the view-based integration framework by creat-

ing many successful VDISs (e.g., BEA AquaLogic, IBM

WebSphere).
Foundations
Abstracting out the differences between individual sys-

tems, a typical VDIS conforms to the architecture shown

in Fig. 1. Sources store the data in a variety of formats

(relational databases, text files, etc.). Wrappers solve

the heterogeneity in the formats by transforming each

source’s data model into a common data model used

by the integration system. The wrapped data sources

are usually referred to as local or source databases, the

structure of which is described by corresponding local/

source schemas. This is in contrast to the unified view

exported by the mediator, also called global/target

database. Finally, mappings expressed in a certain

mapping language (depicted as lines between the

wrapped sources and the mediator) specify the rela-

tionship between the wrapped data sources (i.e., the

local schemas) and the unified view exported by

the mediator (i.e., the global schema).

Given a VDIS, applications or users retrieve data

from the sources indirectly by querying the global

schema. It is the task of the mediator to consult the

mappings to decide which data to retrieve from

the sources, and how to combine them appropriately

in order to form the answer to the user’s query.

VDISs can be categorized according to the follow-

ing three main axes:

1. Common data model and query language. The data

model and query language that is exposed by the

View-based Data Integration. Figure 1. View-based Data Integration System (VDIS) architecture.

View-based Data Integration V 3333

V

wrappers to the mediator and by the mediator to

the applications. Commonly used data models in-

clude the relational, XML and object-oriented data

model.

2. Mapping language. The language for specifying the

relationship of sources with the view. Languages

proposed in the literature fall into three categories;

Global as View (GAV), Local as View (LAV) and

Global and Local as View (GLAV). Being one of

the most important components in a VDIS, these

are discussed in detail below.

3. Data storage method. The decision on the place

where the data are actually stored. The two

extremes are the materialized and the virtual ap-

proach (see [14] for a comparison). In the materi-

alized integration (also known as eager, in-advance

or warehousing approach), all source data are repli-

cated on the mediator. On the other hand, in

the virtual mediation (e.g., Infomaster [6]) (or

lazy approach), the data are kept in the sources

and the global database is virtual. Consequently,
a query against the global database cannot be

answered directly, but has to be translated to

queries against the actual sources. Finally, some

systems employ hybrid policies, such as virtualiza-

tion accompanied by a cache.

Specifying the Relationship of the Sources

with the Unified View

To allow the mediator to decide which data to retrieve

from each source and how to combine them into the

unified view, the administrator of the VDIS has to

specify the correspondence between the local schema

of each source and the global schema through

mappings.

The mappings are expressed in a language,

corresponding to some class of logic formulas. Lan-

guages proposed in the literature fall into three cate-

gories: Global as View (GAV), Local as View (LAV) and

Global and Local as View (GLAV). In GAV the global

database (schema) is expressed as a function of the local

databases (schemas). LAVon the other hand follows the

3334V View-based Data Integration
opposite direction, with each local schema being de-

scribed as a function over the global schema. Therefore,

LAVallows to add a source to the system independently

of other sources. Finally, GLAV is a generalization of the

two. This section presents each of these approaches in

detail and explains their implications on the query

answering algorithms. Essentially, each of them repre-

sents a different trade-off between expressivity and

hardness in query answering.

Running example. For ease of exposition, the

following discussion employs a running example of

integrating information about books. The example

employs the relational data model for both the sources

and the global database. Moreover, the query language

used by the users to extract information from the

global database, and in turn by the mediator to retrieve

information from the sources, is the language of con-

junctive queries with equalities (CQ=); a subset of SQL

widely adopted in database research.

Figure 2 shows the employed local and global

schemas. Relations are depicted in italics and their

attributes appear nested in them. For instance, the

global schema G in Fig. 2b consists of two relations

Book and Book_Price. Relation Book has attributes

ISBN, title, suggested retail price, author and publisher,

while Book_Price stores the book price and stock in-

formation for different sellers. Data is fueled into the

system by two sources; the databases of the bookstore

Barnes & Noble (B&N) and the publisher Prentice Hall
View-based Data Integration. Figure 2. Local and global sc
(PH), with the schemas shown in Fig. 2a. Note that

there are two versions of the PH schema, used in

different examples.

Global as View (GAV)

Historically, the first VDISs followed the Global as

View (GAV) approach [7,12], in which the global sche-

ma is described in terms of the local schemas. In such

systems the contents of each relation R in the target

schema G are specified through a query (view) V over

the combined schemas of the sources.

Thus, in GAV the correspondence between the local

schemas and the global schema can be described

through a set of mappings of the form:

V i ! IðRiÞ

one for each relation Ri of the global schema, where Vi

is a query over the combined source schemas. I(Ri) is

the identity query over Ri (i.e., a query that returns all

attributes of Ri). The symbol ! can represent either

query containment (�) or query equality (=). This

leads to two different semantics, referred to in the

literature as the open-world and the closed-world as-

sumption, respectively.

Example : Consider the following two GAV

mappings (For the examples, the identity query I

over some relation is considered to return the attri-

butes of that relation in the same order as they appear

on the schema in Fig. 2).
hemas of the running example.

View-based Data Integration V 3335
M1 : V1!I(Book)

M2 : V2!I(Book_Price)

where

V1(ISBN, title, sug_retail, authorName, ‘‘PH’’):-

PHBook(ISBN, title, authorID, sug_retail, format),

PHAuthor(authorID, authorName)

and

V2(ISBN, ‘‘B&N’’, sug_retail, instock):-

PHBook(ISBN, title1, authorID, sug_retail, format),

BNNewDeliveries(ISBN, title2, instock)

The mappings are graphically depicted in Fig. 3a and b,

as described in [9]. This is similar to the way most

mapping tools (i.e., tools that allow a visual specifica-

tion of mappings), such as IBM Clio and MS BizTalk

Mapper, display mappings.

Mapping M1 intuitively describes how Book tuples

in the global database are created. This is done by

retrieving the ISBN, title and sug_retail from a

PHBook tuple, the author from the corresponding
View-based Data Integration. Figure 3. Example of GAV ma
PHAuthor tuple (i.e., the PHAuthor tuple with the

same authorID as the PHBook tuple), and finally

setting the publisher to ‘‘PH’’ (since the extracted

books are published by PH).

Similarly, mapping M2 describes the construction

of the global relation Book_Price. This involves com-

bining information from multiple sources: the price

from the suggested retail price information provided

by PH and the inventory information from B&N,

because B&N’s administrator knows that B&N’s sells

its books at the suggested retail price.

Query Answering in GAV. GAV mappings have a

procedural flavor, since they describe how the global

database can be constructed from the local data-

bases. For this reason, query answering in GAV is

straightforward, both in the materialized and in the

virtual approach.

In the materialized approach, the source data are

replicated in the global database by executing for each

mapping Vi ! I(Ri) the query Vi against the local

databases and populating Ri with the query results.
ppings.

V

3336V View-based Data Integration
Subsequently, an application query Q against the glob-

al schema is answered by simply running Q over the

materialized global database.

On the other hand, in the virtual approach, data are

kept in the sources and thus a query against the global

schema has to be translated to corresponding queries

against the local schemas. Due to the procedural

flavor of GAV, this can be done through view unfolding

(i.e., replacing each relational atom of the global

schema in the query by the corresponding view defini-

tion). Intuitively, whenever a query asks for a global

relation Ri, it will instead run the subquery Vi over

the local schemas, which, according to the mapping

Vi ! I(Ri), provides the contents of Ri.

Advantages. The simplicity of the GAV rules togeth-

er with the straight-forward implementation of query

answering, led to the wide adoption of GAV by indus-

trial systems. From the research sector representative

GAV-based VDISs systems are MULTIBASE [11],

TSIMMIS [5] and Garlic [2].

Disadvantages. GAV also has several drawbacks:

First, since the global schema is expressed in terms

of the sources, global relations cannot model any infor-

mation not present in at least one source. For instance,

the Book relation in the example could not contain

an attribute for the book weight, since no source cur-

rently provides it. In other words, the value of each

global attribute has to be explicitly specified (i.e., in the

visual representation all global attributes must have

an incoming line or an equality with a constant).

Second, as observed in mappingM2 of the running

example, a mapping has to explicitly specify how data

from multiple sources are combined to form global rela-

tion tuples. Therefore, GAV-based systems do not facil-

itate adding a source to the system independently of

other sources. Instead, when a new source wants to

join the system, the system administrator has to in-

spect how its data can be merged with those of the

other sources currently in the system and modify the

corresponding mappings.

Local as View (LAV)

To overcome the shortcomings of GAV, research-

ers came up with the Local as View (LAV) approach

[7,12]. While in GAV the global schema is described in

terms of the local schemas, LAV follows the opposite

direction expressing each local schema as a function of

the global schema. LAV essentially corresponds to

the ‘‘source owners view’’ of the system by describing

which data of the global database are present in
the source. Using the same notation as in GAV, local-

to-global correspondences can be written in LAV as

a set of mappings:

IðRiÞ ! Ui

one for every relation Ri in the local schemas, where Ui

is a query over the global schema and I the identity

query.

Example : Figure 4 shows the following two LAV

mappings for the running example:

M0
1 : I(PHBookcondensed) ! U1

M0
2 : I(BNNewDeliveries) ! U2

where

U1(ISBN, title, author, sug_retail):-

Book(ISBN, title, sug_retail, author, ‘‘PH’’)

and

U2(ISBN, title, instock):-

Book(ISBN, title, sug_retail, author, publisher),

Book_Price(ISBN, ‘‘B&N’’, sug_retail, instock)

For instance, M0
1 specifies that PHBookcondensed

contains information about books published by PH.

Similarly, M0
2 declares that BNNewDeliveries contains

the ISBN and title of books sold by B&N at their

suggested retail price and whether B&N has them in

stock.

In contrast to GAV mappings, LAV mappings have

a declarative flavor, since, instead of explaining how the

global database can be created, they describe what

information of the global database is contained in

each local database.

Advantages. LAV addresses many of GAV problems

with the most important being that sources can regis-

ter independently of each other, since a source’s map-

pings do not refer to other sources in the system.

Disadvantages. LAV suffers from the symmetric

drawbacks of GAV. In particular, it cannot model

sources that have information not present in the global

schema (this is the reason why the example above used

the condensed version of PH’s schema that did not

contain the attribute format, which is not present in

the global schema). Furthermore, due to LAV’s declar-

ative nature, query answering is non-trivial any more,

as described next. Mainly because of its technical impli-

cations to query answering, LAV has been extensively

studied in the literature. Representative LAV-based sys-

tems include Information Manifold [10] and the sys-

tem described in [13].

View-based Data Integration V 3337
Query Answering in LAV. Since LAV mappings con-

sist of an arbitrary query over the global schema, they

may leave some information of the global database

unspecified. For instance, mapping M0
2 above only

states that B&N sells its books at the suggested retail

price, without specifying the exact price. Thus, there

might be infinitely many global databases that could

be inferred from the sources through the mappings

(each of them would make sure that each pair of

Book and Book_Price tuples created from a BNNew-

Deliveries tuple share the same value for price, but

each such global database might choose a different

constant for the value). These databases are called

possible worlds. Their existence has two important

implications:

First, since a unique global database does not exist,

it cannot be materialized and therefore LAV lends itself

better to virtual mediation. However, there is still a way

of replicating source information in a centralized place.

This involves creating a ‘‘special’’ database that intui-

tively stores the general shape of all possible worlds.

This ‘‘special’’ database is called canonical universal

solution and can be built through procedures employed

in data exchange [3].

Second, since many global databases exist, the

query answering semantics need to be redefined. The

standard semantics adopted in the literature for query
View-based Data Integration. Figure 4. Example of LAV ma
answering in LAV-based systems are based on the

notion of certain answers [1,8]. The certain answers

to a query are the answers to the query, which will

always appear regardless of which possible world

the query is executed against (i.e., the tuples that

appear in the intersection of the sets of query ans-

wers against each possible world). Intuitively, certain

answers return information that is guaranteed to exist

in any possible world.

Example : If in the integration system of Fig. 4 a

query asks for all ISBNs that are sold by some seller at

their suggested retail price, it will get back all ISBNs

stored in relation BNNewDeliveries, because for each

of them, any possible world will contain a pair of Book

and Book_Price tuples with the same ISBN and the

same prices (although these prices will have different

values between possible worlds). On the other hand, if

the query asks for all books sold at a specific price, it

will not get back the ISBNs from BNNewDeliveries,

because their exact prices are left unspecified by the

mapping M0
2 and will therefore differ among possible

worlds.

In order to compute the certain answers to a query

in a virtual integration system following the LAV

approach, the query against the global schema has to

be translated to corresponding queries against the local

schemas. This problem is called rewriting queries using
ppings.

V

3338V View-based Data Integration
views (because the query over the global database has

to be answered by using the sources which are ex-

pressed as views over it), and is also of interest to

other areas of database research, such as query optimi-

zation and physical data independence (see [8] for a

survey). In contrast to GAV, it is a non-trivial problem

studied extensively by researchers.

Global and Local as View (GLAV)

To overcome the limitations of both GAVand LAV, [4]

proposed a new category of mapping languages, called

Global and Local as View (GLAV), which is a generali-

zation of both GAV and LAV. GLAV mappings are of

the form:

V i ! Ui

where Vi, Ui are queries over the local and global

schemas, respectively.

GLAV languages can trivially express both GAV

mappings and LAV mappings by assigning to Ui a

query returning a single global relation or to Vi

a query asking for a single local relation, respectively.

However, GLAV is a strict superset of both GAV and
View-based Data Integration. Figure 5. Example of GLAV m
LAV by allowing the formulation of mappings that do

not fall either underGAVor under LAV (i.e.,mappings in

whichVi and Ui both do not return just a single local or

global relation).

Example: Figure 5 shows two GLAV mappings. The

first mapping is the GAVmappingM1 first presented in

Fig. 3a, while the second mapping is the LAV mapping

M0
2 used in Fig. 4b.

Since Ui (a.k.a. the conclusion of the mapping) can

be an arbitrary query over the global schema, GLAV

allows the independent registration of sources in the

same way as LAV. However, this also implies that the

global database is incomplete. Consequently, query

answering in GLAV is usually done under certain

answer semantics, by extending query rewriting algo-

rithms for LAV [15].

Alternatives to VDISs

Apart from the VDISs, research and industrial work led

to many alternative approaches to data integration of

structured data:

1. Vertical Integration Systems are specialized

applications that solve the problem of data
appings.

Views V 3339
integration for a specific domain. For example,

http://www.mySimon.com or http://www.rottento

matoes.com integrate price and movie informa-

tion, respectively.

2. Extract Transform Load (ETL) Tools generally facil-

itate the actual migration of data from one system

to another. When used for data integration they are

closely tied to the problem of materializing the

integrated database in a central data warehouse.

Compared to these solutions, VDISs offer a more gen-

eral approach to data integration with the following

advantages: (i) The relationships between the sources

and the unified view are explicitly stated and not

hidden inside a particular implementation, (ii) a

general VDIS implementation can be used in many

different domains, and (iii) a VDIS deployment can

be easily utilized by many applications, as shown in

Fig. 1. In a way VDISs are analogous to Database

Management Systems, offering a general way of man-

aging the data (which in VDISs are heterogeneous and

distributed), independently of the applications that

need those data.

Finally, another alternative to VDISs are Peer-

to-Peer (P2P) Integration Systems that drop the

requirement for a single unified view, allowing queries

to be posed over any source schema. Although it is an

active area of research, P2P systems have not yet been

widely adopted in industry.
Key Applications
VDISs are used for integrationof structureddata inmany

different settings, including among others enterprises,

government agencies and scientific communities.
Cross-references
▶ Information Integration

▶ Peer-to-Peer Data Integration

▶Query Translation

▶Query Rewriting Using Views
 V
Recommended Reading
1. Abiteboul S. and Duschka O.M. Complexity of answering

queries using materialized views. In Proc. 17th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1998, pp. 254–263.

2. Carey M.J., Haas L.M., Schwarz P.M., Arya M., Cody W.F.,

Fagin R., Flickner M., Luniewski A., Niblack W., Petkovic D.,

Thomas II J., Williams J.H., and Wimmers E.L. Towards
heterogeneous multimedia information systems: The Garlic ap-

proach. In Proc. 5th Int. Workshop on Research Issues on Data

Eng., 1995, pp. 124–131.

3. Fagin R., Kolaitis P.G., Miller R.J., and Popa L. Data exchange:

Semantics and query answering. In Proc. Int. Conf. on Database

Theory, 2002. pp. 207–224.

4. Friedman M., Levy A., and Millstein T. Navigational plans for

data integration. In Proc. 16th National Conf. on AI and 11th

Innovative Applications of AI Conf., 1999.

5. Garcia-Molina H.K., Papakonstantinou Y.K., Quass D.K.,

Rajaraman A.K., Sagiv Y.K., Ullman J.K., Vassalos V.K., and

Widom J.K. The TSIMMIS approach to mediation: data models

and languages. J. Intell. Inf. Syst., 8(2):117–132, 1997.

6. Genesereth M.R., Keller A.M., and Duschka O.M. Infomaster:

An information integration system. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1997.

7. Halevy A. Logic-based techniques in data integration. In Logic

Based Artif. Intell., 2000.

8. Halevy A.Y. Answering queries using views: A survey. VLDB J.,

10(4):270–294, 2001.

9. Katsis Y., Deutsch A., and Papakonstantinou Y. interactive

source registration in community-oriented information integra-

tion. In Proc. 34th Int. Conf. on Very Large Data Bases, 2008.

10. Kirk T., Levy A.Y., Sagiv Y., and Srivastava D. The information

manifold. In Information Gathering from Heterogeneous,

Distributed Environments, 1995.

11. Landers T. and Rosenberg R.L. An overview of MULTIBASE.

Distributed systems, Vol. II: distributed data base systems table

of contents, 1986, pp. 391–421.

12. Lenzerini M. Data integration: A theoretical perspective. In Proc.

21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2002.

13. Manolescu I., Florescu D., and Kossmann D. Answering XML

queries over heterogeneous data sources. In Proc. 27th Int. Conf.

on Very Large Data Bases, 2001.

14. Widom J. Research problems in data warehousing. In Proc. 27th

Int. Conf. on Very Large Data Bases, 1995.

15. Yu C. and Popa L. Constraint-based XML query rewriting for

data integration. In Proc. 27th Int. Conf. on Very Large Data

Bases, 2004.
Views

YANNIS KOTIDIS

Athens University of Economics and Business,

Athens, Greece

Definition
Views are virtual relations without independent exis-

tence in a database. The contents of the instance of a

view are determined by the result of a query on a set of

database tables or other views in the system.

3340V Virtual Disk Manager
Key Points
Over the years, there have been several definitions and

uses for the term view. From one perspective, a view is a

query (or a macro) that generates data every time it is

invoked. The term view is also used in association with

the derived data that is produced by the execution of

the view query. Views have also been used as indexes,

summary tables or combinations of both. They provide

physical data independence, by decoupling the logical

schema from the physical design, which is usually

driven by performance reasons. By controlling access

to the views, one can control access to different parts

of the data and implement different security policies.

Views are also used in integration systems in order to

provide unified access to physically remote databases.

When the result of the view is stored as an indepen-

dent table, the view is called materialized. Materialized

views can be of two forms. In the first, the materialized

table is treated as pure data, detached from the view

definition that was used to derive its content. In the

second, the view content is treated as derived data that

needs to be properly maintained when update state-

ments alter the state of the database, in away that affects

the instance of the view. This is called the view mainte-

nance problem. In a symmetrical way, when a user or a

programmodifies a view (materialized or not) through

an update statement, an implementation is required for

translating the view update command into a series of

updates on the base relations so that the requested

update is observed in the view instance. This process

is often termed update through views.

Cross-references
▶Answering Queries Using Views

▶Updates Through Views

▶View Definition

▶View Maintenance

Recommended Reading
1. Adiba M.E. and Lindsay B.G. Database snapshots. In Proc. 6th

Int. Conf. on Very Data Bases, 1980, pp. 86–91.

2. Dayal U. and Bernstein P. On the correct translation of update

operations on relational views. ACM Trans. Database Syst.,

8(3):381–416, 1982.

3. Gupta A., Jagadish H.V., and Singh Mumick I. Data integration

using self-maintainable views. In Advances in Database Technol-

ogy, Proc. 5th Int. Conf. on Extending Database Technology,

1996, pp. 140–144.

4. Gupta H., Harinarayan V., Rajaraman A., and Ullman J.D.

Index selection for OLAP. In Proc. 13th Int. Conf. on Data

Engineering, 1997, pp. 208–219.
5. Kotidis Y. and Roussopoulos N. DynaMat: a dynamic view

management system for data warehouses. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 1999, pp. 371–382.

6. Roussopoulos N. View indexing in relational databases. ACM

Trans. Database Syst., 7(2):258–290, 1982.

7. Roussopoulos N. An incremental access method for ViewCache:

concept, algorithms, and cost analysis. ACM Trans. Database

Syst., 16:535–563, 1991.
Virtual Disk Manager

▶ Logical Volume Manager (LVM)
Virtual Health Record

▶ Electronic Health Records (EHR)
Virtual Partitioning

MARTA MATTOSO

Federal University of Rio de Janeiro, Rio de Janeiro,

Brazil

Synonyms
VP

Definition
Virtual Partitioning (VP) is a distribution database

design technique [2] that avoids physical partitioning

table design. VP is adopted in Database Clusters to

implement intra-query parallelism [3]. VP is based

on database replication and aims at designing a table

partition dynamically, according to each query specifi-

cation. The idea is to take advantage of the current

configuration of the parallel execution environment,

such as the number of nodes available, the tables of the

query, the current load, and the available table replicas.

Intra-query parallelism can be obtained through VP by

rewriting a query into a set of sub-queries to be sent

to different virtual partitions. At each node, the local

sequential DBMS processes the sub-query on the speci-

fied virtual partition of the table. VP requires an extra

query processing phase to compose the final result

Visual Analytics V 3341

V

from the partial ones produced by the sub-queries. This

way, a database that is not physically partitioned can

still be processed transparently through intra-query

parallelism.

Key Points
VP is implemented through query rewriting [1]. Basi-

cally, a DBC rewrites the original query by adding

range predicates to it, which originates as many sub-

queries as the number of table replicas and nodes

available. Then, each node receives a different sub-

query. For example, let Q be a query on table orders:

Q : select sum (price)

from orders

where category = ‘bolt’;

A generic sub-query on a virtual partition is

obtained by adding to Q’s where clause the predicate

‘‘and order_id >=v1 and order_id < v2.’’ By bind-

ing [v1, v2] to n subsequent ranges of order_id

values, n sub-queries are generated, each for a different

node on a different virtual partition of orders. These

virtual partitions correspond to horizontally parti-

tioned data. After the execution of all sub-queries

each partial result would then be inserted into a tem-

porary table, e.g., tempResult. Finally, to compose

the result, the partitioned results need to be combined

by an aggregate query. In this example: select sum

(sprice) from tempResult;

For VP to be effective, the tuples of the virtual

partition must be physically clustered according to

the added range predicate. Ideally, there should be a

clustered ordered index on table orders based on

order_id, so that the DBMS will not scan tuples

outside the VP.

Cross-references
▶Clustering Index

▶Data Partitioning

▶Data Replication

▶Distributed Database Design

▶Horizontally Partitioned Data

▶ Intra-query Parallelism
Recommended Reading
1. Lima A.A.B., Mattoso M., and Valduriez P. Adaptive virtual

partitioning for OLAP query processing in a database cluster.

In Proc. 19th Brazilian Symp. on Database Systems, 2004, pp.

92–105.
2. Özsu T. and Valduriez P. Principles of Distributed

Database Systems (2nd edn.). Prentice Hall, Upper Saddle

River, NJ, 1999.

3. Röhm U., Böhm K., Scheck H.-J., and Schuldt H. FAS – A

freshness-sensitive coordination middleware for a cluster of

OLAP components. In Proc. 28th Int. Conf. on Very Large

Data Bases, 2002, pp. 754–768.
Vision

▶Visual Perception
Visual Analysis

▶Visual Analytics

▶Visual Data Mining
Visual Analytics

DANIEL A. KEIM, FLORIAN MANSMANN,

ANDREAS STOFFEL, HARTMUT ZIEGLER

University of Konstanz, Konstanz, Germany

Synonyms
Visual analysis; Visual data analysis; Visual data

mining
Definition
Visual analytics is the science of analytical reasoning

supported by interactive visual interfaces. Over the

last decades, data was produced at an incredible rate.

However, the ability to collect and store this data is

increasing at a faster rate than the ability to analyze it.

While purely automatic or purely visual analysis meth-

ods were developed in the last decades, the complex

nature of many problems makes it indispensable to

include humans at an early stage in the data analysis

process. Visual analytics methods allow decision

makers to combine their flexibility, creativity, and

background knowledge with the enormous storage

and processing capacities of today’s computers to

Visual Analytics. Figure 1. Visual analytics as the

interplay between data analysis, visualization, and

interaction methods.

3342V Visual Analytics
gain insight into complex problems. The goal of visual

analytics research is thus to turn the information over-

load into an opportunity: Decision-makers should be

enabled to examine this massive, multi-dimensional,

multi-source, time-varying, and often conflicting in-

formation stream through interactive visual represen-

tations to make effective decisions in critical situations.

Historical Background
Automatic analysis techniques such as statistics and

data mining developed independently from visualiza-

tion and interaction techniques. However, some key

thoughts changed the rather limited scope of the fields

into what is today called visual analytics research. One

of the most important steps in this direction was the

need to move from confirmatory data analysis to ex-

ploratory data analysis, which was first stated in the

statistics research community by John W. Tukey in his

book ‘‘Exploratory data analysis’’ [7].

Later, with the availability of graphical user inter-

faces with proper interaction devices, a whole research

community devoted their efforts to information visu-

alization [1,2,5,8]. At some stage, this community

recognized the potential of integrating the user in the

KDD process through effective and efficient visualiza-

tion techniques, interaction capabilities and knowl-

edge transfer leading to visual data exploration or

visual data mining [3]. This integration considerably

widened the scope of both the information visualiza-

tion and the data mining fields, resulting in new tech-

niques and plenty of interesting and important

research opportunities.

The term visual analytics was coined by Jim

Thomas in the research and development agenda ‘‘Illu-

minating the Path’’ [6], which had a strong focus on

Homeland Security in the United States. Meanwhile,

the term is used in a wider context, describing a new

multidisciplinary field that combines various research

areas including visualization, human-computer inter-

action, data analysis, data management, geo-spatial

and temporal data processing, and statistics [4].

Foundations
Visual analytics evolved from information visualiza-

tion and automatic data analysis. It combines both

former independent fields and strongly encourages

human interaction in the analysis process as illustrated

in Fig. 1. The focus of this section is to differentiate

between visualization and visual analytics and thereby
motivating its necessity. Thereafter, the visual analytics

process is described and technical as well as social

challenges of visual analytics are discussed.

Visualization is the communication of data through

the use of interactive interfaces and has three major

goals: (i) presentation to efficiently and effectively com-

municate the results of an analysis, (ii) confirmatory

analysis as a goal-oriented examination of hypotheses,

and (iii) exploratory data analysis as an interactive and

usually undirected search for structures and trends.

Visual analytics is more than only visualization. It

can rather be seen as an integral approach combining

visualization, human factors, and data analysis. Visuali-

zation and visual analytics both integrate methodology

from information analytics, geospatial analytics, and

scientific analytics. Especially human factors (e.g., inter-

action, cognition, perception, collaboration, presenta-

tion, and dissemination) play a key role in the

communication between human and computer, as well

as in the decision-making process. In matters of data

analysis, visual analytics furthermore profits frommeth-

odologies developed in the fields of statistical analytics,

data management, knowledge representation, and

knowledge discovery. Note that visual analytics is not

likely to become a separate field of study, but its influ-

ence will spread over the research areas it comprises [9].

Overlooking a large information space is a typical

visual analytics problem. Inmany cases, the information

at hand is conflicting and needs to be integrated from

heterogeneous data sources. Often the computer system

lacks knowledge that is still hidden in the expert’s mind.

By applying analytical reasoning, hypotheses about the

Visual Analytics V 3343
data can be either affirmed or discarded and eventually

lead to a better understanding of the data. Visualization

is used to explore the information space when automatic

methods fail and to efficiently communicate results.

Thereby human background knowledge, intuition, and

decision-making either cannot be automated or serve

as input for the future development of automated pro-

cesses. In contrast to this, a well-defined problem where

the optimum or a good estimation can be calculated by

non-interactive analytical means would rather not be

described as a visual analytics problem. In such a scenar-

io, the non-interactive analysis should be clearly pre-

ferred due to efficiency reasons. Likewise, visualization

problems not involving methods for automatic data

analysis do not fall into the field of visual analytics.

Visual Analytics Process

The visual analytics process is a combination of auto-

matic and visual analysis methods with a tight cou-

pling through human interaction in order to gain

knowledge from data. Figure 2 shows an abstract over-

view of the different stages (represented through ovals)

and their transitions (arrows) in the visual analytics

process.

In many visual analytics scenarios, heterogeneous

data sources need to be integrated before visual or

automatic analysis methods can be applied. Therefore,

the first step is often to preprocess and transform the

data in order to extract meaningful units of data for

further processing. Typical preprocessing tasks are data
Visual Analytics. Figure 2. The Visual Analytics Process is char

models about the data, and the users in order to discover kn
cleaning, normalization, grouping, or integration of

heterogeneous data into a common schema.

Continuing with this meaningful data, the analyst

can select between visual or automatic analysis meth-

ods. After mapping the data the analyst may obtain

the desired knowledge directly, but more likely is the

case that an initial visualization is not sufficient for

the analysis. User interaction with the visualization is

needed to reveal insightful information, for instance

by zooming in different data areas or by considering

different visual views on the data. In contrast to tradi-

tional information visualization, findings from the

visualization can be reused to build a model for auto-

matic analysis. As a matter of course these models can

also be built from the original data using data mining

methods. Once a model is created the analyst has the

ability to interact with the automatic methods by

modifying parameters or selecting other types of anal-

ysis algorithms. Model visualization can then be used

to verify the findings of these models. Alternating

between visual and automatic methods is characteristic

for the visual analytics process and leads to a continu-

ous refinement and verification of preliminary results.

Misleading results in an intermediate step can thus

be discovered at an early stage, which leads to more

confidence in the final results.

In the visual analytics process, knowledge can be

gained from visualization, automatic analysis, as well

as the preceding interactions between visualizations,

models, and the human analysts. The feedback loop
acterized through interaction between data, visualizations,

owledge.

V

3344V Visual Analytics
stores this knowledge of insightful analyses in the

system, and contributes to enable the analyst to draw

faster and better conclusions in the future.

Technical and Social Challenges

While visual analytics profits from the increasing

computational power of computer systems, faster net-

works, high-resolution displays, as well as novel inter-

action devices, it must be kept in mind that new

technologies are always accompanied with a variety of

technical challenges that have to be solved.

Dynamic processes in scientific or business appli-

cations often generate large streams of real-time data,

such as sensor logs, web statistics, network traffic logs,

or atmospheric and meteorological data. The analysis

of such large data streams which can consist of tera-

bytes or petabytes of data is one of the technical chal-

lenges since advances in many areas of science and

technology are dependent upon the capability to ana-

lyze these data streams. As the sheer amount of data

does often not allow to store all data at full detail,

effective compression and feature extraction methods

are needed to manage the data. Visual analytics aims

at providing techniques that make humans capable of

analyzing real time data streams by presenting results

in a meaningful and intuitive way while allowing inter-

action with the data. These techniques enable quick

identification of important information and timely

reaction on critical process states or alarming incidents.

Synthesis of heterogeneous data sources is another

challenge that is closely related to data streams, because

real-world applications often access information from

a large number of different information sources includ-

ing collections of vector data, strings and text docu-

ments, graphs or sets of objects. Integrating these data

sources includes many fundamental problems in statis-

tics, machine learning, decision theory, and informa-

tion theory. Therefore, the focus on scalable and robust

methods for fusing complex and heterogeneous data

sources is key to a more effective analysis process.

One step further in the analysis process, interpret-

ability and trustworthiness or the ability to recognize

and understand the data can be seen as one of the

biggest challenges in visual analytics. Generating a

visually correct output from raw data and drawing

the right conclusions largely depends upon the quality

of the used data and methods. A lot of possible quality

problems (e.g., data capture errors, noise, outliers, low

precision, missing values, coverage errors, double
counts) can already be contained in the raw data.

Furthermore, pre-processing of data in order to use it

for visual analysis bears many potential quality pro-

blems (i.e., data migration and parsing, data cleaning,

data reduction, data enrichment, up-/down-sampling,

rounding and weighting, aggregation and combina-

tion). The concrete challenges are on the one hand

to determine and to minimize these errors on the

pre-processing side, and a flexible yet stable design of

the visual analytics applications to cope with data

quality problems on the other hand. From a technical

point of view, the design of such applications should

either be insensitive to data quality issues through

usage of data cleaning methods or explicitly visualize

errors and uncertainty to raise awareness for data

quality issues.

In many scenarios, interpreting the raw data only

makes little or no sense at all if it cannot be embedded

in context. Research on semantics may derive this con-

text from meta data by capturing associations and

complex relationships. Ontology-driven techniques

and systems have already started to enable new seman-

tic applications in a wide span of fields such as bioin-

formatics, web services, financial services, business

intelligence, and national security. Research challenges

thereby arise from the size of ontologies, content

diversity, heterogeneity as well as from computation

of complex queries and link analysis over ontology

instances and meta data.

Scalability in general is a key challenge of visual

analytics, as it determines the ability to process large

datasets by means of computational overhead as well as

appropriate rendering techniques. Often, the huge

amount of data that has to be visualized exceeds the

limited amount of pixels of a display by several orders

of magnitude. In order to cope with such a problem not

only the absolute data growth and hardware perfor-

mance have to be compared, but also the software and

the algorithms to bring this data in an appropriate way

onto the screen. As the amount of data is continuously

growing and the amount of pixels on the display remains

rather constant, the rate of compression on the display is

steadily increasing. Therefore, more andmore details get

lost. It is an essential task of visual analytics to create a

higher-level view onto the dataset, while maximizing the

amount of details at the same time.

The field of problem solving, decision science, and

human information discourse constitutes a further

visual analytics challenge since it not only requires

Visual Analytics V 3345

V

understanding of technology, but also comprehension

of typical human capabilities such as logic, reasoning,

and common sense. Many psychological studies about

the process of problem solving have been conducted.

In a usual test setup the subjects have to solve a well-

defined problem where the optimal solution is known

to the researchers. However, real-world problems are

manifold. In many cases these problems are intran-

sparent, consist of conflicting goals, and are complex

in terms of large numbers of items, interrelations, and

decisions involved. The dynamics of information that

changes over time should not be underestimated since it

mighthaveastrong impactontherightdecision.Further-

more, social aspects such as decision making in groups

make theprocess evenmoredelicate.

While many novel visualization techniques have

been proposed, their wide-spread usage has not taken

place primarily due to the users’ refusal to change their

daily working routines. User acceptance is therefore a

further visual analytics challenge, since the advantages

of developed tools need to be properly communicated

to the audience of future users to overcome usage

barriers, and to tap the full potential of the visual

analytics approach.

Visual analytics tools and techniques should not

stand alone, but should integrate seamlessly into the

applications of diverse domains, and allow interaction

with existing systems. Although many visual analytics

tools are very specific (i.e., in astronomy or nuclear

science) and therefore rather unique, in many domains

(e.g., business or network security applications) inte-

gration into existing systems would significantly pro-

mote their usage by a wider community.

Finally, evaluation as a systematic analysis of us-

ability, worth, and significance of a system is crucial to

the success of visual analytics science and technology.

During the evaluation of a system, different aspects can

be considered such as functional testing, performance

benchmarks, measurement of the effectiveness of the

display in user studies, assessment of its impact on

decision-making, or economic success to name just a

few. Development of abstract design guidelines for

visual analytics applications would constitute a great

contribution.

Key Applications
Visual analytics is essential in application areas

where large information spaces have to be processed

and analyzed. Major application fields are physics and
astronomy. Especially the field of astrophysics offers

many opportunities for visual analytics techniques:

Massive volumes of unstructured data, originating

from different directions of space and covering the

whole frequency spectrum, form continuous streams

of terabytes of data that can be recorded and analyzed.

With common data analysis techniques, astronomers

can separate relevant data from noise, analyze similari-

ties or complex patterns, and gain useful knowledge

about the universe, but the visual analytics approach

can significantly support the process of identifying un-

expected phenomena inside the massive and dynamic

data streams that would otherwise not be found by

standard algorithmic means.

Monitoring climate and weather is also a domain

which involves huge amounts of data, collected by

sensors throughout the world and from satellites in

short time intervals. A visual approach can help to

interpret these massive amounts of data and to gain

insight into the dependencies of climate factors and

climate change scenarios, which would otherwise not

be easily identified. Besides weather forecasts, existing

applications visualize the global warming, melting of

the poles, the stratospheric ozone depletion, as well as

hurricane and tsunami warnings.

In the domain of emergency management, visual

analytics can help determine the on-going progress of

an emergency and identify the next countermeasures

(e.g., construction of physical countermeasures or

evacuation of the population) that must be taken to

limit the damage. Such scenarios can include natural

or meteorological catastrophes like flood or waves,

volcanoes, storm, fire or epidemic growth of diseases

(e.g., bird flu), but also human-made technological

catastrophes like industrial accidents, transport acci-

dents or pollution.

Visual analytics for security and geographics is an

important research topic. The application field in this

sector is wide, ranging from terrorism informatics,

border protection, path detection to network security.

Visual analytics supports investigation and detection

of similarities and anomalies in large data sets, like

flight customer data, GPS tracking or IP traffic data.

In biology andmedicine, computer tomography, and

ultrasound imaging for three-dimensional digital recon-

struction and visualization produce gigabytes of medical

data and have been widely used for years. The applica-

tion area of bio-informatics uses visual analytics tech-

niques to analyze large amounts of biological data.

3346V Visual Association Rules
From the early beginning of sequencing, scientists in

these areas face unprecedented volumes of data, like in

the HumanGenome Project with three billion base pairs

per human. Other new areas like Proteomics (studies of

the proteins in a cell),Metabolomics (systematic study of

unique chemical fingerprints that specific cellular pro-

cesses leave behind) or combinatorial chemistry with

tens of millions of compounds even enlarge the amount

of data every day. A brute-force computation of all

possible combinations is often not possible, but interac-

tive visual approaches can help to identify the main

regions of interest and exclude areas that are not

promising.

Another major application domain for visual ana-

lytics is business intelligence. The financial market, with

its hundreds of thousands of assets, generates large

amounts of data every day, which accumulate to ex-

tremely high data volumes throughout the years. The

main challenge in this area is to analyze the data under

multiple perspectives and assumptions to understand

historical and current situations, and then monitoring

the market to forecast trends or to identify recurring

situations. Other key applications in this area are fraud

detection, detection of money laundering, or the anal-

ysis of customer data, insurance data, social data, and

health care services.

Cross-references
▶Cluster Visualization

▶Comparative Visualization

▶Data Mining

▶Data Visualization

▶Human-Computer Interaction

▶Multidimensional Visualization Methods

▶Multivariate Visualization Methods

▶ Parallel Visualization

▶ Scientific Visualization

▶Visual Classification

▶Visual Clustering

▶Visual Content Analysis

▶Visual Data Mining

▶Visual Metaphor

▶Visual On-Line Analytical Processing (OLAP)

▶Visualization for Information Retrieval
Recommended Reading
1. Card S.W., Mackinlay J.D., and Shneiderman B. (eds.) Readings

in Information Visualization: Using Vision to Think. Morgan

Kaufmann, San Francisco, CA, USA, 1999.
2. Chen C. Information Visualization – Beyond the Horizon.

Springer, Berlin, 2nd edn., 2004.

3. Keim D.A. Visual exploration of large data sets. Commun. ACM,

44(8):38–44, 2001.

4. Keim D.A. and Thomas J. Scope and challenges of visual analyt-

ics. Tutorial at IEEE Visualization Conf., 2007.

5. Spence R. Information Visualization – Design for Interaction.

Pearson Education Limited, Harlow, England, 2nd edn., 2006.

6. Thomas J. and Cook K. Illuminating the path: Research and

development agenda for visual analytics. IEEE-Press, Los

Alamitos, CA, USA, 2005.

7. Tukey J.W. Exploratory data analysis. Addison-Wesley, Reading,

MA, USA, 1977.

8. Ware C. Information Visualization – Perception for Design.

Morgan Kaufmann, San Francisco, CA, USA, 1st edn., 2000.

9. Wong P.C. and Thomas J. Visual Analytics – Guest

Editors’ Introduction. IEEE Trans. Comput. Graph. Appl.,

24(5):20–21, 2004.
Visual Association Rules

LI YANG

Western Michigan University, Kalamazoo, MI, USA

Synonyms
Association rule visualization

Definition
Association rule mining finds frequent associations

between sets of data items from a large number of

transactions. In market basket analysis, a typical asso-

ciation rule reads: 80% of transactions that buy diapers

and milk also buy beer. The rule is supported by 10% of

all transactions. In this example, the 10% and 80% are

called support and confidence, respectively. Depending

on the user-specified minimum support and mini-

mum confidence, association rule mining often pro-

duces too many rules for humans to read over. The

answer to this problem is to select the most interesting

rules. As interestingness is a subjective measure, select-

ing the most interesting rules is inherently human

being’s work. It is expected that information visualiza-

tion may play an important role in managing a large

number of association rules, and in identifying the

most interesting ones.

Historical Background
An association rule reflects a many-to-many relation-

ship. In lacking of an effective visual metaphor

Visual Association Rules V 3347
to display many-to-many relationships, information

visualization has received a technical challenge in

order to display and interact with many association

rules. Most existing approaches have been designed to

visualize association rules in restricted forms. The re-

striction can be on the number of items on each side of

the rule, the type of the rule, the total number of items,

or the total number of rules. These existing approaches

can be classified into two categories: matrix-based

approaches and graph-based approaches.

A rectangular matrix can be used to visualize one-to-

one association rules, where the left-hand side (LHS)

items of all rules are listed along one axis and the right-

hand side (RHS) of all rules are listed along the other
Visual Association Rules. Figure 1. Two major matrix-based
axis of the rectangular matrix. A rule could be shown as

an icon in the corresponding cell. Figure 1a shows an

example 3D visualization, where the height and color

of each bar represent support and confidence values of

the corresponding rule, respectively. The major restric-

tion of this approach is that it allows only one item on

each side of the rule. Wong et al. [9] gave an alternative

approach of arranging axes, where one axis is used to

list items and the other is used to list rules. A rule is

then visualized by a 3D bar chart against all items in

the rule. This approach is able to visualize many-to-

many rules, as long as the number of rules is kept

reasonably small. Figure 1b illustrates the approach

where the color of each bar indicates whether the
approaches: (a) LHS versus RHS and (b) Rule versus Item.

V

3348V Visual Association Rules
item is on the LHS or RHS of the rule. Support and

confidence values of the rules are visualized alongside

the bar charts. Another matrix-based approach is to

use mosaic plots and double deck plots [4] to visualize

the contingency table of a frequent itemset that gives

rise to a many-to-one association rule. However, only

many-to-one rules derived from a single frequent

itemset can be visualized each time. Fukuda et al. [2]

gave a matrix-based approach of visualizing numeric

association rules, which contain two numeric attri-

butes on the LHS and a Boolean attribute on the

RHS. The approach displays the set of rules as a bitmap

image.

Directed graph is another technique to depict asso-

ciations among items. There are two alternatives to

assign graph nodes:

1. Each node represents an itemset. An association

rule is visualized as an edge from the node repre-

senting its LHS itemset to the node representing its

RHS itemset. Such an approach has been used in

IBM DB2 Intelligent Miner. A major problem

is that there may easily be too many nodes to

display.

2. Each node represents an item. An association rule

is visualized as a bunch of edges from LHS items

to an intermediate node and another bunch of

edges from the intermediate node to RHS items.

Such an approach may work well only when a few

items and rules are involved. The graph can quickly

turn into a tangled mess with as few as a dozen

rules. Klemettinen et al. [5] introduced a rule

visualizer that uses this approach.

Figure 2 illustrates the two alternatives of visualiz-

ing association rules as directed graphs.
Visual Association Rules. Figure 2. Two major graph-based
Visualization of association rules can be found in

commercial data mining packages. SAS Enterprise

Miner and SGI MineSet use matrix-based approaches

and allow the user to visualize one-to-one association

rules. IBM DB2 Intelligent Miner has a Associations

Visualizer that uses the directed graph approach where

each graph node displays an itemset.
Foundations
Association rule mining [1,3] is one of the mostly

researched areas in data mining. Let I = {i1, i2,...,ik}

be a set of items. A subset A � I of items is called an

itemset. Input data to association rule mining are n

subsets {T1, T2,...,Tn}, called transactions, of I. Trans-

action Ti supports an itemset A if A �Ti. The percent-

age P(A) of transactions that support A is called the

support of A. A frequent itemset is an itemset whose

support is no less than a minimum value specified by

the user. An association rule is an expression A ! B

where A and B are itemsets and A \ B = ;. P(A [B) is

called the support of the rule. P(A [B) ∕ P(A) is called
the confidence of the rule. The problem of association

rule mining is to find all association rules whose sup-

ports are no less than a minimum support value and

whose confidences are no less than a minimum confi-

dence value. Frequent itemsets hold a well-known

Apriori property: subsets of a frequent itemset are

frequent. Efficient association rule mining algorithms

[1] have been developed using the Apriori property for

early pruning of search space.

The problem of too many discovered rules has also

been studied. Klemettinen et al. [5] studied association

rules at the border of frequent itemsets and used pat-

tern templates to specify what the user wants to

see. Testing criteria such as maximum entropy and
approaches: (a) Itemset as node and (b) Item as node.

Visual Association Rules V 3349
chi-square(w2) have been suggested to replace the con-

fidence test for the purpose of finding the most inter-

esting rules. Liu et al. [7] have given a way of pruning

and visualizing association rules with the presence of

item taxonomy, by allowing a user to specify knowl-

edge in terms of rules. Unexpected rules (that do not

conform to the user’s knowledge) are selected and

visualized in a structured way.

Association rules are difficult to visualize for sever-

al reasons. First, an association rule reflects a many-to-

many relationship and there is no effective visual

metaphor to display many many-to-one, never to say

many-to-many, relationships. Second, frequent item-

sets and association rules have inherent closure proper-

ties. For example, any subset of a frequent itemset is

also frequent; if a! bc is a valid association rule, then

a ! b, a ! c, ab ! c and ac ! b are all valid

association rules. Third, the challenge is to visualize

many such itemsets or rules. With the absence of an

effective visual metaphor to present many-to-many

relationships and to accommodate the closure proper-

ties, frequent itemsets and association rules pose fun-

damental challenges to information visualization.

Taking a function-theoretic view, the Apriori prop-

erty basically says that frequent itemsets define an

anti-monotone Boolean function f (i1,i2,...,ik) where

i1,i2,...,ik are Boolean variables (items). As the function

is anti-monotone, there is a border which separates 1’s

from 0’s. Visualization of monotone Boolean functions
Visual Association Rules. Figure 3. Visualizing the anti-mono
has been studied by Kovalerchuk and Delizy in [6],

although association rules are not their concern. Boolean

vectors are displayed in multiple disk form where Bool-

ean vectors of the same norm (equivalently, itemsets with

the same number of items) are placed on the same disk.

Figure 3 shows visualizations of an anti-monotone

Boolean function f(i1,i2,...,i10) = d i1. Such a func-

tion is equivalent to frequent itemsets on {i1,i2,...,i10}

where {i2...i10} is a frequent itemset and {i1} is infre-

quent. In Fig. 3a, Boolean vectors are arranged on each

disk in their numeric order. The visualization does not

permit any real understanding of the border of fre-

quent itemsets. Fig. 3b rearranges Boolean vectors on

each disk so that all vectors on a Hansel chain are

aligned vertically. A chain is a sequence of Boolean

vectors such that each vector produces the next vector

by changing a ‘‘0’’ element to ‘‘1,’’ and Hansel chains

provide a way to non-repeatedly visit all vectors. As the

function is monotone on each chain, Fig. 3b does show

a border, although the border is highly zigzagged.

Figure 3c rearranges Hansel chains according to the

position of the first ‘‘1’’ value within each chain and

shows the border in a clearer way.

Frequent itemsets and association rules are often

presented in a set-theoretic view. Given a set I = {i1,

i2,...,ik} of items, its power set PðIÞ forms a lattice

<PðIÞ;�> where the subset relationship � specifies

the partial order. For an example set of items, I = {a, b,

c, d}, this lattice can be illustrated in Fig. 4a. Frequent
tone Boolean function f(i1,i2,...,i10) =

d

i1: (Courtesy of [6].)

V

Visual Association Rules. Figure 4. Itemset lattice, item taxonomy tree, and generalized itemset lattice on I = {a, b, c, d}:

(a) Itemset lattice, (b) An item taxonomy tree, and (c) Generalized itemset lattice. (Courtesy of [10].)

3350V Visual Association Rules
itemsets define a border on the lattice: if an itemset is

frequent, so is every subset of it; if an itemset is infre-

quent, so is every superset of it. The objective of fre-

quent itemset visualization is to visualize the border. In

fact, this has been tried in the three visualizations in

Fig. 3, which have visualized the whole lattice struc-

ture. Each disk in Fig. 3 displays k
l

� �
itemsets where l is

the disk level. Clearly, such an approach would fail

when k is large.

In order to deal with the problem of long border of

frequent itemsets, Yang has developed an approach

[10] for visualizing generalized frequent itemsets and

association rules by introducing user interaction with

the border. Generalized association rules come from
the introduction of item taxonomy. As shown in

Fig. 4b, an item taxonomy is a directed tree whose

leaf nodes are items and whose non-leaf nodes are

item categories. Mining generalized association rules

across item taxonomy was studied in [8]. Item taxon-

omy introduces another dimension of closure prop-

erty. For example, an ancestor itemset of a frequent

itemset is also frequent.

The presence of item taxonomy extends an itemset

lattice to a generalized itemset lattice. The user can

choose which items or item categories to display in

an item taxonomy tree. The partially displayed item

taxonomy tree induces a border of displayable itemsets

in the generalized itemset lattice. For example, if the

Visual Association Rules. Figure 5. Visualizing association rules with item taxonomy. (Courtesy of [10].)

Visual Association Rules V 3351

V

items c, d, e, f in Fig. 4b are displayed, this induces a

border of displayable itemsets shown in Fig. 4c. Only

non-redundant displayable frequent itemsets, for ex-

ample, ec and ed in Fig. 4c, are visualized. In associa-

tion rule visualization, only non-redundant rules

derived from frequent displayable itemsets are

visualized.

The non-redundant displayable frequent itemsets

and association rules are visualized in 3D through

parallel coordinates, where each parallel coordinate is

replaced by a standing visualization of item taxonomy

tree. An itemset or rule is visualized as a Bézier curve

connecting all items in it. Parameters such as support

and confidence can be mapped to graphical features

such as width or color of the curve. Figure 5 gives a

screen snapshot in the interactive visualization of

many-to-many association rules, where association

rules are aligned according to where the RHSs separate

from the LHSs. In Fig. 5, the left two coordinates

represent the LHSs of the rules and the right three

coordinates represent the RHSs of the rules. The dis-

played item taxonomy tree can be expanded or shrunk

by user interaction, and each change triggers a new set

of itemsets or rules to be displayed.

Key Applications
As a standard feature in many data mining software

packages, association rule visualization has been

used widely in business intelligence and scientific

research.

Future Directions
Although approaches have been developed to visualize

association rules, none of them has gained predominant

acceptance and can simultaneously manage a large

number of rules with multiple items on both sides.
Visual association rule research has many open pro-

blems. An obvious one is how to prune uninteresting

itemsets and rules, a topic that has bothered researchers

for years. Specific to visualization, open problems in-

clude how to visualize a large number of many-to-many

rules and how to associate closure properties of itemsets

or rules with intuitive visual presentations. Data visual-

ization on the lattice structure has potential applications

beyond visual association rules. For example, it can be

used in the visualization of iceberg data cubes in data

warehousing.
Cross-references
▶Association Rules

▶Data Visualization

▶Visual Analytics

▶Visual Data Mining
Recommended Reading
1. Agrawal R. and Srikant R. Fast algorithms for mining association

rules. In Proc. 20th Int. Conf. on Very Large Data Bases, 1994,

pp. 207–216.

2. Fukuda T., Morimoto Y., Morishita S., and Tokuyama T. Data

mining using two-dimensional optimized association rules:

Scheme, algorithms, and visualization. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1996, pp. 13–23.

3. Han J. and Kamber M. Data Mining: Concepts and Techniques.

Morgan Kaufmann, San Francisco, CA, USA, 2nd edn., 2005.

4. Hofmann H., Siebes A., and Wilhelm A. Visualizing association

rules with interactive mosaic plots. In Proc. 6th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2000,

pp. 227–235.

5. Klemettinen M., Mannila H., Ronkainen P., Toivonen H., and

Verkamo I. Finding interesting rules from large sets of discovered

association rules. In Proc. Int. Conf. on Information and Knowl-

edge Management, 1994, pp. 401–407.

6. Kovalerchuk B. and Delizy F. Visual data mining

using monotone Boolean functions. In Visual and Spatial

3352V Visual Classification
Analysis: Advances in Data Mining, Reasoning, and Problem

Solving, B. Kovalerchuk, J. Schwing (eds.). Springer, Berlin,

2004, pp. 387–406.

7. Liu B., Hsu W., Wang K., and Chen S. Visually aided exploration

of interesting association rules. In Advances in Knowledge

Discovery and Data Mining, 3rd Pacific-Asia Conf., 1999, pp.

380–389.

8. Srikant R. and Agrawal R. Mining generalized association

rules. In Proc. 21th Int. Conf. on Very Large Data Bases, 1995,

pp. 407–419.

9. Wong P.C., Whitney P., and Thomas J. Visualizing association

rules for text mining. In Proc. IEEE Symp. on Information

Visualization, 1999, pp. 120–123.

10. Yang L. Pruning and visualizing generalized association rules

in parallel coordinates. IEEE Trans. Knowl. and Data Eng., 17

(1):60–70, January 2005.
Visual Classification

MIHAEL ANKERST

Allianz, Munich, Germany

Synonyms
Cooperative classification

Definition
Decision trees have been successfully used for the task

of classification. However, state-of the-art algorithms

do not incorporate the user in the tree construction

process. Through the involvement of the user in the

process of classification, he/she can provide domain

knowledge to focus the search of the algorithm and

gain a deeper understanding of the resulting decision

tree. In a cooperative approach, both the user and the

computer contribute what they do best: the user speci-

fies the task, focuses the search using his/her domain

knowledge and evaluates the (intermediate) results of

the algorithm. The computer, on the other hand, auto-

matically creates patterns satisfying the specified user

constraints. The cooperative approach is based on a

novel visualization technique for multi-dimensional

data representing their impurity with respect to their

class labels.
Historical Background
The idea of visual classification has been built upon

recent progress in the area of information visualization

and decision trees.
Many different algorithms for learning decision

trees have been developed over the last 20 years. For

instance, CART [1] was one of the earliest systems

which, in particular, incorporates an effective pruning

phase. Their so-called minimum cost complexity

pruning cuts off branches that have a large number of

leaf nodes, yielding just a small reduction of the appar-

ent error. SLIQ [2] is a scalable decision tree classifier

that can handle both numerical and categorical attri-

butes. In order to make SLIQ scalable for large training

sets, special data structures called attribute lists are

introduced, which avoid sorting the numerical attri-

butes for each selection of the next split. Furthermore,

a greedy algorithm for efficient selection of splits of

categorical attributes is presented. An experimental

evaluation demonstrates that SLIQ produces decision

trees with state-of-the-art accuracy, and tree size with a

much better efficiency for large training sets.

Visual representation of data as a basis for the

human–computer interface has evolved rapidly in re-

cent years. The increasing amount of available digital

information in all kinds of applications has led to the

challenge of dealing with both high dimensionality and

large amounts of data. [3] gives a comprehensive over-

view over existing visualization techniques for large

amounts of multidimensional data, which have no

standard mapping into the Cartesian coordinate

system.

Foundations
A decision tree classifier constructs a tree in a top-

down fashion, performing a greedy search through

the very large space of all possible decision trees. At

each current node, the attribute that is most useful for

the task of classification (with respect to the subset of

all training objects having passed all tests on the path

to the current node) is selected. Criteria such as the

information gain or the gini index have been used to

measure the usefulness of an attribute. Domain knowl-

edge about the semantics of the attributes and the

attribute values is not considered by the criteria. Note

that greedy algorithms for decision tree construction

do not allow to backtrack to a previous choice of an

attribute when it finally turns out to be suboptimal.

Visual classification [4,5] is a user-centered ap-

proach to decision tree construction where the user

and the computer can both contribute their strengths.

The user provides domain knowledge and evaluates

intermediate results of the algorithm, the computer

Visual Classification V 3353
automatically creates patterns satisfying user con-

straints and generates appropriate visualizations of

these patterns. In this cooperative approach, domain

knowledge of the user can direct the search of the

algorithm. Additionally, by providing adequate data

and knowledge visualizations, the pattern recognition

capabilities of the human can be used to increase the

effectivity of decision tree construction. Furthermore,

the user gets a deeper understanding of the decision

tree than just obtaining it as a result of an algorithm.

The three components of visual classification is visua-

lizing the data, visualizing the decision tree and the

integration of algorithms into decision tree construction.

Visualizing the data is done by the pixel-oriented

bar technique. The bar visualization technique is per-

formed as follows. Within a bar, the sorted attribute

values are mapped to pixels in a line-by-line fashion

according to their order. Each attribute is visualized

independently from the other attributes in a separate

bar. Figure 1 illustrates the method of the bar visuali-

zation for the case of two attributes. The amount of

training data that can be visualized by the bar tech-

nique is determined by the product of the number of

data records and the number of attributes.

Visualizing the decision tree is done by a visualiza-

tion technique, such that each node is represented by

the data visualization of the chosen splitting attribute of
Visual Classification. Figure 1. Illustration of bar

visualization.

Visual Classification. Figure 2. Illustration of knowledeg vis
that node. For each level of the tree a bar is drawn

representing all nodes of this level. The top level bar

corresponds to the root node of the decision tree. On

lower levels of the tree the number of records and thus

the number of pixels is reduced if there are leaves in

upper levels – leaves are underlined with a black line.

Black vertical lines indicate the split points set in

the current bar. On lower levels, partitions of the

data inherited from upper levels are marked by white

vertical lines at the same horizontal position as the

original split point. Attribute and node information at

the mouse pointer position (attribute name, attribute

value, min., max. value and number of records in this

node) is displayed on demand. Upon a mouse click the

system switches back to the data visualization of the

corresponding node.

Compared to a standard visualization of a deci-

sion tree, a lot of additional information is provided

which is very helpful in explaining and analyzing the

decision tree:

� Size of the node (number of training records

corresponding to the node)

� Quality of the split (purity of the resulting

partitions)

� Class distribution (frequency and location of the

training instances of all classes)

Figure 2 illustrates the visualization of a decision tree

for the Segment training data from the Statlog bench-

mark [6] having 19 numerical attributes.

The integration of algorithms into decision tree

construction is solved in the following way.

Propose Split

For a set of attributes selected by the user, the attribute

with the best split together with the optimum split

point of this attribute is calculated and visualized. If a

singleton attribute is specified as input, only the opti-

mum split point for this attribute is determined. The

function propose split turns out to be useful in two
ualization.

V

3354V Visual Classification
cases: first, whenever there are several candidate attri-

butes with very similar class distributions and, second,

when none of the attributes yields a good split which

can be perceived from the visualization.

Look-Ahead

For some hypothetical split of the active node of the

decision tree, the subtree of a given maximum depth is

calculated and visualized with the new visualization

technique for decision trees. This function offers

a view on the hypothetical expansion up to a user

specified number of levels, or until a user specified

minimum number of records per node. If the looka-

head function is invoked for a limited number of levels,

it is very fast (some seconds of runtime) because no

pruning is performed in this case. The look-ahead

function may provide valuable insights for selecting

the next split attribute. Without the look-ahead func-

tion, when there are several candidate attributes the

user selects one of them, chooses one or several split

points and continues the tree construction. If at a later

stage the expanded branch does not yield a satisfying

subtree, the user will backtrack to the root node of this

branch and will remove the previously expanded
Visual Classification. Figure 3. PBC system.
subtree. He/she will select another candidate attribute,

split it and proceed. Utilizing the new function, how-

ever, the user requests a look-ahead for each candidate

attribute before actually performing a split. Thus, the

necessity of backtracking may be avoided.

Expand Subtree

For the active node of the decision tree, the algorithm

automatically expands the tree. Several parameters

may be provided to restrict the algorithmic expansion

such as the maximum number of levels and the mini-

mum number of data records or the minimum purity

per leaf node. The pruning of automatically created

subtrees rises some questions. Should one only prune

the subtree created automatically or prune the whole

tree – including the subtrees created manually?

According to the paradigm of the user as a supervisor,

pruning is only applied to automatically created trees.

It is important to distinguish two different uses of the

expand subtree function: the maximum number of

levels is either specified or it is unspecified. In the first

case, the decision tree is usually post-processed by the

user. No pruning is performed if a maximum number

of levels is specified. Otherwise, if no maximum

Visual Clustering V 3355
number of levels is specified, the user wants the system

to complete this subtree for him and pruning of the

automatically created subtree is performed if desired.

The function expand subtree is useful in particular if

the number of records of the active node is relatively

small. Furthermore, this function can save a lot of user

time because the manual creation of a subtree may take

much more time than the automatic creation.

The visual classification approach is implemented

in the PBC system, as depicted in Fig. 3.
Key Applications
The visual classification approach can be applied to

any domain where decision tree classification is appli-

cable. The value of the approach is the deeper under-

standing of the data and the decision tree.
Cross-references
▶Decision Trees

▶ Pixel-Oriented Visualization Techniques
Recommended Reading
1. Ankerst M., Elsen C., Ester M., and Kriegel H.-P. Visual classifi-

cation: an interactive approach to decision tree construction.

In Proc. 5th Int. Conf. on Knowledge Discovery and Data

Mining, 1999, pp. 392–396.

2. Ankerst M., Ester M., and Kriegel H.P. Towards an effective

cooperation of the computer and the user for classification.

ACM SIGKDD Int. Conf. on Knowledge Discovery and Data

Mining, 2000.

3. Breiman L., Friedman J.H., Olshen R.A., and Stone P.J. Classifi-

cation and Reggression Trees. Wadsworth, Belmont, CA, 1984.

4. Keim D.A. Visual database exploration techniques. Tutorial at

Int. Conf. on Knowledge Discovery and Data Mining, 1997.

5. Mehta M., Agrawal R., and Rissanen J. SLIQ: A Fast Scalable

Classifier for Data Mining. In Advances in Database Technology,

Proc. 5th Int. Conf. on Extending Database Technology, 1996.

6. Michie D., Spiegelhalter D.J., and Taylor C.C. Machine Learning,

Neural and Statistical Classification. Ellis Horwood, 1994.

See also http://www.ncc.up.pt/liacc/ML/statlog/datasets.html.
V

Visual Clustering

MIKE SIPS

Stanford University, Stanford, CA, USA

Synonyms
Visual mining; Visual data mining
Definition
Synthesis of computational methods and interactive

visualization techniques that represents a clustering

structure, defined in higher dimensions to the human

analyst in order to support the human analyst to ex-

plore and refine the clustering structure of high dimen-

sional data spaces based on his/her domain knowledge.

Historical Background
The advancements made in computing technology

over the last two decades allow both scientific and

business applications to produce large data sets with

increasing complexity and dimensionality. Automated

clustering algorithms are indispensable for analyzing

large n-dimensional data sets but often fall short to

provide completely satisfactory results in terms of

quality, meaningfulness, and relevance of the revealed

clusters. With the increasing graphics capabilities of

the available computers, researchers realized that an

integration of the human into the clustering process

based on visual feedbacks helps to improve the effec-

tiveness of automated clustering algorithms. A synthe-

sis of automated clustering algorithm and visualization

usually does not only yield better clustering results, but

also a higher degree of user satisfaction and confidence

in the findings.

Foundations
Clustering is one of the basic data analysis tasks. It is

a process of organizing data into similar groups. Unlike

classification, clustering is unsupervised learning.

In particular, the classes are unknown and no training

set with pre-computed class labels is available. A clus-

tering algorithm in general can be seen as an external

source that labels the data.

Automated clustering algorithms are indispensable

in analyzing large n-dimensional data spaces, but they

often fall short in computing completely satisfactory

results. In general, two interconnected reasons can be

observed. First, many clustering algorithms use assump-

tions about specific properties of clusters either as built-

in defaults or as input parameter settings. Automated

clustering algorithms are very sensitive to these input

parameters. Analysts often get different clustering results

even for slightly different parameter settings. Useful

parameter settings are in general hard to determine a

priority because humans have huge difficulties in under-

standing the impact of different parameter settings on

the revealed clusters; especially in n-dimensional data

3356V Visual Clustering
spaces. Second, large n-D data spaces often have skewed

distributions. The density, distribution and shape of the

clusters are quite diverse in different subspaces. Skewed

distributions are in general difficult to reveal using just

one global parameter setting.

A variety of different visual clustering approaches

have been proposed. Visual clustering can be classified

into four common approaches, based on their mecha-

nism to incorporate the data analyst into the clustering

process. Several exploratory data analysis systems allow

an interactive exploration of a given clustering structure

based on projections. The aim is tomake a given cluster-

ing structure in n-D interpretable for the human. A few

visual clustering approaches are extensions of an opti-

mized clustering algorithm with advanced visualization

techniques. Other approaches extract the clustering

structure based on the analyst’s feedback. In these sce-

narios, clusters are characterized based on the analyst’s

specific domain knowledge. More recently, novel data

analysis techniques from related disciplines such as

machine learning or statistics supporting visual cluster-

ing have been proposed. An interesting approach uses

visualization to support the selection of subspaces that

contain strong clusters. Another interesting approach is

Self-Organizing Maps.

Visual Exploration of a Given Clustering Structure

Many interactive systems use orthogonal standard pro-

jections to visualize the given clustering structure of an

n-dimensional data space. Orthogonal standard pro-

jections are widely used in exploratory data analysis,

because they are easy to understand. Unlike in unla-

beled data, the data item’s class labels are exploited in

these approaches to find interesting projections of the

clustering structure, i.e., projections that preserve

properties of the clusters.

The n23Tool proposed by Yang [15] uses 3–D

cluster-guided projections [5]. The idea of cluster-

guided projections is to find a 3–D subspace that neatly

separates four given clusters. A cluster-guided projec-

tion is based on the following observation. Any com-

bination of four distinct and non co-linear cluster

centers defines a unique 3-D subspace. Moreover,

such a subspace neatly separates the four clusters, and

in addition it also preservers the inter-cluster distance

between any two of the cluster centers. To support an

efficient exploration of clusters in n-dimensional data

spaces, the n23 tool combines cluster-guided projec-

tions with Grand Tour [3]. A cluster-guided tour
allows an analyst to quickly get an impression of all

clusters by smoothly moving through the space of

cluster-guided projections.

Koren and Carmel [11] propose an alternative mea-

sure of goodness to preserve the clustering structure in

projections. The basic idea is to weight the distances

between points differently depending on whether they

have the same class label. Given this objective function,

the approach then searches for the best linear transfor-

mation of the n-dimensional data. This method has a

significant advantage in comparison to traditional PCA

or MDS, because it captures the cluster structure of the

data, and in addition the intra-cluster shapes. One

general problem with general projections and embed-

dings is that users may have trouble interpreting the

display. Another problem is that these approaches work

well whether the clusters are neatly separated in n–D

or the data contains only small amounts of noise.

The Self-Organizing Map (SOM) is a neural net-

work algorithm based on unsupervised learning (see

[10] for further readings). The basic idea is to stretch

a 1-D or 2-D neuron grid through the data. The lattice

of the grid can be either rectangular or hexagonal. Each

neuron is represented by an n-dimensional prototype

vector. During the iterative training of a SOM, the

neurons become the cluster means, and points closest

to the neurons are considered to belong to that cluster.

Intuitively, a SOM can be seen as a constraint k-means

algorithm (the net of neurons is very flexible and folds

onto the data clouds).

SOM’s can be used to visualize the clustering struc-

ture of an n-dimensional data space. The 1-D or

2-D grids get wrapped into a flat 2-D layout [12].

An alternative visual representation of the clustering

structure can be achieved by visualizing either the

distances of each grid unit to its neighboring grid

units or the similarity of grid units. In most cases,

gray shading (U-Matrix) and geometric shapes

(Distance-Matrix) are used to represent distances to

neighboring grid units, and color to show similarity of

grid units (similarity coloring). A detailed discussion

of SOM-based data visualization techniques is pre-

sented in [14].

Extension of an Optimized Clustering Algorithm

An interesting extension of OptiGrid [8] with both an

iconic visualization technique and kernel- density

plots is HD-Eye [9]. OptiGrid is a density-based clus-

tering algorithm that uses contracting projections and

Visual Clustering V 3357
separators to build up an n-dimensional grid. Clusters

are defined as highly populated grid cells.

HD-Eye considers clustering as a partitioning

problem. A projection is of potential interest in finding

cluster separators whether it neatly separates a number

of clusters in the projected space. Finding interesting

projections and specifying good separators are two

difficult problems; both are difficult to compute auto-

matically. The basic idea of HD-Eye is to allow specific

user feedbacks in two crucial steps of the partitioning

process. To support the user in surveying the vast set of

orthogonal projections in order to find potential useful

projections, HD-Eye employs an abstract iconic dis-

play (Fig. 1). The shapes of the icons are determined

based on the number of maxima of the data’s density

function, and how well the maxima are separated in

the projections. The color of the icons represents the

number of data items belonging to a maxima. Once

a potential interesting projection has been selected,

HD-Eye provides 1-D/2-D color-based density plots

for a further analysis of the projection. Density plots
Visual Clustering. Figure 1. The HD-Eye interfaces has three

properties of the projections, 1–D and 2–D kernel-density plo

separator tree. Clockwise starting from the top: separator tree

histogram, 1–D color-based density plots, iconic representatio

density plot. Figure is taken from the exploration of a large mo

Hinneburg).
easily allow the analyst to check whether a projection

separates a number of clusters well.

The HD-Eye approach doesn’t require that a pro-

jection neatly separates all clusters but at least two

clusters. HD-Eye follows an iterative partitioning

process. Based on his/her domain knowledge and intu-

ition, the analyst interactively selects interesting projec-

tions from the iconic display. Then, the analyst defines

useful separators within the density plots by drawing

either a split line (linear partitions) or a split polygon

(non-linear partitions). The analyst can easily follow

the interactive partitioning process by inspecting the

separator tree. After each interactive partitioning, the

clusters get refined, i.e., highly populated regions based

on the refined grid, and added into the separator tree.

Another interesting approach is OPTICS [2]

(Fig. 2). OPTICS is an extension of the DBSCAN [6]

algorithm and creates a one-dimensional ordering of

the data items. The ordering of the data items repre-

sents its density-based clustering, which can be

obtained from a broad range of input parameter
main visual components – the iconic display showing

ts for a further analysis of selected projections, and the

, iconic representation of 1–D projections, 1–D projection

n of multi dimensional projections and color-based 2D

lecular biology data set. (used with permission of Alexander

V

Visual Clustering. Figure 2. The figure shows an example data (Fig. 2a) and its reachability plot (Fig. 2b) – objects are on

the x-axis together with their reachability values on the y-axis. (used with permission of Mihael Ankerst).

3358V Visual Clustering
settings. Clusters in DBSCAN are determined based on

e and MinPt parameters, when e is the radius of a local
neighborhood around each data item, and MinPt

determines the minimal number of data items in the

local neighborhood. The basic observation of OPTICS

is that given a constant MinPt value, density-based

clusters with respect to a higher density (lower e) are
completely contained in density-based clusters with

respect to a lower density (greater e).
The ordering of the data items can be used to visualize

how the data items are clustered. These visualizations are

called reachability plots. The data items are visualized

according to the clustering ordering on x-axis, together

with their associated reachability distance on y-axis. In-

tuitively, data items sharing a common cluster are close

to each other in the cluster ordering and have similar

reachability distances. The reachability distance jumps

whether a different cluster starts in the ordering. In

addition, the ordering of the data items can be used to

compute a cluster hierarchy (dendrogram).

Clustering Based on Visual User Feedback and

Refinement

An interesting approach is presented by Aggarwal [1].

The basic idea is similar to HD-Eye, i.e., the search for

projection that neatly separates clusters. In contrast to
HD-Eye that uses an iconic display to show properties

of the projections and then supports an interactive

search for interesting projections, Aggarwal proposed

an iterative cluster partitioning based an automated

subspace detection algorithm.

The idea of the algorithm is straightforward and

follows an iteration process. In each iteration step, a

number of data items called polarization points are

randomly chosen from the data set. Next, an analytic

method is used to find a lower-dimensional subspace

that neatly groups the data items around the polariza-

tion points. Once an interesting projection has been

found, HD-Eye and Aggarwal use kernel-density plots

of the projected data in order to discover the clustering

structure. In contrast to the HD-Eye approach that

allows an interactive separation of clusters in the den-

sity plots, Aggarwal’s approach separates clusters by

choosing noise levels.

The iterative cluster partition process terminates

whether all data items belong at least to one cluster.

The final clustering structure is extracted in a frequent

item analysis based on the recorded user selections in

each partitioning step. To control the granularity of

the cluster separation in the final clustering structure,

the analyst can choose different noise levels for the

same projection.

Visual Clustering V 3359
ClusterSculpture [13] is an interesting approach

that allows an analyst to interactively refine an initially

computed hierarchical clustering structure. The hierar-

chical clustering structure is described as a dendro-

gram. The analyst refines that dendrogram by either

splitting or merging a number of nodes; if it’s necessary

the analyst might want to reorganize the whole dendro-

gram. ClusterSculpture supports the analyst in decid-

ing whether a node should be split or merged by

presenting the relationship between the attribute values

and the clustering structure, as well as the distances of

neighboring data items around a selected cluster.

ClusterSculpture provides three main visualiza-

tions. A dendrogram shows the cluster hierarchy, and

it allows the analyst to quickly survey the clustering

structure. The distribution of the attribute values in
Visual Clustering. Figure 3. The figure shows a visualization

dimensions. The two histograms at the bottom of the image a

an interactive fashion. (used with permission of Diansheng G
each dimension are shown in a point map. Each data

item is visualized as a horizontal line with one colored

pixel for each dimension. The color of each pixel repre-

sents the normalized attribute value in that dimension.

Additionally, the data items are sorted along the y-axis

to emphasize the clustering structure. The distances of

neighboring data points around the leaf cluster closest

to a selected data item is presented when the analyst

selects a data item in the point map. Three different

colors are used to represent the selected data item, and

whether or not data items share the same neighbor with

the selected data item.

A number of exploratory data analysis systems have

interactive visualizations to support the analyst in

finding clusters. GGobi [4] supports the analyst by

providing a spin-and-brush mechanism. Starting with
of the entropy matrix of a real cancer data set with 72

llows the analyst to adjust the classification and coloring in

uo).

V

3360V Visual Content Analysis
an initial projection of the data, the analyst tours

through the space of possible projections until an

interesting projection is reached. The analyst then paints

a cluster in that projection using an easy to distinguish

color, and continues touring until no more clusters

are revealed.

Visualization Used as Interactive Feature Selection for

Clustering

An interesting subspace selection method that effec-

tively identifies subspaces determining strong clusters

is proposed by Guo [7]. The method is based on the

computation of the pairwise conditional entropy values

of 2-D subspaces. The pairwise conditional entropy

values are visualized in the so-called entropy matrix,

which allows the data analyst to easily understand rela-

tionships among dimensions (Fig. 3). Interesting

multi-dimensional subspaces can be either automati-

cally extracted or visually identified in the entropy

matrix. The selected dimensions can be fed into a

clustering algorithm in order to improve the effective-

ness of the clustering results. Although designed as a

feature selection method, the entropy matrix allows the

analyst to get an understanding of the overall cluster-

ing structure of an n-dimensional data space.

Key Applications
Effective mining of large traditional relational data-

bases, complex 2-D and 3-D multimedia databases,

geo-spatial databases, and bio-databases.
Cross-references
▶Automated Clustering Algorithms

▶ Exploratory Data Analysis

▶Visual Analytics

▶Visual Data Mining

Recommended Reading
1. Aggarwal C.C. A human–computer interactive method for pro-

jected clustering. IEEE Trans. Knowl. Data Eng., 16(4):448–460,

2004.

2. Ankerst M., Breunig M.M., Kriegel H.P., and Sander J. OP-

TICS: ordering points to identify the clustering structure. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 1999,

pp. 49–60.

3. Asimov D. The grand tour: a tool for viewing multidimensional

data. SIAM J. Sci. Stat. Comp., 6(1):128–143, 1985.

4. Cook D. and Swayne D.F. Interactive and Dynamic Graphics for

Data Analysis – With R and GGobi. Springer Science and Busi-

ness Media, New York, NY, USA, 2007.
5. Dhillon I.S., Modha D.S., and Spangler W.S. Visualizing

Class Structure of Multidimensional Data. In Proc. 30th Symp.

on the Interface: Computing Science and Statistics, 1998,

pp. 488–493.

6. Ester M., Kriegel H.P., Sander J., and Xu X. A density-based

algorithm for discovering clusters in large spatial databases

with noise. In Proc. 2nd Int. Conf. on Knowledge Discovery

and Data Mining, 1996, pp. 226–231.

7. Guo D. Coordinating computational and visual approaches for

interactive feature selection and multivariate clustering. Inform.

Vis., 2(4):232–246, 2003.

8. Hinneburg A. and Keim D.A. Optimal grid-clustering: towards

breaking the curse of dimensionality in high-dimensional clus-

tering. In Proc. 25th Int. Conf. on Very Large Data Bases, 1999,

pp. 506–517.

9. Hinneburg A., Keim D.A., and Wawryniuk M. HD-Eye: visual

mining of high-dimensional data. IEEE Computer Graphics and

Applications, 19(5):22–31, 1999.

10. Kohonen T. Self-Organizing Maps. third edn., Springer Series in

Information Science, 2001.

11. Koren Y. and Carmel L. Robust Linear Dimensionality Reduc-

tion. IEEE Trans. Vis. Comput. Graph., 10(4):459–470, 2004.

12. Kraaijveld M., Mao J., and Jain A. A nonlinear projection meth-

od based on kohonen’s topology preserving maps. IEEE Trans.

Neural Networks, 6(3):548–559, 1995.

13. Nam E.J., Han Y., Mueller K., Zelenyuk A., and Imre D.

ClusterSculptor: A Visual Analytics Tool for High-Dimensional

Data. In IEEE Symp. on Visual Analytics Science and Technolo-

gy, 2007, pp. 75–82.

14. Vesanto J. Som-Based Data Visualization Methods. Intell. Data

Analy., 2(3), 1999.

15. Yang L. Interactive exploration of very large relational datasets

through 3D dynamic projections. In Proc. 6th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2000,

pp. 236–243.
Visual Content Analysis

MARCEL WORRING, CEES SNOEK

University of Amsterdam, Amsterdam,

The Netherlands

Synonyms
Video indexing; Image indexing

Definition
Visual content analysis is the process of deriving mean-

ingful descriptors for image and video data. These

descriptors are the basis for searching large image

and video collections. In practice, before the process

starts, one applies image processing techniques which

Visual Content Analysis V 3361

V

take the visual data, apply an operator, and return

other visual data with less noise or specific character-

istics of the visual data emphasized. The analysis con-

sidered in this contribution starts from here, ultimately

aiming at semantic descriptors.

Historical Background
Analyzing the content of visual data using computers

has a long history, dating back to the 1960s. Some

initial successes prompted researchers in the 1970s

to predict that the problem of understanding visual

material would soon be solved completely. However,

the research in the 80s showed that these predictions

were far too optimistic. Even now, understanding visual

data is still a major challenge.

In the 90s a new field emerged, namely content-

based image retrieval (CBIR), where the aim is to

develop methods for searching in large image archives.

Where the computer vision community was publishing

papers on the analysis of 10–50 images, the CBIR

researchers started with 1,000 images or more. Nowa-

days, research papers consider data sets which are orders

of magnitudes larger in size. The paper by Smeulders

et al. [10] reviewed the state-of-the-art in 2000, almost

all of the findings are still very relevant for current

research.

The CBIR field has not only developed itself since

then, it also had amajor impact on the computer vision

field. Large visual collections are also becoming the

standard in computer vision. It also led to newmethods

for analyzing visual data. In early methods for under-

standing the content of the data pre-defined models

were used. In current research, models are learned

automatically from large sets of annotated examples,

based on the appearance of objects in the visual data.

This makes the computer vision algorithms more flexi-

ble and easier to adapt to new data sets.

Video content analysis started later than image

analysis due to the high processing power required.

Computer capacity, however, has increased substan-

tially over the last 10 years making it feasible to process

also large collections of video. Research in video con-

tent analysis started with camera shot segmentation

and simple analysis. Soon the research community

realized that the result of automatic speech recognition

is an important, sometimes decisive, factor in video

content analysis. Best results are obtained if the visual

and audio modalities are analyzed in conjunction [11].

Relying on speech is fine for video programs with a
clear speech signal, nicely separated from environmen-

tal sounds and music. More and more, however, people

create video data without such clear speech, so the role

of visual content has moved to the forefront in video

content analysis again.

So, although visual content analysis started around

50 years ago, it is still an active research area with many

research challenges ahead.

Foundations
Automatically extracting the semantics of visual data is

a notoriously difficult problem which has become

known as the semantic gap [10]:

Semantic gap: The semantic gap is the lack of coin-

cidence between the information that one can extract

from the sensory data, and the interpretation that the

same data has for a user in a given situation.

The existence of the gap has various causes. One

reason is that different users interpret the same visual

data in a different way. This is especially true when the

user is making subjective interpretations of the visual

data. In the following part those subjective interpreta-

tions are not considered. However, also for objective

interpretations like the presence of a car in a picture,

developing automatic methods is still difficult. Conse-

quently, their performance is not optimal. The diffi-

culties are due to the large variations in appearance of

visual data corresponding to one semantic concept.

Cars, for example, come in different models, shapes,

and color. The above causes are inherent to the prob-

lem. Visual analysis methods should address these fun-

damental problems.

There are also variations in appearance which are

not due to the richness of the semantics. Varying the

viewpoint, lighting and other circumstantial condi-

tions in the recording of a scene will deliver different

data, whereas the semantics have not changed. These

variations induce the so called sensory gap, which is

defined as [10]:

Sensory gap: The sensory gap is the gap between the

object in the world and the information in an image

recording of that scene.

One of the consequences of the semantic and sen-

sory gap is the fact that recordings of semantically

different objects might appear more similar than two

recordings of the same object in different recording

conditions. Methods are needed that are minimally

affected by the sensory gap, while still being able to

distinguish objects with different semantics. This is the

3362V Visual Content Analysis
essence of visual content analysis. General methods for

doing the analysis are described next.

Methods for deriving the semantics of visual data

are mostly based on a supervised learning scheme.

In such a scheme, the developer provides the system

with a large set of annotated examples. For all of the

examples, the system extracts low-level features. The

system then uses a machine learner to build a model

for each semantic concept. Now, if a new image or

video without annotation is given, the system again

computes features. It then uses the model to derive

a measure of the probability of the concept being

present in the visual data. An overview of the general

concept based video content analysis scheme is

depicted in Fig. 1.

So, the two main things to consider are the features

to extract and the machine learning scheme.

Features are many, see [10,11] for an extensive

overview. A good starting point for a set of practical

visual features is defined in the MPEG-7 standard [8].

There are different categories of features namely color

features, texture features, shape features, and motion

features, which will now be described.

Color features in their simplest form are global

descriptions of the visual content based on color histo-

grams. There are numerous color spaces to choose

from in which to compute the histogram, including

standardRGB, the intuitiveHSV space, the perceptually

uniform Lab space, or the invariant set of color spaces

in [4]. Methods which use more elaborate methods
Visual Content Analysis. Figure 1. General scheme for conce
than histograms take the color layout into account, in

addition to global characteristics.

Where color is a property which can be measured at

every pixel in the visual data, texture is a measure

which considers patterns in the image. Again, there

is a variety of methods to choose from with varying

characteristics in terms of invariance. Many can be

traced back to statistics on co-occurrence of grey values

in a local neighborhood, or filters emphasizing pat-

terns in certain directions like Gabor filters. In [3], a

convenient set of features for texture description has

been defined based on natural statistics.

Color and texture often form the basis for segment-

ing the visual data in homogeneous regions. This pro-

cess is known as weak segmentation as it is purely

based on the visual data itself, not on the interpretation

of the data. The latter is known as strong segmentation,

which is delineating the contour of a semantic object in

the image.

Strong segmentation is required before shape fea-

tures can be measured. As a consequence, shape features

are only applicable for those applications where the

background can be controlled easily, like the recogni-

tion of logos or a set of objects on a turntable.

A distinction is made here between descriptors that

describe the object as a region, e.g., based on properties

of the medial axis, and measures that take the contour

as the basis, like the curvature scale space descriptor.

In most practical cases, strong segmentation is im-

possible, whereas global descriptors loose too much of
pt-based learning in visual data using annotated examples.

Visual Content Analysis V 3363

V

the spatial information. Some methods therefore focus

on weak segmentation, describing the resulting regions

individually, or move to the detection of key points.

These key points are characteristic points on the con-

tours of objects, which in many cases capture the most

important information of the object [7].

All of the above features are equally important for

video data. However, for video one can also make use

of the temporal dimension. One can analyze the mo-

tion pattern to find the camera motion, track regions

or points of interest through the sequence and describe

their tracks, or derive general measures of the activity

in the scene. These additional information sources can

enhance the interpretation of the data.

Feature extraction yields a feature vector for every

image or video segment. As indicated, for interpretation

of the data, state-of-the-art systems follow a supervised

learning approach.

A good overview of learning methods is presented

in [5]. Although there is a large variety of methods, the

Support Vector Machine has become the standard

choice in most visual indexing schemes [1,14].

The above considers the visual data in isolation,

but often the data has associated text data like the

automatic speech recognition results for video. This

data can be used as an additional source to improve the

understanding of the data. In fact, for some concepts

the textual data gives almost all the clues to interpret the

visual data, others perform best when only the visual

data is used. Relations between the concepts detected

can also provide essential information for some con-

cepts. Therefore, a method like [13], which learns for a

given concept the optimal analysis scheme through

appropriate analysis of the data, is the best choice.

Key Applications
Video content analysis plays a role in various applica-

tion areas, the major ones are considered here.

Broadcasting

The broadcasting field generates enormous amounts of

audio-visual data, which should be stored for later

reference and re-use. Manual annotation is laborious

and expensive. Tools for automatic analysis are of great

importance to deal with this flood of videos.

Narrow Casting

Producing video, up to now, has been limited to major

film studios or specialized companies. Now, every
organization, association or individual can create video

and put it on the web. Even more than for broadcasting

companies, narrow casters have limited resources to

manually analyze the content of their videos.

Law Enforcement

Through the availability of cheap cameras, video con-

tent analysis plays a major role in law enforcement.

There is a need for content analysis to detect and

analyze illicit video material on confiscated hard disks

containing hundreds of gigabytes of video data. In

video surveillance, a single camera generates 7*24

h of video per week. Any visual content analysis

which helps the operator in reducing the load of

watching these video streams is of great importance.

Web Search

There is no need to explain that there is a tremendous

amount of video available on the Internet. Video

search on the web, however, is still mostly limited to

keyword-based search for full video clips. Video con-

tent analysis is needed to delve into the actual content

of all these videos out there.

Future Directions
Obviously the research in video content analysis has

not reached its end yet. On the contrary, the commu-

nity is only beginning to automatically understand the

meaning of visual material. To bring the field a step

further, researchers should tackle the large number of

open questions out there.

Tangential contributions will introduce features

with higher discriminatory power, while having better

invariant properties, and new machine learning tech-

niques, better suited for the specifics of visual data.

A new direction is tackling the major bottleneck in

supervised learning, namely the amount of training

examples needed, by employing user tagged visual

data like Flickr. The latter annotations are less accurate

than the current practice in supervised learning, but the

amount of training samples is orders ofmagnitude larger.

Another promising direction is the use of capture

time meta data, contextual information, and social

networks to provide additional clues for interpreting

the visual data.

Data Sets
The research community in video content analysis

is very active. In recent years there was an important

3364V Visual Content Analysis
role for benchmarks encouraging research in the vari-

ous subfields. They do so by providing large test col-

lections and uniform evaluation procedures. The

benchmarks provide a forum where researchers can

compare their results, bringing the research a big step

further every year.

For visual content analysis of images the most

elaborate benchmark is the PASCAL VOC challenge

[2]. This benchmark contains image sets of several

hundreds to thousands of images with a ground truth

at the semantic level, a box containing the object, as

well as complete outlines of the object in the scene.

In this manner, it provides a challenging data set

for testing.

Video analysis, especially for the purpose of search,

has been studied for several years now in the TRECVID

benchmark organized by NIST. In this benchmark,

videos from mostly news and other broadcasts have

been semantically annotated at the shot level [9].

Collections contain hundreds of hours of video

material. Hence they not only pose a challenge at the
Visual Content Analysis. Figure 2. Indication of the state-of

clear relation between the performance and the amount of a
analysis level, but also at the computer performance

level. In addition, one can see that the analysis of such

data sets requires expertise from different fields,

making the threshold to work on such collections

large. Therefore, the MediaMill Challenge [12] has

taken the idea of making shared data sets available

one step further. This resource not only contains anno-

tations of the TRECVID data, but also a collection of

five pre-cooked experiments. To allow an easy start on

the topic, the results of each sub-step are provided.

Later Columbia and the VIREO group made similar

resources available [6,15]. The above efforts allow

for visual database research without actually having

to perform the visual analysis.

Experimental Results
The performance of video analysis algorithms for in-

formation retrieval is typically measured by the average

precision. This is a single-valued measure proportional

to the area under a recall-precision curve. This value is

the average of the precision over all relevant judged
-the-art performance in video content analysis. Note the

nnotated examples.

Visual Data Mining V 3365
shots. Hence, it combines precision and recall into one

performance value. To be precise, let Lk = {l1,l2,...,lk} be

a ranked version of the answer set A. At any given rank

k let R \ Lk be the number of relevant results in the top

k of L, where R is the total number of relevant results.

Then average precision is defined by:

average precision ¼ 1

R

XA
k¼1

R \ Lk

k
lðlkÞ; ð1Þ

where indicator function l(lk) = 1 if lk 2 R and 0 oth-

erwise. As the denominator k and the value of l(lk) are
dominant in determining average precision, it can be

understood that this metric favors highly ranked rele-

vant results. To give an indication of the state-of-the-

art, Fig. 2 gives an overview of results for TRECVID

data using the features defined for the MediaMill chal-

lenge. Performance is shown as function of number of

annotated examples as this has proven to be an impor-

tant indicator for the quality of the result.

One can conclude that performance is not perfect,

but a rapid increase in performance over the last years

can be observed. Hence, one could expect that more

and more reliable concept detectors will become avail-

able in the coming years.
Cross-references
▶Content-Based Video Retrieval

▶Decision Tree Classification

▶ Image Retrieval

▶Multimedia Databases

▶Multimedia Information Retrieval

▶Video Scene and Event Detection

▶Video Content Analysis
V

Recommended Reading
1. Chang C.C. and Lin C.J. LIBSVM: a library for support vector

machines. 2001, software available at: http://www.csie.ntu.edu.

tw/~cjlin/libsvm/.

2. Everingham M., van Gool L., Williams C., Winn J., and Zisser-

man A. The PASCAL visual object classes homepage. Available

at: http://www.pascal-network.org/challenges/VOC/.

3. Gemert J., Geusebroek J., Veenman C., Snoek C., and

Smeulders A. Robust scene categorization by learning image

statistics in context. In Proc. Int. Workshop on Semantic

Learning Applications in Multimedia, 2006.

4. Geusebroek J., Boomgaard R., Smeulders A., and Geerts H.

Color invariance. IEEE Trans. Pattern Anal. Mach. Intell.,

23(12):1338–1350, 2001.

5. Jain A., Duin R., and Mao J. Statistical pattern recognition: A

review. IEEE Trans. Pattern Anal. Mach. Intell., 22(1):4–37, 2000.
6. Jiang Y.G., Ngo C.W., and Yang J. VIREO-374: LSCOM semantic

concept detectors using local keypoint features. Available at:

http://www.cs.cityu.edu.hk/~yjiang/vireo374/.

7. Lowe D.G. Distinctive image features from scale-invariant key-

points. Int. J. Comput. Vis., 60(2):91–110, 2004.

8. Sikora T. The MPEG-7 visual standard for content description-an

overview. IEEE Trans. Circ. Syst. Video Tech., 11:696–702, 2001.

9. Smeaton A. Large scale evaluations of multimedia information

retrieval: The TRECVid experience. In Proc. 4th Int. Conf. Image

and Video Retrieval, 2005, pp. 19–27.

10. Smeulders A., Worring M., Santini S., Gupta A., and Jain R.

Content based image retrieval at the end of the early years. IEEE

Trans. Pattern Anal. Mach. Intell., 22(12):1349–1380, 2000.

11. Snoek C. and Worring M. Multimodal video indexing: A review

of the state-ofpascal-the-art. Multimed. Tool Appl., 25(1):5–35,

2005.

12. Snoek C., Worring M., van Gemert J.C., Geusebroek J.M., and

Smeulders A. The challenge problem for automated detection of

101 semantic concepts in multimedia. In Proc. 14th ACM Int.

Conf. on Multimedia, 2006.

13. Snoek C., WorringM., Geusebroek J., Koelma D., Seinstra F., and

Smeulders A. The semantic pathfinder: Using an authoring

metaphor for generic multimedia indexing. IEEE Trans. Pattern

Analy. Mechine Intell., 28(10):1678–1689, 2006.

14. Vapnik V. The nature of statistical learning theory. Springer-

Verlag, New York, NY, USA, 2nd edn., 2000.

15. Yanagawa A., Chang S.F., Kennedy L., and Hsu W. Columbia

university’s baseline detectors for 374 LSCOM semantic visual

concepts. Columbia University, 2007, aDVENT technical report

222-2006-8.
Visual Data Analysis

▶Visual Analytics

▶Visual Data Mining
Visual Data Exploration

▶Dense Pixel Displays

▶Disclosure Risk
Visual Data Mining

SIMEON J. SIMOFF

University of Western Sydney, Sydney, NSW, Australia

Synonyms
Visual data analysis; Visual analysis; Visual discovery;

Immersive data mining; VDM

3366V Visual Data Mining
Definition
Visual data mining (VDM) is the process of interaction

and analytical reasoning with one or more visual repre-

sentations of abstract data. The process may lead to the

visual discovery of robust patterns in these data or

provide some guidance for the application of other

data mining and analytics techniques. It facilitates

analysts in obtaining deeper understanding of the un-

derlying structures in a data set. The process relies on

the tight interconnectedness of tasks, selection of visual

representations, the corresponding set of interactive

manipulations, and respective analytical techniques.

Discovered patterns form the information and knowl-

edge utilized in decision making.

Historical Background
Visual exploration of large data sets had been used as a

complementary technique to data mining in order to

obtain additional information about the data set. Since

the early 1990s there has been recognition of the need

for specific visualization techniques for large data sets

that enable data mining tasks. The term ‘‘visual data

mining’’ emerged in the late 1990s, labeling such tech-

niques combined with interactive functionality and

some guidelines for sense making from different visual

displays of the data and/or the output of data mining

algorithms. Ankerst’s and Niggemann’s theses around

the millennium considered the establishment of more

systematic scientific and methodological foundations

of the field. The 3D Visual Data Mining (3DVDM)

project in Aalborg University added a new twist, plac-

ing the analyst literally ‘‘within’’ the visual representa-

tion of the data set in various stereoscopic virtual

reality systems.

During 2001–2003 a series of workshops on visual

data mining, conducted in conjunction with major

KDD conferences on both sides of the Atlantic, brid-

ged scholars in the fields of data mining and knowle-

dge discovery in databases, information visualization,

human-computer interaction as well as cognitive

psychologists related to computing, industry practi-

tioners, and developers of visual data mining tools.

They established some common elements that need

to be specified when developing methodologies for

visual data mining, including: (i) the initial assump-

tions posed by the respective visual representations;

(ii) the set of interactive operations over the respect-

ive visual representations and guidelines for their

application and interpretation, and; (iii) the range of
applicability and limitations of the visual data mining

methodology. The majority of the works, published in

the proceedings of these workshops after completion,

have made their way into the books and special issues,

referred in section ‘‘Recommended Reading’’. These

and numerous subsequent research and development

efforts led to the establishment of visual data mining as

an essential component of visual analytics.

Foundations
Visual data mining integrates the abilities of the

human perceptual system for pattern recognition and

human reasoning from images, with the data proces-

sing and display power of computers, aiming at capi-

talizing on the best of both worlds. From a disciplinary

perspective, visual data mining emerged as the conflu-

ence of several disciplines, the main of which are

grouped into two clusters in Fig. 1. On the right-

hand side are those, primarily related to computing,

when on the left-hand side are those primarily related

to humans. From the perspective of scientific funda-

mentals, though not exhaustive, this list shows the

diversity of sources that contribute to the methods

and approaches developed in visual data mining.

The VDM process relies on the interactive visual

processing pipeline, shown in Fig. 2. Each step within

the pipeline involves interaction with the analyst and

all the iterative loops in the process close via the ana-

lyst. Data mining algorithms can be used to assist the

process before any visualization has been considered,

and/or after a visual interaction with the data.

Being the core of this human-centred process, vi-

sual processing is constrained by the capacity of the

human visual system to somewhat 106 to 107 observa-

tions. Large data sets easily surpass this constraint.

Consequently, essential for visual data mining are

low-dimensional visual representations of high dimen-

sional data that (i) preserve relations between the data

points in the high-dimensional space, and (ii) can

make such relations visually detectable. Coupling of

visualization algorithms with statistical techniques is

one way it generating visual data representations that

more accurately present the underlying properties of

the data. Such visual representations are expected to fit

consistently certain metaphors that are close to human

mental models, as humans depict structures in the data

by forming a mental model which captures only a gist

of the information. These are important design con-

siderations in visual data mining, as visualization

Visual Data Mining. Figure 2. Visual data mining is a human-centred interactive analysis and discovery process.

Visual Data Mining. Figure 1. Visual data mining as a confluence of disciplines.

Visual Data Mining V 3367

V

algorithms display data sets that usually lack inherent

2D and 3D semantics.

Asmanipulation of visual representations of the data

set (or subsets of it) is essential in enabling visual pattern

detection, the success of the process illustrated in Fig. 2

depends on: (i) the breadth of the collection of visuali-

zation techniques, (ii) the consistency of the design of

these visual representations, (iii) the ability to remap
interactively the data attributes to the parameters of the

visual representations, (iv) the set of functions for inter-

acting with the visualization, and (v) the capabilities that

these functions offer in support of the sense-making

process. From an analyst point of view, the suite of visual

representations and interactive techniques is the toolbox

for constructing ‘‘virtual worlds’’ from the data. The

visual metaphors in such worlds are the vehicles to

3368V Visual Data Mining
transfer meaning from the visual structure of the data

into the semantics of the underlying problem. The trans-

fer is enabled by the rules of behavior of the visualization

elements that constitute a visual language. The consis-

tent design of visual languages and techniques for inter-

action with different visual representations of a dataset

take into account the specifics of human long-term and

short-term memory, knowledge of interaction with vir-

tual environments, including frames of reference, orien-

tation, and navigation. These considerations are also

central in order to support the sense-making process in

Fig. 2 (the process itself has several iterative steps that

are not shown in Fig. 2).

Dealing with large volumes of data means scalability

and interactivity means real-time response of the visu-

alization algorithms in the toolbox in Fig. 2, and the

overall visual processing pipeline in order to analyze

the details available in the large databases. Interactivity

also means support of various visual data mining

operations, for example, a visual drill down or visual

clustering.

The presentation of the extracted information and

knowledge during the decision making step in Fig. 2

usually requires a different visualization approach to

the visual data mining step. Such separation of visual

analysis tasks from the visual presentation of the

results is reflected in contemporary visual data mining

technology.

Key Applications
Visual data mining is applied in a wide range of

areas of human endeavor, which generate large

volumes of otherwise incomprehensible data. These

include science, business, technology development,

medicine, and healthcare. Chemistry and new drug

discovery are examples of successful application of

VDM methods. The applications in various fields pro-

vide feedback to the development of VDM technology,

in terms of integration of 1D, 2D, 2.5D, and 3D visual

representations, respective sets of interactive opera-

tions, and evaluations of the visual data mining cap-

abilities and interfaces by the analysts in respective

fields.

Special key application areas of visual data mining

are the analysis of geospatial and spatio-temporal data

sets, visual link analysis and visual text mining. Spatial

data sets include spatially related attributes, which pro-

vides guiding information for the choice of visual
representations and interaction methods. Visual link

analysis is applied in areas where there is a need for

identification of hidden links and chain of links between

the attributes in a data set, for example, the fraud detec-

tion type of problems in different environments –

government, corporate, insurance, retailing, and crime.

These problems have the same feature: different cases of

fraud may differ in terms of the patterns that reflect

them in the data, and the nonvisual data mining and

analytics methods may not be able to detect them. The

advent of social computing has led to embedding visual

link analysis technologies in the social computing

systems. Visual text mining uses a variety of statistical

techniques to relate groups of words with groups of

documents, and then generates visual data summariza-

tions using different metaphors.

Future Directions
Visual data mining, as a discovery mode of interaction

with databases, plays a central role in visual analytics.

Though interaction has been recognized, there is a

strong demand on the development of interactive visua-

lizations, which are fundamentally different from the

static visualizations. Designed with the foundations of

perceptual and cognitive theory in mind, and focused

on supporting the processes and methods in visual

data mining, these visual data representations are

expected to be relevant to specific tasks and effective

in terms of achieving the analytics goals. Within this

direction essential are methods for: (i) design and evalu-

ation of visualizations for visual data mining, including

metrics for the evaluation of the interactivity of

visualizations and their ability to facilitate discovery

processes; (ii) visualization techniques of projections of

high-dimensional data that preserve the statistical pro-

perties of the patterns in the original data; (iii) further

integration of data visualization and sonification and

development of interactive mining methods, including

immersive ones, that operate with such data representa-

tions; and (iv) enabling VDM systems to support re-

search strategies and inquiry styles of different data

analysts.

Experimental Results
As a rule, research papers in visual data mining, report-

ing on novel visual analysis techniques, present

the results from the application of respective tech-

niques to several data sets. Papers, which explore

Visual Data Mining V 3369

V

human-computer interaction aspects, report the out-

comes of observational case studies and usability

experiments.

Data Sets
Data sets are available from the KDNuggets site (http://

www.kdnuggets.com/datasets/index.html), government

bureaus of statistics, research centers and other sources.

For visual link analysis the Enron organizational e-mail

data set is available at http://www.cs.cmu.edu/~enron/.

URL to Code
This selective rather than inclusive sample of tools is

divided into two categories: (i) visual data exploration

and mining tools, and (ii) general visualization plat-

forms that can be used to develop visual data mining

tools.

Visual Data Exploration and Mining

Open Source Xmdv Tool: Source: http://davis.wpi.

edu/�xmdv/.

Offers five methods for displaying flat form data and

hierarchically clustered data and variety of interac-

tive operations.

GGobi: http://www.ggobi.org/

Offers similar variety of visualization and interaction

methods.

VizRank: http://www.ailab.si:8088/supp/bi-vizrank

Offers informative scatter-plot projections in high di-

mensional class-labeled data.

3DVDM: http://www.inf.unibz.it/dis/projects/3dvdm/

download.html

Offers tools for exploring data in 3D virtual reality

environments.

Commercial Miner3D: http://www.miner3d.com/

Highly flexible visual data mining tool with many

display and interaction methods.

NetMap Analytics: http://www.netmap.com.au/

Tool for visual link analysis. Separate visual analysis

and visual presentation modes (the presentation

mode bears some similarity to VisualLinks

(http://www.visualanalytics.com)).

NetMiner: http://www.netminer.com/

A nice collection of visual metaphors for interactive

analysis of graph structures in data sets.

IN-SPIRE: http://in-spire.pnl.gov/- visual text miner.
General Visualization Engines and Development Tools

Open Source VTK: http://www.vtk.org/

The Visualization ToolKit (VTK) software system for

3D computer graphics, image processing, and

visualization.

Mondrian: http://moose.unibe.ch/tools/mondrian

Information visualization engine that lets the visuali-

zation be specified via a script, hence, can be uti-

lized for development of specialized visual data

mining tools.

ParaView: http://www.paraview.org/New/index.html

Visualization platform that supports distributed

computational models for processing large data

sets

Gapminder: http://www.gapminder.org

Based on the original Trendalyzer tool for knowledge

extraction from interactive animation of statistical

time-series, the development has been overtaken by

Google.

Cross-references
▶Data Mining

▶Human-Computer Interaction

▶ Information Visualization

▶Knowledge Discovery in Data Bases

▶Visual Analytics

▶Visual Clustering

▶Visual Information Processing

Recommended Reading
1. Ankerst M. Visual Data Mining. Faculty of Mathematics and

Computer Science, University of Munich, Munich, 2000.

2. Chen C. Information Visualization: Beyond the Horizon.

Springer, London, 2004.

3. Chittaro L., Combi C., and Trapasso G. Data mining on tempo-

ral data: a visual approach and its clinical application to hemo-

dialysis. J. Visual Lang. Comput., 14:591–620, 2003.

4. Demšar U.K. Investigating visual exploration of geospatial data:

an exploratory usability experiment for visual data mining.

Comput. Environ. Urban., 31:551–571, 2007.

5. de Oliveira F., Crisina M., and Levkowitz H. From visual data

exploration to visual data mining: a survey. IEEE T. Vis. Com-

put. Gr., 9(3):378–394, 2003.

6. Isenberg P., Tang A., and Carpendale S. An exploratory study of

visual information analysis. In Proc. SIGCHI Conf. on Human

Facters in Computing Systems, 2008.

7. Keim D.A., Mansmann F., Schneidewind J., and Ziegler H.

Challenges in visual data analysis. In Proc. Int. Conf. on Infor-

mation Visualization, 2006.

8. Keim D.A. and North S.C. Visual data mining in large geospatial

point sets. IEEE Comput. Graph., 24(5):36–44, 2004.

3370V Visual Discovery
9. Keim D.A., Sips M., and Ankerst M. Visual data-mining techni-

ques. In Visualization Handbook, Hansen Johnson Elsevier,

Amsterdam, 2005, pp. 831–843.

10. Kovalerchuk B. and Schwing J. (eds.). Visual and Spatial Analy-

sis: Advances in Data Mining, Reasoning, and Problem Solving.

Springer, Dordrecht, 2004.

11. Niggemann O. Visual Data Mining of Graph-Based Data.

Department of Mathematics and Computer Science, University

of Paderborn, Paderborn, Germany, 2001.

12. Shneiderman B. Inventing discovery tools: combining infor-

mation visualization with data mining, In Proc. Discovery Sci-

ence, 2001, pp. 17–28.

13. Simoff S.J., Böhlen M., and Mazeika A. (eds.). Visual Data

Mining: Theory, Techniques and Tools for Visual Analytics.

Springer, Heidelberg, 2008.

14. Soukup T. and Davidson I. Visual Data Mining: Techniques and

Tools for Data Visualization and Mining. John Wiley & Sons,

London, 2002.

15. Thomas J.J. and Cook K.A. Illuminating the Path: The Research

and Development Agenda for Visual Analytics. IEEE CS Press,

Silver Spring, MD, 2005.
Visual Discovery

▶Visual Data Mining
Visual Displays of Nonnumerical
Data

▶Visualizing Categorical Data
Visual Displays of Numerical Data

▶Visualizing Quantitative Data
Visual Formalisms

DAVID HAREL, SHAHAR MAOZ

The Weizmann Institute of Science, Rehovot, Israel

Definition
Visual formalisms are diagrammatic and intuitive, yet

mathematically rigorous languages. Thus, despite their

clear visual appearance, they come complete with a

syntax that determines what is allowed, and semantics
that determines what the allowed things mean. The

main emphasis in the visuality is typically placed on

topological relationships between diagrammatic ele-

ments, such as encapsulation, connectedness, and ad-

jacency. Geometric and metric aspects, such as size,

shape, line-style, and color, may also be part of the

formalism. Icons can be used too. Such languages

typically involve boxes and arrows, and are often hier-

archical and modular. Visual formalisms are typically

used for the design of hardware and software systems.

This includes structural as well as more complex be-

havioral specifications.

Historical Background
Two of the oldest examples of visual formalisms are

graphs and Venn diagrams, which are both originally

due to Euler [7,8]. A graph, in its most basic form, is

simply a set of points, called nodes or vertices,

connected by lines, called edges or arcs. Its role is to

represent a set of elements S and some binary relation

R on them. The precise meaning of the relation R is

part of the application and has little to do with the

mathematical properties of the graph itself. Certain

restrictions on the relation R yield special classes of

graphs that are of particular interest, such as ones that

are connected, directed, acyclic, planar, or bipartite.

Graphs are used intensively in all branches of comput-

er science; the elements represented by the nodes range

from the most concrete (e.g., physical gates in a circuit

diagram) to the most abstract (e.g., complexity classes

in a classification scheme), and the edges have been

used to represent many kinds of relations, e.g., logical,

temporal, causal, or functional. Many of the funda-

mental algorithms in computer science are related to

graphs. Some open problems are related to graphs too,

such as the problem of whether graph isomorphism

can be decided in polynomial time.

A hypergraph is a generalization of a graph, where

the relation R is not necessarily binary (in fact, it need

not have a fixed arity). The corresponding edges are

called hyperedges. Hypergraphs have applications in

database theory (see, e.g., [9]). The information con-

veyed by a graph (or a hypergraph) is nonmetric, and

is captured by the purely topological notion of con-

nectedness; shapes, locations, distances, and sizes, for

example, have no significance.

Euler circles, or Venn diagrams (see [8,25] for the

original work), represent sets using the fact that

simple closed curves partition the plane into disjoint

Visual Formalisms V 3371
inside and outside regions. They thus give the topologi-

cal notions of enclosure, exclusion, and intersection

the obvious set theoretic meanings of being a subset

of, being disjoint from, and having a nonempty intersec-

tion with, respectively (see Fig. 1). Typical uses of

Venn diagrams include only a small number of circles.

However, they can be expanded to n-set diagrams

(see, e.g., [5]).

A higraph [17] is a formalism that further gener-

alizes graphs, in the spirit of Euler circles. It adds not

only hyperedges, but Euler/Venn-like topologically

related ‘‘blobs’’ for the nodes, as well as a certain kind

of partitioning and adjacency. It thus adds to the

relation R notions of orthogonality and hierarchy,

as well as multilevel and multinode edges (and

hyperedges).

The term ‘‘visual formalism’’ appears to be first

used in the work on statecharts [16,17], a language

for the specification and design of reactive systems.

Higraphs [17] are the underlying graphical representa-

tion for statecharts.

In general, visual formalisms provide mechanisms

for higher levels of abstraction and thus help engineers

in coping with the challenges posed by the ever increas-

ing size and complexity of systems. The effectiveness of

visual formalisms also relies on the power of human

vision and cognitive perception in recognizing and

memorizing visual properties, such as topological/
Visual Formalisms. Figure 1. An example of a Venn

diagram.

Visual Formalisms. Figure 2. An example of an entity relatio
spatial relationships between visual entities. They

thus provide an appealing representation and commu-

nication medium. The advent of modern tools for

graphical editing and display has also contributed to

the increasing popularity of various visual formalisms

among practitioners. Moreover, some tools, indeed go

beyond plain editing and syntax correctness checks,

and allow their users to take advantage of the rich

semantics of some visual formalisms. Thus, some

tools have automated procedures for languages that

are sufficiently powerful, such as code generation and

formal verification. These are directly applied to the

visual artifacts and thus indeed exploit their full

potential.

The Unified Modeling Language (UML) [23], an

OMG standard formed in the late 1990s, is a collection

of visual languages for software and systems specifica-

tion, defined under a common meta model, and sup-

ported by many tools. The standard, however, does not

come with satisfactory semantics and hence, by itself,

cannot be regarded as a fully fledged visual formalism,

though many researchers have provided semantics

for many parts thereof.

Foundations
Some widely used visual formalisms include flow-

charts, used for the representation of series of actions

and decisions, mainly for simple imperative programs

(see [14] for what seems to be the original usage

thereof, and [12] for a fundamental paper on verifica-

tion, which was carried out in the framework of flow-

charts); data flow diagrams (DFD) (see, e.g., [13]),

used to represent the flow of data through a system;

entity relationship diagrams (ERD) (Fig. 2, and see [2]

for the original work) and their modern application to

objects, object model diagrams (OMD) and class dia-

grams (part of the UML [23], see Fig. 3); message

sequence charts (MSC) [21] and their modal exten-

sion, live sequence charts [3,19], for inter-object
nship diagram.

V

Visual Formalisms. Figure 3. An example of a class diagram.

Visual Formalisms. Figure 4. An example of a Petri net.

3372V Visual Formalisms
scenario-based specification; the specification and

description language (SDL) [20], for the specification

and description of the behavior of reactive and

distributed systems; Petri nets (see, e.g., [24], and see

Fig. 4); statecharts [16,18] (see Fig. 5); and constraint

diagrams [22], used to express logical constraints ex-

tended with quantification and navigation of relations.

Statecharts are a prime example of a visual for-

malism and are therefore shortly discussed below.

However, the ideas presented are more general and

have indeed been extended to other domains, such

as security, databases, and more generally, UML-style

behavioral and structural modeling.

In essence, statecharts are finite state machines

drawn as state transition diagrams and extended with

two key ideas: hierarchy and orthogonality. The hier-

archy is introduced using a substating mechanism,

and the orthogonality is introduced using a notion of

simultaneity. Both are reflected in the graphics them-

selves, i.e., the hierarchy by encapsulation inspired by

Euler/Venn diagrams, and the orthogonality by parti-

tioning blobs into adjacent regions separated by

dashed lines.

Topological features are a lot more fundamental

than geometric ones, in that topology is a more basic

branch of mathematics than geometry in terms of

symmetries and mappings. One thing being inside

another is more basic than it being smaller or larger

than the other, or one being a rectangle and the other a

circle. Being connected to something is more basic

than being green or yellow or being drawn with a

thick line or with a thin line. The brain understands

topological features given visually much better than it

grasps geometrical ones. The mind can see easily and

immediately whether things are connected or not,
whether one thing encompasses another, or intersects

it, etc. (see, e.g., [15], for early work on this).

Statecharts are not exclusively visual/diagrammatic.

Their non-visual parts include, for example, the events

that cause transitions, the conditions that guard against

taking transitions, and actions that are to be carried out

when a transition is taken. For these, statecharts borrow

from both the Moore and the Mealy variants of state

machines, in allowing actions on transitions between

states or on entrances to or exits from states, as well as

conditions that are to hold throughout the time the

system is in a state.

Unfortunately, some people tend to take diagrams

too lightly, finding it difficult to consider a collection of

graphics serious or ‘‘formal’’ enough. A common mis-

conception about formality is that textual and symbolic

languages are inherently formal, whereas visual and

diagrammatic languages are not, as if one couldmeasure

formality by how many Greek letters and mathematical

symbols the language contains. This myth, together

with the deviously deceptive simplicity of graphics,

lead to the so called doodling phenomenon – a mind-

set that says that diagrams are what an engineer scribbles

on the back of a napkin but that the real work is done

with textual languages.

Visual Formalisms. Figure 5. An example of a statechart.

Visual Formalisms V 3373
An interesting topic related to the use of visual form-

alisms concerns the layout of diagrams, andmore gener-

ally, their usability and aesthetics. This includes the

development of algorithms for the automatic layout

of diagrams (see, e.g., [4]), as well as experimental re-

search towards measuring the usability and effectiveness

of different visual languages and the development

of aesthetic principles.

Another research direction deals with the mechan-

isms of the language definitions themselves and with

the development of new visual languages, for example,

domain specific visual formalisms targeted for specific

application areas.
V

Key Applications

Software and Systems Structural Specification

Object model diagrams, and more generally, other

structural diagrams, are very popular and are used

successfully by software and systems engineers. See

the various structural diagrams of the UML [23] and

SDL [20].
Reactive Systems Behavioral Specification

Petri nets, statecharts and variants of message sequence

charts are successfully used in the design and develop-

ment of reactive systems. For example, in embedded

and real-time safety-critical systems in the automotive,

avionics, and telecommunication industries. They are
used across the development life cycle of systems, from

requirements analysis to specification to simulation to

code generation to testing, formal verification, and

documentation. In recent years such languages have

also been used for the modeling and analysis of

biological systems as reactive systems [6,11], which

appears to be an application area of great potential.
Data Modeling and Querying

Entity relationship diagrams (ERD) are used for data

modeling, or more broadly, for the conceptual specifi-

cation of databases. Hypergraphs have applications in

database theory (see, e.g., [10]). Finally, visual formal-

isms are also used for the specification of database

queries (see [1] for a survey).
Cross-references
▶Activity Diagrams

▶Temporal Visual Languages

▶Visual Query Language
Recommended Reading
1. Catarci T., Costabile M.F., Levialdi S., and Batini C. Visual query

systems for databases: a survey. J. Vis. Lang. Comput., 8(2):

215–260, 1997.

2. Chen P.P.-S. The entity-relationship model – toward a unified

view of data. ACM Trans. Database Syst., 1(1):9–36, 1976.

3. Damm W. and Harel D. LSCs: Breathing Life into Message

Sequence Charts. J. Form. Methods Syst. Des., 19(1):45–80,

3374V Visual Interaction
2001. Preliminary version in P. Ciancarini, A. Fantechi and R.

Gorrieri (eds.). In Proc. 3rd IFIP Int. Conf. on Formal

Methods for Open Object-Based Distributed Systems, 1999,

pp. 293–312.

4. Di Battista G., Eades P., Tamassia R., and Tollis I.G. Graph

Drawing: Algorithms for the Visualization of Graphs. Prentice‐
Hall PTR, Upper Saddle River, NJ, USA, 1998.

5. Edwards A.W.F. Cogwheels of the mind: the story of Venn

diagrmas. Johns Hopkins University Press, 2004.

6. Efroni S., Harel D., and Cohen I.R. Towards Rigorous Compre-

hension of Biological Complexity: Modeling, Execution and

Visualization of Thymic T Cell Maturation. Gen. Res., 13(11):

2485–2497, 2003.

7. Euler L. Commentarii academiae scientiarum Petropolitanae,

Vol. 8. 1741.

8. Euler L. Lettres il une Princesse d’Allemagne, Vol. 2. 1772. letters

102–108.

9. Fagin R. Degrees of acyclicity for hypergraphs and relational

database schemes. J. ACM, 30(3):514–550, 1983.

10. Fagin R., Mendelzon A.O., and Ullman J.D. A simplified univer-

sal relation assumption and its properties. ACM Trans. Database

Syst., 7(3):343–360, 1982.

11. Fisher J., Piterman N., Hubbard E.J.A., Stern M.J., and Harel D.

Computational insights into C. elegans vulval development. In

Proc. Natl. Acad. Sci., 102(6):1951–1956, 2005.

12. Floyd R.W. Assigning meanings to programs. In J.T. Schwartz

(ed.). In Proc. Symposia on Appl. Math., Vol. 19. American

Mathematical Society, 1967, pp. 19–32.

13. Gane C.P. and Sarson T. Structured Systems Analysis: Tools and

Techniques. Prentice‐Hall, Englewood, Cliffs, NJ, 1979.

14. Goldstine H.H. and von Neumann J. Planning and Coding

of Problems for an Electronic Computing Instrument. Institute

for Advanced Study, Princeton, N.J., 1947. Reprinted in von

Neumann’s CollectedWorks, Vol. 5 , A.H. Taub (ed.). Pergamon,

London, 1963, pp. 80–151.

15. Green T.R.G. Pictures of Programs and Other Processes, or

How to Do Things with Lines. Behav. Inform. Tech., 1:3–36,

1982.

16. Harel D. Statecharts: a visual formalism for complex systems.

Sci. Comput. Program., 8:231–274, 1987.

17. Harel D. On visual formalisms. Commun. ACM, 31(5):514–530,

1988.

18. Harel D. and Gery E. Executable object modeling with state-

charts. Computer, July 1997, pp. 31–42.

19. Harel D. and Marelly R. Come, Let’s Play: Scenario-Based Pro-

gramming Using LSCs and the Play-Engine. Springer, Berlin

Heidelberg, New York, 2003.

20. ITU. ITU-T Recommendation Z.100: Specification and Descrip-

tion Language. Technical report, International Telecommunica-

tion Union, 1992.

21. ITU. ITU-T Recommendation Z.120: Message Sequence Charts.

Technical report, International Telecommunication Union,

1996.

22. Kent S. Constraint diagrams: visualizing invariants in object-

oriented models. In Proc. 12th ACM SIGPLAN Conf. on Object-

Oriented Programming Systems, Languages & Applications,

1997, pp. 327–341.
23. Object Management Group (OMG). UML: Unified Modeling

Language. Available at: http://www.omg.org.

24. Reisig W. Petri Nets: An Introduction, Monographs in Theoreti-

cal Computer Science. An EATCS Series, Vol. 4. Springer, Berlin

Heidelberg, New York, 1885.

25. Venn J. Symbolic Logic. Macmillan and Co., London, 1881.
Visual Interaction

MARISTELLA MATERA

Politecnico di Milano University, Milan, Italy

Synonyms
Visual interaction design; Graphic design

Definition
In the field of Human-Computer Interaction (HCI),

Visual Interaction refers to the adoption of user inter-

faces for interactive systems, which make use of visual

elements and visual interaction strategies with the aim

of supporting perceptual inferences instead of arduous

cognitive comparisons and computations. The design

of Visual Interaction focuses on the definition of inter-

action mechanisms through which (i) the users can

perform actions on the interactive system by means

of visual elements, and (ii) the system can provide

feedback to the user, by visually representing the results

of the computations triggered by the user actions. The

flow of user actions and system feedback over time

then has to be coordinated.

In the field of Databases, Visual Interaction refers

to the adoption of visual interfaces that provide acc-

ess to the collection of data stored in databases, by

means of visual formalisms andmechanisms supporting

both the presentation and the interaction with data.

Historical Background
The information proliferation that characterized

the end of the last century led to an increased use of

databases by a continuously growing number of users.

As an effect of such a trend, the traditional paradigm to

access databases, based on formal, text-based query

languages, became inadequate for a large portion of

inexperienced users.

In 1977, Moshe Zloof proposed QBE (Query By

Example) [14], a pioneer query environment where a

skeleton of a database relational schema was presented

Visual Interaction V 3375

V

and, based on it, the users were then able to express

queries by entering commands, example elements, and

selection conditions in visual tables. QBE was the pre-

cursor of a new research line, fully emerged during

1990s on the wave of the consensus gained by interac-

tive systems and visual interfaces. In fact, in that peri-

od, several research initiatives, both in the HCI and the

database field, focused on enhancing the quality of the

interaction with databases, by replacing the traditional,

text-based query languages with visual paradigms. A

new generation of visual tools, the so called Visual

Query Systems (VQSs) (see [4] for a survey), was

therefore proposed, which promoted visual formalisms

and visual interaction mechanisms at the level of both

the presentation of and the interaction with the infor-

mation contained in databases. The most adopted

visual representations were forms, diagrams, and

icons, each one being used in accordance with the

nature of the information to be represented or queried.

Some systems also adopted 3D visualizations [1] or

virtual reality techniques [12].

Following the first proposals for VQSs, which espe-

cially focused on the interaction with structured,

record-based information, some visual query lan-

guages for XML were also proposed [2,9]. However, it

was the Web that led to the major change in

the interaction with databases, proposing a novel,

easy-to-use visual paradigm, which suddenly allowed

a huge number of users to access huge amounts of data

distributed across several data sources.

The Web, today, provides the most widely adopted

visual interface for accessing databases.

Foundations
In the interaction with database it is possible to recog-

nize at least two different needs: (i) to let the users

understand the database content, and (ii) to allow the

users to interact with the content to extract the infor-

mation they are interested in. From the visual interac-

tion perspective, the main issue is therefore to find

effective mechanisms to transmit to the users the

information content of the database and to support

users during the interaction with such content. This

can result, for instance, in using different visual meta-

phors, defined as a mapping between a data model and

a visual model [5], both for the understanding phase

and for the interaction phase.

Several works focused on the effectiveness and effi-

ciency of visual metaphors. Some of them (see for
example [5,10]) dealt with the effectiveness of schema

display, trying to define and formalize the notion of

adequate metaphors for representing the database

schema, thus supporting the understanding phase.

Some other works also covered the effectiveness of the

interaction phase. For example, in [3] authors pointed

out the need for multi-paradigmatic systems, able to

provide querying environments in which adaptive inter-

faces exploit several visual representations and interac-

tion mechanisms depending on the user capabilities

and tasks. In [11] the author instead specifically fo-

cused on the problem of automatically generating ef-

fective presentations of query results, adapting the data

representation to the nature of the data themselves,

and also to the tasks that such data are meant to

support.

The majority of these works were characterized by

stratified, multi-component architectures supporting

the definition of proper visual formalisms. For example,

in [10], authors propose a definition of the visual form-

alisms adopted for schema display characterized by

(i) a data model that captures schemas, (ii) a visual

model that captures visualizations, and (iii) a visual

metaphor that provides the mapping between data

and visual models. Such a stratified definition especial-

ly aimed at ensuring flexibility for the selection of the

most appropriate metaphor for schema display, and

also induced the formalization of many interesting

properties. For instance, authors precisely defined the

concept of correctness of the visual metaphors (no

valid visual schema will map to an invalid data schema

and vice versa) through a relationship between the

constraints in the data model, and those in the visual

model.

While the previous work mainly focused on schema

display during the understanding phase, in [3] the

authors propose a stratified multi-component structure

for the architecture of a multi-paradigmatic VQS, sup-

porting both the understanding and the interaction

phase. The most notable features were:

1. The provision of a formalism for expressing data-

bases, which is able to represent, in principle,

a database expressed in any of the most common

data models.

2. The construction and the management of a user

model, which allows the system to propose to the

users the most appropriate visual representation

according to their skills and needs.

3376V Visual Interaction
3. A transformation layer, defining the translations

among the different available representations, in

terms of both database content and visual interac-

tion mechanisms, which allows the users to shift

from one representation to another according to

their preferences.

Given the always increasing relevance of XML-based

data descriptions, in late 1990s some visual query

languages for XML also started to be proposed, offer-

ing the advantage of letting users manipulate visual

objects instead of managing the complexity of the un-

derlying XML-base query languages (e.g., XQuery) [2].

However, even if such languages employed visual pri-

mitives, the proposed interaction paradigms still pre-

served a tight correspondence with the traditional

(textual) query formulation. Therefore, their advan-

tages have still to be proved.

An incisive step forward in the visual interaction

with databases was, however, determined by the

growth of the Internet. The World Wide Web suddenly

allowed a huge number of users to easily retrieve and

access a large amount of information available in dif-

ferent formats – from unstructured multimedia data to

traditional relational data. The Web indeed introduced

the information browsing paradigm, a very powerful

(from the user experience point of view) visual inter-

action mechanism, based on the ‘‘one-click’’ selection

of hyperlinks to explore the information space. This

innovation immediately provided an easier alternative

to the traditional, text-based way to access and query

databases. Especially with the advent of dynamic Web

pages, relational databases were fully integrated into

the Web, and Web pages became a composition of

‘‘content units,’’ each one corresponding to an applica-

tion component in charge of querying at runtime the

application data source, and displaying the extracted

contents in the page. Additionally, search mechanisms

were introduced. Form-based interfaces allowed the

users to input (even complex) selection conditions

that the Web application was able to transform into

suitable SQL queries over the application contents; the

query results were then returned into a new Web page,

dynamically generated on the fly, typically in the form

of an index of linked items.

The Web thus definitely became a ‘‘de facto’’ visual

interface for databases. The so called ‘‘data-intensive’’

Web applications gained momentum, offering Web

interfaces over huge collections of data equipped with
both navigation and search mechanisms, as it hap-

pened for on-line trading and e-commerce applica-

tions, digital libraries, and several other classes of

Web applications interfacing large data sources. Such

applications share with the initially proposed VQSs a

stratified architecture, being characterized by three

orthogonal dimensions:

1. The application data, collecting the contents to be

published by the application.

2. The hypertext interface, defining the way in which

content units extracted from the application data

source are clustered within pages, as well as the

navigation mechanisms allowing users to move

along the different pages.

3. The presentation style, defining layout and graphic

properties for the rendering of both contents and

navigation mechanisms within pages.

Similarly to VQSs, such a stratified architecture ensures

flexibility, by enabling the provision of multiple inter-

faces over the same content. Hypertext interfaces in-

deed can be considered views over the application data,

and therefore several hypertext structures can be con-

structed over a same database [7] to satisfy the differ-

ent requirements characterizing different classes of

users, different access devices, or even different situa-

tions of use. Also, once a hypertext interface is defined,

different presentation styles, defining the layout and

the graphic properties of the constituent Web pages,

can be applied on it. Therefore, especially in the case of

adaptive Web applications, several combinations of

hypertexts and presentation styles can be adopted to

convey contents in the most appropriate modality with

respect to the characteristics of the user or of the usage

environment, possibly described in a user or a context

model [6].

Recently, the so-called data-driven methods have

been proposed for the design of the hypertext inter-

faces. They fund their approach on data modeling, and

in particular on some properties of the data to be

published in the hypertext interface, which can have

impact on the effectiveness of the interface itself.

In particular, the method proposed in [8] aims to

enhance content accessibility, which is the ability of a

Web application to offer effective and efficient access to

its contents, supporting both (i) the identification of

the most relevant content entities the application deals

with and their mutual relationships (understanding

phase), and (ii) the retrieval of the desired content

Visual Interaction V 3377
instances (interaction phase). In Latins, ‘‘rem tene,

verba sequentur’’ (manage content, words will follow).

Rephrasing this motto, the idea behind this method is

that if ‘‘Rem’’ is the information globally available to

the application, and ‘‘Verba’’ is the hypertext interface

enabling information identification and retrieval

through navigation and search, one can say that orga-

nizing the application content in accordance with

some proper modeling abstractions can induce the

definition of hypertext interfaces able to effectively

support the information access on the Web. Authors
Visual Interaction. Figure 1. An example of visual composit

and its corresponding rendering (b). The pipe accesses the N

analyzes it (Content Analysis component), and uses the extrac

site (nesting a For each Replace component with a Flickr com
therefore propose some data modeling patterns,

called Web Marts, which suggest a data organization

where:

1. Some core entities reflect the most important con-

cepts addressed by the application.

2. Some detail entities represent additional informa-

tion that complete the description of the core

concepts.

3. Some access entities then classify the core contents

for facilitating their access.
ion of a Yahoo Pipe (http://pipes.yahoo.com/pipes/) (a)

ew York Times homepage (Fetch Feed component),

ted keywords to find related pictures at the Flickr Web

ponent).

V

3378V Visual Interaction
By taking into account such data characterization, it is

possible to achieve Web interfaces able to highlight the

application core concepts, facilitating their retrieval by

means of navigation and search mechanism defined on

top of access entities, and support the browsing of the

core concepts by means of navigation patterns defined

on top of detail entities. In other words, the resulting

hypertext interfaces are able to effectively support both

the understanding of and the interaction with the Web

application data.
Key Applications
Nowadays, principles of Visual Interaction design are

essential for the construction of any system providing

access to databases. Even more, they constitute the basis

for the development of modern data-intensive Web

applications, especially considering the modern Web 2.0

paradigm that, besides other advantages, also promotes

more advanced interaction mechanisms, fully compara-

ble to the mechanisms traditionally adopted for desktop

interactive applications.
Future Directions
The current trend in the development of modern Web

applications – and in particular of those applications

commonly referred to as Web 2.0 applications – clearly

points toward a high user involvement in the creation

of contents. Users visually interact with Web sites not

only as passive actors accessing information, but also

as creators of the content instances published by the

Web application. The so-called social applications, like

MySpace, YouTube, or Wikipedia, are indeed living an

indisputable success.

However, users are not only more and more being

involved in content creation. The phenomenon ofWeb

mashups is now emerging to provide Web environ-

ments where the users have the opportunity to create

online applications starting from contents and func-

tions that are provided by third parties. Typical com-

ponents that may be mashed up, i.e., composed, are

RSS/Atom feeds, Web services, content wrapped from

third party Web sites, or programmable APIs (like the

one provided by Google Maps). Online mashup tools,

like Yahoo Pipes (http://pipes.yahoo.com/pipes/) or the

Google Mashup Editor (http://editor.googlemashups.

com/), and a number of other academic research efforts

(see for example [13]) confirm this trend, which implies

the addition of a further level of interaction in the Web:
users are not only able to visually access data, but they

are also able to visually compose the interfaces providing

access to data. Figure 1, for example, shows the Yahoo

pipes editor, where a simple application is visually

modeled by composing some components that analyze

the contents published in the New York Times home

page, and then use the retrieved keywords to find

related photos at another Web site (www flickr.com).

Since unskilled end users are supposed to ‘‘program’’

the necessary composition logic, special emphasis is

therefore currently put on intuitive, visual composition

environments, not requiring any programming effort.

This seems to be one of the major challenges that

will be addressed by future academic and industrial

research efforts.
Cross-references
▶Visual Interfaces

▶Visual Metaphor

▶Visual Query Language

▶Web 2.0/3.0
Recommended Reading
1. Boyle J. and Gray P.M.D. Design of 3D metaphors for database

visualisation. In Proc. IFIP 2.6 3rd Working Conf. on Visual

Database Systems. Lausanne, Switzerland, 1995, pp. 157–175.

2. Braga D., Campi A., and Ceri S. XQBE (XQuery By Example): a

visual interface to the standard XML query language. ACM

Trans. Database Syst., 30(2):398–443, 2005.

3. Catarci T., Chang S.-K., Costabile M.F., Levialdi S., and

Santucci G. A graph-based framework for multiparadigmatic

visual access to databases. IEEE Trans. Knowl. Data Eng., 8(3):

455–475, 1996.

4. Catarci T., Costabile M.F., Levialdi S., and Batini C. Visual

query systems for databases: a survey. J. Visual Lang. Comput-

ing, 8(2):215–260, 1997.

5. Catarci T., Costabile M.F., and Matera M. Which metaphor for

which database? In People and Computers X, Proc. HCI’95

Conf., 1995, pp. 151–165.

6. Ceri S., Daniel F., Matera M., and Facca F.M. Model-driven

development of context-aware web applications. ACM Trans.

Internet Technol., 7(1), 2007.

7. Ceri S., Fraternali P., and Matera M. Conceptual modeling

of data-intensive web applications. IEEE Internet Computing,

6(4):20–30, 2002.

8. Ceri S., Matera M., Rizzo F., and Demaldé V. Designing data-

intensive web applications for content accessibility using web

marts. Commun. ACM., 50(4):55–61, 2007.

9. Comai S., Damiani E., and Fraternali P. Computing graphical

queries over XML data. ACM Trans. Inf. Syst., 19(4):371–430,

2001.

Visual Interfaces V 3379
10. Haber E.M., Ioannidis Y.E., and Livny M. Foundations of

visual metaphors for schema display. J. Intelligent Inf. Syst.,

3(3/4):263–298, 1994.

11. Mackinlay J.D. Automating the design of graphical presentations

of relational information. ACM Trans. Graphics, 5(2):110–141,

1986.

12. Massari A. and Saladini L. Virgilio: a VR-based system for

database visualization. In Proc. Workshop on Advanced Visual

Interfaces, 1996, pp. 263–265.

13. Yu J., Benatallah B., Saint-Paul R., Casati F., Daniel F., and

Matera M. A framework for rapid integration of presentation

components. In Proc. 16th Int. World Wide Web Conference,

2007, pp. 923–932.

14. Zloof M. Query By Example: a database language. IBM Syst. J.,

16(4):324–343, 1977.
Visual Interaction Design

▶Visual Interaction
V

Visual Interfaces

TIZIANA CATARCI

University of Rome, Rome, Italy

Synonyms
Graphical user interfaces; GUIs; Direct manipulation

interfaces

Definition
Visual Interfaces are user interfaces that make exten-

sive use of graphical objects (icons, diagrams, forms,

etc.) that the user may directly manipulate on the screen

through several kinds of pointing devices (including her/

his fingers) and get an almost instantaneous feedback

(near real-time interactivity). Information-intensive

interfaces typically exploit one or more visual language,

i.e., a language that systematically uses visual signs to

convey a meaning in a formal way.

Historical Background
The importance of providing the user with an inter-

active environment where she/he could directly mani-

pulate the computer content, and get an immediately

graspable feedback out of her/his actions, was evident
since the first demonstration of the Sketchpad system

by Ivan Sutherland [7]. This system was the basis of his

1963 MIT Ph.D. thesis. SketchPad supported manipu-

lation of visual objects using a light-pen, including

grabbing objects, moving them, changing size, and

using constraints. It contained the seeds of hundreds

of important interface ideas. Later on, in the 1970s,

many of the interaction techniques popular in direct

manipulation interfaces, such as how objects and text

are selected, opened, and manipulated, resulted from

research at Xerox PARC. The concept of direct manip-

ulation interfaces for everyone was envisioned by

Alan Kay of Xerox PARC in a 1977 article about the

Dynabook [4]. The first commercial systems to make

extensive use of direct manipulation were the Xerox

Star (1981) [6], the Apple Lisa (1982) [10], and

Macintosh (1984) [9]. Ben Shneiderman at the Uni-

versity of Maryland coined the term ‘‘direct manipula-

tion’’ in 1982, identified the components, and gave

psychological foundations [5].

As the quantity of information available became

larger and larger, as well as the potential user commu-

nity of databases and other information sources, there

was a growing need for user interfaces that require

minimal technical sophistication and expertise by

the users, and support a wide variety of information

intensive tasks. For instance, information-access inter-

faces must offer great flexibility on how queries are

expressed and how data are visualized.

The general idea was to exploit the well-known

high bandwidth of the human-vision channel that

allows both recognition and understanding of large

quantities of information in no more than a few sec-

onds. Thus, for instance, if the result of an information

request can be organized as a visual display, or a se-

quence of visual displays, the information throughput

is immensely superior to the one that can be achieved

using textual support. User interaction becomes an

iterative query-answer game that very rapidly leads to

the desired final result. Conversely, the system can

provide efficient visual support for easy query formu-

lation. Displaying a visual representation of the infor-

mation space, for instance, lets users directly point at

the information they are looking for, without any need

to be trained into the complex syntax of current query

languages. Alternatively, users can navigate in the in-

formation space, following visible paths that will lead

them to the targeted items. Again, thanks to the visual

support users are able to easily understand how to

3380V Visual Interfaces
formulate queries, and they are likely to achieve the

task more rapidly and less prone to errors than with

traditional textual interaction modes.

Foundations
One fruitful sign system conceived by humans for

the purpose of storing, communicating and perceiving

essential information is based on bidimensional visual

signs, like those contained in pictures, photographs,

geographic maps. Visual signs are characterized by

a high number of sensory variables: size, intensity,

texture, shape, orientation, and color, which all concur

to provide details about the information to be com-

municated [1]. For instance, Tufte suggests many dif-

ferent purposes for which color may be employed:

‘‘. . .to label (color as noun), to measure (color as

quantity), to represent or imitate reality (color as rep-

resentation), and to enliven or decorate (color as beau-

ty). In a geographical map, color labels by

distinguishing water from stone and glacier from

field, measures by indicating altitude with contour

and rate of change by darkening, imitates reality with

river blues and shadows hatchures, and visually enli-

vens the topography quite behind what can be done in

black and white alone’’ [8]. Exploiting the multidi-

mensionality of the visual representation allows people

to perform in a single instant of perception a visual

selection, in the sense that all the meaningful corre-

spondences among the visualized elements are cap-

tured. Other constructions, for example a linear text,

do not permit this immediate grasping, the entire set of

correspondences may only be reconstructed in the user

memory. This is also due to the fact that visual repre-

sentations are processed by human beings primarily in

parallel, while text is read sequentially.

Visual interfaces capitalize on all the above charac-

teristics of envisioning the information, yet one can say

that the basic paradigms adopted for enhancing visual

interaction are:

1. The direct manipulation interaction

2. The metaphor

3. The visual representation

These three concepts, although separately investi-

gated in the literature, at the present state are so strictly

correlated to deeply influence each other, and consti-

tute the foundations for the development of visual

interfaces. All three concepts are covered in specific

entries of this Encyclopedia.
A visual languagemay be defined as a language that

systematically uses visual representations to convey a

meaning in a formal way. Frequently, people have

used visual languages, iconic languages and graphical

languages as synonyms. If one follows the above defi-

nition they are all visual languages, but it may be

more precise to call iconic languages only those

using icons and pictures extensively, while diagram-

matic (or graphical) languages are those primarily

using diagrams (such as graphs, flow-charts, block-

diagrams, etc). When speaking about visual lan-

guages, some people allude to languages handling

visual objects that are visually presented, i.e., images

or pictorial objects of which a visual representation is

given, others intend languages whose constructs are

visual [3]. Chang calls the first ones visual information

processing languages and the others visual programming

languages. In the first case, one deals with conventional

languages enhanced with subroutine libraries to handle

visual objects. Image processing, computer vision,

robotics, office automation, etc. are the typical appli-

cation domains for these languages. Visual program-

ming languages handle objects that do not necessarily

have a visual representation. Within the class of visual

programming languages, a subclass exists which man-

ages a particular kind of non-visual objects, namely

data in databases; this subclass of languages is that of

visual query languages (VQLs), i.e., query languages

exploiting the use of visual representations.

While VQLs are usually adopted for query for-

mulation, information visualization mechanisms are

used for displaying the results that constitute the an-

swer to a user request. Information visualization, an

increasingly important field of Computer Science, fo-

cuses on visual mechanisms designed to communicate

clearly to the user the structure of information, and

allow her/him to make sense out of large quantities of

data. Significant opportunities for information visual-

ization may be found today in data mining and data

warehousing applications, which typically access large

data repositories. Also, the enormous quantity of

information sources on the WWW also calls for visu-

alization techniques.

Key Applications
Any kind of traditional database-related activity (e.g.,

database creation, querying, mining, updating) has

been and could be further supported by the usage of

suitable visual interfaces, equipped with effective visual

Visual Interfaces V 3381

V

representations, easy-to-use interaction mechanisms

and data visualizations. For instance, information-

discovery interfaces must support a collaboration

between humans and computers, for example, for

data mining. Due to humans’ limited memory and

cognitive abilities, the growing volume of available

information has increasingly forced the users to dele-

gate the discovery process to computers, greatly under-

emphasizing the key role played by humans. Discovery

should be viewed as an interactive process in which

the system gives users the necessary support to analyze

terabytes of data, and users give the system the feed-

back necessary to better focus its search.

Visual interfaces are obviously also extremely im-

portant for novel database applications, dealing with

non-traditional data, such as multimedia, temporal,

geographical, etc.

Moreover, that the user interface has become

a crucial component in the success of any modern

(information intensive) application is surely witnessed

by the extraordinary growth of the Web: a click on the

mouse is all users need to traverse links across the

world. However, this much easier access to a huge

quantity of various information has created new pro-

blems to the users, related to information digestion

and assimilation that are difficult to achieve if one

lets unstructured floods of data collect in perceptual-

ly-rich and information-overabundant displays. The

information flood can turn out to be useful only if it

can be converted in a somehow structured information

flow that users can consume. The Information Forag-

ing theory has been indeed developed in order to

evaluate the valuable knowledge gainable from a sys-

tem in relation to the cost of the necessary interaction.

Future Directions
Issues that are being further explored in modern inter-

faces include how best to array tasks between people

and computers, create systems that adapt to different

kinds of users, and support the changing context of

tasks. Also, the system could suggest appropriate dis-

covery techniques depending on data characteristics

as well as data visualizations, and help integrate what

are currently different tools into a homogeneous envi-

ronment. Modern interfaces use (and will further

exploit in the near future) multiple modalities for

input and output (speech and other sounds, gestures,

handwriting, animation, and video) and multiple

screen sizes (from tiny to huge), and have an
‘‘intelligent’’ component (‘‘wizards’’ or ‘‘agents’’ to

adapt the interface to the different wishes and needs

of the various users).

However, a key challenge in interacting with cur-

rent information-abundant electronic environments is

to shift from data-centric computer systems, which

have been characteristic of over 40 years of Computer

Science, to task-centric ones. Indeed, current desktop

oriented systems propose a mostly disconnected set of

generic tools (word processor, e-mail reader, video and

image visualizer, etc.). The fact that these tools are

running on one system without being connected

leads to awkward situations, such as one re-entering

or copying the same data among the different appli-

cations. Nowdays, users have to cope with an ever-

growing amount of information, which they have to

manage and use in order to perform their everyday

tasks. This trend forces users to focus more on manag-

ing their information rather than using it to accom-

plish their objectives. Managing information basically

amounts to saving it, and possibly being able to find

(and re-find) it for subsequent reuse. Given the over-

abundance of available information, the process of

saving, finding, and re-finding itself needs to be sup-

ported by algorithms and tools more powerful than

standard OS file browsers. During recent years, the

creation of such tools has been the ultimate goal

of the so-called Personal Information Management

(PIM) field [9]. However, not much has been done in

order to cope with the original problem, i.e., to sup-

port the user in executing her/his tasks so as to achieve

her/his goals. Whereas, it would definitely be beneficial

for the user to move from a (static and rigid) object-

centric world to a (dynamic and adaptive) task-centric

one. Tasks are more of an abstract notion than a

computer manageable entity. Hence, such a move

requires designing a system that is able to interpret

the user’s aims and to support the execution of the

user’s tasks. Tasks need to be explicitly represented in

the system both in their static aspects, i.e., the kind of

information that they manipulate, the kind of programs

involved in these manipulations, security and authenti-

cation issues that may arise, and in their dynamic ones,

i.e., the sequences of actions that they require, the alter-

native choices that are given to the user, pre-conditions,

post-conditions, and invariants for the various activities

that are involved in the task. Both static and dynamic

aspects are of direct interest to the user, hence, need to be

expressed using explicit semantics that the user can share.

3382V Visual Interfaces for Geographic Data
Experimental Results
The key point of any interactive system should be to

support, at best, people in achieving their goals

and performing their tasks. To be more precise, the

interaction should favor an increase in efficiency of

people performing their duties without this having to

cause extra organizational costs, inconveniences, dan-

gers and dissatisfaction for the user, undesirable

impacts on the context of use and/or the environment,

long periods of learning, assistance and maintenance.

In literature, most of the above listed requirements are

synthetically associated to the qualitative software

characteristic called usability. Precise usability evalua-

tion needs to be conducted at all stages in the system

life cycle in order to: (i) provide feedback which can be

used to improve design; (ii) assess whether user and

organizational objectives have been achieved; and

(iii) monitor long term use of the product or system.

In the early stage of design, emphasis is placed on

obtaining feedback that can be used as a guide in the

design process, while later, when a realistic prototype is

available, it is possible to assess whether user and

organizational objectives have been achieved. Since in

the early stages of design and development changes are

less expensive than in later stages, evaluation has to be

started as soon as the first design proposals are avail-

able. Depending on the development stage of the proj-

ect, evaluation may be used to select and validate the

design options that best meet the functional and user-

centered requirements, elicit feedback and further

requirements from the users or diagnose potential

usability problems and identify needs for improvement

in the system. Expert evaluation can be fast and eco-

nomical. It is good for identifying major problems but

not sufficient to guarantee a successful interactive sys-

tem. Controlled experiments with actual users are a

key technique to identify usability issues that might

have been missed by the expert evaluation, since they

are related with the real usage of the system and the

knowledge of the application domain. Generally

speaking, evaluation techniques vary in their degree

of formality, rigor and user involvement depending

on the environment in which the evaluation is con-

ducted. The choice is determined by financial and time

constraints, the stage of the development lifecycle and

the nature of the system being developed.

Cross-references
▶Data Visualization

▶Diagram
▶Direct Manipulation

▶ Form

▶Human-Computer Interaction

▶ Icon

▶ Information Foraging

▶Multimodal Interfaces

▶Natural Interaction

▶Result Display

▶Usability

▶Visual Metaphor

▶Visual Data Mining

▶Visual Query Language

▶Visual Interaction

▶Visual Representation

▶WIMP Interfaces
Recommended Reading
1. Bertin J. Graphics and Graphic Information Processing. Walter

de Gruyter, Berlin, 1981.

2. Catarci T., Dong X.L., Halevy A., and Poggi A. Personal Infor-

mation Management, chap. Structure Everything. University

of Washington Press, Seattle, WA, 2008.

3. Chang S.K. Principles of Pictorial Information Systems Design.

Prentice-Hall, Englewood Cliffs, NJ, 1989.

4. Kay A. Personal dynamic media. IEEE Comput., 10(3):31–42,

1977.

5. Shneiderman B. Direct manipulation: a step beyond

programming languages. IEEE Comput., 16(8):57–69.

6. Smith D.C., Harslem E., et al. The Star user interface: an

overview. In Proc. 1982 National Computer Conference, 1982,

pp. 515–528.

7. Sutherland I.E. SketchPad: a man-machine graphical commu-

nication system. In Proc. AFIPS Spring Joint Computer Confer-

ence. ACM, New York, NY, 1963.

8. Tufte E.R. Envisioning Information. Graphics Press, Cheshire,

Connecticut, 1990.

9. Williams G. The Apple Macintosh computer. Byte, 9(2):30–54,

1984.

10. Williams G. The Lisa computer system. Byte, 8(2):33–50, 1983.
Visual Interfaces for Geographic
Data

ROBERT LAURINI

LIRIS, INSA-Lyon, Lyon, France

Synonyms
Cartography; Visualizing spatial data; Interactive

capture; Interactive layout

Visual Interfaces for Geographic Data V 3383

V

Definition
Geographic data are in essence visual multimedia data.

To enter this data with key-boards and to print them as

tables of data are not very practical actions. For entry,

special devices exist (theodolites, lasers, aerial photos,

satellite images, etc.), whereas visual layout is currently

named cartography or mapping. Visual interfaces have

two facets, allowing the user to present their output as

maps, possibly with very large printers, and to present

spatial queries visually.

Historical Background
In the 1970s, the expression used was ‘‘computer-aided

mapping’’ to emphasize the idea that printing maps

was the sole scope of using computers. Then, in the

1980s, the more important aspect was considered to

be structuring of the geographic database, so then the

expression ‘‘Geographic Information Systems’’ was

coined. From this period, research has been done on

presenting maps as well as presenting queries. For

centuries cartographers have created a large corpus of

rules for manual mapping. Those rules were progres-

sively integrated and enlarged to compose maps. For

instance, zone hatching was considered a boring task

when manually done, whereas with a computer, this

task is straightforward. In contrast, name placement

was considered as a relatively easy task, although in

computing, this is still a challenge.

Foundations
It is common to say that ‘‘approximately 80% of all

government data has some geographic component’’

(Langlois G., ‘‘Federal Computer Week,’’ Jan. 08,

2001). This affirmation states the importance of geo-

graphic information not only for administration but

also for companies, and not only for environmental

and urban planning but also for geo-marketing, since

all those data are stored in databases, or more specifi-

cally, geographic or spatial databases. In addition to

non-spatial attributes, geographic objects are charac-

terized by geometric shapes and coordinates, usually in

two dimensions, but increasingly with three dimen-

sions and time. Those characteristics imply three

consequences:

1. The necessity of special data models for storing.

2. The necessity of distinguishing storage format and

layout format.

3. The necessity of specialized interfaces for both que-

rying against databases and presenting the results,

essentially by means of cartography.
The scope of this overall presentation is to study

those interfaces. But before presenting these interfaces,

it is necessary to emphasize that geographic data are

not entered via keyboard but are acquired by different

devices, such as theodolites, aerial photos, satellite

images, and more recently, GPS (Global Positioning

System). These devices are essentially characterized by

different resolutions and error levels. Just as theodo-

lites can measure objects within accuracy of less than

0.1 mm, some satellite systems or GPS systems have

accuracies of 100 m or less.

On the other hand, according to the size of the

screens used and the size of the territory to be mapped,

different scales must be used. In other words, the result-

ing map must be simplified or generalized more exactly

in order to reach readability and completeness, as it

passes from storage format to some other layout format.

This discussion will be organized as follows: after a

short introduction, visual interfaces for cartographic

output will be examined first, and then interfaces for

querying. Then, a small section on new barriers for

mobile handheld devices will conclude.

Visual Interfaces for Cartographic Output

A map is the classical way to respond to a spatial query

or to layout the results of some spatial analysis. How-

ever, over the centuries, cartographers and geographers

have elaborated upon sets of knowledge and know-

how to make maps. One of the main problems is

known as generalization, i.e., the way to simplify a

map; for instance, in a geographic database, to have

a country that is described with 1 million points/

segments, but must be presented in a thumbnail with

only 30 points/segments.

Another aspect is called graphic semiology, i.e., the

way to select the symbology for mapping.

Generalities A fundamental rule in conventional car-

tography states that any object, once reduced after

scaling to less than 0.1 mm cannot be mapped.

For instance, an house or a road that is 10 m wide, at

1:1000 scale will be represented by 1 cm, whereas at

1:100,000 scale they will not be represented at all.

Another rule concerns details to be aggregated. An

example would be two houses separated by a road. At

some scale they will be represented separately, whereas

at other scales they will be aggregated. As a conse-

quence, at some scales a city is seen as a collection of

separated houses, then as a set of city-blocks, then as a

compact area, and finally as a point.

Visual Interfaces for Geographic Data. Figure 1. Example of generalization (1:25000, 1:35000, 1:50000).

Source: http://recherche.ign.fr/labos/cogit/arGIGA.php [2].

Visual Interfaces for Geographic Data. Figure 2. Bertin’s

Visual variables. Source: http://atlas.nrcan.gc.ca/site/

english/learningresources/carto_corner/vis_var.gif/

image_view.

3384V Visual Interfaces for Geographic Data
Generalization By generalization, a piece-wise line can

be simplified into a single piece, especially by using the

Douglas-Peucker algorithm [3] or variants based on

multi-agents systems [5]. Figure 1 gives some examples.

Graphic Semiology Graphic semiology, invented by

J. Bertin [1], is the study of the meaning of graphics.

In other words, it deals with the signification of draw-

ings, the choice of captions, symbols and icons, togeth-

er with a methodology to transmit visual messages. Six

visual variables have been proposed for representing

spatial objects (see Fig. 2) – shape, size, orientation,

pattern, hue and value. For instance, to represent a

church, a cross symbol (shape) can be used; the sym-

bol’s size can be selected according to the initial size of

the church, etc.

Animation For some applications, animated cartog-

raphy can be used, characterized by movement of

objects, flickering, mutation, modification of shape

or of color, velocity, etc. An excellent example is the

animated map for weather forecast, in which some

iconized clouds are slowly moving.

Chorems Chorems are a new way of representing

schematized territories. Indeed, for several applica-

tions, it is not necessary to restitute the complete

database contents, but rather to map the more impor-

tant aspects. Those chorems were usually designed

manually, but by means of spatial and spatio-temporal

data mining, geographic patterns can be discovered

and mapped. In other words, chorems are a new visual

representation of geographic database summaries [4]

and a way to represent geographic knowledge.

The following example (Fig. 3) emphasizes the water

problem in Brazil: it is easy to understand that

a conventional river map (Fig. 3a) does not show
the more crucial aspects as given in Fig. 3b with

caption in Fig. 3c.

Query Input

Visual interfaces for GIS are not only used for cartog-

raphy, but also for query input, i.e., by means of

interaction. Present systems can be classified into

three categories:

1. Textual queries, such as by using spatial extensions

of SQL/ORACLE

2. Tabular queries, by means of forms in which some

queries are pre-programmed

3. Graphic queries based on widgets such as icons,

mice, and clicks

Some basic queries such as point-in-polygon,

region or buffer queries are usually given visually

and interactively. However, more complex queries

are also usually made, such as queries regarding

Visual Interfaces for Geographic Data. Figure 3. The water problem in Brazil using a conventional river map

(a) and a chorem map (b) issued from [5].

Visual Interfaces for Geographic Data. Figure 4. Example of a visual query asking for ‘‘all cities crossed by a river’’ [6].

Visual Interfaces for Geographic Data V 3385

V

intersection or adjacency by means of Egenhofer’s

spatial relation. For instance, the LVIS system [2]

is a visual system based upon those relations

(See Fig. 4).
However, a fourth method seems more interesting,

based on a tangible table in which several persons can

collaborate. Figure 5 shows such a table (from the

Geodan Company); see [11] for details.

Visual Interfaces for Geographic Data. Figure 5. Example of a tangible table from the Geodan Company

(http://www.geodan.nl).

Visual Interfaces for Geographic Data. Figure 6.

Example of a map presented on a mobile device.

3386V Visual Interfaces for Geographic Data
Final Remarks: Challenges for Small Mobile Devices

In the early 1970s, the main problem was producing

maps, and then increasingly maps were seen as results

of spatial queries or as results of spatial analysis tech-

niques. However, as it is simple to lay out maps in

conventional screens or in very big screens, the screen

size of the new handheld mobile devices requires
discovering new modes of representing maps and

interacting with them, essentially for Location-Based

Services. A very common example is the need to repre-

sent the way to go from one location to another

location, as shown in Fig. 6.

These new mobile handheld devices will imply new

techniques for visualizing geographic data, essentially

due to screen size.
Key Applications
Any domains in cartography, from urban to environ-

mental planning, geology, archaeology, real estate

mapping, location-based services, etc.

Cross-references
▶Cartography

▶Geographical Databases

▶Geographic Information System

▶ Spatial Network Databases

▶ Spatial Indexing Techniques

▶ Spatial Information System

Recommended Reading
1. Bertin J. Sémiologie graphique. La Haye, Mouton, 1970.

2. Bonhomme C., Trepied C., Aufaure M.A., and Laurini R.

A visual language for querying spatio-temporal databases. In

Proc. 7th Int. Symp. on Advances in Geographic Inf. Syst.,

1999, pp. 34–39.

3. Cécile D. Généralisation Cartographique par Agents Commu-

nicants: Le modèle CartACom. PhD Dissertation, University

Paris VI, 11/06/2004, 2004.

4. Del Fatto V., Laurini R., Lopez K., Loreto R., Milleret-Raffort F.,

Sebillo M., Sol-Martinez D., and Vitiello G. Potentialities

of chorems as visual summaries of spatial databases contents.

Visual Metaphor V 3387
In Proc. 9th Int. Conf. Visual Information Systems, 2007,

pp. 537–548.

5. Douglas D. and Peucker T. Algorithms for the reduction

of the number of points required to represent a digitized

line or its caricature. The Can. Cartographer, 10(2):112–122,

1973.

6. Kraak M.-J. and Brown A. Web Cartography. CRC, Boca Raton,

FL, 2000, 208pp.

7. Kraak M.-J. and Omerling F. Cartography: Visualization

of Geospatial Data (2nd edn.). Pearson Education, NJ, 2003,

205pp.

8. Lafon B., Codemard C., and Lafon F. Essai de chorème sur

la thématique de l’eau au Brésil. http://histoire-geographie.

ac-bordeaux.fr/espaceeleve/bresil/eau/eau.htm, 2005.

9. Laurini R. Information Systems for Urban Planning: A Hyper-

media Co-operative Approach. Taylor and Francis, London,

2001, 308pp.

10. Laurini R. and Thompson D. Fundamentals of Spatial Informa-

tion Systems. Academic Press, San Diego, CA, 1992.

11. van Borkulo E., Barbosa V., Dilo A., Zlatanova S., and

Scholten H. Services for an emergency response system in The

Netherlands. Second Symposium on Gi4DM, Goa, 2006.
V

Visual Metaphor

MARIA FRANCESCA COSTABILE
1, ALAN F. BLACKWELL

2

1University of Bari, Bari, Italy
2University of Cambridge, Cambridge, UK

Synonyms
Metaphor; Analogy

Definition
Metaphor is a figure of speech, whose essence is to

make a comparison between things that are not literally

the same. For example, saying ‘‘that man is a lion’’ asks

the reader to imagine how a topic (the man) could be

reinterpreted in terms of some vehicle (a lion).

In Graphical User Interfaces (GUIs), visual meta-

phor refers to a kind of analogy, by which designers

present the user with an explanation of system behav-

ior in terms of some image. In the early days of the

GUI, attempts were made to present all computer

behavior in terms of real world analogies, as in the

case of the desktop metaphor. However, these large

scale metaphors soon broke down, as the challenge

of developing and maintaining whole systems of cor-

respondence became apparent. Attempts to replicate

the success of the desktop metaphor have failed [1].
In practice, UI designers now use the term to refer to

visual conventions and genres that, although familiar,

need not resemble any real-world objects (e.g., a dialog

box or flowchart). The essential benefits of the origi-

nal desktop metaphor are those provided by direct

manipulation. Occasionally, real world analogies are

successfully used to introduce real world models for

new system behaviors (e.g., the shopping basket meta-

phor in e-commerce). In all cases, user acceptance is

encouraged by the use of familiar visual forms, whether

pictorial (an icon such as a picture of a shopping

basket), or an abstract visual formalism (conventional

layout of dialog boxes, conventional nodes and links

for a flowchart).

Key Points
A common view in cognitive science is that all abstract

thought is based on physical metaphors [3] (e.g.,

adding ‘‘up’’). Computers also use expressions such

as ‘‘cut and paste’’ to convey intended usage by analogy

to existing technology. Once such figures of speech

become widespread, they are unlikely to change. The

best principle for visual metaphor design, therefore, is

to present users with concepts and terminology that

are familiar, whether from the physical world or

from previous experience with computers. In creative

product design, metaphor can also help designers to

imagine novel forms. This more literary strategy is

open to interpretation, and may provide less direct

guidance to users of the final product.

In the database area, visual formalisms present

abstract database concepts to users. GUIs and the

growth of database users in the late 80s pushed towards

the development of visual query systems, i.e., ‘‘systems

for querying databases that use a visual representation

to depict the domain of interest and express related

queries’’ [2]. A visual representation combines vis-

ual formalisms (diagrams, icons, forms) that can be

interpreted from experience of existing representation

genres – the more familiar and appropriate, the easier

it is for the user to understand the usage intended by

the designer.

Visual metaphors create expectations about system

functionality that, if not fulfilled, can disorientate

users. Poor use of metaphor has caused some sig-

nificant failures of software products. Since there are

several ways of creating and interpreting metaphor,

the effectiveness of any interface metaphor must be

analyzed and empirically evaluated, firstly to ensure

3388V Visual Mining
that it is consistent with principles of direct mani-

pulation, and secondly to determine whether users

recognize and are familiar with the intended visual

formalism.

Cross-references
▶Direct Manipulation

▶Visual Formalisms

▶Visual Interaction

▶Visual Query Language

▶Visual Representation

Recommended Reading
1. Blackwell A.F. The reification of metaphor as a design tool.

ACM Trans. Comput. Hum. Interact., 13(4):490–530, 2006.

2. Catarci T, Costabile M.F., Levialdi S., and Batini C. Visual

query systems for databases: a survey. J. Vis. Lang. Comput.,

8:215–260, 1997.

3. Lakoff G. and Johnson M. Metaphors We Live By. University of

Chicago Press, Chicago, 1980.
Visual Mining

▶Visual Clustering
Visual Multidimensional Analysis

▶Visual On-line Analytical Processing (OLAP)
Visual On-Line Analytical Processing
(OLAP)

MARC H. SCHOLL, SVETLANA MANSMANN

University of Konstanz, Konstanz, Germany

Synonyms
Visual multidimensional analysis; Interactive visual

exploration of multidimensional data

Definition
An umbrella term encompassing a new generation of

OLAP (On-Line Analytical Processing) end-user

tools for interactive ad-hoc exploration of large
multidimensional data volumes. Visual OLAP pro-

vides a comprehensive framework of advanced visuali-

zation techniques for representing the retrieved data

set along with a powerful navigation and interaction

scheme for specifying, refining, and manipulating the

subset of interest. The concept emerged from the con-

vergence of BI (Business Intelligence) techniques and

the achievements in the areas of Information Visuali-

zation and Visual Analytics. Traditional OLAP fron-

tends, designed primarily to support routine reporting

and analysis, use visualization merely for expressive

presentation of the data. In the visual OLAP approach,

however, visualization plays the key role as the method

of interactive query-driven analysis. Comprehensive

analysis includes a variety of tasks such as examining

the data from multiple perspectives, extracting useful

information, verifying hypotheses, recognizing trends,

revealing patterns, gaining insight, and discovering

new knowledge from arbitrarily large and/or complex

data volumes. In addition to conventional operations

of analytical processing, such as drill-down, roll-up,

slice-and-dice, pivoting, and ranking, visual OLAP

supports further interactive data manipulation techni-

ques, such as zooming and panning, filtering, brush-

ing, collapsing etc.

Historical Background
OLAP emerged in the mid-90s as a technology for

interactive analysis of large volumes of accumulated

and consolidated business data. The underlying multi-

dimensional data model allows users to view data from

different perspectives by shaping it into multidimen-

sional cubes of measurable facts, or measures, as the

cube’s cells that are indexed by a set of descriptive

categories, called dimensions. Member values within a

dimension may be further arranged into a classification

hierarchy (e.g., city! state! country) to enable

additional aggregation levels. A data cube in a real-

world application may hold millions of fact entries

characterized by up to 20 dimensions, each supplied

with a single or multiple classification hierarchies of

various depth. Obviously, to gain insight into such

huge and complex data, analysts need mechanisms

for projecting the original set onto a two-dimensional

(or at most three-dimensional) space and reducing it

to a perceivable number of items.

First proposals on using visualization for exploring

large data sets were not tailored towards OLAP appli-

cations, but addressed the generic problem of visual

Visual On-Line Analytical Processing (OLAP) V 3389
querying of large data sets stored in a database. Keim

and Kriegel [3] proposed VisDB, a visualization system

based on a new query paradigm. In VisDB, users are

prompted to specify an initial query. Thereafter, guid-

ed by a visual feedback, they dynamically adjust the

query, e.g., by using sliders for specifying range pre-

dicates on single attributes. Retrieved records are

mapped to the pixels of the rectangular display area,

colored according to the degree of their conforming to

the specified set of selection predicates, and positioned

according to a grouping or ordering directive.

A traditional interface for analyzing OLAP data is

a pivot table, or cross-tab, which is a multidimensional

spreadsheet produced by specifying one or more mea-

sures of interest and selecting dimensions to serve

as vertical (and, optionally, horizontal) axes for
Visual On-Line Analytical Processing (OLAP). Figure 1. Pro

(a) A sample three-dimensional data cube for storing sales tra

characterized by dimensions Product, Date, and Store. (b

and Amount) broken down vertically by Product and Date
summarizing the measures. The power of this presen-

tation technique comes from its ability to summarize

detailed data along various dimensions, and arrange

the aggregates computed at different granularity levels

into a single view, preserving the ‘‘part-of ’’ relation-

ships between the aggregates. Figure 1 exemplifies the

idea of ‘‘unfolding’’ a three-dimensional data cube

Fig. 1a into a pivot table Fig. 1b, with cells of the

same granularity marked with matching background

color in both representations. However, pivot tables

are inefficient for solving non-trivial analytical tasks,

such as recognizing patterns, discovering trends, iden-

tifying outliers, etc. [1,4,11]. Visualization has the

power to save time and reduce errors in analytical

reasoning by utilizing the phenomenal abilities of the

human vision system to recognize patterns [2].
jecting a multidimensional data cube onto a pivot table.

nsactions as measures Quantity and Amount

) A pivot table view of sales data (measures Quantity

and horizontally by Store.

V

3390V Visual On-Line Analytical Processing (OLAP)
OLAP interfaces of the current state of the art

enhance the pivot table view by providing a set of

popular business visualization techniques, such as

bar-charts, pie-charts, and time series, as well as more

sophisticated layouts, such as scatterplots, maps, tree-

maps, cartograms, matrices, grids, etc. and vendors’

proprietary visualizations (e.g., decomposition trees

or fractal maps). Some tools go beyond mere visual

presentation of data and propose sophisticated app-

roaches inspired by the findings in information visuali-

zation research. Prominent examples of advanced visual

systems are Advizor by Visual Insights [1] and Tableau

by Tableau Software [2].

Advizor implements a technique that organizes the

data into three perspectives. A perspective is a set of

linked visual components displayed together on the

same screen. Each perspective focuses on a particular

type of analytical task, such as (i) single measure view

using a 3D multiscape layout, (ii) multiple measures

arranged into a scatterplot, and (iii) anchoredmeasures

presented using techniques from multidimensional

visualization (box plots, parallel coordinates, etc.).

Tableau is a commercialized successor of Polaris, a

visual tool for multidimensional analysis developed by

a research team of Pat Hanrahan at Stanford University

[12]. Polaris inherits the basic idea of the classical pivot

table interface that maps aggregates onto a grid defined
Visual On-Line Analytical Processing (OLAP). Figure 2. Tren

modifications from [7]).
by dimension categories assigned to the grid’s rows and

columns. However, Polaris uses embedded graphical

marks rather than textual numbers in the table cells.

The types of supported graphics are arranged into a

taxonomy, comprising rectangle, circle, glyph, text,

Gantt bar, line, polygon, and image layouts.

Russom [10] summarizes the trends in business

visualization software as a progression from rudimen-

tary data visualization to advanced forms and proposes

to distinguish three life-cycle stages of visualization

techniques, such as maturing, evolving, and emerging,

as depicted in Fig. 2. Within this classification, visual

OLAP clearly fits into the emerging techniques for

advanced interaction and visual querying.

Ineffective data presentation is not the only defi-

ciency of conventional OLAP tools. Further problems

are cumbersome usability and poor exploratory func-

tionality. Visual OLAP addresses those problems by

developing fundamentally new ways of interacting

with multidimensional aggregates. A new quality of

visual analysis is achieved by unlocking the synergy

between the OLAP technology, information visualiza-

tion, and visual analytics.

Foundations
A successful OLAP tool is capable of supporting a wide

variety of analytical tasks. Asmentioned in the previous
ds in data visualization for business analysis (adopted with

Visual On-Line Analytical Processing (OLAP) V 3391
section, different tasks are best solved by applying dif-

ferent visual presentations. OLAP tools account for this

diversity by providing a comprehensive framework,

which enables users to interactively generate satisfacto-

ry visual presentations. The overall query specification

cycle evolves by (i) selecting a data source of interest,

(ii) choose a visualization technique (e.g., a scatter-

plot), and then (iii) mapping various data attributes

to that technique’s structural elements (e.g., horizontal

and vertical axes) as well as to other visual attributes,

such as color, shape, and size. The main elements of

the framework are the navigation structure for visual

querying of data sources, a taxonomy of available visual

layouts attributes, and a toolkit of interaction tech-

niques for dynamic query refinement and visual repre-

sentation of the data. A unified framework is obtained

by designing an abstraction layer for each element

and providing mapping routines (e.g., navigation

events to database queries, query results to a visual

layout, etc.) implementing the interaction between dif-

ferent layers.

Visual Query Specification

Visual OLAP disburdens the end-user from formulating

queries in the ‘‘raw’’ database syntax by allowing purely

visual (i.e., by means of using a computer mouse) query

specification. Data cubes are represented as a browsable

structure whose elements can be queried by ‘‘pointing-

and-clicking’’ and ‘‘dragging-and-dropping.’’ Visual in-

terface does not trade off advanced functionality for

simplicity, it rather facilitates the process of specifying

ad hoc queries of arbitrary complexity.
Visual On-Line Analytical Processing (OLAP). Figure 3. Bro

extension versus intension navigation. (a) dimension instance

dimension categories with on-demand data display and an o
A common navigation paradigm is that of a file

browser that represents the contents as a recursive

containment of elements. The nodes in the navigation

hierarchy may be of types database, schema, table

(cube), dimension, classification level, and measure.

In simplified configurations, the navigation may be

limited to a single data cube and, thus, consist solely

of dimensions and measures. Dimension hierarchies

are presented as recursive nesting of their classification

levels, thereby allowing users to browse either directly

in the dimension’s data or explore its hierarchy

schema. In the former approach, denoted extension-

based, the navigation tree of a dimension is a

straightforward mapping of the dimension’s data hier-

archy: each hierarchical value is a node that can be

expanded to access the contained next-level values.

Alternatively, the navigation can explicitly display the

dimension schema, with each level as a child node of its

parent level. This so called intension-based approach is

especially appreciated for power analysis and employ-

ing advanced visualization techniques. The latter navi-

gation strategy becomes the only option when

supporting multiple and heterogeneous dimension

hierarchies [7] and a multi-cube join or drill-across

[6]. Figure 3 shows the difference between instance-

based and schema-based browsing for a hierarchical

dimension Period.

To navigate in multidimensional aggregates and per-

form dimensional reduction to extract data for analysis,

OLAP defines a number of standard multidimensional

analysis operations incorporated into a visual framework

in the form of navigation events and interaction options.
wsing options for hierarchical dimensions:

s arranged in a navigation hierarchy. (b) hierarchy of

ption to switch to extension navigation.

V

3392V Visual On-Line Analytical Processing (OLAP)
User interactions are translated into valid database

queries. From the user’s perspective, querying is done

implicitly by populating the visualization with data and

incrementally refining the view. The output of any OLAP

query is a data cube. Visual presentation is generated by

assigning the cube’s elements – measure values and their

dimensional characteristics – to the visual variables of the

display. A visualization technique is defined by the visual

variables, or attributes, it employs and the way those

constructs are combined. Examples of visual attributes

are position, shape, size, color, and orientation. Typically,

each of the above visual attributes is used to represent a

single data field returned by a query. Various attributes

behave differently with respect to the range, data type,

and the number of values they can meaningfully

represent.

The mapping of the cube’s structure to the naviga-

tion scheme as well as the translation of navigation

events into database queries rely on the metadata of the

underlying data warehouse system. Metadata describes

the structure of the cubes and their dimensions, mea-

sures, and applicable aggregation functions. In an ad-

vanced user interface, the analysts are able to define

new measures in addition to the pre-configured ones.

New measures are obtained by applying a different

aggregate function (e.g., average, variance, count) or

by specifying a more complex formula over a single or

multiple measure attributes (e.g., computing a ratio

between two aggregates).

Visualization Techniques

The task of selecting a proper visualization technique

for solving a particular problem is by far not trivial as

various visual representations (metaphors) may not

only be task dependent, but also domain dependent.

Successful visual OLAP frameworks need to be based

on a comprehensive taxonomy of domains, tasks, and

visualizations. The problem of assisting the analyst in

identifying an appropriate visualization technique for

a specific task is an unsolved issue in state-of-the-art

OLAP tools. Typically, a user has to find an appropriate

solution manually by experimenting with different

layout options.

To support a large set of diverse visualization tech-

niques and to enable dynamic switching from one

technique to another, an abstraction layer has to be def-

ined for specifying the relationships between the data

and its visual presentation. Maniatis et al. propose an

abstraction layer solution, called a Cube Presentation
Model (CPM) [5], that distinguishes between two

layers: a logical layer deals with data modeling and

retrieval whereas a presentation layer provides a gener-

ic model for representing the data (normally, on a 2D

screen). The entities of the presentation layer include

points, axes, multicubes, slices, tapes, cross-joins, and

content functions. The authors demonstrate how CPM

constructs can be mapped to advanced visual layouts at

the example of the Table Lens – a technique based on a

cross-tabular paradigm with support for multiple

zoomable windows of focus.

A common approach to visualization in OLAP

application relies on a set of templates, wizards, wid-

gets, and a selection of visual formats. Hanrahan et al.

[2] argue, however, that an open set of questions can-

not be addressed by a limited set of techniques, and

choose a fundamentally different approach for their

visual analysis tool Tableau: a declarative visual query

language VizQLTM offers high expressiveness and com-

posability by allowing users to create their own visual

presentations by means of combining various visual

components. Figure 4 illustrates the visualization ap-

proach of Tableau by showing just a small subset of

sophisticated visual presentations, created using sim-

ple VizQL statements, not relying on any pre-defined

template layout.

The designers of Tableau deliberately restrict the set

of supported visualizations to the popular and proven

ones, such as tables, charts, maps, and time series,

doubting general utility of exotic visual metaphors

[2]. Thereby, Tableau’s approach is constrained to gen-

erating grids of visual presentations of uniform granu-

larity and limited dimensionality. Other researchers

suggest that visual OLAP should be enriched by

extending basic charting techniques or by employing

novel and less known visualization techniques to take

full advantage of multidimensional and hierarchical

properties of the data [4,11,14,15]. Tegarden [15] for-

mulates the general requirements of business informa-

tion visualization and gives an overview of advanced

visual metaphors for multivariate data, such as Kiviat

diagrams and Parallel Coordinates for visualizing data

sets of high dimensionality, as well as 3D techniques,

such as 3D Scattergrams, 3D line graphs, floors and

walls, and 3D map-based bar-charts.

Another branch of visualization research for OLAP

concentrates on developing multiscale visualization

techniques capable of presenting the data at different

levels of aggregation. Stolte et al. describe their

V
is
u
a
l
O
n
-L
in
e
A
n
a
ly
ti
ca
l
P
ro
ce
ss
in
g
(O

LA
P
).

F
ig
u
re

4
.
Ex
am

p
le
s
o
f
so
p
h
is
ti
ca
te
d
m
u
lt
id
im

e
n
si
o
n
al
vi
su
al
iz
at
io
n
s
g
e
n
e
ra
te
d
b
y
si
m
p
le

V
iz
Q
L
st
at
e
m
e
n
ts

(u
se
d
b
y

p
e
rm

is
si
o
n
o
f
T
ab

le
au

So
ft
w
ar
e
,I
n
c.
).

Visual On-Line Analytical Processing (OLAP) V 3393

V

3394V Visual On-Line Analytical Processing (OLAP)
implementation of multiscale visualizations within the

framework of the Polaris system [13]. The underlying

visual abstraction is that of a zoom graph that supports

multiple zooming paths, where zooming actions may

be tied to dimension axes or triggered by a different

type of interaction.

Lee and Ong propose a multidimensional visuali-

zation technique that adopts and modifies the Parallel

Coordinates method for knowledge discovery in OLAP

[4]. The main advantage of this technique is its scal-

ability to virtually any number of dimensions. Each

dimension is represented by a vertical axis and the

aggregates are aligned along each axis in form of

a bar-chart. The other side of the axis may be used

for generating a bar-chart at a higher level of detail.

Polygon lines adopted from the original Parallel Coor-

dinates technique are used for indicating relation-

ships among the aggregates computed along various

dimensions (a relationship exists if the underlying sets

of fact entries in both aggregates overlap).

Mansmann and Scholl concentrate on the problem

of losing the aggregates computed at preceding query

steps while changing the level of detail and propose to

use hierarchical layouts for capturing the results of

multiple decompositions within the same display [9].

The authors introduce a class of multiscale visual

metaphors called Enhanced Decomposition Tree: the

levels of the visual hierarchy are created by decompos-

ing the aggregates along a specified dimension and the

nodes contain the resulting sub-aggregates arranged

into an embedded visualization (e.g., a bar-chart).

Various hierarchical layouts and embedded chart tech-

niques are considered to account for different analysis

tasks.

Sifer presents a multiscale visualization technique

for OLAP based on coordinated views of dimension

hierarchies [11]. Each dimension hierarchy with quali-

fying fact entries attached as the bottom-level nodes

is presented using a space-filling nested tree layout.

Drilling-down and rolling-up is performed implicitly

by zooming within each dimension view. Filtering is

realized by (de-)selecting the values of interest at any

level of dimension hierarchies, resulting either in high-

lighting the qualifying fact entries in all dimension

views (global context coordination) or in eliminating

the disqualified entries from the display (result only

coordination).

A similar interactive visualization technique, called

the Hierarchical Dynamic Dimensional Visualization
(HDDV), is proposed in [14]. Dimension hierarchies

are shown as hierarchically aligned barsticks. A barstick

is partitioned into rectangles that represent portions of

the aggregated measure value associated with the re-

spective member of the dimension. Color intensity is

used to mark the density of the number of records

satisfying a specified range condition. Unlike in [11],

dimension level bars are not explicitly linked to each

other, allowing to split the same aggregate along mul-

tiple dimensions and, thus, to preserve the execution

order of the dis-aggregation steps.

Key Applications
Visual OLAP should be considered an integral part of a

BI architecture. The latter appears rather universal with

respect to prospective application domains and com-

prises virtually all business and non-business scenarios

that require quantitative analysis. Prominent business

application areas are Financial RiskManagement, Indus-

trial Process Control, Operations Planning, Capital

Markets Management, Network Monitoring, Marketing

Analysis, Fraud/Surveillance Analysis, Portfolio Man-

agement, Customer/Product Analysis, Budget Planning,

Operations Management, and Economic Analysis.

Non-business applications are found primarily in

government, healthcare, research, and academia.

Future Directions
At present, visual OLAP is lacking a unified formal

model and query specification standard. Existing visu-

al analysis frameworks are based on proprietary form-

alisms and models. Furthermore, advanced OLAP

tools claim to turn visualization from the presentation

layout into the method of data exploration. This claim

implies the need for re-defining visualization as an

instrument in terms of its structural components and

interaction functions.

A pioneering initiative on addressing the above

formalization issues by integrating visualization into

a query language is a visual declarative data query

language VizQLTM developed at Tableau Software Inc.

and released in 2006 [2]. However, VizQL is a proprie-

tary solution and is limited to the visual table para-

digm of the Tableau system. To be universally adopted,

a new standard for visual exploration of OLAP data has

to be open, flexible, and extendible to account for a

wide range of visualization approaches.

A promising research direction is to evaluate a

wealth of existing visualization techniques with respect

Visual Perception V 3395

V

to their applicability to multidimensional analysis and

to identify classes of techniques efficient for solving

particular analysis tasks. One of the major visualiza-

tion challenges for OLAP is the ability to present a

large number of dimensions on a display. An addition-

al visual attribute for mapping a dimension could be

animation, as found in Gapminder software for inter-

active data exploration using animated scatterplots

where animation is used to show the evolution of

values along the timeline [9].

Another emerging research direction is concerned

with spatio-temporal analysis that employs

specialized techniques for spatial and/or temporal

exploration, such as maps, cartograms, times series,

and calendar views. These techniques are aware of the

rich semantics behind temporal and geographic

dimensions of the data. Rivest et al. [8] propose

SOLAP (spatial OLAP) as a visual platform for spa-

tio-temporal analysis using cartographic and general

displays. The authors define different types of spatial

dimensions and measures as well as a set of spec-

ialized geometry-aware operators.

Cross-references
▶Business Intelligence

▶Cube

▶Data Visualization

▶Dimension

▶Hierarchy

▶Measure

▶Multidimensional Modeling

▶On-Line Analytical Processing

▶Visual Interfaces

Recommended Reading
1. Eick S.G. Visualizing multi-dimensional data. ACM SIGGRAPH

Comput. Graph., 34(1):61–67, 2000.

2. Hanrahan P., Stolte C., and Mackinlay J. Visual analysis for

everyone: understanding data exploration and visualization.

Tableau Software Inc., 2007. White Paper, http://www.tableau-

software.com/docs/Tableau_Whitepaper.pdf

3. Keim D.A. and Krigel H.-P. VisDB: database exploration using

multidimensional visualization. IEEE Comput. Graph. Appl.,

14(5):40–49, 1994.

4. Lee H.-Y. and Ong H.-L. A new visualisation technique for

knowledge discovery in OLAP. In Proc. First Pacific-Asia

Conference on Knowledge Discovery and Data Mining, 1997,

pp. 279–286.

5. Maniatis A.S., Vassiliadis P., Skiadopoulos S., and Vassiliou Y.

Advanced visualization for OLAP. In Proc. ACM 6th Int. Work-

shop on Data Warehousing and OLAP, 2003, pp. 9–16.
6. Mansmann S. and Scholl M.H. Exploring OLAP aggregates with

hierarchical visualization techniques. In Proc. 2007 ACM Symp.

on Applied Computing, 2007, pp. 1067–1073.

7. Mansmann S. and Scholl M.H. Extending visual OLAP for

handling irregular dimensional hierarchies. In Proc. 8th Int.

Conf. Data Warehousing and Knowledge Discovery, 2006,

pp. 95–105.

8. Rivest S., Bédard Y., and Marchand P. Toward better support for

spatial decision making: defining the characteristics of spatial

on-line analytical processing (SOLAP). Geomatica, 55(4):

539–555, 2001.

9. Rosling H., Rönnlund A.R., and Rosling O. New software

brings statistics beyond the eye. In Proc. Organisation for Eco-

nomic Co-operation and Development, 2006, pp. 522–530.

10. Russom P. Trends in Data Visualization Software for Business

Users. DM Review, May 2000.

11. Sifer M. A visual interface technique for exploring OLAP

data with coordinated dimension hierarchies. In Proc. Int.

Conf. on Information and Knowledge Management, 2003,

pp. 532–535.

12. Stolte C., Tang D., and Hanrahan P. Polaris: a system for query,

analysis, and visualization of multidimensional relational data-

bases. IEEE Trans. Visual. Comput. Graph., 8(1):52–65, 2002.

13. Stoltec C., Tang D., and Hanrahan P. Multiscale visualization

using data cubes. IEEE Trans. Visual. Comput. Graph., 9

(2):176–187, 2003.

14. Techapichetvanich K. and Datta A. Interactive visualization for

OLAP, Part III. In Proc. Int. Conf. on Computational Science

and its Applications, 2005, pp. 206–214.

15. Tegarden D.P. Business information visualization. Comm. AIS,

1(1), 1999, Article 4.
Visual Perception

SILVIA GABRIELLI

Bruno Kessler Foundation, Trento, Italy

Synonyms
Sight; Vision

Definition
In psychology, visual perception is the ability to trans-

form visible light stimulus reaching the eyes into infor-

mation supporting recognitionprocesses and action. The

various physical and processing components which en-

able a human to being to assimilate information from the

environment are known as the visual system.

The act of seeing starts when the cornea and lens at

the front of the eye focus an image of the outside world

onto a light-sensitive membrane in the back of the eye,

3396V Visual Perception
called the retina. The retina is actually the part of the

brain which works as a transducer for the conversion of

patterns of light into neuronal signals. Precisely, the

photoreceptive cells of the retina detect the photons of

light and respond by producing neural impulses. These

signals are processed in a hierarchical fashion by dif-

ferent parts of the brain, such as the lateral geniculate

nucleus, and the primary and secondary visual cortex

of the brain.

The major problem in visual perception is that

what is seen is not simply and always a translation

of retinal stimuli (i.e., the image on the retina). Thus,

different theories and experimental studies have been

devised to explain what visual processing does to create

what is actually perceived. It is worth stressing that

visual perception involves the acquisition of knowl-

edge, so it is not merely an optical process but it also

entails cognitive activity.

Historical Background
The foundations of modern theories of vision were laid

in the seventeenth century, when Descartes and others

established the principles of optics, making it possible

to distinguish between the physical properties of light,

images and the psychological properties of the visual

experience. It was proposed that visual perception

involves adding information to that present in the

retinal image in order to reach properties such as

solidity of an object and meaning.

According to the empiricist position, developed

primarily by von Helmholtz [8], vision originates

from a form of unconscious inference: it is a matter

of deriving a probable interpretation from incomplete

data (a set of elementary sensations that are integrated

and synthesized through a process of learning by asso-

ciation). Inference requires prior assumptions about

the world, such as that light comes from above, or that

objects are viewed from above and not below. The

study of visual illusions (cases when the inference

process goes wrong) has yielded a lot of insight into

what sort of assumptions the visual system makes.

The unconscious inference hypothesis has recently

been investigated in Bayesian studies of visual percep-

tion. Proponents of this approach consider that the

visual system performs some form of Bayesian infer-

ence to derive a perception from sensory data. Models

based on this idea have been used to describe various

visual subsystems, such as the perception of motion or

the perception of depth.
Gestalt psychologists (in the 1930s and 1940s),

questioned the assumption that vision is derived

from inference mechanisms and previous knowledge

[10]. They considered visual perception to be direct

and based on the detection of patterns or configura-

tions, as organized wholes available in the perceptual

field. According to the Gestalt Laws of Organization

there are six main factors that determine how things

are grouped in visual perception: proximity, similarity,

closure, symmetry, common fate and continuity. The

major problem with the Gestalt laws and theory is that

they are descriptive of vision more than explanatory.

In Gibson’s ecological theory of perception [4], the

emphasis is placed on the role played by relations in

the visual environment, which are embedded within

the spatial and temporal distribution of stimuli an

active observer can perceive. According to Gibson, no

inference mechanism is needed to detect these affor-

dances, that are directly available in the surrounding

environment.

Computational approaches to the study of vision,

such as Marr’s work [5], have provided more detailed

explanations of visual phenomena by building artificial

intelligence models of the processes involved. Vision is

considered as the process of forming a description or

representation of what is in the scene from the retinal

images. The system at work is modular and serial, con-

sisting of a number of subprocesses, each one taking one

representation and transforming it into another. It goes

from the creation of the primal sketch (representing

changes in light intensity occurring over space in the

image and organizing these local descriptions onto a

2D representation of regions and boundaries) to the

2 1 ∕ 2 D sketch (where the layout of objects surfaces,

their distances and orientations relative to the observer

are represented) to the creation of 3Dmodel representa-

tions (specifying the solid shapes of objects matched

against their corresponding representations inmemory).

Foundations
According to a multidisciplinary study of visual percep-

tion based on perceptual psychology, neuroscience and

computational analysis, the purpose of vision is to pro-

duce information about objects, locations and events in

the world from imaged patterns of light reaching the

viewer. Psychology uses the term ‘distal stimulus’ to refer

to the physical world under observation and ‘proximal

stimulus’ to refer to the retinal image. The function of

vision is to create a description of aspects of the distal

Visual Perception V 3397

V

stimulus given the proximal stimulus. Although visual

perception is said to be veridical when it produces accu-

rate descriptions of the real world, in practice vision is

better understood in the context of the cognitive and

motor functions that it serves.

Vision systems create descriptions of the visual

environment based on properties of the incident illu-

mination. The human vision system is primarily sensi-

tive to patterns of light rather than to the absolute

magnitude of light energy. The eye does not operate

as a photometer. Instead, it detects spatial, temporal

and spectral patterns in the light imaged on the retina,

and information about these patterns of light form the

basis of visual perception. A system which measures

changes in the light energy rather than the magnitude

of energy has an ecological utility, since it makes it

easier to detect patterns of light over large ranges in

light intensity. This is also an advantage for computer

graphics, which can make graphic displays work effec-

tively by only producing similar patterns of spatial and

temporal change to the real world.

Depth perception: Human beings can perceive the

world as 3D, although images projected onto the retina

are 2D (all points placed at different distances in space,

but along the same directional axis, project onto a

same point of the retina). Depth perception, also called

stereopsis, relies mainly on binocular cues (cues that

require input from both eyes) and on monocular cues

(cues available from the input of just one eye), as well

as on the synthetic integration performed by a person’s

brain based on the full field of view perceived with

both the eyes.

Among the most important binocular cues there are:

(i) retinal disparity, due to the distance between the two

eyes which makes the projection of objects or scenes

onto each retina slightly different. By using two images

of the same scene obtained from slightly different angles,

it is possible to triangulate the distance to an object with

a high degree of accuracy. If an object is far away, the

disparity of that image falling on both retinas will be

small, if it is close the disparity will be large. (ii) accom-

modation, focusing on far away objects, the ciliary mus-

cles stretch the eye lens, making it thinner. (iii)

convergence, to focus on a same object the two eyes

need to converge. The angle of convergence is larger

when the eye is fixating objects that are far away.

Examples of monocular cues are: (i) focus, the lens

of the eye can change its shape to bring objects at

different distances into focus. Knowing at what
distance the lens is focused when viewing an object

means knowing the approximate distance to that ob-

ject. (ii) perspective, the property of parallel lines con-

verging at infinity allows people to reconstruct the

relative distance of two parts of an object, or of land-

scape features. (iii) occlusion, the blocking of the sight

of objects by others is also a clue which provides

information about relative distance (the occluded ob-

ject is perceived as more far away). (iv) peripheral

vision, at the outer extremes of the visual field, parallel

lines become curved, as in a photo taken through a

fish-eye lens. This effect greatly enhances the viewer’s

sense of being positioned within a real, three dimen-

sional space.

Perceptual constancies: To view the world by the

exact image projected on the retina would mean to

perceive it as very unstable. Objects within a person’s

field of vision would constantly be changing shape, size,

position and color as s/he moved toward and away from

them, because the distance and therefore the amount of

reflected light detected by the retina would also be

changing. Indeed, this is not the case, our surroundings

are perceived as solid and stable since the world is not

just ‘‘seen’’ but actively constructed from fragmentary

perceptual data [4]. It is our brain that by means of

perceptual constancies interprets the changing proximal

stimulation to reach stability. For instance, in the case of

size constancy our brain perceives an object in relation

not only to its visual angle, but also to the perceived

distance. Also, size constancy tells us that objects

moving away from us are the same size even though

their retinal image is getting smaller and this is because

size constancy is a property of the perceptual field (it

refers to the relationship between the object and its

surrounding context, which remains stable). The same

principle works in form constancy, where an object is

perceives as the same notwithstanding the different

shapes that are projected onto the retina as its angle

changes. That is to say that perception of the partial

view becomes equivalent to perception of the whole

object. Also, in the case of color and light constancies,

our retina is able to distinguish the different wave-

lengths of light entering the eye, however, our percep-

tion remains relatively stable since it is affected by our

previous experiences or knowledge, as well as by the

context one is dealing with (e.g., color and lightness of

an object do not depend only on the absolute intensity

of light, but also on their relationships with the stimu-

lation arriving from the surrounding areas).

3398V Visual Perception
There are primarily two different ways in which

visual perception and the perceptual process have

been scientifically investigated. Psychophysical analysis

has studied how a person’s perception is related to the

stimulus. As an example, Stevens’ power law defines the

relationship between the magnitude of a physical stim-

ulus and its perceived intensity or strength [7]. The

general form of the law is

cðIÞ ¼ kIa;

where I is the magnitude of the physical stimulus, c is

the psychophysical function capturing sensation (the

subjective size of the stimulus), a is an exponent that

depends on the type of stimulation and k is a propor-

tionality constant that depends on the type of stimula-

tion and the units used.

A second way of studying perception considers its

relation to the physiological processes that are occur-

ring within the person’s sensors and/or brain. This is

called physiological analysis of the perceptual process,

which measures, for example, some aspects of a per-

son’s brain activity when s/he looks at a visual stimu-

lus. Magnetic resonance imaging (MRI) is a typical

instrument used for mapping activation patterns in

the human brain as a person watches a scene.

Due to the complexity of visual perception, and the

intimate relation among its psychophysical, physiolog-

ical and cognitive aspects, the best way of getting

a complete view of this phenomenon is by cross refer-

encing the different disciplines that have addressed

its study.

Key Applications

Computer Graphics

Visual perception has become a key component of

computer graphics, since it helps to achieve the devel-

opment of high fidelity virtual environments in rea-

sonable time by exploiting knowledge of how the

human visual system works (e.g., rendering time can

be saved by avoiding to compute those parts of a scene

that the human will fail to notice).

Artificial Intelligence

The results of studies on human visual perception

inspire the development of computational models of

vision that, in turn, can be used to design and imple-

ment visual abilities within artificial intelligence sys-

tems (e.g., robots).
Visual Interfaces

Visual perception provides the scientific basis for

the design of visual interfaces that can best match

the requirements of their users, by enabling an easier

and more transparent access and interaction with

information.

Information Visualization

In the field of Information visualization, visual percep-

tion principles help to produce effective visualizations

of non-geometric data retrieved from large document

collections (e.g., digital libraries), the World Wide

Web, and databases, with the aim of supporting users

to make sense of information there contained and of

enhancing their creative thinking.

Future Directions
Current theories and methods for the study of visual

perception in psychophysics and neuroscience need to

be integrated with information processing approaches

in the attempt to model vision at a more abstract

computational level. An interesting cross-fertilization

is expected between neuroscience experimentation and

computer vision theories. Particularly, for providing

a detailed account of how the brain makes effective

use of top-down resources (e.g., knowledge, memories

etc.), creates predictions about forthcoming stimuli

and constantly matches expectations against signals

from the environment [6]. It is likely that as research-

ers in visual neuroscience and computer vision develop

a better understanding of the role played by bottom-up

and top-down information processing mechanisms

and their interaction, better theories of visual percep-

tion can be developed.

Experimental Results
A considerable amount of experimental evidence exists

for all the theories and approaches to the study of

visual perception cited above. References to results on

the physiology, psychology and ecology of vision are

provided in [1,3]. Application of visual perception

principles to the design of Information visualization

and visual interfaces is discussed in [9].

Data Sets
An online laboratory providing a collection of demon-

strations and experiments on visual perception can be

found at: http://www2.psych.purdue.edu/�coglab/

VisLab/welcome.html.

Visual Query Language V 3399
URL to Code
The portal (above) also intends to provide software

that can be used in the study of visual science.

Cross-references
▶Visual Interfaces

Recommended Reading
1. Bloomer, C.M. Principles of Visual Perception. Herbert,

London, 1990.

2. Bruce V. and Green P.R. Visual Perception. Erlbaum, Hove,

England, 1990.

3. Bruce V., Green P.R., and Georgeson M.A. Visual Perception:

Physiology, Psychology, and Ecology. Psychology, New York,

2003.

4. Gibson J.J. The Ecological Approach to Visual Perception.

Houghton Mifflin, Boston, 1979.

5. Marr D. and Vision W.H. Freeman, San Francisco, CA, USA,

1982.

6. Perception on Purpose. FP6-IST project N. 027268. Available at:

http://perception.inrialpes.fr/POP/.

7. Stevens S.S. On the psychophysical law. Psychol. Rev., 64

(3):153–181, 1957.

8. von Helmholtz H. (Obituary). In Proc. Royal Soc. Lond. Royal

Society, Great Britain. Taylor and Francis, London, 1854.

9. Ware C. Information Visualization: Perception for Design.

Morgan Kaufmann, San Francisco, CA, USA, 2004.

10. Wertheimer M. Gestalt theory. In a Source Book of Gestalt

Psychology, W.D. Ellis (ed. & trans.). Routledge and Kegan

Paul, London (Original work published 1925), 1938, pp. 1–11.
V

Visual Query Language

TIZIANA CATARCI

University of Rome, Rome, Italy

Synonyms
Visual query system

Definition
Visual Query Languages (VQLs) are languages for

querying databases that use a visual representation to

depict the domain of interest and express related

requests. VQLs provide a language to express the

queries in a visual format, and they are oriented

towards a wide spectrum of users, especially novices

who have limited computer expertise and generally

ignore the inner structure of the accessed database.

Systems implementing VQLs are usually called Visual

Query Systems (VQSs) [8].
Historical Background
The birth of VQLs was due to several needs, including:

providing a friendly human-computer interaction,

allowing database search by non-technical users, intro-

ducing a mechanism for comfortable navigation even

in case of incomplete and ambiguous queries. It is

worth noting that the real precursor of VQLs was

QBE, already proposed by Moshe Zloof in 1977 [19].

QBE was really ahead of its time. Indeed, the

Zloof ’s paper states: ‘‘the formulation of a transaction

should capture the user’s thought process. . . .’’ This is

a quite common idea today, but at that time (1977)

the research on user interfaces and human-computer

interaction was still in its infancy. Approximately in the

same period, Smith coined the term ‘‘icon’’ in his Ph.D.

thesis [16] and Alan Kay introduced the idea of direct

manipulation interfaces that are, in principle, usable

by everyone [14]. It was necessary to wait until the

beginning of 1980s for the first commercial systems

making extensive use of direct manipulation, namely

Xerox Star, Apple Lisa, and Macintosh.

It is worth noting that QBE is based not only on the

usage of examples for expressing queries, but it also

relies on the direct manipulation of relational tables

inside a basic graphical user interface: an environment

and an action modality which were quite unknown

at that time, considering the almost simultaneous

publication of Alan Kay’s paper.

Another anticipatory idea is the incremental query

formulation, i.e., ‘‘. . .the user can build up a query by

augmenting it in a piecemeal fashion.’’ Many papers

still recommend to allow the user expressing the query

in several steps, by composing and refining the initial

formulations [8].

Moreover, QBE was the first proposal of query

language in which the attention to the user interface

is coupled with a rigorous definition of the language

syntax and semantics and a careful study of the lan-

guage expressive power. Unfortunately, many of the

later proposals of visual query languages have empha-

sized the aspects related to user interaction and ease

of learning and of use only, without also focusing

on formal aspects, such as syntax, semantics and

expressive power [8]. Such query languages are usually

presented through examples of query formulation,

making both the study of language expressiveness and

the comparison with other languages difficult. The

opposite is true for QBE, whose usability was also

tested comparing it with SQL in several experiments,

3400V Visual Query Language
such as those reported in [15] and [17]. Finally, many

of the QBE ideas are still up-to-date and it is amazing

to note that QBE-like interfaces are nowadays adopted

in commercial database systems, despite the current

explosion of sophisticated visualizations and interac-

tion mechanisms.

However, only later on, during the 1980s and early

1990s, VQLs received the greatest attention by the

database community with the presentation of several

diverse proposals for an effective visual and interactive

query language.

Foundations
In [5], VQLs were reviewed and classified based on

three criteria, namely:

� What can be done using the system, i.e., the expres-

sive power of the environment.

� How the system may be used in order to build the

query, i.e., the concept of usability as determined

by the available strategies, the interaction and

representation models.

� Whom, in terms of classes of users, the systems are

addressed to.

The expressive power of a query system can be defined

as the ability of the system to extract meaningful infor-

mation from the database. More formally, according to

[10], the expressive power can be based on the concept

of computable query. Let U be a fixed countable set,

called the universal domain, and let D(B), a subset of

U, be a finite set which includes all the elements

appearing in the database B. A query is a partial func-

tion giving an output (if any) which is a relation over

D(B). A query Q is said to be computable if Q is partial

recursive and satisfies a consistency criterion: if two

databases are isomorphic, then the corresponding out-

puts of Q are also isomorphic (under the same isomor-

phism). In other words, the result of a query should be

independent from the organization of the data in a

database and should treat the elements of the database

as uninterpreted objects. Excluding queries expressing

undecidable problems, computable queries can be seen

as the more general class of ‘‘reasonable’’ queries.

Other meaningful classes of queries have been investi-

gated in [11], giving rise to the so called Chandra’s

hierarchy. A significant class of queries inside the hier-

archy is the one of first order queries, and the term

completeness was used to indicate that a query language
could express all the first order queries. However, it was

apparent early that the amount of expressive power

provided by such a language is not adequate for expres-

sing useful queries, such as transitive closure and, more

generally, fixpoint queries (i.e., queries obtained by

augmenting the standard first order operators with

the construct of least fixpoint). On the other hand,

languages that friendly express queries simpler than

first order queries are significant, since average data-

base users make elementary requests.

As a consequence of the above remarks, the expres-

sive power of the majority of visual query languages is

lower or equal to the classes of first order or fixpoint

queries. More precisely, most of the iconic languages

fall in lowest level classes, since they are directed to a

casual user, who is mainly interested in a friendly ex-

pression of simple queries (e.g., select-project queries).

On the other hand, most of the graphical languages are

equally or less expressive than relational algebra and

very few are placed in the upper levels of the hierarchy

(see [8]).

The notion of usability used in [5] is quite

‘‘database-oriented,’’ and different from the ones used

in the human-computer interaction (hci) community

that is now commonly accepted. Indeed, in [5] usa-

bility was specified in terms of the models used in

VQLs for denoting both data and queries, their

corresponding visual representations and the strate-

gies provided by the system in order to formulate the

query. This definition does not reflect the hci view of

usability as a software quality related to user percep-

tion and fruition of the software system. In particular,

the data model has no significant impact on the user

perception of the system. Whereas, visual representa-

tions and interaction strategies influence the user-

system interaction, since they are important parts of

the system interface (the only thing the user sees of

a system).

As for the visual representation, the query repre-

sentation is generally dependent on the database rep-

resentation, since the way in which the query operands

(i.e., data in the database) are presented constrains the

query representation. For example, given a query on a

relational database, the query may be formulated in

terms of several representations, e.g., filling some fields

in tables visualizing the relations, or following paths in

a hypergraph that visualizes the relational schema. In

this case the table and the hypergraph are two possible

Visual Query Language V 3401

V

representations associated with the relational database.

On the other hand, the visual representation used to

display the query result can be different from the

database representation. This is mainly due to the fact

that what is visualized for the query purpose most often

is the schema of the database, while the actual database

instances constitute the query result to be displayed to

the user.

Visual representations used in VQLs typically use

forms, diagrams, icons or a combination of them.

Form-based representations are the simplest way to

provide the users with friendly interfaces for data

manipulation. They are very common as application

or system interfaces to relational databases, where the

forms are actually a visualization of the tables. In query

formulation prototypical forms are visualized for users

to state the query by filling appropriate fields. In sys-

tems such as QBE [19], only the intensional part of

relations is shown: the user fills the extensional part to

provide an example of the requested result. The system

retrieves whatever matches the example. In more re-

cent form-based representations the user can manipu-

late both the intensional and the extensional part of the

database.

Diagrammatic representations are also widely used

in existing systems. Typically, diagrams represent data

structures displayed using visual elements that corre-

spond to the various types of concepts available in

the underlying data model. Diagrammatic representa-

tions adopt as typical query operators the selection of

elements, the traversal on adjacent elements and the

creation of a bridge among disconnected elements.

Iconic representations use icons to denote both

the objects of the database and the operations to be

performed on them. A query is expressed primarily by

combining operand and operator icons. For example,

icons may be vertically combined to denote con-

junction (logical AND) and horizontally combined to

denote disjunction (logical OR). In order to be effec-

tive, the proposed set of icons should be easily and

intuitively understandable by most people. The need

for users to memorize the semantics of the icons makes

the approach manageable only for somehow limited

sets of icons.

The hybrid representation is a combination of the

above representations. Often, diagrams are used to

describe the database schema, while icons are used

either to represent specific prototypical objects or to
indicate actions to be performed. Forms are mainly

used for displaying the query result.

Similarly to most graphical user interfaces, the

VQLs that have been developed so far have mainly

stressed the user input aspects of the interaction and

have given little thought to the visualization of output

data. Conversely, an appropriate visualization of the

query result allows the user to better capture the rela-

tionships amongst the output data, and some systems

are progressing in this direction. For instance, AMAZE

employs 3D graphs [7]. The data are shown as a

3D snapshot of the n-dimensional results. Different

methods of result visualization are also planned to be

available to the user. The Film Finder system [1] visua-

lizes information about movies by means of starfield

displays, which show database objects as small select-

able spots (either points or 2D figures). The displayed

data can be filtered by changing the range of values on

both the Cartesian axes. The query result fits on a

single screen and the system quickly, i.e., within a

second, computes the new data display in response

to the user’s requests. This property, called near real-

time interactivity, ensures high usability. A different

approach is to use virtual reality techniques to present

the query result with a simulation of a real environ-

ment (i.e., a virtual one) that depicts a situation famil-

iar to the user. VQRH [12] is one of the systems that

provide the user with several visual representations

for both query formulation and result visualization.

One possibility is to use 3D features to present the

results in the simulated reality setting. For example, if

the database refers to the books in a library, a virtual

library can be represented in which the physical loca-

tions of the books are indicated by icons in a 3D

presentation of the book stacks of the library.

Apart from the visual representation, any VQL is

characterized by the way in which it allows the user

to express his/her requests. Very often, the actual query

specification is the second step of the user interaction,

while there is a first step devoted to the understanding

of the overall database content. This first phase is in

general supported providing the user with browsing

and/or filtering and zooming mechanisms.

Query formulation is the fundamental activity in

the process of data retrieval. The query strategy by

schema navigation has the characteristic of concentrat-

ing on a concept (or a group of concepts) and moving

from it in order to reach other concepts of interest, on

Visual Query Language. Figure 1. Unconnected path in QBD* [19].

3402V Visual Query Language
which further conditions may be specified. Such a

strategy differs according to the type of path followed

during the navigation (see Figure 1 for an example of

unconnected path).

A second strategy for query formulation is by sub-

queries. In this case the query is formulated by com-

posing partial results. The third strategy for query

formulation is by matching. It is based on the idea of

presenting the structure of a possible answer that is

matched against the stored data.

The last strategy for query formulation is by range

selection, allowing a search conditioned by a given

range on multi-key data sets to be performed. The

query is formulated through direct manipulation of

graphical widgets, such as buttons, sliders, and scrollable

lists, with one widget being used for every key. An

interesting implementation of such a technique has

been proposed in [1], and is called dynamic query.

The user can either indicate a range of numerical

values (with a range slider), or a sequence of names

alphabetically ordered (with an alpha slider). Given a

query, a new query is easily formulated by moving the

position of a slider with a mouse: this is supposed to

give a sense of power but also of fun to the user, who is

challenged to try other queries and see how the result

is modified. Usually, input and output data are of the

same type and may even coincide.

Key Applications
VQLs have been basically proposed to allow non-

programmers to express database queries. In [5] it

was also conjectured that, depending on the user class

and the kind of task (i.e., query), certain VQLs are
more appropriate than others. For instance, VQLs

based on extensive use of icons and icon composition

mechanisms [18], are typically more suited to express

simple (select-project-join) queries and be used by

naive users. Analysis underlying such statements were

usually correct. Nevertheless, they needed to be sub-

stantiated by running user trials, and such experiments

were (and still are) not so common in the VQL commu-

nity. However, some of them have been carried on and

basically support the hypothesis that different kinds of

queries are better supported by different visual represen-

tations and interactionmechanisms.Whereas, results on

the adequacy of the different visual representations with

respect to the various classes of users are not so strong as

it was conjectured.

Future Directions
VQLs mainly deal with traditional databases, i.e., data-

bases containing alphanumeric data. However, in recent

years the application realms of databases have raised

a lot in terms of both number and variety of data

types. As a consequence, specialized systems have been

proposed for accessing such new kinds of databases,

containing non-conventional data, such as images,

videos, temporal series, maps, etc. Furthermore, the

idea of information repository has been deeply influ-

enced by the beginning of the Web age. Different visual

systems have been proposed to cope with the need for

extracting information residing on the Web.

Temporal Databases

There are a growing number of applications dealing

with data characterized by the temporal dimension

Visual Query Language V 3403

V

(e.g., medical records, biographical data, financial data,

etc.). Still, visual interfaces for querying temporal data-

bases have been less investigated than their counterpart

in traditional databases. Typically, end-users of these

data are competent in the field of the application but

are not computer experts. They need easy-to-use sys-

tems able to support them in the task of accessing and

manipulating the data contained in the databases. In

this case, typical interactions with the data involve the

visualization of some of their characteristics over some

timeframe or the formulation of queries related with

temporal events, such as the change of status

of an employee or the inversion of the tendency of

stock exchanges.

Geographical Databases

Geographical information is most naturally conveyed

in visual format. Maps and diagrams (i.e., schematic

maps such as a bus network map) are the core means in

user interactions, both for querying the database and

displaying the result of a query. A typical query would

be ‘‘show me on a city map where is the post office

that is closest to this location.’’ The query itself would

most likely be expressed using preformatted forms and

menus to select the city and the reference location. The

result would be a blinking or otherwise highlighted

point in the displayed map. Once a map is displayed,

as a result of a previous query or as an initial back-

ground screen in a query formulation interaction, the

map can be used to specify a new query. This typically

supports queries such as ‘‘give me more information

on this,’’ where the value of the this parameter is spe-

cified by pointing in some way to a location in the map

(i.e., a point on the screen). Thus in some sense visual

interaction is common practice in GIS systems, due

to the intrinsically spatial reference that is associated to

the data.

Web Visual Access

Nowdays, theWeb is the widest information repository.

However, to find the information of interest among

the mass of uninteresting one is a very hard task.

In order to help the user in retrieving information

scattered everywhere in the Web, several proposals

have been made by different research communities,

such as those of database, artificial intelligence, and

human-computer interaction (see, e.g., [13]), a limited

amount of them relate to visual querying and infor-

mation visualization.
Visually Querying Digital Libraries

The main purpose of a digital library (DL) is to facili-

tate the users in easily accessing the enormous amount

of globally networked information, which includes

preexisting public libraries, catalog data, digitized doc-

ument collections, etc. Thus, it is fundamental to

develop both the infrastructure and the user interface

to effectively access the information via the Internet.

The key technological issues are how to search and

how to display desired selections from and across

large collections. A DL interface must support a

range of functions including query formulation, pre-

sentation of retrieved information, relevance feedback

and browsing.

Experimental Results
As it was mentioned in the previous sections, user trials

have been conducted to compare the usability of query

languages. First a well-known definition of usability is

recalled: ‘‘the extent to which a product can be used

with efficiency, effectiveness and satisfaction by specific

users to achieve specific goals in specific environ-

ments’’ [3]. More precisely, effectiveness refers to the

extent to which the intended goals of the system can

be achieved; efficiency is the time, the money, and the

mental effort spent to achieve these goals; and satisfac-

tion depends on how comfortable the users feel using

the system.

In the case of VQLs the main goal is to extract

information from the database by performing queries,

and the accuracy in achieving such a goal is generally

measured in terms of the accuracy of query completion

(i.e., user’s correctness rate when writing the queries).

Measures of efficiency relate the level of effectiveness

achieved at the expense of various resources, such as

mental and physical effort, time, financial cost, etc.

In principle, both the user’s and the organization’s

point of view should be considered. However, the

user’s efficiency is most frequently measured in terms

of the time spent to complete a query.

The above two measures (i.e., query accuracy and

response time) can be evaluated quite precisely. Fre-

quently this is done either by recording real users

performing predefined tasks with the system and then

analyzing the recorded data or by directly observing

the user. The most common tasks are query writing and

query reading, both of which are performed by inves-

tigating the relationships between database queries

expressed in natural language and the same

3404V Visual Query Language
queries expressed in the system under study. In query

writing, the question is: ‘‘Given a query in natural

language how easily can a user express it through the

query language statements?’’ The question for query

reading is: ‘‘Given a query expressed through the

query language statements, can the user express

the query easily in natural language?’’ Moreover,

other kinds of measures can be defined and evaluated,

although with less precision.

Measures of satisfaction describe the comfort and

acceptability of the overall system used. The learnabil-

ity of a product may be measured by comparing the

usability of a product handled by one user along a

time scale. Measuring usability in different contexts

can assess the flexibility of a product.

Usability of query languages has first been studied

through the comparison between QBE and SQL

[15,17]. The former study [15] showed better user

performances when using QBE with respect to SQL,

both in query reading and query writing tests. Howev-

er, a later study [17] also comparing QBE and SQL

took into account several factors, such as the use of

the same database management system, a similar envi-

ronment, etc. It is interesting to note that the query

language type affected user performance only in

‘‘paper and pencil’’ tests, in which case QBE users had

higher scores than SQL users. In on-line tests, the

user’s accuracy was not affected by the type of the

language adopted, but the user’s satisfaction was

much greater with QBE, and his or her efficiency

much better.

In [2], a language based on the previously-

mentioned dynamic queries was tested against two

other query languages, both providing form fill-in as

the input method. One of these languages (called FG)

has a graphical visualization output, and the other one

(called FT) has a fully textual output. The alternative

interfaces were chosen to find out which aspect of

dynamic queries makes the major difference, either

the input by sliders, or the output visualization. The

tasks to be performed by the user concerned basically

the selection of elements that satisfy certain conditions.

However, the subjects were also asked to find a trend

for a data property and to find an exception for a

trend. The hypothesis that the dynamic query language

would perform better than both the FG and the FT

interface was confirmed. Similarly, the FG interface

produced faster completion times than the FT
interface. In particular, for the task of finding a trend,

the possibility of getting an overview of the database

(in the dynamic and FG interfaces) made the major

difference. In searching for an exception, the dynamic

interface performed significantly better than the FG

and FT ones. This was due to the advantages

offered by both the visualization and the sliders. The

visualization allowed subjects to see exceptions easily

when they showed up on the screen, and the sliders

allowed them to quickly change the values to find the

correct answer.

Other experiments have been conducted [17,18]

to compare a diagrammatic query language, namely

QBD*, against both SQL and QBI, an iconic query

language. The overall objective of the studies was mea-

suring and understanding the comparative effective-

ness and efficiency with which subjects can construct

queries in SQL or in the diagrammatic or iconic lan-

guages. The experiments were designed to determine if

there is a significant correlation between 1) the query

class and the query language type, and 2) the type

of query language and the experience of the user.

The subjects were undergraduate students, secretaries

and professionals having different levels of expertise.

The results of the comparison between QBD* and SQL

confirmed the intuitive feeling that a visual language is

easier to understand and use than a traditional textual

language not only for novice users, but also for expert

ones. The experts’ errors when using SQL were mainly

due to the need of remembering table names and using

a precise syntax. Working with QBD*, users can gain

from looking at the E-R diagrams. On the basis of

the figures which have been obtained when comparing

QBD* and QBI one can say that expert users perform

better using the QBD* system, while a small difference

exists concerning the performance of non-expert users

(slightly better using QBI).

Cross-references
▶Data Model

▶Data Visualization

▶Digital Libraries

▶ Expressive Power of Query Languages

▶Geographic Information System

▶Multimedia Databases

▶Temporal Database

▶Usability

▶Query Language

Visual Representation V 3405

V

Recommended Reading
1. Ahlberg C. and Shneiderman B. Visual information seeking:

tight coupling of dynamic query filters with starfield displays.

In Proc. SIGCHI Conf. on Human Factors in Computing

Systems, 1994, pp. 313–317.

2. Ahlberg C., Williamson C., and Shneidermann B. Dynamic

queries for information exploration: an implementation and

evaluation. In Proc. SIGCHI Conf. on Human Factors in Com-

puting Systems, 1992, pp. 619–626.

3. Angelaccio M., Catarci T., and Santucci G. QBD*: a graphical

query language with recursion. IEEE Trans. Softw. Eng.,

16:1150–1163, 1990.

4. Badre A.N., Catarci T., Massari A., and Santucci G. Com-

parative ease of use of a diagrammatic Vs. an iconic query lan-

guage. In Interfaces to Databases J. Kennedy P.J. Barclay (eds.).

Electronic Series Workshop in Computing, Springer, 1996.

5. Batini C., Catarci T., Costabile M.F., and Levialdi S. Visual Query

Systems: ATaxonomy – nei. In Proc. 2nd IFIP W.G. 2.6 Working

Conference on Visual Databases, 1991.

6. Bevan N. and Macleod M. Usability assessment and measure-

ment. In The Management of Software Quality, M. Kelly (ed.).

Ashgate Technical/Gower Press, Hampshire, UK, 1993.

7. Boyle J., Leishman S., and Gray P.M.D. From WIMP to 3D: the

development of AMAZE. J. Vis. Lang. Comput. (Special issue on

visual query systems), 7:291–319, 1996.

8. Catarci T., Costabile M.F., Levialdi S., and Batini C. Visual

query systems for databases: a survey. J. Vis. Lang. Comput.,

8(2):215–260, 1997.

9. Catarci T. and Santucci G. Diagrammatic vs Textual query

languages: a comparative experiment. In Proc. IFIP W.G. 2.6

Working Conference on Visual Databases, 1995, pp. 57–85.

10. Chandra A.K. Programming primitives for database languages.

In Proc. 8th ACM SIGACT-SIGPLAN Symp. on Principles of

Programming Languages, 1981, pp. 50–62.

11. Chandra A.K. Theory of database queries. In Proc. 7th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1988, pp. 1–9.

12. Chang S.K., Costabile M.F., and Levialdi S. Reality bites –

progressive querying and result visualization in logical and VR

spaces. In Proc. IEEE Symp. Visual Languages, 1994, pp. 100–109.

13. Geronimenko V. and Chen C. (eds.). Visualising the Semantic

Web. Springer, Berlin, 2002.

14. Kay A. Personal dynamic media. IEEE Comput., 10(3):

31–42, 1977.

15. Reisner P. Query languages. In Handbook of Human-Computer

Interaction, M. M. Helander (ed.). North-Holland, Amsterdam,

1988, pp. 257–280.

16. Smith D.C. Pygmalion: A Computer Program to Model and

Stimulate Creative Thought. Birkhauser Verlag, Basel, 1977.

17. Yen M.Y. and Scamell R.W. A human factors experimental

comparison of SQL and QBE. IEEE Trans. Softw. Eng.,

19(4):390–402, 1993.

18. Tsuda K., Yoshitaka A., Hirakawa M., Tanaka M., and

Ichikawa T. Iconic browser: an iconic retrieval system for object-

oriented databases. J. Vis. Lang. Comput., 1(1):59–76, 1990.

19. Zloof M.M. Query-by-example: a database language. IBM Syst.

J., 16(4):324–343, 1977.
Visual Query System

▶Visual Query Language
Visual Representation

YANNIS IOANNIDIS

University of Athens, Athens, Greece

Synonyms
Graphical representation

Definition
The concept of ‘‘representation’’ captures the signs that

stand in for and take the place of something else [5].

Visual representation, in particular, refers to the special

case when these signs are visual (as opposed to textual,

mathematical, etc.). On the other hand, there is no

limit on what may be (visually) represented, which

may range from abstract concepts to concrete objects

in the real world or data items.

In addition to the above, however, the term ‘‘repre-

sentation’’ is often overloaded and used to imply the

actual process of connecting the two worlds of the

original items and of their representatives. Typically,

the context determines quite clearly which of the two

meanings is intended in each case, hence, the term is

used for both without further explanation.

Underneath any visual representation lies a

mapping between the set of items that are being repre-

sented and the set of visual elements that are used to

represent them, i.e., to display them in some medium.

In order for a visual representation to be useful, the

mapping must satisfy certain properties: it must be

expressive as well as effective [1]. Expressiveness is

related to the accuracy with which the visual represen-

tation captures the underlying items; an expressive

mapping should neither lose any information nor

lead to additional, irrelevant implications. Effective-

ness is related to the quality of the interpretation of

the visual representation by a human; an effective

mapping should allow for a fast and unique interpre-

tation of the underlying items, leaving no room for

ambiguities or false impressions. Expressiveness and

effectiveness are often enhanced significantly when

3406V Visual Representation
the set of visual elements used to represent a set of

(interrelated) items is familiar to the user (possibly

from other domains), and the corresponding mapping

is intuitive so that it invokes the correct interpretation

of these items effortlessly.

The mapping that underlies a visual representa-

tion is often called a Visual Metaphor [4], as it rea-

lizes a ‘‘transfer’’ (metaphor is from the Greek word

metafor �a – metaphora, which means ‘‘transfer’’) of

implicit and explicit characteristics of the visual ele-

ments to the items these represent.

The quality of visual representations depends on

the visual elements used in it, the choice of which visual

element is mapped to which item, and which vis-

ual element characteristic is mapped to which item

characteristic, and any constraints that must be im-

posed on the mapping. A brief introduction to the

above is the main topic of this entry.

Historical Background
Visual representation of the external world has been

exercised by humans for thousands of years and, in

recent history, this has extended to abstract worlds as

well. Visual metaphors have been used so widely that

human cognition is considered tightly interweaved,

and sometimes even identified, with human vision.

Work on visual representation of data and information

dates as far back as the work of the Scottish political

economist William Playfair, who was the first to use

bar charts, pie charts, and other extremely intuitive

and useful visual constructs that are used today for

this purpose [6]. In recent times, many theories on

the semantics of visual representations and how they

may enhance human perception have been published,

a great example being the work of Tufte [6,7].

Visual representation of information is extensively

used in several types of computer systems, which are all

using, either explicitly or implicitly, a set of visual

elements and a mapping from them to data items

being visually represented. Given that the variety of

possibilities regarding both the elements and the map-

pings is endless, there have been a plethora of papers

that have been written on visual representation, in-

cluding some aggregate bodies of work that offer a

comprehensive view of the entire field [2].

In the following section, a formal model for visual

representation is presented. Although visual represen-

tations can be employed for any kind of abstract or

concrete items, for ease of exposition and without loss
of generality, the discussion focuses on representing

data or information items.

Foundations
This section presents a formalism that captures the

essence of visual representation and can be used as a

means to classify and compare several approaches to

the topic, and to explain some of the features of the

relevant systems. For the sake of presentation clarity, it

makes various simplifying assumptions and, therefore,

its expressive power is not as high as some existing

visual representations manifest. Nevertheless, it is ex-

pressive enough to capture a broad class of visual

representations and characteristic enough to convey

the main aspects of the concept overall.

Without loss of generality, any dataset is assumed

to conform to the structure and constraints of some

data model (in database terminology, that would be a

data schema). Visualizations of such a dataset require

the corresponding notion of a visual model, which is

similar to a data model, except that its primitives are

visual. In analogy to a dataset being an instance of a

data model, a visual representation that is an instance

of a visual model will be called a visualset.

In order for a visualset to obtain meaning and,

therefore, become a visual representation of a dataset,

it needs a mapping of its elements to the corresponding

items of the dataset, so that users may see the former

and understand the latter. Such a mapping is typically

defined at the (data and visual) model level and pro-

pagated down to all instances of the models. Given

this, such a mapping is called a (visual) metaphor.

Separation of the visual representation process into

three distinct components (visual model, data model,

and visual metaphor) has many benefits. It permits

metaphors to be tested for correctness, evaluated, com-

pared, and combined. Also, it permits systems, espe-

cially visual-representation and user-interface tools, to

be evaluated with respect to (i) the quality of their

visual models and metaphors, (ii) their flexibility

with respect to defining or changing their models and

metaphors, and (iii) the particular ways in which this is

done.

Using the above three notions, the problem of

visual representation of datasets may be stated more

formally as follows. Given a data model D, let SðDÞ
denote the set of valid datasets that can be constructed

based on that model. Similarly, let SðGÞ denote the set
of visualsets that can be constructed based on a visual

Visual Representation V 3407
model G. The goal is to establish a binary relation

between SðGÞ and SðDÞ, the metaphor, whose specific

properties depend on the precise operations that users

want to perform on visualsets. Specifically,

1. If users want to be able to use a visualset of G to

view any dataset of D in its entirety, then an onto

function must exist of the form f : SðGÞ ! SðDÞ,
so that every dataset can be represented visually.

2. If, in addition, users want to be able to use a

visualset of G to update a dataset of D, then a

total onto function must exist of the form

f : SðGÞ ! SðDÞ, so that every visualset can be

uniquely interpreted as a dataset.

Clearly, not all such functions f that satisfy the above

properties are useful. Many are arbitrary mappings,

with no obvious correspondence between the dataset

and visualset. The goal is to establish a relationship

between the members of SðDÞ and SðGÞ so that when

users view a visualset, they can infer the dataset to

which it maps. This implies that f should be derived

from a correspondence between the individual com-

ponents and features of the data and visual models,

which would result in a structural similarity between

datasets and visualsets, making it easier for users to

understand the former through the latter.
Data item
class (P) Attribute (P.A)

Attribute values
(VðP:AÞ)

Employee Name text

Salary [0, 10000]

Age [0, 100]

Dept {toy, candy, shoe}

V

Data and Visual Models

The formalism below (essentially a meta-model) iden-

tifies the key components and features of a large and

interesting class of data and visual models, which

serves as an important example of the concepts sur-

rounding visual representation. In that formalism,

every data or visual modelM can be seen as a quadru-

ple M ¼ < P;A;V; C > defined as follows:

P is a finite set of classes (containers) of data items

(resp., visual elements). Each such class P is asso-

ciated with a (possibly infinite) set of unique ids

I(P) that can be used to identify the members of

class P.

A is a finite set of identifiers of attributes that data

items (resp., visual elements) are expected to have,

depending on the class they belong in. If A(P)

represents the attributes of the members of class

P, thenA ¼
S

P2PA(P). For all P 2 P, each mem-

ber ofA(P) is of the form P.A, where A is the name

of the corresponding attribute of the members of

class P.
V is a (possibly infinite) set of identifiers of the possi-

ble values that the above attributes may have.

If V(P.A) represents the possible values of attri-

bute P.A, then V ¼
S

P2P
S

P:A2AðPÞVðP:AÞ. For all
P:A 2 A(P), each element of V(P.A) is of the form
P.A == v, where v is the corresponding potential

value of attribute P.A. For an attribute P.A, V(P.A)
may be equal to a set IðÞ of ids of the members of

some class.

C is a finite set of constraints, i.e., rules that must be

satisfied by any dataset (resp., visualset) that con-

forms to M. These constraints are formulas in

some prespecified language L and refer to mem-

bers of P, A, V.

To draw an analogy, in relational database terms, the

above describes relational tables (P) with attributes

(A), the attributes’ domains (V), and integrity con-

straints (C). It is conceivable that some data or visual

model may not be representable in (any enhancement

of) the above formalism. Most of the common models

fall naturally in this formalism, however, so it is the one

adopted in this entry.

Data models capture abstract organization of infor-

mation and their creation is a classical database prob-

lem that is well understood. As an example, consider a

very simple data model on employees. Each employee

has a name, a salary, an age, and a department. The

three possible departments are ‘‘toy’’, ‘‘candy’’, and

‘‘shoe’’. This data model is the quadruple

D ¼ < PD;AD;VD; CD >; where CD ¼ ;, and the

data-item classes in PD, their attributes in AD, and

their corresponding value sets in VD are given in the

following table.
Contrary to the situation with data models, creat-

ing suitable visual models is less straightforward, since

they must reflect not only the (visual) information to

be organized, but also the medium in which the

3408V Visual Representation
models are expressed. To create visual item classes for a

visual model, visual building blocks are needed, which

may actually be combinations of standard visual ele-

ments, such as points, lines, regions, text, etc. (A more

formal discussion of visual constructs may be found in

[3].) Constraints in the visual model are used to hold

compositions together. For example, if a visual element

is a box with a piece of text in the center, then it is a

composition of a region and a text item satistfying the

constraint that the location of the text time (its center)

is the same as the location of the region (its center).

As an example, consider a very simple visual model

that supports the placement of objects in a two-

dimensional data field. The only class of visual items

is point (not in the mathematical sense), which is

simply a region. This visual model is the quadruple

G ¼ < PG;AG;VG; CG >; where again CG ¼ ;, and
the visual-item classes in PG, their attributes in AG,

and their corresponding value sets in VG are given in

the following table. For simplicity, only a subset of the

attributes is shown.
Visual item
class (P) Attribute (P.A) Attribute values (VðP:AÞ)

Point LocationX plane-pixel-x

LocationY plane-pixel-y

Size {100 pixels}

Shape {square, oval, triangle}

Color {blue, red, green}
Visual Metaphors

A visual metaphor is defined as a correspondence

between features of a visual and a data model. This
x Tp(x) x Ta(x)

Point Employee point.locationX employee.salary

point.locationY employee.age

point.color employee.dept

point.shape employee.dept
correspondence induces a mapping between visualsets

(instances of the visualmodel) and datasets (instances of

the data model). Having the mapping be decomposed

into mappings of the model features helps produce

visualizations that, when viewed, allow the user to de-

duce the underlying dataset. Consider a data model

D ¼ < PD;AD;VD; CD > and a visual model

G ¼ < PG;AG;VG; CG >. A metaphor includes

correspondences between item classes (PD and PG),

their attributes (AD andAG), and their attribute values

(VD and VG). These correspondences describe the

meaning of visual model features relative to the under-

lying data model. To allow presentation flexibility,

correspondences are permited between multiple fea-

tures in the visual model and a single feature in the

data model.

More formally, a metaphor T is an onto function

from G to D (denoted by T : G ! D), which is the

union of the following three onto functions:

1. Function Tp : PG ! PD
2. Function Ta : AG ! AD, where Ta(PG.AG) =

PD.AD only if Tp(PG) = PD
3. Function Tv : VG ! VD, where Tv(PG.AG ==

vG) = (PD.AD == vD) only if Ta(PG.AG)

= PD.AD

As an illustration of the above definition, the following

metaphor T maps from the visual model to the data

model discussed above.

A metaphor provides meaning to the features of a

visual model by establishing a correspondence between

them and features of a data model. The precise mean-

ing is captured by T. For example, displaying a red

square point implies the existence of an employee in

the toy department. The metaphor must be such that

users can correctly and unambiguously interpret a
x Tv(x)

point.locationX==x employee.salary==(x*10)

point.locationY==x employee.age==(x/5)

point.color==‘‘red’’ employee.dept==‘‘toy’’

point.color==‘‘green’’ employee.dept==‘‘candy’’

point.color==‘‘blue’’ employee.dept==‘‘shoe’’

point.shape==‘‘square’’ employee.dept==‘‘toy’’

point.shape==‘‘oval’’ employee.dept==‘‘candy’’

point.shape==‘‘triangle’’ employee.dept==‘‘shoe’’

Visual Representation V 3409

V

displayed visualset. This can be made more precise

based on various mandatory and optional properties

of T, i.e., being a function, onto, total, and 1-1.

As a minimum requirement, a metaphor T has

been defined as an onto function: if it weren’t onto,

then some characteristics of a data model would not be

captured visually; if it weren’t a function, then a single

visual construct would have multiple meanings and,

therefore, would not be interpreted appropriately.

Beyond the above, a visual model may have features

that do not carry any meaning and/or features that

carry redundant meaning. Based on knowledge of T,

users should be able to ignore the former and not be

confused by the latter. In particular, if a metaphor is

not total then some visual elements do not mean

anything in the data model. This creates no problem

if the metaphor will be used simply for visual display of

datasets: unmapped features of the visual model will be

used just for presentation. On the other hand, if the

metaphor will be used for updating datasets displayed,

then if a visual attribute PG.AG is mapped by Ta, then

all the values in VGðPG :AGÞ should be mapped as well,

otherwise, one would be able to draw visualsets that are

not translatable to datasets.

Also, for both retrieval and update, if a metaphor is

not 1-1, then multiple visual elements have the same

meaning in the data model. If Tp or Tv are not 1-1, then

there is a choice of visual constructs that can be used,

which should be left to the user or resolved via some

default mechanism. If Ta is not 1-1, then there is

redundancy: multiple visual attributes capture the

same data attribute.

Functions that are not 1:1 establish equivalence clas-

ses among the features of the visual model, i.e., several

features may have the same meaning. For example,

Taðpoint :colorÞ ¼ Taðpoint :shapeÞ ¼ employee:dept

specifies redundancy: visual attributes point.color and

point.shape redundantly capture data attribute employ-

ee.dept. Value mappings are similar:

Tvðpoint:color ¼¼00 green00Þ
¼ Tvðpoint:shape ¼¼00 oval00Þ
¼ ðemployee:dept ¼¼00 candy00Þ

indicates that specific values of redundant visual attri-

butes (e.g., point.color and point.shape) capture the

same value of a data attribute.
Datasets, Visualsets, and Visual Representation

As defined above, a dataset or visualset may be consid-

ered as an instantiation of a data or visual model,

respectively. In particular, a dataset S of a model M
is defined as follows (similarly for a visualset):

1. For every P 2 P, there is a finite set ½P� � IðPÞ of
data items in class P that appear in dataset S.

2. For every P:A 2 A, there is a total function

½P:A� : ½P� ! VðP:AÞ, which determines the

value of the P.A attribute for every data item in [P].

3. For every c 2 C, there is a constraint [c], con-

structed from c by replacing every P 2 P by [P]

and every P:A 2 A by [P.A]. All these constraints

are satisfied by the above.

Given a metaphor T : G ! D, any dataset that con-

forms to data model D can be represented by a visual-

set that conforms to visual model G via a mapping of

their contents that remains faithful to the metaphor. In

particular, visual items in the classes of such a visualset

represent data items in the corresponding classes

(based on T) of the dataset. Similarly, the visual attri-

butes and the values of these visual elements represent

the data item attributes and their values as specified

by T. Essentially, there is a function t induced by T that

determines a mapping from any visualset that con-

forms to G to some dataset that conforms to D.

As with metaphor T, the induced function t can be

extended so that its domain includes instantiations

of constraints as well, i.e., t([c]) is valid for c 2 CG.
As a simple example of all the above, consider the

following dataset that conforms to the data model

described above:

employee(Jason, 2.1, 55, ‘‘toy’’)

employee(Iris, 2.6, 60, ‘‘toy’’)

employee(Nick, 3.2, 43, ‘‘shoe’’

employee(Magda, 5.8, 47, ‘‘shoe’’)

employee(Chloe, 3.4, 46, ‘‘candy’’)

employee(Phoebe, 8.3, 31, ‘‘candy’’)

employee(Mike, 8.3, 70, ‘‘candy’’)

Figure below gives an example visualset that would be

produced by applying the example metaphor above to

this dataset. (The color of a point is indicated textu-

ally.) Clearly, real systems often deal with more com-

plicated data and visual models and visual metaphors,

but the underlying principles remain those highlighted

in this exposition.

3410V Visual Similarity
Key Applications
Visual representation is manifested in all applications

with a (visual) user interface. Furthermore, having

explicit declaration, storage, and manipulation of

data and visual models as well as visual metaphors

is essential to systems that offer to users the ability

to modify the visual representations used, for reasons

of personalization, quality control, or even plain

variety.

Cross-references
▶Data Visualization

▶Visual Formalisms

▶Visual Metaphor

▶Visual Perception

Recommended Reading
1. Card S.K., Mackinlay J.D., and Shneiderman B. Information

visualization. In Readings in Information Visualization: Using

Vision to Think, 1999, pp. 1–34.

2. Card S.K., Mackinlay J.D., and Shneiderman B. Readings in

Information Visualization: Using Vision to Think. Morgan

Kaufman, Los Altos, CA, 1999.

3. Foley J.D., van Dam A., Feiner S.K., and Hughes J.F. Computer

Graphics: Principles and Practice. Addison-Wesley, Reading,

MA, 1990.

4. Haber E.M., Ioannidis Y., and Livny M. Foundations of visual

metaphors for schema display. J. Intell. Inf. Syst., 3(3/4):263–298,

1994.

5. Mitchell W. Representation. In Critical Terms for Literary Study,

Lentricchia F and McLaughlin T. (eds.), 2nd edn., Chicago, IL.

University of Chicago Press, 1995.

6. Tufte E.R. The Visual Display of Quantitative Information.

Graphics Press, Cheshire, CO, 1983.

7. Tufte E.R. Envisioning Information. Graphics Press, Cheshire,

CO, 1990.
Visual Similarity

▶ Image Retrieval
Visual Web Data Extraction

▶GUIs for Web Data Extraction
Visual Web Information Extraction

▶GUIs for Web Data Extraction
Visualization for Information
Retrieval

JIN ZHANG

University of Wisconsin Milwaukee, Milwaukee,

WI, USA

Definition
Visualization for information retrieval refers to a

process that transforms the invisible abstract data

and their semantic relationships in a data collection

into a visible display and visualizes the internal retriev-

al processes for users [14]. Basically, visualization for

information retrieval consists of two components: vi-

sually presenting objects in a meaningful way in a

defined visual environment or space, and visualizing

information seeking process within the environment

or space. Transformation of the invisible and abstract

information and sophisticated semantic connections

into a visual environment requires clearly defining a

visual environment or space, pinpointing the objects in

a data collection which are displayed in the visual

environment, identifying significant connections

among the objects, and projecting both the objects

and the relationships onto the environment. The

form and way of visualizing the internal retrieval pro-

cess vary in different visualization models. Visualiza-

tion of the internal retrieval process depends not only

on a defined visual environment, but also on the infor-

mation seeking paradigms such as query searching and

browsing.

Visualization for Information Retrieval V 3411

V

Many traditional information retrieval evaluation

models such as the distance evaluation model, cosine

evaluation model, ellipse evaluation model, etc. can be

visualized in a visual space. Furthermore, new infor-

mation retrieval evaluation models can be developed in

the visual space.

The primary advantage of visualization for infor-

mation retrieval is tomake objects, object relationships,

and information seeking transparent to end users. As a

result, information retrieval becomes more intuitive

and effective.

Visualization methods can be applied to various

information retrieval models such as the Boolean

based information retrieval model, the vector-based

information model, etc.

Historical Background
A traditional information retrieval system like an

OPAC (Online Public Access Catalog) system and

search engine usually matches a user’s query with doc-

ument surrogates in a database, and returns the user

with a linear retrieval results list. The results list

includes relevant items retrieved from the database.

The results list may be ranked against titles, authors,

publishing time, or similarities. In nature an informa-

tion retrieval process is an iterative process. Users of the

information retrieval system are supposed to use the

results list to make the relevance judgment decisions,

subject relevance analysis among the retrieved items,

and readjust the search strategies. Towards this aim, an

information retrieval system should not only provide

users with relevance information between a query and

the retrieved items, but also relevance information

among the retrieved items, in the retrieval results list.

The former information is apparently important for

information retrieval. The latter information, which is

as valuable as the former information, would facilitate

the users to further expand, revise, and modify their

search strategies. Unfortunately, if an information re-

trieval system is equipped with a similarity ranking

mechanism for its linear results list structure, it only

provides users with the relevance information between a

query and the retrieved items. The inherent weakness of

the linear result list structure cannot offer relevance

information among the retrieved items, let alone the

degree to which they are relevant.

In a traditional information retrieval system, the

user’s information seeking process is discontinuous.

After transferring a user’s information need into a
query and submitting it to the system, the user loses

control over the internal information processing. The

user regains control after the retrieval results are

returned to the user. The user has no clues about

how the query is matched with document surrogates,

and how the final retrieval decision is made. In other

words, the internal retrieval processing is a ‘‘black box’’

for the end user. The users cannot observe the internal

processing and engage in it. However, if the user could

participate in the internal retrieval processing, it would

make information seeking more user-friendly, rele-

vance judgment decision-making more accurate, and

the retrieval process more natural.

Information retrieval basically consists of two

important fronts: browsing and querying. They are

equally important for information seeking. Each has

its own advantages and disadvantages. Neither can

replace the other. In a traditional information retrieval

context where querying dominates an information re-

trieval process, browsing cannot be fully utilized to

explore information due to the lack of a meaningful

information browsing environment. Visualization for

information retrieval opens a new avenue for users to

seek for information in the two fronts.

Korfhage [6], as a pioneer and leading researcher in

the field of visualization for information retrieval,

made a significant contribution to the early research

in the field. He introduced the important concept of

the reference point, which can be used as a projection

reference point when objects in a high dimensional

space are projected onto a low dimensional visual

space. He visually interpreted an information eval-

uation retrieval model in a visual space, and came

up with new visualization models for information

retrieval.

Foundations

Models for Multiple Reference Points

A reference point (or point of interest) is introduced to

represent users’ information needs. In a broad sense, a

query is a kind of a reference point. A reference point

can reflect a particular perspective of a user’s informa-

tion need. It can be a subject topic, user’s search pref-

erence, a previous query, or any information related to

the user’s information need. Since a document usually

involves multiple facets, multiple reference points can

reveal more information about the document from

multiple perspectives.

3412V Visualization for Information Retrieval
The visualization models for multiple reference

points can be classified into two categories: models for

fixed multiple reference points and models for movable

reference points. In a model for fixed reference points

[11] which is developed to visualize a sophisticated

Boolean query, the vertices of a polygon represent the

fixed reference points and the edges of the polygon have

the same length. Within the polygon there are several

concentric layers. The number of the concentric layers is

equal to the number of the reference points or the

number of vertices in the polygon. Each layer represents

a different logic combination zone of the involved refer-

ence points. For instance, the first outer layer represents

single reference point zone, the second outer layer repre-

sents the logic AND combination zone for two reference

points, . . ., and the last central layer represents the logic

AND combination zone for all reference points (or the

final results of the query). Various icons which symbolize

search results for the logic combination zones are located

within the corresponding layers. The shape and the

number of the icons vary in different layers so that they

can be easily distinguished in the visual space. This

multiple layer structure can display not only the final

results of a query but also the itemized results at different

combination levels. In addition, each vertex of the poly-

gon can be defined as a sub-query. If that is the case, the

vertex can extend to a new sub-polygon to visualize the

sub-query results by connecting the vertex to the new

sub-polygon. Thanks to this feature, the model can

visualize a sophisticated Boolean query.

A model for movable reference points [9] works

differently from the model for fixed reference points. It

is apparent that in this model one of the most distinc-

tive characteristics is that the involved reference points

can be manipulated and placed in any place in the

visual space by users. In other words, the reference

points can be moved to a meaningful position. Because

the model is developed based on the vector model

instead of the Boolean model, the similarity between

a document and any of the involved reference points

can be accurately calculated by using a selected simi-

larity measure. Basically, the location of a document in

the visual space is affected directly by the strengths

(similarities) between the document and all involved

reference points. Consequently, after all reference

points and documents are projected onto the visual

space, the documents which are closer to a reference

point are more relevant to the reference point. The

uniqueness of the model relies on the fact that the
strength between a document and a reference point is

relative because the strength is measured by the ratio of

the similarity between the document and the reference

point to the similarities between the document and all

reference points in the visual space. It is this relativity

in conjunction with the fact that the similarities are not

assigned to any coordinates of the visual space directly

that makes the movability of the reference points pos-

sible in the visual space. That is, the positions of

projected documents are determined by the locations

of the reference points. The implication of the mov-

ability of the reference points on information retrieval

is that users can select a reference point of interest,

move it, and observe the object configuration change

caused by the reference point movement in the visual

space. If documents in the visual space are relevant to

the moving reference point, they also move according-

ly. Otherwise they stay still. Using this characteristic,

users can effectively identify a group of related terms

to a reference point in the visual space by selecting

and moving it. This model can be applied to visualiz-

ing a returned results list from an information retrieval

system, a full-text, and hyperlinks structures.

Euclidean Space Characteristics Based Models

Two of the most prominent characteristics of the

Euclidean space are distance and direction. Both dis-

tance and direction are used to define and describe

object locations in a space, and to demonstrate rela-

tionships among the objects in the space. When docu-

ments are organized in a vector space, they can be

virtually described in a hyperspace where both the

distance and direction characteristics are preserved.

Furthermore, both the distance and direction have

significance for information retrieval. It is natural

and intuitive to utilize both distance and direction to

develop information retrieval visualization models. By

reducing the dimensionality of the high dimensional

document vector space, spatial relationships among

the documents in the vector space can be projected

onto a low dimensional space to observe and manipu-

late the documents.

Euclidean space characteristics based models re-

quire two reference points to construct their low di-

mensional visual spaces. In the vector space if two

reference points (R1 and R2) are clearly defined, a

group of important parameters for a document (D)

in the vector space can be calculated. The two visual

distances (R1D and R2D) between the document and

Visualization for Information Retrieval. Figure 1.

Display of the visual distances and visual sangles of a

document.

Visualization for Information Retrieval V 3413

V

the two reference points respectively, and the two visu-

al angles (∠R2R1D and ∠R1R2D) formed by the three

points (D, R1 and R2) can be calculated. For simplicity,

D, R1 and R2 are displayed in a three dimensional space

(see Fig. 1). If one of the two visual distances and one

of the two visual angles are assigned to the Y-axis and

X-axis, respectively, it constructs the visual space of

the distance-angle based visualization model [15]. If

the two angles are assigned to the Y-axis and X-axis,

respectively, it constructs the visual space of the

angle-angle based visualization model [13]. If the

two distances are assigned to the Y-axis and X-axis,

respectively, it constructs the visual space of the

distance-distance based visualization model [8]. Ob-

serve that as long as these visual spaces are defined, any

documents in the vector space can be effectively pro-

jected onto the visual spaces. The valid display areas

vary in the models. They range from a close area to a

semi-open area.

The uniqueness of these visualization models is

reflected in the visualization of information retrieval

evaluation models such as the distance evaluation

model, cosine evaluation model, conjunction evalua-

tion model, disjunction evaluation model, ellipse eval-

uation model, and oval evaluation model. In other

words, they visualize the internal retrieval process in

the visual spaces. For instance, in the vector space, the

distance evaluation model corresponds to a hyper-

sphere whose center is a query and radius is a retrieval

threshold. Documents within the invisible sphere are

regarded as the retrieved documents. This hyper sphere
can be converted to a horizontal line in the distance-

angle based low visual space if the query and the origin

of the vector space are defined as the two reference

points. That is because the distance from any point on

the sphere to the center, which is one of the projection

parameters, is a constant regardless of another projec-

tion parameter angle. Users can interact with the hori-

zontal line in the visual space to control the size of the

sphere in the vector space.

Visualization of Hierarchy Structures

As one important browsing mechanism, a hierarchy

structure is widely used to organize and present a

variety of information. A hierarchy structure can pro-

vide users with a structural categorical framework

directing users to relevant information. Visualization

techniques can enable users to navigate smoothly in a

hierarchy structure by visualizing both global and local

overviews of a hierarchy structure. Visualization tech-

nique enhances controllability and flexibility of

information exploration and therefore alleviates the

‘‘disorientation’’ during navigation. ConeTree [10] is

a visualization system that shows root, branch, and leaf

nodes of a tree structure in a 3-D environment. Start-

ing from the apex of a cone (the root of the tree), it fans

out from left to right in a form of the cone. The child

nodes are displayed along the cone base circumference

which is a circle. The circle’s diameter depends on the

number of the child nodes on it. Any of these child

nodes can extend to a new cone structure similar to its

parent if the node has child nodes. In this way, an

entire hierarchy structure can be presented visually.

TreeMap [1] displays a hierarchy structure in a differ-

ent way. Its visual space is a grid. A cell of the grid can

include several structurally similar sub-grids. The

nested sub-grids show the categories at different levels,

each sub-grid corresponds to a new sub-category.

Visualization of Internet Information

The Web provides both challenge and opportunity for

visualization for information retrieval. Information on

the Web is huge, dynamic, diverse, and hyperlinked.

It has become an indispensable source for people

to search for information. One of the problems for

information seeking on the Web is the notorious

‘‘lost in cyberspace’’ state. Visualization for informa-

tion retrieval can alleviate, if not eliminate, the prob-

lem. Using information visualization techniques such

as the hyperbolic method, people can effectively

3414V Visualization Pipeline
visualize the hidden hyperlink relationships among the

connected web pages. In such a visualization environ-

ment, web pages (nodes) are connected by edges

(hyperlinks). Users can easily recognize the visited

paths, revisit the browsed web pages, and explore new

paths in the visual space. A hyperbolic method is

employed to visualize a subject directory where nodes

are linked by hyperlinks [4].

A search engine can respond to a user query with an

overwhelming number of related web pages. It is diffi-

cult for users to browse and identify the relevant web

pages from the returned list. Information visualization

techniques provide a unique way to solve the problem.

In a cartographic visual space the returned web pages

from multiple search engines are metaphorically pre-

sented as cities and the semantic link between two

cities as a road [5]. The interactive map facilitates the

decision-making on the relevance judgment. Grokker

[3] categorizes all retrieved web pages and presents

them in a group of circles in its visual space. A circle

which represents a category includes multiple smaller

circles which are its sub-categories. Users can drill

down from the top of a category to the bottom (the

web pages) by selecting corresponding circles in

the visual space.

It is worth pointing out that there are many

other information visualization approaches such as

multidimensional scaling analysis [12], pathfinder as-

sociative networks [2], self-organizing maps [7], etc.

which can be applied to information retrieval. A

detailed discussion of visualization for information

retrieval, comparisons among various approaches and

their implications for information retrieval are dis-

cussed in Zhang’s monograph on the topic [14].

Cross-references
▶ Information Retrieval

▶ Information Visualization

Recommended Reading
1. Asahi T., Turo D., and Shneiderman B. Usingtreemapstovisualize

the analytic hierarchy process. Inf. Syst. Res., 6(4):357–375, 1995.

2. Dearholt D.W. and Schvaneveldt R.W. In Pathfinder Asso-

ciative Networks: Studies in Knowledge Organization, R.W.

Schvaneveldt (ed.). Ablex Publishing, Norwood, NJ, 1990,

pp. 1–30.

3. Grokker. Available online at: http://www.grokker.com/ (re-

trieved October 29, 2007).

4. Inxight. Available online at: http://www.inxight.com/ (retrieved

on October 29, 2007).
5. Kartoo. Available online at: http://www.kartoo.com/ (retrieved

on October 29, 2007).

6. Korfhage R.R. To see or not to see – is that the query? In Proc.

14th Annu. Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 1991, pp. 134–141.

7. Lin X. Map displays for information retrieval. J. Am. Soc. Inf.

Sci., 48(1):40–54, 1997.

8. Nuchprayoon A. and Korfhage R.R. GUIDO: a visual tool

for retrieving documents. In Proc. 1994 IEEE Comp. Soc. Work-

shop on Visual Languages, 1994, pp. 64–71.

9. Olsen K.A., Korfhage R.R., Sochats K.M., Spring M.B., and

Williams J.G. Visualization of a document collection: the VIBE

system. Inf. Process. Manag., 29(1):69–81, 1993.

10. Robertson G.G., Card S.K., and Mackinlay J.D. Information

visualization using 3D interactive animation. Commun. ACM,

36(4):57–71, 1993.

11. Spoerri A. InfoCrystal: a visual tool for information retrieval

and management. In Proc. Second Int. Conf. on Information

and Knowledge Management, 1993, pp. 11–20.

12. White H.D. Visualizing a discipline: an author co-citation anal-

ysis of information science, 1972–1995. J. Am. Soc. Inf. Sci.

Technol., 49(4):327–355, 1998.

13. Zhang J. TOFIR: a tool of facilitating information retrieval –

introduce a visual retrieval model. Inf. Process. Manag.,

37(4):639–657, 2001.

14. Zhang J. Visualization for Information Retrieval. Springer,

Berlin, 2008.

15. Zhang J. and Korfhage R.R. DARE: distance and angle retrieval

environment: a tale of the two measures. J. Am. Soc. Inf. Sci.,

50(9):779–787, 1999.
Visualization Pipeline

HELWIG HAUSER
1, HEIDRUN SCHUMANN

2

1University of Bergen, Bergen, Norway
2University of Rostock, Rostock, Germany

Synonyms
Visualization reference model

Definition
The visualization pipeline is a general model for a

typical structure of a visualization process, which has

been abstracted from earlier works in visualization in

the late 1980s [3], and then adapted and extended

several times [1, 2,...]. Starting out from data to be

visualized and a particular visualization task at hand,

a number of steps are processed along the visualiza-

tion pipeline, including data enhancement, visuali-

zation mapping, and rendering, to eventually achieve a

Visualization Pipeline V 3415
visualization of the data with the purpose of serving

the given visualization task through effectiveness,

expressiveness, and appropriateness [4].

Key Points
Data visualization is a part of computer science which

provides expressive visual representations of data –

through the appropriate application of computer gra-

phics, often also in an interactive form – with the

intention to effectively aid specific user tasks, including

the exploration, analysis, and presentation of data. At

this point only graphical data visualization is consid-

ered and other forms of data visualization such as

sonification or the visualization through haptics are

disregarded. Visualization establishes an efficient link

between the user and her or his data, utilizing the

enormous strengths of the human visual system with

perception and cognition, and leading to a better un-

derstanding of the data through information extrac-

tion and knowledge crystallization.

To do so, the data is transformed from its original

space, i.e., the data space, to an abstract visualization

space, usually in two or three dimensions, where the

visualization representation of the data is constructed.

To eventually link up to the user, the visualization is

rendered to an image or animation which is then dis-

played to the user. At least two mappings, i.e., the

visualization mapping (from data space to visualization

space) and rendering (fromvisualization space to image
Visualization Pipeline. Figure 1. The visualization pipeline a

Visualization Pipeline. Figure 2. The visualization pipeline b

and with user interaction.
space) are required to fully accomplish this process. An

example is the geometric representation of a 3D scalar

data distribution by a discretized iso-surface, i.e., a

mesh of triangles, which is then rendered to the screen

by the use of computer graphics algorithms for visible

surface detection and shading. In almost all cases, how-

ever, it is also necessary to first prepare and transform

the data according to the needs of the visualization task

at hand, such that visualizationmapping and rendering

can be applied afterwards. Haber and McNabb have

already described this principal visualization model

(as illustrated in Fig. 1) in 1990 [3].

About ten years after Haber and McNabb, Chi for-

mulated the data state referencemodel for visualization

[1], which formulates the visualization pipeline on the

basis of transformation and stage operators, which –

depending on their combination – result in various

different possible instances of the visualization pipeline

model. In 2004, dos Santos and Brodlie concluded that

it is more meaningful to split the first step of the

visualization pipeline into two [2]: data analysis and

filtering. While the original data is initially prepared

(once) for visualization, e.g., through interpolation,

i.e., in a data-centric fashion, thereafter the user selects

which data to actually visualize in the highly interac-

tive and thus user-centric filtering step. Especially

in the case of explorative visualization, where users

search for priori unknown features in the data, the

flexible interaction with the filtering step is crucial.
ccording to Haber and McNabb [3].

ased on operators [1], with two steps in data space [2],

V

3416V Visualization Reference Model
The consideration of user interaction in general, alter-

ing operator parameters at all stages of the visualiza-

tion pipeline, is an important aspect of the modern

visualization pipeline (as also shown in Fig. 2).
Cross-references
▶Data Visualization

▶Visual Data Mining
Recommended Reading
1. Chi E.H. A taxonomy of visualization techniques using the data

state reference model. In Proc. IEEE Symp. on Information

Visualization, 2000, pp. 69–75.

2. dos Santos S. and Brodlie K. Gaining understanding of multi-

variate and multidimensional data through visualization. Com-

puter & Graphics, 28(3):311–325, 2004.

3. Haber R.B. and McNabb D.A. Visualization idioms: A concep-

tual model for scientific visualization systems. In Visualization

in Scientific Computing, G.M. Nielson, B. Shriver, L.J. Rosen-

blum (eds.). IEEE Computer Society, WA, USA, 1990, pp. 74–93.

4. Schumann H. and Müller W. Visualisierung – Grundlagen und

allgemeine Methoden (in German). Springer-Verlag, Berlin,

2000.
Visualization Reference Model

▶Visualization Pipeline
Visualizing Categorical Data

ALI ÜNLÜ, ANATOL SARGIN

University of Augsburg, Augsburg, Germany

Synonyms
Visualizing categorical data; Graphics for discrete data;

Visual displays of nonnumerical data; Plots for quali-

tative information

Definition
Categorical data are data recorded about units on

variables which take values in a discrete set of catego-

ries. Examples of categorical variables are gender,

citizenship, or number of children. Categorical vari-

ables can be dichotomous (two categories; e.g.,

gender) or polytomous (more than two categories;
e.g., citizenship), and nominal (unordered categories;

e.g., gender) or ordinal (ordered categories; e.g., num-

ber of children). Categorical data can be in case form

(individual raw data vector recorded about each unit)

or frequency form (tabulated data counting over the

categories of the variables), and univariate or multivar-

iate (including bivariate). Quantitative variables can be

discretized to become categorical variables (e.g., using

child and adult instead of exact age). Strictly speaking,

all data may be considered categorical because of lim-

ited precision of measurement.

Visualizing categorical data, indeed visualization

of data in general, seeks to (i) summarize the data,

(ii) expose information and structure in the data, (iii)

supplement the information available from analytic

measures on the data, and (iv) suggest more adequate

analytics for the data.

Key Points
Graphics for univariate categorical data are barcharts

and stacked barcharts (for vertically drawn bars, all

bars have the same width), and spineplots (modified

barcharts where, for vertically drawn bars, all bars have

the same height). The area of a bar represents the count

for its category. Whereas (stacked) barcharts enable a

good comparison of (cumulative) absolute counts,

spineplots enable a direct comparison of proportions.

When interactively highlighting a subgroup of units,

spineplots allow visually comparing the proportions

in different categories by looking at the heights of the

highlighted areas [3]. Another popular, yet widely cri-

ticized, graphic is the pie chart (with partial, exploded,

or perspective variants), for displaying shares.

Graphics for multivariate categorical data are

mosaic plots and their variations equal binsize and

doubledecker plots (for comparing highlighted propor-

tions), fluctuation diagram (for identifying common

combinations), and multiple barcharts (for comparing

conditional distributions) [2]. Mosaic matrices, as a

categorical analog of the scatterplot matrix, consist of

all pairwise mosaic plots for two-way subtables [1].

Other powerful graphics are treemaps and trellis dis-

plays [2,3], for visualizing hierarchies and conditional

structures, respectively. There are graphics specifically

designed for bivariate categorical data, for instance,

fourfold displays and sieve diagrams (parquet diagrams)

[1]. For 2 � 2 tables, the fourfold display visualizes the

association between variables in terms of the odds ratio,

with confidence rings providing a visual test of whether

Visualizing Clustering Results V 3417
the odds ratio differs significantly from1. Sieve diagrams

provide displays of the pattern of association in general

r � c tables.

Influence and diagnostic plots for such catego-

rical data models as logistic regression, loglinear, and

logit models (e.g., half-normal probability plots) pro-

vide examples of model-based visualizations of cate-

gorical data [1,2]. These plots help to evaluate model

fit. Dimension reduction methods such as corres-

pondence analysis and biplots provide visualizations

of associations in n-way tables in a small number of

dimensions [1].
Cross-references
▶Data Visualization

▶Multivariate Visualization Methods

▶Visual Analytics

▶Visualizing Quantitative Data

Recommended Reading
1. Friendly M. Visualizing Categorical Data. SAS Institute, Cary,

NC, 2000.

2. Hofmann H. Mosaic plots and their variants. In Handbook

of Data Visualization, C.H. Chen, W. Haerdle, A.R. Unwin

(eds.). Springer, Berlin Heidelberg New York, 2008.

3. Unwin A.R., Theus M., and Hofmann H. Graphics of Large

Datasets. Springer, Berlin Heidelberg New York, 2006.
V

Visualizing Clustering Results

ALEXANDER HINNEBURG

Martin-Luther-University Halle-Wittenberg,

Halle/Saale, Germany

Synonyms
Dendrogram; Heat map

Definition
Visualizing clusters is a way to facilitate human experts

in evaluating, exploring or interpreting the results

of a cluster analysis. Clustering is an unsupervised

learning technique, which groups a set of n data objects

D = {x1,...,xn} into clusters, so that objects in the same

cluster are similar, and objects from different clusters

are dissimilar to each other. The data can be available

(i) as (n � n) matrix of similarities (or dissimilarities),

and (ii) as (n � d) data matrix, which describes each
data object by a d-dimensional vector. The second

form has to be accompanied by a suitable similarity

or dissimilarity measure, which computes for a pair of

d-dimensional vectors a (dis)similarity score. A typical

example of such a measure is the Euclidian metric.

Clustering results may come in different forms: (i) as

a partition of D, (ii) as a model, which summarizes

properties of D and (iii) as a set of hierarchically nested

partitions ofD. Visualizations of those results focus one

or several properties like the similarity relations be-

tween clusters and/or the underlying data objects, the

components of the clustering model, or the representa-

tion of the data objects. Cluster visualization serves to

determine semantics of clusters relevant to the applica-

tion at hand by inspection, to check whether the cluster

model and its parametrization (e.g., number of clus-

ters) fits the data in a meaningful way, or to explore

hierarchical relationships between clusters.

Historical Background
Clustering has been used as a technique to explore the

structure of data. However, the results are abstract in

nature, and in general the found cluster structure is not

directly accessible to human experts as an overall pic-

ture. Data exploration is also facilitated by directly

visualizing the data itself without clustering it.

Simple examples include the scatter plots technique

of vector data, which shows 2D projections to all

possible d(d�1)/2 pairwise attribute combinations.

Independently computed results of partitioning clus-

tering algorithms can be shown by labeling the points

in the scatter plots according to cluster membership.

An example is shown in Fig. 1a.

As the display of all 2D scatter plots requires quite a

large view space, alternative techniques turn to di-

mensionality reduction to derive a single 2D projection

of the vector data, which (approximately) optimizes

some criterion. Dimensionality reduction techniques

for data visualization include principle component anal-

ysis (PCA) using the first two principal components,

classic multi-dimensional scaling (MDS), which per-

forms PCA on the (dis)similarity matrix, isoMDS

whichminimizes the sumof squared differences between

the original (dis)similarities and those in the projected

2D-space. New techniques of this sort include, FAST-

MAP [5] and latent probabilistic models like probabilis-

tic and Bayesian PCA [4]. The optimization criteria

differ from technique to technique but the results are

always sets of 2D points. The main property is that

Visualizing Clustering Results. Figure 1. (a) Scatter plot the four-dimensional Iris data, (b) 2D-PCA of the Iris data.

The classes Seritosa (S), Versicolor (C) and Virginica (V) are coded by letter and the membership of the clusters is coded by

color red, green, blue.

3418V Visualizing Clustering Results

Visualizing Clustering Results V 3419
dimensionality reduction and clustering are indepen-

dently applied to the original data, and the results of

both are combined in the visualization.

Another need for visualizing clustering results beside

data exploration stems from cluster model evaluation

and selection. Clustering methods require parameters,

e.g., some algorithms need the number of clusters k as an

input parameter. There is a large number of proposed

validation measures to tackle the particular problem of

choosing the right value for k. A typical example is the

Bayesian information criterion (BIC), which balances

the number of parameters with the model performance

measured as likelihood. An example of BIC for a

Gaussian mixture model applied to the Iris data is
Visualizing Clustering Results. Figure 2. (a) BIC of a Gaussia

shown BIC-values are averages of 10 runs (higher BIC-values
shown in Fig. 2a. Gaussian mixture models are a prob-

abilistic extension of k-means. Note, that BIC gives no

clear indication, that k = 2 or k = 3 is better. However,

despite that measures like BIC are good indicators for

model selection, they may also mislead the user [5] in

cases where the model oversimplifies the underling

data. In general, there is no broadly accepted measure,

that solves the problem of model selection. So, cluster

analysis often requires manual tuning of the algo-

rithms to the application at hand. Visualization serves

as a tool in the process of evaluating the performance

of a clustering algorithm. However, due to its subjec-

tive nature, visualization is mainly used here as an

auxiliary evaluation method.
n mixture model fitted to the Iris data for k = 1,...,10. The

is better). (b,c) show clusterings for k = 2,3.

V

3420V Visualizing Clustering Results
Foundations
A simple but powerful method to visualize the results

of clustering is to visualize the cluster model itself. A

straightforward example is k-means, which has been

used to determined the clusters (shown by color) in

Fig. 1a, b. Note, that in this case the cluster model,

which consists of the cluster centers only, is shown

indirectly by color coding the cluster membership.

The cluster centers, which are the means of the clusters,

can be visually approximated. An explicit visualization

would be required to show the coordinates of the

cluster centers and perhaps the decision boundaries

of the clusters, which correspond to the edges of the

Voronoi diagram induced by the cluster centers.

A more complex cluster model is the Gaussian

mixture model, whose components consist of multi-

dimensional Gaussian distributions. Such a distribu-

tion also has in addition to the center coordinates,

parameters for the covariances between the dimen-

sions. Figures 2b, c show some 2D-projections of the

Gaussian models mixture models for two and three

components fitted to the Iris data. Each component

is visualized as an ellipse, whose center corresponds

to the center of the Gaussian, and the orientation of

the ellipse reflects the correlations between dimen-

sions. Specifically, each ellipse shows the points which

have the same probability density with respect to the

corresponding Gaussian. The figures do not show

the cluster memberships of the data points, because

the Gaussian mixture model only gives a posterior

distribution Pðcj~xÞ for a point ~x and a cluster c,

which allows several options for associating points to

clusters. The most common method is to associate

a point to the cluster with the maximum posterior.

The shown visualizations combine both data and clus-

ter models. However, there are many cases, when this

scenario is not directly applicable. The reasons might

be that the data does not allow a direct visualization in

a scatter plot style, or the dimensionality of the vector

data is too high to be easily reduced to 2D-projections

by picking dimensions by hand. A typical example is

document clustering, where the data objects are docu-

ments. Documents are either represented as sets of

words or high dimensional word-count vectors. Both

cases do not allow a straightforward two-dimensional

visualization of the document collection.

A general method is parametric embedding (PE)

[10], which takes the posterior distributions of the

data objects with respect to some computed clusters,
and fits a Gaussian mixture model of two-dimensional

data points, so that the posteriors of the mixture model

reflect the original posteriors. The model fitting of para-

metric embedding is done by minimizing the sum of

Kullback–Leibler divergences between original posterior

distributions and those from the two-dimensional

Gaussian Mixture model. Note, that parametric embed-

ding determines both the parameters for the two-

dimensional Gaussian components of the mixture

model, as well as the positions of the two-dimensional

data points onto which the original data objects are

mapped to. This technique allows the visualization the

clustering results of most probabilistic clustering algo-

rithms, regardless of the type and dimensionality of

the data.

In the case where posterior probabilities are not

available from the clustering algorithm, neighborhood

component analysis (NCA) [8] can be applied for

cluster visualization. NCA assumes vector data with

given cluster (or class) labels and minimizes a stochas-

tic version of the leave-one-one k-nearest-neighbor

classification by learning a Mahalanobis metric. There-

fore, NCA falls into the class of metric learning. Cluster

visualization is achieved by restricting the rank of the

learned Mahalanobis matrix to two or three. In such

settings, the linearly transformed data can be visualized

as scatter plots in two- or three-dimensional space.

An improvement of the PE technique is the combi-

nation of clustering and visualization [11], where the

two-dimensional visualization acts like a regularizing

prior distribution for the clustering model. The im-

provement is that the cluster membership values

for each object are not fixed during the calculation of

the visualization. So, both the parameter set for

the clustering model and the parameters for the

visualization are estimated simultaneously. In the case

of high-dimensional data, the regularizing visualiza-

tion component helps to avoid overfitting of the clus-

tering model. Although, the experiments are done with

a simple Gaussian mixture model (e.g., see Fig. 2), the

improved technique could be used in combination

with any probabilistic clustering model.

Instead of using scatter plots, which represent

multi-dimensional data by two-dimensional points,

parallel coordinates [1] can be used, which have no

need for dimensionality reduction (e.g., see Fig. 3).

Parallel coordinates visualize a multi-dimensional vec-

tor as a sequence of consecutive line segments, and

visually scale up to 15 dimensions. The coordinates

Visualizing Clustering Results. Figure 3. K means

clustering (k = 3) of the iris data shown in parallel

coordinates.

Visualizing Clustering Results V 3421

V

axes are represented by vertical lines. Simple visualiza-

tions show the clustering by color coding the cluster

membership. A more advanced technique is proposed

in [7]. Cluster centers are visualized by parallel coor-

dinates. Additionally, the spans of the clusters pro-

jected to the attributes are also visualized by drawing

opaque tubes of varying thickness around the line

segments of the cluster centers.

So far, clusters have been visualized by showing a

possibly transformed version of the data objects itself,

together with some information about the clustering

and/or the cluster model. A principle alternative to

that approach is to visualize distance or similarity

relations between the data objects and/or the derived

clusters. In the next paragraphs, we explain the meth-

ods wrt. to object distances to make the discussion

simpler, however, similarity measures could be used

as well. The amount of distances between n data

objects scales quadratically in n, which makes it diffi-

cult to visualize all pairwise distances of large data sets

(e.g., n
 1,000). On the other side, visualizing dis-

tances or similarities is applicable to a much wider

spectrum of data types, in contrast to the previous

approaches, which assumed a given or derived repre-

sentation of the data objects as vectors. Thus, visualiz-

ing relative information is attractive for looking at

clusterings of sequences, trees, graphs, sets, and other

non-vector like data.

The direct visualization of the distance matrix

D 2 Rn�n of a data set codes the values of a matrix

entry dij by color or gray value of a pixels, while the
two indices i and j are coded by the pixel’s position.

In order to visualize a clustering, the columns and rows

are partially ordered into blocks according to cluster

membership. In a case where the clustering is mean-

ingful, the change of the column and row permutation

from a random to the partial ordering induced by the

clustering has a huge visual impact. In the ideal case,

clusters form blocks which are placed along the diago-

nal of the matrix. Possible relations between clusters

show up as off-diagonal blocks in such a plot. This

technique also allows the comparison of a clustering

with some ground truth, if available, by ordering the

rows and columns according to clustering and class

labels, respectively. Examples are shown in Fig. 4.

As the distance values sometimes have some skewed

distribution, it improves the visual results to apply

a monotone sub(super)-linear transformation to the

distance values before mapping them to color to incre-

ase (decrease) the visual contrast. In Fig. 4, the square

roots of the distances are shown. Non-clustering meth-

ods to find a good permutation of the distance matrix

are discussed in [9] under the term seriation.

Hierarchical clustering is one of the earliest cluster-

ing methods. The generic, agglomerative, bottom-up

algorithm starts with a clustering where each data

object is its own cluster. In each step, the closest

pair of clusters is found (i.e., the pair of clusters with

smallest distance) and merged to form a new cluster.

The distance between clusters C and C0 is induced

by the distance between objects in different ways,

e.g., single linkage dðC;C 0Þ ¼ minxEC;x0EC 0dðx; x0Þ, ave-
rage linkage dðC;C 0Þ ¼ 1=jCj � jC 0jSxECSx0EC 0dðx; x0Þ
or complete linkage dðC;C 0Þ ¼ minxEC;x0EC 0dðx; x0Þ.
After n� 1 steps, a hierarchy of nested clusterings

is determined, which is represented as a binary tree.

The visualization of such a tree is called a dendrogram,

when the height of an inner node is the distance

between the merged clusters. Leaf nodes have zero

heights. The height of a complete linkage dendrogram

is the maximal distance between two objects, the

height of a single linkage dendrogram is the maximal

edge in the minimal spanning tree of the data, and the

height of an average linkage dendrogram is something

between the two other dendrograms. Figure 5 shows

different dendrograms of the iris data.

Overall, a dendrogram shows n� 1 distances

between clusters, which is much less distance informa-

tion than the original distance matrix. So, a dendro-

gram can be seen as a lossy compressed form of

Visualizing Clustering Results. Figure 4. Distance matrix of the iris data: (a) in random order, (b) columns and rows

are ordered according to a k-means clustering with k = 3, and (c) rows are ordered according to a k-means clustering

with k = 3 and columns are ordered by ground truth class labels.

3422V Visualizing Clustering Results
the distance matrix. The number of possible visualiza-

tions of the same dendrogram is 2n�1, which can

be seen by noting that the orientation of each inner

node has two possible states. So, the super-exponential

problem of finding a good visualization of the similar-

ity matrix among n! possibilities, is reduced to the

exponential problem of finding a good dendrogram

visualization among 2n�1. Typically, heuristics are

used to find a useful orientation of a dendrogram,

but in [3,12] more principled optimization techniques

are used to that end. The derived permutation of
the leafs, which correspond to the data objects, is

also used as a meaningful ordering of the rows and

columns of the distance matrix [14]. In the special

case of vector data, a similar visualization is derived

by hierarchically clustering the rows and columns

of the data matrix, which is built by concatenating

the d-dimensional data vectors x1,...,xn to a n � d

matrix. The respective dendrograms for the row

and the column set are shown at the borders of the

matrix. Both variants are called heatmap. Examples of

the iris data are shown in Fig. 6. These kinds of

Visualizing Clustering Results. Figure 5. Dendrograms of the Iris data.

Visualizing Clustering Results V 3423

V

visualizations are especially popular in gene expression

analysis.

As the width of a dendrogram scales linearly with

the data size, the clustering of a large data set is difficult

to visualize with that technique. Therefore, heuristics

are used to compute a horizontal cut in the dendro-

gram, and only the upper part is visualized. However,

cutting at a constant height does not always produce

the best result, thus new more flexible heuristics are

discussed in [13].

In the case of single-linkage-like cluster hierarchies,

the OPTICS approach [2] visualizes the lower part of

the hierarchy with an alternative technique. OPTICS

extends flat single linkage clustering. For visualization

purposes it computes an ordering of the data points,

which reveals nested clusters.

Flat single linkage clustering sees the data as a graph,

with the data objects as nodes. An edge connects two
nodes, when the corresponding data objects are closer

than a given threshold (EPS). Clusters are the connec-

ted components of the graph. A drawback of single

linkage clustering is that well separated clusters may

be connected by chains of outliers and are merged by

the algorithm. Therefore, OPTICS extends the basic

single linkage approach by introducing an additional

linkage constraint, the core object condition. The con-

dition says that every object in a cluster is linked to at

least one core object. A core object has at leastMINPTS

� 1 other data objects in the neighborhood of a radius

EPS. Graph theory says that connected components

can be found by two equivalent algorithms, namely

depth first search (DFS) and breath first search (BFS).

BFS is mostly implemented by a first in first out (FIFO)

queue. OPTICS uses a priority queue instead of a

simple FIFO queue, which sorts the internal objects

by ascending reachability distance. The reachability

Visualizing Clustering Results. Figure 6. Heatmaps of the Iris data showing (a) the data matrix and (b) the Euclidian

distance matrix. The used dendrograms are computed by complete linkage.

Visualizing Clustering Results. Figure 7. OPTICS on Iris data.

3424V Visualizing Clustering Results
distance of an object is defined as the distance to the

MINPTS-nearest neighbor in the case of core objects,

as the distance to the nearest core object in the case of

border objects, which are linked to a core object, and

infinity in the case of outliers. A good intuition of the
reachability distance is to think of it as the inverse of

data density. Objects with a low reachability distance

have many neighbors, thus are in areas of high density.

As the algorithm uses a priority queue, which outputs

objects with a low reachability distance first, it focuses

Visualizing Hierarchical Data V 3425
on objects in high density areas first. The mode of

operation of OPTICS is that it starts randomly some-

where in a cluster, is then lead to the clusters center and

works its way to the border. After a cluster is finished, it

starts with the next one in the same manner.

The visualization technique of OPTICS displays the

objects in the order they are processed by the algo-

rithm, and shows the reachability distance for each

object. By the mode of operation of OPTICS, this

methods shows a cluster as a valley. The left border of

the valley is formed by the random start, which is with

high probability an object with some larger reachabil-

ity distance. The bottom of the valley is formed by the

center objects of the cluster, which have the smallest

reachability distance. The right border of a valley is

formed by the border objects of the cluster. In that

case, the cluster is perfectly separated from the rest of

the data, the priory queue becomes empty and the

algorithm jumps randomly to some still unlabeled

object and processes the next cluster. Nested cluster

structure shows up as dents in the bottom of a larger

valley. As OPTICS never links objects further away

than EPS, it does not determine links between clusters,

which are separated by more than EPS. Thus, the

visualization shows only the lower part of the hierar-

chy. Examples of OPTICS plots are shown in Fig. 7.
Key Applications
The visualization of clustering results is mainly used

for interpreting the results of clustering and presenting

them to people from the application side. It is a good

tool to put the derived clusters into the context of the

application at hand by annotating the visualization

with meta-information. Visualizing clustering results

also facilitates the exploration of the data and the

tuning of clustering algorithms.
V

URL to Code
The images in this article (except the OPTICS plots)

are produced by the statistics package R. The code for

the drawings can be found at http://www.informatik.

uni-halle.de/~hinnebur/clusterVis.tar.gz.
Cross-references
▶Clustering Overview and Applications

▶Clustering Validity

▶Visual Classification

▶Visual Clustering

▶Visual Data Mining
Recommended Reading
1. Alfred Inselberg. Parallel coordinates: VISUAL multidimension-

al geometry and its applications, Spring, 2007.

2. Ankerst M., Breunig M.M., Kriegel H.-P., and Sander J. Optics:

Ordering points to identify the clustering structure. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1999, pp.

49–60.

3. Bar-Joseph Z., Gifford D.K., and Jaakkola T.S. Fast optimal

leaf ordering for hierarchical clustering. Bioinformatics,

17(90001):22–29, 2001.

4. Bishop C. Pattern Classification and Machine Learning.

Springer, New York, 2006.

5. Domingos P. Occam’s two razors: The sharp and the blunt. In

Proc. 4th Int. Conf. on Knowledge Discovery and Data Mining,

1998, pp. 37–43.

6. Faloutsos C. and Lin K.I. Fastmap: A fast algorithm for indexing,

data-mining and visualization of traditional and multimedia

datasets. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 1995, pp. 163–174.

7. Fua Y.-H., Rundensteiner E.A., and Ward M.O. Hierarchical

parallel coordinates for visualizing large multivariate data sets.

In Proc. IEEE Conf. on Visualization, 1999.

8. Goldberger J., Roweis S.T., Hinton G.T., and Salakhutdinov R.

Neighbourhood components analysis. In Advances in

Neural Inf. Proc. Syst. 18, Proc. Neural Inf. Proc. Syst., 2005,

pp. 513–520.

9. Hahsler M., Hornik K., and Buchta C. Getting Things in Order:

An introduction to the R package seriation. http//:cran.at.

r-project.org/web/packages/seriation/vignettes/seriation.pdf.

10. Iwata T., Saito K., Ueda N., Stromsten S., Griffiths T.L., and

Tenenbaum J.B. Parametric embedding for class visualization.

Neural Comput., 19(9):2536–2556, 2007.

11. Kaban A., Sun J., Raychaudhury S., and Nolan L. On class

visualisation for high dimensional data: Exploring scientific

data sets. In Proc. 9th Int. Conf. on Discovery Science, 2006.

12. Koren Y. and Harel D. A two-way visualization method for

clustered data. In Proc. 9th ACM SIGKDD Int. Conf. on Knowl-

edge Discovery and Data Mining, 2003, pp. 589–594.

13. Langfelder P., Zhang B., and Horvath S. Defining clusters from a

hierarchical cluster tree: the Dynamic Tree Cut package for R.

Bioinformatics, 24(5):719–720, 2008.

14. Strehl A. and Ghosh J. Relationship-Based Clustering and Visu-

alization for High-Dimensional Data Mining. INFORMS J.

Comput., 15(2):208–230, 2003.
Visualizing Hierarchical Data

GRAHAM WILLS

SPSS Inc., Chicago, IL, USA

Synonyms
Hierarchical graph layout; Visualizing trees; Tree draw-

ing; Information visualization on hierarchies; Hierar-

chical visualization; Multi-level visualization

3426V Visualizing Hierarchical Data
Definition
Hierarchical data is data that can be arranged in the

form of a tree. Each item of data defines a node in

the tree, and each node may have a collection of other

nodes as child nodes. The relationship between the

parent nodes and the child nodes forms a tree network.

The formal definition of a tree is that the graph formed

by the nodes and edges (defined between parent and

child node) is both connected and contains no cycles.

The following properties of a tree are of more practical

use from the point of view of displaying visualizations:

� One node, called the root node, has no parent.

� All other nodes have exactly one parent.

� Nodes with no children are termed leaf nodes.

Nodes with children are termed interior nodes.

� For all nodes in a tree, there is a single unique path

up the tree going from parent to parent’s parent

and so on, which will terminate in the root node.

� The number of nodes on the path from a node to

the root is termed its depth.

Although not strictly required, the vast majority of

hierarchical data, and the main application area, con-

sists of trees where the parent nodes define some form

of aggregation on the child nodes, so that the data

for the parent is equal to, or is expected to be close

to, the aggregation of the data for that node’s children.

The relationship between parent and child is often

described in terms of inclusion; it is common to state

that nodes contain their children. This aspect is often

brought out in visualizations.

A simple example of hierarchical data would con-

sist of populations for the world, hierarchically broken

down into sub-regions. At the top level, the root would

consist of the world, with data being the population of

the world. The next level could be the four main con-

tinents, each with their individual population, and

each continent would have countries as children, each

with their population counts. In each case, one would

expect that the population of the parent node would

roughly equal the population of the child nodes. If the

data were collected at slightly different times, or from

different sources, the populations for the continents

might not exactly equal the sum of their children’s

populations, but one would expect it to be very close.

Note that in this example, every leaf node has the

same depth. Although this is a common property in

many applications, it is not a required property. In fact,
if Antarctica is counted as a continent, it would have

no contained countries, and the hierarchy would lose

this property. If the level of the hierarchy is further

increased, by dividing countries into regions, one

would have very different levels. The United States

might be divided into states and then into zip codes,

whereas Vatican City would not be divided up at all.
Historical Background
Leonhard Euler is regarded as the founder of graph

theory, publishing initially in the 1730s, but displays of

trees as predate even this, especially displays of family

trees, some of which survive from significantly earlier.

However, the discipline of visualizing hierarchical

data in a systematic fashion dates back only to

the availability of computers. In 1992, the conference

International Symposium on Graph Drawing com-

menced meeting and their conference proceedings,

available from 1994, provide an excellent overall refer-

ence to the state of the art in this subject, although

limited mainly to static graphs. From around 1990

onwards, increased attention has been paid to interac-

tive, or dynamic visualization of hierarchical data,

although information on such techniques is scattered

across many disciplines. User interface controls for

interacting with hierarchies became common with

the advent of windowed operating systems; trees of

folders and files are commonplace and techniques for

filtering and pruning such views have seen significant

research and user testing.

Foundations
There are a number of reasons why hierarchical data

might be visualized, and it is important to identify the

goal of any visualization, as different visualization

techniques serve different goals. Common reasons to

view hierarchies are:

� Understanding Structure: The goal is to understand

the structure of the hierarchy; in the world popula-

tion example, one might want to know how

countries are distributed within continents, or to

see how many major regions are within countries.

� Understanding Data: The goal is to understand the

distribution of data across the hierarchy. In the

example, one might want to know if each continent

has a similar distribution of population, or if the

lowest levels have similar populations (do zip codes

Visualizing Hierarchical Data V 3427

V

in the US, on average, have the same populations as

the Vatican City?), or similar questions. Often, the

goal is to understand the data within the context of

the structure.

� Summarizing large amounts of data: The goal is to

reduce information overload by providing a sum-

mary of low-level data into aggregated data. A

hierarchy allows the user of a visualization to set

the level of detail they want, by only showing data

up to a certain level in the hierarchy.

There are two basic branches of visualization tech-

niques for hierarchies. The first is based on a node-

edge graph-layout approach which focuses attention

on the structure and relationships, and the second on

space-filling approaches, which focus attention on the

relative sizes of nodes in the hierarchy. Each is dis-

cussed below.

Node-Edge Layouts

These displays are essentially a specialization of general

graph layout techniques. Each node in the hierarchy is

displayed as a small glyph, commonly a circle or a

square. Data on the node can be represented by chang-

ing aesthetic attributes of the node such as its size,

color, pattern, etc. Fig. 1 below gives an example of a

traditional node-edge display for hierarchical

data. Each node represents a country, and they are

aggregated into a hierarchy where the net level up is a

sociological grouping. The populations have been

aggregated by a mean average, so the node representing

the ‘‘new world’’ countries has been given the mean

population of countries in the new world. It is clear that

there is little difference between populations of

countries when they are aggregated into these

groupings.

This visualization has the advantage that it is good

for showing the structure of the hierarchy – one can see

clearly how each many countries are in each group, and

the distribution of the variable of interest. However,

the display is not compact – a lot of space is wasted

showing links having little information. Modifications

to this basic display include the following:

� Ordering the nodes within each parent. The child

nodes for each parent could be sorted by a variable.

In Fig. 1, it would make sense to sort by the popu-

lation to create a better overview of the distribution

of that variable across countries within a group.
� Displaying information on the edges. In the above

figure, the edges could be coded according to the

similarity between the country and its group, using

any of a number of statistical techniques to define

such similarity. One such technique starts simply

with data items and then generates a hierarchy

by successively clustering items into groups based

on similarity. This technique is called hierarchical

clustering and is often visualized using a dendro-

gram as in Fig. 2. The dendrogram shows when

groups are formed using the vertical dimension;

the lower on the vertical dimension, the more sim-

ilar the groups that were merged were. In Fig. 2,

F and G were merged first and because they care

the most similar pair, then A and B were formed

into a group, then D and E. Then C was added to

{A, B}, following which {D, E} was merged with {F,

G}. The resulting groups {A, B, C}, {D, E, F, G}, {H}

are only merged together at a much higher level of

dissimilarity. The dendrogram therefore lets one

see not only what clusters were created, but it

also, by placing the merge information at a location

in the vertical dimension proportional to the simi-

larity of the groups being merged, allows one to

see how good the resulting clusters are.

Space-Filling Layouts

In contrast to node-edge layouts, space-filling layouts

take explicit advantage of the hierarchical nature of

data directly. A space-filling layout is usable only when

the main variable of interest is summable. As these

techniques lay out areas in proportion to sizes, and

parents visually include their children, a variable that

can be summed is necessary. It is not possible to use

space-filling layouts directly to show means, minimums

or similar statistics. The base layout is limited to sums.

It is, of course, possible to color or use some other non-

size aesthetic for such techniques, but then the essential

space-filling nature of the display is of little value.

Figure 3 shows the example data with a radial

space-filling layout. Each level in the hierarchy is repre-

sented by a band at a set radius, with the root note in

the center, and children outside their parents. The

angle subtended by a node is proportional to the per-

centage of the entire population that this node repre-

sents. Children are laid out directly outside their

parents, so parents ‘‘divide up’’ the space for their

children according to the child sizes.. This is a typical

Visualizing Hierarchical Data. Figure 1. Standard Node-Edge layout for a hierarchical network.

3428V Visualizing Hierarchical Data

Visualizing Hierarchical Data. Figure 2. Dendrogram of

a hierarchical clustering.

Visualizing Hierarchical Data. Figure 3. The Population dat

space-filling radial layout.

Visualizing Hierarchical Data V 3429
space-filling technique, many of which have been dis-

covered in various disciplines. They share the following

characteristics:

� The root node occupies 100% of the space, or

dimension of interest (in this case, the radial

dimension).

� Each node partitions its space according to the

relative sizes of its children.

Figure 3 uses space more economically than Fig. 1,

and also allows one to see sizes more clearly. It is

generally to be preferred if the data support it. Com-

pare this figure with Fig. 4, which uses a style of layout

popularized under the name ‘‘TreeMap.’’

The treemap, instead of allocating space for child

nodes outside the parent node, lays them out directly
a of Fig. 1, this time showing summed population, using a

V

Visualizing Hierarchical Data. Figure 4. TreeMap version of Fig. 3.

3430V Visualizing Hierarchical Data
on top of the parent, thus making a maximally com-

pact representation. This causes the immediate prob-

lem that there is then no way to distinguish the tree

structure, since the children completely occlude the

parents. Typically, as in Fig. 4, a small border is left

around the child nodes to allow the tree structure to be

ascertained, although that does distort the overall rela-

tionship between visual size and the sizes of the hierar-

chical data points. The TreeMap is not a good technique

for learning about structure because of this issue, but
because it is very compact it can perform quite well in

the domain to which it is applicable: displaying relative

sizes of items in the hierarchy when the structure of the

hierarchy is well-known or of little interest. There are

numerous different ways to render this figure, and care

should be taken to avoid situations where some rectan-

gles are skinny and others are flat; it is harder to make

size judgments based on areas with widely differing

aspect ratios than it is on arcs with different angles as

in Fig. 3, for example. In general, the TreeMap should

Visualizing Hierarchical Data V 3431
be treated as a specialist tool for hierarchies to which it

is applicable, not as a general purpose hierarchical

visualization.

Interactive Visualization of Hierarchical Data

The entry on Visualization of Network Data indicated

some techniques for interacting with general networks.

These can be applied to the special case of hierarchies,

and of these the most applicable and important tech-

nique is that of brushing and linking.

Figure 5 demonstrates a number of techniques that

have been detailed earlier, and adds interaction to the

visualization. The base data are a set of consumer price
Visualizing Hierarchical Data. Figure 5. Linked Views of UK
indices (CPI) from the United Kingdom, collected

monthly. A hierarchical clustering has been performed

on the months, based on all the CPIs in the data set

except the overall CPI. At the bottom is multiple time

series chart showing four indices (food, clothing, hous-

ing, furniture). At the top right is a histogram showing

residuals from a fitted time series mode of the overall

CPI. Each view is linked to each other view, so that

selecting a region of one chart highlights the

corresponding months in all other views.

In this figure, the higher residuals have been selected,

denoting months where the actual CPI was higher

than the model predicted. This is shown in red in the
CPI data.

V

3432V Visualizing Network Data
histogram, and in the time series view the segments

corresponding to those months are shownwith a thicker

stroke. It appears that these residuals occur mainly on

the downward part of regular cycles on the topmost

time series (representing the clothing CPI).

In the hierarchical view, a generalization ahs been

made to the linking. As the months are aggregated at

higher levels of the hierarchy, these interior nodes in the

hierarchical tree map may be partially selected. In this

figure the selection percentage is shown with a rainbow

hue map, with blue indicating completely unselected,

red completely selected, and green half-selected. Inter-

mediate hues indicate intermediate selection percen-

tages. At the outer levels some fully selected clusters

can be seen, but more interestingly, looking at the

inner bands, there are strong differences in color, indi-

cating some relationship between the distributions of the

residuals for the overall CPI, and the distribution of

clusters of the other CPIs. This indicates some form of

inter-dependence between them should be investigated

to improve the model.
Key Applications
Hierarchies are a very common data structure. Applica-

tion areas include geographical data, which are invari-

ably organized in hierarchies, data on organizations,

such as businesses, military organizations, and political

entities. Financial data is also often suitable. As well as

a priori hierarchies, it is very common to generate

hierarchies so as to aggregate data and allow higher

level information to be viewed. Database systems like

OLAP and other roll-up techniques can create hierar-

chies and allow users to move rapidly between levels to

investigate data.
Data Sets
UK figures for CPI were retrieved from http://www.

statistics.gov.uk/cpi/, and similar statistics should be

generally available from most countries National

Statistics office.

The world population data are a subset taken from

the CIA’s world fact book, available at https://www.cia.

gov/library/publications/the-world-factbook/.
Cross-references
▶OLAP

▶Visualizing Network Data
Recommended Reading
1. Di Battista G., Eades P., Tamassia R., and Tollis I. Graph

Drawing: Algorithms for the Visualization of Graphs. Prentice-

Hall, Englewood Cliffs, NJ, USA, 1999.

2. Friendly M. The Gallery of Data Visualization. http://www.math.

yorku.ca/SCS/Gallery/.
Visualizing Network Data

GRAHAM WILLS

SPSS Inc., Chicago, IL, USA

Synonyms
Graph layout; Network topology; Graph drawing;

Information visualization on networks

Definition
A network is a set of nodes with edges connecting

the nodes. When the graph defined by that set of

nodes and edges has other associated data, the result

is termed ‘‘network data.’’ Visualizing Network Data is

the process of presenting a visual form of that structure

so as allow insight and understanding.

Historical Background
Although examples of informal drawing of networks

and hand-drawn graph layouts can be found stretching

back many decades, the discipline of visualizing net-

work data in a systematic fashion dates back only to the

availability of computers, with an early paper by Tutte

in 1963 titled ‘‘How to Draw a Graph’’ being a prime

example. In 1992, the conference International Sympo-

sium on Graph Drawing commenced meeting and their

conference proceedings, available from 1994, provide

an excellent overall reference to the state of the art in

this subject. From around 1990 onwards, increased

attention has been paid to interactive, or dynamic visu-

alization of Network Data. These techniques have

surfaced in a variety of different fields, including Sta-

tistical Graphics, Information Visualization, and many

applied areas.

Foundations
The basic goal behind a successful static visualization

of network data is simply stated: Producing a layout of

nodes and edges with a bounded 2-dimensional (or,

less commonly, 3-dimensional) region such that the

Visualizing Network Data V 3433
resulting display portrays the structure of the network

as clearly as possible. To achieve this goal the following

topics must be addressed:

� Techniques for representing the nodes and edges

� Aesthetic criteria that define what is meant by a

clear representation

� Layout Techniques

� Extensions to layout techniques to incorporate data

on nodes and edges

� Interactive techniques to augment static layouts

Node and Edge Representation

The simplest form of display for a node is as a small

glyph, commonly a circle or a square. It is simple and

compact. Further, it is easy to add extra information

to, such as color, pattern, label or other aesthetics.

These can represent data on the nodes. The first three

example layouts Fig. 1 below show nodes as circles. The

last layout is different; it uses an extended representa-

tion to display a node, allowing the edges to be dis-

played as vertical lines. This representation is most

common when the graph is tree-like, or more generally

is a hierarchical network. When there is special known

structure for a graph like this, it is possible to use

representations that help elucidate such properties.

For general network data, however, simple nodes are

the most common and suitable choice.

Edge representation allows more freedom. If the

edges are directed, so that they have a definite ‘‘from’’

and ‘‘to’’ node, then they are usually portrayed with

arrows at the ends, unless the direction is obvious

from the layout. Other common representational tech-

niques are:

� Straight Edge. Figure 1(a) and Figure 1(d) shows

edges as straight lines directly linking nodes. This
Visualizing Network Data. Figure 1. Representations: (a) Str
has the advantage of being simple and making

connections clear, but tends to result in more

edge crossings.

� Polyline/Paths. Using paths instead of straight edges

allows a reduction in the number of edge crossings

in Fig. 1(c), but the resulting display is more

complex.

� Orthogonal Paths. A style of representation where

paths consist of orthogonal lines. This form of

representation harkens back to printed circuit

board layouts, an early application of graph layout.

Quality Criteria

The question of what makes a good layout has been

approached by many authorities. In practice trade-offs

must be made, and specific applications stress some

criteria more than others. Those criteria that are most

often considered important are given below:

� Minimize edge crossings

� Minimize the area needed to display

� Maximize the symmetry of the layout, both globally

and locally

� Minimize number of bends in polyline layouts

� Maximize the angle between edges, both at nodes

and when they cross

� Minimize total path lengths

There are also criteria that are suitable for specific

graph types. For example, in a graph that is directed

and acyclic (there is no path from nodes following

edges that loops back on itself), one strong criterion

is that the edges generally head in the same direction

(all upward, or all downward, as in Fig. 1(a). Note that

Fig. 1(b) does not exhibit this quality, an example of

the trade-offs made when considering different layout

algorithms.
aight-edge, (b) Polyline, (c) Orthogonal, (d) Hierarchical.

V

Visualizing Network Data. Figure 2. Correlations

between Variables; baseball player data, 2004.

3434V Visualizing Network Data
Layout Techniques

Layout techniques for general networks employ a vari-

ety of techniques, the most common of which are:

Planar Embeddings. A planar graph is one that has

a 2-dimensional representation that has no edge cross-

ings. It is also possible to represent any planar graph

using only straight-line edges. Although testing and

subsequent layout can be done in linear time, the algo-

rithms for doing so are complex.When each vertex has at

most four edges, orthogonal representations are possi-

ble, but minimizing the number of bends is NP-hard,

and approximate algorithms are employed in practice.

Planarization. If a graph is not planar, it can be

made planar by adding ‘‘fake’’ nodes at the crossing

points. One such technique would be to find the max-

imal planar subgraph and laying it out, then adding the

additional edges and inserting the additional nodes at

crossing points. The resulting graph is laid out using

straight edges and then the fake nodes removed, leav-

ing polylines connecting some remaining nodes.

Directed Embeddings. A similar technique is to ex-

tract a directed graph from the overall graph (by

orienting the edges if necessary) and use a hierarchical

drawing technique to place the nodes. A simple exam-

ple would be finding a minimum spanning tree within

the graph and laying it out directly.

Force-directed. Using a mixture of aesthetic criteria,

the ‘‘energy’’ of a layout can be defined where low energy

corresponds to a good layout. The resulting energy func-

tion can be minimized using techniques including ran-

domization, simulated annealing, steepest descent, and

simulation. Force-directed techniques are very general,

and often can be implemented using iterative algo-

rithms, which makes them amenable to a choice of

stopping criteria that can deal with large networks

more easily.

Layouts for Networks with Data

If, in addition to the network connections, one also has

data on either or both of the nodes or the edges,

standard Information Visualization techniques can be

used to augment the network visualizations. The sim-

plest augmentation is to map a variable for nodes

or edges onto an aesthetic, such as color, size, shape,

pattern, transparency or dashing. The basic act of

labeling nodes is already an example of this use of

aesthetics to convey information. Figure 2 shows an

application to understanding correlation patterns be-

tween variables in a data set consisting of information
on Major League Baseball players in 2004. Only corre-

lations passing a statistical test of adequacy have been

retained, resulting in a non-connected graph. The

edges contain data on two measures of association

between then variables connected by the edge, which

have been mapped to aesthetics as follows:

� Color: The color represents the statistical signifi-

cance of the association, with green being weak

and red being strong.

� Size: The width of the edges indicates how strong the

association is in the sense of how much of the varia-

tion with one variable can be explained by the other.

The overall layout has a straight-edge representation,

and has been arrived at via a force-directed algorithm.

When the data are similar to the above, where one

has a measure (or, in this case, two measures) of an

edge’s strength, the algorithms used should be mod-

ified so as to take the strength into account. Although

this is possible for all algorithms, it is most simple to

implement using force-directed techniques. The goal

is to ensure that nodes that are highly associated

with each other are close together, and that leads to

the criterion that path length should be inversely pro-

portional to edge weight. Reviewing the quality criteria

above, some of the criteria can be modified for

weighted networks as follows:

� Minimize the weighted summed deviation between

path lengths and inverse edge weights.

Visualizing Network Data V 3435
� Penalize edge crossings with crossings involving

strong edges penalized more than weak edges.

� Maximize the angle between edges, both at nodes

and when they cross, penalizing angles involving

strong edges more than weak edges.

The layout of Fig. 2 was achieved by a force-directed

algorithm under these constraints. The measures of

association were derived by Scagnostic algorithms of

Wilkinson and Wills.

Interactive Augmentations

For small and medium-sized static networks, static lay-

outs are adequate, but for larger data sets and for time-

varying data, different techniques are required. These

can roughly be divided into the following categories:

Distortion techniques. Suitable for large but not

huge networks, distortion techniques allow users to

place a focus point on a region of interest of the display,

and the display redraws so as to magnify the area of

interest and de-magnify the rest of the display. Since
Visualizing Network Data. Figure 3. Force-directed layout o

frequencies. Edges link words are commonly found close to e
usable magnification levels can go no higher than a

factor of about 5, this technique can improve the num-

ber of nodes that can be visualized by a maximum of

about 25. Specific versions of these techniques include

fisheye and hyperbolic transformations. Figure 3 and

Figure 4 below illustrate a network showing associa-

tions between words in Melville’s Moby Dick. The size

of the nodes indicates word frequencies, and the links

color indicates strength of association. The cluster at

the top left is cluttered in Fig. 3, so an interactive

fisheye is applied and the focus point is dragged to

that cluster, allowing one to see that cluster in more

detail, as shown in Fig. 4.

Brushing/Linking. Brushing and Linking techniques

are generally applicable techniques for using one visu-

alization in conjunction with another. In the basic

implementation a binary pseudo-variable is added to

the data set indicating the user’s degree of interest. This

variable is mapped to an aesthetic in each linked chart,

and the user is allowed to drag a brush, or click on
f important words in Moby Dick. Node sizes indicate word

ach other.

V

Visualizing Network Data. Figure 4. Force-directed layout of important words in Moby Dick. A fisheye transformation

has been placed over the dense cluster around the word ‘‘whale,’’ magnifying that cluster.

3436V Visualizing Network Data
areas of interest in one chart so as to set corresponding

values of the ‘‘degree of interest’’ variable and highlight

corresponding parts of all linked charts.

This technique is of particular value in the visuali-

zation of network data, as it allows any graph layout to

be augmented with additional visualizations of data on

nodes and links. A simple system for reducing visual

complexity is to link histograms, bar charts or other

summarized charts to a graph layout display, with the

visibility of nodes and links based on the degree of

interest. This allows users to select, for example, high

values of one variable and then refine the selection by

clicking on a bar of a categorical chart. The network

display will then show only those items corresponding

to the visually selected subset of rows.

A trivial application of this is simply to provide

sliders for each variable associated with nodes and

links, and by dragging the sliders define a subset of

the data which is then displayed as a network display.

Animation. When data on networks varies over

time, animating the results can provide insight into
the nature of the variation. Visualization is particularly

suitable for such data asmodeling dynamically evolving

networks is a hard problem, with no general models

currently available. Hence visualization becomes an

important early step in understanding the problem.

Technically, animation is similar to brushing, and can

be simulated in a brushing environment by making

selections on a view of the time dimension. The main

differences are in internal techniques to optimize for

animation, and in the user interfaces provided for each.

Key Applications
Network Data Visualization is widely applicable. Com-

munication networks such as telephony, internet and

cellular are key areas, with particular emphasis on net-

work security issues such as intrusion detection and

fraud monitoring.

Future Directions
The field of network data visualization has been evol-

ving steadily since its inception. The classic problem

Visualizing Quantitative Data V 3437
remains open; providing high-quality layouts for net-

works. It is known that most problems in this area

are NP-hard, and so ongoing research will focus on

approximate algorithms. Application areas are in-

creasingly providing large networks with sometimes

millions of nodes, which require new algorithms for

such data. Further, evolutionary networks, in which

the topology of the network itself changes over time,

have become more important, and algorithms for evol-

ving a layout smoothly from an old state to accommo-

date a new state are needed.

Data Sets
The baseball data can be found online at the baseball

archive: http://www.baseball1.com. This contains a

wealth of tables, and the example data used above

was extracted from the tables found there. The text of

Moby Dick can be found at many sites, including

Project Gutenberg: http://www.gutenberg.org.
Cross-references
▶Visualizing Hierarchical Networks
Recommended Reading
1. Battista G., Eades P., Tamassia R., and Tollis I. Graph

Drawing: Algorithms for the Visualization of Graphs. Prentice-

Hall, 1999.

2. Herman I., Melancon G., and Marshal M.S. Graph visualization

and navigation in information visualization: a survey. IEEE

Trans. Vis. Comput. Graph., 6(1), 2000.

3. International Symposium on Graph Drawing, http://graphdraw-

ing.org/
V

Visualizing Quantitative Data

ANATOL SARGIN, ALI ÜNLÜ

University of Augsburg, Augsburg, Germany

Synonyms
Visualizing quantitative data; Graphics for continuous

data; Visual displays of numerical data

Definition
Quantitative data are data that can be measured on

a numerical scale. Examples of such data are length,

height, volume, speed, temperature or cost.
A quantitative variable can be transformed into a

categorical variable by grouping, for example weight

can be divided into underweight, normal weight and

overweight. The inverse transformation may not be

possible.

Quantitative data can be categorical or continuous.

This entry only concentrates on continuous data.

Visualization in general means the graphical or visual

display of data or relations.

Key Points
Univariate graphics are the most basic ones and dis-

play exactly one variable. There are three plot types

that are commonly used: dotplots, boxplots and

histograms.

Dotplots draw every data point along one axis. This

graphic shows clusters and gaps in the data. Overplot-

ting can be a serious problem, because many points

can be crowded around one position. Jittering of the

points is then a possible solution. This means, that

the points are diffused along a second axis.

Boxplots are also aligned on one axis, but show

summary statistics (median, lower and upper hinges)

and emphasize outliers. A boxplot gives a broad over-

view of the structure of the data and sets of boxplots

are good for comparing several variables.

Histograms are displayed using two axes. The values

of the variable, grouped in bins, are on the abscissa

and the frequencies of the values on the ordinate. Histo-

grams can be very informative but strongly depend

on the choice of the anchorpoint (start of the first bin)

and binwidth.

Bivariate data are typically drawn as scatterplots,

which show the structure and dependencies of two vari-

ables. The two variables are plotted against each other in

an orthogonal coordinate system. The points can be

drawn in different colors or symbols to show special

groups of the data. Scatterplots are good for detecting

one- and two-dimensional outliers and can, together

with interactive methods, also be used for large datasets.

Scatterplot matrices, also known as splom, are a

generalization for n variables. The (i,j)-th entry is the

scatterplot of variable i against variable j. Variable

labels are often given in the matrix diagonal. Scatter-

plot matrices are only efficient for a small number

of variables. For more variables parallel coordinates

are a better choice. This space-saving graphic shows

all variables in one display and hence can visualize the

whole dataset.

3438V Visualizing Spatial Data
Cross-references
▶Data Visualization

▶Multivariate Visualization Methods

▶ Parallel Coordinates

▶Visualizing Categorical Data
Recommended Reading
1. Cleveland W. Visualizing Data. Hobert, Summit, NJ, USA, 1993.

2. Unwin A., Theus M., and Hofmann H. Graphics of Large

Datasets. Springer, Berlin Heidelberg New York, 2006.
Visualizing Spatial Data

▶Visual Interfaces for Geographic Data
Visualizing Trees

▶Visualizing Hierarchical Data
Volume

KALADHAR VORUGANTI

Network Appliance, Sunnyvale, CA, USA

Synonyms
Logical volume; Physical volume

Definition
The storage provided by a storage device is offered in

the form of volumes. Avolume corresponds to a logically

contiguous piece of storage. The volumes offered by

storage devices are typically known as physical volumes.

Key Points
Storage controllers usually create volumes by stripping

them across multiple disks that belong to a RAID group.

RAID 1 (mirroring), RAID 5 (use of parity, but no

dedicated parity disk), and RAID 6 (can tolerate two

failures) are the most common RAID types. These

volumes get mapped into LUNs by host OS, or aggre-

gated into logical volumes by a logical volume manager,
or aggregated into virtual volumes by virtualization

software. A file system and its associated files ultimately

reside in a physical volume on a storage device. Database

table’s data also ultimately resides in a physical volume

on a storage device. Storage vendors typically use

Volume as the unit of management. That is, they allow

volume level data copy, migration, snapshots, access

control, compression, and encryption.

Cross-references
▶ Logical Unit Number (LUN)

▶ Logical Volume Manager

▶ LUN

▶ LUN Mapping

▶RAID
Volume Set Manager

▶ Logical Volume Manager (LVM)
Voronoi Decomposition

▶Voronoi Diagram
Voronoi Diagrams

CYRUS SHAHABI
1, MEHDI SHARIFZADEH

2

1University of Southern California, Los Angeles,

CA, USA
2Google, Santa Monica, CA, USA

Synonyms
Voronoi tessellation; Voronoi decomposition; Dirichlet

tessellation; Thiessen polygons

Definition
The Voronoi diagram of a given set P = {p1,...,pn} of n

points in Rd partitions the space of Rd into n regions

[2]. Each region includes all points in Rd with a

common closest point in the given set P according to

a distance metric D(.,.). That is, the region

Voronoi Diagrams. Figure 1. The ordinary Voronoi

diagram.

Voronoi Diagrams V 3439

V

corresponding to the point p 2 P contains all the

points q 2 Rd for which the following holds:

8p0 2 P; p0 6¼ p; Dðq; pÞ � Dðq; p0Þ

The equality holds for the points on the borders of p’s

and p0’s regions. Incorporating arbitrary distancemetrics

D(.,.) results in different variations of Voronoi dia-

grams. As an example, Additively Weighted Voronoi

diagrams are defined by using the distance metric D

(p, q) = L2(p, q) + w(p) where L2(.,.) is the Euclidean

distance and w(p) is a numeric weight assigned to p.

A thorough discussion on all variations is presented in

[7]. Figure 1 shows the ordinary Voronoi diagram of

nine points in R2 where the distance metric is Euclid-

ean. The region V (p) containing the point p is denoted

as its Voronoi cell. With Euclidean distance inR2, V (p)

is a convex polygon. Each edge of this polygon is a

segment of the perpendicular bisector of the line seg-

ment connecting p to another point of the set P. These

edges and their end-points are called Voronoi edges and

Voronoi vertices of the point p, respectively. For each

Voronoi edge of the point p, the corresponding point

in the set P is called a Voronoi neighbor of p. The point

p is referred to as the generator of Voronoi cell V (p).

Finally, the set given by VD(P) ={V (p1),...,V (pn)} is

called the Voronoi diagram of the set P with respect to

the distance function D(.,.).

Key Points
Voronoi diagrams exhibit the following properties [9]:

Property 1: The Voronoi diagram of a set P of

points, VD(P), is unique.

Property 2: Given the Voronoi diagram of P, the

nearest point of P to point p 2 P is among the Voronoi
neighbors of p. That is, the closest point to p is one of

generator points whose Voronoi cells share a Voronoi

edge with V (p).

Property 3: The average number of vertices per

Voronoi cells of the Voronoi diagram of a set of points

inR2 does not exceed six. That is, the average number

of Voronoi neighbors of each point of P is at most six.

Empowered by the above properties, different var-

iations of Voronoi diagrams have been used as index

structures for the nearest neighbor search. Hagedoorn

introduces a directed acyclic graph based on Voronoi

diagrams [3]. He uses the data structure to answer

exact nearest-neighbor queries with respect to general

distance functions in O(log2n) time using only O(n)

space. In [6], Maneewongvatana proposes a hierarchi-

cal index structure for point data, termed overlapped

split tree (os-tree). Each os-tree node is associated with

a convex polygon referred as the cover, which includes

all the points in space whose nearest neighbor is a data

point associated with the node. The same principal

used in Voronoi diagrams is utilized in os-trees to

partition the space using subset of Voronoi edges

into regions, each having different sets of nearest

neighbors. In [11], Xu et al. study indexing location

data in location-based wireless services. They propose

the D-tree, an index structure that can be used to

efficiently process NN queries (planar point queries in

their terminology). D-tree simply indexes the point

data using the subsets of the points’ Voronoi edges

that partition the entire set into two subsets. This par-

titioning principle is used in all levels of the tree.

Many studies also focus on utilizing individual

Voronoi cells for query processing. Korn and

Muthukrishnan [5] describe four examples of the

Voronoi cell computation problem, drawn from dif-

ferent spatial/vector space domains in which the in-

fluence set of a given point is required. Stanoi et al. in

[10] combine the properties of Voronoi cells (influ-

ence sets in their terminology) with the efficiency of

R-trees to retrieve reverse nearest neighbors of a query

point from the database. Zhang et al. [12] determine

the so-called validity region around a query point as

the Voronoi cell of its nearest neighbor. The cell is the

region within which the result of the nearest neighbor

query remains valid as the location of the query point

is changing. To provide an efficient similarity search

mechanism in a peer-to-peer data network, Banaei-

Kashani and Shahabi propose that each node main-

tains its Voronoi cell based on its local neighborhood

3440V Voronoi Tessellation
in the content space [1]. As a more practical example,

Kolahdouzan and Shahabi [4] propose a Voronoi-

based data structure to improve the performance of

exact k nearest neighbor search in spatial network

databases. Sharifzadeh and Shahabi [8] utilize Addi-

tively Weighted Voronoi diagrams to process a class of

nearest neighbor queries.

Cross-references
▶Road Networks

▶Rtree

Recommended Reading
1. Banaei-Kashani F. and Shahabi C. SWAM: a family of access

methods for similarity-search in peer-to-peer data networks.

In Proc. Int. Conf. on Information and Knowledge Manage-

ment, 2004, pp. 304–313.

2. de Berg M., van Kreveld M., Overmars M., and Schwarzkopf O.

Computational Geometry: Algorithms and Applications,

2nd ed. Springer, Berlin Heidelberg New York, 2000.

3. Hagedoorn M. Nearest neighbors can be found efficiently if the

dimension is small relative to the input size. In Proc. 9th Int.

Conf. on Database Theory, 2003, pp. 440–454.

4. KolahdouzanM. and Shahabi C. Voronoi-based K nearest neigh-

bor search for spatial network databases. In Proc. 30th Int. Conf.

on Very Large Data Bases, 2004, pp. 840–851.

5. Korn F. and Muthukrishnan S. Influence sets based on reverse

nearest neighbor queries. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2000, pp. 201–212.

6. Maneewongvatana S. Multi-Dimensional Nearest Neighbor

Searching with Low-dimensional Data. PhD thesis, Computer

Science Department, University of Maryland, College Park, MD,

USA, 2001.

7. Okabe A., Boots B., Sugihara K., and Chiu S.N. Spatial Tessella-

tions, Concepts and Applications of Voronoi Diagrams, 2nd edn.

Wiley, Chichester, UK, 2000.
8. Sharifzadeh M. and Shahabi C. Processing optimal sequenced

route queries using voronoi diagrams. Geoinformatica 12(4),

Springer Netherlands, December 2008, pp. 411–433.

9. Sharifzadeh M. Spatial Query Processing Using Voronoi Dia-

grams. PhD thesis, Computer Science Department, University of

Southern California, Los Angeles, CA, 2007.

10. Stanoi I., Riedewald M., Agrawal D., and El Abbadi A. Discovery

of influence sets in frequently updated databases. In Proc. 27th

Int. Conf. on Very Large Data Bases, 2001, pp. 99–108.

11. Xu J., Zheng B., Lee W.-C., and Lee D.L. The D-tree: an

index structure for planar point queries in location-based wire-

less services. IEEE Trans. Knowl. Data Eng., 16(12):1526–1542,

2004.

12. Zhang J., Zhu M., Papadias D., Tao Y., and Lee D.L. Location-

based spatial queries. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2003, pp. 443–453.
Voronoi Tessellation

▶Voronoi Diagram
VP

▶Virtual Partitioning
VSM

▶Vector-Space Model

W

W3C

SERGUEI MANKOVSKII

CA Labs, CA, Inc., Thornhill, ON, Canada

Synonyms
World Wide Web consortium

Definition
W3C is an international consortium for development

of World Wide Web protocols and guidelines to ensure

long-term growth of the Web.
Key Points
W3C was founded in 1994 by the inventor of the World

WideWebTimBerners-Lee as a vendor-neutral forum for

building consensus around Web technologies. The con-

sortium consists of member organization and dedicated

staff of technical experts. Membership is open to any

organization or individual whose application is reviewed

and approved by theW3C. Usually W3Cmembers invest

significant resources into the Web technologies.

W3C fulfils its mission by creation of recommen-

dations enjoying status of international standards.

In the first 10 years of existence, it produced over

eighty W3C recommendations. W3C is responsible

for such technologies as HTML, XHTML, XML,

XML Schema, CSS, SOAP, WSDL and others. W3C

members play a leading role in the development of

the recommendations.

W3C initiatives involve international, national, and

regional organizations on global scale. Global partici-

pation reflects broad adoption of the web technologies.

Along with broad adoption comes growth in diversity

of software and hardware used on the Web. W3C aims

to facilitate hardware and software interoperability to

avoid fragmentation of the Web.

W3C operations are jointly administered by the

MIT Computer Science and Artificial Intelligence Lab-

oratory, European Research Consortium for Informat-

ics and Mathematics, and Keio University.
2009 Springer ScienceþBusiness Media, LLC
Cross-references
▶Web 2.0/3.0

▶Web Services

▶XML

▶XML Schema
Recommended Reading
1. W3C. Available at: http://www.w3.org/
W3C XML Path Language

▶XPath/XQuery
W3C XML Query Language

▶XPath/XQuery
W3C XML Schema

▶XML Schema
WAN Data Replication

MAARTEN VAN STEEN

VU University, Amsterdam, The Netherlands

Synonyms
Wide-area data replication

Definition
The field of WAN data replication covers the problems

and solutions for distributing and replicating data across

wide-area networks. Concentrating on databases alone,

a wide-area database is defined as a collection of mul-

tiple, logically interrelated databases distributed and

3442W WAN Data Replication
possibly replicated across sites that are connected

through a wide-area network.

The characteristic feature is that data are spread

across sites that are separated through wide-area

links. Unlike links in local-area networks, the quality

of communication through wide-area links is relatively

poor. Links are subject to latencies of tens to thousands

of milliseconds, there are often severe bandwidth

restrictions, and connections between sites are much

less reliable.

In principle, WAN data replication also covers the

distribution and replication of plain files. These issues

are traditionally handled by wide-area distributed file

systems such as AFS [11] and NFS [3,12], which are

both widely used. These distributed file systems aim at

shielding data distribution from applications, i.e., they

aim at providing a high degree of distribution trans-

parency. As such, they tackle the same problems that

wide-area databases need to solve. However, matters

are complicated for databases, because relations be-

tween and within files (i.e., tables) also need to be

taken into account.

Historical Background
WAN data replication is driven by the need for im-

proving application performance across wide-area net-

works. Performance is generally expressed in terms

of client-perceived quality of service: response times

(latency), data transfer rates (bandwidth), and avail-

ability. Replication may also be driven by the require-

ment for reducing monetary costs, as the infrastructure

over which data distribution and replication takes

place is generally owned by a separate provider who

may be charging per transferred byte.

Replication of data has been explored in early wide-

area systems such as Grapevine [2], Clearinghouse [4],
WAN Data Replication. Figure 1. Web-based data replicatio

Internet. Adapted from Tanenbaum, van Steen: Distributed Sy
and Lotus Notes [6]. All these systems concentrated on

achieving a balance between data consistency, perfor-

mance, and availability, recognizing that acceptable

quality of service can be achieved only when weak

consistency can be tolerated. In general, this required

exploring application semantics making solutions more

or less specific for an application.

In the mid-1990s, researchers from Xerox explored

client-centric consistency models by which data were

distributed and replicated in a wide-area database

such that a notion of strong data consistency could

be presented to users individually [8]. For example,

data that had been modified by a user when accessing

the database at location A would be propagated to

location B before the user would access the system

again at B, but not to other locations.

The need for WAN data replication became widely

recognized with the explosion of the Web, which

instantly revealed the shortcomings of its traditional

client-server architecture. Up to date, virtually all Web

sites are centrally organized, with end users sending

requests to a single server. However, this organization

does not suffice for large commercial sites, in which

high performance and availability is crucial. To address

these needs, so-called Content Delivery Networks

(CDNs) came into play. A CDN is essentially a Web

hosting service with many servers placed across the Inter-

net (see Fig. 1). Itsmain goal is to ensure that a singleWeb

site is automatically distributed and replicated across

these servers in such a way that negotiated performance

and availability requirements are met (see also [9]).

CDNs surfaced when most Web sites were still

organized as a (possibly very large) collection of files

that could be accessed through a single server. Modern

sites, however, are no longer statically organized, but

deploy full-fledged databases from which Web content
n deploying servers that are placed at the edge of the

stems, 2nd edn. Prentice-Hall, Englewood, Cliffs, NJ, 2007.

WAN Data Replication W 3443

W

is dynamically generated by application servers. As a

consequence, the so-called edge servers to which client

requests are initially directed are gradually turning into

servers hosting partially or fully replicated databases,

or database caches. These issues are discussed below.

Foundations
A popular model used to understand the various issues

involved in wide-area data(base) is the one in which

every data item has a single associated server through

which all its updates are propagated. Such a primary or

origin server as it is called, simplifies the handling of

conflicts and maintenance of consistency. In practice,

an origin server maintains a complete database that

is partially or completely replicated to other servers.

In contrast, in an update anywhere approach, updates

may be initiated and handled at any replica server. The

main problem with this approach is that it requires

global consensus among the replica servers on the

ordering of updates if strong consistency is to be pre-

served. Achieving such consensus introduces serious

scalability problems, for which reason various optimis-

tic approaches have been proposed (optimistic in the

sense that corrective actions may later be necessary).

Queries are initially forwarded to edge servers,

which then handle further processing. This could

mean that subqueries are issued to different origin

servers, but it is also possible that the edge server can

compute the answer locally and send the response

directly to the requesting client without further con-

tacting the origin. In this context, key issues that need

to be addressed for wide-area data replication are rep-

lica placement and consistency.

Replica Placement

Somewhat surprisingly, many researchers do not make

a clear distinction between placement of server machines

and placement of data on servers. Nevertheless, this

distinction is important: while data placement can

often be decided at runtime, this is obviously not the

case for placement of server machines. Moreover, the

criteria for placement are different: server placement

should be done for many data objects, but deciding on

the placement of data can be optimized for individual

data objects.

Both problems can be roughly tackled as optimiza-

tion problems in which the best K out of N possible

locations need to be selected. There are a number of

variations of this problem, but most important is the
fact that heuristics need to be employed due to the

exponential complexity of known solutions. For this

reason, runtime data placement decisions deploy sim-

pler solutions. An overview is provided in [13].

Relevant in this context is comparing different pla-

cements to decide which one is best. To this end, a

general cost function can be used in various metrics

which are combined:

cos t ¼ w1 res1 þ w2res2þ � � � þwn resn;

resk � 0; wk > 0

where resk is a monotonically increasing variable

denoting the cost of resource k and wk its associated

weight. Typical resources include distance (expressed

in delay or number of hops) and bandwidth. Note

that the actual dimension of cost is irrelevant. What

matters is that different costs can be compared in order

to select the best one.

Using a cost-driven placement strategy also implies

that resource usage must be measured or estimated. In

many cases, estimating costs may be more difficult

than one would initially expect. For example, in order

for an origin server to estimate the delay between a

client and a given edge server may require mapping

Internet locations to coordinates in a high-dimensional

geometric space [7].
Data Consistency

Consistency of replicated data has received considerable

attention, notably in the context of distributed shared-

memory parallel computers. This class of computers

attempts to mimic the behavior of traditional shared-

memory multiprocessors on clusters or grids of compu-

ters. However, traditional distributed systems have often

generally assumed that only strong consistency is accept-

able, i.e., all processes concurrently accessing shared data

see the same ordering of updates everywhere. The prob-

lem with strong consistency is that it requires timely

global synchronization, which may be prohibitively ex-

pensive in wide-area networks. Therefore, weaker consis-

tency models often need to be adopted.

To capture different models, Yu and Vahdat defined

continuous consistency [15], a framework that captures

consistency along three different dimensions: time,

content, and ordering of operations. When updates

are handled in a centralized manner, then notably

the first two are relevant for WAN data replication.

Continuous time-based consistency expresses to what

3444W WAN Data Replication
extent copies of the same data are allowed to be stale

with respect to each other. Continuous content-based

consistency is used to express to what extent the re-

spective values of replicated data may differ, a metric

that is useful when dealing with, e.g., financial data.

The differences in consistency are subsequently

expressed as numbers. By exchanging this information

between sites, consistency enforcement protocols can

be automatically started without further interference

from applications.

There are essentially three ways to bring copies in

the same state. First, with state shipping the complete

up-to-date state is transferred to a replica server. This

update form can be optimized through delta shipping

by which only the difference between a replica’s current

state and that of a fresher replica is computed and

transferred. These two forms of update are also re-

ferred to as passive replication, or asymmetric update

processing. In contrast, with active replication, func-

tion shipping takes place, meaning that the operations

that led to a new state are forwarded to a replica and

subsequently executed. This is also known as symmetric

update processing.

Differences may also exist with respect to the server

taking the initiative for being updated. In pull

approaches a replica server sends a request to a fresher

replica to send it updates. In the push approach,

updates are sent to a replica server at the initiative of

a server that has just been updated. Note that for

pushing, the server taking the initiative will need to
WAN Data Replication. Figure 2. Caching and replication sc

van Steen: Distributed Systems, 2nd edn. Prentice-Hall, Engle
know every other replica server as well as its state. In

contrast, pulling in updates requires only that a replica

server knows where to fetch fresh state. For these

reasons, pull-based consistency enforcement is often

used in combination with caches: when a request

arrives at a caching server, the latter checks whether

its cache is still fresh by contacting an origin server.

An important observation for WAN data replica-

tion is that it is impossible to simultaneously provide

strong consistency, availability, and partition tolerance

[5]. In the edge-server model, this means that despite

the fact that an origin server is hosting a database

offering the traditional ACID properties, the system as

a whole cannot provide a solution that guarantees that

clients will be offered continuous and correct service as

long as at least one server is up and running. This is an

important limitation that is often overlooked.

Key Applications
Wide-area data(base) replication is applied in various

settings, but is arguably most prevalent in Web appli-

cations and services (see also [1]). To illustrate, con-

sider a Web service deployed within an edge-server

infrastructure. The question is what kind of replication

schemes can be applied for the edge servers. The vari-

ous solutions are sketched in Fig. 2.

First, full replication of the origin server’s database

to the edge servers can take place. In that case, queries

can be handled completely at the edge server and

problems evolve around keeping the database replica’s
hemes for Web applications. Adapted from Tanenbaum,

wood, Cliffs, NJ, 2007.

WAN Data Replication W 3445

W

consistent. Full replication is generally a feasible solu-

tion when read/write ratios are high and queries

are complex (i.e., spanning multiple database tables).

The main problem is that if the number of replicas

grow, one would need to resort to lazy replication

techniques by which an edge server can continue to

handle a query in parallel to bringing all replicas up-to-

date, but at the risk of having to reconcile conflicting

updates later on [10]. If queries and data can be

organized such that access to only a single table is

required (effectively leading to only simple queries),

partial replication by which only the relevant table is

copied to the edge server may form a viable

optimization.

An alternative solution is to apply what is known

as content-aware caching. In this case, an edge server

has part of the database stored locally based on cach-

ing techniques. A query is assumed to fit a template

allowing the edge server to efficiently cache and

lookup query results. For example, a query such as

‘‘select * from items where price < 50’’ contains the

answer to the more specific query ‘‘select * from items

where price < 20.’’ In this case, the edge server is

actually building up its own version of a database, but

now with a data schema that is strongly related to the

structure of queries.

Finally, an edge server can also deploy content-

blind caching by which query results are simply cached

and uniquely associated with the query that generated

them. In other words, unlike content-aware caching

and database replication, no relationship with the

structure of the query or data is kept track of.

As discussed in [14], each of these replication

schemes has its merits and disadvantages, with no

clear winner. In other words, it is not possible to

simply provide a single solution that will fit all applica-

tions. As a consequence, distributed systems that aim

to support WAN data replication will need to incorpo-

rate a variety of replication schemes if they are to be of

general use.

Cross-references
▶Autonomous Replication

▶Consistency Models for Replicated Data

▶Data Replication

▶Distributed Databases

▶ Eventual Consistency Optimistic Replication and

Resolution

▶One-Copy Serializability
▶ Partial Replication

▶Replica Control

▶Replication Based on Group Communication

▶Replication for High Availability

▶Replication for Scalability

▶Traditional Concurrency Control for Replicated

Databases
Recommended Reading
1. Alonso G., Casati F., Kuno H., and Machiraju V. Web Services:

Concepts, Architectures and Applications. Springer, Berlin

Heidelberg New York, 2004.

2. Birrell A., Levin R., Needham R., and Schroeder M. Grapevine:

an excercise in distributed computing. Commun. ACM, 25(4):

260–274, 1982.

3. Callaghan B. NFS Illustrated. Addison-Wesley, Reading, MA,

2000.

4. Demers A., Greene D., Hauser C., Irish W., Larson J., Shenker S.,

Sturgis H., Swinehart D., and Terry D. Epidemic algorithms for

replicated database maintenance. In Proc. ACM SIGACT-

SIGOPS 6th Symp. on the Principles of Dist. Comp., 1987,

pp. 1–12.

5. Gilbert S. and Lynch N. Brewer’s conjecture and the feasibility of

consistent, available, partition-tolerant Web services. ACM

SIGACT News, 33(2):51–59, 2002.

6. Kawell L., Beckhardt S., Halvorsen T., Ozzie R., and Greif I.

Replicated document management in a group communication

system. In Proc. 2nd Conf. Computer-Supported Cooperative

Work. 1988, pp. 226–235.

7. Ng E. and Zhang H. Predicting Internet Network Distance with

Coordinates-based Approaches. In Proc. 21st Annual Joint Conf.

of the IEEE Computer and Communications Societies, 2002,

pp. 170–179.

8. Petersen K., Spreitzer M., Terry D., and Theimer M. Bayou:

replicated database services for world-wide applications. In

Proc. 7th SIGOPS European Workshop, 1996, pp. 275–280.

9. Rabinovich M. and Spastscheck O. Web Caching and Replica-

tion. Addison-Wesley, Reading, MA, 2002.

10. Saito Y. and Shapiro M. Optimistic replication. ACM Comput.

Surv., 37(1):42–81, 2005.

11. Satyanarayanan M. Distributed files systems. In Distributed

Systems, 2nd edn., S. Mullender (ed.). Addison-Wesley, Woking-

ham, 1993, pp. 353–383.

12. Shepler S., Callaghan B., Robinson D., Thurlow R., Beame C.,

Eisler M., and Noveck D. Network File System (NFS) Version 4

Protocol. RFC 3530, 2003.

13. Sivasubramanian S., Szymaniak M., Pierre G., and van Steen M.

Replication for Web Hosting Systems. ACM Comput. Surv.,

36(3):1–44, 2004.

14. Sivasubramanian S., Pierre G., van Steen M., and Alonso G.

Analysis of Caching and Replication Strategies for Web Applica-

tions. IEEE Internet Comput., 11(1):60–66, 2007.

15. Yu H. and Vahdat A. Design and Evaluation of a Conit-based

Continuous Consistency Model for Replicated Services. ACM

Trans. Comput. Syst., 20(3):239–282, 2002.

3446W Watermarking
Watermarking

▶ Storage Security
Wavelets on Streams

MINOS GAROFALAKIS

Technical University of Crete, Chania, Greece

Definition
Unlike conventional database query-processing engines

that require several passes over a static data image,

streaming data-analysis algorithms must often rely on

building concise, approximate (but highly accurate)

synopses of the input stream(s) in real-time (i.e., in

one pass over the streaming data). Such synopses typi-

cally require space that is significantly sublinear in the

size of the data and can be used to provide approximate

query answers.

The collection of the top (i.e., largest) coefficients

in the wavelet transform (or, decomposition) of an input

data vector is one example of such a key feature of the

stream. Wavelets provide a mathematical tool for the

hierarchical decomposition of functions, with a long

history of successful applications in signal and image

processing [10]. Applying the wavelet transform to a

(one- or multi-dimensional) data vector and retaining

a select small collection of the largest wavelet coefficient

gives a very effective form of lossy data compression.

Such wavelet summaries provide concise, general-

purpose summaries of relational data, and can form

the foundation for fast and accurate approximate

query processing algorithms.
Historical Background
Haar wavelets have recently emerged as an effective,

general-purpose data-reduction technique for approx-

imating an underlying data distribution, and providing

a foundation for approximate query processing over

traditional (static) relational data. Briefly, the idea is

to apply the Haar wavelet decomposition to the input

relation to obtain a compact summary that comprises a

select small collection of wavelet coefficients. The results

of [3,9,11] have demonstrated that fast and accurate

approximate query processing engines can be designed

to operate solely over such compact wavelet
summaries. Wavelet summaries can also give accurate

histograms of the underlying data distribution at mul-

tiple levels of resolution, thus providing valuable pri-

mitives for effective data visualization.

In the setting of static relational tables, the Haar

wavelet transform is well understood, and scalable

wavelet decomposition algorithms for constructing

wavelet summaries have been known for some time

[3,11]. Typically, such algorithms assume at least linear

space and several passes over the data. Data streaming

models introduce the novel challenge of maintain-

ing the topmost wavelet coefficients over a dynamic

data distribution (rendered as a stream of updates),

while only utilizing small space and time (i.e., signifi-

cantly sublinear in the size of the data distribution).

Foundations
The Haar Wavelet Decomposition. Consider the one-

dimensional data vector a = [2,2,0,2,3,5,4,4] compris-

ingN = 8 data values. In general,N denotes the data set

size and [N] is defined as the integer index domain

{0,...,N � 1}; also, without loss of generality, N is

assumed to be a power of 2 (to simplify notation).

The Haar Wavelet Transform (HWT) of a is computed

as follows. The data values are first averaged together

pairwise to get a new ‘‘lower-resolution’’ repre-

sentation of the data with the pairwise averages
2þ2
2
; 0þ2

2
; 3þ5

2
; 4þ4

2

� �
= [2,1,4,4]. This averaging loses

some of the information in a. To restore the original

a values, detail coefficients that capture the missing

information are needed. In the HWT, these detail

coefficients are the differences of the (second of the)

averaged values from the computed pairwise average.

Thus, in this simple example, for the first pair of

averaged values, the detail coefficient is 0 since
2�2
2

¼ 0, for the second it is � 1 since 0�2
2

¼ �1. No

information is lost in this process – one can recon-

struct the eight values of the original data array from

the lower-resolution array containing the four averages

and the four detail coefficients. This pairwise averaging

and differencing process is recursively applied on the

lower-resolution array of averages until the overall

average is reached, to get the full Haar decomposition.

The final HWTof a is given by wa = [11 ∕4,� 5 ∕4, 1∕2, 0,
0, � 1, � 1, 0], that is, the overall average followed by

the detail coefficients in order of increasing resolution.

Each entry inwa is called a wavelet coefficient. The main

advantage of using wa instead of the original data

vector a is that for vectors containing similar values

Wavelets on Streams W 3447
most of the detail coefficients tend to have very small

values. Thus, eliminating such small coefficients from

the wavelet transform (i.e., treating them as zeros)

introduces only small errors when reconstructing the

original data, resulting in a very effective form of lossy

data compression [10].

A useful conceptual tool for visualizing and under-

standing the HWT process is the error tree structure [9]

(shown in Fig. 1 for the example array a). Each internal

tree node ci corresponds to a wavelet coefficient (with

the root node c0 being the overall average), and leaf

nodes a[i] correspond to the original data-array entries.

This view allows us to see that the reconstruction of

any a[i] depends only on the log N + 1 coefficients in

the path between the root and a[i]; symmetrically, it

means a change in a[i] only impacts its log N + 1

ancestors in an easily computable way. The support

for a coefficient ci is defined as the contiguous range

of data-array that ci is used to reconstruct (i.e., the

range of data/leaf nodes in the subtree rooted at ci).

Note that the supports of all coefficients at resolution

level l of the HWT are exactly the 2l (disjoint) dyadic

ranges of size N ∕2l = 2logN�l over [N], defined as

Rl,k = [k � 2logN�l,...,(k + 1) � 2logN�l � 1] for

k = 0,...,2l � 1 (for each resolution level l = 0,...,

log N). The HWT can also be conceptualized in

terms of vector inner-product computations: let fl,k

denote the vector with fl,k[i] = 2l�logN for i 2 Rl,k and

0 otherwise, for l = 0,...,log N and k = 0,...,2l � 1; then,

each of the coefficients in the HWT of a can be

expressed as the inner product of a with one of the N

distinct Haar wavelet basis vectors:
Wavelets on Streams. Figure 1. Error-tree structure for the
f1
2
ðflþ1;2k � flþ1;2kþ1Þ :l ¼ 0;:::;logN � 1;

k ¼ 0;:::;2l � 1g [ff0;0g

Intuitively, wavelet coefficients with larger support

carry a higher weight in the reconstruction of the

original data values. To equalize the importance of all

HWT coefficients, a common normalization scheme is

to scale the coefficient values at level l (or, equivalently,

the basis vectors fl,k) by a factor of
ffiffiffiffiffiffiffiffiffiffi
N=2l

p
. This

normalization essentially turns the HWT basis vectors

into an orthonormal basis – letting ci
∗ denote the

normalized coefficient values, this fact has two impor-

tant consequences: (i) The energy (squared L2-norm)

of the a vector is preserved in the wavelet domain, that

is, jjajj 2
2
¼ ha; ai ¼

P
i a½i�

2 ¼
P

iðc�i Þ
2
(by Parseval’s

theorem); and, (ii) Retaining the B largest coefficients

in absolute normalized value gives the (provably)

best B-term approximation in terms of L2 (or, sum-

squared) error in the data reconstruction (for a given

budget of coefficients B) [10].

The HWT and its key properties also naturally

extend to the case of multi-dimensional data distribu-

tions; in that case, the input a is a d-dimensional data

array, comprising Nd entries (Without loss of generali-

ty, a domain of [N]d is assumed for the d-dimensional

case.), and the HWT of a results in a d-dimensional

wavelet-coefficient array wawith Nd coefficient entries.

The supports of d-dimensional Haar coefficients are

d-dimensional hyper-rectangles (over dyadic ranges in

[N]d), and can be naturally arranged in a generalized

error-tree structure [5,6].
example data array a (N = 8).

W

3448W Wavelets on Streams
Wavelet Summaries on StreamingData. Abstractly,

the goal is to continuously track a compact summary

of the B topmost wavelet coefficient values for a

dynamic data distribution vector a rendered as a

continuous stream of updates. Algorithms for this

problem should satisfy the key small space/time requi-

rements for streaming algorithms; more formally,

streaming wavelet algorithms should (ideally) guaran-

tee (i) sublinear space usage (for storing a synopsis of

the stream), (ii) sublinear per-item update time (to

maintain the synopsis), and (iii) sublinear query time

(to produce a, possibly approximate, wavelet sum-

mary), where ‘‘sublinear’’ typically means polyloga-

rithmic in the domain size N. The streaming wavelet

summary construction problem has been examined

under two distinct data streaming models.

� Wavelets in the Ordered Aggregate (Time Series)

Streaming Model. Here, the entries of the input

data vector a are rendered over time in the increas-

ing (or, decreasing) order of the index domain

values. This means, for instance, that a[1] (or, the

set of all updates to a[1]) is seen first, followed by

a[2], then a[3], and so on. In this case, the set of

the B topmost HWT values over a can be main-

tained exactly in small space and time, using a

simple algorithm based on the error-tree structure

(Fig. 1) [7]: Consider reading (an update to) item

a[i + 1] in the stream; that is, all items a[j] for j � i

have already streamed through. The algorithmmain-

tains the following two sets of (partial) coefficients:

1. Highest B HWT coefficient values for the por-

tion of the data vector seen thus far.

2. log N + 1 straddling partial HWT coefficients,

one for each level of the error tree. At level l,

index i straddles the HWT basis vector fl,k,

where j 2 [k � 2logN�l, (k + 1) � 2logN�l � 1].

(Note that there is at most one such basis vector

per level.)
When the (i + 1)th data item is read, the value for

each of the affected straddling coefficients is

updated. With the arrival of the (i + 1)th item,

some coefficients may no longer be straddling

(i.e., their computation is now complete). In that

case, the value of these coefficients is compared

against the the current set of B highest coefficients,

and only the B largest coefficient values in the

combined set are retained. Also, for levels where a

straddling coefficient has been completed, a new
straddling coefficient is initiated (with an initial

value of 0). In this manner, at every position in

the time series stream, the set of the B topmost

HWT coefficients is retained exactly.

Theorem 1 [7] The topmost B HWT coefficients can

be maintained exactly in the ordered aggregate (time

series) streaming model using O(B + logN) space and

O(B + logN) processing time per item.

Similar algorithmic ideas can also be applied to

more sophisticated wavelet thresholding schemes

(e.g., that optimize for error metrics other than L2) to

obtain space/time efficient wavelet summarization

algorithms in the ordered aggregate model [8].

� Wavelets in the General Turnstile Streaming Model.

Here, updates to the data vector a can appear in any

arbitrary order in the stream, and the final vector

entries are obtained by implicitly aggregating the

updates for a particular index domain value. More

formally, in the turnstile model, each streaming

update is a pair of the form (i, 	v), denoting a

net change of 	v in the a[i] entry; that is, the effect

of the update is to set a[i] ← a[i] 	v. (The model

naturally generalizes to multi-dimensional data: for

d data dimensions, each update ((i1,...,id), 	v)

effects a net change of 	v on entry a[i1,...,id].)

The problem of maintaining an accurate wavelet

summary becomes significantly more complex

when moving to this much more general streaming

model. Gilbert et al. [7] prove a strong lower bound

on the space requirements of the problem: for

arbitrary turnstile streaming vectors, nearly all of

the data must be stored to recover the top B HWT

coefficients.
Existing solutions for wavelet maintenance over

turnstile data streams rely on randomized schemes

that return only an approximate synopsis compris-

ing (at most) B Haar coefficients that is provably

near-optimal (in terms of the captured energy of

the underlying vector) assuming that the data vec-

tor satisfies the ‘‘small-B property’’ (i.e., most of its

energy is concentrated in a small number of HWT

coefficients) – this assumption is typically satisfied

for most real-life data distributions [7]. One of the

key ideas is to maintain a randomized AMS sketch

[2], a broadly applicable stream synopsis structure

comprising randomized linear projections of the

streaming data vector a. Briefly, an atomic AMS

sketch of a is simply the inner product

Wavelets on Streams W 3449

W

ha; xi ¼
P

i a½i�xðiÞ, where x denotes a random

vector of four-wise independent 	 1-valued ran-

dom variates.

Theorem 2 [1,2] Consider two (possibly stream-

ing) data vectors a and b, and let Z denote the O(log

(1∕d))-wise median of O(1 ∕22)-wise means of inde-

pendent copies of the atomic AMS sketch product

ð
P

i a½i�xðiÞÞð
P

i b½i�xjðiÞÞ. Then, jZ � ha; bij �
Ejjajj2jjbjj2 with probability � 1 � d.

Thus, using AMS sketches comprising only

Oðlogð1=dÞE2 Þ atomic counters, the vector inner product

ha,bi can be approximated to within 	 Ejjajj2jjbjj2
(hence implying an E-relative error estimate for the

squared L2 norm jjajj 2
2
).

Since Haar coefficients of a are inner products

with a fixed set of wavelet-basis vectors, the above

theorem forms the key to developing efficient, ap-

proximate wavelet maintenance algorithms in the

turnstile model. Gilbert et al. [7] propose a solution

(termed ‘‘GKMS’’ in the remainder of the discussion)

that focuses primarily on the one-dimensional

case. GKMS maintains an AMS sketch for the stream-

ing data vector a. To produce the approximate B-term

representation, GKMS employs the constructed sketch

of a to estimate the inner product of a with all wavelet

basis vectors, essentially performing an exhaustive

search over the space of all wavelet coefficients to

identify important ones. More formally, assuming

that there is a B-coefficient approximate representation

of the signal with energy at least �jjajj 2
2
(‘‘small B

property’’), the GKMS algorithm uses a maintained

AMS sketch to exhaustively estimate each Haar coeffi-

cient and selects up to B of the largest coefficients

(excluding those whose square is less than �Ejjajj 2
2
=B,

where E < 1 is the desired accuracy guarantee). GKMS

also uses techniques based on range-summable ran-

dom variables constructed using Reed-Muller codes

to reduce or amortize the cost of this exhaustive

search by allowing the sketches of basis vectors (with

potentially large supports) to be computed more

quickly.

Theorem 3 [7] Assuming there exists a B-term rep-

resentation with energy at least �jjajj 2
2
, then, with prob-

ability at least 1 � d, the GKMS algorithm finds a

representation of at most B coefficients that captures at

least (1 � E)� of the signal energy jjajj 2
2
, using

Oðlog2N logðN=dÞB2=ð�EÞ2Þ space and per-item pro-

cessing time.
A potential problem lies in the query time require-

ments of theGKMSalgorithm: evenwith theReed-Muller

code optimizations, the overall query time for discovering

the top coefficients remains superlinear inN (i.e., at least

Oð 1E2 N logNÞ), violating the third requirement on

streaming schemes. This also renders direct extensions

of GKMS to multiple dimensions infeasible since it

implies an exponential explosion in query cost (requir-

ing at least OðNdÞ) time to cycle through all coeffi-

cients in d dimensions). In addition, the update cost of

the GKMS algorithm is linear in the size of the sketch

since the whole data structure must be ‘‘touched’’ for

each update. This is problematic for high-speed data

streams and/or even moderate sized sketch synopses.

To address these issues, Cormode et al. [5] propose

a novel solution that relies on two key technical ideas.

First, they work entirely in the wavelet domain: instead

of sketching the original data entries, their algorithms

sketch the wavelet-coefficient vector wa as updates

arrive. This avoids any need for complex range-

summable hash functions (i.e., Reed-Muller codes).

Second, they employ hash-based grouping in conjunc-

tion with efficient binary-search-like techniques to en-

able very fast updates as well as identification of

important coefficients in polylogarithmic time.

– Sketching in the Wavelet Domain. The first technical

idea in [5] relies on the observation that it is possi-

ble efficiently produce sketch synopses of the

stream directly in the wavelet domain. That is, the

impact of each streaming update can be translated

on the relevant wavelet coefficients. By the linearity

properties of the HWT and the earlier description,

an update to the data entries corresponds to only

polylogarithmically many coefficients in the wave-

let domain. Thus, on receiving an update to a, it

can be directly converted to O(polylog(N)) updates

to the wavelet coefficients, and an approximate

(sketch) representation of the wavelet coefficient

vector wa can be maintained.

– Time-Efficient Updates and Large-Coefficient

Searches. Sketching in the wavelet domain means

that, at query time, an approximate representation

of the wavelet-coefficient vector wa is available, and

can be employed to identify all those coefficients

that are ‘‘large,’’ relative to the total energy of the

data jjoajj 22 ¼ jjajj 2
2
. While AMS sketches can pro-

vide such estimates (a point query is just a special

case of an inner product), querying remains much

Wavelets on Streams. Figure 2. The GCS data structure:

Element x is hashed (t times) to a bucket of groups

(using h(id(x))) and then a sub-bucket within the

bucket (using f(x)), where an AMS counter is updated.

3450W Wavelets on Streams
too slow taking at least Oð 1E2 N) time to find which

of the N coefficients are the B largest. Instead, the

schemes in [5] rely on a divide-and-conquer or

binary-search-like approach for finding the large

coefficients. This requires the ability to efficiently

estimate sums-of-squares for groups of coefficients,

corresponding to dyadic subranges of the domain

[N]. Low-energy regions can then be disregarded,

recursing only on high-energy groups – this guar-

antees no false negatives, as a group that contains a

high-energy coefficient will also have high energy as

a whole. The algorithms of [5] also employ rando-

mized, hash-based grouping of dyadic groups and

coefficients to guarantee that each update only

touches a small portion of the synopsis, thus guar-

anteeing very fast update times.

The key to the Cormode et al. solution is a hash-based

probabilistic synopsis data structure, termed Group-

Count Sketch (GCS), that can estimate the energy of

fixed groups of elements from a vector w of size N

under the turnstile streaming model [5]. This trans-

lates to several streaming L2-norm estimation pro-

blems (one per group). A simple solution would be

to keep an AMS sketch of each group separately; how-

ever, there can be many (e.g., linear in N) groups,

implying space requirements that are O(N). Streaming

updates should also be processed as quickly as possible.

The GCS synopsis requires small, sublinear space and

takes sublinear time to process each stream update

item; more importantly, a GCS can provide a high-

probability estimate of the energy of a group within

additive error Ejjojj 2
2
in sublinear time. In a nutshell,

the GCS synopsis first partitions items of w into their

group using an id() function (which, in the case of

Haar coefficients, is trivial since it corresponds to fixed

dyadic ranges over [N]), and then randomly maps

groups to buckets using a hash function h(). Within

each bucket, a second stage of hashing of items to sub-

buckets is applied (using another hash function f(),

where each contains an atomic AMS sketch counter

in order to estimate the L2 norm of the elements in the

bucket. As with most randomized estimation schemes,

a GCS synopsis comprises t independent instantiations

of this basic randomized structure, each with indepen-

dently chosen hash function pairs (h(), f ()) and x
families for the AMS estimator; during maintenance,

a streaming update (x, u) is used to update each of the t

AMS counters corresponding to element x. (A pictorial
representation is shown in Fig. 2.) To estimate the

energy of a group g, for each independent instantiation

m = 1,...,t of the bucketing structure, the squared

values of all the AMS counters in the sub-buckets

corresponding to bucket hm(g) are summed, and then

the median of these t values is returned as the estimate.

Theorem 4 [5] The GCS can estimate the energy of

item groups of the vector w within additive error Ejjojj 2
2

with probability � 1 � d using space of O 1
E3 log

1
d

� �
counters, per-item update time of O log 1

d

� �
, and query

time of O 1
E2 log

1
d

� �
.

To recover coefficients with large energy in the

w vector, the algorithm employs a hierarchical search-

tree structure on top of [N]: Each level in this tree

structure induces a certain partitioning of elements

into groups (corresponding to the nodes at that

level), and per-level GCS synopses can be used to

efficiently recover the high-energy groups at each

level (and, thus, quickly zero in on high-energy Haar

coefficients). Using these ideas, Cormode et al. [5] de-

monstrate that the accuracy guarantees of Theorem 3

can be obtained using OðB
3 logN
E3�3 � log B logN

E�d Þ space,

Oðlog2N � log B logN
E�d Þ per item processing time, and

Oð B3

E3�3 � logN � log B logN
E�d Þ query time. In other words,

their GCS-based solution guarantees sublinear space

and query time, as well as per-item processing times

that are sublinear in the size of the stream synopsis.

Their results also naturally extend to the multi-dimen-

sional case [5].

Key Applications
Wavelet-based summaries are a general-purpose data-

reduction tool, and the maintenance of such summaries

Weak Consistency Models for Replicated Data W 3451
over continuous data streams has several important

applications, including large-scale IP network monitor-

ing and network-event tracking (e.g., for detecting net-

work traffic anomalies or Denial-of-Service attacks),

approximate query processing over warehouse update

streams, clickstream and transaction-log monitoring in

large web-server farms, and satelite- or sensornet-based

environmental monitoring.

Data Sets
Several publicly-available real-life data collections have

been used in the experimental study of streaming

wavelet summaries; examples include the US Census

Bureau data sets (http://www.census.gov/), the UCI

KDD Archive (http://kdd.ics.uci.edu/), and the UW

Earth Climate and Weather Data Archive (http://

www-k12.atmos.washington.edu/k12/grayskies/).
W

Future Directions
The area of streaming wavelet-based summaries is rich

with interesting algorithmic questions. The bulk of the

discussion here focuses on L2-error synopses. The

problem of designing efficient streaming methods for

maintaining wavelet summaries that optimize for non-

L2 error metrics (e.g., general Lp error) under a turnstile

streaming model remains open. Optimizing for non-L2
error implies more sophisticated coefficient threshold-

ing schemes based on dynamic programming over the

error-tree structure (e.g., [6,8]); while such methods

can be efficiently implemented over ordered aggregate

streams [8], no space/time efficient solutions are

known for turnstile streams. Dealing with physically-

distributed streams also raises interesting issues for

wavelet maintenance, such as trading off approxima-

tion quality with communication (in addition to time/

space). The distributed AMS sketching algorithms

of Cormode and Garofalakis [4] can be applied to

maintain an approximate wavelet representation over

distributed turnstile streams, but several issues (e.g.,

appropriate prediction models for local sites) remain

open. Finally, from a systems perspective, the problem

of incorporating wavelet summaries in industrial-

strength data-streaming engines, and testing their

viability in real-life scenarios remains open.
Cross-references
▶Approximate Query Processing

▶Data Compression in Sensor Networks
▶Data Reduction

▶Data Sketch/Synopsis

▶ Synopsis Structure

▶Wavelets in Database Systems
Recommended Reading
1. Alon N., Gibbons P.B., Matias Y., and Szegedy M. Tracking

join and self-join sizes in limited storage. In Proc. 18th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1999, pp. 10–20.

2. Alon N., Matias Y., and Szegedy M. The space complexity of

approximating the frequency moments. In Proc. 28th Annual

ACM Symp. on Theory of Computing, 1996, pp. 20–29.

3. Chakrabarti K., Garofalakis M., Rastogi R., and Shim K.

Approximate query processing using wavelets. In Proc. 26th

Int. Conf. on Very Large Data Bases, 2000, pp. 111–122.

4. Cormode G. and Garofalakis M. Approximate continuous que-

rying over distributed streams. ACM Trans. Database Syst.,

33(2): 1–39, 2008.

5. Cormode G., Garofalakis M., and Sacharidis D. Fast approxi-

mate wavelet tracking on streams. In Advances in Database

Technology, Proc. 10th Int. Conf. on Extending Database Tech-

nology, 2006, pp. 4–22.

6. Garofalakis M. and Kumar A. Wavelet synopses for general error

metrics. ACM Trans. Database Syst., 30(4): 888–928, December

2005.

7. Gilbert A.C., Kotidis Y., Muthukrishnan S., and Strauss M.J.

One-pass wavelet decomposition of data streams. IEEE Trans.

Knowl. Data Eng., 15(3):541–554, May 2003.

8. Guha S. and Harb B. Wavelet synopsis for data streams:

minimizing non-euclidean error. In Proc. 11th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, 2005,

pp. 88–97.

9. Matias Y., Vitter J.S., andWangM.Wavelet-based histograms for

selectivity estimation. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1998, pp. 448–459.

10. Stollnitz E.J., DeRose T.D., and Salesin D.H. Wavelets for Com-

puter Graphics – Theory and Applications. Morgan Kaufmann,

San Francisco, CA, 1996.

11. Vitter J.S. and Wang M. Approximate computation of multidi-

mensional aggregates of sparse data using wavelets. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 1999,

pp. 193–204.
Weak Consistency Models for
Replicated Data

ALAN FEKETE

University of Sydney, Sydney, NSW, Australia

Synonyms
Weak memory consistency; Copy divergence

3452W Weak Consistency Models for Replicated Data
Definition
Some designs for a distributed database system involve

having several copies or replicas for a data item, at

different sites, with algorithms that do not update

these replicas in unison. In such a system, clients may

detect a discrepancy between the copies. Each particu-

lar weak consistency model describes which discrepan-

cies may be seen. If a system provides a weak

consistency model, then the clients will require more

careful programming than otherwise. Eventual consis-

tency (q.v.) is the best-known weak consistency model.

Historical Background
In the late 1980s and early 1990s, replication research

focused on systems that allowed replicas to diverge

from one another in controlled ways. Epidemic or

multi-master algorithms were introduced in the work

of Demers et al. [4]. These researchers identified the

importance of session properties [8], which ensure that

clients see information that includes changes they

could reasonably expect the system to know. Ladin

et al. [6] extended this concept by allowing the clients

to explicitly indicate information they expect the sys-

tem to know when responding to requests. Consistency

models for single-master designs with replicas that lag

behind a master were also explored by several groups

[1,7,9]. Much of the work was presented in two Work-

shops on the Management of Replicated Data, held in

1990 and 1992.

Much later, Bernstein et al. [3] defined a consistency

model called relaxed currency, in which stale reads can

occur within transactions that also perform updates.

Foundations
In designing a distributed database system, the same

data is usually kept replicated at different sites, for

faster access and for better availability. However there

is generally a substantial performance penalty from

trying to keep the replicas perfectly synchronized

with one another, so that clients never observe that

replicas exist. Thus many system designers have pro-

posed system designs where the replica control (q.v.)

allows the clients to see that the replicas have diverged

from one another. A consistency model captures the

allowed observations that clients will make. In contrast

to the models which maintain an illusion of a single-

site system, a weaker consistency model allows the

clients to see that the system has replicas. Different

models are characterized by the ways in which the
divergence between replicas is revealed. In describing

some of the models, the research community is some-

times divided between definitions that speak directly

about the values in the replicas, and definitions that

deal with the events that occur at the clients. Another

axis of variation in consistency models comes from the

possibility of having different consistency requirements

for read-only transactions. It is common to require, for

example, that all the transactions which modify the data

should execute with the strong consistency model of 1-

copy-serializability (q.v.), while some weak consistency

is allowed for those transactions which contain only read

operations. This section does not try to present every

known weak consistency model, but rather indicate

some characteristic examples of different styles.

To motivate the weak consistency models, consider

how badly things can go wrong in a system with

uncontrolled read-one-write-all operations, where

each update can be done anywhere first (inside the

global client transaction) and then the updates are

propagated lazily to the other replicas. Suppose there

is such a systemwith one logical data item zwhich is an

initially empty relation R(p,q,r) where p is a primary

key, and two sites A and B each with a replica of z. In

this example, there will be two different operations that

can be performed on the data item: u which inserts a

row (INSERT INTO R VALUES (101, 10,‘‘Fred’’)), and

v which modifies some rows (UPDATE R SET q = q +1

WHERE r = ‘‘Fred’’). Consider T1,C which just per-

forms u and is submitted by client C, and T2,D which

performs v and is submitted by client D. Here is a

possible sequence of events. In the notation used,

u1[z
A,1] represents the event where u is performed

on the local replica of item z at site A, as part of

transaction T1. Since the operations in the following

example are modifications, the notation just shows as

the return value the number of rows changed (1 in this

particular event). Notice that the subscript on the

event type indicates the transaction involved, and

the superscript on the item name indicates the site

of the replica which is affected. The event where the

client C running transaction T1 learns the return value,

and thus knows that the operation has been per-

formed, can be represented by u1,C[z,1]. Note, there is

no superscript on the item, since this is the client’s

view. Many consistency models need to refer to where

transactions start and finish, so there are events like b1,

C for the start of transaction T1 at client C, or c1,C for

the commit of that transaction by the client, or indeed

Weak Consistency Models for Replicated Data W 3453

W

c1
A for the commit of the local subtransaction of T1

which is running at site A. The symbols T

A and T�

B

are used for the copier transactions that propagate

updates previously done at other sites.

b1;C b2;D u1½zA; 1� u1;C ½z; 1� cA1 c1;C v2½zB; 0�
v2;D½z; 0� cB2 c2;D bA
 v
½zA; 1� cA
 bB� u�½zB; 1� cB� ð1Þ

Notice that in sequence (1), the operation v acts in a

quite different way when performed at the two replicas

(at z B, no rows are found to match the where clause,

while at the other replica a row is modified). This leads

to a situation where the final state of replica zA has a

row (101, 11, ‘‘Fred’’), whereas the final state of zB has

(101, 10, ‘‘Fred’’). That is, the replicas have diverged

from one another, and they will stay this way unless

another operation is submitted to reset the row in

question. What is worse, the effects of this divergence

can spread through other operations, which will act

quite differently when performed at the two sites. This

situation has been called ‘‘system delusion’’ or ‘‘split

brain.’’ It is clearly unacceptable, and each weak con-

sistency model should at least prevent this occurring.

Convergence. Several replica consistency models en-

sure that replicas eventually converge. Because this is a

liveness feature, defining it formally involves looking at

infinite sequences of events. However, informally, one

can require that, provided the system enters a quies-

cent period without further changes, then a conver-

gence time will be reached when all replicas have the

same value, a value that includes the effects of all the

updates on the item, performed in some order. Thus,

after the convergence point any read on the logical

item will show this value. Before the convergence

time, a read is allowed to show any value that reflects

some arrangement of some subset of the updates to

that logical item (and different reads can show incom-

patible arrangements of different subsets of updates).

This eventual consistency (q.v.) model was first pro-

posed in general distributed computing research where

operations are independent requests rather than com-

bined into transactions; in replication of transactional

DBMSs, there is an additional requirement that there

should be an agreed serial order on all the updating

transactions, so that the eventual state of every replica

is the outcome of doing all the updating transactions

in the given serial order.

The key mechanisms for ensuring eventual con-

sistency involve detecting and then reconciling the
situations where different replicas have applied opera-

tions in different orders. A common form of reconci-

liating involves having some deterministic rule to say

which update should come first. A any replica where

operations have been performed in the wrong order,

inverse operations are used to rollback to an earlier

state, and then the operations are reapplied in the

correct order. For example, in the sequence (1) above,

if the authoritative order has T1,C before T2,D , then

when T�
B brings information to zB about the missing

operation u, the reconciler will use an inverse opera-

tion v�
�1[zB] to reverse the out-of-order operation v.

This leads to the following sequence, in which the

convergence point is reached at the end of T�
B when

the replicas are in consistent states.

b1;C b2;D u1½zA; 1� u1;C ½z; 1� cA1 c1;C v2½zB; 0�
v2;D½z; 0� cB2 c2;D bA
 v
½zA; 1� cA
 bB� v�1

� ½zB�
u�½zB; 1� v�½zB; 1� cB� ð2Þ

In practice, the burden of reconciliation can be re-

duced somewhat, by noticing that the order does not

matter, for many pairs of operations (those that com-

mute, for example because they deal with different

logical data items). Nevertheless, [5] has shown that

the cost of reconciliation is a serious limit to scalability

of multi-master designs that offer eventual consistency.

The eventual consistency model is focused on the

way update operations are done; until convergence

is reached, read-only transactions are quite uncon-

strained. Variations on the eventual consistency

model are defined by limiting, in various ways, the

nondeterminism in the values that can be returned in

the read operations before the convergence point. For

example, some consistency models enforce session

properties. One notable property is called ‘‘read one’s

own writes.’’ In this model, the subset of updates whose

effects are seen in a read must include all writes (or

more generally operations of update transactions) that

were submitted at the same client, and further the

arrangement of these writes must respect any cases

where one transaction completed before another was

started. More flexibly, some models, such as in [6]

allow each client to indicate, when requesting a read,

a set of previous transactions that must be included in

the set of operations whose effects lead to the read’s

return value.

Stale replicas. It is hard to write reconciliation code

to deal with all the different cases of out-of-order

3454W Weak Consistency Models for Replicated Data
updates. A major class of system designs avoids this

issue entirely, by having a single master or primary

replica, where all updates of the item are done first

(it is common, but not essential, for the master

replicas for all logical items to be at a single site). It

is easy in system designs like this, to ensure that the

updates are propagated one after another from the

master replica to the other replicas (called ‘‘slaves’’).

In this model, there is always a ‘‘correct’’ value for

each logical data item; this is the value in the master

replica. Any slave always has a value which the mas-

ter held in the past; it reflects some prefix of the

transactions whose updates are reflected in the mas-

ter, and so one says that the slave replica is a (possi-

bly) stale version of the data. The term ‘‘quasi-copy’’

has been applied to a replica with out-of-date infor-

mation [2]. The weakest, most permissive, consis-

tency model for this system design is ‘‘relaxed

currency’’ [3]. In this model, the clients’ view is

required to be equivalent to that in a serial, unrepli-

cated and multi-version database (Note the change

from the definition of 1-copy-serializability (q.v.),

where the execution is equivalent to a serial, unre-

plicated, single-version database.). There must be a

serial order on all the transactions, so that whenever

the client reads a logical item, it sees some version but

not necessarily the current one (it may be an older

version that is returned).

Most system designs that offer relaxed currency

provide a very restricted form: they also require that

all the update transactions satisfy 1-copy-serializability

(because all the operations of the update transactions

are done at the master). In these designs, a read opera-

tion inside an update transaction must see the current

version of the item; seeing a stale version can happen

only in a read-only transaction.

To illustrate the relaxed currency consistency model,

here is a sequence of events that might happen in a

system with two sites A and B. A is the master site for

integer-valued items x and y, while B has a slave copy of

y but no replica for x. T3,C executes a transfer of 2 units

from y to x by reading and then updating both items at

the master site. The read-only transaction T4,C deter-

mines the status of the two logical items, first reading

xA (since there is only one copy for x) and then reading

the slave replica yB. T� denotes the copier transaction

that propagates the change in y to the slave at site B.

The event where a value 12 is written to the local
replica of item x at site A, as part of transaction T3,

is shown as w3[x
A, 12], and w3,C[x, 12] represents the

notification of this write to the client at C. Similarly

r4[y
B, 20] is the event where T4 reads the value 20 in

the replica of y at site B. As before one also has events

like b4,C for the start of transaction T4 at client C, or c4,

C for the commit of that transaction by the client, or

indeed c4
A for the commit of the local subtransaction

of T4 which is running at site A.

b3;C bA3 r3½xA; 10� r3;C ½x; 10� r3½yA; 20� r3;C ½y; 20�
w3½xA; 12� w3;C ½x; 12� w3½yA; 18� w3;C ½y; 18�
cA3 c3;Cb4;C bA4 r4½xA; 12� r4;C ½x; 12� bB4 r4½yB; 20�
r4;C ½y; 20� cA4 cB4 c4;C bB� w�½yB; 18� cB� ð3Þ

At the end of the execution, the slave site is up-to-date,

with the latest value for the logical item y it keeps a

replica of. However, during the execution, the slave

replica is sometimes behind the master, in particular

this is true when T4 reads the replica. Thus in sequence

(3), the client view is

b3;C r3;C ½x; 10� r3;C ½y; 20� w3;C ½x; 12� w3;C ½y; 18�
c3;C b4;C r4;C ½x; 12� r4;C ½y; 20� c4;C ð4Þ

which could occur in a serial multiversion system with

a single site, in the order T3,C then T4,C. Notice that in

the serial multiversion system, when T4,C reads x it sees

the latest version (produced by T3,C), but its read of y

returns an older ‘‘stale’’ version taken from the initial

state.

There has been much work involving enhancing

weak consistency definitions with quantitative bounds

on the divergence between replicas.
Key Applications
The commercial DBMS vendors all offer replication

mechanisms with their products, which can be config-

ured in ways that offer different consistency properties.

The most common approaches give either eventual

convergence (if multiple masters are allowed, and con-

flicts are reconciled correctly) or reads from stale repli-

cas (if there is a single master). There are also a range of

research prototypes which give the user various con-

sistency models; in general these show a tradeoff,

where improved performance comes from offering

weaker consistency models.

Weak Equivalence W 3455
Future Directions
Most recent research on replica control finds new

algorithms that provide one of the known weak con-

sistency models, either eventual consistency or else the

combination of 1-copy serializable updates with reads

from stale copies. The main focuses of research have

been to restrict how stale the reads can be, and how to

make reconciliation easier to code correctly.

Cross-references
▶Data Replication

Recommended Reading
1. Alonso R., Barbará D., and Garcia-Molina H. Data caching

issues in an information retrieval system. ACM Trans. Database

Syst., 15(3):359–384, 1990.

2. Alonso R., Barbará D., Garcia-Molina H., and Abad S. Quasi-

copies: Efficient data sharing for information retrieval systems.

In Advances in Database Technology, Proc. 1st Int. Conf. on

Extending Database Technology, 1988, pp. 443–468.

3. Bernstein P.A., Fekete A., GuoH., RamakrishnanR., and TammaP.

Relaxed-currency serializability for middle-tier caching and repli-

cation. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2006, pp. 599–610.

4. Demers A.J., Greene D.H., Hauser C., Irish W., Larson J., Shenker

S., Sturgis H.E., Swinehart D.C., and Terry D.B. Epidemic algo-

rithms for replicated database maintenance. In Proc. ACM

SIGACT-SIGOPS 6th Symp. on the Principles of Dist. Comp.

1987, pp. 1–12.

5. Gray J., Helland P., O’Neil P.E., and Shasha D. The dangers

of replication and a solution. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 1996, pp. 173–182.

6. Ladin R., Liskov B., Shrira L., and Ghemawat S. Providing

high availability using lazy replication. ACM Trans. Comput.

Syst., 10(4):360–391, 1992.

7. Sheth A.P. and Rusinkiewicz M. Management of interdependent

data: Specifying dependency and consistency requirements.

In Proc. 1st Workshop on the Management of Replicated Data,

1990, pp. 133–136.

8. Terry D.B., Demers A.J., Petersen K., Spreitzer M., Theimer M.,

and Welch B.B. Session guarantees for weakly consistent repli-

cated data. In Proc. 3rd Int. Conf. on Parallel and Distributed

Information Systems, 1994, pp. 140–149.

9. Wiederhold G. and Qian X. Consistency control of replicated

data in federated databases. In Proc. 1st Workshop on the

Management of Replicated Data, 1990, pp. 130–132.
W

Weak Coupling

▶ Loose Coupling
Weak Equivalence

CHRISTIAN S. JENSEN
1, RICHARD T. SNODGRASS

2

1Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Synonyms
Snapshot equivalence; Temporally weak
Definition
Informally, two tuples are snapshot equivalent or weakly

equivalent if all pairs of timeslices with the same time

instant parameter of the tuples are identical.

Let temporal relation schema R have n time dimen-

sions, Di, i = 1,...,n, and let ti, i = 1,...,n be

corresponding timeslice operators, e.g., the valid time-

slice and transaction timeslice operators. Then, for-

mally, tuples x and y are weakly equivalent if

8t1 2 D1:::8tn 2 Dnðtntnð:::ðt
1
t1
ðxÞÞ:::Þ

¼ tntnð:::ðt
1
t1
ðyÞÞ:::ÞÞ

Similarly, two relations are snapshot equivalent or

weakly equivalent if at every instant their snapshots

are equal. Snapshot equivalence, or weak equivalence,

is a binary relation that can be applied to tuples and to

relations.
Key Points
The notion of weak equivalence captures the infor-

mation content of a temporal relation in a point-

based sense, where the actual timestamps used are

not important as long as the same timeslices result.

For example, consider the two relations with only a

single attribute: {(a, [3, 9]} and {(a, [3, 5]), (a, [6,

9])}. These relations are different, but weakly

equivalent.

Both ‘‘snapshot equivalent’’ and ‘‘weakly equiva-

lent’’ are being used in the temporal database commu-

nity. ‘‘Weak equivalence’’ was originally introduced by

Aho et al. in 1979 to relate two algebraic expressions

[1,2]. This concept has subsequently been covered in

several textbooks. One must rely on the context to

disambiguate this usage from the usage specific to tem-

poral databases. The synonym ‘‘temporally weak’’ does

not seem intuitive–in what sense are tuples or

relations weak?

3456W Weak Memory Consistency
Cross-references
▶ Point-Stamped Temporal Models

▶ Snapshot Equivalence

▶Temporal Database

▶Time Instant

▶Timeslice Operator

▶Transaction Time

▶Valid Time
Recommended Reading
1. Aho A.V., Sagiv Y., and Ullman J.D. Efficient optimization of a

class of relational expressions. ACM Trans. Database Syst.,

4(4):435–454, 1979.

2. Aho A.V., Sagiv Y., and Ullman J.D. Equivalences among rela-

tional expressions. SIAM J. Comput., 8(2):218–246, 1979.

3. Gadia S.K. Weak temporal relations. In Proc. 4th ACM SIGACT-

SIGMOD Symp. on Principles of Database Systems, 1985,

pp. 70–77.

4. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary of

temporal database concepts – February 1998 version. In Tempo-

ral Databases: Research and Practice, O. Etzion, S. Jajodia,

S. Sripada (eds.). LNCS 1399, Springer-Verlag, Berlin, 1998,

pp. 367–405.
Weak Memory Consistency

▶Weak Consistency Models for Replicated Data
Web 2.0 Applications

▶ Social Applications
Web 2.0/3.0

ALEX WUN

University of Toronto, Toronto, ON, Canada

Definition
Web 2.0 and Web 3.0 are terms that refer to the trends

and characteristics believed to be representative of

next generation web applications emerging after the

dot-com collapse of 2001. The term Web 2.0 became

widely used after the first O’Reilly Media Web 2.0

Conference (http://www.web2con.com/) in 2004.
Key Points
The term Web 2.0 does not imply a fundamental

change in Internet technologies but rather, captures

what industry experts believe to be the key character-

istics of successful web applications following the dot-

com collapse. In general, Web 2.0 applications typically

leverage one or more of the following concepts:

� Active participation, collaboration, and the wis-

dom of crowds. Consumers explicitly improve

and add value to the web application they are

using either through volunteerism or in response

to incentives and rewards. This typically involves

explicitly creating and modifying content (Wikipe-

dia entries, Amazon reviews, Flickr tags, YouTube

videos, etc.)

� Passive participation and network effects: Consu-

mers naturally improve and add value to the web

application being used as a result of the applica-

tion’s inherent design and architecture. Only a

small percentage of users can be relied on to partic-

ipate actively, so user contribution can be made

non-optional by design. Examples include the

ranking of most-clicked search results, most-

viewed videos, peer-to-peer file sharing, and viral

marketing.

� The Long-tail: Catering to niche user interests in

volume and breadth can be just as successful if not

more so than narrowly catering to only the most

popular interests. This is due to the fact that content

distribution over the Internet is not constrained by the

physical limitations (such as location, storage, and

consumer-base) of real-world vendors and service

providers. For example, an online music vendor

incurs virtually no additional cost to ‘‘stock’’ songs

that do not sell well individually but when taken

together, have a large population of fringe consumers.

� The Internet as a platform: Web 2.0 applications

become extremely lightweight, flexible, and dynamic

when the Internet is treated like a globally available

platform with vast resources and an international

consumer-base. Such applications act more like soft-

ware services than traditional software products and

evolve quickly by staying perpetually in beta. For

Web 2.0 applications, global connectivity also

extends beyond traditional PCs to portable hand-

held devices and other mobile devices. Web applica-

tions that mimic traditional desktop applications

(such as online Operating Systems, work processors,

Web Advertising W 3457
and spreadsheets) are examples of Web 2.0 applica-

tions using the Internet as a platform.

Web 2.0 enabling technologies primarily build on top

of existing Internet technologies in the form of APIs

and web development tools – AJAX, MashUp develop-

ment tools, and other tools for creating rich media

content for example.

Web 3.0 is still purely hypothetical and intends to

capture the trends and characteristics of web applica-

tions beyondWeb 2.0. Hypotheses vary widely between

industry experts, ranging from the semantic web to

available bandwidth as being the key influences of

Web 3.0 applications.

Cross-references
▶AJAX

▶MashUp

▶ Service
W

Web Advertising

VANJA JOSIFOVSKI
1, ANDREI BRODER

2

1Uppsala University, Uppsala, Sweden
2Yahoo! Research, Santa Clara, CA, USA

Synonyms
Online advertising; Contextual advertising; Search

advertising

Definition
Web advertising aims to place relevant ads on web

pages. As in traditional advertising, most of the adver-

tising on the web can be divided into brand advertising

and direct advertising. In the majority of cases, brand

advertising is achieved by banners – images or multi-

media ads placed on the web page. As opposed to

traditional brand advertising, on the web the user can

interact with the ad and follow the link to a website of

advertisers choice. Direct advertising is mostly in the

form of short textual ads on the side of the search

engine result pages and other web pages. Finally, the

web allows for other types of advertising that are

hybrids and cross into other media, such as video

advertising, virtual worlds advertising, etc. Web adver-

tising systems are built by implementing information

retrieval, machine learning, and statistical techniques

in a scalable, low-latency computing platform capable
of serving billions of requests a day and selecting from

hundreds of millions of individual advertisements.

Historical Background
TheWeb emerged as a new publishing media in the late

1990. Since then, the growth of web advertising has

paralleled the growth in the number of web users and

the increased time people spend on the Web. Banner

advertising started with simple placement of banners

on the top of the pages at targeted sites, and has since

evolved into an elaborate placement scheme that tar-

gets a particular web user population and takes into

account the content of the web pages and sites. Search

advertising has its beginnings in the specialized search

engines for ad search. Combining the web search with

ad search was not something web users accepted from

the start, but has become mainstream today. Further-

more, today’s search advertising platforms have moved

from simply asking the advertiser to provide a list of

queries for which the ad is to be shown to employing

variety of mechanisms to automatically learn what ad

is appropriate for which query. Today’s ad platforms

are large, scalable and reliable systems running over

clusters of machines that employ state-of-the-art in-

formation retrieval and machine learning techniques

to serve ads at rates of tens of thousands times a

second. Overall, the technical complexity of the adver-

tising platforms rivals those of the web search engines.

Foundations
Web advertising spans Web technology, sociology, law,

and economics. It has already surpassed some tradition-

al mass media like broadcast radio and it is the econom-

ic engine that drives web development. It has become a

fundamental part of the web eco-system and touches

the way content is created, shared, and disseminated –

from static html pages to more dynamic content such as

blogs and podcasts, to social media such as discussion

boards and tags on shared photographs. This revolution

promises to fundamentally change both the media and

the advertising businesses over the next few years, alter-

ing a $300 billion economic landscape.

As in classic advertising, in terms of goals, web

advertising can be split into brand advertising whose

goal is to create a distinct favorable image for the

advertiser’s product, and direct-marketing advertising

that involves a ‘‘direct response’’: buy, subscribe, vote,

donate, etc, now or soon.

3458W Web Advertising
In terms of delivery, there are two major types:

1. Search advertising refers to the ads displayed along-

side the ‘‘organic’’ results on the pages of the Inter-

net search engines. This type of advertising is

mostly direct marketing and supports a variety

of retailers from large to small, including micro-

retailers that cover specialized niche markets.

2. Contextual advertising refers to ads displayed along-

side some publisher-produced content, akin to

traditional ads displayed in newspapers. It includes

both brand advertising and direct marketing. Today,

almost all non-transactionalweb sites rely on revenue

from content advertising. This type of advertising

supports sites that range from individual bloggers

and small community pages, to the web sites of

major newspapers. There would have been a lot less

to read on the web without this model!

Web advertising is a big business, estimated in 2005

at $12.5 billion spent in the US alone (Internet Adver-

tising Board – www.iab.com). But this is still less than

10% of the total US advertising market. Worldwide,

internet advertising is estimated at $18B out of a $300.

Thus, even at the estimated 13% annual growth, there is

still plenty of room to grow, hence an enormous com-

mercial interest.

From an ad-platform standpoint, both search and

content advertising can be viewed as a matching prob-

lem: a stream of queries or pages is matched in real

time to a supply of ads. A common way of measuring

the performance of an ad-platform is based on the

clicks on the placed ads. To increase the number of

clicks, the ads placed must be relevant to the user’s

query or the page and their general interests.

There are several data engineering challenges in the

design and implementation of such systems.

The first challenge is the volume of data and trans-

actions: Modern search engines deal with tens of bil-

lions of pages from hundreds of millions of publishers,

and billions of ads from tens of millions of advertisers.

Second, the number of transactions is huge: billions of

searches and billions of page views per day. Third, to

deal with that, there is only a very short processing

time available: when a user requests a page or types her

query, the expectation is that the page, including the

ads, will be shown in real time, allowing for at most a

few tens of milliseconds to select the best ads.

To achieve such performance, ad-platforms usually

have two components: a batch processing component
that does the data collection, processing, and analysis,

and a serving component that serves the ads in real time.

Although both of these are related to the problems

solved by today’s data management systems, in both

cases existing systems have been found inadequate for

solving the problem and today’s ad-platforms require

breaking new grounds.

The batch processing component of an ad-system

processes collections of multiple terabytes of data.

Usually the data are not shared and a typical proces-

sing lasts from a few minutes to a few hours over a

large cluster of hundreds, even thousands of com-

modity machines. The concern here is only about

recovering from failures during the distributed com-

putation and most of the time data are produced once

and read one or more times. To be able to perform the

same operation, a commercial database system would

need to be deployed on the same scale that is beyond

the scope of both shared-nothing and shared disk

architectures. The reason for this is that database

systems are designed for sharing data among multiple

users in presence of updates and have overly complex

distribution protocols to scale and perform efficiently

at this scale. The backbone of the batch processing

components is therefore being built using simpler

distributed computation models and distributed file

systems running over commodity hardware. Several

challenges lay ahead to make these systems more

usable and easier to maintain. The first challenge is

to define a processing framework and interfaces such

that large scale data analysis tasks (e.g., graph travers-

al and aggregation) and machine learning tasks (e.g.,

classification and clustering) are easy to express.

So far there are two reported attempts to define

such a query language for data processing in

this environment [6,10]. However, there has been no

reported progress on mapping these languages to a

calculus and algebra model that will lend itself to

optimization to improve optimization time. To

make the task easier, new machine learning and data

analysis algorithms for large scale data processing are

needed. At the data storage layer, the challenge lies in

designing a data storage that resides on the same

nodes where the processing is performed.

The serving component of an advertising plat-

form must have high throughput and low latency. To

achieve this, in most cases the serving component

operates over read-only copy of the data replaced

occasionally by the batch component. The ads are

Web Application Server W 3459

W

usually pre-processed and matched to an incoming

query or page. The serving component has to imple-

ment reasoning that, based on a variety of features of

the query/page and the ads, estimates the top few ads

that have the maximum expected revenue within the

constraints of the marketplace design and business

rules associated to that particular advertising opportu-

nity. The first challenge here is developing features and

corresponding extraction algorithms appropriate for

real-time processing. As the response time is limited,

today’s architectures rely on serving from a large clus-

ter of machines that hold most of the searched data in-

memory. One of the salient points of the design of the

ad search is an objective function that captures the

necessary trade-off between efficient processing and

quality of results, both in terms of relevance and reve-

nue. This function requires probabilistic reasoning in

real-time.

Several different techniques can be used to select

ads. When the number of ads is small, linear program-

ming can be used to optimize for multiple ads grouped

in slates. Banner ads are sometimes placed using

linear programming as optimization technique

[1,2]. In textual advertising the number of ads is too

large to use linear programming. One alternative in

such case is to use unsupervised methods based on

information retrieval ranking [4,11]. Scoring formulas

can be adapted to take into account the specificity of ads

as documents: short text snippets with distinct multiple

sections. Information retrieval scoring can be augment-

ed with supervised ranking mechanisms that use the

click logs or editorial judgments [9] to learn what ads

work for a particular page/user/query. Here, the system

needs to explore the space of possible matches. Some

explore-exploit methods have been adapted to mini-

mize the cost of exploration based on one-arm-bandit

algorithms [3].

In summary, today’s search and content advertising

platforms are massive data processing systems that

apply complicated data analysis and machine learning

techniques to select the best advertising for a given

query or page. The sheer scale of the data and the

real-time requirements make this problem a very chal-

lenging task. Today’s implementations have grown

quickly and often in an ad-hoc manner to deal with a

$15 billion fast growing market, but there is a need for

improvement in almost every aspect of these systems as

they adapt to even larger amounts of data, traffic, and

new business models in web advertising.
Experimental Results
The reader is referred to [4,9,11] for the current pub-

lished results on contextual advertising. A historical

overview of search advertising is provided in [5].

Some results on query rewrites for search advertising

are presented in [7,8].

Cross-references
▶ Information Retrieval Models

▶ Information Retrieval Operations

Recommended Reading
1. Abe N. Improvements to the linear programming based sched-

uling of Web advertisements. J. Electron. Commerce Res.,

5(1):75–98, 2005.

2. Abrams Z., Mendelevitch O., and Tomlin J.A. Optimal

delivery of sponsored search advertisements subject to budget

constraints. In Proc. 8th ACM Conf. on Electronic Commerce,

2007, pp. 272–278.

3. Agarwal D., Chakrabarti D., Josifovski V., and Pandey S. Bandits

for taxonomies: a model based approach. In Proc. SIAM Inter-

national Conference on Data Mining, 2007.

4. Broder A., Fontoura M., Josifovski V., and Riedel L. A semantic

approach to contextual advertising. In Proc. 33rd Annual Int.

ACM SIGIR Conf. on Research and Development in Informa-

tion Retrieval, 2007, pp. 559–566.

5. Fain D. and Pedersen J. Sponsored search: a brief history. In

Proc. 2nd Workshop on Sponsored Search Auctions. Web publi-

cation, 2006.

6. Group C.S. Community systems research at Yahoo! ACM

SIGMOD Rec., 36(3):47–54, 2005.

7. Jones R. and Fain D.C. Query word deletion prediction. In Proc.

26th Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 2003, pp. 435–436.

8. Jones R., Rey B., Madani O., and Greiner W. Generating query

substitutions. In Proc. 15th Int. World Wide Web Conference,

2006, pp. 387–396.

9. Lacerda A., Cristo M., Andre M.G., Fan W., Ziviani N., and

Ribeiro-Neto B. Learning to advertise. In Proc. 32nd Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 2006, pp. 549–556.

10. Pike R., Dorward S., Griesemer R., and Quinlan S. Interpreting

the data: parallel analysis with Sawzall. Sci. Program. J., 13(4):

277–298, 2005.

11. Ribeiro-Neto B., Cristo M., Golgher P.B., and de Moura E.S.

Impedance coupling in content-targeted advertising. In Proc.

31st Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 2005, pp. 496–503.
Web Application Server

▶Application Server

3460W Web Characteristics and Evolution
Web Characteristics and Evolution

DENNIS FETTERLY

Microsoft Research, Mountain View, CA, USA

Definition
Web characteristics are properties related to collections

of documents accessible via the World Wide Web.

There are vast numbers of properties that can be char-

acterized. Some examples include the number of words

in a document, the length of a document in bytes, the

language a document is authored in, the mime-type

of a document, properties of the URL that indentifies

a document, HTML tags used to author a document,

and the hyperlink structure created by the collection

of documents.

As in the physical world, the process of change that

the web continually undergoes is identified as web evo-

lution. The web is a tremendously dynamic place, with

new users, servers, and pages entering and leaving the

system continuously, which causes the web to change

very rapidly. Web evolution encompasses changes in all

web characteristics, as defined above.
Historical Background
As early as 1994, researchers were interested in study-

ing characteristics of the World Wide Web. As docu-

mented byWoodruff et al. [13], the Lycos project at the

Center for Machine Translation at Carnegie Mellon

University calculated and published statistics on the

web (HTTP, FTP, and GOPHER) pages it collected.

Those initial statistics included the 100 ‘‘most weighty

words’’ by TF-IDF, the document size in bytes, and the

number of words in each document. The first estimate

of the size of the web also occurred in 1994, when Bray

seeded a web crawl with 40,000 documents and esti-

mated the size of the web to be the number of unique

URLs that could be fetched.

Using web documents collected in 1995, Woodruff

et al. performed an extensive study [12] of 2.6 million

HTML documents collected using the Inktomi web

crawler. The motivations for this study included col-

lecting information about the HTML markup to

improve the language and measure the prevalence of

non-standard language extensions. The authors per-

formed a natural language analysis, correctness of

the HTML markup, top-level domain distribution, in

addition to nine per-page properties. The authors of
that study also observed that the web evolved ‘‘excep-

tionally quickly’’ based on their observations of two

data sets collected just months apart. They note that

the properties of the documents that exist in both

collections vary greatly and that many of the docu-

ments that exist in the first collection do not exist in

the second.

In addition to characterizing documents discov-

ered on the web, a number of usage based studies

were performed under the auspices of the World

Wide Web Consortium’s (W3C) Jim Pitkow was the

chair of the final working group, and he published a

summary [11] of previous web characterization studies

in 1999. These studies included characterizations of

web requests, HTTP traffic, web document lifetime,

and user behavior. In 2000, Broder et al. conducted a

landmark study measuring the graph structure of the

web [4] and demonstrating that connectivity of pages

on the web could be classified into a structure that

resembled a ‘‘bowtie.’’

Foundations
As highlighted by Baeza-Yates et al. [2], one of the

principal issues faced by any initiative to characterize

the web is how to select the sample of documents to

characterize. The importance of this procedure is high-

lighted in a recent study that compares statistics from

four different large web crawls [1] and finds that there

are quantitative differences in the statistical character-

izations of these collections. Several different methods

for sampling have been utilized. The initial studies

referred to in the ‘‘Historical Background’’ section

were performed when the web was much smaller

than it currently is and it was possible to crawl a

reasonable fraction of the web in order to obtain a

representative sample. However, even though those

studies were able to crawl a reasonable fraction of the

web, they were still only able to characterize content

that they could fetch. A large portion of web content is

inaccessible to the observer. This inaccessible content

can be stored in a database, which is commonly called

the deep web, be part of a corporate intranet, and thus

not accessible from the public web, or could require

authorization to access.

In order to estimate the size of the web, and the

number of web servers providing web content,

Lawrence and Giles chose Internet Protocol (IP)

addresses at random and used the number of servers

that successfully responded to estimate the total number

Web Characteristics and Evolution W 3461

W

of web servers publically accessible [1]. They also crawled

all of the accessible pages on the first 2,500 web servers

that responded to requests sent to their IP address.

In order to address the issue of collecting a repre-

sentative sample of connected, publically accessible

web pages, Henzinger et al. describe a method to gen-

erate a near-uniform sample of URLs using a biased

random walk on the web [10].

Another approach to sampling that has been

employed in at least ten cases is to seed the collection

with all domains registered in a national domain, for

example Chile’s national domain is .cl. Baeza-Yates

et al. compare characterizations from ten national

domains and two multinational web spaces (Africa

and Indochina) [2]. They find that web characteriza-

tions that include a power law are consistent across all

tested collections.

Another area of web characterization that has

been the focus of significant study is the detection of

duplicate and near-duplicate documents on the web.

Detecting exact matches is much simpler than detect-

ing near duplicates because each document can be

reduced to a single fingerprint. Measures for comput-

ing text similarity, such as cosine similarity or the

Jaccard similarity coefficient, require pairwise compar-

isons between documents, which will not complete

when dealing with the numbers of documents that

exist on the web. To put this in perspective, in their

1997 paper ‘‘Syntatic Clustering of the Web’’ [3] Bro-

der et al. state that a pairwise comparison would in-

volve O(1015) (a quadrillion) comparisons. There have

been two general approaches for condensing the infor-

mation retained for each document and minimizing

the number or required comparisons. The Broder et al.

approach approximates the Jaccard similarity coefficient

by retaining the minimum value computed by each of

several hash functions, and then using those retained

values, called sketches or shingles, to summarize the

document. The computational effort required to discov-

er near-duplicate documents using this algorithm is

further reduced via the use of super-shingles, or sketches

of sketches. Near-duplicate documents are very likely to

share at least one super-shingle, which reduces the com-

plexity to checking each of a small number of super-

shingles. Charikar developed the other approach, which

uses random projections of the words in a document to

approximate the cosine similarity of documents [5].

Henzinger later experimentally compared [9] these

two approaches.
Several different approaches have been used to

measure the evolution of the World Wide Web. One

common approach has utilized traces from web prox-

ies to study evolution of web pages which provides

insight into improved polices for caching proxies.

Douglis et al. investigated [7] the rate of change of

documents on the web in order to validate two critical

assumptions that apply to web caching: a significant

number of requests are duplicates of past requests, and

the content associated with those requests does not

change between accesses.

The evolution of the web has been extensively

studied from a crawling perspective. In 2000, Cho

and Garcia-Molina performed the first study of web

page evolution [6]. They downloaded 720,000 pages

daily from 270 ‘‘popular’’ hosts and computed a check-

sum over the entire page contents. These checksums

were then compared to measure rates of change.

Fetterly, Manasse et al. [8] expanded upon this study

in 2003 by performing a breadth-first crawl of 150

million pages each week for 11 weeks and measuring

the degree of change that occurred within each page.

At the intersection of web characteristics and evo-

lution, Bar-Yossef et al. expand on the studies of link

lifetime referenced by Pitkow [12] and investigate the

decay of the web. They introduce the notion of a ‘‘soft

404,’’ which is an error page returned with a HTTP

result code of 200 – ‘‘OK’’ instead of 404 indicating an

error has occurred.

Key Applications
A significant cost incurred when operating a search

service is the cost of downloading and indexing con-

tent. Being able to predict, as accurately as possible,

when to re-crawl a particular page allows the search

engine to wisely utilize its resources. A search engine

also needs to be able to identify near-duplicate docu-

ments that exist within its index, in order to either

remove them or to crawl them at a reduced rate.

Characterization of the web enables at least two

important functions: interested parties can measure

the evolution of the web along many axes, barring

significant evolution of the measured characteristic,

results of past characterizations can be used to validate

whether a new sample is a representative one or not.

Data Sets
The Stanford WebBase Project provives access to their

repository of crawled web content. The Laboratory

3462W Web Content Extraction
for Web Algorithmics (LAW) at the Dipartimento di

Scienze dell’Informazione (DSI) of the Università degli

studi di Milano provides several web graph datasets.

The Internet Archive is another potential source of

data, although at the time of this writing, they do not

currently grant new access to researchers.

http://dbpubs.stanford.edu:8091/
testbed/doc2/

Web Base/

http://law.dsi.unimi.it/index.php?option=com_include

&Itemid=65

Cross-references
▶Data Deduplication

▶Document Links and Hyperlinks

▶ Incremental Crawling

▶Term Statistics for Structured Text Retrieval

▶Web Search Result De-duplication and Clustering

Recommended Reading
1. Angeles Serrano M., Maguitman A., Santo Fortunato ná M.B.,

and Vespignani V. Decoding the structure of the www: A com-

parative analysis of web crawls. ACM Trans. Web, 1(2):10, 2007.

2. Baeza-Yates R., Castillo C., and Efthimiadis E.N. Characteriza-

tion of national web domains. ACM Trans. Int. Tech., 7(2):

9, 2007.

3. Broder A.Z., Glassman S.C., Manasse M.S., and Zweig G.

Syntactic clustering of the web. In Selected papers from the

sixth International Conference on World Wide Web, 1997,

pp. 1157–1166.

4. Broder A., Kumar R., Maghoul F., Raghavan P., Rajagopalan S.,

Stata R., Tomkins A., and Wiener J. Graph structure in the

web: Experiments and models. In Proc. 8th Int. World Wide

Web Conference, 2002.

5. Charikar M.S. Similarity estimation techniques from rounding

algorithms. In Proc. 34th Annual ACM Symp. on Theory of

Computing, 2002, pp. 380–388.

6. Cho J. and Garcia-Molina H. The evolution of the web and

implications for an incremental crawler. In Proc. 26th Int.

Conf. on Very Large Data Bases, 2000, pp. 200–209.

7. Douglis F., Feldmann A., Krishnamurthy B., and Mogul J.C.

Rate of change and other metrics: a live study of the world

wide web. In Proc. 1st USENIX Symp. on Internet Tech. and

Syst., 1997.

8. Fetterly D., Manasse M., Najork M., and Wiener J. A large-scale

study of the evolution of web pages. In Proc. 12th Int. World

Wide Web Conference, 2003, pp. 669–678.

9. Henzinger M. Finding near-duplicate web pages: a large-

scale evaluation of algorithms. In Proc. 32nd Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2006, pp. 284–291.

10. Henzinger M.R., Heydon A., Mitzenmacher M., and Najork M.

On near-uniform url sampling. Comput. Netw., 33(1–6):

294–308, 2000.
11. Lawrence S. and Giles L.C. Accessibility of information

on the web. Nature, 400(6740):107–107, July 1999.

12. Pitkow J.E. Summary of www characterizations. Comput.

Netw., 30(1–7):551–558, 1998.

13. Woodruff A., Aoki P.M., Brewer E.A., Gauthier P., and Rowe L.A.

An investigation of documents from the world wide web.

Comput. Netw., 28(7–11):963–980, 1996.
Web Content Extraction

▶ Fully Automatic Web Data Extraction
Web Content Mining

▶Data, Text, and Web Mining in Healthcare

▶Data Integration in Web Data Extraction System
Web Crawler

▶Web Crawler Architecture
Web Crawler Architecture

MARC NAJORK

Microsoft Research, Mountain View, CA, USA

Synonyms
Web crawler; Robot; Spider

Definition
A web crawler is a program that, given one or more

seed URLs, downloads the web pages associated with

these URLs, extracts any hyperlinks contained in them,

and recursively continues to download the web pages

identified by these hyperlinks. Web crawlers are an

important component of web search engines, where

they are used to collect the corpus of web pages

indexed by the search engine. Moreover, they are used

in many other applications that process large numbers

of web pages, such as web data mining, comparison

shopping engines, and so on. Despite their concep-

tual simplicity, implementing high-performance web

crawlers poses major engineering challenges due to the

Web Crawler Architecture W 3463

W

scale of the web. In order to crawl a substantial frac-

tion of the ‘‘surface web’’ in a reasonable amount of

time, web crawlers must download thousands of

pages per second, and are typically distributed over

tens or hundreds of computers. Their two main data

structures – the ‘‘frontier’’ set of yet-to-be-crawled

URLs and the set of discovered URLs – typically do

not fit into main memory, so efficient disk-based

representations need to be used. Finally, the need to

be ‘‘polite’’ to content providers and not to overload

any particular web server, and a desire to prioritize

the crawl towards high-quality pages and to maintain

corpus freshness impose additional engineering

challenges.

Historical Background
Web crawlers are almost as old as the web itself. In

the spring of 1993, just months after the release of

NCSA Mosaic, Matthew Gray [6] wrote the first web

crawler, the World Wide Web Wanderer, which was

used from 1993 to 1996 to compile statistics about

the growth of the web. A year later, David Eichmann

[5] wrote the first research paper containing a short

description of a web crawler, the RBSE spider. Burner

provided the first detailed description of the architec-

ture of a web crawler, namely the original Internet

Archive crawler [3]. Brin and Page’s seminal paper on

the (early) architecture of the Google search engine

contained a brief description of the Google crawler,

which used a distributed system of page-fetching

processes and a central database for coordinating the

crawl. Heydon and Najork described Mercator [8,9], a

distributed and extensible web crawler that was

to become the blueprint for a number of other craw-

lers. Other distributed crawling systems described

in the literature include PolyBot [11], UbiCrawler

[1], C-proc [4] and Dominos [7].

Foundations
Conceptually, the algorithm executed by a web crawler

is extremely simple: select a URL from a set of can-

didates, download the associated web pages, extract

the URLs (hyperlinks) contained therein, and add

those URLs that have not been encountered before

to the candidate set. Indeed, it is quite possible to

implement a simple functioning web crawler in a few

lines of a high-level scripting language such as Perl.

However, building a web-scale web crawler imposes

major engineering challenges, all of which are
ultimately related to scale. In order to maintain a

search engine corpus of say, ten billion web pages, in

a reasonable state of freshness, say with pages being

refreshed every 4 weeks on average, the crawler must

download over 4,000 pages/second. In order to achieve

this, the crawler must be distributed over multiple

computers, and each crawling machine must pursue

multiple downloads in parallel. But if a distributed and

highly parallel web crawler were to issue many concur-

rent requests to a single web server, it would in all

likelihood overload and crash that web server. There-

fore, web crawlers need to implement politeness policies

that rate-limit the amount of traffic directed to any

particular web server (possibly informed by that ser-

ver’s observed responsiveness). There are many possi-

ble politeness policies; one that is particularly easy

to implement is to disallow concurrent requests to

the same web server; a slightly more sophisticated

policy would be to wait for time proportional to the

last download time before contacting a given web

server again.

In some web crawler designs (e.g., the original

Google crawler [2] and PolyBot [11]), the page down-

loading processes are distributed, while the major data

structures – the set of discovered URLs and the set of

URLs that have to be downloaded – are maintained by

a single machine. This design is conceptually simple,

but it does not scale indefinitely; eventually the central

data structures become a bottleneck. The alternative is

to partition the major data structures over the crawling

machines. Ideally, this should be done in such a way

as to minimize communication between the crawlers.

One way to achieve this is to assign URLs to crawling

machines based on their host name. Partitioning URLs

by host name means that the crawl scheduling deci-

sions entailed by the politeness policies can be made

locally, without any communication with peer nodes.

Moreover, since most hyperlinks refer to pages on

the same web server, the majority of links extracted

from downloaded web pages is tested against and

added to local data structures, not communicated

to peer crawlers. Mercator and C-proc adopted this

design [9,4].

Once a hyperlink has been extracted from a web

page, the crawler needs to test whether this URL has

been encountered before, in order to avoid adding

multiple instances of the same URL to its set of pend-

ing URLs. This requires a data structure that sup-

ports set membership test, such as a hash table.

3464W Web Crawler Architecture
Care should be taken that the hash function used is

collision-resistant, and that the hash values are large

enough (maintaining a set of n URLs requires hash

values with log2 n
2 bits each). If RAM is not an issue,

the table can be maintained in memory (and occasion-

ally persisted to disk for fault tolerance); otherwise a

disk-based implementation must be used. Implement-

ing fast disk-based set membership tests is extremely

hard, due to the physical limitations of hard drives

(a single seek operation takes on the order of 10 ms).

For a disk-based design that leverages locality pro-

perties in the stream of discovered URLs as well as

the domain-specific properties of web crawling, see

[9]. If the URL space is partitioned according to host

names among the web crawlers, the set data structure is

partitioned in the same way, with each web crawling

machine maintaining only the portion of the set con-

taining its hosts. Consequently, an extracted URL that

is not maintained by the crawler that extracted it must

be sent to the peer crawler responsible for it.

Once it has been determined that a URL has not

been previously discovered, it is added to the frontier

set containing the URLs that have yet to be down-

loaded. The frontier set is generally too large to be

maintained in main memory (given that the average

URL is about 100 characters long and the crawl-

ing system might maintain a frontier of ten billion

URLs). The frontier could be implemented by a sim-

ple disk-based FIFO queue, but such a design would

make it hard to enforce the politeness policies, and

also to prioritize certain URLs (say URLs referring to

fast-changing news web sites) over other URLs. URL

prioritization could be achieved by using a priority

queue implemented as a heap data structure, but a

disk-based heap would be far too expensive, since

adding and removing a URL would require multiple

seek operations. The Mercator design uses a frontier

data structure that has two stages: a front-end that

supports prioritization of individual URLs and a

back-end that enforces politeness policies; both the

front-end and the back-end are composed of a num-

ber of parallel FIFO queues [9]. If the URL space is

partitioned according to host names among the web

crawlers, the frontier data structure is partitioned

along the same lines.

In the simplest case, the frontier data structure is

just a collection of URLs. However, in many settings

it is desirable to attach some attributes to each URL,

such as the time when it was discovered, or (in the
scenario of continuous crawling) the time of last

download and a checksum or sketch of the document.

Such historical information makes it easy to determine

whether the document has changed in a meaningful

way, and to adjust its crawl priority.

In general, URLs should be crawled in such a way

as to maximize the utility of the crawled corpus.

Factors that influence the utility are the aggregate

quality of the pages, the demand for certain pages

and topics, and the freshness of the individual pages.

All these factors should be considered when deciding

on the crawl priority of a page: a high-quality, highly-

demanded and fast-changing page (such as the front

page of an online newspaper) should be recrawled

frequently, while high-quality but slow-changing

and fast-changing but low-quality pages should re-

ceive a lower priority. The priority of newly discov-

ered pages cannot be based on historical information

about the page itself, but it is possible to make

educated guesses based on per-site statistics. Page

quality is hard to quantify; popular proxies include

link-based measures such as PageRank and behavioral

measures such as page or site visits (obtained from

web beacons or toolbar data).

In addition to these major data structures, most

web-scale web crawlers also maintain some auxiliary

data structures, such as caches for DNS lookup results.

Again, these data structures may be partitioned across

the crawling machines.

Key Applications
Web crawlers are a key component of web search

engines, where they are used to collect the pages that

are to be indexed. Crawlers have many applications

beyond general search, for example in web data min-

ing (e.g., Attributor, a service that mines the web for

copyright violations, or ShopWiki, a price comparison

service).

Future Directions
Commercial search engines are global companies ser-

ving a global audience, and as such they maintain

data centers around the world. In order to collect

the corpora for these geographically distributed data

centers, one could crawl the entire web from one data

center and then replicate the crawled pages (or the

derived data structures) to the other data centers; one

could perform independent crawls at each data center

and thus serve different indices to different

Web Data Extraction System W 3465

W

geographies; or one could perform a single geographi-

cally-distributed crawl, where crawlers in a given data

center crawl web servers that are (topologically) close-

by, and then propagate the crawled pages to their peer

data centers. The third solution is the most elegant

one, but it has not been explored in the research

literature, and it is not clear if existing designs for

distributed crawlers would scale to a geographically

distributed setting.

URL to Code
Heritrix is a distributed, extensible, web-scale crawler

written in Java and distributed as open source by the

Internet Archive. It can be found at http://crawler.

archive.org/

Cross-references
▶ Focused Web Crawling

▶ Incremental Crawling

▶ Indexing the Web

▶Web Harvesting

▶Web Page Quality Metrics

Recommended Reading
1. Boldi P., Codenotti B., Santini M., and Vigna S. UbiCrawler: a

scalable fully distributed web crawler. Software Pract. Exper.,

34(8):711–726, 2004.

2. Brin S. and Page L. The anatomy of a large-scale hypertextual

search engine. In Proc. 7th Int. World Wide Web Conference,

1998, pp. 107–117.

3. Burner M. Crawling towards eternity: building an archive of

the World Wide Web. Web Tech. Mag., 2(5):37–40, 1997.

4. Cho J. and Garcia-Molina H. Parallel crawlers. In Proc. 11th Int.

World Wide Web Conference, 2002, pp. 124–135.

5. Eichmann D. The RBSE Spider – Balancing effective

search against web load. In Proc. 3rd Int. World Wide Web

Conference, 1994.

6. Gray M. Internet Growth and Statistics: Credits and back-

ground. http://www.mit.edu/people/mkgray/net/background.

html

7. Hafri Y. and Djeraba C. High performance crawling system. In

Proc. 6th ACM SIGMM Int. Workshop onMultimedia Informa-

tion Retrieval, 2004, pp. 299–306.

8. Heydon A. and Najork M. Mercator: a scalable, extensible

web crawler. World Wide Web, 2(4):219–229, December 1999.

9. Najork M. and Heydon A. High-performance web crawling.

Compaq SRC Research Report 173, September 2001.

10. Raghavan S. and Garcia-Molina H. Crawling the hidden

web. In Proc. 27th Int. Conf. on Very Large Data Bases, 2001,

pp. 129–138.

11. Shkapenyuk V. and Suel T. Design and Implementation of

a high-performance distributed web crawler. In Proc. 18th Int.

Conf. on Data Engineering, 2002, pp. 357–368.
Web Data Extraction

▶Web Harvesting
Web Data Extraction System

ROBERT BAUMGARTNER
1,2, WOLFGANG GATTERBAUER

3,

GEORG GOTTLOB
4

1Vienna University of Technology, Vienna, Austria
2Lixto Software GmbH, Vienna, Austria
3University of Washington, Seattle, WA, USA
4Oxford University, Oxford, UK

Synonyms
Web information extraction system; Wrapper generator;

Web macros; Web scraper

Definition
A web data extraction system is a software system that

automatically and repeatedly extracts data from web

pages with changing content and delivers the extracted

data to a database or some other application. The task of

web data extraction performed by such a system is

usually divided into five different functions: (i) web

interaction, which comprises mainly the navigation to

usually pre-determined target web pages containing the

desired information; (ii) support for wrapper generation

and execution, where a wrapper is a program that iden-

tifies the desired data on target pages, extracts the data

and transforms it into a structured format; (iii) schedul-

ing, which allows repeated application of previously

generated wrappers to their respective target pages;

(iv) data transformation, which includes filtering, trans-

forming, refining, and integrating data extracted from

one or more sources and structuring the result according

to a desired output format (usually XML or relational

tables); and (v) delivering the resulting structured data to

external applications such as database management sys-

tems, data warehouses, business software systems, con-

tent management systems, decision support systems, RSS

publishers, email servers, or SMS servers. Alternatively,

the output can be used to generate new web services out

of existing and continually changing web sources.

Historical Background
The precursors of web data extraction systems were

screen scrapers which are systems for extracting screen

3466W Web Data Extraction System
formatted data from mainframe applications for term-

inals such as VT100 or IBM 3270. Another related issue

are ETL methods (ETL = Extract, Transform, Load),

which extract information from various business pro-

cesses and feed it into a database or a data warehouse.

A huge gap was recognized to exist between web infor-

mation and the qualified, structured data as usually

required in corporate information systems or as envi-

sioned by the Semantic Web. In many application areas

there has been a need to automatically extract relevant

data from HTML sources and translate this data into a

structured format, e.g., XML, or into a suitable rela-

tional database format.

A first and obvious solution was the evolution

from screen scrapers to web scrapers, which can navi-

gate to web pages and extract textual content. However,

web scrapers usually lack the logic necessary to define

highly structured output data as opposed to merely

text chunks or textual snippets. Moreover, they are

usually unable to collect and integrate data from dif-

ferent related sources, to define extraction patterns that

remain stable in case of minor layout changes, to

transform the extracted data into desired output for-

mats, and to deliver the refined data into different

kinds of applications. For this reason, specific research

onweb data extraction was needed and several academic

projects and some commercial research projects on web

data extraction were initiated before or around the year

2000.While the academic projects such as XWRAP [11],

Lixto [2], Wargo [14], and the commercial systems

RoboMaker of Kapow technologies (Kapow Technolo-

gies. http://www.kapowtech.com/) and WebQL of QL2

Software (QL2 Software Inc. http://www.ql2.com/)

focused on methods of strongly supervised ‘‘semi-

automatic’’ wrapper generation, providing a wrapper

designer with visual and interactive support for declar-

ing extraction and formatting patterns, other projects

were based on machine learning techniques. For exam-

ple, WIEN [9], Stalker [13], and DEByE [10] focused

on automatic wrapper induction from annotated

examples. Some other projects focused on specific

issues such as automatic generation of structured

data sets from web pages [3] and particular aspects of

navigating and interacting with web pages [1]. Finally,

some systems require the wrapper designer to program

the wrapper in a high level language (e.g., SQL-like

languages for selecting data from a web page) and

merely give visual support to the programmer; an

example is the W4F system [15]. A number of early
academic prototypes gave rise to fully fledged systems

that are now commercially available. For example,

Stalker gave rise to the Fetch Agent Platform of Fetch

Technologies (Fetch Technologies, Inc. http://www.

fetch.com/), the Lixto system gave rise to the Lixto

Suite of the Lixto Software company (Lixto Software

GmbH. http://www.lixto.com/), and the Wargo system

evolved into the Denodo Platform [14]. A good and

almost complete survey of web information extraction

systems up to 2002 is given in [8].
Foundations

Formal foundations and semantics of data extraction

There are four main formal approaches to define (the

semantics of) web wrappers:

� In the functional approach, a web wrapper is seen as

a mapping f from the parse or DOM tree Tof a web

page to a set f(T) of sub-trees of T, where each sub-

tree corresponds to an extracted data object. An-

other step specifies the relabeling of extracted data

to fit a previously defined output schema.

� The logical approach (see Logical foundations of web

data extraction) consists of the specification of a

finite number of monadic predicates, i.e., predicates,

that define sets of parse-tree nodes and that evaluate

to true or false on each node of a tree-structured

document. The predicates can be defined either by

logical formulas, or by logic programs such as mo-

nadic datalog, which was shown to be equivalent in

expressive power to monadic second-order logic

(MSO) [6]. Note that languages such as XPATH or

regular path expressions are subsumed by MSO.

� The automata theoretic approach relies on tree auto-

mata, which are a generalization of finite state

automata from words to trees. The equivalence of

the two logical approaches, MSO and monadic

datalog, and the unranked query automata ap-

proach shows that the class of wrappers definable

in these formalisms is quite natural and robust.

Fortunately, this class is also quite expressive, as it

accommodates most of the relevant data extraction

tasks and properly contains the wrappers definable

in some specifically designed wrapper program-

ming languages [7].

� Finally, the textual approach interprets web pages as

text strings and uses string pattern matching for

data extraction [13].

Web Data Extraction System W 3467
Methods of wrapper generation

With regard to user involvement, three principal

approaches for wrapper generation can be distin-

guished: (i) Manual wrapper programming, in which

the system merely supports a user in writing a specific

wrapper but cannot make any generalizations from the

examples provided by the user; (ii) wrapper induction,

where the user provides examples and counterexam-

ples of instances of extraction patterns, and the system

induces a suitable wrapper using machine learning

techniques; and (iii) semi-automatic interactive wrap-

per generation, where the wrapper designer not only

provides example data for the system, but rather

accompanies the wrapper generation in a systematic

computer-supported interactive process involving gen-

eralization, correction, testing, and visual program-

ming techniques.

Architecture

Figure 1 depicts a high-level view of a typical fully-

fledged semi-automatic interactive web data extraction

system. This system comprises several tightly connected

components and interfaces three external entities: (i) the

Web, which contains pages with information of inter-

est; (ii) a target application, to which the extracted and

refined data will be ultimately delivered; and (iii) the

user, who interactively designs the wrapper.

The wrapper generator supports the user during the

wrapper design phase. It commonly has a visual inter-

face that allows the user to define which data should be

extracted from web pages and how this data should

be mapped into a structured format such as XML. The
Web Data Extraction System. Figure 1. Architecture of a ty
visual interface itself can include several windows, such

as: (i) a browser window that renders example web pages

for the user; (ii) a parse tree window that shows the

HTML parse tree of the current web page rendered by

the browser; (iii) a control window that allows the user

to view and control the overall progress of the wrapper

design process and to input textual data (e.g., attribute

names or XML tags); and (iv) a program window that

displays the wrapper program constructed so far and

allows the user to further adjust or correct the program.

The subunit that actually generates the wrapper is

contained in what is referred to here as the program

generator. This submodule interprets the user actions

on the example web pages and successively generates

the wrapper. Semi-automatic wrapper generators allow

the user to either specify the URL of example web

pages, which are structurally similar to the target web

pages, or to navigate to such example pages. In the

latter case, the navigation is recorded and can be auto-

matically reproduced. The example pages are rendered

in a browser window. Most wrapper generators also

display the parse tree of the current page. In most

systems, the wrapper designer can click on a node of

the HTML parse tree, and the system immediately

highlights the corresponding part of the example

page in the browser, and vice versa. The designer can,

thus, iteratively narrow down an example of a relevant

data item after a few trials. Many web data extraction

systems exhibit an XPATH-like path expression that

precisely identifies the selected data item. The wrapper

designer can then generalize this path expression

by replacing some of the elements with wildcards.
pical web data extraction system.

W

3468W Web Data Extraction System
The result is a generalized pattern that matches several

similar data items on similarly structured pages. Some

systems (e.g., Denodo and Lixto) allow a wrapper

designer to select data items directly on the rendered

web page. The wrapper generator often also provides

support for associating a name or tag to each extrac-

tion pattern and for organizing patterns hierarchically.

Systems based on wrapper induction allow the user to

supply a large number of sample web pages with posi-

tive and/or negative examples of desired data items,

from which the program generator tries to learn a

generalized pattern. Systems for manual wrapper pro-

gramming simply provide a visual environment for

developing a wrapper in the underlying wrapper pro-

gramming language, for testing the wrapper against

example pages and for debugging. In addition, the

visual interface usually allows an application designer

to specify when a wrapper should be executed.

The wrapper executor is the engine that facilitates

the deployment of the previously generated wrappers.

Typically, a wrapper program comprises functions

such as deep web navigation (e.g., the means to fill

out forms), identification of relevant elements with

declarative rules or procedural scripts, and generation

of a structured output format (e.g., XML or relational

tables). Typically, the wrapper executor can also receive

additional input parameters such as a start URL, a

predefined output structure (e.g., a particular XML

schema), and special values for forms. In some

approaches, the output includes metadata (e.g., verifi-

cation alerts in case of violated integrity constraints) in

addition to the actual data of interest.

The wrapper repository stores the generated wrap-

pers together with metadata. In some approaches,

wrapper templates and libraries of domain concepts can

be reused and extended. Systems such as Dapper (Dap-

per. http://www.dapper.net/) offer a community-based

extensible wrapper repository. In principle, systems can

offer automatic wrapper maintenance and adaptation as

part of the repository.

The data transformation and integration unit pro-

vides a means to streamline the results of multiple wrap-

pers into one harmonized homogeneous result. This step

includes data integration, transformation and cleaning,

basically functions commonly found in the Transform

step of ETL processes of data warehouses and mediation

systems. Technologies and tools comprise query lan-

guages, visual data mapping, automatic schema match-

ing and de-duplication techniques. Additionally, the
data can be composed into desired result formats such

as HTML, Excel or PDF.

The data delivery unit (capturing the Load step in

the ETL philosophy) decides about the appropriate

output channel such as email, Open Database Connec-

tivity (ODBC) connection, or FTP. Advanced wrapper

generation systems offer a number of system connec-

tors to state-of-the-art databases and enterprise soft-

ware such as Customer Relationship Management

(CRM) or Enterprise Resource Planning (ERP), or

partner with software providers in the area of Enter-

prise Application Integration (EAI) or Business Intel-

ligence (BI) who offer such solutions.

The central control and scheduling unit is the heart of

the processing engine. In general, synchronous and asyn-

chronous extraction processes can be distinguished. A

typical example of an asynchronous triggering is a real-

time user request in a flight meta-search application. The

request is queued, the respective wrappers are triggered,

parameter mappings are performed, and the result is

integrated and presented to the user in real-time. Sophis-

ticated approaches offer a workflow-based execution par-

adigm, including parallelism, returning partial results,

and interception points in complex booking transactions.

On the other hand, market monitoring or web process

integration are typical synchronous scenarios. An intelli-

gent scheduler is responsible for distributing requests to

the wrapper executor, iterating over a number of possible

form inputs, and dealing with exception handling.

Commercial wrapper generation systems

Dapper. The Dapp Factory of Dapper offers fully server-

based wrapper generation, and supports a community

driven reusable wrapper repository. Dapper strongly

relies on machine learning techniques for wrapper gener-

ation and concentrates exclusively on web pages that can

be reached without deep web navigation. Users designing

a wrapper label positive and negative examples and

debug the result on a number of similarly structured

web pages. Wrappers are hosted on the server and wrap-

per results can be queried via REST. Commercial APIs are

offered for using Dapper in Enterprise scenarios.

Denodo (Denodo. http://www.denodo.com). The

Denodo ITPilot, formerly known as Wargo, is a plat-

form for creating and executing navigation and extrac-

tion scripts that are loosely tied together. It offers

graphical wizards for configuring wrappers and allows

DOM events to be processed while navigating web

pages. Deep Web navigation can be executed in

Web Data Extraction System W 3469

W

Internet Explorer, and the result pages are passed on to

the extraction program. Furthermore, ITPilot offers

some wrapper maintenance functionalities. Denodo

additionally offers a tool called Aracne for document

crawling and indexing.

Lixto. The Lixto Suite comprises the Lixto Visual

Developer (VD), a fully visual and interactive wrapper

generation framework, and the Java-based Lixto Transfor-

mation Server providing a scalable runtime and data

transformation environment, including various Enterprise

Application connectors. VD is ideally suited for dynamic

Web 2.0 applications as it supports a visual Deep Web

macro recording tool that makes it possible to simulate

user clicks on DOM elements. Tightly connected with

the navigation steps and hidden from the wrapper design-

er, the expressive language Elog is used for data extraction

and linking to further navigation steps. VD is based on

Eclipse and embeds the Mozilla browser.

Kapowtech. The Kapow RoboSuite (recently

rebranded to Kapow Mashup Server) is a Java-based

visual development environment for developing web

wrappers. It embeds a proprietary Java browser, imple-

ments a GUI on top of a procedural scripting language,

and maps data to relational tables. The RoboServer

offers APIs in different programming languages for

synchronous and asynchronous communication. In

addition, variants of the Mashup Server for specific

settings such as content migration are offered.

WebQL. QL2 uses a SQL-like web query language

called WebQL for writing wrappers. By default,

WebQL uses its own HTML DOM tree model instead

of relying on a standard browser, but a loose integra-

tion with Internet Explorer is offered. The QL2 Inte-

gration Server supports concepts such as server

clustering and HTML diffing. Furthermore, an IP ad-

dress anonymization environment is offered.

Key Applications
Web market monitoring. Nowadays, a lot of basic infor-

mation about competitors can be retrieved legally from

public information sources on the Web, such as annual

reports, press releases or public data bases. On the one

hand, powerful and efficient tools for Extracting, Trans-

forming and Loading (ETL) data from internal sources

and applications into a Business Intelligence (BI) data

warehouse are already available and largely employed.

On the other hand, there is a growing economic need to

efficiently integrate external data, such as market and

competitor information, into these systems as well.
With the World Wide Web as the largest single database

on earth, advanced data extraction and information

integration techniques as described in this paper are

required to process this web data automatically. At the

same time, the extracted data has to be cleaned and

transformed into semantically useful formats and deliv-

ered in a ‘‘web-ETL’’ process into a BI system. Key

factors in this application area include scalable environ-

ments to extract and schedule processing of very large

data sets efficiently, capabilities to pick representative

data samples, cleaning extracted data to make it compa-

rable, and connectivity to data warehouses.

Web process integration. In markets such as the

automotive industry, business processes are largely car-

ried out by means of web portals. Business critical data

from various divisions such as quality management,

marketing and sales, engineering, procurement and sup-

ply chain management have to be manually gathered

from web portals. Through automation, suppliers can

dramatically reduce the cost while at the same time

improving speed and reliability of these processes. Ad-

ditionally, the automation means to leverage web appli-

cations to web services, and hence wrapper generation

systems can be considered as an enabling technology for

Service Oriented Architectures (SOA) as envisioned and

realized in Enterprise Application Integration (EAI) and

B2B processes. Key factors in this application area are

workflow capabilities for the whole process of data

extraction, transformation and delivery, capabilities to

treat all kinds of special cases occurring in web interac-

tions, and excellent support of the latest web standards

used during secure transactions.

Mashups. Increasingly, leading software vendors

have started to provide mashup platforms such as

Yahoo! Pipes or IBM QEDWiki. A mashup is a web

application that combines a number of different web-

sites into an integrated view. Usually, the content is

taken via APIs by embedding RSS or atom feeds similar

to REST (Representational State Transfer). In this con-

text, wrapper technology transforms legacy web appli-

cations to light-weight APIs that can be integrated in

mashups in the same way. As a result, web mashup

solutions no longer need to rely on APIs offered by the

providers of websites, but can rather extend the scope

to the whole Web. Key factors for this application

scenario include efficient real-time extraction capabil-

ities for a large number of concurrent queries and

detailed understanding of how to map queries to par-

ticular web forms.

3470W Web Data Extraction System
Future Directions
►Generic web wrapping. Without explicit semantic

annotations on the current Web data extraction sys-

tems that allow general web wrapping will have to

move towards fully automatic wrapping of the existing

World WideWeb. Important research challenges are (i)

how to optimally bring semantic knowledge into the

extraction process, (ii) how to make the extraction

process robust (in particular, how to deal with false

positives), and (iii) how to deal with the immense

scaling issues. Today’s web harvesting and automated

information extraction systems show much progress

(see e.g., [4,12]), but still lack the combined recall and

precision necessary to allow for very robust queries. A

related topic is that of auto-adapting wrappers. Most

wrappers today depend on the tree structure of a given

web page and suffer from failure when the layout and

code of web pages change. Auto-adapting wrappers,

which are robust against such changes, could use exist-

ing knowledge of the relations on previous versions of

web page in order to automatically ‘‘heal’’ and adapt the

extraction rules to the new format. The question here is

how to formally capture change actions and execute the

appropriate repair actions.►Wrapping from visual lay-

outs. Whereas web wrappers today dominantly focus

on either the flat HTML code or the DOM tree repre-

sentation of web pages, recent approaches aim at

extracting data from the CSS box model and, hence,

the visual representation of web pages [5]. This meth-

od can be particularly useful for layout-oriented data

structures such as web tables and allows to create

automatic and domain-independent wrappers which

are robust against changes of the HTML code imple-

mentation. ►Data extraction from non-HTML file for-

mats. There is a substantial interest from industry in

wrapping documents in formats such as PDF and Post-

Script. Wrapping of such documents must be mainly

guided by a visual reasoning process over white space

and Gestalt theory, which is substantially different from

web wrapping and will, hence, require new techniques

and wrapping algorithms including concepts borrowed

from the document understanding community.

►Learning to deal with web interactions. As web

pages are becoming increasingly dynamic and interac-

tive, efficient wrapping languages have to make it pos-

sible to record, execute and generalize macros of web

interactions and, hence, model the whole process of

workflow integration. An example of such a web inter-

actions is a complicated booking transaction. ►Web
form understanding and mapping. In order to automat-

ically or interactively query deep web forms, wrappers

have to learn the process of filling out complex web

search forms and the usage of query interfaces. Such

systems have to learn abstract representation for each

search form and map them to a unified meta form and

vice versa, taking into account different form element

types, contents and labels.
Cross-references
▶Business Intelligence

▶Data Integration in Web Data Extraction System

▶Data Mining

▶Data Warehouse

▶Datalog

▶Deep-web Search

▶ Enterprise Application Integration

▶ Extraction, Transformation, and Loading

▶ Information Extraction

▶ Information Integration

▶ Logical Foundations Of Web Data Extraction

▶MashUp

▶ Screen Scraper

▶ Semantic Web

▶ Service Oriented Architecture

▶ Snippet

▶Web Harvesting

▶Web Information Extraction

▶Web Services

▶Wrapper Induction

▶Wrapper Maintenance

▶Wrapper Stability

▶XML

▶Xpath/Xquery
Recommended Reading
1. Anupam V., Freire J., Kumar B., and Lieuwen D. Automating

web navigation with the WebVCR. Comput. Network.,

33(1–6):503–517, 2000.

2. Baumgartner R., Flesca S., and Gottlob G. Visual web infor-

mation extraction with Lixto. In Proc. 27th Int. Conf. on Very

Large Data Bases, 2001, pp. 119–128.

3. Crescenzi V., Mecca G., and Merialdo P. Road runner: towards

automatic data extraction from large Web sites. In Proc. 27th

Int. Conf. on Very Large Data Bases, 2001, pp. 109–118.

4. Etzioni O., Cafarella M.J., Downey D., Kok S., Popescu A.,

Shaked T., Soderland S., Weld D.S., and Yates Y. Web-scale

information extraction in KnowItAll: (preliminary results).

In Proc. 12th Int. World Wide Web Conference, 2004,

pp. 100–110.

Web ETL W 3471
5. Gatterbauer W., Bohunsky P., Herzog M., Krüpl B., and Pollak B.

Towards domain-independent information extraction from web

tables. In Proc. 16th Int. World Wide Web Conference, 2007,

pp.71–80.

6. Gottlob G. and Koch C. Monadic datalog and the expressive

power of languages for web information extraction. J. ACM

51(1):74–113, 2002.

7. Gottlob G. and Koch C.A. Formal comparison of visual web

wrapper generators. In Proc. 32nd Conf. Current Trends in

Theory and Practice of Computer Science, 2006, pp. 30–48.

8. Kuhlins S. and Tredwell R. Toolkits for generating wrappers: a

survey of software toolkits for automated data extraction from

Websites. NODe 2002, LNCS:2591, 2003.

9. Kushmerick N., Weld D.S., and Doorenbos R.B. Wrapper induc-

tion for information extraction. In Proc. 15th Int. Joint Conf. on

AI, 1997, pp. 729–737.

10. Laender A.H.F., Ribeiro-Neto B.A., and da Silva A.S. DEByE –

data extraction by example. Data Knowl. Eng., 40(2):121–154,

2000.

11. Liu L., Pu C., and Han W. XWRAP: an XML-enabled wrapper

construction system for web information sources. In Proc. 16th

Int. Conf. on Data Engineering, 2000, pp. 611–621.

12. Liu B., Grossman R.L., and Zhai Y. Mining web pages for data

records. IEEE Intell. Syst., 19(6):49–55, 2004.

13. Muslea I., Minton S., and Knoblock C.A. Hierarchical Wrapper

Induction for Semistructured Information Sources. Autonom.

Agents Multi-Agent Syst., 4(1/2):93–114, 2001.

14. Pan A., Raposo J., Álvarez M., Montoto P., Orjales V., Hidalgo J.,

Ardao L., Molano A., and Viña Á. The Denodo data integration

platform. In Proc. 28th Int. Conf. on Very Large Data Bases, 2002.

15. Sahuguet A. and Azavant F. Building intelligent web applications

using lightweight wrappers. Data Knowl. Eng., 36(3):283–316,

2001.
Web Data Mining

▶Data, Text, and Web Mining in Healthcare
Web Directories

▶ Lightweight Ontologies
W
Web ETL

OLIVER FRÖLICH

Lixto Software GmbH, Vienna, Austria

Synonyms
ETL using web data extraction techniques
Definitions
As ETL (acronym for Extraction, Transformation and

Loading) is a well-established technology for the ex-

traction of data from several sources, their cleansing,

normalization and insertion into a Data Warehouse

(e.g., a Business Intelligence System), Web ETL stands

for an ETL process where the external data to be

inserted into the Data Warehouse is extracted from

semi-structured Web pages (e.g., in HTML or PDF

format) using Web Data Extraction techniques.

Particularly, back-end interchange of structured

data just using the Web, e.g., two database sys-

tems exchanging data with Web EDI technology (EDI

(Electronic Data Interchange) stands for techniques

and standards for the transmission of structured

data, for example over the Web, in an application-to-

application context.), is not a Web ETL process as no

semi-structured data needs to be transformed using

Web Data Extraction techniques.

Key Points
Powerful and efficient tools supporting ETL processes

(Extracting, Transforming and Loading of data) in a

Data Warehouse context exist for years now. They

concentrate on the data extraction from internal appli-

cations. But there is also a growing need to integrate

external data: For example in Competitive Intelligence,

information about competitor activities and market

developments is becoming a more and more important

success factor for enterprises. The largest information

source on earth is the World Wide Web. Unfortunately,

data on the Web requires intelligent interpretation and

cannot be easily used by programs, since the Web is

primarily intended for human users. Therefore, the

extraction from semi-structured information sources

likeWeb pages was mostly done manually and was very

time consuming just a few years ago. Today, sophisti-

cated toolsets for Web Data Extraction exist for retriev-

ing relevant data automatically from Web sites and

for transforming it into structured data formats.

An example of such a toolset is the Lixto Suite [1],

allowing for the extraction and transformation of data

from Web pages into structured XML formats. This

structured XML data can be integrated in Data Ware-

house systems. This whole process from Web Data

Extraction to the integration of the cleansed and

normalized information is called a Web ETL pro-

cess. Web ETL itself can be a part of a Business Intelli-

gence process, turning semi-structured data into

3472W Web Harvesting
business-relevant information in a Business Intelli-

gence Data Warehouse. An example of a Business In-

telligence application of Web ETL is given in [2].

Another application field of Web ETL besides

Competitive Intelligence and Business Intelligence is

Front-End System Integration, where Web interfaces of

business applications are utilized for coupling these

systems using Web ETL processes.

Cross-references
▶Business Intelligence

▶Competitive Intelligence

▶Data Warehouse

▶ ETL

▶ Semi-Structured Data

Recommended Reading
1. Baumgartner R., Flesca S., Gottlob G. Visual web information

extraction with Lixto. In Proc. 27th Int. Conf. on Very Large

Data Bases, 2001, pp. 119–128.

2. Baumgartner R., Frölich O., Gottlob G., Harz P., Herzog M., and

Lehmann P. Web data extraction for business intelligence: the

Lixto approach, In Proc. Datenbanksysteme in Business, Tech-

nologie und Web (BTW), 2005, pp. 48–65.

3. Frölich O. Optimierung von Geschäftsprozessen durch Integri-

erte Wrapper-Technologien. Dissertation, Institute of Informa-

tion Systems, Vienna University of Technology, 2006.
Web Harvesting

WOLFGANG GATTERBAUER

University of Washington, Seattle, WA, USA

Synonyms
Web data extraction; Web information extraction;

Web mining

Definition
Web harvesting describes the process of gathering

and integrating data from various heterogeneous web

sources. Necessary input is an appropriate knowledge

representation of the domain of interest (e.g., an ontol-

ogy), together with example instances of concepts or

relationships (seed knowledge). Output is structured

data (e.g., in the form of a relational database) that is

gathered from the Web. The term harvesting implies

that, while passing over a large body of available infor-

mation, the process gathers only such information that

lies in the domain of interest and is, as such, relevant.
Key Points
The process of web harvesting can be divided into

three subsequent tasks: (i) data or information retrie-

val, which involves finding relevant information on the

Web and storing it locally. This task requires tools for

searching and navigating the Web, i.e., crawlers and

means for interacting with dynamic or deep web pages,

and tools for reading, indexing and comparing the

textual content of pages; (ii) data or information ex-

traction, which involves identifying relevant data on

retrieved content pages and extracting it into a

structured format. Important tools that allow access

to the data for further analysis are parsers, content

spotters and adaptive wrappers; (iii) data integration

which involves cleaning, filtering, transforming, refin-

ing and combining the data extracted from one or

more web sources, and structuring the results accord-

ing to a desired output format. The important aspect

of this task is organizing the extracted data in such a

way as to allow unified access for further analysis and

data mining tasks.

The ultimate goal of web harvesting is to compile as

much information as possible from the Web on one or

more domains and to create a large, structured knowl-

edge base. This knowledge base should then allow que-

rying for information similar to a conventional database

system. In this respect, the goal is shared with that of the

Semantic Web. The latter, however, tries to solve extrac-

tion à priori to retrieval by having web sources present

their data in a semantically explicit form.

Today’s search engines focus on the task of finding

content pages with relevant data. The important chal-

lenges for web harvesting, in contrast, lie in extracting

and integrating the data. Those difficulties are due to

the variety of ways in which information is expressed

on the Web (representational heterogeneity) and the

variety of alternative, but valid interpretations of

domains (conceptual heterogeneity). These difficulties

are aggravated by the Web’s sheer size, its level of

heterogeneity and the fact that information on the

Web is not only complementary and redundant, but

often contradictory too.

An important research problem is the optimal com-

bination of automation (high recall) and human involve-

ment (high precision). At which stages and in which

manner a human user must interact with an otherwise

fully automatic web harvesting system for optimal per-

formance (in terms of speed, quality, minimum human

involvement, etc.) remains an open question.

Web Information Extraction W 3473
Cross-references
▶Data Extraction

▶Data Integration

▶ Fully-Automatic Web Data Extraction

▶ Information Retrieval

▶ Semantic Web

▶Web Data Extraction

▶Web Data Extraction System

▶Web Scraper

▶Wrapper

Recommended Reading
1. Ciravegna F., Chapman S., Dingli A., and Wilks Y. Learning

to harvest information for the Semantic Web. In Proc. 1st

European Semantic Web Symposium, 2004, pp. 312–326.

2. Crescenzi V. and Mecca G. Automatic information extraction

from large websites. J. ACM, 51(5):731–779, 2004.

3. Etzioni O., Cafarella M.J., Downey D., Kok S., Popescu A.M.,

Shaked T., Soderland S., Weld D.S., and Yates A. Web-scale

information extraction in KnowItAll: (preliminary results). In

Proc. 12th Int. WorldWideWeb Conference, 2004, pp. 100–110.
Web Indexing

▶ Indexing the Web
W

Web Information Extraction

RAJASEKAR KRISHNAMURTHY, YUNYAO LI,

SRIRAM RAGHAVAN, FREDERICK REISS,

SHIVAKUMAR VAITHYANATHAN, HUAIYU ZHU

IBM Almaden Research Center, San Jose, CA, USA

Synonyms
Text Analytics; Information Extraction

Definition
Information extraction (IE) is the process of automat-

ically extracting structured pieces of information from

unstructured or semi-structured text documents. Clas-

sical problems in information extraction include

named-entity recognition (identifying mentions of per-

sons, places, organizations, etc.) and relationship

extraction (identifying mentions of relationships be-

tween such named entities). Web information extrac-

tion is the application of IE techniques to process the
vast amounts of unstructured content on the Web. Due

to the nature of the content on the Web, in addition

to named-entity and relationship extraction, there is

growing interest in more complex tasks such as extrac-

tion of reviews, opinions, and sentiments.
Historical Background
Historically, information extraction was studied by the

Natural Language Processing community in the con-

text of identifying organizations, locations, and person

names in news articles and military reports [9]. From

early on, information extraction systems were based on

the knowledge engineering approach of developing care-

fully crafted sets of rules for each task. These systems

view the text as an input sequence of symbols and

extraction rules are specified as regular expressions

over the lexical features of these symbols. The formal-

ism underlying these systems is based on cascading

grammars and the theory of finite-state automata.

One of the earliest languages for specifying such rules

is the Common Pattern Specification Language (CPSL)

developed in the context of the TIPSTER project [1].

To overcome some of the drawbacks of CPSL resulting

from a sequential view of the input, the AfST system

[2] uses a more powerful grammar that views its input

as an object graph.

Beginning in the mid-1990s, as the unstructured

content on the Web continued to grow, information

extraction techniques were applied in building popular

Web applications. One of the earliest such uses of

information extraction was in the context of screen

scraping for online comparison shopping and data

integration applications. By manually examining a

number of sample pages, application designers would

develop ad hoc rules and regular expressions to eke out

relevant pieces of information (e.g., the name of a

book, its price, the ISBN number, etc.) from multiple

Web sites to produce a consolidated Web page or query

interface. Recently, more sophisticated IE techniques

are being employed on the Web to improve search

result quality, guide ad placement strategies, and assist

in reputation management [7,12].
Foundations
Knowledge-engineered rules have the advantage that

they are easy to construct in many cases (e.g., rules to

recognize prices, phone numbers, zip codes, etc.), easier

to debug and maintain when written in a high-level rule

3474W Web Information Extraction
language, and provide a natural way to incorporate

domain or corpus-specific knowledge. However, such

rules are extremely labor intensive to develop and main-

tain. An alternative paradigm for producing extraction

rules is the use of learning-based methods [6]. Such

methods work well when training data is readily available

and the extraction tasks are hard to encode manually.

Finally, there has been work in the use of complex statisti-

cal models, such as Hidden Markov Models and Condi-

tional Random Fields, where the rules of extraction are

implicit within the parameters of the model [11].

For ease of exposition, the rule-based paradigm is

used to present the core concepts of Web information

extraction. Rule-based extraction programs are called

annotators and their output is referred to as annota-

tions. The two central concepts of rule-based extraction

are rules and spans. A span corresponds to a substring

of the document text represented as a pair of offsets

(begin, end). A rule is of the form A← P (Fig. 1), where

A is an annotation (specified within angled brackets)

and P is a pattern specification. Evaluating the rule

associates any span of text that matches pattern P

with the annotation A.

The description of information extraction is

organized around four broad categories of extraction

tasks: entity extraction, relationship extraction, complex

composite extraction, and application-driven extraction.

The first two categories, while relevant and increasingly

used in Web applications, are classical IE tasks that

have been extensively studied in the literature even

before the advent of the Web.

Category 1. Entity extraction refers to the identifi-

cation of mentions of named entities (such as persons,

locations, organizations, phone numbers, etc.) in un-

structured text. While the task of entity extraction is

intuitive and easy to describe, the corresponding anno-

tators are fairly complex and involve a large number of

rules and carefully curated dictionaries. For example, a

high-quality annotator for person names would in-

volve several tens of rules to capture all of the different
Web Information Extraction. Figure 1. Simple rules for iden
conventions, shorthands, and formats used in person

names all over the world.

Example 1. As an illustrative example, consider the

simple annotator shown in Fig. 1 for recognizing men-

tions of person names. The annotator uses a CPSL-

style cascading grammar specification. Assume that the

input text has already been tokenized and is available

as a sequence of hTokeni annotations. Rules R4, R5,

and R6 are the lowest level grammar rules since they

operate only on the input hTokeni annotations. Each
of these rules attempts to match the text of a token

against a particular regular expression and produces

output annotations whenever the match succeeds.

Rule R6 states that a span of text consisting of a single

token whose text matches a dictionary of person names

(‘‘Michael,’’ ‘‘Richard,’’ etc.) is a hPersonDicti anno-
tation. Rule R4 similarly defines hSalutationi an-

notations (e.g., Dr., Prof., Mr., etc.) and R5 defines

annotations consisting of a single token beginning

with a capital letter. Finally, rules R1, R2, and R3 are

the higher-level rules of the cascading grammar since

they operate on the annotations produced by the

lower-level rules. For example, R1 states that a saluta-

tion followed by two capitalized words is a person

name. Such a rule will recognize names such as

‘‘Dr. Albert Einstein’’ and ‘‘Prof. Michael Stonebraker.’’

Category 2. Binary relationship extraction refers to

the task of associating pairs of named entities based on

the identification of a relationship between the entities.

For instance, Example 2 describes the task of extracting

instances of the CompanyCEO relationship, i.e., finding

pairs of person and organization names such that the

person is the CEO of the organization.

Example 2. Assume that mentions of persons and

organizations have already been annotated (as in Cate-

gory 1 above) and are available as hPersoni and

hOrganizationi annotations respectively. Figure 2

shows rules that identify instances of the CompanyCEO

relationship. Rule R7 looks for pairs of hPersoni and
hOrganizationi annotations such that the text
tifying person names.

Web Information Extraction W 3475
between these annotations satisfies a particular regular

expression. The regular expression that is used in this

example will match any piece of text containing the

phrase ‘‘CEO of ’’ with an optional comma before the

phrase and an arbitrary amount of whitespace separat-

ing the individual words of the phrase. Thus, it will

correctly extract an instance of this relationship from

the text ‘‘Sam Palmisano, CEO of IBM.’’ As with Ex-

ample 1, the rules presented here are merely illustrative

and high-quality relationship annotators will involve

significantly more rules.

Category 3. Complex composite extraction. The

presence of vast amounts of user generated content

on the Web (in blogs, wikis, discussion forums, and

mailing lists) has engendered a new class of complex

information extraction tasks. The goal of such tasks is

the extraction of reviews, opinions, and sentiments on

a wide variety of products and services. Annotators

for such complex tasks are characterized by two

main features: (i) the use of entity and relationship

annotators as sub-modules to be invoked as part of a

higher level extraction workflow, and (ii) the use of

aggregation-like operations in the extraction process.

Example 3. Consider the task of identifying infor-

mal reviews of live performance of music bands
Web Information Extraction. Figure 2. Simple rules for iden

Web Information Extraction. Figure 3. Extraction of informa
embedded within blog entries. Figure 3 shows the high-

level workflow of an annotator that accomplishes this

task. The two individual modules, ReviewInstance

Extractor and ConcertInstance Extractor, identify specif-

ic snippets of text in a blog. The hReviewInstancei
module identifies snippets that indicate portions of a

concert review – e.g., ‘‘show was great,’’ ‘‘liked the

opening bands’’ and ‘‘Kurt Ralske played guitar.’’ Simi-

larly, the ConcertInstance Extractor module identifies

occurrences of bands or performers – e.g., ‘‘perfor-

mance by the local funk band Saaraba’’ and ‘‘went to

the Switchfoot concert at the Roxy.’’ The output from

the ReviewInstance Extractor module is fed into the

ReviewGroup Aggregator module to identify contigu-

ous blocks of text containing hReviewInstancei
snippets. Finally, a hConcertInstancei snippet

is associated with one or more hReviewGroupsi to

obtain hBandReviewsi. Note that in addition to the

complex high-level workflow, each individual module

in Fig. 3 is itself fairly involved and consists of tens of

regular expression patterns and dictionaries.

Category 4. Application-driven extraction. The last

category of extraction tasks covers a broad spectrum of

scenarios where IE techniques are applied to perform

extraction that is unique to the needs of a particular
tifying CompanyCEO relationship instances.

l band reviews.

W

3476W Web Information Extraction
Web application. While the early applications of IE

were ad hoc and limited to screen scraping, there has

been recent widespread use of IE in the context of

improving search quality. A prototypical example is

the use of specially crafted extraction rules applied to

the URLs and titles of Web pages to identify high-

quality index terms. Consider the following URLs:

U1 http://en.wikipedia.org/wiki/Michelangelo

U2 http://www.ibiblio.org/wm/paint/auth/

michelangelo/

U3 http://www.michelangelo.com/

U4 http://www.artcyclopaedia.com/artists/

michelangelo_buonarotti.html

It is easy to see that certain key segments of the

URL string, such as the last segment of the path (as in

U1 and U2), the portion of the hostname following the

‘‘www’’ (in U3) and the actual resource name (as in U4)

provide fairly reliable clues as to the actual content of

the corresponding Web page. Modern search engines,

on the Web and in the intranet, are applying sophisti-

cated patterns to extract such key segments from the

URL and produce terms for their search index. In

the above examples, such a technique would enable the

term ‘‘michelangelo’’ or the phrase ‘‘michelangelo buo-

narotti’’ to be identified as high-quality index terms

for the Web pages. In a similar fashion, extraction of key

phrases from the captions of images and videos are being

used to effectively index and search over online multi-

media repositories. Other specialized search engines for

verticals such as healthcare, finance, and people search,

also make significant use of information extraction to

identify domain-specific concepts.
Key Applications
As the vast majority of information on the Web is

in unstructured form, there is growing interest, within

the database, data mining, and IR communities, in the

use of information extraction for Web applications.

Several research projects in the areas of intranet search,

community information management, and Web analyt-

ics, are already employing IE techniques to bring order

to unstructured data. The common theme in all of

these applications is the use of IE to process the input

text and produce a structured representation to sup-

port search, browsing, and mining applications.

Web search engines are also employing IE techni-

ques to recognize key entities (persons, locations,
organizations, etc.) associated with a web page. This

semantically richer understanding of the contents of a

page is used to drive corresponding improvements to

their search ranking and ad placement strategies.

Finally, there is continuing interest in techniques to

reliably extract reviews, opinions, and sentiments

about products and services from the content present

in online communities and portals. The extracted in-

formation can be used to guide business decisions

related to product placement, targeting, and market-

ing. The complex nature of these extraction tasks as

well as the heterogeneous and noisy nature of the data

pose interesting research challenges.

Future Directions
While the area of information extraction has made

considerable progress since inception, several impor-

tant challenges still remain open. Two of these chal-

lenges that are under active investigation in the

research community are described below.

Scalability

As complex information tasks move to operating over

Web-size data sets scalability has become a major focus

[8]. In particular, IE systems need to scale to large num-

bers of input documents (data set size) and to large

numbers of rules and patterns (annotator complexity).

Two classes of optimizations being considered in this

regard are

� Low-Level Primitives: Improving the performance

of the low-level operations that dominate annota-

tor execution time.

� High-Level Optimization: Automatically choosing

more efficient orders for evaluating annotator rules.

Low-Level Primitives In many information extraction

systems, low-level text operations like tokenization,

regular expression evaluation and dictionary matching

dominate execution time. Speeding up these low-level

operations leads to direct improvements in scalability,

both in terms of the number of documents the system

can handle and the number of basic operations the

system can afford to perform on a given document

[5]. Some of the problems being addressed currently

in this context are given below.

� When a large number of dictionaries are evaluated

in an annotator (e.g., the BandReview annotator

(Fig. 3) evaluates over 30 unique dictionaries),

Web Information Extraction W 3477
evaluating each dictionary separately is expensive

as the document text is tokenized once per dictio-

nary evaluation. To address this inefficiency, tech-

niques are being explored to evaluate multiple

dictionaries efficiently in a single pass over the

document text.

� Evaluating complex regular expressions over every

document is an expensive operation. An active area

of research is the design of faster regular expre-

ssion matchers for special classes of regular

expressions. Another approach being considered is

the design of ‘‘filter’’ regular expression indexes.

These indexes can be used to quickly eliminate

many of the documents that do not contain a match.

High-Level Optimization As web information extrac-

tion moves towards Categories 3 and 4 (more complex

tasks) there is more opportunity for improving effi-

ciency [3–14]. Some of these efficiency gains can be

obtained using traditional relational optimizations

such as ‘‘join reordering’’ and ‘‘pushing down selection

predicates.’’ There are also additional text-specific opti-

mizations that may give significant benefit, two of

which are described below.

� Restricted Span Evaluation: Let R denote a set of

rules for a given information extraction task. Let

spans(d, R0)be a set of spans obtained by evaluating

R0� R over a document d. Let r 2 (R� R0) be a rule

to be evaluated over the complete text of d. Re-

stricted Span Evaluation is the optimization tech-

nique by which theannotator specification can

be rewritten so that rule r is evaluated only on

spans(d, R0)and not over the complete text of d.
W

A specific instantiation of restricted span evalu-

ation is presented below, using Rule R1 in the Person

annotator (Fig. 1). This rule identifies a salutation

followed by two capitalized words. Note that R1

uses R4 and R5 for identifying hSalutationi and
hCapsWordi respectively. A naive evaluation strat-

egy identifies all occurrences of hSalutationi
and hCapsWordi over the complete document

before R1 is evaluated. An alternative approach is

to first identify hSalutationi in the document

and then look for hCapsWordi only in the imme-

diate vicinity of all the hSalutationi annotations.
The latter approach evaluates the hCapsWordi
rule only on a smaller amount of text as the

hSalutationi annotations occur infrequently.
This can result in considerable performance

improvements.

� Conditional Evaluation: Let R denote a set of rules

for a given information extraction task and R1 and

R2 be two non-overlapping subsets of R. Condi-

tional Evaluation is the optimization technique by

which the annotatorspecification can be rewritten

so that R1 is conditionally evaluated on a document

d depending on whether the evaluation of R2 over

dsatisfies certain predicates. An example predicate

is whether the evaluationof R2 produces at least one

annotation.
A specific instantiation of Conditional Evalua-

tion in the context of the BandReview annotator

(Fig. 3) is given below. There are two main modules

in the annotator, ConcertInstance and ReviewGroup

which can be conditionally evaluated – i.e., the ab-

sence of one in a document implies that the other

need not be evaluated on that document. In general,

Conditional Evaluation is applicable in large work-

flows at join conditions such as the BandReview

Join in Fig. 3.

Initial results on combining efficient evaluation of

lower-level primitives and higher-level optimizations

are very encouraging and recent results have reported

an order of magnitude improvement in execution time

[13,14].

Uncertainty Management

Real-world annotators typically consist of a large number

of rules with varying degrees of accuracy. For example,

most annotations generated by Rule R1 (Fig. 1) are likely

to be correct since salutation is a very strong indicator

of the existence of a person name. Rule R3, on the other

hand, will identify some correct names such as ‘‘James

Hall’’ and ‘‘Dan Brown’’ along with some spurious

annotations such as ‘‘Town Hall’’ and ‘‘Dark Brown.’’

Since ‘‘Hall’’ and ‘‘Brown’’ are ambiguous person

names that also appear in other contexts and these

dictionary matches are combined with a capitalized

word, R3 has a lower accuracy than R1. Formally this

difference in accuracy between different rules can be

captured by the notion of the precision of a rule.

Rule Precision Suppose rule R identifies N annota-

tions over a given document corpus, of which ncorrect
annotations are correct. Then the precision of rule R is

the fraction ncorrect
N

. Each annotation a is associated with

3478W Web Information Extraction System
a confidence value that is directly related to the preci-

sion of the corresponding rule.

The confidence value associated with an annota-

tion enables applications to meaningfully represent

andmanipulate the imprecision of information extracted

from text [4]. For Category 1 tasks, the associating of

such confidence values (such as probabilities) has been

addressed in existing literature. On the other hand, asso-

ciating confidence values with annotations formore com-

plex extraction tasks is still open [10]. To illustrate,

consider Rule R6 in Fig. 2 for identifying the Company-

CEO relationship. This rule uses existing annotations

hPersoni and hOrganizationi . Therefore the con-
fidence of a CompanyCEO annotation is dependent not

only on the precision of rule R6 but also on the con-

fidences of the hPersoni and hOrganizationi anno-
tations. By modeling the confidence numbers as

probabilities it is possible to view the individual rules

as queries over a probabilistic database. However, di-

rect application of current probabilistic database se-

mantics (possible worlds) is precluded as illustrated in

the following example. Rule R7 identifies an instance of

the CompanyCEO relationship from the text ‘‘Inter-

view with Lance Brown, CEO of PeoplesForum.com.’’

This rule looks for the existence of the text ‘‘CEO of ’’

between hPersoni and hOrganizationi thereby

making it a highly accurate rule. Even though the

participating hPersoni annotation has a low confi-

dence (identified by a rule with low precision, Rule

R3), the resulting hCompanyCEOi annotations should

have high confidence due to the high precision of

Rule R7. Such behavior cannot be modeled under

‘‘possible worlds semantics’’ where the confidence of

hCompanyCEOi annotations is bounded by the confi-

dences of the input hPersoni and hOrganizationi
annotations. Handling such anomalies in the calcula-

tion of probabilities for relationship and complex com-

posite extraction tasks is an open problem.

Cross-references
▶ Fully Automatic Web Data Extraction

▶ Information Extraction

▶ Languages for Web Data Extraction

▶Metasearch Engines

▶ Probabilistic Databases

▶Query Optimization

▶Text Analytics

▶Text Mining

▶Uncertainty and Data Quality Mgmt
▶Web Advertising

▶Web Data Extraction System

▶Web Harvesting

▶Wrapper Induction

Recommended Reading
1. Appelt D.E. and Onyshkevych B. The common pattern specifi-

cation language. In Tipster Text Program Phase 3, 1999.

2. Boguraev B. Annotation-based finite state processing in a large-

scale NLP architecture. In Proc. Recent Advances in Natural

Language Processing. 2003, pp. 61–80.

3. Cafarella M.J. and Etzion O. A search engine for natural lan-

guage applications. In Proc. 14th Int. World Wide Web Confer-

ence, 2005, pp. 442–452.

4. Cafarella M.J. et al. Structured querying of Web text: A technical

challenge. In Proc. 3rd Biennial Conf. on Innovative Data Sys-

tems Research, 2007, pp. 225–234.

5. Chandel A., Nagesh P.C., and Sarawagi S. Efficient batch top-k

search for dictionary-based entity recognition. In Proc. 22nd Int.

Conf. on Data Engineering, 2006.

6. Cohen W. and McCallum A. Information extraction from the

world wide web Tutorial at Proc. 9th ACM SIGKDD Int. Conf.

on Knowledge Discovery and Data Mining, 2003.

7. Cunningham H. Information Extraction, Automatic. In Ency-

clopedia of Language and Linguistics, 2nd edn. 2005.

8. Doan A., Ramakrishnan R., and Vaithyanathan S. Managing

information extraction: state of the art and research directions.

Tutorial in Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2006.

9. Grishman R. and Sundheim B. Message understanding

conference-6: a brief history. In Proc. 16th Conf. on Computa-

tional, 1996, pp. 446–471.

10. Jayram T.S., Krishnamurthy R., Raghavan S., Vaithyanathan S.,

and Zhu H. Avatar information extraction system. Q. Bull. IEEE

TC on Data Engineering, 29(1):40–48, May 2006.

11. Lafferty J., McCallum A., and Pereira F. Conditional random fields:

probabilistic models for segmenting and labeling sequence data. In

Proc. 18th Int. Conf. on Machine Learning, 2001, pp. 282–289.

12. Li Y., Krishnamurthy R., Vaithyanathan S., and Jagadish H.

Getting work done on the web: supporting transactional queries.

In Proc. 32nd Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2006, pp. 557–564.

13. Reiss F., Raghavan S., Krishnamurthy R., Zhu H., and

Vaithyanathan S. An algebraic approach to rule-based informa-

tion extraction. In Proc. 24th Int. Conf. on Data Engineering,

2008, pp. 933–942.

14. Shen W., Doan A., Naughton J., and Ramakrishnan R. Declara-

tive information extraction using datalog with embedded ex-

traction predicates. In Proc. 33rd Int. Conf. on Very Large Data

Bases, 2007, pp. 1033–1044.
Web Information Extraction System

▶Web Data Extraction System

WEB Information Retrieval Models W 3479
Web Information Integration and
Schema Matching

▶Data Integration in Web Data Extraction System
W

WEB Information Retrieval Models

CRAIG MACDONALD, IADH OUNIS

University of Glasgow, Glasgow, UK

Synonyms
Web search engines

Definition
The Web can be considered as a large-scale document

collection, for which classical text retrieval techni-

ques can be applied. However, its unique features and

structure offer new sources of evidence that can be

used to enhance the effectiveness of Information

Retrieval (IR) systems. Generally, Web IR examines

the combination of evidence from both the textual

content of documents and the structure of the Web,

as well as the search behavior of users and issues related

to the evaluation of retrieval effectiveness in the

Web setting.

Web Information Retrieval models are ways of inte-

grating many sources of evidence about documents,

such as the links, the structure of the document, the

actual content of the document, the quality of the doc-

ument, etc. so that an effective Web search engine can

be achieved. In contrast with the traditional library-

type settings of IR systems, the Web is a hostile envi-

ronment, where Web search engines have to deal with

subversive techniques applied to give Web pages artifi-

cially high search engine rankings. Moreover, the Web

content in heavily duplicated, for example by mirror-

ing, which search engines need to account for, while the

size of the Web requires search engines to address the

scalibility of their algorithms to create efficient search

engines.

The commonly known PageRank algorithm –

based on a documents hyperlinks – is an example of

a source of evidence about a document to identify high

quality documents. Another example is the commonly

applied anchor text of the incoming hyperlinks. These

sources of evidence are two of the most popular exam-

ples of link-based sources of evidence.
Historical Background
The first search engines for the Web appeared around

1992–1993, notably with the full-text indexing Web-

Crawler and Lycos both arriving in 1994. Soon

after, many other search engines arrived, including

Altavista, Excite, Inktomi and Northern Light. These

often competed directly with directory-based services,

like Yahoo!, which added search engine facilities later.

The rise in prominence of Google, in 2001, was due to

its recognition that the underlying Web search user task

is not an adhoc task (where users want lots of relevant

documents, but not any ones in particular) to a more

precision oriented task, where the relevance of the top-

ranked result is important. This set Google apart from

other search engines, since by using link analysis techni-

ques (such as PageRank), hyperlink anchor text and other

heuristics such as the title of the page, it could find itself at

rank #1 for the query ‘‘google.’’ This is something none of

the other search engines at that time could achieve.

Since then, there has been a distinct consolidation

in theWeb search engine market, with only three major

players taking the majority of the English market:

Google, Yahoo! and MSN Live. However, additional

search engines are thriving in other areas: Baidu and

Yandex have high penetration in the Chinese and

Russian markets respectively, while Technorati, Blog-

Pulse and other blog search engines are popular in the

blogosphere. However, since the arrival of Google,

the Web IR research field has become much more

active, with many more research groups, and more

conferences than before, to the point that it is almost

a separate research field in its own right, with two

separate ACM conferences (World Wide Web Confer-

ence, andWeb Search and DataMining Conference), in

addition to the existing IR conferences.

Foundations
The Web can be considered as a large-scale document

collection, for which classical text retrieval techniques

can be applied. However, its unique features and

structure offer new sources of evidence that can be

used to enhance the effectiveness of IR systems. Gen-

erally, Web IR examines the combination of evidence

from both the textual content of documents and the

structure of the Web, as well as the search behavior of

users, and issues related to the evaluation of retrieval

effectiveness.

The information available on the Web is very

different from the information contained in either

3480W WEB Information Retrieval Models
libraries or classical IR collections. A large amount of

information on the Web is duplicated, and content is

often mirrored across many different sites. Moreover,

many documents can be unintentionally, or intention-

ally inaccurate, or are intended to mislead search

engines since this is their purpose. This means that

Web IR models need to be developed so they can

perform well in such a hostile environment.

The Web is based on a hypertext document model,

where documents are connected with direct hyper-

links. This results in a virtual network of documents.

A major development in the Web IR field was that of

query independent evidence. In particular, Page et al’s

PageRank algorithm [1] determines the quality of a

document by examining the quality of the documents

linked to it. In particular, the PageRank scores corre-

spond to the probability of visiting a particular node in

a Markov chain for the whole Web graph, where the

states represent Web documents, and the transitions

between states represent hyperlinks. PageRank was

reported to be a fundamental component of the early

versions of the Google search engine [1], and is benefi-

cial in high-precision user tasks, where the relevance

and quality of the top-ranked documents are important.

Many other similar link analysis algorithms have

been proposed, including those that can be applied in a

query-dependent or independent fashion. Most are

based on random-walks, calculating the probability of

a random Web user visiting a given page. Examples are

Kleinberg’s HITS [6] and the Absorbing Model [13].

Other sources of document quality have been

reported, including the use of the URL evidence to

determine the type of the page (for instance, whether

the URL is short or long, or how many ‘‘/’’ characters it

contains [7]).

The integration of such query independent evi-

dence into the ranking strategy is an important issue.

In the language modeling framework, it is natural to

see the integration of query independent evidence as a

document prior, that defines the overall likeliness of

the document’s retrieval [7]. Craswell et al. [3] intro-

duce a framework (FLOE) for integrating query inde-

pendent evidence with the retrieval score from BM25.

The integration of several priors remains an important

problem. Peng et al. [10] propose a probabilistic

mehod of combining several document priors in the

language modeling framework, while Plachouras [11]

examines how various query independent evidence can

be applied on a query-by-query basis.
The algorithms HITS and PageRank, along with

their extensions, explicitly employ the hyperlinks

between Web documents, in order to find high quality,

or authoritative Web documents. A form of implicit

use of the hyperlinks in combination with content anal-

ysis is to use the anchor text associated with the incom-

ing hyperlinks of documents. Web documents can be

represented by an anchor text surrogate, which is

formed from collecting the anchor text associated with

the hyperlinks pointing to the document. The anchor

text of the incoming hyperlinks provides a concise

description for a Web document. The used terms in

the anchor text may be different from the ones that

occur in the document itself, because the author of the

anchor text is not necessarily the author of the docu-

ment. Indeed, Craswell et al. [2] showed that anchor

text is very effective for navigational search tasks and

more specifically for finding home pages of Web sites.

Several models have since been developed that use

the anchor text of a document in addition to the con-

tent. Kraaij et al. [7] and Ogilvie and Callan [9] des-

cribe mixture language modeling approaches, where

the probability of a term’s occurrence in a document

is the mixture of the probability of its occurrence in

different textual representations of the document (e.g.,

content, title, anchor text).

Later, Robertson et al. [14] showed that due to

the different term occurrence distributions of the differ-

ent representations of a document, it is better to com-

bine frequencies rather than scores. Indeed, shortly

thereafter, Zaragoza et al. [16] and Macdonald et al. [8]

devised weighting models where the frequency of a

term occurring in each of a document’s representations

is normalized and weighted before scoring by the

weighting model. This allows a fine-grained control

over the importance of each representation of the docu-

ment in the document scoring process. This has been

further investigated by the use of multinomial Diver-

gence from Randomness models to score structured

documents [12].

Key Applications
Web Search Engines are heavy developers and users of

Web IR technology. Yet, to prevent exploitation by

spammers and imitation by commercial rivals, the

models applied by the search engines remain closely-

guarded secrets. However, in recent years, the IR

research field has grown, and many groups are now

researching topics related toWeb IR. The TREC forum,

WEB Information Retrieval Models. Table 1. Tasks and

collections applied by various Web IR tracks at TREC

TREC Track Collection Tasks

2006 Terabyte .GOV2 Adoc, Named page

2005 Terabyte .GOV2 Adhoc, Named page

2004 Terabyte .GOV2 Adhoc

2004 Web .GOV Mixed (Home page,
Named page, Topic
Distillation)

2003 Web .GOV Home page, Named
page, Topic Distillation

2002 Web .GOV Named page, Topic
Distillation

2001 Web WT10G Adhoc, Home page

2000 Web WT10G Adhoc

1999 Web WT2G Adhoc

WEB Information Retrieval Models. Table 2. Web IR

research test collections

Collection # Documents # Links

.GOV2 25,205,179 261,937,150

.GOV 1,247,753 11,110,989

WT10G 1,692,096 8,063,026

WT2G 247,491 1,166,146

WEB Information Retrieval Models W 3481

W

discussed below, is a facilitator of much of this re-

search, providing samples of the Web for research

purposes

Future Directions
There are many open problems in Web IR research. In

particular, spam is an ever-growing issue – many sites

are created with the purpose of manipulating search

engine rankings for financial gain (e.g., advertising

revenue). Search engines are in a constant battle with

the spammers, and are constantly becoming more

robust in adversial conditions.

Large Web search engines have often identified a

huge number of features for every web page. Indeed,

recent reports from the Microsoft Live search engine

suggest that they use over 300 features when ranking

web pages. At this scale, how should these features be

combined? This area of interest has been recently gain-

ing much interest from the IR and machine learning

communities, and was the subject of the Learning

To Rank for Information Retrieval workshop [5]. Gen-

erally, speaking, the idea is that machine learning tech-

niques can be applied to learn a function from

the input data and the evaluation results, instead of

developing a function from a theory. The Learning to

Rank sub-field also encompasses the large-scale

learning that search engines perform using the click-

through data gleaned from user sessions, allowing

them to learn the best results for popular queries.

The advent of the blogging phenomenon has created

many new and interesting search and data mining tasks

for search engines in the era of user-generated content.

The blogging community (known as the blogosphere)

often responds to real-life events with comment and

rhetoric. The TREC Blog track has been created to inves-

tigate retrieval issues in this niche area of the Web, and

has thus far investigated the retrieval of opinionated posts

– finding blog posts which not only discuss a target, but

also disseminate an opinion about the target.

As Web search becomes ubiquitious for the average

knowledge worker, the need for internal company

search engines to allow employees to search and mine

the company intranet are becoming important. To this

end, the TREC Enterprise track has been investigating

retrieval tasks in the Enteprise setting.

Data Sets
Much research into techniques for Web IR has centered

around the Text REtrieval Conference (TREC) Web
track and other related tracks. In particular, TREC has

investigated retrieval from various samples of the Web,

and produced several test collections. Each test collection

consists of a corpus ofWeb documents crawled from the

Internet, combined with queries with information needs

(known as topics), and relevance assessments.

Table 1 introduces the years that Web tasks ran at

TREC. The document corpora used are described fur-

ther in Table 2. It is of note over the early years of the

Web tracks, the tasks were being developed, and hence

in the early years, the user tasks are not the most

common task that users perform in search engines (e.

g., Adhoc retrieval). Instead, the focus on early preci-

sion and known-item retrieval tasks (e.g., Home page

and Named page finding) were developed from studies

of user interactions with search engines [15].

Table 2 describes the collections used for the TREC

Web and Terabyte tracks, over the years 1999–2006.

When developing Web IR techniques, where it is appro-

priate, it is common to apply the techniques on these

3482W Web Macros
standard test collections, and compare to appropriately

trained baselines. Hawking and Crasswell [4] contains

an overview of the Web track at TREC. Relatedly, TREC

also has two test collections for Enterprise IR research,

and a further collection for Blog IR research.

URL to Code
Text REtrieval Conference: http://trec.nist.gov Web

and Blog Test Collections: http://ir.dcs.gla.ac.uk/

test_collections ACM Special Interest Group IR: http://

www.sigir.org/

Cross-references
▶BM25

▶Divergence from Randomness Models

▶ Indexing the Web

▶ Information Retrieval Models

▶ Probabilistic Retrieval Models and Binary Indepen-

dence Retrieval (BIR) Model

▶Web Indexing

▶Web Page Quality Metrics

▶Web Spam Detection

Recommended Reading
1. Brin S. and Page L. The anatomy of a large-scale hypertextual

Web search engine. Comput. Netw. ISDN Syst., 30(1–7):

107–117, 1998.

2. Craswell N., Hawking D., and Robertson S. Effective site

finding using link anchor information. In Proc. 24th Annual

Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 2001, pp. 250–257.

3. Craswell N., Robertson S., Zaragoza H., and Taylor M. Relevance

weighting for query independent evidence. In Proc. 31st Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 2005, pp. 416–423.

4. Hawking D. and Craswell N. The very large collection and

Web tracks. In TREC: Experiment and Evaluation in Informa-

tion Retrieval. Kluwer Academic Publishers, Dordrecht, 2004,

pp. 199–232.

5. Joachims T., Li H., Liu T.Y., and Zhai C. SIGIR workshop report:

learning to rank for information retrieval (LR4IR 2007). SIGIR

Forum, 41(2):55–62, 2007.

6. Kleinberg J.M. Authoritative sources in a hyperlinked environ-

ment. J. ACM, 46(5):604–632, 1999.

7. Kraaij W., Westerveld T., and Hiemstra D. The importance of

prior probabilities for entry page search. In Proc. 25th Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 2002, pp. 27–34.

8. Macdonald C., Plachouras V., He B., Lioma C., and Ounis I.

University of Glasgow at WebCLEF 2005: Experiments in per-

field normlisation and language specific stemming. In Proc.

6th Workshop, Cross-Language Evaluation Forum, 2005,

pp. 898–907.
9. Ogilvie P. and Callan J. Combining document representations

for known-item search. In Proc. 26th Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

2003, pp. 143–150.

10. Peng J., Macdonald C., He B., and Ounis I. Combination of

document priors in Web information retrieval. In Proc. 8th Int.

Conf. Computer-Assisted Information Retrieval, 2007.

11. Plachouras V. Selective Web Information Retrieval. PhD thesis,

Department of Computing Science, University of Glasgow, 2006.

12. Plachouras V. and Ounis I. Multinomial randomness models for

retrieval with document fields. In Proc. 29th European Conf. on

IR Research, 2007, pp. 28–39.

13. Plachouras V., Ounis I., and Amati G. The static absorbing

model for the Web. J. Web Eng., 165–186, 2005.

14. Robertson S., Zaragoza H., and Taylor M. Simple BM25 exten-

sion to multiple weighted fields. In Proc. Int. Conf. on Informa-

tion and Knowledge Management, 2004, pp. 42–49.

15. Silverstein C., Henzinger M., Marais H., and Moricz M. Analysis

of a very large AltaVista Query Log. Technical Report 1998-014,

Digital SRC, 1998.

16. Zaragoza H., Craswell N., Taylor M., Saria S., and Robertson S.

Microsoft cambridge at TREC-13:Web and HARD tracks. In Proc.

the 4th Text Retrieval Conf., 2004.
Web Macros

▶Web Data Extraction System
Web Mining

▶Data, Text, and Web Mining in Healthcare

▶ Languages for Web Data Extraction

▶Web Harvesting
Web Mashups

MARISTELLA MATERA

Politecnico di Milano University, Milan, Italy

Synonyms
Composite Web applications

Definition
Web mashups are innovative Web applications, which

rely on heterogeneous content and functions retrieved

from external data sources to create new composite

services.

Web Page Quality Metrics W 3483
Key Points
Web mashups characterize the second generation of

Web applications, known as Web 2.0. They are com-

posite applications, usually generated by combining

content, presentation, or application functionality

from disparate Web sources.

Typical components that may be mashed-up, i.e.,

composed, are RSS/Atom feeds, Web services, pro-

grammable APIs, and also content wrapped from

third party Web sites. Components may have a proper

user interface that can be reused to build the interface

of the composite application, they may provide com-

puting support, or they may just act as plain data

sources. Content, presentation and functionality, as

provided by the different components, are then com-

bined in disparate ways: via JavaScript in the browser,

via server-side scripting languages (like PHP), or via

traditional languages like Java.

Cross-references
▶Visual Interaction

▶Web 2.0/3.0
Web Ontology Language

▶OWL: Web Ontology Language
W

Web Page Quality Metrics

RAVI KUMAR

Yahoo Research, Santa Clara, CA, USA

Synonyms
Link analysis

Definition
The primary mission of web search engines is to obtain

the best possible results for a given user query. To accom-

plish this effectively, they rely on two crucial pieces of

information: the relevance of a web page to the query

and some aspect of the quality of the web page that is

independent of the query. Relevance, the extent to which

the query matches the content of the web page, is for-

malized and extensively studied in the field of informa-

tion retrieval. Quality, on the other hand, is more

nebulous and less well-defined. Nevertheless, one can
identify three concrete and somewhat complementary

aspects to the quality of a web page. The first is based

on the absolute goodness of the web page and its asso-

ciated meta-data. This might depend on a variety of

parameters, including the worth of content that exists

on the web page, the reputation of the person who

authored the web page, the importance of the web site

that hosts the web page, and so on. The second way is

to focus on the quality of the web page as perceived by

other pages that exist on the web. This can be captured

by links that point to the web page: a hyperlink from

one web page to another can be viewed as an endorse-

ment of the latter by the former. The third way to

measure quality is to focus on the how the web users

perceive this page. This can be realized by studying

the traffic on the web page. The main focus of this

entry will be the second aspect of web page quality.

Historical Background
Web search engines were originally built using mainly

classical information retrieval techniques, which were

used to calculate the relevance of a query to a web page.

The techniques were often modified in simple ways to

account for the fact that most of the content on the

web was written in HTML; for example, the presence

of a query term in the title of the web page can connote

a higher relevance. These methods served well in the

early days of the web, but became increasingly inade-

quate as the web grew. One reason was they failed to

take into account a distinctive feature of web pages: the

presence of explicit hyperlinks created by people to

link one document to another.

At a coarse level, the role of hyperlinks inweb pages is

two-fold. The first is to aid in the browsability and

navigability from one web page to another on a web

site. The second is to refer to outside sources of informa-

tion that are considered relevant and authoritative by the

author of the web page. Independently and almost con-

currently, Brin and Page [4] and Kleinberg [12] came up

with different methods to exploit the presence of links in

order to ascribe a notion of quality to a web page, in the

context of a collection of web pages with hyperlinks

between them. The idea of using links between docu-

ments to infer a quality measure has precedents in the

field of bibliometrics. For example, impact factor was

proposed by Garfield [7] to measure the quality of

scientific journals. It was defined as the average num-

ber of citations to the journal. Bibliographic coupling

was proposed by Kessler [11] to measure similarity of

3484W Web Page Quality Metrics
two hyperlinked documents. It was defined as the total

number of documents linked to by both documents.

An alternate measure for document similarity was

proposed by Small [15]: count of the total number of

documents that have a link to both the documents.

The above measures treat all links alike and do

not account for the quality of the citing document.

A pervading theme in the works of Brin and Page and

Kleinberg is to treat different links differently. This

simple principle has proved to be very effective in

practice in terms of improving web search and has

found tremendous use in commercial search engines,

even beyond web search.

Foundations
For the remainder of the entry, it is convenient to view

the web as a directed graph or as a matrix. The web

pages are nodes in this graph and the hyperlinks from

one web page to another constitute the directed edges.

This graph defines a natural adjacency matrixM whose

(p,q)-th entry Mpq is 1 if and only if page p has a

hyperlink to page q and 0 otherwise.

In 1998, Brin and Page [4] proposed a simple

iterative method to define quality of a web page.

Their method, called PageRank, used the hyperlinks

to arrive at the quality. One way to think about this

method is to focus on the following browsing behavior

of a web user. Most of the times, the user visits a web

page and after browsing, chooses one of the hyperlinks

on the page at random to select the next page to

browse. There is also a small chance that the user

abandons browsing the current page entirely and

chooses a random web page to continue browsing.

This behavior can be formalized as follows. Each

page p has a non-negative value p(p), updated itera-

tively. A stochastic process can be defined to abstract

the user behavior, and in the limit, p(p) will be the

fraction of the time spent at page p by the process. Let

a 2 (0,1) be a fixed constant. At each step of the

process, with probability a, the process jumps to a

page chosen uniformly at random from the entire set

of web pages. With the remaining probability 1 � a,
the process jumps to a web page q chosen uniformly at

random from the set of web pages to which page p has

a hyperlink. If p has no hyperlinks, then the process

jumps to a web page chosen uniformly at random from

the entire set of pages. Observe that this process can be

modeled by the iteration~ptþ1 ¼ PT~pt with P = (1� a)
M0 + aJ. Here, M0 is a stochastic matrix corresponding
to the above process, J is the matrix where each entry is

inverse of the total number of nodes in the graph, and

a is the teleportation probability, usually chosen

around 0.15. Notice that M0 can be easily derived

from the adjacency matrix M.

Since the above iteration corresponds to a linear

system, it converges to a fixed-point ~p¼ limt!1~pt ,
which is the principal eigenvector of PT. The quality

of a page p is given by the value p(p).
Many variants and extensions of the basic Page-

Rank method have been proposed. A particularly inter-

esting extension, called topic-sensitive PageRank, was

proposed by Haveliwala [10]. The goal of this method

is to define a quality measure that is biased with respect

to a given topic. First, a subset of pages that correspond

to the topic is identified; this can be done, for instance,

by building a suitable classifier for the topic. Next, the

basic PageRank process is modified in the following

manner. Instead of jumping with probability a to a

random page chosen from the entire set of web pages,

the process jumps to a page chosen uniformly at ran-

dom from this subset of pages. As before, the iteration

converges and a quality measure for each page that is

specific to this topic can be obtained.

Also in 1998, Kleinberg [12] proposed a different

iterative method to define a quality of a web page. His

method, called HITS, is aimed at finding the most

authoritative sources in a given collection of web

pages. The intuition behind HITS is the following.

Each web page has two attributes, namely, how good

is the page as an authority and how good is the page as

a hub in terms of the quality of web pages to which it

links. These two attributes mutually reinforce one an-

other: the quality of a page as an authority is deter-

mined by the hub quality of pages that have a hyperlink

to it and the quality of a page as a hub is determined by

the authority quality of the pages to which it

hyperlinks.

This reinforcement can be mathematically written

in the following manner. Each page p has a hub value

h(p) and an authority value a(p). Translating the

above intuition into iterative equations, one can

obtain at+1(p) = ∑ qjq!pMqpht(q) and ht+1(p) =

∑ qjp!qMpqat(q). Since these iterations correspond to

linear systems, they converge to their respective fixed

points ~a and ~h. It is easy to see that ~a is the principal

eigenvector of MTM and~h is the principal eigenvector

ofMMT. The quality of a web page p as an authoritative

page is then given by its authority value a(p).

Web Question Answering W 3485

W

There have been several modifications and exten-

sions to Kleinberg’s original work. For instance,

[2,5,6,13]. Chakrabarti et al. [5] used the anchortext

of a link to generalize the entries in M to [0,1]. Bharat

and Henzinger [2] proposed many heuristics, includ-

ing ones to address the issue of a page receiving unduly

high authority value by virtue of many pages from the

same web site pointing to it. Lempel and Moran [13]

proposed a HITS-like method with slightly different

definitions of authority and hub values.

For a comparative account of PageRank and HITS,

the readers are referred to the survey byBorodin et al. [3].

Key Applications
As mentioned earlier, web page quality can be a vital

input to the effectiveness of search engines. Besides this

obvious application, ideas behind PageRank and HITS

have been used to tackle many other problems on the

web. Four such applications are mentioned below.

Gyöngyi et al. [9] developed link analysis methods to

identify spam web pages. Their method is based on

identifying a small, reputable set of pages and using the

hyperlinks to discover more pages that are likely to be

good. Rafiei and Mendelzon [14] used random walks

and PageRank to compute the topics for which a given

web page has a good reputation. Bar-Yossef et al. [1]

proposed a random walk with absorbing states to com-

pute the decay value of aweb page, where the decay value

of a page measures how well-maintained and up-to-date

is the page. Gibson et al. [8] used theHITS algorithm as a

means to identifying web communities.

Cross-references
▶ Information Retrieval

▶Web Data Management

Recommended Reading
1. Bar-Yossef Z., Broder A., Kumar R., and Tomkins A. Sic transit

gloria telae: towards and understanding of the web’s decay. In

Proc. 12th Int. WorldWideWeb Conference, 2004, pp. 328–337.

2. Bharat K. and Henzinger M. Improved algorithms for topic

distillation in a hyperlinked environment. In Proc. 21st Annual

Int. ACM SIGIR Conf. on Research and Development in Infor-

mation Retrieval, 1998, pp. 104–111.

3. Borodin A., Roberts G.O., Rosenthal J.S., and Tsaparas P. Link

analysis ranking algorithms, theory, and experiments. ACM

Trans. Internet Tech., 5:231–297, 2005.

4. Brin S. and Page L. The anatomy of a large-scale hypertextual

web search engine. Comput. Netw., 30:107–117, 1998.

5. Chakrabarti S., Dom B., Gibson D., Kleinberg J., Raghavan P.,

and Rajagopalan S. Automatic resource compilation by
analyzing hyperlink structure and associated text. Comput.

Netw., 30:65–74, 1998.

6. Chakrabarti S., Dom B., Gibson D., Kumar R., Raghavan P.,

Rajagopalan S., and Tomkins A. Spectral filtering for resource

discovery. In Proc. ACM SIGIR Workshop on Hypertext Analy-

sis. 1998, pp. 13–21.

7. Garfield E. Citation analysis as a tool in journal evaluation.

Science, 178:471–479, 1972.

8. Gibson D., Kleinberg J., and Raghavan P. Inferring Web com-

munities from link topology. In Proc. ACM Conference on

Hypertext, 1998, pp. 225–234.

9. Gyöngyi Z., Garcia-Molina H., and Pedersen J. Combating web

spam with TrustRank. In Proc. 30th Int. Conf. on Very Large

Data Bases, 2004, pp. 576–587.

10. Haveliwala T.H. Topic-sensitive PageRank: A context-sensitive

ranking algorithm for web search. IEEE Trans. Knowl. Data Eng.,

15:784–796, 2003.

11. Kessler M.M. Bibliographic coupling between scientific papers.

Am. Doc., 14:10–25, 1963.

12. Kleinberg J. Authoritative sources in a hyperlinked environment.

J. ACM, 46:604–632, 2000.

13. Lempel R. and Moran S. SALSA: the stochastic approach for link-

structure analysis. ACM Trans. Inform. Syst., 19:131–160, 2001.

14. Rafiei D. and Mendelzon A.O. What is this page known

for? Computing web page reputations. Comput. Netw.,

33:823–835, 2000.

15. Small H. Co-citaton in the scientific literature: a new measure

of the relationship between two documents. J. Am. Soc. Inform.

Sci., 24:265–269, 1973.
Web QA

▶Web Question Answering
Web Query Languages

▶ Semantic Web Query Languages
Web Question Answering

CHARLES L. A. CLARKE

University of Waterloo, Waterloo, ON, Canada

Synonyms
Web QA

Definition
Aquestion answering (QA) system returns exact answers

to questions posed by users in natural language, together

3486W Web Question Answering
with evidence supporting those answers. A Web QA

system maintains a corpus of Web pages and other

Web resources in order to determine these answers and

to provide the required evidence.

A basic QA system might support only simple

factual (or ‘‘factoid’’) questions. For example, the

user might pose the question

Q1. What is the population of India?

and receive the answer ‘‘1.2 billion,’’ with evidence

provided by the CIAWorld Factbook. A more advanced

QA system might support more complex questions,

seeking opinions or relationships between entities. An-

swering these complex questions might require the com-

bination and integration of information from multiple

sources. For example, the user might pose the question

Q2. What methods are used to transport drugs from

Mexico to the U.S.?

and hope to receive a summary of information drawn

from newspapers articles and similar documents.

These two examples bracket the capabilities of current

systems. Most QA systems can easily answer Q1, while

questions such as Q2 represent an area of active

research.

It is important to note that this definition of Web

QA does not encompass Websites that allow users to

answer each other’s questions, nor sites that employ

human experts to answer questions.

Historical Background
While experimental question answering systems have

existed since the 1960’s, research interest in question

answering increased substantially in 1999, with the in-

troduction of a question answering track at the Text

REtreival Conference (TREC) [14,19]. TREC is an an-

nual evaluation effort supervised by the US National

Institute of Standards and Technology (NIST). Since its

inception in 1991, TREC has conducted evaluation

efforts for a wide range of information retrieval tech-

nologies, including question answering.

Inspired by the TREC QA track, Kwok et al. [8]

developed one of the earliest Web QA systems. Their

MULDER system answered questions by issuing queries

to a commercial Web search engine and selecting

answers from the pages it returned. They compared

the performance of their system to that of several

commercial search engines on the task of answering

factoid questions taken from the TREC QA track.

Also inspired by TREC, Radev et al. [16] developed

a method for converting questions into Web queries by
applying techniques borrowed from statistical machine

translation. Clarke et al. [5] crawled pages from the

Web in order to gather information for answering

trivia questions. Work by Dumais et al. [6] demon-

strated the value of fully exploiting the volume of

information available on the Web. Lam and Özsu [9]

applied information extraction techniques to mine

answers from multiple Web resources.

Much of the work on question answering was

conducted outside the context of the Web. A general

survey of this work is given by Prager [14]. An over-

view of many influential methods and systems is

provided by Strzalkowski and Harabagiu [17].

Foundations
Question answering is an extremely broad area, integrat-

ing aspects of natural language processing, machine

learning, data mining and information retrieval. This

entry focuses primarily on the use of Web resources for

question answering.

Figure 1 provides a conceptual overview of the ar-

chitecture of a basic QA system, showing the main

components and processing steps. The system analyzes

questions entered by the user, generates queries to collec-

tions of source material downloaded from the Web,

and then selects appropriate answers from the resulting

passages and tuples. The architecture shown in this

figure emphasizes those components that are related to

information retrieval and database systems, representing

a composite derived from the published descriptions of

a number of experimental systems [5,6,8,12,14,20]. The

details of specific QA systems may differ substantially

from this figure; an advanced QA system may include

many additional components.

Sources for question answering are downloaded

from the Web using a crawler, which is similar in

construction and operation to the crawlers used by

commercial Web search engines. After crawling, an

inverted index is constructed, to allow the resulting

collection to be searched efficiently.

Before construction of this inverted index, the

crawler may annotate the collection to aid in question

answering. For example, named entities, such as peo-

ple, places, companies, quantities and dates, may be

identified [15]. NLP techniques such as part-of-speech

tagging and lightweight parsing may be applied. The

creation of the index may also incorporate any of

the standard indexing techniques associated with

Web search, including link analysis.

Web Question Answering. Figure 1. Architecture of a Web question answering system.

Web Question Answering W 3487

W

Since the operation of a generalWeb crawler requires

substantial effort and resources, many experimental QA

systems substitute a commercial Web search engine for

this crawling component [8]. To answer questions, one

or more queries are issued to the search engine. Answers

are then selected from the top documents returned

by these queries.

As an additional post-processing step, distinct

from crawling, the QA systemmay perform information

extraction and text mining to identify events and rela-

tionships within the crawled pages. This extracted in-

formation, in the form of tuples, is used to populate

tables of facts for reference by the QA system, essen-

tially providing ‘‘prepared’’ answers for many factoid

questions [2]. For example, associations between

books and their authors, or between companies and

their CEOs might be established in this way [1,4].

In addition, facts may be collected from pre-

established sources that are known to be reliable. For

example, current scores and schedulesmight be scraped

from a sports Website; up-to-date movie and TV trivia

might be taken from an entertainment site. Wrappers

to collect this information might be constructed man-

ually or learned from examples [7]. Since all answers

should be appropriately supported by evidence, tuples

containing extracted information should include links

to the sources from which they are derived.
The result of these crawling and information extrac-

tion steps are two indexed collections. The first collec-

tion is a Web corpus of pre-processed Web pages,

annotated to support question answering. The second

collection is a database of extracted relations, providing

pre-computed facts and answers. In its function and

form, the first collection resembles a traditional infor-

mation retrieval system; the second collection resem-

bles a traditional relational database system.

These collections are prepared in advance of user

queries. Answers are then determined by accessing and

merging information from both collections. In a

deployed QA system, these collections would be main-

tained on an on-going basis, much as an incremental

crawler maintains the index of a commercial Web

search engine.

After a user enters a question, the first stage in pro-

cessing it is a question analysis step, in which an answer

type is derived and queries to the retrieval components

are constructed. The nature of the response required

from the system will vary from question to question.

The answer to a question might require a fact (‘‘How

many planets are there?’’), a list (‘‘What are the

names of the planets?’’), a yes-no response (‘‘Is Pluto

a planet?’’), a definition (‘‘What is a dwarf planet?’’), or

a description (‘‘Why isn’t Pluto a planet anymore?’’).

The role of the answer type is to convey the nature of

3488W Web Question Answering
the expected response to the answer selection com-

ponent, providing a mapping of the question onto

the domain supported by the system.

The depth and detail provided by these answer types

varies substantially from system to system. Broadly, the

answer type encodes constraints implied by the question,

which must be satisfied by the answer. For example, the

answer type associated with Q1 might be any of

� QUANTITY

� POPULATION

� POPULATION (COUNTRY (‘‘India’’))

where the notation in this example is strictly for illus-

trative purposes. Depending on the system, an answer

type might be encoded in a wide variety of ways. The

answer type associated with Q2, might be any of

� SNIPPET

� SUMMARY

� SUMMARY (‘‘transport’’, ‘‘drugs’’, COUNTRY

(‘‘United States’’), COUNTRY(‘‘Mexico’’))

These examples merely suggest the range of possibilities

for expressing an answer type, which may include

enumerations, patterns, and trees. Since a QA system

should ideally be able to handle any question, many

systems will support a catch-all OTHER answer type.

In addition to the answer type, the question analy-

sis component generates queries to the two retrieval

components: the passage retrieval component, which

searches the Web corpus, and the relational retrieval

component, which searches the extracted relations.

The passage retrieval component searches the Web

corpus and returns passages that may contain the an-

swer. At its simplest, a query to the passage retrieval

component is a list of keywords and phrases, resem-

bling a typical query to a Web search engine. For

example, for Q1 the generated query might be ‘‘popu-

lation india,’’ and for Q2 it might be ‘‘transport

drugs mexico’’. At its simplest, the relational compo-

nent may be queried using SQL, returning tuples

that may contain the answer. For Q1, the population

of India could be retrieved from a table of country

populations and passed to the answer selection

component.

For more complex questions, the queries issued to

the retrieval components will be correspondingly more

complex. In some cases, multiple queries may be issued

to either or both components, particularly when the

answer requires more than a simple fact. For example,
as part of processing Q2, the relational component

might retrieve lists of illicit drugs, the names of drug

cartels and their leaders, and geographic locations

along the US/Mexican border. It is also possible for

the retrieval components to associate quality or cer-

tainty scores with passages and tuples they return, and

these scores may then be taken into consideration

when selecting an answer.

Constraints implied by the answer type might also

be incorporated into the query. For example, the query

‘‘population india <quantity>’’ includes a an-

notation tag indicating that a retrieved passage should

contain a positive numeric value. The annotations

generated during the creation of the Web corpus may

allow the passage retrieval component to support

structured queries that precisely specify the required

content of an answer-bearing passage [3].

For question answering, passage retrieval is nor-

mally preferred over the document-oriented retrieval

typical of other IR systems. In many cases, answers to

questions are contained within a few sentences or

paragraphs, and the use of passages reduces the proces-

sing load placed on the answer selection component.

Even when an answer requires information from mul-

tiple sources, the information required from each

source can often be found within a short passage.

Typically, passages are one or more sentences in

length, and the passage retrieval component might

return tens or hundreds of passages for analysis by

the answer selection component. For Q1, the passage

retrieval component might return passages such as:

� Uttar Pradesh is not only the most populous state in

India but is also one of the largest in area . . .

� The population of India grew by near 20% during the

1990’s to more than 1.1 billion . . .

� India is home to roughly 1.2 billion people . . .

Keywords associated with the query are underlined. As

seen in this example, the terms in passages need not

match the keywords exactly; matches against morpho-

logical variants and other related terms (‘‘populous’’

and ‘‘people’’) may also be permitted. Passage retrieval

algorithms for question answering usually treat prox-

imity of query keywords as an important feature for

retrieval. Good passages may contain most or all of the

query keywords in close proximity [18].

Guided by the answer type, the answer selection

component analyzes the passages and tuples returned

by the retrieval components to generate answers.

Web Question Answering W 3489

W

Depending on the answer type, the output from this

component may be a ranked list, a single best answer, or

even a null answer, indicating that the system was un-

able to answer the question. In determining possible

answers, the selection component may start by identify-

ing a set of candidate answers. For example, given an

answer type of QUANTITY and the list of passages

above, the set of answer candidates might include

‘‘20%,’’ ‘‘1990,’’ ‘‘more than 1.1 billion’’ and ‘‘roughly

1.2 billion.’’ If the answer type is more restrictive, the

candidates ‘‘20%’’ and ‘‘1990’’ might be excluded from

the set.

If a candidate answer appears in multiple passages,

this repetition or redundancy may strengthen the sup-

port for that candidate. For example, the candidate

answers ‘‘more than 1.1 billion’’ and ‘‘roughly 1.2 billion’’

provide redundant support for an answer of ‘‘1.2 billion.’’

Redundancy is an important feature in many answer

selection algorithms [5,6]. The answer selection compo-

nent must balance the support provided by redundancy

with other factors, in order to select its final answer.

In the leading research systems, answer selection is

a complex process, and the development effort under-

lying this component may substantially outweigh the

development effort underlying the rest of the system

combined. In these advanced systems, the answer se-

lection component may issue additional queries to the

retrieval components as it tests hypotheses and evalu-

ates candidate answers [13]. A discussion of advanced

techniques for answer selection is beyond the scope of

this entry. Additional information, and references to

the literature, may be found in Prager [14].

Evaluation efforts have been undertaken annually by

NIST since 1999. Each year, dozens of research groups

from industry and academia participate in these experi-

mental efforts. While these efforts do not specifically

focus on question answering in a Web context, the

evaluation methodologies developed as part of these

efforts may be applied to evaluate Web QA systems.

Instead of a Web corpus, a test collection of news-

paper articles and similar documents is provided by

NIST, and this collection forms the source for answers

and evidence. However, many of the participating

groups augment this collection with Web pages and

other resources in order to improve the performance of

their systems [20]. These systems use a combination of

all available resources to determine an answer, and

then project this answer back onto the test collection

to provide the required evidence.
While the details vary from year to year, the basic

experimental structure remains the same. The test col-

lection is distributed to participating groups well before

the start of a formal experiment. At the start of an

experiment, NIST distributes a test set of questions to

each group. Participants are free to annotate the test

collection and modify their systems prior to receiving

this test set, but they must freeze the development of

their systems once they receive it. Each group executes

the questions using their QA system and returns the

answers to NIST, along with supporting evidence.

Answers are manually judged by NIST assessors,

where the evidence must fully support an answer for

it to judged correct. The answers to factoid questions

are judged on a binary basis (correct or not). For more

complex questions, answers are evaluated against a list

of information ‘‘nuggets,’’ where each nugget repre-

sents a single piece of knowledge associated with the

answer [11]. For example, the use of low-water cross-

ings on the Rio Grande might form a single nugget in

the answer to Q2. Answers are then scored on the basis

of the nuggets they contain. While all judging is per-

formed manually for the official NIST results, efforts

have been made to construct automatic judging tools

and re-usable collections, which allow QA system eval-

uation to take place outside the framework of the

official experiments [10,11].

Key Applications
By providing exact answers, rather than ranked lists

of Web pages, question answering has the potential

to reduce the effort associated with finding informa-

tion on the Web. Commercial search engines already

incorporate basic question answering features. For ex-

ample, most commercial search engines provide

an exact answer in response to Q1. However, none

currently treat Q2 as anything other than a keyword

query. Bridging the gap between these questions

would represent a major step in the evolution of Web

search.

Data Sets
From 1999 to 2007, the evaluation of experimental QA

system was conducted as part of TREC (http://trec.

nist.gov). Starting in 2008, the evaluation of QA

systems was incorporated into a new experimental

conference series, the Text Analysis Conference

(http://www.nist.gov/tac/). Test collections and other

experimental data be found by visiting those sites.

3490W Web Resource Discovery
Cross-references
▶ Indexing the Web

▶ Information Retrieval

▶ Inverted Files

▶ Snippet

▶Text Mining

▶Web Crawler Architecture

▶Web Harvesting

▶Web Information Extraction

▶Web Search Relevance Ranking
Recommended Reading
1. Agichtein E. and Gravano L. Snowball: Extracting relations

from large plain-text collections. In Proc. ACM International

Conference on Digital Libraries. 2000, pp. 85–94.

2. Agichtein E. and Gravano L. Querying text databases for effi-

cient information extraction. In Proc. 19th Int. Conf. on Data

Engineering, 2003, pp. 113–124.

3. Bilotti M.W., Ogilvie P., Callan J., and Nyberg E. Structured

retrieval for question answering. In Proc. 33rd Annual Int.

ACM SIGIR Conf. on Research and Development in Informa-

tion Retrieval, 2007, pp. 351–358.

4. Brin S. Extracting patterns and relations from the World

Wide Web. In Proc. Int. Workshop on the World Wide Web

and Databases, 1998, pp. 172–183.

5. Clarke C.L.A., Cormack G.V., and Lynam T.R. Exploiting redun-

dancy in question answering. In Proc. 24th Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2001, pp. 358–365.

6. Dumais S., Banko M., Brill E., Lin J., and Ng A. Web question

answering: Is more always better? In Proc. 25th Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2002, pp. 291–298.

7. Kushmerick N., Weld D.S., and Doorenbos R.B. Wrapper induc-

tion for information extraction. In Proc. 15th Int. Joint Conf. on

AI, 1997, pp. 729–737.

8. Kwok C., Etzioni O., and Weld D.S. Scaling question answering

to the Web. ACM Trans. Inf. Syst., 19(3):242–262, 2001.

9. Lam S.K.S. and Özsu M.T. Querying Web data – the WebQA

approach. In Proc. 3rd Int. Conf. on Web Information Systems

Eng., 2002, pp. 139–148.

10. Lin J. and Katz B. Building a reusable test collection for

question answering. J. Am. Soc. Inf. Sci. Technol., 57(7):

851–861, 2006.

11. Marton G. and Radul A. Nuggeteer: Automatic nugget-based

evaluation using descriptions and judgements. In Proc. Human

Language Technology Conf. of the North American Chapter

of the Association of Computational Linguistics, 2006,

pp. 375–382.

12. Narayanan S. and Harabagiu S. Question answering based

on semantic structures. In Proc. 20th Int. Conf. on Computa-

tional linguistics, 2004, pp. 693–701.

13. Pasca M.A. and Harabagiu S.M. High performance question/

answering. In Proc. 24th Annual Int. ACM SIGIR Conf. on
Research and Development in Information Retrieval, 2001,

pp. 366–374.

14. Prager J. Open-domain question-answering. Found. Trends Inf.

Retr., 1(2):91–231, 2006.

15. Prager J., Brown E., Coden A., and Radev D. Question-

answering by predictive annotation. In Proc. 23rd Annual Int.

ACM SIGIR Conf. on Research and Development in Informa-

tion Retrieval, 2000, pp. 184–191.

16. Radev D.R., Qi H., Zheng Z., Blair-Goldensohn S., Zhang Z.,

Fan W., and Prager J. Mining the Web for answers to natural

language questions. In Proc. Int. Conf. on Information and

Knowledge Management, 2001, pp. 143–150.

17. Strzalkowski T. and Harabagiu S. (eds.). Advances in

Open Domain Question Answering. Springer, Secaucus, NJ,

USA, 2006.

18. Tellex S., Katz B., Lin J., Fernandes A., and Marton G. Quantita-

tive evaluation of passage retrieval algorithms for question an-

swering. In Proc. 26th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2003,

pp. 41–47.

19. Voorhees E.M. Question answering in TREC. In TREC: Experi-

ment and Evaluation in Information Retrieval, E.M. Voorhees

and D.K. Harman (eds.). MIT, Cambridge, MA, USA, 2005,

pp. 233–257.

20. Yang H., Chua T.-S., Wang S., and Koh C.-K. Structured use

of external knowledge for event-based open domain question

answering. In Proc. 26th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2003,

pp. 33–40.
Web Resource Discovery

▶ Focused Web Crawling
Web Scraper

▶Web Data Extraction System
Web Scraping

▶ Languages for Web Data Extraction
Web Search and Crawling

▶Biomedical Scientific Textual Data Types and

Processing

Web Search Query Rewriting W 3491
Web Search Engines

▶WEB Information Retrieval Models
Web Search Query Rewriting

ROSIE JONES
1, FUCHUN PENG

2

1Yahoo! Research, Burbank, CA, USA
2Yahoo! Inc., Sunnyvale, CA, USA

Synonyms
Query reformulation; Query expansion; Query assis-

tance; Query suggestion
W

Definition
Query rewriting in Web search refers to the process of

reformulating an original input query to a new query

in order to achieve better search results. Reformulation

includes but not limited to the following:

1. Adding additional terms to express the search in-

tent more accurately

2. Deleting redundant terms or re-weighting the

terms in the original query to emphasize important

terms

3. Finding alternative morphological forms of words

by stemming each word, and searching for the

alternative forms as well

4. Finding synonyms of words, and searching for the

synonyms as well

5. Fixing spelling errors and automatically searching

for the corrected form or suggesting it in the results

Historical Background
Web search queries are the words users type into web

search engines to express their information need. These

queries are typically 2–3 words long [7]. Traditional

information retrieval allows retrieval of documents

that do not contain all of the query words. While early

search engines such as Lycos and AltaVista also retrieved

documents which contained a subset of the query terms,

current search engines such as Yahoo, Google, and MSN

typically require web documents to contain all of the

query terms (with the exception of stop-words – words

such as prepositions and conjunctions which do not

have a large impact on overall topic meaning).
This is generally an appropriate behavior for web

search, since the large number of documents available

ensure that some documents will be found, and the

overall task is then reduced to ranking those docu-

ments. It also greatly reduces the number of docu-

ments which must be considered.

A typographical error, such as a misspelling, or use of

non-conventional terminology (such as colloquial rather

than medical terminology), or use of an ambiguous term

can lead the search engine to retrieve fewer or different

documents than the full set of documents relevant to the

user’s intent. The tendency of web searchers to look just

at the first 10–20 results [8] exacerbates the severity of

this, since it is then even more important to have the

most relevant documents at the top of the list.

Most web search engines offer interactive or

automated query rewriting, to correct spelling, suggest

synonyms for terms, and suggest related topics and sub-

topics theusermightbe interested in. In interactive query

rewriting, theweb searcher is shownone ormore options

for a spell correction or rephrasing of a query [1]. In

automatedqueryrewriting,aquery isautomaticallymod-

ifiedtocorrectspelling,addtermsorotherwisemodifythe

original query, then used to retrieve documents without

further interaction from the user [12]. Automatic query

rewriting needs to be accurate in order to avoid query

intent drifting. Hence, most query rewriting techniques

are for interactive query reformulation.

The pre-cursors to query rewriting in web search are

spell correction (first used in word processing), and

relevance and pseudo-relevance feedback [3] in infor-

mation retrieval.

Foundations

Stemming

Stemming is the process of merging words with differ-

ent morphological forms, such as singular and plural

nouns, and verbs in past and present tense. Stemming

is a long studied technology. Many stemmers have

been developed, such as the Lovins stemmer [11] and

the Porter stemmer [13]. The Porter stemmer is widely

used due to its simplicity and effectiveness in many

applications. However, the Porter stemming makes

many mistakes because its simple rules cannot fully

describe English morphology. Corpus analysis is used

to improve Porter stemmer [17] by creating equiva-

lence classes for words that are morphologically similar

and occur in similar context.

3492W Web Search Query Rewriting
Traditionally, stemming has been applied to Infor-

mation Retrieval tasks by transforming words in docu-

ments to the their root form before indexing, and

applying a similar transformation to query terms.

Although it increases recall, this naive strategy does

not work well for Web Search since it lowers precision.

Recently, a context-sensitive based on statistical ma-

chine translation [12] is successfully applied to Web

search to improve both recall and precision, by consid-

ering the likelihood of different variants occurring in

web pages. The most likely variants are used to expand

the query, and both the original query, and the mod-

ified version can be used to retrieve web pages.

Spelling Correction

In Web search, spelling correction takes a user input

query and provides a ‘‘corrected’’ form. Spelling cor-

rection is typically modeled as a noisy channel process.

Separate models are built for character level errors

(edit models which represent probabilities of character

level insertions, substitutions and deletions), and over-

all word or word sequence probability (typically re-

ferred to as a language model) [2]. Web query logs can

be used to improve the quality of models, by providing

data for the language model, as well as the edit model

[4]. Spell correction is commonly used as a query

rewriting step before retrieving documents in web

search, though the user is also sometimes consulted,

with an interface asking ‘‘Did you mean ...?’’

Recently, major search engines are taking one step

further on spelling correction by directly retrieving

results with the corrected query instead of asking

users to click on ‘‘Did you mean ...?’’ suggestions.

This significantly improves users experience as users

may not notice that their original input query are

misspelled. For example, a query ‘‘brittney spears’’

input to major search engines now can directly retrieve

results for the correct form ‘‘Britney Spears.’’ However,

it is also quite risky as it largely depends on the quality

of misspelling correction. If a wrong suggestion is used,

the retrieve search results would be totally different

from the original user intent. Thus, this implicit

query rewriting has to be very conservative.

Query Expansion

Query expansion adds words to a query to better reflect

the search intent. For example, query ‘‘palo alto real

estate’’ may be expanded to ‘‘palo alto California real

estate’’ if it is known that the user is interested in city
of ‘‘Palo Alto’’ in California. The expanded word

‘‘California’’ can be inferred from many features, such

as IP address, session analysis, geographic mapping

information.

Another type of expansion is to expand an abbre-

viated form to its full form. For example, ‘‘HISD’’ can

be expanded to ‘‘Houston Independent School Dis-

trict.’’ This is referred as abbreviation or acronym

rewriting. One word may be mapped to multiple

expansions, for example, ‘‘abc’’ could mean ‘‘American

border collie,’’ ‘‘american baseball coaches,’’ ‘‘American

born Chinese’’ or ‘‘american broadcasting company.’’

Depending on the query context, it can be expanded to

the correct form [16].

Query expansion can be done on concept level

instead of individual word level [6,14]. For exam-

ple, ‘‘job hunting’’ can be expanded to ‘‘recruiting’’ or

‘‘employment opportunity.’’ One way of extracting con-

cepts from query is through query segmentation [15].

Query Substitution and Suggestion

Some queries can be reformulated with a totally different

query through query substitution and suggestion.

Approaches to query substitution and suggestion involve

identifying pairs of queries for which there is evidence

that their meaning is related. One approach looks at

sequences of queries issued by web searchers as the refor-

mulate and modify their queries [10]. Others identify

pairs of queries as related if they lead to clicks on the

same documents or retrieve similar documents [5]. For

example, query ‘‘the biggest sports event this year’’ and

query ‘‘olympic 2008’’ have the same intent (assuming

one infers that this year in the first query is 2008).

Query Word Deletion

It is obvious that stop words can be dropped in most

cases in search. Some non-stop words can also be

dropped [9]. Query word deletion is not so popular

as query expansion, as in most queries can have

enough matched documents in the whole Web. Still,

word deletion from query is important as it can help

improving recall of tail queries (queries that are not

very frequent).

Key Applications
Query rewriting and suggestion is useful for improving

performance of web search, as well as more generally

identifying related terms which can be used for

other tasks.

Web Search Relevance Feedback W 3493
Future Directions
One area of research for query rewriting is how to

detect query intent drifting after rewriting. For exam-

ple, stemming query ‘‘marching network’’ to ‘‘march

networks,’’ or ‘‘blue steel’’ to ‘‘blued steel’’ is bad since

the query after rewriting has different intent of the

input. How to model intent drifting is a challenging

task in Web search.
Cross-references
▶Query Expansion

▶Query Expansion models

▶Query Rewriting

▶Web Search Relevance Feedback
W

Recommended Reading
1. Anick P. Using terminological feedback for Web search

refinement – a log-based study. In Proc. 26th Annual Int. ACM

SIGIR Conf. on Research and Development in Information

Retrieval, 2003, pp. 88–95.

2. Brill E. and Moore R.C. An improved error model for noisy

channel spelling correction. In Proc. 38th Annual Meeting of the

Assoc. for Computational Linguistics, 2000, pp. 86–293.

3. Croft W.B. and Harper D.J. Using probabilistic models of docu-

ment retrieval without relevance information. J. Doc., 35

(4):285–295, 1979.

4. Cucerzan S. and Brill E. Spelling correction as an iterative

process that exploits the collective knowledge of Web users. In

Proc. Conf. on Empirical Methods in Natural Language Proces-

sing, 2004, pp. 293–300.

5. Cui H., Wen J.R., Nie J.Y., and Ma W.Y. Probabilistic query

expansion using query logs. In Proc. 11th Int. World Wide

Web Conference, 2002, pp. 325–332.

6. Fonseca B.M., Golgher P., Pssas B., Ribeiro-Neto B., and

Ziviani N. Concept-based interactive query expansion. In Proc.

14th ACM Int. Conf. on Information and Knowledge Manage-

ment, 2008, pp. 696–703.

7. Jansen B.J., Spink A., and Saracevic T. Real life, real users,

and real needs: a study and analysis of user queries on the web.

Inf. Process. Manage. Int. J., 36(2):207–227, 2000.

8. Joachims T., Granka L., Pang B., Hembrooke H., and Gay G.

Accurately interpreting clickthrough data as implicit feedback.

In Proc. 31st Annual Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, 2005, pp. 154–161.

9. Jones R. and Fain D. Query word deletion prediction. In Proc.

26th Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 2003, pp. 435–436.

10. Jones R., Rey B., Madani O., and Greiner W. Generating

query substitutions. In Proc. 15th Int. World Wide Web Con-

ference, 2006, pp. 387–396.

11. Lovins J.B. Development of a stemming algorithm. Mech.

Translat. Comput. Ling., 2:22–31, 1968.

12. Peng F., Ahmed N., Li X., and Lu Y. Context sensitive stemming

for Web search. In Proc. 33rd Annual Int. ACM SIGIR Conf. on
Research and Development in Information Retrieval, 2007,

pp. 639–646.

13. Porter M.F. An algorithm for suffix stripping. Program,

14(3):130–137, 1980.

14. Qiu Y. and Frei H.P. Concept based query expansion. In Proc.

16th Annual Int. ACM SIGIR Conf. on Research and Develop-

ment in Information Retrieval, 1993, pp. 160–169.

15. Tan B. and Peng F. Unsupervised query segmentation using

generative language models and wikipedia. In Proc. 17th Int.

World Wide Web Conference, 2008, pp. 347–356.

16. Wei X., Peng F., and Dumoulin B. Analyzing Web text associa-

tion to disambiguate abbreviation in queries. In Proc. 34th

Annual Int. ACM SIGIR Conf. on Research and Development

in Information Retrieval, 2008, pp. 751–752.

17. Xu J. and Croft B. Query expansion using local and global

document analysis. In Proc. 19th Annual Int. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

1996, pp. 4–11.
Web Search Relevance Feedback

HUI FANG
1, CHENGXIANG ZHAI

2

1University of Delaware, Newark, DE, USA
2University of Illinois at Urbana-Champaign, Urbana,

IL, USA

Definition
Relevance feedback refers to an interactive cycle that

helps to improve the retrieval performance based

on the relevance judgments provided by a user. Specif-

ically, when a user issues a query to describe an infor-

mation need, an information retrieval system would

first return a set of initial results and then ask the user

to judge whether some information items (typically

documents or passages) are relevant or not. After

that, the system would reformulate the query based

on the collected feedback information, and return a

set of retrieval results, which presumably would be

better than the initial retrieval results. This procedure

could be repeated.
Historical Background
Quality of retrieval results highly depends on how effec-

tive a user’s query (usually a set of keywords) is in

distinguishing relevant documents from non-relevant

ones. Ideally, the keywords used in the query should

occur only in the relevant documents and not in any

non-relevant document. Unfortunately, in reality, it is

often difficult for a user to come upwith good keywords,

3494W Web Search Relevance Feedback
mainly because the same concept can be described using

different words and the user often has no clue about

which words are actually used in the relevant documents

of a collection. Amainmotivation for relevance feedback

comes from the observation that although it may be

difficult for a user to formulate a good query, it is often

much easier for the user to judge whether a document or

a passage is relevant.

Relevance feedback was first studied in the vector

space model by Rocchio [8]. After that, many other

relevance feedback methods have been proposed

and studied in other retrieval models [6,15], includ-

ing classical probabilistic models and language

modeling approach. Although these methods are

different, they all try to make the best use of the

relevance judgments provided by the user and gen-

erally rely on some kind of learning mechanism to

learn a more accurate representation of the user’s

information need. Relevance feedback has proven

to be one of the most effective methods for improv-

ing retrieval performance [8,6,10].

Unfortunately, due to the extra effort that a user

must make in relevance feedback, users are often reluc-

tant to provide such explicit relevance feedback. When

there are no explicit relevance judgments available,

pseudo feedback may be performed, also known

as blind relevance feedback [2,7]. In this method, a

small number of top-ranked documents in the initial

retrieval results are assumed to be relevant, and rele-

vance feedback is then applied. This method also tends

to improve performance on average (especially recall).

However, pseudo feedback method does not always

work well, especially for queries where none of

the top N documents is relevant. The poor perfor-

mance is expected because the non-relevant docu-

ments are assumed to be relevant, which causes the

reformulated query to shift away from the original

information need.

Somewhere inbetween relevance feedback and pseu-

do feedback is a technique called implicit feedback

[5,4,11]. In implicit feedback, a user’s actions in inter-

acting with a system (e.g., clickthroughs) are used to

infer the user’s information need. For example, a result

viewed by a user may be regarded as relevant (or more

likely relevant than a result skipped by a user). Search

logs serve as the primary data for implicit feedback;

their availability has recently stimulated a lot of re-

search in learning from search logs to improve retrieval

accuracy (e.g., [3]).
Relevance feedback bears some similarity to query

expansion in the sense that both methods attempt

to select useful terms to expand the original query

for improving retrieval performance. However, these

two methods are not exactly same. First, query expan-

sion does not necessarily assume the availability of

relevance judgments. It focuses on identifying useful

terms that could be used to further elaborate the user’s

information need. The terms can come from many

different sources, not just feedback documents (often

called local methods for query expansion). For exam-

ple, they can also come from any document in the

entire collection (called global methods) [14] or external

resources such as a thesaurus. Second, while relevance

feedback is often realized through query expansion, it

can be otherwise. For example, when all available exam-

ples are non-relevant, other techniques than query

expansion may be more appropriate [13].

Foundations
The basic procedure for relevance feedback includes

the following steps. A user first issues a query, and

the system returns a set of initial retrieval results.

After returning the initial results, the user is asked to

judge whether the presented information items (e.g.,

documents or passages) are relevant or non-relevant.

Finally, the system revises the original query based on

the collected relevance judgments typically by adding

additional terms extracted from relevant documents,

promoting weights of terms that occur often in rele-

vant documents, but not so often in non-relevant

documents, and down-weighting frequent terms in

non-relevant documents. The revised query is then

executed and a new set of results is returned. The

procedure can be repeated more than once.

Technically, relevance feedback is a learning prob-

lem in which one learns from the relevant and non-

relevant document examples how to distinguish new

relevant documents from non-relevant documents.

The learning problem can be cast as to learn either a

binary classifier that can classify a document into rele-

vant vs. non-relevant categories or a ranker that can

rank relevant documents above non-relevant docu-

ments. Thus in principle, any standard supervised

learning methods can be potentially applied to per-

form relevance feedback. However, as a learning

problem, relevance feedback poses several special

challenges, and as a result, a direct application of a

standard supervised learning method is often not very

Web Search Relevance Feedback W 3495

W

effective. First, many supervised learning methods only

work well when there are a relatively large number of

training examples, but in the case of relevance feed-

back, the number of positive training examples is gen-

erally very small. Second, the training examples in

relevance feedback are usually from the top-ranked

documents, thus they are not a random sample and

can be biased. Third, it is unclear how to handle the

original query. The query may be treated as a special

short example of relevant documents, but intuitively

this special relevant example is much more important

than other relevant examples and the terms in the

query should be sufficiently emphasized to avoid drift-

ing away from the original query concept. These chal-

lenges are exacerbated in the case of pseudo feedback

as the query would be the only reliable relevance infor-

mation provided by the user.

In the information retrieval community, many

relevance feedback algorithms have been developed for

different retrieval models. A commonly used feedback

algorithm in vector space models is the Rocchio algo-

rithm developed in early 1970s [8], which remains

a robust effective state-of-the-art method for relevance

feedback. In Rocchio, the problem of relevance feed-

back is defined as finding an optimal query to maxi-

mize its similarity to relevant documents and

minimize its similarity to non-relevant documents.

The revised query can be computed as

Qr ¼ a � Qo þ
b

jDr j
�
X
di2Dr

di �
g

jDnj
�
X
dj2Dn

dj ;

where Qr is the revised query vector, Qo is the original

query vector, Dr and Dn are the sets of vectors for the

known relevant and non-relevant documents, respec-

tively. a, b, and g are the parameters that control the

contributions from the two sets of documents and the

original query. Empirical results show that positive

feedback is much more effective than negative feed-

back, so the optimal value of g is often much smaller

than that of b. A term would have a higher weight in

the new query vector if it occurs frequently in relevant

documents but infrequently in non-relevant docu-

ments. The IDF weighting further rewards a term

that is rare in the whole collection.

The feedback method in classical probabilistic

models is to select expanded terms primarily based

on Robertson/Sparck-Jones weight [6] defined as

follows:
wi ¼ log
ri=ðR � riÞ

ðni � riÞ=ðN � ni � R þ riÞ
;

where wi is the weight of term i, ri is the number of

relevant documents containing term i, ni is the number

of documents containing term i, R is the number of

relevant documents in the collection, and N is the

number of documents in the collection.

In language modeling approaches, feedback can be

achieved through updating the query language model

based on feedback information, leading tomodel-based

feedback methods[15]. Relevance feedback received lit-

tle attention in logical model, but some possible feed-

back methods have been discussed in [9].

Despite the difference in their way of performing

relevance feedback, all these feedback methods imple-

ment the same intuition, which is to improve query

representation by introducing and rewarding terms

that occur frequently in relevant documents but infre-

quently in non-relevant documents. When optimized,

most of these methods tend to perform similarly.

Improvements over these basic feedback methods in-

clude (1) passage feedback [1] which can filter out the

non-relevant part of a long relevant document in feed-

back, (2) query zone [12] which can improve the use of

negative feedback information, and (3) pure negative

feedback [13] which aims at exploiting purely negative

information to improve performance for difficult

topics.

Most studies focus on how to use the relevance

judgments to improve the retrieval performance. The

issue of choosing optimally documents to judge for

relevance feedback has received considerably less atten-

tion. Recent studies on active feedback [11] have

shown that choosing documents with more diversity

for feedback is a better strategy than choosing the most

relevant documents for feedback in the sense that the

relevance feedback information collected with the for-

mer strategy is more useful for learning. However, this

benefit may be at the price of sacrificing the utility of

presented documents from a user’s perspective.

Although relevance feedback improves retrieval ac-

curacy, the improvement comes at the price of possibly

slowing down the retrieval speed. Indeed, virtually all

relevance feedback algorithms involve iterating over all

the terms in all the judged examples, so the computa-

tional overhead is not negligible, making it a challenge

to use relevance feedback in applications where

response speed is critical.

3496W Web Search Relevance Feedback
Key Applications
Relevance feedback is a general effective technique for

improving retrieval accuracy for all search engines,

which is applicable when users are willing to provide

explicit relevance judgments. Relevance feedback is

particularly useful when it is difficult to completely

and precisely specify an information need with just

keywords (e.g., multimedia search); in such a case,

relevance feedback can be exploited to learn features

that can characterize the information need from the

judged examples (e.g., useful non-textual features in

multimedia search) and combine such features with

the original query to improve retrieval results. Rele-

vance feedback is also a key technique in personalized

search where both explicit and implicit feedback infor-

mation could be learned from all the collected infor-

mation about a user to improve the current search

results for the user.

Despite the fact that relevance feedback is a mature

technology, it is not a popular feature provided by the

current web search engines possibly because of the

computational overhead. However, the feature ‘‘finding

similar pages’’ provided by Google can be regarded as

relevance feedback with just one relevant document.
Future Directions
Although relevance feedback has been studied for dec-

ades and many effective methods have been proposed,

it is still unclear what is the optimal way of performing

relevance feedback. The recent trend of applying ma-

chine learning to information retrieval, especially re-

search on learning to rank and statistical language

models, will likely shed light on the answer to this

long-standing question.

So far, research on relevance feedback has focused

on cases where at least several relevant examples can be

obtained in the top-ranked documents. However,

when a topic is difficult, a user may not see any relevant

document in the top-ranked documents. In order to

help such a user, negative feedback (i.e., relevance

feedback with only non-relevant examples) must be

performed. Traditionally negative feedback has not

received much attention due to the fact that when

relevant examples are available, negative feedback in-

formation tends not to be very useful. An important

future research direction is to study how to exploit

negative feedback to improve retrieval accuracy for

difficult topics as argued in [13].
Active feedback [11] is another important topic

worth further studying. Indeed, to minimize a user’s

effort in providing explicit feedback, it is important to

select the most informative examples for a user to

judge so that the system can learn most from the

judged examples. It would be interesting to explore

how to apply/adapt many active learning techniques

developed in the machine learning community to per-

form active feedback.

Experimental Results
The effectiveness of a relevance feedback method is

usually evaluated using the standard information re-

trieval evaluation methodology and test collections.

A standard test collection includes a document collec-

tion, a set of queries and judgments indicating whether

a document is relevant to a query. The initial retrieval

results are compared with the feedback results to show

whether feedback improves performance. The perfor-

mance is often measured using Mean Average Precision

(MAP) which reflects the overall ranking accuracy or

precision at top k (e.g., top 10) documents which

reflects how many relevant documents a user can ex-

pect to see in the top-ranked documents.

When comparing different relevance feedback

methods, the amount of feedback information is

often controlled so that every method uses the same

judged documents. The judged or seen documents are

usually excluded when computing the performance of

a method to more accurately evaluate the performance

of a method on unseen documents. The evaluation is

significantly more challenging when the amount of

feedback information can not be controlled, such as

when different strategies for selecting documents for

feedback are compared or a feedback method and a

non-feedback method are compared. In such cases, it is

tricky how to handle the judged documents. If they are

not excluded when computing the performance of a

method, the comparison would be unfair and favor a

feedback that has received more judged examples.

However, if they are excluded, the performance

would not be comparable either because the test set

used to compute the performance of each method

would likely be different and may contain a different

set of relevant and non-relevant documents.

Data Sets
Many standard information retrieval test collections

can be found at: http://trec.nist.gov/

Web Search Relevance Ranking W 3497
URL to Code
Lemur project contains the code for most existing

relevance feedback method, which can be found at:

http://lemurpoject.org/.
Cross-references
▶ Implicit Feedback

▶ Pseudo Feedback

▶Query Expansion
W

Recommended Reading
1. Allan J. Relevance feedback with too much data. In Proc. 18th

Annual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 1995, pp. 337–343.

2. Buckley C. Automatic query expansion using SMART: TREC-3.

In Overview of the Third Text Retrieval Conference (TREC-3),

D. Harman (ed.), 1995, pp. 69–80.

3. Burges C., Shaked T., Renshaw E., Lazier A., Deeds M., Hamilton

N., and Hullender G. Learning to rank using gradient descent.

In Proc. 22nd Int. Conf. on Machine Learning, 2005, pp. 89–96.

4. Joachims T. Optimizing search engines using clickthrough data.

In Proc. 8th ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining, 2002, pp. 133–142.

5. Kelly D. and Teevan J. Implicit feedback for inferring user pref-

erence. SIGIR Forum, 37(2):18–28, 2003.

6. Robertson S.E. and Jones K.S. Relevance weighting of search

terms. J. Am. Soc. Inf. Sci., 27(3):129–146, 1976.

7. Robertson S.E., Walker S., Jones S., Hancock-Beaulieu M.M.,

and Gatford M. Okapi at TREC-3. In Proc. The 3rd Text Re-

trieval Conference, 1995, pp. 109–126.

8. Rocchio J. Relevance feedback in information retrieval. In The

SMART Retrieval System: Experiments in Automatic Document

Processing. Prentice-Hall, Englewood Cliffs, NJ, 1971,

pp. 313–323.

9. Ruthven I. and Lalmas M. A survey on the use of relevance

feedback for information access system. Knowl. Eng. Rev.,

18(2):95–145, 2003.

10. Salton G. and Buckley C. Improving retrieval performance by

relevance feedback. J. Am. Soc. Inf. Sci., 44(4):288–297, 1990.

11. Shen X. and Zhai C. Active feedback in ad hoc information

retrieval. In Proc. 31st Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2005,

pp. 59–66.

12. Singhal A., Mitra M., and Buckley C. Learning routing queries

in a query zone. In Proc. 20th Annual Int. ACM SIGIR Conf.

on Research and Development in Information Retrieval, 1997,

pp. 25–32.

13. Wang X., Fang H., and Zhai C. A study of methods for negative

relevance feedback. In Proc. 34th Annual Int. ACM SIGIR Conf.

on Research and Development in Information Retrieval, 2008,

pp. 219–226.

14. Xu J. and Croft W.B. Query expansion using local and global

document analysis. In Proc. 19th Annual Int. ACM SIGIR Conf.

on Research and Development in Information Retrieval, 1996,

pp. 4–11.
15. Zhai C. and Lafferty J. Model-based feedback in the language

modeling approach to information retrieval. In Proc. Int.

Conf. on Information and Knowledge Management, 2001,

pp. 403–410.
Web Search Relevance Ranking

HUGO ZARAGOZA
1, MARC NAJORK

2

1Yahoo! Research, Barcelona, Spain
2Microsoft Research, Mountain View, CA, USA

Synonyms
Ranking; Search ranking; Result ranking

Definition
Web search engines return lists of web pages sorted by

the page’s relevance to the user query. The problem

with web search relevance ranking is to estimate rele-

vance of a page to a query. Nowadays, commercial

web-page search engines combine hundreds of features

to estimate relevance. The specific features and their

mode of combination are kept secret to fight spam-

mers and competitors. Nevertheless, the main types of

features at use, as well as the methods for their combi-

nation, are publicly known and are the subject of

scientific investigation.

Historical Background
Information Retrieval (IR) Systems are the predeces-

sors of Web and search engines. These systems were

designed to retrieve documents in curated digital collec-

tions such as library abstracts, corporate documents,

news, etc. Traditionally, IR relevance ranking algorithms

were designed to obtain high recall on medium-sized

document collections using long detailed queries. Fur-

thermore, textual documents in these collections had

little or no structure or hyperlinks. Web search engines

incorporated many of the principles and algorithms of

Information Retrieval Systems, but had to adapt and

extend them to fit their needs.

Early Web Search engines such as Lycos and

AltaVista concentrated on the scalability issues of run-

ning web search engines using traditional relevance

ranking algorithms. Newer search engines, such as

Google, exploited web-specific relevance features such

as hyperlinks to obtain significant gains in quality.

These measures were partly motivated by research in

citation analysis carried out in the bibliometrics field.

3498W Web Search Relevance Ranking
Foundations
For most queries, there exist thousands of documents

containing some or all of the terms in the query.

A search engine needs to rank them in some appropri-

ate way so that the first few results shown to the user

will be the ones that are most pertinent to the user’s

need. The interest of a document with respect to the

user query is referred to as ‘‘document relevance.’’ this

quantity is usually unknown and must be estimated

from features of the document, the query, the user

history or the web in general. Relevance ranking loosely

refers to the different features and algorithms used

to estimate the relevance of documents and to sort

them appropriately.

The most basic retrieval function would be a Bool-

ean query on the presence or absence of terms in

documents. Given a query ‘‘word1 word2’’ the Boolean

AND query would return all documents containing the

terms word1 and word2 at least once. These docu-

ments are referred to as the query’s ‘‘AND result set’’

and represent the set of potentially relevant docu-

ments; all documents not in this set could be consid-

ered irrelevant and ignored. This is usually the first step

in web search relevance ranking. It greatly reduces the

number of documents to be considered for ranking,

but it does not rank the documents in the result set.

For this, each document needs to be ‘‘scored’’, that

is, the document’s relevance needs to be estimated

as a function of its relevance features. Contemporary

search engines use hundreds of features. These features

and their combination are kept secret to fight spam

and competitors. Nevertheless, the general classes of

employed features are publicly known and are the

subject of scientific investigation. The main types of

relevance features are described in the remainder of

this section, roughly in order of importance. Note that

some features are query-dependent and some are not.

This is an important distinction because query-inde-

pendent features are constant with respect to the user

query and can be pre-computed off-line. Query-de-

pendent features, on the other hand, need to be com-

puted at search time or cached.

Textual Relevance

Modern web search engines include tens or hundreds

of features which measure the textual relevance of a

page. The most important of these features are match-

ing functions which determine the term similarity to

the query. Some of these matching functions depend
only on the frequency of occurrence of query terms;

others depend on the page structure, term positions,

graphical layout, etc. In order to compare the query

and the document, it is necessary to carry out some

non-trivial preprocessing steps: tokenization (splitting

the string into word units), letter case and spelling

normalization, etc. Beyond these standard preproces-

sing steps, modern web search engines carry out more

complex query reformulations which allow them to

resolve acronyms, detect phrases, etc.

One of the earliest textual relevance features (ear-

liest both in information retrieval systems and later in

commercial web search engines) is the vector space

model scoring function. This feature was used by

early search engines. Since then other scoring models

have been developed in Information Retrieval (e.g.,

Language Models and Probabilistic Relevance Models)

[8] and have probably been adopted by web search

engines. Although web search engines do not disclose

details about their textual relevance features, it is

known that they use a wide variety of them, ranging

from simple word counts to complex nonlinear func-

tions of the match frequencies in the document and

in the collection.

Furthermore, web search engines make use of the

relative and absolute position of the matches in

the document. In Information Retrieval publications,

there have been many different proposals to make use

of term position information, but no consensus has

been reached yet on the best way to use it. Most known

approaches are based on features of the relative dis-

tances of the match terms such as the minimum (or

average, or maximum) size of the text span containing

all (or some, or most) of the term matches. Web search

engines have not disclosed how they use position

information.

Besides match position, web search engines

exploit the structure or layout of documents, especially

HTML documents. There are a number of ways to do

this. One of the simplest is to compute textual similar-

ity with respect to each document element (title, sub-

titles, paragraphs). More complex solutions integrate

matches of different structural elements into a single

textual relevance score (see for example [8]).

Another type of textual relevance information is

provided by the overall document quality. For exam-

ple, Web search engines use automatic document clas-

sifiers to detect specific document genres such as adult

content, commercial sites, etc. Specialized techniques

Web Search Relevance Ranking W 3499

W

are also used to detect spam pages. Pages may be

eliminated or demoted depending on the result of

these analyses.

Hyperlink Relevance

The web is a hyperlinked collection of documents

(unlike most previously existing digital collections,

which had only implicit references). A hyperlink links

a span of text in the source page (the ‘‘anchor text’’) to

a target page (the ‘‘linked page’’). Because of this, one

can think of a hyperlink as a reference, an endorse-

ment, or a vote by the source page on the target page.

Similarly, one can think of the anchor text as a descrip-

tion or an explanation of the endorsement. One of

the innovations introduced by Web Search Engines

was leveraging the hyperlink-structure of the web for

relevance ranking purposes.

The hyperlink graph structure can be used to

determine the importance of a page independently on

the textual content of the pages. This idea of using web

hyperlinks as endorsements was originally proposed

by Marchiori [9] and further explored by Kleinberg

[6] and Page et al. [11] (who also introduced the idea

of using the anchor text describing the hyperlink to

augment the target page).

Exploiting User Behavior

As stated above, hyperlink analysis leverages human

intelligence, namely peer endorsement between web

page authors. Web search engines can also measure

users’ endorsements by observing the search result

links that are being clicked on. This concept was first

proposed by Boyan et al. [5], and subsequently com-

mercialized by DirectHit [3]. For an up-to-date sum-

mary of the state of the art, the reader is referred to [5].

Besides search result clicks, commercial search engines

can obtain statistics of page visitations (i.e., popularity)

from browser toolbars, advertising networks or directly

from Internet service providers. This form of quality

feedback is query-independent and thus less informa-

tive but more abundant.

Performance

There are several aspects of the performance of a web

relevance ranking algorithm. There are the standard

algorithmic performance measures such as speed, disk

and memory requirements, etc. Running time efficiency

is crucial for web search ranking algorithms, since bil-

lions of documents need to be ranked in response to
millions of queries per hour. For this reason most fea-

tures need to be pre-computed off-line and only their

combination is computed at query time. Some features

may require specialized data structures to be retrieved

especially fast at query time. This is the case for example

of term-weights (which are organized in inverted indices

[1]), or query-dependent hyperlink features [10].

A more fundamental aspect of the performance of

a relevance ranking algorithm is its accuracy or pre-

cision: how good is the algorithm at estimating

the relevance of pages? This is problematic because

relevance is a subjective property, and can only be

observed experimentally, asking a human subject. Fur-

thermore, the performance of a ranking algorithm

will not depend equally on each page: the best ranked

pages are those seen by most users and therefore

the most important to determine the quality of the

algorithm in practice. Performance evaluation mea-

sures used for the development of relevance ranking

algorithms take this into account [8].

There exist other, less explicit measures of perfor-

mance. For example, as users interact with a search

engine, the distribution of their clicks on the different

ranks give an indication of the quality of the ranking

(i.e., rankings leading to many clicks on the first results

may be desired). However, this information is private

to the search engines, and furthermore it is strongly

biased by the order of presentation of results.

Feature Combination

All of the features of a page need to be combined to

produce a single relevance score. Early web search

engines had only a handful of features, and they were

combined linearly, manually tuning their relative

weights to maximize the performance obtained on a

test set of queries. Modern search engines employ

hundreds of features and use statistical methods to

tune these features. Although the specific details remain

secret, a number of research publications exist on the

topic (see for example [13]).

Key Applications
The key application of web search relevance ranking is

in the algorithmic search component of web search

engines. Similar methods are also employed to bias

the ranking of the advertisements displayed in search

results. Some of the principles have been applied in

other types of search engines such as corporate search

(intranet, email, document archives, etc.).

3500W Web Search Relevance Ranking
Future Directions
Research continues to improve all of the relevance

features discussed here. This research has lead to a con-

tinuous improvement of search engine quality. Neverthe-

less, current relevance features are becoming increasingly

hard to improve upon. Considerable research is centered

today on discovering new types of features which can

significantly improve search quality. Only two of the

most promising areas are mentioned here:

Query-understanding: Different types of queries

may require very different types of relevance ranking

algorithms. For example, a shopping query may

require very different types of analysis from a travel

or a health query. Work on algorithms that understand

the intent of a query and select different relevance

ranking methods accordingly could lead to dramatic

increases in the quality of the ranking.

Personalization: In principle it is possible to exploit

user information to ‘‘personalize’’ web search engine

results. Different results would be relevant to a query

issued by a layperson than a topic expert, for example.

There are many different ways to personalize results:

with respect to the user search history, with respect to

the user community, with respect to questionnaires or

external sources of knowledge about the user, etc.

Many scientific papers have been written on this

topic, but the problem remains unsolved. Commercial

web search engines have mainly shied away from per-

sonalized algorithms. Google has proposed several

forms of personalized search to its users, but this

feature has not had much success. Nevertheless, the

search continues for the right way to personalize rele-

vance ranking.

Experimental Results
Evaluation of web relevance ranking is difficult and

very costly, since it involves human judges labeling a

collection of queries and results as to their relevance.

The most careful evaluations of web relevance features

are carried out by web search engine companies, but

they are not disclosed to the public. There have been

very many partial evaluations of search engines pub-

lished, but they are always controversial due to their

small scale, their experimental biases and their indirect

access to the search engine features.

A number of experimental benchmarks have

been constructed for public scientific competitions.

Although they are small and partial they can be used

for experimentation (see below).
Data Sets
Commercial search engines dispose of very large data

sets comprising very many documents (e.g., hundreds

of millions), queries (e.g., tens of thousands), and

human relevance evaluations (e.g., hundreds of

thousands). These data sets are routinely used to develop

and improve features for relevance ranking. See [10,13]

for examples of this.

Publicly available data sets for experimentation are

very small compared to those used by commercial

search engines. Nevertheless, they may be used to in-

vestigate some features and their combination. The

most important datasets for web relevance ranking

experiments are those developed in the Web-track of

the TREC competition organized by NIST [4].

URL to Code
Due to the extraordinary cost of developing and main-

taining a full-scale web search engine, there are no pub-

lically available systems so far. The Nutch project (http://

lucene.apache.org/nutch/) is aiming to build an open-

source web-scale search engine based on the Lucene

search engine. Other retrieval engines capable of crawl-

ing and indexing up to several millions of documents

include INDRI (http://www.lemurproject.org/indri/),

MG4J (http://mg4j.dsi.unimi.it/) and TERRIER (http://

ir.dcs.gla.ac.uk/terrier/).

Cross-references
▶Anchor Text

▶BM25

▶Document Links and Hyperlinks

▶ Field-Based Information Retrieval Models

▶ Information Retrieval

▶ Language Models

▶Relevance

▶Relevance Feedback

▶Text Categorization

▶Text Indexing and Retrieval

▶Vector-Space Model

▶WEB Information Retrieval Models

▶Web Page Quality Metrics

▶Web Search Relevance Feedback

▶Web Spam Detection

Recommended Reading
1. Baeza-Yates R. and Ribeiro-Neto B. Modern Information

Retrieval. Addison Wesley, Reading, MA, 1999.

2. Boyan J., Freitag D., and Joachims T. A machine learning

architecture for optimizing web search engines. In Proc. AAAI

Workshop on Internet Based Information Systems, 1996.

Web Search Result Caching and Prefetching W 3501
3. Culliss G. The Direct Hit Popularity Engine Technology.

A White Paper, DirectHit, 2000. Available online at https://

www.uni-koblenz.de/FB4/Institutes/ICV/AGKrause/Teachings/

SS07/DirectHit.pdf. Accessed on 27 Nov 2007.

4. Hawking D. and Craswell N. Very large scale retrieval and Web

search. In TREC: Experiment and Evaluation in Information

Retrieval, E. Voorhees and D. Harman (eds.). MIT Press, Cam-

bridge, MA, 2005.

5. Joachims T. and Radlinski F. Search engines that learn from

implicit feedback. IEEE Comp., 40(8):34–40, 2007.

6. Kleinberg J. Authoritative sources in a hyperlinked environment.

Technical Report RJ 10076, IBM, 1997.

7. Langville A.N. and Meyer C.D. Google’s PageRank and

Beyond: The Science of Search Engine Rankings. Princeton

University Press, Princeton, NJ, 2006.

8. Manning C.D., Raghavan P., and Schütze H. Introduction to

Information Retrieval. Cambridge University Press, Cambridge,

UK, 2008.

9. Marchiori M. The quest for correct information on the Web:

hyper search engines. In Proc. 6th Int. World Wide Web Con-

ference, 1997.

10. Najork M. Comparing the effectiveness of HITS and SALSA. In

Proc. Conf. on Information and Knowledge Management, 2007,

pp. 157–164.

11. Page L., Brin S., Motwani R., and Winograd T. The PageRank

citation ranking: bringing order to the Web. Technical Report,

Stanford Digital Library Technologies Project.

12. Richardson M., Prakash A., and Brill E. Beyond PageRank:

machine learning for static ranking. In Proc. 15th Int. World

Wide Web Conference, 2006, pp. 707–715.

13. Taylor M., Zaragoza H., Craswell N., Robertson S., and

Burges C. Optimisation methods for ranking functions with

multiple parameters. In Proc. Conf. on Information and Knowl-

edge Management, 2006, pp. 585–593.
W

Web Search Result Caching and
Prefetching

RONNY LEMPEL
1, FABRIZIO SILVESTRI2

1Yahoo! Research, Haifa, Israel
2ISTI-CNR, Pisa, Italy

Synonyms
Search engine caching and prefetching; Search engine

query result caching; Paging in Web search engines

Definition
Caching is a well-known concept in systems with

multiple tiers of storage. For simplicity, consider a

system storing N objects in relatively slow memory,

that also has a smaller but faster memory buffer of
capacity k which can store copies of k of the N objects

(N >> k). This fast memory buffer is called the cache.

The storage system is presented with a continuous

stream of queries, each requesting one of the N objects.

If the object is stored in the cache, a cache hit occurs

and the object is quickly retrieved. Otherwise, a cache

miss occurs, and the object is retrieved from the slower

memory. At this point, the storage system can opt

to save the newly retrieved object in the cache. When

the cache is full (i.e., already contains k objects), this

entails evicting some currently cached object. Such

decisions are handled by a replacement policy, whose

goal is to maximize the cache hit ratio (or rate) – the

proportion of queries resulting in cache hits.

Often, access patterns to objects, as found in query

streams, are temporally correlated. For example, object

y might often be requested shortly after object x

has been requested. This motivates prefetching – the

storage system can opt to retrieve and cache y upon

encountering a query for x, anticipating the probable

future query for y.

The setting with respect to search result caches in

Web search engines is somewhat different. There, the

objects to be cached are result pages of search queries.

A search query is defined as a triplet q = (qs, from, n)

where qs is a query string, from denotes the relevance

rank of the first result requested, and n denotes the

number of requested results. The result page

corresponding to q would contain the results whose

relevance rank with respect to qs are from, from + 1,...,

from + n � 1. The value of n is typically 10. Search

engines set aside some storage to cache such result

pages. However, a search engine is not a typical two-

tiered storage structure, as results not found in the

cache are not stored in slower storage but rather need

to be generated through the query evaluation process

of the search engine. Prefetching of search results

occurs when the engine computes and caches j � n
results for the query (qs, from, n), with j being some

small integer, in anticipation of follow-up queries

requesting additional result pages for the same query

string.

Historical Background
Markatos was the first to study search result caching

in depth in 2000 [11]. He experimented with various

known cache replacement policies on a log of queries

submitted to the Excite search engine, and compared

the resulting hit-ratios. In 2001 Saraiva et al. [12]

3502W Web Search Result Caching and Prefetching
proposed a two-level caching scheme that combines

caching of search results with the caching of frequently

accessed postings lists.

Prefetching of search engine results was studied

from a theoretical point of view by Lempel and

Moran in 2002 [6]. They observed that the work

involved in query evaluation scales in a sub-linear

manner with the number of results computed by the

search engine. Then they proceeded to minimize the

computations involved in query evaluations by opti-

mizing the number of results computed per query. The

optimization is based on a workload function that

models both (i) the computations performed by the

search engine to produce search results and (ii) the

probabilistic manner by which users advance through

result pages in a search session.

In 2003, two papers proposed caching algorithms

specifically tailored to the locality of reference present

in search engine query streams: PDC – Probability

Driven Caching [7], and SDC – Static Dynamic Caching

[14] (extended version in [4]). The next section will

focus primarily on those caching strategies and follow-

up papers, e.g., the AC strategy proposed by Baeza-

Yates et al. in [2].

In 2004, Lempel and Moran studied the problem

of caching search engine results in the theoretical

framework of competitive analysis [8]. For a certain

stochastic model of search engine query streams, they

showed an online caching algorithm whose expected

number of cache misses is no worse than four times

that of any online algorithm.

Note that search engine result caching is just one

specific application of caching or paging; the theoreti-

cal analysis of page replacement policies dates back to

1966, when Belady [3] derived the optimal offline page

replacement algorithm. In 1985, Sleator and Tarjan

published their seminal paper on online paging [15],

showing the optimal competitiveness of the Least

Recently Used (LRU) policy.

Foundations
The setting for the caching of search results in search

engines is as follows. The engine, in addition to its index,

dedicates some fixed-size fast memory cache that can

store up to k result pages. It is then presented with

a stream of user-submitted search queries. For each

query it consults the cache, and upon a cache hit re-

turns the cached page of results to the user. Upon a

cache miss, the query undergoes evaluation by the
index, and the requested page of results (along with

perhaps additional result pages) are computed. The

requested results are returned to the user, and all

newly computed result pages are forwarded to the

cache replacement algorithm. In case the cache is not

full, these pages will be cached. If the cache is full, the

replacement algorithm may decide to evict some cur-

rently cached result pages to make room for the newly

computed pages.

The primary goal of caching schemes (replacement

policies and prefetching strategies) is to exploit the

locality of reference that is present in many real life

query streams in order to exhibit high hit ratios.

Roughly speaking, locality of reference means that

after an object x is requested, x and a small set of

related objects are likely to be requested in the near

future. Two types of locality of reference present in

search engine query streams are detailed below.

Topical Locality of Reference

The variety of queries encountered by modern Web

search engines is enormous. People submit queries on

any and all walks of life, in all languages spoken around

the world. Nevertheless, some query strings are much

more popular than others and occur with high fre-

quency, motivating the caching of their results by the

search engine. Frequent queries can be roughly divided

into two classes: (i) queries whose popularity is stable

over time, and (ii) queries with bursty popularity,

which may rise suddenly (e.g., due to some current

event) and drop quickly soon thereafter.

Sequential Locality of Reference

This is due to the discrete manner in which search

engines present search results to users – in batches of n

(typically 10) results at a time. Some users viewing the

page of results for the query q = (qs, from, n) will not be

fully satisfied, and will soon thereafter submit the

follow-up query (qs, from + n, n). In general, when

many users have recently queried for (qs, from, n), the

higher the likelihood that at least one of them querying

for (qs, from + n, n). This behavior of users, coupled

with the observation that the work involved in com-

puting a batch of size j � n, j > 1 results for a query

string is significantly smaller than j independent

computations of batches of n results, motivates the

prefetching of search results in search engines [9].

Several studies have analyzed the manner in

which users query search engines and view result

Web Search Result Caching and Prefetching W 3503

W

pages [11,7, 13,1]. In general, it has been observed on

numerous query logs that query popularities obey a

power-law distribution, i.e., the number of query

strings appearing n times in the log is proportional to

n�c. For example, Lempel andMoran [7] report a value

of c equaling about 2.4 on a log of seven million queries

submitted to AltaVista in late 2001 (The number of

extremely popular queries typically exceeds the value

predicted by the power law distribution.). While the 25

or so most popular queries in the query stream may

account for over 1% of an engine’s query load, a large

fraction of any log is composed of queries that appear

in it only once. For example, Baeza-Yates et al. [1]

analyze a log in which the vast majority (almost 88%)

of unique query strings were submitted just once,

accounting for about 44% of the total query load.

Such queries are bound to cause cache misses, and

along with the misses incurred for the first occurrence

of any repeating query imply an upper bound of about

50% for cache hit rates on that log.

Many of the studies cited above report that users

typically browse through very few result pages of a

query, and that the ‘‘deeper’’ the result page, the less

users view it. While the exact numbers vary in each

study, the reports agree that the majority of queries will

have only their top-ten results viewed, and that the

percentage of queries for which more than three result

pages are viewed are very small. However, note that

statistical data in the order of 10�2 (single percentage

points) are powerful predictors for the purpose of

caching result pages.

Beyond achieving high hit ratios, caching schemes

must also be efficient, i.e., the logic involved in cache

replacement decisions must be negligible as compared

with the cost of a cache miss. Furthermore, they should

be designed for high throughput, as search engines

serve many queries concurrently and it would be coun-

terproductive to have cache access become a bottleneck

in their computation pipeline.

Different caching schemes have been applied to

search results, ranging from ‘‘classic’’ ones to policies

specifically designed for search engines workloads.

‘‘Classic’’ Caching Schemes

These schemes include the well-known Least Recently

Used (LRU) replacement policy and its variations (e.g.,

SLRU and LRU2) [15]. To quickly recap, upon a cache

miss, LRU replaces the least recently accessed of the

currently cached objects with the object that caused the
cache miss. SLRU is a two-tiered LRU scheme: cache

misses result in new objects entering the lower-tier

LRU. Cache hits in the lower-tier LRU are promoted to

the upper tier, whose least recently accessed object is

relegated to be the most recently accessed object of the

lower tier. The above replacement policies are very effi-

cient, requiring O(1) time per replacement of an item.

Furthermore, they are orthogonal to prefetching policies

in the sense that one can decide to prefetch and cache

any number of result pages following a cache miss.

PDC – Probability Driven Cache

In PDC the cache is divided between an SLRU segment

that caches result pages for top-n queries (i.e., queries

of the form (qs, from, n) where from = 1), and a priority

queue that caches result pages of follow-up queries.

The priority queue estimates the probability of each

follow-up results page being queried in the near future

by considering all queries issued recently by users, and

estimating the probability of at least one user viewing

each follow-up page. The priority queue’s eviction

policy is to remove the page least likely to be queried.

One drawback of PDC is that maintaining its probabi-

listic estimations on the worthiness of each results page

requires an amortized time that is logarithmic in the

size of the cache per each processed query, regardless of

whether the query caused a hit or a miss. An advantage

of PDC is that it is better suited for prefetching than

other schemes, since prefetched pages are treated sepa-

rately and independently by the priority queue and are

cached according to their individual worthiness rather

than according to some fixed prefetching policy.

SDC – Static Dynamic Cache

SDC divides its cache into two areas: the first is a read-

only (static) cache of results for the perpetually popu-

lar queries (as derived from some pre-analysis on the

query log), while the second area dynamically caches

results for the rest of the queries using any replacement

policy (e.g., LRU or PDC).

Introducing a static cache to hold results for

queries that remain popular over time has the follow-

ing advantages:

� The results of these queries are not subject to evic-

tion in the rare case that the query stream exhibits

some ‘‘dry spell’’ with respect to them.

� The static portion of the cache is essentially read-

only memory, meaning that multiple query threads

3504W Web Search Result Caching and Prefetching
can access it simultaneously without the need to

synchronize access or lock portions of the memory.

This increases the cache’s throughput in a real-life

multithreaded system that serves multiple queries

concurrently.

SDC can be applied with any prefetching strategy. See

the discussion below for the specific prefetching strat-

egy proposed in [14].

AC

AC was proposed by Baeza-Yates et al. in 2006 [2]. Like

PDC and SDC, this scheme also divides its cache into

two sections. The intuition behind AC is to identify the

large fraction of rare ‘‘tail’’ queries and to relegate them

to a separate portion of the cache, thus preventing

them from causing the eviction of more worthy results.

Prefetching Policies

The prefetching policies appearing so far in the litera-

ture are rather simple. One straightforward policy is

to simply choose some fixed amount k of result pages

to prefetch upon any cache miss. The value of k can

be optimized to maximize the cache hit ratio [7] or to

minimize the total workload on the query evaluation

servers [9]. These two objective functions do not nec-

essarily result in the same value of k, since it could be

that it is easier to compute more queries with fewer

results per query than less queries with more results

per query.

An adaptive prefetching scheme that also

prefetches, in some cases, following a cache hit was

proposed in [14]:

� Whenever a cache miss occurs for the top-n results

of a query (i.e., when from = 1), evaluate the query

and also prefetch its second page of results.

� For any cache miss of a follow-up query (from> 1),

evaluate the query and prefetch some fixed number

k of additional result pages.

� If the second page of results for a query is requested

and is a cache hit, return the cached page and

prefetch in the background the next k result pages.

Note that performing query evaluations following

cache hits is a speculative operation that does not

reduce the overall load on the backend in terms of

query evaluations. It may balance that load somewhat

and reduce the latency experienced by searchers when

submitting follow-up queries.
As explained above, the choice of prefetching

policy is orthogonal to the choice of replacement poli-

cy. However, PDC and AC are better suited to assigning

different priorities to prefetched pages rather than

treating them all as ‘‘recently used.’’

Note that prefetching is only effective when caching

prefetched pages will result in more cache hits than the

pages they replace in the cache. This depends on the

characteristics of the cache (its size and replacement

policy) as well as on the observed interaction of the

users with the specific search engine in question (how

often they tend to browse deep result pages).

Key Applications
Caching and Prefetching of results in Web search

engines is a key application ‘‘per se.’’

Future Directions
Implementing search result caching in live, Web-scale

systems brings with it many engineering challenges

that have to do with the particular architecture of the

specific search engine, and the specific nature of the

application. This section briefly points at several such

issues, each deserving of further research attention.

Search Result Caching in Incremental Search Engines

The previous sections assumed that the results of

query q are stationary over time. In the case of evolving

collections cached results may become stale, and

serving them defeats the purpose of an incremental

engine. Thus, more advanced cache maintenance poli-

cies are required.

Caching in the Presence of Personalized Search Results

Search engines are increasingly biasing search results

toward the preferences of the individual searchers. As a

consequence, two searchers submitting the same query

might receive different search results. In this case,

cache hit ratios decrease since results cannot always

be reused across different searchers.

Level of Details to Cache

A page of search results is comprised of many different

components (e.g., result URLs, summary snippets,

ads), with each component logically coming from

different computational processes and often from dif-

ferent sets of physical servers. While caching is mean-

ingless without saving the URLs of the results, the

Web Search Result Caching and Prefetching W 3505

W

other components can be computed separately, and

whether to cache or recompute them is a matter of

computational tradeoff.

Holistic View

There are many types of objects other than result pages

that merit caching in a search engine, e.g., postings

lists of popular query terms, user profiles, summary

snippets, various dictionaries, and more [12,10]. The

optimal allocation of RAM for the caching of different

objects is a matter for holistic considerations that de-

pend on the specific architecture of the search engine.

Experimental Results
The literature reports on many experiments with many

query logs and caching schemes. All caching schemes

have at least one tunable parameter – the cache size –

whereas schemes with several cache segments (e.g.,

SLRU) have parameters governing the size of each seg-

ment. Search-specific caching schemes (PDC, SDC, AC)

have additional tunable parameters, and when coupled

with prefetching schemes, the number of reported ex-

perimental configurations grows significantly. There-

fore, the summary below focuses on qualitative

observations rather than quantitative ones. With respect

to caching without prefetching, the literature finds that:

� Even generic caching schemes attain decent hit

ratios. For example, LRU achieves on some query

logs hit ratios as high as 80% of what an infinite

cache would achieve. In terms of absolute values,

hit ratios of 20–30% are common for LRU based

schemes. In fact, recency-based caching schemes

are well suited for the large topical locality of refer-

ence exhibited by power-law query distributions,

where significant portions of the query stream are

comprised of a small set of highly popular queries.

� Search-specific caching schemes outperform generic

caching schemes.However, the relative gains in terms

of hit ratio are rarely higher than 10%.

Throughout the literature, prefetching improved the

achieved cache hit ratios, in many cases by 50% and

more as compared with the same experimental setup

without prefetching. The following are additional

observations:

� The largest relative gains in hit ratio are achieved for

moderate amounts of prefetching, namely fetching

one or two result pages beyond what is requested in
the query. More aggressive prefetching improves the

hit ratio by modest amounts at best, and in small

caches may even cause it to deteriorate.

� As a general rule, larger caches merit more prefetch-

ing, since much of a large cache is devoted to low-

merit result pages, which are less likely to be queried

than follow-up result pages of current queries.

� Not surprisingly, the adaptive prefetching scheme

proposed in [14] outperforms the simplistic policy

of always prefetching the same amount of result

pages regardless of the identity of the page that

generated the cache miss.

Cross-references
▶Buffer Management

▶Cache Replacement as Trade-Off Elimination

▶Cache-Conscious Query Processing

▶Competitive Ratio

▶ Indexing the Web

▶ Inverted Files

Recommended Reading
1. Baeza-Yates R., Gionis A., Junqueira F., Murdock V.,

Plachouras V., and Silvestri F. The impact of caching on

search engines. In Proc. 33rd Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2007,

pp. 183–190.

2. Baeza-Yates R., Junqueira F., Plachouras V., and Witschel H.F.

Admission policies for caches of search engine results. In Proc.

14th Int. Symp. String Processing and Information Retriev-

al, 2007, pp. 74–85.

3. Belady L.A. A study of replacement algorithms for a virtual-

storage computer. IBM Syst. J., 5(2):78–101, 1966.

4. Fagni T., Perego R., Silvestri F., and Orlando S. Boosting the

performance of web search engines: caching and prefetching

query results by exploiting historical usage data. ACM Trans.

Inf. Syst., 24(1):51–78, 2006.

5. Karedla R., Love J.S., and Wherry B.G. Caching strategies to

improve disk system performance. Computer, 27(3):38–46,

1994.

6. Lempel R. and Moran S. Optimizing result prefetching in web

search engines with segmented indices. In Proc. 28th Int. Conf.

on Very Large Data Bases, 2002, pp. 370–381.

7. Lempel R. and Moran S. Predictive caching and prefetching of

query results in search engines. In Proc. 12th Int. World Wide

Web Conference, 2003, pp. 19–28.

8. Lempel R. and Moran S. Competitive caching of query results

in search engines. Theor. Comput. Sci., 324(2):253–271, 2004.

9. Lempel R. and Moran S. Optimizing result prefetching in

web search engines with segmented indices. ACMTrans. Internet

Tech., 4:31–59, 2004.

10. Long X. and Suel T. Three-level caching for efficient query

processing in large web search engines. In Proc. 14th Int.

World Wide Web Conference, 2005, pp. 257–266.

3506W Web Search Result De-duplication and Clustering
11. Markatos E.P. On caching search engine query results. Comput.

Commun., 24(2):137–143, 2001.

12. Saraiva P., Moura E., Ziviani N., Meira W., Fonseca R., and

Ribeiro-Neto B. Rank-preserving two-level caching for scalable

search engines. In Proc. 24th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2001,

pp. 51–58.

13. Silverstein C., Henzinger M., Marais H., and Moricz M. Analysis

of a very large altavista query log. Technical Report 1998-014,

Compaq Systems Research Center, October 1998.

14. Silvestri F., Fagni T., Orlando S., Palmerini P., and Perego R.

A hybrid strategy for caching web search engine results. In Proc.

12th Int. World Wide Web Conference, 2003 (Poster).

15. Sleator D.D. and Tarjan R.E. Amortized efficiency of list update

and paging rules. Commun. ACM, 28:202–208, 1985.
Web Search Result De-duplication
and Clustering

XUEHUA SHEN
1, CHENGXIANG ZHAI

2

1Google, Inc., Mountain View, CA, USA
2University of lllinois at Urbana-Champaign, Urbana,

IL, USA

Definition
Web search result de-duplication and clustering are

both techniques for improving the organization and

presentation of Web search results. De-duplication

refers to the removal of duplicate or near-duplicate

web pages in the search result page. Since a user is

not likely interested in seeing redundant information,

de-duplication can help improve search results by de-

creasing the redundancy and increasing the diversity

among search results.

Web search result clustering means that given a set

of web search results, the search engine partitions them

into subsets (clusters) according to the similarity be-

tween search results and presents the results in a

structured way. Clustering results helps improve the

organization of search results because similar pages

will be grouped together in a cluster and a user can

easily navigate into the most relevant cluster to find

relevant pages. Hierarchical clustering is often used to

generate a hierarchical tree structure which facilitates

navigation into different levels of clusters.

De-duplication can be regarded as a special way of

clustering search results in which only highly similar

(i.e., near-duplicate) pages would be grouped into a
cluster and only one page in a cluster is presented to

the user. Although standard clustering methods can

also be applied to do de-duplication, de-duplication

is more often done with its own techniques which are

more efficient than clustering.

For example, Fig. 1 shows a screenshot of the clus-

tered search results of the query ‘‘jaguar’’ from the

vivisimo meta-search engine (http://www.vivisimo.

com), which clusters web search results and presents a

hierarchical tree of search results. On the left are some

clusters labeled with phrases; each cluster captures some

aspect of the search results, and different senses of

‘‘jaguar’’ (e.g., jaguar animals vs. jaguar cars) have

been separated. On the right are the documents in the

cluster labeled as ‘‘Panthora onca,’’ which are displayed

as the user clicks on this cluster on the left panel.

Historical Background
The idea of clustering search results appears to be first

proposed in [6]. However, the application of docu-

ment clustering to improve the performance of infor-

mation retrieval has a much longer history [14], dating

back to at least 1971 [9]. Most of this work has been

motivated by the so-called cluster hypothesis, which says

that closely associated documents tend to be relevant to

the same requests [9]. The cluster hypothesis suggests

that clustering can be potentially exploited to improve

both search accuracy (e.g., similar documents can re-

inforce each other’s relevance score) and search effi-

ciency (e.g., scoring clusters takes less time than

scoring all the documents in the whole collection).

Research has been done in both directions with

mixed findings.

In [3], it was proposed that clustering can be used

to facilitate document browsing, and a document

browsing method called Scatter/Gather was proposed

to allow a user to navigate in a collection of docu-

ments. In [6], Scatter/Gather was further applied to

cluster search results and was shown to be more effec-

tive in helping a user find relevant documents than

simply presenting results as a ranked list.

Clustering web search results appears to be first

studied in [15], which shows that it is feasible to cluster

web search results on-the-fly. Vivisimo (http://www.

vivisimo.com/) is among the first Web search engines

to adopt search result clustering. More recent work

in this line has explored presenting search results

in clusters (categories) defined based on context (e.g.,

[4,13]), hierarchical clustering (e.g., [5]), efficiency

Web Search Result De-duplication and Clustering. Figure 1. Sample clustered results about ‘‘jaguar’’ from Vivisimo

search engine.

Web Search Result De-duplication and Clustering W 3507

W

of clustering, incorporating the prior knowledge or

user feedback into clustering algorithms in a semi-

supervised manner.

Compared with clustering, document de-duplication

has a relatively short history. The issue of document

duplication was not paid much attention to by infor-

mation retrieval researchers in early days, probably

because it was not a serious issue in the traditional

applications of retrieval techniques (e.g., library sys-

tems). However, the problem of detecting duplicate or

near-duplicate documents has been addressed in some

other contexts before it was studied in the context

of the Web. For example, the problem has naturally

occurred in plagiarism detection. The problem also

arose in file systems [10], where one document could

be easily copied, slightly modified, saved as another

file, or transformed into another format, leading to

duplicate or near-duplicate documents. The SCAM

system [12] is among the early systems for detecting

duplicate or near-duplicate documents. The algo-

rithms proposed in these studies are often based on

signatures – representing and comparing documents

based on their signatures, or values generated by a

hashing function based on substrings from documents.
Web page de-duplication was first seriously exam-

ined in [1], where the authors pointed out that docu-

ment duplication arises in two ways on the Web: one is

that the same document is placed in several places, while

the other is that the same document are in almost

identical incarnations. The authors further proposed

an effective de-duplication algorithm based on repre-

senting and matching documents based on shingles

(i.e., contiguous subsequences of tokens in a documents).

Now it has been realized that Web page de-duplication

is needed at stages of indexing, ranking, and evaluation

[8] to decrease the index storage, increase user satisfac-

tion level, and improve ranking algorithm, respectively.

Foundations
Since de-duplication can be regarded as a special

case of clustering, it is not surprising that de-

duplication and clustering share very similar funda-

mental challenges, which include (i) designing an

appropriate representation of a document; (ii) de-

signing an effective measure of document similarity

based on document representation; (iii) finding/

grouping similar documents (duplicate or near-du-

plicate documents in the case of de-duplication)

3508W Web Search Result De-duplication and Clustering
quickly. Most research work attempts to solve all or

some of these challenges.

How to represent a document and how to measure

similarity between documents are closely related to

each other in that a similarity function making sense

for one representation may not work for another rep-

resentation. Both highly depend on how the notion of

similarity is defined. This is a non-trivial issue as two

documents may be similar in many different ways (e.g.,

in topic coverage, in genre, or in structure), and

depending on the desired perspective of similarity,

one may need different representations of documents

and different ways are needed to measure similarity. As

a result, the optimal choice often depends on the

specific applications.

For de-duplication, it often suffices to represent

documents primarily based on simple tokenization

of documents or even surface string representation

of documents since duplicate or near-duplicate docu-

ments generally share a lot of surface features and may

contain very long identical strings. For the same rea-

son, exact matching of two representations may also

be sufficient most of the time. Most proposed meth-

ods for detecting duplicate or near-duplicate docu-

ments can be roughly classified into two categories:

signature matching and content matching. They

mainly differ in how a document is represented. In

signature matching, a document is represented by a

signature of the document which is often generated

using a hash function based on some (not necessarily

meaningful) subsequences of tokens in a document,

thus the similarity between documents is mostly

measured based on syntactic features of documents.

In content matching, the basic unit of document

representation is often a meaning unit such as a

word or phrase intended to capture the goal of con-

tent-matching. Moreover, the basic units are often

weighted to indicate how well they reflect the content

of a document using heuristic weighting methods

such as TF-IDF weighting proposed in information

retrieval. Since document representation reflects

more the content of a document in the content

matching approach, the similarity between docu-

ments reflects their semantic similarity better than

in the fingerprint matching approach. In general,

content matching captures more semantics in de-

duplication but is generally more expensive than sig-

nature matching. A comprehensive evaluation of

these methods can be found in [7].
The shingling algorithm proposed in [1] remains

a major state-of-the-art method for Web page de-

duplication. In this algorithm, every k subsequence of

tokens of a web page is used as a unit of representation

(called a shingle), and a page is represented by the set

of unique shingles occurring in the page. The similarity

between two web pages is measured by the percentage

of unique shingles shared by the two pages. Sampling

can be used to estimate this similarity and improve

efficiency of de-duplication.

In the I-Match method [2], collection statistics is

used to filter terms in a signature matching approach,

thus achieving content-matching to a certain extent. In

a recent work [8], it is shown that additional content-

based features can be exploited to significantly improve

de-duplication accuracy.

Clustering of search results is almost exclusively

based on content matching rather than signature

matching because the goal is to group together seman-

tically similar pages which are not always syntactically

similar. A document is often represented by a content-

capturing feature vector. To construct such a vector, a

set of features are selected and assigned appropriate

weights to them. Many features may be adopted for

clustering, including, e.g., terms from the full content

of the html web page, web page snippet (title and

summary), URL of the web page, and anchor text.

These features need to be weighted appropriately to

reflect the content of a page accurately. These chal-

lenges are essentially the same as in text retrieval

where there is a need to represent a document appro-

priately to match a document with a query accurately.

In general, document similarity can be computed in a

similar way to computing the similarity between a

query and a document in a standard retrieval setting.

Thus many methods developed in information retriev-

al, especially TF-IDF term weighting and language

models, can applied to clustering search results. The

basic idea of TF-IDF weighting is to give a term a

higher weight if the term occurs frequently in a docu-

ment and occurs infrequently in the entire collection

of documents. Similarity is often computed based on

the dot product or its normalized form (i.e., cosine)

of two TF-IDF vectors. Language models achieve a

similar weighting heuristic through probabilistic mod-

els. Once similarities between documents are com-

puted, many clustering methods can be applied, such

as k-means, nearest neighbor, hierarchical agglomera-

tive clustering, and spectral clustering. Instead of relying

Web Search Result De-duplication and Clustering W 3509

W

on an explicit similarity function, a different strategy

for clustering is to cast the clustering problem as fitting

a mixture model to the text data; the estimated param-

eter values can then be used to easily obtain clusters.

Methods of this kind are called model-based clustering

methods. Finite multinomial mixture, probabilistic la-

tent semantic indexing (PLSA), and latent Dirichlet

allocation (LDA) are some examples in this category.

In model-based clustering, the notion of similarity is

implied by the model. Due to the lack of systematic

comparisons among these different methods, it is un-

clear which clustering method is the best for clustering

search results.

Efficiency is a critical issue for clustering search

results since a search engine must do that on-the-fly

after the user submits a particular query. Usually

clustering is applied after the search engine retrieves

a ranked list of web pages. Thus the time spent on

clustering is in addition to the original latency of web

search. If the latency is noticeable, the user may be

discouraged from using a clustering interface. Some

clustering algorithms such as k-means and some

model-based algorithms are ‘‘any time’’ algorithms

in that they are iterative and can stop at any iteration

to produce (less optimal) clustering results. These

algorithms would thus be more appropriate for clus-

tering search results when efficiency is a concern.

Speeding up clustering is an active research topic in

data mining, and many efficient algorithms proposed

in data mining can be potentially applied to clustering

search results.

Another important challenge in clustering search

results is to label a cluster appropriately, which clearly

would directly affect the usefulness of clustering, but is

yet under-addressed in research. A good cluster label

should be understandable to the user, capturing the

meaning of the cluster, and distinguishing the cluster

from other clusters. In [11], a probabilistic method is

proposed to automatically label a cluster with phrases.

Another approach to improving cluster labeling and

clustering of results in general is to learn from search

logs to discover interesting aspects of a query and

cluster the search results according to these aspects

which can then be naturally labeled with some typical

past queries [13].

Key Applications
The major application of search results de-duplication

is to reduce the redundancy in search results, which
presumably improve the utility of search results. Doc-

ument de-duplication, however, has many other appli-

cations in Web search. For example, it can reduce the

size of storage for index, and allow a search engine to

load index of more diverse web page sets to the memory.

Eliminating duplicate or near-duplicate documents

can also reduce the noise in the document set for

evaluation, and thus would allow an evaluation mea-

sure to reflect more accurately the real utility of a

search algorithm [8]. Besides applications for search

engines, de-duplication also has many other applica-

tions such as plagiarism detection and tracking dy-

namic changes of the same web page.

Clustering search results generally help a user navi-

gate in the set of search results. It is expected to be most

useful when the search results are poor or diverse (e.g.,

when the query is ambiguous) or when the user has a

high-recall information need. Indeed, when the user

has a high-precision information need (e.g., naviga-

tional queries) and the search results are reasonably

accurate, presenting a ranked list of results may be the

best and clustering may not be helpful. However, due

to the inevitable mismatches between a query and web

pages, the search results are more often non-optimal.

When the search results are poor, it would take a user a

lot of time to locate relevant documents from a ranked

list of documents, so clustering is most likely helpful

because it would enable a user to navigate into the

relevant documents quickly. In the case of poor results

due to ambiguity of query words, clustering can be

expected to be most useful. When the user has a

high-recall information need, clustering can also help

the user quickly locate many additional relevant docu-

ments once the user identifies a relevant cluster. In

addition, the overview of search results generated

from clustering may be useful information itself from

a user’s perspective. Data visualization techniques can

be exploited to visualize the clustering presentation as

in Kartoo (http://www.kartoo.com). Appropriate visu-

alization may increase the usefulness of clustering

search results.

Clustering search results, when used in an iterative

way, can help a user browse a web pages collection. In

Scatter/Gather [3], for example, the user would inter-

act with an information system by selecting interesting

clusters, and the information system would do cluster-

ing again after the user selects some clusters. Thus

clustering search results can effectively support a user

to interactively access information in a collection.

3510W Web Services
URL to Code
Lemur (http://www.lemurproject.org/). Lemur is

an open-source toolkit designed to facilitate research

in information retrieval. Document clustering is

included.

CLUTO(http://glaros.dtc.umn.edu/gkhome/views/

cluto/). CLUTO is a software package for clustering

low- and high-dimensional datasets and for analyzing

the characteristics of clusters.
Cross-references
▶Data Clustering

▶Data Visualization
Recommended Reading
1. Broder A.Z., Glassman S.C., Manasse M.S., and Zweig G. Syn-

tactic clustering of the web. Comput. Networks, 29(8–13):

1157–1166, 1997.

2. Chowdhury A., Frieder O., Grossman D.A., and McCabe M.C.

Collection statistics for fast duplicate document detection. ACM

Trans. Inf. Syst., 20(2):171–191, 2002.

3. Cutting D.R., Pedersen J.O., Karger D., and Tukey J.W. Scatter/

gather: a cluster-based approach to browsing large document

collections. In Proc. 15th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 1992,

pp. 318–329.

4. Dumais S.T., Cutrell E., and Chen H. Optimizing search by

showing results in context. In Proc. SIGCHI Conf. on Human

Factors in Computing Systems, 2001, pp. 277–284.

5. Ferragina P. and Gulli A. A personalized search engine based on

Web-snippet hierarchical clustering. In Proc. 14th Int. World

Wide Web Conference, 2005, pp. 801–810.

6. Hearst M.A. and Pedersen J.O. 1Reexamining the cluster hypothe-

sis: scatter/gather on retrieval results. In Proc. 19th Annual Int.

ACM SIGIR Conf. on Research and Development in Information

Retrieval, 1996, pp. 76–84.

7. Hoad T. and Zobel J. Methods for identifying versioned and

plagiarised documents.. J. Am. Soc. Inf. Sci. Technol., 54(3):

203–215, 2003.

8. Huffman S., Lehman A., Stolboushkin A., Wong-Toi H., Yang F.,

and Roehrig H. Multiple-signal duplicate detection for search

evaluation. In Proc. 33rd Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, 2007,

pp. 223–230.

9. Jardine N. and van Rijsbergen C. The use of hierarchic clustering

in information retrieval.. Inf. Storage Retr., 7(5):217–240, 1971.

10. Manber U. Finding similar files in a large file system. In Proc.

USENIX Winter 1994 Technical Conference, 1994, pp. 1–10.

11. Mei Q., Shen X., and Zhai C. Automatic labeling of multinomial

topic models. In Proc. 13th ACM SIGKDD Int. Conf. on Knowl-

edge Discovery and Data Mining, 2007, pp. 490–499.

12. Shivakumar N. and Garcia-Molina H. SCAM: a copy detection

mechanism for digital documents. In Proc. 2nd Int. Conf. in

Theory and Practice of Digital Libraries, 1995.
13. Wang X. and Zhai C. Learn from Web search logs to organize

search results. In Proc. 33rd Annual Int. ACM SIGIR Conf.

on Research and Development in Information Retrieval, 2007,

pp. 87–94.

14. Willett P. Recent trends in hierarchic document clustering: a

critical review.. Inf. Process. Manage., 24(5):577–597, 1988.

15. Zamir O. and Etzioni O. Grouper: a dynamic clustering interface

to Web search results. In Proc. 8th Int. World Wide Web

Conference, 1999.
Web Services

ERIC WOHLSTADTER
1, STEFAN TAI

2

1University of British Columbia, Vancouver, BC,

Canada
2University of Karlsruhe, Karlsruhe, Germany

Synonyms
e-Services

Definition
Web services provide the distributed computing mid-

dleware that enables machine-to-machine communi-

cation over standard Web protocols. Web services are

defined most precisely by their intended use rather

than by the specific technologies used, since different

technologies are popular [1]. Web services are useful in

a compositional approach to application development;

where certain key features of an integrated application

are provided externally through one or more remote

systems. Additionally, Web service standards are a

popular platform for wrapping existing legacy applica-

tions in a more convenient format for interoperability

between heterogeneous systems. To provide intero-

perability Web services should follow standards for

formatting application messages, describing service

interfaces, and processing messages. Two popular tech-

nology choices discussed in this entry are the SOAP [5]

based services and the REST (REpresentational State

Transfer) [4] based services.

In contrast to traditional WorldWide Web (WWW)

resources, Web services decouple the user interface from

the underlying programmatic interface, to provide an

application programming interface (API) to clients.

This API provides the means through which Web ser-

vices expose remote computational resources or infor-

mational content over the Internet. Web services are

generally designed to follow a service-oriented architec-

ture which promotes the loose coupling useful for

Web Services W 3511

W

interaction in a wide-area environment. This loose cou-

pling comes at the price of giving up more powerful

mechanisms such as stateful objects which introduce

tighter coupling [2,7].

Historical Background
Web services address enterprise application integration

(EAI) in a wide area environment. Historically, they

were designed in response to the need for a simpler

base of standards than provided by distributed object

computing. The originalWWWwas also unsatisfactory

due to its tight coupling with the user interface.

Distributed object computing provides the abstrac-

tion of remote stateful objects whose methods can be

invoked transparently by clients. This form of remote

method invocation is popular in proprietary distributed

systems but has never been widely deployed on the Inter-

net. A standardized technology known as the Common

Object Request Broker Architecture (CORBA) is com-

monly used to develop and deploy distributed object

applications. Although the CORBA platform provides

powerful abstractions for application programmers,

these abstractions tended to introduce a high level of

complexity in the underlying infrastructure. Consensus

was never reached on several important technical pro-

blems introduced by the stateful nature of objects such as

distributed garbage collection and object identification

[2,7]. Thus, distributed object computing is more appro-

priate in single enterprise deployment scenarios (e.g.,

telecommunications and military applications).

With the rise in acceptance of XML, it made sense to

leverage this format as a means of machine-to-machine

communication. In creating new standards around this

format, certain problematic features such as stateful

objects were not included in the newly developed stan-

dards leading to more lightweight and loosely coupled

Web services.

The WWW was created as a collaborative platform

for distributing information through web pages: docu-

ments with text and images including the capability to

link between related content. The standard format for

web pages, Hypertext Markup Language, included

mixed elements of both informational content and

user interface design. With the tremendous popularity

of the WWW, came the opportunity to bring rich up-

to-date informational data sources to a large audience.

This also required complex business processes to man-

age requests for data. Since the retrieved datawas tangled

with user interface code, it was difficult to separate the
two concerns for users interested in post-processing the

retrieved information. ‘‘Wrappers’’ had to be used to

parse, or ‘‘scrape’’ useful content from delivered pages.

To simplify the distribution of information, some

websites began offering remote APIs for information

retrieval which has led to the interest in standardized

Web services.

Foundations
Since interoperability is a key element for any Web

service, some standardized approach must be taken

to export service functions. The most formal approach

to building Web services is built around two core

standards known as SOAP and the Web Services De-

scription Language (WSDL) [8]. The standards are

being developed by organizations such as the W3C

and OASIS. Other lightweight and dynamic

approaches are generally categorized under the moni-

ker of REST services. The REST approach requires few

standardized technologies beyond HTTP. For both

approaches, the standard way to identify each service

is through means of an Internet Uniform Resource

Identifier (URI). To locate an existing service, a URI

is typically obtained out-of-band through informal

means, although other automated approaches to ser-

vice discovery are being explored.

In their most basic form, Web services provide only

the basic primitives for exchanging documents be-

tween clients and servers. Standards for building ro-

bust, transactional, and secure services have been

proposed but are not currently widely deployed. The

remainder of this entry focuses on the core Web

services fundamentals and describes how both SOAP/

WSDL and REST deal with the details of service

implementation: message formatting, interface de-

scription, and message processing.

Web services use a human readable message format

for transport of application specific data. This practice

simplifies the task of debugging and loosens a client’s

reliance on complex implementations for marshalling

data. A popular message format is XML due to its

self-described nature and abundance of third-party

support for processing and storage. The use of XML

is mandated by the SOAP/WSDL approach and is

popular in REST services also. Conversion of XML

to data structures native for a specific programming

language can be done through standardized mappings.

These mappings are supported by middleware which

automate the mapping process. When REST services

3512W Web Services
are consumed directly from a browser agent through

JavaScript, a format known as JSON (JavaScript

Object Notation) [3] can be used. Unlike XML, JSON

provides a direct human readable serialization of

JavaScript objects. This can reduce problematic mis-

matches between the differing type systems of XML

Schema [10] and JavaScript.

As an API, Web services often provide a number of

distinct functions each with their own input require-

ments and output guarantees. This interface can be

specified formally or informally. Formal description

of Web service interfaces is provided through WSDL.

WSDL is an extension of the XML Schema specifica-

tion and most importantly provides description of the

set of functions exposed by a service. WSDL specifi-

cations add the possibility of providing statically

typed-checked service use for clients. This is done by

implementing message format mapping through a

code generation and compilation process.

With REST, the inputs to service functions are spe-

cified as standard web URIs, making use of URI para-

meters for data input. Output can be produced using

any standard HTTP supported encoding and XML is

often used for this purpose. The original description of

the REST architecture placed considerable emphasis

on the fact that services should be described as a set

of resources which could be manipulated using pre-

defined HTTP methods (i.e., GET, POST, DELETE,

etc.), rather than an application specific set of functions.

However in practice, the term REST more commonly

refers to any service accessible with little technology

beyond HTTP, whether or not the service is modeled

primarily as resources or functions. REST currently

provides no formal treatment for description of services,

although discussion of a standard REST description

language is underway as of this writing.

Although not required, many Web services middle-

ware platforms are built around a common architec-

tural style referred to as the Chain of Responsibility

pattern [6]. On a local scale incoming and outgoing

Web service messages pass through a series of compo-

nents, called handlers or interceptors, before being

passed to lower network layers. This architecture pro-

motes loose-coupling within the middleware itself.

Handlers addressing separate concerns such as reliabil-

ity, transactions or security can easily be plugged into

the middleware and configured on a per application

basis. A large number of standards known as WS-* [9]

are being developed to specify the formats and
protocols for managing these concerns in middleware

implementations.

SOAP provides a standard for encapsulating XML

based Web service messages with an envelope that can

be used to communicate such extra-functional informa-

tion such as security tokens, time stamps, etc. Using

SOAP, the Chain of Responsibility architecture can be

extended to a distributed series of message processing

steps. In the distributed scenario each step can be handled

at a potentially different intermediary location on the

network, giving rise to Web service intermediaries.

SOAP also standardizes the fault handling semantics for

undeliverable messages and provides a number of mes-

sage exchange patterns. These patterns capture certain

reliability guarantees which can potentially be of use by

the underlyingmiddleware for optimizing resource usage.

REST messages are transported according to the

semantics of the Hypertext Transport Protocol re-

source access methods. REST architectural principles

mandate the use of stateless protocols wherever possi-

ble. REST message processors should consider only

point-to-point connections as opposed to an end-to-

end connection. This simplifies the interposition of

caches or other intermediaries for message processing.

REST services should rely only on standardized HTTP

message headers for communicating extra-functional

processing instructions, to keep implementation infra-

structure lightweight.

Key Applications
Web services expose data and application functionality

using standard Internet technology for consumption by

clients over the Web. For example, Web services are used

to provide access to very large product data. Today, the

range of Web services offerings spans from very simple

services to more advanced offerings in support of spe-

cific business requirements. Simple services include

format conversion services, transformation services and

real-time information services such as news feeds and

stock quotes. Business offerings include the full range of

e-commerce, CRM, marketing, finance, and communi-

cation services, among them verification services such as

credit checking, accounting services, or customized noti-

fication services. Further, entire business processes such

as the shipment of goods are provided as Web services.

The modular nature of Web services supports the -

de-composition of application functionality and

business processes and their (re-)composition into

new applications. Services composition applies both

Web Services and the Semantic Web for Life Science Data W 3513

W

within an organization and across different

organizations. Compositions can take various forms,

including workflow applications that require the use of

a process composition language and centralized work-

flow engine. Web services in this way support EAI

using standard Internet technology. Another form of

composition are Mashups, re-purposing Web-accessi-

ble content and functionality in new Web applications

that provide an interactive (human) end-user experi-

ence. For example, a Mashup may visualize location

information of social event feeds on a map.

Web services are also being used in re-architect-

ing middleware software platforms as service-oriented

architectures. Middleware services such as message

queuing and data storage are provided as Web services;

middleware functionality can thus be externalized and

used as a remote service. This model targets small and

medium sized enterprises in particular, but applies

equally to larger size enterprises as well. More advanced

services offerings include application hosting and exe-

cution services, which allow clients to have entire soft-

ware applications hosted and executed externally.

Future Directions
Today, there exists a variety of Web services protocols,

APIs, languages, and specifications. Different combi-

nations of Web services technology are being used

for different purposes. For example, SOAP and Web

services specifications in support of security and reli-

ability are used in enterprise computing, whereas REST

services are popular for simple services like data access

and applications in the social Web.

From a business viewpoint, Web services establish a

new market for trading and contracting electronic

services that complement and transform the tradition-

al consulting services and software market. The devel-

opment of this market today is accompanied by the

emergence of intermediaries for buyers and sellers to

exchange services. These intermediaries distinguish

themselves using different pricing mechanisms, co-

marketing efforts, billing and accounting management,

services usage monitoring, data integration models,

and infrastructure quality guarantees for services avail-

ability. NewWeb services technology in support of this

business development is expected to emerge.

Cross-references
▶AJAX

▶Coupling and De-Coupling
▶Discovery

▶ Enterprise Application Integration

▶ Interface

▶ Loose Coupling

▶Mashups

▶OASIS

▶Request Broker

▶ Service Oriented Architecture

▶ SOAP

▶Tight Coupling

▶W3C

▶Web 2.0 (3.0)

Recommended Reading
1. Alonso G., Casati F., Kuno H., and Machiraju V. Web Services:

Concepts Architectures and Applications. Springer, Berlin, 2003.

2. Birman K. Like it or not, web services are distributed objects.

Commun. ACM, 47(12):60–62, 2004.

3. Crockford D. The application/json media type for JavaScript

object notation. Network Working Group, RFC 4627, 2006.

4. Fielding R. Architectural Styles and the Design of Network-

based Software Architectures. Ph.D. Dissertation, University of

California, 2000.

5. SOAP Version 1.2. W3C Recommendation, 2007.

6. Vinoksi S. Chain of responsibility. IEEE Internet Comput.,

6(6):80–83, 2002.

7. Vogels W. Web Services are not Distributed Objects. IEEE Inter-

net Comput., 7(6):59–66, 2003.

8. Web Services Description Language Version 2.0. W3C Recom-

mendation, 2007.

9. Weerawarana S., Curbera F., Leymann F., Storey T., and

Ferguson D. Web Services Platform Architecture. Prentice Hall,

Upper Saddle River, NJ, 2005.

10. XML Schema. W3C Recommendation, 2004.
Web Services and the Semantic Web
for Life Science Data

CARTIK R. KOTHARI, MARK D. WILKINSON

University of British Columbia, Vancouver, BC,

Canada

Definitions
Web services are frameworks for communication bet-

ween computer applications on the World Wide Web.

A general feature of ‘‘canonical’’ Web services is that they

exposeWeb-based application interfaces in the form of a

Web Services Description Language (WSDL) document

with machine-readable content describing the input(s),

output(s), and location of an application. The Semantic

3514W Web Services and the Semantic Web for Life Science Data
web extends the traditional Web by applying human

and machine-readable labels to the links between

resources, and encouraging those resources to be

‘‘typed’’ into a set of well-grounded categories, defined

by shared ontologies. Machines can thus explore and

process the content of the Semantic Web in meaningful

ways. Moreover, the Semantic Web moves beyond sim-

ple documents and allows linking of individual data

points, analytical tools, and even conceptual entities

with no physical representation. Ontologies are formal

descriptions of a knowledge domain, and range from

simple controlled vocabularies to explicit logical defini-

tions of the defining properties for all concepts and

inter-concept relationships within that knowledge do-

main. In the life sciences, with its multitude of

specialized data repositories and data processing

applications, the Semantic Web paradigm promises to

overcome the hurdles to data discovery, integration,

mining, and reuse that continues to hinder biomedical

investigation in the post-genomic era.

Historical Background
The life sciences are experiencing what might best

be described as a feedback-loop – the ability of life

scientists to generate raw ‘‘omics’’ data in vast quantities

is perhaps only exceeded by the quantity of data output

from tools analyze this raw data, and both become the

fodder for new downstream analyses. Though much of

the data is stored in one of several generalized Web-

based repositories – for example UniProt (http://www.

pir. uniprot.org), GenBank (http://www.ncbi.nlm.nih.

gov/GenBank), or EMBL (http://embl.org) – still more

data is housed in specialized repositories such as Gene

Expression Omnibus (http://www.ncbi.nlm.nih.gov/

geo/) (GEO), for Gene Expression Data, or species-

specific Web databases such as Wormbase (http://www.

wormbase.org/), Flybase (http://flybase.bio.indiana.

edu/), DragonDB (http://antirrhinum.net), and TAIR

(http://www.arabidopsis.org/). Similarly, many com-

mon analytical tools are also made available on the

Web, through traditional CGI or JavaScript interfaces.

In the course of their daily experimental investigations,

Biologists frequently need to use various combinations

of these distributed data and/or analytical resources.

For most biologists, this is achieved by manual copy/

paste of the output from one resource into the input

form fields of the next. Computer-savvy biologists

might undertake to construct ‘‘screen scrapers’’ –

small computer programs that automatically process
the output from Web resources and pipelined data

from one resource to the next – and this is further

facilitated by the creation of centralized code reposi-

tories such as BioPerl (http://www.bioperl.org) and

BioJava (http://biojava.org) that provide a uniform

API into a standard and curated set of ‘‘scrapers.’’

Nevertheless, automation of data extraction from tradi-

tional Web forms is fraught with difficulties; with

the lack of a common data interchange format and

shareable semantics being the biggest hurdle.

The introduction of Web Services provided a

more standardized, and platform/language-indepen-

dent method of exposing data and analytical tools on

the Web, and encouraged the use of XML as the stan-

dard data exchange format between different web

resources. Moreover, the interface to and functionality

of a Web Service could be described in a standardized

machine processable syntax – Web Services Description

Language (http://www.w3.org/TR/2007/REC-wsdl20-

primer-20070626/) (WSDL), and a novel transport pro-

tocol – Simple Object Access Protocol (http://www.w3.

org/TR/2007/REC-soap12-part0–20070427/) (SOAP) –

was introduced to hide the complexities of the data

exchange process and thus facilitate design of simple

object- oriented accessors to remote Web resources. A

paradigm for Web Services discovery (UDDI) was also

proposed; however this has not been widely adopted,

and will not be discussed here.

Although Web Services greatly aided the standardi-

zation of interfaces, the problem of interoperability

had not been solved – the pipelining of Web Services

continued to require sophisticated knowledge of the

interfaces such that appropriate data-structures could

be extracted from one service and fed into the next.

This is because the XML data syntax lacks semantic

grounding, and thus the input and output to/from any

Web Service is opaque to automated interpretation,

which thwarts attempts at automated Web Service

workflow composition. The advent of the Semantic

Web and ontologies constructed with Semantic Web

compatible knowledge representation formalisms pro-

mises to overcome this hurdle.

The Semantic Web is being implemented as a Web

of machine processable data. This is in contrast to the

first version of the World Wide Web where machines

were primarily concerned with the presentation of data;

consumption and interpretation were limited to

humans. Data on the SemanticWeb is renderedmachine

processable by annotation with syntactic constructs

Web Services and the Semantic Web for Life Science Data W 3515

W

whose semantics are grounded in formal mathematical

logic. Knowledge representation formalisms such as the

Resource Description Framework (http://www.w3.org/

RDF/) (RDF) and the Web Ontology Language (http://

www.w3.org/2004/OWL/) (OWL) provide syntactic

constructs with logically grounded semantics that can

be used to annotate web services.

Ontologies such as the OWL-Services (http://www.

w3.org/Submission/2004/SUBM-OWL-S-20041122/)

ontology and the Web Services Modeling Ontology

(http://www.w3.org/Submission/WSMO/) (WSMO)

are fresh initiatives to leverage the Semantic Web infra-

structure for web service composition. Aweb service on

the Semantic Web can be described by instances of con-

cepts from theOWL-S orWSMOand easily invoked and

composed with other compatible web services.

Foundations

Web Services

Web Services have revolutionized the field of distri-

buted computation. Web Services enable the remote

discovery and execution of software applications across

the dimensions of theWeb in an implementation agnos-

tic manner. According to the World Wide Web Con-

sortium (W3C), a Web Service is ‘‘a software system

designed to support interoperable machine to machine

interaction over a network.’’ The functionality of Web

Services can be easily understood from three different

perspectives viz. the service provider, the service client,

and the service registry.

The Service Provider A service provider is a person

or organization that is responsible for the development

and maintenance of the Web Service. The service pro-

vider is familiar with the implementation details of the

service, such as the architecture of the underlying appli-

cation and the programming language used. These

details are encapsulated by the Web Service interface,

which describes the function of the Web Service, its

location, input parameters and output parameters and

their data-types. Consider an application that performs a

search for relevant publication in an online, open access

repository such as PubMed (http://www.pubmed.org).

This application would be encapsulated in a web inter-

face (the Web Service), which advertises the function of

the service (searching for relevant publications), the

location of the service (a resolvable URI, usually a

URL), the input parameters (keyword, name of the
author, citation details such as journal name and/or

date of publication, all of which would be string-literal

data-types), and the output parameters of the service

(title of the publication, abstract, and citation details; all

of which are string-literals). This Web Service

description is published as a WSDL document and is

(optionally) registered in a registry. Note the description

does not include implementation details. The underly-

ing application could be implemented on a Linux or

Microsoft platform, using any programming or scripting

language desired.More importantly, can also be accessed

by a client application on any platform using any

language.

The Service Client The service client locates a specific

Web Service from its description. The client then re-

motely invokes the discovered service and executes it.

In the PubMed example, consider a service client that

is looking for publications about the Vascular Endo-

thelial Growth Factor (VEGF) protein. The service

client discovers the book browsing service from its

WSDL description. The WSDL description details the

input parameters accepted by the Web Service, one of

which is ‘‘keyword.’’ The client sends the text string

‘‘VEGF’’ into the interface as the ‘‘keyword’’ parameter

and thereby invokes the service. The communication

between the client and the service generally utilizes the

HTTP protocol, and is often supplemented by a stan-

dardized messaging format such as SOAP.

Note that ‘‘keyword’’ is a human-readable label

indicating the purpose of that input parameter – the

WSDL interface definition must be interpreted by a

person in order to determine the intent of that param-

eter, emphasizing the point that, in traditional Web

Services, the interfaces are opaque due to the lack of

ontological grounding of XML tags.

The Service Registry The service registry acts as a

‘‘yellow pages’’ for Web Service discovery, and brokers

the direct interaction between a client and a chosen

service. Specifically, the registry holds WSDL descrip-

tions of Web Services, including their functional char-

acteristics such as input and output parameters, and

location. In addition, human readable descriptions of

the web service may also be included in the WSDL

description. Details of the service provider, and classi-

fication information (e.g., the UNSPSC category of the

service), and reliability estimates may also be provided.

In addition, Web Service registries may perform

Web Services and the Semantic Web for Life Science

Data. Figure 1. Proposed semantic web architecture

(Berners-Lee et al., 2001).

3516W Web Services and the Semantic Web for Life Science Data
ancillary tasks such as periodic polling to identify

inactive services, and collecting performance metrics

and reliability estimates.

The Semantic Web

The Semantic Web initiative aims to make the vast

amounts of information on the Web processable by

machines. Previously, computers were involved only in

the presentational aspects of this information, which

was marked up with tags from the HyperText Markup

Language (http://www.w3.org/html/) (HTML). HTML

tags specify how the tagged information is to be pre-

sented on a browser. However, there are no semantics

associated with HTML tags, nor are there seman-

tics associated with the hyperlinks between documents,

thus preventing automated interpretation of the con-

tained information. The development of knowledge

representation formalisms for the Semantic Web such

as RDF, the Ontology Inference Layer (http://www.

ontoknowledge.org/oil/) (OIL), the DARPA Advanced

Markup Language (http //www.daml.org) (DAML),

from the Defense Advanced Research Projects Agency

(http://www.darpa.mil) (DARPA), and OWL have

been an attempt to overcome these limitations of

theWeb.

OWL is the most advanced formalism for markup

on the Semantic Web, providing a very expressive and

decidable set of constructs for ontology development,

and has been adopted by the W3C as a standard. The

semantics of constructs from OWL (and OIL and

DAML) are grounded in mathematical logic. There-

fore, the information content is now accessible to

computers and can be used by logical inference axioms

to deduce implicit knowledge. Lastly, the information

content can be queried by machines across the Web.

Intelligent, semantic based searches become a possi-

bility, replacing the prevalent simple keyword based

searches and word and hyperlink based algorithms.

Three components are critical to understanding the

Semantic Web architecture; ontologies, query engines

and inference engines. Figure 1 shows the Semantic

Web architecture proposed by Tim Berners-Lee.

Ontologies Ontologies are machine interpretable

models of knowledge domains. An ontological repre-

sentation of a knowledge domain contains logically

grounded definitions of concepts and inter-concept

relations that are specific to that domain. Since these

concepts and relations are defined in a rigorous logical
framework, their semantics can be shared and processed

by machines without loss of clarity. The information

content of Web pages on the Semantic Web can be

marked up as instances of ontologically defined concepts

and relations. Knowledge representation formalisms

such as OWL can be used to construct ontologies of

different knowledge domains. Ontology editing tools

such as Protégé (http://protege.stanford.edu/), TopBraid

suite (http://www.topquadrant.com/topbraid suite.

html), and Altova SemanticWorks (http://www.altova.

com/products/semanticworks/semantic_web_rdf_

owl_editor. html) have made the process of ontology

development very straightforward for knowledge do

main experts. This is attested by the proliferation of

ontologies, especially in the life sciences domain.

Query Engines Marking up the information content

of Web pages with semantically rich HTML tags makes

it possible for query engines and languages to retrieve

this information. Two of the earliest query languages

for retrieving RDF annotated informationwere SPARQL

(http://www.w3.org/TR/rdf-sparql-query/) and the RDF

Query Language (http://139.91.183.30:9090/RDF/RQL/

) (RQL). SeRQL (//www.openrdf.org/doc/sesame/users/

ch06.html), nRQL [9], and RDQL (http://www.w3.org/

Submission/2004/SUBM-RDQL-20040109/) are other

querying formalisms that have been developed to re-

trieve RDF annotated documents from the Semantic

Web.

Inference Engines Inference is the process of deducing

implicit information from the combination of explicitly

stated information and inference axioms. For example,

Web Services and the Semantic Web for Life Science Data W 3517

W

given that any person who is the parent of a parent is a

grandparent (the axiom), and given that Lisa is the

parent of Charles and Charles is the parent of Harry

(explicitly stated facts), it can be deduced that Lisa is

a grandparent of Harry (inference). In this fashion,

logical inference axioms can be used to reason with the

concept (and relation) definitions and their instances.

The information content of the Semantic Web can be

reasoned with by specialized inference engines such as

FaCT + + (http://owl.man.ac.uk/factplusplus/), Pellet

(http://pellet.owldl.org), and RACERPro (http://www.

racer-systems.com/products/racerpro/index.phtml).

Semantic Web Services

The possibility of marking up Web Services with

semantically expressive tags led to the adoption of the

Semantic Web Services initiative (http://www.swsi.org/).

The objective of the Semantic Web Services initiative

is the use and leverage of the framework of Semantic

Web technologies to enable the automation and

dynamism of Web Services annotation, publication,

discovery, invocation, execution, monitoring, and

composition. Referring again to the PubMed search

example, the input and output parameters of the

search web service can be described using ontolog-

ically defined concept instances. WSDL provides a

means to specify the acceptable input parameters of

the Web Service to be one of three string literals, viz.

keyword, citation details, and author name. However,

the fact that the author name, citation details, and

keyword are specialized types of string literals cannot

be explicitly stated with WSDL. Using an ontology to

ground these Web Service parameters as specific

‘‘types’’ of entity, it then becomes possible to indicate,

to both human and machine, the purpose of each

parameter field. Moreover, the concept of a ‘‘Litera-

ture Search Tool’’ could be defined as a Web Service

that had parameters of type ‘‘author’’ and ‘‘keyword.’’

An inference engine could then be used to discover

this PubMed Web Service in response to a user-re-

quest for Literature Search Tools.

Semantic Web Services in the Life Sciences

Computational methods, also known as in silico experi-

mentsor workflows, complement in vivo and in vitro

methods in biological research, and provide high-

throughput access to tools that can manage the large

volumes of genomic, proteomic, and other types of

data required by modern biomedical experiments.
Since many analytical tools are now available as Web

Services, it is now possible to ‘‘pipeline’’ these tools

together to create in silicoworkflows, with the biologist

manually connecting the output of one service to the

input of the next based on a human readable WSDL

description. This, however, is a complex task, and

requires the biologist to be aware of the individual

capabilities and operating principles of each Web

Service. Availability of a comprehensive textual

description of a Web Service’s capabilities and

operating principles is rare, and not always helpful

to a biologist who is not computer-savvy. Therefore,

the constructed workflows maybe error-prone and/

or procedurally flawed. Moreover, many applica-

tions go through versions or become unavailable

from time to time, making workflows somewhat

fragile. The burden of ‘‘re-wiring’’ a workflow to

accommodate a new version of an interface; repla-

cing a dead interface with an equivalent functional

one; and discovering new or improved applications

as and when they become available, is also placed

on the biologist and requires knowledge and

awareness outside of their domains of expertise.

Machine processable descriptions of Web Services

are, thus, crucial to enabling their automatic dis-

covery and invocation, and most importantly, to

their automated composition into stable, self-

repairing analytical workflows.

Registries of semantically annotated Web Services

such as myGrid (http://www.mygrid.org.uk/) and

Moby Central (http://biomoby.org/RESOURCES/

MOBY-S/ServiceInstances) have been used to faci-

litate the discovery and use of Web Services by

biologists. However, biologists still need to familiar-

ize themselves with datatype hierarchies to discover

web services that can process their data. Recent

innovations capable of inferring datatypes from ac-

tual data [4] promise to relieve biologists of this

requirement as well. The automated composition

of Web services is more troublesome. Automated

pipelining the output of one web service into the

input of another is the simplest of the proposed

approaches to service composition. In mathematical

terms, this is analogous to finding a route in a

directed graph. Aweb services network can be visua-

lized as a directed graph as shown in Figure 2.

Every node in Figure 2 corresponds to a web ser-

vice. Directed edges leading to a webservice correspond

to input parameters, and those leading away from a

Web Services and the Semantic Web for Life Science

Data. Figure 2. A directed graph representation of a web

service network.

3518W Web Services and the Semantic Web for Life Science Data
service, to output parameters. Finding a route from

node 7 (which could represent a service that queries a

genome database given an accession number, for in-

stance) to node 10 (which may represent a service that

performs a sequence comparison and outputs a report)

in this figure is a computationally complex problem,

capable of consuming large extents of computational

time and memory. Even with finding the shortest

possible route in the figure from node 7 to node 10,

uninformed search algorithms are exponentially com-

plex. This means that the time taken to find a solution

(and the computational memory used) increases expo-

nentially as the number of possible solutions. Heuris-

tics are required to prune the search space in such

problems and reduce the complexity to decidable and

tolerable limits. In web service composition, the com-

plexity of the problem is compounded due to several

factors. Some services are asynchronous, meaning they

take in input parameters without outputting anything.

Other services may be notifiers, giving output para-

meters without (seemingly) taking in any input. Some

edges many not necessarily lead to other services, being

dead end points in the route finding algorithm. Lastly,

the shortest combination of services may not be desir-

able to the biologist as well. The automated composi-

tion of web services is therefore, an open and

fascinating research problem. The interested reader

may refer the resources at the Web Services Choreog-

raphy Working Group (http://www.w3.org/2002/ws/

chor/) Web site at the W3C for more information.
Key Applications
BioMoby [10] is an open source, extensible framework

that enables the representation, discovery, retrieval, and

integration of biologicalWeb Services. By registering their

analysis and data access services with BioMoby, service

providers agree to use and provide service specifications

in a shared semantic space. The BioMoby Central registry

now hosts more than a thousand services in the United

States, Canada, and several other countries across the

world. BioMoby uses a datatype hierarchy to facilitate

automated discovery of Web Services capable of

handling specific input datatypes. As a minimal Web

based interface, the Gbrowse Moby (http://moby.

ucalgary.ca/gbrowse_moby) service browser can be

used by biologists to discover and invoke biological

web services from the Moby registry and seamlessly

chain these services to compose multi-step analytical

workflows. The process is data centric, relying on input

and output datatype specifications of the services.

The Seahawk client interface [4] can infer the datatype

of the input data files directly and immediately present

the biologist with a list of BioMoby Web Services that

can process that input file. Users of the Seahawk interface

are relieved of the necessity to familiarize themselves

with datatype hierarchies, and instead are free to concen-

trate on the analytical aspects of their work. Other clients

for BioMoby services include Remora (http://lipm-

bioinfo.toulouse.inra.fr/remora/cgi/remora.cgi), Ahab

(http://bioinfo.icapture.ubc.ca/bgood/Ahab.html),

andMOWserv (http://www.inab.org/MOWServ/).

myGrid [3] is an example of a computational grid

architecture that brings together various computation-

al resources to support in silico biological experiments.

The computational resources include analysis and data

retrieval services. As such, myGrid is a service grid and

the myGrid philosophy regards in silico experiments to

be distributed queries and workflows. Taverna [5], a

module of myGrid, provides a means to integrate the

diverse resources on the myGrid framework into reus-

able in silico workflows. Grimoires [1] is a semantics

enabled service registry that enables discovery of

myGrid services. Taverna also provides an interface to

access BioMoby services [6], a promising development

towards the integration of research initiatives in the

area of biomedical informatics.

The PathPort framework [11] developed at The

Virginia Bioinformatics Institute presents a Web based

interface that makes it possible for end users to invoke

local and distributed biological Web Services that are

Web Services and the Semantic Web for Life Science Data W 3519

W

described in WSDL, in a location and platform inde-

pendent manner. Sembowser [8] is an ontology based

implementation of a service registry that facilitates Web

Service annotation, search and discovery based upon

domain specific keywords whose semantics are ground-

ed in mathematical logic. Sembowser associates every

published Web Service with concepts defined in an on-

tology and further, classifies the published service on the

basis of the task it performs and the domain with

which it is associated.

The Simple Semantic Web Architecture and Proto-

col (http://semanticmoby.org) (SSWAP), is a Semantic

Web Services architecture that uses ontology based

descriptions of biological Web Services from the Vir-

tual Plant Information Network (http://vpin.ncgr.org/)

(VPIN) to discover, and remotely execute Web ser-

vices. Formerly known as Semantic Moby, this

architecture is the closest realization of the conven-

tional definition of a Semantic Web Services frame-

work, and utilizes the knowledge embedded in any

Web-based ontology to assist in discovery and pipelin-

ing of Web Services.

The need for semantic descriptions to enable auto-

mated Web Service discovery, invocation and compo-

sition has led to the development of prototypical

ontology based frameworks. The OWL-S framework,

the METEOR-S framework (http://lsdis.cs.uga.edu/

projects/meteor-s/), and the Web Services Modeling

Framework (WSMF) [2] are examples of research

initiatives in this area. Ontology based Web Service

architectures are in very early stages of development

and their evolution into industrial strength technolo-

gies will be eagerly anticipated.

Web services with machine processable des-

criptions are of great value in the development of

mashups. A mashup is a composite application that

brings together data and functionality from diverse

sources using technologies such as AJAX and RSS.

Mashup development has been of specific interest to

the Web 2.0 community, with its emphasis on mass

collaborative information gathering techniques, as

exemplified by Wikipedia (http://www.wikipedia.org),

Flickr (http://www.flickr.com), and Delicious (http://

del.icio.us). Very recently, diverse applications have

been embedded with Semantic Web ontologies, query

engines, and inference engines to create mashups. Mash-

ups have been used to answer specific questions about

genes responsible for Alzheimer’s disease and also visua-

lize these genes [7]. In this demo, results from SPARQL
queries have been integrated with data extracted

from the Allen Brain Atlas site (http://www.brainatlas.

org/aba/) using screen scraping techniques, and finally

visualized using Google Maps (http://maps.google.com)

and the Exhibit (http://simile.mit.edu/exhibit/)visualiza-

tion toolkit.

Future Directions
The Semantic Web, with its promise of information

sharing, reuse and integration, has seen widespread

adoption by the life sciences community. Currently,

the curators of many of the major genome, proteome,

transcriptome, and interactome repositories are adopt-

ing Semantic Web standards, while more and more

service providers are gravitating towards the Semantic

Web Services paradigm. Semantic Web standards are

crucial to a synergistic approach to a full understanding

of, and representation of, complexity in Life Sciences.

Cross-references
▶Controlled Medical Vocabulary

▶Data Structures and Models for Biological Data

Management

▶Data Types in Scientific Data Management Systems

▶Grid and Workflows

▶Mashups

▶Ontologies

▶Ontologies and Life Science Data Management

▶Ontologies in Scientific Data Integration

▶Ontology

▶Ontology-Based Data Models

▶OWL: Web Ontology Language

▶Query Languages for Ontological Data

▶Query Languages for the Life Sciences

▶RDF

▶ Scientific Workflows

▶ Screen Scraper

▶ Semantic Web

▶ Semantic Web Query Languages

▶ Semantic Web Services

▶ SOAP

▶W3C

▶Web 2.0 (3.0)

▶Web Services

▶Workflow Management and Workflow Management

Systems

▶Workflow Model

▶Workflow Modeling

▶XML

3520W Web Services Business Process Execution Language
Recommended Reading
1. Fang W, et al. Performance analysis of a semantics enabled

service registry. In Proc. 4th All Hands Meeting. Nottingham,

UK, 2005. Available at: http://users.ecs.soton.ac.uk/lavm/papers/

Fang-AHM05.pdf

2. Fensel D. and Bussler C. The Web Services Modeling Frame-

work (WSMF), Electron. Commerce Res. Appl., 1(2):113–137,

2002.

3. Goble C., Pettifer S., Stevens R., and Greenhalgh C. Knowledge

integration: in silico experiments in bioinformatics. In the Grid:

Blueprint for a New Computing Infrastructure (2nd edn.), I.

Foster, C. Kesselman (eds.). Morgan Kaufmann, Los Altos, CA,

2003.

4. Gordon P. and Sensen C. Seahawk: Moving beyond HTML in

Web-based Bioinformatics Analyses. BMC Bioinformatics,

8(June):208, 2007.

5. Hull D., Wolstencroft K., Stevens R., Goble C., Pocock M., Li P.,

and Oinn T. Taverna: a tool for building and running workflows

of services. Nucleic Acids Res., 34: W729–W732, 2006.

6. Kawas E., Senger M., and Wilkinson M. BioMoby extensions to

the taverna workflow management and enactment software.

BMC Bioinformatics, 7:523, 2006.

7. Ruttenberg A, et al. Advancing translational research with

the semantic web. BMC Bioinformatics, 8(Suppl. 3):S2, May

2007.

8. Sahoo S., Sheth A., Hunter B., and York W. Sembowser: adding

semantics to a biological web services registry. In Semantic Web:

Revolutionizing Knowledge Discovery in the Life Sciences, C.

Baker, K. Cheung (eds.). Springer 2007.

9. Wessel M. and Möller R. A high performance semantic web

query answering engine. In Proc. Int. Workshop on Description

Logics, 2005.

10. Wilkinson M. and Links M. BioMOBY: an open-source

biological web services proposal. Brief. Bioinform., 3(4):

331–341, 2002.

11. Xue T., Yang B., Will R., Sharp B., Kenyon R., Crasta O.,

and Sobral B. A generalized framework for pathosystems infor-

matics and bioinformatics web services. In Proc. 2007 Int. Conf.

on Bioinformatics and Computational Biology, 2007.
Web Services Business Process
Execution Language

▶Composed services and WS-BPEL
Web Site Wrappers

▶ Languages for Web Data Extraction
Web Spam Detection

MARC NAJORK

Microsoft Research, Mountain View, CA, USA

Synonyms
Spamdexing; Google bombing; Adversarial informa-

tion retrieval
Definition
Web spam refers to a host of techniques to subvert

the ranking algorithms of web search engines and

cause them to rank search results higher than they

would otherwise. Examples of such techniques include

content spam (populating web pages with popular and

often highly monetizable search terms), link spam

(creating links to a page in order to increase its link-

based score), and cloaking (serving different versions

of a page to search engine crawlers than to human

users). Web spam is annoying to search engine users

and disruptive to search engines; therefore, most

commercial search engines try to combat web spam.

Combating web spam consists of identifying spam

content with high probability and – depending on

policy – downgrading it during ranking, eliminating

it from the index, no longer crawling it, and tainting

affiliated content. The first step – identifying likely

spam pages – is a classification problem amenable

to machine learning techniques. Spam classifiers take

a large set of diverse features as input, including

content-based features, link-based features, DNS and

domain-registration features, and implicit user feed-

back. Commercial search engines treat their precise set

of spam-prediction features as extremely proprietary,

and features (as well as spamming techniques) evolve

continuously as search engines and web spammers are

engaged in a continuing ‘‘arms race.’’
Historical Background
Web spam is almost as old as commercial search

engines. The first commercial search engine, Lycos,

was incorporated in 1995 (after having been incu-

bated for a year at CMU); and the first known refer-

ence to ‘‘spamdexing’’ (a combination of ‘‘spam’’ and

‘‘indexing’’) dates back to 1996. Commercial search

engines began to combat spam shortly thereafter,

increasing their efforts as it became more prevalent.

Web Spam Detection W 3521

W

Spam detection became a topic of academic discourse

with Davison’s paper on using machine learning tech-

niques to identify ‘‘nepotistic links,’’ i.e., link spam [4],

and was further validated as one of the great challenges

to commercial search engines by Henzinger et al.

[9]. Since 2005, the workshop series on Adversarial

Information Retrieval on the Web (AIRWeb) provides

a venue for researchers interested in web spam.

Foundations
Given that the objective of web spam is to improve

the ranking of select search results, web spamming

techniques are tightly coupled to the ranking algo-

rithms employed (or believed to be employed) by the

major search engines. As ranking algorithms evolve, so

will spamming techniques. For example, if web spam-

mers were under the impression that a search engine

would use click-through information of its search re-

sult pages as a feature in their ranking algorithms, then

they would have an incentive to issue queries that bring

up their target pages, and generate large numbers

of clicks on these target pages. Furthermore, web

spamming techniques evolve in response to counter-

measures deployed by the search engines. For example,

in the above scenario, a search engine might respond

to facetious clicks by mining their query logs for many

instances of identical queries from the same IP address

and discounting these queries and their result click-

throughs in their ranking computation. The spammer

in turn might respond by varying the query (while

still recalling the desired target result), and by using a

‘‘bot-net’’ (a network of third-party computers under

the spammer’s control) to issue the queries and the

click-throughs on the target results.

Given that web spamming techniques are constantly

evolving, any taxonomy of these techniques must

necessarily be ephemeral, as will be any enumeration

of spam detection heuristics. However, there are a

few constants:

� Any successful web spamming technique targets

one or more of the features used by the search

engine’s ranking algorithms.

� Web spam detection is a classification problem, and

search engines use machine learning algorithms to

decide whether or not a page is spam.

� In general, spam detection heuristics look for

statistical anomalies in some of the features visible

to the search engines.
Web Spam Detection as a Classification Problem

Web spam detection can be viewed as a binary classifi-

cation problem, where a classifier is used to predict

whether a given web page or entire web site is spam or

not. The machine learning community has produced

a large number of classification algorithms, several

of which have been used in published research on

web spam detection, including decision-tree based

classifiers (e.g., C4.5), SVM-based classifiers, Bayesian

classifiers, and logistic regression classifiers. While

some classifiers perform better than others (and the

spam detection community seems to favor decision-

tree-based ones), most of the research focuses not

on the classification algorithms, but rather on the

features that are provided to them.

Taxonomy of Web Spam Techniques

Content spam refers to any web spam technique that

tries to improve the likelihood that a page is returned

as a search result and to improve its ranking by

populating the page with salient keywords. Populating

a page with words that are popular query terms will

cause that page to be part of the result set for those

queries; choosing good combinations of query terms

will increase the portion of the relevance score that is

based on textual features. Naı̈ve spammers might per-

form content spam by stringing together a wide array

of popular query terms. Search engines can counter

this by employing language modeling techniques,

since web pages that contain many topically unrelated

keywords or that are grammatically ill-formed will

exhibit statistical differences from normal web pages

[11]. More sophisticated spammers might generate

not a few, but rather millions of target web pages,

each page augmented with just one or a few popular

query terms. The remainder of the page may be

entirely machine-generated (which might exhibit sta-

tistical anomalies that can be detected by the search

engine), entirely copied from a human-authored

web site such as Wikipedia (which can be detected

by using near-duplicate detection algorithms), or

stitched together from fragments of several human-

authored web sites (which is much harder, but not

impossible to detect).

Link spam refers to any web spam technique that

tries to increase the link-based score of a target web

page by creating lots of hyperlinks pointing to it. The

hyperlinks may originate from web pages owned and

3522W Web Spam Detection
controlled by the spammer (generically called a link

farm), they may originate from partner web sites

(a technique known as link exchange), or they may

originate from unaffiliated (and sometimes unknow-

ing) third parties, for example web-based discussion

forums or in blogs that allow comments to be posted

(a phenomenon called blog spam). Search engines can

respond to link spam by mining the web graph for

anomalous components, by propagating distrust from

spam pages backwards through the web graph, and by

using content-based features to identify spam postings

to a blog [10]. Many link spam techniques specifically

target Google’s PageRank algorithm, which not only

counts the number of hyperlinks referring to a web

page, but also takes the PageRank of the referring

page into account. In order to increase the PageRank

of a target page, spammers should create links on

sites that have high PageRanks, and for this reason,

there is a marketplace for expired domains with high

PageRank, and numerous brokerages reselling them.

Search engines can respond by temporarily dampening

the endorsement power of domains that underwent a

change in ownership.

Click spam refers to the technique of submitting

queries to search engines that retrieve target result

pages and then to ‘‘click’’ on these pages in order to

simulate user interest in the result. The result pages

returned by the leading search engines contain client-

side scripts that report clicks on result URLs to the

engine, which can then use this implicit relevance

feedback in subsequent rankings. Click spam is similar

in method to click fraud, but different in objective.

The goal of click spam is to boost the ranking of a

page, while the goal of click fraud (generating a large

number of clicks on search engine advertisements) is to

spend the budget associated with a particular adver-

tisement (to hurt the competitor who has placed the

ad or simply to lower the auction price of said ad,

which will drop once the budget of the winning bidder

has been exhausted). In a variant of click fraud, the

spammer targets ads delivered to his own web by an

ad-network such as Google AdSense and obtains a

revenue share from the ad-network. Both click fraud

and click spam are trivial to detect if launched from

a single machine, and hard to detect if launched

from a bot-net consisting of tens of thousands of

machines [3]. Search engines tackle the problem by

mining their click logs for statistical anomalies, but

very little is known about their algorithms.
Cloaking refers to a host of techniques aimed

at delivering (apparently) different content to search

engines than to human users. Cloaking is typically

used in conjunction with content spam, by serving a

page containing popular query terms to the search

engine (thereby increasing the likelihood that the

page will be returned as the result of a search), and

presenting the human user with a different page.

Cloaking can be achieved using many different techni-

ques: by literally serving different content to search

engines than to ordinary users (based for example

on the well-known IP addresses of the major search

engine crawlers), by rendering certain parts of the page

invisible (say by setting the font to the same color

as the background), by using client-side scripting to

rewrite the page after it has been delivered (relying on

the observation that search engine crawlers typically

do not execute scripts), and finally by serving a page

that immediately redirects the user’s browser to a dif-

ferent page (either via client-side scripting or the

HTML ‘‘meta-redirect’’ tag). Each variant of cloaking

calls for a different defense. Search engines can guard

against different versions of the same page by probing

the page from unaffiliated IP addresses [13]; they can

detect invisible content by rendering the page; and they

can detect page modifications and script-driven redir-

ections by executing client-side scripts [12].

Key Applications
Web spam detection is used primarily by advertisement-

financed general-purpose consumer search engines.Web

spam is not an issue for enterprise search engines, where

the content providers, the search engine operator and

the users are all part of the same organization and have

shared goals. However, web spam is bound to become a

problem in any setting where these three parties – con-

tent providers, searchers, and search engines – have

different objectives. Examples of such settings include

vertical search services, such as product search engines,

company search engines, people search engines, or even

scholarly literature search engines. Many of the basic

concepts described above are applicable to these

domains as well; the precise set of features useful for

spam detection will depend on the ranking algorithms

used by these vertical search engines.

Future Directions
Search engines are increasingly leveraging human

intelligence, namely the observable actions of their

Web Transactions W 3523
user base, in their relevance assessments; examples

include click-stream analysis, toolbar data analysis,

and analysis of traffic on affiliate networks (such as

the Google AdSense network). It is likely that many

of the future spam detection features will also be based

on the behavior of the user base. In many respects, the

distinction between computing features for ranking

(promoting relevant documents) and spam detection

(demoting facetious documents) is artificial, and the

boundary between ranking and spam suppression is

likely to blur as search engines evolve.
Experimental Results
Several studies have assessed the incidence of spam

in large-scale web crawls at between 8% and 13%

[11,5]; the percentage increases as more pages are

crawled, since many spam sites serve a literally un-

bounded number of pages, and web crawlers tend to

crawl high-quality human-authored content early on.

Ntoulas et al. describe a set of content-based features

for spam detection; these features, when combined

using a decision-tree-based classifier, resulted in an

overall spam prediction accuracy of 97% [11].

Data Sets
Castillo et al. have compiled the WEBSPAM-UK2006

data set [2], a collection of web pages annotated by

human judges as to whether or not they are spam. This

data set has become a reference collection to the field,

and has been used to evaluate many of the more recent

web spam detection techniques.
W

Cross-references
▶ Indexing the Web

▶Web Page Quality Metrics

▶Web Search Relevance Feedback

▶Web Search Relevance Ranking

Recommended Reading
1. Becchetti L., Castillo C., Donato D., Leonardi S., and Baeza-

Yates R. Using rank propagation and probabilistic counting

for link-based spam detection. In Proc. KDD Workshop on

Web Mining and Web Usage Analysis, 2006.

2. Castillo C., Donato D., Becchetti L., Boldi P., Leonardi S.,

Santini M., and Vigna S. A reference collection for Web spam.

ACM SIGIR Forum, 40(2):11–24, 2006.

3. Daswani N. and Stoppelman M. and the Google Click Quality

and Security Teams. The anatomy of clickbot.A. In Proc. 1st

Workshop on Hot Topics in Understanding Botnets, 2007.
4. Davison B.D. Recognizing nepotistic links on the web. In Proc.

AAAI Workshop on Artificial Intelligence for Web Search, 2000.

5. Fetterly D., Manasse M., and Najork M. Spam, damn spam and

statistics. In Proc. 7th Int. Workshop on the Web and Databases,

2004, pp. 1–6.

6. Gyöngyi Z., and Garcia-Molina H. Spam: its not just for

Inboxes anymore. IEEE Comput., 38(10):28–34, 2005.

7. Gyöngyi Z. and Garcia-Molina H. Web Spam Taxonomy.

In Proc. 1st Int. Workshop on Adversarial Information Retriev-

al on the Web, 2005, pp. 39–47.

8. Gyöngyi Z., Garcia-Molina H., and Pedersen J. Combat-

ing Web spam with TrustRank. In Proc. 30th Int. Conf. on

Very Large Data Bases, 2004, pp. 576–587.

9. Henzinger M., Motwani R., and Silverstein C. Challenges in

web search engines. ACM SIGIR Forum 36(2):11–22, 2002.

10. Mishne G., Carmel D., and Lempel R. Blocking blog spam

with language model disagreement. In Proc. 1st Int. Workshop

on Adversarial Information Retrieval on the Web, 2005, pp. 1–6.

11. Ntoulas A., Najork M., Manasse M., and Fetterly D. Detecting

spam web pages through content analysis. In Proc. 15th Int.

World Wide Web Conference, 2006, pp. 83–92.

12. Wang Y.M., Ma M., Niu Y., and Chen H. Spam double-funnel:

connecting Web spammers with advertisers. In Proc. 16th Int.

World Wide Web Conference, 2007, pp. 291–300.

13. Wu B. and Davison B. Detecting semantic cloaking on the

web. In Proc. 15th Int. World Wide Web Conference, 2006,

pp. 819–828.
Web Structure Mining

▶Data, Text, and Web Mining in Healthcare
Web Transactions

HEIKO SCHULDT

University of Basel, Basel, Switzerland

Synonyms
Internet transactions

Definition
AWeb Transaction is a transactional interaction between

a client, usually a web browser, and one or several data-

bases as backend of a multi-tier architecture. The middle

tier of the architecture includes a web server which

accepts client requests via HTTP. It forwards these

requests either directly to the underlying database or

to an application server which, in turn, interacts with

the database.

3524W Web Usage Mining
Key Points
The main application of Web transactions is in

eCommerce applications. In a minimal configura-

tion, the architecture for Web transactions consists

of a client, a web server and a database server. Data-

base access is provided at the web server level, i.e.,

by embedding database access into Java servlets or

JavaServer Pages (JSP). More sophisticated architec-

tures consider a dedicated application server layer

(i.e., an implementation of the Java Enterprise Edi-

tion specification Java EE) and support distributed

databases. Communication between application and

database layer is usually implemented on the basis

of JDBC (Java Database Connectivity), ODBC (Open

Database Connectivity), or native database proto-

cols. Transaction support at application server level

is provided by services like JTS (Java Transaction

Service) via the Java Transaction API (JTA) in the

Java world, or OTS (Object Transaction Service) in

CORBA. Essentially, these services allow to associate

several application server calls and their interactions

with resource managers with the same transaction

context and to coordinate them by using a two

phase commit (2PC) protocol. Thus, Web transac-

tions mostly focus on atomic commit processing.

Similarly, protocols on the Web service stack exploit

2PC to atomically execute several Web services.

Multi-tier web applications require special support

for failure handling at application level (application

recovery). In order to increase the degree of scalability

of multi-tier architectures for Web transactions,

application servers can be replicated. To avoid that

the database backend then becomes a bottleneck,

dedicated caching strategies at the middle tier are

applied. Web transactions can be part of Transactional

processes.

Cross-references
▶Application Server

▶Caching

▶Transactional Processes

▶Web Service
Recommended Reading
1. Barga R., Lomet D., Shegalov G., and Weikum G. Recovery

Guarantees for Internet Applications. ACM Trans. Internet

Technol., 4(3):289–328, 2004.

2. Burke R. and Monson-Haefel R. Enterprise JavaBeans 3.0.

O’Reilly, 2006.
3. Luo Q., Krishnamurthy S., Mohan C., Pirahesh H., Woo H.,

Lindsay B., and Naughton J. Middle-tier database caching for

e-business. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, 2002, pp. 600 –611.
Web Usage Mining

▶Data, Text, and Web Mining in Healthcare
Web Views

ALEXANDROS LABRINIDIS

Department of Computer Science, University of

Pittsburgh, Pittsburgh, PA, USA

Synonyms
Web Views; HTML fragment

Definition
Web Views are web pages or web page fragments that are

automatically created from base data, which are typically

stored in a database management system (DBMS).

Key Points
Although caching of HTML pages (and fragments) has

been proposed in the literature as early as the mid-

1990s, the term Web View was introduced in 1999 [2]

to denote that these fragments are generated through

queries made to a back-end DBMS.

The concept of aWeb View facilitates the materiali-

zation of dynamically generated HTML fragments out-

side the DBMS. The main advantage of materializing

Web Views (outside the DBMS, e.g., at the web server)

is that the web server need not query the DBMS for

every user request, thus greatly improving query re-

sponse time for the user [3]. On the other hand, for

the quality of the data returned to the user to be high,

the system must keep materialized Web Views fresh

(in the background). This essentially decouples the

processing of queries at the web server from the pro-

cessing of updates at the DBMS (which are also pro-

pagated to materialized Web Views).

Materializing a Web View presents a trade-off. On

the one hand, it can greatly improve response time for

user-submitted queries. On the other hand, it generates

a background overhead for the Web View to be kept

fresh (essentially a materialization decision can be

What-If Analysis W 3525

W

viewed as a ‘‘contract’’ for theWebView to be kept fresh).

As such, selecting which Web View to materialize is an

important problem that has received attention [5,6]. This

problem is essentially similar to the view selection prob-

lem in traditional DBMSs [5], with added complexity

due to the online nature of the Web and the need for any

solution to be highly dynamic, constantly adapting to

changing conditions and workloads.

Having identified the set of Web Views to materialize,

there is the issue of determining the order by which to

propagate updates to them. Since one update to a base

relation can trigger the refresh ofmultiple differentmateri-

alizedWebViews, theorder bywhich these areupdated can

make an impact on the overall quality of data returned to

the user. This is essentially a special-case online scheduling

problem, which has been addressed in [4].

Web Views have been used successfully to decouple

the processing of queries (to generate dynamic, data-

base-driven web pages) from that of updates (to the

content stored inside the DBMS used to driven the web

site). This enables much better performance (in terms

of response to user queries) without sacrificing the

freshness of the data served back to the user.

Cross-references
▶View Maintenance

Recommended Reading
1. Gupta H. and Mumick I.S. Selection of views to materialize

under a maintenance cost constraint. In Proc. 7th Int. Conf.

on Database Theory, 1999, pp. 453–470.

2. Labrinidis A. and Roussopoulos N. Alexandros On the materi-

alization of Web views. In Proc. ACM SIGMOD Workshop on

The Web and Databases, 1999, pp. 79–84.

3. Labrinidis A. and Roussopoulo N. Web View materialization. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, 2000,

pp. 367–378.

4. Labrinidis A. and Roussopoulos N. Update propagation strate-

gies for improving the quality of data on the Web. In Proc. 27th

Int. Conf. on Very Large Data Bases, 2001, pp. 391–400.

5. Labrinidis A. and Roussopoulos N. Balancing performance and

data freshness in Web database servers. In Proc. 29th Int. Conf.

on Very Large Data Bases, 2003, pp. 393–404.

6. Labrinidis A. and Roussopoulos N. Exploring the tradeoff be-

tween performance and data freshness in database-driven Web

servers. VLDB J., 13(3):240–255, 2004.
Web Widget

▶ Snippet
What-If Analysis

STEFANO RIZZI

University of Bologna, Bologna, Italy

Definition
In order to be able to evaluate beforehand the impact

of a strategic or tactical move so as to plan optimal

strategies to reach their goals, decision makers need

reliable predictive systems. What-if analysis is a data-

intensive simulation whose goal is to inspect the be-

havior of a complex system, such as the corporate

business or a part of it, under some given hypotheses

called scenarios. In particular, what-if analysis mea-

sures how changes in a set of independent variables

impact a set of dependent variables with reference to a

given simulation model such a model is a simplified

representation of the business, tuned according to the

historical corporate data. In practice, formulating a

scenario enables the building of a hypothetical world

that the analyst can then query and navigate.
Historical Background
Though what-if analysis can be considered as a rela-

tively recent discipline, its background is rooted at the

confluence of different research areas, some of which

date back decades ago.

First of all, what-if analysis lends some of the tech-

niques developed within the simulation community, to

contextualize them for business intelligence. Simula-

tions are used in a wide variety of practical contexts,

including physics, chemistry, biology, engineering,

economics, and psychology. Much literature has been

written in this field over the years, mainly regarding the

design of simulation experiments and the validation of

simulation models [5,8,9].

Another relevant field for what-if analysis is eco-

nomics that provide the insights into business processes

necessary to build and test simulation models. For in-

stance, in [1] a set of alternative approaches to forecast-

ing are surveyed, and useful guidelines for selecting the

best ones according to the availability and reliability of

knowledge are given.

Finally, what-if analysis relies heavily on database

and data warehouse technology. Though data ware-

housing systems have been playing a leading role in

supporting the decision process over the last decade,

they are aimed at supporting analysis of past data

3526W What-If Analysis
(‘‘what-was’’) rather than giving conditional anticipa-

tions of future trends (‘‘what-if ’’). Nevertheless, the

historical data used to reliably build what-if predic-

tions are normally taken from the enterprise data

warehouse. Besides, there is a tight relationship be-

tween what-if analysis and multidimensional modeling

since input and output data for what-if analysis are

typically stored within cubes [7]. In particular, in [2]

the SESAME system for formulating and efficiently eval-

uating what-if queries on data warehouses is presented.

Here, scenarios are defined as ordered sets of hypothet-

ical modifications on multidimensional data. Finally,

there are relevant similarities between simulation

modeling for what-if analysis and the modeling of

Extraction, Transformation and Loading applications;

in fact, both ETL and what-if analysis can both be

seen as a combination of elementary processes each

transforming an input data flow into an output.

Foundations
As sketched in Fig. 1, a what-if application is centered

on a simulation model, that establishes a set of complex

relationships between some business variables corre-

sponding to significant entities in the business domain

(e.g., products, branches, customers, costs, revenues,

etc.). A simulation model supports one or more sce-

narios, each describing one or more alternative ways

to construct a prediction of interest for the user.

The prediction typically takes the form of a multidi-

mensional cube, whose dimensions and measures-

correspond to business variables, to be interactively

explored by the user by means of any On-Line Analyti-

cal Processing (OLAP) front-end. A scenario is
What-If Analysis. Figure 1. Functional sketch for what-if ana
characterized by a subset of business variables, called

source variables, and by a set of additional parameters,

called scenario parameters, that the user has to value in

order to execute the model and obtain the prediction.

While business variables are related to the business

domain, scenario parameters convey information

technically related to the simulation, such as the type

of regression adopted for forecasting and the number

of past years to be considered for regression. Distin-

guishing source variables among business variables is

important since it enables the user to understand

which are the ‘‘levers’’ that she can independently

adjust to drive the simulation. Each scenario may

give rise to different simulations, one for each assign-

ment of the source variables and of the scenario

parameters.

A simple example of a what-if query in the market-

ing domain is: How would my profits change if I run a

3 � 2 (pay 2 and take 3) promotion for one week on all

audio products on sale? Answering this query requires

building a simulation model capable of expressing the

complex relationships between the business variables

that determine the impact of promotions on product

sales, and to run it against the historical sale data in

order to determine a reliable forecast for future sales.

In particular, the source variables for this scenario are

the type of promotion, its duration, and the product

category it is applied to. Possible scenario parameters

could be the type of regression used for forecasting and

the number of past years to be considered for regres-

sion. The specific simulation expressed by the what-if

query reported in the text is determined by giving

values ‘‘3 � 2,’’ ‘‘one week’’ and ‘‘audio,’’ respectively,
lysis.

What-If Analysis W 3527

W

to the three source variables. The prediction could be a

cube with dimensions week and product and measures

revenue, cost and profit.

Importantly, what-if analysis should not be con-

fused with sensitivity analysis, aimed at evaluating how

sensitive the behavior of the system is to a small change

of one or more parameters. Besides, there is an impor-

tant difference between what-if analysis and simple fore-

casting, widely used especially in the banking and

insurance fields. In fact, while forecasting is normally

carried out by extrapolating trends out of the historical

series stored in information systems, what-if analysis

requires simulating complex phenomena whose effects

cannot be simply determined as a projection of past data.

On the other hand, applying forecasting techniques

is often required during what-if analysis. In [4] the

authors report a useful classification of forecasting

methods into judgmental, such as those based on ex-

pert opinions and role-playing, and statistical, such as

extrapolation methods, expert systems and rule-based

forecasting. The applicability of these methods to dif-

ferent domains is discussed, and an algorithm for

selecting the best method depending on the specific

characteristics of the problem at hand is reported.

A separate mention is in order for system dynamics

[4,11], an approach to modeling the behavior of non-

linear systems, in which cause-effect relationships be-

tween abstract events are captured as dependencies

among numerical variables; in general, such dependen-

cies can give rise to retroactive interaction cycles, i.e.,

feedback loops. From a mathematical standpoint, sys-

tems of differential equations are the proper tool for

modeling such systems. In the general case, however, a

solution cannot always be found analytically, so nu-

merical techniques are often used to predict the behav-

ior of the system. A system dynamics model consists of

a set of variables linked together, classified as stock and

flow variables; flow variables represent the rate at

which the level of cumulation in stock variables

changes. By running simulations on such a model,

the user can understand how the system will evolve

over time as a consequence of a hypothetical action she

takes. She can also observe, at each time step, the values

assumed by the model variables and (possibly) modify

them. Thus, it appears that system dynamics can effec-

tively support what-if applications in which the cur-

rent state of any part of the system could influence

its own future state through a closed chain of depen-

dency links.
Designing a what-if application requires a method-

ological framework; the one presented in [6] relies on

seven phases:

1. Goal analysis, aimed at determining which business

phenomena are to be simulated, and how they will

be characterized. The goals are expressed by

(i) identifying the set of business variables the

user wants to monitor and their granularity; and

(ii) defining the relevant scenarios in terms of

source variables the user wants to control.

2. Business modeling, which builds a simplified model

of the application domain in order to help the

designer to understand the business phenomenon

as well as give her some preliminary indications

about which aspects can be either neglected or

simplified for simulation.

3. Data source analysis, aimed at understanding what

information is available to drive the simulation and

how it is structured.

4. Multidimensional modeling, which defines the mul-

tidimensional schema describing the prediction by

taking into account the static part of the business

model produced at phase 2 and respecting the

requirements expressed at phase 1.

5. Simulation modeling, whose aim is to define, based

on the business model, the simulation model allow-

ing the prediction to be constructed, for each given

scenario, from the source data available.

6. Data design and implementation, during which the

multidimensional schema of the prediction and the

simulation model are implemented on the chosen

platform, to create a prototype for testing.

7. Validation, aimed at evaluating, together with the

users, how faithful the simulation model is to the

real business model and how reliable the prediction

is. If the approximation introduced by the simula-

tion model is considered to be unacceptable, phases

4–7 should be iterated to produce a new prototype.

The three modeling phases require a supporting

formalism. Standard UML can be used for phase

2 (e.g., a use case diagram and a class diagram coupled

with activity diagrams) and any formalism for concep-

tual modeling of multidimensional databases can be

effectively adopted for phase 4. Finding a suitable form-

alism to give broad conceptual support to phase 5 is

much harder, though some examples based on the use

of colored Petri nets, event graphs and flow charts can

be found in the simulation literature [10].

3528W What-If Analysis
Key Applications
Among the killer applications for what-if analysis, it is

worth mentioning profitability analysis in commerce,

hazard analysis in finance, promotion analysis in mar-

keting, and effectiveness analysis in production

planning. Less traditional, yet interesting applications

described in the literature are urban and regional

planning supported by spatial databases, index selec-

tion in relational databases, and ETL maintenance in

data warehousing systems.

Either spreadsheets or OLAP tools are often used to

support what-if analysis. Spreadsheets offer an interac-

tive and flexible environment for specifying scenarios,

but lack seamless integration with the bulk of historical

data. Conversely, OLAP tools lack the analytical cap-

abilities of spreadsheets and are not optimized for

scenario evaluation [2]. Recently, what-if analysis has

been gaining wide attention from vendors of business

intelligence tools. For instance, both SAP SEM (Strate-

gic Enterprise Management) and SAS Forecast Server

already enable users to make assumptions on the en-

terprise state or future behavior, as well as to analyze

the effects of such assumptions by relying on a wide set

of forecasting models. Also Microsoft Analysis Services

provides some limited support for what-if analysis.

This is now encouraging companies to integrate and

finalize their business intelligence platforms by devel-

oping what-if applications for building reliable busi-

ness predictions.

Future Directions
Surprisingly, though a few commercial tools are

already capable of performing forecasting and what-if

analysis, and some papers describe relevant applications

in different fields, very few attempts have been made so

far to address methodological and modeling issues in

this field (e.g., [6]). On the other hand, facing a what-if

project without the support of a design methodology is

very time-consuming, and does not adequately protect

the designer and his customers against the risk of failure.

The main problem related to the design of what-if appli-

cations is to find an adequate formalism to conceptually

express the simulation model, so that it can be discussed

and agreed upon with the users. Unfortunately, no sug-

gestion to this end is given in the literature, and com-

mercial tools do not offer any general modeling support.

Another relevant problem is to establish a general frame-

work for estimating the loss of precision that is intro-

duced when modeling low-level phenomena with
higher-level dependencies. This could allow designers

to assess the reliability of the prediction as a function

of the quality of the historical data sources and of the

precision of the simulation model.

Decision makers are used to navigating multidi-

mensional data within OLAP sessions, that consist in

the sequential application of simple and intuitive

OLAP operators, each transforming a cube into anoth-

er one. Consequently, it is natural for them to ask for

extending this paradigm for accessing information also

to what-if analysis. This would allow users to mix

together navigation of historical data and simulation

of future data into a single session of analysis. In

the same direction, an approach has recently been

proposed for integrating OLAP with data mining [3].

This raises an interesting research issue. In fact, OLAP

should be extended with a set of new, well-formed

operators specifically devised for what-if analysis. An

example of such operator could be apportion, which

disaggregates a quantitative information down a hier-

archy according to some given criterion (driver). For

instance, a transportation cost forecasted by branch

and month could be apportioned by product type pro-

portionally to the quantity shipped for each product

type. In addition, efficient techniques for supporting

the execution of such operators should be investigated.
Cross-references
▶Business Intelligence

▶Cube

▶Data Warehousing Systems: Foundations and

Architectures

▶On-Line Analytical Processing
Recommended Reading
1. Armstrong S. and Brodie R. Forecasting for marketing.

In Quantitative methods in marketing. G. Hooley and M.

Hussey (eds.). Int. Thompson Business Press, London, 1999,

pp. 92–119.

2. Balmin A., Papadimitriou T., and Papakonstantinou Y. Hypo-

thetical Queries in an OLAP Environment. In Proc. 26th Int.

Conf. on Very Large Data Bases, 2000, pp. 220–231.

3. Chen B., Chen L., Lin Y., and Ramakrishnan, R. Prediction

cubes. In Proc. 31st Int. Conf. on Very Large Data Bases, 2005,

pp. 982–993.

4. Coyle R.G. System Dynamics Modeling: A Practical Approach.

Chapman and Hall, London, 1996.

5. Fossett C., Harrison D., and Weintrob H. An assessment proce-

dure for simulation models: a case study. Oper. Res., 39(5):

710–723, 1991.

WIMP Interfaces W 3529
6. Golfarelli M., Rizzi S., and Proli A. Designing what-if analysis:

towards a methodology. In Proc. ACM 9th Int. Workshop on

Data Warehousing and OLAP, 2006, pp. 51–58.

7. Koutsoukis N.S., Mitra G., and Lucas C. Adapting on-line

analytical processing for decision modeling: the interaction of

information and decision technologies. Decis. Support Syst.,

26(1):1–30, 1999.

8. Kreutzer W. System Simulation – Programming Styles and Lan-

guages. Addison Wesley, Reading, MA, 1986.

9. Law A.M. and Kelton W.D. Simulation Modeling and Analysis.

McGraw-Hill Higher Education, Boston, MA, 1999.

10. Lee C., Huang H.C., Liu B., and Xu Z. Development of timed

colour petri net simulation models for air cargo terminal opera-

tions. Comput. Ind. Eng., 51(1):102–110, 2006.

11. Roberts E.B. Managerial applications of system dynamics. Pega-

sus Communications, 1999.
While Loop

▶ Loop
Wide-Area Data Replication

▶WAN Data Replication
Wide-Area Storage Systems

▶ Peer-to-Peer Storage
W

WIMP Interfaces

STEPHEN KIMANI

CSIRO Tasmanian ICT Centre, Hobart, TAS, Australia

Definition
There exist many types of interaction styles. They

include but are not limited to: command line interface,

natural language, question/answer and query dialog,

form-fills and spreadsheets, WIMP, and three-dimen-

sional interfaces. The most common of the foregoing

interaction styles is the WIMP. WIMP is an acronym

for Windows, Icons, Menus and Pointers. Alterna-

tively, it is an acronym for Windows, Icons, Mice and

Pull-down menus. Examples of user interfaces that

are based on the WIMP interaction style include:
Microsoft Windows for PCs, MacOs for Apple Macin-

tosh, various XWindows-based systems for UNIX, etc.

Historical Background
WIMP interfaces were invented at the SRI laboratory

in California. The development of WIMP interfaces

continued at Xerox PARC. The 1981 Xerox Star work-

station is considered to be the first production com-

puter to use the desktop metaphor, productivity

applications and a three-button mouse. WIMP was

popularized by the Apple Macintosh in the early

1980s. The interaction style/paradigm has now been

copied by the Microsoft Windows operating system,

Motif, the X Window System, etc. The rapid rise

of Microsoft Windows has made WIMP interfaces

become the dominant interface paradigm. WIMP

interfaces have been improved with a set of new

user interface widgets during the years. However, the

basic structure of a WIMP interface usually does not

change. WIMP interfaces typically present the work

space using a desktop metaphor [5]. Everything is

presented in a two dimensional space which has win-

dows. The functionality of the application is made

available through interface widgets such as: menus,

dialog boxes, toolbars, palettes, buttons, etc.
Foundations
In this section is a description of the elements of the

WIMP interface.

Windows

Windows are areas of the display that behave as if

they were independent terminals. They are typically

rectangular areas of the display that can be manipu-

lated independently on the display screen. In most

cases, the view of the contents of a window can be

changed by scrolling or editing. Windows can contain

text and/or graphics. They can be moved, resized,

closed, maximized, or minimized (reduced to an icon).

Many windows can be displayed on the screen simulta-

neously thereby allowing multiple separated tasks to be

visible at the same time. The user can switch from

one from one task to another by moving from one

window to another.

The components of windows usually include:

� Scrollbars: They enable users to move the contents

of the window up and down (vertical scrollbar), or

from side to side (horizontal scrollbar).

3530W WIMP Interfaces
� Title bars: They describe the name of the window.

� Status bar: It displays the status of the task/process

in the window.

� Boxes/widgets for resizing and closing the window.

Oftentimes, all windows in use will not fit on

the screen space at once. Several strategies exist for

managing multiple windows:

1. Iconification/minimizing: This strategy allows

screen space to be saved by reducing windows to

window icons. The user can re-expand the icons at

will. A window icon therefore serves as a visual

reminder of the window.

2. Tiling: In this case, the system uses all the available

screen space to display the windows. The windows

do not overlap. Tiling can take many forms. For

instance: some systems use a fixed number of tiles

while others allow variable numbers of tiles.

3. Overlapping: This strategy is probably now the

most popular. In the strategy, windows are allowed

to partially obscure each other like overlapping

papers arranged on a desk. Cascading is a form of

overlapping where the windows are automatically

arranged fanned out, usually in a diagonal line so

that the title and one other border of each window

can be seen. With cascading, many windows can

therefore be displayed in a limited screen space at

the same time (Figs. 1 and 2).
WIMP Interfaces. Figure 1. Common components of a wind
When multiple windows are displayed on the screen

at the same time, the active window is usually distin-

guished by a shaded/bold title bar. The active window

is said to have focus. Windows have three size states:

maximized, minimized/iconified and normal/restored.

Some systems support windows within windows e.g.,

in Microsoft PowerPoint (MS Office 2000).

Icons

In the context of WIMP, an icon is a small picture or

image, used to represent some aspect of the system

(such as a printer icon to represent the printing action)

or to represent some entity/object (such as a window)

(Fig. 3).

As it was indicated earlier, a window may among

other things be closed completely. Alternatively it may

be reduced to this small representation (iconified/

minimized). An icon therefore can save screen space

and therefore many windows can be available on

the screen simultaneously. Moreover, it can serve as

a reminder to the user that s/he can resume dialog

(or interaction with the represented application) by

simply opening up the window.

Pointers

A pointer is a cursor on the display screen. It is worth

noting that interaction in WIMP interfaces relies a lot

on pointing and selecting interaction objects such as
ow.

WIMP Interfaces. Figure 2. Tiling versus cascading.

WIMP Interfaces. Figure 3. Examples of icons.

WIMP Interfaces W 3531

W

icons and menu items. Pointers are therefore impor-

tant in WIMP interfaces. There are at least two types of

cursors: mouse cursor and text cursor. A mouse cursor

shows the user where the current position of the mouse

is considered to be with respect to the windows on

screen. Usually, the shape and behavior of the mouse

cursor can be changed. A text cursor shows where

input will be directed from the keyboard. The mouse

is the most common device for pointing and click-

ing. However, other input devices such as joystick,

trackball, cursor keys or keyboard shortcuts too can

be used for such pointing and selecting tasks. In a

particular system, different cursors are used to repre-

sent different modes/states e.g., normal cursor as an

arrow, double-arrowed cursor for resizing windows,

hour-glass when system is busy, etc. A hot-spot is the

location to which the cursor points. Selection occurs

at the coordinate of the hot-spot. The hot-spot of

the cursor should be obvious to the user (Fig. 4).

Menus

A menu is an interaction feature that presents a set of

options displayed on the screen where the selection

and execution of one (or more) of the options results

in a change in the state of the interface [8]. The human

beings’ ability to recognize information on being given
a visual cue is superior to their ability to recall the

information. Menus therefore can serve as cues for the

operations or services that the system can perform.

Therefore, the labels/names used for the commands

in menus should be informative and meaningful.

A potential candidate for selection can be indicated

by using a pointing device (e.g., mouse, arrow keys,

etc) to move the pointer accordingly. As the pointer

moves, visual feedback is typically given by some kind

of visual emphasis such as highlighting the menu item.

Selection of a menu item can be realized by some addi-

tional user action (such as pressing a button on the

pointing devices, pressing some key on the keyboard,

etc). Keyboard accelerators, which are key combina-

tions that have the same effect as selecting the menu

item, are sometimes offered. When there are too many

items, the menu items are often grouped and layered.

The main menu, usually represented as a menu bar,

should be conspicuous or readily available/accessible.

Menu bars are often placed at one of the sides of

the screen or window. For instance: at the top of the

screen (e.g., MacOS), at the top of each window (e.g.,

Microsoft Windows). Most systems show the currently

selected state of any group of menu items by displaying

them in bold or by a tick. Entries that are disallowed in

the current context are often shown in a dimmed font.

Types of menus:

� Pull-down menus: They are attached to a main

menu under the title bar or to buttons. Pull-down

menus are dragged from the main menu by

WIMP Interfaces. Figure 4. Examples of pointers.

3532W WIMP Interfaces
moving the pointer into the menu bar and pressing

the button.

� Fall-down menus: They automatically appear from

the main menu when the pointer enters the menu

bar, without having to press the button.

� Pop-up menus: They appear when a particular

region of the screen or window, maybe designated

by an icon, is selected, but they remain in position

until the user instructs it to disappear again e.g., by

clicking on a ‘‘close box’’ in the border of the

menu’s window, by releasing the mouse button, etc.

� Pin-up menus: They can be ‘‘pinned’’ or attached to

the screen, staying in place until explicitly asked

to go away.

� Pie menus: The menu options in a pie menu

have a circular arrangement with the pointer at

the center.

There are two main challenges with menus: deciding

which items to include and how to group those items.

Here are some guidelines on menu design:

� A menu label in pull-down menus should reflect

the functions of the underlying menu items.

� The items in pull-down menus should be grouped

by function.

� Menu groupings in pull-down menus should be

consistent (to facilitate the transfer of learning

and confidence to the user).

� Menu items should be ordered in the menu accord-

ing to importance and frequency of use.

� Opposite functionalities (e.g., ‘‘save’’ and ‘‘delete’’)

should be kept apart to prevent accidental selection

of the wrong function.

Additional Interaction Elements

Many other interaction elements may be present in a

WIMP interface. For instance: buttons, sliders, tool-

bars, palettes, dialog boxes, etc. Buttons are individ-

ual and isolated regions within a display that can be

selected by the user to invoke a specific operation or

state. Sliders are used to set quantities that vary con-

tinuously within given limits or even to enable the user
to choose between large numbers of options [9]. A

toolbar is a collection of small buttons, each with

icons, that provides convenient access to commonly

used functions. It should be pointed out that although

the function of a toolbar is similar to that of a menu

bar, the icons in a toolbar are smaller than the equiva-

lent text and therefore more functions can be simulta-

neously displayed. A palette is a mechanism for making

the set of possible modes and the active/current mode

visible to the user. A dialog box is an information

window used by the system to provide contextual

information.
Key Applications
WIMP interfaces have made computer usage more

accessible to users who previously could not use the

earlier types of user interfaces. Such users include:

young children (who cannot yet read or write), man-

agers, and non-professional home users [11]. WIMP

interfaces can be credited for the increased empha-

sis on the incorporation of user interface design and

usability evaluation in the software development pro-

cess in the late 1980s and early 1990s. On the whole,

WIMP interfaces can be said to be instrumental in the

realization of applications that are characterized by

relative ease of learning, ease of use, and ease of trans-

fer of knowledge due to the consistency in WIMP-

based designs [11].
Cross-references
▶Human-Computer Interaction

▶ Icon

▶Visual Interaction

▶Visual Interfaces

▶Visual Metaphor

Recommended Reading
1. Alistair E. The design of auditory interfaces for visually disabled

users. In Proc. SIGCHI Conf. on Human Factors in Computing

Systems, 1988, pp. 83–88.

2. Balakrishnan R. and Kurtenbach G. Exploring bimanual camera

control and object manipulation in 3D graphics interfaces.

Window-based Query Processing W 3533
In Proc. SIGCHI Conf. on Human Factors in Computing Sys-

tems, 1999, pp. 56–62.

3. Beaudouin-Lafon M. Designing interaction, not interfaces. In

Proc. Working Conf. on Advanced Visual Interfaces, 2004,

pp. 15–22.

4. Beaudouin-Lafon M. and Lassen H.M. The architecture

and implementation of CPN2000, a post-WIMP graphical

application. In Proc. 13th Annual ACM Symp. on User Interface

Software and Technology, 2000, pp. 181–190.

5. Cesar P. Tools for adaptive and post-WIMP user interfaces.

New Directions on Human Computer Interaction, 2005.

6. Dix A., Finlay J., Abowd G., and Beale R. Human-Computer

Interaction. Prentice Hall, Englewood Cliffs, NJ, 2003.

7. Green M. and Jacob R. SIGGRAPH: ’90 Workshop report:

software architectures and metaphors for non-WIMP user inter-

faces. Comput. Graph., 25(3): 229–235, 1991.

8. Paap K.R. and Roske-Hofstrand R.J. Design of menus. In Hand-

book of Human-Computer Interaction, M. Helander (ed.).

Amsterdam, North-Holland, 1998.

9. Preece J., Rogers Y., Sharp H., Benyon D., Holland S., and

Carey T. Human-Computer Interaction. Addison-Wesley,

Reading, MA, 1994.

10. Odell D.L., Davis R.C., Smith A., and Wright P.K. Toolglasses,

marking menus, and hotkeys: a comparison of one and two-

handed command selection techniques. In Proc. 2004 Conf. on

Graphics Interface, 2004, pp. 17–24.

11. van Dam A. Post-WIMP user interfaces. Commun. ACM,

40(2):63–67, 1997.
Window-based Query Processing

WALID G. AREF

Purdue University, West Lafayette, IN, USA

Synonyms
Stream query processing
W

Definition
Data Streams are infinite in nature. As a result, a query

that executes over data streams specifies a ‘‘window’’ of

focus or the part of the data stream that is of interest to

the query. When new data items arrive into the data

stream, the window may either expand or slide to allow

the query to process these new data items. Hence,

queries over data streams are continuous in nature,

i.e., the query is continuously re-evaluated each time

the query window slides. Window-based query proces-

sing on data streams refers to the various ways and

techniques for processing and evaluating continuous

queries over windows of data stream items.
Historical Background
Windows over relational tables have already been

introduced into Standard SQL (SQL:1999) in order

to support data analysis, decision support, and more

generally, OLAP-type operations.

However, the motivation for having windows in

data stream management systems is quite different.

Since data streams are infinite, it is vital to limit and

focus the scope of a query to a manageable and finite

portion of the data stream. Earlier works on window

query processing have focused on processing tuple-

count and time-sliding windows. Ever since, window

query processing techniques have been developed

to deal with out-of-order tuple arrivals, e.g., [14],

revision tuple processing, e.g., [1,13], incremental

evaluation techniques, e.g., [6], stream punctuation

techniques, e.g., [17], multi-query optimization tech-

niques, e.g., shared execution of window queries

[4,7,9,10], and adaptive stream query processing tech-

niques, e.g., [12].
Foundations
Queries over data streams are continuous in nature.

A continuous query progressively produces results as

new data items arrive into the data stream. Since data

streams are infinite, queries that execute over a data

stream need to define a region of interest (termed a

window). There are several ways by which a query can

define its window(s) of interest. These include stream-

based versus operation-based windows, tuple-count

versus time-sliding windows, and sliding versus predi-

cate windows. These ways for specifying windows are

orthogonal and can hence be combined. For example,

a window can be time-sliding and at the same time,

operation-based. Similarly, a stream-based window

can also be predicate-based, etc.
Query Processing Techniques: Incremental Evaluation

Versus Reevaluation

Whenever the data items within a window change,

e.g., when the window slides with the arrival of

new tuples or with the expiration of some old

tuples from the window, a continuous query’s an-

swer needs to be reproduced. There are two

mechanisms for reproducing the answer to a con-

tinuous query, namely (i) query reevaluation and

(ii) incremental evaluation, which are explained in

the following sections.

3534W Window-based Query Processing
Query Reevaluation

In query reevaluation, a window over a data stream is

viewed as an instantiation of a table that contains the

data tuples in the window. When the window slides, a

new table is formed (or opened). So, from the point of

view of a continuous query, a data stream is a sequence

of tables. With the arrival of a new table (window of

data stream items), the query is reevaluated to produce

a new output result. As a consequence, an important

feature of query reevaluation is that the semantics of

the traditional query processing operators, e.g., selects

and joins, do not change. When the slide of a window

is less than its range, multiple overlapping windows

will be open concurrently over the same stream. Hence,

it is possible that a newly arriving tuple contribute

to multiple windows.

Query Processing using Revision Tuples At times, data

stream items may be noisy or erroneous due to the

nature of the data streaming applications. As a result,

stream data sources may need to ‘‘revise’’ previously

issued tuples in the form of ‘‘revision tuples’’ [1,13].

So, in a sense, processing a revised tuple may involve

reprocessing of the input tuples that were in the same

window or computation as the tuple being revised to

produce revised output results. Consequently, some

query operators will need to preserve ‘‘state’’ in order

to reprocess the revised input tuples. For example,

aggregates may need to store the individual values

(or some summary of these values) that were used

to produce the aggregate result so that the aggregate

operator may be recomputed given the revised input

tuple. This approach is referred to as ‘‘upstream pro-

cessing.’’ It is possible to go downstream, i.e., from

the output tuples backwards. The idea is to correct

the previously generated output tuples using the new

and original values of the revised tuple as well as some

state information depending on the nature of the

participating query operators. More detail about pro-

cessing revision tuples can be found in [1,13].

Query Processing using Punctuations Some stream

query operators are stateful while others are blocking.

Since data streams are infinite, the state of these

query operators may be unbounded in size. Similarly,

blocking operators cannot wait indefinitely as the data

streams never end. Knowing more a priori knowledge

about the stream semantics, it is possible to embed,

within the data stream, special annotations, termed
‘‘Punctuations’’ that break the infinite data stream into

finite sub-streams. Then, stateful and blocking query

operators can be applied successfully to each of the

substreams.

Stream punctuations can take multiple forms. For

example, one stream can send a ‘‘last-reading-within-

this-hour’’ punctuation to reflect that no more read-

ings for this hour are expected from that source. In this

case, a blocking operator can produce results related to

this source once the operator receives this punctuation.

Similarly, in a bidding application, sending a ‘‘no-

more-bids-for-item:%itemid’’ punctuation would

allow the bid to be finalized for that item. In general,

a punctuation can be viewed as a predicate that eval-

uates to ‘‘false’’ for every tuple in the stream that

follows the punctuation. This helps query operators

generate output tuples following a punctuation as

well as help reduce the size of the state kept per opera-

tor. Detailed discussion about query processing using

punctuations can be found in [17].

Query ProcessingUsingHeartbeats Stream data sources

often assign a timestamp to each data element they

produce. Due to the distributed nature of the stream

data sources, data elements may arrive to the data

streammanagement system out of order. System buffers

need to store the out-of-order tuples to present them

later to the query processor in increasing timestamp

order. Before processing a tuple t with timestamp ts, it

is important to guarantee that no more tuples with

timestamp less than ts will arrive to the system. Stream

heartbeats are amechanism that provide such assurance.

Each data source is responsible for generating its own

heartbeats periodically and embeds themwithin its own

data stream. In cases when a data source does not have

this capability, the data stream management system

should be able to synthesize and generate heartbeats

for each data stream based on parameterized knowledge

of the environment, e.g., the maximum network delay.

When processing a query that accesses multiple

streams, say s1, s2,...,sn, the query processor computes

the minimum timestamp, say tsmin, of the heartbeats of

all the n streams. All the tuples in the system buffer

with timestamps less than tsmin are forwarded to the

query for processing. Such query-level heartbeats are

simple and easy to implement. However, they can

block the processing of a query unnecessarily, e.g.,

when one of the streams is temporarily blocked while

the others are available. Alternatively, in contrast to a

Window-based Query Processing W 3535

W

query-level heartbeat, in an operator-level heartbeat,

the query processor computes the minimum time-

stamps of heartbeats for streams input to each query

operator in the plan. In this case, each operator will

have its own heartbeat.

Input tuples with timestamps less than an opera-

tor’s heartbeat are forwarded to that operator. Latency

and memory requirements of both query-level and

operator-level heartbeats are further detailed in [14].

Incremental Query Evaluation

In incremental query evaluation, whenever the win-

dow contents change, the query does not reprocess

all the tuples inside the window. Instead, the query

only processes the changed tuples. Moreover, only the

changes to the query answer are reported. The answer

to the query is considered more as a materialized view

in the sense that only the changes in the base tables

(the deltas) need to be processed by the view expres-

sion. As a result, some new tuples get inserted into

the view while others get deleted from it.

Two types of events need to be handled in the

case of incremental query evaluation. The first event

type is when a new tuple arrives into the data stream

and hence becomes inside of the stream’s window. The

second event type is when a tuple exits the window. For

example, when a time-sliding window slides, a tuple’s

timestamp may become outside of the time interval

covered by the window, and hence the tuple expires

and exits the window.

Systems vary on how they handle both types of

events. STREAM [16] generates two types of streams:

an Insert (I) stream that contains the newly arriving

tuples, and a Delete (D) stream that contains the ex-

piring tuples. In contrast to STREAM that has two

types of streams, Nile [8] maintains only one stream

but with two types of tuples: Positive and Negative

Tuples. Positive tuples correspond to the new tuples

that arrive into the window while negative tuples cor-

respond to the expiring tuples. Positive tuples are the

regular tuples that a traditional query processor han-

dles. In contrast, negative tuples are processed differ-

ently by each query operator.

Incremental Query Processing Using Negative Tuples

In a traditional relational query evaluation plan (QEP),

a table-scan operator is usually at the bottom (leaf)

level of the QEP and serves as the interface operator

that pipelines the tuples of a relation to the rest of the
QEP. In incremental query evaluation, the equivalent

to a table-scan operator is the window-expire operator

(W-expire, for short). AW-expire operator is assigned

to each stream in the query and is added at the bottom

(leaf) level of a QEP. The inputs to the W-expire

operator are the raw stream tuples as well as the defi-

nition of the window (e.g., say a window of range

10 min and slide 2 min). The function of the W-expire

operator is two-fold: (i) introduce the new stream

tuples to the QEP as they arrive into the stream, and

(ii) generate (or synthesize) negative tuples that corre-

spond to stream tuples that expire from the window

and introduce them to the QEP.

Conceptually, a negative tuple, say t-, needs to

trace the same path in the QEP that its corresponding

positive tuple, say t+, took to produce the same results

that t+ produced (but with negative sign). Once it

receives a negative tuple, each query operator, in

turn, processes the negative tuple and produces 0 or

more negative tuples as output that get processed by

the operators next in the pipeline. The semantics of all

query operators are extended to handle positive as well

as negative tuples. Additionally, each query operator

needs to store additional state information to be able

to process negative tuples successfully. This is similar

to the case of processing revision tuples in Borealis.

Details about the extended semantics and state infor-

mation of query operators for incremental query pro-

cessing as well as optimizations to reduce the cost of

handling negative tuples can be found in [6].

Query Processing for Predicate Windows

In contrast to a sliding window, in a predicate

window, a window is specified by a predicate that

defines the stream data tuples of interest to a query.

For example, a query may define its window of interest

to be the room identifiers of the rooms with tempera-

tures greater than 110 F. When a room’s temperature is

below 110 F, that room identifier exits the window,

otherwise it remains inside the window of interest.

Predicates that define a window may greatly vary

in complexity. In general, a predicate window can be

expressed using a regular select-from-where query.

Consider the predicate window that is defined by

following Select query over Stream roomTempera-

tures: Select room-id, temperature from roomTem-

peratures where temperature >120. The room-ids

and temperature values of the high-temperature

rooms are maintained inside this predicate window.

3536W Window-based Query Processing
Three types of tuples need to be maintained in this

scenario (insert, delete, and update tuples). Insert and

delete tuples are the same as the positive and negative

tuples used for incremental evaluation, while update

tuples are similar to revision tuples. When the tem-

perature of Room 5 increases from 110 to 130 F (i.e.,

the room did not have a high temperature before), the

corresponding tuple (room-id, temperature): (5, 130)

enters into the predicate window via an insert tuple.

Similarly, when the temperature of the same room

changes from 130 to 140 F, the corresponding tuple

(5, 140) replaces the old tuple (5, 130) via an update

tuple. Finally, when the temperature of Room 5 goes

below 120 F, e.g., 70 F, the corresponding tuple (5, 140)

is eliminated from the predicate window via a delete

tuple. Because of the generality of predicate windows

and the use of insert, delete, and update tuples, predi-

cate windows can be used to support views over data

streams [5].

Shared Execution of Multiple Window-based Queries

In continuous stream query processing, it is imperative

to exploit resources and commodity among query

expressions to achieve improved efficiency. Shared ex-

ecution is one important means of achieving this goal.

The role of joins in particular is further enhanced in

stream query processing due to the use of ‘‘selection

pull up.’’ In the NiagaraCQ system [9,10], it was shown

that the traditional heuristic of pushing selection pre-

dicates below joins is often inappropriate for continu-

ous query systems because early selection destroys the

ability to share subsequent join processing. Since join

processing is expensive relative to selections, it is al-

most always beneficial to process the join once in

shared mode and then subject the produced join out-

put tuples to the appropriate selection operations.

A similar argument holds for aggregation operations

and Group-by.

Multiple windowed query operators, e.g., window

joins, can share their execution as the windows of

interest over one data stream overlap. For example,

consider the two streams A and B and the two join

operators J and K that use the same join predicate, e.g.,

A.a = B.b. Assume an operation-based time-sliding

windows of sizes wJ for J and wK for K, e.g., wJ = 1

h or wK = 1 day. Since J and K have the same join

predicate and wJ < wK, the join output tuples of J are a

subset of the join output tuples. Notice that it is possi-

ble that two tuples, say A1 and B1, join and their
timestamps are more than 1 h apart but less than 1

day. Hence, the join output pair<A1, B1> is part of K’s

join output tuples but is not part of J’s. Executing both

operations separately wastes system resources. Sharing

the execution of the join operator would save on CPU

and memory resources. One feasible policy is to per-

form only the join with the largest window (K in the

example, since wK is the larger of the two windows)

[4,12]. The output of this join is then routed to multi-

ple output streams (two streams in the example),

where the output tuples for the joins with smaller

windows get filtered out based on their timestamps.

One advantage of this policy is its simplicity since

arriving tuples are completely processed before consid-

ering the next incoming tuple. However, this policy has

a disadvantage in that it delays the processing of small-

window joins until the largest-window join is

completely processed, hence negatively affecting the

response time of small-window joins.

An alternative policy for shared execution of win-

dow joins is to perform the join with the smallest

window first by all new tuples, then the next larger

window joins, and so on until the largest window join

is processed [7]. As long as there are tuples to be

processed by the smallest window, they are processed

first before any tuples are processed by the larger win-

dows. Notice that the join output pairs produced

for the smallest windows are also directly output tuples

for all the larger windows, but the converse is not

true, as explained above. The response time for the

small-window joins is significantly enhanced. However,

there is significant state information that needs to be

maintained for each tuple to know at what point inside

the windows from which that tuple resumes execution

with one of the window joins. More detail and tradeoffs

of each of the policies as well as better optimized policies

for shared execution of joins can be found in [7].

Out-of-order Tuple Processing

In processing queries over data streams, it is often

the case that the window operators are order sensitive.

For example, when continuously computing the run-

ning average over the most-recent ten tuples in a stream,

the output result depends on the order of the tuples in

the stream. With the ordered arrival of a new tuple, the

11th most-recent tuple gets dropped and the new aver-

age is computed. The same is true for time-sliding

windows. When tuples arrive in order, the timestamp

of the new tuple is used to slide the window. This is not

Window-based Query Processing W 3537

W

the case when tuples arrive out of order. In this case,

none of the windows can get closed and any produced

answer pertaining to a given window cannot be consid-

ered final since at any future point in time, a tuple

can arrive into that window and hence the output

needs to be recalculated.

There are several ways to deal with out-of-order

tuples. As explained in Section ‘‘Query Processing

using Revision Tuples,’’ revision tuples are one way to

deal with out-of-order tuples. The timestamp, say TS,

of the most-recent tuple of a stream is maintained.

Whenever an out-of-order tuple arrives (this tuple’s

timestamp is less than TS), a revision tuple is issued

to revise the output of the affected window(s). When

the maximum possible delay of a tuple is known in

advance, the stream query processor can leave open

all the potential windows that are within this delay

window. Once the maximum delay is reached, the

corresponding windows get closed and the tuples in-

side the window are processed to produce the final

answers for that window. The input stream manager

can synthesize and issue a punctuation or a heartbeat

to that effect so that the window results can be com-

puted and finalized.

Key Applications
Key applications for window-based stream query

processing include computer network traffic analysis,

network performance monitoring, intrusion detection.

stock market data analytics, web browsing clickstream

analytics, algorithmic stock trading, sensor network

data summarization and processing, moving object

tracking, traffic monitoring, and surveillance

applications.

Cross-references
▶Adaptive Stream Processing

▶Continuous Queries in Sensor Networks

▶Continuous Query

▶Data Stream

▶Distributed Streams

▶ Event Stream

▶ Fault-Tolerance and High Availability in a Data

Stream Management Systems

▶Histograms on Streams

▶ Publish/Subscribe over Streams

▶ Stream Models

▶ Stream Processing

▶ Stream-Oriented Query Languages and Operators
▶Windows

▶XML-Stream Processing

Recommended Reading
1. Abadi D., Ahmad Y., Balazinska M., Cetintemel U.,

Cherniack M., Hwang J-H., Lindner W., Maskey A.S., Rasin A.,

Ryvkina E., Tatbul N., Xing Y., and Zdonik S. The design of

the Borealis stream processing engine. In Proc. 2nd Biennial

Conf. on Innovative Data Systems Research, 2005, pp. 277–289.

2. Abadi D., Carney D., Cetintemel U., Cherniack M., Convey C.,

Lee S., Stonebraker M., Tatbul N., and Zdonik S. Aurora: a

new model and architecture for data stream management.

VLDB J., 12(2):120–139, 2003.

3. Bai Y., Thakkar H., Luo C., Wang H., and Zaniolo C. A data

stream language and system designed for power and extensibili-

ty. In Proc. Int. Conf. on Information and Knowledge Manage-

ment, 2006, pp. 337–346.

4. Chandrasekaran S. and Franklin M.J. Streaming queries

over streaming data. In Proc. 28th Int. Conf. on Very Large

Data Bases, 2002, pp. 203–214.

5. Ghanem T.M. Supporting Views in Data Stream Management

Systems. Ph.D. Dissertation. Department of Computer Science,

Purdue University, 2007.

6. Ghanem T.M., Hammad M.A., Mokbel M.F., Aref W.G., and

Elmagarmid A.K. Incremental evaluation of sliding-window

queries over data streams. IEEE Trans. Knowl. Data Eng., 19(1):

57–72, 2007.

7. Hammad M.A., Franklin M.J., Aref W.G., and Elmagarmid A.K.

Scheduling for shared window joins over data streams. In Proc.

29th Int. Conf. on Very Large Data Bases, 2003, pp. 297–308.

8. Hammad M.A., Mokbel M.F., Ali M.H., Aref W.G., Catlin A.C.,

Elmagarmid A.K., Eltabakh M., Elfeky M.G., Ghanem T.,

Gwadera R., Ilyas I.F., Marzouk M., and Xiong X. Nile: a query

processing engine for data streams. In Proc. 20th Int. Conf. on

Data Engineering, 2004, p. 851.

9. Jianjun C., DeWitt D.J., Feng T., and Yuan W. NiagaraCQ:

a scalable continuous query system for internet databases.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2000, pp. 379–390.

10. Jianjun C., DeWitt D.J., and Naughton J.F. Design and evalua-

tion of alternative selection placement strategies in optimizing

continuous queries. In Proc. 18th Int. Conf. on Data Engineer-

ing, 2002, pp. 345–356.

11. JohnsonT., Muthukrishnan S., Shkapenyuk V., and Spatscheck O.

A heartbeat mechanism and its application in gigascope. In Proc.

31st Int. Conf. on Very Large Data Bases, 2005, pp. 1079–1088.

12. Madden S., Shah M.A., Hellerstein J.M., and Raman V.

Continuously adaptive continuous queries over streams. In

Proc. ACM SIGMOD Int. Conf. on Management of Data,

2002, pp. 49–60.

13. Ryvkina E., Maskey A.S., Cherniack M., and Zdonik S. Revision

processing in a stream processing engine: a high-level design. In

Proc. 22nd Int. Conf. on Data Engineering, 2006.

14. Srivastava U. and Widom J. Flexible time management in

data stream systems. In Proc. 23rd ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2004,

pp. 263–274.

3538W Windows
15. Stonebraker M., Cetintemel U., and Zdonik S. The 8 require-

ments of real-time stream processing. ACM SIGMOD Rec., 34

(4):42–47, 2005.

16. The STREAM Group. STREAM: the Stanford stream data

manager. IEEE Data Eng. Bull., 26(1):19–26, 2003.

17. Tucker P.A., Maier D., Sheard T., and Fegaras L. Exploiting

punctuation semantics in continuous data streams. IEEE Trans.

Knowl. Data Eng., 15(3):555–568, 2003.
Windows

CARLO ZANIOLO

University of California-Los Angeles, Los Angeles,

CA, USA

Synonyms
Logical window ¼ Time-based window; Physical

window ¼ Tuple-based windows

Definition
Windows were introduced as part of SQL:1999 OLAP

Functions. For instance, given a sequence of bids it is

possible to use the following SQL:2003 statement to

find the last 40 offers (the current offer and the previ-

ous 39) for item 0021:

SELECT itemID, avg(Offer)

OVER(ROWS 39 PRECEDING ORDER BY TIME)

FROM BIDS

WHERE ItemID=0021

When BIDS is instead a data stream, the ‘‘ORDER

BY TIME’’ clause becomes redundant, and clauses such

as ‘‘FOLLOWING’’ are often not supported in continu-

ous query languages. However, these languages still

provide a ‘‘PARTITION BY’’ clause (or the more tradi-

tional ‘‘GROUP BY’’ clause), whereby a user can specify

that the average of the last 40 offers must be computed

for all items, not just item 0021. In addition to entail-

ing powerful and flexible analytical queries on ordered

sequences and time-series, as in databases, windows on

data streams play the key role of synopses, and are

widely employed in this capacity. In particular, since

it is not feasible to memorize unbounded data streams,

window joins are used instead. In window joins, the

newly arriving tuples in one data stream are joined with

the recent tuples in the window of the other data

streams (and symmetrically). The design and imple-

mentation of window-based extensions for aggregates
and joins operators for data streams has generated

significant research work [1,2,3].

Key Points
Traditional SQL aggregates are blocking (and thus

not suitable for continuous queries on data streams)

but their window versions are not. Therefore, the win-

dow concept is the cornerstone of many continuous

query languages, where its functionality has also been

extended with new constructs, such as slides, tumbles,

and landmark windows, that are not in SQL:2003. In a

sliding window of w tuples (seconds) the aggregate

computed over w is returned for each new incoming

tuple: when a slide of size s is also specified, then

results are only returned every s tuples (seconds).

With s = w we have a tumbling window in which

results are only returned at the end of each window.

When w∕s = k, then the window, and the computation

oftheaggregate,ispartitionintok panes [2]. A landmark

window is one where an occurrence of some event

of semantic significance, e.g., a punctuation mark [3],

defines one or both endpoints. Efficient implemen-

tation requires delta computations that exploit the

algebraic properties of aggregates – e.g., by increasing

(decreasing) the current sum with the value from the

tuple entering (leaving) the window – and architec-

tures that consolidate the vast assortment of windows

and aggregates at hand [1,2]. Windows provide the

basic synopsis needed to support joins with limited

memory. Special techniques are used to optimize

multi-way joins, and response time for all joins. Fur-

ther optimization issues occur when load-shedding is

performed by either (i) using secondary store to man-

age overflowing window buffers, or (ii) dropping

tuples from the windows in such a way that either a

max-subset or a random sample of the original win-

dow join is produced. Aged-based policies, where older

tuples are dropped first, is preferable in certain appli-

cations. Sketching techniques are often used

to estimate the productivity of tuples, whereby the

least productive tuples are dropped first [3]. The

same techniques can also be used to estimate dupli-

cates in DISTINCT aggregates; reservoir-sampling

inspired techniques have instead been proposed for

aggregates where duplicates are not ignored.

Cross-references
▶Data Sketch/Synopsis

▶ Join

Workflow Enactment Service State Data W 3539
▶One-Pass Query Processing

▶ Punctuations

▶ SQL

▶ Stream Processing

Recommended Reading
1. Bai Y. et al. A data stream language and system designed for

power and extensibility. In Proc. Int. Conf. on Information and

Knowledge Management, 2006, pp. 337–346.

2. Li J. et al. Semantics and evaluation techniques for

window aggregates in data streams. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2005, pp. 311–322.

3. Maier D., Tucker P.A., and Garofalakis M. Filtering, pun-

ctuation, windows and synopses. In Stream Data Management,

Vol. 30, N. Chaudhry, K. Shaw, M. Abdelguerfi (eds.). Kluwer,

Dordecht, 2005, pp. 35–56.
Wireless Sensor Networks

▶ Sensor Networks
Within-Element Term Frequency

▶Term Statistics for Structured Text Retrieval
Word Conflation

▶ Stemming
Word of Mouth

▶Reputation and Trust

▶Trust and Reputation in Peer-to-Peer Systems
W

Work Element

▶Activity
Work Performer

▶Actors/Agents/Roles
Workflow

▶Workflow Management
Workflow Constructs

NATHANIEL PALMER

Workflow Management Coalition, Hingham,

MA, USA

Synonyms
Process semantics

Definition
The elements of a Workflow Model defining how the

process is executed.

Key Points
Workflow Constructs represent the elements of a Work-

flow Model, such as Control Data, Splits, Joins, Activ-

ities and Actors, which combined define the parameters

of how a process instances is executed. The “Semantics”

of the process refer to how it is executed in the context

of workflow rules, such the steps, sequencing and

dependencies; whereas the “Syntax” of the process refers

to its definitionwithin the context of a specific language.

Workflow Constructs is directly related to semantics,

however, does not define specific syntax.

Cross-references
▶Activity

▶Actors/Agents/Roles

▶Control Data

▶ Join

▶ Split

▶Workflow Model
Workflow Control Data

▶Control Data
Workflow Enactment Service State
Data

▶Control Data

3540W Workflow Engine State Data
Workflow Engine State Data

▶Control Data
Workflow Evolution

PETER DADAM, STEFANIE RINDERLE

University of Ulm, Ulm, Germany

Synonyms
Process evolution; Schema evolution in workflow man-

agement systems; Schema evolution in process manage-

ment systems; Adaptive workflow/process management;

Workflow/process instance changes

Definition
The term evolution has been originally used in biology

and means the progressive development of a species over

time, i.e., the adaptation to changing environmental

requirements. Business processes (which are often called

workflows when implemented and thus automated

withinaworkflowmanagement system)also ‘‘live’’within

an environment (e.g., the enterprise or the market). This

environment is typically highly dynamic and thus the

running workflows have to adapt to these changing

requirements – i.e., to evolve – in order to keep up

with the ever-changing business environment and

provide their users with the competitive edge.

Workflow evolution implies two basic challenges:

change realization and change discovery. Change reali-

zation means that it must be technically possible to

adapt workflows. Change discovery refers to the ques-

tion which workflow modifications are required when

the environmental requirements change. So far, re-

search has focused on the first topic whereas the sec-

ond one is subject to future research.

Regarding the technical realization, workflow

changes can take place at two levels – at the workflow

instance and the workflow type level. Instance-specific

changes are often applied in an ad-hoc manner and

become necessary in conjunction with real-world excep-

tions. They usually affect only single workflow instances.

As opposed to this, in conjunction with workflow

schema changes at the workflow type level, a collec-

tion of related instances may have to be adapted, i.e.,

workflow schema changes are propagated to running

workflow instances or running workflow instances are

migrated to the changed workflow schema.
Historical Background
In research workflow evolution has been mainly

addressed from a technical point of view so far. More

precisely, different approaches have been developed for

the realization of workflow change during the last 10

years [8]. These approaches can be divided into differ-

ent categories, i.e., pre-planned workflow changes,

flexibility by design, and flexible workflow manage-

ment technology.

Pre-planned workflow changes: In this category

workflow changes are planned in advance [3,6].

Then, based on different strategies, one or several of

these changes are executed during runtime if necessary

(e.g., if an exception occurs). Strategies to initiate a

workflow change can be rule-based (e.g., using ECA

rules), goal-based (e.g., using AI planning techniques),

or process-driven (e.g., based on graph grammars).

Flexibility by design: Workflow adaptations can be

also foreseen in the workflow description [1,12] (e.g.,

in the workflow graph). The approaches range from

simply modeling alternative branches with associated

selection codes to approaches which specify workflows

only as a rough ‘‘skeleton’’ in advance and leave the

detailed specification of the workflow to the user at

runtime. Then, for example, the user can select which

activities are to be executed in which order. Some

approaches also integrate the support of planning

methods from Artificial Intelligence for the runtime

workflow specification.

Flexible workflow management technology:

Approaches in this field either deal with the modifica-

tion of workflow instances [7] or with workflow

schema evolution (i.e., changes at workflow type

level) [2,11,13,14]. Basic questions, however, are very

similar for workflow schema and instance changes,

mainly concerning the correctness of the workflow

management systems after changes at either level have

been carried out. Consequently, different change fra-

meworks on workflows have been defined [15] and

several correctness criteria have been developed

which partly depend on the used workflow meta

model (e.g., Petri Nets) [8]. Whereas the correctness

question is more or less sufficient to deal with work-

flow instance changes, other approaches have discov-

ered that, for workflow schema changes, additional

challenges arise. The reason is that if a workflow sche-

ma is modified, a possibly large number of workflow

instances running according to the workflow schema is

affected as well. Thus, approaches arose to deal with

Workflow Evolution W 3541

W

efficiency and usability aspects. Furthermore, some

proof-of-concept prototypes were implemented.

The last development stage of technical workflow

evolution research has been made when considering

workflow schema and instance changes in their inter-

play and not in an isolated manner [9].

Currently, more and more approaches start to inte-

grate semantic knowledge into workflow management

systems. This can be used as a basis for developing

intelligent adaptive systems which are able to learn

from previous changes and therefore automatically

adapt their workflows when the environment changes

(cf. Future Directions).

Foundations
As already mentioned, workflow evolution comprises

two basic challenges – change discovery and change

realization. Change discovery refers to the detection of

necessary business process optimizations which should

be brought into the running workflows. For change

discovery different approaches have emerged recently

which are, for example, based on process mining or

case-based reasoning techniques. Since these trends are

currently ‘‘in the flow’’ the reader is referred to the

‘‘Future Directions’’ section for more details.

Contrary, the topic of workflow change (i.e., how

to bring the discovered changes into the running sys-

tem) has been investigated in great detail. Note that the

following discussion of scientific challenges in the con-

text of workflow evolution refers to dynamic workflow

changes (i.e., changing a workflow instance or a work-

flow schema during runtime) and not to pre-planned

workflow changes. Fig. 1a shows an example of an

order workflow based on which the problem spectrum

is motivated in the following.

At workflow type level, changes are handled by mod-

ifying the affected workflow schema S based on which a

collection of workflow instances I1,..., In is running.

Intuitively, it is necessary that the modification of a

correct workflow schema S again results in a correct

workflow schema S’ (a workflow schema is called cor-

rect if it satisfies correctness constraints set out by the

underlying workflow meta model, i.e., the formalism

used to describe the business processes, e.g., Petri Nets).

This so called static schema correctness can be pre-

served, for example, by the applied change operations.

After changing workflow schema S it is also neces-

sary to deal with process instances I1,..., In running on

S (cf. Fig. 1b). Different strategies for this so-called
dynamic process schema evolution have been proposed

in literature. One possibility is to cancel all running

instances and to restart them according to the new

workflow schema. However, this strategy may cause

an immense loss of work and would usually not be

accepted by users. Therefore, at minimum, it is claimed

that workflow instances I1,..., In started according to

workflow schema S can be finished on S without being

interrupted. This strategy can be implemented by

providing adequate versioning concepts and may be

sufficient for workflows of short duration. However,

doing so raises severe problems in conjunction with

long-running workflows as often found in, for exam-

ple, clinical or engineering environments. Due to the

resulting mix of workflow instances running on old

and new schema versions a chaos within the produc-

tion or the offered services may occur. Furthermore,

often, it is not acceptable to run instances on the old

schema version if laws or business rules (e.g., clinical

guidelines) are violated.

For these reasons, it is quite important to be able to

apply workflow schema changes to running instances as

well. This scenario is called the propagation of workflow

schema changes to running workflow instances or, in

other words, the migration of the (‘‘old’’) running

instances to the changed workflow schema. Note that

the number of running instances I1,..., In may be

very large. In environments like hospitals or telecom-

munication companies, for example, n > 10,000 may

easily hold.

To better understand the challenge of propagating

a workflow schema change to running workflow in-

stances, one can compare a running workflow

instance with an application program. This program

is currently executed and consists of several pro-

cedures. These steps can be successively executed

(sequential execution), can be situated within if-

then-else conditions (alternative branches), or can

be even executed in parallel threads. Workflow sche-

ma evolution can then be compared to manipulating

the running program by inserting one or more pro-

cedures, deleting procedures, or changing the order

of procedures in the midst of program execution.

In particular, the changes have to be carried out by

maintaining a correct program execution (e.g., cor-

rect parameter provision) for all possible execution

alternatives.

Consequently, it is a non-trivial but crucial task for

workflow management systems to enable workflow

3542W Workflow Evolution
schema evolution. The following main requirements

have been identified:

1. Completeness: Workflow designers must not be re-

stricted, neither by the used workflow meta model

nor by the offered change operations.

2. Correctness: The ultimate ambition of any adaptive/

flexible workflow management system must be the

correctness of workflow changes; i.e., introducing

changes to the runtime system without causing
Workflow Evolution. Figure 1. Example order workflow.
inconsistencies or errors (like deadlocks or improp-

erly invoked activity programs). Therefore, ade-

quate correctness criteria are needed. These criteria

must not be too restrictive, i.e., no workflow in-

stance should be needlessly excluded from applying

a dynamic change.

3. Efficient Correctness Checks: Assume that an appro-

priate correctness criterion for workflow changes

has been found. Then the challenge is to check this

criterion efficiently. This is especially important for

Workflow Evolution W 3543

W

large-scale environments with hundreds (up to

thousands) of running workflow instances.

4. Usability: The migration of workflow instances to a

changed workflow schema must not require expen-

sive user interactions. First of all, such interactions

may lead to delays within the instance executions.

Secondly, users (e.g., designers or administrators)

must not be burdened with the job to adapt

workflow instances to changed workflow schemes.

Complex process structures and extensive state

adaptations might overstrain them quickly. There-

fore, it is crucial to offer methods for the automatic

adaptation of workflow instances.

However, supporting workflow schema changes is not

sufficient to enable workflow evolution. In fact, it

must be possible to modify single workflow instances

as well. Such workflow instance changes are often car-

ried out in an ad-hoc manner in order to deal with an

exceptional situation, e.g., an unforeseen correction of

the inventory information in an order workflow as

depicted for instance 8 in Fig. 1b.

In the literature, workflow schema and instance

changes have been an important research topic for

several years. So far, there are only a few adaptive

systems supporting both kinds of changes in one sys-

tem [4,14], however, only in a separated manner (i.e.,

already individually modified workflow instances are

excluded from migration to the changed workflow

schema). As discussed, this approach is not sufficient

in many cases, particularly in connection with long-

running workflows. Assume, for example, a medical

treatment workflow which is normally executed in a

standardized way for every patient. Assume further

that due to an unforeseen reaction, an additional

drug is given to a certain patient. However, this devia-

tion from the standard procedure must not imply that

the affected workflow instance (and therefore the pa-

tient) is excluded from further workflow optimiza-

tions. Therefore, it must be possible to propagate

workflow schema changes at the type level to individ-

ually modified instances as well.

This interplay between concurrently applied work-

flow schema and instance changes raises many chal-

lenges, for example, the question to which degree the

changes overlap. Overlapping means that workflow

schema and instance change (partly) have the same

effects on the underlying workflow schema. Such an

overlap occurs, for example, if a workflow instance has
(partly) anticipated a future workflow schema change

in conjunction with a flawed process design. In this

situation conflicts may arise between the overlapping

workflow schema and instance changes (e.g., if the

same activities are deleted).

Different approaches have been developed to deal

with concurrent workflow schema and instance

changes (e.g., based on workflow schema and change

comparisons in order to determine overlapping degrees

between changes) [9]. Thus, the current state-of-the

art comprises sufficient solutions for the technical

realization of workflow changes. However, there are

advanced challenges regarding the semantic realization

of workflow changes and the acquisition of the work-

flow changes. These challenges are described within the

‘‘Future Directions’’ section.

Key Applications
Production workflow (process) management systems

Clinical workflows

Office automation

Development workflows (e.g., in the automotive domain)

Enterprise application integration (?)

Future Directions
Currently, there are comprehensive solutions avail-

able regarding the technical support of workflow

changes. However, this is not sufficient for a complete

workflow evolution solution. First of all, in addition

to the technical requirements as discussed in the

‘‘Foundations’’ section, also semantic aspects must

be taken into account. In order to make this technol-

ogy broadly applicable, it is not sufficient to check

only whether the planned workflow changes violate

any structural or state-related correctness properties.

In addition, it must also be possible to verify if se-

mantic constraints (e.g., business rules, four eyes

principle) imposed on the affected workflow are vio-

lated [5].

In some cases the necessity to change a workflow

schema has reasons like changes in legislation, in global

business rules, or in the structural organization of the

enterprise etc. In many cases, however, workflow sche-

ma changes are motivated by the observation that the

existing workflow does not meet some real-world

requirements. For example, the order of steps is not

optimal, some steps are missing or not necessary, or

important cases are not reflected in the workflow

3544W Workflow Join
schema. It should not be left to users to detect neces-

sary changes. If users find ‘‘work-arounds’’ to locally

solve their problem, this information may never reach

the person in charge. More promising is to let the

system analyze execution logs in order to discover

repetitive deviations (e.g., using process mining), to

compute an alternative workflow schema covering

these cases, and to support the process designer to

(semi-)automatically perform the necessary workflow

schema evolution [10].

Cross-references
▶Business Intelligence

▶Business Process Execution Language

▶Business Process Management

▶Business Process Reengineering

▶Composed Services and WS-BPEL

▶ Petri Nets

▶ Process Mining

▶ Process Optimization

▶Workflow Constructs

▶Workflow Management and Workflow Management

System

▶Workflow Management Coalition

▶Workflow Model

▶Workflow Patterns

▶Workflow Schema

▶Workflow Transactions

Recommended Reading
1. Adams M., ter Hofstede A.H.M., Edmond D., and van der Aalst

W.M.P. A service-oriented implementation of dynamic flexibility

in workflows. In Proc. Int. Conf. on Cooperative Inf. Syst., 2006.

2. Casati F., Ceri S., Pernici B., and Pozzi G. Workflow evolution.

Data Knowl. Eng., 24(3):211–238, 1998.

3. Heimann P., Joeris G., Krapp C., and Westfechtel B.

DYNAMITE: dynamic task nets for software process manage-

ment. In Proc. 18th Int. Conf. on Software Eng., 1996,

pp. 331–341.

4. Kochut K., Arnold J., Sheth A., Miller J., Kraemer E., Arpinar B.,

and Cardoso J. IntelliGEN: a distributed workflow system for

discovering protein-protein interactions. Distr. Parallel Data-

bases, 13(1):43–72, 2003.

5. Ly L.T., Rinderle S., and Dadam P. Semantic correctness in

adaptive process management systems. In Proc. Int. Conf. Busi-

ness Process Management, 2006, pp. 193–208.

6. Müller R., Greiner U., and Rahm E. AgentWork: a workflow

system supporting rule-based workflow adaptation. Data

Knowl. Eng., 51(2):223–256, 2004.

7. Reichert M. and Dadam P. ADEPTflex – supporting dynamic

changes of workflows with-out losing control. J. Intell. Inform.

Syst., 10(2):93–129, 1998.
8. Rinderle S., Reichert M., and Dadam P. Correctness criteria for

dynamic changes in workflow systems – a survey. Data Knowl.

Eng., 50(1):9–34, 2004.

9. Rinderle S., Reichert M., and Dadam P. Disjoint and overlapping

process changes: challenges, solutions, applications. In Proc. Int.

Conf. on Cooperative Inf. Syst., 2004, pp. 101–120.

10. Rinderle S., Weber B., Reichert M., and Wild W. Integrating

process learning and process evolution – a semantics based

approach. In Int. Conf. Business Process Management, 2005,

pp. 252–267.

11. Sadiq S., Marjanovic O., and Orlowska M. Managing change and

time in dynamic workflow processes. Int. J. Cooper. Inform.

Syst., 9(1, 2):93–116, 2000.

12. Sadiq S., Sadiq W., and Orlowska M. Pockets of flexibility in

workflow specifications. In Proc. 20th Int. Conf. on Conceptual

Modeling, 2001, pp. 513–526.

13. van der Aalst W.M.P. Exterminating the dynamic change bug: a

concrete approach to support workflow change. Inform. Syst.

Front., 3(3):297–317, 2001.

14. Weske M. Formal foundation and conceptual design of dynamic

adaptations in a workflow management system. In Proc. Hawaii

Int. Conf. System Sciences, 2001.

15. Weber B., Rinderle S., and Reichert M. Change patterns and

change support features in process-aware information systems.

In Proc. Int. Conf. Advanced Information Systems Engineering,

2007, pp. 574–588.
Workflow Join

NATHANIEL PALMER

Workflow Management Coalition, Hingham,

MA, USA

Synonyms
AND-join; Rendezvous; Synchronization join

Definition
A point in the workflow where two or more parallel

executing activities converge into a single common

thread of control.

Key Points
The execution of parallel activities commences with

an AND-Split and concludes with an AND-Join. For

example, in a credit application process there may be a

split in the workflow at which point multiple activities

are completed separately (in parallel, if not simulta-

neously.) Each parallel executing thread is held until

the set of all thread transitions to the next activity is

completed at which point the threads converge and

the next activity is initiated.

Workflow Management and Workflow Management System W 3545
Cross-references
▶AND-Split

▶OR-Join

▶ Process Life Cycle

▶Workflow Management and Workflow Management

System
Workflow Lifecycle

▶ Process Life Cycle
Workflow Loop

▶ Loop
W

Workflow Management

NATHANIEL PALMER

Workflow Management Coalition, Hingham, MA,

USA

Synonyms
Workflow; Business process management; Case

management

Definition
The automation of a business process, in whole or

part, during which documents, information or tasks

are passed from one participant to another for action,

according to a set of procedural rules.
Key Points
The automation of a business process is defined

within a Process Definition, which identifies the vari-

ous process activities, procedural rules and associated

control data used to manage the workflow during

process enactment.

Many individual process instances may be opera-

tional during process enactment, each associated

with a specific set of data relevant to that individual

process instance (or workflow ‘‘Case’’). A loose distinc-

tion is sometimes drawn between production work-

flow, in which most of the procedural rules are defined

in advance, and ad-hoc workflow, in which the pro-

cedural rules may be modified or created during the

operation of the process.

Cross-references
▶Business Process Management

▶ Event-Driven Business Process Management

▶Workflow Management and Workflow Management

System

▶Workflow Model

▶XML Process Definition Language
Workflow Management and
Workflow Management System

JOHANN EDER

University of Vienna, Vienna, Austria

Synonyms
Business process management

Definition
Business Process: A set of one or more linked proce-

dures or activities that collectively realize a business

objective or policy goal, normally within the context

of an organizational structure defining functional

roles and relationships [10].

Workflow: The automation of a business process, in

whole or part, during which documents, information

or tasks are passed from one participant to another for

action, according to a set of procedural rules [10].

Workflow Management System (WFMS): A system

that defines, creates and manages the execution of

workflows through the use of software, running on

one or more workflow engine, which is able to interpret

3546W Workflow Management and Workflow Management System
the process definition, interact with workflow partici-

pants and, where required, invoke the use of IT tools

and applications [10].
Historical Background
In the 1980s, office automation was a major research

focus with several topics, the support for the including

movement of documents through offices. Some pro-

posals were made to model document or form flows

and to support the ‘‘paperless’’ office.

Another driver for the development of workflows

came from extended transaction models. The problem

was to solve integrity problems in heterogenous infor-

mation systems where, within one business process,

several databases are updated. Integrity was compro-

mised if some of the updates failed or were not carried

out. Extended transaction models aimed to provide as-

surance that all steps were performed properly.

A third development stream came from computer

supported cooperative work, where the need arose to

better support repeating processes.

In the 1980s revolutionary ideas for improving

business by business process reengineering also

emerged. Enterprises were urged to organize them-

selves around their core business processes and not

according to functional considerations as before. This

movement in business administration called for soft-

ware to support process driven organizations.

Since the 1990s, hundreds of workflow systems have

been developed, both academic prototypes and commer-

cialproductswith quite different functionalities.
Foundations
Workflows automate and/or support the execution

of business processes. The core idea of workflow man-

agement is to separate the process logic from the func-

tional application logic. This means that applications

provide functionality, and the workflow system controls,

when to involve which functionality. So the workflow is

responsible for who (which actor) does what (which

activity), with which data and resources, when (control

logic) under which constraints. And it is the job of the

application system or workflow participant to know

how an activity is performed. So the workflow system

is responsible for the logistics of a process but not for

the execution of the individual steps. This separation

of concerns, to separate the doing of things from the

organization of the process is supposed to make
software more flexible and to integrate heterogeneous

applications.

Aspects of Workflows

A workflow consists of a set of activities and the depen-

dencies between them, the so-called business logic. These

dependencies can be expressed in different forms. The

most frequent way is to express the dependencies by

control flow definitions, often supported by graphical

notations. Other ways are data flow or rules. However,

the control flow is only one aspect of workflow manage-

ment, although it has received most attention.

The following aspects of workflows can be

distinguished:

Activities: Activities are units of work to be per-

formed, either by a specific program or by an user,

typically interacting with some application programs.

Activities can be elementary, i.e from the point of the

workflow systems they are the smallest units of work.

Elementary activities are frequently called tasks. Activ-

ities can be composed to complex activities.

Process: The process defines the control flow, i.e.,

the admissible relative orders of activity executions.

Typical elements of control flow are sequence, and-

parallelism (concurrent execution of activities), or-

parallelism (selection of different activities, inclusive

or exclusive). Workflow models provide the means for

defining the process. Many process models rely on

(variants of) Petri-nets or (simpler) variants of Petri-

nets, in particular, so called workflow nets. Workflow

nets are graphs, where the nodes are activities and the

directed edges represent a precedence relation between

activities. Additionally, there are control nodes: and-

split for invoking several successor activities concur-

rently, and-join for synchronizing parallel threads, xor-

splits for selecting one of several successor activities

and xor-join for joining alternate paths again.

Actors: Actors perform the tasks defined in the

workflow specification. Actors can be humans or sys-

tems. Systems perform so-called automatic tasks, i.e.,

execute some application programs. Human actors can

be identified directly (by a user name), or indirectly by

reference to a position in the organization, by roles,

representing a set of users competent for fulfilling a

tasks, by organizational unit, by specification of neces-

sary skills and competencies, or by reference to some

data item containing the actor. For indirect represen-

tation of the individual actor, the workflow system

has to resolve the role at runtime and assign a user to

Workflow Management and Workflow Management System W 3547
a particular task. For the resolution of actors specified

by organizational units, the workflow system main-

tains a model of the organization.

Data: Data are needed for the processing of a work-

flow. Three kinds of data comprise workflows.Workflow

control data are managed by a WFMS and describe

workflow execution (e.g., control and data flow

among activities), relevant internally for a WFMS

and without a long-term impact beyond the scope of

the current workflow (e.g., a termination state of an

activity). Application data are managed by the applica-

tions supporting the process instance and generally are

never seen by the WFMS. Workflow relevant data are

used by the WFMS to determine the state transitions of

a workflow (e.g., transition conditions) and may be

accessed both by the WFMS and the applications.

Further, a workflow system manages organizational

data which it uses at runtime to resolve actors, and

audit data kept in the workflow log documenting the

execution details of workflow instances.

Applications: Applications are pieces of software

that can be invoked within a workflow to fulfill a

certain activity. A WFMS has to administer applica-

tions and the details of their invocation.

Other aspects: Other aspects of workflows include

constraints that have to be satisfied (e.g., pre- and

postcondition of activities, quality-of-service con-

straints), in particular temporal constraints specifying

deadlines and bounds for the duration between activ-

ities. Business rules may restrict the process.
Workflow Management and Workflow Management System

reference architecture [2].
Workflow Management Systems

Workflow Management Systems are generic software

systems that are driven by workflow models and con-

trol the execution of workflows.

The Workflow Management Coalition (WfMC)

developed a reference architecture for WFMS that has

been widely adopted. Figure 1 shows the model with its

components and interfaces.

The Workflow Enactment Service, consisting of

one or several workflow engines, is the core of a work-

flow management system. It accepts a process des-

cription, interprets it, creates instances (workflows),

and controls the execution of the process instances.

This means that the activities of the workflows are

invoked according to the logic expressed in the process

model, activities are dispatched to actors, and, if nec-

essary, external services and external applications are

invoked or process instances are forwarded to other

workflow enactment services.

Interface 1 accepts the process definition that con-

tains all information necessary for the execution of

process instances. Process definition tools are employed

to describe processes in a proper format. Some process

definition languages have been proposed as standards

(e.g., XPDL or BPEL) to have uniform interfaces be-

tween process definition tools and workflow enactment

services. Nevertheless, many workflow management

systems feature proprietary languages, partly because

of the different types of workflows they intend to

support.
. Figure 1. Workflow Management Systems: WfMC

W

3548W Workflow Management and Workflow Management System
Interface 2 links the workflow enactment service

with workflow client applications, the piece of software

the workflow participants (or actors) work with. The

main feature of this component is to maintain the

worklist, a collection of all activities assigned to a

particular user. Users can typically accept an activity,

delegate it, refuse it, work on it, or complete it.

Interface 3 describes how other applications are in-

voked. This interface is frequently used to invoke legacy

applications. Since applications (in particular interactive

programs) can be invoked from the workflow client

application as well, the interfaces 2 and 3 are typically

combined permitting the invocation of applications

both directly from the workflow enactment service and

on user request from the workflow client tool.

Interface 4 addresses workflow interoperability. It

defines the interaction between workflow enactment

services, the invocation of subworkflows, the syn-

chronization between cooperating workflows, and

the forwarding of workflows to other workflow

applications.

Interface 5 specifies the interaction with adminis-

tration and monitoring tools. Administration tools

provide the general administration of the workflow

system: the registration of user, of application pro-

grams, the security management, in particular the ad-

ministration of rights. The monitoring tools allow for

the inspection of the progress of workflow instances

and typically provide sophisticated statistics about the

execution of workflows to support process managers

and to provide data for process improvement.

Key Applications
Workflow systems are mainly employed to support the

management and execution of business processes. The

typical architecture is that a workflow management

system is used for managing the business processes

and for integrating the different application areas.

Such an architecture can be found in various enter-

prises and organizations. A few example applications

include insurance claim processing, loan processing,

product development, bug reporting, order processing,

media production, etc.

However, there are additional types of workflow

applications:

� Groupware like systems with high flexibility to

support workflow that cannot be fully modeled

beforehand but develop as the process is executed.

These systems primarily support the cooperation
between individuals and care for highly dynamic

processes.

� There are workflow systems as top layers on large

enterprise software systems, adding processes to the

rich integrated functionality of these systems.

� Workflow systems are used to integrate heteroge-

neous application systems and provide an integra-

tion platform for these systems. Workflow systems

are a layer in the architecture of software systems

caring for the process aspects just as data manage-

ment systems are responsible for storing and

retrieving data (process brokers).

Workflows are frequently classified into three different

groups according to the criteria of how much they can

be automated, how frequent they are executed, and

how much they can be specified:

� Ad-hoc workflows are highly dynamic workflows

that are not fully specified at build time and consist

mainly of manual activities. Examples are docu-

ment routing, or review processes.

� Administrative workflows are well structured and

more repetitive. They are the typical office paper

shuffling type of processes. Examples are budget-

ing, purchase order processing, etc.

� Production workflows are highly repetitive, well

structured and fully automated. They represent the

core business processes of an organization. Exam-

ples are insurance claim handling, bug reporting,

order processing, etc.

The employment of workflow technology is supposed

to bring the following benefits:

� Efficiency: The automation of process control, the

increased possibilities for concurrent execution of

activities of the same workflow instance, and the

automation of the forwarding of work to the next

actor increase the efficiency of business processes as

measured in throughput and in turn-around time.

� Process modeling: The business processes are ex-

plicitly specified and do no longer solely exist in the

heads of the participants or in manuals. This is a

necessary prerequisite to reflect on processes and to

improve processes.

� Automated process control: the centralized auto-

matic control of the process execution guarantees

that business rules are respected. Deviations from

the specified process, which are of course possible,

are documented and can be used for auditing and

Workflow Management and Workflow Management System W 3549

W

process improvement. Users are informed of work

to do, and the data used for performing activities

are automatically delivered to the respective

workers.

� Integration: Workflow systems allow to bridge

heterogeneous applications. Functionalities in appli-

cation systems are called external applications.

The workflow describes and the WFMS enforces

the proper sequences of invocation of functionalities

in different application systems and transports data

between different systems. In general, the integrity of

the whole system consisting of heterogeneous appli-

cations is achieved.

� Transparency: Transparency is increased through

explicit process specification and documentation.

All steps and decisions in the execution of a process

are centrally documented (workflow log or work-

flow history). Therefore, it is easy to report the

actual state of a process instance.

� Monitoring: The progress of workflows can be

easily monitored. For example, delays or excepti-

onal situations are immediately recognized allow-

ing process managers to react timely to assure that

deadlines are met.

� Documentation: The execution of workflows is au-

tomatically documented. Each process can be

traced, e.g., for the purpose of revision. The process

documentation is also a valuable source for statistics

about the processes to identify weaknesses of the

process definition and for process improvements.

� Quality assurance: Quality assurance procedures

like the ISO 9000 Suite or TQM (Total Quality

Management) require in particular that processes

are specified, that processes are executed according

to their specification, and that all processes are

documented. All that is supported by workflow

systems.

� Process oriented management: Workflow systems

support the management of process driven

organization.

Workflow systems are a flourishing market. Applica-

tions can be found in a large number of application

domains: e.g., insurances, banks, government agencies,

hospitals, etc. Scientific workflows are successfully

applied in life science, physics, and chemistry, etc.

There are many applications with embedded workflow

technology, e.g., document management systems, con-

tent management systems, or ERP-systems.
Future Directions
An important development of workflow systems is their

combination with web service technology. Web service

composition relies on the same principles as workflow,

the main difference is that the activities are web services.

Another important topic is the support of interor-

ganizational business processes. The benefits of work-

flow technology should be exploited also for business

processes that span several organizations (enterprizes).

While this is already achieved for some types of virtual

enterprizes, where the partners (suppliers, costumers,

consultants, service providers, etc.) involved and the

interfaces are fairly stable, it is still a challenge to

support processes with changing partners or multi-

tudes of partners. Here a lot of research is still needed,

in particular, integration with semantic web services.

Cross-references
▶Database Techniques to Improve Scientific Simulations

▶Extended Transaction Models

▶Workflow Management Coalition

▶Workflow Model

▶Workflow Transactions
Recommended Reading
1. van der Aalst W. et al. WorkflowManagement: models, methods,

and systems. MIT, Cambridge, MA, 2002.

2. Dumas M., van der Aalst W.M., and ter Hofstede A.H. Process-

aware information systems: bridging people and software

through process technology. Wiley, 2005.

3. Eder J., Groiss H., and Liebhart W. The Workflow Management

System Panta Rhei. In Workflow Management Systems and

Interoperability. Kalinichenko, A. Dogac, M.T. Özsu, A. Sheth

(eds). 1998. pp. 129–144.

4. Ellis C.A. and Nutt G.J. Office Information Systems and

Computer Science. ACM Comput. Surv., 12(1): 27–60, 1980.

5. Ellis C.A. and Nutt G.J. Modeling and Enactment of Workflow

Systems. In Proc. 14th Int. Conf. on Application and Theory of

Petri Nets., 1993, pp. 1–16.

6. Georgakopoulos D., Hornick M., and Sheth A. An overview

of workflow management: From process modeling to work-

flow automation infrastructure. Distrib. Parallel Databases,

3(2):119–153, 1995.

7. Jablonski S. and Bussler C. Workflow management: modeling

concepts, architecture and implementation. Int. Thomson Com-

puter, 1996.

8. Leymann F. and Roller D. Production workflow. Prentice-Hall,

Englewood, Cliffs, NJ, 2000.

9. The Workflow Reference Model. Workflow Management

Coalition, 1995.

10. Workflow management coalition terminology and glossary [R].

Workflow Management Coalition, 1999.

3550W Workflow Management Coalition
Workflow Management Coalition

NATHANIEL PALMER

Workflow Management Coalition, Hingham, MA,

USA

Synonyms
XPDL

Definition
The Workflow Management Coalition, founded in

August 1993, is a non-profit, international organi-

zation of workflow vendors, users, analysts and univer-

sity/research groups. The Coalition’s mission is to

promote and develop the use of workflow through

the establishment of standards for software termino-

logy, interoperability and connectivity among BPM

and workflow products. Comprising more than 250

members worldwide, the Coalition is the primary stan-

dards body for this software market.

Key Points
The WfMC creates and contributes to process related

standards, educates the market on related issues, and is

the only standards organization that concentrates purely

on process. TheWfMC createdWf-XML and XPDL, the

leading process definition used today in over 70 solu-

tions to store and exchange process models. XPDL is not

an executable programming language but a process

design format for storing the visual diagram and process

syntax of business process models, as well as extended

product attributes.

The Coalition has developed a framework for

the establishment of workflow standards. This frame-

work includes five categories of interoperability and

communication standards that will allow multiple work-

flow products to coexist and interoperate within a user’s

environment. These interface points are structured

around the workflow reference model which provides

the framework for the Coalition’s standards program.

The reference model identifies the common characteris-

tics of workflow systems and defines five discrete func-

tional interfaces through which a workflow management

system interacts with its environment – users, computer

tools and applications, other software services, etc.Work-

ing groupsmeet individually, and also under the umbrel-

la of the Technical Committee, which is responsible for

overall technical direction and coordination.
Cross-references
▶Workflow Management and Workflow Management

System

▶Workflow Model

▶XML Process Definition Language
Workflow Meta-Model

▶Workflow Schema
Workflow Mining

▶ Process Mining
Workflow Model

NATHANIEL PALMER

Workflow Management Coalition, Hingham,

MA, USA

Synonyms
Business process model; Process definition

Definition
A set of one or more linked procedures or activities

which collectively realize a business objective or policy

goal, normally within the context of an organizational

structure defining functional roles and relationships.

Key Points
� A business process is typically associated with opera-

tional objectives and business relationships, for ex-

ample an Insurance Claims Process, or Engineering

� Development Process. A process may be wholly

contained within a single organizational unit or

may span several different organizations, such as

in a customer-supplier relationship.

� A business process has defined conditions trigger-

ing its initiation in each new instance (e.g., the

arrival of a claim) and defined outputs at its

completion.

� A business process may involve formal or relatively

informal interactions between participants; its du-

ration may also vary widely.

Workflow Modeling W 3551
� A business process may consist of automated activ-

ities, capable of workflow management, and/or

manual activities, which lie outside the scope of

workflow management.

Cross-references
▶Workflow Management and Workflow Management

System

▶Workflow Modeling
W

Workflow Model Analysis

W. M. P. VAN DER AALST

Eindhoven University of Technology, Eindhoven,

The Netherlands

Definition
The correctness, effectiveness, and efficiency of the

business processes supported by a workflow manage-

ment systems are vital to the organization. A workflow

process definition which contains errors may lead to

angry customers, back-log, damage claims, and loss of

goodwill. Flaws in the design of a workflow definition

may also lead to high throughput times, low service

levels, and a need for excess capacity. This is why it is

important to analyze a workflow process definition

before it is put into production.

In order to analyse a workflow definition, it is nec-

essary to translate the definition into a model suitable

for analysis, e.g., a simulation model or a model that

allows for verification techniques (e.g., a Petri net).

Key Points
Process-aware information systems are driven by pro-

cess models. A typical example of a process-aware in-

formation system is a system generated using workflow

management software. In such cases there is an explicit

process model that can be used as a starting point for

analysis [3,4].

There are three types of workflow model analysis:

1. Validation, i.e., testing whether the workflow

behaves as expected.

2. Verification, i.e., establishing the correctness of a

workflow.

3. Performance analysis, i.e., evaluating the ability to

meet requirements with respect to throughput

times, service levels, and resource utilization.
Validation can be done by interactive simulation: a

number of fictitious cases are fed to the system to see

whether they are handled well. For verification and

performance analysis more advanced analysis techni-

ques are needed. Fortunately, many powerful analysis

techniques have been developed for formal methods

such as Petri nets [2,3]. Linear algebraic techniques can

be used to verify many properties, e.g., place invariants,

transition invariants, and (non-)reachability. Cover-

ability graph analysis, model checking, and reduction

techniques can be used to analyze the dynamic behav-

ior of the workflow process. Simulation, queueing net-

works, and Markov-chain analysis can be used for

performance evaluation (cf. [1,2]).

Note that all three types of analysis assume that

there is some initial workflow model. This implies that

analysis may require some modeling or some transla-

tion from one language to another. In some cases,

process mining can be used to discover the underlying

workflow model.

Cross-references
▶Business Process Management

▶ Petri Nets

▶ Process Mining

▶Workflow Management

Recommended Reading
1. Marsan M.A., Balbo G., and Conte G. et al. Modelling with

generalized stochastic Petri nets. Wiley Series in Parallel

Computing. Wiley, New York, NY, USA, 1995.

2. Reisig W. and Rozenberg G. (eds.) Lectures on Petri Nets I: Basic

Models. LNCS. 1491. Springer, Berlin Heidelberg New York, 1998.

3. van der Aalst W.M.P. The application of Petri nets to workflow

management. J. Circ. Syst. Comput., 8(1):21–66, 1998.

4. van der Aalst W.M.P. and van Hee K.M. WorkflowManagement:

Models, Methods, and Systems. MIT, Cambridge, MA, 2004.
Workflow Modeling

MARLON DUMAS

University of Tartu, Tartu, Estonia

Synonyms
Business process modeling

Definition
A workflow model is a representation of the way an

organization operates to achieve a goal, such as

3552W Workflow Modeling
delivering a product or a service. Workflow models

may be given as input to a workflow management

system to automatically coordinate the tasks compos-

ing the workflow model. However, workflow modeling

may be conducted purely for documentation purposes

or to analyze and improve the operations of an orga-

nization, without this improvement effort implying

automation by means of a workflow system.

A typical workflow model is a graph consisting of at

least two types of nodes: task nodes and control nodes.

Task nodes describe units of work that may be per-

formed by humans or software applications, or a com-

bination thereof. Control nodes capture the flow of

execution between tasks, therefore establishing which

tasks should be enabled or performed after completion

of a given task. Workflow models, especially when they

are intended for automation, may also include object

nodes denoting inputs and outputs of tasks. Object

nodes may correspond to data required or produced

by a task. But in some notations, they may correspond

to physical documents or other artifacts that need to be

made available or that are produced or modified by a

task. Additionally, workflow models may include ele-

ments for capturing resources that are involved in the

performance of tasks. For example, in two notations

for workflow modeling, the Unified Modeling Lan-

guage (UML) Activity Diagrams, and the Business

Process Modeling Notation (BPMN), resource types

are captured as swimlanes, with each task belonging

to one swimlane (or multiple in the case of UML). In

other notations, such as Event-driven Process Chains

(EPC), this is represented by attaching resource types

to each task.

Historical Background
The idea of documenting business processes to im-

prove customer satisfaction and business operations

dates back to at least the 1960s when it was raised,

among others, by Levitt [8]. Levitt contended that

organizations should avoid focusing exclusively on

goods manufacturing, and should view their ‘‘entire

business process as consisting of a tightly integrated

effort to discover, create, arouse, and satisfy customer

needs.’’ However, it is not until the 1970s that the idea

of using computer systems to coordinate business

operations based on process models emerged. Early

scientific work on business process modeling was

undertaken in the context of office information systems

by Zisman [13] and Ellis [2] among others. During the
1970s and 1980s there was optimism in the IT com-

munity regarding the applicability of process-oriented

office information systems. Unfortunately, few deploy-

ments of this concept succeeded, partly due to the

lack of maturity of the technology, but also due to

the fact that the structure and operations of organiza-

tions were centered around the fulfillment of individ-

ual functions rather than end-to-end processes.

Following these early negative experiences, the idea of

process modeling lost ground during the next decade.

Towards the early 1990s, however, there was a

renewed interest in business process modeling. Instru-

mental in this revival was the popularity gained in the

management community by the concept of Business

Process Reengineering (BPR) advocated by Hammer [3]

and Davenport [1] among others. BPR contended that

overspecialized tasks carried across multiple organiza-

tional units should be unified into coherent and glob-

ally visible processes. This management trend fed

another wave of business process technology known

as workflow management. Workflow management, in

its original form, focused on capturing business pro-

cesses composed of tasks performed by human actors

and requiring data, documents and forms to be trans-

ferred between them. Workflow management was suc-

cessfully applied to the automation of routine and

high-volume administrative processes such as order-

to-cash, procure-to-pay and insurance claim handling.

However it was less successful in application scenarios

requiring the integration of heterogeneous informa-

tion systems, and those involving high levels of evolu-

tion and change. Also, standardization efforts in the

field of workflow modeling and management, led by

the Workflow Management Coalition (WfMC), failed

to gain wide adoption.

The BPR trend also led to the emergence of busi-

ness process modeling tools that support the analysis

and simulation of business processes, without target-

ing their automation. The ARIS platform, based on the

EPC notation, is an example of this family of tools.

Other competing tools supported alternative notations

such as IDEF3 and several variants of flowcharts.

By the late 1990s, the management community had

moved from the concept of BPR to that of Business

Process Improvement (BPI), which advocates an

incremental and continuous approach to adopting

process-orientation. This change of trend combined

with the limited success of workflow management

and its failure to reach standardization, led to the

Workflow Modeling W 3553
term workflow acquiring a negative connotation.

Nonetheless, the key concepts underpinning workflow

management reemerged at the wake of the twenty-first

century under the umbrella of Business Process Man-

agement (BPM). BPM adopts a more holistic view than

workflow management, covering not only the auto-

mated coordination of processes, but also their moni-

toring and continuous analysis and improvement.

Also, BPM does not only deal with the coordination

of human tasks, but also the integration of heteroge-

neous information and software systems.

With BPM came the realization that business pro-

cesses should be analyzed and designed both from a

business viewpoint and from a technical viewpoint,

and that methods are required to bridge these view-

points. Also, the BPM trend led to a convergence of

modeling languages. BPMN has emerged as a standard

for process modeling at the analysis level, while at the

implementation level, the place is taken by WS-BPEL.

Other notations include UML Activity Diagrams and

EPCs at the analysis level, and YAWL (Yet Another

Workflow Language) [6] at the execution level.

Foundations
Workflow modeling can be approached from a num-

ber of perspectives [4]. The control-flow perspect-

ive describes the ordering and causality relationships

between tasks. The data perspective (or information

perspective) describes the data that are taken as input

and produced by the activities in the process. The

resource perspective describes the structure of the orga-

nization and identifies resources, roles, and groups.

The task perspective describes individual steps in

the processes and thus connects the other three

perspectives.

Many workflow modeling notations emphasize the

control-flow perspective. This is the case for example
Workflow Modeling. Figure 1. Example of a business proce
of process modeling notation based on flowcharts.

Flowcharts consist of actions (also called activities)

and decision nodes connected by arcs that denote

sequential execution. In their basic form, flowcharts

do not make a separation between actions performed

by different actors or resources. However, an extension

of flowcharts, known as cross-functional flowcharts,

allow one to perform this partitioning. Flowcharts

have inspired many other contemporary process mod-

eling notations, including UML Activity Diagrams and

BPMN.

A simplified business process model for credit ap-

proval in BPMN is given in Fig. 1. An execution of this

process model is triggered by the receipt of a credit

application, denoted by the leftmost element in the

model. Following this, the application is checked for

completeness. Two outcomes are possible: either the

application is marked as complete or as incomplete.

This choice is represented by the decision gateway

depicted by the diamond labeled by an ‘‘X’’ sign. If

the application is incomplete, additional information

is sought from the applicant. Otherwise, two checks are

performed in parallel: a credit history check and an

income check. This is denoted by a parallel split gate-

way (the first diamond labeled by a ‘‘+’’ sign). The two

parallel checks then converge into a synchronization

gateway (the second diamond labeled by a ‘‘+’’). The

credit history check may be performed automatically

while the income source check may require an officer

to contact the applicant’s employer by phone. After

these checks, the application is assessed and it is either

accepted or rejected.

A second family of notations for business process

modeling are those based on state machines. State

machines provide a simple approach tomodeling behav-

ior. In their basic form, they consists of states connected

by transitions. When used for business process
ss model in BPMN.

W

3554W Workflow Modeling
modeling, it is common for the transitions in a state

machine to be labeled by event-condition-action (ECA)

rules. The semantics of a transition labeled by an action

is the following: if the execution of the statemachine is in

the source state, an occurrence of the event (type) has

been observed, and the condition holds, then the transi-

tion may be taken. If the transition is taken, the action

associated with the transition is performed and the

execution moves to the target state. A transition may

contain any combination of these three elements: e.g.,

only an event, only a condition, only an action, an event

and a condition but no action, etc. In some variants of

state machines, it is possible to attach activities to any

given state. The semantics is that when the state is en-

tered, the activity in question may be started, and the

state can only be exited once this activity has completed.

Several commercial business process management sys-

tems support the execution of process models defined as

state machines. Examples include the ‘‘Business State

Machine’’ models supported by IBM Websphere and

the ‘‘Workflow State Machine’’ models supported by

Microsoft Windows Workflow Foundation.

A disadvantage of using basic state machines for

process modeling is their tendency to lead to state

explosion. Basic state machines represent sequential

behavior: the state machine can only be in one state

at a time. This, when representing a business process

model with parallel execution threads, one essentially

needs to enumerate all possible permutations of the

activities that may be executed concurrently. Another

source of state explosion is exception handling. State-

charts have been proposed as a way to address this state

explosion problem. Statecharts include a notion of

concurrent components as well as transitions that

may interrupt the execution of an entire component

of the model. The potential use of statecharts for work-

flow modeling has been studied in the research litera-

ture, for example in the context of the Mentor research
Workflow Modeling. Figure 2. Example of a business proce
prototype [10], although it has not been adopted in

commercial products.

Figure 2 shows a statechart process model intended

to be equivalent to the BPMN ‘‘Credit Approval’’

process model of Fig. 1. It can be noted that decis-

ion points are represented by multiple transitions

sharing the same source state and labeled with differ-

ent conditions (conditions are written between square

brackets). Parallel execution is represented by means of

a composite state divided into two concurrent compo-

nents. Each of these components contains one single

state. In the general case, each concurrent component

may contain an arbitrarily complex state machine.

Finally, a third family of notations for control-flow

modeling of business processes are those based on Petri

nets. In the research literature, workflow modeling

notations based on Petri nets have been used mainly

for studying expressiveness and verification problems

(e.g., detecting deadlocks in workflow models). Also,

certain Petri net-based notations are supported by

business process modeling tools and workflow man-

agement systems. A notable example is YAWL. YAWL is

an extension of Petri nets designed on the basis of the

Workflow Patterns. A key design goal of YAWL is to

support as many workflow patterns as possible in a

direct manner, while retaining the theoretical founda-

tion of Petri nets. Like Petri nets, YAWL is based on the

concepts of place and transition (Transitions are called

tasks in YAWL while places are called conditions.).

YAWL also incorporates a concept of decorator, which

is akin to the concept of gateway in BPMN. In addi-

tion, it supports the concepts of sub-process (called

composite task) and cancelation region. The latter is

used to capture the fact that the execution of a set of

tasks may be interrupted by the execution of another

task, and can be used for example for fault handling.

Figure 3 shows a YAWL process model intended to be

equivalent to the BPMN ‘‘Credit Approval’’ process
ss model captured as a statechart.

Workflow Modeling. Figure 3. Example of a business process model captured in YAWL.

Workflow Modeling W 3555

W

model of Fig. 1 and the statechart process model of

Fig. 2. The symbols attached to the left and the right of

each task are the decorators. The decorator on the left

of task ‘‘Check Completeness’’ is an XOR-merge deco-

rator, meaning that the task can be reached from either

of its incoming flows. The decorator of the right of this

same task is an XOR-split, which corresponds to the

decision gateway in BPMN. The decorator just before

‘‘Check Credit History’’ is an AND-split (akin to a

parallel split gateway) and the one attached to the left

of ‘‘Assess Application’’ is an AND-join and it is used to

denote a full synchronization.

The data perspective of process modeling can be

captured using notations derived from dataflow dia-

grams. Dataflow diagrams are directed graphs com-

posed of three types of nodes: processes, entities and

data stores. Entities denote actors, whether internal or

external to an organization. Processes denote units of

work that transform data. Data stores denote units

of data storage. A data store is typically used to store

data objects of a designated type. The arcs in a dataflow

diagram are called data flows. Data flows denote the

transfer of data between entities, processes and data

stores. They may be labeled with the type of data being

transferred.

Data flow diagrams are often used very liberally,

with almost no universally accepted syntactic con-

straints. However, best practice dictates that each pro-

cess should have at least one incoming data flow and

one outgoing data flow. Data flows may connect enti-

ties to processes and vice-versa, but can not be used to

connect entities to data stores or to connect one entity

to another directly. It is possible to connect two pro-

cesses directly by means of a data flow, in which case

it means that the output of the first process is the input

of the second. It is also possible to assign ordinal

numbers to processes in order to capture their
execution order. Dataflow diagrams also support de-

composition: Any process can be decomposed into an

entire dataflow diagram consisting of several sub-

processes.

Data flows are quite restricted insofar as they do

not capture decision points and they are not suitable

for capturing parallel execution or synchronization.

Because of this, dataflow diagrams are not used to

capture processes in details, instead, they are used as

a high-level notation.

On the other hand, some elements from data flow

diagrams have found their way into other process

modeling notations such as EPCs, which incorporate

constructs for capturing input and output data of

functions. Similarly, Activity Diagrams have a notion

of object nodes, used to represent inputs (outputs)

consumed (produced) by activities. Also, more sophis-

ticated variants of dataflow languages have been

adopted in the field of scientific workflow, which is

concerned by the automation of processes involving

large datasets and complex computational steps in

fields such as biology, astrophysics and environmental

sciences.

When modeling business processes for execution

(e.g., by a workflow system), it is important to capture

not only the flow of data into and out of tasks, but also

data transformation, extraction and aggregation steps.

At this level of detail, it may become cumbersome to

use simple data flows. Instead, executable process

modeling languages tend to rely on scoped variables.

Variables may be defined for example at the level of the

process model. Tasks may take as input several input

and output parameters, and data mappings are used to

connect the data available in the process model vari-

ables, and the input and output parameters. Data

mappings may be inbound (i.e., expressions that

extract data from variables in the task’s encompassing

3556W Workflow Modeling
scope and assign values to the task’s input parameter)

or outbound (from the output parameters to the vari-

ables in the encompassing scope). This is the approach

used for example in YAWL, Mentor and AdeptFlex [9].

It is also the approach adopted by many commercial

workflow products and by WS-BPEL.

One area of research in the area of workflow mod-

eling is the analysis of their expressiveness [6]. Several

classes of workflow notations have been identified

from this perspective: structured workflow models,

synchronizing workflow models, and standard work-

flow models. Structured workflow models are those

that can be composed out of four basic control-flow

constructs, one for choosing one among multi-

ple blocks of activities, another for executing multiple

blocks of activities in parallel, a third one for executing

multiple blocks of activities in sequence, and finally a

fourth one for repeating a block of activities multiple

times. An activity by itself can be a block, and more

complex blocks can be formed by composing smal-

ler blocks using one of the four constructs. It has

been shown that structured workflow models are

well-behaved, meaning in particular that their execu-

tion can not result in deadlocks [5]. On the other hand,

this class of models has low expressive power. It is not

difficult to construct examples of unstructured work-

flow models that can not be translated to equivalent

structured ones under reasonable notions of equiva-

lence. Synchronizing workflow models are acyclic

workflow models composed of activities that are

connected by transitions. These transitions correspond

to control links in the WS-BPEL terminology. They

impose precedence relations and they can be labeled

with conditions. An activity can be executed if all its

predecessors have been either completed or skipped.

Like structured workflow models, this class of models

are well-behaved. However, they are not very expres-

sive. Finally, standard workflow models correspond to

the subset of BPMN composed of tasks, decision gate-

ways, merge gateways (where multiple alternative

branches converge), parallel split gateways and syn-

chronization gateways. This class of models is more

expressive than the former two, but on the other hand,

some of these models may contain deadlocks. Other

classes of workflow models are those corresponding to

Workflow Nets, which are more expressive than stan-

dard workflow models as they can capture different

types of choices. YAWL models are even more expres-

sive due to the presence of the cancelation region
construct, and another construct (called the ‘‘OR-

join’’) for synchronization of parallel branches, where

some of these branches may never complete. A signifi-

cant amount of literature in the area of workflow

verification has dealt with studying properties of mod-

eling languages incorporating a notion of OR-join [7].
Key Applications
Business process modeling can be applied both for

documentation, business analysis, business process im-

provement and automation. In some cases, organiza-

tions undertake business process modeling projects for

the sake of documenting key activities and using this

documentation for employee induction and knowledge

transfer. business process models are sometimes re-

quired for compliance reasons, for example as a result

of legislation in the style of the Sarbannes-Oxley act in

the United States which requires public companies to

have internal control processes in place to detect and

prevent frauds. A process model that captures how an

organization currently works, is called an ‘‘as is’’ process

model. Such ‘‘as is’’ models are useful in understanding

bottlenecks and generating ideas for improvement using

process analysis techniques, including simulation and

activity-based costing. The integration of improvement

ideas in a business process leads to a ‘‘to be’’ process

model. Some of these improvement ideas may include

automating (parts of) the business process. At this stage,

business process models need to be made more detailed.

Once they have been made executable, business process

models may be deployed in a business process execution

engine (also called a workflow engine).
Future Directions
Standardization efforts in the field of business process

modeling have led to the current co-existence of two

standard process modeling languages: BPMN at the

business analysis level and BPEL at the implementation

and execution level. One question that arises from the

co-existence of these two standards is whether or not

models in BPMN should be synchronized with models

defined in BPEL and how. The assumption behind this

question is that business analysts will define models in

BPMN, while developers are likely to work at the level

of BPEL. For facilitate the collaboration between these

stakeholders, it would be desirable to relate models

defined in these two languages. An alternative would

be for the two languages to converge into a single one.

Workflow Patterns W 3557
Another related area where open problems exist is

that of scientific workflow modeling. Researchers have

argued for some time that workflow-related problems

in scientific fields such as genetics and ecological

sciences, do not have the same requirements as those

found in the automation of business processes. These

differences in requirements call for new paradigms for

workflow modeling. While several proposals have been

put in place [9], e.g., workflow modeling languages

based on variants of dataflow modeling, consolidation

still needs to occur and consensus in the area is yet to

be reached.
Cross-references
▶Activity Diagrams

▶Business Process Execution Language

▶Business Process Management

▶Business Process Modeling Notation

▶Business Process Reengineering

▶ Petri Nets

▶Workflow Model Analysis

▶Workflow Patterns
W

Recommended Reading
1. Davenport T.H. Process Innovation: Reengineering Work

through Information Technology. Harvard Business School,

Boston, 1992.

2. Ellis C.A. Information control nets: a mathematical model of

office information flow. In Proc. Conf. on Simulation, Measure-

ment and Modeling of Computer Systems. 1979, pp. 225–240.

3. Hammer M. Reengineering work: don’t automate, obliterate.

Harvard Bus. Rev., July/August 1990, pp. 104–112.

4. Jablonski S. and Bussler C. Workflow Management: Modeling

Concepts, Architecture, and Implementation. Int. Thomson

Computer, London, UK, 1996.

5. Kiepuszewski B., ter Hofstede A.H.M., and Bussler C.

On structured workflow modelling. In Proc. 12th Int. Conf. on

Advanced Information Systems Engineering, 2000, pp. 431–445.

6. Kiepuszewski B., ter Hofstede A.H.M., and van der Aalst W.M.P.

Fundamentals of control flow in workflows. Acta Inform., 39

(3):143–209, 2003.

7. Kindler E. On the semantics of epcs: resolving the vicious circle.

Data Knowl. Eng., 56(1):23–40, 2006.

8. Levitt T. Marketing myopia. Harvard Bus. Rev., July/August

1960, pp. 45–56.

9. Ludäscher B., Altintas I., Berkley C., Higgins D., Jaeger E., Jones

M., Lee E.A., Tao J., and Zhao Y. Scientific workflow manage-

ment and the Kepler system. Concurrency Comput.–Pract. Exp.,

18(10):1039–1065, 2006.

10. Muth P., Wodtke D., Weissenfels J., Dittrich A., and Weikum G.

From centralized workflow specification to distributed workflow

execution. J. Intell. Inform. Syst., 10(2), 1998.
11. Reichert M. and Dadam P. ADEPTflex: supporting dynamic

changes of workflow without loosing control. J. Intell. Inform.

Syst., 10(2):93–129, 1998.

12. van der Aalst W.M.P. and ter Hofstede A.H.M. YAWL: yet

another workflow language. Inform. Syst., 30(4):245–275, 2004.

13. Zisman M.D. Representation, Specification and Automation

of Office Procedures. PhD thesis, University of Pennsylvania,

Warton School of Business, 1977.
Workflow on Grid

▶Grid and Workflows
Workflow Participant

▶Actors/Agents/Roles
Workflow Patterns

W. M. P. VAN DER AALST

Eindhoven University of Technology, Eindhoven, The

Netherlands

Definition
Differences in features supported by the various con-

temporary commercial workflow management systems

point to different insights of suitability and different

levels of expressive power. One way to characterize these

differences and to support modelers in designing non-

trivial workflows, is to use a patterns-based approach.

Requirements for workflow languages can be indicated

through workflow patterns, i.e., frequently recurring

structures in processes that need support from some

process-aware information system. The Workflow Pat-

terns Initiative [6] aims at the systematic identification

of workflow requirements in the form of patterns.

TheWorkflow Patterns Initiative resulted in various

collections of patterns. The initial twenty control-flow

patterns have been extended with additional control-

flow patterns and patterns for other perspectives such

as the resource, data, and exception handling perspec-

tives. All of these patterns have been used to evaluate

different systems in a truly objective manner.

Key Points
TheWorkflow Patterns Initiative [6] was established with

the aim of delineating the fundamental requirements

3558W Workflow Scheduler
that arise during business process modeling on a recur-

ring basis and describe them in an imperative way. Based

on an analysis of contemporary workflow products and

modeling problems encountered in various workflow

projects, a set of twenty patterns describing the control-

flow perspective of workflow systems was identified [1].

Since their release, these patterns have been widely used

by practitioners, vendors and academics alike in the

selection, design and development of workflow systems.

An example of one of the initial workflow patterns

is theDiscriminator patternwhich refers to the ability ‘‘to

depict the convergence of two ormore branches such that

the first activation of an incoming branch results in the

subsequent activity being triggered and subsequent acti-

vations of remaining incoming branches are ignored.’’ It

can be seen as a special case of themore generalN-out-of-

M pattern, where N is equal to one. While the more

recent languages and systems support this pattern,

many of the traditional workflow management systems

have severe problems supporting this pattern. As a

result, the designer is forced to change the process, to

work around the system, or to create ‘‘spaghetti

diagrams.’’

Based on many practical applications the original

set of twenty control-flow patterns was extended in

two directions. First of all, the set of control-flow

patterns was extended and refined. There are now

more than forty control-flow patterns, all formally

described in terms of Petri nets. Second, patterns for

other perspectives were added. The data perspective

[5] deals with the passing of information, scoping of

variables, etc, while the resource perspective [4] deals

with resource to task allocation, delegation, etc. More

than eighty patterns have been defined for both per-

spectives. The patterns for the exception handling per-

spective deal with the various causes of exceptions and

the various actions that need to be taken as a result of

exceptions occurring.

The resulting sets of patterns have been used for:

(i) improving the understanding of workflow manage-

ment and clarifying the semantics of different con-

structs, (ii) analyzing the requirements of workflow

projects, (iii) evaluating products, and (iv) the training

of workflow designers.

Cross-references
▶Workflow Constructs

▶Workflow Management

▶Workflow Schema
Recommended Reading
1. van der Aalst W.M.P., ter Hofstede A.H.M., Kiepuszewski B.,

and Barros A.P. Workflow patterns. Distrib. Parallel Database,

14(1):5–51, 2003.

2. Casati F., Castano S., Fugini M.G., Mirbel I., and Pernici B. Using

patterns to design rules in workflows. IEEE Trans. Softw. Eng.,

26(8):760–785, 2000.

3. Hohpe G. and Woolf B. Enterprise Integration Patterns.

Addison-Wesley, Reading, MA, 2003.

4. Russell N., van der Aalst W.M.P., ter Hofstede A.H.M.,

and Edmond D. Workflow resource patterns: identification,

representation and tool support. In Proc. 17th Int. Conf. on

Advanced Information Systems Eng., 2005, pp. 216–232.

5. Russell N., ter Hofstede A.H.M., Edmond D., and van der Aalst

W.M.P. Workflow data patterns: identification, representation

and tool support. In Proc. 24th Int. Conf. on Conceptual Mod-

eling, 2005, pp. 353–368.

6. Workflow Patterns Home Page. http://www.workflowpatterns.

com.
Workflow Scheduler

▶ Scheduler
Workflow Schema

NATHANIEL PALMER

Workflow Management Coalition, Hingham,

MA, USA

Synonyms
Workflow Meta-Model

Definition
The meta structure of a business process defined in

terms of a data model.

Key Points
In contemporary workflow the Workflow Schema is

represented by a standard process definition such as

XPDL (XML Process Definition Language) based on

XML Schema. In non-standard environments or work-

flows defined with in specific application (not a

BPMS or workflow management system) the Work-

flow Schema is built as a proprietary data model.

Cross-references
▶Workflow Model

▶Workflow Modeling

▶XML Process Definition Language

Wrapper W 3559
Workflow Transactions

VLADIMIR ZADOROZHNY

University of Pittsburgh, Pittsburgh, PA, USA

Synonyms
Transactional workflows; Transactional processes;

Transactional business processes

Definition
Workflow Transaction is a unit of execution within a

Workflow Management System (WFMS) that com-

bines process-centric approach to modeling, executing

and monitoring of a complex process in an enterprise

with data-centric Transaction Management ensuring

the correctness and reliability of the workflow appli-

cations in the presence of concurrency and failures.

Workflow Transactions accommodate application-

specific Extended Transaction Models (ETMs) that

relax basic ACID properties of a classical database

transaction models.
W

Key Points
Consider a Workflow Management System (WFMS)

that models complex processes in an enterprise (e.g.,

processing insurance claim) using a workflow

structured as a set of business tasks that should be

performed in a special order. Some of the business

tasks can be performed by humans while some of

them are implemented as processes that typically cre-

ate, process and manage information using loosely

coupled distributed, autonomous and heterogeneous

information systems. This process-centric approach to

modeling of a complex enterprise process can be

contrasted with data-centric approach accepted in

database Transaction Management (TM) that keeps

track of data dependencies, support concurrent data

accesses, and crash recovery. Traditional TM approach

is too strict for workflow applications, which requires

selective use of transactional properties to allow flex-

ible inter-task collaboration within a workflow. For

example, classical ACID transaction model enforcing

task isolation makes impossible task cooperation.

Another example is large amount of task blocking

and abortions caused by transaction synchroniza-

tion, which is not acceptable for large-scale work-

flows. In order to address those issues Workflow

Transactions accommodate application-specific
Extended Transaction Models (ETMs) that relax

some of the ACID properties.

There are several variations of the workflow transac-

tion concept that depends on the way how the Work-

flow and Transaction Managements are merged. In

general, workflows are more abstract than transactions

and transactions provide specific semantics to workflow

models. Alternatively, there are approaches where trans-

actions are considered on a higher level of abstraction,

while workflows define process structure for the trans-

action models. Workflows and transaction can also in-

teract as peers at the same abstraction level within a

loosely coupled process model. While workflow trans-

action commonly supports business applications, the

workflow technology has also been adopted to support

workflows for scientific explorations and discovery.

Cross-references
▶Transaction Management

▶Workflow Management

Recommended Reading
1. Georgakopoulos D., Hornick M., and Sheth A. An overview

of workflow management: from process modeling to work-

flow automation infrastructure. Distrib. Parallel Databases,

3(2):119–153, 1995.

2. Grefen P. and Vonk J. A taxonomy of transactional workflow

support. Int. J. Coop. Inf. Syst., 15(1):87–118, 2006.
Workflow/Process Instance Changes

▶Workflow Evolution
World Wide Web Consortium

▶W3C
WORM

▶ Storage Devices

▶ Storage Security

▶Write Once Read Many
Wrapper

▶Temporal Strata

3560W Wrapper Adaptability
Wrapper Adaptability

▶Wrapper Stability
Wrapper Induction

MAX GOEBEL
1, MICHAL CERESNA

2

1Vienna University of Technology, Vienna, Austria
2Lixto Software GmbH, Vienna, Austria

Synonyms
Wrapper Generation; Information Extraction

Definition
Wrapper induction (or query induction) is a subfield of

wrapper generation, which itself belongs to the broader

field of information extraction (IE). In IE, wrappers

transform unstructured input into structured output

formats, and a wrapper generation systems describes

the transformation rules involved in such transforma-

tions. Wrapper induction is a solution to wrapper

generation where transformation rules are learned

from examples and counterexamples (inductive

learning). The induced wrapper subsequently is ap-

plied to unseen input documents to collect further

label relations of interest. To ease annotation of exam-

ples by the user, the learning framework is often imple-

mented within a visual annotation environment, where

the user selects and deselects elements visually.

The term ‘‘wrapper induction’’ was first conceptua-

lized by Nicholas Kushmerick in his influential PhD

thesis in 1997 in the context of semi-structured Web

documents [10], where the author also laid the theo-

retic foundations of wrapper induction in the PAC

learning framework.

Historical Background
IE is a very mature research field that has spun off the

database community in the need to integrate a constantly

increasing number of unstructured or semi-structured

documents into structured database systems.

The World Wide Web (WWW) as a means of an

information sink has been accepted very quickly since

its mainstream adoption in the early 1990s. Its low cost

and wide spread has resulted in an enormous surge

of data to be available on the Web. Particularly in

the past decade, the number of documents of high
informational value on the Web has exploded. The

lack of rigid structure in Web documents together

with the Web’s vast value has initiated an independent

research field for wrapper generation, which studies IE

approaches particularly for semi-structured Web

documents.

First IE approaches in the Web domain have seen

systems where wrappers were constructed manually

[13,16], yet it soon showed that manual wrapper sys-

tems did not scale well and were inflexible to change in

document structure. The urge for more principled, and

automated wrapper generation systems sparked the

beginning of a whole new research sub-field of wrapper

generation.

The beginnings of wrapper induction can be found

in [10]. In this original work of Kushmerick, the author

identified six wrapper classes and evaluated them in

terms of learning theoretical concepts. The conclusion

of his work was that quite expressive wrapper systems

can be learned from surprisingly simple wrappers. His

implementation prototype was called WIEN (1998),

and it presents the first wrapper induction system.

Shortly after, SoftMealy and STALKER have been

published. The SoftMealy system [7] (1998) relaxed

the finite state transducer (Mealy machine) for Web

documents, which brought great performance

improvements over the WIEN system. The STALKER

system [9,14] introduced hierarchical wrappers gener-

ated from landmark automata. In [17] (1999), the state

machine approach was augmented with observation

probabilities to form a Hidden Markov model for

header extraction from research papers. BWI [6]

(boosted wrapper induction, 2000) extended wrapper

induction from its initial application on Web docu-

ments back to free text documents. It uses a probabi-

listic model for tuple length classification together with

a boosting algorithm for delimiter learning.

In more recent work, [8] generate node predicates

on the DOM tree representation of a HTML document

(such as tagName, tagAttribute, #children, #siblings).

These are constructed for each example node in the

training set together with those nodes along the path

towards the root from each such node – until a com-

mon ancestor is reached. Verification rules are gener-

ated from special verification predicates to be checked

later. Finally, patterns with equal extraction results are

combined.

In [3], the authors also use the DOM tree represen-

tation of web documents to detect repetitive

Wrapper Induction W 3561
occurrences of pre/post subtree constellations. They

use boolean logic to combine all rules into a minimal

disjunctive normal form over all training examples.

Applying supervised learning to Web wrapper gen-

eration bears a crucial drawback: sufficiently large sets

of documents with annotated examples are hard to

obtain and require expertise in the making. Labor

and time investments renders the labeling of examples

costly, creating a bottleneck in IE from Web docu-

ments. As a result, part of the research focused on

tools that allow non-expert users to create wrappers

interactively via visual user interaction. Starting with a

set of non-annotated documents, the algorithm tries to

infer the correct wrapper by asking the user to anno-

tate a minimal number of examples.

Lixto [2], NoDoSe [1], Olera [4] are examples of

interactive tools that allow users to build wrappers

through a GUI. Finally, DEByE [12] (2002) is similar

to STALKER and WIEN as it also used landmark

automata for rule generation. Unlike all previously

mentioned wrapper induction systems that generate

extraction rules top-down (most general first),

DEByE approaches the problem bottom-up, starting

with the most specific extraction rule and generating

from there.

Foundations

From Free Text to Web Documents

Wrapper generation systems nowadays focus on the

Web domain, where documents are of a semi-

structured format. Originally, wrapper generation sys-

tems were developed for free text documents. Free text

exhibits no implicit structure at all, and extraction

requires natural language processing techniques such

as Part-of-Speech tagging. With the advent of the Web

as a content platform, the importance of free text has

dwindled in IE with respect to the importance of Web

documents. Web documents are an intermediate
Wrapper Induction. Figure 1. Relational data in free text (le
format, lying between free text (unstructured) and

structured text (e.g., XML). The use of HTML tags

allows to apply relations between individual text seg-

ments in the sense of specifying structural information

(see Fig.1). One genuine problem forWeb IE is that the

lack of strict rules on these relations yields room for

ambiguities of a tag’s semantic meaning in different

contexts. Web wrapper induction is mainly concerned

with the exploitation of tag tree (DOM) structures.
Wrapper Induction

Kushmerick defined the wrapper induction problem as

a simple model of information extraction. Input col-

lection is referred to as set of documents S. An extraction

rule (also query) allows to get a subset of the document

according to some user-defined filter arguments. The

result of a query is a set of information fields from S.

Information fields are made up of vectors of unique

attributes which are referred to as tuples. The concept

of attributes is borrowed from relational databases,

where attributes correspond to table columns in the

relational model. In some systems the order of the

attributes is relevant, others allow permutations and

missing attributes. The collection of all tuples describes

the content of S. Given this definition, a wrapper can be

formalized as the function mapping a page to its

content.

page) wrapper) content

Different wrappers define different mappings. In turn,

this means that the output of two different wrappers

are two different subsets of all tuples defined in the

page’s content.

Patterns and Output Structure

Wrapping semi-structured resources is equivalent to

extracting a hierarchy of elements from a document

and returning as result a structured, relational
ft) and formatted in semi-structured HTML (right).

W

3562W Wrapper Induction
data model that reflects the extracted hierarchy. The

hierarchy consists of patterns which can be seen as

elementary wrapping operators. Each pattern in the

hierarchy defines an extraction of one atomic tuple

class from a given parent pattern. In the simplest

case, data is structured in tabular form. Each tuple

can be extracted separately and the attributes of each

tuple are arranged in linear chains. A more difficult

pattern structure are nested patterns where a parent

pattern branches into multiple different child patterns

(e.g., similar to a tree).

In Fig.2, this is illustrated by extracting the pattern

author from the parent pattern description.

Kushmerick’s Wrapper Classes

In his PhD thesis, Kushmerick has analyzed delimiter-

based wrappers for IE from strings. He devised six

wrapper classes of varying complexity that can deal

with the extraction of different pattern scenarios by

identifying start and stop delimiters. In his formula-

tion, Kushmerick defined the wrapper induction prob-

lem as a Constraint Satisfaction Problem (CSP) with all

possible combinations of left and right delimiters as

input. The constraints are formulated on the forbidden

combinations on the input, which in turn vary with the

wrapper class. What is interesting is that despite their

simplicity, these wrapper classes yield decent results on

a large benchmark set.

Wrapper Class LR LR (Left–Right) is the simplest

wrapper class on which all subsequent classes are build
Wrapper Induction. Figure 2. A wrapper represented by

a hierarchy of patterns. Each pattern is defined by a set of

rules describing how to locate its instances from its parent

pattern.
upon. LR wrappers identify one delimiter token on

each side of the tuple to be extracted, where L denotes

the start token, and R denotes the end token. By taking

all possible prefix and postfix strings in the document

string for a given example tuple, the learning algorithm

first identifies the candidate sets for the left and right

delimiters. With L and R being mutually independent,

a principled search can be performed via checking the

validity of each candidate delimiter for the complete

training set. This can also be expressed as constraints

on the search space containing of all permutations of L

and R delimiters.

Wrapper Class HLRT A more expressive wrapper

class is Head-Left–Right-Tail, which is a direct exten-

sion from LR. It includes a page’s head H and tail T for

cases where similar delimiters are used for relevant and

irrelevant information fields on a page. Delimiter H

determines where to start looking for the LR pattern

(the end of the head section), and T respectively deter-

mines where the search should end. Together, H and T

define the search body of the page. The learning algo-

rithm follows directly from the LR algorithm with the

new constraints included. H and T must be learned

jointly on l1.

Wrapper Class OCLR Open–Close-Left–Right is an

alternative to the HLRC wrapper class, where the head

and tail delimiters are replaced with open and close

delimiters. The difference here is that, contrary to the

HLRT class where the complete search body for the

wrapper is specified by the H and T delimiters, the O

and C delimiters merely specify the beginning and end

of a tuple in a page. It thus extends LR to a multi-slot

extractor. O and C must be learned jointly on l1.

Wrapper Class HOCLRT Head-Open–Close-Left–

Right-Tail is the combination of the HLRT and the

OCLR wrapper classes. It is the most powerful of the

four basic wrapper classes, yet all four additional deli-

miters H, T, O and C must be learned jointly on l1.

Wrapper Class N-LR The previous four wrapper

classes work well on tabular (relational) data sets. As

it is common to have hierarchical nestings in relational

data, Kushmerick devised two extensions to the previ-

ous wrapper classes that can deal with nested data.

Nested data are tree-like data structures where the

attributes are nested hierarchically. The first nested

wrapper class, N-LR, extends the simple LR class. It

uses the relative position among attributes to deter-

mine which attribute to extract next, given a current

attribute. Here, all attributes must be learned jointly.

Wrapper Induction W 3563
Wrapper Class N-HLRT Finally, wrapper class

N-HLRT combines the expressiveness of nested attri-

butes with the head tail constraints from the HLRT

class. It is exactly N-LR with the additional delimiters

H and T to be considered in the hypothesis space of all

candidate wrappers.

While in practice, Kushmerick showed these wrap-

per classes to be able to learn the correct wrapper from

relatively few examples, the theoretical PAC bounds for

the same wrappers are very loose [11].
W

Other Wrapper classes

Apart from delimiter-based wrapper classes, there also

exist other wrapper classes that can prove highly effec-

tive, but which depend on the domain of the input

documents. For Web wrapper induction, interesting

classes include:

1. Edit distance similarity. The edit distance

(Levensthein Distance) exists both for string and

tree structures. It measures the difference between

two strings or trees as the number of basic edit

operations that need to be performed to turn one

argument into the other. Due to the tree structure

of the DOM (Document Object Model) of Web

pages, this method lends itself very well to identify-

ing tree patterns in Web documents.

2. Rule-based systems. Prolog-like rules are induced

from examples. Typically, systems generate a

most-general set of rules from the given examples

and use covering algorithms to reduce the rules to a

minimum set covering all examples. The advantage

of rule-based wrappers is the relative ease to inter-

pret rules by a user.

Active Learning

The key bottleneck of wrapper induction is the need

for labeled training data to be available. An effective

solution to reduce the number of annotations in a

training corpus is offered by active learning. Active

learning tries to identify examples that are not labeled

but which are informative to the learning process, and

the user is asked to label only such informative exam-

ples. Active learning has been applied to the Stalker

wrapper generation system in [15], using co-testing.

In co-testing, redundant views of a domain are imple-

mented through mutually-exclusive feature sets per

view. Views can be exploited by learning a separate

classifier per view, as the ensemble of all classifiers
reduces the hypothesis space for the wrapper. ***[5]

provides a comprehensive overview of different active

learning strategies, including common machine

learning techniques such as bagging (multiple parti-

tioning of training data) and boosting (ensemble

learning).

Key Applications
Several of the presented wrapper induction systems are

known for being successfully commercialized. The

Lixto system [2] has emerged into an equally named

spin-off company of the Technical University Vienna,

Austria (http://www.lixto.com). Kushmerick’s work

[10] is being integrated into products of a US-based

company called QL2 (http://www.ql2.com). Similarly,

technologies created by the authors of the STALKER

system [14] are used in products of another US com-

pany called Fetch Technologies (http://www.fetch.

com). Web Intelligence solutions offered by these com-

panies have customers for example in the travel, retail

or consumer goods industries. Typical services built on

top of the technology are on-demand price monitor-

ing, revenue management, product mix tracking, Web

process integration or building of Web mashups.

Wrapper Induction Algorithms

WIEN is the first system for wrapper induction from

semi-structured documents. The system learns extrac-

tion rules in two stages: In a fist step, simple LR rules

are generated from the training data, that specify left

and right delimiters for each example. The second step

refines the LR rules into example conforming HLRT

rules, where additional Head and Tail delimiters are

added if necessary. The WIEN algorithm assumes attri-

butes to be equally ordered among all tuples, and it

cannot deal with missing attributes. WIEN supports

both single-slot and multi-slot patterns.

Softmealy is based upon a finite-state transducer

and it utilizes contextual rules as extraction rules.

Before being input to the transducer, a document is

tokenized and special separators are added between

two consecutive tokens. The transducer regards its

input as a string of separators, where state transitions

are governed by the left and right context tokens sur-

rounding the current input separator. SoftMealy

machines have two learnable components: the graph

structure of the state transducer and the contextual

rules governing the state transitions. The graph struc-

ture should be kept simple and small, which is achieved

3564W Wrapper Induction
via a conservative extension policy. Contextual rules

are learned by a set-covering algorithm that finds the

minimal number of contextual rules covering all

examples.

Stalker generates so-called landmark automata

(SkipTo functions) from a set of training data. Nesting

patterns allows the system to decompose complex ex-

traction rules into a hierarchy of more simple extrac-

tion rules. Stalker employs a covering algorithm to

reduce its initial set of candidate rules to a best-fit set

of rules. Co-testing learns both forward and backward

rules on the document. In case of agreement the system

knows that the selected rule is correct, otherwise the

user is given the conflicting example for labeling in

order to resolve the conflict (active learning).

In boosted wrapper induction (BWI), delimiter-

based extraction rules are generated from simple con-

textual patterns. Boundaries that uniquely describe

relevant tuples are identified and assigned fore and aft

scores. Learning in the BWI approach constitutes of

determining fore detectors F, aft detectors A, and the

pattern length function. The latter is a maximum like-

lihood estimator on the word occurrences in the train-

ing set. F and A are learned using a boosting algorithm,

where several weak classifiers are boosted into one

strong classifier. BWI works both in natural language

and wrapper domains.

NoDoSe is an interactive tool that allows the user to

hierarchically decompose a complex wrapper pattern

into simple sub-wrappers. The system works both in

the free text and the Web domain with the help of two

distinct mining components. Learning rules consist of

start and stop delimiters, either on text level (first

component) or on HTML structure level (second com-

ponent). Parsing generates a concept tree of rules that

support multi-slot patterns and attribute permutation.

DEByE is another interactive induction system that

applies bottom-up extraction rules. The authors define

so-called attribute-value pair (AVP) patterns, and use

window passages surrounding an example tuple to

build lists of AVP patterns. Unlike other wrapper in-

duction systems that typically work top-down, their

approach allows for more flexibility as the order of

individual patterns here is no longer relevant. They

claim that, unlike other wrapper induction systems

that typically work top-down, identifying atomic attri-

bute objects prior to identifying the nested object itself

adds flexibility to a system as partial objects are

detected as well as nested objects with differing
attribute orders. On the downside, this approach

adds quite some complexity to the wrapper induction

process.

Future Directions

Several trends can be identified in current wrapper

induction research.

Shift to automation. The shifting of (semi-)super-

vised IE applications from free text to Web documents

emphasized the cost problem of obtaining annotated

examples from such sources. Unsupervised, fully auto-

mated methods using methods such as alignment,

entity recognition, entity resolution or ontologies are

motivated to overcome the so-called labelling bottle-

neck. Similarly, in semi-supervised systems, effort fur-

ther focused to minimize the number of required

examples (e.g., through active learning, see above).

Adoption of new technologies. Over time the com-

plexity of Web sites has substantially increased. Tech-

nologies such as Web forms, AJAX or Flash are today

used to build the so-called Deep Web. Many documents

that are interesting for wrapper induction are therefore

hidden in the Deep Web. Because usual crawling algo-

rithm do not work well, new techniques such as focused

crawling, Deep Web navigations, form mapping or

metasearch receive increased research attention.

Shift to semantic annotations. The results of state-of-

the-art wrapper induction systems support high confi-

dence in success for many classic IE scenarios. With the

quick and thourough adoption of the Web as a media

and data communication protocol there comes an in-

creasing demand for semantic services that allow users

to enrich and interlink existing information with onto-

logical meta-annotations. The envisioned semantic Web

that would offer this functionality quickly proved to be

a rather slow development process with no end in sight.

Web IE systems on the other hand have started to add

support for semantic labeling and even automatic de-

tection of such relational information from labeled and

unlabeled sources.

Data Sets
The most known data set used in information extrac-

tion is called RISE (http://www.isi.edu/info-agents/

RISE). RISE is a collection of resources both from the

Web and the natural text domains. Among others, it

contains documents related to seminar announce-

ments, Okra search, IAF address finder. Large fraction

of the pages in the corpus originates before the year

Wrapper Maintenance W 3565

W

2000. Because of their simplicity are those pages con-

sidered out-dated with respect to the current structure

and layout of modern Web pages.

Cross-references
▶Data Clustering (VII.b)

▶Data Mining

▶Decision Tree Classification

▶ Information Retrieval

▶ Semi-Structured Text Retrieval

▶Text Mining

Recommended Reading
1. Adelberg B. NoDoSE: a tool for semi-automatically extracting

structured and semistructured data from text documents. In

Proc. ACM SIGMOD Int. Conf. on Management of Data,

1998, pp. 283–294.

2. Baumgartner R., Flesca S., and Gottlob G. Visual Web Informa-

tion Extraction with Lixto. In Proc. 27th Int. Conf. on Very Large

Data Bases, 2001, pp. 119–128.

3. Carme J., Ceresna M., and Goebel M. Web Wrapper Specifica-

tion Using Compound Filter Learning. In Proc. IADIS Int. Conf.

WWW/Internet 2006, 2006.

4. Chang C.H. and Kuo S.C. OLERA: Semisupervised web-data

extraction with visual support. IEEE Intell. Syst., 19(6):56–64,

2004.

5. Finn A. and Kushmerick N. Active learning selection strategies

for information extraction. In Proc. Workshop on Adaptative

Text Extraction and Mining, 2003.

6. Freitag D. and Kushmerick N. Boosted Wrapper Induction. In

Proc. 12th National Conf. on AI, 2000, pp. 577–583.

7. Hsu C.N. and Dung M.T. Generating Finite-state Transducers

for Semi-structured Data Extraction from the Web. Inf. Syst.,

23(8):521–538, 1998.

8. Irmak U. and Suel T. Interactive wrapper generation with mini-

mal user effort. In Proc. 15th Int. World Wide Web Conf., 2006,

pp. 553–563.

9. Knoblock C.A., Lerman K., Minton S., and Muslea I. Accurately

and Reliably Extracting Data from the Web: a Machine Learning

Approach. Q. Bull, IEEE TC on Data Eng., 23(4):33–41, 2000.

10. Kushmerick N. Wrapper Induction for Information Extraction.

Ph.D. thesis, University of Washington, 1997.

11. Kushmerick N. Wrapper induction: Efficiency and expressive-

ness. Artif. Intell., 118(1–2):15–68, 2000.

12. Laender A.H.F., Ribeiro-Neto B., and da Silva A.S. DEByE – Date

extraction by example. Data Knowl. Eng., 40(2):121–154, 2002.

13. Liu L., Pu C., and Han W. XWRAP: An XML-Enabled Wrapper

Construction System for Web Information Sources. In Proc.

16th Int. Conf. on Data Engineering, 2000, pp. 611–621.

14. Muslea I., Minton S., and Knoblock C. STALKER: Learning

extraction rules for semistructured, Web-based information

sources. 1998, URL citeseer.ist.psu.edu/muslea98stalker.html.

15. Muslea I., Minton S., and Knoblock C.A. Selective Sampling

with Redundant Views. In Proc. 12th National Conf. on AI,

2000, pp. 621–626.
16. Sahuguet A. and Azavant F. WysiWyg web wrapper factory

(W4F). 2001, URL http://citeseer.ist.psu.edu/553711.html;

http://www.ai.mit.edu/people/jimmylin/papers/Sahuguet99.ps.

17. Seymore K., McCallum A., and Rosenfeld R. Learning hidden

Markov model structure for information extraction. In Proc.

AAAI 99 Workshop on Machine Learning for Information

Extraction. 1999.
Wrapper Generation

▶Wrapper Induction
Wrapper Generator

▶Web Data Extraction System
Wrapper Generator GUIs

▶GUIs for Web Data Extraction
Wrapper Maintenance

KRISTINA LERMAN, CRAIG A. KNOBLOCK

University of Southern California, Marina del Rey, CA,

USA

Synonyms
Wrapper verification and reinduction; Wrapper repair

Definition
A Web wrapper is a software application that extracts

information from a semi-structured source and con-

verts it to a structured format. While semi-structured

sources, such as Web pages, contain no explicitly speci-

fied schema, they do have an implicit grammar that can

be used to identify relevant information in the docu-

ment. Awrapper learning system analyzes page layout to

generate either grammar-based or ‘‘landmark’’-based

extraction rules that wrappers use to extract data. As a

consequence, even slight changes in the page layout can

break the wrapper and prevent it from extracting data

correctly. Wrapper maintenance is a composite task that

(i) verifies that the wrapper continues to extract data

Wrapper Maintenance. Figure 1. Life cycle of a wrapper,

illustrating verification and reinduction stages.

3566W Wrapper Maintenance
correctly from a source, and (ii) repairs the wrapper so

that it works on the changed pages.

Historical Background
Wrapper induction algorithms [6,3,11] exploit regula-

rities in the page layout to find a set of extraction rules

that will accurately extract data from a source. As a

consequence, even minor changes in page layout break

wrappers, leading them to extract incorrect data, or fail

to extract data from the page altogether. Researchers

addressed this problem in two stages.Wrapper verifica-

tion systems [5,9] monitor wrapper output to confirm

that it correctly extracts data. Assuming that the struc-

ture and the format of data does not change signifi-

cantly, they compare new wrapper output to that

produced by the wrapper when it was successfully

invoked in the past and evaluate whether the two

data sets are similar. Wrapper verification systems

learn data descriptions, also called content features,

and evaluate wrapper output similarity based on

these features. Two different representations of content

features have been studied in the past. Kushmerick

[4,5] and Chidlovskii [1] represent wrapper output

by global numeric features, e.g., word count, average

word length, HTML tag density, etc. Lerman et al. [8,9]

instead learn syntactical patterns associated with data,

e.g., they learn that addresses start with a number and

are followed by a capitalized word. Both systems ascer-

tain that the distribution of features over the new

output is similar to that over data extracted by the

wrapper in the past. If statistically significant changes

are found, the verification system notifies the operator

that the wrapper is no longer functioning properly.

If the wrapper is not working correctly, the next

task is to automatically repair it by learning new

extraction rules. This task is handled by a wrapper

reinduction system. Since the wrapper learning algo-

rithm simply needs a set of labeled examples of data on

new pages in order to learn extraction rules, research-

ers have addressed the reinduction problem by auto-

matically labeling data instances on new pages. The

problem is more complex than simply looking for

instances of old wrapper output on new pages because

data can change in value (e.g., weather, stock quotes)

or format (abbreviations added, etc.). Instead, to iden-

tify the new data instances, reinduction systems com-

bine learned content features, heuristics based on page

structure, and similarity with the old wrapper output.

Lerman et al. [9] use syntactical patterns learned from
old wrapper output to identify possible data instances

on new pages. They then exploit regularities in the

structure of data presented on the page to narrow

candidates to ones likely to be the correct instances of

a field. For example, a Web source listing restaurant

information displays city, state and zipcode in the same

order in all records. Likewise, instances of the same

field are, in most cases, surrounded by the same HTML

markup on all pages. Chidlobskii [1] take a similar

approach, selecting data instance candidates based on

learned numeric features, and exploiting page gram-

mar and data structure to identify correct examples.

Meng et al. [10] and Raposo et al. [12], on the other

hand, rely on the document-object-model (DOM) tree

to help identify correct examples of data on new pages.

Foundations
Figure 1 shows the life cycle of a wrapper. During its

normal operation the wrapper is extracting data from

the source, and learning content features that describe

the data. The wrapper verification system monitors

wrapper output to confirm that it is working correctly.

Once it determines that a wrapper has stopped working,

it uses the learned content features and page and data

structure heuristics to identify data on the new pages.

The labeled pages are then submitted to the wrapper

induction system which learns new extraction rules.

Content-based features play a central role in both

verification and reinduction. Data returned by online

sources usually has some structure: phone numbers,

prices, dates, street addresses, etc. all follow some for-

mat. Unfortunately, character-level regular expressions

are too fine-grained to capture this structure. Instead,

Wrapper Maintenance W 3567

W

researchers represent the structure of data as a se-

quence of tokens, called a pattern. Tokens are strings

generated from an alphabet containing different char-

acter types: alphabetic, numeric, punctuation, etc. The

token’s character types determine its assignment to one

or more syntactic categories: alphabetic, numeric, etc.

The categories form a hierarchy, which allows for

multi-level generalization. Thus, a set of zipcodes

‘‘90210’’ and ‘‘90292’’ can be represented by specific

tokens ‘‘90210’’ and ‘‘90292,’’ as well as more general

types 5Digit, Number, Alphanum. An efficient algo-

rithm to learn patterns describing a field from examples

was described in [9]. An alternate approach represents

the content of data by global numeric features, such as

character count, average word length, and density of

types, i.e., proportion of characters in the training

examples that are of an HTML, alphabetic, or numeric

type. This approach would learn the following features

for zipcodes: Count = 5.0, Digits = 1.0, Alpha = 0.0,

meaning that zipcodes are, on average, five characters

long, containing only numeric characters.

Wrapper Verification

Wrapper verification methods attempt to confirm that

wrapper output is statistically similar to the output

produced by the same wrapper when it was successfully

invoked in the past. Henceforth, successful wrapper

output are called training examples. Wrapper verifica-

tion system learns content-based features and their

distribution over the training examples. In order to

check that the learned features have a similar distribu-

tion over the new wrapper output, one approach [5]

calculates the probability of generating the new values

randomly for each field. Individual field probabilities

are then combined to produce an overall probability

that the wrapper has extracted data correctly. Another

approach to verification [9] uses training examples to

learn data patterns for each field. The system then

checks that this description still applies to the new

data extracted by the wrapper.

Wrapper Reinduction

Content-based features are used by the wrapper rein-

duction system to automatically label the new pages. It

first scans each page to identify all text segments that

match the learned features. The candidate text seg-

ments that contain significantly more or fewer tokens

than expected are eliminated from consideration. The

learned features are often too general and will match
many, possibly hundreds, of text segments on each

page. Among these spurious text segments are the

correct examples of the data field. Researchers use

additional heuristics to help narrow the set to correct

examples of the field: true examples are expected to

appear in the same position (e.g., after a tag) and

in the same context (e.g., restaurant address precedes

city name) on each page. In addition, they are expected

to be visible to the user (not part of HTML tag) and

appear within the same block of HTML page (or the

same DOM sub-tree). This information is used to split

candidate extracts into groups. The next step is to score

groups based on their similarity to the training exam-

ples. This technique generally works well, because at

least some of the data usually remains the same when

the page layout changes. Of course, this assumption

does not apply to data that changes frequently, such as

weather information, flight arrival times, stock quotes,

etc. However, previous research has found that even in

these sources, there is enough overlap in the data that

the approach works.

The final step of the wrapper reinduction process is

to provide the extracts in the top-scored group to the

wrapper induction algorithm, along with the new

pages, to learn new data extraction rules.

For some types of Web sources automatic wrapper

generation is a viable alternative to wrapper reinduc-

tion. One such system, developed by Crecenzi et al. [2],

learns grammar-based extraction rules without requir-

ing the user to label any pages. Once wrapper verifica-

tion system detects that the wrapper is not working

correctly, it collects new sample pages from which it

learns new extraction rules. Still another approach to

data extraction uses a combination of content-feature

learning and page analysis to automatically extract data

from Web pages [7].

Key Applications
Automatic wrapper maintenance can be incorporated

into a wrapper learning system to reduce the amount

of user effort involved in monitoring wrappers for

validity and repairing them.

Experimental Results
To evaluate the performance of wrapper maintenance

systems, researchers collected data over time, saving

Web pages along with data extracted from them by

wrappers. In one set of experiments researchers [9]

monitored 27 wrappers (representing 23 distinct data

3568W Wrapper Maintenance
sources) by storing results of 15–30 queries periodically

over 10 months. The wrapper verification system

learned content descriptions for each field and made a

decision about whether the new output was statistically

similar to the training set.

A manual check of the 438 comparisons revealed 37

wrapper changes attributable to changes in the page

layout. The verification algorithm correctly discovered

35 of these changes and made 15 mistakes. Of these

mistakes, 13 were false positives, which means that the

verification program decided that the wrapper failed

when in reality it was working correctly. Only two of

the errors were the more important false negatives,

meaning that the algorithm did not detect a change

in the data source. Representing the structure of con-

tent by global numeric features instead would have

missed 17 wrapper changes.

Researchers also evaluated the reinduction algo-

rithm only on the ten sources that returned a single

tuple of results per page. They used the algorithm to

extract (35) fields from ten Web sources for which

correct output is known, regardless of whether the

source had actually changed or not.

The output of the reinduction algorithm is a list of

tuples extracted from ten pages, as well as extraction

rules generated by the wrapper induction system for

these pages. Though in most cases they were not able to

extract every field on every page, they still learned good

extraction rules as long as a few examples of each field

were correctly labeled. The algorithm was evaluated in

two stages: first, researchers checked how many fields

were successfully identified; second, they checked the

quality of the learned extraction rules by using them to

extract data from test pages.

The algorithm was able to correctly identify fields

277 times across all data sets making 61 mistakes, of

which 31 were attributed to false positives and 30 to

the false negatives. On the extraction task, the auto-

matically learned extraction rules achieved 90% preci-

sion and 80% recall.

The results above apply to sources that return a

single item per page. Other researchers have applied

reinduction methods to repair wrappers for sources

that return lists of items per page [1,13] with similar

performance results.

Data Sets
The data set used in the wrapper maintenance experi-

ments discussed above is available from the University
of Southern California Information Sciences Institute:

http://www.isi.edu/integration/datasets/reinduction/

wrapper-verification-data2.zip.

The data contains results of invocations of wrap-

pers for different Web sources over a period of

10 months. Each wrapper was executed with the same

small set of queries (if they contained no time-depen-

dent parameters). The data set contains both the

returned Web pages and data extracted by the wrapper

from the source. Over the data collection period,

several sources changed in a way that prevented wrap-

pers from correctly extracting data. The wrappers

were repaired manually in these cases and data collec-

tion continued. The performance of the USC’s verifi-

cation and reinduction systems on this dataset is

reported in [9].
Cross-references
▶Web Data Extraction System

▶Web Information Extraction

▶Wrapper Induction
Recommended Reading
1. Chidlovskii B. Automatic repairing of web wrappers by combin-

ing redundant views. In Proc. 14th IEEE Int. Conf. Tools with

Artificial Intelligence, 2002, pp. 399–406.

2. Crescenzi V. and Mecca G. Automatic information extraction

from large websites. J. ACM, 51(5):731–779, 2004.

3. Hsu C.-N. and Dung M.-T. Generating finite-state transducers

for semi-structured data extraction from the web. J. Inform.

Syst., 23:521–538, 1998.

4. Kushmerick N. Regression testing for wrapper maintenance. In

Proc. 14th National Conf. on AI, 1999, pp. 74–79.

5. Kushmerick N. Wrapper verification. World Wide Web J.,

3(2):79–94, 2000.

6. Kushmerick N., Weld D.S., and Robert B. Doorenbos. Wrapper

induction for information extraction. In Proc. 15th Int. Joint

Conf. on AI, 1997, pp. 729–737.

7. Lerman K., Gazen C., Minton S., and Knoblock C.A. Populating

the semantic web. In Proc. AAAI Workshop on Advances in Text

Extraction and Mining, 2004.

8. Lerman K. and Minton S. Learning the common structure of

data. In Proc. 12th National Conf. on AI, 2000, pp. 609–614.

9. Lerman K., Minton S., and Knoblock C. Wrapper maintenance:

a machine learning approach. J. Artif. Intell. Res., 18:149–181,

2003.

10. Meng X., Hu D., and Li C. Schema-guided wrapper mainte-

nance. In Proc. of 2003 Conf. on Web Information and Data

Management, 2003, pp. 1–8.

11. Muslea I., Minton S., and Knoblock C.A. Hierarchical wrapper

induction for semistructured information sources. Auton. Agent

Multi Agent Syst., 4:93–114, 2001.

Wrapper Stability W 3569
12. Raposo J., Pan A., Alvarez M., and Hidalgo J. Automatically

generating labeled examples for web wrapper maintenance.

In Proc. of 2005 IEEE/WIC/ACM Int. Conf. onWeb Intelligence,

2005, pp. 250–256.

13. Raposo J., Pan A., Álvarez M., and Hidalgo J. Automatically

maintaining wrappers for semi-structured web sources. Data

Knowl. Eng., 61(2):331–358, 2007.
Wrapper Repair

▶Wrapper Maintenance
Wrapper Robustness

▶Wrapper Stability
W

Wrapper Stability

GEORG GOTTLOB

Oxford University, Oxford, UK

Synonyms
Wrapper robustness; Wrapper adaptability

Definition
Awrapper, whether hand written or generated by aWeb

data extraction system, is a program that extracts data

from information sources of changing content and

translates the data into a different format. The stability

of a wrapper is the degree of insensitivity to changes of

the presentation (i.e., formatting, layout, or syntax) of

the data sources. A stable wrapper is ideally able to

extract the desired data from source documents even if

the layout of the current documents differs from the

layout of those documents that were used as examples

at the time the wrapper was generated. Thus, a wrapper

is stable or robust if it is able of coping with perturba-

tions of the original layout.

Key Points
Documents, and, Web pages in particular are usually

susceptible to slight layout changes over time. Most

of these changes are minor changes. For example, an

advertisement may be added to the top of a Web page.

One would ideally wish that changes in the layout of the
source will not prevent a wrapper to extract the desired

data, i.e., that the wrapper remains stable under such

changes (or, equivalently, robust to these changes), as

long as the data items to be extracted still appear in the

document. For obvious reasons, totally stable wrappers

can hardly be generated. However, there are sensible

differences in stability between simple screen scrapers

or Web scrapers on one hand, and wrappers generated

by advanced Web data extraction systems, on the other

hand. Screen scrapers or Web scrapers often rely on

exact data positions in a document or in the parse tree

of an HTMLWeb page. For example, a screen scraper

may memorize that a certain price to extract from a

Web page is the data item occurring as the 37th leaf of

the Web page’s parse tree. Of course, in case the page’s

layout is altered by adding, say, an advertisement in

front of the data, such a wrapper will fail to extract the

intended price. AdvancedWeb data extraction systems,

on the other hand, characterize the objects to be

extracted via syntactic, contextual, or semantic proper-

ties rather than by their position only. For example, the

Lixto system [1] could characterize a desired price as a

numeric data item preceded by a currency symbol,

occurring in the second column of a table entitled

‘‘Price list,’’ such that a certain article name appears

in the first column of the same row. Clearly, such a

characterization is much more stable than a purely

positional one. There are only very few studies on

Wrapper stability, among which, for example [2], and

this topic remains an important one for future re-

search. One issue of particular interest is the automatic

adaptation of wrappers to new layouts [2–5].

Cross-references
▶Web Data Extraction System

Recommended Reading
1. Baumgartner R., Flesca S., and Gottlob G. Visual web informa-

tion extraction with Lixto. In Proc. 27th Int. Conf. on Very Large

Data Bases, 2001, pp. 119–128.

2. Davulcu H., Yang G., Kifer M., and Ramakrishnan I.V.

Computational aspects of resilient data extraction from semi-

structured sources. In Proc. 19th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2000,

pp. 136–144.

3. Meng X., Hu D., and Li C. Schema-guided wrapper maintenance

for web-data extraction. In Proc. Fifth ACM CIKM Int.

Workshop on Web Information and Data Management, 2003,

pp. 1–8.

4. Phelps T.A. and Wilensky R. Robust intra-document locations.

In Proc. 9th Int. World Wide Web Conf., 2000, pp. 105–118.

3570W Wrapper Verification and Reinduction
5. Wong T. and Lam W. A probabilistic approach for adapting

information extraction wrappers and discovering new attri-

butes. In Proc. 2004 IEEE Int. Conf. on Data Mining, 2004,

pp. 257–264.
Wrapper Verification and
Reinduction

▶Wrapper Maintenance
Write Once Read Many

KENICHI WADA

Hitachi Limited, Tokyo, Japan

Synonyms
Write once read mostly; Write one read multiple;

WORM

Definition
A data storage technology that allows information

to be written to storage media a single time only,

and prevents the user from accidentally or intention-

ally altering or erasing the data. Optical disc tech-

nologies such as CD-R and DVD-R are typical

WORM storage.

Key Points
There are two types of WORM technology: physical

and logical WORM.

1. Physical WORM uses storage media which physi-

cally can be written only once, and prevents the user

from accidentally or intentionally altering or eras-

ing the data. Optical storage media such as CD-R

and DVD-R are good examples. Offering fast access
and long-term storage capability, physical WORM

has historically been used for archiving data that

requires a long retention period.

2. Logical WORM uses storage systems which pro-

vide a WORM capability by using electric keys or

other measures to prevent rewriting even if with

non-WORM storage media, such as disk drives.

Driven by the recent growth of legislation in many

countries, logical WORM is now increasingly being

used to archive corporate data, such as financial

documents, emails, and certification documents,

and to find them quickly in case of discovery.
Cross-references
▶Digital Archives and Preservation
Write Once Read Mostly

▶Write Once Read Many
Write One Read Multiple

▶Write Once Read Many
WS-BPEL

▶Composed services and WS-BPEL
WS-Discovery

▶Discovery

X

XA Standard

▶Two-Phase Commit Protocol
XMI

▶XML Metadata Interchange
XML

MICHAEL RYS

Microsoft Corporation, Sammamish, WA, USA

Synonyms
Extensible markup language; XML 1.0

Definition
The Extensible Markup Language or XML for short is

a markup definition language defined by a World

Wide Web Consortium Recommendation that allows

annotating textual data with tags to convey additional

semantic information. It is extensible by allowing users

to define the tags themselves.

Historical Background
XML was developed as a simplification of the ISO

Standard General Markup Language (SGML) in the

mid 1990s under the auspices of the World Wide

Web Consortium (W3C). Some of the primary

contributors were Jon Bosak of Sun Microsystems

(the working group chair), Tim Bray (then working

at Textuality and Netscape), Jean Paoli of Microsoft,

and C. Michael Sperberg-McQueen of then the

University of Chicago. Initially released as a version

1.0 W3C recommendation on 10 Feb. 1998, XML has

undergone several revisions since then. The latest XML

1.0 recommendation edition is the fourth edition as of
2009 Springer ScienceþBusiness Media, LLC
this writing. A fifth edition is currently undergoing

review. The fifth edition is adding some functionality

into XML 1.0 that was part of the XML 1.1 recommen-

dation, that has achieved very little adoption.

Based on the XML recommendation, a whole set of

related technologies have been developed, both at the

W3C and other places. Some technologies are aug-

menting the core syntactic XML recommendation

such as the XML Namespaces and XML Informa-

tion Set recommendations, others are building addi-

tional infrastructure on it such as the XML Schema

recommendation or the XSLT, XPath and XQuery

family of recommendations. Since XML itself is being

used to define markup vocabularies, it also forms the

basis for vertical industry standards in manufacturing,

finance and other areas, including standard document

formats such as XHTML, DocBook, Open Document

Format (ODF) and Office Open XML (OOXML)

and forms the foundation of the web services

infrastructure.

Foundations
XML’s markup format is based on the notion of

defining well-formed documents and is geared towards

human-readability and international usability (by

basing it on Unicode). Among its design goals were

ease of implementation by means of a simple specifi-

cation, especially compared to its predecessor, the

SGML specification, and to make it available on a

royalty-free basis to both implementers and users.

Well-formed documents basically contain markup

elements that have a begin tag and an end tag as in the

example below:

< tag > character data < /tag >

Element tags can have attributes associated with it that

provide information about the tag, without interfering

with the flow of the textual character data that is being

marked up:

<tag attribute1 = ‘‘value’’ attribute2 = ‘‘42’’>

character data </tag>

3572X XML
Processing instructions can be added to convey proces-

sing information to XML processors and comments

can be added. And comments can be added for com-

menting and documentation purposes. = They follow

different syntactic forms than element tags and can

appear anywhere in a document, except within the

begin tag and end tag tokens themselves:

<?xml-stylesheet type=‘‘application/xslt + xml’’

href=‘‘#style1’’" ? >

<!- This is a comment –>

A well-formed document must also have exactly one

top-level XML element, and can contain several pro-

cessing instructions and comments on the top-level

next to the element.

The order among these elements is information-

bearing, since they are meant to mark up an existing

document flow. Thus, the following two well-formed

XML documents are not the same:

<doc> <element> value1 </element>

<element> value2 </element> </doc>

<doc> <element> value2 </element>

<element> value1 </element> </doc>

The XML information set recommendation defines an

abstract data model for these syntactic components,

introducing the notion of document information

items for a document, element information items for

element tags, attribute information items for their

attributes, character information items for the marked

up character data etc.

The XML namespace recommendation adds the

ability to scope an element tag name to a namespace

URI, to provide the ability to scope markup vocabul-

aries to a domain identifier.

Besides defining an extensible markup format, the

XML recommendation also provides a mechanism to

constrain the XML document markup to follow a

certain grammar by restricting the allowed tag names

and composition of element tags and attributes with

document type declarations (DTDs). Documents that

follow the structure given by DTDs are not only well-

formed but also valid. Note that the XML Schema

recommendation provides another mechanism to

constrain XML documents.

Finally, XML also provides mechanisms to reuse

parts of a document (down to the character level)

using so called entities.
For more information about XML, please refer to

the recommended reading section.
Key Applications
While XML was originally designed as an extensible

document markup format, it has quickly taken over

tasks in other areas due to the wide-availability of free

XML parsers, its readability and flexibility. Besides the

use for document markup, two of the key application

scenarios for XML are the use for interoperable data

interchange in loosely-coupled systems and for adhoc

modeling of semi-structured data.

XML’s first major commercial applications actually

have been to describe the data and, with DTDs or

XML schema formats, structures of messages that are

being exchanged between different computer systems in

application to application data exchange scenarios and

web services. XML is not only being used to describe the

message infrastructure format and information such as

the SOAP protocol, RSS or Atom formats, but also to

describe the structure and data of the message payloads.

Often, XML is also used in more adhoc micro-formats

for more REST-ful web services.

At the same time that XML was being developed,

several researcher groups were looking into data

models that were less strict than relational, entity-

relationship and object-oriented models, by allowing

instance based properties and heterogeneous struc-

tures. XML’s tree model provides a good fit to repre-

sent such semi-structured, hierarchical properties, and

its flexible format is well–suited to model the sparse

properties and rapidly changing structures that are

often occurring in semi-structured data. Therefore,

XML has often been used to model semi-structured

data in data modeling.

XML support has been added to databases on form

of either pure XML databases or by extending existing

database platforms such as relational database sys-

tems to enable databases to manage XML documents

serving all these three application scenarios.
Cross-references
▶XML Attribute

▶XML Document

▶XML Element

▶XML Schema

▶XPath/XQuery

▶XSL/XSLT

XML Access Control X 3573
Recommended Reading
1. Namespaces in XML 1.0, latest edition. Available at: http://www.

w3.org/TR/xml-names

2. Wikipedia entry for XML. Available at: http://en.wikipedia.org/

wiki/XML

3. XML 1.0 information Set, latest edition. Available at: http://

www.w3.org/TR/xml-infoset

4. XML 1.0 recommendation, latest edition. Available at: http://

www.w3.org/TR/xml

5. XML 1.1 recommendation, latest edition. Available at: http://

www.w3.org/TR/xml11
XML (Almost)

▶ Semi-structured Data
XML 1.0

▶XML
X

XML Access Control

DONGWON LEE
1, TING YU

2

1The Pennsylvania State University, University Park,

PA, USA
2North Carolina State University, Raleigh, NC, USA

Definition
XML access control refers to the practice of limiting

access to (parts of) XML data to only authorized users.

Similar to access control over other types of data and

resources, XML access control is centered around two

key problems: (i) the development of formal models

for the specification of access control policies over

XML data; and (ii) techniques for efficient enforce-

ment of access control policies over XML data.

Historical Background
Access control is one of the fundamental security

mechanisms in information systems. It is concerned

with who can access which information under what

circumstances. The need for access control arises natu-

rally when a multi-user system offers selective access to

shared information. As one of the oldest problems in

security, access control has been studied extensively
in a variety of contexts, including operating systems,

databases, and computer networks.

The most influential policy models today are dis-

cretional access control (DAC), mandatory access con-

trol (MAC), and role-based access control (RBAC)

models. In DAC, the owner of an object (e.g., a file or

database table) solely determines which subjects can

access that object, and whether such privileges can be

further delegated to other subjects. In MAC, whether a

subject can access an object or not is determined by

their security classes, not by the owner of the object. In

RBAC, privileges are associated with roles. Users are

assigned to roles, and thus can only exercise access

privileges characterized by their roles.

Typical implementations of access control are in

the form of access control lists (ACLs) and capabilities.

In ACLs, a system maintains a list for each object of

subjects who have access to that object. In capabilities,

each subject is associated with a list that indicates those

objects to which it has access. ACLs and capabilities

are suitable to enforce coarse-grained access control

over objects with simple structures (e.g., file systems

or table-level access control in relational databases).

They are often not efficient for fine-grained access

control over objects with complex structures (e.g.,

element-level access control in XML, or row-level and

cell-level access in relational databases).

Foundations
XML access control is fine-grained in nature. Instead

of controlling access to the whole XML database or

document, it is often required to limit a user’s access

to some substructures of an XML document (e.g.,

some subtrees or some individual elements).

An XML access control policy can be typically mod-

eled as a set of access control rules. Each rule is a 5-tuple

(subject, object, action, sign, type), where (i) subject

defines a set of subjects; (ii) object defines a set of

elements or attributes of an XML document; (iii) ac-

tion denotes the actions that can be performed on XML

(e.g., read, write, and update); (iv) sign 2{+, �} indi-

cates whether this rule is a grant rule or a deny rule;

and (v) type 2{LC, RC} refers to either local check or

global check. Intuitively, an access control rule specifies

that subjects in subject can (when sign=+) or cannot

(when sign=�) perform action specified by action on

those elements or attributes in objects. When type=RC,

this authorization decision also applies to the descen-

dants of those in object.

3574X XML Access Control
Object is usually specified using some XML query

languages such as XPath expressions. There are multi-

ple ways to identify subject. Following RBAC, subject

can be specified as one or several roles (e.g., student

and faculty) [4]. It may also follow attribute-based

access control, where each user features a set of attri-

butes and subject is defined based on the values of those

attributes (e.g., those subjects whose age is over 21).

Some access control policy in the literature also follows

MAC, where subject refers to security classes.

Example 1. Consider two access control rules for the

subject of ‘‘admin’’ as follows:

R1: (admin, /people/person/name, read, �, LC)

R2: (admin, /people//address//*, read/update, +, RC)

R1 Indicates that users belonging to the admin role

cannot read textual and attribute data of XML node

<name>, the child of <person> that is the child of

the root node <people>. On the other hand, R2 spe-

cifies that the same users of the admin role can read

and even update any XML data that are descendents of

XML node if they are descendents of<address> under

<people>.

Once an access control policy is specified, there are

two problems that need to be addressed. First, given

any access request, one needs to determine whether or

not a rule exists that applies to the request. If so, the

policy is said to be complete. Most access control sys-

tems adopt a closed world assumption. That is, if no

rules apply to a request, the request is denied. Second,

multiple rules with different authorization decisions

may apply to a request. One typical way to resolve

such conflicts is to let denial override permit. For

XML access control, it may also be solved by having

more explicit rules override less explicit ones. For

instance, an LC rule may override an RC rule. For

two RC rules, the one that applies to a node’s nearest

ancestor usually dominates.

Languages for specifying access control policy are

proposed in such efforts as XACL by IBM [7]. Therefore,

it is also possible to use muchmore expressive languages

to specify access control policy within XML access con-

trol models. Finally, the use of authorization priorities

with propagation and overriding are related to similar

techniques studied in object-oriented databases.

Once XML access control is specified in a given

model, it can be enforced in a variety of ways. By and

large, most of the existing XML access control methods

are either view-based or rely on the XML engine to
enforce access control at the node-level of XML trees.

The idea of view-based enforcement (e.g., [5,11]) is to

create and maintain a separate view for each user (or

role) who is authorized to access a specific portion of

an XML data [4]. The view contains exactly the set of

data nodes that the user is authorized to access. After

views are constructed, during run time, users can

simply run their queries against the views without

worrying about access control issues. Although views

can be prepared offline, in general, view-based enforce-

ment schemes suffer from high maintenance and stor-

age costs, especially for a large number of roles: (i) a

virtual or physical view is created and stored for each

role; (ii) whenever a user prompts update operation

on the data, all views that contain the corresponding

data need to be synchronized. To tackle this problem,

people proposed a method using compressed XML

views to support access controls [11]. The basic idea

is based on the observation of accessibility locality, i.e.,

elements close to each other tend to have the same

accessibility for a subject. Based on this observation,

a compressed accessibility map only maintains some

‘‘crucial’’ nodes in the view. With simple annotation on

those crucial nodes, other nodes’ accessibility can be

efficiently inferred instead of explicitly stored. Each

node in the compressed view is associated with a

label (desc, self), where desc can be either d+ or d�,

indicating whether its descendants are accessible or

not, and self can be either s+ or s�, indicating whether

the node itself is accessible. Given any node in an XML

tree, by its relationship to those labeled nodes in the

compressed view, we can infer its accessibility.

Example 2. Consider the XML tree in Fig. 1a with

squares and circles denoting accessible and inaccessible

nodes, respectively. The corresponding compressed

view is shown in Fig. 1b. Note that since node C is a

descendant of B and B is labeled (d�, s+), C can be

inferred to be inaccessible.

In the non view-based XML access control tech-

niques (e.g., [2,9,10]), an XML query is pre-classified

against the given model to be ‘‘entirely’’ authorized,

‘‘entirely’’ prohibited, or ‘‘partially’’ authorized before

being submitted to an XML engine. Therefore, without

using pre-built views, those entirely authorized or

prohibited queries can be quickly processed. Further-

more, those XML queries that are partially authori-

zed are re-written using state machines such that

they request for only data that are granted to the

users or roles.

XML Access Control X 3575

X

Example 3. Consider three access control rules for

the security role ‘‘admin.’’ Furthermore, an adminis-

trator ‘‘Bob’’ requested three queries, Q1 to Q3 in

XPath as follows:

R1: (admin, /people/person/name, read, �, LC)

R2: (admin, /people//address//*, read/update, +, RC)

R3: (admin, /regions/namerica/item/name, read, +, LC)

Q1: /people/person/address/street

Q2:/people/person/creditcard

Q3:/regions//*

Then, Q1 by Bob can be entirely authorized by both

R1 and R2, but entirely denied by R3. Similarly, Q2

is entirely authorized by R1, entirely denied by both

R2 and R3. Finally, Q3 is entirely accepted by R1,

entirely denied by R2, and partially authorized by R3

and needs to be re-written to /regions/namerica/item/

name in order not to be conflicted with R3.

Key Applications
As XML has been increasingly used not only as a

data exchange format but as a data storage format, the

problem of controlling selective access over XML is

indispensable to data security. Therefore, XML access

control issues have been tightly associated with secure

query processing techniques in relational andXMLdata-

bases (e.g., [3,5]). The access control policy model of

XML can also be extended to express security require-

ments of other semi-structured data such as LDAP and

object-oriented databases. The aforementioned access

control enforcement techniques can be further extended

to protect privacy during the exchange of XML data in

distributed information sharing system. For instance,

in PPIB system [8], XML access control is used to hide

what query content is or where data objects are located,
etc. In an environment where XML data are stored in a

distributed fashion and users may ask sensitive queries

whose privacy must be kept to is utmost extent (e.g.,

HIV related queries in health information network),

XML access control techniques can be used, along

with XML content-based routing techniques [6].

Cross-references
▶Relational Access Control

▶ Secure XML Query Processing

Recommended Reading
1. Bertino E. and Ferrari E. Secure and selective dissemination

of XML documents. ACM Trans. Inform. Syst. Secur.,

5(3):290–331, 2002.

2. Bouganim L., Ngoc F.D., and Pucheral P. Client-based access

control management for XML documents. In Proc. 30th Int.

Conf. on Very Large Data Bases, 2004, pp. 84–95.

3. Cho S., Amer-Yahia S., Lakshmanan L.V.S., and Srivastava D.

Optimizing the secure evaluation of twig queries. In Proc. 28th

Int. Conf. on Very Large Data Bases, 2002, pp. 490–501.

4. Damiani E., Vimercati S., Paraboschi S., and Samarati P. A fine-

grained Access Control System for XML Documents. ACM

Trans. Inform. Syst. Secur., 5(2):169–202, 2002.

5. Fan W., Chan C.-Y., and Garofalakis M. Secure XML querying

with security views. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2004, pp. 587–598.

6. Koudas N., Rabinovich M., Srivastava D., and Yu T. Routing

XML queries. In Proc. 20th Int. Conf. on Data Engineering,

2004, p. 844.

7. Kudo M. and Hada S. XML document security based on provi-

sional authorization. In Proc. 7th ACM Conf. on Computer and

Communications Security, 2002, pp. 87–96.

8. Li F., Luo B., Liu P., Lee D., and Chu C.H. Automaton segmen-

tation: a new approach to preserve privacy in XML information

brokering. In Proc. 14th ACM Conf. on Computer and Com-

munications Security, 2007, pp. 508–518.

9. Luo B., Lee D., Lee W.C., and Liu P. QFilter: fine-grained run-

time XML access control via NFA-based query rewriting.

3576X XML Algebra
In Proc. Int. Conf. on Information and knowledge Management,

2004, pp. 543–552.

10. Murata M., Tozawa A., and Kudo M. XML access control

using static analysis. In Proc. 10th ACM Conf. on Computer

and Communication Security, 2003, pp. 73–84.

11. Yu T., Srivastava D., Lakshmanan L.V.S., and Jagadish H.V.

A compressed accessibility map for XML. ACM Trans. Database

Syst., 29(2):363–402, 2004.
XML Algebra

▶XMLTuple Algebra
XML Application Development

▶XML Programming
XML Attribute

MICHAEL RYS

Microsoft Corporation, Sammamish, WA, USA

Synonyms
XML attribute; XML attribute node

Definition
An XML attribute is used to represent additional in-

formation on an XML element in the W3C XML

recommendation [2].

Key Points
The name of an XML attribute has to be unique for a

given element. Therefore, the following XML element

is not allowed

<e a1 = ‘‘v1’’ a1 = ‘‘v2’’/>

while the following is well-formed

<e1 a1 = ‘‘v1’’> <e2 a1 = ‘‘v2’’/> </e1>

An XML attribute has a value that follows the attribute

value normalization rules outlined in section 3.3.3 of

[2]. This means that several whitespace characters do

not get preserved in attribute values, unless they are

explicitly represented with a character entity (e.g.,

 for carriage return).
Attributes can be constrained and typed by schema

languages such as XML DTDs [2] or XML Schema [3].

An XML attribute is represented as an XML attri-

bute information item in the XML Information Set [1]

and an XML attribute node in the XPath and XQuery

data model [4].
Cross-references
▶XML

▶XML Document

▶XML Element
Recommended Reading
1. XML 1.0 Information Set, latest edition available online at:

http://www.w3.org/TR/xml-infoset.

2. XML 1.0 Recommendation, latest edition available online at:

http://www.w3.org/TR/xml.

3. XML Schema Part 0: Primer, latest edition available online at:

http://www.w3.org/TR/xmlschema-0/.

4. XQuery 1.0 and XPath 2.0 Data Model (XDM), latest edition

available online at: http://www.w3.org/TR/xpath-datamodel/.
XML Attribute Node

▶XML Attribute
XML Benchmarks

DENILSON BARBOSA
1, IOANA MANOLESCU

2,

JEFFREY XU YU
3

1University of Alberta, Edmonton, AB, Canada
2INRIA, Saclay–Île-de-France, Orsay, France
3The Chinese University of Hong Kong, Hong Kong,

China

Definition
An XML benchmark is a specification of a set of mean-

ingful and relevant tasks, intended to assess the func-

tionality and/or performance of an XML processing

tool or system. The benchmark must specify the

following: (i) a deterministic workload, consisting of a

set of XML documents and/or a procedure for obtain-

ing these and a set of operations to be performed;

XML Benchmarks X 3577

X

(ii) detailed rules for executing the workload and

making the measurements; (iii) the metrics used to

report the results of the benchmark; and (iv) standard

ways of interpreting the results.

Historical Background
XML has quickly become the preferred format for

representing and exchanging data on the Web age.

The level of acceptance of XML is astonishing, espe-

cially when one considers that this technology was

introduced only in 1997. XML is an enabling technol-

ogy with applications in virtually all domains of infor-

mation processing. At the time of writing, XML is

widely used in content distribution on the Web (e.g.,

RSS feeds), as the foundation of large initiatives such as

the Semantic Web and Web Services, and is the basis

for routinely used productivity tools, such as text edi-

tors and spreadsheets.

Such complexity led to the development of a large

number of fairly narrowly-scoped benchmarks for XML.

Moreover, there is still no clear understanding of what an

XML benchmark should look like.

The first XML benchmarks were developed in aca-

demia for testing specific processing tasks and/or rela-

tively narrow applications. In fact, some of these earlier

benchmarks are categorized as micro-benchmarks. For

example, XMach emulated the scenario of an XML file

servers using a large number of simple XML files, while

XMark modeled an online auction application using

a single complex XML document. Over time, XML

benchmarks evolved to contemplate more realistic

and complex application scenarios, in an attempt to

emulate the typical workload of larger applications. For

instance, XBench modeled four scenarios, resulting

from the combination of two factors: (i) the nature of

the documents (data-centric vs. document-centric);

and (ii) the number of documents in the workload

(single-document vs. multi-document).

The first XML Benchmark developed entirely by

industry was TPoX (Transaction Processing over

XML), which simulates a financial application in a

multi-user environment with concurrent access to the

XML data. TPoX is intended for testing all aspects of a

relational-based XML storage and processing system.

Another development worth mentioning concerns

the declarative synthetic data generators for XML.

While, strictly speaking, these are not benchmarks,

these tools help in obtaining appropriate testing data
with reasonably low effort and high enough

customizability.

Foundations
Benchmarks should be simple, portable, scale to differ-

ent workload sizes, and allow the objective compari-

sons of competing systems and tools [4]. It should be

noted that the diversity and complexity of its applica-

tions, developing meaningful and realistic benchmarks

for XML is a truly herculean task. Also, XML proces-

sing tools fall into many categories, from simple stor-

age services to sophisticated query processors, thus

adding to the complexity of developing relevant and

realistic XML benchmarks.

The two factors above have led to the development

of benchmarks that are relatively narrow in scope,

focusing on very specific tasks. Moreover, the lack of

universally accepted, comprehensive XML bench-

marks, resulted in the development of general-purpose

synthetic data generators, which allow the user to

obtain customized test data with relatively low effort.

This is significant, as such tools were not popular until

the advent of XML.

XML Microbenchmarks

A micro-benchmark is a narrowly-defined benchmark

aimed at testing very specific aspects of a tool and/or

system.

TheMichigan Benchmark TheMichigan Benchmark is

an XMLMicro-benchmark developed at the University

of Michigan [8]. It uses a single synthetic document

that does not resemble a typical document from any

real world application domain. Instead, it is carefully

designed to allow the testing of the following query

processing operations: matching attributes by value;

selecting elements by name; evaluation of positional

predicates; selection of nodes based on predicates over

their parent, children, ancestors or descendants; join

operations; computing aggregate functions; and pro-

cessing updates. The authors applied the benchmark to

three database systems: two native XML DBMSs, and

a commercial ORDBMS.

XML Application Benchmarks

An application benchmark is a comprehensive set of

tasks that approximates the workload of a typical ap-

plication in the respective domain. Four important

3578X XML Benchmarks
XML application benchmarks are XMach-1 [2],

XMark [9], XBench [10], and TPOX [7].

XMach-1 XMach-1 (XML Data Management Bench-

mark) is a multi-user benchmark developed at the Uni-

versity of Leipzig, Germany [2]. Unlike most existing

XML benchmarks that are designed to test the query

processors of database management systems, XMach-1

is designed to test database management systems which

include a query processor as well as the other key

components. In terms of measurement, XMach-1 eval-

uates systems based on throughput performance (XML

queries per second) instead of response time for user-

given XML queries.

XMach-1 considers a system architecture to sup-

port web applications, which consists of four main

components, namely, XML database, application ser-

vers, loaders and browser clients. In the XML database,

there aremultiple schemas, and there are between 2 and

100 documents per schema. Each document is gener-

ated using 10,000 most frequent English words, and

occupies between 2 and 100 KB of storage. The work-

load contains eight queries and three update opera-

tions. Some evaluation results can be found in [6].

XMark XMark is the result of the XML benchmark

project, led by a team at CWI [9]. It models an Internet

auctioning application. The workload consists of a

large database, in a single XML document, containing:

(i) items for auction in geographically dispersed areas;

(ii) bidders and their interests; and (iii) detailed infor-

mation about existing auctions, which can be open or

closed. XMark’s workload includes 20 queries that

cover the following broad kinds of operations: simple

node selections; document queries for which order

information is relevant; navigational queries; and com-

puting aggregate functions.

The XMark data generator employs several kinds

of probability distributions and uses several real

data values (e.g., names of countries and people) to

produce realistic data; also, the textual content uses real

words of the English language. XMark is by far the most

widely used XML benchmark at the time of writing.

XBench XBench is a benchmark suite developed at

the University of Waterloo [10]. XBench defines appli-

cation benchmarks categorized according to two cri-

teria: single-document versus multi-document and

data-centric versus text-centric domains. The latter
criterion distinguishes data management and exchange

scenarios from content management applications

(e.g., electronic publishing). Document collections in

XBench range in size from a few kilobytes to several

gigabytes, and its workload consists of bulk-loading as

well as various query and text-based search operations.

Results of an evaluation of four different systems, com-

prising both native XML stores aswell as relational-based

stores, are provided in [10].

TPoX TPoX (Transaction Processing over XML) is

a comprehensive application benchmark developed

jointly by IBM and Intel [7]. TPoX simulates a finan-

cial application domain (security trading) and is based

on the industry-standard XML Schema specification

FIXML [3]. The testing environment in TPoX covers

several aspects of XML management inside DBMS,

including the use of XQuery, SQL/XML, updates, and

concurrent access to the data. The authors report on an

experimental evaluation of the IBM DB2 product for

storing and processing XML data [7].

Synthetic Data Generators

Synthetic data have other applications besides bench-

marking, such as testing specific components of a

complex system or application. In this setting, an im-

portant requirement for a data generator, besides gen-

erating realistic data (i.e., synthetic data whose

characteristics match those of typical real data in the

application), is the the ability of easily customizing the

test data (e.g., its structure).

Declarative synthetic data generators, on the other

hand, are tools that produce synthetic data according

to specifications that describe what data to generate, as

opposed to how to generate such data, thus facilitating

the generation of synthetic data. Declarative data gen-

erators are intended for easing the burden in obtaining

test data, unlike the data generators of standardized

benchmarks, which have the characteristics of the data

they produce embedded in their source code.

Declarative data generators rely on formalisms

providing higher levels of abstraction than program-

ming languages, such as conceptual schema languages

annotated with probabilistic information (for describ-

ing the characteristics of the intended data). Such

probabilistic information are needed because schema

languages specify only what content is allowed in

valid document instances. A realistic data generator

must allow the specification of the characteristics of

XML Compression X 3579
typical documents as well. For example, while a schema

formalism will specify that a book element may con-

tain between 1 and 10 authors, a realistic data genera-

tor will allow one to define a probability distribution

for the number of authors in the test data. Another

desirable feature of realistic synthetic data is that it

satisfies integrity and referential constraints. For in-

stance, an XML document describing a book review

should refer to an existing book in the test data.

Two examples of declarative XML data genera-

tors are the IBM XML Generator [3], whose data

specifications are based on Document Type Defini-

tions, and ToXgene [1], which relies on XML Schema

specifications. Both tools allow the specification of

skewed probability distributions for elements, attri-

butes, and textual nodes. ToXgene, being based on

XML Schema, supports different data types, as well as

key and referential constraints. ToXgene also offers a

simple declarative query language that allows one to

model relatively complex dependencies among ele-

ments and attributes involving arithmetic and string

manipulation operations. For instance, it allows one to

model that the total price of an invoice should be the

sum of the individual prices of the items in that invoice

multiplied by the appropriate tax rates. Finally, ToX-

gene offers support for generating recursive XML

documents.
Key Applications
Meaningful benchmarks are essential for the develop-

ment of new technologies, as they allow developers

to assess progress and understand intrinsic limitations

of their tools. Applications include functionality test-

ing, performance evaluation, and system comparisons.
X

Recommended Reading
1. Barbosa D. and Mendelzon A.O. Declarative generation of syn-

thetic XML data. Softw. Pract. Exper. 36(10):1051–1079, 2006.

2. Böhme T. and Rahm E. XMach-1: a benchmark for XML data

management. In Proc. German Database Conference. Springer,

Berlin, 2001, pp. 264–273; Multi-user evaluation of XML data

Management Systems with XMach-1. LNCS, Vol. 2590, 2003,

pp. 148–159.

3. Financial Information Exchange Protocol. FIXML 4.4 Schema

Version Guide. Available at: http://www.fixprotocol.org.

4. Gray J. (ed.). The Benchmark Handbook for Database and

Transaction Systems (2nd edn.). Morgan Kaufmann, San

Francisco, CA, USA, 1993, ISBN 1-55860-292-5.

5. IBM XML Generator. Available at: http://www.alphaworks.ibm.

com/tech/xmlgenerator, 2007.
6. Lu H., Yu J.X., Wang G., Zheng S., Jiang H., Yu G., and Zhou A.

What makes the differences: benchmarking XML database

implementations. ACM Trans. Internet Technol., 5(1):154–194,

2005.

7. Nicola M., Kogan I., and Schiefer B. An XML transaction pro-

cessing benchmark. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 2007, pp. 937–948.

8. Runapongsa K., Patel J.M., Jagadish H.V., Chen Y., and

Al-Khalifa S. The Michigan benchmark: towards XML query

performance diagnostics. Inf. Syst., 31(2):73–97, 2006.

9. Schmidt A., Waas F., Kersten M.L., Carey M.J., Manolescu I.,

Busse R. XMark: a benchmark for XML data management. In

Proc. 28th Int. Conf. on Very Large Data Bases, 2002,

pp. 974–985.

10. Yao B.B., Özsu M.T., and Khandelwal N. XBench Bench-

mark and Performance Testing of XML DBMSs. In Proc.

20th Int. Conf. on Data Engineering, 2004, pp. 621–633.
XML Cardinality Estimation

▶XML Selectivity Estimation
XML Compression

JAYANT R. HARITSA
1, DAN SUCIU

2

1Indian Institute of Science, Bangalore, India
2University of Washington, Seattle, WA, USA

Definition
XML is an extremely verbose data format, with a high

degree of redundant information, due to the same tags

being repeated over and over for multiple data items,

and due to both tags and data values being represented

as strings. Viewed in relational database terms, XML

stores the ‘‘schema’’ with each and every ‘‘record’’ in

the repository. The size increase incurred by publishing

data in XML format is estimated to be as much as

400% [14], making it a prime target for compression.

While standard general-purpose compressors, such as

zip, gzip or bzip, typically compress XML data

reasonably well, specialized XML compressors have

been developed over the last decade that exploit

the specific structural aspects of XML data. These

new techniques fall into two classes: (i)Compression-

oriented, where the goal is to maximize the compres-

sion ratio of the data, typically up to a factor of two

3580X XML Compression
better than the general-purpose compressors; and

(ii) Query-oriented, where the goal is to integrate the

compression strategy with an XPath query processor

such that queries can be processed directly on the

compressed data, selectively decompressing only the

data relevant to the query result.

Historical Background
Research into XML compression was initiated with

Liefke and Suciu’s development in 2000 of a compressor

called XMill [6]. It is based on three principles: separ-

ating the structure from the content of the XML docu-

ment, bucketing the content based on their tags, and

compressing the individual buckets separately. XMill

is a compression-oriented technique, focusing solely

on achieving high compression ratios and fast com-

pression/decompression, ignoring the query processing

aspects. Other compression-oriented schemes that

appeared around the same time include Millau [4],

designed for efficient encoding and streaming of XML

structures; and XMLPPM, which implements an exten-

ded SAX parser for online processing of documents [2].

There are also several commercial offerings that have

been featured on the Internet (e.g., [11,13,15]).

Subsequently, the focus shifted to the developm-

ent of query-oriented techniques intended to support

query processing directly on the compressed data.

This stream of research began with Tolani and Haritsa

[9] presenting in 2002 a system called XGrind, where

compression is carried out at the granularity of individ-

ual element/attribute values using a simple context-

free compression scheme – tags are encoded by

integers while textual content is compressed using non-

adaptive Huffman (or Arithmetic) coding. XGrind con-

sciously maintains a homomorphic encoding, that is, the

compressed document is still in XML format, the in-

tention being that all existing XML-related tools (such

as parsers, indexes, schema-checkers, etc.) could con-

tinue to be used on the compressed document.

In 2003, Min et al. [7] proposed a compressor

called XPRESS that extended the homomorphic com-

pression approach of XGrind to include effective eval-

uation of query path expressions and range queries on

numerical attributes. Their scheme uses a reverse arith-

metic path-encoding that encodes each path as an

interval of real numbers between 0 and 1. The follow-

ing year produced the XQueC system [1] from Arion

et al., which supports cost-based tradeoffs between

compact storage and efficient processing.
An excellent survey of the state-of-the-art in XML

compressors is available in [1].

Foundations
The basic principles for compressing XML documents

are the following:

Separate structure from data: The structure consists of

XML tags and attributes, organized as a tree. The data

consists of a sequence of items (strings) representing

element text contents and attribute values. The struc-

ture and the data are compressed separately.

Group data items with related meaning: Data items

are logically or physically grouped into containers, and

each container is compressed separately. By exploiting

similarities between the values in a container, the com-

pression improves substantially. Typically, data items

are grouped based on the element type, but some sys-

tems (e.g., [1]) chose more elaborate grouping criteria.

Apply specialized compressors to containers: Some

data items are plain-text, while others are numbers,

dates, etc., and for each of these different domains, the

system uses a specialized compressor.

Compression-Oriented XML Compressors

The architecture of the XMill compressor [6], which is

typical of several XML compressors, is depicted in Fig. 1.

The XML file is parsed by a SAX parser that sends

tokens to the path processor. The purpose of the path

processor is to separate the structure from the data,

and to further separate the data items according to

their semantics.

Next, the structure container and all data containers

are compressed with gzip, then written to disk. Op-

tionally, the data items in certain containers may be

compressed with a user-defined semantic compressor.

For example, numerical values or IP addresses can be

binary encoded, dates can be represented using

specialized data structures, etc.

By default, XMill groups data items based

on their innermost element type. Users, however, can

override this, by providing container expressions on

the command line. The path processor uses these

expressions to determine in which container to store

each data item. Path expressions also determine which

semantic compressor to apply (if any).

The amount of main memory holding all contain-

ers is fixed. When the limit is exhausted all containers

are gzip-ed, written to disk, as one logical block, then

the compression resumes. In effect, this partitions the

XML Compression. Figure 1. Architecture of the XMill compressor [4].

XML Compression X 3581

X

input XML file into logical blocks that are compressed

independently.

The decompressor, XDemill, is similar, but pro-

ceeds in reverse. It reads one block at a time in main

memory, decompresses every container, thenmerges the

XML tags with the data values to produce the XML

output.

Example. To illustrate the working of XMill,

consider the following snippet of Web-server log

data, where each entry represents one HTTP request:

<apache:entry>

<apache:host> 202.239.238.16</host>

<apache:requestLine>GET/HTTP/1.0

</apache:requestLine>

<apache:contentType> text/html

</apache:contentType>

<apache:statusCode> 200

</apache:statusCode>

<apache:date> 1997/10/01-00:00:02

</apache:date>

<apache:byteCount> 4478

</apache:byteCount>

<apache:referer>

http://www.so-net.jp/

</apache:referer>

<apache:userAgent> Mozilla/3.0[ja]

</apache:userAgent>

</apache:entry>
After the document is parsed, the path processor

separates it into the structure and the content, and

further separates the content into different containers.

The structure is obtained by removing all text values

and attribute values and replacing them with their con-

tainer number. Start-tags are dictionary-encoded, i.e.,

assigned an integer value, while all end-tags are replaced

by the same, unique token. For illustration purposes,

start-tags are denoted with T1, T2,..., the unique end-

tag with /, and container numbers with C1, C2,.... In

this example the structure of the entry element is:

T1 T2 C1 / T3 C2 / T4 C3 / T5 C4 /

T8 C7 / T8 C7 / T11 C10 / T12 C11 / /

Here T1 = apache:entry, T2 = apache:host, and so on,

while / represents any end tag. Internally, each token is

encoded as an integer: tags are positive, container

numbers are negative, and \ is 0. Numbers between

(� 64, 63) take one byte, while numbers outside this

range take two or four bytes; the example string is

overall coded in 26 bytes. The structure is compressed

using gzip, which is based on Ziv-Lempel’s LZ77

algorithm [10]. This results in excellent compression,

because LZ77 exploits very well the frequent repetitions

in the structure container: the compressed structure

usually amounts to only 1–3% of the compressed file.

Next, data items are partitioned into containers,

then compressed. Each container is associated with

3582X XML Compression
an XPath expression that defines which data items are

stored in that container, and an optional semantic

compressor for the items in that container. By default

there is a container for each tag tag occurring in the

XML file, the associated XPath expression is //tag,

and there is no associated semantic compressor. Users

may override this on the command line. For example:

xmill -p //shipping/address -p

//billing/address file.xml

creates two separate containers for address ele-

ments: one for those occurring under shipping,

and one for those occurring under billing. If

there exist address elements occurring under ele-

ments other than shipping or billing, then their

content is stored in a third container. Note that the

container expressions only need to be specified to the

compressor, not to the decompressor. Overriding the

default grouping of data items usually results in only

modest improvements in the compression ratio. Much

better improvements are achieved, however, with se-

mantic compressors.

Query-Oriented XML Compressors

XGrind. The technique described in [9] is intended

to simultaneously provide efficient query-processing

performance and reasonable compression ratios. Basic

requirements to achieve the former objective are (i) fine-

grained compression at the element/attribute granularity

of query predicates, and (ii) context-free compression

assigning codes to data items independent of their loca-

tion in the document. Algorithms such as LZ77 are not

context-free, and therefore XGrind uses non-adaptive

Huffman (orArithmetic) coding, inwhich twopasses are

made over the XML document – the first to collect the

statistics and the second to do the actual encoding.

A separate character-frequency distribution table is used

foreachelementandnon-enumeratedattribute,resulting

infine-grainedcharacterization.TheDTDisusedtoiden-

tify enumerated-type attributes and their values are

encoded using a simple binary encoding scheme, while

the compressionofXML tags is similar to that ofXMill.

With this scheme, exact-match and prefix-match queries

can be completely carried out directly on the compressed

document, while range or partial-match queries only

requireon-the-flydecompressionoftheelement/attribute

values that feature in the query predicates.

A distinguishing feature of the XGrind compres-

sor is that it ensures homomorphic compression – that
is, its output, like its input, is semi-structured in na-

ture. In fact, the compressed XML document can

be viewed as the original XML document with its

tags and element/attribute values replaced by their

corresponding encodings. The advantage of doing so

is that the variety of efficient techniques available for

parsing/querying XML documents can also be used to

process the compressed document. Second, indexes

can be built on the compressed document similar to

those built on regular XML documents. Third, updates

to the XML document can be directly executed on the

compressed version. Finally, a compressed document

can be directly checked for validity against the com-

pressed version of its DTD.

As a specific example of the utility of homomor-

phic compression, consider repositories of genomic

data (e.g., [12]), which allow registered users to upload

new genetic information to their archives. With homo-

morphic compression, such information could be

compressed by the user, then uploaded, checked for

validity, and integrated with the existing archives, all

operations taking place completely in the compressed

domain.

To illustrate the working of XGrind, consider the

XML student document fragment along with its

DTD shown in Figs. 2 and 3. An abstract view of

its XGrind compressed version is shown in Fig. 4, in

which nahuff(s) denotes the output of the Huffman-

Compressor for an input data value s, while enum(s)

denotes the output of the Enum-Encoder for an input

data value s, which is an enumerated attribute. As is

evident from Fig. 4, the compressed document output

in the second pass is semi-structured in nature, and

maintains the property of validity with respect to the

compressed DTD.

The compressed-domain query processing engine

consists of a lexical analyzer that emits tokens for

encoded tags, attributes, and data values, and a parser

built on top of this lexical analyzer does the matching

and dumping of the matched tree fragments. The

parser maintains information about its current path

location in the XML document and the contents of the

set of XML nodes that it is currently processing. For

exact-match or prefix-match queries, the query path

and the query predicate are converted to the com-

pressed-domain equivalents. During parsing of the

compressed XML document, when the parser detects

that the current path matches the query path, and that

the compressed data value matches the compressed

XML Compression. Figure 2. Fragment of student

database.

XML Compression. Figure 3. DTD of student database.

XML Compression. Figure 4. Abstract view of

compressed XGrind database.

XML Compression. Table 1. XPRESS interval scheme

Element
tag Path label

Element
interval

Path
interval

book book [0.0, 0.1) [0.0, 0.1)

section book.section [0.3, 0.6) [0.3, 0.33)

subsection book.section.
subsection

[0.6, 0.9) [0.69, 0.699)

XML Compression X 3583

X

query predicate, it outputs the matched XML frag-

ment. An interesting side-effect is that the matching

is more efficient in the compressed domain as com-

pared to the original domain, since the number of

bytes to be processed have considerably decreased.

XPRESS. While maintaining the homomorphic

feature of XGrind, XPRESS [7] significantly extends

its scope by supporting both path expressions and

range queries (on numeric element types) directly on

the compressed data. Here, instead of representing the

tag of each element with a single identifier, the element

label path is encoded as a distinct interval in [0.0, 1.0).

The specific process, called reverse arithmetic encod-

ing, is as follows: First, the entire interval [0.0, 1.0)

is partitioned into disjoint sub-intervals, one for

each distinct element. The size of the interval is
proportional to the normalized frequency of the ele-

ment in the data. In the second step, these element

intervals are reduced by encoding the path leading to

this element in a depth-first tree traversal from the

root. An example from [7] is shown in Table 1, where

the element intervals are computed from the first par-

titioning, and the corresponding reduced intervals by

following the path labels from the root.

For each node in the tree, the associated interval is

incrementally computed from the parent node. The

intervals generated by reverse arithmetic encoding

guarantee that “If a path P is represented by the interval

I, then all intervals for suffixes of P contain I.’’ Therefore,

the interval for subsection which is [0.6, 0.9) contains

the interval [0.69, 0.699) for the path book.section.sub-

section. Another feature of XPRESS is that it infers the

data types of elements and for those that turn out to be

numbers over large domains, the values are com-

pressed by first converting them to binary and then

using differential encoding, instead of the default

string encoding. Recently, XPRESS has been extended

in [8] to handle updates such as insertions or deletions

of XML fragments.

Finally, an index-based compression approach that

improves on both the compression ratio and the

querry processing speed has been recently proposed

in [3].
Key Applications
Data archiving, data exchange, query processing.
Cross-references
▶Data Compression in Sensor Networks

▶ Indexing Compressed Text

▶ Lossless Data Compression

▶Managing Compressed Structured Text

▶Text Compression

▶XML

▶XPath/XQuery

3584X XML Data Dependencies
Recommended Reading
1. Arion A., Bonifati A., Manolescu I., and Pugliese A. XQueC: a

query-conscious compressed XML database. ACM Trans. Inter-

net Techn., 7(2):1–35, 2007.

2. Cheney J. Compressing XMLwith multiplexed hierarchical PPM

models. In Proc. Data Compression Conference, 2001, pp.

163–172.

3. Ferragina P., Luccio F., Manzini G., and Muthukrishnan M.

Compressing and Searching XML Data Via Two Zips. In Proc.

15th Int. World Wide Web Conference, 2006, pp. 751–760.

4. Girardot M. and Sundaresan N. Millau: an encoding format for

efficient representation and exchange of XML over the Web. In

Proc. 9th Int. World Wide Web Conference, 2000.

5. Liefke H. and Suciu D. An extensible compressor for XML data.

ACM SIGMOD Rec., 29(1):57–62, 2000.

6. Liefke H. and Suciu D. XMill: an efficent compressor for XML

data. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, 2000, pp. 153–164.

7. Min J.K., Park M., and Chung C. XPRESS: a queriable com-

pression for XML data. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2003, pp. 122–133.

8. Min J.K., Park M., and Chung C. XPRESS: a compressor for

effective archiving, retrieval, and update of XML documents.

ACM Trans. Internet Techn., 6(3):223–258, 2006.

9. Tolani P. and Haritsa J. XGRIND: a query-friendly XML

compressor. In Proc. 18th Int. Conf. on Data Engineering,

2002, pp. 225–235.

10. Ziv J. and Lempel A. A universal algorithm for sequential data

compression. IEEE Trans. Inf. Theory, 23(3):337–343, 1977.

11. www.dbxml.com

12. www.ebi.ac.uk

13. www.ictcompress.com

14. www.ictcompress.com/xml.html

15. www.xmlzip.com
XML Data Dependencies

▶XML Integrity Constraints
XML Data Integration

▶XML Information Integration
XML Database

▶XML Storage
XML Database Design

▶ Semi-structured database design
XML Database System

▶XQuery Processors
XML Document

MICHAEL RYS

Microsoft Corporation, Sammamish, WA, USA

Synonyms
XML document

Definition
An XML document is a text document that follows the

W3C XML recommendation [3].
Key Points
An XML document is considered well-formed, if it satis-

fies the XML 1.0 well-formedness constraints of having

exactly one top-level XML element, balanced begin- and

end-tags, and all the other rules outlined in [3].

It is considered valid, if it validates against a schema

language such as the XMLDTDs [3] or XML Schema [1].

An XML document is represented as an XML doc-

ument information item in the XML Information Set

[2] and an XML document node in the XPath and

XQuery data model [4].
Cross-references
▶XML

▶XML Attribute

▶XML Element

Recommended Reading
1. Schema Part 0: Primer, latest edition available online at: http://

www.w3.org/TR/xmlschema-0/.

2. XML 1.0 Information Set, latest edition available online at:

http://www.w3.org/TR/xml-infoset.

XML Indexing X 3585
3. XML 1.0 Recommendation, latest edition available online at:

http://www.w3.org/TR/xml.

4. XQuery 1.0 and XPath 2.0 Data Model (XDM), latest edition

available online at: http://www.w3.org/TR/xpath-datamodel/.
X

XML Element

MICHAEL RYS

Microsoft Corporation, Sammamish, WA, USA

Synonyms
XML element

Definition
An XML element is a markup element in the W3C

XML recommendation [3] that consists of a beginning

markup tag and an end tag with optional content and

optional attributes.

Key Points
An XML element is a markup element in the W3C

XML recommendation [3] that consists of a beginning

markup tag and an end tag.

It has to have balanced begin- and end-tags as in

this example

<element>content</element>.

XML elements can be nested as in

<e1>some optional text <e2>nested element

</e2> some optional text</e1>

They can have XML attributes as in

<element attribute=‘‘value’’>content</element>

And they can be empty, meaning have no content

as in

<element/>.

The structure of elements is free within the gram-

matical rules of [3], but elements can be constrained

and typed by schema languages such as XML DTDs [3]

or XML Schema [1].

An XML element is represented as an XML element

information item in the XML Information Set [2]

and an XML element node in the XPath and XQuery

data model [4].

Cross-references
▶XML

▶XML Attribute

▶XML Document
Recommended Reading
1. Schema Part 0: Primer, latest edition available online at: http://

www.w3.org/TR/xmlschema-0/.

2. XML 1.0 Information Set, latest edition available online

at: http://www.w3.org/TR/xml-infoset.

3. XML 1.0 Recommendation, latest edition available online

at: http://www.w3.org/TR/xml.

4. XQuery 1.0 and XPath 2.0 Data Model (XDM), latest edition

available online at: http://www.w3.org/TR/xpath-datamodel/.
XML Enterprise Information
Integration

▶XML Information Integration
XML Export

▶XML Publishing
XML Filtering

▶XML Publish/Subscribe
XML Indexing

XIN LUNA DONG, DIVESH SRIVASTAVA

AT&T Labs–Research, Florham Park, NJ, USA

Definition
XML employs an ordered, tree-structured model

for representing data. Queries in XML languages like

XQuery employ twig queries to match relevant portions

of data in an XML database. An XML Index is a data

structure that is used to efficiently look up all matches of

a fragment of the twig query, where some of the twig

query fragment nodesmay have beenmapped to specific

nodes in the XML database.

3586X XML Indexing
Historical Background
XML path indexing is related to the problem of join

indexing in relational database systems [15] and path

indexing in object-oriented database systems (see, e.g.,

[1,9]). These index structures assume that the schema is

homogeneous and known; these assumptions do not

hold in general for XML data. The DataGuide [7] was

the first path index designed specifically for XML data,

where the schema may be heterogeneous and may not

even be known.
Foundations

Notation

An XML document d is a rooted, ordered, node-labeled

tree, where (i) each node corresponds to an XML

element, an XML attribute, or a value; and (ii) each

edge corresponds to an element-subelement, element-

attribute, element-value, or an attribute-value relation-

ship. Non-leaf nodes in d correspond to XML elements

and attributes, and are labeled by the element tags or

attribute names, while leaf nodes in d correspond

to values. For the example XML document of Fig. 1a,

its tree representation is shown in Fig. 1b. Each node
XML Indexing. Figure 1. (a) An XML database fragment. (b)
is associated with a unique number referred to as its Id,

as depicted in Fig. 1b. An XML database D is a set of

XML documents.

Queries in XML languages like XPath and XQuery

make fundamental use of twig queries to match rele-

vant portions of data in an XML database. A twig

query Q is a node- and edge-labeled tree, where (i)

nodes are labeled by element tags, attribute names, or

values; (ii) edges are labeled by an XPath axis step, e.g.,

child, descendant, or following-sibling.

For example, the twig query in Fig. 2a corresponds

to the path expression /book[./descendant::

author[./following-sibling :: author

[fn =‘‘jane’’]][ln =‘‘poe’’]].

Given an XML database D, and a twig query Q,

a match of Q in D is identified by a mapping from

nodes in Q to nodes in D, such that: (i) Q’s node

labels (i.e., element tags, attribute-names and values)

are preserved under the mapping; and (ii) Q’s edge

labels (i.e., XPath axis steps) are satisfied by the

corresponding pair of nodes in D under the mapping.

For example, the twig query of Fig. 2a matches a root

book element that has a descendant author element that

(i) has a child ln element with value poe; and (ii) has a

following sibling author element that has a child fn
XML tree (Id numbering).

XML Indexing. Figure 2. (a) Twig query. (b) Twig query fragments.

XML Indexing X 3587

X

element with value jane. Thus, the book element in

Fig. 1b is a match of the twig query in Fig. 2a.

An XML Index I is a data structure that is used to

efficiently look up all matches of a fragment of the twig

query Q, where some of the twig query fragment nodes

may have been mapped to specific nodes in the XML

database. Some fragments of the twig query of Fig. 2a

are shown in Fig. 2b and include the edges book/

descendant::author and author/follow-

ing-sibling::author, and the path book/

descendant::author[ln =‘‘poe’’]. The

matches returned by XML Index lookups on different

fragments of a twig query Q can be ‘‘stitched together’’

using query processing algorithms to compute

matches to Q.

The following sections describe various techniques

that have been proposed in the literature to index

node, edge, path and twig fragments of twig queries.

Node Indexes

When the fragment of a twig query Q that needs to be

looked up in the index is a single node labeled by an

element tag, an attribute name, or a value, a classical

inverted index is adequate. This index is constructed by

associating each element tag (or attribute name, value)

with the list of all the node Ids in the XML database with

that element tag (attribute name, value, respectively).

For example, given the data of Fig. 1b, the list associated

with the element tag author would be [7,27,47], and

the list associated with the value jane would be

[9,49].

Positional Numberings, Edge Indexes

Now consider the case when the fragment of a twig

query Q that needs to be looked up in the index is an

edge labeled by an XPath axis step. For example, find
all author nodes that are descendants of the

book node with Id = 1. As another example, find all

author nodes that are following-siblings of

the author node with Id = 7.

Using Node Ids A simple solution is to use an inverted

index that associates each (node1 label, node2 label,

XPath axis) triple to the list of all pairs of XML data-

base node Ids that satisfy the specified node labels

and axis relationship. For example, given the data of

Fig. 1b, the list associated with the triple (book,

author, descendant) would be [(1,7),(1,27),

(1,47)], and the list associated with the triple

(author, author, following-sibling)

would be [(7,27),(7,47),(27,47)].

In general, this inverted index could be much larger

than the number of nodes in the original XML data-

base, especially for XPath axes such as descendant,

following-sibling and following. To over-

come this limitation, more sophisticated approaches

are required. A popular approach has been to (i) use a

positional numbering system to identify nodes in an

XML database; and (ii) demonstrate that each XPath

axis step corresponds to a predicate on the positional

numbers of the corresponding nodes. Two such

approaches, using Dewey numbering and using Inter-

val numbering, are described next.
Using Dewey Numbering An elegant solution for edge

indexing is to associate each XML node n with its

DeweyId, proposed by [14], and obtained as follows:

(i) associate each node with a numeric Id ensuring

that sibling nodes are given increasing numbers in a

left-to-right order; and (ii) the DeweyId of a node is

obtained by concatenating the Ids of all nodes along

XML Indexing. Figure 3. (a) Dewey numbering. (b) Interval numbering.

3588X XML Indexing
the path from the root node of n’s XML document to n

itself (The similarity with the Dewey Decimal System

of library classification is the reason for its name).

Figure 3a shows the DeweyIds of some nodes in

the XML tree, using the numeric Ids associated with

those nodes in Fig. 1b. For example, the fn node with

Id = 8 has DeweyId = 1.6.7.8.

DeweyIds can be used to easily find matches to

various XPath axis steps. In particular, node n2 is a

descendant of node n1 if and only if (i) n1.DeweyId

is a prefix of n2.DeweyId. For example, in Fig. 3a,

the jane node with DeweyId = 1.6.7.8.9 is a

descendant of the author node with DeweyId =

1.6.7. Similarly, node n2 is a child of node n1 if and only

if (i) n2 is a descendant of n1; and (ii) n2’s DeweyId

extends n1’s DeweyId by one Id. By maintaining

DeweyIds of nodes in classical trie data structures,

various XPath axis lookups can be done efficiently.

The main limitation of DeweyIds is that their size

depends on the depth of the XML tree, and can get

quite large. This limitation is overcome by using Inter-

val numbering, described next.
Using Interval Numbering The position of an XML

node n is represented as a 3-tuple: (LeftPos,

RightPos, PLeftPos), where (i) numbers are

generated in an increasing order by visiting each tree

node twice in a left-to-right, depth-first traversal; n.

LeftPos is the number generated before visiting any

node in n’s subtree and n.RightPos is the number

generated after visiting every node in n’s subtree; and

(ii) n.PLeftPos is the LeftPos of n’s parent node

(0 if n is the root node of DocId). Figure 3b depicts
the LeftPos and RightPos numbers of each node

in the XML document.

It can be seen that each XPath axis step between a

pair of XML database nodes can be tested using a con-

junction of equality and inequality predicates on the

components of the 3-tuple. In particular, node n2 is

a descendant of node n1 if and only if: (i) n1.

LeftPos < n2.LeftPos; and (ii) n1.RightPos >

n2.RightPos. An element n2 is a child of an element

n1 if and only if n1.LeftPos = n2.PLeftPos. An

element n2 is a following-sibling of an element n1 if and

only if: (i) n1.RightPos < n2.LeftPos; and (ii) n1.

PLeftPos = n2.PLeftPos. For example, in Fig. 3b, the

jane node with interval number (9,10,8) is a descen-

dant of the author node with interval number (7,16,6).

Thus, the set of 3-tuples corresponding to the in-

terval numbering of nodes of an XML database can be

indexed using a 3-dimensional spatial index such as an

R-tree, and the different XPath axis steps correspond

to different regions within the 3-dimensional space.

Variations of this approach have been considered in,

e.g., [10,2,8].

Note that for both Dewey numbering and Interval

numbering, one would need to leave gaps between

numbers to allow for insertions of new nodes in the

XML database [5].

Path Indexes

When the fragment of a twig query Q that needs to be

looked up in the index is a subpath of a root-to-leaf

path in Q, where some (possibly none) of the nodes

have been mapped to specific nodes in the XML data-

base, XML path indexes are very useful. The works in

the literature have primarily focused on the case where

XML Indexing. Table 1. The 4-ary relation for path

indexes

HeadId SchemaPath LeafValue IdList

1 B null []

1 BT null [2]

1 BT XML [2]

1 BU null [6]

1 BUA null [6,7]

1 BUAF null [6,7,8]

1 BUAF jane [6,7,8]

1 BUAL null [6,7,12]

1 BUAL poe [6,7,12]

. . .

6 U null []

6 UA null [7]

6 UAF null [7,8]

6 UAF jane [7,8]

6 UAL null [7,12]

6 UAL poe [7,12]

. . .

XML Indexing X 3589

X

each edge in the subpath of Q is labeled by child, i.e.,

all matches are subpaths of root-to-leaf paths in an

XML document. For example, a path index can be used

to efficiently look up all matches to the path fragment

author[ln =‘‘poe’’] of the twig query depicted

in Fig. 2a.

A framework by Chen et al. [3] is described next,

which covers most existing XML path index structures,

and solves the BoundIndex problem.

Problem BoundIndex: Given an XML database D, a

subpath query P with k node labels and each edge

labeled by child, and a specific database node id n,

return all k-tuples (n1,...,nk) that identify matches of P

in D, rooted at node n.

The framework of [3] requires each node in

an XML document to be associated with a unique

numeric identifier; this could be, e.g., the Id of the

node in Fig. 1b. To create a path index, [3] concep-

tually separates a path in an XML document into two

parts: (i) a schema path, which consists solely of sche-

ma components, i.e., element tags and attribute names;

and (ii) a leaf value as a string if the path reaches a leaf.

Schema paths can be dictionary-encoded using special

characters (whose lengths depend on the dictionary

size) as designators for the schema components. Most

of the works in the literature have focused on indexing

XML schema paths (see, e.g., [7,12,4]). Notable excep-

tions that also consider indexing data values at the

leaves of paths include [6,17,3].

In order to solve the BoundIndex problem, one

needs to explicitly represent paths that are arbitrary

subpaths of the root-to-leaf paths, and associate each

such path with the node at which the subpath is rooted.

Such a relational representation of all the paths in an

XML database is (HeadId, SchemaPath, Leaf-

Value, IdList), where HeadId is the id of the

start of the path, and IdList is the list of all node

identifiers along the schema path, except for the

HeadId. As an example, a fragment of the 4-ary

relational representation of the data tree of Fig. 1b is

given in Table 1; element tags have been encoded using

boldface characters as designators, based on the first

character of the tag, except for allauthors which

uses U as its designator.

Given the 4-ary relational representation of XML

database D, each index in the family of indexes:

(i) stores a subset of all possible SchemaPaths in

D; (ii) stores a sublist of IdList; and (iii) indexes a
subset of the columns HeadId, SchemaPath, and

LeafValue.

Given a query, the index structure probes the

indexed columns in (iii) and returns the sublist of

IdList stored in the index entries. Many existing

indexes fit in this framework, as summarized in

Table 2. For example, the DataGuide [7] returns the

last Id of the IdList for every root-to-leaf

prefix path. Similarly, IndexFabric [6] returns the

Id of either the root or the leaf element (first or last

Id in IdList), given a root-to-leaf path and the

value of the leaf element. Finally, the DATAPATHS

index is a regular B+-tree index on the concate-

nation of HeadId, LeafValue and the reverse

of SchemaPath (or the concatenation LeafVa-

lue�HeadId�ReverseSchemaPath), where the

SchemaPath column stores all subpaths of root-to-

leaf paths, and the complete IdList is returned; the

DATAPATHS index can solve the BoundIndex problem

in one index lookup.

Twig Indexes

ViST [16] and PRIX [13] are techniques that encode

XML documents as sequences, and perform sub-

sequencematching to look up allmatches to twig queries.

XML Indexing. Table 2. Members of family of path indexes

Index Subset of SchemaPath Sublist of IdList
Indexed
Columns

Value [11] paths of length 1 only last Id SchemaPath,
LeafValue

Forward link [11] paths of length 1 only last Id HeadId,
SchemaPath

DataGuide [7] root-to-leaf path prefixes only last Id SchemaPath

Index Fabric [6] root-to-leaf paths only first or last Id reverse
SchemaPath,
LeafValue

ROOTPATHS [3] root-to-leaf path prefixes full IdList LeafValue,
reverse
SchemaPath,

DATAPATHS [3] all paths full IdList LeafValue,
HeadId,
reverse
SchemaPath

3590X XML Indexing
Key Applications
XML Indexing is important for efficient XML query

processing, both in relational implementations of XML

databases and in native XML databases.
Future Directions
It is important to investigate XML Path Indexes for the

case of path queries with edge labels other than

child, especially when different edges on a query

path have different edge labels. Another extension

worth investigating is to identify classes of twig queries

that admit efficient XMLTwig Indexes.
Data Sets
University of Washington XML Repository:

http://www.cs.washington.edu/research/

xmldatasets/.
Cross-references
▶XML Document

▶XMLTree Pattern, XMLTwig Query

▶XPath/XQuery

▶XQuery Processors

Recommended Reading
1. Bertino E. and Kim W. Indexing techniques for queries on

nested objects. IEEE Trans. Knowledge and Data Eng., 1

(2):196–214, 1989.
2. Bruno N., Koudas N., and Srivastava D. Holistic twig joins:

optimal XML pattern matching. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2002, pp. 310–321.

3. Chen Z., Gehrke J., Korn F., Koudas N., Shanmugasundaram J.,

and Srivastava D. Index structures for matching XML twigs

using relational query processors. Data Knowl. Eng., 60

(2):283–302, 2007.

4. Chung C.-W., Min J.-K., and Shim K. APEX: an adaptive path

index for XML data. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2002, pp. 121–132.

5. Cohen E., Kaplan H., and Milo T. Labeling dynamic XML trees.

In Proc. ACM SIGACT-SIGMOD Symp. on Principles of Data-

base Systems, 2002, pp. 271–281.

6. Cooper B.F., Sample N., Franklin M.J., Hjaltason G.R., and

Shadmon M. A fast index for semistructured data. In Proc.

27th Int. Conf. on Very Large Data Bases, 2001, pp. 341–350.

7. Goldman R. and Widom J. DataGuides: enabling query

formulation and optimization in semistructured databases. In

Proc. 23th Int. Conf. on Very Large Data Bases, 1997, pp.

436–445.

8. Grust T. Accelerating XPath location steps. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2002, pp. 109–120.

9. Kemper A. and Moerkotte G. Access support in object bases.

ACM SIGMOD Rec., 19(2):364–374, 1990.

10. Kha D.D., Yoshikawa M., and Uemura S. An XML indexing

structure with relative region coordinate. In Proc. 17th Int.

Conf. on Data Engineering, 2001, pp. 313–320.

11. McHugh J. and Widom J. Query optimization for XML. In Proc.

25th Int. Conf. on Very Large Data Bases, 1999, pp. 315–326.

12. Milo T. and Suciu D. Index structures for path expressions. In

Proc. 15th Int. Conf. on Data Engineering, 1999, pp. 277–295.

13. Rao P. and Moon B. PRIX: Indexing and querying XML using

Pruffer sequences. In Proc. 20th Int. Conf. on Data Engineering,

2004, p. 288.

XML Information Integration X 3591
14. Tatarinov I., Viglas S., Beyer K., Shanmugasundaram J.,

Shekita E., and Zhang C. Storing and querying ordered XML

using a relational database system. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2002, pp. 204–215.

15. Valduriez P. Join indices. ACM Trans. Database Syst., 12

(2):218–246, 1987.

16. Wang H., Park S., Fan W., and Yu P. ViST: a dynamic index

method for querying XML data by tree structures. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2003,

pp. 110–121.

17. Yoshikawa M., Amagasa T., Shimura T., and Uemura S.

XRel: a path-based approach to storage and retrieval of

XML documents using relational databases. ACM Trans. Inter-

net Tech., 1(1):110–141, 2001.
XML Information Integration

ALON HALEVY

Google Inc., Mountain View, CA, USA

Synonyms
XML data integration; XML enterprise information

integration

Definition
Information integration systems offer uniform access

to a set of autonomous and heterogeneous data sources.

Sources can range from database systems and legacy

systems to forms on theWeb, web services and flat files.

The data in the sources need not be completely

structured as in relational databases. The number of

sources in a information integration application can

range from a handful to thousands. XML information

integration systems are ones that based on an XML data

model and query language.
X

Key Points
XML played a significant role in the development of

information integration, from the research and from

the commercialization perspectives. The emergence of

XML fueled the desire for information integration,

because it offered a common syntactic format for shar-

ing data. Once this common syntax was in place,

organizations could start thinking about sharing data

with each other (or even, within the organization) and

integrating data from multiple sources. Of course,

XML did very little to address the semantic integration

issues – sources could still share XML files whose tags
were completely meaningless outside the application.

However, the fact that XML is semi-structured was an

advantage when modeling heterogeneous data that

may have different schematic structure.

From the technical perspective, several information

integration systems were developed with an XML data

model at their core. Developing these systems lead to

many advances in XML data management, including the

development of query and update languages, languages

for schema mapping, algorithms for query containment

and answering queries using views, and efficient proces-

sing of XML data streaming from external sources. Every

aspect of information integration systems had to be re-

examined with XML in mind. Interestingly, since the

push to commercialize information integration came

around the same time as the emergence of XML, many

of the innovations mentioned above had to be developed

by start-ups on a very short fuse.

Key Applications
Some of the key applications of information integra-

tion are:

� Enterprise data management, querying across

several enterprise data repositories

� Accessing multiple data sources on the web (and in

particular, the deep web)

� Large scientific projects where multiple scientists

are independently producing data sets

� Coordination accrossmulitple government agencies
Cross-references
▶Adaptive Query Processing

▶ Information Integration

▶Model Management
Recommended Reading
1. Abiteboul S., Benjelloun O., and Milo T. The active XML

project: an overview. VLDB J., 17(5):1019–1040, 2008.

2. Deshpande A., Ives Z., and Raman V. Adaptive Query Proces-

sing. Foundations and Trends in Databases. Now Publishers,

2007. www.nowpublishers.com/dbs.

3. Haas L. Beauty and the Beast: The theory and practice of

information integration. In Proc. 11th Int. Conf. on Database

Theory, 2007, pp. 28–43.

4. Halevy A.Y., Ashish N., Bitton D., Carey M.J., Draper D.,

Pollock J., Rosenthal A., and Sikka V. Enterprise information

integration: successes, challenges and controversies. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2005,

pp. 778–787.

3592X XML Information Retrieval
XML Information Retrieval

▶ INitiative for the Evaluation of XML retrieval

(INEX)
XML Integrity Constraints

MARCELO ARENAS

Pontifical Catholic University of Chile, Santiago, Chile

Synonyms
XML data dependencies

Definition
An XML integrity constraint specifies a semantic re-

striction over the data stored in an XML document.

A number of integrity constraint languages have been

proposed for XML, which can be used to enforce differ-

ent types of semantic restrictions. These proposals, to-

gether with some languages for specifying restrictions

on the element structure of XML documents (e.g., DTD

and XML Schema), are currently used to specify the

schema of XML documents.
Historical Background
The problem of defining and manipulating integrity

constraints is one of the oldest problems in databases.

Soon after the introduction of the relational model by

Codd in the ’70s, researchers developed several lan-

guages for specifying integrity constraints, and studied

many fundamental problems for these languages.

In the relational model, a database is viewed as a

collection of relations or tables. For instance, a rela-

tional database storing information about courses in a

university is shown in Fig. 1. This database consists of a

time-varying part, the data about courses, and a part

considered to be time independent, the schema of the

relations, which is given by the name of the relations

(CourseInfo and CourseTerm) and the names of the

attributes of the relations.

Usually, the information contained in a database

satisfies some semantic restrictions. For example, in the

relation CourseInfo shown in Fig. 1, it is expected that

only one title is associated to each course number.
By providing the schema of a relation, a syntactic

constraint is specified (the structure of the relation),

but a semantic constraint as the one mentioned

above cannot be specified. To overcome this problem,

it is necessary to specify separately a set of semantic

restrictions. These restrictions are called integrity con-

straints, and they are expressed by using suitable

languages.

Although a number of integrity constraints lan-

guages were developed for relational databases, func-

tional and inclusion dependencies are the ones used

most often. A functional dependency is an expression

of the form X! Y, where X and Yare sets of attributes.

A relation satisfies X! Y if for every pair of tuples t1, t2
in it, if t1 and t2 have the same values on X, then they

have the same values on Y. An inclusion dependency is

an expression of the form R[X] � S[Y], where R and S

are relation names, and X, Y are sets of attributes of

the same cardinality. A relational database satisfies

R[X] � S[Y] if for every tuple t1 in R, there exists a

tuple t2 in S such that the values of t1 on X are the same

as the values of t2 on Y . For example, relation Course-

Term shown in Fig. 1 satisfies functional dependency

{Number, Section} ! Room, since every section of a

course is given in only one room, and relations Cour-

seInfo and CourseTerm satisfy inclusion dependency

CourseTerm[Number] � CourseInfo[Number], since

every course number mentioned in CourseTerm is

also mentioned in CourseInfo (and thus every course

given in some term has a name).

Integrity constraint languages have also been devel-

oped for more recent data models, such as nested

relational and object-oriented databases. Functional

and inclusion dependencies are also present in all

these models. In fact, two subclasses of functional

and inclusion dependencies, namely, keys and foreign

keys, are most commonly found in practice. For the

case of relational databases, a key dependency is a

functional dependency of the form X ! U, where U

is the set of attributes of a relation, and a foreign

key dependency is formed by an inclusion dependency

R[X] � S[Y] and a key dependency Y ! U, where U

is the set of attributes of S. For example, Number !
Number, Title is a key dependency for relation Cour-

seInfo, while CourseTerm[Number] � CourseInfo

[Number] and Number ! Number, Title is a foreign

key dependency. Keys and foreign keys are fundamen-

tal to conceptual database design, and are supported by

XML Integrity Constraints. Figure 1. Example of a relational database.

XML Integrity Constraints X 3593

X

the SQL standard. They provide a mechanism by

which objects can be uniquely identified and refer-

enced, and they have proved useful in update anomaly

prevention, query optimization and index design.

Foundations
A number of integrity constraint specifications have

been proposed for XML. The hierarchical nature of

XML data calls for not only absolute constraints that

hold on an entire document, such as dependencies

found in relational databases, but also relative con-

straints that only hold on sub-documents, beyond

what it is encountered in traditional databases. Here,

both absolute and relative functional dependencies,

keys, inclusion dependencies and foreign keys are con-

sidered for XML.

In general, integrity constraints for XML are de-

fined as restrictions on the nodes and data values

reachable by following paths in some tree representa-

tion of XML documents. For example, Fig. 2 shows an

XML document storing information about courses at

the University of Toronto (Uof T), and Fig. 3 shows a

tree representation of this document. Given an XML

document D, element types t1,...,tn in D and a symbol

‘ such that ‘ is either an element type in D or an

attribute in D or the reserved symbol text(), the

string t1,...,tn.‘ is a path in D if there exist nodes

u1,...,un in D such that (i) each ui is if type ti, (ii)
each ui+1 is a child of ui, (iii) if ‘ is an element type,

then there exists a node u of type ‘ that is a child of un,

(iv) if ‘ is an attribute, then ‘ is defined for un, and (v)

if ‘ = text(), then un has a child of type PCDATA.

For example, student.taking, student.taking.

cno, UofT.course.title and UofT.course.title.

text() are all paths in the XML document shown in

Figs. 2 and 3.

Given a node u in an XML document D and a path

p in D, reach(u, p) is defined to be the set of all nodes

and values reachable by following p from u in D.

Furthermore, if P is a regular expression over an alpha-

bet consisting of the reserved symbol text() and the
element types and attributes in an XML document D,

then a node v is reachable from a node u in D by

following P, if there exists a string p in the regular

language defined by P such that v 2 reach(u, p). The

set of all such nodes is denoted by reach(u, P).

For example, for the XML tree shown in Fig. 3, reach

(u1, UofT.student) = {u2}, reach(u1, UofT.student.

name) = {J. Smith}, reach(u1, UofT.course.title.

text()) = {Compilers} and

reach(u1,UofT.(student.taking+course).

cno) = {CSC258,CSC309}.

Keys and Functional Dependencies for XML

Absolute keys for XML were first considered by Fan

and Simeón [7]. Let D be an XML document and t an
element type in D. Then ext(t) is defined to be the

set of all nodes of D of type t. For example, if D

is the XML tree shown in Fig. 3, then ext(taking) =

{u4, u5}. Moreover, given a node υ and a list of attri-

butes X = [a1,...,ak] that are defined for υ, υ[X] is

defined as [υ.a1,...,υ.ak], where υ.ai is the value of

attribute ai for node υ. For example, u2[sno, name] is

[st1, J. Smith] in the XML tree shown in Fig. 3.

Absolute keys for XML are defined as follows [6,7].

An absolute key is an expression of the form t[X]! t,
where t is an element type and X is a nonempty set of

attributes defined for t. An XML document D satisfies

this constraint, denoted by D ⊨ t[X] ! t, if for every
v1, v2 2 ext(t), if v1[X] = v2[X], then v1 = v2. Thus,

t[X]! t says that the X-attribute values of a t-element

uniquely identify the element in ext(t). Notice that two
notions of equality are used to define keys: value

equality is assumed when comparing attributes, and

node identity is used when comparing elements. The

same symbol ‘ = ’ is used for both, as it will never lead

to ambiguity.

The following are typical keys for the XML document

shown in Fig. 2: student[sno] ! student and

course[cno] ! course. The first constraint says

that student number (sno) is an identifier for students,

and the second constraint says that course number

XML Integrity Constraints. Figure 2. Example of an XML document.

XML Integrity Constraints. Figure 3. Tree representation of the XML document shown in Fig. 2.

3594X XML Integrity Constraints
(cno) is an identifier for courses. It should be noticed

that if courses in different departments can have the

same course number, then key course[cno] !
course has to be replaced by course[cno, dept] !
course.

Since XML documents are hierarchically structured,

users may be interested in the entire document as well

as in its sub-documents. The latter give rise to relative

keys, that only hold on certain sub-documents. The

extension of Fan and Simeón’s language to the relative

case was done by Arenas et al. in [8]. This language is

introduced below. Notation v1 ≺ v2 is used when v1
and v2 are two nodes in an XML document and v2 is a

descendant of v1. For example, u1 ≺ u4 and u3 ≺ u7 in

the XML tree shown in Fig. 3.

A relative key is an expression of the form t(t1[X]!
t1), where t, t1 are element types and X is a nonempty

set of attributes that is defined for t1. This constraint
says that relative to each node v of type t, the set of

attributes X is a key for all the t1-nodes that are

descendants of v. That is, an XML document D satisfies

this constraint, denoted by D⊨t(t1[X] ! t1), if for
every v 2 ext(t), and for every v1, v2 2 ext(t1) such

that v ≺ v1 and v ≺ v2, if v1[X] = v2[X], then v1 = v2.

For example, the following is a typical relative key

for the XML document shown in Fig. 2: course
(enrolled[sno] ! enrolled). This constraint

says that relative to the elements of type course,

sno is an identifier for the elements of type

enrolled. Thus, this constraint states that every stu-

dent can enroll at most once in a given course. It

should be noticed that the previous constraint cannot

be replaced by the absolute key enrolled[sno] !
enrolled, since this states that every student can

enroll in at most one course. It should also be noticed

that absolute keys are a special case of relative keys

when t is taken to be the type of the root of the

XML documents. For example, for the case of the XML

document shown in Fig. 2, absolute key student

[sno] ! student is equivalent to relative key UofT

(student[sno] ! student).

A more powerful language for expressing XML keys

was introduced by Buneman et al. [4,3]. This language

allows the definition of absolute and relative keys.

More precisely, an absolute key is an expression of

the form (P, {Q1,...,Qn}), where P, Q1,...,Qn are regular

expressions. An XML document D satisfies this key

if for every pair of nodes u, v 2 reach(root, P), where

root is the node identifier of the root of D, if reach(u,

Qi) \ reach(v,Qi) 6¼ ;, for every i 2 [1, n], then u and v

are the same node. For example, a key dependency

can be used to express that name is an identifier

XML Integrity Constraints X 3595

X

for students in the University of Toronto database:

(UofT.student, {name}). Notice that if a nested

structure is used in this database to distinguish first

names from last names:

<UofT>

<student sno="st1">

<name>

<first> John </first>

<last> Smith </last>

</name>

. . .

</UofT>

then to characterize name as an identifier for students,

two paths are included in the right-hand side of the key

dependency: (UofT.student, {name.first.text(),

name.last.text()}).

In [4,3], Buneman et al. defined a relative key as a

pair of the form (P 0, K), where P0 is a regular expression

and K is an absolute key of the form (P, {Q1,...,Qn}). An

XML document satisfies this key if every node reached

from the root by following a path in P0 satisfies K, that

is, for every u 2 reach(root, P 0) and for every v1,v2 2
reach(u, P), if reach(v1, Qi) \ reach(v2, Qi) 6¼ ;, for
every i 2 [1, n], then v1 and v2 are the same node. For

example, a relative key constraint can be used to ex-

press that a student cannot take the same course twice

in the XML database shown in Fig. 2: (UofT.student,

(taking, {cno})). This key dependency is relative

since two distinct students can take the same course.

It should be noticed that every key t(t1[a1,...,ak] ! t1)
in Arenas et al.’s language [8] can be represented

as (S∗.t,(S∗.t1, {a1,...,ak})) in Buneman et al.’s lan-

guage [4,3], where S is the alphabet consisting of all

the element types in an XML document.

In [2], Arenas and Libkin introduced a functional

dependency language for XML. In this language, a

functional dependency over an XML document D is

an expression of the form X! p, where X [{p} is a set

of paths in D. To define the notion of satisfaction for

functional dependencies, Arenas and Libkin [2] used a

relational representation of XML documents. Given an

XML documentD, let paths(D) be the set of all paths in

D. Then a tree tuple over D is a mapping t that assigns

to each path p 2 paths(D) either a node identifier or a

data value or the null value ⊥, in a way that is con-

sistent with the tree representation of D. Formally, if

p 2 paths(D), the last symbol of p is an element type t
and t(p) 6¼ ⊥, then (i) t(p) = u, where u is a node
identifier in D of type t; (ii) if p0 is a prefix of p, then
t(p0) is a node identifier that lies on the path from the

root to u in D; (iii) if a is an attribute defined for u

in D, then t(p.a) = u.a; and (iv) if p.text() is a path in

D, then there is a child s of u of type PCDATA such that

t(p.text()) = s. A tree tuple is maximal if it cannot be

extended to another one by changing some nulls to either

node identifiers or data values. The set of maximal tree

tuples in D is denoted by tuples(D). Then functional

dependency p1;:::;pmf g ! p is true in D if for every

pair t1, t2 2 tuples(D), whenever t1 pið Þ ¼ t2 pið Þ 6¼ ?
for all i � n, then t1 pð Þ ¼ t2 pð Þ holds.

For example, let D be the XML document shown in

Figs. 2 and 3. In this database, there is at most one

name associated with each student number, which can

be represented by means of functional dependency

UofT.student.sno ! UofT.student.name. XML

document D satisfies this constraint, which can be

proved formally by constructing tuples(D). Table 1

shows the two tree tuples contained in this set. These

tuples satisfy UofT.student.sno ! UofT.student.

name since they have the same values in UofT.stu-

dent.sno and also in UofT.student.name.

Arenas and Libkin’s language [2] can also be used to

express relative functional dependencies. For example,

in the XML document shown in Fig. 2, every student

has at most one grade in each course (which is the final

grade for the course). This relative functional depen-

dency can be expressed as {UofT.student, UofT.

student.taking.cno} ! UofT.student.taking.

grade, whose satisfaction can be checked by consider-

ing again the tree tuples shown in Table 1.

Inclusion Dependencies and Foreign Keys for XML

One of the first XML integrity constraint languages was

proposed by Abiteboul and Vianu [1]. They considered

inclusion dependencies of the form P � Q, where P

and Q are regular expressions. An XML document D

rooted at u satisfies this constraint if reach(u, P) �
reach(u,Q). For example, in the database shown in

Fig. 2, the following constraint expresses that the set of

courses taken by each student is a subset of the set

of courses given by the university: UofT.student.

taking.cno � UofT.course.cno. An inclusion con-

straint P � Q where P are Q are paths, like in the

previous example, is called a path constraint [1]. In

[5], Buneman et al. introduced a more powerful path

constraint language. Given an XML document D and

paths p1, p2, p3 in D, in this language a constraint is an

3596X XML Integrity Constraints
expression of either the forward form 8x8y x 2 reachð
root ; p1ð Þ^y 2 reach x; p2ð Þ! y 2 reach x; p3ð ÞÞ, where
root represents the root of the XML document, or

the backward form 8x8y x2 reach root ; p1ð Þ^y 2ð
reach x; p2ð Þ! x2 reach y; p3ð ÞÞ. This language can be

used to express relative inclusion dependencies. For ex-

ample, if the document shown in Fig. 2 is extended to

store information about students and courses in many

universities, hUofTi is replaced by huniversityi:

<db>

<university name="UofT"> . . .

</university>

<university name="UCLA"> . . .

</university>

</db>

Then the following dependency in Buneman et al.’s

language [5] can be used to state that for each university,

the set of courses taken by each one of its students is a

subset of the set of courses given by that university:

8x8yðx 2 reachðroot ; db:universityÞ^ y 2 reach

ðx;student:taking:cnoÞ! y 2 reachðx;course:cnoÞÞ:

This constraint is relative to each university and, thus,

it cannot be expressed by using Abiteboul and Vianu’s

path constraints [1], as this language can only express

constraints on the entire document. By using Abite-

boul and Vianu’s approach, it can only be said that if a

student is taking a course, then this course is given in
XML Integrity Constraints. Table 1. Maximal tree tuples in t

Path

UofT u1

UofT.student u2

UofT.student.sno st1

UofT.student.name J. Smith

UofT.student.taking u4

UofT.student.taking.cno CSC258

UofT.student.taking.grade A

UofT.course u3

UofT.course.cno CSC258

UofT.course.dept Computer Scien

UofT.course.title u6

UofT.course.title.text() Compilers

UofT.course.enrolled u7

UofT.course.enrolled.sno st1
some university: db.university.student.taking.

cno � db.university.course.cno.

A language for expressing absolute foreign keys for

XML was proposed by Fan and Libkin in [6]. In this

language, an absolute foreign key is an expression of the

form t1[X] �FK t2[Y], where t1, t2 are element types,

and X, Y are nonempty lists of attributes defined for

t1 and t2, respectively, and jXj = jYj. This constraint
is satisfied by an XML document D, denoted by

D⊨t1[X]�FK t2[Y], ifD⊨t2[Y]! t2, and in addition
for every v1 2 ext(t1), there exists v2 2 ext(t2)
such that v1[X] = v2[Y]. The extension of Fan and

Libkin’s proposal to the relative case was done

by Arenas et al. in [8]. In this proposal, a relative foreign

key is an expression of the form t(t1[X]�FK t2[Y]),
where t, t1, t2 are element types, X and Yare nonempty

lists of attributes defined for t1 and t2, respectively, and
jXj = jY j. It indicates that for each node v of type t, X is

a foreign key of descendants of v of type t1 that

references a key Y of t2-descendants of v. That is, an
XML document D satisfies this constraint, denoted

by D⊨t(t1[X] �FKt2[Y]), if D⊨t(t2[Y] ! t2) and

for every v 2 ext(t) and every v1 2 ext(t1) such that

v ≺ v1, there exists v2 2 ext(t2) such that v ≺ v2 and

v1[X] = v2[Y].
Key Applications
XML integrity constraints are essential to schema de-

sign, query optimization, efficient storage, index
he XML tree shown in Fig. 3

t1 t2

u1

u2

st1

J. Smith

u5

CSC309

B+

u3

CSC258

ce Computer Science

u6

Compilers

u7

st1

XML Metadata Interchange X 3597
design, data integration, and in data transformations

between XML and relational databases.

Cross-references
▶Database Dependencies

▶ Functional Dependency

▶Key

Recommended Reading
1. Abiteboul S. and Vianu V. Regular path queries with constraints.

In Proc. 16th ACM SIGACT-SIGMOD-SIGART Symp. on Prin-

ciples of Database Systems, 1997, pp. 122–133.

2. Arenas M. and Libkin L. A normal form for XML documents. In

Proc. 21st ACM SIGACT-SIGMOD-SIGART Symp. on Princi-

ples of Database Systems, 2002, pp. 85–96.

3. Buneman P., Davidson S., Fan W., Hara C., and Tan W.C.

Reasoning about keys for XML. In Proc. 8th Int. Workshop on

Database Programming Languages, 2001, pp. 133–148.

4. Buneman P., Davidson S., Fan W., Hara C., and Tan W.C. Keys

for XML. In Proc. 10th Int. World Wide Web Conference, 2001,

pp. 201–210.

5. Buneman P., Fan W., and Weinstein S. Path constraints in

semistructured and structured databases. In Proc. 17th ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1998, pp. 129–138.

6. Fan W. and Libkin L. On XML integrity constraints in the

presence of DTDs. J. ACM, 49(3):368–406, 2002.

7. Fan W. and Siméon J. Integrity constraints for XML. In Proc.

19th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Systems, 2000, pp. 23–34.

8. Marcelo Arenas, Wenfei Fan and Leonid Libkin. On the Com-

plexity of Verifying Consistency of XML Specifications. SIAM

Journal on Computing, 38(3):841–880, 2008.
XML Message Brokering

▶XML Publish/Subscribe
X

XML Metadata Interchange

MICHAEL WEISS

Carleton University, Ottawa, ON, Canada

Synonyms
XMI

Definition
XMI (XML Metadata Interchange) is an XML-based

integration framework for the exchange of models, and,

more generally, any kind of XML data. XMI is used in the
integration of tools, repositories, applications, and data

warehouses. The framework defines rules for generating

XML schemas from a metamodel based on the Metaob-

ject Facility (MOF). XMI is most frequently used as an

interchange format for UML, although it can be used

with any MOF-compliant language.

Key Points
The motivation for introducing XMI was the need to

provide a standard way through which UML tools

could exchange UML models. XMI produced by one

tool can generally be imported by another tool, which

allows exchange of models among tools by different

vendors, or the exchange of models with other types

of tools upstream or downstream the tool chain.

As stated above, XMI is not limited to mapping UML

to XML, but it provides rules to generate DTDs or

XML schemas and XML documents from any MOF-

compliant language. Thus, a model that conforms to

some MOF-compliant metamodel can be translated

to an XML document that conforms to a schema gene-

ratedaccording to the rules of theXMIstandard.

However, since XMI represents UML models in

XML, XMI is more widely applicable. For example,

XMI has been used for the analysis of models and for

the integration of applications, both internal and with

external parties. The key idea underlying XMI is to

provide rules for generating schemas from a metamo-

del. These include the mapping of model attributes to

XML elements and attributes, and model associations

to containment relationships between XML elements

or to links. Notably, XMI maps inheritance to compo-

sition in XML, in which elements and attributes from

superclasses in the model are ‘‘copied down’’ into the

XML document, as XML lacks inheritance.
Cross-references
▶ Extensible Markup Language

▶Metamodel

▶Meta Object Facility

▶UML

Recommended Reading
1. Carlson D. Modeling XML Applications with UML. Addison-

Wesley, Reading, MA, 2001.

2. Grose T., Doney G., and Brodsky S. Mastering XMI. Wiley,

New York, 2002.

3. OMG, MOF 2.0/XMI Mapping, version 2.1.1, 2007, http://www.

omg.org/spec/XMI/2.1.1

3598X XML Parsing, SAX/DOM
XML Parsing, SAX/DOM

CHENGKAI LI

University of Texas at Arlington, Arlington, TX, USA

Definition
XML parsing is the process of reading an XML docu-

ment and providing an interface to the user application

for accessing the document. An XML parser is a software

apparatus that accomplishes such tasks. In addition,

most XML parsers check the well-formedness of the

XML document and many can also validate the docu-

ment with respect to a DTD (Document Type Defini-

tion) or XML schema. Through the parsing interface,

the user application can focus on the application logic

itself, without dwelling on the tedious details of XML.

There are mainly two categories of XML program-

ming interfaces, DOM (Document Object Model) and

SAX (Simple API for XML). DOM is a tree-based

interface that models an XML document as a tree of

nodes, upon which the application can search for

nodes, read their information, and update the contents

of the nodes. SAX is an event-driven interface. The

application registers with the parser various event

handlers. As the parser reads an XML document, it

generates events for the encountered nodes and trig-

gers the corresponding event handlers. Recently, there

have been newly proposed XML programming inter-

faces such as pull-based parsing, e.g., StAX (Streaming

API for XML), and data binding, e.g., JAXB (Java

Architecture for XML Binding).

Historical Background
DOM (Document Object Model) was initially used for

modeling HTML (HyperText Markup Language) by

various Web browsers. As inconsistencies existed

among the individual DOM models adopted by

different browsers, inter-operability problems arose

in developing browser-neutral HTML codes. W3C

(World Wide Web Consortium) standardized and

released DOM Level 1 specification on October 1,

1998, with support for both HTML and XML. DOM

Level 2 was released in November 2000 and added

namespace support. The latest specification DOM

Level 3 was released in April 2004.

SAX (Simple API for XML) was developed in late

1997 through the collaboration of several implementers

of early XML parsers and many other members of the
XML-DEV mailing list. The goal was to create a parser-

independent interface so that XML applications can be

developed without being tied to the proprietary API

(Application Programming Interface) of any specific

parser. SAX1 was finalized and released on May 11,

1998. The latest release SAX2, finalized in May 2000,

includes namespace support.

Foundations
XML parsing is the process of reading an XML docu-

ment and providing an interface to the user applica-

tion for accessing the document. An XML parser is a

software apparatus that accomplishes such tasks. In

addition, most XML parsers check the well-formedness

of the XML document and many can also validate the

document with respect to a DTD (Document Type

Definition) [2] or XSD (XML Schema (W3C)) [11].

Through the parsing interface, the user application can

focus on the application logic itself, without dwelling

on the tedious details of XML, such as Unicode sup-

port, namespaces, character references, well-formedness,

and so on.

XML Programming Interfaces

Most XML parsers can be classified into two broad

categories, based on the types of API that they provide

to the user applications for processing XML documents.

Document Object Model (DOM): DOM is a tree-

based interface that models an XML document as a

tree of various nodes such as elements, attributes, texts,

comments, entities, and so on. A DOM parser maps

an XML document into such a tree rooted at a

Document node, upon which the application can

search for nodes, read their information, and update

the contents of the nodes.

Simple API for XML (SAX): SAX is an event-driven

interface. The application receives document informa-

tion from the parser through a ContentHandler

object. It implements various event handlers in the

interface methods in ContentHandler, and registers

the ContentHandler object with the SAX parser. The

parser reads an XML document from the beginning to

the end. When it encounters a node in the document, it

generates an event that triggers the corresponding

event handler for that node. The handler thus applies

the application logic to process the node specifically.

The SAX and DOM interfaces are quite different

and have their respective advantages and disadvan-

tages. In general, DOM is convenient for random

XML Parsing, SAX/DOM X 3599

X

access to arbitrary places in an XML document, can

not only read but also modify the document, although

it may take a significant amount of memory space. To

the contrary, SAX is appropriate for accessing local

information, is much more memory efficient, but

can only read XML.

� DOM is not memory efficient since it has to read

the whole document and keep the entire document

tree in memory. The DOM tree can easily take as

much as ten times the size of the original XML

document [4]. Therefore it is impossible to use

DOM to process very large XML documents, such

as the ones that are bigger than the memory. In

contrast, SAX is memory efficient since the appli-

cation can discard the useless portions of the docu-

ment and only keep the small portion that is of

interests to the application. A SAX parser can

achieve constant memory usage thus easily handle

very large documents.

� SAX is appropriate for streaming applications since

the application can start processing from the begin-

ning, while with DOM interface the application has

to wait till the entire document tree is built before it

can do anything.

� DOM is convenient for complex and random

accesses that require global information of the

XML document, whereas SAX is more suited for

processing local information coming from nodes

that are close to each other. The document tree

provided by DOM contains the entire information

of the document, therefore it allows the application

to perform operations involving any part of the

document. In comparison, SAX provides the docu-

ment information to the application as a series of

events. Therefore it is difficult for the application to

handle global operations across the document. For

such complex operations, the application would

have to build its own data structure to store the

document information. The data structure may

become as complex as the DOM tree.

� Since DOM maintains information of the entire

document, its API allows the application to modify

the document or create a new document, while

SAX can only read a document.

DOM and SAX are the two standard APIs for proces-

sing XML documents. Most major XML parsers sup-

port them. There are also alternative tree-based XML

models that were designed to improve upon DOM,
including JDOM and DOM4J. In addition to DOM

and SAX, other types of APIs for processing XML

documents have emerged recently and are supported

by various parsers. Two examples are pull-based parsing

and Java data binding.

Pull-Based Parsing: Evolving from XMLPULL,

StAX (Streaming API for XML) also works in a

streaming fashion, similar to SAX. Different from

SAX where the parser pushes document informa-

tion to the application, StAX enables the application

to pull information from the parser. This API is

more natural and convenient to the programmer

since the application takes full control in processing

the XML document.

Java Data Binding: A data-binding API provides the

mapping between an XML document and Java classes.

It can construct Java objects from the document (mar-

shalling) or build a document from the objects

(unmarshalling). Accessing and manipulating XML

documents thus become natural and intuitive, since

such operations are performed through the methods

of the objects. The application can thus focus on the

semantics of the data themselves instead of the details

of XML. JAXB (Java Architecture for XML Binding)

is a Java specification based on this idea.

Validating Parsers

In addition to accessingXMLdocuments, another critical

functionality of XMLparsers is to validate the correctness

of the documents. Given that XML is a popular data

model for data representation and exchange over the

Internet, the correctness of XMLdocuments is important

for applications to work properly. It is difficult to let

the application itself handle incorrect documents that

it does not expect. Fortunately, most major XML parsers

have the ability to validate the correctness of XML

documents.

The correctness of an XML document can be defined

at several levels. At the bottom, the document should

follow the syntax rules of XML. Such a document is

called a well-formed document. For example, every

non-empty element in a well-formed document should

have a pair of starting tag and ending tag. Furthermore,

the document should conform to certain semantic

rules defined for the application domain, such as a

‘‘state’’ node containing one and only one ‘‘capi-

tal’’ node. Such semantic rules can be defined by XML

schema specifications such as DTD or XSD (XML Sche-

ma (W3C)). An XML document that complies with a

3600X XML Parsing, SAX/DOM
schema is called a valid document. Finally, the applica-

tion may enforce its own specific semantic rules.

In principle all the parsers are required to perform

mandated checks of well-formedness, although there

are parser implementations that do not. A parser that

checks for the validity of XML documents with respect

to XML schema in addition to their well-formedness is

a validating parser. Schema validation is support by

both DOM and SAX API. Most major XML parsers

are validating parsers, although some may turn off

schema validation by default.

XML Parsing Performance

There are relatively few studies in the literature on

performance of XML parsing. However, as the first

step in every application that takes XML documents

to process, parsing can easily become the bottleneck of

the application performance.

DOM is memory intensive since it has to hold the

entire document tree in memory, making it incapable

in handling very large documents. Therefore, efforts

have been made to improve DOM parser performance

by exploiting lazy XML parsing [7]. The key idea is to

avoid loading unnecessary portions of the XML docu-

ment into the DOM tree. It consists of two stages. The

pre-parsing stage builds a virtual DOM tree and the

progressive parsing stage expands the virtual tree with

concrete contents when they are needed by the appli-

cation. Farfán et al. [3] further extended the idea to

reduce the cost of the pre-parsing stage by partitioning

an XML document, thus only reading a partition into

the DOM tree when it is needed.

Nicola et al. [6] investigated several real-world

XML applications where the performance of SAX par-

sers is a key obstacle to the success of the projects. They

further verified that schema validation can add signifi-

cant overheads, which can sometimes even be several

times more expensive than parsing itself.

Validation often incurs significant processing costs.

One reason for such low efficiency is the division of

parsing and validation steps. In conventional parsers

these two steps are separate this is because validation

often requires the entire document to be in the

memory thus having to wait till the parsing is finished.

Therefore, even for a SAX parser, the advantage of

memory efficiency is lost. To cope with this challenge,

there have been studies on integrating parsing and

validation into a schema-specific parser [1,9,12]. For

example, [1] constructs a push-down automaton to
combine parsing and validation. Van Engelen et al.

[10] uses deterministic finite state automata (DFA) to

integrate them and the DFA is built upon the schema

according to mapping rules. Kostoulas et al. [5] further

applies compilation techniques to optimize such

integrated parsers.

Takase et al. [8] explores a different way to improve

parser performance. It memorizes parsed XML docu-

ments as byte sequences and reuses previous parsing

results when the byte sequence of a new XML docu-

ment partially matches the memorized sequences.

Key Applications
Every XML application has to parse an XML document

before it can access the information in the document

and perform further processing. Therefore, XML pars-

ing is a critical component in XML applications.

URL to Code
List of XML parsing interfaces

DOM, http://www.w3.org/DOM/

JDOM, http://jdom.org/

DOM4J, http://dom4j.org/

SAX, http://www.saxproject.org/

StAX, http://jcp.org/en/jsr/detail?id=173

XMLPULL, http://www.xmlpull.org/

JAXB, http://www.jcp.org/en/jsr/detail?id=222

List of XML parsers

Ælfred, http://saxon.sourceforge.net/aelfred.html

Crimson, http://xml.apache.org/crimson/

Expat, http://expat.sourceforge.net/

JAXP, https://jaxp.dev.java.net/

Libxml2, http://xmlsoft.org/index.html

MSXML, http://msdn.microsoft.com/en-us/li

brary/ms763742.aspx

StAX Reference Implementation (RI), http://stax.

codehaus.org/

Sun’s Stax implementation, https://sjsxp.dev.java.

net/

XDOM, http://www.philo.de/xml/

Xerces, http://xerces.apache.org/

Cross-references
▶XML

▶XML Attribute

▶XML Document

▶XML Element

▶XML Programming

▶XML Schema

XML Programming X 3601
Recommended Reading
1. Chiu K., Govindaraju M., and Bramley R. Investigating

the limits of SOAP performance for scientific computing. In

Proc. 11th IEEE Int. Symp. on High Performance Distributed

Computing, 2002, pp. 246–254.

2. Document Type Declaration, http://www.w3.org/TR/REC-xml/

#dt-doctype

3. Farfán F., Hristidis V., and Rangaswami R. Beyond lazy XML

parsing. In Proc. 18th Int. Conf. Database and Expert Syst.

Appl., 2007, pp. 75–86.

4. Harold E.R. Processing XML with Java(TM): a Guide to SAX,

DOM, JDOM, JAXP, and TrAX. Addison-Wesley, MA,

USA, 2002.

5. Kostoulas M., Matsa M., Mendelsohn N., Perkins E., Heifets A.,

and Mercaldi M. XML screamer: an integrated approach to

high performance XML parsing, validation and deserialization.

In Proc. 15th Int. World Wide Web Conference, 2006,

pp. 93–102.

6. Nicola M. and John J. XML parsing: a threat to database

performance. In Proc. Int. Conf. on Information and knowledge

Management, 2003, pp. 175–178.

7. Noga M., Schott S., and Löwe W. Lazy XML processing. In Proc.

2nd ACM Symp. on Document Engineering, 2002, pp. 88–94.

8. Takase T., Miyashita H., Suzumura T., and Tatsubori M.

An adaptive, fast, and safe XML parser based on byte sequences

memorization. In Proc. 14th Int. World Wide Web Conference,

2005, pp. 692–701.

9. Thompson H. and Tobin R. Using finite state automata

to implement W3C XML schema content model validation

and restriction checking. In Proc. XML Europe, 2003,

pp. 246–254.

10. Van Engelen R. Constructing finite state automata for

high performance XML web services. In Proc. Int. Symp. on

Web Services, 2004, pp. 975–981.

11. XML Schema (W3C), http://www.w3.org/XML/Schema

12. Zhang W. and Van Engelen R. A table-driven streaming XML

parsing methodology for high-performance web services.

In Proc. IEEE Int. Conf. on Web Services, 2006, pp. 197–204.
XML Persistence

▶XML Storage
X

XML Process Definition Language

NATHANIEL PALMER

Workflow Management Coalition, Hingham,

MA, USA

Synonyms
XPDL
Definition
The primary standards body for workflow manage-

ment and business process interoperability.
Key Points
The XML Process Definition Language (XPDL) is a

format standardized by the Workflow Management

Coalition to interchange business process definitions

between different modeling tools, BPM suites, work-

flow engines and other software applications. XPDL

defines a XML schema for specifying the declarative

part of workflow.

XPDL is designed to exchange the process design,

both the graphics and the semantics of a workflow busi-

ness process. XPDL contains elements to hold the X and

Y position of the activity nodes as well as the coordinates

of points along the lines that link those nodes. XPDL

provides the serialization for BPMN. This distinguishes

XPDL from BPEL, which is also a process definition

format, but does not contain elements to represent the

graphical aspects of a process diagram and BPEL focuses

exclusively on the executable aspects of the process.
Cross-references
▶Business Process Execution Language

▶Business Process Modeling Notation

▶Workflow Model

▶Workflow Schema
XML Programming

PETER M. FISCHER

ETH Zurich, Zurich, Switzerland

Synonyms
XML application development

Definition
XML programming [2] covers methods and app-

roaches to process, transform and modify XML data,

often within the scope of a larger application which

uses imperative programming languages. Similar to

database programming, an important issue in XML

programming is the impendence mismatch between

the existing programming models, which are mostly

based on an object-oriented data model and use an

3602X XML Programming
imperative style, and XML programming approaches,

which are based on an XML data model, and apply

various programming styles. A plethora of XML pro-

gramming approaches exists, driven by different usage

patterns of XML in applications. The XML program-

ming approaches can be classified into three areas:

(i) XML APIs to existing languages, (ii) XML exten-

sions of existing programming languages, and (iii)

Native XML processing languages. The varying sets of

XML programming requirements and XML program-

ming approaches make it impossible to declare a

clearly preferable approach. Careful analysis by the

application designer is needed to determine which

technique is best suited for a particular setting.
Historical Background
The need for XML programming arose soon after XML

had been established as a simplified derivative of

SGML, capable of representing any kind of semi-

structured data. Historically, three areas were influen-

tial to shape the directions in XML programming:

� Low-level APIs oriented towards document pars-

ing: XML being regarded as a structured document

format, a popular way to program XML is based on

letting a document parser transform the XML into

some internal structure of the target programming

language, based on concepts of the areas of com-

piler construction. This approach had already been

used for HTML with great success, making DOM

the default API for client-side web programming.

� Document Transformation languages are a second

influence also based on the document nature

of XML. Such languages specify rules to apply

to specific fragments of a document and generate

new document parts out of the matched frag-

ments and modification/creation statements.

A well-known transformation language out of

the SGML world is DSSSL, which is often used

in the context of DocBook for scientific document

processing.

� Database programming: a third influence stems

from treating XML as a generic data representation

format that, in turn, can be maintained and queried

in a similar way as relational data. In database

programming, two different data models (relational/

OO) and two different programming styles (declara-

tive/imperative) need to be reconciled as well. Four

main directions were developed:
1. Call-level interfaces: a literal string of the data-

base language is given as a parameter to a func-

tion of the imperative host language. This

function is used to interface with the DBMS

and returns a result that can be turned into

data types of the host language. Typical exam-

ples of these are ODBC or JDBC.

2. Embedded SQL: the query expressions of the

relational language are embedded in the host

application code, allowing for better type

checking and hiding the details of the actual

interfacing to the DBMS.

3. Automatic mapping layers: instead of modeling

both the application with (usually) object-

oriented methodologies (UML) and the database

with relational methodologies (E/R) and writing

expressions in both the database and the host

language, only the application is modeled and

the code for the application is written. The neces-

sary database schema and the query expressions

to retrieve and insert data into the DBMS are

automatically generated from the application.

The database aspect is hidden and development

is simplified. The drawbacks are the lack of flexi-

bility and often lower performance than with a

separate database design.

4. Procedural extensions to SQL: an inverse ap-

proach to hiding the database is to integrate

the application into the database, thus benefit-

ting from the stability and scalability of the

DBMS environment while exploiting perfor-

mance benefits by being ‘‘close’’ to the data.

For this approach, SQL has been extended

with imperative constructs to enhance its ex-

pressive power (Turing-completeness) and

make the development style more suitable to

general applications. Well-known examples of

such SQL extensions are PL/SQL (Oracle) or

Transact-SQL (Sybase, Microsoft).

Foundations

Specific Requirements of XML Programming

While there are certain similarities to related areas like

database programming (in particular, the impedance

mismatch), XML programming has its own special set

of requirements and challenges, which can be traced

back to two specific areas: (i) the advantages and

deficiencies of XML as data and programming model,

XML Programming X 3603

X

and the resulting differences to other, established pro-

gramming methodologies, and (ii) the widely varying

and non-uniform use of XML in terms of usage and

operations.

Conceptual Aspects of XML

XML has a clear set of advantages that set it apart from

other approaches used to represent data, and led to its

rapid acceptance.

Adetermining factor of the success of XML has been

the independence from particular vendors and plat-

forms. This advantage has been further strengthened

by a large number of high-quality tools for XML tech-

nologies that are often available under permissive

licenses, making the integration of XML technology

into existing or new applications easy. As a result,

knowledge about XML and related technologies is

available freely.

The XML syntax is both human readable and ma-

chine readable, avoiding problems that occur if a format

is only specialized for one way of interpretation, such as

unstructured text or complex binary encodings.

XML is not just a document format, but includes

methods and technologies for metadata description,

RPC, workflow management, declarative querying, se-

curity, document processing and many more. These

technologies and methods cover a large part of the

required features for application development and en-

sure high interoperability not just among the classes of

XML technology, but also among the applications

building on them.

From a data and application design point of view,

XML provides a number of benefits that make it a good

choice over competing approaches: in contrast to rela-

tional or object-oriented approaches, data and its in-

terpretation are decoupled. This decoupling allows

writing code that works on schema-less data, but

does not prohibit adding schema when needed. Work-

ing with schema-less data is particularly helpful to

shorten time-to-market times when building new

applications, as the time-consuming and tedious sche-

ma design phase can be shortened. Similarly, it is

helping with long-lived data (common in many busi-

ness settings) where the code is already outdated, but

the data will still be needed for new applications. The

benefit of not being forced to have a schema is being

further enhanced by the fact that the semi-structured

model of XML allows representing a large spectrum of

data ‘‘shapes,’’ reaching from unstructured data like
annotated text to highly structured data like a relation-

al table. The XML syntax and data models are not

limited to represent data, but are also used to represent

metadata and code, allowing uniform management

and modifications.

XML, however, does have limitations that reduce

its usefulness for certain applications: many standar-

dization efforts, as well as many development efforts,

follow a bottom-up approach by defining small enti-

ties with low complexity. While this approach ensures

that the individual standards and components are

easy to understand and use, a combination of stan-

dards or components does not always cover all re-

quired aspects, thus leaving room for interpretation

and incompatibility. A more serious conceptual prob-

lem is the limitation of the data model towards tree

structures, making it difficult to express arbitrary

graph structures or N:M relations. This issue is

being aggravated because there is not a commonly

accepted way to specify references in XML data. An-

other important deficiency is the lack of standard

design methodology. UML and Entity-Relationship-

Modeling have greatly helped to establish the con-

cepts of object-oriented and relational technologies,

respectively. By using them, modeling and developing

applications are greatly simplified.

While not being a deficiency of XML per se, the

mismatch between XML concepts and programming-

language/database concepts complicates the use of

XML and makes programming for it more difficult:

since the data model of XML is neither object-based

nor relational, translation needs to be done from and

to XML, keeping it outside the usual type system and

program analysis of the existing environments. The

ability of XML to both work without any schema and

represent many shapes of data makes direct mapping

of arbitrary XML instances to a strict object-based

structure (or to relational schema) often impossible,

forcing the use of generic and less useable APIs. The

object-oriented approach of hiding the data and bind-

ing the methods tightly to this data are juxtaposed to

the nature of XML where data are explicitly exposed

and accessible to many different methods.

Differences in XML Usage

The second main issue in programming is the wide

variety of ways in which XML is used. This usage

includes the type of content that an XML instance repre-

sents, the operations that are performed on the data and

3604X XML Programming
some non-functional properties that have an impact on

the processing such as size, structure, persistence etc.

XML is used to represent a large number of differ-

ent types of content, each leading to different functional

requirements, favoring specific approaches for XML

programming.

The first, and currently most popular, class of using

XML is as a document storage format. Typical examples

are XHTML, office documents (OOXML, ODF), and

graphics formats (SVG). These files are usually used

to be presented in a human readable format by

an application, transformed into another document

format, modified and stored again. A second class is

database content, either in forms of document collec-

tions or representing complex data in XML format.

Here, the focus is on maintaining a large data set of

XML and being able to successfully retrieve matching

data. A third class is about program code,metadata and

configuration data, where XML is used to determine

the behavior of a data processing system. A fourth class

is to use it as a communication format, in cases such as

SOAP, or REST, putting the focus of transferring data

or state in a loosely coupled, yet efficient way from one

system to the other. A fifth and upcoming class is to use

XML for log files, event streams or scientific data

streams, requiring the analysis of the data by correlat-

ing data or detecting event patterns.

On these types of content, different operations are

performed, which in turn are better supported by

certain XML programming approaches: Next to the

complete retrieval of the XML content, limited or

full-scale query operations such as filtering/selection,

projection or the joins are common operations.

A typical operation for many scenarios is also the

creation of new XML data. Updating existing XML

data is common in database settings, document man-

agement, code and metadata. More specialized opera-

tions are full text search, relevant for document

collections and databases and trigger processing and

event generation, which are commonly used either in

databases or data streams.

In addition to the types of content and the opera-

tions, a number of non-functional properties have an

impact on which XML programming approach to use

in particular scenarios. Having large volumes of XML

requires an approach that supports the relevant tech-

nologies for scaling well, but for small volumes such an

approach might be too heavyweight. Similarly, dealing

with persistent data requires different, more elaborate
approaches if only temporary data are used. Using very

structured data allows different optimization in storage

and processing of XML than using unstructured data,

since implementation techniques out of either rela-

tional databases or text processing are more appropri-

ate. Again, different XML programming approaches

are better suited for one or the other. Similarly, some

approaches can deal better with data that is read only,

append only or freely updateable.

Additional Classification Criteria

Next to the criteria that come from the basic properties

of XML and the variety of the XML usage scenarios,

there are additional classification criteria that – in the

widest sense – are concerned with architecture, ‘‘user

experience’’ of the approaches, typing, compatibility

and performance.

The integration of XML processing into the architec-

ture of an application is an important aspect of an

XML programming approach. The traditional ap-

proach is to use XML just as the input and/or seriali-

zation format and leave the architecture of the

application unaffected. A second, more disruptive but

also more powerful approach, is to use an XML type

inside the type system of the host programming lan-

guage. This type is usually also augmented by more or

less powerful expressions that work on it. The third,

and most intrusive approach, is to use an XML data

model and a native XML expression language through-

out the whole application. These three approaches

show an increasing amount of disruptiveness, forcing

developers and architects to give up on the existing

knowledge on application development. On the other

hand, the three approaches also show an increasing

ability to utilize the advantages of XML, such as

schema-less processing while reducing the impedance

mismatch between the XMLworld and the application.

The first approach allows a programmer to have high

productivity quickly, since existing programming

knowledge can be re-used, but on the long run the

complications of dealing with the impedance mis-

match in this approach make the second and the

third approach a more compelling option. Compliance

to W3C standards is important when interoperating

with other XML-based applications, but certain stan-

dards, such as XML Schema, can add a significant

amount of complexity to an approach. Closely related

are the aspects of the XML data model (e.g., Infoset,

XDM, proprietary), type support for the XML data

XML Programming X 3605

X

(general node types versus full schema types) and the

support for static type analysis, because an extended

XML type support adds complexity to an API, but

allows for more strict correctness checking and better

optimizations. Important aspects of the acceptance of

an XML programming approach are performance and

optimizability. Low-level approaches that are not deeply

integrated into the architecture tend to have the best

performance on the short run, as developers can choose

their access pattern on the data and optimize a program

written in a language they are familiar with. On the long

run, declarative solutions with a uniform data and ex-

pressionmodel and strong typing support hold themost

promise, as they can shift the burden of optimizing from

the programmer to optimizers built into the system.

Approaches to XML Programming

A large number of approaches to develop XML-based

applications exist, they are influenced by document

processing and database programming methods. In

this section, the approaches are clustered along the

amount of change to the architecture and program-

ming style they require compared to object-oriented/

imperative programming: when making a decision on

a specific approach to use, the main trade-off is

how much of the XML advantages should/need to be

used compared to the disruption caused by moving

away from the well-known application development

environments.

The three main classes of approaches are XML

interfaces to existing languages, XML extensions to

existing languages and XML-oriented/native XML

programming languages.

The first class, interfaces to existing languages, pro-

vides methods to maintain all of the program logic and

complexity inside the established imperative/object-

oriented languages. XML is treated like any other

source of outside data by limiting its impact to an

adaptation layer/API and representing XML as

instances of the native, non-extended type system,

e.g., as tree of node objects. By doing so, the impact

on existing programming models is kept low, but at the

cost of either having very generic APIs with low pro-

ductivity or limited flexibility. The impedance mis-

match in the data model and the expressions as well

as the purely imperative programming style limits the

possibilities for optimization.

This first class can further be broken down into

two subclasses, generic XML-oriented APIs and
schema-driven code generation. Generic XML-oriented

APIs do not require any knowledge of the particular

structure of an XML instance, thus representing XML

as generic, low-level objects in the host language such as

trees of nodes, event sequences or node item sequences.

The majority of these APIs provide low level, parser-

oriented programming interfaces such as DOM, SAX

and StaX. They support a limited set of querying opera-

tions such as selection or projection, the creation of

new XML and updates to existing XML; anymore high-

level functionality needs to be implemented in the

imperative language. This allows for a large amount of

generality and possibly high performance, since access

and processing can be tailored to the needs of a specific

application. This advantage, however, comes at a high

price: the generic and low-level nature of the APIs cause

low developer productivity. There also exist call-level

interfaces to XML-oriented programming languages or

database system such as XQJ, which allow shifting/

moving of some XML-oriented operations outside the

imperative program. This frees the developer from low-

level work, but requires learning and understanding of

a separate expression language with a different data

model and different semantics.

Schema-driven code generation increases the ab-

straction level and developer productivity by automat-

ically creating high-level host programming language

objects representing specific, typed XML, e.g., by turn-

ing an XML item representing ‘‘person’’ data into a

person object. This object can then be accessed and

manipulated by the methods the object exposes, e.g., a

method to get the name of a person. By doing so, the

level of abstraction is increased, developers do not

need to learn many details about XML and can stay

within their well-understood object-oriented/impera-

tive world, all leading to higher productivity. Schema

knowledge (e.g., DTD, XML schema or an ad-hoc

format) is needed to perform this automatic code

generation, restricting this approach to scenarios

where the XML instances are highly structured and

this structure information is known in advance. This

limits the flexibility of the code generation approach,

as it reduces XML to a representation format of host

language objects. Well-known examples of such code-

generation approaches are XML Beans or JAXB.

The second class of XML programming app-

roaches, XML extensions to existing programming

languages, still maintains all the logic and complex

application code in the imperative/OO programming

3606X XML Programming
language, but extends the host language to represent

XML as a first-class data type of this language. This

extension of the type system is often accompanied by

expressions that work on that new type, which can

range from accessor methods to (limited) declarative

querying possibilities. The XML type system support

is often aligned with the properties of the host lan-

guage type system, thus reducing the mismatch,

but also limiting the compatibility with W3C stan-

dards (e.g., XML Schema not being implemented).

The tighter integration with the host programming

language increases programmer productivity, without

restricting the flexibility as much as schema-driven

code generation.

This second class can again be broken down into

subclasses: XML as a native programming language

type, XML as a native ORDBMS database type and

query capabilities inside the programming language.

Adopting XML as a native programming language

data type is an approach that has been taken especially

by web-oriented programming languages such as Java-

script/Ecmascript and PHP, because using XML inter-

faces was not considered sufficient any more. XML is

a first-rate data type that can be constructed inside

the program or read from a file. Instances of this

XML data type can be accessed by functions that in-

corporate a subset of path navigation with a syntax that

resembles the access to a field or a class member, e.g.,

x.balance to access the balance child of the XML
variable x in XML extension of Javascript, E4X. While
the mismatch to the host language is being reduced,
a mismatch to W3C XML standards is often created.
The imperative nature of the languages often limits the
optimizability.

Using XML as native DB data type tries to achieve

similar effects in the relational/object-relation database

scenario, since there also exist impedance mismatches

between the relational space and the XML space. Add-

ing XML as a column type provides one possible solu-

tion to store XML in relational database system. On the

language side, SQL/XML [3] blends SQL (as a relational

query language) with XQuery as an XML query lan-

guage by providing methods to map from one data

model to the other, and embed XQuery expressions

into SQL. This approach takes advantage of the

DBMS infrastructure including triggers, transactional

support, scalability, clustering, and reliability. Since

both languages are declarative and there is mapping

between the data models, global optimization over
both XML and relational expression is possible. SQL/

XML is supported by the major database vendors,

making it well-known and providing good tool sup-

port and documentation. The drawbacks include the

high overhead of loading all the XML data into the

database, which is not useful for temporary XML or

small volumes of data, and the complexity and cost of

running a database server. The combination of two

different query languages with different syntax, se-

mantics and data models hinders the productivity of

developers.

Adding query capabilities inside existing imperative

language takes imperative languages a step closer to the

database and increases the productivity, flexibility and

optimizability of an existing programming language.

The most prominent example of including such cap-

abilities is the LinQ extension of the Microsoft .NET

framework, which is based on the COmega research

prototype [4]. On top of XML data type extensions

and basic accessors eventwell (as described in the pre-

vious cases) and similar extension for relation data,

LinQ provides query capabilities over all supported

data models. These query capabilities come in the

form of explicit query operators similar to relational

algebra including collection-oriented selection and

projection, joins, grouping etc., that work on all data

types. On top of these operations, LinQ provides de-

clarative queries similar in style to the SQL Select-

From-Where. LinQ provides a good integration of

the different data models and with the rest of the

language, including the libraries, and yields a high

productivity for developers familiar with .NET. Signif-

icant drawbacks are the lack of support for typed XML,

the limited scope of static analysis, and the dominance

of imperative constructs in the language, making data-

base-style optimizations like lazy evaluation, streaming

and indexing hard to do automatically.

The third class, XML-oriented programming lan-

guages, handles all application logic in an environment

that is based purely on an XML data model and expres-

sions working on this data model. Doing so represents

a significant disruption from conventional languages,

including giving up existing tools and design

approaches. Compliance to W3C standard is high as is

productivity related to XML processing. Many of these

languages are, however, not designed to be general-

purpose programming languages, lacking libraries and

support for areas like GUI programming or numerical

computations.

XML Programming X 3607

X

This third class can again be split into three sub-

classes: domain-specific languages, expression lan-

guages with an XML type system, and XML scripting.

Domain-specific languages utilize XML types and

expression for a specific task that is often related to

one particular use of XML. Clearly, such a language

only works well within its intended design domain, but

the close match to XML technologies and the restric-

tion to relevant concepts facilitate high productivity.

A very prominent example is BPEL, a workflow des-

cription language with XML syntax, which is used to

‘‘orchestrate’’ Web Services. It is transparent/agnostic

to the actual XML data model, query language and

expression language by just focusing on the control

flow expressions needed in workflow environments. It

provides a high abstraction level and many useful con-

cepts needed in workflow environment. The separation

of control flow and the actual expressions restricts the

optimizability even in its intended domain.

Languages with an XMLType System are designed to

handle operations on XML data in the most useable

and efficient way, but not as general programming

languages. The best known languages are XPath 2.0,

XSLT 2.0 and XQuery. All of these languages work with

a consistent data model (XDM) and provide high

compliance to other W3C standards. The operations

covered-include querying XML instances, construction

of new XML instances (XQuery+XSLT), updating

existing XML instances (XQuery) and full text search

(XQuery). XSLT carries an XML syntax and uses a

recursive pattern approach of document transforma-

tion language. It works best for small volumes of tem-

porary XML data that are of unknown structure.

XQuery uses a declarative style based in iterations

and support for static type analysis. It works well for

structured data and provides the facilities for good

optimizability. Implementations exist for persistent

and temporary data, large and small volumes of data

in database systems, and as stand-alone expression

engines. XML Scripting languages represent a recent

development where a declarative XML type language

(often XQuery) is extended with imperative con-

structs. The goal is to gain usability and a certain

level of expressiveness by allowing (limited) side effects

while still maintaining optimizability. Such a language

could be used for at all tiers of XML software stacking,

proving the potential for a truly XML-only application

development. Major challenges in the long run will be

developer acceptance and the building of good
compilers/optimizers to actually achieve the potential

performance benefits. Compared to imperative lan-

guages with query capabilities, the chances for opti-

mizability are better, since the starting point is already

well optimizable language. The most prominent exam-

ple of such an XML scripting language is [1].

Key Applications
XML programming is relevant for almost all usage

scenarios of XML that go beyond simple storage and

retrieval. The large variety of use cases for XML is

reflected in the different requirements for XML pro-

gramming. A very common case is web application

programming, where the browser, as the client layer,

and the database server layer both contain and manipu-

late XML data. Web services, as a way of loosely cou-

pling applications via XML messages, have become

popular for information and application integration.

An area in between these two use cases are mashups,

were data and services from different sources are com-

bined to form new applications.

Future Directions
A promising future direction is the integration of con-

tinuous/streaming XML data in the ‘‘regular’’ program-

ming environments. Many data stream sources already

produce their data as XML, and this data needs to be

combined with other streaming or static data. Semantic

querying, which is now handled using RDF/OWL, can

be brought towards more standard XML programming

models, thus enabling more effective ways for data

integration. The interaction between XML integrity

constraints and programming will becomemore impor-

tant, as reasoning over programs and data (including

verification) will improve the quality of applications.

Automatic maintenance of a well-defined state (similar

to relational integrity constraints in RDBMSs) will sim-

plify programming XML applications in data-intensive

environments. Native XML languages have the potential

to change the architecture for many data-intensive

applications which currently are built in a multi-tier

fashion. Using the same data model and expressions

allows-collapsing layers/tiers when needed, setting the

main direction of partitioning not along the tiers, but

along services and their respective data.

Cross-references
▶Active XML

▶AJAX

▶Composed Services and WS-BPEL

3608X XML Publish/Subscribe
▶ Entity Relationship Model

▶ Java Database Connectivity

▶Open Database Connectivity

▶ SOAP

▶Unified Modeling Language

▶W3C

▶Web Services

▶XML

▶XML Information Integration

▶XML Integrity Constraints

▶XML Parsing, SAX/DOM

▶XML Process Definition Language

▶XML Schema

▶XML Stream Processing

▶XPath/XQuery

▶XQuery Full-Text

▶XQuery Processors

▶XSL/XSLT
Recommended Reading
1. Chamberlin D., CareyM.J., FernandezM., Florescu D., Ghelli G.,

Kossmann D., Robie J., and Simeon J. XQueryP: an XML appli-

cation development language. In Proc. XML 2006 Conference.

2006.

2. Florescu D. and Kossmann D. Programming for XML. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2006,

p. 801.

3. Funderburk J.E., Malaika S., and Reinwald B. XML program-

ming with SQL/XML and XQuery. IBM Syst. J., 41(4):642–665,

2002.

4. Meijer E., Schulte W., and Bierman G. Unifying tables, objects

and documents. In Proc. Workshop on Declarative Program-

ming in the Context of Languages, 2003.
XML Publish/Subscribe

YANLEI DIAO
1, MICHAEL J. FRANKLIN

2

1University of Massachusetts Amherst, MA, USA
2University of California-Berkeley, Berkeley, CA, USA

Synonyms
Selective XML dissemination; XML filtering; XML

message brokering

Definition
As stated in the entry ‘‘Publish/Subscribe over

Streams,’’ publish/subscribe (pub/sub) is a many-to-

many communication model that directs the flow of
messages from senders to receivers based on receivers’

data interests. In this model, publishers (i.e., senders)

generate messages without knowing their receivers;

subscribers (who are potential receivers) express their

data interests, and are subsequently notified of the

messages from a variety of publishers that match

their interests.

XML publish/subscribe is a publish/subscribe

model in which messages are encoded in XML and

subscriptions are written in an XML query language

such as a subset of XQuery 1.0. (In the context of XML

pub/sub, ‘‘messages’’ and ‘‘documents’’ are often used

exchangeably.)

In XML-based pub/sub systems, the message bro-

kers that serve as central exchange points between

publishers and subscribers are called XML message

brokers.
Historical Background
As described in ‘‘Publish/Subscribe over Streams,’’ XML

pub/sub has emerged as a solution for loose coupling of

disparate systems at both the communication and con-

tent levels. At the communication level, pub/sub enables

loose coupling of senders and receivers based on the

receivers’ data interests. With respect to content, XML

can be used to encode data in a generic format that

senders and receivers agree upon due to its flexible,

extensible, and self-describing nature; this way, senders

and receivers can exchange data without knowing the

data representation in individual systems.

Foundations
XML pub/sub raises many technical challenges due to

the requirements of large-scale publish/subscribe (as

described in the entry ‘‘Publish/Subscribe over Streams’’),

the volume of XML data, and the complexity of XML

processing. Among all, two challenges are highlighted

below:

� XML stream processing. In XML-based pub/sub

systems, XML data continuously arrives from ex-

ternal sources, and user subscriptions, stored as

continuous queries in a message broker, are evalu-

ated every time when a new data item is received.

Such XML query processing is referred to as

stream-based. In cases where incoming messages

are large, stream-based processing also needs to

start before the messages are completely received

in order to reduce the delay in producing results.

XML Publish/Subscribe X 3609

X

� Handling simultaneous XML queries. Compared to

XML stream systems, a distinguishing aspect of

XML pub/sub systems lies in the size of their query

populations. All the queries stored in an XML mes-

sage broker are simultaneously active and need to be

matched efficiently with each incoming XML mes-

sage. While multi-query processing has been studied

for relational databases and relational streams, the

complexity of XML processing, including structure

matching, predicate evaluation, and transformation,

requires new techniques for efficient multi-query

processing in this new context.

Foundation of XML Stream Processing for

Publish/Subscribe

Event-based parsing. Since XML messages can be used

to encode data of immense sizes (e.g., the equivalent of

a database’s worth of data), efficient query processing

requires fine-grained processing upon arrival of small

constituent pieces of XML data. Such fine-grained

XML query processing can be implemented via an

event-based API. A well known example is the SAX

interface that reports low-level parsing events incre-

mentally to the calling application. Figure 1 shows an

example of how a SAX interface breaks down the

structure of the sample XML document into a linear

sequence of events. ‘‘Start document’’ and ‘‘end docu-

ment’’ events mark the beginning and the end of the

parse of a document. A ‘‘start element’’ event carries

information such as the name of the element and its

attributes. A ‘‘characters’’ event reports a text string

residing between two XML tags. An ‘‘end element’’

event corresponds to an earlier ‘‘start element’’ event

and marks the close of that element. To use the SAX

interface, the application receiving the events must

implement handlers to respond to different events. In

particular, stream-based XML processors can use these

handlers to implement event-driven processing.

An automata-based approach. A popular approach

to event-driven XML query processing is to adopt

some form of finite automaton to represent path

expressions [1,13]. This approach is based on the ob-

servation that a path expression (a small, common

subset of XQuery) written using the axes (‘‘/,’’ ‘‘//’’)

and node tests (element name or ‘‘*’’) can be trans-

formed into a regular expression. Thus, there exists a

finite automaton that accepts the language described

by such a path expression [11]. Such an automaton can

be created by mapping the location steps of the path
expression to the automaton states. Figure 2 shows an

example automaton created for a simple path expres-

sion, where the two concentric circles represent the

accepting state. When arriving, XML messages are

parsed with an event-based parser, the events raised

during parsing are used to drive the execution of the

automaton. In particular, ‘‘start element’’ events drive

the automaton through its various transitions, and

‘‘end element’’ events cause the execution to backtrack

to the previous states. A path expression is said to

match a message if during parsing, the accepting state

for that path is reached.

XML Filtering

In XML filtering systems, user queries are written using

path expressions that can specify constraints over both

structure and content of XML messages. These queries

are applied to individual messages (hence, stateless

processing). Query answers are ‘‘yes’’ or ‘‘no’’ –

computing only Boolean results in XML filtering

avoids complex issues of XML query processing related

to multiple matches such as ordering and duplicates,

hence enabling simplified, high-performance query

processing.

XFilter [1], the earliest XML filtering system, con-

siders matching of the structure of path expressions and

explores indexing for efficient filtering. It builds a dy-

namic index over the queries and uses the parsing events

of a document to probe the query index. This approach

quickly results in a smaller set of queries that can be

potentially matched by a message, hence avoiding pro-

cessing queries for which the message is irrelevant. Built

over the states of query automata, the dynamic index

identifies the states that the execution of these automata

is attempting to match at a particular moment. The

content of the index constantly changes as parsing

events drive the execution of the automata.

YFilter [4] significantly improves over XFilter in

two aspects. By creating a separate automaton per

query, XFilter can perform redundant work when sig-

nificant commonalities exist among queries. Based on

this insight, YFilter supports sharing in processing by

using a combined automaton to represent all path

expressions; this automaton naturally supports shared

representation of all common prefixes among path

expressions. Furthermore, the combined automaton

is implemented as aNondeterministic Finite Automaton

(NFA) with two practical advantages: i) a relatively

small number of states required to represent even

XML Publish/Subscribe. Figure 1. An example XML document and results of SAX parsing.

XML Publish/Subscribe. Figure 2. A path expression and

its corresponding finite automaton.

3610X XML Publish/Subscribe
large numbers of path expressions and complex queries

(e.g., with multiple wildcards ‘‘*’’ and descendent axes

‘‘//’’), and ii) incremental maintenance of the automa-

ton upon query updates. Results of YFilter show that

its shared path matching approach can offer order-of-

magnitude performance improvements over XFilter

while requiring only a small maintenance cost.

Structure matching that XFilter considers is one

part of the XML filtering problem; another significant

part is the evaluation of predicates that are applied to

path expressions (e.g., addressing attributes of ele-

ments, text data of elements, or even other path expres-

sions) for additional filtering. Since shared structure

matching has been shown to be crucial for perfor-

mance, YFilter supports predicate evaluation using

post-processing of path matches after shared structuring

matching, and further leverages relational processing

in such post-processing.

Figure 3 shows two example queries and their repre-

sentation in YFilter. Q1 contains a root element ‘‘/nitf ’’

with two nested paths applied to it. YFilter decom-

poses the query into two linear paths ‘‘/nitf/head/

pubdata[@edition.area=‘‘SF’’],’’ and ‘‘/nitf//tobject.sub-

ject[@tobject.subject.type =‘‘Stock’’].’’ The structural

part of these paths is represented using the NFA with

the common prefix ‘‘/nitf ’’ shared between the paths.

The accepting states of these paths are state 4 and state 6,

where the network of operators (represented as boxes)

for the remainder of Q1 starts. At the bottom of the

network, there is a selection (s) operator above each

accepting state to handle the value-based predicate in the

corresponding path. To handle the correlation between
the two paths (e.g., the requirement that it should be the

same ‘‘nitf ’’ element that makes these two paths evaluate

to true), YFilter applies a join (. /) operator after the

two selections. Q2 is similar to Q1 and hence shares a

significant portion of its representation with Q1.

Index-Filter [2] builds indexes over both queries

and streaming data. The index over data speeds up the

processing of large documents while its construction

overhead may penalize the processing of small ones.

Results of a comparison between Index-Filter and YFil-

ter show that Index-Filter works better when the num-

ber of queries is small or the XML document is large,

whereas YFilter’s approach is more effective for large

numbers of queries and short documents.

XMLTK [8] converts YFilter’s NFA to a Determin-

istic Finite Automaton (DFA) to further improve the

filtering speed. A straightforward conversion could

theoretically result in severe scalability problems due

to an explosion in the number of states. This work,

however, shows that such explosion can be avoided in

many cases by using lazy construction of the DFA and

placing certain restrictions on the types of documents

and queries supported (when suitable for the appli-

cation). XPush [9] further explores a pushdown

XML Publish/Subscribe X 3611
automaton for shared processing of both structure and

value-based constraints. Such an automaton can pro-

vide high efficiency when wildcard (‘‘*’’) and descen-

dant (‘‘//’’) operators are rare in queries and periodic

reconstruction of the automaton can be used.

FiST [14] views path expressions with predicates as

twig patterns and considers ordered twig pattern match-

ing. For such ordered patterns, it transforms the patterns

aswell as XMLdocuments intro sequences using Prufer’s

method. This approach allows holistic matching of or-

dered twig patterns, as opposed to matching individual

paths and then merging their matches during post-

processing in YFilter (which works for both ordered

and unordered patterns), resulting in significant perfor-

mance improvements over YFilter.

XML Filtering and Transformation

XML filtering solutions presented above have not

addressed the transformation of XML messages for

customized result delivery, which is an important fea-

ture in XML-based data exchange and dissemination.

For XML transformation, queries are written using a

richer subset of XQuery, e.g., the For-Where-Return

expressions.

To support efficient transformation for many

simultaneous queries, YFilter [5] further extends its

NFA-based framework and develops alternatives for

building transformation functionality on top of

shared path matching. It explores the tradeoff be-

tween shared path matching and post-processing for

result customization, by varying the extent to which
XML Publish/Subscribe. Figure 3. Example queries and thei
they push paths from the For-Where-Return expres-

sions into the shared path matching engine. To further

reduce the remarkable cost of post-processing of indi-

vidual queries, it employs provably correct optimiza-

tions based on query and DTD (if available) inspection

to eliminate unnecessary operations and choose more

efficient operator implementations for post-processing.

Moreover, it provides techniques for also sharing post-

processing across multiple queries, similar to those in

continuous query processing over relational streams.

Stateful XML Publish/Subscribe

In [10], efficient processing of large numbers of con-

tinuous inter-document queries over XML Streams

(hence, stateful processing) is addressed. The key idea

that it exploits is to dissert query specifications into

tree patterns evaluated within individual documents

and value-based joins preformed across documents.

While employing existing path evaluation techniques

(e.g., YFilter) for tree pattern evaluation, it proposes a

scalable join processor that leverages relational joins

and view materialization to share join processing

among queries.

XML Routing

As described in ‘‘publish/subscriber over streams’’

distributed pub/sub systems need to efficiently route

messages from their publishing sites to the brokers

hosting relevant queries for complete query processing.

While the concept of content-based routing and many

architectural solutions can be applied in XML-based
r representation in YFilter.

X

3612X XML Publish/Subscribe
pub/sub systems, routing of XML messages raises ad-

ditional challenges due to the increased complexity of

XML query processing.

Aggregating user subscriptions into compact rout-

ing specifications is a core problem in XML routing.

Chan et al. [3] aggregate tree pattern subscriptions

into a smaller set of generalized tree patterns such that

(i) a given space constraint on the total size of the

subscriptions is met, and (ii) the loss in precision (due

to aggregation) during document filtering is minimized

(i.e., a constrained optimization problem). The solution

employs tree-pattern containment and minimization

algorithms and makes effective use of document-

distribution statistics to compute a precise set of aggre-

gate tree patterns within the allotted space budget.

ONYX [6] leverages YFilter technology for efficient

routing of XML messages. While subscriptions can be

written using For-Where-Return expressions, the rout-

ing specification for each output link at a broker con-

sists of a disjunctive normal form (DNF) of absolute

linear path expressions, which generalizes the subscrip-

tions reachable from that link while avoiding expensive

path operations. These routing specifications can be

efficiently evaluated using YFilter, even with some

work shared with complete query processing at the

same broker. To boost the effectiveness of routing,

ONYX also partitions the XQuery-based subscriptions

among brokers based on exclusiveness of data interests.

Gong et al. [7] introduce Bloom filters into XML

routing. The proposed approach takes a path query as a

string and maps all query strings into a Bloom filter

using hash functions. The routing table is comprised

of multiple Bloom filters. Each incoming XML message

is parsed into a set of candidate paths that are mapped

using the same hash functions to compare with the

routing table. This approach can filter XML messages

efficiently with relatively small numbers of false posi-

tives. Its benefits in efficiency and routing table main-

tenance are significant when the number of queries

is large.

Key Applications
Personalized News Delivery. News providers are adopt-

ing XML-based formats (e.g., News Industry Text For-

mat [12]) to publish news articles online. Given

articles marked up with XML tags, a pub/sub-based

news delivery service allows users to express a wide

variety of interests as well as to specify which portions

of the relevant articles (e.g., title and abstract only)
should be returned. Really Simple Syndication (RSS)

provides similar yet simpler services based on URL-

and/or keyword-based preferences.

Application Integration. XML publish/subscribe has

been widely used to integrate disparate, independently-

developed applications into new services. Messages ex-

changed between applications (e.g., purchase orders and

invoices) are encoded in a generic XML format. Senders

publish messages in this format. Receivers subscribe

with specifications on the relevant messages and the

transformation of relevant messages into an internal

data format for further processing.

Mobile services. In mobile applications, clients run a

multitude of operating systems and can be located

anywhere. Information exchange between information

providers and a huge, dynamic collection of heteroge-

neous clients has to rely on open, XML-based technol-

ogies and can be further facilitated by pub/sub

technology including filtering and transformation for

adaptation to wireless devices.

Data Sets
XML data repository at University of Washington,

http://www.cs.washington.edu/research/xmldatasets/

and Niagara experimental data, http://www.cs.wisc.

edu/niagara/data.html.

URL to Code
YFilter is an XML filtering engine that processes simul-

taneous queries (written in a subset of XPath 1.0)

against streaming XML messages in a shared fashion.

For each XML message, it returns a result for every

matched query (http://yfilter.cs.umass.edu/).

ToXgene is a template-based generator for large,

consistent collections of synthetic XML documents

(http://www.cs.toronto.edu/tox/toxgene/).

XMark is an XQuery benchmark suite to analyze

the capabilities of an XML database (http://www.xml-

benchmark.org/).

Cross-references
▶Continuous Queries

▶ Publish/Subscribe Over Streams

▶XML

▶XML Document

▶XML Parsing

▶XML Schema

▶XML Stream Processing

▶XPath/XQuery

XML Publishing X 3613
Recommended Reading
1. Altinel M. and Franklin M.J. Efficient filtering of XML docu-

ments for selective dissemination of information. In Proc. 26th

Int. Conf. on Very Large Data Bases, 2000, pp. 53–64.

2. Bruno N., Gravano L., Doudas N., and Srivastava D. Navigation-

vs. Index-based XML Multi-query processing. In Proc. 19th Int.

Conf. on Data Engineering, 2003, pp. 139–150.

3. Chan C.Y., FanW., Felber P., Garofalakis M.N., and Rastogi R. Tree

pattern aggregation for scalable XML data dissemination. In Proc.

28th Int. Conf. on Very Large Data Bases, 2002, pp. 826–837.

4. Diao Y., Altinel M., Zhang H., Franklin M.J., and Fischer P.M.

Path sharing and predicate evaluation for high-performance

XML filtering. ACM Trans. Database Syst., 28, (4)467–516, 2003.

5. Diao Y. and Franklin M.J. Query processing for high-volume

XML message brokering. In Proc. 29th Int. Conf. on Very Large

Data Bases, 2003, pp. 261–272.

6. Diao Y., Rizvi S., and Franklin M.J. Towards an Internet-Scale

XML dissemination service. In Proc. 30th Int. Conf. on Very

Large Data Bases, 2004, pp. 612–623.

7. Gong X., Qian W., Yan Y., and Zhou A. Bloom filter-based XML

packets filtering for millions of path queries. In Proc. 21st Int.

Conf. on Data Engineering, 2005, pp. 890–901.

8. Green T.J., Gupta A., Miklau G., Onizuka M., Suciu D. Proces-

sing XML streams with deterministic automata and stream

indexes. ACM Trans. Databases, 29(4):752–788, 2004.

9. Gupta A.K. and Suciu D. Streaming processing of XPath queries

with predicates. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2003, pp. 419–430.

10. Hong M., Demers A.J., Gehrke J., Koch C., Riedewald M., and

White W.M. Massively multi-query join processing in publish/

subscribe systems. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 2007, pp. 761–772.

11. Hopcroft J.E. and Ullman J.D. Introduction to Automata

Theory, Languages and Computation. Addition-Wesley, Boston,

MA, 1979.

12. Internal Press Telecommunications Council. News Industry Text

Format. Available online at: http://www.nitf.org/, 2004.

13. Ives Z.G., Halevy and A.Y., Weld D.S. An XML query engine for

network-bound data. VLDB J., 11(4): 380–402, 2002.

14. Kwon J., Rao P., Moon B., and Lee S. FiST: scalable XML

document filtering by sequencing twig patterns. In Proc. 31st

Int. Conf. on Very Large Data Bases, 2005, pp. 217–228.
X

XML Publishing

ZACHARY IVES

University of Pennsylvania, Philadelphia, PA, USA

Synonyms
XML export

Definition
XML Publishing typically refers to the creation of XML

output (either in the form of a character stream or file)
from a relational DBMS. XML Publishing typically

must handle three issues: converting an XML query

or view definition into a corresponding SQL query;

encoding hierarchy in the SQL data; and generating

tags around the encoded hierarchical data. Since in

some cases the relational data may have originated

from XML, the topics of XML Storage and XML Pub-

lishing are closely related and often addressed

simultaneously.

Historical Background
The topic of XML Publishing arose very soon after

database researchers suggested a connection between

XML and semi-structured data [5], a topic that had

previously been studied in the database literature

[1,2,8]. Initially the assumption was that XML data-

bases would probably need to resemble those for semi-

structured data in order to get good performance.

Florescu and Kossmann [11] showed that storing

XML in a relation database could be more efficient

than storing it in a specialized semi-structured

DBMS. Concurrently, Deutsch et al. were exploring

hybrid relational/semi-structured storage in STORED

[7]. Soon after, the commercial DBMS vendors became

interested in adding XML capabilities to their pro-

ducts. The most influential developments in that area

came from IBM Almaden’s XPERANTO research proj-

ect [4,14], which formed the core of Shanmugasundar-

am’s thesis work [9]. Today, most commercial DBMSs

use a combination of all of the aforementioned tech-

niques: storing XML data in relations, storing hybrid

relational/semi-structured data, and storing XML in a

hierarchical format resembling semi-structured data.

Foundations
As every student of a database class knows, a good

relational database schema is in first normal form

(1NF): separate concepts and multi-valued attributes

are split into separate tables, and taken together the

tables can be visualized as a graph-structured Entity-

Relationship Diagram. In contrast, XML data are fun-

damentall not in 1NF: an XML document has a single

root node and hierarchically encodes data.

Thus, there are two main challenges in XML Pub-

lishing: first, taking queries or templates describing

XML output and mapping them into operations over

1NF tables; and second, efficiently computing and

adding XML tags to the data being queried. Typically,

the latter problem is addressed with two separate

3614X XML Publishing
modules, and hence the XML Publishing problem con-

sists of three steps:

1. Converting queries, which typically are posed in a

language other than SQL, into an internal repre-

sentation from which SQL can be constructed.

2. Composition and optimization of the resulting

queries, such that redundant work is minimized.

3. Adding tags, which is often done in a postproces-

sing step outside the DBMS.

Each of these topics is addressed in the remainder of

this section. The discussion primarily focuses upon the

XPERANTO and SilkRoute systems, which established

many of the basic algorithms used in XML Publishing.

Converting Queries

The first issue in XML Publishing is that of taking the

specification of the XML output, and converting it into

some form from which SQL can be constructed.

A number of different forms have been proposed for

specifying the XML output:

Proprietary XML template languages, such as IBM

DB2’s Document Access Definition (DAD) or SQL

Server’s XML Data Reduced (XDR), which essentially

provide a scheme for annotating XML templates with

SQL queries that produce content.

SQL extensions, such as the SQL/XML standard

[12], which extend SQL with new functions to add

tags around relational attributes and intermediate

table results.

Relational-XML query languages, such as the RXL

language in early versions of SilkRoute [10], which

provide a language that creates hierarchical XML con-

tent using relational tables. RXL resembles a combina-

tion of Datalog and an XML query language

(specifically, XML-QL [6]), and it can be used to define

XML views that can be queried using a standard XML

query language.

XML query languages with built-in XML views of

relations, an approach first proposed in XPERANTO

[3], where each relational table is mapped into a virtual

XML document and a standard XML language (like

XPath or XQuery) can be used to query the relations

and even to define XML views.

Over time, the research community has come to

the consensus that the last approach offers the best set

of trade-offs, as it offers a single compositional lan-

guage for all XML queries over the data in the RDBMS.

The commercial market has settled on a combination
of this same approach, for XML-centric users, plus

SQL extensions for relation-centric users. Here the

discussion assumes an XML-centric perspective, with

XQuery as the language, since it is representative.

XML Publishing systems generally only attempt to

tackle a subset of the full XQuery specification, focus-

ing on the portions that are particularly amenable

to execution in a relational DBMS. There are many

commonalities between basic XQueries and SQL:

selections, projections, and joins can be similarly

expressed in both of these languages, views can be

defined, and queries can be posed over data in a way

that is agnostic as to whether the data comes from a

view or a raw source. The two main challenges in

conversion lie in the input to the XQuery – where

XPaths must be matched against relations or XML

views defined over relations – and in creating the

hierarchical nested XQuery output.

XPath matching over built-in views of relations is,

of course, trivial, as each relation attribute maps to an

XML element or attribute in the XPath. Conversion

gets significantly more complex when the XPaths are

over XML views constructed over the original base

relations: this poses the problem of XML query com-

position, where the DBMS should not have to compute

each composed view separately, but rather should stat-

ically unfold them.

Composition and Optimization

As a means of composing queries, SilkRoute takes each

XQuery definition and creates an internal view forest

representation that describes the structure of the XML

document; it converts an XQuery into an canonical

representation called XQueryCore, and its algorithms

compose XQueryCore operations over an input docu-

ment. XPERANTO, based in large part on IBM’s DB2,

performs very similar operations, but starts by creating

an internal representation of each query block called in

a model XQGM, then executes a series of rewrite rules

to merge the blocks by merging steps that create hier-

archy in a view’s output with steps that traverse that

hierarchy in a subsequent query’s input.

The resulting SQL is often highly complex and

repetitive, with many SQL blocks being unioned to-

gether: each level of the XML hierarchy may require a

separate SQL block, and each view composition step in

the optimization process may create multiple SQL

query blocks (an XPath over a view may match over

multiple relational attributes from the base data).

XML Publishing X 3615
Thus, optimizing the resulting SQL becomes of high

importance. XML publishing systems typically convert

from XQuery to SQL, not to actual executable query

plans, so they can only do a limited amount of optimi-

zation on their own. Here they use a significant num-

ber of heuristics [10,14] to choose the best form for the

sets of SQL queries, and rely on the RDBMS’s cost-

based optimizer to more efficiently optimize the

queries. (Recently, commercial vendors have invested

significant effort in improving their cost-based query

optimizers for executing the types of queries output by

XML Publishing systems.)
Adding Tags

The final step in XML Publishing is that of adding tags

to the data from the relational query. There have been

two main approaches to this task: in-engine, relying on

SQL functions to add the tags; and outside the DBMS,

relying on an external middleware module to add the

tags. Each is briefly described.
In-engine Tagging In [14], the authors proposed a

method for adding XML tags using the SQL functions

XMLELEMENT, XMLATTRIBUTE, and XMLAGG:

each of these takes a relational attribute or tuple and

converts it into a partial XML result, encoded in a

CLOB datatype. Naturally, the first two create an ele-

ment or attribute tag, respectively, around a data value.

The third function, XMLAGG, functions as an SQL

aggregate function: it takes an SQL row set (possibly

including XMLELEMENTor XMLATTRIBUTEvalues)

and outputs a tuple with a CLOB containing the XML

serialization of the rowset’s content. The drawback to

the in-engine tagging approach is that CLOBs are not

always handled efficiently, as they are typically stored

separately from the tuples with which they are asso-

ciated. Hence, when this method was incorporated

into the SQL/XML standard, a new XML datatype was

proposed that could be implemented in amanner more

efficient than the CLOB.
XML Publishing. Figure 1. Tuple representations of XML da
Tagging Middleware A more common approach is to

simply a tuple representation of the XML document

tree/forest within the SQL engine, and to convert this

tuple stream into XML content externally, using a

separate tagging module [9,14]. There are two com-

mon techniques for encoding hierarchy in tuple

streams: outer join and outer union. Suppose there are

relationaltables in Fig.1a, encoding an element a and

its child element b, and one wants to encode their

output as the following XML:

<b id="2"

val="234"/><b id="3" val="456"/>

<b id="4"

val="832"/>

Outer Join. In SilkRoute, tuples are generated using

outerjoins between parent and child relations. The

tuple stream will be sorted in a way that allowsthe

tagger to hold the last tuple, not all data (see Fig.1b).

The ‘‘parent’’ portion of the tree (the a element) will

appear in both tuples, and the external XML tagger

will compare consecutive tuples in the tuple stream

to determine the leftmost position where a value

changed – from which it can determine what portion

of the XML hierarchy has changed.

Outer union. In contrast, XPERANTO uses a so-

called sorted outer union representation (Fig.1c), which

substitutes null values for repeated copies of values

(but not keys). Its approach relies on two characteris-

tics of IBM’s DB2 engine that are shared by some but

not all other systems: (i) null values can be very effi-

ciently encoded and processed, meaning that the query

is more efficient; (ii) null values sort high, i.e., DB2’s

considers null values to have a sort value greater than

any non-null value. The tagger simply needs to look for

the first non-null attribute to determine what portion

of a the XML to emit.

Key Applications
XML publishing has become a key capability in the

relational database arena, as increasingly data
ta.

X

3616X XML Retrieval
interchange mechanisms and Web services are being

built using XML data from an RDBMS. Today the ‘‘Big

Three’’ commercial DBMS vendors all use some tech-

niques for XML Publishing, and it is likely that smaller

DBMSs, including those in open source, will gradually

incorporate them as well.
Cross-references
▶Approximate XML Querying

▶XML Storage

▶XMLViews
Recommended Reading
1. Abiteboul S., Quass D., McHugh J., Widom J., and Winer J.L.

The Lorel query language for semistructured data. In Int. J.

Digit. Libr., 1(1):68–88, 1997.

2. Buneman P., Davidson S.B., Fernandez M.F., and Suciu D. Add-

ing structure to unstructured data. In Proc. 13th Int. Conf. on

Data Engineering, 1997, pp. 336–350.

3. Carey M.J., Florescu D., Ives Z.G., Lu Y., Shanmugasundaram J.,

Shekita E., and Subramanian S. XPERANTO: publishing object-

relational data as XML. In Proc. 3rd Int. Workshop on theWorld

Wide Web and Databases, 2000, pp. 105–110.

4. Carey M., Kiernan J., Shanmugasundaram J., Shekita E., and

Subramanian S. XPERANTO: a middleware for publishing

object-relational data as XML documents. In Proc. 26th Int.

Conf. on Very Large Data Bases, 2000, pp. 646–648.

5. Deutsch A., Fernández M.F., Florescu D., Levy A.Y., and

Suciu D. XML-QL. In Proc. The Query Languages Workshop,

1998.

6. Deutsch A., Fernandez M.F., Florescu D., Levy A., and Suciu D.

A query language for XML. Comp. Networks, 31(11–16):1155–

1169, 1999.

7. Deutsch A., Fernandez M.F., and Suciu D. Storing semistruc-

tured data with STORED. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1999, pp. 431–442.

8. Fernandez M.F., Florescu D., Kang J., Levy A.Y., and Suciu D.

Catching the boat with strudel: experiences with a web-site

management system. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1998, pp. 414–425.

9. Fernandez M.F., Kadiyska Y., Suciu D., Morishima A.,

and Tan W.C. SilkRoute: A framework for publishing

relational data in XML. ACM Trans. Database Syst., 27

(4):438–493, 2002.

10. Fernandez M., Tan W.C., and Suciu D. SilkRoute: trading

between relations and XML. Comp. Networks, 33

(1–6):723–745, 2000.

11. Florescu D. and Kossmann D. A Performance Evaluation of

Alternative Mapping Schemes for Storing XML Data in a Rela-

tional Database. Tech. Rep. 3684, INRIA, 1999.

12. ISO/IEC 9075-14:2003 Information technology – Database

languages – SQL – Part 14: XML-Related Specifications (SQL/

XML).
13. Shanmugasundaram J. Bridging Relational Technology and

XML. Ph.D. thesis, University of Wisconsin-Madison, 2001.

14. Shanmugasundaram J., Shekita E.J., Barr R., Carey M.J., Lindsay

B.G., Pirahesh H., and Reinwald B. Efficiently publishing relation-

al data as XML documents. VLDB J., 10(2–3):133–154, 2001.
XML Retrieval

MOUNIA LALMAS
1, ANDREW TROTMAN

2

1Queen Mary, University of London, London, UK
2University of Otago, Dunedin, New Zealand

Synonyms
Structured document retrieval; Structured text retrieval;

Focused retrieval; Content-oriented XML retrieval

Definition
Text documents often contain a mixture of structured

and unstructured content. One way to format this

mixed content is according to the adopted W3C stan-

dard for information repositories and exchanges, the

eXtensible Mark-up Language (XML). In contrast to

HTML, which is mainly layout-oriented, XML follows

the fundamental concept of separating the logical struc-

ture of a document from its layout. This logical docu-

ment structure can be exploited to allow a more

focused sub-document retrieval.

XML retrieval breaks away from the traditional

retrieval unit of a document as a single large (text)

block and aims to implement focused retrieval strate-

gies aiming at returning document components, i.e.,

XML elements, instead of whole documents in re-

sponse to a user query. This focused retrieval strategy

is believed to be of particular benefit for information

repositories containing long documents, or documents

covering a wide variety of topics (e.g., books, user

manuals, legal documents), where the user’s effort to

locate relevant content within a document can be

reduced by directing them to the most relevant parts

of the document.

Historical Background
Managing the enormous amount of information

available on the web, in digital libraries, in intranets,

and so on, requires efficient and effective indexing

and retrieval methods. Although this information

XML Retrieval X 3617

X

is available in different forms (text, image, speech,

audio, video etc), it remains widely prevalent in

text form. Textual information can be broadly classi-

fied into two categories, structured and unstructured.

Unstructured information has no fixed pre-defined

format, and is typically expressed in natural language.

For instance, much of the information available on the

web is unstructured. Although this information is

mostly formatted in HTML, thus imposing some

structure on the text, the structure is only for presen-

tation purposes and carries essentially no semantic

meaning. Correct nesting of the HTML structure

(that is, to form an unambiguous document logical

structure) is not imposed. Accessing unstructured in-

formation is through flexible but mostly simplistic

means, such as a simple keyword matching or bag of

words techniques.

Structured information is usually represented

using XML, a mark-up language similar to HTML

except that it imposes a rigorous structure on the

document. Moreover, unlike HTML, XML tags are

used to specify semantic information about the stored

content and not the presentation. A document cor-

rectly marked-up in XML has a fixed document struc-

ture in which semantically separate document parts

are explicitly identified – and this can be exploited to

provide powerful and flexible access to textual

information.

XML has been accepted by the computing com-

munity as a standard for document mark-up and an

increasing number of documents are being made

available in this format. As a consequence numerous

techniques are being applied to access XML docu-

ments. The use of XML has generated a wealth of

issues that are being addressed by both the database

and information retrieval communities [3]. This

entry is concerned with content-oriented XML re-

trieval [2,5] as investigated by the information re-

trieval community.

Retrieval approaches for structured text (marked-

up in XML-like languages such as SGML) were first

proposed in the late 1980s. In the late 1990s, the

interest in structured text retrieval grew due to the

introduction of XML in 1998. Research on XML infor-

mation retrieval was first coordinated in 2002 with the

founding of the Initiative for the Evaluation of XML

Retrieval (INEX). INEX provides a forum for the
evaluation of information retrieval approaches specifi-

cally developed for XML retrieval.
Foundations
Within INEX, the aim of an XML retrieval system is

‘‘to exploit the logical structure of XML documents to

determine the best document components, i.e., best

XML elements, to return as answers to queries’’ [7].

Query languages have been developed in order to allow

users to specify the nature of these best components.

Indexing strategies have been developed to obtain a

representation not only of the content of XML docu-

ments, but their structure. Ranking strategies have

been developed to determine the best elements for a

given query.
Query Languages

In XML retrieval, the logical document structure is

additionally used to determine which document com-

ponents are most meaningful to return as query

answers. With appropriate query languages, this struc-

ture can be specified by the user. For example, ‘‘I want a

paragraph discussing penguins near to a picture labeled

Otago Peninsula.’’ Here, ‘‘penguins’’ and ‘‘Otago Penin-

sula’’ specify content (textual) constraints, whereas

‘‘paragraph’’ and ‘‘picture’’ specify structural con-

straints on the retrieval units.

Query languages for XML retrieval can be classi-

fied into content-only and content-and-structure

query languages. Content-only queries have histori-

cally been used as the standard form of input in

information retrieval. They are suitable for XML

search scenarios where the user does not know (or is

not concerned with) the logical structure of a docu-

ment. Although only the content aspect of an infor-

mation need can be specified, XML retrieval systems

must still determine the best granularity of elements

to return to the user.

Content-and-structure queries provide a means for

users to specify conditions referring both to the content

and the structure of the sought elements. These condi-

tions may refer to the content of specific elements (e.g.,

the returned element must contain a section about a

particular topic), or may specify the type of the

requested answer elements (e.g., sections should

be retrieved). There are three main categories of

content-and-structure query languages [1]:

3618X XML Retrieval
1. Tag-based queries allow users to annotate words in

the query with a single tag name that specifies the

type of results to be returned. For example the

query ‘‘section:penguins’’ requests section elements

on ‘‘penguins.’’

2. Path-based queries are based upon the syntax of

XPath. They encapsulate the document structure

in the query. An example the NEXI language is:

‘‘//document[about(.,Otago Peninsula)]//section

[about(.//title, penguins)].’’ This query asks for

sections that have a title about ‘‘penguins,’’ and

that are contained in a document about ‘‘Otago

Peninsula.’’

3. Clause-based queries use nested clauses to express

information needs, in a similar way to SQL. The

most prominent clause-based language for XML

retrieval is XQuery. A second example is XQuery

Full-Text, which extends XQuery with text search

predicates such as proximity searching and rele-

vance ranking.

The complexity and the expressiveness of content-and-

structure query languages increases from tag-based

to clause-based queries. This increase in expressive-

ness and complexity often means that content-and-

structure queries are viewed as too difficult for end

users (because, they must, for example, be intimate

with the document structure). Nonetheless they can

be very useful for expert users in specialized scenarios,

and also have been used as an intermediate between a

graphical query language (such as Bricks [12]) and an

XML search engine.
Indexing Strategies

Classical indexing methods in information retrieval

make use of term statistics to capture the importance

of a term in a document; and consequently for dis-

criminating between relevant and non-relevant con-

tent. Indexing methods for XML retrieval require

similar term statistics, but for each element. In XML

retrieval there are no a priori fixed retrieval units. The

whole document, one of its sections, or a single para-

graph within a section, all constitute potential answers

to a single query. The simplest approach to allow the

retrieval of elements at any level of granularity is to

index each element separately (as a separate document

in the traditional sense). In this case, term statistics for
each element are calculated from the text of the ele-

ment and all its descendants.

An alternative is to derive the term statistics

through the aggregation of term statistics of the ele-

ment own text, and those of each of its children.

A second alternative is to only index leaf elements

and to score non-leaf elements through propagation

of the score of their children elements. Both alterna-

tives can include additional parameters incorporating,

for instance, element relationships or special behavior

for some element types.

It is not uncommon to discard elements smaller

than some given threshold. A single italicized word,

for example, may not be a meaningful retrieval unit.

A related strategy, selective indexing, involves building

separate indexes for those element types previously seen

to carry relevant information (sections, subsections, etc,

but not italics, bold, etc.). With selective indexing the

results from each index must be merged to provide a

single ranked result list across all element types.

It is not yet clear which indexing strategy is the

best. The best approach appears to depend on the

collection, the types of elements (i.e., the DTD) and

their relationships. In addition, the choice of the

indexing strategy currently has an effect on the ranking

strategy. More details about indexing strategies can be

found in the entry on Indexing Units.
Ranking Strategies

XML documents are made of XML elements, which

define the logical document structure. Thus sophisti-

cated ranking strategies can be developed to exploit the

various additional (structural) evidence not seen in

unstructured (flat) text documents.

Element Scoring Many of the retrieval models devel-

oped for flat document retrieval have been adapted for

XML retrieval. These models have been used to esti-

mate the relevance of an element based on the evidence

associated with the element only. This is done by a

scoring function based, for instance, on the vector

space, BM25, the language model, and so on. They

are typically adapted to incorporate XML-specific fea-

tures. As an illustration, a scoring function based on

language models [6] is described next:

Given a query q ¼ t1;:::;tn made of n terms, an

element e and its corresponding element language

XML Retrieval X 3619
model ye, the element e is ranked using the following

scoring function:

PðejqÞ / PðeÞ � PðqjyeÞ

where P(e) is the prior probability of relevance for

element e and P(qjye) is the probability of the query

q being ‘‘generated’’ by the element language model

and is calculated as follows:

Pðt1;:::;tn jyeÞ ¼
Y

n

i¼1

lpðtijeÞ þ ð1� lÞpðtijCÞ

Here PðtijeÞ is the maximum likelihood estimate of

term ti in element e, Pðt
i
jCÞ is the probability of

query term in the collection, and l is the smoothing

parameter. P(tije) is the element model based on ele-

ment term frequency, whereas Pðt
i
jCÞ is the collection

model based on inverse element frequency. An impor-

tant XML-specific feature is element length, since this

can vary radically – for example, from a title to a

paragraph to a document section. Element length can

be captured by setting, the prior probability P(e), as

follows:

pðeÞ ¼ lengthðeÞ
P

C

lengthðeÞ

length(e) is the length of element e. Including length in

the ranking calculation has been shown to lead to more

effective retrieval than not doing so.
Contextualization The above strategy only scores an

element based on the content of the element itself.

Considering additional evidence has shown to be ben-

eficial for XML retrieval. In particular for long docu-

ments, using evidence from the element itself as well as

its context (for example the parent element) has shown

to increase retrieval performance. This strategy is re-

ferred to as contextualization. Combining the element

score and a separate document score has also been

shown to improve performance.
X

Propagation When only leaf elements are indexed, a

propagation mechanism is used to calculate the rele-

vance score of the non-leaf elements. The propagation

combines the retrieval scores of the leaf elements (often

using a weighted sum) and any additional element
characteristics (such as the distance between the ele-

ment and the leaves). A non-trivial issue is the estima-

tion of the weights for the weighted sum.

Merging It has also been common to obtain several

ranked lists of results, and to merge them to form a

single list. For example, with the selective indexing

strategy [10], a separate index is created for each a

priori selected type of element (such as article, abstract,

section, paragraph, and so on). A given query is then

submitted to each index, each index produces a sepa-

rate list of elements, normalization is performed (to

take into account the variation in size of the elements)

and the results are merged. Another approach to merg-

ing produces several ranked lists from a single index

and for all elements in the collection (a single index is

used as opposed to separate indices for each element).

Different ranking models are used to produce each

ranked list. This can be compared to document fusion

investigated in the 1990s.
Processing Structural Constraints Early work in XML

retrieval required structural constraints in content-

and-structure queries to be strictly matched but specify-

ing an information need including structural constraints

is difficult; XML document collections have a wide

variety of tag names. INEX now views structural con-

straints as hints as to where to look (what sort of

elements might be relevant). Simple techniques for

processing structural constraints include the construc-

tion of a dictionary of tag synonyms and structure

boosting. In the latter, the retrieval score of an element

is generated ignoring the structural constraint but is

then boosted if the element matches the structural

constraint. More details can be found in the entry on

Processing Structural Constraints.
Processing Overlaps It is one task to provide a score

expressing how relevant an element is to a query but a

different task to decide which of a set of several over-

lapping relevant elements is the best answer. If an

element has been estimated relevant to a query, it is

likely that its parent element is also estimated relevant

to the query as these two elements share common text.

But, returning chains of elements to the user should be

avoided to ensure that the user does not receive the

same text several times (one for each element in the

3620X XML Retrieval
chain). Deciding which element to return depends on

the application and the user model. For instance, in

INEX, the best element is one that is highly relevant,

but also specific to the topic of request (i.e., does not

discuss unrelated topics).

Removing overlap has mostly been done as a post-

ranking task. A first approach, and the most commonly

adopted one, is to remove elements directly from the

result list. This is done by selecting the highest ranked

element in a chain and removing any ancestors and

descendents in lower ranks. Other techniques looked

at the distribution of retrieved elements within each

document to decide which ones to return. For example,

the root element would be returned if all retrieved

elements were uniformly distributed in the document.

This technique was shown to outperform the simpler

techniques. Efficiency remains an issue as the removal

of overlaps is done at query time. More details can be

found in the entry on Processing Overlaps.
Key Applications
XML retrieval approaches (from query languages to

ranking strategies) are relevant to any applications

concerned with the access to repositories of documents

annotated in XML, or similar mark-up languages

such as SGML or ASN.1. Existing repositories include

electronic dictionaries and encyclopedia such as the

Wikipedia [4], electronic journals such as the journals

of the IEEE [7], plays such as the collected works of

William Shakespeare [8], and bibliographic databases

such as PubMed. (www.ncbi.nlm.nih.gov/pubmed/)

XML retrieval is becoming increasingly important in

all areas of information retrieval, the application to

full-text book searching is obvious and such commer-

cial systems already exist [11].
Experimental Results
Since 2002 work on XML retrieval has been evaluated

in the context of INEX. Many of the proposed

approaches have been presented at the yearly INEX

workshops, held in Dagsthul, Germany. Each year, the

INEX workshop pre-proceedings (which are not peer-

reviewed) contain preliminary papers describing the

details of participant’s approaches. Since 2003 the

final INEX workshop proceedings have been peer-

reviewed, and since 2004 they have been published

by Springer as part of the Lecture Notes in Computer
Science series. Links to the pre- and final proceedings

can be found on the INEX web site (http://www.inex.

otago.ac.nz/).
Data Sets
Since 2002 INEX has collected data sets that can be

used for conducting XML retrieval experiments [9].

Each data set consists of a document collection, a set of

topics, and the corresponding relevance assessments.

The topics and associated relevance assessments are

available on the INEX web site (http://www.inex.

otago.ac.nz/). It should be noted that the relevance

assessments on the latest INEX data set are released

first to INEX participants.
Cross-references
▶Aggregation-Based Structured Text Retrieval

▶Content-and-Structure Query

▶ Evaluation Metrics for Structured Text Retrieval

▶ Indexing Units

▶ Information Retrieval Models

▶ INitiative for the Evaluation of XML Retrieval

▶ Integrated DB&IR Semi-Structured Text Retrieval

▶Logical Structure

▶Narrowed Extended XPath I

▶Presenting Structured Text Retrieval Results

▶Processing Overlaps

▶Processing Structural Constraints

▶Propagation-Based Structured Text Retrieval

▶Relationships in Structured Text Retrieval

▶ Structure Weight

▶ Structured Document Retrieval

▶ Structured Text Retrieval Models

▶Term Statistics for Structured Text Retrieval

▶XML

▶XPath/XQuery

▶XQuery Full-Text
Recommended Reading
1. Amer-Yahia S. and Lalmas M. XML search: languages, INEX and

scoring. ACM SIGMOD Rec., 35(4):16–23, 2006.

2. Baeza-Yates R., Fuhr N., and Maarek Y.S. (eds.). Special issue on

XML retrieval, ACM Trans. Inf. Syst., 24(4), 2006.

3. BlankenH.M., Grabs T., Schek H.-J., Schenkel R., andWeikumG.

(eds.). Intelligent Search on XML Data, Applications, Lan-

guages, Models, Implementations, and Benchmarks, Springer,

Berlin, 2003.

XML Schema X 3621
4. Denoyer L. and Gallinari P. The Wikipedia XML corpus, com-

parative evaluation of XML information retrieval systems. In

Proc. 5th Int. Workshop of the Initiative for the Evaluation of

XML Retrieval, 2007, pp. 12–19.

5. Fuhr N. and Lalmas M. (eds.). Special issue on INEX, Inf.

Retrieval, 8(4), 2005.

6. Kamps J., de Rijke M., and Sigurbjörnsson B. The importance

of length normalization for XML retrieval. Inf. Retrieval,

8(4):631–654, 2005.

7. Kazai G., Gövert N., Lalmas M., and Fuhr N. The INEX Evalua-

tion Initiative. In Intelligent search on XML data, applications,

languages, models, implementations, and benchmarks, H.M.

Blanken, T. Grabs, H. Schek, R. Schenkel, G. Weikum (eds.).

Springer, 2003, pp. 279–293.

8. Kazai G., Lalmas M., and Reid J. Construction of a test collection

for the focused retrieval of structured documents, In Proc. 25th

European Conf. on IR Research, 2003, pp. 88–103.

9. Lalmas M. and Tombros A. INEX 2002–2006: understanding

XML retrieval evaluation. In Proc. 1st Int. DELOS Conference,

2007, pp. 187–196.

10. Mass Y. and MandelbrodM. Component ranking and automatic

query refinement for XML retrieval. In Proc. 3rd Int. Workshop

of the Initiative for the Evaluation of XML Retrieval, 2004,

pp. 73–84.

11. Pharo N. and Trotman A. The use case track at INEX 2006.

SIGIR Forum, 41(1): 64–66, 2007.

12. van Zwol R., Baas J., van Oostendorp H., and Wiering F. Bricks:

the building blocks to tackle query formulation in structured

document retrieval. In Proc. 28th European Conf. on IR Re-

search, 2006, pp. 314–325.
XML Schema

MICHAEL RYS

Microsoft Corporation, Sammamish, WA, USA

Synonyms
XML schema; W3C XML schema

Definition
XML Schema is a schema language that allows to

constrain XML documents and provides type infor-

mation about parts of the XML document. It is defined

in a World Wide Web Consortium recommendation

[3–5].
X

Key Points
XML Schema is a schema language that allows the con-

straint of documents and provides type information
about parts of the XML document. It is defined in a

World Wide Web Consortium recommendation [3–5].

The current version is 1.0.

Unlike document type descriptions (DTDs) that

have been defined in the XML recommendation [1],

XML Schema is using an XML based vocabulary to

describe the schema constraints.

A schema describes elements and attributes and

their content models and types. It provides for com-

plex types that describe the content model of ele-

ments and simple types that describe the type of

attributes and leaf element nodes. Types can be

related to each other in so called derivation hierar-

chies, either by restricting or extending a super type.

Elements with different names can be grouped

together into substitution groups if their types are in

a derivation relationship.

The element, attribute and type declarations are

called schema components. A schema is normally asso-

ciated with a target namespace to which these schema

components belong. Figure 1 depicts an example sche-

ma (based on examples in [10]) that defines a schema

for the target namespace http://www.example.com/

PO1 containing the following schema components:

two global element declarations, three global complex

type declarations and 1 global simple type declaration:

Besides constraining XML documents, XML

Schemas are also being used to define vocabularies

and semantic models, often in the context of infor-

mation exchange scenarios to define and constrain

the data contracts for data exchanged between

clients and services. The schema components can

in addition be used for providing additional type

information in XQuery [7,8], XPath [2,8] and

XSLT [9].

Note that version 1.1 of XML Schema is currently

under development at the W3C [6,10].
Cross-references
▶XML

▶XML Attribute

▶XML Document

▶XML Element

▶XPath/XQuery

▶XQuery/XQuery

▶XSLT/XSLT

XML Schema. Figure 1. Example XML Schema.

3622X XML Schema

XML Selectivity Estimation X 3623
Recommended Reading
1. XML 1.0 Recommendation, latest edition. Available at: http://

www.w3.org/TR/xml

2. XML Path Language (XPath) 2.0, latest edition. Available at:

http://www.w3.org/TR/xpath20/

3. XML Schema Part 0: Primer, latest edition. Available at: http://

www.w3.org/TR/xmlschema-0/

4. XML Schema Part 1: Structures, latest edition. Available at:

http://www.w3.org/TR/xmlschema-1/

5. XML Schema Part 2: Datatypes, latest edition. Available at:

http://www.w3.org/TR/xmlschema-2/

6. XML Schema 1.1 Part 2: Datatypes, latest edition. Available at:

http://www.w3.org/TR/xmlschema11–2/

7. XQuery 1.0: An XML Query Language, latest edition. Available

at: http://www.w3.org/TR/xquery/

8. XQuery 1.0 and XPath 2.0 Data Model (XDM), latest edition.

Available at: http://www.w3.org/TR/xpath-datamodel/

9. XSL Transformations (XSLT) Version 2.0, latest edition. Avail-

able at: http://www.w3.org/TR/xslt20/

10. W3C XML Schema Definition Language (XSDL) 1.1 Part 1:

Structures, latest edition. Available at: http://www.w3.org/TR/

xmlschema11–1/
XML Schemas

▶XMLTypes
X

XML Selectivity Estimation

MAYA RAMANATH
1, JULIANA FREIRE

2,

NEOKLIS POLYZOTIS
3

1Max-Planck Institute for Informatics, Saarbrücken,

Germany
2School of Computing, University of Utah, UT, USA
3University of California Santa Cruz, Santa Cruz,

CA, USA

Synonyms
XML cardinality estimation

Definition
Selectivity estimation in database systems refers to

the task of estimating the number of results that will be

output for a given query. Selectivity estimates are crucial

in query optimization, since they enable optimizers to

select efficient query plans. They are also employed in

interactive data exploration as timely feedback about the

expected outcome of user queries, and can even serve as

approximate answers for count queries.
Selectivity estimators apply an estimation procedure

on a synopsis of the data. Due to the stringent time

and space constraints of query optimization, of which

selectivity estimation is only one of the steps, selecti-

vity estimators are faced with two, often conflicting,

requirements: they have to accurately and efficiently

estimate the cardinality of queries while keeping the

synopsis size to a minimum.

While there is a large body of literature on selectiv-

ity estimation in the context of relational databases, the

inherent complexity of the XML data model creates

new challenges. Synopsis structures for XML must

capture statistical characteristics of document struc-

ture in addition to those of data values. Moreover,

the flexibility allowed by the use of regular expressions

to define XML elements typically results in data that

has highly-skewed structure. Finally, queries over XML

documents require path expressions over possibly long

paths, which essentially translates to a number of

joins that is much larger than what is found in typical

database applications. This increases the scope for

inaccurate estimates, since it is known that errors prop-

agate rapidly when estimating multi-way join queries.

Historical Background
Selectivity estimation for XML queries has its roots in

early works on semi-structured data [7]. These include

both lossy techniques for structural summarization [9]

and lossless techniques for deriving structural indices

[4,8]. The development of XML and associated query

languages (XPath and XQuery) has created new chal-

lenges to the problem of selectivity estimation. In

particular, XML query languages involve a richer set

of structure- and content-related operators and hence

require more sophisticated techniques for synopsis

generation and estimation. A similar observation can

be made for the XML data model itself, which is more

involved compared to the early models for semi-

structured data. This diversity has given rise to a host

of different XML selectivity estimation techniques

that address different aspects of the general problem.

These techniques can be characterized with respect to a

number of different features, including: information

captured in the synopsis structure (e.g., tree- vs. graph-

based view of XML data, structure only vs. structure

and content); the class of supported queries (e.g., sim-

ple path expressions, XPath); the use of schema infor-

mation; the ability to provide accuracy guarantees;

synopsis generation strategy (e.g., streaming vs.

3624X XML Selectivity Estimation
non-streaming); support for maintaining the synopsis

in the presence of updates to the data.

Foundations
In general, XML selectivity estimation techniques

consist of two components: a synopsis structure that

captures the statistical features of the data, and an

estimation framework that computes selectivity esti-

mates based on the constructed synopsis. The techni-

ques presented in the recent literature cover a wide

spectrum of design choices in terms of these two com-

ponents. For instance, Bloom histograms [17] and

Markov tables [1] base the synopsis on an enumeration

of simple paths, while XSketch [11], XSeed [19], and

StatiX [3] build synopses structures that capture the

branching path structure of the data set. Other points

of variation include: the supported query model, e.g.,

structure-only queries [1] vs. queries with value pre-

dicates [3,11,10]), or linear queries [1] vs. twig queries

[2,12]; the use of schema information [3,18]; probabi-

listic guarantees on estimation error [17]; explicit sup-

port for data updates [5,13,17].

Table 1 provides an overview of the current literature

on XML selectivity estimation techniques. A detailed

description of each technique is beyond the scope of

this entry. Instead, the following classification of techni-

ques is discussed: synopses based on path enumeration,

graph-based synopses, and updatable synopses.

Path Enumeration

A straightforward approach to handle simple path

expression queries is to enumerate all paths in the

data and store the count for each path. Of course, the

number of paths in the data can be very large and thus

summarization techniques are required to concisely

store this information. Markov tables [1] record infor-

mation on paths of up to specified length m only,

and further reduce the number of paths by deleting

paths with low frequencies. The selectivity of path

expressions for paths with length less than or equal to

m is derived by a lookup of this table. For longer path

expressions, selectivity is computed by combining the

counts of shorter paths. In contrast, the bloom histo-

gram method, proposed by Wang et al. [17], groups

together simple paths with ‘‘similar’’ frequencies into

buckets of a histogram. Each bucket of paths is then

summarized using a bloom filter to represent the con-

tents (paths) of the bucket and a representative count

is associated with it. Selectivities are estimated by first
identifying the bucket containing the query path and

retrieving its count. Estimation errors are bounded

and depend on the number of histogram buckets and

the size of the bloom filter.

While the above techniques use path enumeration as

a basic operation to estimate the selectivity of simple

path expressions, the same concept is used in [2] to

answer more complex ‘‘twig’’ queries, i.e., path queries

with branches. The idea is to record, for each path,

a small fixed-length signature of the element ids that

constitute its roots. These signatures can be ‘‘intersected’’

in order to estimate the number of common roots for

several simple paths, or equivalently, the number of

matches for the twig query that is formed by joining

the simple paths at their root. The set of simple paths and

their counts as well as their signatures are organized into

a summary data structure called the correlated subtree

(CST). Given a twig query, it is first broken down in a

set of constituent simple paths based on the CST, and

the corresponding signatures and counts are combined

in order to estimate the overall selectivity.

Graph-Synopsis-Based Techniques

At an abstract level, a graph synopsis summarizes

the basic graph structure of an XML document. More

formally, given a data graph G = (VG, EG), a graph

synopsis SðGÞ ¼ ðVS; ESÞ is a directed node-labeled

graph, where (i) each node v 2 V S corresponds to a

subset of element (or attribute) nodes in VG (termed

the extent of) that have the same label, and (ii) an edge

in (u,v) 2 EG is represented in ES as an edge between

the nodes whose extents contain the two endpoints

u and v. For each node u, the graph synopsis records

the common tag of its elements and a count field

for the size of its extent.

In order to capture different properties of the under-

lying path structure and value content, a graph-synopsis

is augmented with appropriate, localized distribution

information. As an example, the XSketch-summary

mechanism [11], which can estimate the selectivity of

simple path expressions with branching predicates, aug-

ments the general graph-synopsis model with: (i) loca-

lized per-edge stability information, indicating whether

the synopsis edge is backward- and/or forward-stable,

and, (ii) localized per-node value distribution summa-

ries. In short, an edge (u,v) in the synopsis is said to be

forward-stable if all the elements of u have at least one

child in v; similarly, (u,v) is backward stable if all the

elements in v have at least one parent in u. Accordingly,

XML Selectivity Estimation. Table 1. Summary of work on XML selectivity estimation

Proposal Input
Summary
structure

Structure
predicates Value predicates Updates

Error
guarantees

Chen et al. [2] Data Correlated
subpath tree

Tree pattern Substring No No

Aboulnaga
et al. [1]

Data Path tree and
Markov tables

Simple paths No No No

XPathLearner
[5]

Query
feedback

Markov tables Simple Paths Equality Predicates Yes No

CXHist [6] Query
feedback

Markov tables Simple Paths Substrings Yes No

Wu et al. [18] Data,
Schema,
Predicates

Position
Histogram

Tree pattern General predicates No No

XSketches
[11]

Data Graph Tree Pattern Numerical range No Yes

XSeed [19] Data Graph Tree pattern No No Yes

XCluster [10] Data Graph Tree pattern Numerical range, Term
Containment and Substring

No No

StatiX [3] Data and
Schema

Schema graph
and Histograms

Tree Pattern Numerical Range No No

Sartiani [15] Data and
Schema

Tagged region
graph

Tree Pattern General Predicates No No

Bloom
Histograms
[17]

Data Bloom Filter Simple Paths No Yes Yes

IMAX [13] Data and
Schema

Schema graph
and Histogram

Tree pattern Numerical Range Yes No

Wang et al.
[16]

Data Histograms on
data samples

Simple Paths No No No

SketchTree
[14]

Data Stream Randomized
Sketch

Tree pattern
with child axis

General predicates Yes Yes

XML Selectivity Estimation X 3625

X

for each node u that represents elements with values,

the synopsis records a summary H(u) which captures

the corresponding value distribution and thus enables

selectivity estimates for value-based predicates.

Recent studies [10,12,19] have proposed a variant

of graph-synopses that employ a clustering-based

model in order to capture the path and value distribu-

tion of the underlying XML data. Under this model,

each synopsis node is viewed as a ‘‘cluster’’ and the

enclosed elements are assumed to be represented by a

corresponding ‘‘centroid’’ that aggregates their charac-

teristics. The TreeSketch [12] model, for instance,

defines the centroid of a node u as a vector of average

child counts (c1,c2,...,cn), where cj is the average child

count from elements in u to every other node vj in the

synopsis. Thus, the assumption is that each element in
u has exactly cj children to node vj. Furthermore, the

clustering error, that is, the difference between the

actual child counts in u and the centroid, provides a

measure of the error of approximation.

While the above techniques derive the graph struc-

ture from the data itself, StatiX [3] exploits the graph

structure provided by the XML Schema to build

synopses. In a way, the schema can be regarded as a

synopsis of the data since it describes the general struc-

ture of the data. StatiX makes use of the mapping

between an element in the data and a type in the schema

(typically assigned during the validation phase) in order

to build its synopsis structure. In addition, the statistics

gathering phase consists of assigning ordinal numbers

to each type found in the data. The schema graph, which

forms a basic synopsis, is augmented with histograms

3626X XML Selectivity Estimation
which capture parent-child distributions (built using

ordinal numbers) and value distributions (built

using values occurring in the data). By appropriately

tuning the number of types through a set of schema

transformations and by decreasing or increasing the

number of histogram buckets, coarse to fine-grained

synopsis structures can be built. Selectivities of branch-

ing path expressions with value predicates can be esti-

mated using either a simple lookup (possible for simple

path expressions where the return value for the query

corresponds to a single type) or histogram-based cardi-

nality estimation techniques to combine value histo-

grams with parent-child distributions (needed for

branching path expressions with value predicates).

Updatable Synopses

Many selectivity estimation techniques for XML assume

that the underlying data are static and require an offline

scan over the data in order to gather statistics and build

synopsis structures. Although this assumption is valid

for applications that primarily use XML as a document

exchange format, it does not hold for scenarios where

XML is used as a native storage format. For these, it

is important that estimators support synopsis mainte-

nance in addition to synopsis construction.

The Bloom Histogram technique [17] outlined in

Table 1 supports updates by maintaining a ‘‘full’’ sum-

mary (maybe on disk) and rebuilding the bloom histo-

gram periodically. That is, each update is first parsed

into paths, and a table of paths is updated with the

new cardinalities. The bloom histogram which is used

for selectivity estimation will be rebuilt from this path

table when a sufficient number of updates have been

received and the bloom histogram estimates are no

longer reliable.

IMAX [13], which is built on top of StatiX [3],

updates the synopsis structure directly as and when

the update is received. The key concept in this technique

is to first identify the correct location of the update

(corresponding to the ordinal numbers of the types in

the update) and then to estimate and update the correct

buckets of the required histograms. It is possible to

estimate the amount of error in the histograms and

to schedule a re-computation of the required set of

histograms from the data if the error becomes too large.

While the approaches outlined above respond

directly to changes in the data, XPathLearner [5] and

CXHist [6] observe the query processor and use a query

feedback loop to maintain the synopsis structure. In
short, these techniques obtain the true selectivity of

each query as it is processed, and use this information

in order to update the synopsis accordingly. As a

result, the synopsis becomes more refined with respect

to frequent queries and can thus provide more accurate

selectivity estimates for a significant part of the

workload.
Key Applications
The main utility of cardinality estimation is to serve as

input into a query optimizer which determines the best

execution plan for a query. These estimates can also

serve as approximate answers to ‘‘COUNT’’ queries. In

addition, they are used in interactive data exploration

in order to provide users with early feedback regarding

the number of results to the submitted query.
Cross-references
▶Query Optimization

▶Query Processing

▶XML

▶XMLTree Pattern, XMLTwig Query

▶XPath/XQuery
Recommended Reading
1. Aboulnaga A., Alameldeen A.R., and Naughton J. Estimating the

selectivity of XML path expressions for internet scale applica-

tions. In Proc. 27th Int. Conf. on Very Large Data Bases, 2001,

pp. 591–600.

2. Chen Z., Jagadish H.V., Korn F., Koudas N., Muthukrishnan S.,

Ng R.T., and Srivastava D. Counting twig matches in a tree. In

Proc. 17th Int. Conf. on Data Engineering, 2001, pp. 453–462.

3. Freire J., Haritsa J., Ramanath M., Roy P., and Siméon J. StatiX:

Making XML Count. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2002, pp. 181–191.

4. Goldman R. and Widom J. Dataguides: enabling query formu-

lation and optimization in semistructured databases. In Proc.

23th Int. Conf. on Very Large Data Bases, 1997, pp. 436–445.

5. Lim L., Wang M., Padmanabhan S., Vitter J., and Parr R. XPath-

Learner: An on-line self-tuning markov histogram for XML path

selectivity estimation. In Proc. 28th Int. Conf. on Very Large

Data Bases, 2002, pp. 442–453.

6. Lim L., Wang M., and Vitter J. CXHist: an on-line classification-

based histogram for XML string selectivity estimation. In Proc.

31st Int. Conf. on Very Large Data Bases, 2005, pp. 1187–1198.

7. McHugh J., Abiteboul S., Goldman R., Quass D., and Widom J.

A database management system for semistructured data. ACM

SIGMOD Rec., 26(3):54–66, September 1997.

8. Milo T. and Suciu D. Index structures for path expressions. In

Proc. 7th Int. Conf. on Database Theory, 1999, pp. 277–295.

9. Nestorov S., Ullman J., Wiener J., and Chawathe S. Representa-

tive objects: concise representations of semistructured,

XML Storage X 3627
hierarchical data. In Proc. 13th Int. Conf. on Data Engineering,

1997, pp. 79–90.

10. Polyzotis N. and Garofalakis M. XCluster Synopses for

structured XML content. In Proc. 22nd Int. Conf. on Data

Engineering, 2006, p. 63.

11. Polyzotis N. and Garofalakis M. XSketch synopses for XML data

graphs. ACM Trans. on Database Syst., 31(3):1014–1063, 2006.

12. Polyzotis N., Garofalakis M., and Ioannidis Y. Approximate

XML query answers. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2004, pp. 263–274.

13. Ramanath M., Zhang L., Freire J., and Haritsa J. IMAX:

incremental maintenance of schema-based XML statis-

tics. In Proc. 21st Int. Conf. on Data Engineering, 2005,

pp. 273–284.

14. Rao P. and Moon B. Sketchtree: approximate tree pattern counts

over streaming labeled trees. In Proc. 22nd Int. Conf. on Data

Engineering, 2006, p. 80.

15. Sartiani C. A framework for estimating XML query cardinality.

In Proc. 6th Int. Workshop on the World Wide Web and Data-

bases, 2003, pp. 43–48.

16. Wang W., Jiang H., Lu H., and Yu J.X. Containment join size

estimation: models and methods. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2003, pp. 145–156.

17. Wang W., Jiang H., Lu H., and Yu J.X. Bloom histogram: path

selectivity estimation for XML data with updates. In Proc. 30th

Int. Conf. on Very Large Data Bases, 2004, pp. 240–251.

18. Wu Y., Patel J.M., and Jagadish H.V. Estimating answer sizes

for XML queries. In Advances in Database Technology, Proc. 8th

Int. Conf. on Extending Database Technology, 2002, pp. 590–

608.

19. Zhang N., Özsu M.T., Aboulnaga A., and Ilyas I.F. XSEED:

accurate and fast cardinality estimation for XPath queries.

In Proc. 22nd Int. Conf. on Data Engineering, 2006, p. 61.
X

XML Storage

DENILSON BARBOSA
1, PHILIP BOHANNON

2,

JULIANA FREIRE
3, CARL-CHRISTIAN KANNE

4,

IOANA MANOLESCU
5, VASILIS VASSALOS

6,

MASATOSHI YOSHIKAWA
7

1University of Alberta, Edmonton, AB, Canada
2Yahoo! Research, Santa Clara, CA, USA
3University of Utah, Salt Lake City, UT, USA
4University of Mannheim, Mannheim, Germany
5INRIA Saclay–Île-de-France, Orsay, France
6Athens University of Economics and Business,

Athens, Greece
7University of Kyoto, Kyoto, Japan

Synonyms
XML persistence; XML database
Definition
A wide variety of technologies may be employed to

physically persist XML documents for later retrieval or

update, from relational database management systems

to hierarchical systems to native file systems. Once the

target technology is chosen, there is still a large number

of storage mapping strategies that define how parts of

the document or document collection will be repre-

sented in the back-end technology. Additionally, there

are issues of optimization of the technology and strat-

egy used for the mapping. XML Storage covers all the

above aspects of persisting XML document collections.

Historical Background
Even though the need for XML storage naturally

arose after the emergence of XML, similar techniques

had been developed earlier, since the mid-1990’s, to

store semi-structured data. For example, the LORE

system included a storage manager specifically

designed for semi-structured objects, while the

STORED system allowed the definition of mappings

from semi-structured data to relations. Even earlier,

storage techniques and storage systems had been

developed for object-oriented data. These techniques

focused on storing individual objects, including their

private and public data and their methods. Impor-

tant tasks included performing garbage collection,

managing object migration and maintaining class

extents. Object clustering techniques were developed

that used the class hierarchy and the composition

hierarchy (i.e., which object is a component of which

other object) to help determine object location. These

techniques, and the implemented object storage sys-

tems, such as the O2 storage system, influenced the

development of subsequent semi-structured and XML

storage systems.

Moreover, the above solutions or ad-hoc app-

roaches had also been used for the storage of large

SGML (Standard Generalized Markup Language, a

superset and precursor to XML) documents.

Foundations
Given the wide use of XML, most applications need or

will need to process and manipulate XML documents,

andmany applicationswill need to store and retrieve data

from large documents, large collections of documents, or

both. As an exchange format, XML can be simply serial-

ized and stored in a file, but serialized document storage

often is very inefficient for query processing and updates.

3628X XML Storage
As a result, a large-scale XML storage infrastructure is

critical to modern application performance.

Figure 1a shows a simple graphical outline of an

XML DTD for movies and television shows.

As this example shows, XML data may exhibit great

variety in their structure. At one extreme, relational-

style data like title, year and boxoff children of

show in Fig. 1a may be represented in XML. At the

opposite extreme are highly irregular structures such as

might be found under the reviews tag. Figure 2 shows

a similar graphical representation of a real-life DTD for

scientific articles. Since every HTML structure or format-

ting element is also an XML element or attribute, the

corresponding XML tree is very deep and wide, and no

two sections are likely to have the same structure.

XML processing workloads are also diverse. Queries

and updates may affect or return few or many nodes.

They may also need to ‘‘visit’’ large portions of an XML
XML Storage. Figure 1. Movie DTD and example native stor
tree and return nodes that are far apart, such as all the

box-office receipts for movies, or may only return or

affect nodes that are ‘‘close’’ together, such as all the

information pertaining to a single review.

A few different ways of persisting XML document

collections are used, and each addresses differently the

challenges posed by the varied XML documents and

workloads.

Instance-Driven Storage

In instance-driven storage, the storage of XML content

is driven by the tree structure of the individual docu-

ment, ignoring the types assigned to the nodes by a

schema (if one exists). In some cases, e.g., when docu-

ments have irregular structure or an application mostly

generates navigations to individual elements, instance-

driven storage can greatly simplify the task of storing

XML content. One instance-driven technique is to
age strategy.

X
M
L
S
to
ra
g
e
.
F
ig
u
re

2
.
G
ra
p
h
ic
al
o
u
tl
in
e
o
f
a
co
m
p
le
x
ar
ti
cl
e
D
T
D
(s
tr
o
n
g
ly
si
m
p
lif
ie
d
).

XML Storage X 3629

X

3630X XML Storage
store nodes and edges in one or more relational tables.

A second approach is to implement an XML data

model natively.

Tabular Storage of Trees A relational schema for

encoding any XML instance may include relations

child, modeling the parent-child relationship, and

tag, attr, id, text, associating to each element

node respectively a tag, an attribute, an identity and a

text value, as well as sets that contain the root of the

document and the set of all its elements. Notice that such

a schema does not allow full reconstruction of an origi-

nal XML document, as it does not retain information on

element order, whitespace, comments, entity references

etc. The encoding of element order, which is a critical

feature of XML, is discussed later in this article.

A relational schema for encoding XML may also

need to capture built-in integrity constraints of XML

documents, such as the fact that every child has a single

parent, every element has exactly one tag, etc.

Tabular storage of trees as described enables the use

of relational storage engines as the target storage tech-

nology for XML document collections. While capable

of storing arbitrary documents, with this approach a

large number of joins may be required to answer

queries, especially when reconstructing subtrees. This

is the basic storage mapping supported by Microsoft’s

SQL Server as of 2007.

Native XML Storage Native XML storage software

implements data structures and algorithms specifically

designed to store XML documents on secondary mem-

ory. These data structures support one or more of the

XML data models. Salient functional requirements

implied by standard data models include the preserva-

tion of child order, a stable node identity, and support

for type information (depending on the data model

supported). An additional functional requirement in

XML data stores is the ability to reconstruct the exact

textual representation of an XML document, including

details such as encoding, whitespace, attribute order,

namespace prefixes, and entity references.

A native XML storage implementation generally

maps tree nodes and edges to storage blocks in a

manner that preserves tree locality, i.e., that stores

parents and children in the same block. The strategy

is to map XML tree structures onto records managed

by a storage manager for variable-size records. One

possible approach is to map the complete document
to a single Binary Large Object and use the record

manager’s large object management to deal with docu-

ments larger than a page. This is one of the approaches

for XML storage supported by the commercial DBMS

Oracle as of 2007. This approach incurs significant

costs both for update and for query processing.

A more sophisticated strategy is to divide the doc-

ument into partitions smaller than a disk block and

map each partition to a single record in the underlying

store. Large text nodes and large child node lists are

handled by chunking them and/or introducing auxil-

iary nodes. This organization supports efficient local

navigation and tree reconstruction without, for exam-

ple, loading the entire tree into memory. Such an

approach is used in the commercial DBMS IBM

DB2 as of 2007 (starting with version 9). Native stores

can support efficiently updates, concurrency control

mechanisms and traditional recovery schemes to pre-

serve durability (see ACID Properties).

Figure 1b shows a hypothetical instance of the

schema of Fig. 1a. The types of nodes are indicated

by shape. One potential assignment of nodes to physi-

cal storage records is shown as groupings inside dashed

lines. Note that show elements are often physically

stored with their review children, and reviews are

frequently stored with the next or previous review in

document order.

Physical-level heuristics that can be implemented

to improve performance include compressed repre-

sentation of node pointers inside a block, and string

dictionaries allowing integers to replace strings

appearing repeatedly, such as tag names and name-

space URIs.
Schema-Driven Storage

When information about the structure of XML docu-

ments is given, e.g., in a DTD or an XML Schema (see

XML Schema), techniques have been developed for

XML storage that exploit this information. In general,

nodes of the same type according to the schema are

mapped in the same way, for example to a relational

table. Schema information is primarily exploited for

tabular storage of XML document collections, and in

particular in conjunction with the use of a relational

storage engine as the underlying technology, as de-

scribed in the next paragraph. In hybrid XML storage

different data models, and potentially even different

systems, store different document parts.

XML Storage X 3631

X

Relational Storage for XML Documents

Techniques have been developed that enable the effec-

tive use of a relational database management system

to store XML. Figure 3a illustrates the main tasks

that must be performed for storing XML in relational

databases. First, the schema of the XML document is

mapped into a suitable relational schema that can pre-

serve the information in the original XML documents

(Storage Design). The resulting relational schema needs

to be optimized at the physical level, e.g., with the selec-

tion of appropriate file structures and the creation of

indices, taking into account the distinctive characteris-

tics of XML queries and updates in general and of the

application workload in particular. XML documents are

then shredded and loaded into the flat tables (Data

Loading). At runtime, XML queries are translated into

relational queries, e.g., in SQL, submitted to the under-

lying relational system and the results are translated back

into XML (Query Translation). Schema-driven rela-

tional storage mappings for XML documents are

supported by the Oracle DBMS.

An XML-to-relational mapping scheme consists of

view definitions that express what data from the XML

document should appear in each relational table and

constraints over the relational schema. The views gen-

erally map elements with the same type or tag name to

a table and define a storage mapping. For example, in

Fig. 3b, two views, V1 and V2 are used to populate the

Actors and Shows tables respectively. A particular

set of storage views and constraints along with physical

storage and indexing options together comprise a stor-

age design. The process of parsing an XML document

and populating a set of relational views according to a

storage design is referred to as shredding.

Due to the mismatch between the tree-structure of

XML documents and the flat structure of relational

tables, there are many possible storage designs. For

example, in Fig. 3b, if an element, such as show, is
guaranteed to have only a single child of a particular

type, such as seasons, then the child type may op-

tionally be inlined, i.e., stored in the same table as the

parent.

On the other hand, due to the nature of XML

queries and updates, certain indexing and file organi-

zation options have been shown to be generally useful.

In particular, the use of B-tree indexes (as opposed to

hash-based indexes) is usually beneficial, as the trans-

lation of XML queries into relational languages often

involves range conditions. There is evidence that the
best file organization for the relations resulting from

XML shredding is index-organized tables, with the

index on the attribute(s) encoding the order of XML

elements. With such file organization, index scanning

allows the retrieval of the XML elements in document

order, as required by XPath semantics, with a mini-

mum number of random disk accesses. The use of a

path index that stores complete root-to-node paths for

all XML elements also provides benefits.

Cost-Based Approaches A key quality of a storage

mapping is efficiency – whether queries and updates

in the workload can be executed quickly. Cost-based

mapping strategies can derive mappings that are more

efficient than mappings generated using fixed strate-

gies. In order to apply such strategies, statistics on the

values and structure of an XML document collection

need to be gathered. A set of transformations and

annotations can be applied to the XML schema to

derive different schemas that result in different rela-

tional storage mappings, for example by merging or

splitting the types of different XML elements, and

hence mapping them into the same or different rela-

tional tables. Then, an efficient mapping is selected

by comparing the estimated cost of executing a given

application workload on the relational schema pro-

duced by each mapping. The optimizer of the relational

database used as storage engine can be used for the cost

estimation. Due to the size of the search space for

mappings generated by the schema transformations,

efficient heuristics are needed to reduce the cost without

missing the most efficient mappings. Physical database

design options, such as vertical partitioning of relations

and the creation of indices, can be considered in addi-

tion to logical database design options, to include po-

tentially more efficient mappings in the search space.

The basic principles and techniques of cost-based

approaches for XML storage are shared with relational

cost-based schema design.

Correctness and Losslessness An important issue in

designing mappings is correctness, notably, whether a

given mapping preserves enough information. A

mapping scheme is lossless if it allows the reconstruc-

tion of the original documents, and it is validating if all

legal relational database instances correspond to a valid

XML document. While losslessness is enough for

applications involving only queries over the docu-

ments, if documents must conform to an XML schema

XML Storage. Figure 3. Relational storage workflow and example.

3632X XML Storage
and the application involves both queries and updates

to the documents, schema mappings that are validat-

ing are necessary. Many of the mapping strategies pro-

posed in the literature are (or can be extended to be)

lossless. While none of them are validating, they can be

extended with the addition of constraints to only allow

updates that maintain the validity of the XML docu-

ment. In particular, even though losslessness and vali-

dation are undecidable for a large class of mapping

schemes, it is possible to guarantee information
preservation by designing mapping procedures which

guarantee these properties by construction.

Order Encoding Schemes Different techniques have

been proposed to preserve the structure and order of

XML elements that are mapped into a relational

schema. In particular, different labeling schemes have

been proposed to capture the positional information

of each XML element via the assignment of node

labels. An important goal of such schemes is to be able

XML Storage X 3633

X

to express structural properties among nodes, e.g., the

child, descendant, following sibling and other relation-

ships, as conditions on the labels. Most schemes are

either prefix-based or range-based and can be used

with both schema-driven and instance-based relational

storage of XML.

In prefix-based schemes, a node’s label includes as

a prefix the label of its parent. Dewey-based order

encodings are the best known prefix-based schemes.

The Dewey Decimal Classification was originally de-

veloped for general knowledge classification. The basic

Dewey-based encoding assigns to each node in an XML

tree an identifier that records the position of a node

among its siblings, prefixed by the identifier of its

parent node. In Fig. 1b, the Dewey-based encoding

would assign the identifier 1.1.2 to the dashed-line

year element. In range-based order encodings, such

as interval or pre/post encoding, a unique {start,end}

interval identifies each node in the document tree. This

interval can be generated in multiple ways. The most

common method is to create a unique identifier, start,

for each node in a preorder traversal of the document

tree, and a unique identifier, end, in a postorder tra-

versal. Additionally, in order to distinguish children

from descendants, a level number needs to be recorded

with each node.

An important consideration for any order-encoding

scheme is to be able to handle updates in the XML

documents, and many improvements have been made

to the above basic encodings to reduce the overhead

associated with updates.

Hybrid XML Storage

Some XML documents have both very structured and

very unstructured parts. This has lead to the idea of

hybrid XML storage, where different data models, and

even systems using different storage technologies, store

different document parts. For example, in Fig. 3b,

review elements and their subtrees can be stored

very differently from show elements, for example by

serializing each review according to the dashed lines in

the figure or storing them in a native XML storage

system.

Prototype systems such as MARS and XAM have

been proposed that support a hybrid storage model at

the system level, i.e., provide physical data independence.

In these systems, different access methods corresponding

to the different storage mappings are formally described

using views and constraints, and query processing
involves the use of query rewriting using views.Moreover,

an appropriate tool or language is necessary to specify

hybrid storage designs effectively and declaratively.

An additional consideration in favor of hybrid XML

storage is that storing some information redundantly

using different techniques can improve the performance

of querying and data retrieval significantly by combin-

ing their benefits. For example, schema-directed rela-

tional storage mappings often give better performance

for identifying the elements that satisfy an XPath query,

while native storage allows the direct retrieval of large

elements. In environments where updates are infrequent

or update cost less important than query performance,

such as various web-based query systems, such redun-

dant storage approaches can be beneficial.

Key Applications
XMLStorage techniquesareused toefficiently storeXML

documents, XML messages, accumulated XML streams

and any other form of XML-encoded content. XML

Storage is a key component of anXMLdatabasemanage-

ment system. It can also provide significant benefits

for the storage of semi-structured information with

mostly tree structure, including scientificdata.

Cross-references
▶Dataguide

▶Deweys

▶ Intervals

▶ Storage Management

▶Top-k XML Query Processing

▶XML Document

▶XML Indexing

▶XML Schema

▶XPath/XQuery

Recommended Reading
1. Arion A., Benzaken V., Manolescu I., and Papakonstantinou Y.

Structured materialized views for XML queries. In Proc. 33rd

Int. Conf. on Very Large Data Bases, 2007, pp. 87–98.

2. Barbosa D., Freire J., and Mendelzon A.O. Designing informa-

tion-preserving mapping schemes for XML. In Proc. 31st Int.

Conf. on Very Large Data Bases, 2005, pp. 109–120.

3. Beyer K., Cochrane R.J., Josifovski V., Kleewein J., Lapis G.,

Lohman G., Lyle B., Özcan F., Pirahesh H., Seemann N.,

Truong T., der Linden B.V., Vickery B., and Zhang C. System

RX: one part relational, one part XML. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2005, pp. 347–358.

4. Chaudhuri S., Chen Z., Shim K., and Wu Y. Storing XML (with

XSD) in SQL databases: interplay of logical and physical designs.

IEEE Trans. Knowl. Data Eng., 17(12):1595–1609, 2005.

3634X XML Stream Processing
5. Deutsch A., Fernandez M., and Suciu D. Storing semi-structured

data with STORED. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 1999, pp. 431–442.

6. Fiebig T., Helmer S., Kanne C.C., Moerkotte G., Neumann J.,

Schiele R., and Westmann T. Anatomy of a native XML base

management system. VLDB J., 11(4):292–314, 2003.

7. Georgiadis H. and Vassalos V. XPath on steroids: exploiting

relational engines for XPath performance. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2007, pp. 317–328.

8. Härder T., Haustein M., Mathis C., and Wagner M. Node label-

ing schemes for dynamic XML documents reconsidered. Data

Knowl. Eng., 60(1):126–149, 2007.

9. McHugh J., Abiteboul S., Goldman R., Quass D., and Widom J.

Lore: a database management system for semistructured data.

ACM SIGMOD Rec., 26:54–66, 1997.

10. Shanmugasundaram J., Tufte K., He G., Zhang C., DeWitt D.,

and Naughton J. Relational databases for querying XML docu-

ments: limitations and opportunities. In Proc. 25th Int. Conf. on

Very Large Data Bases, 1999, pp. 302–314.

11. Vélez F., Bernard G., and Darnis V. The O2 object manager: an

overview. In Building an Object-Oriented Database System, The

Story of O2. F. Bancilhon, C. Delobel, and P.C. Kanellakis (eds.),

Morgan Kaufmann, San Francisco, CA, USA, 1992, pp. 343–368.
XML Stream Processing

CHRISTOPH KOCH

Cornell University, Ithaca, NY, USA

Definition
XML Stream Processing refers to a family of data

stream processing problems that deal with XML data.

These include XML stream filtering, transformation,

and query answering problems.

A main distinguishing criterion for XML stream

processing techniques is whether to filter or transform

streams. In the former scenario, XML streams are usually

thought of as consisting of a sequence of rather small

XML documents (e.g., news items), and the (Boolean)

queries decide for each item to either select or drop it.

In the latter scenario, the input stream is transformed

into a possibly quite different output stream, often using

an expressive transformation language.

Historical Background
With the spread of the XML data exchange format

in the late 1990s, the research community has become

interested in processing streams of XML data. The

selective dissemination of information that is not

strictly tuple-based, such as electronically disseminated
news, was one of the first, and remains one of the

foremost applications of XML streams. Subscriptions

to items of interest in XML Publish-Subscribe systems

are usually expressed in weak XML query languages

such as tree patterns and fragments of the XPath query

language. This problem has been considered with the

additional difficulty that algorithms have to scale to

large numbers of queries to be matched efficiently in

parallel.

In addition to XML publish-subscribe in the narrow

sense, a substantial amount of research has addressed

the problems of processing more expressive query and

stream transformation languages on XML streams.

This includes automata as well as well as data-trans-

formation query language-based approaches (e.g.,

XQuery).

Foundations
Controlling Memory Consumption. Efficient stream

processing is only feasible for data processing problems

that can be solved by strictly linear-time one-pass

processing of the data using very little main memory.

For the XML stream filtering problem, and restricted

query languages such as XML tree patterns, linear-time

evaluation techniques are not hard to develop (see e.g.,

[1] for an extensive survey). However, developing

one-pass filtering techniques that require little main

memory is nontrivial.

Techniques from communication complexity have

been used to study memory lower bounds of streaming

XPath evaluation algorithms. It has been observed in

[5] that there can be no streaming algorithm with

memory consumption sublinear in the depth of the

data tree, even for simple tree pattern queries and very

small XPath fragments. This is a tight bound. Boolean

queries in query languages of considerable expressive-

ness can be processed on XML streams using memory

linear in the depth of the tree and independent of any

other aspects of its size. By classical reductions between

logics and automata on trees, this includes queries in

first-order and even monadic second-order logic and

as a consequence tree pattern queries and a large class

of XPath queries [1]. Since the nesting depth of XML

documents tends to be shallow, this is a positive result.

Selecting Nodes or Subtrees. The above observation –

that memory consumption does not depend on the size

of the XML document but only on the depth of the

parse tree – only holds for the problem of testing, for

each document, whether it matches the tree pattern or

XML Stream Processing X 3635

X

not. If output is to be produced by selecting documents

or subtrees, then there are simple queries which require

most of the document to be buffered. For an example,

consider the following two XML documents.

Ah i B=h i . . . B=h i C=h i =Ah i Ah i B=h i . . . B=h i D=h i =Ah i

and the XPath query /*[C]. Any implementation of

this query that is to output selected documents must

select the entire left document but not the right. Hence

such an implementation will have to buffer the prefix

of either document up to the C resp. D node. This may

amount to buffering almost all the document.

The problem of efficiently selecting nodes using

XPath on XML streams with close to minimum space

requirements was studied in several works, and results

are usually space bounds depending linearly on the

depth of the data tree, a function of certain properties

of the query, and the number of candidate output

nodes from the data tree, which in some cases can

be nearly all the nodes in the parse tree of the XML

document.

Automata-Based Stream Processing. A large part of

the research into efficient XML stream processing is

based on compiling queries or subscriptions into auto-

mata that then run on the data stream. This is not

surprising since automata provide a natural one-pass

processing model. For most forms of automata one can

analyze the runtime memory usage easily. Note, how-

ever, that finite word automata are not sufficiently

expressive to keep track of the position in the nested

XML stream.

Translating XPath queries into pushdown auto-

mata has been studied in several works. Pushdown

automata yield document depth-bounded space

usage. The pushdown automaton nature is somewhat

concealed in some of this work; the processing model

can be thought of as a finite word automaton for a

query path expression which runs on the path from the

root node of the XML tree to the current data tree

node. There is also a pushdown automaton, indepen-

dent of the path expression, that acts as a controller for

the word automaton, managing the current path using

a stack and conceptually rerunning the word automa-

ton every time a new node in the stream is

encountered.

The blow-up required to compute deterministic fi-

nite word automata for query path matching is

exponential in size of the query. The sources of this
exponentiality were explored in [4]. An alternative is

to maintain a nondeterministic finite word automaton

for pathmatching as done in YFilter [3]. This technique

is described in detail in.

Transducer Networks. In the following, a technique

for constructing automata that have the power to effect

stream transformation while being deterministic,

consuming little main memory, and being of size poly-

nomial in the size of the query is described. The expo-

nential size of deterministic automata is avoided by

not compiling automata for managing and recognizing

the subexpressions of an XPath query into a single

‘‘flat’’ automaton. These automata are instead kept

apart, as a transducer network [6].

A transducer network consists of a set of synchro-

nously running transducers (here, deterministic push-

down transducers) where each transducer runs,

possibly in parallel with some other transducers, either

on the input XML stream, or on the output of another

transducer (in which case the input is the original

stream where some nodes may have been annotated

using labels). Two transducers may also be ‘‘joined,’’

producing output whose annotations are pairs consist-

ing of the annotations produced by the two input

transducers.

Next, this is formalized, and some of the tran-

sducers that form part of a transducer network are

exhibited.

XPathqueriesarefirstrewrittenintonestedfilterswith

paths of length one; for instance, query child::

A∕descendant::B is first rewritten into child[lab() = A ∧
descendant[lab() = B]]. To emphasize the goal of

checking whether the query can be successfully

matched, rather than computing nodes matched by a

path, axis filters are written as ∃child[f] and ∃descen-
dant[f]. The rewritten queries will now be translated

into transducer networks inductively.

The axes used have to be forward axes (child, next

sibling, descendant, and following). A large class of

XPath queries with other axes (e.g., ancestor) can be

rewritten to use just forward axes [2].

A deterministic pushdown transducer T is a tuple

(S, G, O, Q, q0, F, d) with input alphabet S, stack
alphabet G, output alphabet O, set of states Q, start

state q0, set of final states F, and transition function d :

Q � S � (e [G)! Q � G∗� O. For no q 2 Q, s 2 S,
g 2 G, both d(q, s, e) and d(q, s, g) are defined.

Here e denotes the empty word. All transducers will

have Q = F; that is, all states are final states, so all valid

3636X XML Stream Processing
runs will be accepting. If the transducer T is in state q

and has uv on the stack, and if d(q, s, v) = (q 0, w, s 0),

then Tmakes a transition to state q0 and stack uw (u,v,

w 2 G∗) on input s, and produces output o, denoted

(q,uv)!s=o (q 0,uw). A run on input s1...sn is a sequence

of transitions (q0,e) !s1=o1 � � � !sn=on (q,u) that produces

output o1...on.

A transducer T[∃descendant[f]] running on the

output stream of transducer T[f] is a deterministic

pushdown transducer with S = O = {h i ,t,f}, G = {t,f},

Q = F = {qf, qt}, q0 = qf, and transition function

d : q x ; hi; EÞ 7! ðqf ; x; hiÞ
n

ðqx ; y 2 ft ; f g; zÞ 7! ðqx_y_z ; E; xÞ

On seeing an opening tag of a node, this transducer

memorizes on the stack whether f was matched in the

subtrees of the previously seen siblings of that node.

On returning (i.e., seeing a closing tag), the transducer

labels the node (by its proxy the closing tag) with t or f

(true or false) depending on whether f was matched

in the node’s subtree, which is encoded in the state.

Example 1. On input h i h i h i h i f t th i h i h i t f f t, T
[∃descendant[·]] has the run

ðqf ; EÞ !hi=hiðqf ; f Þ !hi=hiðqf ; ff Þ !hi=hiðqf ; fff Þ !hi=hi

ðqf ; ffff Þ!
f =f ðqf ; fff ÞÞ!

t=f ðqt ; ff Þ!
t=tðqt ; f Þ !hi=hi

ðqf ; ftÞ !hi=hiðqf ; ftf Þ !hi=hiðqf ; ftff Þ!
t=f ðqt ; ftf Þ!

f =t

ðqt ; ftÞ!
f =tðqt ; f Þ!

t=tðqt ; EÞ
XML Stream Processing. Figure 1. Document tree (top left),

network (bottom).
and produces output h i h i h i h i fft h i h i h i fttt (see
Fig. 1).

A transducer T[∃child[f]] can be defined

similarly.

The transducers for testing labels and computing

conjunctions of filters do not need a stack. The trans-

ducer T[lab() = A] has the opening and closing tags

of the XML document as input alphabetS,O= {h i ,t,f},
Q = F = {q0}, and d = {(q0,h·i,e) 7!(q0,e,h i),(q0,h∕Ai,
e) 7!(q0,e,t),(q0,h∕Bi,e) 7!(q0,e,f)} (where B stands for

all node labels other than A). The transducer T[f ∧
c] has S = {h i } [{t,f}2, O = {h i,t,f}, Q = F = {q0} and

d ={(q0,h i, e) 7!(q0,e,h i),(q0,(x,y),e) 7!(q0,e,x ∧ y)}.

The overall execution of a transducer network is

exemplified in Fig. 1, where the filter that matches the

XPath expression self:: A∕descendant:: B, rewritten into

(∃descendant[lab() = B]) ∧lab() = A is evaluated

using a transducer network. The transducers for the

different subexpressions run synchronously; each sym-

bol (opening or closing tag) from the input stream is

first transformed by T[f1] and T[f3]; the output of T

[f1] is piped into T[f2] and the output of both T[f2]

and T[f3], as a pair of symbols, is piped into T[f4].

Only then is the next symbol of the input stream

processed, which is handled in the same way, and so

on. In the example of Fig. 1, the final transducer labels

exactly those nodes t on which the filter is true. Check-

ing whether the filter can be matched on the root

node, which is not the case in this example, can be

done using an additional pushdown automaton which

is not exhibited here but is simple to define.
transducer network (top right), and run of the transducer

XML Tree Pattern, XML Twig Query X 3637
Key Applications
See XML Publish-Subscribe.

Cross-references
▶Data Stream

▶XML Publish/Subscribe

Recommended Reading
1. Benedikt M. and Koch C. Xpath Unleashed. ACM Comput.

Surv., 41(3), 2009.

2. Bry F., Olteanu D., Meuss H., and Furche T. Symmetry in

XPath. Tech. Rep. PMS-FB-2001-16, LMU München, 2001,

short version.

3. Diao et al. Y. YFilter: efficient and scalable filtering of

XML documents. In Proc. 18th Int. Conf. on Data Engineer-

ing, 2002, pp. 341–342.

4. Green T.J., Miklau G., Onizuka M., and Suciu D. Processing

XML streams with deterministic automata. In Proc. 9th Int.

Conf. on Database Theory, 2003, pp. 173–189.

5. Grohe M., Koch C., and Schweikardt N. Tight lower bounds

for query processing on streaming and external memory data.

Theor. Comput. Sci., 380(1–2):199–217, 2007.

6. Olteanu D. SPEX: streamed and progressive evaluation of

XPath. IEEE Trans. Knowl. Data Eng., 19(7):934–949, 2007.
X

XML Tree Pattern, XML Twig Query

LAKS V. S. LAKSHMANAN

University of British Columbia, Vancouver, BC,

Canada

Synonyms
Tree pattern queries; TPQ; TP; Twigs

Definition
A tree pattern query (also known as twig query) is a pair

Q = (T, F), where T is node-labeled and edge-labeled

tree with a distinguished node x 2 T and F is a boolean

combination of constraints on nodes. Node labels are

variables such as $x, $y. Edge labels are one of ‘‘pc,’’

‘‘ad,’’ indicating parent-child or ancestor-descendant.

Node constraints are of the form $x.tag = TagName or

$x.data relOp val, where $x.data denotes the data con-

tent of node $x, and relOp is one of =, <, >, ≤, ≥, ≠.
Informally, a tree pattern query specifies a pattern

tree, with a set of constraints. Some of the constraints

specify what the node labels (tags) should be. Some of

them specify how pairs of nodes are related to one
another – as a parent-child or as an ancestor-descendant.

Finally, constraints on the data content of nodes enforce

what data values are expected to be present at the nodes.

Taken together, a tree pattern is similar in concept to a

selection condition in relational algebra. There, the con-

dition specifies what it takes a tuple to be part of a

selection query result. A tree pattern similarly specifies

what it takes an XML fragment (i.e., a subtree of the

input data tree) to be part of a selection query result.

This will be formalized below.

Historical Background
One of the earliest papers to use the term twig query was

Chen et al. [1]. In this paper, the authors were interested

in estimating the number of matches of a twig query

against an XML data tree, using a summary data struc-

ture. However, the notion of a twig in this paper was

confined to tree patterns without ancestor-descendant

relationships. Furthermore, data values were required to

be strings over an alphabet (i.e., PCDATA) and a match

was defined based on identity of node labels in the

twig query and the labels of corresponding nodes in

the data tree.

Amer-Yahia et al. [2] introduced the notion of tree

pattern query where the authors allowed both parent-

child and ancestor-descendant relationships between

pattern nodes. They motivated such queries in the con-

text of querying LDAP-style network directories and as a

core operation in query languages such as XML-QL and

Quilt (the prevalent predecessors of XQuery). They fo-

cused on minimization of tree pattern queries. Jagadish

et al. [3] was the first paper to define tree pattern queries

in the current general form. They did so in the context of

TAX – a tree algebra for XML data manipulation. Actu-

ally, tree patterns as defined in [3] allow for a richer class

of node predicates than defined above. An XML data

management system called TIMBER that was developed

using the foundations of TAX algebra is described in

Jagadish et al. [4]. Subsequently, an extensive body of

work has flourished onvarious aspects of tree pattern (or

twig) queries, ranging from their minimization [2,5,6],

their efficient evaluation via the so-called structural and

holistic joins [7,8] and their extensions leveraging

indices [9,10]. Twig queries have served as a basis for

defining the semantics of group-by for XML data [11].

Subsequently, efficient algorithms for computing group-

by queries over XML data were reported in [12] while

[13] addresses efficient computation of XML cube. All of

3638X XML Tree Pattern, XML Twig Query
these works use tree patterns in an essential way. Given

the importance of approximate match when searching

an XML document, papers dealing with approximate

match have also taken tree patterns as a basis. These

include tree pattern relaxation [14] and FleXPath [15].

Last but not the least, given the importance of twig

queries, much work has been done on estimating selec-

tivity of twig queries [16–18].

Foundations
Let D = (N, A) be an XML data tree, i.e., an ordered

node-labeled tree whose nodes are labeled by tags,

which are element names drawn from an alphabet ∏
and whose leaf nodes are additionally labeled by strings

from S*. The latter correspond to PCDATA and repre-

sent the data content of leaf nodes. A twig query

specifies a pattern tree. The semantics of such a query

is based on the notion of a match. Let Q = (T, F) be a

tree pattern, where T = (V, E) is a node-labeled and

edge-labeled tree and letD be an XML data tree. Then a

match is defined based on the notion of an embedding.

Given Q and D as above, an embedding is a function

h: V → N, mapping query or pattern nodes to data

nodes such that the following conditions are satisfied:

� Whenever (x, y) 2 Eis an edge labeled ‘‘pc’’ (resp.,

‘‘ad’’), h(y) is a child (resp., descendant) of h(x)

in D.

� The boolean combination of conditions of the form

and $x.tag = TagName and $x.data relOp val in F is

satisfied:
XM
� An atom $x.tag = TagName is satisfied provided

$x is the label of node v in Q and the tag of the

data node h(v) is TagName.
L Tree Pattern, XML Twig Query. Figure 1. Example XM
� An atom $x.data relOp val is satisfied provided $x is

the label of node v of Q and the node label of the

data node h(v) stands in relationship relOp to the

constant val.

� Satisfaction w.r.t. boolean combinations of atoms is

defined in the standard way.

Figure 1 shows a sample data tree. Figure 2 shows a tree

pattern query and illustrates matches. In this figure,

the distinguished node (node labeled $n) is identified

by a surrounding box. Informally, this pattern says

find the immediate or transitive name sub-elements

of book elements such that the book was published

after 1900, as indicated by an immediate year sub-

element of the book element. Note the edge labels

‘‘pc’’ and ‘‘ad’’ in Fig. 2(a) that specify the intended

relationship between elements. In Fig. 2(b), the match-

ing data nodes are indicated in red. The result of a

selection query with this tree pattern against the input

of Fig. 1(a) consists of the two name sub-elements

corresponding to matches of the distinguished node

of the tree pattern.

Key Applications
As mentioned earlier, a substantial amount of work on

XML query evaluation and optimization has flour-

ished using twig/tree patterns as a basis. One of the

reasons for this is that tree pattern queries can be seen

as an abstraction of a ‘‘core’’ subset of XPath [19]. In

addition to the query evaluation issues mentioned

above, tree pattern queries have also attracted attention

from the point of view of query static analysis, study of

structural properties, and query answering using

views. In static analysis, Hidders [20], Lakshmanan
L data tree.

XML Tree Pattern, XML Twig Query. Figure 2. (a) Example tree pattern query and (b) Matches.

XML Tree Pattern, XML Twig Query X 3639

X

et al. [21], and Benedikt et al. [22] study satisfiability of

fragments of XPath queries, which can be modeled as

tree patterns with possible extensions. Benedikt et al.

[23] study structural properties of several XPath frag-

ments corresponding to different extensions of the

basic class of tree patterns as defined in this chapter.

Xu and Ozsoyoglu [24], Deutsch and Tannen [25], and

Lakshmanan et al. [26] study different formulations of

the query answering using views problem for XML.

It is important to investigate richer extensions of

tree patterns, capturing a greater subset of the features

found in XPath. By far, the most important such fea-

ture that is lacking in tree patterns is element order.

Various papers have examined XPath fragments to-

gether with sibling axis. An alternative approach is

to consider tree patterns with two kinds of internal

nodes – ordered and unordered. An unordered node is

just like a node in a standard tree pattern. An ordered

internal node is one for which the order of its children

in the pattern should obey a specified order. e.g.,

suppose x is an ordered internal node and it has chil-

dren y, z, w in that order, in the pattern. Then this

imposes a constraint that a match of node z should

follow the corresponding match of y. Similarly, a

match of w should follow the corresponding match

of z. Another example extension that is worthwhile

investigating is a notion of relaxation of a tree pattern

with order and keyword search that is appropriate for

searching XML documents.

Cross-references
▶Top-k XML Query Processing

▶XML Retrieval

▶XML Schema

▶XML Selectivity Estimation

▶XMLViews

▶XPath/XQuery

▶XSL/XSLT
Recommended Reading
1. Al-Khalifa S., Jagadish H.V., Koudas N., Patel J.M., Srivastava D.,

and Wu Y. Structural joins: a primitive for efficient XML query

pattern matching. In Proc. 18th Int. Conf. on Data Engineering,

2002, pp. 141–152.

2. Amer-Yahia S., Cho S.R., Lakshmanan L.V.S., and Srivastava D.

Minimization of tree pattern queries. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2001, pp. 497–508.

3. Amer-Yahia S., Cho S.R., and Srivastava D. Tree pattern relaxa-

tion. In Advances in Database Technology, Proc. 8th Int. Conf.

on Extending Database Technology, 2002, pp. 496–513.

4. Amer-Yahia S., Lakshmanan L.V.S., and Pandit S. FleXPath:

flexible structure and full-text querying for XML. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2004, pp.

83–94.

5. Benedikt M., Fan W., and Geerts F. XPath satisfiability in the

presence of DTDs. In Proc. 24th ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2005,

pp. 25–36.

6. Benedikt M., Fan W., and Kuper G.M. Structural properties of

XPath fragments. In Proc. 9th Int. Conf. on Database Theory,

2003, pp. 79–95.

7. Bruno N., Koudas N., and Srivastava D. Holistic twig joins:

optimal XML pattern matching. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2002, pp. 310–321.

8. Chen Z., Jagadish H.V., Korn F., Koudas N., Muthukrishnan S.,

Ng R., and Srivastava D. Counting twig matches in a

tree. In Proc. 17th Int. Conf. on Data Engineering, 2001,

pp. 595–604.

9. Chien S.Y., Vagena Z., Zhang D., Tsotras V.J., and Zaniolo C.

Efficient structural joins on indexed XML documents. In Proc.

28th Int. Conf. on Very Large Data Bases, 2002, pp. 263–274.

10. Deutsch A. and Tannen V. Reformulation of XML queries and

constraints. In Proc. 9th Int. Conf. on Database Theory, 2003,

pp. 225–241.

11. Flesca S., Furfaro F., and Masciari E. On the minimization of

Xpath queries. In Proc. 29th Int. Conf. on Very Large Data Bases,

2003, pp. 153–164.

12. Freire J., Haritsa J., Ramanath M., Roy P., and Simeon J. StatiX:

making XML count. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2002, pp. 181–191.

13. Gokhale C., Gupta N., Kumar P., Lakshmanan L.V.S., Ng R., and

Prakash B.A. Complex group-by queries for XML. In Proc. 23rd

Int. Conf. on Data Engineering, 2007, pp. 646–655.

3640X XML Tuple Algebra
14. Hidders J. Satisfiability of XPath expressions. In Proc. 9th Int.

Workshop on Database Programming Languages, 2003,

pp. 21–36.

15. Jagadish H.V., Lakshmanan L.V.S., Srivastava D., and Thompson

K. TAX: a tree algebra for XML. In Proc. 8th Int. Workshop on

Database Programming Languages, 2001, pp. 149–169.

16. Jagadish H.V., Al-Khalifa S., Chapman A., Lakshmanan L.V.S.,

Nierman A., Paparizos S., Patel J.M., Srivastava D.,

Wiwatwattana N., Wu Y., and Yu C.TIMBER: a native XML

database. VLDB J., 11(4):274–291, 2002.

17. Jiang H., Lu H., Wang W., and Ooi B.C. XR-tree: indexing XML

data for efficient structural joins. In Proc. 19th Int. Conf. on

Data Engineering, 2003, pp. 253–263.

18. Lakshmanan L.V.S., Ramesh G., Wang H., and (Jessica) Zhao Z.

On testing satisfiability of tree pattern queries. In Proc. 30th Int.

Conf. on Very Large Data Bases, 2004, pp. 120–131.

19. Lakshmanan L.V.S., Wang H., and (Jessica) Zhao Z. Answering

tree pattern queries using views. In Proc. 32nd Int. Conf. on Very

Large Data Bases, 2006, pp. 571–582.

20. Miklau G. and Suciu D. Containment and equivalence for a

fragment of XPath. In Proc. 21st ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, 2002, pp.

65–76.

21. Paparizos S., Al-Khalifa S., Jagadish H.V., Lakshmanan L.V.S.,

Nierman A., Srivastava D., and Wu Y. Grouping in XML. In

EDBT 2002Workshop on XML-Based Data Management LNCS,

vol. 2490, Springer, Berlin, 2002, pp. 128–147.

22. Polyzotis N. and Garofalakis M. XSketch synopses for XML data

graphs. ACM Trans. Database Syst., September 2006.

23. Polyzotis N., Garofalakis M., and Ioannidis Y. Selectivity estima-

tion for XML twigs. In Proc. 20th Int. Conf. on Data Engineer-

ing, 2004, pp. 264–275.

24. Wiwatwattana N., Jagadish H.V., Lakshmanan L.V.S., and

Srivastava D. X3: a cube operator for XML OLAP. In Proc. 23rd

Int. Conf. on Data Engineering, 2007, pp. 916–925.

25. XML Path Language (XPath) Version 1.0. http://www.w3.org/

TR/xpath.

26. Xu W. and Meral Özsoyoglu Z. Rewriting XPath queries using

materialized views. In Proc. 31st Int. Conf. on Very Large Data

Bases, 2005, pp. 121–132.
XML Tuple Algebra

IOANA MANOLESCU
1, YANNIS PAPAKONSTANTINOU

2,

VASILIS VASSALOS
3

1INRIA Saclay–Île-de-France, Orsay, France
2University of California-San Diego, La Jolla, CA, USA
3Athens University of Economics and Business,

Athens, Greece

Synonyms
Relational algebra for XML; XML algebra
Definition
An XML tuple-based algebra operates on a domain

that consists of sets of tuples whose attribute values

are items, i.e., atomic values or XML elements (and

hence, possibly, XML trees). Operators receive one or

more sets of tuples and produce a set, list or bag of

tuples of items. It is common that the algebra has

special operators for converting XML inputs into

instances of the domain and vice versa. XML tuple-

based algebras, as is also the case with relational alge-

bras, have been extensively used in query processing

and optimization [1–10].
Historical Background
The use of tuple-based algebras for the efficient set-at-

a-time processing of XQuery queries follows a typical

pattern in database query processing. Relational alge-

bras are the most typical vehicle for query optimiza-

tion. Tuple-oriented algebras for object-oriented

queries had also been formulated and have a close

resemblance to the described XML algebras.

Note that XQuery itself as well as predecessors of it

(such as Quilt) are also algebras, which include a list

comprehension operator (‘‘FOR’’). Such algebras and

their properties and optimization have been studied by

the functional programming community. They have

not been the typical optimization vehicle for database

systems.

Foundations
The emergence of XML and XQuery motivated many

academic and industrial XML query processing works.

Many of the works originating from the database com-

munity based XQuery processing on tuple-based alge-

bras since in the past, tuple-based algebras delivered

great benefits to relational query processing and also

provided a solid base for the processing of nested

OQL data and OQL queries. Tuple-based algebras for

XQuery carry over to XQuery key query processing

benefits such as performing joins using set-at-a-time

operations.

A generic example algebra, characteristic of many

algebras that have been proposed as intermediate

representations for XQuery processing, is described

next. It is based on a Unified Data Model that extends

the XPath/XQuery data model with sets, bags, and lists

of tuples; notice that the extensions are only visible to

algebra operators.

XML Tuple Algebra X 3641
Given an XML algebra, important query processing

challenges include efficient implementation of the

operators as well as cost models for them, algebraic

properties of operator sequences and algebraic rewrit-

ing techniques, and cost-based optimization of algebra

expressions.

Unified Data Model

The Unified Data Model (UDM) is an extension of the

XPath/XQuery data model with the following types:

� Tuples, with structure [$a1 = val1,...,$ak = valk],

where each $ai = itemi is a variable-value pair.

Variable names such as $a1,$a2,etc. follow the syn-

tactic restrictions associated with XQuery variable

names; Variable names are unique within a tuple. A

value may be (i) thespecial constant ⊥(null) (The

XQuery Data Model also has a concept of nil. For

clarity of exposition, the two concepts should be

considered as distinct, in order to avoid discrepan-

cies that may stem from the overloading.), (ii) an

item, i.e., a node (generally standing for the root of

an XML tree)or atomic value, or (iii) a (nested) set,

list, or bag of tuples. Given a tuple [$a1 = val1,...,$ak
= valk] the list of names [$a1,...,$ak] is called the

schema of the tuple. We restrict our model to ho-

mogeneous collections (sets, bags or lists) of tuples.

That is, the values taken by a givenvariable $a in all

tuples are of the same kind: either they are all items

(some of which may be null), or they are all collec-

tions of tuples. Moreover, in the lattercase, all the

collections have the same schema.
X

Note that the nested sets/bags/lists are typically

exploited for buildingefficient evaluation plans.

If the value of variable t.$a is a set, list or bag of

tuples, let [$b1, $b2,...,$bm] be the schema of a tuple

in t.$a. In this case, for clarity, we may denote a $bi
variable, 1 � i � m, by $a.$bi (concatenating the

variable names, from the outermost to the inner-

most, and separating them by dots).

� Lists, bags and sets of tuples, denoted as ht1,...,tni,
{{t1,...,tn}}, and {t1,...,tn} and referred to collectively

as collections. In all three cases the tuples t1,..., tn
must have the same schema, i.e., collections are

homogeneous. Sets have no duplicate tuples, i.e.,

no two tuples in a set are id-equal as defined below.

Two tuples are id-equal, denoted as t1 = id t2, if they

have the same schema and the values of the

corresponding variables either (i) are both null, or
(ii) are both equal atomic values (i.e., they compare

equal via = v), or are both nodes with the same id (i.e.,

they compare equal via = id), or (iii) are both sets of

tuples and each tuple of a set is id-equal to a tuple

of the other set. For the case (iii), similar definitions

apply if the variable values are bags or lists of tuples, by

taking into account the multiplicity of each tuple in

bags and the order of the tuples for lists.

Notation Given a tuple t = [. . .$x = v. . .] it is said

that $x maps to v in the context of t. The value that

the variable $x maps to in the tuple t is t.$x. The

notation t 0 = t + ($var = v) indicates that the tuple

t 0 contains all the variable-value pairs of t and, in

addition, the variable-value pair $var = v. The tuple

t 0 = t + t 0 contains all the variable-value pairs of both

tuples t and t 0. Finally, (id) denotes the node with

identifier id.

Sample document and query A sample XML docu-

ment is shown in tree form in Fig. 1. For readability,

the figure also displays the tag or string content of each

node. The following query will be used to illustrate the

XML tuple algebra operators:

for $C in $I//customer

return <customer>

{for $N in $C/namē

$F in $N/first

$L in $N/last

return {$F, $L, $C/address } }

<customer> (Q1)

Unified Algebra

Tuple-based XQuery algebras typically consist of

operators that: (i) perform navigation into the data

and deliver collections of bindings (tuples) for the

variables; (ii) construct XPath/XQuery Data Model

values from the tuples; (iii) create nested collections;

(iv) combine collections applying operations known

from the relational algebra, such as joins It is common

to have redundant operators for the purpose of deliv-

ering performance gains in particular environments;

structural joins are a typical example of such redun-

dant operators.

An XQuery q, with a set of free variables V , is

translated into a corresponding algebraic expression

fq, which is a function whose input is a collection

with schema V . The algebraic expressions outputs a

collection in the Unified Data Model. The trivial opera-

tors used to convert the collection into an XML-for-

matted document are not discussed.

XML Tuple Algebra. Figure 1. Tree representation of sample XML document.

3642X XML Tuple Algebra
Selection The selection operator s is defined in the

usual way based on a logical formula (predicate) that

can be evaluated over all its input tuples. The selection

operator outputs those tuples for which the predicate

evaluated to true.

Projection The projection operator p is defined by

specifying a list of column names to be retained in the

output. The operator p does not eliminate duplicates;

duplicate-eliminating projections are denoted by p0.

Navigation The navigation operator follows the

established tree pattern paradigm. XQuery tuple-

based algebras involve tree patterns where the root of

the navigation may be a variable binding, in order to

capture nested XQueries where a navigation in the

inner query may start from a variable of the outer

query. Furthermore, XQuery tuple-based algebras

have extended tree patterns with an option for ‘‘op-

tional’’ subtrees: if no match is found for optional

subtrees, then those subtrees are ignored and a ⊥
(null) value is returned for variables that appear in

them. This feature is similar to outerjoins, and has

been used in some algebras to consolidate the naviga-

tion of multiple nested queries (and hence of multiple

tree patterns) into a single one. In what follows, the

tree patterns are limited to child and descendant navi-

gation. The literature describes extensions to all XPath

axes.

An unordered tree pattern is a labeled tree, whose

nodes are labeled with (i) an element/attribute or the

wildcard ∗ and (ii) optionally, a variable $var. The

edges are either child edges, denoted by a single line,

or descendant edges, denoted by a double line. Further-

more, edges can be required, shown as continuous

lines, or optional, depicted with dashed lines. The vari-

ables appearing in the tree pattern form the schema of

the tree pattern.
The semantics of the navigation operator is based

on the mapping of a tree pattern to a value. Given a

variable-value pair $R = ri and a tree pattern T with

schema V , a mapping of T to ri is a mapping of

the pattern nodes to nodes in the XML tree rep-

resented by ri such that the structural relationships

among pattern nodes are satisfied. A mapping tuple

(also called binding) has schema V and pairs each

variable in V to the node to which it is mapped

corresponding to such a mapping. The function map

(T, ri) returns the set of bindings corresponding to all

mappings.

A mapping may be partial: nodes connected to the

pattern by optional edges may not be mapped, in

which case this node is mapped to a ⊥.

To formally define embeddings for tree patterns T

that have optional edges, the auxiliary pad and sp

functions are introduced.

Given a set of variables V , the function padV ðtÞ
extends the tuple t to have a variable-value pair $V =⊥
for every variable $Vof V that is not included in t. i.e.,

pad pads t with nulls so that it has the desired schema

V . The function is overloaded to apply on a set of

tuples S, so that padV ðSÞ extends each tuple of S.

Given two tuples t and t 0, it is said that t ismore specific

than t 0 if for every attribute/variable $V , either t.$V =

t 0.$V or t 0.$V = ⊥. For example, [$A = na, $B = ⊥, $C

= ⊥] is less specific than [$A = na, $B = nb, $C = ⊥].

Given a set S of tuples named sp(S) the set that consists

of all tuples S that are not less specific than any other

tuple of S. For example, sp({[$A = na, $B =⊥, $C =⊥],

[$A = na, $B = nb, $C = ⊥]}) ={[$A = na, $B = nb,

$C = ⊥]}.

Then given a tree pattern Twith set of variables V

and optional edges, the set of tree patterns T1,...,Tn are

created that have no optional edges and are obtained

by non-derministically replacing each optional edge

with a required edge, or removing the edge and the

XML Tuple Algebra X 3643
subtree that is adjacent to it. The embeddings of the

pattern T were than defined as:

spðpadV ðmapðT 1; IÞ [. . . [mapðTn; IÞÞÞ

mapping an unordered tree pattern to a value produces

unordered tuples. In an ordered tree pattern the vari-

ables are ordered by the preorder traversal sequence of

the tree pattern, and this ordering translates into an

order of the attribute values of each result tuple. Tuples

in the mapping result are then ordered lexicographi-

cally according to the order of their attribute values.

The navigation operator navT inputs and outputs a

list of tuples with schema V . The parameter T is a tree

pattern, whose root must be labeled with a variable $R

that also appears in V . The input to the operator is a

list of the form ht1,...,tni , where each ti, i = 1,..., n is a

tuple of the form [...,$R = ri,...]. The output of the

operator is the list of tuples ti + t 0i, for all i, where t
0
i is

defined as t 0i 2 map(T, ri).

Figure 2 shows the pattern TN1 corresponding to

the navigation part in query Q1, and the result of

navTN 1
on the sample document. The order of the

tuples is justified as follows: The depth-first pre-order

of the variables in the tree pattern is ($C, $N, $F, $L,

$1). Consequently, the first tuple precedes the second
XML Tuple Algebra. Figure 2. Tree pattern for XQuery Q1.

XML Tuple Algebra. Figure 3. Navigation and construction
because c1 << c2 and the second tuple precedes the

third tuple because a21 << a22.

Construction Tuple-based XQuery algebras include

operators that construct XML from the bindings of

variables. This is captured by the crListL operator,

which inputs a collection of tuples and outputs an

XML tree/forest. The parameter L is a list of construc-

tion tree patterns, called a construction pattern list. For

example, consider the query:

for$C in $I//customer, $N in $C/name,

$F in $N/first, $L in $N/last,

$A in $C/address

return<customer> { $F, $L, $A }</customer>

(̀Q2)

Figure 3 depicts the navigation pattern TN2, the con-

struction pattern list TC2, which consists of a single

construction pattern, and a simple algebraic expres-

sion, corresponding to Q2.

Nested Plans The combination of navigation and

construction operators captures the navigation and

construction of unnested FLWR XQuery expressions.

The following operators can be used to handle nested

queries.
for Q2.

X

XML Tuple Algebra. Figure 4. Algebraic plan for Q1.

XML Tuple Algebra. Figure 5. Alternative algebraic plan for Q1.

3644X XML Tuple Algebra

XML Tuple Algebra X 3645

X

Apply The appp7!$R (as in ‘‘apply plan’’) unary opera-

tor takes as parameter an algebra expression p, which

delivers an XML ‘‘forest’’, and a result variable $R,

which should not appear in the schema V of the

input tuples. Intuitively, for every tuple t in the input

collection I, p({t}) is evaluated and the result is

assigned to $R.

appp 7!RðIÞ ¼ ft þ ðR ¼ rÞjt 2 I ;R ¼ pðftgÞg

For example, query Q1 produces a customer output

element for every customer element in the input. The

output element includes the first name and last name

pairs (if any) of the customer and for each name all the

address children (if any) of the input element. Figure 4

depicts an algebraic plan for Q1, using the app opera-

tor. TC3, TA3 and TN3 are navigation patterns, while

TU1, TU2 and TU3 are construction pattern lists, con-

sisting of one, two, and one, respectively, construction

patterns. The partial plans p1 and p2 each apply some

navigation starting from $C and construct XML out-

put in $1 and, respectively, $2. The first app operator

reflects the XQuery nesting, while the second app cor-

responds to the inner return clause. The final crList

operator produces customer elements.

The app operator is defined on one tuple at a time.

However, many architectures (and algebras) consider

also a set-at-a-time execution. For instance, instead of

evaluating appp1 7!$1 on one tuple at a time (which

means twice for customer c2 since she has two

addresses), one could group its input by customer ID,

and apply p1 on one group of tuples at a time. In such

cases, the following pair of operators is useful.

Group-By The groupByGid ;Gv 7!$R has three parameters:

the list of group-by-id variables Gid , the list of group-

by-value variables Gv , and the result variable $R. The

operator partitions its input I into sets of tuples PGðIÞ
such that all tuples of a partition have id-equal values

for the variables of Gid and equal values for the vari-

ables of Gv . The output consists of one tuple for each

partition. Each output tuple has the variables of Gid

and Gv and an additional variable $R, whose value is

the partition (Some algebras do not repeat the vari-

ables of Gid and Gv in the partition, for efficiency

reasons.). Note that input tuples that have a ⊥ in any

of the of the Gid or Gv variables are not considered.

Apply-on-Set The appsp;$v 7!$R operator assumes that

the variable $V of its input I is bound to a collection
of tuples. The operator applies the plan p on t.$V for

every tuple t from the input, and assigns the result to

the new variable $R.

For example, Fig. 5 shows another possible plan for

Q1. This time a single navigation pattern TC, is used

which includes optional edges. The navigation result

may contain several tuples for each customer with

multiple addresses. Thus, the navigation result is

grouped by $C before applying p1 on the sets.

The benefits of implementing nested plans by using

grouping and operators that potentially deliver null

tuples (outerjoin in particular) had first been observed

in the context of OQL.

Comparing Fig. 5 with Fig. 4 shows that the same

query may be expressed by different expressions in the

unified algebra. Providing multiple operators (or com-

binations thereof) which lead to the same computation

is typical in algebras.
Key Applications
An XML tuple algebra is an important intermediate

representation for the investigation and the implemen-

tation of efficient XML processing techniques. An

XML tuple algebra or similar extensions to relational

algebra are used as of 2008 by XQuery processing

systems such as BEA Aqualogic Data Services Platform

and the open source MonetDB/XQuery system.
Cross-references
▶Top-k XML Query Processing

▶XML Document

▶XML Element

▶XML Storage

▶XMLTree Pattern, XMLTwig Query

▶XPath/XQuery
Recommended Reading
1. Arion A., Benzaken V., Manolescu I., Papakonstantinou Y., and

Vijay R. Algebra-based identification of tree patterns in XQuery.

In Proc. 7th Int. Conf. Flexible Query Answering Systems, 2006,

pp. 13–25.

2. Beeri C. and Tzaban Y. SAL: an algebra for semistructured data

and XML. In Proc. ACM SIGMODWorkshop on The Web and

Databases, 1999, pp. 37–42.

3. Cluet S. and Moerkotte G. Nested Queries in Object Bases.

Technical report, 1995.

4. Deutsch A., Papakonstantinou Y., and Xu Y. The NEXT logical

framework for XQuery. In Proc. 30th Int. Conf. on Very Large

Data Bases, 2004, pp. 168–179.

3646X XML Typechecking
5. Michiels P., Mihaila G.A., and Siméon J. Put a tree pattern in

your algebra. In Proc. 23rd Int. Conf. on Data Engineering,

2007, pp. 246–255.

6. Papakonstantinou Y., Borkar V.R., Orgiyan M., Stathatos K.,

Suta L.,Vassalos V., and Velikhov P. XML queries and algebra

in the Enosys integration platform. Data Knowl. Eng., 44

(3):299–322, 2003.

7. Re C., Siméon J., and Fernández M. A complete and efficient

algebraic compiler for XQuery. In Proc. 22nd Int. Conf. on Data

Engineering, 2006, p. 14.

8. The XQuery Language. www.w3.org/TR/xquery, 2004.

9. XQuery 1.0 and XPath 2.0 Data Model. www.w3.org/TR/xpath-

datamodel.

10. XQuery 1.0 Formal Semantics. www.w3.org/TR/2005/WD-

xquery-semantics.
XML Typechecking

VÉRONIQUE BENZAKEN
1, GIUSEPPE CASTAGNA

2

HARUO HOSOYA
3, BENJAMIN C. PIERCE

4,

STIJN VANSUMMEREN
5

1University Paris 11, Orsay Cedex, France
2C.N.R.S. and University Paris 7, Paris, France
3The University of Tokyo, Tokyo, Japan
4University of Pennsylvania, Philadelphia, PA, USA
5Hasselt University and Transnational University of

Limburg, Diepenbeek, Belgium

Definition
In general, typechecking refers to the problem where,

given a program P, an input type s, and an output type

t, one must decide whether P is type-safe, that is,

whether it produces only outputs of type t when run

on inputs of type s. In the XML context, typechecking

problems mainly arise in two forms:

� XML-to-XML transformations, where P transfo-

rms XML documents conforming to a given type

into XML documents conforming to another given

type.

� XML publishing, where P transforms relational

databases into XML views of these databases and

it is necessary to check that all generated views

conform to a specified type.

A type for XML documents is typically a regular tree

language, usually expressed as a schema written in a

schema language such as DTD, XML Schema, or Relax

NG (see XML Types). In the XML publishing case, the

input type s is a relational database schema, possibly

with integrity constraints.
Typechecking problemsmay ormay not be decidable,

depending on (i) the class of programs considered, (ii)

the class of input types (relational schemas, DTDs, XML

Schemas, Relax NG schema, or perhaps other subclasses

of the regular tree languages), and (iii) the class of output

types. In cases where it is decidable, typechecking can

be done exactly. In cases where it is undecidable, one

must revert to approximate or incomplete typecheckers

that may return false negatives – i.e., may reject a

program even if it is type-safe. Even when exact type-

checking is possible, approximate typechecking may

be preferable as this is often computationally cheaper

than exact typechecking.

In the programming languages literature, type-

checking often not only entails verifying that all outputs

are of type t, but also requires detecting when the

program may abort with a run-time error on inputs

of type s [3]. The above definition encompasses such

cases: view run-time errors as a special result value

error and then typecheck a program against an output

type that does not contain the value error.

Historical Background
Although typechecking is a fundamental and well-

studied problem in the theory of programming lan-

guages [3], the types necessary for XML typechecking

(based on regular tree languages) differ significantly

from the conventional data types usually considered

(i.e., lists, records, classes, and so on). Indeed, although

it is possible to encode XML types into conventional

datatypes, this encoding lacks flexibility in the sense

that programs tend to need artificial changes when

types evolve [22]. For this reason, Hosoya et al. [22]

proposed regular tree languages as the ‘‘right’’ notion of

types for XML and presented an approximate type-

checker in this context. The typechecker was implemen-

ted in the XML-to-XML transformation language

XDuce [21] whose approach was later extended to gen-

eral purpose programming by CDuce (functional pro-

gramming) and Xtatic (object-oriented programming).

XDuce’s approach also lies at the basis of XQuery’s

typechecking algorithm [6].

The contemporary study of exact typechecking for

XML-to-XML transformations started with an investi-

gation of relatively simple transformation langua-

ges [29,32,33]. Ironically enough, the fundamentals

of exact typechecking for more advanced transforma-

tion languages were already investigated a long time

before XML appeared [7,8]. These fundamentals were

XML Typechecking X 3647

X

revived in the XML era by Milo, Suciu, and Vianu in

their seminal work on k-pebble tree transducers [30],

which was later extended to other transformation

languages [26,39,40]. The computational complexity

of exact typechecking was investigated in [14,27,28].

Exact typechecking algorithms for XML publishing

scenarios were given by Alon et al. [1].

Foundations

Exact Typechecking

XML-to-XML Transformations Recall that in this

setting, P is a program that should transform XML

documents of a type s into documents of a type t.
When the languages in which the transformation and

the types are expressed are sufficiently restricted in

power, exact typechecking is possible. There are

two major approaches to the construction of an exact

typechecking algorithm: forward inference and back-

ward inference. Forward inference solves the type-

checking problem directly by first computing the

image O of the input type s under the transformation

P, i.e., O :={P(t)jt 2 s}, and then checking O � t
[28,30,32,33,37]. This approach does not work if O

goes beyond context-free tree languages as checking

O � t then becomes undecidable. Sadly, this is already

the case when P is written in very simple transforma-

tion languages, such as the top-down tree transducers

(this fact is known as folklore; see, e.g., [14].) Also,

computing O itself becomes undecidable for more

advanced transformation languages.

Backward inference, on the other hand, first com-

putes the pre-image I of the output type t under P, i.e.,
I :={t jP(t) 2 t}, and then checks s � I. Backward

inference often works even when the transformation

language is too expressive for forward inference. The

technique has successfully been applied to a range of

formal models of real-world transformation languages

like XSLT, from the top-down and bottom-up tree

transducers [7], to macro tree transducers [8,14,27],

macro forest transducers [34], k-pebble tree transdu-

cers [30], tree transducers based on alternating tree

automata [39], tree transducers dealing with atomic

data values [37], and high-level tree transducers [40].

As mentioned in the definition, static detection of

run-time errors can be phrased as a particular form

of typechecking by introducing a special output value

error. Exact typechecking in this form has been
investigated for XQuery programs written in the non-

recursive for-let-where return fragment of XQuery

without automatic coercions but with the various

XPath axes; node constructors; value and node com-

parisons; and node label and content inspections,

in the setting where the input type s is given by a

recursion-free regular tree language. The crux of deci-

dability here is a small-model property: if P(t) = error

for some t of type s then there exists another input

t0 of type s whose size depends only on P and s such

that P(t0) = error. It then suffices to enumerate

all inputs t02 s up to the maximum size and check

P(t0) = error. There are only a finite number of such

t0 (up to isomorphism, and P cannot distinguish

between isomorphic inputs), from which decidability

follows [41]. This small model property continues to

hold when we extend the above XQuery fragment with

arbitrary primitives satisfying some general niceness

properties [41].

XML Publishing In this setting, the input to the

program P is a relational database D. Suppose that

P computes its output XML tree by posing simple

select-project-join queries to D, nesting the results to

these queries, and constructing new XML elements.

Exact typechecking for programs of this form, when

the input type s is a relational database schema with

key and foreign key constraints, and the output type t
is a ‘‘star-free’’ DTD, is decidable [1]. (See [1] for

a precise definition and examples of the concept

‘‘star-free.’’) As was the case for detecting runtime

errors in XQuery programs, the crux of decidability

here is again a small model property. Typechecking

remains decidable for output DTDs t that are not

star-free, but then the queries in P must not use pro-

jection. Typechecking unfortunately becomes undecid-

able when the output types t are given by XML

Schemas or Relax NG Schemas [1]. Typechecking

also becomes undecidable when P uses queries more

expressive than select-project-join queries.

Approximate Typechecking

The expressive power that realistic applications requ-

ire of practical transformation languages is often

too high to allow for exact typechecking. In such

cases, one must revert to approximate or incompl-

ete typecheckers that guarantee that all successfully

checked programs are type-safe, but that may also

reject some type-safe programs. Existing techniques

3648X XML Typechecking
can be grouped into two categories: type systems and

flow analyses.

Type Systems Many conventional programming lan-

guages (such as C and Java) specify what programs to

accept by a type system [35]. Typically, such a system

consists of a set of typing rules that determine the type

of each subexpression of a program. Often, in order to

help the typechecker, the programmer is required to

supply type annotations on variable declarations and in

other specified places.

The pioneer work applying this approach to the

XML setting was the XDuce (transduce) language [21],

whose type system is based on regular tree languages.

One significant point in this work is its definition of a

natural notion of subtyping as the inclusion relation

between regular tree languages and its demonstration

of the usefulness of allowing a value of one type to be

viewed as another type with a syntactically completely

different structure [22]. In addition, although the de-

cision problem for subtyping is known to be

EXPTIME-complete, the ‘‘top-down algorithm’’ used

in the XDuce implementation is empirically shown to

be efficient in most cases that actually arise in type-

checking [13,22,36]. Such a type system also needs

machinery to reduce the amount of type annotations

that otherwise tends to be a burden to the user, in

particular when the language supports a non-trivial

mechanism to manipulate XML documents such as

regular expression patterns [20] or filter expressions

[17]. A series of works address this problem by pro-

posing automatic type inference schemes that have

certain precision properties in a sense similar to the

exact typechecking in the previous section [17,20,42].

These ideas have further been extended for XML attri-

butes [19] and para-metric polymorphism [18,43].

CDuce (pronounced ‘‘seduce’’) extends XDuce in

various ways [2]. From a language point of view,

CDuce embraces XDuce’s approach of a functional

language based on regular expression patterns [20]

and extends it with finer-grained pattern matching,

complete two-way compatibility with programs and

libraries in the OCaml programming language, Uni-

code, queries, XML Schema validation, and, above all,

higher-order and overloaded functions. XML types are

enriched with general purpose data types, intersection

and negation types, and functional types. Finally, the

CDuce type inference algorithm for patterns is imple-

mented by a new kind of tree automaton and proved to
be optimal [10]. Among these extensions, the addition

of higher-order functions is significant. Theoretically,

this extension is not trivial, first because functions do

not fit well in the framework of finite tree automata, but

more deeply because this entails a definitional cycle: the

definition of typechecking uses subtyping, whose defi-

nition then uses the semantics of types (NB: subtyping

is defined as inclusion between the sets denoted by given

two types), whose definition in turn uses well-typedness

of values; the last part depends on typechecking in the

presence of higher-order functions since typechecking

of a function abstraction lx.e requires analysis of its

internal expression e. Some solutions are known for

breaking this circularity [14,43]. Also, an approach to

combine one of these treatments with high-order func-

tions has been proposed [43].

Several research groups explore ways of mixing

a XDuce-like type system with an existing popular

language. Xtatic [15] carries out this program for the

C# language, developing techniques to blend regular

expression types with an object-oriented type sys-

tem. XJ [16] makes a closely related effort for Java.

OCamlDuce [11] mixes with OCaml, proposing a

method to intermingle a standard ML type inference

algorithm with XDuce-like typechecking. XHaskell

[25] is also another instance for Haskell; their approach

is, however, to embed XML types into Haskell typing

structures (such as tuples and disjoint sums) in the style

of data-binding, yet support XDuce-like subtyping in its

full flexibility by deploying a coercion technique [25].

The formal semantics of XQuery defined by the

W3C contains a type system based on a set of inductive

typing rules [6]. Their first draft was heavily based on

XDuce’s type system [9]. Later, they switched to a

different one that reflects the object-oriented hierar-

chical typing structure adopted by XML Schema.

As byproducts of the above pieces of work, several

optimization and compilation techniques that exploit

typing information have been proposed [10,24].

Flow-Analysis Flow analysis is a static analysis tech-

nique that has long been studied in the programming

language community. A series of investigations has

been conducted for adapting flow analysis to approxi-

mate XML typechecking, concurrently to XDuce-

related work, [3,23,31]. In this approach, the user

needs to write no type annotations for intermedi-

ate values like in XDuce, but instead the static anly-

zer completely infers them, thus providing a more

XML Typechecking X 3649

X

user-friendly system. One potential drawback is that

the specification is rather informal and therefore, when

the analyzer raises an error, the reason can sometimes

be unclear; empirically, however, such false negatives

are rare.

Flow analysis is applied first to Bigwig language

system, an extension of Java with an XML-manipulating

facility called ‘‘templates’’ [3]. Though this first attempt

handles only XHTML types, they naturally generalize it

to arbitrary XML types, calling the resulting system

XAct [40]. Their techniques are further extended and

applied to static analysis of XSLT [31].

Key Applications
XML typechecking is a key component of XQuery, the

standard XML query language. As outlined above,

XML typechecking in XQuery is based on a set of

inductive typing rules that reflects the object-oriented

hierarchical typing structure adopted by XML Schema.

Different approaches to XML typechecking may be

found in research prototypes like CDuce, OcamlDuce,

XDuce, XAct, XHaskell, and Xtatic for which refer-

ences are given below.

Url to Code
CDuce: http://www.cduce.org

OCamlDuce: http://www.cduce.org/ocaml.html

XAct: http://www.brics.dk/Xact/

Xduce: http://xduce.sourceforge.net

XHaskell: http://taichi.ddns.comp.nus.edu.sg/taichi-

wiki/XhaskellHomePage

Xtatic: http://www.cis.upenn.edu/~bcpierce/xtatic

A gentle introduction to exact typechecking for

both XML-to-XML transformations and XML Pub-

lishing can be found in [37]. A non-technical presen-

tation of Regular Expression Types and Patterns and

their use in query languages can be found in the joint

DPBL and XSym 2005 invited talk [4]. For a more

complete presentation of Regular Expression Types

and Patterns and the associated type-checking and

subtyping algorithms we recommend the reader to

refer to the seminal JFP article by Hosoya, Pierce, and

Vouillon [22]. The joint ICALP and PPDP 2005

keynote talk [5] constitutes a relatively simple survey

of the problem of type-checking higher-order func-

tions and an overview on how to derive subtyping

algorithms semantically: full technical details can be

found in an extended version published in the

JACM [13].
Cross-references
▶Database Dependencies

▶XML

▶XMLTypes

▶XPath/XQuery
Recommended Reading
1. Alon N., Milo T., Neven F., Suciu D., and Vianu V. Typechecking

xml views of relational databases. ACM Trans. Comput. Log.,

4(3):315–354, 2003.

2. Benzaken V., Castagna G., and Frisch A. CDuce: an XML-centric

general-purpose language. In Proc. 8th ACM SIGPLAN Int.

Conf. on Functional Programming, 2003, pp. 51–63.

3. BrabrandC.,Møller A., and SchwartzbachM.I. The<bigwig>
project. ACM Trans. Internet Tech., 2(2):79–114, 2002.

4. Castagna G. Patterns and types for querying XML. In Proc. of

DBPL 2005, Tenth International Symposium on Database Pro-

gramming Languages, 2005, pp. 1–26.

5. Castagna G. and Frisch A. A gentle introduction to

semantic subtyping. In Proc. 7th Int. ACM SIGPLAN Conf. on

Principles and Practice of Declarative Programming, 2005,

pp. 198–208.

6. Draper D., Fankhauser P., Ashok Malhotra M.F., Rose K., Rys

M., Siméon J., and Wadler P. XQuery 1.0 and XPath 2.0 Formal

Semantics, 2007. http://www.w3.org/Tr/query-semantics/.

7. Engelfriet J. Top-down tree transducers with regular look-ahead.

Math. Syst. Theory, 10:289–303, 1977.

8. Engelfriet J. and Vogler H. Macro tree transducers. J. Comput.

Syst. Sci., 31(1):710–146, 1985.

9. Fernández M.F., Siméon J., and Wadler P. A semi-monad for

semi-structured data. In Proc. 8th Int. Conf. on Database

Theory, 2001, pp. 263–300.

10. Frisch A. Regular tree language recognition with static informa-

tion. In Proc. 3rd IFIP Int. Conf. on Theoretical Computer

Science, 2004, pp. 661–674.

11. Frisch A. OCaml+CDuce. In Proc. 11th ACM SIGPLAN Int.

Conf. on Functional Programming, 2006, pp. 192–200.

12. Frisch A., Castagna G., and Benzaken V. Semantic subtyping. In

Proc. 17th IEE Conf. on Logic in Computer Science, 2002, pp.

137–146.

13. Frisch A., Castagna G., and Benzaken V. Semantic subtyping:

dealing set-theoretically with function, union, intersection, and

negation types. J. ACM, 55(4):1–64, 2008.

14. Frisch A. and Hosoya H. Towards practical typechecking for

macro tree transducers. In Proc. 11th Int. Workshop on Data-

base Programming Languages, 2007, pp. 246–261.

15. Gapeyev V., Levin M.Y., Pierce B.C., and Schmitt A. The Xtatic

experience. In Proc. Workshop on Programming Language Tech-

nologies for XML (PLAN-X). January 2005. University of Penn-

sylvania Technical Report MS-CIS-04-24, 2004.

16. Harren M., Raghavachari M., Shmueli O., Burke M.G.,

Bordawekar R., Pechtchanski I., and Sarkar V. XJ: facilitating

XML processing in Java. In Proc. 14th Int. World Wide Web

Conference, 2005, pp. 278–287.

17. Hosoya H. Regular expression filters for XML. J. Funct.

Program., 16(6):711–750, 2006.

3650X XML Types
18. Hosoya H., Frisch A., and Castagna G. Parametric polymor-

phism for XML. In Proc. 32nd ACM SIGACT-SIGPLAN Symp.

on Principles of Programming Languages, 2005, pp. 50–62.

19. Hosoya H. and Murata M. Boolean operations and inclusion

test for attribute-element constraints. Theor. Comput. Sci., 360

(1–3):327–351, 2006.

20. Hosoya H. and Pierce B.C. Regular expression pattern matching

for XML. J. Funct. Program., 13(6):961–1004, 2002.

21. Hosoya H. and Pierce B.C. XDuce: a typed XML processing

language. ACM Trans. Internet Tech., 3(2):117–148,2003.

22. Hosoya H., Vouillon J., and Pierce B.C. Regular expression types

for XML. ACM Trans. Program. Lang. Syst., 27(1):46–90, 2004.

23. Kirkegaard C. and Møller A. Xact – XML transformations

in Java. In Proc. Programming Language Technologies for

XML, 2006, p. 87.

24. Levin M.Y. and Pierce B.C. Type-based optimization for regular

patterns. In Proc. 10th Int. Workshop on Database Program-

ming Languages, 2005, pp. 184–198.

25. Lu K.Z.M. and Sulzmann M. XHaskell: regular expression types

for Haskell. Manuscript, 2004.

26. Maneth S., Perst T., Berlea A., and Seidl H. XML type check-

ing with macro tree transducers. In Proc. 24th ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems,

2005, pp. 283–294.

27. Maneth S., Perst T., and Seidl H. Exact XML type checking

in polynomial time. In Proc. 11th Int. Conf. on Database

Theory, 2007, pp. 254–268.

28. Martens W. and Neven F. Frontiers of tractability for type-

checking simple xml transformations. J. Comput. Syst. Sci.,

73(3):362–390, 2007.

29. Milo T. and Suciu D. Type inference for queries on semistruc-

tured data. In Proc. 18th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 1999, pp. 215–226.

30. Milo T., Suciu D., and Vianu V. Typechecking for XML trans-

formers. J. Comput. Syst. Sci., 66(1):66–97, 2003.

31. Møller A., Olesen M.O., and Schwartzbach M.I. Static validat-

ion of XSL transformations. ACM Trans. Programming Lan-

guages and Syst., 29(4): Article 21, 2007.

32. Murata M. Transformation of documents and schemas by pat-

terns and contextual conditions. In Proc. 3rd Int. Workshop on

Principles of Document Processing, 1996, pp. 153–169.

33. Papakonstantinou Y. and Vianu V. DTD inference for views of

XML data. In Proc. 19th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 2000, pp. 35–46.

34. Perst T. and Seidl H. Macro forest transducers. Inf. Process. Lett.,

89(3):141–149, 2004.

35. Pierce B.C. Types and Programming Languages. MIT, 2002.

36. Suda T. and Hosoya H. Non-backtracking top-down algorithm

for checking tree automata containment. In Proc. 10th Int. Conf.

Implementation and Application of Automata, 2005, pp. 83–92.

37. Suciu D. The XML typechecking problem. ACM SIGMOD Rec.,

31(1):89–96, 2002.

38. Sulzmann M. and Lu K.Z.M. A type-safe embedding of

XDuce into ML. Electr. Notes Theor. Comput. Sci.,

148(2):239–264, 2006.

39. Tozawa A. Towards static type checking for XSLT. In Proc. 1st

ACM Symp. on Document Engineering, 2001, pp. 18–27.
40. Tozawa A. XML type checking using high-level tree trans-

ducer. In Proc. 8th Int. Symp. Functional and Logic Program-

ming, 2006, pp. 81–96.

41. Vansummeren S. On deciding well-definedness for query lan-

guages on trees. J. ACM, 54(4):19, 2007.

42. Vouillon J. Polymorphism and XDuce-style patterns. In Proc.

Programming Languages Technologies for XML, 2006,

pp. 49–60.

43. Vouillon J. Polymorphic regular tree types and patterns. In Proc.

33rd ACM SIGACT-SIGPLAN Symp. on Principles of Program-

ming Languages, 2006, pp. 103–114.
XML Types

FRANK NEVEN

Hasselt University and Transnational University of

Limburg, Diepenbeek, Belgium

Synonyms
XML schemas

Definition
To constrain the structure of allowed XML documents,

for instance with respect to a specific application, a

target schema can be defined in some schema lan-

guage. A schema consists of a sequence of type defini-

tions specifying a (possibly infinite) class of XML

documents. A type can be assigned to every element

in a document valid w.r.t. a schema. As the same holds

for the root element, the document itself can also be

viewed to be of a specific type. The schema languages

DTDs, XML Schema, and Relax NG, are, on an ab-

stract level, different instantiations of the abstract

model of unranked regular tree languages.

Historical Background
Brüggemann-Klein et al. [3] were the first to revive the

theory of regular unranked tree automata [14] for the

modelling of XML schema languages. Murata et al. [10]

provided the formal taxonomy as presented here.

Martens et al. [8] characterized the expressiveness of

the different models and provided type-free abstractions.

Foundations

Intuition

Consider the XML document in Fig. 1 that contains

information about store orders and stock contents.

XML Types. Figure 1. Example XML document.

XML Types X 3651

X

Orders hold customer information and list the items

ordered, with each item stating its id and price.

The stock contents consists of the list of items in

stock, with each item stating its id, the quantity in

stock, and – depending on whether the item is atomic

or composed from other items – some supplier infor-

mation or the items of which they are composed,

respectively. It is important to emphasize that order

items do not include supplier information, nor do

they mention other items. Moreover, stock items

do not mention prices. DTDs are incapable of distin-

guishing between order items and stock items because

the content model of an element can only depend on the

element’s name in a DTD, and not on the context in

which it is used. For example, although the DTD in Fig.

2 describes all intended XML documents, it also allows

supplier information to occur in order items and price

information to occur in stock items.

The W3C specification essentially defines an XSD

as a collection of type definitions, which, when abstract-

ed away from the concrete XML representation of

XSDs, are rules like

store ! order½order�	 ; stock½stock� ð⋆Þ

that map type names to regular expressions over pairs

a[t] of element names a and type names t. Intuitively,

this particular type definition specifies an XML frag-

ment to be of type store if it is of the form where n
 0;

f1,..., fn are XML fragments of type order; and g is an

XML fragment of type stock. Each type name that
occurs on the right hand side of a type definition in

an XSD must also be defined in the XSD, and each type

name may be defined only once. Using types, an XSD

can specify that an item is an order item when it occurs

under an order element and is otherwise a stock item.

For example, Fig.2 shows an XSD describing the

intended set of store document. Note in particular

the use of the types item1 and item2 to distinguish

between order items and stock items.

It is important to remark that the ‘‘Element Decla-

ration Consistent’’ constraint of the W3C specification

requires multiple occurrences of the same element

name in a single type definition to occur with the

same type. Hence, type definition (⋆) is legal, but

persons ! ðperson½male� þ person½female�Þþ

is not, as person occurs both with type male and type

female. Of course, element names in different type

definitions can occur with different types (which is

exactly what yields the ability to let the content

model of an element depend on its context). On a

structural level, ignoring attributes and the concrete

syntax, the structural expressiveness of Relax NG cor-

responds to XSDs without the EDC constraint.
A Formalization of Relax NG

An XML fragment f ¼ f1...fn is a sequence of labeled

trees where every tree consists of a finite number of

nodes, and every node v is assigned an element name

denoted by lab(v). There is always a virtual root which

XML Types. Figure 2. A DTD and an XSD describing the document in Fig.1.

3652X XML Types
acts as the common parent of the roots of the different

fi. For a set EName and Types of element and type

names, respectively, the set of elements is defined as {a

[t]ja 2 EName, t 2 Types}. The set of regular expres-

sions is given by the following syntax:

r ::¼ E j a j r; r j r þ r j r	 j rþ j r?

where e denotes the empty string and a is an element.

Their semantics is the usual one and is therefore

omitted.

An XSchema is a tuple S ¼ (EName,Types, r, t0)
where EName and Types are finite sets of eleme-

nts and types, respectively, r is a mapping from

Types to regular expressions, and, t0 2 Types is the

start type.

A typing t of f is a mapping assigning a type t(v) 2
Types to every node v in f (including the virtual

root). For a node v with children v1, ...,vm, define

child-string (t,v) as the string lab(v1)[t(v1)]. . . lab(v1)
[t(v1)]. An XML fragment f then conforms to or is valid

w.r.t.S if there is a typing t of f such that for every

node v, child-string (t,v) matches the regular expres-

sion r(t(v)), and t(root)¼t0. The mapping t is then

called a valid typing.

Despite the clean formalization, the above defini-

tion does not entail a validation algorithm. One possi-

bility is to compute for each node v in f a set of possible

types D(v) � Types such that for each type t 2 D(v),
the XML subfragment rooted at v is valid w.r.t. the

schema with start type t. The XML fragment is then

valid w.r.t. S itself when the start type t0 belongs to

D(root). The sets D(v) can be computed in a bottom-

up fashion. Indeed, t 2 D(v) iff (i) v is a leaf node

and r(t) contains the empty string; or, (ii) v is a non-

leaf node with children v1, ...,vn and there are t1 2
D(v1),...,tn 2 D(vn) such that lab(v1)[t1]. . .lab(vn)[tn]2
r(t). A valid typing can then be computed from the sets

D by an additional top-down pass through the tree.

Although this kind of bottom-up validation is a bit at
odds with the general concept of top-down or streaming

XML processing, the algorithm can be adapted to this

end (cf. for instance, [10,13]). For general XSchema’s, a

valid typing is not necessarily unique and cannot always

be computed in a single pass [8].

XSchemas as defined above correspond precisely to

the class of unranked regular hedge languages [3] and

can be seen as an abstraction of Relax NG. Note that

the present formalization is overly simplistic w.r.t.

attributes as Relax NG treats them in a way uniform

to elements using attribute–element constraints [6].
Relationship with Tree and Hedge Automata

Although an XML fragment can consist of a sequence

of labeled trees, in the literature it is accustomed to

restrict this sequence to simply one tree. XSchemas as

defined above then define precisely the unranked reg-

ular tree languages [3,11]. Although several automata

formalism capturing this class have been defined

[3,4,5], each with their own advantages [9], XSchemas

correspond most closely to the model of Brüggemann-

Klein et al. [3], which is defined as follows. A tree

automaton A ¼ (Q, EName, d, q0), where Q is the set

of states (or, types), q0 2Q is the start state (start type),

and d maps pairs (q,a) 2 Q � EName to regular

expressions over Q. An input tree f is accepted by the

automaton if there exists a mapping t from the nodes

of f to Q, called a run (or, a typing), such that the root

is labeled with the start state, and for every non-root

node v with children v1, ...,vn, the string lab(v1)...

lab(vn) matches d(t(v), lab(v)). The translation be-

tween XSchemas and tree automata is folklore and

can for instance be found in [3].

Deterministic Regular Expressions

The unique particle attribution constraint (UPA)

requires regular expressions to be deterministic in the

following sense: the form of the regular expression

should allow each symbol of the input string to match

XML Types X 3653

X

uniquely against a position in the expression when

processing the input string in one pass from left

to right. That is, without looking ahead in the string.

For instance, the expression r ¼ (aþb)∗a is not deter-

ministic as the first symbol in the string aaa can

already be matched to two different a’s in r. The equiva-

lent expression b∗a(b∗a)∗, on the other hand, is de-

terministic. Unfortunately, not every regular expression

can be rewritten into an equivalent deterministic one

[2]. Moreover, it is not a very robust subclass, as it is

not closed under union, concatenation, or Kleene-star,

prohibiting an elegant constructive definition [2]. De-

terministic regular expressions are characterized as one-

unambiguous regular expressions by Brüggemann-Klein

and Wood [2]. Deciding whether a regular expression is

one-unambiguous can be done in quadratic time [1].

Furthermore, it can be decided in EXPTIME whether

there is a deterministic regular expression equivalent

to a given regular expression [2]. If so, the algorithm

can return an expression of a size which is double

exponential. It is unclear whether this can be

improved.

A Formalization of DTDs and XSDs

Let S ¼ (EName, Types, r, t0) be an XSchema. Then, S

is localwhen EName¼Types and regular expressions in

r are defined over the alphabet {a[a]ja 2 EName}. This

simply means that the name of the element also func-

tions as its type. Furthermore, S is single-type when

there are no elements a[t1] and a[t2] in a r(t) with

t1 6¼ t2. A DTD is then a local XSchema where regular

expressions are restricted to be deterministic. Finally,

an XSD is then a single-type XSchema where regular

expressions are restricted to be deterministic.

Expressiveness and Complexity

XSchemas form a very robust class, for instance, equiv-

alent to the monadic second-order logic (MSO) defin-

able classes of unranked trees [12], and are closed

under the Boolean operations. XSDs on the other

hand are not closed under union or complement

[8,10]. They define precisely the subclasses of XSche-

mas closed under ancestor-guarded subtree exchange,

and are much closer to DTDs than to XSchemas as

becomes apparent from the following equivalent type-

free alternative characterization. A pattern-based XSDP

is a set of rules {r1 ! s1, ...,rm ! sm} where all ri are

horizontal regular expressions and all si are determin-

istic vertical regular expressions. An XML fragment f is
valid with respect to P if, for every node v of f, there is a

rule r! s 2 P such that the string formed by the labels

of the nodes on the path from the root to v match r

and the string formed by the children of v match

s (cf. [7,8] for more details). The single-type restriction

further ensures that XSDs can be uniquely typed in a

one-pass top-down fashion. To be precise, one-pass

typing in a top-down fashion means that the first

time a node is visited, a type should be assigned (so

only based on what has been seen up to now), and that

a child can be visited only when its parent has already

visited. Type inclusion and equivalence is EXPTIME-

complete for XSchemas and is in PTIME for DTDs and

XSDs. In fact, w.r.t. the latter, the problem reduces to

the corresponding problem for the class of employed

regular expressions [8].
Cross-references
▶XML Schema

▶XMLTypechecking

Recommended Reading
1. Brüggemann-Klein A. Regular expressions into finite automata.

Theor. Comput. Sci., 120(2):197–213, 1993.

2. Brüggemann-Klein A. and Wood D. One unambiguous regular

languages. Inform. Comput., 140(2):229–253, 1998.

3. Brüggemann-Klein A., Murata M., and Wood D. Regular tree

and regular hedge languages over unranked alphabets. Technical

Report HKUST-TCSC-2001-0, The Hongkong University of Sci-

ence and Technology, 2001.

4. Carme J., Niehren J., and Tommasi M. Querying unranked trees

with stepwise tree automata. In Proc. 15th Int. Conf. Rewriting

Techniques and Applications, 2004, pp. 105–118.

5. Cristau J., Löding C., and Thomas W. Deterministic automata

on unranked trees. In Proc. 15th Int. Symp. Fundamentals of

Computation Theory, 2005, pp. 68–79.

6. Hosoya H. and Murata M. Boolean operations and inclusion

test for attribute-element constraints. Theor. Comput. Sci.,

360(1–3):327–351, 2006.

7. Martens W., Neven F., and Schwentick T. Simple off the shelf

abstractions for XML schema. ACM SIGMOD Rec., 36(4):15–

22, 2007.

8. Martens W., Neven F., Schwentick T., and Bex G.J. Expressive-

ness and complexity of XML schema. ACM Trans. Database

Syst., 31(3):770–813, 2006.

9. Martens W. and Niehren J. Minimizing tree automata for un-

ranked trees. In Proc. 10th Int. Workshop on Database Program-

ming Languages, 2005, pp. 232–246.

10. Murata M., Lee D., Mani M., and Kawaguchi K. Taxonomy of

XML schema languages using formal language theory. ACM

Trans. Internet Tech., 5(4):660–704, 2005.

11. Neven F. Automata theory for XML researchers. ACM SIGMOD

Rec., 31(3):39–46, 2002.

3654X XML Updates
12. Neven F. and Schwentick T. Query automata on finite trees.

Theor. Comput. Sci., 275:633–674, 2002.

13. Segoufin L. and Vianu V. Validating streaming XML documents.

In Proc. 21st ACM SIGACT-SIGMOD-SIGART Symp. on Prin-

ciples of Database Systems, 2002, pp. 53–64.

14. Thatcher J.W. Characterizing derivation trees of context-free

grammars through a generalization of finite automata theory.

J. Comput. Syst. Sci., 1(4):317–322, 1967.
XML Updates

GIORGIO GHELLI

University of Pisa, Pisa, Italy

Definition
The term XML Updates refers to the act of modify-

ing XML data while preserving its identity, through

the operators provided by an XML manipulation

language. Identity preservation is crucial to this defini-

tion: the production of XML data from XML data

without preserving the original data identity is called

XML transformation. The general notion of identity has

many concrete incarnations. The XQuery/XPath data

model (see [14]) associates a Node Identity to each

node of the XML syntax tree. In a language based on

this data model, updates differ from transformations

because the former modify the data but preserve

node identities. Another hallmark of updates is that

an expression that refers to the data being updated

may have a different value after the update is evaluated,

while the evaluation of XML transformations does not

change the value of any other expression.

XML updates may be embedded in any XML

manipulation language, but this entry will be focused

on XML updates in the context of languages of the

XQuery family.

Historical Background
The first languages proposed to manipulate XML data

did not support XML updates, because XML transfor-

mations can often be used as a substitute for XML

updates, but the former are simpler to optimize and

have cleaner semantics. However, many applications

need to update persistent XML data, and eventually

the problem was tackled. The first widely-known pro-

posal in the scientific literature was presented in [11],

and was clearly influenced by previous work on SQL

updates and on primitives for tree updates.
Foundations
The design of an XML update mechanism has three

important aspects:

� Definition of the update operators

� Revalidation of modified data after the updates

� Embedding of the operators in the language

Operators

There is a wide agreement on the basic update opera-

tors. Almost every proposal includes operators to

delete a subtree, insert a subtree in a specific position,

rename a node, and replace the value of a node. The

deletion of a node T may be defined as an operation

that just detaches T from its parent (detach semantics)

or as an operation that invalidates every node of T

(erasure semantics). The first choice needs to be sup-

ported by a garbage-collector, while the second may

require the management of pointers to invalidated

nodes. The insertion of a tree T below a node n may

break the tree-structure of XML data, if the tree T has

already a parent, and would create a cycle if n were a

node of T. For this reason, the insertion operator

typically copies T before inserting it below n. Node

renaming must be defined with some care because it

may break invariants connected to name spaces. Some

proposals also include a move T1 into T2 operation to

move a subtree T1 to a different location without

altering its identity. This operation cannot be encoded

by inserting T1 into T2, and then deleting the original

T1, because the insertion performs a copy, hence this

encoding does not preserve the identity of T1.

Revalidation

Dynamic revalidation is, currently, the technique of

choice, in order to ensure that modified data still

respect type invariants. The complexity of revalidation

depends on the language used to express structural

invariants. For example, if a DTD is used, when a

valid subtree rooted at an element with name q is

moved from a position to another, it is only necessary

to verify whether an element with name q may be

found in that position. If XML Schema is used, then

the content model of the moved subtree may depend

on its position, hence the subtree has to be revalidated.

In any case, a full revalidation of the updated structure

is usually not needed, and many optimizations are

generally possible. In some cases, static code analysis

may avoid dynamic revalidation altogether. Work on

this aspect is only at its beginning stages.

XML Updates X 3655
The Operators and the Full Language

The presence of update operators in an XML language

may heavily affect the possibility of optimization. Any

important optimization aims at reducing the number of

times an expression is evaluated. Such a reduction is

typically possible if the value of that expression at a

certain time is guaranteed to be equal to its value when

it was last evaluated. Updates make this property very

difficult to prove. This problem has been faced with two

main approaches: separation of queries and updates, and

delayed update application.

The separation approach is exemplified by

[6,10,11]: these languages distinguish between expres-

sions and statements and put strong limitations on the

places where statements may appear. The proposals in

[2,3] perform a ‘‘partial’’ separation of queries and

updates. They use the same syntax for non-updating

expressions and updating expressions, which means,

for example, that standard FLWOR expressions are

used to iterate both classes of expressions. However,

the places where updating expressions may appear are

severely limited: for example, in a FLWOR expression,

they can only appear in the return clause. The lan-

guages XQuery! and LiXQuery+ [8,9], instead, have

just one syntactic category (expressions) and no syntac-

tic limitation on where the updates may appear.

The delayed-application approach is based on

the definition of a snapshot scope; all the update expres-

sions, or statements, in the scope are not executed imme-

diately, but only when the scope is closed. This ensures

that, inside the scope, the value of an expression is

not affected by updates. For example, the proposals of

[3,10,11] define a whole-query snapshot scope, while in

XQueryP [2] every update is applied immediately. Final-

ly, in XQuery! and LiXQuery+ [8,9], the programmer

has a full control of the snaphot scope.

Apart from optimization, the delayed approach

is also proposed for consistency reasons. The partial

execution of a set of correlated updates would create

consistency problems. These problems can be avoided

by collecting these updates in a scope, and by imposing

that all the updates in each snapshot scope are evalu-

ated atomically.
X

Key Applications
Updates are unavoidable in any language that manip-

ulates XML persistent data, as the one proposed in

[11], and are very useful in any language for scripting
purposes, as XQueryP [2]. Application scenarios are

detailed in [4] and in [5].
Future Directions
The most important open problems, in this field,

are optimization and static analysis. Some work on

the optimization of queries with updates has been

done (see [1,7], for example), but the field is huge.

Static analysis is also an area where lot of work has to

be done. Here, a crucial issue is the design of algo-

rithms to substitute dynamic post-update revalidation

with some form of static type-checking.
Experimental Results
Some of the proposals have a public implementation

that has been use to experiment with the semantics and

the performance of the language; for example, XL has a

demo reachable from [13], and XQuery! has a demo

reachable from [15]. The W3C maintains a list of

XQuery implementations in [12].
Cross-references
▶XML

▶XML Algebra

▶XML Query Processing

▶XMLType Checking

▶XPath/XQuery

Recommended Reading
1. Benedikt M., Bonifati A., Flesca S., and Vyas A. Adding updates

to XQuery: Semantics, optimization, and static analysis. In Proc.

2nd Int. Workshop on XQuery Implementation, Experience and

Perspectives, 2005.

2. Carey M., Chamberlin D., Fernandez M., Florescu D., Ghelli G.,

Kossmann D., Robie J., and Siméon J. XQueryP: an XML appli-

cation development language. In Proc. of XML, 2006.

3. Chamberlin D., Florescu D., and Robie J. XQuery update facility.

W3C Working Draft, July 2006.

4. Chamberlin D. and Robie J. XQuery update facility require-

ments. W3C Working Draft, June 2005. http://www.w3.org/

TR/xquery-update-requirements/.

5. Engovatov D., Florescu D., and Ghelli G. XQuery scripting

extension 1.0 requirements. W3C Working Draft, June 2007.

http://www.w3.org/TR/xquery-sx-10-requirements.

6. Florescu D., Grünhagen A., and Kossmann D. XL: an XML

programming language for Web service specification and

composition. In Proc. 11th Int. World Wide Web Conference,

2002, pp. 65–76.

7. Ghelli G., Onose N., Rose K., and Siméon J. XML query optimi-

zation in the presence of side effects. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2008, pp. 339–352.

3656X XML Views
8. Ghelli G., Ré C., and Siméon J. XQuery!: an XML query language

with side effects. In Proc. 2nd Int. Workshop on Database

Technologies for Handling XML Information on the Web,

2006, pp. 178–191.

9. Hidders J., Paredaens J., Vercammen R., and Demeyer S. On

the expressive power of XQuery-based update languages. In

Database and XML Technologies, 5th Int. XML Database

Symp., 2006, pp. 92–106.

10. Sur G.M., Hammer J., and Siméon J. An XQuery-based language

for processing updates in XML. In Proc. Programming Language

Technologies for XML(PLAN-X), 2004.

11. Tatarinov I., Ives Z., Halevy A., and Weld D. Updating XML.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2001, pp. 413–424.

12. W3C. W3C XQuery site. http://www.w3.org/XML/Query.

13. XL team. XL site. http://xl.inf.ethz.ch.

14. XQuery 1.0 and XPath 2.0 data model (XDM). W3C Recom-

mendation, January 2007.

15. XQuery! team. XQuery! site. http://xquerybang.cs.washington.

edu.
XML Views

MURALI MANI

Worcester Polytechnic, Institute, Worcester, MA, USA

Synonyms
XML publishing

Definition
Database applications provide an XML view of their data

so that the data is available to other applications, espe-

ciallyweb applications.Database systems provide support

for the client applications to use (query and/or manipu-

late) the data. The operations specified by the client

applications are composed with the view definitions by

the database system, thus performing these actions. The

internal data model used by the database application, as

well as how the operations are performed are transparent

to the client applications; they see only an XML view of

the entire system. XML views help the database systems

to maintain their legacy data, as well as utilize the opti-

mization features present in legacy systems (especially

SQL engines), and at the same time make the data

accessible to a wide range of web applications.

Historical Background
Views (external schema) are a feature [12] present

universally in almost all database systems. Views pro-

vide data independence as well as the ability to control
access of portions of data to different classes of users.

With XML [2] becoming the standard for information

exchange over the web since 1998, database applica-

tions have used XML views to publish their data and to

make the data accessible to web applications. Nowa-

days, XML views are supported by most major data-

base engines like Microsoft SQL server, Oracle, and

IBM DB2.

Foundations
The views that database systems support can either be

virtual or materialized [12]. When the view is virtual,

only the view definition is stored in the system. When-

ever a client application accesses the data by issuing a

query over the view, the database system composes

the user query with the view definition and this com-

bined query is executed over the underlying data. The

advantage of virtual views are that the data is never

out-of-date as the data is stored, accessed from and

manipulated in only one place. Materialized views on

the other hand store the data for the view along with

the view definition. Therefore the same data is now in

more than one location, and thus the different copies

of the data need to be kept consistent by maintaining

the materialized views whenever the underlying data

changes. Incremental and efficient maintenance of

materialized views have been studied [6,9,11] and are

supported by most commercial SQL engines. The ad-

vantage of materialized views is that the user query can

potentially be answered faster as the user query can be

directly answered from the materialized view, and does

not require composing it with the view definition. In

this article, both virtual and materialized XML views

that are defined primarily over relational data are con-

sidered, and state-of-the-art techniques, and open pro-

blems for these are described.

Mapping Between the XML View and the

Underlying Data

The mapping between the XML view and the underly-

ing data are used for publishing the data, as well as for

performing the user requested actions (such as answer-

ing queries) when the view is virtual. Different ways of

specifying mappings between the XML view and the

underlying data are possible. The canonical mapping

[13] is a very simple one where there is a 1-1 mapping

between the relational tuples and the XML elements in

the view. An XML element is constructed for every row

in every table in the relational database. Thus the entire

XML Views X 3657
data in the relational database is captured in this

canonical XML view. Slightly more complex mappings

that still capture the entire relational data in the XML

view are studied in [8], where the key-foreign key

constraints are used to nest XML elements within

each other. The translation of queries (especially navi-

gation queries as in XPath) in the above mapping

schemes is quite straight forward.

However, often times, a database application needs

to publish their data as an XML view that conforms to

a standard schema. In such cases, a more complex

mapping scheme is needed as all of the underlying

data may not be exposed in the view; also the underly-

ing data might need to be restructured to conform to

the schema. In [10], the authors study how the user can

specify relationships between the underlying schema

and the view schema diagrammatically. Based on some

assumptions, the system then analyzes the user speci-

fied relationships and translates them into meaningful

mappings that can be understood by the system (such

as SQL queries). Also the user is consulted when there

is potential ambiguity. In [5,13], the mapping is spe-

cified using XQuery language [15]. This is similar to

the scenario that is well-understood by SQL engines

(where view definitions are specified in SQL). The

database administrator can specify the XML view

using an XQuery expression that conforms to the re-

quired schema.

User Queries over XML Views

The systems that support XML views need to provide

the capability for users to query the data. In [5,13], the
XML Views. Figure 1. Typical architecture for processing

user queries over XML views.
authors study how the user queries specified using

XQuery can be answered efficiently in the scenario

where the XML view is also specified using XQuery.

The architecture for such a system as described in [13]

is shown in Fig. 1. One of the main assumptions made

by these systems is that the SQL engine is best

equipped to handle computations efficiently (those

computations that an SQL engine can handle); there-

fore one needs to push down as much computation as

possible within the SQL engine. The view composer

shown in Fig. 1 composes the user query with the view

query. The computation pushdown module then re-

arranges the combined query plan so that the SQL

portion is at the bottom of the query plan, and it

includes everything that can be done by the SQL en-

gine. In such a case, the middle-ware only needs to do

tagging and this is done in a single pass over the data

returned by the SQL engine.

User Updates over XML Views

While a lot of work has focussed on how to answer user

queries over XML views, very little work has focussed

on handling user updates over virtual XML views. As

the view is virtual, the view update needs to be per-

formed by updating the base data in such a way that

the effect expected by the user is achieved. A common

semantics used for view updates is the side-effect free

semantics shown in Fig. 2, as described in [3,7]. In the

figure, D represents the database instance, DEFv repre-

sents the view definition, V is the view instance, u is the

user specified view update. u(V) represents the effect

that the user wants to achieve on the view, the view

update problem therefore is to find an update U over

the base data such that the user desired effect is
XML Views. Figure 2. Illustrating side-effect free

semantics.

X

3658X XML Views
achieved on the view. It is possible that such an update

U, does not exist in which case the view update cannot

be performed. In some cases, there could be a unique

U, and in other cases, it is possible that multiple such

updates over the base data, exist in which case the

ambiguity needs to be resolved using heuristics, by

the user, or by rejecting the view update.

Updating SQL views itself is considered a hard prob-

lem, and the existing solutions handle only a subset of

the view definitions. When a user specifies updates over

view definitions that use ‘‘non-permissible’’ operators

(such as aggregation operators), the system rejects these

updates. Most solutions, including commercial ones,

use a schema level analysis to perform/reject the view

update, where they utilize the base schema, the view

definition and the user specified update statement.

Some solutions also examine the base data, in which

case fewer view updates need to be rejected.

The main approaches that study updates over XML

views of relational databases include [1,14]. In [1], the

authors translate the XML view into a set of SQL views;

now the solutions for SQL views can be utilized. In

[14], the authors identify that the XML view update

problem is harder than the SQL view update problem –

SQL view update problem boils down to the case where

the XML view schema has only one node. For a
XML Views. Figure 3. Architecture for maintaining materializ
general XML view, given an update (such as delete)

to be performed on an XML view element, the authors

partition the XML view schema nodes into three

categories – for one of the categories, the authors

utilize the results from the SQL view update research,

for the other two categories, the authors propose new

approaches to check for side-effects. As follow up

work to [14], the authors have studied how data level

analysis can be used for the XML view update problem

as well.

Maintenance of Materialized XML Views

In order to keep materialized views consistent with

the underlying base data, one approach is to recompute

the view every time there is a base update. However, this

approach is not efficient as the base updates are typically

very small compared to the entire base data. It would be

efficient if incremental view maintenance could instead

be performed, where only the update to the view is

computed. Incremental view maintenance consists of

typically two steps – in the propagate phase, the delta

change to the view is computed using a incremental

maintenance plan, and in the apply phase, the view is

refreshed using this delta change to the view.

Incremental maintenance of XML views is more

complex than maintenance of SQL views, because of
ed XML views.

XPath/XQuery X 3659
the more complex features of XML including nested

structure (a form of aggregation) and order, and of

XML query languages such as XQuery. In [4], the

authors study how to incrementally maintain XML

views defined over underlying data sources that are

also XML (note that the solutions apply to the case

where the underlying data sources are relational as

well). The architecture of their approach is shown in

Fig. 3. As the underlying base is XML, the base updates

can come in many different granularities – this requires a

validate phase which combines the update with the

base data to make it a complete update. This is then

fed to the incremental maintenance plan in the propa-

gate phase, which computes the delta change to the

view. In the apply phase, the view is refreshed using

the delta change to the view.
X

Key Applications
XML views are useful to any database application that

wishes to publish their data on the web.

Future Directions
XML views are already being used widely by database

applications, and their usage is expected to increase

further in future. There are still several issues that need

to be studied to make such systems more efficient. For

processing queries, query composition will result in sev-

eral unnecessary joins. Therefore the query optimizer

must be able to remove unnecessary joins, this requires

the query optimizer to be able to infer key constraints in

the query plan. For processing view updates, a combined

schema and data analysis promises to be an efficient

approach and needs to be investigated. Incremental

view maintenance further requires new efficient

approaches for handling operations (such as aggrega-

tion) present in XML query languages.

Cross-references
▶Top-k XML Query Processing

▶XML Information Integration

▶XML Publishing

▶XML Updates

▶XPath/XQuery

Recommended Reading
1. Braganholo V.P., Davidson S.B., and Heuser C.A. From XML

view updates to relational view updates: Old solutions to a

new problem. In Proc. 30th Int. Conf. on Very Large Data

Bases, 2004, pp. 276–287.
2. Bray T., Paoli J., Sperberg-McQueen C.M., Maler E., and

Yergeau F. Extensible Markup Language (XML) 1.0, W3C Rec-

ommendation. Available at: http://www.w3.org/XML

3. Dayal U. and Bernstein P.A. On the correct translation of update

operations on relational views. ACM Trans. Database Syst.,

7(3):381–416, September 1982.

4. El-Sayed M., Rundensteiner E.A., and Mani M. Incremental

maintenance of materialized XQuery views. In Proc. 22nd Int.

Conf. on Data Engineering, 2006, p. 129.

5. Fernandez M., Kadiyska Y., Suciu D., Morishima A., and

Tan W.-C. SilkRoute: A framework for publishing relational

data in XML. ACM Trans. Database Syst., 27(4):438–493,

December 2002.

6. Griffin T. and Libkin L. Incremental maintenance of views

with duplicates. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 1995, pp. 328–339.

7. Keller A.M. Algorithms for translating view updates to database

updates for views involving selections, projections and joins. In

Proc. 4th ACM SIGACT-SIGMOD Symp. on Principles of Data-

base Systems, 1985, pp. 154–163.

8. Lee D., ManiM., Chiu F., and ChuW.W. NeT & CoT: Translating

relational schemas to XML schemas using semantic constraints.

In Proc. Int. Conf. on Information and Knowledge Manage-

ment, 2002, pp. 282–290.

9. Palpanas T., Sidle R., Cochrane R., and Pirahesh H. Incremental

maintenance for non-distributive aggregate functions. In

Proc. 28th Int. Conf. on Very Large Data Bases, 2002, pp.

802–813.

10. Popa L., Velegrakis Y., Miller R.J., Hernandez M.A., and Fagin R.

Translating Web data. In Proc. 28th Int. Conf. on Very Large

Data Bases, 2002, pp. 598–60.

11. Quass D. Maintenance expressions for views with aggregates. In

Proc. workshop on Materialized Views: Techniques and Appli-

cations, 1996, pp. 110–118.

12. Ramakrishnan R. and Gehrke J. Database Management Systems.

McGraw Hill, 2002.

13. Shanmugasundaram J., Kiernan J., Shekita E., Fan C., and Fun-

derburk J. Querying XML views of relational data. In Proc. 27th

Int. Conf. on Very Large Data Bases, 2001, pp. 261–27.

14. Wang L., Rundensteiner E.A., and Mani M. Updating XML

views published over relational databases: Towards the existence

of a correct update mapping. Doc. Knowl. Eng. J., 58

(3):263–298, 2006.

15. W3C XQuery Working Group. Available at: http://www.w3.org/

XML/Query/
XPath/XQuery

JAN HIDDERS, JAN PAREDAENS

University of Antwerp, Antwerpen, Belgium

Synonyms
W3C XML path language; W3C XML query language

3660X XPath/XQuery
Definition
XPath (XML path language) and XQuery (XML query

language) are query languages defined by the W3C

(World Wide Web Consortium) for querying XML

documents.

XPath is a language based on path expressions

that allows the selection of parts of a given XML

document. In addition it also allows some minor com-

putations resulting in values such as strings, numbers

or booleans. The semantics of the language is based on

a representation of the information content of an XML

document as an ordered tree. An XPath expression

consist usually of a series of steps that each navigate

through this tree in a certain direction and select the

nodes in that direction that satisfy certain properties.

XQuery is a declarative, statically typed query lan-

guage for querying collections of XML documents

such as the World Wide Web, a file system or a data-

base. It is based on the same interpretation of XML

documents as XPath, and includes XPath as a sublan-

guage, but adds the possibility to query multiple docu-

ments in a collection of XML documents and combine

the results into completely new XML fragments.

Historical Background
The development of XPath and XQuery as W3C stan-

dards is briefly described in the following.
XPath 1.0 XPath started as an initiative when the W3C

XSLworking group and theW3C XML Linking working

group (which was working on XLink and XPointer)

realized that they both needed a language for matching

patterns in XML documents. They decided to develop a

common language and jointly published a first working

draft for XPath 1.0 in July 1999, which resulted in the

recommendation [8] in November 1999.

XQuery 1.0 and XPath 2.0 The history of XQuery

starts in December 1998 with the organization

by W3C of the workshop QL ’98 on XML query lan-

guages. This workshop received a lot of attention

from the XML, database, and full-text search commu-

nities, and as a result the W3C started the XML Query

working group [7]. Initially, its goals were only to devel-

op a query language, and a working draft of the require-

ments was published in January 2000 and a first working

draft for XQuery in February 2001. More than 3 years

later, in August 2004 the charter of the group was

extended with the goal of codeveloping XPath 2.0 with
the XSL working group. Finally, in January 2007 the

recommendations for both XQuery 1.0 [10] and XPath

2.0 [9] were published.

Historical Roots of XQuery 1.0 Most features of

XQuery can be traced back to its immediate predeces-

sor Quilt [2]. This language combined ideas from

other predecessors such as XPath 1.0 and XQL

from which the concept of path expressions was

taken. From XML-QL came the idea of using variable

bindings in the construction of new values. Older

influences where SQL whose SELECT-FROM-

WHERE expressions formed the inspiration for the

FLWOR expressions, and OQL which showed the

benefit of a functional and fully orthogonal query

language. Finally there were also influences from

other query languages for semi-structured data such

as Lorel and YATL.

Foundations
The organization of this section is as follows. First, the

XPath 1.0 data model is presented, then the XPath 1.0

language, which is followed by a description of XQuery

1.0 and finally XPath 2.0 is briefly discussed.
The XPath 1.0 Data Model The information content of

an XML document is represented by an ordered

tree that can contain seven types of nodes: root

nodes, element nodes, attribute nodes, text nodes, com-

ment nodes, processing instruction nodes and name-

space nodes. Three properties can be associated with

these nodes: a local name, a namespace name and a

string-value. The local name is defined for element,

attribute, processing instruction and namespace

nodes. For the latter two it represents the target for

the processing instruction and the prefix for the name-

space, respectively. The namespace name represents the

full namespace URI of a node and is defined for

the element and attribute nodes. The string-value is

defined for all types of nodes but for the root and

element node it is derived from the string-values of

the nodes under it. For attribute nodes it is the normal-

ized attribute value, for text nodes it is the text content

of the node, for processing instruction nodes it is the

processing instruction data, for comment nodes it is

the text of the comment and for namespace nodes it

is the absolute URI for the namespace. An example of

an XML document and its corresponding data model

is given in Fig. 1. Over the nodes in this tree a document

XPath/XQuery. Figure 1. An XML document and its XPath 1.0 data model.

XPath/XQuery X 3661

X

order is defined that orders the nodes as they are

encountered in a pre-order walk of the tree.

The XPath 1.0 Language The most important type of

expression in XPath is the location path which is a path

expression that selects a set of nodes from the tree

describing the document. A location path can be rela-

tive, in which case it starts navigating from a certain

context node, or absolute, in which case it starts from

the root node of the document.

In its simplest form a relative location path consist

of a number of steps separated by / such as for example

class/student/@id where class and student are

steps that navigate to children element nodes with

those names, and @id navigates to attribute nodes

with name id. It selects all nodes that can be reached

from the context node by these steps, i.e., the id

attribute nodes that are directly below student ele-

ment nodes that are in turn children of class element

nodes that are children of the context node. The path

expression becomes an absolute location path, i.e., it

starts navigation from the root node, if it is started

with / as in /class/student/@id. The wildcards *

and @* can be used to navigate to element nodes and

attribute nodes, respectively, with any name.

The steps can also be separated by // which means

that the path expression navigates to the current node

and all its descendants before it applies the next step.

So class//first-name navigates to all first-name

elements that are directly or indirectly below a class

element directly below the context node. A special step

is the self step which is denoted as. and remains in the

same place, so class//. returns the class element

node and all the nodes below it. Another special step
is the parent step which is denoted as .. and navigates

to the parent of the current context node. A location

path can also start with // which means that it is an

absolute location path whose first step navigates to the

root node and all the nodes below it. For example, //

student will select all student element nodes in the

document. Path expressions can also be combined with

the union operator, denoted as |, which takes the

union of the results of two path expressions. For

example, //(student | teacher)/(last-name |

first-name) returns the first and last names of all

students and teachers.

With each step zero or more predicates can be

specified that must hold in order for nodes to be

selected. Such predicates are indicated in square

brackets such as for example in //student

[@id=‘‘s123456’’]/grade which select the grade

elements below student elements with a certain id

attribute value. Conditions that can be specified in-

clude (i) comparisons between the string-values of

the results of path expressions and other expressions,

(ii) existential predicates that check whether a certain

path expression returns a nonempty result and

(iii) positional predicates that check the position

of the current node in the result of the step for the

context node. Comparisons between path expressions

that return more than one node have an existential

semantics, i.e., the comparison as assumed to hold

if at least one of the returned nodes satisfies the equa-

tion. For example, //course[enrolled/student/

last-name=‘‘Janssen’’] returns the courses in

which at least one student with the last name ‘‘Janssen’’

enrolled. Available comparison operators include =, !=

(not equals), < and <=. An example of an existential

3662X XPath/XQuery
predicate is //course[enrolled/student] that

selects courses in which at least one student enrolled.

Finally, an example of a positional predicate is given in

//course/teacher[1]/name that selects for each

course the name of the first teacher of that course.

If there aremultiple predicates then a positional predicate

takes the preceding predicates into account. For example,

//course[subject=‘‘databases’’][1] selects

the first of the courses that have databases as their

subject. The comparisons and existential conditions

can be combined with and and or operations, and

the not() function.

For path expressions that have to navigate over more

types of nodes and require other navigation steps a

more general syntax is available. In this syntax a single

step is specified as axis::node-test followed by

zero or more predicates. Here axis specifies the direc-

tion of navigation and node-test a test on the

name or the type of the node that has to be satisfied.

There are 13 possible navigation axes: child, attri-

bute, descendant, descendant-or-self, par-

ent, ancestor, ancestor-or-self, following,

preceding, following-sibling, preceding-

sibling self and namespace. The following

axis navigates to all nodes that are larger in document

order but not descendants, and the following-

sibling axis navigates to all siblings that are larger in

document order. Possible node-tests are names, the *

wild-card and tests for specific node types such as

comment(), text(), processing-instruction

() or node() which matches all nodes. Finally two

special functions position() and last() can be

used in predicates and denote the position of the current

node in the result of the step and the size of that result,

respectively. To illustrate, the location path /class//

student[1] can also be written in this syntax

as /child::class/descendant-or-self::node

()/child::student[position()=1].

Next to the operators for navigation XPath also

has functions for value manipulation of node sets,

strings, booleans and numbers. This includes the arith-

metic operators þ, *, �, div and mod, aggregation

operators such as count() and sum(), string manip-

ulation such as string concatenation, space normaliza-

tion, substring manipulation, etc., type conversion

operators such as string(), number() and bool-

ean(), and finally functions that retrieve properties of

nodes such as name(), string() (also overloaded for

type conversion) and namespace-uri().
XQuery 1.0 The data model for XML documents is

for XQuery 1.0 largely the same as for XPath 1.0. The

main changes are that the root of a document is repre-

sented by a document node, and that typed values are

associated with nodes. The types of these typed values

include the built-in types from XML Schema and are

associates with all values computed in XQuery. How-

ever, for the sake of brevity these types are mostly

ignored here.

Another important change is that the fundamental

data structure is no longer sets of nodes but ordered

sequences of nodes and atomic values as defined by

XML Schema. All results of expressions are such

sequences and single values such as 1 and ‘‘mary’’

are always interpreted as singleton sequences. Note that

these sequences are flat, i.e., they cannot contain nested

sequences. The concatenation of sequences s1 and s2 is

denoted as s1,s2. So the expression (‘‘a,’’ ‘‘b’’)

denotes in fact the concatenation of the singleton

sequence ‘‘a’’ and the singleton sequence ‘‘b.’’

Therefore (1, (2, 3)) is equivalent to (1, 2, 3).

The path expressions as defined in XPath 1.0 are

almost all included and have mostly the same seman-

tics. An important difference is that they do not return

a set of nodes but a sequence of nodes sorted in

document order. Several extensions to path expres-

sions are introduced. Next to the union operator

that is equivalent with the | operator in XPath 1.0,

there is also the intersect and difference opera-

tors that correspond to the set intersection and set

difference. These also return their results sorted in

document order. The aggregation functions such

as count() and sum() are naturally generalized as

fn:count() and fn:sum() for sequences, and new

ones such as fn:min(), fn:max() and fn:avg() are

added. Note that built-in functions in XQuery are pre-

fixed with a namespace, usually fn. Next to the old

value comparisons new types of comparisons are intro-

duced, such as is and is not that compare the node

identity of two nodes, and << that checks precedence

in document order. For navigating over references, the

fn:id() function is introduced that given an identi-

fier retrieves the element node with that identifier, and

the function fn:idref() that given an identifier

retrieves the element nodes that refer to this identifier.

The access to collections of XML documents is

provided by the functions fn:doc() and fn:collec-

tion() that both expect as argument a string contain-

ing a URI. These functions retrieve the requested

XPath/XQuery X 3663

X

XML fragments associated with this URI and, if

this was not already done before, construct their data

models and return a document node or a sequence

of nodes that are the roots of the fragments. An exam-

ple of their use would be fn:doc(‘‘courses.

xml’’)/course[@code=‘‘DB201’’]/enrolled/

student that retrieves the students enrolled in the

course DB201 from the file courses.xml.

The core expressions of XQuery are the FLWOR

expressions which are illustrated by the following

example:

for $s in fn:doc(students.xml)//student,

$e in fn:doc(‘‘enrollments.xml’’)//

enrollment

let $cn := fn:doc(‘‘courses.xml’’)//course

[@crs-code=e/@crs-code]/name

where $s/@stud-id = $e/@stud-id

order by $cn

return <enroll> {$s/name ,$cn} </enroll>

A FLWOR expression starts with one or more for

and let clauses that each bind one or more variables

(that always start with $). The for clause binds vari-

ables such that they iterate over the elements of the

result sequence of an expression, and the let clause

binds the variable to the entire sequence. This is fol-

lowed by an optional where clause with a selection

condition, an optional order by clause that specifies a

list of sorting criteria and a return clause that con-

tains an expression that constructs the result. In the

example the for clause binds the variable $s such that

it iterates over the student elements in the file stu-

dents.xml in the order that they appear there. Then,

for each of those, it binds the variables $e such that it

iterates over all the enrollments in the file enroll-

ments.xml in the order that they appear there. For

every binding of the variables it evaluates the let

clause where it binds $cn with the name of the course

in the enrollment $e. Then it selects those combina-

tions for which the condition in the where clause is

true, i.e., if the student $s belongs to the enrollment

$e. The resulting bindings are sorted by the order by

clause on the course name in $cn. Finally, the return

clause creates for each binding in the result of the

preceding clause an enroll element that contains

the name element of student $s and the name element

in $cn. Note that if there had been no order by clause

then the result would have been sorted in the order

that the students are listed in students.xml.
An additional optional feature for for clauses is the

at clause that binds an extra variable to the position of

the current binding. For example, the expression for $x

at $p in (‘‘a,’’ ‘‘b,’’ ‘‘c’’) return ($p, $x)

returns the sequence (1,‘‘a,’’ 2,‘‘b,’’ 3,‘‘c’’).

New nodes can be constructed in two ways. The

first is the direct constructor which is demonstrated in

the first FLWOR example and consists of literal XML

with embedded XQuery expression between curly

braces. For the literal XML the corresponding nodes

are created and deep copies of the results of the expres-

sions are inserted into that. This can be used to com-

pute the content and the attribute values of the

new node such as in <airport code=‘‘{$x/

code}’’>{$x/full-name}</airport>. An alter-

native that also allows computation of the element name

are the computed element constructors of the form el-

ement{e1}{e2} that construct a new element node with

the name as computed by e1 and the content, i.e., all

nodes directly below it, deep copies of those computed

by e2. For all types of nodes, except namespace nodes,

are such computed constructors available.

XQuery also adds conditional expressions such as

an if (e1) then e2 else e3, and type switches of the

form typeswitch(e) case t1 return e1 case t2
return e2 ... default return ed that returns the

result of the first ei such that the result of e matches

type ti or the result of ed if none of the types match. It

also has logical quantifiers such as some $v in e1
satisfies e2 and every $v in e1 satisfies e2.

In order to allow query optimization techniques

for unordered data formats there is a function fn:

unordered() that allows the user to indicate that

the ordering of a result is of no importance. In addi-

tion, there is a global parameter called the ordering

mode such that when declared as unordered it means

that, informally stated, the path expressions may pro-

duce unordered results and FLWOR expressions with-

out an order by clause may change the iteration

order. This ordering mode can be reset locally for

an expression e with the statements unordered{e}

and ordered{e}.

A very powerful feature is the possibility to start

a query with a list of possibly recursive function defini-

tions. For example, declare function countElem

($s){fn:count($s/self::element()) þ fn:

sum(for $e in $s/* return countElem($e)))}

defines a function that counts the number of element

3664X XPath/XQuery
nodes in a fragment. This feature makes XQuery

Turing complete and gives it the expressive power of

a full-blown programming language. Finally, there is a

wide range of predefined functions for the manipula-

tion and conversion of atomic values as defined in

XML Schema, and functions for sequences such as

fn:distinct-values() that removes duplicate

values, fn:reverse() that reverses a sequence and

fn:deep-equal() that tests if two sequences are

deep equal.

XPath 2.0 This version of XPath is based on the same

data model as XQuery 1.0 and is semantically and

syntactically a subset of XQuery 1.0. The main omis-

sions are (i) user-defined functions, (ii) all clauses in

FLWOR expressions except the for clause without at

and the return clause, (iii) the node constructors and

(iv) the typeswitch expression.

Key Applications
The XPath language is used in several W3C

standards such as DOM (Level 3), XSL, XLink, XPoin-

ter, XML Schema and XForms, and also in ISO stan-

dards such as Schematron. Most programming

languages that offer some form of support for XML

manipulation also support XPath for identifying

parts of XML fragments. This includes C/C++, Java,

Perl, PHP, Python, Ruby, Schema and the .Net

framework.

The usage of the XQuery language can be roughly

categorized into three different but not completely

disjoint areas, for which different types of implemen-

tations are available. The first is that of standalone XML

processing, where the XML data that is to be queried

and transformed consists of documents stored on a file

system or the World Wide Web, and these data are

processed by a standalone XQuery engine. The second

area is that of database XML processing where the XML

documents are stored in an XML-enabled DBMS that

has an integrated XQuery engine. The final and third

area is that of XML-based data integration where data

from different XML and non-XML sources are

integrated into an XML view that can be queried and

transformed with XQuery.

For each of the mentioned areas the XQuery engine

faces different challenges. Forexample, fordatabaseXML

processing it must optimally use the data structures

provided by the DBMS, which might have an XML-

specific storage engine, a relational storage engine or a
mixture of both. On the other hand, for data integration

itmay bemore important to determine how to optimally

combine data from streaming and non-streaming

sources and how to recognize and delegate query proces-

sing tasks to the data sources that have those capabilities

themselves. As a consequence, different XQuery engines

are often specialized in one of thementioned application

areas.

Future Directions
Since XPath 2.0 and XQuery 1.0 have become W3C

recommendations, the involved working groups have

continued to work on several extensions of these

languages:
The XQuery Update Facility This extension adds up-

date operations to XQuery. It allows expressions such as

for $s in /inventory/clothes/shirt[@size =

"XXL"]

return do replace value of $s/@price with

$s/@price - 10

that combine the XQuery syntax with update opera-

tions such that multiple elements can be updated at

once. A last call working draft for the XQuery Update

facility was published by W3C in August 2007.

XQuery 1.1 and XPath 2.1 In March 2007 the XML

Query working group published a first version of the

XML Query 1.1 requirements, and they plan to pro-

duce with the XSL working group the requirements

for XPath 2.1. The proposed extensions for XQuery

include grouping on values, grouping on position,

calling external functions that for example, invoke

web services, adding explicit node references that can

be used as content and can be dereferenced, and finally

higher order functions.

XQuery 1.0 and XPath 2.0 Full-Text This extension

adds constructs for doing full text searches on selections

of documents, text-search scoring variables that can be

used in FLWOR expressions, and full-text matching

options that can be defined in the query prolog. A last

call working draft was published in May 2007.

XQuery Scripting Extensions This adds imperative

features such that the resulting language can be more

readily used for tasks that would otherwise typically be

accomplished using an imperative language with XML

XQuery Full-Text X 3665
capabilities. Proposed extensions include constructs

for controlling the order of computation in FLWOR

expressions, operations that cause side effects such as

variable assignments, and operations that observe

these side effects. A first working draft describing the

requirements for this extension was published by the

XML Query working group in March 2007.

Cross-references
▶XML Information Integration

▶XML Programming

▶XML Storage

▶XMLTuple Algebra

▶XML Updates

▶XMLViews

▶XQuery Full-Text

▶XQuery Processors

▶XSL/XSLT

Recommended Reading
1. Brundage M. XQuery: The XML Query Language. Pearson

Higher Education, Addison-Wesley, Reading, MA, USA, 2004.

2. Chamberlin D.D., Robie J., and Florescu D. Quilt: An XML

query language for heterogeneous data sources. In Proc. 3rd

Int. Workshop on the World Wide Web and Databases, 2000,

pp. 53–62.

3. Hidders J., Paredaens J., Vercammen R., and Demeyer S. A light

but formal introduction to XQuery. In Database and XML

Technologies, 2nd Int. XML Database Symp., 2004, pp. 5–20.

4. Katz H., Chamberlin D., Kay M., Wadler P., and Draper D.

XQuery from the experts: A guide to the W3C XML query

language. Addison-Wesley Longman, Boston, MA, USA, 2003.

5. Melton J. and Buxton S. Querying XML: XQuery, XPath, and

SQL/XML in context. Morgan Kaufmann, San Francisco, CA,

USA, 2006.

6. Walmsley P. XQuery. O’Reilly Media, 2007.

7. W3C. W3C XML query (XQuery). http://www.w3.org/XML/

Query/.

8. W3C. XML path language (XPath), version 1.0, W3C recom-

mendation 16 November 1999. http://www.w3.org/TR/xpath/,

November 1999.

9. W3C. XML path language (XPath) 2.0, W3C recommendation

23 January 2007. http://www.w3.org/TR/xpath20/ January 2007.

10. W3C. XQuery 1.0: An XML query language, W3C recommen-

dation 23 January 2007. http://www.w3.org/TR/xquery/ January

2007.
X

XPDL

▶Workflow Management Coalition

▶XML Process Definition Language
XQFT

▶XQuery Full-Text
XQuery 1.0 and XPath 2.0 Full-Text

▶XQuery Full-Text
XQuery Compiler

▶XQuery Processors
XQuery Full-Text

CHAVDAR BOTEV
1, JAYAVEL SHANMUGASUNDARAM

2

1Yahoo Research!, Cornell University, Ithaca, NY, USA
2Yahoo Research!, Santa Clara, USA

Synonyms
XQuery 1.0 and XPath 2.0 Full-Text; XQFT
Definition
XQuery Full-Text [11] is a full-text search extension to

the XQuery 1.0 [9] and XPath 2.0 [8] XML query

languages. XQuery 1.0, XPath 2.0, and XQuery Full-

Text are query languages developed by the World Wide

Web Consortium (W3C).
Historical Background
The XQuery [9] and XPath languages [8] have evolved

as powerful languages for querying XML documents.

While these languages provide sophisticated structured

query capabilities, they only provide rudimentary cap-

abilities for querying the text (unstructured) parts of

XML documents. In particular, the main full-text search

predicate in these languages is the fn:contains

3666X XQuery Full-Text
($context, $keywords) function (http://www.w3.

org/TR/xpath-functions/#func-contains), which intui-

tively returns the Boolean value true if the items in

the $context parameter contain the strings in the

$keywords parameter. The fn:contains function

is sufficient for simple sub-string matching but does

not provide more complex search capabilities. For

example, it cannot support queries like ‘‘Find titles of

books (//book/title) which include ‘‘xquery’’ and ‘‘full-

text’’ within five words of each other, ignoring capitaliza-

tion of letters.’’ Furthermore, XQuery does not support

the concept of relevance scoring, which is very impor-

tant in the area of full-text search.

To address these short-comings, W3C has formu-

lated the XQuery 1.0 and XPath 2.0 Full-Text 1.0

Requirements [12]. These requirements specify a

number of features that must, should or may be sup-

ported by full-text search extensions to the XQuery

and XPath languages. These include the level of inte-

gration with XQuery 1.0 and XPath 2.0, support for

relevance scoring, and extensibility as the most impor-

tant features of such extensions.

W3C has also described a number of use cases

for full-text search within XML documents that

occur frequently in practice. These use cases can be

found in the document XQuery 1.0 and XPath 2.0

Full-Text 1.0 Use Cases [13]. The use cases contain a

wide range of scenarios for full-text search that vary

from simple word and phrase queries to complex queries

that involve word proximity predicates, word ordering

predicates, use of thesauri, stop words, stemming, etc.

The XQuery Full-Text language has been designed

to meet both the XQuery 1.0 and XPath 2.0 Full-Text

1.0 Requirements and the XQuery 1.0 and XPath 2.0

Full-Text 1.0 Use Cases.

XQuery Full-Text is also related to previous work

on full-text search languages for semi-structured data:

ELIXIR [5], JuruXML [4], TEXQuery [3], TiX [1],

XIRQL [6], and XXL [7].

Foundations
XQuery Full-Text provides a full range of query primi-

tives (also known as selections) that facilitate the search

within the textual content of XML documents. The

textual content is represented as a series of tokens

which are the basic units to be searched. Intuitively, a

token is a character, n-gram, or sequence of characters.

An ordered sequence of tokens that should occur in

the document together is referred to as a phrase. The
process of converting the textual content of XML

documents to a sequence of tokens is known as

tokenization.

XQuery Full-Text proposes four major features for

support of full-text search the XQuery and XPath

query languages:

1. Tight integration with the existing XQuery and

XPath syntax and semantics

2. Query primitives for support of complex full-text

search in XML documents

3. A formal model for representing the semantics of

full-text search

4. Support for relevance scoring.

Each of these features is discussed below.

XQuery Full-Text Integration

One of the main design paradigms of XQuery Full-Text

is the tight integration with the XQuery and XPath

query languages. The integration is both on the syntax

and data-model levels.

The syntax level integration is achieved through the

introduction of a new XQuery expression, the FTCon-

tainsExpr. The FTContainsExpr acts as a regular XQu-

ery expression and thus, it is fully composable with the

rest of the XQuery and XPath expressions. The basic

syntax of the FTContainsExpr is:

Expr ‘‘ftcontains’’ FTSelection

The XQuery expression Expr on the left-hand side

is called the search context. It describes the nodes from

the XML documents that need to be matched against

the full-text search query described by the FTSelection

on the right-hand side. Expr can be any XQuery/XPath

expression that returns a sequence of nodes. The syn-

tax of the FTSelection will be described later. The entire

FTContainsExpr returns true if some node in Expr

matches the full-text search query FTSelection. Note,

that since FTContainsExpr returns results within the

XQuery data model, FTContainsExpr can be arbitrary

nested within XQuery expressions. Consider the fol-

lowing simple example.

//book[./title ftcontains ‘‘informa-

tion’’ ftand ‘‘retrieval’’]//author

The above example returns the authors of books

whose title contains the tokens ‘‘information’’ and

‘‘retrieval.’’ The expression ./title defines the search

context for the FTContainsExpr in predicate expression

XQuery Full-Text X 3667
within the brackets [] which is the title child

element node of the current book element node. The

FTSelection ‘‘information’’ ftand‘‘retrieval’’

specifies that book titles must contain the tokens ‘‘infor-

mation’’ and ‘‘retrieval’’ to be considered a match.

Integration can be achieved not only for XQuery

Full-Text expressions within XQuery/XPath expres-

sions but vice versa. Consider the following example.

for $color in (‘‘red,’’ ‘‘yellow’’)

for $car in (‘‘ferrari,’’

‘‘lamborghini,’’ ‘‘maserati’’)

return //offer[. ftcontains

{$color, $car} phrase]

The above query returns offer element nodes

which contain any of a number of combinations of

colors and cars as a phrase. The FTContainsExpr will

match phrases like ‘‘red lamborghini’’ or ‘‘yellow fer-

rari’’ but it will not match ‘‘red porsche’’ or ‘‘yellow

rusty ferrari.’’
X

XQuery Full-Text Query Primitives

This section describes the basic XQuery Full-Text

query primitives and how they can be combined to

construct complex full-text search queries.

The XQuery Full-Text query primitives include

token and phrase search, token ordering, token prox-

imity, token scope, match cardinality, and Boolean

combinations of the previous. Further, XQuery Full-

Text allows control over the natural language used in

the queried documents, the letter case in matched

tokens, and the use of diacritics, stemming, thesauri,

stop words, and regular-expression wildcards though

the use of match options.

The XQuery Full-Text query primitives are highly

composable within each other. This allows for the

construction of complex full-text search queries. The

remainder of this section will briefly describe some of

the available query primitives and show how they can

be composed.

The most basic query primitive is to match a

sequenceoftokensalsoknownasFTWords. For example,

the above car offer query can also be written as:

//offer[. ftcontains {‘‘red ferrari,’’

‘‘yellow ferrari,’’

‘‘red lamborghini,’’ ‘‘yellow lambor-

ghini,’’ ‘‘red maserati,’’

‘‘yellow maserati’’} any]
The above FTContainsExpr matches offer nodes

which contain any of the listed phrases. The any op-

tion specifies that it is sufficient to match a single

phrase within an offer node. It is also possible to

use the option all which specifies that all phrases

should be matched within a single node. As it was

shown earlier, the phrase options specifies that all

nested phrases should be combined into a single

phrase. Other possible options are any word or all

word which specify that the nested phrases need to be

first broken into separate tokens before applying the

respective disjunctive or conjunctive match semantics.

For example, the expression

//offer[. ftcontains {‘‘red ferrari,’’

‘‘yellow lamborghini’’} all word]

is equivalent to

//offer[. ftcontains {‘‘red,’’ ‘‘fer-

rari,’’ ‘‘yellow,’’ ‘‘lamborghini’’}

all]

Two other basic query primitives are the ability to

restrict the proximity of the matched tokens. There

are two flavors of proximity predicates. The FTWindow

primitive specifies that the matched tokens have

to be within a window of a specified size. Consider

the example

//offer[. ftcontains {‘‘red ferrari,’’

‘‘yellow lamborghini’’} all

window at least 6 words]

The above expression will return offer nodes

which contain, say, ‘‘red ferrari and brand new yellow

lamborghini’’ because both phrases occur within a

window of seven words, i.e., the window matches the

FTWindow size restriction of at least six words. The

expression will not match nodes which contain ‘‘red

ferrari and yellow lamborghini’’ because the phrases

occur within a window of five words.

The other flavor of proximity primitive is FTDis-

tance. It can be used to restrict the number of inter-

vening tokens between the matched tokens or phrases.

For example, consider the expression

//offer[.ftcontains{‘‘new,’’‘‘brand,’’

‘‘ferrari’’} all

distance at most 1 word]

The above expression will return offer nodes

which contain the specified query tokens with at

most one intervening token between consecutive

3668X XQuery Full-Text
occurrences of the query tokens. For example, the

expression will return nodes which contain ‘‘brand

new red ferrari’’ because there are no intervening

tokens between ‘‘brand’’ and ‘‘new’’ and one interven-

ing token between ‘‘new’’ and ‘‘red.’’ On the other

hand, the expression will not return nodes which

contain ‘‘new car of the ferrari brand’’ because there

are three intervening tokens between ‘‘new’’ and

‘‘ferrari.’’

XQuery Full-Text allows also the specification of

the order of the matched tokens using the FTOrder

primitive.

//offer[.ftcontains{‘‘new,’’‘‘brand,’’

‘‘ferrari’’} all

distance at most 1 word ordered]

The above query expands the previous FTDistance

example by specifying that the query tokens can occur

in the nodes only in the specified order.

More complex query expressions can be built using

FTAnd, FTOr, FTUnaryNot, and FTMildNot. They

allow for the combination of other FTSelections into

conjunctions, disjunctions, and negations. Here is a

complex example using FTAnd and some of the FTSe-

lections introduced earlier.

//offer[. ftcontains

(({‘‘red,’’ ‘‘ferrari’’} all

window at most 3 words)

ftand

({‘‘yellow,’’ ‘‘lamborghini’’} all win-

dow 3 words))

window at most 20 words]

The above expression specifies that the resulting

offer nodes must contain ‘‘red’’ and ‘‘ferrari’’ within

a window of 3 words, ‘‘yellow’’ and ‘‘lamborghini’’

within a window of 3 words, and all of them within a

window of 20 words.

//offer[. ftcontains ‘‘red ferrari’’

ftnot ‘‘yellow lamborghini’’]

This example of FTNot will return offer nodes

which contain the phrase ‘‘red ferrari’’ but not the

phrase ‘‘yellow lamborghini.’’ Sometimes, this kind of

negation can be too strict. For example, consider a

query that looks for articles about the country Mexico

but not the state New Mexico.

//article[. ftcontains ‘‘Mexico’’ ftnot

‘‘New Mexico’’]
The above query will not return articles which talk

about both the country Mexico and the state ‘‘New

Mexico.’’ The query can be rewritten using FTMildNot.

//article[. ftcontains ‘‘Mexico’’ not in

‘‘New Mexico’’]

Intuitively, the above query specifies that the user

wants articles where the token ‘‘Mexico’’ has occurrences

not part of the phrase New Mexico (although there are

still be occurrences of the phrase New Mexico).

The power of XQuery Full-Text queries can be

further increased with the use of match options that

control the way tokens are matched within the docu-

ment. For example, if the user wants to find offers

containing ‘‘FERRARI’’ (all capital letters), she can

use the ‘‘uppercase’’ match option:

//offer[. ftcontains

‘‘ferrari’’ uppercase]

This query will match only tokens ‘‘FERRARI’’

regardless of how the token is specified in the query.

Match options can be used to encompass several

FTSelections. For example, consider the query

//article[. ftcontains (‘‘car’’ ftand

‘‘aircraft’’)

window at most 50 words

with thesaurus at ‘‘http://acme.org/

thesauri/Synonyms’’]

The above query searches for articles that

contain the tokens ‘‘car’’ and ‘‘aircraft’’ or their syno-

nyms using the thesaurus identified by the URI ‘‘http://

acme.org/thesauri/Synonyms.’’ The matched tokens

have to be within a window of at most 50 words.

As mentioned in the beginning of this section, there

are other FTSelections and match options provided by

XQuery Full-Text. The description of all of these fea-

tures goes beyond the scope of the article. The reader is

referred to the complete specification of the language

available at [11].

This section will finalize the brief overview of the

language primitives in XQuery Full-Text with the de-

scription of the feature extension points. Extension

points be used to provide additional implementation-

defined full-text search functionality. An example of

the use of such an extension can be found below.

declare namespace acmeimpl = ‘‘http://

acme.org/AcmeXQFTImplementation;’’

//book/author[name ftcontains (#

acmeimpl:use-entity-index #) {‘‘IBM’’}]

XQuery Full-Text X 3669
The above example shows the use of the extension

use-entity-index provided by the ACME imple-

mentation of XQuery Full-Text. It directs the imple-

mentation to use an entity index for the token ‘‘IBM’’

so it can also match other references to the same entity,

such as ‘‘International Business Machines’’ or even

‘‘Big Blue.’’ If the above query is evaluated using

another implementation the use-entity-index

extension will be ignored.
X

XQuery Full-Text Formal Model

Amer-Yahia et al. [3] have shown that the XQuery 1.0

and XPath 2.0 Data Model (XDM) [10] is inadequate

to support the composability of the complex full-text

query primitives described in the previous section.

Intuitively, XDM represents data only about entire

XML nodes but for sub-node entities like the positions

of the tokens within a node. This precludes, for exam-

ple, the evaluation of nested proximity FTSelectionsFT-

Window and/or FTDistance such as the ones used in

the FTAnd example.

Therefore, XQuery Full-Text needs a more precise

data model that can support the complex full-text

search operations and their composability. The lan-

guage specification [11] introduces the AllMatches

model. The result of every FTSelection applied on a

node from the search context can be represented as an

AllMatches object within this model.

The AllMatches object has a hierarchical structure.

Each AllMatches object consists of zero, one, or more

Match objects. Intuitively, aMatch object describes one

set of positions of tokens in the node that match the

corresponding FTSelection. The AllMatches contains all

such possibleMatch objects. The positions of tokens in

a match are described using TokenInfo objects which

contain data about the relative position of the token in

the node and to which query token it corresponds.

This model is sufficient to describe the semantics of

all FTSelections.

The semantics of every FTSelection can be repre-

sented as a function that takes as input one or more

AllMatches objects from its nested FTSelections and

produces an output AllMatches object. The remainder

of this section will illustrate the process. The illustra-

tion will use some simplifications not to burden the

exposition with excessive details. Nevertheless, the ex-

ample below will illustrate some of the basic techni-

ques in the workings of the model.

Consider the simple query
//offer[. ftcontains {‘‘red,’’ ‘‘fer-

rari’’} all window at most 3 words]

Let’s assume that the token ‘‘red’’ occurs in the

current node from the search context in relative posi-

tions 5 and 10 and the token ‘‘ferrari’’ occurs in relative

positions 7 and 25. The AllMatches objects for each of

these tokens contain two Match objects – one for each

position of occurrence:

‘‘red’’: AllMatches { Match

{TokenInfo{token:‘‘red,’’ pos:5}},

Match{TokenInfo{token:‘‘red,’’

pos:10}}}

‘‘ferrari’’: AllMatches { Match{Toke-

nInfo{token:‘‘ferrari,’’ pos:7}},

Match{TokenInfo{token:‘‘red,’’

pos:25}}}

To obtain the AllMatches for the FTWords

{‘‘red,’’ ‘‘ferrari’’} all, each pair of posi-

tions for ‘‘red’’ and ‘‘ferrari’’ has to be combined into a

single Match object.

(‘‘red,’’ ‘‘ferrari’’) all:

AllMatches { Match

{TokenInfo{token: ‘‘red,’’ pos:5}},

TokenInfo{token:‘‘ferrari,’’ pos:7}},

Match{TokenInfo{token:‘‘red,’’

pos:10},

TokenInfo{token:‘‘ferrari,’’ pos:7}},

Match{TokenInfo{token:‘‘red,’’

pos:5}},

TokenInfo{token:‘‘red,’’ pos:25}},

Match{TokenInfo{token:‘‘red,’’

pos:10}},

TokenInfo{token:‘‘red,’’ pos:25}}}

Finally, to obtain the AllMatches for the outer

most FTWindow, those Matches which violate the

window size condition have to be filtered out.

Only the first Match satisfies it: the window sizes

are 3, 4, 21, and 16 respectively. Therefore, the final

AllMatches is:

(‘‘red,’’ ‘‘ferrari’’) all window at most

3 words:

AllMatches { Match{TokenInfo{token:

‘‘red,’’ pos:5}},

TokenInfo{token:‘‘ferrari,’’ pos:7}}}

The resulting AllMatches object is non-empty and

therefore, the current node from the search context

3670X XQuery Full-Text
satisfies the FTSelection and the FTContainsExpr

should return true.

The semantic of every FTSelection can be defined in

terms of similar operations on AllMatches objects.

The description of all such operations goes beyond

the scope of this article. The reader is referred to the

language specification [11] for further details.

Relevance Scoring in XQuery Full-Text

One of the core features of full-text search is the ability

to rank the results in the order of their decreasing

relevance. Usually, the relevance of a result is repre-

sented using a number called a score of the result.

Higher scores represent more relevant results.

To support scores and relevance ranking, XQuery

Full-Text extends the XQuery language with the sup-

port for score variables. Score variables give access to

the underlying scores of the results of the evaluation of

an XQuery Full-Text expression. Score variables can be

introduced as part of a for- or let-clause in a FLWOR

expression. Here is a simple example

for $o score $s in //offer[. ftcontains

{‘‘red,’’ ‘‘ferrari’’}

all window at most 3 words]

order by $s descending

return <offer id=‘‘

{$o/@id}’’ score=‘‘{$s}’’ />

The above is a fairly typical query iterates over all

offers that contain ‘‘red’’ and ‘‘ferrari’’ within a window

of three words using the $o variable, binds the score of

each offer to the $s variable, and uses those variables

to return the id of offers and their scores in order of

decreasing relevance.

Score variables can also be bound in let clauses.

This allows for the use of a scoring condition that is

different than the one uses for filtering the objects.

Consider the following example.

for $res at $p in (

for $o in //offer[. ftcontains {‘‘red,’’

‘‘ferrari’’}all]

let score $s := $o ftcontains {‘‘excel-

lent,’’ ‘‘condition’’}

all window at most 10 words

order by $s descending

return $o)

where $p <= 10

return $res
The above query obtains the top 10 offers for red

Ferrari’s whose relevance is estimated using the full-

text search condition ‘‘excellent condition’’

all window at most 10 words.

It should be noted that XQuery Full-Text does not

specify how scoring should be implemented. Each

XQuery Full-Text implementation can use a scoring

method of their choice as long the generated scores

are in the range [0,1] and higher scores denote greater

relevance.
Key Applications
Support for full-text search in XML documents.
Cross-references
▶ Full-Text Search

▶ Information Retrieval

▶XML

▶XPath/XQuery
Recommended Reading
1. Al-Khalifa S., Yu C., and Jagadish H. Querying structured text in

an XML database. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, 2003, pp. 4–15.

2. Amer-Yahia S., Botev C., Doerre J., and Shanmugasundaram J.

XQuery full-text extensions explained. IBM Syst. J., 45

(2):335–351, 2006.

3. Amer-Yahia S., Botev C., and Shanmugasundaram J. TE XQuery:

A full-text search extension to XQuery. In Proc. 12th Int. World

Wide Web Conference, 2004, pp. 583–594.

4. Carmel D., Maarek Y., Mandelbrod M., Mass Y., and Soffer A.

Searching XML documents via XML fragments. In Proc. 26th

Annual Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 2003, pp. 151–158.

5. Chinenyanga T. and Kushmerick N. Expressive and efficient

ranked querying of XML data. In Proc. 4th Int. Workshop on

the World Wide Web and Databases, 2001, pp. 1–6.

6. Fuhr N. and Grossjohann K. XIRQL: An extension of XQL for

information retrieval. In Proc. ACM SIGIR Workshop on XML

and Information Retrieval, 2000, pp. 172–180.

7. Theobald A. and Weikum G. The index-based XXL search en-

gine for querying XML data with relevance ranking. In Advances

in Database Technology, Proc. 8th Int. Conf. on Extending

Database Technology, 2002, pp. 477–495.

8. XML Path Language (XPath) 2.0. W3C Recommendation. Avail-

able at: http://www.w3.org/TR/xpath20/

9. XQuery 1.0: An XML Query Language. W3C Recommendation.

Available at: http://www.w3.org/TR/xquery/

10. XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C

Recommendation. Available at: http://www.w3.org/TR/xpath-

datamodel/

XQuery Processors X 3671
11. XQuery 1.0 and XPath 2.0 Full-Text 1.0. W3C Working Draft.

Available at: http://www.w3.org/TR/xpath-full-text-10/

12. XQuery 1.0 and XPath 2.0 Full-Text 1.0 Requirements. W3C

Working Draft. Available at: http://www.w3.org/TR/xpath-full-

text-10-requirements/

13. XQuery 1.0 and XPath 2.0 Full-Text 1.0 Use Cases. W3C Work-

ing Draft. Available at: http://www.w3.org/TR/xpath-full-text-

10-use-cases/
XQuery Interpreter

▶XQuery Processors
X

XQuery Processors

TORSTEN GRUST
1, H. V. JAGADISH

2, FATMA ÖZCAN
3,

CONG YU
4

1University of Tübingen, Tübingen, Germany
2University of Michigan, Ann Arbor, MI, USA
3IBM Almaden Research Center, San Jose, CA, USA
4Yahoo! Research, New York, NY, USA

Synonyms
XML database system; XQuery compiler; XQuery

interpreter

Definition
XQuery processors are systems for efficient storage and

retrieval of XML data using XML queries written in the

XQuery language. A typical XQuery processor includes

the data model, which dictates the storage component;

the query model, which defines how queries are pro-

cessed; and the optimization modules, which leverage

various algorithmic and indexing techniques to im-

prove the performance of query processing.

Historical Background
The first W3C working draft of XQuery was published

in early 2001 by a group of industrial experts. It

is heavily influenced by several earlier XML query

languages including Lorel, Quilt, XML-QL, and XQL.

XQuery is a strongly-typed functional language, whose

basic principals include simplicity, compositionality,

closure, schema conformance, XPath compatibility,
generality and completeness. Its type system is based

on XML schema, and it contains XPath language as a

subset. Over the years, several software vendors have

developed products based on XQuery in varying degrees

of conformance. A current list of XQuery implementa-

tions is maintained on the W3 XML Query working

group’s homepage (http://www.w3.org/XML/XQuery).

There are three main approaches of XQuery processors.

The first one is to leverage existing relational database

systems as much as possible, and evaluate XQuery in a

purely relational way by translating queries into SQL

queries, evaluating them using SQL database engine,

and reformatting the output tuples back into XML

results. The second approach is to retain the native

structure of the XML data both in the storage compo-

nent and during the query evaluation process. One na-

tive XQuery processor is Michael Kay’s Saxon, which

provides one of the most complete and conforming

implementations of the language available at the time

of writing. Compared with the first approach, this native

approach avoids the overhead of translating back and

forth between XML and relational structures, but it also

faces the significant challenge of designing new indexing

and evaluation techniques. Finally, the third approach is

a hybrid style that integrates native XML storage and

XPath navigation techniques with existing relational

techniques for query processing.

Foundations

Pathfinder: Purely Relational XQuery

The Pathfinder XQuery compiler has been developed

under the main hypothesis that the well-understood

relational database kernels also make for efficient XQu-

ery processors. Such a relational account of XQuery

processing can indeed yield scalable XQuery imple-

mentations – provided that the system exploits suitable

relational encodings of both, (i) the XQuery Data

Model (XDM), i.e., tree fragments as well as ordered

item sequences, and (ii) the dynamic semantics of

XQuery that allow the database back-end to play its

trump: set-oriented evaluation. Pathfinder deter-

minedly implements this approach, effectively realiz-

ing the dashed path in Fig. 1b. Any relational database

system may assume the role of Pathfinder’s back-end

database; the compiler does not rely on XQuery-

specific builtin functionality and requires no changes

to the underlying database kernel.

3672X XQuery Processors
Internal XQuery and Data Model Representation. To

represent XML fragments, i.e., ordered unranked trees

of XML nodes, Pathfinder can operate with any node-

level tabular encoding of trees (node ¼̂ row) that –

along other XDM specifics like tag name, node kind,

etc. – preserves node identity and document order.

A variety of such encodings are available, among

these are variations of pre/post region encodings [8]

or ORDPATH identifiers [15]. Ordered sequences of

items are mapped into tables in which a dedicated

column preserves sequence order.

Pathfinder compiles incoming XQuery expression

into plans of relational algebra operators. To actually

operate the database back-end in a set-oriented fashion,

Pathfinder draws the necessary amount of independent

work from XQuery’s for-loops. The evaluation of a

subexpression e in the scope of a for-loop yields an

ordered sequence of zero or more items in each loop

iteration. In Pathfinders relational encoding, these

items are laid out in a single table for all loop iterations,

one item per row. A plan consuming this loop-lifted

or ‘‘unrolled’’ representation of e may, effectively,
process the results of the individual iterated evaluations
XQuery Processors. Figure 1. (a) DB2 XML system architectu

database back-ends. (c) Timber architecture overview [11].
of e in any order it sees fit – or in parallel [10]. In some
sense, such a plan is the embodiment of the indepen-
dence of the individual evaluations of an XQuery for-

loop body.

Exploitation of Type and Schema Information. Path-

finder’s node-level tree encoding is schema-oblivious

and does not depend on XML Schema information to

represent XML documents or fragments. If the DTD of

the XML documents consumed by an expression is avail-

able, the compiler annotates its plans with node location

and fan-out information that assists XPath location

path evaluation but is also used to reduce a query’s

runtime effort invested in node construction and atomi-

zation. Pathfinder additionally infers static type infor-

mation for a query to further prune plans, e.g., to

control the impact of polymorphic item sequences

which present a challenge for the strictly typed table

column content in standard relational database systems.

Query Runtime. Internally, Pathfinder analyzes

the data flow between the algebraic operators of the

generated plan to derive a series of operator annota-

tions (keys, multi-valued dependencies, etc.) that

drive plan simplification and reshaping. A number of
re. (b) Pathfinder: purely relational XQuery on top of vanilla

XQuery Processors X 3673
XQuery-specific optimization problems, e.g., the stable

detection of value-based joins or XPath twigs and

the exploitation of local order indifference, may be

approached with simple or well-known relational

query processing techniques.

The Pathfinder XQuery compiler is retargetable:

its internal table algebra has been designed to match

the processing capabilities of modern SQL database

systems. Standard B-trees provide excellent index sup-

port. Code generators exist that emit sequences of

SQL:1999 statements [9] (no SQL/XML functionality

is used but the code benefits if OLAP primitives like

DENSE_RANK are available). Bundled with its code

generator targeting the extensible column store kernel

MonetDB, Pathfinder constitutes XQuery technology

that processes XML documents in the Gigabyte-range

in interactive time [7].
X

Timber: A Native XML Database System

Timber [11] is an XML database system which man-

ages XML data natively: i.e., the XML data instances

are stored in their actual format and the XQueries are

processed directly. Because of this native representa-

tion, there is no overhead for converting the data

between the XML format and the relational represen-

tation or for translating queries from the XQuery for-

mat into the SQL format. While many components of

the traditional database can be reused (for example,

the transaction management facilities), other compo-

nents need to be modified to accommodate the new

data model and query language. The key contribution

of the Timber system is a comprehensive set-at-a-time

query evaluation engine based on an XML manipula-

tion algebra, which incorporates novel access methods

and algebraic rewriting and cost based optimizations.

An architecture overview of Timber is shown in Fig. 1c,

as presented in [11].

XML Data Model Representation. When XML

documents are loaded into the system, Timber auto-

matically assigns each XML node with four labels hD, S,
E, Li, where D indicates which document the node

belongs to, and S, E, L represents the start key, end

key, and level of the node, respectively. These labels

allow quick detection of relationships between nodes.

For example, a node hd1,s1,e1,l1i is an ancestor of an-

other node hd1,s2,e2,l2i iff s1 <s2 ∧ e1> e2. Each node,

along with the labels, are stored natively, and in the
order of their start keys (which correspond to their

document order), into the Timber storage backend.

XQuery Representation. A central concept in the

Timber system is the TLC (Tree Logical Class) algebra

[12,18,17], which manipulates sets (or sequences) of

heterogeneous, ordered, labeled trees. Each operator

in the TLC algebra takes as input one or more sets

(or sequences) of trees and produces as output a

set (sequence) of trees. The main operators in TLC

include filter, select, project, join, reordering, duplicate-

elimination, grouping, construct, flatten, shadow/illumi-

nate. There are several important features of the TLC

algebra. First, like the relational algebra, TLC is a

‘‘proper’’ algebra with compositionality and closure.

Second, TLC efficiently manages the heterogeneity

arising in XML query processing. In particular, heter-

ogenous input trees are reduced to homogenous sets

for bulk manipulation through tree pattern matching.

This tree pattern matching mechanism is also useful in

selecting portions of interest in a large XML tree.

Third, TLC can efficiently handle both set and se-

quence semantics, as well as a hybrid semantics,

where part of the input collection of trees is ordered

[17]. Finally, the TLC algebra covers a large fragment of

XQuery, including nested FLWOR expressions. Each

incoming XQuery is parsed and compiled into the

TLC algebra representation (i.e., logical query plans)

before being evaluated against the data.

The Timber system, and its underlying algebra,

has been extended to deal with text manipulation [2]

and probabilistic data [14]. A central challenge with

querying text is that exact match retrieval is too crude

to be satisfactory. In the field of information retrieval,

it is standard practice to use scoring functions and

provide ranked retrieval. The TIX algebra [2] shows

how to compute and propagate scores during XML

query evaluation in Timber. Traditionally, databases

have only stored facts, which by definition are certain.

Recently, there has been considerable interest in the

management of uncertain information in a database.

The bulk of this work has been in the relational con-

text, where it is easy to speak of the probability of a

tuple being in a relation. ProTDB develops a model

for storing and manipulating probabilistic data effi-

ciently in XML [14]. The probability of occurrence

of an element in a tree (at that position) is recorded

conditioned on the probability of its parent’s

occurrence.

3674X XQuery Processors
Query Runtime: Evaluation and Optimization.

The heart of the Timber system is the query evaluation

engine, which compiles logical query plans into the phys-

ical algebra representation (i.e., physical query plans) and

evaluates those query plans against the stored XML data

to produce XML results. It includes two main subcom-

ponents: the query optimizer and the query evaluator.

The query evaluator executes the physical query

plan. The separation between the logical algebra and

the physical algebra is greater in XML databases than in

relational databases, because the logical algebra here

manipulates trees while the physical algebra manipu-

lates ‘‘nodes’’ – data are accessed and indexed at the

granularity of nodes. This requires the design of several

new physical operators. For example, for each XML

element, the query may need to access the element

node itself, its child sub-elements, or even its entire

descendant subtree. This requires the node materializa-

tion physical operator, which takes a (set of) node

identifier(s) and returns a (set of) XML tree(s) that

correspond to the identifier(s). When and how to

materialize the nodes affects the overall efficiency of

the physical query plan and it is the job of the optimiz-

er to make the right decision. Structural join is another

physical operator that is essential for the efficient

retrieval of data nodes that satisfy certain structural

constraints. Given a parent-child or ancestor-descendant

relationship condition, the structural join operator

retrieve all pairs of nodes that satisfy the condition.

Multiple structural join evaluations are typically req-

uired to process a single tree-pattern match. In Timber,

a whole stack-based family of algorithms has been devel-

oped to efficiently process structural joins, and they

are at the core of query evaluation in Timber [1].

The query optimizer attempts to find the most

efficient physical query plan that corresponds to the

logical query plan. Every pattern match in Timber is

computed as a sequence of structural joins and the

order in which these are computed makes a substantial

difference to the evaluation cost. As a result, join order

selection is the predominant task of the optimizer.

Heuristics developed for relational systems often do

not work well for XML query optimization [20]. Tim-

ber employs a dynamic programming algorithm to

enumerate a subset of all the possible join plans and

picks the plan with the lowest cost. The cost is calcu-

lated by the result size estimator, which relies on the

position histogram [19] to estimate the lower and upper

bounds of each structural join.
DB2 XML: A Hybrid Relational and XML DBMS

DB2 XML (DB2 is a trademark of IBM Corporation.)

is a hybrid relational and XML database management

system, which unifies new native XML storage,

indexing and query processing technologies with exist-

ing relational storage, indexing and query processing.

A DB2 XML application can access XML data using

either SQL/XML or XQuery [6,16]. The general system

architecture is shown in Fig. 1a. It builds on the pre-

mises that (i) relational and XML data will co-exist and

complement each other in enterprise information

management solutions, and (ii) XML data are different

enough that it requires its own storage and processor.

Internal XQuery and Data Model Representation. At

the heart of DB2 XML’s native XML support is the XML

data type, introduced by SQL/XML. DB2 XML intro-

duces a new native XML storage format to store XML

data as instances of the XQuery Data Model in a

structured, type-annotated tree. By storing the binary

representation of type-annotated XML trees, DB2 XML

avoids repeated parsing and validation of documents.

In DB2 XML, XQuery is not translated into SQL,

but rather mapped directly onto an internal query

graph model (QGM) [6], which is a semantic network

used to represent the data flow in a query. Several

QGM entities are re-used to represent various set

operations, such as iteration, join and sorting, while

new entities are introduced to represent path expres-

sions and to deal with sequences. The most important

new operator is the one that captures XPath expres-

sions. DB2 XML does not normalize XPath expressions

into FLWOR blocks, where iteration between steps and

within predicates is expressed explicitly. Instead, XPath

expressions that consist of solely navigational steps are

expressed as a single operator. This allows DB2 XML to

apply rewrite and cost-based optimization [4] to com-

plex XQueries, as the focus is not on ordering steps of

an XPath expression.

Exploitation of Type and Schema Information. DB2

XML provides an XML Schema repository (XSR) to

register and maintain XML schemas and uses those

schemas to validate XML documents. An important

feature of DB2 XML is that it does not require an XML

schema to be associated with an XML column. An

XML column can store documents validated according

to many different and evolving schemas, as well as

schema-less documents. Hence, the association be-

tween schemas and XML documents is on per docu-

ment basis, providing maximum flexibility.

XQuery Processors X 3675
As DB2 XML has been targeted to address schema

evolution [5], it does not support schema import or

static typing features of XQuery. These two features are

too restrictive because they do not allow conflicting

schemas and each document insertion or schema up-

date may result in recompilation of applications.

Hence, DB2 XML does not exploit XML schema infor-

mation in query compilation. However, it uses simple

data type information for optimization, such as selec-

tion of indexes.

Query Runtime. DB2 XML query evaluation run-

time contains three major components for XML query

processing:

1. XQuery Function Library: DB2 XML supports sev-

eral XQuery functions and operators on XML sche-

ma data types using native implementations.

2. XML Index Runtime: DB2 XML supports indexes

defined by particular XML path expressions, which

can contain wildcards, and descendant axis naviga-

tion, as well as kind tests. Under the covers, an

XML index is implemented with two B+Trees: a

path index, which maps distinct reverse paths to

generated path identifiers, and a value index that

contains path identifiers, values, and node identi-

fiers for each node that satisfy the defining XPath

expression. As indexes are defined via complex

XPath expressions, DB2 XML employs the XPath

containment algorithm of [3] to identify the index-

es that are applicable to a query.

3. XML Navigation: XNAV operator evaluates multi-

ple XPath expressions and predicate constraints

over the native XML store by traversing parent-

child relationship between the nodes [13]. It

returns node references (logical node identifiers)

and atomic values to be further manipulated by

other runtime operators.

Key Applications
Scalable systems for XML data storage and XML query

processing are essential to effectively manage increas-

ing amount of XML data on the web.
X

URL to Code

Pathfinder

The open-source retargetable Relational XQuery com-

piler Pathfinder is available and documented at www.

pathfinder-xquery.org. MonetDB/XQuery – Pathfinder
bundled with the relational database back-end

MonetDB – is available at www.monetdb-xquery.org.

Timber

Timber is available and documented at www.eecs.

umich.edu/db/timber.

Cross-references
▶Top-k XML Query Processing

▶XML Benchmarks

▶XML Indexing

▶XML Storage

▶XPath/XQuery

Recommended Reading
1. Al-Khalifa S., Jagadish H.V., Patel J.M., Wu Y., Koudas N.,

and Srivastava D. Structural joins: a primitive for efficient

XML query pattern matching. In Proc. 18th Int. Conf. on Data

Engineering, 2002, pp. 141–152

2. Al-Khalifa S., Yu C., and Jagadish H.V. Querying structured text

in an XML database. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2003, pp. 4–15

3. Balmin A., Özcan F., Beyer K.S., Cochrane R.J., and Pirahesh H.

A Framework for using materialized XPath views in XML query

processing. In Proc. 30th Int. Conf. on Very Large Data Bases,

2004, p. 6071.

4. Balmin A. et al. Integration cost-based optimization in DB2

XML. IBM Syst. J., 45(2):299–230, 2006.

5. Beyer K.S. and Özcan F. et al. System RX: one part relational,

one part XML. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2005, pp. 347–358.

6. Beyer K.S., Siaprasad S., and van der Linden B. DB2/XML:

designing for evolution. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2005, pp. 948–952.

7. Boncz P.A., Grust T., van Keulen M., Manegold S., Rittinger J.,

and Teubner J. MonetDB/XQuery: a fast XQuery processor

powered by a relational engine. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2006, pp. 479–490.

8. Grust T. Accelerating XPath location steps. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2002, pp. 109–220.

9. Grust T., Mayr M., Rittinger J., Sakr S., and Teubner J. A SQL:

1999 code generator for the pathfinder XQuery compiler.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2007, pp. 1162–1164.

10. Grust T., Sakr S., and Teubner J. XQuery on SQL hosts. In Proc.

30th Int. Conf. on Very Large Data Bases, 2004, pp. 252–263.

11. Jagadish H.V., Al-Khalifa S., Chapman A., Lakshmanan L.V.S.,

Nierman A., Paparizos S., Patel J., Srivastava D., Wiwatwattana

N., Wu Y., and Yu C. TIMBER: a native XML database. VLDB J.,

11:274–291, 2002.

12. JagadishH.V., Lakshmanan L.V.S., Srivastava D., and ThompsonK.

TAX: a tree algebra for XML. In Proc. 8th Int. Workshop on

Database Programming Languages, 2001, pp. 149–164.

13. Josifovski V., Fontoura M., and Barta A. Querying XML streams.

VLDB J., 14(2):197–210, 2005.

3676X XSL Formatting Objects
14. Nierman A. and Jagadish H.V. ProTDB: probabilistic data in

XML. In Proc. 28th Int. Conf. on Very Large Data Bases, 2002,

pp. 646–657.

15. O’Neil P., O’Neil E., Pal S., Cseri I., Schaller G., and Westburg N.

ORDPATHs: insert-friendly XML node labels. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2004,

pp. 903–908.

16. Özcan F., Chamberlin D., Kulkarni K.G., and Michels J.-E.

Integration of SQL and XQuery in IBM DB2. IBM Syst. J., 45

(2):245–270, 2006.

17. Paparizos S. and Jagadish H.V. Pattern tree algebras: sets or

sequences? In Proc. 31st Int. Conf. on Very Large Data Bases,

2005, pp. 349–360.

18. Paparizos S., Wu Y., Lakshmanan L.V.S., and Jagadish H.V.

Tree logical classes for efficient evaluation of XQuery. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2004, pp.

71–82.

19. Wu Y., Patel J.M., and Jagadish H.V. Estimating answer sizes

for XML queries. In Advances in Database Technology, Proc. 8th

Int. Conf. on Extending Database Technology, 2002,

pp. 590–608.

20. Wu Y., Patel J.M., and Jagadish H.V. Structural join order

selection for XML query optimization. In Proc. 19th Int. Conf.

on Data Engineering, 2003, pp. 443–454.
XSL Formatting Objects

▶XSL/XSLT
XSL/XSLT

BERND AMANN

Pierre & Marie Curie University (UPMC), Paris, France

Synonyms
eXtensible Stylesheet Language; eXtensible Stylesheet

Language transformations; XSL-FO; XSL formatting

objects

Definition
XSL (eXtensible Stylesheet Language) is a family of

W3C recommendations for specifying XML document

transformations and typesettings. XSL is composed of

three separate parts:

� XSLT (eXtensible Stylesheet Language Transforma-

tions): a template-rule based language for the struc-

tural transformation of XML documents.
� XPath (XML Path Language): a structured query

language for the pattern, type and value-based

selection of XML document nodes.

� XSL-FO (XML Formatting Objects): an XML

vocabulary for the paper document oriented type-

setting of XML documents.

Historical Background
The development of XSL was mainly motivated by the

need for an open typesetting standard for displaying

and printing XML documents. Its conception was

strongly influenced by the DSSSL (Document Style

Semantics and Specification Language) ISO standard

(ISO/IEC 10179:1996) for SGML documents. Like

DSSL, XSL separates the document typesetting task

into a transformation task and a formatting task. Both

languages are also based on structural recursion for

defining transformation rules, but whereas DSSL

applies a functional programming paradigm, XSL

uses XML-template rules and XPath pattern matching

for defining document transformations.

The W3C working group on XSL was created in

December 1997 and a first working draft was released

in August 1998. XSLT 1.0 and XPath 1.0 became W3C

recommendations in November 1999, and XSL-FO

reached recommendation status in October 2001. Dur-

ing the succeeding development of XQuery, both the

XQuery and XSLT Working Groups shared responsi-

bility for the revision of XPath, which became the core

language of XQuery. XSLT 2.0, XPath 2.0 and XQuery

1.0 achieved W3C recommendation status in January

2007.

Foundations

XSLT Programming

XSLT programming consists in defining collections of

transformation rules that can be applied to different

classes of document nodes. Each rule is composed of

a matching pattern and a possibly empty XML tem-

plate. The matching pattern is used for dynamically

binding rules to nodes according to their local (name,

attributes, attribute values) and structural (document

position) properties. Rule templates are XML expres-

sions composed of static XML output fragments and

dynamic XSLT instructions generating new XML frag-

ments from the input data.

The following example illustrates the usage of XSLT

template rules for implementing some simple

XSL/XSLT X 3677
relational queries on the XML representation of a

relational database db. The database contains two

relations R(a: int,b: int) and S(b: int, c:

int). Each relation is represented by a single element

containing a sub-element of element type t for each

tuple:
<?xml version="1.0" encoding="ISO-8859-1"?>

<db>

<R>
<t a="1" b="5" />

<t a="2" b="5" />

<t a="3" b="6" />

<t a="4" b="7" />
</R>

<S>
<t b="5" c="1" />

<t b="6" c="3" />

<t b="6" c="4" />
</S>

</db>
The first transformation is defined by the following

two rules:

Rule 1:

<xsl:template match="/">
<T>
<xsl:apply-templates select="db/*/t" />
</T>
</xsl:template>

Rule 2:

<xsl:template match="t">
<xsl:copy-of select="." />
X

</xsl:template>

Both rules specify the class of nodes to which they

can be applied by an absolute (starting from the docu-

ment root ´/´) or a relative XPath expression. The first

rule applies to the document root ´/´, whereas the

second rule matches all document elements of type t

(independently of their absolute position in the

document).

The XSLT processing model is based on the recursive

application of template rules to a current node list,

which is initialized by the list containing only the

document root. The transformation consists of bind-

ing each node to exactly one transformation rule (The

existence of at least one matching rule is guaranteed by

a default rule for each kind of document node.) and

replacing it by the corresponding rule template. Tem-

plates contain static XML data and dynamic XSLT
instructions which recursively generate new transfor-

mation requests (XSLT instructions, are distinguished

from static fragments by using the XSLT namespace

http://www.w3.org/1999/XSL/Transform which is gen-

erally (but not necessarily) bound to the prefix

<<xsl:>>). The whole transformation process stops

when all transformation requests have been executed.

The rule template of rule 1 generates an element of

type T, which contains a new transformation request

type xsl:apply-template for all tuples in the

database returned by the XPath expression db/*/t.

This expression is evaluated against the context node of

the rule (the document root) and returns a new current

node list containing all elements of type t in R and S

(wildcard *matches all element names). Rule 2matches

all elements (tuples) of type t and creates a copy by

instruction xsl:copy-of select=".". The final

result is a relation T containing the union of R and S.

The previous example illustrates the usage of XPath

for the dynamic selection of template rules and for

recursively generating new current node lists for trans-

formation. Rule patterns can simply match nodes by

their element types, but they can also use more com-

plex XPath patterns defining value-based and structur-

al matching constraints. For example, in order to copy

only tuples of R, one might replace rule 2 by the

following two rules:

Rule 3:

<xsl:template match="R/t">
<xsl:copy-of select="." />
</xsl:template>

Rule 4:

<xsl:template match="S/t" />

Rule 3 matches and copies sub-elements t of some

element R, whereas rule 4 matches tuples of S without

creating any node in the output tree. Observe that the

same result can be achieved by keeping rule 2 and

replacing rule 1 by the following rule:

Rule 5:

<xsl:template match="/">
<T>
<xsl:apply-templates select="db/R/t" />
</T>
</xsl:template>

The following three rules simulate relational selec-

tion sb=5(R) by copying only of tuples in R with attri-

bute value b=5:

Rule 6:

<xsl:template match="R/t[@b=5]">

3678X XSL/XSLT
<xsl:copy-of select="." />
</xsl:template>

Rule 7:

<xsl:template match="R/t" />

Rule 8:

<xsl:template match="S/t" />

Rule 6 matches only tuples of R with attribute value

b equal to 5, and creates a copy of this subset in the

output tree. Rule 7 applies to all tuples of R without any

other restriction. The resulting binding conflict is solved

by a set of laws based on import precedence, priority

attribute values and certain syntactical criteria, which

generally choose the rule with the most specific match-

ing criteria. For example, rule 7 applies to all nodes that

can be transformed by rule 6, whereas the opposite is

not true. The inclusion problem for XPath patterns has

been formally shown to be PSPACE-complete [9], and

the recommendation document defines an incomplete

set of syntactical criteria that can easily be implemented

and allowed to solve a large set of conflicts in practice. If

the conflict resolution algorithm for template rules

leaves more than one matching rule, the XSLT processor

must generate a recoverable dynamic error where the

optional recovery action is to select, from the matching

template rules that are left, the one that occurs last in

declaration order.

XSLT rules can be assigned to different computa-

tion modes by using an optional mode attribute. For

example, the following three rules compute the natural

join of R and S on attribute b by a simple nested loop.

Rule 9 applies to all tuples of R in default mode and

represents the outer loop of the join: XPath expression

/db/S/t[@b=current()/@b] selects for each

current tuple in R, all tuples in S with the same b

attribute value. The inner loop is represented by rule

10 which is triggered by rule 9 and joins parameter

$tuple with some tuple in S. The template of this

rule creates a new tuple by copying all attributes ele-

ment $tuple and all attributes of the current node

(tuple). Attribute mode is used for distinguishing be-

tween the outer loop (mode default) and the inner

loop (mode join). In order to ‘‘neutralize’’ the

default transformation of S, rule 11 applies to S in

default mode and generates nothing.

Rule 9:

<xsl:template match="R/t">
<xsl:apply-templates select="/db/S/t[@b=cur-

rent()/@b]" mode="join">

<xsl:with-param name="tuple" select="." />
</xsl:apply-templates>
</xsl:template>

Rule 10:

<xsl:template match="S/t" mode="join">

<xsl:param name="tuple"> <t /> </xsl:param>

<t>

<xsl:copy-of select="$tuple/@*" />

<xsl:copy-of select="@*" />

</t>

</xsl:template>

Rule 11:

<xsl:template match="S/t" />

XSL-FO document typesetting

XSL-FO is a vocabulary of XML element types for

defining the main typographic objects (chapters,

pages, paragraphs, figures, etc.) and their properties

(character set, indentation, justification, etc.) used for

the paper-oriented typesetting of documents. The

main structure of an XSL-FO document is defined

by a document model (fo:layout-master), one or sev-

eral page sequences (fo:page-sequence) composed of

one or several flows (fo-flow) of blocks (fo-block).

Each of these elements can be parametrized by a set of

attribute values for configuring the layout of pages

(page-height, margins), tables (column width and

height, padding, etc.), lists (item label and distance)

and blocks (font-family and size, text alignment etc.).

The richness and complexity of the XSL-FO typeset-

ting model is illustrated by the size of the recommen-

dation document (400 pages), and the reader is

invited to consult the W3C’s XSL-FO tutorial for a

detailed introduction.

Theoretical Foundations of XSLT

The most important theoretical aspects of XSL concern

XSLT and its interaction with XPath. XSLT and XPath

have been theoretically evaluated and compared to other

XML query languages by using different theoretical fra-

meworks. For example, the formal semantics of XSLT

has been defined by a rewriting process starting from an

empty ordered output document, a set of rewriting

rules (the XSLT program) and an ordered labeled input

tree with ‘‘pebbles’’ (the current node list) [6]. Based

on this representation it was possible to show that,

under certain constraints (no join on data values),

given two XML schemas (regular tree languages) t1
and t2 and an XSLT stylesheet (k-pebble transducer)

T, it is possible to type-check Twith respect to its input

XSL/XSLT X 3679
type t2: 8 t 2 t1:T(t) � t2 is decidable. Similarly, [2]

proposed a formal model for a subset of XSLT

using tree-walking tree-transducers with registers and

look-ahead, which can compute all unary monadic

second-order (MSO) structural patterns. This expres-

siveness result provides an important theoretical foun-

dation for XSLT, since MSO captures different robust

formalisms like first order logics with set quantifica-

tion, regular tree languages, query automata and finite-

valued attribute grammars.

The computation model of XSLT can also be

compared with that of structural recursion for

semi-structured data [1]. Structural recursion is pro-

posed by functional programming languages like

CAML for the dynamic selection of function defini-

tions by matching function parameter values with pat-

tern signatures. For example, the following

transformation function f removes all elements of

type E and renames all elements of type A to B:

f(v)=v
f({})={}

f({0A0 : t})={ 0B0 : f(t)}

f({0E0 : t})=f(t)
This function can be defined in XSLT as follows:
<xsl:template match=0*0>
<xsl:copy><xsl:apply-templates select=0*0>

</xsl:copy>
</xsl:template>

<xsl:template match=0E0 />

<xsl:template match=0A0>
<xsl:apply-templates select=0.0>
</xsl:template>
There are two main differences between XSLT and

structural recursion. First, XSLT is defined on trees,

whereas structural recursion can be applied on arbi-

trary graphs. Second, all structural recursion programs

are guaranteed to terminate, whereas it is easily possi-

ble to write infinite XSL transformations as it is shown

in the following rule, which recursively generates for

any element a new element containing the result of its

own transformation:
<xsl:template match=0*0>

X
<a><xsl:apply-templates select=0.0>
</xsl:template>
The result of this transformation rule is an infinite

tree <a><a><a>. . ..
XSLT and XQuery

XSLT 2.0 is the result of the collaboration between the

W3C working groups on XSL and XQuery. Both lan-

guages, XQuery 1.0 and XSLT 2.0 obtained recommenda-

tion status in January 2007 and share the same data

model, type system and function library. The most nota-

ble change concerning the XSL recommendation is the

evolution of XPath 1.0 to XPath 2.0 and the

corresponding changes in the underlying data model.

XPath 2.0 is the core language of XQuery 1.0 and inte-

grates the type system of XML Schema with a rich library

of built-in types, functions and operators. Every XSLT

value is now a sequence and XPath 1.0 node-sets are

replaced by node sequences. Variables can be bound to

arbitrary sequences of values and trees, which simplifies

certain programming issues observed in XSLT 1.0. Other

new important features concern grouping of nodes, text

matching functions, user defined functions and the

possibility to generate multiple result trees by one

transformation.

XSLT 2.0 and XQuery 1.0 are two declarative lan-

guages for querying and transforming XML document

trees with similar expressive power. Both languages are

Turing complete and [3] shows how to translate XSLT 2.0

programs into XQuery 1.0. However, the objectives of

both languages are specific and their implementations

are optimized for a particular usage. XSLT has been con-

ceived for transforming individual documents into some

fixed output format whereas XQuery is a query language

that allows the retrieved relevant information retrieval of

from large document collections. The dynamic binding of

rule templates makes XSLT a flexible and modular lan-

guage that facilitates code reuse and the development of

large applications. In particular, it is possible to import

XSLT template rule collections defined for external

document fragments that are integrated into a unique

XML document. On the other hand, modern XQuery

engines are able to efficiently query large collections of

documents using advanced query optimization tech-

niques based on static type analysis.
Optimizing XSLT

XML is used in many applications as a publishing and

exchange format for structured data. In this kind of

application, XSLT serves for publishing XML query

results according to the different usages and clients.

Each data exchange might need one or several XSLT

transformations on the data producer and the data

XSL/XSLT. Figure 1. XSLT optimization in XML-enabled RDBMS.

3680X XSL/XSLT
consumer side, and optimizing the transformation

process becomes an important issue.

[7] proposes an XSLToptimization approach based

on algorithms for optimizing the template rule selec-

tion process and for rewriting algebraic translations of

XSLT stylesheets. XSLToptimization is revealed to be a

hard problem because of two undecidability results

concerning rule conflict detection at compile time,

and finding optimal evaluation plans under any rea-

sonable cost function. [5] study the problem of XSLT

processing and optimization in an XML-enabled rela-

tional database system (RDBMS). The whole process is

illustrated in Fig. 1.

The optimization process starts from a collection

of XSLT transformation rules, which are applied to a

XML data generated by a SQL/XML query on top of

a relational database. The basic idea is to translate

the XSLT rules into a SQL/XML query on a SQL/

XML view, which can then be optimized by a standard

relational query optimizer. The translation step gener-

ates an intermediate XQuery expression, which is opti-

mized by exploiting structural schema information

obtained from the underlying RDBMS.

Key Applications
The possibility to define transformations from any

XML document structure A to any other structure

B makes XSLT a powerful and generic tool in many

XML applications. The main key applications are

information publishing, data exchange and model

transformation.

Information Publishing

XSL was initially designed for the publishing of XML

documents, where document transformation consists of

transforming any document into some specific format

for screen display and printing. The final document

format can be conformed to XML like XHTML, SMIL,

DocBook or WML, but it also can be non XML-com-

pliant like HTML (which is not XML), PDF or RTF. In

the first case, XSLT is sufficient for producing the out-

put. In the second case, the transformation process is
followed by a formatting step that is implemented by a

specific software mapping XML data to a non-XML

format. This formatting step can be a simple mapping

from XHTML to HTML by changing some small syn-

tactic differences, and a more complex generation of

high-quality electronic documents in a binary format

like RTF and PDF. For the second case, XSL proposes

XSL-FO, a standard XML vocabulary for typesetting

XML documents.

Data Exchange and Service Integration

Service-oriented architectures (SOA) based on the

W3C SOAP/WSDLweb service recommendations rep-

resent a modern solution for XML-based data and

application integration. These kind of infrastructures

strongly depend on efficient XML data transformation

tools for wrapping data exchanged between heteroge-

neous web services. By its declarative and modular

nature, XSLT is a powerful language for defining data

and service wrappers, and is proposed as such by stan-

dard business process modeling languages (BPEL) and

infrastructures (JBI).
Model Exchange and Transformation

On a more abstract level, XSLT has been proposed for

the transformation of XMI (XML Metadata Inter-

change) documents. XMI is a standard interchange

mechanism used model driven in component based

development and deployment infrastructures (MDA).

The most common use of XMI is as an interchange

format for UML models, although it can also be used

for serialization of models of other languages (meta-

models). In this kind of environment, XSLT can be

used for transforming definitions a some model A,

for example UML, into a different model B, for exam-

ple XML Schema.
Url to Code
XSLT code examples can be found at the following

URL:

http://www-poleia.lip6.fr/~amann/XSLT/index.xml

XSL-FO X 3681
Cross-references
▶Tree Grammars and Languages

▶Web Services

▶XML

▶XPath/XQuery

Recommended Reading
1. Abiteboul S., Buneman P., and Suciu D. Data on the Web: from

relations to semistructured data and XML. Morgan Kaufmann,

Los Altos, CA, 1999.

2. Bex G.J., Maneth S., and Neven F. A formal model for an

expressive fragment of XSLT. In Proc. 1st Int. Conf. Computa-

tional Logic, 2000, pp. 1137–1151.

3. Fokoue A., Rose K.H., Siméon J., and Villard L. Compiling XSLT

2.0 into XQuery 1.0. In Proc. 14th Int. World Wide Web

Conference, 2005, pp. 682–691.

4. Kay M. XSLT Programmer’s Reference, 2nd edition, WROX

Press Ltd., 2002.

5. Liu Z.H. and Novoselsky A. Efficient XSLT processing in rela-

tional database system. In Proc. 32nd Int. Conf. on Very Large

Data Bases, 2006, pp. 1106–1116.

6. Milo T., Suciu D., and Vianu V. Typechecking for XML Trans-

formers. In Proc. 19th ACM SIGACT-SIGMOD-SIGART Symp.

on Principles of Database Systems, 2000, pp. 11–22.

7. Moerkotte G. Incorporating XSL processing into database

engines. In Proc. 28th Int. Conf. on Very Large Data Bases,

2002, pp. 107–118.
8. Muench S. Building Oracle XML Applications, O’Reilly, 2000.

9. Neven F. and Schwentick T. On the complexity of XPath con-

tainment in the presence of disjunction, DTDs, and variables.

Logic. Methods Comput. Sci., 2(3), 2006.

10. W3C XSL-FO Tutorial, http://www.w3schools.com/xslfo/

default.asp.

11. W3C. XSL Transformations (XSLT) Version 1.0, W3C Recom-

mendation, J. Clark (ed.). http://www.w3.org/TR/xslt, 1999.

12. W3C. XML Path Language (XPath) Version 1.0, W3C Recom-

mendation, J. Clark and S. DeRose (eds.). http://www.w3.org/

TR/xpath, 1999.

13. W3C. Extensible Stylesheet Language (XSL) Version 1.0, W3C

Recommendation, S. Adler, A. Berglund, J. Caruso, S. Deach,

T. Graham, P. Grosso, E. Gutentag, A. Milowski, S. Parnell,

J. Richman, S. Zilles, (eds.). hhttp://www.w3.org/TR/2001/

REC-xsl-20011015/, 2001.

14. W3C. XML Path Language (XPath) 2.0, W3C Recommendation,

A. Berglund, S. Boag, D. Chamberlin, M.F. Fernandez, M. Kay, J.

Robie, J. Siméon (eds.). http://www.w3.org/TR/xpath20, 2007.

15. W3C. XSL Transformations (XSLT) Version 2.0, W3C Recom-

mendation, M. Kay, (ed.). http://www.w3.org/TR/xslt20, 2007.
XSL-FO

▶XSL/XSLT
X

Z

Zero-One Laws

NICOLE SCHWEIKARDT

Johann Wolfgang Goethe-University Frankfurt am

Main, Frankfurt, Germany

Definition
A query language is said to have the 0-1 law if every

Boolean query that contains no constants (i.e., the query

doesnotmentionanyparticularelementfromthedomain

of potential data values) is almost surely true or almost

surely false. The notions of being ‘‘almost surely true,’’

respectively, ‘‘almost surely false’’ are defined as follows:

Letsbeafixeddatabaseschema.For each natural number

n, let DBn(s) be the set of all database instances of

schema s whose active domain is a subset of {1,...,n}

(i.e., all database entries belong to {1,...,n}). For a

Boolean query q of schema s let mn(q) be the probabil-
ity that a database D chosen uniformly at random from

DBn(s) is a ‘‘yes’’‐instance of query q. In other words,

mn(q) is the number of databases in DBn(s) on which q

evaluates to ‘‘yes,’’ divided by the number of all data-

bases inDBn(s). Query q is said to be almost surely true

(respectively, almost surely false), if the limit m(q) :=

limn!1mn(q) exists and is equal to 1 (respectively, 0).
Key Points
0-1 laws can be used as a tool for proving expressivity

bounds for query languages: If q is a Boolean query for

which the limit m(q) = limn!1mn(q) either does not

exist or is different from 0 and 1, then q cannot be

expressed by any query language that has the 0-1 law.

For example, let s be the schema consisting of one

binary relation symbol E, and let qeven be the query

‘‘Does the given database contain an even number of

tuples?’’ It is not difficult to see that the limit m(qeven) =
limn!1mn(qeven) exists and is equal to 1 ∕2. Thus, query
qeven is neither ‘‘almost surely true’’ nor ‘‘almost surely

false’’ and hence cannot be expressed by a query lan-

guage that has the 0-1 law.
2009 Springer ScienceþBusiness Media, LLC
Historically, the first query language for which a

0-1 law was proven was the relational calculus (i.e.,

first-order logic). The proof also shows that there exists

an algorithmwhich, given a Boolean relational calculus

query q, computes m(q). Since then, 0-1 laws have been
shown for many different query languages, among

them fixed point logic, infinitary logic Lo1o, and

various fragments of second-order logic. Variants of

the 0-1 law are also known for several other probability

measures and for restrictions to particular classes of

databases.

A common method for proving that a query lan-

guage has the 0-1 law is based on so-called extension

axioms and an Ehrenfeucht-Fraı̈ssé game argument. 0-1

laws are also closely related to the theory of the count-

able random graph. For an overview of results and

proof techniques, refer to the textbooks [1,2,4] and

the survey [3].

To point out the limitations of the use of 0-1 laws

for proving inexpressibility results, it should be noted

that there do exist queries that are almost surely true

but nevertheless are not expressible in the relational

calculus (an example is the query qconn: ‘‘Does the given

database relation E form a connected graph?’’).

Furthermore, several query languages are known

not to have the 0-1 law, e.g., existential second-order

logic and monadic second-order logic (cf. [1,3,4]).
Cross-references
▶ Expressive Power of Query Languages

Recommended Reading
1. Ebbinghaus H.-D. and Flum J. Finite Model Theory, 2nd edn.

Springer, Berlin, 1999.

2. Hodges W. Model Theory. Cambridge University Press,

Cambridge, New York, USA, 1993.

3. Kolaitis P. and Vardi M.Y. 0-1 laws for fragments of existen-

tial second-order logic: a survey. In Proc. 25th Int. Symp.

on Mathematical Foundations of Computer Science, 2000,

pp. 84–98.

4. Libkin L. Elements of Finite Model Theory. Springer, New York,

NY, USA, 2004.

3684Z ZF-Expression
ZF-Expression

▶Comprehensions
Zoning

▶ Storage Security
Zoomable User Interface (ZUI)

▶Zooming Techniques
Zooming Techniques

HARALD REITERER
1, THORSTEN BÜRING

2

1University of Konstanz, Konstanz, Germany
2Ludwig-Maximilians-University Munich, Munich,

Germany

Synonyms
Zoomable user interface (ZUI); Multiscale interface;

Scaling

Definition
Zooming facilitates data presentation on limited screen

real-estate by allowing the users to alter the scale of the

viewport such that it shows a decreasing fraction of

the information space with an increasing magnification.

Hence the system may first present a global overview

of the information space for the benefit of orientation,

and in a second step, the users can then dynamically

re-allocate the screen space based on the information

objects they are interested in. A navigation technique

commonly used in conjunction with zooming is

panning: a movement of the viewport over the infor-

mation space at a constant scale.

Historical Background
The first application to use zooming as a fundamental

interface approach was the Spatial Data Management

System (SDMS) [5] in 1978 (see Fig. 1). The SDMS
system relied heavily on custom hardware, including

an octophonic sound system and an instrumented

chair equipped with pressure-sensitive joysticks, two

touch-sensitive tablets and a digital lapboard. The data

was presented via a rear-projected color television dis-

play. The flat information space was called Dataland. It

presented the content of a database with the help of

tiny pictures of faces, maps, television sets, letters,

book covers, a calendar, a telephone, and a calculator.

Items of similar sort have been grouped together on

distinctive color backgrounds. SDMS enabled users to

manage and zoom into the visual database representa-

tion with the help of a joystick, by touch commands, or

by voice. This early attempt of a zoomable interface

included a variety of elementary design concepts: a

‘‘what you see is what you get’’ representation of dif-

ferent multimedia data types with the help of icons, a

spatial arrangement depending on the users’ choice or

automatic by semantic (e.g., clustering of related data),

the possibility to fly over Dataland in a helicopter-like

fashion (pan), and the possibility to change the granu-

larity of the information presentation by zooming in

and out.

The Computer Corporation of America (CCA) of

Cambridge, Massachusetts built a ‘‘field version’’ of the

SDMS. It consisted of three color TV monitors lined

up on a table-top with a joystick, a keyboard, and a

graphic tablet [9]. The system also offered a scalable

data surface with the enhanced possibility to zoom in a

semantic way. Therefore each data item on the surface

was stored at several levels of detail. Zooming in on

such a data item caused the more detailed version to

appear (e.g., shape of a ship first, and then shape with

further text, and finally a full picture of the ship with

all details). Another important new concept was the

idea of ports. There was not only one single data

surface but an entire set of them. The transition points

between them were called ports and shown as special

pictures (icons). When zooming in on them, these

ports acted as trapdoors down into other information

spaces. The result was a hierarchical set of informa-

tion spaces through which the user could navigate.

Ports allowed presenting alternate views of the

same data items, and could also be used to activate

programs external to SDMS (e.g., electronic mail, text

editors).

In 1993, a zoomable user interface (ZUI) called Pad

[15] was developed. It introduced mostly the same

fundamental design concepts for zooming as SDMS,

Zooming Techniques. Figure 1. The Spatial Data Management System [5].

Zooming Techniques Z 3685

Z

but the main difference was its ability to run on con-

ventional PCs or Minicomputers. Pad aimed to pro-

vide an alternative to the Windows paradigm. The

system visualized an infinite two dimensional informa-

tion plane populated by objects that users could inter-

act with. Such Pad objects could, for instance, be text

files, a clock program, or a personal calendar. Each of

these entities occupied a well-defined region on the

Pad surface and was visualized by means of graphics

and portals. Portals showed portions of the Pad surface

at different scales, and may also look recursively at

other portals. One way to use a portal, for instance,

would be to show a miniature overview of a large Pad

object. Users can manipulate the view’s scale and data

representation by performing semantic zoom opera-

tions. Another important concept is portal filters that

transform data into other complex views, e.g., present

tabular data as a bar chart.

Only one year later, the successor to Pad, Padþþ
[3], was presented, a system that also constituted the

first ZUI toolkit. Padþþ aimed to serve as the basis for

exploration of novel interfaces for information visuali-

zation by providing a framework for simplifying the

creation of multiscale applications. It introduced

some, mostly technical, enhancements over the origi-

nal Pad implementation. For instance, much effort had

been devoted to realizing smooth semantic zooming,

even with hundreds of thousands of objects loaded

into the information space. To achieve this, the render-

ing with Padþþ followed a ‘‘parallel lazy loading’’

strategy, i.e., only the portion of the database that

is currently visible is loaded. One important design

objective of Padþþ was to support a wide range of

platforms ranging from high-end workstations to

PDAs and Set-top boxes. However, an increased level
of platform independency was only achieved by

later ZUI toolkits such as Jazz (2000) [4] and Piccolo

(2004) [2].

Foundations
A method of illustrating zooming is that of space-

scale diagrams [7]. Figure 2 models a ZUI in which

the 2D information space is shown at different mag-

nification levels and aligned by the vertical axis repre-

senting scale. The inner rectangular outline represents

the viewport, i.e., the portion of the information

space that is visible. The outer gray area is the off-

screen space. In the diagrammatic example, users are

searching for the red target object that is off-screen

(top-most scale level). Instead of panning the view

around, as in the scrolling interface, users zoom out

until the target object enters the viewport. In a second

step, they can then access the object’s details by zoom-

ing back in.

Navigation in Information Spaces

In contrast to scrolling interfaces, which are only effec-

tive for small spaces, ZUIs develop their full potential

as the size of the information space grows. Even if

users know the precise location of an off-screen target,

in most cases a pan operation would still be a slow

way of navigating. Panning only covers distance at a

constant pace, while zooming allows users to view

off-screen content in a non-linear fashion. This advan-

tage is due to the special properties of multiscale inter-

faces, in which the shortest path between two points is

usually not a straight line, but a combination of zoom

and pan operations.

A common problemwith ZUIs is the lack of context.

Even after a short period of navigation, users lose their

Zooming Techniques. Figure 2. Space-scale diagram [7].

3686Z Zooming Techniques
overview due to the continuous clipping of orientation

cues during zooming. The most straightforward way to

rediscover context in ZUIs is to zoom out. While this

approach may help users to generate or refresh their

internal model of the information space, it also implies

frequent interaction that, after some time, users are

likely to find tedious. Especially so in cases in which

they have to zoom out extensively to regain context.

While this problem seems to be inherent to ZUIs, a

strategy that at least reduces the burden of frequent

zooming is to provide a fast and precise interaction

design. The less time-consuming and cognitively de-

manding the zooming is, the less it will annoy users.

A more severe type of orientation problem that

cannot be solved solely by interaction has been termed

desert fog [12]. Desert fog describes a condition in

which users zoom into the white space between objects

up to the point where the viewport goes completely

blank. On the one hand, the empty screen could be

indicating that there are no objects to be found in that

direction, in which case users need to zoom out. An-

other possibility, though, is that there are indeed
objects, but they are still too far away to be visible. In

this case, users need to zoom in further to approach

these objects. A solution to ease such desert-fog con-

ditions is to provide navigational assistance by gener-

ating multiscale residues for all objects in view. Such

landmarks are drawn across scale and indicate that a

particular object exists in that direction. If no residues

are seen, the users know that they have to zoom out to

find other objects. To avoid visual clutter, navigational

information should be clustered.

Interaction Techniques

Different interaction techniques for zooming can be

distinguished. Earlier systems were often limited to

centralized zooming. Users click a device (or onscreen)

button to increase the scale and another button to

decrease it. Since the view is only scaled and not

translated, this approach implies that for targeting

information objects in space, users first have to move

the object to the center of the screen. Furthermore, for

large information spaces, users may frequently have to

interrupt the scaling operation to readjust the focus. A

more elegant and effective scaling technique is point-

directed zooming, which allows users to magnify and

center information objects at the same time. One ex-

ample is the default event handler in Jazz, and now in

the Piccolo framework. While pressing the right mouse

button, users scale the view by dragging the mouse

right or left to zoom in or out, respectively. The zoom

speed increases with the distance the mouse is dragged,

and vice versa. During the operation, the point that the

cursor was over when the dragging started moves to the

center. Another interaction technique, which assumes

that users want to return to the highest magnification

level after each zoom operation, is speed-dependent

automatic zooming (SDAZ) [10]. SDAZ couples rate-

based scrolling with scaling in a single operation and

was developed to avoid visual blur when navigating

large information spaces at high speed. The users con-

trol the velocity of a continuous panning operation by

dragging the pointing device. To keep the visual flow

constant, the system automatically zooms out when the

scrolling speed increases and zooms back in when

the scrolling speed decreases.

Zoom interaction design may also be based on

visual mediators such as sliders. A slider widget has

the advantage that the user is provided with additional

visual feedback. The position of the slider thumb

Zooming Techniques Z 3687
reveals the current zoom level of the view in relation to

the range of scale factors available (e.g., the slider in

Google Earth). Users can drag the control to increase

or decrease the zoom level. Another example of a visual

mediator is zoom bars [11]. Equipped with three

thumbs, a zoom bar is a slider that controls the range

boundaries of an axis dimension. Moving the two

extreme thumbs, users can increase or decrease the

upper and lower range boundary, causing a zoom

in or a zoom out by changing the scale on the cor-

responding display axis. That way, any rectangular

region can be enlarged to full diagram size. This is

also the reason why zoom bars are usually limited to

abstract information spaces, in which the two dimen-

sions do not require a fixed aspect ratio. While their

similarity to a regular scrollbar may support first-time

users in operating the widget, a drawback is that the

usability of a zoom bar deteriorates with a decreasing

ratio of the physical slider size and the attribute range

of the related dimension.

A similar zoom effect as with zoom bars, but

without occluding the view, can be achieved with a

bounding-box tool. Users drag the pointing device

over the view and a focus rectangle is drawn that

takes the drag starting point as a corner location

and the drag distance as a diagonal. When the users

release the pointing device, the defined region is mag-

nified to fit the full size of the view. In cases such as

images and text, in which a constant aspect ratio is

desired, the focus region is only scaled but not distorted.

A bounding-box is a visual mediator that does not

require permanent display space, and thus lends itself

to the application on small screens such as featured by

mobile devices.

Zoom Granularity and Manipulation

Apart from the interaction design ZUIs can further be

categorized by the granularity of zooming they pro-

vide. The most basic ZUI is the two-level zoom. It lets

users switch between a single overview and a single

detail zoom level, and thus only works for small

information spaces. To manage larger data sets, several

intermediate zoom levels between the minimum and

maximum scale must be introduced. In older systems

such as, for instance, Pad [15], navigation between the

levels is accomplished by discrete jumps. This ap-

proach is easy to implement and computationally

very effective, but it hampers the usability of the
system. Coarse jumps can irritate and disorient the

users and thus may hinder the cognitive and perceptual

processing required for navigation. Accordingly, a lot

of effort has been put into equipping multiscale inter-

faces with smooth continuous zooming.

ZUIs can offer different types of zooming. Most

common is geometric zoom, in which objects are sim-

ply magnified. Zooming in, the object’s size increases,

and vice versa. This approach is found in many stan-

dard software applications such as PDF readers or

image editors. Semantic zooming, in contrast, is a

more sophisticated concept, in which objects change

their appearance as the amount of screen real estate

available to them changes. In the Padþþ -based direc-

tory browser shown in Fig. 3, for instance, subfolders

and files are first represented by small-sized icons that

only show the name of the object. Increasing the scale,

the icons change their appearance to present some

more detailed information, e.g., the number of images

in a folder, or the structure and amount of text

contained in a document. Zooming in further, images

become visible and text is magnified to a readable size.

At this level, users may also be provided with addition-

al functionality to manipulate the object in focus.

Overall, the goal of semantic zooming can be summar-

ized as providing the users with the most meaningful

object representation at each magnification level. The

difficulty with this approach is that the appropriate

representations for all scale levels must be determined

in advance by an expert user. However, for complex

objects, several representations may be suitable for a

given portion of display size. In this case, it is hard to

reliably predict the users’ requirements. Systems such

as DataSplash [14] try to overcome this problem by

enabling users to visually program how objects behave

during zooming.

Transition Between Zooming

Another important concept for ZUIs is animated

transitions. Users may, for instance, click on a hyper-

link to automatically move the viewport to a remote

location. Or they initiate a scale manipulation via a

bounding-box. In both cases the viewport needs to be

adjusted. The transition between these interface states

can either be instantaneous, which is fastest, or it can

be animated by showing intermediate frames. The

benefit of smooth and animated transitions is that

they help users to maintain relations between
 Z

Zooming Techniques. Figure 3. A directory browser featuring semantic zooming (http://www.cs.umd.edu./hcil/

padþþ).

3688Z Zooming Techniques
application states. Users are not required to con-

sciously make connections between the changes of

interface content and thus they can stay focused on

the task. Smooth transitions were also found to have

a positive effect on the users’ ability to build a

mental map of the information space. In a study

[1], users were asked to navigate a virtual family

tree, in which each node showed a picture of a

family member and hyperlinks to connected nodes.

Only one or two nodes could be seen at a time. To

move the viewport, users clicked on the hyperlinks.

The authors discovered that animated transitions of

1second improved the users’ ability to reconstruct

the information space, with no penalty on task per-

formance time. To determine the optimal trajectory

between two locations in a multiscale interface,

some prior research has investigated how to calcu-

late the shortest path with zooming and panning

[7], or the path that specifically supports smooth

animations [16].
Key Applications
The most common application domain to incorporate

zooming techniques is geographical information sys-

tem, e.g., Google Earth. However, an increasing

amount of research prototypes use ZUIs for presenting

data without inherent spatial relations. Example

domains include web, image, document and database

browsers, browsing history widgets, slide show pro-

grams, thought organizers, 3D character animation

controls, and novel desktop systems.

Future Directions
ZUIs make more efficient use of limited screen real

estate, and thus are considered to have a great potential

on small-sized mobile devices. Examples include

mobile calendars, application explorer, image-, web-

and scatterplot-browsers. The Apple iPhone includes

a variety of such applications and makes extensive use

of zooming techniques in combination with a touch

sensitive display.

Zooming Techniques Z 3689
Experimental Results
Different research studies indicate that, on desktop

computers, ZUIs reliably outperform scrolling inter-

faces in terms of performance and preference [6,13].

Similar effects can be observed for small screens as

featured by mobile devices. One study, in which differ-

ent interfaces were tested on a simulated handheld

display, found that a two-level zoom was significantly

faster for accomplishing editing and monitoring

tasks than a scrolling interface. Even in cases where

users failed to achieve optimal performance with the

two-level zoom, they preferred it to the other experi-

mental interfaces [8].

Cross-references
▶Browsing in Digital Libraries

▶Data Visualization

▶Human-Computer Interaction

▶ Interface

▶Mobile Interfaces

▶Navigation

▶ Scientific Visualization

▶Usability

▶Visual Analytics

▶Visual Data Mining

▶Visual Interaction

▶Visual Interfaces

▶Visualization for Information Retrieval
Recommended Reading
1. Bederson B.B. and Boltman A. Does animation help users build

mental maps of spatial information? In Proc. IEEE Symp. on

Information Visualization, 1999, p. 28.

2. Bederson B.B., Clamage A., Czerwinski M.P., and Robertson G.G.

Datelens: a fisheye calendar interface for PDAs. ACM Trans.

Comput. Human Interact., 11(1):90–119, 2004.

3. Bederson B.B. and Hollan J.D. Pad þþ : a zooming graphical

interface for exploring alternate interface physics. In Proc. 7th
Annual ACM Symp. on User Interface Software and Technology,

1994, pp. 17–26.

4. Bederson B.B., Meyer J., and Good L. Jazz: an extensible zoom-

able user interface graphics toolkit in java. In Proc. 13th Annual

ACM Symp. on User Interface Software and Technology, 2000,

pp. 171–180.

5. DonelsonW.C. Spatial management of information. In Proc. 5th

Annual Conf. Computer Graphics and Interactive Techniques,

1978, pp. 203–209.

6. Donskoy M. and Kaptelinin V. Window navigation with and

without animation: a comparison of scroll bars, zoom, and

fisheye view. In CHI’97 Extended Abstracts on Human Factors

in Computing Systems, 1997, pp. 279–280.

7. Furnas G.W. and Bederson B.B. Space-scale diagrams: under-

standing multiscale interfaces. In Proc. SIGCHI Conf. on

Human Factors in Computing Systems, 1995, pp. 234–241.

8. Gutwin C. and Fedak C. A comparison of fisheye lenses for

interactive layout tasks. In Proc. Graphics Interface, 2004,

pp. 213–220.

9. Herot C.F., Carling R., Friedell M., and Kramlich D. A prototype

spatial data management system. In Proc. 7th Annual Conf.

Computer Graphics and Interactive Techniques, 1980, pp. 63–70.

10. Igarashi T. and Hinckley K. Speed-dependent automatic

zooming for browsing large documents. In Proc. 13th Annual

ACM Symp. on User Interface Software and Technology, 2000,

pp. 139–148.

11. Jog N.K. and Shneiderman B. Starfield visualization with inter-

active smooth zooming. In Proc. 3rd IFIP WG2.6 Working

Conference on Visual Database Systems, vol. 3, 1995, pp. 3–14.

12. Jul S. and Furnas G.W. Critical zones in desert fog: aids to

multiscale navigation. In Proc. 11th Annual ACM Symp. on

User Interface Software and Technology, 1998, pp. 97–106.

13. Kaptelinin V. A comparison of four navigation techniques in a

2D browsing task. In Proc. SIGCHI Conf. on Human Factors in

Computing Systems, 1995, pp. 282–283.

14. Olston C., Woodruff A., Aiken A., Chu M., Ercegovac V., Lin M.,

Spalding M., and Stonebraker M. Datasplash. In Proc. ACM

SIGMOD Int. Conf. onManagement of Data, 1998, pp. 550–552.

15. Perlin K. and Fox D. Pad: an alternative approach to

the computer interface. In Proc. 20th Annual Conf. Computer

Graphics and Interactive Techniques, 1993, pp. 57–64.

16. van Wijk J.J. and Nuij W.A.A. Smooth and efficient zooming

and panning. In Proc. IEEE Symp. on Information Visualization,

2003, pp. 15–22.
Z

List of Entries
Absolute Time

Abstract Versus Concrete Temporal Query Languages

Abstraction

Access Control

Access Control Administration Policies

Access Control Policy Languages

Access Methods

Access Path

Accountability

ACID Properties

ACID Transaction

Acquisitional Query Languages

Active and Real-Time Data Warehousing

Active Database, Active Database (Management)

System

Active Database Management System Architecture

Active Database Coupling Modes

Active Database Execution Model

Active Database Knowledge Model

Active Database Rulebase

Active Databases

Active Disks

Active Document

Active Storage

Active XML

Activity

Activity Diagrams

Actors/Agents/Roles

Ad hoc Retrieval models

Adaptation

Adaptive Database Replication

Adaptive Interfaces

Adaptive Message-Oriented Middleware

Adaptive Metric Techniques

Adaptive Middleware for Message Queuing Systems

Adaptive Query Optimization

Adaptive Query Processing

Adaptive Stream Processing

Adaptive Workflow/Process Management

ADBMS

ADBMS Framework

ADBMS Infrastructure

Adding Noise

Additive Noise

Administration Model for RBAC
Administration Wizards

Advanced Transaction Models

Adversarial Information Retrieval

Affix Removal

AFI

Aggregate Queries in P2P Systems

Aggregation

Aggregation Algorithms for Middleware Systems

Aggregation and Threshold Algorithms for XML

Aggregation: Expressiveness and Containment

Aggregation-Based Structured Text Retrieval

AGMS Sketch

Air Indexes for Spatial Databases

AJAX

Allen’s Relations

AMOSQL

AMS Sketch

Analogy

Anchor

Anchor Text

Anchor Text Surrogate

AND-Join

AND-Split

Animation

Annotation

Annotation-based Image Retrieval

Anomaly Detection on Streams

Anonymity

Anonymity in Location-based Services

ANSI/INCITS RBAC Standard

Answering Queries Using Views

Anti-monotone Constraints

AP@n

Applicability Period

Application Benchmark

Application Recovery

Application Server

Application Server Clustering

Application-Centric Interfacing

Application-Level Tuning

Applications of Emerging Patterns for Microarray

Gene Expression Data Analysis

Applications of Sensor Network Data Management

Application-to-Application Integration

Approximate Queries in Peer-to-Peer Systems

3692 List of Entries
Approximate Query Answering

Approximate Query Processing

Approximate Querying

Approximate Reasoning

Approximate XML Querying

Approximation of Frequent Itemsets

Apriori Property and Breadth-First Search Algorithms

ARBAC97

Architecture-aware Database System

Architecture-Conscious Database System

Architecture-Sensitive Database System

Archiving Experimental Data

Armstrong Axioms

Array

Array Databases

Association

Association Rule Mining on Streams

Association Rule Visualization

Association Rules

Associative Classification

Asymmetric Encryption

ATA

Atelic Data

Atomic Event

Atomicity

Attribute or Value Correspondence

Audible Sound

Audio

Audio Categorization

Audio Characterization

Audio Classification

Audio Content Analysis

Audio Feature Extraction

Audio Indexing

Audio Information Retrieval

Audio Metadata

Audio Parsing

Audio Recognition

Audio Representation

Audio Segmentation

Audit Trail

Auditing and Forensic Analysis

Auditory Scene Detection

Authentication

Authentication Trees

Authorization Administration Policies

Authorization Administration Privileges

Authorization Policy Languages

Authorization Verification
Auto-administration and Auto-Tuning of Database

Systems

Auto-Annotation

Automata Induction

Automatic Abstracting

Automatic Image Annotation

Automatic Induction

Automatic Language Induction

Automatic Wrapper Induction

Autonomic Database Replica Allocation

Autonomic Database Systems

Autonomic Query Processing

Autonomous Message Queuing Systems

Autonomous Replication

Autonomous Message-oriented Middleware

Average Precision

Average Precision at n

Average Precision Histogram

Average R-Precision

AXML

B+-Tree

Backup

Backup and Restore

Backup Copy

Backup Mechanisms

Backward Recovery

Bag Semantics

Bagging

Base-line Clock

Bayes Classifier

Bayesian Classification

BCNF

Belief Time

Benchmark

Biased Distribution

Bibliography

Bi-clustering

Bioinformatics

Biological Data Retrieval, Integration, and

Transformation

Biological Metadata Management

Biological Networks

Biological Pathways

Biological Query Languages

Biological Resource Discovery

Biological Sequences

Biomedical Data Annotation

Biomedical Data/Content Acquisition, Curation

Biomedical Image Data Types and Processing

List of Entries 3693
Biomedical Informatics

Biomedical Literature

Biomedical Scientific Textual Data Types and

Processing

Biostatistics and Data Analysis

BIR Model

Bit Vector Join

Bi-temporal Access Methods

Bitemporal Algebras

Bitemporal Data Model

Bi-Temporal Indexing

Bitemporal Interval

Bitemporal Relation

Bitmap Index

Bitmap-based Index Structures

Blind Signatures

Bloom Filter Join

Bloom Filters

Bloom Join

BM25

Boolean Model

Boosting

Bootstrap

Bootstrap Aggregating

Bootstrap Estimation

Bootstrap Sampling

Bottom-up Semantics

Boyce-Codd Normal Form

BP-Completeness

BPEL

BPEL4WS

BPMN

Bpref

Branch

Bridging

Browsing

Browsing in Digital Libraries

B-Tree

B-Tree Concurrency Control

B-Tree Locking

Buffer Management

Buffer Manager

Buffer Pool

Business Intelligence

Business Process Execution Language

Business Process Management

Business Process Model

Business Process Modeling

Business Process Modeling Notation
Business Process Monitoring

Business Process Optimization

Business Process Redesign

Business Process Reengineering

Cache Manager

Cache Performance

Cache-Aware Query Processing

Cache-Conscious Query Processing

Cache-Sensitive Query Processing

Calculus Expression

Calendar

Calendric System

Camera Break Detection

Capsule

Cardinal Direction Relationships

Cartesian Product

Cartography

CAS

CAS Query

Case Handling

Case Management

Case Report Forms

Cataloging

Cataloging in Digital Libraries

CDA

CDA R1

CDA R2

CDP

CDs

CDS

Cell Complex

Certain (and Possible) Answers

Chandra and Harel Complete Query Languages

Change Detection and Explanation on Streams

Change Detection on Streams

Channel-Based Publish/Subscribe

Chart

Chase

Checkpoint

Checksum and Cyclic Redundancy Check Mechanism

Choreography

Chronicle Recognition

Chronon

CIFS

Cipher

Citation

CLARA (Clustering LARge Applications)

CLARANS (Clustering Large Applications Based Upon

Randomized Search)

3694 List of Entries
Classification

Classification by Association Rule Analysis

Classification Learning

Classification in Streams

Classification Tree

Classification Trees

Classifier Combination

Client-Server DBMS

Clinical Classifications

Clinical Content Database

Clinical Content Registry

Clinical Content Repository

Clinical Data Acquisition, Storage and Management

Clinical Data and Information Models

Clinical Data Management Systems

Clinical Data Quality and Validation

Clinical Decision Support

Clinical Document Architecture

Clinical Event

Clinical Genetics

Clinical Genomics

Clinical Judgment

Clinical Knowledge Base

Clinical Knowledge Directory

Clinical Knowledge Management Repository

Clinical Knowledge Repository

Clinical Nomenclatures

Clinical Observation

Clinical Ontologies

Clinical Order

Clinical Research Chart

Clinical Result

Clinical Terminologies

Clinical Test

Clock

Closed Itemset Mining and Non-redundant

Association Rule Mining

Closest Pairs

Closest-Pair Query

Cloud Computing

Cluster and Distance Measure

Cluster Database Replication

Cluster Databases

Cluster Replication

Cluster Stability

Cluster Validation

Clustering

Clustering for Post Hoc Information Retrieval

Clustering Index
Clustering on Streams

Clustering Overview and Applications

Clustering Validity

Clustering with Constraints

CM Sketch

CMA

CO Query, Content-Only Query

CO+S Query

Co-clustering

CODASYL Data Model

Collaborative Software

Co-locations

Colored Nets

Column Segmentation

Committee-based Learning

Common Object Request Broker Architecture

Common Subexpression Elimination

Common Warehouse Metadata Interchange (CWMI)

Common Warehouse Metamodel

Communication Boundary of a DBMS

Compact Suffix Tries

Comparative Analysis

Comparative Visualization

Compensating Transactions

Computationally Complete Relational Query

Languages

Complex Event

Complex Event Processing

Complex Event Processing (CEP)

Compliance

Component Abstraction

Composed Services and WS-BPEL

Composite Event

Composite Event Query

Composite Web Applications

Composition

Comprehensions

Compressed and Searchable Data Format

Compressed Full-Text Indexing

Compressed Suffix Array

Compressed Suffix Tree

Compressing XML

Compression of Mobile Location Data

Computational Media Aesthetics

Computational Ontology

Computer Human Interaction (CHI)

Computer-based Physician Order Entry

Computer-based Provider Order Entry

Computer-Interpretable Formalism

List of Entries 3695
Computerized Order Entry (COE)

Computerized Physician Order Entry

Computerized Provider Order Entry

Concept Languages

Conceptual Data Model

Conceptual Image Data Model

Conceptual Model

Conceptual Modeling

Conceptual Modeling for Geographic Information

System

Conceptual Modeling for Spatio-Temporal

Applications

Conceptual Schema Design

Conceptual Schemas

Concurrency Control

Concurrency Control – Traditional Approaches

Concurrency Control and Recovery

Concurrency Control Manager

Condition Event Nets

Conditional Branching

Conditional Routing

Conditional Tables

Confidentiality Protection

Conflict Serializability

Conjunctive Query

Connection

Connectionist Model

Consistency in Peer-to-Peer Systems

Consistency Models For Replicated Data

Consistency Preservation

Consistent Facts

Consistent Query Answering

Constant Span

Constrained Frequent Itemset Mining

Constraint Databases

Constraint Query Languages

Constraint-Driven Database Repair

Content Delivery Networks

Content-and-Structure Query

Content-based Image Retrieval (CBIR)

Content-Based Publish/Subscribe

Content-based Retrieval

Content-Based Video Retrieval

Content-Only Query

Content-oriented XML Retrieval

Context

Context-aware Interfaces

Contextual Advertising

Contextualization
Continuous Backup

Continuous Data Feed

Continuous Data Protection

Continuous Monitoring of Spatial Queries

Continuous Multimedia Data Retrieval

Continuous Queries in Sensor Networks

Continuous Query

Continuous Query Languages

Continuous Query Processing Applications

Continuous Query Scheduling

ConTract

ConTracts

Contrast Pattern

Contrast Pattern Based Classification

Control Data

Control Flow Diagrams

Controlled Vocabularies

Controlling Overlap

Convertible Constraints

Cooperative Classification

Cooperative Content Distribution

Cooperative Storage Systems

Coordination

||-Coords

Copy Divergence

Copy Transparency

Copyright Issues in Databases

CORBA

Corpora

Corpus

Correctness Criteria Beyond Serializability

Correctness Criterion for Concurrent Executions

Correlated Data Collection

Correlation

Correlation Clustering

Cost Estimation

Count-Min Sketch

Coupling and De-coupling

Coverage

Covering Index

Covert Communication

CPU Cache

Crabbing

Crash Recovery

Crawler

Credulous Reasoning

Cross Product

Cross-language Cross-Language Mining and Retrieval

C217 Informational Retrieval

3696 List of Entries
Cross-Language Mining and Retrieval

Cross-language Text Mining

Cross-language Web Mining

Cross-lingual Information Retrieval

Cross-lingual Text Mining

Cross-media Information Retrieval

Cross-Modal Multimedia Information Retrieval

Cross-Validation

Cryptographic Hash Functions

C-Tables

Cube

Cube Implementations

Cube Materialization

Cube Precomputation

Curation

Current Date

Current Semantics

Current Time

Current Timestamp

Curse of Dimensionality

Cursor

CW Complex

CWM

Cyclic Redundancy Check (CRC)

DAC

Daplex

DAS

Data Acquisition

Data Acquisition and Dissemination in Sensor

Networks

Data Aggregation in Sensor Networks

Data Analysis

Data Anomalies

Data Broadcasting, Caching and Replication in Mobile

Computing

Data Cache

Data Cleaning

Data Collection

Data Compression in Sensor Networks

Data Confidentiality

Data Conflicts

Data Copy

Data Corruption

Data Deduplication

Data Dependency

Data Dictionary

Data Dissemination

Data Encryption

Data Errors
Data Estimation in Sensor Networks

Data Exchange

Data Expiration

Data Extraction

Data Flow Diagrams

Data Fusion

Data Fusion in Sensor Networks

Data Gathering

Data Grids

Data Imputation

Data Inconsistencies

Data Integration

Data Integration Architectures and Methodology for

the Life Sciences

Data Integration in Web Data Extraction System

Data Integrity Services

Data Lineage

Data Manipulation Language

Data Map

Data Mart

Data Migration

Data Mining

Data Mining in Bioinformatics

Data Mining in Computational Biology

Data Mining in Moving Objects Databases

Data Mining in Systems Biology

Data Mining Pipeline

Data Mining Process

Data Model Mapping

Data Organization

Data Partitioning

Data Pedigree

Data Perturbation

Data Privacy and Patient Consent

Data Problems

Data Profiling

Data Protection

Data Provenance

Data Quality

Data Quality Assessment

Data Quality Attributes

Data Quality Benchmarking

Data Quality Criteria

Data Quality Dimensions

Data Quality Measurement

Data Quality Models

Data Quality Problems

Data Quality Representations

Data Rank/Swapping

List of Entries 3697
Data Reconciliation

Data Reduction

Data Replication

Data Replication Protocols

Data Sampling

Data Sketch/Synopsis

Data Skew

Data Sorts

Data Standardization

Data Storage and Indexing in Sensor Networks

Data Stream

Data Stream Algorithm

Data Stream Management Architectures and

Prototypes

Data Stream Processing

Data Suppression

Data Swapping

Data Time

Data Tracking

Data Transformation

Data Translation

Data Types for Moving Objects

Data Types in Scientific Data Management

Data Types: Image, Video, Pixel, Voxel, Frame

Data Uncertainty Management in Sensor Networks

Data Utility Measures

Data Visualizations

Data Visualization

Data Warehouse

Data Warehouse Back Stage

Data Warehouse Design Methodology

Data Warehouse Life-Cycle and Design

Data Warehouse Maintenance, Evolution and

Versioning

Data Warehouse Indexing

Data Warehouse Integration

Data Warehouse Metadata

Data Warehouse Query Processing

Data Warehouse Refreshment

Data Warehouse Security

Data Warehousing for Clinical Research

Data Warehousing Systems: Foundations and

Architectures

Data, Text, and Web Mining in Healthcare

Database Adapter and Connector

Database Clustering Methods

Database Clusters

Database Connectivity

Database Constraints
Database Dependencies

Database Design

Database Design Recovery

Database Engine

Database Implementation

Database Interaction

Database Languages for Sensor Networks

Database Machine

Database Management System

Database Materialization

Database Middleware

Database Physical Layer

Database Profiling

Database Protection

Database Provisioning

Database Redocumentation

Database Repair

Database Replication

Database Reverse Engineering

Database Scheduling

Database Security

Database Socket

Database Storage Layer

Database Techniques to Improve Scientific Simulations

Database Trigger

Database Tuning using Combinatorial Search

Database Tuning using Online Algorithms

Database Tuning using Trade-off Elimination

Database Use in Science Applications

Databases for Biomedical Images

Dataguide

Datalog

Datalog Query Processing and Optimization

Datastream Distance

Datawarehouses Confidentiality

DBC

DBMS

DBMS Component

DBMS Interface

DBTG Data Model

DCE

DCOM

Deadlocks in Distributed Database Systems

Decay Models

Decentralized Data Integration System

Decision Rule Mining in Rough Set Theory

Decision Rules

Decision Support

Decision Tree

3698 List of Entries
Decision Tree Classification

Decision Trees

Declarative Networking

Declarative Overlay Networks

Deductive Data Mining using Granular Computing

Deductive Data Mining, Model for Automated Data

Mining

Deductive Databases

Dedup

Deduplication

Deduplication in Data Cleaning

Deep-Web Search

Degrees of Consistency

DEMs

Degrees of Cosistency

Dendrogram

Dense Index

Dense Pixel Displays

Density-based Clustering

Dependencies

Derived Event

Description Logics

Design for Data Quality

Design for Quality

Desktop Metaphor

Detail-in-Context

Deviation from Randomness

Dewey Decimal Classification

Dewey Decimal System

DHT

Diagram

Diagrammatic Representation

Difference

Digital Archives and Preservation

Digital Curation

Digital Elevation Models

Digital Image

Digital Libraries

Digital Rights Management

Digital Signatures

Digital Surface Model

Digital Terrain Model (DTM)

Digital Video Retrieval

Digital Video Search

Dimension

Dimensional Modeling

Dimensionality Curse

Dimensionality Reduction

Dimension Reduction Techniques for Clustering
Dimension-Extended Topological Relationships

Direct Attached Storage

Direct Manipulation

Direct Manipulation Interfaces

Directional Relationships

Dirichlet Tessellation

Disaster Recovery

Disclosure Risk

DISCO

Discounted Cumulated Gain

Discovery

Discrete Wavelet Transform and Wavelet Synopses

Discretionary Access Control

Disk

Disk Array

Disk Drive

Disk Power Saving

Disk Process

Disk-based Model

Distance between Streams

Distance Indexing

Distance Space

Distance-preserving Mapping

Distillation

Distortion Techniques

Distributed Architecture

Distributed Commit Protocol

Distributed Component Object Model

Distributed Computing Environment

Distributed Concurrency Control

Distributed Data Streams

Distributed Database Design

Distributed Database Management System (DDBMS)

Distributed Database Systems

Distributed Databases

Distributed DBMS

Distributed Deadlock Management

Distributed Hash Table

Distributed Join

Distributed Query

Distributed Query Optimization

Distributed Query Processing

Distributed Recovery

Distributed Sensor Fusion

Distributed Source Coding

Distributed Spatial Databases

Distributed Storage Systems

Distributed Transaction Management

Divergence Control

List of Entries 3699
Divergence from Randomness Models

DNA Sequences

Document

Document Clustering

Document Databases

Document Field

Document Formats

Document Identifier

Document Index and Retrieval

Document Length Normalization

Document Links and Hyperlinks

Document Management

Document Path Query

Document Repositories

Document Representations (Inclusive Native and

Relational)

Document Retrieval

Document Segmentation

Document Summarization

Document Term Weighting

Document Visualization

Documents

Domain Relational Calculus

Downward Closure Property

DRM

Dublin Core

Dump

Duplicate Detection

Duplicate Semantics

Duplication

Durability

Duration

DVDs

DW

Dynamic Graphics

Dynamic Integrity Constraints

Dynamic Taxonomies

Dynamic Web Pages

eAccessibility

EAI

EC Transactions

ECA Rule Action

ECA Rule Condition

ECA Rules

ECM

e-Commerce Transactions

Eddies

Edge Detection

eDictionary
eEncyclopedia

EERM, HERM

Effectiveness Involving Multiple Queries

EF-Games

egd

EHR

Ehrenfeucht-Fraı̈ssé Games

Ehrenfeucht Games

Electronic Commerce Transactions

Electronic Data Capture

Electronic Dictionary

Electronic Encyclopedia

Electronic Health Record

Electronic Ink Indexing

Electronic Libraries

Electronic Newspapers

Eleven Point Precision-recall Curve

Embedded Networked Sensing

Emergent Semantics

Emerging Pattern Based Classification

Emerging Patterns

Encryption

End User

Ensemble

Enterprise Application Integration

Enterprise Content Management

Enterprise Information Integration

Enterprise Service Bus

Enterprise Terminology Services

Entity Relationship Model

Entity Resolution

Entity-Relationship Model

EPN

Equality Query

Equality Selection

Equality-Generating Dependencies

ER Model

ERM

ESB

Escrow Transactions

e-Services

ETL

ETL Process

ETL Tool

ETL Using Web Data Extraction Techniques

European Law in Databases

Evaluation Forum

Evaluation in Information Retrieval

Evaluation Measures

3700 List of Entries
Evaluation Metrics for Structured Text Retrieval

Evaluation of Fuzzy Queries Over Multimedia Systems

Evaluation of Relational Operators

Evaluation of XML Retrieval Effectiveness

Event

Event and Pattern Detection over Streams

Event Broker

Event Causality

Event Causality Graph

Event Channel

Event Cloud

Event Composition

Event Composition (Partial Overlap)

Event Connection

Event Consumer

Event Control

Event Declaration

Event Definition

Event Detection

Event Driven Architecture

Event Driven Service-oriented Architecture

Event Emitter

Event Extraction

Event Flow

Event in Active Databases

Event in Temporal Databases

Event Lineage

Event Mapping

Event Network Edge

Event Pathway

Event Pattern Detection

Event Pedigree

Event Pipe

Event Prediction

Event Processing

Event Processing Agent

Event Processing Component

Event Processing Mediator

Event Processing Network

Event Processing Systems

Event Producer

Event Relation

Event Service

Event Sink

Event Source

Event Specification

Event Stream

Event Stream Processing

Event Stream Processing (ESP)
Event Topic

Event Trace Analysis

Event Transformation

Event Uncertainty

Event-Condition-Action Rules

Event-Driven Business Process Management

Eventual Consistency

Evidence Based Medicine

Evidence Based Practice

Evolutionary Algorithms

Evolutionary Computation

Evolutionary Semantics

Exactly Once Execution

Executable Knowledge

Execution Skew

Exhaustivity

Existence Time

Explicit Event

Exploratory Data Analysis

Exploring

Expressive Power of Query Languages

Extended Entity-Relationship Model

Extended Functional Dependencies

Extended Relations

Extended Transaction Models

Extended Transaction Models and the ACTA

Framework

Extendible Hashing

Extensible Markup Language

eXtensible Stylesheet Language

eXtensible Stylesheet Language Transformations

Extensional Relational Database (ERDB)

External Hashing

Extraction, Transformation, and Loading

Extrinsic Time

Faceted Browsing

Faceted Classifications

Faceted Search

Facility-Location Problem

Fact-Oriented Modeling

Failure Handling

False Negative Rate

Fault Tolerant Applications

Fault-Tolerance

Fault-Tolerance and High Availability in Data Stream

Management Systems

FCP

FD

Feature Extraction for Content-Based Image Retrieval

List of Entries 3701
Feature Selection for Clustering

Feature-Based 3D Object Retrieval

Federated Database

Federated Database Systems

Federated Search

Federated Search Engine

Feedback Systems

Field-Based Information Retrieval Models

Field-Based Spatial Modeling

File Compression

File Format

Filter/Refinement Query Processing

Finding of Observation

Finiteness

First-Order Logic: Semantics

First-Order Logic: Syntax

First-Order Query

Fisheye Views

Fixed Time Span

Flajolet-Martin Algorithm

Flajolet-Martin Sketch

Flake

Flash

Flex Transactions

Flexible Metric Computation

Flexible Transactions

Flowcharts

FM Sketch

FM Synopsis

F-Measure

Focused Retrieval

Focused Web Crawling

Focus-Plus-Context

FOL

FOL Modeling of Integrity Constraints

(Dependencies)

Forever

Form

Forms-based Interfaces

Fourth Normal Form

FQL

Fractal

Frequency Moments

Frequent Concepts

Frequent Elements

Frequent Graph Patterns

Frequent Items on Streams

Frequent Itemset Mining with Constraints

Frequent Itemsets and Association Rules
Frequent Partial Orders

Frequent Pattern Mining with Constraints

Frequent Patterns

Frequent Set Mining with Constraints

Frequent Subsequences

Freshness Control

Full Text Inverted Index

Fully-Automatic Web Data Extraction

Fully Temporal Relation

Functional Data Model

Functional Dependencies for Semi-Structured Data

Functional Dependency

Functional Query Language

Fuzzy Information Retrieval

Fuzzy MCDM

Fuzzy Models

Fuzzy Multicriteria Decision Making

Fuzzy Relation

Fuzzy Set

Fuzzy Set Approach

Fuzzy Time

Fuzzy/Linguistic IF-THEN Rules and Linguistic

Descriptions

Gaifman-Locality

Gazetteers

Gene Expression Arrays

Generalisation

Generalization of ACID Properties

Generalized Search Tree

Generative Models

Genetic Algorithms

Geographical Information Retrieval

Geographic Information Services

Geographic Information System

Geographic Information

Geographic Web Search

Geographical Analysis

Geographical Data Analysis

Geographical Databases

Geographical Metadata

Geography Markup Language

Geometric Data Types

Geometric Mean Average Precision

Geometric Stream Mining

GEO-RBAC Model

Georeferencing

Geoscientific Information System

Geospatial Information System

Geospatial Metadata

3702 List of Entries
Geospatial Referencing

Geo-Targeted Web Search

GIS

GIST

GiST

Global Query Optimization

Glyphs

GMAP

Google Bombing

Grammar Induction

Grammar Inference

Grammatical Induction

Grammatical Inference

Graph

Graph

Graph Data Management in Scientific Applications

Graph Data Structure

Graph Database

Graph Database Mining

Graph Drawing

Graph Embedding

Graph Layout

Graph Management in the Life Sciences

Graph Mining on Streams

Graph Streams

Graph Theory

Graph-based Clustering

Graphic

Graphic Design

Graphic Representation of Data

Graphical Displays of Many Variables

Graphical Interaction

Graphical Representation

Graphical User Interfaces

Graphics

Graphics for Continuous Data

Graphics for Discrete Data

Grid and Workflows

Grid File

Grid File (and Family)

Grid Workflow

Group Difference

Grouping

GUID

GUIs for Web Data Extraction

Handhelds Interfaces

Handwritten Text

Hanf-Locality

Hard Disk
Hardware-Conscious Database System

Harmonic Mean of Recall and Precision

Hash File

Hash Filter

Hash Filter Join

Hash Functions

Hash Join

Hash Trees

Hash-based Indexing

Hater’s Model

HCC

HCI

HCM

Health Informatics

Healthcare Informatics

Heat Map

Heavy Hitters

Heterogeneous Distributed Database Systems

Heterogeneously Distributed Data

HHH

Hidden-Web Search

Hierarchial Clustering

Hierarchical Data Model

Hierarchical Data Organization

Hierarchical Data Summarization

Hierarchical Entity-Relationship Model

Hierarchical Faceted Metadata

Hierarchical Graph Layout

Hierarchical Heavy Hitter Mining on Streams

Hierarchical Memory System

Hierarchical Regular-Decomposition Structures

Hierarchical Spatial Indexes

Hierarchical Storage Management

Hierarchical Visualization

Hierarchies

Hierarchy

High Dimensional Indexing

High-Dimensional Clustering

Higher-Order Entity-Relationship Model

Histogram

Histograms on Streams

Historical Algebras

Historical Data Model

Historical Data Models

Historical Database

Historical Query Languages

Historical Spatio-Temporal Access Methods

History

History in Temporal Databases

List of Entries 3703
Homogeneous Distributed Database Systems

Homogeneously Distributed Data

Homomorphic Encryption

Horizontal Fragmentation

Horizontally Partitioned Data

Horn Clause Query

Hot Items

Hotspots

HSM

HTML Fragment

Human Centered 38 H Human-Computer Interaction

Computing

Human Factors

Human Interface

Human-centered Computing: Application to

Multimedia

Human-Centered Multimedia

Human-Computer Interaction

Hypercube

Hypermedia

Hypermedia Metadata

Hypertexts

Hypothesis Generation and Exploration from

Biological Resources

I/O cache

I/O Model of Computation

Icon

Iconic Displays

Iconographics

Icons

Identity Disclosure

Identity-based Access Control

IDF

IF

ILM

Image

Image Classification

Image Compression

Image Content

Image Content Modeling

Image Data Model

Image Database

Image Distance

Image Indexing

Image Management for Biological Data

Image Management for Life Sciences

Image Metadata

Image Query Processing

Image Querying
Image Representation

Image Similarity

Image Retrieval

Image Retrieval and Relevance Feedback

Image Retrieval System

Image Segmentation

Image Standards

Image/Video/Music Search

Immersive Data Mining

Implementation Abstraction

Implication of Constraints

Implications of Genomics for Clinical Informatics

Implicit Event

Imprecise Data

Imprecise Spatial Queries

Imprecise Time

Imputed Data

IMS Data Model

In Silico Experiment

Incoherency Bounds

Incomplete Information

Inconsistent Databases

Incremental Computation of Queries

Incremental Crawling

Incremental Maintenance of Views with Aggregates

Incremental k-Distance Join

Incremental Maintenance of Recursive Views

Incremental View Maintenance

Indefinite Information

Index Creation and File Structures

Index Join

Index Loop Join

Index Nested Loop Join

Index Sequential Access Method (ISAM)

Index Structures for Biological Sequences

Index Tuning

Indexed Sequential Access Method

Indexed Sequential File

Indexing

Indexing and Similarity Search

Indexing Compressed Text

Indexing for Online Function Approximation

Indexing for Similarity Search

Indexing Granularity

Indexing Historical Spatio-Temporal Data

Indexing Metric Spaces

Indexing of Data Warehouses

Indexing of the Current and Near-Future Positions of

Moving Objects

3704 List of Entries
Indexing the Past

Indexing the Web

Indexing Units

Individual Data

Individually Identifiable Data

INEX

Inference Control in Statistical Databases

Infinity

Information

Information Browsing

Information Displays

Information Extraction

Information Filtering

Information Foraging

Information Graphic

Information Hiding

Information Integration

Information Integration Techniques for Scientific Data

Information Lifecycle Management

Information Loss Measures

Information Navigation

Information Quality: Managing Information as a

Product

Information Quality and Decision Making

Information Quality Assessment

Information Quality Policy and Strategy

Information Repository

Information Retrieval

Information Retrieval Models

Information Retrieval Models/Metrics/Operations

Information Retrieval Operations

Information Retrieval Processing

Information Seeking

Information Visualization

Information visualization on hierarchies

Information Visualization on Networks

INitiative for the Evaluation of XML Retrieval

Initiator

In-Memory DBMS

In-Network Aggregation

In-Network Query Processing

Instance Identification

Instance-Completeness

Instant

Instant Relation

Instruction Cache

Integrated DB&IR Semi-Structured Text Retrieval

Integration of Rules and Ontologies

Intellectual Property
Intelligent Disks

Intelligent Storage

Intelligent Storage Systems

Interaction Design

Interactive Capture

Interactive Information Exploration

Interactive Layout

Interactive Visual Exploration of Multidimensional

Data

Interface

Interface Engines in Healthcare

Internet Transactions

Interoperability in Data Warehouses

Interoperation of NLP-based Systems with Clinical

Databases

Inter-Operator Parallelism

Inter-Query Parallelism

Interval-based Temporal Models

Intra-operator Parallelism

Intra-Query Parallelism

Intrinsic Time

Intrusion Detection Technology

Inverse Document Frequency

Inverse Element Frequency

Inverted Files

Inverted Index

Inverted Indexes

IP Storage

ISAM File

iSCSI

ISO 19136

Isolation

Iteration

Iterator

J2EE

Java Annotations

Java Application Server

Java Database Connectivity

Java EE

Java Enterprise Edition

Java Metadata Facility

JD

JDBC

Join

Join Dependency

Join Index

Join Indices

Join Order

Join Processing

List of Entries 3705
Join Sequence

JSR 175

k-Anonymity

k-Closest Pair Join

k-Closest Pair Query

KDD Pipeline

KDD Process

k-Distance Join

Key

Key Range Locking

Key Value Locking

KL-ONE Style Languages

K-Means and K-Medoids

K-Means Partition

k-Nearest Neighbor Classification

k-NN Classification

kNN Query

Knowledge Creation

Knowledge Discovery from Biological Resources

Knowledge Discovery from Data

Knowledge Discovery in Streams

Knowledge Discovery in Text (KDT)

Knowledge Management

Knowledge Organization Systems

Knowledge-based Systems

Koch Snowflake

L1 Cache

L2 Cache

L3 Cache

Language Models

Languages for Web Data Extraction

Large Itemsets

Latch Coupling

Latching

Latent Semantic Indexing

Layer Algebra

Layered Architecture

Layered Transactions

Lazy Replication

LBS

Lévy Skew a-Stable Distribution

Learning Distance Measures

Learning in Streams

Length Normalization

Level-of-Detail (LOD) Terrain Modeling

Levelwise Search

Lexical Affinities

Lexical Analysis of Textual Data

Lexical Processing
Lexical Relations

Library of Congress METS

License

Licensing and Contracting Issues in Databases

Lifespan

Life-span (in Part)

Lightweight Ontologies

Lineage

Linear Hashing

Linear Regression

Linearization

Link Analysis

Link Database

Linked Brushing

Linked Views

Linking and Brushing

List

List Comprehension

Literature-based Discovery from Biological Resources

Load Balancing

Load Balancing in Peer-to-Peer Overlay Networks

Load Shedding

LOC METS

Local Web Search

Localization Abstraction

Locality

Locality of Queries

Locality of Reference

Locality Principle

Locality-Preserving Mapping

Location Prediction

Location Services

Location-Based Services

Lock Coupling

Lock Manager

Lock Tuning

Locking Granularity and Lock Types

Locking Protocol

Log Component

Log Manager

Logging and Recovery

Logging/Recovery Subsystem

Logic of Time

Logical Database Design: from Conceptual to Logical

Schema

Logical Foundations of Web Data Extraction

Logical Models of Information Retrieval

Logical Query Processing and Optimization

Logical Schema Design

3706 List of Entries
Logical Story Unit Segmentation

Logical Structure

Logical Time

Logical Unit Number

Logical Unit Number Mapping

Logical Volume

Logical Volume Manager

Logical Window

Log-Linear Regression

Long Running Queries

Longitudinal Health Record

Looking Over/Through

Loop

Loop Join

Loose Coupling

Lossless Data Compression

LoT-RBAC

Low Coupling

Lp Distances

Lp Norms

LSID

LUN

LUN Mapping

LUN Masking

LVM

MAC

Machine Learning in Bioinformatics

Machine Learning in Computational Biology

Machine Learning in Systems Biology

Machine-Readable Dictionary (MRD)

Macro

Magnetic Disk

Maid

Main Memory

Main Memory DBMS

Maintenance of Materialized Views with Outer-Joins

Maintenance of Recursive Views

Managing Compressed Structured Text

Mandatory Access Control

MANET Databases

Manmachine Interaction (Obsolete)

Many Sorted Algebra

MAP

Map Algebra

Map Matching

Mapping

Mapping Composition

Mapping Engines

Markup Language
MashUp

Massive Array of Idle Disks

Matching

Materialized Query Tables

Materialized View Maintenance

Materialized View Redefinition

Materialized Views

Matrix

Matrix Masking

Maximal Itemset Mining

Max-Pattern Mining

Maybe Answer

MDIS

MDR

MDS

Mean Average Precision

Mean Reciprocal Rank

Mean Reciprocal Rank of the First Relevant Document

Measure

Media Recovery

Media Semantics

Median

Mediation

Mediation and Adaptation

Medical Genetics

MEDLINE/ PubMed

Membership Query

Memory Consistency

Memory Hierarchy

Memory Locality

Merge Join

Merge-purge

Merkle Hash Trees

Merkle Trees

Message Authentication Codes

Message Integrity Codes

Message Queuing Systems

Message-Oriented Middleware (MOM)

Message-oriented Systems

Messaging Engines

Messaging Systems

Meta Data Base

Metadata Interchange Specification

Meta Data Management System

Meta Data Manager

Meta Data Registry

Meta Data Repository

Meta Model

Meta Object Facility

List of Entries 3707
Metadata

Metadata Encoding and Transmission Standard

Metadata Registry, ISO/IEC 11179

Metadata Repository

Meta-Knowledge

Metamodel

Metaphor

Metasearch Engines

Metric Space

Microdata

Microaggregation

Microbenchmark

Microdata Rounding

Middleware Support for Database Replication and

Caching

Middleware Support for Precise Failure Semantics

Mini

Minimal-change Integrity Maintenance

Mining of Chemical Data

Mixed Evidence

Mixed-Media

MM Indexing

MMDBMS

Mobile Ad hoc Network Databases

Mobile Database

Mobile Interfaces

Mobile Map Services

Mobile Sensor Network Data Management

Mobile Wireless Sensor Network Data Management

Model Management

Model-based Querying in Sensor Networks

Model-driven Data Acquisition

Module

MOF

Molecular Interaction Graphs

Moment

Monitoring

Monitoring of Real-Time Logic Expressions

Monotone Constraints

Monotonic Constraints

Monotonicity Property

Motion Graphics

Moving Object

Moving Object Trajectories

Moving Objects Databases and Tracking

Moving Objects Interpolation

Moving Span

MRR

MRR1
MSN Data Management

Multi-Database

Multidatabases

Multidimensional Clustering

Multidimensional Data Formats

Multidimensional Database Management System

Multi-dimensional Mapping

Multidimensional Modeling

Multidimensional Scaling

Multidimensional Visualization

Multi-Granularity Modeling

Multi-Layered Architecture

Multi-Level Recovery and the ARIES Algorithm

Multilevel Secure Database Management System

Multilevel Security

Multilevel Transactions and Object-Model

Transactions

Multi-Level Visualization

Multilingual Information Retrieval

Multi-Master System

Multimedia

Multimedia Content Enrichment

Multimedia Data

Multimedia Data Buffering

Multimedia Data Indexing

Multimedia Data Querying

Multimedia Data Storage

Multimedia Databases

Multimedia Information Discovery

Multimedia Information Retrieval

Multimedia Information Retrieval Model

Multimedia Metadata

Multimedia Presentation Databases

Multimedia Resource Scheduling

Multimedia Retrieval Evaluation

Multimodal Data

Multimodal Databases

Multi-modal Information Retrieval

Multimodal Interfaces

Multi-Pathing

Multiple Classifier System

Multiple Imputation

Multiple Linked Plots

Multiple Query Optimization

Multiple Representation Modeling

Multiplicity

Multiprocessor Data Placement

Multiprocessor Database Management

Multiprocessor Query Processing

3708 List of Entries
Multi-Query Optimization

Multi-Resolution

Multi-Resolution Terrain Modeling

Multi-scale

Multiscale Views

Multiscale Interface

Multiset Semantics

Multi-Step Query Processing

Multi-Tier Architecture

Multivalued Dependency

Multivariate Data Visualization

Multivariate Visualization Methods

Multi-Version Concurrency Control

Multi-Version Concurrency Control Algorithms

Multi-Version Database

Multi-Version Databases

Multi-version Serializability and Concurrency Control

Music Metadata

Music Retrieval

MVD

Naive Tables

Name Matching

Namelessness

Narrowed Extended XPath I

NAS

NAS Servers

NASD

Natural Human-Computer Interaction (NHCI)

Natural Interaction

Natural Language Generation (NLG)

Navigation System Interfaces

Near-Duplicate Video Retrieval

Nearest Neighbor Classification

Nearest Neighbor Query

Nearest Neighbor Query in Spatio-temporal Databases

Negative Dictionary

Nested Loop Join

Nested Transaction Models

.NET Remoting

Network Attached Secure Device

Network Attached Storage

Network Data Model

Network Database

Network Topology

Neural Networks

New Media Metadata

NEXI

NFS

NF-SS
N-Gram Models

NIAM

NN Classification

NN Query

NN Search

Node

Noise Addition

Non-Clustering Index

Non-Dense Index

Nonidentifiability

Nonlinear Magnification

Non-Metric Temporal Reasoning

Nonparametric Data Reduction Techniques

Non-Perturbative Masking

Non-Perturbative Masking Methods

Non-Pipelineable Operator

Nonsequenced Semantics

Nontemporal Semantics

Non-Uniform Distribution

Normal Form ORA-SS Schema Diagrams

Normal Forms and Normalization

Normalized Discounted Cumulated Gain (nDCG)

Normalizing ORA-SS Diagrams

Now in Temporal Databases

n-Tier Architecture

Null Values

Numeric Association Rules

Numerical Fact

Nymity

OASIS

Object Constraint Language

Object Data Models

Object Detection and Recognition

Object Flow Diagrams

Object Identification

Object Identification

Object Identifier

Object Identity

Object Labeling

Object Monitor

Object Query Language

Object Recognition

Object Reference

Object Relationship Attribute Data Model for

Semi-structured Data

Object Request Broker

Object-based Storage Device

Object-Role Modeling

OCL

List of Entries 3709
ODB (Object Database)

ODBC

Office Automation

Oid

OKAPI Retrieval Function

OLAP

On-Disk Security

One-Copy-Serializability

One-Pass Algorithm

One-Way Hash Functions

Online Advertising

On-Line Analytical Processing

Online Handwriting

Online Recovery

Online Recovery in Parallel Database Systems

Ontological Engineering

Ontologies

Ontologies and Life Science Data Management

Ontology

Ontology Acquisition

Ontology Argumentation

Ontology Elicitation

Ontology Engineering

Ontology Learning

Ontology Negotiation

Ontology Query Languages

Ontology Visual Querying

On-Wire Security

OODB (Object-Oriented Database)

Open Database Connectivity

Open Nested Transaction Models

Open Nested Transactions

Operating Characteristic

Operator-Level Parallelism

Operator Scheduling

Operator Tree

Opinion Mining

Optical Storage

Optimistic Replication

Optimistic Replication and Resolution

Optimization and Tuning in Data Warehouses

Optimization of DAG-Structured Query Evaluation

Plans

Optimization of Parallel Query Plans

OQL

ORA-SS Data Model

ORA-SS Schema Diagram

Orchestration

ORDB (Object-Relational Database)
Order Item

Order Statistics

Ordering

Orientation Relationships

Oriented Clustering

Origin

OR-Join

OR-Split

OSD

OSQL

Overlay Network

OWL: Web Ontology Language

P/FDM

P@n

P2P Database

Page Cache

Page Locking

Page Model

Page Representations

Paging in Web Search Engines

PAM (Partitioning Around Medoids)

Parallel and Distributed Data Warehouses

Parallel Axes

Parallel Coordinates

Parallel Coordinates Plot (PCP)

Parallel Coordinates System (PCS)

Parallel Data Placement

Parallel Database

Parallel Database Management

Parallel Distributed Processing

Parallel Hash Join, Parallel Merge Join, Parallel Nested

Loops Join

Parallel Join Algorithms

Parallel Query Execution Algorithms

Parallel Query Optimization

Parallel Query Processing

Parallel SCSI

Parameterized Complexity of Queries

Parametric Data Reduction Techniques

Partial Replication

Partitioned Query Execution

Partitioning

Passage Retrieval

Path Functional Dependencies

Path Index

Path Query

Pattern Based Clustering

Pattern Discovery

Pattern-Growth Methods

3710 List of Entries
PCA

PDMS

Pedigree

Peer Data Management

Peer Data Management System

Peer Database Management

Peer to Peer Network

Peer to Peer Overlay Networks: Structure, Routing

and Maintenance

Peer-To-Peer Content Distribution

Peer-to-Peer Data Integration

Peer-to-peer Database

Peer-to-peer File Sharing

Peer-to-peer Network

Peer-to-peer Overlay

Peer-to-Peer Publish-Subscribe Systems

Peer-to-Peer Storage

Peer-to-Peer System

Peer-to-Peer Web Search

Performance Analysis of Transaction Processing

Systems

Performance Benchmark

Performance Measures

Performance Metrics

Performance Monitoring Tools

Period-Stamped Temporal Models

Persistence

Persistent Applications

Persistent Archives

Personal Data

Personalized Interfaces

Personalized Search

Personalized Web

Personalized Web Search

Personally Identifiable Data

Perturbation Techniques

Perusal

Pessimistic Scheduler

Petri Nets

Photograph

Physical Clock

Physical Database Design for Relational Databases

Physical Layer Tuning

Physical Time

Physical Volume

Physical Window = Tuple-based Windows

Physician Order Entry

Pictorial Metadata

Picture
Picture Metadata

Piecewise-Constant Approximations

Pipeline

Pipelined and Independent Parallelism

Pipelining

PiT Copy

Pixed Oriented Visualiyation Techniques

Pixel Classification

Place Names

Place Transition Nets

Player

Plot

Plots for Qualitative Information

Point-based Temporal Models

Point-based Temporal Data

Point-in-Time Copy

Point-Stamped Temporal Models

Point-versus Period-based Semantics

Polyhedron

Polytransactions

Port Binding

Position Snapping

Positive Infinity

Positive Predictive Value

Positive Relational Algebra

Possible Answers

Postings File

Post-Randomization Method

PRAM

Precision

Precision and Recall

Precision at n

Precision-Oriented Effectiveness Measures

Predicate Calculus

Predicate Logic

Prediction of Event Occurrence

Prediction Regarding Future Events

Prefix Tree

Presenting Structured Text Retrieval Results

Preservation

Preserving Database Consistency

Preview

Primary Index

Primary Memory

Primitive Event

Principal Component Analysis

Principle of Locality

Privacy

Privacy Measures

List of Entries 3711
Privacy Metrics

Privacy Policies and Preferences

Privacy Protection

Privacy-Enhancing Technologies

PETs

Privacy-Preserving Data Mining

Privacy-Preserving Spatial Queries

Probabilistic Analysis

Probabilistic Data

Probabilistic Databases

Probabilistic Model

Probabilistic Model of Indexing

Probabilistic Querying

Probabilistic Retrieval Models and Binary

Independence Retrieval (BIR) Model

Probabilistic Spatial Queries

Probabilistic Temporal Databases

Probability Ranking Principle

Probability Smoothing

Procedure Order

Procedure Request

Process Composition

Process Definition

Process Evolution

Process Life Cycle

Process Management

Process Mining

Process Optimization

Process Semantics

Process State Model

Process Structure of a DBMS

Processing Overlaps

Processing Structural Constraints

Processor Cache

Production-based Approach to Media Analysis

Projected Clustering

Projection

Projection Index

Propagation-based Structured Text Retrieval

Protein Sequence

Protein-Protein Interaction Networks

Provenance

Provenance Metadata

Provenance in Scientific Databases

Proximity

PRP

p-Sensitive k-Anonymity

Pseudonymity

Public-Key Encryption
Publish/Subscribe

Publish/Subscribe over Streams

Punctuations

Push Transactions

Push/Pull Delivery

QE, Query Enhancement

QoS-Based Web Services Composition

Quadtree Variations

Quadtrees (and Family)

Qualitative Relations between Time Intervals

Qualitative Temporal Constraints between Time

Intervals

Qualitative Temporal Reasoning

Quality and Trust of Information Content and

Credentialing

Quality Assessment

Quality of Data Warehouses

Quantiles on Streams

Quantitative Association Rules

QUEL

Query Answering in Analytical Domains

Query Assistance

Query by Example

Query by Humming

Query Compilation

Query Compilation and Execution

Query Containment

Query Engine

Query Evaluation

Query Evaluation Plan

Query Evaluation Techniques for Multidimensional

Data

Query Execution Engine

Query Execution in Star/ Snowflake Schemas

Query Execution Plan

Query Expansion

Query Expansion for Information Retrieval

Query Expansion Models

Query Language

Query Languages and Evaluation Techniques for

Biological Sequence Data

Query Languages for the Life Sciences

Query Load Balancing in Parallel Database Systems

Query Mapping

Query Optimization

Query Optimization (in Relational Databases)

Query Optimization for Multidimensional Systems

Query Optimization in Distributed Database Systems

Query Optimization in Sensor Networks

3712 List of Entries
Query Parallelism

Query Plan

Query Planning and Execution

Query Point Movement Techniques for Content-Based

Image Retrieval

Query Processing

Query Processing (in Relational Databases)

Query Processing and Optimization in Object

Relational Databases

Query Processing in Data Warehouses

Query Processing in Deductive Databases

Query Processor

Query Reformulation

Query Rewriting

Query Rewriting Using Views

Query Suggestion

Query Transformations

Query Translation

Query Tree

Query Tuning

Querying DNA Sequences

Querying Protein Sequences

Querying Semi-Structured Data

Queuing Analysis

Queuing Mechanism

Queuing Systems

Quorum Systems

RAID

Random Access Memory (RAM)

Randomization Methods to Ensure Data Privacy

Range Partitioning

Range Query

Range Search

Range Selection

Rank Swapping

Ranked Multimedia Retrieval

Ranked XML Processing

Ranking

Raster Data Management

Raster Data Management and Multi-Dimensional

Arrays

Raster Databases

RBAC

RBAC Standard

RDF

Reactive Rules

Read/Write Model

Real and Synthetic Test Datasets

Real-Time Transaction Processing
Real-World Time

Reasoning with Qualitative Temporal Constraints

Recall

Receiver Operating Characteristic

Recodings

Reconciliation-based Data Replication

Record Extraction

Record Linkage

Record Matching

Records Management

Recovery Guarantees

Recovery in Distributed Commit Protocols

Recovery in Distributed Database Systems

Recovery in Replicated Database Systems

Recovery Manager

Recursive Query Evaluation

Recursive View Maintenance

Redo

Redundant Arrays of Independent Disks

Reference

Reference Collections

Reference Knowledge

Reference Reconciliation

Refinement

Region Algebra

Region Segmentation

Registration Time

Regulatory Compliance in Data Management

Re-identification

Re-Identification Risk

Relational Algebra

Relational Algebra for XML

Relational Calculus

Relational Database

Relational Integrity Constraints

Relational Model

Relational Query Processor

Relation-Completeness

Relations with Marked Nulls

Relationship of Reliance

Relationships in Structured Text Retrieval

Relative Operating Characteristic

Relative Time

Relevance

Relevance Evaluation of IR Systems

Relevance Feedback

Relevance Feedback for Content-Based Information

Retrieval

Relevance Feedback for Text Retrieval

List of Entries 3713
Relevance Propagation

Remote Method Invocation

Removing Overlap

Rendezvous

Replica and Concurrency Control

Replica Consistency

Replica Control

Replica Freshness

Replicated Database Concurrency Control

Replication

Replication Based on Group Communication

Replication for High Availability

Replication for Scalability

Replication in Multi-Tier Architectures

Report Writing

Representation

Reputation

Reputation and Trust

Request Broker

Residuated Lattice

Resource Allocation Problems in Spatial Databases

Resource Description Framework

Resource Description Framework (RDF) Schema

(RDFS)

Resource Identifier

Resource Scheduling

Restart Processing

Restricted Data

Result Display

Result Overview

Result Ranking

Retrieval Models

Retrieval Models for Text Databases

Retrospective Event Processing

Reverse Nearest Neighbor Query

Reverse Nearest Neighbor Search

RF

Rich Media

Right-Time Data Warehousing

Risk-Utility Tradeoff

Rewriting Queries using Views

RMI

RNN Query

Road Network Databases

Road Networks

Road Vector Data

Robot

ROC

Rocchio’s Formula
Role Based Access Control

Role Based Security

Rollback

Rollback Operator

Rotation

Rotation Estimation

Rough Computing

Rough Set Theory (RST)

Rough Set Theory, Granular Computing on Partition

Rounding

Row-Level Locking

Row-Versioning

R-Precision

RSJ Model

Rtree

R-Tree (and Family)

Rule Bases

Rule-based Classification

S@n

Safety and Domain Independence

Sagas

Samba

Sampling

Sampling Techniques for Statistical Databases

SAN

SAN File System

SARBAC

SAS

SATA

SBQL

SCA

Scalable Classification Tree Construction

Scalable Database Replication

Scalable Decision Support Systems High Performance

Data Warehousing

Scalable Decision Tree Construction

Scalable Replication

Scalable Top-Down Decision Tree Construction

Scale Out

Scale-Out Databases

Scale-Up Databases

Scaling

Scanning

Scene Change Detection

Scheduler

Scheduling

Scheduling Policies

Scheduling Strategies for Data Stream Processing

Schema Evolution

3714 List of Entries
Schema Evolution in Process Management Systems

Schema Evolution in Workflow Management Systems

Schema Mapping

Schema Mapping Composition

Schema Matching

Schema Normalization

Schema Tuning

Schema Versioning

Scientific Databases

Scientific Knowledge Bases

Scientific Medicine

Scientific Query Languages

Scientific Visualization

Scientific Workflows

Score Propagation

Screen Scraper

Screen Scraping

Screen Wrapper

SCSI Target

SDI, Selective Dissemination of Information

Search Advertising

Search Engine Caching and Prefetching

SDC Score

Search Engine Metrics

Search Engine Query Result Caching

Search Ranking

Searching Compressed XML

Searching Digital Libraries

Second Normal Form (2NF)

Secondary Index

Secret-Key Encryption

Secure Data Outsourcing

Secure Database Design

Secure Database Development

Secure Database Systems

Secure Datawarehouses

Secure DBMS Development

Secure Hardware

Secure Multiparty Computation Methods

Secure Third-Party Data Management

Secure Transaction Processing

Security Services

Segmentation

Selection

Selective XML Dissemination

Selectivity Estimation

Selectivity for Predictive Spatio-Temporal Queries

Self-Maintenance of Views

Self-Management Technology in Databases
Self-Managing Database Systems

Self-Tuning Database Systems

Semantic Analysis of Video

Semantic Data Integration for Life Science Entities

Semantic Data Model

Semantic Image Retrieval

Semantic Inference in Audio

Semantic Mapping Composition

Semantic Matching

Semantic Modeling and Knowledge Representation for

Multimedia Data

Semantic Modeling for Geographic Information

Systems

Semantic Overlay Networks

Semantic Overlays

Semantic Web

Semantic Web Query Languages

Semantic Web Services

Semantic-based Retrieval

Semantic Atomicity

Semantics-based Concurrency Control

Semijoin

Semijoin Filter

Semi-Structured Data

Semi-Structured Query Languages

Semijoin Program

Semijoin Reducer

Semi-Streaming Model

Semi-Structured Data

Semi-Structured Data Model

Semi-Structured Database

Semi-Structured Database Design

Semi-Structured Query Languages

Semi-Structured Text Retrieval

Semi-Supervised Classification

Semi-Supervised Clustering

Semi-Supervised Learning

Sense and Respond Systems

Sensitivity

Sensor Network Systems

Sensor Networks

Sensornet

Sentiment Analysis

SEQUEL

Sequence Data Mining

Sequenced Semantics

Sequential Patterns

Serializability

Service Bus

List of Entries 3715
Service Buses

Service Choreography

Service Component Architecture (SCA)

Service Composition

Service Item

Service Orchestration

Service Order

Service Oriented Architecture

Service Request

Session

Set Abstraction

Set-Difference

Shape Descriptors

Shared-Disk File System

Shared-Disk Architecture

Shared-Disk Databases

Shared-Everything

Shared-Everything Databases

Shared Health Record

Shared-Memory Architecture

Shared-Nothing Architecture

Shared-Nothing Databases

Shot Boundary Detection

Shot Segmentation

Shotcut Detection

SI

Side-Effect-Free View Updates

Sight

Signal Transduction Networks

Signature Files

Signatures

Similarity and Ranking Operations

Similarity in Video

Similarity Measure

Similarity-based Data Partitioning

Simplicial Complex

Simulated Data

Single Instancing

Single Instruction Multiple Data (SIMD) Parallelism

Singular Value Decomposition

Sketch

SMI-S

Snapshot

Snapshot Data

Snapshot Equivalence

Snapshot Isolation

SNIA

Snippet

Snowflake Join Schema
Snowflake Schema

SOA

SOA Replication

SOAP

Social Applications

Social Networks

Software Transactional Memory

SONs

Sort-Merge Join

Source

Space-Filling Curves

Space Partitioning

Space Segmentation

Space-Filling Curve

Space-Filling Curves for Query Processing

Space-Span (in Part)

Spamdexing

Span

Sparse Index

Spatial Access Methods

Spatial Analysis

Spatial and Spatio-Temporal Data Models and

Languages

Spatial Anonymity

Spatial Autocorrelation

Spatial Data

Spatial Data Analysis

Spatial Data Mining

Spatial Data Types

Spatial Graph Databases

Spatial Indexing Techniques

Spatial Information System

Spatial Join

Spatial k-Anonymity

Spatial Network Databases

Spatial Operations and Map Operations

Spatial Outliers

Spatial Referencing

Spatial Statistics

Spatio-Temporal Approximation

Spatio-Temporal Benchmarking

Spatio-Temporal Data Generator

Spatio-Temporal Data Mining

Spatio-Temporal Data Reduction

Spatio-Temporal Data Types

Spatio-Temporal Data Warehouses

Spatio-Temporal Databases

Spatiotemporal Estimation

Spatio-Temporal Graphs

3716 List of Entries
Spatiotemporal Interpolation Algorithms

Spatio-Temporal OLAP

Spatio-Temporal Online Analytical Processing

Spatio-Temporal Representation

Spatio-Temporal Selectivity Estimation

Spatio-Temporal Stream Processing

Spatio-Temporal Trajectories

SPC Query

SPCU-Algebra

Specialization

Specialization and Generalization

Specificity

Spectral Clustering

Spider

Spidering

SPJRU-Algebra

Split

Split Transactions

SQL

SQL Isolation Levels

SQL-Based Temporal Query Languages

SRM

Stability-based Validation of Clustering

Stable Distribution

Stack-based Query Language

Staged Database Systems

Staged DBMS

Standard Effectiveness Measures

Standing Query

Star Index

Star Join Schema

Star Schema

Star Schema Modeling

State Query

State-based Publish/Subscribe

Statistical Correctness

Statistical Data Management

Statistical Database

Statistical Decision Techniques

Statistical Disclosure Control (SDC)

Statistical Disclosure Limitation (SDL)

Statistical Disclosure Limitation For Data Access

Steganography

Stemming

Step

Stewardship

Stop-&-go Operator

Stoplists

Stopwords
Storage Access Models

Storage Area Network

Storage Array

Storage Broker

Storage Consolidation

Storage Controllers

Storage Devices

Storage Grid

Storage Layer

Storage Management

Storage Management Initiative-Specification

Storage Manager

Storage Network Architectures

Storage Networking Industry Association

Storage of Large Scale Multidimensional Data

Storage Power Management

Storage Protection

Storage Protocols

Storage Resource Management

Storage Security

Storage Servers

Storage Systems

Storage Virtualization

Stored Procedure

S-Transactions

Stream Data Analysis

Stream Mining

Stream Models

Stream Processing

Stream Query Processing

Stream Sampling

Stream Similarity Mining

Streaming Algorithm

Streaming Applications

Streaming Database Systems

Stream-Oriented Applications

Stream-Oriented Query Languages and Operators

Strong Consistency Models for Replicated Data

Strong Coupling

Strong Memory Consistency

Structural Index

Structural Summary

Structure Indexing

Structure of Truth Values

Structure Weight

Structured Data in Peer-to-Peer Systems

Structured Document Retrieval

Structured Query Language

Structured Text Retrieval

List of Entries 3717
Structured Text Retrieval Models

Structured Text Retrieval Tasks

Subject Spaces

Subject-based Publish/Subscribe

Subspace Clustering Techniques

Subspace Selection

Subsumed by Windows Communication Framework

Success at n

Succinct Constraints

Suffix Stripping

Suffix Tree

Suffixing

Summarizability

Summarization

Summarization Correctness

Summary

Supervised Learning

Support Vector Machine

Supporting Transaction Time Databases

Surfing

SVD Transformation

SVM

Switch

Symbol Graph

Symbol Plot

Symbolic Graphic

Symbolic Representation

Symmetric Encryption

Synchronization Component

Synchronization Join

Synchronizing Distributed Transactions

Synchronous Join

Synchronous Pipelines

Synopsis

Synopsis Structure

Synthetic Data

Synthetic Image

Synthetic Microdata

System Catalog

System R (R*) Optimizer

System Recovery

Table

Table Design

Table Normalization

Tabular Data

Tamper-Proof Hardware

Tape Libraries

Tapes

Task
Taxonomies

Taxonomy: Biomedical Health Informatics

Telic Distinction in Temporal Databases

Telos

Temporal Access Control

Temporal Aggregation

Temporal Algebras

Temporal Assignment

Temporal Association Mining

Temporal Coalescing

Temporal Compatibility

Temporal Conceptual Models

Temporal Constraints

Temporal Data Mining

Temporal Data Models

Temporal Data Warehousing

Temporal Database

Temporal Dependencies

Temporal Domain

Temporal Element

Temporal Evolution

Temporal Expression

Temporal Generalization

Temporal Granularity

Temporal Homogeneity

Temporal Indeterminacy

Temporal Information Retrieval

Temporal Integrity Constraints

Temporal Joins

Temporal Layer

Temporal Logic

Temporal Logic in Database Query Languages

Temporal Logical Models

Temporal Middleware

Temporal Object-Oriented Databases

Temporal Periodicity

Temporal Projection

Temporal Query Languages

Temporal Query Processing

Temporal Relation

Temporal Relational Calculus

Temporal Restriction

Temporal Semi-Structured Data

Temporal Specialization

Temporal Strata

Temporal Structure

Temporal Type

Temporal Upward Compatibility

Temporal Vacuuming

3718 List of Entries
Temporal Value

Temporal Visual Interfaces

Temporal Visual Languages

Temporal Visual Queries

Temporal XML

Temporally Indeterminate Databases

Temporally Uncertain Databases

Temporally Weak

Term Expansion

Term Expansion Models

Term Frequency by Inverse Document Frequency

Term Frequency Normalization

Term Processing

Term Proximity

Term Statistics for Structured Text Retrieval

Term Weighting

Term-Document Matching Function

Terminologic Languages

Terminological Database

Test Collection

Text Analytics

Text Categorization

Text Classification

Text Clustering

Text Compression

Text Data Mining

Text Databases

Text Extraction

Text Generation

Text Index Compression

Text Indexing and Retrieval

Text Indexing Techniques

Text Mining

Text Mining of Biological Resources

Text Representation

Text Retrieval

Text Segmentation

Text Semantic Representation

Text Streaming Model

Text Summarization

Text Visualization

Text/Document Summarization

Text-based Image Retrieval

TF*IDF

tgd

Thematic Map

Theme Algebra

Thesauri Business Catalogues

Thiessen Polygons
Third Normal Form

Thread Lifecycle

Three-Dimensional GIS and Geological Applications

Three-Dimensional Similarity Search

Three-Phase Commit

Thresholding

Tight Coupling

Time Aggregated Graphs

Time and Information Retrieval

Time Dependent Geometry

Time Distance

Time Domain

Time Granularity

Time in Philosophical Logic

Time Instant

Time Interval

Time Period

Time Period Set

Time Point

Time Quantum

Time Sequence

Time Sequence Query

Time Sequence Search

Time Series

Time Series Data Mining

Time Series Database Querying

Time Series Query

Time Series Search

Time Span

Time Unit

Time-based Access Control

Time-based Window

Time-Constrained Transaction Management

Time-Dependent Graphs

Time-Dependent Networks

Time-Line Clock

Time-Oriented Database

Time-Segment Clock

Timeslice Operator

TIN

Tiny Aggregation (TAG)

TinyDB

TinySQL

t-Norm

Topic Detection and Tracking

Topic Hierarchies

Topic Maps

Topical-Hierarchical Relevance

Topic-based Publish/Subscribe

List of Entries 3719
Topic-Directed Web Crawling

Top-k Queries in P2P Systems

Top-K Selection Queries on Multimedia Datasets

Top-k XML Query Processing

Topological Data Models

Topological Data Structure

Topological Fabric

Topological Relationships

Topology

Toponyms

Tour

TP

TP Monitor

TPQ

Traditional Concurrency Control for Replicated

Databases

Traditional Data Replication

Traditional Replica and Concurrency Control

Strategies

Trajectory

Trajectory Databases

Trajectory Indexing

Transaction

Transaction Chopping

Transaction Commit Time

Transaction Execution

Transaction Management

Transaction Management in Distributed Database

Systems

Transaction Manager

Transaction Model

Transaction Models – the Read/Write Approach

Transaction Processing

Transaction Scheduling

Transaction Service

Transaction Time

Transactional Business Processes

Transactional Consistency in a Replicated Database

Transactional Middleware

Transactional Processes

Transactional Workflows

Transaction-Time Access Methods

Transaction-Time Algebras

Transaction-Time Data Model

Transaction-Time Indexing

Transcriptional Networks

Transformation

Transformation Engines

Translation Lookaside Buffer (TLB)
Translingual Information Retrieval

Tree Drawing

Tree Pattern Queries

Tree-based Indexing

Treemaps

Tree-Structured Classifier

Triangular Norms

Triangulated Irregular Network

Triangulated Terrains

Trie

Triggers

True Answer (Maybe Answer)

Trust and Reputation in Peer-to-Peer Systems

Trust in Blogosphere

Trusted Database Systems

Trusted Hardware

TSQL2

Tug-of-War Sketch

Tuning Concurrency Control

Tuning the Application Interface

Tuple Relational Calculus

Tuple-Generating Dependencies

Twigs

Two-Dimensional Shape Retrieval

Two-Phase Commit

Two-Phase Commit Protocol

Two-Phase Locking

Two-Poisson model

Two-Sorted First-Order Logic

Type Theory

Type-based Publish/Subscribe

UML

Uncertain Databases

Uncertain Information

Uncertainty in Events

Uncertainty Management in Scientific Database

Systems

Undo

Unicode

Unified Modeling Language

Uniform Resource Identifier

Union

Uniqueness Constraint

Unnoticability

Unobservability

Unsupervised Learning

Unsupervised Learning on Document Datasets

Until Changed

Update Propagation in Peer-to-Peer Systems

3720 List of Entries
Updates and Transactions in Peer-to-Peer Systems

Updates through Views

URI

Usability

User Centered Design

User Classifications

User-Centred Design

User-Defined Time

User-Level Parallelism

Using Efficient Database Technology (DB) for Effective

Information Retrieval (IR) of Semi-Structured Text

Utility Computing

UUID

Valid Time

Validity (Satisfiability)

Valid-Time Access Methods

Valid-Time Algebras

Valid-Time and Transaction-Time Relation

Valid-Time Data Model

Valid-Time Indexing

Value Equivalence

Variable Time Span

VDM

Vector-Space Model

Vertical Fragmentation

Vertically Partitioned Data

Video

Video Abstraction

Video Analysis

Video Annotation

Video Chaptering

Video Compression

Video Content Analysis

Video Content Description

Video Content Modeling

Video Content Processing

Video Content Structure

Video Data Modeling

Video Format

Video Indexing

Video Metadata

Video Partitioning

Video Querying

Video Representation

Video Retrieval

Video Scene

Video Scene and Event Detection

Video Search

Video Segmentation
Video Sequence Indexing

Video Shot Detection

Video Shot-Cut Detection

Video Skimming

Video Structure Analysis

Video Structuring

Video Summarization

View Adaptation

View Definition

View Maintenance

View Maintenance Aspects

View Expression

View Update

View-based Data Integration

Views

Virtual Disk Manager

Virtual Health Record

Virtual Partitioning

Vision

Visual Analysis

Visual Analytics

Visual Association Rules

Visual Classification

Visual Clustering

Visual Content Analysis

Visual Data Analysis

Visual Data Exploration

Visual Data Mining

Visual Discovery

Visual Displays of Nonnumerical Data

Visual Displays of Numerical Data

Visual Formalisms

Visual Interaction

Visual Interaction Design

Visual Interfaces

Visual Interfaces for Geographic Data

Visual Metaphor

Visual Mining

Visual Multidimensional Analysis

Visual On-Line Analytical Processing (OLAP)

Visual Perception

Visual Query Language

Visual Query System

Visual Representation

Visual Similarity

Visual Web Data Extraction

Visual Web Information Extraction

Visualization for Information Retrieval

Visualization Pipeline

List of Entries 3721
Visualization Reference Model

Visualizing Categorical Data

Visualizing Clustering Results

Visualizing Hierarchical Data

Visualizing Network Data

Visualizing Quantitative Data

Visualizing Spatial Data

Visualizing Trees

Volume

Volume Set Manager

Voronoi Decomposition

Voronoi Diagrams

Voronoi Tessellation

VP

VSM

W3C

W3C XML Path Language

W3C XML Query Language

W3C XML Schema

WAN Data Replication

Watermarking

Wavelets on Streams

Weak Consistency Models for Replicated Data

Weak Coupling

Weak Equivalence

Weak Memory Consistency

Web 2.0 Applications

Web 2.0/3.0

Web Advertising

Web Application Server

Web Characteristics and Evolution

Web Content Extraction

Web Content Mining

Web Crawler

Web Crawler Architecture

Web Data Extraction

Web Data Extraction System

Web Data Mining

Web Directories

Web ETL

Web Harvesting

Web Indexing

Web Information Extraction

Web Information Extraction System

Web Information Integration and Schema Matching

WEB Information Retrieval Models

Web Macros

Web Mining

Web Mashups
Web Ontology Language

Web Page Quality Metrics

Web QA

Web Query Languages

Web Question Answering

Web Resource Discovery

Web Scraper

Web Scraping

Web Search and Crawling

Web Search Engines

Web Search Query Rewriting

Web Search Relevance Feedback

Web Search Relevance Ranking

Web Search Result Caching and Prefetching

Web Search Result De-duplication and Clustering

Web Services

Web Services and the Semantic Web for Life Science

Data

Web Services Business Process Execution Language

Web Site Wrappers

Web Spam Detection

Web Structure Mining

Web Transactions

Web Usage Mining

Web Views

Web Widget

What-If Analysis

While Loop

Wide-Area Data Replication

Wide-Area Storage Systems

WIMP Interfaces

Window-based Query Processing

Windows

Wireless Sensor Networks

Within-Element Term Frequency

Word Conflation

Word of Mouth

Work Element

Work Performer

Workflow

Workflow Constructs

Workflow Control Data

Workflow Enactment Service State Data

Workflow Engine State Data

Workflow Evolution

Workflow Join

Workflow Lifecycle

Workflow Loop

Workflow Management

3722 List of Entries
Workflow Management and Workflow Management

System

Workflow Management Coalition

Workflow Meta-Model

Workflow Mining

Workflow Model

Workflow Model Analysis

Workflow Modeling

Workflow on Grid

Workflow Participant

Workflow Patterns

Workflow Scheduler

Workflow Schema

Workflow Transactions

Workflow/Process Instance Changes

World Wide Web Consortium

WORM

Wrapper

Wrapper Adaptability

Wrapper Induction

Wrapper Generation

Wrapper Generator

Wrapper Generator GUIs

Wrapper Maintenance

Wrapper Repair

Wrapper Robustness

Wrapper Stability

Wrapper Verification and Reinduction

Write Once Read Many

Write Once Read Mostly

Write One Read Multiple

WS-BPEL

WS-Discovery

XA Standard

XMI

XML

XML (Almost)

XML 1.0

XML Access Control

XML Algebra

XML Application Development

XML Attribute

XML Attribute Node

XML Benchmarks

XML Cardinality Estimation

XML Compression

XML Data Dependencies

XML Data Integration
XML Database

XML Database Design

XML Database System

XML Document

XML Element

XML Enterprise Information Integration

XML Export

XML Filtering

XML Indexing

XML Information Integration

XML Information Retrieval

XML Integrity Constraints

XML Message Brokering

XML Metadata Interchange

XML Parsing, SAX/DOM

XML Persistence

XML Process Definition Language

XML Programming

XML Publish/Subscribe

XML Publishing

XML Retrieval

XML Schema

XML Schemas

XML Selectivity Estimation

XML Storage

XML Stream Processing

XMLTree Pattern, XMLTwig Query

XMLTuple Algebra

XMLTypechecking

XMLTypes

XML Updates

XML Views

XPath/XQuery

XPDL

XQFT

XQuery 1.0 and XPath 2.0 Full-Text

XQuery Compiler

XQuery Full-Text

XQuery Interpreter

XQuery Processors

XSL Formatting Objects

XSL/XSLT

XSL-FO

Zero-One Laws

ZF-Expression

Zoning

Zoomable User Interface (ZUI)

Zooming Techniques

Subject Index
A
Abstraction, 6–7

Abstract types, 1554

Acceptance-rejection sampling, 2467

Access control, 2447–2452

– mechanism, 7–10

– policy, 11

Access control lists (ACLs), 3573

Access latency, 72, 73, 76

Access methods, 1448, 1449, 2224, 2681

Access path, 19

Access rights, 864, 865

Accuracy, 2229

ACID properties, 926–927, 1644,

1896–1898, 1978, 1980, 2761, 2762, 3559

– atomicity, 19–20

– durability, 20–21

– isolation, 20

– transaction, 3150

Acronym for redundant arrays of

independent disks, 2823

ACTA, 1091–1092

Action, 959

Active-active mode, 1843

Active and real-time datawarehousing, 21–26

Active conceptual modeling, 2228

Active database, 28–33

– coupling modes, 33–35

– execution model, 35–36

– knowledge model, 36

– management system architecture, 28–33

– rulebase, 37

Active database (management) system

(aDBS/aDBMS), 28–33

– active database (aDB), 27

– database transitions, 27

– external signals, 27

– periodically polling the database, 27

– time events, 27

Active Data Warehousing, 21–26

Active disk, 37–38

Active learning, 3563

Active replicas, 1111–1114

Active-standby mode, 1843

Active storage, 37–38, 1552

Active XML (AXML) documents, 38–40

Activity, 41

– block, 1661

– diagrams, 41–45

Actor, 46

AdaBoost, 261, 262

Adaptability techniques, 51
Adapter, 696–699, 1978,

Additive noise, 1911

Adaptive query processing, 50–52

Adaptive stream processing, 52–56, 1636

Adaptive user interfaces, 46–47

Additionally marked information, 85

Ad-hoc workflows, 3548

Administration model for RBAC, 57

Administration policies, 12–14

Administration wizards, 58

Administrative RBAC family of models, 57

Administrative workflows, 3548

ADO.NET, 449

Advanced transaction models, 1091–1092

Aesthetic principle, 430

Affinity matrix, 2749, 2751

Affix removal, 2790, 2793

Agent, 46

Agglomerative clustering, 933

Aggregate-storing indices, 1456–1457

Aggregate queries, 59–62

– peer-to-peer, 111–113

Aggregation, 59–70, 1028, 1029

– distance, 1890

– group, 2924–2926

– function, 2924–2926, 2928

– operators over time windows, 2996

– views, 1421, 1423

Air index, 71–77

Air indexes for spatial databases, 71–77

Algebra, 258, 259, 2360–2363

Algebraic and logical models, 1524, 1527

Algebras for tuple timestamping, 2930–2931

Algorithms, 378, 380–382

Alignment with business strategy, 1516

All-distances sketches, 759, 760

Allen’s algebra, 2225–2227

Allen’s relations, 78–79

Alternative composition, 420

Amercia II Project (MOA2), 1636

AMOSQL, 79–80

AMQP, 2210

AMS sketch, 80–83

Analysis of visual information, 3317

Analytical interest, 1500

Analytical validity, 1500

Analytic hierarchy process, 1211

Analytics, 3366, 3368

Anchor text, 84

– document surrogate, 84

– home-page finding, 84

– incoming hyperlinks, 84
AND-Join, 2006, 2752, 3544

AND-split, 2752

Animation, 950

ANN architecture, 1906

Annotated data, 85

Annotation, 85, 1580, 3072, 3076, 3078

Annotation-based image retrieval, 85–88

Anomaly detection, 1569

– on streams, 88–90

Anonymity, 90–91, 2138, 2142–2146

Anonymity set, 91

Anonymizer, 2686–2688, 2690

ANOVA (analysis of variance), 238

ANSI/ICITS RBAC standard, 2448

ANSI RBAC, 91–92

ANSI standard, 2755, 2756, 2760

Answering queries using views,

92–97, 3324

Anti-monotone

– constraints, 98

Appearance-based object model, 1937

Application level protocol standard, 2666

Application-level tuning, 105–106

Application(s), 107–110

– benchmark, 99

– including secure databases, 2531

– multimedia, 1323–1326

– persistence, 100, 101, 103

– programming interfaces

(APIs), 1557

– recovery, 100–103

– server, 104, 1578, 1579

Applying supervised learning to web

wrapper generation, 3561

Approximate itemset, 120–123

Approximate mining, 137, 138

Approximate queries(ing), 1764–1768

– peer-to-peer, 111–113

Approximate query answer, 884, 889

Approximate query processing, 113–119

Approximate reasoning, 119–120

e-Approximation, 1240, 1241, 1244

Approximation

– frequent itemset, 120–123

– randomization, 884–885

Apriori property, 98, 124–126

ARBAC97, 57

Architectural model, 2638

Architecture, 3012

Architecture-conscious database system,

127–131

Archive recovery, 517, 518, 521–522

3724 Subject Index
ARC/INFO, 3132, 3136

Area under ROC curve (AUC), 2351, 2352

Argus, 1898

ARIES protocol, 1784–1788

Aristotle’s ontology, 1964

Arithmetic coding, 3047

Armstrong axioms, 135, 1200

Array databases, 2332, 2333, 2336–2338

AR sampling, 2467

Artificial neural network (ANN), 1906, 1907

Assessment activity, 608–610

Association rule mining, 126, 136–139,

1184–1186, 3346, 3348

Association rule(s), 140–141, 365–368, 574,

2051, 3346–3351

Associative similarity, 2648–2649, 2651

Asynchronous JavaScirpt and XML (AJAX),

77–78

ATA, 2825–2826

Atelic data, 142–143

Atomic clocks, 2108

Atomic event, 143

Atomicity, 143–146, 2588–2590, 2627, 2630

Atomicity of actions, 143–144

Attribute disclosure, 848

Attribution evolution, 2480

Audio

– classification, 148–154, 156

– compression, 3300–3301

– content analysis, 154–156

– effect detection, 149–154

– elements, 167–171

– feature, 160–166

– indexing, 149

– metadata, 157–160

– parsing, 167–171

– recognition, 149

– representation, 156

– segmentation, 156, 167–171

Auditing and forensic analysis, 172–176

Auditory scenes, 167–169, 171

Auditory sence segmentation, 167

Augmentation, 67–69

Aurora/Borealis project, 1633, 1635

Authentication, 176–180

Authorization, 7–9

– revocation, 12

Automated page wrappers, 1191

Automatic detection of auditory

scenes, 167

Automatic form generation, 1164–1165

Automatic image annotation, 180–187

Automatic query expansion, 2258, 2259

Autonomous database replication, 188

Autonomous replication, 188–192

Autonomous systems, 47–50

Availability, 729–731
Average precision, 192–193, 1256

– histogram, 194

– value for a given topic, 1691

Average R-precision, 195

Axioms, 135, 1865

AXML languages, 38

B
Bag, 201–206

Bag relational algebra, 202, 204

Bag semantics, 201–206

Backup and restore, 200–201

Backwards induction, 546

Bagging, 206–210, 988–990

Bag-of-visual words representation, 183

Bag of Words (BOW) model, 3069

– of datalog queries, 205

Bag-set semantics, 201, 202, 204, 205

Balanced pipeline, 2116

Balanced trees, 1308, 1309

Banking, 290, 292

Base tables, 3244–3246

Basic database recovery methods, 1785

Basic focused web crawl, 1150, 1152

Basic retrieval performance measure, 2348

Bayes classifiers, 210–214, 341

Bayesian models, 1524, 1526–1527

Bayes theorem, 211

BCNF, 264–265

Behavior, 3017–3018

Best Match (BM), 255

Best matches only, 1371

Bi-clustering, 2873

Bigram, 1910

Binary feature vector, 2157

Binary Independence Retrieval (BIR),

2156–2160

Binary large objects (BLOBs), 1818

Binary polynomials, 328

Binary semantic model, 438

Bioinformatics, 1401–1403

Biological metadata management, 215–219

Biological molecules, 220

Biological networks, 220

Biological sequence, 223–224

Biomedical data

– annotation, 224–228

– types, 229–232

Biomedical image databases, 229

Biomedical images, 1358–1360

Biomedical informatics, 1401–1404

Biomedical literature, 233–235

Biostatistics, 236–238

Biostatistics and data analysis, 236–238

BIR Model, 2156–2160

Bisimilarity, 2861

Bisimulation, 2601, 2604
Bitemporal chronon, 243

Bitemporal query language, 243–244

Bitemporal relation, 2094

Bitmap-based indexing, 248–251

Bitmap-based index structures, 248–251

Bitmap compression, 250–251

Bitmap index(ices), 244–248, 1454–1457

Bitmapped images, 1374–1376

Bitmap table, 249

Bitslice indices, 1454, 1456

Bitstrings, 2643, 2645

Blanking, 1913

BLAST, 224

Blind feedback (BF), 2382

Blinding, 252

Blind relevance feedback, 2447

Blind signatures, 251–252

– generation, 252

Block ciphers, 572–573

Block-level I/O services, 1574

Block nested loop join, 1895

Bloom filter(s), 252–254, 2865

Bloomjoin, 253

BM25, 255–257, 1529, 1530

Boolean algebra, 2418, 2419

Boolean expression, 2967

Boosting, 259–263, 988–990

Boostrap, 263–264

Bottom granularity, 2971

Boyce-Codd Normal Form (BCNF),

264–265

BP-complete, 265

BP-Completeness, 265–266, 407Brand

advertising, 3457, 3458

Breadth-first search algorithms, 124–126

Broker, 2415–2418

Broker architectures, 500, 1899

Browsing, 267–268

– in digital libraries, 268–273

– and searching, 1104

Brushing, 1623–1626

B-tree, 197–200

B+-tree index, 197–200

B-tree locking, 273–277

B+-trees, 197–200, 242, 1300–1302,

1436–1437, 2681, 3172, 3173

Bucket algorithm and its variants, 2440

Buffer management, 277–281

Buffer pool, 282–287

Buffer pool data structure, 286

Buffer replacement, 485–487

Buffer replacement algorithms, 1800–1802

Build phase, 1288

Burrows-Wheeler Transform, 1443,

1444, 3048

Burst detection, 89

Business activity management (BAM), 413

Subject Index 3725
Business agenda, 1515–1516, 1518

Business intelligence, 287–288, 561, 563,

3525, 3528

– data warehouse, 3472

– systems, 287

Business logic, 998, 999

Business performance management, 287–288

Business process, 289–293, 3545, 3546, 3548,

3549, 3552–3557

– management, 1068–1071, 2170

– management life-cycle, 291

– modeling, 293–294

– reengineering, 295–299

Business process execution language

(BPEL), 288–289, 3601

Business process modeling notation

(BPMN), 3601

Business-to-Business, 292

Business to business (B2B) integration, 991

Business workflows, 2507

By-product, 1515

C
Cache

– line, 2195, 2196

– management, 744–747

Cache-conscious query processing

– cache, 301–303

– cache miss, 301, 302

– locality, 301–303

– memory latency, 302, 303

Caching, 1738–1742

Caching in search engines, 3501–3504

Calculus expression, 420–421

Calendar, 305, 2969, 2971–2973

– algebra, 2971, 2972

– cyclic time, 304

– date(s), 304

Calendric system, 305

Call level interface (CLI), 2755

Camelot, 1898

Camera break (or video edit), 3316

Camera-takes, 3308

Candidate key, 1587, 1588

Canonical sensor network platform, 1538

Cartesian product join, 309

Cartography, 3383, 3384, 3386

Catalog, 570

Cataloging in digital libraries, 309–314

– classification, 310–311

Categorical data, 836, 3416–3417

Categorical microaggregation, 1736

Categorical variables, 1660

Causality relations, 1035, 1044

Cayuga, 1029–1032

CDP implementations, 478

Cell suppression, 1473
Cellular phones, 1751–1753

Centralized deadlock detection, 900, 902

Centroid, 699

Certain answers, 1407–1409, 1875, 1876

Certain (and possible) answers, 315–317

– conditional tables, 316

– incomplete information, 317

– naive tables, 317

– null values, 317

Chandra and Harel completeness, 406–411

Change detection on Streams, 317–321

Change point analysis, 317

Change-table technique, 1421–1424

Changing data needs, 1516–1517

Channel-based publish/subscribe model

– pull style, 322

– push style, 322

CHAP, 2828

Chart, 323

Chase, 1563

Checksum, 327–328

– and cyclic redundancy check

mechanism, 327–328

Chip multiprocessor (CMP), 127–131

Cholesky decomposition.

Choreography, 2004, 2005Chronicle event

context, 419

Chronon

– period, 329

– time interval, 329

CIFS, 2824, 2826

Citation

– analysis, 330

– bibilometrics, 330

– co-citation, 330

– matching, 330

– reference, 330

Class, 2914–2920

Classical MDS, 1784

Classification, 985, 3352–3355

– algorithms, 3041–3043

– divide and conquer, 332

– error rate, 334

– learning, 331–335

– lightweight ontologies, 1614–1617

– model, 1886

– overfitted, 334

– statistical modeling, 332

– in streams, 340–341

– symbolic learning techniques, 331

– tree, 766, 767, 2469–2473

Classification by association rule analysis

– association rules, 335–339

– associative classification, 335–339

– classification based on associations

(CBA), 335, 337, 338

– classificatuon, 335–339
Classifier learning, 151–152

Client-Server DBMS, 342–343

Clinical, 356–359

– data acquisition, 344–348

– data and information models,

348–349

– databases, 1564–1565

– data management systems, 344–347

– data quality and validation
– accuracy, 349, 350

– clinical data quality, 349–350

– completeness, 349, 350

– reliability, 350

– decision support system, 350–353

– documents, 354

– event, 355

– information systems, 351

– observation, 359–360

– ontologies, 360–363

– order, 363–364

– order and purchase order system,

363–364

Clinical document architecture (CDA),

353–354

Closed Itemsets, 365–368

Closed subsequence, 2622, 2625

Closest-pair query, 368–373

Cluster and distance measure, 374–375

Cluster-based classifiers, 341

Clustering, 374–387, 393–396, 699–700,

781–783, 795–798, 1291–1294,

3355–3360, 3417–3425, 3506–3510

– algorithms taxonomy, 384

– index, 1434

– overview and applications, 383–387

– validity, 388–392
– index, 388, 391

– methods, 388
Cluto, 937

Coalescing, 2932–2935

Coarse-grained provanence, 2203

Co-clustering, 2873, 2874, 3045, 3046

CODASYL, 2289

Codd E.F. 2753, 2754, 2759, 2760

Cognitive overload, 259

Collaborative ontology elicitation,

1967, 1969

Collaborative software, 2667

Collection of time-referenced data, 2957

Collections and collection operations, 1928

Color model, 1375, 1377

Combination of evidence, 3479

Combinatorial search, 738–741

Common internet file system (CIFS), 1900

CommonWarehouse Metadata Interchange,

401–404

Common Warehouse Metamodel, 401–404

3726 Subject Index
Compact encoding, 2, 3

Compact representation of decision

rules, 769

Comparative analysis, 405

Comparative visualization, 405

Compatibility, 2936–2945

Compensating transactions, 2588–2590

– subtransactions, 406

Complacency, 1510, 1511

Completeness, 3017

Complete query language, 406–411

Complex event, 411–413

Complex event processing (CEP), 412–413,

1029–1032, 1055, 1068

Complexity theory, 2041

Complex query predicates, 1858

Complex set of decisions, 769

Complex shapes, 809

Component abstraction, 6

Component based software development

(COSD), 414

Composed services, 413–418

Composed services and WS-BPEL, 413–418

Composite event, 418–419, 1045,

1059–1062

Composite web application, 3482–3483

Composition, 419–420

Composition of fuzzy relations, 1209

Compressed bitmap indices, 1456

Compressed full-text indexes, 1443–1447

Compressed structured text, 1679–1684

Compressed suffix

– array, 1443

– tree, 1446

Compression, 421–429, 3051, 3052, 3054

– distance function, 424–426

– mobile location data

– scheme, 1684

– techniques, 621, 622, 625

Computer aided annotation, 1385, 1388

3D computer graphics, 2506

Computerized physician order entry

(CPOE)

– clinical decision support, 434–436

Computerized provider order entry,

432–437

Computer performance, 2086

Computer Supported Collaborative Work

(CSCW), 1327

Concatenated transactions, 493

Conceptual data model, 2559

Conceptual design, 2940, 2944

Conceptual interfaces, 1554, 1555

Conceptual model, 1004, 1008, 1009, 2559,

2944

Conceptual model for integration of

software systems, 2633
Conceptual modeling, 1942, 1966,

1967, 2572

Conceptual schema, 1645–1648

Conceptual schema design, 438–442

Conceptualization, 723–728

Concurrency, 2627, 2631

– control, 443–444, 2591, 3144–3156

– control and recovery in B-tree, 274

Concurrency control manager (CCM), 445

Concurrent programming languages,

1554–1556

Condition, 960, 2547

Condition-action coupling, 34

Conditional dependencies, 458, 460, 462

Conditional logic, 2006

Conditional random fields, 397, 399, 400

Conditional tables, 1407–1409

– certain answers, 447

– incomplete information, 447

– naive tables, 447

– null values, 446

Condition evaluation, 959

Confidentiality, 729–730, 2783–2789

Confidential outcome attribute, 1735

Conflation, 1608, 1609, 2790, 2791, 2793

Conflict(s), 1991–1994

– equivalence, 1948

– vs. non-conflict operations, 1794

– resolution, 628

– resolution mechanism, 1518

Confluence, 37

Conjunction, 448, 449

Conjunctive query(ies), 93, 448–449

Connection, 449

Connection pool, 449

Connectivity, 696–699, 1977–1978

Connectivity logic, 998–1000

Connector, 696–699, 1978

Consensus, 1510, 1511

Consequence of an event, 1046

Consistency, 722, 1071–1072, 1510, 1925

– data, 452

– models, 626–628

– problem, 462

– query answering, 452, 1410, 1413, 1414

Consolidated storage, 2798

Constant interval, 2925, 2926, 2928, 2995

Constraint(s), 323–327, 704, 705, 708,

1179–1183, 1940–1941, 2754, 2757–2760

– based mining, 1182

– databases, 452–457

– model, 454

– query languages, 454–457

– RBAC, 91–92

Containment relationships, 1308

Content acquisition, 224–228

Content-and-structure query, 463–464
Content-based image retrieval (CBIR), 229,

231–232, 1354, 1356, 1357, 1368–1370,

1373, 2379–2381

– relevance feedback, 2282–2285, 2287

– target search, 2282, 2284, 2287

Content-based indexing, 1350

Content-based profilers, 2093

Content-based publish/subscribe, 464–466

Content-based publish/subscribe systems

over peer-to-peer networks, 2070

Content delivery network (CDNs), 2800,

3442

Content description based on invariant

features, 1364

Content description based on semantic

features, 1364–1365

Content determination, 3049

Content distribution, 2061–2064

Content links, 941

Content modeling, 3276–3280

Content-only query, 473

Context, 473–474

– aware user interfaces, 46–47

– dimension, 474

– of a time, 2377

– of use, 46–47

Contextual advertising, 3458

Contingency transaction, 1979

Continuous data, 3437

– consistency, 3443–3444

– stream, 492

Continuous data protection (CDP), 478

Continuous event context, 419

Continuous events, 35

Continuous κ-nearest-neighbor (C-κNN)

queries, 2443, 2445

Continuous media data (audio/video), 1814

Continuous microaggregation, 1736

Continuous monitoring of spatial queries,

479–483

Continuous multimedia, 484–487

Continuous multimedia data retrieval,

484–487

Continuous queries, 492–493, 3533, 3534,

3536

– models, 490

– in sensor networks, 488–492

Continuous relevance scale, 2747, 2748

Continuous spatial query, 479

Continuous time model, 3112

Continuous uncertainty, 648, 649

Continuous variables, 1660

ConTract, 493–494

Contrast pattern based classification, 985

Control data, 494

Control-flow, 3553, 3554, 3556

– diagrams, 41–45

Subject Index 3727
– patterns, 3557, 3558

– statement, 1661

Controlled rounding, 1473

Controlled tabular adjustment, 1473

Conventional query processing, 51

Conventional storage subsystem, 1899

Convergence, 3453, 3454

Convertible anti-monotone, 494, 495

Convertible constraints, 494–495

Convertible monotone, 494, 495

Convex subset, 243, 2966

Coordination, 495, 496

1-Copy correctness, 2385

Copy on write, 2118

Copyright, 496–500

– issues in databases, 496–500

– law, 1013

– protection, 826, 828

Copyright owner’s rights, 498

Copyrightable elements of a database, 1611

1-Copy-serializability, 2854

1-Copy-SI, 2854, 2856

Co query, 473

CORBA event service, 2210

CORBA notification service, 2210

Core RBAC, 91–92

e-Coresets, 1240–1242
CORIE, 2254

Corpora, 938

Corpus, 3041, 3042

Correlated noise addition, 1911

Correlation analysis, 89

Correlation clustering, 2873–2875

Cost-based optimization, 1996

Cost-based query optimization, 2290

Cost estimation, 506–510, 2548

Cougar, 710

Counting triangles, 1273–1274

Count-Min sketch, 511–515

Coupling, 516, 1661–1662

– modes, 33–35

– of system components, 516

Coverage, 2748

Covering index, 516–517

CPU register, 1707

CQL, 2521

Crash, 517–522

Crash recovery, 517–522, 1643

Crawl-and-index, 785, 787

Crawler, 1419–1420, 1463, 1464, 1466

Creation of index files, 1529

Cross-language information retrieval,

523–527

Cross-language web mining, 523–527

Cross-lingual query suggestion, 525–526

Cross-modal multimedia information

retrieval (CMIR), 528–532
Cross product, 308–309

Cross-references, 941

Cross-validation, 532–537

Cube, 538–539, 1950–1953

Cube implementations

– aggregation, 539, 541, 543

– dimension, 539–543

– fact table, 539–543

– materialized view, 540

– measure, 539, 542

Cumulated gain, 1016, 1020, 1021

Cumulative event context, 419

Curation, 224–228, 816

Current, 1920–1924

Current semantics

– temporal databases, 544

– temporal upward compatibility,

544–545

– timeslice, 544, 545

Curse of dimensionality, 545,

546, 1439

Cut, 3316–3319

Cut criterion, 2749

Cyberinfrastructure, 825

Cyclic redundancy check (CRC),

327–328, 2823

D
DAC policies, 864

DAML+OIL, 2008

Daplex

– functional data model, 547

– query language, 547

DAS, 2824, 2826

Data access, 2783–2789

Data acquisition and dissemination in

sensor networks

– data acquisition and dissemination

protocol, 548

– wireless sensor networks, 548

Data aggregation, 2617

Data allocation, 890, 891

Data architecture, 1516

Data authentication, 177, 179

Database, 257–259, 3018–3023

– auditing, 172–174

– buffer, 277, 280

– buffer pool, 285

– design, 708–709

– forensics, 174–176

– machine, 714

– middleware, 719–721

– profile, 604–607

– repair, 722–723

– replica, 188–192

– reverse engineering, 723–728

– state, 36
– techniques to improve scientific

simulations, 733–738

– trigger, 738

– tuning, 738–744

Database cluster (DBC), 700–703

Database cluster architecture, 701–702

Database fact, 3162

Database integrity, 2972–2986

Database interfaces, 1162, 1164

Database Language SQL, 2753, 2755, 2760

Database machine, 1551, 1552, 2027, 2028

Database managed file, 2797

Database management systems (DBMSs),

714–718, 1162, 1164, 1165, 2178, 2180,

2181, 2184

Database repair, 452

Database replication, 1738–1742,

2392–2396, 2403–2407

Database server, 342, 343

Database system layers, 3156

Database transaction, 3150

Database tuning using combinatorial search,

738–741

Database tuning using trade-off elimination

– tuning, 744–747

– workload, 744–747

(Lack of) Database use in science

applications, 748–750

Database vacuuming, 3023

Data broadcasting, caching and replication

in mobile computing

– data broadcasting, data caching and

replication, 558–560

– intermittent connectivity, 557–558

– multi-hop infrastructures, 557

– single-hop infrastructures, 557

Data-centric techniques, 2618

Data cleaning, 561–563, 566, 568, 569,

780–784

Data cleaning and curation, 749

Data collection, 564–565

Data complexity, 2041

Data compression, 564–565

Data consistency, 3442–3444

Data cube, 2014, 2016

Data dictionary, 570–571

Data dissemination, 1687–1689

Data encryption, 571–573

Data encryption standard (DES), 572

Data error, 565–569

Data estimation, 574

Data exchange, 575–581

– problem, 575, 578, 580

– setting, 575, 576, 578–580

Data expiration, 3023, 3025, 3027

Data exploration, 3342

Data extraction, 3465–3470, 3472, 3569

3728 Subject Index
Data flow, 3555

Data formats, 133

Data fusion, 1705, 2556, 2558

Data generator, 2339–2343

Data grids, 133, 813–815

Data inconsistency, 565–569

Data independence, 2011, 2754

Data integration, 590–593, 1491–1495,

1564, 1719, 1721, 2055, 2065–2069,

3332–3339, 3472

Data integration architectures and

methodology for the life sciences

– data integration, 585–589

– link-based integration, 586–587

– materialized integration, 586, 587

– virtual integration, 586, 587, 589

Data intensive simulation, 3525

Datalog, 751–754, 1547–1550, 2302–2306

Data management, 107–110

– for large graphs, 1262

Data manipulation, 2754, 2757, 2758, 2760

Data mart, 594, 686, 688–691

Data mining, 574, 595–598, 692–695, 986,

1180, 1183, 1291, 2725–2730, 2948–2950,

3365–3369

– classification, 595, 596

– clustering, 596

– outlier analysis, 595, 596

– pattern mining, 595, 598

– predictive modeling, 595, 596

– process workflow, 1586

– techniques, 2147, 2149

Data mining process, 1586

Data model(s), 1900–1905, 1940,

2119–2122, 2559–2561, 2571–2574,

2599–2605, 2932–2935, 2952–2957,

3132–3139

– for spatial networks, 2714–2718

Data-oriented models, 616, 620

Data outsourcing, 2523–2528

Data partitioning, 599–600, 1292, 1314,

1315, 2024–2026, 3341

Data patterns, 3557, 3558

Data perturbation, 2148

Data placement, 1567

Data privacy, 600–604

– the notion of consent, 600

– and patient consent, 600–604

Data profiling, 561–563, 604–607

– samples, 606–607

Data provenance, 608, 2203, 2205

– the origin of a piece of data, 608

Data quality, 561, 562, 612

– assessment, 608–612

– benchmarking, 609

– dimensions, 612–615

– environment, 1516, 1517
– measurement, 608–612, 1512–1514

– models, 616–620

– policy, 1515, 1516

– roles, 1516, 1517

– tags, 1511

Data rank/swapping, 620–621

Data reduction, 421–429, 621–626

– in database, 622, 623, 625

Data redundancy, 1917

Data replication, 626–630, 2383–2387, 2392

Data retrieval, 3472

Data sampling, 630–633

Data sketch, 634

Data skew, 634–635

Data standards, 1517

Data storage, 3438

– and indexing in sensor networks,

635–637

– management, 1814, 1817

Data stream(s), 136–139, 340, 341, 378, 380,

382, 2768, 2770, 2834, 2836, 2837,

3533–3536, 3610, 3634, 3635

– algorithm, 1948–1949

– management, 52–55

– management architectures and

prototypes, 639–643

– model, 2236

– processing architecture, 639–643

– summary, 512, 514, 515

– synopsis, 1143, 3538

Data stream management systems (DSMS),

2475, 3538

Data swapping, 620–621

Data types

– in scientific data management
– arrays, 644, 646

– finite element meshes, 645

– graphs, 645–646

– time series, 644–645

– streams, 1063

Data uncertainty management in sensor

networks, 647–651

Data virtualization, 812–813

Data visualization, 652–657, 2430–2431,

2897, 3410

Data volume, 3438

Data warehouse(s), 594, 657–663, 669–674,

684–692, 1454–1457, 1560–1564,

2731–2735, 3330

– architecture, 690–692

– life-cycle and design, 658–663

– maintenance, 664–668

– metadata, 669–674

– quality, 2230–2235

– security, 675–679

– technology, 3525

– versioning, 665–667
Data warehousing, 679–683

– for clinical research
– healthcare, 680, 682

– research, 679–683

– systems, 684–692

DB&IR integration, 1543–1546

DBMS, 1295, 1296, 1901, 1902, 1904, 1905

– component, 755

– interface, 755–756

DDBS, 894–896

Deadlock resolution, 900, 902–903

Decaying aggregation, 758–760

Decaying sum, 758–760

Decision support, 356–358

Decision table (DT), 761–764

Decision tree classification, 765–768

Decision tree classifiers, 341, 765–768

Decision trees, 769, 2469–2474, 3352–3355

Declarative networking, 770–771

Declarative query

– interface, 488

– over distributed network state, 770

Decomposition, 704, 705, 707, 708

De-coupling, 516

Deduction method, 119

Deductive data mining using, 772–778

Deduplication, 562, 779, 2558, 3506–3510

– an address mapping table, 779

– techniques, 779

Deep web, 784–787, 2519

Deferred coupling, 34

Deferred view maintenance, 3326, 3327

Definable sets, 453

Definition of a view, 3325

Deletion anomaly, 1918

Demand-driven pipelining, 2117

Denial constraints, 458, 459

Denomalization, 709

Dense index, 1433, 1434

Dense pixel displays

– very large multidimensional data sets,

789

Dense time model, 3112

Density-based clustering

– efficiency, 795–798

– parameters, 795, 797, 798

Dependency(ies), 704–708, 1009–1010

Dependency preservation, 1919

Depth-first (DF), 1891

Derivation of a collection of events, 411–412

Derivation of an event as a function, 412

Derived fragmentation, 892

Description, 215–217, 221, 222

Description logics (DL), 799–802

Descriptive lightweigh ontologies,

1614–1616

Design for data quality, 803–807

Subject Index 3729
Design of effective icons, 1334

Design patterns, 3557, 3558

Desktop metaphor, 846, 847, 3387

Detail-in-context, 869–871

Deterministic algorithm, 1287

Dewey decimal classification, 808

DF algorithms, 1893

DHT, 2863–2866

Diagrams, 809–810, 3370–3373

– connections, 809

Dialogue specification, 1329

Dictionaries, 965, 966

Difference, 811

Differential backup, 201

Differential privacy constraints, 2147, 2148

Digital archives, 811–816

Digital archives and preservation

– authenticity, 811–813

– chain of custody, 811–813, 815

– integrity, 811–813, 815

– preservation, 811–813, 815–816

– provenance information, 811, 812

Digital asset management, 979

Digital curation, 816

Digital elevation models (DEMs), 817–821

Digital gezetter, 1217

Digital image, 1115, 1116, 1343–1347, 1362,

1367

Digital information, 816

Digital libraries (DLs), 309–314, 821–825,

2518–2521

– federation initiative, 1636–1637

– systems, 823–825

Digital rights management (DRM), 825–830

Digital signature algorithm (DSA), 832, 833

Digital signatures, 830–835, 1715

– authenticity, 830, 832, 835

– integrity, 830, 832, 833, 835

– schemes, 252

Digital video, 466–472, 3271, 3286, 3287,

3289

DIG35 specification, 1349

DIME, 3132–3135

Dimension, 594, 836, 2665, 2666, 2779–2780

– for the knowledge model, 36

– reduction techniques for clustering,

838–842

– table, 2665, 2779–2780

Dimensionality reduction, 3042

Dimensionality reduction technique, 546

Dimensional model, 658, 1777–1783

Dimension-extended topological

relationships, 843–845

Direct attached storage (DAS), 846

Direct lateral communication, 295

Direct manipulation, 846–847, 3379, 3380

Direct-marketing advertising, 3457
Dirty data, 566–569

Disaster recovery, 847–848, 1643, 1644

Disclosure, 2783–2789

– metrics, 2138

– risk, 848, 2512, 2513
– re-identification, 848

– uniqueness, 848
Discounted cumulated gain, 849–853

Discovery, 853–857, 3366–3368

Discovery-and-forward, 785

Discovery and integration (UDDI), 854,

855, 857

Discrete models, 1853, 1854

Discrete time model, 3112

Discrete uncertainty, 648

Discrete wavelet, 857–863

Discretionary access control (DAC),

864–866, 2448, 2450

Discriminative approaches, 183

Disease understanding and treatment, 107

Disk, 2799, 2800

– drive, 866–868, 1900

– I/Os, 1333

– power saving, 867–868

– scheduling, 1832–1833

Disk-based index structure, 1222

Display advertising, 3458

Dissolve, 3316, 3318

Distance-based record linkage, 2353

Distance

– between streams, 2842–2844

– function, 1451–1454, 1734

– linkage disclosure risk, 2513

– measures, 374–375

– metric, 1379–1383

Distinct data type in temporal database,

3113

Distinct sampling, 2839–2841

Distinct-values estimation, 1143, 1146

Distinction between telic and atelic data,

2911

Distortion viewing, 869–874

Distributed architecture, 875–879

Distributed computing middleware, 3510

Distributed concurrency control, 879–883

Distributed database, 875–879, 896, 898,

912, 914–916

Distributed database systems (DDBS),

894–896

Distributed data fusion, 583

Distributed data streams, 883–889

Distributed data warehouse, 2012–2018

Distributed DBMS, 875–878, 896–898

– distributed coordination, 897, 898

– one-copy semantics, 897

– update propagation, 897

Distributed deadlock detection, 901–903
Distributed hash tables (DHTs), 903–904,

1627–1630, 2056, 2082

– overlay networks, 903, 904

– peer-to-peer systems, 904

Distributed join, 904–907

Distributed mediator system, 80

Distributed query optimization, 908–911

Distributed query optimization algorithm,

908–909, 911

Distributed query processing, 2592

– join, 914–916

Distributed recovery

– logging, 917, 918

– three-phase commit, 917

– two-phase commit, 917, 918

Distributed representations, 1847

Distributed source coding, 564–565

Distributed spatial index (DSI), 76, 920,

921, 923–924

Distributed spatial join, 920–922

Distributed systems, 2066

Distributed transaction management

– schedules, 927, 928

Distributed transactions, 879–883

Distributed two phase locking, 880, 881

Distributional statistics, 605

Distribution database design, 3340

Divergence between replicas, 451

Divergence from randomness (DFR)

– framework, 1130

– information retrieval models, 929

– models, 929–932

DL-based knowledge base, 801–802

DNA

– microarray, 1218

– of an organism, 1218

3D objects retrieval, 1125–1128

Document(s), 932

– clustering, 933–937
– criterion function, 934–936

– databases

– document repositories, 938

– text databases, 938

– exchange, 38

– field, 939–940

– footprint, 1253, 1254

– formatting systems, 942

– frequency (DF), 1570–1571

– generation models, 2169, 2170

– index, 1425

– layout, 1658

– length, 3937–3942

– length normalization, 940–941

– links and hyperlinks, 941

– management, 997

– management systems, 938

– markup standard, 354

3730 Subject Index
– metadata, 939

– relevance, 2514

– representations (inclusive of native and

relational), 942–946, 3041–3042

– structure, 939, 3049

Domain, 2967

– evolution, 2480

– relational calculus, 2370–2371

Domain-independent query, 2463, 2464

Dominance rule, 1473

Downward inheritance, 2911, 2913

DP-matching, 3295

DRAM main-memory, 1707

Drift, 2388, 2389

DTD (Document Type Description), 3572,

3621, 3650–3653

D-tree, 73, 74

Duality transformation, 1459, 1461

Dublin core, 947–949, 1724

– encoding scheme, 948

– metadata element set, 947, 948

Duplicator, 963, 964

Duration of copyright, 497

Dynamic attribute, 1771, 1772

Dynamic graphics, 950–953

Dynamic integrity constraints, 2976, 2982

Dynamic partitioning, 1567

Dynamic random access memory (DRAM),

1668–1669

Dynamic revalidation, 3654

Dynamic web pages, 954

E
Eager propagation, 2856

ECA rules, 35–36, 959–960, 1080, 1404,

1405

– action, 959

– condition, 959

e-Commerce transactions, 960

Eddy operator, 51

Edge detection, 1390–1395

Edge-server system, 3444

Effectiveness involving multiple queries,

961–963

Effectiveness of IR, 1522

Effectivess evaluation, 961

Efficient query processing, 1861

EF-game, 963–964

Egds, 1009, 1010

Ehrefeucht-fraisse games, 963–964

Ehrenfeucht game, 963–964

ei, 476

Eigenvalue, 2136

Electric power consumption of storage

devices, 2821

Electronic dictionary, 965–966

Electronic encyclopedia, 967–968
Electronic health records (EHRs), 344,

968–972

Electronic ink indexing, 974–977

Electronic transaction, 960

Elementary sketches, 81–83

Element shapes, 809

Eleven point precision-recall curve, 981–982

Eligibility criteria, 1013

Embedded dependency(ies), 1156–1158,

2489

Embedded functions, 38

Emergent semantics, 982–984, 2056

Emerging pattern, 107, 985

Emerging pattern based classification, 985

Encina, 1898

Encoded bitmap index (EBI), 246

Encryption, 571–573

Encyclopedia, 967

End-user map operations, 2720

Energy-efficient disk array, 1697

Ensembles, 210

– classifiers, 341

– methods, 262, 988–990

Enterprise application integration (EAI),

991–996

Enterprise architecture, 1516, 1518

Enterprise content management (ECM),

997

Enterprise information integration, 1495

Enterprise java beans, 1578, 1579

Enterprise privacy authorization language

(EPAL), 2142

Enterprise service bus, 997–1000

Enterprise terminology services, 1000–1003

Entity beans, 1578, 1579

Entity relationship diagram (ERD), 1004,

1005

Entity relationship model (ERM),

1003–1009, 1083–1091

Environment stack, 2772

Epidemic dissemination, 2082

e-prescribing, 434

Epsilon-serializability, 504

Equality-generating dependencies,

1009–1010

Equality join predicate, 1288

Equality predicate, 1427

Equivalent execution plans, 2548

Error-correcting code (ECC), 2823

Escrow commits and aborts, 1011–1012

Escrow transactions, 1010–1012

Estimation of term probability,

2158, 2160

ETL

– processes, 1095, 1096, 1098–1101,

3471–3472

– systems, 1095
ETM, 3559

European law in databases, 1013–1015

Evaluation, 193, 2448, 3479, 3481

– of filtering systems, 1483–1484

– of information retrieval systems,

192–193

– measures, 1016, 2747, 2748

– metrics, 1015–1024

– and optimization of Datalog, 753–754

– of relational operators, 1024–1029

Evaluative linguistic expressions, 1213

Event(s), 959, 960, 1041–1043, 1053–1058

– in active databases, 1044–1045

– causality, 1033–1034

– channel, 1034

– cloud, 1034–1035

– detection, 1035–1039

– driven architecture, 1040–1043, 1054

– flow, 1044

– instances, 1044

– lineage, 1046

– parameters, 1045

– pattern detection, 1029, 1032,

1046–1048

– pipe, 1063

– prediction, 1048–1052

– relation, 1045

– sink, 1058

– source, 1059

– specification, 1059–1062

– stream, 1063

– stream processing, 1029–1032

– transformation, 1064–1067

– translation, 1064, 1066, 1067

– triggering rules, 959

– types, 1035, 1036, 1059–1062

Event-component information model, 349

Event-condition coupling, 34

Event consumption modes, 35

Event detection, 3303–3308

Event detection and recognition, 1477

Event-driven applications, 1041, 1043

Event-driven business process management,

1068–1071

Event driven process chains, 293

Event-driven programming, 355

Event monitoring, 29, 31, 32, 2093

Event pattern, 2431, 2433

Event probability, 3224

Event processing, 1033, 1034

– agent, 1052–1053

– network, 1033, 1034, 1046, 1052, 1053,

1058, 1059, 1063

– systems, 1053–1058

Event-subscription matching over

structured p2p networks, 2070

Eventual consistency, 3452, 3453, 3455

Subject Index 3731
Event uncertainty, 3221–3224

Evidence based medicine, 1072–1073

Evolution and versioning, 665–667

Evolutionary algorithms, 1224–1227

Evolutionary computation, 1224–1227

Exactly once application, 100

Exactly once execution, 100–103

Exact ranking of the relevant documents

returned, 195

Exchangeable image file (EXIF), 1349

Excluded terms, 2795

Exclusion rights, 496, 497

Executable descriptions of distributed

algorithms, 770

Executable processes, 288

Execution cost, 506, 507

Execution order dependencies, 1142

Execution plan, 1575

Execution skew, 1079

Experimental data, 132–135

Experimental tool, 1737

Explicit cross-references, 941

Explicit event, 1080, 1404, 1405

Exploratory data analysis (EDA),

1080, 2136

Exploratory stage of data mining, 1080

Explortary spatial data analysis

(ESDA), 2691

Exponential decay, 758–759

Exponential histograms, 759, 760

Expressiveness, 1081, 1083

Expressiveness of query languages, 406

Expressive power of query languages,

1081–1083

Extended entity-relationship (EER)

– data model, 438, 1083–1091

– schema, 1646, 1647, 1649

Extended S-reducibility, 2620–2621

Extended transaction models (ETMs), 493,

3559

Extendible, 1093–1094

Extensible architecture, 3013–3015

Extension, 2936–2937, 2941, 2943

0-Extension, 122

1-Extension, 122

Extensionalization, 1923

Extensional relational databases (ERDB),

761, 762

Extent (of temporal granularity), 2970

External DBMS interface, 756

External hashing, 1289–1290

External quality measure, 3046

External storage, 635–637

Extraction, 2511

– of metadata from raw video, 3271

– transformation, and loading (ETL),

1095–1101
F
Faceted browsing, 1973, 1976

Faceted metadata, 1103, 1109

Faceted search, 1103–1108

Facility location, 2419–2423

Factoid question answering, 3486, 3487,

3489

Fact-oriented modeling, 1941–1946

Fact table, 2665, 2666, 2779, 2780

Faithful stream operator, 2216

False positive probability, 253

False positive rate (FPR), 2349–2351

Fault tolerance, 2397–2402

FCP, 2824–2826

Feature-based approaches, 1125

Feature-based 3D object retrieval,

1125–1128

Feature-based object model, 1938

Feature extraction, 161

Feature extraction for content-based image

retrieval, 1115–1119

Feature selection, 161

– clustering, 1119–1124

– high-dimensionality, 1119, 1124

Feature space, 1379, 1382

Feature vector approach, 1126

Federated search, 2518

Feedback, 2414–2415

Feedback control, 2553–2554

Feed-forward ANN, 1906

Fellegi–Sunter model, 2354, 2356

Fetch as needed, 905

Fiber channel, 2824–2826, 2829

Fibre Channel and iSCSI, 2812

Field-based information retrieval models

– combination of field information,

1129, 1130

– document representation, 1129

Field-based spatial modeling

– discrete machines, 1133

– field, 1132–1137

Field-dependent normalization, 1130

File sharing networks, 2076

File system, 2796, 2797

Filtering systems, 1482–1484

Filter/refinement query processing,

1860–1862

Fine-grained provanence, 2203

Finite automata, 3635

Finite axiomatizability, 1398

Finite element meshes, 645

The finite implication problem, 1396–1400

First committer wins, 2661, 2662

First-order formulae, 1140

First-order incremental algorithms

First-order logic (FOL), semantics

– definability, 1138, 1139
– first-order structures, 1138

First-order logic, syntax theorems,

1140, 1141

First-order vocabulary, 1140

First principal component, 2136

Fisheye views, 869, 870

Five RAID levels, 2359

Fixed-group microaggregation, 1736

Fixed-parameter tractability, 2041, 2043

Fixed time span

– time interval, 1141

Fixpoint theory, 753

Flash, 2798–2800

Flashback query, 3120

Flash memory, 286, 287

FlexPath, 3638

Flex transactions, 1142, 1222

Flux, 1111–1113

F-measure, 2776–2778

– a compromise between precision and

recall, 1147

– precision, 1147

– recall, 1147

– weighted harmonic mean, 1147

FM synopsis algorithm, 1143–1146

Focused crawling, 2520

Focused crawling using context graphs,

1150–1151

Focused retrieval, 2867, 2868

Focused web crawling, 1147–1154

Focus-plus-context, 869

Folding, 2933

FOL modeling of integrity constraints

(dependencies), 1155–1160

For “Connection”: Connection, 2636

Foreign key, 2756, 2758

Forever

– end time, 1161

– infinity, 1161

– valid timetime value, 1161

Formal concept analysis, 365

Format, 217, 221, 222

Forms-based interfaces, 1162, 1164–1166

For “Session”: Session, 2636

Fourth normal form (4NF), 1166–1167

Fractals, 2675

– space-filling curve, 1168–1169

Fragmentation and replication, 909

Fragment of genetic or protein material, 224

Frame-by-frame comparison by continuous

dynamic time wraping (DTW), 3295

Frecpo algorithm, 1189

Frequency moments

– computational complexity of

frequency moments, 1170

– frequency, 1169–1170

– stream, 1169–1170

3732 Subject Index
Frequency table, 2908

Frequent closed itemsets, 140

Frequent elements, 1175–1179

Frequent graph patterns, 1170–1175

Frequent itemset mining, 124–126, 365,

367, 1179–1183

Frequent itemset mining with constraints,

1769

Frequent itemsets, 136–139, 1179–1187,

2051, 2052, 2054

Frequent items on streams

– heavy hitters, 1175–1179

– hot items, 1175–1179

Frequent pattern, 1188

Frequent subgraph mining, 1170, 1171,

1173, 1174

Frequent subsequence, 2622–2625

Frequent updates, 1458

Freshness, 2386

Full-text index, 1571

Full-text search extension to the

XQuery 1.0, 3665

Fully-automatic web data extraction,

1200191–1193

Functional data model, 1193–1198,

1201, 2011

Functional dependency(ies) (FD), 1010,

1155–1158, 1199, 1200, 1411, 2960–2962

Functional dependency implication, 135

Functional design, 1973

Functional expressions, 1194

Functional query language and data model,

2007

Functional query languages (FQL), 79–80,

1201–1204

Functions, 1194, 1195, 1197

Fundamental requirements of stream

processing, 2849

Fuzzy generalizations, 1205, 1206

Fuzzy IF-THEN rules, 214, 1211, 1213

Fuzzy/Linguistic IF-THEN rules and

linguistic descriptions, 1214–1215

Fuzzy logic, 2418, 2419

Fuzzy models, 1205–1209, 1808, 1812, 1813

Fuzzy preference relation, 1212

Fuzzy relations, 1210

Fuzzy set, 1209–1210

Fuzzy set theory, 1207, 2418

G
Gazetteer, 1252

Gene expression arrays, 1218–1220

Gene ontology, 1960–1962

Generalization, 989, 990, 1913, 2746–2747,

3018

Generalized ACID, 1091–1092

Generalized search tree (GiST), 1222–1224
General network connecting storage

devices, 2797

General secure database systems, 2530

Generative algorithms, 183

Genetic algorithms, 1224–1227

Genetics/Genomics, 1400–1404

Genomics algebra, 2262

Geo coding, 1252–1253

Geo crawling, 1252

Geographical databases, 2571

Geographically-distributed crawl, 3465

Geographically referenced data and

information, 1246, 1248, 1249

Geographic data modeling, 1133

Geographic focus, 1252, 1253

Geographic information retrieval (GIR),

1227–1231, 1251, 1254

Geographic(al) Information Systems (GIS),

1231–1235, 1639–1642, 2571–2575,

2655–2656

Geographic scope, 1253

Geographic score, 1253

Geographic web search, 1251–1255

Geography markup language (GML),

1236–1238

Geometrical primitives, 1374

Geometric match, 1230

Geometric mean average precision (GMAP),

evaluation metric 1256

Geometry-based object model, 1937

Geo parsing, 1252–1253

Geo raster services, 2332, 2333, 2336

GEO-RBAC Model, 1244, 1245

Georeferencing, 1246–1249

Geo search, 1251–1253

Geospatial, 1249–1251

– coordinates, 1246

– referencing, 1246–1249

Geo tags, 1251, 1252

Geo-targeted search, 1251–1255

Gexetter entries, 1217

Gezetter(s), 1217–1218

GIRAS, 3132, 3135, 3136

GIS operations, 2720

GIS software, 1232, 1234, 1235

Global and Local as View (GLAV), 338,

2489, 3332, 3333

Global as View (GAV), 1492, 2489,

3332–3334

Global concurrency control strategies for

replicated databases, 2391

Global features, 1379–1381

Global positioning system (GPS), 1639

Global recoding, 1912, 1913

Global serializability, 926–928

Global transaction, 1142

Google earth, 1854
Google map, 1232

GOPPR, 1728

Gossiping-based methods, 1688

Government, 292

GPS data, 1692–1695

Grammar, 1256–1259

Grammatical data stream, 2216

Gramm-Leach-Bliley act (GLB ACT), 2140

Grand tour, 950, 951, 953

Granular computing, 772–778

Granularity, 2968–2973

Granularity of the occurrence time, 2975

Granularity of the reference to time, 2975

Graph, 1260–1263

– classification, 1749

– clustering, 1749

– connectivity, 1272

– databases, 1268–1269

– kernel, 1748, 1750

– management 1266–1271

– mining, 1749

– search, 1749

– XPath, 1265

Graphical language, 3400

Graphical User Interfaces (GUIs), 847,

3379, 3387

Graphic techniques, 1080

Graph query languages, 1269–1270

Gregorian calendar, 304

Grid and workflows, 1276–1278

Grid file (and Family), 1279–1282

Grid-partition index, 74

Grid quorums, 2314, 2315, 2317

Grid workflow, 1276–1278

Group communication, 2392–2397

GUID, 2428–2429

Guideline modeling languages, 1075

GUIs for web data extraction,

1282–1286

H
Haar wavelet, 3446, 3447

Hamming code, 2359

Handwritting recognition, 973, 974

Hard disk, 866–867

Hard disk drives, 2821

Hardware architecture, 127–131

Hardware tuning, 2114

Hash-based index, 1289–1290, 1707

Hash-coding methods, 252

Hash functions, 1287–1288

Hashing, 1093–1094, 1619–1622

Hash join, 1026–1028, 1288–1289

Hash partitioning, 2025, 2026

Hash structures, 1433, 1434

Healthcare, 292–293, 358, 359

Health insurance, 2140

Subject Index 3733
Health Insurance Portability and

Accountability Act (HIPAA), 2364

Health level seven (HL7), 354

Health Level 7 (HL7) standards, 1558

Heap, 1434

Heavy hitters, 511, 513, 1305–1307

Heavy hitters on data streams, 1305

Heterogeneity, 1704–1706

Heuristic microaggregation, 1736

Hidden markov models, 398

Hidden web, 784, 1466, 2519, 2520

Hierarchical clustering, 380, 381

Hierarchical data format (HDF), 1777

Hierarchical data model, 715

Hierarchical data summarization (HDS),

1300–1304

Hierarchical deadlock detection, 900–902

Hierarchical entity-relationship model,

1083–1091

Hierarchical heavy hitters, 1304–1307

Hierarchical memory system, 1707, 1708

Hierarchical model, 1295, 1298, 1299

Hierarchical RBAC, 91–92

Hierarchical relationship, 2606, 2608

Hierarchical storage management

(HSM), 1499

Hierarchical task analysis (HTA), 1329

Hierarchichal data, 836

Hierarchy, 1308–1309

High availability, 2397–2402

High dimensional datasets, 838, 1309,

1310, 1313

High-dimensional feature vectors, 1806

High-dimensional indexing, 837, 2571,

3314, 3315

Higher-order entity-relationship,

1083–1091

High Performance Computing (HPC),

2816, 2817, 2820

Hilbert curve index (HCI), 75

Hilbert’s spaces, 3260

Histogram intersection, 1380–1383

Histograms, 1315–1318, 2898

HITS, 3484, 3485

HL7 reference information model (RIM),

349, 355, 1558

Hold-out validation, 534

Homomorphic encryption schemes, 1320,

2535–2537

Homomorphic property, 1320

Homotopy, 2652, 2653

Horizontal partitioning, 599–600

Horizontal fragmentation, 892

Horizontal partitioned data, 1321–1322,

3264, 3341

Horizontal replication, 2409, 2411, 2412

Huffman Coding, 1375, 1377, 3047, 3048
Human-based computation, 1324

Human-centered computing (HCC),

1323–1326

Human expressions, 1880, 1881

Human factors and ergonomics,

3247, 3248

Human visualmeans, 1335

H.26x, 3297, 3298, 3301, 3302

Hypercube, 538–539

Hypergraph, 2043

Hyperlink analysis, 84

Hyperlink relevance, 3499

Hypertext, 268, 269, 941

Hypertext interfaces, 3376–3378

Hypertexts, 1331–1332

Hypothesis generation, 3065, 3068

HyTime, 3124

I
Icon, 1334

Iconic displays, 1335–1342

Identification, 176–180

Identifier, 1735

Identity-based relationship, 1936

Identity disclosure, 848

IDF weight, 1571

IDMS, 1901

Image, 1343–1348

Image (of temporal granularity), 2970

Image acquisition, 1344–1345

Image annotation, 1358–1361

Image compression, 1375, 1378

Image content modeling, 1349–1353

Image database, 1353–1361

Image database schema, 1354–1355

Image metadata, 1358–1360, 1362–1368

Image processing, 229, 230

Image processing and analysis, 1345, 1347

Image representation, 1345, 1348,

1374–1379

Image retrieval, 85–88, 1384–1388

Image segmentation, 1370, 1373

Image similarity, 1379–1383

Immediate coupling, 34

Immediate view maintenance, 3326, 3327

Implementation, 2893, 2895

Implementation abstraction, 6, 7

Implicit event, 1404–1405

Improving storage availability, 2798

IMS, 1294–1299

Inclusion dependencies, 1156–1158

Incomplete information, 1405–1410, 1876

Inconsistent databases, 452, 1410–1414

Incremental backup, 201

Incremental computation of transitive

closure, 1417

Incremental maintenance, 2549
Incremental maintenance of views with

aggregates, 1421–1424

Incremental query computation, 1414,

1415, 1417

Incremental view maintenance, 1414,

1417, 3326

Independent parallelism, 1566

Index, 244–248, 2877, 2879, 2894

Index, B+-tree, 1433

Index creation and file structures,

1425–1427

Indexed sequential access method

(ISAM), 197

Indexing (or Text indexing), 257, 258,

788–789, 1309–1313, 1437, 1448–1450,

1458–1462, 1467–1471, 2643, 2646,

2680–2681

Indexing

– granularity, 1468–1471

– data warehouses, 1454–1457

– schemes, 2109

– units, 1467–1471

Index intersection techniques, 517

Index join, 1427–1428

Index-only execution plan, 516

Index sequential access method

(ISAM), 2681

Index structures, 1453

Index structures for biological sequences,

1428–1432

Index

– term, 3259–3262

– structures, 1453

– tuning, 1433–1435

Indices, 1454–1457

Indices for multi-dimensional points,

2703–2704

Individualism, 2136

Individually identifiable data, 1471–1472

Induction, 1256–1259

INEX, 1545, 1876–1879

Inference, 705–706, 1256–1259

– control in databases, 1472

– problem, 1789–1791

INFO-D, 2210

Information

– architecture, 1103, 1104, 1109

– browsing, 3376

– extraction, 233, 234, 397–400,

1476–1481, 1595–1600, 3472–3478,

3486, 3487, 3569

– extraction function, 1649

– filtering, 1481–1484

– foraging, 267, 1485–1490

– hiding, 826, 829–830

– integration techniques for scientific

data, 1496–1498

3734 Subject Index
– lifecycle, 2364

– lifecycle management, 1499

– loss, 2512, 2513

– losslessness, 1919

– loss measures, 1499–1501

– modeling, 1941, 1942

– navigation, 1501–1502

– network analysis, 595, 596

– theoretic models, 1524, 1525

Information product (IP) approach, 1502,

1503, 1505–1508, 1515, 1516

Information product map (IP-MAP), 616,

618–619

Information quality (IQ), 1502–1511

– dimensions, 1503–1505, 1507, 1508

– managing information as a product,

1502–1508

– measurement, 1512, 1514

– policy, 1515–1519

Information queries, peer-to-peer, 111–113

Information retrieval (IR), 233–235, 266,

375–378, 849, 1016–1019, 1022–1024,

1519–1528, 1703, 2127–2129, 2377, 2875,

3072, 3075, 3472, 3506–3508

– operations, 1528–1530

– system effectiveness, 1528

Information retrieval systems, 962,

1520, 1521

Information-seeking behavior, 1485

Information seeking process, 3410,

3411, 3413

Information theoretic models, 1524, 1525

Information visualization, 2506

Information visualization and visual

analytics, 3388, 3390, 3392

Informedia, 466, 469

Infrastructure independence, 812, 813

Initial nodes in the event processing

network, 1059

INitiative for the Evaluation of XML

retrieval (INEX), 1531–1537, 2191–2194,

2197

Initiator, 143, 1537–1538

In-memory

– buffers, 1800

– DBMS, 1669

In-network

– indexing, 635–637

– processing, 884, 888, 889

– processing of aggregates, 1540–1541

– storage, 635–637, 1757

In-Network Query Processing, 1538–1542

Insertion anomaly, 1918

Insertion-deletion technique, 1423

Instance-based learning, 1886–1888

Instance-driven storage, 3628–3630

Instances of roles, 1245
Instantaneous event, 143

Instant relation, 1045

Integrated data store (IDS), 1901

Integrated temporal reasoning

approaches, 2227

Integration across enterprises, 991

Integration of rules and ontologies,

1546–1550

Integrity, 730–731

– and authenticity of a message, 1715

– constraints, 722–723, 1410–1412,

1414, 2972–2986

Intelligent disk, 37–38

Intelligent storage systems, 38, 1551–1553

Interaction, 3366, 3368, 3369

– between molecules, 220

– styles, 3529

Interactive analysis, 3343

Interactive browsing, 377

Interactive graphics, 1866, 1869

Interactive integration, 1498

Interactive layout, 3382

Interactive query-driven analysis, 3388

Interactive retrieval, 1384, 1386, 1388

Interactivity, 78

Interface, 955, 957, 1553–1557

Interface engines in healthcare, 1557–1560

Interfunctional integration of business

processes, 295

Internal quality measure, 3046

Internet SCSI (iSCSI), 1574, 1575

Internet transactions, 3523

Interoperability, 1560–1564

Inter-operator

– load balancing, 2269–2271

– parallelism, 1566, 1982

Interpolation-function, 2995

Interpolation-granularity, 2994, 2995

Inter-query parallelism, 702, 1566–1567,

2038–2040

Interval encoding, 246

Interval preservation, 2620, 2621

Intra-operator

– load balancing, 2269–2272

– parallelism, 1567

Intra-query parallelism, 1567–1568,

2038–2040, 3340, 3341

Intrinsic skew, 635

Intrusion detection, 89–90, 1568–1570

Invariance, 3362

Inverse distance weighting, 2737

Inverse Document Frequency (IDF),

1570–1571, 3937–3942

Inverse-rule algorithm, 2438, 2440, 2441

Inverted file, 3058, 3059, 3061

Inverted index, 1425–1427, 1571,

3051–3055
Inverted index compression, 3052, 3054

Inverted list, 1571–1574

Inverted list compression or inverted

file, 3052

Invisible data mining, 597

Invisible web, 2519

I/O computation, 1333

I/O model of computation, 1333–1334

IP storage, 1574–1575

IR effectiveness, 849, 851

IR evaluation metrics, 849, 853

IR relevance ranking algorithms, 3497

ISAM file (a static tree), 3173

iSCSI, 2824–2826

iSCSI target, 1575

ISO/IEC 11179, 1724–1727

Isolation property, 144

Isomorphism, 2603–2604

ISO standard, 2754, 2755, 2759

Iterator, 1575–1576

J
Java application server, 104

Java Database Connectivity (JDBC), 449

– connectivity, 1577

Java enterprise edition (JEE), 1578–1579

Java metadata facility, annotation

types, 1580

Java program elements, 1580

J2EE, 1578

JMS, 2210

Join, 1580–1582, 2592–2595, 2673–2674,

3544–3545

Join dependency(ies)(JD), 1156–1158,

1581–1582, 1865

Join index, 1582

Join order, 1582–1583

Join ordering, 2273, 2275–2277

Juke box, 2799

K
k-anonymity, key attribute, 1585

KDD process, organisational scheme, 1586

Kerberos, 2828

e-Kernel, 1240, 1242
Kernel estimation, 758

Key attribute, 1735

Key dependency, 1200

Keyframe extraction, 3281, 3284

Key range locking, 273–277

k-fold cross-validation, 533, 534, 536

K-means, 1588, 1589

K-means clustering, 3045

κ-Medoid, 1588, 1589, 2419, 2420,

2422, 2423

k-nearest neighbor query (kNN), 1890

K-nearest neighbors, 1371

Subject Index 3735
Knowledge, 356–359

– acquisition, 1966

– base, 3472

– discovery, 3065

– management process, 297–298

– representation, 1074, 2914, 2915, 2920

– representation languages, 799, 802,

2427

Knowledge discovery in databases (KDD),

3061–3065

L
Label (of temporal granule), 2971

Labeled graph, 1170–1172

Laboratory information management

system, 1402

Lamport-Diffie one-time signature

scheme, 1715

Language(s), 257–260, 3370–3373

Language model(s), 1090, 3058, 3069

Large scale scientific experiments, 2816

Large-scale text retrieval, 3479

Latch coupling, 273–277

Latches, 273–275

Latent Semantic Indexing (LSI), 3076, 3078,

3260–3262

Latin hypercube sampling, 2900

0–1 laws, 3683

Layer, 3018–3023

Layered, 3012–3015

Layers of DBMS, 2179–2180

L1 cache, 2195–2196

L2 cache, 2195–2196

Learning distance measures

– classification, 1601–1604

– clustering, 1601–1604

– nearest neighbor methods, 1603

– semi-supervised clustering,

1604–1605

– support vector machines, 1604

Learning environment, 1517

Learning from unbalanced data, 1664

Learning to rank, 3481

Least recently used (LRU), 1800

Leave-one-out cross-validation, 534

Legacy software, 2936, 2937, 2943

Legacy system, 1299, 1901

Lexical analysis of documents, 1528

Lexical relations, 3036

Lexicographic information, 965

Library of Congress (LOC), 1636

– classification, 808

Licensing and contracting issues in

databases

– contract, 1610–1612

– database license, 1610–1612

– license, 1610–1612
Life science data management, 1960–1962,

3519

Life sciences, 1266–1271

Lifespan, 98–99

– existence time, 1612

– valid time, 1612

Lightweight ontologies, 1613–1619

Linda, 495, 496

Linear, 1619–1622

Linear content, 1825

Linear dimension reduction, 838–842

Linear hashing, disk-based, 1619

Linearizability, 1743

Linear regression, 1622, 2044, 2045

Linear regression analysis, 1622

Linear speed-up, 2031, 2032

Linguistic descriptions, 1214–1215

Link analysis, 3485

Linking, 1623–1626

Linking and brushing, 1623–1626

Links between document fragments, 1331

LinQ, 3606

List comprehension, 420–421

List or file compression, 3051–3055

Literature-based discovery and exploration,

3065

Load-balancing, 719–721, 1627–1632, 2637

Load balancing problems, 2269, 2271

Load shedding, 54–56, 1632–1635

Local advertising, 1251, 1254, 1255

Local as View (LAV), 1492, 3332, 3333, 3336

Local features, 1380, 1383

Locality, 59, 1637–1638, 1713–1714

Locality-preserving mapping, 2675, 2679

Local split decision tree (LSD-tree),

2703–2704

Local storage, 635–637

Local suppression, 1912, 1913

Location and time based RBAC (LoT-

RBAC), 1245

Location-based services (LBS), 2718

– privacy, 1640

Location

– predictions, 2695–2698

– transparency, 2416, 2417

Locking granularity and lock types,

1641–1642

Lock manager, 445

LOC METS, 1636–1637

Log component, 1645

Log data, 517, 519

Logging, 1957

– methods, 519

– and recovery, 1643–1644

Logging/recovery subsystem (LSR),

1644–1645

Logical connectives, 1928
Logical database design: from conceptual to

logical schema, 1645–1649

Logical definition of relevance, 1652

Logical foundations of web data extraction,

1649–1651

Logical models of information retrieval,

1652–1657

Logical observation identifiers names and

codes (LOINC), 364

Logical organization of the content, 1658

Logical schema, 708, 709, 1645–1649

Logical storage, 2830

Logical Story Unit, 3303

Logical structure, 1658, 2376

Logical uncertainty principle, 1652,

1653, 1656

Logical unit number (LUN), 1658–1659

Logical unit number mapping, 1659

Logical volume (LV), 1659, 1660, 3438

Logical volume manager (LVM), 1659–1660

Logical WORM, 3570

Logic-based wrapping, 1649

Logic programming, 2302, 2304

Logic programming language Prolog, 2011

Log-linear regression, 1660

Long-duration transaction, 2588–2589

Long-lived transaction, 493, 494

Long-running processes (macroflows), 3166

Long running simulation, 734, 737

Loop, 1661

Loose coupling, 1661–1662

Lossless join, 1581

Low-power modes, 2822

LRU (least recently used), 283

– replacement, 278–280

LRU-K, 747

LUN masking, 1659

M
MAC

– for database, 1685

– functions, 1715

– for networks, 1685

Machine learning, 262, 988–990

– based IE, 1478

– in computational biology, 1663–1667

– methods, 1885, 3041

Magnetic disk, 866–867

Magnitude table, 2908

MAID disk, 1697

Mainframe, 2511

Main memory and cache optimization,

128–129

Maintenance of recursive views, 1674–1679

Majority quorum system, 2314

Management of physical and logical storage

resources, 2827

3736 Subject Index
Management policies, 134

Management virtualization, 812

Managing compressed structured text,

1679–1684

Mandatory access control (MAC) models,

1684–1685, 2448, 2450

MANET Databases, 1685–1690

Map operations, 2719–2724

Mapper, 1706

Mapping between the XML view and the

underlying data, 3656–3657

Mappings, 1760–1763

MapQuest, 1232

Margin, 262

Markup language, 1696

Mashup, 1696–1697

Massive array of Idle disks (MAID), 1697

Massively parallel processor (MPP), 2638

Master-slave replication, 1738

Matching type, 1371, 1372, 2561–2566

Materialization, 2117

Materialization of dynamically generated

HTML fragments, 3524

Materialized views, 1670–1673, 3324, 3325,

3328–3331, 3340

Materialized web views, 3524

Mathematical dimension reduction

technique, 1784

Mathematical model of approximate

reasoning, 120

Mathematical model of meaning, 1215

Matrix masking, 1698

Maximal patterns, 1699–1702

Maximal set of tuples, 92

Maximum distance to average vector

(MDAV), 1736

MDS models, 1784

MDX, 1952, 1953

Mean average precision (MAP), 192–193,

1691–1692

Meaning, 3051–3055

Measure, 1703–1704, 2665–2666, 2779, 2780

Mechanism for information hiding, 2789

Media content analysis, 429–431

Media content annotation, 429, 430

Media (crash) recovery, 1644

Media production, 429–431

Mediation, 1704–1706

Mediator, 720, 1704–1706

Medical record, 968–970

Membership degree, 1209–1210

Membership function, 1209

Membership query, 1436, 1438, 1707

Memory

– hierarchy, 1707–1713

– locality, 1713–1714

Mergepurge, 780
Message, 1716

– broker, 2212–2214

– router, 2209

– translation, 1064

Message authentication code (MAC), 1287,

1288, 1715–1716

Message-oriented middleware (MOM),

47, 1716

Message systems, 1716

Messaging queueing system, 719, 721

Meta-class, 2918

Metadata, 215–222, 401, 939, 979, 980,

1249–1251, 1362–1368, 1717–1721,

1724–1727, 2497, 3286–3292

– interchange, 401–404

– management, 215–219, 1718–1720

– repository, 570, 571, 670–672, 674

– standards, 215–219, 673–674

Metadata encoding and transmission

standard (METS), 1636–1637

Meta data interchange specification (MDIS)

– interchange, 1717–1718

Metadata registry (MDR), 1724–1727

Meta model, 1719, 1720

Meta object facility (MOF)

– interchange, 1722–1723

– metadata, 1722–1723

Metaphor, 3387–3388

Metasearch, 1730–1734

Metasearch engines, 1730–1734

Metasearcher, 2520

Method of concurrency control, 2672

Methods for video shot-cut detection, 3309

Methods of data analysis, 2691

Metric, 1734–1735

– index, 1439

– space, 1451–1454, 1734–1735

MGED ontology, 1960, 1962

Microaggregation, 1736

Microarchitecture optmizations, 129

Microarray gene expression data, 107

Microbenchmark, 1737

Microdata, 1735

– masking, 1474

– protection, 1473, 1474

– rounding, 1737–1738

Middleware, 1705, 1706

– systems, 2408, 2409

– technologies, 501, 1899

Middleware support for database replication

and caching, 1738–1742

Middleware support for precise failure

semantics

– consistency, 1743, 1746, 1747

– failure(s), 1743–1748

– linearizability, 1743

– serializability, 1743
– transactions, 1743, 1747, 1748

Minimal key, 1587, 1588

Minimum bounding rectangle (MBR),

2453–2456

Minimum confidence, 140

Minimum support, 140

Minkowski-form distance, 1381

Min-wise hashing, 2845

Mirrored disk, 2359

Mirroring, 1420

Misuse detection, 1569

MLS systems, 2540

Mobile ad-hoc sensor network (MANET),

1685–1690

Mobile data, 428, 429

Mobile database, 1751

Mobile devices, 1751

Mobile e-Commerce transaction, 960

Mobile interfaces, 1751–1754

Mobile sensor network (MSN) data

management, 1755–1759

Modality, 1838, 1840–1842

Model-based querying, 1764–1768

Modeling, 1777–1783

Model management

– mappings, 1760–1763

– meta data, 1760

– meta model, 1760–1763

– schema integration, 1760–1762

– schema matching, 1760–1762

Models of information foraging, 1485, 1489

Modification, 98–99

MOF, 1729

Momolingual dictionary, 966

MonetDB, 1669

Monitoring data streams, 492

Monolithic architecture, 3014, 3015

Monotone constraints, 1769

Mosaicplots, 1868, 1869

MOSTmodel, 1772, 1774

Moving object(s), 1458–1462, 1770, 2682,

2683, 2685

Moving Picture Expert Group (MPEG),

3287, 3290–3292, 3297–3299, 3301, 3302

Moving point, 1770, 1771, 1773–1775,

2730–2731

Moving region, 1770, 1771, 1773, 1775,

2730–2731

MPEG–7, 1349–1353

Multidimensional, 1950–1952

– cube, 538

– data, 1776–1777, 2253–2254, 2679

– data formats, 1776–1777, 2024

– data warehouse, 664, 665

– indexing scheme, 1279

– information, 789

– model, 2780, 3526, 3527

Subject Index 3737
– modeling, 1777–1783, 2024

– points, 2703–2704

– range query, 2325

– temporal aggregation, 2925

Multidimensional scaling (MDS), 840,

842, 1784

Multigranulity locking, 1642

Multi-label classification, 1664

Multi-layered architecture, 1862–1864

Multi-level grid file, 1281

Multi-level recovery, 1784–1788

Multilevel secure database management

systems (MLS/DBMS), 1789–1791

Multilevel secure (MLS) databases,

2540–2543

Multilevel secure relational data

model, 1791

Multilevel transaction protocols, 273, 274,

1792–1796

Multi-master replication, 1738, 1740

Multimedia, 1825–1829

– asset, 1825, 1826

– data, 1800–1804
– alphanumeric, 1798–1800

– audio, 1797–1800

– buffering, 1800–1804

– querying, 1808–1814

– storage, 1814–1817

– video, 1797–1800

– database(s), 2244

– audio, 1818, 1819

– image, 1818, 1819

– video, 1818–1820

– documents, 1821, 1824

– metadata, 1825–1829

– mining, 595, 596

– objects, 1830

– presentation databases, 1829–1831

– presentations, 1829–1831

– resource scheduling, 1832–1835

– retrieval, 837

– systems, 1834

Multimedia data indexing

– metric indexes, 1807

Multimedia information retrieval (MIR)

model, 528–532, 1820–1824, 2566–2567,

2570

Multimedia retrieval evaluation

– laboratory test, 1836

– operational test, 1836

– precision, 1836, 1837

– recall, 1836

Multimodal, 1838–1843

– interfaces, 958, 1838–1843

– streams, 3304, 3305

– systems, 1842

Multimodality based approaches, 3304
Multi-pathing, 1659, 1843

Multi-pathing software, 1843

Multi-perception, 1844

Multiple class labels, 1885

Multiple client-server architecture, 343

Multiple CQ scheduling, 2476

Multiple distance learning, 183

Multiple imputation, 2899

Multiple versions of a database

schema, 2499

Multi-processor cache (MPC) machine, 714

Multiprocessor

– database management, 2026–2029

– data placement, 2024–2026

Multi-query optimization, 1849–1852, 3609

Multi-relational data mining, 596

Multi-representation, 1845–1847

Multi-resolution, 1853–1857

– models, 1853, 1857

– terrain modeling, 1853–1857

Multi-scale, 1844–1848

Multi-step query processing, 1860–1862

Multi-stream query, 2475

Multi target applications, 1753–1754

Multi-tier architecture, 1862–1864

Multivalued dependency (MVD),

1581, 1865

Multi-version concurrency control,

2659, 2660

Multi-version databases, 1870–1872

Multi-version schedule, 1870, 1871

Multi-version serializability, 502–504

– and concurrency control, 1870–1872

Multi-version serialization graph (MVSG),

2662

Music metadata, 157–160

N
Naive Bayes, 207

Naı̈ve document representation, 943–945

Naive tables, 1407–1410, 1875–1876

n-Ary relations, 2372

National Institute of Standards and

Technology (NIST), 2776

Natural human-computer interface

(NHCI), 1880–1884

Natural interaction, 1880–1884

Natural interface systems, 1881–1883

Natural join, 1581

Natural language generation (NLG), 3048,

3049

Natural language information analysis

method (NIAM), 1941–1946

Natural language processing (NLP), 234,

1564, 3072, 3074, 3075

Navigating and searching in compressed

form, 1681
Navigation, 941, 1928

– space, 1501–1502

– tasks, 1501, 1502

Nearest neighbor classification, 1885–1889

Nearest neighbor classifiers, 341

Nearest neighbor (NN) of a query

point, 1891

Nearest neighbor query, 1890

Nearest neighbor query in spatio-temporal

databases, 1891–1894

Negative Tuple, 3535, 3536

Negotiation based methods, 1688

Nested loop join, 1026, 1895

Nested loop join using index, 1427, 1428

Nested transaction, 1222, 1896–1898

Network attached secure device (NASD),

1899–1900

Network attached storage (NAS), 1900,

2798–2800, 2824, 2826

Network common data form

(NetCDF), 1777

Network data model, 715

Network distance, 2442–2446

Network file system (NFS), 1900

Network formation and communication,

1539

Network model, 1901, 1904, 1905

Network Voronoi, 2443, 2445

Network with blocked I/O services, 2797

Neural networks, 1906–1909

Neurons, 1906–1908

Newspapers, 978–981

NEXI, 1545, 1876–1879

NFS, 2824, 2826, 2827

NiagaraCQ Project, 1634

NIST text retrieval conference (TREC),

1692

Node in the edge of the event processing

network, 1058

Node in the event processing network, 1052

Noise addition, 1911

Noise tolerant support, 121–122

Non-blocking concurrency, 1010

Non-clustering index, 1434, 2522

Non-confidential outcome attribute, 1735

Non-copyrightable data, 1611, 1612

Non-linear content, 1825

Non-metric temporal constraints, 2225

Non-parametric data reduction

(NDR), 2044

Non-perturbative masking, 1474,

1912–1913

Non-pipelineable operator, 2794

Non-profit trade association, 2815

Non-redundant rules, 365–368

Non-schematic integration, 1497

Nonsequenced, 1913–1915

3738 Subject Index
Non-standard database, 1860, 1861

Nontemporal, 1914, 1915

Normal form, 1915–1920

Normalization, 709, 1010, 1917–1920, 2498

Normalized cut criterion, 2749

Normalized schema, 2498

Now relative, 1922–1924

n-tier architecture, 1862–1864

Null values, 1405–1408, 1876

Numerical fact, 1703–1704

O
OAI, 2520, 2521

OAI-PMH, 2520

OAIS model, 132

OASIS, 1927

Object constraint language (OCL), 1729,

1927–1928

Object database (ODB), 1929–1935

Object data model(s), 411, 1936

Object identification, 2556, 2557

Object identifier, 1935–1936

Object Modeling Technique (OMT), 3232

Object-model transactions, 1792–1796

Object-oriented database (OODB),

1929–1933, 2771, 2772

Object-oriented encapsulation, 105

Object-oriented programming languages,

1553–1555

Object query language (OQL), 2003–2004

Object recognition, 1936–1939

Object-relational database (ORDB),

1929–1931, 1933, 1934, 2293–2296

Object-role modeling (ORM), 1941–1946

Object storage device (OSD), 1552

Observation, 359–360

Observe-predict-react, 2552

ODYSSEY, 3132

Office automation, 997

Office information systems, 290

Offline View Maintenance, 3327

OIL, 2008

Okapi BM25, 255

OMG data dissemination service, 2210

On-chip parallelism, 129–131

One-copy serializability, 1947–1948, 2397

One-pass algorithm, 1948–1949

Online algorithms, 741–744

Online analytic(al) processing (OLAP)

databases, 539, 594, 1949–1953,

2297, 2298, 2300, 2755, 2758,

2880, 2883

Online communities, 2667

Online recovery, 1954–1959

On-line transaction processing (OLTP),

2297–2299

Online View Maintenance, 3327–3328
Ontologies, 216–218, 222, 360, 1546–1550,

1613–1619, 1960–1965, 2579–2582, 3472

– definition language, 1973, 1974, 1976

– elicitation, 1966–1971

– engineering, 1965, 1972–1973

– life cycle, 1972

– matching, 2561–2562, 2565

– visual querying, 1973–1977

OO7 Benchmark, 99

Open Archives Inititiative, 2519

Open database connectivity (ODBC), 449

Open EHR reference information

model, 349

Open nested transaction, 1792–1796,

1978–1980

Operator failures, 100

Operator-level parallelism, 1981–1985

Opinion mining, 1986–1990

Optical storage, 2798, 2799

Optimal foraging theory, 1485, 1487

Optimal join order, 1583

Optimal location, 2419–2943

Optimal microaggregation, 1736

Optimal partitioning, 388

Optimal sequenced route (OSR) query,

2443–2444

Optimistic concurrency control (OCC),

2391, 3148, 3149

Optimistic replication, 1991–1995

Optimization, 47, 2550, 2552–2553

– of multiple queries, 1849

– problems, 790–793

– techniques for OQL, 2003

– and tuning in data warehouses,

1995–2002

OQL expressions, 2003

Oracle, 3162

Oracle DBMS, 3120

Orchestration, 2004–2005

Order relation, 1063

Order statistics of data, 2235

Organizational links, 941

Organizational theory, 1661

Orientation and directional relationships,

305–308

OR-join, 2006

OR-split, 2006, 2752

OSQL data model, 2007

Outer join, 1581, 1670–1673

Outlier detection, 88–90

Out-Of-Vocabulary (OOV), 523

Overflow, Hash-key, 1289–1290

Overlap, 2187–2191

Overlay networks, 2008, 2056–2060, 2081,

2576–2579

Ownership and transfer of copyright,

497–498
P
Page-level recovery, 1785, 1786

Page-oriented representation, 943, 945

PageRank, 3484, 3485

Page replacement policy, 286

Panning, 3684–3686, 3688

Parallel and distributed data warehouses,

2012–2018

Parallel composition, 419, 420

Parallel coordinate plots, 1866, 1867, 1869

Parallel coordinates, 2018–2023

Parallel databases, 2264–2268

Parallel database systems, 2036

Parallel data warehouse, 2012–2018

Parallel DBMS, 2638

Parallel hash join, 2029–2030

Parallel join algorithms, 2029–2030

Parallel merge join, 2029–2030

Parallel nested loops join, 2029–2030

Parallel query execution algorithms,

2030–2035, 2268

Parallel query optimization, 2035–2037

Parallel query processing, 2038–2040

Parallel SCSI, 2824–2826

Parallel versions of the traditional serial join

algorithms, 2029

Parametric data reduction (PDR)

techniques, 2044–2045

Parents, 1308–1309

Partially ordered graph, 1044

Partially ordered set of events, 1034

Partial order, 1187–1190

Partial replication, 188–192, 2045–2046

Participatory design, 1329

Partitional Clustering, 933, 934

Partition-based spatial merge join, 2710

Partitioning, 2030–2035

Partition skew, 635

Passage retrieval, 2867, 2868

Passive standby, 1110–1114

Password-based authentication, 177–179

Pathfinder, 3671–3673, 3675

Path index, 2857, 3586, 3588–3590

Patient registry, 346, 348

PATRICIA tree

Pattern based clustering, 2873–2874

Pattern detection, 1046–1048

Pattern matching based IE, 1477–1478

Pattern relaxation, 3638

Patterns as queries, 2433

Patterns of events, 1035

Pattern types, 1046, 1047

Peer data management system, 2863

Peers, 2081, 2082

Peer-to-peer (P2P), 2061–2064, 2415, 2578,

2863–2866

– computing paradigm, 2066, 2082

Subject Index 3739
– data integration, 2056, 2065–2069

– storage systems, 2060, 2075–2077,

2080–2082

– systems, 875, 876, 2008, 3241–3243

– transaction, 3241–3243

– web search, 2082–2085

Perception, 3395–3399

Perception-based logic deduction, 120

Perceptual similarity, 1116

Performance differences, 194

Performance enhancing technique, 2116

Performance monitoring tools, 2093–2094

Periodic events, 3004, 3007

Period-stamped temporal models,

2094–2098

Permission-role assignment (PRA97)

model, 57

Persistent stored modules (PSM), 2755,

2759

Persistent uniform resource locator

(PURL), 2429

Personal autonomy, 2136

Personal digital assistants (PDAs),

1751–1753

Personal information protection and

electronic documents act (PIPEDA), 2140

Personalization, 981, 2100–2102

Personalized user interfaces, 46–47

Personalized web search, 2099–2103

Perturbative masking, 1474

Petri nets, 3551

– concurrency, 2104

– firing rule, 2104, 2105, 2107

– places, 2104, 2105

– transitions, 2104–2107

– workflow management, 2104, 2107

P/FDM, 2011–2012

PFL, 1201, 1203, 1204

Pharmacogenomics, 1403

2 Phase commit (2PC), 3164–3166

Physical clock, 2108

Physical database design for relational

databases, 2108–2113

Physical data independence, 3340

Physical layer tuning, 2114–2115

Physical operators, 1024, 1025, 1575, 1576

Physical placement of data, 2135

Physical schema, 708, 709

Physical storage devices, 2830

Physical volume, 3438

Physical WORM, 3570

Pipeline, 2116–2117

Pipelined parallelism, 1566

Pipelined query execution, 1025

Pipeline stage(s), 2116

Pipelining, 2031–2033, 2035, 2116, 2117

Pivoted normalization, 940–941
Pixel-oriented visualization techniques,

789–794, 3355

Pixels, 1116

Point-in-time copy (PiT copy), 2118–2119

Point-To-Point mediation, 1706

Polytransaction(s), 2123–2124

POLYVRT, 3134–3135

Portability and accountability act, 2140

Portals, 1696–1697

Position snapping, 1692–1695

Positive relational algebra, 2124–2125

Possible answers

– certain answers, 2125

– conditional tables, 2125

– incomplete information, 2125

– naive tables, 2125

– null values, 2125

Possible worlds, 2151–2153

Post-competition analysis, 194

Post-randomization method (PRAM), 2126

Post-triggers, 738

Power modes of modern disk drives, 868

Power of first-order (FO) logic,

1081–1083

Power-of-two choices, 1627

Powerset of items, 2876

Practical schema versioning, 2500

PRAM Matrix, 2126

Precedes relation, 1035

Precision, 192–193, 981–982, 1522,

2126–2127, 2348, 2386, 2776–2778

Precision-oriented effectiveness measures

– evaluation, 2128, 2129

– precision-oriented evaluation,

193, 266, 1703, 2128, 2129,

2453, 2876

Precision-recall, 1016, 1022

Precision-recall curve, 981–982

Predicate window, 3533, 3535–3536

Predictive approach, 279–281

Preimage resistance property, 1287

Pre-processing of text, 1529

Present, 1920, 1921, 1923

Presentation

– layer, 2511

– techniques, 654, 655

Presenting structured text retrieval results

– result presentation, 2130

– retrieval task, 2130–2134

Pre-triggers, 738

Primary (clustering) index, 2523

Primary index, 2135

Primary key, 1587, 2756, 2758, 2759

Primary memory, 1668–1669

Primitive event, 1045

Principal component analysis (PCA),

838, 2136
Privacy, 91, 1472, 2136–2137, 2140, 2142,

2783, 2784, 2788, 2789

Privacy-enhancing technologies (PETs),

2142–2147

Privacy metrics, 2137–2139

Privacy policy, 2140–2142

Privacy-preserving data mining, 2147–2150,

2535, 2537

Privacy-related legislative provisions, 601

Proactive functionality, 1052

Probabilistic counting with stochastic

averaging (PCSA), 1145

Probabilistic data, 2150–2155

Probabilistic databases, 3227, 3230, 3478

Probabilistic disclosure risk, 2513

Probabilistic inference, 152

Probabilistic latent semantic indexing,

3076, 3078

Probabilistic model(s), 1524, 1527, 1764,

1765, 1808, 1813, 3058

Probabilistic range query (PRQ), 2161, 2162

Probabilistic record linkage, 2353

Probabilistic retrieval, 2649–2650

Probabilistic retrieval models, 1130,

2156–2160

Probabilistic spatial query, 2160–2164

Probabilistic spatio-temporal

reasoning, 2168

Probabilistic temporal databases, 2165–2168

Probability driven caching (PDC), 3502

Probability ranking principle, 2168–2169

Probe phase, 1288, 1289

Process definition, 3545

Process evolution in workflow management

systems, 3540, 3541

Processing of continuous data streams, 2847

Processing of queries, 1529

Process life cycle, 2170–2171

Process manager, 755

Process mining, 3551

– conformance checking, 2172

– event logs, 2171, 2172

– process discovery, 2172

Process optimization

– business processes, 2173–2177

– quality of service, 2173, 2177

– web service composition, 2173–2177

– workflow, 2173, 2177

Process-oriented models, 616, 618–619

Processor-per-disk (PPD) machine, 714

Process structure of a DBMS, 2178–2186

Production workflows, 3548

Programming in the large, 288

Projected clustering, 2873–2875

Project indices, 1454–1456

Projection, 2196–2197, 2737

Proof system, 1140, 1141

3740 Subject Index
Proof-theoretic approach, 752

Propagation, 64, 65, 70

Propagation-based structured text retrieval,

2197–2201

Propositional logic, 1140

Protection of the database right, 1014

Protein-protein interaction graph, 220

Provenance, 2202, 2827, 2829

– of an output data, 2202

– of scientific databases, 2202–2206

p-Sensitive k-anonymity, 1585

Pseudonymity, 2142, 2143, 2207

Pseudonyms, 2207

Pseudo-relevance feedback, 2382

p-stable distributions, 2843–2845

Publication data model, 464, 465

Publication-event processing with complex

predicates, 2070, 2071

Public-key cryptography, 142

Public-key encryption, 142, 572, 573, 1320,

2535–2536

Publish/subscribe, 464–466, 2208–2211,

2780–2782, 2871, 2872, 3608–3612, 3634

– message broker, 2209

– over streams, 2211–2215

Q
Quadtrees, 1300–1302, 1304, 2219–2224,

2703–2706

Qualitative data, 3416

Qualitative relations between time intervals,

78–79

Qualitative spatial relationships (QSR), 306

Qualitative temporal reasoning, 2225–2228

Qualitative temporal relationship, 2377

Quality and trust of information content

and credentialing

– accuracy, 2229

– completeness, 2229

– credentialing, 2229

– transparency, 2229

Quality metrics, 2230

Quality of data, 803–807

Quality of retrieval results, 3493

Quality of schema, 804, 806, 807

Quantification of variables, 1140

Quantiles, 513

Quantiles on streams, 2235–2239

Quantitative association rules

– distributional rules, 2240, 2242

– frequent rules, 2240, 2241

– special type of association rules, 2240

Quantitative data, 2024, 3437–3438

Quantitative techniques, 1080

Quantitative temporal relationship, 2377

Quantum mechanics, 3260

Quasi-copy, 3454
Quasi-identifier, 1735

Quasi serializability, 504–505

QUEL

– relational database query

language, 2244

– tuple relational calculus language, 2244

Query, 368–373

– camouflage, 1473, 1474

– capability, 2309

– compiler, 2288, 2290

– concept learning, 2567–2568

– containment, 2249–2252
– aggregation, 61–62

– and equivalence, 93

– equivalence, 2249–2251

– execution engine, 2117, 2282

– expansion, 3492

– automated query expansion

(AOE), 2258–2259

– blind feedback (BF), 2256

– manual query expansion, 2258

– pseudo-relevance feedback,

2255–2257

– relevance feedback (RF),

2254–2257

– expressiveness

– aggregation, 59–63

– footprint, 1253, 1254

– generation models, 2169

– graph, 2290, 2291

– heterogeneity, 2309–2311

– language for relations, 2372

– load balancing in parallel database

systems, 2264–2268

– minimization, 2251

– optimization, 2272–2281, 2304, 2900,

2902, 2905

– optimizer, 1583

– parallelism, 1567–1568

– perturbation, 1473

– plan, 2282

– plan explainer, 2093

– reconciliation, 2310

– restriction, 1473, 1474

– routing tree, 1757

– shipping, 2864–2866

– translation, 523–526, 2309–2312

– over data streams, 3533, 3536

Queryable database protection, 1472–1473

Query-by-example, 1451

Query by image context (QBIC)

system, 1354

Query-dependent hyperlink features, 3499

Query-document matching functions,

1519, 1523

Query execution plan (QEP), 506, 2293,

2294, 2595, 2598
Querying semi-structured data,

2867–2868

Querying temporal indeterminacy, 2975

Query-language model, 1522

Query languages, 1–5, 406–411, 710–713,

1877, 1879, 2047–2057, 2762–2768,

2771–2772, 2958, 3659, 3660

– data manipulation statements, 2261

– and evaluation techniques for

biological sequence data
– biological sequence data,

2261–2264

– sequence similarity, 2262

– for the life sciences

– scientific objects, 2264, 2267

– a scientific query language,

2264, 2266

– specialized programming

language, 2261

Query processing, 113–119, 912–916,

1572–1574, 2278–2280, 2288–2293,

2301–2306, 2675–2680

Query processing and optimization in

object relational databases

– four phases of query processing, 2294

– object relational databases,

2293–2296

– query execution plan (QEP),

2293, 2294

Query processing in data warehouses

– materialized views, 2298, 2299

– multi-query optimization, 2299

Query processor

– query executor, 2307, 2308

– query parser, 2307

– query rewriter, 2307, 2308

Query rewriting, 2273, 2438, 2440, 2441,

3491–3493

– the goal of query rewriting, 2308

– query rewriter, 2308

– responsibilities of the query

rewriter, 2308

Query term frequency (qtf), 2169

Question answering (QA), 3485–3490

Queues, 1716

Quilt, 3637

Quorum system, 2313–2317

R
RAID (Redundant array of inexpensive

disks), 2823, 2824, 3438

Random access memory (RAM), 1668–1669

Randomization methods to ensure data

privacy

– input randomization techniques, 2320

– local randomization techniques,

2319, 2320

Subject Index 3741
– output randomization techniques,

2320

– privacy preserving randomization

method, 2319

Randomized algorithms, 2770–2771

Randomized summary, 80

Range partitioning, 2025, 2026

Range predicate, 1427

Range query, 1437, 1438, 2324–2325

Ranked XML processing, 2325–2331

Ranking, 2647–2651

Ranking function, 255

Ranking model, 1371–1373

Rank swapping, 620–621

Rapid serial visual presentation (RSVP), 267

Raw storage, 2796–2797

Rayleigh quotient, 2750, 2751

RBAC96, 2448–2451

RBAC models, 1245

RDF, 1724, 2425–2428, 2579

RDF graph, 2424

RDFS, 2425–2428

RDF schema, 2424

Read/write model, 3158–3161

Real-time analytics, 25

Real-time applications, 2344, 2347

Real-time data warehousing, 21–26

Real-time transaction processing,

2344–2348

Recall, 981–982, 1522, 2126–2127, 2348,

2776–2778

Receiver anonymity, 91

Reconciliation, 1991–1995

Record extraction, 397–400

Record linkage, 2353–2354

Record matching, 780–784, 2354–2357

Records management, 997

Record trail, 608

Recover data from backups, 478

Recovery, 917–919, 3150, 3151

Recovery component, 1645

Recovery manager, 1645

Recovery point objective (RPO), 848

Recursive query(ies), 2304, 2758

Recursive view definition, 1674–1676

Reducer and full reducer, 2596–2597

Redundancy, 2075–2081

Redundant arrays of independent disks

(RAID), 2359

Reference information model (RIM), 360

Reference knowledge, 2360

Reference knowledge base, 2360

Reference monitor, 9, 10

Reference reconciliation, 780

Referential transparency, 1201

Region, 2360–2363

Region growing, 1389, 1390, 1392, 1394
Registry metamodel, 1725–1726

Regression coefficients, 1622

Regression tree, 2469

Regular expression, 1264–1265

Regular square grids (RSGs), 817, 818

Relational algebra, 308, 811, 2124–2125,

2196, 2369–2370, 2547, 3239, 3240

Relational-algebra incremental algorithms,

1415, 1416

Relational calculus, 2370–2371

Relational calculus and algebra, 406, 407

Relational database, 265–266

Relational database scheme, 265–266

Relational data model, 715, 2753, 2754, 2759

Relational expression, 2967

Relational Interval Tree (RI-tree), 3256

Relational model, 2372–2375

Relational operator, 1575, 1576, 2282

Relational query processor, 755

Relational storage for XML

documents, 3631

Relation detection and recognition, 1477

Relationship type, 1915–1917, 1940–1941

Relative atomicity, 2627, 2630–2631

Relative error, 83

Relaxed atomicity or extended atomicity,

145

Relax NG, 3650–3652

Relevance, 1652–1656, 2648–2650

Relevance dimension, 2747, 2748

Relevance feedback, 1384–1388, 2378–2382,

3493–3497

Relevance propagation method, 2197

Relevance score of an element, 2197,

2199–2201

Reliability, 350

Relicated databases, 1947

Relicated history (RH), 1947, 1948

Remote invocation, 2415

Renaming, 811, 3239, 3240

Repair, 722–723

Replacement policy, 283–285

Replica control, 626–628, 1947, 1948, 1957,

1958, 2383–2387, 3144–3147

Replica control component of the replicated

system, 2391

Replica placement, 3443

Replicated database concurrency control,

2390–2391

Replicated databases, 2390–2391

Replicated MDS, 1784

Replication, 1071, 1991–1995, 2045–2046,

2391–2392, 2397–2402

– for high availability, 2397–2402

– in multi-tier architectures, 2408–2413

– for performance, 3442

– techniques, 2392
Repository, 356–359

Representation information, 132

Representation of medical evidence, 1072

Reputation, 2414–2415

Reservoir sampling, 2467, 2838–2841

Residuated lattice, 2418–2419

Resolution, 1374, 1375, 1378

Resource

– allocation, 2419–2423

– classification, 217

– composition, 221, 222

Resource description framework (RDF),

2423–2425

Resource discovery, 218

Resource patterns, 3557, 3558

Respondent privacy, 1472

Restore, 200–201

Restriction on free variables, 3016

Resubstitution validation, 534

Result presentation, 3506

Retrieval of multiple streams

– on multiple disks, 486–487

– on a single disk, 486

Retrieval of single stream

– on multiple disks, 485–486

– on a single disk, 485

Retrieval process, 1528, 1529

Retrieval status value (RSV), 1521

Retrieval techniques for handwritten

data, 973

Retrospective context, 2431–2432

Retrospective event processing, 2431–2433

Reverse engineering, 723–728

Reverse engineering tools, 727–728

Rewriting queries using views, 2438–2441

Rewritings, 93–97

Rhetorical relationships, 1331

Road networks, 1692–1695, 2442–2446

Robertson and Sparck-Jones (RSJ) model,

2169

Rocchio’s formula, 2447

Rocchio’s relevance feedback

algorithm, 2447

Role, 46

Role based access control (RBAC), 91–92,

2447–2452

Role hierarchy, 2448–2450

Role schema, 1245

Root, children, 1308

Rough set theory (RST), 761–764

Rounding, 1737–1738

Rounding set, 1737

Round-robin partitioning, 2025

Routing vehicle in event processing

network, 1034

ROWA, 928

Row-level triggers, 738

3742 Subject Index
R-precision, 195

RSA, 832, 833

R-tree joins, 2709

R-trees, 241, 368–373, 1439–1441, 1891,

1893, 1894, 2453–2459, 2703–2705, 2707

Rule action execution, 959

Rule based data grids, 134

Rule-based information extraction, 3474

Rule-based optimizer, 1996

Rule evaluation, 29–32

Rule induction, 2459–2461

Rule ranking, 2459–2461

Russian calendric system, 305

S
Safe plan, 2154, 2155

Safe query, 2151–2153, 2463

Safety and Domain Independence,

2463–2466

Saga(s), 1222, 1979, 2466–2467, 2824, 2826

– compensation, 2466

– transaction, 2466–2467

Sample and count, 2839

Sampling, 630–633, 1912, 2467

– methods, 631–632

– with replacement, 263

– synopsis, 631–633

SAN File System, 2467–2468

SAN islands, 1575

SAN management in multi-vendor

environments, 2806

Sarbanes-Oxley Act, 2364

SAS, 2824–2826

SATA, 2824–2826

Satisfiability problem, 1397, 1398

SAX/DOM, 3598–3600

SBQL, 2771–2772

SCA assembly model, 2632

SCA component, 2632

Scalability, 133, 2045, 2403–2407

Scalable Decision Tree Construction,

classification, 2469–2473

Scale-out, 2403–2407

Scale-up, 2031, 2032

Scatterplots, 1335, 1338

Scene(s), 3309, 3311

– boundary detection, 3311–3313

– detection, 3303–3308

– grouping, 3281–3284

Scheduling, 719–721

Scheduling Strategies for Data Stream

Processing, 2475–2479

Schema, 1940–1941, 2494–2497

– changes, 2479, 2480

– integration, 1760–1762, 2494, 2497

– manipulation statement, 2831

– mapping, 2494, 2497
– matching, 1760–1762, 1973,

2494–2497, 2562

– tuning, 2497–2499versioning,

2499–2502

Schema-driven storage, 3630

Schema evolution, 2479–2481

– in workflow management systems,

3540, 3541

Schema mapping, 1492–1494, 2481–2493

– semantics, 2482

– types, 2483–2487

Science application, 748–750

Scientific data, 2506, 3225–3227, 3230

Scientific databases, 2202–2206, 2339,

2502–2505

Scientific query, 2264

Scientific query language, 2264, 2266

Scientific simulations, 733–738

Scientific workflows, 2507–2510

Scientific workflow tasks, 2507

Scope of rights, 1014

Scraper (-ing), 2511

SCSI, 2512

– block level protocol, 1538

– bus cables, 2812

– initiators, 1537, 1538

– interfaces, 846

– protocol, 1537, 1658

– storage devices, 846

SD-Rtree, 921, 923, 924

Searchable compressed format, 1442, 1447

Search advertising, 3458

Search algorithms, 739–741

Search engine metric, 2513–2518

– BLEU score, 2514

– precision, 2514–2518

– recall, 2513–2517

– TREC, 2514, 2516–2518

Search engines, 1251–1254, 1463–1466,

2513–2518, 3462, 3464

Search engine selection, 1730–1732, 1734

Search space, 739, 740

Search tasks, 3480

Secondary index, 2522–2528

Secondary storage, 1707

Second chance (replacement policy), 283

Second normal form (2NF), 2522

Second principal component, 2136

Secret-key encryption, 572, 2897

Secure database development, 2528–2534

Secure database development using

patterns, 2530–2531

Secure data outsourcing, 2523–2528

Secure multiparty computation (SMC),

2148, 2149, 2535–2539

Secure transaction processing, 1789, 1791,

2540–2545
Security, 728–732

– in data sources, 676–677

– in data warehouse modeling, 677–678

– in extraction-transformation-loading

(ETL) processes, 677

– mechanisms, 728, 731, 732

– in OLAP tools, 678–679

Security requirement in secure data

outsourcing, 2524–2525, 2528

Security services, 2546–2547

Security services (No. 1481), 2546–2547

Segmentation, 1389–1395

Selection, 2547

Selective dissemination of information

(SDI), 1482

Selectivity, 2739–2741

Selectivity estimation, 2548, 2739–2741

Self describing, 2607

Self-describing data, 1265

Self-monitoring, 2552, 2554

Self-organizing map (SOM), 3356

Self-tuning histograms, 743

Semantic(s), 132, 2576–2579, 3017

– atomicity, 2588–2590

– data models, 1193, 1194, 1197,

2559–2561

– dimensions, 473

– distributed system, 982

– gap, 3361

– heterogeneity, 1496–1497, 2561

– indexing, 429–431

– information processing (SIP), 1821

– integration, 2557–2558

– labels, 149

– map, 3124

– matching, 2561–2566

– model, 2559–2561

Semantic/syntactic information, 939

Semantic web, 1546, 1547, 1550, 2579–2587,

3076–3079, 3472

– approach, 2580

– query languages, 2583–2586

Semantic web services (SWS), 2586–2587,

3513–3519

Semi-automated web data extraction

tools, 1283

Semijoin, 904, 906, 1581, 2592–2595

Semijoin program, 2595–2598

Semiology, 1335

Semiotics, 1334

Semi-streaming model, 1271–1274

Semi-structured, 1915, 2599–2600

– data, 1198–1200, 2601–2610

– query language (No. 339)

– searching, 1876, 2191, 2192

– text retrieval, 463, 2187

Semi-supervised clustering, 393–396, 2613

Subject Index 3743
Semi-supervised learning, 393, 2613–2615

Sender anonymity, 91

Sender pseudonymity, 2207

Sensor databases, 107–110

Sensor data model, 489–490

Sensor network indexing, 636–637

Sensor networks, 574, 710–713, 1538–1540,

1542, 2278–2281, 2616–2619

– aggregation, 552–556

– approximation, 554–556

– continuous queries, 553, 555, 556

– model-based querying

– storage, 635–637

Sensor selection, 583

Sensory gap, 1115, 1116,

3361–3363

Sentence segmentation, 3072, 3073

Sentiment analysis, 1986–1990

SEQUEL, 2753, 2754, 2760

Sequence database, 2621–2623

Sequence matching, 837, 3315

Sequenced, 2619–2621

Sequential composition, 419, 420

Sequential I/O, 1333

Sequential pattern and sequential

association rules, 140

Serializability, 1642, 2383, 2385, 2591,

2626–2631, 2761, 2762

– theory, 927–928

– graph, 1947, 1948

Server-side scripting languages, 954

Service component architecture (SCA),

2632–2633

Service composition, 1697

Service consumers, 2634, 2635

Service oriented architecture (SOAs),

328–329, 414, 997–999, 2004,

2633–2636

Service outsourcing, 2523

Service producers, 2634, 2635

Session beans, 1579

Session consistency, 2636

Session property, 2856, 3452, 3453

Set abstraction, 420–421

SGML, 3124

Shared-disk, 2637

– architecture, 2028, 2637

– file system, 2467, 2468

Shared-memory, 2638

Shared-memory architecture, 2028,

2638–2639

Shared nothing partitioning, 2109, 2112

Ship whole, 904–907

Short-range wireless communication

protocols, 1751

Short running processes (microflows), 3166

Shot-cut detection, 3309–3311
Shot(s), 3308–3311, 3316–3320

– boundary detection, 467

– detection, 3281, 3282

Side-effect free translation of view update,

2639, 2641

Side-effect-free view updates, 2639–2642

Side-effects, 2639–2642

Signal detection theory, 2349

Signatures, 2642–2646

Signature unblinding, 252

SilkRoute, 3614, 3615

Similarity, 1451, 1452, 2647–2651

– function, 699

– search, 3115–3118

Simple metadata model, 947

Simplicial complex, 2651–2656

Simulation, 3525–3528, 3551

Single client-server architecture, 342

Single instruction multiple data (SIMD)

instructions, 129

Single-link clustering, 3045

Single query optimization, 1849

Single-site illusion, 451

Single stream query, 2475, 2476

Singular value decomposition (SVD), 2045,

2657–2658

Situational applications, 593

Situation reinforcement, 2431, 2432

Sketch, 511–515, 2898, 2899

Sketching, 89

Skewed distribution, 634

Sliding versus predicate windows, 3533

Sliding windows, 137, 138, 2845–2846

SMI-S (Storage Management Initiative-

Specification), 1552

Snake model, 1390–1393

Snapshot(s), 2383, 2385, 3328

– isolation, 2383, 2385

– reducibility, 2621, 2983

Snippet, 2664–2665

SOAP (Simple Object Access Protocol),

2666–2667, 3572

– messages, 2666–2667

– specification, 2666

SOA systems, 2634–2636

Social applications, 2667

Social network analysis (SNA), 2668, 2669,

2672

Social networks, 2415, 2667–2672

Social tagging, 1522

Soft hardware failures, 100

Software layer within a database

management system, 2807

Software measurement, 2232

Software non-determinism, 100

Software transactional memory (STM),

2672–2673
Sort-Merge join, 1026, 1027, 2673–2674

Source-to-target dependency, 576

Space-filling curves (SFC), 2674–2680

Space partitioning index, 1439, 1440

Spam detection, 3520–3523

Sparse index, 1433, 1434

Spatial, 2725–2729

– access method, 368, 373, 2454, 2459

– anonymity, 2685–2690

– data, 3132

– data analysis, 2691–2695

– databases, 71–77, 368, 369, 372, 373,

1639, 2459

– data management system (SDMS),

3684, 3685

– data mining, 2691, 2692, 2695–2698

– data structures, 2219–2224

– data type, 2681–2683, 2685, 2698–2702

– extenders, 3142

– hash joins, 2710

– histogram, 2740

– hotspots, 2695, 2696, 2698

– indexing, 2224

– indexing techniques, 2702–2707

– join, 2707–2714

– join methods, 2708

– k-anonymity (SKA), 2686–2688, 2690

– locality, 1713–1714

– monitoring method, 479

– network, 2698

– network databases, 2714–2719

– objects, 2719, 2720, 3140, 3141

– operation(s), 2699–2701, 2719–2724

– outliers, 2695, 2696, 2698

– partition, 2699–2701

– pattern families, 2695

– projection, 2737

– queries, 3383, 3386

– range query, 2325

– SQL, 3142, 3143

– and spatio-temporal data models,

2681–2685

– uncertainty model, 2161, 2162

Spatio-temporal, 2725–2730, 2736–2738

– benchmarking, 2339–2343

– data, 421–429

– database(s)1448–1450, 1462

– data generator, 2339–2343

– data mining, 595

– data type(s), 1770–1773, 2682, 2683,

2730–2731

– graph, 3097

– networks, 3097, 3098

– predicate, 2684, 2685

– test datasets, 2340, 2342

Spatio-temporal distance join query

(STDJQ), 2740, 2741

3744 Subject Index
Spatio-temporal trajectories, 2742–2746

– moving point, 2742, 2743, 2746

– moving region, 2742

Spatiotemporal window query (STWQ),

2739–2740

SPC algebra, 449

SPCU-algebra, 2124–2125

Special case of range query, 1707

Specialization, 2746–2747, 3017

Specificity, 2747–2748

Spectral feature, 161

Speed-up, 2031, 2032, 2035

Spider, 1418

SPJRU-algebra, 2124–2125

Split

– attribute and split point selection,

767–768

– mirror, 2118

– policies, 2456

– transaction, 2752û2753

Spoiler, 963

SQL, 2753–2760, 2762–2768, 3018–3023

SQL isolation levels, 2761–2762

SQL standard, 1925

SQL/temporal, 3192, 3193, 3197

SQL/XML, 3606, 3614, 3615

SQuery languages, 2583–2586

SRAM, 2195, 2196

S-reducibility, 2620–2621

SRU, 2519, 2521

SSD, 2799, 2800

Stack-based architecture, 2772

Staged database, 2773–2776

Staleness, 2388, 2389

Standard effectiveness evaluation in IR,

2776

Standard effectiveness measures, 2776–2779

Standard generalized markup language

(SGML), 1927

Standard storage management

interface, 2806

Standardized metadata set, 947

Standards for obtaining copyright, 497

Stand-by mode, 2821, 2822

Star index, 2779

Star or snowflake schema, 2779

Star schema, 658, 661, 2014

State-based publish/subscribe, 2780–2782

Statechart, 3554, 3555

State diagram, 41, 42, 45

State equivalence, 1071

Stateful methods, 1688

Stateless methods, 1688

State-machine replication, 2392, 2393

Statement-level triggers, 738

Statement replication, 1740–1741

State transition, 355
Static dynamic caching (SDC), 3502

Static random access memory

(SRAM), 1669

Stationary MSN, 1756

Statistical database, 2467

Statistical data management, 2782

Statistical disclosure control (SDC), 1472,

1473, 2357

Statistical disclosure limitation, 1698

Statistical disclosure limitation for data

access, 2783–2789

Statistical estimation, 634

Statistical method, 263

Statistical test, 318–321

Statistics, 236–238

Statistics databases, 2333

Steganographic techniques, 2789

Steganography, 826, 2789–2790

Steganography vs. watermarking, 2789

Stemming, 1610, 2790–2793, 3492–3493

Stop-&-Go operator, 2794

Stoplists, 2794–2796

Stopwords, 2794, 2795

Storage access model, 2796–2797

Storage and management, 344–348

Storage area network (SAN), 2467–2468,

2797–2798

Storage consolidation, 2798

Storage device, 1574, 1575, 1900, 2798–2800

Storage grid, 2800–2802

Storage layer concepts, 2808

Storage management, 2802–2806

– implementation, 2804

– initiative-specification, 2806–2807

– technologies, 2802

Storage manager, 2807–2812

Storage mapping strategies, 3627

Storage network architecture (SAN), 1574,

1575, 2812–2815

Storage Networking Industry Association

(SNIA), 1499, 1552, 2806, 2807,

2815–2816

Storage networks, 1552

Storage of Large Scale Multidimensional

Data, 2816–2821

Storage power management, 2821–2823

Storage protection, 2823–2824

Storage protocol, 2824–2827

Storage resource management, 2827

Storage resource management software

tools, 2827

Storage security, 2827–2829

Storage virtualization, 1659, 2830

– software, 1659

– technologies, 2830

Storage volume identifier, 1658–1659

Stored procedure, 2831
STORM, 2782

Story identification, 3281, 3283, 3285

Streambased versus operation-based

windows, 3533

Stream ciphers, 572

Stream fault-tolerance, 1109–1114

Stream high availability, 1109–1114

Stream incremental evaluation, 3533

Streaming algorithm, 1948–1949

Streaming applications, 2847–2848

Stream mining, algorithms, 2831–2833

Stream-oriented Query Languages and

Operators, 2848–2853

Stream-oriented representation, 943–944

Stream processing, 1633, 1635, 2837–2838

Stream processing enginer (SPE), 639–641

STREAM project, 1634

Stream query language, 2849

Stream query processing, 3533,

3536, 3537

Stream replication, 1110, 1113, 1114

Stream scheduling (session scheduling),

1832–1834

5S (Streams, Structures, Scenarios, Spaces,

and Societies) framework, 268

String similarity, 2355, 2357

Structural relationship, 2376

Structural summaries, 606, 2858–2860

Structure, 2377, 2862, 3036, 3037

Structured document retrieval, 2867–2868

Structured overlays, 1628–1630

Structured Query Language, 2753

Structured text retrieval, 2867–2868

– models, 2868–2871

– system, 2130–2134

Structure indexing, 2857–2861

Study of signs, 1334

Subgraph isomorphism, 1170–1171

Subject space, 2871–2872

Subscription language, 465

Subscription processing with complex

predicates, 2071

Subshot segmentation, 3281, 3284, 3285

Subtransactions, 1142, 2588–2590

Succinct constraints, 2876

Suffix, 2790–2793

– removal, 1610

– trees, 2876–2880, 3059–3061

– trie, 2876–2878

Summarizability, 2880–2883

Summarization, 2884–2889

– systems, 2884–2889

– techniques, 2884, 2885, 2888

Summary database, 2880

Summary graph, 2857

Summary statistics, 2882

Superkey, 1587, 1588

Subject Index 3745
Supervised learning, 1664

Supply chain management process

engineering, 296–297

Support, 124–126

– vector machine, 2890–2892

– vector regression, 2890

Support of a graph, 1171

SVM, 2890–2892

SVR, 2890

SWS framework, 2587

Symbolic representation, 2897

Symmetric multiprocessors (SMP), 2638

Synchronization protocols, 445

Synchronous propagation, 2856

Synopsis, 634, 2898–2899

Syntactic structures, 982, 983

Synthetic microdata, 1475, 2899–2900

System configuration, 2551–2552

System dynamics, 3527

System R, 2289, 2290, 2293, 2754, 2760,

2900–2905

System (crash) recovery, 1643–1644

Systems biology, 1266–1270

Systems biology ontology, 1960

Systems medicine, 360

T
Tabular data, 2908

Tabular data protection, 1472

Tabular storage of trees, 3630

Tags, 1696

Tape, 2798–2800

Task, 41

Taxonomy: biomedical health informatics,

2908–2911

TelegraphCQ project, 1634

Telic distinction in temporal databases,

2911–2914

Telos, 1728, 2914–2920

Temporal, 2736–2738, 2762–2768,

2932–2935

– access control, 2920–2924

– algebra basics, 2929–2930

– algebras, 2929–2932

– and derived data authorization model,

2920, 2922

– aspect, 3253

– assignment, 3008

– authorization model, 2921–2922

– coalescing, 2932–2935

– compatibility, 2936–2945

– conceptual models, 2940–2945

– consistency, 2344, 2345, 2347

– constraints on sets of time points, 2946

– constraints on time intervals, 2946,

2947

– constraints on time points, 2945, 2947
– database(s), 99, 142–143, 241, 242,

2892, 2893, 2896, 2957–2960, 3028,

3258, 32359

– database system architecture, 3013,

3015

– data models, 329, 2098, 2119–2122

– data semantics, 2941, 2942, 2944

– dependencies (i.e. the title of the

entry), 2960–2966

– evolution, 1319

– feature, 161

– functions, 1915

– granularity, 2962, 2965

– homogeneity tuple timestamping,

2973

– indeterminacy, 79, 2973–2982

– index, 3167, 3254, 3258

– integrity constraints, 2960, 2965,

2972–2986

– join, 2982–2987

– join evaluation, 2984, 2986.

– join operators, 2982, 2985

– locality, 1713–1714

– logic, 2945–2948, 2958, 2976–2978

– logical models, 2992–2996

– normalization, 2965

– object data models, 3000

– object-oriented databases, 2998–3008

– object query languages, 3002

– periodicity, 3004–3008

– periodic pattern of repetition, 3004

– predicates, 1915

– probabilistic aggregates, 2168

– query languages, 2762–2768, 2958

– relation, 243–244

– relational calculus (TRC), 3015–3016

– role based access control model,

2920–2922, 2924

– SQL, 2762–2768

– type, 2968

– visual languages, 3027–3033

Temporal Cartesian product, 2983

Temporal query language extending the

relational calculus, 3015

Tentative update, 1991–1994

Term dependence, 3036

Term-document matching functions, 929

Term-document model, 1522

Term frequency (tf), 2169, 3937–3942

Term frequency-inverse document

frequency weighting scheme (tf*idf),

1529

Termination, 37

Terminator, 143

Terminology data model, 1002

Terminology systems, 1000, 1003

Term proximity, 3036–3037
Term weight, 3036

Terrain, 817–821

Terrain models, 818, 820, 821

Tertiary storage media, 2817–2820

Test collections, 3481, 3482

Test datasets, 2339–2343

Text analytics, 3473

Text categorization, 3041–3044

Text classification, 3044–3046

Text clustering, 3063

Text document formatting systems, 1696

Text generation, 3048–3051

Text indexing, 3055–3058, 3937–3942

Text indexing and retrieval, 3055–3058

Text mining, 235, 595, 693–695, 3061–3063,

3065–3068

Text preprocessing, 3062

Text processing, 979

Text retrieval, 3055–3058

Text segmentation, 397–400

Text streaming model (TSM), 3078–3079

– bag of words model (BOW), 3078

– vector space model (VSM), 3078

Text summarization, 3079–3083

– an abstract-summary, 3080

– an extract-summary, 3080

– query-oriented summary, 3080

– supervised methods, 3081–3082

– unsupervised methods, 3080–3081

Text summarizer, 3063

Textual annotation, 180, 181

Textual summaries, 605–607, 2884

Text visualization, 3083–3085

– information visualization, 3083

– natural language processing,

3084, 3085

– term frequency (TF), 3084

TF*IDF, 3085–3086

– document length, 3086

– inverse document frequency, 3085

Thematic map, 3086–3087

– coropleth map, 3086–3087

– dasymmetric map, 3087

– dot map, 3087

– isarithmic map, 3087

– proportional symbol map, 3087

– topographic map, 3087

Theory of indexability, 1223

Theta join, 1581

Third Normal Form (3NF), 3087–3088

Three-Dimensional GIS and Geological

Applications, 3088–3091

Three-level memory hierarchy, 1707

Three-Phase Commit, 3091–3097

– atomic commit protocols (ACPs),

3092, 3097

– voting protocols, 3094, 3096

3746 Subject Index
Thresholding, 1389, 1390

TIGER, 3132, 3133, 3135–3139

Tight coupling, 2211, 2212, 3097–3098

– loosely coupled approach, 3097

– strong dependency between software

components, 3097

TIGRIS, 3132

TIMBER, 3637

Time, 2914, 2915, 2919, 2920, 2992–2996,

3018–3023

Time and information retrieval

– document exploration, 3099

– document retrieval, 3100–3101

– temporal expression, 3098–3102

– timeline, 3098–3102

Time-based profilers, 2093

Time-cognizant behavior, 2344

Time decay, 758–759

Time-dependent geometry, 1770

Time-dependent graphs, 3097

Time domain, 1161, 3103–3106

Time granularity, 2968, 2969, 2972,

2994, 2995

Time in Philosophical Logic

– A.N. Prior, 3108–3110

– branching time, 3108–3110

– J.E. McTaggart, 3108

– philosophical logic, 3107–3111

– temporal logic, 3108, 3109, 3111

– tense logic, 3109, 3111

– tenses, 3107–3110

Time interval, 3113

– convex subset, 3112

– duration, 3112, 3113

– SQL, 3113

– time duration, 3112, 3113

(convex) Time interval, 78–79

Time-line clock, 2108, 3120

– physical clocks, 3120

– synchronization point, 3120

Time period, 3113

Time period set, 2966

Time-referenced fact, 1

Time-references, 2957

Time series, 2245–2247, 2952, 3114–3118

Time slice, 2736–2738

Timeslice operator, 2659, 3455–3456

Time span

– data type, 3119

– duration, 3119

– interval, 3119

– time, 3119

Timestampe ordering (TO), 2541–2542

Timestamping, 2895

Timestamps, 2932–2935, 2966

TimesTen, 1669

TinyDB, 710–713
TinySQL, 711–713

Tj tj, 477

t-norm (Triangular norm), 3177–3178

Tokenization, 3062

Top/bottom coding, 1912, 1913

Topic-based publish/subscribe,

3127–3128

– publish/subscribe, 3127–3128

Topic Detection and Tracking (TDT),

3121–3124

Topic map, 3124–3126

Top-k queries, peer-to-peer, 111–113

Top-κ query processing for XML

data, 2325

Top-K selection queries on multimedia

datasets

– multimedia, 3129–3131

– query processing, 3129–3131

– ranking, 3129, 3131

Top-k summary, 2898

Top-k XPath Query Processing

Topological data model, 3132–3139

Topological invariants, 843, 845

Topological predicate, 2701–2702

Topological relationships, 843–845,

3140–3143

Topology, 2652, 2653

Tours, 950, 951, 953

TPR-tree, 1458–1461

Tracking, 1693, 1695

Traditional concurrency control for

replicated databases

– locking, 3146, 3149

– replication, 3144–3146, 3148

Traditional sequential algorithms with

multiple threads, 2031

Trajectory, moving point, 3150

Transaction, 1091–1092, 2761, 2762,

3150–3151

Transactional ACID property, 144

Transactional interface, 2673

Transactional processes, 3166

Transactional storage manager, 755

Transaction chopping

– chopping, 3151–3152

– locking, 3151

– performance, 3151

– serializability, 3152

– transaction, 3151–3152

Transaction database (TDB), 2876

Transaction management, 3153–3156

– recovery, 3153–3156

Transaction manager (TxM), 3157

– ACID transactions, 3157

– active transactions, 3157

– state transition, 3157

Transaction models, 3158–3161
Transaction models-the read/write approach

– commutativity (of operations), 3160

Transaction models-the read/write approach

– schedule, 3158–3160

– transaction, 3158–3161

– transaction history, 3159

Transaction performance council (TPC), 99

Transaction processing, 3163

Transaction processing monitors (TPM),

3163

Transaction pseudonym, 2207

Transaction recovery, 1643

Transaction replication, 1740–1741

Transactions, 1142, 1947–1948, 1954–1958,

2626–2631

Transaction scheduling, 443–444, 3153

Transaction-time, 2892–2896, 3252

Transaction-time databases, 3167, 3169,

3254, 3255

Transaction-time indexing, 239, 240,

3167–3171

Transducer networks, 3635–3636

Transductive learning, 2613

Transformation and loading (Web ETL),

3471–3472

Transitive reduction, 1189

TREC (Text REtrieval Conference), 2776,

3041, 3042

TRECVid, 470, 472

Tree, 2599–2600

Tree-based indexing, 3172–3173

Tree-based indices, 2135, 2522

Tree-like indexing structure, 197

Tree-like models, 1853–1855

Treemaps, 3173–3177

– treemaps algorithm, 3174

– treemaps visualizations, 3174

Tree pattern query, 3637–3639

Tree quorums, 2314, 2315

Tree-structured data mining model,

2469

Tree structures, 2219

Trellis plots, 1866, 1868

Triangular norm (t-norm), 3177–3178

Triangulated Irregular Network (TIN),

3178–3179

– delaunay triangulation, 3179

– terrain, 3178, 3179

Trie, 2877–2879, 3179–3182

– automaton, 3179

– PATRICIA tree, 3181, 3182

– prefix tree, 3179

Trigger, 1979, 1980, 2754, 2755, 2757,

2758, 2760

Trigram, 1910

True positive rate (TPR), 2349–2351

Trust, 2414–2415

Subject Index 3747
Trust and Reputation in Peer-to-Peer

Systems, 3183–3187

– reputation, 3183, 3184, 3186, 3187

– trust, 3183–3187

– trust management system, 3183

Trusted hardware, 3191–3192

– tamper-proof hardware, 3191

– Trusted Platform Module (TPM)

specifications, 3191

Trust in Blogosphere, 3187–3191

– blogosphere, 3187–3091

– distrust, 3189, 3190

– social network, 3187–3191

– trust, 3187–3191

Trust virtualization, 812, 813

TSQL2 (Temporal Structured Query

Language), 3192–3197

– SQL/Temporal, 3192, 3193, 3197

– temporal extension of SQL–92,

3192, 3194

t1, t2, td, 477

Tuning application interface, 105–106

Tuning concurrency control, 3198–3201

– the concurrencycontrol, 3198

– serializability, 3199, 3200

– tuning by Leveraging Application

Semantics, 3198–3199

Tuning in operating system, 2114–2115

Tuning time, 72, 74, 76

Tuple-based algebras for Xquery, 3640

Tuple-count versus time-sliding

windows, 3533

Tuple equivalence, 2659, 3455

Tuple-generating dependencies,

3201–3202

– normalization, 3201, 3202

– schema mapping, 3201, 3202

– tgds, 3201, 3202

Tuple-generating dependency, 2489

Tuple relational calculus, 2370–2371

Turing machine, 495

Twig index, 3589, 3590

Twig query, 3637–3639

Two-dimensional shape retrieval,

3202–3203

– 2D shape, 3202

Two-level hierarchical scheduling policy,

1832, 1834

Two-level serializability, 505

Two-phase commit, 3204–3209

– atomic commit protocols, 3204,

3206–3208

– commit optimizations, 3204

– commit protocol, 3209–3213

Two-Phase Commit Protocol, 3209–3213

– commit protocol, 3209–3213

– distributed, 3209, 3210, 3213
Two-phase locking (2PL), 443–444, 2541,

3214–3217

– conflict-serializability, 3215

– a locked transaction, 3214–3216

– a locking policy, 3214, 3215

– a safe locking policy, 3214, 3216, 3217

Two-Poisson Model, 3218–3219

– a linear combination of two Poisson

distributions, 3218

– a probabilistic model of indexing, 3218

Type-based Publish/Subscribe, 3220

– publish/subscribe, 3220

Type-checking, 3646–3649

Type of evidence, 1072

Types for temporal dimensions, 2999–3001

Types of locality, 1713

Types of schema evolution, 2500, 2502

U
UCC-user created content, 466, 467, 469,

470

Unbalanced hierarchy, 1308

Uncertain event inference, 3221–3223

Uncertainty, 1924

– in events, 3221–3225

– or impresion of data, 1808

– management, 3225–3231

– in sensor data, 647–651

Uncorrelated noise addition, 1911

Undirected graphs, 1261

Unicode, 3231–3232

Unicode standard, 3231

Unified Data Model (UDM), 3641

Unified modeling language (UML), 1927,

3232–3239, 3371–3373, 3552

– activity diagrams, 293

– class diagrams, 438, 439, 441, 442,

3233–3236, 3239

– model, 3597

– modeling language, 41

Uniform resource identifier (URI),

2428–2429

Unigram, 1910

Union, 3239–3240

Uniqueness constraint, 1587

Universal decimal classification, 808

Universal description, discovery and

integration (UDDI), 854, 855, 857

Universal models, 324, 327

Universe, 1209–1210

Unobservability, 2142, 2143, 2145

Unrestricted implication problem, 1396

Unsupervised learning, 1664

Update anomaly, 1918, 1920

Update semantics, 99

Update through views problem, 3246

Updates on the views, 2639, 2642
Updates through Views, 3244–3247

Upstream backup, 1110–1113

Upward and downward inheritance,

142–143

Upward compatibility, 2937

Upward inheritance, 2911, 2912

Usability, 955, 958, 3247–3251

User-centered approach, 3247

User defined functions (UDFs), 2831

User-defined temporal periodicity, 3005

User interface architecture, 1329, 1330

User-level parallelism, 1566

User model, 2100, 2102

User profile(s), 2099, 2100, 2102

User queries over XML views, 3657

User-role assignment (URA97) model, 57

User updates over XML views, 3657–3658

Using parity and striping, 2359

UTF–8 (a 8-bit, variable-width encoding),

3231

UTF–16 (a 16-bit, variable-width

encoding), 3231

UUID, 2428–2429

V
Validity region, 3439

Valid time, 3252

Valid-time database, 3254–3256

Valid-time index, 3254, 3255

Valid-time indexing, 240, 3254–3258

Value equivalence, 3258–3259

Value-List index, 244–247

Value reduct, 761–762, 764

Variable database, 1922, 1923

Variable group-size microaggregation, 1736

Variable time span

– calendar, 3259

– time interval, 3259

Vector graphics, 1374, 1376

Vector space model, 1571, 3059

Vendor neutral technology

center, 2816

Venn, 3370–3372

Verbosity hypothesis, 940

Verification, 3551

Vertical fragmentation, 891, 892

Vertical partitioned data, 3263–3265

Vertical partitioning, 599–600

Vertical replication, 2409, 2412, 2413

Vertical search, 592

Vertical web search, 1154

Video application, 3265, 3266, 3268

Video clips, 3320, 3321, 3323

Video compression, 3298, 3301, 3302

Video content analysis, 468–472,

3271–3276, 3321

Video content analysis algorithms, 3271

3748 Subject Index
Video data, 3292–3295

Video data model, 3277, 3278

Video format, 3296, 3297

Video history, 3265

Video indexing, 3360

Video metadata, 3286–3292

Video querying, 3292–3296

Video representation, 3265, 3266, 3270

Video retrieval, 3365

Video scene, 3303

Video scene and event detection,

3303–3308

Video search engine(s), 468–470

Video segment, 3292–3294, 3296

Video (temporal) segmentation, 3308

Video shot detection, 3316–3320

Video summarization, 3320–3324

View(s), 92–97, 1674–1679, 2639–2642,

3244–3247, 3326–3328, 3339–3340

– adaptation, 3324–3325

– definition, 3325

– dependencies, 1396, 1399–1400

– maintenance, 1670, 1672, 2549,

3326–3331

– recomputation, 3326

– self-maintenance, 2548–2550

– update, 3326–3328

– update translations, 3245, 3246

– View-based data integration,

3332–3339

Virtual data integration, 2481

Virtual medical record (VMR), 970

Virtual memory (VM), 278–279

Virtual relations, 3325, 3339

Vision, 3396–3398

Visual analytics, 3341–3346

Visual association rules, 3346–3351

Visual clustering, 3355–3360

Visual data exploration, 1623

Visual data mining, 3355, 3360

Visual distances and visual sangles of a

document, 3413

Visual exploration, 405

Visual features, 1379, 1380

Visual information retrieval system, 1379

Visual interfaces, 267–268, 3379–3382

– metaphor, 3387–3388

– perception, 3395–3399

– query, 3399–3404
– formulation, 3028, 3033

– language, 3399–3404

– systems (VQSs), 3375,

3376, 3399

– representation, 3405–3410

– summaries, 3384

– system, 3395, 3396, 3398

– wrapping, 1649, 1651
Visual on-line analytical processing (OLAP),

3388–3395

Visualization, 3352–3354, 3366–3368

– of association rules, 3348, 3351

– of data, 749

– for information retrieval, 3410–3414

– methods, 655, 656, 3411

– pipeline, 3414–3416

– process, 3414

– of spatial data, 3382

– task, 3414, 3415

Visualization models for multiple reference

points, 3412

Visualizing, 2019, 2020, 2022, 3416–3417,

3437–3438

– clustering results, 3417–3425

– clusters, 3417–3425

– hierarchical data, 3425–3432

– network data, 3432–3437

Visual metaphor, 3387–3388

Visual on-line analytical processing (OLAP),

3388–3395

Visual perception, 3395–3399

Visual query, 3399–3404

– formulation, 3028, 3033

– query language, 3399–3404

Visual query systems (VQSs), 3375,

3376, 3399

Visual representation, 3405–3410

Visual summaries, 3384

Visual system, 3395, 3396, 3398

Visual wrapping, 1649, 1651

Voronoi cell, 3439

– Voronoi diagram, 1892, 3438–3440

– Voronoi edges and voronoi

vertices, 3439

– Voronoi neighbor, 3439

VP-trees, 1439–1441

Vulnerable edge, 2662

W
Wait-for graph (WFG), 899–902

WAN data replication, 3441–3445

Watermarking, 825–829, 2827, 2829

Wavelet, 857–863, 2898, 2899, 3446–3451

– based approximation, 1303

– synopsis, 860, 862, 863

– transform, 3446, 3447

W3C (World Wide Web consortium), 3441

– initiatives, 3441

– operations, 3441

– XML recommendation, 3584

Weak consistency, 1072

Weak temporal relation, 2659, 3455

Web 2.0/3.0, 3456–3457

– advertising, 3457–3459

– application, 1696–1697
– 2.0 applications, 2667

– 3.0 applications, 3457

– application server, 104

– browsing, 268

– characteristics, 3460–3462

– characteristics and evolution,

3460–3462

– crawler, 1147, 3462–3465

– crawler architecture, 3462–3465

– crawling, 1600

– data extraction, 590–593, 1595–1600,

3465–3470

– data extraction system, 3465–3470

– directory, 1463, 1464

– documents, 1191

– 2.0 enabling technologies, 3457

– evolution, 3460–3462

– extraction, 3471–3472

– forms, 1162

– graph, 1274

– index, 1463, 1465, 1466

– intelligence, 592–593

– marts, 3377

– mashups, 3378, 3482–3483

– mining, 595, 693–695, 3472

– ontology language (OWL), 2008–2009

– page cleaning, 1191

– question answering, 3485–3490

Web search, 1251–1255, 2082–2085

– engines, 3497–3500

– relevance feedback, 3493–3497

– relevance ranking, 3497–3500

– result caching, 3501–3505

– result prefetching, 3501–3505

Web service discovery, 857

Web service standards, 3510

– spam, 3520–3523

– spam detection, 3520–3523

– transactions, 3523–3524

– views, 3524–3525

– wrappers, 1595–1600, 3565

Web service description language (WSDL),

854, 2587

Web services business process execution

language (WS-BPEL), 413–418

Weight, 2862

Weighted MDS, 1784

Weighting schemes, 3937–3942

What-if analysis, 3525–3528

Wide-area database, 3442

Wide-area data replication, 3443

Wikipedia, 967, 968

Wikipedia article, 1537

WIMP interfaces, 3529–3532

Window, 1064, 1065, 1067

– aggregates, 3538

– based query processing, 3533–3537

Subject Index 3749
– joins, 3538

– query, 3533

Wipe, 3316, 3318

Wireless broadcast channel, 73

ωj tj, 477

wmix(q, e), 477

Workflow(s), 1077–1078, 1276–1278, 3539,

3545–3549, 3551–3557

– activity cycle, 1661

– branching, 2006

– control data, 494

– engine state data, 494

– evolution, 3540–3544

– generation, 3514

– join, 3544–3545

– management, 289–293, 3545, 3557, 3558

– management and workflow

management system, 3545–3549

– management coalition, 3550

– model, 3550–3551

– provenance, 2202–2204

– schedule, 2474

– schema, 3558

– step, 41

– transaction, 3559

Workflow management coalition

(WfMC), 1276

Workflow management systems (WFMS),

3547–3548

World Wide Web, 1417, 1418

WORM, 2798–2800

WORM storage, 3570

Wrapper(-ing), 1282–1286, 2511,

3472–3473, 3565–3568

– generation, 3465–3469

– induction, 3560–3568

– induction algorithms, 3563–3564

– learning, 3565–3567

– programming languages, 1649

– reinduction, 3566–3567

– repair, 3566–3568

– robustness, 3569

– verification, 3566–3568

Write ahead log (WAL), 517, 519

Write once read many (WORM), 2364,

2365, 3570

Write Skew (WS), 2661

– brokered notifications, 2210

– eventing, 2210

– notifications, 2210

– topics, 2210

X
XACML, 2142

XJoin, 904, 906, 907
XML (eXtensible Markup Language),

2047–2050, 2187, 2188, 2191, 2290, 2298,

2599–2600, 2932–2935, 3571–3572,

3576–3579, 3585, 3591, 3598–3600,

3608–3612, 3623–3626, 3634–3636,

3646–3649, 3659–3665

– absolute constraints, 3593

– access control, 3573–3575

– access control policy, 3573

– algebra, 3640, 3641

– API, 3602

– attribute, 3576

– benchmarking, 3576–3579

– cardinality, 3623, 3626

– estimation, 3623–3626

– graph synopsis, 3624–3626

– histograms, 3624–3626

– measurement, 3577, 3578

– performance, 3576, 3578

– selectivity, 3623–3626

– synopsis, 3623–3626

– synthetic data generators, 3577–3579

XML-based integration framework, 3597

XML benchmark, 1737

XML compression

– compression, 3579–3583

– data compression, 3580, 3583

– decompression, 3580

– homomorphic compression,

3580, 3582

– structure compression, 3581

XML databases, 1564

XML data reduced (XDR), 3614

XML document, text document, 3584

XML element, element, 3585

XML filtering, 3608–3612

XML foreign keys, 3592, 3593,

3595–3596

XML full-text search, 1544, 1545

XML functional dependencies,

3592–3594

XMLHttpRequest, 78

XML inclusion dependencies, 3592, 3593,

3595–3596

XML information integration

– data integration, 3591

– enterprise information integration,

3591

XML information item, 3585

XML Information Retrieval (XML IR),

1531–1534, 1536

XML information set, 3584

XML integrity constraint, 3592–3597

XML-IR, 1545, 1546

XML keys, 3594
XML language extensions, 3602,

3605, 3606

XML manipulation language, 3654

XML Metadata Interchange (XMI), 3597

XML parser, 3598–3600

XML parsing, validation, 3600

XML process definition language (XPDL),

3558, 3601

XML programming interface,

3598–3599

XML publishing, 3613–3616

XML-QL, 3614, 3637

XML queries, 2326

XML relative constraints, 3593

XML retrieval, 463, 2376, 2867, 2868, 3036,

3037, 3616–3620

XML schema, 3621–3622, 3650

XML scripting, 3607

XML signature, 832–834

XML storage, 3627–3633

XML tree pattern, 2050

XML tuple algebra, 3640–3645

XML typechecking, types, 3646–3649

XML types, 3646, 3648, 3649

– regular expression, 3651–3653

– validation, 3652

XML updates, 3654–3655

XML views, 3656–3659

XML vocabulary, 1236

XPath, 1876–1879, 3634–3636

XPath languages, 3665, 3666

Xpath/Xquery, 2047–2049

XPDL, 3550

XPERANTO, 3613–3615

Xquery, 3591, 3665–3670

XQuery Full-Text, 3665–3670

XQuery processors

– DB2 XML, 3672, 3674–3675

– timber, 3672–3675

XSL (eXtensible Stylesheet Language),

3676–3680

XSLT (eXtensible Stylesheet Language

Transformations), 3676–3680

XSLT programming, 3676–3678

XSL/XSLT, 3676–3680

XTM, 3125

Z
Z39.50, 2519, 2521

Zero-One laws, 1081, 1082, 3683

ZF-expression, 420–421

Zoomable user interface (ZUI),

3684–3689

Zooming, 3684–3689

Zooming techniques, 3684–3689

	0387355448
	Encyclopedia of Database Systems
	Title Page
	Copyright Page
	Dedication
	Preface
	Editors-in-Chief
	Advisory Board
	Area Editors
	List of Contributors
	A
	Absolute Time
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Abstract Versus Concrete Temporal Query Languages
	Synonyms
	Definition
	Historical Background
	Foundations
	Abstract Temporal Query Languages
	Multiple Temporal Dimensions and Complex Values.

	Concrete Temporal Query Languages
	Compilation and Query Evaluation.

	Key Applications
	Cross-references
	Recommended Reading

	Abstraction
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Access Control
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Access Control Administration Policies
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Access Control Policy Languages
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Access Methods
	Access Path
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Accountability
	ACID Properties
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	ACID Transaction
	Acquisitional Query Languages
	Active and Real-Time Data Warehousing
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Active Database, Active Database (Management) System
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Active Database Management System Architecture
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Active Database Coupling Modes
	Definition
	Historical Background
	Foundations
	Cross-references
	Recommended Reading

	Active Database Execution Model
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Active Database Knowledge Model
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Active Database Rulebase
	Definition
	Key Points
	Cross-references

	Active Databases
	Active Disks
	Active Document
	Active Storage
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Active XML
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Activity
	Synonyms
	Definition
	Key Points
	Cross-references

	Activity Diagrams
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Actors/Agents/Roles
	Synonyms
	Definition
	Key Points
	Cross-references

	Ad hoc Retrieval models
	Adaptation
	Adaptive Database Replication
	Adaptive Interfaces
	Synonyms
	Definition
	Key Points
	Cross-references

	Adaptive Message-Oriented Middleware
	Adaptive Metric Techniques
	Adaptive Middleware for Message Queuing Systems
	Synonyms
	Definition
	Historical Background
	Foundations
	Clustered Queues
	Clustered Queue Performance
	Provisioning
	Control Rules for a Self-Optimizing Clustered Queue

	Key Applications
	Cross-references
	Recommended Reading

	Adaptive Query Optimization
	Adaptive Query Processing
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Adaptive Stream Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Minimizing Computation Cost
	Eddies

	Managing Resource Consumption
	Load Shedding.
	Memory Minimization.
	Minimizing Communication.

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Adaptive Workflow/Process Management
	ADBMS
	ADBMS Framework
	ADBMS Infrastructure
	Adding Noise
	Additive Noise
	Administration Model for RBAC
	Synonyms
	Definition
	Administrative RBAC
	Scoped Administrative RBAC

	Key Points
	SARBAC

	Cross-references
	Recommended Reading

	Administration Wizards
	Definition
	Historical Background
	Foundations
	Installation and Configuration
	Data Import/Export
	Back-up/Restore

	Key Applications
	Cross-references
	Recommended Reading

	Advanced Transaction Models
	Adversarial Information Retrieval
	Affix Removal
	AFI
	Aggregate Queries in P2P Systems
	Aggregation
	Aggregation Algorithms for Middleware Systems
	Aggregation and Threshold Algorithms for XML
	Aggregation: Expressiveness and Containment
	Definition
	Historical Background
	Foundations
	Expressiveness
	Query Containment

	Key Applications
	Query Optimization
	Query Rewriting

	Future Directions
	Cross-references
	Recommended Reading

	Aggregation-Based Structured Text Retrieval
	Definition
	Historical Background
	Foundations
	Aggregation-based Approaches

	Key Applications
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	AGMS Sketch
	Air Indexes for Spatial Databases
	Definition
	Historical Background
	Foundations
	Key Applications
	Location-based Service
	Moving Objects Monitoring

	Cross-references
	Recommended Reading

	AJAX
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Allen's Relations
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	AMOSQL
	Definition
	Key Points
	Cross-references
	Recommended Reading

	AMS Sketch
	Synonyms
	Definition
	Historical Background
	Foundations
	Problem Setup
	Main Idea
	Improving the Basic Schema

	Key Applications
	Experimental Results
	URL to Code
	Cross-references
	Recommended Reading

	Analogy
	Anchor
	Anchor Text
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Anchor Text Surrogate
	AND-Join
	AND-Split
	Animation
	Annotation
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Annotation-based Image Retrieval
	Synonyms
	Definition
	Historical BackGround
	Foundations
	Machine Learning Approaches
	Relation Exploring Approaches
	Semantic Template Approaches
	Large-Scale Web Data Supported Approaches

	Key Applications
	Cross-references
	Recommended Reading

	Anomaly Detection on Streams
	Definition
	Historical Background
	Foundations
	Outlier Detection
	Clustering-Based and Forecasting-Based Approaches
	Distribution-Based Approaches
	Distance-Based and Density-Based Approaches

	Change Detection
	Streaming Algorithms
	Sketching techniques
	Burst Detection
	Correlation Dnalysis
	Change Analysis

	Key Applications
	Intrusion Detection
	System Monitoring
	Process Control
	Pervasive Healthcare
	Civil Infrastructure

	Future Directions
	Cross-references
	Recommended Reading

	Anonymity
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Anonymity in Location-based Services
	ANSI/INCITS RBAC Standard
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Answering Queries Using Views
	Synonyms
	Definition
	Historical Background
	Foundations
	Preliminaries
	Conjunctive Queries
	Views
	Containment & Equivalence
	Definition 1
	Definition 2

	Rewritings
	Definition 3
	Example 1:
	Definition 3
	Characterizing Rewritings
	Proposition 1

	Techniques for Answering Queries Using Views
	The Bucket Algorithm
	The Inverse Rules Algorithm
	The MiniCon Algorithm
	Chase and Backchase

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Anti-monotone Constraints
	Definition
	Key Points
	Cross-references
	Recommended Reading

	AP@n
	Applicability Period
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Application Benchmark
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Application Recovery
	Synonyms
	Definition
	Historical Background
	Foundations
	Introduction
	Persisting Application State
	Distributed Applications
	Discussion

	Key Applications
	Cross-references
	Recommended Reading

	Application Server
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Application Server Clustering
	Application-Centric Interfacing
	Application-Level Tuning
	Synonyms
	Definition
	Historical Background
	Foundations
	Assemble Object Collections in Bulk
	The Art of Insertion

	Key Applications
	Experimental Results
	Looping hurts

	Url to Code and Data Sets
	Cross-references
	Recommended Reading

	Applications of Emerging Patterns for Microarray Gene Expression Data Analysis
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Applications of Sensor Network Data Management
	Synonyms
	Definition
	Historical Background
	Foundations
	Sensor Databases
	Sensor Database Distinctions

	Key Applications
	Environmental Monitoring
	Military Intelligence
	Asset Management
	Building Monitoring
	Automotive
	Healthcare
	Industrial Monitoring

	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Application-to-Application Integration
	Approximate Queries in Peer- to- Peer Systems
	Synonyms
	Definition
	Historical Background
	Foundations
	Approximation for Top-k Queries
	Unstructured Networks
	Hierarchical Networks
	Structured Networks

	Approximation for Aggregate Queries

	Key Applications
	Cross-references
	Recommended Reading

	Approximate Query Answering
	Approximate Query Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Pre-Computed Synopsis
	Online Query Processing

	Key Applications
	AQP in Relational Data Management
	AQP in Spatial Data Management
	AQP in Stream Data Management
	AQP in Sensor Network
	AQP in Semantic Web Search

	Cross-references
	Recommended Reading

	Approximate Querying
	Approximate Reasoning
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Approximate XML Querying
	Approximation of Frequent Itemsets
	Synonyms
	Definition
	Historical Background
	Foundations
	Noise-Tolerant Support Pruning

	Experimental Results
	Cross-references
	Recommended Reading

	Apriori Property and Breadth-First Search Algorithms
	Synonyms
	Definition
	Historical Background
	Foundations
	The Apriori Algorithm
	Optimizations
	Item Reordering
	Partition
	Sampling
	Concise Representations

	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	ARBAC97
	Architecture-aware Database System
	Architecture-Conscious Database System
	Synonyms
	Definition
	Historical Background
	Foundations
	Persistent Storage
	Main Memory and Cache Optimizations
	Microarchitecture Optimizations
	On-Chip Parallelism

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Architecture-Sensitive Database System
	Archiving Experimental Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Armstrong Axioms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Array
	Array Databases
	Association
	Association Rule Mining on Streams
	Definition
	Historical Background
	Foundations
	Two Sub-problems
	Key Challenges
	Data Models
	Algorithm Types
	Representative Algorithms

	Key Applications
	Experimental Results
	Data Sets

	Cross-references
	Recommended Reading

	Association Rule Visualization
	Association Rules
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Associative Classification
	Asymmetric Encryption
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	ATA
	Atelic Data
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Atomic Event
	Synonyms
	Definition
	Key Points
	Cross-references

	Atomicity
	Definition
	Historical Background
	Foundations
	Future Directions
	Cross-references
	Recommended Reading

	Attribute or Value Correspondence
	Audible Sound
	Audio
	Synonyms
	Definition
	Historical Background
	Foundations
	Digital Audio
	Audio Coding and Compression
	Audio Content Analysis
	Audio Retrieval

	Key Applications
	Cross-references
	Recommended Reading

	Audio Categorization
	Audio Characterization
	Audio Classification
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Audio Effect Detection
	Classifier Learning
	Probabilistic Inference

	From Key Audio Effects to a Hierarchy of Semantic Concepts

	Key Applications
	Cross-references
	Recommended Reading

	Audio Content Analysis
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Audio Feature Extraction
	Audio Indexing
	Audio Information Retrieval
	Audio Metadata
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Audio Parsing
	Audio Recognition
	Audio Representation
	Synonyms
	Definition
	Historical Background
	Foundations
	Zero-Crossing Rate
	Short Time Energy
	Sub-Band Energy Distribution
	Brightness and Bandwidth
	Mel-Frequency Cepstral Coefficient (MFCC)
	Sub-Band Partial Prominence and Harmonicity Prominence
	High ZCR Ratio
	Low Short-Time Energy Ratio
	Spectrum Flux
	Noise Frame Ratio
	Feature Vector Generation

	Key Applications
	Cross-references
	Recommended Reading

	Audio Segmentation
	Synonyms
	Definition
	Historical Background
	Foundations
	Audio Elements Detection and Weighting
	Auditory Scene Segmentation

	Key Applications
	Cross-references
	Recommended Reading

	Audit Trail
	Auditing and Forensic Analysis
	Synonyms
	Definition
	Historical Background
	Foundations
	Database Auditing
	Database Forensics

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Auditory Scene Detection
	Authentication
	Definition
	Historical Background
	Foundations
	Identification
	Password-Based Authentication
	Challenge-Response Identification
	Data Origin Authentication

	Key Applications
	Cross-references
	Recommended Reading

	Authentication Trees
	Authorization Administration Policies
	Authorization Administration Privileges
	Authorization Policy Languages
	Authorization Verification
	Auto-administration and Auto-Tuning of Database Systems
	Auto-Annotation
	Automata Induction
	Automatic Abstracting
	Automatic Image Annotation
	Synonyms
	Definition
	Historical Background
	Foundations
	Images Description with Low-Level Features
	Learning and Models
	Current Results
	Key Issues and Future Research

	Key Applications
	Cross-references
	Recommended Reading

	Automatic Induction
	Automatic Language Induction
	Automatic Wrapper Induction
	Autonomic Database Replica Allocation
	Autonomic Database Systems
	Autonomic Query Processing
	Autonomous Message Queuing Systems
	Autonomous Replication
	Synonyms
	Definition
	Historical Background
	Foundations
	Common Architecture for Database Replica Provisioning
	Overview of Dynamic Provisioning Solutions
	Challenges for Database Replica Provisioning
	Adaptation Delay
	Oscillations in Allocation
	Accurate and Lightweight Modeling
	Design Choices and Trade-offs for Database Provisioning

	Key Applications
	Cross-references
	Recommended Reading

	Autonomous Message-oriented Middleware
	Average Precision
	Definition
	Key Points
	Cross-references

	Average Precision at n
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Average Precision Histogram
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Average R-Precision
	Definition
	Key Points
	Cross-references
	Recommended Reading

	AXML

	B
	B+-Tree
	Synonyms
	Definition
	Historical Background
	Foundations
	Structure
	Query Processing
	Insertion
	Deletion
	Comparison with Some Other Index Structures

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Backup
	Backup and Restore
	Synonyms
	Definition
	Key Points
	Cross-references

	Backup Copy
	Backup Mechanisms
	Backward Recovery
	Bag Semantics
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Bagging
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Base-line Clock
	Bayes Classifier
	Bayesian Classification
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Text Document Classification
	Image Pattern Recognition
	Medical Diagnostic and Decision Support Systems
	Email Spam Filtering

	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	BCNF
	Belief Time
	Benchmark
	Biased Distribution
	Bibliography
	Bi-clustering
	Bioinformatics
	Biological Data Retrieval, Integration, and Transformation
	Biological Metadata Management
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Biological Networks
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Biological Pathways
	Biological Query Languages
	Biological Resource Discovery
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Biological Sequences
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Biomedical Data Annotation
	Biomedical Data/Content Acquisition, Curation
	Synonyms
	Definition
	Historical Background
	Foundations
	Technical Issues
	The Different Types of Expressivity of Ontologies/Vocabularies Used to Create the Annotations
	Storage Schemes and Data Models to Store These Annotations in Underlying Databases
	Techniques for Indexing the Curated Annotation for Retrieval
	Workflow Aspects of the Curation Process

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Biomedical Image Data Types and Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Biomedical Informatics
	Biomedical Literature
	Biomedical Scientific Textual Data Types and Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Information Retrieval
	Information Extraction
	Text Mining

	Key Applications
	Cross-references
	Recommended Reading

	Biostatistics and Data Analysis
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-reference
	Recommended Reading

	BIR Model
	Bit Vector Join
	Bi-temporal Access Methods
	Bitemporal Algebras
	Bitemporal Data Model
	Bi-Temporal Indexing
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Bitemporal Interval
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Bitemporal Relation
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Bitmap Index
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Bitmap-based Index Structures
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Blind Signatures
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Bloom Filter Join
	Bloom Filters
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Bloom Join
	BM25
	Synonyms
	Definition
	Historical Background
	Foundations
	Cross-references
	Recommended Reading

	Boolean Model
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Boosting
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Bootstrap
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Bootstrap Aggregating
	Bootstrap Estimation
	Bootstrap Sampling
	Bottom-up Semantics
	Boyce-Codd Normal Form
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	BP-Completeness
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	BPEL
	BPEL4WS
	BPMN
	Bpref
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Branch
	Bridging
	Browsing
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Browsing in Digital Libraries
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	B-Tree
	B-Tree Concurrency Control
	B-Tree Locking
	Synonyms
	Definition
	Historical Background
	Foundations
	Preliminaries
	Two Forms of B-Tree Locking
	Latch Coupling and Blink-Trees
	Key Range Locking

	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Buffer Management
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Buffer Manager
	Synonyms
	Definition
	Historical Background
	Foundations
	Buffer Pool Interfaces
	Replacement Policies
	Asynchronous I/O
	Concurrency Control and Recovery
	Cooperative Buffer Pool Management

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Buffer Pool
	Synonyms
	Definition
	Historical Background
	Foundations
	Buffer Frames
	Buffer Pool Data Structures
	Replacement Policies

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Business Intelligence
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Business Process Execution Language
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Business Process Management
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Banking
	Government
	Business-to-Business
	Health-care

	Cross-references
	Recommended Reading

	Business Process Model
	Business Process Modeling
	Business Process Modeling Notation
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Business Process Monitoring
	Business Process Optimization
	Business Process Redesign
	Business Process Reengineering
	Synonyms
	Definition
	Historical Background
	Foundations
	Traditional Intra-Organizational Reengineering
	Supply Chain Management Process Reengineering
	Knowledge Management Process Reengineering
	Process Modeling Languages and Techniques

	Key Applications
	Cross-references
	Recommended Reading

	C
	Cache Manager
	Cache Performance
	Cache-Aware Query Processing
	Cache-Conscious Query Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Spatial Locality
	Temporal Locality
	Prefetching
	Sampling

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Cache-Sensitive Query Processing
	Calculus Expression
	Calendar
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Calendric System
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Camera Break Detection
	Capsule
	Cardinal Direction Relationships
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Cartesian Product
	Synonyms
	Definition
	Key Points
	Cross-references

	Cartography
	CAS
	CAS Query
	Case Handling
	Case Management
	Case Report Forms
	Cataloging
	Cataloging in Digital Libraries
	Synonyms
	Definition
	Historical Background
	Foundations
	Classification
	Cataloging

	Key Applications
	Dublin Core
	XML
	METS and MODS

	Cross-references
	Recommended Reading

	CDA
	CDA R1
	CDA R2
	CDP
	CDs
	CDS
	Cell Complex
	Certain (and Possible) Answers
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Chandra and Harel Complete Query Languages
	Change Detection and Explanation on Streams
	Change Detection on Streams
	Synonyms
	Definition
	Historical Background
	Foundations
	Regions of Interest
	Estimating Probabilities
	Statistical Testing

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Channel-Based Publish/Subscribe
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Chart
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Chase
	Definition
	Comments

	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Checkpoint
	Checksum and Cyclic Redundancy Check Mechanism
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Choreography
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Chronicle Recognition
	Chronon
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	CIFS
	Cipher
	Citation
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	CLARA (Clustering LARge Applications)
	CLARANS (Clustering Large Applications Based Upon Randomized Search)
	Classification
	Synonyms
	Definition
	Historical Background
	Foundations
	Rules Based on a Single Attribute
	Statistical Modeling (see entry Bayesian Classification)
	Divide and Conquer Technique (see entry Decision Tree Classification)
	Covering Algorithms (see entry Rule-Based Classification)
	Instance-Based Learning (see entry Nearest Neighbor Classification)
	Linear Models (see entry Linear Regression)
	Linear Classification (see entry Neural Networks, Support Vector Machine)
	Missing Values
	Meta-Learning
	Evaluation

	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Classification by Association Rule Analysis
	Synonyms
	Definition
	Historical Background
	Foundations
	Classification Using Class Association Rules
	Mining Class Association Rules for Classification
	Classifier Building

	Class Association Rules as Features
	Classification Using Normal Association Rules

	Key Applications
	Cross-references
	Recommended Reading

	Classification Learning
	Classification in Streams
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Classification Tree
	Classification Trees
	Classifier Combination
	Client-Server DBMS
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Clinical Classifications
	Clinical Content Database
	Clinical Content Registry
	Clinical Content Repository
	Clinical Data Acquisition, Storage and Management
	Synonyms
	Definition
	Historical Background
	Foundations
	Electronic Data Capture
	Infrastructure and Standards for Data Exchange
	Document Models and Management Systems
	Common Components of Information Systems
	Text-Oriented Information Systems

	Key Applications
	Electronic Data Collection Options
	Patient Registries
	Clinical Workflow Management
	Quality Management, Report Generation, and Analysis

	Future Directions
	Cross-references
	Recommended Reading

	Clinical Data and Information Models
	Definition
	Key Points
	Recommended Reading

	Clinical Data Management Systems
	Clinical Data Quality and Validation
	Definition
	Key Points
	Accuracy
	Completeness
	Reliability

	Cross-references
	Recommended Reading

	Clinical Decision Support
	Synonyms
	Definition
	Historical Background
	Foundations
	Issues of Knowledge Representation
	Storage of Clinical Knowledge in Database Systems
	Standards for Sharing Clinical Decision Support Content between Database Systems

	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Clinical Document Architecture
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Clinical Event
	Definition
	Vernacular Definition
	Technical Definitions

	Key Points
	Cross-references
	Recommended Reading

	Clinical Genetics
	Clinical Genomics
	Clinical Judgment
	Clinical Knowledge Base
	Clinical Knowledge Directory
	Clinical Knowledge Management Repository
	Clinical Knowledge Repository
	Synonyms
	Definition
	Key Points
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Clinical Nomenclatures
	Clinical Observation
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Clinical Ontologies
	Synonyms
	Definition
	Historical Background
	Foundations
	Properties of Clinical Ontologies

	Key Applications
	Prototypical Clinical Ontologies
	a. The Systematized Nomenclature of Medicine (SNOMED CT)
	b. International Statistical Classification of Diseases (ICD-9, ICD-10, ICD-CM)
	c. Medical Subject Headings (MeSH)
	d. International Classification of Primary Care (ICPC-2, ICPC-2-E)
	e. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV, DSM-V)
	f. Logical Observation Identifiers Names and Codes (LOINC)
	g. Current Procedural Terminology (CPT)

	Cross-references
	Recommended reading

	Clinical Order
	Synonyms
	Definition
	Key Points
	Cross-references

	Clinical Research Chart
	Clinical Result
	Clinical Terminologies
	Clinical Test
	Clock
	Closed Itemset Mining and Non- redundant Association Rule Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Mining Closed Frequent Itemsets
	Non-redundant Association Rules

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	Url to Code
	Cross-references
	Recommended Reading

	Closest Pairs
	Closest-Pair Query
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Geographical Information Systems
	Data Analysis
	Decision Making

	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Cloud Computing
	Cluster and Distance Measure
	Synonyms
	Definition
	Clustering
	Distance Measure

	Key Points
	Cross-references
	Recommended Reading

	Cluster Database Replication
	Cluster Databases
	Cluster Replication
	Cluster Stability
	Cluster Validation
	Clustering
	Clustering for Post Hoc Information Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Clustering Index
	Clustering on Streams
	Definition
	Historical Background
	Foundations
	Preliminaries
	General Principles
	Incremental Clustering
	Representations
	Hierarchical Clustering
	On Relaxing the Number of Clusters

	Clustering Evolving Data
	Sliding Windows
	Hierarchies of Windows
	Decaying Data

	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Clustering Overview and Applications
	Synonyms
	Definition
	Historical Background
	Foundations
	The Clustering Process
	Clustering Algorithms Taxonomy
	Partitional Algorithms

	Key Applications
	Cross-references
	Recommended Reading

	Clustering Validity
	Synonyms
	Definition
	Historical Background
	Foundations
	External Criteria
	Comparison of C with Partition P (Non-hierarchical Clustering)

	Internal Criteria
	Validating Hierarchy of Clustering Schemes
	Validating a Single Clustering Scheme

	Relative Criteria
	The Modified Hubert Gamma Statistic
	Dunn Family of Indices
	RMSSDT, SPR, RS, CD

	Key Applications
	Cross-references
	Recommended Reading

	Clustering with Constraints
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	CM Sketch
	CMA
	CO Query, Content-Only Query
	CO+S Query
	Co-clustering
	CODASYL Data Model
	Collaborative Software
	Co-locations
	Colored Nets
	Column Segmentation
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Committee-based Learning
	Common Object Request Broker Architecture
	Common Subexpression Elimination
	Common Warehouse Metadata Interchange (CWMI)
	Common Warehouse Metamodel
	Synonyms
	Definition
	Historical Background
	Foundations
	Object Model
	Foundation
	Resource
	Analysis
	Management

	Key Applications
	Cross-references
	Recommended Reading

	Communication Boundary of a DBMS
	Compact Suffix Tries
	Comparative Analysis
	Comparative Visualization
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Compensating Transactions
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Computationally Complete Relational Query Languages
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Complex Event
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Complex Event Processing
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Complex Event Processing (CEP)
	Compliance
	Component Abstraction
	Composed Services and WS-BPEL
	Synonyms
	Definition
	Historical Background
	Foundations
	Services and Components
	Service Composition Models
	Workflow Oriented Composition in WS-BPEL
	Service Interaction in Processes
	Specification of Business Logic in Process Compositions

	Key Applications
	Cross-references
	Recommended Reading

	Composite Event
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Composite Event Query
	Composite Web Applications
	Composition
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Comprehensions
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Compressed and Searchable Data Format
	Compressed Full-Text Indexing
	Compressed Suffix Array
	Compressed Suffix Tree
	Compressing XML
	Compression of Mobile Location Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Distance Function
	Spatio-Temporal Queries and Trajectory Compression

	Key Applications
	Wireless Sensor Networks (WSN)
	Location-Based Services (LBS)
	Geographic Information Systems (GIS)
	Spatio-Temporal Data Mining

	Future Directions
	Cross-references
	Recommended Reading

	Computational Media Aesthetics
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Computational Ontology
	Computer Human Interaction (CHI)
	Computer-based Physician Order Entry
	Computer-based Provider Order Entry
	Computer-Interpretable Formalism
	Computerized Order Entry (COE)
	Computerized Physician Order Entry
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Computerized Provider Order Entry
	Concept Languages
	Conceptual Data Model
	Conceptual Image Data Model
	Conceptual Model
	Conceptual Modeling
	Conceptual Modeling for Geographic Information System
	Conceptual Modeling for Spatio-Temporal Applications
	Conceptual Schema Design
	Definition
	Historical Background
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Conceptual Schemas
	Concurrency Control
	Concurrency Control - Traditional Approaches
	Synonyms
	Definition
	Key Points
	Classification of Approaches

	Cross-references
	Recommended Reading

	Concurrency Control and Recovery
	Concurrency Control Manager
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Condition Event Nets
	Conditional Branching
	Conditional Routing
	Conditional Tables
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Confidentiality Protection
	Conflict Serializability
	Conjunctive Query
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Connection
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Connectionist Model
	Consistency in Peer-to-Peer Systems
	Consistency Models For Replicated Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Consistency Preservation
	Consistent Facts
	Consistent Query Answering
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Constant Span
	Constrained Frequent Itemset Mining
	Constraint Databases
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Constraint Query Languages
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Constraint-Driven Database Repair
	Synonyms
	Definition
	Historical Background
	Foundations
	Integrity Constraints for Characterizing Data Consistency
	Repair Models
	Methods for Finding Database Repairs

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Content Delivery Networks
	Content-and-Structure Query
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Content-based Image Retrieval (CBIR)
	Content-Based Publish/Subscribe
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Content-based Retrieval
	Content-Based Video Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Unit of Retrieval
	Representing Video Content Visually on Screen
	Searching Archives of Digital Video
	Content-Based Retrieval using Text Sources

	Content-Based Retrieval using Visual Sources
	Content-Based Retrieval using Audio Sources
	Effective Retrieval

	Key Applications
	Future Directions
	Experimental Results
	Data Sets

	Cross-references
	Recommended Reading

	Content-Only Query
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Content-oriented XML Retrieval
	Context
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Context-aware Interfaces
	Contextual Advertising
	Contextualization
	Definition
	Historical Background
	Foundations
	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Continuous Backup
	Continuous Data Feed
	Continuous Data Protection
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Continuous Monitoring of Spatial Queries
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Location-Based Services
	Traffic Monitoring
	Security Systems

	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Continuous Multimedia Data Retrieval
	Definition
	Historical Background
	Foundations
	Retrieval of a Single Stream on a Single Disk
	Retrieval of a Single Stream on Multiple Disks
	Retrieval of Multiple Streams on a Single Disk
	Retrieval of Multiple Streams on Multiple Disks

	Key Applications
	Cross-references
	Recommended Reading

	Continuous Queries in Sensor Networks
	Synonyms
	Definition
	Historical Background
	Foundations
	Sensor Data Model
	Continuous Query Models
	Common Types of Continuous Queries in Sensor Networks Select-All Queries
	Aggregate Queries
	Join Queries

	Key Applications
	Habitat Monitoring
	The Intelligent Building
	Industrial Process Control

	Cross-references
	Recommended Reading

	Continuous Query
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Continuous Query Languages
	Continuous Query Processing Applications
	Continuous Query Scheduling
	ConTract
	Definition
	Key Points
	Cross-references
	Recommended Reading

	ConTracts
	Contrast Pattern
	Contrast Pattern Based Classification
	Control Data
	Synonyms
	Definition
	Key Points
	Cross-references

	Control Flow Diagrams
	Controlled Vocabularies
	Controlling Overlap
	Convertible Constraints
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Cooperative Classification
	Cooperative Content Distribution
	Cooperative Storage Systems
	Coordination
	Definition
	Key Points
	Cross-references
	Recommended Reading

	||-Coords
	Copy Divergence
	Copy Transparency
	Copyright Issues in Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Copyright
	Standards for Obtaining Copyright
	Originality
	Fixation

	The Duration of Copyright
	Ownership and Transfer of Copyright
	The Copyright Owner's Rights
	Reproduction
	Public Distribution, Performance, Display or Communication
	Right of Adaptation, Modification or Right to Prepare Derivative Works

	Theories of Secondary Liability
	Contributory Infringement
	Vicarious Liability for Copyright Infringement

	Limitations and Exceptions
	Remedies and Penalties

	Key Applications
	Cross-references
	Recommended Reading

	CORBA
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Corpora
	Corpus
	Correctness Criteria Beyond Serializability
	Synonyms
	Definition
	Historical Background
	Foundations
	Multiversion Serializability
	Semantic Consistency
	Predicatewise Serializability
	Epsilon-Serializability
	 Eventual Consistency
	Quasi Serializability
	Two-Level Serializability

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Correctness Criterion for Concurrent Executions
	Correlated Data Collection
	Correlation
	Correlation Clustering
	Cost Estimation
	Definition
	Historical Background
	Foundations
	Cost Components
	Logical Costs/Data Volume

	Algorithmic Costs/Complexity
	Physical Costs/Execution Time
	Cost Factors
	Temporal Cost Factors
	Spatial Cost Factors
	Types of (Cost) Models
	Architecture and Evaluation of Database Cost Models

	Cross-references
	Recommended Reading

	Count-Min Sketch
	Synonyms
	Definition
	Historical Background
	Foundations
	Update Procedure
	Point Queries
	Range, Heavy Hitter and Quantile Queries
	Inner Product Queries
	Interpretation as Random Linear Projection
	Conservative Update

	Key Applications
	Future Directions
	Experimental Results
	URL To Code
	Cross-references
	Recommended Reading

	Coupling and De-coupling
	Definition
	Key Points
	Cross-references

	Coverage
	Covering Index
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Covert Communication
	CPU Cache
	Crabbing
	Crash Recovery
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Crawler
	Credulous Reasoning
	Cross Product
	Cross-language Cross-Language Mining and Retrieval C217 Informational Retrieval
	Cross-Language Mining and Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Cross-Language Web Mining
	Mining Parallel Data
	Mining OOV Term Translation

	Query Translation Disambiguation
	Disambiguation by Term Similarity
	Disambiguation by Term Co-occurrence
	Disambiguation by Language Modeling

	Pre-/Post-Translation Expansion
	Cross-Lingual Query Suggestion
	Latent Semantic Index (LSI) for CLIR

	Key Applications
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Cross-language Text Mining
	Cross-language Web Mining
	Cross-lingual Information Retrieval
	Cross-lingual Text Mining
	Cross-media Information Retrieval
	Cross-Modal Multimedia Information Retrieval
	Synonyms
	Definition
	Historical Background
	Retrieval Approaches on Single-Modality
	Retrieval Approaches on Multi-Modality Integration

	Foundations
	Layered Graph Model
	Definition 1
	Definition 2

	Link Analysis Based Retrieval

	Key Applications
	Multimedia Information Retrieval System

	Future Directions
	Cross-references
	Recommended Reading

	Cross-Validation
	Synonyms
	Definition
	Historical Background
	Foundations
	Resubstitution Validation
	Hold-Out Validation
	K-Fold Cross-Validation
	Leave-One-Out Cross-Validation
	Repeated K-Fold Cross-Validation
	Pros and Cons
	Why 10-Fold Cross-Validation: From Ideal to Reality

	Key Applications
	Performance Estimation
	Model Selection
	Tuning

	Cross-references
	Recommended Reading

	Cryptographic Hash Functions
	C-Tables
	Cube
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Cube Implementations
	Synonyms
	Definition
	Historical Background
	Foundations
	Subcube Selection
	Cube Computation
	Query Processing
	Incremental Maintenance

	Key Applications
	Cross-references
	Recommended Reading

	Cube Materialization
	Cube Precomputation
	Curation
	Current Date
	Current Semantics
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Current Time
	Current Timestamp
	Curse of Dimensionality
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Cursor
	CW Complex
	CWM
	Cyclic Redundancy Check (CRC)

	D
	DAC
	Daplex
	Definition
	Key Points
	Cross-references
	Recommended Reading

	DAS
	Data Acquisition
	Data Acquisition and Dissemination in Sensor Networks
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Data Aggregation in Sensor Networks
	Definition
	Historical Background
	Foundations
	Approximate Aggregation
	Duplicate-Insensitive Aggregation
	Temporal Aspects of Aggregation
	Other Aspects of Aggregation in Sensor Networks

	Key Applications
	Cross-references
	Recommended Reading

	Data Analysis
	Data Anomalies
	Data Broadcasting, Caching and Replication in Mobile Computing
	Synonyms
	Definition
	Historical Background
	Foundations
	Data Broadcasting
	Scheduling and Organization
	Indexing
	Data Caching and Replication

	Key Applications
	Cross-references
	Recommended Reading

	Data Cache
	Data Cleaning
	Definition
	Historical Background
	Foundations
	Main Data Cleaning Tasks
	Column Segmentation
	Record Matching
	Deduplication
	Data Standardization
	Data Profiling

	Data Cleaning Platforms

	Key Applications
	Cross-references
	Recommended Reading

	Data Collection
	Data Compression in Sensor Networks
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Data Confidentiality
	Data Conflicts
	Synonyms
	Definition
	Historical Background
	Foundations
	Classification of Data Conflicts
	Single-Source Data Conflicts
	Multi-Source Data Conflicts

	Dealing with Data Conflicts

	Key Applications
	Data Warehousing
	Data Mining

	Cross-references
	Recommended Reading

	Data Copy
	Data Corruption
	Data Deduplication
	Data Dependency
	Data Dictionary
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Data Dissemination
	Data Encryption
	Synonyms
	Definition
	Historical Background
	Foundations
	Stream Ciphers
	Block Ciphers
	Public Key Encryption Algorithms
	Attack Models

	Key Applications
	Cross-references
	Recommended Reading

	Data Errors
	Data Estimation in Sensor Networks
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Data Exchange
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Data Expiration
	Data Extraction
	Data Flow Diagrams
	Data Fusion
	Data Fusion in Sensor Networks
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Data Gathering
	Data Grids
	Data Imputation
	Data Inconsistencies
	Data Integration
	Data Integration Architectures and Methodology for the Life Sciences
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Data Integration in Web Data Extraction System
	Synonyms
	Definition
	Historical Background
	Foundations
	Semi-structured Data
	Schema and Instance Matching
	Web Content Mining

	Key Applications
	Vertical Search
	Web Intelligence
	Situational Applications

	Cross-references
	Recommended Reading

	Data Integrity Services
	Data Lineage
	Data Manipulation Language
	Data Map
	Data Mart
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Data Migration
	Data Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Mining Interesting Patterns from Massive Amount of Data
	Scalable Classification and Predictive Modeling
	Cluster and Outlier Analysis
	Multidimensional (OLAP) Analysis
	Mining Different Kinds of Data

	Key Applications
	Biological Data Mining
	Data Mining for Software Engineering

	Future Directions
	Mining Information Networks
	Invisible Data Mining
	Privacy-Preserving Data Mining

	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Data Mining in Bioinformatics
	Data Mining in Computational Biology
	Data Mining in Moving Objects Databases
	Data Mining in Systems Biology
	Data Mining Pipeline
	Data Mining Process
	Data Model Mapping
	Data Organization
	Data Partitioning
	Definition
	Key Points
	Cross-references

	Data Pedigree
	Data Perturbation
	Data Privacy and Patient Consent
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Electronic Health Records
	Medical Research

	Cross-references
	Recommended Reading

	Data Problems
	Data Profiling
	Synonyms
	Definition
	Historical Background
	Foundations
	Basic Statistics
	Distributional Statistics
	Textual Summaries
	Structural Summaries
	Samples
	Implementation Considerations
	Modes of Use
	Key Applications

	Cross-references
	Recommended Reading

	Data Protection
	Data Provenance
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Data Quality
	Data Quality Assessment
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Data Quality Attributes
	Data Quality Benchmarking
	Data Quality Criteria
	Data Quality Dimensions
	Synonyms
	Definition
	Historical Background
	Foundations
	Classifications
	Completeness
	Accuracy
	Consistency
	Timeliness
	Further Dimensions

	Key Applications
	Cross-references
	Recommended Reading

	Data Quality Measurement
	Data Quality Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Data Quality Problems
	Data Quality Representations
	Data Rank/Swapping
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Data Reconciliation
	Data Reduction
	Definition
	Historical Background
	Foundations
	Histograms
	Clustering
	Singular Value Decomposition (SVD)
	Discrete Wavelet Transform (DWT)

	Key Applications
	Data Storage and Transfer
	Database Management Systems
	OLAP
	Multimedia Data
	Taxonomy

	Cross-references
	Recommended Reading

	Data Replication
	Synonyms
	Definition
	Historical Background
	Foundations
	Replica Control
	Replica Control and Concurrency Control
	Consistency Models and Conflict Resolution
	Availability
	Replica Allocation
	Replication in Various Computing Environments

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Data Replication Protocols
	Data Sampling
	Definition
	Historical Background
	Foundations
	Key Applications
	Query Optimization
	Approximate Query Processing
	Data Streaming

	Cross-references
	Recommended Reading

	Data Sketch/Synopsis
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Data Skew
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Data Sorts
	Data Standardization
	Data Storage and Indexing in Sensor Networks
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Data Stream
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Data Stream Algorithm
	Data Stream Management Architectures and Prototypes
	Definition
	Historical Background
	Foundations
	Prototypes

	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Data Stream Processing
	Data Suppression
	Data Swapping
	Data Time
	Data Tracking
	Data Transformation
	Data Translation
	Data Types for Moving Objects
	Data Types in Scientific Data Management
	Synonyms
	Definition
	Foundations
	Commonly Used Data Types in Science Applications
	Arrays
	Time-Series
	Finite Element Meshes
	Graphs

	Some Basic Issues about Scientific Data Types

	Key Applications
	Cross-references
	Recommended Reading

	Data Types: Image, Video, Pixel, Voxel, Frame
	Data Uncertainty Management in Sensor Networks
	Synonyms
	Definition
	Historical Background
	Foundations
	Modeling Uncertainty
	Queries
	Implementation
	Indexing

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Data Utility Measures
	Data Visualizations
	Data Visualization
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Statistics
	Information Systems
	Documentation
	Computational Science

	Cross-references
	Recommended Reading

	Data Warehouse
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Data Warehouse Back Stage
	Data Warehouse Design Methodology
	Data Warehouse Life-Cycle and Design
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Designers
	Business Users

	Future Directions
	Cross-references
	Recommended Reading

	Data Warehouse Maintenance, Evolution and Versioning
	Synonyms
	Definition
	Historical Background
	Foundations
	Levels of the Maintenance Problem
	Data Warehouse Versioning Versus Data Warehouse Evolution
	Approaches Addressing the Maintenance Problem

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Data Warehouse Indexing
	Data Warehouse Integration
	Data Warehouse Metadata
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Data Warehouse Query Processing
	Data Warehouse Refreshment
	Data Warehouse Security
	Synonyms
	Definition
	Historical Background
	Foundations
	Security in Data Sources
	Security in ETL Processes
	Security in Data Warehouses Modeling
	Security in OLAP Tools

	Key Applications
	Cross-references
	Recommended Reading

	Data Warehousing for Clinical Research
	Synonyms
	Definition
	Historical Background
	Foundations
	Database Design for Clinical Research Data Warehouse
	Metadata Management in Clinical Research Data Warehouse
	Privacy Management in the Clinical Research Data Warehouse
	Data Flow in Clinical Research Data Warehouse

	Key Applications
	Cross-references
	Recommended Reading

	Data Warehousing Systems: Foundations and Architectures
	Definition
	Historical Background
	Foundations
	OLTP vs. Data Warehousing Systems
	Rolap and Molap
	Data Warehousing Architecture
	Data Source Systems
	ETL Management Services
	Data Warehouse Storage and Metadata Repository
	Data Mart and OLAP Engines
	Front-end Tools

	Other DW Architectures
	Independent Data Marts Architecture
	Data Mart Bus Architecture with Conformed Dimensions
	Centralized Data Warehouse Architecture
	Hub-and-Spoke Architecture (Corporate Information Factory)
	Distributed Data Warehouse Architecture
	Federated Data Warehouse Architecture
	Virtual Data Warehouses Architecture

	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Data, Text, and Web Mining in Healthcare
	Synonyms
	Definition
	Historical Background
	Foundations
	Data Mining
	Text Mining
	Web Mining

	Key Applications
	Data Mining in Healthcare
	Text Mining in Healthcare
	Web Usage Mining in Healthcare

	Experimental Results
	Cross-references
	Recommended Reading

	Database Adapter and Connector
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	URL To Code
	Cross-references
	Recommended Reading

	Database Clustering Methods
	Synonyms
	Definitions
	Key Points
	Cross-references
	Recommended Reading

	Database Clusters
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Database Connectivity
	Database Constraints
	Database Dependencies
	Synonyms
	Definition
	Historical Background
	Foundations
	Inference
	Decompositions

	Key Applications
	Cross-references
	Recommended Reading

	Database Design
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Database Design Recovery
	Database Engine
	Database Implementation
	Database Interaction
	Database Languages for Sensor Networks
	Synonyms
	Definition
	Historical Background
	Foundations
	Restricted Expressiveness
	Specialized Language Constructs

	Key Applications
	Cross-references
	Recommended Reading

	Database Machine
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Database Management System
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Database Materialization
	Database Middleware
	Synonyms
	Definition
	Historical Background
	Foundations
	Database Middleware for Integration
	Database Middleware for Scaling and Availability
	Transactional and Messaging Middleware
	Middleware for Adaptation and Reconfiguration

	Key Applications
	Cross-references
	Recommended Reading

	Database Physical Layer
	Database Profiling
	Database Protection
	Database Provisioning
	Database Redocumentation
	Database Repair
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Database Replication
	Database Reverse Engineering
	Synonyms
	Definition
	Historical Background
	Foundations
	Database Design Revisited
	Standard Database Design Methodology
	Empirical Database Design

	Database Reverse Engineering Processes
	Physical Schema Extraction
	Logical Schema Reconstruction
	Implicit Constructs
	Sources and Techniques

	Schema Conceptualization
	Tools
	Examples

	Key Applications
	Cross-references
	Recommended Reading

	Database Scheduling
	Database Security
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Database Socket
	Database Storage Layer
	Database Techniques to Improve Scientific Simulations
	Synonyms
	Definition
	Historical Background
	Foundations
	Local Models
	ISAT Algorithm
	Indexing Problem
	Tuning Retrieves
	Tuning Grows and Adds
	An Example: Binary Tree
	Retrieve
	Update
	Long Running Simulations

	Key Applications
	Cross-references
	Recommended Reading

	Database Trigger
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Database Tuning using Combinatorial Search
	Definition
	Historical Background
	Foundations
	Example: Physical Database Design using Combinatorial Search

	Future Directions
	Cross-references
	Recommended Reading

	Database Tuning using Online Algorithms
	Definition
	Historical Background
	Foundations
	Expanded Example: Self Tuning Histograms

	Future Directions
	Cross-references
	Recommended Reading

	Database Tuning using Trade-off Elimination
	Definition
	Historical Background
	Foundations
	Example: Cache Management with Trade-off Elimination

	Future Directions
	Cross-references
	Recommended Reading

	Database Use in Science Applications
	Definition
	The Problem

	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Databases for Biomedical Images
	Dataguide
	Datalog
	Synonyms
	Definition
	Historical Background
	Foundations
	Datalog Syntax
	Definition 1

	Key Applications
	Current and Potential Users and the Motivation of Studying This Area

	Cross-references
	Recommended Reading

	Datalog Query Processing and Optimization
	Datastream Distance
	Datawarehouses Confidentiality
	DBC
	DBMS
	DBMS Component
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	DBMS Interface
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	DBTG Data Model
	DCE
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	DCOM
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Deadlocks in Distributed Database Systems
	Decay Models
	Definition
	Historical Background
	Kernel Estimation
	Time-Decay
	Network
	Euclidean Plane

	Foundations
	Metric Space
	Decay Functions
	Aggregate Functions
	Computational Challenges
	All Distances Sketches

	Key Applications
	Cross-references
	Recommended Reading

	Decentralized Data Integration System
	Decision Rule Mining in Rough Set Theory
	Synonyms
	Definition
	Historical Background
	Foundations
	Attribute(Column) Reducts and Candidate Keys
	Definition 1

	Value Reducts - Simplest Decision Rules
	Illustration
	Select a Decision Table
	Split the Decision Table
	Decision Classes
	Condition Classes
	Knowledge Dependencies
	If-then Rules
	Attribute (Column) Reducts
	Value Reducts

	Cross-references
	Recommended Reading

	Decision Rules
	Decision Support
	Decision Tree
	Decision Tree Classification
	Synonyms
	Definition
	Historical Background
	Foundations
	Formal Definition
	Building Decision Tree Classifiers
	Split Attribute and Split Point Selection
	Tree Pruning

	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Decision Trees
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Declarative Networking
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Declarative Overlay Networks
	Deductive Data Mining using Granular Computing
	Synonyms
	Definition
	Historical Background
	Foundations
	What is Data Mining?
	Deductive Data Mining
	Definition 1
	Theorem 1

	Isomorphism - A Critical Concept
	Definition 2
	Theorem 2

	Granular/Relational Data Models
	Theorem 3

	Key Applications
	Feature Constructions
	Theorem 4

	High Frequency Patterns in RDB
	Definition 3
	Theorem 5

	Future Directions
	Relational Database Theory Over "Real World Sets"
	Paradoxical Phenomena in Data Mining
	BGDM - Mining with Constraints

	Cross-references
	Recommended Reading

	Deductive Data Mining, Model for Automated Data Mining
	Deductive Databases
	Dedup
	Deduplication
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Deduplication in Data Cleaning
	Synonyms
	Definition
	Historical Background
	Foundations
	Multi-Attribute Deduplication
	Constraints

	Key Applications
	Cross-references
	Recommended Reading

	Deep-Web Search
	Synonyms
	Definition
	Historical Background
	Foundations
	Search Architecture
	Source Modeling
	Schema Matching
	Offline Crawling
	Online Querying

	Key Applications
	Cross-references
	Recommended Reading

	Degrees of Consistency
	DEMs
	Degrees of Cosistency
	Dendrogram
	Dense Index
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Dense Pixel Displays
	Synonyms
	Definition
	Historical Background
	Foundations
	Dense Pixel Displays as Optimization Problem – Pixel Arrangement
	Dense Pixel Displays as Optimization Problem – Shape of Sub-windows
	Dense Pixel Displays as Optimization Problem – Ordering of Dimensions

	Key Applications
	Growth Matrix
	Pixelbarcharts
	Literature Fingerprinting

	Cross-references
	Recommended Reading

	Density-based Clustering
	Definition
	Historical Background
	Foundations
	DBSCAN
	GDBSCAN
	Denclue
	OPTICS
	Grid-Based Methods

	Key Applications
	Geographic Information Systems (GIS)
	Image Data

	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Dependencies
	Derived Event
	Description Logics
	Synonyms
	Definition
	Historical Background
	Foundations
	Concept and Role Constructors
	Formal Semantics
	Using Concepts in Knowledge Bases
	Mathematical Properties
	Implementations

	Key Applications
	Conceptual Modeling
	Ontology Specification
	Management and Querying of Incomplete Information
	Query Organization and Optimization

	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Design for Data Quality
	Synonyms
	Definition
	Historical Background
	Foundations
	Future Directions
	Cross-references
	Recommended Reading

	Design for Quality
	Desktop Metaphor
	Detail-in-Context
	Deviation from Randomness
	Dewey Decimal Classification
	Dewey Decimal System
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	DHT
	Diagram
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Diagrammatic Representation
	Difference
	Synonyms
	Definition
	Key Points
	Cross-references

	Digital Archives and Preservation
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Digital Curation
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Digital Elevation Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Digital Image
	Digital Libraries
	Synonyms
	Definition
	Historical Background
	Foundations
	Building Digital Libraries

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	Url to Code
	Cross-references
	Recommended Reading

	Digital Rights Management
	Synonyms
	Definition
	Historical Background
	Foundations
	Overview
	Watermarking for Rights Protection
	Consumer Driven Watermarking
	Numerical Data Types
	Categorical Data Types

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Digital Signatures
	Synonyms
	Definition
	Historical Background
	Foundations
	Digital Signature Schemes
	Digital Signature Schemes with Appendix
	Digital Signature Schemes with Message Recovery
	XML Signature

	Key Applications
	Cross-references
	Recommended Reading

	Digital Surface Model
	Digital Terrain Model (DTM)
	Digital Video Retrieval
	Digital Video Search
	Dimension
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Dimensional Modeling
	Dimensionality Curse
	Dimensionality Reduction
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Dimension Reduction Techniques for Clustering
	Synonyms
	Definition
	Historical Background
	Foundations
	Dimension Reduction Versus Feature Selection
	PCA and Other Linear Dimension Reduction
	Linear Discriminant Analysis
	Adaptive Dimension Reduction - Combining Dimension Reduction and Clustering
	Metric Scaling
	Laplacian Embedding and Other Nonlinear Dimension Reduction
	Laplacian Embedding
	Relation to Spectral Clustering

	Other Nonlinear Embedding Methods

	Key Applications
	Cross-references
	Recommended Reading

	Dimension-Extended Topological Relationships
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Direct Attached Storage
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Direct Manipulation
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Direct Manipulation Interfaces
	Directional Relationships
	Dirichlet Tessellation
	Disaster Recovery
	Definition
	Key Points
	Cross-references

	Disclosure Risk
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	DISCO
	Discounted Cumulated Gain
	Synonyms
	Definition
	Historical Background
	Foundations
	Ranked Retrieval Result
	Document Relevance Scores and Weights
	Gain Vector
	Cumulated Gain Vector
	Discounting Principle
	Discounted Cumulated Gain Vector
	Average Vector
	Ideal Vector
	Normalized Vector
	Normalized Discounted Cumulated Gain (nDCG) Vector
	The Average Normalized Discounted Cumulated Gain Indicator
	Properties of (n)(D)CG

	Key Applications
	Future Directions
	Session-Based DCG

	Cross-references
	Recommended Reading

	Discovery
	Synonyms
	Definition
	Historical Background
	Foundations
	Enabling Discovery
	Searching in Service Registries
	Querying Repositories
	Domain-Specific Knowledge in Service Descriptions
	Semantic Annotations
	Quality-of-Service Properties

	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Discrete Wavelet Transform and Wavelet Synopses
	Definition
	Historical Background
	Foundations
	Haar Wavelet Basics
	Data Reduction and Approximate Query Processing
	Conventional and Advanced Wavelet Thresholding Schemes
	Extended and Streaming Wavelet Synopses

	Key Applications
	Data Sets
	Future Directions
	Cross-references
	Recommended Reading

	Discretionary Access Control
	Synonyms
	Definition
	Historical Background
	Foundations
	DAC in Relational Database

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Disk
	Synonyms
	Definition
	Key Points
	Cross-references

	Disk Array
	Disk Drive
	Disk Power Saving
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Disk Process
	Disk-based Model
	Distance between Streams
	Distance Indexing
	Distance Space
	Distance-preserving Mapping
	Distillation
	Distortion Techniques
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Distributed Architecture
	Synonyms
	Definition
	Historical Background
	Foundations
	Autonomy and Heterogeneity
	Transparency
	Distributed or Parallel DBMS Provide Update Transparency
	Consistency
	Distributed Catalog Management

	Cross-references
	Recommended Reading

	Distributed Commit Protocol
	Distributed Component Object Model
	Distributed Computing Environment
	Distributed Concurrency Control
	Synonyms
	Definition
	Historical Background
	Foundations
	Future Directions
	Cross-references
	Recommended Reading

	Distributed Data Streams
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Distributed Database Design
	Synonyms
	Definition
	Historical Background
	Foundations
	Fragmentation
	Allocation

	Future Directions
	Cross-references
	Recommended Reading

	Distributed Database Management System (DDBMS)
	Distributed Database Systems
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Distributed Databases
	Distributed DBMS
	Synonyms
	Definition
	Historical Background
	Foundations
	Data Placement among Sites
	Propagating the Effects of Update Transactions
	Distributed Query Execution
	Handling Failures

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Distributed Deadlock Management
	Synonyms
	Definition
	Historical Background
	Foundations
	Transaction Wait-for Graph
	Deadlock Models
	Static Vs Dynamic Deadlock Detection
	Deadlock Resolution

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Distributed Hash Table
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Distributed Join
	Synonyms
	Definition
	Historical Background
	Foundations
	Site Selection
	Relation Transfer
	Local Join Processing
	Sequential vs. Pipelined Processing
	Algorithms

	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Distributed Query
	Distributed Query Optimization
	Synonyms
	Definition
	Historical Background
	Foundations
	Fragmentation and Replication
	Plan Enumeration
	Total Cost Model and Response Time
	Static versus Dynamic Distributed Query Optimization
	Global versus local, Centralized versus Distributed Query Optimization, andEconomical Models

	Future Directions
	Cross-references
	Recommended Reading

	Distributed Query Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Phases of Distributed Query Processing
	Data Localization
	Optimization of Distributed Queries
	Query Execution

	Key Applications
	Cross-references
	Recommended Reading

	Distributed Recovery
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Distributed Sensor Fusion
	Distributed Source Coding
	Distributed Spatial Databases
	Definition
	Historical Background
	Foundations
	Distributed Query Processing
	Distributed Spatial Indices
	Spatial Queries Involving Numerous Mobile Clients

	Key Applications
	Cross-references
	Recommended Reading

	Distributed Storage Systems
	Distributed Transaction Management
	Synonyms
	Definition
	Historical Background
	Foundations
	Distributed Transaction Management
	Serializability Theory

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Divergence Control
	Divergence from Randomness Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Document Models
	Term Models
	Document Length Normalization
	Examples of Document Models

	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	DNA Sequences
	Document
	Definition
	Key Points
	Cross-references

	Document Clustering
	Synonyms
	Definition
	Historical Background
	Foundations
	Document Representation
	Similarity Measures
	Partitional Document Clustering
	Criterion Function
	Optimization Method

	Agglomerative Document Clustering
	Evaluation of Document Clustering

	Key Applications
	URL to Code
	Data Sets
	Cross-references
	Recommended Reading

	Document Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Document Field
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Document Formats
	Document Identifier
	Document Index and Retrieval
	Document Length Normalization
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Document Links and Hyperlinks
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Document Management
	Document Path Query
	Document Repositories
	Document Representations (Inclusive Native and Relational)
	Synonyms
	Definition
	Historical Background
	Foundations
	Native Representations
	Page-Oriented Representations
	Stream-Oriented Representations
	Tree-Structured Representations
	Hybrid Representations

	Relational Representations
	Large Object Representation
	Shredded Representation

	Key Applications
	Cross-references
	Recommended Reading

	Document Retrieval
	Document Segmentation
	Document Summarization
	Document Term Weighting
	Document Visualization
	Documents
	Domain Relational Calculus
	Downward Closure Property
	DRM
	Dublin Core
	Definition
	Historical Background
	Foundations
	Qualified Dublin Core
	Encoding Dublin Core

	Key Applications
	Cross-references
	Recommended Reading

	Dump
	Duplicate Detection
	Duplicate Semantics
	Duplication
	Durability
	Duration
	DVDs
	DW
	Dynamic Graphics
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Dynamic Integrity Constraints
	Dynamic Taxonomies
	Dynamic Web Pages
	Definition
	Key Points
	Cross-references

	E
	eAccessibility
	Definition
	Historical Background
	Foundations
	Key Applications
	Web Accessibility
	Media Accessibility
	Accessibility in Education
	Game Accessibility

	Future Directions
	Cross-references
	Recommended Reading

	EAI
	EC Transactions
	ECA Rule Action
	Definition
	Key Points
	Cross-references

	ECA Rule Condition
	Definition
	Key Points
	Cross-references

	ECA Rules
	Synonyms
	Definition
	Historical Background
	Foundations
	Cross-references
	Recommended Reading

	ECM
	e-Commerce Transactions
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Eddies
	Edge Detection
	eDictionary
	eEncyclopedia
	EERM, HERM
	Effectiveness Involving Multiple Queries
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	EF-Games
	egd
	EHR
	Ehrenfeucht-Fraiumlsseacute Games
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Ehrenfeucht Games
	Electronic Commerce Transactions
	Electronic Data Capture
	Electronic Dictionary
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Electronic Encyclopedia
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Electronic Health Record
	Synonyms
	Definition
	Historical Background
	Foundations
	Content
	Source
	Time

	Key Applications
	Cross-references
	Recommended Reading

	Electronic Ink Indexing
	Synonyms
	Definition
	Historical Background
	Foundations
	Electronic Ink Representation
	Hidden Markov Models (HMM)
	Representation Granularity
	Indexing Techniques
	Alphabet-Level Indexing

	Stroke-Level Indexing
	Pictogram-Level Indexing

	Cross-references
	Recommended Reading

	Electronic Libraries
	Electronic Newspapers
	Definition
	Historical Background
	Foundations
	Managing Content
	Metadata
	Digital Asset Management Systems

	Automated Text Processing of News Resources
	Information Extraction and Text Data Mining
	Event Detection and Tracking
	Commercial News Aggregators, News Summarization, and Searching

	Additional Services and Issues
	Preservation Services
	Rights Management

	Managing Multimedia News Content
	Presentation and Access Services
	Personalized Interaction
	Recommendations

	Cross-references
	Recommended Reading

	Eleven Point Precision-recall Curve
	Definition
	Key Points
	Cross-references

	Embedded Networked Sensing
	Emergent Semantics
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Emerging Pattern Based Classification
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Emerging Patterns
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Encryption
	End User
	Ensemble
	Synonyms
	Definition
	Historical Background
	Foundations
	Terminologies
	Methods
	Why Useful?
	Accuracy and Diversity

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	Url To Code
	Cross-references
	Recommended Reading

	Enterprise Application Integration
	Synonyms
	Definition
	Historical Background
	Foundations
	Approaches to Application Integration
	Connecting to Applications
	Standards for Application Integration

	Key Applications
	Cross-references
	Recommended Reading

	Enterprise Content Management
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Enterprise Information Integration
	Enterprise Service Bus
	Synonyms
	Definition
	Historical Background
	Foundations
	The ESB and Connectivity
	ESB Core Principles
	The ESB in an SOA Context

	Key Applications
	Cross-references
	Recommended Reading

	Enterprise Terminology Services
	Definition
	Historical Background
	Foundations
	System Architecture

	Key Applications
	Case Studies and Experiences

	Cross-references
	Recommended Reading

	Entity Relationship Model
	Synonyms
	Definition
	Historical Background
	Foundations
	Entities, Entity Types, and Attributes
	Relationships and Relationship Types
	Cardinality and Participation Constraints
	Attributes of a Relationship
	Roles
	Ternary Relationships
	Weak Entity Types
	ER Modeling Techniques
	Translation of ERDs into a Relational Schema

	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Entity Resolution
	Entity-Relationship Model
	EPN
	Equality Query
	Equality Selection
	Equality-Generating Dependencies
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	ER Model
	ERM
	ESB
	Escrow Transactions
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	e-Services
	ETL
	ETL Process
	ETL Tool
	ETL Using Web Data Extraction Techniques
	European Law in Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Eligibility
	Scope of Rights - Extraction or Reutilization
	Exceptions and Limitations

	Key Applications
	Cross-references
	Recommended Reading

	Evaluation Forum
	Evaluation in Information Retrieval
	Evaluation Measures
	Evaluation Metrics for Structured Text Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Evaluation Concepts
	XML Retrieval Tasks
	User Behavior
	Relevance Dimensions
	Quantization
	Ideality
	Construction of Ideal Sets and Lists
	Near Misses and Overlap
	Metric Properties
	Evaluation Metrics
	The inex_eval Metric
	The inex_eval_ng Metric
	The XCG Metrics
	Gain and Overlap
	XCG Metrics
	The T2I metric
	The (E)PRUM and GR Metrics
	The User Model
	GR, PRUM and EPRUM
	The HiXEval Metric

	Key Applications
	Web Search
	Digital Libraries

	URL to Code
	Cross-references
	Recommended Reading

	Evaluation of Fuzzy Queries Over Multimedia Systems
	Evaluation of Relational Operators
	Synonyms
	Definition
	Historical Background
	Foundations
	Pipelined Query Execution
	Selection
	Selection Based on Scanning
	Selection Based on Indexing
	Projection
	Joins
	Nested Loops Join
	Block Nested Loops Join
	Index Nested Loops Join

	Sort-Merge Join
	Hash Join
	Grace Hash Join
	Hybrid Hash Join

	Aggregation
	Aggregation Based on Sorting
	Aggregation Based on Hashing

	Key Applications
	Cross-references
	Recommended Reading

	Evaluation of XML Retrieval Effectiveness
	Event
	Event and Pattern Detection over Streams
	Synonyms
	Definition
	Historical Background
	Foundations
	Event Pattern Query Model
	Event Pattern Query Processing

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Event Broker
	Event Causality
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Event Causality Graph
	Event Channel
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Event Cloud
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Event Composition
	Event Composition (Partial Overlap)
	Event Connection
	Event Consumer
	Event Control
	Event Declaration
	Event Definition
	Event Detection
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Event Driven Architecture
	Synonyms
	Definitions
	Historical Background
	Foundations
	Measures for Evaluating Event Driven Applications
	Components of Event Driven Architectures
	Responders
	Communication Layer
	Administration Layer
	System Specification

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Event Driven Service-oriented Architecture
	Event Emitter
	Event Extraction
	Event Flow
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Event in Active Databases
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Event in Temporal Databases
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Event Lineage
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Event Mapping
	Event Network Edge
	Event Pathway
	Event Pattern Detection
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Event Pedigree
	Event Pipe
	Event Prediction
	Synonyms
	Definition
	Historical Background
	Foundations
	Mechanisms for Event Prediction
	Influencing the Occurrence of Future Events

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Event Processing
	Event Processing Agent
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Event Processing Component
	Event Processing Mediator
	Event Processing Network
	Synonyms
	Definition
	Historical Background
	Foundations
	Event Channel
	Event Producer and Consumer
	Event Processing Agent
	Pattern Detection
	Processing
	Emission

	Key Applications
	Information Dissemination\Situation Awareness
	Active Diagnostics
	Real Time Enterprise

	Business Activity Monitoring
	Predictive Processing

	Cross-references
	Recommended Reading

	Event Processing Systems
	Event Producer
	Event Relation
	Event Service
	Event Sink
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Event Source
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Event Specification
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Event Stream
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Event Stream Processing
	Event Stream Processing (ESP)
	Event Topic
	Event Trace Analysis
	Event Transformation
	Synonyms
	Definition
	Historical Background
	Foundations
	Translation
	Splitting
	Aggregation
	Composition

	Key Applications
	Cross-references
	Recommended Reading

	Event Uncertainty
	Event-Condition-Action Rules
	Event-Driven Business Process Management
	Synonyms
	Definition
	Historical Background
	Foundations
	The Business Process Modeler
	The Event Modeler
	Event Processing Languages
	Relation to the Database Technology
	Examples

	Key Applications
	Cross-references
	Recommended Reading

	Eventual Consistency
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Evidence Based Medicine
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Evidence Based Practice
	Evolutionary Algorithms
	Evolutionary Computation
	Evolutionary Semantics
	Exactly Once Execution
	Executable Knowledge
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Execution Skew
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Exhaustivity
	Existence Time
	Explicit Event
	Definition
	Key Points
	Cross-references

	Exploratory Data Analysis
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Exploring
	Expressive Power of Query Languages
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Extended Entity-Relationship Model
	Synonyms
	Definition
	Historical Background
	Foundations
	An Example of an EER Diagram
	The Definition Scheme for Structures
	Structures in Detail
	Attribute Types and Attribute Values
	Entity Types and Entity Classes
	Cluster Types and Cluster Classes
	Relationship Types and Relationship Classes
	Integrity Constraints

	Schemata
	Graphical Representation

	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Extended Functional Dependencies
	Extended Relations
	Extended Transaction Models
	Extended Transaction Models and the ACTA Framework
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Extendible Hashing
	Definition
	Historical Background
	Foundations
	Structure
	Overflow Handling
	Discussion

	Key Applications
	Cross-references
	Recommended Reading

	Extensible Markup Language
	eXtensible Stylesheet Language
	eXtensible Stylesheet Language Transformations
	Extensional Relational Database (ERDB)
	External Hashing
	Extraction, Transformation, and Loading
	Synonyms
	Definition
	Historical Background
	Foundations
	PART I. General description of an ETL process
	PART II. Individual steps
	PART III. Global picture revisited

	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Extrinsic Time

	F
	Faceted Browsing
	Faceted Classifications
	Faceted Search
	Synonyms
	Definition
	Historical Background
	Foundations
	An Example
	Faceted Organization
	Faceted Access
	Browsing
	Searching (and Integrated Browsing and Searching)
	Scale and Details

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Facility-Location Problem
	Fact-Oriented Modeling
	Failure Handling
	False Negative Rate
	Fault Tolerant Applications
	Fault-Tolerance
	Fault-Tolerance and High Availability in Data Stream Management Systems
	Definition
	Historical Background
	Foundations
	Techniques for Handling Crash Failures
	Active Replicas
	Passive Replicas
	Failure Recovery
	Trade-Offs Among Crash Failure Techniques

	Techniques for Handling Network Partitions
	Optimizations
	Flux: Integrating Fault Tolerance and Load Balancing
	Leveraging Replication for Availability and Performance in Wide-Area Networks
	Passive Standby: Distributed Checkpointing and Parallel Recovery

	Key Applications
	Future Directions
	Experimental Results
	URL to Code
	Cross-references
	Recommended Reading

	FCP
	FD
	Feature Extraction for Content-Based Image Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Feature Selection for Clustering
	Definition
	Historical Background
	Foundations
	An Example of a Filter-Global Method
	Other Methods
	Important Applications
	URL

	Cross-references
	Recommended Reading

	Feature-Based 3D Object Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Common Requirements of 3D Feature Extraction
	3D Feature Extraction Process Model
	3D Feature Types
	Efficient 3D Object Retrieval

	Key Applications
	Industrial Applications
	Medicine
	Molecular Biology

	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Federated Database
	Federated Database Systems
	Federated Search
	Federated Search Engine
	Feedback Systems
	Field-Based Information Retrieval Models
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Field-Based Spatial Modeling
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	File Compression
	File Format
	Filter/Refinement Query Processing
	Finding of Observation
	Finiteness
	First-Order Logic: Semantics
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	First-Order Logic: Syntax
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	First-Order Query
	Fisheye Views
	Fixed Time Span
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Flajolet-Martin Algorithm
	Flajolet-Martin Sketch
	Flake
	Flash
	Flex Transactions
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Flexible Metric Computation
	Flexible Transactions
	Flowcharts
	FM Sketch
	FM Synopsis
	Synonyms
	Definition
	Historical Background
	Foundations
	Optimizations
	Extensions

	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	F-Measure
	Synonyms
	Definition
	Key Points
	Cross-references

	Focused Retrieval
	Focused Web Crawling
	Synonyms
	Definition
	Historical Background
	Foundations
	Setting Crawl Priorities Using Web Graph Properties
	Basic Topic-Focused Crawler
	Focused Crawling Using Context Graphs
	Training a Focused Crawler Online
	Reinforcement Learning Using Markov Models

	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Focus-Plus-Context
	FOL
	FOL Modeling of Integrity Constraints (Dependencies)
	Synonyms
	Definition
	Historical Background
	Foundations
	Functional Dependencies
	Key Dependencies
	Join Dependencies
	Multi-Valued Dependencies
	Inclusion Dependencies
	Foreign Key Dependencies
	Expressing Dependencies in First-Order Logic
	Embedded Dependencies

	Functional Dependencies
	Join Dependencies
	Inclusion Dependencies
	Other Classes of Dependencies
	Other Constraints
	Cardinality Constraints
	Domain Constraints
	Representational Constraints

	Key Applications
	Schema Design
	Automatic Integrity Enforcement
	Query Optimization
	A Unified View of Dependencies

	Cross-references
	Recommended Reading

	Forever
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Form
	Synonyms
	Definition
	Historical Background
	Foundations
	Form Composition
	Generating Forms

	Key Applications
	Business Database Applications
	End-User Programming and Domain Specific Application Development
	Ubiquitous Computing
	Data Quality
	Meta-Data Capture
	Knowledge Bases

	Cross-references
	Recommended Reading

	Forms-based Interfaces
	Fourth Normal Form
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	FQL
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Fractal
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Frequency Moments
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Frequent Concepts
	Frequent Elements
	Frequent Graph Patterns
	Synonyms
	Definition
	Definition 1.
	Definition 2.
	Definition 3.

	Historical Background
	Foundations
	Canonical Adjacency Matrix
	Definition 4.

	Key Applications
	Pattern Discovery from Chemical Structures
	Pattern Discovery from Protein Structures

	Cross-references
	Recommended Reading

	Frequent Items on Streams
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Frequent Itemset Mining with Constraints
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Frequent Itemsets and Association Rules
	Synonyms
	Definition
	Historical Background
	Scientific Fundamentals
	Key Applications
	Association and Correlation Analysis
	Frequent Pattern-based Classification and Clustering
	Biological Data Analysis
	Web Mining and Software Bug Mining

	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Frequent Partial Orders
	Definition
	Historical Background
	Foundations
	Finding Frequent Closed Partial Orders Using Frequent Itemset Mining Algorithms
	Finding Transitive Reductions of Frequent Closed Partial Orders Directly

	Key Applications
	Cross-references
	Recommended Reading

	Frequent Pattern Mining with Constraints
	Frequent Patterns
	Frequent Set Mining with Constraints
	Frequent Subsequences
	Freshness Control
	Full Text Inverted Index
	Fully-Automatic Web Data Extraction
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Fully Temporal Relation
	Functional Data Model
	Definition
	Historical Background
	Foundations
	Semantic Web Vision and RDFS
	Mapping a Functional Model to RDFS
	Constraints
	Updating Functional Data

	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Functional Dependencies for Semi- Structured Data
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Functional Dependency
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Functional Query Language
	Definition
	Historical Background
	Foundations
	Comprehensions in P/FDM and Constraints
	Comprehensions in Kleisli - Records, Lists and Mixed Types
	Comprehensions in FDL and PFL

	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Fuzzy Information Retrieval
	Fuzzy MCDM
	Fuzzy Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Definition of Generalizations of the Boolean Query Language
	Flexible Indexing of Semi-Structured Documents
	Fuzzy Associative Mechanisms
	Fuzzy Approaches to Distributed Information Retrieval

	Key Applications
	Cross-references
	Recommended Reading

	Fuzzy Multicriteria Decision Making
	Fuzzy Relation
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Fuzzy Set
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Fuzzy Set Approach
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Fuzzy Time
	Fuzzy/Linguistic IF-THEN Rules and Linguistic Descriptions
	Definition
	Key Points
	Cross-references
	Recommended Reading

	G
	Gaifman-Locality
	Gazetteers
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Gene Expression Arrays
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Generalisation
	Generalization of ACID Properties
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Generalized Search Tree
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Generative Models
	Genetic Algorithms
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Geographical Information Retrieval
	Definition
	Historical Background
	Foundations
	Detecting GeographiReferences
	Disambiguating Place Names
	Vague Geographic Terminology
	Spatial and Textual Indexing
	Geographical Relevance Ranking
	User Interfaces
	User Studies and Evaluation

	Key Applications
	Cross-references
	Recommended Reading

	Geographic Information Services
	Geographic Information System
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Geographic Information
	Geographic Web Search
	Geographical Analysis
	Geographical Data Analysis
	Geographical Databases
	Geographical Metadata
	Geography Markup Language
	Synonyms
	Definition
	Historical Background
	Foundations
	Base and Application Schema
	Profiles

	Key Applications
	Schemas for GML
	Examples

	Cross-references
	Recommended Reading

	Geometric Data Types
	Geometric Mean Average Precision
	Geometric Stream Mining
	Definition
	Historical Background
	Foundations
	Stream Models
	Classes of Problems
	Range Counting and Robust Statistics
	Extent Measures
	Geometric Graphs
	Nearest Neighbor and Skyline

	General Techniques
	1. Merge and Reduce
	2. Reduction to Vector Problems
	3. Random Sampling

	Key Applications
	Cross-references
	Recommended Reading

	GEO-RBAC Model
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Georeferencing
	Synonyms
	Definition
	Historical Background
	Foundations
	Technical Background
	Georeferencing Techniques
	Datasets
	Documents
	Maps
	Photographs
	Imagery

	Key Applications
	Cross-references
	Recommended Reading

	Geoscientific Information System
	Geospatial Information System
	Geospatial Metadata
	Synonyms
	Definition
	Historical Background
	Foundations
	GML: The Geography Markup Language
	Geospatial Metadata Catalog

	Cross-references
	Recommended Reading

	Geospatial Referencing
	Geo-Targeted Web Search
	Synonyms
	Definition
	Historical Background
	Foundations
	Geo Parsing and Geo Coding
	Indexing and Query Execution
	Geographic Search Queries

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	GIS
	GIST
	GiST
	Global Query Optimization
	Glyphs
	GMAP
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Google Bombing
	Grammar Induction
	Grammar Inference
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Grammatical Induction
	Grammatical Inference
	Graph
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Graph
	Graph Data Management in Scientific Applications
	Synonyms
	Definition
	Historical Background
	Foundations
	Graphs in Science
	Data Management for Large Graphs
	Data Management for Large Collections of Graphs
	Some Data Management Techniques

	Key Applications
	Cross-references
	Recommended Reading

	Graph Data Structure
	Graph Database
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Graph Database Mining
	Graph Drawing
	Graph Embedding
	Graph Layout
	Graph Management in the Life Sciences
	Definition
	Historical Background
	Foundations
	Types and Models of Graphs
	Properties of Biological Networks
	Graph Databases
	Graph Query Languages
	Graph Mining

	Key Applications
	Graph-Based Function Prediction
	Managing Biological Ontologies
	Management of Phylogenetic Trees
	Visualization of Biological Networks

	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Graph Mining on Streams
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Graph Streams
	Graph Theory
	Graph-based Clustering
	Graphic
	Graphic Design
	Graphic Representation of Data
	Graphical Displays of Many Variables
	Graphical Interaction
	Graphical Representation
	Graphical User Interfaces
	Graphics
	Graphics for Continuous Data
	Graphics for Discrete Data
	Grid and Workflows
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Grid File
	Grid File (and Family)
	Definition
	Historical Background
	Foundations
	Key Applications
	Spatial Databases
	Data Mining
	Data Warehouses

	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Grid Workflow
	Group Difference
	Grouping
	GUID
	GUIs for Web Data Extraction
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	H
	Handhelds Interfaces
	Handwritten Text
	Hanf-Locality
	Hard Disk
	Hardware-Conscious Database System
	Harmonic Mean of Recall and Precision
	Hash File
	Hash Filter
	Hash Filter Join
	Hash Functions
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Hash Join
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Hash Trees
	Hash-based Indexing
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Hater’s Model
	HCC
	HCI
	HCM
	Health Informatics
	Healthcare Informatics
	Heat Map
	Heavy Hitters
	Heterogeneous Distributed Database Systems
	Heterogeneously Distributed Data
	HHH
	Hidden-Web Search
	Hierarchial Clustering
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Hierarchical Data Model
	Synonyms
	Definition
	Historical Background
	Foundations
	Graphs and Hierarchies
	Preliminary Definitions
	Properties of Hierarchies
	IMS Data Structures
	The IMS Global Schema
	The IMS Logical Database
	Additional Constructs
	Entity-Relationship to Hierarchical Mapping

	Key Applications
	Cross-references
	Recommended Reading

	Hierarchical Data Organization
	Hierarchical Data Summarization
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Url to Code
	Cross-references
	Recommended Reading

	Hierarchical Entity-Relationship Model
	Hierarchical Faceted Metadata
	Hierarchical Graph Layout
	Hierarchical Heavy Hitter Mining on Streams
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Hierarchical Memory System
	Hierarchical Regular-Decomposition Structures
	Hierarchical Spatial Indexes
	Hierarchical Storage Management
	Hierarchical Visualization
	Hierarchies
	Hierarchy
	Definition
	Key Points
	Cross-references
	Recommended Reading

	High Dimensional Indexing
	Synonyms
	Definition
	Historical Background
	Foundations
	TV-Tree
	SS-Tree
	X-Tree
	Cost Model Based Optimization Techniques
	Pyramid Technique
	VA-File
	IQ-Tree
	iDistance

	Key Applications
	Cross-references
	Recommended Reading

	High-Dimensional Clustering
	Higher-Order Entity-Relationship Model
	Histogram
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Histograms on Streams
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Historical Algebras
	Historical Data Model
	Historical Data Models
	Historical Database
	Historical Query Languages
	Historical Spatio-Temporal Access Methods
	History
	History in Temporal Databases
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Homogeneous Distributed Database Systems
	Homogeneously Distributed Data
	Homomorphic Encryption
	Definition
	Key Points
	RSA
	El Gamal
	Goldwasser-Micali
	Paillier

	Cross-references
	Recommended Reading

	Horizontal Fragmentation
	Horizontally Partitioned Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Horn Clause Query
	Hot Items
	Hotspots
	HSM
	HTML Fragment
	Human Centered 38 H Human-Computer Interaction Computing
	Human Factors
	Human Interface
	Human-centered Computing: Application to Multimedia
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Ambient Intelligence and Personal Spaces
	Ubiquitous Computing
	Data Analysis and Data Interaction
	Virtual Environments
	Art
	Persons with Disabilities
	Other Applications

	Cross-references
	Recommended Reading

	Human-Centered Multimedia
	Human-Computer Interaction
	Synonyms
	Definition
	Historical Background
	Foundations
	Usability
	Observation and Empirical Data
	Design and Methodology
	Representation and Analysis
	Implementation and User Interface Architecture

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Hypercube
	Hypermedia
	Hypermedia Metadata
	Hypertexts
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Hypothesis Generation and Exploration from Biological Resources

	I
	I/O cache
	I/O Model of Computation
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Icon
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Iconic Displays
	Synonyms
	Definition
	Historical Background
	Foundations
	Perceptual Foundations
	Iconographics
	Stick Figure Icons
	Color Icons
	Kinetic Displays and Moxels

	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Iconographics
	Icons
	Identity Disclosure
	Identity-based Access Control
	IDF
	IF
	ILM
	Image
	Synonyms
	Definition
	Historical Background
	Foundations
	Image Acquisition
	Image Representation
	Image Processing and Analysis
	Computer Vision
	Image Synthesis
	Computer Graphics
	Image-Based Rendering

	Image Indexing and Retrieval

	Key Applications
	Cross-references
	Recommended Reading

	Image Classification
	Image Compression
	Image Content
	Image Content Modeling
	Synonyms
	Definition
	Historical Background
	Foundations
	SQL/MM as Conceptual Image Data Model for Databases

	Key Applications
	Cross-references
	Recommended Reading

	Image Data Model
	Image Database
	Synonyms
	Definition
	Historical Background
	Foundations
	Outline placeholder
	Query Extension for Multimedia: SQL/MM
	Multimedia Extensions in Products
	Oracle Multimedia
	IBM DB2
	IBM Informix

	Image Retrieval Systems from Scratch

	Key Applications
	Surveillance Systems
	Medical Diagnosis Supporting Systems
	Web Search

	Cross-references
	Recommended Reading

	Image Distance
	Image Indexing
	Image Management for Biological Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Content-Based Similarity Search
	Summarization

	Key Applications
	Electronic Notebook
	Sharing and Exploration
	Analysis

	Future Directions
	Cross-references
	Recommended Reading

	Image Management for Life Sciences
	Image Metadata
	Synonyms
	Definition
	Historical Background
	Foundations
	Content Description Based on Invariant Features
	Content Description Based on Semantic Features
	Interpretation of Features
	Image Interpretation Based on High-Level Semantic Metadata
	Dublin Core [18]
	MPEG-7 [12]
	The W3c's Incubator Group [20]

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Image Query Processing
	Image Querying
	Synonyms
	Definition
	Historical Background
	Foundations
	Matching Type
	Ranking Model

	Key Applications
	Cross-references
	Recommended Reading

	Image Representation
	Synonyms
	Definition
	Historical Background
	Foundations
	Basics of Image Representation
	Image Compression
	Run-Length Encoding
	Huffman Coding
	LZW Coding
	JPEG Compression

	File Formats
	Metadata Representation
	Image Content Representation

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Image Similarity
	Synonyms
	Definition
	Historical Background
	Foundations
	Image Descriptors
	Similarity Measures

	Key Applications
	Content-based Multimedia Information Retrieval/ Multimedia Database
	Object Recognition
	Medical/Satellite/Surveillance Applications

	Future Directions
	Cross-references
	Recommended Reading

	Image Retrieval
	Image Retrieval and Relevance Feedback
	Definition
	Historical Background
	Foundations
	Relevance Feedback Methods
	Learners
	Selection Criteria
	Temporal Structure of the Session
	Evaluation of Relevance Feedback in Image Retrieval

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Image Retrieval System
	Image Segmentation
	Synonyms
	Definition
	Historical Background
	Foundations
	Thresholding
	Object (Component) Labeling
	Locating Object Contours by the Snake Model
	The Traditional Snake Model
	The Improved Snake Model
	The Gravitation External Force Field and the Greedy Algorithm
	Experimental Results

	Automatic Seeded Region Growing
	Overview of the Improved Seeded Region Growing Algorithm
	The Method for Automatic Seed Selection
	The Segmentation Algorithm

	Key Applications
	Cross-references
	Recommended Reading

	Image Standards
	Image/Video/Music Search
	Immersive Data Mining
	Implementation Abstraction
	Implication of Constraints
	Definition
	Historical Background
	Foundations
	Constraints (Data Dependencies)
	Unrestricted Implication Versus Finite Implication
	Implication Versus Satisfiability
	Finite Axiomatizability
	Complexity of Implication Analyses
	View Dependencies

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Implications of Genomics for Clinical Informatics
	Synonyms
	Definition
	Historical Background
	Foundations
	Integrating Genetic Data into the Clinical Record

	Key Applications
	Laboratory Information Management Systems for Genetic Laboratories
	Knowledgebases and Reporting Systems for Genetic Laboratories
	Integrated Clinical and Genetic Medical Record
	Clinical Decision Support

	Cross-references
	Recommended Reading

	Implicit Event
	Definition
	Key Points
	Cross-references

	Imprecise Data
	Imprecise Spatial Queries
	Imprecise Time
	Imputed Data
	IMS Data Model
	In Silico Experiment
	Incoherency Bounds
	Incomplete Information
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Recommended Reading

	Inconsistent Databases
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Incremental Computation of Queries
	Synonyms
	Definition
	Historical Background
	Foundations
	Incremental Computation of Relational-Algebra Queries
	Incremental Computation of Recursive Queries

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Incremental Crawling
	Synonyms
	Definition
	Historical Background
	Foundations
	Metrics for Incremental Crawling
	Incentives and Cooperation
	Cache Consistency
	Resource Management

	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Incremental Maintenance of Views with Aggregates
	Definition
	Historical Background
	Foundations
	Cross-references
	Recommended Reading

	Incremental k-Distance Join
	Incremental Maintenance of Recursive Views
	Incremental View Maintenance
	Indefinite Information
	Index Creation and File Structures
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Index Join
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Index Loop Join
	Index Nested Loop Join
	Index Sequential Access Method (ISAM)
	Index Structures for Biological Sequences
	Definition
	Historical Background
	Foundations
	Hash Tables
	Suffix Trees
	Suffix Arrays
	Reference-Based Indexing
	Vector Space Indexing

	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Index Tuning
	Definition
	Historical Background
	Foundations
	Key Applications
	Experimental Results
	Covering Experiment

	URL to Code and Data Sets
	Cross-references
	Recommended Reading

	Indexed Sequential Access Method
	Synonyms
	Definition
	Historical Background
	Foundations
	KEY APPLICATIONS
	Cross-references
	Recommended Reading

	Indexed Sequential File
	Indexing
	Indexing and Similarity Search
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	R-Trees
	VP-Trees

	Cross-references
	Recommended Reading

	Indexing Compressed Text
	Synonyms
	Definition
	Historical Background
	Foundations
	The FM-Index Family
	Other Compressed Indexes

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Indexing for Online Function Approximation
	Indexing for Similarity Search
	Indexing Granularity
	Indexing Historical Spatio-Temporal Data
	Synonyms
	Definition
	Historical Background
	Foundations
	1. Three-Dimensional Structures
	2. Overlapping Two-Dimensional Structures
	3. Trajectory Indexing

	Key Applications
	Moving Object Databases

	Recommended Reading

	Indexing Metric Spaces
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL To Code
	Cross-references
	Recommended Reading

	Indexing of Data Warehouses
	Synonyms
	Definition
	Historical Background
	Foundations
	Join and Star Indices

	Key Applications
	Cross-references
	Recommended Reading

	Indexing of the Current and Near- Future Positions of Moving Objects
	Definition
	Historical Background
	Foundations
	Data and Queries
	The Structure of the TPR-Tree
	Querying the TPR-Tree
	Updating the TPR-Tree
	Duality-Transformation Approach

	Key Applications
	Online, Position-Aware People, Vehicles, and Other Objects
	Process Monitoring

	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Indexing the Past
	Indexing the Web
	Synonyms
	Definition
	Historical Background
	Foundations
	Introduction
	Data Structures to Support Automatic Indexing
	Challenges and Design Factors in Automatic Indexing

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Indexing Units
	Synonyms
	Definition
	Historical Background
	Foundations
	Cross-references
	Recommended Reading

	Individual Data
	Individually Identifiable Data
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	INEX
	Inference Control in Statistical Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Infinity
	Information
	Information Browsing
	Information Displays
	Information Extraction
	Definition
	Historical Background
	Entity Detection and Recognition
	Relation Detection and Recognition
	Event Detection and Recognition
	Entity Translation

	Foundations
	Pattern Matching Based IE
	Machine Learning Based IE
	Trainable Name Tagging
	Trainable Coreference Resolution
	Trainable Relation Detection
	Trainable Event Detection

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Information Filtering
	Synonyms
	Definition
	Historical Background
	Foundations
	Organization of a filtering system
	Profile building and evolution
	Comparison procedure
	Relevance feedback
	Named entities in filtering
	Thematic filtering versus event filtering
	Evaluation of filtering systems

	Key Applications
	Cross-references
	Recommended Reading

	Information Foraging
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Engineering Models of Browser Use
	Novel Search and Browsing Interfaces
	Usability Guidelines

	Future Directions
	Cross-references
	Recommended Reading

	Information Graphic
	Information Hiding
	Information Integration
	Synonyms
	Definition
	Historical Background
	Foundations
	Information Integration Architecture
	Schema Mediation Languages
	Generating Schema Mappings
	Query Processing
	Related Data Management Architectures
	The Information Integration Industry

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Information Integration Techniques for Scientific Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Semantic Heterogeneity
	Role of Metadata in Managing Semantic Heterogeneity
	Functional Relationships
	Non-schematic Integration
	New Issues
	Interactive Information Integration

	Quality of Integration

	Key Applications
	BIRN
	Data Foundry
	GEON

	Cross-references
	Recommended Reading

	Information Lifecycle Management
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Information Loss Measures
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Information Navigation
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Information Quality: Managing Information as a Product
	Definition
	Historical Background
	Foundations
	The Needs of Information Consumers
	Processes for Producing High-Quality Information
	The Life Cycle of Information Products
	Governance Structures for Managing Information as a Product

	Key Applications
	Principle 1: Understand the IP Needs of Information Consumers
	Principle 2: Manage Information as a Product of a Well- Defined Production Process
	Principle 3: Manage Information as a Product with a Life Cycle
	Principle 4: Develop a Governance Structure to Manage Information Production Processes and the Resulting Information Products

	Future Directions
	Cross-references
	Recommended Reading

	Information Quality and Decision Making
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Information Quality Assessment
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Information Quality Policy and Strategy
	Synonyms
	Definition
	Historical Background
	Foundations
	Treat Information as a Product, Not By-Product
	Establish and Maintain Information Quality as a Part of the Business Agenda
	Ensure that Information Quality Policy and Procedures are Aligned with Business Strategy, Business Policy, and Business Proces
	Establish Clearly Defined Information Quality Roles and Responsibilities as Part of Organizational Structure
	Ensure Data Architecture is Aligned with Enterprise Architecture
	Be Proactive in Managing Changing Data Needs
	Have Practical Data Standards in Place
	Plan for and Implement Pragmatic Methods to Identify and Solve Data Quality Problems, and Have in Place a Means to Periodicall
	Foster an Environment Conducive to Learning and Innovating with Respect to Data Quality Activities
	Establish a Mechanism to Resolve Disputes and Conflicts Among Different Stakeholders

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Information Repository
	Information Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Information Retrieval Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Probabilistic Indexing
	Information Theoretic Models
	Vector Space Models
	Bayesian Models
	Probabilistic and Binary Retrieval Models
	Logical and Algebraic Models

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Information Retrieval Models/Metrics/Operations
	Information Retrieval Operations
	Synonyms
	Definition
	Historical Background
	Foundations
	Experimental Results
	Cross-references
	Recommended Reading

	Information Retrieval Processing
	Information Seeking
	Information Visualization
	Information visualization on hierarchies
	Information Visualization on Networks
	INitiative for the Evaluation of XML Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Initiator
	Synonym
	Definition
	Key Points
	Cross-references

	In-Memory DBMS
	In-Network Aggregation
	In-Network Query Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Network Formation and Communication
	Query Language and Data Model
	In-Network Processing of Aggregates
	Classes of Aggregates
	In-Network Processing of Joins

	Key Applications
	Cross-references
	Recommended Reading

	Instance Identification
	Instance-Completeness
	Instant
	Instant Relation
	Instruction Cache
	Integrated DB&IR Semi-Structured Text Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Querying Semi-Structured Data with IR Support
	Query Processing for Semi-Structured Text Retrieval
	Support for XML-IR in Commercial Database Systems

	Key Applications
	Cross-references
	Recommended Reading

	Integration of Rules and Ontologies
	Definition
	Historical Background
	Foundations
	Shortcomings of OWL
	Rule Languages for Integration
	Approaches to Integration

	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Intellectual Property
	Intelligent Disks
	Intelligent Storage
	Intelligent Storage Systems
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Interaction Design
	Interactive Capture
	Interactive Information Exploration
	Interactive Layout
	Interactive Visual Exploration of Multidimensional Data
	Interface
	Definition
	Historical Background
	Foundations
	Interfaces and Classes
	Protection
	Remote Interfaces
	Contents
	Components

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Interface Engines in Healthcare
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Internet Transactions
	Interoperability in Data Warehouses
	Synonyms
	Definition
	Historical Background
	Foundations
	Standards
	Conflicts
	Integration Techniques

	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Interoperation of NLP-based Systems with Clinical Databases
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Inter-Operator Parallelism
	Synonyms
	Definition
	Key Points
	Cross-references

	Inter-Query Parallelism
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Interval-based Temporal Models
	Intra-operator Parallelism
	Synonyms
	Definition
	Key Points
	Cross-references

	Intra-Query Parallelism
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Intrinsic Time
	Intrusion Detection Technology
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Recommended Reading

	Inverse Document Frequency
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Inverse Element Frequency
	Inverted Files
	Synonyms
	Definition
	Historical Background
	Foundations
	Building an Inverted File
	Compression
	Updating Operations
	Query Processing

	Key Applications
	Cross-references
	Recommended Reading

	Inverted Index
	Inverted Indexes
	IP Storage
	Definition
	Key Points
	Cross-references
	Recommended Reading

	ISAM File
	iSCSI
	ISO 19136
	Isolation
	Iteration
	Iterator
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	J
	J2EE
	Java Annotations
	Java Application Server
	Java Database Connectivity
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Java EE
	Java Enterprise Edition
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Java Metadata Facility
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	JD
	JDBC
	Join
	Definition
	Key Points
	Cross-references

	Join Dependency
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Join Index
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Join Indices
	Join Order
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Join Processing
	Join Sequence
	JSR 175

	k
	k-Anonymity
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	k-Closest Pair Join
	k-Closest Pair Query
	KDD Pipeline
	Synonyms
	Definition
	Selection
	Preprocessing
	Transformation
	Data Mining
	Evaluation and Interpretation

	Key Points
	Cross-references
	Recommended Reading

	KDD Process
	k-Distance Join
	Key
	Synonyms
	Definition
	Key Points
	Cross-references

	Key Range Locking
	Key Value Locking
	KL-ONE Style Languages
	K-Means and K-Medoids
	Synonyms
	Definitions
	K-means
	K-medoids

	Key Points
	K-means
	K-medoids

	Cross-references
	Recommended Reading

	K-Means Partition
	k-Nearest Neighbor Classification
	k-NN Classification
	kNN Query
	Knowledge Creation
	Knowledge Discovery from Biological Resources
	Knowledge Discovery from Data
	Knowledge Discovery in Streams
	Knowledge Discovery in Text (KDT)
	Knowledge Management
	Knowledge Organization Systems
	Knowledge-based Systems
	Koch Snowflake

	L
	L1 Cache
	L2 Cache
	L3 Cache
	Language Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Implementation
	Document Priors
	Document Generation Models
	Translation Models
	Aspect Models

	Key Applications
	Cross-references
	Recommended Reading

	Languages for Web Data Extraction
	Synonyms
	Definition
	Historical Background
	Foundations
	Access
	Extract
	Process
	Output

	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Large Itemsets
	Latch Coupling
	Latching
	Latent Semantic Indexing
	Layer Algebra
	Layered Architecture
	Layered Transactions
	Lazy Replication
	LBS
	L eacute vy Skew a-Stable Distribution
	Learning Distance Measures
	Synonyms
	Definition
	Historical Background
	Foundations
	Statistical Approach
	Challenges
	Adaptive Metric Techniques
	Adaptive Metric Nearest Neighbor Classification
	Large Margin Nearest Neighbor Classifiers
	Adaptive Metrics for Clustering and Semi-Supervised Clustering

	Key Applications
	Cross-references
	Recommended Reading

	Learning in Streams
	Length Normalization
	Level-of-Detail (LOD) Terrain Modeling
	Levelwise Search
	Lexical Affinities
	Lexical Analysis of Textual Data
	Synonyms
	Definitions
	Historical Background
	Foundations
	Lexical Analysis in Text Processing
	1. Lexical extraction
	2. Lookup
	3. Use of the Output

	Types of Lexicon
	Word lists and Stoplists
	Indexes and Inverted files
	Machine Readable Dictionaries
	Thesauruses

	Construction of Lexicons

	Key Applications
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Lexical Processing
	Lexical Relations
	Library of Congress METS
	License
	Licensing and Contracting Issues in Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Lifespan
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Life-span (in Part)
	Lightweight Ontologies
	Synonyms
	Definition
	Historical Background
	Foundations
	Types of Lightweight Ontologies
	From Informal to Formal Lightweight Ontologies

	Key Applications
	Document Classification
	Semantic Search
	Data Integration

	Future Directions
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Lineage
	Linear Hashing
	Definition
	Historical Background
	Foundations
	Initial Layout
	Bucket Split
	Round and Hash Function Advancement
	ComponenSummary and Search Scheme
	Variations

	Key Applications
	Cross-references
	Recommended Reading

	Linear Regression
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Linearization
	Link Analysis
	Link Database
	Linked Brushing
	Linked Views
	Linking and Brushing
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	List
	List Comprehension
	Literature-based Discovery from Biological Resources
	Load Balancing
	Load Balancing in Peer-to-Peer Overlay Networks
	Definition
	Historical Background
	Foundations
	Approaches for Balancing Storage Load
	Distributed Hash Tables (DHTs)
	Beyond DHTs
	Approaches for Balancing Requests Related Load

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Load Shedding
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	LOC METS
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Local Web Search
	Localization Abstraction
	Locality
	Locality of Queries
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Locality of Reference
	Locality Principle
	Locality-Preserving Mapping
	Location Prediction
	Location Services
	Location-Based Services
	Synonyms
	Definition
	Historical Background
	Foundations
	Location-Aware Technologies
	Locational and Spatial Data Management
	Middleware, Open Standards and Interoperability
	Locational Privacy

	Key Applications
	Cross-references
	Recommended Reading

	Lock Coupling
	Lock Manager
	Lock Tuning
	Locking Granularity and Lock Types
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Locking Protocol
	Log Component
	Log Manager
	Logging and Recovery
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Logging/Recovery Subsystem
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Logic of Time
	Logical Database Design: from Conceptual to Logical Schema
	Synonyms
	Definition
	Historical Background
	Foundations
	The Basic E2R Mapping
	Refinements
	Table Merging
	Table Partitioning
	Mapping from Non-ER Conceptual Schemas

	Key Applications
	Database Design

	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Logical Foundations of Web Data Extraction
	Definition
	Historical Background
	Foundations
	Information Extraction Functions and Wrappers
	Tree Structures
	Monadic Datalog
	Theorem 1 ([2]).
	Theorem 2 ([2]).
	Definition 1.
	Theorem 3 ([2]).

	Key Application
	Cross-references
	Recommended Reading

	Logical Models of Information Retrieval
	Definition
	Historical Background
	Foundations
	Logical Models
	Logical-Uncertainty Models
	Meta-Models

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Logical Query Processing and Optimization
	Logical Schema Design
	Logical Story Unit Segmentation
	Logical Structure
	Definition
	Key Points
	Cross-references

	Logical Time
	Logical Unit Number
	Synonyms
	Definition
	Key Points
	Cross-references

	Logical Unit Number Mapping
	Synonyms
	Definition
	Key Points
	Cross-references

	Logical Volume
	Logical Volume Manager
	Synonyms
	Definition
	Key Points
	Cross-references

	Logical Window
	Log-Linear Regression
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Long Running Queries
	Longitudinal Health Record
	Looking Over/Through
	Loop
	Synonyms
	Definition
	Key Points
	Cross-references

	Loop Join
	Loose Coupling
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Lossless Data Compression
	LoT-RBAC
	Low Coupling
	Lp Distances
	Lp Norms
	LSID
	LUN
	LUN Mapping
	LUN Masking
	LVM

	M
	MAC
	Machine Learning in Bioinformatics
	Machine Learning in Computational Biology
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Machine Learning in Systems Biology
	Machine-Readable Dictionary (MRD)
	Macro
	Magnetic Disk
	Maid
	Main Memory
	Synonyms
	Definition
	Key Points
	Cross-references

	Main Memory DBMS
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Maintenance of Materialized Views with Outer-Joins
	Definition
	Historical Background
	Foundations
	Join-Disjunctive Normal Form
	The Subsumption Graph
	Maintenance Procedure
	Computing the Primary Delta
	Computing the Secondary Delta
	Summary

	Key Applications
	Cross-references
	Recommended Reading

	Maintenance of Recursive Views
	Synonyms
	Definition
	Historical Background
	Foundations
	Recursive View Definition
	Evaluation of Recursive Queries
	Incremental Evaluation of Recursive Views

	Key Applications
	Cross-references
	Recommended Reading

	Managing Compressed Structured Text
	Synonyms
	Definition
	Historical Background
	Foundations
	Compression of Semi-Structured Text
	Navigating and Searching in Compressed Form
	Succinct Encodings for Labeled Trees
	Integrating Indexing and Compression

	Key Applications
	Future Directions
	Experimental Results
	URL to Code
	Cross-references
	Recommended Reading

	Mandatory Access Control
	Synonyms
	Definition
	Key Point
	Cross-references
	Recommended Reading

	MANET Databases
	Synonyms
	Definition
	Historical Background
	Pedestrians Projects
	Vehicular Projects

	Foundations
	Key Applications
	Social Networks
	Emergency Response, Homeland Security, and the Military
	Airport Applications
	Mobile E-commerce
	Transportation Safety and Efficiency

	Future Directions
	Cross-references
	Recommended Reading

	Manmachine Interaction (Obsolete)
	Many Sorted Algebra
	MAP
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Map Algebra
	Map Matching
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Mapping
	Mapping Composition
	Mapping Engines
	Markup Language
	Definition
	Key Points
	Cross-references

	MashUp
	Definition
	Key Points
	Cross-references

	Massive Array of Idle Disks
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Matching
	Materialized Query Tables
	Materialized View Maintenance
	Materialized View Redefinition
	Materialized Views
	Matrix
	Matrix Masking
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Maximal Itemset Mining
	Max-Pattern Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Maybe Answer
	MDIS
	MDR
	MDS
	Mean Average Precision
	Mean Reciprocal Rank
	Synonyms
	Definition
	Key Points
	Cross-references

	Mean Reciprocal Rank of the First Relevant Document
	Measure
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Media Recovery
	Media Semantics
	Median
	Mediation
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Mediation and Adaptation
	Medical Genetics
	MEDLINE/ PubMed
	Membership Query
	Synonyms
	Definition
	Key Points
	Cross-references

	Memory Consistency
	Memory Hierarchy
	Synonyms
	Definition
	Historical Background
	Foundations
	Memory- and Cache-Architectures
	Memory Access Costs
	Latency
	Bandwidth
	Address Translation

	Unified Hardware Model

	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Memory Locality
	Synonyms
	Definition
	Key Point
	Cross-references
	Recommended Reading

	Merge Join
	Merge-purge
	Merkle Hash Trees
	Merkle Trees
	Synonyms
	Definition
	Key Point
	Cross-references
	Recommended Reading

	Message Authentication Codes
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommented Reading

	Message Integrity Codes
	Message Queuing Systems
	Synonyms
	Definition
	Key Points
	Cross-reference
	Recommended Reading

	Message-Oriented Middleware (MOM)
	Message-oriented Systems
	Messaging Engines
	Messaging Systems
	Meta Data Base
	Metadata Interchange Specification
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommented Reading

	Meta Data Management System
	Meta Data Manager
	Meta Data Registry
	Meta Data Repository
	Synonyms
	Definition
	Historical Background
	Foundations
	Requirements
	Architecture
	Systems

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Meta Model
	Meta Object Facility
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Metadata
	Definition
	Key Points
	Cross-references
	Recommented Reading

	Metadata Encoding and Transmission Standard
	Metadata Registry, ISO/IEC 11179
	Synonyms
	Definition
	Historical Background
	Foundations
	Part 1: Framework
	Part 2: Classification
	Part 3: Registry Metamodel and Basic Attributes
	Part 4: Formulation of Data Definitions
	Part 5: Naming and Identification Principles
	Part 6: Registration

	Key Applications
	Cross-references
	Recommended Reading

	Metadata Repository
	Meta-Knowledge
	Metamodel
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Metaphor
	Metasearch Engines
	Synonyms
	Definition
	Historical Background
	Foundations
	Result Merging
	Search Engine Selection
	Automatic Search Engine Connection
	Automatic Search Result Extraction

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Metric Space
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Microdata
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Microaggregation
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Microbenchmark
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Microdata Rounding
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Middleware Support for Database Replication and Caching
	Definition
	Historical Background
	Foundations
	Shared Disk Versus Shared Nothing
	Master/Slave Versus Multi-Master
	Middleware Design
	Concurrency Control
	Statement Replication Versus Transaction Replication
	High Availability
	Load Balancing
	Caching

	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Middleware Support for Precise Failure Semantics
	Definition
	Historical Background
	Foundations
	System Model
	X-Able Histories
	Client-Service Consistency
	X-Able Services

	Key Applications
	Recommended Reading

	Mini
	Minimal-change Integrity Maintenance
	Mining of Chemical Data
	Definition
	Historical Background
	Foundations
	Key Applications
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Mixed Evidence
	Mixed-Media
	MM Indexing
	MMDBMS
	Mobile Ad hoc Network Databases
	Mobile Database
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Mobile Interfaces
	Synonyms
	Definition
	Historical Background
	Foundations
	Mobile Interface for Specific Devices
	Multi Target Applications

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Mobile Map Services
	Mobile Sensor Network Data Management
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Mobile Wireless Sensor Network Data Management
	Model Management
	Definition
	Historical Background
	Foundations
	Schema Matching
	Model Transformation
	Generic Metamodel
	Schema Integration
	Mappings
	Model Management Systems

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Model-based Querying in Sensor Networks
	Synonyms
	Definition
	Historical Background
	Foundations
	Model
	Query Planning and Execution
	Example

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Model-driven Data Acquisition
	Module
	MOF
	Molecular Interaction Graphs
	Moment
	Monitoring
	Monitoring of Real-Time Logic Expressions
	Monotone Constraints
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Monotonic Constraints
	Monotonicity Property
	Motion Graphics
	Moving Object
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Moving Object Trajectories
	Moving Objects Databases and Tracking
	Synonyms
	Definition
	Historical Background
	Foundations
	Modeling and Querying Current Movement (Tracking)
	Modeling and Querying History of Movement
	Related Issues
	Uncertainty
	Movement in Networks
	Spatio-Temporal Indexing
	Query Processing for Continuous/Location Based Queries
	Spatiotemporal Aggregation and Selectivity Estimation

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Moving Objects Interpolation
	Moving Span
	MRR
	MRR1
	MSN Data Management
	Multi-Database
	Multidatabases
	Multidimensional Clustering
	Multidimensional Data Formats
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Multidimensional Database Management System
	Multi-dimensional Mapping
	Multidimensional Modeling
	Synonyms
	Definition
	Historical Background
	Foundations
	Data Cubes
	Dimensions
	Facts
	Measures
	The Modeling Process
	Complex Multidimensional Modeling

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multidimensional Scaling
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Multidimensional Visualization
	Multi-Granularity Modeling
	Multi-Layered Architecture
	Multi-Level Recovery and the ARIES Algorithm
	Definition
	Historical Background
	Foundations
	Future Directions
	Cross-references
	Recommended Reading

	Multilevel Secure Database Management System
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multilevel Security
	Multilevel Transactions and Object- Model Transactions
	Synonyms
	Definition
	Historical Background
	Foundations
	Future Directions
	Cross-references
	Recommended Reading

	Multi-Level Visualization
	Multilingual Information Retrieval
	Multi-Master System
	Multimedia
	Multimedia Content Enrichment
	Multimedia Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Types and Semantics
	Sequence and Order
	Size
	Accessing Multimedia Data
	Presentation

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multimedia Data Buffering
	Definition
	Historical Background
	Foundations
	Buffer Replacement
	The BASIC Buffer Replacement Algorithm
	The DISTANCE Buffer Replacement Algorithm

	Buffer Sharing

	Key Applications
	Cross-references
	Recommended Reading

	Multimedia Data Indexing
	Synonyms
	Definition
	Historical Background
	Foundations
	Filter & Refine
	The Need for Approximate Features
	Metric Indexing
	Ad Hoc Solutions

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multimedia Data Querying
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multimedia Data Storage
	Definition
	Historical Background
	Foundations
	Hiccup-Free Display
	FIXB and VARB
	RP, MTP, and MVP
	Data Placement across Disk Drivers

	Key Applications
	Cross-references
	Recommended Reading

	Multimedia Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Data Analysis and Feature Extraction
	Domain Knowledge and Interpretation
	Interaction and User Interface
	Storage, Matching, and Indexing

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multimedia Information Discovery
	Multimedia Information Retrieval
	Multimedia Information Retrieval Model
	Synonyms
	Definition
	Historical Background
	Foundations
	Form-based Multimedia Information Retrieval
	Semantic Content-based Multimedia Information Retrieval
	Mixed Multimedia Information Retrieval

	Key Applications
	Cross-references
	Recommended Reading

	Multimedia Metadata
	Synonyms
	Definition
	Historical Background
	Foundations
	Media Content
	Layout
	Timing
	Linking
	Adaptivity

	Key Applications
	Cross-references
	Recommended Reading

	Multimedia Presentation Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multimedia Resource Scheduling
	Definition
	Historical Background
	Foundations
	Disk Scheduling
	Stream Scheduling

	Key Applications
	Cross-references
	Recommended Reading

	Multimedia Retrieval Evaluation
	Definition
	Historical Background
	Foundations
	Key Applications
	Data Sets
	Cross-references
	Recommended Readings

	Multimodal Data
	Multimodal Databases
	Multi-modal Information Retrieval
	Multimodal Interfaces
	Definition
	Historical Background
	Foundations
	Key Applications
	Interaction in Mobile Environments
	Geographic Information Systems
	Interaction in Adverse Settings
	Multimodal Biometric Databases
	Interaction in Impairment Conditions

	Future Directions
	Cross-references
	Recommended Reading

	Multi-Pathing
	Definition
	Key Points
	Cross-references

	Multiple Classifier System
	Multiple Imputation
	Multiple Linked Plots
	Multiple Query Optimization
	Multiple Representation Modeling
	Synonyms
	Definition
	Historical Background
	Foundations
	Multiscale Databases
	Multi-Representation Databases
	Database Models for Multiple Representations
	Architectures for Distributed Representations

	Key Applications
	Cartography
	Multi-Scale Analysis

	Future Directions
	Cross-references
	Recommended Reading

	Multiplicity
	Multiprocessor Data Placement
	Multiprocessor Database Management
	Multiprocessor Query Processing
	Multi-Query Optimization
	Synonyms
	Definition
	Historical Background
	Foundations
	Challenges
	Identifying CSEs
	Finding the Optimal Plan in Presence of CSEs

	Engineering an Efficient Multi-Query Optimizer

	Key Applications
	Cross-references
	Recommended Reading

	Multi-Resolution
	Multi-Resolution Terrain Modeling
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Multi-scale
	Multiscale Views
	Multiscale Interface
	Multiset Semantics
	Multi-Step Query Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	General Schema of Multi-Step Query Processing
	Example: Multi-Step Query Processing of Similarity Queries
	Example: Algorithms for Multi-Step Query Processing of Similarity Queries

	Key Applications
	Cross-references
	Recommended Reading

	Multi-Tier Architecture
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Multivalued Dependency
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Multivariate Data Visualization
	Multivariate Visualization Methods
	Synonyms
	Definition
	Historical Background
	Foundations
	Multivariate Continuous Data
	Multivariate Categorical Data
	Interactive Graphics and Multivariate Graphics

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Multi-Version Concurrency Control
	Multi-Version Concurrency Control Algorithms
	Multi-Version Database
	Multi-Version Databases
	Multi-version Serializability and Concurrency Control
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Music Metadata
	Music Retrieval
	MVD

	N
	Naive Tables
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Name Matching
	Namelessness
	Narrowed Extended XPath I
	Synonyms
	Definition
	Historical Background
	Foundations
	Requirements
	Content Only (CO) Queries
	Content and Structure (CAS) Queries

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	NAS
	NAS Servers
	NASD
	Natural Human-Computer Interaction (NHCI)
	Natural Interaction
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Multimedia Browsing
	Knowledge Exploration and Building
	Interactive Museum and Cultural Exhibits
	Interactive Music Systems

	Cross-references
	Recommended Reading

	Natural Language Generation (NLG)
	Navigation System Interfaces
	Near-Duplicate Video Retrieval
	Nearest Neighbor Classification
	Synonyms
	Definition
	Historical Background
	Foundations
	Classification Model
	Lazy Evaluation Model

	Key Applications
	Cross-references
	Recommended Reading

	Nearest Neighbor Query
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Nearest Neighbor Query in Spatio-temporal Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Geographic Information Systems
	Location-based Services
	Multi-criteria Decision Making

	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Negative Dictionary
	Nested Loop Join
	Synonyms
	Definition
	Key Points
	Block Nested Loop Join

	Cross-references
	Recommended Reading

	Nested Transaction Models
	Definition
	Historical Background
	Foundations
	Structure of a Nested Transaction
	Synchronization of Nested Transactions
	Commit/Abort of Nested Transactions
	Advantages of Nested Transactions

	Key Applications
	Cross-references
	Recommended Reading

	.NET Remoting
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Network Attached Secure Device
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Network Attached Storage
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Network Data Model
	Synonyms
	Definition
	Historical Background
	Foundations
	The Languages
	Gross Architecture of a CODASYL DBMS
	The Data Structures
	Records and Record Types
	Record Fields
	Sets and Set Types
	Areas
	Schema and Sub-schemas

	Data Manipulation
	Data Retrieval

	Entity-relationship to Network Mapping
	Discussion

	Key Applications
	Cross-references
	Recommended Reading

	Network Database
	Network Topology
	Neural Networks
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	Url to Code
	Cross-references
	Recommended Reading

	New Media Metadata
	NEXI
	NFS
	NF-SS
	N-Gram Models
	Definition
	Key Points
	Cross-references
	Recommended Reading

	NIAM
	NN Classification
	NN Query
	NN Search
	Node
	Noise Addition
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Non-Clustering Index
	Non-Dense Index
	Nonidentifiability
	Nonlinear Magnification
	Non-Metric Temporal Reasoning
	Nonparametric Data Reduction Techniques
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Non-Perturbative Masking
	Non-Perturbative Masking Methods
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Non-Pipelineable Operator
	Nonsequenced Semantics
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Nontemporal Semantics
	Non-Uniform Distribution
	Normal Form ORA-SS Schema Diagrams
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Normal Forms and Normalization
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Normalized Discounted Cumulated Gain (nDCG)
	Normalizing ORA-SS Diagrams
	Now in Temporal Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	SQL Nullary Functions
	Now in End or Stop Columns
	Now-Relative Values

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	n-Tier Architecture
	Null Values
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Numeric Association Rules
	Numerical Fact
	Nymity

	O
	OASIS
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Object Constraint Language
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Object Data Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Characteristics of Object Data Models
	Object-Oriented Data Model
	Object-Relational Data Model

	Key Applications
	Cross-references
	Recommended Reading

	Object Detection and Recognition
	Object Flow Diagrams
	Object Identification
	Object Identification
	Object Identifier
	Object Identity
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Object Labeling
	Object Monitor
	Object Query Language
	Object Recognition
	Synonyms
	Definition
	Historical Background
	Foundations
	Geometry-Based Approaches
	Appearance-Based Algorithms
	Feature-Based Algorithms

	Key Applications
	Future Directions
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Object Reference
	Object Relationship Attribute Data Model for Semi-structured Data
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Object Request Broker
	Object-based Storage Device
	Object-Role Modeling
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	OCL
	ODB (Object Database)
	ODBC
	Office Automation
	Oid
	OKAPI Retrieval Function
	OLAP
	On-Disk Security
	One-Copy-Serializability
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	One-Pass Algorithm
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	One-Way Hash Functions
	Online Advertising
	On-Line Analytical Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Operations
	Declarative Languages

	Key Applications
	Future Directions
	Url to Code
	Cross-references
	Recommended Reading

	Online Handwriting
	Online Recovery
	Online Recovery in Parallel Database Systems
	Synonyms
	Definition
	Historical Background
	Foundations
	Key applications
	Cross-references
	Recommended Reading

	Ontological Engineering
	Ontologies
	Ontologies and Life Science Data Management
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Ontology
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Ontology Acquisition
	Ontology Argumentation
	Ontology Elicitation
	Synonyms
	Definition
	Historical Background
	Conceptual Modeling
	Data Schema Versus Ontology

	Foundations
	Lexical Versus Semantic Level
	Lexical Variability and Reusability
	Semantic Versus Pragmatic Level
	Divergence and Conflict
	Convergence and Patterns

	Key Applications
	Semantic Web Services
	Regulatory Compliance
	Human Resources

	Future Directions
	Cross-references
	Recommended Reading

	Ontology Engineering
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Ontology Learning
	Ontology Negotiation
	Ontology Query Languages
	Ontology Visual Querying
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	On-Wire Security
	OODB (Object-Oriented Database)
	Open Database Connectivity
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Open Nested Transaction Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Open Nested Transactions
	Operating Characteristic
	Operator-Level Parallelism
	Synonyms
	Definition
	Historical Background
	Foundations
	Classes of Parallelism
	Effect of Query Plan Selection on Operator-Level Parallelism
	Other Factors Limiting Operator-Level Parallelism
	Relation to Inter-Query and Intra-Operator Parallelism

	Key Applications
	Cross-references
	Recommended Reading

	Operator Scheduling
	Operator Tree
	Opinion Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Model of Opinion Mining
	Sentiment Classification
	Feature-Based Opinion Mining
	Mining Comparative and Superlative Sentences

	Key Applications
	Cross-references
	Recommended Reading

	Optical Storage
	Optimistic Replication
	Optimistic Replication and Resolution
	Synonyms
	Definition
	Historical Background
	Foundations
	Transmitting and Replaying Updates
	Conflicts
	Conflict Resolution and Reconciliation
	Last Writer Wins
	Semantic Resolvers
	Operational Transformation
	Scheduling Transactions Content and Ordering
	Freshness of Replicas
	Optimistic Replication Versus Optimistic Concurrency Control

	Key Applications
	Cross-references
	Recommended Reading

	Optimization and Tuning in Data Warehouses
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Optimization of DAG-Structured Query Evaluation Plans
	Optimization of Parallel Query Plans
	OQL
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	ORA-SS Data Model
	ORA-SS Schema Diagram
	Orchestration
	Definition
	Key Points
	Cross-references
	Recommended Reading

	ORDB (Object-Relational Database)
	Order Item
	Order Statistics
	Ordering
	Orientation Relationships
	Oriented Clustering
	Origin
	OR-Join
	Synonyms
	Definition
	Key Points
	Cross-references

	OR-Split
	Synonyms
	Definition
	Key Points
	Cross-references

	OSD
	OSQL
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Overlay Network
	Definition
	Key Points
	Cross-references

	OWL: Web Ontology Language
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	P
	P/FDM
	Definition
	Key Points
	Cross-references
	Recommended Reading

	P@n
	P2P Database
	Page Cache
	Page Locking
	Page Model
	Page Representations
	Paging in Web Search Engines
	PAM (Partitioning Around Medoids)
	Parallel and Distributed Data Warehouses
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Parallel Axes
	Parallel Coordinates
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Parallel Coordinates Plot (PCP)
	Parallel Coordinates System (PCS)
	Parallel Data Placement
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Parallel Database
	Parallel Database Management
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Parallel Distributed Processing
	Parallel Hash Join, Parallel Merge Join, Parallel Nested Loops Join
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Parallel Join Algorithms
	Parallel Query Execution Algorithms
	Synonyms
	Definition
	Historical Background
	Foundations
	Pipelining
	Partitioning
	Bushy Execution
	Specifics of Parallel Algorithms
	Parallel Execution beyond Queries

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Parallel Query Optimization
	Synonyms
	Definition
	Historical Background
	Foundations
	Extending Query Plans to Execute in Parallel on Partitioned Data
	Extending the Search Algorithm to Include Parallel Plans
	Costing Parallel Query Plans
	Heuristics to Reduce the Number of Parallel Plans Considered

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Parallel Query Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Parallel SCSI
	Parameterized Complexity of Queries
	Definition
	Historical Background
	Foundations
	Fixed-Parameter Tractability
	Fixed-Parameter Intractability
	Further Positive Results on Query Evaluation Complexity

	Key Applications
	Cross-references
	Recommended Reading

	Parametric Data Reduction Techniques
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Partial Replication
	Definition
	Key Points
	Cluster Replication
	WAN Replication
	Challenges

	Cross-references
	Recommended Reading

	Partitioned Query Execution
	Partitioning
	Passage Retrieval
	Path Functional Dependencies
	Path Index
	Path Query
	Synonyms
	Definition
	Historical Background
	Foundations
	Path Query and Pattern Tree Matching
	Path Query Languages
	Path Query Evaluation
	Path Query Optimization
	Indices for Path Query Evaluation

	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Pattern Based Clustering
	Pattern Discovery
	Pattern-Growth Methods
	Definition
	Historical Background
	Foundations
	Frequent Itemset Mining
	Sequential Pattern Mining
	Frequent Subgraph Mining

	Key Applications
	Future Directions
	Mining Approximate or Noise-Tolerant Patterns
	Pattern-Based Classification and Clustering

	Experimental Results
	Data Sets
	Synthetic Data
	Real Data

	URL to Code
	Cross-references
	Recommended Reading

	PCA
	PDMS
	Pedigree
	Peer Data Management
	Peer Data Management System
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Peer Database Management
	Peer to Peer Network
	Peer to Peer Overlay Networks: Structure, Routing and Maintenance
	Definition
	Historical Background
	Foundations
	Taxonomy
	Purpose of Use
	Overlay Structure
	Centralized Overlays
	Decentralized Overlays
	Hybrid Overlays

	Routing
	Routing in Unstructured Overlays
	Routing in Structured Overlays

	Maintenance

	Key Applications
	Cross-references
	Recommended Reading

	Peer-To-Peer Content Distribution
	Synonyms
	Definition
	Historical Background
	Foundations
	File Distribution
	Video Streaming
	Performance Analysis of Distribution Architectures

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Peer-to-Peer Data Integration
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Peer-to-peer Database
	Peer-to-peer File Sharing
	Peer-to-peer Network
	Peer-to-peer Overlay
	Peer-to-Peer Publish-Subscribe Systems
	Definition
	Historical Background
	Foundations
	Key Applications
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Peer-to-Peer Storage
	Synonyms
	Definition
	Historical Background
	Foundations
	Resilience from Redundancy
	Maintaining Redundancy
	Placement Strategies
	Analysis Techniques

	Key Applications
	Cross-references
	Recommended Reading

	Peer-to-Peer System
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Peer-to-Peer Web Search
	Definition
	Historical Background
	Foundations
	P2P Global Computing for Scalable Search-Engine Functionality
	P2P Social Computing with Autonomous Peers
	Query Routing
	Search Result Ranking

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Performance Analysis of Transaction Processing Systems
	Synonyms
	Definition
	Historical Background
	Foundations
	Queueing Network Models - QNMs
	Buffer Miss Rate (BMR)
	Performance Analysis of Storage Systems
	Performance Analysis of Concurrency Control Methods
	Standard Locking
	Restart-Oriented Locking Methods
	Optimistic Concurrency Control
	Conclusion

	Cross-references
	Recommended Reading

	Performance Benchmark
	Performance Measures
	Performance Metrics
	Performance Monitoring Tools
	Definition
	Historical Background
	Foundations
	Event Monitor
	Query Plan Explainer
	Profiler

	Key Applications
	Cross-references
	Recommended Reading

	Period-Stamped Temporal Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Examples Illustrating Inadequacy of Conventional Models to Support Time Period
	Common Characteristics of Period-Stamped Data Models
	Desired Behavior of Period-Stamped Data Models
	Literature Overview

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Persistence
	Persistent Applications
	Persistent Archives
	Personal Data
	Personalized Interfaces
	Personalized Search
	Personalized Web
	Personalized Web Search
	Synonyms
	Definition
	Historical Background
	Foundations
	User Profiling
	Personalized Search Based on Content Analysis
	Personalized Web Search Based on Hyperlink Analysis
	Community-based Personalized Web Search
	Server-Side and Client-Side Implement
	Challenges of Personalized Search

	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Personally Identifiable Data
	Perturbation Techniques
	Perusal
	Pessimistic Scheduler
	Petri Nets
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Workflow Management
	Discrete/Flexible Manufacturing
	Communication Protocols
	Embedded Systems

	Cross-references
	Recommended Reading

	Photograph
	Physical Clock
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Physical Database Design for Relational Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Infrastructure Mechanics
	Design Choices
	Combining Physical Design Choices
	Other Physical Database Design Techniques

	Key Applications
	Lifecycle Differences
	Application Domains

	Future Directions
	Cross-references
	Recommended Reading

	Physical Layer Tuning
	Definition
	Historical Background
	Foundations
	Hardware Tuning
	Operating System Tuning

	Key Applications
	Cross-references
	Recommended Reading

	Physical Time
	Physical Volume
	Physical Window = Tuple-based Windows
	Physician Order Entry
	Pictorial Metadata
	Picture
	Picture Metadata
	Piecewise-Constant Approximations
	Pipeline
	Definition
	Key Points
	Cross-references

	Pipelined and Independent Parallelism
	Pipelining
	Definition
	Key Points
	Cross-references
	Recommended Reading

	PiT Copy
	Pixed Oriented Visualiyation Techniques
	Pixel Classification
	Place Names
	Place Transition Nets
	Player
	Plot
	Plots for Qualitative Information
	Point-based Temporal Models
	Point-based Temporal Data
	Point-in-Time Copy
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Point-Stamped Temporal Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Timestamps and Database Objects
	The Snapshot Model.
	The Timestamp Model.
	The Parametric Model.

	Multiple Atomic Timestamps
	Models with a fixed number of timestamp attributes.
	Models with a varying number of timestamp attributes.

	Sets of Timestamps: Compact Representation
	Query Languages and Integrity Constraints

	Key Applications
	Cross-references
	Recommended Reading

	Point-versus Period-based Semantics
	Polyhedron
	Polytransactions
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Port Binding
	Position Snapping
	Positive Infinity
	Positive Predictive Value
	Positive Relational Algebra
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Possible Answers
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Postings File
	Post-Randomization Method
	PRAM
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Precision
	Definition
	Key Points
	Cross-references

	Precision and Recall
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Precision at n
	Synonyms
	Definition
	Key Points
	Cross-references

	Precision-Oriented Effectiveness Measures
	Definition
	Historical Background
	Foundations
	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Predicate Calculus
	Predicate Logic
	Prediction of Event Occurrence
	Prediction Regarding Future Events
	Prefix Tree
	Presenting Structured Text Retrieval Results
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Preservation
	Preserving Database Consistency
	Preview
	Primary Index
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Primary Memory
	Primitive Event
	Principal Component Analysis
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Principle of Locality
	Privacy
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Privacy Measures
	Privacy Metrics
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Privacy Policies and Preferences
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Privacy Protection
	Privacy-Enhancing Technologies
	Synonyms
	Definition
	Historical Background
	Foundations
	PETs for Minimizing or Avoiding Personally Identifiable Data
	Mix Nets
	Crowds

	PETs for Safeguarding Lawful and Privacy-Friendly Personal Data Processing
	PETs that are a Combination of the Two Aforementioned PET Classes

	Key Applications
	Cross-references
	Recommended Reading

	PETs
	Privacy-Preserving Data Mining
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Privacy-Preserving Spatial Queries
	Probabilistic Analysis
	Probabilistic Data
	Probabilistic Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Representation and Smantics
	Query Evaluation

	Key Applications
	Cross-references
	Recommended Reading

	Probabilistic Model
	Probabilistic Model of Indexing
	Probabilistic Querying
	Probabilistic Retrieval Models and Binary Independence Retrieval (BIR) Model
	Synonyms
	Definition
	Historical Background
	Foundations
	Derivation of the BIR Model
	Bayes Theorem
	Binary Feature Vector x
	Independence Assumption
	Product Split
	Non-Query Term Assumption
	Rewriting to Achieve Compact Form
	Alternative Derivation

	Estimation of Term Probabilities
	Variations of the BIR Term Weight
	Solving the Zero Probability Problem
	Relationship between the BIR Model, IDF, and BM25

	Key Applications
	Cross-references
	Recommended Reading

	Probabilistic Spatial Queries
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Probabilistic Temporal Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Probability Ranking Principle
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Probability Smoothing
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Procedure Order
	Procedure Request
	Process Composition
	Process Definition
	Process Evolution
	Process Life Cycle
	Synonyms
	Definition
	Key Points
	Cross-references

	Process Management
	Process Mining
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Process Optimization
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Context-Aware Business Process
	E-Science and Grid Computing

	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Process Semantics
	Process State Model
	Process Structure of a DBMS
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Processing Overlaps
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Processing Structural Constraints
	Definition
	Historical Background
	Foundations
	User Querying Behavior
	Structural Constraints
	Processing Structural Constraints
	Ignoring Structural Constraints
	Tag Equivalence
	Structure Boosting
	Score Propagation

	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Processor Cache
	Synonyms
	Definition
	Key Points
	Cross-references

	Production-based Approach to Media Analysis
	Projected Clustering
	Projection
	Definition
	Key Points
	Cross-references

	Projection Index
	Propagation-based Structured Text Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Indexing
	Relevance Scores Evaluation for Content-Only Queries
	Scoring Leaf Elements
	Propagating Relevance Scores

	Content-and-Structure Queries Processing

	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Protein Sequence
	Protein-Protein Interaction Networks
	Provenance
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Provenance Metadata
	Provenance in Scientific Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Proximity
	PRP
	p-Sensitive k-Anonymity
	Pseudonymity
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Public-Key Encryption
	Publish/Subscribe
	Definition
	Historical Background
	Foundations
	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Publish/Subscribe over Streams
	Definition
	Historical Background
	Foundations
	Centralized, Stateless Publish/Subscribe
	Centralized, Stateful Publish/Subscribe
	Distributed, Stateless Publish/Subscribe
	Distributed, Stateful Publish/Subscribe

	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Punctuations
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Push Transactions
	Push/Pull Delivery

	Q
	QE, Query Enhancement
	QoS-Based Web Services Composition
	Quadtree Variations
	Quadtrees (and Family)
	Synonyms
	Definition
	Historical Background
	Foundations
	Point Quadtree
	Region Quadtree
	PR Quadtree
	PMR Quadtree
	XBR Tree
	Quadtree and Time-Evolving Regional Data

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Qualitative Relations between Time Intervals
	Qualitative Temporal Constraints between Time Intervals
	Qualitative Temporal Reasoning
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Quality and Trust of Information Content and Credentialing
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Quality Assessment
	Quality of Data Warehouses
	Definition
	Historical Background
	Foundations
	Quality of DBMS
	Quality of Data Warehouse Data Models
	Data Quality

	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Quantiles on Streams
	Synonyms
	Definition
	Historical Background
	Foundations
	Randomized Algorithms
	Deterministic Algorithms
	Practical Considerations
	Extensions
	Quantiles in Distributed Streams
	Quantiles in Sliding Windows
	Biased Estimate of Quantiles
	Duplicate Insensitive Quantiles

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Quantitative Association Rules
	Synonyms
	Definition
	Historical Background
	Foundations
	Frequent Rules
	Distributional Rules

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	QUEL
	Definition
	Key Points
	Cross-references

	Query Answering in Analytical Domains
	Query Assistance
	Query by Example
	Query by Humming
	Synonyms
	Definition
	Historical Background
	Foundations
	Comparisons of Distance Measures on Examples
	Dynamic Time Warping (DTW)
	Constraints and Lower Bounds on Dynamic Time Warping
	Uniform Scaling (US)
	Lower Bounding Uniform Scaling
	Scaling and Time Warping (SWM)
	Lower Bounding SWM
	Efficient Pruning Algorithm by Lower Bounds

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Query Compilation
	Query Compilation and Execution
	Query Containment
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Query Engine
	Query Evaluation
	Query Evaluation Plan
	Query Evaluation Techniques for Multidimensional Data
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Query Execution Engine
	Query Execution in Star/ Snowflake Schemas
	Query Execution Plan
	Query Expansion
	Query Expansion for Information Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Query Expansion Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Query Language
	Synonyms
	Definition
	Key Points
	Cross-references

	Query Languages and Evaluation Techniques for Biological Sequence Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Index Structures

	Key Applications
	Cross-references
	Recommended Reading

	Query Languages for the Life Sciences
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	URL to Code
	Cross-reference
	Recommended Reading

	Query Load Balancing in Parallel Database Systems
	Synonyms
	Definition
	Historical Background
	Foundations
	Load balancing problems
	Intra-Operator Load Balancing
	Inter-Operator Load Balancing
	Intra-Query Load Balancing

	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Query Mapping
	Query Optimization
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Query Optimization (in Relational Databases)
	Synonyms
	Definition
	Historical Background
	Foundations
	Optimizing Simple Queries
	More Complex Queries

	Key Applications
	Cross-references
	Recommended Reading

	Query Optimization for Multidimensional Systems
	Query Optimization in Distributed Database Systems
	Query Optimization in Sensor Networks
	Synonyms
	Definition
	Historical Background
	Foundations
	Queries
	Query Plan
	Metadata
	Cost Model
	Centralized Optimization
	Distributed Optimization

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Query Parallelism
	Query Plan
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Query Planning and Execution
	Query Point Movement Techniques for Content-Based Image Retrieval
	Definition
	Historical Background
	Foundations
	Naïve Random Scan Method (NRS)
	Local Neighboring Movement Method (LNM)
	Neighboring Divide and Conquer Method (NDC)
	Global Divide and Conquer Method (GDC)

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Query Processing
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Query Processing (in Relational Databases)
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Recommended Reading

	Query Processing and Optimization in Object Relational Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	The Four Phases of Query Processing
	Example 1:
	Example 2:

	The Fundamentals of a (Physical) Query Optimizer
	Formalisms and Approaches for Query Processing and Query Optimization
	Implementing Query Optimizers

	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Query Processing in Data Warehouses
	Synonyms
	Definition
	Historical Background
	Foundations
	Requirements and Specifics of the Analytical Context
	Potential and Solutions for Efficient Data Warehouse Query Processing
	Part I: Query Planning and Execution
	Optimizing the Optimization Process
	Optimization Goal
	Specific Rewrite Rules
	Multi-Query Optimization

	Part II: Considering Logical Access Paths
	Partition Management
	Materialized Views

	Part III: Considering Physical Access Paths
	Data Organization
	Compression and Main-Memory Techniques (see main memory DBMS)
	Additional Index Structures
	Multidimensional Clustering Schemes

	Part IV: Alternative Query Answering Models
	Online Aggregation
	Approximate Query Answering/Approximate Query Processing

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Query Processing in Deductive Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Negation in Datalog
	Key Applications
	Cross-references
	Recommended Reading

	Query Processor
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Query Reformulation
	Query Rewriting
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Query Rewriting Using Views
	Query Suggestion
	Query Transformations
	Query Translation
	Synonyms
	Definition
	Historical Background
	Foundations
	Attribute Heterogeneity
	Predicate Heterogeneity
	Query Structure Heterogeneity
	Schema Matching for Attribute Heterogeneity
	Predicate Mapping for Predicate Heterogeneity
	Query Rewriting for Query Structure Heterogeneity

	Key Applications
	Vertical Integration Systems
	Meta Querying Systems

	Cross-references
	Recommended Reading

	Query Tree
	Query Tuning
	Querying DNA Sequences
	Querying Protein Sequences
	Querying Semi-Structured Data
	Queuing Analysis
	Queuing Mechanism
	Queuing Systems
	Quorum Systems
	Definition
	Historical Background
	Foundations
	Quorum Types and Their Sizes
	Majority
	Grids
	Trees

	Availability

	Experimental Results
	Key Applications
	Future Directions
	Recommended Reading

	R
	RAID
	Random Access Memory (RAM)
	Randomization Methods to Ensure Data Privacy
	Synonyms
	Definition
	Historical Background
	Foundations
	Local Randomization Techniques
	Privacy
	Algorithms
	Itemset Randomization
	Output Perturbation Techniques
	Privacy
	Algorithms
	Input Perturbation Techniques
	Privacy
	Algorithms

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Range Partitioning
	Range Query
	Synonyms
	Definition
	Key Points
	Cross-references

	Range Search
	Range Selection
	Rank Swapping
	Ranked Multimedia Retrieval
	Ranked XML Processing
	Synonyms
	Definition
	Historical Background
	Threshold Algorithms
	XML and IR

	Foundations
	Scoring Structure
	Scoring Text
	XML Top-k Query Evaluation Techniques

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Ranking
	Raster Data Management
	Raster Data Management and Multi- Dimensional Arrays
	Synonyms
	Definition
	Historical Background
	Imagery in Array Databases
	Statistics Data in Array Databases
	A Unified View
	History and Current State

	Foundations
	Conceptual Modeling
	Physical Modeling
	Query Evaluation
	Query Optimization

	Key Applications
	Earth Sciences
	Life Science
	Human Brain Imaging
	Gene Expression Analysis

	Future Directions
	Cross-references
	Recommended Reading

	Raster Databases
	RBAC
	RBAC Standard
	RDF
	Reactive Rules
	Read/Write Model
	Real and Synthetic Test Datasets
	Synonyms
	Definition
	Historical Background
	Foundations
	Synthetic Datasets
	Real Datasets
	Datasets from Infrastructure-Based Generators

	Key Applications
	Future Directions
	Data Sets
	URL to code
	Cross-references
	Recommended Reading

	Real-Time Transaction Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Transaction Model
	Concurrency Control
	Distributed Real-Time Transaction Processing
	Real-Time Two-Phase Commit

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Real-World Time
	Reasoning with Qualitative Temporal Constraints
	Recall
	Definition
	Key Points
	Cross-references

	Receiver Operating Characteristic
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Recodings
	Reconciliation-based Data Replication
	Record Extraction
	Record Linkage
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Record Matching
	Synonyms
	Definition
	Historical Background
	Foundations
	String Similarity
	Record Matching
	Performance

	Key Applications
	Cross-references
	Recommended Reading

	Records Management
	Recovery Guarantees
	Recovery in Distributed Commit Protocols
	Recovery in Distributed Database Systems
	Recovery in Replicated Database Systems
	Recovery Manager
	Recursive Query Evaluation
	Recursive View Maintenance
	Redo
	Redundant Arrays of Independent Disks
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Reference
	Reference Collections
	Reference Knowledge
	Definition
	Key Points
	Recommended Reading

	Reference Reconciliation
	Refinement
	Region Algebra
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Region Segmentation
	Registration Time
	Regulatory Compliance in Data Management
	Definition
	Historical Background
	Foundations
	Overview
	Regulatory Compliant Commercial Systems
	Tape-based WORM
	Optical-Disk WORM
	Hard Disk-based WORM
	Security Properties

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Re-identification
	Re-Identification Risk
	Relational Algebra
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Relational Algebra for XML
	Relational Calculus
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Relational Database
	Relational Integrity Constraints
	Relational Model
	Synonyms
	Definition
	Historical Background
	Foundations
	Intuitive View
	Conceptual View
	Implementation View
	Formal View

	Key Applications
	Cross-references
	Recommended Reading

	Relational Query Processor
	Relation-Completeness
	Relations with Marked Nulls
	Relationship of Reliance
	Relationships in Structured Text Retrieval
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Relative Operating Characteristic
	Relative Time
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Relevance
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Relevance Evaluation of IR Systems
	Relevance Feedback
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Relevance Feedback for Content-Based Information Retrieval
	Definition
	Historical Background
	Foundations
	General Assumptions
	Re-Weighting Approaches
	Query Point Movement Approaches
	Machine Learning Approaches

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Relevance Feedback for Text Retrieval
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Relevance Propagation
	Remote Method Invocation
	Removing Overlap
	Rendezvous
	Replica and Concurrency Control
	Replica Consistency
	Replica Control
	Synonyms
	Definition
	Historical Background
	Foundations
	Architecture
	Replica Control Phases
	Mapping Approaches
	Correctness Criteria
	Concurrency Control
	Processing Update Transactions
	Timepoint of Synchronization
	Who Executes Transactions
	Degree of Replication
	Coordination Steps
	Restrictions
	Other Aspects

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Replica Freshness
	Synonyms
	Definition
	Historical Background
	Foundations
	Value-Based Divergence
	Delay-Based Staleness
	Measures of Missed Updates
	Inter-Object Consistency Drift
	Transaction Semantics
	Mixed Measures

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Replicated Database Concurrency Control
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Replication
	Synonyms
	Definition
	Key Points
	Cross-references

	Replication Based on Group Communication
	Definition
	Historical Background
	Foundations
	Group Communication Primitives
	A Functional Model for Database Replication
	Deferred Update Database Replication Protocols

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Replication for High Availability
	Synonyms
	Definition
	Historical Background
	Foundations
	Basic Fault-Tolerance Architecture
	Execution While No Failures Occur
	Failover
	Replica Recovery

	Combining Scalability and Fault-Tolerance
	Network Partitions
	Quorums
	1-Safe (Lazy) Replication in WANs

	Other Failure Types

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Replication for Scalability
	Synonyms
	Definition
	Historical Background
	Foundations
	Attaining Atomicity and Isolation
	Transaction Mapping
	Consistency Criterion

	Key Applications
	Cross-references
	Recommended Reading

	Replication in Multi-Tier Architectures
	Synonyms
	Definition
	Historical Background
	Foundations
	Cross-references
	Recommended Reading

	Report Writing
	Representation
	Reputation
	Reputation and Trust
	Synonyms
	Definition
	Key Points
	Cross-references

	Request Broker
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	URL to Code
	Cross-references
	Recommended Reading

	Residuated Lattice
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Resource Allocation Problems in Spatial Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Max-Inf Optimal-Location Query
	Min-Dist Optimal-Location Query
	Disk-Based k-Medoid Query

	Key Applications
	Location-Based Services
	Spatial Decision Making

	Future Directions
	Cross-references
	Recommended Reading

	Resource Description Framework
	Synonyms
	Definition
	Historical Background
	Foundations
	Resource Description Framework

	Key Applications
	Cross-references
	Recommended Reading

	Resource Description Framework (RDF) Schema (RDFS)
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Resource Identifier
	Synonyms
	Definition
	Key Points
	Uniqueness
	Persistence
	Other Properties

	Cross-references
	Recommended Reading

	Resource Scheduling
	Restart Processing
	Restricted Data
	Result Display
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Result Overview
	Result Ranking
	Retrieval Models
	Retrieval Models for Text Databases
	Retrospective Event Processing
	Definition
	Historical Background
	Foundations
	Key Applications
	Use Cases for Situation Reinforcement
	Anti-Money Laundering
	The Greedy Seller Alert
	Monitored Patient Alert

	Use Cases for Retrospective Contexts
	Smart Retail
	Luggage Handling
	Utilities Billing System

	Use Cases for Patterns as Queries
	Stock Trends
	Fraud Detection in On-Line Gaming
	Inventory Management

	Cross-references
	Recommended Reading

	Reverse Nearest Neighbor Query
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Profile-Based Marketing
	Decision Support Systems
	Peer-to-Peer Systems

	Future Directions
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Reverse Nearest Neighbor Search
	RF
	Rich Media
	Right-Time Data Warehousing
	Risk-Utility Tradeoff
	Rewriting Queries using Views
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	RMI
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	RNN Query
	Road Network Databases
	Road Networks
	Synonyms
	Definition
	Historical Background
	Foundations
	Formal Definition of the Problem
	Definition 1:
	Definition 2:
	Definition 3:

	A Voronoi-Based Solution for Road-Networks

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Road Vector Data
	Robot
	ROC
	Rocchio's Formula
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Role Based Access Control
	Synonyms
	Definition
	Historical Background
	Foundations
	RBAC0 Base Model
	RBAC1: RBAC with Role Hierarchy
	RBAC2: RBAC with Constraints
	RBAC3: The Consolidated Model
	Benefits of the RBAC Approach
	RBAC Standards
	Administration Models for RBAC
	RBAC Extensions

	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Role Based Security
	Rollback
	Rollback Operator
	Rotation
	Rotation Estimation
	Rough Computing
	Rough Set Theory (RST)
	Rough Set Theory, Granular Computing on Partition
	Rounding
	Row-Level Locking
	Row-Versioning
	R-Precision
	Definition
	Key Points
	Cross-references

	RSJ Model
	Rtree
	R-Tree (and Family)
	Definition
	Historical Background
	Foundations
	Key Applications
	Geographic Information Systems
	Location-Based Services
	Multimedia Database Systems

	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Rule Bases
	Rule-based Classification
	Definition
	Historical Background
	Foundations
	1. Using IF-THEN Rules for Classification
	(i) Top Rule Approach
	(ii) Aggregation Approach

	2. Rule Ranking Measures
	3. Rule Induction

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	S
	S@n
	Safety and Domain Independence
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Sagas
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Samba
	Sampling
	Sampling Techniques for Statistical Databases
	Definition
	Key Points
	Cross-references
	Recommended Reading

	SAN
	SAN File System
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	SARBAC
	SAS
	SATA
	SBQL
	SCA
	Scalable Classification Tree Construction
	Scalable Database Replication
	Scalable Decision Support Systems High Performance Data Warehousing
	Scalable Decision Tree Construction
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Scalable Replication
	Scalable Top-Down Decision Tree Construction
	Scale Out
	Scale-Out Databases
	Scale-Up Databases
	Scaling
	Scanning
	Scene Change Detection
	Scheduler
	Synonyms
	Definition
	Key Points
	Cross-references

	Scheduling
	Scheduling Policies
	Scheduling Strategies for Data Stream Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	System Model
	Multiple CQ Scheduling
	Metrics and Strategies

	Key Applications
	Cross-references
	Recommended Reading

	Schema Evolution
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Schema Evolution in Process Management Systems
	Schema Evolution in Workflow Management Systems
	Schema Mapping
	Synonyms
	Definition
	Historical Background
	Foundations
	Semantics of Schema Mappings

	Types of Schema Mappings
	Sound, Complete, and Exact Mappings
	Global-as-View and Local-as-View
	Schema Mappings in Peer Data Sharing

	Key Applications
	Cross-references
	Recommended Reading

	Schema Mapping Composition
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Schema Matching
	Synonyms
	Definition
	Historical Background
	Foundations
	State of the Art

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Schema Normalization
	Schema Tuning
	Definition
	Historical Background
	Foundations
	Redundant Tables

	Key Applications
	Experimental Results
	Denormalization
	Materialized Views

	URL to Code and Data Sets
	Cross-references
	Recommended Reading

	Schema Versioning
	Definition
	Historical Background
	Foundations
	Types of Schema Evolution
	Practical and Theoretical Limits of Schema Versioning
	Completed Schemas
	Query Language Support
	Instance Amendment

	Future Directions
	Cross-references
	Recommended Reading

	Scientific Databases
	Definition
	Historical Background
	Foundations
	Measurement Framework
	Metadata Framework
	Summarization Framework
	Heterogeneity of Types
	Complexity and Heterogeneity of Formats
	Data Management Issues in Scientific Databases
	Traditional Issues
	Recent Trends

	Cross-references
	Recommended Reading

	Scientific Knowledge Bases
	Scientific Medicine
	Scientific Query Languages
	Scientific Visualization
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Scientific Workflows
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Score Propagation
	Screen Scraper
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Screen Scraping
	Screen Wrapper
	SCSI Target
	Definition
	Key Points
	Cross-references

	SDI, Selective Dissemination of Information
	Search Advertising
	Search Engine Caching and Prefetching
	SDC Score
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Search Engine Metrics
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Search Engine Query Result Caching
	Search Ranking
	Searching Compressed XML
	Searching Digital Libraries
	Synonyms
	Definition
	Historical Background
	Foundations
	The Pre-Web Period
	The Early-Web Period
	The Web-Services Period

	Key Applications
	Cross-references
	Recommended Reading

	Second Normal Form (2NF)
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Secondary Index
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Secret-Key Encryption
	Secure Data Outsourcing
	Synonyms
	Definition
	Historical Background
	Foundations
	Security Requirements in Secure Data Outsourcing
	Techniques for Secure Data Outsourcing

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Secure Database Design
	Secure Database Development
	Synonyms
	Definition
	Historical Background
	Foundations
	General Secure Database Systems
	Secure Database Development using Patterns
	Secure Database Development using UMLsec
	Applications Including Secure Databases
	Designing Secure Databases using OCL
	Other Approaches to Secure Software Development with Applicability to Databases
	System Architecture for Security

	Key Applications
	Cross-references
	Recommended Reading

	Secure Database Systems
	Secure Datawarehouses
	Secure DBMS Development
	Secure Hardware
	Secure Multiparty Computation Methods
	Definition
	Historical Background
	Foundations
	Secure Sum
	Secure Comparison / Yao's Millionaire Problem
	Dot Product Protocol
	Oblivious Evaluation of Polynomials
	Privately Computing ln x
	Secure Intersection
	Secure Set Union

	Key Applications
	Classification
	Association Rule Mining
	Clustering
	Outlier Detection

	Future Directions
	Cross-references
	Recommended Reading

	Secure Third-Party Data Management
	Secure Transaction Processing
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Security Services
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Segmentation
	Selection
	Definition
	Key Points
	Cross-references

	Selective XML Dissemination
	Selectivity Estimation
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Selectivity for Predictive Spatio-Temporal Queries
	Self-Maintenance of Views
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Self-Management Technology in Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	General Framework
	Self-Management Paradigms
	Infrastructure

	Future Directions
	Cross-references
	Recommended Reading

	Self-Managing Database Systems
	Self-Tuning Database Systems
	Semantic Analysis of Video
	Semantic Data Integration for Life Science Entities
	Synonyms
	Definition
	Historical Background
	Foundations
	Identity Versus Similarity
	Naming Standards
	Evolution of Names

	Key Applications
	Semantic Integration of Entities
	Entity Identification in Text

	URL to Code
	Cross-references
	Recommended Reading

	Semantic Data Model
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Semantic Image Retrieval
	Semantic Inference in Audio
	Semantic Mapping Composition
	Semantic Matching
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Semantic Modeling and Knowledge Representation for Multimedia Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Semantic Modeling
	Knowledge Representation

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Semantic Modeling for Geographic Information Systems
	Synonyms
	Definition
	Historical Background
	Foundations
	Requirements for Semantic Modeling of Spatial Data
	Survey of Current Semantic Modeling Approaches

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Semantic Overlay Networks
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Semantic Overlays
	Semantic Web
	Definition
	Historical Background
	Foundations
	RDF Basic Features
	RDF Schema Basic Features

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Semantic Web Query Languages
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Semantic Web Services
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Semantic-based Retrieval
	Semantic Atomicity
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Semantics-based Concurrency Control
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Semijoin
	Synonyms
	Definition
	Historical Background
	Foundations
	Relational Definition
	Semijoin Filtering
	Bit Vector Filtering

	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Semijoin Filter
	Semi-Structured Data
	Semi-Structured Query Languages
	Semijoin Program
	Synonyms
	Definition
	Historical Background
	Foundations
	Cyclic and Acyclic Query Hyper-Graphs
	Reducer and Full Reducer
	Semijoins, Distributed Query Optimization and Semijoin.Programs

	Key Applications
	Cross-references
	Recommended Reading

	Semijoin Reducer
	Semi-Streaming Model
	Semi-Structured Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Application
	Cross-references
	Recommended Reading

	Semi-Structured Data Model
	Synonyms
	Definition
	Definition 0.1

	Historical Background
	Foundations
	Definition 0.2
	Definition 0.3

	Key Applications
	Cross-references
	Recommended Reading

	Semi-Structured Database
	Semi-Structured Database Design
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Semi-Structured Query Languages
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Semi-Structured Text Retrieval
	Semi-Supervised Classification
	Semi-Supervised Clustering
	Semi-Supervised Learning
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Sense and Respond Systems
	Sensitivity
	Sensor Network Systems
	Sensor Networks
	Synonyms
	Definition
	Historical Background
	Foundations
	Data-Centric Techniques in Sensor Networks

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Sensornet
	Sentiment Analysis
	SEQUEL
	Sequence Data Mining
	Sequenced Semantics
	Definition
	Key Points
	S-Reducibility
	Extended S-Reducibility
	Interval Preservation

	Cross-references
	Recommended Reading

	Sequential Patterns
	Synonyms
	Definition
	Historical Background
	Foundations
	Sequence Data Format
	Search Strategy
	Search Space Pruning
	Pattern Closure Checking Scheme

	Key Applications
	Frequent Subsequence-based Classifier
	Operating System and Software Engineering
	Frequent Subsequence-based XML Data Management
	Web Log Data Mining

	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Serializability
	Synonyms
	Definition
	Historical Background
	Foundations
	Serializability Characterization
	Another Serializability Characterization
	Serializability under Constraints
	Different Notions of Serializability
	Relative Atomicity

	Key Application
	Cross-references
	Recommended Reading

	Service Bus
	Service Buses
	Service Choreography
	Service Component Architecture (SCA)
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Service Composition
	Service Item
	Service Orchestration
	Service Order
	Service Oriented Architecture
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Service Request
	Session
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Set Abstraction
	Set-Difference
	Shape Descriptors
	Shared-Disk File System
	Shared-Disk Architecture
	Definition
	Key Points
	Cross-references

	Shared-Disk Databases
	Shared-Everything
	Shared-Everything Databases
	Shared Health Record
	Shared-Memory Architecture
	Synonyms
	Definition
	Key Points
	Cross-references

	Shared-Nothing Architecture
	Synonyms
	Definition
	Key Points
	Cross-references

	Shared-Nothing Databases
	Shot Boundary Detection
	Shot Segmentation
	Shotcut Detection
	SI
	Side-Effect-Free View Updates
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Sight
	Signal Transduction Networks
	Signature Files
	Definition
	Historical Background
	Foundations
	Bit-Slice Signature File
	Signature Trees

	Key Applications
	Cross-references
	Recommended Reading

	Signatures
	Similarity and Ranking Operations
	Synonyms
	Definition
	Historical Background
	Foundations
	Associative Similarity
	Probabilistic Retrieval
	Related Areas

	Key Applications
	Cross-references
	Recommended Reading

	Similarity in Video
	Similarity Measure
	Similarity-based Data Partitioning
	Simplicial Complex
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Simulated Data
	Single Instancing
	Single Instruction Multiple Data (SIMD) Parallelism
	Singular Value Decomposition
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Sketch
	SMI-S
	Snapshot
	Snapshot Data
	Snapshot Equivalence
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Snapshot Isolation
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	SNIA
	Snippet
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Snowflake Join Schema
	Snowflake Schema
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	SOA
	SOA Replication
	SOAP
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Social Applications
	Synonyms
	Definition
	Key Points
	Cross-references

	Social Networks
	Definition
	Historical Background
	Foundations
	Types
	Notation
	Measures
	Socio-centric Properties
	Ego-centric Properties
	Subgroups

	Topological Properties
	Small-World Topology

	Creation of Networks

	Key Applications
	Distributed Information Management
	Information Extraction
	Social Recommendations

	Future Directions
	Data Sets
	URL to Code
	Tools and Libraries

	Cross-references
	Recommended Reading

	Software Transactional Memory
	Definition
	Key Points
	Cross-references
	Recommended Reading

	SONs
	Sort-Merge Join
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Source
	Space-Filling Curves
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Space Partitioning
	Space Segmentation
	Space-Filling Curve
	Space-Filling Curves for Query Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Mapping Scheme
	The Peano SFC
	The Gray SFC
	The Hilbert SFC
	Segment Types
	Irregularity

	Key Applications
	Pre-processing for Multi-dimensional Applications: Multimedia Databases, GIS,and Multi-dimensional Indexing
	Network-Attached Storage Devices NASDs
	Multimedia Disk Scheduling

	Future Directions
	Cross-references
	Recommended Reading

	Space-Span (in Part)
	Spamdexing
	Span
	Sparse Index
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Spatial Access Methods
	Spatial Analysis
	Spatial and Spatio-Temporal Data Models and Languages
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Spatial Anonymity
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Spatial Autocorrelation
	Spatial Data
	Spatial Data Analysis
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Spatial Data Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Spatial Data Types
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Spatial Graph Databases
	Spatial Indexing Techniques
	Synonyms
	Definition
	Historical Background
	Foundations
	Indices for Multi-Dimensional Points
	Indices for Multi-Dimensional Regions

	Key Applications
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Spatial Information System
	Spatial Join
	Definition
	Historical Background
	Foundations
	Early Spatial Join Algorithms
	The R-Tree Join

	Algorithms That Do Not Consider Indexes
	Spatial Hash Join
	Partition Based Spatial Merge Join
	Size Separation Spatial Join
	Scalable Sweeping-Based Spatial Join

	Single-Index Join Methods
	Indexed Nested Loops Join
	Seeded Tree Join
	Build and Match
	Sort and Match
	Slot Index Spatial Join

	Comparison of Spatial Join Algorithms

	Key Applications
	Spatial Database Systems
	Geographic Information Systems
	Data Mining

	Cross-references
	Recommended Reading

	Spatial k-Anonymity
	Spatial Network Databases
	Synonyms
	Definition
	Foundations
	Data Model of Spatial Networks

	Key Applications
	Location-Based Services
	Emergency Planning

	Future Directions
	Cross-references
	Recommended Reading

	Spatial Operations and Map Operations
	Synonyms
	Definition
	Historical Background
	Foundations
	Spatial Operations
	Map Operations
	Other Operations

	Key Applications
	Cross-references
	Recommended Reading

	Spatial Outliers
	Spatial Referencing
	Spatial Statistics
	Spatio-Temporal Approximation
	Spatio-Temporal Benchmarking
	Spatio-Temporal Data Generator
	Spatio-Temporal Data Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Clustering
	Classification and Prediction
	Pattern Extraction

	Key Applications
	Traffic Analysis
	Studying the Movement Behavior of Animals
	Video Analysis

	Cross-references
	Recommended Reading

	Spatio-Temporal Data Reduction
	Spatio-Temporal Data Types
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommeded Reading

	Spatio-Temporal Data Warehouses
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Traffic Control
	Mobile Computing
	Sensor Systems

	Future Directions
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Spatio-Temporal Databases
	Spatiotemporal Estimation
	Spatio-Temporal Graphs
	Spatiotemporal Interpolation Algorithms
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Spatio-Temporal OLAP
	Spatio-Temporal Online Analytical Processing
	Spatio-Temporal Representation
	Spatio-Temporal Selectivity Estimation
	Synonyms
	Definition
	Historical Background
	Foundations
	Selectivity Estimation for STWQ
	Selectivity Estimation for STDJQ

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Spatio-Temporal Stream Processing
	Spatio-Temporal Trajectories
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	Url to Code
	Cross-references
	Recommended Reading

	SPC Query
	SPCU-Algebra
	Specialization
	Specialization and Generalization
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Specificity
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Spectral Clustering
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Spider
	Spidering
	SPJRU-Algebra
	Split
	Synonyms
	Definition
	Key Points
	Cross-references

	Split Transactions
	Definition
	Key Points
	Cross-references
	Recommended Reading

	SQL
	Synonyms
	Definition
	Historical Background
	Early Language Development
	Standards

	Foundations
	Queries
	Data Manipulation
	Database Administration
	Advanced Features
	Criticisms

	Key Applications
	Cross-references
	Recommended Reading

	SQL Isolation Levels
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	SQL-Based Temporal Query Languages
	Definition
	Historical Background
	Foundations
	Approach I: Abstract Data Types - SQL/.ATD
	Approach II: Folding and Unfolding - IXSQL
	Approach III: Point Timestamps - SQL/TP
	Approach IV: Syntactic Defaults - TSQL2
	Approach V: Statement Modifiers - ATSQL
	Approach VI: Temporal Expressions - TempSQL

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	SRM
	Stability-based Validation of Clustering
	Stable Distribution
	Synonyms
	Definition
	Historical Background
	Foundations
	Stable Random Projections
	Statistical Estimations
	Sample Complexity
	Sampling from Stable Distributions

	Key Applications
	Stable Random Projections for Dimension Reductions
	Stable Random Projections for Data Stream Computations

	Cross-references
	Recommended Reading

	Stack-based Query Language
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Staged Database Systems
	Staged DBMS
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Standard Effectiveness Measures
	Synonyms
	Definition
	Historical Background
	Foundations
	Experimental Setup
	Recall and Precision
	F-Measure
	Precision-Recall Curve
	Average Precision
	ROC Curve

	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Standing Query
	Star Index
	Synonyms
	Definition
	Key Points
	Cross-references

	Star Join Schema
	Star Schema
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Star Schema Modeling
	State Query
	State-based Publish/Subscribe
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Statistical Correctness
	Statistical Data Management
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Statistical Database
	Statistical Decision Techniques
	Statistical Disclosure Control (SDC)
	Statistical Disclosure Limitation (SDL)
	Statistical Disclosure Limitation For Data Access
	Synonyms
	Definition
	Historical Background
	Foundations
	Privacy, Confidentiality, and Individual Identification
	The Intruder
	Statistical Analysis Methods for Protecting Privacy
	Putting SDL Methods to Use: Risk-Utility Tradeoff
	Summary

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Steganography
	Synonyms
	Definition
	Key Points
	Steganography versus Watermarking
	Fingerprinting

	Recommended Reading

	Stemming
	Synonyms
	Definition
	Historical Background
	Foundations
	Definitions
	Stemming Algorithms
	Prefixes and Infixes
	Performance and Evaluation
	Non-English Stemmers

	Key Applications
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Step
	Stewardship
	Stop-&-go Operator
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Stoplists
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Stopwords
	Storage Access Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Storage Area Network
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Storage Array
	Storage Broker
	Storage Consolidation
	Definition
	Key Points
	Cross-references

	Storage Controllers
	Storage Devices
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Storage Grid
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Storage Layer
	Storage Management
	Definition
	Historical Background
	Foundations
	General Classification of Storage Management Functions
	Elemental Technologies of Storage Management

	Key Applications
	Future Directions
	Integration of Management Software Including Storage Management
	Visualization and Optimization from a Business Viewpoint
	Establishing Framework for Management Applications

	URL to CODE
	Cross-references
	Recommended Reading

	Storage Management Initiative-Specification
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Storage Manager
	Synonyms
	Definition
	Historical Background
	Foundations
	Storage Layer Concepts
	Storage Layer Services
	Storage Layer Requirements
	Storage Layer Components
	On-Disk Data Structures
	In-Memory Data Structures
	Query and Update Processing
	Concurrency Control
	Logging and Recovery
	Utilities

	Key Applications
	Future Directions
	Queuing
	XML Support
	Transactional Memory
	Self-Tuning, Self-Repair, Total Cost of Ownership

	Cross-references
	Recommended Reading

	Storage Network Architectures
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Storage Networking Industry Association
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Storage of Large Scale Multidimensional Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Efficient Storage of Large Multidimensional Data
	Data Export to Tertiary Storage Media
	Data Retrieval
	Techniques for Reducing Tertiary Storage Access Time
	Super-Tile Concept
	Clustering
	Caching

	Conclusion

	Key Applications
	Cross-references
	Recommended Reading

	Storage Power Management
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Storage Protection
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Storage Protocols
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Storage Resource Management
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Storage Security
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Storage Servers
	Storage Systems
	Storage Virtualization
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Stored Procedure
	Definition
	Key Points
	Cross-references

	S-Transactions
	Stream Data Analysis
	Stream Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Stream Models
	Definition
	Historical Background
	Foundations
	Basic Model Definitions
	Examples and Extensions of Basic Models

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Stream Processing
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Stream Query Processing
	Stream Sampling
	Definition
	Historical Background
	Foundations
	Reservoir Sampling
	Sample and Count
	Distinct Sampling
	Time-Decayed Sampling
	Handling Deletions

	Key Applications
	Cross-references
	Recommended Reading

	Stream Similarity Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Estimating the L2 Distance
	Estimating the Lp Distance: p-Stable Distributions
	Approximating Jaccard Similarity: Min-Wise Hashing
	Sliding Windows
	Lower Bounds for Stream Distance

	Key Applications
	Tracking Change in Network Traffic
	Query Optimization
	Processing Genetic Data
	Data Mining

	Cross-references
	Recommended Reading

	Streaming Algorithm
	Streaming Applications
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Streaming Database Systems
	Stream-Oriented Applications
	Stream-Oriented Query Languages and Operators
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Strong Consistency Models for Replicated Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Strong Coupling
	Strong Memory Consistency
	Structural Index
	StructuraSummary
	Structure Indexing
	Synonyms
	Definition
	Historical Background
	Foundations
	Semi-structured Data Example
	Axis Graph Definition
	StructuraSummary Definition
	Sample Structural Summaries

	AxPRSummary Definition
	Sample AxPRE Summaries
	Summary Lattice

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Structure of Truth Values
	Structure Weight
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Structured Data in Peer-to-Peer Systems
	Synonyms
	Definition
	Historical Background
	Foundations
	Unstructured P2P Systems
	Structured P2P Systems

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Structured Document Retrieval
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Structured Query Language
	Structured Text Retrieval
	Structured Text Retrieval Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Explicit vs. Implicit Structure
	Static vs. Dynamic Structure
	Single Hierarchy vs. Multiple Hierarchies
	Exact Matching vs. Ranking

	Key Applications
	Cross-references
	Recommended Reading

	Structured Text Retrieval Tasks
	Subject Spaces
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Subject-based Publish/Subscribe
	Subspace Clustering Techniques
	Synonyms
	Definition
	Historical Background
	Foundations
	Different Challenges: The "Curse of Dimensionality"
	Different Solutions: Categories of Subspace Clustering Techniques
	Axis-Parallel Subspaces
	Pattern-Based Clustering
	Correlation Clustering

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Subspace Selection
	Subsumed by Windows Communication Framework
	Success at n
	Synonyms
	Definition
	Key Points
	Cross-references

	Succinct Constraints
	Definition
	Key Points
	Cross-references
	Recommeded Reading

	Suffix Stripping
	Suffix Tree
	Synonyms
	Definition
	Historical Background
	Foundations
	Suffix Trees
	Indexes

	Key Applications
	Cross-references
	Recommended Reading

	Suffixing
	Summarizability
	Synonyms
	Definition
	Historical Background
	Foundations
	Notation
	The "Disjointness" Condition
	The "Completeness" Condition
	The "Measure Type" Condition
	Summary

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Summarization
	Synonyms
	Definition
	Historical Background
	Foundations
	Summarization Factors
	Processing Model
	Overview of Selected Techniques
	Additional Readings

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Summarization Correctness
	Summary
	Supervised Learning
	Support Vector Machine
	Synonyms
	Definition
	Historical Background
	Foundations
	Motivation
	Formalization

	Key Applications
	Cross-references
	Recommended Reading

	Supporting Transaction Time Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Implementation Approaches
	Layered Approach
	Built-In Approach

	Managing Versions
	Timestamps
	Storing Versions on a Page
	Indexing Versions
	Compressing Versions

	Dealing with Timestamps
	Nature of Timestamps
	When to Timestamp
	Lazy Timestamping
	Impact of User Requested Time

	Additional Uses
	Snapshot Isolation
	Online Backup
	Bad User Transactions

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Surfing
	SVD Transformation
	SVM
	Switch
	Symbol Graph
	Symbol Plot
	Symbolic Graphic
	Symbolic Representation
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommeded Reading

	Symmetric Encryption
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Synchronization Component
	Synchronization Join
	Synchronizing Distributed Transactions
	Synchronous Join
	Synchronous Pipelines
	Synopsis
	Synopsis Structure
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommeded Reading

	Synthetic Data
	Synthetic Image
	Synthetic Microdata
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommeded Reading

	System Catalog
	System R (R*) Optimizer
	Definition
	Historical Background
	Foundations
	SQL Query Processing
	Relational Storage System
	Access Path Selection for Single Relations
	Access Path Selection for Joins
	R* Optimizer

	Key Applications
	Cross-references
	Recommended Reading

	System Recovery

	T
	Table
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Table Design
	Table Normalization
	Tabular Data
	Synonyms
	Definition
	Key Points
	Cross-references

	Tamper-Proof Hardware
	Tape Libraries
	Tapes
	Task
	Taxonomies
	Taxonomy: Biomedical Health Informatics
	Synonyms
	Definition
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Telic Distinction in Temporal Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Data Semantics
	Example

	Key Applications
	Cross-references
	Recommended Reading

	Telos
	Definition
	Historical Background
	Foundations
	Propositions
	Organizing Propositions
	Interacting with Telos Knowledge Bases
	Metaclasses
	Integrity Constraints and Deductive Rules
	Language Extensibility Through Metaclasses and Integrity Constraints
	Query Languages for Telos
	Temporal Knowledge in Telos
	Telos and RDF

	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Temporal Access Control
	Synonyms
	Definition
	Historical Background
	Foundations
	TAM: Temporal Authorization Model
	TDAM: Temporal and Derived data Authorization Model
	TRBAC: Temporal Role Based Access Control Model
	GTRBAC: Generalized Temporal Role Based Access Control Model

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Aggregation
	Definition
	Historical Background
	Foundations
	Defining Temporal Aggregation
	Temporal Aggregation Processing Techniques
	Two Scans
	Aggregation Tree
	Balanced Tree
	SB-Tree
	MVSB-Tree
	MDTA

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Algebras
	Synonyms
	Definition
	Historical Background
	Foundations
	Temporal Algebra Basics
	Algebras for Tuple Timestamping
	Algebras for Attribute Timestamping
	Valid-time and Transaction-time Algebras
	Bitemporal Relational Algebras

	Key Applications
	Cross-references
	Recommended Reading

	Temporal Assignment
	Temporal Association Mining
	Temporal Coalescing
	Definition
	Historical Background
	Foundations
	Implementing Temporal Coalescing

	Key Applications
	Cross-references
	Recommended Reading

	Temporal Compatibility
	Definition
	Historical Background
	Foundations
	Motivation
	Upward Compatibility
	Temporal Upward Compatibility
	Snapshot Reducibility
	Sequenced Semantics

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Conceptual Models
	Definition
	Historical Background
	Foundations
	Motivating Example
	Syntactics
	Semantics
	Pragmatics
	Internal Representation
	Snapshot Reducibility
	Upward Compatibility

	Summary

	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Temporal Constraints
	Definition
	Historical Background
	Foundations
	Conjunctions of Constraints
	Labeled Directed Graphs
	Difference Bound Matrices

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Data Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Classification and Clustering
	Prediction
	Association Analysis and Extraction of Sequence Patterns
	Temporal, Cyclic, and Calendric Association Rules

	Key Applications
	Weather Forecasting
	Market Basket Analysis
	Stock Market Prediction
	Web Data Mining

	Cross-references
	Recommended Reading

	Temporal Data Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Levels of Abstraction
	Temporal Aspects of Data
	Representation of Time
	Data Model Objects
	Query Languages

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Data Warehousing
	Temporal Database
	Synonyms
	Definition
	Historical Background
	Foundations
	General Concepts

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Dependencies
	Definition
	Historical Background
	Foundations
	Functional Dependencies Over Temporal Databases
	Definition

	Vianu's Dynamic Functional Dependency [7]
	Definition

	Temporal Extensions of Functional Dependency Proposed by Wijsen [9, 10, 11, 12]
	Definition
	Definition

	Wang et al.'s Temporal Functional Dependency [8]
	Definition
	Definition
	Definition

	Constraint-Generating Dependencies [1]
	Dynamic Algebraic Dependencies [2]
	Definition

	Key Applications
	Cross-references
	Recommended Reading

	Temporal Domain
	Temporal Element
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Temporal Evolution
	Temporal Expression
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Temporal Generalization
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Temporal Granularity
	Synonyms
	Definition
	Historical Background
	Foundations
	Definitions
	Granularity Relationships
	Defining New Granularities through Algebraic Operators

	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Temporal Homogeneity
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Temporal Indeterminacy
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Temporal Information Retrieval
	Temporal Integrity Constraints
	Synonyms
	Definition
	Historical Background
	Foundations
	1. Defining Temporal Integrity
	1.1 Temporal, Transition, and Static Constraints
	1.2 Different Notions of Consistency
	1.3 Expressiveness of Temporal Constraints
	1.4 Constraints on Interval-stamped Temporal Data

	2. Checking and Enforcing Temporal Integrity

	Key Applications
	Cross-references
	Recommended Reading

	Temporal Joins
	Definition
	Historical Background
	Foundations
	Cartesian Product
	Theta-Join
	Equijoin
	Natural Join
	Outerjoins and Outer Cartesian Products
	Reducibility
	Theorem 1
	Evaluation Algorithms

	Key Applications
	Cross-references
	Recommended Reading

	Temporal Layer
	Temporal Logic
	Temporal Logic in Database Query Languages
	Definition
	Historical Background
	Foundations
	Extensions
	Expressive Power

	Key Applications
	Cross-references
	Recommended Reading

	Temporal Logical Models
	Synonyms
	Definition
	Historical Background
	Foundations
	The Treatment of Time in Database Systems
	Temporal Data Behavior
	Behavioral Properties of Temporal Sequences
	Operation over Temporal Data
	Predicate Operators Over Time Sequences
	Aggregation Operators Over Time Windows
	Aggregation Operators Over Time Sequence Collections
	Composition of Time Sequences
	Combinations of the Above Operators
	Additional Concepts

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Middleware
	Temporal Object-Oriented Databases
	Definition
	Historical Background
	Foundations
	Time and Abstract Data Types
	Temporal Object Data Models
	General OO Models Using OO Concepts for Modeling Temporal Dimensions
	OO Models Having Explicit Constructs for Temporal Dimensions of Data

	Temporal Object Query Languages
	Temporal Object-Oriented Database Systems

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Periodicity
	Definition
	Historical Background
	Foundations
	Deductive Rule-Based Approaches
	Constraint-Based Approaches
	Symbolic Approaches

	Key Applications
	Cross-references
	Recommended Reading

	Temporal Projection
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Temporal Query Languages
	Synonyms
	Definition
	Historical Background
	Foundations
	Language Extension Approaches
	Abstract Data Types for Time
	Use of Point Timestamps
	Syntactic Defaults
	Semantic Defaults

	Additional Characterizations of Temporal Query Languages

	Future Directions
	Cross-references
	Recommended Reading

	Temporal Query Processing
	Definition
	Historical Background
	Foundations
	Functionalities
	The Layered Architecture
	The Monolithic Architecture
	The Extensible Architecture

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Relation
	Temporal Relational Calculus
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Temporal Restriction
	Temporal Semi-Structured Data
	Temporal Specialization
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Temporal Strata
	Synonyms
	Definition
	Historical Background
	Scientific Fundamentals
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Structure
	Temporal Type
	Temporal Upward Compatibility
	Temporal Vacuuming
	Synonyms
	Definition
	Historical Background
	Foundations
	Formal Vacuuming Specifications
	Space/Storage Requirements
	Approaches to Vacuuming
	Administrative Approaches to Vacuuming
	Application/Query-Driven Approaches

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporal Value
	Temporal Visual Interfaces
	Temporal Visual Languages
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Temporal Visual Queries
	Temporal XML
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Temporally Indeterminate Databases
	Temporally Uncertain Databases
	Temporally Weak
	Term Expansion
	Term Expansion Models
	Term Frequency by Inverse Document Frequency
	Term Frequency Normalization
	Term Processing
	Term Proximity
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Term Statistics for Structured Text Retrieval
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Term Weighting
	Definition
	Historical Background
	Foundations
	Term Frequency
	Inverse Document Frequency
	Document Length
	Term Weighting Schemes
	TF*IDF
	BM25
	Language Modeling

	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Term-Document Matching Function
	Terminologic Languages
	Terminological Database
	Test Collection
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Text Analytics
	Text Categorization
	Synonyms
	Definition
	Historical Background
	Foundations
	Document Representation
	Dimensionality Reduction
	Classification Algorithms
	Naïve Bayesian Classifier (NB)
	Support Vector Machine (SVM)

	Performance Measures

	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Text Classification
	Text Clustering
	Definition
	Historical Background
	Foundations
	Document Representation
	Text Clustering Algorithms
	Single-Link Clustering
	K-Means Clustering
	Co-Clustering

	Performance Measurements
	Internal Quality Measure
	External Quality Measure

	Key Applications
	Cross-references
	Recommended Reading

	Text Compression
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Text Data Mining
	Text Databases
	Text Extraction
	Text Generation
	Synonyms
	Definition
	Historical Background
	Foundations
	Text Generation System Architecture
	Input and Output
	Architectures

	Key Applications
	Cross-references
	Recommended Reading

	Text Index Compression
	Synonyms
	Definition
	Historical Background
	Foundations
	Inverted Indexes for Full-Text Retrieval
	Searching for Phrases Using Inverted Indexes
	Inverted Indexes for Relevance Ranking

	Key Applications
	Future Directions
	Experimental Results
	URL to Code
	Cross-references
	Recommended Reading

	Text Indexing and Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Text Indexing Techniques
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Text Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Text Classification
	Text Clustering
	Information Extraction
	Document Summarization
	Key Phrase Extraction
	Topic Detection and Tracking (TDT)
	Opinion Mining

	Key Applications
	Bioinformatics
	Email Spam Filtering
	Business Intelligence

	URL to Code
	Cross-references
	Recommended Reading

	Text Mining of Biological Resources
	Synonyms
	Definition
	Historical Background
	Foundations
	Resources
	Methods

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Text Representation
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Text Retrieval
	Text Segmentation
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Text Semantic Representation
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Text Streaming Model
	Definition
	Historical Background
	Foundations
	Key Applications
	Data Sets
	Recommended Reading

	Text Summarization
	Synonyms
	Definition
	Historical Background
	Foundations
	Extractive Summarization Algorithms
	Unsupervised Methods
	Supervised Methods

	Evaluation

	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Text Visualization
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Text/Document Summarization
	Text-based Image Retrieval
	TF*IDF
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	tgd
	Thematic Map
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Theme Algebra
	Thesauri Business Catalogues
	Thiessen Polygons
	Third Normal Form
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Thread Lifecycle
	Three-Dimensional GIS and Geological Applications
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Three-Dimensional Similarity Search
	Three-Phase Commit
	Definition
	Historical Background
	Foundations
	Dynamics of Three-Phase Commit
	Recovery in Three-Phase Commit
	Non-Blocking Commit Protocol Variants
	Other Atomic Commit Protocol Variants and Optimizations

	Key Applications
	Cross-references
	Recommended Reading

	Thresholding
	Tight Coupling
	Synonyms
	Definition
	Key Points
	Cross-references

	Time Aggregated Graphs
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Time and Information Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Overview and Motivation
	Time and Timelines
	Temporal Expressions
	Temporal Processing Pipeline
	Document Retrieval

	Key Applications
	Timeline-Based Exploration

	Future Directions
	Cross-references
	Recommended Reading

	Time Dependent Geometry
	Time Distance
	Time Domain
	Synonyms
	Definition
	Historical Background
	Foundations
	Basics
	Temporal Models and Query Languages
	Time Domain and Granularity
	The Association of Time with Data

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Time Granularity
	Time in Philosophical Logic
	Synonyms
	Definition
	Historical Background
	Foundations
	Dynamical and Static Time: A-Theory vs. B-Theory
	Linear vs. Branching Time
	Punctual vs. Durational Time

	Definition
	Time and Narratives

	Key Applications
	Cross-references
	Recommended Reading

	Time Instant
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Time Interval
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Time Period
	Synonyms
	Definition
	Key Points
	Cross-references

	Time Period Set
	Time Point
	Time Quantum
	Time Sequence
	Time Sequence Query
	Time Sequence Search
	Time Series
	Time Series Data Mining
	Time Series Database Querying
	Time Series Query
	Synonyms
	Definition
	Historical Background
	Foundations
	Basic Concepts
	Time Series Query
	Query Processing: Index-based Methods for Similarity Search
	Query Processing: Similarity Search over Streaming Time Series

	Key Applications
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Time Series Search
	Time Span
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Time Unit
	Time-based Access Control
	Time-based Window
	Time-Constrained Transaction Management
	Time-Dependent Graphs
	Time-Dependent Networks
	Time-Line Clock
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Time-Oriented Database
	Time-Segment Clock
	Timeslice Operator
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	TIN
	Tiny Aggregation (TAG)
	TinyDB
	TinySQL
	t-Norm
	Topic Detection and Tracking
	Definition
	Historical Background
	Foundations
	The Segmentation Task
	The Detection Task
	Retrospective Event Detection
	Online New Event Detection
	The Tracking Task

	Key Applications
	Future Directions
	Data Sets
	Recommended Reading

	Topic Hierarchies
	Topic Maps
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Topical-Hierarchical Relevance
	Topic-based Publish/Subscribe
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Topic-Directed Web Crawling
	Top-k Queries in P2P Systems
	Top-K Selection Queries on Multimedia Datasets
	Synonyms
	Definition
	Historical Background
	Foundations
	Query Model
	Top-kQuery Evaluation Algorithms
	The Threshold Algorithm
	Algorithms based on Expensive Predicates Evaluation
	Filter/Restart Method
	Using Pre-computed Views
	Handling Joins

	Key Applications
	Multimedia Search
	Information Integration

	Future Directions
	Cross-references
	Recommended Reading

	Top-k XML Query Processing
	Topological Data Models
	Synonyms
	Definition
	Historical Background
	Foundations
	DIME Files
	POLYVRT
	GIRAS
	TIGER
	ARC/INFO Coverages
	Relational
	ArcGIS Geodatabase

	Key Applications
	Cross-references
	Recommended Reading

	Topological Data Structure
	Topological Fabric
	Topological Relationships
	Definition
	Historical Background
	Foundations
	Topological Relationships for Simple Objects
	Topological Relationships for Complex Objects
	Topological Relationships for Objects with Vague Boundary

	Key Applications
	Geographic Information Systems (GISs)
	Qualitative Spatial Reasoning (QSR)
	Geospatial Semantic Web (GSW)

	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Topology
	Toponyms
	Tour
	TP
	TP Monitor
	TPQ
	Traditional Concurrency Control for Replicated Databases
	Synonyms
	Definition
	Historical Background
	Foundations
	Transactions in a Non-Replicated System
	Transaction Execution in a Replicated System
	Execution Model
	Isolation
	Atomicity

	Replica and Concurrency Control in a Replicated System
	Strict Two-Phase Locking (S2PL)
	Architectural Comparison
	Optimistic Concurrency Control

	Key Applications
	Experimental Results
	Cross-references
	Recommended Reading

	Traditional Data Replication
	Traditional Replica and Concurrency Control Strategies
	Trajectory
	Synonyms
	Definition
	Key Points
	Cross-references
	References

	Trajectory Databases
	Trajectory Indexing
	Transaction
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Transaction Chopping
	Definition
	Key Points
	Assumptions
	Basic Definitions
	Correct Choppings
	Conclusion

	Cross-references
	Recommended Reading

	Transaction Commit Time
	Transaction Execution
	Transaction Management
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Transaction Management in Distributed Database Systems
	Transaction Manager
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Transaction Model
	Transaction Models – the Read/Write Approach
	Synonyms
	Definition
	Historical Background
	Foundations
	Definition of a Transaction
	Schedules and Histories
	Schedule Correctness
	Commutativity of Operations

	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Transaction Processing
	Transaction Scheduling
	Transaction Service
	Transaction Time
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Transactional Business Processes
	Transactional Consistency in a Replicated Database
	Transactional Middleware
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Transactional Processes
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Transactional Workflows
	Transaction-Time Access Methods
	Transaction-Time Algebras
	Transaction-Time Data Model
	Transaction-Time Indexing
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Transcriptional Networks
	Transformation
	Transformation Engines
	Translation Lookaside Buffer (TLB)
	Translingual Information Retrieval
	Tree Drawing
	Tree Pattern Queries
	Tree-based Indexing
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Treemaps
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Tree-Structured Classifier
	Triangular Norms
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Triangulated Irregular Network
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Triangulated Terrains
	Trie
	Synonyms
	Definition
	Historical Background
	Foundations
	Construction
	Searching
	Sorting
	Implementation
	Compact Tries
	Patricia Trees

	Key Applications
	Cross-references
	Recommended Reading

	Triggers
	True Answer (Maybe Answer)
	Trust and Reputation in Peer-to-Peer Systems
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Trust in Blogosphere
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Trusted Database Systems
	Trusted Hardware
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	TSQL2
	Definition
	Historical Background
	Foundations
	Design Goal for TSQL2
	Language Concepts in TSQL2
	Time Ontology
	Base Line Clock
	Data Types
	Time-Lines
	Aggregates
	Valid-Time Tables
	Transaction-Time and Bitemporal Tables
	Schema Specification
	Restructuring
	Temporal Selection
	Temporal Projection
	Update
	Cursors
	Schema Versioning
	Vacuuming
	System Tables
	SQL-92 Compatibility
	Implementation

	Key Applications
	Future Directions
	Url to Code
	Cross-references
	Recommended Reading

	Tug-of-War Sketch
	Tuning Concurrency Control
	Synonyms
	Definition
	Historical Background
	Foundations
	Leveraging Application Semantics
	Living Dangerously
	General Rules of Thumb

	Key Applications
	Experimental Results
	Value of Serializability
	Counters

	URL to Code and Data Sets
	Cross-references
	Recommended Reading

	Tuning the Application Interface
	Tuple Relational Calculus
	Tuple-Generating Dependencies
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Twigs
	Two-Dimensional Shape Retrieval
	Definition
	Historical Background
	Foundations
	Key Applications
	Content Based Image Retrieval
	Visual Surveillance

	Future Directions
	Cross-references
	Recommended Reading

	Two-Phase Commit
	Definition
	Historical Background
	Foundations
	Dynamics of Two-Phase Commit
	Recovery in Two-Phase Commit
	Underlying Assumptions
	Performance Issues
	Most Common Two-Phase Commit Variants
	Compatibility of 2PC Variants

	Key Applications
	Cross-references
	Recommended Reading

	Two-Phase Commit Protocol
	Synonyms
	Definition
	Historical Background
	Foundations
	Basic Protocol
	Protocol Restart
	Hierarchical and Flattened 2PC
	Optimizations

	Key Applications
	Cross-references
	Recommended Reading

	Two-Phase Locking
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Two-Poisson model
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Two-Sorted First-Order Logic
	Type Theory
	Type-based Publish/Subscribe
	Definition
	Key Points
	Cross-references
	Recommended Reading

	U
	UML
	Uncertain Databases
	Uncertain Information
	Uncertainty in Events
	Synonyms
	Definition
	Historical Background
	Foundations
	Dimensions of Event Uncertainty
	Causes of Event Uncertainty
	Handling Uncertainty in Events
	Example of Event Uncertainty Handling Framework

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Uncertainty Management in Scientific Database Systems
	Definition
	Historical Background
	Foundations
	Uncertainties in Scientific Data
	General Purpose Systems for Managing Uncertainty
	Trio
	MystiQ
	Other Systems

	The UII System for Managing Uncertainty in Scientific Data
	Handling Uncertainty
	Uncertainty Metrics
	Probabilistic Query Evaluation

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Undo
	Unicode
	Definition
	Key Points
	Cross-references

	Unified Modeling Language
	Synonyms
	Definition
	Historical Background
	Foundations
	UML Class and Object Diagrams
	Chead6

	UML Class Diagram Features for Conceptual Schemas

	Key Applications
	Cross-references
	Recommended Reading

	Uniform Resource Identifier
	Union
	Synonyms
	Definition
	Key Points
	Cross-references

	Uniqueness Constraint
	Unnoticability
	Unobservability
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Unsupervised Learning
	Unsupervised Learning on Document Datasets
	Until Changed
	Update Propagation in Peer-to-Peer Systems
	Updates and
Transactions in Peer-to-Peer Systems
	Synonyms
	Definition
	Historical Background
	Foundations
	Single-Owner/Primary Copy
	Owner-Resolver
	Consensus
	Partial Divergence

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Updates through Views
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	URI
	Usability
	Synonyms
	Definition
	Historical Background
	Foundations
	Software Usability
	Data Usability

	Key Applications
	User Centered Design
	Context of Use
	User and Organizational Requirements
	Design Solutions
	Usability Evaluation
	When to Use Methods for Design Feedback
	When to Use Validation Methods
	Validity

	Cost Benefits
	Usability of Digital Libraries

	Cross-references
	Recommended Reading

	User Centered Design
	User Classifications
	User-Centred Design
	User-Defined Time
	Definition
	Key Points
	Cross-references
	Recommended Reading

	User-Level Parallelism
	Using Efficient Database Technology (DB) for Effective Information Retrieval (IR) of Semi-Structured Text
	Utility Computing
	UUID

	V
	Valid Time
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Validity (Satisfiability)
	Valid-Time Access Methods
	Valid-Time Algebras
	Valid-Time and Transaction-Time Relation
	Valid-Time Data Model
	Valid-Time Indexing
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Value Equivalence
	Definition
	Key Points
	Cross-references

	Variable Time Span
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	VDM
	Vector-Space Model
	Synonyms
	Definition
	Historical Background
	Foundations
	Basic Definitions
	Mathematical Development

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Vertical Fragmentation
	Vertically Partitioned Data
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Video
	Synonyms
	Definition
	Historical Background
	Foundations
	Video Representation
	Video Content Analysis
	Visual Content Analysis
	Audio Content Analysis
	Audiovisual Content Analysis

	Key Applications
	Cross-references
	Recommended Reading

	Video Abstraction
	Video Analysis
	Video Annotation
	Video Chaptering
	Video Compression
	Video Content Analysis
	Synonyms
	Definition
	Historical Background
	Foundations
	Partitioning Video
	Audio Analysis
	Speech Recognition for Video Content Analysis and Retrieval
	Speaker and Audio Type Identification

	Content Analysis from Individual Image Frames
	Metadata Extraction Unique to Video
	Motion Feature Analysis
	Camera Motion Analysis
	Video OCR (VOCR)

	Combination of Audio Analysis, Image Analysis, and Motion Analysis for Semantic Content Analysis

	Key Applications
	Cross-references
	Recommended Reading

	Video Content Description
	Video Content Modeling
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Video Content Processing
	Video Content Structure
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Video Data Modeling
	Video Format
	Video Indexing
	Video Metadata
	Synonyms
	Definition
	Historical Background
	Foundations
	Shot Description
	Sequence
	Rights Management

	Key Applications
	Cross-references
	Recommended Reading

	Video Partitioning
	Video Querying
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Video Representation
	Synonyms
	Definition
	Historical Background
	Foundations
	Basics of Video Representation
	Video Compression
	Frame Types in MPEG-1
	Intra-Frame Compression
	Inter-Frame Compression

	Audio Compression
	Streaming Videos

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Video Retrieval
	Video Scene
	Video Scene and Event Detection
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Video Search
	Video Segmentation
	Synonyms
	Definition
	Historical Background
	Foundations
	Shot-Cut Detection
	Scene Boundary Detection

	Key Applications
	Cross-references
	Recommended Reading

	Video Sequence Indexing
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Video Shot Detection
	Synonyms
	Definition
	Historical Background
	Foundations
	Cut
	Dissolve
	Wipe
	General Challenges

	Key Applications
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Video Shot-Cut Detection
	Video Skimming
	Video Structure Analysis
	Video Structuring
	Video Summarization
	Synonyms
	Definition
	Historical Background
	Foundations
	Features for Content Analysis
	Importance Measure foSummary Generation
	Domain-Specific Video Summarization

	Key Applications
	Multimedia Archives Indexing and Retrieval
	Movie Marketing
	Home Entertainment

	Future Directions
	Performance evaluation
	Comprehensive understanding and modeling of video content
	From large-scale video summarization to search and browsing

	Experimental Results
	Data Sets
	Rushes Videos by TRECVID Workshop.

	Cross-references
	References

	View Adaptation
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	View Definition
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	View Maintenance
	Synonyms
	Definition
	Historical Background
	Foundations
	View Recomputation
	Incremental View Maintenance
	Immediate View Maintenance
	Deferred View Maintenance
	Offline View Maintenance
	Online View Maintenance

	Key Applications
	Cross-references
	Recommended Reading

	View Maintenance Aspects
	Definition
	Historical Background
	Foundations
	Time Dimension
	Expressiveness of View Definition Language
	Available Information
	Supported Modifications
	Algorithm Applicability

	Key Applications
	Data Warehousing
	Data Streams
	Caching
	Mobile Applications

	Cross-references
	Recommended Reading

	View Expression
	View Update
	View-based Data Integration
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Views
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Virtual Disk Manager
	Virtual Health Record
	Virtual Partitioning
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Vision
	Visual Analysis
	Visual Analytics
	Synonyms
	Definition
	Historical Background
	Foundations
	Visual Analytics Process
	Technical and Social Challenges

	Key Applications
	Cross-references
	Recommended Reading

	Visual Association Rules
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Visual Classification
	Synonyms
	Definition
	Historical Background
	Foundations
	Propose Split
	Look-Ahead
	Expand Subtree

	Key Applications
	Cross-references
	Recommended Reading

	Visual Clustering
	Synonyms
	Definition
	Historical Background
	Foundations
	Visual Exploration of a Given Clustering Structure
	Extension of an Optimized Clustering Algorithm
	Clustering Based on Visual User Feedback and Refinement
	Visualization Used as Interactive Feature Selection for Clustering

	Key Applications
	Cross-references
	Recommended Reading

	Visual Content Analysis
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Broadcasting
	Narrow Casting
	Law Enforcement
	Web Search

	Future Directions
	Data Sets
	Experimental Results
	Cross-references
	Recommended Reading

	Visual Data Analysis
	Visual Data Exploration
	Visual Data Mining
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Visual Data Exploration and Mining
	Open Source
	Commercial

	General Visualization Engines and Development Tools
	Open Source

	Cross-references
	Recommended Reading

	Visual Discovery
	Visual Displays of Nonnumerical Data
	Visual Displays of Numerical Data
	Visual Formalisms
	Definition
	Historical Background
	Foundations
	Key Applications
	Software and Systems Structural Specification
	Reactive Systems Behavioral Specification
	Data Modeling and Querying

	Cross-references
	Recommended Reading

	Visual Interaction
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Visual Interaction Design
	Visual Interfaces
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	Visual Interfaces for Geographic Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Visual Interfaces for Cartographic Output
	Generalities
	Generalization
	Graphic Semiology
	Animation
	Chorems

	Query Input
	Final Remarks: Challenges for Small Mobile Devices

	Key Applications
	Cross-references
	Recommended Reading

	Visual Metaphor
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Visual Mining
	Visual Multidimensional Analysis
	Visual On-Line Analytical Processing (OLAP)
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Visual Perception
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Computer Graphics
	Artificial Intelligence
	Visual Interfaces
	Information Visualization

	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Visual Query Language
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Temporal Databases
	Geographical Databases
	Web Visual Access
	Visually Querying Digital Libraries

	Experimental Results
	Cross-references
	Recommended Reading

	Visual Query System
	Visual Representation
	Synonyms
	Definition
	Historical Background
	Foundations
	Data and Visual Models
	Visual Metaphors
	Datasets, Visualsets, and Visual Representation

	Key Applications
	Cross-references
	Recommended Reading

	Visual Similarity
	Visual Web Data Extraction
	Visual Web Information Extraction
	Visualization for Information Retrieval
	Definition
	Historical Background
	Foundations
	Models for Multiple Reference Points
	Euclidean Space Characteristics Based Models
	Visualization of Hierarchy Structures
	Visualization of Internet Information

	Cross-references
	Recommended Reading

	Visualization Pipeline
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Visualization Reference Model
	Visualizing Categorical Data
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Visualizing Clustering Results
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Visualizing Hierarchical Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Node-Edge Layouts
	Space-Filling Layouts
	Interactive Visualization of Hierarchical Data

	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Visualizing Network Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Node and Edge Representation
	Quality Criteria
	Layout Techniques
	Layouts for Networks with Data
	Interactive Augmentations

	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	Visualizing Quantitative Data
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Visualizing Spatial Data
	Visualizing Trees
	Volume
	Synonyms
	Definition
	Key Points
	Cross-references

	Volume Set Manager
	Voronoi Decomposition
	Voronoi Diagrams
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Voronoi Tessellation
	VP
	VSM

	W
	W3C
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	W3C XML Path Language
	W3C XML Query Language
	W3C XML Schema
	WAN Data Replication
	Synonyms
	Definition
	Historical Background
	Foundations
	Replica Placement
	Data Consistency

	Key Applications
	Cross-references
	Recommended Reading

	Watermarking
	Wavelets on Streams
	Definition
	Historical Background
	Foundations
	Key Applications
	Data Sets
	Future Directions
	Cross-references
	Recommended Reading

	Weak Consistency Models for Replicated Data
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Weak Coupling
	Weak Equivalence
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Weak Memory Consistency
	Web 2.0 Applications
	Web 2.0/3.0
	Definition
	Key Points
	Cross-references

	Web Advertising
	Synonyms
	Definition
	Historical Background
	Foundations
	Experimental Results
	Cross-references
	Recommended Reading

	Web Application Server
	Web Characteristics and Evolution
	Definition
	Historical Background
	Foundations
	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Web Content Extraction
	Web Content Mining
	Web Crawler
	Web Crawler Architecture
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	URL to Code
	Cross-references
	Recommended Reading

	Web Data Extraction
	Web Data Extraction System
	Synonyms
	Definition
	Historical Background
	Foundations
	Formal foundations and semantics of data extraction
	Methods of wrapper generation
	Architecture
	Commercial wrapper generation systems

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Web Data Mining
	Web Directories
	Web ETL
	Synonyms
	Definitions
	Key Points
	Cross-references
	Recommended Reading

	Web Harvesting
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Web Indexing
	Web Information Extraction
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Scalability
	Low-Level Primitives
	High-Level Optimization

	Uncertainty Management
	Rule Precision

	Cross-references
	Recommended Reading

	Web Information Extraction System
	Web Information Integration and Schema Matching
	WEB Information Retrieval Models
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Web Macros
	Web Mining
	Web Mashups
	Synonyms
	Definition
	Key Points
	Cross-references

	Web Ontology Language
	Web Page Quality Metrics
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	Web QA
	Web Query Languages
	Web Question Answering
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Data Sets
	Cross-references
	Recommended Reading

	Web Resource Discovery
	Web Scraper
	Web Scraping
	Web Search and Crawling
	Web Search Engines
	Web Search Query Rewriting
	Synonyms
	Definition
	Historical Background
	Foundations
	Stemming
	Spelling Correction
	Query Expansion
	Query Substitution and Suggestion
	Query Word Deletion

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Web Search Relevance Feedback
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Web Search Relevance Ranking
	Synonyms
	Definition
	Historical Background
	Foundations
	Textual Relevance
	Hyperlink Relevance
	Exploiting User Behavior
	Performance
	Feature Combination

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	Web Search Result Caching and Prefetching
	Synonyms
	Definition
	Historical Background
	Foundations
	Topical Locality of Reference
	Sequential Locality of Reference
	"Classic" Caching Schemes
	PDC - Probability Driven Cache
	SDC - Static Dynamic Cache
	AC
	Prefetching Policies

	Key Applications
	Future Directions
	Search Result Caching in Incremental Search Engines
	Caching in the Presence of Personalized Search Results
	Level of Details to Cache
	Holistic View

	Experimental Results
	Cross-references
	Recommended Reading

	Web Search Result De-duplication and Clustering
	Definition
	Historical Background
	Foundations
	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	Web Services
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Web Services and the Semantic Web for Life Science Data
	Definitions
	Historical Background
	Foundations
	Web Services
	The Service Provider
	The Service Client
	The Service Registry

	The Semantic Web
	Ontologies
	Query Engines
	Inference Engines

	Semantic Web Services
	Semantic Web Services in the Life Sciences

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Web Services Business Process Execution Language
	Web Site Wrappers
	Web Spam Detection
	Synonyms
	Definition
	Historical Background
	Foundations
	Web Spam Detection as a Classification Problem
	Taxonomy of Web Spam Techniques

	Key Applications
	Future Directions
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Web Structure Mining
	Web Transactions
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Web Usage Mining
	Web Views
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Web Widget
	What-If Analysis
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	While Loop
	Wide-Area Data Replication
	Wide-Area Storage Systems
	WIMP Interfaces
	Definition
	Historical Background
	Foundations
	Windows
	Icons
	Pointers
	Menus
	Additional Interaction Elements

	Key Applications
	Cross-references
	Recommended Reading

	Window-based Query Processing
	Synonyms
	Definition
	Historical Background
	Foundations
	Query Processing Techniques: Incremental Evaluation Versus Reevaluation
	Query Reevaluation
	Query Processing using Revision Tuples
	Query Processing using Punctuations
	Query Processing Using Heartbeats

	Incremental Query Evaluation
	Incremental Query Processing Using Negative Tuples

	Query Processing for Predicate Windows
	Shared Execution of Multiple Window- based Queries
	Out-of-order Tuple Processing

	Key Applications
	Cross-references
	Recommended Reading

	Windows
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Wireless Sensor Networks
	Within-Element Term Frequency
	Word Conflation
	Word of Mouth
	Work Element
	Work Performer
	Workflow
	Workflow Constructs
	Synonyms
	Definition
	Key Points
	Cross-references

	Workflow Control Data
	Workflow Enactment Service State Data
	Workflow Engine State Data
	Workflow Evolution
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Workflow Join
	Synonyms
	Definition
	Key Points
	Cross-references

	Workflow Lifecycle
	Workflow Loop
	Workflow Management
	Synonyms
	Definition
	Key Points
	Cross-references

	Workflow Management and Workflow Management System
	Synonyms
	Definition
	Historical Background
	Foundations
	Aspects of Workflows
	Workflow Management Systems

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Workflow Management Coalition
	Synonyms
	Definition
	Key Points
	Cross-references

	Workflow Meta-Model
	Workflow Mining
	Workflow Model
	Synonyms
	Definition
	Key Points
	Cross-references

	Workflow Model Analysis
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Workflow Modeling
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	Workflow on Grid
	Workflow Participant
	Workflow Patterns
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Workflow Scheduler
	Workflow Schema
	Synonyms
	Definition
	Key Points
	Cross-references

	Workflow Transactions
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Workflow/Process Instance Changes
	World Wide Web Consortium
	WORM
	Wrapper
	Wrapper Adaptability
	Wrapper Induction
	Synonyms
	Definition
	Historical Background
	Foundations
	From Free Text to Web Documents
	Wrapper Induction
	Patterns and Output Structure
	Kushmerick's Wrapper Classes
	Other Wrapper classes
	Active Learning

	Key Applications
	Wrapper Induction Algorithms
	Future Directions

	Data Sets
	Cross-references
	Recommended Reading

	Wrapper Generation
	Wrapper Generator
	Wrapper Generator GUIs
	Wrapper Maintenance
	Synonyms
	Definition
	Historical Background
	Foundations
	Wrapper Verification
	Wrapper Reinduction

	Key Applications
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	Wrapper Repair
	Wrapper Robustness
	Wrapper Stability
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	Wrapper Verification and Reinduction
	Write Once Read Many
	Synonyms
	Definition
	Key Points
	Cross-references

	Write Once Read Mostly
	Write One Read Multiple
	WS-BPEL
	WS-Discovery

	X
	XA Standard
	XMI
	XML
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	XML (Almost)
	XML 1.0
	XML Access Control
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	XML Algebra
	XML Application Development
	XML Attribute
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	XML Attribute Node
	XML Benchmarks
	Definition
	Historical Background
	Foundations
	XML Microbenchmarks
	The Michigan Benchmark

	XML Application Benchmarks
	XMach-1
	XMark
	XBench
	TPoX

	Synthetic Data Generators

	Key Applications
	Recommended Reading

	XML Cardinality Estimation
	XML Compression
	Definition
	Historical Background
	Foundations
	Compression-Oriented XML Compressors
	Query-Oriented XML Compressors

	Key Applications
	Cross-references
	Recommended Reading

	XML Data Dependencies
	XML Data Integration
	XML Database
	XML Database Design
	XML Database System
	XML Document
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	XML Element
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	XML Enterprise Information Integration
	XML Export
	XML Filtering
	XML Indexing
	Definition
	Historical Background
	Foundations
	Notation
	Node Indexes
	Positional Numberings, Edge Indexes
	Using Node Ids
	Using Dewey Numbering
	Using Interval Numbering

	Path Indexes
	Twig Indexes

	Key Applications
	Future Directions
	Data Sets
	Cross-references
	Recommended Reading

	XML Information Integration
	Synonyms
	Definition
	Key Points
	Key Applications
	Cross-references
	Recommended Reading

	XML Information Retrieval
	XML Integrity Constraints
	Synonyms
	Definition
	Historical Background
	Foundations
	Keys and Functional Dependencies for XML
	Inclusion Dependencies and Foreign Keys for XML

	Key Applications
	Cross-references
	Recommended Reading

	XML Message Brokering
	XML Metadata Interchange
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	XML Parsing, SAX/DOM
	Definition
	Historical Background
	Foundations
	XML Programming Interfaces
	Validating Parsers
	XML Parsing Performance

	Key Applications
	URL to Code
	Cross-references
	Recommended Reading

	XML Persistence
	XML Process Definition Language
	Synonyms
	Definition
	Key Points
	Cross-references

	XML Programming
	Synonyms
	Definition
	Historical Background
	Foundations
	Specific Requirements of XML Programming
	Conceptual Aspects of XML
	Differences in XML Usage
	Additional Classification Criteria
	Approaches to XML Programming

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	XML Publish/Subscribe
	Synonyms
	Definition
	Historical Background
	Foundations
	Foundation of XML Stream Processing for Publish/ Subscribe
	XML Filtering
	XML Filtering and Transformation
	Stateful XML Publish/Subscribe
	XML Routing

	Key Applications
	Data Sets
	URL to Code
	Cross-references
	Recommended Reading

	XML Publishing
	Synonyms
	Definition
	Historical Background
	Foundations
	Converting Queries
	Composition and Optimization
	Adding Tags
	In-engine Tagging
	Tagging Middleware

	Key Applications
	Cross-references
	Recommended Reading

	XML Retrieval
	Synonyms
	Definition
	Historical Background
	Foundations
	Query Languages
	Indexing Strategies
	Ranking Strategies
	Element Scoring
	Contextualization
	Propagation
	Merging
	Processing Structural Constraints
	Processing Overlaps

	Key Applications
	Experimental Results
	Data Sets
	Cross-references
	Recommended Reading

	XML Schema
	Synonyms
	Definition
	Key Points
	Cross-references
	Recommended Reading

	XML Schemas
	XML Selectivity Estimation
	Synonyms
	Definition
	Historical Background
	Foundations
	Path Enumeration
	Graph-Synopsis-Based Techniques
	Updatable Synopses

	Key Applications
	Cross-references
	Recommended Reading

	XML Storage
	Synonyms
	Definition
	Historical Background
	Foundations
	Instance-Driven Storage
	Chead17
	Tabular Storage of Trees
	Native XML Storage

	Schema-Driven Storage
	Relational Storage for XML Documents
	Cost-Based Approaches
	Correctness and Losslessness
	Order Encoding Schemes

	Hybrid XML Storage

	Key Applications
	Cross-references
	Recommended Reading

	XML Stream Processing
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	XML Tree Pattern, XML Twig Query
	Synonyms
	Definition
	Historical Background
	Foundations
	Key Applications
	Cross-references
	Recommended Reading

	XML Tuple Algebra
	Synonyms
	Definition
	Historical Background
	Foundations
	Unified Data Model
	Unified Algebra
	Selection
	Projection
	Navigation
	Construction
	Nested Plans
	Apply
	Group-By
	Apply-on-Set

	Key Applications
	Cross-references
	Recommended Reading

	XML Typechecking
	Definition
	Historical Background
	Foundations
	Exact Typechecking
	XML-to-XML Transformations
	XML Publishing

	Approximate Typechecking
	Type Systems
	Flow-Analysis

	Key Applications
	Url to Code
	Cross-references
	Recommended Reading

	XML Types
	Synonyms
	Definition
	Historical Background
	Foundations
	Intuition
	A Formalization of Relax NG
	Relationship with Tree and Hedge Automata
	Deterministic Regular Expressions
	A Formalization of DTDs and XSDs
	Expressiveness and Complexity

	Cross-references
	Recommended Reading

	XML Updates
	Definition
	Historical Background
	Foundations
	Operators
	Revalidation
	The Operators and the Full Language

	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	XML Views
	Synonyms
	Definition
	Historical Background
	Foundations
	Mapping Between the XML View and the Underlying Data
	User Queries over XML Views
	User Updates over XML Views
	Maintenance of Materialized XML Views

	Key Applications
	Future Directions
	Cross-references
	Recommended Reading

	XPath/XQuery
	Synonyms
	Definition
	Historical Background
	Bhead56
	XPath 1.0
	XQuery 1.0 and XPath 2.0
	Historical Roots of XQuery 1.0

	Foundations
	Bhead57
	The XPath 1.0 Data Model
	The XPath 1.0 Language
	XQuery 1.0
	XPath 2.0

	Key Applications
	Future Directions
	Bhead58
	The XQuery Update Facility
	XQuery 1.1 and XPath 2.1
	XQuery 1.0 and XPath 2.0 Full-Text
	XQuery Scripting Extensions

	Cross-references
	Recommended Reading

	XPDL
	XQFT
	XQuery 1.0 and XPath 2.0 Full-Text
	XQuery Compiler
	XQuery Full-Text
	Synonyms
	Definition
	Historical Background
	Foundations
	XQuery Full-Text Integration
	XQuery Full-Text Query Primitives
	XQuery Full-Text Formal Model
	Relevance Scoring in XQuery Full-Text

	Key Applications
	Cross-references
	Recommended Reading

	XQuery Interpreter
	XQuery Processors
	Synonyms
	Definition
	Historical Background
	Foundations
	Pathfinder: Purely Relational XQuery
	Timber: A Native XML Database System
	DB2 XML: A Hybrid Relational and XML DBMS

	Key Applications
	URL to Code
	Pathfinder
	Timber

	Cross-references
	Recommended Reading

	XSL Formatting Objects
	XSL/XSLT
	Synonyms
	Definition
	Historical Background
	Foundations
	XSLT Programming
	XSL-FO document typesetting
	Theoretical Foundations of XSLT
	XSLT and XQuery
	Optimizing XSLT

	Key Applications
	Information Publishing
	Data Exchange and Service Integration
	Model Exchange and Transformation

	Url to Code
	Cross-references
	Recommended Reading

	XSL-FO

	Z
	Zero-One Laws
	Definition
	Key Points
	Cross-references
	Recommended Reading

	ZF-Expression
	Zoning
	Zoomable User Interface (ZUI)
	Zooming Techniques
	Synonyms
	Definition
	Historical Background
	Foundations
	Navigation in Information Spaces
	Interaction Techniques
	Zoom Granularity and Manipulation
	Transition Between Zooming

	Key Applications
	Future Directions
	Experimental Results
	Cross-references
	Recommended Reading

	List of Entries
	Subject Index

